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Abstract

In this thesis we study type IIB superstring compactifications in the presence of
space-time filling D-branes while preserving N = 1 supersymmetry in the effec-
tive four-dimensional theory. This amount of unbroken supersymmetry and the
requirement to fulfill the consistency conditions imposed by the space-time filling
D-branes lead to Calabi-Yau orientifold compactifications. For a generic Calabi-Yau
orientifold theory with space-time filling D3- or D7-branes we derive the low-energy
spectrum. In a second step we compute the effective N = 1 supergravity action
which describes in the low-energy regime the massless open and closed string modes
of the underlying type IIB Calabi-Yau orientifold string theory. These N = 1
supergravity theories are analyzed and in particular spontaneous supersymmetry
breaking induced by non-trivial background fluxes is studied. For D3-brane scena-
rios we compute soft-supersymmetry breaking terms resulting from bulk background
fluxes whereas for D7-brane systems we investigate the structure of D- and F-terms
originating from worldvolume D7-brane background fluxes. Finally we relate the
geometric structure of D7-brane Calabi-Yau orientifold compactifications to N = 1
special geometry.

Zusammenfassung

In dieser Doktorarbeit untersuchen wir Typ IIB Superstring Kompaktifizierungen
mit raumzeitfüllenden D-Branen, so dass N = 1 Supersymmetrie in der effektiven
vier dimensionalen Theorie erhalten bleibt. Die ungebrochene Supersymmetrie und
die Erfüllung der Konsistenzbedingungen, die von den raumzeitfüllenden D-Branen
herrühren, führen zu Calabi-Yau Orientifold Kompaktifizierungen. Für eine allge-
meine Calabi-Yau Orientifold Theorie mit raumzeifüllenden D3- oder D7-Branen
leiten wir das Niedrigenergie-Spektrum her. Anschließend berechnen wir die effek-
tive N = 1 Supergravitationswirkung, welche im Bereich kleiner Energien die zu
Grunde liegende Typ IIB Calabi-Yau Orientifold String Theorie beschreibt. Dann
werden diese N = 1 Supergravitationstheorien analysiert und insbesondere die
durch Hintergrundflüsse induzierte spontane Supersymmetriebrechung untersucht.
Für D3-Branen berechnen wir die soft-supersymmetry-brechenden Terme, die durch
Bulk-Hintergrundflüsse entstehen. Desweiteren untersuchen wir für eine D7-Brane
die Struktur der D- und F-Terme, die durch Hintergrundflüsse auf dem Worldvol-
ume der D7-Brane induziert werden. Abschließend setzen wir die Geometrie der
Calabi-Yau Orientifold Kompaktifizierungen mit einer D7-Brane mit der N = 1
Special-Geometry in Beziehung.
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Chapter 1

Introduction

1.1 Towards string theory compactifications

Quantum field theories have emerged as the appropriate framework to describe high
energy particle physics. The strong, weak and electromagnetic interaction of quarks,
leptons and gauge bosons, which constitute all present-day known elementary par-
ticles, are realized in the SU(3)×SU(2)×U(1) standard model of particle physics.
The standard model is in fantastic agreement with experimental observations made
at today’s generation of accelerators and describes adequately interactions of quarks
and leptons mediated by the gauge bosons up to energy scales of approximately one
hundred GeV. However, despite of its success there are also many questions which
cannot be addressed in the context of the standard model. On the one hand there
are experimental data, for instance small neutrino masses or the presence of dark
matter in the universe, which is not captured within the standard model. On the
other hand there are also theoretical aspects of the standard model, which are not
answered satisfactorily, such as the origin of the observed particle spectrum or the
presence of many parameters which are not predicted by theory.

The forth known interaction in nature is gravity which is described by Einstein’s
theory of general relativity. It is a description of gravity by means of geometry
that is to say the Einstein equations relate the energy momentum tensor of matter
with the Ricci curvature tensor of the space-time geometry. Due to its geometric
origin general relativity is a classical theory in the sense that it does not capture any
quantum effects in gravity. As of today general relativity is also experimentally well-
tested and serves as the basis of our present understanding of cosmology. However,
also general relativity faces difficulties. Often solutions to the Einstein equation
are plagued with singularities, which cannot be treated within general relativity
itself. Moreover, as already mentioned general relativity is conceptually rather dif-
ferent from the approach taken by quantum field theories. But eventually for highly
curved space-times and at length scales where the quantum nature becomes relevant
quantum effects are also expected to enter the description of gravity. This clash of
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1.1. TOWARDS STRING THEORY COMPACTIFICATIONS

classical versus quantum mechanical physics can already be observed at the level of
the Einstein equation because it equates the Einstein tensor with the energy mo-
mentum tensor. In general relativity the former tensor is a purely geometrical and
hence a classical quantity whereas the energy momentum tensor of matter arises
from quantum field theory and as such is a quantum mechanical object.

Thus eventually the three interactions of the standard model should be unified
with the gravitational interaction of general relativity, and then in the resulting
theory both the standard model and classical general relativity have to emerge as
appropriate limits. This can partially be achieved in the context of quantum field
theories on curved space-times, where the mediator of gravity is a spin 2 particle
called graviton. Unfortunately these quantum gravity field theories are usually non-
renormalizable. This indicates that they do not provide for a valid description
beyond the Planck scale which is the energy scale characteristic for gravitational
interactions. However, quantum gravity field theories can still serve as an effective
low energy description of some more fundamental theory which regulates the theory
in the ultraviolet regime.

A (perturbatively) consistent regulator of quantum gravity field theories is given
by string theory [1]. The basic idea of string theory is to replace the worldline of a
particle by the worldsheet of a spatial one-dimensional quantized string. At energy
scales corresponding to the string length this procedure smears out the ultravio-
late divergencies encountered in the point-like description of quantum field theory,
whereas at low energy scales the spatial extension of the string becomes invisible and
then the effective theory reduces to the particle behavior of quantum field theory.
Moreover the low energy spectrum of string theories always contains a graviton and
thus describes (at least perturbatively) gravity consistently.

The stable tachyon-free string theories are supersymmetric and are called super-
string theories, which predict in the weak coupling limit a ten-dimensional space-
time target space. The class of ten-dimensional consistent superstring theories is
comprised of five different types. There are the oriented closed type IIA and type IIB
superstring theories with N = 2 supersymmetry. The closed oriented heterotic su-
perstring with N = 1 supersymmetry, which contains matter fields transforming
either under E8 × E8 or SO(32). Finally the type I superstring with N = 1 super-
symmetry, which is unoriented and consists of closed and open strings. In type I
the open string states transform in the adjoint representation of SO(32). All these
superstring theories do not have any free parameters and are related by a web of
string dualities [2, 3].

From a theoretical and mathematical point of view the unique structure of su-
perstring theories in ten-dimensions is very appealing. Furthermore the framework
of superstrings allows for many attractive ideas such as supersymmetry, grand unifi-
cation or Kaluza-Klein reduction of extra dimensions. On the other hand in order to
make contact with the success of the standard model in particle phenomenology it
is necessary to specify a string theory which allows for an effective four-dimensional
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CHAPTER 1. INTRODUCTION

description, which resembles the standard model or some generalization thereof. In
the weak coupling regime of string theory this can be attempted by compactifying
the ten-dimensional superstring theory on a six-dimensional compact manifold. In
the ten-dimensional field theory limit this amounts to a Kaluza-Klein reduction to
four space-time dimensions.

Unfortunately the guiding principles for constructing string theories which are
effectively four-dimensional are not at all as stringent as the construction of the five
superstring theories in ten space-time dimensions. This is due to the fact that there
are many possible choices for the compact internal space and at present there is no
theoretical argument which singles out one internal space in favor of the others. This
huge amount of possibilities to compactify string theory to four dimensions has even
led to statistical examinations of the set of all (metastable) four-dimensional vacua
called the landscape of string theory [4,5]. However, the derivation and investigation
of particular four-dimensional string compactifications teaches us how to overcome
generic difficulties in obtaining phenomenologically viable theories. Hopefully the
tools developed along these lines also improve our at present limited understanding
of this string theory landscape.

1.2 D-branes in orientifold compactifications

In order to obtain phenomenological interesting four-dimensional theories the string
compactification should fulfill certain criteria. First of all the compactification space
should be of the form M4×K6 where M4 is a maximally symmetric four-dimensional
space-time manifold and K6 is some compact six-dimensional internal space. Fur-
thermore as non-supersymmetric models generically suffer from instabilities, some
supersymmetry should remain unbroken at the Planck or compactification scale.
The current paradigm of particle phenomenology prefers an N = 1 supersymmetric
matter sector spontaneously broken at low energies. Finally the four-dimensional
low energy effective spectrum should have a fermionic matter spectrum which comes
in representations of realistic gauge groups.

Traditionally the contact of string theory with four-dimensional particle physics
focused on the compactification of the heterotic superstring as first proposed in
ref. [6]. This is due to the fact that the gauge group E8 ×E8 of the heterotic string
is phenomenological interesting as it has SU(3) × E6 as a subgroup and E6 is a
natural grand unified group in four dimensions [7].1

However, after the discovery of D-branes as non-perturbative BPS objects in
string theory [8] it has been realized that D-branes also serve as new ingredients in
constructing four-dimensional phenomenological interesting models. Since D-branes
are part of the non-perturbative spectrum of type II superstrings, compactifications

1In compactifications on manifolds with SU(3) holonomy the SU(3) factor is needed to embed
the spin connection in the gauge connection.
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1.2. D-BRANES IN ORIENTIFOLD COMPACTIFICATIONS

of these theories in the presence of D-branes have emerged as a possible alternative
to the earlier heterotic superstring models. This is due to the fact that Dp-branes are
extended objects with gauge theories localized on their (p + 1)-dimensional world-
volume, that is to say a stack of N D-branes which fill the space-time manifold
M4 gives rise to non-Abelian gauge groups such as U(N) in four dimensions.2 Uti-
lizing this property it is possible to construct out of several stacks of D-branes
models with chiral fermions in representations similar to the standard model group
SU(3)× SU(2)× U(1) [9].

In order to engineer four-dimensional effective theories which leave N = 1 su-
persymmetry unbroken it is necessary for the compactification space K6 and the
D-branes to fulfill certain conditions. Type II superstring theories compactified
on a Calabi-Yau manifold result in N = 2 supersymmetric four-dimensional theo-
ries [10]. Introducing space-time filling BPS D-branes reduces supersymmetry fur-
ther to N = 1. However, as soon as D-branes are added consistency requires also
the presence of appropriate orientifold planes, which are in contrast to D-branes
non-dynamical extended objects in string theory [11–16]. These orientifold planes
constitute unoriented strings, which are capable to cancel tadpoles originating from
space-time filling D-branes [16, 17]. Therefore consistent N = 1 setups with space-
time filling D-branes can be arranged by compactifying on six-dimensional Calabi-
Yau orientifolds [18–22], which are compact six-dimensional Calabi-Yau manifolds
with orientifold planes.

The complications arising from space-time filling D-branes in compact Calabi-
Yau spaces are often circumvented by focusing on the local geometry in the vicin-
ity of space-time filling D-branes [23–26]. This approach is sometimes referred to
‘non-compact compactifications’. In these scenarios gravity is decoupled and it is
therefore not possible to deduce a low energy effective description of (super-)gravity.
Instead one focuses on the derivation of holomorphic N = 1 supersymmetric terms
such as the superpotential [25–27]. Space-time filling D-branes in the context of
compact internal spaces are mainly discussed in the literature in terms of toroidal
orbifold/orientifold compactifications where the spectrum and other features are ex-
tracted [28–31], or more recently where the low energy effective supergravity action
is computed [32–38]. In this thesis we focus on space-time filling D-brane configu-
rations in the context of more general N = 1 superstring compactifications, namely
on D3/D7-branes in generic type IIB Calabi-Yau orientifolds. First we derive the
four-dimensional massless D-brane spectrum and then we turn to the computation
of the low energy effective supergravity action depending also on the bulk moduli
fields [39, 40]. For a generic Calabi-Yau orientifold theory this has not been spelled
out in detail previously.

However, eventually for phenomenological reasons N = 1 supersymmetry needs
to be broken spontaneously, which can be achieved by turning on background fluxes
in the orientifold bulk [17,41–49]. These bulk background fluxes are vacuum expec-

2In unoriented string theories also the gauge groups SO(N) and USp(N) can appear.
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CHAPTER 1. INTRODUCTION

tation values for anti-symmetric tensor fields arising from the closed string sector or
in other words arising from the bulk theory. In the presence of these supersymmetry
breaking fluxes the couplings of the bulk fields to the D-brane matter fields commu-
nicate the breaking of supersymmetry to the matter sector and soft supersymmetry
breaking terms are generated [35, 37–39, 50–56]. Here we also thoroughly discuss
the flux-induced soft-terms for the D3-brane matter fields for generic Calabi-Yau
orientifold compactification [39].

Typically superstring compactifications do not only yield matter fields but also
feature numerous neutral fields which parametrize a continuous family of vacua.
These fields are called moduli and their target space or the set of vacua is called
the moduli space. In order to obtain a realistic four-dimensional vacuum these
moduli fields must be stabilized because within today’s bounds the observed particle
spectrum does not contain any massless neutral scalar fields. Bulk background fluxes
do not only break supersymmetry but also provide for a mechanism to stabilize these
moduli fields [17, 29, 31, 42, 46, 57, 58]. However, generically not all flat directions of
the moduli are lifted by background fluxes. The remaining moduli can be fixed,
for example, by non-perturbative contributions such as gaugino condensation on a
stack of hidden sector D7-branes or by Euclidean D3-brane instantons [5, 59–61].

Interesting string compactifications should not only meet the requirements of par-
ticle physics but in addition should also address the demands of cosmology such as
the appearance of a deSitter ground state. More recently space-time filling D-branes
have also been introduced in string cosmology [62]. In particular D3-branes and
anti-D3-branes in type IIB Calabi-Yau compactifications can lead to (metastable)
deSitter vacua [59, 60]. However, the simultaneous inclusion of D-branes and anti-
D-branes breaks supersymmetry explicitly. Alternatively it is possible to replace
anti-D3-branes by D7-branes with internal background fluxes. These fluxes are non-
trivial vacuum expectation values for the field strength of the gauge theory localized
on the worldvolume of the D7-brane. Turning on these fluxes can break supersym-
metry spontaneously and has been anticipated to provide for another mechanism to
generate the positive energy needed for (metastable) deSitter vacua [63]. With the
low energy effective supergravity action of D7-brane Calabi-Yau orientifold compact-
ifications at hand we check this suggestion explicitely and find that under certain
circumstances D7-brane fluxes do indeed provide for a positive energy contribu-
tion [64].

1.3 Organization of this thesis

The main focus of this thesis is to derive the low energy effective N = 1 supergravity
action for Calabi-Yau orientifold compactifications with space-time filling D-branes.
We concentrate on type IIB Calabi-Yau orientifolds and discuss space-time filling D3-
and D7-branes [39, 40, 64]. Instead of specifying a particular Calabi-Yau orientifold

5



1.3. ORGANIZATION OF THIS THESIS

with a specific D-brane configuration, the computations are performed for generic
setups. The resulting four-dimensional field theories are analyzed and discussed.

In chapter 2 we introduce D-branes in a ten-dimensional Minkowski background
from an open string perspective. This guides us towards a low energy effective
description of the D-brane spectrum. In particular we discuss the bosonic effective
action of a single D-brane and its non-Abelian generalization describing a stack of
D-branes [13,65,66], and finally we introduce the supersymmetric effective D-brane
action [67–69].

Then in chapter 3 we turn to space-time filling D-branes in the context of Calabi-
Yau compactifications. Consistency conditions take us to the discussion of orientifold
planes and in particular we analyze the requirements for unbroken N = 1 supersym-
metry in Calabi-Yau orientifold compactifications [64,70]. Then finally the massless
four-dimensional D-brane spectrum for D3- and D7-branes in Calabi-Yau orientifold
compactifications is derived.

In chapter 4 the four-dimensional low energy effectiveN = 1 supergravity actions
for D3- and D7-brane Calabi-Yau orientifold compactifications are computed. This
is achieved by performing a Kaluza-Klein reduction of the ten-dimensional type IIB
supergravity bulk theory and by a normal coordinate expansion of the D3- and D7-
brane action [21, 39, 40]. The resulting four-dimensional supergravity theories are
discussed in terms of the Kähler potential, the gauge kinetic coupling functions and
the superpotentials.

Then in chapter 5 we turn to the analysis of non-trivial background fluxes and
their role for spontaneous supersymmetry breaking. First of all in Calabi-Yau
orientifold compactifications with a stack of D3-branes the effects of bulk back-
ground fluxes are discussed. By performing a soft-term analysis we examine how
supersymmetry breaking is communicated to the charged ‘matter sector’ arising form
the stack of D3-branes following ref. [39]. In the second part we switch to the discus-
sion of D7-branes with non-trivial worldvolume fluxes in the context of Calabi-Yau
orientifolds. We find that there are different kind of D7-brane fluxes which generate
D- and F-terms [56, 64, 71], and we briefly comment on their relevance for string
cosmology [59,60,63,64,71].

The geometric structure arising from D7-branes in Calabi-Yau orientifolds is
related to the variation of Hodge structure of relative forms in chapter 6 along the
lines of refs. [26,72]. We proceed in two steps, namely first we introduce the necessary
mathematical machinery, which is then applied to the D7-brane supergravity theory
of the previous chapters [40].

In chapter 7 we present our conclusions and suggest some directions for future
investigations. Finally some further background material and some technical details
are relegated to several appendices.
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Chapter 2

D-branes in ten dimensions

The existence of Dp-branes in string theory has been an essential constituent in
studying string dualities and in gaining insight into non-perturbative aspects of
string theories. On the other hand Dp-branes have also provided for new ingredients
in constructing phenomenological appealing string models as they give rise to non-
Abelian gauge groups in type II superstring theories.

Also in this thesis D-branes play a central role. The aim of this chapter is to
introduce D-branes in the context of type II superstring theory in ten-dimensions.
In order to set the stage the massless ten-dimensional type II spectrum of closed
superstring excitations is reviewed in section 2.1. Then in section 2.2 we turn to the
open superstring sector, which allows us to introduce D-branes embedded in ten-
dimensional Minkowski space. It is further argued that D-branes can be interpreted
as dynamical objects itself. Therefore we describe of D-branes in terms of their
effective action in section 2.3. We discuss the action of a single D-brane and of a
stack of D-branes, and finally the supersymmetric D-brane action.

2.1 Type II superstring spectrum in D = 10

The spectra of type IIA and type IIB superstring theories in ten space-time di-
mensions are supersymmetric and consist of a finite number of massless states and
an infinite tower of massive states which all originate from closed superstring ex-
citations. In the low energy regime, that is to say below the string scale which is
the mass scale for the higher string excitations, the massive tower of string states
is not relevant. Therefore for these energies we can concentrate on the massless
string modes, which for type II superstring theories are encoded in a single N = 2
supermultiplet of type IIA or type IIB supergravity respectively.

The fermionic fields of the N = 2 supermultiplet of type IIA are given by two
Majorana-Weyl spinors and two Majorana-Weyl gravitinos both of opposite chiral-
ity, whereas their bosonic superpartners are the graviton, one scalar field φ10 called

7



2.2. OPEN SUPERSTRINGS AND D-BRANES

dilaton, one vector boson C(1), one anti-symmetric two-tensor B, and one anti-
symmetric three-tensor C(3). This spectrum can also be deduced by dimensional re-
duction of the maximal supersymmetric N = 1 supermultiplet of eleven-dimensional
supergravity.

In type IIB on the other hand the N = 2 supermultiplet consists of two Majora-
na-Weyl gravitinos and two Majorana-Weyl spinors all of the same chirality in the
fermionic sector, whereas their bosonic superpartners are comprised of the graviton,
two scalar fields called dilaton φ10 and axion C(0), two anti-symmetric two-tensor B
and C(2), and the self-dual four-form tensor C(4). Note that this spectrum is chiral
and hence cannot be obtained by dimensional reduction of the eleven-dimensional
N = 1 supermultiplet.

In quantizing the superstring worldsheet of type II superstring theories in ten
dimensions using the Ramond-Neveu-Schwarz formalism the fermionic fields arise
from the NS-R and the R-NS sector and the bosonic fields from the NS-NS and the
RR sector. Here we concentrate on the bosonic field content because the fermions
can always be reconstructed by supersymmetry. For both type IIA and type IIB
superstrings the RR sector gives rise to the ten-dimensional metric g10, the anti-
symmetric two-tensor B and the dilaton φ10. The RR sector differs for type IIA
and type IIB. In the type IIA case the RR sector contributes all odd dimensional
anti-symmetric tensors, i.e. the form fields C(1), C(3), C(5), and C(7), whereas in
type IIB the RR sector provides for all even dimensional anti-symmetric tensors,
namely the form fields C(0), C(2), C(4), C(6), and C(8). Note that in the RR sector
we have obtained more anti-symmetric tensors than previously described in the ten-
dimensionalN = 2 multiplets. The reason is that in order to obtain the right number
of physical degrees of freedom we need to take into account the duality relations
among the RR anti-symmetric tensors, which we further discuss in section 4.1. Here
we just state that in type IIA the dual pairs are C(1) ∼ C(7), C(3) ∼ C(5), whereas in
type IIB the pairs C(0) ∼ C(8), C(2) ∼ C(6) are dual and the tensor C(4) is self-dual.

2.2 Open superstrings and D-branes

One of the first encounters of D-branes in string theory is obtained from an open
string perspective. Open strings are spatially one-dimensional intervals which in
time sweep out a two-dimensional surface in the target space-time manifold. These
surfaces are called worldsheets. Since we are interested in supersymmetric space-
time theories the starting point are open superstrings, which exhibit supersymmetry
on these two-dimensional worldsheets. Then this worldsheet supersymmetry is in-
directly linked to space-time supersymmetry [73].

In order to illustrate the relation of open superstrings to D-branes we start with
a ten-dimensional Minkowski space-time background. This Minkowski space-time
background is parametrized by the flat space-time coordinates XM , M = 0, . . . , 9,
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and the dynamics of open superstrings is governed by a worldsheet action recorded
in (A.5). The main difference of closed superstrings compared to open superstrings
is the fact that one has to specify boundary conditions for their endpoints. The
effects of these boundary conditions are carefully examined in appendix A.2, where
one finds that one can either have Dirichlet or Neumann boundary conditions (A.9).
For concreteness let us assume that the open superstrings under consideration obey
Neumann boundary conditions along the coordinate directions Xa with a = 0, . . . , p
and Dirichlet boundary conditions along the remaining ten-dimensional space-time
coordinates. This means that their endpoints are attached to Xn = xn with n =
p+ 1, . . . , 9 and as a consequence the open superstrings are confined to the (p+ 1)-
dimensional plane W = {XM |Xn = xn}. This plane is called Dp-brane and the
geometric locus W is called worldvolume on which open superstring endpoints can
freely propagate.1 The quantization of the open superstring worldsheet action (A.5)
is sketched in some detail in appendix A.2. The massless open superstring modes
for open strings attached to a single Dp-brane turn out to be (c.f. eq. (A.19))

Aa(k) ≡ ψ̂a
−1/2|k〉NS , X n(k) ≡ ψ̂n

−1/2|k〉NS , Θ(k) ≡ |k, θ〉R , (2.1)

with contributions from both the Neveu-Schwarz (NS) and the Ramond (R) sector
of the open superstring. Due to eq. (A.20) the momentum k of these open-string
modes has only non-zero components ka in the worldvolume directions, and hence
this confirms on the quantum level that open strings do only propagate in the
worldvolume of the Dp-brane. In this thesis most of the time the higher string
excitation are not considered as we mainly work in the supergravity limit α′ → 0, in
which these states become heavy and hence are negligible in the low energy regime
of supergravity.

The first Neveu-Schwarz state Aa in (2.1) corresponds to a massless vector on
the worldvolume of the Dp-brane. It gives rise to the U(1) gauge theory localized on
the Dp-brane.2 The other Neveu-Schwarz states X n carry space-time indices in the
normal direction of the Dp-brane. These fields are often denoted as the Dp-brane
‘matter fields’.

Finally let us turn to the massless states Θ in the open superstring Ramond
sector. As demonstrated in appendix A.2 the modes Θ transform in the Majorana-
Weyl representation 16′ of the ten-dimensional space-time Lorentz group SO(9, 1)
and due to the restriction of the momentum k to the worldvolume directions they
give rise to worldvolume spinors, which are obtained by decomposing Θ into repre-
sentations of

SO(9, 1) → SO(p, 1)× SO(9− p) . (2.2)

1Note that p denotes only the number of spatial dimensions of the Dp-brane, whereas the
space-time dimensions of the worldvolume is (p+ 1)-dimensional.

2In the BRST quantization formulation of the open superstring, the local U(1) gauge freedom
of the vector boson corresponds to the choice of the BRST cohomology representative.
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Here SO(p, 1) is the worldvolume Lorentz group and SO(9 − p) is the symme-
try group for the normal directions of the Dp-brane. For Dp-branes with even-
dimensional worldvolume, i.e. for p = 2l + 1, which are the relevant cases in this
thesis, the spinor representation 16′ decompose under (2.2) as

16′ → (2l,2′3−l
)⊕ (2′l,23−l) . (2.3)

Thus the fermionic field Θ becomes a worldvolume spinors χα, where the spinor
index α transforms under the symmetry group SO(9− p).

The bosonic and fermionic worldvolume fields Aa, X n and χα furnish precisely
the spectrum of a single (p+1)-dimensional vector multiplet associated to a (p+1)-
dimensional supersymmetric theory with 16 supercharges. Indeed the worldvolume
theory of a Dp-brane in flat Minkowski space gives rise to a super U(1) Yang-Mills
theory with 16 supercharges [3], in which SO(9−p) becomes the R-symmetry group
acting on the spinors χα and the scalars X n.

However, before the relation of space-time and worldvolume supersymmetry is
further investigated, the open superstring spectrum (2.1) is generalized to the case
of several Dp-branes. For N Dp-branes which are all spatially separated we obtain
for each Dp-brane a copy of the massless states (2.1). In addition there are open
superstrings stretching from one Dp-brane to another Dp-brane. However, due to the
mass formula (A.18) all the resulting modes of these open superstring are massive
as long as the Dp-branes are separated by the order of length scale

√
α′ and thus

these fields are not considered in the supergravity limit α′ → 0. Then the gauge
symmetry for these N Dp-branes is U(1)N . If, instead, these N Dp-branes coincide,
i.e. if one considers a stack of N Dp-branes, there do arise additional massless modes
from open strings stretching among different Dp-branes in the stack. To keep track
of these different open string modes, the endpoints of open superstrings are marked
by labels i = 1, . . . , N called Chan-Paton indices. They specify the D-branes to
which the open-superstrings are attached. Then including the Chan-Paton indices
the massless spectrum (2.1) becomes

Aa
ij(k) ≡ ψ̂a

−1/2|k, ij〉NS , X n
ij(k) ≡ ψ̂n

−1/2|k, ij〉NS , Θij(k) ≡ |k, θ, ij〉R . (2.4)

A closer look at open superstring scattering amplitudes reveals that these non-
dynamical Chan-Paton labels respect a global U(N) symmetry on the worldsheet [3].
Under this symmetry the massless states (2.4) transform in the adjoint representa-
tion. This global U(N) worldsheet symmetry becomes a local U(N) worldvolume
symmetry [11, 12], such that the U(1)N gauge symmetry for N spatially separated
Dp-branes is enhanced to U(N) for N coinciding Dp-branes [74].

As we have seen the Dp-brane ‘matter fields’ X n(k) in the massless spectrum
carry space-time indices in the normal direction of the worldvolume. These modes
parametrize the shape of the Dp-brane or in other words these states correspond
to marginal operators [75], which deform the worldvolume W of the Dp-brane in
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the normal direction. This observation implies that the Dp-brane is not a rigid ob-
ject in string theory but instead should be viewed as a dynamical extended object
itself [12]. In the absence of D-branes the ten-dimensional space-time manifold is
governed by the type II closed string sector, and the ten-dimensional space-time
theory has N = 2 supersymmetry which corresponds to 32 supercharges. Now we
should view D-branes as additional non-perturbative states in type II superstring
theory [8]. In the presence of a Dp-brane some of the symmetries of the bulk theory
are spontaneously broken. On the one hand the Dp-brane breaks translational in-
variance for the directions normal to its worldvolume, and the open string states X n

can be viewed as the goldstone bosons of these spontaneously broken translation
symmetries. On the other hand it is also expected that D-branes break supersym-
metry. Then analogously to the goldstone bosons we can view the fermions χα in the
open superstring spectrum as the goldstinos for spontaneously broken supersymme-
try. However, these fermionic modes can only account for 16 broken supercharges,
which is an indication that a Dp-brane in the ten-dimensional Minkowski space
breaks not all but only half of the amount of the bulk supersymmetry. It indeed
turns out that the discussed Dp-branes saturate a BPS bound and hence correspond
to non-perturbative BPS states of the type II superstring theory [8].

Since we have just anticipated that Dp-branes are BPS states, it should be pos-
sible to identify the corresponding BPS charges. As discussed in section 2.1 the
perturbative type II superstring spectrum contains in the RR sector of type IIA su-
perstring theory all odd-degree anti-symmetric tensors C(2q+1), and in the RR sector
of type IIB superstring theory all even-degree anti-symmetric tensors C(2q). Note
that a Dp-brane as a (p+ 1)-dimensional extended object naturally couples to such
a (p+ 1)-form tensor C(p+1) via

µp =

∫
Wp+1

C(p+1) . (2.5)

This worldvolume integral coupling is indeed identified as the BPS-charge µp of the
Dp-brane [8]. Note that this fact also allows us to specify the type of Dp-branes
which appear in closed string theories. Due to the presence of odd-degree RR-
forms in type IIA superstring theory only odd-dimensional Dp-branes can appear,
namely D0-, D2-, D4-, D6- and D8-branes, whereas in type IIB superstring theory
one has D1-, D3-, D5- and D7- and D9-branes, which couple to the even-degree
RR-forms. In this thesis we focus on type IIB superstring theory and hence on the
even-dimensional Dp-branes.

To conclude this section let us emphasis again the important observation of ref. [8]
that Dp-branes should be viewed as dynamical objects itself. As a consequence from
a space-time perspective these extended objects should also be describable by a low
energy effective action, which we discuss in the next section. From the open string
point of view this low energy effective action for Dp-branes reproduces the string
scattering amplitudes of open string states [13].

11
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2.3 Dp-brane action

As dynamical objects D-branes have a low-energy effective description which can
be captured by a low energy effective action. The action of D-branes in type II
superstring theories consists of the Dirac-Born-Infeld and the Chern-Simons action.
In section 2.3.1 we review the bosonic Abelian Dirac-Born-Infeld action and Abelian
Chern-Simons action. These two actions describe the dynamics of the bosonic part
of a single D-brane in a type II string theory background. In section 2.3.2 the
non-Abelian extension of the Dirac-Born-Infeld and Chern-Simons action is intro-
duced following ref. [66]. The non-Abelian D-brane action describes not just a
single D-brane but a stack of D-branes. Finally in section 2.3.3 we discuss the super
Dirac-Born-Infeld and super Chern-Simons action of a super-D-brane [67,68]. This
amounts to introducing an action for both the bosonic and the fermionic D-brane
degrees of freedom.

2.3.1 Abelian Dp-brane action

The bosonic part of the low-energy effective action of a single Dp-brane in a type II
superstring background consists of two parts. The Dirac-Born-Infeld action captures
the couplings of the D-brane fields to the closed string NS-NS fields, whereas the
Chern-Simons action describes the couplings to the closed string RR-form fields of
type II string theories.

First we turn to the Dirac-Born-Infeld action of a single Dp-brane, which reads
in the string frame [13,65]

Ssf
DBI = −Tp

∫
W

dp+1ξ e−ϕ∗φ10
√
− det (ϕ∗(g10 +B)ab − `Fab) , (2.6)

where ` = 2πα′ and the constant Tp is the Dp-brane tension. The Dirac-Born-Infeld
action is integrated over the (p+1)-dimensional worldvolume W , which is embedded
in the ten-dimensional space-time manifold M via the embedding map

ϕ : W ↪→M, ξa 7→ XM(ξ) , a = 0, . . . , p , M = 0, . . . , 9 , (2.7)

where XM are the coordinates of the ten-dimensional ambient bulk space whereas
ξa parametrize the worldvolume of the Dp-brane. In the Dirac-Born-Infeld action
(2.6) the massless bulk NS-NS fields of type II string theory, i.e. the dilaton φ10,
the metric g10 and the anti-symmetric two-tensor B, are pulled back with ϕ∗ to the
worldvolume of the Dp-brane, i.e.

(ϕ∗g10)ab = g10MN(X)
∂XM

∂ξa

∂XN

∂ξb
, (ϕ∗B)ab = BMN(X)

∂XM

∂ξa

∂XN

∂ξb
. (2.8)

As explained in section 2.2 the Dp-brane is a dynamical extended object, which
means geometrically that the embedding map ϕ is not rigid, but changes dynami-
cally. In the Dirac-Born-Infeld action (2.6) this dynamics is encoded implicitly in the
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pull-back of the NS-NS fields to the worldvolume W of the Dp-brane. Therefore the
coordinates XM(ξ) in (2.7) should be viewed as dynamical target-space fields of the
action (2.6) which parametrize the geometric shape of the worldvolumeW and which
correspond to geometric deformations of the embeddings map ϕ. The independent
degrees of freedom of these deformations are extracted systematically by performing
a normal coordinate expansion. This procedure is studied thoroughly in section 4.4.
The massless modes of the deformations correspond to bosonic worldvolume scalar
fields X n(k) in eq. (2.1).

In addition to the couplings to NS-NS bulk fields the action (2.6) contains a U(1)
field strength F , which describes the U(1) gauge theory of the worldvolume gauge
boson Aa(k) defined in (2.1). The non-linear action (2.6) captures the couplings of
the field strength to all orders in α′F [13]. To leading order in F , the gauge theory
reduces to a U(1) Yang-Mills theory on the worldvolume W of the brane.

As noted in section 2.2 Dp-branes carry RR charges [8], and they couple as
extended objects to appropriate RR forms of the bulk, namely the (p+1)-dimensional
worldvolume couples naturally to the bulk RR form C(p+1). These couplings are
captured in the Chern-Simons action of the Dp-brane which in the case of a single
D-brane reads3

SCS = µp

∫
W

∑
q

ϕ∗C(q) e`F−ϕ∗B , (2.9)

where the coupling constant µp is the RR charge of the brane. Moreover, generically
D-branes contain lower dimensional D-brane charges, and hence interact also with
lower degree RR-forms [76]. All these couplings to the bulk are implemented in the
Chern-Simons action in a way compatible with T-duality. In type IIA string theory
there are only odd degree RR-forms C(q) and hence the sum in (2.9) runs only over
odd forms, whereas in type IIB string theory with all even degree RR-forms in the
massless RR spectrum the sum in (2.9) is taken over even forms.

For BPS Dp-branes the energy density, i.e. the Dp-brane tension Tp, is entirely
determined by its RR charge µp. Two static and parallel BPS D-branes of the same
charge do not feel a net force. Therefore the attraction due to the exchange of closed
string NS-NS modes must be canceled by the repulsion resulting from closed string
RR modes. This requirement relates the D-brane tension Tp to its RR-charge [3]

µ2
p = T 2

p =
π

κ2
(4πα)3−p . (2.10)

2.3.2 Non-Abelian Dp-brane action

In order to describe a stack of Dp-branes the Abelian action (2.6) and (2.9) must
be generalized. For coinciding D-branes the U(1) gauge theory on the worldvol-

3The exponential function is a formal power series in the worldvolume two-form `F −ϕ∗B, and
the integrand of the Chern-Simons action is a formal sum of forms of various degree. The integral
taken over the worldvolume W, however, is only non-vanishing for (p+ 1)-forms.
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ume of a single D-brane is enhanced to a non-Abelian gauge theory localized on
the worldvolume of the stack of D-branes [74]. As proposed in ref. [77] the target
space coordinates XM(ξ) of (2.6) should be promoted to matrix valued coordinates
XM

ij (ξ) and the derivatives ∂aX
µ should be replaced by appropriate covariant deriva-

tives DaX
µ
ij [78]. These modifications can be confirmed by studying open string

scattering amplitudes [79] and therefore must be implemented into the non-Abelian
generalization of the Dirac-Born-Infeld (2.6) and Chern-Simons action (2.9).

In type IIB compactifications with orientifolds, the possible gauge groups turn
out to be U(N), SO(N) and USp(N) and the matrix valued target-space coordinates
XM

ij are in the adjoint representation of the respective gauge group. For D-branes
which coincide with orientifold planes the gauge groups are either SO(N) or USp(N)
depending on the type of orientifold plane [19]. D-branes that are not on top of an
orientifold plane have U(N) as a gauge group. In this thesis most of the time we
limit our analysis to the latter case.

