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Abstract

We introduce a novel method to determine 6j-symbols of quantum
groups. This method is inspired by the methods used in the deter-
mination of fusing matrices of WZNW models. With this method we
determine the 6j-symbols of the quantum group Uqsl(2) and the super
quantum group Uqosp(1|2).

We present the 6j-symbols as a recurrence relation and its initial
values. The 6j-symbols transform between the s-channel and the u-
channel decomposition of the invariants of the four-fold tensor product
of modules of a quantum group. These invariants fulfil certain differ-
ence equations.
We set one of the representations in the invariant to the fundamental
representation, and deduce a system of linear equations for the initial
values of the recurrence relation determining the 6j-symbols.

Zusammenfassung

Wir führen eine neue Methode ein, die 6j-Symbole von Quantengrup-
pen zu bestimmen. Inspiriert wird diese Methode durch Methoden,
die in der Bestimmung der Fusionsmatrizen von WZNW-Modellen zur
Anwendung kommen. Mit Hilfe dieser Methode bestimmen wir die
6j-Symbole der Quantengruppe Uqsl(2) und der Superquantengruppe
Uqosp(1|2).

Wir stellen die 6j-Symbole als eine Rekursionsrelation samt An-
fangswerten dar. Die 6j-Symbole verbindet die s-Kanal- mit der u-
Kanalzerlegung der Invarianten des vierfachen Tensorproduktes von
Modulen der Quantengruppe. Diese Invarianten erfüllen bestimmte
Differenzengleichungen.
Wenn eine der Darstellungen der Invarianten auf die fundamentale
Darstellung eingeschränkt wird, können wir ein System linearer Gle-
ichungen für die Anfangsbedingungen der Rekursionsrelationen der 6j-
Symbole herleiten.
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Chapter 1
Introduction

Two-dimensional conformal symmetry has been a highly success-
ful tool of theoretical and mathematical physics for the past 25 years.
In statistical models at the critical point we have conformal symme-
try. This does not only help in the solution of models at the critical
point, but makes possible the exploration of models in the vicinity of
that point via conformal perturbation theory. String theory depends
on conformal symmetry to make sure the world sheet description is in-
dependent of the parametrisation of the string. Vertex operators have
cross fertilised into pure mathematics where they proliferate in repre-
sentation theory and were used in the proof of the monstrous moon-
shine conjecture. Conformal symmetry has recently found a way into
probability theory as the scaling limit of certain percolation models.

Despite these successes a classification of conformal field theory is
far from complete. There are some well understood classes of con-
formal field theories. Among these are the celebrated minimal models
and the Wess–Zumino–Novikov–Witten models (WZNW models in the
following). In search of further classes of conformal field theories it is
plausible to make the first steps by examining which generalisations of
these well understood theories are possible. String theory on curved
backgrounds for example demands a specific generalisation of WZNW
models.
A further interesting feature is the connection to quantum groups. It
has been shown that the superselection structure of WZNW models
is equivalent to representation categories of corresponding quantum
groups as a braided monoidal category. This correspondence can be
formulated in terms of basic objects in both theories, in terms of the
conformal blocks and invariant tensors.
We express these basic objects as a recurrence relation and its initial
values simplifying this correspondence.

Before we state the original content of this work, we have to intro-
duce the setting in which the main body of this work takes places. We
give a quick overview of conformal field theory, especially the WZNW
models and quantum groups. Quantum numbers and quantum calcu-
lus are introduced in appendix A. The introduction of super quantum
numbers and a cursory overview of super linear algebra and super al-
gebras have been relegated to appendix B.

1



Conformal field theory 2

With these things in place we state the content of this work in section
4 and give an overview of the main body.

1. Conformal field theory

The seminal work of Belavin, Polyakov and Zamolodchikov [4] de-
scribes a conformal field theory in the setting of Euclidean quantum
field theory as the correlators of a large number of local fields A(z, z).
These fields are called scaling fields too. The set of local fields has the
following properties.

(1) The derivative ∂A of a local field A is a local field again.
(2) There is a subset of local fields, called quasi-primary fields that

transform under projective conformal transformations

z 7→ w(z) =
az + b

cz + d
as

Φ(z, z) 7→

(
∂w

∂z

)h(
∂w

∂z

)h

Φ(w(z), w(z)) .

(3) Any local field A can be written as a linear combination of
quasi-primary fields and their derivatives.

(4) The vacuum is invariant under projective conformal transfor-
mations.

(5) Since in two dimensions the set of conformal transformations
extends to include the analytic transformations, we can iden-
tify a further subset of the local fields in two dimensional the-
ories.
The subset of primary fields contains the quasi-primary fields
that transform as

Φ(z, z) 7→

(
∂w

∂z

)h(
∂w

∂z

)h

Φ(w(z), w(z)) .

under any conformal transformation.

All fields that are not primary are called descendant or secondary fields.
The parameters h, h̄ are called the conformal weights of the primary
field Φ. They are connected to two parameters of statistical physics,
the scaling dimension d = h+ h̄ and the conformal spin s = h− h̄.

The space of states of a conformal field theories is a module for the
Virasoro algebra. The Virasoro algebra is the algebra with generators
{Ln | n ∈ Z} and the central charge c subject to the relations

[Lm, Ln] = (m− n)Lm+n +
c

12
m(m2 − 1)δm+n,0 .



3 Introduction

This is the basis for the second approach to conformal field theory.
The space of states for a conformal field theory is a Hilbert space H
decomposing into Virasoro modules

H =
⊕

h,h̄

Hh ⊗ H̄h̄ .

The Laurent modes Ln of the energy-momentum tensor T and the
corresponding antiholomorphic objects are

T (z) =
∑

n∈Z

z−n−2Ln, T̄ (z̄) =
∑

n∈Z

z̄−n−2L̄n .

Thus we have formally Ln =
∮

dz
2πi
zn+1T (z). The Laurent modes fulfil

the relations for two commuting copies of the Virasoro algebra.

[Lm, Ln] = (m− n)Lm+n +
c

12
m(m2 − 1)δm+n,0 ,

[L̄m, L̄n] = (m− n)L̄m+n +
c

12
m(m2 − 1)δm+n,0 ,

[Lm, L̄n] = 0 .

The halves are called the chiral algebras.
Note that the generators L−1, L0 and L1 form a subalgebra isomor-

phic to sl(2). This algebra is often called the global or the projective
conformal transformations.

The modes Ln of the energy-momentum tensor act on a primary
field Φ(z, z̄) of conformal weight h by

(1.1) [Ln,Φ(z, z̄)] = zn(z∂z + h(n + 1))Φ(z, z̄) .

In the following we will mainly be considering the holomorphic chiral
half of the theory.

Primary fields Φ of conformal weight h generate a Virasoro module
by the Verma module construction1. The primary field itself corre-
sponds to a highest weight vector of weight h. Its descendant fields are
constructed in terms of the Virasoro generators Φ(nl,...,n1) = L−nk

· · ·L−n1Φ

(LnΦ) (z, z̄) =
1

2πi

∮

z

wn+1T (w)Φ(z, z̄) .

The span of a primary field Φ and its descendants is called a conformal

family and denoted by [Φ].

1Given a highest weight vector vh, Lnvh = 0, n > 0 the Verma module is
the linear span of all elements L−nk

· · ·L−n1vh. Virasoro elements act on such
an elements by concatenation, if they are negative and if they are positive by
LmL−nvh = [Lm, L−n]vh. More on the Verma module follows below.
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Conformal symmetry strongly constrains the correlation functions2.
Correlation functions of primary fields Φi transform covariantly under
conformal transformations z 7→ w = w(z)

〈ΦN (zN) · · ·Φ1(z1)〉 =

N∏

i=1

(
dwi

dzi

)hi

〈ΦN(wN) · · ·Φ1(w1)〉 .

This leads to the fact, that all n-point functions with n ≥ 2 depend on
the differences zij = zi − zj only. It furthermore fixes the form of two-
and three-point functions of primary fields

〈Φ2(z2)Φ1(z1)〉 = z−h1
12 C12δh1,h2 ,

〈Φ3(z3)Φ2(z2)Φ1(z1)〉 = z
h3
12

12 z
h1
23

23 z
h2
13

13 C123 ,

with hk
ij = −hi − hj + hk. In the normalisation where Cij = δi,j the

coefficient Cijk is just the coefficient of the operator product expansion
of ΦiΦj

Φi(z)Φj(w) =
∑

k

Cijk

(z − w)hi+hj−hk
Φk(w) + · · · .

The four-point functions are determined up to a function of the cross-

ratios

z =
z43z21
z42z31

.

With the parameter γij such that
∑

i γij = 2hj the four-point functions
are of the form

〈Φ4(z4) · · ·Φ1(z1)〉 =
∏

i<j

z
γij

ij G
32
41(z) .

A correlation function of descendant fields can be expressed via the
conformal symmetry as a string of differential operators acting on the
correlation function of primary fields only3

〈
Φ(nm,...,n1)(z)ΦN (zN ) · · ·Φ1(z1)

〉

= Lnm
(z) · · · Ln1(z) 〈Φ(z)ΦN (zN) · · ·Φ1(z1)〉 .

The differential operators L are given by

Ln(z) =
N∑

i=1

(
(1 − n)hi

(z − zi)n
−

1

(z − zi)n−1
∂zi

)
.

2Details can be found in any introductory work on conformal field theory, for
example the book by Di Francesco, Mathieu and Senechal[5], the book by Henkel
[14] or the article by Ginsparg [11].

3This fact is based on (1.1) and gives rises to the conformal Ward identities.
The derivation is demonstrated for example in [4].
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In some conformal field theories there are null fields. These are descen-
dant fields χ(ml,...,m1) from a primary field χ such that all correlation
functions including this field vanish,

〈
ΦnΦn−1 · · ·χ

(ml,...,m1) · · ·Φ1

〉
= 0 .

Primary fields χ having null fields in their families are called degener-

ate fields. The families are also referred to as degenerate. The basic
idea of work by Belavin, Polyakov and Zamolodchikov [4] is to use de-
generate fields to find additional differential equations for correlation
functions containing these fields. Analogously in a Virasoro module
there can appear nullvectors, vectors orthogonal to all vectors of the
module generating a highest weight sub-module.

The state-operator correspondence translates the problem of clas-
sifying the degenerate fields into a purely representation theoretical
problem. In a well behaved conformal field theory primary fields are in
one to one correspondence to vectors of highest weight in a representa-
tion of the Virasoro algebra. Let |0〉 be the vacuum of a given theory
and vh a vector of weight h. We then have for a field Φ of conformal
weight h that

vh = lim
z→0

Φ(z)|0〉

is a vector of highest weight h. The last equality is the limit of the
more general

ezL−1vh = Φ(z)|0〉 .

When we let Φ(v|z) denote the field corresponding to the vector v we
can express the state-operator correspondence4 by

LnΦ(v|z) = Φ(Lnv|z) .

In purely representation theoretical terms of Virasoro modules we
get the very same structure. Given a highest weight vector vh,

Lnvh = 0 , for n > 0 ,

the negative modes L−n generate the Verma module Mh spanned by
vectors of the form

v(h;nl,...,n1) = L−nl
· · ·L−n1vh .

The number N =
∑l

i=1 ni is called the level of the vector. The Verma
module is not necessarily irreducible. It may contain null vectors n,
that is vectors of level N > 0 generating a submodule of their own with
themselves as highest weight vector of weight h+N

Lnn = 0 , for n > 0 .

Such a Verma module is called degenerate. To get a irreducible module
we have to divide all nullvectors out. Let Nh = span{n ∈ Mh | Lnn =

4This can be seen by lim
z→0

LnΦ(v|z)|0〉 = Lnv = lim
z→0

Φ(Lnv|z)|0〉.
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0, n > 0} be the set of all submodules of the Verma module Mh. Then
we get an irreducible module Vh by setting

Vh = Mh/Nh .

The first basic result of the representation theory of the Virasoro alge-
bra5 states that Mh is unitary if and only if c = c(m), h = h(m), for
some m ∈ R \ {0, 1} and some r, s ∈ N with s < r where

c(m) = 1 −
6

m
(m+ 1) and h(m) =

((m+ 1)r −ms)2 − 1

4m
(m+ 1) .

Conformal blocks. Consider now a correlation function 〈Φ4Φ3Φ2Φ1〉
of four primary fields Φi in the operator picture. There are two viable
ways to decompose the correlation function into three-point functions.
One way is to insert the operator product expansion for Φ2Φ1 and de-
termine the resulting three-point functions, the other is to insert the
operator product expansion for Φ3Φ2 and determine the three-point
functions resulting from this insertion. Let Z denote the four-tuple
(z4, z3, z2, z1).

〈Φ4Φ3Φ2Φ1〉 =
∑

s

∑

k

Ck

12s

zh1+h2−hs+K
21

〈
Φ4Φ3Φ

k

s

〉

=
∑

s

C12sCs34F
(s)32

41(s|Z) .

The second insertion leads to

〈Φ4Φ3Φ2Φ1〉 =
∑

s

C23sC1s4F
(u)32

41(s|Z) .

The functions F (s) and F (u) are called the s-channel and the u-channel
conformal blocks. In general an explicit expression for the conformal
block is not known.

Correlation functions of local fields do not depend on the order in
which the fields appear in the correlation function. A requirement for
physical consistency is thus that the s- and the u-channel decompo-
sition of the four-point functions give the same result. This is called
the crossing symmetry. From that it can be argued that the conformal
blocks have to be related by a transformation F

F (u)32

41(u|Z) =
∑

s

Fus [ 3 2
4 1 ]F (s)32

41(s|Z) .

The coefficients Fus [ 3 2
4 1 ] form the fusing matrix.

5this was found by Kac in [15]. See [16] for a proof.
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The minimal models. The minimal models introduced by Belavin,
Polyakov and Zamolodchikov [4] correspond to degenerate Virasoro
representations with m = p/(q− p), where p and q are relatively prime
positive integers and r ≤ p − 1, s ≤ q − 1 [4]. The conformal weights
are periodic according to

hr,s(p, q) = hr+p,s+q(p, q) .

Graphically considering the lattice of allowed values (r, s) for a given
pair (p, q) we get the Kac table. Each dot in the diagramme corresponds
to a primary field of conformal weight hr,s(p, q).

0 r

s

Figure 1: Kac table for (p, q) = (4, 3)

Indeed the minimal models have become the prototype for certain
classes of conformal field theories. The next step of generalisation are
the rational conformal field theories. Rational conformal field theories
emulate the structure of minimal models in so far as they have only
a finite number of primary fields. The WZNW models6 for compact
groups are examples of rational conformal field theories.

The rational conformal field theories share as a common trait that
all correlation functions decompose into a finite sum of products of
holomorphic and antiholomorphic parts

〈Φn · · ·Φ1〉 =
N∑

i=1

|Fn,...,1(ji|zn, . . . , z1)|
2 ,

with representation labels ji. The space of states decomposes into a
finite number of modules for the symmetry algebra of the theory.

H =
N⊕

i=1

Hhi
⊗ H̄h̄i

.

6named after Julius Wess, Bruno Zumino, Sergei Novikov and Edward Witten.
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Because of the decomposition Hhi
⊗ H̄h̄i

of each sector into two parts,
corresponding to the holomorphic and antiholomorphic parts of the
fields, the symmetry algebra is called a chiral algebra.

WZNW models. WZNW models are a class of nonlinear sigma
models taking values in the manifold of a compact simply-connected
Lie group G. Let g be the Lie algebra of G. Then the Hilbert space
of states is organised as sum of representations of the model’s current
algebra, the affine Kac–Moody algebra ĝk. Let g be a Lie algebra
with a basis {Ja | a = 1, 2, . . . , dimg}, structure constants fab

c and
invariant bilinear form ηab. The Kac–Moody algebra ĝk is generated
by the elements

{Ja
n | a = 1, 2, . . . , dimg, n ∈ Z}

with the product

[Ja
m, J

b
n] =

∑

c

ifab
c J

c
m+n + kmηa,bδm+n,0 .

Collecting the modes Ja
m into a generating function

Ja(z) =
∑

n∈Z

z−n−1Ja
n

the algebraic properties of the product are encoded in the operator
product expansion

Ja(z)J b(w) =
kηa,b

(z − w)2
+

ifab
c

z − w
+ · · · .

The Verma modules for the Kac–Moody algebra ĝk are quite similar
to the ones for the Virasoro algebra. Let R be a representation of
the Lie algebra g. The representation R, also called the zero mode

representation now generates the Verma module. Given a vector v in
the zero mode representation R the positive modes act as

Ja
nv = 0 , for n > 0

Ja
0 v = R(Ja)v

and the negative modes Ja
−n generate the Verma module MR,k

MR,k = span
{
Jal
−nl

· · ·Ja1
−n1

v
∣∣ v ∈ R, l ∈ N

}
.

The number N =
∑l

i=1 ni is called the level of the vector. The Verma
module is not necessarily irreducible. It may contain null vectors n,
that is vectors of level N > 0 generating a submodule of their own

Ja
nn = 0 , for n > 0 .

Such a Verma module is called degenerate. To get a irreducible mod-
ule we have to divide all nullvectors out. Let NR,k = span{n ∈
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MR,k | Ja
nn = 0, n > 0} be the set of all submodules of the Verma

module MR,k. Then we get an irreducible module VR,k by setting

VR,k = MR,k/NR,k .

Each ĝk-module is a Virasoro module by the Sugawara construction

Ln = −
1

2(k + h∨)

∑

l∈Z,a

Ja
−lJ

a
l+n ,

L0 = −
1

2(k + h∨)

∑

a

(
Ja

0J
a
0 +

∑

l∈Z

Ja
−lJ

a
l+n

)
.

Here h∨ is the dual Coxeter number. It depends on the structure
constants via h∨δa,b =

∑
c,d f

ac
d f

bc
d . The modes Ln satisfy the relations

of the Virasoro algebra and couple to the modes Ja
m of the current

algebra

[Lm, J
a
n] = −nJa

m+n ,

[Lm, Ln] = (m− n)Lm+n +m(m2 − 1)
ck
k
δm+n,0 ,

with

ck =
k dimg

k + h∨
.

The WZNW primary fields ΦR(v|z), labelled by a zero mode rep-
resentation R and a vector v ∈ R, are the fields transforming in a
particularly simple way under the current algebra.

[Ja
n ,Φ

R(v|z)] = znΦR(Jav|z) .

2. Quantum groups

At an early point relations between conformal field theories and
quantum groups were observed by Alvarez-Gaumé, Goméz and Sierra
[1] as well as Moore and Seiberg [29, 30]. Subsequently these ob-
served correspondences were rigorously proven by Kazhdan and Lusztig
[19, 20, 21] and Finkelberg [10].

Quantum groups are generalisations or q-deformations of universal
enveloping algebras of Lie algebras appearing, among other places, in
soluble models of statistical physics and quantum field theory. Quan-
tum groups are a particular kind of Hopf algebras. They were popu-
larised by Drinfel’d in his report [6] to the International Congress of
Mathematicians in 1986.

A Hopf algebra H is a unital algebra with product m and unit
1 inducing a map η : C → A such that η(α) = α1, together with
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additional linear maps ∆: A → A ⊗ A, the coproduct, ε : A → C, the
counit and S : H → H , called the antipode or coinverse satisfying the
equations

(∆ ⊗ id) ◦ ∆ = (id⊗∆) ◦ ∆ ,

(ε⊗ id) ◦ ∆ = id = (id⊗ε) ◦ ∆ ,
(1.2)

∆(ab) = ∆(a)∆(b) , ∆(1) = 1 ⊗ 1 ,

ε(ab) = ε(a)ε(b) , ε(1) = 1 ,
(1.3)

(1.4) m ◦ (S ⊗ id) ◦ ∆ = η ◦ ε = m ◦ (id⊗S) ◦ ∆ .

The first two equations make H a coalgebra. The following equa-
tions ensure the compatibility of algebra and coalgebra structure of H ,
making H a bialgebra. The maps ∆ and ε are algebra homomorphisms
and m and η are coalgebra homomorphisms. The last equation char-
acterising the antipode makes H a genuine Hopf algebra.
An element g of a Hopf algebra is called group-like if ∆(g) = g ⊗ g.
A Hopf algebra that is also a ∗-algebra is called a Hopf ∗-algebra.

