ON THE FUSION IN SL(2)-WZNW MODELS
AND 6j SYMBOLS OF U,sl(2) x U, osp(1|2)

Dissertation
zur FErlangung des Doktorgrades
des Department Physik

der Universitat Hamburg

vorgelegt von
Jens Koesling

aus Berlin

Hamburg
2010



Gutachter der Dissertation : Prof. Dr. Jan Louis
Dr. habil. Jorg Teschner

Gutachter der Disputation : Dr. habil. Jorg Teschner
Prof. Dr. Klaus Fredenhagen

Datum der Disputation : 12. Mai 2010
Vorsitzender des Priifungsausschusses : Prof. Dr. Jochen Bartels
Vorsitzender des Promotionsausschusses :  Prof. Dr. Jochen Bartels

Dekanin des Fachbereichs Physik: Prof. Dr. Daniela Pfannkuche



Abstract

We introduce a novel method to determine 6j-symbols of quantum
groups. This method is inspired by the methods used in the deter-
mination of fusing matrices of WZNW models. With this method we
determine the 6j-symbols of the quantum group ¢,s1(2) and the super
quantum group U,o0sp(1]2).

We present the 6j-symbols as a recurrence relation and its initial
values. The 6j-symbols transform between the s-channel and the u-
channel decomposition of the invariants of the four-fold tensor product
of modules of a quantum group. These invariants fulfil certain differ-
ence equations.

We set one of the representations in the invariant to the fundamental
representation, and deduce a system of linear equations for the initial
values of the recurrence relation determining the 6;j-symbols.

Zusammenfassung

Wir fiihren eine neue Methode ein, die 6j-Symbole von Quantengrup-
pen zu bestimmen. Inspiriert wird diese Methode durch Methoden,
die in der Bestimmung der Fusionsmatrizen von WZNW-Modellen zur
Anwendung kommen. Mit Hilfe dieser Methode bestimmen wir die
6j-Symbole der Quantengruppe U,s1(2) und der Superquantengruppe
U,0sp(1]2).

Wir stellen die 6j-Symbole als eine Rekursionsrelation samt An-

fangswerten dar. Die 6j-Symbole verbindet die s-Kanal- mit der wu-
Kanalzerlegung der Invarianten des vierfachen Tensorproduktes von
Modulen der Quantengruppe. Diese Invarianten erfiillen bestimmte
Differenzengleichungen.
Wenn eine der Darstellungen der Invarianten auf die fundamentale
Darstellung eingeschrankt wird, konnen wir ein System linearer Gle-
ichungen fiir die Anfangsbedingungen der Rekursionsrelationen der 6j-
Symbole herleiten.
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CHAPTER 1
INTRODUCTION

Two-dimensional conformal symmetry has been a highly success-
ful tool of theoretical and mathematical physics for the past 25 years.
In statistical models at the critical point we have conformal symme-
try. This does not only help in the solution of models at the critical
point, but makes possible the exploration of models in the vicinity of
that point via conformal perturbation theory. String theory depends
on conformal symmetry to make sure the world sheet description is in-
dependent of the parametrisation of the string. Vertex operators have
cross fertilised into pure mathematics where they proliferate in repre-
sentation theory and were used in the proof of the monstrous moon-
shine conjecture. Conformal symmetry has recently found a way into
probability theory as the scaling limit of certain percolation models.

Despite these successes a classification of conformal field theory is
far from complete. There are some well understood classes of con-
formal field theories. Among these are the celebrated minimal models
and the Wess—Zumino—Novikov-Witten models (WZNW models in the
following). In search of further classes of conformal field theories it is
plausible to make the first steps by examining which generalisations of
these well understood theories are possible. String theory on curved
backgrounds for example demands a specific generalisation of WZNW
models.

A further interesting feature is the connection to quantum groups. It
has been shown that the superselection structure of WZNW models
is equivalent to representation categories of corresponding quantum
groups as a braided monoidal category. This correspondence can be
formulated in terms of basic objects in both theories, in terms of the
conformal blocks and invariant tensors.

We express these basic objects as a recurrence relation and its initial
values simplifying this correspondence.

Before we state the original content of this work, we have to intro-
duce the setting in which the main body of this work takes places. We
give a quick overview of conformal field theory, especially the WZNW
models and quantum groups. Quantum numbers and quantum calcu-
lus are introduced in appendix A. The introduction of super quantum
numbers and a cursory overview of super linear algebra and super al-
gebras have been relegated to appendix B.

1



Conformal field theory 2

With these things in place we state the content of this work in section
4 and give an overview of the main body.

1. CONFORMAL FIELD THEORY

The seminal work of Belavin, Polyakov and Zamolodchikov [4] de-
scribes a conformal field theory in the setting of Euclidean quantum
field theory as the correlators of a large number of local fields A(z,Z).

These fields are called scaling fields too. The set of local fields has the
following properties.

(1) The derivative 0A of a local field A is a local field again.

(2) There is a subset of local fields, called quasi-primary fields that
transform under projective conformal transformations

az+b

cz+d

z—w(z) = as

8(2,%) - (g—w) (Z—Z)Eww@,w(a) .

(3) Any local field A can be written as a linear combination of
quasi-primary fields and their derivatives.

(4) The vacuum is invariant under projective conformal transfor-
mations.

(5) Since in two dimensions the set of conformal transformations
extends to include the analytic transformations, we can iden-
tify a further subset of the local fields in two dimensional the-
ories.

The subset of primary fields contains the quasi-primary fields
that transform as

®(z,%) ow\" (0w ECI)( (2), w(2))

— | — — .
2,Z % 5% w(z),w(z
under any conformal transformation.

All fields that are not primary are called descendant or secondary fields.
The parameters h, h are called the conformal weights of the primary
field ®. They are connected to two parameters of statistical physics,
the scaling dimension d = h + h and the conformal spin s = h — h.

The space of states of a conformal field theories is a module for the
Virasoro algebra. The Virasoro algebra is the algebra with generators
{L, | n € Z} and the central charge ¢ subject to the relations

C
[Lma Ln] = (m — n)Lm+n + E?’I’L('I’n2 — 1)5m+n70 .
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This is the basis for the second approach to conformal field theory.
The space of states for a conformal field theory is a Hilbert space H
decomposing into Virasoro modules

H:@Hh@)?:{ﬁ.

h,h

The Laurent modes L, of the energy-momentum tensor 7' and the
corresponding antiholomorphic objects are

=> "L, T(z)=)Y z "L,
nez nez
Thus we have formally L f dz 2" (z). The Laurent modes fulfil
the relations for two commutlng COpleS of the Virasoro algebra.

[Lin, L] = (m —n) Ly + 12m(m2 — 1)0mno

o _ c
[Lin, Ln] = (m —n) Ly n + Em(m2 — 1)0msno
[Lyn, Ly] =0 .

The halves are called the chiral algebras.

Note that the generators L_;, Lo and L, form a subalgebra isomor-
phic to sl(2). This algebra is often called the global or the projective
conformal transformations.

The modes L, of the energy-momentum tensor act on a primary
field ®(z, z) of conformal weight h by

(1.1) Lo, ®(2, 2)] = 2"(20, + h(n + 1))®(z, 2) .

In the following we will mainly be considering the holomorphic chiral
half of the theory.

Primary fields ® of conformal weight h generate a Virasoro module
by the Verma module construction'. The primary field itself corre-
sponds to a highest weight vector of weight h. Its descendant fields are

constructed in terms of the Virasoro generators @) = Ly - L_,®

(L) (2.) = o f W T () (2, 5)

Yx)

The span of a primary field ® and its descendants is called a conformal
family and denoted by [®].

lGiven a highest weight vector vy, L,v;, = 0, n > 0 the Verma module is
the linear span of all elements L_,, ---L_,, v. Virasoro elements act on such
an elements by concatenation, if they are negative and if they are positive by
Ly L_pvy, = Ly, L_y)vi. More on the Verma module follows below.
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Conformal symmetry strongly constrains the correlation functions?.

Correlation functions of primary fields ®; transform covariantly under
conformal transformations z — w = w(z)

N hi
dwl- ’
(o)) =TT () @atin) i)
This leads to the fact, that all n-point functions with n > 2 depend on
the differences z;; = z; — z; only. It furthermore fixes the form of two-
and three-point functions of primary fields

(®2(22)@1(21)) = 215" C120ny s »
_ iy iy his
(P3(23)P2(22)P1(21)) = 212 293" 215° Chzs
with hfj = —h; — hj + hi. In the normalisation where C;; = ¢;; the
coefficient Cj;y, is just the coefficient of the operator product expansion

O;(2);(w) =) o wc;ff+hjhk ®p(w) + - - - .

The four-point functions are determined up to a function of the cross-

ratios
_ R43%21

ZipZ31
With the parameter v;; such that ). v;; = 2h; the four-point functions
are of the form

(Py(24) -+ P1(21)) = H 2 Gi(z) .
i<j
A correlation function of descendant fields can be expressed via the

conformal symmetry as a string of differential operators acting on the
correlation function of primary fields only?

<®("m""’”1)(z)<bN(zN) . -<I>1(z1)>
=L, (2) L0y (2) (@(2)Pn(2n) - - P1(21)) -

The differential operators £ are given by

o)=Y (2 ety

i=1

?Details can be found in any introductory work on conformal field theory, for
example the book by Di Francesco, Mathieu and Senechal[5], the book by Henkel
[14] or the article by Ginsparg [11].

3This fact is based on (1.1) and gives rises to the conformal Ward identities.
The derivation is demonstrated for example in [4].
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In some conformal field theories there are null fields. These are descen-
dant fields X)) from a primary field X such that all correlation
functions including this field vanish,

(@, @,y - X)) =)

Primary fields X having null fields in their families are called degener-
ate fields. The families are also referred to as degenerate. The basic
idea of work by Belavin, Polyakov and Zamolodchikov [4] is to use de-
generate fields to find additional differential equations for correlation
functions containing these fields. Analogously in a Virasoro module
there can appear nullvectors, vectors orthogonal to all vectors of the
module generating a highest weight sub-module.

The state-operator correspondence translates the problem of clas-
sifying the degenerate fields into a purely representation theoretical
problem. In a well behaved conformal field theory primary fields are in
one to one correspondence to vectors of highest weight in a representa-
tion of the Virasoro algebra. Let |0) be the vacuum of a given theory
and vy a vector of weight h. We then have for a field ® of conformal
weight h that

vy, = lli% O (2)]0)

is a vector of highest weight h. The last equality is the limit of the
more general

ety = 0(2)|0) .
When we let ®(v|z) denote the field corresponding to the vector v we
can express the state-operator correspondence® by

L,®(v|z) = ®(L,v|z) .
In purely representation theoretical terms of Virasoro modules we
get the very same structure. Given a highest weight vector vy,
L,vy,=0, forn>0,

the negative modes L_,, generate the Verma module M} spanned by
vectors of the form

hng,...,n1) __

V( l 1) — L_nl . .L_nlvh .

The number N = 2221 n; is called the level of the vector. The Verma
module is not necessarily irreducible. It may contain null vectors n,

that is vectors of level N > 0 generating a submodule of their own with
themselves as highest weight vector of weight h + N

Lin=0, forn>0.

Such a Verma module is called degenerate. To get a irreducible module
we have to divide all nullvectors out. Let A}, = span{n € M, | L,n =

4This can be seen by 1in% L,®(v|2)|0) = L,v = 1in% ®(L,v|2)|0).
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0, n > 0} be the set of all submodules of the Verma module M,,. Then
we get an irreducible module V), by setting

Vi, = Mh/Nh .

The first basic result of the representation theory of the Virasoro alge-
bra® states that My, is unitary if and only if ¢ = ¢(m),h = h(m), for
some m € R\ {0, 1} and some r, s € N with s < r where

cm)=1- %(m +1) and h(m)= ((m + 1)T4T—nms)2 -1

(m+1).
Conformal blocks. Consider now a correlation function (®, P3P, P;)
of four primary fields ®; in the operator picture. There are two viable
ways to decompose the correlation function into three-point functions.
One way is to insert the operator product expansion for ®o®; and de-
termine the resulting three-point functions, the other is to insert the
operator product expansion for ®3®, and determine the three-point
functions resulting from this insertion. Let Z denote the four-tuple

(247237227Z1»

Ck
(D,030,®,) = Z ﬁ@@g@ )
k

== ZClQS 34JT (S|Z) .

The second insertion leads to

(D4 P3P Dy 202380184]_—@ 1(s1Z) .

The functions F©*) and F® are called the s-channel and the u-channel
conformal blocks. In general an explicit expression for the conformal
block is not known.

Correlation functions of local fields do not depend on the order in
which the fields appear in the correlation function. A requirement for
physical consistency is thus that the s- and the u-channel decompo-
sition of the four-point functions give the same result. This is called
the crossing symmetry. From that it can be argued that the conformal
blocks have to be related by a transformation F

832
(u|Z) = ZFUS "u(sl2) .

u)32

The coefficients F, [ %] form the fusing matriz.

Sthis was found by Kac in [15]. See [16] for a proof.
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The minimal models. The minimal models introduced by Belavin,
Polyakov and Zamolodchikov [4] correspond to degenerate Virasoro
representations with m = p/(q — p), where p and ¢ are relatively prime
positive integers and r < p — 1, s < g — 1 [4]. The conformal weights
are periodic according to

hr,s(pa Q) = h?"+p78+q(p7 Q) :

Graphically considering the lattice of allowed values (r, s) for a given
pair (p, q) we get the Kac table. Each dot in the diagramme corresponds
to a primary field of conformal weight h, «(p, q).

Ficure 1: Kac table for (p,q) = (4,3)

Indeed the minimal models have become the prototype for certain
classes of conformal field theories. The next step of generalisation are
the rational conformal field theories. Rational conformal field theories
emulate the structure of minimal models in so far as they have only
a finite number of primary fields. The WZNW models® for compact
groups are examples of rational conformal field theories.

The rational conformal field theories share as a common trait that
all correlation functions decompose into a finite sum of products of
holomorphic and antiholomorphic parts

N
<q)n e (I)1> = Z |Fn,...,1(ji|zn7 e 21)|2 )
i=1

with representation labels j;. The space of states decomposes into a
finite number of modules for the symmetry algebra of the theory.

N
H = @Hhi ® 7:{132. .
=1

6named after Julius Wess, Bruno Zumino, Sergei Novikov and Edward Witten.
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Because of the decomposition Hj, ® 7:{,;1. of each sector into two parts,
corresponding to the holomorphic and antiholomorphic parts of the
fields, the symmetry algebra is called a chiral algebra.

WZNW models. WZNW models are a class of nonlinear sigma
models taking values in the manifold of a compact simply-connected
Lie group G. Let g be the Lie algebra of G. Then the Hilbert space
of states is organised as sum of representations of the model’s current
algebra, the affine Kac-Moody algebra g;. Let g be a Lie algebra
with a basis {J% | a = 1,2,...,dimg}, structure constants f% and
invariant bilinear form 7%. The Kac-Moody algebra g, is generated
by the elements

{J2]| a=1,2,...,dimg,n € Z}
with the product
[ T2 = D A T+ R ™ 0

Collecting the modes J into a generating function
JUz) = Zz’"’lJfL‘
neZz

the algebraic properties of the product are encoded in the operator
product expansion

L
(z—w)? z—-w

Ja(z)Jb(w): + ...

The Verma modules for the Kac-Moody algebra gj, are quite similar
to the ones for the Virasoro algebra. Let R be a representation of
the Lie algebra g. The representation R, also called the zero mode
representation now generates the Verma module. Given a vector v in
the zero mode representation R the positive modes act as

Jov=0, forn>0
Jiv=R(J")v
and the negative modes J%, generate the Verma module Mg,
Mpy = span{Jflm e JE v ‘ veRIe N} )

The number N = Zli:1 n; is called the level of the vector. The Verma
module is not necessarily irreducible. It may contain null vectors n,
that is vectors of level N > 0 generating a submodule of their own

Jn=0, forn>0.

Such a Verma module is called degenerate. To get a irreducible mod-
ule we have to divide all nullvectors out. Let Ng) = span{n €
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Mpy | Jim = 0, n > 0} be the set of all submodules of the Verma
module Mp ;. Then we get an irreducible module Vg, by setting

Ver = Mpi/Nryi -

Each gj-module is a Virasoro module by the Sugawara construction

1
L = —_-—— a a
" 2(k+hY) 2 STt

l€Z,a

1
LO — —m Z (ng]g + Z ‘]gl‘]l(l-i-n) .
a I€eZ
Here hY is the dual Coxeter number. It depends on the structure
constants via h¥d,p = >, 4 f9°f5. The modes L, satisfy the relations
of the Virasoro algebra and couple to the modes J? of the current
algebra

[Lm7 Jg] = _n‘]gﬂ-n )
[Lon, L] = (m — 1) Ly +m(m? — 1)%5,%%,0 )
with
kdimg
Cp = )
LAY

The WZNW primary fields ®#(v|z), labelled by a zero mode rep-
resentation R and a vector v € R, are the fields transforming in a
particularly simple way under the current algebra.

