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Abstract

This thesis consists of two parts. In the first part we use the formal-
ism of (exceptional) generalized geometry to derive the scalar field space of
SU(2) × SU(2)-structure compactifications. We show that in contrast to
SU(3)×SU(3) structures, there is no dynamical SU(2)×SU(2) structure inter-
polating between an SU(2) structure and an identity structure. Furthermore,
we derive the scalar manifold of the low-energy effective action for consistent
Kaluza-Klein truncations as expected from N = 4 supergravity.
In the second part we then determine the general conditions for the existence
of stable Minkowski and AdS N = 1 vacua in spontaneously broken gauged
N = 2 supergravities and construct the general solution under the assumption
that two appropriate commuting isometries exist in the hypermultiplet sector.
Furthermore, we derive the low-energy effective action below the scale of partial
supersymmetry breaking and show that it satisfies the constraints of N = 1
supergravity. We then apply the discussion to special quaternionic-Kähler ge-
ometries which appear in the low-energy limit of SU(3)×SU(3)-structure com-
pactifications and construct Killing vectors with the right properties. Finally
we discuss the string theory realizations for these solutions.

Zusammenfassung

Diese Arbeit besteht aus zwei Teilen. Im ersten Teil nutzen wir den Forma-
lismus der verallgemeinerten Geometrie, um den Raum der Skalarfelder für
SU(2) × SU(2)-Strukturkompaktifizierungen herzuleiten. Wir zeigen, dass im
Gegensatz zu SU(3) × SU(3)-Strukturen keine dynamische SU(2) × SU(2)-
Struktur zwischen einer SU(2)-Struktur und einer Identitätsstruktur inter-
poliert. Weiterhin leiten wir die Skalarmannigfaltigkeit der effektiven Niede-
renergiewirkung für konsistente Kaluza-Klein-Trunkierungen her, wie sie für
(N = 4)-Supergravitationen erwartet ist.
Im zweiten Teil ermitteln wir dann die allgemeinen Bedingungen für die Exi-
stenz stabiler Minkowski- und AdS-(N = 1)-Vacua in spontan gebrochener
geeichter (N = 2)-Supergravitation und konstruieren die allgemeine Lösung
unter der Annahme, dass zwei geeignete kommutierende Isometrien im Hyper-
multipletsektor existieren. Weiterhin leiten wir die effektiven Niederenergiewir-
kung unterhalb der partiellen Supersymmetriebrechungsskala her und zeigen,
dass sie den Bedingungen einer (N = 1) Supergravitation genügt. Wir wen-
den dann unsere Diskussion auf spezielle quaternionisch-Kähler-Geometrien an,
wie sie im Niederenergielimes von SU(3)×SU(3)-Strukturkompaktifizierungen
auftauchen, und konstruieren geeignete Killingvektoren. Zuletzt erörtern wir
Stringtheorierealisierungen für die gefundenen Lösungen.
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Chapter 1

Introduction

1.1 String theory and flux compactifications

String theory provides a promising way to construct theories of particle physics and
gravity that are well-defined in the UV limit (see for example [1–4] for a comprehensive
introduction to string theory). In constrast to theories of point particles, string theory
considers the string, an object extended in one space dimension, as the fundamental
constituent of the theory. Accordingly, the worldline of a point particle in spacetime is
replaced by the string “worldsheet”, which is a surface with one timelike and one spacelike
direction embedded in spacetime. This replacement has a deep impact on pertubation
theory in the corresponding quantum theory: In Feynman diagrams the propagator lines
of point particles are replaced by surfaces representing propagating strings and therefore
interaction vertices are smoothened out. As a consequence, all scattering diagrams of
strings turn out to be finite, which suggest that string theory is UV finite.

In order to actually compute the scattering amplitudes, one considers the theory on
the two-dimensional worldsheet of a closed string with only one dimensionful, free pa-
rameter given by the string tension α′.1 More precisely, it is a sigma model, i.e. a model
of scalar fields parameterizing a manifold, consisting of the D bosonic coordinate fields
that describe the embedding of the string into D-dimensional spacetime and a num-
ber of additional fermionic and bosonic scalar fields introduced for consistency. From
the dynamics it then follows that left- and right-moving modes can be treated indepen-
dently, whose quantization gives the spectrum of the string theory. Stability of the string
theory requires the absence of tachyonic modes in the spectrum and of tadpoles in the
perturbation theory. It turns out that all string theories that meet these conditions ad-
mit some amount of supersymmetry in the two-dimensional worldsheet theory, so-called
“worldsheet supersymmetry”, and are called superstring theories. Furthermore, since one
wants to recover a theory of gravity, a string theory should admit a massless spectrum
(including the gravitational interaction). Such string theories are called critical.

Of particular interest are stable, critical superstring theories that can be realized in
a flat background. It turns out that such there are five different superstring theories of
this type, and all of them require a ten-dimensional spacetime. If both left- and right-
moving sectors are supersymmetric, the theory is called type II string theory. Depending

1The other free parameter, the string coupling constant gs, is dimensionless and determined by the
expectation value of the ten-dimensional dilaton φ(10), a massless scalar.
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CHAPTER 1. INTRODUCTION

on the relative chirality (under the ten-dimensional Lorentz group) of left- and right-
moving states, we distinguish between type IIA (non-chiral) and type IIB (chiral) string
theories. By identifying left- and right-movers of the type II superstring, i.e. by modding
out its orientation, one can define type I string theory analogously. However, the type
I string needs further field content in order to be a consistent quantum theory, which is
realized by adding open string states to the theory. Heterotic string theories are defined
in a different way. Here, one introduces fermionic fields only for left-movers, while the
right-moving spectrum is completed by 16 additional bosonic scalar fields.

The quantization of the superstring leads to an infinite tower of string excitations
that form multiplets of a spacetime supersymmetry group. Its massless spectrum coin-
cides with the spectrum of ten-dimensional supergravity theories, whose ten-dimensional
Planck scale is set by α′. Moreover, the masses of higher string states are of order α′,
which means that the masses of further string states are generically so large that the ob-
servable spectrum coincides with the massless spectrum of ten-dimensional supergravity.
While type I and heterotic string theories descend to N = 1 supergravities in ten dimen-
sions with a number of vector multiplets resembling either the gauge group SO(32) or
E8×E8, the low-energy limit of type II theories is given by the chiral (IIB) or non-chiral
(IIA) version of N = 2 supergravity. Chiral and non-chiral here means that the two
supersymmetry generators are Majorana-Weyl spinors of the same or opposite chirality,
respectively. Note that in ten dimensions N = 2 supersymmetry together with the choice
of chirality already determines the theory completely.

