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Abstract

The spin plays a fundamental role for various many-body effects in nature, ranging
from magnetism in solids to even more complex phenomena in high-spin systems such
as the quark-gluon plasma. Quantum gases are ideally suited to study such systems in
an exceptionally clean and controllable environment. For example, experiments with
spinor Bose-Einstein condensates have revealed completely new high-spin phenomena
in the last years. In this context, interaction-driven dynamics of the spin degree of
freedom have been found. However, since the constituents of matter are fermions, there
is a huge interest in current research activities to understand to which extent these
effects also exist in fermionic systems.

This thesis is devoted to the investigation of fermionic spin dynamics. For the first
time, spin-changing collisions could be observed in fermionic quantum gases. This novel
effect has been explored in various regimes, ranging from the microscopic two-body
process to the many-body regime.

For these investigations, new methods for the experimental preparation and control
of fermionic high-spin systems have been developed. In a first approach, spin dynam-
ics were investigated between two isolated fermions, realized in deep optical lattices.
The results demonstrate novel coherent multi-flavor spin dynamics, involving up to
ten different spin states. An excellent agreement with a two-particle scattering model
allowed for the determination of fundamental scattering parameters and for the first
demonstration of spin-changing collisions with high-collision quanta. Moreover, the ex-
periments reveal a new instability of a band insulator in high-spin systems – in contrast
to conventional solid-state systems – induced by spin-changing collisions.

Inspired by these fundamental findings, the impact of spin-changing collisions on
a fermionic many-body system has been investigated. In a Fermi sea, consisting of
several 105 particles with a spatial extension of several hundred micrometers, a fully
unexpected phenomenon could be observed: the Fermi sea exhibits giant and long-lived
spin oscillations induced by microscopic collisions despite its multi-mode structure. A
detailed experimental study demonstrated that the whole system can be well captured
in a mean-field approach using a single-mode approximation. This novel collective be-
havior is one of the few collective effects known in fermionic many-body systems such
as superfluidity and constitutes a central result of this work.

In a further investigation, these collective spin dynamics have been employed to
study relaxation effects, which are currently one of the most important topics of many-
body physics. Doing so, studies demonstrated that collective spin dynamics are only
stabilized due to Pauli blocking at ultralow temperatures. In addition, a new stabiliza-
tion mechanism was discovered, which stabilizes magnetically excited spin mixtures gov-
erned by the interplay between different collision processes. In addition, spin-relaxation
dynamics of fermionic atoms were observed for the first time, which lead to a thermal-
ization of the fermionic many-body system on long time scales.

The results presented in this thesis provide an important contribution to a deeper
understanding of fermionic many-body systems. They pave the way towards exciting
studies of novel high-spin quantum phases, which so far have remained widely unex-
plored.





Zusammenfassung

Für eine Fülle von Vielteilcheneffekten in der Natur spielt der Spin eine entschei-
dende Rolle, angefangen bei Magnetismus in Festkörpern bis hin zu noch komplexeren
Effekten in Hochspin-Systemen wie dem Quark-Gluon Plasma. Anhand von Quanten-
gasexperimenten können solche Systeme in einer beispiellos reinen und kontrollierba-
ren Umgebung untersucht werden. So haben Experimente mit Spinor Bose-Einstein
Kondensaten in den letzten Jahren völlig neuartige Hochspin-Phänomene ans Licht
gebracht. Ein Beispiel hierfür ist eine durch Stöße getriebene Spindynamik. Da die
Grundbausteine der Materie aber Fermionen sind, ist es eine fundamentale Frage, in-
wieweit solche Hochspin-Phänomene auch in fermionischen Systemen zu finden sind.

Vor diesem Hintergrund widmet sich die vorliegende Arbeit der Untersuchung fer-
mionischer Spindynamik. Zum ersten Mal konnten spinändernde Stöße in einem fer-
mionischen Quantengas beobachtet werden. Dieser neuartige Effekt wurde von der mi-
kroskopischen Zweiteilchenebene bis hin zum Vielteilchenregime intensiv erforscht.

Dafür wurden neue Methoden zur Präparation und zur experimentellen Kontrolle
von fermionischen Hochspin-Systemen entwickelt. Zunächst wurde in tiefen optischen
Gittern die Spindynamik zwischen zwei isolierten Fermionen untersucht. Die Ergebnis-
se zeigen eine neuartige multidimensionale Spindynamik, die bis zu zehn verschiede-
ne Spinzustände kohärent einschließt. Die hervorragende Übereinstimmung mit einem
Zweiteilchen-Stoßmodell erlaubte es, fundamentale Streuparameter zu bestimmen und
zum ersten Mal Spinaustausch-Prozesse mit hohen Kollisionsquanten nachzuweisen.
Erstmalig wurde auch gezeigt, dass ein Bandisolator in Hochspin-Systemen – im Ge-
gensatz zu Festkörpern – durch spinändernde Stöße instabil werden kann.

Inspiriert von diesen grundlegenden Erkenntnissen wurden spinändernde Stöße in
fermionischen Vielteilchensystemen untersucht. In einem Fermisee, bestehend aus meh-
reren 105 Teilchen und mit einer Größe von einigen hundert Mikrometern, wurde ein
völlig unerwartetes Phänomen entdeckt: Getrieben durch mikroskopische Stöße dreht
der Fermisee kollektiv seinen Spin. Anhand einer detaillierten Studie konnte gezeigt
werden, dass das gesamte Vielteilchensystem trotz seiner räumlichen Komplexität in
einer Molekularfeldnäherung als eine einzige örtliche Mode beschrieben werden kann.
Dieses neuartige kollektive Verhalten ergänzt die wenigen bisher bekannten kollekti-
ven Effekte in Fermionen, wie z.B. Suprafluidität, und stellt ein zentrales Ergebnis der
vorliegenden Arbeit dar.

In einer weiterführenden Untersuchung wurde die kollektive Spindynamik als Mo-
dellsystem zur Untersuchung von Relaxationseffekten eingesetzt, einem der zentra-
len Themen in der aktuellen Forschung der Vielteilchenphysik. In diesem Zusammen-
hang konnte nachgewiesen werden, dass das kollektive Verhalten nur durch eine Pauli-
Blockade bei ultrakalten Temperaturen ermöglicht wird. Dabei wurde ein neuartiger
Mechanismus entdeckt, der magnetisch angeregte Zustände durch Kollisionen intrin-
sisch stabilisiert. Des Weiteren konnte erstmals eine Relaxationsdynamik beobachtet
werden, die das Hochspin-System auf einer langsamen Zeitskala thermalisieren lässt.

Die Ergebnisse dieser Arbeit tragen grundlegend zu einem besseren Verständnis der
Physik fermionischer Vielteilchensysteme bei. Durch die erzielten Resultate eröffnet sich
eine Fülle von vielversprechenden Perspektiven, z.B. die Untersuchung von neuartigen
Quantenphasen in fermionischen Hochspinsystemen, die bislang weitgehend unerforscht
sind.
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[2] U. Ebling, J. S. Krauser, N. Fläschner, K. Sengstock, C. Becker, M. Lewenstein
and A. Eckardt, Relaxation Dynamics of an Isolated Large-spin Fermi Gas Far
from Equilibrium, Phys. Rev. X 4, 021010 (2014)
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Chapter 1

Introduction

The advent of quantum mechanics in the early 20th century was driven by ground-
breaking findings that required to discard the well-established classical understanding
of physics. One of these striking discoveries was observed in the famous Stern-Gerlach
experiment in 1922 [8], revealing that the magnetic moment of atoms is quantized. Only
a few years later, new theories introduced the spin [9, 10], which plays a fundamental
role in various many-body effects in nature. In electronic spin 1/2 systems, for example,
the microscopic interplay between two spin states gives rise to fascinating phenomena
with high relevance for modern research and technology, e.g. ferromagnetism, giant
magnetoresistance or superconductivity. Beyond this, there are systems in nature with
more than two spin components, such as the quark-gluon plasma or atomic ensembles.
The resulting high-spin interactions lead to even more complex and counterintuitive
many-body effects, which are the subject of this thesis.

With the experimental realization of ultracold atoms, such many-body effects can
be addressed in an unprecedented way. At ultralow temperatures, the atomic systems
are dominated by their quantum mechanical properties and called quantum degenerate.
There are two fundamental groups of particles with different quantum statistics: bosons
and fermions. Bosons have an integer spin and form a Bose-Einstein condensate, where
all atoms macroscopically occupy the same single-particle state. In contrast, fermions
have a half-integer spin and form a Fermi sea, where each available single-particle state
can be occupied with only one particle. The experimental realization of Bose-Einstein
condensation was achieved in 1995 for the first time [11–13] and was awarded with the
Nobel Prize (2001). Only a few years later in 1999, the first quantum degenerate Fermi
gas was realized [14–16]. These discoveries opened a new and rapidly growing field of
research. Until today, a large number of experiments studying quantum degenerate
atomic gases have been realized and several elements have been cooled to ultralow
temperatures [11–30].

These systems of ultracold atoms allow for an excellent control of the crucial ex-
perimental parameters [31] such as the interaction strength, the spatial configuration,
and the internal state of the atoms. Moreover, the application of optical lattices in
quantum gas systems closely relates to solid-state systems [32]. These features have
triggered tremendous experimental and theoretical studies in recent years, exploring,
e.g., quantum phase transitions [33–44] and magnetic properties [45–47]. Recently, a lot
of effort has been directed towards fermionic quantum gases. They are described by the
same quantum statistics as the constituents of matter like quarks, leptons, or baryons
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and resemble real many-body systems closer than their bosonic counterpart. A variety
of experimental settings with spin 1/2 fermions were realized, including harmonically
trapped systems, fermions in optical lattices or lower-dimensional systems. Ground-
breaking studies of fundamental many-body effects have been performed, ranging from
ground-state phase diagrams to non-equilibrium phenomena [38–40, 47–62].

Beyond this, quantum gases also allow to study systems with higher spin, involving
more than two spin components. The additional spin degree of freedom has dramatic
consequences: all participating spin states interact, constituting a completely new class
of many-body systems.

In this respect, bosons with high spin have been widely explored, combining high-
spin interactions with the superfluidity immanent to Bose-Einstein condensates [63–
65]. Starting with the first realization in 1998 [66], experimental and theoretical studies
have revealed a variety of phenomena (for review articles on this topic see [67, 68]). The
phase diagrams of magnetic ground states [69], spin domains induced by spontaneous
symmetry breaking [70], and pattern formation [71] are only a few prominent examples.
Another research direction of this field focuses on spin squeezing and spin entanglement,
prosperous for quantum information applications [72, 73]. Furthermore, spin-changing
collisions are a unique high-spin feature, which induces an intriguing dynamics of the
spin degree of freedom. Experiments have studied bosonic spin dynamics in different
regimes. In deep optical lattices, the fundamental two-body collision process, apparent
in coherent spin oscillations, has been investigated [74, 75]. In harmonically trapped
Bose-Einstein condensates, collective spin dynamics have been observed, involving the
whole many-body system. This includes coherent spin-mixing oscillations [76–80] and
fluctuation-induced dynamical instabilities [81, 82]. Recently, high-spin bosons governed
by dipolar interactions have been realized, leading to the discovery of spin dynamics
mediated by anisotropic and long-range interactions [83, 84].

While many experimental studies have been performed with high-spin bosons, the
research field of high-spin fermions emerged only recently and has been growing rapidly
especially from the theoretical side [85]. A natural extension of the conventional fermionic
spin 1/2 systems are three-component spin mixtures. This could be realized in experi-
ments with fermionic lithium, allowing for a wide tunability of the high-spin interaction
parameters [86, 87]. This system has raised tremendous interest, and several novel fea-
tures have been proposed [88–96]: a fascinating example is an unconventional BCS
pairing involving different pairs of spin states. For increasing interactions, a quantum
phase transition from a color superfluid state to strongly bound trions is predicted,
related to color superconductivity of quark matter in nuclear physics. A further ex-
tension of this system are fermionic alkaline-earth atoms with high spin, which allow
to study many-body physics exploiting the unique feature of SU(N)-symmetry [97],
where the s-wave scattering lengths are equal. In this context, exotic many-body phe-
nomena are proposed [98–101], connected to the physics of heavy-fermion materials
or strongly-correlated transition-metal oxides. Recently, also these systems have been
experimentally realized, employing quantum degenerate gases of fermionic strontium
[28] and ytterbium atoms [102]. Moreover, experiments were able to prove the effect of
Pomeranchuk cooling in an SU(6)-symmetric Mott-insulator [103], which is due to the
increased entropy associated with the large spin.

A completely different approach focuses on the dynamical properties of high-spin
fermions [104, 105], which is inspired by the intriguing spin dynamics observed in
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Figure 1.1: The key results of this thesis. A quantum gas of 40K with ten available spin
states has been employed allowing for the first observation of fermionic spin-changing collisions
(see illustration in the figure), which have been investigated in different regimes: (A) A study
in deep optical lattices allowed to access the pure two-body scattering process (see chapter 4).
(B) Spin dynamics have been studied in a large Fermi sea revealing giant and long-lived spin
oscillations (see chapter 5). (C) Relaxation effects in a Fermi sea have been investigated, which
lead to a suppression of collective behavior (see chapter 6).

bosonic systems. In particular the different quantum statistics raise fundamental ques-
tions, which so far have remained widely unanswered: Can fermions also perform spin-
changing collisions, analogous to their bosonic counterpart? How does a fermionic many-
body system evolve under such collisions? Which phenomena observed in Bose-Einstein
condensates survive in an intrinsically multi-mode Fermi sea?

Motivated by these questions, this thesis is devoted to fermionic spin dynamics. For
the experiments, an ultracold gas of fermionic 40K with ten available spin states was
employed, allowing to address the above-mentioned questions. Spin-changing collisions
could be observed in fermionic quantum gases for the first time. The experiments cover a
broad range from local spin oscillations in the two-body limit to collective spin dynamics
in the many-body regime. Figure 1.1 outlines the main results and their connections.

New experimental methods for the preparation and the control of high-spin fermions
have been developed. The route pursued to study fermionic spin dynamics started with
the investigation of the fundamental collision process: two fermions collide and change
their spin configuration. These experiments, realized in deep optical lattices, revealed
long-lived coherent spin dynamics with a unique multi-flavor character for the first
time. The high control of this system allowed for deep insight into the spin-changing
collision process on a microscopic level. Inspired by these results, the impact of the
microscopic process on a fermionic many-body system has been investigated. Here,
a completely unexpected macroscopic phenomenon could be observed: a Fermi sea
exhibits collective and giant spin oscillations, despite its intrinsic multi-mode structure.
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This intriguing collective behavior was found to be induced by the interplay between
spin and spatial dynamics. It was demonstrated that this can last for several seconds,
even in large samples with several 105 particles and a spatial extension of hundreds of
micrometers. A detailed experimental study revealed that the dynamical properties are
very well captured in a mean-field approach even in a single-mode approximation. These
findings motivated further studies on relaxation effects in a high-spin Fermi sea and
particularly on the role of different collision processes, which also occur on very different
time scales. For the first time the experiments could show that Pauli blocking stabilizes
the collective spin oscillations at ultralow temperatures. Increasing temperature and
interaction strength, in contrast, leads to a suppression of the collective behavior. In
this context, a novel spin-stabilization mechanism induced by the intrinsic collisional
properties of the many-body system has been found, which can stabilize magnetically
excited spin mixtures. Moreover, slow spin-relaxation dynamics, driving the system
towards an equilibrium spin distribution, were observed for the first time.

The results presented in this thesis experimentally pioneer the new research field
of fermionic spin dynamics. From the two-particle to the many-body regime, a high
experimental control over this novel phenomenon could be demonstrated. The under-
standing of the microscopic interaction process provides an important step for further
fermionic high-spin experiments. In addition, the results in the many-body regime al-
low for a deep insight into high-spin magnetic properties and pave the way towards the
realization of completely new high-spin quantum phases. The question whether or not
these systems exhibit even richer features has to be revealed in future experiments.

Structure of this thesis

Chapter 2: 40K – an ideal candidate for fermionic spin dynamics
The isotope 40K combines two important features for the study of fermionic spin
dynamics, which will be highlighted in this chapter: it has a large spin of f = 9/2
in the lowest hyperfine manifold allowing for experiments with ten spin states.
Moreover, its scattering properties are particularly well suited for spin-changing
collisions.

Chapter 3: High-spin fermions in the laboratory
The experimental realization of high-spin fermions faces several challenges. Ver-
satile experimental tools, which were implemented throughout this work, will be
described. This includes the preparation and probing of ultracold arbitrary spin
mixtures. In addition, important methods developed for the magnetic field control
will be presented.

Chapter 4: Spin dynamics in optical lattices
In this chapter, a detailed investigation of spin dynamics in optical lattices and the
first realization of fermionic spin-changing collisions will be presented. First, the
pure two-body collision process will be studied, realized in deep optical lattices.
Then the impact of finite tunneling, which leads to a novel melting process of
a band insulator, will be presented. Finally, the system is further extended to
higher bands and a band population transfer induced by spin-changing collisions
will be reported. The results of this chapter have partly been published in [5].
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Chapter 5: Collective spin dynamics in fermionic bulk systems
In this chapter, the impact of spin-changing collisions on a fermionic many-body
system will be studied. As a key result of this research work, the first observation
of giant and collective spin dynamics in a Fermi sea can be reported. To explain
this unexpected behavior, the mechanism inducing the collective dynamics and a
single-mode approximation in a mean-field approach are discussed. Subsequently,
a detailed investigation of the spin-oscillation properties will be presented. The
results of this chapter have partly been published in [1].

Chapter 6: Relaxation in high-spin fermions
Based on the observation of giant spin oscillations, relaxation effects in a fermionic
quantum gas with high spin will be studied in this chapter. Different collision
processes, described by a Boltzmann approach including a collision term, will be
worked out. The impact of increasing temperature will be investigated, which
demonstrates a continuous suppression of collective dynamics. Subsequently, the
influence of intermediate interactions will be studied, where a new spin-stabilization
mechanism can be presented. Finally, experiments investigating a new spin-relaxa -
tion dynamics will be discussed. The results of this chapter have partly been
published in [1, 2].

Being involved in the research leading into this thesis, I have also participated in
several further studies, which are not presented. This includes the detection of the
amplitude mode in a strongly interacting Bose gas using Bragg spectroscopy [7], which
will be in detail explained in the thesis of S. Götze [106]. In addition, multi-band
spectroscopy of Bose-Fermi mixtures [6] and higher-band dynamics in optical lattices
[4] have been studied. Moreover, a detailed investigation of tensorial spin waves has been
performed in a fermionic bulk system [3]. These topics have been also discussed in the
thesis of J. Heinze [107]. Furthermore, Feshbach resonances in 40K have been explored,
which is described in the diploma theses of N. Fläschner [108] and M. Langbecker [109].
This is discussed in appendix B, where 20 new Feshbach resonances are identified. I have
also participated in the implementation of a hexagonal lattice for future experiments
at the Bose-Fermi Mixture setup in Hamburg.





Chapter 2

40K – an ideal candidate for
fermionic spin dynamics

The study of fermionic spin-changing dynamics (also referred to as spin dynamics)
demands a fermionic system with more than two spin states. At first glance it seems
that there is a plethora of fermionic high-spin systems available due to the complex
internal structure of atoms. However, the instability of most atomic and molecular
states occurs on time scales much faster than observable effects. This limits quantum
gas experiments typically to the ground-state hyperfine manifolds. Nevertheless, various
fermionic isotopes with high spin have been cooled to quantum degeneracy. Besides the
conventionally used potassium [14] and lithium [15, 16], recently also ultracold fermionic
helium [26], ytterbium [27], strontium [28], dysprosium [29], and erbium [30] have been
realized.

In addition, the scattering properties are crucial to study spin dynamics. In this
context, two fundamentally different scenarios can be distinguished: SU(N)-symmetric
systems (for example ytterbium) exhibit the same interaction energy for all combina-
tions of spin mixtures [97]. Spin-changing dynamics, however, require a broken SU(N)-
symmetry, which leads to different interaction energies for different spin mixtures. More-
over, dipolar interactions induced by the magnetic moment of the atoms can be present
(for example in strontium, dysprosium and erbium), which have an anisotropic and
long-range character [110]. In contrast to conventional s-wave scattering, this allows to
study a variety of novel phenomena but also leads to a complex high-spin scattering
behavior as recently demonstrated for bosonic chromium [83, 84].

40K combines a high spin of f = 9/2 with suitable s-wave scattering properties. As
worked out in this chapter, it is an ideal candidate for the exploration of fermionic
spin-changing collisions. In section 2.1, the internal structure of 40K in the ground-
state hyperfine manifolds will be reviewed. Subsequently, the general concept of high-
spin scattering will be introduced, including the possibility of spin-changing collisions.
I will apply this to the case of 40K (section 2.2), apparent in an intriguing structure of
available spin systems and spin-dependent scattering properties.

2.1 The internal structure of 40K

40K belongs to the alkali group with one electron in the outer shell. Its hyperfine ground-
state structure corresponds to different orientations of the total angular momentum
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Figure 2.1: Zeeman splitting of the ground-state hyperfine manifolds of 40K. (A)
The energy of the spin states in the ground-state manifolds f = 9/2 and f = 7/2 is depicted as a
function of the magnetic field. The calculations are performed using the Breit-Rabi formula 2.1.
The linear splitting in the Zeeman regime and the nonlinear splitting in the Paschen-Back regime
are clearly visible. (B) Illustration of the ten spin states in the lowest hyperfine manifold of
40K ranging from m= +9/2, ...,−9/2, which is widely used throughout this thesis.

j= 1/2 and the nuclear spin i= 4. Therefore, two ground-state hyperfine manifolds
with total spin f = i ± j= {9/2, 7/2} exist. The manifold with f = 9/2 comprises ten
different spin states with magnetic quantum numbers ranging from m=−9/2, ...,+9/2.
In the manifold with f = 7/2 eight spin states with magnetic quantum numbers ranging
from m=−7/2, ...,+7/2 are available. Both manifolds are separated by the hyperfine
interaction, which has its origin in the interplay between electronic and nuclear spin,
yielding an energy splitting of approximately 1.3 GHz. Note that 40K has an inverted
hyperfine structure such that the f = 9/2 manifold has the lowest energy.

If the atoms are exposed to a magnetic field, the degeneracy of the spin states in
each manifold is lifted. Due to the Zeeman effect, different spin states exhibit different
energy shifts [111]. For alkali atoms, the Zeeman energy can be calculated analytically
yielding the Breit-Rabi formula [112]:

E
(m)
BR (B) = − ∆Ehfs

2(2 i+ 1)
+ giµBB(mi ± 1/2)± ∆Ehfs

2

√
1 +

4x(mi ± 1/2)

2 i+ 1
+ x2 . (2.1)

Here, ∆Ehfs = (i+ 1/2)Ahfs is the hyperfine splitting and we have introduced the abbre-
viation x= (gj−gi)µBB/∆Ehfs containing the Bohr magneton µB and Landé factors gj
and gi. The sign accounts for both possible alignments of the total angular momentum
mj = ± 1/2.
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The Zeeman splitting is depicted for the spin states of both hyperfine manifolds in
Fig. 2.1 A. Two different regimes can be classified: at low magnetic fields, the hyperfine
interaction dominates the system and f as well as m are good quantum numbers. This
motivates the notation |f,m〉, which is widely used for the spin-state representation
in the following. The notation |m〉 is employed for simplicity implying that the total
spin is f = 9/2. In the so-called Zeeman regime, the magnetic field dependence of the
spin states is rather linear and corrections are well described in a quadratic expan-
sion of equation 2.1. The experiments presented in this thesis have been carried out
in this regime. At large magnetic fields, strong nonlinear contributions appear. In this
so-called Paschen-Back regime, the magnetic quantum numbers of the electronic and
the nuclear spin themselves are good quantum numbers. Large magnetic fields are im-
portant for 40K since experimentally relevant Feshbach resonances occur in this regime
(see appendix B).

Both hyperfine manifolds of 40K comprise 18 spin states. However, due to lifetime
limitations (see section 3.2.3), the experimental studies presented in this thesis are
limited to the lowest hyperfine manifold with f = 9/2. The upper manifold is mainly
employed for spin-selective detection schemes. Nevertheless, this fermionic high-spin
system involves ten spin states (illustrated in Fig. 2.1 B) and is ideally suited to study
fermionic spin dynamics.

2.2 Scattering properties of 40K

In this section, the general concept of high-spin interactions will be discussed, focus-
ing on spin-changing collisions between fermionic atoms. Subsequently, these concepts
will be applied to 40K. This will show that also the scattering properties of 40K are
particularly well suited to study fermionic spin dynamics.

2.2.1 Interactions in high-spin systems

Scattering of atoms with high spin has been explored with Bose-Einstein condensates
(several review articles on this issue are available [67, 68]). The concept can also be
applied to fermionic atoms taking into account the particular symmetry of the system.

The high-spin scattering Hamiltonian

Consider two colliding fermions in the spin states |f1,m1〉 and |f2,m2〉. To derive the
corresponding scattering Hamiltonian, several approximations are commonly made in
spinor physics [68]:

S-wave scattering
We assume that only the lowest order partial wave participates in the collision
process. This assumption is valid at low temperatures, when the thermal de-
Broglie length of the relative atomic motion is much larger than the effective
range of the potential.

Rotational invariance
One assumes a rotationally symmetric interaction, which ensures the conserva-
tion of the total angular momentum ~F = ~f1 + ~f2 of the colliding atom pair. This
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neglects the inner structure of the atoms as well as external sources such as in-
homogeneous magnetic fields or trapping potentials [113, 114].

Suppression of hyperfine-changing collisions
This approximation excludes collisions between different hyperfine manifolds. All
experiments presented in the following are limited to the f = f1 = f2 = 9/2 mani-
fold.

Identical particles
We consider collisions between atoms of the same isotope and species. Hence,
the particles are indistinguishable, requiring a well-defined symmetry of the total
wave function, e.g., a symmetric wave function for bosons and an antisymmetric
wave function for fermions.

Using the pseudo-potential method [115], the following interaction Hamiltonian can
be derived [63–65]:

HI =
4π~2

m
δ(~r1 − ~r2)

2f∑
F=0,2,...

aF

F∑
M=−F

|F,M〉 〈F,M | . (2.2)

Here, m is the atomic mass. The delta function accounts for the effective contact
interaction and is only non-zero when both particles are at the same position (~r1 =~r2).
Due to the rotational symmetry of the system, the total-spin operator commutes with
the interaction Hamiltonian (

[
F 2,HI

]
= 0). Hence, the total spin ~F = ~f1 + ~f2 and the

total magnetization M =m1 +m2 are conserved and form a suitable basis {|F,M〉}.
The collision process is characterized by the s-wave scattering lengths aF , which depend
on the total-spin collision channel F . Note that the sum in equation 2.2 includes only
even values of the total spin, which is a direct consequence of the symmetry of the wave
function and holds for fermions and bosons.

The total-spin basis described above exploits the rotational symmetry of the scat-
tering problem and is hence well suited to describe the scattering process. In real
experiments, the typical observation basis are the spin states |m〉 of the individual
atoms. Their occupation can be observed for example in a Stern-Gerlach experiment
(see section 3.2.4). In this context, it is suitable to introduce the two-particle states

|m1,m2〉 =
1√
2

(|m1〉 |m2〉 − |m2〉 |m1〉) , (2.3)

which constitute a complete basis set for all different spin configurations. To reformulate
the interaction Hamiltonian, the corresponding transformation from the total-spin basis
{|F,M〉} to the observation basis {|m1,m2〉} yields

HI =
4π~2

m
δ(~r1 − ~r2)

∑
m1+m2=m3+m4

am1m2m3m4 |m3,m4〉 〈m1,m2| . (2.4)

The spatial part is not affected by this transformation. The spin part contains all
scattering processes, which conserve the total magnetization M =m1 +m2 =m3 +m4.
Each collision channel is characterized by spin-dependent scattering lengths am1m2m3m4 ,
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Figure 2.2: Sketch of a high-spin scattering process. In a simplified picture, two different
contributions of the collision can be distinguished: (A) a conventional spin-conserving collision,
where the initial and final spin configuration are equal (|m1,m2〉 = |m3,m4〉). (B) a spin-
changing collision, where the spin configuration is changed (|m1,m2〉 6= |m3,m4〉), conserving
the total magnetization (M =m1 +m2 =m3 +m4) and obeying the Pauli exclusion principle
(m1 6=m2 and m3 6=m4).

which are directly related to the total-spin scattering lengths aF by the Clebsh-Gordon
coefficients:

am1m2m3m4 =

2f∑
F=0

aF

F∑
M=−F

〈m1,m2|F,M〉 〈F,M |m3,m4〉 . (2.5)

The four indices of the spin-dependent scattering lengths account for the initial and
final spin configuration. If |m1,m2〉 = |m3,m4〉, the collision is spin-conserving. In con-
trast, if |m1,m2〉 6= |m3,m4〉, then the scattering process corresponds to a spin-changing
collision as described in the following.

The concept of fermionic spin-changing collisions

Consider two particles in two different spin states m1 and m2 with a total magne-
tization M =m1 +m2. The corresponding two-particle state |m1,m2〉 is typically not
an eigenstate of the interaction Hamiltonian, but a superposition of different |F,M〉,
where F ≥ |M |. Each |F,M〉 has an eigenenergy, which is proportional to the respective
total-spin scattering length aF .

In SU(N)-symmetric systems such as alkaline-earth or alkaline-earth-like atoms (for
example strontium [28] or ytterbium [27]), the scattering lengths aF are nearly equal
due to the decoupling of nuclear and electronic spin [116]. Therefore, all |F,M〉 acquire
the same phase and also have the same interaction energy. However, in alkali atoms like
40K, the coupling of nuclear and electronic spin leads to different scattering lengths. For
this reason, the |F,M〉 acquire a different phase in each total-spin channel. In the obser-
vation basis, this results in a time-dependent coupling of different spin configurations
apparent as spin-changing dynamics. Note that these so-called spin-changing collisions
are a pure interaction effect, which occurs on top of conventional non-spin-changing
collisions. This is sketched in Fig. 2.2, where a spin-conserving and a spin-changing
collision are shown. There are two restrictions for this process:
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Conservation of the total magnetization M
The spin-changing collision process conserves the total magnetization, which im-
plies M =m1 +m2 =m3 +m4. This is a direct result of the rotational symmetry
of the interaction and reduces the amount of available collision channels. Note
that this restriction holds for fermions as well as for bosons.

Obeying the Pauli exclusion principle
A unique fermionic effect arises from the Pauli exclusion principle. Due to the
symmetry of the wave function, both particles have to be in different spin states
before and after the collision process (m1 6=m2 and m3 6=m4). This restriction
also reduces the amount of available collision channels considerably.

2.2.2 Spin-changing collisions in 40K

In this work, spin-changing collisions in 40K have been studied in different regimes:
starting from isolated atoms pairs (see chapter 4) to collective effects (see chapter 5) and
relaxation properties (see chapter 6) in many-body systems. All obtained results rely
on the same microscopic spin-changing process as introduced above. Here, the concept
of spin-changing collisions is applied to the experimentally relevant case, namely two
colliding particles in the f = 9/2 hyperfine manifold of 40K.

Available spin systems

The ten spin states of the f = 9/2 manifold give rise to a plethora of two-particle states
|m1,m2〉. The corresponding collisions can in principle involve the total-spin channels
|~F |= |~f1 + ~f2|= 0, ..., 9. However, due to the symmetry of the wave function, only the
five even channels with F = 0, 2, 4, 6, 8 contribute. Therefore, possible total magneti-
zations range from M =−8, ..,+8, yielding 45 interacting two-particle states coupled
by spin-changing collisions. In this context, the above-mentioned restrictions limit the
possible couplings significantly. Moreover, the conservation of the total magnetization
also allows to uniquely define the different spin subsystems according to their total
magnetization M .

In Table 2.1, all possible spin systems of 40K are summarized. Typically, spin systems
with M =−8,−7 are employed for experiments with spin 1/2 fermions, where only one
spin configuration is involved. However, they are not suited for spin-changing dynamics.
In general, a lower absolute total magnetization |M | involves more two-particle states.
Spin-changing dynamics are possible in spin systems with M =−6, ...,+6, where more
than one two-particle state is available. Most suitable in this context is the system
with M = 0 including five two-particle states, which has been intensively studied in the
presented experiments.

Scattering lengths of 40K

The exact values of the scattering lengths can be calculated from the molecular poten-
tials, which are well known for 40K [118]. In this context, nine spin-dependent scattering
lengths am1m2m3m4 have been kindly provided by T. Hanna and coworkers [117], which
were calculated using multi-channel quantum defect theory [119]. The error of this cal-
culation is not precisely known but estimated to be below 0.5 aB [117], where aB is the



Scattering properties of 40K 13

Magneti- Involved two-particle states |m1,m2〉 Number
zation M coupled by spin-changing collisions of levels

−8 {|−7/2,−9/2〉} 1
−7 {|−5/2,−9/2〉} 1
−6 {|−3/2,−9/2〉 , |−5/2,−7/2〉} 2
−5 {|−1/2,−9/2〉 , |−3/2,−7/2〉} 2
−4 {|+1/2,−9/2〉 , |−1/2,−7/2〉 , |−3/2,−5/2〉} 3
−3 {|+3/2,−9/2〉 , |+1/2,−7/2〉 , |−1/2,−5/2〉} 3
−2 {|+5/2,−9/2〉 , |+3/2,−7/2〉 , |+1/2,−5/2〉 , |−1/2,−3/2〉} 4
−1 {|+7/2,−9/2〉 , |+5/2,−7/2〉 , |+3/2,−5/2〉 , |+1/2,−3/2〉} 4

0 {|9/2,−9/2〉 , |7/2,−7/2〉 , |5/2,−5/2〉 , |3/2,−3/2〉 , |1/2,−1/2〉} 5
+1 {|+9/2,−7/2〉 , |+7/2,−5/2〉 , |+5/2,−3/2〉 , |+3/2,−1/2〉} 4
+2 {|+9/2,−5/2〉 , |+7/2,−3/2〉 , |+5/2,−1/2〉 , |+3/2,+1/2〉} 4
+3 {|+9/2,−3/2〉 , |+7/2,−1/2〉 , |+5/2,+1/2〉} 3
+4 {|+9/2,−1/2〉 , |+7/2,+1/2〉 , |+5/2,+3/2〉} 3
+5 {|+9/2,+1/2〉 , |+7/2,+3/2〉} 2
+6 {|+9/2,+3/2〉 , |+7/2,+5/2〉} 2
+7 {|+9/2,+5/2〉} 1
+8 {|+9/2,+7/2〉} 1

Table 2.1: Spin configurations in the lowest hyperfine manifold of 40K. The different
subspaces with the involved two-particle states |m1,m2〉 are listed according to their total
magnetization M =m1 +m2 =−8, ...,+8. The number of involved spin configurations ranges
between one and five. Most important for the described experiments are the M = 5 and the
M = 0 spin systems, involving two and five two-particle states, respectively.

Bohr radius. These values have been used in the first place to identify Feshbach reso-
nances (see appendix B). Beyond this, one can also recalculate the scattering lengths
in terms of the total spin using the linear equation set 2.5. The results are depicted in
Table 2.2.

This reveals a special feature of 40K: The difference between the total-spin scattering
lengths aF exceeds 40 %. Especially the differences between the channels F = 0, 2, 4 are
pronounced, while the differences between the channels F = 4, 6, 8 are comparably small.
In general, these differences are large compared to other isotopes, which were used to
study spin dynamics. 23Na exhibits a total-spin scattering length difference of 10 % in
the f = 1 manifold [80]. For 87Rb, the difference is only 1 % in the f = 1 manifold and
about 13 % in the f = 2 manifold [68, 75]. 52Cr with a total spin of f = 3 has a total-
spin scattering length difference similar to 40K [120, 121]. However, it is governed by
dipolar interactions, which induce demagnetization dynamics, and hence constitutes a
completely different system.

