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Abstract

Since the beginning of this century quantum degenerate gases in optical lattices have
developed from proof-of-principle experiments into quantum emulators with a continu-
ously increasing number of tools for manipulation and probing. They provide a clean,
controllable and isolated environment for the investigation of model Hamiltonians, es-
pecially of those eluding thorough analytical and numerical treatment. In recent years,
major efforts have been undertaken to mimic the presence of gauge fields in these
systems.

In this thesis time-periodic driving of bosons in optical lattices is systematically
utilized to engineer tunneling matrix elements. In particular, sinusoidal driving is em-
ployed to change the sign and magnitude of J , thereby emulating ferro- or antiferro-
magnetic coupling schemes. The conventional tuning method for tunneling, which is
based on proper lattice depth adjustment, restricts the values of the tunneling param-
eter J to the set of positive real numbers. Moreover, for the first time complex valued
tunneling matrix elements are synthesized by breaking time-reversal symmetry. Within
the framework of the Peierls substitution, this corresponds to the creation of artificial
vector gauge potentials for neutral atoms confined in optical lattices.

The first part of this work is focusing on the simulation of a classical XY model
on the triangular lattice, which is the simplest lattice structure featuring geometrical
frustration for antiferromagnetic coupling. The phases of the coherent local wavefunc-
tions are mapped onto continuous two-dimensional vector-spins. Spin-spin interactions
are mediated by tunneling processes, where the sign of J determines the nature of this
coupling. A whole variety of different spin configurations and phase transitions could
be studied via the adjustable anisotropy of the tunneling. Measured spin-configurations
are finally mapped into a comprehensive phase diagram. Due to the strong frustration
certain phases exhibit a ground state degeneracy of two. The spontaneous symmetry
breaking induced by a macroscopic occupation of one of the ground states is statistically
analyzed.

The second part of this thesis is devoted to the creation of synthetic gauge potentials
and the emulation of strong magnetic fields for neutral atoms. In a proof-of-principle ex-
periment the feasibility of the creation of tunable gauge potentials via periodic forcing,
which breaks time-reversal symmetry, is demonstrated. Furthermore, on the triangular
lattice, gauge-invariant staggered fields are engineered, which correspond to artificial
magnetic fluxes. The resulting deformations of the dispersion relation are inferred from
the measured momentum distributions of the atoms.

The underlying Hamiltonian exhibits a discrete Ising-type Z2 symmetry for maxi-
mum flux strength of π. A thermal phase transition from a ferromagnetic phase with
spontaneously broken Z2 symmetry to a paramagnetic phase is observed. The corre-
sponding order parameter of the system, the so called magnetization, can be identified
with long-range ordered chiral mass currents. In addition, by lowering the gauge field
strength, the Z2 symmetry can be broken on purpose. Furthermore, the long-range
coherence is qualitatively measured, revealing a close relationship to the magnetization
order parameter.

In the final part of this work, a scheme for the creation of synthetic spin-orbit
coupling in a tight-binding lattice is derived and discussed. It is based on the idea of
spin-dependent lattice forcing via an oscillating magnetic field gradient. The result-
ing band structure is comprised of two spin dependent dispersion relations, which are
coupled via radio frequency fields.





Zusammenfassung

Seit Beginn dieses Jahrhunderts hat sich das Feld der quantenentarteten Gase in opti-
schen Gittern kontinuierlich weiterentwickelt. Die Zahl der Manipulations- und Detek-
tionsmethoden hat stetig zugenommen. Dabei stellt die Reinheit und Kontrollierbarkeit
dieser Systeme eine ideale Umgebung für die Untersuchung einfacher, aber trotzdem
nicht vollständig verstandener Festkörpermodelle dar.

Im Rahmen der vorliegenden Arbeit wurden zeitperiodisch getriebene, ultrakalte,
bosonische Gase in optischen Gittern untersucht. In der Zeitmittelung über eine Periode
führt der Antrieb effektiv zur Renormalisierung der Tunnelmatrixelemente im Gitter.
Die konventionelle Methode zur Modifikation des Tunnels beruht auf der Anpassung
der Gittertiefe und lässt nur Werte des Tunnelparameter J zu, die positiv reell sind. In
dieser Arbeit wurde eine sinusförmig oszillierende Kraft verwendet, um das Vorzeichen
von J zu invertieren und damit, neben ferromagnetischen, auch antiferromagnetische
Kopplungsschemata zu realisieren. Darüber hinaus konnte zum ersten Mal demons-
triert werden, dass ein zeitperiodischer Antrieb, der die Zeitumkehrinvarianz verletzt,
zu komplexwertigen effektiven Tunnelmatrixelementen führen kann.

Der erste Teil dieser Arbeit beschäftigt sich mit der Simulation eines klassischen
XY-Modells auf einem Dreiecksgitter. Im Falle bestimmter antiferromagnetischer Kopp-
lungsschemata ist dieses Gitter geometrisch frustriert. Die Phasen der lokalen Wellen-
funktionen eines jeden Gitterplatzes lassen sich als kontinuierliche, vektorielle Spins
interpretieren. Die Wechselwirkung zwischen benachbarten Spins ist durch das Vor-
zeichen des Tunnelmatrixelements bestimmt. Mit Hilfe einer einstellbaren Anisotropie
des Tunnelns konnten verschiedene Spin-Ordnungen und Phasenübergänge realisiert
und studiert werden. So gelang es das entsprechende Phasendiagramm dieses Systems
zu charakterisieren. Spezielle Bereiche des Phasendiagramms weisen eine, durch die
geometrische Frustration bedingte, zweifache Entartung des Grundzustandes auf. Die
entsprechende Symmetriebrechung, die durch die einzelne Besetzung eines dieser beiden
Zustände auftritt, wurde statistisch analysiert.

Der zweite Teil der vorliegenden Arbeit beschäftigt sich mit der Erzeugung künst-
licher Eichfelder und der Simulation magnetischer Flüsse für neutrale Atome. Es konnte
experimentell gezeigt werden, dass es möglich ist, mit einem zeitperiodisch getriebenen
Gittersystem Eichfelder für neutrale Atome zu simulieren. Im Dreiecksgitter gelang
es synthetische, alternierende Magnetfelder zu erzeugen. Die daraus resultierende De-
formation der Dispersionsrelation wurde anhand der Impulsverteilung der im Gitter
gefangenen Atome vermessen. Im Falle maximaler magnetischer Flussstärke π weist
der Hamiltonoperator eine Z2 Symmetrie auf. Für diesen Fall konnte ein thermisch
getriebener Phasenübergang von einer ferromagnetischen zu einer paramagnetischen
Phase beobachtet werden. Der entsprechende Ordnungsparameter des Systems, der die
Z2 Symmetriebrechung beschreibt, ist die Magnetisierung. Diese wird über die lang-
reichweitige Ordnung der lokalen Masseströme definiert. Für magnetische Flussstärken
abweichend von π ist die Z2 Symmetrie des Hamiltonoperators gebrochen und eine be-
stimme Magnetisierung des Systems energetisch bevorzugt. Darüber hinaus ist das an
die Magnetisierung gekoppelte Verhalten der Kohärenz der lokalen Phasen untersucht
worden.

Im letzten Teil dieser Arbeit wird die Erzeugung einer künstlichen Spin-Bahn Kopp-
lung in einem Gitter diskutiert. Das grundlegende Konzept basiert dabei auf einem
spinabhängigem, zeitperiodischen Antrieb. Eine Rabi-Kopplung beider Spin-Zustände
führt zu einer Hybridisierung der spinabhängigen Dispersionsrelationen.
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• J. Struck, M. Weinberg, C. Ölschläger, P. Windpassinger, J. Simonet,
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Chapter 1

Introduction

Over the past three decades the field of cold dilute atomic gases has undergone a
vast evolution. What started with the development of new trapping and cooling tech-
niques [1–5] for thermal clouds of atoms – rewarded by the noble prize in 1997 for
Chu, Phillips and Tannoudji [6–8] – changed into the comprehensive field of quantum
many-body physics, bridging the gap between AMO (atomic, molecular, optical) and
condensed matter physics. The experimental milestone, opening this era of interdisci-
plinary research, was without a doubt the condensation of bosonic gases in 1995 [9–11].
This and the first fundamental studies of collective excitations [12, 13], atom lasing
[14], coherence properties [15] and vortices [16], lead to the Nobel prize of 2001 for Cor-
nell, Wieman and Ketterle [17, 18]. Subsequent achievement of quantum degeneracy
in fermionic vapours [19] and novel manipulation techniques, such as the control over
atomic interactions via Feshbach resonances [20, 21], initiated research towards, e.g.
the thorough exploration of the continuous BEC (Bose-Einstein condensate) to BCS
(Bardeen-Cooper-Schrieffer) crossover and the unitary limit [22, 23].

Current fields of research include ultracold gases with long-range interactions [24–
28], ultracold chemistry [29] and the study of the equation of state in Fermi and Bose
gases [30–35], to name only a few.

At the beginning of the 1990’s, in parallel to the attempts to achieve BEC in dilute
gases, several groups started to work on optical lattices [36–39]. Such artificial crystals
of light, created by the interference pattern of overlapping laser beams, were used to
trap, cool and manipulate thermal atoms. For these, the regime of many body physics
was out of reach as densities were to small for any considerable interactions among the
atoms. This situation dramatically changed with the availability of quantum gases.

In 2001, Greiner et al. [40] measured the transition of a superfluid (SF) to Mott
insulating (MI) state of bosons in an optical lattice, following the seminal proposal by
Jaksch and Zoller [41]. A quantum phase transition that had been predicted over twenty
years ago by Fisher et al. [42] in the framework of the Bose-Hubbard model. This marked
the step from the weakly-interacting to strongly correlated regime for ultracold bosons
and triggered a huge amount of theoretical and experimental interest in, e.g. many-body
entanglement [43–45], the realization of the SF to MI transition in reduced dimensions
[46–49] and the short range coherence of Mott insulators [50–52]. After the first trapping
of fermions in three dimensional lattices and the observation of Fermi surfaces [53],
subsequently anti-bunching [54] and the phase transition to a fermionic Mott insulator
was measured [55, 56]. Recent developments include, e.g. single-site resolved detection
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and manipulation of atoms in lattices with quantum gas microscopes [57–59] and the
realization of unconventional superfluids involving excited bands [60–62]. Moreover, a
variety of non-cubic lattice geometries has lately been created: honeycomb [63, 64],
triangular [65] and kagome lattices [66]. Hence, future perspectives include, e.g. the
study of nonlinear Dirac equations [67, 68] and highly frustrated spin-liquid phases
[69, 70]. In general, quantum degenerate gases in optical lattices have proven their
capabilities to serve as tunable and well controlled quantum simulators for solid state
models [71, 72].

One of the most important manipulation techniques for ultracold atoms in optical
lattices is the time periodic modulation of either the potential depth or position by
control over the intensity or phase of the lattice beams. Amplitude modulation has
been widely explored as a probe for the excitation spectrum of the system [46, 73, 74]
but can as well be used for, e.g. pump probe experiments [75, 76], algorithmic cooling
[77], photon assisted tunneling [78] or probing of nearest-neighbor correlations [79].
In principle, phase modulation can be used for the same purposes [80] but has been
especially utilized for coherent band structure engineering, where bands with opposite
curvature hybridize due to the strong coupling [81, 82].

Furthermore, lattice potentials can be easily accelerated by phase modulation, creat-
ing inertial forces for the atoms in the co-moving reference frame. As shown by Eckardt
et al. [83] the effect of an oscillating force on a Bose Hubbard model can be captured
in a time-averaged picture with renormalized tunneling matrix elements. The renor-
malization can modify the tunneling parameter in magnitude and sign independently
of the lattice depth. Pioneering experimental work on this topic has been performed
by the group of Arimondo, including the direct measurement of tunneling suppression
with a BEC [84] and the periodically driven SF to MI transition [85]. Driving induced
modification of the tunneling for single particle quantum systems has been explored
earlier, both theoretically [86–90] and experimentally [91].

As the recurrent theme of this thesis, tunneling renormalization via time periodic
lattice driving is utilized to emulate and tune various different model Hamiltonians. In
this way, unconventional superfluid phases are created, characterized by exotic proper-
ties, e.g. finite quasimomentum, spontaneously broken discrete symmetry, metastability
and chiral mass currents.

The two main topics of this thesis are detailed in the following:

Frustrated magnetism in a triangular optical lattice

The simulation of magnetic model Hamiltonians has emerged as one of the driving
forces for the quantum gas community [23, 92]. Recently, a variety of magnetic phenom-
ena have been investigated with quantum gases, including superexchange interactions
[93–95], Ising phase transitions [96], spin fluctuations [97] and short-range magnetic cor-
relations [98]. Current interest aims at, e.g. the realization of antiferromagnetic order
in optical lattices, itinerant ferromagnetism [99–102] and frustrated magnetism [70].

Frustrated spin models are among the most challenging open problems of magnetism
and condensed matter. One of the simplest lattices that features geometrical frustra-
tion is the triangular lattice with antiferromagnetic nearest-neighbor spin-interactions
[103]: The spins cannot minimize the interaction energy pairwise but have to find a
compromise that minimizes the total energy of the system (see Fig. 1.1). This is typi-
cally accompanied by degenerate ground states and residual low temperature entropy. In
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a b

Figure 1.1: Classical spins on the antiferromagnetic triangular lattice. a Two pairs of spins
are aligned antiparallel, thus minimizing the energy. However, the third spin pair has to align
in parallel. This maximizes the spin-spin interactions for the bond. b The 120◦-configuration is
the ground state of the system.

quantum spin-models, frustration can give rise to exotic phases like valence bond states
or spin liquids [69, 71, 104]. Classical models are as well strongly influenced by geomet-
rical frustration, resulting in, e.g. macroscopically degenerate ground states [105, 106]
and emergent quasiparticles, that behave like deconfined magnetic monopoles [107–110].
The experimental realization and investigation of frustrated phases in solid-state ma-
terials is extremely difficult as it is almost impossible to realize pure exchange models.
Ground state degeneracies are often lifted by perturbations such as Dzyaloshinskii-
Moriya couplings or other spin-orbit interactions. In this context, ultracold atoms in
optical lattices offer unique possibilities for the experimental realization of pure spin
models without defects and additional interactions.

In this thesis, we report on the experimental realization of a frustrated classical XY
model on a two-dimensional triangular lattice. The phases of the local wavefunctions
can be identified with classical vector-spins. Spin-spin interactions are mediated by the
tunneling matrix elements. Positive values of these elements describe ferromagnetic and
negative values antiferromagnetic interactions. Thus, the type of interaction between
the spins can be controlled by the periodic driving of the lattice. An important feature
of this system is the adjustable anisotropy of the spin-spin interactions, which allows for
the realization of several different spin configurations. Furthermore, symmetry breaking
has been observed in a part of the phase diagram where two degenerate ground states
exist.

Gauge fields for neutral particles

Gauge fields play an important role in the theoretical description of many branches
of physics, ranging form the standard model of particle physics to the general theory
of relativity. A gauge field is characterized by the type of local gauge transformation
that leaves the relevant physical quantities of the system invariant. This concept was
first introduced in the context of classical electrodynamics, where electric and magnetic
fields can be described by gauge dependent scalar and vector potentials. In recent years
the interest to emulate gauge theories with ultracold atoms has significantly raised
[71, 111]. In particular, the generation of artificial magnetic fields for neutral atoms
is crucial for the quantum simulation of exotic condensed matter phenomena like the
integer and fractional quantum hall effect [112–115], the Hofstadter butterfly [116, 117]
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Figure 1.2: Magnetization behavior of a ferromagnetic state in a triangular lattice: Emulated
with spinless, neutral bosons exposed to an artificial magnetic field. The plot consist of more
than 4000 single experiments. The color code indicates the occurrence of each value of the
magnetization. The red circles indicate the global and green diamonds the local maxima of the
magnetization. The data curve strongly resembles the hysteresis curve, which is known from
the classical Ising model.

or more generally the study of topological insulators [118, 119].
Neutral atoms do not respond to magnetic or electric fields like charged particles do.

Therefore one has to engineer the corresponding effects artificially. The first approaches
to this problem exploited the similarity of the Coriolis force and Lorentz force by
rapidly rotating ultracold gases [120–126]. However, this technique is limited by the
centrifugal forces which drag the atoms out of the trap for high rotation frequencies.
More recently, several theoretical proposals [127–133] and experiments concentrated
on Raman laser based approaches to this issue. In this way, the creation of synthetic
vector gauge potentials A(r, t) for either bulk systems [134–136] or optical lattices
[137, 138] was successfully demonstrated. These schemes rely on the spatially and/or
momentum dependent coupling of internal states by the Raman laser beams. Even
spin-orbit coupling – belonging to the class of non-abelian gauge potentials – could
lately be realized by exploiting spin-dependent Raman process [139, 140] opening the
route towards highly interesting phenomena, such as the spin Hall effect [141].

The influence of the potential A(r, t) on a charged particle in a lattice is captured
within the framework of the Peierls substitution [142, 143]: Tunneling matrix elements
acquire a complex phase, called the Peierls phase, which is given by the line integral
over A(r, t) along a lattice bond. A gauge-invariant quantity is given by the sum of the
Peierls phases around an elementary plaquette of the lattice. This quantity corresponds
to the magnetic flux through the plaquette. In solid state materials it is notoriously hard
to reach the strong-field limit, where the flux strength is on the order of an elementary
flux quantum. This has been realized only very recently with homogenous fields in
Moiré superlattices of graphene [144–146].

In the context of this thesis a novel universal applicable method for the generation
of artificial gauge potentials for neutral atoms has been developed. The required com-
plex valued tunneling matrix elements are engineered via lattice driving, which breaks
time-reversal symmetry. This technique represents an easy to implement, tunable and
spontaneous-scattering-free alternative for the emulation of synthetic gauge fields com-
pared to Raman coupling schemes. In the triangular lattice, staggered magnetic fluxes
in the strong-field limit have been created. The corresponding deformation of the dis-
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persion relation was investigated according to the momentum distribution of the atoms.
For a flux strength around π the system features an interesting interplay between dis-
crete and continuous degrees of freedom, resembling Ising-like phase transitions and
magnetization behavior (see Fig. 1.2).

Structure of the thesis

The chapters two and three provide the basic information on the experimental setup
and the theory of periodically driven lattices. Chapters 4, 5 and 6 represent the main
results of this work. Chapter 7 introduces an idea for the extension of the lattice driving
technique towards non-Abelian gauge potentials. Chapters 4 and 5 can be read inde-
pendently, while chapters 6 and 7 partly rely on the results of chapter 5.

In the following the content of each chapter is summarized:

Ch. 2 – Ultracold Bosons in Optical Potentials
This chapter briefly explains the experimental setup as well as the concept of
optical potentials arising from atom-light interactions. The dipole trap and dif-
ferent kinds of lattice potentials are introduced. Special emphasis is placed on
the generation of optical lattices with hexagonal symmetry by a three beam laser
configuration. The last part of the chapter is devoted to single-particle and many-
body lattice Hamiltonians and the measurement of the momentum distribution
of atoms confined in a lattice.

Ch. 3 – Description of Periodically Driven Lattices
A theoretical framework for the treatment of time periodic systems is described.
The focus lies on the renormalization of the tunneling matrix elements in a pe-
riodically accelerated lattice. We discuss how the momentum distribution of the
system is connected to the effective model and experimentally demonstrate the
simple case of monochromatic shaking in a one-dimensional lattice.

Ch. 4 – Simulation of a Frustrated XY Model on a Triangular Lattice
This chapter introduces a versatile simulator approach for the classical XY model
on a triangular lattice. First, the mapping of the ultracold bosonic gas onto the
spin-model is described. Then, a diversity of spin-configurations and phase transi-
tions is introduced together with the corresponding experimental signatures. The
measured spin-configurations are compared to the corresponding zero tempera-
ture phase diagram. Particular attention is paid on the behavior of phases with
degenerate ground states, arising due to the presence of strong frustration. In this
context spontaneous symmetry breaking is observed.

Ch. 5 – Tunable Gauge Potentials for Neutral Particles in Driven Lattices
Basic concepts of lattice gauge theory are discussed for the case of classical elec-
trodynamics. Time-asymmetric lattice shaking is introduced as a method for the
creation of complex valued tunneling matrix elements, mimicking the presence of
a vector gauge potential for neutral particles in an optical lattice. As a proof-
of-principle experiment, the emulation of a tunable gauge potential for ultracold
bosons in a one-dimensional lattice is demonstrated. The dynamical response of
the atoms to changes of the gauge potential is investigated. The last part of this
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chapter is devoted to the realization of gauge-independent staggered fluxes in a
two-dimensional triangular lattice by means of time-asymmetric lattice shaking.

Ch. 6 – Engineering Ising-XY Spin Models in a Triangular Lattice
A spin-model exhibiting a combined discrete Z2 (Ising) and continuous U(1) sym-
metry is engineered in a triangular lattice. Full control over the Z2 symmetry
is obtained by applying strong staggered gauge fluxes to the lattice. We define
two distinct order parameters, the magnetization and the coherence, which are
connected to the two symmetries of the system. The behavior of those order
parameters is studied in dependence of the initial entropy and the gauge flux
strength.

Ch. 7 – Towards Spin-Orbit Coupling in Driven Lattices
We discuss a scheme for the realization of a spin-orbit coupled tight-binding lattice
system. The atoms are subjected to a spin-dependent periodic forcing, which is
realized by an oscillating magnetic field gradient. This results in a spin selective
renormalization of the tunneling matrix elements. In consequence, the dispersion
relations for two spin states with inverse magnetic moments are shifted in opposite
directions. Additional radio frequency coupling between the internal spin states
of the atoms leads to a hybridization of the two spin bands. This resembles the
effect of spin-orbit coupling.



Chapter 2

Ultracold Bosons in Optical
Potentials

This chapter briefly explains the experimental setup as well as the concept
of optical potentials arising from atom-light interactions. The dipole trap
and different kinds of lattice potentials are introduced. Special emphasis is
placed on the generation of optical lattices with hexagonal symmetry by a
three beam laser configuration. The last part of the chapter is devoted to
single-particle and many-body lattice Hamiltonians and the measurement of
the momentum distribution of atoms confined in a lattice.

2.1 Preparing Ensembles of Quantum Degenerate Bosons

The starting point for all experiments described in this thesis is a BEC of 87Rb atoms.
This section briefly describes the apparatus and the experimental procedures used to
cool the atoms to quantum degeneracy. The apparatus was initially designed and con-
structed by M. Erhard [147] and H. Schmaljohann [148]. Modifications and further
improvements were implemented in the course of the theses of J. Kronjäger, C. Becker
and P. Soltan-Panahi [63, 149, 150]. The vacuum system consists of two glass cells, which
are connected via a differential pumping stage. In the upper cell, dispensers create a
constant background pressure of rubidium atoms. A part of these atoms is captured in
a two-dimensional magneto-optical trap (2D-MOT). A nearly resonant pushing beam
continuously transfers the precooled atoms from the 2D-MOT through the pumping
stage into the second glass cell, where the atoms are recaptured in a 3D-MOT. The
pressure in the 3D-MOT cell is 10−11mbar and approximately two orders of magni-
tude lower than in the 2D-MOT cell. The loading procedure of the MOT usually takes
between 12 and 15 seconds, depending on the final atom numbers. In the following
step the ensemble is Sisyphus cooled [3–5] in an optical molasses. The atoms are then
optically pumped from the F=2 hyperfine manifold into the ground state manifold
F=1. Subsequently, the particles are loaded into a 8-Dee magnetic trap [151] and ra-
dio frequency induced forced evaporation is performed for 16-22 seconds. At this stage
the ensemble is close to the critical temperature but not yet condensed. For the final
cooling step the atoms are loaded from the magnetic trap into an optical dipole trap.
Further evaporation is performed by slowly lowering the dipole trap power until a BEC
with no discernable thermal fraction is produced. The number of the condensed atoms
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usually lies between 5 · 104 and 3 · 105. Two different dipole trap setups have been used
throughout the experiments presented in this thesis. Both setups will be introduced in
section 2.3. The whole experimental cycle, including the production of a BEC and the
measurements, lasts typically 40 seconds.

2.2 Atom-Light Interaction

The relevant light matter interactions for the manipulation of ultracold neutral atoms
are electric dipole interactions. They arise from the interplay between the induced
dipole moment of the atom and the electromagnetic wave. The interaction leads to
new eigenstates which are energetically shifted with respect to the uncoupled atomic
states [152]. This energy shift is called the AC-Stark shift. It is proportional to the
intensity of the light field and allows to trap atoms on length scales determined by the
wavelength of the light. For far-off-resonant light, where the scattering rate is small
compared to the detuning, the atoms experience an almost purely conservative force.
The proper design of the intensity profile of laser beams allows to directly engineer a
potential landscape for the atoms. For an extensive review on this topic in the context
of optical traps see Ref. [153]. As we will see in section 2.4 the interference pattern of
laser beams acts as a periodic potential for atoms.

In order to create strong AC-Stark shifts we mainly couple the 52S1/2 ground state
of 87Rb to the 52P1/2 (D1 line) and 52P3/2 state (D2 line). The resulting potential for
the atoms reads [63, 150, 153]:

Vdip(r) = − 1

18ε0~c
| 〈L = 0||er||L′ = 1〉 |2 I(r){(

1

ωD1 − ω
+

1

ωD1 + ω

)
+ 2

(
1

ωD2 − ω
+

1

ωD2 + ω

)

−P(r)gFmF

[(
1

ωD1 − ω
+

1

ωD1 + ω

)
−
(

1

ωD2 − ω
+

1

ωD2 + ω

)]}
, (2.1)

where ε0 is the absolute permittivity, ~ the reduced Planck constant, c the speed of
light, gF is the Landé factor of the hyperfine state and mF is the Zeeman quantum
number. The indices D1 and D2 describe the two relevant transition lines which have
a wavelength of 780.24nm and 794.98nm. I(r) is the intensity, ω the frequency of the
laser and

P(r) =
Iσ+(r)− Iσ−(r)

I(r)
(2.2)

is the polarization of the light field. In the case of π polarized light P(r) is zero. The
value for the reduced dipole matrix element | 〈L = 0||er||L′ = 1〉 | can be obtained from
Ref. [154]. In our case we cannot employ the commonly used rotating wave approxi-
mation as the counter-rotating terms are non-negligible. The potential Eq.(2.1) can be
split into a spin-independent and a spin-dependent part

Vdip(r) ≡ VSI(r) + gFmFµBBeff , (2.3)

where we have introduced an effective magnetic field Beff = −αVSI(r)P(r)/µB. This
field describes the effect of the spin-dependent potential in analogy to the linear Zeeman
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effect in a magnetic field. The factor α quantifies the ratio between both parts of the
potential. As we can infer from Eq. (2.1) the spin-dependent part vanishes for very
large detuning where the difference between the D1 and the D2 line is not resolved
anymore. For our lattice we use a wavelength of 830nm resulting in α = 0.13, while
for our dipole trap the wavelength is 1064nm resulting in α = 0.02. In section 2.4 we
will see how one can engineer light fields which feature a spatially varying polarization
resulting in state-dependent lattices.

For convenience in later calculations we introduce the following abbreviated version
of the spin-independent potential

VSI(r) ≡ −ũ(ω)I(r), (2.4)

with ũ(ω) as a conversion factor for a given wavelength between the intensity and the
resulting light shift on the atoms. The conversion factor for our lattice wavelength
(830nm) is ũ(ωL) = 9.38 · 10−36m2s and for the dipole trap wavelength (1064nm)
ũ(ωDT) = 2.11 · 10−36m2s.

