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Abstract

We study the four-dimensional N = 1 effective theories of generic SU(3) structure
compactifications in the presence of background fluxes. For heterotic and type
IIA/B orientifold theories, the N = 1 characteristic data are determined by a
Kaluza-Klein reduction of the fermionic actions. The Kähler potentials, superpo-
tentials and the D-terms are entirely encoded by geometrical data of the internal
manifold. The background flux and the intrinsic torsion of the SU(3) struc-
ture manifold, gives rise to contributions to the four-dimensional F -terms. The
corresponding superpotentials generalize the Gukov-Vafa-Witten superpotential.
For the heterotic compactification, the four-dimensional fermionic supersymme-
try variations, as well as the conditions on supersymmetric vacua, are determined.
The Yukawa couplings of the theory turn out to be similar to their Calabi-Yau
counterparts.



Zusammenfassung

Wir untersuchen die vierdimensionalen effektiven N = 1 Theorien generischer
SU(3)-Struktur-Kompaktifizierungen bei Anwesenheit von Flüssen. Die charak-
teristischen N = 1 Daten werden für heterotische und Typ IIA/B Orientifold
Theorien durch Kaluza-Klein-Reduktion der fermionischen Wirkung bestimmt.
Die Kähler-Potentiale, Superpotentiale und D-Terme sind gänzlich in den ge-
ometrischen Daten der internen Mannigfaltigkeit kodiert. Der Hintergrund-Fluss
und die intrinsische Torsion der SU(3)-Struktur-Mannigfaltigkeit geben Anlass
zu Beiträgen zu den vierdimensionalen F -Termen. Das korrespondierende Super-
potential verallgemeinert das Gukov-Vafa-Witten-Superpotential. Für heterotis-
che Kompaktifizierungen werden sowohl die vierdimensionalen Supersymmetrie-
Variationen als auch die Bedingungen an supersymmetrische Vakua bestimmt.
Die Yukawa-Kopplungen der Theorie stellen sich als ähnlich zu ihren Calabi-Yau-
Gegenstücken heraus.
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Chapter 1

Introduction

Over the last centuries great progress has been made in understanding our universe
and a wide range of physical phenomena at various length scales. One of the major
scientific advancements was the discovery of the building blocks of matter. Quarks
and leptons have been identified as the elementary constituents of any known form
of matter. Their interactions, the strong, weak and the electromagnetic one are
described by a gauge theory with gauge group SU(3) × SU(2) × U(1) which is
known as the Standard Model (SM) of particle physics (for a review see [1]).
The Standard model describes particle physics up to the order of 100 GeV with
very high precision. Up to the present date, all experimental tests have shown
agreement with the Standard Model predictions. Despite of this impressive success
the Standard model is not a ‘complete theory’ describing our universe. This is
due to the fact that it contains a large number of free parameters such as particle
masses. These are not predicted by the Standard Model but must be determined
experimentally. A possible mechanism to generate masses for the particles is
known as the Higgs effect. In this the so-called Higgs scalar gives masses to
the particles as soon as it acquires a non-zero expectation value in the vacuum.
However, the Standard Model with the Higgs mechanism as a mechanism for
gauge symmetry breaking does not forbid large quantum corrections to the scalar
masses, and one needs unnatural fine-tuning of the bare masses in order to arrange
the desired scales. This is known as the naturalness problem. Furthermore the
SM does not explain the hierarchy between the scales. It is still unclear why the
scale of electroweak symmetry breaking is so tiny with respect to the Planck mass.

In addition to these drawbacks one has to remark that the Standard Model
only describes particle physics phenomena for which gravity is negligible. This
fact is related to another important defect of the Standard Model, which is its in-
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compatibility with gravity. The latter, instead, is described by Einstein’s General
Theory of Relativity (GR). All these problems hint to the fact that the Standard
Model is not a fundamental theory but rather an effective description of another
underlying theory which includes general relativity.

One of the first attempts to reduce the number of free parameters in the
Standard Model has been the construction of Grand Unification Theories (GUT)
[2]. These theories have larger gauge groups, such as SU(5) or SO(10), which can
accommodate the standard model gauge group SU(3) × SU(2) × U(1). Via the
mechanism of spontaneous symmetry breaking the unifying gauge group reduces
to the standard model gauge group. However, not even the GUTs are complete
in describing our world. One of the criticisms of these theories is related to their
prediction of proton decay which has not been observed in nature.

Another attempt to address the problems of the Standard Model has been the
implementation of a symmetry between fermions and bosons. This symmetry,
called supersymmetry (SUSY), predicts a fermionic superpartner for each known
boson and vice versa. The Supersymmetric Standard Model (SSM) [3] solves
some other problems of the Standard Model as well. This is due to the fact that
SUSY forbids large quantum corrections to the scalar masses. Hence there is a
natural protection of the Higgs mass so that there is no more need to fine-tune
this parameter. However, it is disappointing that the superpartners have not yet
been seen in our world. Regarding this fact one can argue that if supersymmetry
exists then it must appear in its broken phase. Luckily enough, even in its (softly)
broken phase SUSY forbids large corrections to the scalar masses such that the
Higgs mass remains of the order of the weak scale.

The Supersymmetric Standard Model predicts the unification of all three gauge
couplings. However, General Relativity is not a part of this unification. This is
due to the fact that GR is different in nature. Einstein’s theory explains gravity
not as being a force or an interaction but rather as a manifestation of curved
spacetime due to its energy content. This theory has passed various kinds of
tests for large scale phenomena with great success. But at the same time as GR is
proving its unambiguous status it is also showing its incompatibility with quantum
mechanics. Due to its ultra-violet divergences it is constrained to phenomena
where the quantum effects are negligible. This incompatibility is expected to
become a problem when considering regimes such as black hole physics and early
time cosmology where quantum effects play a considerable role. Moreover, the
presence of singularities in GR such as black holes is a disconcerting issue. As a
result, there is also a reason to think of a theory beyond Einstein’s theory. One
can hope to find a more fundamental theory which furthermore intends to unify



13

the Standard Model and General Relativity.

There were, and still are, many attempts to formulate this fundamental theory.
One way to do so is the construction of a quantum theory of gravity which has
GR as classical limit. One such construction is provided by Loop Quantum Grav-
ity theory [4]. However, the efforts of this field are concentrated on a quantum
reformulation of gravity not on the unification of the four existing interactions.
On the latter there exists a significantly more promising solution known as String
Theory.

String Theory [5, 6, 7] is a strong candidate for a fundamental unification of
the SM and GR. Its building blocks are one-dimensional extended objects (strings)
rather than zero-dimensional pointlike particles. Strings can be either closed or
open. The fundamental string has a characteristic energy (tension) of the order
of the Planck energy (1019 GeV) referred as 1/

√
α′ where α′ is known as the

Regge slope. The extended nature of the string appears only at the string scale.
Particles in string theory arise as vibrations of the string. Included in these vibra-
tions is a particle with zero mass and spin two which can be identified with the
graviton, the proposed messenger of the gravitational force. Furthermore, String
Theory predicts well-defined interactions for the graviton at any loop order. This
is due to the extended nature of strings which avoids the problem associated with
the presence of pointlike particles. Particle interactions occur at a single point
of spacetime which is dramatic for the graviton because of the associated ultra-
violet divergences. In String Theory, instead, strings are colliding over small but
finite distances, and hence the ultra-violet divergences of the graviton scattering
amplitudes in field theory are avoided by smearing out the location of the inter-
actions. In this sense String Theory closes the gap between GR and Quantum
theory which is one of its important triumphs.

In contrast to the other known theories, where the dimensions of spacetime
are inserted by hand, String Theory predicts the number of those dimensions. In
10-dimensional universe String Theory is a consistent supersymmetric theory.

Higher dimensional theories were considered before String Theory. The first
theory of this kind was proposed by Kaluza (1919) who added a fifth dimension to
Einstein’s theory in an attempt to unify gravity and electromagnetism. The reason
for the unobservability of the fifth dimension is its compactness, as was suggested
for the first time by Klein (1926). In the original Kaluza-Klein (KK) theory the
five-dimensional fields are periodic in the internal direction parameterizing a circle
(see appendix A). In this S1 compactification the Fourier modes appear as fields
in four dimensions. The mass of a mode φn depends on the size of the circle
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denoted by its radius r. It is of the order ∼ (n/r). Clearly the massless modes are
the zero modes. The masses of the heavy modes get larger if r is small enough,
and hence can be discarded if one limits the analysis to the low energy effective
theory.

In String Theory, to make contact with the observed phenomena of the four-
dimensional universe (D = 4), one adopts the same reasoning as in KK theory,
i.e. one compactifies six out of the ten dimensions. In other words one specifies
an ansatz for the ten-dimensional spacetime background M10 = M(3,1) × M6

where M(3,1) is our observable world and M6 is a compactification manifold. It
is a six-dimensional manifold on which the extra dimensions curl. If M6 is small
enough the extra six dimensions will not be seen and one ends up with an effective
description of the four-dimensional observable world.

In such compactifications one usually insists on not breaking all of the su-
persymmetries of the ten-dimensional theory since String Theory is under better
control in supersymmetric backgrounds. This in turn selects some properties
which the internal manifold M6 should satisfy. It turns out that a Calabi-Yau
(CY) manifold is a correct choice of a compactification manifold to result in a
supersymmetric effective theory with a four-dimensional Minkowski background
[8].

If String Theory can be trusted to be the unifying theory then it should repro-
duce the standard model after compactification to four-dimensions. However, the
natural mass scale of String Theory (1/

√
α′) is of the order of the Planck mass.

This means that the modes of the string are way too heavy to be detected by
current particle physics technology. Hence the massless sector is the only plau-
sible sector where one can hope to find the standard model particles. Therefore,
in attempts to find the standard model from String Theory one should, in a first
step, restrict to the massless sector where α′ effects are negligible. The dynamics
is then encoded in the supergravity theories, which are regarded as low energy
effective descriptions of the underlying String Theories.

As a second step, one needs to specify the ansatz of the compactification to
reduce the dimensions to four. Here the same strategy as in the original Kaluza-
Klein theory is adopted. The lower dimensional theory is obtained by expanding
the fields in modes of the compactification manifolds. As in the S1 compactifica-
tion, the masses appear to be quantized in terms of 1/R where R is the ‘radius’
of the manifold. For small R one can truncate the spectrum to the massless fields
which are in one to one correspondence with the zero modes of the Lapalace oper-
ator. In Calabi-Yau compactifications, for example, these modes are found upon



1.1 Dualities in String Theory 15

expansion in the harmonics of the manifold. This procedure can be applied to all
fields of the theory including the metric.

Among the scalars arising in the expansion in the internal modes one finds
moduli fields which are the flat directions of the scalar potential. They param-
eterize the degeneracy of consistent compactification vacua. Generically there is
a large number of moduli. However, in Standard-Model-like vacua, these mod-
uli should get massive. Hence one needs some mechanism for their stabilization,
or in other words one needs to generate a potential for these fields which fixes
their values in the vacuum. There are various mechanisms attempting to do that
such as background fluxes [9]–[23], instanton corrections [24, 25, 26] and gaugino
condensates [27].

In this thesis we consider flux compactifications on SU(3) structure manifolds
to generate a scalar potential for the moduli fields. Including background fluxes
amounts to allowing for non-trivial vacuum expectation values of certain fields
which are extended in the internal directions. Unfortunately background fluxes
cannot fix all the moduli in all compactifications. To fix the remaining ones
one needs to include non-perturbative effects, such as instantons and gaugino
condensates [28]–[32].

1.1 Dualities in String Theory

By the term ‘String Theory’ one actually refers to five kinds of consistent theories
known as type I, types IIA and IIB, and the two heterotic string theories SO(32)
and E8 × E8. Until the mid 90ies it was thought that only one of the five string
theories could be successful in describing the four dimensional world, reducing the
remaining four to beautiful, but non-realized, mathematical constructions. This
naive picture was corrected after the discovery of transformations relating the
five string theories among themselves. These transformations are called dualities.
The so called S-duality, for instance, maps the states and vacua of a theory with
coupling constant g to those of a theory with a coupling constant 1/g. This opens
the door to the study of strongly coupled theories via the perturbation theory of
the weakly coupled dual ones. An example is type IIB theory where the weak and
strong coupling limits are related via S-duality. The same holds for type I and
the heterotic SO(32).

Another duality relating two theories is T-duality. This transformation acts on
spaces in which at least one direction has the topology of a circle and changes the
radius to its inverse. As an example, type IIA compactified on a circle of radius
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R is dual to type IIB compactified on a circle of radius 1/R. The same holds for
the two heterotic theories.

In a work by Strominger, Yau and Zaslow [33] it has been shown that T-
duality is related to a surprising symmetry called mirror symmetry which re-
lates two Calabi-Yau manifolds [34]. The compactifications of type IIA and IIB
string theories on the respective dual manifolds can be proven to lead to identical
physics in four dimensions. Mirror symmetry has led to the calculation of many
quantities that seemed virtually incalculable before, by considering their ‘mirror’
descriptions, which may be much easier.

The fact that the five String Theories are connected to one another reveals
that they are special cases or limits of some more fundamental theory which is
referred to as M-theory. There is not much known about this theory apart from
the fact that it incorporates the five string theories and its low energy limit is
eleven-dimensional supergravity.

1.2 D-branes and O-planes

The study of String Theories has revealed, besides strings, further higher dimen-
sional objects called p-branes (for p running from 0 to 9). The variable p refers
to the spatial worldvolume dimensions of the brane. For instance, a 0-brane is a
particle, a 1-brane is a string and a 2-brane is a membrane. Those branes, then,
sweep-out a (p+1)-dimensional world-volume as they propagate through space-
time. They are non-perturbative objects which is one of the reasons why it took
some time to realize their existence.

In String Theory one calls D-branes (where the D stands for Johann Dirichlet)
the p-branes on which the ends of open strings are localized. The D-branes are,
then, typically classified by their dimensions. A D0-brane, for example is a single
point, a D1-brane is a string often called a ‘D-string’ and a D2-brane is a plane.
Different types of D-branes appear in different theories. In type IIA string theory
one finds Dp-branes for p even (0, . . . , 8) while in type IIB the Dp-branes appear
for p odd (1, . . . , 9). They are charged under the so called Ramond-Ramond (RR)
fields. Each Dp-brane has an associated (p+1)-form RR potential.

D-branes are very important in string theory and have helped to understand
the duality between open and closed strings. A loop of an open string attached to
two D-branes can be viewed as a closed string leaving one D-brane to the other
[35, 36]. Furthermore, D-branes can generate gauge theories. Open strings with
both ends on the same D-brane correspond to a U(1) gauge theory. The gauge
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group gets enhanced to U(N) if one considers a stack of N D-branes on top of each
other. The SU(3)×SU(2)×U(1) of the Standard Model can, then, be realized on
spacetime filling intersecting D-branes [37]. The matter fields arise from dynamical
fluctuations of the brane around its background configuration which are charged
under the corresponding gauge group. Another important application of D-branes
has been to the study of black holes. They are important in understanding and
counting the quantum states that lead to black hole entropy [38].

D-branes have a positive tension which should be balanced on the compact-
ification manifold by a negative tension for the consistency of the theory [17].
The negative tension is provided by other objects called orientifolds which are a
generalization of orbifolds [39]. These are quotients of manifolds under the action
of the group of its isometries. Orientifold actions furthermore include an orien-
tation reversal. They generate orientifold planes which are the locus where the
orientifold action reduces to the change of the string orientation. Using the same
analogy as for Dp-branes, orientifold planes are denoted as Op-planes. As an ex-
ample, type I string theory is an orientifolding of type IIB string theory having a
spacetime-filling O9-plane.

1.3 Outline of the thesis

After this general introduction let us now turn to the actual topic of this the-
sis and its organization. As mentioned earlier, compactifications on Calabi-Yau
threefolds in the absence of fluxes lead to four-dimensional effective theories with
no potential for the moduli fields and all vacua are Minkowskian preserving the
full supersymmetry. This changes as soon as we include background fluxes and
localized sources such as D-branes and orientifold planes. In these situations it
is a non-trivial task to perform consistent compactifications such that the four-
dimensional effective theory remains supersymmetric. In particular, this is due to
the fact, that the inclusion of sources forces the geometry to back-react. For ex-
ample, in the heterotic string the manifold has to allow for torsion to balance the
effects of fluxes [40]–[43]. The internal manifold is then no longer directly related
to a Calabi-Yau manifold and a more general class of compactification manifolds
has to be taken into account.

In this thesis we discuss such general compactifications leading to (sponta-
neously broken) N = 1 four-dimensional effective theories which are of impor-
tance from a phenomenological point of view. More specifically, we determine,
via a Kaluza-Klein reduction, the N = 1 four-dimensional low energy effective
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actions resulting from compactifications of the heterotic and type II theories on a
SU(3) structure manifolds. In the case of type II compactifications we include ori-
entifold actions to ensure the reduction of supersymmetry form N = 2 to N = 1.
We express the characteristic informations of the N = 1 four-dimensional theories
in terms of geometric data of the internal manifold.

The thesis is organized as follows. In chapter 2 we briefly review the ten-
dimensional heterotic and type II theories. We recall their spectra, effective ac-
tions and the supersymmetry transformations of the fermionic fields which are
important in our discussion later on. We discuss the conditions leading to minimal
supersymmetry in four dimensions. It turns out that compactifications on man-
ifolds admitting one globally defined spinor satisfy these conditions [44]. These
manifolds are known as SU(3) structure manifolds and can be classified by their
intrinsic torsion [45, 46]. We shortly recall the properties of these manifolds and
then we review the N = 1 supergravity in four dimensions.

In chapter 3 we proceed by compactifying the heterotic E8 × E8 supergravity
on SU(3) structure manifolds. This theory naturally includes chiral fermions.
Moreover, its gauge group E8 × E8 is big enough to accommodate the SU(3) ×
SU(2)× U(1) of the standard model [47]–[51]. However the purpose of our study
is to determine the resulting N = 1 four-dimensional effective theory before the
breaking of the four-dimensional gauge group to SU(3) × SU(2) × U(1). We use
Kaluza-Klein reduction to derive the four-dimensional spectrum. Unlike Calabi-
Yau compactifications there is no obvious relation between massless modes and
the harmonic forms. Therefore we expand the ten-dimensional fields in forms on
the SU(3) structure manifolds which are not necessarily harmonic. Among these
modes we do not keep any triplets of SU(3) such that the D = 4 fields arrange in
the standard N = 1 supermultiplets.

To specify the N = 1 effective action one needs to determine the Kähler poten-
tial and the superpotential. We compute these quantities from fermionic couplings
where they appear linearly. This confirms the structure of these couplings derived
previously from bosonic terms [53, 54, 55, 56]. Our aim in doing the computa-
tion at the level of the fermionic action is to provide a consistent reduction of
the fermionic part which, to our surprise, is missing in the literature even for
Calabi-Yau compactifications. The superpotential depends on the flux and the
intrinsic torsion of the manifold. We compute the Yukawa couplings as well as
F - and D-terms of the theory in sections 3.2.3 and 3.2.4. We evaluate the SUSY
transformations of the fermionic fields of the theory in section 3.3. This sets the
stage to the discussion of supersymmetry conditions for the background. Torsion
and fluxes, then, can not be chosen arbitrarily but rather have to satisfy specific
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conditions which we derive by setting all fermionic SUSY transformations to zero.
This recovers the results of Strominger in the heterotic string [40].

In chapter 4 we turn to compactifications of type II theories on SU(3) structure
manifolds [57, 58, 59]. These result in N = 2 four-dimensional effective theories.
As we are interested in N = 1, D = 4 theories we include orientifold actions in the
set-ups which reduce the supersymmetry by a half [60]. We review the properties
of the orientifold projections of type IIA and type IIB in turn. We show in section
4.2 that the truncated spectra organize indeed in N = 1 supermultiplets which
generalize the results found in Calabi-Yau orientifold compactifications [61, 62,
63]. We follow largely the method outlined in the heterotic compactification to
determine the superpotentials from fermionic terms.

Finally we conclude in chapter 5 by a summary and a discussion. We collect
our conventions and some technical details in five appendices. In appendix A we
recall Kaluza-Klein reductions on a circle and on a six-dimensional manifold and
we give Calabi-Yau manifolds as an example of six-dimensional compactification
manifolds. Moreover, we summarize our spinor conventions in four and six dimen-
sions in appendix B. In appendix C we present the geometry of the scalar manifold
in SU(3) compactifications. We summarize the results of [40] in appendix D and
we review the Hitchin functional and stable forms in appendix E.
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Chapter 2

D = 10 theories and SU (3)
structure manifolds

In this chapter we give a short review of the ten-dimensional theories we aim to
compactify. These are the heterotic and type II supergravities. The compactifica-
tion considered in this thesis is such that the resulting four-dimensional theories
have N = 1 supersymmetry. This requirement puts some conditions on the com-
pactification manifold which we will examine. For completeness we review as well
the N = 1 four-dimensional supergravity.

2.1 Heterotic and type II theories in D = 10

2.1.1 Heterotic supergravity theory

The heterotic supergravity is an N = 1 supersymmetric theory in ten dimensions.
It can be seen as the gravity multiplet coupled to a vector multiplet. Its spec-
trum, then, consists of the 10-dimensional metric ĜMN where M,N = 0, . . . , 9,
an antisymmetric two-tensor B̂MN , the dilaton φ̂, a left-handed Majorana-Weyl
gravitino ψ̂M and a right handed Majorana-Weyl fermion, the dilatino λ̂. These
are the fields in the gravity multiplet. In the vector multiplet one finds a gauge
boson ÂA

M and a gaugino χ̂A. The index A refers to the adjoint representation of
either E8 ×E8 or SO(32) gauge groups in which the fields of the vector multiplet
transform. In the following we consider only the compactification of the heterotic
E8 × E8. The ten-dimensional fields are denoted by a ‘hat’ and are summarized
in table 2.1.
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Bosons Fermions

gravity multiplet ĜMN , B̂MN , φ̂ ψ̂M , λ̂

vector multiplet ÂA
M χ̂A

Table 2.1: N = 1 spectrum in D = 10.

The low energy dynamics of the heterotic fields given in table 2.1 are encoded
in the ten-dimensional N = 1 supergravity action [64, 65]. The action can be
given as the sum of three distinct contributions S(10) = Sb + Sf + Sint where Sb

includes the purely bosonic terms and reads

Sb = −1
2

∫

d10x

√

−Ĝ10

[

R̂ + 1
2
e−φ̂ ĤMNP . Ĥ

MNP

+ 1
2
∂M φ̂ ∂

M φ̂+ e−
φ̂
2 F̂A

MN . F̂
A MN

]

. (2.1)

Here we gave Sb in the Einstein frame and R̂ is the Ricci scalar in that frame. The
contraction of n indices is defined with a factor of 1

n!
. More explicitly we define

the product of n-forms as as EM1...Mn .E
M1...Mn = 1

n!
EM1...MnE

M1...Mn . Finally F̂A
MN

is the field strength for the gauge boson ÂA
M , while Ĥ is the modified three-form

field strength of B̂2 defined as

Ĥ = dB̂2 − ωYM
3 + ωL

3 , (2.2)

where ωYM
3 is the Yang-Mills Chern-Simon 3-form while ωL

3 is the Lorentz Chern-
Simon 3-form. Their exterior derivatives are given as

dωYM
3 = Tr

(

F̂ ∧ F̂
)

, dωL
3 = tr

(

R̂2 ∧ R̂2

)

. (2.3)

Here Tr refers to 1/30 of the trace in the adjoint of E8 × E8 while tr denotes
the trace in the vector representation of the Lorentz group SO(9, 1). R̂2 is the
curvature two-form. If Ĥ admits a non trivial background value a three-form flux
appears which is often referred as the NS-NS flux where NS refers to Neuveu-
Schwarz and denoted by H3 =< Ĥ3 > where < . . . > indicates the vacuum
expectation value.