In this thesis we shall only consider type II string theories and the corresponding
N = 2 supergravities. Let us therefore briefly discuss the massless spectra of these theo-
ries from the worldsheet point of view. The massless spectrum of a type II string theory
consists of the tensor product of lowest-order left- and right-moving excitations, which
form massless representations under the ten-dimensional Lorentz group. More precisely,
the lowest-order excitations consist of two representations: A Lorentz vector, the Neveu-
Schwarz (NS) sector, and a spinor field, the Ramond (R) sector. As a consequence, the
tensor product of left- and right-movers consists of the four combinations of NS and R
sector, again forming representations of the ten-dimensional Lorentz group. For exam-
ple, the NS-NS sector forms a Lorentz tensor that decomposes into the ten-dimensional
(symmetric) metric gMN , an anti-symmetric tensor field BMN and the dilaton φ(10) that
is a scalar corresponding to the trace component. Similarly, the R-R sector is a spinor
bilinear that corresponds to a formal sum C of form fields of odd (even) degree in type
IIA (IIB). Finally, the NS-R and the R-NS sector give the two gravitini and dilatini of
opposite (same) chirality in type IIA (IIB).

In order to make contact with observations, one needs to compactify superstring the-
ories to four dimensions. This goes back to the idea of Kaluza and Klein [5,6] to consider
compact, spacelike extra-dimensions in a gravity theory in order to unify interactions.
More generally, a D-dimensional theory on a space that is a product of d-dimensional,
infinitely extended spacetime with a (D − d)-dimensional compact space YD−d corre-
sponds to an effectively d-dimensional theory but with an infinite Kaluza-Klein tower of
massive states. The masses are related to the size of YD−d, the scale of compactification.
Furthermore, on all mass levels, the representations of the D-dimensional Lorentz group
SO(1, D − 1) decompose into representations of SO(1, d − 1). At energies below the
compactification scale, massive states decouple and one can integrate them out of the
theory. For convenience, one simply truncates the spectrum at a given energy scale and
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1.1. STRING THEORY AND FLUX COMPACTIFICATIONS

only considers the light spectrum. The light field content in turn is determined by the
topological features of YD−d.

Applying the concept of dimensional reduction to the superstring in D = 10, one
should consider backgrounds where six space dimensions form a compact manifold whose
size is considered to be at a scale not accessible for present-day experiments. The low-
energy limit of string theory in this background should then reproduce the known Stan-
dard Model of Particle Physics. More generally, it is interesting to ask what is the
low-energy limit of string theory on a background of the form

M1,d−1 × Y10−d , (1.1)

where in the following we will restrict to M1,d−1 being some maximally-symmetric non-
compact space, i.e. Minkowski, AdS or de Sitter (dS) space, while Y10−d is a compact
manifold of dimension (10− d).2

The resulting low-energy effective actions can be very complicated, the scalars for
instance naturally form a non-linear sigma model. In general it is unclear how the cor-
responding string theory might behave on this background, since there is no control over
string corrections in the theory. An exception are low-energy effective theories that are
supersymmetric: The renormalization properties of supersymmetric theories limit the in-
fluence of quantum effects and string corrections. For instance, in an N = 1 supergravity
only the Kähler potential on the target space of scalars gets corrected by (string) loop ef-
fects. Therefore, it is favorable to focus on string compactifications where the low-energy
effective action is supersymmetric. Such supersymmetric string compactifications lead to
lower-dimensional supergravity theories in the low-energy limit, whose phenomenological
properties in turn can be studied. In these theories, supersymmetry then can be broken in
a soft way at low scales. This not only enables one to retain control over the theory after
supersymmetry breaking but, as a side effect, yields many phenomenologically desirable
features for the theory. For instance, the minimal supersymmetric extension of the Stan-
dard Model of Particle Physics unifies the gauge couplings indicating that the Standard
Model gauge group might originate from a simple Lie group (see for instance [10,11] and
references therein). This may also explain the hypercharge pattern of Standard Model
particles. Furthermore, in a theory with spontaneously broken supersymmetry, the loop
corrections to the Higgs mass are limited by the scale of supersymmetry breaking. This
solves the Standard Model hierarchy problem, by giving an alternative scenario to the
cancellation of a bare Higgs mass and its loop corrections of order Planck (or GUT) scale
to the much lower scale of electroweak symmetry breaking.

Backgrounds of the form (1.1) allow for a supersymmetric description at low energies
if one can find a d-dimensional supersymmetry generator acting on the light spectrum.
In other words, the backgrounds has to admit a d-dimensional supersymmetry generator
inside the ten-dimensional supersymmetry algebra whose restriction to the low-energy
spectrum is well-defined, i.e. it maps light modes to other light modes. Generically,

2In general, one can also allow for some warp factor between the two factors in (1.1), in other words
the metric of M1,d−1 can carry a dependence on the coordinates of Y10−d through a prefactor eA where
A is a function on Y10−d. This warp factor can have dramatic effects: Strong warping can even lead to
throat-like geometries where the local modes decouple from the rest of the geometry [7]. We will not
analyze the effect of warping in this thesis even though most of the result carry over to the case of mildly
warped geometries, i.e. where the warp factor eA stays finite and non-zero at every point of Y . For a
discussion of warped compactifications, see for example [8, 9].
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CHAPTER 1. INTRODUCTION

this corresponds to the requirement that Y10−d admits globally defined and nowhere-
vanishing spinors. This in turn limits the possible transformations that can be used to
glue charts on Y10−d together in that they leave these spinors invariant. In turn, the group
of such transformations, called the structure group, is reduced from all metric-preserving
transformations on Y10−d to some subgroup G such that the nowhere-vanishing spinors
on Y10−d become singlets of the structure group. Correspondingly, the manifold Y10−d is
called a G-structure manifold [12–20].

A subclass of such backgrounds are Calabi-Yau manifolds, where the globally defined
spinors are also covariantly constant with respect to the Levi-Civita connection. This
reduces the group of linear transformations used in the Levi-Civita connection, the so-
called holonomy group, to G ⊂ SU(n), n ≤ (10 − d)/2, and the Ricci-tensor vanishes.3

Therefore, Calabi-Yau compactifications lead to vacuum solutions to the equations of
motion (Einstein equation) in the absence of energy sources. For a review on Calabi-Yau
manifolds see for instance [22].