The scattering lengths of 40K lead a rich variety of high-spin interaction effects. Spin
systems with a large total magnetization M contain only scattering channels with a
high total spin (F ≥ |M |), where the difference between the involved scattering lengths
is rather small. Decreasing the magnetization, however, involves also scattering lengths
with lower total spin. This increases the differences between the involved scattering
lengths, which has important consequences: First, the spin-conserving interactions be-
tween different spin configurations vary considerably. For example, the two-particle
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Total-spin Scattering Magnetizations |M | ≤ F of the
channel F length aF (aB) involved spin systems

0 119.92 0
2 147.83 0,±1,±2
4 161.11 0,±1,±2,±3,±4
6 166.00 0,±1,±2,±3,±4,±5,±6
8 168.53 0,±1,±2,±3,±4,±5,±6,±8

Table 2.2: Total scattering lengths for the lowest manifold of 40K. Given are the
scattering lengths aF for the total-spin channels F = 0, 2, ..., 8. These values have been calculated
using equation 2.5, inserting the spin-dependent scattering lengths kindly provided by T. Hanna
and coworkers [117]. Note the pronounced differences between F = 0, 2, 4, which are relevant for
spin systems with small total magnetizations as depicted in the third column. Spin systems
with a large total magnetization involve only large total-spin scattering channels.

state |+9/2,−9/2〉 has a spin-conserving scattering length a9/2,−9/2,9/2,−9/2 = 145.77 aB,
while the spin configuration |+9/2,+7/2〉 has a9/2,7/2,9/2,7/2 = 168.53 aB. Second, the
spin-changing scattering lengths also vary significantly. For example, the scattering
length describing the spin-changing collision between |+1/2,−1/2〉 and |+3/2,−3/2〉
has a value of a1/2,−1/2,3/2,−3/2 = 13.42 aB. At the same time, for the two-particle states
|+9/2,+3/2〉 and |+7/2,+5/2〉 it is only a9/2,3/2,7/2,5/2 = 1.16 aB (see Table C.1).

Therefore, the choice of suitable spin mixtures can strongly enhance spin-changing
collisions. This is widely exploited in the experiment presented in section 4.2, where
multi-flavor spin dynamics are observed for the first time. As an additional feature, 40K
also allows to bridge the gap from nearly SU(N)-symmetric to broken SU(N)-symmetric
systems. This can be achieved by simply choosing different spin mixtures.

Influence of the Zeeman effect

As discussed above, a spin-changing collision transfers the atoms between different spin
configurations. This also changes the Zeeman energy of the two-particle states, which
can be well understood in a series expansion of the Breit-Rabi formula (equation 2.1).
The first-order contribution to the Zeeman energy is the so-called linear Zeeman shift,
proportional to the magnetization m and to the magnetic field B:

E
(m)
lze (B) =

gjµB

9
m ·B . (2.6)

The second-order contribution is the quadratic Zeeman effect [122], quadratic in mag-
netization and magnetic field:

E(m)
qze (B) = −qm2 ·B2 . (2.7)

Here, the parameter q= (23µ2
B)/(93Ahfs) is introduced for simplicity.

In a spin-changing collision, the linear Zeeman energy remains constant due to the
conservation of the total magnetization. Nonlinear contributions such as the quadratic
Zeeman energy are typically not conserved [76].
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Figure 2.3: Zeeman energy of the five spin configurations of the M = 0 spin system.
Dashed lines correspond to calculations using the Breit-Rabi formula 2.1. Solid lines are calcu-
lated from the quadratic expansion (equation 2.7). In the relevant magnetic field regime, there
is no discernible difference. The lowest magnetic energy of this spin system has the two-particle
state |+1/2,−1/2〉.

E
(m1)
lze (B) + E

(m2)
lze (B) =E

(m3)
lze (B) + E

(m4)
lze (B) (2.8)

E(m1)
qze (B) + E(m2)

qze (B) 6=E(m3)
qze (B) + E(m4)

qze (B) (2.9)

In particular in the regime of low magnetic fields, where spin-dynamics experiments
are typically performed, the relevant contribution of the magnetic energy arises essen-
tially from the quadratic Zeeman effect. To illustrate this, the Zeeman energies of all
five two-particle states of the M = 0 spin system are exemplarily depicted in Fig. 2.3.
Compared are calculations using the full Breit-Rabi formula (equation 2.1) and the
quadratic Zeeman energy (equation 2.7). This demonstrates that in the experimentally
relevant regime no discernible deviations can be found. In this thesis, the quadratic
Zeeman energy is employed for analytical approaches, while numerical calculations are
performed using the full Breit-Rabi formula.





Chapter 3

High-spin fermions in the
laboratory

The experiments presented in this thesis have been performed at the Bose-Fermi Mix-
ture setup in the group of Prof. Dr. Klaus Sengstock, located at the Institut für Laser-
physik in Hamburg. This setup was originally designed for the investigation of ultracold
Bose-Fermi mixtures. In the course of this research work, however, the focus was shifted
towards pure fermionic samples ranging from spin-polarized to high-spin systems. High-
spin fermions constitute a novel class of many-body systems with only a few experi-
mental realizations worldwide [86, 87, 102, 103, 123] and provide several experimental
challenges.

This chapter will address these challenges and provide an overview of experimental
methods and procedures that were applied to study fermionic spin dynamics in the
laboratory. After a brief review of the general experimental procedure (section 3.1),
I will focus on two important aspects: First, important tricks for the experimental
handling of high-spin fermions (section 3.2) will be worked out. Then new methods to
control the magnetic field will be described (section 3.3).

3.1 The Bose-Fermi Mixture experiment

The Bose-Fermi Mixture experiment is designed to efficiently cool the bosonic isotope
87Rb and the fermionic isotope 40K to very low temperatures – over a temperature
scale of about ten orders of magnitude starting from about 400 K to several 10 nK.
This allows for exciting experiments with quantum degenerate atomic samples: pure
Bose-Einstein condensates, Bose-Fermi mixtures or pure Fermi gases. The system was
set up in 2004 and is described and characterized in detail in the theses of S. Ospelkaus
[124] and C. Ospelkaus [125]. Several modifications have been implemented throughout
this work. This includes the design and installation of a new optical lattice setup, a
new dipole trap setup as well as a new detection scheme. In the following section, I will
provide a sketch of the experimental setup with its most important tools and briefly
describe the general experimental procedure, which was employed to study fermionic
spin dynamics.
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3.1.1 The experimental setup

The setup consists of two vacuum chambers, which are vertically aligned and con-
nected with a differential pumping stage (see sketches for example in [106, 124, 125]).
In the upper chamber, the atomic sources – commercial dispensers for 87Rb and for
40K – are located. They continuously generate a background vapor with typical pres-
sures of 2×10−10 mbar, which loads two overlapping two-dimensional (2d) magneto-
optical-traps (MOT), cooling both species in the radial direction. A bicolor push-
ing beam transfers the atoms into the lower vacuum chamber with typical pressures
below 1×10−11 mbar and loads two overlapping 3d MOTs. In this so-called science
chamber the actual experiments are performed. There the atoms can be trapped and
cooled further to quantum degeneracy in a 4D-cloverleaf magnetic trap. Moreover, the
samples can be transferred into an optical dipole trap, which is derived from a com-
mercial Ti:sapphire laser (MBR110 by Coherent GmbH), pumped with a frequency-
doubled Nd:YAG laser (Verdi V18 by Coherent GmbH) and operated at a wavelength of
λdt = 812 nm. Furthermore, the atoms can be loaded into a cubic optical lattice. The cor-
responding laser light is provided by a commercial Yb:YAG thin disk laser (VersaDisk
by ELS Elektronik Laser System GmbH), operated at a wavelength of λlat = 1030 nm.
Antennas for radio-frequency and microwave radiation are attached close to the science
chamber and allow for the spin manipulation of the atomic samples. Besides, a detection
setup is available, which can image the atomic samples from two orthogonal directions,
either on the quantization axis (Pixelfly by PCO) or orthogonal to the quantization
axis (iKon by Andor technology).

3.1.2 The general procedure

The procedure, which is employed for the experiments presented in this thesis, has a
cycle time of typically 60 – 80 s. It is sketched in Fig. 3.1 and can be divided into the
following steps:

The experiment starts with the loading procedure of the 40K-MOT and 87Rb-MOT
for typically 30 s (see section 3.2.1). Next, the magnetic field is switched off and the
atoms are further cooled in a 10 ms optical-molasses phase to sub-Doppler temperatures.
Subsequently, both isotopes are optically pumped into magnetically trappable hyperfine
states (see section 3.2.1).

In a second step, the atoms are transferred into a magnetic trap, which is then
compressed adiabatically within 1 s. The atoms are cooled further with a forced radio-
frequency evaporation procedure for 30 s [126] where an exponential frequency sweep
is applied. During this procedure, the radio-frequency radiation is only resonant for
rubidium and expels the hottest atoms from the trap while the whole sample thermal-
izes. Thereby, the 87Rb atoms are cooled to quantum degeneracy. The fermionic 40K
atoms cannot thermalize at low temperatures, which is a consequence of the suppres-
sion of s-wave scattering due to the Pauli exclusion principle [127]. Collisions between
the potassium and rubidium atoms, however, allow for sympathetic cooling [128–130]
(see section 3.2.1). After the evaporation, most of the rubidium atoms are lost from
the magnetic trap, leaving a quantum degenerate Fermi gas of 40K. The atoms are
spin-polarized and hence form a non-interacting Fermi sea [131].

Subsequently, the atoms are transferred into a spin-independent optical dipole trap
[132]. For this purpose, a crossed circular-elliptical dipole trap setup has been imple-
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Figure 3.1: The experimental procedure to study fermionic spin dynamics. The
procedure is depicted as flow chart. Blue charts indicate the general experimental steps, which
are described in this chapter. Spin-dynamics experiments have been performed in optical lattices
(chapter 4) and in bulk systems (chapter 5 and 6), indicated with the red chart.

mented, described in detail in the thesis of J. Heinze [107]. For the transfer of the atoms
from the magnetic trap into the dipole trap, the respective laser power is switched
rapidly to large values of approximately 300 mW. Subsequently, the magnetic trapping
field is exponentially lowered within 500 ms. Only a homogeneous magnetic offset field
of about 4.5 G is applied to avoid Majorana transitions [133]. With this procedure,
about 95 % of the fermions can be transferred into the dipole trap with a tempera-
ture increase of approximately 0.1 TF, where TF denotes the Fermi temperature (see
appendix A).

In a next step, a spin-state preparation scheme is applied to generate arbitrary
spin mixtures (see section 3.2.2). The resulting coherent superposition of spin states is
initially still non-interacting but decoheres quickly in the presence of magnetic field gra-
dients. This opens up the possibility for further evaporative cooling, which is performed
by lowering the dipole trap power exponentially within 2−3 s (see section 3.2.3). Addi-
tionally, a cubic optical lattice can be superimposed onto the atoms, created by three
retro-reflected orthogonal lattice beams. Depending on the laser power in the differ-
ent branches, a simple cubic structure, two-dimensional pancakes, and one-dimensional
tubes can be realized. New telescopes have been implemented in the course of this work,
which are described in the diploma thesis of M. Weinberg [134].

After the experiments, the atomic sample is detected using absorption imaging (see
section 3.2.4). A new diffraction-limited detection setup with high resolution has been
implemented in the course of this work, which is described in the diploma thesis of
B. Hundt [135]. The detection setup provides a magnification ranging from 1 to 5,
allowing for in-situ imaging with high resolution and the simultaneous detection of all
spin components in a time-of-flight (TOF) measurement.
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Figure 3.2: Density distribution of an ultracold Fermi sea in the magnetic trap. The
atomic sample is spin-polarized in the state |f = 9/2,m= 9/2〉 and hence non-interacting. (A)-
(C) correspond to Fermi seas produced with different MOT loading and evaporation parameters.
Typically 1.5×106−3×106 atoms at 0.1 TF are realized as a starting point for the experiments.
The pictures are taken using absorption imaging after time-of-flight (see section 3.2.4).

3.2 Preparing, cooling and probing high-spin fermions

The experimental handling of high-spin fermions constitutes one key ingredient for spin-
dynamics experiments. This includes the preparation, the cooling and the probing of
arbitrary spin mixtures. In this section, important concepts and procedures addressing
the corresponding challenges will be worked out with a particular focus on high-spin
fermions. After the description of important optimization steps for the production of an
ultracold Fermi sea, the spin-state preparation within the lowest hyperfine manifolds of
40K will be described. Furthermore, I will discuss the realization of quantum degenerate
arbitrary spin mixtures as well as detection schemes for high-spin fermions.

3.2.1 Producing a spin-polarized Fermi sea

The preparation of an ultracold spin-polarized Fermi sea constitutes the starting point
for the described experiments. Here, optimization steps that have provided essential
improvements for the daily experimental operation are presented. This includes the op-
timization of the MOT loading procedure, the optical pumping and the double-species
evaporation in the magnetic trap. Typically, 1×106 – 3×106 atoms at temperatures
of 50 nK are realized, corresponding to T ≈ 0.1 TF. The realization of higher particle
numbers is also possible, however, at the expense of an increase in temperature (see
Fig. 3.2).

Double MOT loading procedure

To improve the efficiency of the 40K-MOT, a dark-spot configuration is implemented,
which widely avoids light-assisted collisions between the potassium atoms [136]. This
allows for a continuously growing accumulation of potassium atoms even for several
minutes. However, collisions between rubidium and potassium atoms have to be consid-
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Figure 3.3: Optimization of the MOT loading procedure. The particle number (A)
and temperature (B) of an atomic sample of 40K are depicted as a function of the MOT loading
time of 87Rb. For 40K, the MOT loading time is always 30 s. The optimum 87Rb-MOT loading
time is typically 2 s allowing to realize large Fermi seas as shown in Fig. 3.2. The grey shading
indicates the parameters typically chosen in the experiments.

ered, which also induce considerable losses [19] and limit in particular the performance
of the 40K-MOT. Therefore, a consecutive loading procedure is employed, starting with
the exclusive loading of the 40K-MOT for 30 s followed by a short simultaneous loading
of both MOTs for 1 – 3 s.

The exact ratio between 40K and 87Rb is optimized such that sympathetic cooling is
still efficient and losses are avoided as good as possible. To illustrate this, the particle
number and the temperature of the Fermi sea are depicted in Fig. 3.3 for different
two-species MOT loading times with a fixed 40K-MOT duration. A maximum particle
number is found for only 1 s (see Fig. 3.3 A). However, the corresponding temperature
is still relatively high, indicating that the amount of 87Rb atoms is not sufficient for an
efficient sympathetic cooling. Very cold fermionic samples require an approximately 2 s
loading time (see Fig. 3.3 B). More rubidium atoms do not cool the sample any further
but induce predominantly additional particle loss.

Optical pumping

Before the transfer into the magnetic trap, the atoms are optically pumped into magnet-
ically low-field seeking states. For this purpose, a pulse with circularly-polarized light
is applied after the optical-molasses phase. This transfers the depolarized atoms into the
maximally polarized low-field seeking states, |F = 2,m= 2〉 for 87Rb and |F = 9/2,m= 9/2〉
for 40K, respectively. The optical pumping enhances the particle number by a factor of
up to five for 87Rb and up to ten for 40K, given by the amount of available spin states.
This considerably shortens the MOT loading times and allows for a significantly better
performance of the system.

In the experiment, the optical pumping is provided by a 150µs bicolor pulse with
a power of several 10µW, detuned by a few MHz with respect to the corresponding
D2-lines. To optimize these parameters for the bosonic atoms, the BEC fraction is
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Figure 3.4: Optimization of the evaporation in the magnetic trap. The particle
number (A) and temperature (B) of an atomic sample of 40K are depicted as a function of
the evaporation time in the magnetic trap. For 40K, the MOT loading time is always 30 s and
varies between 1 – 4 s for 87Rb, corresponding to the different colors in the graph. For the typical
MOT loading time of 2 s, the optimum evaporation time is 30 s. The grey shading indicates the
parameters typically chosen in the experiments.

maximized for short MOT loading times of about 300 ms. For potassium, the parameters
are optimized by preparing a small Fermi sea with a short 40K-MOT loading time of only
2 s combined with a long 87Rb-MOT loading of 5 s. This provides a sufficient amount
of rubidium atoms to cool all potassium atoms independent of the optical pumping
efficiency.

Evaporation in the magnetic trap

The evaporation in the magnetic trap constitutes the crucial cooling step to realize a
quantum degenerate atomic sample. An exponentially decreasing radio-frequency sweep
starting from 40 MHz to about 1 MHz is applied. During the evaporation, collisions be-
tween the potassium and rubidium atoms lead to sympathetic cooling [128–130], which
crucially depends on the evaporation time. For long evaporation times significant losses
are induced, while short evaporation times do not allow for efficient thermalization.

To illustrate this, the influence of the evaporation time on particle number and
temperature of the Fermi sea is depicted in Fig. 3.4. As a result, the best compromise
between losses and cooling efficiency yields an optimum evaporation time of 30 s for a
40K-MOT loading time of 30 s. Shorter evaporation times lead to higher temperatures,
while a longer evaporation reduces the particle number and does not further cool the
sample. Note that the final evaporation frequency is chosen such that most of the
rubidium atoms are expelled from the magnetic trap, leaving a spin-polarized quantum
degenerate Fermi sea. Remaining rubidium atoms are later kicked out by resonant light
pulses.
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Figure 3.5: Rabi-oscillations between two spin states within the f = 9/2 manifold
of 40K. (A) The transition energy differences within the f = 9/2 manifold are depicted as
a function of the magnetic field (upper part). Non-linear contributions of the Zeeman effect
are necessary to drive spin-selective transitions. Transitions between the manifolds f = 9/2 and
f = 7/2 are also shown (lower part), but here the linear Zeeman splitting is large enough that all
transitions can be addressed spin-selectively already at low magnetic field. (B) Typical Rabi-
oscillations between the spin states |+3/2〉 and |+1/2〉 are depicted. The duration of the rf-pulse
is varied at a constant frequency of 14.472 MHz, at constant power, and at a magnetic field of
B= 45 G. Solid lines correspond to a sinusoidal fit.

3.2.2 The spin-state preparation

After the transfer of the atomic sample from the magnetic into the optical dipole
trap, all fermions occupy the low-field seeking spin state |f = 9/2,m= 9/2〉. Reliable
preparation schemes for arbitrary spin mixtures are required. Here, the most important
spin-preparation techniques are described allowing to manipulate the spin configuration
within the hyperfine ground-state manifolds of 40K (see also [137, 138]).

Radio-frequency preparation

For the spin-dynamics experiments, the spin-state preparation within the f = 9/2 mani-
fold is performed by employing radio-frequency (rf) schemes, which couple different spin
states with ∆m= ± 1. To realize a spin-selective coupling, the transition frequencies
have to be sufficiently separated. This requires a large magnetic field with significant
non-linear contributions from the Zeeman effect as depicted in Fig. 3.5 A. For the dis-
cussed experiments, the spin-state preparation is typically performed at 45 G, resulting
in transition frequencies of about 14 MHz, separated by a quadratic energy splitting
exceeding 200 kHz. In this regime, all transitions can be selectively addressed by simply
tuning the radio frequency. Two techniques are employed:

First, rf-pulses are applied, which drive Rabi-oscillations between two spin states.
When the frequency matches the energy difference between the involved states, a full
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Figure 3.6: Radio-frequency sweeps between the spin states of the f = 9/2 hyperfine
manifold of 40K. A typical Landau-Zener sweep, starting from the energetically highest
spin state |+9/2〉 to all further spin states of the f = 9/2 manifold, is shown. The starting
frequency is 16.5 MHz, which is decreased to the final sweep frequency within 20 ms. The spin-
state preparation is typically performed at 45 G.

transfer is achieved in a π-pulse. A pulse duration of only 10µs is employed, yielding
a large Fourier broadening, which enhances the stability against magnetic field fluctu-
ations but still clearly separates all transitions. With this technique, Rabi-oscillations
are induced as exemplarily shown in Fig. 3.5 B. Depending on the applied rf-power
and pulse duration, a well-controlled coherent superposition can be realized. The pulse
technique is particularly well suited to realize spin mixtures either balanced or imbal-
anced. It can be optimized up to a transfer accuracy with a relative error of about one
percent.

Coherent superpositions can be well realized with rf-pulses, but the error accumu-
lates for a transfer between several spin states. In this case, it is favorable to apply
Landau-Zener sweeps [139], where the frequency is ramped slowly across the transi-
tion. Thereby, the atoms are adiabatically transferred between the spin states. This
technique is very robust against magnetic field fluctuations. In particular for a full spin
transfer, it is significantly more reliable than rf-pulses, where this can only be achieved
with a specific pulse power on the exact resonance frequency. We apply rf-sweeps with
a typical duration of 10 ms, yielding an adiabatic transfer of the atoms between all pos-
sible spin states by simply adjusting the frequency sweep range. This is demonstrated
in Fig. 3.6, where the atomic sample is transferred from the energetically highest spin
state |f = 9/2,m= 9/2〉 to all further spin states in the same manifold.

Microwave-frequency preparation

Beyond the manipulation of the spin states within the f = 9/2 manifold, a prepara-
tion scheme to transfer the atoms into the upper hyperfine manifold f = 7/2 has been
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employed, e.g., for spin-selective detection (see section 3.2.4). Both manifolds can be
coupled by microwave (mw) radiation with ∆m= 0,±1, which requires frequencies of
about 1.3 GHz. The basic preparation scheme follows the rf-preparation including mi-
crowave pulses and microwave sweeps. As a crucial difference, the transition frequencies
are dominated by the linear Zeeman effect as depicted in Fig. 3.5 A. Hence, the spin
states are well separated even at small magnetic fields. This constitutes an important
experimental advantage since many of the presented experiments are performed at low
magnetic fields. A simple hyperfine transfer without changing the magnetic field is
possible.

3.2.3 Realizing ultracold spin mixtures

The spin-state preparation presented above manipulates the spin but not the spa-
tial configuration of the atoms. Hence, the initially spin-polarized Fermi sea remains
non-interacting. To explore interaction effects between different spin states, a second
evaporation step is required. This can be achieved with an additional cooling in the
dipole trap (see section 3.1.2), which also changes the spatial configuration. The ne-
cessity for this additional step constitutes a crucial difference to high-spin experiments
with bosonic atoms. In the following, the preparation of ultracold spin mixtures is dis-
cussed and the problems arising from the realization of arbitrary spin configurations are
addressed. This includes difficulties of the evaporation itself, but likewise the control of
particle number and temperature as well as lifetime limitations. Note that the presented
experiments start with an evaporated binary mixture, denoted as m= {m1,m2}. The
discussed concepts can also be extended to spin mixtures with more than two spin
components.

Evaporation of arbitrary spin mixtures

So far, experiments with 40K employed mainly two spin mixtures: m= {−7/2,−9/2}
and m= {−5/2,−9/2}. Both can be directly evaporated and offer besides long lifetimes
suitable Feshbach resonances to tune the interaction strength [140–142], rendering them
ideal candidates for the study of spin 1/2 systems.

The preparation of arbitrary spin mixtures is experimentally challenging due to
strong losses, which significantly limit the evaporation performance in the optical dipole
trap. First of all, they stem from a zoo of Feshbach resonances at specific magnetic fields,
which have been studied in the course of this research work. Calculations provided by
T. Hanna and coworkers [117] allowed to identify 20 new Feshbach resonances listed
in appendix B. These are often associated with strong losses occurring in a wide mag-
netic field range. To illustrate their problematic role for the preparation of arbitrary
spin configurations, the evaporation efficiency of the spin mixture m= {+1/2,−1/2}
is exemplarily depicted for different magnetic fields in Fig. 3.7. Strong losses occur at
specific magnetic fields during the evaporation, inducing even a total loss of the sample.
With the knowledge of these Feshbach resonances, this problem can be widely circum-
vented for several spin mixtures. For example, the evaporation of m= {+1/2,−1/2}
was typically performed at 7 G or 45 G, where the losses are small. Second, losses in-
duced by spin-changing collisions also limit the efficiency of the evaporation. This is
a severe problem in particular for magnetically excited spin configurations and con-
stitutes an important limitation. The direct evaporation of these spin mixtures is in
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Figure 3.7: Effect of Feshbach resonances on the evaporation efficiency. The particle
number of the spin mixture m= {+1/2,−1/2}, evaporated in the optical dipole trap at different
magnetic fields, is plotted. Clearly visible is the strongly enhanced particle loss at specific
magnetic fields, associated with a Feshbach resonance. In the experiments, the evaporation is
typically performed at 7 G or 45 G indicated with the gray bar. Several Feshbach resonances
observed in different spin mixtures are provided in appendix B (see Table B.2).

general inefficient and hence more sophisticated preparation schemes are required. Four
particular cases, which play an important role in the following experiments, are briefly
described:

Spin mixture m = {+1/2,−1/2}
Starting with an rf-sweep from |+9/2〉 to |+1/2〉, an rf-pulse creates a coherent su-
perposition |+1/2〉+ |−1/2〉, which can be directly evaporated. This spin mixture
exhibits a long-term stability alongside very suitable Feshbach resonances (see
appendix B) and constitutes the working horse for the described experiments.

Spin mixture m = {+7/2,+3/2}
Starting with an rf-sweep from |+9/2〉 to |+7/2〉, an rf-pulse creates a coherent
superposition |+7/2〉+ |+5/2〉, followed by an rf-sweep yielding |+7/2〉+ |+3/2〉.
This state can also be directly evaporated.

Spin mixture m = {+3/2,−3/2}
Starting with an rf-sweep from |+9/2〉 to |+1/2〉, an rf-pulse creates a coher-
ent superposition of the states |+1/2〉+ |−1/2〉, followed by an rf-sweep yielding
|+1/2〉+ |−3/2〉. This state can be evaporated and subsequently transferred with
an rf-sweep to m= {+3/2,−3/2}. Note that a direct evaporation of the magnet-
ically excited spin state |+3/2〉+ |−3/2〉 is associated with too strong losses.

Spin mixture m = {+9/2,−9/2}
Starting with an rf-pulse a coherent superposition of the states |+9/2〉+ |7/2〉 is
created, where |+7/2〉 is then transferred with an rf-sweep to |+1/2〉. This state
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Figure 3.8: Controlling temperature and particle number of a Fermi sea. The particle
number (A) and temperature (B) of the spin mixture m= {+1/2,−1/2}, evaporated in the
optical dipole trap, are depicted. In this experiment, the dipole trap power is initially 200 mW
in both branches, which is reduced to 30 mW in one direction while the second direction is
varied. Particle number and temperature are lower for decreasing dipole trap depth. However,
below 130 mW the evaporation becomes inefficient and the temperature increases again. The
grey shading indicates the parameters typically chosen in the experiment.

can be evaporated and subsequently transferred with an additional rf-sweep to
m= {+9/2,−9/2}. Note that a direct evaporation of this spin mixture is not
feasible.

Control of particle number and temperature

The independent control over particle number and temperature of the Fermi sea is
important for the experiments presented in this thesis (see section 6.2.2). Two different
approaches have been followed in this context:

First, the laser power of the dipole trap at the end of the evaporation ramp can be
used as a tuning knob, which determines the relevant trap depth. Figure 3.8 reveals its
impact on the particle number and the temperature of the Fermi sea. By lowering the
dipole trap power, the amount of atoms remaining in the dipole trap is continuously
reduced (see Fig. 3.8 A). At the same time, more hot atoms are expelled from the trap,
resulting in lower temperatures of the thermalized sample (see Fig. 3.8 B). However,
below a specific value of the trap depth, the temperature is not further reduced. In
this temperature regime, the system cannot thermalize properly due to Pauli blocking
[143] and the cooling becomes inefficient. At the same time, the expelled atoms lead
to a temperature increase in units of the Fermi temperature TF. In the experiments,
ultracold fermionic samples with about 2×105 – 4×105 particles at a temperature of
0.1 – 0.15 TF can be typically realized using the spin mixture m= {+1/2,−1/2}. For
other spin configurations, these values can be significantly different.

The dipole trap power leads to a particle number associated with a specific tem-
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perature. Hence, an independent control of particle number and temperature requires
an additional technique. For this purpose, the power of the dipole trap is increased
again after the evaporation within 200 ms and a waiting time slot is included. During
this time, the temperature increases due to photon scattering while the atom number
remains approximately constant. Varying the waiting time between 0 – 10 s allows for
an independent tunability of temperature and particle number.

Lifetime limitations

An important aspect for spin-dynamics experiments is the lifetime of the prepared
samples. After their preparation, binary spin mixtures can be regarded as closed sys-
tems, however, with important limitations. Unfavorable collisional properties constitute
a crucial problem for atomic ensembles involving different spin states. Prominent ex-
amples are exothermic collisions in 133Cs [144] or negative scattering lengths in 39K
[145], which are luckily both absent in 40K. In this case, spin mixtures consisting of
different Zeeman states are mainly limited by the same processes, which also limit the
efficiency of the evaporation: First, Feshbach resonances can induce significant particle
loss [119]. However, most of the described experiments are performed at very low mag-
netic fields (B< 5 G), where those resonances do not occur (see appendix B). Second,
spin-changing collisions, which convert magnetic into kinetic energy, are associated with
heating and losses from the trap. They reduce considerably the lifetime of magnetically
excited spin mixtures.

In general, we find suitable lifetimes in the dipole trap for arbitrary spin mixtures
involving only spin states of the f = 9/2 manifold. The situation drastically changes,
when spin states from the upper hyperfine manifold are involved. In this case, hyperfine
relaxation collisions become possible [146]. These collisions change the total spin and
release the hyperfine interaction energy, which is converted into kinetic energy. This
energy release is much larger than any trapping potentials and leads to an immediate
loss of both collision partners from the trap. While these collisions are rare for example
in 87Rb [147], they considerably limit the lifetime in most other alkali atoms and also
in 40K. In the latter case, a hyperfine relaxation collision involves at least one atom in
the f = 7/2 manifold and releases the hyperfine splitting energy of about 1.3 GHz. This
leads to enhanced loss rates reducing the lifetime of the corresponding spin mixtures by
several orders of magnitude [107]. Therefore, the presented experiments are restricted to
the f = 9/2 manifold. Note that the observed loss rates involving the f = 7/2 manifold
depend on the precise spin composition. In this context, a more detailed analysis might
reveal reasonable stable mixtures for future experiments. Moreover, the tunability of
such losses in different spin mixtures of 40K could allow to study exotic quantum states
such as the quantum-Zeno insulator [107].

3.2.4 Probing high-spin fermions

For high-spin experiments, the relevant information is encoded in the spin and the spa-
tial configuration of the atomic ensemble. First, the spin occupations have to be known,
constituting the most important observable in the discussed experiments. Second, the
spatial as well as the momentum distribution provide crucial information to identify
for example spatial excitations such as spin waves [3, 58]. In addition, global properties
such as the particle number and the temperature are important in particular for a quan-
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Figure 3.9: Detection of high-spin fermions. The density distribution for two spin-
selective imaging techniques is shown: (A) In-situ image of one spin component of a multi-
component Fermi sea. The visible density distribution belongs to the spin state |+1/2〉, while all
further spin components m 6= 1/2 are transferred to the f = 7/2 manifold, which is transparent
for the detection light. (B) Time-of-flight picture of a ten-component Fermi sea, where all spin
components of the f = 9/2 manifold are occupied. The asymmetric splitting of the spin states
arises from non-linear contributions of the Zeeman effect during the Stern-Gerlach separation.

titative comparison with theoretical models. For these purposes, various methods are
available in ultracold atomic systems [133]. In the Bose-Fermi Mixture setup, absorp-
tion imaging is employed [124, 125]. Here, in-situ and time-of-flight imaging techniques
are discussed with a focus on adjustments for high-spin fermions.

In-situ imaging

Imaging the atomic sample directly in the dipole trap is called in-situ imaging and
allows to access the density distribution of the quantum gas [133]. This technique is
typically limited by the resolution of the detection system, given by the pixel size of
the CCD camera and the optical resolution of the objectives. Moreover, the attainable
information can be limited by saturation effects. For fermions, however, the Pauli ex-
clusion principle intrinsically limits the atomic density allowing for in-situ imaging in
a wide parameter range.

In general, the applied absorption imaging is resonant for all spin states in the
f = 9/2 manifold. To image only one individual spin state, an additional procedure is
employed. For this purpose, all spin states – except the one of interest – are trans-
ferred with microwave pulses into the f = 7/2 hyperfine manifold. Here, the atoms are
off-resonant for the detection light and hence not visible in the absorption pictures.
To avoid any magnetically- or light-induced resonance shifts, a 1 ms waiting time is
inserted before applying the microwave pulses with a typical duration of 50µs. This
procedure remains short against most time scales of the experiment, allowing to ad-
dress spin-dependent phenomena with spatial resolution in a broad range of parameters.
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Note that the detection scheme is destructive and requires experimental runs for each
spin component, which increases the experimental effort significantly. Nevertheless, this
technique allows for intriguing insight into the spin and spatial configuration at the same
time (see for example section 5.3.2). A typical example of an in-situ image taken in an
elongated dipole trap is depicted in Fig. 3.9 A.

Time-of-flight imaging

Imaging the atoms after a free expansion, when all trapping potentials have been
switched off, is an additional technique referred to as time-of-flight imaging [133]. In the
far-field limit of this expansion, the spatial distribution is converted into the momen-
tum distribution. The expansion time, however, is limited by the vertical acceleration
due to gravity. In our experiment, a time-of-flight of about 25 ms is possible, yielding a
distribution close to the real momentum distribution. Furthermore, the lower density
in the extended sample leads to a suppression of saturation effects. This allows for
a reliable determination of the particle number, which is in more detail described in
[106, 137]. To determine the temperature, an approach following [148] is employed by
using a fugacity fit for the cloud shape, which is independent of further parameters such
as the trapping frequencies or particle numbers (for more details see diploma thesis of
N. Fläschner [108]).

The different spin states of a high-spin Fermi sea overlap in the time-of-flight pic-
tures. Thereby, one can reliably measure the particle number, but the determination of
the temperature is only possible in balanced spin mixtures. For imbalanced mixtures,
more sophisticated schemes can be employed (see section 6.4.3). To separate different
spin states, a Stern-Gerlach experiment can be performed, where an inhomogeneous
magnetic field is applied during the expansion time. This induces a spin-dependent
force due to the different magnetic moments of the spin states. Experimentally, the
Stern-Gerlach field allows to separate all ten spin states of the f = 9/2 manifold in one
experimental run and constitutes the standard technique to measure spin occupations.
Note that the different Fermi clouds require a large region on the CCD chip, which
limits the expansion time to about 15 ms at a magnification of 1. A typical example of
a ten-component Fermi sea using this technique is depicted in Fig. 3.9 B.

3.3 Magnetic field control

The control of the magnetic field constitutes a second key ingredient for spin-dynamics
experiments. As discussed in section 2.2.2, the dynamical properties of high-spin sys-
tems are governed by the interplay between differential interaction and magnetic energy
(see section 2.2.2). Even small deviations of the magnetic field are sufficient to induce
perturbations, which macroscopically influence the system. This is a severe problem in
particular for collective spin dynamics in bulk fermions (see chapter 5).

The magnetic field in the Bose-Fermi Mixture setup is provided by a number of
coils, which are in detail described and characterized in [124, 125]: Large Helmholtz
coils produce magnetic fields up to values of 600 G. They provide the magnetic field for
the spin-state preparation and allow to address Feshbach resonances (see appendix B).
Additionally, three pairs of small coils in each spatial direction, mounted on a cage
system, surround the glass cell and provide a supplementary magnetic field of up to
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Figure 3.10: Compensation of the magnetic offset field in the transverse direction.
The spin occupations are plotted as a function of the transverse magnetic field. The initial
state is |+9/2〉. A current of Itr = 1.282 A reveals the best quantization, corresponding to the
compensated magnetic field in this direction. The imperfect spin polarization is due to an
additional magnetic field in the second transverse direction. For this experiment, a quantization
field of 15 mG is applied.

3 G. The small coils are used to compensate stray fields and, moreover, to generate
well-controlled homogeneous and gradient fields.

In the course of this research work, several methods have been developed allowing for
a high control of the magnetic field. For this purpose, the atoms themselves are employed
as a magnetic sensor. In the following, a description of calibration and compensation
schemes for the magnetic offset and for the magnetic gradient field will be given.

3.3.1 Magnetic offset fields

A magnetic offset field is necessary to set the quantization axis for the atomic ensemble.
The concept of the magnetic field compensation relies on the fact that at low magnetic
field small perturbations significantly influence the accuracy of the quantization. This
in turn changes the observed spin populations and allows to compensate magnetic stray
fields with high precision. In this context, a similar method has been successfully applied
to 87Rb in our group [138, 149], which has been extended to fermionic 40K throughout
this work.