The non-Abelian extension of the Dirac-Born-Infeld action (2.6), which repro-
duces open string scattering amplitudes and which is also in agreement with T-
duality, was derived in ref. [66] and reads in the string frame

Ssf
DBI = −Tp

∫
W
dp+1ξ Str e−ϕ∗φ10

√
− det [(ϕ∗P )ab − `Fab] detQM

N , (2.11)

where

QM
N = δM

N +
i

`
[XM ,X L]ELN , PMN = EMN + EMP

(
Q−1 − 1

)P
N
, (2.12)

with EMN = g10MN + BMN . This expression of the non-Abelian Dirac-Born-Infeld
action needs some explanation. First of all the terms (2.12) are expressed in ‘static
gauge’. This means that the coordinates XM are chosen (locally) in such a way that
the center of mass of the stack of branes is located at XM = 0. Then the ‘matrix
valued fluctuations’ XM parametrize the deformations of the stack of branes around
this static center of mass configuration at XM = 0. Now the non-Abelian Dirac-
Born-Infeld action (2.11) should be viewed as an action which can be expanded into
the non-Abelian Dp-brane fluctuations XM which transform in the adjoint represen-
tation of the gauge theory localized on the stack of D-branes and which parametrize
the deformations of the worldvolume of the stack in the normal direction. These
degrees of freedom correspond to the modes X n

ij(k) in (2.4). Fab is the field strength
for this gauge theory and hence also matrix valued, namely Fab transforms also in
the adjoint representation. This is the field strength of the gauge boson Aa

ij(k) in
(2.4).

Finally due to the non-Abelian nature of the deformation parameters XM and
the field strength Fab it is necessary to specify an ordering prescription in (2.11) for
these matrix valued fields. This is achieved by using the symmetrized trace ‘Str’
with respect to the matrix valued terms DaXM , [XM ,XN ] and Fab [80], which means
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that these matrix valued terms are first symmetrized and then in a second step the
trace of the resulting expression is taken.

In the same spirit the Abelian Chern-Simons action (2.9) needs to be modified
and becomes [66]

SCS = µp

∫
W

Str ϕ∗

(
e

i
`
iX iX

∑
q

C(q)e−B

)
e`F . (2.13)

Here iX denotes the interior multiplication of a form with X which yields, for in-
stance, for the q-form C(q) in local coordinates

iXC
(q) =

1

q!

q∑
k=1

(−1)k+1XMC
(q)
N1...Nk−1 M Nk+1...Nq

dxN1 ∧ . . . d̂xNk . . . ∧ dxNq , (2.14)

where the differential with the hat ̂ is omitted. Also the non-Abelian generaliza-
tion of the Chern-Simons action (2.13) should be viewed as an expression in ‘static
gauge’ which can be expanded into the matrix valued fields XM and Fab and for
which also the symmetrized trace gives the appropriate ordering prescription. In the
Abelian limit iX iX yields always zero since the interior multiplication has odd de-
gree. However, this is not the case for non-Abelian X . Therefore in reducing U(N)
to U(1), i.e. in the transition from a stack of N D-branes to a single D-brane, the
non-Abelian enhancement disappears and the Chern-Simons action (2.13) simplifies
to the Abelian expression (2.9).

Already in the Abelian case one expects additional corrections in α′ involving
derivative terms beyond second order. However, the Abelian Dirac-Born-Infeld ac-
tion is expected to capture all α′ corrections in Fab for ‘slowly-varying’ Fab (i.e.
all derivative independent terms in Fab). In the non-Abelian case the distinc-
tion between the field strength and its covariant derivative is ambiguous since
[Da,Db]Fcd = [Fab, Fcd]. The symmetrized trace proposal of ref. [80] treats the
matrices Fab (as well as DaXM and [XM ,XN ]) as if they were commuting, leaving
out all commutators among these. This proposal is shown to be reliable only up to
fourth order in Fab [81], but this is sufficient for our purposes.

2.3.3 Super Dp-brane action

In this section we introduce the effective action of a single Dp-brane, which in
addition to the bosonic modes also captures the fermionic degrees of freedom Θ(k)
of the open superstring spectrum (2.1). The resulting effective action is called the
super-Dp-brane action. A generalization to the non-Abelian case as for the bosonic
part in section 2.3.2 is not known for the supersymmetrized version.

Here we concentrate on Dp-branes in type IIB superstring theory as in this
thesis we focus on the type IIB side. In superspace the corresponding type IIB

15



2.3. DP -BRANE ACTION

supergravity theory is formulated on the supermanifold M9,1|2 with ten ‘bosonic’
dimensions and two ‘fermionic’ dimensions. Locally this supermanifold is described
by the superspace coordinates ZM̌ = (xM , ~θ) with the ten bosonic coordinates xM

and the pair of fermionic coordinates ~θ = (θ1, θ2). As type IIB string theory is chiral

with N = 2 supersymmetry in ten dimensions the pair of fermionic coordinates ~θ
consists of two Majorana-Weyl spinors of SO(9, 1) with the same chirality.4 Hence
θ1 and θ2 are related by the SO(2) R-symmetry of type IIB supergravity [82].

Now in this formulation the super-Dp-brane appears as the embedding of the
(p + 1)-dimensional worldvolume W in the supermanifold M9,1|2. The embedding
ϕ : W ↪→ M9,1|2 is now described by the supermap ϕ which maps a point in the
worldvolume W to a superpoint in the target space supermanifold M9,1|2.

The super Dirac-Born-Infeld action for a single super-Dp-brane becomes in the
string frame [67–69]

Ssf
DBI = −Tp

∫
W

dp+1ξe−ϕ∗φ10

√
− det (ϕ∗ (g10 + B)ab − `Fab) , (2.15)

whereas the super Chern-Simons action reads

SCS = µp

∫
W

∑
q

ϕ∗ (C(q)
)
e`F−ϕ∗B . (2.16)

Both actions resemble their bosonic analogs (2.6) and (2.9) but the bulk fields g10, B,
φ10 and C(q) have been promoted to bulk superfields with their lowest components
being the corresponding bosonic fields. These superfields are then pulled back with
the supermap ϕ.5 The gauge field strength Fab on the D-brane, however, remains a
bosonic object.

Since the super-Dp-brane is a BPS state in the ten-dimensional N = 2 super-
symmetric type IIB bulk theory, the amount of preserved supersymmetry in the
presence of a super-Dp-brane must be N = 1. This in particular implies that the
bosonic on-shell degrees of freedom arising from the Dp-brane must be equal to the
fermionic on-shell D-brane degrees of freedom. As discussed in section 2.3.1 the
bosonic modes arise from the Dp-brane fluctuations, which give rise to 10− (p+ 1)
bosonic degrees of freedom due to the dimensionality of the normal space of the
worldvolume W . In addition there are p − 1 bosonic on-shell degrees of freedoms
arising from the U(1) gauge boson Aa localized on the worldvolume of the Dp-brane.
Thus there is a total number of 8 bosonic degrees of freedom. In the effective ac-
tion formulation of the super-Dp-brane the fermionic degrees of freedom appear as
fluctuations of the embedded worldvolume along the odd coordinates ~θ, which cor-
responds to 32 real parameters. The linear Dirac equation reduces the degrees of

4For type IIA string theories the two fermionic coordinates have opposite chirality.
5Note that the pulled-back quantities ϕ∗(·) contain no odd components because ϕ is a map

from an ordinary manifold into a supermanifold. As a consequence the integrals in (2.15) and
(2.16) are integrals only over bosonic coordinates.
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freedom by 1/2 and thus we obtain 16 real degrees of freedom. However, in order to
obtain a supersymmetric spectrum the fermionic modes need to be further reduced.
A closer examination of the super-Dp-brane action reveals a local fermionic gauge
symmetry called κ-symmetry which removes half of these remaining fermionic de-
grees of freedom [69,83,84], and hence the bosonic and fermionic on-shell degrees of
freedom are indeed both equal to eight. They correspond to the open-superstring
fermionic modes Θ(k) in (2.1).
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Chapter 3

D-branes in Calabi-Yau
compactifications

In the previous chapter D-branes are introduced as non-perturbative objects in flat
ten-dimensional Minkowski space. In this chapter we want to analyze D-branes in
more general backgrounds. We require the low energy effective theory to be four-
dimensional and to preserve N = 1 supersymmetry. In several steps this eventually
leads us to Calabi-Yau orientifold compactifications with space-time filling D-branes.

In section 3.1 we first review the idea of Kaluza-Klein compactifications or more
specifically in section 3.2 of Calabi-Yau compactifications. Then in section 3.3 for
D-branes in Calabi-Yau spaces we discuss supersymmetry and the consistency re-
quirements imposed by tadpole cancellation conditions. This naturally leads us
to O-planes and orientifold Calabi-Yau compactifications. Then in section 3.4 we
compute the D-brane spectrum in Calabi-Yau orientifold compactifications, which
in this class of compactifications constitutes for the matter sector in the effective
four-dimensional theory.

3.1 Kaluza-Klein reduction

First we briefly review the idea of Kaluza-Klein reduction. The details of this pro-
cedure are rather involved and are described thoroughly in ref. [85]. Here we focus
on the features relevant for the analysis in this thesis.

The starting point is a gravity theory on a product manifold

M9,1 = M3,1 ×K6 , (3.1)

where M3,1 is called the space-time manifold and K6 is the internal compact mani-
fold. For concreteness and in order to be suitable for this thesis we choose the space-
time manifold M3,1 to be four-dimensional whereas the internal manifold K6 should
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be six-dimensional. The ground state background metric for the ten-dimensional
product manifold M9,1 also obeys the product structure

ds2
10 = g10MN(X) dXMdXN = hµν(x)dx

µdxν + gmn(y)dymdyn , (3.2)

with the four-dimensional Lorentzian metric hµν and the six-dimensional Euclidean
metric gmn.

The philosophy of the Kaluza-Klein reduction is now to expand the fields on the
manifold M9,1 in appropriate Fourier modes of the internal compact manifold K6.
Let us illustrate this procedure explicitly for a massless scalar field Φ(x, y) for which
the equation of motion reads

�10Φ(x, y) = (�4 + ∆6)Φ(x, y) = 0 , (3.3)

where �10 is the ten-dimensional d’Alembert operator, which for the metric ansatz
(3.2) splits into the four-dimensional d’Alembert operator �4 and into the six-
dimensional Laplace operator ∆6. Then the Hodge theorem guarantees that the
scalar field Φ(x, y) can be uniquely expanded into eigenfunctions of ∆6 of the inter-
nal manifold as

Φ(x, y) =
∞∑

k=0

φk(x) · fk(y) , (3.4)

where fk(y) are the eigenfunctions of ∆6 with eigenvalue m2
k. Note that the constant

function f0(y) ≡ 1 is always an eigenfunction of ∆6 with eigenvalue zero. The
Hodge theorem further implies that the eigenvalues on compact manifolds are always
discrete and non-negative, and therefore we assume the order 0 = m2

0 < m2
1 ≤ m2

2 . . .
for the eigenvalues. Inserting the ansatz (3.4) into (3.3) yields for the space-time
modes φk(x) the equations of motions

�4 φk(x) +m2
k φk(x) = 0 . (3.5)

Thus the different Fourier modes are governed by Klein-Gordon equations in which
the eigenvalues m2

k appear as masses, and in particular φ0(x) becomes a massless
scalar field.

The idea is now to perform this Kaluza-Klein expansion for all fields in the ten-
dimensional theory, that is to say for all bosonic fields, including the p-form fields and
the metric perturbations δg10MN of the background ansatz (3.2), as well as for the
fermionic fields in the theory. Let us further assume that the ten-dimensional gravity
theory is formulated in terms of an action functional S10[Φ

(α)(x, y)] where Φ(α)(x, y)
symbolically denotes all the fermionic and bosonic fields in the theory. Then by
inserting the Kaluza-Klein expansion for all these fields Φ(α)(x, y) and performing
the six-dimensional integral in the action S10 we arrive at an four-dimensional ac-
tion functional S4[φ

(α)
k (x)] where now φ

(α)
k (x) refer again symbolically to all the

Kaluza-Klein modes in the expansion. Thus we have arrived at a four-dimensional
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formulation of the original ten-dimensional gravity theory, at the cost of introducing
an infinite Kaluza-Klein tower of massive Kaluza-Klein modes.

Let us analyze the scaling behavior of these Kaluza-Klein masses. For simplicity
we return to the simple example of the scalar field Φ(x, y) introduced in the previ-
ous paragraph. The internal Laplace operator ∆6 scales with R−2 in terms of the
‘radius’ R of the internal manifold K6, i.e. vol(K6) ∼ R6. Thus this implies for the
Kaluza-Klein masses m2

k

m2
k ∼ R−2 for k > 0 . (3.6)

Therefore in the limit of small internal manifolds K6 the higher Fourier modes, also
denoted higher Kaluza-Klein modes, of the scalar field become very massive. This
scaling behavior is not just typical for the scalar field Kaluza-Klein masses but is
a generic feature of the masses of more general fields. Therefore it is tempting to
truncate the theory in the limit of small internal manifolds K6 to the zero-modes
in the Kaluza-Klein expansion, that is to say we take the action S4 but neglect all
the massive Kaluza-Klein modes in this theory, and work instead with the four-
dimensional effective action Seff

4 of the massless Kaluza-Klein modes. Physically,
however, it is not quite correct to simply set the massive modes to zero [85]. Instead
all the massive modes should be integrated out, which generically modifies the inter-
action terms of the massless fields. In principal these modifications are calculable.
In practice, however, in most cases it is inconceivable to compute these non-linear
interactions. In particular for Calabi-Yau compactifications, which we discuss in
the next section, the explicit expression for the internal Ricci flat metric is not
known, and thus it seems impossible to perform such a computation. However, in
the context of Calabi-Yau compactifications it has been argued in refs. [86] that due
to the structure imposed by supersymmetry the truncation is consistent in the low
energy effective description of M3,1. In addition the consistency is also confirmed
by string computations [87]. Therefore in this thesis we take the practical approach
and perform the Kaluza-Klein reduction of all fields in the ten-dimensional theory
and truncate the spectrum to the massless Kaluza-Klein modes. Then we derive the
effective four-dimensional theory on M3,1 by inserting the Kaluza-Klein zero-modes
into the effective ten-dimensional action and integrate out the internal space K6.

3.2 Calabi-Yau compactifications

In the previous section we have discussed general features of Kaluza-Klein reduc-
tions. Here, we want to consider a Kaluza-Klein ansatz (3.1) for type IIB super-
gravity which leaves some amount of supersymmetry unbroken. The amount of
supersymmetry preserved by a given background is determined by analyzing the su-
persymmetry variations of the fermions. The amount of unbroken supersymmetry
in the vacuum is given by the number of independent supersymmetry parameters
for which the fermionic supersymmetry variations vanish. For type IIB supergravity
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compactifications without bulk background fluxes the non-trivial fermionic variation
arises form the ten-dimensional gravitinos [3]

δ~ε~ΨM = ∇M~ε . (3.7)

Here∇ is the spinor covariant derivative with respect to the background metric (3.2)

and ~ΨM = (Ψ1
M ,Ψ

2
M) is the ten-dimensional Majorana-Weyl gravitino pair of the

type IIB spectrum introduced in section 2.1, which transforms under the SO(2)
R-symmetry of type IIB supergravity [82]. The two Majorana-Weyl gravitinos of
type IIB string theory have the same chirality. In other words

Γ~ΨM = −~ΨM , (3.8)

in terms of the ten-dimensional chirality gamma matrix Γ defined in eq. (A.22).
The supersymmetry parameters ~ε in (3.7) are also Majorana-Weyl spinors both
transforming in the spinor representation 16′, i.e. Γ~ε = −~ε.

In order to find the number of unbroken supercharges we need to evaluate the
condition for vanishing gravitino variation. According to eq. (3.7) this amounts to
determining the number of covariantly constant spinors in the Kaluza-Klein back-
ground. For the Kaluza-Klein ansatz (3.1) the structure group SO(9, 1) is reduced
to SO(3, 1)× SO(6) and the spinor representation 16′ decomposes into

16′ → (2, 4̄)⊕ (2̄,4) . (3.9)

Thus on a generic internal manifold K6 there are no spinor singlets in the internal
space, which potentially give rise to covariantly constant supersymmetry parame-
ters in the effective four-dimensional Minkowski space. In order to obtain spinor
singlets 1 the internal manifold must have SU(3) structure since the 4 of SO(6)
decomposes for the subgroup SU(3) into 3⊕1. However, for a vacuum with unbro-
ken supersymmetry we need not only a globally defined spinor singlet but moreover
a globally covariantly constant spinor [6]. This is fulfilled if the internal manifold
has not only SU(3) structure but even SU(3) holonomy, which guarantees that the
globally defined spinor singlet is covariantly constant [88].

The requirement for the six-dimensional internal manifold to have SU(3) holon-
omy is very strong, namely this is the case if and only if it is Kähler and Ricci-
flat [89]. Such manifolds are called Calabi-Yau threefolds and therefore we choose
as our compactification ansatz

M9,1 = R3,1 × Y , (3.10)

with the internal six-dimensional Calabi-Yau manifold Y . The corresponding metric
ansatz takes the form1

ds2
10 = η̂µνdx

µdxν + 2ĝi̄dy
idȳ̄ , (3.11)

1The hatˆindicates that the quantity is in the string frame.
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with the four-dimensional Minkowski metric η̂ and the six-dimensional internal
Ricci-flat metric ĝi̄ of Y . As Calabi-Yau manifolds are Kähler the metric ĝij̄ is

also related to the closed Kähler form Ĵ of Y by

Ĵi̄ = iĝi̄ . (3.12)

As discussed in the previous paragraph this choice for the Kaluza-Klein ansatz
guarantees the existence of covariantly constant spinors. In order to obtain the
least amount of preserved supersymmetry we require that the Calabi-Yau threefolds
has exactly SU(3) holonomy and not a subgroup thereof.2 In this case there is a
single covariantly constant spinor ξ̌ and its conjugate ξ̌† [88]. As a consequence the
variation (3.7) vanishes for the supersymmetry parameters

~ε = ~̄η ⊗ ξ̌(y) + ~η ⊗ ξ̌†(y) , (3.13)

where ~η = (η1, η2) are the four-dimensional supersymmetry parameters obeying
γ̂~η = +~η and γ̂~̄η = −~̄η in terms of the four-dimensional chirality gamma matrix γ̂
defined in eq. (A.26).

Since one finds in Calabi-Yau compactifications two complex four-dimensional
Weyl supersymmetry parameters ~η, Calabi-Yau compactifications preserve eight su-
percharges or in other words N = 2 supersymmetry in four dimensions. That is
to say the complex supersymmetry parameters η1, η2 fulfill δη1(fermions) = 0 and
δη2(fermions) = 0.

Before we conclude this section let us summarize some properties of Calabi-Yau
threefolds which are relevant in this thesis. A Calabi-Yau threefold has exactly one
holomorphic (3, 0)-form Ω which is nowhere vanishing and is covariantly constant
with respect to the Ricci-flat Kähler metric. For Calabi-Yau threefolds the first Betti
number vanishes which implies that also the Hodge numbers h1,0 and h0,1 vanish.3

Moreover the Hodge numbers in Calabi-Yau threefolds obey

hp,0 = h3−p,0 , hp,q = h3−p,3−q . (3.14)

This implies that h1,1 and h2,1 determine all Hodge numbers of a Calabi-Yau three-
fold, which can be conveniently summarized in the Hodge diamond of Calabi-Yau

2In the following Calabi-Yau threefolds always refer to six-dimensional manifolds which have
exactly SU(3) holonomy.

3The Hodge number hp,q is the dimension of the Dolbeault cohomology group H(p,q)

∂̄
(Y ) defined

on complex manifolds with respect to the Dolbeault operator ∂̄.
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threefolds

h0,0

h1,0 h0,1

h2,0 h1,1 h0,2

h3,0 h2,1 h1,2 h0,3

h3,1 h2,2 h1,3

h3,2 h2,3

h3,3

Calabi-Yau−−−−−−−→
threefold

1

0 0

0 h1,1 0

1 h2,1 h2,1 1

0 h1,1 0

0 0

1

. (3.15)

From a physics point of view the Hodge numbers are important as they are in one-to-
one correspondence with the number of linear independent harmonic forms, which
then are needed to determine the massless modes in the Kaluza-Klein expansion of
the anti-symmetric tensor fields (c.f. section 3.1).

3.3 BPS-Dp-branes in Calabi-Yau orientifolds

So far Dp-branes have been discussed as extended objects embedded in ten-dimen-
sional Minkowski space. In this ten-dimensional context Dp-branes saturate a BPS-
bound and hence reduce the amount of supersymmetry by one-half. Ultimately, how-
ever, we are interested in space-time filling D-branes which preserve some amount
of supersymmetry in the context of Calabi-Yau compactifications. Therefore in sec-
tion 3.3.1 we examine the conditions for preserved supersymmetries in the presence
of D-branes in Calabi-Yau manifolds and find that as in the flat case BPS-D-branes
reduce supersymmetry by a factor one-half while fulfilling certain calibration condi-
tions. In section 3.3.2 the consistency conditions for space-time filling D-branes in
Calabi-Yau manifolds are stated. Consistency requires the introduction of an addi-
tional ingredient, namely orientifold planes, which then further modify the D-brane
calibration conditions.

3.3.1 κ-Symmetry, BPS-branes and calibration conditions

In section 3.2 we have argued that if the supersymmetry variations of all fermions
vanish for a supersymmetry parameter then the chosen background preserves some
amount of supersymmetry. If a super-Dp-brane is included into a Calabi-Yau com-
pactifications, the new fermionic degrees of freedom ~Θ = (Θ1,Θ2) of the D-brane also
vary with the supersymmetry transformations ~η of eq. (3.13), but in general obey

neither δε1~Θ = 0 nor δε2~Θ = 0. However, as discussed in section 2.3.3 the super-Dp-
brane has an extra local fermionic gauge symmetry called κ-symmetry [68,69,90,91].
Hence supersymmetry is unbroken if it is possible to compensate the supersymmetry
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variation by a κ-symmetry gauge transformation [83,92]

δ~Θ = δε~Θ + δκ~Θ = 0 , (3.16)

where ε is some linear combination of ε1 and ε2. If this condition can be fulfilled
for some parameter ε then the super-Dp-brane breaks only half of the supercharges
and saturates a BPS bound. The details of this condition (3.16) are elaborated
in appendix A.4. The result of this analysis yields that for space-time filling4 D3-
and D7-branes the condition (3.16) can be fulfilled for the linear combination of
supersymmetry parameters given by the projection PD3/D7

η = PD3/D7~η , PD3/D7 ≡ 1
2
(1 + σ̌2) , (3.17)

in terms of the Pauli matrices σ̌1, σ̌2, σ̌3 which act on the four-dimensional su-
persymmetry parameter pair ~η introduced in eq. (3.13). On the other hand for
space-time filling D3- and D9-branes the preserved linear combination is given by
the projection PD5/D9

η = PD5/D9~η , PD5/D9 ≡ 1
2
(1 + σ̌1) , (3.18)

Note that the projectors PD3/D7 and PD5/D9 are not compatible, e.g. they do not
commute. Physically this means that it is not possible to preserve some supersym-
metry in a Calabi-Yau background which contains simultaneously D3-/D7-branes
and D5-/D9-branes. On the other hand for backgrounds with either D3-/D7-branes
or D5-/D9-branes there is a linear combinations of ~η namely η given by either (3.17)
or (3.18) which fulfills the supersymmetry conditions (3.16).

As further analyzed in appendix A.4 in addition to the projections (3.17) or (3.18)
the BPS D-branes must also be calibrated with respect to the Kähler form (3.12) of
the ambient Calabi-Yau manifolds5

dp−3ξ
√

det ĝ =
1(

p−3
2

)
!
Ĵ

p−3
2 . (3.19)

This is a non-trivial condition on the D5- and D7-branes and which requires the
internal cycles of the D5- and D7- to be holomorphically embedded into the ambient
Calabi-Yau manifold Y .

So far the BPS conditions are derived without including the couplings to the
closed string anti-symmetric NS-NS two-tensor B and without turning on internal
D-brane fluxes f . D-brane fluxes are topologically non-trivial backgrounds for the
field strength F of the worldvolume gauge theory. Since we want to maintain four-
dimensional Poincaré invariance we only turn on background fluxes f for the internal

4This thesis focuses on space-time filling D-branes in order to maintain four-dimensional
Poincaré invariance.

5For ease of notation we use the letter Ĵ for both the Kähler form Ĵ of the Calabi-Yau mani-
fold Y and for the pull-back Kähler form ι∗Ĵ with respect to the embedding map ι of the internal
worldvolume cycle. Similarly the metric ĝ stands for ĝ as well as ι∗ĝ.
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part of the D-brane worldvolume. Here we include the couplings to the NS-NS B-
field and the possibility of non-trivial internal background fluxes f in the calibration
condition, but postpone a detailed discussion of D-brane fluxes to section 5.2.

In this thesis we mainly concentrate on the D3/D7-brane case and state ex-
plicitly the calibration condition for BPS-D7-branes wrapped on the internal four-
cycle S. For space-time filling D7-branes the calibration condition including back-
ground fluxes f on the internal four-cycle S is worked out in detail in ref. [70]

d4ξ
√

det (ĝ + F) =
1

2
e−iθ

(
Ĵ + iF

)
∧
(
Ĵ + iF

)
, F = B − `f . (3.20)

Here the real constant θ parametrizes the unbroken supersymmetry variation as a
linear combination of ε1 and ε2 defined in eq. (3.13). B is the anti-symmetric NS-NS
two-tensor pulled back to the internal cycle S, and f are the internal D7-brane fluxes
associated to the U(1) field strength F . The condition (3.20) must be realized on
the whole cycle S in order for the D7-brane to be a BPS state.

Note that the left hand side of (3.20) is real, and hence for vanishing F , i.e. for
vanishing B and trivial background fluxes f , we find θ = 0 and therefore recover the
calibration condition (3.19). For this particular case the unbroken supersymmetries
are given by (3.17). Therefore the parameter θ measures the flux-induced deviation
from the condition (3.17).

3.3.2 Tadpoles and O-planes

In the presence of space-time filling Dp-branes their arise to two kinds of tad-
poles, namely RR tadpoles and NS-NS tadpoles. The RR tadpoles are due to their
RR charge (2.5) or more generally due to the couplings to the bulk RR fields as
captured in the Chern-Simons action of the Dp-brane (2.9). These RR tadpoles
for D3- and D7-branes are readily deduces from the Chern-Simons action (2.9) [93].

For space-time filling D7-branes wrapped on the internal Calabi-Yau four-cycles S
(7)
i

with internal two-form fluxes f
(7)
i and for space-time filling D3-branes located at s

(3)
k

in the internal Calabi-Yau space the tadpoles read6

∑
i

µ7

∫
R3,1×S

(7)
i

C(8) ,
∑

i

µ7`

∫
R3,1×S

(7)
i

C(6) ∧ f (7)
i ,

∑
i

µ7`
2

∫
R3,1×S

(7)
i

C(4) ∧ f (7)
i ∧ f (7)

i +
∑

k

µ3

∫
R3,1×{s(3)

k }
C(4) .

(3.21)

These are RR eight-form, RR six-form and RR four-form tadpoles resulting from
D3- and D7-branes. Note that the internal D7-brane fluxes f

(7)
i contribute to the

D5-brane and D3-brane RR charge. Therefore D7-brane fluxes should be seen as
D3-brane charges smeared out over the worldvolume of the D7-branes [76].

6Bulk background fluxes do also contribute to the RR tadpoles.
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Consistency requires these RR tadpoles (3.21) to disappear [93]. Physically this
can be understood as follows. Since the considered D-branes are space-time filling
extended objects, their RR-charges are sources in the compact internal Calabi-Yau
space. However, due to the compactness of the internal space such a configuration
is only consistent if the RR sources are compensated by corresponding RR sinks.
This is a generalization of the Gauss’ law in electrodynamics applied to charges on
compact manifolds.

In addition to RR tadpoles these space-time filling D-branes also generate NS-
NS tadpoles. While the appearance of the RR tadpoles render the theory incon-
sistent, the divergencies of NS-NS tadpoles give rise to potentials for NS-NS fields
[94, 95] and can be absorbed in the background fields via the Fischler-Susskind
mechanism [96]. The NS-NS tadpoles arise form the couplings of D-branes to the
NS-NS graviton and the NS-NS dilaton due to their energy density. If the NS-NS
tadpoles do not vanish it is an indication that the chosen background does not cor-
respond to a stable ground state. In this case the Fischler-Susskind mechanism is a
process which drives the theory towards a stable vacuum configuration.

Thus in order to cancel both the RR tadpoles and the NS-NS tadpoles we
need sources with negative RR charges and negative tension, i.e. ‘negative NS-
NS charges’. Fortunately string theory provides for extended objects with these
properties, which are called orientifold planes or O-planes [11, 12, 15, 16]. Analo-
gously to the nomenclature of Dp-branes an Op-plane denotes a (p+1)-dimensional
orientifold plane.

These O-planes arise in orientifold superstring theories through gauging a dis-
crete Z2-symmetry which contains the worldsheet parity transformation Ωp [16].
This parity transformation exchanges right- and left-movers of the closed super-
string worldsheets. Due to the same chiralities in the right- and left-moving sectors
of type IIB superstring theory the parity transformation Ωp is a symmetry of type IIB
superstring theory itself. Gauging this symmetry leads to the unoriented type I su-
perstring theory [3], which can be viewed as an orientifold superstring theory with
O9-planes.

However, for type IIB string theory compactified on Calabi-Yau manifolds generi-
cally there is a greater variety of discrete Z2 parity symmetries which can be gauged.7

For the Z2-generator we take as an ansatz O = Ωph, where h in general also contains
a non-trivial Z2 action acting geometrically on the internal Calabi-Yau space Y . This
geometric part in the following is specified by the diffeomorphic map σ on Y . In order
for this map to generate a Z2-action the diffeomorphism σ must clearly be an invo-
lution, i.e. σ2 = 1. In addition in order for the orientifold action to preserve some
space-time supersymmetry, the involution must be isometric and holomorphic [19].
This in particular implies for the Kähler form of the Calabi-Yau manifold Y to obey

Ĵ = σ∗Ĵ . (3.22)

7In general the orientifold group can be more complicated [16].
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As a consequence of the holomorphicity of σ the pullback σ∗ always maps (p, q)-forms
of Y to (p, q)-forms. This is also true on the level of cohomology as the Dolbeault
operator ∂̄ commutes with the pullback of σ∗. This implies

H
(p,q)

∂̄
(Y ) = H

(p,q)

∂̄,+
(Y )⊕H

(p,q)

∂̄,− (Y ) . (3.23)

In particular the unique holomorphic (3, 0)-form Ω must be an eigenform of σ∗ and
due to the involutive property of σ∗ with possible eigenvalues ±1. To infer the
relevance of the sign of the eigenvalue it is necessary to go through some rather
technical considerations which are relegated to appendix A.5. Here, instead, we
present the result of this analysis.

The precise structure of the orientifold projection O is determined by the eigen-
value of the holomorphic three-form with respect to σ∗ according to (A.53). Fur-
thermore, in order to preserve some supersymmetry in the four-dimensional effective
theory it is necessary that the orientifold projection is in accord with the supersym-
metry preserved by the space-time filling D-branes. This implies that the orientifold
projection must keep the four-dimensional gravitinos in the spectrum which cor-
respond to the supersymmetries preserved by the D-branes. By comparing the
projections (3.17) and (3.17) with the gravitino projection (A.54) one deduces that
for D3/D7-brane systems the Z2 orientifold generator should read

O = (−1)FLΩpσ
∗ , Ω = −σ∗Ω , (3.24)

whereas for D5/D9-systems one obtains

O = Ωpσ
∗ , Ω = σ∗Ω . (3.25)

Here FL denotes the space-time fermion number for the left-movers.

The O-planes in these theories arise as the fix-point locus of the geometric in-
volution σ. In the vicinity of such a fixed point pf in the internal Calabi-Yau space
and by choosing appropriate coordinates the action of σ∗ on Ω = dzi ∧ dzj ∧ dzk|pf

can be written as

σ∗(dzi ∧ dzj ∧ dzk)|pf
= ±dzi ∧ dzj ∧ dzk|pf

. (3.26)

This means that at the fixed point pf either an even or an odd number of differ-
entials dzi have to change the sign. As a consequence for an even number, that
is for σ∗Ω = Ω, the internal fixed point locus is two- or six-dimensional, whereas
for an odd number corresponding to σ∗Ω = −Ω, the fixed point locus is zero- or
four-dimensional. Therefore the orientifold projection in accord with D5/D9-branes
generates O5/O9-planes whereas the orientifold projection for D3/D7-branes allows
for O3/O7-planes. In this thesis we mainly examine D3/D7-brane systems and
therefore from hereon we concentrate on the O3/O7-plane case, which means that
we use the orientifold projection (3.24).
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Originally the appearance of tadpoles in the presence of space-time filling D3/D7-
branes led us to Calabi-Yau orientifold compactifications. With the introduction of
O3/O7-planes there are additional contributions to the RR tadpoles (3.21) and the
NS-NS tadpoles due to the charge and negative tension of the orientifold planes [17].
The contributions of the O3/O7-planes to the RR tadpole condition (3.21) is ob-
tained form the analog of the Chern-Simons action for orientifold planes [97], which
encodes their share of RR charges also in terms of topological expressions. For O7-
planes wrapped on O

(7)
j and O3-planes located at o

(3)
l we find altogether two tadpole

cancellation conditions8 [93]

0 =
∑

i

µ7

∫
R3,1×S

(7)
i

C(8) +
∑

j

νj
7

∫
R3,1×O

(7)
j

C(8) ,

0 =
∑

i

µ7`
2

∫
R3,1×S

(7)
i

C(4) ∧ f (7)
i ∧ f (7)

i (3.27)

+
∑

k

µ3

∫
R3,1×{s(3)

k }
C(4) +

∑
l

νl
3

∫
R3,1×{o(3)

l }
C(4) .

Here νj
7 and νl

3 are the RR charges of the O-planes. Note that there are no six-form
tadpoles anymore because the transition to orientifold Calabi-Yau compactifications
also requires for each D-brane to include its image-D-brane with respect to the
involution σ.9 This requirement automatically cancels all RR six-form tadpoles in
eq. (3.21) [95].

In the following as we are not considering a specific orientifold compactification
we cannot explicitly check the conditions (3.27). Instead we assume that we have
appropriately chosen a Calabi-Yau manifold Y with involution σ and with D3/D7-
branes such that the RR tadpole conditions (3.27) are fulfilled.

In ref. [95] it is argued that all NS-NS tadpoles arise as derivatives of a D-term
scalar potential with respect to the corresponding NS-NS fields. In the supersymmet-
ric case the NS-NS tadpoles vanish as they are related to the RR tadpole conditions
via supersymmetry. This corresponds to the vanishing of the D-term [37, 93] and
thus the potential arising form the Dirac-Born-Infeld action (2.6) of the D-branes
has to be canceled by the negative tension of the orientifold planes. If the NS-
NS tadpoles do not vanish a D-term is induced leading generically to an unstable
background. We discuss the appearance of various D-terms as we go along.

Before concluding this section we come back to the calibration condition (3.20)
for space-time filling D7-branes. In section 3.3.1 we argued that the real parameter θ
in (3.20) parametrizes the linear combination of supersymmetry parameters. In the
absence of O-planes the constant θ can freely be adjusted such that half of the

8The indices i, j , k and l account for several D7-branes, O7-planes, D3-branes and O3-planes
respectively. S

(7)
i and O

(7)
j are four-cycles whereas s(3)k and o

(3)
l are points in the Calabi-Yau

manifold.
9This is the orientifold picture in the covering space.
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amount of supersymmetry is preserved. However, as we have seen in the presence of
orientifold planes only a particular linear combination of supercharges is preserved
and which corresponds to θ = 0. Therefore the calibration condition (3.20) for
orientifold theories becomes [40]

d4ξ
√

det (ĝ + F) = 1
2
Ĵ ∧ Ĵ − 1

2
F ∧ F , F = B − `f . (3.28)

Note, however, that this calibration condition in the context of orientifolds is only
valid for

Ĵ ∧ F = 0 , (3.29)

which is the condition for the D7-brane to be calibrated with θ = 0 or in other words
to be calibrated with (3.28). If (3.29) is not fulfilled than supersymmetry is spon-
taneously broken by the D7-brane configuration. This is related to the ω-stability
condition Ĵ ∧ F = const. Ĵ ∧ Ĵ of refs. [98, 99] which is imposed by supersymme-
try. In orientifolds F is odd and Ĵ is even with respect to the involution σ whence
Ĵ ∧ F = 0 becomes the ω-stability condition. Moreover it is argued in ref. [98],
that ω-stability gives rise to a D-term constraint in the low energy effective action,
i.e. if supersymmetry is broken ω-stability is not fulfilled and the non-vanishing
D-term breaks supersymmetry spontaneously. Conversely, a ω-stable configuration
corresponds to a vanishing D-term in field theory. Thus in the low energy effective
theory we expect a D-term of the form

D ∼
∫

S

Ĵ ∧ F , (3.30)

where S is the four-cycle in the internal space Y , which is wrapped by the D7-brane.
The corresponding D-term scalar potential VD has the form

VD ∼
(∫

S

Ĵ ∧ F
)2

. (3.31)

In the forthcoming derivation of the low energy effective action we use the cali-
bration condition (3.28), but we are aware that we do not capture terms proportional
to Ĵ ∧F , in particular we do not obtain directly the D-term scalar potential (3.31),
but instead have to rely on supersymmetry to rigorously compute this potential.