The action Sf contains the kinetic terms for the fermions

Sf = −
∫

d10x

√

−Ĝ10

[

ˆ̄ψMΓMNPDN ψ̂P + ˆ̄λΓMDM λ̂+ ˆ̄χAΓMDM χ̂
A
]

, (2.4)



2.1 Heterotic and type II theories in D = 10 23

where the ten-dimensional fermions are Majorana-Weyl spinors and the conjugate

spinor ˆ̄ψM = ψ†
MΓ0 is obtained by hermitian conjugation and multiplication with

the ten-dimensional gamma-matrix Γ0. The action Sint contains the interactions

Sint = −
∫

d10x

√

−Ĝ10

[
√

1
2
∂N φ̂( ˆ̄ψMΓNΓM λ̂) − 1

4
e−

φ̂
2 ĤMNP . ˆ̄χ

AΓMNP χ̂A

−1
4
e−

φ̂
2HMNP . (

ˆ̄ψQΓQMNPRψ̂R + 6 ˆ̄ψMΓN ψ̂P − 1
2

ˆ̄ψQΓMNPΓQλ̂) (2.5)

+e−φ̂F̂A
MN .

(

ˆ̄χAΓQΓMN(ψ̂Q +
√

1
72

ΓQλ̂)
)

+ four Fermi terms
]

,

where ΓM1...Mp = 1
p!

Γ[M1 . . .ΓMp] denotes totally antisymmetrized products of p
Γ-matrices.

The heterotic action S(10) is invariant under the supersymmetry variation of
its fields. For the gravitino, gaugino and dilatino these are given as follows [40]

δψ̂M = DM ε̂+
1

16
e
−φ̂
2 ĤNPQ . (Γ

NPQ
M − 9δNMΓPQ) , (2.6)

δλ = −1

2

√

1

2
(DM φ̂)ΓMε+

1

4

√

1

2
e−

φ̂
2HMNP .Γ

MNP ε , (2.7)

δχA = e−
φ̂
2FA

MN .Γ
MN ε̂ , (2.8)

where we denote the ten-dimensional SUSY spinor by ε̂ and DM denotes the
ten-dimensional covariant derivative.

2.1.2 Type II supergravity theories

Type II theories are maximally supersymmetric theories in ten dimensions. Hence
their field content is organized in the N = 2 supermultiplet. These fields result
from four different sectors. These are NS-NS, R-R and finally R-NS and NS-R
sectors. The bosonic NS-NS fields of both type IIA and type IIB supergravities
are the scalar dilaton φ̂, the ten-dimensional metric ĜMN and the two-form B̂2.
In the R-R sector type IIA consists of odd forms Ĉ2n−1, while type IIB consists
of even forms Ĉ2n. The fermionic fields come from the R-NS and NS-R sectors1

and are two gravitinos ψ̂1
M , ψ̂

2
M and two dilatinos λ̂1, λ̂2. The gravitinos have the

same chiralities in type IIB theory while in type IIA they have different chiralities.

1The NS-R and R-NS sectors have the same field content.
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The low energy action of these fields [66] is expressed as the sum S (10) =
Sb + Sf + Sint where Sb includes the bosonic terms

Sb = −
∫

d10x

√

−Ĝ(10) e
−2φ̂

[

1
2
R̂ − 2 ∂M φ̂ ∂

M φ̂

+1
4
ĤMNP . Ĥ

MNP + 1
8

8,9
∑

n=0,1

F̂n.F̂n
]

. (2.9)

Note that the action Sb is given in the string frame and hence the ten-dimensional
Ricci scalar R̂ is expressed in that frame. Ĥ3 = dB̂2 is the field strength of the
B-field and the R-R field strengths F̂n are defined as

F̂n = dĈn−1 − Ĥ3 ∧ Ĉn−3 , (2.10)

where we use the democratic formulation of ref. [66]. Thus n runs from 0 to 8 for
type IIA and from 1 to 9 for type IIB. F̂n satisfy a self-duality condition

∗F̂n = λ(F̂10−n) , (2.11)

where λ is a parity operator acting on even forms C2n and odd forms C2n−1 as

λ(C2n) = (−1)n C2n , λ(C2n−1) = (−1)n C2n−1 . (2.12)

The condition in eqn. (2.11) implies that half of the R-R fields carry no extra
degrees of freedom. The NS field strength Ĥ and the R-R field strengths F̂n give
rise to the NS-NS three-form and R-R n-form fluxes H3, Fn respectively if their
vacuum expectation values are non zero.

Sf consists of the fermionic kinetic terms2

Sf = −
∫

d10x

√

−Ĝ(10) e
−2φ̂

[ ˆ̄ψMΓMNPDN ψ̂P − ˆ̄λΓMDM λ̂
]

, (2.13)

where ˆ̄ψM = ψ†
MΓ0. Finally, the interaction terms are given in Sint

Sint = −
∫

d10x

√

−Ĝ(10)

{

e−2φ̂
[

− ∂M φ̂ Ψ̃
(1)
M + 1

2
ĤMNP . Ψ̃

(3)
MNP (2.14)

+2ˆ̄λΓMNDM ψ̂N
]

+ 1
4

8,9
∑

n=0,1

F̂n.Ψ̃n

}

+ quartic fermionic terms ,

2For convenience we combine the two gravitinos and the two dilatinos into doublets.
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where Ψ̃(1), Ψ̃(3) and Ψ̃n are coefficients of ten-dimensional one-, three- and n-
forms. They are defined as

Ψ̃
(1)
M = −2 ˆ̄ψNΓN ψ̂M − 2ˆ̄λΓNΓMψN , (2.15)

Ψ̃
(3)
MNP = 1

2
ˆ̄ψQΓ[QΓMNPΓR]Pψ̂R + ˆ̄λΓQMNPPψ̂Q − 1

2
ˆ̄λPΓMNPλ ,(2.16)

(Ψ̃n)M1...Mn = 1
2
e−φ̂

( ˆ̄ψMΓ[MΓM1...MnΓN ]Pnψ̂N + ˆ̄λΓM1...MnΓNPnψ̂N (2.17)

−1
2
ˆ̄λΓ[M1...Mn−1

PnΓMn]λ
)

,

where P = Γ11, Pn = (Γ11)
n for type IIA while for type IIB one has P = −σ3,

Pn = σ1 for n+1
2

even and Pn = iσ2 for n+1
2

odd.

2.2 Compactification to four dimensions

String theory is consistently formulated in a ten-dimensional target space. In order
to reduce to the four-dimensional observable world, we choose the background to
be of the form M10 = M(3,1) ×M6, as already motivated in chapter 1. Due to this
ansatz the Lorentz group of M10 decomposes as SO(9, 1) → SO(3, 1) × SO(6),
where SO(6) is the structure group of a generic sixfold. This in turn implies the
decomposition of the spinor representation as 16 = (2, 4) + (2̄, 4̄), where 2, 4 are
the Weyl representations of SO(3, 1) and SO(6) respectively. The background
metric is block-diagonal and reads

ds2 = e2∆(y)gµν(x)dx
µdxν + gmn(y)dy

mdyn , (2.18)

where xµ, µ = 0, . . . , 3 are the coordinates on M3,1 while ym, m = 1, . . . , 6 are the
coordinates of M6. Here gµν is the metric on M3,1 and gmn is the metric on the
internal manifold M6. Generically (2.18) includes a non-trivial warp factor ∆(y).
However, in the following we restrict our analysis to a large volume regime where
the supergravity is trusted. In this regime the factor ∆ is constant.3 Only in
section 3.4, where we determine the supersymmetry conditions in the vacuum, we
shall discuss the properties of a non-trivial warp factor.

Demanding a four-dimensional background to preserve a minimal amount of
supersymmetry one has to specify a class of compactification manifolds M6. They
have a structure group reducing to SU(3). In the following we will discuss the
requirements which induce minimal SUSY in D = 4 and the properties of the
SU(3) structure manifolds.

3Compactifications including the warp factor ∆(y) were considered, for example, in [17, 67].
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2.2.1 Conditions for minimal SUSY

In a supersymmetric vacuum all fields transforming non trivially under the Lorentz
group have to vanish, especially the fermionic fields and their SUSY variations.
The vanishing of the gravitino SUSY transformation (2.6), where Ĥ3 has no back-
ground value, amounts to the condition

< δψ̂M >=< DM ε̂ >= 0 , M = 0, . . . , 9 . (2.19)

In compactifications of ten-dimensional supergravities on a six-dimensional man-
ifold M6 as given in (2.18) the spinor ε̂ reduces, via Kaluza-Klein, to the 4-
dimensional SUSY parameter ε(xµ) times a spinor on the internal manifold which
we denote by η(ym)

ε̂ = ε(xµ) ⊗ η(ym) . (2.20)

Hence the condition of preserving supersymmetry (2.19) translates into

Dµε = 0 , DLC
m η = 0 , (2.21)

where Dµ is the four-dimensional derivative and DLC
m denotes the Levi-Civita

connection on the manifold M6. The equation (2.21) implies that for each covari-
antly constant η there is a conserved supersymmetry in the four-dimensional flat
ground state. For minimal SUSY in D=4 the compactification manifold should
then possess only one no-where vanishing spinor satisfying the condition (2.21).
The compactifications of the heterotic and type II theories on these manifolds
lead to N = 1 and N = 2 supersymmetric four-dimensional effective theories re-
spectively.4 Momentarily we will discuss the properties of such manifolds in more
detail.

2.2.2 SU(3) structure manifolds

The existence of a no-where vanishing spinor η is actually the only condition one
needs in order to have some (spontaneously broken) supersymmetries in the effec-
tive four-dimensional theory5, while the condition that η is covariantly constant
guarantees the flatness of the ground state. As reviewed in appendix A.2 man-
ifolds admitting a covariantly constant spinor have SU(3) holonomy group and

4Note that in [68] it was argued that N = 2 supersymmetry can be obtained by compactifying
type II theories on a manifold with two globally defined spinors, which may coincide at points
in M6.

5The discussion here holds for compactifications without background fluxes. In presence of
fluxes unbroken supersymmetry may be realized on the background.
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are known as Calabi-Yau manifolds. Compactifications on such manifolds result
in unbroken supersymmetric four-dimensional effective theories with a Minkowski
background. Throughout the thesis we will relax this condition and we insist only
on the existence of the spinor η. Manifolds admitting one globally defined spinor
have a structure group reduced from SO(6) to SU(3) [45].

Conversely, the reduction of the structure group from SO(6) to SU(3) implies
the existence of a globally defined spinor η. This is due to the fact that the
spinor representation 4 of SO(6) decomposes under SU(3) into 4 → 3+1. Hence
an invariant spinor in the singlet depends trivially on the tangent bundle of the
manifold and is then globally defined. If furthermore this spinor is covariantly
constant with respect to the Levi-Civita connection, as in eqn. (2.21), the mani-
fold has SU(3) holonomy and then it satisfies the Calabi-Yau conditions [69]. In a
generic SU(3) structure manifold the Ricci flatness is no longer satisfied. Equiva-
lently, the spinor η is no longer covariantly constant with respect to the Levi-Civita
connection, but with respect to a more general connection DT . The latter differs
from the Levi-Civita connection by a contorsion tensor τ [40, 69, 70, 71]

DT
mη =

(

DLC
m − 1

4
τmnpγ

np
)

η = 0 , (2.22)

where we define the anti-symmetrized product of six-dimensional gamma matrices
as γm1...mn = 1

n!
γ[m1 . . . γmn]. The contorsion tensor τ parameterizes the deviation

of the connection DT from the Levi-Civita connection. Clearly, in the case where
the contorsion tensor vanishes one recovers the Calabi-Yau condition.

Using the spinor η, which we choose to be normalized as η†±η± = 1, one can
define no-where vanishing two-form J and three-form Ωη

Jmn = ∓2iη†±γ
mnη± , Ωmnp

η = −i2η†−γmnpη+ , Ω̄mnp
η = −i2η†+γmnpη− ,

(2.23)
where the subscripts ± on the spinors indicates their six-dimensional chiralities
and the dagger denotes the hermitian conjugation. The index η indicates the
specific normalization of Ωη.

6 In this normalization one can apply Fierz identities
to derive the SU(3) structure constraints

J ∧ J ∧ J =
3i

4
Ωη ∧ Ω̄η , J ∧ Ωη = 0 . (2.24)

The fact that the spinor η is no longer covariantly constant implies that neither
J nor Ωη are closed. The non-closure is parameterized by the torsion τ which

6Later on we will relate Ωη to the three-form Ω used in the compactification by an appropriate
rescaling.
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decomposes under SU(3) into irreducible representations. Due to the fact that
τmnp is antisymmetric in its last two indices7 it can be thought of as being a
one-form taking values in so(6), the Lie algebra of SO(6), which is decomposed
into SU(3) representations. More precisely, τ ∈ Λ1 ⊗ Λ2 ∼= Λ1 ⊗ so(6) ∼= Λ1 ×
(su(3)⊕su(3)⊥). However, the action of su(3) ≡ 8 is trivial on the SU(3) invariant
quantities including the spinor η. Therefore eqn. (2.22) depends only on torsion
element of Λ1 ⊗ su(3)⊥ which is called the intrinsic torsion.8 It transforms in

(3⊕ 3̄) ⊗ (1⊕ 3⊕ 3̄) = (1⊕ 1)⊕ (3⊕ 3̄)⊕ (3⊕ 3̄)⊕ (6⊕ 6̄) ⊕ (8⊕ 8) . (2.25)

These representations are conveniently encoded by five torsion classes Wi defined
as [45, 71]

dJ = −3
2
Im(W1Ω̄η) + W4 ∧ J + W3 ,

dΩη = W1J ∧ J + W2 ∧ J + W5 ∧ Ωη , (2.26)

with constraints

J ∧ J ∧W2 = J ∧W3 = Ωη ∧W3 = 0 . (2.27)

The pattern of vanishing torsion classes defines the properties of the manifold M6.
For example M6 is complex in case W1 = W2 = 0. Of particular interest are half-
flat manifolds since they are believed to arise as mirrors of flux compactifications
[79, 80, 81]. These are defined by W4 = W5 = 0 and ImW1 = ImW2 = 0.

Using the inverse metric and the real two-form J one can define an almost
complex structure I n

m = Jmpg
pn

I n
p I

p
m = −δnm . (2.28)

The metric gmn is then hermitian with respect to the almost complex structure
I p
n I

q
m gpq = gmn. The almost complex structure can be used to define a (p, q)

grading of forms. Within this decomposition the form J is of type (1, 1) while Ωη

is of type (3, 0).

To summarize, SU(3) structure manifolds are characterized by one globally
defined spinor. Equivalently they are defined by the existence of two globally
defined forms, a real two-form J and a complex three-form Ω. These forms are
not closed, which indicates a deviation from the Calabi-Yau case. This difference

7Manifolds with totally antisymmetric torsion have been considered, for example, in refs. [72]–
[78].

8In what follows we use the term torsion having in mind the intrinsic torsion.
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can also be encoded by specifying a new connection on M6 with torsion replac-
ing the ordinary Levi-Civita connection. The torsion is decomposed into SU(3)
irreducible representations and described by five torsion classes Wi.

In this thesis we aim to discuss N = 1 four-dimensional effective theories
arising upon compactification on SU(3) structure manifolds. Therefore we review
next the characteristic data of a four-dimensional N = 1 supergravity.

2.2.3 N = 1 supergravity in D = 4

The fields of an N = 1 supergravity in four dimensions can be organized into
N = 1 supermultiplets. All the multiplets have some bosonic degrees of freedom
and an equal number of fermionic degrees of freedom. These multiplets are the
gravity, vector, and chiral multiplets. In the gravity multiplet one finds the four-
dimensional metric gµν as the bosonic component and the gravitino ψµ, a field
with spin 3/2, as the fermionic component. While the bosonic component of the
vector multiplet is a vector Aa

µ, a gauge boson transforming under the adjoint of
the gauge group of the theory, its fermionic component is the gaugino χa which
is a field with spin 1/2. The chiral multiplet contains a scalar M and a spin
1/2 field Π. In the theories we are considering there will be several copies of
chiral multiplets. Their multiplicity is denoted here by I = 1, . . . , nchiral. The
N = 1, D = 4 spectrum is summarized in table 2.1.

Bosons Fermions
gravity multiplet gµν ψµ
vector multiplet Aa

µ χa

chiral multiplets M I ΠI

Table 2.1: N = 1 spectrum in D = 4.

A generic N = 1 four-dimensional supergravity action encoding the dynamics
of vector and chiral multiplets and carrying no more than two derivatives, can be
written as the sum of three actions

S = Sb + Sf + Sint, (2.29)

where Sb denotes the action of the bosonic fields of the N = 1 supermultiplets
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[82]

Sb = −
∫

d4x
√
−g4

[1

2
R +

1

4
Ref(M) TrFµνF

µν (2.30)

−1

4
Imf(M) TrF F̃ + gIJ̄DµM

IDµM̄ J̄ + V
]

,

where R is the four-dimensional Ricci scalar and the function f(M) is the holo-
morphic gauge kinetic function. Fµν is the field strength of the gauge boson Aa

µ.
Dµ refers to the gauge covariant derivative. The function V (M, M̄) is a scalar
potential. We denote the metric on the space of fields M I by gIJ̄ . The latter is a
Kähler metric. Thus it is given by the second derivative of the Kähler potential
K(M, M̄)

gIJ̄ =
∂

∂M I

∂

∂M J̄
K(M, M̄) . (2.31)

The kinetic terms of the fermionic fields are given in Sf [82]

Sf =

∫

d4x
√
−g4

[

εµνρκψ̄µσ̄νD̃ρψκ − igĪJΠ̄
Ī σ̄µD̃µΠ

J − iRef χ̄aσ̄µD̃µχ
a
]

, (2.32)

where εµνρκ is the totally antisymmetric epsilon tensor and σµ are Pauli matrices
(for our spinor conventions see appendix B). The derivative D̃µ on the fermions
is given by

D̃µψν = Dµψν + 1
4
(KIDµM

I −KĪDµM̄
Ī)ψν + . . . , (2.33)

D̃µχ
a = Dµχ

a + 1
4
(KIDµM

I −KĪDµM̄
Ī)χa + . . . , (2.34)

Dµ is the covariant derivative including the spin connection ωµ and reads Dµψν =
(∂µ + ωµ)ψν for the gravitino while for the gaugino Dµχ = (∂µ + ωµ)χ− f abcAbµχ

c

where f abc are the constant structures of the gauge group. KI = ∂K
∂MI are deriva-

tives of the Kähler potential K with respect to the scalars M I . In eqs. (2.33) and
(2.34) we didn’t display terms involving quantities transforming in the adjoint
representation of the four-dimensional gauge group contracted in an appropriate
way.

Finally the action Sint includes the terms [82]

Sint = −
∫

d4x
√−g4

[

e
K
2 (Wψ̄µσ̄

µνψ̄ν +
i√
2
DIW ΠIσµΨ̄µ) +

1

2
Daψµσ

µχ̄a + . . .
]

,

(2.35)
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where Da denotes the auxiliary field of the vector multiplets which yields the
D-term (DaDa). The holomorphic function W (M) is the superpotential and its
Kähler covariant derivatives are given by

DIW =
∂W

∂M I
+

∂K

∂M I
W . (2.36)

In N = 1 four-dimensional supergravity the scalar potential V can be given in
terms of the superpotential W as follows

V (M, M̄) = eK
(

DIWGIJ̄D̄J̄W̄ − 3|W |2
)

+
1

2
(Ref)−1 DaDa . (2.37)

The N = 1, D = 4 action is invariant under the supersymmetry transfor-
mation of its fields. Below we give the scalar parts of the fermionic fields SUSY
transformations

δψµ = Dµε+ eK/2Wσµε̄ , (2.38)

δχa = F a
µνσ

µνε− iDaε , (2.39)

δΠI =
√

2eK/2gIJ̄DJ̄W̄ ε , (2.40)

where we denote the four-dimensional SUSY spinor by ε.

To summarize, the N = 1 four-dimensional theory can be encoded into gravity,
vector, and chiral multiplets. The dynamic of their fields is given by an action
which is, in turn, totally determined by three characteristic functions. These are
the real Kähler potential K(M, M̄), the holomorphic superpotential W (M) and
the holomorphic gauge kinetic functions fa(M).

In the next chapter we will determine these functions for an N = 1 four-
dimensional theory resulting from the compactification of the heterotic super-
gravity on SU(3) structure manifolds.
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Chapter 3

The heterotic string on SU (3)
structure manifolds

In this chapter we compactify the heterotic supergravity theory on SU(3) structure
manifolds. As discussed in section 2.2.2 this reduction leads to an N = 1 effective
theory in four dimensions. We determine here the superpotential and the Kähler
potential of the resulting effective action from fermionic terms. To start with let
us discuss the D = 4 spectrum.

3.1 The four-dimensional spectrum

The four-dimensional spectrum arising from compactification of the heterotic
E8 × E8 supergravity on an SU(3) structure manifold is determined via Kaluza-
Klein reduction. This reduction is not as straightforward as it is for Calabi-Yau
compactifications. In such compactifications the light modes are in one to one cor-
respondence with the harmonic forms of the manifold. Therefore to compute the
massless fields one expands the ten-dimensional fields into harmonics. For SU(3)
structure manifolds such a correspondence is hard to identify. Thus the distinction
between heavy and light modes is more subtle. However an alternative truncation
is given in [80, 68]. The expansion is then done in a set of infinite forms which are
not necessarily harmonic. Moreover, since we are interested in a standard N = 1
effective theory a projection of all fields transforming as a triplet under SU(3)
is needed. In particular, this amounts to discarding all four-dimensional fields
which arise in the expansion of the ten-dimensional fields into one- and five-forms
on M6. This truncation insures keeping only one gravitino in the gravity multi-



34 The heterotic string on SU(3) structure manifolds

plet. To see this let us decompose the fields into SU(3) representations which we
summarized in tables 3.1 and 3.2.

ĜMN

gµν 12

gµm (3 + 3̄)1

gmn 10 + (6 + 6̄)0 + 80

B̂MN

Bµν 1T

Bµm (3 + 3̄)1

Bmn 10 + (3 + 3̄)0 + 80

φ̂ φ 10

ÂM
Aµ 11

Am (3 + 3̄)0

Table 3.1: Decomposition of the NS sector in SU(3) representations

ψ̂M

ψµ 13/2 + 33/2

ψm 11/2 + 31/2 + 2 3̄1/2 + 61/2 + 81/2

λ̂ λ 11/2 + 31/2

χ̂ χ 11/2 + 31/2

Table 3.2: Decomposition of the fermions in SU(3) representations

We denote the SU(3) representation R with four-dimensional spin s by Rs.
For example, a triplet under SU(3) yielding a field with spin one (a vector) in
four-dimensions is denoted by 31. A four-dimensional tensor (or pseudo-scalar) is
indicated by an index T.