2.3 Dipole Trap

The dipole trap serves as a spin-independent for the atoms. Thus, it provides the
necessary basis for experiments involving several spin-components which cannot be
performed in magnetic traps confining only low field seeking spin states. The intensity
profile of a single, radial symmetric gaussian laser beam is given by

I(ρ, z) =
2P

πw(z)2
exp

(
−2ρ

w(z)2

)
, (2.5)

where P is the power of the beam, w(z) = w0

√
1 + (z/zR)2 is the beam waist with

minimal waist w0 and zR = πw2
0/λ is the Rayleigh length. Single beam traps result in

very asymmetric trap configurations with a comparably weak confinement along the
axial direction of the beam which is determined by the Rayleigh length. In order to
create a more symmetric trapping geometry we use a crossed dipole trap consisting
of two laser beams which intersect under an angle of 90◦ in the horizontal plane. The
dipole trap setup has been changed in the course of this thesis. Parts of the experiments
described in this work have been performed with the circular trap and parts with the
elliptical trap.

2.3.1 Circular Crossed Dipole Trap

This dipole trap is formed by two radially symmetric gaussian laser beams, resulting
in an intensity profile

I(r) =
2P

πw2
0

e−2y2/w2
0

(
e−2x2/w2

0 + e−2z2/w2
0

)
, (2.6)

where we neglected the weak confinement along the axial directions of the beams.
The y-axis is defined as the vertical axis. The minimal waists of the laser beams are
w0 ≈ 37µm, resulting in trapping frequencies of approximately ωHorizontal = 2π · 88Hz
and ωVertical = 2π · 72Hz as the smallest possible values before the atoms fall out of the
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Figure 2.1: Numerically calculated trapping frequencies including the influence of the grav-
itational sag. a Trapping frequencies for the circular dipole trap. The red circle indicates the
isotropic point, where the trapping frequencies in all directions are equal ≈ 97Hz. b Trapping
frequencies for the elliptical dipole trap. Note the difference in the scale of the beam power. The
trapping frequency in the horizontal directions are always smaller than the vertical frequency.

trap. It is possible to work at laser powers where the trap is almost perfectly isotropic
(see Fig. 2.1) [150]. The shift in vertical direction due to the influence of gravity can
be large if the intensity of the laser beams is lowered. The maximal gravitational sag,
before the atoms fall out of the trap, is given by the half the waist size (−w0/2). This
yields a minimal holding power of

PMin =
π

8ũ(ωDT)
mgw3

0e1/2 ∼ w3
0. (2.7)

The holding power scales as the minimal waist size cubed. Therefore PMin strongly for
larger waist sizes. This sets a lower bound on the achievable trapping frequencies for
this kind of dipole trap. The calculated trapping frequencies, including the influence of
the gravitational sag, are shown in Fig. 2.1a.

2.3.2 Elliptical Crossed Dipole Trap

For experiments in optical lattices it is usually desirable to achieve densities corre-
sponding on average to one or two atoms per lattice site. In order to reach these filling
factors it is either possible to reduce the total atom number or to lower the harmonic
trapping frequencies. With the circular setup, where the mean trapping frequencies are
on the order of 100Hz, very small atom numbers are required. However, this approach
poses two new problems: For small atom numbers the signal to noise ratio is decreased
and the lattice size is strongly reduced.

To overcome the aforementioned limitations, a new trap setup with strongly reduced
mean trapping frequencies has been implemented at the experiment. This dipole trap
is formed by two elliptically shaped gaussian laser beams: The aspect ratio of the
beam waist in the vertical direction (w0,v ≈ 82µm) with respect to the horizontal
direction (w0,h ≈ 245µm) is 1:3. This allows for very low mean trapping frequency at
holding powers in the range of 0.5W per beam. In figure 2.1b the numerically calculated
trapping frequencies for the elliptical dipole trap are shown. Typical final trapping
frequencies after evaporation in the dipole trap are shown in figure 2.2 and amount
to ωHorizontal = 2π · 19Hz and ωVertical = 2π · 48Hz. The discrepancy between the
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Figure 2.2: Measurement of typical trapping frequencies for the shallow elliptical dipole trap.
The power in the dipole trap beams is approximately 550mW, which is below the theoretically
expected minimal holding power. The frequencies are determined by measuring the center of
mass oscillations of a BEC in the trap. The oscillations are induced by applying a strong
magnetic field gradient.

measured and the theoretically expected trapping frequencies probably stems from
the systematical errors in the calibration of the beam power due to, e.g. the partial
reflectivity of the glass cell. The intensity distribution for the crossed elliptical dipole
trap is

I(r) =
2P

πw0,hw0,v
e−2y2/w2

0,v

(
e−2x2/w2

0,h + e−2z2/w2
0,h

)
. (2.8)

The maximal gravitational sag is determined by the waist size in the vertical direction
and amounts to −w0,v/2. The minimal holding power against gravity is given by

PMin =
π

8ũ(ωDT)
mg w2

0,v w0,h e1/2 ∼ w2
0,v w0,h. (2.9)

This means by choosing a strong confinement along the vertical direction and a weak
confinement along the horizontal directions the gravitational sag and the minimal hold-
ing power can be reduced. Thus, the trapping frequencies in the horizontal directions
can become very small and the atomic densities are reduced.

2.4 Periodic Potentials

2.4.1 Three Beam Lattice Setup

The three beam lattice consist of three interfering, running waves, which pairwise inter-
sect under angle of 120◦ within the xy-plane (see Fig. 2.3 a)[37, 65]. The orientations
of the laser beams are characterized by the wave vectors

k1 = kL

0
1
0

 , k2 =
kL

2

√3
−1
0

 , k3 =
kL

2

−√3
−1
0

 , (2.10)
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Figure 2.3: Three beam lattice. a Three running waves intersect in the xy-plane under an
angle of 120◦ respectively. The quantization axis – a homogenous magnetic field – is oriented
perpendicular to the lattice plane. b The reciprocal lattice of the three beam lattice has a
hexagonal symmetry. Indicated in red are the primitive reciprocal vectors. The first Brillouin
zone is highlighted by the grey shaded region. c The real space Bravais lattice is as well hexag-
onal but turned by 90◦ with respect to the reciprocal lattice. The primitive lattice vectors are
shown as the red arrows.

with kL = 2π/λL as the wavenumber and λL = 830nm as the lattice laser wavelength.
In close vicinity to the waists of the laser beams the electric fields can be approximated
by plane waves and the total electric field reads

ELat(r, t) = Re
[
ẼLat(r, t)

]
= E0 Re

[
3∑
i=1

εi ei(kir−ωLt+φi)

]
. (2.11)

Here, we assumed an equal, real valued amplitude E0 for all beams. εi is the polarization
vector of the respective laser beam, ωL = ckL and the φi’s correspond to the phases of
each beam. The intensity distribution I(r, t) = ε0c|ẼLat(r, t)|2/2 is readily obtained by
using the complex electric fields.

The reciprocal lattice (see Fig. 2.3 b) is given by the momentum transfer, resulting
from the absorption of a photon from one beam and the stimulated emission into
another beam. We define the two primitive reciprocal lattice vectors as

b1 = k1 − k3 =
b

2

 1√
3

0

 , b2 = k2 − k3 = b

1
0
0

 , (2.12)

with b =
√

3kL. The primitive lattice vectors of the real space Bravais lattice (see Fig.
2.3 c) can be obtained by using the well-known relation ai · bj = 2πδij :

a1 = d

0
1
0

 , a2 =
d

2

√3
−1
0

 , (2.13)

with d2D = λL2/3 = 4π/(b
√

3) ≈ 553nm as the lattice constant. Both the Bravais lattice
and the reciprocal lattice are of hexagonal shape but rotated by 90◦ with respect to
each other.
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The topography of the three beam lattice is insensitive to fluctuations and drifts of
the phases φi, as the lattice is build up by the minimum number of lattice beams: A
d-dimensional lattice requires a minimum number of d+1 beams [37]. Even though the
phases have no influence on the lattice structure, they do have strong influence on the
absolute position of the lattice. Fluctuations of the phases directly lead to a randomly
moving lattice, which in turn can lead to undesired heating of the atoms confined in
the lattice. In order to avoid this heating, the phases of the lattice beams are actively
stabilized to a reference value [150]. The phase stabilization can in fact be used to
translate and accelerate the lattice in a controlled fashion (see appendix B).

The polarization of the lattice beams εi plays an important role for the final poten-
tial experienced by the atoms. A natural basis for the decomposition of the polarization
into circular and linear polarized parts is determined by the quantization axis of the
atoms. In the experiment, a homogenous magnetic field along the z-axis (see Fig. 2.3)
defines the quantization axis. If the polarization vector εi is parallel to the quantization
axis the light is purely π-polarized for the atoms. For a polarization vector perpendic-
ular to the quantization axis the laser beam consists in equal parts of σ+ and σ−

polarized light.
In the z-direction the atoms are only weakly confined by the external harmonic

potential, that arises due to the dipole trap and the gaussian profiles of the lattice laser
beams. The three beam lattice only generates a periodic potential in the xy-plane,
resulting in a periodic array of tubes usually filled with up to hundreds of atoms. To
create a three dimensional lattice potential, an additional periodic confinement along
the z-direction is needed. For example, a retro-reflected laser beam, which is far detuned
with respect to the other beams, can be used to create an independent standing wave.
This leads to layers of the three beam lattice potential along the z-direction.

The experimental setup exhibits deviations from the ideal three beam lattice as the
beams are not perfectly aligned with an angle of 120◦. The angle deviations have been
determined in the course of C. Ölschläger’s diploma thesis [155] and the most important
results are summarized in appendix A. These corrections have minor influence on the
results and their interpretation. It will be mentioned where the corrected angle values
have been used for the data analysis.

Triangular Lattice

The realization of the triangular lattice requires that the polarization vectors of all
three beams are aligned parallel to the quantization axis (see Fig. 2.4)

ε1 = ε2 = ε3 = êz. (2.14)

This results in an optical potential

V4(r) = −V0

[
3

4
+

1

2
(cos[(b1 − b2)r− φ2] + cos[b1r− φ3] + cos[b2r + φ2 − φ3])

]
,

(2.15)
which is purely spin-independent as the polarization is everywhere π. Here, V0 =
4ũ(ωL)I0 is the lattice depth with I0 = ε0cE

2
0/2 and we have set the phase of the

first beam to zero without loss of generality. Figure 2.4 shows the potential of the
triangular lattice. The lattice depth is commonly expressed in units of recoil energy
Erec = ~2k2

L/2m. The coordination number of the lattice, quantifying the number of
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Figure 2.4: Triangular optical lattice. a The orientation of the polarization vectors and b the
resulting optical potential.

the nearest-neighbors, is six. Compared to cubic lattice the confinement in a lattice well
is very strong and the tunneling rates decrease much faster with respect to the lattice
depth [156].

Spin-Dependent Honeycomb Lattice

For the honeycomb lattice the polarization vectors are aligned parallel to the xy-plane
(see Fig. 2.5 a)

ε1 =

1
0
0

 , ε2 =
1

2

−1√
3

0

 , ε3 =
1

2

 −1

−
√

3
0

 . (2.16)

In contrast to the triangular lattice, the resulting potential is spin-dependent. This
can be seen by decomposing the electric fields into circular polarization components.
The quantization axis pointing along êz defines the basis states for the polarization as
εσ± = (1,∓i, 0)T/

√
2. By recalling expression (2.3) we separate the potential into a

spin-independent part and a spin-dependent part. The spin-independent potential has
the following form [63]

VHC(r) = −V0,HC [6− 2(cos[(b1 − b2)r− φ2] + cos[b1r− φ3] + cos[b2r + φ2 − φ3])] ,
(2.17)

resulting in a potential where the minima form a honeycomb lattice. The spin-independ-
ent potential is basically the inverted version of the triangular lattice potential, featuring
large potential hills in the center of a hexagon (see Fig. 2.5 a). The atoms move along
the channels between the potential hills. Compared to the triangular lattice, the actual
confinement of the atoms in the wells is very small. This is reflected in the definition
of the lattice depth for the honeycomb lattice which is V0,HC = V0/8.
The light field projected onto the basis defined by the quantization axis is purely σ-
polarized and results in the following expression for the polarization (see Eq. (2.2))

P(r) =

√
3 (sin[(b1 − b2)r]− sin[b1r] + sin[b2r])

3− (cos[(b1 − b2)r] + cos[b1r] + cos[b2r])
. (2.18)

At the position of the lattice minima the polarization is either σ+ or σ−, creating an
alternating pattern between neighboring lattice sites (see Fig. 2.5 b). This leads to a
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Figure 2.5: Spin-dependent honeycomb lattice. a The polarization vectors are aligned parallel
to the lattice plane, resulting in a potential where the minima are located on a honeycomb
lattice. The spin-independent part of the potential features large potential hills, which are
shown grayed out. b The polarization structure of the lattice with the contour lines of the
spin-independent part of the potential. The polarization alternates between σ+ and σ− from
one lattice site to the neighboring. c The honeycomb lattice consist of a hexagonal Bravais
lattice with a two-atomic basis. The color of the basis indicates the different polarizations on
the lattice sites. The primitive unit cell is shaded grey.

spin-dependent part of the potential, which lifts the degeneracy between neighboring
lattice sites for atoms with non-zero magnetic moment. The effective magnetic field
describing the spin-dependent potential (see Eq. (2.3)) is given by [63]

µBBeff = 2
√

3 αV0,HC (sin[(b1 − b2)r]− sin[b1r] + sin[b2r]) . (2.19)

The honeycomb lattice features two lattice sites per elementary unit cell corresponding
to a two-atomic basis in the language of solid state physics. We can define a basis vector
(see Fig. 2.5 c)

c =
d√
3

1
0
0

 , (2.20)

which connects the two lattice sites within the same elementary unit cell. The degen-
eracy of the two-atomic basis is strongly influenced by the spin-dependent potential.
Furthermore, the honeycomb lattice is the 2D lattice with smallest possible coordina-
tion number, namely three.

In the course of this thesis the first realization of an ultracold quantum gas in a spin-
dependent honeycomb lattice has been achieved [157]. In this lattice potential different
spin-states experience different lattice geometries and depths. For a spin-component
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with vanishing magnetic moment the lattice geometry is a perfect honeycomb struc-
ture. In contrast, for spin-components with non-zero magnetic moment the symmetry
of the two lattice sites in a unit cell is broken: The atoms predominantly occupy a
triangular-shaped sublattice. Thus, a forced antiferromagnetic order can be realized for
spins with opposite magnetic moments.

Of particular interest is the rich interplay between the spin-dependent lattice po-
tential and the interactions of different constituents of a multi-component quantum
gas. In this way it is possible to study, e.g. mixtures of weakly interacting superfluid
and strongly-correlated Mott-insulating spin-components. For a mixture of two spin-
components, which occupy different sublattices (antiferromagnetic order), we have ob-
served a tunneling blockade effect in the strongly correlated regime: The tunneling
between different sites of a given sublattices is suppressed by the presence of the other
spin-component. The repulsive interactions between the components induce a blockade
of the tunneling. Thus, the corresponding superfluid to Mott-insulator transition occurs
at a much smaller lattice depth than compared to a single-component system.

Interestingly, even in the weakly-interacting regime the interplay of the potential
and the inter-component interactions reveals exotic and unexpected phenomena. In a
binary spin-mixture we have observed a quantum phase transition from a conventional
to a twisted superfluid phase, where the phase of the local order parameter continuously
twists between neighboring lattice sites [61].

As an additional feature, these effects can be studied by a novel state- and sublattice
resolved microwave spectroscopy. With this technique, information about the band
structure as well as the density distribution of the atoms can be obtained.

A detailed presentation and discussion of the above-mentioned experiments and
future perspectives can be found in the PhD thesis of P. Soltan-Panahi [63] and is not
repeated in this work.

2.4.2 Running Wave 1D Lattice

In order to create a one-dimensional lattice with the full control over the relative
phase between the interfering beams, we use two beams of the three beam lattice
(see Fig. 2.6a). Thus, the lattice structure as a whole can be moved. The completely
spin-independent potential reads

VRW(x) = −V0

2
[1 + cos(b2r− φ2)] = −V0

2
[1 + cos(bx− φ2)] , (2.21)

where we have set the phase φ3 to zero without loss of generality. The lattice spacing
is given by

dRW(β) =
2π

b(β)
=

λ

2 sin(β/2)
. (2.22)

The lattice constant has the smallest possible value for β = 180◦ and diverges as β → 0.
For the case of λ = 830 and β = 120◦ the value is dRW(120◦) = 479nm but due to the
alignment deviations from the perfect three beam lattice, the lattice constant for the
1D running wave lattice shows a slight deviation from this value (see appendix A). The
atoms are only weakly confined in the y- and z-direction effectively forming an array
of 2D pancakes along the lattice axis.
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Figure 2.6: Running wave 1D lattice. a The 1D lattice is created by using only two beams from
three beam lattice. In the ideal case, the angle α between the beams is 120◦. The polarization of
the beams is parallel to the quantization axis. b The resulting lattice potential has a sinusoidal
shape and the lattice spacing is given by the angle between the beams.

2.4.3 Non-Interacting Atoms in Optical Lattices

It is a well-known fact that the single particle spectrum for a periodic potential is
separated in energy bands by finite band gaps. The eigenstates of the Schrödinger
equation for a particle in a spatially periodic potential

hLatφ
n
q(r) =

[
p̂2

2m
+ VLat(r)

]
φnq(r) = Enq φnq(r), (2.23)

are given by Bloch functions φnq(r) [158, 159], where n is the band index and q is
called the quasimomentum. The energy spectrum and Bloch functions are periodic
with respect to the quasimomentum Enq = Enq+G and φnq(r) = φnq+G(r), where G is a
reciprocal lattice vector. A non-interacting atom in an optical lattice obeys the same
Schrödinger equation with a minor difference: The additional slowly varying potential
due to the gaussian intensity profile of the dipole trap and the lattice beams. This
potential is very well approximated with a parabolic (harmonic) potential VHarm. It acts
as a perturbation term in the single particle Hamiltonian leading to a weak coupling
of the Bloch states and small corrections of the band structure. A particle occupying
a single Bloch state is completely delocalized in real space. A complete set of localized
states is provided by Wannier functions [160, 161]. Wannier functions are connected to
Bloch functions in the following way:

wn(r−Ri) =
1√
M

∑
q

e−iqRiφnq(r), (2.24)

where wn(r−Ri) is the Wannier function of the n-th band localized around the site i
with the lattice vector Ri and the normalization constant M . In the case of a mono-
atomic basis this constant corresponds to the number of lattice sites. Wannier functions
with different band or lattice site index are orthogonal to each other. From now on we
will use the abbreviated notation wn(r−Ri) ≡ wn,i(r). The inverse of the transforma-
tion given by Eq. (2.24) allows for the following formal identification: The occupation
of single finite quasimomentum Bloch state corresponds to a state where the local
wavefunctions acquire a complex phase

ϕi = q ·Ri. (2.25)
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2.4.4 Many-Body Hamiltonian

For the experiments considered in this thesis, the relevant interactions between the
ultracold atoms arise from low energy, isotropic, two-particle, s-wave scattering. The
interaction potential between two atoms (in the spin states σ and σ′) can in this case be

modelled by contact interactions V σ,σ′

Int = gσ,σ′ ·δ(r−r′) [162], with gσ,σ′ = 4π~2aσ,σ
′

s /m.

The s-wave scattering length aσ,σ
′

s completely describes the interactions between the
particles, independent from microscopic details of the interatomic potential. However,
one should keep in mind that this only works for short-ranged interatomic potentials.

The second quantized many-body Hamiltonian for bosons with contact interactions
trapped in an optical lattice VLat with an additional overall harmonic confinement VHarm

is given by

H(t) =
∑
σ

∫
dr ψ̂+

σ (r, t)

[
− ~2

2m
∇2 + VLat(r, t) + VHarm(r, t)

]
ψ̂σ(r, t)

+
∑
σ,σ′

gσσ′

2

∫
dr ψ̂+

σ (r, t)ψ̂+
σ′(r, t)ψ̂σ′(r, t)ψ̂σ(r, t), (2.26)

with the bosonic field operators ψ̂σ(r, t) and ψ̂+
σ (r, t) annihilating and creating a boson

at position r. The harmonic confinement approximates the trapping potential of the
dipole trap and the slowly varying potential of the lattice laser beams arising from their
gaussian intensity profile. The field operators have to fulfill the bosonic commutation
relation [

ψ̂σ(r, t), ψ̂+
σ′(r

′, t)
]

= δσσ′ δ(r− r′). (2.27)

Starting from the many-body Hamiltonian (Eq. (2.26)) we will introduce two Hamil-
tonians: The first one is the Bose-Hubbard Hamiltonian [163] which is particular suited
to study strongly correlated physics and the second one being the energy functional for
weakly interacting condensates arranged in periodic arrays of pancakes (1D lattice) or
tubes (2D lattice). For simplicity we will consider in the rest of this section only single
component systems dropping the index σ.

Bose-Hubbard Model

Expanding the bosonic field operators of the many-body Hamiltonian (Eq. (2.26)) in
the lowest band1 Wannier basis

ψ̂(r) =
∑
i

âi wi(r), (2.28)

leads to the Bose-Hubbard Hamiltonian first introduced by Gersch and Knollman [163]

HBH = −J
∑
〈ij〉

â+
i âj +

U

2

∑
i

n̂i(n̂i − 1) +
∑
i

εin̂i. (2.29)

with the annihilation, creation and particle number operators âi, â
+
j and n̂i = â+

i âi
respectively for a particle on lattice site i. Angle brackets in the first sum denote that

1From now on we will omit the band index as only the lowest band is considered.
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the sum extends over all sites i and their respective nearest-neighbors. A quantum
degenerate gas of atoms, adiabatically loaded into a deep lattice, usually only occu-
pies the lowest band. The energy scale associated to the temperature of the ensemble
is significantly smaller than the energy gap to the next band. Moreover, the single
band approximation only holds provided that the interactions are not to strong2. The
operators â+

j and âi obey the bosonic commutation relation [âi, â
+
j ]=δij .

The first term of the Hamiltonian (2.29) corresponds the kinetic part and describes
the tunneling between neighboring lattice sites. The tunneling parameter between site
i and j is defined as

Jij = −
∫

dr wi(r)

[
− ~2

2m
∇2 + VLat(r, t)

]
wj(r), (2.30)

where in the Bose-Hubbard Hamiltonian only nearest-neighbor tunneling is considered.
This tight-binding approximation is fulfilled for sufficiently deep lattices. For conven-
tional optical lattices the tunneling parameter Jij is positive real valued. In Eq. (2.29)
we assumed isotropic tunneling in all lattice directions.

The second part of the Hamiltonian describes the interactions between the particles
under the assumption that only on-site interactions contribute. This means that inter-
actions between particles, residing on different lattice sites, are neglected. The on-site
interaction parameter is defined via the expression

U = g

∫
dr |wi(r)|4 . (2.31)

And the last term of the Hamiltonian gives account to the additional parabolic
confinement introducing a site-dependent energy offset

εi =

∫
dr|wi(r)|2VHarm(r) ≈ VHarm(Ri), (2.32)

where VHarm = m(ω2
H,x x

2 + ω2
H,y y

2 + ω2
H,z z

2)/2 and ωH,i is the trapping frequency in
direction i.

One should keep in mind that the Wannier functions are single particle functions.
In principle, the shape of the localized wavefunctions depends on the finite interactions
between the particles. Therefore, the Bose-Hubbard parameters are, strictly speaking,
density dependent [165–169].

The T = 0 phase diagram of the Bose-Hubbard Hamiltonian was first thoroughly
studied by Fisher et al. [42]. They found a quantum phase transition from a delocalized
superfluid to localized Mott-insulating (MI) state for commensurate filling factors while
increasing the ratio U/J . The extreme cases of the corresponding phases read [170]

|ψSF〉q=0 (U = 0) ∝

(
M∑
i

â+
i

)N
|0〉 U/J→ |ψMI〉nεZ (J = 0) ∝

M∏
i

(
â+
i

)n |0〉 ,
(2.33)

where N is the total number of atoms, M the number of lattice sites and n = N/M the
filling factor. The bosonic vacuum state is denoted by |0〉. For typical particle numbers

2For typical optical lattice experiments, the interactions are not strong enough but the use of, e.g.
Feshbach resonances [164] can lead to a break down of this assumption.
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in optical lattice experiments, the superfluid state is well approximated by a product
of local coherent states with well defined phases and long-range coherence3. The J = 0
MI phase consist of a product of local Fock states and shows no phase coherence.

Optical lattices are particularly suited to study this quantum phase transition as
initially proposed by Jaksch et al. [41] and subsequently demonstrated in the experiment
of Greiner et al. [40]. Via the lattice beam intensity, the potential depth of the lattice can
be strongly modified. Thus, the ratio U/J can be tuned over many orders of magnitude.

Weakly Interacting Regime in Low-Dimensional Lattices

For one and two dimensional lattices the field operators can be expanded like

ψ̂(r) =
∑
i

wi(r‖) d̂i(r⊥), (2.34)

where the operator d̂i(r⊥) annihilates a particle in lattice site i at position r⊥ perpen-
dicular to the lattice. In the following we use the notation r‖ to describe the coordinates
along the lattice and r⊥ as the coordinates perpendicular to the lattice (r‖ · r⊥ = 0).
Insertion of the field operators from Eq. (2.34) into the many-body Hamiltonian (Eq.
(2.26)) leads to

H =

∫
dr⊥

(
− J

∑
〈ij〉

d̂+
i (r⊥)d̂j(r⊥)

+
∑
i

d̂+
i (r⊥)

[
−
~2∇2

⊥
2m

+ VHarm(r⊥) + VHarm(Ri) +
g̃

2
d̂+
i (r⊥)d̂i(r⊥)

]
d̂i(r⊥)

)
,

(2.35)

where only on-site interactions and nearest-neighbor tunneling are considered. The
discrete position of site i is given by the lattice vector Ri. Tunneling events between
neighboring lattice wells are described by the parameter

Jij = −
∫

dr‖ wi(r‖)

[
− ~2

2m
∇2
‖ + VLat(r‖, t)

]
wj(r‖), (2.36)

and interactions by the renormalized scattering parameter

g̃ = g

∫
dr‖

∣∣wi(r‖)∣∣4 . (2.37)

For one- and two-dimensional lattices with high filling factors the strongly correlated
regime is experimentally out of reach and, at zero temperature, the condensate fraction
is large. Therefore, one can replace the creation and annihilation operators d̂i(r⊥) with
complex numbers

d̂i(r⊥)→
√
ni |χi(r⊥)|eiϕi , (2.38)

where the χi are normalized interaction broadened wavefunctions with fixed phase ϕi
along the non-lattice axes r⊥. In this approximation, possible phase twists or fluctua-
tions along the tubes are neglected. By integrating out the non-lattice directions r⊥ we

3In three dimensional systems the onset of superfluidity and BEC, i.e. long-range order are linked
[171].
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arrive at following expression for the energy

E({ϕi, ni}) = −J
∑
〈ij〉

√
ninj ei(ϕj−ϕi) +

U

2

∑
i

n2
i +

∑
i

εini, (2.39)

where the kinetic energy of the particles along the interaction broadened wavefunctions
has been completely neglected (Thomas-Fermi approximation). The on-site interaction
parameter is given by

U = g̃

∫
dr⊥ |χi(r⊥)|4 . (2.40)

U is explicitly calculated for 1D and 2D lattices in appendix C. The external harmonic
confinement gives rise to a site dependent energy offset

εi ≈ VHarm(Ri) +

∫
dr⊥|χi(r⊥)|2VHarm(r⊥). (2.41)

For our experimental parameters interactions dominate the energy expressed by Eq.
(2.39). Therefore, density is directly adapting to the external harmonic confinement
independent of the tunneling values Jij and the local phases ϕi. Nevertheless, tunneling
can strongly influence the phase configuration ϕi for negative or even complex values
of Jij as will be shown in the following chapters. It can be intuitive to recast the kinetic
part of expression (2.39) in terms of vector spins Si ≡ {cosϕi, sinϕi, 0}. We will use
vector spin representations in order to illustrate certain local phase arrangements of
superfluid states.