3.4 D-brane spectrum in Calabi-Yau orientifolds

In this section we compute the spectrum arising from D-branes in orientifold theories,
namely we examine the spectra arising from D3-brane and D7-brane systems. The
low energy spectrum of a stack of D3-branes does not dependent on the precise
structure of the internal space, which is due to the fact that space-time filling D3-
branes only constitute a point in the internal compactification space. On the other
hand, however, the spectrum of a D7-brane depends on the topology of the four-cycle
in the internal space, which is wrapped by the internal part of the D7-brane.
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3.4.1 D3-brane spectrum in Calabi-Yau orientifolds

Before entering the discussion of the spectrum arising from a stack of N D3-branes
let us clarify the geometric picture which one should have in mind. The internal part
of the stack of D3-branes comprises just a point p in the Calabi-Yau orientifold Y .
However, in addition to the point p there is also an image stack of N D3-branes
at the orientifold image p̃ = σ(p) of p. If the stack of D3-branes resides on an
orientifold fixed point, i.e. p̃ = p, then the gauge group on the worldvolume of the
D3-brane is either SO(N) or USp(N).10 Otherwise the gauge group of the stack
of N D3-branes is U(N). In the following we concentrate on the latter case and
further assume that the D3-branes are separated far enough from their image D3-
branes, i.e. dist(p, p̃) �

√
α′, such that no additional light modes arise from open

strings stretching from the D3-branes to the image D3-branes. Note that the above
description captures the geometry in the covering space of the orientifold theory.
On the orientifold space Y/O the D3-branes coincide with their image D3-branes
and combine to a single stack of D3-branes.

For simplicity we first focus on the four-dimensional massless spectrum of a single
space-time filling D3-brane located at p. First of all the four-dimensional bosonic
spectrum consists of the vector boson Aµ(x) of the U(1) gauge theory localized
on the worldvolume of the D3-brane. Second there arise D3-brane matter fields
which describe the geometric fluctuations φ(x) of the locus of the D3-brane in the
internal Calabi-Yau space Y . These fluctuations φ(x) are space-time dependent
vectors in the tangent space TpY of the internal space.11 Since dimR TpY = 6 the
fluctuations φ(x) gives rise to six real scalar fields φn(x) in four dimensions, i.e.

φ(x) = φn(x) ∂n|p , n = 1, . . . , 6 . (3.32)

Here ∂n|p denotes a basis of TpY .

According to section 3.3.2 D3-branes in Calabi-Yau orientifolds with O3/O7-
planes preserve N = 1 supersymmetry and thus the bosonic fields appear in N = 1
supermultiplets. The U(1) gauge boson Aµ(x) is the bosonic part of a U(1) vector
multiplet whereas the six real scalar fields φn(x) combine to three complex scalar
fields φi(x) with respect to the complex structure inherited from the ambient Calabi-
Yau space Y .12 Then in terms of complex fields (3.32) becomes

φ(x) = φi(x) ∂i|p + φ̄̄(x) ∂̄|p , i, ̄ = 1, 2, 3 . (3.33)

As discussed in section 3.2 the internal Calabi-Yau manifold Y has SU(3)-structure,
the frame bundle of Y admits a SU(3) principal subbundle. Then one can view the
complex fields φi(x) as defined with respect to a basis ∂i|p of this subbundle at p.

10The precise gauge group depends on the type of the orientifold plane [19,100].
11Alternatively, we can also view the D3-brane fluctuations as section of H0(p,Np). This inter-

pretations is useful as it naturally generalizes to space-time filling D7-brane (c.f. section 3.4.2).
12The precise complex structure for the fields φn will be discussed in section 4.5.2.
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The complex fields φ̃i(x) with respect to a different basis ∂̃i|p are related to φi(x) via
a SU(3) transformation. Therefore the fields φi(x) transform in the fundamental
representation 3 (and analogously φ̄̄ in the anti-fundamental representation 3̄) with
respect to the SU(3) structure group on the Calabi-Yau space Y .

The next task is to determine the fermionic fields in the N = 1 supermultiplets.
They arise from fermionic fluctuations of the embedding of the super-D3-brane ac-
tion (2.15) in the type IIB supergravity supermanifold M9,1|2. Therefore for the
ansatz (3.10) the fermionic spectrum is obtained by decomposing the odd coordi-

nates ~θ transforming as 16′ of SO(9, 1) into representations of the subgroups

SO(9, 1) → SO(3, 1)× SO(6) → SO(3, 1)× SU(3) , (3.34)

where the first decomposition of the ten-dimensional Lorentz group is due to the
compactification ansatz while the SU(3) structure group of complex threefolds
brings about the second decomposition. Correspondingly the spinor representation
16′ splits into

16′ → (2, 4̄)⊕ (2̄,4) → (2, 3̄)⊕ (2, 1̄)⊕ (2̄, 3̄)⊕ (2̄,1) . (3.35)

2, 2̄ are the two Weyl spinors of SO(3, 1), 4, 4̄ are the two Weyl spinors of SO(6), 3,
3̄ are the fundamentals and anti-fundamentals of SU(3), and finally 1, 1̄ are SU(3)
singlets.

Note, however, as discussed in section 2.3.3 the super-D3-brane action possesses
the local fermionic κ-symmetry, which reduces the fermionic degrees of freedom by
one-half. As a consequence the physical fermionic degrees of freedoms arise from
the decomposition of a single odd coordinate transforming in the 16′ of SO(9, 1) in
agreement with the fermionic open string spectrum (2.3). Hence, from (3.35) one
readily reads off the massless fermionic four-dimensional spectrum arising from the
D3-branes. On the one hand there is a Weyl fermion λ(x), which arises from the
SU(3) singlet and is identified as the superpartner of Aµ(x) with the gaugino in the
N = 1 vector multiplet. On the other hand there are the three Weyl fermions ψi(x)
which appear in the fundamental 3 of SU(3). They are the superpartners of the
bosonic fields φi and form three N = 1 chiral multiplets. Hence the explicit decom-
position of fermionic D3-brane fluctuations Θ(ξ) reads

Θ(ξ) = Nλ λ(x)⊗ ξ̌†p + N̄λ̄ λ̄(x)⊗ ξ̌p +Nχi χi(x)⊗ γiξp + N̄χ̄̄ χ̄̄(x)⊗ γ̄ξ
†
p , (3.36)

where ξ̌p and ξ̌†p are the covariantly constant spinor singlets (A.47) of the Calabi-
Yau manifold Y restricted to the D3-brane locus p. Nλ and Nχi are normalization
constants to be determined in section 5.1.2.

This completes the analysis of a single space-time filling D3-brane. For a stack
of N D3-branes the U(1) gauge theory is enhanced to U(N) [74], and then the gauge
boson Aµ(x) and the gaugino λ(x) transform in the adjoint representation of U(N).
Moreover, the bosonic and fermionic fluctuations become ‘matrix valued fields’ and
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bosonic fields fermionic fields multiplet multiplicity

Aµ λ, λ̄ vector 1

φi, φ̄̄ ψi, ψ̄̄ chiral 3

Table 3.1: Massless D3-brane spectrum in N = 1 multiplets

also transform in the adjoint representation of U(N) [77]. This enhancement of
the D3-brane fields is discussed in some detail in section 2.2 from an open string
perspective.

In Table 3.1 the massless four-dimensional spectrum is summarized in terms
of the resulting four-dimensional N = 1 multiplets, namely the vector multiplet
(Aµ, λ) and the three chiral multiplets (φi, ψi), which all transform in the adjoint
representation of U(N). Thus the D3-brane spectrum is non-chiral and can be
assembled in a single U(N) N = 4 gauge multiplet.13 This is not very surprising
as type IIB orientifold compactifications on a six torus with space-time filling D3-
branes preserve N = 4 in four dimensions. In this case both the bulk spectrum and
the D3-brane spectrum assemble themselves into N = 4 supergravity multiplets.
The spectrum of a stack of D3-branes depends only on the tangent space in the
vicinity of p. Locally, however, the tangent spaces of all six-dimensional manifolds
are isomorphic, and hence the spectrum arising from a stack of space-time filling
D3-branes in type IIB orientifolds is always N = 4 supersymmetric.14 However, as
we will see in the next chapter this does not imply that the Yang-Mills theories on
the worldvolume of the D3-brane is N = 4 since also the metric of the manifold in
the vicinity of p enters in the effective gauge theory.

3.4.2 D7-brane spectrum in Calabi-Yau orientifolds

The geometry of space-time filling D7-brane in Calabi-Yau orientifold compactifica-
tions is somewhat richer compared to the geometry of space-time filling D3-branes.
This is due to the fact that the D7-brane wraps a four-cycle, whereas a D3-brane
simply constitutes a point in the internal space. The internal four-cycle in the
Calabi-Yau manifold Y , which is wrapped by the worldvolume of the D7-brane, is
denoted by S(1). Since we are working with an orientifold theory we must in addition
to the D-brane on S(1) also include its image under the orientifold involution σ, i.e.

13N = 4 gauge multiplets in four dimensions consist of a vector, four Weyl fermions and six real
scalars, which all transform in the adjoint representation of the gauge group. Under the N = 4 R-
symmetry group SU(4)R the vector is a singlet, the Weyl fermions transform in the fundamental 4,
and the scalars transform in the rank 2 anti-symmetric [6].

14This does not hold for D3-branes at singularities [23].
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description cycle relation Poincaré dual

D7-brane (cov. space) S(1) ∈ H4(Y,Z) 1
2
(SΛ + SP ) ω(1) ∈ H(1,1)

∂̄
(Y )

D7-image-brane (cov. space) S(2) ∈ H4(Y,Z) 1
2
(SΛ − SP ) ω(2) ∈ H(1,1)

∂̄
(Y )

D7-brane (orientifold Y ) SΛ ∈ H4(Y,Z) S(1) + S(2) ωΛ ∈ H(1,1)

∂̄,+
(Y )

D7-pair (opp. orientation) SP ∈ H4(Y,Z) S(1) − S(2) ωP ∈ H(1,1)

∂̄,− (Y )

Table 3.2: D7-brane cycles

we have an image D7-brane on the Calabi-Yau manifold Y wrapped on the four-
cycle S(2) = σ(S(1)). Hence it is convenient to introduce the four-cycle SΛ which is
the union of the cycles S(1) and S(2) in the Calabi-Yau manifold Y . SΛ obeys

σ(SΛ) = SΛ . (3.37)

The Poincaré dual two-form ωΛ of SΛ is an element of H2
+(Y ) in terms the parity

graded cohomology groups defined in eq. (3.23). By referring to the D7-brane we
mean in the following the object which wraps the internal cycle SΛ and thus describes
both the D7-brane and its image of the Calabi-Yau orientifold. For later convenience
we further define SP as the union of the cycle S(1) and its orientation reversed image
−S(2). This cycle obeys

σ(SP ) = −SP , (3.38)

and has a Poincaré dual two-form ωP in H2
−(Y ). In Table 3.2 all these different

D7-brane four-cycles are listed with their associated Poincaré dual two-forms. Note
that this is the geometry in the covering space of the orientifold theory. As in the
case of D3-branes the D7-brane and its image D7-brane coincide and represent a
single object in the orientifold covering space Y/O.

In the above analysis we have implicitly assumed that the D7-brane does not
coincide with any orientifold O7-plane, because this would imply that S(1) and S(2)

represent the same cycle and that the gauge group of the worldvolume theory is
SO(N) or USp(N) [3]. Additionally we require that the involution σ does not have
any fixed points in S(1) since this would give rise to extra massless states in the
twisted open string sector [101].

The bosonic spectrum of the D7-brane is comprised of two parts. The first part
corresponds to fluctuations of the embedding of the internal four-cycle SΛ in the
Calabi-Yau orientifold Y , and the second part describes Wilson lines of the U(1)
gauge field on the four-cycle SΛ. Both types of degrees of freedom give rise to
bosonic components of chiral multiplets in the effective four dimensional low energy
theory. The former complex bosons are members of the ‘matter’ multiplets and we
denote them by ζ(x). The latter Wilson line moduli are denoted by a(x).
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The fluctuations of the D7-brane arise as deformations of the worldvolume in the
normal directions with respect to the ambient space. Moreover, since the D7-brane
is space-time filling all normal directions lie in the internal Calabi-Yau space Y .
Therefore the ‘matter’ multiplets arise from an appropriate expansion of the sections
ζ(x, y) of the normal bundle NSΛ. On the other hand the Wilson line moduli fields
arise from non-trivial background configurations of the gauge boson A(x, y) and
therefore are related to non-contractible loops in the internal cycle SΛ. The massless
modes of the fields ζ(x, y) and A(x, y) are in one-to-one correspondence with global
sections of the cohomology groups15 [26, 40,75,102]

ζ ∈ H0(SΛ,NSΛ) , a ∈ H(0,1)

∂̄
(SΛ) , (3.39)

where H0(SΛ,NSΛ) is the space of global sections of the holomorphic normal bundle
of SΛ.

Note, however, that in (3.39) the truncation due to the orientifold projection is
not yet taken into account. In order to truncate the spectrum consistent with the
orientifold projection O the action of O on the open string states has to be exam-
ined. The result of this technical analysis yields the truncation of the cohomology
groups (3.39) to [14,16,23,40]

ζ ∈ H0
+(SΛ,NSΛ) , a ∈ H(0,1)

∂̄,− (SΛ) . (3.40)

More generally for a stack of N D7-branes wrapped on SΛ the gauge theory on
the worldvolume of these branes is enhanced to U(N) [74]. As a consequence the
massless fields ζ and a transform in the adjoint representation of U(N), i.e. ζ is a
U(N) Lie algebra valued section of the normal bundle and a is a U(N) Lie algebra
valued one-form [77,103].

In the following we consider just a single D7-brane wrapped on SΛ with the
spectrum given by (3.40). In this case the expansion of ζ(x, y) into massless four-
dimensional modes yields

ζ(x, y) = ζA(x) sA(y) + ζ̄Ā(x) s̄Ā(y) , A = 1, . . . , dimH0
+(SΛ,NSΛ) , (3.41)

where sA is a basis of H0
+(SΛ,NSΛ). As discussed in refs. [26, 104], we can map

sections ζ of H0
+(SΛ,NSΛ) isomorphically to H

(2,0)

∂̄,− (SΛ) via the Poincaré residue
map. In practice this map is simply given by contracting ζ with the holomorphic
three-form Ω of the Calabi-Yau manifold Y [26]

Ω : H0
+(SΛ,NSΛ) → H

(2,0)

∂̄,− (SΛ), ζ 7→ iζΩ . (3.42)

15In general, D-branes are described by sheaves that are supported on the worldvolume of the
brane. Then the spectrum of marginal open string modes of strings stretching from a D-brane
specified by the sheaf E to a D-brane specified by the sheaf F is given by the Ext-group Ext1(E ,F)
[75]. However, if the tangent bundle of the Calabi-Yau restricted to the wrapped four-cycle splits
holomorphically, which we always assume in the following, the Ext-group reduces to the sheaf
cohomology description, and in the case of open strings with both ends on a single brane, we have
the above spectrum (3.39).
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multiplet bosonic fields geometric space basis

matter ζA, A = 1, . . . , dimH0
+(SΛ,NSΛ) H0

+(SΛ,NSΛ) sA

H
(2,0)

∂̄,− (SΛ) s̃A

vector Aµ H0
−(SΛ) P−

Wilson lines aI , I = 1, . . . , dimH
(0,1)

∂̄,− (SΛ) H
(0,1)

∂̄,− (SΛ) AI

Table 3.3: Massless D7-brane spectrum

Hence the Poincaré residue map also allows us to rewrite the basis elements sA

and s̄Ā into basis elements s̃A and s̃B̄ of H
(2,0)

∂̄,− (SΛ) and H
(0,2)

∂̄,− (SΛ), and then the

expansion (3.41) can be mapped to an expansion in two-forms of SΛ.

Analogously for the U(1) gauge boson A(x, y) the expansion becomes

A(x, y) = Aµ(x)dxµ P−(y) + aI(x) A
I(y) + āJ̄(x) ĀJ̄(y) , (3.43)

with AI as a basis of H
(0,1)

∂̄,− (SΛ). P− is the harmonic zero form of SΛ given by

P−(y) =

{
1 y ∈ S(1)

−1 y ∈ S(2)
, P− ∈ H0

−(SΛ) . (3.44)

Note that in addition to the Wilson line moduli aI(x) the expansion yields the
four-dimensional gauge boson Aµ(x).

In Table 3.3 the massless open string spectrum resulting from the D7-brane is
summarized. The table shows the cohomology groups, which describe the spectrum
in geometric terms, and lists the basis elements thereof. Note that for the mass-
less ‘matter fields’ ζ there are the two alternative descriptions related by (3.42) as
described above.

After the discussion of the bosonic spectrum we now turn to the fermionic
fields arising form the D7-brane. As discussed in section 2.3.3 the fermionic spec-
trum can again be understood from the embedding of the super-D7-brane into
the type IIB supergravity superspace M9,1|2 parametrized by the superspace co-
ordinates ZM̌ = (xM , ~θ). Then the fermionic spectrum arises from fluctuations of

the embedding supermap φ along the odd superspace coordinates ~θ, which for the
fermionic fluctuations takes the simple form [105]

ϕ : W ↪→M9,1|2, ξ 7→
(
ϕ(ξ), ~Θ(ξ)

)
. (3.45)

Hence the pullback with respect to this supermap simply amount to replacing the
superspace coordinates ~θ by ~Θ(ξ) [50, 51, 106]. Due to the dependence on ξ the
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fermionic fields ~Θ(ξ) are localized on the worldvolume W of the D7-brane and con-

tain all the fermionic degrees of freedom of the super-D7-brane. Note that ~Θ(ξ) has

the same transformation behavior as the odd supercoordinates ~θ, that is to say they
are Majorana-Weyl spinors transforming in the Weyl representation 16′ of SO(9, 1).

The next task is to study how 16′ decomposes on the worldvolume of the D7-
brane into representations of appropriate subgroups of SO(9, 1). For the fields lo-
calized on the D7-brane the structure group SO(6) of the tangent bundle of the
internal six-dimensional space splits into SO(4)× SO(2). Here SO(4) is the struc-
ture group of the tangent bundle of the four-dimensional internal D7-brane cycle SΛ,
whereas SO(2) is the structure group of the two-dimensional normal bundle of SΛ.
Moreover for the D7-branes under consideration we always assume that the pullback
tangent bundle ι∗TY splits holomorphically into the direct sum TSΛ⊕NSΛ, i.e. the
structure group of the tangent and normal bundle reduces to U(2) × U(1). Hence
we have the following chain of subgroups

SO(3, 1)× SO(6)
ι∗TY→TSΛ⊕NSΛ

−−−−−−−−−−−→ SO(3, 1)× SO(4)× SO(2)

holomorphicity−−−−−−−−−→ SO(3, 1)× (SU(2)× U(1))× U(1) , (3.46)

which tells us that the D7-brane worldvolume fields are appropriate representations
of SO(3, 1)×SU(2)×U(1)×U(1). Then the ten-dimensional spinor representation
decomposes under SO(3, 1)× SO(4)× SO(2) according to

16′ → (2,2, 1̄)⊕ (2,2′,1)⊕ (2̄,2,1)⊕ (2̄,2′, 1̄) , (3.47)

with the two Weyl spinors 2 and 2′ of SO(4) and the SO(2) complex conjugated
singlets 1, 1̄.

As reviewed in appendix A.3 in the context of complex manifolds the SO(4)
gamma matrices γn corresponding to the tangent bundle TSΛ can be combined to
complex gamma matrices γi, γ ̄ and then they are interpreted as raising and lowering
operators which are used to construct the ‘ground states’ ξ and the ‘conjugate ground
state’ ξ†

γiξ = 0 , ξ†γ ı̄ = 0 . (3.48)

These ‘ground states’ are SU(2) spinor singlets of the same chirality16

γξ = +ξ , ξ†γ = +ξ† , (3.49)

where γ is the chirality gamma matrix of SO(4).

16The singlets ξ and ξ† have the same chirality for structure groups U(2k) and different chiralities
for structure groups U(2k+ 1) because the ‘conjugate ground states’ ξ† is also obtained by acting
with all raising operators on the ‘ground state’ ξ. Thus for the group SU(2k) there is an even
number of raising operators which yields for ξ and ξ† the same chirality, whereas for SU(2k + 1)
the odd number of raising operators results in different chiralities for ξ and ξ†.
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In order to study the spinors on the D7-brane cycle SΛ, we need to analyze
sections of the U(2) ∼= SU(2) × U(1) tangent bundle. Locally there are two spinor
singlets ξ ⊗ L∗ and ξ† ⊗ L, where L and L∗ denote sections of the line bundles
associated to the U(1) part in U(2), or in other words to the U(1) part of the spin
connection. In general these line bundles are non-trivial as SΛ need not be a Calabi-
Yau manifold with trivial first Chern class. However, the spinors of SΛ relevant for
our analysis transform under the induced spin connection of the ambient space Y
which is a connection with respect to both the tangent and the normal bundle of SΛ.
Therefore due to the triviality of the U(1) part of the spin connection in the ambient
space Y the overall U(1) ‘charge’ of the induced spinors must also be trivial and as
a consequence the line bundles associated to the structure group U(1) of the normal
bundle NSΛ must be dual to the line bundles of the U(1) part in the structure group
of the tangent bundle TSΛ. Hence there are two induced spinors which are global
sections of SU(2)× U(1)× U(1), i.e.

(ξ ⊗ L∗)⊗ L ∼= ξ , (ξ† ⊗ L)⊗ L∗ ∼= ξ† , (3.50)

which behave like ‘neutral’ spinors with respect to the U(1) part of the induced spin
connection.17 Note that the chiralities of the sections L and L∗ with respect of the
SO(2) structure group of the normal bundle NSΛ are

γ̃L = +L , γ̃L∗ = −L∗ , (3.51)

in terms of the chirality gamma matrix γ̃ of SO(2) as introduced in appendix A.3.

The next task is to determine the massless Kaluza-Klein modes resulting from
the Majorana-Weyl spinors ~Θ(ξ) compactified on the worldvolume R3,1× SΛ. How-

ever, only one linear combination of ~Θ(ξ) is invariant with respect to the orientifold

projection O. The fermions ~Θ(ξ) are the fluctuations of the odd superspace coor-

dinates ~θ, which in turn correspond to the infinitesimal supersymmetry parameters
for supersymmetry variations. Since the gravitinos are the gauge fields for local
supersymmetry the supersymmetry parameters ~θ and their fluctuations ~Θ trans-
form exactly like the gravitinos under O. Thus the projector 1

2
(1 +O) acting on ~Θ

becomes 1
2
(1 + σ̌2) as in (3.17), and we define

Θ(ξ) = 1
2
(1 +O) ~Θ(ξ) . (3.52)

Then the projected ten-dimensional Majorana-Weyl spinor Θ(ξ) transforming as
16′ of SO(9, 1) needs to be decomposed into representations of the subgroups in
eq. (3.46) according to (3.47).

Since ξ and ξ† are constant sections on SΛ (or zero-forms) we can identify γ ı̄ξ
and ξ†γi with (0, 1)-forms and (1, 0)-forms and γ ı̄γ ̄ξ and ξ†γiγj with (0, 2)-forms

17Mathematically this neutrality is a consequence of the Whitney formula for the first Chern
class. Since ι∗TY ∼= TSΛ ⊕NSΛ holomorphically, the Whitney formula applied to the Calabi-Yau
manifold Y yields 0 = ι∗c1(TY ) = c1(TSΛ) + c1(NSΛ). Thus the line bundle associated to the
tangent bundle must be dual to the line bundle associated to the normal bundle.
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bos. fields ferm. fields multiplet multiplicity

Aµ λ, λ̄ vector 1

ζA, ζ̄Ā χA, χ̄Ā chiral dimH
(2,0)

∂̄,− (SΛ)

aI , āĪ χI , χ̄Ī chiral dimH
(0,1)

∂̄,− (SΛ)

Table 3.4: D7-brane spectrum in four dimensions and N = 1 multiplets

and (2, 0)-forms. Furthermore, we need to expand Θ(ξ) into fermionic modes which
are invariant under the orientifold projection O. By supersymmetry we already
know that the invariant fermionic modes are only identified with negative parity
forms in order to match the negative parity of their bosonic superpartners (c.f. 3.3).
Finally, we only keep massless fermionic excitations, which are zero-modes of the
internal Dirac operator. As explained in the previous paragraph the relevant Dirac
operator is induced from the ambient Calabi-Yau space Y for which the U(1) part of
the spin connection is trivial, and in this case the square of the Dirac operator can
be identified with the Laplace operator. This implies that the massless fermionic
excitations are in one-to-one correspondence with the global odd harmonic (p, q)-
forms. Using (3.49) and (3.51) this leads to the Kaluza-Klein expansion

Θ(ξ) = Nλ λ(x)⊗ P−ξ
† + N̄λ̄ λ̄(x)⊗ P−ξ

+NχI
χI(x)⊗ AI

ı̄ γ
ı̄ξ + N̄χ̄Ī

χ̄Ī(x)⊗ ĀĪ
i ξ
†γi

+NχA χA(x)⊗ 1
2
s̃A ijξ

†γjγi + N̄χ̄Ā χ̄Ā(x)⊗ 1
2
s̃Ā ı̄̄γ

ı̄γ ̄ξ ,

(3.53)

where λ(x), χI(x), χ
A(x) are four-dimensional Weyl spinors. P− is the harmonic zero

form of SΛ defined in (3.44). AI is a basis of odd (0,1)-forms on SΛ while s̃A is a
bases of odd (2,0)-forms, both of which we already introduced in Table 3.3. For the
moment we also included a set of normalization constants Nλ, NχA and NχI

which
are determined in the next chapter. Note that the Majorana property of the spinor
Θ(ξ) implies that the decomposition (3.47) must fulfill a reality condition. This is
reflected in the expansion (3.53) in that for each term the complex conjugate term
also appears.

Thus altogether we conclude that the four-dimensional massless fermionic modes
invariant under O are identified with the negative harmonic forms of the cycle SΛ,
which justifies the expansion of (3.53) into the forms P−, s̃A and AI . As a con-
sequence the massless fermionic modes in (3.53) pair up with the bosonic fields
in Table 3.3 to form four-dimensional N = 1 multiplets. Note that the D7-brane
spectrum is not N = 4 supersymmetric anymore as in the D3-brane case, since it
depends on the topological data of the cycle SΛ.
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Chapter 4

Effective supergravity action

The aim of this chapter is to compute the low energy effective action for Calabi-
Yau orientifold with D3- or D7-branes. In section 4.1 the ten-dimensional type IIB
supergravity action is reviewed as it serves as the starting point for the discussed
compactifications, and finally in section 4.2 the generic form of aN = 1 supergravity
action is given because this is the class of low energy effective theories obtained from
compactifications of orientifold theories with D-branes. In section 4.3 the Kaluza-
Klein reduction of the bulk theory is carried out. In order to include D-branes a
normal coordinate expansion as described in section 4.4 as to be employed. This
technique allows us to enhance the bulk effective action by the D3-brane fields in
section 4.5 and by the D7-brane fields in section 4.6. The resulting Lagrangians are
N = 1 supersymmetric and therefore they are treated in terms of the specifying
data of a N = 1 (gauged) supergravity in four dimensions.

4.1 Type IIB supergravity in D=10

The spectrum of type IIB supergravity, which consists of the massless modes of
type IIB superstring theory, has been introduced in section 2.1. The aim of this
section is to describe the low energy dynamics of these fields in terms of the type IIB
low energy effective supergravity action in ten dimensions.

The massless modes of the RR sector of type IIB superstring theory are the
even dimensional anti-symmetric tensors, i.e. the form fields C(0), C(2), C(4), C(6)

and C(8). The field strengths of these form fields, as they appear in the low energy
effective action, are given by [107]

G(p) =

{
dC(0) p = 1

dC(p−1) − dB ∧ C(p−2) else .
(4.1)

Note, however, in order to obtain the right number of bosonic degrees of freedom
as encoded in the ten-dimensional N = 2 multiplet we need to impose duality
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conditions on the RR field strength1

G(1) = ∗10G
(9) , G(3) = (−1) ∗10 G

(7) , G(5) = ∗10G
(5) . (4.2)

These duality conditions tell us that for counting physical degrees of freedom one
should only keep the self-dual part of the RR four-form C(4), and one can eliminate
the RR eight-form C(8) in favor of its dual axion C(0) and the RR six-form C(6) in
favor of its dual RR two-form C(2). Then one obtains together with the massless
NS-NS fields the bosonic spectrum of the ten-dimensional N = 2 multiplets stated
in the conventional form.

However, we do not yet impose the duality conditions (4.2) and proceed with
the type IIB supergravity action in ten dimensions, which contains all RR forms of
IIB supergravity C(0), C(2), the self-dual RR four-form C(4), and the dual RR forms
C(6) and C(8). This action is called the democratic formulation of type IIB super-
gravity in ten dimensions as state in ref. [107]. The bosonic part of the action reads

Ssf
IIB =

1

2κ2

∫
d10x

√
−g10 e−2φ10R− 1

4κ2

∫
e−2φ10 (8 dφ10 ∧ ∗10dφ10 −H ∧ ∗10H)

+
1

8κ2

∫ ∑
p=1,3,5,7,9

G(p) ∧ ∗10G
(p) ,

(4.3)

where H is the field strength H = dB. Note that κ is not the gravitational coupling
constant but instead κ10 = κ eφ0 = κ gs, which depends on the string coupling
constant, or in other word on the vacuum expectation value of the dilaton φ0.

2

In this democratic formulation the equations of motion resulting from this action
must be combined with the duality constraints (4.2). Note that already for the
conventional used ten-dimensional IIB supergravity the same phenomenon appears,
namely for the four-form C(4) the self-duality condition on its five-form field strength
must be imposed by hand [108].

4.2 N = 1 supergravity action in four dimensions

Eventually we are interested in the effective four-dimensional description of the
Kaluza-Klein reduced orientifold theory with space-time filling Dp-branes. As pre-
sented in section 3.3.1 and section 3.3.2 we always choose a configuration which

1In ten dimensions the massless spectrum falls into representations of the little group SO(8).
The massless RR fields of type IIB string theory are given by the tensor product of the two Weyl
spinors of 8 ⊗ 8 which decomposes into the irreducible anti-symmetric tensors [0] ⊕ [2] ⊕ [4]+
or equivalently [4]− ⊕ [6] ⊕ [8], where [4]± are the self-dual and anti-self-dual anti-symmetric
four-tensor of SO(8).

2The coupling κ is proportional α′2 and the proportionality constant depends on the conven-
tions.
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preserves some space-time supersymmetry in the resulting four-dimensional effec-
tive theory. In this thesis we focus on theories with N = 1 supergravity in four
dimensions. Therefore we recall here the generic form of a four-dimensional N = 1
supergravity action.

A N = 1 supergravity theory with chiral multiplets MM and vector multi-
plets V Γ is completely specified in terms of the Kähler potential K, the holomor-
phic superpotential W and the holomorphic gauge kinetic coupling functions fΓ∆

[109,110]. The on-shell degrees of freedom of one chiral multiplet MM = (MM , χM)
arise from one complex scalar MM and one complex Weyl fermion χM , whereas the
vector multiplet V Γ = (V Γ, λΓ) consists on-shell of one vector boson V Γ and one
complex Weyl fermion λΓ. In addition to these multiplets there is always the gravity
multiplet, which contains the graviton and a complex Weyl gravitino ψµ as fermionic
superpartner. Note, however, that the defining date namely the Kähler potential K,
the superpotential W and the gauge kinetic coupling functions fΓ∆ can already be
unambiguously read off from the bosonic part of this supergravity action

SBosons =− 1

2κ2
4

∫
d4x

√
−η
(
R + 2KMN̄∇µM

M∇µM̄ N̄ + VD + VF

)
− 1

4κ2
4

∫
d4x

√
−η (Re f)Γ∆F

Γ
µνF

µν ∆ +
1

2κ2
4

∫
(Im f)Γ∆F

Γ ∧ F∆ .

(4.4)

Here F Γ refers to the field strength of the vector boson V Γ and KMN̄ = ∂M∂N̄K is
the Kähler metric of the Kähler potential K. The F-term scalar potential VF and
the D-term scalar potential VD is given by

VF = eK
(
KMN̄DMWDN̄W̄ − 3|W |2

)
, VD =

1

2
(Re f)Γ∆ DΓD∆ , (4.5)

where VF is expressed in terms of the Kähler covariant derivatives DMW = ∂MW +
(∂MK)W of the superpotential.

The D-term potential VD involves the inverse matrix (Re f)Γ∆ of the real part of
the coupling matrix fΓ∆. The D-term itself is computed from the equation [110]

∂N∂M̄K X̄M̄
Γ = i∂NDΓ . (4.6)

Here XΓ = XM
Γ ∂M is the holomorphic Killing vector field of the corresponding

gauged isometry of the target space Kähler manifold.

Although the bosonic part of the N = 1 supergravity action determines by su-
persymmetry the whole N = 1 supergravity Lagrangian, some data are encoded in
the fermionic part of the supergravity action in a more direct way. For instance the
superpotential W and the D-terms enter the bosonic scalar potential (4.5) quadrat-
ically whereas they appear linearly in the fermionic terms.
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In the conventions of ref. [110] the kinetic terms of the fermions in the super-
gravity action read

SFermions =− 1

κ2
4

∫
d4x

√
−η
[(
−εµνρτ ψ̄µσ̄ν∇ρψτ + iKMN̄ χ̄

N̄ σ̄µ∇µχ
M
)

(4.7)

+
i

2
(Re f)Γ∆

(
λΓσµ∇µλ̄

∆ + λ̄Γσ̄µ∇µλ
∆
)
− 1

2
(Im f)Γ∆∇µ

(
λΓσµλ̄∆

)]
,

with appropriate covariant derivatives ∇µ. Out of the fermionic couplings we only
record here those which are relevant for this thesis, namely these are the couplings
of the gravitinos ψµ to gauginos λ∆ and to the fermionic matter fields χM , and the
mass terms of the matter fields χM and of the gauginos λ∆

SCouplings =− 1

2κ2
4

∫
d4x

√
−η
[
DΓ ψµσ

µλ̄Γ −DΓ ψ̄µσ̄
µλΓ

+ eK/2
(√

2iDMWχMσµψ̄µ + 2 W̄ ψµσ
µνψν + h.c.

)
(4.8)

+eK/2

(
1

2
DMDNWχMχN − 1

4
KMN̄DN̄W̄∂MfΓ∆ + h.c.

)
+ . . .

]
,

where . . . denotes all the omitted fermionic coupling terms.

4.3 Orientifold bulk for O3/O7-planes

In this section the closed string sector, i.e. the bulk theory, of Calabi-Yau orientifold
compactifications of the type IIB superstring is examined in order to set the stage
for introducing space-time filling D-branes in the forthcoming sections. As argued in
section 3.3.2 in order to preserve N = 1 supersymmetry in the presence of D3/D7-
branes the four-dimensional bulk theory must be an orientifold compactification
with O3/O7 planes.

The first task is to perform the Kaluza-Klein reduction of the ten-dimensional
theory on a Calabi-Yau orientifold space. As we work in the supergravity limit,
that is to say in the limit where the string coupling constant α′ becomes small,
the starting point for the Kaluza-Klein reduction is the ten-dimensional type IIB
supergravity of section 4.1. In a second step the four-dimensional effective theory for
the massless Kaluza-Klein modes are determined by inserting the massless Kaluza-
Klein modes into the ten-dimensional supergravity action and by integrating out
the internal space.

4.3.1 Massless bulk spectrum of O3/O7 orientifolds

In order to perform a Kaluza-Klein reduction of the ten-dimensional spectrum the
background ansatz (3.1) with its metric (3.2) for the ten-dimensional type IIB su-
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pergravity theory needs to be specified, i.e.

R3,1 × Y/O , ds2
10 = η̂µν dxµdxν + 2 ĝi̄(y) dyidȳ̄ . (4.9)

Here R3,1 is the four-dimensional Minkowski space while Y/O denotes the internal
Calabi-Yau orientifold. That is to say we consider the Calabi-Yau manifold Y moded
out by the orientifold projection O introduced in eq. (3.24) [18, 19]. Recall that O
contains a geometric action σ∗, where σ is an isometric holomorphic involution on
the Calabi-Yau manifold Y , which has the O3/O7-planes as its fixed point locus. In
the ansatz for the background metric (4.9), η̂µν denotes the flat metric of the four-
dimensional Minkowski space and ĝi̄(y) is the metric of the internal Calabi-Yau
manifold Y . This ansatz for the metric, however, is a little subtle. One really has
to make a warped ansatz for the metric so as to capture the back-reaction of these
localized sources to geometry [17, 111, 112]. This approach is beyond the scope of
this thesis. Instead, as mentioned in the previous section and as further discussed
in appendix A.6, the analysis is performed in a regime, where the internal space is
large enough such that this back-reaction can be treated as a negligible perturbation
to our product ansatz (4.9).