[J2, R (v|2)] = 2"®R(JV|z) .

2. QUANTUM GROUPS

At an early point relations between conformal field theories and
quantum groups were observed by Alvarez-Gaumé, Goméz and Sierra
[1] as well as Moore and Seiberg [29, 30]. Subsequently these ob-
served correspondences were rigorously proven by Kazhdan and Lusztig
[19, 20, 21] and Finkelberg [10].

Quantum groups are generalisations or g-deformations of universal
enveloping algebras of Lie algebras appearing, among other places, in
soluble models of statistical physics and quantum field theory. Quan-
tum groups are a particular kind of Hopf algebras. They were popu-
larised by Drinfel’d in his report [6] to the International Congress of
Mathematicians in 1986.

A Hopf algebra H is a unital algebra with product m and unit
1 inducing a map n: C — A such that n(a) = al, together with
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additional linear maps A: A — A ® A, the coproduct, e: A — C, the
counit and S: H — H, called the antipode or coinverse satisfying the
equations

(A®id)o A = (id®A) o

(1.2) (e®id)o A =id = (d®€)oA

A(ab) = A(a)A(b) , A(l)=1®1,
1:3) (ab) = ca)elb) , e(1)=1,
(1.4) mo(S®id)joA=noe=mo (id®S)o A .

The first two equations make H a coalgebra. The following equa-
tions ensure the compatibility of algebra and coalgebra structure of H,
making H a bialgebra. The maps A and ¢ are algebra homomorphisms
and m and n are coalgebra homomorphisms. The last equation char-
acterising the antipode makes H a genuine Hopf algebra.

An element g of a Hopf algebra is called group-like if A(g) =g ® g.
A Hopf algebra that is also a *x-algebra is called a Hopf x-algebra.

It has been argued by Mack and Schomerus [25] that quantum
groups are a natural extension of the concept of symmetry in the set-
ting of quantum theory. Consider a quantum mechanical system with
Hamiltonian H whose Hilbert space of states H is generated from a
ground state |0) by field operators W!(r,t), with representation label
I. A Hopf algebra A with a conjugation operation *, unit element e,
coproduct A, counit € and antipode S is called a symmetry of this
system if ‘H carries a unitary representation U of A, the ground state
|0) is invariant, all representation operators U(¢) commute with the
Hamiltonian, and field operators transform covariantly. This means

that for all ¢ € A we should have
U(¢*) = U(9)"
U()]0) = 10)e(¢)

[U(¢)7 H] =0
U(@)¥] = D Wi (9, )U(6”) -

Here A(¢) = 3, (;51(,1) ® (;51(,2) is the coproduct in Sweedler notation
and TZ-I]- are matrix elements in a representation labelled by I.

3. THE CORRESPONDENCE

Kazhdan and Lusztig showed that the superselection structure of
WZNW models and the categories of finite dimensional representations
of corresponding quantum groups are isomorphic as braided monoidal
categories. The earliest observed example is that the SU(2)-WZNW
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model corresponds to the category of finite dimensional representa-
tions of Uysu(2) for ¢ = exp(2mi/(k + 2)) with the truncated tensor
product for rational k.

A braided monoidal category is a category € together with an as-
sociativity isomorphism

a: (VPeVHe VI ZVie (Ve V),

satisfying the pentagon relation

(V* Vi)V oV 2% (Vig (Ve V2) e V! —2s Vig (V3eV2) e V)
lcx a®idl
(V4 ® VS) ® (V2 ® Vl) o®id V4 ® (V3 ® (V2 ® Vl))

and a braiding isomorphism
B: VeV SVieV?,

satisfying the hexagon relation

Vie (Ve V) —2= (Ve V) e vi—- (Ve (V3 e V?))
lid@ﬁ ozl
Vig (Ve V) —= (Ve v eV 2% (Vg V) e V2

In the case of the Lie algebra sl(2) the pentagon relation is related
to the Biedenharn—Elliot equation.
The isomorphism of the superselection structure of a WZNW model
and the category of finite dimensional representations of the corre-
sponding quantum group is now expressible as follows. The 6j-symbols
correspond to the associativity isomorphism for the representations of
the quantum group. The fusing matrices correspond to the associativ-
ity isomorphism for the superselection structure of the WZNW model.
Since both categories are isomorphic the 6j-symbols and the fusing
matrices can only differ by a normalisation.

Vj3 yjz . . .

(1 5) jajs“dsin J I3 J2 Jul _ F. . [jg jg]
V]u V]S Ja J1 Js Juls L ja j1
Jajg1” juja

What to expect in a broader setting is not so clear. There are a
few examples, among them the following.
In the generalised setting of the Liouville model, a non-rational confor-
mal field theory, Ponsot and Teschner found in [34] that the model’s
superselection structure corresponds to a category of infinite dimen-
sional representations of the non-compact quantum group U,sl(2, R).
The point of interest of this work is an observation of Feigin and Ma-
likov [8]. On basis of the fusion rules they conjectured a correspondence
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of the SL(2)-WZNW model at rational & and a category of representa-
tions for the super quantum group U,sl(2) x U osp(1|2).

4. THIS WORK

We introduce a novel method to determine 6;j-symbols of quantum
groups inspired by the determination of fusing matrices of WZNW
models in the bootstrap approach to conformal field theory.

We represent the 6j-symbols as a recurrence relation and a set of
initial values, the fundamental 67-symbols. We find a representation
of the quantum group in terms of multiplication operators T, = ¢%
and difference operators [d, + a] acting on functions of a variable z,
where d, is the “power counting” operator x0,. In a quantum group
the symbol [n] denotes the quantum number or g-number

n —1
4 —q
n] = ———=.
qa—4q
In a super quantum group it represents the super quantum number

5 — (=1)"g2
(ny = LU
q 2 +q
The invariants of the four-fold tensor product, the four-point invari-
ants are intertwined by the 6j-symbols. We find a subset of invariants,
intertwined by the fundamental 6j-symbols. In the considered repre-
sentation the Casimir operator takes the form of a difference equation
on the invariants.
In conformal field theory degenerate fields provide additional differ-
ential equations correlation functions containing these fields have to
suffice. We observe that the fundamental representations’ play a simi-
lar role for the quantum groups.
An ansatz for the invariants of this subset, motivated by this observa-
tion and properties of the hypergeometric series, finally yields a system
of linear equations that determines the fundamental 6j-symbols.

The great advantage of the proposed method is that it is easily
adapted when one deals with super quantum groups. The determina-
tion of the 6j-symbols of the super quantum group U,o0sp(1]2) bears
a striking similarity to the analogue determination for the quantum
group U,s1(2).

The proposed method is important for the study of non-rational
conformal field theories because it states results of rational conformal

"The fundamental representation is the representation out of which by repeated
tensor product all other representations can be generated.
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field theory in a way that is generalisable to the non-rational case.
In the same vein the proposed method would open an approach to-
wards a version of the Kazhdan—Lusztig correspondence for generalised

WZNW models.

A direct result is a different version of the sl1(2)-case of the Kazhdan—
Lusztig correspondence. In the recursive presentation the proportion-
ality (1.5) between the 6j-symbols and the fusing matrices becomes the
proportionality of the fundamental 6j-symbols and fusing matrices

l/j:?’» l/jF ' . P
(16) ;4]5 j];h {j?) ] ju} _ Fjujs []3 ]"Fi|

Viae I I o
together with the equivalence of the corresponding recurrence relations.
The representation with label j¥ is the fundamental representation.
This simplifies for example the calculatory effort needed to test for a

proposed equality of a given WZNW model and a given quantum group.

As an application to these ideas, it would be possible to investigate
the above mentioned conjecture by Feigin and Malikov [8]. Teschner

determined the fundamental fusing matrices for a é\l(Z)k current alge-
bra in the context of the non-compact SL(2, C)/SU(2)-WZNW model.

In the following we will determine the fundamental 6j-symbols of
the quantum group U,sl(2) and of the super quantum group U,osp(1|2).

In chapter 2 we introduce the SL(2)-WZNW model. In chapter 3 we
determine the fundamental 6j-symbols of the quantum group U,sl(2).
A rather strikingly similar deduction in chapter 4 will yield the funda-
mental 6j-symbols of the super quantum group U,osp(1|2). We discuss
our findings in chapter 5 and finish with an outlook. Appendix A con-
tains a short introduction on quantum numbers and quantum calculus.
It introduces the basic hypergeometric series and the Clebsch—Gordan
coefficients of the quantum group U,sl(2). Super vector spaces and
super algebra are quickly reviewed in appendix B. Furthermore there
we introduce super quantum numbers, the super basic hypergeomet-
ric series and the Clebsch—Gordan coefficients of the quantum group

U,0sp(1]2).






CHAPTER, 2
THE SL(2)-WZNW MODEL

In this chapter we present the method to derive fusing matrices
based on the approach of Belavin, Polyakov and Zamolodchikov and
the approach of Moore and Seiberg.

The four-point functions of a WZNW-model fulfil the Knizhnik—Za-

molodchikov equations. These equations were introduced by Knizhnik
and Zamolodchikov in [23].
Four-point functions containing a degenerate field satisfy yet a further
differential equation. The additional differential equation for the de-
generate field at j = jo; = 1/2 was determined and solved by Fateev
and Zamolodchikov in [7]. Teschner determined and solved the differ-
ential equation for the degenerate field at j = j1 o = —t/2.

The correlation functions fulfil the Knizhnik—Zamilodchikov equa-

tion. A correlation function containing a degenerate field satisfies an
additional differential equation. We consider the degenerate fields ®9;
of spin 1/2 and ®45 of spin —¢/2.
Correlation functions containing one of these fields are then of the form
of a hypergeometric series 5 Fin the case of the degenerate field ®,; and
of a generalised hypergeometric series F; of two variables in the case
of the degenerate field ®5.

The fusing matrices transform between different decompositions of
the four-point function. They fulfil a recurrence relation. The initial
values of this relation are the fundamental fusing matrices.

The fusing matrices linearly connect the conformal blocks in the s-

channel decomposition with those in the u-channel decomposition. They
fulfil a recurrence relation. The initial values of this recurrence relation

are just the reduced fusing matrices connecting the reduced conformal

blocks.

The connection coefficients for the different hypergeometric functions

are well known. The identification of the reduced conformal blocks with

certain hypergeometric functions thus determines the reduced fusing

matrices. The recurrence relation determines the full fusing matrices.

Thus the fusing matrices are determined.

15
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The SL(2)-WZNW model is a WZNW model with current algebra

sl(2);. We call this model “SL(2)-model” because we do not want
to choose a x-structure, because it is not used in the derivation of
the fusing matrices. The derivation is in terms of the current algebra
only. Specific instances of the SL-WZNW model are the SU(2)-WZNW
model and the SL(2, C)/SU(2)-WZNW model, also known as the H;-
model.

The SL(2)-model is a generalised WZNW model in two respects. Firstly
the target space SL(2) is non-compact. Secondly the admissible repre-
sentations when £ is not an integer are non-unitary.

The model’s chiral current algebra is generated by J%(z), a =
+,0, — with modes

JUz) = Z znoh e

neZ
subject to the relations
k
[‘]7917 ‘]2] = _§m5m+n,0
[T I =200+ kmbpino -

The zero mode algebra is realised as differential operators D¢, where
D = 220, +225, D°=20,—7, D, =0,.
The primary fields ®7(x|z) are defined by the action of the currents

on them. The currents act on the primary fields as

1
zZ—w

J(2)® (2, w) = DD (x,w) + - .

The primary fields ®/ have a conformal weight

4D

Chiral descendant fields are defined for each monomial J%, ---J%  as
the normal ordered product

l

H (# . (8?1_1J“l) L. (8?1—1Ja1) @j(:p|z) .-

pal n; — 1)'

We are interested in the case of ¢t = k 4 2 non-integer. Feigin, Fuks
and Malikov [9] showed that in this case, degenerate fields appear for
spin j = j,s with

2+ 1l=(r—1)—(s=1)t, (r,s)>(1
2, Fl==(r=1)+(s=1)t, (rs)=>

7())7
(1,1) .
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Different approaches have been used to solve the SL(2)-model. The
case of rational ¢ is the one considered by Feigin and Malikov [8]. In his
analysis of the H3 or SL(2,C)/SU(2) model Teschner [38, 39| used
the bootstrap approach of Belavin, Polyakov and Zamolodchikov we
will present in the following. See also Petersen, Rasmussen and Yu
(32, 33| for a different approach.

The fusing matrices transform between different decompositions of
the four-point function. They fulfil a recurrence relation. The initial
values of this relation are the fundamental fusing matrices.
Independent of this the four-point functions fulfil the Knizhnik—Zamo-
lodchikov equations. These equations were introduced by Knizhnik and
Zamolodchikov in [23].

Four-point functions containing a degenerate field satisfy yet a further
differential equation. The additional differential equation for the de-
generate field at j = jo; = 1/2 was determined and solved by Fateev
and Zamolodchikov in [7]. Teschner determined and solved the differ-
ential equation for the degenerate field at j = j; o = —t/2.

The following derivation of the differential equations for the four-point
functions and of the fundamental fusing matrices in terms of vertex
operators is given by Kanie and Tsuchiya in [17] in great detail.

1. CONFORMAL BLOCKS

Four-point functions of primary fields ®’(x|z) depend on two con-
tinuous variables. The variable = encodes the data of the Kac-Moody
zero-mode representation. The Kac-Moody algebra sl(2); contains
s1(2) as a subalgebra. The sl(2)-invariance determines the z-dependence
of the three-point function uniquely. The four-point function is deter-
mined only up to a dependency on the cross-ratio!

L4123

B Ty3To1
The two ways to decompose the correlation function into three-point
functions are called s- and u-channel decomposition. Denote the four-
point function of primary fields by

<(I>j4 (l‘4, 24)(I)j3 (ZL‘g, 213)(I>j2 (I‘Q, Zg)q)jl (ZL‘l, 21)> = G(J|X|Z) s

where the uppercase letters J, X and Z collect the four-tuples of cor-
responding lowercase variables. The first way is to insert the operator
product expansion for ®/4®’s and determine the resulting three-point
functions,

G(JIX|2) :/ Cj1, o o) Css dsr j) FO(I|1X ) 2)
Js

INote the difference in the indices with respect to the cross-ratio of the z;.
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the second is to insert the operator product expansion for ®/3®72 and
determine the three-point functions resulting from this insertion

G(J|X|Z) = / Cis, s, 1u)C i, jur ) FO(T1X]2)
Ju

Here the uppercase letters denote the four-tuples of corresponding vari-
ables, for example X = (x4, 23, 29, z1). The functions ) and F™ are
called the s-channel and the u-channel conformal blocks.

An explicit form of the conformal blocks, which is especially handy
in the following is

358 2ja Ja3  di*?
(4) _ Ty3 Ty Ty1 Tgp ()
FO(IIX|7) = SETR LI g0 )
2437”42 241 *31

The symbols j% and j1? are defined by the sums j, + j, — jo — jq and
J1 + j2 + js — ja respectively. The symbols h% and hj** are defined

analogously. Furthermore we introduce the label & for the sum ;1.
The Knizhnik—Zamolodchikov equation. An additional con-
straint on the correlation functions of a WZNW model is the Knizhnik—
Zamolodchikov equation. On a four-point function G(J|X|Z) of pri-
mary fields the Knizhnik—Zamolodchikov equations take the form

4

t0.,G(J|X|Z) =) %’fsz(J\XM) .
k=1 "
ki

The differential operators 3, are
0 0 1 - -

In the limit of (x4, 23, 9, x1) — (00, x,0, 1) the equation for z; reduces
to

(tazQ— r__¢ )f}j)(ﬂx\z)zo,

g2 — X1 R2 T X3
with the second order differential operators
P=2%(1—-2)0 + ((k — 1)2? — 2j1x — 2jo2(1 — x))Dy — 2jokx + 2172
Q=(1—-2)2202+ (—(k = 1)(1 —2)* + 2j3(1 — x) — 2jox(1 — x))0,
— 2jak(1 — x) + 2j372 -
When we further let (24, 23, 22, 21) — (00, 1, 2,0) we arrive at
(2.1)
(—tz(z—=1)0. +z(1 —z)(z — )9+
+ (1= &) (2 — 22z 4+ 2%) + 2j12(1 — 2) + 2jox(1 — x) + 2j32(1 — 7)) Op+
+ 2jor(x — 2) + 2j1j2(2 — 1) + 2j3j2z).7:](j)(J\x]z) =0
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A recursive solution to this equation is found by using the ansatz

(2.2) f](f)(ﬂx\z) =2 Zz”‘llgs")(ﬂx) :

n=0
For n = 0 this equation reduces to a hypergeometric differential equa-
tion (P — tA\) ¥ =0

(x(l )P+ (1 —2)2a + (5 — D — 21 — 2ja(1 — 2)) &,

Yalk—1)— 2j2/{>\11go)’j(<]|x) ~0,

1
2

provided a = § + ji +j2 = ((5 + j1 +J2)* — 25142 — tA)* = jua(4) + 10,
n =0.

