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Abstract

In this work, we focus on two aspects of cosmological data analysis: inference of param-
eter values and the search for new effects in the inflationary sector.

Constraints on cosmological parameters are commonly derived under the assumption of
a minimal model. We point out that this procedure systematically underestimates errors
and possibly biases estimates, due to overly restrictive assumptions. In a more conser-
vative approach, we analyse cosmological data using a more general eleven-parameter
model. We find that regions of the parameter space that were previously thought ruled
out are still compatible with the data; the bounds on individual parameters are relaxed
by up to a factor of two, compared to the results for the minimal six-parameter model.
Moreover, we analyse a class of inflation models, in which the slow roll conditions are
briefly violated, due to a step in the potential. We show that the presence of a step
generically leads to an oscillating spectrum and perform a fit to CMB and galaxy clus-
tering data. We do not find conclusive evidence for a step in the potential and derive
strong bounds on quantities that parameterise the step.

Zusammenfassung

In dieser Arbeit behandeln wir zwei Aspekte der statistischen Analyse kosmologischer
Daten: Die Genauigkeit der Bestimmung von Modellparametern sowie die Suche nach
neuen physikalischen Effekten.

Die Werte kosmologischer Parameter werden im Allgemeinen unter der Annahme eines
minimalen Modells bestimmt. Bei dieser Vorgehensweise werden allerdings generell die
Fehler unterschitzt. Im Rahmen eines konservativeren Ansatzes analysieren wir kosmol-
ogische Daten in einem erweiterten Modell mit elf freien Parametern. Im Vergleich zu
Analysen mit dem minimalen 6-Parameter-Modell vergrofert sich der erlaubte Bereich
im Parameterraum deutlich. Fiir einzelne Parameter wichst die Unsicherheit um einen
Faktor zwei.

Auflerdem untersuchen wir eine Klasse von Inflationsmodellen, in der das Inflatonpo-
tential eine Stufe aufweist. Dies fiihrt zu einer Oszillation im Spektrum der primor-
dialen Dichtefluktuationen. Ein Vergleich der Vorhersagen dieser Modelle mit Daten
aus Messungen der Hintergrundstrahlung und der Verteilung von Galaxien ergibt keine
zwingende Evidenz fiir eine Stufe im Potential. Wir finden starke Einschriankungen fiir
den erlaubten Parameterbereich.
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Introduction

In the past two decades, the field of theoretical cosmology has come a long way. Twenty
years ago, our knowledge about the beginnings of the Universe was, for a lack of solid
observational data, speculative at best. These days, the situation presents itself in a
completely different light. High precision measurements of various cosmological probes,
such as the anisotropies of the Cosmic Microwave Background (CMB) or the distribution
of galaxies, have brought a wealth of information, enabling us to answer fundamental
questions about the nature of the Universe.

The recent advances have led to the emergence of the so-called cosmological concor-
dance model, whose predictions are consistent with all current data. But at the same
time, new questions and challenges have arisen. It seems that only about five percent
of the energy density of the Universe are made up of particles of the Standard Model of
particle physics. Another quarter consists of the unknown dark matter, the remainder
being taken up by the even more enigmatic dark energy. In the case of dark matter,
there is well-founded hope that its mysteries will be unravelled at the upcoming Large
Hadron Collider at CERN, scheduled to start operating this year. The detection and
identification of a particle with the right properties to constitute the dark matter would
be a spectacular confirmation of our cosmological picture. A solution to the dark en-
ergy conundrum, on the other hand, will most likely require a deeper understanding of
quantum gravity.

The data also provide substantial evidence that the infant Universe underwent a pe-
riod of inflation, an exponential growth of its scale factor driven by the potential energy
of a scalar field, the inflaton. Initially postulated to explain the observed large scale
homogeneity and isotropy of the Universe [1], it was soon realised that inflation also
offers a mechanism for the generation of small density perturbations [2,3]. During in-
flation, quantum fluctuations of the inflaton field are blown up to macroscopic scales
and eventually “freeze in”, as they are stretched beyond the horizon scale. The so cre-
ated inhomogeneities eventually start growing under the influence of gravity and can be
considered the seeds of structure formation.

Whereas there is little doubt that inflation has taken place in some form, it is not clear
how it can be embedded in the framework of particle physics; the inflaton has not yet
revealed its identity to us. Consequently, there is a large number of suggestions on the
market, differing slightly in their predictions of the perturbation spectra. The current
data put us in a position where we can begin to rule out candidates. This can give us
important clues about the physics happening at energies only a few orders of magnitude
below the Planck scale.
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While most inflation models predict a smooth and featureless spectrum of primordial
perturbations, there also exist slightly more exotic models that predict certain features.
The discovery of evidence for such a feature in the data would have far-reaching con-
sequences for inflationary model-building. In this work, we analyse a particular class
of non-standard inflation models, where the scalar potential of the inflaton field has a
step-like form. We show that the presence of a step generically leads to an oscillating
spectrum and perform a fit to CMB and galaxy clustering data. Our results show that
there is no conclusive evidence for a step in the potential and we derive strong bounds
on quantities that parameterise the step.

Another important problem in the era of precision cosmology is that of parameter esti-
mation. Most cosmological parameters of interest cannot be measured directly. Rather,
their magnitudes and uncertainties have to be inferred from their effects on observable
quantities. The results of the inference depend, among other things, on the underlying
model one assumes for the analysis. In the literature, it is a common practice to quote
the values derived under the assumption of a minimal model. We point out that this pro-
cedure systematically underestimates errors and possibly biases the inferred parameters,
due to the restrictive assumptions made in that model.

Considering that estimates of, for instance, the dark matter density, are often used
as input to constrain other theories, we advocate a more conservative approach. To
this end, we analyse cosmological data using a more general eleven-parameter model,
incorporating a number of well-motivated physical effects, e.g., a neutrino mass. We
find that regions of the parameter space that were previously thought ruled out are still
compatible with the data; the bounds on individual parameters are relaxed by up to a
factor of two, compared to the results for the minimal six-parameter model.

This thesis is organised as follows. In Chapter I, the reader will be reminded of
some of the basic concepts of Friedmann-Lemaitre-Robertson-Walker cosmology and the
cosmological concordance model. Chapter II will illuminate the réle of inflation in the
generation of initial perturbations, which determine the dynamics of structure formation
during later stages of cosmic evolution. In Chapter III we will review the statistical
concepts and methods that form the foundations of the analysis of cosmological data
and pave the way for an application of these techniques in Chapters IV and V, where
the main results of our work will be presented, largely based on our Refs. [4-6].

Throughout this work we will use natural units with ¢ = h = 87G = 1.



I. The Cosmological Concordance Model

This introductory chapter serves to introduce the notation and the reader will be given
a very brief overview of the cosmological concordance model, the current state of obser-
vations, and possible extensions of the basic model. In the following, we will adhere to
the sign conventions of Ref. [7].

1. Basics

The quantitative description of cosmology rests on a fundamental postulate, known
as the cosmological principle, which states that when averaged over large scales, our
Universe is spatially homogeneous and isotropic. In other words, no single point or
direction should be distinguished. The most general metric possessing this maximal
spatial symmetry is the Friedmann-Lemaitre-Robertson-Walker metric:

dr?

d32 = guydl’udly = dt2 — a2(t) [m

+ 7% (d6* + sin® ¢ d¢2)} , (I.1)
where a is the scale factor and I € {—1,0, 1} corresponds to a spatially open, flat, or
closed Universe, respectively. Defining the conformal time interval dr = dt/a, the metric
can also be written as

dr? ,
ds* = a*(7) |:d7’2 1 re + 7% (df® + sin* 6 d¢2)} . (I.2)
Einstein’s equations
Guw=Tu (1.3)

relate the Universe’s geometry, encoded in the Einstein tensor G, to its energy content
represented by the energy-momentum tensor 7). Obviously, 7, must obey the same
symmetries as G, and is typically parameterised as an ideal fluid with pressure p and
energy density p,

T;w = —DPIw + (P + p) Uy Uy, (14)
with u, = (1,0,0,0) the velocity of a comoving observer. With 7),, of this form, Ein-
stein’s equations reduce to two independent equations, Friedmann’s equation and the

acceleration equation
N 2
a p K
- =z —-— | 5)
<a) 3 a¥ (15)

6-=—(p+3p), (1.6)

H2

Q| &



Chapter I: The Cosmological Concordance Model

where a dot represents a derivative with respect to ¢, and H is the Hubble parameter.
Its current value Hj is often given in terms of the dimensionless quantity

h = Hy/(100 kms™'Mpc ™). (L7)

Defining a critical density p. = 3H? and €; = p;/p., Friedmann’s equation can be
rewritten as K

where the summation index ¢ runs over all components of the cosmic fluid. To our
current knowledge, we need at least five different fluids to model our Universe halfway
faithfully: photons (f2,), neutrinos (2,), baryonic matter (€2,), dark matter (Qpwm)
and dark energy (Qpg), each of them equipped with an equation of state relating their
pressure and energy density:

pi = wi(t) pi- (1.9)
In the case of radiation or relativistic matter, for example, we expect w = % Non-
relativistic matter has w = 0, and a cosmological constant corresponds to w = —1.

It is clear that the idealised homogeneous and isotropic description of the Universe
cannot be wholly realistic. It does turn out, however, that a large number of phe-
nomenological aspects of the Universe can be very well approximated by considering
small perturbations dg,, of the metric (L.1),

G (@, 1) = g (t) + 0gu(, 1), (1.10)

and, consequently, small perturbations 67}, of the homogeneous and isotropic energy-
momentum tensor,

T (1) = Ty (£) + 0T, (). (L.11)

As long as the perturbations are sufficiently small with respect to the background, linear
perturbation theory will be an appropriate tool for the treatment of the inhomogeneities.

For a statistical description of a perturbation 0f (where f could be, for instance, the
energy density p; of component i), we define the real-space correlation function &,

Er(r) = (0f (1) 0 f (22)), (1.12)

with r = |&; — 5| and (-) denoting the ensemble average.! Its counterpart in momentum
space, the power spectrum P, is defined by

sin kr

Pr(k) = 47r/d7’ r2&s(r) (I.13)

r

In linear perturbation theory, modes of different wavenumbers will decouple, and their
equations can be evolved separately. In general, the fluctuations will of course be

! The field d f is taken to be an ergodic, statistically homogeneous and isotropic random field, see, e.g.,
Refs. [8,9] for a more complete account.

10



1. Basics

time-dependent. The time evolution can be expressed in terms of a transfer function
A% (1, 70):
Pk, m1) = A* (11, 72) Pk, 7). (L.14)

An accurate calculation of the transfer function is fairly involved and a detailed discus-
sion of this topic would be beyond the scope of this work. We refer the interested reader
to, e.g., Refs. [7,10-12]. Let us just briefly outline the basic idea here.

To calculate the transfer function, one needs to track the behaviour of the constituents
of the energy-momentum tensor, i.e., the different cosmological fluids and the corre-
sponding perturbations. Their properties can be described in terms of the distribution
function (1, x, p), which gives the number dN of particles per volume element of phase
space d*c d%, with p denoting the canonically conjugate momentum of x. It is related
to the energy-momentum tensor by

Ty 7 d3 v
"= (2%3 / EP 'Y §(r, z, p), (L15)

where g; is the number of spin states and E; = \/m? + p? is the energy of the particles
making up fluid . The dynamics of { are governed by the Boltzmann equation, in an

abstract form given by
df
o =Clf] (1.16)

The total derivative on the left hand side encodes the effects of gravity while the func-
tional C' on the right hand side describes the interactions of the fluids. If a fluid only
interacts gravitationally, such as for instance the dark matter, then C' = 0 and Equa-
tion (I.16) is called the collisionless Boltzmann equation. In a Universe filled with
photons, neutrinos, baryonic matter, dark matter, and dark energy, the only relevant
interaction after Big Bang Nucleosynthesis (BBN) is Compton scattering between the
baryons and the photons (taking place before recombination and after reionisation, see
below; this also ignores highly non-linear effects such as star formation). So the task
at hand is to evolve a set of four (five, if one allows perturbations of the dark energy
component) coupled Boltzmann equations, and construct the power spectrum from the
distribution functions, which can be used to retrieve the transfer function.

There exist a number of publicly available numerical programmes dedicated to de-
termining the transfer functions [13,14], based on the cnbf ast code by Seljak and
Zaldarriaga [15].

The advantage of this approach is that the transfer function is independent of the
initial spectrum of perturbations, as long as linear perturbation theory is valid. We only
need to know the type of perturbations: generally, any initial state can be expressed
in terms of a linear combination of an adiabatic mode and isocurvature modes. Let us
define the entropy, or fluctuation in the number density n, between two components i
and j as

11



Chapter I: The Cosmological Concordance Model

and the curvature perturbation on comoving hypersurfaces R (more on this quantity
in Chapter II). Adiabatic initial conditions correspond to pure curvature perturbations
(R # 0 and S = 0), while isocurvature modes correspond to perturbations in the entropy
with no perturbation in the curvature (R = 0 and S # 0).

In this work, we shall mostly be concerned with the form of the initial spectrum of
perturbations, where “initial” refers to a time during the radiation dominated phase, after
BBN. But what determines these initial conditions? In principle, they could be chosen
arbitrarily, leading to equally arbitrary observable spectra today and hence a theory
without predictivity, certainly not an attractive feature. We will see in Chapter II
though, that we can get a quite definite prediction for the form of the initial power
spectra, if we postulate a period of cosmic inflation to have taken place at an energy
beyond the BBN scale of O(MeV). As it happens, this prediction appears to describe
the observed data quite well. But before we get too far ahead, let us first present what
kind of observational information we have about the state of our Universe.

2. Cosmological Data

The most powerful probes of the history of the Universe are those that track the per-
turbations of its energy components. Mapping these perturbations requires a messenger
which, on the one hand, enjoys a more or less free propagation from its source to us and,
on the other hand, is also detectable. The first requirement rules out charged particles,
the second one precludes us from using neutrinos as messengers. This leaves only the
photon to track the perturbations. Due to these limitations, only the perturbations of
the photon background and the baryonic matter component are available for direct mea-
surements. We can, however, indirectly infer information about, e.g., the dark matter
perturbations via their gravitational interaction.

Furthermore, if we want to make reliable theoretical predictions for the spectra, it is
essential that the perturbations are small enough, such that nonlinear and backreaction
effects can be kept under control. This puts a lower limit to the wavelengths of the
perturbations one can potentially probe at a given redshift.

In the following, we will briefly describe the most important observable quantities and
give examples of the current state of data.

2.1. Matter Perturbations

If we require the baryonic matter to be in the linear (or quasi-linear) regime, it will
essentially consist of a sparse gas of neutral hydrogen and helium atoms. One way of
tracing it is through its absorption of photons if it lies between a photon source and
the observer. Such a source could, for instance, be a distant quasar, in whose spectra
one can detect absorption lines from the Lyman-a transition of neutral hydrogen in

12



2. Cosmological Data

the interstellar medium. From these measurements of the “Lyman-a-forest”, the power
spectrum can be reconstructed [16].

Additionally, one could try to detect absorption lines in the spectra of CMB photons
due to the 21cm spin flip in neutral hydrogen, and possibly also emission at lower
redshifts [17,18]. This method can potentially cover an extremely large range of scales,
but the signal is very faint and may be hard to separate from foreground emission; its
practical application remains a challenge for the future.

At the scales where baryonic matter forms luminous objects, such as stars or galaxies,
nonlinear effect are dominant by far. However, galaxies are more likely to form in the
potential wells of dark matter overdensities. They can therefore be used as a tracer of
the dark matter perturbations. The galaxy power spectrum P, and the dark matter
power spectrum Ppy; are assumed to be proportional to each other,

Py(k) = b Ppm(k), (1.18)

and the bias factor ' is taken to be scale independent on scales in the linear regime.

Given a catalogue of galaxy positions and redshifts, one can try to reconstruct the
correlation function and the power spectrum. While the theoretical correlation function
and power spectrum contain exactly the same information (since they are related by a
Fourier transform), the same is not true for the observational data sets, even though they
may be derived from the same raw data. This difference is due to a loss of information
in the individual reconstruction processes, involving e.g., a binning of the raw data.

Galaxy Power Spectrum

We plot the galaxy power spectrum from the luminous red galaxy (LRG) sample of the
Sloan Digital Sky Survey (SDsS) [19] in the left panel of Figure I.1. At large scales
the accuracy is limited by boundary effects of the survey geometry; at small scales
k/h > 0.06 Mpc ™, the effects of nonlinear structure growth begin to set in. For refer-
ence, we show the theoretical prediction of the concordance model for the linear power
spectrum and an empirical correction for the nonlinearities.

Galaxy Correlation Function

The SDSS LRG correlation function data [20] are shown in the right panel of Figure I.1.
Unlike the power spectrum data, which are relatively uncorrelated, this data set is highly
correlated, but, on the other hand, less susceptible to the effects of nonlinear structure
growth. The peak at s ~ 110 Mpc/h corresponds to the acoustic oscillations of the
plasma prior to decoupling and singles out an important physical scale, the size of the
sound horizon at decoupling.

13



Chapter I: The Cosmological Concordance Model
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Figure I.1.: Left: Power spectrum of luminous red galaxies measured by spss [19]. The solid
line is the power spectrum from linear perturbation theory, the dotted line includes corrections
due to scale dependent bias and nonlinear growth of structure. Right: Real-space correlation
function of luminous red galaxies vs. comoving separation s, measured by sDss [20].

Weak Lensing

It is also possible to circumvent the galaxy-dark matter bias problem and directly esti-
mate the underlying dark matter power spectrum from the distortion of galaxy shapes
due to gravitational lensing effects of the dark matter [21]. The presently available data,
however, cannot yet compete with that of conventional galaxy surveys [22].

2.2. Cosmic Microwave Background Anisotropies

After the recombination of protons and free electrons at a redshift of z,e. >~ 1100, the Uni-
verse became transparent to photons. Since then, the propagation of the CMB photons
has been almost undisturbed. Only with the ignition of the first stars (“reionisation”)
around redshift z; ~ 10 and the repopulation of the Universe with ions and free elec-
trons from stellar winds was there a chance for the photons to be scattered again. This
issue is commonly parameterised in terms of the optical depth to reionisation 7 (not
to be confused with the conformal time): a fraction of 1 — e~ of the CMB photons
have scattered once since recombination. The remaining fraction of e~ has reached us
directly from the surface of a sphere centred around us, the surface of last scattering.