First, a spin-polarized Fermi sea in the spin state m= 9/2 is prepared in the dipole
trap. To compensate residual magnetic fields in the transverse direction (orthogonal
to the quantization axis), a very low magnetic field is applied in the axial direction
(≈ 10 mG). At the same time, the current generating the transverse field Itr is varied
and the resulting spin occupations are measured after a time of 100 ms (see Fig. 3.10).
One finds, that only for a specific current the initial spin polarization is maintained. This
value corresponds to the compensated case, where the quantization axis is dominated
by the axial field. However, if the magnetic field in the transverse direction significantly
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Figure 3.11: Compensation of the magnetic offset field in the axial direction. The
spin occupations are depicted as a function of the axial magnetic field. The initial state is
|+9/2〉. A current of Iax = 1.811 A reveals the best compensation, associated with an equal spin
distribution (10 % in each spin component), as indicated with the dashed line in the figure. The
applied transverse magnetic field is 15 mG.

deviates, the quantization axis is effectively rotated. This becomes apparent in the
occupation of new spin states visible in a Stern-Gerlach separation. Note that this
procedure has to be performed for both transverse directions independently. A lower
magnetic field in the axial direction leads to an even narrower signal as compared to
the data depicted in Fig. 3.10. This allows for a compensation accuracy with an error
well below 1 mG.

To cancel residual axial fields (parallel to the quantization axis), the magnetic field
in the transverse direction is set to a low value (≈ 10 mG) and the current generating
the magnetic field in the axial direction Iax is varied. The resulting spin populations
for such an experiment are depicted in Fig. 3.11. For low currents, the atoms maintain
polarized by the axial magnetic field. For higher currents, the axial field is lowered (due
to the coil alignment) and spin components are continuously admixed until an equal
distribution of all spin states is reached. This value corresponds to the compensated
magnetic field in the axial direction. The compensation accuracy of the magnetic field
in this direction is also estimated with an error below 1 mG.

After the compensation of the magnetic field in all spatial directions, additional
small coils provide a well-controlled magnetic field in the axial direction [124, 125].
This field determines the Zeeman energy for the individual spin states during the spin-
dynamics experiments and is calibrated using rf-spectroscopy (see [106]). For this pur-
pose, the atoms are transferred between two spin states for different applied currents.
From the transition frequency, one can recalculate the respective magnetic field using
the Breit-Rabi formula (equation 2.1). Note that spin-polarized fermions are particu-
larly well suited for this calibration technique due to the absence of interaction shifts.

It was checked that the same results for the magnetic field compensation are ob-
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tained for bosonic and for fermionic atoms, which underlines the consistency of the
presented method. The magnetic field uncertainty is estimated in total to be below
3 mG. A magnetic offset field of approximately 10 mG compensates sufficiently mag-
netic field perturbations and provides an adequate quantization field. The presented
techniques provide a sufficient control over the magnetic offset fields for the experi-
ments presented in the following. For a better performance, more enhanced magnetic
field compensation techniques such as active shielding would be necessary (for example
in [84]).

3.3.2 Magnetic gradients

In addition to residual magnetic offset fields, a magnetic gradient can also be present in
the system. Typically, this gradient is small and arises from imperfections of the coils
or surrounding technical devices. For high-spin experiments, this gradient must be well
compensated and well controlled. In particular for harmonically trapped fermions, this
compensation is highly important and turned out to be the key experimental issue for
observing collective spin dynamics (see chapter 5).

Magnetic gradient compensation

To compensate magnetic gradients, a method has been developed based on spin waves,
which are well-studied excitations occurring in bosonic and fermionic many-body sys-
tems [58, 61, 150]. Spin waves have been investigated in the course of this research
work with a focus on high-spin fermions, published in [3]. As an important result of
these investigations, it was found that even a very small magnetic gradient, which has
no discernible influence on the energy levels of different spin states, strongly affects co-
herent spin superpositions. This can be used as a technical application for the gradient
compensation.

The experimental starting point is a spin-polarized Fermi gas in the spin state
|+9/2〉, prepared in an elongated dipole trap with trapping frequencies of ωx,y,z =
2π×(70, 70, 10) Hz. The low confinement in the z-direction favors the formation of spin
waves in this direction [3]. Using one coil pair in anti-Helmholtz configuration, a small
current Igrad is applied, which induces a linear magnetic field gradient. Subsequently, a
10µs rf-pulse generates a coherent superposition of the spin states |+9/2〉 and |+7/2〉
with a homogeneous phase over the whole sample. If the current Igrad compensates for
the unwanted magnetic field gradient in the experiment, then the system remains un-
affected. The presence of a magnetic gradient, however, imprints a spatially-dependent
phase on the coherent superposition. Combined with the harmonic confinement of the
dipole trap, this induces counterflow dipole oscillations in both spin components, while
the overall density of the Fermi sea remains constant [3]. These dipole oscillations can
be detected in a Stern-Gerlach experiment, which is exemplarily depicted in Fig. 3.12 A.
The complex excitation mechanism has been investigated in several works (see for ex-
ample [151, 152]). In the following, the discussion is limited to the oscillation properties
depending on the magnetic gradient strength.

For small gradients, the spin-wave frequency has a minimum value and increases
for larger magnetic gradients up to the trapping frequency. The amplitude of the os-
cillations increases for intermediate magnetic gradients and decreases again for very
large gradients [3]. Moreover, the phase of the induced spin oscillation is inverted by
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Figure 3.12: Compensation of the magnetic gradient field. (A) A spin-wave excitation
in a two-component Fermi gas is depicted, which is excited with a magnetic gradient (see [109]
for experimental details). Counterflow dipole oscillations of both spin components are clearly
visible, while the overall density remains constant. (B) The position of the spin state m= 7/2
after a time evolution of 100 ms is shown for different magnetic gradient fields. Blue dots result
from a Fermi gas, initially prepared in a coherent superposition of the spin states |+9/2〉 and
|+7/2〉, showing a dispersive signal as a result of the spin-wave excitation. Red dots provide
the reference measurement of a Fermi sea in the spin state |+7/2〉. The overall slope is due to
the additional gradient potential. The inset shows a zoom into the zero-crossing, revealing a
current of Igrad = 0.336 A for the gradient compensation.

changing the gradient from positive to negative values, which is exploited to find the
perfect compensation.

A typical compensation measurement is depicted in Fig. 3.12 B. The center-of-mass
position of the spin state |+7/2〉 is plotted after a time evolution of 100 ms as a function
of the gradient current. This waiting time is optimized to observe the maximum deflec-
tion for small gradients. Two effects can be directly extracted from the data: First, the
experiments reveal an overall linear shift of the atoms, which is a result of the additional
gradient potential shifting the atoms in the shallow trap configuration. On top of this
signal, a dispersive deflection of the atomic center-of-mass position around a gradient
current of Igrad = 0.336 A is observed, which arises from the spin-wave excitation. This
signal can be used to determine the compensated gradient. As a reference, the center-
of-mass motion of the pure spin state |+7/2〉 has been monitored, where spin waves
cannot be excited. Here, this dispersive feature is clearly absent, while the linear shift
is also visible.

The zero-crossing of the dispersive signal coincides with the compensation of the
magnetic gradient field. Deflections in both directions correspond to small positive and
negative gradients. As demonstrated in the inset of Fig. 3.12 B, this allows for a precise
magnetic gradient compensation with an error equivalent to 40µG/cm.
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Figure 3.13: Local microwave transfer in an elongated Fermi gas. In-situ images of an
elongated Fermi gas in the spin state |f = 9/2,m= 5/2〉 with a spatial extension of about 2 mm
in the elongated direction are shown. Using a 500µs mw-pulse with a frequency of 1284.634 MHz
(i), 1284.616 MHz (ii), 1284.598 MHz (iii), and 1284.58 MHz (iv), the atoms are locally trans-
ferred to the state |f = 7/2,m= 5/2〉, which is transparent for the detection light. An additional
magnetic field of B= 0.17 G and a gradient current of Igrad = − 5.0 A are applied.

The presented gradient compensation technique is easy-to-implement and suitable
for the daily experimental operation. Note that for a typical size of a Fermi sea of 100µm
the remaining gradient is below 1µG over the extent of the sample. This precision also
allowed for the observation that different applied magnetic fields require different gradi-
ent compensations. It demonstrates that a small contribution of the magnetic gradient
arises from the small coils themselves, which is accounted for in the presented experi-
ments. However, the large part of the gradient fields stems from environmental sources
such as technical devices or magnetic items. This should motivate the experimentalist
to displace any magnetic items in the laboratory only very carefully.

Determination of the magnetic gradient field

The precise knowledge of the magnetic gradient is important for several applications
such as the study of spin waves [3]. Its strength can be determined using microwave spec-
troscopy. Therefore, a spin-polarized Fermi gas in the spin state |f = 9/2,m= 5/2〉 is
prepared in a one-beam dipole trap with trapping frequencies ωx,y,z = 2π×(80, 90, 3) Hz.
After a 2 s expansion time in this configuration, the fermions have spatially redistributed
in the shallow direction into a large extension of several millimeters. In the transverse
directions, in contrast, the atoms are strongly confined to about 40µm. After this
preparation step, a magnetic field gradient is applied in the axial direction, which can
be resolved with microwave spectroscopy.

For this purpose, the atoms are transferred from the spin state |f = 9/2,m= 5/2〉
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Figure 3.14: Calibration of the magnetic field gradient. (A) The column sums of
measurements such as in Fig. 3.13 are shown as a function of the pulse frequency. The mw-pulse
transfers the atoms locally from |f = 9/2,m= 5/2〉 to |f = 7/2,m= 5/2〉. A gradient current of
Igrad = − 5.0 A (upper part) and Igrad = + 1.239 A (lower part) is applied. The two stripes in
the upper figure correspond to π-polarized and σ+-polarized (to |f = 7/2,m= 7/2〉) microwave
transfers. (B) The magnetic gradient strength is shown for different gradient currents. It has
been calculated for each magnetic gradient field from measurements such as in A using the
Breit-Rabi formula 2.1. The solid line is a linear fit revealing a slope of ∆B= − 5.34 G/(m ·A).
The compensated case corresponds to a current of Igrad = 0.336 A.

to |f = 7/2,m= 5/2〉 with a 500µs microwave pulse. Due to the rather long pulse dura-
tion, the microwave transfer is only resonant with a specific part of the atomic sample
corresponding to the local value of the magnetic field. After the microwave manipula-
tion, in-situ imaging is employed, where atoms in the f = 7/2 manifold are not visible.
This is exemplarily depicted for different microwave frequencies in Fig. 3.13, where the
transferred fraction of atoms appears as dips in the density distribution. These holes
show up at different positions of the Fermi sea, depending on the local magnetic field. In
general, this demonstrates the capability to transfer atoms locally between both hyper-
fine manifolds. This feature is employed to determine precisely the magnetic gradient
strength.

By varying the microwave frequency, holes are realized at different positions of the
Fermi sea. In Fig. 3.14 A, the column sums in the radial direction are exemplarily
depicted for a positive and a negative gradient. This measurement demonstrates that
the position of the dips depends approximately linearly on the applied frequency. Since
this transition is also dominated by the linear Zeeman splitting (see section 3.2.2), it
validates in addition the linear form of the magnetic gradient over the region of interest.
A linear fit of the dip position is employed, which allows to determine the magnetic
gradient for a each current with the Breit-Rabi formula (equation 2.1).

The obtained magnetic gradient is depicted in Fig. 3.14 B as a function of the applied
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gradient current. As the experiments demonstrate, the dependence turns out to be
rather linear. This is expected for perfectly aligned coils in anti-Helmholtz configuration.
Fitting these data with a linear function reveals a value of ∆B= − 5.34 G/(m · A) for
the gradient dependence on the applied current.

Combining this technique with the other above-mentioned methods, this constitutes
an experimental toolbox, which is suitable for an adequate control of the magnetic field
in the presented experiments.





Chapter 4

Spin dynamics in optical lattices

The experiments presented in this chapter constitute the first realization of fermionic
spin dynamics. Due to the complex structure of fermionic many-body systems, the
underlying fundamental interaction process was investigated first on a microscopic level.
In this context, optical lattices provide an ideal experimental tool [31, 32].

Quantum gases in optical lattices have proven to provide ideal model systems for
various phenomena in solid-state physics. Owing to technological progress, single-site
resolution [153–156] and unconventional lattice structures [157] have been realized. A
particular focus of the current research activities is directed towards lattice systems with
spin 1/2 fermions, driven by microscopic interactions between two spin states. Ground-
breaking experiments allowed to study fundamental electronic magnetic properties and
quantum phases, e.g., the metal-to-Mott insulator transition [38–40] or short-range
magnetic ordering [47].

Beyond these conventional spin 1/2 systems, high-spin fermions in optical lattices
constitute completely new many-body systems. Only a few experimental realizations
have been reported so far, such as the recent realization of Pomeranchuk cooling with
fermionic ytterbium atoms in optical lattices [103, 158–160]. From the theoretical per-
spective, these systems have attracted a tremendously growing interest especially in the
direction of ground-state properties. Various investigations have been performed, study-
ing for example high-spin Mott insulators [95, 161–163] and SU(N)-magnetic properties
[98–101]. Another important focus are magnetic ordering effects in high-spin systems,
where the number of involved spin states is important for the character of the magnetic
long-range correlations [96, 98, 164–166].

These exotic many-body phenomena are driven by microscopic interactions between
the involved spin states, which are hence of general interest. Pioneering experiments
have studied local high-spin interactions in bosonic quantum gases [74, 75, 84]. For
fermions the high control over the experimental parameters combined with Pauli block-
ing allows to realize fermionic lattice systems in tailored spatial and spin configurations.
This constitutes a perfect starting point to explore the fundamental collision process
between two fermions with high spin [104].

In this spirit, this chapter will explore fermionic spin dynamics in optical lattices.
First, I will briefly introduce important concepts of optical lattices (section 4.1). The
investigation of spin dynamics starts in section 4.2, where I will present a detailed study
of coherent spin dynamics on a two-particle level, established in deep optical lattices.
Subsequently, the system will be extended to intermediate lattice depths (section 4.3)
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and the crossover from the two-body to the many-body regime will be studied. Finally,
experiments including also higher bands of the optical lattice will be presented (see
section 4.4).

Parts of this chapter have been published in [5]. The experiments and the data
analysis were performed with C. Becker, N. Fläschner, S. Götze, J. Heinze, and K. Seng -
stock.

4.1 Characterizing fermions in optical lattices

In the Bose-Fermi Mixture setup, a 3d cubic optical lattice is implemented, which can
be superimposed on the atoms in the dipole trap [124, 125, 134]. The corresponding
lattice potential leads to the formation of a band structure, consisting of energy bands n
for quasimomenta q (see appendix A). A detailed discussion of quantum gases in optical
lattices is available in the literature in various excellent articles (see for example [31,
32]).

In this section, I will focus on the characterization of fermions in optical lattices.
First, a novel multi-band spectroscopy method for the lattice calibration will be pre-
sented. Subsequently, I will introduce the high-spin Hubbard model, which provides a
suitable description for fermionic high-spin interactions.

4.1.1 Calibration of the optical lattice

Over the last years, several methods have been developed to probe the band structure of
atoms in optical lattices. A prominent example is Bragg spectroscopy, which constitutes
a perfect tool to probe these systems with momentum resolution [167–169], however,
at the expense of significant experimental effort. Another widely employed method is
lattice-amplitude modulation, which has become an inevitable tool for spectroscopy in
optical lattices [170–172].

In the course of this research work, this method was combined with a band-mapping
technique [173], providing an ideal tool for multi-band spectroscopy of fermions in
optical lattices including momentum resolution. It is easy to implement, requires no
further setup components and is hence well suited for the daily experimental operations.
The high precision of this method allowed to observe an interaction-induced tunneling
reduction in Bose-Fermi mixtures and to study for the first time fermionic higher-
band dynamics, both performed throughout this work [4, 6]. A detailed discussion of
the results is provided in the thesis of J. Heinze [107]. Here, I describe this versatile
method as a calibration tool for the band structure in fermionic lattice systems.

The calibration starts with spin-polarized fermions, which are adiabatically loaded
into an optical lattice, forming a band insulator. The system is excited by modulating
the depth of the optical lattice for 1 ms with a variable frequency and a typical mod-
ulation amplitude of 20 %. Subsequently, a band-mapping procedure is applied, where
the lattice depth is reduced within 200µs to zero. This is adiabatic with respect to
the lattice potential and maps the quasimomenta onto real momenta as illustrated in
Fig. 4.1 A. However, it is still much faster than trap-induced dynamics, which prevents
the atoms from redistributing within each band. After a time-of-flight of typically 15 ms,
the momentum distribution is measured via absorption imaging.

If the modulation frequency does not match any band transition, the atoms are not
excited and remain in their initial momentum configuration (see Fig. 4.1 B). However, if
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Figure 4.1: Sketch of the multi-band spectroscopy technique. (A) An illustration of
this technique is provided, starting from a band insulator in an optical lattice. Arrows indicate
the excitation by lattice-amplitude modulation (dashed lines) and the band-mapping procedure
(solid lines). Typical time-of-flight pictures (upper row) show the momentum distribution for
off-resonant (B) and resonant modulation (C). In the column densities (lower row), the corre-
sponding unperturbed band insulator and the particle-hole excitation into the third band are
visible. Experimental data have also been published in [6].

the modulation frequency is resonant, atoms are transferred into higher bands, leaving
a hole in the lowest band. This corresponds to a particle-hole excitation [174]. An
example for resonant modulation is depicted in Fig. 4.1 C, revealing that only a specific
quasimomentum is excited. The experimental trick to obtain this momentum resolution
is based on the different curvatures of the individual bands, providing that the resonance
condition is fulfilled only for specific momenta. Note that due to the symmetry of the
energy spectrum, atoms at positive and negative quasimomenta with equal absolute
value are simultaneously excited.

By varying the modulation frequency, the full band structure can be obtained. This
is depicted in Fig. 4.2, where the corresponding column densities are shown for different
frequencies. The outcoupled particles correspond to the extended zone scheme of the
band structure, while the holes reflect the reduced zone scheme [174]. Moreover, the
opening of the band gap and the characteristic flattening of the individual bands at
the edge of the Brillouin zones are clearly visible. The transfer at zero momentum is
suppressed due to parity conservation and the influence of the harmonic potential (see
also [6]).

Using the multi-band spectroscopy technique, one can extract the energy difference
between the lowest band and the excited bands, allowing to determine the lattice depth
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Figure 4.2: Momentum-resolved band structure of fermions in optical lattices. The
energy spectrum for a lattice depth of VL = 5 Er is depicted. Shown are the column densities
for different modulation frequencies at a modulation amplitude of 20 %. The particle number
is 2×105 and temperature T = 0.2 TF. The central plateau corresponds to atoms in the initial
band insulator, which occupy the first Brillouin zone. Holes in the first Brillouin zone represent
the reduced zone scheme. The peaks at higher momenta correspond to the excited particles,
representing the extended zone scheme. Experimental data have also been published in [6].

VL. For this, the center-of-mass position of the outcoupled atoms is determined in the
time-of-flight pictures. This technique works best for the third band, where a suitable
overlap of the wave functions favors a clear excitation signal for all lattice depths. In
Fig. 4.3, the extracted dispersion of the third band is shown and compared to single-
particle calculations [32]. For intermediate momenta the experimental data agree very
well with the calculated dispersion relation, while deviations appear at small and large
momenta. The latter is a combined effect of the underlying harmonic confinement and
the finite band-mapping time [6, 107].

Nevertheless, for intermediate momenta these distortion effects are small and can
be well neglected. Therefore, the fitting of the data is restricted to a momentum range
between 0.55 – 0.85 kBZ, which allows to determine the lattice depth with high precision.
Note that interaction shifts are fully absent due to the spin polarization of the Fermi
gas. The Gaussian shape of the lattice beams leads to a slightly inhomogeneous lattice
potential resulting in a relative error of the lattice calibration accuracy of at least 2 %.
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Figure 4.3: Dispersion relation for the third band. (A) The center-of-mass momenta,
excited from the lowest into the third band, are depicted for different modulation frequencies.
Solid line is a fit of the data to a single-particle band structure calculation for quasimomenta
0.55 kBZ<q< 0.85 kBZ with the lattice depth as free parameter. The lattice depth is calibrated
to VL = 11.3 Er. The shaded area depicts deviations of 5 % from the fitted value. (B) A histogram
showing the relative number of outcoupled atoms is depicted. Experimental data have also been
published in [6].

4.1.2 Describing high-spin fermions in optical lattices

In a spin-polarized Fermi gas, interactions are suppressed at low temperatures due to
Pauli blocking. However, the spin degree of freedom circumvents this restriction. Since
two fermions in different spin states can occupy the same spatial single-particle state,
they can also interact via s-wave scattering [14].

A suitable description of interacting lattice systems is the Hubbard model [175, 176],
which is well-known from solid-state physics. It considers short-range interactions and
describes bosonic and fermionic lattice systems typically restricted to the lowest band.
The Hubbard model can be extended to particles with high spin [32], where the following
contributions are important:

Tunneling energy
In the Hubbard model, tunneling processes are considered between adjacent lat-
tice sites. In the tight-binding approximation [174], which is typically valid for
lattice depths above 5 Er, tunneling is described by the Hamiltonian

HJ = −J
∑
m

∑
〈i,j〉

f †i,mfj,m . (4.1)

Here, J is the spin-independent tunneling matrix element. The summation in-
cludes all spin components m. 〈i, j〉 denotes the sum over nearest-neighboring

lattice sites. f †i,m and fi,m are the creation and annihilation operators for atoms
in the spin state m at the lattice site i.
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Harmonic potential
Optical lattices are typically associated with an additional harmonic confinement.
The corresponding Hamiltonian has the form of a single-particle operator

Hconf =
∑
m

∑
i

Vi f
†
i,mfi,m , (4.2)

where Vi is spin-independent. This term adds an energy offset depending on the
exact position in the harmonic trap.

Magnetic energy
The Zeeman Hamiltonian accounts for the magnetic energy and is given by

HZ = E
(m)
BR (B)

∑
m

∑
i

f †i,mfi,m , (4.3)

yielding an individual energy offset for each spin state. For spin dynamics, it is

suitable to introduce the two-particle Zeeman energy E
(m1,m2)
Z =E

(m1)
BR +E

(m2)
BR .

High-spin interactions
Collisions between the atoms are considered as on-site interactions on the same
lattice site. The high-spin interaction Hamiltonian is given by

HI =
∑

m1+m2 =m3+m4

Um1m2m3m4

∑
i

f †i,m3
f †i,m4

fi,m2
fi,m1

. (4.4)

Here, Um1m2m3m4 is the spin-dependent on-site interaction, which varies for dif-
ferent spin configurations. It is given by

Um1m2m3m4 =
4π~2

m
am1m2m3m4

∫
dr |w(r)|4 . (4.5)

Thereby, the colliding particles occupy the same spatial wave function on the
same lattice site, described by the Wannier function w(r) [177].

The full high-spin Hubbard Hamiltonian is the sum of all above-mentioned contri-
butions:

Htot = HJ +Hconf +HI +HZ . (4.6)

The additional spin degree of freedom extends the conventional Hubbard model con-
siderably [32]. Its highly involved ground-state and non-equilibrium properties originate
from the interplay between all contributions described above.
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The experiments presented in this chapter focus on fermionic spin dynamics in three
different regimes of the optical lattice, as outlined below:

1. Two-body limit
In deep optical lattices, tunneling is suppressed (HJ = 0) and the harmonic con-
finement Hconf affects only the initial spatial distribution of the atoms in the
optical lattice. This allows for the realization of a textbook-like two-particle ex-
periment, which will be in detail explored in section 4.2. In this case, the full
Hubbard Hamiltonian 4.6 is reduced to the two-body Hamiltonian

H2body = HI +HZ . (4.7)

In this limit, the system is only governed by the interplay between high-spin in-
teractions and magnetic energy, which strongly simplifies the resulting dynamics.
Both atoms occupy the same spatial state described by the corresponding Wan-
nier function. This requires a symmetric spatial part and hence an antisymmetric
spinor part of the wave function (see section 2.2.1). The isolated atom pair is
represented by the on-site two-particle state

|Ψon-site〉=w(r1)w(r2)︸ ︷︷ ︸
spatial part

|m1,m2〉︸ ︷︷ ︸
spinor part

. (4.8)

In the two-body limit, the spatial part remains fixed and will be omitted in the
following.

2. Multi-site spin dynamics
At intermediate lattice depths, the full Hubbard Hamiltonian 4.6 has to be con-
sidered. The dynamics are governed by the interplay between spin-changing col-
lisions and spatial dynamics. It is particularly interesting, how this affects the
conventional ground-state properties of the two-component Hubbard model [32].
It turns out that the metallic phase (HJ�HI, EF) and the Mott-insulating phase
(HI�HJ , EF) are robust in the presence of spin-changing collisions. However, the
situation changes for a band insulator (EF�HI,HJ), which appears to be sen-
sitive to spin dynamics. In this context, a novel interaction-induced instability of
a band insulator has been observed, which will be discussed in section 4.3.

3. Multi-band spin dynamics
The Hubbard model is typically restricted to the lowest band. Spin dynamics have
also been studied involving the orbital degrees of freedom. This requires an exten-
sion of the Hubbard Hamiltonian, which accounts for the full band structure [178–
180]. Experiments demonstrating multi-band spin dynamics will be presented in
section 4.4.
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4.2 Two-particle spin dynamics

The tunability of optical lattices allows for the investigation of the most fundamental
interaction process: two fermions with high spin collide (see section 2.2.1). This provides
an ideal starting point for the investigation of spin dynamics in high-spin fermions.

To reduce the complexity of the lattice system described by the Hubbard Hamilto-
nian 4.6 to this case, a binary fermionic spin mixture is prepared in a very deep optical
lattice, where tunneling is strongly suppressed. The harmonic confinement leads to an
initial spatial distribution with a two-component band insulator in the core of the sys-
tem surrounded by singly occupied sites. Note that triply occupied sites are not allowed
due to the Pauli exclusion principle. Atoms on singly occupied sites do not have any
collision partner, which prevents collisions as in the spin-polarized case. The doubly
occupied sites, however, constitute the realization of a textbook-like two-particle ex-
periment. Many of these two-particle experiments are independently realized and evolve
fully simultaneously in time.

In this section, I will present a detailed study of fermionic spin dynamics in the
two-body limit. After a description of the experimental procedure, I will report on the
first observation of fermionic spin-changing collisions. This was observed in a pseudo-
spin 3/2 system, where additionally a fermionic spin resonance could be found and
fundamental scattering parameters could be extracted. Then I will present experiments
exploiting the full spin 9/2 system and report on novel multi-flavor spin dynamics
including high-collision quanta.

4.2.1 The experimental procedure

As a first step, a binary spin mixture is evaporated to quantum degeneracy. The best
performance is achieved by choosing an exponentially decreasing magnetic field ramp
during the evaporation, which is adjusted for each prepared spin mixture. This ramp
suppresses uncontrolled spin-changing collisions, in particular in the beginning of the
evaporative cooling. Furthermore, it allows for a fast switching to very low magnetic
fields, where the experiments are performed. Typically a balanced spin mixture of 4×105

particles at temperatures between 0.15 – 0.25 TF is realized. After the evaporation the
dipole trap is compressed within 50 ms.

In a second step, the atoms are adiabatically loaded into a 3d optical lattice with
a linear lattice ramp of 150 ms. This leads to the formation of a two-component band
insulator in the core of the system as sketched in Fig. 4.4 A. A deep optical lattice has
several advantages: First, the suppression of tunneling allows for a longer study of the
two-body limit. Moreover, higher densities increase the local interaction, which leads
to faster spin-changing dynamics. In addition, the relative number of doubly occupied
sites increases due to the additional harmonic confinement originating from the lattice
beams. Therefore, deep lattices with lattice depths between 25 – 35 Er are employed
limited by the power of the lattice laser.

For quantitative insight into the resulting spatial distribution of the atoms in the
optical lattice, calculations using Dynamical Mean-Field Theory (DMFT) [181] have
been performed by A. Sotnikov and coworkers [182]. They reveal that at a lattice depth
of 35 Er approximately 40 % of the atoms occupy doubly occupied sites. As depicted in
Fig. 4.4 B, the particles form a band insulator with two atoms per site in the core of
the system, which extends over 40 – 50 lattice sites in each spatial direction. Besides,
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Figure 4.4: Spatial distribution of the atoms in deep optical lattices. (A) A sketch
of the spatial distribution is shown. In the core of the system, a two-component band insulator
with doubly occupied sites is formed, while singly occupied sites appear in the outer part. (B)
Calculations of the spatial distribution in the optical lattice for the spin mixture |9/2, 1/2〉 at
35 Er are depicted. The two-component band insulator (BI) in the core and a Mott-insulating
shell (MI) are visible, surrounded by a metallic phase. The calculations are kindly provided by
A. Sotnikov [182].

an occupation plateau with one atom per site is found, which corresponds to a Mott-
insulating shell surrounded by metallic shells.

The spin dynamics are initialized by a quench of the magnetic field to a low value,
typically between 0.1 – 1.6 G. After a certain time evolution the magnetic field is raised
again to 14 G, which suppresses further spin-changing collisions. The magnetic field
switching has been optimized independently using rf-spectroscopy, revealing switching
times well below 500µs. This is much faster than the dynamics of the spin 3/2 system
and reasonably faster than the dynamics of the spin 9/2 system. Optionally, a black-
out-pulse procedure can be applied to record exclusively doubly occupied lattice sites
(see section 4.2.2).

Subsequently, the optical lattice is ramped down within 500µs, which maps the
atoms occupying the lowest band on the first Brillouin zone. This allows to ensure that
higher-band excitations are suppressed. Moreover, all spin states can be well separated
in a subsequent Stern-Gerlach experiment. The spin occupations are recorded after a
time-of-flight of typically 18.5 ms.

Note that the inhomogeneity of the lattice potential and the magnetic field are
estimated to be below 2 % and 1 mG, respectively. Hence, it is justified to assume that
all doubly occupied sites obey independently the same time evolution. Therefore, the
global spin occupations are suitable observables for the microscopic spin dynamics.
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Figure 4.5: Sketch of the pseudo-spin 3/2 system. (A) The involved spin configurations
are depicted. Colored boxes represent both two-particle states (|9/2, 1/2〉 and |7/2, 3/2〉). Note
that the two-particle state |5/2, 5/2〉 is forbidden due to the Pauli exclusion principle. (B)
Sketch of the two-level system. Both spin configurations are coupled by spin-changing collisions
with a spin transfer of ∆m= 1 for each particle.

4.2.2 A proof-of-principle experiment

The experiments presented in the following provide the first experimental observation of
fermionic spin dynamics. For this proof-of-principle experiment, the most fundamental
system in spin space – the pseudo-spin 3/2 system – has been employed, corresponding
to a two-level system.

Pseudo-spin 3/2 system

The two-particle states |7/2, 3/2〉 and |9/2, 1/2〉, both with a total magnetization of
M =m1 +m2 = 5, form a pseudo-spin 3/2 system. They are coupled by spin-changing
collisions with a spin transfer of ∆m= 1 (see Fig. 4.5 A). Note that the two-particle
state |5/2, 5/2〉 is forbidden due to the Pauli exclusion principle. Further two-particle
states are not allowed due to the conservation of the total magnetization with the result
that an effective two-level system is realized (see Fig. 4.5 B).

Both two-particle states form a suitable basis

BM=5 = {|9/2, 1/2〉 , |7/2, 3/2〉} , (4.9)

in which the interaction Hamiltonian reads

HI =

(
U 9

2
, 1
2
, 9
2
, 1
2

U 9
2
, 1
2
, 7
2
, 3
2

U 9
2
, 1
2
, 7
2
, 3
2

U 7
2
, 3
2
, 7
2
, 3
2

)
=

4π~2

m

∫
dr |w(r)|4

(
167.01 1.24
1.24 167.52

)
aB . (4.10)

Diagonal elements represent the interaction energies, while off-diagonal elements de-
scribe the coupling with spin-changing collisions. Due to the large total magnetization
(M = 5), only the scattering channels F = 6, 8 contribute to the spin dynamics, which
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Figure 4.6: Observation of spin-changing collisions in a pseudo-spin 3/2 system.
Relative occupations of the spin states n(m) are shown as a function of time. These data
demonstrate for the first time fermionic spin dynamics, apparent in coherent oscillations between
the involved two-particle states |7/2, 3/2〉 and |9/2, 1/2〉. Solid lines are fits to the data using
equation C.1. The magnetic field is B= 0.17 G and the lattice depth is VL = 30 Er. In the inset,
the time evolution calculated using equation 4.7 is depicted.

have similar absolute values (see section 2.2.1). This leads to small coupling elements
below 1 % of the interaction energies, which are also only slightly different for both
two-particle states. Note that this system is inherently different from a real spin 3/2
system. In the latter the contributing scattering channels are F = 0, 2, which results in
the same interaction energy for both two-particle states [158]. Therefore, the experi-
mental system is referred to as a pseudo-spin 3/2 system.

The corresponding Zeeman Hamiltonian contains only diagonal elements and is
given by

HZ =

(
E

(9/2,1/2)
Z 0

0 E
(7/2,3/2)
Z

)
. (4.11)

It accounts for the differential Zeeman energy of both two-particle states.

Two-level dynamics

The investigation of spin dynamics in the pseudo-spin 3/2 system is performed in the
two-body limit, established in a deep optical lattice of 30 Er. On each doubly occupied
site the two-particle state |7/2, 3/2〉 is realized. To study the time evolution at low
magnetic field, the spin occupations of both involved two-particle states (|7/2, 3/2〉 and
|9/2, 1/2〉) are recorded.

The result of this experiment, depicted in Fig. 4.6, constitutes the first observation
of spin-changing collisions in fermionic quantum gases. As a key result, it provides the
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Figure 4.7: Sketch of the black-out-pulse technique. (A) A sketch of the experimental
protocol is shown. After half a spin-oscillation period, the magnetic field is raised and microwave
pulses transfer atoms on singly occupied sites into the f = 7/2 manifold. The subsequent spin
dynamics are only recorded from doubly occupied sites. (B) The spin distribution of the system
is sketched after the black-out pulses. Only the core region with doubly occupied sites remains
in the f = 9/2 manifold.

basis for all further investigations presented in this thesis. The data reveal an intriguing
oscillatory behavior, transferring the atoms between both two-particle states back and
forth. This directly proves the coherent nature of the spin-changing collision process.
Furthermore, the absence of coherent oscillations in the spin state m= 5/2 underlines
the fermionic character of the system since the corresponding two-particle state is Pauli
blocked.

Comparing the data to calculations solving the two-particle Hamiltonian 4.7 (see
inset in Fig. 4.6), a very good agreement of the spin-oscillation frequency is found. The
oscillation amplitude, however, being approximately only 35 % is significantly below
the theoretically expected value. This deviation results from the global spin occupa-
tion measurement, where singly and doubly occupied sites contribute to the signal. As
another observation, the oscillations are damped with a rate of approximately 15 Hz,
and an incoherent increase of the spin states m= 5/2 and m=−1/2 is also visible.
Finite tunneling explains these effects and relates the observed two-body dynamics to
the many-body regime. This will be discussed in detail in section 4.3.

To record spin dynamics exclusively on the doubly occupied sites, the detection has
to distinguish between the singly and the doubly occupied part of the system. There-
fore, a so-called black-out-pulse technique was implemented. A similar approach has
been employed in bosonic systems [74, 75], which was adapted to fermions in optical
lattices. The corresponding procedure is sketched in Fig. 4.7 A. At first, the atoms pre-
pared in the state |7/2, 3/2〉 evolve at low magnetic field under spin-changing collisions
for half a spin-oscillation period. The corresponding magnetic field is chosen such that
a maximum spin-oscillation amplitude is achieved, which transfers the doubly occu-
pied sites into the spin configuration |9/2, 1/2〉 (see section 4.2.3). At the same time,
the singly occupied sites remain in the initial spin states, either m= 7/2 or m= 3/2.
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Figure 4.8: Observation of high-contrast spin oscillations. Relative occupations of
the spin states n(m) are depicted as a function of time. Solid lines are fits to the data using
equation C.1. The magnetic field is B= 0.19 G and the lattice depth VL = 35 Er. Note the high
contrast of about 70 %, revealing coherent oscillations for 250 ms. In the inset the time evolution
calculated by solving Hamiltonian 4.7 is depicted. Experimental data have also been published
in [5].

The outcome of this procedure is a locally occupation-dependent spin configuration.
Subsequently, the dynamics are stopped by switching the magnetic field to B= 1.69 G,
where spin-changing collisions are suppressed. After a waiting time of 5 ms, linearly-
polarized microwave pulses with a duration between 35 – 50µs transfer the atoms on
singly occupied sites into the f = 7/2 manifold. The pulses are resonant for the spin
states m= 7/2, 5/2, 3/2,−1/2 and account for first-order tunneling processes (see sec-
tion 4.3). In the upper hyperfine manifold the atoms are not resonant with the detection
light and hence not visible in the absorption images. Subsequently, the magnetic field
is switched back to a low value. This again initializes spin dynamics, now from a very
pure state, where all atoms contributing to the signal are exclusively on doubly occupied
sites (see Fig. 4.7 B).