The u-channel decomposition of the four point function gives a reduced
Knizhnik—Zamolodchikov equation equal to (2.1) with x and (1 —x), z

and (1 — 2) as well as j; and j3 exchanged. Using the same recursive
ansatz for n = 0 we get (Q — t)\)\Ifg»Z’O) = 0. We denote the u-channel

conformal blocks by f](:)(J|x|z)

Degenerate fields. Correlation functions including a degenerate
field satisfy an additional differential equation. The degenerate fields
we need in order to determine the fundamental fusing matrices are the
degenerate primary fields ®5; and &5 with spin equal to jo; = % and
Ji2 = —% respectively.

The degenerate field ®91. The case of the field $5; transforming in
the spin 1/2 representation has been among the first degenerate fields

for the algebra sl(2); to be studied [7]. We will give a overview of the
derivation of the conformal block in order to emphasise the approach
we want to reuse in the quantum group case. The field ®5; obeys the
following equation

aiq)21<l’|2) =0.
This means that conformal block containing the degenerate field with
spin jo 1 satisfy the further equation

2FD =0,
For definiteness we set the second spin j, = 1/2. The intermediate spins
appearing in the s-channel decomposition are j; +1/2 and j; —1/2. We
call these j1 and j; respectively. The intermediate spins appearing in
the u-channel decomposition are j* = j3 + 1/2. Naturally the ansatz
for the conformal blocks with such a degenerate field is F(J|z|z) =

Fy(J|2) +xF1(J|z). Because of the form (2.2) of the conformal blocks,
the conformal blocks with jo = 1/2 can be expressed as

(2.3) F2(J|2l2) = (a3 +bfw) RO(J]2) .
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The term R is proportional to Fy and Fj. A set of solutions is given
by Teschner in terms of the hypergeometric series

(a), (b)
Filabez) =Y ~onilnn
2 1(0,, ;G Z) o (C)n n' <
The symbol (a),, is the shifted factorial and defined as
r
(@), =ala+D)(a+2)-(atn—1)= %

The connection between the different values of the hypergeometric
function are well know and determine the fundamental fusing matrices.
Teschner [38] gives the formulae

(2.4)
£ _ Fw)(w—u—-2) @ Twl(ut+tv—-—w+1)

i T(w—u)(w—wv)" il [(u+ 1) (v) Ju

o Td-—wlw—u—v) o Tl-wl(u+tv+w+1)
Fir = (—u)[(1 —v) g r(u—w+1)r(v—w+1)FjJ ‘

The coefficients are
u= b +3/2) -1, wv=-b%7, w=-b2j5+1).

The degenerate field ®15. The determination of the conformal blocks
with one degenerate field ®15 with spin —t/2 follows the same structure.
The field @15 follows the equation of motion given by

(T (2]2)02 = 2(1 + 1) J(2]2)0p — t(L 4+ 1) T (2]2)) P12(z|2) =0,

with J%(z|2) = e®%0 J%(2)e~2’0 . This determines? a third order differ-
ential equation satisfied by the conformal blocks containing a degener-
ate field of spin j; 2. It is of the form

0= (z(x—1)(z—2)0i+
—((k = 2)(2® = 2z + 2) + 2j12(2 — 1) = 2(1 + t)z(x — 1) + 2jsa(x — 1))0*+
-2 +t)(nz—1)+jsz—(k—1)(z—a)) =t +t)(x+ 2+ 1))+
—t(1+4 t)n)f](j)(ﬂx\z)

This can be brought to the form satisfied by the generalised hyperge-
ometric series of Appell®

Fl(aa b17b1;c;x7 Z) = Z

m,n>0

(@ () (), o,
(€) iy M0 '

It can be shown that for non-integer values of 2j; — ¢ and ¢ there exist
three linearly independent conformal blocks f}j) of intermediate spin

2Details can be found in [38].
3Detail can be found in Slater’s monograph [37].
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Js in the s-channel that can be identified with a generalised hypergeo-
metric function F;. The three possible spins are

Jji=h—5, Jjs=n+tgand ji=—j—1+73.

From the connection coefficients of F; Teschner determined the fol-
lowing relations between the s-channel and the u-channel conformal
blocks

(2.5)
12 PI(y=0—-0"—a) 42 TO)I(a+p —7) 12
T —ar -5 " T T Tare)
n Py —a—3Na+ 45 — 7)]_-1,2
L(a)L'(y — a)T(B) e
FL2 P2+8-—l'y-pB-0"- a)ftlf

5T r1-p0)ra-aoa
mipg L2+B8—y(a+8 —7) 1,2
TA+8+8 -1 —v+a)" "
+ i san LEHB =T —a =BT+ 5+ 5~ )
1=+ p+p —7L(B)
Fl2 _ F(’Y - 5) F(2 - ’Y)F(’Y —-p-p - a) Fl.2
°TA-g\ T(y-B-p)T1L-a) ~
_ eﬂ'i'yF(Q — V)F(a + ﬁl B ’Y)
F(l+a—-7I(3)
+ eﬂ'z'y efrz(ﬁ-i—ﬁ —v) sin ™ Sinﬂ-(’y B a) F(2 - V)F(a + ﬁ + ﬁ/ - ’7) ]_-1,2
sintf  sinw(y—a—3) FAOT(A+a+p —v) ~ ™

+ e

1,2
fto

1,2
Fi

The arguments expressed in spins j; are
a=jy—J1—J3s+t/2 p=t
B =t/2—j1—js—ja—1 y=t—25.

2. FUSING MATRICES

Crossing symmetry states that the two decompositions of the four-
point function are in fact equal. In other words, the two decompositions
correspond to different bases in the space of conformal blocks. The
fusion matrices relate the two bases linearly.

FOUIXI2) = [ dulFs. [ 5] 720 01X12).

For the conformal blocks with degenerate representations of spin 1/2
or —t/2 this linear relation becomes a sum of finitely many terms

]umax
VIX|Z)= Y Fu 2R FVIIX]2) .

ju j'u, min
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The recurrence relation. Moore and Seiberg derive a polynomial
relation for the fusing matrices*

D Fuos [ o) Fouli 81 For [[1] = Four [4 8] Fou [5 5] -

They also show that the fusing matrices are symmetric under the fol-
lowing permutation of indices

Fpq H ﬂ = Fpg [; llc] = Fpg Hc”
and have the following orthogonality property

ZFM H ﬂ Fpq [iﬂ =0pq -
q

From this it is possible to derive a recurrence relation for the fusing
matrices.

The fundamental fusing matrices for conformal blocks with one de-
generate field are identified with the connection coefficients of the hy-
pergeometric functions oF} and F as already done in (2.4) and (2.5).

4The polynomial relation was first noted in [28]. More detail can be found in
[30].



CHAPTER 3
THE QUANTUM GROUP U,sl(2)

In this chapter we determine the 6j-symbols of the quantum group
U,s1(2). We do this by the method introduced in the preceding chapter.

We represent the generators of U, as difference operators. The

invariant tensors play an analogue role to the correlation functions in
the WZNW-model. The Casimir operator induces a difference equation
all invariant tensors satisfy. This fixes the the four-point invariants to
a g-hypergeometric form.
We set the representation label j, to the fundamental representation
1/2. This further restricts the fundamental four-point functions to a
form from which it is possible to deduce a system of linear equations
that determine the fundamental 6j-symbols connecting the s-channel
decomposition and the u-channel decomposition.

The quantum group U,sl(2) is the Hopf algebra generated by the
elements F, F, K and K~! and the relations

B K2 _ K72
(3.1) KEK™' =¢FE [EB,F] = e
KFK'=¢'F KK'=K'K=1.

When there is little cause for confusion, we will write U, for short. The
coproduct A : U, — U, ® U, is given by
AE)=E@K+K'®F
AF)=FK+K'®F
AK)=K® K
AKY=K'eoK!'.

(3.2)

Counit € : U, — C and antipode S : U, — U, are
(3.3) f(K)=e¢(K ) =1 eE)=¢(F)=0
and

(3.4)

23
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The quantum Casimir operator is the element
qK2+q_1K_2—2 q_1K2+qK_2—2
12 =EF — 12
(¢—a™) (¢—aq)
When ¢ is not a root of unity, the quantum Casimir operator gen-
erates the centre Z, of U,,.

C,=FE -

1. FINITE DIMENSIONAL REPRESENTATIONS

A representation (m, V') of the quantum group U, is a linear space
V' together with a linear map 7 : U, — End (V) such that 7(XY) =
7(X)n(Y) for all X, Y € U,.
Let (m,V) be a representation of U,. For every complex number A
define V) :={v eV | n(K)v = Mv}. We call every nontrivial V) the
weight space corresponding to the weight A. Nonzero vectors in V), are
called weight vectors or vector of weight \'. A vector v € V is called a
vector of highest weight X' if 7(E)v = 0 and 7(K)v = Nv. In this case
N is called the highest weight of the representation (m, V).
If V is the direct sum of weight spaces of 7, we call (m, V) a weight
representation.

The value of the parameter ¢ divides the representation theory of
the quantum group U,sl(2) into two cases.

Generic q. If ¢ is not a root of unity, the representation theory
proceeds along the same paths as for the undeformed sl(2). The fi-
nite dimensional irreducible representations?, the spin representations
of U,s1(2) are labelled by a positive half integer spin j. It can be shown?
that every finite dimensional representation of ¢,s1(2) is a weight repre-
sentation and that every finite dimensional representation 7 of U,sl(2)
is completely reducible, i.e., 7 is a direct sum of irreducible represen-
tations.

For generic ¢ the center of U, is generated by unit and Casimir
operator C, alone.

Rational q. When ¢ is a root of unity, the center as well as the
classes of representations extend. Let

g =1.

In the following vectors of weight A will be called eigenvectors of 7m(K) with
eigenvalue A too. In addition whenever A = ¢™ we will call m weight or eigenvalue
too.

2To be precise, the representations corresponding to representations of sl(2)
depend on the spin j and a parameter w such that w? = 1. We will omit this
parameter.

3see for example the books by Kassel [18] or Klimyk and Schmiidgen [22].
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Then the generators E", F™ and K" are elements of the center as well.
In the class of irreducible representations cyclic and semi-cyclic rep-
resentations appear®. These are representations with neither highest
nor lowest weights and only highest or lowest weights respectively. A
vastly complicating factor is that the tensor product of irreducible rep-
resentations is not necessarily decomposable for rational ¢q. A miti-
gating circumstance is that these unwieldy representations occur for
spin 27 + 1 = n only. Below this bound the representation theory is
basically as for generic ¢q. The set of spin representations, semi-cyclic
and indecomposable representations form a closed set under the tensor
product®. Indecomposable representations appear® in the tensor prod-
uct of the representations j; and js if 71 4+ jo > n.

We will confine ourselves to generic ¢ in the following.

There are two realisations of finite dimensional representations of
highest weight of U, we will be considering in the following. We call
these the m- and the z-representation. Since we are interested espe-
cially in quantum Clebsch—Gordan coefficients and 37 symbols of these,
we will need the dual of each representations too.

The m-representation. Consider the irreducible representation
(V4, 7,) of highest weight ¢/ for j € 1IN on the vector space V7. There
is a basis

{e } m=—3,—7+1,. ..,j}
on which the generators E' and I’ act as raising and lowering operators
X*, destroying the vector of highest weight ej- and of lowest weight

i .
e_; respectively

(3.5a) 7rm(XjE)e%I = Ci(j, m)ef;Ijtl , wm(K)eJ =q" em ,
(3.5b) Tm(XT)e] = m(X7)e! ;=0 .

In the physics literature is conventional to choose a basis {f/ | m =
—j,—j+1,...,7} such that

C*(j,m) = F([j Fmllj £ m + 1))

holds. Most results on quantum Clebsch—Gordan coefficients and quan-
tum 35 symbols are stated with respect to this basis. We will however
choose a basis {e/, | m = —j,—j+1,...,j} such that

(3.5¢) C*(j,m) = Flj Fm] .

4Arnaudon [2] gives a good classification.
Ssee Arnaudon [2].
6as demonstrated by Pasquier and Saleur in [31].
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The basis {f/ } and the renormalised basis {e/ } are connected through
a rescaling by

[j +m]![j —m]!
[25]!

We will call the basis {e/,} the m-basis and the U, representation m,,
on it the m-representation in the following.

(3.6) e, =N(,m)2 £, N(j,m)=

The quantum Casimir is identically [j + %] ? on this representation.
The transposed m-representation. The space dual to V7 is the space
(V7)* of complex valued functions on V7. It admits a basis

{e ‘ m=—73,—75+1,. ..,j}
such that
& (€)= 6mn -
The basis {&/ } is called the basis dual to the basis {e/ }. The bilinear

form

(3.7) (e] e’ ) = éZn(eZl) = O -

m’ m

induces the structure of a right U;-module on (V9)*, that is wf, : U, —
End((V7)*) is an antihomomorphism of algebras, inverting the sequence
of all factors in products. We have

(3.8a) rt (X%l =C*(j,m F1)é €.=1 5 r (K)el =qmel |
(3.8b) m (X, =7l (X7)el =0.

and
an(cq) = [] + %}2

Invariant bilinear form. The invariant bilinear form B, is the
bilinear form on V7 invariant under U,. Let v be a vector in V7 @ V7.
The invariance under U, then means

By (A(K)v) = By (v) ,
B,(A(a)v) =0, fora=E F.

Extend B, to all finite dimensional /,-modules such that different mod-
ules are orthogonal. We have then, up to a js-dependent normalisation

Bq (eng ® eg‘él) = 5j2,j15m2+m1,0<_1>j2+m2qj2+m2N<.j27 m2) .

The factor N is the same as the renormalisation in (3.6). We compress
the coeflicients of the invariant bilinear form into

(3.9) N(j,m) = (=1)/T"¢ "N (j,m) .
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Decomposition of tensor products. The Clebsch-Gordan quan-
tum coefficients intertwine tensor products of irreducible representa-
tions and irreducible representations of U,.

310 i)=Y ]

m

J2 N
mo My

} e ®e .
mi,ma2 q
The Clebsch—Gordan quantum coefficients are equal to zero unless sev-
eral constraints are met.
j1 —Jo| <J <1+ Jo
(3.11) m=mi+ my
—Ji <m; < Ji -

We call the first two horizontal constraints and the remaining the verti-
cal constraints. The Clebsch—Gordan-coefficients satisfy the recurrence
relations

Ci(]’m) [m‘zﬂ:l ’ 7%22 7‘2.7“11}11 =
A (Gma F ) [l 2], 0™ CE Grm T [ 2 0],
By these relations the Clebsch—Gordan coefficients are only determined
up to a function of the representation labels j;. We choose a normali-

sation for the Clebsch—Gordan coefficients that will ease computations
later. We set

(3.12) [ _jj.

2 jl.] =1.
= —]1q

This normalisation differs from the Condon—Shortley convention.

The Clebsch—Gordan coefficients fulfil the following orthogonality
and completeness relations.

Z [J’ J2 j1] [j,/
(3.13a) My ] Lm

my,m2

_j;)Q _jT-;/llj|qN<j27m2>N<.jl7ml>

= 5j,j/5m+m/,05<j1,jQ,j)N<j, m)
Z J|J2 5 J | J2 5N o
A m |my my —m |mh m]
7,m q q
(3.13b) y N(127m2)N(j2,”j§)N(J17ml)N(ﬁ’mi)

NGom)
- m2+m’2,05m1+m’1,0N(j27mZ)N(jlaml)

This can be seen as follows. The Clebsch—Gordan coeflicients have
inverses

. . . t
j i J|1J2 N I
8722 ® e77%1 o Z |:m ™o m1:|qem<.]17.]2) :

j7m
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With these the Clebsch—Gordan coefficients satisfy a further set of re-
lations

J2 }/\7( )

Z FRF R
m|mz M| —m/ ma mi

= 0,j'Omtm, 0/\7( m)
qt

(7|72 5
Z m |me M { ‘—mg —ml} (42, = N (G, —m1)
jm b -
= 6m2+m’2,06m1+m’1,0N(j27 _mQ)N(jh - )
Z J | J2 n J J2
m |mg mi| |m —mb fml

Jjm -

= 6m2+m/2,06m1 +m/1,0N(j2_7 mQ)N(jhml)

Comparing coefficients we see that

(3.14) {j J2 jl]t _ {_m '_mQ J1 L-/\_f(bamz)J\_/’(jl,mﬁ.

m|my my] —my ./\_f(j,m)

From this it is possible to derive the orthogonality and completeness
relations.