While the information we can gather about, say, the galaxy power spectrum, is three-
dimensional, the CMB can only give us two-dimensional information about perturbations.
The definition of the power spectrum as given in Equation (I.13) will not be applicable
here. Instead, since the perturbations lie on the surface of a sphere, one resorts to an
expansion in terms of spherical harmonics (see Appendix A.1 for details). The angular
power spectrum Cy is related to the three-dimensional power spectrum P(k) via

Cg:/d—:P(k?) A2(k). (I.19)

14



2. Cosmological Data

In the line-of-sight approach of Ref. [15], the transfer function AZ(k) can be written as
an integral in conformal time 7 over a geometrical part and a part that depends on the
cosmology:

70

Ay(k) = /deg(k(T —70)) S(k,7), (1.20)

0

where 7y corresponds to today, j, is a spherical Bessel function and S(k, ) is a source
function, calculated from the Boltzmann equations.

The anisotropies of the CMB manifest themselves in two ways: firstly, as temperature
anisotropies AT'/T sourced by inhomogeneities in the gravitational potential, density
perturbations in the photon-baryon gas and Doppler redshift from fluctuations in the
peculiar velocity of the baryons which emitted the photons. In addition to the tem-
perature fluctuations, one finds linear polarisation induced by Thomson scattering in
the inhomogeneous plasma at recombination and after reionisation. Linear polarisation
corresponds to a two-dimensional vector field on the last scattering sphere, which can
be split into two scalar quantities, a curl-free E-mode and a divergence-free B-mode,
resembling the vector field properties of classical electrostatics.

Figure 1.2 shows the Wilkinson Microwave Anisotropy Probes (WMAP) measurements
of the temperature and FE-polarisation angular power spectra, as well as the cross-
correlation between the two [23-26]. The B-mode, being notoriously hard to separate
from foregrounds and leaking of F-mode power due to incomplete sky coverage, has
eluded detection so far and only upper limits exist.

2.3. Background Probes

Apart from measurements of the perturbations, there are numerous observations which
bring additional information about the background model, i.e., the averaged quantities.
These include for instance

e Big Bang Nucleosynthesis:
By comparison of measurements of the primordial abundances of light elements
with the predictions of BBN, one can find constraints on the baryon density:
0.017 < Qh? < 0.024 at 95% confidence level [27].

e Type Ia Supernovee (SNIa):
Due to a simple empirical relation between their absolute luminosity and width
of the light curve [28], supernovae of type Ia can be considered standard candles.
Measurements of their luminosity distance allow a reconstruction of the expansion
history of the Universe at redshifts up to z ~ 1 [29,30]. Hence, this data set is
particularly sensitive to the presence of dark energy, which dominates the energy
density in recent times.
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Figure 1.2.: Three-year WMAP data of the angular power spectra of temperature (red) and E-
polarisation (blue) anisotropies and their cross-correlation (purple), dashed lines corresponding
to anticorrelation. The shaded bands indicate the uncertainties due to cosmic variance.

e Measurements of the Hubble parameter:
The history of observational determinations of the Hubble parameter has been full
of controversies [31], due to various sources of systematic errors. The most-cited
recent value is h = 0.72 £ 0.08 at 68% C.L. [32].

3. The Vanilla Model

Given the cosmological data presented in the previous section, one could ask, 'what is
the model with the least number of free parameters that describes these data well?’
This model is known under various names, ACDM-model, the concordance model or the
“vanilla” model. It is based on the FLRW-cosmology of Section 1.1 and the following
additional assumptions:

e The Universe is flat, {2 = 0, as predicted by inflation.

e It is filled with

o the photons of the CMB, which has a temperature of 7' = 2.726 K,

o a cosmic neutrino background (CrB), consisting of three species of massless
neutrinos,

o baryonic matter (this includes charged leptons), with a primordial Helium
fraction of Y, = 0.24 as predicted by a naive estimate [33],

16



3. The Vanilla Model

o cold dark matter, and

o dark energy in the form of a cosmological constant, i.e., wpy = —1.

e The initial perturbations are adiabatic, Gaussian and scalar and their spectrum is
given by a power-law P(k) = Ag(k/ko)"s™!, with a spectral index ng ~ 1, and a
normalisation Ag defined at a pivot scale kg, as predicted by single field slow roll
inflation (this point will be treated in more detail in the next chapter).

e Due to reionisation, a fraction of 1 — e~" of the CMB photons have scattered since
recombination.

e Its topology is trivial.

This model has six free parameters: the baryon and cold dark matter densities Q,h?
and Q.h?, the Hubble parameter H,, the optical depth to reionisation 7, the normalisa-
tion of the primordial power spectrum Ag and its tilt ng. Choosing the best-fit values
of these parameters gives a chi-squared per degree of freedom (DOF) of x2;/DOF ~ 1.02.
The 95% c.L. intervals of these parameters for a fit of the vanilla model to the wMAP
data are listed in Table I.1. These numbers should only be taken as rough guidelines
though; we will delve deeper into this issue in Chapters III and IV. Removing any of
these parameters and fixing them to their “natural” value (e.g., a model with Q. =0, or
a scale independent spectrum with ng = 1) would significantly worsen the quality of the
fit.

The point that has made the vanilla model so successful and earned it the epithet
“concordance”, is that it appears to fit all currently available cosmological data from
various independent sources without major discrepancies. Some people have even called
it the standard model of cosmology, but we should remember that it is only an empirical
model and not a fundamental theory, like for instance the Standard Model of particle
physics.

Parameter 95% C.L. region
Baryon density QO h? 0.0207 — 0.0236
Cold dark matter density Q.h? 0.089 — 0.121
Hubble parameter h 0.67 — 0.80
Reionisation optical depth T 0.04 — 0.14
Normalisation of scalar spectrum In [101°Ag] 2.89 — 3.17
Scalar spectral index ns 0.927 — 0.993

Table I.1.: Parameters of the vanilla model and their 95% C.L. regions for a fit to the three
year WMAP data.
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Chapter I: The Cosmological Concordance Model

4. Extensions of the Basic Model

There are dozens of more or less well-motivated extensions to this basic model. They
all have in common that none of them explains the observed data so much better that
it would have to be deemed absolutely necessary to introduce these extra effects. We
cannot hope to give a complete list of alternatives here, but let us at least mention a
few:

e Massive neutrinos:
Cosmological data can possibly complement oscillation experiments in providing
evidence for neutrino masses. Massive neutrinos suppress the growth of structure
at small scales due to free streaming. A convenient parameterisation is in terms
of f, = Q,/€, which is approximately related to the sum of neutrino masses by
Q,h? ~> " m,/93 eV.

e Dynamical dark energy:
Dark energy appears to have the largest share of the cosmic energy budget, yet
we know very little about it. Departures from a cosmological constant can be
as simple as wpr # —1, but the equation of state parameter could also be time-
dependent as, e.g., in quintessence models [34]. In these scenarios one would also
have to take into account the effects of perturbations in the dark energy.

e Non-standard initial perturbations:
From non-power-law spectra over tensor perturbations, isocurvature modes and
non-Gaussianities to subdominant contributions from topological defects, there
are many models which predict deviations from the vanilla setting. We shall grant
aspects of this point a more in-depth coverage in Chapter V.

e Non-zero spatial curvature:
This is one of the benchmark tests for the theory of inflation; if it could be unequiv-
ocally shown that the spatial curvature of the Universe is significantly different
from zero, inflation would be in a bad shape.

e Multiply connected Universe:
General Relativity is a local theory, it cannot make statements about global prop-
erties of the Universe. If the Universe had periodic boundary conditions on a scale
smaller than the current Hubble scale, one might be able to find characteristic
signatures in the CMB, see for instance Ref. [35].

e Alternative theories of gravity:
General Relativity has been experimentally tested on scales between O(0.1mm)
and roughly the radius of the solar system. At larger or smaller scales, there might
be corrections to the standard picture and several alternatives have been suggested
(cf., e.g., Refs. [36,37]).
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Il. Inflation and Cosmological Perturbations

The aim of this chapter is to outline how the initial perturbations are generated from
quantum fluctuations during inflation. We will see why they survive until a much later
time to set the stage for their subsequent evolution during the radiation- and matter-
dominated phases and show how to calculate their spectrum.

We employ the gauge invariant approach for the description of perturbations, following
Refs. [38,39]. For simplicity, we restrict ourselves to the single-field inflation scenario in
which only one scalar field is of dynamical relevance during inflation.

We will derive a set of differential equations which allow us to calculate the initial
perturbation spectra exactly, within the limits of linear perturbation theory. This sys-
tem of equations does not generally have an analytic solution, but can easily be solved
numerically.

One does not, however, always have to resort to the numerical brute force method.
It is possible to find an approximate analytical solution, the slow roll approximation,
which is applicable to most viable inflation models on the market these days. If a model
happens to be endowed a very flat and smooth potential, the inflaton field will slowly
roll towards the vacuum. The flatness and smoothness of the potential (or, alternatively,
the slow variation of the Hubble parameter) can be quantified in terms of the slow roll
parameters and the resulting perturbation spectra can be expanded in terms of these
parameters [40].

In the end, we shall see that single field slow roll inflation predicts an almost scale-
invariant power-law spectrum of scalar and tensor perturbations, thus justifying the
parameterisation used in the concordance model.

Our journey begins with an action &: for single-field inflation, we will take a canoni-
cally normalised, minimally coupled scalar field ¢ with potential V(¢) in Einstein gravity:

G = /d4x V=g [-iR+10,00"¢ —V(¢)]. (I1.1)

The (unperturbed) background metric is taken to be the flat Friedmann-Lemaitre-
Robertson-Walker metric

ds* = dt* — a*(t)da® = o®(7) [d7* — dz?] . (I1.2)

In the following, derivatives with respect to conformal time 7 will be denoted with a
prime. Consider now a perturbed metric and scalar field

Gu(x,t) = gu(t) + g, (x,t), (I1.3)

o(x,t) = o(t) + do(z, ). (I1.4)
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The perturbed metric has ten degrees of freedom, which can be divided into three classes:
scalar (4 DOF), vector (4 DOF) and tensor (2 DOF) perturbations, which do not couple
to each other at the linear order and can thus be treated separately. In fact, due to the
invariance of General Relativity under gauge (i.e., general coordinate) transformations
which removes four degrees of freedom, there are only six independent DOF left, two for
each type of perturbation.

In the inflationary scenario, vector perturbations will not be excited. Therefore we
will focus on the other two, beginning with the scalar ones.

1. Scalar Perturbations

If we limit ourselves to scalar linear perturbations, the most general form of the perturbed
metric is given by [38]

ds® = a*(7) {(1 +2A4)dr* — 20;Bda’dr — [(1 + 2¢)6;; + 20;0,E] da*da’},  (IL5)

where A, B, ¢ and E are real numbers, representing the four scalar degrees of freedom
before fixing a gauge. After choosing a suitable gauge, two degrees of freedom will
remain, one of which can be eliminated by imposing the condition that the energy
momentum tensor T, be stress-free: T} =0, (i # j). This is well motivated since the
quantum fluctuations of a scalar field can be regarded as a statistically homogeneous and
isotropic random field [41] which satisfies this requirement. The one remaining degree
of freedom will eventually be related to the field perturbation by Einstein’s equations.

We can now plug the perturbed quantities into the action. It is easy to see that the
first variation of the perturbed action is zero, since it is proportional to the solutions
of the background equations of motion. The first non-vanishing term is therefore the
second variation: N

G° = 6"+ §°6°. (IL.6)
It can be shown that the action for the perturbations can be expressed in terms of
z= a% and the Mukhanov variable u [42,43|,

"
5265 = /dT d’z [% (u)? = Oud'u) + 1 % u?l (IL7)

up to total derivatives. The Mukhanov variable u is a gauge invariant combination of
field and metric perturbations and can be defined via R, the curvature perturbation
(i.e., the 3D Ricci scalar) on comoving hypersurfaces:

= —2R. (IL.8)

In the longitudinal gauge (F = B = 0), the no-anisotropic-stress requirement reads
A = —1, and u can be expressed as

u=—z(v- %&p) | (IL9)
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1. Scalar Perturbations

Equation (II.7) is the action of a scalar field with a time-dependent squared mass. If
we now promote u to an operator and quantise it,

R 1 N ik.x ~ * —ik.x
u(r,x) = (2ﬂ)3/2/d3k{akuk(7')ek' +al ui(r)e ik }, (I1.10)

imposing the standard commutation relations for the creation and annihilation operators
a’ and a, it follows that the Fourier components of momentum % are decoupled from
other momenta and obey a simple equation,

" 2 2
w + | k7 — o 0. (I1.11)

Finally, we can define the primordial power spectrum of curvature perturbations Pr (k)
via the two-point correlation function in k-space

. 272
(RyRi) = 75 Pr(k) 6O (k- K. (I1.12)
It is related to u; and z by
k3 2 k3 U 2
_ - | I1.1

Assuming Gaussianity and adiabaticity, this quantity contains all the necessary informa-
tion for a complete statistical description of the fluctuations. Note that the perturbations
generated during single field inflation are necessarily adiabatic, since there is only one
fluid present.

1.1. Background Equations of Motion

In order to find a solution to Equation (II.11), one needs to know the behaviour of the
term z”/z. Its evolution is determined by the dynamics of the Hubble parameter and
the unperturbed inflaton field, governed by Friedmann’s equation

H? = LV + 1¢%), (11.14)
and the Klein-Gordon equation for ¢

. dv
¢+ 3Hd+ Fre 0. (11.15)

For our purposes, it is convenient to introduce another time parameter, the number of
e-foldings, defined by N = Ina/ag. In terms of N, Equations (II.11), (II.14) and (II.15)
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Chapter II: Inflation and Cosmological Perturbations

read

H
Uk, yn T F +1 Uk, N

i H oy dxn Hy\®> _Hy 1dV
t | a2 (2_4 H ¢ 2\ _5F_ﬁd752 ue =0,
(I1.16)
Hy=—3H, (I1.17)
Hy 1 dv
G .nn T (? + 3) O n+ m@ =0, (IL18)

where “, N” denotes a derivative with respect to /N, and N,y determines the normalisation
of the scale factor: i.e., at N = Ny we have a = 1. This coupled system of differential
equations can easily be solved numerically, once a suitable set of initial conditions has
been chosen.

1.2. Initial Conditions

Supposing that at a time N the system has reached the inflationary attractor solution
¢ < 3Ho, (11.19)

and is rolling slowly,
¢* < V(9), (I1.20)

the initial conditions for ¢ and H will be given by

&(Ng) = Pgr (I1.21)

1 dv
(b,N(NSI') = —m @ d)sr y (1122)
H(¢sr) = —V(fsr). (11.23)

In fact, the existence of the attractor is one of the properties that make inflation such
an elegant mechanism: no matter what the initial state of the system is, after a few
e-foldings, it will have reached the attractor and its dynamics will be described by
Equations (II.21)-(I1.23).

The initial conditions for u; can be obtained by requiring the late time solution of
(I1.11) to match the solution of a field in the Bunch-Davies vacuum of de Sitter space [44],
given by

—ikT

u(T) = 3% (1 + k—lT) , (I1.24)
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1. Scalar Perturbations

at early times, well before the observationally relevant scales leave the horizon. For
k> 2"/z (or, equivalently, k7 > 1) this can be approximated by the free field solution
in flat space

Up = —— e kT, I1.25
£= o (I1.25)

Fixing the irrelevant phase, we obtain the initial conditions for a mode £

1
ug(7) = \/7, (I1.26)

u,(10) = —i \/; (I1.27)

at a time 7 satisfying k > 2" /z|,.

=N
=N

1.3. Slow Roll

Following Ref. [45], we define the nth, (n > 1), Hubble slow roll parameter by

n ; 1/n _ 1/n
n dIn H® e
= {A[R) o)

i=1

with a superscript “(7)” denoting the ith derivative with respect to ¢. In addition to
that, we define %3y = 2(H™ /H)?. The first three parameters of the Hubble slow roll
hierarchy read

ey 2 :
_ H®(¢) ¢
ng = '8y H(o) = _(b—H’ (I1.30)
HONH®

Using these definitions it can be shown that the mode equation (II.11) can be written
as

up + (k% = 20°H? [L+ ey — 3n + € — 2emy + 3ng + 3¢5 ] ) ue = 0. (IL32)

Note that this expression is exact: it does not assume the slow roll parameters to be
small.

From a model-building point of view, where one regards the Lagrangian (or the scalar
potential) of the theory as the input quantity, the calculation of the Hubble slow roll
parameters can be quite involved. In this sense it may be more convenient to work with
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the potential slow roll parameters instead, which use derivatives of the potential instead
of derivatives of the Hubble parameter. The first three potential slow roll parameters
are defined by

v 2
e=1 7) , (I1.33)
2
VO G)
&2 72 (I1.35)

If the attractor condition (Equation (II.19)) is satisfied, the two are related via [45]

ey =e€— 36 + 2en + Os, (I1.36)
N =1 = €+ 5+ Jiff = Sen + 56 + Os, (IL.37)
£ =& —3en + 3¢ + O3, (IL.38)

up to corrections of third and higher orders, denoted by O3;. Expressed in terms of the
potential slow roll parameters, z”/z is given by

Z/I
~ =2a"H” [1+ 3¢ —3n— 1 + ten+ O] . (I1.39)

It is commonly assumed that the first two slow roll parameters vary slowly with time
(i.e., §(QH) < 1). Then it follows that, if one wants to sustain inflation for long enough to
solve the horizon and flatness problems, €z and |1 | will also have to be much smaller
than unity. In this (“slow roll”) limit, we have 2”/z ~ 2a?H?, H ~ 0 and a o exp[H1].

Let us now turn back to Equation (IT.11), which is basically the equation of an oscil-
lator with a time dependent mass term, and discuss its solutions. The initial conditions
imply that for wavenumbers with k/a > H, i.e., with wavelengths much smaller than
the horizon, the solution is given by Equation (I1.25) and w;, describes a circular motion
in the complex plane. Due to the exponential growth of the scale factor, the physical
wavelengths will be blown up and leave the horizon, eventually satisfying k/a < H. In
this limit, the solution for u; is given by

d
up ~ Crz+Cy 2 /Z—;—, (I1.40)

with integration constants C; and C5. The second piece represents the decaying mode
and can be neglected. Plugging u;  z into Equation (II.13), we see that the spectrum
Pr will converge to a constant value for super-Hubble modes, i.e., the perturbations
“freeze in”. We can also conclude that the fate of a perturbation with wavelength £ is
decided when k/a ~ H and the spectrum will have its final shape imprinted on horizon
exit.
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1. Scalar Perturbations

During the reheating phase after the end of inflation, when the potential energy of
the inflaton is converted to particles again, the perturbations in the inflaton field will be
transferred to perturbations in the fluids making up the later Universe, such as photons,
baryons or dark matter. It can in fact be shown that super-horizon modes remain con-
stant not only during inflation, but also in a radiation or matter dominated Universe.
So it is not until much later, when the modes reenter the horizon during radiation or
matter domination, that they will exhibit dynamical behaviour again. In this way, infla-
tion generates the initial conditions for the subsequent evolution of the perturbations,
and the asymptotic value of Px (k) is the input quantity for Equation (1.19).