It has been argued by Mack and Schomerus [25] that quantum
groups are a natural extension of the concept of symmetry in the set-
ting of quantum theory. Consider a quantum mechanical system with
Hamiltonian H whose Hilbert space of states H is generated from a
ground state |0〉 by field operators ΨI

i (r, t), with representation label
I. A Hopf algebra A with a conjugation operation ∗, unit element e,
coproduct ∆, counit ε and antipode S is called a symmetry of this
system if H carries a unitary representation U of A, the ground state
|0〉 is invariant, all representation operators U(φ) commute with the
Hamiltonian, and field operators transform covariantly. This means
that for all φ ∈ A we should have

U(φ∗) = U(φ)∗

U(φ)|0〉 = |0〉ε(φ)

[U(φ), H ] = 0

U(φ)ΨI
i =

∑

j,p

ΨI
jτ

I
ij(φ

(1)
p )U(φ(2)

p ) .

Here ∆(φ) =
∑

p φ
(1)
p ⊗ φ

(2)
p is the coproduct in Sweedler notation

and τ I
ij are matrix elements in a representation labelled by I.

3. The correspondence

Kazhdan and Lusztig showed that the superselection structure of
WZNW models and the categories of finite dimensional representations
of corresponding quantum groups are isomorphic as braided monoidal
categories. The earliest observed example is that the SU(2)-WZNW
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model corresponds to the category of finite dimensional representa-
tions of Uqsu(2) for q = exp(2πi/(k + 2)) with the truncated tensor
product for rational k.

A braided monoidal category is a category C together with an as-

sociativity isomorphism

α : (V 3 ⊗ V 2) ⊗ V 1 ∼
−→ V 3 ⊗ (V 2 ⊗ V 1) ,

satisfying the pentagon relation

((V 4 ⊗ V 3⊗)V 2) ⊗ V 1
id⊗α

//

α

��

(V 4 ⊗ (V 3 ⊗ V 2)) ⊗ V 1
α

// V 4 ⊗ ((V 3 ⊗ V 2) ⊗ V 1)

α⊗id

��

(V 4 ⊗ V 3) ⊗ (V 2 ⊗ V 1)
α⊗id

// V 4 ⊗ (V 3 ⊗ (V 2 ⊗ V 1))

and a braiding isomorphism

β : V 2 ⊗ V 1 ∼
−→ V 1 ⊗ V 2 ,

satisfying the hexagon relation

V 3 ⊗ (V 2 ⊗ V 1)
α //

id⊗β
��

(V 3 ⊗ V 2) ⊗ V 1 β
// (V 1 ⊗ (V 3 ⊗ V 2))

α

��

V 3 ⊗ (V 1 ⊗ V 2)
α // (V 3 ⊗ V 1) ⊗ V 2

β⊗id
// (V 1 ⊗ V 3) ⊗ V 2

In the case of the Lie algebra sl(2) the pentagon relation is related
to the Biedenharn–Elliot equation.
The isomorphism of the superselection structure of a WZNW model
and the category of finite dimensional representations of the corre-
sponding quantum group is now expressible as follows. The 6j-symbols
correspond to the associativity isomorphism for the representations of
the quantum group. The fusing matrices correspond to the associativ-
ity isomorphism for the superselection structure of the WZNW model.
Since both categories are isomorphic the 6j-symbols and the fusing
matrices can only differ by a normalisation.

(1.5)
νj3

j4js
νj2

jsj1

νju

j4j1
νj3

juj2

{
j3 j2 ju
j4 j1 js

}
= Fjujs

[
j3 j2
j4 j1

]
.

What to expect in a broader setting is not so clear. There are a
few examples, among them the following.
In the generalised setting of the Liouville model, a non-rational confor-
mal field theory, Ponsot and Teschner found in [34] that the model’s
superselection structure corresponds to a category of infinite dimen-
sional representations of the non-compact quantum group Uqsl(2,R).
The point of interest of this work is an observation of Feigin and Ma-
likov [8]. On basis of the fusion rules they conjectured a correspondence
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of the SL(2)-WZNW model at rational k and a category of representa-
tions for the super quantum group Uqsl(2) × Uq ′osp(1|2).

4. This work

We introduce a novel method to determine 6j-symbols of quantum
groups inspired by the determination of fusing matrices of WZNW
models in the bootstrap approach to conformal field theory.

We represent the 6j-symbols as a recurrence relation and a set of
initial values, the fundamental 6j-symbols. We find a representation
of the quantum group in terms of multiplication operators Tx = qdx

and difference operators [dx + a] acting on functions of a variable x,
where dx is the “power counting” operator x∂x. In a quantum group
the symbol [n] denotes the quantum number or q-number

[n] =
qn − q−1

q − q−1
.

In a super quantum group it represents the super quantum number

{n} =
q−

n
2 − (−1)nq

n
2

q−
1
2 + q

1
2

.

The invariants of the four-fold tensor product, the four-point invari-

ants are intertwined by the 6j-symbols. We find a subset of invariants,
intertwined by the fundamental 6j-symbols. In the considered repre-
sentation the Casimir operator takes the form of a difference equation
on the invariants.
In conformal field theory degenerate fields provide additional differ-
ential equations correlation functions containing these fields have to
suffice. We observe that the fundamental representations7 play a simi-
lar role for the quantum groups.
An ansatz for the invariants of this subset, motivated by this observa-
tion and properties of the hypergeometric series, finally yields a system
of linear equations that determines the fundamental 6j-symbols.

The great advantage of the proposed method is that it is easily
adapted when one deals with super quantum groups. The determina-
tion of the 6j-symbols of the super quantum group Uqosp(1|2) bears
a striking similarity to the analogue determination for the quantum
group Uqsl(2).

The proposed method is important for the study of non-rational
conformal field theories because it states results of rational conformal

7The fundamental representation is the representation out of which by repeated
tensor product all other representations can be generated.
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field theory in a way that is generalisable to the non-rational case.
In the same vein the proposed method would open an approach to-
wards a version of the Kazhdan–Lusztig correspondence for generalised
WZNW models.

A direct result is a different version of the sl(2)-case of the Kazhdan–
Lusztig correspondence. In the recursive presentation the proportion-
ality (1.5) between the 6j-symbols and the fusing matrices becomes the
proportionality of the fundamental 6j-symbols and fusing matrices

(1.6)
νj3

j4js
νjF

jsj1

νju

j4j1
νj3

jujF

{
j3 jF ju
j4 j1 js

}
= Fjujs

[
j3 jF

j4 j1

]

together with the equivalence of the corresponding recurrence relations.
The representation with label jF is the fundamental representation.
This simplifies for example the calculatory effort needed to test for a
proposed equality of a given WZNW model and a given quantum group.

As an application to these ideas, it would be possible to investigate
the above mentioned conjecture by Feigin and Malikov [8]. Teschner

determined the fundamental fusing matrices for a ŝl(2)k current alge-
bra in the context of the non-compact SL(2,C)/SU(2)-WZNW model.

In the following we will determine the fundamental 6j-symbols of
the quantum group Uqsl(2) and of the super quantum group Uqosp(1|2).

In chapter 2 we introduce the SL(2)-WZNW model. In chapter 3 we
determine the fundamental 6j-symbols of the quantum group Uqsl(2).
A rather strikingly similar deduction in chapter 4 will yield the funda-
mental 6j-symbols of the super quantum group Uqosp(1|2). We discuss
our findings in chapter 5 and finish with an outlook. Appendix A con-
tains a short introduction on quantum numbers and quantum calculus.
It introduces the basic hypergeometric series and the Clebsch–Gordan
coefficients of the quantum group Uqsl(2). Super vector spaces and
super algebra are quickly reviewed in appendix B. Furthermore there
we introduce super quantum numbers, the super basic hypergeomet-
ric series and the Clebsch–Gordan coefficients of the quantum group
Uqosp(1|2).





Chapter 2
The SL(2)-WZNW model

In this chapter we present the method to derive fusing matrices
based on the approach of Belavin, Polyakov and Zamolodchikov and
the approach of Moore and Seiberg.

The four-point functions of a WZNW-model fulfil the Knizhnik–Za-
molodchikov equations. These equations were introduced by Knizhnik
and Zamolodchikov in [23].
Four-point functions containing a degenerate field satisfy yet a further
differential equation. The additional differential equation for the de-
generate field at j = j2,1 = 1/2 was determined and solved by Fateev
and Zamolodchikov in [7]. Teschner determined and solved the differ-
ential equation for the degenerate field at j = j1,2 = −t/2.

The correlation functions fulfil the Knizhnik–Zamilodchikov equa-
tion. A correlation function containing a degenerate field satisfies an
additional differential equation. We consider the degenerate fields Φ21

of spin 1/2 and Φ12 of spin −t/2.
Correlation functions containing one of these fields are then of the form
of a hypergeometric series 2F1in the case of the degenerate field Φ21 and
of a generalised hypergeometric series F1 of two variables in the case
of the degenerate field Φ12.

The fusing matrices transform between different decompositions of
the four-point function. They fulfil a recurrence relation. The initial
values of this relation are the fundamental fusing matrices.
The fusing matrices linearly connect the conformal blocks in the s-
channel decomposition with those in the u-channel decomposition. They
fulfil a recurrence relation. The initial values of this recurrence relation
are just the reduced fusing matrices connecting the reduced conformal
blocks.
The connection coefficients for the different hypergeometric functions
are well known. The identification of the reduced conformal blocks with
certain hypergeometric functions thus determines the reduced fusing
matrices. The recurrence relation determines the full fusing matrices.
Thus the fusing matrices are determined.

15
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The SL(2)-WZNW model is a WZNW model with current algebra

ŝl(2)k. We call this model “SL(2)-model” because we do not want
to choose a ∗-structure, because it is not used in the derivation of
the fusing matrices. The derivation is in terms of the current algebra
only. Specific instances of the SL-WZNW model are the SU(2)-WZNW
model and the SL(2,C)/SU(2)-WZNW model, also known as the H+

3 -
model.
The SL(2)-model is a generalised WZNW model in two respects. Firstly
the target space SL(2) is non-compact. Secondly the admissible repre-
sentations when k is not an integer are non-unitary.

The model’s chiral current algebra is generated by Ja(z), a =
+, 0,− with modes

Ja(z) =
∑

n∈Z

z−n−1Ja
n

subject to the relations

[J0
m, J

0
n] = −

k

2
mδm+n,0

[J0
m, J

±
n ] = ±J±

m+n

[J−
m, J

+
n ] = 2J0

m+n + kmδm+n,0 .

The zero mode algebra is realised as differential operators Da
x, where

D+
x = −x2∂x + 2xj , D0

x = x∂x − j , D−
x = ∂x .

The primary fields Φj(x|z) are defined by the action of the currents
on them. The currents act on the primary fields as

Ja(z)Φj(x, w) =
1

z − w
Da

xΦ
j(x, w) + · · · .

The primary fields Φj have a conformal weight

h(j) =
j(j + 1)

k + 2
.

Chiral descendant fields are defined for each monomial Jal
−nl

· · ·Ja1
−n1

as
the normal ordered product

l∏

i=1

1

(ni − 1)!
:
(
∂nl−1

z Jal
)
· · ·
(
∂n1−1

z Ja1
)
Φj(x|z) : .

We are interested in the case of t = k+ 2 non-integer. Feigin, Fuks
and Malikov [9] showed that in this case, degenerate fields appear for
spin j = jr,s with

2j+
r,s + 1 = (r − 1) − (s− 1)t , (r, s) ≥ (1, 0) ,

2j−r,s + 1 = −(r − 1) + (s− 1)t , (r, s) ≥ (1, 1) .
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Different approaches have been used to solve the SL(2)-model. The
case of rational t is the one considered by Feigin and Malikov [8]. In his
analysis of the H+

3 or SL(2,C)/SU(2) model Teschner [38, 39] used
the bootstrap approach of Belavin, Polyakov and Zamolodchikov we
will present in the following. See also Petersen, Rasmussen and Yu
[32, 33] for a different approach.

The fusing matrices transform between different decompositions of
the four-point function. They fulfil a recurrence relation. The initial
values of this relation are the fundamental fusing matrices.
Independent of this the four-point functions fulfil the Knizhnik–Zamo-
lodchikov equations. These equations were introduced by Knizhnik and
Zamolodchikov in [23].
Four-point functions containing a degenerate field satisfy yet a further
differential equation. The additional differential equation for the de-
generate field at j = j2,1 = 1/2 was determined and solved by Fateev
and Zamolodchikov in [7]. Teschner determined and solved the differ-
ential equation for the degenerate field at j = j1,2 = −t/2.
The following derivation of the differential equations for the four-point
functions and of the fundamental fusing matrices in terms of vertex
operators is given by Kanie and Tsuchiya in [17] in great detail.

1. Conformal blocks

Four-point functions of primary fields Φj(x|z) depend on two con-
tinuous variables. The variable x encodes the data of the Kac–Moody

zero-mode representation. The Kac–Moody algebra ŝl(2)k contains
sl(2) as a subalgebra. The sl(2)-invariance determines the x-dependence
of the three-point function uniquely. The four-point function is deter-
mined only up to a dependency on the cross-ratio1

x =
x41x23

x43x21
.

The two ways to decompose the correlation function into three-point
functions are called s- and u-channel decomposition. Denote the four-
point function of primary fields by

〈
Φj4(x4, z4)Φ

j3(x3, z3)Φ
j2(x2, z2)Φ

j1(x1, z1)
〉

= G(J |X|Z) ,

where the uppercase letters J , X and Z collect the four-tuples of cor-
responding lowercase variables. The first way is to insert the operator
product expansion for Φj4Φj3 and determine the resulting three-point
functions,

G(J |X|Z) =

∫

js

C(j1, j2, js)C(js, j3, j4)F
(s)
js

(J |X|Z) ,

1Note the difference in the indices with respect to the cross-ratio of the zi.
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the second is to insert the operator product expansion for Φj3Φj2 and
determine the three-point functions resulting from this insertion

G(J |X|Z) =

∫

ju

C(j2, j3, ju)C(j1, ju, j4)F
(s)
ju

(J |X|Z) .

Here the uppercase letters denote the four-tuples of corresponding vari-
ables, for example X = (x4, x3, x2, x1). The functions F (s) and F (u) are
called the s-channel and the u-channel conformal blocks.

An explicit form of the conformal blocks, which is especially handy
in the following is

F (i)
ji

(J |X|Z) =
x

j43
21

43 x
2j2
42 x

j41
23

41 x
j123
4

31

z
h43
21

43 z
2h2
42 z

h41
23

41 z
h123
4

31

F (i)
ji

(J |x|z) .

The symbols jab
cd and j123

4 are defined by the sums ja + jb − jc − jd and
j1 + j2 + j3 − j4 respectively. The symbols hab

cd and h123
4 are defined

analogously. Furthermore we introduce the label κ for the sum j123
4 .

The Knizhnik–Zamolodchikov equation. An additional con-
straint on the correlation functions of a WZNW model is the Knizhnik–
Zamolodchikov equation. On a four-point function G(J |X|Z) of pri-
mary fields the Knizhnik–Zamolodchikov equations take the form

t∂zi
G(J |X|Z) =

4∑

k=1
k 6=i

Dik

zi − zk
G(J |X|Z) .

The differential operators Dik are

Dik = −D0
xi

D0
xk

+ 1
2

(
D+

xi
D−

xk
+ D−

xi
D+

xk

)
.

In the limit of (x4, x3, x2, x1) → (∞, x, 0, 1) the equation for z2 reduces
to (

t∂z2 −
P

z2 − z1
−

Q

z2 − z3

)
F (s)

js
(J |x|Z) = 0 ,

with the second order differential operators

P = x2(1 − x)∂2
x + ((κ− 1)x2 − 2j1x− 2j2x(1 − x))∂x − 2j2κx+ 2j1j2

Q = (1 − x)2x∂2
x + (−(κ− 1)(1 − x)2 + 2j3(1 − x) − 2j2x(1 − x))∂x

− 2j2κ(1 − x) + 2j3j2 .

When we further let (z4, z3, z2, z1) → (∞, 1, z, 0) we arrive at

(
− tz(z − 1)∂z + x(1 − x)(z − x)∂2

x+

+
(
(1 − κ)(z − 2zx+ x2) + 2j1x(1 − z) + 2j2x(1 − x) + 2j3z(1 − x)

)
∂x+

+ 2j2κ(x− z) + 2j1j2(z − 1) + 2j3j2z
)
F

(i)
ji

(J |x|z) = 0

(2.1)
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A recursive solution to this equation is found by using the ansatz

(2.2) F (s)
js

(J |x|z) = zλ

∞∑

n=0

znΨ
(s,n)
js

(J |x) .

For n = 0 this equation reduces to a hypergeometric differential equa-

tion (P − tλ)Ψ
(s,0)
js

= 0
(
x(1 − x)∂2

x + ((1 − x)2a + (κ− 1)x− 2j1 − 2j2(1 − x)) ∂x

+ a(κ− 1) − 2j2κ
)
Ψ(0),j

s (J |x) = 0 ,

provided a = 1
2

+ j1 + j2 ±
(
(1

2
+ j1 + j2)

2 − 2j1j2 − tλ
) 1

2 = j12(j) + n,
n = 0.
The u-channel decomposition of the four point function gives a reduced
Knizhnik–Zamolodchikov equation equal to (2.1) with x and (1−x), z
and (1 − z) as well as j1 and j3 exchanged. Using the same recursive

ansatz for n = 0 we get (Q − tλ)Ψ
(u,0)
ju

= 0. We denote the u-channel

conformal blocks by F (u)
ju

(J |x|z).

Degenerate fields. Correlation functions including a degenerate
field satisfy an additional differential equation. The degenerate fields
we need in order to determine the fundamental fusing matrices are the
degenerate primary fields Φ21 and Φ12 with spin equal to j2,1 = 1

2
and

j1,2 = − t
2

respectively.

The degenerate field Φ21. The case of the field Φ21 transforming in
the spin 1/2 representation has been among the first degenerate fields

for the algebra ŝl(2)k to be studied [7]. We will give a overview of the
derivation of the conformal block in order to emphasise the approach
we want to reuse in the quantum group case. The field Φ21 obeys the
following equation

∂2
xΦ21(x|z) = 0 .

This means that conformal block containing the degenerate field with
spin j2,1 satisfy the further equation

∂2
xF

(i)
ji

= 0 .

For definiteness we set the second spin j2 = 1/2. The intermediate spins
appearing in the s-channel decomposition are j1+1/2 and j1−1/2. We
call these j+

s and j−s respectively. The intermediate spins appearing in
the u-channel decomposition are j±u = j3 ± 1/2. Naturally the ansatz
for the conformal blocks with such a degenerate field is F(J |x|z) =
F0(J |z) +xF1(J |z). Because of the form (2.2) of the conformal blocks,
the conformal blocks with j2 = 1/2 can be expressed as

(2.3) F (s)

j±s
(J |x|z) =

(
a±s + b±s x

)
R(s)(J |z) .
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The term R is proportional to F0 and F1. A set of solutions is given
by Teschner in terms of the hypergeometric series

2F1(a, b; c; z) =
∑

n≥0

(a)n (b)n

(c)n n!
zn .

The symbol (a)n is the shifted factorial and defined as

(a)n = a(a + 1)(a+ 2) · · · (a+ n− 1) =
Γ(a+ n)

Γ(a)
.

The connection between the different values of the hypergeometric
function are well know and determine the fundamental fusing matrices.
Teschner [38] gives the formulae

F (s)

j+
s

=
Γ(w)Γ(w − u− v)

Γ(w − u)Γ(w − v)
F (u)

j+
u

+
Γ(w)Γ(u+ v − w + 1)

Γ(u+ 1)Γ(v)
F (u)

j−u

F (s)

j−s
=

Γ(1 − w)Γ(w − u− v)

Γ(−u)Γ(1 − v)
F (u)

j+
u

+
Γ(1 − w)Γ(u+ v + w + 1)

Γ(u− w + 1)Γ(v − w + 1)
F (u)

j−u
.

(2.4)

The coefficients are

u = −b2(j134 + 3/2) − 1 , v = −b2j13
4 , w = −b2(2j1 + 1) .

The degenerate field Φ12. The determination of the conformal blocks
with one degenerate field Φ12 with spin −t/2 follows the same structure.
The field Φ12 follows the equation of motion given by

:
(
J+(x|z)∂2

x − 2(1 + t)J0(x|z)∂x − t(1 + t)J−(x|z)
)
Φ1,2(x|z) := 0 ,

with Ja(x|z) = exJ−
0 Ja(z)e−xJ−

0 . This determines2 a third order differ-
ential equation satisfied by the conformal blocks containing a degener-
ate field of spin j1,2. It is of the form

0 =
(
x(x− 1)(x− z)∂3

x+

− ((κ − 2)(x2 − 2zx+ z) + 2j1x(z − 1) − 2(1 + t)x(x− 1) + 2j3x(x− 1))∂2
x+

− (2(1 + t)(j1(z − 1) + j3z − (κ− 1)(z − x)) − t(1 + t)(x+ z + 1))∂x+

− t(1 + t)κ
)
F

(i)
ji

(J |x|z)

This can be brought to the form satisfied by the generalised hyperge-
ometric series of Appell3

F1(a, b1, b1; c; x, z) =
∑

m,n≥0

(a)m+n (b1)m (b2)n

(c)m+nm!n!
xmzn .