2.4.5 Momentum Distribution: Time-of-Flight Measurement

The most common observable extracted from ultracold gas experiments is related to
the in trap momentum distribution of the ensemble of atoms. For an optical lattice,
this observable is given by [23]

ñ(k) = ψ̃+(k)ψ̃(k) = |w̃(k)|2
∑
i,j

eik(Ri−Rj)a+
i aj , (2.42)

where we have introduced the Fourier transform of the field operator

ψ̃(k) =

(
1

2π

)3/2 ∫
dr eikrψ̂(r), (2.43)

and the Fourier transform of the Wannier function

w̃(k) =

(
1

2π

)3/2 ∫
dr eikrw(r). (2.44)

With the momentum distribution it is possible to obtain information about the first
order correlation function 〈a+

i aj〉 of the respective state in the lattice. The extension

of 〈ñ(k)〉 in the reciprocal space is determined by the width of |w̃(k)|2. The Fourier
transformed Wannier function grows if the real space Wannier function shrinks, which
usually happens if the lattice depth is increased. However, one should keep in mind,
that the coherence properties and therefore the first order correlation function are also
altered when changing the lattice depth. For a MI state (Eq. (2.33)), the non diagonal
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elements of the first order correlation function rapidly decay, resulting in an almost
featureless momentum distribution. For increasing correlation length the non-diagonal
elements of 〈a+

i aj〉 start to contribute and the momentum distribution develops a peak
structure. In a superfluid state with local phases ϕi (see Eq. (2.25)) the correlation
function reads 〈a+

i aj〉=
√
ninj exp[i(ϕj − ϕi)] and the momentum distribution features

narrow peaks centered at quasimomentum q.
It has been controversially debated wether sharp momentum peaks are a clear sig-

nature for a finite superfluid fraction or already states without long-range order, e.g. a
normal fluid can posses narrow momentum structures [51, 172–177]. A recent thorough
comparison of experiment and quantum-monte carlo simulations has shown that the
identification of the superfluid to normal fluid transition according to the measured
momentum distribution is possible [178], even tough one has to be careful as broad mo-
mentum peaks can arise in a pure normal fluid or Mott-insulating state [51, 173, 177].

The standard way of measuring the momentum distribution is based on a sudden
release of the atomic ensemble by abruptly switching off all confining potentials. The
cloud of atoms expands, while falling under the influence of gravity, according to the
in-trap momentum distribution. After a certain time-of-flight (TOF) tTOF, a resonant
imaging beam illuminates the atomic cloud. Due to the scattering of the light by the
atoms the beam gets attenuated and a shadow image of the density distribution can be
cast on a CCD camera. The density distribution after TOF approximately corresponds
to the in-trap momentum distribution [23]

〈n̂(r)〉TOF ≈
(

m

~tTOF

)3

〈ñ(k)〉Trap , (2.45)

with the coordinate relation r = ~ktTOF/m between real and momentum space. The
shadow image on the CCD camera reflects the column integrated density profile

n̂(x, y)⊥ =

∫
dz n̂(r)TOF, (2.46)

where the z-axes is parallel to the absorption beam. Repetition of the same experi-
ment and subsequent averaging of the obtained images leads to the expectation value
〈n̂(x, y)⊥〉.

The main deviation between the momentum distribution and the density distribu-
tion – neglected in Eq. (2.45) – arises from the finite TOF realized in the experiment.
For a finite amount of tTOF one has to consider the in-trap size of the atomic cloud. As
shown by Gerbier et al. [176], this problem is analogous to Fresnel-diffraction occurring
in the near-field regime. As a result of the near-field diffraction, sharp momentum peaks
are broadened in the density distribution after TOF. A characteristic timescale tFF to
reach the far-field regime is given by [176]

tFF ≈
mlcR0

~
, (2.47)

where lc is the coherence length of the state in the lattice and R0 the radius of the cloud.
Assuming a coherent superfluid state we obtain for our parameters (lc ≈ R0 ≈ 15µm)
a value tFF ≈ 300ms which is 10 times longer then the TOF’s used in our experiments.
We thus expect that the width of the momentum peaks obtained for a superfluid state
is strongly dominated by the finite extend of the cloud in the trap.



Chapter 3

Description of Periodically
Driven Lattices

A theoretical framework for the treatment of time periodic systems is de-
scribed. The focus lies on the renormalization of the tunneling matrix ele-
ments in a periodically accelerated lattice. We discuss how the momentum
distribution of the system is connected to the effective model and experi-
mentally demonstrate the simple case of monochromatic shaking in a one-
dimensional lattice.

In recent years, the time-periodic driving of quantum gases in optical lattices has de-
veloped into a reliable technique for the coherent manipulation of the motional degrees
of freedom [81, 83, 179–181]. Far-off-resonant driving – compared to the band gap, the
kinetic and the interaction energy scales – has been used as a highly versatile method
for the engineering of tunneling matrix elements. This was demonstrated for weakly
interacting BECs in optical lattices in the Arimondo group [84, 182] and has been ex-
tended into the strongly correlated regime [78, 85, 94]. Throughout this thesis, periodic
driving is systematically utilized to manipulate the tunneling between adjacent lattice
sites.

In this chapter, we describe how to realize the driving force for the atoms in a
lattice and introduce the basic theory for the description of time-periodic Hamiltonians.
Furthermore, it is explained under which constraints the system can be described by an
effective time-averaged Hamiltonian and how this gives rise to renormalized tunneling
matrix elements in the effective description of the driven Bose-Hubbard Hamiltonian.

3.1 Inertial Forces Induced by Lattice Acceleration

This section describes a convenient method for the generation of a spatially homoge-
neous, time-dependent force across an optical lattice. This is the prerequisite for the
majority of experiments presented in this thesis. A simple way to create inertial forces
in the co-moving reference frame is to accelerate an optical lattice. In our case, we shift
the lattice potential via the control over the phases of the lattice beams. We consider
the corresponding single-particle Hamiltonian in the reference frame of the laboratory

hLab =
p̂2

2m
+ VLat(r−R0(t)) + VHarm(r), (3.1)
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where VLat is the lattice potential, VHarm(r) an overall harmonic confinement and the
function R0(t) describes the trajectory of the moving lattice. As shown in Refs. [181,
183] the unitary operator UT = U3U2U1 transforms the Hamiltonian hLab into the
lattice frame,

hLF = UThLabU
+
T − i~UT

∂U+
T

∂t

=
p̂2

2m
+ VLat(r)− F(t)r + VHarm(r + R0(t)), (3.2)

with the inertial force F(t) = −mR̈0(t), the translation operator

U1 = exp

(
i

~
R0(t)p̂

)
, (3.3)

the momentum shift operator

U2 = exp

(
− i

~
mṘ0(t)r

)
, (3.4)

and an operator

U3 = exp

(
− i

~
m

2

∫ t

0
dt′ Ṙ0(t′)

2
)
, (3.5)

that removes the kinetic energy term mṘ0(t)2/2 from the Hamiltonian.
In the following, we always assume time-periodic forces F (t+T ) = F (t) that exhibit

a zero time-average 〈F (t)〉T = 0. Here, we have introduced the notation 〈· · ·〉T =
1
T

∫ T
0 · · · dt for the time-average. The expression for the corresponding momentum shift

of the atoms is

∆p(t) =

∫ t

−∞
dt′F(t′), (3.6)

which can be simplified under the assumption that the lattice was at rest prior to the
acceleration (Ṙ0(t→ −∞) = 0),

∆p(t) =

∫ t

t0

dt′F(t′)−
〈∫ t

t0

dt′F(t′)

〉
T

= −mṘ0(t). (3.7)

Note that expression (3.7) is invariant under changes of the initial time t0. Further-
more, the trajectory is time-periodic1 (R0(t) = R0(t+T )) and the time-average of the
momentum shift vanishes (〈∆p〉T = 0).

In the lattice frame, the harmonic trapping potential is time-dependent, giving rise
to a time-dependent restoring force. The harmonic potential can be decomposed into
three terms,

VHarm(r + R0(t)) =
3∑
i=1

(
1

2
mω2

H,ir
2
i︸ ︷︷ ︸

V iHarm(ri)

+mω2
H,iriR0,i(t)︸ ︷︷ ︸
F iH(t)ri

+
1

2
mω2

H,iR
2
0,i(t)

)
, (3.8)

where ωH,i is the harmonic trapping frequency along the axis i, ri the respective coordi-
nate and F iH(t) = mω2

H,iR0,i(t) the restoring force of the harmonic trap. The last term

1For a finite initial velocity the trajectory is not time-periodic even though the forcing function is.
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of Eq. (3.8) only represents a time-dependent global energy offset in the Hamiltonian
and will be omitted in the following. An estimate for the influence of the restoring force
can be given in comparison to the inertial force,

F iH(t)

F i(t)
=
ω2

H,iR0,i(t)

R̈0,i(t)

Amplitudes
∝

ω2
H,i

Ω2
, (3.9)

where we employed a Fourier expansion ofR0,i(t) = R0,i(t+T ) in harmonics of Ω=2π/T ,
in order to determine the scaling of the amplitude of R̈0,i(t). In the experiments pre-
sented in this thesis the shaking frequency Ω is at least ten times larger than the
harmonic trapping frequencies, resulting in ω2

H,i � Ω2. In this limit we can neglect the
effect of the restoring force and approximate the lattice frame Hamiltonian by

hLF ≈
p̂2

2m
+ VLat(r)− F(t)r + VHarm(r). (3.10)

This approximation only holds provided that the time-average of the momentum shift
vanishes 〈∆p(t)〉T =0. Otherwise the restoring force increases with time until it is not
negligible anymore.

As interactions between the particles are not modified by the transformation into
the lattice frame, it is straightforward to write down the corresponding many-body
Hamilton operator in second quantization. Expansion of the field operators in Wannier
functions finally leads to a Bose-Hubbard Hamiltonian with an additional driving term.

3.2 Intuitive Picture of the Tunneling Renormalization

In this section, we introduce the concept of tunneling matrix renormalization via pe-
riodic lattice forcing in a semiclassical single-particle model. This approach is not
rigourous and does not describe the conditions imposed on the forcing of the lattice,
but it gives an intuitive picture of the underlying physics. The single particle Hamilto-
nian of the system is given by the lattice Hamiltonian introduced in Eq. (2.23) with an
additional term describing the influence of an external force

h(x, t) = hLat(x)− F (t)x. (3.11)

As already discussed, eigenstates of hLat(x) are Bloch functions with well defined quasi-
momentum q. In the presence of an external force (Eq. (3.11)) the solutions to the
Schrödinger equation are Houston states [184, 185] with a time-dependent quasimo-
mentum qk(t). For the sake of simplicity, we restrict the system to one dimension,
but the calculation can easily be extended to higher dimensions. In the semiclassi-
cal approximation the quasimomentum of the state changes according to the equation
[158, 159]

~
d

dt
qk(t) = F (t). (3.12)

Let us first consider the case of a monochromatic forcing function

F (t)=F0 sin(Ωt), (3.13)



26 Description of Periodically Driven Lattices

E(q)

q

0-π/d-2π/d π/d 2π/d

Ee�(k)

k
0-π/d-2π/d π/d 2π/d

J0 

F0d/ħΩ
2 4 6 8 10 12

1.0
0.8
0.6
0.4
0.2

- 0.2
- 0.4

0
14

a b

c B

Figure 3.1: Tunnel matrix renormalization for monochromatic forcing. a Time-dependent
momentum shift of the particle in the reciprocal space. The blue circles indicate oscillations
around q = 0 and the red circles indicate oscillations at the edges of the Brillouin zone at q =
±π/d. b Effective dispersion relation experienced by the particles with different k-oscillations.
The time-averaged energy is lowered for particles oscillating around q = ±π/d (red circles)
while it is increased for particles oscillating around q = 0 (blue circles). The black line shows
the effective dispersion relation, which arises from averaging around each k-value in the first
Brillouin zone. c Renormalization of the tunneling matrix elements. The effective tunneling
parameter, depending on the amplitude of the forcing (F0), follows a zeroth order Bessel function
of the first kind. For negative values, the dispersion relation is inverted, as shown in b.

resulting in a time-dependent shift of the quasimomentum

qk(t) = k − F0 cos(Ωt)/(~Ω). (3.14)

We can insert this expression into the tight-binding dispersion relation of the lowest
band given by

E(qk(t)) = −2J cos(dqk(t)), (3.15)

where the energy varies due to the motion of the particle in the reciprocal space (see
Fig. 3.1). In the so called high frequency limit, when ~Ω (Ω = 2π/T ) is large compared
to the energy scales of the system (in this case large against the tunneling element) one
can approximate the energy of the oscillating particle with its time-average over one
cycle

Eeff(k) = 〈E(qk(t))〉T = −2Jeff cos(dk) with Jeff = J · JB
0 (F0d/~Ω). (3.16)

Here, JB
0 denotes the zeroth order Bessel function of the first kind (see Fig. 3.1). The

effective dispersion relation has the same shape as the unforced one but shows a renor-
malized width of |Jeff |. As the Bessel function can become negative, the sign of the
tunneling matrix element can be inverted by the shaking. Adjusting the magnitude of
the forcing amplitude F0 allows to tune the tunneling matrix element according to the
Bessel function.

More generally, it can be shown that for any time-periodic force, with zero time-
average, the effective band structure can be expressed as

Eeff(k) = −2|J |eff cos(dk − θ). (3.17)
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Hence, indicating that it is possible to induce a continuous shift of the dispersion
relation given by θ/d. This resembles the effect of a complex valued tunneling matrix
element. The general expression for Jeff and θ read

|J |eff = J

√
〈sin [d∆p(t)]〉2T + 〈cos [d∆p(t)]〉2T , (3.18)

tan(θ) =
〈sin [d∆p(t)]〉T
〈cos [d∆p(t)]〉T

, (3.19)

where ∆p(t) is the momentum shift of the atoms, which can be obtained by formal
integration of Eq. (3.12)

qk(t) = k − 1

~

∫ t

−∞
dt′F (t′) = k − 1

~
∆p(t). (3.20)

The challenge is to find an appropriate forcing function that renormalizes the tunneling
matrix elements in the desired way.

3.3 Floquet Theory

This section reviews the basic concepts of Floquet theory, which provides an appro-
priate theoretical framework for the full quantum-mechanical treatment of the peri-
odically driven many-body system. As the main advantage, this approach results in a
time-independent eigenvalue problem, which bears strong resemblance to the station-
ary Schrödinger equation. This simplification of the time-periodic problem comes at
the expense of an infinitely extended, periodic Hilbert space.

In particular, Floquet theory allows for a rigorous derivation of the tunneling renor-
malization, going beyond the semiclassical single-particle treatment of the last sec-
tion. For comprehensive reviews on Floquet theory the reader is referred to the Refs.
[186, 187]. Assuming a Schrödinger equation

i~
∂

∂t
|ψ(t)〉 = H(t) |ψ(t)〉 , (3.21)

with a time-periodic Hamiltonian (H(t)=H(t + T )), one can use Floquet’s theorem
[188, 189] to prove the existence of solutions for Eq. (3.21) that have the form

|ψα(t)〉 = e−iεαt/~ |φα(t)〉 . (3.22)

These solutions are called Floquet-states. They are analogous to the well-known Bloch-
states arising for spatially periodic Hamiltonians2. εα is the quasienergy of the system
and the |φα(t)〉 are called Floquet modes. They are time-periodic |φα(t)〉 = |φα(t+ T )〉.
Inserting Eq. (3.22) into Eq. (3.21) results in an eigenvalue problem for the Floquet
modes [190]

HF |φα(t)〉 = εα |φα(t)〉 , (3.23)

with the Floquet Hamiltonian HF = H(t) − i~ ∂
∂t . This equation is similar to the sta-

tionary Schrödinger equation and we will see in the following that they share many
properties.

2Actually the Floquet-Theorem can be applied to any kind of linear periodic differential equation.
Therefore, the same kind of states appear for spatially periodic Hamiltonians.
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If one obtains a single solution for Eq. (3.23), it is possible to construct infinitely
many new solutions by adding a phase term

|φα′(t)〉 = exp(inΩt) |φα(t)〉 = |φαn(t)〉 , (3.24)

where Ω = 2π/T . Due to the constraint that the Floquet modes are time-periodic,
n needs to be an integer number. This results in a periodic energy spectrum for the
quasienergies with Floquet bands separated by ~Ω,

εαn = εα + n~Ω. (3.25)

The quasienergies can be projected into a first Brillouin zone which is defined by
ε ε [−~Ω/2, ~Ω/2]. The name Brillouin zone stems from the similarity of the quasienergy
spectrum to the periodicity of the quasimomenta in a spatially periodic solid. This re-
dundancy of the Floquet modes is removed in the Floquet states, being the solutions
to Eq. (3.21)

|ψαn(t)〉 = exp(−iεαnt/~) |φαn(t)〉 = exp(−iεαt/~) |φα(t)〉 = |ψα(t)〉 . (3.26)

Using Eq. (3.23), it is convenient to work in a composite Hilbert space H⊗HT , where H
is the Hilbert space of the states from Eq. (3.21) and HT the Hilbert space of T-periodic
complex functions. The Floquet modes belong to this Hilbert space. A scalar product
for this composite space fulfilling the conditions for an inner product of a Hilbert space
can be defined as [190]

〈〈ϕ(t)|γ(t)〉〉T =
1

T

∫ T

0
dt 〈ϕ(t)|γ(t)〉 . (3.27)

The Floquet Hamiltonian HF is a hermitian operator in the composite Hilbert space
[190], meaning that

〈〈ϕ(t)|HF |γ(t)〉〉T = 〈〈γ(t)|HF |ϕ(t)〉〉∗T , (3.28)

for any states |γ〉 , |ϕ〉 from H⊗HT . Thus, Floquet modes with different quasienergies
are orthogonal to each other

〈〈φαn(t)|φβm(t)〉〉T = δαβδnm. (3.29)

Here, we assumed an appropriate normalization of the Floquet modes. The Floquet
modes form a complete set of basis states in the composite Hilbert space∑

α,n

|φαn(t)〉 〈φαn(t′)| = 1H ⊗ δ({t− t′}modT ), (3.30)

which, by using Eq. (3.24), reduces to a complete set in H for t = t′mod(T )∑
α

|φα(t)〉 〈φα(t′)| = 1H. (3.31)

Therefore it is possible to expand non-time-periodic states in terms of Floquet states.
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The instantaneous energy of a Floquet-state is not constant and will rapidly change
on a timescale given by T. However, the time-averaged energy Eα is directly related to
the quasienergy of the state [191]

Eα = 〈〈ψα(t)|H(t)|ψα(t)〉〉T = εα + i~
〈〈

φα(t)

∣∣∣∣ ∂∂t
∣∣∣∣φα(t)

〉〉
T

. (3.32)

A Fourier expansion of the Floquet modes into the basis

|n, k(t)〉 = |n〉 exp(ikΩt), (3.33)

where the |n〉 form an arbitrary stationary basis in the Hilbert space H and k is an
integer number, leads to the following expression for the time-averaged energy [191]

Eα = εα + ~Ω
∑
n,k

|cnk|2k = εα + ~Ω
∑
k

|ck|2k. (3.34)

The series coefficients are defined as cnk = 〈〈n, k(t)|φα(t)〉〉T . In the last step of Eq.
(3.34) we used the relation

∑
n

|cnk|2 =
1

T 2

∫ T

0
dt dt′ 〈φα(t′)|φα(t)〉 eikΩ(t−t′) = |ck|2. (3.35)

Therefore, a Floquet state has a time-averaged energy, which is determined by its
quasienergy and the occupation of the Floquet bands.

3.4 Time-Averaged Effective Hamiltonian

This section introduces the concept of an effective Hamiltonian, approximating a part
of the quasienergy spectrum of a Floquet Hamiltonian. As shown by Hemmerich [180],
one can define a unitary operator UQ,m(t) = exp(−iQ(t) + imΩt) with a hermitian
time-periodic operator Q(t) = Q(t+ T ) and integer m, which transforms an arbitrary
stationary orthonormal basis |n〉 of H into an orthonormal basis of the composite
Hilbert space H⊗HT

|n(t),m〉 = UQ,m(t) |n〉 . (3.36)

The matrix elements of the Floquet Hamiltonian in this basis are given by

〈〈n(t),m|HF |s(t), p〉〉T = 〈〈n|U+
Q (t)HFUQ(t)|s〉 ei(p−m)Ωt 〉

T
+ p~Ωδpmδns, (3.37)

with UQ ≡ UQ,0. The matrix elements can be decomposed into diagonal blocks (m = p)
and elements coupling different Floquet bands (m 6= p)

〈〈n(t),m|HF |s(t), p〉〉T =δpm (〈n|Heff |s〉+ p~Ωδns) + (1− δpm) 〈n|Vp,m|s〉 . (3.38)

Here, the effective Hamiltonian is defined as [180]

Heff = 〈U+
Q (t)HFUQ(t)〉

T
(3.39)

and the perturbation term as

Vp,m = 〈 ei(p−m)ΩtU+
Q (t)HFUQ(t)〉

T
. (3.40)
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We are interested in the conditions under which a single Brillouin zone of the quasi-
energy spectrum of HF can be approximated by the energy spectrum of Heff . First, we
diagonalize each block of the Floquet Hamiltonian, which corresponds to the diagonal-
ization of the effective Hamiltonian

〈n|D+HeffD|s〉 = 〈ñ|Heff |s̃〉 = Eeff
ñ δñs̃, (3.41)

with D as the unitary diagonalization operator and the eigenstates |s̃〉=D |s〉 of Heff .
The influence of the perturbation term on the quasienergy spectrum can be determined
by using perturbation theory. The first order energy correction vanishes, while the
second order yields the result

E
(2)
ñ,m =

∑
s̃

∑
p6=m

|〈ñ|Vp,m|s̃〉|2

Eeff
ñ − Eeff

s̃ + (m− p)~Ω
. (3.42)

If the splitting of the Floquet bands is large compared to all eigenvalues of the effective
Hamiltonian ∣∣∣Eeff

ñ

∣∣∣� ~Ω, (3.43)

as well as to all off-diagonal coupling terms

|〈ñ|Vp,m|s̃〉| � ~Ω, (3.44)

E
(2)
ñ,m is small. Hence, the perturbation term Vp,m and the overlap between different Flo-

quet bands can be safely neglected. In this high-frequency approximation, the spectrum
of the Floquet Hamiltonian is well approximated by the spectrum of Heff modulo ~Ω
and the states |ñ(t),m〉=UQ,mD |n〉 behave like Floquet modes. For the first Brillouin
zone of the quasienergy spectrum we obtain

〈〈ñ(t), 0|HF |s̃(t), 0〉〉T ≈ 〈ñ|Heff |s̃〉 ,
⇔ εñ ≈ Eeff

ñ . (3.45)

The quasienergies of the first Brillouin zone and the energy eigenvalues of the ef-
fective Hamiltonian coincide in the high-frequency approximation. Within this approx-
imation it is possible to relate an arbitrary state |ψ(t)〉, obeying the Schrödinger (3.21)
with the time-dependent Hamiltonian H(t), to the corresponding solution |ψeff(t)〉 of
the effective Schrödinger equation with Heff . Following the completeness relation (3.31),
we expand |ψ(t)〉 in terms of the approximate Floquet states,

|ψ(t)〉 ≈
∑
ñ

cñ e−iεnt/~ |ñ(t), 0〉

≈ UQ
∑
ñ

cñ e−iEeff
ñ t/~ |ñ〉 = UQ |ψeff(t)〉 , (3.46)

where we have used Eq. (3.45) and the unitary transformation (3.36) in the step from
the first to the second line. The series coefficients are defined as cñ = 〈ñ(t), 0|ψ(t)〉.

If the coupling between Floquet bands can be completely neglected, it is worth
reconsidering Eq. (3.34). Under this approximation the population of each Floquet
band remains fixed and the time-averaged energy only depends on quasienergies up to
an unimportant constant.
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3.5 Effective Description of a Driven Lattice

We will now use the concept of the effective Hamiltonian to treat a periodically driven
optical lattice in the tight binding regime. The particles trapped in the lattice are
bosonic and hence, the system is well described by the Bose-Hubbard Hamiltonian
with an additional driving term,

H(t) = HTunnel +HOnSite +HForce(t), (3.47)

where we seperated Eq. (2.29) into a tunneling term HTunnel and a term which only
includes on site density operators HOnSite. The time-periodic driving term (HForce(t) =
HForce(t+ T )) is given by

HForce(t) =
∑
i

vi(t)n̂i, (3.48)

with vi(t) = −F(t) Ri and F(t) as a time-periodic, inertial force (as in Eq. (3.2)) acting
on the atoms in the lattice. Ri is the lattice vector of site i. By choosing the hermitian
operator of the unitary transformation (3.36) as

Q =
1

~
∑
i

Wi(t)n̂i, (3.49)

with

Wi(t) =

∫ t

t0

dt′vi(t
′)−

〈∫ t

t0

dt′vi(t
′)

〉
T

= −∆p(t) ·Ri, (3.50)

one obtains an effective Hamiltonian without the driving term (see Eq. (3.39)),

Heff = −
∑
〈i,j〉

Jeff
ij a

+
i aj +HOnSite (3.51)

as shown by Eckardt et al. [83]. The effective Hamiltonian has exactly the same structure
as the undriven Bose-Hubbard Hamiltonian but with renormalized tunneling elements

Jeff
i,j = J 〈 ei(Wi(t)−Wj(t))/~ 〉T . (3.52)

With a suitable driving function it is possible to create effective tunneling elements
- in contrast to the conventional unrenormalized tunneling parameter - which can be
negative or even complexed valued.

For the validation of the effective Hamiltonian approximation it is suitable to work
with Floquet-Fock states [83], which can be obtained from the well-known Fock states
and Eq. (3.36),

|{ni}(t),m〉 = UQ,m(t) |{ni}〉 = e−i/~
∑
iWini+imΩt |{ni}〉 . (3.53)

In this basis set, transitions between different Floquet bands, which are not captured by
the effective Hamiltonian, are only mediated by the tunneling term. The Floquet-Fock
states are eigenstates of HF for J = 0,

HF |{ni}(t),m〉
J=0
=

(
U

2

∑
i

ni(ni − 1) + ~Ωm

)
|{ni}(t),m〉 . (3.54)
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This means that the Floquet-Fock states only coincide with the true Floquet states of
the system for a vanishing tunneling matrix element. The coupling elements between
Floquet bands (m 6= p) read

〈{ni}|Vp,m|{n′i}〉 = −J
∑
〈i,j〉

〈{ni}|a+
i aj |{n

′
i}〉 〈ei/~(Wi(t)−Wj(t))+i(p−m)Ωt 〉T (3.55)

(see Eq.(3.40)). The tunneling matrix elements, involving creation and annihilation
operators, roughly scale like the average filling factor n̄, whereas the absolute value
of the time-averaging integral in Eq. (3.55) lies between zero and unity. Recalling Eq.
(3.43), the coupling terms between different Floquet bands can be neglected if n̄J � ~Ω.
In addition to this condition the energy levels of states belonging to different Floquet
bands must not overlap (Eq. (3.43)). As the effective Hamiltonian scales with the on-
site interaction and the effective tunneling, which is always smaller than the original
tunneling parameter, this leads to the additional constraint n̄(n̄−1)U � ~Ω. Combining
these conditions and assuming low average filling factors n̄ ≈ 1, results in the lower
bound for the driving frequency [83, 180]

max{U, J} � ~Ω. (3.56)

The validity of Eq. (3.51) under condition (3.56) has been verified in numerical simu-
lations [83, 192, 193].