The four-dimensional spectrum given in tables 3.1 and 3.2 can be organized in
N = 4 supermultiplets. More specifically the fields are displayed in gravity and
seven vector supermultiplets. Only one of the vector multiplets is transforming
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in the adjoint of the four-dimensional gauge group while the remaining six are
gauge neutral. In the gravity multiplet one finds the metric, four gravitinos, six
vectors, four spin 1/2 fields while in each vector multiplet one finds one vector,
four spin 1/2 fields and six scalars. A possible reduction to the standard N = 1 is
achieved by truncating all triplets of SU(3). This keeps only one gravitino in the
spectrum transforming as a singlet. The latter will be the fermionic component
of the N = 1 gravity multiplet.

So far we discussed the SU(3) decomposition of the ten-dimensional fields
without referring to the gauge group representations which are carried by the
fields of the vector multiplet. The discussion of the gauge group decomposition
inquires specifying the structure of the gauge bundle of M6. This determines
the unbroken gauge group G in the four-dimensional effective action. However
the aim here is not the construction of such bundles, therefore we will keep the
precise multiplet structure largely unspecified. We will rather discuss a generalized
version of the standard embedding where the spin connection is identified with
an SO(6) subgroup of the E8 gauge connection [43]. Before doing that let us
recall the standard embedding [5]. In this case the compactification manifold is
identified with the Calabi-Yau manifold, where the spin connection takes values
in SU(3) The Bianchi identity for the field strength Ĥ3 defined in (2.2) leads to
the relation between the two-form curvature R̂2 and the field strength F̂ of the
gauge boson

dĤ = 1
4

(

tr(R̂2 ∧ R̂2) − Tr(F̂ ∧ F̂)
)

. (3.1)

As a condition for the Bianchi identity to be solvable, the right hand side of (3.1)
should be cohomologically trivial

[

tr(R̂2 ∧ R̂2)
]

=
[

Tr(F̂ ∧ F̂)
]

, (3.2)

where the bracket [. . .] denotes the cohomology class. The simplest solution to
this equation is given by the standard embedding. It amounts to set the spin
connection of the manifold equal to the internal Yang-Mills connection which,
then, takes values in a SU(3) subset of one of the E8’s. The surviving gauge
group is the maximal commutant of SU(3) within E8 × E8 which is, in this case,
E6 × E8. The chiral fermionic fields are found to be transforming in the 27 and
2̄7 of E6.

On a generic sixfold the spin connection takes values in SO(6). As a gen-
eralization of the standard embedding we take here the gauge connection to be
SO(6) valued as well. The identification of gauge and spin connections enables us
to further decompose the SO(6) representations in terms of the structure group
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SU(3). In this case the gauge group is decomposed as follows

E8 → SO(6)× SO(10)

→ SU(3) × U(1) × SO(10) , (3.3)

and its adjoint representation 248 decomposes accordingly as

248 → (1, 45) ⊕ (15, 1) ⊕ (6, 10) ⊕ (4, 16) ⊕ (4̄, 1̄6) . (3.4)

Projecting out the triplets arising from the decomposition of 4 → 3 ⊕ 1 and
decomposing the 15 of SO(6) under the SU(3) structure of M6 reveals that the
field Am and the the gaugino χ̂ are actually transforming in the representations
6, 8, 1 as well. Hence these fields will not be projected out but are kept in the
spectrum.

The resulting field content after the truncation of the triplets of SU(3) has the
structure of four-dimensional N = 1 multiplets. The gravity multiplet consists of
the metric gµν and the gravitino ψµ which are singlets under SU(3). The vector
Aµ and the singlet of the gaugino χ̂ are the components of the vector multiplet. In
the linear multiplet one finds the four-dimensional two-form Bµν and the singlet in

the dilatino λ̂. The fields among gmn, Bmn, ψm which are transforming as 6, 8, 1
under SU(3) will be the components of the chiral moduli multiplets. The chiral
matter multiplets are composed by the fields transforming as 6, 8, 1 under SU(3)
among Am and χ̂. All the other fields are projected out due to the truncation of
the triplets. The N = 1, D = 4 spectrum is summarized in table 3.3.

The linear multiplet can be dualized to a chiral multiplet if the B-field is
massless. This is due to the fact that in four dimensions a massless two tensor is
dual to a scalar. In case of the massless B-field the dual scalar ‘a’ is called the
axion.

The fields of the vector multiplet carry an index a referring to the adjoint of
the unbroken four-dimensional gauge group G×E8 in which they transform. The
charged fields of the chiral multiplets transform in some appropriate representa-
tions of G. In the example discussed above where G = SO(10) these fields are
transforming in the 10, 16 or 1̄6. Additional singlets might also be present. In
the following the precise (gauge) representation will play no role and we will only
need the SU(3) representations in which the fields transform.

After giving the decomposition of the fields under the SU(3) structure of the
manifold M6, keeping all fields transforming as 1, 6, 8 and only projecting out the
triplets of the SU(3), we give the Kaluza-Klein reduction of the fields. In order
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multiplet SU(3) rep. field content

gravity multiplet 1 (gµν , ψµ)

linear multiplet 1 (Bµν , λ)

vector multiplets 1 (Aµ, χ)

chiral moduli multiplets
6 (gmn, ψm)

8 + 1 (gmn, Bmn, ψm)

chiral matter multiplets
6 (Am, χ)

8 + 1 (Am, χ)

Table 3.3: N=1 multiplets

to perform this reduction one needs to specify a basis of forms on the internal
manifold M6 used to expand the fields. This expansion yields the light fields in
the spectrum of the four-dimensional theory. In Calabi-Yau compactifications, for
example, the basis is composed of harmonic forms. For SU(3) structure manifolds
such a correspondence between the harmonics and the light modes is not clear.
The basis, then, consists of infinite number of forms which are not necessarily
harmonics. In other words the expansion takes into account all the modes of the
Kaluza-Klein tower. Luckily much of the analysis can be performed independently
from the basis. For the case at hand, the heterotic compactification on SU(3)
structure manifolds, we nevertheless restrict to a basis of finite set of forms ∆finite.
This enables us to perform the calculations and determine the four-dimensional
effective action explicitly.

The finite basis of forms ∆finite on the SU(3) structure manifold is chosen to
be slightly extending the Calabi-Yau basis [80, 68]. The major difference from
the CY case is the fact that the forms of ∆finite are not necessarily harmonics.
The explicit construction of such finite set of forms is difficult. However we can
specify its properties [68]. To do that let us first introduce an additional structure
known as the Mukai pairing on the space of real n-forms on M6 which we denote
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by ΛnT ∗. It is defined as

〈

ϕ, ψ
〉

=
[

λ(ϕ)∧ψ
]

6
=

{

ϕ0 ∧ ψ6 − ϕ2 ∧ ψ4 + ϕ4 ∧ ψ2 − ϕ6 ∧ ψ0 for even forms,

−ϕ1 ∧ ψ5 + ϕ3 ∧ ψ3 − ϕ5 ∧ ψ1 for odd forms,

(3.5)
where [. . .]6 denotes the forms of degree 6 and the parity operator λ is defined in
eqn. (2.12).

Let us denote the finite set of forms in ΛnT ∗ by ∆n, with dimensions dim ∆n.
As a first condition we demand that dim ∆0 = dim ∆6 = 1 and assume that ∆0

consists of the constant functions while ∆6 contains volume forms ε ∝ J ∧ J ∧ J .
One can give a (canonical) symplectic basis on the space ∆ev = ∆0 ⊕ ∆2 as

ωÂ = (1, ωA). The dual basis of ∆4 ⊕ ∆6 is given as ω̃Â = (ω̃A, ε)

∫

M6

〈

ωÂ, ω̃
B̂
〉

= δB̂
Â
, Â, B̂ = 0, . . . , dim ∆2 , (3.6)

with all other intersections vanishing. Turning to the odd forms ∆odd we follow
a similar strategy to define a symplectic basis. However, in accord with our
assumption above of truncating the triplets of the SU(3), we will set dim ∆1 =

dim ∆5 = 0. A symplectic basis (αK̂, β
K̂) of ∆3 can be defined as

∫

M6

〈

αL̂, β
K̂

〉

= δK̂
L̂
, K̂, L̂ = 0, . . . , 1

2
dim ∆3 , (3.7)

with all other intersections vanishing.

In a manifold with SU(3) structure there always exists an almost complex
structure I as we reviewed in section 2.2.2. With respect to I one can define (p, q)
grading of forms, for instance the two-forms ωA are (1, 1)-forms and their duals
ω̃B are then (2, 2)-forms.

From the discussion above it is clear that the four-dimensional spectrum arises
from expansion of the ten-dimensional fields in (1, 1)-, (2, 2)- and three-forms only.
Let us now turn to this expansion in some more detail starting with the bosonic
fields in 3.1.1 and discussing the fermions in 3.1.2

3.1.1 Bosonic Spectrum

Since the dilaton φ̂ is already a scalar in D = 10 it trivially descends to the four
dimensional theory φ̂(x, y) = φ(x). The antisymmetric tensor B̂MN is decomposed
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on a basis of two-forms Λ2T ∗. Restricting to the finite set of forms ∆finite the B-
field B̂MN is expanded into the basis of ∆0⊕∆2 which we denoted by ωÂ = (1, ωA)

B̂2 = B2(x) + bA(x)ωA , A = 1, . . . , dim ∆2 , (3.8)

where bA are four-dimensional real scalar fields and B2(x) is a two-form in D = 4.
In case it is massless it can be dualized to a scalar ‘a’ which combines with the
dilaton φ to form complex scalar.

The decomposition of the ten-dimensional metric ĜMN results in the D = 4
metric gµν and the internal metric gmn as it is shown in table 3.1. The deforma-
tions of the internal metric δgmn give rise to two distinct classes of scalar fields
corresponding to the 8⊕1 and the 6 representations. We decompose the first class
into two-forms in Λ2T ∗ and the latter into three-forms in Λ3T ∗. In the finite basis
of forms ∆finite these are most easily distinguished by going to complex indices
α, β̄ = 1, 2, 3 with respect to the almost complex structure I. In this notation
δgαβ̄ transforms in the 8⊕ 1 representation while δgαβ transforms in the 6. They
are expanded as follows

δgαβ̄ = −iṽA(x) (ωA)αβ̄ , α, β̄ = 1, 2, 3

δgαβ = i
‖Ω‖2 z̄

K(x) (ρ̄K)αβ̄γ̄Ω
β̄γ̄
β , K = 1, . . . , 1

2
dim ∆3 , (3.9)

where the ωA are the (1, 1)-forms transforming in 8 ⊕ 1 already used in (3.8)
while the ρK are a set of (1, 2)-forms transforming in the 6. Ω is the (3,0) form
on M6 which differs from the Ωη introduced in (2.23) by a rescaling Ω = ||Ω||Ωη

with ||Ω||2 ≡ 1
3!
ΩαβγΩ̄

αβγ . ||Ω|| is constant on the manifold but as reviewed
in appendix C does depend on the scalar fields. It is introduced in (3.9) for
later convenience to ensure a properly normalized metric on the space of metric
deformations [55].

The expansions (3.9) are in analogy with the Calabi-Yau case where ṽA are real
scalars parameterizing the Kähler-form deformations, while the zK are complex
scalars associated to the complex structure deformations (for more details see
appendix C).

The expansion given in (3.9) features the metric in the Einstein frame but,
as we will see in the next section, the correct four-dimensional field variables vA

arise from the expansion of the metric in the string frame. The two metrics differ
by a dilaton dependent factor which relates the scalar fields as follows

ṽA = vAe−φ/2 . (3.10)



40 The heterotic string on SU(3) structure manifolds

The real scalars vA combine with the real scalars bA arising in the expansion
of the B-field introduced in (3.8). We denote the resulting complex scalars by
tA = bA + ivA.

The reduction of ten-dimensional gauge field ÂM gives rise to the gauge field
Aµ and Am in D = 4. The four-dimensional gauge boson is a singlet under
SU(3) but transforms in the adjoint representation of G×E8. The fields Am are
expanded into a basis of Λ2T ∗ and Λ3T ∗ transforming either in the representation
8⊕1 of the SU(3) or in the 6. The coefficients of the expansion are charged fields
under G and transform in some of its representations. Since we restrict here to
the finite basis of forms ∆finite we give explicitly the expansions of Am. These are
best represented in complex indices

Âαβ = 1
‖Ω‖2A

K(x)(ρ̄K)αβ̄γ̄Ω
β̄γ̄
β , Âαβ̄ = AA(x)(ωA)αβ̄ . (3.11)

We summarize the four-dimensional light spectrum in table 3.4.

3.1.2 Fermionic Spectrum

Here we give the decomposition of the ten-dimensional fermions in the background
M(3,1) × M6. Before doing that let first look at the decomposition of the ten-
dimensional SUSY parameter ε̂

ε̂ = ε⊗ η− + (ε)∗ ⊗ (η−)∗ = ε⊗ η− + ε̄⊗ η+ , (3.12)

where ∗ stands for complex conjugation. The spinors ε and ε̄ are four-dimensional
Weyl spinors parameterizing the N = 1 supersymmetry in M(3,1). They have
positive and negative four-dimensional chiralities respectively. η± are Weyl spinors
in the internal manifold M6, and their six-dimensional chiralities are denoted by
±. The spinor conventions are summarized in appendix B.

In the same spirit we decompose the singlets in ψ̂µ, χ̂, λ̂. This reads as follows

ψ̂µ = ψµ ⊗ η− + ψ̄µ ⊗ η+ , (3.13)

χ̂ = χ⊗ η− + χ̄⊗ η+ , (3.14)

λ̂ = λ⊗ η+ + λ̄⊗ η− , (3.15)

where ψµ, ψ̄µ are Weyl spinors corresponding to the four-dimensional gravitino,
while the Weyl spinors χ, χ̄ refer to the four-dimensional gaugino. Finally λ, λ̄
denote Weyl spinors corresponding to the four-dimensional dilatino. Here ψµ, χ, λ
have positive four-dimensional chiralities while ψ̄µ, χ̄, λ̄ have negative chiralities.
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Note that we suppressed the gauge index of the gaugino referring to the adjoint
of the four-dimensional gauge group G× E8.

In the decomposition of ψ̂m we only want to keep the 6 and 8 ⊕ 1 represen-
tations of SU(3) (see table 3.2). These are expanded into the basis of two- and
three-forms. In the finite basis this is given by

ψ̂α = ξA ⊗ (ωA)αβ̄γ
β̄η+ + 1

‖Ω‖2 ζ̄
K ⊗ (ρ̄K)αβ̄γ̄Ω

β̄γ̄
β γ

βη− , (3.16)

where ζK and ξA are gauge neutral Weyl fermions.

Finally, the chiral matter arise in the decomposition of the ten-dimensional
gaugino into the basis of Λ2T ∗ and Λ3T ∗. Analogously to (3.16) we give the
expansion of the chiral matter in the finite basis in terms of forms which are in
the 6 or in the 8 ⊕ 1 of SU(3)

χ̂β = χA ⊗ (ωA)βᾱγ
ᾱη+ + 1

‖Ω‖2 χ̄
K ⊗ (ρ̄K)βγ̄ᾱΩ

γ̄ᾱ
δ γ

δη− . (3.17)

Here χA and χK are four-dimensional chiral matter fermions. Together with the
bosonic fields of the previous section the fermions combine into supermultiplets
as summarized in table 3.4.

Multiplets multiplicity bosonic fermionic

components components

gravity multiplet 1 gµν ψµ

vector multiplet dimG+ dimE8 Aaµ χa

chiral moduli multiplet
dim ∆2 tA ξA

1/2 dim∆3 zK ζK

linear multiplet 1 B2, φ λ

chiral matter multiplet
dim ∆2 AB χB

1/2 dim∆3 AK χK

Table 3.4: N = 1 spectrum in D = 4.

After we specified the decomposition of the ten-dimensional fields and analyzed
the four-dimensional spectrum we next discuss the resulting four-dimensional ef-
fective action encoding the dynamics of the fields.
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3.2 The low energy effective action

In this section we compute the four-dimensional low energy effective action by a
Kaluza-Klein reduction. We start from the ten-dimensional N = 1 supergravity
action of the heterotic string S(10) = Sb+Sf+Sint given in (2.1), (2.4) and (2.5). To
determine the N = 1 four-dimensional effective action it is sufficient to compute
the Kähler potential, the superpotential and the gauge kinetic function. The
aim of this section is to compute these functions entirely from fermionic terms.
These are the gravitino mass term and the gravitino coupling to the chiral fermion
terms. Thus we will mainly focus on the computation of the fermionic actions Sf

and Sint. However for completeness next we review briefly the compactification of
the bosonic part of S(10).

3.2.1 The kinetic terms in the D = 4 bosonic action

The compactification of the bosonic action Sb was studied extensively in the lit-
erature. For Calabi-Yau compactifications this has been computed for example in
refs. [53, 54, 55] and for the analog computation on manifolds with SU(3) struc-
ture see for instance [80, 68, 56]. Therefore we can be brief and basically just
recall the results found for the Kähler potential K, the holomorphic gauge kinetic
functions f and the holomophic superpotential W .

The compactification of the bosonic action Sb involves the insertion of (3.8) –
(3.11) into (2.1) and performing a Weyl rescaling of the four-dimensional metric

gµν → e
3
2
DK−1gµν , (3.18)

where D is the four-dimensional dilaton and K is the volume of M6 given by

D = φ̂− 1

2
lnK , K =

1

6

∫

M6

J ∧ J ∧ J , J = vAωA . (3.19)

The Weyl rescaling is needed to bring the Einstein-Hilbert action to the standard
form. Resulting from this rescaling some terms involving the volume of M6 ap-
pear. These are absorbed into the kinetic term of the four-dimensional dilaton
D. The resulting bosonic effective action is an N = 1 action of the form (2.30).
It is then specified by a Kähler potential, a superpotential and a gauge kinetic
function. The latter is given by a complex scalar combining the four-dimensional
dilaton D and the axion a dual to the B-field

f = S , S = 1
2
e−2D + i

2
a . (3.20)
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Before giving the Kähler potentials let us summarize the results of the Kähler
metrics gIJ̄ on the field space for the chiral moduli multiplets. It is block-diagonal
with the non-trivial entries being the metric for the dilaton-axion complex scalar
gSS̄, the metric for the chiral multiplets (tA, ξA) denoted by gAB and finally gKL
the metric for the chiral multiplets (zL, ζL). These are summarized as

gSS̄ =
1

(S + S̄)2
, gAB =

1

4K

∫

M6

ωA∧∗ωB , gKL =

∫

M6
ρK ∧ ρL

∫

M6
Ω ∧ Ω

. (3.21)

Each metric can be shown to be a Kähler metric so that the Kähler potential is
the sum of three terms

K = KS +KK +Kcs , (3.22)

where

e−K
S

= (S + S̄) ,

e−K
K

= −i
∫

M6

〈

Πev, Π̄ev
〉

= K, (3.23)

e−K
cs

= i

∫

M6

〈

Ω, Ω̄
〉

.

In fact both KK and Kcs define a special Kähler manifolds in that they can
be derived from a holomorphic prepotential. Further details can be found in
appendix C.

For the scalars in the chiral matter multiplet one computes the moduli depen-
dent metrics ZAB and ZKL. From the Kaluza Klein reduction one finds straight-
forwardly by inserting (3.11) into the last term in (2.1)

ZAB = 4e−
φ
2 g̃AB , ZKL = 4e−

φ
2 gKL . (3.24)

However, in order to display the metric in the standard supergravity form (2.29)
one needs a further rescaling

AA → 1
2
e
−φ̂
2 e

1

6
(Kcs−KK)AA , AK → 1

2
e

φ̂
4 e

1

6
(KK−Kcs)AK , (3.25)

which results in the metrics [54]

ZAB = e
1

3
(Kcs−KK)gAB , ZKL = e

1

3
(KK−Kcs)gKL . (3.26)

After this brief review on the compactification of the bosonic action Sb of the
heterotic supergravity let us now turn to the computation of the fermionic actions
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Sf and Sint. Due to supersymmetry this will not add any new informations to
the bosonic compactification. Our aim in doing this further compactification is
to provide a consistent reduction of the fermionic part which, to our surprise,
is missing in the literature even for Calabi-Yau. To start with let us discuss the
fermionic kinetic terms resulting from the compactification of Sf and then we turn
to the couplings of Sint.

3.2.2 The kinetic terms in the D = 4 fermionic action

In this section we will compute the four-dimensional fermionic kinetic terms
resulting from the compactification of the ten-dimensional fermionic action Sf .
Therefore we only focus in (2.4) on terms which contain a spacetime derivative
Dµ = ∂µ + ωµ where ωµ is the spin connection.

The Γ-matrices are decomposed as in (B.17). As a consequence of (B.24) terms
like η†±γ

α . . . γβ̄η± vanish unless they have an equal number of holomorphic and
antiholomorphic gamma matrices [83, 84]. These terms in turn can be simplified
by using (B.23). For example one computes

η†+γ
γγᾱβγλ̄η+ = gγᾱgβλ̄ − 1

2
gβᾱgγλ̄ . (3.27)

The kinetic terms of ψµ, λ and χ follow straightforwardly by inserting (3.13)-

(3.15) into (2.4). The only complication arises from terms involving ψ̂α. In their
reduction one encounters the integrals

∫

d6y
√
g6 (ωA)ᾱδ(ωB)βδ̄(2g

δᾱgβδ̄ − gβᾱgδδ̄) = 2K̃AB + 4K̃gAB ,

1
‖Ω‖4

∫

d6y
√
g6(ρK)ᾱεγΩ̄

εγ
γ̄ (ρ̄L)βδ̄λ̄Ω

δ̄λ̄
λ (gᾱβgγ̄λ − 2gγ̄βgᾱλ) = −4K̃gKL , (3.28)

where we used (3.21), (3.27) and abbreviated K̃AB =
∫

M6
ωA ∧ ωB ∧ J̃ . The holo-

morphic three-form Ω is related to the three-form Ωη via a scalar fields dependent
factor (C.41). We denote the quantities in the Einstein frame with a tilde. Later
on we need to compare with results computed in the string frame. To insure that
the comparison is made in the same frame we will use the rescaling (3.10).
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Inserting (3.16) and (3.17) into (2.4) and using (3.28) one arrives at

Sf =

∫

d4x
√
−g4

[

K̃ εµνρξ ψ̄µσ̄ξDνψρ + i
2
K̃i ψ̄µσ̄

[µσν]Dν ξ̄
i − i

2
K̃A ξ

Aσ[µσ̄ν]Dµψν

+i ξ̄Aσ̄µDνξ
B(K̃AB + 2K̃g̃AB) − 2i ζ̄Kσ̄νDνζ

L K̃gKL − i K̃ λ̄σ̄µDµλ

−i K̃ χ̄σ̄µDµχ− 4i K̃ g̃AB χ̄
Aσ̄µDµχ

B − 2i K̃ gKL χ̄
K σ̄µDµχ

L
]

, (3.29)

where K̃A =
∫

Y
ωA ∧ J̃ ∧ J̃ and we rescaled all fields by 1√

2
. Note here that we

ignored all terms where spacetime derivatives act on bosonic terms. They should
combine into appropriate covariant derivatives as given in (2.33), (2.34).