It can be shown that for non-integer values of 2j1 − t and t there exist

three linearly independent conformal blocks F (s)
js

of intermediate spin

2Details can be found in [38].
3Detail can be found in Slater’s monograph [37].
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js in the s-channel that can be identified with a generalised hypergeo-
metric function F1. The three possible spins are

j+
s = j1 −

t
2
, j−s = j1 + t

2
and j◦s = −j1 − 1 + t

2
.

From the connection coefficients of F1 Teschner determined the fol-
lowing relations between the s-channel and the u-channel conformal
blocks

F1,2
s+ =

Γ(γ)Γ(γ − β − β′ − α)

Γ(γ − α)Γ(γ − β − β′)
F1,2

t+ +
Γ(γ)Γ(α+ β′ − γ)

Γ(α)Γ(β′)
F1,2

t−

+
Γ(γ)Γ(γ − α− β′)Γ(α+ β + β′ − γ)

Γ(α)Γ(γ − α)Γ(β)
F1,2

t◦

F1,2
s− =

Γ(2 + β − γ)Γ(γ − β − β′ − α)

Γ(1 − β′)Γ(1 − α)
F1,2

t+

+ eπiβ Γ(2 + β − γ)Γ(α+ β′ − γ)

Γ(1 + β + β′ − γ)Γ(1 − γ + α)
F1,2

t−

+ eπi(β+β′+α−γ) Γ(2 + β − γ)Γ(γ − α− β′)Γ(α + β + β′ − γ)

Γ(1 − β′)Γ(1 + β + β′ − γ)Γ(β)
F1,2

t◦

F1,2
s◦ =

Γ(γ − β)

Γ(1 − β)

(
Γ(2 − γ)Γ(γ − β − β′ − α)

Γ(γ − β − β′)Γ(1 − α)
F1,2

t+

− eπiγ Γ(2 − γ)Γ(α+ β′ − γ)

Γ(1 + α− γ)Γ(β′)
F1,2

t−

+ eπiγ

(
eπi(β+β′−γ) sinπγ

sinπβ
−

sinπ(γ − α)

sinπ(γ − α− β′)

)
Γ(2 − γ)Γ(α+ β + β′ − γ)

Γ(β)Γ(1 + α+ β′ − γ)
F1,2

t◦

)
.

(2.5)

The arguments expressed in spins ji are

α = j4 − j1 − j3 + t/2 β = t

β ′ = t/2 − j1 − j3 − j4 − 1 γ = t− 2j1 .

2. Fusing matrices

Crossing symmetry states that the two decompositions of the four-
point function are in fact equal. In other words, the two decompositions
correspond to different bases in the space of conformal blocks. The
fusion matrices relate the two bases linearly.

F (s)
js

(J |X|Z) =

∫
dµ(ju)Fjsju

[
j2 j3
j1 j4

]
F (u)

ju
(J |X|Z) .

For the conformal blocks with degenerate representations of spin 1/2
or −t/2 this linear relation becomes a sum of finitely many terms

F (s)
js

(J |X|Z) =

ju,max∑

ju=ju,min

Fjsju

[
j2 j3
j1 j4

]
F (u)

ju
(J |X|Z) .
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The recurrence relation. Moore and Seiberg derive a polynomial
relation for the fusing matrices4

∑

s

Fp2s

[
j k
p1 b

]
Fp1l [ i s

a b ] Fsr

[
i j
l k

]
= Fp1r

[
i j
a p2

]
Fp2l [ r k

a b ] .

They also show that the fusing matrices are symmetric under the fol-
lowing permutation of indices

Fpq

[
j k
i l

]
= Fpq

[
i l
j k

]
= Fpq

[
l i
k j

]

and have the following orthogonality property
∑

q

Fpq

[
j k
i l

]
Fpq

[
l k
i j

]
= δp,q .

From this it is possible to derive a recurrence relation for the fusing
matrices.

The fundamental fusing matrices for conformal blocks with one de-
generate field are identified with the connection coefficients of the hy-
pergeometric functions 2F1 and F1 as already done in (2.4) and (2.5).

4The polynomial relation was first noted in [28]. More detail can be found in
[30].



Chapter 3
The quantum group Uqsl(2)

In this chapter we determine the 6j-symbols of the quantum group
Uqsl(2). We do this by the method introduced in the preceding chapter.

We represent the generators of Uq as difference operators. The
invariant tensors play an analogue role to the correlation functions in
the WZNW-model. The Casimir operator induces a difference equation
all invariant tensors satisfy. This fixes the the four-point invariants to
a q-hypergeometric form.
We set the representation label j2 to the fundamental representation
1/2. This further restricts the fundamental four-point functions to a
form from which it is possible to deduce a system of linear equations
that determine the fundamental 6j-symbols connecting the s-channel
decomposition and the u-channel decomposition.

The quantum group Uqsl(2) is the Hopf algebra generated by the
elements E,F,K and K−1 and the relations

(3.1)
KEK−1 = qE [E,F ] = −

K2 −K−2

q − q−1

KFK−1 = q−1F KK−1 = K−1K = 1 .

When there is little cause for confusion, we will write Uq for short. The
coproduct ∆ : Uq → Uq ⊗ Uq is given by

(3.2)

∆(E) = E ⊗K +K−1 ⊗E

∆(F ) = F ⊗K +K−1 ⊗ F

∆(K) = K ⊗K

∆(K−1) = K−1 ⊗K−1 .

Counit ε : Uq → C and antipode S : Uq → Uq are

(3.3) ε(K) = ε(K−1) = 1 ε(E) = ε(F ) = 0

and

(3.4)
S(E) = −qE S(K) = K−1

S(F ) = −q−1F S(K−1) = K .

23
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The quantum Casimir operator is the element

Cq = FE −
qK2 + q−1K−2 − 2

(q − q−1)2
= EF −

q−1K2 + qK−2 − 2

(q − q−1)2
.

When q is not a root of unity, the quantum Casimir operator gen-
erates the centre Zq of Uq .

1. Finite dimensional representations

A representation (π, V ) of the quantum group Uq is a linear space
V together with a linear map π : Uq → End(V ) such that π(XY ) =
π(X)π(Y ) for all X, Y ∈ Uq .
Let (π, V ) be a representation of Uq . For every complex number λ
define Vλ := {v ∈ V | π(K)v = λv}. We call every nontrivial Vλ the
weight space corresponding to the weight λ. Nonzero vectors in Vλ are
called weight vectors or vector of weight λ1. A vector v ∈ V is called a
vector of highest weight λ′ if π(E)v = 0 and π(K)v = λ′v. In this case
λ′ is called the highest weight of the representation (π, V ).
If V is the direct sum of weight spaces of π, we call (π, V ) a weight

representation.

The value of the parameter q divides the representation theory of
the quantum group Uqsl(2) into two cases.

Generic q. If q is not a root of unity, the representation theory
proceeds along the same paths as for the undeformed sl(2). The fi-
nite dimensional irreducible representations2, the spin representations
of Uqsl(2) are labelled by a positive half integer spin j. It can be shown3

that every finite dimensional representation of Uqsl(2) is a weight repre-
sentation and that every finite dimensional representation π of Uqsl(2)
is completely reducible, i.e., π is a direct sum of irreducible represen-
tations.

For generic q the center of Uq is generated by unit and Casimir
operator Cq alone.

Rational q. When q is a root of unity, the center as well as the
classes of representations extend. Let

qn = 1 .

1In the following vectors of weight λ will be called eigenvectors of π(K) with
eigenvalue λ too. In addition whenever λ = qm we will call m weight or eigenvalue
too.

2To be precise, the representations corresponding to representations of sl(2)
depend on the spin j and a parameter w such that w4 = 1. We will omit this
parameter.

3see for example the books by Kassel [18] or Klimyk and Schmüdgen [22].
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Then the generators En, F n and Kn are elements of the center as well.
In the class of irreducible representations cyclic and semi-cyclic rep-
resentations appear4. These are representations with neither highest
nor lowest weights and only highest or lowest weights respectively. A
vastly complicating factor is that the tensor product of irreducible rep-
resentations is not necessarily decomposable for rational q. A miti-
gating circumstance is that these unwieldy representations occur for
spin 2j + 1 = n only. Below this bound the representation theory is
basically as for generic q. The set of spin representations, semi-cyclic
and indecomposable representations form a closed set under the tensor
product5. Indecomposable representations appear6 in the tensor prod-
uct of the representations j1 and j2 if j1 + j2 > n.

We will confine ourselves to generic q in the following.

There are two realisations of finite dimensional representations of
highest weight of Uq we will be considering in the following. We call
these the m- and the x-representation. Since we are interested espe-
cially in quantum Clebsch–Gordan coefficients and 3j symbols of these,
we will need the dual of each representations too.

The m-representation. Consider the irreducible representation
(V j , πm) of highest weight qj for j ∈ 1

2
N on the vector space V j . There

is a basis {
ej

m

∣∣ m = −j,−j + 1, . . . , j
}

on which the generators E and F act as raising and lowering operators
X±, destroying the vector of highest weight e

j
j and of lowest weight

e
j
−j respectively

(3.5a) πm(X±)ej
m = C±(j,m)ej

m±1 , πm(K)ej
m = qmej

m ,

(3.5b) πm(X+)ej
j = πm(X−)ej

−j = 0 .

In the physics literature is conventional to choose a basis {f j
m | m =

−j,−j + 1, . . . , j} such that

C±(j,m) = ∓([j ∓m][j ±m+ 1])
1
2

holds. Most results on quantum Clebsch–Gordan coefficients and quan-
tum 3j symbols are stated with respect to this basis. We will however
choose a basis {ej

m | m = −j,−j + 1, . . . , j} such that

(3.5c) C±(j,m) = ∓[j ∓m] .

4Arnaudon [2] gives a good classification.
5see Arnaudon [2].
6as demonstrated by Pasquier and Saleur in [31].
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The basis {f j
m} and the renormalised basis {ej

m} are connected through
a rescaling by

(3.6) ej
m = N (j,m)

1
2 f j

m N (j,m) =
[j +m]! [j −m]!

[2j]!
.

We will call the basis {ej
m} the m-basis and the Uq representation πm

on it the m-representation in the following.

The quantum Casimir is identically
[
j + 1

2

]2
on this representation.

The transposed m-representation. The space dual to V j is the space
(V j)∗ of complex valued functions on V j. It admits a basis

{
ěj

m

∣∣ m = −j,−j + 1, . . . , j
}

such that

ěj
m(ej

n) = δm,n .

The basis {ěj
m} is called the basis dual to the basis {ej

m}. The bilinear
form

(3.7)
(
ej

m, e
j
m

)
= ěj

m(ej
n) = δm,n .

induces the structure of a right Uq -module on (V j)∗, that is πt
m : Uq →

End((V j)∗) is an antihomomorphism of algebras, inverting the sequence
of all factors in products. We have

(3.8a) πt
m(X±)ěj

m = C±(j,m∓ 1)ěj
m∓1 , πt

m(K)ěj
m = qměj

m ,

(3.8b) πt
m(X+)ěj

−j = πt
m(X−)ěj

j = 0 .

and

πt
m(Cq) ≡

[
j + 1

2

]2
.

Invariant bilinear form. The invariant bilinear form Bq is the
bilinear form on V j invariant under Uq . Let v be a vector in V j ⊗ V j .
The invariance under Uq then means

Bq (∆(K)v) = Bq (v) ,

Bq (∆(a)v) = 0 , for a = E,F .

Extend Bq to all finite dimensional Uq -modules such that different mod-
ules are orthogonal. We have then, up to a j2-dependent normalisation

Bq

(
ej2

m2
⊗ ej1

m1

)
= δj2,j1δm2+m1,0(−1)j2+m2qj2+m2N (j2, m2) .

The factor N is the same as the renormalisation in (3.6). We compress
the coefficients of the invariant bilinear form into

(3.9) N̄ (j,m) = (−1)j+mqj+mN (j,m) .
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Decomposition of tensor products. The Clebsch–Gordan quan-
tum coefficients intertwine tensor products of irreducible representa-
tions and irreducible representations of Uq .

(3.10) ej
m(j2, j1) =

∑

m1,m2

[
j
m

∣∣∣∣
j2 j1
m2 m1

]

q

ej2
m2

⊗ ej1
m1

.

The Clebsch–Gordan quantum coefficients are equal to zero unless sev-
eral constraints are met.

|j1 − j2| ≤ j ≤ j1 + j2

m = m1 +m2

−ji ≤ mi ≤ ji .

(3.11)

We call the first two horizontal constraints and the remaining the verti-
cal constraints. The Clebsch–Gordan-coefficients satisfy the recurrence
relations

C±(j,m)
[

j
m±1

∣∣ j2 j1
m2 m1

]
q

=

qm1C±(j2,m2 ∓ 1)
[

j
m | j2 j1

m2∓1 m1

]
q
+ q−m2C±(j1,m1 ∓ 1)

[
j
m | j2 j1

m2 m1∓1

]
q
.

By these relations the Clebsch–Gordan coefficients are only determined
up to a function of the representation labels ji. We choose a normali-
sation for the Clebsch–Gordan coefficients that will ease computations
later. We set

(3.12)

[
j
−j

∣∣∣∣
j2 j1

j1 − j −j1

]

q

= 1 .

This normalisation differs from the Condon–Shortley convention.

The Clebsch–Gordan coefficients fulfil the following orthogonality
and completeness relations.

∑

m1,m2

[
j
m

∣∣∣∣
j2 j1
m2 m1

]

q

[
j′

m′

∣∣∣∣
j2 j1

−m2 −m1

]

q

N̄ (j2, m2)N̄ (j1, m1)

= δj,j′δm+m′,0δ(j1, j2, j)N̄ (j,m)

(3.13a)

∑

j,m

[
j
m

∣∣∣∣
j2 j1
m2 m1

]

q

[
j

−m

∣∣∣∣
j2 j1
m′

2 m′
1

]

q

×

×
N̄ (j2, m2)N̄ (j2, m

′
2)N̄ (j1, m1)N̄ (j1, m

′
1)

N̄ (j,m)

= δm2+m′
2,0δm1+m′

1,0N̄ (j2, m2)N̄ (j1, m1)

(3.13b)

This can be seen as follows. The Clebsch–Gordan coefficients have
inverses

ej2
m2

⊗ ej1
m1

=
∑

j,m

[
j
m

∣∣∣∣
j2 j1
m2 m1

]t

q

ej
m(j1, j2) .
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With these the Clebsch–Gordan coefficients satisfy a further set of re-
lations

X

m2,m1

»

j

m

˛

˛

˛

˛

j2 j1
m2 m1

– »

j′

−m′

˛

˛

˛

˛

j2 j1
m2 m1

–t

N̄ (j′,−m
′)

= δj,j′δm+m′,0N̄ (j, m)

X

j,m

»

j

m

˛

˛

˛

˛

j2 j1
m2 m1

–t »

j

m

˛

˛

˛

˛

j2 j1
−m′

2 −m′
1

–

N̄ (j2,−m
′
2)N̄ (j1,−m

′
1)

= δm2+m′

2,0δm1+m′

1,0N̄ (j2,−m
′
2)N̄ (j1,−m

′
1)

X

j,m

»

j

m

˛

˛

˛

˛

j2 j1
m2 m1

–t »

j

m

˛

˛

˛

˛

j2 j1
−m′

2 −m′
1

–t

¯N (j, m)

= δm2+m′

2,0δm1+m′

1,0
¯N (j2, m2) ¯N (j1, m1)

Comparing coefficients we see that

(3.14)

[
j
m

∣∣∣∣
j2 j1
m2 m1

]t

q

=

[
j

−m

∣∣∣∣
j2 j1

−m2 −m1

]

q

N̄ (j2, m2)N̄ (j1, m1)

N̄ (j,m)
.

From this it is possible to derive the orthogonality and completeness
relations.

Invariants. Invariants in the n-fold tensor product can be con-
structed using Clebsch–Gordan decomposition in the (n− 1)-fold ten-
sor product together with an invariant in the two-fold tensor product.
This invariant in the two-fold tensor product is the invariant bilinear
form Bq. It is connected to certain Clebsch–Gordan coefficients. On
the module V j2 ⊗ V j1 we have

Bq

(
j2 j1
m2 m1

)
:=

[
0
0

∣∣∣∣
j2 j1
m2 m1

]

q

.

In our normalisation the invariant 2-form is

Bq

(
j2 j1
m2 m1

)
= δj2,j1δm2+m1,0 (−1)j2+m2q−j2−m2N (j2,m2)

−2 .

For sl(2) the invariant of the three-fold tensor product is known
as the Wigner 3j symbol. The 3j symbols are defined by lowering
one index in the Clebsch–Gordan coefficients by means of the invariant
2-form

(3.15)

(
j3 j2 j1
m3 m2 m1

)

q

:=

j∑

m=−j

Bq

(
j3 j
m3 m

)[
j
m

∣∣∣∣
j2 j1
m2 m1

]

q

.
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=

m3 m2 m1 m m2 m1

j1j2

j

j3

j1j2
j3

Figure 2: Wigner 3j symbol, invariant bilinear form and Clebsch–
Gordan coefficient

The x-representation. The second realisation of πj needed in out
construction is “dual” to the m-basis in a different sense. Consider the
generating polynomial7 in the indeterminate x−1 for the m-basis

(3.16) ej(x) =

j∑

m=−j

x−j−mej
m .

Let Pol2j(x
−1) be the linear space of polynomials in the indeterminate

x−1 of degree 2j. Via the generating polynomial our choice of C± then
induces for every j ∈ 1

2
N from the m-representation a right Uq -module

structure on Pol2j(x
−1). The elements of Uq act as finite difference

operators T and [dx + a] where T = Tx = qx∂x ∈ End(Pol2j(x)) and
x∂x = dx such that

T f(x) = f(qx) and [dx + a] =
qa

T−q−a
T

−1

q − q−1
.

(3.17)

πx(K) = q−j
T

−1
x ,

πx(E) = − [dx + 2j]x ,

πx(F ) = − [dx]x
−1 ,

and

πx(Cq) ≡ −
[
j + 1

2

]2
.

We call this the x-representation.

7Note that in a coordinate z such that x = eiz this equivalent to the Fourier
series. The inverse transformation is

ej
m =

∮

0

dx xj+m−1ej(x) .
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The transposed x-representation. The space Pol2j(x) of polynomi-
als in the indeterminate x is dual to Pol2j(x

−1) via the bilinear form
(·, ·)x : Pol2j(x) × Pol2j(x

−1)

(q, p)x =

∮

0

dx

x
q(x)p(x) .

Note that this bilinear form is just the residue of qp at x = 0. The
basis {xj+m | m = −j,−j+1, . . . , j} is the basis dual to {x−j−m} with
respect to this pairing.

We find a left Uq -module structure on Pol2j(x). Uq acts in the
transposed of the x-representation.

(3.18)

πt
x(K) = q−j

Tx ,

πt
x(E) = x [dx − 2j] ,

πt
x(F ) = x−1 [dx]

and

πt
x(Cq) ≡ −

[
j + 1

2

]2
.

This is the transposed x-representation and concludes the series of re-
alisations we will need in the following.

Clebsch–Gordan coefficients and 3j-symbols in the x basis.

Analogously to the generating function of (3.16) we introduce quantum
3j symbols and Clebsch–Gordan coefficients in the x variable by de-
manding that every xi appearing in such an expression should indicate
a generating function of said expression in terms of the corresponding
mi. Consider the following example.

(
j3 j2 j1
x3 m2 m1

)

q

:=

j3∑

m3=−j3

xj3+m3
3

(
j3 j2 j1
m3 m2 m1

)

q

.

Clebsch–Gordan coefficients in the x basis intertwine tensor product
and irreducible representations in the x basis by

ej(j2, j1; x) =

∮

0

dx2

x2

∮

0

dx1

x1

[
j
x

∣∣∣∣
j2 j1
x2 x1

]

q

ej2(x2) ⊗ ej1(x1) .

Limits in x. We regard the indeterminate x as a point in the
complex projective plane PC. The points 0 and ∞ then have a spe-
cial meaning for polynomials in x. They single out the coefficients of
the lowest, respectively highest power of x. Concretely, for f j(x) =∑j

m=−j fmx
j+m we have

lim
x→0

f j(x) = f−j ,

lim
x→∞

x−2jf j(x) = fj .
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From this we see, that the endomorphism q−j
Tx representing K has

the following effect in these limits

πt
x(K)f(x) →

{
q−jf−j for x→ 0 ,

qjfj for x→ ∞ .