Invariants. Invariants in the n-fold tensor product can be con-
structed using Clebsch-Gordan decomposition in the (n — 1)-fold ten-
sor product together with an invariant in the two-fold tensor product.
This invariant in the two-fold tensor product is the invariant bilinear
form B,. It is connected to certain Clebsch-Gordan coefficients. On
the module V72 ® V7' we have

s (i Y _[o]i i
T\ me my '_Omzmlq

In our normalisation the invariant 2-form is

J2 J , o ‘ _2
Ba (mz m1> = 0o g Omatma 0 (—1)72 T2 722N (o, ma) 2

For sl(2) the invariant of the three-fold tensor product is known
as the Wigner 35 symbol. The 3j5 symbols are defined by lowering
one index in the Clebsch—Gordan coefficients by means of the invariant
2-form

J3J2 o J3 J J1J2 N
(3.15) (mg mo ml)q T Z By (mg m) [m me m1L

m=—j
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J3

ms mo my

FIGURE 2: Wigner 35 symbol, invariant bilinear form and Clebsch—
Gordan coefficient

The z-representation. The second realisation of 7/ needed in out
construction is “dual” to the m-basis in a different sense. Consider the
generating polynomial” in the indeterminate ="' for the m-basis

(3.16) e (z) = Z‘x’j’me{n .

m=—j

Let Poly;j(z™') be the linear space of polynomials in the indeterminate
271 of degree 2j. Via the generating polynomial our choice of C* then
induces for every j € %N from the m-representation a right i,-module
structure on Poly;(z7"). The elements of U, act as finite difference
operators T and [d, + a] where T = T, = ¢*% € End(Poly;(z)) and
x0, = d, such that

aT _,,—aT—1
Tf(x)= f(qr) and [d$+a]:%.

T (K) = q_j T;1 )
(3.17) T(E) = = [da + 2j] 7,

T (F) = — [dy] !t
and

T (C)=—[i+1]" .

We call this the z-representation.

"Note that in a coordinate z such that z = e%* this equivalent to the Fourier
series. The inverse transformation is

el = %dm xItmled (z)
0
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The transposed x-representation. The space Poly;(x) of polynomi-
als in the indeterminate x is dual to Poly;j(z~!) via the bilinear form

(-,+), : Polyj(z) x Poly;(x™1)

(¢,p), = fgd;x q(z)p(z) .

Note that this bilinear form is just the residue of ¢p at x = 0. The
basis {2/ | m = —j,—j+1,..., 7} is the basis dual to {x™/~™} with
respect to this pairing.

We find a left U;-module structure on Poly;(z). U, acts in the
transposed of the z-representation.

m(K)=q7 T, ,
(3.18) T (E) = x[d, — 2j] |
Wi(F) = x_l [dm]

and
. 2
T, (Cy) = — [] + %}
This is the transposed x-representation and concludes the series of re-
alisations we will need in the following.

Clebsch—Gordan coefficients and 3j-symbols in the = basis.
Analogously to the generating function of (3.16) we introduce quantum
3j symbols and Clebsch—Gordan coefficients in the x variable by de-
manding that every x; appearing in such an expression should indicate
a generating function of said expression in terms of the corresponding
m;. Consider the following example.

. . . J3 . . .
J3J2 n - E l,j3+m3 J3 J2 N
xr3 Mz My ) 3 msg Mo My

q m3=—j3 q

Clebsch—Gordan coefficients in the x basis intertwine tensor product
and irreducible representations in the = basis by

d.TQ d.ﬁlfl
.727.717 T

Limits in x. We regard the indeterminate x as a point in the
complex projective plane PC. The points 0 and oo then have a spe-
cial meaning for polynomials in . They single out the coefficients of
the lowest, respectively highest power of x. Concretely, for f/(z) =

72 jl} e’ (1y) ® e (1) .
T2 I q

fn:_ i frn@*™ we have
hn% fz)=f,
lim =% fi(z) = f; .

r—00
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From this we see, that the endomorphism ¢~/ T, representing K has
the following effect in these limits

=Jf .
R () - 1
¢ f; for v — o0 .

2. INVARIANT TENSORS

Invariant tensors will be our key ingredient to the determination of
the fundamental quantum 6j-symbols. An invariant tensor ¢ of U, is
an element of @), Vi invariant under the action of ¢,. That is to say
the relations

(3.19) Kt=t and Et=Ft=0
hold. Invariant three-tensors and quantum 3;j symbols® are in one-to-

one COI"I"GSpOHdeIlCG.

Four-point invariants. An invariant tensor ¥ € V1 @V73V72®
V71 will be called a four-point invariant. Graphically we can depict it
as in figure 3.

Ty Tz T2 I1
FIGURE 3: A four-point invariant

To shorten expressions in the four-fold tensor product, we introduce
the notation J = (ja, js, jo, 1) and X = (x4, 23, X9, x1). Thus we write
for a function f in the four-fold tensor product

_ o fJe T3 J2 N
s =g (2B

We can compose such an invariant using only the structures we al-
ready have at hand: the Clebsch—Gordan coefficients and the quantum
3j-symbols.

U(J|X) = Z v(1X)

8and thus quantum Clebsch—Gordan coefficients
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where

Js . . . . .
(s) _ Ja I3 s Js | J2
(3.20) U (J]1X) = ZA (m . ms)qlms -
ms=—7s
This construction is depicted in figure 4.
: Z (?X
Js

Ty T3z T2 Tq Ty T3 X9 il

j1:|
I q

FIGURE 4: Decomposition of a four-point invariant — the s-channel

There is another way to arrive at a four-point invariant using Clebsch—

Gordan coefficients and quantum 3j-symbols, namely

Ju . . . - ; )
(w) . Ja J1 Ju Ju | J3 J2
(321)  WPUIX)= ) <x4 T mu) [mu 3 ‘”2] .
mu:_ju a !
-y |
Ju
Ty Tz Ty Ty Taly T2

F1GURE 5: The u-channel decomposition

We refer to these two different decompositions as s- and u-channel.
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3. QUANTUM 67-SYMBOLS

The quantum 6j-symbols communicate the basis change between
different reduced bases €/ (js, j12) and € (j1, ja3) of triple tensor prod-
ucts VIt @ V72 @ Vs of U, modules.

el it = 42 23 i ()
. S q

Js

N

&t (s s (o 1)) = > {‘7-3 12 ‘7-3} &t (Guljas o) s 1) -
o Ja g Ju),

Thus they allow for the expression of the u-channel decomposition of

the four-point invariant in terms of the s-channel decomposition and

vice versa. When we express a vector of the reduced basis as string

diagramme we get the graphical representation of the action of the 6;-

symbols in figure 6.

_ Z {jz Js ju}
m I Ty
J1 J3 J1

FIGURE 6: Connecting reduced bases in the triple tensor product

Consider the representation of the 6j-symbols in terms of Clebsch—
Gordan coefficients

J2J3 Jul _ Z Ja | Ju N Ju | J3  J2 o
JvoJa Js), Mi23 Moz My| |Mag |Mm3 mo
m3,m2,mi q q
. ) Cqt . , -
% Js J2 N J4 J3 Js
miz |2 i, | Mz M3 Maz] ’
J2 13 Ju _ Z J4 J3 Js Js J2 J1 %
J1 g4 Js q mi23 M3 MM12 miz2 My My
m3,m2,mi q q
. ) ot , , ot
% Ju J3 J2 Ja Ju J1
Moz | M3 Mma2] | Mz [Mez M|, ’

where mis = myi+mes, Moz = mo+mg and misz = my+mo+mg. Using
the proportionality (3.14) between the Clebsch—Gordan coefficients and
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their transposes we quickly see that the 6j-symbols fulfil the following
orthogonality relations

Jo J3 Ju J2 J3 Ju —5
(3.222) Z{ﬁ Ji js}q{jl Ji j;}q i

Ju

g2 Js Jul Ji2 Js dul _ 5
(3.22b) Z{]l j4 js}q{jl j4 js}q JusJu *

js
Given a triple (7, 72,71) we call the inequalities |jo — ji| < 7 <
J2 + j1 the triangle condition. From the representation in terms of
Clebsch—Gordan coefficients we additionally draw, that the 6j-symbols
vanish whenever one of the triples (ja, ju, 71); (Ju,J3,J2), (J2, 72, 1) and
(J4, 73, js) does not satisfy the triangle condition.

Recurrence relations for the quantum 6j-symbols. We con-
sider the four-fold tensor product V¢ ® V¢ ® VP ® V. Let e denote
the spin of the reduced basis. The pentagon relation for U, encodes
the way the different bases of the four-fold tensor product correspond
to each other. We have

FIGURE 7: Pentagon relations

d ¢ h b fl c d f d g h d c g
{e f j}q{e a i}q_;{h a g}q{e a i}q{i b j}q'

With the help of the orthogonality relation (3.22a) we get an equality
with only one 6j-symbol on the left-hand side.

b fl d ¢ h c b f d g h d c g
{e a i}q_zh{e f j}q{h a g}q{e a i}q{i b j}q'
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—

We specialise this equation. We set d = % and c=j — 3.

A R NV E A OE I R R A UAE
eazquhequhagqeazqzqu

The triangle condition constrains A and g by |7 — 1| < g,h < j and
}g — %} < h<g+ % This means we have an expression for the 6;-

(SIS

symbol { é Z { } in terms of one 6j-symbol with j—1/2 and fundamental
67-symbols with one spin equal to 1/2

J b fl _ - j—3 b f
(3.23) {e a i}q—%S(a,b,f,z,],h,g){ h2 a g}q.

Action on the four-point invariants. From the definition of
the invariant tensors as product of Clebsch-Gordan coefficients and
an invariant bilinear form the action of the 6j-symbols on the four-
point invariants can be deduced. In the following we will determine

Ju B J3 J2 Ju Js
-

E]

Ty T3 T2 T1 Ty T3 T2 X

FIGURE 8: The action of the quantum 6j-symbol

the fundamental four-point invariants that are connected by the fun-
damental 67-symbols. This gives a set of equations for the fundamental
6j-symbols. The solutions to these are just the initial values to the re-
currence relation above.

K invariance. We determine asymptotic properties of the four-
point invariants ¥ through their invariance under K. We define one
special limit W of the four-point invariant ¥ as

, R
VO 1X) 225 8 (g, 1)

T4—00

We call ¥ the reduced blocks of U,.
Let T denote the multiplication operator on functions of x, such
that

Tf(z) = flgz) .
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PROPOSITION 3.1. The reduced blocks U have the structure of a
function of the quotient x = x3/xq times monomials in x1 and 3

-G ORNOR
(3.24) VO (J|ag, 21) = 2t a? FO(J|2)
such that ozgi) + oz:(,,i) =05 +Jo+Js—Ja=:K fori=s,u.

PROOF. Let ¢ be either s or u. K is a group-like element. Invariance
under K thus means, we have for both, s- and u-channel

(i) _g®
KU, (J]|X) =W, (J]X) .
From the tensor representation of K we get
(%) _ ()
KV (JIX)= (K@ K@ K K)V,’(J]X)
220 qj4—j2K(3)K(1)\I/§i)(J|l»3’ 1)

XTg4— 00
— q*j4123 T3 Tl \i’gi)<J|I‘3, 1’1) .

This says, that ¥ is a function of the quotient z = x; /x5 times
monomials in z; and 3 such that oz@ + ozél) = ji* for i = s,u, as
propositioned.

O

COROLLARY 3.1. From that we gather an inverse proportionality
between T; and T3

(3.25) T U (s, 1) = ¢ T3 0 (T 2s, 24) -
For the difference operator
a Ta: _,—a T—l
[dx + a] = 4 c —1
q9—dq

this entails
(i +a) B = —[dy —a— ] T .

To determine the exponents agi) and oz:(f), we look at the decompo-

sitions
(s) _ Ja J3 s Js |J2 1
(3.26a) \Ijjs (J1X) = Z <$4 3 mS)q |:m3 L2 x1:|q ’
(u) _ .j4 ]u jl ju j3 j2
(3.26b) \Ilju (J1X) = Z ($4 My $1)q |jnu L3 x2:|q

of the four-point invariants. Consider the s-channel. There we have

() _ jatma, jstms, jotma ji4mi ((J4 J3 ] J|J2 5
lej (JlX)_Z$44 4$33 3$22 2$11 1( ) [ ey m1:|q

my M3 m m

mg
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and in the limit (24, 29) — (00, 0)

Jstms_gi+ma (Ja J3 ] JilJje 5
— Z X3 xrq (74 ms m)q |:m’]2 m1:|q

ms,m3,mi

because of the horizontal constraints we have ms = —j; — m, and
my = js + My
_ Jz—Jja—ms J1+ja+ms j4 j3 .7 jl
= Z ) ! : , .
-~ Ja —Ja—ms mj —32 J2 +ms q

From (3.26b) and a similar derivation for the u-channel we get the
following polynomial ansatz for the four-point invariants in the limit

(.T4, 1’2) - (007 0)

() eI oy \
W) = Y 01 (2)

(327&) ms=—7s
123 (S)
= 'T?) j (J‘ZL’) )
Ju j1—Ja—"y
\II(U)(J|,I’3,I’1) = x§i23 Z fm ( |ju) (ﬂ)] ’
(3.27b) o = 3

= O (la)

where x = i—; and

(3.27¢)  fW(J|5,) = <‘74 e ])qlr{z

Ja —J4 — Mg My

a0y f = (4 e [

Ja My —J4 — My, q My,

J2 J1
—J2 Mg+ Jo .

J3 J2
My, +]2 _j2 q ’

So in the z-reduced blocks f;i)(ﬂx) we have at last functions in
one variable only. For these we will find special cases that are linear
functions and intertwined by the basic 6j-symbols.

The quantum Casimir eigenfunction equation. We will find

solutions for the functions f]@(J |z) based on ¢-hypergeometric func-
tions.

PROPOSITION 3.2. The functions ]:](l)(J|a:) fulfil the difference equa-
tions

(3.28a) (47279171 21 [dy ][~ 21] ~ [da—1)[do —1 =275 —1] ) F{) (J]) =0 |
(3.28b) (qj2_j4_1i—l[dx+k—m][dx+k+2ju+1—n}—[dx}[dx+2j3—n}>]-';s)(J\x):o .
PROOF. As the invariant \Il is defined by projecting onto the ir-

reducible representation with spm Ji in the tensor product of the rep-
resentations V72 ® V7t we have that the ¢-Casimir operator is equal to
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the unit times — [j; + 1]°.

2
s . 2 s
At (C)¥(T1X) = = [fs + 3] U (J1X)
u . 2 u
Ago(C U (T1X) = = [ju + 3] TV (J|X) -
The indices 21 and 32 express the way the coproduct is embedded into
the four-fold tensor product.

In the transposed z-representation the quantum Casimir operator
qflKQ +QK72 _ 2

(g—q71)?
takes the form of a difference operator. We determine this operator in
two steps. First we consider the summand EF. In order to shorten
expressions we introduce the following notation. Let a, denote an

element a in the n' place of the tensor product. We assume that it is
always clear from the context, which tensor product is meant.

C,=EF —

ar=1® - ® 1 ®a® 1 - ---®1.
1 n—1 n n+1

We can express Ay (EF) now as

A1 (EF)U = (E2Ky + Ky 'By) (Bb Ky + Ky 'Fy) O

= (B2 /KT + B2 Ky 'Ky + Ky ' BBV Ky + Ky By Fy)

= (oL KT + By Ky 'K Fy — Ky Fy K3 B Ky — K3F3E Ky) O .
Equality a uses the fact that the block V¥ is invariant under the algebra-

like element F', which means that A®(F)¥ = 0 where the action of
the generator F' on the fourfold tensor product is

AW(F) = K3 KoKy + K B KoKy + K KT R K 4+ KKK R

The term t = K, ' K; ' Fy K is replaced by —A® (F) + ¢.