String theory in addition allows for a number of supersymmetric energy sources, which
need to be studied in the context of compactifications in order to understand the generic
low-energy behavior of string theory and furthermore offer attractive features for model
building. For instance, the background can exhibit topological twists in the gauge and
form fields of the ten-dimensional theory, so-called fluxes, which yield field strengths for
the corresponding fields that cannot be turned off dynamically. These fluxes lead to
additional couplings in the low-energy effective action that e.g. enables one to reduce
the number of unwanted massless degrees of freedom. Furthermore, in compactifications
of the type II string one can orientifold the string background in order to reduce the
amount of supersymmetry of the compactification. This amounts to modding out the
combined action of a Z2 symmetry of Y and the exchange of left- and right-movers on
the worldsheet. At the Z2 fixed-point locus in Y , the so-called orientifold plane, the
string is unoriented and feels a negative energy density and a R-R charge. This gives the
possibility to include supersymmetric D-branes in the setup, which have positive energy
density and R-R charge and thereby cancel the charge of the orientifold plane. These
D-branes are defined as the boundary of open strings and thereby can introduce non-
Abelian gauge groups. Both fluxes and localized energy sources such as D-branes and
orientifold planes contribute to the energy-momentum tensor and therefore may demand
a different (non-Calabi-Yau) geometry (for reviews see for example [23–27]). Therefore
it is necessary to study general G-structure manifolds and compactifications thereon.

In contrast to Calabi-Yau manifolds, the covariant derivative for the nowhere-vanishing
spinors on such manifolds is non-vanishing and can be decomposed into irreducible rep-
resentations under the structure group G. These components are called “intrinsic torsion
classes” and can be used to classify G-structure manifolds (see for instance [18,19,28,29]).

In type II theories a slightly more general setup is possible. The ten-dimensional ac-
tion admits two supersymmetries, acting on the left- and right-movers, respectively. Each
of them descends to a supersymmetry generator of the low-energy theory via a nowhere-
vanishing spinor on Y . If these spinors are different, they define different “structure
groups” and the corresponding backgrounds are defined by a G×G structure [30–34].

3There is only a single four-dimensional SU(2)-holonomy manifold, which is called K3. For a review,
see [21]. Note that for seven- and eight-dimensional manifolds Y the holonomy group can be G2 and
Spin(7), respectively. Since we restrict to the case d ≥ 4, we do not consider such manifolds in the
following.
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1.2. COVARIANT FORMULATIONS AND PARAMETER SPACES

In this thesis we will review SU(3)×SU(3)-structure backgrounds of type II theories,
which admit 8 real supercharges, following [33, 34]. Furthermore, we shall discuss type
II backgrounds that allow for 16 supercharges, corresponding to compactifications on
manifolds with SU(2) × SU(2) structure. Aspects of such backgrounds were previously
discussed for example in [20,32,35–39]. It turns out that SU(n)× SU(n) structures can
be discussed rather conveniently in the framework of generalized geometry [40–43]. Let
us introduce these concepts next.

1.2 Covariant formulations and parameter spaces

In the last ten years, much progress has been made in finding geometric formulations
that not only describe geometrical degrees of freedom in string theory compactifications
but covariantize as many symmetries of string theory as possible. The advantage of this
approach is that the understanding of some subsector of fields, for instance the subsector
of fields coming from the metric, enables one to determine the geometry of the complete
moduli space and to make symmetries and dualities of the theory manifest. Furthermore,
such formulations are convenient for describing more general string backgrounds that
differ from the class of Calabi-Yau compactifications by the inclusion of intrinsic torsion
and backgrounds that distinguish between left- and right-movers. These formalisms
enables one to describe viable string backgrounds that may lack a description in terms
of ordinary geometry.4

The motivation comes from string compactifications on an n-dimensional torus, which
lead to effective theories that are not only highly supersymmetric but also possess a
large bosonic symmetry group. In all such string compactifications, the massless scalar
degrees of freedom coming from the metric and the two-form B in the Kaluza-Klein
reduction form representations under the Lie group SO(n, n), the so-called “T-duality
group”, which includes the geometrical symmetry group Gl(n, R) as a subgroup (see [44]
and references therein). The additional generators of SO(n, n) describe symmetries of
the massless string spectrum that are not symmetries of the geometry. Making this
observation, it seems natural to build new string backgrounds by “twisting” the torus by
some symmetry transformation in SO(n, n). This means that different patches on the
torus are not glued together by direct identification but by some SO(n, n) transformation.
If these twists cannot be interpreted in terms of fluxes or intrinsic torsion, one refers to
them as “non-geometric flux”. This leads to so-called twisted tori and T-folds [45–53].
Note that the SO(10− d, 10− d) symmetry of the massless spectrum is not a symmetry
of the massive string states. In particular, from the pattern of BPS states of torus
compactifications, one sees that this symmetry group should be broken to the discrete
group SO(10− d, 10− d, Z) [54]. In order to construct not only a viable background for
the low-energy effective supergravity theory but also for the complete string theory, we
should therefore only use SO(10− d, 10− d, Z) transformations to glue together patches
on the torus.

4Throughout this paper we do not specify if Y10−d is an honest manifold or a generalization thereof.
For the discussion of SU(n) × SU(n) structures it is sufficient to consider backgrounds that admit a
splitting of the ten-dimensional tangent bundle (and generalized version thereof) into a d-dimensional
Minkowskian tangent bundle and the corresponding internal one. Nevertheless we always call Y the
compactification manifold and the analysis in this thesis just carries over to this more general case.
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CHAPTER 1. INTRODUCTION

One could think that this way of constructing new string backgrounds is limited to
torus compactifications, where the T-duality group arises as the symmetry group, which
reflects the high degree of supersymmetry in the compactification and cannot be expected
to be present for more general compactifications on some (10− d)-dimensional manifold
Y10−d. However, if we just consider the theory on M1,d−1 × y, where y is some given
point on Y10−d, we find exactly those degrees of freedom that also appear in the massless
spectrum of a (10 − d)-torus compactification. Therefore, the T-duality group is also
a symmetry of the theory at any point in internal space Y . This means that over any
point of the internal space we can assemble the degrees of freedom into representations
of the T-duality group and thereby find a formulation that is covariant with respect to
SO(10 − d, 10 − d). Covariance here means that we can apply local SO(10 − d, 10 − d)
transformations to the formulation without changing the theory itself. This is in complete
analogy to diffeomorphism invariance of the geometrical formulation. The SO(10−d, 10−
d)-covariant formalism constructed in this way is called generalized geometry and has
been formulated and discussed in the mathematical literature in [40–43,55,56].