One should keep in mind that the derivation of the lattice Hamiltonian (2.29) in-
volves a single band approximation. If the driving frequency gets resonant with higher
Bloch bands, this approximation lacks justification. In order to avoid band excitations,
the driving frequency must differ from the band gap energy EGap,

~Ω · l 6≈ EGap, l ∈ N∗. (3.57)

This expression includes resonant multi-photon transitions to higher bands. Indeed,
these transitions do play a role due to the strong forcing of the system. Figure 3.2
shows a typically excitation spectrum obtained by scanning the shaking frequency.
The coherence of the system strongly decreases for integer ratios of EGap/(~Ω). These
discrete resonances correspond to multi-photon excitations to the higher band. The
deviations at low frequencies between the measured and the expected position of the
resonances probably stem from systematic errors in the band gap measurement.

3.6 Momentum Distribution of the Effective State in the
Laboratory Frame

In section 2.4.5 we derived the momentum distribution for an arbitrary state in an
optical lattice. Since we are interested in describing the time-periodic system by an
effective Hamiltonian, it is important to find an observable for the effective states. In
the lattice frame the momentum distribution for a state obeying the time-dependent
Schrödinger equation reads (see Eq. (2.42))

〈ψ(t)|n̂k|ψ(t)〉 = |w̃(k)|2
∑
i,j

eik(Ri−Rj) 〈ψ(t)|a+
i aj |ψ(t)〉

= |w̃(k)|2
∑
i,j

ei(k−∆p(t)/~)[Ri−Rj ] 〈ψeff(t)|a+
i aj |ψeff(t)〉 , (3.58)
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Figure 3.2: Typical excitation spectrum for a periodically driven lattice. The coherence of
the system is inferred from the maximum pixel value of the TOF absorption image. A loss of
coherence is indicated by smaller pixel values. The frequency is depicted in kHz and units of the
band gap energy divided by the Planck constant h. In this case, the spectrum was recorded in
a triangular lattice at a depth of V0 = 6.1Erec, resulting in a band gap of EGap/h = 14.07kHz.

where we have made use of Eqs. (3.46) and (3.50) in the second step. In the next step,
we need to transform the momentum observable from the co-moving lattice frame into
the laboratory frame. The observable transforms according to the unitary operator
UT (see Eqs. (3.3), (3.4), (3.5)) as n̂Lab

k = UTn̂kU
+
T = n̂k+∆p(t)/~. This results in a

momentum distribution in the laboratory frame, which is given by [181]

〈ψ(t)|n̂Lab
k |ψ(t)〉 = |w̃(k + ∆p(t)/~)|2

∑
i,j

eik(Ri−Rj) 〈ψeff(t)|a+
i aj |ψeff(t)〉 . (3.59)

In the high-frequency limit the momentum distribution of the full solution to the peri-
odically driven Hamiltonian H(t) gives direct access to the correlation function of the
effective state ψeff(t). As a remnant of the lattice shaking the envelope of the momentum
distribution, given by the Fourier transformed Wannier function, oscillates according
to the driving function. For a superfluid effective state the positions of the momentum
peaks remain fixed, while only the height of the peaks varies according to the moving
envelope.

3.7 Benchmark Experiment: Monochromatic Shaking

A paradigm example of tunneling matrix renormalization is given by monochromatic
shaking as introduced in section 3.2 (see Eqs. (3.13) and (3.16)). The first experimental
realization in the context of quantum degenerated gases was reported by Lignier et
al. [84], demonstrating the coherent manipulation of the dispersion relation and the
dynamical suppression of tunneling between neighboring lattice wells. Similar results
have been obtained shortly afterwards with single particles in double well systems [194].

As a benchmark experiment, we employ monochromatic shaking and compare it to
the theoretically expected renormalization of J . The atoms are adiabatically loaded into
the running wave 1D lattice (see Eq. (2.21)) at a lattice depth of a V0 = 8Erec, resulting
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in a tunneling value of J = 0.012Erec and a band gap of Egap = 3.6Erec = h · 12.1kHz.
Frequency modulation of one beam with

δω2(t) = −2πν0 cos(Ωt), (3.60)

leads to a time-dependent phase shift

φ2(t) = −
∫ t

−∞
dt′δω2(t′), (3.61)

and an accelerated motion of the lattice, resulting in an inertial force as described in
Eq. (3.13) (see appendix B for a derivation of the forcing function). We describe the
renormalization of the tunneling matrix elements in terms of the dimensionless forcing
parameter

A =
dRWF0

~Ω
=
mdRW

2ν0

~
, (3.62)

as the argument of the Bessel function (see Eq. (3.16)). Here, dRW is the corrected
spacing of the running wave lattice (see appendix A). In agreement with the conditions
(3.56) and (3.57) we choose Ω = 2π · 1.5kHz (Shaking energy scale ~Ω = 0.45Erec). At
a fixed final lattice depth V0, the forcing parameter is linearly ramped up by increasing
the frequency modulation amplitude ν̃0(t) = ν0 · t/TR over a time of TR = 20ms.
Subsequently, the system is subjected to shaking with a constant forcing amplitude
A(ν0) for a duration of 40ms, allowing the bosons to relax into the minima of the
effective dispersion relation. From TOF measurements we finally infer the momentum
distribution and thus the minima of the dispersion relation (see Fig. 3.3). If the sign
of effective tunneling matrix element is positive the atoms remain in the center of the
first Brillouin zone (q = 0), while for negative values they relax to the edges of the first
Brillouin zone (q = ±π/d). The contrast which is defined in Fig. 3.3b quantifies the
relative occupation of these two quasimomentum states in a single TOF measurement.

Fig. 3.3c shows the momentum distribution of the atoms as a function of the final
forcing amplitude. One can clearly identify distinct values of A(ν0) where the mo-
mentum peaks get shifted by π/d. The comparison of zero crossings for the measured
contrast and the calculated Bessel function shows almost perfect agreement (see 3.3d),
thus indicating the expected renormalization of the tunneling matrix elements. A re-
markable point is the coherence of the sample subjected to very strong forcing. Even
for forcing parameters up to ten – corresponding to a real space shaking amplitude of
approximately five lattice sites – the system still features sharp momentum peaks.

These measurements confirm that a coherent manipulation via periodic lattice shak-
ing is possible in our system and even very strong forcing does not lead to excessive
heating of the atomic sample.
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Figure 3.3: Momentum distribution and contrast of the monochromatically shaken one dimen-
sional lattice. a Effective dispersion relation for positive and negative tunneling. b Measured
momentum distribution of the atoms for the dispersion relations shown in a and definition of
the contrast : Particle numbers in the green and red circles are counted, subtracted and finally
normalized. c Cut of the measured momentum distribution along the x-axis, depending on the
forcing parameter A. The blue points indicate the contrast of the momentum distribution (as
defined in b) for different values of the forcing parameter. The green dashed curved depicts the
corresponding renormalization of the tunneling matrix element. Both curves have coinciding
zero crossing points.





Chapter 4

Simulation of a Frustrated XY
Model on a Triangular Lattice

This chapter introduces a versatile simulator approach for the classical XY
model on a triangular lattice. First, the mapping of the ultracold bosonic gas
onto the spin-model is described. Then, a diversity of spin-configurations
and phase transitions is introduced together with the corresponding exper-
imental signatures. The measured spin-configurations are compared to the
corresponding zero temperature phase diagram. Particular attention is paid
on the behavior of phases with degenerate ground states, arising due to the
presence of strong frustration. In this context spontaneous symmetry break-
ing is observed.

In general, a system is called frustrated if competing constraints, which are imposed
by the underlying Hamiltonian, cannot be fulfilled simultaneously. Frustration in spin
models with short range interactions typically arises as a consequence of the lattice
geometry. This effect is called geometrical frustration. The total energy of the system
cannot be minimized by the preferred, pairwise alignment of the spins.

In this chapter, a versatile simulator approach for a classical XY model on a two-
dimensional triangular optical lattice is described. The motional degrees of freedom
of bosonic atoms are used to mimic spin-interactions, while the phases of the local
coherent wavefunctions are mapped onto vector-spins [70]. The most important control
knob in our simulation is the tuning of the nearest-neighbor coupling elements J and
J ′ (Fig. 4.1) resembling the spin-interaction parameters. The sign of these parameters
[83, 84] can be inverted. Thus, it is possible to switch between ferromagnetic and
antiferromagnetic interactions. This is achieved by a fast periodic translation of the
lattice on a closed two-dimensional orbit. In this way, we are able to study a variety
of different spin configurations, phase transitions, as well as spontaneous symmetry
breaking in presence of degenerate ground states.

Parts of this chapter have been published in Ref. [195] and in the diploma thesis of C.
Ölschläger [155], which was co-supervised by the author of this work. The experiments
and the data analysis presented in this chapter were performed within the team of:
J. Struck, C. Ölschläger, R. Le Targat and P. Soltan-Panahi.



38 Simulation of a Frustrated XY Model on a Triangular Lattice
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Figure 4.1: Representation of a triangular plaquette as part of a larger lattice. The phases
of the local on-site wave functions are mapped on classical two-dimensional vector spins (red
arrows). The coupling parameters J (red line) and J ′ can be tuned independently in magnitude
and sign (ferro- or antiferromagnetic).

4.1 Mapping to the Classical XY-Model

In the following, we describe the key ingredients of our quantum gas simulator. Ultracold
bosonic atoms are trapped in the minima of a two-dimensional triangular lattice. A
weak confinement in the z-direction is provided by the external harmonic trap. Thus,
the atoms form a triangular array of elongated tubes with large filling factors in the
center of the lattice. We are working in the weakly interacting regime, where local on-
site wavefunctions can be described as ψi =

√
ni exp(iϕi) with well defined local phases

ϕi. The energy of the system is described by (see Eq. (2.39)),

E({ϕi, ni}) = −2
∑
〈ij〉

Jij
√
ninj cos(ϕj − ϕi) +

U

2

∑
i

n2
i +

∑
i

εini, (4.1)

where we have introduced the notation 〈ij〉 indicating the sum over all lattice bonds.
The tunneling matrix elements of Eq. (4.1) are already the effective tunneling param-
eters, renormalized by periodic driving as introduced in chapter 3.

A large mean field energy effectively decouples the kinetic part and the interaction
part of the energy. On the one hand, the density profile is dominated by the external
harmonic trap and the interactions, while the phase distribution has only a negligible
influence (Thomas-Fermi regime). On the other hand, the kinetic energy is dominated
by the phase distribution, and the density distribution only results in a weighting of
the lattice sites, according to the local filling factors. The concept of our spin-simulator
is based on the mapping of the phase of the coherent state on each lattice site onto a
vector spin Si ≡ {cosϕi, sinϕi, 0}. It can point in any direction of the two-dimensional
plane and is not quantized. Such a spin is called classical. Furthermore, as a consequence
of the large filling factors per tube, the fluctuations of the local phase can be neglected
in first approximation. The spin distribution is solely determined by the kinetic part of
the Hamiltonian. This results in the classical XY-type model

Ekin({ϕi, ni}) = −2
∑
〈ij〉

Jij
√
ninj cos(ϕj − ϕi) = −2

∑
〈ij〉

Jij
√
ninj Si · Sj . (4.2)

In this model the coupling between the different spins is restricted to nearest-
neighbors. Ferromagnetic ordering is realized for parallel alignment of the spins, while
the anti-parallel alignment is called antiferromagnetic configuration. The signs of the
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tunneling matrix elements Jij determine the energetically preferred spin configuration:
If Jij is positive the energy is minimized by parallel alignment of the spins, while for
negative Jij the antiparallel orientation leads to the minimal energy of the system.
Thus, the parameters Jij characterize the nature of the spin interactions in the lattice
system. Positive tunneling matrix elements correspond to ferromagnetic spin interac-
tions, whereas negative ones describe antiferromagnetic couplings between the spins. As
the key property of our simulator approach we can independently control the coupling
parameters J and J ′ along two different lattice directions as indicated in Fig. 4.1. This
allows for the realization of various different spin-configurations and the investigation
of phase transitions connecting them.

Due to the density weighting of the spins as described above, the energy contribution
of the spins in the center of the lattice is the highest, while the outlying spins contribute
less. This ”fading” effect leads to a reduced influence of the lattice boundary on the
spin distribution. As a consequence of this effect and the large extend of the lattice we
can approximate Eq. 4.1 by its homogenous density counterpart

EXY({ϕi}) = −2n̄
∑
〈ij〉

Jij cos(ϕj − ϕi) = −2n̄
∑
〈ij〉

Jij Si · Sj , (4.3)

where we have introduced the homogenous mean density n̄ = N/M , with the total
number of atoms N and the number of occupied lattice site M .

The energy functions, given in the Eqs. (4.2) and (4.3), obey two fundamental
symmetries with respect to spin transformations: First, those expressions are invariant
under a global spin rotation, where every spin is rotated by the same angle η

{ϕi} → {ϕi + η}, . (4.4)

This is usually referred as rotation symmetry or U(1) symmetry. And second, the energy
is unchanged by an inversion transformation of the spins

{ϕi} → {−ϕi}, (4.5)

which corresponds to a discrete Z2 symmetry, where every spin is changed into a mirror
version.

4.2 Experimental Realization and Parameters

Periodic lattice shaking on an elliptical orbit as proposed by Eckardt et al. [70] allows
for the creation of effective tunneling matrix elements that can be independently tuned
as shown in Fig. 4.1. The forcing function, which was used in the experiments, is given
by

F(t) = −F0,x cos(Ωt)êx − F0,y sin(Ωt)êy. (4.6)

In appendix B the corresponding necessary frequency modulations of the lattice beams
are derived, yielding the result

δω2(t) = 2π (+ν0,x sin(Ωt) + ν0,y cos(Ωt)) ,

δω3(t) = 2π (−ν0,x sin(Ωt) + ν0,y cos(Ωt)) , (4.7)

with the frequency modulation amplitudes ν0,x and ν0,y.
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Figure 4.2: Parameters for the elliptical shaking of the triangular lattice. a Qualitative peak
sharpness extracted via the circle contrast defined in the inset: Atoms in the blue and red
circles are counted. If the ratio is one, all atoms are located inside the blue circle. For increasing
peak size the ratio drops. b Effective tunneling matrix elements J and J ′ as a function of the
frequency modulation amplitudes ν0,x and ν0,y. J ′ depends on both amplitudes.

The elliptical forcing (Eq. (4.6)) leads to a renormalization of the tunneling matrix
elements with zeroth order Bessel functions of the first kind JB

0 (x) (see appendix B.2),

J = JB
0 (A) · J̃ , J ′ = JB

0 (A′) · J̃ , (4.8)

where the dimensionless forcing parameters are defined as

A =
d2DF0,y

~Ω
=
md2

2Dν0,y

~
, A′ =

d2D

2~Ω

√
3F 2

0,x + F 2
0,y =

md2
2D

2~

√
9ν2

0,x + ν2
0,y. (4.9)

To simplify the notation, we have redefined the effective tunneling matrix elements as
J and J ′, while the bare tunneling element is denoted as J̃ for the rest of the chapter.

We load a BEC of about 105 Rubidium 87 atoms with no discernable thermal
fraction into a static triangular lattice, which results in a maximum filling of around
250 atoms per tube in the center of the lattice and a total occupation of roughly 1000
sites1. The lattice depth is V0 = 5.6Erec, leading to an on-site interaction energy of
U = 4 · 10−3Erec, a bare (unrenormalized) tunneling matrix element of J̃ = 2 · 10−3Erec

and a band gap of Egap ≈ 4Erec ≈ h · 13.3kHz. In the rest of this chapter the effective
tunneling matrix elements will be given in units of J̃ . The overall harmonic confinement
is nearly isotropic and on the order of ω ≈ 2π · 100Hz.

After the final lattice depth is reached, we linearly increase the frequency modula-
tion amplitudes over a time of 25ms to the final values, resulting in the desired effective
tunneling elements. As the Bessel function is non-linear, J and J ′ are generally changed
in a non-linear way during the ramp. After the linear increase of the frequency modu-
lation amplitudes the systems is subjected to a forcing with fixed amplitudes for a few
milliseconds until the atoms are released from the lattice and imaged after TOF.

The shaking frequency Ω needs to fulfill the conditions (3.56) and (3.57) in order to
avoid heating of the ensemble and loss of coherence. A suitable frequency was chosen

1The density distribution of the atoms was calculated in the Thomas-Fermi approximation. For
further details we refer to appendix C.
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by measuring the broadening of the momentum peaks as a function of Ω, yielding
information about the coherence across the lattice. Pronounced reduction of the peak
sharpness at certain frequencies (Fig. 4.2) is consistent with excitations due to multi-
photon transitions to the next band (see Fig. 4.2). For the experiments presented in
this chapter the shaking frequency is given by Ω = 2π · 3.125kHz. Fig. 4.2 displays the
renormalized tunneling matrix elements as a function of the frequency amplitudes ν0,x

and ν0,y resulting from Eqs. (4.8) and (4.9).

4.3 Zero Temperature Phase Diagram

In a tight-binding approximation the dispersion relation of the driven triangular lattice
reads

ε(J, J ′,k) = −2J cos(kyd2D)− 4J ′ cos(kxd2D

√
3/2) cos(kyd2D/2), (4.10)

where we have omitted the parabolic dispersion relation term along the tubes perpen-
dicular to the lattice. The spin configuration that minimizes the energy of the system
(Eq. (4.2)) is obtained via the relation (see Eq. (2.25))

ϕgs
i = qgs ·Ri, (4.11)

with the minima of the dispersion relation located at qgs. This is a very important
point: Each long-range spin configuration is connected to a superfluid state with quasi-
momentum qgs. According to the dispersion relation (4.10) the minima are given by

qgs(J, J
′) =



(0, 0) for J ′ > −2J and J ′ > 0 (Ferromagnetic),
2
d2D

(
π√
3
, 0
)

for J ′ < 2J and J ′ < 0 (Rhombic),

2
d2D

(
π√
3
,± arccos

(
J ′

2J

))
for J ′ > 2J and J ′ < 0 (Spiral 1),

2
d2D

(
0,± arccos

(
− J ′

2J

))
for J ′ < −2J and J ′ > 0 (Spiral 2),

(4.12)

where we introduced names for the spin configurations that arise in different regimes
of the coupling parameters J and J ′. Equation (4.12) does not include the cases for
J ′ = 0 where the system consist of decoupled chains and the dispersion relation becomes
degenerate along kx. The energy of the dispersion relation at the position of the minima
is equivalent to the ground state energy of the XY model Egs

XY(J, J ′) per particle

ε(J, J ′,qgs) =
Egs

XY(J, J ′)

N
=

{
−J − 2|J ′| for |J ′| > −2J

J + J ′2

2J for |J ′| < −2J,
(4.13)

where N is the total number of particles in the lattice. With Eq. (4.10) one can de-
termine a zero-temperature phase diagram, which is spanned by J and J ′. Identifying
non-analyticities in the expression for Egs

XY one finds phase boundaries separating three
phases. When moving from the ferromagnetic into the rhombic region, one crosses a
cusp in the ground state energy, which is accompanied by a discontinuity in the first
derivative of Egs

XY with respect to the coupling parameters. This indicates a first order
phase transition, which is shown as the thick solid line in Fig. 4.3. A smooth evolution



42 Simulation of a Frustrated XY Model on a Triangular Lattice

0.6 0.4 0.2 0 0.2 0.4 0.6
0.6

0.4

0.2

0

0.2

0.4

0.6

0.8

1

J’ [J]˜

J [
J]˜

0.0

-2.2

-1.1
Energy [J]˜

Figure 4.3: Ground state energy of the XY model as a function of the coupling parameters
J and J ′. The thick solid line represents a first order phase transition, while the dashed lines
indicate second order phase transitions. At zero temperature three different phases can be
accessed by tuning J and J ′.

of the energy is encountered when going from ferromagnetic into spiral 2 region as well
as from rhombic to spiral 1. In these cases the second derivative of Egs

XY shows a discon-
tinuity, corresponding to a second order phase transition. This transition is marked by
thick dashed lines in Fig. 4.3. The three phases of the system are respectively located
in the ferromagnetic, rhombic and joined spiral region.

The geometrical frustration of the lattice is predominately important for spin con-
figurations of the spiral phase. It leads to two-fold degenerate ground states, where two
different spin-configurations minimize the energy of the system. This is equivalent to
the presence of two minima in the first Brillouin zone of the dispersion relation (see
Eq. (4.12)), which are not connected by reciprocal lattice vectors.

For the ferromagnetic and rhombic phase the system has fixed ground state quasi-
momenta and associated fixed spin configurations (see Eq. (4.12)). Whereas in the spiral
phase the spin configurations smoothly evolve as a function of the coupling parame-
ters J and J ′. Different spin configurations and their experimental signatures will be
discussed in the next section.

4.4 Spin Configurations and Signatures in the
Reciprocal Space

A long-range ordered spin-configuration breaks the rotation symmetry of the XY model
(see Eq. (4.4)). By recalling that the spins are emulated by the phase of bosons this
is equivalent to the onset of Bose-Einstein condensation accompanied by a broken
U(1) symmetry. Therefore every long-range ordered vector-spin configuration is directly
connected to a superfluid state at a specific quasimomentum. The respective spin-
order can be inferred from the momentum distribution of the atoms measured after
TOF. However, it is impossible to distinguish between spin-configurations that are
connected by a global rotation transformation (see Eq. 4.4) as these states have the



Spin Configurations and Signatures in the Reciprocal Space 43

same quasimomentum. In the following we will omit this ambiguity by only considering
a single spin arrangement of each infinitely degenerate manifold.

A very important point for the realization of vector-spin configurations with long-
range order is the dimensionality. The Mermin-Wagner-Hohenberg theorem [196, 197]
states that continuous symmetries in a system with short-range interactions - for ex-
ample nearest-neighbor interactions on a lattice - cannot be broken spontaneously at
non-zero temperature in two or less dimensions. This means for a pure two-dimensional
XY model no long-range order is expected at finite temperature. In our case we do ob-
serve long-range order due to the fact that the atoms are allowed to move along tubes
perpendicular to our two-dimensional lattice. This renders our system three dimensional
and the Mermin-Wagner-Hohenberg theorem does not apply.

In this section we describe characteristic spin configurations arising in different
regions of the phase diagram and their respective momentum signatures (see Figs.
(4.4) and (4.5)).

Ferromagnetic order (F)
In the ferromagnetic region of the phase diagram (J ′ > −2J and J ′ > 0) the spins
are aligned parallel to each other. This situation corresponds to a superfluid at
zero quasimomentum.

Rhombic order (R)
In the rhombic region of the phase diagram (J ′ < 2J and J ′<0) the spins align an-
tiparallel along the bonds characterized by the coupling parameter J ′ and parallel
along the horizontal bonds determined by coupling parameter J . The correspond-
ing superfluid state has a non-zero quasimomentum located at the two edges of
the first Brillouin zone in the kx direction.

1D chains (C)
The phase transition from the ferromagnetic to the rhombic region is of first or-
der. The corresponding experimental signature is an abrupt change of the quasi-
momentum when traversing the phase boundary. As a consequence of the finite
experimental fluctuations of the control parameter J ′, we observe a collection of
ferromagnetic and rhombic peaks in the averaged pictures (see Fig. 4.5). The two
spin configurations are degenerate at J ′ = 0. The momentum peaks are broad-
ened along kx, indicating a loss of coherence along the directions defined by the
coupling parameter J ′. This is a finite temperature effect.

Unlike the ferromagnetic or rhombic phase, the spiral phase is not characterized by
a single spin configuration. First, the spin ordering is a continuous function of the
ratio J/J ′. Therefore, infinitely many different configurations exist in the spiral phase.
Second, geometrical frustration leads to a non-collinear arrangement of the spins. This
has an important consequence: Application of a mirror transformation (see Eq. (4.5))
on the spin-configuration leads to a new ordering, which cannot be obtained by a
global rotation of all spins (see Eq. (4.4)). Therefore, each ground-state in the spiral
phase is doubly degenerate and two possible ground state spin-configurations exist. As
we will see later on, they can be distinguished in the experiment. For collinear spin-
configurations the mirror transformation leads to states which can also be obtained
from a rotation.
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Figure 4.4: Spin configurations and their signatures in the reciprocal space. a Small subsets of
the lattice showing five different spin configurations, that can be realized by tuning J and J ′,
are shown. In the spiral phase two different spin configurations are ground states of the system.
b The measured momentum distributions of the different long-range spin states show distinct
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Figure 4.5: Behavior of the system close to the first order phase transition. a Two spin
configurations arise in close vicinity to the phase boundary due to the limited experimental
resolution and finite temperature. The grey bonds indicate the weak coupling of the spins along
J ′. b Averaged momentum distribution obtained for J ′ ≈ 0. c The theoretically expected
positions of the minima in the dispersion relation at exactly J ′ = 0 are indicated by vertical
black lines. In addition, the minima for ferromagnetic (green circles) and rhombic region (blue
circles) are shown.
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Spiral 1 order (S1)
For the case of isotropic antiferromagnetic couplings J = J ′ < 0 the spins align
in a 120◦ configuration. The combined momentum distribution of both ground
state configurations features peaks at the six corners of the first Brillouin zone.

Staggered 1D chains (SC)
For small values of the coupling parameter J ′ ≈ 0 and J < 0, thermal effects
become important and lead to complete loss of lange order across the lattice.
Correlations are only preserved along the J-bonds, leading to stripes along kx in
the momentum distribution. In contrast to the 1D chains for (J > 0) there is no
collection of different spin orderings which stems from the fact that the systems
does not cross any phase boundary in this case.

Spiral 2 order (S2)
Frustrated spin configurations can also arise when only J is negative. For J =
−J ′ < 0 the spins align in a mixed configuration: Along the negative J-bonds the
angle between two neighboring spins is 120◦ while the angle difference along the
positive J ′-bonds amounts to 60◦. The combined momentum distribution of both
ground-states results in two momentum peaks located inside the first Brillouin
zone.

4.5 Experimental Characterization of the Phase Diagram

The different quasimomentum signatures allow for a clear identification of the exper-
imentally realized spin configurations. The independent control over the coupling pa-
rameters J and J ′ permits the experimental mapping of the phase diagram (Fig. 4.6).
The Bessel function renormalization provides access to a region of the phase diagram,
where J and J ′ ≥ −0.4. The background colors in Fig. 4.6 indicate the theoretically
expected spin configurations, according to Eqs. (4.11), (4.12). The colors match with
those of Fig. 4.4. In the spiral phase a smooth change of the background color indicates
the continuous change of the spin configuration as a function of the ratio J ′/J . At
zero temperature, the spin configurations do not depend on the radial distance to the
origin of the phase diagram. For finite temperature, the long-range order of the spins
is completely lost in close vicinity to the origin of the phase diagram. This is indicated
by the grey shaded circle in the center of Fig. 4.6. For small absolute values of the
coupling parameters finite temperature and especially non-equilibrium phenomena be-
come important. The critical temperature approaches zero and timescales for adiabatic
behavior diverge. We indicate measurements without a momentum peak structure with
crosses. The measured momentum signatures, which correspond to the ferromagnetic
phase are shown as circles in Fig. 4.6, while points belonging to the rhombic and spiral
phase are indicated by squares and triangles, respectively.

Almost all relevant parts of the phase diagram could be mapped out and the mea-
sured data points are in very good agreement with the expected zero-temperature
phase diagram. Deviations only arise close to the first order phase boundary between
the ferromagnetic and rhombic phase. The data points with a combined circle and
square symbol indicate measurements where, as discussed in section 4.4, rhombic and
ferromagnetic spin order have been observed (see Fig. 4.5).
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Figure 4.7: Measurement of the second order phase transition from rhombic to spiral phase.
a The colorbar illustrates the trajectory along the white line in Fig. 4.6. b On the left, three
examples of averaged momentum distribution are shown. Uncolored data corresponds to a
magnified part of the momentum distributions. c The corresponding dispersion relations. Red
regions correspond to the lowest energy. d Continues change of the spin configurations.
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The phase transition from the rhombic into the spiral phase is of second order and is
characterized by a continuous evolution of spin configurations in the phase diagram. We
measure the spin ordering along the trajectory indicated by the white line in Fig. 4.6. A
smooth evolution of the quasimomentum is observed while crossing the phase boundary
located at J ′/J = 2 (Fig. 4.7b). In the spiral phase, the single momentum peak from the
rhombic phase splits into two peaks. These correspond to the two degenerate ground
state spin-configurations. With decreasing ratio J ′/J the distance between momentum
peaks increases. At J ′/J = 1 we recover the momentum peak structure of the 120◦-
spin-order. For the case of J ′ = 0, which is the last data point on the trajectory, we
observe staggered 1D chains. The measured momentum distributions shown in Fig. 4.7b
are averaged over several experimental realizations. The quasimomentum peaks agree
very well with the position of the minima in the corresponding dispersion relation (Fig.
4.7c). The evolution of the spin configurations is indicated in Fig. 4.7d.