The next step is to perform the Weyl rescaling of the metric as in (3.18). This
will bring the four-dimensional gravitino kinetic term in (3.29) into the standard
form. Since the σµ are defined with a vierbein they also rescale. In addition the
Weyl rescaling requires a rescaling of all fermionic fields [82] as follows

σµ → K̃ 1

2σµ , ψµ → K̃− 1

4ψµ , ξA → K̃ 1

4 ξA , ζK → K̃ 1

4 ζK ,

λ→ K̃ 1

4λ , χ→ K̃ 1

4χ , χA → K̃ 1

4χA , χK → K̃ 1

4χK . (3.30)

Inspecting the Lagrangian (3.29) we see that the kinetic terms are not yet
diagonal. This is achieved by shifting the gravitino as follows

ψµ → ψµ +
K̃A

4K̃
σµξ̄

A . (3.31)

Inserting (3.30) and (3.31) into (3.29) we arrive at

Sf = −i
∫

d4x
√−g4

[

i εµνρξ ψ̄µσ̄ξDνψρ + χ̄σ̄µDµχ + λ̄σ̄µDµλ

+2gKL ζ̄
Kσ̄νDνζ

L − ξ̄Aσ̄µDµξ
B(

K̃AB

K̃
+

3

8

K̃AK̃B

K̃2
+ 2g̃AB)

+ 4g̃AB χ̄
Aσ̄µDµχ

B + 4gKL χ̄
Kσ̄µDµχ

L
]

. (3.32)

From (3.32) we see that the kinetic terms for the gravitino ψµ and the chiral
fermions ζK agree already with the form of (2.32) as dictated by N = 1 super-
gravity. However, the kinetic terms for the ξA, λ and χ are not yet in its standard
forms. This requires two further field redefinitions. The first is1

λ→ λ− i
√

5
8

K̃A

K̃
ξA , ξA → ξA − i 1

28

√

5
8

K̃A

K̃
λ , (3.33)

1Other rescalings of ξA, such as ξA → ξA +αṽA(ξB K̃B

K̃
)+ iβ K̃

A

K̃
λ , can be considered as well.
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which can be understood as the supersymmetric analog of (3.19), and the second
field redefinition is

λ→
√

14
29
e2Dλ , ξA → 1√

2
e−

φ̂
2 ξA , ζK → 1√

2
ζK , (3.34)

χ→ 1√
2
e−Dχ , χA → 1

2
e
−φ̂
2 e

1

6
(Kcs−KK)χA , χK → 1

2
e

1

6
(KK−Kcs)χK .

This brings the λ, χ, ξ kinetic terms into the standard form. Inserting (3.33) and
(3.34) in (3.32) we arrive at

Sf = −i
∫

d4x
√
−g4

[

i εµνρξ ψ̄µσ̄ξDνψρ + gSS̄λ̄σ̄
µDµλ+ Ref χ̄σ̄µDµχ (3.35)

+gKLζ̄
Kσ̄νDνζ

L + gAB ξ̄
Aσ̄µDµξ

B + ZABχ̄
Aσ̄µDµχ

B + ZKLχ̄
K σ̄µDµχ

L
]

.

The comparison with (2.32) shows that the kinetic terms are now normalized in
accord with the standard form of N = 1 supergravity.

Once the kinetic terms and the normalizations of the fermionic fields are de-
termined let us now turn to the computation of the Yukawa couplings which arise
in this compactification.

3.2.3 Yukawa Couplings

Yukawa couplings arise from the kinetic terms of the ten-dimensional gaugino
χ̂A given as the last term in (2.4). In the expansion of the covariant derivative
of ˆ̄χΓMDM χ̂ one finds DM χ̂

A = ∂M χ̂
A + gfA

BCA
B
M χ̂

C where fA
BC are the structure

constants of the group E8. The partial derivative of the gaugino ∂M χ̂
A contributes

to the four-dimensional kinetic term in (3.35). While the second term in DMχ
A

gives rise to the Yukawa coupling terms. More specifically these arise from terms
which have the structure

SY uk =

∫

d10x

√

−Ĝ10 f
A
BC ˆ̄χ

A
ΓM ÂB

M χ̂
C , (3.36)

where we consider only matter fields arising in the expansion of χ̂ and Âm. To
make this more concrete let us restrict to the finite basis ∆finite and insert the
expansions (3.11) and (3.17) into (3.36). Doing that one arrives at

SY uk =

∫

d4x
√
−g4

[

χK · χM · AL 4
‖Ω‖4

∫

d6y
√
g6 Ωγ̄ᾱ

ε (ρ̄K)βγ̄ᾱ(ρ̄L)δβα (ρ̄M)εαδ

+8χA · χC · AB
∫

M6
ωA ∧ ωB ∧ ωC + . . .

]

, (3.37)
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where we used (C.42). The dots indicate that the four-dimensional fields are con-
tracted with an invariant tensor of the groupG which arise from the decomposition
of the ten-dimensional E8 structure constants fABC . Under the decomposition of
E8 discussed in section 3.1 they decompose into the structure constants of G plus
a product of the the invariant tensor in the fundamental representation of SU(3)
which is εαβγ and an invariant tensor in the appropriate representation of G.

The first term in (3.37) can be rewritten as

1
2‖Ω‖4

∫

d6y
√
g6 Ωγ̄ᾱ

ε (ρ̄K)βγ̄ᾱ(ρ̄L)
δβ
α (ρ̄M )εαδ =

∫

M6

Ω ∧ ραK ∧ ρβL ∧ ργMΩαβγ , (3.38)

where (C.40) has been used and ραK is defined as follows

ραK = 1
2‖Ω‖2 Ω̄

αβγ(ρK)βγᾱdz
β̄ . (3.39)

It is proved for Calabi-Yau manifolds in [55, 85] that (3.38) is the third derivative
of the prepotential G given in (C.40). Since the finite basis ∆finite is chosen to be
slightly enlarging the CY basis we expect this relation to hold for ∆finite as well.
Therefore we write

1
2‖Ω‖4

∫

d6y
√
g6Ω

γ̄ᾱ
ε (ρ̄K)βγ̄ᾱ(ρ̄L)

δβ
α (ρ̄M)εαδ =

∂3G
∂zK∂zL∂zM

. (3.40)

The second term in (3.37) involves the intersecting number KABC =
∫

M6
ωA ∧

ωB∧ωC which is the third derivative of the prepotential F as reviewed in appendix
C. Finally by using (3.25), (3.34) one arrives at

SY uk =

∫

d4x
√−g4e

K
2

[

χK · χM · AL ∂3G
∂zK∂zL∂zM

+ χA · χC · AB ∂3F
∂tA∂tB∂tC

]

.(3.41)

The Yukawa couplings are then given by the third derivatives of the prepotentials
G and F with respect of the scalars in the chiral multiplets.

So far we computed the kinetic terms and the Yukawa couplings in the four-
dimensional effective theory by a Kaluza-Klein reduction. In the next section we
continue in the same spirit and derive the F - and D-terms related to non-trivial
fluxes and/or torsion. The computation is done on the level of the fermionic action
Sint where the F - and D-terms are appearing linearly.

3.2.4 The F - and D-terms

The computation of the F - and D-terms can be done in two ways. On the one
hand, from the reduction of the bosonic ten-dimensional action (2.1) and the
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derivation of the scalar potential V one can infer the superpotential and the D-
terms by using (2.37). However, this procedure is problematic since W and D
enter quadratically in V . On the other hand in the reduction of some fermionic
terms the D- and F -terms appear linearly [43, 52]. In fact the superpotential W
can be computed from the gravitino mass term while its derivatives (the F -terms)
can be computed from the couplings of the gravitino to the chiral fermions. The
D-terms arise from the couplings of the gravitino to the gaugino.

In the following we are going to compute these three couplings from a Kaluza-
Klein reduction of the fermionic actions Sf and Sint given in (2.4) and (2.5). There
will be two different contributions which we will discuss in turn. The first is the
contribution from the background NS-flux H3 which is the vacuum expectation
value for the NS-NS field strength Ĥ. This contribution arises from the term

e−
φ̂
2 ĤMNP ( ˆ̄ψQΓQMNPRψ̂R) in (2.5) when the three-form field strength Ĥ takes a

non-trivial background value on the manifold M6. The other contribution comes
from the torsion on the manifold. It arises from the ten-dimensional gravitino
kinetic term when considering only the internal derivative Dm.

Contribution form H3-flux

As anticipated above the flux contribution comes from the ten-dimensional term

SH = 1
4

∫

d10x
√

−Ĝ10e
− φ̂

2 ĤMNP
ˆ̄ψLΓLMNPQψ̂Q in (2.5). The flux contribution to

the four-dimensional gravitino mass term arises then when both gravitinos ψ̂M in
SH carry external indices (µ = 0, . . . , 3). Inserting (3.13) and using (2.23) and
(C.43) one finds

SH = 1
4

∫

d4x
√−g4

[

ψ̄µσ̄
[µσν]ψ̄ν e

− φ̂
2

∫

d6y
√
g6Hᾱβ̄γ̄ η

†
−γ

ᾱβ̄γ̄η+

]

+ . . .

= 1
4

∫

d4x
√−g4

[

ψ̄µσ̄
[µσν]ψ̄ν e

− φ̂
2

∫

M6
H3 ∧ Ωη

]

+ . . . , (3.42)

where we only display the contribution to the gravitino mass. Performing the
Weyl rescalings (3.18), (3.30) and using (C.41) we arrive at

SH = −1
2

∫

d4x
√
−g4

[

ψ̄µσ̄
µνψ̄ν e

K
2

∫

M6

〈

Ω, H3

〉]

+ . . . , (3.43)

where we define σ̄µν = 1
4
σ̄[µσν] and the Mukai paring

〈

., .
〉

is defined in (3.5). Com-
paring (3.43) with (2.35) one writes the flux contribution to the superpotential
as

WH = 1
2

∫

M6

〈

Ω, H3

〉

. (3.44)
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This is in complete analogy with refs. [43, 86, 87, 88, 89] where W has been
computed before. Note that this derivation provides an independent check on the
Kähler potentials (3.22), (3.23) which we explicitly used in (3.43).

The flux contribution to the F -terms arises as well from the KK reduction
of SH and the ten-dimensional gravitino-dilatino coupling Sψλ in (2.5). The SH
contribution arises when inserting (3.31) and when choosing one of the ψ̂M to
carry an internal index ψ̂m. Inserting (3.13), (3.31) one finds

SH = 1
4

∫

d4x
√−g4

[

− ξAσµσ̄
[µσν]ψ̄ν

K̃A

4K̃ e
− φ̂

2

∫

d6y
√
g6Hᾱβ̄γ̄ η

†
−γ

ᾱβ̄γ̄η+

+iζKσµψ̄µe
− φ̂

2

∫

d6y
√
g6 (ρK)ᾱβγ

Ω̄βγ

β̄

‖Ω‖2 η
†
−γ

δ̄ε̄θᾱγβ̄η+Hδ̄ε̄θ (3.45)

− ξAσµψ̄µe
− φ̂

2

∫

d6y
√
g6Hᾱβ̄γ̄ (ωA)δ̄εη

†
−γ

εγ δ̄ᾱβ̄γ̄η+

]

+ . . . .

Using (2.23), (3.33), (3.34), (C.43) and (C.41) and Weyl rescaling according to
(3.30) and (3.18) one finds

SH = −i 1
8
√

2

∫

d4x
√
−g4 e

K
2

[

ξA σν ψ̄ν (
iKA

4K )

∫

M6

〈

Ω, H3

〉

+ 3
14

√

35
29
λ σν ψ̄ν e

2D

∫

M6

〈

Ω, H3

〉

(3.46)

+ 4 ζK σµ ψ̄µ

∫

M6

〈

ρK, H3

〉

]

+ . . . .

This was the H3-flux contributions to the F -terms arising from SH . In addition
to these there will be a contribution from the ten dimensional gravitino-dilatino
coupling which arises by inserting (3.13), (3.14) and (3.33)

Sψλ = −1

8

∫

d10x

√

−Ĝ10 e
− φ̂

2 Ĥα̂β̂γ̂
ˆ̄ψµΓ

α̂β̂γ̂Γµλ̂ (3.47)

= − i

8

∫

d4x
√
−g4e

− φ̂
2 {ψ̄µσ̄µλ− i

√

5
8
ψ̄µσ̄

µξA
K̃A

K̃
}

∫

d6y
√

ĝ6Hᾱβ̄γ̄η
†
−γ

ᾱβ̄γ̄η+ .

After a Weyl rescaling (3.30) and using (C.43), (C.41), (3.34) one finds

Sψλ = − i
16

√
2

∫

d4x
√−g4 e

K
2 {

√

14
29
λ σµ ψ̄µ e

2D (3.48)

− i
√

5
8
ξA σµ ψ̄µ

KA

K }
∫

M6

〈

Ω, H3

〉

.
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In order to compare this expressions with the standard supergravity Lagrangian
(2.29) let us compute the derivatives of WH . We find

DAWH =
iKA

4K WH , DKWH = 1
2

∫

M6

〈

ρK , H3

〉

, DsWH = −e2DWH , (3.49)

where we used (C.38). Inserted into SH + Sψλ we arrive at

SH + Sψλ = − i√
2

∫

d4x
√
−g4 e

K
2

[

(1
4
− 1

4

√

5
8
)ξAσνψ̄ν DAWH (3.50)

+ ζKσµψ̄µ DKWH + (1
8

√

14
29

− 3
14

√

35
29

)λσνψ̄ν DSWH

]

,

which shows the consistency with supergravity (2.35) up to numerical factors.

Contribution from torsion

Apart from H3-flux the superpotential and the F -terms also receive contributions
due to the torsion of the manifolds M6. These arise from the ten-dimensional
gravitino kinetic term in (2.4) when the derivative DM carries an internal index
and acts on the spinor η. Before we do the reduction let us briefly recall the
structure of these derivatives as determined in [90]. One decomposes Dmη± into
a basis (η, γ7η, γnη) and defines the tensors qm, q

′
m, qmnvia

Dmη+ = qmη+ + iq′mγ
7η+ + iqmnγ

nη− , (3.51)

Dmη− = qmη− + iq′mγ
7η− − iqmnγ

nη+ . (3.52)

All q are real with qm, q
′
m transforming in the 3⊕3̄ of the SU(3) while qmn contains

the representations 36 = 1⊕ 1⊕ 3⊕ 3̄⊕ 6⊕ 6̄⊕ 8⊕ 8. Going to complex indices
and using (2.23), (2.26) one can express qmn via the torsion classes [90]

qαβ = − i

4
W3αγ̄δ̄ (Ωη)

γ̄δ̄
β − 1

4
(Ωη)αβγ W

γ

4 , (3.53)

qαβ̄ = − i

4
W2αβ̄ +

1

4
gαβ̄ W1 . (3.54)

Equations (3.51), (3.53) and (3.54) are the necessary ingredients to compute the
contributions of the torsion to the superpotential and the F -terms. Let us start
with the superpotential torsion contribution. It arises from the first term in (2.4)
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with the derivative being internal and the gravitinos carrying flat indices. Inserting
(3.13) we find

Sfψ = −
∫

d10x

√

−Ĝ10
ˆ̄ψMΓMNPDN ψ̂P (3.55)

= −
∫

d4x
√
−g4ψ̄µσ̄

[µσν]ψ̄ν

∫

d6y
√
g6 η

†
−γ

ᾱDᾱη+ + . . . ,

where the . . . refer to terms which are not quadratic in the gravitinos. Here it is
not necessary to make the shift (3.31) for the four-dimensional gravitino. This is
due to the fact that the resulting gravitino mass term after the shift has the same
structure as in (3.55). The integral on the internal manifold M6 in eqn. (3.55)
can be performed by using (3.51) and (3.53) and it is equal to

∫

η+
−γ

ᾱDᾱη+ =
3i

4

∫

M6

W1 =
i

8

∫

M6

〈

Ωη, (dJ̃)
〉

, (3.56)

where d is the six-dimensional exterior derivative and in the second equation we
used (2.26)2. Let us stress that in this derivation we did not restrict our analysis
to the case of half-flat manifolds like it was done in [43]. Doing the Weyl rescaling
(3.30) and using (C.41), (3.10) one finds

Sfψ = −
∫

dx4
√
−g4 e

K
2 ψ̄µσ̄

µνψ̄νWT + . . . . (3.57)

where

WT = i
2

∫

M6

〈

Ω, (dJ)
〉

. (3.58)

Together with the contribution from H3-flux computed in (3.44) this yields

W = WH +WT = 1
2

∫

M6

〈

Ω, (H + idJ)
〉

. (3.59)

After computing the torsion contribution to the superpotential, let us turn to
the computation of this contribution for its derivatives. This can be computed
from the gravitino-fermion couplings which arise from Sfψ if we keep the following
terms in the expansion

Sfψ = −
∫

d10x
√

−G10

[ ˆ̄ψµΓ
µα̂νDα̂ψ̂ν + ˆ̄ψµΓ

µα̂β̂Dα̂ψ̂β̂
]

+ . . . . (3.60)

2Since we are making the reduction from the Einstein frame, then (2.26) and the two-from
J̃ should be expressed in the same frame.
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By inserting the expansions of the ψ̂µ and ψ̂m given in eqns. (3.13), (3.16) and
making the shift of the gravitino (3.31) one arrives at

Sfψ = − 1√
2

∫

dx4
√
−g4

[

ξAσµσ
µνψ̄ν

KA

4K

∫

M6

η†−γ
ᾱDᾱη+

ψ̄µσ̄
µζK

∫

d6y
√
g6(ρK)β̄γδ

Ωγδ
ε̄

‖ Ω ‖2
η†−γ

αβ̄γ ε̄Dαη+

+e
−φ̂
2 ξAσµψ̄µ

∫

M6

(ωA)β̄αη
†
−γ

β̄γαδ̄Dδ̄η+

)]

+ . . . , (3.61)

where the rescaling (3.34) for the fields ξ, ζ were performed. Using the definition
(3.51) of the derivative of the globally defined spinor η one writes

Sfψ = −1√
2

∫

d4x
√−g4

[

i
2
ψ̄µσ̄

µζK
∫

d6y
√
g6(ρK)β̄γδ

Ωγδ
ε̄

‖ Ω ‖2
qβ̄ε̄ (3.62)

+ξAσµψ̄µ

(

9i
16

KA

K

∫

M6

W1 + i
2
e
−φ̂
2

∫

d6y
√
g6 (ωA)β̄αq

αβ̄
)]

+ . . . .

Using (3.53) and (C.31) yields

Sfψ = 1√
2

∫

d4x
√
−g4

[

1
8
ζKσµψ̄µ

K̃ 1

2

(i
∫

Ω ∧ Ω̄)
1

2

∫

M6

ρK ∧W3 (3.63)

+ξAσµψ̄µ

(

3i
16

Ki

K

∫

M6

W1 −
1

8
e
−φ̂
2

∫

M6

(W2 ∧ J ∧ ωA + W1J
2 ∧ ωA)

)]

.

The integrals on M6 of the above expressions which involve the torsion classes
Wi can be expressed in terms of dJ, dΩ by using (2.26). Using as well ∂iK = iKi

4K ,
(C.41) and the Weyl rescaling (3.30) eq. (3.63) implies

Sfψ = −i
8
√

2

∫

d4x
√−g4

[

ζKσµψ̄µ{
i

K̃(i
∫

Ω ∧ Ω̄)
1

2

∫

M6

〈

ρK, dJ̃
〉

} (3.64)

+ξAσµψ̄µ
1

K̃(i
∫

Ω ∧ Ω̄)
1

2

{i ∂iK
∫

M6

〈

Ω, (dJ̃)
〉

− ie
−φ̂
2

∫

M6

〈

dΩ, ∂AJ
〉

}
]

.

With the help of (3.10) we see that we can rewrite the above terms as the derivative
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of WT with respect to the moduli (up to 1/2 factor)

Sfψ = −i
8
√

2

∫

d4x
√
−g4 e

K
2

[

ξAσµψ̄µDA

∫

M6

〈

Ω, (idJ)
〉

(3.65)

+ζKσµψ̄µDK

∫

M6

〈

Ω, (idJ)
〉

]

= −i
4
√

2

∫

d4x
√
−g4 e

K
2

[

ξAσµψ̄µDAWT + ζKσµψ̄µDKWT

]

.(3.66)

Finally we look at the dilatino-gravitino coupling which might arise from two
terms. The first term in Sint would contribute trivially to λ − ψ coupling. The
second contribution comes from ξiψ coupling, given in (3.63), by using (3.33).

Sλ−ψ = −i
7

√

35
29

∫

d4x
√
−g4 λσ

µψ̄µ e
2D

(

i

∫

M6

W1

)

= −i
42

√

35
29

∫

d4x
√
−g4λσ

µψ̄µe
2D

∫

M6

〈

Ωη, (idJ̃)
〉

= −i
42

√

35
29

∫

d4x
√
−g4e

K
2 λσµψ̄µDsWT , (3.67)

where we made use of (3.34), (3.10), (C.41) and the Weyl rescaling (3.30). Equa-
tions (3.65) and (3.67) are consistent with the standard N=1 supergravity (up to
a numerical factor).

After computing the F -terms let us discuss the D-terms which might arise in
the compactification of the heterotic on SU(3) structure manifolds.

The D-terms

At the level of the fermionic action Sint the D-terms are arising from the coupling
of the gravitino to the gaugino ψµ − χ. Inserting (3.13) and (3.14) in the ten-

dimensional ψ̂M − χ̂ coupling, given in (2.5), one finds

SD = −
∫

d10x

√

Ĝ10 e
−φ̂F̂A

MN
ˆ̄χ
A
ΓQΓMN ψ̂Q

= i

∫

dx4√−g4e
−φ̂χ̄aσ̄µψµ

∫

dy6√g6 η
†
−γ

ᾱβη−F
a
ᾱβ

= 1
2

∫

dx4
√
−g4e

−φ̂χ̄aσ̄µψµ

∫

M6

F a ∧ ∗6J̃ , (3.68)
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where the index a refers to the adjoint representation of the four-dimensional
unbroken gauge group in which the four-dimensional gauge boson and gaugino
transform. In the last step in (3.68) we used the definition of the two-form J
given in (2.23).

Performing the Weyl rescaling (3.30) and the rescaling of χ given in (3.34) one
finally arrives at

SD = 1
2
√

2

∫

dx4
√
−g4 e

− φ̂
4 K−1 χ̄aσµψµ

∫

M6

F a ∧ ∗6J . (3.69)

Comparing equation (3.69) with the N = 1, D = 4 supergravity action given in
(2.35) one can infer that the D-term of the theory is equal to

Da = − 1√
2
e−

φ̂
4 K−1

∫

M6

F a ∧ ∗6J . (3.70)

Thus far we determined the four-dimensional effective action resulting from the
compactification of the heterotic supergravity on SU(3) structure manifold. We
gave the appropriate rescaling of the fields and we computed the superpotential
and its derivatives, which receive contributions from torsion and fluxes, as well as
the D-terms. Next we discuss the supersymmetry transformations of the fermionic
fields under which the D = 4 theory is invariant.

3.3 The supersymmetry transformations

In an N = 1 four-dimensional supergravity theory [82] the superpotential, F -
and D-terms appear in the SUSY transformations of the fermionic fields linearly.
Thus an alternative way to compute these quantities and to check the results
found earlier is to determine δψµ, δξ

A, δζK, δλ, δχa . Therefore, we turn next to
the discussion of the four-dimensional supersymmetry variations of the gravitino,
chiral fermions, gaugino and dilatino.