If we now vary over the point y in Y , we see that the embedding of fields into SO(10−
d, 10−d) representations can vary. In particular, when moving from one coordinate patch
to another, the representations in these patches may be related by some SO(10−d, 10−d)
transformation. Note that, analogous to the torus case, we may only use SO(10−d, 10−
d, Z) to glue together patches. Therefore, the SO(10 − d, 10 − d) representations form
bundles over the space Y , with a quantized curvature form, where the transition functions
take values in the T-duality group. In particular, one replaces the tangent bundle TY on
Y by the generalized tangent bundle T Y , which locally looks like TY ⊕ T ∗Y . In other
words, T Y admits a canonical pairing of split signature and therefore transforms under
the action of the group SO(10− d, 10− d).

The formalism of generalized geometry is ideally suited to describe SU(n) × SU(n)
structures. Since SU(n)×SU(n) forms a subgroup of SO(2n, 2n), we can describe such a
background by a breaking of the structure group SO(2n, 2n) → SU(n)×SU(n), similarly
to the breaking SO(2n) → SU(n). It has been shown in [41] that an SU(n) × SU(n)
structure is parameterized in terms of two almost complex structures on T Y , which in
turn can be mapped to a pair of “pure” SO(2n, 2n) spinors [40].

In this thesis we shall apply the pure-spinor formalism of generalized geometry to
SU(2)×SU(2) structures and state the purity and compatibility conditions for a pair of
SO(2n, 2n) spinors describing an SU(2)×SU(2) structure, following our work [57]. From
simple chirality arguments we find that generic SU(2) × SU(2) structures do not exist
but instead only manifolds with a single SU(2) structure or with an identity structure
can occur. The latter correspond to backgrounds with 32 supercharges (which we do not
study any further in this thesis). As a consequence, all smooth type II compactifications
with 16 supercharges correspond to backgrounds with an honest SU(2) structure. In
the context of generalized geometry, we shall denote them by SU(2) × SU(2)-structure
backgrounds, since SU(2)× SU(2) is still the structure group of the generalized tangent
bundle.

In type II theories one can even go beyond the pure-spinor approach. The inclusion
of the Ramond-Ramond sector extends the symmetry group of the massless spectrum to
the so-called “U-duality group” E11−d(11−d) and makes it possible to arrange the massless
fields in E11−d(11−d) representations [58–61]. The resulting formalism is called “excep-
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tional generalized geometry” and is maximally covariant with respect to the symmetries
of type II theories. The representations of E11−d(11−d) again form bundles over Y that
are glued together by E11−d(11−d)(Z)-transformations [58]. For instance, the generalized
tangent bundle T Y is replaced by the exceptional tangent bundle EY which locally has
the properties of TY ⊕T ∗Y plus a SO(10−d, 10−d)-spinor bundle and forms the funda-
mental representation of E11−d(11−d). The pure SO(10−d, 10−d) spinors parameterizing
an SU(n) × SU(n) structure can be embedded into representations of E11−d(11−d) [61].
As expected, this incorporates also the R-R fields into the formalism. Therefore, defor-
mations of these embedded spinors contain all massless internal degrees of freedom of a
type II background of the form (1.1).

These parametrizations turn out to be very useful. One can rewrite the ten-dimensional
theory in such a way that only a subalgebra of the Lorentz algebra so(1, 9) and thus of the
supersymmetry algebra is manifest in the theory [62]. More precisely, one can reorder the
ten-dimensional field content such that it forms representations of the lower-dimensional
Lorentz group SO(1, d−1) and of the internal structure group SU(n)×SU(n) [34]. The
SO(1, d−1) scalars are then identified with the internal degrees of freedom of the theory,
which over each point of the ten-dimensional space in (1.1) can be parameterized by the
pure spinors and their embeddings in E11−d(11−d) representations. The parameter space
of SU(n) × SU(n) structures then serves as the target space of SO(1, d − 1) scalars in
the ten-dimensional theory. We shall refer to these spaces as parameter spaces in the
following. Note that this rewriting of the theory is performed in ten dimensions, i.e.
no dimensional reduction is performed so far. However, it enables us to derive the d-
dimensional field content when carrying out a Kaluza-Klein reduction on the background
(1.1), as we discuss next.

1.3 Consistent truncations and low-energy effective

actions

So far we just discussed different descriptions of the ten-dimensional theory. One still
needs to carry out a Kaluza-Klein reduction in order to find the d-dimensional low-
energy effective theory. In general this is done by truncation of the spectrum below
the compactification scale. Such a truncation should be performed in a consistent way,
which means that the solutions to the equations of motion of the truncated theory all
lift to solutions of the full theory. In particular, a consistent truncation should respect
the symmetries of the theory. Finding a consistent truncation is in general a non-trivial
procedure that might strongly depend on the model under consideration.

In order to make general statements about the resulting effective theory, in this thesis
we shall – after stating the corresponding conditions – simply assume the existence of
a consistent truncation, in the spirit of [33, 34]. This will enable us to analyze general
properties of the low-energy effective action for SU(n) × SU(n)-structure backgrounds
and vacua thereof. In particular, we assume the existence of a finite basis of light modes,
in which we then expand the pair of pure spinors describing the SU(n)×SU(n) structure
(and their embeddings into E11−d(11−d) representations) and in this way parameterize the
scalar sector of the theory in d dimensions. The space spanned by these pure spinors
consists of the light deformations of the theory and therefore gives the target space of d-
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dimensional scalar fields. We shall denote this space by scalar field space in the following.

For a consistent truncation, the scalar field space inherits many properties from the
parameter space of the ten-dimensional theory. For example, by use of the pure spinor
parametrization and its E7(7) embedding one can determine the scalar field space M of
SU(3)×SU(3)-structure compactifications to be a direct product of a special-Kähler and
a quaternionic-Kähler manifold [33,34,40,61,63,64]

M = Mv ×Mh . (1.2)

The low-energy effective action of SU(3)×SU(3)-structure compactifications is an N =
2 supergravity, in agreement with (1.2). Moreover, the quaternionic-Kähler manifold
Mh can be shown to be in the image of the c-map, i.e. it is a principal fibre bundle
over a special-Kähler manifold [65, 66]. The fibre of such a special quaternionic-Kähler
manifolds admits a Heisenberg algebra of isometries [67,68]. In SU(3)×SU(3)-structure
compactifications possible electric and magnetic gaugings of these isometries originate
from fluxes, intrinsic torsion and non-geometric fluxes on Y [34, 69–72].