We note that the term proportional to Ey vanishes in the limit  — 0.
The same holds for the term proportional to F} in the limit z, — oco.
We notice that the term FEsF; is basically the Casimir operator.

g K3+ qK;? -2

(¢—q1)?
This term vanishes in the limit 9 — 0 because the second summand
tends to [jg + %}2 and the Casimir operator is — [jQ + %}2 on the irre-

ducible representation with spin j». Now we are ready to state that on
the reduced block ¥ we have

. o x L
Ap (EF)¥ = qﬂwﬂx—1 [ds — K] [dy — 254] ¥ .
3

EyFy = (Cq)z +
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With the coproduct AK = K ® K of the group-like generator K it
is a straightforward calculation to check that

q—lKQ —|—qK_2 _ 2
Az —1)2
(¢—q7)
A similar calculation for Ag, yields the representation of the Casimir
operator on the reduced blocks as

(J”ﬁrlx—; [di — K] [dy — 251] = [di — j1 — Jo — %]2

2 ~

o= (- 40

9

in the s-channel and

T . , ‘
q ]2+]4+1x_j[d3_'%] [d3—2j3]— [dg—jz—jg—%]z

in the u-channel.
We introduce the indices [ and k£ counting the difference of the
intermediate representation’s spin from the maximal spin. We set
jS +1 :jl +32 ) [ = 071727' o 72/1/ with = min{j17j2} and
Jutk=7jas+73, k=0,1,2,...,2v with v = min{jo, j3} .
A little g-number aerobics finds us
. 2 . 2 .
Gs+3] = [di—ji—do—3] =i —{[d1 —2js —1—1] ,
. 2 . 2 .
[ju"i‘%] - [dg—jz—jg—%] :[dg—k] [d3—2ju—k—1] .

Using the inverse proportionality (3.25) between T; and T3 we fi-
nally arrive at

<qf2*f4*1i—; [de — K] [de — 271] = [da — {] [de — | — 24 — 1]> FP(Jz) =0,

Ju

(qfﬂrl% [de +k — 6] [de + k + 2ju + 1 — £] — [da] [da + 255 — n]) F*(Jlz) =0.
3

U

This is just nearly the ¢-hypergeometric difference equation'®

(@ [ds + a] [dy + 0] = [do] [ds + ¢ = 1]) p(z) = 0

with the solution
a b
2‘1)1(
1

9Note that the finite difference operators Agq (Cy) in the s-channel and Azy(CY)
in the u-channel are related by the exchanges

) oy label ]
%@‘kaw |

n>0

. . T T3
J1<Js and — & — .
I3 T

0566 appendix A.
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Equations (3.28) can be brought to ¢-hypergeometric form by an ansatz

F () = a'g)? (g )

f(u)(J|:L‘) — (U)(qj2—j4—1x) )

Ju Ju

Thus for the functions F j(f) we determine the following g-hypergeomet-
ric form modulo a .J-dependent normalisation

. -k 1—2| . .
(3.202) f}ju\x):xg@l( H_Qj 91 q]”“sc;q) ,
k—k k+4+2j,+1—r| . . _
3.20b)  FY(J|z) = ! i lpg )
( ) Fi () =2 1( s + 1 — K q 4

We consider the case of one representation, say j», equal to 1/2.
Now only two intermediate spins will appear in both channels, j= =
J1 £1/2 and j* = j3 4 1/2. This is analogous to the insertion of a
degenerate field of spin 1/2 into the conformal blocks. This puts a

further restriction on the functions f](j) with jo = 1/2.

PROPOSITION 3.3. The functions ]:j(i) with jo = 1/2 are of the form

F(J]w) = (af +b7x) R(J|x).
PROOF. The invariance of the four-point invariant is expressed as
4 (@) _
AR (J]X) =0,

y

When we consider the limit z;, — oo an let \Ifj) = 1) we have

(FKo K + Ky ' B Ky + Ky 'Ky V) ¢ =0,

or in terms of difference operators!!

1 1 1

THTRTE (1 - T3?) f TR (1 - Ty 2) 4 ¢ tr— (T2 -1 =0.
(el w2y e L (o) i L (1)) o
When j, is equal to 1/2 we have'? F? = 0. This means that the
polynomial solutions to the Casimir-eigenvalue equation are of the form

=11+ 221y .

HUHere we have used the relation T3 Ty Ty 1 = g™, which follows from the
invariance of ¥ under the action of K, A®W(K)¥ = .

2This corresponds nicely to the additional equation 02V, = 0 for the degen-
erate field of spin 1/2 in the WZNW-model.
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The difference equation in 1 then becomes
» 1 » 1
0=Q! <qh%+“— (1-T32) +¢Bt2— (T3 —1)> Y1+
xs3 x1
+ qja—j1+fe—1 TgQ Yot
, 1 A 1
Qe (L (T L (1)) s
T3 T
=: D1 + ¢ ITTIQ T2 by + 20Dy
There are two linearly independent polynomial solutions ¢’ and ¢ to
the equation F1p = 0. A general solution v then is of the form

(3.30) U =a¢ + be .

The solution ¢’. We choose the first solution ¢’ to have a vanishing
component ¢,. That leaves the difference equation

(3.31) 0=2¢, = (qﬁéﬂ’vxi3 (1-T5%) + qjsi“xi (T3 —1)> ¢ -

1
This leads to

<1 _ qj1+j3+12nﬁ) ¢11 _ <1 _ qj1+j3+1ﬁ) T?:Q (b/l )
I T
We expand the quotient of (T3? ¢}) and ¢/

(Ti2gy)  (L—grimrinz)

¢,1 <1 — qj1+j3+1ﬁ)
x1

1 — girtistl=2r23) (] _ giitis+3-2k23) .
1 1

ji1+73—1
(1_qJ1 J3 %)

(1 _ qj1+j3+372nﬁ> (1 _ qj1+j3+572nﬁ) (1= qj1+j3+1ﬂ>
1 1 1

This determines ¢}
(3.32)

(b/l =(1= qjl+j3+3 K9 1 — q]1+]3+5 k22 o1 = qJ1+]3+1+2H_ )
I I T

The first of the linear independent solutions to the equation Fy = 0
is therefore

(3.33) ¢ = .

The solution ¢. We see that the function ¢, is determined by the
homogeneous difference equation

(3.34) Dy = 0

and that the function ¢, is determined by the inhomogeneous difference
equation

(3.35) Doy = —Q¢* ! T2 ¢y
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First we determine ¢,. The equation (3.34) determining ¢9 is the
same as the equation 3.31 determining ¢}. We conclude that

(3.36) $2 = ¢} .
Now we determine ¢;. Because of (3.35) we have
—j1—i4k 1 -2 js+L—k 1 2 jg—1 -2
q e x_(l_Tg ) 1 — ¢t ;(1—T1)¢1=—q]3 2QT37 ¢y .
3 1

The difference operator in (3.35) is the same as in (3.34). Thus we
make the ansatz ¢, = ¢og. The operators (1 —T3?) and (1 — T}) obey
the following deformed product rule

(L=0T)fg=((1=0T)f)g+ (0T f)((1-Tg) .
Thus we have
—j1—3 qj3+%

1-T5?
T -

D1 = (D2)g + (T52 ¢2)¢" (q (1— T%)) g .

We note that D¢y = 0 by necessity. This reduces equation (3.35) above
to

K g Loy ¢t 2 3—j1+r—1
1 ( =T - (1—T1))9=—Q<ﬁ3 S
The ansatz g = axs yields
¢TI (1~ g %) = —QgF I
and determines a = —qj3_%. We conclude that
¢ = (s + x9) o .

With this and the equality (3.36) of ¢o and ¢} the general form
(3.30) of a solution is

Y = ag’ + b
= a¢| + b(axs + 13) s
= (a + blaws + x2)) ) .

When x, tends to 0, 1 tends to W. Thus we have proven that the
reduced blocks with jo = 1/2 are of the form

F(J|2) = (af +bfw) R(J|) .
]

Judicious inspection of the horizontal and vertical constraints (3.11)
in the coefficients fy(,fB(J |7:+) of (3.27) tells us that the polynomials F
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with jo = 1/2 have an appropriate number of terms. Indeed we have

FR) = 1) (55 488 LGl 1, (15"

1
2

FO ) = I8 Ui+ 1 (155 )
FOw)y = £ T+ + fY D+ fY e
gk J1=gatt e —gstg Y —jz—g

(u) J— (u) . — (u) P k—1
}—J}T (J]z) = fjl—j4(J‘]U )4+ f,j3+ (J]Jy )z

1
2

From this we see that the coefficients a; and b, vanish. Use of propo-
sition 3.3 leaves us with the linear system of equalities for the fusing

relations
. 1 . i 1 oy
al +bfr = {j?’ 2 szr} (af +bfz) + {‘73 2 j“} b,z
(3 37) Ja I Js q Ja I Js q
a; =47 2 Ju (af +bfz) + J3og Ju b ey
Ja v Js Ja v Js ),

Comparison of the representations (3.27) and of proposition 3.3 for
the reduced conformal blocks together with the expression

R(J|z) =rg+mz+- +re 2" ?

gives the equations

_ L — 2]1
roa; =1 roal = ¢ F/? [[2j3 = 1]]
ja— — 253 —ja—1/2—
bt = —g 4 1/2[L7 bt — g da—1/2-k/2
o = 271 +1] O =
roby = —q 712 roa; =q "2

With these we can solve the linear equations (3.37) and get
JaoqJdJ, 2j5 + 1]’

. 1 .

J3 3 Ju —al
{j4 J1 jj}q 1 ’
{13 : Jk‘f} _ o Wl

Ja o Js ), 271 + 1] [275 + 1]
{13 3 Ju } )

Ja o Js ), 21 +1]°
where ¢ = ji + jo + J3 + Ja-

vl

(3.38)

We have thus determined the fundamental 6j-symbols of U,sl(2).
Together with the recurrence relation (3.23) these determine all 6;-
symbols of the quantum group U,sl(2).






CHAPTER 4
THE QUANTUM GROUP U,0sp(1|2)

In this chapter we apply our method to the generalised setting of
super quantum groups and determine the 6j-symbols of the super quan-
tum group U,osp(1|2).

Up to a certain point the derivation will be strikingly similar to

the preceding chapter. We represent the generators of U, as difference
operators. All invariant tensors satisfy difference equations induced by
the Casimir operator. This fixes the the four-point invariants to a su-
per g-hypergeometric form.
The fundamental representation of U,0sp(1|2) is three dimensional.
This only gives a minor rise in complexity for the derivation of the
6j-symbols. We set the representation label /5 to the fundamental rep-
resentation 1. This further restricts the fundamental four-point func-
tions to a form from which it is possible to deduce a system of linear
equations that determine the fundamental 6j-symbols connecting the
s-channel decomposition and the u-channel decomposition.

The graded quantum group U,0sp(1|2) is generated by elements
k., k=1 e, f and the relations

1 k? — k2
kek™' =q%e, ef+ fe=——-—+,
(4.1) q—q!

kfk'=q2f, kkl=klk=1.

It has the coproduct

Ale)=e@k+k'®e,
(42) Alfy=feok+kaf,
Alk)=k®k,
A YHY=k'eok!,
the counit
(4.3) ek)=e(k ) =ec(l)=1, ele)=c(f)=0,
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and the antipode
S(e) = —q¥e,  S(k)=k",
S(f)=—a2f, Sk =Fk.

In addition to a Casimir operator C, there is an operator S, that
commutes with the even part and anticommutes with the odd part
of U,0sp(1]2). S, is called the Scasimir operator.

(4.4)

g2 k% — g 2k2 k2 — g2 k2
Q Q '
In order to reduce the clutter of gs we introduced the coefficients
Q=g+q " and Qs =q '/ +¢">.
The Casimir operator simply is the square of the Scasimir operator
modulo an additional constant.

Sy = Qafe— = —Quef + 1

Cy = S + const. .

The super quantum group U,0sp(1|2) can be seen as either the
quantised universal enveloping algebra of the graded Lie algebra osp(1]2)
or as the super analogue of the quantum group U,sl(2)".

1. FINITE DIMENSIONAL REPRESENTATIONS

A representation of the quantum superalgebra® i, 0sp(1]2) is a su-
per vector space V with an even subspace V; and an odd subspace
Vi,

V=WoWw.
and a homomorphism of associative superalgebras
p:U,0sp(1]2) - Hom(V,V) .

Let (p,V) be a representation of U,. For every complex number w
define V,,: = {v € V | p(k)v = wv}. We call every nontrivial V,, the
weight space corresponding to the weight w, Nonzero vectors in V,, are
called weight vectors of vectors of weight w®. A vector v € V,, is called
a vector of highest weight w’ if p(e)v = 0. In this case w’ is called the
highest weight of the representation p, V.

IThe graded Lie algebra osp(1]2) has been closely examined by Nahm, Rit-
tenberg and Scheunert in [36]. The super quantum group U osp(1]2) has been
introduced by Kulish and Reshetikhin in [24].

2This is one place where we break our naming convention. A “quantum super-
algebra” naturally is a quantum group or Hopf algebra that is graded by Z/2Z.

3In the following vectors of weight w will be called eigenvectors of p(k) with
eigenvalue w too. In addition whenever w = ¢/2 we will call m weight or eigenvalue
too.



47 The quantum group U,osp(1|2)

If V' is a direct sum of weight spaces of p we call p, V' a weight repre-
sentation.

The irreducible representations of U,0sp(1|2) are grade star repre-
sentations. That is to say, there is an involution * on U, and a Boolean
parameter ¢ € Z/27Z such that in the representation

=k ’ e* — (_1)56 , f* — (_1)5+1f

holds®. The parameter ¢ is called the class of the representation.

The representation theory of U, falls into two different cases ac-
cording to the value of the parameter ¢.

Generic ¢. The irreducible finite dimensional representations (p, V')
of U,0sp(1]2) are labelled by a positive integer [ € Z and an index
A € Zy = {0,1} and two further Boolean parameters ¢, 9 € Zs. The
parameters ¢ and v are signature parameters of the Hermitean form
on VY. The parity A and the signature ¢ define the class ¢ of the
representation. Since we have no use for the Hermitean form in the
following, we drop the parameters ¢, 1) and e.

For each (I,A) an irreducible finite dimensional representation is
isomorphic to the following. The module V** has a basis {e, | m =
—l,—l+1,---,1} diagonalising the representation of k. The vector
el(\) is of highest weight with parity . The generators e and f of

U,0sp(1]2) act on this space as raising and lowering operators.

g a root of unity. Let ¢ be a primitive p'" root of unity,
¢ =1.

The representations® of U,0sp(1|2) in this case are plagued by prob-
lems similar to those of U,s1(2).

We consider generic ¢ only in the following.

Tensor products of finite dimensional representations. The
tensor product X; ® X5 in the category of super vector spaces is graded
by Z,. This affects super algebras and super modules. For super
algebras we have

(X1 0X0)(Y1®Ys) = (—1)p(X2)p(Y1)(X1Y1 ® XoYs) .
The effect for super modules is similar. Given two representations
(p', V1) and (p* V?) of U,osp(1|2) the tensor product ((p' ® p?) o

4This was shown by Minnaert and Mozryzmas in [27] and goes back to results
for osp(1]2) obtained by Nahm, Rittenberg and Scheunert in [35].
Arnaudon gives a classification in [3].
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A, V! ® V?) again is a representation. Note that due to the graded
nature of the tensor product the tensor representation acts on a vector
r1 Q Ty as

((p'®p*) 0 A) (X)21 @ T5 = <Zp X(b))> Ty ® Ty
= (~1 p(X@))p m)zp )71 ® p (X(b))
Here we used the Sweedler notation for the coproduct.
X) =) Xw® Xy

The m-representation. Let {e! (\) | m = —I,—[+1,...,(} bea
basis for the module V* diagonalising k. Consider the following action
of U, on this basis.

P (Rel (V) = g e, (A)
(4.5a) P (e)en(N) = DF (1, m; Ney, 1 ()
P (f)en(N) =D (1 m; Aey, 1 (A)
(4.5b) P e)er(N) = (el (V) = 0.
The parity of el (\) is
(4.6) p(e,(\)=A+1—m mod?2.

So for successive indices m the vectors el () alternate in degree. The
even and odd subspaces of V* are interlaced by the action of e and f
and we get the following picture®.

v (e (e

(Vl’)\)Ml eé—l ell—l<)‘)

FIGURE 9: The interlacing of even and odd basis vectors in Vi

A traditional approach would be to choose
D (s A) = ()7 ({1 = m{l+m+ 1)

(4.7) - 1/2
D (I,m;\) = ({l+mH{l—m+1}y)"" .