But what will the spectrum look like? Generically, it will not be exactly scale inde-
pendent, with a scale dependence being induced by the variation of, e.g., the potential
energy and the Hubble parameter as the inflaton field rolls down the potential. In the
slow roll regime, however, the scale dependence is rather weak and one might want to
approximate P by a power-law (i.e., a linear approximation in log-space around a pivot
scale ky):

Pr(k) ~ Ag <kﬁo)n5_l , (11.41)

with the normalisation Ag given by

1V
Ag ~ — , (I1.42)
2472 € | _om
and the spectral index
dInPr
—1= ~ —6e + 2n. 11.43
s dink |,_, = T (I1.43)
1108
Pr
1.10°
Pr
1.1010 & w ‘ ‘
0.0001 0.001 0.01 0.1 1
k [Mpc']

Figure II.1.: This plot shows the exact solution for the spectrum of curvature perturbations
(solid red line) and tensor perturbations (dotted blue line) for inflation with a potential V =
sm?¢?, with ng ~ 0.96 and ny ~ 0.98.
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As an example, we plot the spectrum of a chaotic inflation model with V' = %m2¢2 in
Figure I1.1. The validity of the power-law approximation can be estimated by looking
at the derivative of ng,

ag = ddlzsk ~ 16en — 2417 — 262, (I1.44)
For the vast majority of viable particle-physics inspired inflationary models, the variation
of the slope over the observationally relevant scales is indeed negligible (see, e.g., Ref. [46]
for an extensive overview), so unless one were to look for particular signatures of more
exotic inflationary effects, this parameterisation would do just fine for performing data

analysis.

2. Tensor Perturbations

So far, we have focused our attention exclusively on scalar perturbations of the metric.
Let us now turn to tensor perturbations or gravity waves. Their treatment is somewhat
easier, since we do not need to worry about gauge issues; tensor perturbations are gauge
invariant by construction. Otherwise, we can proceed just like in the scalar case.

Tensor linear perturbations to the metric (I1.2) can most generally be expressed as
ds® = a*(7) [d7* — (0; + 2hy;) dz'da’] . (IL.45)

The tensor h;; is symmetric h;; = hj;, traceless 6“h;; = 0 and transverse 9'h;; = 0 and
hence represents the two degrees of freedom associated with the graviton. Since the
energy-momentum tensor of the inflaton field perturbations is assumed to be stress-free,
there will be no source term for gravity waves, so we can take the Einstein-Hilbert action
for the unperturbed part:

6" =-1 / d*z /=g R. (11.46)

Inserting the perturbed metric (I1.45) yields the perturbed action

6T

bert = & / dr d®z a® [(R;)* — 91h" O'hyy] . (11.47)
Before we can quantise, we should make sure that we actually have a canonically nor-
malised field in the action. This can be accomplished by defining v;; = 5 h;; and elim-
inating h,; in the equations of motion. We can then deduce the action in terms of v;;,
which is equivalent, up to total derivatives, to the action (11.47):

Shor = [[ards [1((h = o d) - 1 53 (IL48)

This is indeed the action of a canonically normalised scalar field v;; with a time-
dependent mass term. We can now quantise v;;:

Oy, ) = (273)3 - / &k { (00 (r) ™= + af (v);y () e} (IL.49)
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2. Tensor Perturbations

One will typically express the two degrees of freedom of (vy);; in terms of two polarisa-
tions A € {+, x}

(V)i = v e;;(k) + vy e (k), (I1.50)
with polarisation tensors e, e* satisfying

_ % _ _
eij = €ji, k'ejj =0, e;=0,

iy I1.51
eii(—k,A) = e (k. A), (k) e (k,N) =63 (IL51)
Again, we can use the two-point correlation function
« 27T2 (3) ’
> sl ) = S5 Pr(k) 09 (k — k), (I1.52)

A
to define the primordial power spectrum of gravitational waves, which is given by

2

k‘3
, (I1.53)

B,

272

U

a

the factor of 2 arising from the two polarisations. The solution for v, can be obtained
from its equation of motion, which follows from the action (II.48)

ol + [ K2 a =0 I1.54
k - a VU =Y, ( . )

with initial conditions analogous to the ones for uy, discussed in Section 1.2 above. This
equation bears a close resemblance to its scalar counterpart (I.11), so it should not
come as a surprise that the behaviour of the resulting spectrum will in general be very
similar as well. This can be readily seen if we express the mass term a”/a in terms of
the slow roll parameters:

a” 2772 1

— =2a"H* |1 — =

o = 20 H 1 gen] (I1.55)
~ 2a¢*H? [1 — %e + %ez — %677 + (93] .

So in the slow roll regime, we have a”/a ~ 2a*H? ~ 2" /z, the tensor perturbations will
freeze in at horizon exit, just like the scalar modes and we would also expect an almost
scale independent spectrum

E\""
Pr(k) ~ Ar <—) : (IL.56)
ko
with the tensor spectral index given by [47]
nt ~ —2e, (IL57)
and normalisation )
Ap~ 2y (IL58)
L P
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2.1. Tensor to Scalar Ratio and the Consistency Relation

Instead of the normalisation of the tensor spectrum, one often finds a derived quantity
in the literature, the tensor to scalar ratio. Unfortunately, there are several different
definitions floating around, which can be a source of confusion. From the model-builder’s
point of view, a natural definition would be

_ Pulk)
Pr(ko) |yy—ar

(11.59)

Note that, apart from the unlikely event that ng = nrt holds, r will be mildly scale
dependent, so if one quotes a value for r, it should always be accompanied by the pivot
scale ko at which it is evaluated. From Equations (I1.42) and (II.58) it follows that

7 16€]), o (I1.60)

so the contribution of gravitational waves in slow roll inflation is expected to be sub-
dominant.

In a more observer-friendly oriented approach one could take the ratio of the tensor

and scalar contributions to the CMB temperature anisotropies at a given multipole ¢
(usually at large scales ¢ < 10)
_C
= o'
This however also requires knowledge about the temperature anisotropy source function
and is thus not independent of other cosmological parameters, particularly €25, due to
the integrated Sachs-Wolfe effect which affects only the scalar perturbations. Assuming
scale invariant spectra and Q, = 0, Ref. [12] gives r4 ~ 13.8¢. This relation asymptotes
to r, ~ 12.4¢ for larger multipoles, but under more realistic conditions, i.e., {2, # 0 or
scale dependent spectra, these numbers should be taken with care.

(IL61)

T¢

Now if we take the third and higher derivatives of the potential to be zero, we are left
with three free parameters (e.g., V', € and 1) on the one side, opposed to four (potentially)
observable quantities (say, As, ns, At and nt). We can exploit this by eliminating one

of these variables, for instance, )
T

This equation is known as the slow roll single field consistency relation. An experimental
verification of this relation, however, will be extremely challenging, at the least. At
present, there is no observational evidence for inflationary gravitational waves (or any
other kinds of gravitational waves, for that matter). The most promising avenue for their
detection is to look for traces of tensor perturbations in the power spectrum of the CMB
B-mode polarisation B-mode. The PLANCK satellite [48| will likely be able to make a
positive detection if 7 is not much smaller than 0.1 [49]. Even under the most optimistic
assumptions, though, tensor to scalar ratios of » < 107* may be undetectable [50]. So if
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2. Tensor Perturbations

inflation took place at a low scale, we may never be able to check the consistency relation.
Of course, even if we did detect a primordial gravitational wave signal, determining the
tilt of its spectrum to sufficient accuracy to make a meaningful statement about whether
the consistency relation holds, may not be possible either [51].

It is likely that only in the case of a gross violation will we be able to pass a final
verdict on the consistency relation. We will return to the issue of how to decide whether
a statement such as “the consistency relation holds” should be refuted or accepted, in
the context of model selection in Section I11.4.

What if it really did turn out that equation (I1.62) is violated in Nature? We made
several simplifying assumptions in its derivation, some of which may not be true. It
might be that more than one field plays an important role during inflation, or perhaps
our choice of initial conditions was not correct and the Universe was not in the Bunch-
Davies vacuum when the relevant scales left the horizon [52]. Another possibility, which
will be pursued in more detail in Chapter V, is that the higher derivatives of the potential
do give a non-negligible contribution to the inflaton dynamics, possibly even violating
the slow roll conditions, if only for an instant.
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IIl. Data Analysis and Statistics in Cosmology

Having seen in the previous chapter how the inflaton potential determines the form of
the primordial perturbation power spectra, we will now explore the connection between
the theoretical predictions and actual data.

Let us ask more generally: Given a data set, how can we determine the free parameters
of a theory and give reasonable error estimates? And how can we decide whether a theory
is compatible with the data or should be considered ruled out? The answers to these
questions involve a few subtleties and great care has to be taken to interpret the results
correctly.

The purpose of this section is to familiarise the reader with the statistical concepts and
techniques used for the analysis of cosmological data. We will begin with the discussion
of an almost trivial example, the direct measurement of a single quantity, which serves
to introduce the terminology and illustrates some of the conceptual differences between
the two different approaches to statistics, the Bayesian and the Frequentist one. Which
of these two methods should be used is a subject of fierce philosophical debate among
statisticians.

Adopting the Bayesian standpoint, we will discuss how to infer the values of the free
parameters of a given model from the data. In practice, this procedure is complicated
by the fact that data sets are, in general, sensitive to variations of more than just one
single parameter. We will see that instead one needs to consider probability densities
in multi-dimensional parameter spaces. This is problematic in two ways: One needs to
find ways to condense information about the function in the higher-dimensional space to
lower-dimensional, “human-readable” output, a process known as marginalisation. On
the other hand, one needs to gather this information in the first place, which turns out
to be a computationally very demanding process.

Fortunately, we have a very elegant and flexible solution at hand to deal with these
difficulties: Markov Chain Monte Carlo (MCMC) algorithms. The third section of this
chapter will be devoted to a discussion of their practical application.

In the last section, we will briefly discuss how to compare models in the framework of
Bayesian statistics.

1. Frequentist or Bayesian?

As a warm-up exercise, let us follow the example given in Ref. [53|. Consider an appara-
tus which measures the unknown mass of an elementary particle. We are not concerned



1. Frequentist or Bayesian?

about any technical details; let us just imagine the apparatus as a black box. A mea-
surement consists of inserting the particle into the box and reading off the measured
mass m from a display. If we want to get a meaningful result in the end, we need to
make sure that the apparatus is carefully calibrated by measuring the mass of test par-
ticles whose true mass m; is known beforehand. We will assume that our machine has
been optimally calibrated, so we know the probability density of reading off a mass m,
given that the true mass of the particle is my, this will be denoted by L£(m/|my). In our
hypothetical machine, let this probability density function (pdf) be given by a Gaussian
centred around my, with a width o, < my:

]_ 2 2
L(m|my) = ———= e~ (mm)"/20m (ITL.1)

\/ 2702,
We will call £ the likelihood function.

After performing the measurement, we would like to give a point estimate m for the
mass of the particle and a confidence interval (my, ms), that quantifies our uncertainty.
Let us see how this is done in the classical (Frequentist) picture.

1.1. The Classical View

In the above example, it would appear natural to take m as the value that maximises
L(m|my), this is known as the maximum likelihood estimator.

For the definition of a classical confidence interval [54]|, remember the definition of
Frequentist probability:

Definition 1 In a repeatable experiment with a sample space S of outcomes A;, the
probability of attaining outcome A; is given by the limiting frequency
A;
P(4;) = lim M, (IT1.2)
n—o0 n
where n is the number of times the experiment is repeated and #(A;) the number of
occurrences of outcome A;.

These outcomes could, for instance, be taken to be hypotheses of the form: “The esti-
mator m is smaller than the value m,”. For any given measurement, a statement of this
kind is either true or false. We can now define a 100v%-confidence interval:

Definition 2 The interval [m;,ms] is called a 100y%-confidence interval, if, out of an
ensemble of identical experiments, a fraction of v finds the hypothesis: “The estimator
m satisfies m; < m < msy” to be true.

The above definition does not lead to a unique confidence interval. Two common choices
for confidence intervals are
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Figure III.1.: Frequentist construction of the central 68%-confidence interval, after a single
measurement with o, = 1 yields m = 5. If the true mass was my = 4, one would find a result
m > 5 in 16% of all repeated realisations of the experiment (left curve, red shaded area). If,
on the other hand, the true mass was my; = 6, then 16% of all experiments would find a result
m < 5 (right curve, grey shaded area). Hence, the central 68%-confidence interval is given by
(4—6).

e Central confidence interval
Here, a fraction of (1 — )/2 of an ensemble of experiments would find m < m,
and a fraction of (1 — ~)/2 would likewise find m > mo.

e Minimal confidence interval
Here, m; and my are chosen such that my — m; is minimised.

For the likelihood function in our example the two happen to coincide, the central
interval is also minimal. In Figure III.1 we illustrate the construction of the central
68%-confidence interval.

A commonly used approximate method of finding the 68%-confidence interval is
sketched in Figure II[.2. Based on the method of least squares, one can define an
effective y?:

g = —2In (L/Lmax) - (ITL.3)

In the special case of a Gaussian likelihood pdf this coincides with the classical def-
inition of x? [55]. Given a measurement resulting in an estimate 772, one could take
as upper and lower limits of the 68%-confidence interval those values of m;, for which
AxZe = X2e(my) — xZz(m) = 1. Note the shift in interpretation here; while £ is typically
regarded as a function of m with m; constant, in x2;, one keeps m constant and varies
my.

We stress that this prescription does not in general lead to an exact confidence interval
in the sense of Definition 2. Generally, this approach will only be accurate in the case of
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Figure IIL.2.: Approximate construction of the 68%-confidence interval with the Ay? = 1
method.

a Gaussian likelihood pdf. Given that it is often numerically easier to construct limits
in this way and the fact that, by virtue of the central limit theorem, most likelihoods
one would encounter in physical applications do resemble a Gaussian to a fair degree,
this method is quite popular. Care should be taken, however, if one has to deal with
more unusual likelihood functions.

In our example, though, the two thus derived intervals agree. Having found a lower
limit of m — o, and an upper limit of m + o, one conventionally states that the mea-
sured mass is “m =+ 0,,”. Intuitively, one might be tempted to imagine this result as a
pdf in the variable my, centred around m, as depicted in Figure IT11.3. In the Frequentist
definition of probability however, this is not permitted!

For a Frequentist, the true mass of a particle is not a random variable, either it falls
in a given interval or it does not. What can be varied in this picture are the limits
of the confidence interval, the true mass remains fixed. In fact, in the construction of
the classical confidence intervals, the use of probability densities in the variable m; was
carefully avoided, for such a quantity would simply be ill-defined.’

This is where the Bayesian ansatz comes into play. It can be shown that there exists
an axiomatic, mathematically consistent way to extend the definition of probabilities
to accommodate degrees of belief [56]. This allows us to make probabilistic statements
about propositions that do not involve random variables, such as, e.g., "Will it rain
tomorrow?”, or, applied to our problem, “What is the probability of the true mass of the
particle being between m; and my given that our apparatus displays a value of m?”.

To a Frequentist, a hypothesis can either be true or false. A Bayesian could say that
it is probably true (or false), with a probability P quantifying the degree of belief. This

'While in x?2, the true mass is taken to be variable, it is not interpreted as a pdf in my!
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increased flexibility does not come for free though: as the “belief” part of the preceding
sentence implies, a Bayesian statement relies on certain assumptions on the part of the
statistician. The price we have to pay is a loss of objectivity, a point that has raised a
lot of criticism.

We have seen that the interpretation of Frequentist confidence levels relies on the idea
that an experiment can be repeated a large number of times under the same circum-
stances. Situations, in which these additional measurements could not even in principle
be made, may call for a somewhat more pragmatic approach.

This would seem to explain why most particle physicists adhere to the Frequentist
philosophy, while in cosmology, it is not so popular: We do not have an ensemble of
Universes to observe, there is only one realisation!

1.2. What would the Reverend say??

Let us turn back to our example. In the Bayesian picture, we can now make sense of a
probability distribution P(m¢|m) of the true mass my, given that we have measured a
mass m.

Invoking an obvious relation for conditional probabilities known as Bayes’ theorem
P(A|B)- P(B)=P(B|A) - P(A), (II1.4)

and exploiting the law of total probability

P(B) = 3" P(B|A)P(A,), (IIL5)
we can determine P from the likelihood via
L(m|mq)m(my) L(m|my) 7(my)
P(mg|m) = = , I11.6
(melm) E(m) [dmy L(m|my)m(my) (TIL6)
in plain text: o .
Posterior = Likelihood - Prior ) (ITL.7)

Evidence
In order to define the posterior probability, we had to introduce a new quantity, the
prior probability 7(ms). It is at this point that the statistician’s prejudice enters, 7(my)
describes what we know about the parameter prior to taking data. Let us defer a more
detailed discussion about the choice of priors to the next section and assume for now
that there is no theoretical bias for particular values of m;. Thus, one might want to
assign X
_ (mmax - mmin)_ if Mmax > Mt > Mmin
() = { 0 otherwise (IL8)

2Reverend Thomas Bayes, (1702-1761)
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Figure ITI.3.: Bayesian 68%-confidence interval with a flat prior on my.

with the limits of the support of 7 chosen sufficiently large or small, respectively. This
is known as a flat, or top hat prior on m;.

Applied to our example, imposing a flat prior on m; will lead to a Gaussian posterior

pdf:
1 —(my—m)? /202
P(mim) = ———=e '™ m (II1.9)

\/2mo?,
Once we know the posterior pdf, there is a very natural way to define a Bayesian
100y %-confidence interval: it is simply an interval I, that contains a fraction + of the
total area under the posterior pdf,

/dmt P(myg|m) = . (II1.10)
I’Y
Once again, this does not distinguish a unique interval. Like in the Frequentist case,

we can for instance choose a central or a minimum length interval. We exemplify the
construction of the central 68%-confidence interval in Figure I11.3.

For the special case of a Gaussian likelihood pdf and the choice of a flat prior, the
limits we derived with different methods agree with each other. In general, however,
one cannot expect this to be the case. This will become clearer when we move to the
discussion of multivariate likelihood pdfs in the next section.

2. Inference in Cosmology

In the above example, we assumed that there was no dependence of the result of our
measurement on parameters other than the mass of the particle and that we could
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determine the mass directly. In cosmology there are dozens of parameters of interest,
but the vast majority of them are not directly accessible in such a fashion. Notable
exceptions to this rule include for instance the temperature of the cMB and the photon
energy density (2.

Estimates for the values of other parameters will have to be inferred from the mea-
surements. In the following we will outline how this can be accomplished. Let us rewrite
Equation (II1.6) in a more general way:

L(D|O, M) -7(0|M)  L(D|B, M) (8] M)

POID,M) = £(DIM) ~ [d6 L(D|6, M) - 7 (8] M)’ (IL.11)

where D represents a given data set and M is the theoretical model we use to describe the
data, dependent on a set of free parameters 6. For instance, D could be a measurement of
the temperature anisotropies of the cMB, M a set of rules to determine the theoretical
predictions for the fluctuations (e.g., the concordance model) from the standard six
cosmological parameters @ = (U, ¢, Hy, 7, As, ns).