Before discussing SU(2) × SU(2)-structure backgrounds, let us make one more re-
mark on the motivation to study fluxes, intrinsic torsion and non-geometric fluxes in
compactification setups. One generic feature of string compactifications is the large
number of scalars that are light compared to the compactification scale and therefore
appear in the low-energy effective action. The precise number of such scalar fields and
their masses depend on the chosen truncation of the theory but are usually linked to the
topology of the background, e.g. for geometric backgrounds the topology of the compact
space Y and fluxes for the form fields. In particular, massless scalar fields correspond
to supersymmetry-preserving deformations of the background. The vacuum expectation
values of these fields, so-called moduli, parameterize a family of supersymmetric back-
grounds that have the same topology. The corresponding low-energy effective actions
differ in their couplings and masses, i.e. couplings and masses are moduli-dependent. As
a consequence, the presence of moduli eliminates the predictability of the considered the-
ory. Viable models therefore should include additional effects that lift the masses of all
scalars to a non-zero value, thereby stabilizing all moduli. In N = 2 gauged supergravity,
an adequate potential to lift the scalar field sector is induced by electric and magnetic
gaugings, which enables one to address the moduli problem in the context of flux com-
pactifications [73–76]. We shall come back to this issue when discussing supersymmetric
minima of N = 2 supergravities.

For SU(2)×SU(2)-structure compactifications the assumption of a consistent trunca-
tion leads even further. The low-energy effective theory should be a gauged N = 4 super-
gravity, whose couplings are highly constrained by the large amount of supersymmetry,
see for example [77–82]. For example, the light scalar fields of type IIA compactifications
have to parameterize cosets of the form [83]

MN=4 =
SO(10− d, nv)

SO(10− d)× SO(nv)
× R+ , (1.3)

where nv counts the number of vector multiplets and the R+ factor corresponds to the
dilaton.5 As we shall show, based on [57], we indeed can identify MN=4 as the deforma-
tion space of SU(2)× SU(2)-structure manifolds. For a special class of SU(2) structure

5In d = 4 the R+ factor is enlarged to the coset Sl(2, R)/SO(2) since the antisymmetric tensor of the
NS-NS sector is dual to an axion and contributes to the scalar couplings.
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backgrounds in d = 4 this was already discussed in [36]. Here we analyze the generic
situation and concentrate on the scalar field space, which corresponds to the kinetic
terms of the scalars in the low-energy effective Lagrangian. A more detailed derivation
of this Lagrangian including the possible gaugings and the potentials will be presented
elsewhere [84].

1.4 Partial supersymmetry breaking and N = 1 ef-

fective theories

A central question when analyzing the low-energy effective action of flux compactifica-
tions is the amount of supersymmetry that is preserved by the vacuum of the theory. If
symmetries of the theory are spontaneously broken in the vacuum, the scale of symme-
try breaking naturally coincides with the compactification scale, which is usually high
compared to scales accessible for phenomenology. On the other hand, phenomenological
features of supersymmetry and its good renormalization properties suggest that models
should be preferred that allow supersymmetry to be unbroken down to considerably low
energies. Due to this separation of the supersymmetry breaking and the compactifica-
tion scale, it is natural to first find effective theories that allow for supersymmetric vacua
and subsequently modify these theories in such a way that supersymmetry is broken by
some low-energy effect. We will concentrate on the first step and discuss the existence of
(N = 1)-supersymmetric vacua in low-energy effective theories.

The effective action arising from supersymmetric compactifications of type II theories
usually admits a non-minimal amount of supersymmetry. As discussed in Section 1.1,
globally defined nowhere-vanishing spinors on manifold Y give rise to supersymmetries
of the effective action. The number of such spinors determines the amount of supersym-
metry in the action. On the other hand, imposing the existence of these spinors reduces
the structure group of Y . For instance SU(3)× SU(3) structure compactifications allow
for one nowhere-vanishing spinors on Y6, leading to N = 2 supergravity theories in d = 4
in the reduction. Therefore, supersymmetric type II compactifications admit usually at
least N = 2 supersymmetry. However, N = 1 vacua are highly preferred because they
are much closer to phenomenologically viable models.

One way to achieve an N = 1 theory is given by truncating the N = 2 supergravity
such that the surviving fields give only rise to an N = 1-supersymmetric theory [85–88],
corresponding to some orientifold projection in the type II compactification [63, 89–91].
An alternative scheme is provided by finding and classifying N = 1 vacua of N = 2
supergravities with a Minkowski or AdS geometry. It turns out that this is naturally
related to gaugings in N = 2 supergravity (see for example [92] and references therein
for a discussion of gauged supergravity). If N = 2 supergravity is for example ungauged,
there are no N = 1-supersymmetric vacua. Gaugings however might lead to spontaneous
supersymmetry breaking, similar to the Higgs mechanism in the Standard Model. Anal-
ogously to electroweak symmetry breaking, the super-Higgs mechanism induces a mass
for the “gauge field”, which in the case of N = 2 → N = 1 breaking is one of the two
gravitini, which therefore forms a massive N = 1 gravitino multiplet.

It turns out that a crucial requirement for the appearance of N = 1 vacua is the
inclusion of magnetic charges in the theory. It has been shown already in [93,94] that for
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a standard gauged N = 2 supergravity with only electric charges no N = 1 Minkowski
vacua exist. The possibility of partial supersymmetry breaking in globally N = 2 super-
symmetric theories in four spacetime dimensions was subsequently discovered in [95,96].
In particular, it was observed in [96] that the presence of a magnetic Fayet-Iliopoulos
term spontaneously breaks N = 2 to N = 1. The supergravity version of this situation
was presented in [97–99] for a specific class of gauged N = 2 theories. There it was found
that the no-go theorem of [93,94] could be avoided in a specific basis for the scalar fields
of the N = 2 vector multiplets. In this thesis we shall attempt a more systematic anal-
ysis of the problem, going beyond the few explicit examples mentioned above by finding
and then solving the general conditions in N = 2 supergravity for partial supersymmetry
breaking in Minkowski and anti-de Sitter spacetimes (for an analysis in three-dimensional
spacetime, see [100]).