3.3.1 Gravitino supersymmetry transformation

The four-dimensional gravitino is a combination of the singlet of ψµ and chiral
fermions arising in the expansion of ψm. This combination is given in (3.31) as

ψsµ = ψµ + K̃A

4K̃ σµξ̄
A. It turns out that the multiplication of ψsµ by ε̄σµ, where ε is
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the SUSY spinor, can be written as the sum

1

K̃

∫

d6y
√
g6 ˆ̄ε (σµψ̂µ + 2γαψ̂α + 2γᾱψ̂ᾱ) = ˆ̄εσµψ̂sµ , (3.71)

where ψ̂sµ = ψsµ ⊗ η− + ψ̄sµ ⊗ η+. The supersymmetry variation of the four-
dimensional gravitino is given then as

1

K̃

∫

d6y
√
g6 ˆ̄ε (σµδψ̂µ + 2γαδψ̂α + 2γᾱδψ̂ᾱ) = ˆ̄εσµδψsµ , (3.72)

where δψ̂µ, δψ̂α and δψ̂ᾱ can be computed from the SUSY transformation of the
ten-dimensional gravitino given in (2.6) for M = µ, α, ᾱ successively. Hence by
using (2.6), (2.23) and (C.42) equation (3.72) amounts to

δψsµ = Dµε +
e−

φ̂
2

2K̃(i
∫

M6
Ω ∧ Ω̄)

1

2

σµε̄

∫

M6

Ω3 ∧H3

+
4

K̃ 3

2

σµε̄

∫

d6y
√
g6η

†
−γ

ᾱDᾱη+ . (3.73)

For consistency a Weyl rescaling (3.30) was made. The third term in (3.73) was
determined in (3.56). Taking into account the rescaling (3.10) for the two-form J
one arrives at

δψsµ = Dµε+
1

2

1

K̃(i
∫

M6
Ω ∧ Ω̄)

1

2

σµε̄e
− φ̂

2

∫

M6

Ω3 ∧ (H3 + idJ)

= Dµε
+ +

1

2
e

K
2 σµε̄

∫

M6

〈

Ω3, (H3 + idJ)
〉

. (3.74)

Comparing with (2.38) one finds that the superpotential is equal to

W = 1
2

∫

M6

Ω ∧ (H + idJ) , (3.75)

which is in agreement with the results found in section 3.59. Let us no turn to
the derivative of the superpotential (F -terms) which arise in the SUSY variation
of the chiral fermions.
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3.3.2 Chiral fermion supersymmetry transformations

From the decomposition of ψm given in (3.16) one can infer that the supersym-
metry transformations of the chiral fermions ξA, ζK are given by

δψ̂α = δξA ⊗ (ωαβ̄)Aγ
β̄η + 1

‖Ω‖2 δζ
K ⊗ (ρ̄K)αβ̄γ̄Ω

β̄γ̄
β γ

βη− , (3.76)

where δψ̂α is determined from (2.6) for M = α. Therefore to find δξA, δζK

one must find projectors such that either δξA or δζK survives the projection
in δψ̂α, δψ̂ᾱ. The expected results for the SUSY transformations of the chiral
fermions are the Kähler derivatives of the superpotential DAW , DKW .

The multiplication of (3.76) with P
α = ε̄γα projects out δζK and only δξA

is left. By using (2.6) one evaluates δψα and hence δξA is determined after in-
tegrating out the six-dimensional dependence. However it turns out that the
projector P

α, though it satisfies the criteria of projecting out δζK in favor of
δξA, it annihilates some of the torsion terms which are present in DAW and
therefore it annihilates some of the torsion contributions to δξA. We will not
present this calculation here but we assume that the SUSY variation of the ξA’s
is δξA =

√
2 e

K
2 gABDBW̄ ε where W is the superpotential given in (3.75).

Let us now turn to the SUSY transformations of the chiral fermions ζK. We
follow, basically, the same strategy outlined above. The projector chosen here
is P

α
K = ε̄(ρK)ᾱΓξΩ̄

Γξ
ε̄ γ

ε̄γᾱα. Multiplying (3.76) by this projector and using (2.6)
when M = α one finds after integrating over the six-dimensional manifold

2iδζ̄K
∫

M6

‖ Ω ‖−2 ρL ∧ ρ̄K = e
−φ̂
2 K̃−3

2 ε̄

∫

M6

(ρL)ᾱΓξ
Ω̄Γξ
ε̄

‖ Ω ‖2
Hαβ̄γ̄η

+
−γ

ε̄γᾱγαβ̄γ̄η+

+K̃−3

2 ε̄

∫

M6

(ρL)ᾱΓξ
Ω̄Γξ
ε̄

‖ Ω ‖2
η+
−γ

ε̄γᾱαDαη+ , (3.77)

here the Weyl rescaling (3.30) is performed. Using

η+
−γ

ε̄γᾱγαβ̄γ̄η+ = i
8
gα[ᾱΩε̄β̄γ̄]

η , (3.78)

and the relation between Ωη and the supergravity three-form Ω given in (C.41)
then the first term in the right hand side of (3.77) is equal to

e
−φ̂
2 K̃−3

2 ε̄

∫

M6

(ρL)ᾱΓξ
Ω̄Γξ
ε̄

‖ Ω ‖2
Hαβ̄γ̄ η

+
−γ

ε̄γᾱγαβ̄γ̄η+ = 1
8
e

K
2

∫

M6

〈

ρL, H
〉

. (3.79)
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The second six-dimensional integral is evaluated using (3.51) as follows
∫

M6

(ρL)ᾱΓξ
Ω̄Γξ
ε̄

‖ Ω ‖2
η+
−γ

ε̄γᾱαγβη−qαβ =

∫

M6

(ρL)ᾱΓξ
Ω̄Γξ
ε̄

‖ Ω ‖2
qαβ(

1
2
gᾱαgε̄β − gᾱβgαε̄)

= i
8
e−

1
2
K̃K+

1
2
Kcs

∫

M6

ρL ∧W3

= i
8
e−

1
2
K̃K+

1
2
Kcs

∫

M6

〈

ρL, dJ̃
〉

, (3.80)

where in the last step we used the definition of dJ (2.26). Finally the SUSY
transformations of the chiral fermions ζK are given by

δζ̄KgKL = 1
16
e

K
2

∫

M6

〈

ρL, (H3 + idJ)
〉

, (3.81)

where the rotation (3.10) is used for the two form J . Finally using the fact that
DL Ω = ρL we arrive at

δζ̄K = 1
8
gKLe

K
2 DLW . (3.82)

Comparing the result (3.82) with (2.40) one finds that the supersymmetry trans-
formations of the chiral fermions ζK are the Kähler derivatives of the superpoten-
tial W =

∫

M6

〈

Ω, (H3 + idJ)
〉

with respect to their supersymmetric partners zK

(up to 1/8 factor).

3.3.3 Dilatino supersymmetry Transformation

By inserting the decomposition of the dilatino (3.15) in (2.7), multiplying by ε̂
and integrating over M6 one finds

δλ = −1
8

√

1
2
e

K
2 ε

∫

M6

H3 ∧ Ω̄ , (3.83)

where we made the Weyl rescaling (3.30), inserted the definition of Ωη given in
(3.51) and used (C.42). The first term in (2.7) yields a spacetime derivative acting
on the dilaton. However, in our analysis we ignored derivatives acting on scalars,
therefore, we set ∂µφ to be equal to zero as well.

The four-dimensional dilatino is a combination of the singlet of λ̂ and the chiral
fermions ξA given in (3.33). This means to compute D = 4 SUSY transformation
of the dialtino equation (3.83) should be corrected by the results of δξA

δλs = δλ− i
√

5
8

K̃A

K̃
δξA , (3.84)
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where δλ is given in (3.83) and δξA =
√

2eK/2gAB̄DB̄W̄ ε. With that at hand and
using (3.34) one finds

δλs =
√

29
14
e−2De

K
2

(

(3
√

5
2

+ 1
8

√

1
2
)

∫

M6

〈

Ω̄, H3

〉

− i3
√

5
2

∫

M6

〈

Ω̄, dJ
〉)

ε . (3.85)

From equation (3.85) one can infer that the dilatino SUSY variations are equal, up
to factors, to the derivative of the superpotential W given in (3.59) with respect
to the dilaton-axion field S

δλs ∝ e−2De
K
2

∫

M6

〈

Ω̄, (H3 − idJ)
〉

∝ e
K
2 gSS̄DS̄W̄ (3.86)

3.3.4 Gaugino Supersymmetry transformation

Finally we come to the four-dimensional SUSY variation of the gaugino χa. This
gives the D-terms of the four-dimensional theory as it can be seen from (2.39).

Inserting the decomposition of the ten-dimensional gaugino (3.14) in (2.8) and
integrating over the six-dimensional manifold M6 one finds

δχa = e
−

φ̂
2

K̃
(

F a
µν σ

µν + i
2

∫

M6

F a ∧ ∗6J̃

)

ε , (3.87)

where (2.23) was used. Performing the rescaling (3.30), (3.34) and comparing
with (2.39) one can infer that the resulting D-term is

Da = − 1√
2
e−

φ̂
4 K−1

∫

M6

F a ∧ ∗6J. (3.88)

3.4 Supersymmetry conditions for the vacuum

In this section we will discuss the conditions which lead to a supersymmetric back-
ground in a flux compactification. In the case of the heterotic string Strominger
has shown in [40] that for a supersymmetric vacuum the background must allow
for a non vanishing torsion (for a review see appendix D). Moreover the internal
manifold has to be complex and the fundamental two-form Jαβ̄, the Yang-Mills
field strength and the three form flux H3 have to satisfy the following conditions3

Jαβ̄Fαβ̄ = 0 , H3 = i(∂̄ − ∂)J . (3.89)

3In the analysis of Strominger the condition of the flux includes a factor 1
2 . However we

absorb this factor in the definition of J (2.23) and therefore it is absent from (3.89)
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Strominger analysis was made on backgrounds of the form M(3,1) × M6 which
allow for a warp factor ∆. The latter is shown to be equal to the dilaton as a
result of the vanishing of the gravitino supersymmetry variation. However in our
analysis we do not consider any warping. Hence our assumption that the dialton is
constant is consistent with the Strominger result in the limit where ∆ is constant.

Generically on a supersymmetric vacuum the supersymmetry transformations
of the fermionic fields have to vanish in particular the chiral fermions variations.
This amounts to solve the equations

δΠI =
√

2e
K
2 gIJ̄DJ̄W̄ ε = 0 , δχ = 0 , δλ = 0 , (3.90)

where we denote the chiral fermions by ΠI and DI is the Kähler derivative defined
in (2.36).

From equation (3.87) one can conclude that a necessary condition such that
δχ = 0 is, in particular, the vanishing of F a

αβ̄
Jαβ̄ = 0. Hence Strominger’s condi-

tion on the Yang-Mills field strength is satisfied.

Setting equation (3.86) to zero implies that (H3 + idJ) can only be a combi-
nation of (3,0)-, (2,1)- and (1,2)- forms in a supersymmetric background. How-
ever, H3 is real which in turn implies that this combination can only be the sum
H3 + idJ = (H + idJ)(2,1) + (H + idJ)(1,2). This condition together with δζK = 0,
where δζK is given in eqn. (3.82), indicate that on a supersymmetric background
one has to impose the following condition

(H3 + idJ) = 0 . (3.91)

Due to the fact that the two-form J is (1, 1)-form and the NS-flux is H3 = H(2,1) +
H(1,2), one can write that H(2,1) = −i∂J and its conjugate forH(1,2) which amounts
to

H3 = i(∂̄ − ∂)J . (3.92)

This is in perfect analogy with the Strominger condition for the flux given in
(3.89).

The condition δξA = 0 is equivalent to the vanishing of the Kähler derivative
(DAW = 0) which we recall here

DAW = i
8

KA

K

∫

M6

Ω ∧H3 −
(

3
16

KA

K

∫

M6

W1

+ i
8

∫

M6

W2 ∧ J ∧ ωA + i
8

∫

M6

W1J
2 ∧ ωA

)

.
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By setting this derivative to zero one can infer that the first and the second torsion
classes are vanishing for a supersymmetric background. However the condition
W1 = W2 = 0 is equivalent to saying that the compactification manifold M6 is
complex. Hence we recover the complexity condition of the manifold found in [40].

With this we recover all the Strominger supersymmetry conditions for the
heterotic string.

To end this chapter let us summarize what was done so far. Compactification
of the heterotic supergravity on SU(3) structure manifolds leads to N = 1 four-
dimensional supergravity theory. This is characterized then by a superpotential
and Kähler potential. We computed these functions from fermionic terms. The
comparison with the results found earlier gives us a check on the consistency of
our fermionic compactification ansatz.

In this compactification the superpotential W and its derivatives depend on
the torsion of the manifold as well as on the NS-flux H3. However there is no
D-term appearing. For a supersymmetric background the torsion of the manifold
is an important ingredient in the flux compactification. Torsion and flux then
have to satisfy specific conditions. For example the first and the second torsion
classes have to vanish simultaneously to insure that the compactification manifold
is complex. Moreover the flux can only be a (2, 1)- and (1, 2)-forms identified with
∂J and ∂̄J . Note here that the two-form J is no longer closed as in the case of
Calabi-Yau manifolds. Its non-closure is parameterized by the torsion.

These conditions which are first discussed in [40] are recovered here in the
limit where the warp factor is constant. This provides us with a further check on
the consistency of our analysis.

In the same spirit we will next discuss the compactifications of the type II theo-
ries on SU(3) structure manifolds [60]. These will result inN = 2 four-dimensional
supergravities. However, our interest here is focused on D = 4 effective theories
with N = 1 supersymmetry therefore we will impose an orientifold projections
which insure the reduction of supersymmetry from N = 2 to N = 1.



Chapter 4

Type II SU (3) structure
orientifolds

In this chapter we present a study based on [60] of type IIA and type IIB com-
pactifications on SU(3) structure manifolds. As reviewed in section 2.2.2 these
compactifications lead to four-dimensional theories with N = 2 supersymmetry.
The inclusion of D-branes and orientifold planes further reduces the amount of
supersymmetry. In order for the four-dimensional effective theories to possess
N = 1 supersymmetry the D-branes and orientifold planes cannot be chosen arbi-
trarily but rather have to fulfill certain supersymmetry conditions called the BPS
conditions. We show in section 4.2 that the truncated spectrum arranges indeed
into N = 1 supermultiplets and we compute the superpotentials from fermionic
terms in section 4.4.

First let us specify the orientifold projections which yield supersymmetric ori-
entifold planes preserving half of the N = 2 supersymmetry.

4.1 Orientifold projection

Here we discuss orientifold projections in the type IIA and type IIB cases in
turn. These projections are basically the action of the orientation reversal Ωp of
the string world-sheet together with the action of an internal symmetry σ which
acts solely on M6 but leaves the D = 4 space-time untouched. We will restrict
ourselves to involutive symmetries (σ2 = 1) of M6.
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4.1.1 Type IIA orientifold projection

The orientifold projection for type IIA SU(3) structure orientifolds can be ob-
tained in close analogy to the Calabi-Yau case [63]. Recall that for Calabi-Yau
orientifolds the demand for N = 1 supersymmetry implies that σ has to be an
anti-holomorphic and isometric involution [91, 92, 93]. This fixes the action of σ
on the Kähler form J as σ∗J = −J , where σ∗ denotes the pull-back of the map
σ. Furthermore, supersymmetry implies that σ acts non-trivially on the holomor-
phic three-form Ω. This naturally generalizes to the SU(3) structure case, since
we can still assign a definite action of σ on the globally defined two-form J and
three-form Ω defined in (2.23). Together the orientifold constraints read

σ∗J = −J , σ∗Ωη = e2iθΩ̄η , (4.1)

where e2iθ is a phase and we included a factor 2 for later convenience. Note that
the second condition in (4.1) can be directly inferred from the compatibility of σ
with the SU(3) structure condition Ωη ∧ Ω̄η ∝ J ∧ J ∧ J given in (2.24). In order
that σ is a symmetry of the Einstein-Hilbert term of type IIA supergravity it is
demanded to be an isometry. Hence, the first condition in (4.1) implies that σ
yields a minus sign when applied to the almost complex structure Imn = Jnpg

pm

introduced in section 2.2.2. This property is equivalent to the anti-holomorphicity
of σ if Imn is integrable as in the Calabi-Yau case. In accord with condition (4.1)
one has

σ∗η+ = −eiθη− , σ∗η− = e−iθη+ , (4.2)

where θ is the phase introduced in eqn. (4.1).

The complete orientifold projection takes the form 1

O = (−1)FLΩpσ , (4.3)

where Ωp is the world-sheet parity and FL is the space-time fermion number in
the left-moving sector.

The orientifold planes arise as the fix-points of σ. Just as in the Calabi-Yau
case supersymmetric SU(3) structure orientifolds generically contain O6 planes.
This is due to the fact, that the fixed point set of σ in M6 are three-cycles ΛO6

supporting the internal part of the orientifold planes. These are calibrated with
respect to the real form Re(e−iθΩ) such that

vol(ΛO6) ∝ Re(e−iθΩ) , Im(e−iθΩ)|ΛO6
= J |ΛO6

= 0 , (4.4)

1The factor (−1)FL is included in O to ensure that O2 = 1 on all states.
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where vol(ΛO6) is the induced volume form on ΛO6 and the overall normalization
of Ω was left undetermined. The conditions (4.4) also allow us to give a more
explicit expression for the phase eiθ as

e−2iθ = Z̄(ΛO6)/Z(ΛO6) , (4.5)

where Z(ΛO6) is given by Z(ΛO6) =
∫

ΛO6

Ω. This expression determines the
transformation behavior of θ under complex rescaling of Ω. Later on we include
e−iθ to define a scale invariant three-form CΩ.

4.1.2 Type IIB orientifold projection

Let us now turn to type IIB SU(3) structure orientifolds. Recall that for type
IIB Calabi-Yau orientifolds [62] consistency requires σ to be a holomorphic and
isometric involution of M6 [91, 93]. A holomorphic isometry leaves both the
metric and the complex structure of the Calabi-Yau manifold invariant, such that
σ∗J = J . We generalize this condition to the SU(3) structure case by demanding
that the globally defined two-form J defined in (2.23) transforms as

σ∗J = J . (4.6)

Once again the invariance of the effective action implies that σ is an isometry,
such that (4.6) translates to the invariance of the almost complex structure Inm.
Due to this fact the involution respects the (p, q)-decomposition of forms. Hence
the (3, 0)-form Ω defined in (2.23) will be mapped to a (3, 0) form. Demanding
the resulting form to be globally defined we have two possible choices

(1) O3/O7 : σ∗Ω = −Ω , (2) O5/O9 : σ∗Ω = +Ω . (4.7)

The dimensionality of the orientifold planes is determined by the dimension of the
fix-point set of σ [91]. Hence there are two set-ups the one with O3 and O7 planes
and the other with O5 and O9 planes.

Equations (4.7) and (4.6) specify the transformation behavior of the SU(3)
structure spinor η [52]

(1) O3/O7 : σ∗η+ = iη+ , σ∗η− = −iη− , (4.8)

(2) O5/O9 : σ∗η+ = η+ , σ∗η− = η− . (4.9)

The dimensionality of the orientifold planes is determined by the dimension of
the fix-point set of σ [91].
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Correspondingly, depending on the transformation properties of Ω two different
symmetry operations are possible [91, 93, 94, 96]

O(1) = (−1)FLΩp σ , O(2) = Ωp σ , (4.10)

where Ωp is the world-sheet parity and FL is the space-time fermion number in the
left-moving sector. The type IIB analog of the calibration condition (4.4) involves
a contribution from the NS-NS two-form B̂2. It states that the even cycles of
the orientifold planes in M6 are calibrated with respect to the real or imaginary
parts of e−B̂2+iJ . The explicit form of this condition can be found, for example,
in refs. [97, 98, 99].

4.2 Orientifold spectrum

The orientifold projections defined in (4.3) and (4.10) of the type IIA and type
IIB truncate the N = 2 spectrum to an N = 1. Here we examine the invariant
spectrum after the orientifolding. To do that let us first give the decomposition of
the ten-dimensional fields of type II theories under SU(3) representations. These
are displayed in tables 3.1, 4.1, 4.2 and 4.3 [68] where we use the same notation
as in the heterotic SU(3) decomposition. We list only the decompositions of the
Ĉ1 and Ĉ3 in type IIA and Ĉ0, Ĉ2, Ĉ4 in type IIB. The higher forms are related to
these fields via Hodge duality of their field strengths. The form Ĉ4 has a self-dual
field strength and hence only half of its components are physical.

Ĉ1

Cµ 11

Cm (3 + 3̄)0

Ĉ3

Cµνp (3 + 3̄)T

Cµnp 11 + (3 + 3̄)1 + 81

Cmnp (1 + 1)0 + (3 + 3̄)0 + (6 + 6̄)0

Table 4.1: Type IIA decomposition of the RR sector in SU(3) representations

The fields arising in this decomposition can be arranged into one N = 8 grav-
itational multiplet. However the truncation of all the triplets from the spectrum
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Ĉ0 C0 10

Ĉ2

Cµν 1T

Cµm (3 + 3̄)1

Cmn 10 + (3 + 3̄)0 + 80

Ĉ4

Cµnpq
1
2
[(1 + 1)1 + (3 + 3̄)1 + (6 + 6̄)1]

Cmnpq/Cµνmn 10 + (3 + 3̄)0 + 80

Table 4.2: Type IIB decomposition of the RR sector in SU(3) representations

ψ̂1,2
M

ψ̂1,2
µ 13/2 + 33/2

ψ̂1,2
m 11/2 + 31/2 + 2 3̄1/2 + 61/2 + 81/2

λ̂1,2 λ1,2 11/2 + 31/2

Table 4.3: Type II decomposition of the NS-R sector in SU(3) representations

results into keeping fields organized in the standard N = 2 supermultiplets. These
are the gravity, vector, hyper and tensor multiplets.