In conclusion, we have shown that we can access all spin configurations and phases
in a well controlled way and thereby validated our simulator approach. A drawback
not mentioned so far is the limited lifetime of the spiral phase, which is on the order of
10ms. This is well below the lifetime of a superfluid state in the unshaken lattice, which
corresponds to several hundreds of milliseconds. It remains an open question wether
this limitation is a technical problem or a fundamental issue.

4.6 Degenerate Spiral Phases

In this section, we focus on the degenerate ground states for the particular case of
isotropic antiferromagnetic interactions (J ′ = J = −0.4). In Section 4.4 we discussed
and presented the averaged momentum peak structure for the corresponding 120◦-spin-
order. The two possible ground state configurations are mirror images of each other
(Fig 4.8a). Both states can be uniquely characterized by the chiral order parameter per
plaquette [198]

κ = sgn (S1 × S2 + S2 × S3 + S3 × S1)z , (4.14)

where the three vector spins S1,S2 and S3 are positioned in counter-clockwise orienta-
tion around a single plaquette of the lattice and sgn(x) is the signum function. In the
following we label the two ground states as chiral mode 1 and 2. In the chiral mode
1, κ is positive for downwards pointing triangular plaquettes and negative for upwards
pointing ones. For the chiral mode 2 the value of the chiral order parameter is exactly
inverted (Fig. 4.8a).

Experimentally, the two chiral modes can be distinguished by their momentum
distributions. The momentum distribution of a single chiral mode consist of three peaks
at corners of the first Brillouin zone. Momentum peaks of a single mode are connected
to each other via reciprocal lattice vectors. The two different chiral modes occupy the
complementary corners of the first Brillouin zone (Fig. 4.8b), resulting in averaged
momentum distributions as shown in Fig. 4.4b. The relative occupancy of the chiral
modes in a single experimental realization is quantified by the chiral contrast χ (see
Fig. 4.8b). For positive values of χ, the chiral mode 1 is predominantly occupied, while
the opposite holds for negative values. If χ is close to zero both modes are equally
populated.

In consecutive experimental runs, performed under the same experimental condi-
tions, the chiral contrast strongly fluctuates (Fig. 4.8c). Most of the time we observe
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that a single spin configuration dominates. Therefore, the Z2 symmetry (Eq. (4.5)) of
the system is spontaneously broken (Fig. 4.8d). However, in few cases both modes are
equally populated corresponding to an energetically excited state. Most likely this ef-
fect arises due to the formation of spatial domains with different chirality. The domain
walls separating the different chiral modes can feature complicated structures including
topological excitations [199]. Assuming the most simple domain wall, a straight line,
we can estimate the energy cost for the simultaneous occupation of two chiral modes
as

∆EDW ∼ LDW|J |n̄, (4.15)

where LDW is the length of the domain wall in units of lattice sites. In principle, the
momentum distribution of the state allows for the identification of the size of these
domains via the peak width. In our case the width of the peaks is dominated by the
in-situ size of the atomic cloud (see Section 2.4.5) and we are not able to extract
quantitative results.

To exclude experimental drifts as the origin for the symmetry breaking, we have
analyzed the frequency components of the chiral contrast data with a Fast-Fourier
transformation (Fig. 4.8c). The spectrum of the chiral contrast does not show clear
features in the frequency spectrum, which is in full agreement with white noise (Fig.
4.9). Therefore, long-term drifts of the experimental apparatus can be excluded as the
origin of the symmetry breaking. Nevertheless, any white noise technical fluctuations
can not be excluded as the origin of the symmetry breaking.

Additional aspects of our system are revealed by recalling that the spin configu-
rations are identified with superfluid states of bosons occupying Bloch functions at
distinct quasimomenta. Within the spiral phase the two chiral modes feature staggered
bosonic mass currents around the triangular plaquettes, thus spontaneously breaking
time-reversal symmetry. In most cases, bosonic ground states are real-valued and do
not break time-reversal symmetry as stated in Feynmans no-node theorem [200]. In this
context we have realized an unconventional superfluid state [60, 62, 201] which goes
beyond the no-node theorem.

The aforementioned simultaneous occupation of both chiral modes in a single ex-
perimental realization can also be explained by a coherent single particle superposition
of the atoms in the two corresponding Bloch states with quasimomenta q+ and q− :

|Frg〉 = (N !)−1/2
(
cq+B

+
q+

+ cq−B
+
q−

)N
|0〉 ,

≈ e−N/2
M−1∏
i=0

exp
(√

n̄
[
cq+eiq+Ri + cq−eiq−Ri

]
a+
i

)
|0〉 , (4.16)

with Bq = 1√
M

∑M−1
i=0 exp(−iqRi)âi as the destruction operator for a Bloch state with

quasimomentum q. In the second step the state was approximated by a coherent state
[23], which is valid in the limit n̄ = N,M → ∞ and N/M = constant. Normalization
of the state requires |cq+ |2 + |cq− |2 = 1. Equation (4.16) describes a fragmented state
[202, 203] which is typically energetically disfavored by repulsive interactions. This can
be intuitively understood in the context of the real space density of such a state which
is given by

〈Frg|n̂i|Frg〉 = n̄
(
1 + 2|cq+ ||cq− | cos([q+ − q−]Ri + θ+ − θ−)

)
, (4.17)
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with θ± = arg(c±). In the fragmented state the density is periodically modulated with
the wavevector (q+ − q−). Such a density wave is accompanied by an increase of the
interaction energy of the system. The interaction energy difference with respect to the
occupation of a single Bloch state is

∆EFrg = EFrg − EB =
2U

M
N+N−, (4.18)

with the number of particles in one mode N± = N · |cq± |2. In our case the energy scale
associated with this state is much larger than that of a domain wall (Eq. 4.15) as long
as each Bloch state is occupied with a macroscopic fraction of atoms. We can therefore
conclude that the simultaneous occupation of two chiral modes is more likely due to
the presence of different domains.

4.7 Conclusion and Outlook

The results presented in this chapter demonstrate the first realisation of a tunable large-
scale simulator for a frustrated classical XY model on a triangular lattice. The motional
degrees of freedom and the local phases of spinless superfluid bosons are used to map
the system onto a spin-model. The high degree of tunability and controllability allows
for the observation of various spin-configurations, different types of phase transitions
and spontaneous symmetry breaking induced by geometrical frustration.

So far, our experiments focused on the static properties of the system. In the future,
an investigation of the dynamical behavior of the different phases might provide valuable
inside into the field of non-equilibrium thermodynamics. Interesting questions in this
direction are: How do the different spin-configuration relax into excited states for sudden
quenches of the control parameters? What is the influence of a specific trajectory in
the phase diagram? Is it possible to prepare long-lived metastable states, which are
out-of-equilibrium?

Furthermore, the presented simulator approach can be extended into the hardcore
bosonic limit of the Bose-Hubbard Hamiltonian, where the system can be mapped onto
a quantum XY-model [204, 205]. In this case, the critical temperature for a quan-
tum magnetic Néel order directly scales with the tunneling matrix elements J . This
constitutes a major advantage compared to simulator approaches for quantum mag-
netism, which are based on superexchange couplings [92, 93, 206], where the critical
temperature scales with J2/U and is typically much lower. An interesting feature of
the quantum XY-model on the frustrated triangular lattice is the predicted existence
of spin-liquid quantum phases [69, 104, 207–210]. These exotic and complicated states
are highly debated and it is very difficult to investigate them in solid state materials.
Here, a quantum simulator might shed light on one of the most complicated problems
of quantum magnetism.



Chapter 5

Tunable Gauge Potentials for
Neutral Particles in Driven
Lattices

Basic concepts of lattice gauge theory are discussed for the case of classical
electrodynamics. Time-asymmetric lattice shaking is introduced as a method
for the creation of complex valued tunneling matrix elements, mimicking
the presence of a vector gauge potential for neutral particles in an optical
lattice. As a proof-of-principle experiment, the emulation of a tunable gauge
potential for ultracold bosons in a one-dimensional lattice is demonstrated.
The dynamical response of the atoms to changes of the gauge potential is
investigated. The last part of this chapter is devoted to the realization of
gauge-independent staggered fluxes in a two-dimensional triangular lattice
by means of time-asymmetric lattice shaking.

The Lorentz force, acting on charged particles in magnetic fields, is a key ingredient of
condensed matter physics. It lacks direct presence in quantum gas experiments because
the atoms are neutral. Over the last few years there have been increasing efforts to
close this gap by engineering artificial gauge potentials [111].

In this chapter we introduce a novel approach for the creation of synthetic gauge
potentials for neutral atoms confined in an optical lattice. The presented scheme is
an extension of the periodic driving technique, that was introduced in the foregoing
chapters. As an important feature, it is independent of the internal structure of the
atoms1. A major advantage over the common Raman-laser based approaches is the
tunability: The strength of the gauge potentials can be directly controlled by the driving
amplitude. We experimentally demonstrate the feasibility of this method by measuring
the momentum distributions of ultracold bosonic atoms subjected to a suitable periodic
forcing. In particular, we reach the strong field limit were the flux strength is on the
order of an elementary flux quantum. Finally, let us point out that the introduced
scheme is equally applicable for fermionic atoms.

Parts of this chapter have been published in [212] and [213]. The experiments and
the data analysis presented in this chapter were performed within the team of: J. Struck,
M. Weinberg, C. Ölschläger and J. Simonet.

1In Ref. [211] a similar idea, for the creation of complex tunneling matrix elements, is discussed.
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5.1 Electromagnetic Fields in a Tight-Binding Model:
Peierls Substitution

The quantum mechanical behavior of a charged particle in the presence of a vector
gauge potential is described by a modification of the kinetic part of the Hamiltonian
according to

1

2m
p̂2 → 1

2m
(p̂− qA(r))2 , (5.1)

where q is the charge and A(r) the vector gauge potential. In electrodynamics the
vector potential is defined in relation to the magnetic B(r, t) and electric field E(r, t),

B(r, t) = ∇×A(r, t), (5.2)

E(r, t) = − ∂

∂t
A(r, t), (5.3)

where in the second line the term connected to a scalar potential has been omitted. In
the following the gauge potential will be treated as classical and external. This means
that the quantum fluctuations of the fields are negligible (classical) and there is no back
action of the atoms onto the fields (external) [71]. To very good approximation, the
corresponding description of a charged particle in a tight-binding lattice, is captured by
the Peierls substitution [142]: Real valued hopping parameters are replaced by complex
valued elements

Jij → |Jij |eθij , (5.4)

where we have introduced the Peierls phase θij , which is directly connected to the vector
gauge potential

θij =
q

~

∫ Ri

Rj

drA(r). (5.5)

The integral has to be evaluated along the straight path connecting site i and j. This
translates into the Bose-Hubbard Hamiltonian by a modification of the kinetic part:

H = −
∑
〈ij〉

|Jij |eθij â+
i âj +

U

2

∑
i

n̂i(n̂i − 1) +
∑
i

εin̂i. (5.6)

A phase θij is picked up in a tunneling process from lattice site j to lattice site i. The
Peierls phases introduce a directionality of the tunneling matrix elements (see Fig. 5.1a)
and obey the relation

θij = −θji. (5.7)

They are gauge dependent and the associated gauge transformation is given by a local
U(1) transformation of the creation and annihilation operators as

âj → â′j = âje
iγj , (5.8)

â+
i → (â′i)

+ = â+
i e−iγi , (5.9)

resulting in new Peierls phases

θij → θ′ij = θij + γi − γj . (5.10)
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Figure 5.1: Complex tunneling matrix elements and gauge invariant fluxes. a Complex valued
tunneling matrix elements on a one-dimensional lattice. Gauge invariant flux on a square b and
triangular lattice c.

Such a transformation only leads to a – physically irrelevant – global shift of the dis-
persion relation. In the context of lattice gauge theory the complex phases characterize
a U(1) Abelian gauge potential [71].

A gauge invariant quantity is given by the sum of the Peierls phases around an
elementary plaquette P of the lattice (see Figure 5.1b,c), which is equal to the magnetic
flux through that plaquette

Φ =
∑
P
θij =

q

~

∮
P
drA(r) =

q

~

∫
AP

dn B(r), (5.11)

where
∑
P stands for the sum over the bonds of an elementary plaquette of the lattice

and n is the normal vector of the surface AP enclosed by the bonds of the elementary
plaquette. Figures 5.1b and c illustrate how this quantity is obtained on a square and
triangular lattice. The flux is left invariant under the gauge transformations of Eqs.
(5.8) and (5.9),

Φ =
∑
P
θij =

∑
P
θ′ij , (5.12)

and describes – physically relevant – deformations of the dispersion relation.

The Peierls substitution works up to the point where different bands of the lattice
get significantly coupled by magnetic fields [143]. In solid state systems this practically
never happens and the Peierls substitution is an excellent approximation. As a central
concept of our gauge field emulation, we mimic the presence of A(r) by directly tailoring
complex valued tunneling matrix elements. Or, in other words, we directly engineer the
Hamiltonian (5.6) without the approximations involved in the Peierls substitution.

5.2 Complex Tunneling Elements via Lattice Shaking

In order to create artificial gauge fields for neutral atoms in optical lattices, complex
tunneling matrix elements are required. Periodic forcing can lead to a renormalization
of the tunneling such that the effective hopping parameters become complex valued.
The imaginary part of the effective tunneling matrix elements (Eq. (3.52)) is given by

Im(Jeff
ij /J) = 〈sin(Wij(t)/~)〉T , (5.13)
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where we have defined Wij = Wi − Wj . It can only be non-zero provided that the
function Wij(t) breaks two fundamental symmetries2. First, the function needs to break
inversion symmetry

Wij(t− τ) = −Wij(−t− τ), (5.14)

with respect to all points τ in time. Second, a shift inversion symmetry

Wij(t) = −Wij(t− T/2) (5.15)

has to be broken. Here, T is the period of the function. If the lattice spacing does not
change over time (Ri(t)−Rj(t) = const.) – which is always fulfilled for the experiments
presented in this thesis – the symmetry breaking conditions stated in Eqs. (5.14) and
(5.15) can be directly applied to the time-dependent momentum shift ∆p(t), as can be
inferred from Eq. (3.50). The analogue conditions for the driving function vij ≡ vi− vj
in the Hamiltonian (3.48) are given by the breaking of time-reversal symmetry

vij(t− τ) = vij(−t− τ) (5.16)

(see Eq. (D.12)) and again the breaking of a shift inversion symmetry

vij(t) = −vij(t− T/2). (5.17)

For rachet-type lattice experiments in the classical [214], as well as in the quantum
regime [215], the same symmetries need to be broken to create directed currents. In this
spirit, the asymmetric lattice forcing can lead to directed currents. Hence, our system
belongs to the class of dissipationless quantum ratchets [215, 216]. However, the reverse
conclusion does not hold: In general, a quantum ratchet cannot be described in terms
of a synthetic vector gauge potential. This is only possible in the high frequency driving
limit, where the Hamiltonian can be replaced by an effective version.

In case the lattice spacing is constant, the symmetry breaking conditions 5.16 and
5.17 can be directly applied to the forcing function itself. However, it is possible to
create lattices with time- and also spatially dependent spacing by the usage of, e.g.
superlattice geometries. This extends the possibilities of engineering gauge fields via
periodic lattice forcing tremendously (see, e.g. [217]).

Any time-asymmetric forcing function, breaking those two symmetries, consist of
more than one Fourier component. Experimentally this is a drawback because it is more
involved to find a parameter regime, where the shaking does not lead to resonant band
excitations.

5.3 Tunable Peierls Phase in a 1D Optical Lattice

5.3.1 Sine-Pulse Forcing

As a proof of principle experiment, we demonstrate the realization of a tunable vector
gauge potential in a one dimensional lattice. The bosonic atoms in the lattice are

2A detailed proof of the symmetry breaking conditions required for complex valued renormalized
tunnel matrix elements is given in appendix D.
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subjected to an inertial force comprised of a train of sinusoidal pulses3 (Fig. 5.2a),

F (t) =

{
F0 sin (Ω1t) for 0 < t mod T < T1

0 for T1 < t mod T < T,
(5.18)

where T1 (Ω1 = 2π/T1) denotes the period (frequency) of the sine pulse, T2 corresponds
to rest time separating the sine pulses (Fig. 5.2a) and T = T1 + T2 is the period of the
function. This forcing function clearly breaks the two symmetries 5.16 and 5.17 which
is the prerequisite for the creation of complex hopping parameters. A calculation for
the effective renormalized tunneling matrix elements (see appendix B.1) yields

Jeff
i,i−1/J = Jeff

→ /J =
T1

T
exp

(
−iA

T2

T

)
JB

0 (A) +
T2

T
exp

(
iA
T1

T

)
, (5.19)

Jeff
i,i+1/J = Jeff

← /J =
(
Jeff
→ /J

)∗
, (5.20)

where Jeff
→ (Jeff

← ) describes the hopping process to the right (left) as shown in Fig. 5.1a
by the blue (red) arrow. The variable A is the dimensionless forcing parameter. JB

0 (A)
denotes the zeroth order Bessel function of first kind. The Peierls phase is defined as

θ = arg(Jeff
→ ), (5.21)

3The corresponding frequency modulation of the laser beams, forming the running wave 1D lattice,
can be found in appendix B.1.
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giving rise to the following expression for the kinetic energy of the tight-binding lattice
system:

Hkin = −|Jeff |
∑
i

(
eiθ â+

i âi−1 + e−iθ â+
i âi+1

)
. (5.22)

The ratio of the two periods T1/T2 strongly influences the renormalization behavior
of the tunneling matrix element (Fig. 5.2a,b). For T2/T = 0 the monochromatic driving
of section 3.2 is recovered, which only leads to real valued tunneling elements. In the
opposite limit of T1/T → 0, the absolute value of the tunneling |Jeff | only marginally
depends on the forcing parameter, whereas the Peierls phase θ changes almost linearly
with the forcing parameter. Nevertheless, in this regime, the phase is only slightly
modified as a function of A. In principle, it is desirable to work in this limit. However,
a strong forcing is required to reach significant values of the Peierls phase, which leads
to heating of the atoms.

Therefore, we have chosen an intermediate value of T1/T2 = 2.1 (Fig. 5.2a,b) for the
experiments presented in this section. In this case, the Peierls phase shows a pronounced
nonlinear dependency on the forcing parameter A and the absolute value |Jeff | is also
strongly modified by the renormalization.

The lattice depth for experiments presented in this chapter is V0 = 10 ± 1Erec,
corresponding to the tight-binding regime. This results in a bare tunneling element of
J = 7 · 10−3Erec and a band gap which is given by Egap = 4.3Erec = h · 14.4 kHz.
Perpendicular to the lattice axis the atoms are only weakly confined by an optical
dipole trap. This results in a periodic array of pancake-like density distributions4. We
have chosen the period of the forcing as T = 1ms (Ω = 2π · 1kHz) in order to minimize
the heating of the system.

Measurement of the Peierls Phase

A vector gauge potential introduces a shift of the dispersion relation

ε(k) = −2|Jeff | cos(kdRW − θ), (5.23)

which is given by the Peierls phase θ. Here, k is the quasimomentum and dRW = 486nm
the spacing of the lattice. The quasimomentum associated with the minimum of the
dispersion relation is given by

kgs = θ/dRW. (5.24)

Starting with an undriven lattice, where the Peierls phase is zero, the atoms form a
superfluid state at zero quasimomentum. Subsequently, we increase the forcing param-
eter according to a ramping function which is adapted to the nonlinear Peierls phase
behavior (Fig. 5.2b). This ramp A(t) is designed such that the nonlinearity of θ(A(t))
is partially compensated. The total length of the ramp is adapted as well. For the
maximum value of A = 9 the ramping time amounts to 120ms. After the final value
of the forcing parameter has been reached, we wait for another 20ms to let the atoms
relax to the new minimum of the dispersion relation. Afterwards, we suddenly switch
of all confining potentials and record the momentum distribution of the atoms after
TOF (Fig. 5.3a). The presence of sharp momentum peaks, up to a forcing parameter

4For more information on the density distribution, size of the lattice and interaction energy scales
see Tab. C.1



Tunable Peierls Phase in a 1D Optical Lattice 57

 A

0 1-1-2 2
k[2π/dRW]

0

9

a b

0 1 2 3 4 5 6 7 8 9
0

π

2π
Theory
Exp. Data

Forcing parameter A

 k
·d

RW
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lattice spacing. The red dashed line indicates the ground state quasimomentum according to Eq.
(5.24). The dashed vertical line marks the quasimomentum at which the onset of a dynamical
instability is expected.

of A = 9, indicates that the driving does not lead to significant heating of the system
and that the coherence across the lattice is preserved.

The corresponding quasimomentum of the Bloch-state can be determined according
to the position of the momentum peaks in TOF. Figure 5.3b depicts the extracted
quasimomentum versus the forcing parameter A. The agreement with the theoretical
curve for the ground state quasimomentum given by Eq. (5.24) is very good. This
shows, that via asymmetric periodic lattice shaking, complex tunneling elements can
be engineered and that they can be tuned to any value θ ∈ [0, 2π[. However, there
is a systematic deviation between the measured quasimomentum and the theoretically
expected ground state quasimomentum for small forcing parameters up to slightly above
A = 2. The reason for this discrepancy is, that the atoms do not relax to the new
quasimomentum ground state for small θ. We will postpone the explanation for this
behavior to the end of this section, were we discuss the dynamical behavior of the
system.

One important peculiarity about synthetic gauge potentials for ultracold atoms
should be mentioned at this point: As the gauge potentials are directly engineered and
not, e.g., created by a magnetic field, it is possible to choose between different specific
gauges corresponding to the same gauge invariant quantities. Moreover, a specific gauge
can be identified in TOF experiments. Indeed, all states are measured with respect
to the momentum distribution in the laboratory frame (specific gauge). This can be
understood as follows: If we perform a gauge transformation on an operator Ô, e.g.
given by Eqs. (5.8) and (5.9), then the states transform as

Ô → Ô′, |ψ〉 → |ψ′〉 . (5.25)

The expectation values have to be invariant under this transformation:

〈ψ′|Ô′(k)|ψ′〉 = 〈ψ|Ô(k)|ψ〉 . (5.26)

In TOF measurements, a certain state in the lattice with a specific gauge is always
measured with respect to laboratory momentum distribution. Hence, states belonging
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to different gauges have different momentum distributions, when measured in TOF:

〈ψ′|n̂lab(k)|ψ′〉 6= 〈ψ|n̂lab(k)|ψ〉 . (5.27)

In this way, it is possible to distinguish between different gauges.

Driving Cycle Resolved Measurement of the Sine-Pulse Forcing

We performed time resolved measurements of the momentum distribution in order to
exclude time-dependent shifts of the momentum peaks during a single driving cycle.
Figure 5.4a clearly demonstrates that the positions of the momentum peaks remain fixed
during a driving cycle. Hence, the measurement of the Peierls phase is independent of
the specific timing with respect to the driving time-scale.

To further strengthen the agreement between theory and experiment, the time-
resolved motion of the Wannier envelope, encoded in the momentum distribution, has
been measured. According to Eq. (3.59) the center of the Wannier envelope kW (fitted
with a broad gaussian function) is directly connected to the time-dependent momentum
shift of the atoms. The extracted position of the envelope is in excellent agreement with
theoretical prediction of the respective momentum shift (Fig. 5.4b). This proves that
the atoms accurately respond to the inertial forces, which are created by a suitable
periodic acceleration of the lattice.

5.3.2 Dynamical Response to the Time-Dependent Peierls Phase

In the following, we analyze the dynamical response of the atoms to a time-dependent
Peierls phase. A change of the Peierls phase imprints a force on the atoms and leads
to oscillations of the atoms in the external harmonic confinement. These oscillations
correspond to AC-currents in the lattice, which can decay via certain interaction in-
duced instabilities. Thus, allowing the atoms to relax to the minimum of the dispersion
relation.
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Induced Dipole Oscillations

The oscillatory-behavior of the atoms can be qualitatively examined in a simplified,
semi-classical single-particle model. A time-dependent change of the Peierls phase leads
to a finite group velocity of the atoms, which were initially at rest. This can be described
by a force of the form

Fθ(t) = ~
d

dt
kgs(t) =

~
dRW

d

dt
θ(t). (5.28)

This is a semi-classical model describing the acceleration of the mean quasimomentum
of the atoms. Note that this model is describing the effective, time-averaged behavior of
the atoms: The fast periodic acceleration of the atoms due to the lattice driving has been
already integrated out. Furthermore, interactions between the atoms are completely
neglected. For simplicity we assume that the Peierls phase is linearly ramped up to the
final value θ0 over a time tR, resulting in a time-dependent force given by

Fθ(t) =


0 ; t < 0

~θ0/ (tRdRW) ; 0 ≤ t ≤ tR,
0 ; tR < t,

(5.29)

where the starting point of the ramp has been assumed as t = 0 without loss of gener-
ality. The semi-classical equation of motion for a kicked particle, which is trapped in a
lattice with an additional harmonic confinement, is given by

d2

dt2x(t) + ωeff
2x(t) =

Fθ(t)

meff(J, k)
, (5.30)

where the quasimomentum k and position x are related by ~k = meff ẋ(t). Here,

meff

(
|Jeff |, k

)
= ~2

(
d2ε(k)

dk2

)−1

(5.31)

is the effective mass and

ωeff = ω

√
m

meff
(5.32)

is the effective harmonic trapping frequency. The bare trapping frequency and mass
are denoted by ω and m. Equation (5.30) describes a kicked non-linear pendulum,
where the final oscillation frequency after the kick depends on the amplitude of the
quasimomentum oscillations in the reciprocal space [76, 218, 219]. However, for small
quasimomentum oscillations around the minimum kgs of the dispersion relation, it is
valid to simplify Eq. (5.30) by approximating the effective mass in lowest order as

meff

(
|Jeff |, k

) ∣∣
k=kgs

≈ ~2

2|Jeff |d2
RW

. (5.33)

In the following we neglect the time dependence of the tunneling matrix elements. In
this approximation, Eq. (5.30) describes a kicked harmonic oscillator. For the initial
conditions x(t = 0) = 0 and ẋ(t = 0) = 0, it has the solution

x(t) =
~θ0

dRW meff ω
2
eff tR

(1− cos(ωeff t)) ; 0 < t < tR

x(t) =
~θ0

dRW meff ωeff

2 sin (ωefftR/2)

ωefftR
sin (ωeff(t− tR/2)) ; tR < t. (5.34)
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This equation describes the oscillations induced by the change of the Peierls phase. The
corresponding oscillations in the reciprocal space are given by

k(t) =
θ0

dRW ωeff tR
sin(ωeff t); 0 < t < tR

k(t) =
θ0

dRW

2 sin (ωefftR/2)

ωefftR
cos (ωeff(t− tR/2)) ; tR < t. (5.35)

The amplitude of the oscillation after the kick (t > tR) is proportional to the induced
Peierls phase and is linked to the ramping time via the term

2 sin (ωefftR/2)

ωefftR
=


1 ; ωefftR → 0

0 ; ωefftR →∞
0 ; ωefftR = z · 2π z ∈ N∗,

(5.36)

of Eqs. (5.34) and (5.35). The amplitude of the oscillation is small if the ramp time is
long compared to the inverse of the effective trapping frequency. Furthermore, the
amplitude perfectly vanishes for ramp times, which are a multiple of the effective
trapping period (2π/ωeff). For our experimental conditions, with |Jeff |/J ≈ 1 ... 0.3
the effective mass lies in the range of meff/m≈10 ... 35. With a trapping frequency
along the lattice axis of ω ≈ 2π · 20Hz, the effective frequency is within the range
ωeff≈(0.17 ... 0.31)ω=2π · (3.1 ... 6.2)Hz. The resulting time scale for ramping of the
Peierls phase without oscillations is therefore tR � 1/ωeff ≈ 25 ... 50ms. Experimen-
tally we are limited to ramp times on the order of a few hundreds of milliseconds,
due to the finite lifetime of the system. In this regime oscillations are still present and
have to be taken into account for the analysis of the dynamical behavior. Note that
the solutions 5.34 and 5.35 are derived under the assumption of a constant absolute
value of the tunneling matrix element and linear ramping of the Peierls phase. Both
assumptions are not fulfilled in the experiments presented in this section. Nevertheless,
the qualitative behavior should be described rather well with this model.