The situation becomes more delicate in the context of flux compactifications. In
classical gravity one is faced with another no-go theorem, due to Gibbons [101], de
Wit et al. [102] and Maldacena and Nuñez [103], which forbids flux compactifications
to Minkowski space in the absence of negative energy-density sources, regardless of the
amount of supersymmetry preserved. Furthermore, in [104] it was noted that even if one
evades the various no-go theorems and finds an N = 1 vacuum, worldsheet instanton
corrections in N = 2 flux compactifications could ruin the result and reinstate the no-go
theorem forbidding partial supersymmetry breaking. We shall address these points in
our analysis in the context of gauged N = 2 supergravities coming from SU(3)×SU(3)-
structure compactifications.

An important tool for computations in N = 2 supergravity is special geometry: The
geometry of the special-Kähler component of the scalar field space (1.2) is determined
by a single holomorphic function, the so-called holomorphic prepotential. In the known
examples of partial supersymmetry breaking however the holomorphic prepotential does
not exist, as one of the gauge bosons has been exchanged with its magnetic dual via a
symplectic rotation [105]. The lack of a prepotential makes it difficult to generalize the
discussion to arbitrary N = 2 supergravities. Therefore, it is advantageous to reinstate
the prepotential, which one can always do at the expense of having to introduce both elec-
tric and magnetic charges. It turns out that the embedding tensor formalism [106,107] is
ideally suited to address this problem. This formalism treats electric and magnetic gauge
bosons on the same footing and the conditions for partial supersymmetry breaking can
then be formulated as a condition on the embedding tensor itself. Indeed, using this we
shall construct a general solution for Minkowski and AdS vacua displaying N = 1 su-
persymmetry for a broad class of N = 2 gauged supergravities, following our work [108].
More precisely, the conditions for partial supersymmetry breaking primarily determine
the structure of the embedding tensor, i.e. the spectrum of electric and magnetic charges,
but do not constrain the scalar field space Mv of the vector multiplets. In the hyper-
multiplet sector on the other hand, the scalar field space Mh has to admit at least two
linearly independent, commuting isometries. Gauging these isometries is necessary in or-
der to induce masses for the two Abelian gauge bosons which join the heavy gravitino in
a massive N = 1 gravitino multiplet. Partial supersymmetry breaking further demands
that a specific linear combination of the two Killing vectors generating the isometries is
holomorphic with respect to one of the three almost complex structures which exist on
Mh.

We explicitly identify two such Killing vectors for the specific class of special quater-
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nionic-Kähler manifolds, which are in the image of the c-map (cf. the discussion below
(1.2)). More precisely, we give the construction of embedding tensors that lead to N = 1
vacua for any moduli space that admits the Heisenberg algebra of Killing vectors naturally
appearing in flux compactifications of type II string theory. Moreover, we find that by
adjusting the charges one can realize N = 1 vacua at any point of the moduli space.

We discuss the ‘uplift’ of our solutions to flux compactifications. We show that by
rewriting the conditions for partial supersymmetry breaking in terms of the embedding
tensor, the compactification no-go theorem of [101–103] can be evaded by including non-
geometric fluxes. As we are able to phrase the conditions for anN = 1 vacuum in terms of
a general holomorphic prepotential, this also opens up the possibility of finding solutions
in the presence of instanton corrections. Finally, the flux quantization condition forces
the embedding tensor to have integer entries only, leading to a lattice in the moduli space
where N = 1 vacua can be realized. More importantly, this might restrict the possibility
of N = 1 vacua to a subclass of moduli spaces.

After finding the conditions on the gauged N = 2 supergravity, we go one step
further and derive the N = 1 low-energy effective action that is valid below the scale of
partial supersymmetry breaking m3/2 or, in other words, below the scale set by the heavy
gravitino, based on [109]. In order to achieve this we integrate out the entire massive
N = 1 gravitino multiplet (containing fields with spin s = (3/2, 1, 1, 1/2)) together with
all other multiplets which, due to the symmetry breaking, acquire masses of O(m3/2).
This results in an effectiveN = 1 theory whose couplings are determined by the couplings
of the ‘parent’ N = 2 theory. Note that some aspects of this analysis have already been
discussed in [110,111].

An interesting aspect of the N = 1 effective theory is the structure of its scalar
field space MN=1, which is fixed by N = 1 supersymmetry to be Kähler. In N = 2
supergravities the scalar field spaceM is a direct product of the form (1.2). In particular,
Mh is quaternionic-Kähler but not Kähler. We shall see that the process of integrating
out the two heavy gauge bosons corresponds to taking the quotient of Mh with respect
to the two isometries generating the partial supersymmetry breaking. This leaves a
manifold M̂h = Mh/R2 where the two ‘missing’ scalar fields are the Goldstone bosons
eaten by the heavy gauge bosons. We shall show that M̂h is equipped with a Kähler
metric consistent with the N = 1 supersymmetry of the low-energy effective theory [112].
It is also possible that, apart from the two gauge bosons, other scalar fields (from both
vector and hypermultiplets) acquire a mass of O(m3/2) and thus have to be integrated
out, leading to a further reduction of the scalar field space. However, as such scalars are
not Goldstone bosons this process simply amounts to projecting to a Kähler submanifold
of M̂h ×Mv, rather than taking a quotient. The resulting N = 1 scalar field space is
then given by

MN=1 = M̂h × M̂v , (1.4)

where M̂v is a submanifold of Mv.
6

The dimension of MN=1 can be as large as dimM− 2, if only the two Goldstone
bosons have been removed from the scalar field space by integrating out the heavy gauge
bosons. However, depending on the specific couplings, the dimension of MN=1 can be
much smaller if most scalars are stabilized at the scale m3/2. Indeed we shall see that
generically all scalars coming from vector multiplets are stabilized. For the class of special

6For notational simplicity we did not introduce a new symbol for the submanifold of M̂h.
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quaternionic-Kähler manifolds, a similar conclusion can be found for the scalars coming
from the hypermultiplets.

1.5 Organization of the thesis

This thesis is organized as follows. In Chapter 2 we introduce basic concepts for SU(n)×
SU(n)-structure backgrounds. In Section 2.1 we define them by imposing the existence
of nowhere-vanishing spinors on Y . In Section 2.2 we decompose the field content of ten-
dimensional type II supergravity into representations of the d-dimensional Lorentz group
and the structure group and identify them with multiplets of the d-dimensional super-
symmetry algebra. In particular, we discover that the gravitino multiplets that become
massive in the compactification process sit in the n-plet representations of SU(n)×SU(n).
In Section 2.3 we take a first step to find the parameter space of the scalars of the d-
dimensional Lorentz group by analyzing geometric SU(n) structures and deriving the
parameter space of geometric deformations.