At this point, a few comments about the constituents of Equation (III.11) are in order:

e Evidence £(D|M)
By definition, the evidence is the probability to measure the data D given that the
underlying model M is true. It is not dependent on the parameters, since they are
integrated over. So for the purpose of parameter estimation, one can regard it as
a mere normalisation constant of the posterior and its actual value is not relevant.
It does, however, play an important part in determining the quality of M with
respect to other models. We will return to this point in Section 4 below.

e Prior 7(6|M)
The prior probability represents our personal belief in what the true value of the
parameters 6 should be, before any data is taken (it is independent of D!), under
the condition that the model is correct. The choice of prior is a subjective process
and one might object that scientific results should depend solely on facts, not on
opinions. We saw that for the choice of a flat prior, Bayesian confidence intervals
agree with their Frequentist counterparts.

In practical applications, most people advocate a pragmatic approach of “letting
the data decide”; as long as the prior is reasonably close to constant over the pa-
rameter ranges where the bulk of the volume of the posterior pdf lies, the resulting
confidence intervals will not be terribly sensitive to the exact choice of prior. This
practice is quite common, but not entirely without pitfalls. Unlike the Frequentist
construction, Bayesian confidence intervals are not invariant under transforma-
tions of the parameters. Returning to the mass measurement, example, if we found
a 68%-confidence interval for m; given by [m;,ms| with a flat prior on my, the
corresponding 68%-interval for a derived parameter which is related to m; by a
nonlinear function f, will in general not be given by [f(m,), f(m2)]. Imposing a
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flat prior on m, gives a non-flat prior on f(m;). Frequentist confidence intervals,
on the other hand, do satisfy this property.

What is to decide which is the fundamental parameter that should be assigned a
flat prior? Should it be my, or rather m?, or possibly even Inm,?

This choice is not always obvious, see for instance Ref. [57] for an application where
the parameterisation affects the results.

But of course, not in all situations would one want to choose a non-informative
prior. In fact the subjectivity of Bayesian analysis could be considered a blessing
as well as a curse. It allows us to incorporate external knowledge into the analysis,
which is not connected to the experiment. This could range from theoretical input
(e.g., “my is a mass and it better be positive, or else...”) to information garnered
from independent experiments in the form of limits on individual parameters.

e Likelihood £(D|6, M)
The likelihood pdf quantifies the relative agreement of the data with the theoretical
predictions made by the model M with fixed parameters 8. A more technical
discussion of how to actually calculate £ given a data set D shall be relegated to
Appendix A.2.

e Posterior P(6|D, M)
This probability density function combines the information from the data with our
prior guesses about the values of the parameters. Naturally, if we had to quote a
point estimate of the parameter vector @, it would be the one that maximises P.
And of course, it is also the quantity used to derive limits on the parameters.

Given the posterior pdf in the D-dimensional parameter space, it is now straightfor-
ward to generalise the one-dimensional concept of a Bayesian confidence interval and
define a 1007% confidence level hypersurface:

Definition 3 A closed (but not necessarily connected) hypersurface 0A, is called 1007%
confidence level hypersurface if

/de P(O|D, M) = . (I11.12)

Ay

Unless explicitly stated otherwise, we will always assume that dA, is chosen such that
the volume A, is minimal. This is equivalent to demanding that the posterior probability
of any point within the confidence hypersurface is larger than that of any point outside
of it.

Unfortunately, it may be a bit difficult to visualise this D — 1-dimensional hypersur-
face if D > 3. This deficiency can be alleviated by mapping P to a lower-dimensional
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subspace, a process known as marginalisation. The interpretation of P as a probabil-
ity density in the Bayesian picture suggests the following definition of a marginalised
probability:

Proarge(0) o / d6 P(0) 5(h(0) — 6), (I11.13)

where  is usually taken to be a projection operator on the subspace spanned by 8. This
process favours regions in the marginalised directions of parameter space that contain
a large volume of the probability density over those that may have a sharp maximum
which only contains a relatively small volume. This can sometimes lead to somewhat
counterintuitive results, like for instance in the example given in Figure II1.4 below. As
is generally the case with surjective mappings, one loses information about the original
function in the process of marginalisation, here in particular about the shape of the
distribution in the marginalised directions. Under certain conditions, it may therefore
be enlightening to quote additional quantities, that may preserve better other aspects of
the original function, such as for instance the projection of P onto the subspace spanned
by the 6;:

Proi(0) o< max {P(B) / dO 5(h(8) — é)] . (111.14)

In practice, Pro; can sometimes be hard to evaluate, therefore one frequently states a
mean probability [13] defined by

_ [d6e P*(8)5(h(6)

0)
Prean(0) o [d6 P(8)5(h(6)

0)

(I11.15)

instead.

Let us conclude this discussion with a few points that should be kept in mind when
interpreting Bayesian results.

e The Bayesian construction will always produce confidence levels, no matter how
badly (or well) the data is described by the model. This is in contrast to, e.g., a
p-value goodness-of-fit analysis. It may therefore sometimes be helpful to indicate
also the x2%;/d.o.f. of the best fit point to give a rough idea of the quality of the
model. On the other hand, one could argue that it does not help to know that
a certain model is unlikely to be true unless one can actually present a better
one. This question of comparison of different models can be addressed in a strictly
Bayesian manner and we will return to it in the next section.

e The most likely point in parameter space need not necessarily coincide with the
best fit point. This can be a consequence of the choice of prior, or, if one uses
marginalised posterior pdfs, due to the marginalisation procedure, see for instance
Figure II1.4.
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e Similarly, if a parameter value 6 lies outside a certain confidence interval, it does
not inevitably mean that it would provide a bad fit to the data. Remember that the
confidence levels are derived from marginalised posteriors. As mentioned above,
the only thing that the marginalisation cares about is the volume contained in
the marginalised directions, values of parameters that give a good fit on average
are preferred over parameters that generally fit the data badly but may provide
an excellent fit in a tiny corner of parameter space. In other words, the Bayesian
analysis rewards predictivity and punishes fine-tuning.

e Looking at Equation (III.11), the observant reader will have noticed that every
single term represents a conditional probability with the condition being that the
model M used to make the theoretical predictions for observable quantities is
true. Different underlying models, even if they share the same parameters, will
generally not lead to the same confidence intervals. The issue of model dependent
limits on the standard cosmological parameters will be the subject of discussion in
Chapter IV.

e Finally, at the risk of pointing out the obvious, let us emphasise: constraints
derived with Bayesian inference should be taken cum grano salis. In light of the
points raised above and given the dependence on one’s choice of model and priors,
limits thus inferred are not set in stone and one should not be too quick to declare
something “ruled out”.
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Figure II1.4.: This admittedly somewhat unusual example illustrates some of the less intuitive
possible consequences of marginalisation. Consider the bivariate likelihood pdf £(x,y) depicted
in the upper diagram and assume flat priors on x and y. If we marginalise over the parameter y,
the resulting posterior in x is given by the red solid line in the lower diagram. For comparison,
we have also plotted the projection of £ on the z-axis (dotted line). The marginalised posterior
is found to be bimodal, the 68%-confidence interval (red shaded area) is not connected, and
x = 0, the value that maximises the 2D-likelihood pdf, lies outside this interval. Had we
chosen to construct the confidence interval centred around x = 0 instead, then the maxima of
the marginalised posterior, i.e., the most likely values of = would lie outside the 68%-confidence
interval, a similarly paradoxical situation.
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3. Markov Chain Monte Carlo Techniques

Having discussed the statistical underpinning of parameter estimation we now face the
question of how to calculate the confidence intervals in practice. Of course, before we
can think about this, we need to have a good idea about the shape of the posterior pdf.
Naively, one might consider the following algorithm:

1. Pick a point 6 in parameter space.
2. Calculate the theoretical predictions d™ for the observed quantities.

3. Compare with the observed values d°® and determine —2 In£(D|@) (cf. Ap-
pendix A.2).

4. Apply the prior to find —2 InP(0), up to an additive constant.
5. Repeat steps 1.-4. on a lattice of points in parameter space.

6. Interpolate between the lattice sites and find the confidence intervals via marginal-
isation.

While in principle a valid approach, this prescription does not work so well for cosmo-
logical data analysis. The numerical calculation of the CMB angular power spectra (step
3.) takes O(1) second on current computers, so even generating a lattice with a modest
resolution of a measly 10 points per parameter direction for the six parameters of the
vanilla model would take several days. Considering that the total computation time
increases exponentially with the number of dimensions of the parameter space, varying
more than six parameters would hardly be feasible.

There is, fortunately, a cleverer way of reconstructing the posterior pdf. It is based
on the following idea: P is a probability density function, so if one could draw a large
number of uncorrelated random samples from it, the density of these samples would be
proportional to P. Ironically, this is a very Frequentist concept.

3.1. The Metropolis Algorithm

A widely used realisation of this idea is the Metropolis algorithm [58] for reconstructing
P(0) which utilises a random walk ansatz:

1. Pick a starting point 8, with P(6,) # 0.

2. “Propose the next step™
Generate a vector 6,, drawn randomly from a fixed probability density function
Q(6,), the proposal density.
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3. Evaluate the posterior at the proposed point P(6; + 6,), (up to a constant factor,
see above).

4. “Decide whether the step should be taken or not”:

e “If the proposed point is more likely, take the step”:

If 2 '+f))”) > 1, accept the proposal and set 6,1 = 0, + 0,,.

e “If the proposed point is less likely, roll a dice to decide’

If 2 +?P) < 1, generate a random number p from the interval [0, 1].

o If p> LalC 50 ? ) accept the proposal and set 8,1 = 0, + 6,

LalC EJF?”) reject the proposal and set 0;,1 = 0,.

o If p<

5. Return to step 2. with new starting point 0, ;.

This algorithm generates a series {6;}, known as a Markov chain. It can be shown
that the distribution of points in the chain converges to a static limit and that this
limit is given by P. A proof can be found, e.g., in Ref. [59]. Remarkably, the result is
independent of the form of the proposal density (). We have seen that the chain generated
thus will converge to the sampling distribution in the limit of an infinite number of steps,
but in practice one deals with finite chains. It is hence an important question how to
estimate the degree of convergence. Furthermore, for the sake of efficiency, one wants
to ensure that convergence is reached as quickly as possible. There exist a number of
refinements of the basic algorithm that are motivated by this goal.

The beauty of the MCMC technique lies in the fact that the number of required evalu-
ations of the likelihood grows only roughly linearly with the number of free parameters.
Additionally, it is extremely easy to reconstruct the marginalised posteriors, all one has
to do is to generate a histogram of the points in the chain, sorted by the parameter
one wants to constrain.® In general, we can evaluate the expectation value (X) of any
quantity X via

(X) = /de XP(8) ~ %ZX (IIL.16)

where the chain runs from ¢ = 1 to N and X; is the value of X at the ¢th point of the
chain. Note that the samples generated by the Metropolis algorithm are not statistically
independent, consecutive points will be correlated depending on the form of ) and P.
As long as the chain has converged, however, this can be ignored for the purposes of
inference.

The application of Monte Carlo methods for cosmological parameter estimation was
first suggested in Refs. [60,61] and there exist two independent publicly available pack-
ages employing MCMC to analyse cosmological data, cosnmont [13| and Anal yzeThi s

3To be more precise, one can find the marginalised posteriors up to a constant normalisation factor,
which is irrelevant for constructing the confidence intervals.
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[62], both conveniently equipped with their respective Boltzmann codes for generating
cMB and matter power spectra, canb [63] and cnbeasy [14].

3.2. Technical Issues

Let us mention some of the practical details one will encounter when applying MCMC
methods.

e Proposal density:
The choice of the proposal density crucially affects the efficiency of the algorithm.
It is common to take ) as a multivariate Gaussian with widths depending on the
shape of the posterior pdf. If the distribution is too wide, the average step size
will be large and it is likely that the proposal will be in a region with considerably
lower P, leading to a low acceptance rate. If, on the other hand, the proposal
distribution is too narrow, the acceptance rate will be high, but it will take the
chain a long time to cover the entire volume of P, which results in slow convergence.
To optimise the process, one has to balance these two effects and find a safe middle
ground. If the posterior is (approximately) Gaussian with widths o;, the authors
of Ref. [64] suggest proposal widths of ~2.40,. Of course, this requires one to have
some idea of the shape of P in advance. It can therefore be helpful to run a short
simulation with a test proposal density to estimate an efficient () for the main run.

e Basis of parameter space:
The performance of the algorithm also depends on the choice of basis in parameter
space. If P has degeneracies between parameters, convergence will be delayed.
Hence, one may want to choose a set of parameters that is as uncorrelated as
possible.

e Burn in:
If the starting point of the chain lies in a region of parameter space where the
posterior density is very low, the initial points cannot be regarded as samples of
the target distribution and have to be discarded. It will usually take the chain
< O(100) steps to find a region near a local maximum of P, lose memory of its
starting point and start sampling from the equilibrium distribution. The period
of equilibration is known as “burn in”.

e Number of chains and choice of starting points:
Several chains generated sampling from the same posterior pdf can be concatenated
for the purposes of parameter inference, provided the burn in phase has been
removed. Using more than one chain has several advantages: they can be run
in parallel (if the computing power is available), which saves time. Secondly, in
cases where one cannot be certain that the posterior is not multimodal (i.e., has
several local maxima), using only one chain might be dangerous. If it gets stuck
in a deep local maximum it could look like it has converged, when in reality it has
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not. This can be avoided (or at least made very unlikely) by using several chains
with starting points scattered widely over the available parameter space. Lastly,
running multiple chains in parallel also allows us to easily monitor convergence
during the run, as we will see in the next point.

e Convergence tests:
It is important to have a measure to help one decide when the point density of the
chain(s) is close enough to the sample distribution for one to safely infer parameter
values. Gelman and Rubin [65] suggest tracking the following quantity to estimate
convergence when using multiple chains:

R(O,) = Variance of chain means

Mean of chain variances ’ (IL.17)
convergence being likely to have occurred if R—1 < 1 for all parameters of interest.
The cosnont code allows one to automatically stop the algorithm once a certain
minimum value of R — 1 has been reached. One can also check for convergence
using the Raftery and Lewis criterion [66]. However, these criteria should only be
regarded as a guideline and there is no absolute guarantee that the point density
resembles the sampling pdf accurately, particularly so if P is multimodal.

e Sampling of tails and peaks:

By construction, the chains produced with the Metropolis algorithm will not spend
much time scanning the regions of low posterior density, simply because proposals
suggesting a move there are likely to be rejected. The number of points in the
chain that fall into a given interval around In P is exponentially suppressed with
—Ax%/2 = —InPpax + InP, in the limit of large —Ax%. So we can only expect
a small number of samples in the tail of the distribution, which makes it difficult
to reliably estimate high-confidence intervals (> 99%). In Figure IIL.5 we plot a
histogram for an example chain sampling a 6-dimensional parameter space. We
notice the exponential suppression at large —Ax%/2. In addition, we find that
the region of highest posterior density, i.e., the peak of the distribution, is also
relatively under-sampled. This can be attributed to a volume effect: in general,
the volume of the peak region is fairly small, so it will be easily missed by the
random walk, leading to a suppression proportional to some power of —Ax3 /2,
the exact value depending on the number of dimensions and the geometry of P.

Before we proceed to the application of the techniques presented in this section, we
will devote a few lines to the matter of model selection.

4. Bayesian Model Selection

Due to the model dependence of statistical data analysis, it is a natural question to ask
whether a given model M, provides an appropriate description of the data or whether
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Figure IIIL.5.: This figure shows a histogram of the number of MCMC points per interval
of Ax%. The chain has roughly 30000 likelihood evaluations and was generated using the
Metropolis algorithm, WMAP data and the vanilla model; Ax% = 0 corresponds to the maximum
of P. The chain spends most of the time sampling a region of intermediate values of the
posterior; the peak and tails are covered by only a small number of samples.

perhaps a different model My will do a better job. This problem often occurs if one is
looking for evidence of new physical effects in the data. Now if we take a given model
and add extra free parameters which describe these effects, the quality of the fit will,
in general, improve, i.e., the likelihood of the best-fit point in parameter space will be
higher. But how can we decide whether the improvement is relevant enough to claim a
detection of the effect?

Bayesian statistics provides the tools needed to deal with this issue in a straightforward
way (cf., e.g., Refs. [67,68] and [69,70] for applications to cosmology). The “goodness” of
a model M; can be regarded as the conditional probability P, (M;|D). We can relate
this to the evidence £ of Equation (I11.11) by applying Bayes’ theorem again:

E(DIM) (M)
p(D) ’
where 7(M;) is the model prior and p(D) a normalisation constant. If we want to decide

between two models, i.e., pick the model that is more likely to describe the data well,
we should consider the ratio of the two posteriors Ppy,, known as the Bayes factor

P, (M| D) = (IIL.18)

Pmy _ E(DIMy) m(My)
Prm,  E(DIMy)m(My)’

which conveniently removes the normalisation p(D). If there is no theoretical reason to
prefer one model over the other, we can set 7(M;) = m(My) = 3, and the Bayes factor
reduces to the ratio of evidences. We can interpret the Bayes factor as betting odds
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in favour of M, so the larger Bi5, the more convinced we can be that M; should be
regarded as being superior to Ms. There exists a somewhat arbitrary mapping from
numbers to semantics [67], stating that In By > 5 represents “decisive” evidence in favour
of M1, In By > 1 is “significant”, while In B1s < 1 is “barely worth mentioning”.

Note that the evidence and hence the Bayes factor is still dependent on the priors
imposed on the parameters of the models. In particular, for flat priors there is a linear
dependence on the width of the top hat function, i.e., the length of the interval over
which the prior is non-zero. In parameter estimation, this quantity is not relevant for
the inferred confidence intervals, as long as it is big enough to cover most of the volume
of the likelihood pdf. Here however, it matters. This adds another degree of subjectivity
to the procedure and should be kept in mind when interpreting the results.

Since the evidence is essentially a marginalisation of the prior weighted likelihood over
the whole parameter space, the above comments on marginalisation also apply here: it
punishes fine-tuning of parameters and prefers theories that make definite predictions
(that happen to reasonably agree with the data). Thus, this method can be viewed as an
implementation of Ockham’s razor, sorting out theories that are baroquely embellished
with needless parameters in favour of their simpler brethren, but at the same time ruling
out models that are too simple to fit the data well.