For a super vector space V we denote by (V)o and (V); its even part and its
odd part, respectively.
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We will however choose a different normalisation such that
D (lm;A) = (1) {l = m}3
D (l,m; A) ={l+m}3,
with 82 = Q./Q = (¢"/? + ¢*/?)/(¢ — ¢~ '). This said we call this the
m-representation and denote it by p,, omitting the label (I, \).
In the m-representation the Scasimir operator acts as
(4.9) pn(Sp)en (V) = (1) 7" I+ 5] e, (V) -

The basis {el .} on which the action of ¢ and f has coefficients
D* as in (4.8) is related to the basis {f' } with respect to which the
coefficients D* of the action of e and f are of the form (4.7) by a
rescaling by

(4.8)

{l+mH{l—m}
N {2}

The transposed m—representation. The space dual to a super vector
space V' is the super vector space V* of complex valued functions such
that the even functionals vanish on V; and the odd functionals on V.
Again a basis of (V!)* is supplied by the functionals & ()\) such that

&}, (\) (eln<)‘>) = Omn -
Without further ado we present the transposed m-representation p,,
on the space (Vl)* dual to V.
¢

(4.10) € (\) =M, m)ztL (A), M(l,m)

m

Pra(REL () = 42 €, (V)
(4.11a) Pn(€)€,(N) = DF(lm = LN)&, ()
P ()€ (\) =D (Lm + 1 0)&),,1(A)
(4.11b) pr(e)el,(N) = ol (Fei) =
The Scasimir acts as follows on this representation.
(4.12) P (S)€n (V) = (=1) 7" 1[I+ 5] &, (N) -

Invariant bilinear form. The invariant bilinear form By, on U,-
modules is defined by the requirement that for vectors v in V4 @ Vi
it transformed according to

Bys(A(k)v) = Bys(v) ,
Bys(A(a)v) =0, fora=e,f.
Extend By, to all finite dimensional U,-modules such that different

modules are orthogonal. This determines By; up to a ly-dependent
factor and we have with the coefficient M from the relation (4.10)

Bqls ef’?LQ(AQ) & ef;n ()‘1)) = 5l2,l15m2+m1705>\27>\1 X

(gtmg)(gtmotl) Ip+
% (_1)12+M2+>\2+ 27072 2 2 2072

2 M(j27 m2) :
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For future use, we compress the coefficient into symbol M

v l+m—+A+ w l+m

(4.13) M, m; \) = (—1) q 2 M(j,m) .

The invariant bilinear form extends to tensor products of modules
as

Bq|5 ((1, ®b,c® d) = (_1)p(b) p(C)Bq|5 ((l, C) Bq|5 (b7 d) :

Decomposition of tensor products. The tensor product repre-
sentations and the irreducible representations are intertwined by the
super quantum Clebsch—Gordan coefficients.

I\
el (b, li; ) = ) {m

mi,m2

laha i

mg MMy

} ez (ho) @ el ().
qls

The Clebsch-Gordan coefficients of U, are constrained by the following
inequalities”. Again we call them horizontal and vertical constraints.

lh =L <1<l +1y,
m=mj+ma,
A= M+ +1l+1li+1s mod?2,
=i <m; <.

(4.14)

The Clebsch—Gordan coefficients suffice the recurrence relations

(4.15)

D (1 m) [ I\

m=E1

loXo 11\ :q%Di(lg,mngl) IN] Ao I\
me My als m | meFLl mq als

I\

m

_1\l2tmatA2 —% +
+(-1) gD (l1am1¥1){ e

loda Ui }
qls

These relations determine the Clebsch—Gordan coefficients up to a
function of the representation labels [,[; and l,. We choose the nor-
malisation

(4.16) [ "

e LA
=1.
h—1 =,

"This was shown by Minnaert and Mozrzymas in [26, 27].
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The Clebsch—Gordan coefficients satisfy the following orthogonality
and completeness relations. Let £ = (I; +mq + A1) (la + ma + A2)

(4.17a)

Z [l)\

mi,m2

Lo 1\

me My m | —my —my

lo Ao llkl} {l’)\’
qls

X M(ly, ma; M) M Iy, m15 M)

= 5l,l/5m,m’5)\,)\/5<l17 ls, Z)M<l7 m; )\)

Z[ZA I ll)\l] [l)\ Iy Ao ll)\l] o
m qls qls

my My —m | my mj
l,m

(4.17b) Mo, ma; Xo) M(la, mly; M) M (L, ma; M) M1y, mi; A)
X L
M(l,m; \)
= m1+m’1,05m2+m/2,0(_1)£~/\;l(l27m2;)\Q)M(llaml;>\1)
This can be seen as follows. The Clebsch—Gordan coefficients have
inverses

I, ]
ei;(Az)@e;al(Al):Z[ 2 ] e (1 A)

m|me m
2 Lgls

Im
With these the Clebsch—Gordan coefficients satisfy another set of rela-
tions. Let £ = (lo + mg + o) (I3 + my + A1), then we have

Z [IX [l2A2 lLiAd] {l/)\/

m | ma mi —m

l2X2 U1\

"lma oM

t
} M, —m'; )

= 6l,l’6m+m’,0M(lv m; >\)

5 (A [lada Lin]f [l,\

la X2 1 A1
m | ma mi| |m 4

!
My Ty

} (—1)F M(lz, —mly; A2)M(l1, —mf; A1)
= Syt 00my +m? 0(—1) Mz, m2; A2) M(I1,mas A1)
Z‘M Iohe LMTETIN [ode Lin]? -
/ m | mo mi m

| |

= 5m2+m’2,05m1 +m/1,0(71)LM(l27m2; )‘Q)M(ll , M3 )‘1)

Ll w] [0k o]
m | my my ol =m | =my —my s
M(l,m; )

Comparing coeflicients we see that
qls
y (_1)LM(Z2,m21A2)M(l1,m1;)\1) .
From this it is possible to derive the orthogonality and completeness
relations.
Invariants. Invariants in the n-fold tensor product can be con-

structed using Clebsch-Gordan coefficients in the (n — 1)-fold tensor
product together with an invariant in the two-fold tensor product. This
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invariant in the two-fold tensor product is the invariant bilinear form
Bys. It is connected to the Clebsch-Gordan coefficients intertwin-
ing a tensor product with the trivial representation. On the module
Vi @ VA we have

loda LA [OA
Bq|5 (mg my ) T |: 0
Thus we have because of (4.15), (4.16) and (4.14)

lods Ui
Byjs < 272 1) = 011,120y +m2,0000,2 X

mo My

Io Ao ll)\l}
qls

ma MMy

(14+m) U +my+1)  _ li+mg _
X(_l)(11+m1))\2+ = q 5 M(ll,ml) 1

The invariant of the three-fold tensor product is the super quantum
37 symbol. These 35 symbols are defined by lowering one index in the
Clebsch—Gordan coefficients by means of the invariant 2-form

I3As LAy LI\ o i B I3A3 1A I |l I
mg o my oy ) T 4\ my m) |m|my my q|5'

m=—j

The (z,0)-Representation. The representation dual to the m-
representation acts on a non-supercommutative super vectorspace. We
introduce the idempotent variable # commuting with the c-number vari-
able z

0> =1,
z0 = 0x .

The variables x and 6 algebraically generate Pol(x,0) = Clz,0] the
complex polynomials in z and . Let Pol"(z,0) denote the super vec-
tor space of polynomials of degree n or less. The super vector space
Poly(z,0) decomposes into the two sub super vector spaces VA with
A € Zs the parity of the highest weight vector of the corresponding
m-representation

Poly(z,0) = V0 @ Vit
where
V0 = span {1,2710,27%,27%9, ..., x>0, 27*} |
yhl = span {9, R e B B x_21«9} )
Note that the spaces V** do not correspond to the even and odd

parts of Poly/(x,0). The spaces VA are super vector spaces in their
own right.
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Now the U, 0sp(1]2) module V' is equivalent as super vector space
to VA via the transformation

!
(4.18) eMx,0) = > a7l meMmel (N)
m=—I

The super vector space V' is a right U,0sp(1]2)-module and the gen-
erators act as

MIN
N —

(4.19a) pu(k
(4.19b) pale

)

)

(4.19¢) pz(f)

We call (p,, V) the (z,0)-representation. The Scasimir acts as
S,

po(Sy) = (D)F 1+ 3]

The transposed (x,0)-representations. The space Poly(x™1,0) is
dual to the space Poly(x,0) via the pairing

(9. 1),p = 75 o . 0)f(2,0)

T2,
D {d, + 21}268 .
1)dz+1{dm}x719ﬁ :

q
(=
(=

This induces a representation p, on the space (V*)* C Poly(x, 6)
(VE0)* = span {1, z0, 2%, 230, ... 22710, x2l}
(f/l’l)* = span {0, z, 220,25, .. ¥ lee}

that acts as

(4.20a) Pk =qET3
(4.20b) oL(e) = —Br{d, — 21} |
(4.200) o) = B {d,) |

We call (p., (VEA)*) the transposed (z,0)-representation. The Scasimir
acts as

PL(Sy) = (=D)F [I+3]

A remark on the sign of the Scasimir. The Scasimir’s coef-
ficient is [l + %] in all four representations. A unified representation
for the sign operators (—1)*™ and (—1)%= is given by the operator Fy .
The operator Fy, maps every element of a super vector space V to its
parity.

Fv:V —Z/2Z
v—p(v) .
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In the following we will suppress the index V.
Using this operator we can unify the representations of S,. In all four
representations considered we have

Sy (“1)FP 14 1]

Representations in block form. A common representation of
the super vector space V' = V@ V] is the m-representation deinterlaced.
There we have a basis {v; | i = 1,2,...,dim Vj + dim V; } such that the
first dim V{) basis vectors are even and the remaining are odd. A linear
transformations f in Hom(V, W) in this basis is

A B
f~ (C' D) .
Here A® D € Hom(V, W), are the even and B@& C € Hom(V, W); the
odd transformations.

The super vector space Poly(z,6) is isomorphic to C? ® Poly/(z). For
a given polynomial

f(@,0) = folx) + 011 (x)

o= (1) -

Under this identification the representation of the generators x = e, f
of U,0sp(1]2) becomes off-diagonal and for the generator k diagonal

0 X K 0
x:(X, O) and k:(o K’)'

This emphasises the odd parity of e and f and the even parity of k.

we identify

Super limits. Consider functions in the variables x and 0. We
regard the pair (z,0) as a point x in the complex projective plane PC
with an adjoined superline. The points 0 and oo then have a special
meaning for polynomials in (z, 0). They single out the coefficients of the
lowest, respectively highest power of x. For a given graded polynomial

1
fl(l‘,e) _ Z fm$l+m9>\+l+m

m=—I
we get the limits

lim f'(z,0) = f_6"

z—0

lim x= 2 f'(z,0) = f,60* .

Tr—00
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The representations of k basically correspond to numerical factors
lim g, (k) f'(x, 0) = g2 fa0

Jim a2l (k) (2,0) = g 0

2. INVARIANT TENSORS

An invariant tensor of ,0sp(1]2) is an element ¢ of @), V'#* that
is invariant under the action of the super quantum group.

et=ft=0 and kt=t.
To avoid clutter we collect variables of the same type into uppercase
variables, L = (l4,13,12,11), A = (Ag, A3, Ao, A1), X = (24, 23, T2, 21) and
© = (04,03, 605, 0;). Additionally we introduce ¢" as a shorter expression

for the pair (z, ). The pair of X and O is collected into X. A function
f in the four-fold tensor product would thus be written

lahg l3Ag DaAe I
f(LaA‘X7@):f(L7A|%):f<4x4 3N3 2A2 4 1) .
4 L3 Lo 51

3. SUPER QUANTUM 6j-SYMBOLS

The super quantum 6j-symbols communicate the basis change be-
tween different reduced bases el (I3,112;\) and €' (I1, 123, \) of triple
tensor products VM @ V242 @ VisAs of Y, modules.

Ihs Dy
SHENIPEDS {li)\i Iy 3”32} el (I3, 11, A) -
q

l21)\21
l21

We define the s- and the u-channel decomposition of the four-point
invariant as the following.

(4.21a) m§j><L,A\x)zz(l4A4 lsAs Us) {Us
als

Ly L3 mg mg

Io Ao ll)\l}
Lo 151 als

ms

“ L LAy b I\
(4.21b) UL, AJX) =) (4 4 L 1) {
qls

Ly mg 51 mg

I3z ZQAQ}
L3 Lo als

The parity A of the intermediate representation (I, Ag) is
)\s:l1+l2—|—l—|—)\1—|—)\2 mod 2 .

The super quantum 6j-symbols relate the s- and the u-channel decom-
position of the four-point invariant.

(u) _ lady I3A3 1Ay (s)
i (L’Am—;{ml PV (L, AJX) .
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— Z ls _ Z L,
ls lu
L4 3 2 11 a3z & 4 T3 02 11 Lal3 2 l1

(a) s-channel (b) u-channel

FIGURE 10: Decompositions of the four-point invariants

Recurrence relation. The derivation of the recurrence relations

for U,osp(1|2) is word for word as for U,s1(2). The difference is in the
initial values and in the spin of the fundamental representation.
Let a, b, c and d each denote a pair (j, \) of representation label j and
parity A. We consider the four-fold tensor product V4@ Ve® V@ V.
Let e denote the spin of the reduced basis. The pentagon relation for
U, encodes the way the different bases of the four-fold tensor product
correspond to each other. We have

d ¢ h b fl c d f d g h d c g
{e f j}q{e a i}q_;{h a g}q{e a i}q{i b j}q'

This is illustrated in figure 7 on page 34. The recurrence relation is of
the form

j b f j—1 b f
(4.22) {e a i}qﬁz%b}(a,b,f,z,j,h,g){ hoa g}qls.

The triangle condition constrains h and g by |7 —2| < ¢g,h < j and
lg — 1] < h < g+ 1. This means we have an expression for the 6j-
symbol {i Z ]: } in terms of one 6j-symbol with 7 — 1 and fundamental
67-symbols with one spin equal to 1/2

k invariance. We introduce the reduced blocks of U, via the limit
W@ of ),

U (L, AJ%) 25 0201 00 (J, Alrs, 1)

x4

Note that in order to extract the factor 6326;* from the polynomial
U@ we had to introduce some signs.

T, (2 ) m m m m1 p(i
‘I’z(i)(LaA\Fsah) _ Z(—l)Pmi$é3+ 39§3+13+ SII11+ 19{\14-11-‘:- lfy(nz<L7A‘lz> :

where mgs and m; are linear combinations of [y, ls,[3, 4 and the inter-
mediate values m, or m, in the respective channels, by virtue of the
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horizontal constraints
P = (Mg + 13— Iy —mg) Aa
Pl =(M+h —l—my) A+l +l+my) + (As+ A +5) Ao

The operator T is the multiplication operator on functions of x,
such that

Tf(z) = flgzx) .

PROPOSITION 4.1. The reduced blocks ¥ have the structure of a
function of the quotient x = x1/x3 times monomials in x1 and 3

. NORNOS
(4.23) U (LA 1) = 25 25° FP(L, Al 05,61)
suchthata1)+a3 =l+ly+1l3—1y=:kK fori=s,u.

PROOF. Because of the invariance of s- and u-channel blocks under
the action of k, we have

KOO (J M%) = V(T AX) 0= su
and in the limit
(i)
FU(LAIX) = (k@ k@ k@ k)T (L, AlX)
et “ k10340520 (L, Als, 1)

= ¢ " T3 T1 00,0\ (L, Alrs, 1)
Thus we find that
(4.24) T2 T2 0L, Ales,mr) = ¢*/200 (L, Ales, 1)
with kK = l; + [y + I3 — 4, as proposed. O

COROLLARY 4.1. From that we gather an inverse proportionality
between T; and T3

(4.25) T U (LA, 1) = ¢ T3 U (L, Alrs, 1) -

For the difference operator

Ta

NI

wle

_( 1)d1+a 2 T2

{dy +a} =12 .

this entails
{di + a0 = —{d3 —a — r} U .

We introduce the r-reduced blocks with ¢ = (z,i6) = (i—;, 050,) as
Fa (L, Ale) = ag 050 (L, Al ) -
Merging 03 and 6, into i6 we get additional signs
S =P 4 (L + 1+ M+ms— 1)+ 1o+ M +my)/2,
S =PW (I, — L+ M —my, — D)l =1+ A —my)/2,



Super quantum 6j-symbols 98

Note that S 2 = = 8% +1 mod 2. Together with what we know from
above we get

ls
(4.26&) ‘Fl(j) (L,A|;) = Z ( )Sy(ni f(s) (L A|l l1+lz+ms( 9)l1+l2+m stA1

ms=—ls

~

(426b) fl(:)(LaAh) = Z ( )Sy(ffif(u (L A|l ) l3*l4+mu(19)l3*l4+mu+/\1

My=—ly

The Scasimir eigenvalue equation. The blocks ¥ i = s, u are
super eigenfunctions® of the Scasimir with the eigenvalue (—1)F*! [li + %] .
We introduce ¢ and k such that

ZS+£:l1+l2 and lu+k3:l2+l3

In the following we find a difference equation for the r-reduced blocks,
that is remarkably similar to the one we found for U,sl(2).

PROPOSITION 4.2. The g-reduced blocks fl(ii), 1 = s,u fulfil the dif-
ference equations

o) ((71)”""\3"'/\1(]77[42[271zglzlﬂgﬂl{dm — wHd, — 20}
4.27a
{dy — O {dy — 20, — 0 — 1})?}? —0,

lo41

((—1)K+)‘3+)\1ql472 $3$;19391{dz + 2l3 — H}{dz}

(4.27b)
~{do +k—k}Hdo + 20 +k+1 - n})]—"l(:) —0.