In Chapter 3 we then use the techniques of generalized geometry to derive the pa-
rameter space of all d-dimensional scalars for SU(n)× SU(n)-structure backgrounds. In
Section 3.1 we introduce the formalism of generalized geometry and give a description of
SU(n)×SU(n) backgrounds in terms of pure spinors. Using this, we derive the parame-
ter space of the NS-NS sector. In Section 3.2 we then also incorporate the R-R scalars by
introducing the E11−d(11−d)-covariant formalism of exceptional generalized geometry and
apply it to the case d = 6 to derive the parameter space of the six-dimensional theory. Af-
ter reviewing the embedding of pure spinor pairs that describe SU(3)× SU(3)-structure
backgrounds into representations of E7(7), we determine the parameter space of all scalars
in SU(2)× SU(2)-structure backgrounds for d = 4.

In Chapter 4 we finally derive the scalar field spaces of low-energy effective supergrav-
ities of SU(2)× SU(2)-structure compactifications and review the appearance of N = 2
supergravity in SU(3) × SU(3)-structure compactifications. In Section 4.1 we discuss
the consistency conditions for Kaluza-Klein truncations, which in Section 4.2 we assume
to be satisfied in order to derive the scalar field spaces of the d-dimensional low-energy
effective theory by use of the parameter spaces derived in Chapter 3. In Section 4.3 we
provide basic material for the following chapter and review gauged N = 2 supergravities
as they appear in SU(3)× SU(3)-structure compactifications.

In Chapter 5 we discuss N = 1 vacua of N = 2 gauged supergravity and string theory.
In Section 5.1 we analyze the possibility of partial supersymmetry breaking in gauged
N = 2 supergravities. In particular, we show how to evade the classical no-go theorems
for Minkowski vacua and construct the general solution. In Section 5.2 we then derive the
effective N = 1 supergravity by integrating out the massive fields in the spontaneously
partially broken phase. In Section 5.3 we focus on the class of special quaternionic-
Kähler moduli spaces, which generally arise in N = 2 compactifications of type II string
theory. We apply our results of the preceding sections in order to construct the general
solutions for both N = 1 Minkowski and AdS vacua and to specify the properties of
the N = 1 effective action. Finally, we comment on stringy effects in the corresponding
flux compactifications in Section 5.4. We present our conclusions in Chapter 6. Our
conventions are given in the appendix.

The new results of Chapter 2 and Chapter 3, regarding SU(2) × SU(2) structures,
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have been published in [57], where also backgrounds of the form (1.1) with d = 5 are
discussed. Furthermore, Chapter 5 reflects the content of [108,109]. The content of [113]
has not been included in the thesis.
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Chapter 2

SU(n)× SU(n)-structure backgrounds

In this chapter we will introduce the general setup of SU(n) × SU(n)-structure back-
grounds, n = 2, 3, and gather basic information about such backgrounds by use of group-
theoretical considerations. In particular we will see that unbroken supersymmetry forces
the manifold to admit an SU(n) × SU(n) structure. We then will decompose the ten-
dimensional field content in multiplets of the corresponding d-dimensional supersymme-
try algebra. This corresponds to a rewriting of the ten-dimensional action such that it is
only manifestly covariant with respect to this reduced supersymmetry algebra. Finally,
we will describe geometric SU(n) structures – as a warm-up before introducing covariant
formulations in Chapter 3.

2.1 Basics on SU(n)× SU(n) compactifications

In backgrounds of the form (1.1) the ten-dimensional Lorentz group decomposes naturally
into SO(1, d − 1) × SO(10 − d). We are interested in backgrounds that are able to
preserve at least some amount of supersymmetry in the low-energy effective theory. This
naturally demands that the d-dimensional supersymmetry generator ε should lift to a
ten-dimensional supersymmetry generator [31]

ε(10)(x, y) = ε(x)⊗ η(y) + εc(x)⊗ ηc(y) (2.1)

in such a way that the corresponding supersymmetry tranformations relate the zero
modes in the spectrum. Here the superscript c refers to the charge conjugate of the
corresponding spinor. Since the zero modes of the Kaluza-Klein spectrum are usually
nowhere-vanishing objects on Y10−d, the same should hold for the internal spinor η. The
existence of such a spinor η strongly restricts the internal manifold Y . If an object is
globally-defined, it should not depend on the choice of charts on the manifold. More
precisely, there should be charts on Y such that η does not depend on the chart used and
therefore does not transform when one moves from one chart to another. This restricts
the possible linear transformations that can be used for such chart transitions. The group
of such linear transformations, the so-called structure group, is therefore reduced in such
a way that η is in its singlet representation. In the following we restrict to the case of
even d.1 Then, the structure group is reduced from the Lorentz group SO(10 − d) to

1The case of d = 5 is discussed in [57,60]. The structure group in that case reduces to SU(2).
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SU(n), n = 10−d
2

, which is the largest subgroup that admits a singlet spinor under the
breaking.

In the following we concentrate on backgrounds for the type II string. This means we
have two ten-dimensional supersymmetry generators ε

(10)
1 and ε

(10)
2 , where each descends

via some internal SU(n) structure to a d-dimensional supersymmetry generator ε1 and
ε2 where

ε
(10)
1 = ε1 ⊗ η1 + εc

1 ⊗ ηc
1 , ε

(10)
2 = ε2 ⊗ ηc

2 + εc
2 ⊗ η2 (2.2)

holds for type IIA and
ε
(10)
i = εi ⊗ ηi + εc

i ⊗ ηc
i (2.3)

for type IIB, with i = 1, 2. Each of the internal spinors η1 and η2 defines an SU(n)
structure, defining together a so-called SU(n)× SU(n) structure [30,31]. There are two
limiting cases for such SU(n)×SU(n) structures. If η1 and η2 are parallel at every point
of Y , then this reduces to the case of a single SU(n) structure. The other limiting case is
when η1 and η2 can be chosen such that they are orthogonal at every point of Y . In this
case, we have actually more supersymmetry generators in four dimensions since each of η1

and η2 give rise to d-dimensional supersymmetry generators for each ten-dimensional one.
The generic SU(n)×SU(n)-structure case is more conveniently described by generalized
geometry, which we introduce in Chapter 3.