2. Invariant tensors

Invariant tensors will be our key ingredient to the determination of
the fundamental quantum 6j-symbols. An invariant tensor t of Uq is
an element of

⊗
i V

ji invariant under the action of Uq . That is to say
the relations

(3.19) Kt = t and Et = Ft = 0

hold. Invariant three-tensors and quantum 3j symbols8 are in one-to-
one correspondence.

Four-point invariants. An invariant tensor Ψ ∈ V j4⊗V j3⊗V j2⊗
V j1 will be called a four-point invariant. Graphically we can depict it
as in figure 3.

Ψ

x4 x3 x2 x1

Figure 3: A four-point invariant

To shorten expressions in the four-fold tensor product, we introduce
the notation J = (j4, j3, j2, j1) and X = (x4, x3, x2, x1). Thus we write
for a function f in the four-fold tensor product

f(J |X) = f

(
j4 j3 j2 j1
x4 x3 x2 x1

)
.

We can compose such an invariant using only the structures we al-
ready have at hand: the Clebsch–Gordan coefficients and the quantum
3j-symbols.

Ψ(J |X) =
∑

js

Ψ
(s)
js

(J |X) ,

8and thus quantum Clebsch–Gordan coefficients
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where

(3.20) Ψ
(s)
js

(J |X) =

js∑

ms=−js

(
j4 j3 js
x4 x3 ms

)

q

[
js
ms

∣∣∣∣
j2 j1
x2 x1

]

q

.

This construction is depicted in figure 4.

Ψ =
∑

js

js

x4 x3 x2 x1 x4 x3 x2 x1

Figure 4: Decomposition of a four-point invariant — the s-channel

There is another way to arrive at a four-point invariant using Clebsch–
Gordan coefficients and quantum 3j-symbols, namely

(3.21) Ψ
(u)
ju

(J |X) =

ju∑

mu=−ju

(
j4 j1 ju
x4 x1 mu

)

q

[
ju
mu

∣∣∣∣
j3 j2
x3 x2

]

q

.

Ψ =
∑

ju

ju

x4 x3 x2 x1 x4 x3 x2 x1

Figure 5: The u-channel decomposition

We refer to these two different decompositions as s- and u-channel.



33 The quantum group Uqsl(2)

3. Quantum 6j-symbols

The quantum 6j-symbols communicate the basis change between
different reduced bases ej

m(j3, j12) and ej
m(j1, j23) of triple tensor prod-

ucts V j1 ⊗ V j2 ⊗ V j3 of Uq modules.

ej4
m4

(ju(j3, j2), j1) =
∑

js

{
j3 j2 ju
j4 j1 js

}

q

ej4
m4

(j3, js(j2, j1)) .

ej4
m4

(j3, js(j2, j1)) =
∑

ju

{
j3 j2 js
j4 j1 ju

}t

q

ej4
m4

(ju(j3, j2), j1) .

Thus they allow for the expression of the u-channel decomposition of
the four-point invariant in terms of the s-channel decomposition and
vice versa. When we express a vector of the reduced basis as string
diagramme we get the graphical representation of the action of the 6j-
symbols in figure 6.

j3 j2 j1

ju

j4

=
∑

j21

{
j2 j3 ju
j1 j4 js

}

q

j3 j2 j1

js

j4

Figure 6: Connecting reduced bases in the triple tensor product

Consider the representation of the 6j-symbols in terms of Clebsch–
Gordan coefficients

{
j2 j3 ju
j1 j4 js

}

q

=
∑

m3,m2,m1

[
j4
m123

∣∣∣∣
ju j1
m23 m1

]

q

[
ju
m23

∣∣∣∣
j3 j2
m3 m2

]

q

×

×

[
js
m12

∣∣∣∣
j2 j1
m2 m1

]t

q

[
j4
m123

∣∣∣∣
j3 js
m3 m12

]t

q

,

{
j2 j3 ju
j1 j4 js

}t

q

=
∑

m3,m2,m1

[
j4
m123

∣∣∣∣
j3 js
m3 m12

]

q

[
js
m12

∣∣∣∣
j2 j1
m2 m1

]

q

×

×

[
ju
m23

∣∣∣∣
j3 j2
m3 m2

]t

q

[
j4
m123

∣∣∣∣
ju j1
m23 m1

]t

q

,

where m12 = m1+m2, m23 = m2+m3 andm123 = m1+m2+m3. Using
the proportionality (3.14) between the Clebsch–Gordan coefficients and
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their transposes we quickly see that the 6j-symbols fulfil the following
orthogonality relations

∑

ju

{
j2 j3 ju
j1 j4 js

}

q

{
j2 j3 ju
j1 j4 j′s

}

q

= δjs,j′s ,(3.22a)

∑

js

{
j2 j3 ju
j1 j4 js

}

q

{
j2 j3 j′u
j1 j4 js

}

q

= δju,j′u .(3.22b)

Given a triple (j, j2, j1) we call the inequalities |j2 − j1| ≤ j ≤
j2 + j1 the triangle condition. From the representation in terms of
Clebsch–Gordan coefficients we additionally draw, that the 6j-symbols
vanish whenever one of the triples (j4, ju, j1), (ju, j3, j2), (j2, j2, j1) and
(j4, j3, js) does not satisfy the triangle condition.

Recurrence relations for the quantum 6j-symbols. We con-
sider the four-fold tensor product V d ⊗ V c ⊗ V b ⊗ V a. Let e denote
the spin of the reduced basis. The pentagon relation for Uq encodes
the way the different bases of the four-fold tensor product correspond
to each other. We have

d c b a

j
i
e

d c b a

i
g

e

d c b a

g
h

e

d c b a

f
h

e

d c b a

fj

e

Figure 7: Pentagon relations

{
d c h
e f j

}

q

{
j b f
e a i

}

q

=
∑

g

{
c d f
h a g

}

q

{
d g h
e a i

}

q

{
d c g
i b j

}

q

.

With the help of the orthogonality relation (3.22a) we get an equality
with only one 6j-symbol on the left-hand side.
{
j b f
e a i

}

q

=
∑

g,h

{
d c h
e f j

}

q

{
c b f
h a g

}

q

{
d g h
e a i

}

q

{
d c g
i b j

}

q

.
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We specialise this equation. We set d = 1
2

and c = j − 1
2
.

{
j b f
e a i

}

q

=
∑

g,h

{
1
2 j − 1

2 h
e f j

}

q

{
j − 1

2 b f
h a g

}

q

{
1
2 g h
e a i

}

q

{
1
2 j − 1

2 g
i b j

}

q

.

The triangle condition constrains h and g by |j − 1| ≤ g, h ≤ j and∣∣g − 1
2

∣∣ ≤ h ≤ g + 1
2
. This means we have an expression for the 6j-

symbol
{

j b f
e a i

}
in terms of one 6j-symbol with j−1/2 and fundamental

6j-symbols with one spin equal to 1/2

(3.23)

{
j b f
e a i

}

q

=
∑

g,h

S(a, b, f, i, j; h, g)

{
j − 1

2
b f

h a g

}

q

.

Action on the four-point invariants. From the definition of
the invariant tensors as product of Clebsch–Gordan coefficients and
an invariant bilinear form the action of the 6j-symbols on the four-
point invariants can be deduced. In the following we will determine

=
∑

js

{
j3 j2 ju
j4 j1 js

}

q

ju js

x4 x3 x2 x1 x4 x3 x2 x1

Figure 8: The action of the quantum 6j-symbol

the fundamental four-point invariants that are connected by the fun-
damental 6j-symbols. This gives a set of equations for the fundamental
6j-symbols. The solutions to these are just the initial values to the re-
currence relation above.

K invariance. We determine asymptotic properties of the four-
point invariants Ψ through their invariance under K. We define one
special limit Ψ̌ of the four-point invariant Ψ as

Ψ
(i)
ji

(J |X)
x2→0
−−−−→
x4→∞

Ψ̌
(i)
ji

(J |x3, x1) .

We call Ψ̌ the reduced blocks of Uq .
Let T denote the multiplication operator on functions of x, such

that

T f(x) = f(qx) .
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Proposition 3.1. The reduced blocks Ψ̌ have the structure of a

function of the quotient x = x3/x1 times monomials in x1 and x3

(3.24) Ψ̌
(i)
ji

(J |x3, x1) = x
α

(i)
1

1 x
α

(i)
3

3 F (i)
ji

(J |x) ,

such that α
(i)
1 + α

(i)
3 = j1 + j2 + j3 − j4 =: κ for i = s, u.

Proof. Let i be either s or u. K is a group-like element. Invariance
under K thus means, we have for both, s- and u-channel

KΨ
(i)
ji

(J |X) = Ψ
(i)
ji

(J |X) .

From the tensor representation of K we get

KΨ
(i)
ji

(J |X) = (K ⊗K ⊗K ⊗K)Ψ
(i)
ji

(J |X)

x2→0
−−−−→
x4→∞

qj4−j2K(3)K(1)Ψ̌
(i)
ji

(J |x3, x1)

= q−j123
4 T3 T1 Ψ̌

(i)
ji

(J |x3, x1) .

This says, that Ψ̌ is a function of the quotient x = x1/x3 times

monomials in x1 and x3 such that α
(i)
1 + α

(i)
3 = j123

4 for i = s, u, as
propositioned.

�

Corollary 3.1. From that we gather an inverse proportionality

between T1 and T3

(3.25) T1 Ψ̌
(i)
ji

(J |x3, x1) = qκ
T
−1
3 Ψ̌

(i)
ji

(J |x3, x1) .

For the difference operator

[dx + a] =
qa

Tx −q−a
T

−1

q − q−1

this entails

[d1 + a] Ψ̌
(i)
ji

= − [d3 − a− κ] Ψ̌
(i)
ji
.

To determine the exponents α
(i)
1 and α

(i)
3 , we look at the decompo-

sitions

Ψ
(s)
js

(J |X) =
∑

ms

(
j4 j3 js
x4 x3 ms

)

q

[
js
ms

∣∣∣∣
j2 j1
x2 x1

]

q

,(3.26a)

Ψ
(u)
ju

(J |X) =
∑

mu

(
j4 ju j1
x4 mu x1

)

q

[
ju
mu

∣∣∣∣
j3 j2
x3 x2

]

q

(3.26b)

of the four-point invariants. Consider the s-channel. There we have

Ψ
(s)
j (J |X) =

∑

mi

xj4+m4

4 xj3+m3

3 xj2+m2

2 xj1+m1

1

(
j4 j3 j
m4 m3 m

)

q

[
j
m

∣∣∣∣
j2 j1
m2 m1

]

q
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and in the limit (x4, x2) → (∞, 0)

→
∑

ms,m3,m1

xj3+m3

3 xj1+m1

1

(
j4 j3 j
j4 m3 m

)

q

[
j
m

∣∣∣∣
j2 j1
−j2 m1

]

q

because of the horizontal constraints we have m3 = −j4 − ms and
m1 = j2 +ms

=
∑

ms

xj3−j4−ms

3 xj1+j2+ms

1

(
j4 j3 j
j4 −j4 −ms m

)

q

[
j
m

∣∣∣∣
j2 j1
−j2 j2 +ms

]

q

.

From (3.26b) and a similar derivation for the u-channel we get the
following polynomial ansatz for the four-point invariants in the limit
(x4, x2) → (∞, 0)

Ψ̌
(s)
js

(J |x3, x1) = x
j123
4

3

js∑

ms=−js

f (s)
ms

(J |js)

(
x1

x3

)j1+j2+ms

=: x
j123
4

3 F (s)
j (J |x) ,

(3.27a)

Ψ̌
(u)
ju

(J |x3, x1) = x
j123
4

3

ju∑

mu=−ju

f (u)
mu

(J |ju)

(
x1

x3

)j1−j4−mu

=: x
j123
4

3 F (u)
j (J |x) ,

(3.27b)

where x = x1

x3
and

f (s)
ms

(J |js) =

(
j4 j3 js
j4 −j4 −ms ms

)

q

[
js
ms

∣∣∣∣
j2 j1
−j2 ms + j2

]

q

,(3.27c)

f (u)
mu

(J |ju) =

(
j4 ju j1
j4 mu −j4 −mu

)

q

[
ju
mu

∣∣∣∣
j3 j2

mu + j2 −j2

]

q

.(3.27d)

So in the x-reduced blocks F (i)
j (J |x) we have at last functions in

one variable only. For these we will find special cases that are linear
functions and intertwined by the basic 6j-symbols.

The quantum Casimir eigenfunction equation. We will find

solutions for the functions F (i)
j (J |x) based on q-hypergeometric func-

tions.

Proposition 3.2. The functions F (i)
j (J |x) fulfil the difference equa-

tions
“

qj2−j4−1 x1
x3

[dx−κ][dx−2j1]−[dx−l][dx−l−2js−1]
”

F
(s)
js

(J |x)=0 ,(3.28a)
“

qj2−j4−1 x1
x3

[dx+k−κ][dx+k+2ju+1−κ]−[dx][dx+2j3−κ]
”

F
(u)
ju

(J |x)=0 .(3.28b)

Proof. As the invariant Ψ
(i)
ji

is defined by projecting onto the ir-
reducible representation with spin ji in the tensor product of the rep-
resentations V j2 ⊗ V j1 we have that the q-Casimir operator is equal to
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the unit times − [ji + 1
2
]2.

∆21(Cq)Ψ
(s)
js

(J |X) = −
[
js + 1

2

]2
Ψ

(s)
js

(J |X) ,

∆32(Cq)Ψ
(u)
ju

(J |X) = −
[
ju + 1

2

]2
Ψ

(u)
ju

(J |X) .

The indices 21 and 32 express the way the coproduct is embedded into
the four-fold tensor product.

∆21 = id⊗ id⊗∆ and ∆32 = id⊗∆ ⊗ id .

In the transposed x-representation the quantum Casimir operator

Cq = EF −
q−1K2 + qK−2 − 2

(q − q−1)2
.

takes the form of a difference operator. We determine this operator in
two steps. First we consider the summand EF . In order to shorten
expressions we introduce the following notation. Let an denote an
element a in the nth place of the tensor product. We assume that it is
always clear from the context, which tensor product is meant.

an = 1
1
⊗ · · · ⊗ 1

n−1
⊗ a

n
⊗ 1

n+1
⊗ · · · ⊗ 1 .

We can express ∆21(EF ) now as

∆21(EF )Ψ =
(
E2K1 +K−1

2 E1

) (
F2K1 +K−1

2 F1

)
Ψ

=
(
E2F2K

2
1 + E2K

−1
2 K1F1 +K−1

2 F2E1K1 +K−2
2 E1F1

)
Ψ

a
=
(
E2F2K

2
1 + E2K

−1
2 K1F1 −K4F4K

2
3E1K1 −K3F3E1K1

)
Ψ .

Equality a uses the fact that the block Ψ is invariant under the algebra-
like element F , which means that ∆(4)(F )Ψ = 0 where the action of
the generator F on the fourfold tensor product is

∆(4)(F ) = F4K3K2K1 +K−1
4 F3K2K1 +K−1

4 K−1
3 F2K1 +K−1

4 K−1
3 K−1

2 F1 .

The term t = K−1
4 K−1

3 F2K1 is replaced by −∆(4)(F ) + t.
We note that the term proportional to E2 vanishes in the limit x → 0.
The same holds for the term proportional to F4 in the limit x4 → ∞.
We notice that the term E2F2 is basically the Casimir operator.

E2F2 = (Cq)2 +
q−1K2

2 + qK−2
2 − 2

(q − q−1)2
.

This term vanishes in the limit x2 → 0 because the second summand

tends to
[
j2 + 1

2

]2
and the Casimir operator is −

[
j2 + 1

2

]2
on the irre-

ducible representation with spin j2. Now we are ready to state that on
the reduced block Ψ̌ we have

∆21(EF )Ψ̌ = qj2−j4−1x1

x3

[d3 − κ] [d1 − 2j1] Ψ̌ .
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With the coproduct ∆K = K ⊗K of the group-like generator K it
is a straightforward calculation to check that

∆21

(
q−1K2 + qK−2 − 2

(q − q−1)2

)
Ψ̌ =

[
d1 − j1 − j2 −

1
2

]2
Ψ̌ .

A similar calculation for ∆32 yields the representation of the Casimir9

operator on the reduced blocks as

qj2−j4−1x1

x3
[d1 − κ] [d1 − 2j1] −

[
d1 − j1 − j2 −

1
2

]2

in the s-channel and

q−j2+j4+1x3

x1
[d3 − κ] [d3 − 2j3] −

[
d3 − j2 − j3 −

1
2

]2

in the u-channel.

We introduce the indices l and k counting the difference of the
intermediate representation’s spin from the maximal spin. We set

js + l = j1 + j2 , l = 0, 1, 2, . . . , 2µ with µ = min{j1, j2} and

ju + k = j2 + j3 , k = 0, 1, 2, . . . , 2ν with ν = min{j2, j3} .

A little q-number aerobics finds us
[
js + 1

2

]2
−
[
d1 − j1 − j2 −

1
2

]2
= [d1 − l] [d1 − 2js − l − 1] ,

[
ju + 1

2

]2
−
[
d3 − j2 − j3 −

1
2

]2
= [d3 − k] [d3 − 2ju − k − 1] .

Using the inverse proportionality (3.25) between T1 and T3 we fi-
nally arrive at

„

q
j2−j4−1 x1

x3
[dx − κ] [dx − 2j1] − [dx − l] [dx − l − 2js − 1]

«

F
(s)
js

(J |x) = 0 ,

„

q
j2−j4−1 x1

x3
[dx + k − κ] [dx + k + 2ju + 1 − κ] − [dx] [dx + 2j3 − κ]

«

F(u)
ju

(J |x) = 0 .

�

This is just nearly the q-hypergeometric difference equation10

(x [dx + a] [dx + b] − [dx] [dx + c− 1]) p(x) = 0

with the solution

2Φ1

(
a b

c

∣∣∣∣ x; q
)

=
∑

n≥0

[a|n] [b|n]

[c|n] [n]!
xn .

9Note that the finite difference operators ∆21(Cq) in the s-channel and ∆32(Cq)
in the u-channel are related by the exchanges

j1 ↔ j3 and
x1

x3
↔

x3

x1
.

10see appendix A.
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Equations (3.28) can be brought to q-hypergeometric form by an ansatz

F (s)
js

(J |x) = xlg
(s)
js

(qj2−j4−1x)

F (u)
ju

(J |x) = g
(u)
ju

(qj2−j4−1x) .

Thus for the functions F (i)
ji

we determine the following q-hypergeomet-
ric form modulo a J-dependent normalisation

F (s)
js

(J |x) = xl
2Φ1

(
l − κ l − 2j1

−2js

∣∣∣∣ q
j2−j4−1x; q

)
,(3.29a)

F (u)
ju

(J |x) = 2Φ1

(
k − κ k + 2ju + 1 − κ

2j3 + 1 − κ

∣∣∣∣ q
j2−j4−1x; q

)
.(3.29b)

We consider the case of one representation, say j2, equal to 1/2.
Now only two intermediate spins will appear in both channels, j±s =
j1 ± 1/2 and j±u = j3 ± 1/2. This is analogous to the insertion of a
degenerate field of spin 1/2 into the conformal blocks. This puts a

further restriction on the functions F (i)
ji

with j2 = 1/2.

Proposition 3.3. The functions F (i)

j±i
with j2 = 1/2 are of the form

F (i)

j±
i

(J |x) =
(
a±i + b±i x

)
R(J |x).

Proof. The invariance of the four-point invariant is expressed as

∆(4)(F )Ψ
(i)
ji

(J |X) = 0 .

When we consider the limit x4 → ∞ an let Ψ
(i)
ji

= ψ we have

(
F3K2K1 +K−1

3 F2K1 +K−1
3 K−1

2 F1

)
ψ = 0 ,

or in terms of difference operators11

(
q−j1−j2+κ 1

x3

(
1 − T

−2
3

)
+ qj3−j1−κ 1

x2
T
−2
3

(
1 − T

−2
2

)
+ qj3+j2−κ 1

x1

(
T

2
1 −1

))
ψ = 0 .

When j2 is equal to 1/2 we have12 F 2
2 ≡ 0. This means that the

polynomial solutions to the Casimir-eigenvalue equation are of the form

ψ = ψ1 + x2ψ2 .

11Here we have used the relation T3 T2 T1 ψ = qκψ, which follows from the
invariance of Ψ under the action of K, ∆(4)(K)Ψ = Ψ.