In a second step we impose the orientifold projection to further reduce to an
N = 1 supergravity theory. Independent of the properties of the internal manifold
we can give the transformation behavior of all supergravity fields under the world-
sheet parity Ωp and (−1)FL [6, 39]. Ωp acts on B̂2 with a minus sign, while leaving

the dilaton φ̂ and the ten-dimensional metric Ĝ invariant. On the R-R fields it is
minus the parity operator λ defined in (2.12)

ΩpĈk = −λ(Ĉk) , (4.11)

where k is odd for type IIA and even for type IIB and λ is defined in (2.12).
The action (−1)FL on the R-R bosonic fields of the supergravity theories yields a
minus sign while leaves the NS-NS fields invariant. Finally, the world-sheet parity
Ωp acts on the NS-R and R-NS sectors by exchanging ψ̂1

M , λ̂1 and ψ̂2
M , λ2. If the

orientifold projection contains the operator (−1)FL one finds an additional minus
sign when applied to ψ̂2

M and λ̂2. In this we asserted that ψ̂1
M and λ̂1 are in the

NS-R sector while ψ̂2
M and λ̂2 are in the R-NS sector.
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4.2.1 Type IIA orientifold spectrum

Bosonic spectrum

To determine the invariant spectrum for type IIA orientifolds it is convenient to
combine the odd R-R forms Ĉ2n+1 as [66]

Ĉodd = Ĉ1 + Ĉ3 + Ĉ5 + Ĉ7 + Ĉ9 . (4.12)

Note that only half of the degrees of freedom in Ĉodd are physical, while the
other half can be eliminated by a duality constraint [66]. Invariance under the
orientifold projection O and the transformation of the fields under Ωp and (−1)FL

imply that the ten-dimensional fields have to transform under σ as

σ∗B̂2 = −B̂2 , σ∗φ̂ = φ̂ , σ∗Ĉodd = λ
(

Ĉodd
)

, (4.13)

where the parity operator λ is defined in (2.12) and we used (4.11). It turns out
to be convenient as well to combine the forms Ω and J with the ten-dimensional
dilaton φ̂ and B̂2 into new forms Πev/odd as

Πev = e−B̂2+iJ , Πodd = CΩ , (4.14)

where
C = e−φ̂−iθe(K

cs−KK)/2 , (4.15)

and Kcs , KK are defined in (3.23). C depends on the ten-dimensional dilaton φ̂
and fixes the normalization of Ω such that the combination CΩ stays invariant
under complex rescaling of Ω. This is due to the fact that θ depends on the three-
form Ω as given in (4.5) such that C rescales with a factor e−f if Ω → efΩ for
every complex function f . Applied to the forms Πev/odd and Ĉodd the orientifold
conditions (4.1) and (4.13) are expressed as

σ∗Πev = λ
(

Πev
)

, σ∗Πodd = λ
(

Π̄odd
)

. (4.16)

In order to perform the Kaluza-Klein reduction it is necessary to study the action
of the orientifold projection on the space of forms. The operator P6 = λσ∗ squares
to the identity and thus splits the space of two- and three-forms Λ2T ∗ and Λ3T ∗

on M6 into two eigenspaces as

Λ2T ∗ = Λ2
+T

∗ ⊕ Λ2
−T

∗ , Λ3T ∗ = Λ3
+T

∗ ⊕ Λ3
−T

∗ , (4.17)

where Λn
±T

∗ contains forms transforming with a ± sign under P6.
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In performing the Kaluza-Klein reduction one expands the forms Πev/odd and
Ĉodd into the appropriate subset of Λ2T ∗ and Λ3T ∗ consistent with the orientifold
projection. The coefficients arising in these expansions correspond to the fields
of the four-dimensional theory. In the case at hand the compactification has to
result in an N = 1 supergravity theory. The spectrum of this theory consists of a
gravity multiplet a number of chiral multiplets and vector multiplets. Note that,
as in the heterotic compactification, before the truncation to the light modes the
number of multiplets is not finite, as the Kaluza-Klein tower consist of an infinite
number of modes.

Let us first concentrate on the N = 1 chiral multiplets arising in the expansion
of the forms Πev. The complex scalar fields in this multiplet span a Kähler man-
ifold. Its complex chiral coordinates are determined upon expansion of Jc into
appropriate modes of the internal manifold

Jc ≡ −B̂2 + iJ ∈ Λ2
+T

∗
C . (4.18)

The B-field can only be extended along the internal manifold M6, since due to
(4.13) the four-dimensional two-form in B̂2 transforms with a negative sign under
the orientifold symmetry σ∗ and hence is projected out. In comparison to the
general SU(3) decomposition of B̂2 given in table 3.1 we only kept the 10 + 80

representations while all other components left the spectrum. The complex form
Jc is expanded in real elements of Λ2

+T
∗ consistent with the orientifold projection

(4.1), (4.13) and the definition of λ given in (2.12).2 The coefficients of this
expansion are complex scalar fields in four space-time dimensions parameterizing
a manifold MK and provide the bosonic components of chiral multiplets.

Turning to the expansion of the R-R forms Ĉodd we first note that Ĉ1 (and
hence Ĉ7) are completely projected out from the spectrum. The four-dimensional
part of Ĉ1 is incompatible with the orientifold symmetry as seen in (4.13). On the
other hand the internal part of Ĉ1 is a triplet under SU(3) and hence discarded
following the assumptions made above. In contrast the expansion of Ĉ3 yields
four-dimensional scalars, vectors and three-forms. Therefore, we decompose

Ĉ3 = C
(0)
3 + C

(1)
3 + C

(3)
3 , (4.19)

where C
(n)
3 are n-forms in M3,1 times (3 − n)-forms in M6. More precisely, in

order to fulfill the orientifold condition (4.13) the components C
(0)
3 , C

(1)
3 and C

(3)
3

are expanded in forms Λ3
+T

∗, Λ2
−T

∗ and Λ0T ∗ of M6 respectively. The coefficients

2Note that the eigenspaces Λ2
±T ∗ are obtained from the operator P6 = λσ∗ and hence differ

by a minus sign from the eigenspaces of σ∗.
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in this expansion correspond to four-dimensional real scalars, vectors and three-
forms. In summary the components kept, are the 11 + 81 and (1 + 1)0 + (6 + 6̄)0
while all other representations in table 4.1 have left the spectrum.

The four-dimensional real scalars in C
(0)
3 need to combine with scalars arising

in the expansion of Πodd to form the components of chiral multiplets. The complex
structure on the corresponding Kähler field space is defined through the complex
form

Πodd
c ≡ C

(0)
3 + iRe(Πodd) ∈ Λ3

+T
∗
C
, (4.20)

where we used that Re(Πodd) transforms with a plus sign as seen from eqn. (4.16).
The complex coefficients of Πodd

c expanded in real forms Λ3
+T

∗ are the bosonic
components of chiral multiplets. Note that in the massless case theses chiral
multiplets can be dualized to linear multiplets containing a scalar from Re(Πodd)

and a two-form dual to the scalar in C
(0)
3 [95]. The full bosonic N = 1 spectrum

for type IIA orientifold is summarized in table 4.4.

multiplet bosonic fields M6-forms

gravity multiplet gµν

chiral multiplets Jc Λ2
+T

∗

chiral/linear multiplets Πodd
c Λ3

+T
∗

vector multiplets C
(1)
3 Λ2

−T
∗

Table 4.4: N = 1 spectrum of type IIA orientifolds

Fermionic spectrum

In the fermionic sector we keep only the singlet in ψ̂1,2
µ , λ̂1,2 and the fields trans-

forming as 1, 6, 8 in ψ̂1,2
m . In the following we discuss the reduction of these

fields.

The two gravitinos in this case have different chiralities and hence decompose
as

ψ̂1
µ = ψ1

µ ⊗ η+ + ψ̄1
µ ⊗ η− , ψ̂2

µ = ψ2
µ ⊗ η− + ψ̄2

µ ⊗ η+ , (4.21)

where ψ1,2
µ are Weyl spinors with positive chiralities and ψ̄1,2

µ are Weyl spinors
with negative chiralities.
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The orientifold projection O given in eqns. (4.3) reduces the four-dimensional
theory to an N = 1 supergravity. Hence, the two four-dimensional gravitinos
ψ1
µ, ψ

2
µ are not independent, but rather combine into one four-dimensional spinor

ψµ which parameterizes the N = 1 supersymmetry. This spinor is chosen in such

a way that its ten-dimensional extension ψ̂µ is invariant under the projection O
given in (4.3). To investigate that in more detail let us recall the transformations
behavior of ten-dimensional spinors under Ωp and (−1)FL

Ωp ψ̂
1
M = ψ̂2

M , Ωp ψ̂
1
M = ψ̂2

M , (4.22)

(−1)FLψ̂1
M = ψ̂1

M , (−1)FLψ̂2
M = −ψ̂2

M . (4.23)

The geometric symmetry σ acts only on the internal space M6 which translates
to a non-trivial transformation of the globally defined spinor η. The precise action
of σ∗ is given in eqn. (4.2) for type IIA orientifolds. With that at hand one can
specify the action of orientifold projection O = (−1)FLΩpσ

∗ on ψ̂1
µ and ψ̂2

µ

Oψ̂1
µ = −σ∗(ψ2

µ ⊗ η− + ψ̄2
µ ⊗ η+) = −e−iθψ2

µ ⊗ η+ + eiθψ̄2
µ ⊗ η− , (4.24)

Oψ̂2
µ = σ∗(ψ1

µ ⊗ η+ + ψ̄1
µ ⊗ η−) = −eiθψ1

µ ⊗ η− + e−iθψ̄1
µ ⊗ η+ , (4.25)

this amounts to write

Oψ1
µ = −e−iθψ2

µ , Oψ̄1
µ = eiθψ̄2

µ , Oψ2
µ = −eiθψ1

µ , Oψ̄2
µ = e−iθψ̄1

µ . (4.26)

Therefore, the invariant combination of the four-dimensional spinors is given by
ψµ = 1

2
(eiθ/2 ψ1

µ − e−iθ/2 ψ2
µ).

With a similar logic we discuss the reduction of the singlet parts in the ten-
dimensional dilatinos. In type IIA they have opposite chiralities and decompose
as

λ̂1 = λ1 ⊗ η+ + λ̄1 ⊗ η− , λ̂2 = λ2 ⊗ η− + λ̄2 ⊗ η+ , (4.27)

where λ1,2, λ̄1,2 are Weyl spinors corresponding to the N = 2 four-dimensional
dilatinos with positive and negative chiralities respectively. The projection O
outlines a combination of λ1, λ2 which survives the orientifolding and give rise
to the N = 1 four-dimensional dilatino. Following the same strategy given above
the combination is found to be λ = 1

2
(eiθ/2 λ1 − e−iθ/2 λ2).

The reduction of ψ̂m gives rise to the fermions in the chiral and vector multi-
plets. The precise decomposition will play no role in what follows.
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Finite basis

The analysis so far was not restricted to a finite set of fields, however, to give
explicitly the Kaluza-Klein reduction we will specify a finite basis leading to a
finite number of fields in D = 4. A finite reduction is achieved by selecting a
finite basis of forms ∆finite on the SU(3) structure manifold defined in section
3.1. The orientifold projection O selects a subset in ∆finite on which the ten-
dimensional fields are expanded. To see that let us first understand how the
orientifold symmetry acts on ∆finite. Under the operator P6 = λσ∗ the forms ∆n

decompose into eigenspaces as

∆n = ∆n
+ ⊕ ∆n

− . (4.28)

Using the properties (4.1) and (2.12) one infers dim ∆0
− = dim ∆6

− = 0. Further-

more, under the split (4.28) the basis (ωÂ, ω̃
Â) introduced in (3.6) decomposes

as
(ωÂ, ω̃

Â) → (1, ωa, ω̃
α, ε) ∈ ∆ev

+ , (ωα, ω̃
a) ∈ ∆ev

− , (4.29)

where α = 1, . . . , dim ∆2
− while a = 1, . . . , dim ∆2

+. Using the intersections (3.6)
one infers that dim ∆2

± = dim ∆4
∓. Turning to the odd forms consistency requires

that
∫

M6

〈

∆3
±,∆

3
±
〉

= 0 , ∗∆3
± = ∆3

∓ , (4.30)

where in the second equality we used the fact that σ is an orientation-reversing
isometry. The first condition is a consequence of the fact that ∆3

±∧∆3
± transforms

with a minus sign under P6 and hence is a subset of ∆6
− up to an exact form. The

equations (4.30) imply that ∆3
± are Lagrangian subspaces of ∆3 with respect to the

integrated Mukai parings. Hence, also the symplectic basis (αK̂, β
K̂) introduced

in (3.7) splits as

(αK̂, β
K̂) → (αk, β

λ) ∈ ∆3
+ , (αλ, β

k) ∈ ∆3
− , (4.31)

where the numbers of αk and βλ in ∆3
+ equal to the numbers of βk and αλ in ∆3

−
respectively. This is in accord with equation (3.7).

We are now in the position to give an explicit expansion of the fields into
the finite form basis of ∆finite. As discussed in the general case above the four-
dimensional complex chiral fields arise in the expansion of the forms Jc and Πodd

c

introduced in eqn. (4.18) and (4.20). Restricted to ∆2
+, ∆3

+ and ∆2
− one has

Jc = taωa , Πodd
c = Nkαk + Tλβ

λ , C
(1)
3 = Aαωα , (4.32)
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where the basis decompositions (4.29) and (4.31) were used. Hence, in the finite
reduction the N = 1 spectrum consists of dim ∆2

+ chiral multiplets ta and 1
2
dim ∆3

chiral multiplets Nk, Tλ. In addition one finds dim ∆2
− vector multiplets, which

arise in the expansion of Ĉ3. Moreover, one four-dimensional massless three-form
arises in the expansion of C

(3)
3 in the form 1 ∈ ∆0

+. It carries no degrees of freedom
and corresponds to an additional flux parameter.

4.2.2 Type IIB orientifold spectrum

Bosonic spectrum

Let us next turn to the spectrum of type IIB SU(3) structure orientifolds. To
identify the invariant spectrum we first analyze the transformation properties of
the ten-dimensional fields. In contrast to type IIA supergravity type IIB theory
consists of even forms Ĉ2n in the R-R sector, which we conveniently combine as
[66]

Ĉev = Ĉ0 + Ĉ2 + Ĉ4 + Ĉ6 + Ĉ8 . (4.33)

Only half of the degrees of freedom in Ĉev are physical and related to the second
half by a duality constraint [66]. Using the transformation properties of the fields
under Ωp and (−1)FL the invariance under the orientifold projections O(i) implies
that the ten-dimensional fields have to transform as 3

σ∗B̂2 = −B̂2 , σ∗φ̂ = φ̂ , σ∗Ĉev = ±λ
(

Ĉev
)

, (4.34)

where the plus sign in the last equation holds for orientifolds with O3/O7 planes,
while the minus sign holds for O5/O9 orientifolds. The parity operator λ was
introduced in eqn. (2.12). We combine the globally defined forms J and Ω with
the fields B̂2, φ̂ and Ĉev as

Φodd = Ω , Φev = e−φ̂e−B̂2+iJ , Âev = e−B̂2 ∧ Ĉev . (4.35)

where in comparison to (4.14) one finds that Φodd takes the role of Πev and Φev

replaces Πodd. Applied to these forms the orientifold conditions (4.6), (4.7) and
(4.34) read

σ∗Φodd = ∓λ(Φodd) , σ∗Φev = λ(Φ̄ev) , σ∗Âev = ±λ(Âev) , (4.36)

3The transformation behavior of the R-R forms under the world-sheet parity operator Ωp

was given in eqn. (4.11).
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where the upper sign corresponds to O3/O7 and the lower sign to O5/O9 orien-
tifolds.

In a next step we have to specify the basis of forms on M6 used in the Kaluza-
Klein reduction. We first briefly discuss the general case and later simplify the
reduction to the finite set of forms ∆finite. The decomposition of ten-dimensional
fields into SU(3) representations is given in tables 3.1 and 4.2. Also in type IIB
case we will remove all triplets of SU(3) from the spectrum [68].

In order to perform the reduction we first investigate the splitting of the spaces
of forms on M6 under the operator P6 = λσ∗. Since P6 squares to the identity
operator it splits the forms as in eqn. (4.17). The decomposition of all even forms
reads

ΛevT ∗ = Λev
+ T

∗ ⊕ Λev
− T

∗ . (4.37)

The four-dimensional fields arising as the coefficients of Φev/odd and Âev expanded
in Λ3

±T
∗ and Λev

± T
∗ fit into N = 1 supermultiplets.

Firstly, we decompose the odd form Φodd into the eigenspaces of P6. In accord
with the orientifold constraint (4.36) we find

O3/O7 : Φodd ∈ Λ3
−T

∗
C , O5/O9 : Φodd ∈ Λ3

+T
∗
C . (4.38)

In the reduction also the ten-dimensional form Âev is expanded in a basis of
forms on M6 while additionally satisfying the orientifold condition (4.36). In
analogy to (4.19) we decompose

Âev = Aev
(0) + Aev

(1) + Aev
(2) + Aev

(3) , (4.39)

where the subscript (n) indicates the form degree in four dimensions. Note that
in a general expansion of Âev in forms of M6 it would be impossible to assign a
four-dimensional form degree as done in eqn. (4.39). This is due to the fact that
such a decomposition only allows to distinguish even and odd forms in four dimen-
sions. However, the orientifold imposes the constraint (4.36) which introduces an
additional splitting within the even and odd four-dimensional forms. Let us first
make this more precise in the case of O3/O7 orientifolds where Âev transforms as
σ∗Âev = λ(Âev). Using the properties of the parity operator λ one finds that the
scalars in Aev

(0) arise as coefficients of forms in Λev
+ T

∗ while the two-forms in Aev
(2)

arise as coefficients of forms in Λev
− T

∗. Similarly, one obtains the four-dimensional
vectors in Aev

(1) as coefficients of Λ3
+T

∗ and the three-forms in Aev
(3) as coefficients of

Λ3
−T

∗. In the case of O5/O9 orientifolds the ten-dimensional form Âev transforms

as σ∗Âev = −λ(Âev) and all signs in the O3/O7 expansions above are exchanged.
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In both cases the decomposition (4.39) is well defined and we can analyze the
multiplet structure of the four-dimensional theory.

The bosonic components of the chiral multiplets are the real scalars in Aev
(0)

which are complexified by the real scalars arising in the expansion of Re(Φev) or
Im(Φev). From the orientifold constraint (4.36) one infers that Re(Φev) is expanded
in forms of Λev

+ T
∗ while Im(Φev) is expanded in forms of Λev

− T
∗. Therefore the

complex forms are given as

O3/O7 : Φev
c = Aev

(0) + iRe(Φev) , O5/O9 : Φev
c = Aev

(0) + iIm(Φev) . (4.40)

The complex scalars arising in the expansion of the forms Φev
c span a complex

Kähler manifold MQ. The bosonic fields of type IIB compactified on SU(3)
structure orientifolds are organized in the four-dimensional N = 1 multiplets and
are summarized in table 4.5.

multiplet bosonic fields M6-forms

O3/O7 O5/O9

gravity multiplet gµν

chiral multiplets Φodd Λ3
−T

∗ Λ3
+T

∗

chiral/linear multiplets Φev
c Λev

+ T
∗ Λev

− T
∗

vector multiplets Aev
(1) Λ3

+T
∗ Λ3

−T
∗

Table 4.5: N = 1 spectrum of type IIB orientifolds

Fermionic spectrum

Let us now turn to the discussion of the reduction of ten-dimensional fermionic
fields. We project out all fields transforming as triplets in ψ̂µ, ψ̂m, λ̂ and we keep
only fields transforming as 1, 6, 8.

First we examine the decomposition of the singlets in ψ̂1,2
µ , λ̂1,2. In type IIB

both ten-dimensional gravitinos and dilatinos have the same chirality and split as

ψ̂Aµ = ψAµ ⊗ η− + ψ̄Aµ ⊗ η+ A = 1, 2 , (4.41)

λ̂A = λA ⊗ η+ + λ̄A ⊗ η− A = 1, 2 , (4.42)
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where η denotes the globally defined spinor introduced in eqn. (2.23) with six-
dimensional chirality ±. The four-dimensional spinors ψ1,2

µ , λ1,2 and ψ̄1,2
µ , λ̄1,2 are

Weyl spinors with positive and negative chiralities respectively. The spinors ψ1,2
µ

combine into one four-dimensional spinor ψµ which parameterizes the N = 1 su-
persymmetry. λ1,2 combine as well into one spin 1/2 field λ. The ten-dimensional
extensions of ψµ and λ are invariant under the orientifold projections O(1,2) given
in eqn. (4.10). We will discuss both cases in turn

O3/O7 : The transformation of the ten-dimensional spinor under the world-

sheet parity Ωp and (−1)FL is the same as in type IIA case and is given in (4.22).
The action of σ∗ on the internal spinor η± is given in (4.8). With these identities
at hand one can determine the transformation behavior of ψ1

µ and ψ2
µ

O(1)ψ̂
1
µ = −σ∗(ψ2

µ ⊗ η− + ψ̄2
µ ⊗ η+) = +iψ2

µ ⊗ η− − iψ̄2
µ ⊗ η+ , (4.43)

O(1)ψ̂
2
µ = σ∗(ψ1

µ ⊗ η− + ψ̄1
µ ⊗ η+) = −iψ1

µ ⊗ η− + iψ̄2
µ ⊗ η+ , (4.44)

this amounts to write [52]

O(1)

(

ψ1
µ

ψ2
µ

)

= −σ2

(

ψ1
µ

ψ2
µ

)

,O(1)

(

ψ̄1
µ

ψ̄2
µ

)

= −σ̄2

(

ψ̄1
µ

ψ̄2
µ

)

, (4.45)

where σ̄2 = −σ2. The invariant combination of the four-dimensional spinors is
given then by ψµ = 1

2
(ψ1

µ + iψ2
µ). With a similar analysis for the four-dimensional

dilatino one finds λ = 1
2
(λ1 − iλ2).

O5/O9 : From (4.22) and (4.9) the spinors ψ1
µ and ψ2

µ transform under the
orientifold projection O(2) defined in eqn. (4.10) as follows

O(2)

(

ψ1
µ

ψ2
µ

)

= σ1

(

ψ1
µ

ψ2
µ

)

,O(2)

(

ψ̄1
µ

ψ̄2
µ

)

= σ1

(

ψ̄1
µ

ψ̄2
µ

)

, (4.46)

and hence the invariant combination of the four-dimensional spinors is given by
ψµ = 1

2
(ψ1

µ + ψ2
µ). Similarly the invariant four-dimensional dilatino is found to be

λ = 1
2
(λ1 + λ2).

Finite basis

To end this section let us give a truncation to a finite number of the four-
dimensional fields. As we have argued previously this is achieved by expanding
the ten-dimensional fields on the finite set of forms on M6 denoted by ∆finite.
This is done in accord with the orientifold constraints for O3/O7 and O5/O9
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orientifolds. Once again, the n-forms ∆n split as ∆n = ∆n
+ ⊕ ∆n

−, where ∆n
± are

the eigenspaces of the operator P6 = λσ∗. However, since ∆6 contains forms pro-
portional to J ∧ J ∧ J one infers from condition (4.6) that dim ∆6

+ = 0. Clearly,
one has dim ∆0

− = 0 since ∆0 contains constant scalars which are invariant under
P6. A further investigation of the even forms in ∆2 and ∆4 shows that the basis
introduced in eqn. (3.6) decomposes as

(ωÂ, ω̃
Â) → (1, ωa, ω̃

α) ∈ ∆ev
+ , (ε, ωα, ω̃

a) ∈ ∆ev
− , (4.47)

where α = 1, . . . , dim∆2
− and a = 1, . . . , dim ∆2

+. Using J ∧ J ∧ J ∈ ∆6
− and

eqn. (3.6) one finds that ∆2
± = ∆4

∓. Together with the fact that
∫ 〈

∆ev
± ,∆

ev
±

〉

= 0
one concludes that ∆ev

± are Lagrangian subspaces of ∆ev. This is the analog of
the Lagrangian condition (4.30) found for the odd forms in type IIA. Let us turn
to the odd forms ∆3 = ∆3

+ ⊕ ∆3
−. Due to the condition (4.7) the three-form Ω is

an element of ∆3
− for O3/O7 orientifolds, while it is an element of ∆3

+ for O5/O9
orientifolds. Note that in contrast to the even forms ∆ev

± the spaces ∆3
− and ∆3

+

have generically different dimensions. The basis of three-forms introduced in (3.7)
splits under the action of P6 as

(αK̂, β
K̂) → (αλ, β

λ) ∈ ∆3
+ , (αk, β

k) ∈ ∆3
− , (4.48)

where λ = 1, ..., 1
2
dim ∆3

+, k = 1, ..., 1
2
∆3

−.