The time evolution of the spin occupations recorded from such an experiment is
depicted in Fig. 4.8. The data show high-contrast spin oscillations with an ampli-
tude of about 70 %, where coherent dynamics are observed for 250 ms. Note that the
black-out-pulse technique leads to an initially reversed spin configuration, starting the
dynamics from |9/2, 1/2〉. A very good agreement between the experimental data and
two-body calculations is found, depicted in the inset of Fig. 4.8. The obtained am-
plitude exceeds the values observed in the experiments with bosons [74], but remains
below the predicted full transfer. This can be mainly attributed to tunneling during
the black-out-pulse procedure, which will be discussed in section 4.3. Moreover, spa-
tial correlations inducing slightly different shapes of the on-site wave functions are a
possible explanation for the decreased oscillation amplitude [180].
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4.2.3 A fermionic spin resonance

Two-particle spin dynamics as demonstrated above are governed by the interplay be-
tween two energy scales: the differential interaction and the differential Zeeman energy.
This has been studied with bosonic systems [74, 79, 80] and allowed for the determi-
nation of fundamental scattering parameters. It is a natural step to investigate this
feature also for the fermionic system.

The interplay between both energy scales is illustrated in Fig. 4.9 A and can be
understood in the following way: For increasing magnetic field, the interaction energy
remains constant while the differential Zeeman energy increases quadratically. There-
fore, the Zeeman energy dominates at large magnetic fields and the atoms are pinned to
a fixed spin. In this so-called polarized regime, spin-changing collisions are off-resonant
due to the large detuning between the two-particle states. In contrast, at low magnetic
fields both energy scales are comparable. In this depolarized regime, large-amplitude
spin oscillations can occur.

To demonstrate this general behavior, spin-dynamics experiments such as in Fig. 4.8
have been performed at different magnetic fields. The result is depicted in Fig. 4.9 B,
clearly revealing the off-resonant behavior in the Zeeman regime.

For more insight into the crossover from the depolarized to the polarized regime,
it is instructive to rewrite the on-site interaction in terms of the total-spin scattering
lengths aF . This yields the total-spin-dependent interaction UF , given by

UF =
4π~2

m
aF

∫
dr |w(r)|4 . (4.12)

It is related to the spin-dependent interaction Um1m2m3m4 by the Clebsh-Gordon coef-
ficients. The resulting two-body Hamiltonian 4.7 then reads

H2body = ∆U8,6

(
0

√
6/5√

6/5 1/5

)
− qB2

(
0 0
0 6

)
. (4.13)

Here, ∆U8,6 =U8−U6 is the differential interaction energy in terms of the total-spin
scattering lengths. For this representation, the analytical expression for the quadratic
Zeeman energy (equation 2.7) is employed and the offset energy U9/2,1/2,9/2,1/2− 41/2qB2

is subtracted.
The Hamiltonian 4.13 has a Rabi-like form, where the magnetic field acts as detun-

ing and the spin-changing collisions as coupling elements. In analogy to this, one can
derive an analytical expression for the spin-oscillation frequency, given by

ν(B) =
1

5 · h

√
(∆U8,6 − 30 · q ·B2)2 + 24 ·∆U2

8,6 , (4.14)

and for the spin-oscillation amplitude, given by

A(B) =
24 ·∆U2

8,6

(∆U8,6 − 30qB2)2 + 24 ·∆U2
8,6

. (4.15)

In this notation, the interplay between interaction and Zeeman energy is evident. At
large magnetic fields, the frequency approaches the quadratically increasing differential
Zeeman energy, while the amplitude vanishes. An interesting situation appears, when
both energy scales are equal, which corresponds to 30qB2 = ∆U8,6. In this case, the
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Figure 4.9: Crossover from the depolarized to the polarized regime. (A) Interaction
and magnetic energy are plotted as a function of the magnetic field, illustrating the polarized
and the depolarized regime. (B) Spin oscillations are shown for the same parameters as in
Fig. 4.8 but for different magnetic fields as indicated in the figure. In the polarized regime, the
spin oscillations are off-resonant, yielding high frequencies and small amplitudes. Only in the
depolarized regime, large-amplitude spin oscillations occur.

system exhibits a Rabi-type spin resonance, reflected in resonant spin oscillations with
a maximum amplitude and a minimum frequency. Note that a spin resonance at finite
magnetic field only appears in a pseudo-spin 3/2 system, while in real spin 3/2 systems
the resonance is located at zero magnetic field [158]. In this case, microwave dressing
allows to artificially shift the resonance position, which has been demonstrated for
bosonic systems [183].

To observe a fermionic spin resonance, the spin-oscillation measurements have been
repeated for several magnetic fields, above and below the expected resonance position.
The frequency and the amplitude of the spin oscillations are determined by fitting a
multi-component damped oscillatory function to the data (see appendix C for details).
Figure 4.10 depicts the outcome of this analysis. As an important result, a clear spin
resonance feature is found for fermionic atoms, evident in the data zoom in the inset of
Fig. 4.10. For higher magnetic fields, the system approaches the polarized regime and
the spin oscillations vanish.

In a next step, these data have been compared with the formulas for frequency
and amplitude from the two-particle model (equation 4.14 and 4.15). The amplitude
is rescaled with a global factor of α= 0.69 to account for the imperfect black-out-
pulse procedure. With the differential interaction ∆U8,6 as the only free parameter, the
resonance position is determined at B= 0.186 G. As a key result, this demonstrates
that the two-particle model captures the scattering behavior of the spin 3/2 system.

Moreover, the set of experiments presented above also allows to quantitatively ex-
tract fundamental scattering parameters [75]. Note that the spin resonance is uniquely
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Figure 4.10: A fermionic spin resonance. Frequency (red) and amplitude (blue) are de-
picted as a function of the magnetic field. The same parameters as in Fig. 4.8 are used but for
different magnetic fields. Data points are extracted from the spin oscillations by fitting equa-
tion C.1. Error bars correspond to fit errors and represent two standard deviations. Red and blue
lines are calculations from the two-body model (equation 4.7). The width of the curves reflects
the uncertainty of the lattice depth calibration. The inset shows a zoom into the spin-resonance
regime. Experimental data have also been published in [5].

defined by the total-spin-dependent interaction ∆U8,6. In consequence, knowing the
lattice depth and the magnetic field, the position and frequency of the spin reso-
nance are directly connected to the differential total-spin-dependent scattering length
∆a8,6 = a8− a6. This provides a high-precision test for the calculations of the scatter-
ing lengths [117] (see section 2.2.2) and allows to directly compare the experimentally
obtained with the calculated value:

Experiment: ∆a8,6 = 2.26± 0.07 aB

Calculation: ∆a8,6 = 2.53 aB

This agreement is found without free parameters, which demonstrates the capability of
spin-changing collisions to extract fundamental scattering parameters from a high-spin
system [75]. The deviations between experiment and theory are about 10 % and can be
attributed to the following reasons: First, the theoretical error of the coupled-channel
calculations is unknown [117], such that both results may be well consistent within
the error bars. Deviations caused by systematic errors have been estimated, including
the magnetic field uncertainty and the lattice depth. They lead to small corrections
(± 0.01 aB for the magnetic field and ± 0.04 aB for the lattice depth) and are unlikely
to be the dominating errors in this measurement. Another error source could be the
assumption of uncorrelated Wannier functions on each lattice site, which relate the
interaction parameter UF to the total-spin dependent scattering length aF . Interaction-
induced correlations, however, are predicted to affect the on-site wave function, which
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in turn also effectively changes the on-site interaction [180]. The spatial deformation
should decrease the on-site interaction, which would lead to an improved match between
theory and experiment.

4.2.4 Coherent multi-flavor spin dynamics

The pseudo-spin 3/2 system is well suited to demonstrate the feasibility of fermionic
spin-changing collisions. The fermionic character is reflected in the blockade of specific
collision channels due to the Pauli exclusion principle, which is beyond experiments
with bosonic 87Rb atoms [74].

Another unique property of 40K is its large spin of f = 9/2. This allows for the
realization of multi-flavor spin systems with up to five two-particle states involved. As
a special feature, this system is governed by spin-changing collisions including high-
collision quanta (∆m> 1). So far, experiments with more than two involved levels have
been performed with 87Rb (f = 2) [74, 79] and 52Cr (f = 3) [84]. However, high-collision
quanta have not been observed in these systems. Here, I present experiments exploiting
the full spin of 40K.

Spin 9/2 system

The largest spin system of 40K corresponds to a total magnetization ofM =m1 +m2 = 0.
It includes five two-particle states: |±1/2〉, |±3/2〉, |±5/2〉, |±7/2〉 and |±9/2〉, where
the notation |+m,−m〉 = |±|m|〉 is used. A sketch of the five-level system is provided
in Fig. 4.11 A.

Beyond the two-level system, the complex coupling structure involves ten different
spin-changing collision channels (see Fig. 4.11 B), including high-collision quanta. The
largest possible spin transfer with ∆m= 4 reflects collisions, which couple the two-
particle states |±1/2〉 and |±9/2〉. This complex multi-flavor spin system naturally
raises the question whether the coherence of the collision process demonstrated in the
two-level system is preserved.

As for the two-level system, it is suitable to choose a basis consisting of the involved
two-particle states

BM=0 = {|±9/2〉 , |±7/2〉 , |±5/2〉 , |±3/2〉 , |±1/2〉} , (4.16)

which form a five-dimensional subspace. In this basis, the interaction Hamiltonian is
given by:

HI =
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 . (4.17)

It contains all collision processes, which are sketched in Fig. 4.11 B. These are rep-
resented by off-diagonal elements, while diagonal elements correspond to the spin-
conserving interaction energies. The system provides four spin-changing collision chan-
nels with ∆m= 1, three channels with ∆m= 2, two channels with ∆m= 3 and one
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Figure 4.11: The multi-flavor spin 9/2 system. (A) The contributing two-particle states
are sketched. Colored boxes represent the two-particle states, forming a five-level system. Mag-
netization conservation restricts the number of involved levels. (B) Possible multi-flavor spin
couplings are shown. Circles represent the five involved two-particle states. They are coupled
by ten different collision channels with ∆m= 1, 2, 3, 4, indicated with arrows. The width of the
arrows illustrates the coupling strength.

channel with ∆m= 4. Inserting the numbers of the scattering lengths (see Table 2.2),
the Hamiltonian yields

HI =
4π~2

m

∫
dr |w(r)|4


145.77 11.18 −6.48 4.50 −3.69
11.18 154.12 10.19 −6.99 5.83
−6.48 10.19 156.23 10.86 −8.78
4.50 −6.99 10.86 155.66 13.40
−3.69 5.83 −8.78 13.40 151.62

 aB . (4.18)

Again compared to the two-level system, the coupling (off-diagonal) elements are strong.
This is the case in particular for spin-changing couplings with ∆m= 1, which are ap-
proximately 8 % of the interaction energy. The coupling for ∆m= 2, 3, 4 collisions con-
tinuously decreases, but even for ∆m= 4 it is about 2 % of the interaction energy. The
origin of this pronounced coupling strength arises from the contribution of all total-
spin scattering lengths. Especially the pronounced differences in the collision channels
F = 0, 2, 4 (see section 2.2.2) favor the exceptional coupling and render the five-level
system an ideal candidate to study complex multi-flavor spin dynamics.

The Zeeman Hamiltonian of the system is given by:

HZ =


E
±9/2
Z (B) 0 0 0 0

0 E
±7/2
Z (B) 0 0 0

0 0 E
±5/2
Z (B) 0 0

0 0 0 E
±3/2
Z (B) 0

0 0 0 0 E
±1/2
Z (B)

 . (4.19)
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Figure 4.12: Coherent multi-flavor spin dynamics in the spin 9/2 system. (A) The
relative populations n(m) of the two-particle states |±1/2〉, |±3/2〉, |±5/2〉, |±7/2〉, and |±9/2〉
are plotted as a function of time. Solid lines are fits to the data using equation C.1. The
lattice depth is VL = 25 Er and the magnetic field B= 0.372 G. Experimental data have also
been published in [5]. (B) The time evolution of the spin dynamics in A is calculated without
free parameters by diagonalizing the two-body Hamiltonian 4.7.

In contrast to the two-level case, there is no analytical solution for the two-body Hamil-
tonian 4.7 of the five-level system. However, it can be numerically diagonalized.

Five-level dynamics

To investigate the five-level system and its multi-flavor spin dynamics experimen-
tally, the binary spin mixture m= {±1/2} is loaded into a deep 3d optical lattice
of VL = 25 Er. This spin mixture has the lowest magnetic energy and can be well evap-
orated (see section 3.2.3). The following procedure is the same as for the two-level
system, which allows to monitor spin dynamics at low magnetic field.

Typical spin dynamics of the five-level system are depicted in Fig. 4.12 A. The data
reveal a complex oscillatory behavior, involving all five two-particle states. As an impor-
tant result, the coherent nature of the collision process is preserved in the multi-flavor
system despite the large effective spin. The observed dynamics show pronounced beat
notes, clearly visible in the oscillatory signal. This indicates that several frequencies and
also several eigenstates are participating in the spin-changing dynamics. Note that in
contrast to the two-level case, where two eigenstates contributed and a single frequency
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Figure 4.13: High-spin interactions at the crossover to the depolarized multi-flavor
regime. (A) Calculated eigenenergies of the five eigenstates |n〉 are depicted as a function of
the magnetic field. (B) The overlap integral | 〈n|±1/2〉 |2 of the initial two-particle state |±1/2〉
with the eigenstates |n〉 is shown versus the magnetic field. The calculations are performed
solving the two-body Hamiltonian (equation 4.7).

was observed, five eigenstates and ten frequencies are available in the five-level system.
A comparison of the observed spin dynamics to calculations solving the two-body

Hamiltonian 4.7 is provided in Fig. 4.12 B. Without free parameter, the numerical re-
sults show a good agreement. The observed amplitude, however, is significantly smaller
compared to the calculations. This can be attributed to the number of atoms on doubly
occupied sites, which is calculated to be approximately 30 % [182]. Note that the black-
out-pulse technique cannot be easily applied to this system since full-amplitude spin
oscillations do not occur. Moreover, due to the high spin-oscillation frequencies (≈ kHz),
the switching of the magnetic field (≈ 500µs) imprints small individual phases on the
spin oscillations, which also leads to the deviations. However, this does not affect the
contributing spin-oscillation frequencies. Therefore, this measure is ideally suited for a
more detailed comparison with two-particle scattering model.

4.2.5 Crossover to depolarized multi-flavor spin dynamics

Beyond the two-level system, the multi-flavor spin dynamics of the five-level system are
governed by the interplay between several interaction and magnetic energies, originating
from the couplings of the involved two-particle states. In general, this leads to complex
dynamics even for an isolated atom pair (see Fig. 4.12 A). For a better understanding
of this high-spin feature, the crossover from the interaction-dominated to the Zeeman-
dominated regime has been studied.

First, some instructive calculations are presented. The energy spectrum, calcu-
lated from the two-body Hamiltonian 4.7, is depicted for different magnetic fields in
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Figure 4.14: Crossover to the depolarized multi-flavor regime. (A) Spin-oscillation
frequencies, obtained with a Fourier analysis, are depicted versus the magnetic field. The same
parameters as in Fig. 4.12 are employed for different magnetic fields. Error bars result from finite
Fourier sampling. Curves show numerical results from 4.7. The width is given by the uncertainty
of the lattice calibration, and the shading is proportional to the transition strength, given by
| 〈n|±1/2〉 |2. (B) Typical Fourier spectra of spin populations at B= 0.372 G and B= 1.014 G
are shown. Experimental data have partly been published in [5].

Fig. 4.13 A. In general, one expects up to ten spin-oscillation frequencies, which can
be calculated from the eigenenergy differences. Moreover, the number of significantly
contributing eigenstates is shown in Fig. 4.13 B for different magnetic fields. Depicted
is the overlap integral | 〈n|±1/2〉 |2 of the initial two-particle state with all five eigen-
states |n〉. At large magnetic fields, the initial state coincides with the eigenstate of
the system to a large extent and spin dynamics is suppressed. Decreasing the magnetic
field, more and more eigenstates are continuously admixed, which leads in turn to more
contributing spin-oscillation frequencies.

To compare these considerations to the experiment, spin dynamics of the five-level
system have been studied at different magnetic fields. The contributing oscillation fre-
quencies have been extracted from experimental signals such as in Fig. 4.12 with a
Fourier analysis. The result of this study is depicted in Fig. 4.14 A. As a central result,
the amount of significantly contributing frequencies increases for decreasing magnetic
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field. This is evident in the Fourier spectra of the spin dynamics, which are exemplarily
depicted in Fig. 4.14 B for two different magnetic fields.

The comparison with the theory shows that seven out of ten possible frequency
branches can be precisely reproduced. Missing frequency branches have only small
contributions, mainly below spin-oscillation frequencies of 200 Hz, and cannot be un-
ambiguously resolved. This is due to experimental limitations such as finite observation
time as well as sampling and damping of the spin oscillations.

In general, the experimental data are in very good agreement with the calculations
as in the two-level case. This underlines that the multi-flavor spin system with its rich
dynamics can also be well understood in terms of the two-particle scattering model.
Note that the calculations are performed without free parameters, which validates in
addition the values of the total-spin scattering lengths, provided by T. Hanna. The small
deviations between theory and experiment can be attributed to numerical uncertainties
of these values [117].

As a direct result from these experiments, the magnetic field provides an intriguing
tuning knob for the effective spin of the system. At large magnetic fields, the binary
mixture remains stable, corresponding to an effective spin of 1/2. Tuning the magnetic
field to lower values continuously increases the number of contributing eigenstates.
Hence, the spin dimensionality of the system continuously increases. This allows to
tune the system from an effective spin 1/2 to an effective spin 9/2 system.

In contrast to the two-level system, where a clear spin resonance feature was ob-
served (see section 4.2.3), the situation is more involved in the five-level case. All col-
lision processes, associated with different magnetic and interaction energies, can indi-
vidually exhibit a spin resonance, depending on the sign of interaction and Zeeman
energy. The complex coupling mechanism does not allow to clearly identify a single res-
onance. It is more convenient to interpret this behavior as a multi-level spin-resonance
feature, where parts of the Hamiltonian show resonant features leading to pronounced
deformations of the spectrum.

4.2.6 Observation of high-collision quanta

As worked out above, the high-spin system should involve collision processes with
∆m= 1, 2, 3, 4. Collisions with ∆m> 1 have not been observed so far, neither in optical
lattices nor in bulk systems [67, 68, 74, 79]. The experimental observation of seven
spin-oscillation frequencies itself also does not prove that spin-changing processes with
∆m= 2, 3, 4 are contributing to the dynamics. This motivates a more detailed study
of the two-body Hamiltonian 4.7 to address the role of high-collision quanta in the
multi-flavor spin dynamics.

Therefore, calculations have been performed, where specific collision channels were
excluded. The impact on the resulting energy spectrum has been studied. Numerically,
this can be implemented by setting the corresponding matrix element Um1,m2,m3,m4

in the interaction Hamiltonian 4.18 to zero. In Fig. 4.15, the experimentally observed
frequencies are compared to spectra, calculated for different situations: First, all spin-
changing channels are considered, yielding a very good agreement with the experiments
(see Fig. 4.15 A). However, the exclusion of collision channels induces strong deviations.
In Fig. 4.15 B, channels with ∆m= 4 are excluded, which leads to a considerable distor-
tion of the involved frequency branches. The deviations become even more pronounced,
when more collision channels are excluded (∆m= 3, 4 in Fig. 4.15 C and ∆m= 2, 3, 4
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Figure 4.15: Spectra for different spin-exchange processes. Calculated energy spectra
are depicted, compared to the experimental data from Fig. 4.14. The colors are also assigned
in the same way. Specific collision channels are excluded: In (A), all ten coupling elements are
considered. Significant deviations appear already when ∆m= 4 processes are neglected (B).
When spin-changing collisions with ∆m= 3, 4 (C) and ∆m= 2, 3, 4 (D) are excluded, strong
deviations are found.

in Fig. 4.15 D).
As an important result, this demonstrates that collision processes with high-collision

quanta provide a significant contribution to the high-spin dynamics. Obviously, only the
full interaction Hamiltonian 4.18 describes the observed spin dynamics quantitatively,
and each neglected collision process alters the result considerably. Only in the limit of
large magnetic fields, where the dynamics is strongly dominated by ∆m= 1 collisions,
high-collision quanta play a minor role.

This constitutes the first observation of coherent high-magnetization exchange in
ultracold quantum gases, mediated by high-spin interactions. Note that the collision
properties in this case are still dominated by ∆m= 1 collisions. A similar situation
will be presented for spin-changing lateral collisions in the many-body regime (see
section 6.4.3). Beyond this, an experiment with harmonically trapped fermions will
be shown in section 5.4.5, where the dominating collision channel could be tuned to
∆m= 2.
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4.3 Spin dynamics at finite lattice depth

Spin dynamics in deep optical lattices are ideal candidates to gain deep insight into the
local high-spin interaction process [5, 74, 75]. The multi-flavor spin dynamics, demon-
strated in the last section, can be well understood in terms of a two-body scattering
model. In this approach, the colliding atom pair is assumed to be perfectly isolated on
its lattice site.

Finite tunneling, however, induces an intriguing interplay between spin and spatial
degrees of freedom. Most important in this context are the corresponding time scales.
In the two-body limit, established in deep optical lattices, spin-changing collisions oc-
cur at a higher rate than tunneling events. However, in shallow optical lattices, the
tunneling time can become comparable and even exceed the time scale of spin dynam-
ics. In this many-body regime, the fermionic character has a pronounced influence on
the global dynamics of the system. While Pauli blocking excludes only specific spin-
collision channels in the two-body limit, it is in particular important for the interplay
between spin and spatial dynamics in the many-body limit. This naturally raises the
question, to which extent the global properties of fermionic lattice systems are affected
by microscopic spin-changing collisions.

In this section, I will present a study of spin dynamics in optical lattices in the
presence of tunneling. The dominating tunneling processes and their impact on the
dynamics will be discussed. In a first approach, tunneling will be investigated as a
small perturbation on the two-particle dynamics, which can be qualitatively understood
within a first-order tunneling model. As a key result, I will study the crossover from
the two-body to the many-body regime, where a novel instability of the band insulator
has been observed.

4.3.1 Multi-site spin dynamics

Multi-site spin dynamics, including spin-changing collisions and tunneling, are de-
scribed by the full high-spin Hubbard Hamiltonian 4.6. Sophisticated methods such
as Density Matrix Renormalization Group (DMRG) [184] and Dynamical Mean-Field
Theory (DMFT) [181] allow for a theoretical treatment for example of ground-state
properties.

However, several effects can be already understood in terms of small-scale systems.
As a starting point, a two-well model is employed in the following, where two wells are
coupled by the tunneling matrix element J . Based on the experiments in the pseudo-
spin 3/2 system, we consider six possible spin states (m=−1/2, ..., 9/2), which were
significantly occupied in the corresponding experiments (see section 4.2.2). It is suitable
to employ a two-well basis, which can be written as∣∣∣n−1/2

L , n
1/2
L , n

3/2
L , n

5/2
L , n

7/2
L , n

9/2
L

〉
L
⊗
∣∣∣n−1/2

R , n
1/2
R , n

3/2
R , n

5/2
R , n

7/2
R , n

9/2
R

〉
R
. (4.20)

Here, the indices L and R account for the left and right well, respectively.
In this two-well model, it turns out that the combination of spin dynamics and

tunneling has two important consequences: First, it leads to local spin fluctuations
(ML 6= MR), while only the global magnetization Mtot =ML +MR is conserved. More-
over, density fluctuations can be induced, e.g., when triply occupied sites are formed
out of three different spin states. Starting from these considerations, several tunneling
processes can be distinguished:
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Figure 4.16: Sketch of tunneling at defects. (A) The spatial distribution of the system is
sketched. The outer part of the band insulator is highlighted, comprising most of the defects. (B)
The relative occupation of the 3d system is shown, where the shaded area indicates the defect-
dominated region. (C) A typical defect tunneling process is sketched. Starting from a doubly
occupied site adjacent to a singly occupied site, the interplay between spin-changing collisions
and tunneling leads to the formation of new spin states. The spin states are illustrated as in
Fig. 4.5.

Tunneling at defects

First of all, defects (singly occupied sites) in the two-component band insulator allow
for tunneling. Note that the underlying harmonic confinement and finite temperatures
inevitably lead to defects in the experimental system. These are mainly located at the
outer region of the band insulator as illustrated in Fig. 4.16 A. Calculations of the
spatial distribution reveal, that this region extends over a shell of approximately 4 – 5
lattice sites [182]. Due to the geometry of the system, this shell contains about 20 – 30 %
of the atoms (see Fig. 4.16 B), which underlines the importance of defect tunneling.

This process can be modeled using a spatial configuration with one doubly occupied
site adjacent to one singly occupied site. An example for defect tunneling is sketched
in Fig. 4.16 C. As a starting point, two particles in |7/2, 3/2〉 occupy the left well
adjacent to a defect in the spin state m= 3/2. When a spin-changing collision occurs
on the doubly occupied site, all atoms are in different spin states and Pauli blocking
does not prevent tunneling. A subsequent tunneling process leads to a new two-particle
state on the initially singly occupied site. This two-particle state has a different total
magnetization and the resulting spin dynamics involve new spin states, which were
initially Pauli blocked.

Since there is a large number of possible processes, defect tunneling leads in gen-
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eral to a complicated spin redistribution among several spin states and to a contrast
reduction of the spin oscillation. Thereby, this process is directly linked to the amount
of defects in the system and increases with the tunneling matrix element J .

Tunneling in the core

Tunneling processes in the core of the system are not evident, since a fundamental
property of a band insulator is its insulating character. All single-particle states are
occupied, which typically suppresses tunneling due to the Pauli exclusion principle.

As a unique high-spin effect, it turns out that tunneling can also occur in an initial
band insulator under spin-changing collisions. To understand this intriguing feature,
consider two wells, which are occupied with the same two-particle state |7/2, 3/2〉 as
sketched in Fig. 4.17. This situation is described by the state

|0, 0, 1, 0, 1, 0〉L ⊗ |0, 0, 1, 0, 1, 0〉R . (4.21)

In the presence of spin-changing collisions, on-site spin dynamics couple the initial two-
particle state |7/2, 3/2〉 in each well to |9/2, 1/2〉. Hence, in the absence of tunneling,
this is described by

|ψ(t)〉 =
(
c1(t) |0, 1, 0, 0, 0, 1〉L + c2(t) |0, 0, 1, 0, 1, 0〉L

)
⊗
(
c1(t) |0, 1, 0, 0, 0, 1〉R + c2(t) |0, 0, 1, 0, 1, 0〉R

)
, (4.22)

where the time-dependent coefficients ci(t) are equal for both wells. Applying the tun-
neling Hamiltonian to this state (here exemplarily shown for the spin state m= 1/2)
gives

HJ1/2 |ψ(t)〉 = Jc1(t)c2(t)
(
|0, 0, 0, 0, 0, 1〉L ⊗ |0, 1, 0, 1, 1, 0〉R

+ |0, 1, 1, 0, 1, 0〉L ⊗ |0, 0, 0, 0, 0, 1〉R
)
. (4.23)

This reveals a time-dependent tunneling probability in the presence of spin-changing
collisions. Only when the system is either in the spin configuration |7/2, 3/2〉 or |9/2, 1/2〉,
it remains insulating and tunneling is suppressed. In contrast, when the system is in
a coherent superposition of both two-particle states, tunneling becomes possible. Note
that this is a genuine two-body effect, since the collision process involves two particles.
A single-particle spin rotation (see in 3.2.2) does not affect the band insulator.

Figure 4.17 illustrates tunneling processes, which can occur if a band insulator is
exposed to spin-changing collisions. In the initial configuration, tunneling is forbidden
due to Pauli blocking. As described above, tunneling becomes possible in the presence
of spin-changing collisions. The following dynamics crucially depend on the interplay
between the interaction energy and tunneling, leading to two different processes: First-
order tunneling as illustrated in Fig. 4.17 A induces triple occupations at an energy
cost of U . This process is only possible at low interactions and induces spin and density
fluctuations. At large interactions, however, the system is an effectively Mott-insulating
regime and only super-exchange tunneling [185] at a rate of J2/U is possible. This pro-
cess is depicted in Fig. 4.17 B and induces spin fluctuations without density fluctuations.
Both tunneling processes reduce the contrast of the spin oscillations [186].
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Figure 4.17: Sketch of tunneling in the core. Spin-changing collisions allow for finite
tunneling also in the initially band-insulating system (see text). (A) First-order tunneling pro-
cesses occur at low interactions inducing spin and density fluctuations. (B) Super-exchange
tunneling is possible in deep optical lattices and induces only spin fluctuations. The spin states
are illustrated as in Fig. 4.5.

4.3.2 Observation of multi-site spin dynamics

Multi-site spin dynamics can be addressed in a first approach by starting from a two-
particle system with tunneling as a small perturbation. This was the case for all ex-
periments in deep optical lattices presented in the last section. Here, a more detailed
analysis of the results in the pseudo-spin 3/2 system is presented.

For these experiments the tunneling energy (≈ 2 Hz) is small compared to the spin-
changing energy (≈ 60 Hz) and to the spin-conserving energy (≈ 4.5 kHz). Therefore,
tunneling in the core is suppressed: first-order tunneling by strong spin-conserving
interactions and super-exchange tunneling by its very long time scale. However, defect
tunneling can occur in this system.

In Fig. 4.18 A, the same experimental data as in Fig. 4.6 is depicted in the single-
particle spin basis. Beyond the two-particle spin dynamics and its damping, there are
two key observations: First, new spin states appear. Moreover, the damping of the spin
oscillations comes alongside an asymmetric drift of the spin populations apart from
each other.

These effects can be estimated in a first-order tunneling approximation. Consider
the initially doubly occupied site in the two-particle state |7/2, 3/2〉, which is coupled
to the two-particle state |9/2, 1/2〉 by spin-changing collisions. This site is adjacent
to a defect, either in the spin state m= 3/2 or m= 7/2. After one tunneling process
the initial spin system with the total magnetization M = 5 evolves into spin systems
with different total magnetizations. The spin redistribution has been calculated from
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Figure 4.18: Impact of small tunneling on the two-particle spin dynamics. (A)
Spin-oscillation data (from Fig. 4.6) are depicted in the spin-state basis. In the upper (middle)
part, the spin states of the initial (second) two-particle state are shown. Lower part depicts
the Pauli-blocked spin components. (B) A sketch of the involved spin systems, resulting from
defect tunneling, is depicted, indicated with their total magnetization M . (C) Calculations of
the spin-changing rates, employing a first-order tunneling model, are plotted versus the relative
amount of defects.

all combinations, which result from one tunneling process accounting for Pauli block-
ing. For the defects m= 3/2 and m= 7/2 possible magnetizations are M = 2, 5, 6 and
M = 4, 5, 8, respectively (see Fig. 4.18 B). Averaging the resulting two-body dynamics
allows to determine the corresponding spin-changing rates. To estimate the global spin
redistribution, all possible processes have been averaged, yielding spin-changing rates
for each spin component. Note that this approach is only valid for short times.

The result of this analysis is depicted in Fig. 4.18 C as a function of the amount of
defects. In this context, a linear dependence is assumed, while the exact relation should
depend on the specific geometry of the system. These results demonstrate that different
spin states exhibit a different spin redistribution. The calculations qualitatively agree
with the experimental findings. For example, the increasing amount of the spin states
m= 9/2 and m= 5/2 is consistent with the experiments. Moreover, the decrease of the
spin states m= 7/2 and m= 3/2 is also reproduced.

4.3.3 Studying the transition to the many-body regime

The experiments presented above reveal the intriguing influence of tunneling on the
two-particle dynamics. This motivates a study of spin-changing dynamics also in the
many-body regime, where these effects should be more pronounced. For this purpose,
the depth of the optical lattice can be tuned to lower values. This allows to access a
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Figure 4.19: Transition from the two-body to the many-body regime. The time
evolution of the spin occupations n(m) is depicted for different lattice depths VL. Along the
radial direction, the lattice depth is always VL = 35 Er and reduced in the axial direction as
indicated in the figure. Experimental parameters are chosen as in Fig. 4.8. Solid lines are fits
to the data using equation C.1. Data have also been published in [5].

regime, where tunneling and spin-changing dynamics occur on similar time scales.
To investigate this experimentally, the same procedure has been used, which was

employed for high-contrast spin oscillations (see section 4.2.2). The atoms are adiabat-
ically loaded into a 3d optical lattice, yielding the same initial spatial distribution as
for the two-particle experiments. Subsequently, one lattice axis is quenched to a low
value, which results in the formation of 1d tubes with an increased tunneling along one
spatial direction. The tunneling time in the radial direction is approximately 1 Hz and
varies in the lateral direction between 1 – 300 Hz, depending on the applied lattice depth
between 35 – 5 Er. Therefore, the above-mentioned tunneling processes should occur on
faster time scales. Note that due to the black-out-pulse technique, the singly occupied
lattice sites are transferred to the f = 7/2 manifold. Therefore, tunneling at defects
will create to first order doubly occupied sites with mixed hyperfine spin. This leads
to a strongly reduced lifetime due to hyperfine relaxation collisions (see section 3.2.3),
which was checked independently [107]. Hence, the occupation of new spin states can
only occur in second order with defect tunneling.

The result of this experiment is depicted in Fig. 4.19, where the influence of the
decreasing lattice depth is clearly visible. The data allow for three main observations:
First, the spin-oscillation frequency and amplitude slightly decrease, which can be un-
derstood in the two-particle picture. The lower local density in shallower lattices de-
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Figure 4.20: Spin-oscillation properties from the two-body to the many-body
regime. (A) Frequency and amplitude of the spin-oscillation data in Fig. 4.19 are depicted.
Solid lines are calculations of the two-particle Hamiltonian (equation 4.7). The amplitude is
globally rescaled as in the two-body case. (B) Damping rates from Fig. 4.19 are shown. Error
bars represent two standard deviations.

creases the on-site interactions, which leads to lower spin-oscillation frequencies and am-
plitudes (see Fig. 4.20 A). Consistent with these considerations, this can also be repro-
duced with calculations using the two-body Hamiltonian (equation 4.7). Moreover, the
damping of the spin oscillations strongly increases in shallower lattices (see Fig. 4.20 B),
resulting in a complete disappearance of any spin oscillations below VL = 10 Er. Be-
yond this, new spin components are populated, both in the spin states m= 5/2 and
m=−1/2, which is enhanced at lower lattice depth. Note that the latter two effects
are not captured within the two-body model and result from tunneling events.

The dominating tunneling processes cannot be directly identified from these exper-
imental observations. All of them lead to a damping of the spin oscillations as well as
the population of new spin states. For more insight, numerical simulations have been
performed by O. Jürgensen [186]. In this context, spin dynamics was simulated on a
small 1d lattice chain with up to four lattice sites using periodic boundary conditions.
A detailed description will be given in [187], while the following discussion is limited
to the interpretation resulting from the comparison with the experimental data.

First, the time evolution was calculated for deep lattices, starting from a band in-
sulator and in the presence of defects. In Fig. 4.21 A, the corresponding results are
shown. For a pure band insulator, undamped spin oscillations are found in the simu-
lations, implying that the system evolves without perturbations between a band and a
Mott insulator. However, taking into account possible defects, i.e. singly occupied sites,
the numerical simulations reproduce the experimentally observed damping as well as
the appearance of new spin states. This is consistent with the experimental findings and
demonstrates that defect tunneling dominates in the regime of deep optical lattices.

In contrast, calculations in shallow lattices reveal a fully different behavior (see
Fig. 4.21 B). Tunneling in a perfect band insulator already leads to strong damping of
the spin oscillations. Additional defects only have a small influence in this case. This
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Figure 4.21: Numerical simulation of spin oscillations in a four-well system. Cal-
culated spin oscillations – in a deep optical lattice of VL = 20 Er (A) and in a shallow optical
lattice of VL = 5 Er (B) – are depicted. Upper parts show results for a perfect initial band insu-
lator. Lower parts depict simulations for a band insulator with defects, which are included as
one singly occupied site averaged for all possible spin states. The parameters are chosen as in
Fig. 4.19. Calculations are performed using exact diagonalization and are kindly provided by
O. Jürgensen [186].

behavior is found to be robust in a wide parameter regime, and even more defects
do not significantly change the spin dynamics [186]. In general, the damping is very
strong and leads to a complete disappearance of the spin oscillations consistent with
the experiments.