12This corresponds nicely to the additional equation ∂2
xΨ21 = 0 for the degen-

erate field of spin 1/2 in the WZNW-model.
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The difference equation in ψ then becomes

0 = Q−1

(
q−j1−

1
2
+κ 1

x3

(
1 − T

−2
3

)
+ qj3+

1
2
−κ 1

x1

(
T

2
1 −1

))
ψ1+

+ qj3−j1+κ−1
T
−2
3 ψ2+

+Q−1x2

(
q−j1−

1
2
+κ 1

x3

(
1 − T

−2
3

)
+ qj3+

1
2
−κ 1

x1

(
T

2
1 −1

))
ψ2

=: Dψ1 + qj3−j1+κ−1QT
−2
3 ψ2 + x2Dψ2 .

There are two linearly independent polynomial solutions φ′ and φ to
the equation F 2

2ψ = 0. A general solution ψ then is of the form

(3.30) ψ = aφ′ + bφ .

The solution φ′. We choose the first solution φ′ to have a vanishing
component φ′

2. That leaves the difference equation

(3.31) 0 = Dφ′
1 =

(
q−j1−

1
2
+κ 1

x3

(
1 − T

−2
3

)
+ qj3−

1
2
−κ 1

x1

(
T

2
1 −1

))
φ′

1 .

This leads to(
1 − qj1+j3+1−2κx3

x1

)
φ′

1 =

(
1 − qj1+j3+1x3

x1

)
T
−2
3 φ′

1 .

We expand the quotient of (T−2
3 φ′

1) and φ′
1

(T−2
3 φ′1)

φ′1
=

(
1 − qj1+j3+1−2κ x3

x1

)

(
1 − qj1+j3+1 x3

x1

)

=

(
1 − qj1+j3+1−2κ x3

x1

)(
1 − qj1+j3+3−2κ x3

x1

)
· · ·
(
1 − qj1+j3−1 x3

x1

)

(
1 − qj1+j3+3−2κ x3

x1

)(
1 − qj1+j3+5−2κ x3

x1

)
· · ·
(
1 − qj1+j3+1 x3

x1

) .

This determines φ′
1

(3.32)

φ′
1 =

(
1 − qj1+j3+3−κx3

x1

)(
1 − qj1+j3+5−κx3

x1

)
· · ·

(
1 − qj1+j3+1+2κx3

x1

)
.

The first of the linear independent solutions to the equation F 2
2ψ = 0

is therefore

(3.33) φ′ = φ′
1 .

The solution φ. We see that the function φ2 is determined by the
homogeneous difference equation

(3.34) Dφ2 = 0

and that the function φ1 is determined by the inhomogeneous difference
equation

(3.35) Dφ1 = −Qqj3−j1+κ−1
T

−2
3 φ2 .
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First we determine φ2. The equation (3.34) determining φ2 is the
same as the equation 3.31 determining φ′

1. We conclude that

(3.36) φ2 = φ′
1 .

Now we determine φ1. Because of (3.35) we have

q−j1−
1
2
+κ 1

x3

(
1 − T

−2
3

)
φ1 − qj3+

1
2
−κ 1

x1

(
1 − T

2
1

)
φ1 = −qj3−

1
2QT

−2
3 φ2 .

The difference operator in (3.35) is the same as in (3.34). Thus we
make the ansatz φ1 = φ2g. The operators (1−T

−2
3 ) and (1−T

2
1) obey

the following deformed product rule

(1 − bT
a)fg = ((1 − bT

a)f) g + (bT
a f) ((1 − T

a)g) .

Thus we have

Dφ1 = (Dφ2)g + (T−2
3 φ2)q

κ

(
q−j1−

1
2

x3
(1 − T

−2
3 ) −

qj3+
1
2

x1
(1 − T

2
1)

)

g .

We note that Dφ2 = 0 by necessity. This reduces equation (3.35) above
to

qκ

(
q−j1−

1
2

x3

(
1 − T

−2
3

)
−
qj3+

1
2

x1

(
1 − T

2
1

)
)
g = −Qqj3−j1+κ−1 .

The ansatz g = αx3 yields

qκ−j1−
1
2 (1 − q−2)α = −Qqj3−j1+κ−1

and determines α = −qj3−
1
2 . We conclude that

φ = (αx3 + x2)φ2 .

With this and the equality (3.36) of φ2 and φ′
1 the general form

(3.30) of a solution is

ψ = aφ′ + bφ

= aφ′
1 + b(αx3 + x2)φ2

= (a + b(αx3 + x2))φ
′
1 .

When x2 tends to 0, ψ tends to Ψ̌. Thus we have proven that the
reduced blocks with j2 = 1/2 are of the form

F (i)

j±i
(J |x) =

(
a±i + b±i x

)
R(J |x) .

�

Judicious inspection of the horizontal and vertical constraints (3.11)

in the coefficients f
(i)
mi(J |ji±) of (3.27) tells us that the polynomials F
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with j2 = 1/2 have an appropriate number of terms. Indeed we have

F
(s)

j+
s

(J |x) = f
(s)

−j1−
1
2

(J |j+s ) +f
(s)

−j1+
1
2

(J |j+s )x+ · · · + f
(s)
j3−j4

(J |j+s )xκ

F
(s)

j−s
(J |x) = f

(s)

−j1+
1
2

(J |j−s )x+ · · · + f
(s)
j3−j4

(J |j−s )xκ

F
(u)

j+
u

(J |x) = f
(u)
j1−j4

(J |j+u ) + · · · + f
(u)

−j3+
1
2

(J |j+u )xκ−1 + f
(u)

−j3−
1
2

(J |j+u )xκ

F
(u)

j−u
(J |x) = f

(u)
j1−j4

(J |j−u ) + · · · + f
(u)

−j3+
1
2

(J |j−u )xκ−1

From this we see that the coefficients a−s and b−u vanish. Use of propo-
sition 3.3 leaves us with the linear system of equalities for the fusing
relations

a+
u + b+u x =

{
j3

1
2

j+
u

j4 j1 j+
s

}

q

(
a+

s + b+s x
)

+

{
j3

1
2

j+
u

j4 j1 j−s

}

q

b−s x

a−u =

{
j3

1
2

j−u
j4 j1 j+

s

}

q

(
a+

s + b+s x
)

+

{
j3

1
2

j−u
j4 j1 j−s

}

q

b−s x .

(3.37)

Comparison of the representations (3.27) and of proposition 3.3 for
the reduced conformal blocks together with the expression

R(J |x) = r0 + r1x+ · · ·+ rκ−1x
κ−1

gives the equations

r0a
+
s = 1 r0a

+
u = q−κ/2 [ι− 2j1]

[2j3 + 1]

r0b
+
s = −q−j4−1/2 [ι− 2j3]

[2j1 + 1]
r0b

+
u = −q−j4−1/2−κ/2

r0b
−
s = −q−j1−1/2 r0a

−
u = q−(κ−1)/2 .

With these we can solve the linear equations (3.37) and get
{
j3

1
2

j+
u

j4 j1 j+
s

}

q

= q−
κ
2
[ι− 2j1]

[2j3 + 1]
,

{
j3

1
2

j−u
j4 j1 j+

s

}

q

= q−
κ−1

2 ,

{
j3

1
2

j+
u

j4 j1 j−s

}

q

= q−
ι−2j1

2
[κ] [ι+ 1]

[2j1 + 1] [2j3 + 1]
,

{
j3

1
2

j−u
j4 j1 j−s

}

q

= −q−
ι−j1−1

2
[ι− 2j3]

[2j1 + 1]
,

(3.38)

where ι = j1 + j2 + j3 + j4.

We have thus determined the fundamental 6j-symbols of Uqsl(2).
Together with the recurrence relation (3.23) these determine all 6j-
symbols of the quantum group Uqsl(2).





Chapter 4
The quantum group Uqosp(1|2)

In this chapter we apply our method to the generalised setting of
super quantum groups and determine the 6j-symbols of the super quan-
tum group Uqosp(1|2).

Up to a certain point the derivation will be strikingly similar to
the preceding chapter. We represent the generators of Uq as difference
operators. All invariant tensors satisfy difference equations induced by
the Casimir operator. This fixes the the four-point invariants to a su-
per q-hypergeometric form.
The fundamental representation of Uqosp(1|2) is three dimensional.
This only gives a minor rise in complexity for the derivation of the
6j-symbols. We set the representation label l2 to the fundamental rep-
resentation 1. This further restricts the fundamental four-point func-
tions to a form from which it is possible to deduce a system of linear
equations that determine the fundamental 6j-symbols connecting the
s-channel decomposition and the u-channel decomposition.

The graded quantum group Uqosp(1|2) is generated by elements
k, k−1, e, f and the relations

(4.1)
kek−1 = q

1
2e , ef + fe = −

k2 − k−2

q − q−1
,

kfk−1 = q−
1
2f , kk−1 = k−1k = 1 .

It has the coproduct

(4.2)

∆(e) = e⊗ k + k−1 ⊗ e ,

∆(f) = f ⊗ k + k−1 ⊗ f ,

∆(k) = k ⊗ k ,

∆(k−1) = k−1 ⊗ k−1 ,

the counit

(4.3) ε(k) = ε(k−1) = ε(1) = 1 , ε(e) = ε(f) = 0 ,

45
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and the antipode

(4.4)
S(e) = −q

1
2e , S(k) = k−1 ,

S(f) = −q−
1
2 f , S(k−1) = k .

In addition to a Casimir operator Cq there is an operator Sq that
commutes with the even part and anticommutes with the odd part
of Uqosp(1|2). Sq is called the Scasimir operator.

Sq = Qsfe−
q

1
2k2 − q−

1
2k−2

Q
= −Qsef +

q−
1
2k2 − q

1
2k−2

Q
.

In order to reduce the clutter of qs we introduced the coefficients
Q = q + q−1 and Qs = q−1/2 + q1/2.

The Casimir operator simply is the square of the Scasimir operator
modulo an additional constant.

Cq = S2
q + const. .

The super quantum group Uqosp(1|2) can be seen as either the
quantised universal enveloping algebra of the graded Lie algebra osp(1|2)
or as the super analogue of the quantum group Uqsl(2)1.

1. Finite dimensional representations

A representation of the quantum superalgebra2 Uqosp(1|2) is a su-
per vector space V with an even subspace V0 and an odd subspace
V1,

V = V0 ⊕ V1 .

and a homomorphism of associative superalgebras

ρ : Uqosp(1|2) → Hom(V, V ) .

Let (ρ, V ) be a representation of Uq . For every complex number ω
define Vω : = {v ∈ V | ρ(k)v = ωv}. We call every nontrivial Vω the
weight space corresponding to the weight ω, Nonzero vectors in Vω are
called weight vectors of vectors of weight ω3. A vector v ∈ Vω′ is called
a vector of highest weight ω′ if ρ(e)v = 0. In this case ω′ is called the
highest weight of the representation ρ, Vω′ .

1The graded Lie algebra osp(1|2) has been closely examined by Nahm, Rit-
tenberg and Scheunert in [36]. The super quantum group Uqosp(1|2) has been
introduced by Kulish and Reshetikhin in [24].

2This is one place where we break our naming convention. A “quantum super-
algebra” naturally is a quantum group or Hopf algebra that is graded by Z/2Z.

3In the following vectors of weight ω will be called eigenvectors of ρ(k) with
eigenvalue ω too. In addition whenever ω = qm/2 we will callm weight or eigenvalue
too.
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If V is a direct sum of weight spaces of ρ we call ρ, V a weight repre-

sentation.

The irreducible representations of Uqosp(1|2) are grade star repre-
sentations. That is to say, there is an involution ∗ on Uq and a Boolean
parameter ε ∈ Z/2Z such that in the representation

k∗ = k , e∗ = (−1)εe , f ∗ = (−1)ε+1f

holds4. The parameter ε is called the class of the representation.

The representation theory of Uq falls into two different cases ac-
cording to the value of the parameter q.

Generic q. The irreducible finite dimensional representations (ρ, V )
of Uqosp(1|2) are labelled by a positive integer l ∈ Z and an index
λ ∈ Z2 = {0, 1} and two further Boolean parameters ϕ, ψ ∈ Z2. The
parameters ϕ and ψ are signature parameters of the Hermitean form
on V l,λ. The parity λ and the signature ϕ define the class ε of the
representation. Since we have no use for the Hermitean form in the
following, we drop the parameters ϕ, ψ and ε.

For each (l, λ) an irreducible finite dimensional representation is
isomorphic to the following. The module V l,λ has a basis {el

m | m =
−l,−l + 1, · · · , l} diagonalising the representation of k. The vector
el

l(λ) is of highest weight with parity λ. The generators e and f of
Uqosp(1|2) act on this space as raising and lowering operators.

q a root of unity. Let q be a primitive pth root of unity,

qp = 1 .

The representations5 of Uqosp(1|2) in this case are plagued by prob-
lems similar to those of Uqsl(2).

We consider generic q only in the following.

Tensor products of finite dimensional representations. The
tensor product X1⊗X2 in the category of super vector spaces is graded
by Z2. This affects super algebras and super modules. For super
algebras we have

(X1 ⊗X2)(Y1 ⊗ Y2) = (−1)p(X2) p(Y1)(X1Y1 ⊗X2Y2) .

The effect for super modules is similar. Given two representations
(ρ1, V 1) and (ρ2, V 2) of Uqosp(1|2) the tensor product ((ρ1 ⊗ ρ2) ◦

4This was shown by Minnaert and Mozryzmas in [27] and goes back to results
for osp(1|2) obtained by Nahm, Rittenberg and Scheunert in [35].

5Arnaudon gives a classification in [3].
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∆, V 1 ⊗ V 2) again is a representation. Note that due to the graded
nature of the tensor product the tensor representation acts on a vector
x1 ⊗ x2 as
(
(ρ1 ⊗ ρ2) ◦ ∆

)
(X)x1 ⊗ x2 =

(∑
ρ1(X(a)) ⊗ ρ2(X(b))

)
x1 ⊗ x2

= (−1)p(X(b)) p(x1)
∑

ρ1(X(a))x1 ⊗ ρ2(X(b))x2 .

Here we used the Sweedler notation for the coproduct.

∆(X) =
∑

X(a) ⊗X(b) .

The m-representation. Let {el
m(λ) | m = −l,−l+ 1, . . . , l} be a

basis for the module V l,λ diagonalising k. Consider the following action
of Uq on this basis.

(4.5a)

ρl,λ(k)el
m(λ) = q

m
2 el

m(λ) ,

ρl,λ(e)el
m(λ) = D+(l,m;λ)el

m+1(λ) ,

ρl,λ(f)el
m(λ) = D−(l,m;λ)el

m−1(λ) ,

(4.5b) ρl,λ(e)el
l(λ) = ρl,λ(f)el

−l(λ) = 0 .

The parity of el
m(λ) is

(4.6) p
(
el

m(λ)
)

= λ+ l −m mod 2 .

So for successive indices m the vectors el
m(λ) alternate in degree. The

even and odd subspaces of V l,λ are interlaced by the action of e and f
and we get the following picture6.

(V l,λ)λ

(V l,λ)λ+1

el
l(λ)

el
l−1(λ)

el
l−2(λ)

el
1−l(λ)

el
−l(λ)

e
f e

f
e

f

. . .

Figure 9: The interlacing of even and odd basis vectors in V l,λ

A traditional approach would be to choose

D+(l,m;λ) = (−1)l−m ({l −m}{l +m+ 1}γ)1/2 ,

D−(l,m;λ) = ({l +m}{l −m+ 1}γ)1/2 .
(4.7)

6For a super vector space V we denote by (V )0 and (V )1 its even part and its
odd part, respectively.
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We will however choose a different normalisation such that

D+(l,m;λ) = (−1)l−m{l −m}β ,

D−(l,m;λ) = {l +m}β ,
(4.8)

with β2 = Qs/Q = (q−1/2 + q1/2)/(q − q−1). This said we call this the
m–representation and denote it by ρm omitting the label (l, λ).

In the m–representation the Scasimir operator acts as

(4.9) ρm(Sq)e
l
m(λ) = (−1)l−m+1

[
l + 1

2

]
el

m(λ) .

The basis {el
m} on which the action of e and f has coefficients

D± as in (4.8) is related to the basis {f l
m} with respect to which the

coefficients D± of the action of e and f are of the form (4.7) by a
rescaling by

(4.10) el
m(λ) = M(l,m)

1
2 f l

m(λ) , M(l,m) =
{l +m}{l −m}

{2l}
.

The transposed m–representation. The space dual to a super vector
space V is the super vector space V ∗ of complex valued functions such
that the even functionals vanish on V1 and the odd functionals on V0.
Again a basis of (V l)∗ is supplied by the functionals ěl

m(λ) such that

ěl
m(λ)

(
el

n(λ)
)

= δm,n .

Without further ado we present the transposed m–representation ρm

on the space
(
V l
)∗

dual to V l.

(4.11a)

ρt
m(k)ěl

m(λ) = q
m
2 ěl

m(λ) ,

ρt
m(e)ěl

m(λ) = D+(l,m− 1;λ)ěl
m−1(λ) ,

ρt
m(f)ěl

m(λ) = D−(l,m+ 1;λ)ěl
m+1(λ) ,

(4.11b) ρt
m(e)ěl

−l(λ) = ρt
m(f)ěl

l(λ) = 0 .

The Scasimir acts as follows on this representation.

(4.12) ρt
m(Sq)ě

l
m(λ) = (−1)l−m+1

[
l + 1

2

]
ěl

m(λ) .

Invariant bilinear form. The invariant bilinear form Bq|s on Uq -
modules is defined by the requirement that for vectors v in V l,λ ⊗ V l,λ

it transformed according to

Bq|s(∆(k)v) = Bq|s(v) ,

Bq|s(∆(a)v) = 0 , for a = e, f .

Extend Bq|s to all finite dimensional Uq -modules such that different
modules are orthogonal. This determines Bq|s up to a l2-dependent
factor and we have with the coefficient M from the relation (4.10)

Bq|s

(
el2

m2
(λ2) ⊗ el1

m1
(λ1)

)
= δl2,l1δm2+m1,0δλ2,λ1×

× (−1)l2+m2+λ2+
(l2+m2)(l2+m2+1)

2 q
l2+m2

2 M(j2, m2) .
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For future use, we compress the coefficient into symbol M̄

(4.13) M̄(j,m;λ) = (−1)l+m+λ+
(l+m)(l+m+1)

2 q
l+m

2 M(j,m) .

The invariant bilinear form extends to tensor products of modules
as

Bq|s (a⊗ b, c⊗ d) = (−1)p(b) p(c)Bq|s (a, c)Bq|s (b, d) .

Decomposition of tensor products. The tensor product repre-
sentations and the irreducible representations are intertwined by the
super quantum Clebsch–Gordan coefficients.

el
m(l2, l1;λ) =

∑

m1,m2

[
lλ
m

∣∣∣∣
l2λ2 l1λ1

m2 m1

]

q|s

el2
m2

(λ2) ⊗ el1
m1

(λ1) .

The Clebsch–Gordan coefficients of Uq are constrained by the following
inequalities7. Again we call them horizontal and vertical constraints.

|l1 − l2| ≤ l ≤ l1 + l2 ,

m = m1 +m2 ,

λ = λ1 + λ2 + l + l1 + l2 mod 2 ,

−li ≤ mi ≤ li .

(4.14)

The Clebsch–Gordan coefficients suffice the recurrence relations

D±(l,m)

[
lλ

m± 1

∣∣∣∣
l2λ2 l1λ1

m2 m1

]

q|s

= q
m1
2 D±(l2,m2 ∓ 1)

[
lλ
m

∣∣∣∣
l2λ2 l1λ1

m2 ∓ 1 m1

]

q|s

+

+(−1)l2+m2+λ2q−
m2
2 D±(l1,m1 ∓ 1)

[
lλ
m

∣∣∣∣
l2λ2 l1λ1

m2 m1 ∓ 1

]

q|s

(4.15)

These relations determine the Clebsch–Gordan coefficients up to a
function of the representation labels l, l1 and l2. We choose the nor-
malisation

(4.16)

[
lλ
−l

∣∣∣∣
l2λ2 l1λ1

l1 − l −l1

]

q|s

= 1 .