Given the basis decompositions (4.47) and (4.48) we can explicitly determine
the finite four-dimensional spectrum of type IIB orientifold theories. For orien-
tifolds with O3/O7 planes one expands Φev

c and Aev
(1) into ∆ev

+ and ∆3
+ as

Φev
c = τ +Gaωa + Tαω̃

α , Aev
(1) = Aλαλ , (4.49)

where τ, Ga, Tα are complex scalars in four dimensions. The vector coefficients
of the forms αλ in the expansion of Aev

(1) are eliminated by the duality con-

straint on the field strength of Âev. In addition we find that Φodd depends on
1
2
(dim ∆3

− − 2) complex deformations zk. Therefore the full N = 1 spectrum con-
sists of 1

2
(dim ∆3

− − 2) chiral multiplets zk as well as dim ∆2 + 1 chiral multiplets
τ, Ga, Tα. Moreover, we find 1

2
dim ∆3

+ vector multiplets Aλ.

The story slightly changes for orientifolds with O5/O9 planes. In this case the
chiral coordinates are obtained by expanding

Φev
c = tαωα + ub ω̃

b + S ε , Aev
(1) = Akαk , (4.50)

where tα, ub, S are complex four-dimensional scalars and the volume form ε is
normalized as

∫

M6
ε = 1. Moreover, the form Φodd depends on 1

2
(dim ∆3

+ − 2)
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complex deformations zλ. In summary the complete N = 1 spectrum consists of
1
2
(dim ∆3

+−2) chiral multiplets zλ as well as dim ∆2 +1 chiral multiplets tα, ub, S.
Finally, the expansion of Aev

(1) yields 1
2
dim ∆3

− independent vector multiplets Ak.

4.3 Kähler potential

In this section we briefly review the results about the Kähler potential encoding the
kinetic terms of the chiral multiplets.4 Recall that, as given in (2.30), the standard
bosonic action for chiral multiplets with bosonic components M I contains the
kinetic term [82]

Schiral =

∫

d4x
√
−g4 gIJ̄ ∂µM

I∂µM̄ J̄ , (4.51)

where the metric gIJ̄ = ∂MI∂M̄JK is Kähler and locally given as the second
derivative of a real Kähler potential K(M, M̄). In other words, the function
K determines the dynamics of the system of chiral multiplets. M6 and can be
integrated over the manifold M6.

4.3.1 Type IIA Kähler potential and the Kähler metric

We found in the previous section that the complex scalars in the chiral multiplets
are obtained by expanding the complex forms Πev and Πodd

c into appropriate forms
on M6. Locally, the field space takes the form

MK ×MQ , (4.52)

where MK and MQ are Kähler manifolds spanned by the complex scalars arising
in the expansion of Πev and Πodd

c respectively. The manifold MK directly inherits
its Kähler structure from the underlying N = 2 theory. On the other hand, MQ is
a submanifold of the quaternionic space spanned by the hyper multiplets and has
half its dimension. In [60] it is shown that MQ is indeed Kähler manifold. The
Kähler potentials KK and MQ encoding the metrics on MK and MQ respectively
are given as

KK(Jc) = − ln
[

− i

∫

M6

〈

Πev, Π̄ev
〉]

= − ln
[

1
6

∫

M6

J ∧ J ∧ J
]

, (4.53)

KQ(Πodd
c ) = −2 ln

[

i

∫

M6

〈

Πodd, Π̄odd
〉]

= − ln
[

e−4D
]

, (4.54)

4for a detailed study see ref. [60].
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where Πev = eJc and Πodd are introduced in (4.14). The functional appearing in
the logarithm of the Kähler potentials are known as Hitchin functionals of the
real two- and three forms Re(Πev) and Re(Πodd)

H
[

Re(Πev)
]

= −i
∫

〈

Πev, Π̄ev
〉

, H
[

Re(Πodd)
]

= i

∫

〈

Πodd, Π̄odd
〉

, (4.55)

these were first introduced by Hitchin in ref. [100]. A similar result with odd and
even forms exchanged is found for type IIB orientifolds to which we turn now.

4.3.2 Type IIB Kähler potential and the Kähler metric

The complex scalars in the chiral multiplets are obtained by expanding Φodd and
Φev
c into appropriate forms on M6 as introduced in eqns. (4.38) and (4.40). These

complex scalars locally span the product manifold MK×MQ, where MK contains
the independent scalars in Φodd while MQ contains the scalars in Φev

c . As in the
type IIA orientifolds the complex and Kähler structure of MK is directly inherited
from the underlying N = 2 theory. Then the Kähler potential is given as

KK(z, z̄) = − ln
[

− i

∫

M6

〈

Φodd, Φ̄odd
〉]

= − ln
[

− i

∫

M6

Ω ∧ Ω̄
]

, (4.56)

where in the second equality we used the definitions (4.35) and (3.5) of Φodd and
the pairings

〈

·, ·
〉

.

As discussed in section 4.2 the complex coordinates spanning MQ are ob-
tained by expanding Φev

c in elements of Λev
± depending on whether we are dealing

with O3/O7 or O5/O9 orientifolds. The precise definition of Φev
c was given in

eqn. (4.40). The metric on MQ is the second derivative of the Kähler potential

KQ(Φev
c ) = −2 ln

[

i

∫

M6

〈

Φev, Φ̄ev
〉]

= − ln
[

e−4D
]

, (4.57)

where in the second equality we have used the definition of Φev as given in (4.35).
Note that KQ is a function of Im(Φev

c ) only, such that it depends on Re(Φev)
in O3/O7 orientifolds while it depends on Im(Φev) in O5/O9 orientifolds. The
functionals appearing in the logarithm are the Hitchin functionals [120]

H[Re(Φev)] = i

∫

M6

〈

Φev, Φ̄ev
〉

, H[Im(Φev)] = i

∫

M6

〈

Φev, Φ̄ev
〉

, (4.58)

depending on whether we are dealing with O3/O7 and O5/O9 orientifolds.
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4.4 Superpotentials of type II SU(3) structure

orientifolds

In this section we derive the superpotentials for type IIA and type IIB SU(3)
structure orientifolds in presence of fluxes and torsion. Here we follow the same
strategy outlined while discussing the heterotic superpotential. The calculations
are then performed on the level of the fermionic effective action. As reviewed
earlier the superpotential W appears linearly as the mass of the four-dimensional
gravitino ψµ. To determine W for the orientifold setups one dimensionally reduces
the fermionic part of type IIA and type IIB actions. As in the bosonic part, the
orientifold projections ensure that the resulting four-dimensional theories possess
N = 1 supersymmetry.

Let us start by recalling the relevant fermionic terms for our discussion in the
ten-dimensional type IIA and type IIB supergravity theories. We conveniently
combine the two gravitinos into a two-vector ψ̂N = (ψ̂1

N , ψ̂
2
N ). The effective action

for the gravitinos in string frame takes the form

Sψ = −
∫

d10x

√

−Ĝ(10)

[

e−2φ̂ ˆ̄ψM ΓMNP DN ψ̂P (4.59)

+ 1
4
e−2φ̂ ĤMNP .Ψ

MNP + 1
8

8,9
∑

n=0,1

F̂n.Ψn

]

,

where the R-R field strengths F̂n are defined in (2.10) for n runs from 0 to 8 for
type IIA and from 1 to 9 for type IIB. We denote by Ψ and Ψn the quadratic part
in ψ̂M of the ten-dimensional three- and n-forms Ψ̃

(3)
M and Ψ̃n defined in (2.15)

(Ψ)M1M2M3
= ˆ̄ψMΓ[MΓM1M2M3

ΓN ]Pψ̂N ,

(Ψn)M1...Mn = e−φ̂ ˆ̄ψMΓ[MΓM1...MnΓN ]Pnψ̂N . (4.60)

We will discuss the reduction of the action (4.59) on the manifold M3,1 ×M6 fo-
cusing on the derivation of four-dimensional mass terms of the form given in (2.35)
for type IIA and type IIB in turn and determine the induced superpotentials.

4.4.1 Type IIA superpotential

Let us first determine the superpotential for type IIA orientifolds induced by non-
trivial background fluxes and torsion. We denote the background flux of dB̂2
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by H3 while the fluxes of the R-R forms dĈn are denoted by Fn+1. In type IIA
supergravity we additionally allow for a scalar parameter F0, which corresponds
to the mass in the massive type IIA theory introduced by Romans [101]. In order
that the background fluxes respect the orientifold projection they have to obey
(4.13). It is convenient to combine the R-R background fluxes into an even form
F ev on M6 as

F ev = F0 + F2 + F4 + F6 . (4.61)

In addition to the background fluxes also a non-vanishing intrinsic torsion of the
SU(3) structure manifold will induce terms contributing to the N = 1 superpoten-
tial. As discussed earlier these arise due to the non-closure of the globally defined
two-form J and three-form Ωη and can be parameterized as given in eqn. (2.26).

In order to actually perform the reduction of (4.59) to four dimensions we
use (4.21) and the gamma matrices decomposition given in (B.17). Imposing
the orientifold projection O amounts to combine the two spinors ψ1,2

µ in a four-
dimensional invariant spinor ψµ. In order to ensure the correct form of the four-
dimensional kinetic terms for ψµ we restrict to the specific choice

ψµ = eiθ/2 ψ1
µ = −e−iθ/2 ψ2

µ , ψ̄µ = e−iθ/2 ψ̄1
µ = −eiθ/2 ψ̄2

µ . (4.62)

These conditions define a reduction of a four-dimensional N = 2 to an N = 1
supergravity theory [102, 103]. Hence, the mass terms of the spinors ψµ take the
standard N = 1 form given in eqn. (2.35)

Sψ = −
∫

d4x
√−g4 e

K
2 ψ̄µσ̄

µνψ̄ν

∫

M6

[

4e−φ̂+iθη†+γ
mDmη− + 4e−φ̂−iθη†−γ

mDmη+

+ 1
3!
e−φ̂+iθ (Ĥ3)mnp η

†
+γ

mnpη− − 1
3!
e−φ̂−iθ (Ĥ3)mnp η

†
−γ

mnpη+ (4.63)

+1
2

∑

k even

1
k!

(

(λF̂k)m1...mk
η†+γ

m1...mkη+ + (F̂k)m1...mk
η†−γ

m1...mkη−
)

]

+ . . . ,

where eK/2 = e2DeK
K/2 with KK as defined in eqn. (4.53). The four-dimensional

dilaton eD is introduced in (3.19). Note that after the reduction of the D = 10
string frame action to four space-time dimensions we performed a Weyl-rescaling
to obtain a standard Einstein-Hilbert term. More precisely, in the derivation of
(4.63) we made the rescaling 5

gµν → e2Dgµν , σµ → e−Dσµ , ψµ → eD/2ψµ . (4.64)

5Due to the fact that we start here from a ten-dimensional action in the string frame the
Weyl rescaling (4.64) is different from (3.30).
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The rescaling of ψµ ensures that the four-dimensional theory has a standard kinetic
term for the gravitino. The superpotential can be obtained by comparing the
action (4.63) with the standard N = 1 mass term given in (2.35). We will discuss
the arising terms in turn.

Let us express the result (4.63) in terms of the globally defined two-form J
and Ωη defined in (2.23). First recall that Ωη is related to the Ω by a rescaling
(C.41). The quantities in the first line of (4.63) are expressed in terms of the
forms Ωη and J by using (3.56). Using the definition of Πodd = CΩ displayed in
(4.14), (4.15) one finds

4

∫

d6y
√
g6 e

−φ̂
[

eiθη†+γ
mDmη− + e−iθη†−γ

mDmη+

]

(4.65)

= −
∫

M6

〈

dRe(Πodd), J
〉

.

Similarly, one expresses the remaining terms in the action (4.63) using the three-
from Πodd and the two-form J . More precisely, the terms in the second line of
eqn. (4.63) are rewritten by applying eqns. (2.23), (C.41), (4.14) and (C.43) as

1
3!

∫

d6y
√
g6

[

e−φ̂+iθ(Ĥ3)mnpη
†
+γ

mnpη− − e−φ̂−iθ(Ĥ3)mnpη
†
−γ

mnpη+

]

(4.66)

= −i
∫

M6

[

〈

H3 ∧ Re(Πodd), 1
〉

+
〈

dRe(Πodd), B̂2

〉

]

,

where we have used that Ĥ3 = dB̂2 + H3 with H3 being the background flux.
Finally, we apply gamma-matrix identities and the definition (2.23) of J to rewrite
the terms appearing in the last line of (4.63) as

1
2

∑

k even

1
k!

∫

d6y
√
g6

[

(λF̂k)m1...mk
η†+γ

m1...mkη+ + (F̂k)m1...mk
η†−γ

m1...mkη−

]

(4.67)

=

∫

M6

[

〈

F ev, e−B̂2+iJ
〉

−
〈

H3 ∧ C(0)
3 , 1

〉

−
〈

dC
(0)
3 , B̂2

〉

+ i
〈

dC
(0)
3 , J

〉

]

,

where C
(0)
3 is defined in (4.19) as the part of Ĉ3 being a three-form on M6 yielding

scalar fields in M3,1. In deriving this identity one uses the definition of F̂k given in
eqn. (2.10) while eliminating half of the R-R fields by the duality condition (2.10).

In summary one can now read off the complete type IIA superpotential induced
by background fluxes and torsion. Introducing the differential operator dH =



4.4 Superpotentials of type II SU(3) structure orientifolds 81

d−H3∧ one finds (see also refs. [68, 104])

WO6 =

∫

M6

〈

F ev + dHΠodd
c , eJc

〉

, (4.68)

where we used the definitions of Jc = −B̂2 + iJ and Πodd
c = C

(0)
3 + iRe(Πodd) given

in eqns. (4.18) and (4.20). The superpotential extends the results of refs. [68,
104, 105, 106, 107, 108]. Let us now determine W for the type IIB orientifold
compactifications.

4.4.2 Type IIB superpotential

In the following we will determine the superpotential of type IIB orientifolds
induced by the background fluxes and torsion. In type IIB theory we allow for
a non-trivial NS-NS flux H3 as well as odd R-R fluxes. Due to the fact that we
do not expand in one- or five-forms on M6 the only non-vanishing R-R is the
three-form F3. These fluxes satisfy equation (4.34).

Since, there are some qualitative differences between O3/O7 set-up and O5/O9
set-up we will discuss them in the following separately.

O3/O7 : Recall that the invariant spinor under the orientifold projections O(1)

defined in eqn. (4.10) is given as the sum ψµ = 1
2
(ψ1

µ + iψ2
µ) together with the

conjugate expression for ψ̄µ. It turns out to be sufficient to determine W for a
simpler choice of the four-dimensional spinor ψµ given by

ψµ = ψ1
µ = −iψ2

µ , ψ̄µ = ψ̄1
µ = iψ̄2

µ . (4.69)

These conditions define the reduction of the N = 2 theory to N = 1 induced
by the orientifold projection. Inserting the decompositions (4.41) together with
(4.69) into the ten-dimensional action (4.59) one determines the ψµ mass terms

Sψ = −
∫

d4x
√
−g4 e

K
2 ψ̄µ σ̄

µνψ̄ν (4.70)
∫

d6y
√
g6

1
3!

[

(e−φ̂ (Ĥ3)mnp + i (F̂3)mnp) Ωmnp
]

+ . . . ,

where eK/2 = e2DeK
cs/2 with Kcs as defined in eqn. (4.56). In order to derive

this four-dimensional action we performed the Weyl-rescaling (4.64) to obtain a
standard Einstein-Hilbert term. Moreover, we used the identities (2.23) and (C.42)
to replace the gamma-matrix expressions η†−γ

mnpη+ with the complex three-form
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Ωmnp and absorbed a factor arising due to the Weyl-rescaling (4.64) into eK/2.
It is interesting to note that there is no contribution from the reduction of the
ten-dimensional kinetic term in the action (4.59). This can be traced back to
the fact that in type IIB orientifolds with O3/O7 planes the globally defined
three- and two-forms Ω and J transform with opposite signs under the map σ∗.
However, since the volume form is positive under the orientation preserving map
σ the integral over terms like dΩ ∧ J vanishes. The non-closed forms dJ and dΩ
nevertheless yield a potential for the four-dimensional scalars which is encoded by
non-trivial D-terms.

Let us now express the action (4.70) in terms of the globally defined three-form
Ω and the form Φev. Using the definition (4.35) of Φev one infers

1
3!

∫

d6y
√
g6

[

e−φ̂−iθ(Ĥ3)mnpΩ
mnp

]

= −i
∫

M6

e−φ̂
[〈

H3,Ω
〉

+
〈

dB̂2,Ω
〉]

(4.71)

= −i
∫

M6

[〈

H3 ∧ Re(Φev),Ω
〉

−
〈

dRe(Φev),Ω
〉]

,

where we have used Re(Φev)0 = e−φ̂ and Re(Φev)2 = −e−φ̂B̂2 as simply deduced
from the definition (4.35). For the R-R term in (4.70) one derives

i
3!

∫

d6y
√
g6 (F̂3)mnpΩ

mnp =

∫

M6

[〈

F3,Ω
〉

+
〈

dA
(0)
2 ,Ω

〉

−
〈

H3 ∧A(0)
0 ,Ω

〉]

, (4.72)

where A
(0)
2 and A

(0)
0 denote the two- and zero- forms in Aev

(0) defined in (4.39).6

Together the two terms (4.71) and (4.72) combine into the superpotential

WO3/O7 =

∫

M6

〈

F3 + dHΦev
c ,Ω

〉

(4.73)

where dH = d − H3∧ and Φev
c is defined in eqn. (4.40). This superpotential

contains the well-known Gukov-Vafa-Witten superpotential [15, 109] as well as
contributions due to non-closed two-forms B̂2 and Ĉ2.

Let us complete the discussion of type IIB orientifolds by determining the
O5/O9 superpotential.

O5/O9 : To derive the superpotential for O5/O9 orientifolds we restrict to a

specific choice for the four-dimensional invariant spinor ψµ = 1
2
(ψ1

µ + ψ2
µ)

ψµ = ψ1
µ = ψ2

µ , ψ̄µ = ψ̄1
µ = ψ̄2

µ . (4.74)

6Expanding Aev
(0) in (4.39) one finds A

(0)
2 = Ĉ2 − Ĉ0B̂2 and A

(0)
0 = Ĉ0.
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Together with the decomposition (4.41) we reduce the action (4.59) to determine
the mass term of ψµ as

Sψ = −
∫

d4x
√−g4 e

K
2 ψ̄µσ̄

µνψ̄ν

∫

d6y
√
g6

〈

− iF̂3 + d(e−φ̂J),Ω
〉

+ . . . , (4.75)

where we have applied (2.23), (C.42), (2.26) and performed the Weyl rescaling
(4.64). Note that the term involving the NS-NS fluxes vanishes in the case of
O5/O9 orientifolds since Ω and Ĥ3 transform with an opposite sign under the
symmetry σ∗ as can be deduced from eqns. (4.7) and (4.34). Inserting the defini-
tion (2.10) of F̂3 into (4.75) one obtains the superpotential [104]

WO5/O9 = −i
∫

M6

〈

F3 + dΦev
c ,Ω

〉

, (4.76)

where we have used Im(Φev)2 = e−φ̂J and the definition (4.40) of Φev
c . WO5/O9 is

independent of the NS-NS flux H3 which was shown in ref. [62] to contribute a
D-term potential to the four-dimensional theory.
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Chapter 5

Conclusion

In this thesis we determined the four-dimensional N = 1 low energy effective the-
ories for a more general class of compactifications arising if the internal manifold
M6 is no longer restricted to be Calabi-Yau. We have seen that in order for the
resulting four-dimensional theory to still admit some supersymmetry M6 cannot
be chosen arbitrarily, but rather has to admit at least one globally defined spinor.
In case that M6 has exactly one globally defined spinor the structure group of
the manifold reduces to SU(3). Equivalently, these manifolds are characterized
by the existence of two globally defined forms, a real two-form J and a complex
three-form Ω. These forms are in general not closed, which indicates a deviation
from the Calabi-Yau case. This difference can also be encoded by specifying a new
connection on M6 with torsion replacing the ordinary Levi-Civita connection.

Compactifications of the heterotic and type II theories on such manifolds lead
to (spontaneously broken) N = 1 and N = 2 theories respectively. From a phe-
nomenological point of view N = 1, D = 4 theories are of importance. Therefore
we imposed orientifold projections in the case of type II compactifications which
truncate the resulting theories to N = 1 supergravities. These yield setups with
O6 planes in type IIA, while for type IIB reductions two setups with O3 and O7
as well as O5 and O9 planes are encountered.

We used Kaluza-Klein reduction to determine the four-dimensional theories.
In contrast to the standard Calabi-Yau compactifications the reduction on SU(3)
structure manifolds is more subtle. This can be traced back to the fact that
in these generalized compactifications the distinction between massless or light
modes and the massive Kaluza-Klein modes is not anymore straightforward. Re-
call that in Calabi-Yau compactifications the massless modes are in one-to-one
correspondence with the harmonic forms of M6 and one only keeps these in the
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Kaluza-Klein reduction. For manifolds with SU(3) structure a similar characteri-
zation is missing so far. Therefore we kept in the reduction the whole Kaluza-Klein
tower which means that we expanded in forms on M6 which are not necessarily
harmonics. However, we specified a finite basis of forms which enabled us to do
the reduction explicitly. Among the Kaluza-Klein modes we did not keep any
triplets of SU(3), or in other words, we did not keep any modes which arise from
one-forms (or five-forms) of M6. Apart from this constraint we kept the analysis
generic. Projecting out the triplets of SU(3) is necessary to keep the standard
multiplets of N = 1 and N = 2 supergravities.

In compactifications on SU(3) structure manifolds a scalar potential is induced
by the torsion as well as the existing background fluxes. Due to the N = 1 su-
persymmetry it can be encoded by a Kähler potential, a holomorphic superpoten-
tial and possible D-terms. We derived the general form of the superpotentials on
SU(3) structure manifolds for heterotic and type IIA/B orientifold setups by eval-
uating appropriate fermionic mass terms. The reason for doing so is the fact that
in the bosonic terms the superpotential and its derivatives appear quadratically
which complicates the computation. Instead they appear linearly in the fermionic
couplings and can be computed straightforwardly. With a similar analysis we
determined the superpotential derivatives (F -terms) for the heterotic compacti-
fication. However, in order to do so one also needs the proper normalization of
the fermionic kinetic terms. Therefore, we discussed first the kinetic terms of the
four-dimensional fermions. To our knowledge such an analysis has not yet been
done even for Calabi-Yau compactifications.

Knowing the superpotential and the Kähler potential one can determine the
conditions for four-dimensional supersymmetric vacua. It is readily checked that
these conditions evaluated for the orientifold setups are in accord with the N = 1
conditions on ten-dimensional backgrounds derived in refs. [44, 110]. In the het-
erotic case we have derived explicitly these conditions by evaluating the SUSY
transformations of the fermionic fields and setting them to zero. It turned out
that flux and torsion have to satisfy certain constraints. These are the vanish-
ing of the first and second torsion classes simultaneously, or in other words, the
compactification manifold has to be complex. In addition, the flux should be
equal to the third torsion class which amounts to allow only (2, 1) + (1, 2)-form
fluxes. Furthermore, the dilaton is found to be constant. These conditions were
first discussed by Strominger [40]. Here we recovered his conditions in the limit
of non-warped compactifications.

We computed the Yukawa couplings arising in the heterotic compactification
on SU(3) structure manifolds. These appear to be third derivatives of the prepo-
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tentials extending the results of Calabi-Yau compactifications [55, 85, 53].