The small size of the system does not allow for quantitative predictions. Naively,
one would expect that the damping of the spin oscillations is even more pronounced
in larger systems. A clear distinction between super-exchange and first-order tunneling
remains a question to be solved, which requires further studies. In this direction, a
profound theoretical analysis has recently shown that first-order tunneling is strongly
suppressed in small-scale systems due to an energy gap. The authors propose the high-
spin fermionic lattice system for the realization of large-amplitude super-exchange [188].

In conclusion, the experiments combined with the numerical analysis show that
tunneling processes occur in the band-insulating core of the system and significantly
contribute to the observed damping and the appearance of new spin states. As an
important result, this implies a novel instability of the initially band-insulating state
induced by spin-changing dynamics. It constitutes a unique fermionic high-spin feature,
which is absent in conventional spin 1/2 systems.
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4.4 Spin dynamics between different bands

The experiments presented in the last sections are restricted to the lowest band of the
optical lattice: Initially, the atoms are prepared in the lowest band and the involved
energy scales of the spin dynamics are too small to overcome the band gap. This
constitutes a significant simplification of the multi-band lattice system, neglecting the
orbital degrees of freedom.

In general, higher orbitals are believed to play a crucial role for various phenomena
in solid-state physics, e.g. metal-insulator transitions or superconductivity. The study
of higher bands in optical lattice systems has attracted a tremendously growing interest
in recent years, both from the experimental side [168, 189–193] and the theoretical side
[194–196]. As an example, spatial dynamics of fermions in higher lattice orbitals have
been investigated in the course of this research work. In analogy to photoconductivity,
the experiments reveal an intriguing spatial dynamics of particle-hole pairs, driven by
the harmonic confinement. This is in detail discussed in the thesis of J. Heinze [107].
The results are published in [4].

In this direction, another approach to involve higher bands is the extension of spin
dynamics to a multi-band system. This allows to combine the spin with the orbital
degrees of freedom. Note that this is fundamentally different from the approach above,
since the intrinsic interactions of the lattice system lead to the occupation of higher
bands.

This approach will be discussed in the following section, providing in addition a
possible outlook for future experiments. The experimental concept of this spin-orbital
coupling induced by spin-changing collisions will be briefly introduced. Moreover, I will
present a first experimental study, where enhanced spin-changing rates associated with
interband spin transfer have been observed.

4.4.1 Multi-band spin dynamics

The population of higher bands of an optical lattice typically requires additional exter-
nal manipulation, for example lattice-amplitude modulation [4, 191, 193]. Spin-orbital
coupling, mediated by spin-changing collisions, constitutes a different approach, where
spin-changing collisions lead to higher-band occupations.

This requires that the collision process releases enough energy for the band transfer.
However, the spin-changing interaction energy (≈ kHz) remains well below the energy
associated with a band transfer (≈ 10 kHz). Instead, the Zeeman energy can be used
in this context. To gain Zeeman energy in a spin-changing collision, the atoms have
to be prepared in the lowest band in a magnetically excited spin configuration. The
released Zeeman energy is converted into kinetic energy allowing to overcome the band
gap [104]. Note that this is in contrast to the experiments presented so far, where the
atoms were initially prepared in the magnetic ground states of the corresponding spin
systems.

In a first approximation, the two-particle model (equation 4.7) can be extended to
this case with an additional diagonal term accounting for the energy of the involved
orbitals. For this purpose, it is also suitable to introduce a multi-band two-particle

state
∣∣∣m(n1)

1 ,m
(n2)
2

〉
, where mi is the magnetic quantum number and ni the band of

the particle i. The influence of higher bands is equivalent to a detuning in addition to
the Zeeman energy.
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Figure 4.22: Principle of multi-band spin dynamics. (A) A sketch of three exemplary
spin-changing collision processes in the multi-band system is provided: conventional intraband
spin dynamics (i), single interband spin transfer (ii), and double interband spin transfer (iii),
as described in the main text. The initial state (blue) is always

∣∣+3/2(1),−3/2(1)
〉
, which is

magnetically excited. The band transition energy as a function of the lattice depth (B) and
the corresponding magnetic field dependence (C) for a magnetic resonance are depicted for
processes (ii) and (iii).

As an example, consider one atom pair in the lowest band, which is prepared in
the magnetically excited spin configuration ±3/2 (see section 2.2.2). Magnetic energy
is released in a spin-changing collision into the spin configuration ±1/2. Further two-
particle states have even higher magnetic energies (see section 2.2.2) and hence only
these two spin configurations are involved in the band transfer. Out of the myriad of
possible scenarios in the multi-band system, three processes are exemplary sketched in
Fig. 4.22 A:

Process (i): Intraband dynamics
This collision process corresponds to conventional spin dynamics in the lowest
band. It involves the five two-particle states of the spin 9/2 system.

Process (ii): Single interband spin transfer
In this case, one particle is transferred into the third band, while the second parti-
cle remains in the lowest band. This collision couples the states

∣∣+3/2(1),−3/2(1)
〉

and
∣∣+1/2(3),−1/2(1)

〉
.
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Process (iii): Double interband spin transfer
In this process, both particles are transferred into the second band. This collision
couples the states

∣∣+3/2(1),−3/2(1)
〉

and
∣∣+1/2(2),−1/2(2)

〉
.

The coupling between different bands crucially depends on the lattice depth. This
dependence is depicted in Fig. 4.22 B, where the band energy difference is calculated
for the single and the double interband spin transfer. It reflects that in deeper lattices
the band gap increases, which has to match the released magnetic energy. The corre-
sponding magnetic field is depicted in Fig. 4.22 C as a function of the lattice depth. In
general, magnetic fields of B> 10 G are necessary at intermediate lattice depths, which
exceeds by far the magnetic field, where spin dynamics in the lowest band occur.

Note that the resonance feature described here is different from the spin resonance
worked out in section 4.2.3. For spin transfer into higher bands, the involved energy
scales are the magnetic energy and the band energy. This feature is therefore referred to
as a magnetic resonance [104]. The interaction energy provides the coupling between the
involved states and only leads to small corrections of the magnetic resonance position.

4.4.2 Observation of interband spin transfer

For several reasons, one cannot expect coherent spin dynamics involving different bands
in the available parameter regime: First, losses induced by Feshbach resonances limit
the available magnetic field range to B< 14 G (see appendix B), which in turn sets the
available lattice depth to VL< 12 Er. In this shallow lattice configuration, the coherent
oscillations are already damped in the lowest band (see section 4.3.2). Moreover, the
lifetime of the atoms in higher bands is limited (≈ 30 ms), which was checked indepen-
dently [107, 109].

Nevertheless, the spin-changing rates can be investigated for different magnetic
fields. In this direction, only a few measurements have been performed during this
work, which constitute a proof-of-principle experiment and provide an outlook for future
studies.

For this purpose, the atoms are adiabatically loaded into a 3d optical lattice at a
lattice depth of VL = 25 Er. The spin mixture m= {±3/2} is employed, which is magnet-
ically excited and cannot be directly loaded into the lattice. This issue is circumvented
by using the spin mixture m= {+3/2,−1/2} during the lattice ramp. A subsequent
rf-sweep yields the initial two-particle state

∣∣+3/2(1),−3/2(1)
〉
. The resulting spatial

distribution is similar to the two-particle experiments with approximately 30 % dou-
bly occupied sites in the core of the system [182]. After this preparation, the lattice
is quenched to a 1d configuration by reducing one lattice direction to 11 Er. The spin
occupations are recorded after a time evolution of t= 50 ms for different magnetic fields.
Note that due to heating of the system, the different bands cannot be unambiguously
resolved in the absorption images and therefore the spin occupations are analyzed.

The result of this experiment is depicted in Fig. 4.23, revealing several intriguing
features: At lower magnetic fields, a pronounced spin redistribution is observed, which
involves all two-particle states of the five-level system (|±1/2〉, |±3/2〉, |±5/2〉, |±7/2〉,
and |±9/2〉). This can be identified as conventional intraband spin dynamics, corre-
sponding to process (i). Beyond this, a clearly enhanced spin-changing collision rate is
found at a magnetic field of B= 11 – 13 G. The width as well as the position of this
resonance is in reasonable agreement with the calculated values of the interband dy-
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Figure 4.23: Observation of spin-population transfer into higher bands due to spin-
changing collisions. The relative spin populations n(m) after t= 50 ms are depicted as a
function of the magnetic field. The initial state is

∣∣+3/2(1),−3/2(1)
〉
, while the lattice depth is

initially VL = 25 Er and quenched along one dimension to 11 Er. Shaded area indicated with num-
bers show the calculated resonance position for the corresponding processes shown in Fig. 4.22 A.

namics described by process (ii) and process (iii). This allows for the conclusion, that a
fermionic magnetic resonance has been observed. It is highlighted by the fact that only
the spin configuration ±1/2 is populated at the corresponding magnetic field, which is
the only one to obey the resonance condition.

However, the data also reveal several puzzling observations, which require further
investigations: Interestingly, the intraband spin dynamics corresponding to process (i)
are found in a broad magnetic field range (B= 0 – 4 G), which clearly exceeds the calcu-
lated width of the first band (B< 1 G). In addition, independent of the magnetic field,
a small occupation of the spin configuration ±1/2 is found. Both observations do not
fulfill the resonance conditions neither for intraband spin dynamics nor for magnetic
resonances. These effects are probably a consequence of collective spin dynamics. In this
context, possible explanations are interaction-driven spin instabilities or spin-changing
relaxation collisions. This has been studied in detail with harmonically trapped high-
spin fermions and will be discussed in chapter 6.
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4.5 Conclusion and outlook

In conclusion, the experiments presented in this chapter constitute the first realization
of fermionic spin dynamics. This novel effect has been studied in various regimes of
the optical lattice, governed by the interplay between high-spin interactions, Zeeman
energy, tunneling and higher bands. In the two-body limit, established in deep optical
lattices, the coherent nature of fermionic spin-changing collisions and multi-flavor spin
dynamics were demonstrated. Within a two-particle model the dynamical properties
could be very well described. This allowed to extract fundamental scattering parameters
and provided the first proof of high-collision quanta. In the presence of tunneling, at
intermediate lattice strength, a new instability of a large-scale band insulator was found,
induced by microscopic spin-changing collisions. Finally, multi-band spin dynamics were
observed, apparent in an interband spin transfer, driven by spin-changing collisions.

The investigated interaction process is fundamental for many-body systems with
high spin and paves the way towards the exploration of various phenomena predicted
in these systems: novel high-spin ground-state properties of optical lattices such as Néel
and Haldane phases have been proposed [163]. This could be addressed in future ex-
periments by adiabatically lowering the magnetic field in an initially band-insulating
system. Combining the fermionic high-spin lattice system with Feshbach resonances
– widely available in 40K (see appendix B) – opens another exciting field. Experi-
ments are now possible to study the crossover from nearly SU(N)-symmetric systems
to broken SU(N)-symmetry, where recent studies predict the existence of colorful Mott
shells, driven by high-spin magnetic correlations [182]. Moreover, the transition from a
Mott insulator to a quantum-Zeno insulator has been proposed [107], constituting an-
other approach for the strongly-correlated regime. In another direction, a more detailed
analysis of the tunneling mechanism presented in this chapter has revealed that large
super-exchange dynamics could be directly observed in fermionic small-scale high-spin
systems [188]. Furthermore, enhanced experimental schemes could allow to observe
magnetically tunable multicolor spin resonances, which are proposed for small-scale
systems [104] and head towards the realization of spin-orbital entanglement.

The approach in this chapter addressed high-spin interactions from the microscopic
perspective. This was related to the many-body regime by corrections originating from
tunneling or higher-band occupations. Naturally, this picture has to break down, when
a system with a large spatial extension and many particles is considered – for example
harmonically trapped high-spin fermions. The behavior of such a many-body system
exposed to high-spin interactions will be the subject of the following chapter.



Chapter 5

Collective spin dynamics in
fermionic bulk systems

A crucial question in many-body physics is how macroscopic collective effects such as
superfluidity arise from microscopic processes. Quantum gases provide powerful model
systems to explore such phenomena. In this context, the quantum statistics of the
involved atoms play an important role. They favor collective behavior for Bose-Einstein
condensates, in which all particles occupy the lowest spatial mode of the system. For
fermions, on the other hand, each single-particle state can be occupied with only one
particle and many spatial states are involved. Therefore, collective behavior is rare
in fermionic many-body systems and has attracted particular interest in recent years.
Important examples are studies of the BEC-BCS crossover [48–51], spin transport [57]
and collective excitations such as spin waves [58, 61, 197] or solitons [60].

In high-spin systems the additional spin degree of freedom can lead to novel collec-
tive effects. Various phenomena have been proposed in this context, including a QCD-
like color superfluidity or unconventional BCS superfluids [88–96]. In first experiments
in this direction, performed during this research work, tensorial spin waves, which con-
stitute novel collective spin-spatial excitations in high-spin fermions have been studied
[3, 107].

These phenomena rely on the microscopic high-spin interactions, which have been
investigated in the last chapter. This motivates to explore the impact of spin-changing
collisions on a fermionic many-body system. Experiments with ultracold bosons have
already revealed fascinating collective effects: spinor Bose-Einstein condensates can
exhibit collective spin dynamics [76–82], apparent in long-lived oscillations of the spin
degree of freedom. However, in a Bose-Einstein condensate the superfluid character
suppresses spin structures on the scale of the spin healing length [67, 68, 71, 82]. For
fermions, this raises a fundamental question (see sketch in Fig. 5.1): Can a whole Fermi
sea also exhibit collective dynamics of its spin degree of freedom?

In this chapter, I will present experiments, which clearly prove that the answer is
yes. Starting from a basic mean-field approach (section 5.1), I will show a proof-of-
principle experiment, demonstrating giant and long-lived spin oscillations in a Fermi
sea (section 5.2). This unexpected collective behavior, justifying a single-mode approxi-
mation, will be investigated in section 5.3. Finally, I will present a detailed study of the
spin-oscillation properties including the dependence on the magnetic field, the density
and the spin configuration (section 5.4).
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Figure 5.1: Can a Fermi sea perform collective dynamics of its spin degree of
freedom? Collective spin-changing dynamics in a Fermi sea are sketched. Note the intrinsic
multi-mode structure indicated by the different trap levels.

Parts of this chapter have been published in [1]. The experiments and the data
analysis were performed with C. Becker, N. Fläschner, J. Heinze, and K. Sengstock.

5.1 A mean-field description for high-spin fermions

An interacting fermionic many-body system with high spin involves collisions, which can
change the spin and the spatial configuration. In general, this leads to complex many-
body dynamics, which is challenging to describe theoretically. The presented experi-
ments employ high-spin fermions confined in a harmonic trap, where typical interaction
strengths are rather low due to the diluteness of the sample. In this regime, a mean-field
approximation has proven to provide a suitable description, which is used throughout
this chapter. Further contributions become important in particular at higher tempera-
tures and intermediate interaction strengths. These effects will be studied in chapter 6.

In this section, the collisionless Boltzmann equation, derived from a mean-field ap-
proach, will be introduced for a fermionic high-spin system (following [152]). Important
requirements to realize collective spin dynamics and their experimental realization will
be discussed.

5.1.1 The collisionless Boltzmann equation

The description of a fermionic many-body system with a Boltzmann equation has been
successfully applied to various collective phenomena in spin 1/2 fermions [151, 152, 198–
200]. This theory can be extended to high-spin systems [201, 202], yielding a high-spin
Boltzmann equation.
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Figure 5.2: Single-particle density matrix for the lowest hyperfine manifold of 40K.
The total spin (f = 9/2) gives rise to ten spin states, and the corresponding single-particle
density matrix is described by a 10×10 matrix. The basis is chosen as {+9/2, ..., −9/2}. Di-
agonal elements account for spin occupations (magenta), while off-diagonal elements describe
single-particle spin coherences (gray).

The Hamiltonian describing the full fermionic many-body system is given by [203]:

H =

∫
dr
∑
ij

ψ̂†i (r)

(
− ~2

2m
∇2δij + Vtrap(r)

)
ψ̂j︸ ︷︷ ︸

Hkin

+

∫
dr
∑
ij

ψ̂†i (r)q(S2
z )ijψ̂j(r)︸ ︷︷ ︸

Hqze

+

∫
dr
∑
ijkl

Uijklψ̂
†
i (r)ψ̂†k(r)ψ̂j(r)ψ̂l(r)︸ ︷︷ ︸
Hint

.

(5.1)

Each single-particle state is described by the high-spin field operator ψ̂i(r), following

the anticommutation relations
{
ψ̂†i (r1), ψ̂j(r2)

}
= δijδ(r1 − r2), where i denotes the

spin state. The first part of the Hamiltonian Hkin accounts for the kinetic motion in
the harmonic trap. The second part is the Zeeman energy Hqze, where quadratic con-
tributions are the most relevant ones in our case (for a definition of S2

z see appendix C).
The third part Hint describes the high-spin interactions between the particles and is
given by a sum over all possible scattering processes, weighted by the coupling constants
Uijkl = 4π~2aijkl/m.

The derivation of the collisionless Boltzmann equation follows the route for conven-
tional spin 1/2 systems [152] and includes several simplifications:

Single-particle density matrix
The system is described by a single-particle density matrix ρij as depicted for
40K in Fig. 5.2. This reduces the description of the many-body system to an
effective single-particle picture. Diagonal elements of this matrix account for spin
occupations, while off-diagonal elements are single-particle spin coherences. The
latter describe how the spin states are coherently connected. For simplicity, the
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single-particle density matrix and the single-particle spin coherences are referred
to as density matrix and coherences in the following.

The time evolution of ρij is given by the von-Neumann equation yielding [152]

i~
d

dt
ρij(t) =

〈[
ψ̂†i (r1)ψ̂j(r2),H

]〉
. (5.2)

Hartree-Fock approximation
The evaluation of equation 5.2 reveals quartic interaction terms, which can be
approximated in a Hartree-Fock treatment [152] as〈

ψ̂†i ψ̂
†
j ψ̂kψ̂l

〉
≈
〈
ψ̂†i ψ̂l

〉〈
ψ̂†j ψ̂k

〉
−
〈
ψ̂†i ψ̂k

〉〈
ψ̂†j ψ̂l

〉
. (5.3)

This reflects that two-body correlations formed in a binary collision are neglected,
which is a valid approximation at low interaction strengths and high particle
numbers. The Hartree-Fock approximation assumes that subsequent collisions
between the same collision partners can be neglected [152].

Wigner transformation
It is suitable to describe the time evolution of the density matrix in a phase-space
representation, which motivates to introduce the Wigner function [152, 204]

wij(r,p) =
1

(2π~)3

∫
dr2 eip·r2/~ρij

(
r + r2

2
,
r− r2

2

)
. (5.4)

It transforms the position-dependent variables {r1, r2} to position and momen-
tum {r,p}. Note that each entry of the density matrix is described by its indi-
vidual Wigner function.

Semiclassical approximation
In the Wigner representation, equation 5.2 leads to an involved expression in-
cluding a series expansion of gradient terms [152]. It is truncated to lowest order,
which corresponds to a semiclassical approximation of the motional degrees of
freedom. This is justified as long as the mean-field potential varies slowly com-
pared to each Wigner function.

With these approximations, one obtains a collisionless Boltzmann equation of the form
[152]

∂tw(r,p) =

(
−p · ∇r

m
+m

∑
α

ω2
α(r · ∇p)α

)
w(r,p)︸ ︷︷ ︸

kinetic motion

+

1

i~
[V (r,p), w(r,p)]︸ ︷︷ ︸

interaction

+
1

i~
[
qS2

z , w(r,p)
]

︸ ︷︷ ︸
Zeeman effect

.

(5.5)

This equation is used for the description of the experiments in this chapter. Its first
term reflects the kinetic motion of the particles in the harmonic trap, while the two com-
mutators account for the high-spin interactions and the magnetic energy, respectively.
In equation 5.5, the mean-field potential

Vij(r) =
∑
kl

∫
dp (Ujikl − Ujlki)wkl(r,p) (5.6)
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more spin states

Figure 5.3: Density matrix for different incoherent states. The Fermi sea is assumed
to be incoherent after the evaporation (only diagonal elements). A spin-polarized Fermi sea has
only one diagonal entry (A). Increasing the number of spin components increases the number
of diagonal elements (B-D). The corresponding spin mixtures are indicated below. The color
bar is used in the following for the illustration of density matrices.

is introduced, which is proportional to the spatial density n(r) =
∫
dpw(r,p). This term

drives mean-field dynamics, including spin-changing collisions or spin waves. Higher
gradient orders provide non-local mean-field corrections to the harmonic trapping po-
tential, which are small and thus neglected in the following [152].

5.1.2 Requirements for spin dynamics

A spin-polarized Fermi sea, which is non-interacting, intrinsically suppresses s-wave col-
lisions. It corresponds to a density matrix with only one diagonal entry (see Fig. 5.3 A).
An interacting Fermi sea involves several spin states and can be realized by evapo-
rating the sample in the dipole trap. After the evaporation this corresponds to an
incoherent state, represented by a density matrix with the corresponding diagonal en-
tries (see examples in Fig. 5.3 B – D). However, also for incoherent states the Boltzmann
equation 5.5 reveals a trivial time evolution. The commutator including the mean-field
potential is only non-vanishing, when spin coherences (off-diagonal elements in the
density matrix) are present.

The experiments start with an evaporated binary spin mixture m= {±1/2}, cor-
responding to a density matrix with two diagonal entries (see Fig. 5.3 B). To create
a state with significant coherences, a preparation scheme employing rf-radiation has
been implemented for fermionic atoms for the first time, which was so far applied in
experiments with bosonic atoms (see for example [77, 79]). By this, the incoherent spin
mixture is exposed to a typically 10µs rf-pulse at low magnetic field. In this regime, the
linear Zeeman effect dominates, resulting in approximately the same energy splitting
for all spin states. Hence, the rf-pulse couples the ten spin states of the f = 9/2 manifold
simultaneously. This can be understood as a rotation of the two-component spin mix-
ture on a generalized Bloch sphere [138]. Note that this preparation scheme is different
from the preparation at large magnetic fields (see section 3.2.2), where individual spin
states are selectively coupled.

The resulting density matrix can be calculated using the generators of rotation (Sx
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Figure 5.4: Preparation of single-particle coherences in a Fermi sea. (A) Density
matrices are shown for different rotation angles θ as indicated below. Plotted are the absolute
values of the density matrix. The initial state is the spin mixture m= {±1/2} (i), while the
state widely used in the experiments is (iii). (B) Measured spin occupations starting from spin
mixture m= {±1/2} are depicted as a function of the rotation angle θ. The latter corresponds
to different rf-powers of the rf-pulse at a frequency of 159 kHz. The magnetic field is B= 0.5 G.
Solid lines are calculations using equation 5.7, with the Rabi-frequency as only free parameter.
Experimental data have also been published in [1].

or Sy) and is given by (for details see appendix C) :

ρ(θ) = exp

(
−iSx,yθ

2

)
· ρ0 · exp

(
iSx,yθ

2

)
. (5.7)

Here, ρ0 is the initial density matrix, and θ is the spin rotation angle. Note that due to
the rotational symmetry, a spin rotation with Sx and Sy yields density matrices, which
exhibit the same dynamics.

To illustrate this preparation, the density matrix ρ is shown in Fig. 5.4 A for dif-
ferent spin rotations of the spin mixture m= {±1/2}. This leads to the occupation of
further spin components alongside the formation of coherences. In particular at large
rotation angles, checkerboard-like structures are induced, which are a consequence of
the combination of the incoherent initial state and the adjoined coherences.

Experimentally, the spin occupations can be easily measured for example in a Stern-
Gerlach separation (see 3.2.4). Figure 5.4 B shows an experiment, where different rf-
intensities, corresponding to different spin rotation angles, have been applied to the
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spin mixture m= {±1/2}. The data reveal the admixture of new spin components
with increasing pulse intensity. Comparing this to equation 5.7 reveals a very good
agreement with the Rabi-frequency as only free parameter.

This demonstrates that well-controlled initial states with significant coherences can
be realized in the experiment. The state widely used in the following experiments corre-
sponds to a spin rotation of θ= 0.44 of the spin mixture m= {±1/2}. Its density matrix
is depicted in Fig. 5.4 A(iii). It turns out that this spin configuration is advantageous,
because it yields a nearly equal occupation of the spin states ±1/2 and ±3/2 connected
with significant coherences. Moreover, the procedure described above can be applied to
further spin mixtures (see more examples in appendix C). It provides a versatile tool
to prepare various initial states allowing to explore spin-changing dynamics in a wide
parameter range, which will be demonstrated in section 5.4.

5.2 Observation of giant and long-lived spin oscillations

Now I address the question, whether a Fermi sea can perform collective dynamics of its
spin degree of freedom. I present the experimental procedure to study collective spin
dynamics and then a proof-of-principle experiment.

To investigate spin-changing collisions in a high-spin Fermi sea experimentally, the
following procedure has been employed: The starting point is the evaporation of an
ultracold binary mixture by lowering the power of the dipole trap. After the evapora-
tion, the trap is recompressed again, and the corresponding trapping frequencies are
ωx,y,z = 2π×(33, 33, 137)Hz. Subsequently, the magnetic field is switched to a low value,
ranging from 15 mG to several G. Note that for these experiments a careful compensa-
tion of magnetic gradients is required (see section 5.3.1). To initialize spin dynamics,
a radio-frequency pulse is applied. This generates an initial state, which is interacting
and exhibits spin coherences at the same time as discussed above. After a certain time
evolution the magnetic field is raised again preventing further spin-changing collisions.
The atoms are released from the trap and the spin occupations are counted after a
time-of-flight of typically 15 ms in a Stern-Gerlach field.

For a proof-of-principle experiment, the spin mixture m= {±1/2} is initially evap-
orated to a temperature 0.13 TF. The resulting spatial configuration is an ultracold
harmonically trapped Fermi gas with a spatial extension of approximately 80µm in-
volving about 1.3×105 particles. To initialize spin dynamics, a rf-pulse corresponding
to a spin rotation of θ= 0.44 is applied to the spin mixture.

As a key result, the Fermi sea exhibits collective spin dynamics, which is depicted in
Fig. 5.5. The data show giant spin oscillations, which constitute the first observation of
collective spin dynamics in a Fermi sea. Note the very long lifetime of the coherent be-
havior, which is found for up to 1 s. The collective dynamics occur mainly between the
initially occupied spin states, namely the spin configurations ±1/2 and ±3/2. Further
spin components do not significantly contribute. The spin oscillations appear with a fre-
quency of 5.5 Hz and an amplitude of about 30 %. This demonstrates that a significant
fraction of the Fermi sea is involved in the dynamics.

This proof-of-principle experiment reveals a novel collective effect in a fermionic
many-body system, namely giant spin oscillations. This phenomenon will be in detail
investigated in the following. Thereby, I will focus on the mechanism, which leads to
this unexpected collective behavior. Then I will present a detailed study of the spin-
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Figure 5.5: Giant and long-lived spin oscillations in an ultracold Fermi sea. Plotted
are the occupations n(m) as a function of time. The dynamics are initialized by an rf-pulse,
corresponding to a spin rotation of θ= 0.44 of the spin mixture m= {±1/2} (depicted in the
inset). The magnetic field is B= 0.12 G, the peak density np = 5.9×1012 cm−3 (see appendix A)
and the temperature T = 0.13 TF. Solid lines are oscillatory fits to the data (equation C.1). The
spin ladder (right) illustrates the involved spin components. Experimental data have also been
published in [1].

oscillation properties for a wide range of parameters. Damping effects arising from finite
temperature and higher densities will be the subject of chapter 6.

5.3 Studying the collective nature of spin oscillations

Due to the multi-mode spatial structure of fermionic many-body systems collective
behavior is in general rare. The observed giant spin oscillations constitute a novel and
surprising collective effect. Since the mean-field potential (equation 5.6) is proportional
to the density, one would naively expect that the atoms are exposed to a spatially-
dependent potential according to their position in the trap. This should be accompanied
with a fast dephasing of the spin dynamics. The experimental result, however, clearly
highlights the collective character of the spin oscillations for long time scales.

In this section, I will study the origin and the limits of this effect. It will turn out
that the collective behavior can be attributed to the spatial dynamics of the underly-
ing harmonic trap. This observation motivates to incorporate a fermionic single-mode
approximation as was done for bosonic systems [65, 79, 205], where all spatial degrees
of freedom of the many-body system are integrated out. In the presence of magnetic
gradients, spin waves [3, 58, 150] can be excited limiting the collective dynamics.
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Figure 5.6: Structure formation in a Fermi sea due to spin-changing collisions.
Simulations of the spatial distribution are shown as a function of time. This is depicted for one
spin component (m=−1/2), normalized to the same occupation at each time step. The same
parameters are chosen as in Fig. 5.5. (A) Trap-dominated regime: Trap frequencies are large
(ω= 2π×(32, 43, 137) Hz) such that Et>Esc, which suppresses structures. (B) Intermediate
regime: One trap frequency is low (ω= 2π×(5, 200, 200) Hz) such that Et≈Esc and significant
structures appear. (C) Interaction-dominated regime: The particles are fixed in the trap and
only exposed to the local mean-field potential, leading to strong structures. The calculations
in A and B are kindly provided by U. Ebling [203], while C was performed in an extended
single-mode approximation (see section 5.3.4).

5.3.1 The influence of the trapping potential

The experiments are performed with fermions in an optical dipole trap. This trapping
potential induces spatial dynamics in addition to the observed spin oscillations.

In a simplified picture one can understand the influence of the trap in the following
way: Consider one particle, which moves, driven by the harmonic confinement, through
the mean-field background, provided by all other particles. The particle passes through
different regions of the trap with different local potentials and performs spin-changing
collisions. It is crucial, on which time scale the corresponding processes occur. If the
trap dynamics are considerably faster than the spin-changing collision rate, the particle
moves several times through the trap before a spin-changing collision occurs. This
averages the local interaction and yields effectively a constant potential for all particles.

This effect can be understood as the formation of an effective long-range potential
due to the influence of the harmonic trap. It can be more rigorously derived by using
a transformation to a rotating frame and integrating out the trap dynamics, which has
been demonstrated for 1d and connected to this work also for 3d systems [1, 200]. It
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can be directly related to the ratio of two energy scales: First, there is the trap energy
Et = ~ωx,y,z, which accounts for the spatial dynamics. This is compared to the spin-
changing mean-field energy Esc =Vij |i6=j , which reflects spin-changing collisions. Note
that the spatial direction with the lowest trap frequency and the maximum value of
the spin-changing collision channel are important for the following considerations.

In the regime accessible in the experiments, the trap energy is in general significantly
higher than the spin-changing mean-field energy (Et>Esc). The corresponding values
for a 3d bulk system are Et/h> 30 Hz and Esc/h< 7 Hz and for a quasi 1d configuration
Et/h> 10 Hz and Esc/h< 3 Hz. This makes it challenging to validate the considerations
above experimentally. Therefore, a numerical study together with U. Ebling [203] has
been performed to investigate the different regimes. In Fig. 5.6, the simulated time
evolution of the spatial distribution is plotted, where three different scenarios can be
distinguished:

Trap-dominated regime (Et>Esc)
The kinetic motion of the atoms, induced by the harmonic trap, is faster than
the spin-changing dynamics. One clearly finds a suppression of any spatial defor-
mations as shown in Fig. 5.6 A. This regime is realized in the experiments and
justifies a single-mode approximation.

Intermediate regime (Et≈Esc)
The kinetic motion and the spin-changing dynamics occur on comparable time
scales. The formation of spatial structures is found in the simulations, which
become even more pronounced for longer times (see Fig. 5.6 B). The single-mode
approximation cannot be applied.

Interaction-dominated regime (Et<Esc)
The trap dynamics are slow and the local mean-field interaction drives local spin-
changing dynamics. This induces the formation of strong spatial structures, where
different parts of the system perform fully different spin dynamics. The limit of
fixed particles in the trap is depicted in Fig. 5.6 C.

To conclude, the trap dynamics are found to induce the collective spin-changing
behavior in the trap-dominated regime, which is an important result of this thesis.
Note that only a few cycles in the harmonic trap are sufficient to average the mean-
field potential considerably.

5.3.2 Suppression of spatial structures

The above-mentioned considerations motivate an experimental investigation of the spa-
tial distribution arising from spin-changing dynamics. In the time-of-flight pictures no
spatial structures could be found. However, the finite expansion time limits the signif-
icance of this observation.

Therefore, an in-situ experiment has been performed, directly revealing the spatial
distribution of the atoms in the dipole trap. The fermions are loaded into a quasi 1d
configuration with a large spatial extension of more than 300µm in the elongated direc-
tion. To resolve the time evolution of the spatial distribution experimentally, the spin-
selective in-situ detection has been applied as described in section 3.2.4. In this case,
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Figure 5.7: Observed spatial distribution of a Fermi sea exposed to spin-changing
collisions. (A) In-situ images of the spatial distribution in the trap are depicted as a function of
time. Shown is the difference to the initial spin distribution. Imaged is only the spin component
m=−1/2, while the other spin components m 6= − 1/2 are transferred to the f = 7/2 manifold
prior to the detection. (B) Column sums of the pictures in A are depicted, normalized to the
same occupation at each time step. The experiments are performed in a quasi 1d configuration
with trapping frequencies of ω= 2π×(70, 70, 12) Hz. For a better experimental implementation,
a spin instability (see section 6.3) is studied, similar to collective spin oscillations. The initial
state is the spin mixture m= {±3/2} at a magnetic field of B= 0.09 G.

only one spin component (m=−1/2) is imaged. Further spin components (m 6=−1/2)
are transferred to the f = 7/2 manifold, which is transparent for the detection light.

Figure 5.7 A depicts the change of the spatial distribution as a function of time.
As an important result, the observed distribution evolves accordingly to the density
distribution in the trap. It reveals no discernible spatial structures within the experi-
mental resolution. This is also illustrated in Fig. 5.7 B, where the spatial distribution
normalized to the spin occupation is depicted. Note again the time scale of this effect,
which extends up to 1 s. This experiment demonstrates that the observed collective
spin dynamics can involve atomic ensembles with a large extension of several hundred
micrometers, while spatial structures are widely suppressed. In general, it highlights
the collective character of the spin dynamics despite the intrinsic multi-mode structure
of the Fermi sea.

5.3.3 Influence of magnetic gradients

Spatial excitations constitute a limitation for the collective spin dynamics. In this con-
text, the influence of a magnetic gradient is particularly important. It breaks the rota-
tional symmetry of the system, which induces a spin-wave excitation (see section 3.3.2).
This has been studied in detail in the course of this work, where spin waves in high-
spin fermions were investigated [3]. The magnetic gradient induces a phase spiral, which
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Figure 5.8: Combination of spin waves and spin-changing collisions. The time evolu-
tion of the relative spin populations n(m) (upper parts) and the corresponding center-of-mass
positions after time-of-flight (lower parts) are depicted. (A) The magnetic gradient is compen-
sated as good as possible. (B) A magnetic gradient of 1.2 mG/cm is applied during the experi-
ment. The magnetic field is B= 0.17 G and the trapping frequencies are ω= 2π×(70, 70, 12) Hz.
The initial state preparation is chosen as in Fig. 5.5. Solid lines serve as guide-to-the-eyes.

leads combined with the harmonic confinement to counterflow dipole oscillations of the
individual spin components, while the overall density remains constant (for details see
thesis of J. Heinze [107]).

For the investigation of spin waves, spin-changing dynamics can be easily fully
suppressed at large magnetic fields. However, spin waves are excited in the presence of
very small magnetic gradients. Hence, they constitute a significant challenge to study
spin-changing dynamics experimentally.

To investigate the impact of spin waves on spin-changing dynamics, the fermions
are prepared in a quasi 1d configuration at low magnetic field. This favors spin-wave
excitations and allows at the same time for spin-changing dynamics. First, the mag-
netic gradient is well compensated, revealing collective spin dynamics as depicted in
Fig. 5.8 A. Depicted are the spin-occupation dynamics and the center-of-mass motion
of the atoms. This experiment demonstrates that spin-changing oscillations are in-
duced, while spatial oscillations are widely suppressed. In a second experiment, an
additional small magnetic gradient of 1.2 mG/cm is applied, leading simultaneously
to spin-changing dynamics and a spin-wave excitation. This is shown in Fig. 5.8 B,
reflected in the spatial oscillations of the individual spin components.