7This was shown by Minnaert and Mozrzymas in [26, 27].
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The Clebsch–Gordan coefficients satisfy the following orthogonality
and completeness relations. Let L = (l1 +m1 + λ1)(l2 +m2 + λ2)

∑

m1,m2

[
lλ
m

∣∣∣∣
l2λ2 l1λ1

m2 m1

]

q|s

[
l′λ′

m′

∣∣∣∣
l2λ2 l1λ1

−m2 −m1

]

q|s

(−1)L×

× M̄(l2, m2;λ2)M̄(l1, m1;λ1)

= δl,l′δm,m′δλ,λ′δ(l1, l2, l)M̄(l,m;λ)

(4.17a)

∑

l,m

[
lλ
m

∣∣∣∣
l2λ2 l1λ1

m2 m1

]

q|s

[
lλ
−m

∣∣∣∣
l2λ2 l1λ1

m′
2 m′

1

]

q|s

×

×
M̄(l2, m2;λ2)M̄(l2, m

′
2;λ2)M̄(l1, m1;λ1)M̄(l1, m

′
1;λ1)

M̄(l,m;λ)

= δm1+m′
1,0δm2+m′

2,0(−1)LM̄(l2, m2;λ2)M̄(l1, m1;λ1)

(4.17b)

This can be seen as follows. The Clebsch–Gordan coefficients have
inverses

el2
m2

(λ2) ⊗ el1
m1

(λ1) =
∑

l,m

[
l
m

∣∣∣∣
l2 l1
m2 m1

]t

q|s

el
m(l1, l2;λ) .

With these the Clebsch–Gordan coefficients satisfy another set of rela-
tions. Let L = (l2 +m2 + λ2)(l1 +m1 + λ1), then we have

X

m2,m1

»

lλ
m

˛

˛

˛

˛

l2λ2 l1λ1

m2 m1

– »

l′λ′

−m′

˛

˛

˛

˛

l2λ2 l1λ1

m2 m1

–t

M̄(l′,−m′; λ)

= δl,l′δm+m′ ,0M̄(l, m; λ)

X

l,m

»

lλ
m

˛

˛

˛

˛

l2λ2 l1λ1

m2 m1

–t »

lλ
m

˛

˛

˛

˛

l2λ2 l1λ1

−m′
2 −m′

1

–

(−1)LM̄(l2,−m′
2; λ2)M̄(l1,−m′

1;λ1)

= δm2+m′

2,0δm1+m′

1,0(−1)LM̄(l2, m2; λ2)M̄(l1, m1; λ1)

X

l,m

»

lλ
m

˛

˛

˛

˛

l2λ2 l1λ1

m2 m1

–t »

lλ
m

˛

˛

˛

˛

l2λ2 l1λ1

m′
2 m′

1

–t

M̄(l, m;λ)

= δm2+m′

2,0δm1+m′

1,0(−1)LM̄(l2, m2; λ2)M̄(l1, m1; λ1)

Comparing coefficients we see that
[
l
m

∣∣∣∣
l2 l1
m2 m1

]t

q|s

=

[
l

−m

∣∣∣∣
l2 l1

−m2 −m1

]

q|s

×

× (−1)L
M̄(l2, m2;λ2)M̄(l1, m1;λ1)

M̄(l,m;λ)
.

From this it is possible to derive the orthogonality and completeness
relations.

Invariants. Invariants in the n-fold tensor product can be con-
structed using Clebsch–Gordan coefficients in the (n − 1)-fold tensor
product together with an invariant in the two-fold tensor product. This
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invariant in the two-fold tensor product is the invariant bilinear form
Bq|s. It is connected to the Clebsch–Gordan coefficients intertwin-
ing a tensor product with the trivial representation. On the module
V l2,λ2 ⊗ V l1,λ1 we have

Bq|s

(
l2λ2 l1λ1

m2 m1

)
:=

[
0λ
0

∣∣∣∣
l2λ2 l1λ1

m2 m1

]

q|s

.

Thus we have because of (4.15), (4.16) and (4.14)

Bq|s

(
l2λ2 l1λ1

m2 m1

)
= δl1,l2δm1+m2,0δλ2,λ1×

×(−1)(l1+m1)λ2+
(l1+m1)(l1+m1+1)

2 q−
l1+m1

2 M(l1, m1)
−1 .

The invariant of the three-fold tensor product is the super quantum
3j symbol. These 3j symbols are defined by lowering one index in the
Clebsch–Gordan coefficients by means of the invariant 2-form

(
l3λ3 l2λ2 l1λ1

m3 m2 m1

)

q|s

:=

j∑

m=−j

Bq|s

(
l3λ3 lλ
m3 m

)[
l
m

∣∣∣∣
l2 l1
m2 m1

]

q|s

.

The (x, θ)–Representation. The representation dual to the m-
representation acts on a non-supercommutative super vectorspace. We
introduce the idempotent variable θ commuting with the c-number vari-
able x

θ2 = 1 ,

xθ = θx .

The variables x and θ algebraically generate Pol(x, θ) = C[x, θ] the
complex polynomials in x and θ. Let Poln(x, θ) denote the super vec-
tor space of polynomials of degree n or less. The super vector space
Pol2l(x, θ) decomposes into the two sub super vector spaces Ṽ l,λ, with
λ ∈ Z2 the parity of the highest weight vector of the corresponding
m-representation

Pol2l(x, θ) = Ṽ l,0 ⊕ Ṽ l,1

where

Ṽ l,0 = span
{
1, x−1θ, x−2, x−3θ, . . . , x−2l+1θ, x−2l

}
,

Ṽ l,1 = span
{
θ, x−1, x−2θ, x−3, . . . , x−2l+1, x−2lθ

}
.

Note that the spaces Ṽ l,λ do not correspond to the even and odd
parts of Pol2l(x, θ). The spaces Ṽ l,λ are super vector spaces in their
own right.
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Now the Uqosp(1|2) module V l,λ is equivalent as super vector space

to Ṽ l,λ via the transformation

(4.18) el,λ(x, θ) =

l∑

m=−l

x−l−mθλ+l+mel
m(λ) .

The super vector space Ṽ l,λ is a right Uqosp(1|2)-module and the gen-
erators act as

ρx(k) = q−
l
2 T

−
1
2 ,(4.19a)

ρx(e) = (−1)dx{dx + 2l}xθβ .(4.19b)

ρx(f) = (−1)dx+1{dx}x
−1θβ ,(4.19c)

We call (ρx, Ṽ
l,λ) the (x, θ)-representation. The Scasimir acts as

ρx(Sq) = (−1)dx+1
[
l + 1

2

]
.

The transposed (x, θ)–representations. The space Pol2l(x
−1, θ) is

dual to the space Pol2l(x, θ) via the pairing

(g, f)x,θ =

∮

0

dx

x
g(x, θ)f(x, θ) .

This induces a representation ρt
x on the space (Ṽ l,λ)∗ ⊂ Pol2l(x, θ)

(Ṽ l,0)∗ = span
{
1, xθ, x2, x3θ, . . . , x2l−1θ, x2l

}

(Ṽ l,1)∗ = span
{
θ, x, x2θ, x3, . . . , x2l−1, x2lθ

}

that acts as

ρt
x(k) = q−

l
2 T

1
2 ,(4.20a)

ρt
x(e) = −βθx{dx − 2l} ,(4.20b)

ρt
x(f) = βθx−1{dx} .(4.20c)

We call (ρt
x, (Ṽ

l,λ)∗) the transposed (x, θ)-representation. The Scasimir
acts as

ρt
x(Sq) = (−1)dx+1

[
l + 1

2

]
.

A remark on the sign of the Scasimir. The Scasimir’s coef-
ficient is

[
l + 1

2

]
in all four representations. A unified representation

for the sign operators (−1)l+m and (−1)dx is given by the operator FV .
The operator FV maps every element of a super vector space V to its
parity.

FV : V → Z/2Z

v 7→ p (v) .
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In the following we will suppress the index V .
Using this operator we can unify the representations of Sq. In all four
representations considered we have

Sq ≃ (−1)F+λ+1
[
l + 1

2

]
.

Representations in block form. A common representation of
the super vector space V = V0⊕V1 is them-representation deinterlaced.
There we have a basis {vi | i = 1, 2, . . . , dimV0 +dimV1} such that the
first dimV0 basis vectors are even and the remaining are odd. A linear
transformations f in Hom(V,W ) in this basis is

f ≃

(
A B
C D

)
.

Here A⊕D ∈ Hom(V,W )0 are the even and B⊕C ∈ Hom(V,W )1 the
odd transformations.
The super vector space Pol2l(x, θ) is isomorphic to C2 ⊗ Pol2l(x). For
a given polynomial

f(x, θ) = f0(x) + θf1(x)

we identify

f(x) =

(
f0(x)
f1(x)

)
.

Under this identification the representation of the generators x = e, f
of Uqosp(1|2) becomes off-diagonal and for the generator k diagonal

x =

(
0 X
X ′ 0

)
and k =

(
K 0
0 K ′

)
.

This emphasises the odd parity of e and f and the even parity of k.

Super limits. Consider functions in the variables x and θ. We
regard the pair (x, θ) as a point x in the complex projective plane PC

with an adjoined superline. The points 0 and ∞ then have a special
meaning for polynomials in (x, θ). They single out the coefficients of the
lowest, respectively highest power of x. For a given graded polynomial

f l(x, θ) =

l∑

m=−l

fmx
l+mθλ+l+m

we get the limits

lim
x→0

f l(x, θ) = f−lθ
λ ,

lim
x→∞

x−2lf l(x, θ) = flθ
λ .
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The representations of k basically correspond to numerical factors

lim
x→0

ρt
x(k)f

l(x, θ) = q−
l
2 f−lθ

λ ,

lim
x→∞

x−2lρt
x(k)f

l(x, θ) = q
l
2 flθ

λ .

2. Invariant Tensors

An invariant tensor of Uqosp(1|2) is an element t of
⊗

i V
li,λi that

is invariant under the action of the super quantum group.

et = ft = 0 and kt = t .

To avoid clutter we collect variables of the same type into uppercase
variables, L = (l4, l3, l2, l1), Λ = (λ4, λ3, λ2, λ1), X = (x4, x3, x2, x1) and
Θ = (θ4, θ3, θ2, θ1). Additionally we introduce xn as a shorter expression
for the pair (x, θ). The pair of X and Θ is collected into X. A function
f in the four-fold tensor product would thus be written

f(L,Λ|X,Θ) = f(L,Λ|X) = f

(
l4λ4 l3λ3 l2λ2 l1λ1

x4 x3 x2 x1

)
.

3. Super quantum 6j-symbols

The super quantum 6j-symbols communicate the basis change be-
tween different reduced bases el

m(l3, l12;λ) and el
m(l1, l23, λ) of triple

tensor products V l1,λ1 ⊗ V l2,λ2 ⊗ V l3,λ3 of Uq modules.

el
m(l32, l1;λ) =

∑

l21

{
l3λ3 l2λ2 l32λ32

l4λ4 l1λ1 l21λ21

}

q

el
m(l3, l21, λ) .

We define the s- and the u-channel decomposition of the four-point
invariant as the following.

Ψ
(s)
ls

(L,Λ|X) =
∑

ms

(
l4λ4 l3λ3 lsλs

x4 x3 ms

)

q|s

[
lsλs

ms

∣∣∣∣
l2λ2 l1λ1

x2 x1

]

q|s

(4.21a)

Ψ
(u)
lu

(L,Λ|X) =
∑

mu

(
l4λ4 lsλs l1λ1

x4 ms x1

)

q|s

[
lsλs

ms

∣∣∣∣
l3λ3 l2λ2

x3 x2

]

q|s

(4.21b)

The parity λs of the intermediate representation (ls, λs) is

λs = l1 + l2 + l + λ1 + λ2 mod 2 .

The super quantum 6j-symbols relate the s- and the u-channel decom-
position of the four-point invariant.

Ψ
(u)
lu

(L,Λ|X) =
∑

ls

{
l2λ2 l3λ3 luλu

l1λ1 l4λ4 lsλs

}

q|s

Ψ
(s)
ls

(L,Λ|X) .
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Ψ =
∑

ls

ls

x4 x3 x2 x1 x4 x3 x2 x1

(a) s-channel

Ψ =
∑

lu

lu

x4 x3 x2 x1 x4 x3 x2 x1

(b) u-channel

Figure 10: Decompositions of the four-point invariants

Recurrence relation. The derivation of the recurrence relations
for Uqosp(1|2) is word for word as for Uqsl(2). The difference is in the
initial values and in the spin of the fundamental representation.
Let a, b, c and d each denote a pair (j, λ) of representation label j and
parity λ. We consider the four-fold tensor product V d ⊗V c ⊗V b ⊗V a.
Let e denote the spin of the reduced basis. The pentagon relation for
Uq encodes the way the different bases of the four-fold tensor product
correspond to each other. We have
{
d c h
e f j

}

q

{
j b f
e a i

}

q

=
∑

g

{
c d f
h a g

}

q

{
d g h
e a i

}

q

{
d c g
i b j

}

q

.

This is illustrated in figure 7 on page 34. The recurrence relation is of
the form

(4.22)

{
j b f
e a i

}

q|s

=
∑

g,h

Ss(a, b, f, i, j; h, g)

{
j − 1 b f
h a g

}

q|s

.

The triangle condition constrains h and g by |j − 2| ≤ g, h ≤ j and
|g − 1| ≤ h ≤ g + 1. This means we have an expression for the 6j-
symbol

{
j b f
e a i

}
in terms of one 6j-symbol with j − 1 and fundamental

6j-symbols with one spin equal to 1/2

k invariance. We introduce the reduced blocks of Uq via the limit
Ψ̌(i) of Ψ(i).

Ψ
(i)
li

(L,Λ|X)
x2→0
−−−−→
x4→∞

θλ2
2 θ

λ4
4 Ψ̌

(i)
ji

(J,Λ|x3, x1) .

Note that in order to extract the factor θλ2
2 θ

λ4
4 from the polynomial

Ψ̌(i), we had to introduce some signs.

Ψ̌
(i)
li

(L,Λ|x3, x1) =
∑

mi

(−1)P
(i)
mixl3+m3

3 θλ3+l3+m3
3 xl1+m1

1 θλ1+l1+m1
1 f (i)

mi
(L,Λ|li) ,

where m3 and m1 are linear combinations of l1, l2, l3, l4 and the inter-
mediate values ms or mu in the respective channels, by virtue of the
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horizontal constraints

P(s)
ms

= (λ3 + l3 − l4 −ms)λ2 ,

P(u)
mu

= (λ1 + l1 − l4 −mu) (λ3 + l3 + l2 +mu) + (λ3 + λ1 + κ)λ2 .

The operator T is the multiplication operator on functions of x,
such that

T f(x) = f(qx) .

Proposition 4.1. The reduced blocks Ψ̌ have the structure of a

function of the quotient x = x1/x3 times monomials in x1 and x3

(4.23) Ψ̌
(i)
li

(L.Λ|x3, x1) = x
α

(i)
1

1 x
α

(i)
3

3 F̃ (i)
li

(L,Λ|x, θ3, θ1) ,

such that α
(i)
1 + α

(i)
3 = l1 + l2 + l3 − l4 =: κ for i = s, u.

Proof. Because of the invariance of s- and u-channel blocks under
the action of k, we have

kΨ
(i)
li

(J,Λ|X) = Ψ
(i)
ji

(J,Λ|X) , i = s, u

and in the limit

kΨ
(i)
ji

(L,Λ|X) = (k ⊗ k ⊗ k ⊗ k)Ψ
(i)
ji

(L,Λ|X)

x2→0
−−−−→
x4→∞

q
l4−l2

2 k3k1θ
λ4
4 θ

λ2
2 Ψ̌

(i)
ji

(L,Λ|x3, x1)

= q−κ
T3 T1 θ

λ4
4 θ

λ2
2 Ψ̌

(i)
ji

(L,Λ|x3, x1)

Thus we find that

(4.24) T

1
2
3 T

1
2
1 Ψ̌

(i)
li

(L,Λ|x3, x1) = qκ/2Ψ̌
(i)
li

(L,Λ|x3, x1) ,

with κ = l1 + l2 + l3 − l4, as proposed. �

Corollary 4.1. From that we gather an inverse proportionality

between T1 and T3

(4.25) T1 Ψ̌
(i)
li

(L.Λ|x3, x1) = qκ
T
−1
3 Ψ̌

(i)
li

(L,Λ|x3, x1) .

For the difference operator

{dx + a} =
q−

a
2 T

− 1
2

x −(−1)dx+aq
a
2 T

1
2
x

Qs

this entails

{d1 + a}Ψ̌(i)
li

= −{d3 − a− κ}Ψ̌(i)
li
.

We introduce the x-reduced blocks with x = (x, iθ) = (x1

x3
, θ3θ1) as

F (i)
li

(L,Λ|x) = x−κ
3 θκ+λ1+λ3

3 Ψ̌
(i)
li

(L,Λ|x3, x1) .

Merging θ3 and θ1 into iθ we get additional signs

S(s)
ms

= P(s)
ms

+ (l1 + l2 + λ1 +ms − 1)(l1 + l2 + λ1 +ms)/2 ,

S(u)
mu

= P(u)
mu

+ (l1 − l4 + λ1 −mu − 1)(l1 − l4 + λ1 −mu)/2 ,
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Note that S(i)
m+2 = S(i)

m + 1 mod 2. Together with what we know from
above we get

F
(s)
ls

(L,Λ|x) =

ls∑

ms=−ls

(−1)S
(s)
msf (s)

ms
(L,Λ|ls)x

l1+l2+ms(iθ)
l1+l2+ms+λ1(4.26a)

F
(u)
lu

(L,Λ|x) =

lu∑

mu=−lu

(−1)S
(u)
muf (u)

mu
(L,Λ|lu)xl3−l4+mu(iθ)

l3−l4+mu+λ1(4.26b)

The Scasimir eigenvalue equation. The blocks Ψ(i), i = s, u are
super eigenfunctions8 of the Scasimir with the eigenvalue (−1)F+1

[
li + 1

2

]
.

We introduce ℓ and k such that

ls + ℓ = l1 + l2 and lu + k = l2 + l3 .

In the following we find a difference equation for the x-reduced blocks,
that is remarkably similar to the one we found for Uqsl(2).

Proposition 4.2. The x-reduced blocks F (i)
li

, i = s, u fulfil the dif-

ference equations
(
(−1)κ+λ3+λ1q

−l4+l2−1
2 x−1

3 x1θ3θ1{dx − κ}{dx − 2l1}

−{dx − ℓ}{dx − 2ls − ℓ− 1}
)
F

(s)
ls

= 0 ,
(4.27a)

(
(−1)κ+λ3+λ1q

l4−l2+1
2 x3x

−1
1 θ3θ1{dx + 2l3 − κ}{dx}

−{dx + k − κ}{dx + 2lu + k + 1 − κ}
)
F

(u)
lu

= 0 .
(4.27b)

Proof. Consider the eigenvalue equations

∆21

(
Sq − (−1)Fs+1

[
ls + 1

2

])
Ψ(s) = 0 ,

∆32

(
Sq − (−1)Fu+1

[
lu + 1

2

])
Ψ(u) = 0 .

The indices 21 and 32 express the way the coproduct is embedded into
the four-fold tensor product.

∆21 = id⊗ id⊗∆ and ∆32 = id⊗∆ ⊗ id .

In the transposed x-representation the Scasimir operator

Sq = −Qsef +
q−

1
2k2 − q

1
2k−2

Q
.

takes the form of a difference operator. We determine this operator in
two steps. First we consider the summand ef . We use the leg notation

8that is the even and odd parts are eigenfunctions, not necessarily to the same
eigenvalue.



59 The quantum group Uqosp(1|2)

again. Let an act as an element a on the nth place of the tensor product
and as identity at all other places. We can express ∆21(ef) now as

∆21(ef)Ψ =
(
e2k1 + k−1

2 e1
) (
f2k1 + k−1

2 f1

)
Ψ

=
(
e2f2k

2
1 + e2k

−1
2 k1f1 − k−1

2 f2e1k1 + k−2
2 e1f1

)
Ψ

a
=
(
e2f2k

2
1 + e2k

−1
2 k1f1 + k4f4k

2
3e1k1 + k3f3e1k1

)
Ψ .

Equality a uses the fact that the block Ψ is invariant under the algebra-
like element f , which means that ∆(4)(f)Ψ = 0 where the action of the
generator f on the four-fold tensor product is

∆(4)(f) = f4k3k2k1 + k−1
4 f3k2k1 + k−1

4 k−1
3 f2k1 + k−1

4 k−1
3 k−1

2 f1 .

The term t = k−1
4 k−1

3 f2k1 is replaced by −∆(4)(f) + t. We note that
the term proportional to e2 vanishes in the limit x→ 0. The same goes
for the term proportional to f4 in the limit x4 → ∞.
We notice that the term e2f2 is basically the Scasimir operator.

e2f2 =

(

−(Sq)2 +
q−

1
2k2

2 − q
1
2k−2

2

q − q−1

)

Q−1
s

.