As we have seen in section 3.1 the Kaluza-Klein zero modes are governed by
the harmonic forms of the compactification space Y .3 These harmonic forms of the
Calabi-Yau manifold Y are in one-to-one corresponds to elements of the cohomology
groups H

(p,q)

∂̄
(Y ), which due to the holomorphicity and the involutive property of σ

split into even and odd eigenspaces H
(p,q)

∂̄,+
(Y ) and H

(p,q)

∂̄,− (Y ) according to eq. (3.23).
In order to carry out the compactification we need to choose basis elements for the
various harmonic forms, which are listed in Table 4.1.

Now with all ingredients for the Kaluza-Klein reduction at hand the next task is
to expand type IIB supergravity modes into harmonics invariant under the orienti-
fold projection O = (−1)FLΩpσ

∗ of eq. (3.24). Among the NS-NS fields the anti-
symmetric two-tensor B has odd parity with respect to the operator (−1)FLΩp,
whereas the dilaton φ10 and the metric g10 are even [21]. Hence also the Kähler
form J which is proportional to the internal metric gi̄ is even.4 Therefore the
expansion of the NS-NS fields invariant under the involutive orientifold symmetry
(3.24) yields

J = vα(x) ωα , B = ba(x) ωa , φ10 = φ0 + φ(x) . (4.10)

Note that we have included a vacuum expectation value φ0 for the dilaton φ10, which
determines the string coupling constant gs by5

gs = eφ0 . (4.11)

3In the following for ease of notation the Calabi-Yau orientifold and the Calabi-Yau manifold
are both denoted by Y .

4J and gi̄ are the Kähler form and the Calabi-Yau metric in the ten-dimensional Einstein
frame.

5In the following we set gs = 1. In the ten-dimensional supergravity action (4.3) the dimension-
less constant gs can be absorbed into the coupling constant κ if G(p) is rescaled accordingly.
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space basis dimension space basis dimension

H
(1,1)

∂̄,+
(Y ) ωα α = 1, . . . , h1,1

+ H
(1,1)

∂̄,− (Y ) ωa a = 1, . . . , h1,1
−

H
(2,2)

∂̄,+
(Y ) ω̃α α = 1, . . . , h2,2

+ H
(2,2)

∂̄,− (Y ) ω̃a a = 1, . . . , h1,1
−

H3
+(Y ) αα̂, β

α̂ α̂ = 1, . . . , h2,1
+ H3

−(Y ) αâ, β
â â = 0, . . . , h2,1

−

H
(2,1)

∂̄,+
(Y ) χα̃ α̃ = 1, . . . , h2,1

+ H
(2,1)

∂̄,− (Y ) χã ã = 1, . . . , h2,1
−

H
(1,2)

∂̄,+
(Y ) χ̄α̃ α̃ = 1, . . . , h2,1

+ H
(1,2)

∂̄,− (Y ) χ̄ã ã = 1, . . . , h2,1
−

H
(3,0)

∂̄,+
(Y ) – 0 H

(3,0)

∂̄,− (Y ) Ω 1

H
(0,3)

∂̄,+
(Y ) – 0 H

(0,3)

∂̄,− (Y ) Ω̄ 1

Table 4.1: Cohomology basis of the Calabi-Yau orientifold Y

Analogously to the NS-NS fields the RR fields are also expanded into appropri-
ate harmonic forms. For Calabi-Yau orientifolds with O3/O7-planes the RR zero-
form C(0), four-form C(4) and eight-form C(8) are even with respect to the operator
(−1)FLΩp and the two-form C(2) and six-form C(6) are odd [21,40]. As a consequence
the RR fields enjoy the expansion

C(0) = l(x) , C(8) = l̃(2)(x) ∧ Ω ∧ Ω̄∫
Y

Ω ∧ Ω̄
,

C(2) = ca(x) ωa , C(6) = c̃(2)
a (x) ∧ ω̃a ,

C(4) = Dα
(2)(x) ∧ ωα + V α̂(x) ∧ αα̂ + Uα̂(x) ∧ βα̂ + ρα(x) ∧ ω̃α .

(4.12)

In the effective four-dimensional theory vα(x), ba(x), φ(x), ρα(x), ca(x) and l(x) are

scalar fields, V α̂(x) and Uα̂(x) are vector fields, and l̃(2)(x), c̃
(2)
a (x) and Dα

(2)(x) are
two-form tensor fields.

In addition to the above fields we have complex scalars, which arise from the
complex structure deformations of the internal Calabi-Yau orientifold space. For
the case of O3/O7 orientifold compactifications the complex structure deformations

are in one-to-one correspondence with the elements of H
(2,1)

∂̄,− (Y ) [19, 113], and we

denote the corresponding four-dimensional scalar fields by zã. To lowest order a
complex structure deformation changes the internal Calabi-Yau metric (4.9) by

δgı̄̄(z
ã) = − i

‖Ω‖2
zã χã ı̄jk Ω̄jklgl̄ , δgij(z̄

ã) =
i

‖Ω‖2
z̄ã χ̄ã i̄k̄ Ω̄k̄l̄gjl̄ , (4.13)

where ‖Ω‖2 = 1
3!
ΩijkΩ̄

ijk.
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multiplet multi. bos. fields multiplet multi. bos. fields

gravity 1 gµν chiral h1,1
− (ba, ca)

vector h2,1
+ V α̂

µ chiral h1,1
+ (ρα, v

α)

chiral 1 (l, φ) chiral h2,1
− zã

Table 4.2: N = 1 multiplets

The resulting four-dimensional N = 1 supergravity spectrum of the O3/O7
orientifold model is summarized in Table 4.2. Note that in this table only the
physical degrees of freedom are listed, i.e. the duality conditions (4.2) are taken
into account. In four dimensions this duality relates a massless scalar to a massless
two-form or a gauge boson to its magnetic dual. In terms of the fields given in
eqs. (4.12) the duality (4.2) corresponds to the dual pairs l̃(2)(x) ∼ l(x), c̃

(2)
a (x) ∼

ca(x), Dα
(2)(x) ∼ ρα(x), V α̂(x) ∼ Uα̂(x).

4.3.2 Democratic low energy effective action

In this section we want to derive the effective four-dimensional action for the bosonic
bulk spectrum of Calabi-Yau orientifolds with O3/O7 planes. Instead of computing
the effective action for only the physical degrees of freedom [21], we choose to com-
pute the four-dimensional effective action in the democratic formulation [40]. This
means we seek an action in four dimensions which describes both the fields l(x),

ca(x), ρα(x), V α̂(x) and their dual partners l̃(2)(x), c̃
(2)
a (x), Dα

(2)(x) simultaneously.
Then the equations of motion of this democratic action need to be supplemented
by the duality conditions of these fields. The advantage of this formulation is that
it facilitates to couple D-branes to this democratic bulk theory because D-branes
generically couple to all RR forms.

In order to compute the effective action for the massless four-dimensional fields
arising from the Calabi-Yau orientifold compactification on Y we insert the mass-
less Kaluza-Klein modes (4.10) and (4.12) into the ten-dimensional democratic su-
pergravity action (4.3) and then in a second step by performing the internal six-
dimensional part of the ten-dimensional integral in (4.3). This procedure yields
an effective four-dimensional action, which, however, is not given in the Einstein
frame. In order to cast the four-dimensional action in the Einstein frame one needs
to perform a Weyl rescaling of the metric (4.9)

η̂ =
6

K
eφ/2 η , ĝ = eφ/2 g . (4.14)

Then the effective four-dimensional action Weyl-rescaled to the Einstein frame is
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found to be

SE
Bulk =

1

2κ2
4

∫ [
−R ∗4 1 + 2Gãb̃dz

ã ∧ ∗4dz̄
b̃ + 2Gαβdvα ∧ ∗4dv

β

+
1

2
d(lnK) ∧ ∗4d(lnK) +

1

2
dφ ∧ ∗4dφ+ 2e−φGabdb

a ∧ dbb

+
1

4
e2φdl ∧ ∗4dl + eφGab(dc

a − ldba) ∧ ∗4(dc
b − ldbb)

+
9

4K2
Gαβ

(
dρα −Kαbcdb

b ∧ cc
)
∧ ∗4

(
dρβ −Kβdedb

d ∧ ce
)

(4.15)

+
1

4
e−2φ

(
dl̃(2) + dba ∧ c̃(2)

a

)
∧ ∗4

(
dl̃(2) + dbb ∧ c̃(2)

b

)
+

1

16
e−φGab

(
dc̃(2)

a −Kacγdb
c ∧Dγ

(2)

)
∧ ∗4

(
dc̃

(2)
b −Kbdδdb

d ∧Dδ
(2)

)
+
K2

36
GαβdDα

(2) ∧ ∗4dD
β
(2)

+
1

4
Bα̂β̂dV α̂ ∧ ∗4dV

β̂ − 1

4
C α̂β̂dUα̂ ∧ ∗4dUβ̂ −

1

2
A α̂

β̂
dUα̂ ∧ ∗4dV

β̂

]
.

κ4 is now the four-dimensional gravitational coupling constant related to the ten-
dimensional coupling constant κ10 by κ4 = κ10 vol(Y )−1/2. The triple intersection
numbers Kαβγ and Kabγ, the metrics Gab, Gαβ and Gãb̃, the matrices A α̂

β̂
, Bα̂β̂ and

C α̂β̂, and K arise from certain integrals over the internal Calabi-Yau space Y . Their
definitions are spelled out in appendix A.7.

In the four-dimensional democratic action (4.15) we could now impose the (di-
mensional reduced) duality condition (4.2) by adding Lagrangian multiplier terms
and then integrate out the redundant degrees of freedom as demonstrated in ap-
pendix A.9. Depending on whether one eliminates the space-time two-forms or
their dual scalars, one obtains the effective orientifold action of ref. [21] either in
terms of chiral multiplets or in terms of linear multiplets [21,114,115]. However, as
there arise additional couplings of the D-brane fields to the RR forms, we postpone
this dualization procedure until we have added the D-brane effective action to the
orientifold bulk theory.

Before this section is concluded let us pause to consider the mass scales relevant
so far [111, 116]. A priori in string theory the only parameter is α′ with dimension

[length]2. It gives rise to the string scale Ms ∼ α′−1/2, which is the mass scale for
the massive modes in the tower of string excitations. Therefore Ms is a natural
cut-off scale for the low energy effective description of the massless string modes.
On the other hand in order to treat string theory perturbatively such that the
low energy effective action (4.3) yields a reliable description, string theory must be
weakly coupled. This in turn implies for the string coupling constant gs to satisfy
gs � 1, which due to φ0 = ln gs is a condition on the vacuum expectation value φ0

of the ten-dimensional dilaton φ10. In this weakly coupled regime one finds with
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κ10 ∼ gsα
′2 for the ten-dimensional Planck mass M

(10)
p = κ10

−1/4 the relation

M (10)
p �Ms . (4.16)

This confirms that Ms is indeed a good cut-off scale for the ten-dimensional effective
supergravity action (4.3).

The compactification on the Calabi-Yau orientifold Y introduces yet another
scale, namely the Kaluza-Klein scale MKK, which is the mass scale for the tower of
the massive Kaluza-Klein modes. In terms of the ‘radius’ R of the internal space,
i.e. vol(Y ) ∼ R6, the Kaluza-Klein masses are of the order MKK ∼ R−1. In order
to be able to treat the internal manifold semi-classically and in order for string
winding modes to be irrelevant it is necessary to work in the large radius limit.
This implies that the string length

√
α′ must be small compared to the size of the

internal compactification space, that is to say
√
α′ � R. As κ4 ∼ κ10R

−3 the
four-dimensional Planck scale M

(4)
p is given by

M (4)
p ∼ R3

gs α′
2 . (4.17)

Altogether one finds for a regime, where the low energy effective description (4.15)
is applicable, that the discussed mass parameters obey

MKK �Ms �M (4)
p . (4.18)

4.4 Normal coordinate expansion

In section 3.1 we have described the Kaluza-Klein reduction of the ten-dimensional
field theory to an effective four-dimensional field theory. In this thesis, however, in
addition to the bulk action we also want to discuss the effective action of D-branes.
In principal localized sources such as D-branes and O-planes cannot simple be added
to the bulk theory, as they cause a back-reaction to the bulk geometry and hence
also alter the Kaluza-Klein reduction alluded in section 3.1. However, in this thesis
we consider the localized sources in the probe limit. That is we add the D-branes
and O-planes and neglect the back-reaction to geometry. This approach is valid
as long as the localized sources are added in a controlled fashion that is to say in
a way such that the consistency conditions of section 3.3.2 are fulfilled. Secondly,
the internal Calabi-Yau space needs to be large enough such that back-reaction to
geometry only effects the vicinity of the localized sources and not the whole internal
bulk space.

In the orientifold Calabi-Yau limit under consideration the O-planes arise as the
fixed point locus of the involution σ. Even though these O-planes contribute tension
and hence also trigger a back-reaction to geometry, they are not dynamical objects
by themselves and hence do not give rise to additional four-dimensional effective
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fields [19]. On the other hand as argued in section 2.2 D-branes are dynamical objects
which (again in the probe limit) are described by the effective action introduced in
section 2.3.

In the process of performing a Kaluza-Klein reduction as performed in the pre-
vious section there appear in addition to the Kaluza-Klein modes of the bulk theory
also the Fourier modes of the D-brane worldvolume fields. The D-brane worldvol-
ume gauge boson Kaluza-Klein-reduced along the lines of the bulk fields yields as the
massless modes the four-dimensional vector boson and possibly Wilson line moduli
fields arising in the case of non-trivial fundamental groups for the internal D-brane
cycle. The other D-brane fields parametrize deformations of the embedding of the
D-brane into the bulk theory. That is to say we start with an ansatz for the D-brane
configuration given by the ‘embedding map’ ϕ : W ↪→ M9,1 of the worldvolume W
into the bulk theory as discussed in section 2.3. In the bulk theory this corresponds
to choosing the ground state background metric (3.2). But in order to capture
all the fields arising from the space-time filling D-branes one also has to allow for
perturbations to the ‘background map’ ϕ, namely

ϕ→ ϕ+ δϕ . (4.19)

The normal coordinate expansion then amounts to expressing a general fluctua-
tion δϕ in terms of a vector field in the normal direction of the worldvolume of
the D-brane. This procedure is further discussed in appendix A.8. The normal
coordinate expansion yields the kinetic terms for the fields parametrizing the fluctu-
ations around the ‘background embedding’ ϕ. Now for obtaining an effective four-
dimensional description of the massless modes one has to perform a Kaluza-Klein
reduction of these kinetic terms to four dimensions.

In the above analysis we have only discussed the kinetic terms arising from the
D-branes. In principal there are also additional potential terms arising from obstruc-
tions to deformations in the normal direction due to the neglected back-reaction to
geometry and due to higher order obstruction to the deformations [98, 117]. As we
go along some of these potential terms are derived by means of supersymmetry.

4.5 Calabi-Yau orientifolds with D3-branes

Now we turn to the discussion of the low energy effective action of the massless
D3-brane spectrum. The first task is to derive the four-dimensional effective action
for the bosonic fields which are obtained by a normal coordinate expansion and a
subsequent Kaluza-Klein reduction of the Dirac-Born-Infeld action (2.6) and the
Chern-Simons action (2.9) or, as adequate for a stack of D3-branes, from the re-
duction of the non-Abelian generalized actions (2.11) and (2.13). We identify the
bosonic components of the D3-brane ‘matter fields’. Finally the effective D3-brane
action is combined with the bulk and is cast into the standard N = 1 supergravity
form introduced in section 4.2.
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4.5.1 Bosonic D3-brane action

The bosonic D3-brane action consists of the Dirac-Born-Infeld action and the Chern-
Simons action. First the terms resulting from the Dirac-Born-Infeld action are
discussed. For simplicity we start with the Abelian action (2.6) and then include
the modifications which are necessary to implement the non-Abelian nature of a
stack of D3-branes.

In order to derive the kinetic terms resulting from the action (2.6) we first need
to evaluate the pullback of the metric (4.9) and of the anti-symmetric two-tensor B
to the worldvolume W of the D3-brane in a way that captures the dynamics of the
D3-brane. This is achieved by the normal coordinate expansion of section 4.4 with
the technical details collected in appendix A.8. Here we apply the pullback formulae
(A.76) to the metric and (A.77) to the two-form field B which yield up to second
order in derivatives6

ϕ∗g10 = η̂µνdx
µdxν + ĝmnDµφ

mDνφ
ndxµdxν + . . . ,

ϕ∗B = BmnDµφ
mDνφ

ndxµdxν + . . . .
(4.20)

Note that in this expansion many terms of the formulae (A.76) and (A.77) do not
appear due to the product ansatz (4.9) and due to the form of the expansion of the
B field according to (4.10).

The next task is to expand the square root of the determinant in the Dirac-Born-
Infeld action (2.6) by using the Taylor series√

det (A + tB)√
det A

= 1 +
t

2
tr A−1B +

t2

8

[(
tr A−1B

)2 − 2 tr
(
A−1B

)2]
+ · · · . (4.21)

Here according to (4.20) and (2.6) one sets

A = −ηµν , B = −ĝmnDµφ
mDνφ

n −BmnDµφ
mDνφ

n + `Fµν , (4.22)

and by just keeping terms up to second order in derivatives one obtains the kinetic
terms for the D3-brane fields. However, before we perform this step let us comment
on the modifications necessary for a stack of D3-branes.

Instead of applying a normal coordinate expansion to the Abelian Dirac-Born-
Infeld action (2.6) the same techniques are adopted to the non-Abelian Dirac-Born-
Infeld action (2.11). The non-Abelian nature of the φ and F are taken into account
by utilizing a non-Abelian Taylor expansion for the background fields [66, 77, 79],
which yields for the determinant of QM

N in the non-Abelian Dirac-Born-Infeld action
[39,51]√

detQM
N = 1 +

i

2`
[φm, φn]φp∂pBnm +

1

4`2
ĝmnĝpq[φ

p, φm][φn, φq] + . . . , (4.23)

6By slight abuse of notation the worldvolume indices a, b of D3-brane are identified with the
indices µ, ν of the space-time manifold.
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where . . . denotes terms which vanish after taking the symmetrized trace in the
action (2.11).7 Assembling all terms we arrive after Weyl-rescaling with (4.14) at
the action in the four-dimensional Einstein frame [51]

SE
DBI = −µ3

∫
d4ξ
√
− det η tr

(
36

K2
1− `2

4
e−φFµνF

µν

+
3

K
gmnDµφ

mDµφn +
9 eφ

K2`2
gmngpq [φm, φp][φq, φn]

)
, (4.24)

where for the D3-brane coupling constant the BPS relation (2.10) has been inserted.
The first term, not containing any derivatives, is the NS-NS tadpole of the stack
of D3-branes. As we will see in the next two paragraphs it is compensated in the
supersymmetric case due to the presence of O3-planes. Then there is the standard
kinetic term for the D3-brane fields φ and the kinetic term for the U(N) field strength
F . Finally there appear quartic couplings of φ, which vanish in the Abelian limit of
a single D3-brane.

Our next task is to expand the non-Abelian Chern-Simons action (2.13) for
which we need the pull-back formula (A.77) and as before the non-Abelian nature
of the D3-brane fields with the symmetrized trace over appropriate non-commuting
quantities must be taken into account.8 Altogether this yields the expanded Chern-
Simons action in the four-dimensional Einstein frame [39]

SE
CS =µ3

∫
d4ξ
√
− det η tr

(
36

K2
1

)
+
µ3

4

∫
tr (φmDµφ

n)ωα mn dxµ ∧ dDα
(2) +

µ3`
2

2

∫
l tr (F ∧ F ) .

(4.25)

The first term in (4.25) requires some further explanation. Recall that the presence
of localized sources such as D3-branes actually requires a modification of the metric
ansatz (4.9) by including a non-trivial warp factor (A.55). This warped ansatz is
valid if the tadpole cancellation conditions of section 3.3.2 are fulfilled [17]. However,
as argued in appendix A.6 in the large radius limit the warp factor approaches 1.
But the analysis of the warped compactification tells us that for a consistent setup
the appearance of the warp factor requires the simultaneous introduction of a flux
parameter α for the self-dual five-form field strength G(5) as stated in eq. (A.56).
This parameter enter also in the effective D3-brane action via the RR couplings
in the Chern-Simons action (2.13). In the large radius regime α becomes constant
according to (A.59) and generates the first term in (4.25) as a remnant of the warped
ansatz (A.55).

7The non-Abelian enhancement of EMN = g10MN +BMN to PMN as defined in eq. (2.12) does
not give a contribution at the order considered in this expansion.

8c.f. section 2.3.2.
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Now we can combine the Dirac-Born Infeld action (4.24) and the Chern-Simons
action (4.25) to arrive at

SE
bos =− µ3`

2

4

∫
d4ξ
√
− det η e−φ trF µνFµν +

µ3`
2

2

∫
l tr (F ∧ F )

+ µ3

∫
d4ξ
√
− det η tr

(
3

K
gmnDµφ

mDµφn

)
+
µ3

4

∫
tr (φmDµφ

n)ωα mn dxµ ∧ dDα
(2)

− µ3

∫
d4ξ
√
− det η tr

(
9 eφ

K2`
gmngpq[φ

m, φp][φq, φn]

)
.

(4.26)

Note that the tadpole terms in (4.24) and (4.25) exactly cancel each other as a
consequence of expanding around a consistent background. The computed action
(4.26) for a stack of N D3-branes contains the standard kinetic term and Θ-angle
term for U(N) field strength F . The next terms is the kinetic term for the six real
scalar matter fields φn transforming in the adjoint representation of U(N). These
matter fields couple to the bulk RR two-form Dα

(2) and appear in the non-Abelian
quartic couplings.

4.5.2 Bosonic D3-brane action in chiral coordinates

Since the φm are the scalar components of the N = 1 chiral multiplets given in
Table 3.1 they have to combine to complex variables. Then we also need to rewrite
the action (4.26) in terms of these complex fields. Or in other words we have to
find the complex structure compatible with N = 1 supersymmetry. From the action
(4.26) we see that the σ-model metric of the φm coincides with the Calabi-Yau metric
gmn. Thus a natural guess is to choose the complex structure J of Y also as the
complex structure for the σ-model metric of the low energy effective action. For
fixed complex structure we just rewrite all equations in terms of complex indices,
i.e. we choose a basis in which the complex structure J is block diagonal

J =

(
+i1

−i1

)
. (4.27)

Including the complex structure deformations to lowest order we have to perturb J
according to [118]

J̃ (z) = J + δJ (z) =

(
+i1 zã℘ã

z̄ã℘̄ã −i1

)
with ℘ã

i
̄ =

1

‖Ω‖2
Ω̄iklχã kl̄ , (4.28)

where ℘ã is an element of H1
+(Y,TY ) related to the basis elements χã of H

(2,1)

∂̄,− (Y )
defined in Table 4.1.
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As we perturb the complex structure J to J̃ the eigenvectors of J are also
modified. To first order the perturbed eigenvectors read(

φ
0

)
→
(

φ
− i

2
z̄ã℘̄ãφ

)
,

(
0
φ̄

)
→
(

i
2
zã℘ãφ̄
φ̄

)
, (4.29)

with φ a vector of T(1,0)Y and φ̄ a vector of T(0,1)Y with respect to the fixed complex
structure J . Furthermore ℘ã maps a tangent vector of type (0, 1) to a tangent vector
of type (1, 0) and ℘̄ã vice versa. Hence the complex structure deformations act (up
to first order) on the total vector φn∂n = φi∂i + φ̄̄∂̄ in component notation as

φi → φi +
i

2
zã℘ã

i
̄ φ̄

̄ , φ̄̄ → φ̄̄ − i

2
z̄ã℘̄ã

̄
l φ

l . (4.30)

Now we are ready to rewrite the action (4.26) in terms of the complex fields
φi and simultaneously include the complex structure deformations zã up to linear
order. For the kinetic term of the ‘matter fields’ φ the target-space metric gmn

and the fields φn need to be expressed in terms of complex coordinates. Then the
complex structure deformations zã are included to linear order by perturbing the
metric gi̄ with eq. (4.13) and by substituting the complex ‘matter fields’ φi by
eq. (4.30). Altogether these steps amount to [39]

1

2
gmnDµφ

mDµφn → gi̄Dµφ
iDµφ̄̄ = −ivα(x)ωα i̄Dµφ

iDµφ̄̄ , (4.31)

where in the last step we also used gi̄ = −ivα(x)ωα i̄. The covariant derivatives are
defined as

Dµφ
i = Dµφ

i +
i

2
∂µz

â(χâ)
i
l̄ φ̄

l̄ , Dµφ̄
̄ = Dµφ̄

̄ − i

2
∂µz̄

â(χ̄â)
̄
l φ

l , (4.32)

and hence introduce additional (derivative) couplings to the complex structure de-
formations zã. Note that the definition of the covariant derivative D contains both
a connection of the gauge group U(N) and the newly added connection to include
complex structure fluctuations zã.

Similarly, the derivative couplings of φ to the bulk RR two-forms Dα
(2) are mod-

ified accordingly

tr (φmDµφ
n)ωα mn dxµ ∧ dDα

(2) → tr
(
φiDµφ̄

̄ − φ̄̄Dµφ
i
)
ωα i̄ dxµ ∧ dDα

(2) , (4.33)

whence there also appear couplings between complex structure deformations zã, the
‘matter fields’ φ and the RR two-forms Dα

(2).

The final chore is to express the non-Abelian quartic terms in the action (4.26)
in terms of complex chiral variables

gmngpq[φ
m, φp][φq, φn] → 2gi̄gkl̄[φ

i, φk][φ̄l̄, φ̄̄] + 2gi̄gkl̄[φ
k, φ̄̄][φi, φ̄l̄] . (4.34)
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Note that we have not included any dependence on the complex structure in this
expression, simply because we have performed the Kaluza-Klein reduction only to
fourth order in φn, which are considered to be small. Due to the linear approximation
of the complex structure deformations in eq. (4.30), zã is also taken to be small and
hence the inclusion of the complex structure in the quartic terms would not be
consistent with the order of the Kaluza-Klein reduction.

Finally, substituting eqs. (4.31) and (4.34) into the D3-brane action (4.26) yields
in terms of the complex fields φi and the complex structure deformations zã

SE
bos =− µ3`

2

4

∫
d4ξ
√
− det η e−φ trF µνFµν +

µ3`
2

2

∫
l tr (F ∧ F )

+µ3

∫
d4ξ
√
− det η tr

(
6i

K
vαωα i̄Dµφ

iDµφ̄̄

)
(4.35)

+
µ3

4

∫
tr
(
φiDµφ̄

̄ − φ̄̄Dµφ
i
)
ωα i̄dx

µ ∧ dDα
(2)

−µ3

∫
d4ξ
√
− det η tr

[
18 eφ

K2`2

(
gi̄gkl̄[φ

i, φk][φ̄l̄, φ̄̄] + gi̄gkl̄[φ
k, φ̄̄][φi, φ̄l̄]

)]
.

Now this action has to be added to the democratic bulk action (4.3) and in order
to obtain a conventional effective action the duality conditions (4.2) must be im-
posed to eliminate redundant degrees of freedoms. This is achieved by applying the
techniques described in appendix A.9 to the two-forms l̃(2), c̃

(2)
a and Dα

(2) succinctly.

The resulting low energy effective action is reads [39]

SE
D3 =

1

2κ2
4

∫ [
− ∗4 R + 2Gãb̃dz

ã ∧ ∗4dz̄
b̃ + 2Gαβdvα ∧ ∗4dv

β

+
1

2
d(lnK) ∧ ∗4d(lnK) +

1

2
dφ ∧ ∗4dφ+

e2φ

2
dl ∧ ∗4dl

+
12i

K
κ2

4µ3 v
αωα i̄ trDφi ∧ ∗4Dφ̄̄

+ 2eφGabdb
a ∧ ∗4db

b + 2eφGab (dca − ldba) ∧ ∗4

(
dcb − ldbb

)
+

9

2K2
Gαβ

(
dρα −Kαbcc

bdbc + µ3κ
2
4 ωα i̄ tr

(
φ̄̄Dφi − φiDφ̄̄

))
∧

∗4

(
dρβ −Kβabc

adbb + µ3κ
2
4 ωα i̄ tr

(
φ̄̄Dφi − φiDφ̄̄

))
+ κ2

4µ3`
2 e−φ trF ∧ ∗4F + κ2

4µ3`
2 l trF ∧ F

+
1

2
(ImM)α̂β̂dV α̂ ∧ ∗4dV

β̂ +
1

2
(ReM)α̂β̂dV α̂ ∧ dV β̂

− ∗4
36κ2

4µ3e
φ

K2`2
tr
(
gi̄gkl̄[φ

i, φk][φ̄l̄, φ̄̄] + gi̄gkl̄[φ
k, φ̄̄][φi, φ̄l̄]

)]
. (4.36)

Note that the D3-brane action (4.35) contains a coupling to the space-time two-
forms Dα

(2). Eliminating these two-forms amounts to a shift of the derivative of the
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dual scalars ρα according to

∂µρα → ∂µρα + µ3κ
2
4 ωα i̄ tr

(
φ̄̄Dµφ

i − φiDµφ̄
̄
)
. (4.37)

This modification to the derivatives ∂µρα was also introduced in ref. [32], where it
was argued to emerge from a modified five-form Bianchi identity due to the source
terms of the charged D3-branes. In our analysis the enhancement of these derivatives
arise naturally from RR couplings of the Chern-Simons action (2.13) to the space-
time two-forms Dα

(2). Furthermore, here the modification also includes couplings to
the complex structure deformations.

4.5.3 N = 1 supergravity description

In the previous section the derivation of the effective action for the D3-branes in
Calabi-Yau orientifolds is sketched. The resulting four-dimensional bosonic low en-
ergy effective supergravity action is recorded in eq. (4.36). From the general consid-
eration about supersymmetry in chapter 2 we already know that the derived action
exhibits N = 1 supersymmetry, and therefore it must be possible to cast the action
into the standard N = 1 supergravity form reviewed in section 4.2.

In order to specify the Kähler potential in the standard form, we must first
identify the correct Kähler variables, which are the lowest components in the N = 1
chiral multiplets. Then in terms of these variables the metric of the scalar fields in
(4.36) becomes manifest Kähler. Geometrically this step corresponds to identifying
the correct complex structure of the Kähler manifold, which is the target space of the
scalar fields. We know already that the metric Gãb̃ of the complex structure moduli
fields zã defined in (A.67) is Kähler [113], and thus the complex scalar fields zã are
good Kähler coordinates. As analyzed in section 4.5.2 the fields φi also serve as
Kähler coordinates. For the remaining fields it is not so obvious how they combine
to Kähler variables. However, guided by refs. [21,48,119] altogether the set of chiral
fields turn out to be τ , Ga, Tα, zã and φi, where τ , Ga and Tα are defined as

τ = l + ie−φ , Ga = ca − τba ,

Tα =
3i

2

(
ρα − 1

2
Kαbcc

bbc + µ3κ
2
4 ωα i̄ trφi

(
φ̄̄ − i

2
z̄ã℘̄ã

̄
lφ

l
))

+
3

4
Kα −

3i

4(τ − τ̄)
KαbcG

b(G− Ḡ)c .

(4.38)

In terms of these Kähler coordinates the Kähler potential for the supergravity
action (4.36) is found to be

K(τ,G, T, z, φ) = KCS(z)− ln [−i(τ − τ̄)]− 2 ln
[

1
6
K(τ,G, T, φ, z)

]
. (4.39)

Here K ≡ Kαβγv
αvβvγ is proportional to the volume of the internal Calabi-Yau space

and KCS(z) is the Kähler potential for the complex structure deformations [113]

KCS(z, z̄) = − ln

(
−i

∫
Y

Ω(z) ∧ Ω̄(z̄)

)
. (4.40)
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The Kähler potential (4.39) reproduces all the kinetic terms of (4.36). However, it
is given as an implicit expression since K is explicitly only known in terms of vα

which are no Kähler coordinates. Instead they are determined in terms of τ , Ga, Tα,
zã and φi by solving (4.38) for vα(τ,Ga, Tα, φ

i). Unfortunately, this solution cannot
be given explicitly in general.

Note that the definition of the Kähler variables strongly resembles those specified
in ref. [21] for the pure bulk theory. The new feature due to the presence of the stack
of D3-branes is the modification of the definition of the Kähler variables Tα by the
D3-brane ‘matter fields’ φi. This adjustment is due to the fact that the D3-branes
couple to the RR four-form C(4), which in the expansion (4.12) gives rise to the
four-dimensional scalar fields ρα and their dual two-form fields Dα

(2). Hence, after

eliminating the two-forms Dα
(2), the scalar fields ρα are shifted according to (4.37),

which is reflected in the definition of the chiral variables Tα.

In order to gain further insight into the implicit definition of the Kähler potential
(4.39) let us consider a simple model with a single (radial) Kähler modulus v1(x).
Then one has K = K111(v

1)3 and eq. (4.38) can be solved explicitly, namely

2 lnK = 3 ln
2

3

[
T1 + T̄1 +

3i

4(τ − τ̄)
K1ab(G

a − Ḡa)(Gb − Ḡb)

+ 3iµ3ω1 i̄ tr(φiφ̄̄) +
3

4
µ3

(
ω1 i̄z̄

ã℘̄ã
̄
l tr(φiφl) + h.c.

)]
. (4.41)

Note that in this case for frozen complex structure moduli fields zã the Kähler poten-
tial is of the sequestered form, which means that K splits into a sum K(τ,G, T, φ) =
Khidden(τ,G, T ) + Kobs(φ) [120], where Khidden depends only on the hidden sector
fields whereas Kobs on the observable fields. Moreover, for vanishing couplings Ga a
similar structure of the Kähler potential has been suggested in ref. [60, 111].

The kinetic terms for the N = 1 vector multiplets are governed by the holomor-
phic gauge kinetic coupling functions. From the action (4.36) we can read off the
gauge kinetic functions for the bulk vector fields V α̂ arising form the expansion of
the bulk RR four-form (4.12). Their gauge kinetic coupling matrix fα̂β̂ is given by

fα̂β̂ = − i

2
M̄α̂β̂

∣∣∣∣
zα̃=z̄β̃=0

. (4.42)

Here M denotes the N = 2 gauge kinetic matrix defined in (A.72). Due to the fact
that the subset zα̃ of bulk complex structure deformations of Calabi-Yau manifolds
is projected out by the orientifold involution σ, it is necessary to evaluate in the
N = 1 orientifold context the matrix M at zα̃ = z̄α̃ = 0. The coupling matrix does
not depend on the D3-brane ‘matter fields’ φi and appears already in this form in the
Calabi-Yau orientifold compactifications. In ref. [21] it is demonstrated that (4.42)
is indeed a holomorphic matrix depending on the complex Kähler coordinates zã.
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The holomorphic coupling constant for the four-dimensional U(N) gauge boson
arising from the U(N) gauge theory of the stack of D3-branes can be read off from
the action (4.26)

fD3 = −iκ2
4µ3`

2τ . (4.43)

Note that due to (2.10) the proportionality constant µ3`
2 is dimensionless. Further-

more recall that for a stack of N D3-branes the ‘matter fields’ φi transform in the
adjoint representation of U(N) and hence gives rise to a D-term potential. Using
(4.6) one determines

D = −6i

K
vαωα i̄[φ

i, φ̄̄] . (4.44)

According to eq. (4.5) this D-term gives rise to a non-Abelian scalar potential, which,
after using the Jacobi identity, can be identified with some of the quartic couplings
in the action (4.26). The remaining quartic terms are traced back to F-terms, which
appear from the non-Abelian superpotential

W (φ) =
µ3

`
Ωijk trφiφjφk . (4.45)

This superpotential can be checked explicitly by computing the scalar potential
via (4.5). Instead of going through this computation we explicitly rederive this
superpotential in section 5.1.3 and in section 5.3 by two independent methods.

4.6 Calabi-Yau orientifolds with D7-branes

The derivation of the bosonic D7-brane action proceeds in the same spirit as the
computation of the bosonic D3-brane action discussed in section 4.5. The worldvol-
ume of a space-time filling D3-branes appeared as a point in the compactification
space Y , whereas the space-time filling D7-brane wraps a non-trivial four-cycle SΛ

in the internal Calabi-Yau space Y , i.e. the worldvolume of the D7-brane is given
by W = R3,1 × SΛ. For simplicity in section 4.6.1 we concentrate on the compu-
tation of the effective action of single D7-brane and as a consequence need not to
expand the complicated non-Abelian D-brane actions described in section 2.3.2. In
section 4.6.2 we specify for the computed action the defining data of the underly-
ing N = 1 supergravity theory, and finally apply our results to simple examples in
section 4.6.3.