As mentioned earlier, our motivation to study N = 1, D = 4 theories is their
phenomenological importance. However, in attempts to construct specific models
for particle physics and cosmology an essential step is the study of moduli sta-
bilization and the inclusion of matter and moduli fields due to space-time filling
D-branes in type II compactifications. These can be directions for further re-
search. Furthermore, it is an interesting task to investigate the generalization of
type II SU(3) structure orientifolds [60] which can be useful in the study of mirror
symmetry in presence of NS-NS fluxes. This symmetry relates two Calabi-Yau
manifolds Y, Ỹ and exchanges their odd/even cohomologies. Compactifications
of type IIA on Y and type IIB on Ỹ lead to equivalent theories in four dimen-
sions. Mirror symmetry extends naturally to Calabi-Yau compactification with
R-R fluxes. This is due to the fact that R-R fluxes are in even and odd cohomolo-
gies in type IIA and type IIB respectively. The completion of mirror symmetry in
the presence of NS-NS background fluxes is not as straightforward and it is still
an area of intense current research [68, 60][111] –[119]. For compactifications with
‘electric’ NS-NS fluxes it was conjectured in refs. [80, 114] that the mirror geome-
try is a set of specific SU(3) structure manifolds known as half-flat manifolds. To
extend this conjecture to ‘magnetic’ NS-NS fluxes various more drastic deviations
from the standard compactifiactions are expected [68, 115, 116, 117]. These mir-
rors are extensions of generalized almost complex manifolds with SU(3)× SU(3)
structure.1 In these manifolds the tangent and cotangent bundles T , T ∗ are no
longer the central geometric objects, but rather get replaced by the generalized
tangent bundle E locally given by T ⊕ T ∗. The study of type II SU(3) struc-
ture orientifolds [60] permits to strength this conjecture since many of the SU(3)
structure results naturally generalize to the SU(3) × SU(3) structure case. For
instance, in the derivation of SU(3) × SU(3) superpotentials of [60] the analysis
and techniques learned in SU(3) structure orientifolds were used.

1The notion of generalized almost complex manifold was introduced by Hitchin [120] and
Gualtieri [121], while an intensive discussion of SU(3) × SU(3) structure can be found in the
work of Graña, Louis and Waldram [68].
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Chapter 6

Appendix

A Kaluza-Klein reduction

Kaluza-Klein theory explains Einstein gravity and electromagnetism in four di-
mensions as pure gravity from the five-dimensional point of view [123]. Since KK
reduction plays an important role throughout the thesis, we recall it here. We give
as well the compactification on a 6-dimensional manifold as a generalization of the
Kaluza-Klein S1 reduction. Finally we give the example of Calabi-Yau manifolds
as the six-dimensional compactification manifolds.

A.1 The reduction on a circle

In five dimensions the Einstein-Hilbert action is given by

S5 = −
∫

d5x

√

−Ĝ R̂ , (A.1)

where Ĝ and R̂ are the determinant of the 5-dimensional metric ĜMN and the
Ricci scalar of the theory, respectively.1Assuming that one of the space directions
is periodic one can view the original theory as being reduced on a circle. The
spacetime coordinates xM , M = 0, . . . , 4 split into the four-dimensional spacetime
coordinates xµ , µ = 0, . . . , 3 and the internal periodic coordinate y. In this
context the simplest solution of the five dimensional equation of motion R̂MN = 0

1To avoid another notation for the compactified fields we denote the higher dimensional fields
before compactification with a hat.
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can be given by a four-dimensional Minkowski space times a circle, M(3,1) × S1.
Fluctuations around this background can be encoded into the four-dimensional
metric gµν , a four-dimensional vector Ĝµ5 = Aµ, and a scalar Ĝ55 = Φ. These
fields are periodic in y and hence can be Fourier expanded in the form

φ̂(xµ, y) =
∑

n

φn(x
µ)einy/r . (A.2)

From a four-dimensional point of view the five dimensional massless fields generate
massive Kaluza-Klein modes. The masses are of the order m2 ∼ n2

r2
. This can be

seen by applying the Laplace operator to the five dimensional scalars2

0 = ∂M∂
M φ̂ =

(

∂µ∂
µ + ∂y∂

y
)

φ̂ =
∑

n

(

∂µ∂
µ − (n/r)2

)

φn(x
µ)einy/r . (A.3)

The massless fields are the zero modes φ0 of the Kaluza-Klein tower and all the
other modes φ1, . . . , φn are massive. The size of the compact dimension determines
how heavy those modes are. In the case where r is small enough the masses
get large and their modes can be discarded from the low energy approximation.
The resulting four-dimensional effective action describing the massless fields φ0 is
found after integrating out the dependence of y and some adequate rescaling. It
is written as

S4 =

∫

d4x
√−g

(

− R− 1

4
φFµνF

µν − 1

6φ
∂µφ∂

µφ
)

, (A.4)

where R is the Ricci scalar of the four-dimensional theory and Fµν = ∂µAν−∂νAµ
is the field strength of the abelian gauge boson Aµ.

A.2 Reduction on a 6-dimensional manifold

The S1 reduction of the five-dimensional theory can be easily generalized to higher
dimensional theories with an arbitrary number of compact dimensions. The ex-
ample given here is the reduction of a ten-dimensional massless scalar φ̂ on a
6-dimensional manifold M6. Let us denote the ten-dimensional coordinates by
xM , M = 0, . . . , 9, the four-dimensional coordinates by xµ, µ = 0, . . . , 3 and the
six-dimensional coordinates on M6 by ym, m = 1, . . . , 6. The ten-dimensional
metric is block diagonal. Hence the equation of motion for this scalar φ̂ is written
as

∆10φ̂ = ∆4φ̂+ ∆6φ̂ = 0 , (A.5)

2For simplicity we consider here the case where Aµ is trivial in the background.
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where ∆10, ∆6, ∆4 are the Laplacians in 10, 6 and 4 dimensions respectively. As
in the example of the reduction on a circle φ̂ can be expanded in a four-dimensional
part φi(xµ) times a six-dimensional part ωi(y

m)

φ̂(xM) = φi(xµ)ωi(y
m) , (A.6)

where ωi are a set of functions on M6 and the index i denotes their multiplic-
ity. For massless fields φ(xµ) in four-dimensions these are the harmonics of the
manifold M6. This is easily seen from eqn. (A.5) if we insert the decomposition
(A.6) of φ̂. The four-dimensional mass is then given by m2ωi = ∆6ωi. Clearly
the massless fields correspond to the harmonics of the manifold M6 satisfying the
condition ∆6ωi = 0.

A.3 Calabi-Yau manifolds

In the literature there is a well studied example of complex compactification mani-
folds M6 known as Calabi-Yau manifolds [8]. Although we consider, in this thesis,
more general manifolds we will give a brief review on the Calabi-Yau manifolds.
Those are compact Kähler manifolds with vanishing first Chern class. Equiva-
lently, they are Ricci flat Kähler manifolds with SU(3) holonomy.

The Kählerity condition: That the manifold is Kähler amounts to the fact
that its metric gmn is given by the second derivative of some function known as
the Kähler potential. The metric gmn is hermitian with respect to the complex
structure. In complex coordinates this means that only its mixed type components
gαβ̄ are non vanishing. Given the hermitian Kähler metric g on the Calabi-Yau
manifold, one can build a closed (1, 1)-form called the Kähler form

J = i gαβ̄ dz
α ∧ dz̄β̄ . (A.7)

Ricci flatness: Kähler manifolds with vanishing first Chern class admit a Ricci-
flat metric

Rαβ̄ = 0 , (A.8)

where Rαβ̄ is the Ricci tensor. Consequently, a Calabi-Yau manifold can also be
defined as a compact Ricci-flat Kähler manifold.
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SU(3) holonomy: The condition that the manifold has an SU(3) holonomy
amounts to having a covariantly constant spinor η with respect to the Levi-Civita
connection

DLCη = 0 . (A.9)

The existence of such a spinor is of importance; it allows preserving minimal
supersymmetries of the compactified theories.

The Hodge diamond: As we have seen earlier the harmonics of the manifold
are in one to one correspondence with the massless fields in four dimensions. As
there is a unique harmonic (p, q)-form representative in each cohomology class of
H(p,q), their multiplicity is counted by the dimension of the non-trivial cohomolo-
gies of the Calabi-Yau manifold. These are the quotients H (p,q) = {ω|dω=0}

{α|α=dβ} , where

ω is a (p, q)-form. Their dimensions h(p,q) = dimH (p,q) can be summarized in the
Hodge diamond as follows

h(0,0)

h(1,0) h(0,1)

h(2,0) h(1,1) h(0,2)

h(3,0) h(2,1) h(1,2) h(0,3)

h(3,1) h(2,2) h(1,3)

h(3,2) h(2,3)

h(3,3)

=

1
0 0

0 h(1,1) 0
1 h(2,1) h(2,1) 1

0 h(1,1) 0
0 0

1

. (A.10)

B The Clifford Algebra in 4 and 6 dimensions

In this appendix we assemble the spinor conventions in four and six dimensions
used throughout the thesis. In D = 10 the Γ-matrices are hermitian and satisfy
the Clifford algebra

{ΓM ,ΓN} = 2gMN , M,N = 0, . . . , 9 . (B.11)

One defines [6]

Γ11 = Γ0 . . .Γ9 , (B.12)

which has the properties

(Γ11)2 = 1 , {Γ11,ΓM} = 0 . (B.13)
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This implies that the Dirac representation can be split into two Weyl representa-
tions

32Dirac = 16 + 16′ (B.14)

with eigenvalue +1 and −1 under Γ11.

In backgrounds of the form M10 = M(3,1) × M6 the 10-dimensional Lorentz
group decomposes as

SO(9, 1) → SO(3, 1) × SO(6) , (B.15)

implying a decomposition of the spinor representations as

16 = (2, 4) + (2̄, 4̄) . (B.16)

Here 2, 4 are the Weyl representations of SO(3, 1) and SO(6) respectively.

In this background the ten-dimensional Γ-matrices can be chosen block-diagonal
as

ΓM = (γµ ⊗ 1, γ5 ⊗ γm), µ = 0, . . . , 3, m = 1, . . . , 6 , (B.17)

where γ5 defines the Weyl representation in D = 4. In this basis Γ11 splits as [6]

Γ11 = −γ5 ⊗ γ7 , (B.18)

where γ7 defines the Weyl representations in D = 6.

Let us now turn to our spinor conventions in D = 6 and D = 4 respectively.

B.1 Clifford algebra in 6-dim

In D = 6 the gamma matrices are chosen hermitian, γm† = γm, and they obey
the Clifford algebra

{γm, γn} = 2gmn , m, n = 1, . . . , 6 . (B.19)

The Majorana condition on a spinor η reads

η† = ηTC , (B.20)

where C is the charge conjugation matrix

CT = C , γTm = −CγmC−1 . (B.21)
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One can regroup these six gamma-matrices into three sets of anticommuting rais-
ing and lowering operators [6]

γα = 1
2
(γm + iγm+3) , γᾱ = 1

2
(γm − iγm+3) , m = 1, 2, 3 , (B.22)

satisfying

{γα, γβ̄} = gαβ̄ , {γᾱ, γβ̄} = 0 , {γα, γβ} = 0 . (B.23)

In this basis the two chiral spinors η± are annihilated by γα, γᾱ respectively, and
one has

γαη+ = 0 , γᾱη− = 0 . (B.24)

B.2 Clifford algebra in 4-dim

In D = 4 we adopt the conventions of [82] and choose

γµ = −i
(

0 σµ

σ̄µ 0

)

, γ5 =

(

1 0
0 −1

)

, (B.25)

where the σµ are the 2 × 2 Pauli matrices

σ0 =

(

−i 0
0 −i

)

, σ1 =

(

0 1
1 0

)

,

σ2 =

(

0 −i
i 0

)

, σ3 =

(

1 0
0 −1

)

, (B.26)

and σ̄0 = σ0, σ̄1,2,3 = −σ1,2,3.

C The geometry of the scalar manifold in SU(3)

compactifications

In this appendix we collect the results of the geometry of the scalar manifold
arising in compactifications on manifolds with SU(3) structure. For the special
case of Calabi-Yau manifolds this geometry coincides with the geometrical mod-
uli space of the deformations of the Calabi-Yau metric [55]. For more general
manifolds one can still define metric deformations and a metric on the space of
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metric deformations. The resulting geometry has been discussed in refs. [80, 68]
and shown to be a product manifold of the form

M = MK ×Mcs , (C.27)

where MK corresponds to the deformations of J while Mcs corresponds to the
deformations of the three-form Ω. N = 1 supersymmetry constrains this product
to be a Kähler manifold. However, for compactifications on manifolds with SU(3)
structure each factor has a special Kähler geometry in that the Kähler potential
is a sum of two terms

K = KK +Kcs , (C.28)

and both Kähler potentials can be derived from a holomorphic prepotential. Let
us discuss this in more detail.

C.1 The MK component

The coordinates of MK are the scalars tA = bA + ivA which arise from expanding
B2 + iJ in a set of two forms ωA as done in (3.8), (3.9). The metric on this space
is defined as

gAB =
1

4K

∫

M6

ωA ∧ ∗6ωB , A, B = 1, . . . , dim ∆2 , (C.29)

where K is the volume of M6

K =
1

6

∫

M6

J ∧ J ∧ J . (C.30)

∗6ωB denotes a set of four-forms which are dual to the set of two-forms ωA. In [68]
it was shown that the KK-reduction has to be such that their existence is ensured
and furthermore that the metric defined by (C.29) is non-degenerate. Repeating
the arguments of ref. [53] for the more general class of manifolds Y one derives

∗6ωA = −J ∧ ωA +
KA

4KJ ∧ J , (C.31)

which holds not only for Calabi-Yau manifolds but also for the more general
manifolds of SU(3) structure. Inserting into (C.29) we arrive at

gAB = − 1

4K (KAB − 1

4KKAKB) , (C.32)
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where we abbreviate

KA =

∫

M6

ωA ∧ J ∧ J , KAB =

∫

M6

ωA ∧ ωB ∧ J , KABC =

∫

M6

ωA ∧ ωB ∧ ωC .
(C.33)

gAB is a Kähler metric of the Kähler potential KK = − lnK, i.e.

gAB = ∂tA∂t̄BK , K = − ln 1
6

∫

M6

J ∧ J ∧ J . (C.34)

In fact gAB is even a special Kähler metric in that K can be derived from a
holomorphic prepotential F via

K = − ln
[

X Â(FÂ)−X̄ ÂFÂ

]

, FÂ = ∂XÂF , Â = 0, . . . , dim ∆2 , (C.35)

for

F = (X0)2KABCt
AtBtC , tA ≡ XA

X0
. (C.36)

C.2 The Mcs component

Mcs is spanned by the complex scalars zK̂ with a metric [55, 80, 68]

gKL = −
∫

M6
ρK ∧ ρ̄L

∫

M6
Ω ∧ Ω̄

, (C.37)

where ρK and Ω are (2,1)-forms and (3,0)- form respectively satisfying the relations

∂

∂zK
Ω = −KKΩ + ρK . (C.38)

This metric is special Kähler with a Kähler potential given by

Kcs = −ln(i

∫

M6

Ω ∧ Ω̄) . (C.39)

Furthermore Ω can be expanded in terms of a real symplectic basis (αK̂, β
L̂) of

three-forms

Ω = ZK̂(z)αK̂ − GL̂(z)βL̂ , K̂, L̂ = 0, . . . , dim ∆3 , (C.40)

where GK̂ = ∂ZK̂G is the derivative of the prepotential G with respect to the period

ZK̂. The zK used in (3.9) are the special coordinates defined as zK = ZK/Z0.
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The holomorphic three-form Ω is related to Ωη of (2.23) by a scale factor

Ω = Ωη||Ω|| , ||Ω|| = e
1

2
Kcs− 1

2
KK

, (C.41)

where KK = −lnK depends on the volume K in the appropriate frame. In terms
of the components of Ω one thus has

Ωαβγ = εαβγ ||Ω|| . (C.42)

The holomorphic three form Ω and the (2, 1)-form ρ satisfy

∗6Ω = −iΩ , ∗6ρa = iρa . (C.43)

D Strominger conditions

Here we review the results of [40]. Consider a warped compactification where the
metric takes the form

ds2 = g0
MNdx

M ⊗ dxN = e2∆(y)(ĝµνdx
µ ⊗ dxν + ĝmndy

m ⊗ dyn) . (D.44)

Making the following rescaling

gMN = e−2φg0
MN , ψM = e−

φ
2 (ψ0

M −
√

2

4
Γ0
Mλ

0) , (D.45)

the SUSY variation equations for the gravitino, gaugino, and the chiral fermions
are, then, rewritten as the following

δψM = DMε−
1

4
HMε , (D.46)

δχ = −1

4
ΓMNFMNε , (D.47)

δλ = ΓMDMφ+
1

24
Hε , (D.48)

where H = ΓMNPHMNP , HM = ΓNPHMNP . Then the supersymetric condition,
namely the vanishing of the SUSY variation of the gravitino rescales as,

δψµ = Dµε = 0 → D̂µε +
1

2
γµγ

m∂mln(∆ − φ)ε = 0 , (D.49)
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where the hatted quantities refer to ĝdefined in (D.44). The integrability condition
for this is

γ̂µνD̂µδψµ = −1
4
R̂4ε− 3̂̂Dm(∆ − φ)D̂m(∆ − φ)ε = 0 , (D.50)

whose consequences for compact six dimensional manifold are the equality of the
warp factor and the dilaton, and the vanishing of the Ricci scalar of the six
dimensional manifold,

∆(y) = φ(y) + cont , R̂ = 0 . (D.51)

It is possible to construct a two form which is closed with respect to a new con-
nection D,

Jnm = iη+
+Γnmη+ , (D.52)

DJnm = DmJ
p
n −Hp

smJ
s
n −Hs

mnJ
p
s = 0 , (D.53)

Dm = Dm − 1

4
Hnp
m Γnp . (D.54)

The integrability condition for Jnm to be a complex structure is the vanishing of
the Nijenhuis tensor Nmnp to vanish

Np
mn = JqmJ

p
[n ,q] − JqnJ

s
[m ,q] p . (D.55)

Using (D.53) one finds

Nmnp = Hmnp − 3Jq[mJ
r
nHp]qr = 0 , (D.56)

which in turn gives

H =
i

2
(∂̄ − ∂)J . (D.57)

Constructing a holomorphic closed three form, one finds that its norm is given via
the dilaton,

Ω = e8φη+
−γabcη+dz

a ∧ dzb ∧ dzc , ‖ Ω ‖= e8(φ−φ0) . (D.58)

Setting equation (D.47) to zero yields a condition on the Yang-mills field strength
and the two-form J

Jac̄Fac̄ = 0 . (D.59)

Finally let’s summaries the conditions for a supersymmetric vacuum:

• The compactification manifold is complex

• H = i
2
(∂̄ − ∂)J

• Jac̄Fac̄ = 0

• ‖ Ω ‖= e8(φ−φ0)
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E Stable forms and the Hitchin functional

In this appendix we collect some basic facts about the geometry of stable forms
on a six-dimensional manifold M6. The definition of the Hitchin functionals
will be recalled. A more exhaustive discussion of these issues can be found in
refs. [100, 120, 122, 121]. Consider a six-dimensional manifold M6 with a real
globally defined three-form ρ ∈ Λ3T ∗. A natural notion of non-degeneracy is that
the form ρ is stable. From an abstract point of view a stable form ρ is defined by
demanding that the natural action of GL(6) on ρ spans an open orbit in Λ3

pT
∗ at

each point p of M6. This condition can also be formulated in terms of the map
q : Λ3T ∗ → Λ6T ∗ ⊗ Λ6T ∗ defined as [100]

q(ρ) =
〈

em ∧ fnyρ, ρ
〉〈

en ∧ fmyρ ∧ ρ
〉

, (E.60)

where em is a basis of T ∗M6 and fm is a basis of TM6. The set of stable three-
forms on M6 is then shown to be

U3 =
{

ρ ∈ Λ3T ∗ : q(ρ) < 0
}

, (E.61)

where q(ρ) < 0 holds if q(ρ) = −s⊗s for some s ∈ Λ6T ∗. Clearly, since Λ6T ∗ ∼= R

this means that the product of the coefficients of the volume forms in (E.60) is
negative.

It was shown in ref. [100] that each real stable form ρ ∈ U 3 is written as

ρ = 1
2
(Ω + Ω̄) , (E.62)

where Ω is a complex three-form satisfying
〈

Ω, Ω̄
〉

6= 0. The imaginary part of Ω
is unique up to ordering and we denote it by ρ̂ = Im(Ω). The real three-forms
ρ̂(ρ) can also be defined by using the map q introduced in eqn. (E.60). On forms
ρ ∈ U3 one defines the Hitchin function

H(ρ) :=
√

−1
3
q(ρ) ∈ Λ6TY , (E.63)

which is well defined since q(χ) < 0. The form ρ̂ is then defined to be the
Hamiltonian vector field on TU 3 ∼= Λ3T ∗ 3

4
〈

ρ̂, α
〉

= −DH(α) , ∀α ∈ Λ3T ∗ , (E.64)

3The factor 4 is not present in the corresponding expression in ref. [100]. It arises due to the
fact that we have set ρ = Re(Ω) and not ρHitchin = 2Re(Ω) as in ref. [100]
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where D is the (variational) differential on TU 3. Note that H(ρ) can be rewritten
as H(ρ) = i

〈

Ω, Ω̄
〉

.

In this thesis we mostly use the integrated version of the Hitchin function
H(ρ). Since H(ρ) is a volume form it is natural to define the Hitchin functional

H[ρ] =

∫

M6

H(ρ) = i

∫

M6

〈

Ω, Ω̄
〉

. (E.65)

Its first (variational) derivative is precisely the form ρ̂ such that

∂ρH = −4ρ̂ , ∂ρH(α) = −4

∫

M6

〈

ρ̂, α
〉

. (E.66)

Here we also displayed how ∂ρH is evaluated on some real form α ∈ Λ3T ∗. The
second derivative of H[ρ] is given by

∂ρ∂ρH = −4I , ∂ρ∂ρH(α, β) = −4

∫

M6

〈

α, Iβ
〉

. (E.67)

The map I : Λ3T ∗ → Λ3T ∗ is shown to be an almost complex structure on U 3. It
is used to prove that U 3 is actually a rigid special Kähler manifold [100]. The real
form ρ can be also used to define an almost complex structure Iρ on M6 itself by
setting

(Iρ)
m
n =

1

H(ρ)
(em ∧ fnyρ ∧ ρ) , (E.68)

where H(ρ) is defined in eqn. (E.63). With respect to Iρ one decomposes complex
three-forms as

Λ3T ∗
C = Λ(3,0) ⊕ Λ(2,1) ⊕ Λ(1,2) ⊕ Λ(0,3) . (E.69)

Using this decomposition the complex structure I on U 3 is evaluated to be I = i
on Λ(3,0) ⊕ Λ(2,1) and I = −i on Λ(1,2) ⊕ Λ(0,3). Furthermore, assuming that
M6 possesses a metric which is hermitian with respect to Iρ the six-dimensional
Hodge-star obeys ∗6 = i on Λ(0,3) ⊕ Λ(2,1), while ∗6 = −i on Λ(3,0) ⊕ Λ(1,2). This
implies the identifications

I = ∗6 on Λ(2,1) ⊕ Λ(1,2) , I = − ∗6 on Λ(3,0) ⊕ Λ(0,3) . (E.70)
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D. Lüst, “Intersecting brane worlds: A path to the standard model?,” Class.
Quant. Grav. 21 (2004) S1399 [arXiv:hep-th/0401156];
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