Bayesian model selection has been applied to existing cosmological data, finding sig-
nificant evidence for a non-zero tilt of the primordial power spectrum [71] and spatial
flatness of the Universe as well as no evidence for isocurvature contributions to the ini-
tial perturbations [69, 72| or unusual topologies of the Universe [73]. A further area of
application lies in the prediction of the model selection power of future experiments; this
has been done, e.g., in Ref. [74] for dynamical dark energy and in Refs. |75, 76| for the
spectral tilt and its running.

This framework would also enable one to assess the ability of future observations to
test the inflationary consistency relation by comparing a model that has nr fixed by
Equation (I1.62) with a model that treats ny as a free parameter for a given fiducial
data set.

The trouble with Bayesian model selection, however, is that it is very computationally
intensive to evaluate the evidence, a multi-dimensional integral, to a required accuracy.
Despite recent algorithmic advances [77,78], one might also want to consider approxima-
tive methods for model comparison. Ref. [79] gives a nice overview on different methods
derived from information theory. Let us list the two most widely used information cri-
teria. They both attempt to strike a balance between the goodness of the fit and the
number of parameters used in the model and are fairly simple to calculate:
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e Akaike Information Criterion (AIC) [80]
The AIC is defined by
AIC=—-21n ﬁmax + 2K, (IIIQO)

where L., is maximum likelihood attainable in the model, and K the number of
free parameters.

e Bayesian Information Criterion (BIC) [81]
The BIC is given by
BIC = —2 In Lomax + K In N, (I1L.21)

where NNV is the number of data points used in the fit.

The lower their value, the better the model, by the respective standards. The difference
AAIC = AIC(M,;) — AIC(M,), or ABIC, respectively, can be used for comparison,
negative values preferring M.
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In the last chapter we have seen how the construction of confidence intervals depends
on the choice of the underlying model. We have also outlined how to rate different
models based on the available data. More or less rigorous application of the model
selection formalism to current cosmological data, ranging from measurements of the
CMB anisotropies by the WMAP satellite [23-25] and the large scale structure of the
Universe by the Sloan Digital Sky Survey [19, 82|, to the observation of distant type
Ia supernove [83], seems to favour the six-parameter vanilla concordance model, in the
sense that adding further free parameters will not significantly improve the quality of
the fit.

The values and confidence intervals of these six parameters are commonly inferred in
the vanilla setting [23,84]. Similarly, if one wants to look for physical effects that go
beyond the vanilla model, the bounds on the parameters which quantify these effects are
usually derived from a fit to just the minimal “vanilla+1” extension [19,85], motivated
by a naive application of Ockham’s razor.

While the simplicity of this approach is certainly appealing, it is in fact quite restric-
tive. The resulting error estimates can by no means be considered conservative because
they are derived under the condition that other physically well motivated effects are
non-existent. For instance, the vanilla model assumes neutrinos to be massless. While
the presently available cosmological data do not seem to require neutrinos to be mas-
sive, we know from the observation of neutrino flavour oscillations [86,87], that massless
neutrinos are ruled out at high confidence level. If one were to apply this information,
in the form of a model prior, to a Bayesian model comparison analysis and compared
the vanilla model with its vanilla+m, extension, one would actually have to conclude
that vanilla is ruled out! This should not come as a surprise though. The concordance
model is, after all, just an empirical attempt at explaining cosmological data and does
not claim to be the ultimate theory of the physics of the early Universe.

That said, the vanilla(+1) method is certainly a valid way of probing cosmological
data for new physical effects. Given that we cannot rule out physics beyond vanilla with
absolute certainty, however, its unreflected usage can lead to significant underestimation
of parameter errors, as well as bias in the parameter estimates, particularly if the new
parameters have a similar effect on the spectra as existing ones, i.e., if they introduce
new degeneracies.! One well-known example is the interplay between the dark energy

Tt should be noted that, owing to the nature of Bayesian inference, the addition of extra parameters
need not lead to larger errors in all cases, opposed to a Frequentist analysis. A nice counterexample
is given in Ref. [88]. The extra parameters considered in the following happen to adhere to what
intuition would suggest, though.



1. The Model

equation of state and the neutrino mass [89-91]. When the dark energy equation of state
is allowed to vary, the neutrino mass bound is relaxed by almost a factor of three if only
CMB and LSS power spectrum information is used. Conversely, by imposing a prior on
the neutrino masses according to the Heidelberg-Moscow claims [92-94], the authors of
Ref. [90] find that dark energy in the form of a cosmological constant is ruled out at
more than 95% C.L. by CMB-+LSS-+SNIa data.

To put it another way, bounds derived using the vanilla model do not take into account
the intrinsic uncertainty about whether the model one is using to fit the data is actually
appropriate. In a way, these limits feign an accuracy that is only tenable under the
restrictive assumptions of the model. This becomes of special importance if one wants
to use these results to draw conclusions about other models, e.g., to rule out a particular
model of inflation based on limits on the spectral index, or constraining the MsSsMm
parameter space with inferred values of 2.

We argue that when constraining or excluding specific theoretical models, one should
in principle allow for uncertainties in all physically well-motivated parameters, even if
they have a priori no direct link to the models concerned.

It is therefore important to perform a parameter estimation analysis in the framework
of a much more general model, compare the results to the vanilla bounds and see how
this would affect conclusions about the nature of the Universe.

1. The Model

In principle, there is of course an arbitrary number of extensions to the concordance
model, of which maybe 20 or so extra parameters have been discussed in the literature.
In some cases though, the precision of the present data is not yet sufficient to constrain
them (e.g., the primordial helium fraction and the effective sound speed of dark energy).
We cannot presume to present a completely general analysis here. In the present work
we will therefore limit ourselves to a model with eleven free parameters, given by

0 = (Q(:7Qb7H07T7 AS7nS7fV7QIC7w7T> Oés), (IV1)

and subsets thereof. The vanilla model is defined by f, = QO = r = asg = 0, and
w = —1. In addition, we marginalise over a nuisance parameter b’ which describes the
relative bias between the observed galaxy power spectrum F,(k) and the underlying dark
matter spectrum Ppy (k) via Ppu(k) = b2 Fy (k). We impose flat priors on all parameters
except the normalisation, which is customarily assigned a flat prior on In As.

1.1. Initial Conditions

We assume the initial conditions for structure formation to be set by inflation. The
spectra of adiabatic scalar and tensor perturbations will be parameterised by amplitudes
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Ag and At = rAg and spectral indices ng and nr, respectively. As discussed at the end
of Chapter II, current data does not allow us to constrain the tensor spectral index.
We will therefore not treat it as a free parameter and instead take the single field
consistency relation nt ~ —r/8 to hold. For the same reason it would not be sensible
to include a running of the tensor spectral index. We do allow for a running of the
scalar spectral index though, parameterised by as. We define ag and r at the pivot
scale k = 0.002 Mpc™!, in concordance with most recent analyses (see also Ref. [95] for
a discussion of the optimal choice of pivot scale). This parameterisation will cover all
slow roll single field inflationary models that do not have other unusual features, such
as, e.g., particle production.

In the following, we will consider three different parameter subsets, corresponding to
different degrees of restrictions on the inflationary model:

A. All 11 parameters.

B. A 10-parameter set with Qx = 0. Spatial flatness is one of the predictions that
make inflation so appealing. While it is technically possible to construct models
that result in a non-flat Universe today [96,97], the existing models are somewhat
contrived and fine-tuned [98|. This subset will discard these models.

C. A 9-parameter set with Q0 = ag = 0. This reduced set corresponds to the large
subset of the zoo of inflationary models that predict negligible running, including
large field chaotic inflation models [99].

1.2. Energy Content

We take the matter and energy content of the Universe to be specified by the following
parameters: the curvature Q¢ = 1—Q,—,, the physical dark matter density w, = Q.h?,
the baryon density w, = Qh?, the neutrino fraction f, = ,/Q., and the dark energy
equation of state parameter w.

Other parameters not included here, but which could have an observable effect, include
a time-dependent dark energy equation of state, nonstandard interactions in any of the
dark sectors (cold dark matter, neutrinos, or dark energy), etc.
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2. Data Analysis

We consider the following data sets in our analysis:

e Cosmic microwave background:
We use CMB data from the WMAP experiment after three years of observation
[23-26]. The data analysis is performed using the likelihood calculation package
provided by the WMAP team on NASA’s LAMBDA web page [100].

e Large scale structure:
The large scale structure power spectrum of luminous red galaxies has been mea-
sured by the Sloan Digital Sky Survey. We use the same analysis technique on
this data set as advocated by the SDsSS team [19,82], with analytic marginalisation
over the bias ' and the nonlinear correction parameter ().

e Baryon acoustic oscillations (BAO):
In addition to the power spectrum data we use the measurement of baryon acoustic
oscillations in the two-point correlation function [20]. The analysis is performed fol-
lowing the procedure described in Ref. [20] (see also Ref. [101]), including analytic
marginalisation over the bias ', and nonlinear corrections with the hal of i t [102]
package.

e Type Ia supernovee:
We use the luminosity distance measurements of distant type Ia supernovee pro-
vided by the Supernova Legacy Survey (SNLS) [83].

We do not include data from the Lyman-« forest in our analysis. These data were
used in some previous studies that found very strong bounds on various cosmological
parameters [85]. However, the strength of these bounds is mainly due to the fact that the
Lyman-« analysis used in [85] leads to a much higher normalisation of the small-scale
power spectrum than that obtained from the WMAP data. Other analyses of the same
sDSS Lyman-a data find a lower normalisation, in better agreement with the WMAP
result [103-105]. This kind of discrepancy between different analyses of the same data
hints at unresolved systematic issues, and for this reason we prefer not to use the Lyman-
a data at all.

For a large part of the analysis we use two different combinations of data sets, one
consisting of WMAP and sSDSs data only, and one which uses in addition data from SNIa
(sNLS) and BAO. We will refer to the latter as “the full data set”.

We perform the data analysis using the publicly available cosnmont package [13],
modified to include the BAO likelihood calculations.
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3. Results

In this section we will present the results of our analysis, starting with the most general
model and constraints on the parameters describing the energy content, before moving
on to a discussion of the inflationary sector.

3.1. Curvature, Dark Matter and Dark Energy

Since spatial flatness is one of the key predictions of inflationary cosmology, it is impor-
tant to check whether also in the context of our more general model A, 2 = 0 is still
compatible with the data. A glance at Figure IV.1 will, rather reassuringly, tell us that
the answer is yes: we find —0.022 < Qx < 0.026 at 95% confidence level, this interval is
only slightly larger than the one inferred by the SDSS collaboration from a vanilla+4-2x
fit (—0.015 < Qx < 0.023, 95% c.L.) [19]; flatness is not compromised. In the discussion
of the inflationary parameter space we will therefore assume Q. = 0, i.e., limit ourselves
to parameter sets B and C.

What about the dark side of the Universe? The dark matter density Q.h? is a crucial
input in dark matter model building. A prime example of this is given by models with
low energy SUSY where the dark matter particle is usually either the neutralino or the
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Figure TV.1.: Two-dimensional marginalised 68% and 95% C.L. contours for Q.h?, Q, and
w, using parameter set A and the full data set.
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Figure I'V.2.: Two-dimensional marginalised 68% and 95% c.L. contours for .h? and w, using
various parameter and data sets. Top: Parameter set B, WMAP+SDSS. Centre: Parameter set
B, the full data set. Bottom: Parameter set C, the full data set.

gravitino. Large regions in parameter space in these models have been excluded by the
fact that the predicted dark matter density is too high or too low [106-108].

In the vanilla model 2 .h? is a very well constrained quantity, with WMAP+SDSS giving
a 68% c.L. limit of Q.h? = 0.1050750055 [19]. This corresponds to a relative uncertainty
of 0(Qh?)/Qch? ~ 0.04. The spss Collaboration also provide bounds on Q.h? in ex-
tended models in which one additional parameter is added to the vanilla parameter
set [19]. In most cases the bound on Q.h* does not change significantly. However, when
either Qx or w is allowed to vary, o(Q.h?)/Q.h? increases to about 0.06 [19].

We have taken this investigation further by calculating the bound on Q.h? for our
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Parameter set Data set Q.h? w
A WMAP-+SDSS+SNLS+BAO 0.094 — 0.136 —1.19 — —0.88
B WMAP-+SDSS 0.092 — 0.136 —-1.44 — —0.76
B WMAP+SDSS+SNLS+BAO 0.100 — 0.123 —-1.12 — —0.87
C WMAP+SDSS+SNLS+BAO  0.100 — 0.123 —1.11 — —0.86
vanilla WMAP-+SDSS 0.097 — 0.113 -1

Table IV.1.: The 1D marginalised 95% c.L. allowed ranges for Q.h? and w for various param-
eter and data sets.

various parameter and data sets. In Figure IV.2 we show the joint 2D marginalised
constraints on Q.h? and w for three different cases using parameter sets B and C. If only
WMAP and SDSS data are used, a very strong degeneracy between Q.h? and w weakens
the bounds on both parameters. This degeneracy is broken when SNIa and BAO are
included (as is also the case with the degeneracy between f, and w), yielding strong
constraints on both parameters.

When spatial curvature is also allowed to vary, the bound on € h? does change con-
siderably. Figure IV.1 shows the 2D marginalised contours for Q.Ah%, Qx and w, using
parameter set A and the full data set. Here we find o(Q.h?)/Qch?* ~ 0.1, so that
0.094 < Q.h? < 0.136, and —1.19 < w < —0.88 (1D at 95% C.L.). We note also that
even though the allowed range for (). h? increases sizably with the inclusion of Q, the
same is not true for the dark energy equation of state parameter w; we do not find any
evidence for deviations from a cosmological constant. In Table IV.1, we summarise the
1D 95% constraints on Q.h? and w from Figs. IV.1 and IV.2. Let us stress that caution
should be applied whenever the dark matter density is used as an input to constrain
models such as the MSSM. Parameter regions that are excluded in the simplest vanilla
model can easily be allowed in more general models, even without the introduction of
more exotic features such as, e.g., isocurvature modes. If one is to take one single number
inferred from cosmological observations as an input to constrain particle physics models,
then the safest approach is to allow for the possibility that cosmology is not described
by the vanilla model, but by something more general. From our calculations, we recom-
mend taking the value derived in our model A: 0.094 < Q.h? < 0.136 (95% c.L.), but
we warn that even this may not be the most conservative estimate.

3.2. Inflationary Parameters

Almost all inflationary models predict {2 to be zero. As we have seen in the previous
section, this prediction is also supported by our analysis of parameter set A. Therefore, in
this section, we will work with the reduced 10-parameter set B, in which () is already
fixed at zero. Figure IV.3 shows the 2D likelihood contours for the parameters ng, r
and ag using the full data set and parameter set B. These contours are obtained by
marginalising over the other (10 — 2) parameters not shown in the plot.
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Figure IV.3.: Two-dimensional marginalised 68% and 95% c.L. contours for the inflationary
parameters ng, r, and «ag, using the full data set and parameter set B.
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Figure IV.4.: Degeneracies between r and f,, w for the full data set and parameter set B,
marginalised over (10 — 2) parameters.
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Parameter WMAP-+SDSS Full data set
ns 0.97 — 1.35 0.98 — 1.28

r 0— 1.05 0— 0.81

Qg —0.140 — —0.005 —0.135 — —0.004

Table TV.2.: The 95% c.L. allowed ranges for ng, r and ag for parameter set B, marginalised
over the other (10 — 1) parameters.

Figure IV.3 should be compared with, e.g., Figs. 2 and 3 of Kinney et al. [109], which
use data from WMAP and SDSS, and a parameter set similar to our set B but with f, and
w fixed at 0 and —1, respectively. The comparison reveals that the two sets of likelihood
contours are roughly similar, but with one important exception: the allowed range for
the tensor-to-scalar ratio r in our case is much larger despite our use of additional datal!

In order to understand this effect we plot the 2D likelihood contours for r» and our
additional parameters f, and w in Figure IV.4. Interestingly, a substantial degeneracy
exists between r and the neutrino fraction f,, which in turn allows r to extend to
much higher values. Table IV.2 displays the 1D 95% c.L. allowed ranges for ng, 7,
and ag, assuming parameter set B and using both WMAP+SDSS only and the full data
set. It appears that the data slightly prefer a strong negative running of the spectral
index, combined with a large tensor amplitude. This result, however, is strongly prior
dependent and one could argue that a flat prior on ag is not realistic, since generic slow
roll inflation models predict a running no larger than O(1073). Apart from that, the
actual improvement in x%; is only about 3, so ag = 0 lying outside the 95% C.L. interval
is likely a marginalisation effect (see also the top right plot of Figure IV.3) and should
not be considered conclusive evidence against power-law models.

3.3. Chaotic Inflation

Single field inflation models with polynomial potentials generally predict negligible run-
ning. These models are thus represented by our 9-parameter set C in which ag = 0.

For the purpose of illustration we will indicate the predictions of the two simplest
chaotic inflation models, V = %m2¢2 and V = \¢*, in our figures. As we saw in
Chapter II, the calculation of the initial perturbation spectra requires one to evaluate
the relevant functions of the potential at the time a given scale (e.g., today’s horizon
scale) leaves the horizon during inflation. The identification of scales today with scales
during inflation, however, is not trivial, since we do not know the complete expansion
history of the Universe. In particular, the duration of the radiation dominated phase,
which depends on the inflationary model and on details of the reheating mechanism, is
unknown. This ignorance can be expressed in terms of an additional parameter: the
number of e-foldings of inflation Ny that took place after the scale we identify with
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Figure IV.5.: Two-dimensional marginalised 68% and 95% C.L. contours for ng and r. Left:
parameter set C (consistent with predictions of chaotic inflation). Right: vanilla+r. The upper
diagrams use WMAP+sDSS data and the lower ones the full data set. The two short black lines
with boxes at the ends correspond to predictions of the A\¢?* (top left) and m?¢? models of
inflation, with 46 to 60 e-foldings (left to right).?

today’s Hubble scale left the horizon during inflation:

1016 1/4 1/4
of(iev +ln% - %m‘/e_nd’
vy Vor T

Ny ~62—1In (IV.2)

where T}y, is the reheating temperature, Vg4 is the potential energy at the end of inflation
and V' is evaluated at horizon exit of today’s Hubble scale [12]. Plugging in typical values,
we obtain Ny in the range of 40 — 60.

Since the observable inflationary parameters are generally not independent of Ny, the
prediction of a concrete inflationary model does not correspond to a point in parameter
space, but rather a line. These are depicted for ng and r, along with the corresponding
2D likelihood contours, in Figure IV.5. For comparison, we also plot the constraints
obtained from a fit to the vanilla+r model, this nicely illustrates how going to a more
general model can relax bounds on parameters.

3When taking into account one-loop effects in the chaotic inflationary scenario, the model lines in
these plot may actually be smeared at the percent level [110].
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Figure IV.6.: Degeneracies between between r and f,, w for the full data set and parameter
set C, marginalised over (9 — 2) parameters.