4.6.1 Bosonic D7-brane and bulk action

The first task is the reduction of the bosonic part of the Abelian Dirac-Born-Infeld
action (2.6) for the space-time filling D7-brane. Analogously to the D3-branes in
order to obtain the effective four-dimensional fields describing the fluctuations of the
internal cycle SΛ in the compactified six dimensions, we perform a normal coordinate
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expansion of the pullback metric ϕ∗g10 and the pullback two-form ϕ∗B as described
in appendix A.8. Applying (A.76) and (A.77) to the metric (4.9) and the two-from B
respectively we obtain up to second order in the fluctuations ζ in the string frame

ϕ∗g10 = η̂µν dxµdxν + 2ĝi̄ dyidȳ̄ + 2ĝi̄ ∂µζ
i∂ν ζ̄

̄ dxµdxν + . . . ,

ϕ∗B = ba ι∗ωa + bi̄ ∂µζ
i∂ν ζ̄

̄ dxµdxν + . . . .
(4.46)

Note that ζ and ζ̄ are vector fields in the normal bundle NSΛ and give rise to
the massless D7-brane ‘matter fields’. Now we insert eq. 4.46 into the Dirac-Born-
Infeld action (2.6) and expand the spare root of the determinant with the Taylor
series (4.21). This yields the effective four dimensional action of the Dirac-Born-
Infeld Lagrangian for the massless bosonic Kaluza-Klein modes in Table 3.3. The
next task is to insert the BPS calibration condition (3.28) and to rescale the resulting
action to the four-dimensional Einstein frame with (4.14). Then one obtains

SE
DBI =µ7`

2

∫ [
1

4

(
KΛ − e−φKΛabb

abb
)
F ∧ ∗4F +

12

K
iCIJ̄

α vαdaI ∧ ∗4dāJ̄

]
+µ7

∫ [
iLAB̄

(
eφ −Gabb

abb
)
dζA ∧ ∗4dζ̄

B̄ +
18

K2

(
eφKΛ −KΛabb

abb
)
∗4 1

]
,

(4.47)

with

LAB̄ =

∫
SΛ s̃A ∧ s̃B̄∫

Y
Ω ∧ Ω̄

,

CIJ̄
α =

∫
SΛ

ι∗ωα ∧ AI ∧ ĀJ̄ .

(4.48)

The details of the derivation of (4.47) are presented in ref. [40]. The first term in
(4.47) is the kinetic term of the field strength F of the U(1) gauge boson arising
from the gauge theory of the space-time filling part of the worldvolume W of the
D7-brane. The next two terms are the kinetic terms for the Wilson line moduli of
the D7-brane and the matter fields (see (3.40)). Finally the last term is a potential
term, which arises from the NS-NS tadpole of the D7-brane discussed in section 3.3.2.
Note that it is proportional to the inverse square of the gauge coupling and thus can
be identified as a D-term potential. In supersymmetric configurations this tadpole
term is canceled by the negative tension contributed from the orientifold planes.

The next step is to describe the couplings of the D7-brane fields to the bulk
RR fields as captured in the Chern-Simons action (2.9) for the D7-brane. The
normal coordinate expansion (A.77) applied to the anti-symmetric pullback tensors
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of (2.9) the four-dimensional effective Chern-Simons action

SCS = µ7

∫ (
1
4
dl̃(2) − d

(
c̃(2)
a ba

)
+ 1

2
Kαbcd

(
Dα

(2) b
bbc
))
∧ LAB̄

(
dζAζ̄B̄ − dζ̄B̄ζA

)
− µ7`

2

∫ [
1
2
CIJ̄

α dDα
(2) ∧ (daI āJ̄ − dāJ̄aI) + d

(
c̃
(2)
P −KαbPD

α
(2)b

b
)
∧ A

]
+ µ7`

2

∫
1

2

(
ρΛ −KΛabc

abb + 1
2
KΛabb

abbl
)
F ∧ F . (4.49)

Again the details of this computation are assembled in refs. [40,64]. However, there
is one aspect which should be pointed out. In the derivation of the Chern-Simons
action there seem to appear couplings between the field strength F and the field
strength of the bulk vector fields V α̂ and Uα̂, which appear in the reduction as
integrals of the general form ∫

SΛ

ι∗η ∧ θ , (4.50)

where η is a generic closed Calabi-Yau three-form and θ a generic closed one-form
of SΛ. However, all these integrals vanish [64], because there are no harmonic one-
forms in the ambient Calabi-Yau manifold Y .

The four-dimensional Chern-Simons action (4.49) contains the topological Yang-
Mills term F ∧ F , with a field dependent Θ-angle, which due to supersymmetry
must eventually be given as the imaginary part of the holomorphic gauge coupling
function. All the other terms in (4.49) involve the space-time two-forms l̃(2), c̃(2)

or D(2), resulting from the expansion of the ten-dimensional RR fields (4.12). The
third term in (4.49) is known as a Green-Schwarz term in that, after integrating by
parts, the U(1) field strength F couples linearly to the space-time two-forms c̃(2)

and D(2).

The final chore is now to add the D7-brane action (4.47) and (4.49) to the bulk
orientifold action (4.15). This yields the four-dimensional effective action of the
orientifold bulk theory combined with a D7-brane. However, the obtained action
is still in the democratic formulation introduced in section 4.3.2. Therefore the
equations of motion resulting from this action must be supplemented by the four-
dimensional analog of the duality conditions (4.2). In order to obtain a conventional
action, that is an action which does not contain the fields and their dual fields
simultaneously, the redundant degrees of freedom must be removed. This is again
achieved by applying the dualization procedure outlined in appendix (A.9) succinctly

to the dual pairs (l̃(2), l), (c̃
(2)
a , ca), (Dα

(2), ρα) and (Uα̂, V
α̂). In order to obtain a four-

dimensional effective action in terms of chiral multiplets we choose to eliminate the
space-time two-forms l̃(2), c̃

(2)
a , Dα

(2) and the vectors Uα̂ in favor of their dual scalars
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and vectors V α̂. The resulting four-dimensional effective bosonic action reads [40]

SE
D7 =

1

2κ2
4

∫ [
−R ∗4 1 + 2Gãb̃dz

ã ∧ ∗4dz̄
b̃ + 2Gαβdvα ∧ ∗4dv

β

+
1

2
d(lnK) ∧ ∗4d(lnK) +

1

2
dφ ∧ ∗4dφ+ 2eφGabdb

a ∧ ∗4db
b

+ 2iκ2
4µ7LAB̄

(
eφ + 4Gabb

abb
)
dζA ∧ ∗4dζ̄

B̄ +
24

K
κ2

4µ7`
2iCIJ̄

α vαdaI ∧ ∗4dāJ̄

+
e2φ

2

(
dl + κ2

4µ7LAB̄

(
dζAζ̄B̄ − dζ̄B̄ζA

))
∧

∗4

(
dl + κ2

4µ7LAB̄

(
dζAζ̄B̄ − dζ̄B̄ζA

))
+ 2eφGab

(
∇ca − ldba − κ2

4µ7b
aLAB̄

(
dζAζ̄B̄ − dζ̄B̄ζA

))
∧

∗4

(
∇cb − ldbb − κ2

4µ7b
bLAB̄

(
dζAζ̄B̄ − dζ̄B̄ζA

))
+

9

2K2
Gαβ

(
∇ρα −Kαbcc

bdbc − 1
2
κ2

4µ7Kαbcb
bbcLAB̄

(
dζAζ̄B̄ − dζ̄B̄ζA

)
+2κ2

4µ7`
2CIJ̄

α (aIdāJ̄ − āJ̄daI)
)
∧

∗4

(
∇ρβ −Kβabc

adbb − 1
2
κ2

4µ7Kβbcb
bbcLAB̄

(
dζAζ̄B̄ − dζ̄B̄ζA

)
+2κ2

4µ7`
2CIJ̄

β (aIdāJ̄ − āJ̄daI)
)

+ κ2
4µ7`

2
(

1
2
KΛ − 1

2
e−φKΛabb

abb
)
F ∧ ∗4F

+ κ2
4µ7`

2
(
ρΛ −KΛabc

aBb + 1
2
KΛabb

abbl
)
F ∧ F

+
1

2
(ImM)α̂β̂dV α̂ ∧ ∗4dV

β̂ +
1

2
(ReM)α̂β̂dV α̂ ∧ dV β̂

]
. (4.51)

As observed before the Chern-Simons action (4.49) contains also a Green-Schwarz

term involving the space-time two-forms c̃
(2)
P and Dα

(2). After removing these two-
forms in favor of their dual scalars these Green-Schwarz terms are responsible for
gauging an isometry of the Kähler target space manifold. Note that the bulk theory
has a set of global shift symmetries

ca → ca + θa , ρα → ρα +KαbcBbθc . (4.52)

In the presence of a D7-brane wrapped on the cycle SΛ one of these symmetries
is gauged due to the dualization of the Green-Schwarz term [121]. Therefore the
action (4.51) contains covariant derivatives for the charged fields cP and ρα, i.e.

∇ca = ∂µc
a dxµ − 4κ2

4µ7`δ
a
PA , ∇ρα = ∂µρα dxµ − 4κ2

4µ7`KαbP b
bA . (4.53)

In the next section we further examine the relevance of these gauge covariant deriva-
tives in the context of gauged isometries in N = 1 supergravity.
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4.6.2 N = 1 supergravity description

Just as in the case of the D3-brane Calabi-Yau orientifold compactifications we now
also want to describe the effective four-dimensional theory (4.51) of the D7-brane
Calabi-Yau orientifold compactification in the N = 1 supergravity language.

Similarly as in section 4.5.3 the first task is to identify the complex structure of
the target space Kähler manifold by specifying the set of Kähler variables [21, 40].
The result of this analysis shows that S, Ga, Tα, zã, ζA and aI are the appropriate
Kähler variables, where S, Ga, Tα are defined as

S = τ − κ2
4µ7LAB̄ζ

Aζ̄B̄ , Ga = ca − τba , (4.54)

Tα =
3i

2

(
ρα − 1

2
Kαbcc

bbc
)

+
3

4
Kα +

3i

4(τ − τ̄)
KαbcG

b(Gc − Ḡc) + 3iκ2
4µ7`

2CIJ̄
α aI āJ̄ ,

with τ = l + ie−φ. Note, however, that τ is not a Kähler variable anymore, but
instead is modified by the D7-brane ‘matter fields’ ζA to form the ‘new dilaton’ S,
which is a proper Kähler variable. The adjustment of the dilaton arises due to
the fact that the D7-brane worldvolume W couples via the ten-dimensional RR-
form C(8), or equivalently to the space-time two-form l̃(2) dual to the axion l in the
four-dimensional theory.

In terms of these Kähler coordinates the Kähler potential for the low energy
effective supergravity action is found to be [40]

K(S,G, T, z, ζ, a) = KCS(z)− ln
[
−i
(
S − S̄

)
− 2iκ2

4µ7LAB̄ζ
Aζ̄B̄

]
− 2 ln

[
1
6
K(S,G, T, ζ, a)

]
, (4.55)

where KCS(z) is the Kähler potential of the complex structure moduli zã defined in
eq. (4.40). As in the case of the D3-brane Calabi-Yau orientifold compactifications
it is in general not possible to express the Kähler potential explicitly in terms of
the Kähler variables. Instead K ≡ Kαβγv

αvβvγ is implicitly given in terms of the
Kaluza-Klein variables vα(S,G, T, ζ, a) as a function of S, Ga, Tα, ζA and aI [21,39,
40,48,119]. However, in section 4.6.3 we give two examples for a specific orientifold
compactification where the Kähler potential can be stated explicitly in terms of the
chiral variables.

The final chore in describing the effective theory (4.51) in terms of the N =
1 supergravity data is to specify the gauge sector. The gauge kinetic coupling
functions of the bulk vector fields are not effected by the presence of the D7-brane,
and their holomorphic coupling constant is still given in terms of the gauge kinetic
coupling matrix (4.42). Therefore we turn now to the discussion of the gauge kinetic
coupling function of the U(1) D7-brane gauge boson. If the D7-brane has no Wilson
line moduli aI , we readily extract from the action (4.51) using (4.54) the coupling
function

fD7 =
2κ2

4µ7`
2

3
TΛ , (4.56)
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which is clearly holomorphic in the chiral fields. As expected the gauge coupling of
the D7-brane is not the dilaton but the modulus controlling the size of the wrapped
four-cycle [122]. If, however, the internal brane cycle SΛ has one-forms, which give
rise to Wilson line moduli aI , the reduction of the D7-brane action (2.6) does not
reproduce the Wilson line term in the gauge kinetic coupling function (4.56) which
appears in the definition of TΛ (4.54). This mismatch has already been observed
in [123]. The reason for this seeming discrepancy is due to the fact, that the Dirac-
Born-Infeld action is only an effective description comprising the open string tree
level amplitudes [124]. Using a CFT approach, the open string one loop amplitudes
for toroidal orientifolds with branes are computed in ref. [124], and the analysis
shows that the missing quadratic Wilson line terms in the gauge kinetic coupling
function of the D7-brane vector fields do indeed appear at the open string one loop
level. In our case, we also expect that the coupling function (4.56) is corrected in
the presence of Wilson line moduli, and that the missing terms are also generated
at the one loop level of open string amplitudes.

We have seen that in the action (4.51) there appear also charged scalar fields
with respect to the U(1) gauge theory localized on the D7-brane. In terms the
corresponding charged Kähler variable is GP . Recall that this complex scalar arises
from the Kaluza-Klein reduction along the (1, 1)-form ωP which is dual to the four-
cycle SP in Table 3.2. By assembling the derivatives (4.53) the gauge covariant
derivative of chiral variable GP becomes

∇µG
P = ∂µG

P − 4κ2
4µ7`Aµ . (4.57)

Hence the holomorphic Killing vector of the associated gauged isometry is easily
determined to be

X = 4κ2
4µ7`∂GP . (4.58)

Gauged isometries in N = 1 supergravity theories give rise to D-terms according to
(4.6). Here the gauged shift symmetry generates the D-term

D =
12κ2

4µ7`

K
KPab

a =
12κ2

4µ7`

K

∫
SP

J ∧B , (4.59)

which can either be expressed in terms of KPa or in terms of the integral repre-
sentation over the four-cycle SP . Finally this D-term induces the D-term scalar
potential VD according to eq. (4.5)

VD =
108κ2

4µ7

K2 ReTΛ

(KPab
a)2 . (4.60)

Note that VD is minimized for ba = 0 where the D-term and VD itself vanish and
hence where one obtains a supersymmetric ground state.

Note that we have recovered the D-term, which we have derived in eq. (3.30)
by analyzing the D7-brane calibration conditions. The supergravity analysis, how-
ever, has also specified the field dependent proportionality constant in the expres-
sion (3.30).
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4.6.3 Instructive examples

In order to shed some more light on the structure of the implicitly defined Kähler po-
tential (4.55) we consider as a simple example a Calabi-Yau orientifold with h1,1

+ = 1,
i.e. we have a single harmonic two-form ωΛ with positive parity under the involu-
tion σ. By Poincaré duality we associate to ωΛ the four-cycle SΛ. Let us further
assume that this cycle SΛ is suitable to wrap a D7-brane. Then with a D7-brane
wrapped on SΛ we obtain a model with Kähler variables S, Ga, ζA, aI and a single
TΛ. This implies that K = KΛΛΛ(vΛ)3, and thus (4.54) can be solved for vΛ, i.e.

2 lnK = 3 ln

[
TΛ + T̄Λ −

3iKΛac(G
a − Ḡa)(Gc − Ḡc)

4(S − S̄ − 2κ2
4µ7LAB̄ζAζ̄B̄)

− 6iκ2
4µ7`

2CIJ̄
Λ aI āJ̄

]
+ const .

(4.61)
This expression is further simplified if there are no chiral multiplets Ga and aI ,
namely

K(S, TΛ, z, ζ) = KCS(z)− 3 ln
[
TΛ + T̄Λ

]
− ln

[
−i
(
S − S̄

)
+ 2iκ2

4µ7LAB̄ζ
Aζ̄B̄

]
.

(4.62)
The Kähler metric resulting from this Kähler potential is block diagonal in the
modulus TΛ and the brane fluctuations ζ. This particular feature of the Kähler
potential was already anticipated for D7-brane models in ref. [123], although we
stress that it does not hold in the general case (4.55).

As a second limit of (4.55) we consider the case h1,1
− = 0 and h1,1

+ = 3 with a
suitable four-cycle SΛ wrapped by a D7-brane. Then the Kähler variables of this
example are S, Tα, zã, ζA and aI with α = Λ, 1, 2. Moreover we suppose in analogy
to the six dimensional torus that CIJ̄

Λ = 0 and that KΛ12 is up to permutations the
only non-vanishing triple intersection number, i.e. K = 6KΛ12v

Λv1v2. Then as in the
previous example we can specify vα(S, Tα, ζ, a) explicitly and the Kähler potential
(4.55) becomes

K(S, T, z, ζ, a) = KCS(z)− ln
[
−i
(
S − S̄

)
+ 2iκ2

4µ7LAB̄ζ
Aζ̄B̄

]
+ ln

[
TΛ + T̄Λ

]
+ ln

[
T1 + T̄1 − 6iκ2

4µ7`
2CIJ̄

1 aI āJ̄
]

+ ln
[
T2 + T̄2 − 6iκ2

4µ7`
2CIJ̄

2 aI āJ̄
]
. (4.63)

We can expand this Kähler potential up to second order in the D7-brane fields ζ
and a, and obtain

K(S, TΛ, z, ζ, a) = KCS(z)− ln
[
−i
(
S − S̄

)]
+
∑

α=Λ,1,2

ln
(
Tα + T̄α

)
+
κ2

4µ7LAB̄

S − S̄
ζAζ̄B̄ − 3iκ2

4µ7`
2CIJ̄

1

T1 + T̄1

aI āJ̄ −
3iκ2

4µ7`
2CIJ̄

2

T2 + T̄2

aI āJ̄ . (4.64)

This expansion agrees with the result of ref. [37], where the Kähler potential of a
certain toroidal orientifold was derived to second order in the brane fields ζA and
the Wilson line moduli ai by computing string scattering amplitudes.
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4.7 Discussion

The computed Kähler potentials is the main result in this chapter. We observe that
the structure of the Kähler potential has in all cases the generic form

K = − ln

[
−i

∫
Y

Ω ∧ Ω̄

]
− ln [−i(τ − τ̄)]− 2 ln vol(Y ) , (4.65)

independently of the presence of D3- and/or D7-branes. However, the non-trivial
task for a specific setup is to determine the Kähler coordinates and their precise
relation to the holomorphic three-form Ω, to the dilation τ and to the volume vol(Y ).

The appearance of this generic Kähler potential can be justified by the following
argument. Let us assume that the theory also has a superpotential W . The kind
of superpotential we have in mind is linear in Ω and is expressed as an integral
over the internal space. These are the kind of superpotentials we encounter in the
next chapter. By supersymmetry we already know from eq. (4.8) that the gravitino
mass in the presence of a superpotential has the form m3/2 ∼ eK/2W . On the other
hand such a four-dimensional mass term can only arise from the kinetic term of
the ten-dimensional gravitino. The reduction of the ten-dimensional gravitino term,
however, generates schematically the four-dimensional gravitino mass term

m3/2 ∼
eφ/2

vol(Y )
√
−i
∫

Y
Ω ∧ Ω̄

W . (4.66)

In the ten-dimensional string frame the kinetic term of the gravitino comes with a
factor of e−2φ since it is a closed string tree-level amplitude. Rescaling to the ten-
dimensional Einstein frame yields a factor of e5/2φ, and hence altogether we obtain in
the Einstein frame the dilaton factor eφ/2. Compactifying the ten-dimensional theory
to four dimensions we integrate out the internal space and obtain the volume factor
vol(Y ). However, we need to Weyl rescale again to the four-dimensional Einstein
frame which according to (4.14) gives rise to an extra factor vol(Y )−2. Once again
Weyl rescaling explains the overall volume factor of vol(Y )−1. The dependence on
Ω is not so obvious. However, in the analysis we have implicitly assumed that
W does not contribute to all these rescalings. But this is not quite true since

W depends linearly on Ω, and hence W/
√
−i
∫

Ω ∧ Ω̄ is really the quantity which

does not participate in the rescaling. Therefore we also need to include the factor

1/
√
−i
∫

Ω ∧ Ω̄ in the gravitino mass term. This motivates the appearance of all

the factors in eq. (4.66) and hence due to m3/2 ∼ eK/2W also the generic form of
the Kähler potential (4.65).

Note that we have discussed the Kähler potentials in the lowest order in α′

and have not included any quantum corrections. Thus including these effects one
definitely expects further adjustments to the Kähler potential in eq. (4.65).
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Chapter 5

Background fluxes and
supersymmetry breaking

Up to now we have analyzed D-branes in Calabi-Yau orientifolds which yield aN = 1
supergravity description in the effective four-dimensional low-energy regime. The
computed effective actions describe the low energy dynamics of the massless bulk
moduli fields and the massless D-brane ‘matter fields’. These models introduced in
the previous chapter serve as the basic ingredients to engineer more general config-
urations, which ultimately lead to standard model like gauge groups.

However, for phenomenological viable setups eventually mechanisms for super-
symmetry breaking at low energy scales must be employed and in addition the
neutral bulk moduli fields need to be stabilized. The introduction of background
fluxes provides generically for both features [17, 29, 31, 41–49, 57, 58]. Hence in this
chapter we add non-trivial fluxes to the previous analysis and discuss their relevance
for supersymmetry breaking.

First of all in section 5.1 we turn on bulk background fluxes and analyze their
implications for D3-branes in Calabi-Yau orientifolds. In particular we compute
flux-induced soft-terms which in the limit were gravity is decoupled are phenomeno-
logical signatures for supersymmetry breaking. Complementary to the bulk back-
ground fluxes in section 5.2 we turn to the discussion of D7-brane fluxes in D7-brane
orientifold models. These fluxes are also capable to break supersymmetry and we
derive the corresponding D- and F-terms. Finally in section 5.3 we come back to the
general structure of D-brane superpotentials and their relation to the holomorphic
Chern-Simons theory of ref. [102].

5.1 D3-branes and bulk background fluxes

In this section we focus on spontaneous supersymmetry breaking due to non-trivial
bulk background fluxes in Calabi-Yau orientifolds with a stack of D3-branes. These
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background flux eigenvalue (p, q)-form eigenvalue

G̃+ ∗6G̃
+ = +iG̃ Ω ∗6Ω = −iΩ

G̃− ∗6G̃
− = −iG̃ χã ∗6χã = +iχã

¯̃G+ ∗6
¯̃G+ = −i ¯̃G+ χ̄ã ∗6χ̄ã = −iχ̄ã

¯̃G− ∗6
¯̃G− = +i ¯̃G− Ω̄ ∗6Ω̄ = +iΩ̄

Table 5.1: Imaginary and anti-imaginary self-dual fluxes and forms

fluxes generate non-vanishing F-term expectation values which break the computed
N = 1 supergravity action of section 4.5 spontaneously. Then in the limit where
gravity decouples, that is to say in the limit M

(4)
p →∞ with the gravitino mass m3/2

fixed, the supergravity reduces to a globally supersymmetric effective field theory
for the D3-brane ‘matter fields’, which is then broken by flux-induced soft-terms
[125–127]. Decoupling gravity is interesting from a phenomenological point of view
as in this limit one makes contact with standard model like scenarios, in which
the soft-terms reveal the spontaneous supersymmetry breaking of the underlying
supergravity theory. As a matter of fact in the minimal supersymmetric standard
model the appearance of soft-terms is crucial in order to allow for the embedding of
the standard model in this supersymmetric extension [128].

5.1.1 Bulk background fluxes

In order to set the stage for the discussion of supersymmetry breaking in orientifold
theories with space-time filling D3-branes we first introduce three-form background
fluxes in the bulk theory. Along the lines of ref. [17] we define the combined three-
form flux G̃ as

G̃ = F
(3)
bg − τHbg , (5.1)

with τ = l+ie−φ. F
(3)
bg is a non-trivial internal background flux for the field strength

F (3) = dC(2), whereas Hbg is a non-trivial internal background flux for the field
strength H = dB. In order to preserve four-dimensional Poincaré invariance only
background fluxes in the internal space are turned on. The equations of motions and
the Bianchi identities imply that F

(3)
bg and Hbg should be harmonic three-forms of the

Calabi-Yau manifold Y . Moreover, since C(2) and B have odd parity with respect
to the orientifold involution, the background flux G̃ corresponds to an elements of
H3
−(Y ).

As the internal Hodge-star operator ∗6 of the internal six-dimensional space Y
acting on three-forms squares to −1, the background fluxes G̃ decompose into an
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imaginary self-dual part G̃− and an anti-imaginary self-dual part G̃+ according to

G̃ = G̃+ + G̃− , ∗6G̃
± = ∓iG̃± . (5.2)

In Calabi-Yau threefolds the harmonic (p, 3 − p)-forms are also eigenforms of the
Hodge-star operator ∗6 and are specified in Table 5.1.1 Hence the background
fluxes G̃+ can be expanded into appropriate three-forms [17,111]

G̃+ = − 1∫
Y

Ω ∧ Ω̄

(
Ω I + χ̄ãG ãb̃Ib̃

)
, ¯̃G+ =

1∫
Y

Ω ∧ Ω̄

(
Ω̄ Ī + χãG ãb̃Īb̃

)
, (5.3)

with the inverse metric G ãb̃ of (A.67) and with

I(z̄, τ) =

∫
Y

Ω̄(z̄) ∧ G̃(τ) , Iã(z, z̄, τ) =

∫
Y

χã(z, z̄) ∧ G̃(τ) . (5.4)

In ten-dimensional type IIB supergravity the flux G̃ enters in the effective action
written in the Einstein frame as [17]

SE
flux =

1

4κ2
10

∫
eφ G̃ ∧ ∗10

¯̃G . (5.5)

The decomposition (5.2) allows us to rewrite (5.5) in terms of G̃+. Then the ten-
dimensional background flux term (5.5) corresponds in the four-dimensional effective
theory rescaled to the four-dimensional Einstein frame to the flux-induced scalar
potential V given by2

V =
18eφ

K2

∫
Y

G̃+ ∧ ∗6
¯̃G+ . (5.6)

This expression can be further rewritten by expanding the flux G̃+ into appropri-
ate anti-imaginary self-dual three-forms of the Calabi-Yau according to the expan-
sion (5.3). Then in terms of the integral representations (5.4) of the flux G̃ the
four-dimensional scalar potential becomes [17,21,46,48,111]

V = eK
(
|I|2 + G ãb̃ IãĪb̃

)
. (5.7)

In N = 1 string compactifications with background fluxes, such as orientifold
compactifications, this scalar potential (5.7) originates from the flux induced super-
potential [44, 46]

Ŵ (z, τ) =

∫
Y

Ω(z) ∧ G̃(τ) . (5.8)

1The eigenvalue can readily be computed by acting with the definition of the Hodge-star oper-
ator ∗6 on the local expression of a (p, 3− p)-form and by taking into account that the harmonic
forms in a Calabi-Yau threefold are always primitive.

2Actually there arises an additional topological term ∼
∫
Hbg ∧F (3)

bg . Consistency requires this
term to be canceled by Wess-Zumino like couplings of localized sources as discussed in section 3.3.2.
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For orientifold Calabi-Yau compactification with O3/O7-planes the Kähler covariant
derivatives of the superpotential (5.8) read [21,39]

DτŴ =
i

2
eφĪ + iGabb

abbŴ , DGaŴ = 2iGabb
bŴ ,

DTαŴ = −2
vα

K
Ŵ , DzãŴ = Iã .

(5.9)

The conditions for unbroken supersymmetry, namely DIŴ = 0, imply I = Iã =
Ŵ = 0. The relations I = Iã = 0 are fulfilled for vanishing imaginary-anti-self-dual
fluxes G̃, that is for G̃+ = 0, whereas Ŵ 6= 0 tells us that supersymmetry is broken
for non-vanishing imaginary-self-dual (0, 3)-fluxes. In the context of Calabi-Yau
orientifolds with D3-branes we come back to a detailed discussion of supersymmetry
breaking in section 5.1.3.

5.1.2 Flux-induced D3-brane couplings

To examine the effect of the bulk background fluxes introduced in the previous sec-
tion, we first derive the flux induced couplings to the D3-brane ‘matter fields’. In the
presence of non-trivial background fluxes G̃ the second term in the expansion (4.23)
couples to the background flux Hbg in (5.1) and yields in the non-Abelian Dirac-
Born-Infeld action (2.11) trilinear couplings to the ‘matter fields’ φn. Analogously
there is a contribution to these trilinear couplings in the non-Abelian Chern-Simons
action (2.13) arising from the background flux F

(3)
bg in (5.1). Altogether the flux-

induced trilinear terms in the effective D3-brane action become [39]

SE
tri,flux = −18µ3

`

∫
d4ξ
√
− det η

eφ

K2

(
G̃+

mnp trφnφmφp + h.c.
)
. (5.10)

In the spirit of section 4.5.2 we rewrite the trilinear terms in φn in terms of the
chiral variables φi. For fixed complex structure the trilinear coupling in (4.26) is
first rewritten with (5.3) as

G̃+
mnpφ

mφnφp → − 1∫
Y

Ω ∧ Ω̄

(
IΩijkφ

iφjφk + IãG ãb̃χ̄b̃ i̄k̄φ
iφ̄̄φ̄k̄

)
. (5.11)

However, in order to obtain an expansion up to fourth order in φi and zã we also need
to include the complex structure deformations zã linearly. Together with (4.30) and
(A.68) one obtains up to linear order in the complex structure deformations zã [39]

1

3!
Ωijkφ

iφjφk → 1

3!
(1 + kãz

ã)Ωijkφ
iφjφk ,

1

2!
χã ijk̄ φ

iφjφ̄k̄ → 1

2!
(1 + kb̃z

b̃ + k̄b̃z̄
b̃)χã ijk̄ φ

iφjφ̄k̄ ,
(5.12)
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and with (5.11) the trilinear couplings become linearly in the complex structure
deformations zã

SE
tri,flux = − iµ3

`

∫
d4ξ
√
− det η eK

(
I(1 + kãz

ã)Ωijkφ
iφjφk

+3IãG ãb̃(1 + kc̃z
c̃ + k̄c̃z̄

c̃)χ̄b̃ ı̄̄kφ̄
ı̄φ̄̄φk + h.c.

)
, (5.13)

where we inserted (5.12) into (5.11).

Recall that in the computation of the D3-brane action (4.26) the tadpole terms
in the Chern-Simons and the Dirac-Born-Infeld action canceled. This is the con-
sequence of expanding around a stable vacuum. However, if we want to include
imaginary-anti-self-dual fluxes G̃+ into the analysis this cancellation does not occur
anymore. Instead one expects small deviations, which also depend on the ‘matter
fields’ φi. In particular expanding these deviations to second order in φi generates
flux-induced masses for some of the ‘matter fields’ φi [39,52]. Since these masses are
interlinked to the back-reaction of geometry, which is not captured in our derivation,
it is hard to derive their precise form from the Kaluza-Klein reduction. However,
instead of just relying on the bosonic fields, we can also determine the masses of the
fermionic superpartners and then try to gain further insight into the structure of
these bosonic masses by using supergravity methods. Therefore we now come to the
discussion of the fermionic effective action and address the supergravity analysis in
section 5.1.3.

The kinetic terms and the interaction terms of the D3-brane fermions originate
from the supersymmetric version of the Dirac-Born-Infeld and the Chern-Simons
action discussed in section 2.3.3. The expansion of the super Dirac-Born-Infeld
action (2.15) and super Chern-Simons action (2.16) is now obtained by a normal
coordinate expansion of the D3-brane embedded into the ten-dimensional type IIB
superspace [105]. The non-Abelian version of the super Dirac-Born-Infeld and super
Chern-Simons action is not known yet. However, for a stack of N D3-branes one
can perform the normal coordinate expansion for the Abelian case and in a second
step adjust the expanded action to the non-Abelian U(N) case. Then this amounts
to rendering the resulting Lagrangian gauge invariant by including U(N) gauge
traces since the D3-brane fields transform in the adjoint representation of U(N).
In addition one expects the appearance of additional non-Abelian terms. Due to
the cyclic property of the gauge trace these extra terms, however, must contain
at least three (adjoint-valued) D3-brane fields. In this section we concentrate on
the derivation of the D3-brane fermionic kinetic terms and their background flux
induced masses. As all these terms are of second order in the D3-brane fields the
analysis is insensitive to this ambiguity arising at third order in the D3-brane fields.

The normal coordinate expansion for space-time filling D3-branes as described
above has been carried out in detail in ref. [50]. Here we use the result of this
computation for the bilinear fermionic D3-brane terms, which in the string frame
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reads

Ssf
ferm = −µ3

∫
d4ξ
√
− det η̂ tr

(
− i

2
e−φΘ̄ΓµDµΘ +

1

24
Θ̄ΓmnpΘ Im G̃+

mnp

)
. (5.14)

Here Θ(ξ) is the fermionic D3-brane fluctuation (3.36) and the covariant derivative
Dµ contains a spin connection and in the non-Abelian generalization also the gauge
connection of the U(N) gauge group.

In order to derive the kinetic terms for the fermionic fields χi and λ the expansion
(3.36) is inserted into the first term of eq. (5.14). After Weyl rescaling to the four-
dimensional Einstein frame one arrives at

SE
kin = −µ3

∫
d4ξ
√
− det η tr

(
i|Nχi|2

(
12

K
eφ

)
gi̄χ̄

̄σ̄µ∇µχ
i

− i

2
|Nλ|2

(
6

K
eφ/2

)(
λσµ∇µλ̄+ λ̄σ̄µ∇µλ

))
. (5.15)

Now we compare these terms with the kinetic terms of their bosonic superpartners
φi and Aµ. Due to N = 1 supersymmetry the target-space Kähler metric is the
same for both the fermionic and the bosonic fields in the chiral multiplets (c.f. (4.4)
and (4.7)). Similarly the real part of the gauge coupling constant (4.43) appears as
the coefficient of the kinetic term for the field strength F and for the gaugino λ.
Therefore supersymmetry allows us to determine the normalizations constants Nχi

and Nλ from (5.15), namely

Nχi =

√
2

2
e−φ/2 , Nλ =

√
K
6
`e−3/4φ . (5.16)

With the normalization constants at hand it is now possible to derive the flux
induced fermionic masses. The relevant interaction term in (5.14) contains the
combinations G̃+, which we expand according to eq. (5.3). Then inserting (3.36)
and (5.16) into the second term of (5.14) we get the fermionic masses in the four-
dimensional Einstein frame [39]

SE
mass = −

∫
d4ξ
√
− det η eK̂/2

(
µ3`

2e−φI λλ+
6iµ3

K
IãG ãb̃gil̄ ℘̄ã

l̄
j χ

iχj + h.c.

)
.

(5.17)
These are the relevant fermionic couplings for the forthcoming soft-term supergravity
analysis carried out in section 5.1.3.

5.1.3 Soft-terms in Calabi-Yau orientifolds with D3-branes

With the flux-induced scalar potential terms and the fermionic masses at hand we
can now compute the soft-terms resulting from the spontaneously broken supergrav-
ity theory by taking the decoupling limit of gravity M

(4)
p → ∞. The definition of
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soft-terms and their relation to spontaneously broken N = 1 supergravity theories
is reviewed in appendix A.10 together with the relevant formulae to carry out the
details of the following discussion.

In the case of Calabi-Yau orientifolds with space-time filling D3-branes the neu-
tral moduli fields are comprised of M I = (τ,Ga, Tα, z

ã) whereas the charged fields
correspond to the D3-brane ‘matter fields’ φi. Then the first task in the soft-term
analysis is the expansion of the supergravity Kähler potential with respect to the
‘matter fields’ φi. The Kähler potential K̂(M, M̄) of the bulk moduli fields is sim-
ply given by the Kähler potential of the orientifold bulk theory without space-time
filling D3-branes, i.e. K̂(τ,G, T, z) = K(τ,G, T, z, φ = 0), which amounts to setting
φ = 0 in the implicit definition of the Kähler coordinates (4.38).

The Kähler potential K(τ,G, T, z, φ) expanded to second order in the D3-brane
‘matter fields’ φi yields the moduli dependent second order coefficients Zi̄ and Hij

Zi̄ = −6iµ3

K
vα ωα i̄ , Hij =

3µ3

K
vα
(
ωα il̄ ℘̄ã

l̄
j + ωα jl̄ ℘̄ã

l̄
i

)
z̄ã . (5.18)

The next task is to determine the quadratic and trilinear ‘supersymmetric cou-
plings’ µij and Yijk of the effective superpotential W eff as given in (A.92). This is

achieved by taking the decoupling limit M
(4)
p →∞, m3/2 = const. of the scalar po-

tential of the supergravity action (4.36) and the flux-induced trilinear terms (5.13)
which yield

V eff(φ, φ̄) = V eff
mass(φ, φ̄) + V eff

trilinear(φ, φ̄) + V eff
quartic(φ, φ̄) , (5.19)

with

V eff
trilinear =

18µ3e
φ

K2
∫

Y
Ω ∧ Ω̄

tr
(
I(1 + kãz

ã)Ωijkφ
iφjφk

+IãG ãb̃(1 + kc̃z
c̃ + k̄c̃z̄

c̃)χ̄b̃ ı̄̄kφ̄
ı̄φ̄̄φk + h.c.