To create oscillations, we suddenly quench the Peierls phase to a value slightly
below θ0 = π/4. The atoms experience a strong kick and are accelerated towards a
Bloch state with finite group velocity (Fig. 5.5a). A superfluid current builds up and
the cloud of atoms moves in real space. Due to the external harmonic confinement
the atoms experience a restoring force towards the center of the trap. This results in
oscillations of the center-of-mass position and quasimomentum as shown in Fig. 5.5b.
The peak of the corresponding FFT spectrum (Fig. 5.5c) is located at 3.8Hz. This is
in very good agreement with overall harmonic trapping frequency ω/(2 · π) ≈ 20Hz
if we take into account an effective mass of meff = 35 · m, which is determined by
|Jeff | = 0.3 · J at a Peierls phase of π/4.

Relaxation to the Minimum of the Dispersion Relation

So far, the dynamical treatment of the atoms did not involve any kind of damping
mechanism for the oscillations. Nevertheless, the system relaxes to the ground state
with zero group velocity, which can only result from damping. The two mechanisms
that lead to the dissipation of currents, i.e. the breakdown of superfluidity, are ener-
getic (Landau) and dynamical (modulational) instabilities [23, 220]. In the lattice, both
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Figure 5.5: Sudden quench of the Peierls phase to 0.24π within a millisecond. a The quench
results in an almost instantaneous promotion of the atoms into a Bloch state with non-zero
group velocity. Due to the overall harmonic confinement the atoms perform oscillations in real
and momentum space. b Extracted quasimomentum from TOF absorption images for times up
to half a second. The atoms oscillate around the new quasimomentum ground state indicated by
the dashed green line. c FFT spectrum of the quasimomentum measurement of b. The dashed
vertical line marks the FFT peak at 3.8Hz.

mechanisms feature sharp onsets at respective critical quasimomenta. An energetic in-
stability arises if the energy of the system can be lowered by creating phonons: The
condensate is in a quasimomentum eigenstate that does not correspond to a minimum of
the energy spectrum. Dynamical instabilities can be understood as small disturbances
or fluctuations around the stationary solution of the system that grow exponentially
in time. In this case, a part of the spectrum is complex valued. These two mechanisms
have been extensively studied experimentally [81, 221–229] and theoretically [230–238]
in the context of BECs in optical lattices.

In the tight-binding limit dynamical instabilities arise only for quasimomenta above
the threshold [232, 235]

|kgs+k|dRW≥π/2, (5.37)

where kgs is the ground state quasimomentum with zero group velocity. Intuitively, this
can be understood by the sign inversion of the effective mass at this point: The mean
field interactions become effectively attractive and lead to the dynamical instability of
the condensate.

The onset of energetic instabilities typically occurs for smaller values of the quasi-
momentum than for dynamical instabilities. An analytical expression of the quasimo-
mentum boundary of the Landau instabilities in the tight-binding limit is given in [235].
The region of the energetic instabilities decreases for increasing interaction strength.
For the densities and interactions in the center of our lattice (see Tab. C.1) the region
of energetic instability is vanishing. In combination with the fact that our system has
no discernable thermal fraction before loading the atoms in the lattice, we conclude
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mass. b Evolution of the momentum distribution during the quench, measured in TOF. The
white dashed line indicates the shift of the minima in the dispersion relation. The TOF images
represent averages over 4 measurements. c Fitted gaussian width of the momentum peaks. The
dashed line indicates the end of the ramp for the Peierls phase. d Single shot realizations of the
momentum distribution in the vicinity of the dynamical instability.

that energetic instabilities should play no role in our experiment: Landau instability
relies on the presence of a thermal component, while dynamical instability also occurs
in the zero temperature limit [224, 228].

In order to investigate the dynamical instability, we have performed a second quench
measurement. This time, the Peierls phase is increased from zero to a large value of 1.4π
within one millisecond. Compared to the motion of the atoms in the harmonic trap,
this quench is instantaneous and the atoms are accelerated towards (kgs+k)dRW ≈
0.6π in the dispersion relation, where the effective mass becomes negative (Fig. 5.6a).
It takes a few milliseconds until the condensate responds to this perturbation. The
momentum peaks strongly broaden, indicating a loss of coherence (Fig. 5.6c) across the
lattice. Nevertheless, the momentum peak structure is not completely lost during this
process but features additional momentum peaks (Fig. 5.6d), which might hint on the
exponential growth of collective modes in the BEC [81, 224, 236]. Shortly after the onset
of the instability, the system recondenses close to kgs (Fig. 5.6b). The recondensation
process occurs on a very fast time scale of 10ms as can be inferred from the decrease of
the momentum peak width in Fig. 5.6c. The weakly confined directions, perpendicular
to the lattice axis, might serve as heat reservoir, where the entropy created by this
non-adiabatic process can be stored. It is not clear, why the recondensation does not
take place exactly at the quasimomentum ground state (see dashed line in Fig. 5.6b).
One possible explanation is that the short time spent at the instability is not enough
to completely damp out the dipole oscillations.
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Figure 5.7: Dipole oscillations created by a slow increase of the Peierls phase. a Slow increase
of the Peierls phase over a time of 160ms to the same value of the Peierls phase as in Fig.
5.6. The imprinted force on the condensate is to weak to accelerate the atoms into a dynamical
instability. The quasimomentum oscillates around the changing ground state. b Evolution of the
momentum distribution across the slow ramp, measured in TOF. c Extracted quasimomentum
of b and theoretical position of the quasimomentum ground state (dashed red line) due to the
finite Peierls phase. d FFT spectrum of the difference between the measured quasimomentum
and the ground state of c. The inset shows the corresponding measurement in the time-domain.

In order to confirm that this kind of damping process only plays a role for os-
cillations with an amplitude larger or equal than π/2, we have performed the same
measurement with a longer ramp duration for the Peierls phase. The ramp time now
amounts to 160ms to reach a Peierls phase of 1.4π. In this case, the oscillations in the
reciprocal space are expected to have an amplitude lower than required for a dynamical
instability and should therefore show undamped oscillatory motion (5.7a). The time-
resolved measurement of the momentum distribution of the atoms during and after the
ramp is shown in Fig. 5.7. The momentum peaks are not broadened during the ramp
of the Peierls phase (Fig. 5.7b), indicating that the coherence is preserved. By com-
parison of the measured quasimomentum with the actual position of kgs throughout
the ramping procedure one can clearly identify significant deviations. The difference
between the quasimomentum of the atoms and the time- dependent ground state kgs

reveals an oscillatory motion (Fig. 5.7d). The frequency of the oscillation matches the
one obtained from the measurements presented in Fig. 5.5.

Therefore, we can conclude that in our case the main damping mechanism for dipole
oscillations of the condensate in the lattice is the onset of a dynamical instability
[221, 230, 239] at a critical quasimomentum (Eq. (5.37)). Furthermore, the measured
deviations reported in Fig. 5.3b can be explained by the lack of damping for small Peierls
phases, where the atoms do not relax to the ground state but perform oscillations. The
dashed vertical line in Fig. 5.3b indicates the expected onset of dynamical instability
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according to Eq. 5.35 under the assumption that the ramping time tR is short compared
to the inverse of effective trapping frequency ωeff .

5.4 Tunable Gauge Invariant Fluxes on a Triangular
Lattice

The time-asymmetric lattice shaking, presented in the foregoing sections, can be ex-
tended to higher dimensional lattices. In this way, it is possible to create gauge-invariant
fluxes. In general, simple global forcing, where atoms residing on different lattice sites
experience the same force, can only lead to staggered flux patterns. This statement
rests on a basic symmetry argument: Global forcing does not break the translational
lattice symmetries. Therefore, the total gauge flux through a primitive cell must van-
ish, otherwise the periodicity of the lattice would change. Thus, a necessary – but not
sufficient – condition for flux generation via global forcing is a lattice structure with
a primitive cell containing more than one elementary plaquette. In this case, the flux
through a single plaquette can be non-zero, even though the total flux through the
primitive cell vanishes. This means that global shaking can be used to strongly deform
the single particle dispersion relation, corresponding to a gauge-invariant staggered
flux. However, it cannot lead to, e.g. periodicity changes and subband splitting [117].
In principle, these limitations can be overcome by the usage of more involved shaking
schemes, e.g. oscillating superlattice potentials that lead to site dependent forces for
the atoms [217].

In this section, we demonstrate the realization of tunable staggered gauge fluxes
on a triangular optical lattice (Fig. 5.8), via time-asymmetric global lattice forcing.
The primitive cell of the triangular lattice contains one upwards and one downwards
pointing triangular plaquette. The sign of the flux changes between those two plaquette
types, resulting in a zero total flux per primitive cell. A suitable lattice translation on
a closed two-dimensional orbit (see appendix B.2) leads to the following inertial force
acting on the atoms in the lattice frame

F(t) = −F0,x cos(Ωt)êx − F0,y (sin(Ωt) + δ sin(2Ωt)) êy. (5.38)

This function is similar to the one used in the experiments of chapter 4 (Eq. (4.6)). How-
ever, it includes an additional higher harmonic term (δ sin(2Ωt)). Therefore, it breaks
the two symmetries given by Eqs. (5.16) and (5.17), provided the control parameter δ
is non-zero.

The renormalization of the tunneling matrix elements and the corresponding in-
tegrals (Eqs. B.34 in appendix B.2) have been solved numerically. The forcing of Eq.
(5.38) always leads to the same renormalization for the tunneling along the directions
2 → 3 and 3 → 1 (Fig. 5.8b), Jeff

32 = Jeff
13 . To simplify the notation we introduce the

following nomenclature:

J ′eff = Jeff
32 = Jeff

13 , θ′ = θ32 = θ13, (5.39)

together with
Jeff = Jeff

21 , θ = θ21. (5.40)

The flux through the elementary plaquettes is given by

Φ ≡ ΦM = θ21 + θ32 + θ13 = θ + 2θ′ = −ΦO, (5.41)
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where ΦM (ΦO) denotes the flux through the upwards (downwards) pointing triangular
plaquettes. This quantity can be tuned via the control parameter δ (Fig. 5.8c).

We use the same dimensionless forcing parameters as defined in chapter 4 to quantify
the driving strength. In the following, we focus on the case A = A′ = 3.616 and small
δ, where the magnitudes of the tunneling matrix elements |Jeff | and |J ′eff | only differ by
a few percent (Fig. 5.8d).

In the tight-binding limit, the dispersion relation of the triangular lattice with
complex hopping elements reads

ε(k) = − 2|Jeff |
[
cos
(
k · d1 − θ

)
+ cos

(
k · d2 − θ′

)
+ cos

(
k · d3 − θ′

)]
, (5.42)

where the di denote the lattice directions and are defined in Eq. (B.30). Under the
assumption of separability, the dispersion relation in the z-direction has been omitted
for clarity.

In the experiments presented in this section the atoms are only weakly confined
along the z-directions. The density distribution of the atoms resembles an array of tubes.
The lattice depth is V0 = 4.6±0.1Erec, resulting in a bare single particle tunneling rate
of J = 4 · 10−3Erec and a gap to the first excited band of Egap = (3.38 ± 0.06)Erec ≈
h · (11.3 ± 0.2)kHz. The shaking frequency has been chosen as Ω = 2π · 2.791kHz.
Characteristic numbers for the system, e.g. interactions strength, occupied lattice sites,
filling factors, etc., are summarized in Tab. C.3.

In this parameter regime the atoms form a superfluid state with well defined quasi-
momentum. We initiate the experiments with an unshaken lattice, where the flux
strength is zero. Subsequently, we linearly ramp up the amplitudes of the frequency
modulation for the lattice beams over a ramp time of TR = 50ms (see Eqs. (B.26) and
(B.27)). Hence, the flux strength is non-linearly increased (see Fig. 5.9a). After the final
flux strength has been reached, lattice shaking is performed for a few more milliseconds
at constant shaking amplitudes. Finally, the atoms are suddenly released from the lat-
tice and their momentum distribution is recorded in a TOF measurement. While the
gauge potential is ramped up the flux strongly varies at times between t/TR = 0.6 and
0.7 (Fig. 5.9a). Furthermore, the magnitudes of the tunneling matrix elements become
vanishingly small (Fig. 5.9b,c). The long time-scales, associated with the vanishing
tunneling rate during the ramping procedure, lead to a non-adiabatic behavior of the
system. Coherence across the lattice is lost during the ramp but the atoms start to
recondense into the new minima of the dispersion relation, as soon as the magnitudes
of the effective tunneling matrix elements start to increase again.

Figure 5.10a depicts the respective deformation of the dispersion relation (Eq.
(5.42)) for different staggered fluxes. A flux strength of Φ = π results in an exactly
inverted version of the dispersion relation for zero flux, with two degenerate minima in
the first Brillouin zone. A non-zero value of the control parameter leads to flux devi-
ations from Φ = π. This lifts the degeneracy between the two minima, resulting in a
global and a metastable minimum. The averaged momentum distribution of the atoms,
released from the lattice, are shown in Fig. 5.10b5. We clearly observe a strong influence
of the applied gauge flux onto the momentum distribution.

For the largest possible flux strength of Φ = π, both minima are degenerate and
on average equally populated. A reduced flux of Φ = π ± 0.19π, lifts the degeneracy

5The analysis of single shot measurements reveals strong fluctuations, which are presented and
discussed in chapter 6.
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of the minima and the atoms mainly occupy the energetically lower lying minimum.
Figures 5.10c and d demonstrate the tunability of the flux strength by focusing on
the two minima in the first Brillouin zone. Due to the non-adiabaticity of the ramping
process, the atoms do not necessarily condense into the ground state but also into the
metastable minimum, provided the energy difference is not large. This behavior will be
discussed in the next chapter. Therefore, the average population difference of the two
minima can be continuously tuned as a function of the flux strength.

5.5 Conclusion and Outlook

In conclusion, we have successfully demonstrated the creation of complex valued tun-
neling matrix elements, by time-asymmetric lattice shaking. This mimics the effect of a
vector gauge potential on a charged particle. The dynamical response of the quantum
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gas to the non-adiabatic switching of the artificial gauge potentials has been investi-
gated in depth. Thus, the onset of a dynamical instability was identified as the relevant
process for current decay and relaxation towards the minimum of the dispersion rela-
tion. Furthermore, we have applied this method to the triangular lattice and realized
tunable gauge invariant fluxes. The asymmetric lattice shaking offers a simple approach
to the emulation of gauge fields for neutral atoms in optical lattices.

An alternative route for the creation of synthetic gauge fields is based on the
Raman-coupling of internal states. This has been successfully demonstrated in a se-
ries of experiments [134–137]. Compared to these Raman-laser based approaches, the
two major advantages of the time-asymmetric lattice driving are: First, lattice driving
allows for the creation of fully tunable gauge potentials, which can be modified in-situ.
Whereas, the gauge potentials created by Raman-lasers typically require a geometrical
rearrangement of the beams, which cannot be performed in-situ. Second, the periodic
lattice driving does not couple any internal states of the atoms. Therefore, the system is
not subjected to a spontaneous scattering of photons, which generally leads to heating
and reduced lifetime. However, time-asymmetric lattice driving leads to heating of the
system as a consequence of excitations to higher bands (see chapter 3).

With the possibilities of a continuously tunable dispersion relation, the creation
of period doubled states [236] via parametric amplification of Bloch-states [81] should
be possible. This paves the way towards density modulated, supersolid phases in the
triangular lattice, which posses two minima in a single Brillouin zone for a flux of π. A
coherent superposition of the two Bloch-modes, corresponding to these minima, results
in a density wave in real space.

Extension of the measurements into the strongly correlated regime might give access
to an exotic intermediate phase in between the superfluid and Mott-insulating phases
[240–242]. This phase, the chiral Mott-insulator, is characterized by a gapped excitation
spectrum, vanishing long-range coherence but long-range order of chiral mass currents.



Chapter 6

Engineering Ising-XY Spin
Models in a Triangular Lattice

A spin-model exhibiting a combined discrete Z2 (Ising) and continuous U(1)
symmetry is engineered in a triangular lattice. Full control over the Z2 sym-
metry is obtained by applying strong staggered gauge fluxes to the lattice. We
define two distinct order parameters, the magnetization and the coherence,
which are connected to the two symmetries of the system. The behavior of
those order parameters is studied in dependence of the initial entropy and
the gauge flux strength.

The fundamental concept of spontaneous symmetry breaking accompanying phase tran-
sitions plays a key role in statistical physics: Typically a low energy state looses sym-
metries contained in the underlying Hamiltonian, indicating that a phase boundary
has been crossed. This is a purely statistical phenomenon driven by thermal or quan-
tum fluctuations. The interplay between different classes of symmetries naturally raises
the question of coupled ordered parameters and new universality classes [198, 243–
247]. A paradigm for a system with combined discrete and continuous symmetries is
the geometrically frustrated XY model on the triangular lattice, incorporating vector-
spin related rotation symmetry and chiral inversion symmetry. At low temperatures
the model shows a strong coupling behavior of the order parameters associated with
vector-spin and chirality degrees of freedom [248]. In solid state physics it is difficult to
resemble these types of models in a clean and controllable way. Until now, experimental
studies have been mainly restricted to arrays of superconducting Josephson junctions
[249–256].

In this chapter, we demonstrate the experimental realization of a model system
with combined U(1) and controllable Z2 (Ising) symmetry by applying tunable syn-
thetic staggered gauge fluxes to atoms confined in a triangular lattice. We identify
two distinct order parameters associated with long-range order of local on-site phases
and staggered bosonic mass currents. A broken U(1) symmetry or, in other words,
long-range coherence is equivalent to Bose-Einstein condensation. The Ising symmetry,
which is initially created in the system for maximum flux strength of π, can be broken
on purpose by reducing the field strength. The system features substantial similarities
to the classical Ising model in presence of a longitudinal magnetic field. A spontaneously
broken Z2 symmetry can be interpreted as the analog of spontaneous magnetization
occurring in an Ising ordered state.
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The measurement of a suitable Ising order parameter reveals magnetization curves
as a function of the staggered gauge flux strength and the temperature. A thermal phase
transition from an ordered Ising (ferromagnetic) to an unordered (paramagnetic) state
is observed. In addition, we are able to qualitatively observe changes of the U(1) related
order parameter or, in other words, of the coherence across the lattice, while breaking
the Z2 symmetry on purpose. This indicates the strong coupling between both order
parameters of the system.

Parts of this chapter have been published in [213]. The experiments and the data
analysis presented in this chapter were performed within the team of: J. Struck,
M. Weinberg, C. Ölschläger and J. Simonet.

6.1 Ising-XY Model

We experimentally realize a coupled Z2 × U(1), Ising-XY lattice model with ultracold
bosons in a triangular lattice subjected to strong staggered gauge fluxes. Synthetic
gauge fields are created by the method of periodic lattice driving as presented in section
5.4. The strength of the driving serves as an external control knob on the Z2 symmetry:
Only in the limit of maximum flux (Φ = π) per plaquette the symmetry is exactly
preserved (Fig. 6.1a). In the single-particle dispersion relation this symmetry property
is reflected in the presence of two degenerate minima in the first Brillouin zone (Fig.
5.10a).

Experimental parameters coincide with those of the measurements presented in
section 5.4 (see also Tab. C.3). As in the preceding chapters, the atoms are only weakly
confined along the direction perpendicular to the triangular lattice, giving rise to an
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array of tubes. The system is described by the effective tight-binding Hamiltonian

H = −|J |
∑
〈ij〉

eiθij â+
i âj + U

∑
i

n̂i(n̂i − 1), (6.1)

where the spatial degrees of freedom along the tubes have been omitted for sake of clar-
ity and under the assumption of phase stiffness along the tubes1. This means we assume
that each tube (lattice site) can be described by a coherent state 〈âi〉 =

√
ni exp(iϕi),

which is characterized by the phase ϕi. This reasoning is confirmed by classical Monte-
Carlo simulations including the third spatial direction in a discretized form [257].
Nevertheless, it is important to keep in mind that the system is not two- but three-
dimensional. The dimensionality has an important impact on the thermodynamic prop-
erties of the system. In addition, Eq. (6.1) assumes isotropic tunneling amplitudes

|J | ≡ |Jeff | = |J ′eff | , (6.2)

which is fulfilled to good approximation for the periodic forcing of Eq. (5.38) with
forcing parameters A = A′ ≈ 3.62, as can be seen in Fig. 5.8d. The flux per upwards
pointing triangular plaquette is defined in Eq. (5.41) with the two independent Peierls
phases θ and θ′. In the following we will use the better suited bias flux

Φbias ≡ Φ− π = θ + 2θ′ − π, (6.3)

to describe the system under the influence of the staggered fields. The two symmetries
U(1) and Z2 are tied to the invariance of the Hamiltonian under the two transforma-
tions:

ai →

{
ai eiη ; Global rotation

a+
i ; Local inversion.

(6.4)

As can be easily seen, the Hamiltonian (6.1) is invariant under the global rotation
transformation, thus implying a U(1) symmetry. The second transformation leads to
the following Hamiltonian:

H → H ′ = −|J |
∑
〈ij〉

eiθij â+
j âi + U

∑
i

n̂i(n̂i − 1)

= −|J |
∑
〈ij〉

e−iθij â+
i âj + U

∑
i

n̂i(n̂i − 1). (6.5)

The transformation causes an inversion of the Peierls phases and therefore an inversion
of the flux

Φ→ Φ′ = −θ − 2θ′, (6.6)

meaning the energy spectrum changes, except for the cases Φ = 0 or π. Hence, the
Hamiltonian is only Z2 symmetric at a flux strength of zero or π.

For maximum staggered fluxes (Φ = π) the equilibrium state of the system may
spontaneously break the Z2 and/or the U(1) symmetry as a consequence of phase
transitions. We focus on a thermally driven phase transition but, in principle, similar

1The equivalent Hamiltonian – without gauge fields – including the spatial degrees of freedom in
the third direction is given by Eq. (2.35).
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spontaneous symmetry breaking effects can arise due to quantum phase transitions
[240–242]. It is an interesting question, wether the U(1) and Z2 symmetry are broken
simultaneously or at distinct temperatures, corresponding to separated phase transi-
tions. In the context of classical XY models on frustrated two-dimensional lattices this
topic has been controversially debated over many decades [244–246, 258–264]. Recently,
large-scale Monte-Carlo simulations were able to resolve two closely spaced but sepa-
rated phase transitions in frustrated two dimensional lattice systems [265, 266].

In our case – of ultracold bosonic atoms in an optical lattice – the spontaneously
broken U(1) symmetry implies Bose-Einstein condensation. The local phases on each
lattice site (Fig. 6.1b) show a long-range order, thus providing one of the two order pa-
rameters for the system. This parameter can be quantified by the first order correlation
function in the infinite distance limit

lim
|Ri−Rj |→∞

〈a+
i aj〉 = const. · ei(ϕj−ϕi) = const. · eiq(Rj−Ri). (6.7)

Strong artificial gauge fluxes induce cyclotron-like mass currents around the pla-
quettes. Below a certain temperature, these mass currents develop a staggered long-
range order with well defined chirality: All upwards pointing triangles feature mass
currents with the same orientation and all downwards pointing triangles feature mass
currents with the opposite orientation. Therefore, only two possible long-range ordered
chiral configurations exist (see Fig. 6.1c). Both chiral configurations are energetically
degenerate for Φbias = 0. Thus, the emergence of a state with well defined chirality
breaks the Z2 symmetry of the system. For non-zero bias flux one of the two possible
chiral configurations is energetically preferred. If the magnitude of bias flux is smaller
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than π/2, the first Brillouin zone exhibits two minima. However, for non-zero bias
flux, the two minima are not degenerate and form a local (upper) and global (lower)
minimum.

The second order parameter, related to the Z2 symmetry of the system, can be
defined via the total staggered current of the lattice

J =

M∑
s

3∑
i=1

〈
ĵdis

〉
, (6.8)

with single bond currents 〈ĵdis〉 flowing from lattice site s to the nearest-neighbor along
the lattice direction di (see Eq. (B.30)). In the thermodynamic limit, a non-zero value
of J signals the phase transition to a state with long-range ordered chiral mass currents
and thus broken Z2 symmetry. As we will see in the next section, this can be identified
with a non-symmetric occupation of quasimomentum states.

The total staggered current depends on the first order correlation function 〈a+
i aj〉

as can be seen by the expression for the current along a single bond2:〈
ĵdis

〉
= −2|J |

~
Im
[
eiθi 〈â+

di
âs〉
]
, (6.9)

where âdi is the annihilation operator at the lattice site described by the vector Rs+di
and θi is the Peierls phase corresponding to the tunneling process from site s to the
nearest-neighbor in direction di. Therefore, both order parameters are strongly linked.

To investigate the thermally driven phase transition, the initial entropy has been
varied in three steps. Atoms were held for a different amount of time in the lattice
before initiating the periodic lattice driving: The same sets of measurements have been
performed for hold times of 0ms (S1), 80ms (S2) and 160ms (S3). The entropy increases
as a function of the hold time due to the technically induced heating of the atoms.
Averaged momentum distributions for the three different measurement sets are shown
in Fig. 6.2b together with the corresponding tight-binding dispersion relations (Fig.
6.2a).

It is possible to qualitatively extract information about both order parameters, re-
lated to the U(1) and the Z2 symmetry, from the measured momentum distributions of
the atoms. The width of the momentum peaks is related to the decay of the first order
correlation function and the chiral order parameter is connected to the occupation of
distinct parts of the Brillouin zone. In the next sections we will investigate the momen-
tum distributions of single experimental realizations with respect to the introduced
order parameters.

6.2 Measurement of the Magnetization

The total staggered flux of the lattice can be related to the momentum distribution
of the atoms by the transformation of the current operator into the reciprocal space
(see appendix E). For a lattice with tunneling directions di and corresponding Peierls
phases θi along those directions, the current operator in reciprocal space is

ĵdis =
|Ji|
i~M

∑
q,q′

B̂+
q
B̂q′e

i(q′−q)Rs

(
− ei(θi−qdi) + e−i(θi−q′di)

)
, (6.10)

2The expression for the current is derived in appendix E.
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where M is the number of lattice sites and B̂q = 1√
M

∑M
i âi exp(−iqRi) is the annihi-

lation operator for a particle in the Bloch state with quasimomentum q. Inserting Eq.
(6.10) into Eq. (6.8) results in an expression for the total staggered flux (see appendix E)

J =
2|J |
~
∑
q

〈ñq〉 X (θ, θ′,q), (6.11)

which explicitly depends on the quasimomentum distribution 〈ñq〉 = 〈B̂+
q B̂q 〉 of the

atoms. The weighting function

X (θ, θ′,q) = sin(qd1 − θ) + sin(qd2 − θ′) + sin(qd3 − θ′), (6.12)

accounts for the specific gauges of the experiments (see Fig. 6.3a). This finally leads
to gauge-independent results for J because the weighting function cancels gauge-
dependent effects in the momentum distributions. The differences between the weight-
ing functions for the distinct gauges, used in our experiments, are rather small (see
Fig. 6.3a). In principle, we can use Eq. (6.11) to directly infer the total staggered mass
current from the TOF absorption images. In case of Φbias = 0, a non-zero value of J re-
quires a momentum distribution which violates inversion symmetry (〈ñQ+q〉 6= 〈ñQ−q〉)
with respect to the point Q =

(
π/
√

3 d2D, π/d2D, 0
)
. This reasoning does not hold for

non-zero bias flux. In this case the weighting function X (θ, θ′,q) of the total staggered
current is nowhere point symmetric. Therefore, no symmetry constraints are imposed
on the momentum distribution in order to acquire a finite total staggered mass current.