Proor. Consider the eigenvalue equations
Agy (Sg — (=) [l +3]) ¥ =0,
Agy (Sy = (=D)F* [l +3]) ¥ =0

The indices 21 and 32 express the way the coproduct is embedded into
the four-fold tensor product.

Ay =idRIAd®A and Az =1d®A®id .
In the transposed x-representation the Scasimir operator
g2k — q2k2
0 :

takes the form of a difference operator. We determine this operator in
two steps. First we consider the summand ef. We use the leg notation

Sq = _Qsef +

8that is the even and odd parts are eigenfunctions, not necessarily to the same
eigenvalue.
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again. Let a,, act as an element a on the n'" place of the tensor product
and as identity at all other places. We can express Ay (ef) now as

Aoy (ef)\I’ = (62/?1 + /{?2_161) (fgkl + k;lfl) v
= (eafoki + eaky ki f1 — ky ' foerkn + k3 2er f1) ©
2 (eafok + eaky k1 f1 + kafakierks + k3 fzerkr) U .

Equality a uses the fact that the block V¥ is invariant under the algebra-
like element f, which means that A®(f)¥ = 0 where the action of the
generator f on the four-fold tensor product is

AW (f) = fakskoky 4 k;  fakoky + ky kg L foky 4k Yhy Ry L f1

The term ¢ = kj 'k3 ' fok, is replaced by —A@(f) +t. We note that
the term proportional to e; vanishes in the limit x — 0. The same goes
for the term proportional to f4 in the limit x4 — oo.

We notice that the term es f5 is basically the Scasimir operator.

1 1
a2k —q2ky?\ -
eafo = <_(Sq)2 + q2— = -t

This term vanishes in the limit x5 — 0 because the second summand
tends to — [I; + 3] and the Casimir operator is (—1)2+™%1 [l; 4 1] on
the irreducible representation with spin l,. Now we are ready to state
that on the reduced block ¥ we have

lo—lg—1

A21<€f)\p =q 2 i—;{d:g — H}{dl — 2[1}\1’ .

With the coproduct Ak = k ® k of the group-like generator k it is a
straightforward calculation to check that

1 1
“3k%2 4 g3k 2)\ . .
A21<q q—q€1 )qj:[dl—ll—lg—%]\p

A similar calculation for Ag, yields the representation of the Scasimir
in the limit (x4, z2) — (00,0) as
—latig—1

g 2 B°Qexy w0501 (—1){d; — 2L H{ds} + [d1 — L — 11 — 1] ,

in the s-channel and

Iy—lg+1
2

g 7 BQsxzay'0301(—1){ds — 23} {di} + [ds — I3 — 1o — 3] .
in the u-channel.
We introduce the indices ¢ and k counting the difference of the
intermediate representation’s spin from the maximal spin. We set

ls+20=101+1, 0=0,1,2,...,2u with g = min{ly,l5} and
ly+k=1+13, k=0,1,2,...,2v with v = min{ls, I3} .
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Straightforward calculation leads to
—{di —Hdy 20 — - 1}3%Qs = [d1 — i — Lo — 3] + (=D [, + 1] ,
—{ds — kMds — 20, —k - 1}3°Qs = [d3 —lo — I3 — 4] + (= 1) [1, + 3] .

Thus we let x = 1 /x5 and come up with the proposed equations

(=22 g 0 L 0361 — i}y — 201

{dy — O {dy — 20, — £ — 1})?}5’ —0,

Iy—lg+1

(250" e 0301 {d, + 2 — w}{ds)

—{dm+k—m}{dx+2lu+k+1—n})ﬂ(j‘) =0.
]

Up to now there has been no structural difference to what we found
for U,s1(2). We will now consider the last structural equivalence before
we find the point where the two derivations depart from one another.

Consider the super basic hypergeometric difference equation
(4.28) (x0{d, + a}{d, + b} — {d.}{d, + c—1}) P(z) =0 .

This equation has two solutions parametrised by a Boolean number .
We call the parametrised solution the super basic hypergeometric series
and denote it by oIl (a, b; c|x,0; \; q). A series representation is given

by
a {an}{bln} ,)»
4.29 I "M
aan (") =
We observe that the difference equations (4.27) are nearly of super
basic hypergeometric type. With an ansatz

(s) LA _ ¢ II E—KI E—Qll (— ) le 9391
f.ls ( ) ‘F) ) 1( —2l3 _e )\1’ )
k= 2, +k+1— k| (~1)"q", 656,
(L, Alr) = »II v
AL =am(FTE )

with p =k + A3 + A\; and 2v = —[4 + [, — 1 it can be made such.

We now come to the point where the derivation of the 6j-symbols
differs from that in the quantum group U,sl(2). The fundamental
representation j = % for U,s1(2) is two-dimensional. Therefore we
had to examine two intermediate representation and to determine two
factors ai and b in each channel.

For U,0sp(1|2) the situation is similar but slightly more complex. The
fundamental representation [ = 1 is three-dimensional. So we have to
deal with three intermediate representations and with three coefficients
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a?, b7 and ¢/ in both the channels. We call the y-reduced blocks F for

17 1

lo = 1 the fundamental g-reduced blocks.

PrROPOSITION 4.3. The fundamental x-reduced blocks F are of the
form

(4.30) F) = (ay + bYaif + ¢/2%(10)?) R(L, Aly) |
forv=— o, +.
PROOF. The invariance of the four-point invariant is expressed as
AD (e (L, Al%) =0 .
(i
Ji
(fakohy + k3" foky + kg 'k fr) =0

or in terms of difference operators’

—lj—la+r l3=li—r
q 2 ( —1 F) q 2 71< —1 F2>
— (T —(=1)" — T T, — (-1
( 2303 5 —(=1D7)+ S 5 —(=1)7)+

When we consider the limit x4 — co an let ¥ ) = 1 we have

lat+lo—kK

442 (1—(—1)F1T1)>¢:0.

x101

When [, = 1 is equal to 1 we have f3 = 0. The polynomial solutions
to the Scasimir-eigenvalue equation are of the form

U =1 + ooty + 33
Define the difference operator ® by

q—11—1+n q13+1—k~
_ 49 % =1/ q\F 2 (_1\F1
D= 2305 (T3 ( 1) 3) + 1604 (1 ( 1) Tl) .

The difference equation for ¢) then becomes

11-=1 Kk—1

0= @’17/)1 + Q%Qs T§1 'QZ)2‘|‘
11-=1 K—2

+220:D13 + ¢q = Q T:)?l Y3+

There are three linearly independent polynomial solutions to the equa-
tion f31 = 0. We denote them by ¢”, ¢’ and ¢. A general solution is
of the form

(4.31) Y =ag" +b¢' 4+ co .

9Here we have used the relation T3 ToT1¢ = ¢, which follows from the
invariance of ¥ under the action of k, A (k)¥ = .
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The solution ¢”. We choose solution ¢” to have vanishing compo-
nents ¢4 and ¢4. Component ¢/ then is determined by the equation
(4.32) D =0
From this we get

11+l3+2 2K 1’393 Li+lg+2 1’393 F ”
—1)Fs — Tl =(1—q 2 =2 (-1F .
(07— e I T = (1 = IR ) o
We take the quotient of T5' ¢/ and ¢/ and expand,
(4.33)
T3 ol
o
(0P -8 ) ()P — ™ mh) ()P - g )
TERPERECTINN 13133 lll32I33 :
(1—(17+ > le(*l)ﬁ)“'O* T 2l (_1)F )(1— S xlzl(*l)Fl)

This is the quotient of two polynomials in x3/x1056,. The parity
operators F3 and F; introduce relative signs into the polynomials and a
single global sign each. These global signs derive from constants in 63
and 0;. We denote these constants with 0{5\3 and 95‘1 respectively. This
yields the form of ¢} as

(4.34)
—2
= (1-nZ g w09) g (BT e
1 56191 191

This determines ¢”.

The solution ¢’. We choose the solution ¢’ such that the component
¢4 vanishes. The remaining components ¢} and ¢, are determined by
the equations

l3+/€ 1

(4.35) D) = Qs T3 &
(4.36) Doy = 0 .

The equation determining ¢/ (4.36) is the same as (4.32) determining
¢]. We conclude that

(437) o =
We note that (4.35) which determines ¢} basically is (4.36) with an

inhomogeneity. Thus we make the ansatz ¢} = ¢Lbg. The operators
(=1)F* = T3 and (1 — (=1)F* T}) obey the deformed product rule

(D" =T fg=(((-D"=T) ) g+ (T /(1 -T"g.
Thus (4.35) becomes

q7l171+;<, q13+21+l€
@) o+ (T 63 (——9 -7+ o =T

l1+/i 1

= —q Qs 1¢l2
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We note that ©¢, = 0. The ansatz g = awxsfs yields
¢ (gt a=g"E 0,

and determines o = ql3+%Qs/(q% — q_%). We conclude that

¢ = (awsbs + 2202) 0, .

The solution ¢. The solution ¢ = ¢ + w202¢9 + x2¢3 is determined
by the following equations

-

(4.38) D= —q 7 QT ¢y

l3+/€ 2

(4.39) Doy = QT3 ¢
(4.40) ©¢3:0.

We proceed as before. We note that the difference operators in (4.40)
and (4.32) are the same and conclude that

Pz =
For ¢, we make the ansatz ¢, = ¢su leading to

—l1—=1+kK l3+1+k

(D) u+ (T5" 3) <—q —(1-Ti)+ (—1)F1<1—T1>>u

x303 107

l1+n 2

= —q QsT ¢3

We note that ®¢3 vanishes and make the ansatz v = PBx3f;. This
yields

—l1—2+k 1 1 Ll-m 2
q (q2—q2>ﬁ=q Qs

and determines [ = qlB'THQﬁ/(q% — q—%),
For ¢, we make the ansatz ¢; = ¢3v leading to

—l1—=1+k l3+14+k
T ) (- L—— (1 -T) + ()P (1 =T
(©as) v+ (T; ¢3)< e (=T )P 1>>v
== ll*’“ IQST o

We have already determined ¢ to be equal to ¢3Fx303. Inserting
T3 (¢3Bm363) = (T3 ¢3)q ' Basbs

together with the ansatz v = 'y:pg into the equation above, leads to
Qsﬁx303 (T ¢3) .
Q?/(Q(g> — ¢77)). We con-

—l1—=3+kK

g2 yasfs (¢ — q_l)

l1+/i 3

21341

This determines v = ﬁQs/Qq%’ = q 2
clude that

¢ = ¢y + 220202 + 1503
= (7575?2) + Broz3020s + x%) P3 -
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Note that ¢3 = ¢, = ¢}. The general solution (4.31) is thus

P = ad” + bd' + co
= ad] + b (awshs + 2262) ¢ + ¢ (7@% + Braxsth0s + IES) 03
= (a+ b(awsbs + 2200) + ¢ (y&5 + Baoxsbatds + 13)) ¢

When z, tends to 0, ¢ tends to ¥. Thus we have proven that for j, = 1
the g-reduced blocks F are of the form

Fi) = (a¥ + baif + /a?(i0)) R(L, Aly)

7

for v =—,0,+. O

Looking at the p-reduced blocks F in a little more detail we see
from the horizontal and vertical constraints that for the appropriate
coefficients 7},

F — P @R (10)7TN e a (i0) T
7 = re et (0) N 0 a2 (i0) 2

FP =t G0+t 2t (0) N T, e (0T el 2 (i6)

+
+
3
& o
!
8
X
=
~—
&
—+
ke

in the s-channel and in the u-channel

FO =i (0N 4o 1Ty 2R (10)

u

y:;%w =1 (IO S, TR ([0) TN 0 e T (g T
+ S\ A + K—2/:n\KE—2+A + k—1/:n\k—14+A + K\ R+
Fy = g, (0™ e r a2 00) N ot 2T 0) T i (0)

So we have already that the coefficients a,a,b;,b; ,c, and c;

RN B )

vanish. The remaining coefficients we determine from the Clebsch—
Gordan coefficients using the formulae (B.8) in the appendix.

roat = (<)%
robf = ()% {l~?2zi}2{}2}

s (k=) {m-2{s) (k- 3Hk-2)
rocg = (1) ¢ ({2zl+1}{zzl+2} {21, + 21} 2} )
rob = (—~1)5 0T

o SO ae —usamt {131
= (=1)"-t1—1 2
roC (-1) oh

S

(s)
roc; = (~1)%ntgh



65 The quantum group U,osp(1|2)

Y ] 347 734
roag = (1% g ESAUAREY
{25 + 1}{2i5+ 2}

u oy, 1734
robl = (*1)81(1)—1471+“+/\2 7 {67+ 13{2)

“ {213 + 2}
et — (1) g ({1%4 +3HE 2l n— 1Hs) 2B PBY (- 3Hr—2) >
0%u ¢ {213+ 2}{2l3+ 1} {215+ 2}2{2l3+ 1} {2}{2l3+ 2}{2l5+ 1}
- ;;114 k=1 %@
ol = (*1)8 * q (203}
o _ ), —1e 4 {154}
rObu - (_1)8 i {213}

(u) -
roa; = (—1)Slf*l4qNT2

The expressions for ¢ and ¢ unfortunately are rather bulky. There
might well be a way to algebraically bring them to a form more man-
ageable. This would simplify the expressions for the 6j-symbols that
depend on these coefficients.

Using the ansatz F = (a + bzif + cx?)R of (4.30) the fusing relations

(u) - lsAg 1Ay M (s)
Fu (LA = > {lm Ay 1Y Sfjsy(L,Ahc)

jre{ji 1} al

simplify to the relations

IsAs 1o LT
4. 4. + 2/m2 3N\3 2 u — . .2(:0\2
a,i0 + b} xif + ¢} 2 (10)" = {l4)\4 W I }q|5 c, x(i0)"+

l3hs 1) l*} o 0 272

+ { b (b32if + c32(10)%) +
lide L 13 ols
l3hs 1) ljr} T T L2 2
el (afif + bl zif + cfa”(i6)%) |
{14)\4 L [ ols

o g0.n_ JI3A3 1Ay I3 — 2m2
ay + by it = {l4)\4 I l_}q|scsx (i0)"+

S

I3A3 1Xo I o+ o0 2/:7\2
+ {l4)\4 I }q|5 (bsxlﬁ—i—csx (i9) )+

lsds 1o l; + + 3 + 2/:\2
+ {l4)\4 lLih l‘j_}qls (af + bfai0 + cf2*(i6)°) |
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- I3A3  1)Xo l; — 2/:7\2
au - {14)\4 ll)\l ls}q565 xr (19) +

I3As 11X I o .- 0,.27:9\2
+ {14)\4 ll)\l 1° }qﬁ (bsxle + CsT (16) ) +

s

lshs 1A Ly oo b 2m2
+ {l4)\4 ll)\l l;"}qﬁ (as +b5 1’104—081- (19) ) )

Solving these relations for the 6j-symbols we arrive at the fundamental
6j-symbols of the super quantum group U,osp(1]2). The bulky form
of ¢f and ¢ makes it unappealing to give the 6j-symbols depending
on these in terms of spins L and parities A. For said 6j-symbols we
note the construction in terms of the coefficients af, b¢ and c¢/. The
remaining 6j-symbols we give in terms of L and A.

Let £ = 31(11214 + S(jl)lfr The fundamental 6j-symbols then are

LAe b 1T {205+ 1}{215 + 2}
IsAs 1Ay [ cono rt 1Y)
u =(—1
{l4)\4 L z;}qs DT Gy
13)\3 1)\2 l; o L HT—Q
{14)\4 Y z:}qs—(_l) L
l3As 1A 7] _ (4)“@% {392} - {3+ 1 + 1}
ida ba IS {215 + 2} {215+ 1}{2l; + 2}
l3As 1A2 [ _ (_1)LQM {1} 1_ {i* + 1}3{2}
lada ha B3 {213} {20, + 2}
s 1o L\ e et {1 4 13{2)
I L P~ DT {20, + 2}
s ) qls 1

e L 1 o e\ bead

13)\3 1)\2 lz C:G,Z Cg b; b:az
(4.41Db) {14)\4 Y l_}q|5 - (bo_boaJr

{lg)\g 1As lu} _ _cja; n ch;La; .
als

{lg)\g ].)\2 l;r} Cj cja;r Cz (bi bjaj)
als

WAs L 1T

Thus we have determined the fundamental 6;-symbols of U,0sp(1|2).
Together with the recurrence relation (4.22) these determine all 6j-
symbols of the super quantum group U,osp(1|2).



CHAPTER 5
CONCLUSION AND OUTLOOK

We determined the 65 symbols of the quantum groups U,sl(2) and
U,0sp(1]2) in a way inspired by the determination of the fusing ma-
trices in WZNW models in the approach of Belavin, Polyakov and
Zamolodchikov to conformal field theory.