)
,

V eff
quartic =

18µ3 eφ

K2`2
tr
(
gi̄gkl̄[φ

i, φk][φ̄l̄, φ̄̄] + gi̄gkl̄[φ
k, φ̄̄][φi, φ̄l̄]

)
.

(5.20)

As noted already in section 5.1.2 there are also quadratic potential terms which,
however, are difficult to compute from the Kaluza-Klein reduction due to the ne-
glected back-reaction to geometry (c.f. A.6).

The first step is to analyze the quartic scalar potential V eff
quartic. With eqs. (A.91)

and (A.92) one observes that the quartic terms can only arise from the effective
D-term Deff and from the Yukawa couplings Yijk in the effective superpotential W eff,
and therefore the effective D-term can be computed with Zi̄ and becomes

Deff = −6i

K

√
µ3

`2
eφ/2 vαωα i̄ [φi, φ̄̄] , (5.21)
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where the real part of the gauge coupling function (4.43) is inserted.3 Now it is
easy to see that the D-term (5.21) gives rise to the second term in the quartic
effective potential (5.20). Therefore we can compute unambiguously the Yukawa
couplings Yijk from the first term in V eff

quartic. After a view steps of algebra the
Yukawa couplings are found to be

Yijk =
3µ3

`
eK̂/2Ωijk . (5.22)

In our case the quadratic term µij in the effective superpotential W eff is most
directly determined from the fermionic masses since we have not obtained the
quadratic terms in the effective scalar potential (5.19). From the fermionic interac-
tion terms (5.17) one reads off

µij = −3iµ3

K
eK̂/2IãG ãb̃

(
gil̄ ℘̄ã

l̄
j + gjl̄ ℘̄ã

l̄
i

)
. (5.23)

Note that the µ-term is proportional to the supersymmetry breaking flux parameter
Iã and thus vanishes in the supersymmetric limit. On the other hand µij is also
computed by (A.93), which consists of two distinct pieces. The first term propor-
tional to µ̃ij in (A.93) survives in the supersymmetric limit while the second and
third term are proportional to m3/2 and FI respectively, and hence vanish in the
supersymmetric limit. Thus µij must arise from these latter terms in eq. (A.93).
In other words the masses µij are induced by a Giudice-Masiero mechanism [129].
We conclude that µ̃ij must vanish and using (5.22) and (A.93) we deduce that the
expansion of the supergravity superpotential (A.88) becomes

W (τ, z, φ) = Ŵ (τ, z) +
µ3

`
Ωijk trφiφjφk . (5.24)

This is the superpotential already anticipated at the end of section 4.5.3. Now,
with the precise form of the superpotential at hand one checks the µ-term of (5.23)
by employing the formula (A.93) with (5.18). The other non-trivial check involves
the trilinear scalar potential couplings V eff

trilinear. Note that due to the presence of
both µij and Yijk the effective superpotential W eff generates a mixed trilinear term,
which turns out to be the second term of V eff

trilinear in (5.20) proportional to Iã. These
computations have been carried out in detail in ref. [39].

The final chore is to specify the soft-terms arising the bulk background fluxes
(5.4). The A-term saijk is directly read off from the first term in the trilinear
scalar potential V eff

trilinear, whereas the gaugino mass smg is determined from the
fermionic interaction terms (5.17). On the other hand using the techniques reviewed
in appendix A.10 all soft-term can be derived by a supergravity analysis. This
computation is straight forward but tedious and is also carried out in detail in

3Since the ‘matter fields’ φi transform in the adjoint representation of U(N) there appears the
commutator in (5.21).
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ref. [39]. In summary the soft-terms as determined by the supergravity computation
and by comparing with the effective action are found to be

smi̄ = V0Zi̄ ,
saijk = eK̂/2IYijk ,

sbij = V0Hij ,
smg = −eK̂/2I . (5.25)

Note that the soft-terms smij and sbij have not been obtained from the reduction
of the D3-brane action (4.35) since the masses for the ‘matter scalars’ φ have not
been computed by the reduction of the D3-brane action due to the undetermined
quadratic terms in the effective scalar potential. Instead the soft-term supergravity
analysis sketched above determines these masses indirectly and as a consequence
the flux-induced masses for the ‘matter scalars’ φ should be

m2
scalar ij = sbij , m2

scalar i̄ = Z lk̄µilµ̄̄k̄ + smi̄ . (5.26)

5.1.4 Discussion

In section 5.1.1 we have seen that the background fluxes naturally split according
to (5.2) into an imaginary self-dual piece G̃− and into an imaginary anti-self-dual
piece G̃+.

In the derivation of the flux-induced terms in section 5.1.2 one notes that the
scalar potential and the computed fermionic terms only depend on the imaginary
anti-self-dual fluxes G̃+ represented by the non-vanishing integrals I and Iã. Hence
it is natural to expect that the impact of imaginary self-dual fluxes G̃− is not so
severe. Indeed all the soft-terms and the µ-term computed in section 5.1.3 vanish
for I = Iã = 0.

According to Table 5.1 the imaginary self-dual fluxes are either (2, 1)- or (0, 3)-
fluxes. For (2, 1)-fluxes the N = 1 effective supergravity theory is unbroken and

hence as a consequence in the limit M
(4)
p → ∞, m3/2 = const the resulting global

supersymmetric theory is unbroken as well and thus exhibits no soft-terms. For
the (0, 3)-fluxes the flux-induced superpotential Ŵ is non-vanishing and therefore
supersymmetry is broken but is not communicated to the observable sector. This
property has been denoted by ‘no-scale supersymmetry breaking’ in refs. [130]. How-
ever, in this case higher order α′ and loop corrections potentially induce soft-terms,
which then spoil the ‘no-scale’ behavior.

Let us now discuss the imaginary anti-self-dual fluxes G̃+. According to Ta-
ble 5.1 these constitute the (1, 2)- and (3, 0)-fluxes and result in non-vanishing flux
integrals I and Iã. These flux integrals also break the low energy effective N = 1
supergravity action spontaneously and hence there appear soft-terms in the corre-
sponding global supersymmetric theory. The A-terms saijk are proportional to the
Yukawa couplings Yijk. The sbij terms are not proportional to the µ-term, which is
sometimes assumed in certain phenomenological models. However, more interest-
ing for phenomenological applications the soft scalar masses smi̄ are universal, i.e.
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all soft scalar masses are equal after appropriately normalizing the corresponding
kinetic terms. The universality of the soft scalar masses is important in minimal su-
persymmetric standard model like scenarios as this property ensures that the strong
experimental bounds imposed on the appearance of flavor changing neutral currents
are respected [131].

To conclude this discussion we complete the analysis of scales started at the end
of section 4.3.2. By turning on supersymmetry breaking bulk background fluxes the
supersymmetry breaking scale Msusy enters as a new mass scale. Since background
fluxes are quantized in units of 2πα′ the three-form flux density scales as α′/R3

in terms of the ‘radius’ R of the internal space [52]. The flux-density is also the
relevant quantity for appearing in D3-brane couplings since the stack of D3-branes
is localized at a point in the internal space and hence is sensitive to the flux den-
sity [52]. Therefore the relevant mass scale Msusy for supersymmetry breaking in
the observable sector also scales like α′/R3. Since

√
α′ � R is required for the

compactification ansatz the hierarchy of scales (4.18) is extended to

Msusy �MKK �Ms �M (4)
p . (5.27)

This result is rather remarkable. It shows that if the overall volume is stabilized
in the large radius regime the Kaluza-Klein reduction is valid and in addition the
setup allows for supersymmetry breaking at small scales. On the other hand it also
justifies in retrospect the Kaluza-Klein ansatz for the analysis of soft-terms while
neglecting all the massive Kaluza-Klein modes.

5.2 D7-branes with internal D7-brane fluxes

In the presence of space-time filling D7-branes it is also possible to turn on back-
ground fluxes on the internal cycle of the worldvolume which are introduced in sec-
tion 5.2.1. These fluxes generate D- and F-terms (c.f. section 5.2.2 and section 5.2.3),
which analogously to bulk background fluxes can also break supersymmetry spon-
taneously. But, moreover, D7-brane background fluxes have also been suggested as
relevant ingredients for generating metastable deSitter vacua [63]. This aspect is
carried on in section 5.2.4.

5.2.1 Internal D7-brane fluxes

Up to now we have only specified the homology cycle SΛ which is wrapped by
the D7-brane. However, this does not completely specify the geometric data of a
generic D7-brane, since in addition there can arise non-trivial background fluxes for
the field strength of the U(1) gauge theory localized on the D7-brane worldvolume.
However, in order to preserve Poincaré invariance of the four-dimensional effective
theory we consider only background fluxes on the internal D7-brane cycle SΛ. These
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fluxes are topologically non-trivial two-form configurations for the internal U(1) field
strength which nevertheless satisfy the Bianchi identity and the equation of motion.
Therefore the background flux f is constrained to be a harmonic form on SΛ. In
section 2.2 it is shown that the gauge boson is odd with respect to the orientifold
involution σ and as a consequence the possible background fluxes f correspond to
elements in H2

−(SΛ).

The D7-brane cycle SΛ is embedded into the ambient Calabi-Yau manifold Y
via the embedding map ι : SΛ ↪→ Y , which induces the pullback map ι∗ on forms

ι∗ : H2
−(Y ) → H2

−(SΛ) . (5.28)

Therefore one can distinguish between two different kinds of fluxes which we denote
by Yf and f̃ . Yf are harmonic two-forms on SΛ which are inherited from the ambient
Calabi-Yau space Y . f̃ on the other hand correspond to harmonic forms on SΛ,
which cannot be obtained by pullback from the ambient space Y . Put differently,
Yf are harmonic two-forms in the image of ι∗ while f̃ are harmonic two-forms in the
cokernel of ι∗. This amounts to the fact that the cohomology group H2

−(SΛ) can be
decomposed as

H2
−(SΛ) ∼= YH2

−(SΛ)⊕ H̃2
−(SΛ) , (5.29)

where YH2
−(SΛ) = ι∗

(
H2
−(Y )

)
and H̃2

−(SΛ) = coker
(
H2
−(Y )

ι∗−→ H2
−(SΛ)

)
. Then the

flux f ∈ H2
−(SΛ) splits accordingly

f = Yf + f̃ , (5.30)

with Yf ∈ YH2
−(SΛ) and f̃ ∈ H̃2

−(SΛ).

Now there is a comment in order on a technical issue concerning the distinction
of the fluxes Yf and f̃ . This splitting is not unique but we choose it in such a way
that the integrals ∫

SΛ

ι∗ωa ∧ f̃ = 0 (5.31)

vanish for all two-forms ωa in H2
−(Y ). This can alway be achieved by first choosing a

basis of two-forms ωa for YH−(SΛ) and then by choosing a basis of two-cycles S̃ ã for
ker(H2,−(SΛ)

ι∗−→ H2,−(Y )). Then the Poincaré dual basis ωã of S̃ ã spans the cokernel
H̃2
−(SΛ). If now the splitting is chosen in such a way that Yf can be expanded into

ωa and f̃ into ωã the relation (5.31) is fulfilled.

Before we conclude this discussion we introduce the topological flux charges,
which can be built from the fluxes f . The intrinsic fluxes f̃ give rise to the topological
charges

QA = `

∫
SΛ

s̃A ∧ f̃ , Qα = `

∫
SΛ

ι∗ωα ∧ P−f̃ , Qf̃ = `2
∫

SΛ

f̃ ∧ f̃ . (5.32)

77



5.2. D7-BRANES WITH INTERNAL D7-BRANE FLUXES

At first sight the charges Qα always seem to vanish due to (5.31). However, although
f̃ is an element in the cokernel of ι∗ obeying (5.31), P−f̃ need not be in the cokernel
of ι∗. Thus some of the charges Qα can indeed become non-vanishing. For instance
this situation occurs if the flux on the D7-brane and the negative value of the flux
on the image-D7-brane can both be written as the pullback of the same two-form in
the ambient space. In this case f̃ corresponds to a trivial and P−f̃ to a non-trivial
two-form in the ambient space Y .

On the other hand the flux Yf can be expanded into (1, 1)-forms pulled back to
the internal D7-brane cycle SΛ

Yf = Yfa ι∗ωa . (5.33)

In the D7-brane effective action (2.6) and (2.9) the fluxes f always appear in the
combination F = B − `f and therefore we expect that the fluxes Yf combine to
ba − `Yfa and we define

B = B − `Yf , Ba = ba − `Yfa . (5.34)

In the following sections it is confirmed that the flux charges (5.32) and the shifts
of the bulk ba-fields appear indeed in the effective description in the presence of
internal D7-brane fluxes f .

5.2.2 Bosonic effective action with D7-brane fluxes

In order to derive the additional terms induced from the D7-brane fluxes f in the
four-dimensional effective action it is necessary to redo the Kaluza-Klein reduction
of section 4.6. Here we do not go through this computation and state the resulting
effective action in appendix A.11. In the derivation of the action (A.97) one now
uses the calibration condition (3.28) with non-trivial background fluxes f and the
integral relation (5.31). Further details of the Kaluza-Klein reduction are given in
refs. [40,64].

In the N = 1 supergravity language the additional terms in the action (A.97)
amount to a modification of the chiral coordinates Ga and Tα in eq. (4.54). Or in
other words the complex structure of the Kähler target space manifold is adjusted
by the D7-brane fluxes f . The new definitions of the chiral fields Ga and Tα read

Ga =ca − τBa ,

Tα =
3i

2

(
ρα − 1

2
Kαbcc

bBc
)

+
3

4
Kα +

3i

4(τ − τ̄)
KαbcG

b(Gc − Ḡc)

+ 3iκ2
4µ7`

2CIJ̄
α aI āJ̄ +

3i

4
δΛ
α τQf̃ .

(5.35)

The Kähler potential (4.55) is unchanged but the additional terms proportional to
Qf̃ enter nevertheless once K is expressed in terms of its chiral coordinates.
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The covariant derivatives of the scalars ρα are also modified. This can be seen
from the fact that in the Kaluza-Klein reduction of the D7-brane Chern-Simons
action (2.9) additional Green-Schwarz terms are induced from the fluxes f̃

µ7

∫
W
C(4) ∧ `f̃ ∧ `P−F = µ7`Qα

∫
R3,1

Dα ∧ F = −µ7`Qα

∫
R3,1

dDα ∧ A , (5.36)

where we used the expansion (4.12) and definition of Qα in (5.32). After eliminating
the two-forms Dα in favor of their dual scalars ρα by imposing the self-duality
condition on the five-form field-strength of C(4) according to appendix A.9, the
Green-Schwarz terms (5.36) modify the local Peccei-Quinn symmetry discussed in
(4.52). The covariant derivative for ρα changes and (4.53) is replaced by

∇µρα = ∂µρα − 4κ2
4µ7`KαbPBbAµ + 4κ2

4µ7`QαAµ . (5.37)

In terms of the chiral coordinates (5.35) the contribution proportional to Qα leave
the covariant derivative of GP (4.57) unchanged while the fields Tα become charged
and a covariant derivative of the form

∇µTα = ∂µTα + 6iκ2
4µ7`QαAµ (5.38)

is induced. Thus fluxes f̃ which lead to non-vanishing Qα change the gauged isom-
etry (4.52) in that additional fields Tα become charged and transform non-linearly.

As a consequence of these additional charged chiral fields the D-term is also mod-
ified. The holomorphic Killing vector field (4.58) receives an additional contribution
from the Tα and reads

X = 4κ2
4µ7`∂GP − 6iκ2

4µ7`Qα∂Tα . (5.39)

This in turn adjusts the D-term via eq. (4.6) and we find

D =
12κ2

4µ7`

K
(KPaBa −Qαv

α) =
12κ2

4µ7`

K

∫
SP

J ∧ F , (5.40)

where F ≡ B − `f = B − `f̃ . The corresponding D-term potential is given by

VD =
108κ2

4µ7

K2 ReTΛ

(KPaBa −Qαv
α)2 . (5.41)

5.2.3 D7-brane flux induced D- and F-terms

In this section we determine the D7-brane D-term and F-term couplings by com-
puting the fermionic couplings of the gravitinos to the D7-brane fermions as stated
in (4.8). As we have seen it seems difficult to determine these terms directly from
the Kaluza-Klein reduction of the bosonic terms. In the bosonic scalar potential
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the D- and F-terms are encoded quadratically according to (4.5), whereas in the
fermionic action these terms appear linearly according to (4.8). This makes it eas-
ier to retrieve the D- and F-terms from the fermionic couplings (4.8). Analogously
in section 5.1.3 the bosonic masses were only computed indirectly via a supergrav-
ity analysis, whereas the fermionic masses are directly obtained by a Kaluza-Klein
reduction of the fermionic terms.

In order to reliably derive the fermionic couplings (4.8) we must fix the normal-
izationNλ andNχA in (3.53) of the ‘matter fermions’ χA and of the gaugino λ and the
normalization of the four-dimensional gravitino ψµ. The normalization of the gravi-
tino arises from the Kaluza-Klein reduction of the ten-dimensional Rarita-Schwinger
term and the canonical normalization of the four-dimensional Rarita-Schwinger term
is determined by the normalization of the in section 3.3.1 introduced internal co-
variantly constant spinor singlets ξ̌4 [64]

ξ̌†ξ̌ = 1 . (5.42)

The normalization of the ‘matter fermions’ χA are obtained by deriving the fermionic
kinetic terms from the super Dirac-Born-Infeld action (2.15). This is achieved by
computing the pullback ϕ∗g10 of the supermetric g10 with respect to the supermap
ϕ which yields [50, 51,64]

ϕ∗g10 =η̂µνdx
µdxν + 2ĝi̄dy

idy̄ + 2ĝi̄∂µζ
i∂ν ζ̄

̄dxµdxν

− i

2
Θ̄ΓµDνΘdxµdxν − i

2
Θ̄ΓνDµΘdxµdxν + . . . .

(5.43)

Note that this generalizes equation (4.46) by the appearance of the fermionic fluc-
tuations Θ. As discussed in detail in ref. [64] inserting the expansion (5.43) into
the super-Dirac-Born-Infeld action (2.15) allows us to determine the normalization
constants Nλ and NχA explicitly by comparing the coefficients of the bosonic kinetic
terms in (4.4) with the fermionic kinetic terms in (4.7) [64], i.e.

Nλ =

√
K
6
` e−φ/4 , NχA =

1

2

√
iK

6
∫

Ω ∧ Ω̄
e3φ/4 . (5.44)

Now we have introduced all the ingredients to compute the couplings of the
gravitino ψµ with the D7-brane fermions. These couplings appear in the super-
Chern-Simons action (2.16) in the term involving the super RR-six-form

−µ7

∫
W

ϕ∗ (C(6)
)
∧ F , (5.45)

with the worldvolume two-form F = B − `f = B − `f̃ . In order to evaluate this
term we need to determine the super-pullback of the super-RR-six-form C(6) which

4Canonically in the sense that it agrees with the normalization of the Rarita-Schwinger term in
ref. [110].
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reads after taking into account the orientifold truncation [64,132]

ϕ∗ (C(6)
)

= ϕ∗C(6) +
i

5!
e−φ Θ̄ ΓM1...M5ΨM6 dxM1 ∧ . . . ∧ dxM6 + . . . . (5.46)

Recall that in Θ all the fermionic D7-brane fields are encoded according to eq. (3.53).
In particular the last equation also captures the couplings of the four-dimensional
gravitinos ψµ to the D7-brane fermions Θ, which are of the form (4.8), i.e.

i

2 · 3!
e−φΘ̄Γµ0µ1µ2mnΨµ3 dxµ0 ∧ . . . ∧ dxµ3 ∧ dym ∧ dyn

=
i

2
e−φ

√
−η̂ d4x Θ̄

(
γ̂µγ̂5 ⊗ γmn

)
Ψµ dym ∧ dyn . (5.47)

Finally inserting this expression into the super-Chern-Simons term (5.45) together
with (3.53) we arrive after Weyl rescaling with (4.14) to the four-dimensional Ein-
stein frame and a few steps of algebra at [64]

SCouplings =− 1

2κ2
4

∫
d4x

√
−η

·
[√

2i eK/2 · κ2
4µ7

(
χAσµψ̄µ

∫
SΛ

s̃A ∧ F + χ̄Āσ̄µψµ

∫
SΛ

s̃Ā ∧ F
)

+
(
ψµσ

µλ̄− ψ̄µσ̄
µλ
)(
−12κ2

4µ7`
1

K

∫
SP

J ∧ F
)]

. (5.48)

The final chore is to compare these fermionic terms with the supergravity action (4.8)
and one extracts immediately a generic expression for the D-term of the U(1) D7-
brane gauge theory

D =
12κ2

4µ7`

K

∫
SP

J ∧ F =
12κ2

4µ7`

K
(KPaBa −Qαv

α) , (5.49)

where in the last step we used again (A.65) and (5.32). Hence the fermionic D7-brane
reduction confirms the D-term (5.40), which is computed in the previous section by
means of analyzing the bosonic part of the N = 1 supergravity action. Note that the
fermionic computation has neither required the knowledge of the gauged isometries
nor the structure of the Kähler potential. This is a consequence of the general form
of the Kähler potential (4.65) discussed in section 4.7. However, for the supergravity
derivation it is crucial to know the definition of the chiral variables and the Kähler
potential, as this information enters in the differential equation (4.6) which encodes
the D-term. Therefore the fermionic computation is an alternative and more direct
way to determine the D-term. For the case at hand it confirms the supergravity
computation and in addition checks the structure of the Kähler potential (4.65).

In a second step we match the terms in (4.8) with (5.48) and we readily determine
the flux induced superpotential. The integral relation (5.31) is responsible for the
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superpotential to be independent of B because the two-forms s̃A are elements of
H̃2
−(SΛ) whereas the two-form B are inherited from the bulk. Therefore we arrive

at the holomorphic superpotential

W (ζ) = κ2
4µ7`ζ

A

∫
SΛ

s̃A ∧ f̃ = κ2
4µ7QAζ

A , (5.50)

in terms of the charge QA defined in (5.32).

By parsing through the derivation of the D- and F-terms it is striking that both
terms arise from the same Chern-Simons worldvolume term, and moreover reveal a
remarkable similar structure. This feature can be traced back to the fact that the
N = 1 orientifold supergravities arise as truncations of N = 2 supergravities [133].
In the case under consideration the computed D- and F-terms can be associated to
the same N = 2 Killing prepotential SU(2)-triplet [56, 71], which describes scalar
potential terms arising from gaugings in the hypermultiplet sector of the parent
N = 2 supergravity theory [134].

5.2.4 Discussion

By computing the flux-induced D- and F-terms form fermionic couplings we have
circumvented the problem of extracting this information from the scalar potential,
which seems difficult to derive directly from a Kaluza-Klein reduction. In particular
the computation of the D-term from the fermionic terms confirms the supergravity
analysis of section 5.2.2 and therefore also constitutes for a non-trivial check on the
Kähler potential (4.55). For the F-term, on the other hand, we find an independent
confirmation in the next section.

According to eq. (5.30) the internal D7-brane fluxes naturally split into two
distinct contributions. The fluxes denoted by Yf are inherited from the ambient
Calabi-Yau space and adjust the chiral variables Ga. However, there do not appear
any new charged chiral fields and hence the D-term is simply shifted but does not
receive any additional contributions. On the other hand the intrinsic fluxes f̃ are
more diverse. Potentially they both contribute to the D-term and generate F-terms.
This feature, namely that a class of D7-brane fluxes generates D- and F-terms si-
multaneously, has also been observed in ref. [56]. The modification of the D-term
is also caused by the appearance of new charged chiral fields out of the set of chiral
moduli Tα.

Note that in the case that TΛ becomes charged, the (classical) effective action is
not gauge invariant anymore, since TΛ is proportional to the gauge coupling func-
tion (4.56). A detailed analysis as performed in ref. [64] shows that in this case there
appear chiral fermions in charged N = 1 chiral multiplets Xi which are suitable to
cancel this anomaly by the Green-Schwarz mechanism. These additional multiplets
arise from the intersections of D7-brane with its image-D7-brane. At the same time
these intersections are also necessary for the field TΛ to become charged [64].
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In order to gain further insight into the effects of the flux-induced D- and F-
terms, we briefly comment on the scalar potential of a Calabi-Yau orientifold Y
with h1,1

+ = 1 and h1,1
− = 0, that is to say we have a single harmonic two-form ωΛ.

Then the only Kähler variables in the theory are given by S, ζA and TΛ, where
we also keep the complex structure deformations fixed. Now we turn on D7-brane
fluxes such that QΛ and f̃ are non-zero but Qf̃ vanishes.5 The corresponding D-term
scalar potential of eq. (5.41) reduces for this particular setup to [64]

VD =
6κ2

4µ7

TΛ + T̄Λ

(
9QΛ

TΛ + T̄Λ

−
∑

i

qi|Xi|2
)2

, (5.51)

where as discussed above additional chiral matter multiplets Xi with charge qi are
present to cancel the anomaly of the gauge coupling. This form of the scalar potential
precisely coincides with the potential obtained in ref. [63]. However, we should stress
that it crucially depends on the existence of a non-vanishing QΛ and the absence of
the fields Ba which follows from our choice h1,1

− = 0.

As already discussed in ref. [63] the minimum of VD depends on the properties
of other couplings of Xi and also on possible non-perturbative corrections. If the
vacuum expectation value of the Xi is not fixed by additional F-term couplings,
VD = 0 can be obtained by adjusting 〈Xi〉. If, on the other hand, F-terms impose
〈Xi〉 = 0 a vanishing D-term potential only occurs for TΛ + T̄Λ →∞ resulting in a
run-away behavior. However, as discussed in refs. [5,59–61] the Kähler modulus TΛ

can possibly be stabilized by non-perturbative effects such as Euclidean-D3-brane
instantons and/or gaugino condensation on a stack of D7-branes. In this case the D-
term spontaneously breaks supersymmetry and can indeed provide for a mechanism
to uplift an Anti-deSitter vacuum to a metastable deSitter minimum along the lines
of ref. [59, 60].

Now we turn to the discussion of the F-term scalar potential, which is computed
by inserting (5.50) into (4.5) [64], i.e.

VF =
36

2
κ2

4µ7G
CD̄QCQD̄

1 + κ2
4µ7e

φGAB̄ ζ
Aζ̄B

(TΛ + T̄Λ)3
. (5.52)

Here we have defined the metric GAB̄ = iLAB̄ and its inverse GAB̄. As one can easily
see the effect of the F-term scalar potential is twofold. On the one hand it also
exhibits a runaway behavior but on the other hand once the Kähler modulus TΛ is
stabilized the fluxes f̃ render some of the fluctuations ζA massive and hence stabilize
these D7-brane fields. Note that in this case some of the F-terms associated to ζA

are non-vanishing, and therefore these D7-brane fluxes also break supersymmetry
spontaneously. This can be traced back to the structure of the superpotential (5.50),
which is linear in the D7-brane ‘matter fields’ ζA.

5We do not have an explicit Calabi-Yau orientifold with all these required properties. However,
this example is instructive because it reveals many features of the generic case.
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5.3 The holomorphic Chern-Simons theory

In the derivation of the effective supergravity actions we have encounter the ap-
pearance of various superpotentials. On the one hand the soft-terms computed
in section 5.1.3 are induced from the non-trivial bulk background fluxes and the
effective action is governed by the flux-induced superpotential (5.8). This super-
potential does not just arise in orientifold compactifications but instead it reoccurs
as a generic expression for many superstring compactifications with N = 1 super-
symmetry in the low energy effective action [17, 46, 48, 111]. This is due to the fact
that by general arguments the superpotential (5.8) can be traced back to the BPS
tension of D5-brane domain walls [44]. This observation suggested that there is also
a general argument which captures the structure of the superpotentials involving
the D-brane ‘matter fields’ fields. In the supergravity computations we find the su-
perpotential (4.45) for the D3-brane ‘matter fields’ φi and the superpotential (5.50)
for the D7-brane ‘matter fields’ ζA. Both superpotentials can indeed be obtained
from an appropriate reduction of the holomorphic Chern-Simons action.

In ref. [102] it is shown that the topological open string disk partition function
in the presence of N D-branes wrapping the entire internal Calabi-Yau manifold Y
is given by the holomorphic Chern-Simons action

WY =

∫
Y

Ω ∧ tr

(
A ∧ ∂̄A+

2

3
A ∧ A ∧ A

)
, (5.53)

where A is the gauge field of the U(N) gauge theory of the D-branes. On the other
hand the open string disk partition function is the superpotential in the low energy
effective action of the physical string theory [135].6

Thus in order to obtain the superpotential for D-branes which do not fill the
entire internal Calabi-Yau space, the holomorphic Chern-Simons action (5.53) for the
six-cycle Y must be dimensionally reduced to the holomorphic cycles wrapped by the
lower dimensional D-branes. This is achieved by saturating the normal components
of the integrand (5.53) with D-brane fluctuations which as discussed in section 2.2
are sections of the normal bundle of the wrapped internal cycle [26,56,117,136].

For a stack of D3-branes the holomorphic internal cycle reduces to a point and
consequently the normal bundle of the stack of D3-branes is identified with the
tangent bundle at this point. In other words all directions of the holomorphic
Chern-Simons action (5.53) for the six-cycle need to be replaced by fluctuations φi

of the stack of D3-branes and the integral over the internal space disappears

WD3 =
2

9
Ωijk trφiφjφk . (5.54)

Note that this expression of the reduced holomorphic Chern-Simons action agrees
with the superpotential (4.45) computed by means of supergravity.

6This is only true for a constant dilaton background which we have always assumed in our
analysis.
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For a stack of N D7-branes wrapped on the cycle SΛ the dimensional reduction
can be performed analogously. This time, however, the resulting expression contains
an integral over the internal cycle SΛ and reads

WSΛ =

∫
SΛ

s̃A tr
(
ζA ∂ı̄A̄ + 2ζAAı̄A̄

)
dzj ∧ dzk ∧ dz̄ ı̄ ∧ dz̄ ̄ , (5.55)

where we used 1
2
Ωijkζ

idzj ∧ dzk = s̃Aζ
A. Note that for an Abelian gauge field A

and Abelian ‘matter fields’ ζA, that is to say for a single D7-brane wrapped on
the cycle SΛ, the second term in (5.55) vanishes. Then the first term for a single
D7-brane becomes ∂ı̄A̄dz̄

ı̄∧dz̄ ̄ and is just the (0, 2) part of the background flux f .
Therefore eq. (5.55) simplifies with (5.31) to

WSΛ ∼
∫

SΛ

s̃Aζ
A ∧ f , (5.56)

in agreement with the superpotential (5.50).
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Chapter 6

Geometry of the D7-brane moduli
spaces

In section 4.6 we examined the N = 1 effective action for orientifold theories with
D7-branes and we have discussed the corresponding Kähler potential. So far in
this analysis the D7-brane matter fields ζ and the complex structure deformations
z have been treated independently. The matter fields ζ are geometrically governed
by (2, 0)-forms of the four-cycle SΛ. As the complex structure of the submanifold
SΛ is induced from the complex structure of the ambient Calabi-Yau space Y , we
expect that the moduli space of the matter fields ζ and the moduli space of the
bulk complex structure deformations z is not of product type [26, 72]. We should
rather have in mind a common moduli space MN=1, which is parametrized by both
the complex structure deformations z and the matter fields ζ. In section 6.1 we
examine the structure of this common moduli space, which then is applied to the
supergravity Kähler potential of section 4.6.2 and the superpotential resulting form
the D7-brane fluxes as stated in section 5.3.

6.1 Variation of Hodge structure

The complex structure deformations of the bulk theory is mathematical captured
in the language of variation of Hodge structure, which describes how the defini-
tion of (p, 3 − p)-forms in H3(Y ) varies over the complex structure moduli space
MCS [113, 137, 138]. The next task is to include the D7-brane fields ζ into the
concept of the variation of Hodge structure. In order to describe the bulk complex
structure deformations z and the D7-brane matter fields ζ in their common moduli
space MN=1 first one needs to find a formulation which captures both types of
fields simultaneously. As these fields are respectively expanded into three-forms of
the bulk and into two-forms of the internal D7-brane cycle SΛ the relative cohomol-
ogy group H3(Y, SΛ) proves to be the adequate framework [26, 72]. In ref. [19] it is
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further argued that the deformation theory of orientifolds with holomorphic invo-
lution σ is unobstructed and hence the framework of variation of Hodge structure
also applies for H3

−(Y ). Analogously for D7-branes in orientifolds we also choose
the truncated relative cohomology group H3

−(Y, SΛ) as our starting point, which is

isomorphic to the direct sum of cohomology groups H̃3
−(Y ) and H̃2

−(SΛ). The precise
definition of these spaces and their relation to H3

−(Y, SΛ) are spelled out in detail in
appendix A.12.

The next task is to extend the concept of variation of Hodge structure to the
orientifold case with D7-branes or in other words to analyze the variation of Hodge
structures of H3

−(Y, SΛ) [26]. This means we consider (locally) the variation of
relative forms over the moduli space MN=1 which has the complex coordinates
(zã, ζA).

Part of the definition of the Hodge structure of H3(Y, SΛ) is the Hodge filtration
{F p} [26, 137,139], which is a decomposition of H3

−(Y, SΛ) into1

H3(Y, SΛ) = F 0 ⊃ . . . ⊃ F 3 , (6.1)

where

F 3 = H̃
(3,0)
− (Y ) ,

F 2 = F 3 ⊕ H̃
(2,1)

∂̄,− (Y )⊕ H̃
(2,0)

∂̄,− (SΛ) ,

F 1 = F 2 ⊕ H̃
(1,2)

∂̄,− (Y )⊕ H̃
(1,1)

∂̄,− (SΛ) ,

F 0 = F 1 ⊕ H̃
(0,3)

∂̄,− (Y )⊕ H̃
(0,2)

∂̄,− (SΛ) .

(6.2)

Note that this filtration looks almost like the Hodge filtration of H3
−(Y ) for orienti-

fold models except for the additional two-forms of SΛ, i.e. if one considers the case
of a vanishing four-cycle SΛ then all relative forms reduce to ordinary three-forms
of Y and the Hodge filtration simplifies to the orientifold case without D7-branes.

The spaces H̃
(3−p,p)

∂̄,− (Y ) for p > 3 and H̃
(2−q,q)

∂̄,− (SΛ) do not vary holomorphically

with respect to (zã, ζA), instead F p are the fibers of holomorphic fiber bundles Fp

over the moduli spaceMN=1 [26,137–139]. For each holomorphic fiber bundle Fp we
choose a (local) basis of sections summarized in Table 6.1. The fibers at zã = ζA = 0
of these local sections coincide with the form bases of Table 3.3, Table 4.1 and the
basis {ηÃ} of H̃

(1,1)

∂̄,− (SΛ). Note that at a generic point in the moduli space MN=1

the fibers of these sections are a mixture of various three- and two-forms due to the
non-holomorphicity of the bundles H̃

(3−p,p)

∂̄,− (Y ) and H̃
(2−q,q)

∂̄,− (SΛ) over MN=1.

As the space H3
−(Y, SΛ) is purely topological the bundle F0 = H3

−(Y, SΛ) is lo-
cally constant over the moduli space MN=1. Thus this bundle has a canonically

1In this section, we think of relative forms as a pair of a three-form on Y and a two-form on
SΛ according to (A.104).
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filtration basis

holomorphic section fiber at zã = ζA = 0

F3 Ω Ω

F2 Ω, χã, s̃A Ω, χã, s̃A

F1 Ω, χã, s̃A, χ̄ã, η̃Ã Ω, χã, s̃A, χ̄ã, η̃Ã

F0 Ω, χã, s̃A, χ̄ã, η̃Ã, Ω̄, s̃Ā Ω, χã, s̃A, χ̄ã, η̃Ã, Ω̄, s̃Ā

Table 6.1: D7-brane cycles

flat connection ∇ called Gauss-Manin connection and it fulfills Griffith’s transver-
sality [137–139]

∇Fp ⊆ Fp−1 ⊗ Ω1MN=1 . (6.3)

Note that the covariant derivatives ∇zã and ∇ζA acting on sections of Fp differ
form the ordinary derivatives ∂zã and ∂ζA only by sections in Fp ⊗ Ω1MN=1 [26].
As a consequence and with eq. (6.3) one reaches local sections of all Fp by taking
derivatives of the unique section Ω(zã, ζA) of F3. This procedure is schematically
depicted in Figure 6.1 and one obtains the extended Kodaira formulae [113], i.e.

∂zãΩ = kãΩ + iχã , ∂ζAΩ = kAΩ + s̃A . (6.4)

As alluded in Figure 6.1 one generates sections of Fp for all p by acting with the
connection ∇ on the unique relative form Ω. Since H3(Y, SΛ) is a finite dimensional
space one obtains linear relations among Ω and its covariant derivatives [138, 140],
i.e.