For the evaluation of the momentum distribution obtained in TOF, we have chosen
a slightly different order parameter

M =
∑
k

〈ñk〉 X (θ, θ′,k)
/∑

k

〈ñk〉 , (6.13)

which we call the magnetization. Here the summation over k indicates that all momen-
tum components of the absorption images are considered and not only quasimomenta
q which are restricted to a single Brillouin zone. The magnetization is closely related
to the total staggered current per particle.

As the central point of this section, we investigate the thermal dependence of the
magnetization. The measurement of the magnetization for the case of zero bias flux
(Φbias = 0) reveals strong shot-to-shot fluctuations for low entropy (S1). This results
in a bimodal distribution in the corresponding histogram (see Fig. 6.3b). Most of the
time, a non-zero magnetization is measured. Thus, the state of the system sponta-
neously breaks the Z2 symmetry of the Hamiltonian. In the classical Ising model this
phenomenon is called spontaneous magnetization and signifies ferromagnetism. Increase
of the entropy reduces the fluctuations until, for maximum entropy (S1), the bimodal
distribution has merged into a unimodal distribution which preserves the Z2 symmetry
of the Hamiltonian. This corresponds to a thermally driven phase transition, similar to
the ferromagnetic to paramagnetic transition in the Ising model.

Note that the experiment for low entropy corresponds to the same type of experi-
ment as presented in section 4.6 with the degenerate spiral phases. The rather strong
mean-field interactions between the atoms are responsible for the spontaneous magne-
tization in this system. Fragmented condensates are energetically disfavored as they
are density waves in real space. Excitations resulting in zero net magnetization are
probably related to domain formation as recently observed by Parker et al. [82].
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Figure 6.3: Measurement of the thermally driven phase transition. a The weighting function
X (θ, θ′, k) evaluated for three specific gauges of the experiments. b Consecutive measurements
of the magnetisation M at zero bias flux (left) and the corresponding histograms of the statis-
tical distribution (right) for three different entropies (S1 < S2 < S3). c Collection of histograms
for various different flux values and three different entropies. Each pixel column corresponds to
a histogram for given bias flux Φbias. The histograms for Φbias = 0 are shown in b. A single
histogram consist of about 200 single measurements of M. The histograms are normalized to
the respective number of measurements that they contain. A colour code indicates the ampli-
tudes of the histograms. d Maxima of Gaussian probability distributions fitted to the measured
statistical distributions of M. In case of bimodal distributions, where two maxima appear, the
point sizes indicate the ratio of the amplitudes.
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The tunability of the bias flux allows to lift the Z2 symmetry of the Hamiltonian
on purpose. Hence, we can control which chiral order of the staggered mass currents
is energetically favored. Opposite chiralities of the mass currents are reflected in an
inversion of the sign of the magnetization. Therefore, the bias flux resembles the external
longitudinal magnetic field in an Ising model. Figure 6.3c–d show the behavior of the
magnetization as a function of the bias flux for the three different entropies S1, S2

and S3. Subfigure 6.3c consists of a series of histograms for different bias fluxes, while
subfigure 6.3d depicts the maxima of uni- or bimodal Gaussian probability distributions
directly fitted to the set of measured magnetization values for a given flux (see Fig.
6.3b for the case of Φbias = 0). The choice for the uni- or bimodal fit to the data is
based on comparing the Schwarz-Bayes criterion [267] for both fits3.

For large magnitudes of the bias fluxes we indeed magnetize the system in the
energetically preferred chirality of the mass currents. In case of low enough entropy
(S1 and S2) we observe two branches of magnetization for small bias fluxes. These two
branches correspond to the occupation of the global- or local minimum of the dispersion
relation, resulting in opposite chiralities of the mass currents. The occupation of a
metastable state is a clear sign for non-equilibrium thermodynamics and arises from
the non-adiabatic preparation of the final Ising state. Meanwhile increasing the gauge
flux from initially zero to the final value around π, the magnitudes of the tunneling
matrix elements become very small (Fig. 5.9b,c). This has the consequence that the
dispersion relation becomes almost flat. Therefore, the timescales for adiabatic behavior
of the system diverge. In this sense, the ramping procedure has to be understood as
a non-adiabatic quench to the final state, even though the ramp time is not very fast
(50ms). As a result, occupation of the local minimum occurs with a finite probability
and the interactions tend to stabilize the atoms in this state, rendering it metastable.

The flux-dependent measurements of the magnetization (Fig. 6.3c,d) bear strong
resemblance with the well-known hysteresis curves from the classical Ising model below
the Curie temperature. Nevertheless, in our case, the two branches of the magnetization
arise as a consequence of the non-adiabatic preparation of the final state. They do not
occur due to the ramping of the magnetic flux from positive to negative values and vice
versa.

The emergence of a metastable state, with a magnetization opposite to the bias flux,
can be understood as a non-equilibrium signature for the ferromagnetic phase. Indeed,
in the paramagnetic phase (S3) we only observe a single branch of the magnetization.

6.3 Long-Range Order of the Phase Distribution

While the magnetization (Eq. (6.12)) is a measure for the long-range order of the
chiral mass currents, the width of the momentum peaks is a measure for the decay
of correlations between the vector spins over distance (see Fig. 6.1b). True long-range
order is accompanied by the occupation of a single quasimomentum state and a broken
U(1) symmetry. Note the broken U(1) symmetry is equivalent to the onset of BEC.
Therefore, an increase in the width of the momentum peaks signals a decrease of the
phase coherence. In other words: a faster decay of the first order correlation function.

From Fig. 6.2 we can infer that an increase of the entropy leads to the broadening
of the momentum peaks, while an increase in the magnitude of the bias flux has the

3For more information on this analysis see the supplementary material of Ref. [213].
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Figure 6.4: Momentum peak width and free energy of the system. a FWHM of the momentum
peaks, determined with a Gaussian fit. The three measurement sets for different entropies are
extracted from the same data as the magnetization M in Fig. 6.3. Decrease in long-range
coherence is accompanied by a broadening of the peaks. b Free energy per volume A/V of
the system obtained in a weak-coupling approximation [213, 257]. The red line marks a non-
analytical behavior of the free energy, indicating the phase boundary between a thermal Bose
gas and a condensate. Subfigure b was provided with kind permission of L. Mathey.

opposite effect. The full width at half maximum (FWHM) of the momentum peaks
is extracted from the TOF absorption images by applying Gaussian fits to the peaks.
Figure 6.4a depicts the extracted FWHM from the same set of measurements as shown
in Figs. 6.2 and 6.3. As expected, we observe a strong dependence of the peak width
on the entropy in the system: For increasing entropy the coherence decreases. This
order of the coherence is maintained throughout all measurements, which explicitly
confirms that S1 < S2 < S3 is fulfilled for every flux value (see Fig. 6.4a). Furthermore,
the peak width and thus the coherence strongly dependent on the bias flux. For all
entropy measurements, we observe the same characteristic increase of the peak width
towards zero bias flux. In this case the lattice is kinetically fully frustrated. This can
be intuitively explained via the corresponding change of the single particle dispersion
relation under the influence of staggered fluxes: The curvature of the minima decreases
as a consequence of decreasing the magnitude of the bias flux. This leads to an increase
in the density of states, thus to a lower critical temperature for BEC.

Note, however, that the extracted peak width does not reflect the true width of the
momentum peaks but the convoluted width with the in-situ trap size of our atomic
cloud. We are not imaging the atoms in the far field regime [176]. This, and the finite
experimental resolution, prevents direct extraction of the condensate fraction and co-
herence length. Thus, we cannot exactly determine the presence or absence of a BEC
close to the phase transition. With these experimental limitations it is difficult to de-
duce wether the phase transitions associated with the spontaneously broken U(1) and
Z2 symmetries occur simultaneously or at distinct temperatures.

The free energy of the system can be evaluated in a weak-coupling approach [213,
257, 268], where the interactions are considered as a first-order correction and the
dispersion relation is expanded in second order around the two minima in the first
Brillouin zone. A non-analytical behavior of the free energy signals the phase transition
to a condensate. Figure 6.4b shows a pronounced cusp in the critical temperature which
is perfectly consistent with the observed decrease in the long-range coherence for zero
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bias flux (Fig. 6.4a).

6.4 Conclusion and Outlook

In conclusion, we have engineered a model featuring Ising-type Z2 and phase U(1) sym-
metry by generating strong staggered gauge fluxes on a triangular lattice. A thermal
phase transition from a state with long-range ordered chiral mass currents, sponta-
neously breaking the Z2 symmetry, to an unordered state has been observed. Further-
more, as a non-equilibrium signature for this transition, the occupation of metastable
states with chiral currents opposite to the staggered fluxes has been measured. An
analysis of the width of the momentum peaks revealed a strong influence of the gauge
fluxes on the coherence length. This can be understood as a strong interplay between
the associated discrete and continuous degrees of freedom.

In future experiments the exact coupling between the two types of phase transitions
could be investigated in depth. There are strong indications that both transitions, which
are of second order if they are isolated, merge into a single phase transition of first order
[257]. This behavior is in contrast to two-dimensional XY systems, which have been
realized with arrays of superconducting Josephson junctions [249–256]. In these systems,
as the temperature is lowered, first the transition to a state with spontaneously broken
Z2 symmetry is expected and then a Berezinsky-Kosterlitz-Thouless transition. In this
sense we have realized a model system, which might constitute a playground to study
novel kinds of coupled phase transitions.



Chapter 7

Towards Spin-Orbit Coupling in
Driven Lattices

We discuss a scheme for the realization of a spin-orbit coupled tight-binding
lattice system. The atoms are subjected to a spin-dependent periodic forcing,
which is realized by an oscillating magnetic field gradient. This results in a
spin selective renormalization of the tunneling matrix elements. In conse-
quence, the dispersion relations for two spin states with inverse magnetic
moments are shifted in opposite directions. Additional radio frequency cou-
pling between the internal spin states of the atoms leads to a hybridization
of the two spin bands. This resembles the effect of spin-orbit coupling.

The phenomenon of spin-orbit coupling generally describes an interplay between the
spin state of a particle and its motional degrees of freedom. This effect naturally arises
in the framework of relativistic quantum mechanics described by the Dirac equation. A
spinful particle moving through an electric field experiences a magnetic field in the co-
moving reference frame. The resulting interaction between the spin and the magnetic
field depends on the amplitude of the field and thus on the velocity of the particle,
leading to the coupling of motion and spin. A paradigm for the relevance of this coupling
is the fine structure splitting encountered in atomic physics, where the spin of an
electron – orbiting around the charged nucleus – is linked to its angular momentum. In
solid state materials, spin-orbit coupling can result in exotic phases and phenomena,
such as topological insulators [118, 269] or the spin Hall effect [141, 270–273].

The experimental realization of synthetic spin-orbit interactions with equal Rashba
[274] and Dresselhaus [275] contributions for quantum degenerate bosons [139, 276] and
fermions [277, 278] has raised considerable interest over the last years ([140] and refer-
ences therein). Very recently, spin Hall phenomena have been observed with ultracold
bosons [279]. All of these experiments rely on the use of Raman-laser schemes. In this
chapter we introduce a novel method for the generation of artificial spin-orbit coupling
via oscillating field gradients in a one-dimensional tight binding lattice1.

1During the final preparation of this chapter we became aware of related approaches for the creation
of spin-orbit coupling [280, 281].
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Figure 7.1: Schematic illustration of the relevant processes, which are captured in the two-
component Hamiltonian (7.1).

7.1 Spin-Dependent Lattice Driving

We consider atoms with two internal spin states, confined in a one-dimensional lattice.
The spin states are characterized by magnetic moments with same magnitude but
opposite sign. An external, inhomogeneous, time-dependent magnetic field (Bi(t) =
Bi(t + T )) periodically drives the atoms. The sign of the force is exactly inverted for
both spin states. In addition, both internal spin states of the atoms are coupled via
radio frequency fields.

The Hamiltonian of the system, neglecting the interactions and the harmonic con-
finement, can be separated into three parts (see Fig. 7.1):

H = HKin +HRF +HForce. (7.1)

First, HKin describes the next-neighbor tunneling processes, which are spin-independent
and do not couple the spin states:

HKin = −J
∑
i

(
â↑

+

i â↑i−1 + â↑
+

i−1â
↑
i + â↓

+

i â↓i−1 + â↓
+

i−1â
↓
i

)
, (7.2)

where â
↑(↓)
i is the annihilation operator for a spin-up (-down) particle on lattice site i.

Second, HRF describes a constant energy splitting ~ω0 of the spin states (e.g. due to
a homogenous, time-independent magnetic field) and the coupling of both states by a
radio wave:

HRF =
~ω0

2

∑
i

(
n̂↑i − n̂

↓
i

)
−BRF

0 cos(ωRFt+ξ)

[
µ↑↓

∑
i

â↑
+

i â↓i + µ∗↑↓
∑
i

â↓
+

i â↑i

]
, (7.3)

where n̂
↑(↓)
i = â

↑(↓)+

i â
↑(↓)
i is the local number operator for spin-up (-down) atoms. The

radio wave is characterized by the angular frequency ωRF, the amplitude BRF
0 and some

arbitrary phase ξ. The magnetic dipole matrix element between the spin-up and -down
state is denoted by µ↑↓. The third term HForce describes the spin-dependent driving of
the atoms by the oscillating magnetic field:

HForce =
∑
i

vi(t)
(
n̂↑i − n̂

↓
i

)
. (7.4)
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Here, vi(t) ≡ v↑i (t) = −v↓i (t) = −µBi(t) describes the energy shift due to the magnetic
field. The resulting force is proportional to gradient of the magnetic field and acts in
opposite directions for spin-up and -down states.

The Hamiltonian (7.1) can be simplified by transforming into the co-rotating refer-
ence frame of the radio wave. This can be achieved with the unitary operator

U(t) = exp

(
− i

2
[ωRFt+ ξ − arg(µ↑↓)]

∑
i

(n̂↑i − n̂
↓
i )

)
, (7.5)

which transforms the Hamiltonian (7.1) into H ′, according to

H ′ = U+HU − i~U+
(
∂tU

)
. (7.6)

Subsequently, we apply the rotating wave approximation, which discards the counter-
rotating terms with ω0 + ωRF, resulting in the Hamiltonian

H ′ ≈− J
∑
i

(
â↑

+

i â↑i−1 + â↑
+

i−1â
↑
i + â↓

+

i â↓i−1 + â↓
+

i−1â
↓
i

)
+

~∆

2

∑
i

(
n̂↑i − n̂

↓
i

)
− ~ΩRF

2

∑
i

(
â↑

+

i â↓i + â↓
+

i â↑i

)
+
∑
i

vi(t)
(
n̂↑i − n̂

↓
i

)
. (7.7)

Here, ∆ = ω0 − ωRF is the detuning and ΩRF = |µ↑↓|BRF
0 /2~ the Rabi frequency.

7.2 Effective Spin-Orbit Coupled Hamiltonian

In this section, we introduce the effective time-averaged Hamiltonian. The basic theory
behind this approach is detailed in chapter 3. Therefore, we will only sketch the most
important steps. The effective Hamiltonian Heff can be obtained from the time-periodic
Hamiltonian H ′ by the relation

Heff =

〈
U+
Q (t)

(
H ′ − i~

∂

∂t

)
UQ(t)

〉
T

(7.8)

(see Eq. (3.39)), with the unitary operator UQ(t) = exp(−iQ(t)) and the notation

〈· · ·〉T = 1
T

∫ T
0 · · · dt for the time-average. In order to cancel the driving term HForce,

which is the main purpose of this procedure, the time-periodic hermitian operator Q is
chosen as

Q =
1

~
∑
i

Wi(t)
(
n̂↑i − n̂

↓
i

)
. (7.9)

Here, Wi(t) is defined by (see also Eq. (3.50)),

Wi(t) =

∫ t

t0

dt′vi(t
′)−

〈∫ t

t0

dt′vi(t
′)

〉
T

. (7.10)

The resulting expression for the effective Hamiltonian (7.8) is given by

Heff =− J
∑
i

(
f â↑

+

i â↑i−1 + f∗ â↑
+

i−1â
↑
i + f∗ â↓

+

i â↓i−1 + f â↓
+

i−1â
↓
i

)
+

~∆

2

∑
i

(
n̂↑i − n̂

↓
i

)
− ~ΩRF

2

∑
i

(
gi â
↑+
i â↓i + g∗i â

↓+
i â↑i

)
. (7.11)
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Here, the function
f ≡ 〈exp (i [Wi(t)−Wi−1(t)] /~)〉T , (7.12)

describes the spin-dependent renormalization of the tunneling matrix elements, whereas

gi ≡ 〈exp (i 2Wi(t)/~)〉T , (7.13)

describes the renormalization of the Rabi frequency, which in general depends on the
lattice site index.

According to Eq. (7.11), the tunneling term of the two spin-components only differs
in the sign of arg(f). A complex valued f leads to a shift of the two bare dispersion
relations for the spin-up and -down components in opposite directions. This is analogous
to the shift of a dispersion relation as a consequence of a finite Peierls phase (see chapter
5). The Rabi coupling between the two spin states leads to a hybridization of the two
bare dispersion relations, resulting in two separated bands.

It is convenient to introduce a spinor notation with the two-component annihilation
and creation vectors:

ψi = (a↑i , a
↓
i )

T, ψ̂+
i = (a↑i

+
, a↓i

+
). (7.14)

With this, the Hamiltonian (7.11) can be recast in the following form:

Heff =− J
∑
i

(
ψ+
i

(
f 0
0 f∗

)
ψi−1 + ψ+

i−1

(
f∗ 0
0 f

)
ψi

)
+

~∆

2

∑
i

ψ+
i

(
1 0
0 −1

)
ψi

− ~ΩRF

2

∑
i

ψ+
i

(
0 gi
g∗i 0

)
ψi . (7.15)

Furthermore, it proves advantageous to rewrite the Hamiltonian in terms of the Pauli
matrices σ̂x,y,z and the identity matrix 1:

Heff =− J
∑
i

(
ψ̂+
i

[
f − f∗

2
σ̂z +

f + f∗

2
1

]
ψ̂i−1 + ψ+

i−1

[
f∗ − f

2
σ̂z +

f + f∗

2
1

]
ψi

)
+

~∆

2

∑
i

ψ+
i σ̂z ψi −

~ΩRF

2

∑
i

ψ+
i

[
gi + g∗i

2
σ̂x + i

gi − g∗i
2

σ̂y

]
ψi. (7.16)

If we decompose the complex numbers f and gi into magnitude and phase f=|f | exp(iθ),
gi=|gi| exp(iχi), we can write down the simplified version of the effective Hamiltonian

Heff =− |Jeff |
∑
i

(
ψ+
i eiθσ̂z ψi−1 + ψ+

i−1 e−iθσ̂z ψi

)
+

~∆

2

∑
i

ψ̂+
i σ̂z ψ̂i −

~ΩRF

2

∑
i

|gi|ψ+
i [cos(χi) σ̂x − sin(χi) σ̂y]ψi, (7.17)

Here, we have defined the magnitude of the renormalized tunneling matrix element as
|Jeff | = J ·|f |. Examination of the effective Hamiltonian (7.17) reveals a spin-dependent
tunneling without mixing of the components.

For strong radio frequency coupling of the internal spin states it is reasonable to
work with dressed states that diagonalize the radio frequency term of Eq. (7.17). The
Hamiltonian can be transformed into the dressed spin state basis by subsequent ap-
plication of the unitary transformations Ti = exp(iχiσ̂z/2) and G = exp(iπσ̂y/4). The
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first transformation Ti corresponds to a local rotation in spin space around the z-axis
followed by the global spin rotation G around the y-axis. These transformations finally
lead to the expression

Heff =− |Jeff |
∑
i

(
ψ′i

+
e−i(θ+[χi−1−χi]/2)σ̂x ψ′i−1 + ψ′i−1

+
ei(θ+[χi−1−χi]/2)σ̂x ψ′i

)
+

~∆

2

∑
i

ψ′i
+
σ̂x ψ

′
i +

~ΩRF

2

∑
i

|gi|ψ′i
+
σ̂z ψ

′
i , (7.18)

where the dressed spinors ψ′i
+ = ψ+

i TiG and ψ′i = GT+
i ψi have been introduced.

Tunneling processes in the dressed spin state basis are not diagonal and lead to mixing
of both components. The Hamiltonian (7.18) resembles the tight-binding lattice version
of a spin-orbit coupled system with equal Rashba and Dresselhaus contributions. The
strength of the spin-orbit coupling is described by the parameter

α = θ + [χi−1 − χi]/2. (7.19)

In general, the lattice site dependence of the radio frequency coupling term lifts the
translational symmetry of the Hamiltonian and prevents the description in terms of
a band structure. However, for certain driving functions, the site dependence can be
neglected. This will be discussed in the following section based on the example of sine
pulse forcing.

7.3 Sinusoidally Pulsed Magnetic Field Gradient

Sine pulse forcing has already been considered in section 5.3 (see also appendix B.1)
and we can reuse most of the results. Here, the forcing is realized by a time dependent
magnetic field

Bi(t) = B0 i

{
sin (Ω1t) for 0 < t mod T < T1; (1)

0 for T1 < t mod T < T ; (2).
(7.20)

According to Eqs. (7.10) and (B.9) one obtains

Wi(t) = ~K i

{
cos (Ω1t)− T2/T (1)

T1/T (2),
(7.21)

with the dimensionless forcing parameter

K =
µBmF gFB0

~Ω1
. (7.22)

In this calculation, K is defined via the quantum number mF and Landé factor gF of
the spin-up state2. For the parameters f (Eq. 7.12) and gi (Eq. 7.13) we can readily
use the results of section 5.3 (see Eq. (5.19)):

f =
T1

T
exp

(
−iK

T2

T

)
JB

0 (K) +
T2

T
exp

(
iK

T1

T

)
, (7.23)

gi =
T1

T
exp

(
−i2Ki

T2

T

)
JB

0 (2Ki) +
T2

T
exp

(
i2Ki

T1

T

)
. (7.24)

2This convention only plays a role concerning the sign of K.
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Figure 7.2: Spin-dependent driving of the atoms with sine-pulses. a The amplitude of the
magnetic field gradient is modulated with trains of sinusoidal pulses. b The resulting spin-orbit
coupling strength. c The magnitude of the renormalized tunneling matrix elements. In b and c
the colored lines correspond to different ratios T1/T2 of the pulse to hold time.

The lattice site with index i = 0 is defined as the site where the magnetic field vanishes
(see Eq. (7.20)). If we assume that the zero-crossing of the magnetic field gradient is
far away from the atoms (2Ki� 0), Eq. (7.24) can be approximated by

gi ≈
T2

T
exp

(
i2Ki

T1

T

)
. (7.25)

In this case, the magnitude of gi is site independent

|gi| ≈
T2

T
≡ |g| (7.26)

and the argument is given by

χi ≈ 2Ki
T1

T
. (7.27)

Figure 7.2 displays the resulting spin-orbit coupling strength (Eq. (7.19)) as a function
of the forcing parameter.

7.4 Spinful Dispersion Relation

The dispersion relation of the spin-orbit coupled system can be determined by trans-
forming the dressed state spinors into reciprocal space via the relation

ψ′i =
1√
M

∑
q

φ′qe
i q d i, (7.28)

where M is the number of lattice sites and the reciprocal spinor is

φ′q =
(
B̂↑
′

q , B̂
↓ ′
q

)T
. (7.29)

Here B̂↑
′

q is the annihilation operator for the dressed spin-up particle in the Bloch
state with quasimomentum q. Expansion of the spinors in Bloch states (Eq. (7.28))
transforms Eq. (7.17) into

Heff =
∑
q

φ′q
+
H′(q)φ′q , (7.30)
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with

H′(q) = −2|Jeff | (cos(α) cos(qd)1− sin(α) sin(qd) σ̂x) +
~∆

2
σ̂x +

~ΩEff
RF

2
σ̂z , (7.31)

where the effective renormalized Rabi frequency has been defined as ΩEff
RF = ΩRF|g|.

The quasimomentum dependent eigenvalues of the 2 × 2 matrix H′ represent the two
lowest spinful bands of the spin-orbit coupled tight-binding lattice.

Diagonalization of H′ is straightforward and the resulting dispersion relations for
different values of the spin-orbit coupling strength α, detuning ∆ and effective Rabi
frequency Ωeff

RF are shown in Fig. 7.3. An increase of Ωeff
RF leads to a larger splitting of

the two bands, while the bandwidth decreases (Fig. 7.3a). The strength of the spin-
orbit coupling strongly impacts on the separation of the minima (maxima) of the lowest
(upper) band (Fig. 7.3b). A finite value of the detuning ∆ lifts the degeneracy of those
minima (Fig. 7.3c). For α = 0 – corresponding to the case of no spin-orbit coupling –
only one minimum is present within the first Brillouin zone of each band.

So far, we have not evaluated the driving frequency constraints imposed by the
description of the system with the effective Hamiltonian (7.11). The validity of the
effective Hamiltonian approach relies on small coupling terms between the different
Floquet bands (see Eq. (3.40)) compared to the energy scale of the shaking frequency.
For the Hamiltonian (7.11), the coupling between the Floquet bands arises due to the
kinetic part and the radio frequency terms, which scale with the Rabi frequency. This
results in the additional condition

ΩRF � Ω, (7.32)

besides those given in Eqs. (3.56) and (3.57). The energy scale of the Rabi frequency
is on the order of the tunneling rate (see Fig. 7.3). Thus, the constraint given by Eq.
(7.32) is typically fulfilled, if the driving frequency is large compared to the tunneling
matrix elements.

7.5 Conclusion and Outlook

To conclude, we proposed a method based on spin-dependent shaking and radio fre-
quency fields that can be used to engineer spin-orbit coupling for neutral atoms in an
optical lattice. In this scheme the coupling strength is tunable.

The presented scheme could be realized in the case of 87Rb with the two hyperfine
states |↑〉 ≡ |F = 1,mF = −1〉 and |↓〉 ≡ |F = 2,mF = −1〉 of the 52S1/2 ground state.
The required magnetic field gradient for a forcing parameter K would be

B0

d
= K

~Ω1

dµBmF gF
≈ K · 21

G

cm
, (7.33)

where we have assumed the frequency Ω1 = 2π ·1.48kHz, which is the same as in section
5.3 and gF=1,2 = ∓1/2. The lattice spacing d has been set to 0.5µm.

In particular, it is interesting to study the impact of interactions on such a system
as the dressed spin states are not eigenstates of the on-site interactions. This leads to
a complicated mixing behavior of the spin components [139]. In principle, this method
can be extended to higher dimensional lattice geometries.
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Figure 7.3: Dispersion relations of the spin-orbit coupled system. The colorcode indicates the
respective admixture of dressed spin states. a Influence of the Rabi frequency on the dispersion
relation for fixed α = π/2 and ~∆ = 0. b Influence of the spin-orbit coupling strength α on the
dispersion relation for fixed ~Ωeff

RF = 0.5|Jeff | and ~∆ = 0. c Influence of the detuning ∆ on the
dispersion relation for fixed α = π/3 and ~Ωeff
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Appendix A

Measured Three Beam Lattice
Geometry

This section of the appendix summarizes the results of Ref. [155] for the actual exper-
imentally realized three beam lattice which exhibits deviations from the perfect 120◦

configuration. The real beam arrangement was determined according to the measured
momentum distribution of a coherent superfluid state in the lattice featuring well de-
fined momentum peaks. All results were obtained under the assumption that the lattice
has only deviations within the xy-plane but that the beams are not pointing outside of
the plane in the z-direction. This assumption is justified a posteriori, as the corrected
lattice constants lead to a very good agreement between experiment and theory con-
cerning the shaking experiments in the running wave 1D lattice. The measured angles
between the lattice beams are shown in table A.1. The resulting lattice constants of
the three beam lattice are shown in table A.2. The inferred lattice constants deviate
up to one percent from the value 553nm, expected for the perfect 120◦ geometry. For
the running wave 1D lattice the resulting lattice spacing amounts to 486.3± 0.5nm.