Figure IV.5 should also be compared with Figure 4 of Kinney et al. [109], with Fig-
ure 14 of Spergel et al. [23], and with Figure 19 of Tegmark et al. [19] (cf. also Ref. [111]).
In all cases our WMAP+SDSS contours encompass a markedly larger region. In particu-
lar, even with the inclusion of SNIa and BAO data, we find that the simplest A¢* model
is still allowed by the data, contrary to the conclusions of Refs. [19,23,109,111].

Interestingly, A\¢* is compatible with data only if the number of e-foldings is relatively
large, or equivalently, if the reheating temperature is high [112,113|.

We find a 1D 95% c.L. upper bound of r < 0.31, while Tegmark et al. report an
almost identical » < 0.33. Kinney et al. also found r < 0.31 for the same vanilla+r
model [109], but from a combination of WMAP and the SDSS main galaxy samples (as
opposed to SDSS LRG used in this work and in Ref. [19]).

Using additional data from the Lyman-a forest, Seljak et al. [85] derived an even
stronger upper bound, r < 0.22, for the same model space. The reason for the improve-
ment is a degeneracy between r and og, such that a higher value of r leads to a smaller
preferred value of og. Since the Lyman-« data used in [85] prefer a high value of o3, a
small r value is correspondingly favoured. In fact, from a parameter fitting point of view,
a negative r would be even better. All these points conspire to give a much stronger
upper bound on r. However, as noted in Section IV.2, this phenomenon likely points to
a systematic uncertainty in the Lyman-«a normalisation, rather than a genuinely strong
constraint on 7.

Again, the explanation for our enlarged (ng,r) allowed region lies in our expanded
model parameter space. In Figure IV.6, we see that the degeneracy between r and f,
encountered earlier in parameter set B is present also in parameter set C, albeit to a
somewhat smaller extent. If a neutrino fraction of 0.03 — 0.05 is allowed (corresponding
roughly to > m, ~ 0.3 — 0.5 eV), new parameter space opens up for ng and r. We
note in passing that the converse is not true. Taking r as a free parameter does not
change the upper bound on the neutrino mass significantly compared to r fixed at zero.
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Figure IV.7.: Two-dimensional marginalised constraints on ng and r for the parameter set C,
but with the restriction w = —1.

Interestingly, this (f,,r) degeneracy also means that \¢* in its simplest form appears
to prefer quasi-degenerate neutrino masses with a sum in the 0.3 — 0.5 eV range. This
range is compatible with present laboratory limits from tritium beta decay experiments,
m, < 2.2 eV [27,114,115], as well as the claimed detection of neutrinoless double beta
decay, and hence detection of the effective electron neutrino mass at 0.1 — 0.9 eV, by the
Heidelberg-Moscow experiment, [92-94]. The upcoming tritium beta decay experiment
KATRIN will also probe neutrino masses to a comparable level of precision [116].

As an extra consistency check we present in Figure IV.7 the equivalent of the bottom
left panel of Figure IV.5 (full data set and parameter set C), but with the additional
restriction w = —1. Clearly, there is very little difference between the bottom left
diagram of Figure IV.5 and Figure IV.7, since the combination of SNIa and BAO data
effectively fixes w to —1 in the former case, as shown in Figure IV.6.

This confirms our conclusion that the difference between the allowed (ng,r) regions
in the left and right panels of Figure IV.5 is due to a degeneracy between r and the
neutrino fraction f,. It should also be noted that the addition of SNIa and BAO data has
very little impact on the vanilla+r model, because no strong parameter degeneracies are
present in the WMAP+SDSS data. With sNIa and BAO included we find a 1D 95% C.L.
bound of r < 0.30, instead of 0.31 for WMAP-+SDSS alone.

3.4. The Effect of Nonlinearity

Up to this point we have used exactly the same analysis technique as the SDSS team
when treating the LRG data. However, due to the large bias of the luminous red galaxies,
the effects of nonlinear structure growth on the power spectrum will already set in at
wavenumbers of approximately k ~ 0.06 — 0.07 hMpc™!, and start dominating it for
k > 0.09 hMpc ™! (see, for instance, Figure 9 of [19]). To test whether or not our results
are subject to these effects, we perform the same analysis as in Figure V.5, but retain
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Figure IV.8.: Two-dimensional marginalised constraints on ng and r for parameter set C.
Only the linear part of the SDSS power spectrum has been used.

data only up to k ~ 0.06 hMpc ™" (band 11). We call this reduced data set SDSSyy,, and
the result is shown in Figure IV.8. Using only the linear part of the power spectrum
data has no bearing on our conclusions. In fact, the 2D allowed region in (ng,r) for
parameter set C is only affected in the region where ng > 1. The SDSS data probes ng
more precisely when all data points are included, and this in turn leads to a truncation
of the allowed region at high ng.

In Table IV.3, we summarise the 1D marginalised constraints on ng and r for parameter
set C and its subsets.

Parameter set Data set ng r

C WMAP-+SDSS 0.927 — 1.038 0 — 0.51
C WMAP-+SDSS+SNLS+BAO  0.932 — 1.018 0 — 0.41
C WMAP+SDSS;p+SNLS+BAO  0.931 — 1.025 0 — 0.47
C, w fixed WMAP+SDSS+SNLS+BAO  0.933 — 1.019 0 — 0.40
C, w, f, fixed WMAP-+SDSS 0.931 — 1.011 0— 0.31

C, w, f, fixed WMAP+SDSS+SNLS+BAO 0.931 — 1.010 0 — 0.30

Table IV.3.: The 1D marginalised 95% c.L. allowed ranges for ng and r for parameter set C
and its subsets.
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4. Discussion

We have performed a detailed study of cosmological parameter estimation in the context
of extended models that encompass a larger model parameter space than the standard,
flat ACDM cosmology. Using the vanilla model as a basis, we have included in addition
a number of physically well-motivated parameters, such as a nonzero neutrino mass. We
have considered an eleven-parameter model and subsets thereof to derive 1D constraints
on the parameters, in contrast with the vanilla+1 approach adopted in most previous
analyses which treats one extra parameter at a time.

In this more general framework, we find that in the context of standard slow roll
inflation, constraints on dark matter and dark energy can be substantially altered. If
only CMB and LSS data are used, the larger parameter space introduces new, strong
degeneracies, e.g., between the physical dark matter density .h? and the dark energy
equation of state w. These degeneracies can be broken to a large extent by adding type
Ta supernova and baryon acoustic oscillation data to the analysis. However, even with
this expanded data set, we find that the bound on the physical dark matter density Q.h?
is relaxed by more than a factor of two compared to the vanilla model constraint. On
the other hand, the more general model does not seem to lead to a significant bias on
the spatial curvature 2 or w, and our results are consistent with spatial flatness and a
cosmological constant.

In the same spirit, we have studied how bounds on the inflationary parameters ng,
r, and ag are affected by the introduction of extra parameters in the analysis. Unlike
other recent analyses [19,23,109], we find that the simplest A\¢? model of inflation is still
marginally compatible with all present data at the 95% level. The source of this apparent
discrepancy is a degeneracy between the tensor to scalar ratio r and the neutrino fraction
fv, the latter of which was fixed at zero in the analyses of [19,23,109]. Reversing
the argument, if \¢* is the true model of inflation, then it strongly favours a sum
of quasi-degenerate neutrino masses between 0.3 and 0.5 €V, a range compatible with
present data from laboratory experiments. This represents a clear example of how
neutrino masses well within laboratory limits can bias conclusions about other, seemingly
unrelated cosmological parameters.
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V. Inflation with a Step

As we saw in Chapter II, we had to make a number of simplifying assumptions in the
derivation of the power-law form of the initial power spectra, namely

e Single field inflation:
Only one scalar field is of dynamical importance during inflation and is responsible
for the exponential expansion as well as generation of the initial perturbations.

e Initial conditions of the mode functions:
The initial conditions for the u; are given by Equation (I1.24), the Bunch-Davies
vacuum state.

e Slow roll:
The potential is flat and smooth, the slow roll parameters €y, 1) and their
derivatives are much smaller than unity when the relevant scales leave the horizon.

At this point one might want to ask about the consequences of relaxing any one of these
requirements and their theoretical motivations. Let us address this question point by
point:

e Many fields?

Considering that the most popular candidates for extensions of the Standard Model
of particle physics predict a plethora of scalar fields, it may seem presumptuous
to consider only one field. A careful analysis of perturbation theory in multi-field
settings, however, shows that for straight trajectories in field space, there is no
difference to the single field case. Only if the trajectory is curved do differences
arise in the form of isocurvature modes [117]. If spontaneous symmetry breaking
is involved, one may also face topological defects [118], which defy perturbative
treatment.

e No Bunch-Davies vacuum?

Unless inflation started just when today’s observable scales left the horizon (in
which case the assumption of the Universe being the vacuum state would be some-
what arbitrary), the observable scales will have had physical wavelengths shorter
than the Planck scale at some point during inflation. Lacking a thorough under-
standing of quantum gravity, the state in which the mode functions are prepared
when they enter the regime where the contributions of new physics become negligi-
ble, is somewhat speculative. This issue is known as the trans-Planckian problem
of inflation [119] (see also Ref. [120] and references therein). Depending on the
energy scale of inflation, such effects might for instance manifest themselves in
oscillations superimposed on the usual power-law spectra [121].



0. Inflation with a Step

e Fast roll?
Recall that the slow roll conditions € < 1 and |n| < 1 were introduced to ensure
that inflation lasts the required ~ 50 e-foldings. Demanding that all higher slow
roll parameters are negligible is certainly a sufficient condition to achieve this
goal. It is, however, not a necessary condition; instead of one, uninterrupted,
phase of slow roll inflation, one might as well have several, shorter, periods of
inflation, interrupted by non-inflationary or non-slow-roll-inflationary phases. A
prime example is given by thermal inflation [122], where a second inflationary
phase of ~ 10 e-foldings follows after an initial stage of ordinary inflation and
reheating.

Of course, an interruption of slow roll inflation is particularly interesting if it hap-
pens roughly 50 e-foldings before the end of inflation. In that event, there may
be detectable traces in the observed anisotropy spectra. There are various theo-
retically well-motivated scenarios in which this happens to be the case, ranging
from simple renormalisable polynomial potentials [123] over resonant particle pro-
duction during inflation [124,125], phase transitions in a supergravity model [126]
or a second order phase transition in double D-term inflation [127] to the dynam-
ics of Mb5-branes in heterotic M-theory [128,129]. Depending on the model, the
power spectrum can be adorned with various unusual features, e.g., cutoffs, steps
or oscillations.
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Figure V.1.: This figure shows the angular power spectrum of temperature anisotropies mea-
sured by the WMAP satellite after three years of observation, plotted as black diamonds, and
the vanilla best fit to this data set. The arrows indicate the curiously low quadrupole and the
two glitches at £ = 22 and 40. The first year data (blue triangles) had another outlying point
near ¢ = 210, which has stepped back in line in the three year data.
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Chapter V: Inflation with a Step

Another motivation to look at deviations from power-law spectra lies in the data itself.
A comparison of the 3 year WMAP temperature anisotropy data with the theoretical
predictions of the best fit vanilla model reveals that a few data points are slightly at
odds with the expectations of the vanilla model, see Figure V.1. With the second data
release of the WMAP team after three years of observation, a few peculiarities have
vanished, but two prominent features remain: two “glitches” at ¢ = 22 and 40 and the
low-lying quadrupole ¢ = 2. The latter in particular has spawned a lot of speculation
whether it might indicate new physical effects (see, e.g., Refs. [130-133]). Furthermore,
the results of a reconstruction of the primordial power spectrum via a deconvolution
of the observed angular power spectrum [134,135] seem to imply that a spectrum with
features may provide a significantly better fit to the data when compared with a power-
law spectrum.

Whatever the reason, any evidence for departures from a power-law behaviour of the
initial perturbations would be a very exciting discovery, for it would bear information
about new physics at energy scales that are far beyond the reach of accelerator exper-
iments. The remainder of this chapter will be devoted to the discussion and analysis
of models in which the slow roll phase is briefly interrupted, leading to non-standard
features in the spectrum, based on our Refs. [4,6].
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1. Chaotic Inflation Step Model

1. Chaotic Inflation Step Model

Let us examine in more detail the effect a violation of the slow roll conditions will have
on the initial power spectrum. We assume that initially, the inflaton field will be in the
slow roll regime. This is a helpful assumption because, as we have seen in Section 1.2,
it fixes the initial conditions, removing the arbitrariness of having to choose them by
hand. We shall also stipulate that the system returns to a state of slow roll inflation
eventually. Otherwise, it would not be likely that inflation lasts long enough.

A particular model which fulfils these requirements, but can violate the slow roll con-
ditions briefly, was considered in Ref. [136], (see also Ref. [137]). The inflaton potential
is given by

V(g) = I m2g? (1 + ctanh (%)) | (V.1)

This potential describes standard m?¢? chaotic inflation [99] with a step centred around
¢ = b. The height of the step is determined by the parameter c, its gradient by d. For
positive ¢, the potential will steepen at ¢ = b, i.e., we have a “downward” step (see
Figure V.2). While negative values of ¢ are in principle possible, one might end up with
a local minimum of the potential where the inflaton field can get stuck. We will see
below that the phenomenological effects on the spectrum are similar, independent of
the sign of ¢, so we limit our analysis to positive c. Furthermore, we will take the step
to be small, ¢ < 0.1 to avoid a dominance of the inflaton field’s kinetic energy over its
potential energy.

We should remark that this is only a toy model; it is to be regarded as an effective
field theory description of a more fundamental theory. One could, for instance, imagine
a (multi-field) scenario with a Lagrangian that contains terms like \;x?¢?, where the x;
are scalar fields and the \; dimensionless coupling constants. The effective mass squared
of ¢ is then determined by the bare mass m, o of ¢ and the vacuum expectation values

¢=b

V(9)

¢

Figure V.2.: Schematic representation of the step potential. The solid red line has ¢ > 0, the
dotted red line ¢ < 0, and the dashed black lines are the asymptotes of the potential.
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Figure V.3.: Left: 2"/z divided by a?H? for b = 14, ¢ = 1072 and d = 2 x 1072 versus the
number of e-foldings. N is set to zero for ¢ = b. It takes the inflaton field roughly half an
e-folding to roll over the step. Right: Hubble slow roll parameters at the step, eg (dotted green
line) remains negligible throughout, while g (dashed blue line) and &% (solid red line) violate
the slow roll conditions.
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If one of the x; undergoes a phase transition, its VEV will change and the inflaton field
will feel it as a sharp drop (or increase, depending on the sign of ;) in its effective mass.

Let us now examine the consequences of adding a step to the potential: As pointed
out in Section 1.3, the eventual spectrum crucially depends on the dynamics of z”/z,
which can easily be deduced from the solution of Equations (II.17) and (IL.18).

For a typical choice of parameters, we plot the numerical solution in the left panel
of Figure V.3. Generically, we find that the step causes 2”/(za>H?) to peak before
the inflaton field reaches b, followed by a dip shortly afterwards. It will return to
the asymptotic slow roll value of ~ 2 after about one e-folding. Comparison with the
Hubble slow roll parameters (right panel of Figure V.3, cf. Equation (I1.32)) reveals
that this behaviour is mainly caused by ng and &%, while ey remains small (this is a
consequence of the condition ¢ < 1). Beware that the potential slow roll approximation,
Equation (I1.39), will in general not work for this potential since the contribution of
higher derivative terms can be large [138]. The smallness of ¢y (and hence €) also
implies that there will not be any sizable deviations from a power-law for the spectrum
of tensor perturbations.

So, how will this particular behaviour of z”/z influence the solution for u; and even-
tually the spectrum compared to a model with no step? From Equation (II.11) it is
evident that modes with k% >> Max|z"/z|, i.e., modes that are well within the horizon
at the time of the step, will not be affected at all and w; will remain in the oscillatory
regime. For k? < Max|z”/z|, on the other hand, the peak in z”/z will result in a boost
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1. Chaotic Inflation Step Model

of exponential growth for uy, reverting to oscillations when z”/z goes negative and even-
tually return to the growing solution. We portray the motion of u in the complex plane
in Figure V.4.

When an oscillatory phase is preceded by a growing phase, the initial circle will be
distorted to an ellipse. As the growth sets in again, the mode will be suppressed or
enhanced, depending on the phase of the oscillation, which itself is k-dependent. In the
spectrum, this can be observed as oscillations. This mechanism will be most effective
for modes that are just leaving the horizon. If k? < Max|2"/z|, the phase difference will

Refu;]

Re[u,]
Re[u,]

-2 -1 0 1 2 -2 -1 0 1 2
Im[u,] Im[u,]

Figure V.4.: These plots show an illustration of the evolution of uj in the complex plane. We
have normalised wuy, to one in the oscillating limit. The choice of initial conditions (I1.26,11.27)
ensures that the motion will initially be circular. The top plot shows a mode that is not affected
by the feature; the circular oscillation goes straight into a growing motion. In the other two
plots the circle gets deformed by an intermittent phase of growth triggered by the peak of 2 /z,
to be followed by another phase of elliptic oscillations (caused by the dip of z”/z) until finally
the modes leave the horizon and start growing. Whether a mode is suppressed or enhanced by
this mechanism depends on the phase of the oscillation when the growth sets in. Growth along
the semi-major axis will lead to an enhancement (bottom left), whereas growth along the semi-
minor axis entails a suppression (bottom right) with respect to the modes of the corresponding
featureless model.
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31020
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Figure V.5.: Primordial power spectrum for a model with m = 7.5 x 1076, b =14, ¢ = 1073
and d = 2 x 1072 (solid red line) with wavenumber k given in units of aH|s—p. The dot-dashed
black line depicts the spectrum of tensor perturbations. For comparison we also plot the scalar
spectrum of the same model with ¢ set to zero (dotted blue line).

be negligible.

The key to obtaining an oscillating spectrum is that z”/(za> H?) has a local minimum;
the deeper, the more pronounced the effect. This forces growing modes back into the
oscillating regime, thus inducing a phase dependence when growth sets in again at a later
time. In that sense potentials with an “upward” step (i.e., ¢ < 0), where 2" /(za? H?) also
exhibits a minimum, will lead to qualitatively similar spectra, provided the field does
not get stuck.

Hence, a localised feature in the potential will lead to a localised “burst” of oscillations
in the scalar spectrum (see also Ref. [139]), while large and small scales will remain
unchanged with respect to the spectra of the asymptotic background models. This is
shown in Figure V.5 along with the spectrum of tensor perturbations, which does not
appreciably differ from a power-law, due to the smallness of €. Note that the wavelengths
affected by the feature are those that are about to leave the horizon as the inflaton field
reaches the centre of the step. In particular, the frequency of the oscillations of the
spectrum is proportional to this scale.