L(z, ζ, ∂z, ∂ζ)Ω(z, ζ) ∼ 0 , (6.5)

where L(z, ζ, ∂z, ∂ζ) are fourth order differential operators, and where ∼ means
modulo exact relative forms.

Similar to the derivation of the differential equations for the bulk complex struc-
ture deformations, the system of differential equations of forms (6.5) can be trans-
formed into a set of differential equations over relative periods [26, 136]. These
relative periods arise as integrals of the relative three-form Ω over a fixed homology
basis of relative three-cycles. For this basis we choose {Aâ, Bâ,Γ

Â} which is dual to

the relative forms associated to the three-forms αâ, β
b̂ and the two-forms γÂ where

the latter forms are a basis of H̃2
−(SΛ). With this choice eq. (6.5) gives rise to the

system of differential equations for the relative periods

L(z, ζ, ∂z, ∂ζ)Π
â(z, ζ) = L(z, ζ, ∂z, ∂ζ)Πâ(z, ζ) = L(z, ζ, ∂z, ∂ζ)Π

Â(z, ζ) = 0 , (6.6)
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3-forms of Y 2-forms of SΛ

F3

⋂ Ω

∂z

��

∂ζ

((QQQQQQQQQQQQQQQQQQ

F2

⋂
χã

∂z

��

∂ζ

((QQQQQQQQQQQQQQQQQQ s̃A

∂z ,∂ζ

��

F1

⋂
χ̄ã

∂z

��

∂ζ

((QQQQQQQQQQQQQQQQQQ η̃

∂z ,∂ζ

��

F0 Ω̄
∂z ,∂ζ

((RRRRRRRRRRRRRRRRRRR s̃Ā

∂z ,∂ζ

��
0

Figure 6.1: Variation of Hodge structure of H3
−(Y, SΛ).

where

Πâ(z, ζ) = 〈Aâ,Ω〉 , Πâ(z, ζ) = 〈Bâ,Ω〉 , ΠÂ(z, ζ) = 〈ΓÂ,Ω〉 . (6.7)

The solution to the system of partial differential equations (6.6) takes the form

Ω(z, ζ) = X â(z, ζ)αâ + Fâ(z, ζ)β
â + GÂ(z, ζ)γÂ , (6.8)

with holomorphic functions X â(z, ζ), Fâ(z, ζ) and GÂ(z, ζ). Note that eq. (6.8)
reduces for ζ = 0 to the known bulk part where the solution is given by the prepo-
tential F of N = 2 special geometry. In general we do not expect that the solution
of the system of differential equations (6.6) can be expressed in terms of a single
holomorphic function F . This reflects the fact that the structure of N = 1 is less
restrictive than N = 2 supersymmetry.

6.2 Extended Kähler and superpotential

In this section we recall the definitions of the metrics for the bulk complex structure
deformations and the D7-brane fluctuations independently. That is to say in the
limit of small fields zã and ζA where the metric remains block diagonal. Then we
apply the mathematical tools of the previous section in order to obtain a Kähler
metric for the moduli space MN=1 which is not block diagonal anymore but holds
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for higher orders in zã and ζA as well. This extension turns out to be also suitable
to generalize the supergravity Kähler potential of section 4.6.2.

In refs. [113] it is demonstrated that the metric of the bulk complex structure
deformations δz reads

Gãb̃δz
ãδz̄b̃ =

3

2K

∫
Y

d6y
√

det ggi̄glk̄ δgilδg̄k̄ = −
∫

Y
χã ∧ χ̄b̃∫

Y
Ω ∧ Ω̄

δzãδz̄b̃ . (6.9)

Analogously we can ask for the metric of the fluctuations δζ which describe how
the four-cycle SΛ is deformed in the normal direction of the ambient space Y . This
metric is obtained by examining the variation of the volume element of SΛ with
respect to δζ, namely one performs a normal coordinate expansion of the volume
element according to (A.76) and with (3.41) arrives at

GAB̄ δζ
AδζB̄ =

6

K

∫
SΛ

d4ξ
√

det g si
As

̄

B̄
gi̄ δζ

AδζB̄ . (6.10)

which can be rewritten to [40]

GAB̄ δζ
AδζB̄ = iLAB̄ δζ

AδζB̄ . (6.11)

Without any D7-brane the metric of the complex structure Gãb̃ is Kähler with
the Kähler potential (A.67) [113]. This expression must now be modified to take
account for the generalized concept of the variation of Hodge structure of relative
forms. In the limit of small complex structure deformations δzã and small D7-
brane fluctuations δζA the modified Kähler potential needs to reproduce the metrics
(6.9) and (6.11). Moreover, in the limit where the D7-brane cycle SΛ disappears the
extended Kähler potential must simplify to eq. (A.67). Guided by these observations
the Kähler potential for the common moduli space of zã and ζA becomes

KCS(z, z̄, ζ, ζ̄) = − ln

[
−i

∫
(Y,SΛ)

Ω(z, ζ) •g Ω̄(z̄, ζ̄)

]
, (6.12)

where the integral over relative three-forms A and B is defined as∫
(Y,SΛ)

A •g B = g

∫
Y

P (3)A ∧ P (3)B − i

∫
SΛ

P (2)A ∧ P (2)B . (6.13)

Here g is a coupling constant which is needed for dimensional reasons. P (3) and P (2)

are projection operators that extract the three-form and the two-form part of the
relative form according to eq. (A.104).

The next task is to check that in the limit of small bulk fields zã and small D7-
brane matter fields ζA the Kähler potential (6.12) is contained in the supergravity
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Kähler potential (4.55). In order to perform the comparison eq. (6.12) is rewritten
as

KCS(z, z̄, ζ, ζ̄) = − ln

[
−i

∫
Y

P (3)Ω(z, ζ) ∧ P (3)Ω̄(z̄, ζ̄)

]
− ln

[
g − i

∫
SΛ P

(2)Ω(z, ζ) ∧ P (2)Ω̄(z̄, ζ̄)∫
Y
P (3)Ω(z, ζ) ∧ P (3)Ω̄(z̄, ζ̄)

]
. (6.14)

Taking now the limit and using eqs. (6.4) and (4.48) one finds agreement with the
supergravity Kähler potential (4.55) for the coupling constant

g(S) =
i(S − S̄)

2κ2
4µ7

. (6.15)

Thus on the common moduli space MN=1 of the complex structure deforma-
tions zã and of the D7-brane matter fields ζA the supergravity Kähler potential
(4.55) is modified to

K(S,G, T, ζ, z, a) =

− ln

[
−i

∫
(Y,SΛ)

Ω(z, ζ) •g(S) Ω̄(z̄, ζ̄)

]
− 2 ln

[
1
6
K(S,G, T, ζ, z, a)

]
, (6.16)

with the coupling constant (6.15). Now in general this Kähler potential K =
Kαβγv

αvβvγ also depends on the bulk complex structure deformations zã which
enter in the process of solving for vα(S,Ga, Tα, z

ã, ζA, aI) because LAB̄ has become
a function of zã. The Kähler potential (6.16) still constitutes all the scalar kinetic
terms of (A.97) but in addition it generates new terms, which are of higher order in
the fields zã and ζA, and which are not captured by the Kaluza-Klein reduction of
section 4.6.

Similarly we also need to rewrite the D7-brane flux superpotential (5.56) in the
language of relative forms. Let us first consider (small) bulk complex structure
deformations zã in the context of the reduction of the holomorphic Chern-Simons
action in section 5.3. This yields with the Kodaira formula (A.68) the expression

WSΛ =
1

2

∫
SΛ

[(
1 + zãkã

)
Ωijkζ

i ∂ı̄A̄ + izãχã ijı̄ζ
i ∂̄Ak

]
dzj∧dzk∧dz̄ ı̄∧dz̄ ̄ . (6.17)

This equation, however, is according to eq. (6.4) just the expansion of the relative
form superpotential

WSΛ(z, ζ) =
1

2

∫
SΛ

P (2)Ω(z, ζ) ∧ f . (6.18)
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Chapter 7

Conclusions and outlook

In this thesis we discussed space-time filling D-branes in the context of Calabi-
Yau compactifications. As a starting point the relation of open strings to D-
branes was introduced to compute the massless spectrum of D3/D7-brane systems
in Calabi-Yau compactifications. Consistency conditions, that is to say tadpole can-
cellation conditions, naturally guided us towards a more general compactification
ansatz, namely towards Calabi-Yau orientifold compactifications. Geometrically this
amounted to choosing for the internal space a Calabi-Yau threefold admitting an
isometric holomorphic involution [19]. Physically this ansatz truncated the effective
four-dimensional bulk spectrum from N = 2 supersymmetry to N = 1 supersym-
metry [21, 22, 133], such that both the massless bulk and D-brane spectrum was
comprised of N = 1 multiplets.

For this spectrum we then computed the four-dimensional low energy effective
supergravity actions. For D-branes the Dirac-Born-Infeld and the Chern-Simons
action served as a good starting point, since these actions captured the open string
tree-level amplitudes and hence encoded the interactions of the N = 1 supergrav-
ity D-brane multiplets. For the bulk theory we started from the ten-dimensional
type IIB supergravity description in the democratic formulation [107]. This demo-
cratic approach enabled us to deduce the D-brane couplings to the bulk fields [40].
Finally the resulting four-dimensional effective N = 1 supergravity actions were
described in terms of their specifying N = 1 supergravity data, that is to say in
terms of their Kähler potential, superpotential and gauge kinetic coupling functions.
Although the Kähler potential always exhibited the same generic structure, the geo-
metric data of the D-brane cycles and of the compactification space entered through
the definition of the chiral variables [21, 39, 40, 48, 119]. This also implied that only
for simple geometric compactifications the Kähler potential appeared in the form
anticipated in refs. [120, 123]. Compared to the analysis of toroidal models as in
refs. [28–31, 34–38], our discussion was performed in a quite general context as we
have not chosen a particular D-brane configuration for a certain compactification
space but instead started with a rather generic ansatz.
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The computed effective supergravity action also served as a good starting point to
address phenomenological questions such as supersymmetry breaking at low energy
scales. In the context of D3-brane Calabi-Yau orientifolds we examined supersymme-
try breaking induced from bulk background fluxes. In order to further specify phe-
nomenological features of spontaneous supersymmetry breaking in the limit where
gravity decouples [125–127] the flux-induced soft-terms were computed [39,52]. For
the examined D3-brane systems we observed that for certain bulk background fluxes
supersymmetry breaking was communicated to the D3-brane ‘matter sector’ and
that the flux-induced soft masses were universal. We also noted that in the regime
were our analysis was valid the supersymmetry breaking scale was generically much
lower then the string scale [54]. Our second example of supersymmetry breaking
involved D7-brane systems. Since D7-branes wrap a non-trivial four-cycle in the
internal space, it was also possible to turn on non-trivial D7-brane fluxes on this
internal cycle [64]. We then analyzed the structure of the flux-induced scalar poten-
tial and commented on its relevance for metastable deSitter vacua as anticipated in
ref. [63]. We observed that with some effort of geometric engineering certain kind
of D7-brane background fluxes were indeed capable to generate a positive energy
contribution [64, 71]. However, in order to obtain a metastable deSitter minimum
additional mechanisms such as gaugino condensation and/or Euclidean D3-brane
instantons needed to be employed [59,60].

The effective four-dimensional supergravity action of Calabi-Yau orientifold with
D7-branes also revealed a beautiful underlying geometric structure in terms of the
variation of Hodge structure in the context of relative cohomology [26,40,72], which
allowed us to treat the D7-brane fluctuations and the complex structure deforma-
tions on an equal footing. This behavior naturally makes contact with the variation
of Hodge structure in Calabi-Yau fourfolds [47,141], and hence reflects the connection
of type IIB Calabi-Yau orientifold compactifications with F-theory compactifications
on elliptically fibered Calabi-Yau fourfolds [142–144].

The presented thesis suggests further investigations in many different directions.
For phenomenological applications the computation of the low energy effective ac-
tion should be extended to more general D-brane Calabi-Yau orientifold models with
several stacks of D-branes and including the low energy effective action of the mat-
ter multiplets arising from D-brane intersections [98]. However, in order to reliably
make phenomenological predictions relevant for particle physics and/or cosmology,
it is necessary to also carefully examine and compute the corrections to the speci-
fying data of the low energy effective N = 1 supergravity. That is to say one needs
to analyze higher order α′ corrections along the lines of refs. [48,145], but also since
the structure of N = 1 supergravity is not as stringent as the structure of extended
supergravities, it is also necessary to consider the corrections arising from loop cor-
rections [124]. Finally as discussed in refs. [5, 59–61] the non-perturbative effects
have been proven to be important ingredients in constructing viable phenomeno-
logical models, which also need to be thoroughly incorporated in the analysis of
space-time filling D-branes in Calabi-Yau orientifold compactifications.
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It would also be important to extended the performed analysis beyond the probe
limit approximation for the localized sources, i.e. it would be interesting to include
the back-reaction to geometry for the D-branes and the O-planes. For D3-branes
and O3-planes the back-reaction can be taken into account by performing a Kaluza-
Klein reduction with a warped compactification ansatz [17, 111]. As we have seen
the corrections due to the warped ansatz become negligible in the large radius limit.
The back-reaction resulting from D7-branes and O7-planes generates a dilaton gra-
dient but at least in lowest order in α′ does not contribute to the warp factor [17].
This dilation gradient disappears if one requires local cancellations of D7-brane/O7-
plane tadpoles, or in other words if the D7-branes are on top of the O7-planes. In
our computations the couplings of the D7-branes to the dilaton became also appar-
ent as the D7-brane fluctuations entered in the definition of a ‘new dilaton’ which
was identified as a proper chiral variable. The dilaton gradients are probably best
addressed in the context of F-theory compactifications on elliptically fibered Calabi-
Yau fourfolds, where the dilaton gradient of type IIB orientifolds is encoded in the
geometry of the elliptic fibers [143]. Recently there has been some investigations in
these directions in refs. [36,71].

Similar to the analysis carried out in this thesis, it would be interesting to
compute the low energy effective action of D5-brane systems in Calabi-Yau ori-
entifolds with O5-planes, or of D6-branes in type IIA Calabi-Yau orientifolds with
O6-planes. Then one can study mirror symmetry from the low energy effective
point of view, which relates type IIA orientifolds with D6-branes to type IIB ori-
entifolds with D3/D7-branes or D5/D9-branes [19, 20]. For the closed string sector
type IIA Calabi-Yau orientifolds have been related via mirror symmetry to type IIB
Calabi-Yau orientifolds in ref. [22].

Here we have focused on D-brane compactifications in the geometric regime, or
in other words on scenarios where the quantum effects were not dominant. This
allowed us to compute the low energy effective action by performing a Kaluza-Klein
reduction [39,40,64]. On the other hand the features originating from the quantum
nature of string theory (such as tadpole cancellation conditions) are not so easily
deduced in this regime. Therefore it is also desirable to further investigate D-brane
compactifications in the quantum regime of the internal space along the lines of
refs. [19,20,146], and ultimately also to derive a low energy effective action for these
non-geometric D-brane compactifications.
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Appendices

A.1 Conventions

Throughout this thesis pseudo Euclidean metrics have the signature (−++ . . .). As
a consequence the determinant det g of the metric gMN is negative in the pseudo
Euclidean case. The epsilon symbol ε is defined to be

ε012... = det g , ε012... = 1 . (A.1)

This allow us to define the Hodge star operator ∗d acting on p-form C(p) in a d-
dimensional (pseudo)-Euclidean manifold

∗dC
(p) =

C
(p)
M1...Mp

p!(d− p)!
√
|det g|

εM1...MpN1...Nd−pgN1P1 . . . gNd−pPd−p
dxP1 ∧ . . . ∧ xPd−p .

(A.2)
The square of the Hodge star operator acting on the p-form C(p) obeys

(∗d)
2C(p) = ±(−1)p(d−p) , (A.3)

where the top sign appears in the Euclidean case and the bottom sign in the pseudo
Euclidean case.

In the context of Kaluza-Klein reduction with background metrics of product
type, it is useful to split the Hodge star operator. For concreteness let us assume we
compactify a D-dimensional pseudo Euclidean space with Hodge star operator ∗D

on a l-dimensional manifold (l = D− d) with Hodge star operator ∗l and obtain an
effective theory with d space-time dimensions with Hodge star operator ∗d. Then
one finds for a p-form C(p) on the d-dimensional space and a q-form G(q) on the
l-dimensional space the useful formula

∗D

(
C(p) ∧G(q)

)
= (−1)(d−p)q ∗d C

(p) ∧ ∗lG
(q) . (A.4)

A.2 Open superstrings

The dynamics of superstrings is governed by a two-dimensional supersymmetric σ-
model with the space-time manifold as its target space. Geometrically the strings
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sweep out a two-dimensional surface called worldsheet which is embedded into the
space-time manifold.

The worldsheet action for open superstrings in a flat ten-dimensional Minkowski
space is given by [3]1

Sopen
WS = − 1

4πα′

∫
dτ

∫ π

0

dσ ηMN

(
(∂σ − ∂τ )X

M(∂σ + ∂τ )X
N

− iψM
+ (∂σ − ∂τ )ψ

N
+ − iψM

− (∂σ + ∂τ )ψ
N
−

)
. (A.5)

Here α′ is the string coupling constant with dimension [length]2, σ is the spatial coor-
dinate of the open string, and τ is the worldsheet time coordinate. The worldsheet
bosons XM are the space-time coordinates of the flat ten-dimensional Minkowski
space with Lorentzian metric ηMN , whereas ψM

± are the right- and left-moving world-
sheet Majorana-Weyl fermions respectively. Modulo boundary terms this action is
supersymmetric under the infinitesimal supersymmetry transformations

δXM = −iε−ψ
M
+ + iε+ψ

M
− , δψM

± = (∂σX
M ± ∂XM)ε∓ , (A.6)

where ε± are two supersymmetry parameters.

Varying the worldsheet action yields the equations of motion for the worldsheet
bosons XM and fermions ψM

±

(∂2
τ − ∂2

σ)XM(τ, σ) = 0 , (∂τ ∓ ∂σ)ψM
± (τ, σ) = 0 . (A.7)

Due to the worldsheet boundaries of open superstrings the variation of the action
(A.5) yields additional boundary terms, which must vanish and therefore the equa-
tions of motion (A.7) are supplemented by the boundary conditions∫

dτ ηMN ∂σX
M δXN

∣∣σ=π

σ=0
= 0 ,

∫
dτ ηMN (ψM

+ δψ
N
+ − ψN

− δψ
M
− )
∣∣σ=π

σ=0
= 0 . (A.8)

The first task is to evaluate the boundary conditions for the bosonic world-
sheet coordinate fields Xµ(τ, σ). Requiring locality the boundary condition (A.8)
on Xµ(τ, σ) needs to hold independently at both endpoints, and hence there are two
possibilities at each endpoint

(N) ∂σX
a(τ, σ)|σ=0,π = 0 , (D) δXn(τ, σ)|σ=0,π = 0 . (A.9)

The first choice corresponds to Neumann boundary conditions (N) in the direc-
tions Xa and the second choice to Dirichlet boundary conditions (D) in the direc-
tions Xn.2 The space-time coordinate system is chosen such that the open string

1Here the action is given in conformal gauge. This gauge choice can (locally) always be achieved
by an appropriate coordinate transformation combined with a Weyl transformation. The local
residual gauge freedom corresponds to conformal transformations.

2For a given coordinate direction in space-time we restrict our discussion to the case that
both string endpoints either fulfill Neumann or Dirichlet boundary conditions. The case of mixed
boundary conditions for a coordinate direction, that is Dirichlet for one endpoint and Neumann
for the other endpoint, arises in intersecting brane scenarios.
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endpoints obey Neumann boundary conditions in (p + 1)-directions a = 0, . . . , p
(including the time direction) whereas they fulfill Dirichlet boundary conditions in
the remaining (9−p)-directions n = p+1, . . . , 9. For these boundary conditions the
general classical solution to the equations of motion (A.7) reads

(N) Xa(τ, σ) = qa + 2α′paτ + i

√
α′

2

∑
k 6=0

αa
k

k

(
e−ik(τ+σ) + e−ik(τ−σ)

)
,

(D) Xn(τ, σ) =
xn

π σ + xn
0 (1− σ)

π
+ i

√
α′

2

∑
k 6=0

αn
k

k

(
ekik(τ+σ) − e−ik(τ−σ)

)
.

(A.10)

For the (p + 1)-dimensional subspace, which is parametrized by the ‘Neumann co-
ordinates’ Xa, the expansion of the open string (A.10) yields a position qa and a
momentum pa in addition to an infinite set of oscillator modes αa

k. On the other
hand for the remaining ‘Dirichlet directions’ Xn one finds the fixed position coor-
dinates xn

0 and xn
π of the two endpoints of the open string and again an infinite

number of oscillator modes αn
k . This structure arising from the expansion (A.10)

deserves some further appreciation, namely one finds that the open string under
discussion can propagate freely with momentum pa along the Neumann directions,
whereas the endpoints of the open string are confined to xn

0 and xn
π in the Dirichlet

directions. Or in other words the endpoints of the open string can move freely on
the (p+1)-dimensional planes W0,π = {XM |Xn = xn

0,π} which are called Dp-branes.
In this new terminology the open string propagates in space-time with one endpoint
attached to the Dp-brane W0 and the other endpoint attached to the Dp-brane Wπ.3

Let us now briefly discuss the boundary conditions imposed on the worldsheet
fermions. Again requiring locality one finds two distinct possibilities4 [147]

ψM
− (τ, 0) = ±ψM

+ (τ, 0) , ψM
− (τ, π) = ψM

+ (τ, π) . (A.11)

Due to these boundary conditions the worldsheet fermions ψM
+ and ψM

− can be
combined to fermionic fields ψM defined as

ψM(τ, σ) =

{
ψM

+ (τ, σ) for 0 ≤ σ < π

ψM
− (τ, 2π − σ) for π ≤ σ ≤ 2π

. (A.12)

Then with (A.7) these fermions obey the equations of motion

(∂τ − ∂σ)ψM(τ, σ) = 0 , (A.13)

and the boundary conditions (A.11) become

(R) ψM(τ, 0) = ψM(τ, 2π) , (NS) ψM(τ, 0) = −ψM(τ, 2π) . (A.14)

3For an open string attached to a single Dp-brane one has xn
0 = xπ

0 and thus W = W0 = Wπ.
4In principal one can also allow for ψM

+ (τ, π) = −ψM
− (τ, π). However, this minus sign can always

be absorbed by a field redefinition of ψM
− → −ψM

− [3].

99



A.2. OPEN SUPERSTRINGS

Periodic boundary conditions correspond to worldsheet fermions in the Ramond
sector (R), whereas anti-periodic boundary conditions to worldsheet fermions in the
Neveu-Schwarz sector (NS).5 Note that imposing (A.9) and (A.14) at the boundary
also respects one linear combination of the supersymmetry transformations (A.6),
and hence half of the worldsheet supersymmetry is preserved at the boundary [147].
With the boundary conditions (A.14) at hand a general solution to the equations of
motion (A.13) is readily stated to be

(R) ψM(τ, σ) =
∑
r∈Z

ψM
r e−ir(τ+σ) ,

(NS) ψM(τ, σ) =
∑

r∈Z+ 1
2

ψM
r e−ir(τ+σ) ,

(A.15)

with the integer oscillator modes ψM
r in the Ramond sector and the half-integer

oscillator modes ψM
r in the Neveu-Schwarz sector.

So far the worldsheet of the superstring has been discussed classically. Hence
the next step is to canonically quantize the worldsheet action (A.5). This is accom-
plished by introducing equal time commutators for the bosons XM and equal time
anti-commutators for the fermions ψM

[∂τX̂
M(τ, σ1), X̂

N(τ, σ2)] = −iηMNδ(σ1 − σ2) ,

{ψ̂M(τ, σ1), ψ̂
N(τ, σ2)} = πηMNδ(σ1 − σ2) .

(A.16)

The canonical quantization implies with (A.10) and (A.15) that the zero modes and
the oscillator modes become operator valued and obey the following commutation
and anti-commutation relations [3]

[q̂a, p̂b] = i ηab , [α̂M
k , α̂

N
−l] = k ηMN δkl , {ψ̂M

r , ψ̂
N
−s} = ηMN δrs . (A.17)

The first commutator is the usual canonical expression for the position operator q̂a

and the momentum operator p̂a. The oscillator operators are creation and annihi-
lation operators acting on a Fock-space in which the vacuum is annihilated by all
α̂M

k , k > 0 and ψ̂M
r , r > 0.6 Note that in the Ramond sector there are additional

zero-modes ψM
0 which furnish (up to an unimportant factor of 2) a Clifford alge-

bra. Therefore these zero-modes are combined into raising and lowering operators,
which then define a degenerate Clifford vacuum transforming as a Majorana-Dirac
spinor 32D under the space-time Lorentz group SO(9, 1).

5These two possible choices originate from the two distinct spin-structures of the circle S1.
6Due to the Lorentz metric their appear negative norm states in the Fock space. In the Gupta-

Bleuler quantization scheme one imposes physical state conditions to remove these unphysical
negative norm states [148]. Also in the case of the superstring quantization unitarity is recovered
by this method.
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With this structure it is now possible to discuss the mass operator for the open
superstring spectrum, which for the physical states takes the form

m̂2 =
∑

n

(
xn

π − xn
0

2πα′

)2

+
1

α′

(
N̂B + N̂F − a0

)
, (A.18)

with the bosonic number operator N̂B =
∑∞

n=1 α̂−n · α̂n and the fermionic number

operator N̂F =
∑

r>0 rψ̂−r · ψ̂r. The constant a0 is 1/2 in the Neveu-Schwarz sector
and 0 in the Ramond sector. This mass formula (A.18) allows us to discuss the open
superstring spectrum. First we turn to the spectrum of open superstrings attached
to a single Dp-brane or stretched between to coinciding Dp-branes, or in other words
we take xn

0 = xn
π. In this case the ground state of the Ramond sector is a massless

space-time Majorana-Dirac spinor, whereas the ground state of the Neveu-Schwarz
sector has a negative mass squared and hence is tachyonic. The first excited state
in the Neveu-Schwarz sector is obtained by acting with the raising operators ψ̂µ

−1/2,

which according to eq. (A.18) gives rise to massless modes transforming in the vector
representation of the space-time Lorentz group. Finally the remaining infinite tower
of higher excitations in both the Ramond and Neveu-Schwarz sector are massive
and their mass is controlled by the string scale α′. Therefore in the supergravity
regime, that is in the limit α′ → 0, these higher string modes are negligible. By
the same line of arguments open strings stretching between Dp-branes, which are
separated by distances of the order of

√
α′, i.e. dist(x0, xπ) &

√
α′, are also not

taken into account. This is due to the first term in the mass operator (A.18) which
generates in this case only massive modes of the order of magnitude of the higher
string excitations.

In order to obtain a consistent superstring theory one needs to include world-
sheet fermions in both the Ramond and the Neveu-Schwarz sector and then one has
to project onto a definite space-time fermion number. This procedure is called the
GSO projection [73]. In the Ramond sector the GSO projection removes from the
degenerate Fock vacuum one Weyl representation, such that there remains a space-
time Majorana-Weyl spinor 16′. For stable D-brane configurations the ground state
in the open string Neveu-Schwarz sector is also projected out by the GSO projec-
tion and hence the tachyonic mode is removed.7 Hence after performing the GSO
projection the light modes on a single D-brane are given by

ψ̂M
−1/2|k〉NS , |k, θ〉R , (A.19)

where k labels the momentum tangent to the Dp-brane, or in other words labels the
eigenvalue of the momentum operator p̂a

p̂a ψ̂M
−1/2|k〉NS = ka ψ̂M

−1/2|k〉NS , p̂a |k, θ〉R = ka |k, θ〉 . (A.20)

7For open strings stretching between D-branes and anti-D-branes the Neveu-Schwarz ground
state is not projected out [118, 149, 150]. This indicates that such a setup is not a stable vacuum
configuration. This instability disappears by a process called tachyon condensation [151]. Physi-
cally tachyon condensation corresponds to the annihilation of the D-brane anti-D-brane pair such
that a stable space-time ground state is approached.
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A.3 Spin representations and Dirac gamma ma-

trices

Here we assemble some properties and fix the notation of Dirac gamma matrices for
the dimensions relevant in this thesis.

The ten-dimensional 32× 32 Dirac gamma matrices ΓM fulfill the usual Clifford
algebra

{ΓA,ΓB} = 2ηAB , A,B = 0, . . . , 9 , (A.21)

where ηAB = diag (−1,+1, . . . ,+1) denotes the metric tensor of ten-dimensional
Minkowski space invariant under the Lorentz group SO(9, 1). Furthermore the ten-
dimensional chirality matrix Γ is defined as

Γ = Γ0 . . .Γ9 = − 1

10!
εA0...A9Γ

A0 . . .ΓA9 , (A.22)

and fulfills

Γ2 = 1 , {ΓM ,Γ} = 0 . (A.23)

The ten-dimensional Dirac spinor 32D decomposes into two Weyl representations
16 and 16′ of SO(9, 1) with opposite chirality, i.e. 16 is in the +1-eigenspace with
respect to the chirality matrix (A.22) whereas 16′ is the −1-eigenspace.

In the context of compactifying the ten-dimensional space-time manifold to four
dimensions, the Weyl spinors of SO(9, 1) must be decomposed into representations
of SO(3, 1)× SO(6)

16 → (2,4)⊕ (2̄, 4̄) , 16′ → (2, 4̄)⊕ (2̄,4) , (A.24)

where 2 and 2̄ are the two Weyl spinors of SO(3, 1) and 4 and 4̄ are the two Weyl
spinors of SO(6). In both cases these representations are complex conjugate to each
other.

The ten-dimensional Dirac gamma matrices (A.21) can be given in terms of
tensor products of gamma matrices γα and γ̌a of the Clifford algebras associated to
the groups SO(3, 1) and SO(6) respectively, namely

Γα = γ̂α ⊗ 1 , α = 0, . . . , 3 , Γa = γ̂ ⊗ γ̌a , a = 1, . . . , 6 , (A.25)

with {γ̂α, γ̂β} = 2ηαβ and {γ̌a, γ̌b} = 2δab and where the chirality matrices are
defined as

γ̂ =
i

4!
εα0...α3 γ̂

α0 . . . γ̂α3 , γ̌ =
i

6!
εa1...a6 γ̌

a1 . . . γ̌a6 . (A.26)
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Then it is easy to check that (A.25) leads to

{Γα,Γβ} = 2ηαβ , {Γa,Γb} = 2δab , {Γα,Γb} = 0 , (A.27)

and the ten-dimensional chirality matrix (A.22) becomes

Γ = γ̂5 ⊗ γ̌ . (A.28)

In the analysis of the fermions arising from the space-time filling D7-branes
one considers the decomposition of the ten-dimensional Weyl representations of the
Lorentz group SO(9, 1) into representations of the subgroup SO(3, 1) × SO(4) ×
SO(2). This yields

16 → (2,2,1)⊕ (2,2′, 1̄)⊕ (2̄,2, 1̄)⊕ (2̄,2′,1) ,

16′ → (2,2, 1̄)⊕ (2,2′,1)⊕ (2̄,2,1)⊕ (2̄,2′, 1̄) ,
(A.29)

with the two Weyl spinors 2 and 2′ of SO(4) and 1 and 1̄ of SO(2). Note that the
two Weyl spinors of SO(2) are again related by complex conjugation.

Similar as before the ten-dimensional Dirac gamma matrices (A.21) can be writ-
ten as a tensor product of the Dirac gamma matrices γ̂α of SO(3, 1), γa of SO(4)
and γ̃ã of SO(2)

Γα = γ̂α ⊗ 1⊗ 1 , α = 0, . . . , 3 ,

Γa = γ̂ ⊗ γa ⊗ 1 , a = 1, . . . , 4 ,

Γã = γ̂ ⊗ 1⊗ γ̃ã , ã = 1, 2 ,

(A.30)

with {γa, γb} = 2δab and {γ̃ã, γ̃ b̃} = 2δãb̃. The chirality matrices γ of SO(4) and γ̃
of SO(2) are given by

γ = − 1

4!
εa1...a4γ

a1 . . . γ̂a4 , γ̃ = − i

2
εãb̃γ̃

ãγ̃ b̃ . (A.31)

As before it is easy to check that the definition (A.30) gives rise to the desired
anti-commutation relations

{Γα,Γβ} = 2ηαβ , {Γa,Γb} = 2δab , {Γã,Γb̃} = 2δãb̃ ,

{Γα,Γb} = 0 , {Γα,Γb̃} = 0 , {Γa,Γb̃} = 0 .
(A.32)

The ten-dimensional chirality matrix (A.22) is given in terms of the lower dimen-
sional chirality matrices (A.26) and (A.31), i.e.

Γ = γ̂ ⊗ γ ⊗ γ̃ . (A.33)

In this thesis the relevant spaces are often complex manifolds. As a consequence
the SO(2n) structure group associated to Riemannian geometry reduces to the struc-
ture group U(n) associated to complex geometry. Therefore the Dirac gamma ma-
trices can also be adjusted to this reduction of the structure group. More specifically
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this means that the vector indices of the gamma matrices can be decomposed so as
to form holomorphic and anti-holomorphic Dirac gamma matrices. In particular in
terms of the complex metric tensor gi̄ the SO(6) Dirac gamma matrices become

{γ̌i, γ̌ ̄} = 2gi̄ , {γ̌i, γ̌j} = 0 , {γ̌ ı̄, γ̌ ̄} = 0 , {γ̌i, γ̌} = {γ̌ ̄, γ̌} = 0 , (A.34)

whereas the SO(4) Dirac gamma matrices read

{γi, γ ̄} = 2gi̄ , {γi, γj} = 0 , {γ ı̄, γ ̄} = 0 , {γi, γ} = {γ ̄, γ} = 0 . (A.35)

Note that these anti-commutation relations (A.34) and (A.35) correspond up to
a rescaling to the fermionic harmonic oscillator algebra. This property is also used
repeatedly in the main text, as it allows us to construct spinor representations of
U(n).

A.4 BPS D-branes from κ-symmetry

As discussed in section 3.2 the amount of preserved supercharges for a certain back-
ground configuration is given by the number of supersymmetry parameters for which
the variation of the fermions vanishes. In the presence of a super-Dp-branes also the
supersymmetry variation of the D-bane fermionic modes ~Θ needs to vanish. The
infinitesimal supersymmetry variation on the field ~Θ reads

δ~ε~Θ = ~ε . (A.36)

This variation does not vanish, but, as argued in section 2.3.3, the super-Dp-brane
action exhibits a local fermionic gauge symmetry called κ-symmetry. Therefore
it suffices if the supersymmetry variation acting on the fermions ~Θ only vanishes
modulo a κ-symmetry transformation as stated in eq. (3.16). A κ-symmetry trans-

formation acting on the fields ~Θ can be expressed as [69,83,91]

δ~κ~Θ = (1 + pΓ)~κ , (A.37)

where the fermionic κ-symmetry parameter ~κ depends on the worldvolume coordi-
nates of the Dp-brane. The matrix pΓ is called the product structure matrix, it is
hermitian and further obeys

tr pΓ = 0 , pΓ2 = 1 . (A.38)

Using eqs. (A.36) and (A.37) the supersymmetry variation condition (3.16) can
be stated as

δ~Θ = ~ε+ (1 + pΓ)~κ . (A.39)
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Finally this equation can be multiplied by (1 − pΓ) and then the condition for
unbroken supersymmetries becomes [92]

(1− pΓ)~ε = 0 . (A.40)

The next task is to evaluate the last equation for the D-brane geometries in
Calabi-Yau threefold compactifications. In this thesis we are interested in space-
time filling Dp-branes in type IIB superstring theory. This implies that we are
looking for solutions of (A.40) for D3-, D5-, D7- and D9-branes. For these cases the
product matrix pΓ becomes [69,83]

pΓ = (σ̌3)
p−3
2 σ̌2 ⊗ γ̂ ⊗ 1

(p− 3)!
√

det ĝ
εa1...ap−3 γ̌a1 . . . γ̌ap−3 . (A.41)

In this expression the Pauli matrices σ̌1, σ̌2, σ̌3 act on the two entries of ~ε. γ̂ is
the four-dimensional chirality matrix acting on the four-dimensional spinors ~η of
eq. (3.13), whereas the internal gamma matrices γ̌a act on the internal spinor part
of (3.13). det ĝ is the volume measure of the internal cycle of the Dp-brane induced
from the ambient Calabi-Yau metric ĝi̄.

In order to fulfill (A.40) it is necessary to find the eigenvalue +1 in the product
matrix (A.41). This is achieved for a space-time filling Dp-brane in type IIB string
theory if

dp−3ξ
√

det ĝ =
1(

p−3
2

)
!
Ĵ

p−3
2 , (A.42)

in term of the Kähler form (3.12) and if

~η =

{
σ̌2~η for p = 3, 7

σ̌1~η for p = 5, 9 .
(A.43)

The geometric condition (A.42) states that the internal cycle of the Dp-brane needs
to be calibrated with respect the Kähler form.8 This implies that the cycle is
holomorphically embedded into the Calabi-Yau manifold. Physically this calibration
condition amounts to the saturation of the BPS bound. The condition (A.43) on
the other hand specify the linear combination of supercharges, which are preserved
by the BPS Dp-brane.