As the data clearly show, the collective character of the spin-changing dynamics
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is strongly affected by the spin-wave excitation. The occurrence of spatial dynamics
leads to a complex behavior involving spin and spatial degrees of freedom. In this
case, a single-mode approximation cannot be applied. To reproduce these results, full
calculations with spatial resolution are necessary, which will be described in the thesis
of U. Ebling [206]. The experimental data also suggest that after a full spatial oscillation
period the spin-changing dynamics restart again, which underlines the coherence of the
many-body system.

For the experiments described in the following, the magnetic gradient is compen-
sated as good as possible to exclude spin-wave excitations. This can be achieved by
carefully employing the compensation techniques described in section 3.3.2 prior to the
experiments.

5.3.4 Implementation of a fermionic single-mode approximation

A single-mode approximation has been successfully employed to describe spin dynamics
in spinor Bose-Einstein condensates [65, 79, 205]. This approach is a rather intuitive one
for ultracold bosons, which occupy the same single-particle state and hence intrinsically
share the same spatial distribution. Moreover, the superfluid phase of spinor bosons
suppresses spin structures on the scale of the spin healing length [67, 68]. In contrast, a
single-mode approximation is counterintuitive for fermions, which intrinsically have a
multi-mode spatial structure. Nevertheless, the observed collective behavior alongside
the trap-induced suppression of spatial structures motivates the implementation of a
fermionic single-mode approximation.

In this approach the Wigner function wij(r,p, t) is assumed to separate into a prod-
uct of a spatial part and a spin part. The spatial part can be approximated with the
initial equilibrium distribution in a harmonic trap, given by the Thomas-Fermi distri-
bution f(r,p) (see appendix A). One assumes that the spatial part remains constant
during the time evolution. Then the system can be approximated with

wij(r,p, t) = ρij(t)︸ ︷︷ ︸
spin part

· f(r,p)︸ ︷︷ ︸
spatial part

. (5.8)

Inserting this separation ansatz into the Boltzmann equation 5.5, all spatial and mo-
mentum degrees of freedom can be integrated out. This effectively replaces the Fermi
sea with a fixed object, which is reflected in a vanishing spatial dependence. It yields
the Boltzmann equation in single-mode approximation, given by

∂tρ(t) =
1

i~

[
V
∑
kl

(Uklij − Ukjil) ρkl(t), ρ(t)

]
︸ ︷︷ ︸

averaged interaction

+
1

i~N
[
qS2

z , ρ(t)
]

︸ ︷︷ ︸
Zeeman energy

(5.9)

with the interaction integral V , which reads

V =

∫
drn2(r)/N . (5.10)

Here, n(r) =
∫
dp f(r,p) is the spatial density. The averaged interaction energy is char-

acterized by a prefactor V , which corresponds to the mean density of the system. Equa-
tion 5.9 forms a system of 100 differential equations, coupled by quadratic terms of the
form (ρij · ρkl).
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Figure 5.9: Validity of the single-mode approximation. The simulated time evolution of
the relative occupation n(m=−1/2) is shown as a function of time. A calculation with spatial
resolution in 1d (red line) reveals an excellent agreement with a single-mode approximation
calculation (blue line). Simulations are performed in the trap-dominated regime with the same
parameters as in Fig. 5.6. Calculations with spatial resolution are kindly provided by U. Ebling.

Figure 5.9 compares a single-mode approximation calculation (equation 5.10) to a
simulation with spatial resolution in one dimension (equation 5.5). The parameters are
chosen as in the actual experiments, where the spatial motion in the trap is much faster
than the spin dynamics (Et>Esc). As a key result, an excellent agreement between
both approaches can be found. This highlights the justification of the single-mode
approximation in the trap-dominated regime.

The fermionic single-mode approximation was worked out and implemented through-
out this research work. In the following section, a detailed comparison between numeri-
cal simulations of this approximation and experimentally obtained spin-oscillation data
will be presented.
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5.4 Studying the spin-oscillation properties

The observation of giant spin oscillations in a fermionic many-body system constitutes
a novel collective phenomenon. It is of general interest to study this in more detail,
which also serves to investigate the validity of the mean-field approach introduced
in section 5.1. In this context, the single-mode approximation provides a significant
simplification. It allows to describe the many-body system only by global parameters,
similar to spin dynamics in the two-body limit (see section 4.2).

In this section I will present a detailed study of the spin-oscillation properties.
This will include the dependence on the magnetic field and the density. Moreover, the
considerable control of the rf-preparation allows for a wide tunability of the initial spin
configuration (see section 5.1.2), which will be investigated. Note that these experiments
explore fermionic spin dynamics at low temperatures of about 0.1 – 0.2 TF in a 3d bulk
system. It will turn out that this regime is dominated by mean-field interactions. The
impact of higher temperatures and intermediate interaction strengths will be studied
in chapter 6.

To extract the frequency and the amplitude from the spin-oscillation data, a damped
oscillatory fit is employed as in the two-particle case (see appendix C). The experimen-
tal data are compared to single-mode approximation calculations solving the equation
system 5.9. This requires only a small numerical effort and hence provides an ideal
testing ground to study this simplified approach in depth. From the calculated spin
dynamics, the frequencies are extracted with a Fourier analysis of the involved spin
components. The oscillation amplitudes are taken as the differences between maximum
and minimum of the spin oscillations. A phenomenological exponential damping with a
rate of Γ = 2 Hz is inserted in equation 5.9, which reduces the coherences exponentially
(see appendix C). This accounts for the experimentally observed damping, while the
spin-oscillation properties remain unaffected.

5.4.1 The influence of the magnetic field

The Zeeman energy is equally important for spin dynamics in the many-body system as
in the two-body case. For the experimental study of this parameter, the initial state as in
the proof-of-principle experiment has been employed, corresponding to a spin rotation
of θ= 0.44 of the spin mixture m= {±1/2}. Since the resulting spin oscillations occur
mainly between the spin states ±1/2 and ±3/2, the study is restricted to these spin
configurations.

Figure 5.10 shows the obtained spin-oscillation properties for different magnetic
fields. The data reveal that oscillation frequency and amplitude are strongly affected.
This effect can be understood in the following way: With the magnetic field the system
is tuned between two regimes. At large magnetic field, the Zeeman energy dominates
and both spin configurations are strongly detuned from each other, yielding small-
amplitude spin oscillations with high frequencies, which precisely follow the quadratic
Zeeman effect. At low magnetic field, in contrast, interaction and Zeeman energy are
about equal and giant spin oscillations with low frequencies are observed. In this regime,
the oscillation frequencies are shifted to values larger than the Zeeman energy. The data
of these experiments are compared to calculations using the single-mode approximation
approach without free parameters. Over the whole magnetic field range, a very good
agreement is demonstrated.



90 Collective spin dynamics in fermionic bulk systems

0.1 0.2 0.3 0.4 0.5

20

40

60

80

100

Magnetic field (G)

R
el

. a
m

pl
itu

de

Magnetic field (G)

Fr
eq

ue
nc

y 
(H

z)

N
or

m
al

iz
ed

 s
pe

ct
ra

l d
en

si
ty

0

1

0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

∆Eqze

Figure 5.10: Spin-oscillation properties for different magnetic fields. Frequency (main
graph) and amplitude (inset) of the collective spin dynamics are depicted as a function of the
magnetic field. The initial state corresponds to the spin mixture m= {±1/2} with a spin rota-
tion of θ= 0.44. The experimental parameters are np = 1.0×1013 cm−3 and T = 0.22 TF. Data
points are deduced from fits and error bars correspond to two standard deviations. Amplitudes
and frequencies are calculated in a single-mode approximation without free parameters (equa-
tion 5.9). They are depicted in false color in the main graph and as solid lines in the inset. The
green line shows the differential Zeeman energy. Experimental data have also been published
in [1].

While the general spin-oscillation behavior resembles the two-particle dynamics, a
spin resonance as observed in the two-particle case (see section 4.2.3) cannot be clearly
identified. In bosonic many-body systems with 87Rb in the f = 2 hyperfine manifold
[79], however, a spin resonance could be observed in our group, characterized by a
maximum oscillation amplitude at vanishing oscillation frequency. In the fermionic
experiment, in contrast, strong instability-driven dynamics are found at B < 0.1 G,
which will be discussed in chapter 6. These excitations emerge if the spin-changing
mean-field energy and the differential magnetic energy are about equal. In this case, a
strong spin redistribution sets in, which affects the spin-oscillation properties and also
changes the resonance condition. This constitutes a general problem to observe a spin
resonance in the fermionic many-body system.

5.4.2 The influence of the density

The interaction strength of the system is characterized by the interaction integral V
(see equation 5.10), which is directly connected to the average density of the system.
Combined with the involved scattering lengths, this value determines the mean-field
energy.

The interaction integral depends on the temperature and the particle number of the
system, which can be widely controlled (see section 3.2.3). In principle, it is also possible
to tune this parameter by adjusting the underlying harmonic confinement. For a better
general comparison with the single-mode approximation approach, however, this route
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Figure 5.11: The interaction integral V . Calculations of the interaction integral V by
solving equation 5.10 are shown. The values are calculated for different particle numbers N ,
temperatures T , and peak densities np in the 3d bulk system. (A) V increases with N at
constant T . (B) V decreases at constant N for higher T . (C) V decreases with T at constant
np, which is only relevant in the quantum-degenerate regime. (D) V increases linearly with np at
constant T . Typically, the experimental parameters yields spin-changing mean-field interaction
energies of several Hz.

has not been followed. Several important dependencies of V are depicted in Fig. 5.11.
The interaction integral is proportional to the density of the system. Moreover, it
increases for higher particle number and decreases for higher temperatures. For the set
of experiments described in the following, the density is tuned by adjusting the particle
number. This provides a better comparison with the mean-field approach, while higher
temperatures induce an enhanced damping of the spin oscillations (see chapter 6).

For the experimental study of the density dependence, again the initial state as in
the proof-of-principle experiment has been employed, corresponding to a spin rotation of
θ= 0.44 of the spin mixture m= {±1/2}. Figure 5.12 depicts the spin-oscillation prop-
erties for different densities. Only a slightly increasing oscillation frequency is observed,
which remains close to the quadratic Zeeman energy over the investigated density range.
The mechanism behind this depends on the initially prepared spin configuration, which
is in more detail discussed in section 5.4.3. As an important result, the oscillation am-
plitude is very small at low densities and significantly increases for higher densities.
This effect can be intuitively understood in the following way: A higher average density
increases the global collision rate alongside an enhanced spin-changing collision rate.
Hence, with the density the system can be tuned continuously from suppressed spin
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Figure 5.12: Spin-oscillation properties for different densities. Frequency (main graph)
and amplitude (inset) of the spin oscillations are depicted as a function of the peak density.
The initial state is the spin mixture m= {±1/2} with a spin rotation of θ= 0.44. The mag-
netic field is B= 0.17 G and the density is varied by keeping T = 0.2± 0.04 TF constant. Data
points are deduced from fits and error bars correspond to two standard deviations. Calculated
amplitude and frequencies are derived from a single-mode calculation without free parameters
(equation 5.9). Uncertainties in particle number and temperature are reflected in the shaded
area in the inset. The green line shows the differential Zeeman energy. Experimental data have
also been published in [1].

oscillations to the regime of giant spin oscillations.
The experimentally obtained data are compared to calculations employing the

single-mode approximation. As for the magnetic field dependence, the whole density
range yields a good agreement with the single-mode approximation approach without
free parameters.

5.4.3 Engineering the mean-field background

Besides magnetic field and density, the initial spin configuration also strongly affects
the spin oscillations. This parameter is ideally suited for a more intuitive understanding
of the collisional properties in the mean-field regime. In experiments with Bose-Einstein
condensates spin dynamics have been studied employing only a few specific spin rotation
angles [77, 79, 80]. This restriction, however, is not necessary. The experimental control
over the initial state allows to study spin dynamics initialized by arbitrary spin rotations
(see section 5.1.2), which has been investigated.

For this purpose, the initial spin mixture m= {±1/2} is prepared at low magnetic
fields. In a second step, different rf-pulses are applied, which induce occupations as
well as coherences presumable in the spin states ±1/2 and ±3/2. The obtained spin-
oscillation properties are depicted in Fig. 5.13, revealing a strong dependence on the
initial pulse. First, the amplitude of the spin oscillations increases, which reflects the
increasing initial spin occupations and coherences. Second, the frequency of the spin
oscillations decreases and reaches nearly the quadratic Zeeman energy at large spin
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Figure 5.13: Spin-oscillation properties for different spin rotations. Frequency (main
graph) and amplitude (inset) of the spin oscillations are shown as a function of the spin rotation
angle θ, applied to the spin mixture m= {±1/2}. The experimental parameters are B= 0.17 G,
np = 1×1013 cm−3 and T = 0.22 TF. Data points are deduced from fits and error bars correspond
to two standard deviations. The calculations are performed using the single-mode approximation
without free parameters (equation 5.9). The green line corresponds to the differential Zeeman
energy.

rotations of θ≈ 0.5. These experiments are also compared to simulations employing a
single-mode approximation. Covering the investigated parameter regime, a good agree-
ment is found without free parameters.

In particular the effect of the initial spin state on the spin-oscillation frequency
is unexpected. This intriguing observation motivates a more detailed view on spin-
changing collisions in the many-body regime and can be intuitively understood in the
following way: Consider one atom pair, which performs spin-changing dynamics in the
mean-field background provided by all other particles. Spin-changing collisions change
the magnetic energy of the atoms in analogy to the two-particle case. In contrast, the
situation is different for the interaction energy, which depends on the initial spin ro-
tation in the many-body case. For small θ, the mean-field background remains widely
unaffected and is provided by the initial spin mixture. After a spin-changing collision,
the atom pair is transferred into a new spin configuration and hence exposed to another
mean-field interaction energy given by the different coupling constants Uijkl. The re-
sulting spin-oscillation frequency is therefore determined by the Zeeman energy with an
additional mean-field shift. However, if the spin rotation is chosen, such that a balanced
mean-field background is realized, the atom pair is exposed to the same mean-field in-
teraction before and after the spin-changing collision. In this case, the spin-oscillation
frequency is only given by the Zeeman energy.

These considerations are not only consistent with the experimental results depicted
in Fig. 5.13, but also explain the frequencies observed for different magnetic fields (see
Fig. 5.10) and different densities (see Fig. 5.12). In both cases, the spin-oscillation
frequencies are similar to the Zeeman energy, which can be attributed to the rather
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Figure 5.14: Spin oscillations in different spin mixtures. The time evolution of the spin
occupations for the spin mixture m= {±1/2} at B= 0.34 G (A) and m= {±9/2} at B= 0.12 G
(B) is depicted, both exposed to a spin rotation of θ= 0.22. The spin-oscillation frequencies are
plotted for m= {±1/2} (C) and for m= {±9/2} (D) as a function of the magnetic field. Data
points are deduced from fits. The calculations are performed using the single-mode approxi-
mation without free parameters (equation 5.9). Green lines show the corresponding differential
Zeeman energy.

strong rotation angle of θ= 0.44. This preparation yields a nearly balanced mean-field
background, which strongly reduces the mean-field shift and results in spin oscillations
close to the Zeeman energy.

5.4.4 Spin dynamics between different spin mixtures

As worked out above, the spin-oscillation properties depend significantly on the initial
spin configuration. The data presented so far show that spin dynamics occur between
occupied states connected with coherences, which sets the route for an experimental
investigation. Beyond the tuning of the initial spin rotation, it is therefore interesting to
evaluate spin dynamics for completely different spin mixtures. Due to the high spin of
40K combined with a versatile spin preparation tool (see section 5.1.2), the experimental
system provides an ideal testing ground in this direction.

To realize this experimentally, two different spin mixtures are compared, namely
m= {±1/2} and m= {±9/2}. In both cases, an initial spin rotation angle of θ= 0.22 is
applied. It is chosen rather small to enhance the influence of the mean-field background
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and to induce a significant interaction shift (see section 5.4.3).

As depicted in Fig. 5.14 A, the spin mixture m= {±1/2} with prepared coherences
exhibits spin oscillations between the spin states ±1/2 and ±3/2. Due to the small
spin rotation, the corresponding amplitude is below 10 %. Moreover, the spin mixture
m= {±9/2} with prepared coherences (for details see appendix C) also shows spin
oscillations. In this case, however, the involved spin states are ±9/2 and ±7/2 as de-
picted in Fig. 5.14 B. This is a direct consequence of the preparation scheme, which
leads, starting from m= {±9/2}, to spin occupations and coherences between these
spin configurations. This experiment demonstrates that spin dynamics can be realized
in different spin mixtures.

In this context, it is particularly interesting to study the interplay between in-
teraction and quadratic Zeeman effect and its influence on the oscillation properties.
Therefore, the experiments have been repeated at different magnetic fields. The result-
ing spin-oscillation frequencies for m= {±1/2} are depicted in Fig. 5.14 C and clearly
show an interaction shift. In this case, the mean-field interaction increases the spin-
oscillation frequency compared to the corresponding Zeeman energy difference. This
is consistent with the considerations as described in section 5.4.3. The spin mixture
m= {±9/2} also exhibits an interaction shift, however, the direction is inverted. It
decreases the spin-oscillation frequency compared to the corresponding Zeeman energy
difference as depicted in Fig. 5.14 D. This can be attributed to an effective change in
sign of the interaction differences compared to the Zeeman energy difference and di-
rectly results from the initial preparation. For both cases, the data are compared to
single-mode approximation calculations. The frequency shift can be well reproduced in
the simulations without free parameter.

5.4.5 Direct observation of high-collision quanta

The presented spin-oscillation experiments are dominated by collisions, which change
the spin configuration of each particle by ∆m= 1. It is a fundamental question, whether
collective spin dynamics can also involve higher collision quanta (∆m> 1), which has
not been reported so far. The observation of high-collision quanta in the two-body limit
(see section 4.2.6) motivates an experimental study in this direction. As a final study
of the spin-oscillation properties, I demonstrate the experimental realization of a Fermi
sea performing spin oscillations with a collision quantum of ∆m= 2.

So far, for most of the presented experiments the mixture m= {±1/2} was rotated
leading to occupations of the spin states ±1/2 and ±3/2 connected with coherences.
In general, collective spin dynamics drive oscillations between occupied spin configura-
tions, which are connected by coherences. Hence, the realization of high-collision quanta
requires significant occupations and coherences between spin configurations coupled by
∆m> 1. For this, one can perform a spin rotation of the spin mixture m= {±3/2}
(see appendix C). Figure 5.15 A depicts the corresponding initial density matrix and
the impact of a spin rotation of θ= 0.42. As a particular feature, this rotation yields
occupations predominantly in the spin states ±1/2 and ±5/2 connected by signifi-
cant coherences. Therefore, this state constitutes a promising candidate to study spin
dynamics with high-collision quanta.

Monitoring the time evolution of such a state demonstrates that spin oscillations
are induced, which are exemplarily depicted in Fig. 5.15 B. As a key result, the spin
dynamics occur between the spin configurations ±1/2 and ±5/2. This constitutes the
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Figure 5.15: Direct observation of spin oscillations with ∆m= 2. (A) Density matrices
of the spin mixture m= {±3/2} without spin rotation (upper part) and with θ= 0.42 (lower
part) are shown. The spin states ±1/2 and ±5/2 are mainly occupied and connected by co-
herences. (B) Spin oscillations of an initial state as depicted in the lower part of A, revealing
spin-changing collisions with ∆m= 2. The magnetic field is B= 0.17 G. (C) The spin-oscillation
frequencies for the same initial state are plotted as a function of the magnetic field. Data points
are deduced from fits. Experimental parameters are T = 0.25 TF and np = 8×1012 cm−3. The
calculations are performed using the single-mode approximation (equation 5.9). The green line
shows the differential Zeeman energy.

first observation of high-collision quanta in a many-body system. All further spin states
have only minor occupations and do not considerably contribute to the spin dynamics.
To underline that the collisions directly transfer atom pairs with a collision quantum
of ∆m= 2, the spin-oscillation frequencies have been measured for different magnetic
fields. The data are compared to calculations in single-mode approximation as depicted
in Fig. 5.15 C without free parameters. The resulting frequency is in good agreement
with the simulations and shows a small positive shift from the Zeeman energy. The
amplitude is only about 7 %, which is due to the reduced coupling elements. These
obtained results complement the study of the spin-oscillation properties and under-
line 40K as a perfect candidate to investigate many-body spin dynamics in high-spin
fermions.
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5.5 Conclusion and outlook

In this chapter, a detailed investigation of an ultracold Fermi sea exposed to microscopic
spin-changing collisions was presented. As a key result, giant and long-lived spin oscil-
lations have been observed, despite the intrinsic multi-mode structure of the fermionic
many-body system. This constitutes a completely new collective effect for fermions. It
could be attributed to the spatial dynamics of the harmonic trap: If these dynamics are
faster than the spin dynamics, the Fermi sea acts as one object in spin space – even for
large samples with a spatial extension of several hundred micrometers and several 105

particles. A detailed study of the spin-oscillation properties has validated a simplified
description in a single-mode approximation. Moreover, the experiments demonstrate
the tunability and the high experimental control over spin dynamics in the mean-field
regime.

It turns out that the collective behavior of the Fermi sea is similar to spin-mixing dy-
namics in Bose-Einstein condensates [67, 68]. However, the spin oscillations are driven
by a completely different mechanism in the fermionic many-body system. This intrigu-
ing mechanism induced by the harmonic trap is a general feature of trapped many-body
systems and crucial for collective phenomena [1, 200]. For example, it also explains the
recent observation of long-lived collective spin dynamics in a thermal Bose gas [207]. In
addition, it should play a supportive role for further many-body effects of harmonically
trapped high-spin fermions. In this respect, a variety of new many-body phenomena
come experimentally into reach: Topological structures in superfluid high-spin fermions
or high-spin pairing [88–96, 105, 158, 208] still remain widely unexplored. However,
pairing requires attractively interacting Fermi gases, which cannot be directly realized
with 40K. Alongside current studies with 6Li, where this is possible, another approach
are attractively interacting spin mixtures in optical lattices at negative temperatures,
which was recently demonstrated for bosons [209, 210]. Beyond this, the spin-changing
dynamics combined with spin-spatial excitations such as spin waves [3, 58, 150] provide
an ideal testing ground for the study of coherences properties. Furthermore, there is still
a lack of understanding compared to high-spin bosons [67, 68]. Here further theoretical
studies with analytical approaches are required [211].

The excellent agreement between the spin-oscillation properties and the single-mode
mean-field approach has validated this single-particle description. However, damping
effects and the incoherent rise of new spin states already suggest contributions beyond
the mean-field approximation [212–215]. Indeed, the fermionic many-body system is
driven by a complex interplay between several collision processes involving spatial and
spin degrees of freedom [152]. This will be the subject of the following chapter.





Chapter 6

Relaxation in high-spin fermions

Relaxation is among the most puzzling phenomena in many-body physics [212–215].
Quantum gases provide an exceptional experimental platform to address these effects:
They are well-isolated from their environment and constitute a nearly perfect realization
of closed quantum systems. Moreover, the exceptional parameter control provides the
unique possibility to simulate various Hamiltonians with tailored initial states [31]. A
further advantage are the time scales of the relaxation processes, which are in general
slow compared to solid-state or molecular systems. In recent years, this topic has gained
a lot of attention: Experiments could address prethermalization, where the equilibration
dynamics is driven by processes considerably faster than the thermal equilibration time
[216–218]. Furthermore, the suppression of relaxation in strongly interacting lattice
systems [219–221] has been studied.

Quantum gas systems with high spin allow for relaxation also among the spin de-
gree of freedom. Experiments with spinor Bose-Einstein condensates have investigated
for example the formation of spin domains [69, 70], and an intriguing interplay be-
tween condensate and thermal fraction has been observed [222]. High-spin fermions are
especially interesting for the study of relaxation since they combine the spin degree
of freedom with an intrinsic multi-mode structure. They are governed by collision pro-
cesses, which involve spin and spatial degrees of freedom. Due to the fermionic quantum
statistics, the interplay between these processes depends on global properties such as
temperature or interaction strength. Here the observation of collective spin dynamics
– which was presented in chapter 5 – constitutes an ideal starting point for a further
experimental study. While the spin oscillations are well captured in a mean-field the-
ory, the damping and the incoherent rise of new spin states allow to directly investigate
relaxation properties.

In this chapter, I will present an investigation of the collisional properties of a weakly
interacting fermionic many-body system. It will start from a microscopic approach, in
which possible collision processes will be presented and which can be treated theoret-
ically with a Boltzmann equation including a collision term (section 6.1). Then I will
study the influence of finite temperature on the collective spin dynamics (section 6.2).
Furthermore, the impact of higher densities will be investigated in section 6.3. Even-
tually, I will present experiments, which explore novel spin-relaxation dynamics in a
high-spin Fermi sea (section 6.4).

Parts of this chapter have been published in [1, 2]. The experiments and the data
analysis were performed with C. Becker, N. Fläschner, J. Heinze, and K. Sengstock.
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Figure 6.1: Long-term spin dynamics. Damped spin oscillations (A) and the subsequent
spin relaxation of the system towards an equilibrium spin distribution (B) are depicted. As
initial state, the spin mixture m= {±1/2} with a spin rotation of θ= 0.44 is used. Solid lines are
guide-to-the-eyes. The magnetic field is B= 0.17 G, the particle number N = 4.9×105 and the
temperature T = 0.22 TF. Note the very different time scales of the spin dynamics. Experimental
data have also been published in [2].

6.1 Collision processes in a high-spin Fermi sea

The giant spin oscillations studied in chapter 5 show an excellent agreement with sim-
ulations of the collisionless Boltzmann equation. This demonstrates that the observed
collective behavior is well captured in a mean-field approximation.

However, this approach cannot describe the full dynamical behavior of the fermionic
many-body system [152]. The observed damping and the incoherent rise of new spin
components, which appear alongside the collective spin oscillations, suggest that further
processes occur. These are identified as lateral collisions, which constitute a beyond-
mean-field effect inducing relaxation of the many-body system.

In this section, different collision processes in a fermionic many-body system will be
worked out on a microscopic level. They govern the macroscopic behavior of the Fermi
sea and occur on very different time scales. For a theoretical description, a Boltzmann
equation including a collision term will be introduced.

6.1.1 A microscopic approach

To identify different collision processes, a long-term spin-dynamics experiment has been
performed, depicted in Fig. 6.1. The time evolution of an initial state prepared with
coherences is monitored for ten seconds. In this long-term measurement, three effects
occurring on very different time scales can be clearly distinguished:
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Figure 6.2: Collision processes in a high-spin Fermi sea. Three processes are sketched,
driving the dynamics of the many-body system: (A) A spin-changing forward collision, pre-
serving the momentum configuration. (B) A spin-conserving lateral collision, which changes
the momentum configuration (illustrated as change of the trap level), but preserves the spin
configuration. (C) A spin-changing lateral collision, changing the momentum and the spin con-
figuration.

Observation (i): Mean-field spin oscillations
The system exhibits collective spin dynamics for about 500 ms (see data zoom
in Fig. 6.1 A). The giant spin oscillations occur with a frequency on the order of
several Hz.

Observation (ii): Damping of the collective dynamics
In addition, the spin oscillations are damped, which occurs on a time scale of a
few Hz (see Fig. 6.1 A). Since the experiment is performed in the trap-dominated
regime, mean-field driven spatial dephasing is widely suppressed [1, 200] and does
not serve as an explanation.

Observation (iii): Spin-relaxation dynamics
After the spin oscillations are damped out, a slow spin redistribution is observed
(see Fig. 6.1 B). This process occurs on a much longer time scale of several seconds
and drives the system towards an equal spin distribution.

While the collective spin oscillations are well captured in a mean-field approach,
the observed damping and the spin-relaxation dynamics constitute beyond-mean-field
effects. In this context, a more detailed view of the collision process on a microscopic
level is instructive.

For this purpose, the high-spin scattering process between two particles (introduced
in section 2.2) can be extended to the spatial degrees of freedom, which are available in

the many-body system. Consider two particles, each in the state
∣∣∣m(ki)

i

〉
, where mi is the

magnetic quantum number and ki the momentum of the particle i. The corresponding

two-particle state can be represented by
∣∣∣m(k1)

1 ,m
(k2)
2

〉
. A collision can change the spin

as well as the momentum configuration of the involved particles:∣∣∣m(k1)
1 ,m

(k2)
2

〉
→
∣∣∣m(k3)

3 ,m
(k4)
4

〉
. (6.1)
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For this scattering process, the total magnetization (m1 +m2 =m3 +m4) as well as the
total momentum (k1 + k2 = k3 + k4) have to be conserved. Moreover, the Pauli exclusion
principle must be obeyed, implying that∣∣∣m(k1)

1

〉
6=
∣∣∣m(k2)

2

〉
and

∣∣∣m(k3)
3

〉
6=
∣∣∣m(k4)

4

〉
. (6.2)

Three different processes can be distinguished, which are sketched in Fig. 6.2:

Process (i): Spin-changing forward collisions
These collision processes change the spin configuration ({m1,m2} 6= {m3,m4}),
while the momentum remains unaffected ({k1, k2}= {k3, k4}) (see Fig. 6.2 A).
They drive the collective spin oscillations [152]. Note that there are also spin-
conserving forward collisions, which can affect the system for example in the case
of an applied gradient.

Process (ii): Spin-conserving lateral collisions
These collisions change the momentum configuration of the atoms ({k1, k2} 6=
{k3, k4}), but not the spin configuration ({m1,m2}= {m3,m4}) (see Fig. 6.2 B).
In general, this induces a damping of the collective spin dynamics [152]. These
processes are crucial for the experiments presented in sections 6.2 and 6.3.

Process (iii): Spin-changing lateral collisions
These processes change both, the momentum ({k1, k2} 6= {k3, k4}) as well as the
spin configuration ({m1,m2} 6= {m3,m4}) (see Fig. 6.2 C). Beyond a damping
of the spin oscillations, they induce spin-relaxation dynamics towards an equal
distribution among all available spin states. This is studied in section 6.4.

6.1.2 The collision term

Forward scattering is described within a mean-field approach by the collisionless Boltz-
mann equation, leading to undamped spin oscillations. The damping of the mean-field
dynamics and the slow spin redistribution are driven by lateral collisions, which are not
captured within this approximation. For this, a more sophisticated theoretical descrip-
tion is required.

In connection with the performed experiments, a description of lateral collisions in
the framework of the Boltzmann equation has been derived by U. Ebling and coworkers,
starting from the microscopic collision process [2]. The resulting Boltzmann equation
reads

∂tw(r,p) = ∂0w(r,p) +
1

i~
[
V (r,p) + qS2

z , w(r,p)
]

︸ ︷︷ ︸
collisionless approach

+ Icoll(w(r,p))︸ ︷︷ ︸
collision term

.
(6.3)

Here, ∂0 accounts for the trap (see section 5.1.1) and Icoll is called the collision term
or the collisional integral. The detailed derivation of the collision term for 1d and 3d
systems can be found in [2].

In the following, I provide a sketch of the general concept. The collision term was
derived using a method developed by Lhuillier and Laloë [152, 223, 224], which was
extended to a high-spin system. In general, it can be applied to weakly-interacting and
harmonically-trapped gases. Various effects have been successfully described within
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Figure 6.3: Impact of lateral collisions on the density matrix. Depicted is the initial
density matrix with coherences ρinitial = ρ(t=0) (used for the experiment in Fig. 5.5) as well as
the final density matrix ρfinal = ρ(t→∞) for two processes: (A) Spin-conserving lateral collisions
reduce the coherences, which drive the collective spin oscillations. (B) Spin-conserving lateral
collisions reduce the coherences and lead in addition to a spin redistribution among all spin
states.

this approach, including spin dynamics in liquid Hydrogen and Helium [223–229] and
spin 1/2 fermions [152, 198]. In contrast to the mean-field treatment, where a single
particle is considered (see 5.1), this ansatz considers two particles described by a two-
body density matrix ρ(1, 2). Binary collisions are described by the Heisenberg S-matrix,
which accounts for the collisions on a quantum level. However, the particles are assumed
to be uncorrelated before and after the collision (ρ(1, 2) = ρ(1)⊗ρ(2)), which is justified
for a large and dilute system. Finally, the two-particle density matrix is reduced to the
single-particle level by tracing out the second particle. In terms of the single-particle
density matrix, one can regard the second particle as the thermal bath, which provides
the collisional decoherence for the first particle [230, 231].

This ansatz accounts for lateral collisions: spin-conserving as well as spin-changing
ones. They have a quadratic dependence in terms of the scattering length (see equa-
tion 6.9). This reflects their higher-order character in contrast to the mean-field con-
tributions, which appear only linear in the scattering lengths (see equation 5.5). More-
over, this quadratic dependence is important for the ratio of spin-conserving and spin-
changing lateral collisions, where the latter are quadratically suppressed, since they
depend on the scattering length difference. The impact of lateral collisions on the den-
sity matrix is sketched in Fig. 6.3. In general, lateral collisions reduce the coherences of
the system, which drive the collective spin oscillations [152] (see Fig. 6.3 A). This leads
to a damping of the mean-field dynamics and can be interpreted as a redistribution
of single-particle coherences into higher-order coherences. Beyond this, spin-changing
lateral collisions lead in addition to a redistribution of the occupations among all spin
states (see Fig. 6.3 B).
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To compare the experiments to the theory described above, several routes have been
followed: The full Boltzmann equation can be numerically solved for 1d systems (see
section 6.4). However, most experiments are performed in 3d bulk systems, where the
numerical simulations are too demanding. In this case, a phenomenological relaxation
approximation is used, which is often employed in complex many-body systems [202,
232]. For this, the collision term is approximated with Icoll (w) = (weq − w) · Γ, where
weq is the equilibrium state and Γ the relaxation rate. The latter can be calculated from
a linearized version of the collision term. The equilibrium state is phenomenologically
assumed to be incoherent (weq

i,j |i 6= j = 0). This approach is used to calculate the damping
of the spin oscillations for different temperatures and densities (see sections 6.2, 6.3) [1].
The 1d simulations as well as the calculations for the damping rates are kindly provided
by U. Ebling. Beyond this, a single-mode approximation has been implemented for the
collision term, which is presented in section 6.4.

6.2 Impact of temperature on collective spin dynamics

The quantum statistics dominates the collision processes in a fermionic many-body
system. This has important consequences for various phenomena, for example for con-
duction and coherence properties in solid-state systems [174, 233]. Due to the Pauli
exclusion principle, collision channels can be strongly suppressed at low temperatures,
when only a few free states are available in the Fermi sea. At higher temperatures, the
Fermi distribution is smoothed out and the influence of Pauli blocking is reduced.

Recently, experiments have demonstrated that also in thermal gases coherence and
collective behavior can be preserved for long time scales [207, 234]. In these systems,
however, the spatial degrees of freedom were energetically frozen out. Beyond this, it is
fundamental to investigate the interplay between different scattering processes in the
context of Pauli blocking and temperature. For this purpose, collective spin oscillations
are ideally suited, since spin dynamics are intrinsically driven by collisions of the system.

In this section, I will study fermionic spin dynamics at different temperatures. In
contrast to recent experiments investigating spin oscillations in thermal Bose gases
[207], the experimental configuration allows for forward and lateral collisions due to
the relatively shallow trap. First, the impact of higher temperatures for the different
collision processes will be described. Then I will present experiments revealing a strong
damping of collective spin dynamics for increasing temperature.

6.2.1 Scattering processes at higher temperatures

The collision processes introduced in section 6.1 depend on temperature in a different
way. This can be intuitively understood in a general fashion as a direct result of the
fermionic quantum statistics fFD(Ek, T ) (see appendix A).

Forward collisions, which drive the mean-field spin oscillations, conserve the momen-
tum configuration ({k1, k2}= {k3, k4}). Hence, these mean-field processes are intrinsi-
cally independent of the Fermi distribution. The temperature only affects mean-field
interactions in a trivial way, which is related to the average density of the system (see
section 5.4.2).

Lateral collisions, in contrast, are characterized by a momentum exchange ({k1, k2} 6=
{k3, k4}) and can strongly depend on temperature. These processes resemble particle-
hole excitations in solid-state systems [174]. In a simplified picture, the corresponding
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Figure 6.4: Sketch of lateral collisions at finite temperature. (A) Spin-conserving
lateral collisions are illustrated, which are temperature-dependent due to the Pauli exclusion
principle. Low temperatures (upper part) and higher temperatures (lower part) yield differ-
ent collision rates indicated with the hatched region. (B) Spin-changing lateral collisions are
sketched. The scattering process transfers the atoms between different spin configurations,
whereby the corresponding rate is approximately temperature-independent. Arrows indicate
lateral collisions.

collision rate can be approximated as the probability to find a particle (initial state)
and a hole (final state). In this context, one has to distinguish between spin-conserving
and spin-changing lateral collisions. They depend on temperature in a different way, as
sketched in Fig. 6.4.