This term vanishes in the limit x2 → 0 because the second summand
tends to −

[
l2 + 1

2

]
and the Casimir operator is (−1)l2+m2+1

[
l2 + 1

2

]
on

the irreducible representation with spin l2. Now we are ready to state
that on the reduced block Ψ̌ we have

∆21(ef)Ψ̌ = q
l2−l4−1

2
x1

x3
{d3 − κ}{d1 − 2l1}Ψ̌ .

With the coproduct ∆k = k ⊗ k of the group-like generator k it is a
straightforward calculation to check that

∆21

(
q−

1
2k2 + q

1
2k−2

q − q−1

)
Ψ̌ =

[
d1 − l1 − l2 −

1
2

]
Ψ̌ .

A similar calculation for ∆32 yields the representation of the Scasimir
in the limit (x4, x2) → (∞, 0) as

q
−l4+l2−1

2 β2Qsx
−1
3 x1θ3θ1(−1)F3{d1 − 2l1}{d3} +

[
d1 − l2 − l1 −

1
2

]
,

in the s-channel and

q
l4−l2+1

2 β2Qsx3x
−1
1 θ3θ1(−1)F?{d3 − 2l3}{d1} +

[
d3 − l3 − l2 −

1
2

]
.

in the u-channel.

We introduce the indices ℓ and k counting the difference of the
intermediate representation’s spin from the maximal spin. We set

ls + ℓ = l1 + l2 , ℓ = 0, 1, 2, . . . , 2µ with µ = min{l1, l2} and

lu + k = l2 + l3 , k = 0, 1, 2, . . . , 2ν with ν = min{l2, l3} .



Super quantum 6j-symbols 60

Straightforward calculation leads to

−{d1 − ℓ}{d1 − 2ls − ℓ− 1}β2Qs =
[
d1 − l1 − l2 −

1
2

]
+ (−1)Fs

[
ls + 1

2

]
,

−{d3 − k}{d3 − 2lu − k − 1}β2Qs =
[
d3 − l2 − l3 −

1
2

]
+ (−1)Fu

[
lu + 1

2

]
.

Thus we let x = x1/x3 and come up with the proposed equations
(
(−1)κ+λ3+λ1q

−l4+l2−1
2 x−1

3 x1θ3θ1{dx − κ}{dx − 2l1}

−{dx − ℓ}{dx − 2ls − ℓ− 1}
)
F

(s)
ls

= 0 ,
(
(−1)κ+λ3+λ1q

l4−l2+1
2 x3x

−1
1 θ3θ1{dx + 2l3 − κ}{dx}

−{dx + k − κ}{dx + 2lu + k + 1 − κ}
)
F

(u)
lu

= 0 .

�

Up to now there has been no structural difference to what we found
for Uqsl(2). We will now consider the last structural equivalence before
we find the point where the two derivations depart from one another.

Consider the super basic hypergeometric difference equation

(4.28) (xθ{dx + a}{dx + b} − {dx}{dx + c− 1})P (x) = 0 .

This equation has two solutions parametrised by a Boolean number λ.
We call the parametrised solution the super basic hypergeometric series

and denote it by 2Π1(a, b; c|x, θ;λ; q). A series representation is given
by

(4.29) 2Π1

(
a b

c

∣∣∣∣
x, θ

λ, q

)
=
∑

n≥0

{a|n}{b|n}

{c|n}{n}!
xnθλ+n .

We observe that the difference equations (4.27) are nearly of super
basic hypergeometric type. With an ansatz

F (s)
ls

(L,Λ|x) = xℓ
2Π1

(
ℓ− κ ℓ− 2l1

−2ls − ℓ

∣∣∣∣
(−1)µqν x1

x3
, θ3θ1

λ1, q

)
,

F (u)
lu

(L,Λ|x) = 2Π1

(
k − κ 2lu + k + 1 − κ

2l3 − κ + 1

∣∣∣∣
(−1)µqν x1

x3
, θ3θ1

λ1, q

)

with µ = κ+ λ3 + λ1 and 2ν = −l4 + l2 − 1 it can be made such.

We now come to the point where the derivation of the 6j-symbols
differs from that in the quantum group Uqsl(2). The fundamental
representation j = 1

2
for Uqsl(2) is two-dimensional. Therefore we

had to examine two intermediate representation and to determine two
factors a±i and b±i in each channel.
For Uqosp(1|2) the situation is similar but slightly more complex. The
fundamental representation l = 1 is three-dimensional. So we have to
deal with three intermediate representations and with three coefficients
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aν
i , b

ν
i and cνi in both the channels. We call the x-reduced blocks F for

l2 = 1 the fundamental x-reduced blocks.

Proposition 4.3. The fundamental x-reduced blocks F are of the

form

(4.30) F (i)
lνi

=
(
aν

i + bνi xiθ + cνi x
2(iθ)2

)
R(L,Λ|x) ,

for ν = −, ◦,+.

Proof. The invariance of the four-point invariant is expressed as

∆(4)(f)Ψ
(i)
li

(L,Λ|X) = 0 .

When we consider the limit x4 → ∞ an let Ψ
(i)
ji

= ψ we have
(
f3k2k1 + k−1

3 f2k1 + k−1
3 k−1

2 f1

)
ψ = 0 ,

or in terms of difference operators9

(
q

−l1−l2+κ

2

x3θ3

(
T
−1
3 −(−1)F3

)
+
q

l3−l1−κ

2

x2θ2
T
−1
3

(
T
−1
2 −(−1)F2

)
+

+
q

l3+l2−κ

2

x1θ1

(
1 − (−1)F1 T1

))

ψ = 0 .

When l2 = 1 is equal to 1 we have f 3
2 ≡ 0. The polynomial solutions

to the Scasimir-eigenvalue equation are of the form

ψ = ψ1 + x2θ2ψ2 + x2
2ψ3 .

Define the difference operator D by

D =
q

−l1−1+κ

2

x3θ3

(
T

−1
3 −(−1)F3

)
+
q

l3+1−κ

2

x1θ1

(
1 − (−1)F1 T1

)
.

The difference equation for ψ then becomes

0 = Dψ1 + q
l1−l3+κ−1

2 Qs T
−1
3 ψ2+

+x2θ2Dψ2 + q
l1−l3+κ−2

2 QT
−1
3 ψ3+

+x2
2Dψ3 .

There are three linearly independent polynomial solutions to the equa-
tion f 3

2ψ = 0. We denote them by φ′′, φ′ and φ. A general solution is
of the form

(4.31) ψ = aφ′′ + bφ′ + cφ .

9Here we have used the relation T3 T2 T1 ψ = qκψ, which follows from the
invariance of Ψ under the action of k, ∆(4)(k)Ψ = Ψ.
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The solution φ′′. We choose solution φ′′ to have vanishing compo-
nents φ′′

2 and φ′′
3. Component φ′′

1 then is determined by the equation

(4.32) Dφ′′
1 = 0 .

From this we get
(

(−1)F3 − q
l1+l3+2−2κ

2
x3θ3
x1θ1

)
T
−1
3 φ′′

1 =

(
1 − q

l1+l3+2
2

x3θ3
x1θ1

(−1)F1

)
φ′′

1 .

We take the quotient of T
−1
3 φ′′

1 and φ′′
1 and expand,

T
−1
3 φ′′1
φ′′1

=

(
(−1)F3 − q

l1+l3+2−2κ

2
x3θ3

x1θ1

)(
(−1)F3 − q

l1+l3+4−2κ

2
x3θ3

x1θ1

)
· · ·
(
(−1)F3 − q

l1+l3
2

x3θ3

x1θ1

)

(
1 − q

l1+l3+4−2κ

2
x3θ3

x1θ1
(−1)F1

)
· · ·
(
1 − q

l1+l3
2

x3θ3

x1θ1
(−1)F1

)(
1 − q

l1+l3+2
2

x3θ3

x1θ1
(−1)F1

) .

(4.33)

This is the quotient of two polynomials in x3/x1θ3θ1. The parity
operators F3 and F1 introduce relative signs into the polynomials and a
single global sign each. These global signs derive from constants in θ3
and θ1. We denote these constants with θλ3

3 and θλ1
1 respectively. This

yields the form of φ′′
1 as

(4.34)

φ′′1 =

(
1 − f1

x3θ3
x1θ1

+ f2

(
x3θ3
x1θ1

)2

− · · · + fκ−2

(
x3θ3
x1θ1

)κ−2
)
θλ3
3 θλ1

1 .

This determines φ′′.

The solution φ′. We choose the solution φ′ such that the component
φ′

3 vanishes. The remaining components φ′
1 and φ′

2 are determined by
the equations

Dφ′
1 = −q

l1−l3+κ−1
2 Qs T

−1
3 φ2(4.35)

Dφ′
2 = 0 .(4.36)

The equation determining φ′
2 (4.36) is the same as (4.32) determining

φ′′
1. We conclude that

(4.37) φ′
2 = φ′′

1 .

We note that (4.35) which determines φ′
1 basically is (4.36) with an

inhomogeneity. Thus we make the ansatz φ′
1 = φ′

2g. The operators
((−1)F3 − T

−1
3 ) and (1 − (−1)F1 T1) obey the deformed product rule

(
(−1)F − T

a
)
fg =

((
(−1)F − T

a
)
f
)
g + (Ta f) (1 − T

a) g .

Thus (4.35) becomes

(
Dφ′2

)
g +

(
T
−1
3 φ′2

)
(
−
q

−l1−1+κ

2

x3θ3

(
1 − T

−1
3

)
+
q

l3+1+κ

2

x1θ1
(−1)F1 (1 − T1)

)
g

= −q
l3−l1+κ−1

2 Qs T
−1
3 φ′2 .
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We note that Dφ′
2 = 0. The ansatz g = αx3θ3 yields

q
−l1−2+κ

2

(
q

1
2 − q−

1
2

)
α = q

l3−l1+κ−1
2 Qs

and determines α = ql3+ 1
2Qs/(q

1
2 − q−

1
2 ). We conclude that

φ′ = (αx3θ3 + x2θ2)φ
′
2 .

The solution φ. The solution φ = φ1 + x2θ2φ2 + x2φ3 is determined
by the following equations

Dφ1 = −q
l1−l3+κ−1

2 Qs T
−1
3 φ2(4.38)

Dφ2 = −q
l1−l3+κ−2

2 QT
−1
3 φ3(4.39)

Dφ3 = 0 .(4.40)

We proceed as before. We note that the difference operators in (4.40)
and (4.32) are the same and conclude that

φ3 = φ′′
1 .

For φ2 we make the ansatz φ2 = φ3u leading to

(Dφ3) u+
(
T
−1
3 φ3

)
(
−
q

−l1−1+κ

2

x3θ3

(
1 − T

−1
3

)
+
q

l3+1+κ

2

x1θ1
(−1)F1 (1 − T1)

)
u

= −q
l3−l1+κ−2

2 Qs T
−1
3 φ3

We note that Dφ3 vanishes and make the ansatz u = βx3θ3. This
yields

q
−l1−2+κ

2

(
q

1
2 − q−

1
2

)
β = q

l3−l1+κ−2
2 Qs

and determines β = q
l3+1

2 Qs/(q
1
2 − q−

1
2 ).

For φ1 we make the ansatz φ1 = φ3v leading to

(Dφ3) v +
(
T
−1
3 φ3

)
(

−
q

−l1−1+κ

2

x3θ3

(
1 − T

−1
3

)
+
q

l3+1+κ

2

x1θ1
(−1)F1 (1 − T1)

)

v

= −q
l3−l1+κ−1

2 Qs T
−1
3 φ2

We have already determined φ2 to be equal to φ3βx3θ3. Inserting

T
−1
3 (φ3βx3θ3) = (T−1

3 φ3)q
−1βx3θ3

together with the ansatz v = γx2
3 into the equation above, leads to

q
−l1−3+κ

2 γx3θ3
(
q − q−1

)
= q

l3−l1+κ−3
2 Qsβx3θ3

(
T
−1
3 φ3

)
.

This determines γ = βQs/Qq
l3
2 = q

2l3+1
2 Q2

s
/(Q(q

1
2 − q−

1
2 )). We con-

clude that

φ = φ1 + x2θ2φ2 + x2
2φ3

=
(
γx2

3 + βx2x3θ2θ3 + x2
2

)
φ3 .
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Note that φ3 = φ′
2 = φ′′

1. The general solution (4.31) is thus

ψ = aφ′′ + bφ′ + cφ

= aφ′′
1 + b (αx3θ3 + x2θ2)φ

′
2 + c

(
γx2

3 + βx2x3θ2θ3 + x2
2

)
φ3

=
(
a + b (αx3θ3 + x2θ2) + c

(
γx2

3 + βx2x3θ2θ3 + x2
2

))
φ′′

1 .

When x2 tends to 0, ψ tends to Ψ̌. Thus we have proven that for j2 = 1
the x-reduced blocks F are of the form

F (i)
lνi

=
(
aν

i + bνi xiθ + cνi x
2(iθ)2

)
R(L,Λ|x) ,

for ν = −, ◦,+. �

Looking at the x-reduced blocks F in a little more detail we see
from the horizontal and vertical constraints that for the appropriate
coefficients rν

m

F
(s)

l−s
= r−−l1+1x

2(iθ)2+λ1 + · · ·+ r−l3−l4
xκ(iθ)κ+λ1

F
(s)
l◦
s

= r◦−l1x
1(iθ)1+λ1 + r◦−l1+1x

2(iθ)2+λ1 + · · ·+ r◦l3−l4x
κ(iθ)κ+λ1

F
(s)

l+s
= r+−l1−1(iθ)

λ1 +r+−l1
x1(iθ)1+λ1 + r+−l1+1x

2(iθ)2+λ1 + · · ·+ r+l3−l4
xκ(iθ)κ+λ1

in the s-channel and in the u-channel

F(u)

l
−

u

= r
−
l1−l4

(iθ)λ1 + · · · + r
−
−l3+1x

κ−2(iθ)κ−2+λ1

F(u)
l◦
u

= r
◦
l1−l4

(iθ)λ1 + · · · + r
◦
−l3+1x

κ−2(iθ)κ−2+λ1 + r
◦
−l3

x
κ−1(iθ)κ−1+λ1

F
(u)

l
+
u

= r
+
l1−l4

(iθ)λ1 + · · · + r
+
−l3+1x

κ−2(iθ)κ−2+λ1 + r
+
−l3

x
κ−1(iθ)κ−1+λ1 + r

+
−l3−1x

κ(iθ)κ+λ1 .

So we have already that the coefficients a−s , a
◦
s, b

−
s , b

−
i , c

−
u and c◦u

vanish. The remaining coefficients we determine from the Clebsch–
Gordan coefficients using the formulae (B.8) in the appendix.

r0a
+
s = (−1)S

(s)
−l1−1

r0b
+
s = (−1)S

(s)
−l1 q−

l4
2
{l143 + 1}{2}

{2l1 + 2}

r0c
+
s = (−1)

S
(s)
−l1+1q−l4

(
{κ− 1}{κ}

{2l1 + 1}{2l1 + 2}
−

{κ− 2}{κ}

{2l1 + 2l}
−

{κ− 3}{κ− 2}

{2}

)

r0b
◦
s = (−1)

S
(s)
−l1

+1+λ2q
−l1−1

2

r0c
◦
s = (−1)

S
(s)
−l1−1+λ2q

−l1−l4−1

2
{l143 }

{2l1}

r0c
−
s = (−1)

S
(s)
l1+1+1

q−l1
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r0a
+
u = (−1)

S
(u)
l1−l4 q

κ

2
{l341 }{l341 + 1}

{2l3 + 1}{2l3 + 2}

r0b
+
u = (−1)

S
(u)
l1−l4−1+κ+λ2q

κ−l4
2

{l341 + 1}{2}

{2l3 + 2}

r0c
+
u = (−1)S

(u)
l1−l4 q−l4

(
{l341 + 3}{l341 + 2}{κ− 1}{κ}

{2l3 + 2}{2l3 + 1}
−

{2}{l341 + 1}2{l341 }

{2l3 + 2}2{2l3 + 1}
−

{κ− 3}{κ− 2}

{2}{2l3 + 2}{2l3 + 1}

)

r0a
◦
u = (−1)S

(u)
l1−l4

+κ−1q
κ−1

2
{l341 }

{2l3}

r0b
◦
u = (−1)

S
(s)
l1−l4−1−1+λ2q−

l4
2
{l341 }

{2l3}

r0a
−
u = (−1)

S
(u)
l1−l4 q

κ−2
2

The expressions for c+s and c+u unfortunately are rather bulky. There
might well be a way to algebraically bring them to a form more man-
ageable. This would simplify the expressions for the 6j-symbols that
depend on these coefficients.
Using the ansatz F = (a+ bxiθ + cx2)R of (4.30) the fusing relations

F (u)

jµ
u

(L,Λ|x) =
∑

jν
s∈{j1,j1±1}

{
l3λ3 1λ2 lµu
l4λ4 l1λ1 lνs

}

q|s

F (s)
jν
s

(L,Λ|x)

simplify to the relations

a+
u iθ + b+u xiθ + c+u x

2(iθ)2 =

{
l3λ3 1λ2 l+u
l4λ4 l1λ1 l−s

}

q|s

c−s x
2(iθ)2+

+

{
l3λ3 1λ2 l+u
l4λ4 l1λ1 l◦s

}

q|s

(
b◦sxiθ + c◦sx

2(iθ)2
)
+

+

{
l3λ3 1λ2 l+u
l4λ4 l1λ1 l+s

}

q|s

(
a+

s iθ + b+s xiθ + c+s x
2(iθ)2

)
,

a◦u + b◦uxiθ =

{
l3λ3 1λ2 l◦u
l4λ4 l1λ1 l−s

}

q|s

c−s x
2(iθ)2+

+

{
l3λ3 1λ2 l◦u
l4λ4 l1λ1 l◦s

}

q|s

(
b◦sxiθ + c◦sx

2(iθ)2
)
+

+

{
l3λ3 1λ2 l◦u
l4λ4 l1λ1 l+s

}

q|s

(
a+

s + b+s xiθ + c+s x
2(iθ)2

)
,
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a−u =

{
l3λ3 1λ2 l−u
l4λ4 l1λ1 l−s

}

q|s

c−s x
2(iθ)2+

+

{
l3λ3 1λ2 l−u
l4λ4 l1λ1 l◦s

}

q|s

(
b◦sxiθ + c◦sx

2(iθ)2
)
+

+

{
l3λ3 1λ2 l−u
l4λ4 l1λ1 l+s

}

q|s

(
a+

s + b+s xiθ + c+s x
2(iθ)2

)
.

Solving these relations for the 6j-symbols we arrive at the fundamental
6j-symbols of the super quantum group Uqosp(1|2). The bulky form
of c+s and c+u makes it unappealing to give the 6j-symbols depending
on these in terms of spins L and parities Λ. For said 6j-symbols we
note the construction in terms of the coefficients aν

i , b
ν
i and cνi . The

remaining 6j-symbols we give in terms of L and Λ.

Let L = S(u)
l1−l4

+ S(s)
−l1−1. The fundamental 6j-symbols then are

{
l3λ3 1λ2 l+u
l4λ4 l1λ1 l+s

}

q|s

= (−1)Lq
κ
2

{l341 }{l341 + 1}

{2l3 + 1}{2l3 + 2}
{
l3λ3 1λ2 l◦u
l4λ4 l1λ1 l+s

}

q|s

= (−1)L+κ−1q
κ−1

2
{l341 }

{2l3}
{
l3λ3 1λ2 l−u
l4λ4 l1λ1 l+s

}

q|s

= (−1)Lq
κ−2
2

{
l3λ3 1λ2 l+u
l4λ4 l1λ1 l◦s

}

q|s

= (−1)L+1q
κ+l1−l4+1

2
{l341 }{2}

{2l3 + 2}

(
1 −

{l341 + 1}{l143 + 1}

{2l3 + 1}{2l1 + 2}

)

{
l3λ3 1λ2 l◦u
l4λ4 l1λ1 l◦s

}

q|s

= (−1)Lq
κ+l1−l4+1

2
{l341 }

{2l3}

(
1 −

{l143 + 1}{2}

{2l1 + 2}

)

{
l3λ3 1λ2 l−u
l4λ4 l1λ1 l◦s

}

q|s

= (−1)L+λ2q
κ−l4+l1−1

2
{l143 + 1}{2}

{2l1 + 2}
.

(4.41a)

{
l3λ3 1λ2 l+u
l4λ4 l1λ1 l−s

}

q|s

=
c+u
c−s

−
c+s a

+
u

c−s a
+
s

−
c◦s
c−s

(
b+u
b◦s

−
b+s a

+
u

b◦sa
+
s

)

{
l3λ3 1λ2 l◦u
l4λ4 l1λ1 l−s

}

q|s

= −
c+s a

◦
u

c−s a
+
s

−
c◦s
c−s

(
b◦u
b◦s

−
b+s a

◦
u

b◦sa
+
s

)

{
l3λ3 1λ2 l−u
l4λ4 l1λ1 l−s

}

q|s

= −
c+s a

−
u

c−s a
+
s

+
c◦sb

+
s a

−
u

c−s b
◦
sa

+
s

.