What remains is to identify the horizon size at the step with a physical scale today.
This connection can be made if one knows the total number of e-foldings N, of infla-
tion that took place after a known physical scale k, left the horizon. Technically, we
evolve the background equations (I1.17,I1.18) until the end of inflation Neyq, (defined by
Q(Nena) = 0). The scale k, can then be determined in units of aH|,—; via

a(Nend — N*) H(Nend — N*)

k, —
aH|g—y

(V.3)

As long as the spectrum of the ¢ = 0 background model is only mildly scale dependent,
there will be a strong degeneracy between N, and b: shifting the feature in the potential
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2. Model Dependence

will have the same effect as shifting the scale of k. In the following we will therefore
not treat N, as a free parameter, but set N, = 50 for k, = 0.05 Mpc™*. If we want the
feature to affect scales that are within reach of current observations, this will require b
to lie in the interval 14 < b < 15.

2. Model Dependence

Having analysed a specific step potential in the previous section, let us now address the
question of model dependence: Will we arrive at different conclusions if we modify the
background inflationary model (e.g., A\¢?* instead of m?¢$?) or the parameterisation of
the step?

We argue that a more general potential

V() =Vo+ f(0) S(¢ — ) (V.4)

leads to a qualitatively similar spectrum as the potential (V.1). Here, Viz(¢) = Vo+ f(¢)
is the background potential, which fulfils the slow roll conditions with f and V} positive
definite. The function S(¢) parameterises the step, and should monotonically asymptote
tol+c(c<k1)for ¢ > band ¢ < b, respectively, with S(0) = 1.

As we have seen above, the derivatives of the potential are crucial to determining
the spectrum. In general, the derivatives of V' are given by a simple application of the
Leibniz rule

n & n % n—i

AROEDY (Z.)f%s) Se(9). (V.5)
i=0

Far away from the step, the derivatives of S will be negligible and the potential and its

derivatives are approximately

V() = Vo + f(6)(1 % ¢) = Vig(9), (V.6)
VI (g) = fM()(1+ ¢) = VI (g). (V.7)

Since the slow roll conditions hold here, the spectrum will be given by Equation (I1.41)
with

oAb 3f 2
AS_ASg<1ic(VO+f—2)+O(c)), (V.8)
ng ~ ng + ¢ (% (n°® — 6ebg)) +O(c?). (V.9)

In the special case V;, = 0, we have exactly Ag = Agg(l +¢) and ng = nls’g. If Vo # 0,
there are additional corrections of order ¢ to the normalisation and also corrections to
the tilt, which are suppressed by c and the slow roll parameters of the background model.
In both cases, one asymptotically recovers the spectrum of the background model in the
limit ¢ < 1.
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Figure V.6.: Primordial power spectra of a hybrid inflation type step model (V.10) with
Vo=37x10"" m=32x10"% b= 0.0125 c= 1073 and d = 5 x 1075 (dotted blue line),
and of potential (V.11) with parameters A\ = 6 x 107, b = 21, ¢ = 5 x 107* and d = 0.02
(solid red line). The hybrid inflation background model has ng > 1, i.e., an excess of power on
small scales (in analogy to visible light spectra, this is also known as a “blue” spectrum), while
the A¢* model has ng < 1 with more power on large scales (“red” spectrum).

Near the step, however, the derivatives of V' will have a contribution from the deriva-
tives of S. If the step is sharp enough, the nth derivative of V' will be dominated by the
nth derivative of S, since the other terms are suppressed with factors of the order of the
slow roll parameters of the background model. Hence, the dynamics of z”/z near the
step is practically independent of the background, but is determined by the form of S.
On the other hand, any S that gives a z”/z which roughly shows a behaviour like the one
depicted in Figure V.3, will lead to a burst of oscillations in the power spectrum. The
similarities between spectra of different background models are illustrated in Figure V.6,
where we plot the spectra of a hybrid inflation type potential

V(p) = Vo + 5 m*¢? (1 + ctanh (?)) , (V.10)

and another monomial potential with a different form of the step function

V(p) = Ao* <1 + carctan (%)) : (V.11)

Note that despite the difference in background models and step functions, the maxima
and minima of the oscillations occur at the same wavelengths.

To alleviate the model dependence of the analysis when confronting theory with exper-
iment, we choose a phenomenological approach and define the spectrum of a generalised

step model as
k ns—n;tep
PRE™ = Ppoter (k_o) : (V.12)

70



2. Model Dependence

Here, Pz is the spectrum obtained from the potential (V.1) and ng®® = 0.96 is
the spectral index of the $m?¢? model. The quantity ng then describes the overall
effective tilt of the spectrum. Spectra of this type will arise from potentials of the form
of Equation (V.4). While the fine details of particular models may differ slightly from
this approximation, Equation (V.12) will nevertheless capture the broad features of a
large class of background models, since, as argued above, the shape of the burst of
oscillations is largely independent of the background model. Minor differences would
likely be washed out in the angular power spectrum of the CMB anyway [140|. The
asymptotic behaviour of models with V; = 0 will be reproduced exactly; for V5 > 0 it
will be approximate, with errors of order c.

There is a catch however: in this analysis the parameters b, ¢ and d will be bereaved
of their meaning as parameters of the potential. Instead, they should be interpreted as
phenomenological parameters which describe the spectrum. This does not preclude us
from deriving meaningful constraints, though. We argue that the shape of the modula-
tion of the spectrum is largely independent of the background, so similar modulations
should be the consequence of similar step dynamics. A useful quantity in this context is
the maximum value the slow roll parameters €, n and £ can reach at the step. For the
potential (V.1), we can estimate €may, Jmax and £, in terms of b, ¢ and d:

max

2
2
€max ™ €78 + 2C—d2 + i (V.13)
N = 18+ 0.77 %, (V.14)
c? c
‘§r2na,x‘ 22ﬁ+4@7 (V15)

assuming ¢ < 1, d < 1 and b > 1. Note that £ = 0 for the background model.

Along the same lines, one can replace b with kg, corresponding to today’s wavenumber
of the perturbations that left the horizon during inflation when ¢ = b. Another interest-
ing quantity one may want to constrain is the number of e-foldings ANy it takes the field
to roll across the step. To get a rough order of magnitude estimate we can approximate
the potential to be linear around b and define AN as the time it takes the field to roll
from ¢yg = b+ xd to ¢g = b — xd, i.e., the time it takes to traverse a fraction tanh y of
the step’s height. Assuming that the attractor condition is fulfilled, we obtain

272 72
AN ~ 2xbd )
2xbd + ¢ (b2 + x2d?) tanh x

(V.16)

We shall set x = 3/2, corresponding to tanh y ~ 0.9.
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3. Data Analysis

Having explored the phenomenology of step-type inflaton potentials, we now turn our
attention to the observational side. We would like to derive limits on the step parameters
and, ultimately, find out if current cosmological data hold any evidence for features in
the spectrum. The analysis of the previous chapter has shown that adding extra free
parameters to a model can significantly affect the errors of the standard parameters. We
will therefore also pay attention to possible biasing of cosmological parameter estimates
in step models.

3.1. Models

We consider three different models for our analysis which differ only in the shape of the
initial power perturbations. The energy content is taken to be parameterised by the
minimal two free parameters Qph? and Q.h%. In addition to that, we allow the ratio of
sound horizon and angular diameter distance at decoupling f,,! and the optical depth
to reionisation, 7, to vary. The initial spectra of the models are determined by:

e Step model:
The spectrum is calculated from the inflaton potential (V.1), the free parameters
are b, ¢, d, and the overall normalisation Ag (which is directly proportional to m?).

e Generalised step model:
The spectrum is given by Equation (V.12). This model uses the same parameters
as above, with the effective tilt ng added as additional parameter.

e Vanilla model:
For comparison, we consider the vanilla model with free parameters Ag and ng.

We restrict our analysis to scalar perturbations. While tensor perturbations may,
in principle, give a subdominant contribution, their spectrum will be smooth in the
class of models studied here, so we do not expect any major degeneracies with the step
parameters. The same holds true for other possible extensions of the vanilla model, such
as massive neutrinos.

3.2. Data Sets

If there are oscillations present in the spectrum of primordial curvature perturbations,
we can expect them to leave traces in the temperature and E-polarisation anisotropies
of the cMB (but not in the B-polarisation!) as well as in the matter distribution. To

Tt is advantageous to use this parameter instead of Hy in MCMC analyses, since it has less degeneracies
with other cosmological parameters when considering ¢MB data. Once the posterior in 0 is known,
it is straightforward to reconstruct the limits on Hy [61].
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assess the influence of different data on the constraints, we perform the analysis for each
of the models using three basic combinations of data sets:

1. WMAP only:
We use the WMAP three year temperature and polarisation anisotropy data [23-26].
The likelihood is determined using the WMAP likelihood code available at the
LAMBDA website [100].

2. CMB-LSS:
In addition to WMAP3 we use small scale CMB temperature anisotropy data from
the ACBAR [141], BOOMERANG [142| and CBI [143] experiments, the SNLS SNIa
data [83], plus the LSS power spectrum of galaxies from:

a) the 2003 data release of the Sloan Digital Sky Survey [144|.
b) the 2dF Galaxy Redshift Survey [145].
c) the LRG sample of the SDss [19].

In all cases we treat the luminous to dark matter bias parameter b’ as a nuisance
parameter that will be analytically marginalised over. All three data sets include
points at scales which can no longer be treated in linear perturbation theory. Since
the typically applied nonlinear corrections are calibrated under the assumption of
a smooth spectrum, we prefer to limit the analysis to scales where the nonlinear
corrections do not play an important role, i.e., k < 0.2 hMpc ™! for a) and b), and
k < 0.09 hMpc™! for c).

3. CMB+BAO:

Same as data set 2c, plus two-point correlation function data from the sSDSS
LRG [20]. The correlation function is, in principle, particularly well suited to
detecting even small amplitude oscillations of the spectrum: since the correlation
function is essentially the Fourier transform of the power spectrum, oscillations
of the spectrum will correspond to a peak in the correlation function. However,
due to biasing and weakly nonlinear structure formation, this data is difficult to
interpret and its application to our problem is not immediately straightforward.
In particular, the effect of mode coupling which leads to a smoothing of features
in the matter power spectrum needs to be considered. We treat this issue by
marginalising over a smoothing parameter. For the technical details we refer the
reader to Appendix A.3.

3.3. Priors

In the next section we will see that the likelihood function in this case has a rather
unfortunate property: In certain parameter directions it does not go to zero, but rather
converges to a constant value. Take for instance the parameter d: in the limit d — oo,
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the step will become arbitrarily smooth and the resulting spectrum will not be distin-
guishable from a power-law spectrum, which, as we know, gives a reasonable fit to the
data and hence has a non-negligible likelihood. A similar reasoning can be applied to the
parameters b and c. So, no matter how we choose the limits of our priors, we will always
chop off a part of parameter space which contains a non-negligible fraction of the total
volume of the likelihood function. Therefore, all confidence limits we derive from the
resulting posteriors, and particularly those in the b-, c-, and d-subspaces of parameter
space will be subject to how we set the limits of our priors and should only be taken
as rough indicators. Having said that, let us now attempt to tackle the delicate task of
assigning the priors:

b: The parameter b determines the scale at which the oscillations appear. To make
sure this scale is in the range of sensitivity of our data, we choose a flat prior:
b e (14,15).

c: A flat prior on c itself would give a bias to large values, so we take a flat prior on
the logarithm of ¢ with logc € (=6, —1). For ¢ < 107°, the spectrum is virtually
featureless.

d: It is advisable to choose a logarithmic prior for this parameter as well. Instead of
log d, we will impose a flat prior on logc/d? € (—5,3) (cf. Equation (V.14)). We
also exclude steps that are too sharp or too shallow: —2.5 <logd < —0.5.

The priors on the remaining parameters are of less impact, and we will take the de-
fault selection: apart from the hard-coded priors of cosnmont on the Hubble param-
eter (40 km s™*Mpc™! < Hy < 100 km s 'Mpc™') and the age of the Universe, Ay,
(10 Gyr < Ay < 20 Gyr), we impose flat priors on In Ag, 7, 05, Quh? and Q.h>.
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4. Results

4.1. Chaotic Inflation Step Model

Let us start with the simplest combination of model and data: the step model and
WMAP data only. For now, we will set our sights to the step parameters, b, ¢ and d. In
the bottom panel of Figure V.7 we show the mean likelihood in the (b, ¢)-plane.

It is evident that the likelihood is far from Gaussian in these directions of parameter
space. Its shape can best be described in terms of geographical features: we find two
local peaks with b ~ 14.3 and b ~ 14.8, respectively. Towards the sides and the bottom
edges, the likelihood has a plateau: if we make the step height too small (¢ — 0) or push
the feature out of the observable range of wavelengths (b near the edge), the spectrum
will reduce to that of a m?¢? inflation model, so the likelihood will tend towards a
constant value. Finally, we find a large and deep valley extending from the centre to

14 14.2 14.4 146 14.8 15

Figure V.7.: This diagram shows the results of a fit of the step model to the WMAP data.
Top: posterior distribution (solid line) and mean likelihood (dotted line) for parameter b.
Bottom: The closed lines represent the 15% C.L. contour, the open line is the 99% C.L. confi-
dence contour derived from the posterior distribution in the (b, ¢)-directions of parameter space.
We also show the mean likelihood (colour coded, darker means more likely).
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Figure V.8.: Mean likelihood, 15% and 99% C.L. contours in the (b, c/d?)-directions of pa-
rameter space for the step model and WMAP data only.

the top right corner, where the fit to the data is extremely bad. The black lines are the
15% and 99% c.L. contours of the marginalised posterior distribution. With our choice
of priors, the peaks comprise only a small fraction of the volume of the posterior.

This can also be seen in the top panel of Figure V.7, where we show the marginalised
posterior distribution and mean likelihood for . The peaks are much more prominent
in the mean likelihood; this is due to a volume effect from integrating over the plateau,
e.g., in the ¢ direction. The parameter d is not very well constrained by the data, due
to a degeneracy with c. Instead, we consider the constraints in the (b, c/d*) parameter
space (Figure V.8). This parameter is as well constrained as ¢ and, again, the presence
of two maxima for b is evident. Also, the maxima are at values of ¢/d* of order one,
where the slow roll conditions are strongly violated; values of ¢/d* < 0.1 correspond,
on the other hand, to the usual slow roll m?¢? inflation and cannot be excluded by the
data.

Without a doubt, the two peaks are the most interesting features of the likelihood.
Since they occur at different values of b, they will correspond to oscillations at different
scales. The larger b, the earlier the affected scales will have left the horizon during
inflation and the later they reenter the horizon during radiation or matter domination.
Hence, models with large b have features at large scales (low multipoles ¢), while for
models with smaller b the feature will be at smaller scales (higher ¢). In Figure V.9
we show the primordial power spectra corresponding to the two local maxima. The
best fit of the step model improves the fit of the vanilla model by Ax%; ~ —7 and has
oscillations at small scales. For the lower peak of the likelihood we find Ax?%; ~ —5 with
oscillations at larger scales. This improvement comes exclusively from the temperature
anisotropies. Given current experimental errors, neither the E-polarisation anisotropies
nor the cross-correlation have the power to constrain steps.

In Figure V.10 we compare the angular power spectra of the two peaks of the step
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Figure V.9.: Primordial power spectra of the best fit step model (solid red line, b = 14.34,
loge = —3.4, logd = —2.21) and of the best fit model in the smaller peak (dashed blue line,
b= 14.8, log c = —3.05, logd = —1.76), using data set 1.
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Figure V.10.: Angular power spectrum of CMB temperature anisotropies. Here we combine
experimental error (i.e., noise) and cosmic variance in the error bars of the data points. The
thin black line is the best fit of the vanilla reference model, the thick red line corresponds to the
best fit of the step model (maximum near b ~ 14.3) and the thick dashed blue line represents
the b ~ 14.8 maximum of the step model.
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Chapter V: Inflation with a Step

model with the best fit of the vanilla model. Over wide ranges of multipoles the curves
are virtually identical. The b ~ 14.3 spectrum shows deviations from vanilla near the
third peak, the b ~ 14.8 one differs between ¢ ~ 10 — 50. Incidentally, this is precisely
where the binned data has two glitches, so we can attribute the improvement in xZ; to
the ability of step models with b ~ 14.8 to explain the presence of these outlying data
points. It also coincides with the maximum found in Ref. [84], where the same model was
analysed with fixed cosmological parameters. As it happens, the small scale maximum
corresponds to oscillations of the primordial power spectrum that have roughly the
same wavelength as the anisotropies induced from acoustic oscillations of the plasma.
This explains why there is no apparent superimposed oscillation in the angular power
spectrum, as is the case with the large scale maximum.

Moreover, the b ~ 14.3 maximum occurs at the extreme small scale end of the sensi-
tivity of the WMAP data. This is not totally unexpected; at the outer ends of the data
one has more freedom to modify the spectra, since a large part of the modification can
be hidden at unobservable wavenumbers. So it is not unlikely to find a spectrum that
gains its advantage from fitting just the last few data points better than the vanilla
prediction. Hence, it is only natural to be sceptical about the significance of this result
and ask for further evidence, considering also that the WMAP signal is rather noisy at
scales near the third peak.

To either confirm or refute the small scale feature we repeat the analysis with addi-
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Figure V.11.: Galaxy power spectrum of the best fit step model (thick red line, using data set
2a) and the best fit vanilla model (thin black line) plotted against the 2003 SDSS main sample
data. Note that a “chi by eye” estimate can be misleading here; this representation does not
take into account that the spectra have to be convoluted with the window functions and that
the normalisation will be marginalised over.
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Figure V.12.: Mean likelihood and 99% confidence level contours for the step model in the
(b, ¢)-plane of parameter space with data sets 2c (left) and 3 (right).

tional data sets that are sensitive to smaller scales, i.e., data sets 2 and 3. Using data
set 2a, we could indeed confirm a feature with b ~ 14.3, the fit even improved to a Ax%;
of ~ —15 with respect to the vanilla model. Most of this improvement can be attributed
to the SDSS data; we show the best fit matter power spectrum in Figure V.11.

However, using data sets 2b, 2¢, or 3, we do not find such an enhancement of the Ax2;
anymore. In fact, the SDSS LRG data even appear to disfavour a large feature near the
third peak. Given the better quality of the LRG power spectrum data and the fact that
the BAO data also does not seem to support this effect, it is likely that the improvement
in the fit was just a fluke. The disappearance of this maximum of the likelihood function
is illustrated in Figure V.12 (compare with the bottom panel of Figure V.7), where we
show the mean likelihood and the 99% confidence level of the marginalised posterior in
the (b, c) plane of parameter space. The inclusion of LRG and BAO data considerably
tightens the constraints on features at small scales corresponding to values of b between
~14.1 and ~14.4, while for larger values of b, i.e., features at larger scales, the contours
remain roughly the same. Figure V.13 shows the consequences of having an oscillatory
feature in the power spectrum: the correlation function will have an additional peak
at scales corresponding to the wavelength of the oscillations. With the current quality
of Lss data, detecting a peak in the correlation function is comparatively easier than
finding small amplitude oscillations in the power spectrum.