The four-point invariants ¥ of U,sl(2) can be decomposed into
blocks ¥(®) and ¥®

(s) o j4 j3 js jS j2 jl
(5.1a) v, <J|X)_Z<x4 3 ms>q[ms T2 le’

(u) B j4 ]u jl ju j3 j2
(5.1Db) v, (J|X)_Z(x4 my xl)q[mu 3 "EQL'

For U,0sp(1]|2) we have an analogue decomposition. These blocks are
connected linearly by the 6j-symbols

(w) _ J3 J2 Ju (s)

(5:2) i = ; {j4 J1 js}‘lljs '

We considered representations of U,;sl(2) and U,0sp(1]2) as difference
operators on the spaces Polsy;(x) and Poly(x,6). In these representa-
tions the Casimir operator and the Scasimir operator induce difference
equations the invariants fulfil. From these equations we deduced that
the invariants are of a generalised hypergeometric form. The blocks of
U,s1(2) have the form of basic hypergeometric functions

2<I>1<acb x;q) :Z%xn

n>0
The blocks of U,0sp(1]|2) have the form of a natural generalisation
thereof. They are of a super basic hypergeometric type

a blz,0\ Mw" Atn
(", A,q)—g{cm{n}! "

Inspired by the role the degenerate fields of WZNW-models play in the
determination of the fusing matrices we specialised one of the repre-
sentation to the fundamental representation, 1/2 for ¢,sl(2) and 1 for
U,0sp(1]2).

This reduces the amount of intermediate representations considerably.

67
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The remaining spins are j+ = j; +1/2 and j* = j3 4+ 1/2 for U,s1(2)
and I¥ =l +v and [} = I3+ v with v = —1,0,1 for U,0sp(1|2).
Furthermore the specialisation to the fundamental representation puts
further constraints on the form of the reduced blocks. We found that
for F = 25V. in U,s1(2) we have

F(J|x) = (af +bF) R(J|) .
For U,osp(1]2) we found
F(L,Alg) = (a + bYxif + ¥a?) R(L,Alx) for v=—,0,+ .

We determined the coefficients a,b and ¢ from the definition (5.1) of
the blocks W) and ¥® by direct evaluation of the Clebsch-Gordan
coefficients concerned.

Together with the fusing relations (5.2) this lead us to a system of
linear equations for the fundamental 6j-symbols. These fundamental
6j-symbols, together with the recurrence relation the 6j-symbols obey,
determine the 6j-symbols.

OUTLOOK

The determination of the coefficients a, b and ¢ by direct evaluation
of the Clebsch—Gordan coeffiencts is tedious and not fully in harmony
with the rest of the method. It would be satisfying to determine these
coefficients by considering further difference equations. An approach
in this direction showed much promise, but met subtle difficulties.

As an application to these ideas, it is possible to investigate the
conjecture by Feigin and Malikov [8] mentioned in the introduction.
We sketch the steps that have to be taken in this investigation.

When we consider the case of rational ¢ as a limit of generic ¢t we have
to give an argument as to why the tensor product is replaced with
the truncated tensor product. Similarily some arguments of Teschner’s
derivation in the SL(2)/SU(2)-model have to be generalised to the case
of rational .

With the help of the expressions Teschner determined for the fusing
matrices in the context of the SL(2)/SU(2)-model the normalisation
coefficients I/l]k in the equality

js o iF . ) .
Vj4jsyjsjl {j3 .]F ju} . F ) |:j3 jF:|
Ju TR TR P (R
Visj ijjF Ja o Js o
could be determined. Thus proving or disproving the conjecture.
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APPENDIX A
QUANTUM CALCULUS

We introduce the quantum generalisation of c-numbers and a dif-
ference calculus on these. We introduce the basic hypergeometric func-
tion. Finally we collect recurrence relations for the quantum Clebsch—
Gordan coefficients.

1. QUANTUM NUMBERS

Quantum numbers or g-numbers by themselves have nothing to do
with quantum theory. They date back to the 19*" century when there
was the first gold-rush for g-analogues'. An extensive introduction can
be found in the book by Klimyk and Schmiidgen [22].

qn _ qfn
(A1) [y =l =~ — =
The g-factorial [n] ! = [n]! is defined as
0! =

1
' =[1][2]---[n] forn>1.
The shifted q-factorial [a|n], = [a|n] is defined as

[al0] =1
(A2) el =ldlet1] [a1+2]-~-[a+n—1] 1forn21
la] —n] = a—1[a—2 - ja—n = @ =] forn >1

2. DIFFERENCE OPERATORS

The multiplication operator T = ¢% = ¢*% on functions of z is

defined as
T f(x) = flqz) -
L\ g-analogue of a given object is a parametrised family of objects which in-
cludes the original object for a special value of the parameter.
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When considering g-deformation, people often study variables z such
that x = ¢®. In that case T is also known as a shift operator.
From T we construct the difference operator as

¢ T—q T
g—qt
Properties. The multiplication and difference operators commute

as follows with =

Ter=qxT and [dJz=z[d,+1].

[d; +a] =

When we let ¢ tend to 1 we reproduce the identity from T and an
operator proportional to the differential quotient from the difference
operator.

3. BASIC HYPERGEOMETRIC SERIES

The basic hypergeometric series was first considered® by Eduard
Heine in the 1840s as a generalisation of Gauss’s hypergeometric se-
ries. In modern parlance it is also called the g-hypergeometric series.
The basic hypergeometric series o®1(a, b; c¢|z; q) is the solution of the
hypergeometric difference equation

(A.3) (z[dy 4+ a][dy + 0] = [dy] [dy + ¢ —1]) P(z) =0 .
We use the following series representation for ,®,

NI
A an(*|e) =

&
n>0

4. QUANTUM CLEBSCH—GORDAN COEFFICIENTS

The quantum Clebsch—Gordan-coefficients communicate the base
change between the tensor basis and the reduced basis in a tensor
product of U,-modules.

i J|Je J2| :
e, (J2; J1) = Z [m ey mJ e, ®e
q

my,m2

For a representation of U, acting as

NN j - A
WM(X )efn =C (]7 m)emzl:l ) Wm(K)eZn - qmezn )
21t is introduced in [12] and further properties are explored in [13]. To be
precise Heine considered the analogue series on quantum numbers
1—4q°

[a] = :

1—gq
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the Clebsch—Gordan-coefficients satisfy the recurrence relation
+ i e 1] —

¢ (j’m) [m:tl | 77122 7731}(1
qmlci(jz,m2 F1 [ﬂn| qu:l Tjnll ]q + q*mzci(jhml F1) [,ﬂl| 71122 mzliFl}q .

For minimal m we get

[j i C(,m+1) {j J2 J1 }
—j ,

J2 | _ ¢
q C_(jg,mg) —Jj | me—1 mq+1

mo M
i1CGeme+ 1) [ J2 J1
—j | ma+1 mp—1 p ’

- C~(j1,m1)

Analogously we get for minimal ms

gl an| _ pCU0m-DT 7 |3 5§
m|=j2 mi], Ct(,m—1) [m—=1]=j2 mi—1]

2 C+(jam) .] j2
m+1 —js

=g J1
C+(j1,m1) m1+1 q

and for minimal m,
g2 | _ i Ct(j2,m2 — 1) J J2 Ji
m|—jz mij, Cr(gm—1) |m—1|me—1 —j]|,

_ g C*(j,m) J J2 J1

C+(j2,m2) m+1|ma+1 _jl q ’






APPENDIX B
A FEW THINGS SUPER

We introduce the super prefix as a Z, grading. We introduce super
vector spaces and super algebras. The main topic of this chapter is the
combination of the super and quantum structures.

A short remark on terminology. We will name a super generalisa-
tion of a given object, say a commutator, be prefixing “super” to the
objects name. In the given case this would result in a super com-
mutator. Since we apply the same naming convention for quantum
generalisations, some primacy has to be established. We choose to
apply “quantum” first, then “super”, resulting in, say super quantum
commutator.

A highly worthwhile introduction to the mathematical side of super
symmetry is the monograph by Varadarajan [40] from which the first
two sections of this chapter draw.

1. SUPER LINEAR ALGEBRA

DEFINITION B.1. A k-super vector space V is a vector space over
the field k graded by Zs = Z/27Z. That means it decomposes into the
direct sum of two vector spaces

V=WeW.

The elements of V} are called even and V; the even subspace, elements of
V; are called odd and V; the odd subspace. Elements of either subspace
only are called homogeneous.

We introduce the parity p, a binary function on V' such that

plv,=i, i=0,1.

EXAMPLE 1. For a field k the super coordinate space k™" is as a
set isomorphic to the coordinate space k™" spanned by the vectors
e, 1t =1,2,...,m+n. The even subspace is spanned by the vectors
e, t =1,2,...,m and the odd subspace is spanned by the vectors e;,
i=m+1m+2,....n.

75
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DEFINITION B.2. A linear map f : V — W between super vector
spaces is called parity preserving if

and parity reversing if
f(‘/;)gvvi-l—lv 1=0,1.

Every linear map between super vector spaces can be decomposed into
a parity preserving and an parity reversing map. Thus the space of
linear maps between super vector spaces, say V and W, is itself a
super vector space. We denote it by Hom(V, W).

The homomorphisms of super vector spaces are the parity preserving
linear maps between them. We denote this space by Hom(V, ).

DEFINITION B.3. The super vector spaces taken as objects and the
parity preserving linear maps taken as morphisms constitute a category.
We call this category of (k-) super vector spaces .7 ¥'.

The category of super vector spaces has a lot of additional struc-
ture. We will list the ones most important to us.

Monoidal category. The category .7 is a monoidal category with
the super tensor product as monoidal product and the even super vector
space k19 as unit object.

Symmetric monoidal category. With respect to the braiding

Tvw: VW —-WaV
Tz ®y) = (_1)p(w) p(y)y ® T

LV is symmetric monoidal category.

Closed monoidal category. Super vector spaces constitute a closed
monoidal category with internal Hom object Hom(V, W), the super
vector space of all linear maps V' — W. This means that the funtor
— ® V left adjoint to the functor Hom(V, —). We have

Hom(U @ V,W) = Hom(U, Hom(V, W)) .

This is just as in the non-super case where we have that, for example
linear functions on the tensor product X ® Y of two vector spaces are
equivalent to bilinear functions on the product X x Y.

2. SUPER ALGEBRA

DEFINITION B.4. A super algebra A over the field k is a Z/2Z-
graded k-module
A=A D A,
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in such a way that the grading is compatible with the module structure
A A; C Ay

Expressed in terms of the parity we have

p(ry) =p(z) +p(y) .

Similarly the parity extends to the (super) tensor product of super
algebras.

pr®y)=p(x)+py) .

Categorially, a super algebra A is a super vector space with maps
pw:A®A— Aand n:k — A such that (A, u,n) is a monoid in the
category of super vector spaces. This expresses the commuting of the
two diagrammes in figure 11.

(A A)® A AR (A® A)

lu@id lid Ru
I 1

AR A A AR A
(a) Multiplication

ko AT A AL Aok

\ l‘u/
A
(b) Unit

FIGURE 11: A categorial monoid

EXAMPLE 2. The polynomials Pol(z,6) = Cl[z, ] in the two vari-
ables z and 0 with the relations

x0 = Oz
0* =1
is a superalgebra. The variable z is even and 6 is odd.

Remark on idempotent odd numbers. Let A be a supergalge-
bra with an odd part of dimension 2 or higher. If the odd elements are
idempotent A naturally includes the complex numbers. Consider the
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product 6;0; with 7 # j. We then have

(0.0,)" = 6 9b
(6a60)” =
(0,605)° = —0,0,
(0a00)" =

3. SUPER QUANTUM NUMBERS
Super quantum numbers are a natural extension of the construction
of the quantum numbers.
-n/2 _ (_1\nn/2
q (=1)"¢
(Bl) {n}q = {TL} = q_1/2 + q1/2

The super quantum numbers enjoy a large number of useful algebraic
properties in analogy the quantum numbers

{m} = g 2 D2 (_1)m*1q(n*1)/2
{m+n}=q¢"{n} + (-1)"¢"*{m}
{m—n} = ¢"*{m} — (1) "¢™*{n}
0={a}{b—c}+ (-1)"{b}H{c—a} + (—1)"“{c}{a — b}

-1
__4 *4q _ol iy —
{TL} - q_1/2 +q1/2 {TL 2} {TL 4}

{a}{b} —{a—1H{b+1} = (1) {—a+b+1}

For n € N we introduce the sq-factorial {n},! = {n}! by setting

(B.3) {n}={1H{2}---{n}, {0} :=1.
The shifted super q-factorial {aln}, = {a|n} is defined as

{al0} =1
(B.4) {aln} ={a}{a+1}H{a+2}---{a+n—-1} forn>1
{a| =n}={a—1}{a—-2}---{a—n} forn>1

4. SUPER DIFFERENCE OPERATORS

20z

The multiplication operator T = ¢% = ¢*% is defined as in appen-

dix A on functions of x

Tf(z) = flgr) .
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We define the super difference operator as
q—g T—% _(_1)c+xazq§ T%

(B.5) {d; + ¢}, = - :
q2+q

where d, = x0,. The difference operator commutes with = in the
following way:.

{dp +ctz=a{d, +c+1} .

5. SUPER BASIC HYPERGEOMETRIC SERIES

In the super algebra Pol(x,0) = C[z, 0] with §> = 1 consider the
super q-hypergeometric difference equation

(B.6) (20{d, + a}{d, + b} — {d,}{ds + ¢ — 1}) P(x) = 0.

This equation has two solutions parametrised by a Boolean number \.
We call the parametrised solution the super basic hypergeometric series
and denote it by oIl;(a, b; c|z,0; \; q). A series representation is given

by

(B.7) in(ac b

r0) _ - Lalnb b} o
A,q)‘g@{dn}{n}! o

6. SUPER QUANTUM CLEBSCH—(GORDAN COEFFICIENTS

The tensor product representations and the irreducible represen-
tations are intertwined by the super quantum Clebsch—Gordan coeffi-
cients.

I\
el (b, li;\) = Y [m

mi,m2

lodhy i

mo My

} e (A) @ el ().
qls

The recurrence relations are up to a sign mutatis mutandis the same
as for U,s1(2).

I\ loXg 11X my N oA I
+ 22 I1\ o + 2A2 1A1
D(lm) [m:l:l mo ml]q|5_q2D (g, m ¥ 1) [m mg F 1 ml]qls+
_ Nlabmadde — T2t IN|lA2 L
+( 1) q 2 D (ll,ml F 1) |:m my miF1 "

For minimal m we have
|:l)\ l2Aa 11\
—1

mo mi1

_ (_1)12+m2+/\2ql+71 D~ (ll, m1 + 1) BN l2 2 i\
als D— (lg,mg) —llme2—1 mi+1 al ’

_ (_1)l2+m2+1+)\2q—l+?1 D™ (l2,ma+1) [IX | l2X2 l1h 4
D—(ll,ml) -l {ma4+1 mp—1 als
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Similarly for minimal my

IX|laXa 11 _ (71>)\2 %DJr(ll’ml — 1) 1B\ loo l1\1
m|—ly mi ] D Om -1 [m-1 |-l -1
 (c1)pegm g 20 [N flde b
D*(ll,m1) m+1|—ls mp+1 als

and minimal m;

IXN{laAa il _ -4 Dt (ly,mg — 1) A loda i

m | meo —l1 qlsiq D"‘(l’m—l) m—1|mes—1 —I als ’
_ %1 D*(l,m) I\ 12)\2 ll>\1
~ U D g m) [m A1 a1~

With the normalisation

I\
—1
and our choice of
DH(l,m;A) = (=)™ {l=m}B and D~ (l,m;\) = {l+m}5,

we find for the Clebsch—Gordan coefficients with one lowest vector
(B.8a)

Py
—1
with £ = (la +mao 4+ Xo)(lh +m1) + (L +ma)(lh +mq +1)/2

(B.8b)
[l)\ loAs 11 l:/qlz(mfl)ﬂ;*ll)(”l) {l - m}'{h —mq +1+ m}'
m

= (-1

—l2 mq :|q|5 ( ) {ll — ml}'{Ql}' ’
with £/ = (ll + I —i—m))\g + (ll + 1y — l)(ll +lo -1+ 1)/2

(B.8c)

IN|lohg 11\ _ (_1)(l2+m2+1)(l+m)q(l'HQ")ll {l — m}'{12 —mo+ 1+ m}'
m | mo —ll als {lg —mg}!{Ql}!

lodg 11\
=1
L—=1 -k ols

lo Ao ll)\1:| _ (_1)£q7 (l1+m%)(l+1) {lg +ma + 11 + ml}'
my - ma | {ly + mo}{ly +my}!’
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