In the presence of internal background fluxes the product matrix (A.41) is further
enhanced by flux-induced contributions. However, the same analysis, although more
complicated, can be performed as sketch above. This has been carried out in detail
in ref. [70]. In the presence of bulk background fluxes the computed geometric
calibration condition (A.42) must be also modified as discussed in ref. [152].

8For D3- and D9-branes this condition holds trivially.
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A.5 Gravitinos in Calabi-Yau orientifold

The number of four-dimensional massless spin-3/2 fields determines the amount
of unbroken supersymmetry in the effective four-dimensional theory. In type IIB
supergravity the spin-3/2 fields arise as the massless modes in the Kaluza-Klein

reduction of the ten-dimensional gravitinos ~ΨM . Here we determine their number
indirectly by decomposing the ten-dimensional spinor representation 16′, which then
by using geometric properties of Calabi-Yau threefolds allows us to construct the
massless four-dimensional gravitinos. This approach also reviews some techniques
which are necessary to compute the fermionic effective D-brane action.

In compactifying ten-dimensional superstring theory on a six-dimensional mani-
fold the structure group SO(9, 1) of M9,1 reduces to SO(3, 1) × SO(6) due to the
product structure (4.9). Compactifications on a six-dimensional complex manifolds
reduce the structure group SO(6) further to U(3) ∼= SU(3)×U(1) so that we have

SO(9, 1) → SO(3, 1)× SO(6) → SO(3, 1)× SU(3)× U(1) . (A.44)

Correspondingly the Weyl spinor 16′ of SO(9, 1) decomposes into representations
of SO(3, 1) × SO(6) or for complex manifolds into representations of SO(3, 1) ×
SU(3)× U(1) respectively

16′ → (2, 4̄)⊕ (2̄,4) → (2, 3̄1)⊕ (2, 1̄−3)⊕ (2̄,3−1)⊕ (2̄,13) . (A.45)

Here 2, 2̄ are the two Weyl spinors of SO(3, 1), 4, 4̄ are the two Weyl spinors of
SO(6), 3, 3̄ are the fundamentals of SU(3) and 1, 1̄ are SU(3) singlets (the subscript
denotes their U(1) charge).

For complex threefolds the Clifford algebra for the SO(6) Dirac gamma matri-
ces γ̌m can be rewritten in terms of complex coordinate indices which then obey9

{γ̌i, γ̌ ̄} = 2gi̄ , {γ̌i, γ̌j} = 0 , {γ̌ ı̄, γ̌ ̄} = 0 , {γ̌i, γ̌} = {γ̌ ̄, γ̌} = 0 , (A.46)

with the six-dimensional Euclidean chirality matrix γ̌ defined in eq. (A.26). These
relations allow us to interpret the Dirac gamma-matrices with holomorphic indices
as raising and lowering operator acting on some ‘ground state’ ξ̌ and its ‘conjugate
ground state’ ξ̌† [118]

γ̌iξ̌ = 0 , ξ̌†γ̌ ı̄ = 0 . (A.47)

ξ̌, ξ̌† are the singlets 1, 1̄ of SU(3) which obey the chirality property

γ̌ξ̌ = +ξ̌ , ξ̌†γ̌ = −ξ̌† . (A.48)

Note that the conditions (A.47) are maintained on the whole complex manifold Y
because the structure group U(3) ∼= SU(3) × U(1) of complex threefolds does not

9The ˇ denotes six-dimensional bulk quantities.
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mix the gamma matrices γ̌i with the gamma matrices γ̌ ̄. However, for a generic
complex manifolds the SU(3) singlets ξ and ξ† transform under the U(1) part of
(A.44), which is the U(1) part in the spin-connection of the internal space. Thus
on complex manifolds the global sections ξ ⊗ L∗ and ξ† ⊗ L define the number of
(charged) global spinors which are then tensors of the SU(3)×U(1) structure group
bundle. Here L and L∗ are sections of the line bundles corresponding to the U(1)
in (A.44). For Calabi-Yau manifolds the first Chern class of the tangent bundle
vanishes. This also implies that the line-bundle arising from the U(1) part of the
spin connection is trivial, and as a consequence one finds for a Calabi-Yau manifold
two globally defined singlets ξ and ξ† which are in addition covariantly constant
because of the SU(3) holonomy of Calabi-Yau manifolds.

Due to the presence of the two globally defined and covariantly constant spinors
ξ̌ and ξ̌† on Calabi-Yau threefolds which appear as singlets in the decomposition
(A.45), the ten-dimensional gravitinos ~ΨM compactified on the Calabi-Yau mani-

fold Y give rise to a set of two massless four-dimensional Weyl gravitinos ~ψµ(x)10

~Ψµ = ~̄ψµ(x)⊗ ξ̌(y) + ~ψµ(x)⊗ ξ̌†(y) . (A.49)

Using (3.8), (A.28) and (A.48) the four-dimensional gravitinos have to obey γ̂5 ~ψµ =

+~ψµ and γ̂5 ~̄ψµ = − ~̄ψµ.

The next task is to analyze the possible Z2 Calabi-Yau orientifold projections,
and in particular the Z2 action on the four-dimensional gravitinos as this is im-
portant to determine the amount of space-time supersymmetry in the presence of
space-time filling D-branes. As demonstrated in section 3.3.2 besides the world-
sheet parity operator Ωp the generator of the orientifold Z2 symmetry allows also
for a geometric part σ acting on the internal Calabi-Yau threefold Y . Dictated by
space-time supersymmetry σ must be an isometric holomorphic involution of Y . As
further discussed in section 3.3.2 these properties of σ allow for two possibility for
the action of σ∗ on the holomorphic (3, 0)-form Ω of the Calabi-Yau manifold Y ,
namely

Ω = ±σ∗Ω . (A.50)

The sign of the eigenvalue of Ω has far-reaching consequences for the resulting
orientifold theory, which can be seen from the fermionic modes of the orientifold
theory. In order to grasp the significance of the eigenvalue one needs to use the
properties of spinors in the Calabi-Yau threefold Y as stated above. Namely in
order to determine the transformation behavior of the spinors let us specify what
is meant by pulling back the spinors via σ∗. Geometrically the transformation
behavior (A.50) corresponds at each point in the tangent space of Y to a rotation

10Since ~ΨM are Majorana-Weyl gravitinos, one can choose a Majorana basis such that ~Ψ∗
M =

~ΨM . This condition implies that the decomposed spinors in (A.45) are complex conjugate to
each other and as a consequence also the spinors in the Kaluza-Klein ansatz (A.49) are complex
conjugates.
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of 2πn, n ∈ Z for Ω = +σ∗Ω or to a rotation of π + 2πn, n ∈ Z for Ω = −σ∗Ω.
Since the singlets ξ̌ and ξ̌† are sections of the spin bundle of Y these rotations are
lifted to a phase factor eiπn and eiπ

2
+πn respectively. Hence a sensible definition of

the pullback σ∗ acting on the global spinor singlets ξ̌ and ξ̌† reads

(σ∗ξ̌, σ∗ξ̌†) =

{
(±ξ̌,±ξ̌†) for σ∗Ω = +Ω

(±iξ̌,∓iξ̌†) for σ∗Ω = −Ω .
(A.51)

The next task is to determine the action of Ωpσ
∗ on the four-dimensional gravi-

tinos (A.49). The worldsheet parity Ω simply exchanges the two spinor ψ1
µ and ψ2

µ in
~ψµ = (ψ1

µ, ψ
2
µ) because it exchanges NS-R and R-NS sectors of the closed superstring

which provide respectively for the two gravitinos in ~ψµ. This can conveniently be
expressed in terms of the Pauli matrix σ̌1 and together with (A.51) one obtains

Ωpσ
∗ ~ψµ ⊗ ξ̌† =

{
~ψµ ⊗ ξ̌† σ̌1 for σ∗Ω = +Ω

∓i~ψµ ⊗ ξ̌† σ̌1 for σ∗Ω = −Ω .
(A.52)

It is immediately apparent that Ωpσ
∗ can only be an orientifold Z2 symmetry for

σ∗Ω = +Ω. In the other case it, however, can be made to a symmetry by adding
the operator (−1)FL where FL is the fermion number of the left-movers. Therefore
it adds an additional sign in the R-NS sector and the projection of (−1)FL can be
expressed in terms of −iσ̌2. In summary we find that possible orientifold projections
are given by the operator O defined as

O =

{
Ωpσ

∗ for σ∗Ω = +Ω

(−1)FLΩpσ
∗ for σ∗Ω = −Ω .

(A.53)

In ref. [19] it is indeed confirmed by a worldsheet analysis that (A.53) gives rise to
the correct orientifold projections in the two distinct cases.

Before concluding this section we state the linear combination ψµ of the four-
dimensional gravitinos that is kept in the spectrum after gauging the discrete Z2

orientifold projection (A.53)

ψµ ⊗ ξ̌† = 1
2
(1 +O)~ψµ =

{
~ψµ ⊗ ξ̌† 1

2
(1 + σ̌1) for σ∗Ω = +Ω

~ψµ ⊗ ξ̌† 1
2
(1 + σ̌2) for σ∗Ω = −Ω .

(A.54)

A.6 Warped Calabi-Yau compactifications

In this appendix we briefly want to summarize the conditions for the validity of
the Calabi-Yau ansatz for type IIB Calabi-Yau compactifications in the presence of
background fluxes and/or localized sources such as D-branes and orientifold planes.
This analysis has been spelt out in detail in ref. [17].
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The product metric ansatz (4.9) for the compactification on the internal compact
space Y can be further generalized by a warped metric ansatz11

ds2
10 = e2A(y)ηµνdx

µdxν + e−2A(y)gmndymdyn . (A.55)

Here A(y) is the warp factor which only depends on the coordinates of the compact
space Y , and therefore four-dimensional Poincaré invariance is maintained. In addi-
tion for the self-dual five-form field strength G(5) defined in (4.1) one can also allow
non-trivial background flux of the form [17]

G
(5)
bg = (1 + ∗10)dα(y) ∧ dx0 ∧ dx1 ∧ dx2 ∧ dx3 , (A.56)

which again preserves four-dimensional Poincaré invariance and by construction is
in accord with the Bianchi identity of the self-dual five-form field strength. Then
the ten-dimensional Einstein field equations

RMN +
1

2
gMNR = κ2

10TMN , (A.57)

for the metric ansatz (A.55) and for the energy momentum TMN comprised of the
bulk type IIB supergravity energy momentum tensor T SUGRA

MN and the energy momen-
tum tensor for localized sources lTMN yield for the warp factor A(y) the equation [17]

∇2e4A = e2A G̃mnpG̃
mnp

12 Im τ
+ e−6A

(
∂mα∂

mα+ ∂me4A∂me4A
)

+
κ2

10

2
e2A
(

lTm
m − T µ

µ

)
.

(A.58)
This equation combined with the Bianchi identity of for the five-form field strength
G(5) yields for a consistent setup, that is to say that RR tadpoles and NS-NS tadpoles
are canceled, the following conditions (due to the fact that the internal space Y is
compact)

e4A = α , ∗6G̃ = iG̃ . (A.59)

The first condition relates the warp factor of the metric ansatz (A.55) to the back-
ground flux (A.56), whereas the second equation states that in stable minima12 only
imaginary self-dual fluxes can appear.

In order to determine the dependency of the warp factor e4A on the radiusR of the
internal space one can analyze the scaling behavior of (A.58) under gmn → λ2gmn.
Then it is easy to see that the terms in (A.58) which contain derivatives acting
on the warp factor e4A scale as λ−2, and due to (A.59) the same reasoning applies
for the term involving derivatives acting on α. The scaling behavior of the term
resulting from localized sources is a little bit more involved. For localized sources,

11In this appendix the metrics are taken in the ten-dimensional Einstein frame.
12Without taking into account non-perturbative string corrections and/or higher order α′ cor-

rections.
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i.e. for the (p + 1)-dimensional space-time filling D-branes and orientifold planes,
the energy momentum tensors take the generic form [17](

lTm
m − lT µ

µ

)
∼ (7− p)Tpδ(Σ) , (A.60)

where the sign of the proportionality constant determines whether the extended
object has positive or negative tension. Thus in lowest order in α′ D7-branes and/or
O7-planes do not contribute to eq. (A.58), whereas D3-branes and O3-planes enter
in the differential equation for the warp factor. The variation of the action lS
determines lTMN via

lTMN ∼ 1√
− det g10

δlS
δgMN

10

, (A.61)

and hence the (A.60) scales as λ−6. Therefore the warp factor itself e4A scales to
subleading order as [17]

e4A = 1 +O(λ−4) . (A.62)

Note that due to eq. (A.59) the flux parameter α in (A.56) approaches 1 in the limit
where warping becomes negligible.

From eq. (A.62) one deduces that in the large radius regime of the internal
manifold the back-reaction to geometry, which is captured by the appearance of a
warp factor e4A, can be treated as a small perturbation to the unwarped geometry
chosen in (4.9). To be more specific this is the case if the ‘radius’ R of the internal
space is much larger than the contributions from the N localized sources which
become significant at length scales N1/4

√
α′ and the contributions of M units of

background flux G̃ at characteristic length scales
√
M α′.

A.7 Geometry of Calabi-Yau orientifolds

In performing the Kaluza-Klein reduction on a six-dimensional Calabi-Yau orienti-
fold the geometry of the internal space enters in the effective four-dimensional theory.
In this appendix we have collected the relevant formulae for such a compactification.

All harmonic forms of the Calabi-Yau manifold Y and their parity with respect
to the orientifold involution σ are assembled in Table 4.1. First we summarize the
properties of various integrals taken over these forms. The bases in Table 4.1 are
chosen in such a way that appropriate bases are dual to each other, i.e.∫

Y

ωα ∧ ω̃β = δβ
α ,

∫
Y

ωa ∧ ω̃b = δb
a ,∫

Y

αα̂ ∧ ββ̂ = δβ̂
α̂ ,

∫
Y

αâ ∧ β b̂ = δb̂
â ,

(A.63)

with all other pairings vanishing.

Kαβγ =

∫
Y

ωα ∧ ωβ ∧ ωγ , Kabγ =

∫
Y

ωa ∧ ωb ∧ ωγ , (A.64)
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are the non-vanishing triple intersection numbers of the Calabi-Yau manifold Y .
Note that these intersection numbers are topological invariants of the Calabi-Yau
manifold Y which are symmetric in their indices. The intersection numbers Kαβc

vanish because the volume form dvol(Y ) of the Calabi-Yau is even whereas ωα ∧
ωβ ∧ ωc is odd with respect to the pullback σ∗ [21,133,153]. Additionally we define
contractions of these intersection numbers with the fields vα and obtain with (4.10)
the non-vanishing combinations

K =

∫
Y

J ∧ J ∧ J = Kαβγv
αvβvγ , Kα =

∫
Y

ωα ∧ J ∧ J = Kαβγv
βvγ ,

Kαβ =

∫
Y

ωα ∧ ωβ ∧ J = Kαβγv
γ , Kab =

∫
Y

ωa ∧ ωb ∧ J = Kabγv
γ ,

(A.65)

where K is proportional to the volume of the internal Calabi-Yau manifold Y , i.e.
6 vol(Y ) = K.

In the action (4.15) there appear also various metrics. On the space of harmonic
two-forms one defines the metrics [113,154]

Gαβ =
3

2K

∫
Y

ωα ∧ ∗6ωβ = −3

2

(
Kαβ

K
− 3

2

KαKβ

K2

)
,

Gab =
3

2K

∫
Y

ωa ∧ ∗6ωb = −3

2

Kab

K
,

(A.66)

which is just the usual metric for the space of Kähler deformations split into odd
and even part with respect to the involution σ. The inverse metrics of (A.66) are
denoted by Gαβ and Gab. Similarly, for the complex structure deformations zã of
the Calabi-Yau orientifold, one defines the special Kähler metric [113]

Gãb̃ =
∂2

∂zã∂z̄b̃
KCS(z, z̄) , KCS(z, z̄) = − ln

(
−i

∫
Y

Ω ∧ Ω̄

)
, (A.67)

which is the metric on the complex structure moduli space of the Calabi-Yau mani-
fold Y restricted to the complex structure deformations compatible with the holo-
morphic involution σ [19]. Furthermore we have the Kodaira formulae [113]

∂Ω

∂zã
= kãΩ + iχã ,

∂χã

∂zb̃
= kb̃χã + κc̃

ãb̃
χ̄c̃ , (A.68)

where κc̃
ãb̃

is defined in [113] but here we do not need its precise form.

Finally we introduce the coefficient matrices of the kinetic terms of the vector
fields V α̂ and U α̂. They are given by [155]

A α̂
β̂

= −
∫

Y

βα̂ ∧ ∗6αβ̂ , Bα̂β̂ =

∫
Y

αα̂ ∧ ∗6α
β̂ ,

C α̂β̂ = −
∫

Y

βα̂ ∧ ∗6β
β̂ , Dβ̂

α̂ =

∫
Y

αα̂ ∧ ∗6β
β̂ ,

(A.69)
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or equivalently for the three-forms ∗6αα̂ and ∗6β
α̂ we find modulo exact forms the

expansion

∗6αα̂ = A β̂
α̂ αβ̂ +Bα̂β̂β

β̂ , ∗6β
α̂ = C α̂β̂αβ̂ +Dα̂

β̂
ββ̂ . (A.70)

It is straight forward to verify that the matrices (A.69) fulfill

AT = −D , BT = B , CT = C . (A.71)

In terms of these matrices the N = 2 gauge kinetic matrix Mα̂β̂ reads [155]

M = AC−1 + iC−1 . (A.72)

A.8 Normal coordinate expansion

In the Dirac-Born-Infeld action and the Chern-Simons action of the Dp-brane various
tensors fields of the bulk theory are pulled back from the space-time manifold M to
the worldvolume W of the brane via ϕ : W ↪→M . As the embedding map ϕ is not
rigid but fluctuates due to the dynamics of the brane, a normal coordinate expansion
has to be performed so as to extract the couplings of these brane fluctuations to the
bulk fields [39,156].

The fluctuation of the worldvolume W embedded in the space-time manifold M
can be described by considering a displacement vector field ζ in the normal bundle
of the worldvolume. The worldvolume shifted in the direction ζ is embedded via the
map ϕζ . Note that for ζ = 0 the two maps ϕ and ϕζ coincide. For small fluctuations
ζ any bulk tensor field T pulled back with the map ϕζ can be expanded in terms of
tensor fields pulled back with the map ϕ, i.e.

ϕ∗ζT = ϕ∗
(
e∇ζT

)
= ϕ∗ (T ) + ϕ∗ (∇ζT ) +

1

2
ϕ∗ (∇ζ∇ζT ) + . . . , (A.73)

where ∇ is the Levi-Cevita connection of the manifold M .

For local coordinates xa on the worldvolume W where a = 0, . . . , dim(W − 1),
we have the associated vector fields ∂µ, and since the Levi-Cevita connection has no
torsion one can show that [39]

∇ζ∂a = ∇∂aζ , R(ζ, ∂a)ζ = ∇ζ∇∂aζ = ∇ζ∇ζ∂a , (A.74)

where R(·, ·)· is the Riemann tensor.

Applying (A.73) to the metric tensor g(·, ·) of the manifold M , we obtain the
induced metric on the worldvolume of the brane subject to the fluctuations ζ. With
the identity (A.74) the expansion up to second order in derivatives yields

ϕ∗ζ (g(∂a, ∂b)) = ϕ∗ (g(∂a, ∂b)) + ϕ∗ (g(∇∂aζ, ∂b)) + ϕ∗ (g(∂a,∇∂b
ζ))

+ ϕ∗ (g(∇∂aζ,∇∂b
ζ)) + ϕ∗ (g(R(ζ, ∂a)ζ, ∂b)) + . . . . (A.75)
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This index free notation translates in a slightly abusive way of notation into the
component expression

ϕ∗ζ(g)ab = gab + gan∇bζ
n + gan∇bζ

n + gnm∇aζ
n∇bζ

m + gacR
c

n bmζ
nζm + . . . , (A.76)

where now ∇ is the connection of the normal bundle of the worldvolume W , which
is induced form the Levi-Cevita connection of the ambient space M . The indices
a, b, . . . denote directions tangent to the worldvolumeW whereas the indices n,m, . . .
stand for directions normal to the worldvolume W .

Analogously, one computes with (A.73) and (A.74) the pullback of a q-form of
the manifold M to the worldvolume W and obtains up to second order in derivatives

ϕ∗ζC
(q) =

(
1
q!
C(q)

a1...aq
+ 1

q!
ζn∂n(C(q)

a1...aq
)− 1

(q−1)!
∇a1ζ

nC(q)
na2...aq

+ 1
2q!
ζn∂n(ζm∂m(C(q)

a1...aq
))− 1

(q−1)!
∇a1ζ

n · ζm∂m(C(q)
na2...aq

) (A.77)

+ 1
2(q−2)!

∇a1ζ
n∇a2ζ

mC(q)
nma3...aq

+ q−2
2q!
R τ

n a1mζ
nζmC(q)

τa2...aq

)
dxa1 ∧ . . . ∧ dxaq .

A.9 Dualization procedure

A convenient starting point for coupling Dp-branes is the democratic supergravity
action as introduced in ref. [107]. The democratic actions describe the fields and
their duals simultaneously. Since the Dp-branes couple in the Chern-Simons action
(2.9) to all RR-form fields the D-brane action is easily implemented in the context of
the democratic formulation of the bulk theory. However, after the terms arising from
the D-branes are added one would like to obtain an effective four-dimensional action
in the conventional sense, that is to say an action where the redundant degrees of
freedom are removed by incorporating their duality conditions.

In this thesis this duality relation in four dimensions mainly concerns scalars
dual to two-forms. Thus here we want to demonstrate how to remove systematically
the space-time two-forms in favor of their dual scalars [157]. We start with the
four-dimensional action

SSD =

∫ [
g

4
dB(2) ∧ ∗dB(2) +

1

4g
dS ∧ ∗dS

]
, (A.78)

with the coupling constant g, the two-form field B(2) and the scalar field S. Moreover
we impose by hand the duality condition

g ∗ dB(2) = dS . (A.79)

Thus S is the dual scalar of the two-form B(2) and the action (A.78) with (A.79)
possesses just one degree of freedom. If we introduce the field strengths H = dB(2)

and A = dS, altogether we have the equations

dA = 0 , dH = 0 , d ∗ A = 0 , d ∗H = 0 , g ∗H = A , (A.80)
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where the first two equations are Bianchi identities, the next two equations are the
equations of motion of (A.78), and the last equation is the duality condition (A.79).
Now we modify the action (A.78) to

SSD =

∫ [
g

4
H ∧ ∗H +

1

4g
dS ∧ ∗dS − 1

2
H ∧ dS − λdH

]
, (A.81)

where in this action H is an independent three-form field and λ is a Lagrangian
multiplier. This Lagrangian also yields the equations (A.80), however, now only
the first equation arises as a Bianchi identity. All the other equations, including
the duality relation, is obtained from the equations of motion of (A.81). In this
formulation we can eliminate the three-form field H and arrive at the action for S

SSD =

∫
1

2g
dS ∧ ∗dS , (A.82)

without any redundant dual fields. The next task is to generalize this procedure in
the presents of source terms J , which we add to (A.78)

SSD =

∫ [
g

4
dB(2) ∧ ∗dB(2) +

1

4g
A ∧ ∗A− 1

2
dB(2) ∧ J

]
. (A.83)

Note that in order to be in accord with the duality condition g ∗ H = A, the field
strength A must be adjusted to A = dS + J and the new equations of this system
are

dA = dJ , dH = 0 , d ∗ A = 0 , d ∗H = dJ , g ∗H = A . (A.84)

As before we obtain this set of equations from the Lagrangian

SSD =

∫ [
g

4
H ∧ ∗H +

1

4g
(dS + J) ∧ ∗(dS + J)− 1

2
H ∧ (dS + J)− λdH

]
,

(A.85)
with the independent field H. Finally eliminating H yields

SSD =

∫
1

2g
(dS + J) ∧ ∗(dS + J) , (A.86)

which is the reduction of the democratic action (A.83) to the conventional action in
terms of the scalar field S.

A.10 Soft supersymmetry breaking terms

In this appendix we briefly recall the definition of soft supersymmetry breaking
terms. These soft-terms appear in the context of globally supersymmetric field
theories. One of the attractive features of globally supersymmetric field theories are
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the non-renormalization theorems [158], which ensure that certain (holomorphic)
quantities such as the superpotential are protected from perturbative corrections
[159]. Soft-terms are now additional terms Lsoft added to the Lagrangian Lsusy of a
N = 1 globally supersymmetric field theory which break supersymmetry explicitly,
but maintain the good renormalization behavior of the supersymmetric theory. The
allowed terms turn out to be [160]

Lsoft = −sm2
i̄φ

iφ̄̄ −
(

sbijφ
iφj + saijkφ

iφjφk +
1

2
smg Λ∆λ

Λλ∆ + h.c.

)
, (A.87)

where φi are the scalar fields in the N = 1 chiral multiplets and λΛ are the gauginos
in the N = 1 vector multiplets of the globally supersymmetric theory. Here smi̄ and
sbij are scalar masses, smg Λ∆ are the gaugino masses, and saijk are scalar trilinear
couplings often called A-terms.

Even though the soft terms (A.87) break supersymmetry explicitly in the context
of global supersymmetry, the structure of these soft-terms can be understood as
arising from a spontaneously broken N = 1 supergravity theory in the limit M

(4)
p →

∞, m3/2 = const. This point of view as been thoroughly examined in refs. [125–127],
and in the following we summarize the results of this analysis.

In N = 1 supergravities arising from compactification of string theory it is
convenient to distinguish between the ‘matter fields’ φi of charged chiral multiplets
and the gauge neutral moduli fields M I of neutral chiral multiplets. As long as the
gauge symmetry is unbroken the vacuum expectation values of the ‘matter fields’ φi

vanish and therefore it is convenient to expand the Kähler potential K(M, M̄, φ, φ̄)
and the superpotential W (M,φ) in a power series in φi

K(M, M̄, φ, φ̄) = κ−2
4 K̂(M, M̄) + Zi̄(M, M̄)φiφ̄̄ +

(
1
2
Hij(M, M̄)φiφj + h.c.

)
+ . . .

W (M,φ) = Ŵ (M) +
1

2
µ̃ij(M)φiφj +

1

3
Ỹijk(M)φiφjφk + . . . . (A.88)

Spontaneous supersymmetry breaking occurs if a D-term or a F-term has a non-
vanishing vacuum expectation value. In our applications supersymmetry is broken
by non-vanishing flux-induced F-terms. Since the φi vanish in the ground state they
do not contribute to the F-terms and one has

F̄Ī = κ2
4e

K̂/2 K̂ ĪJ DJŴ , (A.89)

where K̂ ĪJ is the inverse of the Kähler metric K̂IJ̄ . For a vanishing cosmological con-
stant an alternative measure for supersymmetry breaking is given by the gravitino
mass m3/2

m3/2 = κ2
4e

K̂/2Ŵ . (A.90)

Without going through the analysis let us just state here the effective theory
for the matter fields φi, which one obtains by taking the decoupling limit of gravity
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M
(4)
p → ∞, m3/2 = const. The resulting theory is a softly-broken globally super-

symmetric field theory for the matter multiplets φi [125–127,160,161]. In this limit
one finds for the scalar potential13

V eff(φ, φ̄) =
1

2

(
Deff
)2

+ Zi̄ ∂iW
eff ∂̄W̄

eff

+ sm2
i̄ φ

iφ̄̄ +
(

1
2

sbij φ
iφj + 1

3
saijk φ

iφjφk + h.c.
)
, (A.91)

where the ‘supersymmetric terms’ read

Deff(φ, φ̄) = −g φ̄ı̄Zı̄jφ
j , W eff(φ) =

1

2
µijφ

iφj +
1

3
Yijkφ

iφjφk . (A.92)

Here g is the gauge coupling function given by g−2 = Re f(M). The mass terms µij

and the Yukawa couplings Yijk are defined in terms of the moduli dependent super-
gravity F-terms (A.89) and supergravity coefficients

µij = eK̂/2µ̃ij +m3/2Hij − F̄Ī ∂̄ĪHij , Yijk = eK̂/2Ỹijk . (A.93)

On the other hand the soft supersymmetry breaking terms in eq. (A.91) turn out to
be14

sm2
i̄ =

(
|m3/2|2 + V0

)
Zi̄ − FIF̄J̄RIJ̄i̄ ,

saijk = FI DIYijk ,

sbij =
(
2|m3/2|2 + V0

)
Hij − m̄3/2F̄

J̄ ∂̄J̄Hij +m3/2F
IDIHij

− FIF̄J̄DI∂J̄Hij − eK̂/2µ̃ijm̄3/2 + eK̂/2FIDI µ̃ij ,

(A.94)

where V0 = 〈V 〉 is the cosmological constant. The ‘curvature’ RIJ̄i̄ and the Kähler
covariant derivatives DI are given by

RIJ̄i̄ = ∂I∂J̄Zi̄ − Γk
IiZkl̄Γ

l̄
J̄ ̄ ,

DIYijk = ∂IYijk +
1

2
K̂IYijk − 3Γl

IiYljk ,

DI µ̃ij = ∂I µ̃ij +
1

2
K̂I µ̃ij − 2Γl

Iiµ̃lj ,

with Γl
Ii = Z l̄∂IZ̄i . (A.95)

Finally, let us turn to the fermionic mass terms. Since W eff is the effective
superpotential of the (softly broken) globally supersymmetric field theory, by su-
persymmetry it also determines the masses of the fermions in the charged chiral
multiplets to be given by µij. The (canonically normalized) mass smg of the gaug-
ino in the vector multiplet is also a soft-term according to (A.87), which can again
be related to a spontaneously broken supergravity theory in the decoupling limit
M

(4)
p →∞, m3/2 = const.

smg = FI∂I ln (Re f) . (A.96)

13Here and in the following we use the notation and the conventions of ref. [126].
14Due to the inclusion of the possibility of a non-vanishing cosmological constant V0 the form

of the soft-terms differ from the ones given in ref. [126]. Instead we use the expression for the
soft-terms stated in ref. [39].
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A.11 Effective action of D7-branes in Calabi-Yau

orientifolds

Here the four-dimensional effective action of a D7-brane in a Calabi-Yau orientifold
with D7-brane fluxes is presented. This is the form obtained by performing a Kaluza-
Klein reduction [40,64]

SE
D7 =

1

2κ2
4

∫ [
−R ∗4 1 + 2Gãb̃dz

ã ∧ ∗4dz̄
b̃ + 2Gαβdvα ∧ ∗4dv

β

+
1

2
d(lnK) ∧ ∗4d(lnK) +

1

2
dφ ∧ ∗4dφ+ 2eφGabdb

a ∧ ∗4db
b

+ 2iκ2
4µ7LAB̄

(
eφ + 4GabBaBb − 6vΛ

K
Qf̃

)
dζA ∧ ∗4dζ̄

B̄

+
24

K
κ2

4µ7`
2iCIJ̄

α vαdaI ∧ ∗4dāJ̄

+
e2φ

2

(
dl + κ2

4µ7LAB̄

(
dζAζ̄B̄ − dζ̄B̄ζA

))
∧ ∗4

(
dl + κ2

4µ7LAB̄

(
dζAζ̄B̄ − dζ̄B̄ζA

))
+ 2eφGab

(
∇ca − ldba − κ2

4µ7BaLAB̄

(
dζAζ̄B̄ − dζ̄B̄ζA

))
∧

∗4

(
∇cb − ldbb − κ2

4µ7BbLAB̄

(
dζAζ̄B̄ − dζ̄B̄ζA

))
+

9

2K2
Gαβ

(
∇ρα −Kαbcc

bdbc − 1
2
κ2

4µ7

(
KαbcBbBc + δΛ

αQf̃

)
·LAB̄

(
dζAζ̄B̄ − dζ̄B̄ζA

)
+ 2κ2

4µ7`
2CIJ̄

α (aIdāJ̄ − āJ̄daI)
)
∧

∗4

(
∇ρβ −Kβabc

adbb − 1
2
κ2

4µ7

(
KβbcBbBc + δΛ

αQf̃

)
·LAB̄

(
dζAζ̄B̄ − dζ̄B̄ζA

)
+ 2κ2

4µ7`
2CIJ̄

β (aIdāJ̄ − āJ̄daI)
)

+ κ2
4µ7`

2
(

1
2
KΛ − 1

2
e−φKΛabBaBb − 1

2
e−φQf̃

)
F ∧ ∗4F

+ κ2
4µ7`

2
(
ρΛ −KΛabc

aBb + 1
2
KΛabBaBbl + 1

2
lQf̃

)
F ∧ F

+
1

2
(ImM)α̂β̂dV α̂ ∧ ∗4dV

β̂ +
1

2
(ReM)α̂β̂dV α̂ ∧ dV β̂

]
, (A.97)

with the gauge covariant derivatives given by

∇µc
a = ∂µc

a − 4κ2
4µ7`δ

a
PAµ ,

∇µρα = ∂µρα − 4κ2
4µ7`KαbPBbAµ − 4κ2

4µ7`QαAµ .
(A.98)

A.12 Relative cohomology and relative homology

In this appendix we present a primer on the cohomology theory of relative forms
Θ ∈ Ωn(Y, SΛ).15 These forms are n-forms of the Calabi-Yau manifold Y in the

15For an introduction on relative forms see e.g. ref. [162].
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kernel of ι∗. Recall that the map ι embeds SΛ into Y , i.e. ι : SΛ ↪→ Y . Hence the
set of relative forms Ωn(Y, SΛ) fits into the exact sequence

0 → Ωn(Y, SΛ) ↪→ Ωn(Y )
ι∗−→ Ωn(SΛ) → 0 . (A.99)

Then the cohomology of these relative forms with respect to the exterior differential d
defines the relative cohomology groups Hn(Y, SΛ), namely

Hn(Y, SΛ) =
{Θ ∈ Ωn(Y, SΛ)|dΘ = 0}

d (Ωn−1(Y, SΛ))
. (A.100)

Analogously to the duality of the cohomology group Hn(Y ) to the homology group
Hn(Y ), each relative cohomology group Hn(Y, SΛ) has a dual description in terms
of a relative homology group Hn(Y, SΛ). The elements of Hn(Y, SΛ) are n-cycles Γ,
which are not necessarily closed anymore, but may have boundaries ∂Γ in ι(SΛ).
Furthermore the pairing of a relative n-cycle with a relative n-form is given by the
integral

〈Γ,Θ〉 =

∫
Γ

Θ . (A.101)

Note that this bilinear product is independent of the choice of representative of the
relative cohomology element Θ and the relative homology element Γ.

In the following we concentrate on the relative cohomology group H3(Y, SΛ),
which is relevant for the moduli space MN=1 discussed in chapter 6. In order to get
a better handle on this space of relative three-forms one constructs from the short
exact sequence (A.99) the long exact sequence

. . .→ H2(Y )
ι∗−→ H2(SΛ)

δ−→ H3(Y, SΛ) → H3(Y )
ι∗−→ H3(SΛ) → . . . . (A.102)

From this sequence one extracts

H3(Y, SΛ) ∼= ker
(
H3(Y )

ι∗−→ H3(SΛ)
)
⊕ coker

(
H2(Y )

ι∗−→ H2(SΛ)
)
. (A.103)

Thus we can think of a representative Θ of H3(Y, SΛ) as a pair of a three-form ΘY

of Y and a two-form θSΛ of SΛ, where ΘY is in the kernel of ι∗ and θSΛ is in the
cokernel of ι∗.

Recall that in the context of Calabi-Yau orientifolds with a holomorphic invo-
lution σ the complex structure deformations zã and the D7-brane matter fields ζA

are expanded into odd forms with respect to the involution σ. Therefore the appro-
priate relative cohomology space is H3

−(Y, SΛ), that is to say the elements are also
odd relative forms with respect to the involution σ. In this case the relation (A.103)
becomes

H3
−(Y, SΛ) ∼= H̃3

−(Y )⊕ H̃2
−(SΛ) , (A.104)

with

H̃3
−(Y ) = ker

(
H3
−(Y )

ι∗−→ H3
−(SΛ)

)
,

H̃2
−(SΛ) = coker

(
H2
−(Y )

ι∗−→ H2
−(SΛ)

)
.

(A.105)
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of type IIA with D6-branes at angles,” JHEP 01 (2000) 040,
hep-th/9912204.
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[55] A. Font and L. E. Ibáñez, “SUSY-breaking soft terms in a MSSM
magnetized D7-brane model,” hep-th/0412150.
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[121] D. Cremades, L. E. Ibáñez, and F. Marchesano, “SUSY quivers, intersecting
branes and the modest hierarchy problem,” JHEP 07 (2002) 009,
hep-th/0201205.

[122] Z. Kakushadze and S. H. H. Tye, “Brane world,” Nucl. Phys. B548 (1999)
180–204, hep-th/9809147.
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