(4.41b)

Thus we have determined the fundamental 6j-symbols of Uqosp(1|2).
Together with the recurrence relation (4.22) these determine all 6j-
symbols of the super quantum group Uqosp(1|2).



Chapter 5
Conclusion and outlook

We determined the 6j symbols of the quantum groups Uqsl(2) and
Uqosp(1|2) in a way inspired by the determination of the fusing ma-
trices in WZNW models in the approach of Belavin, Polyakov and
Zamolodchikov to conformal field theory.

The four-point invariants Ψ of Uqsl(2) can be decomposed into
blocks Ψ(s) and Ψ(u)

Ψ
(s)
js

(J |X) =
∑

ms

(
j4 j3 js
x4 x3 ms

)

q

[
js
ms

∣∣∣∣
j2 j1
x2 x1

]

q

,(5.1a)

Ψ
(u)
ju

(J |X) =
∑

mu

(
j4 ju j1
x4 mu x1

)

q

[
ju
mu

∣∣∣∣
j3 j2
x3 x2

]

q

.(5.1b)

For Uqosp(1|2) we have an analogue decomposition. These blocks are
connected linearly by the 6j-symbols

(5.2) Ψ
(u)
ju

=
∑

js

{
j3 j2 ju
j4 j1 js

}
Ψ

(s)
js
.

We considered representations of Uqsl(2) and Uqosp(1|2) as difference
operators on the spaces Pol2j(x) and Pol2l(x, θ). In these representa-
tions the Casimir operator and the Scasimir operator induce difference
equations the invariants fulfil. From these equations we deduced that
the invariants are of a generalised hypergeometric form. The blocks of
Uqsl(2) have the form of basic hypergeometric functions

2Φ1

(
a b

c

∣∣∣∣ x; q
)

=
∑

n≥0

[a|n] [b|n]

[c|n] [n]!
xn .

The blocks of Uqosp(1|2) have the form of a natural generalisation
thereof. They are of a super basic hypergeometric type

2Π1

(
a b

c

∣∣∣∣
x, θ

λ, q

)
=
∑

n≥0

{a|n}{b|n}

{c|n}{n}!
xnθλ+n .

Inspired by the role the degenerate fields of WZNW-models play in the
determination of the fusing matrices we specialised one of the repre-
sentation to the fundamental representation, 1/2 for Uqsl(2) and 1 for
Uqosp(1|2).
This reduces the amount of intermediate representations considerably.
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The remaining spins are js± = j1 ± 1/2 and j±u = j3 ± 1/2 for Uqsl(2)
and lνs = l1 + ν and lνu = l3 + ν with ν = −1, 0, 1 for Uqosp(1|2).
Furthermore the specialisation to the fundamental representation puts
further constraints on the form of the reduced blocks. We found that
for F = xκ

3Ψ. in Uqsl(2) we have

F (i)

j±i
(J |x) =

(
a±i + b±i x

)
R(J |x) .

For Uqosp(1|2) we found

F (i)
lνi

(L,Λ|x) =
(
aν

i + bνi xiθ + cνi x
2
)
R(L,Λ|x) for ν = −, ◦,+ .

We determined the coefficients a, b and c from the definition (5.1) of
the blocks Ψ(s) and Ψ(i) by direct evaluation of the Clebsch–Gordan
coefficients concerned.
Together with the fusing relations (5.2) this lead us to a system of
linear equations for the fundamental 6j-symbols. These fundamental
6j-symbols, together with the recurrence relation the 6j-symbols obey,
determine the 6j-symbols.

Outlook

The determination of the coefficients a, b and c by direct evaluation
of the Clebsch–Gordan coeffiencts is tedious and not fully in harmony
with the rest of the method. It would be satisfying to determine these
coefficients by considering further difference equations. An approach
in this direction showed much promise, but met subtle difficulties.

As an application to these ideas, it is possible to investigate the
conjecture by Feigin and Malikov [8] mentioned in the introduction.
We sketch the steps that have to be taken in this investigation.
When we consider the case of rational t as a limit of generic t we have
to give an argument as to why the tensor product is replaced with
the truncated tensor product. Similarily some arguments of Teschner’s
derivation in the SL(2)/SU(2)-model have to be generalised to the case
of rational t.
With the help of the expressions Teschner determined for the fusing
matrices in the context of the SL(2)/SU(2)-model the normalisation
coefficients νj

lk in the equality

νj3
j4js

νjF

jsj1

νju

j4j1
νj3

jujF

{
j3 jF ju
j4 j1 js

}
= Fjujs

[
j3 jF

j4 j1

]

could be determined. Thus proving or disproving the conjecture.
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Appendix A
Quantum calculus

We introduce the quantum generalisation of c-numbers and a dif-
ference calculus on these. We introduce the basic hypergeometric func-
tion. Finally we collect recurrence relations for the quantum Clebsch–
Gordan coefficients.

1. Quantum numbers

Quantum numbers or q-numbers by themselves have nothing to do
with quantum theory. They date back to the 19th century when there
was the first gold-rush for q-analogues1. An extensive introduction can
be found in the book by Klimyk and Schmüdgen [22].

(A.1) [n]q = [n] =
qn − q−n

q − q−1

The q-factorial [n]q! = [n]! is defined as

[0]! = 1

[n]! = [1] [2] · · · [n] for n ≥ 1 .

The shifted q-factorial [a|n]q = [a|n] is defined as

(A.2)

[a|0] = 1

[a|n] = [a] [a + 1] [a + 2] · · · [a+ n− 1] for n ≥ 1

[a| − n] =
1

[a− 1] [a− 2] · · · [a− n]
=

1

[a− n|n]
for n ≥ 1

2. Difference operators

The multiplication operator T = qdx = qx∂x on functions of x is
defined as

T f(x) = f(qx) .

1A q-analogue of a given object is a parametrised family of objects which in-
cludes the original object for a special value of the parameter.
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When considering q-deformation, people often study variables z such
that x = qz. In that case T is also known as a shift operator.
From T we construct the difference operator as

[dx + a] =
qa

T−q−a
T

−1

q − q−1
.

Properties. The multiplication and difference operators commute
as follows with x

Tx = qxT and [dx] x = x [dx + 1] .

When we let q tend to 1 we reproduce the identity from T and an
operator proportional to the differential quotient from the difference
operator.

3. Basic hypergeometric series

The basic hypergeometric series was first considered2 by Eduard
Heine in the 1840s as a generalisation of Gauss’s hypergeometric se-
ries. In modern parlance it is also called the q-hypergeometric series.
The basic hypergeometric series 2Φ1(a, b; c|x; q) is the solution of the
hypergeometric difference equation

(A.3) (x [dx + a] [dx + b] − [dx] [dx + c− 1])P (x) = 0 .

We use the following series representation for 2Φ1

(A.4) 2Φ1

(
a b

c

∣∣∣∣ x; q
)

=
∑

n≥0

[a|n] [b|n]

[c|n] [n]!
xn .

4. Quantum Clebsch–Gordan coefficients

The quantum Clebsch–Gordan-coefficients communicate the base
change between the tensor basis and the reduced basis in a tensor
product of Uq -modules.

ej
m(j2, j1) =

∑

m1,m2

[
j
m

∣∣∣∣
j2 j2
m2 m2

]

q

ej2
m2

⊗ ej1
m1

For a representation of Uq acting as

πm(X±)ej
m = C±(j,m)ej

m±1 , πm(K)ej
m = qmej

m ,

2It is introduced in [12] and further properties are explored in [13]. To be
precise Heine considered the analogue series on quantum numbers

[[a]] =
1 − qa

1 − q
.
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the Clebsch–Gordan-coefficients satisfy the recurrence relation

C±(j,m)
[

j
m±1

∣∣ j2 j1
m2 m1

]
q

=

qm1C±(j2,m2 ∓ 1)
[

j
m | j2 j1

m2∓1 m1

]
q
+ q−m2C±(j1,m1 ∓ 1)

[
j
m | j2 j1

m2 m1∓1

]
q
.

For minimal m we get
[
j
−j

∣∣∣∣
j2 j1
m2 m1

]

q

= − qj+1 C
−(j1,m1 + 1)

C−(j2,m2)

[
j
−j

∣∣∣∣
j2 j1

m2 − 1 m1 + 1

]

q

= − q−j−1 C
−(j2,m2 + 1)

C−(j1,m1)

[
j
−j

∣∣∣∣
j2 j1

m2 + 1 m1 − 1

]

q

.

Analogously we get for minimal m2[
j
m

∣∣∣∣
j2 j1
−j2 m1

]

q

= qj2
C+(j1,m1 − 1)

C+(j,m− 1)

[
j

m− 1

∣∣∣∣
j2 j1
−j2 m1 − 1

]

q

= q−j2
C+(j,m)

C+(j1,m1)

[
j j2

m+ 1 −j2

∣∣∣∣
j1

m1 + 1

]

q

and for minimal m1[
j
m

∣∣∣∣
j2 j1
−j2 m1

]

q

= q−j1
C+(j2,m2 − 1)

C+(j,m− 1)

[
j

m− 1

∣∣∣∣
j2 j1

m2 − 1 −j1

]

q

= qj1
C+(j,m)

C+(j2,m2)

[
j

m+ 1

∣∣∣∣
j2 j1

m2 + 1 −j1

]

q

.





Appendix B
A few things super

We introduce the super prefix as a Z2 grading. We introduce super
vector spaces and super algebras. The main topic of this chapter is the
combination of the super and quantum structures.

A short remark on terminology. We will name a super generalisa-
tion of a given object, say a commutator, be prefixing “super” to the
objects name. In the given case this would result in a super com-
mutator. Since we apply the same naming convention for quantum
generalisations, some primacy has to be established. We choose to
apply “quantum” first, then “super”, resulting in, say super quantum
commutator.

A highly worthwhile introduction to the mathematical side of super
symmetry is the monograph by Varadarajan [40] from which the first
two sections of this chapter draw.

1. Super linear algebra

Definition B.1. A k-super vector space V is a vector space over
the field k graded by Z2 = Z/2Z. That means it decomposes into the
direct sum of two vector spaces

V = V0 ⊕ V1 .

The elements of V0 are called even and V0 the even subspace, elements of
V1 are called odd and V1 the odd subspace. Elements of either subspace
only are called homogeneous.
We introduce the parity p, a binary function on V such that

p |Vi
≡ i , i = 0, 1 .

Example 1. For a field k the super coordinate space km|n is as a
set isomorphic to the coordinate space km+n spanned by the vectors
ei, i = 1, 2, . . . , m + n. The even subspace is spanned by the vectors
ei, i = 1, 2, . . . , m and the odd subspace is spanned by the vectors ei,
i = m+ 1, m+ 2, . . . , n.
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Definition B.2. A linear map f : V → W between super vector
spaces is called parity preserving if

f(Vi) ⊆ Wi , i = 0, 1

and parity reversing if

f(Vi) ⊆Wi+1 , i = 0, 1 .

Every linear map between super vector spaces can be decomposed into
a parity preserving and an parity reversing map. Thus the space of
linear maps between super vector spaces, say V and W , is itself a
super vector space. We denote it by Hom(V,W ).
The homomorphisms of super vector spaces are the parity preserving
linear maps between them. We denote this space by Hom(V,W ).

Definition B.3. The super vector spaces taken as objects and the
parity preserving linear maps taken as morphisms constitute a category.
We call this category of (k-) super vector spaces S V .

The category of super vector spaces has a lot of additional struc-
ture. We will list the ones most important to us.

Monoidal category. The category S V is a monoidal category with
the super tensor product as monoidal product and the even super vector
space k1|0 as unit object.

Symmetric monoidal category. With respect to the braiding

τV,W : V ⊗W →W ⊗ V

τ(x⊗ y) = (−1)p(x) p(y)y ⊗ x

S V is symmetric monoidal category.

Closed monoidal category. Super vector spaces constitute a closed

monoidal category with internal Hom object Hom(V,W ), the super
vector space of all linear maps V → W . This means that the funtor
−⊗ V left adjoint to the functor Hom(V,−). We have

Hom(U ⊗ V,W ) ∼= Hom(U,Hom(V,W )) .

This is just as in the non-super case where we have that, for example
linear functions on the tensor product X ⊗ Y of two vector spaces are
equivalent to bilinear functions on the product X × Y .

2. Super algebra

Definition B.4. A super algebra A over the field k is a Z/2Z-
graded k-module

A = A0 ⊕ A1 ,
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in such a way that the grading is compatible with the module structure

AiAj ⊆ Ai+j .

Expressed in terms of the parity we have

p (xy) = p (x) + p (y) .

Similarly the parity extends to the (super) tensor product of super
algebras.

p (x⊗ y) = p (x) + p (y) .

Categorially, a super algebra A is a super vector space with maps
µ : A ⊗ A → A and η : k → A such that (A, µ, η) is a monoid in the
category of super vector spaces. This expresses the commuting of the
two diagrammes in figure 11.

(A⊗ A) ⊗ A //

µ⊗id

��

A⊗ (A⊗A)

id⊗µ

��

A⊗A
µ

// A A⊗ A
µ

oo

(a) Multiplication

k ⊗ A
η⊗id

//

%%KKKKKKKKKK
A⊗A

µ

��

A⊗ k
id⊗η
oo

yyssssssssss

A
(b) Unit

Figure 11: A categorial monoid

Example 2. The polynomials Pol(x, θ) = C[x, θ] in the two vari-
ables x and θ with the relations

xθ = θx

θ2 = 1

is a superalgebra. The variable x is even and θ is odd.

Remark on idempotent odd numbers. Let A be a supergalge-
bra with an odd part of dimension 2 or higher. If the odd elements are
idempotent A naturally includes the complex numbers. Consider the
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product θiθj with i 6= j. We then have

(θaθb)
1 = θaθb

(θaθb)
2 = −1

(θaθb)
3 = −θaθb

(θaθb)
4 = 1

3. Super quantum numbers

Super quantum numbers are a natural extension of the construction
of the quantum numbers.

(B.1) {n}q = {n} =
q−n/2 − (−1)nqn/2

q−1/2 + q1/2

The super quantum numbers enjoy a large number of useful algebraic
properties in analogy the quantum numbers

{m} = q−(n−1)/2 − q−(n−1)/2+1 + · · · (−1)m−1q(n−1)/2

{m+ n} = q−m/2{n} + (−1)nqn/2{m}

{m− n} = qn/2{m} − (−1)m−nqm/2{n}

0 = {a}{b− c} + (−1)a−c{b}{c− a} + (−1)b−c{c}{a− b}

{n} =
q−1 + q

q−1/2 + q1/2
{n− 2} − {n− 4}

{a}{b} − {a− 1}{b+ 1} = (−1)a+1{−a + b+ 1}

For n ∈ N we introduce the sq-factorial {n}q! = {n}! by setting

(B.3) {n}! = {1}{2} · · · {n} , {0}! := 1 .

The shifted super q-factorial {a|n}q = {a|n} is defined as

(B.4)

{a|0} = 1

{a|n} = {a}{a+ 1}{a+ 2} · · · {a+ n− 1} for n ≥ 1

{a| − n} = {a− 1}{a− 2} · · · {a− n} for n ≥ 1

4. Super difference operators

The multiplication operator T = qdx = qx∂x is defined as in appen-
dix A on functions of x

T f(x) = f(qx) .
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We define the super difference operator as

(B.5) {dx + c}q =
q−

c
2 T

− 1
2 −(−1)c+x∂xq

c
2 T

1
2

q−
1
2 + q

1
2

where dx = x∂x. The difference operator commutes with x in the
following way.

{dx + c}x = x{dx + c+ 1} .

5. Super basic hypergeometric series

In the super algebra Pol(x, θ) = C[x, θ] with θ2 = 1 consider the
super q-hypergeometric difference equation

(B.6) (xθ{dx + a}{dx + b} − {dx}{dx + c− 1})P (x) = 0 .

This equation has two solutions parametrised by a Boolean number λ.
We call the parametrised solution the super basic hypergeometric series

and denote it by 2Π1(a, b; c|x, θ;λ; q). A series representation is given
by

(B.7) 2Π1

(
a b

c

∣∣∣∣
x, θ

λ, q

)
=
∑

n≥0

{a|n}{b|n}

{c|n}{n}!
xnθλ+n .

6. Super quantum Clebsch–Gordan coefficients

The tensor product representations and the irreducible represen-
tations are intertwined by the super quantum Clebsch–Gordan coeffi-
cients.

el
m(l2, l1;λ) =

∑

m1,m2

[
lλ
m

∣∣∣∣
l2λ2 l1λ1

m2 m1

]

q|s

el2
m2

(λ2) ⊗ el1
m1

(λ1) .

The recurrence relations are up to a sign mutatis mutandis the same
as for Uqsl(2).

D±(l,m)

[
lλ

m± 1

∣∣∣∣
l2λ2 l1λ1

m2 m1

]

q|s

= q
m1
2 D±(l2,m2 ∓ 1)

[
lλ
m

∣∣∣∣
l2λ2 l1λ1

m2 ∓ 1 m1

]

q|s

+

+(−1)l2+m2+λ2q−
m2
2 D±(l1,m1 ∓ 1)

[
lλ
m

∣∣∣∣
l2λ2 l1λ1

m2 m1 ∓ 1

]

q|s

For minimal m we have
»

lλ

−l

˛

˛

˛

˛

l2λ2 l1λ1

m2 m1

–

q|s

= (−1)l2+m2+λ2q
l+1
2

D−(l1, m1 + 1)

D−(l2, m2)

»

lλ

−l

˛

˛

˛

˛

l2λ2 l1λ1

m2 − 1 m1 + 1

–

q|s

,

= (−1)l2+m2+1+λ2q
− l+1

2
D−(l2, m2 + 1)

D−(l1, m1)

»

lλ

−l

˛

˛

˛

˛

l2λ2 l1λ1

m2 + 1 m1 − 1

–

q|s

.
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Similarly for minimal m2[
lλ
m

∣∣∣∣
l2λ2 l1λ1

−l2 m1

]

q|s

= (−1)λ2q
l2
2
D+(l1,m1 − 1)

D+(l,m− 1)

[
lλ

m− 1

∣∣∣∣
l2λ2 l1λ1

−l2 m1 − 1

]

q|s

,

= (−1)λ2q−
l2
2

D+(l,m)

D+(l1,m1)

[
lλ

m+ 1

∣∣∣∣
l2λ2 l1λ1

−l2 m1 + 1

]

q|s

and minimal m1[
lλ
m

∣∣∣∣
l2λ2 l1λ1

m2 −l1

]

q|s

= q−
l1
2
D+(l2,m2 − 1)

D+(l,m− 1)

[
lλ

m− 1

∣∣∣∣
l2λ2 l1λ1

m2 − 1 −l1

]

q|s

,

= q
l1
2

D+(l,m)

D+(l2,m2)

[
lλ

m+ 1

∣∣∣∣
l2λ2 l1λ1

m2 + 1 −l1

]

q|s

With the normalisation[
lλ
−l

∣∣∣∣
l2λ2 l1λ1

l1 − l −l1

]

q|s

= 1

and our choice of

D+(l,m;λ) = (−1)l−m{l −m}β and D−(l,m;λ) = {l +m}β ,

we find for the Clebsch–Gordan coefficients with one lowest vector

[
lλ
−l

∣∣∣∣
l2λ2 l1λ1

m2 m1

]

q|s

= (−1)Lq−
(l1+m1)(l+1)

2
{l2 +m2 + l1 +m1}!

{l2 +m2}!{l1 +m1}!
,

(B.8a)

with L = (l2 +m2 + λ2)(l1 +m1) + (l1 +m1)(l1 +m1 + 1)/2

[
lλ
m

∣∣∣∣
l2λ2 l1λ1

−l2 m1

]

q|s

= (−1)L
′
q

l2(m−1)+(l−l1)(l+1)
2

{l −m}!{l1 −m1 + l +m}!

{l1 −m1}!{2l}!
,

(B.8b)

with L′ = (l1 + l2 +m)λ2 + (l1 + l2 − l)(l1 + l2 − l + 1)/2

[
lλ
m

∣∣∣∣
l2λ2 l1λ1

m2 −l1

]

q|s

= (−1)(l2+m2+1)(l+m)q
(l+m)l1

2
{l −m}!{l2 −m2 + l +m}!

{l2 −m2}!{2l}!
.

(B.8c)
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