The feature at large scales (b ~ 14.8), on the other hand, remains untouched by the
addition of these data sets, its Ax?; neither improving nor worsening. This is plausible
since the added data is not sensitive to features appearing at ¢ ~ O(10).
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Figure V.13.: Galaxy correlation function for the vanilla model (thin black line) and a step
model with b = 14.3, logc = —3.5 and logd = —2. The peak at a comoving separation
of s ~ 100 Mpc/h is due to baryon oscillations, the one at s ~ 45 Mpc/h is caused by the
oscillations in the primordial spectrum. The scale of this second peak is mainly determined by
b. Note that the data points are correlated and the normalisation will be marginalised over.
For the step correlation function, we additionally marginalise over the smoothing effect due to
mode coupling. The stronger the smoothing, the lower the amplitude of the feature peak.

4.2. Generalised Step Model

So far we have only discussed the simple chaotic inflation step model. Let us now turn
our attention to the generalised step model. This model is a direct subset of the vanilla
model, e.g., for ¢ = 0 their predictions coincide. As we have seen in Chapter IV, in
the context of a model-dependent analysis it is an important question how the choice of
model will affect the estimates of the parameters, particularly if the models are nested,
as is the case here. Possible degeneracies between “standard” and newly introduced
parameters can bias means as well as errors. In Figure V.14, we plot the marginalised
likelihood distributions for the vanilla parameters for all three models with data set 1.
We notice small differences between the step model and its generalised sibling for Qyh?,
7 and the normalisation. These arise due to the fact that the tilt of the spectrum is
fixed in the chaotic inflation step model. There is a well-known degeneracy between
these parameters and the spectral index; fixing the tilt near the best fit value will reduce
the errors on the parameters it is degenerate with.

The distributions for the generalised step and vanilla model exhibit a remarkable
similarity which leads us to conclude that the presence of a feature will not have any
statistically significant influence on the results for the parameters of the vanilla model.
This conclusion remains unchanged if we consider the other data sets.
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Figure V.14.: Marginalised posterior distributions for the vanilla model (solid red line), the
step model (dot-dashed line) and the generalised step model (solid black line).
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For the generalised step model and data set 1, the large scale feature maximum likeli-
hood point is at (b = 14.8, ¢ = 0.001, d = 0.02, Qph? = 0.0216, QA% = 0.102, 7 = 0.11,
ns = 0.952, In[10'°Ag] = 3.05 and Hy = 72.7), which lies near the maximum of the
marginalised 1D posteriors of the vanilla model in Figure V.14. This is a further in-
dication that the presence of a feature at large scales will not affect the estimates of the
other parameters.

As we noted earlier, the parameters b, ¢ and d lose their meaning in this phenomeno-
logical model, but we can still find constraints on derived quantities which may even
be more intuitive. An example is the wavenumber kg of the perturbations that left the
horizon when the inflaton field passed the step (i.e., at the moment when ¢ = b), a
measure for the scales affected by the oscillations. We show the marginalised posterior
and mean likelihood for kg in Figure V.15. Qualitatively, the results are very similar to
what we found for the simpler step model (cf. Figure V.7). Again, we can see how the
inclusion of data sets sensitive to smaller scales reduces the evidence for a feature at
scales > O(1072) Mpc ™', with only a feature at large scales remaining under the most
restrictive data set.

Log,, kS/Mpc—l

85 8 25 2 15 -t -35 -3 -25 -2 -15 -1

Log,, kS/Mpc_1 Log,, kS/MpC_l

Figure V.15.: Marginalised posterior (solid line) and mean likelihood (dotted line) for pa-
rameter kg in the generalised step model, indicating at which wavelengths a feature is likely to
happen. Top: data set 1. Bottom left: data set 2c. Bottom right: data set 3.
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Figure V.16.: This plot shows the constraints on the peak values of the slow roll parameters

during the step for the generalised step model. The thick lines denote the 99% confidence level
for data set 3, the thin lines correspond to data set 1.
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Figure V.17.: Marginalised posterior (solid line) and mean likelihood of the number of e-
foldings it takes the inflaton field to traverse 90% of the step, using data set 3. Note that the
prior is not flat in ANg.

We show the constraints on the maximum values of the slow roll parameters of the step
function in Figure V.16. While the WMAP3 data alone is only sensitive to features up
to a wavelength of ~ 10~2 Mpc ™!, the large scale structure data extends the sensitivity
by almost a factor ten in k. We find fairly strong bounds on the maximum value of ¢ for
the step function. In conjunction with Equation (II.55), this implies that the spectrum
of tensor perturbations is unlikely to experience an oscillatory modulation like the scalar
spectrum, since that would require € to be of order one.

For the higher order slow roll parameters, values up to a few (for ) and up to a few
hundred (for £2) are still allowed by the data. Note, however, that these bounds depend
on the parameterisation (they assume a tanh-form of the step), and, for n 2 1, not only
€2, but also higher order potential slow roll parameters will be non-negligible.

It is also interesting to look at how long it takes the inflaton field to roll over the
step. We defined a rough estimate for the number of e-foldings in Equation (V.16), its
marginalised posterior and mean likelihood are displayed in Figure V.17 for data set 3.
There seems to be a slight, preference for AN; of O(10~! — 1), which is a realistic order
of magnitude for the duration of phase transitions, but the difference is not big enough
to be conclusive. The posterior in particular should be taken with care, since our choice
of priors does not correspond to a flat prior on AN, thereby possibly introducing a
systematic bias.

4.3. Evidence for Features?
Finally, let us address the question whether there is any evidence for the data to prefer

a spectrum with features over a smooth one. The step model introduces three new
parameters and fixes one (ng) with respect to vanilla. In the generalised step model
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Step Model Generalised Step Model
Data Set 1 2a, 1 2¢c 3
AxZg -7 -15 -8 -7 -7
AAIC -3 -11 -2 -1 -1
ABIC 10 2 18 19 19

Table V.1.: Akaike and Bayesian information criteria for a comparison of the two step models
with the vanilla model.

we reinstate ng, which yields, depending on the data set used, an additional AxZ;
improvement of 1 — 2. We did not expect a major improvement here, since the spectral
tilt of the m?$? model lies fairly close to the best fit value of the vanilla model with a
freely varying ng.

We summarise the results and the approximate AAIC and ABIC in Table V.1. Neg-
ative values indicate a preference for the step models. We find that for almost all data
sets, except the peculiar set 2a, the AIC shows only a tiny preference for the step models,
whereas the BIC appears to rule out decisively the necessity of including a step. This
can be explained with the large number of data points; the WMAP data alone consists of
5249 data points (pixel data and pseudo-Cy), giving a large penalty to extra parameters.
Doubtlessly, a more stringent model comparison as outlined in Section II1.4 would also
overwhelmingly favour the simplicity of the vanilla model, due to the large amount of
fine-tuning involved in the step models.

5. Discussion

We have performed a detailed analysis of the phenomenology of inflationary models with
a small step-like feature in the inflaton potential.

Generically, the resulting spectrum of scalar perturbations will resemble that of the
stepless background model with a superimposed burst of oscillations whose shape is
determined by the form of the step only. We have confronted the theoretical predictions
for the spectrum of a specific chaotic inflation model with a step with recent cosmological
data to find out whether the data require the presence of such a feature and whether
it may actually bias the estimates of other cosmological parameters such as, e.g., the
baryon density. We have also repeated the same analysis for a more empirical but
less model dependent spectrum, which might be expected from a step in an arbitrary
inflationary background model.

With a combination of different data sets, a large chunk of the step model parameter
space can be ruled out; only spectra with a very modest oscillation amplitude are still
consistent with observations. The BAO data, in particular, prove to be a very sensitive
probe for oscillating spectra.
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Compared to the six-parameter vanilla model, using the most constraining data set,
we find an improvement of the best fit x%; of about —5 for the chaotic inflation step
model which comprises two extra parameters, and Ax2; ~ —7 for the generalised step
model, which has three extra parameters.

The best fit region of parameter space consists of models which show oscillations at
wavelengths corresponding to multipoles ¢ ~ (O(10), where the temperature-temperature
correlation data of the CMB shows some glitches. Interestingly, the time it would take
the inflaton field to traverse the step in these models is of the order of a few tenths of
an e-folding, which is what one would expect for the time of a phase transition in more
realistic multi-field models.

Whether the glitches are just statistical flukes and can be attributed to cosmic variance
or stem from a physical effect, such as a feature in the inflaton potential, cannot be
conclusively decided until we have better measurements of the E-polarisation spectra
from experiments like PLANCK [48] or, in the more distant future, projects like the
Inflation Probe [146]. An additional consistency check can be provided by an analysis of
the bispectrum of cMB fluctuations, since the interruption of slow roll may also induce
sizable non-Gaussianities [147,148|.

86



Conclusions and Outlook

In this work, we have scrutinised two important aspects of extracting information about
the physics of the early Universe from data garnered from cosmological observations.

On the one hand, there is the question about the values of cosmological parameters
and their uncertainties. We have shown that the conventional “vanilla(+1)” approach
can lead to a systematic underestimation of errors and a possible bias due to the very
restrictive assumptions inherent to the vanilla model. Our analysis of the data in a more
general framework results in a relaxation of existing bounds by up to a factor of two,
due to newly introduced degeneracies between standard and additional parameters. In
particular, we find a degeneracy between the neutrino mass fraction f, and the tensor
to scalar ratio r, opening up regions in parameter space that had previously been con-
sidered ruled out by other authors. For instance, we find that the A\¢* chaotic inflation
model is still marginally allowed by the data and that it prefers neutrinos with degen-
erate masses. While our analysis leads to more conservative estimates, it is certainly
possible to generalise it even further and include other well-motivated effects, such as
isocurvature modes or a time-dependent dark energy equation of state. This may lead to
the identification of additional, hitherto unidentified parameter degeneracies, resulting
in even weaker bounds.

On the other hand, improvements in the quality of data present an invitation to search
for the subtle traces of more unusual physical effects not covered by the concordance
model. We have investigated a class of models in which the usual slow roll inflationary
regime is briefly interrupted due to a step-like feature in the inflaton potential, possibly
triggered by a phase transition during inflation. The resulting brief interlude of fast roll
manifests itself by a burst of oscillations in the primordial power spectrum of curva-
ture perturbations. We find very restrictive bounds on the parameters describing these
features; in the step model, only very modest deviations from the standard power-law
spectrum are allowed by the data. If such features were indeed present in the initial spec-
trum, they would most likely appear at scales corresponding to multipoles ¢ ~ O(10),
offering an explanation for the “glitches” seen in the data. Our results illustrate the
amazing robustness of the slow roll inflationary paradigm and how the data noose is
tightening around the necks of more exotic models.

In the coming years we will continue to increase our knowledge about our Universe,
as new satellite and ground based experiments will start to gather data. We will see a
refinement of existing observations as well as data from completely new sources, such
as weak gravitational lensing or 21 cm hydrogen spin flip surveys. It will be interesting
to see whether new findings will confirm or challenge our current understanding of the
Universe. Who knows, maybe Nature still holds a few surprises for us in store!






A. Appendix

1. Perturbations on a Sphere

In analogy to a Fourier expansion in Euclidean space, any square-integrable function f
defined on the unit sphere can be expanded in terms of spherical harmonics Yy,

7.0 =33 aum Yin(0, 9). (A1)

{=0 m=—/

The coefficients ay,, can be expressed in terms of f via

o = [ A0V, 0.9) 16.0) (A.2)
and the Yy, are defined by
2041 (L —m)! i
Yo (0, ) E\/ in Efﬂn;! Py, (cos ) ™, (A.3)

where P! is an associated Legendre polynomial [149].
It is often convenient to work with the dimensionless version of f,

fl0.9)
(f(0.9))

where (-) denotes the ensemble average, and use this to define the angular correlation
function

F(0,¢) = (A.4)

c(0) = (F(61, 1) F (02, 92))- (A.5)
If F'is an isotropic random field, the right hand side will only depend on 0 = [0, — 0|

and the ay,, of F satisfy
<azm aé’m’> = g Oy Co. (A-6)

The C, are known as the angular power spectrum of F. Note that C, is defined as an
ensemble average. An observation of the CMB temperature fluctuations, for instance,
only gives us one realisation of the random field though. So if one wants to estimate
the C;, from this observation, for each multipole ¢ one will only have 2¢ + 1 values of
m to average over. This induces an additional uncertainty (apart from errors due to
experimental noise), which is known as cosmic variance

ACy [ 2
Y A.
Ce 20+1 (A7)
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This assumes full sky coverage of the data. If only a fraction fg, of the sphere is covered,
the cosmic variance increases to

AC, 2
- . A8
Ce (20 +1) foey (4-8)

90



2. Evaluation of the Likelihood

Consider an experiment measuring the values of n observables d°® = (dObs,. .,dflbs).
This is to be compared with the predictions of a model M for these quantities, given by

d™ = (di, ..., d").
We will assume for now that the d'" are free variables and define a vector
x = d°™ — d™. (A.9)
We can now write the likelihood in terms of x:
L(d°®|d™) = L(x + d*™|d™). (A.10)

Clearly, at « = 0, we have

L(d™|d™) =1, (A.11)

hence we must be at a local maximum L,,,,. Let us now define
Xegr = =21 (L£/Limax) = =2 L (A.12)

and expand this quantity in the z;:

0 Z ? i j axzal‘] =0

The first term is zero because of Equation (A.11), the second vanishes because & = 0 is
a local minimum of x2;, so we have

X2
Xea() = Xa(@ = 0) + Z axlff N ziz;+O(3). (A.13)

n 2
Xeff
Xen(® Z Z 90z, |, sz‘ zj + O(3), (A.14)
or, in matrix notation
Xeg(®) = 2;Cle; + OB3) =2 C 'z + O(3), (A.15)

where C is the covariance matrix which basically describes the curvature of y2%; around
its minimum and its off-diagonal entries describe the correlation between variables. If
we neglect the higher order corrections and assume the data to be uncorrelated, the
covariance matrix will be diagonal and defining C}; = o7 we recover the classical textbook
definition of x? [55]:

b dqbs _ d‘gh 2 N
) = 3 () e, (A16)

i

corresponding to a multivariate Gaussian likelihood pdf

L(d™d™) ~exp [-L 2" C 2] = H _“”2/2"12. (A.17)
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For correlated observables that follow individual Gaussian likelihood distributions, we
would need a data vector d°™ and a covariance matrix C, supplied by the experiment,
to evaluate the overall likelihood for a given prediction of our model.

If the errors are non-Gaussian, as is for instance the case with cMB data, a Taylor
expansion of x2; will not be sufficient and a more careful treatment is needed, see for
instance Refs. [150-152] for a discussion.
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3. Galaxy Correlation Function with Oscillating Spectra

Oscillations in the dark matter power spectrum due to acoustic oscillations in the plasma
prior to decoupling result in an single peak in the two-point correlation function of the
distribution of galaxies £(r). In Ref. [20], the authors report the detection of such a
peak and identify it as corresponding to the baryonic oscillations of the matter power
spectrum.

Since any oscillation of the spectrum, regardless of its origin, will lead to a feature in the
correlation function, this data set is particularly well suited to constraining oscillations
in the initial power spectrum as well, provided that the features are not completely
washed out through subsequent evolution.

The correlation function is related to the matter power spectrum P(k) via a Fourier

transform:
o0

£(r) o / dk k2P(k)SiZfT. (A.18)

Technically, the upper limit of the integral would be some ultraviolet cutoff k¢, chosen
such that the error in ¢ is small (< 1%). For the scales covered by the sDss data, i.e.,
comoving separations between 12 and 175 h~'Mpc, this requires a momentum cutoff
kuyv > 1h/Mpc. At these wavenumbers, however, nonlinear effects cannot be neglected
anymore, which makes the theoretical prediction of £ somewhat tricky.

The standard procedure is outlined in section 4.2 of Ref. [20] and involves corrections
for redshift space distortion, nonlinear clustering, scale dependent bias, and a smoothing
of features on small scales due to mode coupling. All of these methods were calibrated
with nonlinear simulations in a vanilla cosmology setting and it is not obvious that they
should be applicable to our case. With the exception of the smoothing, however, the
effect of these corrections on the correlation function is smaller than 10% and will only
be noticeable at scales < 40h~! Mpc (see Figure 5 of Ref. [20]). So even if we assume a
large uncertainty in the nonlinear corrections, the accuracy of the theoretical correlation
function will still be of order a few percent, that is smaller than the error bars of the
data.

Let us look at the smoothing procedure in a bit more detail. In the usual case, the
dewiggled transfer function Ty, is a weighted interpolation between the linear transfer
function Tj;, and the Eisenstein-Hu [153] no-wiggle transfer function 7},

Ty (k) = w(k) Ti (k) + (1 = w(k)) Thus, (A.19)

with a weight function w(k) = exp [—(ak)?] and a = 7Th~! Mpc. This is related to the

dewiggled spectrum by
Paw(k) = kT3, (k) Pr(k). (A.20)

In the case of a non-smooth primordial power spectrum Pg(k), one should of course
also dewiggle the initial features. In order to recover the standard procedure for power-
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law spectra, we will instead smooth the quantity

~

T(k) = (P(k)/k)"* = T(k)/Pr(k). (A.21)

The use of the no-wiggle transfer function rests on the assumption that at small
scales, mode coupling will totally erase all structure, which is reasonable as long as the
amplitude of features is of the same order as that of the baryon oscillations. For much
larger oscillations, mode coupling might not be efficient enough to erase all structure; it
is likely that some residual oscillations will remain. So instead of a no-wiggle Ty, We
will use a smoothed 7} defined by

Ink+q/2
~ 1 ~
L(k.q) = exp |- / dink’ In [Thn(k;’)] , (A.22)

Ink—q/2

i.e., a convolution of T}, with a top hat function of width ¢ in log-log space. The
dewiggled power spectrum is then given by

Pk ) =k (w(k) Toa(k) + (1~ (k) Lu(k.a)) (A.23)

Without turning to N-body simulations it would be hard to estimate how much the
spectrum will have to be smoothed, though. Therefore, we will determine the BAO
likelihood Lgao by marginalising over g¢:

Loao = / dq L(q)m(q). (A.24)

We take the prior 7(¢) to be a top hat function between ¢ = 0 (i.e., no smoothing at
all) and an upper value gpax, chosen such that it lies in a region where £(q) is flat in
q, corresponding to a complete smoothing. In our numerical code, we approximate the
integral (A.24) by averaging the likelihood over N values of ¢:

—In Lo ~ Min(—In £(¢;)) — In l% Z %] : (A.25)

With ¢, = (i — 1) gma/(N — 1),
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