Spin-conserving lateral collisions change only the momentum and not the spin con-
figuration ({m1,m2}= {m3,m4}). Hence, they require free momentum states in the
Fermi sea. The corresponding collision rate can be approximated as

Γnsc
lat ∝ fFD(Ek, T )︸ ︷︷ ︸

particles

· (1− fFD(Ek, T ))︸ ︷︷ ︸
holes

. (6.4)

Here, the second term reflects the probability to find a free momentum state. At ul-
tralow temperatures, the Fermi sea is completely filled and the Fermi statistics do not
provide free spatial states due to Pauli blocking. In this case, spin-conserving lateral col-
lisions are fully suppressed [235]. However, for increasing temperature, free momentum
states become available allowing for lateral spin-conserving collisions (see Fig. 6.4 A).
Therefore, the corresponding collision rate Γnsc

lat is temperature-dependent [232].
Spin-changing lateral collisions, in contrast, change the momentum and the spin

configuration ({m1,m2} 6= {m3,m4}). The corresponding collision rate can be approx-
imated as

Γsc
lat ∝ fFD(Ek, T )︸ ︷︷ ︸

particles

· 1︸︷︷︸
holes

. (6.5)

This directly reflects the reduced role of the Pauli exclusion principle for this collision
process. Since the final state is available (see Fig. 6.4 B), spin-changing lateral colli-
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Figure 6.5: Realizing the same mean-field interaction at higher temperatures. The
particle number (A) and the average/peak density (B) are depicted for the different tempera-
tures realized in the experiment. The false color in A shows the average density, calculated from
the Thomas-Fermi distribution (see appendix A). In separate experiments prior to the spin-
changing dynamics, these values have been calibrated. Note that the mean-field interaction
energy is proportional to the average density, which remains widely constant.

sions also occur at very low temperatures and the corresponding rate Γsc
lat is rather

temperature-independent.

6.2.2 Observation of strong damping at higher temperatures

Giant spin oscillations constitute ideal candidates to study the temperature-dependent
interplay between mean-field dynamics driven by forward collisions and relaxation in-
duced by lateral collisions. Due to the long-range mean-field potential (see section 5.3),
the Fermi sea acts as a fixed object in spin space, allowing to identify temperature
effects directly in the spin dynamics.

To investigate the temperature influence experimentally, it is crucial to study spin
dynamics with all relevant mean-field parameters kept constant. This includes the initial
spin configuration, the magnetic field and the mean-field interaction. For the latter, the
same average density has to be realized at each temperature. This can be experimentally
controlled by adjusting the minimum dipole trap depth during the evaporation or by
including an additional waiting time (see section 3.2.3).

The presented set of experiments studies spin dynamics at seven different tempera-
tures. For this purpose, a temperature range between 0.1 – 0.6 TF with particle numbers
between 1×105 – 6×105 has been realized, depicted in Fig. 6.5. These values have been
calibrated in a separate measurement prior to each spin-dynamics experiment. To avoid
systematic errors arising from spatial deformations no Stern-Gerlach field has been ap-
plied. The extracted values for particle number and temperature correspond to the
initial experimental parameters. While the temperature slightly increases during the
spin dynamics, the particle number remains widely constant. Note that for higher tem-
peratures also the spatial extension of the system increases due to the higher particle
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Figure 6.6: Spin dynamics in a Fermi sea for increasing temperature. The time evo-
lution of the spin occupations n(±3/2) is exemplarily depicted for three different temperatures
as indicated in the figure. In the upper part, the Fermi sea and the resulting formation of holes
is sketched. As initial state, the spin mixture m= {±1/2} with a spin rotation of θ= 0.44 is
employed. The experimental parameters are B= 0.12 G and np = 5.2×1012 cm−3. Solid lines are
fits to the data and the error bars indicate one standard deviation. Experimental data have also
been published in [1].

number. This requires a careful gradient compensation in order to avoid spin-wave ex-
citations. The resulting average density for all experiments has a relative error of about
10 %. Therefore, one can assume that forward scattering occurs at a similar rate for
all experiments, while the rate for spin-conserving lateral collision Γnsc

lat is expected to
increase for higher temperatures.

The experiments reveal a dramatic temperature impact on the collective spin dy-
namics. Spin-oscillation measurements monitored at three different temperatures are
exemplarily depicted in Fig. 6.6. As a key result, a strongly enhanced damping of the
spin oscillations is observed for increasing temperature. At T = 0.1 TF (Fig. 6.6 A), the
Fermi sea exhibits long-lived and large-amplitude spin oscillations. A damping rate of
3 Hz is found, similar to the experiments presented in chapter 5. For higher tempera-
tures, however, the damping continuously increases, yielding a nearly full suppression of
any collective behavior at T = 0.6 TF (Figs. 6.6 B,C). This demonstrates that long-lived
collective spin dynamics can be realized only at ultralow temperatures.

To analyze this effect in more detail, the oscillation frequency and amplitude have
been extracted and compared to a mean-field calculation using the single-mode ap-
proximation (equation 5.9). This comparison is depicted in Fig. 6.7 and reveals a good
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Figure 6.7: Mean-field oscillation properties for increasing temperature. The fre-
quency (main graph) and amplitude (inset) of the spin oscillations are depicted for different
temperatures. As initial state, the spin mixture m= {±1/2} with a spin rotation of θ= 0.44
is employed. The experimental parameters are B= 0.12 G and np = 5.2×1012 cm−3. The cal-
culations are performed within a single-mode approximation (equation 5.9). The shaded areas
reflect the uncertainties in particle number and temperature. Error bars indicate two standard
deviations. Experimental data have also been published in [1].

agreement for the whole temperature range without free parameters. It demonstrates
that forward collisions, which drive the mean-field dynamics, are not significantly af-
fected by the temperature increase, consistent with the considerations above.

Moreover, the data clearly show that the spin-oscillation damping increases for
higher temperatures. The extracted damping rate is depicted in Fig. 6.8, showing a
rather small increase for low temperatures, which is strongly intensified surpassing
T = 0.4 TF.

In general, this behavior can be attributed to spin-conserving lateral collisions.
Following the considerations above, these collisions are suppressed at very low temper-
atures due to Pauli blocking [235]. This allows for long-lived spin oscillations driven
by forward scattering. The observed stronger damping is associated with the formation
of holes in the Fermi sea, leading to an enhanced rate of lateral collisions. Note that
the small damping rate of 3 Hz at very low temperatures might be a consequence of
spin-changing lateral collisions. Experimental imperfections such as magnetic gradients
or photon scattering also serve as possible explanations.

For a comparison of the observed damping with the theoretical approach intro-
duced in section 6.1.2, the corresponding damping rate was calculated by U. Ebling
and coworkers without free parameters. In this context, a linearized version of the
collision term has been employed (for details see [1, 206]). The result of this calcula-
tion is compared to the experimental data in Fig. 6.8. At low temperatures between
0.1 – 0.3 TF, a fair agreement is found. However, this simplified model does not capture
the full many-body behavior at higher temperatures [203]. Since the collision term only
constitutes a leading-order correction to the Hartree-Fock mean-field potential and is
treated in a linearized fashion, a quantitative agreement cannot be expected to a large
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Figure 6.8: Damping of the spin oscillations for increasing temperature. The damp-
ing rate, extracted from spin-oscillation measurements as in Fig. 6.6, is depicted as a func-
tion of temperature. As initial state, the spin mixture m= {±1/2} with a spin rotation of
θ= 0.44 is employed. Experimental parameters are B= 0.12 G and np = 5.2×1012 cm−3. Data
are compared to calculations using a linearized version of the collision term, kindly provided by
U. Ebling [203]. The results are depicted as green shaded area, accounting for uncertainties in
the average density. Error bars indicate two standard deviations. Experimental data have also
been published in [1].

extent. In this direction, the use of a quantum Boltzmann equation or further more
sophisticated approaches could provide a better agreement [152, 236, 237].

In conclusion, the presented experiments reveal for the first time that the fermionic
spin dynamics are stabilized by Pauli blocking. Therefore, ultralow temperatures are
essential for this collective behavior. This stabilization mechanism is a unique fermionic
feature. It is fundamentally different from the recent observation of spin dynamics in a
thermal Bose gas [207], which was stabilized by the tight confinement of the harmonic
trap.
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6.3 Suppression of collective dynamics at intermediate in-
teractions

Similar to the temperature, the interaction strength also plays a fundamental role for
a many-body system, providing a link from the weakly-interacting to the strongly-
correlated regime. The observation of collective spin dynamics in chapter 5 – well cap-
tured in a mean-field approach – naturally raises the question, when this approximation
breaks down. In this context, it is particularly interesting how an increased interaction
strength affects the role of forward and lateral collisions (see section 6.1).

One way to increase the interaction strength of a quantum gas system are Feshbach
resonances [119], which are widely available in 40K (see appendix B). However, they are
located at larger magnetic fields (B> 15 G), where spin-changing collisions are ener-
getically suppressed. For bulk systems, the density additionally provides a tuning knob
for the interaction strength. This is typically limited to small variations due to feasible
particle numbers, temperatures and trapping frequencies. In the available regime, spin
oscillations have shown no significantly different behavior (see section 5.4.2).

In this section, a completely different situation will be investigated, which is more
sensitive to the density. I will report on the first observation of fermionic spin insta-
bilities, which constitute another fundamental realization of collective spin dynamics.
This will reveal an intriguing collisionally-induced spin stabilization mechanism at in-
termediate interaction strengths. A stability diagram will be mapped out, which can
be qualitatively reproduced, combining a mean-field approach with the collision term.

6.3.1 Observation of fermionic spin instabilities

Dynamical spin instabilities have been widely explored with spinor Bose-Einstein con-
densates [70, 81, 82, 222], showing an intriguing analogy to the non-rigid pendulum
in the quantum limit [82, 238]. These collective excitations exhibit an exponentially
growing spin redistribution, mediated by spin-changing collisions. In contrast to spin
dynamics with initially prepared coherences (see chapter 5), small fluctuations are suf-
ficient to seed instability-driven dynamics. Experiments with ultracold bosons have
demonstrated that spin instabilities can be even induced by quantum fluctuations [81].

Here, I present experiments, which demonstrate spin-instability dynamics for the
first time in a fermionic quantum gas. The fermionic spin instabilities directly emerge in
an interacting Fermi sea without initially prepared coherences. Note that in our system
the initial state exhibits small coherences due to experimental imperfections such as a
misalignment of the coils, which appear on a classical level.

It turns out that the emergence of spin instabilities is favored in magnetically ex-
cited spin configurations. For example, the spin mixture m= {±1/2}, which has the
lowest magnetic energy of the M = 0 spin system, remains stable also at very low mag-
netic fields. In contrast, a Fermi sea, prepared in the magnetically excited spin mixture
m= {±3/2}, shows a completely different dynamical behavior (for preparation see sec-
tion 3.2.3). It exhibits giant and long-lived collective dynamics, which are depicted in
Fig. 6.9 A. This instability dynamics start with an increasing population of the spin
configuration ±1/2, which has the lower magnetic energy. It is followed by oscillatory
dynamics with a frequency of approximately 3 Hz and an amplitude of about 60%.
An even more counterintuitive effect occurs, when the magnetically excited spin mix-
ture m= {±9/2} is prepared. A collective spin cascade emerges, which is depicted in
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Figure 6.9: Observation of spin instabilities in a fermionic quantum gas. The rel-
ative population of the spin states n(m) is depicted as a function of time. (A) A spin insta-
bility starting from the spin mixture m= {±3/2} is shown. The experimental parameters are
B= 0.1 G, np = 5.9×1012 cm−3, and T = 0.14 TF. Experimental data have also been published
in [1]. (B) A spin cascade starting from m= {±9/2} is depicted. The experimental parameters
are B= 34 mG, np = 3.1×1012 cm−3, and T = 0.45 TF. (C) Depicted are calculated density ma-
trices for the parameters in B using a single-mode approximation (equation 5.9) with an initial
spin rotation θ= 0.1.

Fig. 6.9 B. The spin of the particles is consecutively redistributed from the initial spin
configuration to those with lower magnetic energies (±9/2→ ±7/2→ ±5/2→ ±3/2→
±1/2).

In general, the spin instabilities are well reproduced in each experimental run, even
though they are induced by coherence fluctuations. Moreover, note the very long-lived
collective behavior for up to 2 s, which even exceeds the lifetime of the spin oscillations
studied in chapter 5. However, the dynamics also imply that magnetically excited spin
mixtures are difficult to handle at low magnetic field. It serves as an explanation for the
unexpected spin dynamics observed in optical lattices involving higher bands, where
the spin mixture m= {±3/2} was employed (see section 4.4).

Using the collisionless Boltzmann equation (see equation 5.9), the spin-instability
dynamics can be well reproduced, similar to the giant spin oscillations (for details
see appendix C). This underlines, that also these dynamics are driven by mean-field
interactions as in the bosonic case [67, 68]. A general problem for the calculations are
the unknown initial coherence fluctuations. They are approximated by applying a small
spin rotation (θ ≤ 0.1), which initializes the instability dynamics. An example for such a
calculation is depicted in Fig. 6.9 C, where four density matrices from the time evolution
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Figure 6.10: Spin instabilities for two different densities. The relative population
n(±1/2) is shown for different magnetic fields as a function of time. Two densities are compared
for otherwise identical parameters, np = 5.9×1012 cm−3 (A) and np = 7.2×1012 cm−3 (B). As
initial state, the spin mixture m= {±3/2} is prepared at a temperature of T ≈ 0.2 TF. The
data reveal a different dynamical behavior at low magnetic field (B< 80 mG). Experimental
data have also been published in [1].

of the spin mixture m= {±9/2} are shown. These calculations also demonstrate that
the occupation of new spin components is associated with the formation of pronounced
coherences in the system.

6.3.2 Suppression of instability dynamics at higher densities

The observed spin instabilities are ideally suited to investigate the influence of higher
densities on the different collision processes introduced in section 6.1. These excitations
are driven by coherence fluctuations. Hence, a small parameter change can induce a
completely different macroscopic behavior of the many-body system, which is demon-
strated in the following.

The experimental data depicted in Fig. 6.10 show spin-instability dynamics for dif-
ferent magnetic fields, comparing two slightly different densities. In both cases, the spin
mixture m= {±3/2} is prepared and exhibits collective behavior apparent in long-lived
spin dynamics. The observed frequency increases for higher magnetic fields alongside
a smaller amplitude, reflecting the influence of the Zeeman energy. However, increas-
ing the density only by less than 25 % (np = 5.9×1012 cm−3 → np = 7.2×1012 cm−3), a
completely different dynamical behavior is found at low magnetic fields (B< 80 mG).
In this regime, the collective spin dynamics are fully suppressed for the higher density,
leading to abrupt spin stabilization.

This observation motivates to investigate the occurrence of spin instabilities. For
this purpose, the magnetically excited spin mixture m= {±3/2} is prepared and the
spin occupations are recorded after a time evolution of t= 2 s. If a spin instability has
emerged, the oscillatory dynamics are damped out after this time (see Fig. 6.9 A). A
quasi-equilibrium state is reached, consisting of a mixture of the spin configurations
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Figure 6.11: Stability diagram of the magnetically excited spin mixture m = {±3/2}.
The occupations n(±1/2) are depicted versus magnetic field and density after a time evolu-
tion of t= 2 s. A finite occupation indicates that a spin instability has emerged. Three re-
gions can be identified: Zeeman-protected regime 1©, spin-instability regime 2©, and stable high-
density regime 3©. As initial state, the spin mixture m= {±3/2} is prepared with a temperature
T = 0.19± 0.05 TF. Experimental data have also been published in [1].

±1/2 and ±3/2. Without the emergence of a spin instability, the Fermi sea remains in
the initial spin states ±3/2. This gives a direct measure whether a spin instability has
occurred.

The resulting stability diagram has been mapped out, depicted in Fig. 6.11. Plotted
are the occupations of the spin states ±1/2 as a function of magnetic field and density.
Three different regimes can be identified:

Zeeman-protected regime
At large magnetic fields and low densities, no spin instabilities are observed (re-
gion 1© in Fig. 6.11). The spin mixture m= {±3/2} is stabilized by an external
magnetic field, which induces a large detuning between the initial and final spin
configuration. Spin-changing collisions are off-resonant.

Spin-instability regime
At lower magnetic fields or higher densities, spin-changing collisions are possible
leading to the emergence of spin instabilities (region 2© in Fig. 6.11). This is
reflected in the continuous change of the spin occupations.

Stabilized high-density regime
Unexpectedly, the initial spin mixture m= {±3/2} remains stable at high densi-
ties and low magnetic fields (region 3© in Fig. 6.11). This occurs despite the fact
that spin-changing collisions are energetically possible in this regime. Note the
abrupt change in the spin occupations at approximately np = 7.0×1012 cm−3.
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The Zeeman-protected (region 1©) and the spin-instability regime (region 2©) can be
captured in a mean-field approach. In this parameter regime, the spin instabilities are
driven by the interplay between mean-field interactions and Zeeman energy. However,
the pure mean-field approach cannot explain the stable high-density regime (region 3©).

For a deeper understanding of this feature, a numerical simulation of the stability
diagram has been performed, combining the mean-field approach with a relaxation
approximation. The damping is introduced as a global term, yielding a Boltzmann
equation of the following form:

∂tρ(t) =
1

i~

[
V
∑
kl

(Uklij − Ukjil) ρkl(t), ρ(t)

]
+

1

i~N
[
qS2

z , ρ(t)
]

︸ ︷︷ ︸
collisionless Boltzmann equation

−Γ · ρ(t)|i 6= j︸ ︷︷ ︸
damping

. (6.6)

The last term corresponds to a relaxation approximation of the collision term, which
reduces the coherences exponentially, reflecting lateral collisions. For the simulations,
the experimental parameters from Fig. 6.11 were used. The initial coherence fluctuations
were approximated with a small spin rotation (θ= 0.1) of the spin mixture m= {±3/2}.
For each density and magnetic field, the time evolution was calculated until coherent
mean-field dynamics were damped out.

In a first simulation, the damping rate Γ was calculated with a linearized version
of the collision term without free parameters (for details see [1]). These calculations
yield a density-dependent damping rate Γ. The resulting stability diagram is depicted
in Fig. 6.12 A. A comparison of this numerical result with the experimental data in
Fig. 6.11 shows a good agreement. In particular, the calculations reproduce all ex-
perimentally observed regimes: the Zeeman-protected (region 1©), the spin-instability
regime (region 2©), and also the high-density regime (region 3©). Note that a global
factor of 2.25 was inserted for the damping rate. This leads to a better quantitative
agreement between the experimental data and the simulations without qualitatively
changing the obtained results.

In a second simulation, the stability diagram was calculated with the same pa-
rameters but with a density-independent damping rate of Γ = 2 Hz. The corresponding
result is depicted in Fig. 6.12 B and shows an important difference: it reproduces the
Zeeman-protected (region 1©) and the spin-instability regime (region 2©), while the spin
stabilization is clearly absent (region 3©).

This study allows for the conclusion that the spin-stabilization mechanism can be
attributed to the density dependence of the damping rate. This implies that higher
densities associated with an increased interaction strength lead to enhanced relaxation,
which induces the stabilization. In terms of the microscopic processes, this reflects the
enhanced role of lateral collisions (represented by the damping rate Γ) compared to
the mean-field interactions (represented by the interaction integral V ). Figure 6.12 C
depicts the corresponding ratio Γ/V , which increases with density. Above a specific
ratio, spin instabilities are suppressed.

One can understand the role of dissipation in the following way: Spin instabilities
driven by forward scattering generate coherences (see section 6.3.1), while damping
processes driven by lateral collisions reduce coherences (see section 6.1.2). In terms of
the single-particle density matrix, lateral collisions project the state onto the diagonal
elements of the initial state. This is similar to the measurement projection associated
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Figure 6.12: Numerical simulation of the stability diagram. (A) The calculated spin oc-
cupation n(±1/2) is plotted versus magnetic field and density after a time evolution of t= 3.5 s,
where mean-field dynamics are damped out. For the simulation, the experimental parameters
from Fig. 6.11 are used. The seed in the coherences is modeled with a spin rotation θ= 0.1 of the
spin mixture m= {±3/2}. The density-dependent damping rate is calculated using a linearized
approach of the collision term [1] and globally scaled with a factor of 2.25, kindly provided
by U. Ebling [203]. (B) Simulated stability diagram for a density-independent damping rate
of Γ = 2 Hz. (C) Ratio of the damping rate in A and the interaction integral as a function of
density.

with the quantum-Zeno effect [239, 240]. In further analogy to this phenomenon, any
coherent evolution of the system is suppressed.

Note that only a qualitative agreement is found, which is expected due to several
strong simplifications: First of all, a global damping rate Γ for all coherences was
assumed, which is in fact different for each collision channel. Moreover, the linearization
ansatz for the damping rate is only valid for small changes of the initial state [203]. In
addition, it turns out that the damping depends on the instantaneous spin configuration
[1] and is time-dependent. These additional features have not been included in the
simulations. This leads to the smooth crossover between the spin-instability (region 2©)
and the stabilized regime (region 3©) in contrast to the experiments.

In conclusion, the presented experiments demonstrate that higher densities can in-
duce a completely different macroscopic behavior of the high-spin Fermi sea. Collective
behavior is entirely suppressed, when lateral collisions dominate. This implies that
magnetically excited spin configurations can be stabilized by the intrinsic collisional
properties of the many-body system. Still, some observations remains puzzling, such
as the abruptness of the transition or the role of the harmonic trap. The results have
triggered further ongoing theoretical studies [211], which might provide the answer and
lead to a better quantitative agreement.



116 Relaxation in high-spin fermions

6.4 Spin-relaxation dynamics in high-spin fermions

So far the presented experiments were focused on the interplay between forward and
lateral collisions. The latter induce a suppression of collective dynamics at higher tem-
peratures and densities. As worked out in section 6.1, lateral collisions are dominated
by spin-conserving processes due to the quadratic dependence on the scattering length.
They are similar to conventional particle-hole excitations in spin 1/2 fermions and
induce a spatial relaxation of the many-body system.

Beyond this, high-spin systems also allow for spin-changing lateral collisions, in-
troduced as the process (iii) in section 6.1. These collisions have been theoretically
studied for bosonic systems [202] and lead to relaxation involving spin and spatial de-
grees of freedom. This has important consequences for an interacting binary Fermi sea:
despite its equilibrium spatial distribution, the spin configuration corresponds to an
excited state. Therefore, it is exposed to spin-changing lateral collisions, which induce
spin-relaxation dynamics among all available spin states. Even though this process is
suppressed compared to spin-conserving lateral collisions, it can be clearly distinguished
in the dynamics of the spin occupations.

In this section, I will investigate spin-changing lateral collisions in a high-spin Fermi
sea. The presented experiments demonstrate for the first time spin-relaxation dynamics
in a fermionic quantum gas. As a key result, the observed dynamics drive the system
towards a spin equilibration and are well captured within a single-mode approximation
of the collision term. A study of the spin-relaxation properties will be presented.

6.4.1 A single-mode approximation for the collision term

The high-spin Boltzmann equation 6.3 including the collision term can be numerically
solved in one dimension [203]. For higher-dimensional systems as in the experiments
simplifications are inevitable, for example a linearization approach or a relaxation ap-
proximation of the Boltzmann equation [202, 232].

Here, I present a single-mode approximation for the collision term [1, 65, 79, 205]. In
connection with the described experiments, it was derived by U. Ebling and coworkers
and implemented during this research work. The single-mode approximation requires
significantly less numerical effort and can also be easily applied for higher-dimensional
systems. The justification for the single-mode approximation follows the same route
as in the mean-field case (see section 5.3): If the trap dynamics are faster than the
collision process, the spatial dependencies are averaged out and an effective long-range
potential is induced. Since spin-changing lateral collisions appear at a very small rate
(see Fig. 6.1 B), this assumption is well justified.

To implement a single-mode approximation for the collision term, the procedure is
also similar to the mean-field case. The Wigner function is assumed to separate into
a product of a spatial and a spin part, where the spatial part is approximated with
the Thomas-Fermi distribution (see appendix A). This results in a Boltzmann equation
with the collisionless part and an additional single-mode collision term [2]:

∂tρ(t) =
1

i~

[
V
∑
kl

(Uklij − Ukjil) ρkl(t) + qS2
z , ρ(t)

]
︸ ︷︷ ︸

collisionless part

+C
∑
abcd

T abcdρacρbd︸ ︷︷ ︸
collision term

. (6.7)
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C is the collisional integral, given by the following expression:

C =
1

N

∫
dr

∫
dp

∫
dq |q| f0(r,p)f0(r,p− q) . (6.8)

This term reflects the rate of lateral collisions and corresponds to a convolution of the
initial and final spatial distribution weighted with the momentum transfer q. Note that
the magnetic field is neglected. This leads to deviations only at large magnetic fields
as discussed in section 6.4.3. T abcdmn is a tensor, given by [2]

T abcdmn =
m

4π~4

(
Ũmabdδnc + Ũncbdδma −

∑
l

UmalbUncld

)
, (6.9)

which includes the higher-order coupling constant Ũacbd, given by

Ũacbd =

(
4π~2

m

)2 ∑
F,M

a2
F 〈ab|FM〉 〈FM |cd〉 . (6.10)

The collision term includes only quadratic terms of the density matrix like the
collisionless Boltzmann equation. Hence, the numerical treatment can be performed
in the same way. Note, that it is a non-trivial question whether lateral collisions can
be conceptually described in a single-mode approximation. These collisions change the
momentum configuration, while in the single-mode approximation all spatial degrees
of freedom are integrated out. It turns out that spin-changing lateral collisions are
well described within this approach, while it fails in capturing spin-conserving lateral
collisions (see appendix C).

6.4.2 Observation of spin-relaxation dynamics

Lateral spin-changing collisions lead to spin-relaxation dynamics of the fermionic many-
body system, which were first observed in this work. To limit spin dynamics only to
these collisions, the spin mixture m= {±1/2} is initially prepared. Due to the absence
of coherences, collective mean-field dynamics are suppressed and the density matrix
remains diagonal during the time evolution.

In a first experiment, a 1d system is realized. This geometry allows to compare the
experiment with calculations of the Boltzmann equation 6.3 with spatial resolution.
Experimentally, the spin mixture is loaded into a deep two-dimensional optical lattice
confining the atoms into tubes. At a lattice depth of 25Erec, the tunneling time between
the tubes is approximately 200 ms and remains well below the experimental time scale.
Spin-relaxation dynamics recorded in this configuration is depicted in Fig. 6.13 A. The
system gradually occupies all ten available spin states and evolves towards equal spin
populations [2]. The spin dynamics occur on a time scale of several milliseconds and
yields an excellent agreement with the numerical solution of the Boltzmann equation 6.3
without free parameters (for details see [206]).

In the 3d bulk system, the spin mixture is prepared in the optical dipole trap and
the subsequent spin dynamics are monitored. The time evolution of the spin states is
depicted in Fig. 6.13 B. This experiment reveals the same qualitative behavior of the
bulk system compared to the 1d system. However, the corresponding time scale has
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Figure 6.13: Spin-relaxation dynamics in different geometries. (A) Spin-relaxation
dynamics in a 1d geometry with ωx,y,z = 2π×(84, 47000, 47000) Hz are depicted, realized in a
deep 2d lattice. The experimental parameters are N = 100 per tube, T = 0.2 TF and B= 0.12 G.
Solid lines are 1d simulations of the Boltzmann equation 6.3, which are kindly provided by
U. Ebling [203]. (B) Spin-relaxation measurements in a 3d bulk system at trapping frequencies
ωx,y,z = 2π×(33, 33, 137) Hz. The experimental parameters are N = 1.3×105, T = 0.15 TF, and
B= 0.34 G. Solid lines are calculations using the single-mode approximation (equation 6.7).
Experimental data have also been published in [2].

increased by three orders of magnitude from milliseconds to seconds. This reflects the
strongly reduced density compared to the tube geometry.

In this system, simulations of the Boltzmann equation 6.3 are not possible and the
data are compared to calculations using the single-mode approximation (equation 6.7).
As a key result, the data of the spin-relaxation dynamics are in very good agreement
with corresponding calculations without free parameters.

6.4.3 Studying the spin-relaxation properties

The experiments presented in the last section constitute the first observation of spin-
relaxation dynamics in a fermionic quantum gas. This motivates to study the properties
of this unique high-spin process, featuring a relaxation among spin and spatial degrees
of freedom. Here, studies of the magnetic field and the density dependence as well as
thermalization properties are presented.

Density dependence

In general, the density determines the collision rate of a many-body system. To investi-
gate this for spin-changing lateral collisions, spin-relaxation dynamics were monitored
for five different densities, featuring a spin redistribution from the initial spin mix-
ture m= {±1/2} into further spin configurations. The density is increased by changing
the particle number while keeping the temperature constant. By fitting an exponential
decay, the relaxation rate is determined from the data. The result of this analysis is
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Figure 6.14: Density dependence of spin-relaxation dynamics. The absolute spin-
changing rates for the spin configurations ±1/2, ±3/2 and ±5/2, obtained by fitting exponen-
tial decays to the dynamics as in Fig. 6.13 B, are depicted. While the temperature is constant
at T = 0.26 TF, the particle number is increased. The magnetic field is B= 0.11 G. Solid lines
are calculations obtained from a single-mode approximation (equation 6.7). Shaded area ac-
counts for uncertainties in temperature and particle number. Experimental data have also been
published in [2].

depicted in Fig. 6.14, revealing in general a small relaxation rate (Γsclat< 1 Hz). It in-
creases for higher densities, which demonstrates that an enhanced redistribution among
the available spin states can be realized by tuning the density.

The experimental data are compared to single-mode approximation calculations
(equation 6.7) without free parameters. As a result, the dynamics precisely follow the
calculated rate, given by the collisional integral C (equation 6.8). The calculations also
reveal a small nonlinear increase, which is different from the mean-field interaction
integral, having a linear dependence (see Fig. 5.11). This highlights, that the collisional
integral C increases faster with density than the mean-field integral V , reflecting the
enhanced role of lateral collisions at intermediate interactions.

Magnetic field dependence

To study the influence of the Zeeman energy, the spin mixture m= {±1/2} is monitored
after a time evolution of t= 2 s for different magnetic fields. The result is depicted in
Fig. 6.15 A, from which several observations can be drawn:

First, spin-changing collisions are only strongly suppressed at large magnetic fields
(B> 4.5 G). The mechanism behind this is entirely different from the collective spin
dynamics (see section 5.4), which is driven by the interplay between Zeeman and inter-
action energy. For lateral spin-changing collisions, where the momentum is changed, the
Zeeman energy must be compared to the Fermi energy. This energy is typically much
larger (≈ kHz) than the spin-changing mean-field interaction (≈Hz) and hence larger
magnetic fields are required to suppress spin dynamics. Therefore, one can conclude
that particles are redistributed involving all occupied spatial states of the Fermi sea
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Figure 6.15: Dependence of spin-relaxation dynamics on the magnetic field. (A)
Spin populations n(m) are depicted after a time evolution of t= 2 s versus the magnetic field.
The experimental parameters are N = 2.7×105 and T = 0.2 TF. (B) A sketch of the magnetic
field influence for spin-changing lateral collisions is shown. The spatial distribution of the spin
states ±1/2 is detuned with respect to ±3/2. Experimental data have also been published in [2].

(see Fig. 6.15 B).
As a second observation, spin-relaxation dynamics are suppressed at different mag-

netic fields depending on the spin configurations. This is consistent with the Zeeman
energy difference between the initial spin mixture m= {±1/2} and the correspond-
ing spin configuration. Moreover, it implies that higher collision quanta are directly
involved in spin-relaxation dynamics.

This proof-of-principle experiment could have several prosperous applications. It
constitutes a measure for the collisional integral C as a function of the momentum
transfer. This could serve as a novel tool to determine the temperature of the system,
which is directly connected to the data. It also provides new possibilities for many-
body relaxation [215]: The spin-changing lateral collision rate can be fully suppressed
at larger magnetic fields, while spin-conserving lateral collisions are not significantly
influenced. This demonstrates that the ratio between both processes Γsc

lat/Γ
nsc
lat can be

widely tuned up to a complete suppression. One can therefore regard the m= {±1/2}
system as a two-component Fermi sea with tunable losses into further spin states. This
allows to continuously tune the character of this spin system from an open to a closed
system.

Thermalization properties

As discussed in section 6.1, spin-conserving collisions are strongly enhanced compared
to spin-changing lateral collisions. Hence, one can assume that also in the presence of
spin-changing lateral collisions the initial spin system is close to a thermal distribution,
mediated by spin-conserving lateral collisions [230, 231] (see Fig. 6.16 A). This motivates
to study the global temperature of the system under the influence of spin-relaxation
dynamics, which is presented in the following.
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Figure 6.16: Temperature increase due to spin-relaxation dynamics. (A) A sketch
of the thermalization process is depicted. After a spin-changing lateral collision (upper part),
spin-conserving lateral collisions lead to a proper thermalization (lower part). (B) The spin
occupations n(±1/2) are depicted as a function of time. This effective particle loss leads to
an increase of the absolute temperature, shown in (C). The magnetic field is B= 0.12 G, the
particle number N = 3.9×105, and the initial temperature T = 0.24 TF corresponding to 65 nK.
The reference measurement for the temperature increase without spin-changing collisions is
performed at B= 7.6 G (see text). Experimental data have also been published in [2].

To investigate the thermalization process experimentally, two experiments have been
performed, where the temperature has been monitored during the time evolution: First,
a system at high magnetic field was studied, where spin-changing collisions are strongly
suppressed (B= 7.6 G). During the time evolution of 1 s, the temperature increases from
65 nK to 80 nK due to photon scattering [133]. This provides a suitable reference for a
second experiment at low magnetic field (B= 0.12 G), where significant spin-relaxation
dynamics occur. The corresponding spin redistribution is depicted in Fig. 6.16 B. To de-
termine the temperature of the multi-component system, all spin components m 6= 1/2
are transferred into the f = 7/2 manifold, which is transparent for the detection light.
This allows to reliably determine the temperature, which is compared to the first ex-
periment (see Fig. 6.16 C).

As an important result, the absolute temperature increases in the presence of spin-
changing collisions [241]. The system is initially prepared in a very cold two-component
Fermi sea, where only a few spatial states are unoccupied. Losses through spin-changing
lateral collisions perforate the Fermi sea, which thermalizes by spin-conserving lateral
collisions, associated with an absolute temperature increase.
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6.5 Conclusion and outlook

In this chapter, I have presented a detailed study of relaxation effects in a high-spin
Fermi sea. As a central result, the experiments demonstrate that collective spin dynam-
ics crucially depend on global parameters such as temperature and density. This can
be attributed to the interplay between several microscopic collision processes. These
occur on very different time scales and are dominated by the fermionic quantum statis-
tics. At ultralow temperatures, Pauli blocking stabilizes collective dynamics due to
the suppression of lateral collisions. Higher interaction strengths lead to an intriguing
spin-stabilization mechanism induced by lateral collisions, thus fully suppressing any
collective dynamics. In this context, the first demonstration of mean-field driven spin
instabilities in a fermionic quantum gas could be achieved. Finally spin-relaxation dy-
namics have been studied for the first time, driven by spin-changing lateral collisions,
which lead to a relaxation among spin and spatial degrees of freedom.

The presented results have triggered further theoretical studies, which are ongoing
and which might provide deeper insight into the role of different collision processes
with a more analytical approach [211]. Future experiments could study the interplay
between forward and lateral collisions in lower dimensional systems [59, 61]. In such
experiments, the influence of lateral collisions should be enhanced and experimental
data could be directly compared to numerical simulations with spatial resolution [203].
Prosperous applications arise from the observed spin-changing lateral collisions, which
constitute a new relaxation effect. Due to the intrinsic momentum resolution of this
process, this could serve as a new method to determine the temperature of a many-
body system, which could also be extended to lattice systems [242, 243]. In addition,
by tuning the magnetic field a precise control of the lateral collisions allows to tune the
character of a spin system continuously from an open to a closed system, providing a
novel tool for many-body relaxation [215].

As a final comment, the experiments presented in the last three chapters have
studied fermionic spin dynamics driven by high-spin interactions in different regimes –
from the local two-particle spin dynamics to many-body spin dynamics. Nevertheless,
fundamental questions have still remained unanswered: What is the connection between
giant spin oscillations in bulk systems and two-particle spin dynamics in optical lattices?
Is there a continuous crossover? Will one find new phenomena between these regimes?
These questions could be directly addressed in future experiments, for example at the
Bose-Fermi Mixture setup by studying fermionic spin dynamics at the intermediate
lattice depths with prepared coherences.