Lattice beams ]

k1, k2 120.4◦ ± 0.4◦

k2, k3 117.1◦ ± 0.2◦

k1, k3 122.4◦ ± 0.4◦

Table A.1: Measured angles between the
lattice beams of the three beam lattice.

Lattice constants

|a1| = 560.6± 1.0nm

|a2| = 545.9± 0.8nm

|a1 + a2| = 554.3± 1.0nm

Table A.2: Corrected lattice constants for
the measured lattice geometry.





Appendix B

Inertial Forces and Tunneling
Matrix Renormalization

In this appendix we derive the frequency modulation functions for the lattice laser
beams, needed in order to create specific inertial forces for the atoms in the co-moving
reference frame of the lattice.

B.1 Running Wave 1D Lattice

The lattice potential of the running wave 1D lattice is given by

VRW(x, φ2(t)) = −V0

2
[1 + cos(bx− φ2(t))] (B.1)

(see also Eq. (2.21)), where b is defined in Eq. (2.22). The laser beam characterized by
the wavevector k2 (see Fig. 2.6) is frequency modulated in the following way

ω2(t) = ωL + δω2(t) = 2π (νL + δν2(t)) , (B.2)

resulting in a time-dependent phase

φ2(t) = −
∫ t

−∞
dτδω2(τ), (B.3)

while for the other beam, working at constant frequency ωL, the phase φ2(t) is set to
zero. A finite phase φ2 leads to a shift of the whole lattice potential according to

VRW(x, φ2(t)) = VRW(x−R0(t), 0) , (B.4)

resulting in the direct relation
φ2(t) = bR0(t) , (B.5)

where R0(t) is the trajectory of a lattice well. The lattice modulation

δν2(t) = − φ̇2(t)

2π
=

∆p(t)

mdRW
, (B.6)

results in a momentum shift ∆p (Eq. (3.7)) and thus in an inertial force (see section
3.1)

F (t) = −mR̈0(t) = −mφ̈2(t)/b (B.7)
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in the co-moving lattice frame.

The sinusoidal pulse forcing function reads

F (t) =

{
F0 sin (Ω1t) for 0 < t mod T < T1; (1)

0 for T1 < t mod T < T ; (2).
(B.8)

This results in a momentum shift of the atoms given by

∆p(t) = −F0

Ω1

{
cos (Ω1t)− T2/T (1)

T1/T (2).
(B.9)

The required frequency modulation for this forcing function is therefore given by the
expression

δν2(t) = −ν0

{
cos (Ω1t)− T2/T (1)

T1/T (2),
(B.10)

with the amplitude ν0 = F0/(Ω1mdRW). The monochromatic forcing function is ob-
tained for the case T1 = T → Ω1 = Ω. The corresponding frequency modulation is
given by

δν2(t) = −ν0 cos (Ω1t). (B.11)

With Eq. (3.50) we derive the expression

Wi,i∓1(t) ≡Wi(t)−Wi∓1(t) = ∓dRW∆p(t), (B.12)

where the convention Ri − Ri∓1 = ±dRW has been used. By inserting this expression
into Eq. (3.52), the tunneling matrix renormalization is obtained as

Jeff
i,i−1/J = Jeff

→ /J =
T1

T
exp

(
−iA

T2

T

)
JB

0 (A) +
T2

T
exp

(
iA
T1

T

)
(B.13)

Jeff
i,i+1/J = Jeff

← /J =
(
Jeff
→ /J

)∗
(B.14)

with the dimensionless forcing parameter being defined as

A =
dRWF0

~Ω1
=
md2

RWν0

~
, (B.15)

and Jeff
→ (Jeff

← ) describing a hopping process into positive (negative) direction. For the
case of T1 = T the pure Bessel function renormalization is recovered.

B.2 Triangular Lattice

For the triangular lattice potential given by (see Eq. (2.15)),

V4(r) = −V0

[
3

4
+

1

2
(cos[(b1 − b2)r− φ2] + cos[b1r− φ3] + cos[b2r + φ2 − φ3])

]
,

(B.16)
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two beams are modulated while the remaining one works at constant frequency,

ω1(t) = ωL = 2πνL,

ω2/3(t) = ωL + δω2/3(t) = 2π
(
νL + δν2/3(t)

)
. (B.17)

The frequency modulation leads to time-dependent phases for the beams 2 and 3 given
by

φ2/3(t) = −
∫ t

−∞
dτδω2/3(τ), (B.18)

expressing the phases in terms of a lattice shift given by the trajectory R0(t) and
V4(r, φ2(t), φ3(t)) = V4(r−R0(t), 0, 0) leads to

φ2(t) = (b1 − b2)R0(t) =
b

2

(
−R0,x(t) +

√
3R0,y(t)

)
, (B.19)

φ3(t) = b1R0(t) =
b

2

(
R0,x(t) +

√
3R0,y(t)

)
, (B.20)

with the l-th component of the trajectory vector R0,l(t). The creation of an inertial
force F(t) = −mR̈0(t) requires a modulation of the two beams, given by

δν2(t) = − φ̇2(t)

2π
=

1

md2D

√
3

(
−∆px(t) +

√
3 ∆py(t)

)
, (B.21)

δν3(t) = − φ̇3(t)

2π
=

1

md2D

√
3

(
∆px(t) +

√
3 ∆py(t)

)
, (B.22)

where ∆pl(t) is the l-th component of the momentum shift vector.

The two dimensional forcing function

F(t) = −F0,x cos(Ωt)êx − F0,y (sin(Ωt) + δ sin(2Ωt)) êy, (B.23)

is connected to a momentum shift given by (see Eq. (3.7))

∆px(t) = −F0,x

Ω
sin(Ωt), (B.24)

∆py(t) = +
F0,y

Ω

(
cos(Ωt) +

δ

2
cos(2Ωt)

)
. (B.25)

Using Eqs. (B.21) and (B.22), the functions for the frequency modulation of the lattice
beams are readily obtained

δν2(t) = + ν0,x sin(Ωt) + ν0,y

(
cos(Ωt) +

δ

2
cos(2Ωt)

)
, (B.26)

δν3(t) = − ν0,x sin(Ωt) + ν0,y

(
cos(Ωt) +

δ

2
cos(2Ωt)

)
, (B.27)

with the amplitudes ν0,x = F0,x/(md2DΩ
√

3) and ν0,y = F0,y/(md2DΩ). With Eq. (3.50)
we derive the expression

Wij(t) ≡Wi(t)−Wj(t) = −∆p(t) · dij , (B.28)
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and obtain

W21(t) = −F0,yd2D

Ω

(
cos(Ωt) +

δ

2
cos(2Ωt)

)
,

W32/13(t) =
d2D

2Ω

(
±
√

3F0,x sin(Ωt) + F0,y

[
cos(Ωt) +

δ

2
cos(2Ωt)

])
, (B.29)

with the lattice directions being defined as:

d21 = d2D

0
1
0

 ≡ d1, d32 =
d2D

2

√3
−1
0

 ≡ d2, d13 =
d2D

2

−√3
−1
0

 ≡ d3. (B.30)

These vectors form an elementary triangular plaquette in clockwise orientation. The
resulting expressions for the effective tunneling matrix elements (Eq. (3.52))

Jeff
21 /J =

1

2π

∫ 2π

0
dβ exp

(
−

id2
2Dm

~
ν0,y

[
cos(β) + δ cos(2β)/2

])
,

Jeff
32/13/J =

1

2π

∫ 2π

0
dβ exp

(
id2

2Dm

2~

[
±3ν0,x sin(β) + ν0,y

[
cos(β) + δ cos(2β)/2

] ])
,

(B.31)

can be evaluated numerically. Here, the unrenormalized tunneling matrix element is
denoted by J . It is straightforward to proof that Jeff

32 = Jeff
13 :

Jeff
32 /J =

1

2π

∫ 0

−2π
dβ′ exp

(
id2

2Dm

2~

[
−3ν0,x sin(β′) + ν0,y

[
cos(β′) + δ cos(2β′)/2

] ])
=

1

2π

∫ 2π

0
dβ̃ exp

(
id2

2Dm

2~

[
−3ν0,x sin(β̃) + ν0,y

[
cos(β̃) + δ cos(2β̃)/2

] ])
= Jeff

13 /J, (B.32)

with the substitutions β′ = −β and β̃ = β′+ 2π. Introducing the dimensionless forcing
parameters

A =
d2DF0,y

~Ω
=
md2

2Dν0,y

~
,

A′ =
d2D

2~Ω

√
3F 2

0,x + F 2
0,y =

md2
2D

2~

√
9ν2

0,x + ν2
0,y, (B.33)

Eqs. (B.31) can be recast into

Jeff
21 /J =

1

2π

∫ 2π

0
dβ exp

(
−iA

[
cos(β) + δ cos(2β)/2

])
,

Jeff
32 /J =

1

2π

∫ 2π

0
dβ exp

(
iA′ [cos(β − α) + δ cos(α) cos(2β)/2]

)
, (B.34)

with A′ sin(α) ≡ 3ν0,xmd
2
2D/(2~) and A′ cos(α) ≡ ν0,ymd

2
2D/(2~) and the angle α is

given by

tan(α) =
√

3
F0,x

F0,y
= 3

ν0,x

ν0,y
. (B.35)
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For the special case of time-reversal symmetry preserving elliptical forcing (δ = 0) one
obtains

Jeff
21 /J =

1

2π

∫ 2π

0
dβ exp (−iA cos(β)) = JB

0 (A),

Jeff
32 /J =

1

2π

∫ 2π

0
dβ exp

(
iA′ cos(β − α)

)
= JB

0 (A′), (B.36)

with the zeroth order Bessel function of first kind JB
0 (x).





Appendix C

System Parameters for Non-3D
Optical Lattices

In this appendix, basic expressions for the relevant quantities and parameters in the
non-3D lattice potentials are derived. By replacing the operators in Eq. (2.35) with
c-numbers (Eq. (2.38)) and minimizing with respect to χ∗i (r⊥) in the grand canonical
ensemble one arrives at the stationary Gross-Pitaevskii equation{

g̃|χi(r⊥)|2ni + VHarm(Ri) + VHarm(r⊥)− µ
}
χi(r⊥) = 0, (C.1)

where µ is the chemical potential and the kinetic energy has been neglected (Thomas-
Fermi approximation). The renormalized interaction parameter is defined as
g̃= g

∫
dr‖|wi(r‖)|4 with the three dimensional interaction parameter g= 4π~2as/m.

For 87Rb atoms in the ground-state |F = 1,mF = −1〉 the scattering length is
as = (100.4± 0.1)a0 [282]. The resulting Thomas-Fermi profile of the interaction broad-
ened wavefunction is given by [283, 284]

|χi(r⊥)|2 =
µ− (VHarm(Ri) + VHarm(r⊥))

g̃ni
. (C.2)

Within a continuum approximation
∑

i ni→A−1
UC

∫
dr‖N(r‖) with Ri→ r‖ the chemical

potential can be calculated analytically, yielding the result

µ =

(
15g̃AUC

π16
√

2
ωx ωy ωzm

3/2N

)2/5

, (C.3)

where AUC is the size of the unit cell of the lattice and N =
∑

i ni the total particle
number.

C.1 One-Dimensional Lattice

In the one-dimensional running wave lattice the atoms are periodically confined along
the axis r‖ = (x, 0, 0) and weakly confined along r⊥ = (0, y, z), resulting in layers of
pancake-like density distributions. Furthermore, AUC = dRW and g̃= g

∫
dx|wi(x)|4.

The elliptical Thomas-Fermi boundary of the perpendicular density profile (see Eq.
(C.2)) is given by the semi-axes

yi,TF =

(
2µ−mω2

xR
2
i

mω2
y

)1/2

, zi,TF =

(
2µ−mω2

xR
2
i

mω2
z

)1/2

. (C.4)
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The number of atoms per layer is

ni =
π

4g̃ωyωzm
(2µ−mω2

xR
2
i ) (C.5)

and the overall energy scale of a single layer is obtained via

Ui = g̃

∫
TF

dydz|χi(y, z)|4 =
4g̃ωyωzm

2

π
(
2µ−mω2

xR
2
i

) . (C.6)

N 4.0× 105

NSites 70

nmax 1.1 · 104

N/NSites 5.7 · 103

N> 35

Uweighted =
∑

i(Ui ni)/(N) 1 · 10−4Erec

ATF =
∑

i(π yi,TF zi,TF ni)/N 450µm2

ρ2D =
∑

i

[
n2
i /(π yi,TF zi,TF)

]
/N 56µm−2

g̃ρ2D/J 86

Table C.1: Calculated system parameters for experiments presented in section 5.3. The ta-
ble shows the number of occupied sites NSites, maximum tube occupancy nmax, mean layer
occupancy N/NSites, number of sites with occupancy larger than the mean layer occupancy
N>, occupation weighted interaction parameter Uweighted, occupation weighted 2D area of the
atomic layers ATF and occupation weighted 2D-Density ρ2D. The corresponding lattice depth
is 10Erec, overall harmonic trapping frequencies are ω ≈ 2π · (20, 20, 50)Hz and g̃/g = 4.6µm−1.

C.2 Two-Dimensional Triangular Lattice

For the triangular lattice without additional periodic confinement along the z-direction
the system consist of a periodic array of elongated tubes. The lattice axes are defined
as r‖ = (x, y, 0) and the weakly confined axis is along r⊥ = (0, 0, z). Furthermore, the

unit cell of the triangular lattice is AUC =
√

3/4 d2
2D and the renormalized interaction

parameter is g̃= g
∫

dxdy|wi(x, y)|4. The result for the Thomas-Fermi boundary of the
tubes yields

xTF =

(
2µ−m(ω2

xR
2
i,x + ω2

yR
2
i,y)

mω2
z

)1/2

, (C.7)

where Ri,x, Ri,y are the x,y components of the lattice vector of site i. The length of the
tubes is 2xTF and the number of particles in a single tube is

ni =
2mω2

zx
3
TF

3g̃
. (C.8)

The overall interaction parameter of a single tube is obtained via

Ui = g̃

∫
TF

dx|χi(x)|4 =
3g̃

5xTF
. (C.9)
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N 1.0× 105

NSites 931

nmax 267

N/NSites 107

N> 433

Uweighted =
∑

i(Ui ni)/(N) 4 · 10−3Erec

lTube =
∑

i(2xi,TF ni)/N 15µm

ρ1D =
∑

i

[
n2
i /(2xi,TF)

]
/N 11µm−1

Table C.2: Calculated system parameters for experiments presented in chapter 4. The table
shows the number of occupied sites NSites, maximum tube occupancy nmax, mean tube occu-
pancy N/NSites, number of sites with occupancy larger than the mean tube occupancy N>, occu-
pation weighted interaction parameter Uweighted, occupation weighted length of the tubes lTube

and occupation weighted 1D-Density ρ1D. The corresponding lattice depth is 5.6Erec. The over-
all harmonic trapping frequencies are approximately equal ω ≈ 2π ·100Hz and g̃/g = 19.3µm−2.

N 1.5× 105 2.5× 105

NSites 2157 2629

nmax 174 237

N/NSites 70 95

N> 985 1201

Uweighted =
∑

i(Ui ni)/(N) 2 · 10−3Erec 2 · 10−3Erec

lTube =
∑

i(2xi,TF ni)/N 23µm 25µm

ρ1D =
∑

i

[
n2
i /(2xi,TF)

]
/N 5µm−1 6µm−1

Table C.3: Calculated system parameters for experiments presented in section 5.4 and chapter
6. The table shows the number of occupied sites NSites, maximum tube occupancy nmax, mean
tube occupancy N/NSites, number of sites with occupancy larger than the mean tube occupancy
N>, occupation weighted interaction parameter Uweighted, occupation weighted length of the
tubes lTube and occupation weighted 1D-Density ρ1D. The corresponding lattice depth is 4.6Erec,
overall harmonic trapping frequencies are ω = 2π · (31, 53, 40)Hz and g̃/g = 17.3µm−2.





Appendix D

Symmetry Constraints for
Complex Tunneling Matrix
Elements

Here, we prove the statement of section 5.2, claiming that the imaginary part of the
renormalized tunneling matrix elements can only be non-zero provided the symmetries
(5.14), (5.15) and equivalently (5.16), (5.17) are broken.

D.1 Constraints for the Function Wij(t)

We start with the proof for (5.14) by writing down the imaginary part of Eq. (3.52),

Im(Jeff
ij /J) = 〈sin(Wij(t)/~)〉T (D.1)

=
1

T

∫ T+τ

τ
dt′ sin(Wij(t

′ − τ)/~) ; t′ = t+ τ, (D.2)

with Wij(t) ≡Wi(t)−Wj(t). If this function fulfills the inversion symmetry Wij(t
′−τ) =

−Wij(−t′ − τ) (see Eq. (5.14)), we obtain

Im(Jeff
ij /J) =− 1

T

∫ T+τ

τ
dt′ sin(Wij(−t′ − τ)/~) (D.3)

=
1

T

∫ 0

T
dt̃ sin(Wij(t̃− 2τ − T )︸ ︷︷ ︸

=Wij(t̃−2τ)

/~) with t̃ = −t′ + T + τ (D.4)

=− 〈sin(Wij(t− 2τ)/~)〉T (D.5)

=− 〈sin(Wij(t)/~)〉T , (D.6)

where in the last step we have used the relation

〈sin(Wij(t− t0)/~)〉T = 〈sin(Wij(t)/~)〉T . (D.7)

This holds for arbitrary times t0, provided Wij(t) is time-periodic (Wij(t+T ) = Wij(t)).
Comparing the lines (D.1) and (D.6) one can immediately deduce that the imaginary
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part vanishes. That the imaginary part of the tunneling matrix elements always vanishes
for fulfilled symmetry (5.15) can be proven as follows:

Im(Jeff
ij /J) = 〈sin(Wij(t)/~)〉T (D.8)

=
1

T

∫ T/2

0
dt sin(Wij(t)/~) +

1

T

∫ T

T/2
dt sin(Wij(t)/~) (D.9)

=
1

T

∫ T/2

0
dt sin(Wij(t)/~)

+
1

T

∫ T/2

0
dt′ sin(Wij(t

′ + T/2)︸ ︷︷ ︸
=Wij(t′−T/2)

/~) ; t′ = t− T/2. (D.10)

Insertion of symmetry (5.15) (Wij(t
′) = −Wij(t

′ − T/2)) results in

Im(Jeff
ij /J) =

1

T

∫ T/2

0
dt sin(Wij(t)/~)−

∫ T/2

0
dt′ sin(Wij(t

′)/~) = 0 (D.11)

If either Eq. (5.14) or (5.15) are fulfilled, the imaginary part of Jeff
ij has to vanish.

D.2 Constraints for the Driving Function vij(t)

Now we prove that the symmetry constraints (5.16) and (5.17) of vij(t) are equivalent
to those of Wij(t). The starting point for this proof is a generalized form of Eq. (3.7),
which is given by

Wij(t) =

∫ t

t0

dt′vij(t
′)−

〈∫ t

t0

dt′vij(t
′)

〉
T

. (D.12)

The equation is applicable as long as the time-average of vij vanishes (〈vij〉T = 0) and
it is independent of t0 (see Eq. (3.7)). With Eq. (D.12) at hand, a relation between the
symmetry condition for Wij and vij can be established:

Wij(t− τ) =

∫ t−τ

t0

dt′vij(t
′)−

〈∫ t−τ

t0

dt′vij(t
′)

〉
T

(D.13)

=

∫ t

t0+τ
dt′′vij(t

′′ − τ)−
〈∫ t

t0+τ
dt′′vij(t

′′ − τ)

〉
T

; t′′ = t′ + τ. (D.14)

Assuming that time-reversal symmetry holds (5.16) (vij(t
′′ − τ) = vij(−t′′ − τ)), line

(D.14) can be recast into

Wij(t− τ) =

∫ t

t0+τ
dt′′vij(−t′′ − τ)−

〈∫ t

t0+τ
dt′′vij(−t′′ − τ)

〉
T

(D.15)

=−
∫ −t−τ
−t0−2τ

dt̃ vij
(
t̃
)

+

〈∫ −t−τ
−t0−2τ

dt̃ vij
(
t̃
)〉

T

; t̃ = −t′′ − τ (D.16)

=−Wij(−t− τ). (D.17)

This proves the equivalence of the symmetries (5.14) and (5.16). Both are either broken
or fulfilled simultaneously.
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We are left with the proof of the equivalence of (5.15) and (5.17). Insertion of the
shift antisymmetry vij(t

′′) = −vij(t′′ − T/2) (Eq .(5.17)) into Eq. D.12 results in

Wij(t) =−
∫ t−T/2

t0−T/2
dt′′vij(t

′′) +

〈∫ t−T/2

t0−T/2
dt′′vij(t

′′)

〉
T

(D.18)

=−Wij(−t− T/2). (D.19)

This proves the equivalence of the symmetry constraints (5.15) and (5.17). For the
derivation of Eqs. D.17 and D.19 we have used the invariance of Wij under changes of
the lower bounds of the integrals.





Appendix E

Staggered Currents on the
Frustrated Triangular Lattice

The current operator on the lattice is defined via the continuity equation

d

dt
〈n̂s〉+

∑
〈i〉s

〈ĵis〉 = 0, (E.1)

where ĵis is the current operator and 〈i〉s denotes all bonds connected to lattice site s.
The expectation value of the current is positive for currents flowing from lattice site s
to i. The time derivative of 〈n̂s〉 can be obtained with the Ehrenfest theorem

d

dt
〈n̂s〉 =

i

~
〈[H, n̂s]〉+

〈
∂n̂s
∂t

〉
=

i

~
〈[Hkin, n̂s]〉

=
i

~
∑
〈i〉s

|Jis|
(
− eiθis 〈â+

i âs〉+ e−iθis 〈â+
s âi〉

)
, (E.2)

provided H is a tight-binding Hamiltonian of the kind

H = Hkin +Honsite = −
∑
〈ij〉

|Jij |eiθij â+
i âj +Honsite, (E.3)

where Honsite only depends on on-site number operators n̂i = â+
i âi. Comparison of Eqs.

(E.1) and (E.2) yields the expression

ĵis =
|Jis|
i~

(
− eiθis â+

i âs + e−iθis â+
s âi

)
, (E.4)

for the current operator. The expectation value of this observable can be recast into

〈ĵis〉 = −2|Jis|
~

Im
[
eiθis 〈â+

i âs〉
]
. (E.5)

For later derivations, we need to express the current operator in terms of quasi-
momenta. The transformation of the local creation and annihilation operators into
reciprocal space is given by

âi =
1√
M

∑
q

B̂q eiqRi , â+
i =

1√
M

∑
q

B̂+
q e−iqRi , (E.6)
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where M is the number of lattice sites and B̂q (B̂+
q ) is the annihilation (creation)

operator for a particle in the Bloch state with quasimomentum q. The current operator
in the reciprocal space is then

ĵis =
|Jis|
i~M

∑
q,q′

B̂+
q
B̂q′

(
− ei(θis+q′Rs−qRi) + ei(−θis+q′Ri−qRs)

)
. (E.7)

If the Peierls phases θis and the magnitude of the tunneling elements |Jis| only depend
on the lattice directions di, we can introduce a simplified notation for the current
operator

ĵdis =
|Ji|
i~M

∑
q,q′

B̂+
q
B̂q′e

i(q′−q)Rs

(
− ei(θi−qdi) + e−i(θi−q′di)

)
, (E.8)

where θi denotes the Peierls phase and |Ji| the absolute value of the tunneling along
the direction di.

The total staggered current J on the triangular lattice is obtained by summing all
currents along suitable directions. The lattice directions have to be chosen such that
upwards pointing elementary triangular plaquettes are formed in a clockwise orienta-
tion. This necessarily results in a counter-clockwise orientation for downwards pointing
triangles (see (B.30)). For simplicity, we assume that the magnitude of the tunneling
is isotropic |Ji| ≡ |J |, but the obtained results can be generalized straightforwardly
to anisotropic tunneling amplitudes. The total staggered current of the lattice can be
linked to the quasimomentum distribution of the atoms:

J =
M∑
s

3∑
i=1

〈
ĵdis

〉
=
|J |

i~M

M∑
s

3∑
i=1

∑
q,q′

〈
B̂+

q
B̂q′

〉
ei(q′−q)Rs

(
− ei(θi−qdi) + e−i(θi−q′di)

)

=
|J |
i~

3∑
i=1

∑
q,q′

〈
B̂+

q
B̂q′

〉
δq′q

(
− ei(θi−qdi) + e−i(θi−q′di)

)

=
2|J |
~

3∑
i=1

∑
q

〈
B̂+

q B̂q

〉
sin(qdi − θi)

=
2|J |
~
∑
q

〈ñq〉 X (θ, θ′,q), (E.9)

with the number operator ñq for quasimomentum q and the gauge dependent quasi-
momentum weighting function

X (θ, θ′,q) =

3∑
i=1

sin(qdi − θi)

= sin(qd1 − θ) + sin(qd2 − θ′) + sin(qd3 − θ′), (E.10)

with lattice directions being defined in Eq. (B.30).
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“Free fermion antibunching in a degenerate atomic Fermi gas released from an
optical lattice”, Nature 444, 733–736 (2006).
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[176] F. Gerbier, S. Trotzky, S. Fölling, U. Schnorrberger, J. Thompson, A. Widera,
I. Bloch, L. Pollet, M. Troyer, B. Capogrosso-Sansone, N. von Prokof’Ev and
B. von Svistunov: “Expansion of a Quantum Gas Released from an Optical Lat-
tice”, Phys. Rev. Lett. 101, 155303 (2008).

[177] E. Toth and P. B. Blakie: “Thermally induced coherence in a Mott insulator of
bosonic atoms”, Physical Review A 83, 021601 (2011).

[178] S. Trotzky, L. Pollet, F. Gerbier, U. Schnorrberger, I. Bloch, N. von Prokof’ev,
B. Svistunov and M. Troyer: “Suppression of the critical temperature for super-
fluidity near the Mott transition”, Nature Physics 6, 998–1004 (2011).

[179] A. Eckardt and M. Holthaus: “AC-induced superfluidity”, Europhysics Letters
80, 50004 (2007).

[180] A. Hemmerich: “Effective time-independent description of optical lattices with
periodic driving”, Physical Review A 81, 063626 (2010).

[181] E. Arimondo, D. Ciampini, A. Eckardt, M. Holthaus and O. Morsch: “Kilohertz-
Driven Bose-Einstein Condensates in Optical Lattices”, Advances in Atomic,
Molecular, and Optical Physics 61, 515–547 (2012).

[182] C. Sias, H. Lignier, Y. Singh, A. Zenesini, D. Ciampini, O. Morsch and E. Ari-
mondo: “Observation of Photon-Assisted Tunneling in Optical Lattices”, Phys.
Rev. Lett. 100, 040404 (2008).
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Andreas Bick, Dirk-Sören Lühmann, Georg Meineke, Christoph Ölschläger, Wiebke
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meines Zweitgutachtens.
Für das gewissenhafte Korrekturlesen meiner Doktorarbeit und für zusätzliche Anmer-
kungen zum Text danke ich Christoph, Juliette und Malte.
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