Appendix A

Non-interacting fermions

This appendix contains additional information on non-interacting fermions. It provides
definitions and formulas employed in the main text to describe non-interacting fermions
either harmonically-trapped or confined in optical lattices.

Fundamental constants

Common name Abbreviation Value

Speed of light c 2.99792458×108 m · s−1

Vacuum permittivity ε0 8.8541878×10−12 F ·m−1

Elementary charge e 1.6021773×10−19 C
Planck constant h 6.6260755×10−34 J · s
Planck constant (reduced) ~ 1.0545887×10−34 J · s
Electron mass me 9.1093897×10−31 kg
Boltzmann constant kB 1.380658×10−23 J ·K−1

Atomic mass unit u 1.6605387×10−27 kg
Gravity of Earth (Hamburg) g 9.813749 m · s−2

Bohr radius aB 5.2917721×10−11 m
Bohr magneton µB 9.27400915×10−24 J · T−1

Table A.1: Fundamental constants in the International System of Units. These
constants [244] are used in this thesis. Atomic properties of 40K can be found in [245] and in
the references therein. Scattering lengths of 40K are provided in Table 2.2.

Fermions confined in a harmonic trap

In the experiments presented in this thesis, the atoms are confined in an optical dipole
trap. After the evaporation, the trap is compressed, which justifies assuming a harmonic
potential of the Gaussian-shaped trap. There are several excellent descriptions available
for these systems [148, 246]. Here, the formulas important for the calculations in the
main text are provided.
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The single-particle Hamiltonian for the harmonic trap is given by

H(r,p) =
1

2m

(
p2
x + p2

y + p2
z

)
+
mω2

2

(
x2 + y2 + λz2

)
(A.1)

For an ideal Fermi gas, the distribution follows the Fermi-Dirac statistics

fFD(E, T ) =
1

1
ζ exp

(
E
kBT

)
+ 1

, (A.2)

where ζ = exp(µ/kBT ) is the fugacity, which is related to the chemical potential µ. At
zero temperature, the chemical potential coincides with the Fermi energy EF, which
corresponds to the highest occupied energy level in the harmonic trap. The Fermi energy
can be calculated with

EF = ~ω(6λN)1/3 , (A.3)

where N is the particle number. It is related to the Fermi temperature by TF=EF/kB.
To calculate the density distribution in a harmonic trap, a semiclassical approxima-

tion can be employed. This assumes that the thermal energy is larger than the spacing
of the trap levels and constitutes a reasonable approximation for the shallow trap ge-
ometry. In a phase-space representation, the Thomas-Fermi distribution of the trapped
Fermi gas is given by [148, 247]

fTF(r,p) =
1

(2π~)3

1

exp
(
H(r,p)−µ
kBT

)
+ 1

. (A.4)

The spatial density distribution is derived from the integration over the momentum
degree of freedom, yielding

n(r) =
1

(2π~)3

∫
dpfTF(r,p) . (A.5)

To calculate this, it is suitable to rewrite the spatial density in terms of polylogarithmic
functions Lin{x} =

∑∞
k=1 x

k/kn and to introduce the rescaled coordinate r = x2 +y2 +
λz2. This results in the following equation:

n(r) = −(kBmT )3/2

(2π)3/2~3
Li3/2

{
−ζ exp

(
mω2

2kBT
r

)}
. (A.6)

The fugacity in this expression can be determined by the relation

Li3 (−ζ) =
T3

F

6T 3
. (A.7)

This allows for a straight-forward calculation of the density distribution. The peak
density is defined as np = n(r = 0) and the average density as n =

∫
dr n(r)/N .

Note that for an interacting two-component spin mixture, it is in general a very
complex problem to calculate the density distribution. However, since the experiments
are performed in the weakly interacting regime, the interaction influence on the spatial
shape is negligible. In a balanced spin mixture, the density is calculated using the
particle number of one spin component. The temperature and the trap frequencies are
calibrated in separate experiments. To account for the two-component spin mixture,
the resulting density is multiplied by a factor of two.
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Figure A.1: Band structure of a 1d optical lattice. (A) Depicted is the band structure
for the lattice depths s = 2.0 and s = 10.0. For this representation in the so-called reduced
zone scheme [174], the band structure is plotted within the first Brillouin zone as a function of
the quasimomentum q. The employed units are kBZ = klat. (B) The width of the energy bands
is plotted as a function of the lattice depth.

Fermions in periodic potentials

In the Bose-Fermi Mixture setup, a 3d cubic optical lattice is implemented, which can be
superimposed on the atoms in the dipole trap [124, 125, 134]. The corresponding lattice
potential leads to the formation of a band structure En

q , containing energy bands n for
each quasimomentum q separated by band gaps. The corresponding lattice potential is
separable in all spatial dimensions and the total energy spectrum is given by the sum
of the individual spatial directions, each described by the Hamiltonian [247]

Hlat=
p2

2m
+ s · Er · sin2(klat z) . (A.8)

Here, s is the dimensionless parameter for the lattice depth VL = sEr, where Er =
~2k2

lat/2m is the atomic recoil energy with klat = 2π/λlat. The eigenstates of this Hamil-
tonian are Bloch states, which have the same periodicity as the potential according to
the Bloch theorem [174]. In a Fourier expansion they are given by

|ψ(q, n)〉 = e−iqklatz
∞∑

l=−∞
cn

q,l e−i2lklatz . (A.9)

The eigenenergies En
q of the Hamiltonian A.8 form a band structure, containing energy

bands n for each quasimomentum q separated by band gaps. Note that the resulting
spectrum En

q is uniquely defined by the lattice depth s, which is exemplarily depicted
in Fig. A.1 A. For increasing lattice depth, the band width decreases while the band
gap increases (see Fig. A.1 B).

Due to the Pauli exclusion principle, each single-particle state of the system can
be occupied only once. The highest energy of the occupied single-particle states at
zero temperature corresponds to the Fermi energy EF. In quantum gas experiments,
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typically only the lowest band is occupied, allowing for two ground states of the system:
If the Fermi energy lies within the band gap, all available states in the lowest band are
populated and a band insulator is formed, which is insulating and incompressible. If
the Fermi energy lies within the lowest band, free states are available corresponding to
a metallic state.



Appendix B

Feshbach resonances in 40K

In this work, the physics of interacting spin mixtures has been studied. Alongside the
detailed investigation of spin dynamics in a fermionic quantum gas, several Feshbach
resonances in 40K have also been investigated. This was necessary, since these resonances
constitute a severe problem for the preparation of spin mixtures (see 3.2.3). Moreover,
they are of general interest, providing an intriguing tool to tune interactions and losses
in a wide parameter range.

Indeed, there is a zoo of Feshbach resonances present in 40K, which exceeds the
typically used resonances (see Table B.1) by far. In the course of this research work,
20 new Feshbach resonances have been observed and identified (see Table B.2). This
has been worked out in the diploma theses of N. Fläschner [108] and M. Langbecker
[109], which I co-supervised. Here, I have summarized the results and compare them
to calculations provided by T. Hanna and coworkers [117]. Parallel to the experiments
performed during this work, in addition 26 Feshbach resonances have been found in
the group of J. Walvaren in Amsterdam. The results are presented in the thesis of
A. Ludewig [248]. A joint publication including in addition experimental data from the
groups of I. Bloch in Munich and T. Esslinger in Zurich and several theory coworkers
is in preparation.

At a Feshbach resonance, an unbound state of the two scattering particles is cou-
pled to a virtual bound molecular state, which changes the interaction strength and
losses dependent on the magnetic field [117, 119]. The scattering length has therefore
a complex form: ã = a − bi, where a describes the conventional elastic scattering and
b corresponds to inelastic two-body collisions. The magnetic field dependence of a is
given by:

a(B) = aBG

(
1− ∆B(B −B0)

(B −B0)2 + (γB/2)2

)
. (B.1)

Here, B0 is the resonance position and ∆B the width of the Feshbach resonance. γB
is the decay rate of the closed channel and aBG the background scattering length. The
magnetic field dependence of b is given by

b(B) = 2ares
(γB/2)2

(B −B0)2 + (γB/2)2
, (B.2)

where γB = ~γ/µres with the differential magnetic moment µres and the resonance
length ares = aBG∆B/γB.
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m= {m1,m2} M Partial wave Bexp(G) ∆Bexp(G) Refs.

{−9/2,−7/2} -8 s 202.10± 0.07 7.0± 0.2 [48, 243, 249]
{−9/2,−5/2} -7 s 224.21± 0.05 9.7± 0.6 [141, 250]

Table B.1: Typically used Feshbach resonances in 40K. So far, experiments have in-
vestigated mainly the following spin mixtures: {−9/2,−7/2} and {−9/2,−5/2}. The Fesh-
bach resonances typically used in these mixtures are shown. Given are the total magnetization
M =m1 +m2, the partial wave, the resonance position Bexp(G) and the width ∆Bexp(G).

To determine Feshbach resonances experimentally, a spin mixture ofm= {+9/2,+7/2}
with about 5×104 atoms per spin state is prepared in an optical dipole trap. The trap-
ping frequencies are ω= 2π×50 Hz and the temperature is approximately T = 0.3 TF.
For the investigation of different collision channels, the spin mixtures are prepared at
a magnetic field of B= 45 G with rf-sweeps. After this preparation, the magnetic field
is ramped to its final value and a waiting time of 100 ms is applied. Subsequently, the
magnetic field is switched off and the atoms are counted after a time-of-flight applying
a Stern-Gerlach gradient field. The position Bexp(G) and the width ∆Bexp(G) of the
Feshbach resonances are determined with atomic losses (see also [108]). Note that the
atom loss gives a reasonable estimate for the Feshbach resonance position accompa-
nied by small deviations [53]. The width of the losses is mainly connected to inelastic
two-body collisions and three-body losses and does not serve to precisely determine the
width of the resonance. However, it serves as a measure for magnetic field ranges with
enhanced losses and is crucial for the preparation of spin mixtures. The experimental
data are compared to calculations using multi-channel quantum defect theory [119],
kindly provided by T. Hanna and coworkers [117]. These calculations include the scat-
tering length as a function of the magnetic field, sampled with a resolution of 0.5 G.
To extract the resonance position Bth(G) and the resonance width ∆Bth(G) from the
calculations, equation B.1 was fitted to the theoretical data. The comparison of exper-
iment and theory, depicted in Table B.2, shows a good agreement for the resonance
position. This is expected, since the molecular potentials are very well known for 40K.

As can be drawn from Table B.2, one Feshbach resonance of the spin mixture
m= {+1/2,−1/2} has particular properties, which have been studied in detail (see
[109]). This spin configuration corresponds to the magnetic ground state of the two-
particles states of the M = 0 spin system. Thus it is stable against spin-changing colli-
sions at large magnetic fields, which widely avoids losses. Calculations reveal a Feshbach
resonance at a magnetic field of 389.6 G with a width of approximately 26.4 G, allowing
to tune the scattering length range between −3000 aB and +3000 aB. This is about three
times as wide as the conventional Feshbach resonances, which has motivated a detailed
analysis. For a precise determination, a new method based on spin waves has been
worked out, which is in detail described in the diploma thesis of M. Langbecker [109].
The idea behind this is similar to the gradient compensation presented in section 3.3.2.
It relies on the fact that the phase of the dipole oscillations induced by spin waves
is inverted when the sign of the interaction changes from positive to negative. This
occurs at the resonance position as well as at its zero crossing. It turns out that this
method allows for a precise determination. The experimental values of the position are
Bexp(G) = 389.5 (0.1) and of the width ∆Bexp(G) = 25.9 (0.8), which is in very good
agreement with the data.



129

m= {m1,m2} M Partial wave Bexp(G) ∆Bexp(G) Bth(G) ∆Bth[G]

{+1/2,−1/2} 0 s 15.3 (3.8) 3.8 17.3 0.1
0 s 30.5 (3.8) 3.8 30.9 0.2
0 s 53.4 (3.8) 3.8 53.4 0.4
0 s 87.5 (3.8) 3.8 87.1 0.4
0 s 245.6 (0.8) 2.5 246.6 2.0
0 s 389.5 (0.1) 25.9 (0.8) 389.6 26.4

{+3/2,−3/2} 0 s 95.1 (3.8) 3.8 93.8 1.8
0 s 181.9 (3.8) 3.8 181.5 2.2

{+5/2,−5/2} 0 s 61.0 (3.8) 15.0 61.5 4.2
{+7/2,−7/2} 0 s 35.0 (1.0) 9.3 35.0 3.4

0 s 148.0 (3.8) 3.8 145.8 0.2
{+9/2,−9/2} 0 s 18.0 (0.4) 6.7 18.8 1.8
{+9/2,−7/2} +1 s 13.4 (1.9) 3.0 14.5 0.4

+1 s 29.0 (1.9) 8.0 30.2 2.9
+1 p 138.4 (1.0) 40.8 138

{+9/2,−5/2} +2 s 26.7 (1.9) 8.0 27.1 1.4
+2 s 63.8 (0.3) 29.8 63.3 6.0

{+9/2,−3/2} +3 s 53.4 (3.8) 11.0 52.4 3.1
+3 s 141.1 (0.8) 45.5 140.5 14.0

{+9/2,−1/2} +4 s 114.0 (7.6) >50 113.5 7.8

Table B.2: New Feshbach resonances in 40K. 20 new Feshbach resonances have been
identified, which are listed in the table. Given are the corresponding spin mixture, the total
magnetization M =m1 +m2, the partial wave, the resonance position Bexp(G) and the width
∆Bexp(G). Furthermore, data for the calculated resonance position Bth(G) and width ∆Bth(G)
are shown, provided by T. Hanna and coworkers [117].

The experimental study demonstrates, that 20 new Feshbach resonances have been
observed in 40K, where 19 have an s-wave character and one is a p-wave resonance.
Furthermore, another 11 loss features are listed in Table B.3, which might also be asso-
ciated with Feshbach resonances, where no data is available. In general, most Feshbach
resonances observed in our experiment are accompanied by strong losses in a broad
magnetic field range. These fields have to be circumvented in particular during the
evaporation, which limits the available parameter regimes significantly. Alternatively,
the spin mixtures can be finally prepared after the evaporation of stable spin mixtures.
However, in general the lifetime is strongly reduced for most spin mixtures.

As a consequence, this also provides a new tuning knob: Losses can be tuned at
Feshbach resonances, while the interactions remain widely constant. This allows for
various future applications, for example the study of a quantum-Zeno insulator in opti-
cal lattices, which has been worked out in the course of this research work. The result is
discussed in the thesis of J. Heinze [107]. In addition, the broad Feshbach resonance in
the spin mixture m= {+1/2,−1/2} is prosperous for future applications. Located at an
accessible magnetic field of B= 389.6 G, its broad width of approximately 26.4 G is ap-
proximately three times larger compared to conventionally used Feshbach resonances.
Due to the suppression of losses, this resonance also constitutes an ideal candidate for
two-component studies, since it requires less control over the magnetic field. In addi-
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m= {m1,m2} M Bexp(G) ∆Bexp(G)

{+5/2,−9/2} −2 22.9 10.0
{+1/2,−1/2} 0 40.3 < 1

0 46.7 < 1
{+5/2,−5/2} 0 30.5 7.0
{+7/2,−7/2} 0 64.5 9.6
{+9/2,−9/2} 0 36.3 14.0

0 92.6 36.7
{+9/2,−7/2} +1 66.3 25.6
{+7/2,−5/2} +1 61.0 20.0
{+5/2,−3/2} +1 121.6 > 40
{+9/2,−5/2} +2 163.4 6.7

Table B.3: Further magnetic field values in 40K with enhanced losses. Listed are
magnetic fields, at which strong losses occur. Given is the corresponding spin mixture, the total
magnetization M =m1 +m2, the loss position Bexp(G) and the loss width ∆Bexp(G). These
magnetic fields are probably associated with a Feshbach resonance. Either there are no data
available or the corresponding loss features arise from higher partial wave Feshbach resonances.

tion, the absolute value of the magnetization of the involved spin states makes this spin
mixture less sensitive for magnetic field gradients, which is very important for current
studies of spin-orbital coupling with fermionic atoms [251]. Moreover, combining differ-
ent Feshbach resonances constitutes an ideal starting point for high-spin mixtures with
controllable interactions. From the current available data, three-component mixtures
with two attractive and one repulsive scattering length are available, allowing to study
unconventional high-spin BCS pairing [88, 90, 208]. So far, there is no combination
known, where three-component mixtures with exclusively attractive interactions can
be realized in 40K. This is possible with 6Li, where experiments in this direction are
currently performed.



Appendix C

Details for fermionic spin
dynamics

At this point, details for the main subject of this thesis – spin dynamics in a fermionic
quantum gas - will be provided. This includes further information on the data analysis
and the interaction matrices for all available spin configurations. Moreover, additional
details for the spin rotation of incoherent states and the numerical treatment of the
Boltzmann equation in single-mode approximation are given.

Interactions of the spin systems in 40K

In section 4.2, two-particle spin dynamics have been investigated for two spin systems:
a pseudo-spin 3/2 system including the two-particles states |7/2, 3/2〉 and |9/2, 1/2〉
(see section 4.2.2) and the spin 9/2 system including the two-particle states |±1/2〉,
|±3/2〉, |±5/2〉, |±7/2〉, and |±9/2〉 (see section 4.2.4). These spin systems were chosen
to cover two cases: the most fundamental and the most complex spin system available
in 40K. To complement this, an overview of the interaction matrices is given for all
available spin systems in the lowest hyperfine manifold of 40K, which could be studied
in future experiments.

In principle, there are 13 different spin systems available, where spin dynamics occur
(M =−6, ..., 6). The interaction matrices are independent of the sign of the total mag-
netization due to the rotational symmetry of the system. They are listed in Table C.1,
according to the basis provided in Table 2.1.
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M =m1 +m2 Interaction matrix (aB)

±8,±7
(
168.53

)

±6

(
167.77 1.16
1.16 166.76

)

±5

(
167.01 1.24
1.24 167.52

)

±4

165.87 1.9 −0.78
1.9 165.87 2.95
−0.78 2.95 163.9



±3

164.35 2.49 −0.78
2.49 164.98 2.53
−0.78 2.53 166.31



±2


161.64 4.14 −2.22 1.64
4.14 162.09 5.4 −3.69
−2.22 5.4 161.53 7.43
1.64 −3.69 7.43 158.21



±1


156.95 6.26 −3.04 1.31
6.26 159.61 5.94 −2.4
−3.04 5.94 161.9 4.32
1.31 −2.4 4.32 165.02



0


145.77 11.18 −6.48 4.50 −3.69
11.18 154.12 10.19 −6.99 5.83
−6.48 10.19 156.23 10.86 −8.78
4.50 −6.99 10.86 155.66 13.40
−3.69 5.83 −8.78 13.40 151.62



Table C.1: Interaction matrices of spin systems in the lowest hyperfine manifold
of 40K. Matrices of different subspaces with the involved two-particle states |m1,m2〉 are
listed according to their total magnetization M =m1 +m2 =−8, ...,+8 with the same basis as
in Table 2.1. The described experiments are performed in the M = 5 and M = 0 spin system,
involving two and five two-particle states, respectively (see section 2.2.2).
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Fitting of the spin-dynamics data

From the spin-dynamics experiments, the data are obtained in a Stern-Gerlach exper-
iment. In each experimental run, the occupation of each spin component is measured
simultaneously. Therefore, the experiments require a special treatment in the data anal-
ysis.

Up to ten different spin components can be involved in the dynamics, which oscil-
late with up to ten frequencies. For a better reliability of the data analysis, a high-
dimensional fit algorithm was employed to extract each frequency from all data sets in
conformity (see also [1, 5]).

Therefore, to each oscillating spin state, the following fit function is applied:

n(m)(t) = O(m)

︸ ︷︷ ︸
offset

+A(m) exp(−D(m)t)︸ ︷︷ ︸
slow in-/decrease

+
∑
j

C
(m)
j exp(−Γjt) cos(ωjt+ φj)︸ ︷︷ ︸

damped spin oscillations

. (C.1)

Here, O(m) is a general offset and the slow overall increase or decrease of the population
of the individual spin states is expressed in the second term, employing an exponential
function with amplitude A(m) and time constant D(m). The spin oscillations are de-

scribed by the sum in the third term, where C
(m)
j is the amplitude, ωj the frequency,

φj the initial phase and Γj the damping constant. The sum is taken over the number
of all contributing frequencies j.

For the two-particle dynamics, the two-level and the five-level system have been in-
vestigated (see section 4.2). Regarding the two-level system (see section 4.2.2), four
single-particle spin states are involved in the spin oscillations (|1/2〉, |3/2〉, |7/2〉,
|9/2〉). Further spin states, which are slowly populated due to tunneling processes,
only show a slow overall increase of their spin populations. These are fitted with
n(m)(t) = Ã(m) (1 − exp(−Γ̃(m)t), where Ã(m) is the amplitude and Γ̃(m) the time
constant. For the investigated five-level system (see section 4.2.4), all spin states par-
ticipate in the time evolution (|−9/2〉 , . . . , |9/2〉). Due to the switching time of the
magnetic field (tswitch≈ 500µs), individual phases φj 6= 0 for each spin components are
considered.

For the collective spin dynamics in bulk systems, the spin-oscillation data were also
fitted with formula C.1. However, similar to the two-level system, only two spin config-
urations are involved. This restricts the fitting to one frequency and the corresponding
four oscillating spin components. Moreover, when no significant overall increase or de-
crease was visible in the data, the second part of equation C.1 was omitted.
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Spin rotations of arbitrary spin mixtures

In section 5.1.2, the role of coherences for collective spin dynamics has been worked
out and a preparation scheme has been demonstrated. Here, some technical details
for the calculations will be provided and the spin rotations of further spin mixtures
(m= {±3/2} and m= {±9/2}) will be presented.

At low magnetic field, all ten spin states of the f=9/2 manifold are simultaneously
coupled. Therefore, the procedure corresponds to a rotationally symmetric transforma-
tion in spin space, since different spin states remain indistinguishable. This rotation is
generated by the angular momentum operators S± depending on the total spin f [252].
Since the rf-pulses couple the spin states with ∆m= ± 1, the corresponding generators
of rotation are given by

Sx =
1

2
(S+ +S−) ,

Sy =
1

2i
(S+−S−) .

(C.2)

Without loss of generality, the phase between the operators S+ and S− can be set to
zero.

The rotation of the spin state |m〉 of one single atom is described by

|m(θ)〉 = exp

(
−iSx,yθ

2

)
|m〉 , (C.3)

where θ is the spin rotation angle. Note that a factor of 1/2 was inserted, such that a
full rotation is obtained at θ= 2π.

This concept can be generalized to a density matrix ρ, which is not a pure state
as above but an incoherent state. The rotation of the initial density matrix ρ0 is given
accordingly by

ρ(θ) = exp

(
−iSx,yθ

2

)
· ρ · exp

(
+

iSx,yθ

2

)
. (C.4)

This can be applied to all spin mixtures. Throughout this work, the absolute values
of the density matrix are always plotted; however, the off-diagonal elements can be
complex. Note that the spin rotation is a linear operation, which changes each diagonal
entry of the density matrix independently. The patterns shown in Fig. 5.4 are interfer-
ence effects, which lead to checkerboard-like structures. When a ten-component Fermi
sea occupying all diagonal elements of the density matrix is rotated, it remains fully
unaffected by the rf-manipulation.

In the following, measurements of spin rotations of two further spin mixtures are
provided. The result is similar to the rotation of the spin mixture m= {±1/2}, demon-
strated in section 5.1.2. The spin mixture m= {±3/2} has been used in section 5.4.5.
It allowed for the first observation of collective spin dynamics dominated by collisions
with ∆m= 2. For this purpose, a rf-pulse was applied to this mixture, yielding signifi-
cant occupations and coherences between the spin configurations ±1/2 and ±5/2. The
experimental result of this rf-manipulation is depicted in Fig. C.1 A. The spin mixture
m= {±9/2} was employed to demonstrate spin dynamics in further spin mixtures. It
was rotated in spin space resulting in occupations and coherences between the spin
configurations ±9/2 and ±7/2. The experimental result of this preparation is depicted
in Fig. C.1 B. Note that also for these spin mixtures a very agreement is found with
the Rabi-frequency as only free parameters.
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Figure C.1: Preparation of single-particle coherences for different spin mixtures.
Measured spin occupations starting from the spin mixture m= {±3/2} (A) and m= {±3/2}
(B) are depicted as a function of the rotation angle θ. The rf-pulse is applied at a frequency of
53.7 kHz (22 kHz) and at a magnetic field of B= 0.17 G (B= 0.07 G) for A (B). Solid lines are
calculations using equation 5.7, with the Rabi-frequency as the only free parameter.
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For completeness, the employed generators of rotation Sx and Sy and the projection
operator Sz are provided for the ten-dimensional spin space of the f = 9/2 manifold,
yielding three 10×10 matrices:

Sx =



0 3
2 0 0 0 0 0 0 0 0

3
2 0 2 0 0 0 0 0 0 0

0 2 0
√

21
2 0 0 0 0 0 0

0 0
√

21
2 0

√
6 0 0 0 0 0

0 0 0
√

6 0 5
2 0 0 0 0

0 0 0 0 5
2 0

√
6 0 0 0

0 0 0 0 0
√

6 0
√

21
2 0 0

0 0 0 0 0 0
√

21
2 0 2 0

0 0 0 0 0 0 0 2 0 3
2

0 0 0 0 0 0 0 0 3
2 0



Sy =



0 −3
2i 0 0 0 0 0 0 0 0

3
2i 0 −2i 0 0 0 0 0 0 0

0 2i 0 −
√

21
2 i 0 0 0 0 0 0

0 0
√

21
2 i 0 −

√
6i 0 0 0 0 0

0 0 0
√

6i 0 −5
2i 0 0 0 0

0 0 0 0 5
2i 0 −

√
6i 0 0 0

0 0 0 0 0
√

6i 0 −
√

21
2 i 0 0

0 0 0 0 0 0
√

21
2 i 0 −2i 0

0 0 0 0 0 0 0 2i 0 −3
2i

0 0 0 0 0 0 0 0 3
2i 0



Sz =



9
2 0 0 0 0 0 0 0 0 0
0 7

2 0 0 0 0 0 0 0 0
0 0 5

2 0 0 0 0 0 0 0
0 0 0 3

2 0 0 0 0 0 0
0 0 0 0 1

2 0 0 0 0 0
0 0 0 0 0 −1

2 0 0 0 0
0 0 0 0 0 0 −3

2 0 0 0
0 0 0 0 0 0 0 −5

2 0 0
0 0 0 0 0 0 0 0 −7

2 0
0 0 0 0 0 0 0 0 0 −9

2


.

(C.5)
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Figure C.2: Single-mode calculations with inserted phenomenological damping. Cal-
culated spin occupations are depicted as a function of different damping rates Γ as indicated in
the figure. The same parameters have been used as for the proof-of-principle experiment shown
in section 5.5. In general, for the calculations a damping rate of Γ = 1 – 2 Hz is assumed, which
matches the experimental findings. The mean-field oscillation properties such as the frequency
and amplitude are not significantly affected.

Details for the single-mode approximation

In chapter 5 and 6, a single-mode approximation has been worked out – first for the
pure mean-field approach and second for the collision term. In this section, details for
the implementation will be provided. Furthermore, it will be demonstrated that not
only spin dynamics initialized by prepared coherences but also spin instabilities are
captured in this approach.

For the simulations, the particle number, the temperature, and the trapping fre-
quencies are inserted. These are determined in separate experiments prior to the spin-
dynamics experiments. The corresponding statistical errors are accounted for in the
simulations, but those are typically small. In this context, systematic errors are hard to
estimate: The particle number has systematic uncertainties due to different absorption
cross sections (for details on this issue see [106, 137]). In addition, the accuracy of the
temperature determination is mainly limited by the finite time-of-flight. Moreover, the
trapping frequencies are calibrated with dipole oscillations, which also leads to small
deviations for multi-mode fermions [203].

With these input parameters, the simulations are in principle performed without
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Figure C.3: Simulations of fermionic spin instabilities for different magnetic fields.
Calculated spin occupations are depicted as a function of different magnetic fields as indicated
in the figure. The initial state is the spin mixture m= {±9/2} with a small spin rotation of
θ= 0.05. The temperature is T = 0.1TF, and the peak density is np = 1×1013 cm−3.

free parameters. An additional assumption is the phenomenological damping rate Γ in
the Boltzmann equation:

∂tρ(t) =
1

i~

[
V
∑
kl

(Uklij − Ukjil) ρkl(t), ρ(t)

]
+

1

i~N
[
qS2

z , ρ(t)
]

︸ ︷︷ ︸
collisionless Boltzmann equation

−Γ · ρ(t)|i 6= j︸ ︷︷ ︸
damping

. (C.6)

As worked out in chapter 6, the damping term globally reduces the coherences of the
system and damps the collective spin dynamics. This effect is demonstrated in Fig. C.2,
where collective spin dynamics for the parameter of the proof-of-principle experiment
(see Fig. 5.5) are simulated for different Γ. As expected, the mean-field dynamics are
damped out. For the simulations, the damping rate Γ is chosen between 1 – 2 Hz, which
is in good agreement with the experiments. Additionally, this leads to the Fourier
broadening visible in the frequency analysis of the spin oscillations.

In the following, I demonstrate that also spin instabilities can be reproduced in a
single-mode approximation. In section 6.3.1, density matrices of such a simulation have
been shown, revealing the spin occupations alongside the formation of coherences. The
unknown initial coherence fluctuations constitute a general problem. They are modeled
with a small spin rotation θ≤ 0.1. In Fig. C.3, a simulation for the initial spin mixture
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Figure C.4: Long-term spin dynamics calculation in a single-mode approximation.
Plotted is a numerical simulation of the dynamics using the 3d Boltzmann equation including
the collision term in single-mode approximation (equation 6.7). The same parameters as in the
experiment in Fig. 6.1 have been used. The simulations reproduce the spin oscillations (mean-
field dynamics) and also the subsequent relaxation of the system towards an equilibrium spin
distribution (spin-changing lateral collisions).

m= {±9/2} with a spin rotation of θ= 0.05 is depicted. The time evolution reveals
giant collective dynamics even though the initial coherences are very small. In contrast
to the spin-cascade experiment presented in section 6.3.1, coherent dynamics lead to
oscillations between all spin configurations. Probably the presence of a magnetic field
gradient damps this oscillatory behavior in the experiment. In general, this demon-
strates that spin instabilities can be reproduced within the single-mode approximation
approach. The dynamics are depicted for different magnetic fields as indicated in the
figure, revealing a fully different spin dynamics. In particular for higher magnetic fields,
a dephasing of the spin configurations is found, consistent with the experiments.

Moreover, the collision term was implemented in the single-mode approximation as
worked out in section 6.4.1. It has been demonstrated in section 6.4.2 that this approach
reproduces the slow spin redistribution induced by spin-changing lateral collisions. Fur-
ther simulations have been performed to investigate the influence of the single-mode
collision term on the collective spin dynamics. For this purpose, the dynamics of the
long-term experiment as shown in Fig. 6.1 was simulated without free parameters.
The result is depicted in Fig. C.4, where three observations can be found: First, the
mean-field driven spin oscillations are very well reproduced. This underlines again that
the single-mode approximation accounts for spin-changing forward collisions, which is
expected from the detailed study described in section 5.4. Note that the beat note vis-
ible in the simulation is also a mean-field effect and arises from the interplay between
several involved scattering lengths. Moreover, the spin redistribution is reproduced,
highlighting that spin-changing lateral collisions can also be described in a single-mode
approximation as discussed in section 6.4. However, the damping of the spin oscilla-
tions is significantly underestimated. This can be attributed to the integration over
the spatial degrees of freedom, which are obviously important for the correct descrip-
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tion. Therefore, spin-conserving incoherent collisions are not described in the employed
single-mode approximation. In contrast to the single-mode approximation approach,
simulations of the Boltzmann equation with collision term and spatial resolution in 1d
reproduce the observed damping much better [2].
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[5] J. S. Krauser, J. Heinze, N. Fläschner, S. Götze, O. Jürgensen, D.-S. Lühmann,
C. Becker and K. Sengstock: “Coherent multi-flavour spin dynamics in a fermionic
quantum gas”, Nat. Phys. 8, 813–818 (2012).

[6] J. Heinze, S. Götze, J. S. Krauser, B. Hundt, N. Fläschner, D.-S. Lühmann,
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ciapuoti, J. J. Arlt, K. Bongs and K. Sengstock: “Dynamics of F = 2 Spinor
Bose-Einstein Condensates”, Phys. Rev. Lett. 92, 040402 (2004).

[77] M.-S. Chang, Q. Qin, W. Zhang, L. You and M. S. Chapman: “Coherent spinor
dynamics in a spin-1 Bose condensate”, Nat. Phys. 1, 111–116 (2005).
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[118] S. Falke, H. Knöckel, J. Friebe, M. Riedmann, E. Tiemann and C. Lisdat: “Potas-
sium ground-state scattering parameters and Born-Oppenheimer potentials from
molecular spectroscopy”, Phys. Rev. A 78, 012503 (2008).

[119] C. Chin, R. Grimm, P. Julienne and E. Tiesinga: “Feshbach resonances in ultra-
cold gases”, Rev. Mod. Phys. 82, 1225–1286 (2010).

[120] F. Werner, O. Parcollet, A. Georges and S. R. Hassan: “Interaction-Induced Adi-
abatic Cooling and Antiferromagnetism of Cold Fermions in Optical Lattices”,
Phys. Rev. Lett. 95, 056401 (2005).

[121] B. Pasquiou, G. Bismut, Q. Beaufils, A. Crubellier, E. Maréchal, P. Pedri,
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[172] R. Jáuregui, N. Poli, G. Roati and G. Modugno: “Anharmonic parametric exci-
tation in optical lattices”, Phys. Rev. A 64, 033403 (2001).

http://stacks.iop.org/1367-2630/13/i=11/a=113021
http://stacks.iop.org/1367-2630/13/i=11/a=113021
http://dx.doi.org/10.1103/PhysRevLett.110.220401
http://dx.doi.org/10.1103/PhysRevLett.110.220401
http://dx.doi.org/10.1103/PhysRevB.74.174404
http://dx.doi.org/10.1103/PhysRevB.74.174404
http://dx.doi.org/10.1103/PhysRevLett.105.050402
http://dx.doi.org/10.1103/PhysRevLett.105.050402
http://dx.doi.org/10.1103/PhysRevLett.105.050402
http://dx.doi.org/10.1103/PhysRevA.88.043616
http://dx.doi.org/10.1103/PhysRevA.88.043616
http://dx.doi.org/10.1103/PhysRevA.83.053605
http://dx.doi.org/10.1103/PhysRevA.83.053605
http://dx.doi.org/10.1103/PhysRevLett.107.215301
http://dx.doi.org/10.1103/PhysRevLett.107.215301
http://dx.doi.org/10.1103/PhysRevLett.107.215301
http://dx.doi.org/10.1103/PhysRevB.88.125108
http://dx.doi.org/10.1103/PhysRevB.88.125108
http://dx.doi.org/10.1103/PhysRevB.88.125108
http://stacks.iop.org/1367-2630/11/i=10/a=103030
http://stacks.iop.org/1367-2630/11/i=10/a=103030
http://dx.doi.org/doi:10.1038/nphys1476
http://dx.doi.org/doi:10.1038/nphys1476
http://dx.doi.org/10.1103/PhysRevLett.109.055301
http://dx.doi.org/10.1103/PhysRevLett.109.055301
http://dx.doi.org/10.1103/PhysRevA.57.R20
http://dx.doi.org/10.1103/PhysRevA.57.R20
http://dx.doi.org/10.1103/PhysRevA.63.052709
http://dx.doi.org/10.1103/PhysRevA.63.052709
http://dx.doi.org/10.1103/PhysRevA.64.033403
http://dx.doi.org/10.1103/PhysRevA.64.033403


[173] M. Greiner, I. Bloch, O. Mandel, T. W. Hänsch and T. Esslinger: “Exploring
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Neighbor Correlations of Ultracold Fermions in an Optical Lattice”, Phys. Rev.
Lett. 106, 145302 (2011).
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verschiedenen Theoriegruppen zusammenarbeiten zu können, die damit das Projekt
entscheidend mit nach vorne gebracht haben. Dazu gehören Dirk-Sören Lühmann sowie
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