Let us be more concrete now. For a background (1.1) with d = 6, Y4 is a four-
dimensional manifold and the Lorentz group is SO(1, 5) × SO(4). The ten-dimensional
Majorana-Weyl spinor representation 16 decomposes accordingly as

16 → (4,2)⊕ (4̄, 2̄) . (2.4)

If we want a singlet on Y4, we see that SO(4) must be reduced to SU(2) such that the
spinor representations decompose as

2 → 1⊕ 1 , 2̄ → 2̄ . (2.5)

The two singlets here are given by η and ηc, which are both of the same chirality since
charge conjugation in four dimensions preserves chirality. Since they are linearly inde-
pendent, they together span the whole Weyl spinor space of given chirality.2 This is the
case of an SU(2) structure, which preserves 16 supercharges corresponding to N = 2 in
six dimensions.

For d = 4, the Lorentz group decomposes into SO(1, 3) × SO(6), and the ten-
dimensional spinor representation accordingly as

16 → (2,4)⊕ (2̄, 4̄) . (2.6)

Under a breaking SO(6) → SU(3) the decomposition of the spinor bundles reads

4 → 3⊕ 1 , 4̄ → 3̄⊕ 1 , (2.7)

where the two singlets are again given by η and ηc but are of opposite chirality now.
This is the case of an SU(3) structure, which preserves N = 2 supersymmetry in the
four-dimensional theory.

2Note that it is pure convention whether we denote the reduced representation in (2.5) by 2 or by 2̄,
depending on the chirality of η.
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If one imposes in this case the existence of a second, linearly independent spinor, the
structure group is further broken to SU(2), such that under SO(6) → SU(2) there is

4 → 2⊕ 1⊕ 1 , 4̄ → 2̄⊕ 1⊕ 1 . (2.8)

Therefore, SU(2)-structure compactifications to four dimensions usually preserve N = 4
supersymmetry because the number of four-dimensional supersymmetry generators is
doubled.

One could further reduce the structure group by introducing additional nowhere-
vanishing spinors on Y . This usually reduces the structure group from SU(2) to the trivial
subgroup. We will not discuss this case any further in this thesis and refer to [45–53] for
further details.

2.2 Field decompositions

Above we introduced the relevant structure groups for N = 2 and N = 4 compact-
ifications of the type II string. The structure group times the d-dimensional Lorentz
group emerges as a subgroup of the ten-dimensional Lorentz group. The massless spec-
trum of the ten-dimensional string, which is reviewed in Section 1.1, consists of ten-
dimensional Lorentz representations and decomposes accordingly into representations
of the d-dimensional Lorentz-group times the structure group. Furthermore, for mass-
less fields we can use the light-cone gauge in order to reduce to the physical degrees of
freedom that are then representations of the little group. More precisely, massless ten-
dimensional fields come in representations of SO(8) and decompose into representations
of SO(d − 2) × SU(n). Since string fields are combinations of left- and right-moving
excitations, they are in representations of SO(8)L × SO(8)R and decompose into repre-
sentations of SO(d− 2)× SU(n)L × SU(n)R.

In this section we analyze how the ten-dimensional massless field content decomposes
into representations of SO(d−2)×SU(n)L×SU(n)R. By identifying the emerging repre-
sentations one is able to relate representations of the structure group with supersymmetry
multiplets in d dimensions. As we see below, in all cases the d-dimensional gravity mul-
tiplet sits in the singlet representation of the structure group while additional gravitino
multiplets come in the (n,1) and (1,n) representations and the conjugates thereof, i.e.
in the n-plet representations. Additional vector and possibly matter multiplets come as
singlets or as higher representations of the structure group such as (n,n) and (n̄,n) and
conjugates thereof.

Note that the resulting fields still depend on all coordinates of the ten-dimensional
spacetime, i.e. we have not performed any Kaluza-Klein truncation on the spectrum
but really deal with ten-dimensional backgrounds. This procedure just corresponds to
a rewriting of the ten-dimensional supergravity in a form where instead of the ten-
dimensional Lorentz group only the d-dimensional Lorentz group times the structure
group with eight or sixteen supercharges is manifest. This rewriting of the ten-dimensional
theory has been pioneered in Ref. [62] and applied to the case of SU(3)×SU(3) structures
in Refs. [33,114].

When we perform the Kaluza-Klein truncation in Section 4, the above field content is
reduced to the zero-modes of the fields. In this process, all additional gravitino multiplets
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should acquire a mass of order of the compactification scale in order to arrive at a low-
energy action with the right amount of supersymmetry. The same happens to all other
fields in the n-plet representation and truncating the theory below the compactification
scale then removes all n-plets. Therefore, whenever we discuss massless fields of the
theory, including supersymmetric deformations of the background, we should project out
the n-plet representation as they are removed in the compactification procedure.

Furthermore, the singlet representation of the structure group always corresponds to
exactly one zero-mode, which is nowhere-vanishing on Y . Therefore, each SU(n)×SU(n)
singlet descends to exactly one field in the low-energy effective action and their couplings
are universal, i.e. independent of the precise form of the background. On the other hand,
higher SU(n)× SU(n) representations may have an arbitrary number of massless fields
in the effective action, whose number and couplings are determined by the background.
Let us now discuss the field decompositions for d = 6 and d = 4.

2.2.1 SU(2)× SU(2) field decompositions in d = 6

We start by discussing the case of an SU(2) × SU(2) structure in d = 6, following
[57]. This corresponds to decomposing the ten-dimensional massless field content for the
breaking SO(8)L × SO(8)R → SO(4)l × SU(2) × SU(2), where for clarity we used the
subscript l to denote the “little group” of SO(1, 5) and to distinguish it from the Lorentz
group on Y4. We gave the massless spectrum of the type II string in ten dimensions
already in Section 1.1. It consists of the tensor product of the left-moving modes in the
representation 8v⊕8s with the right-moving representations 8v⊕8c (8v⊕8s) for type IIA
(IIB). Here, the vector representations give the NS sector while the spinor representations
come from the R sector. In order to understand the decomposition of the string modes,
let us first recall the decomposition of the two Majorana-Weyl representations 8s and 8c

and the vector representation 8v under the breaking

SO(8) → SO(4)l × SO(4) → SO(4)l × SU(2) . (2.9)

We get
8s → 22 ⊕ 2̄2̄ → 22 ⊕ 212̄ ,

8c → 22̄ ⊕ 2̄2 → 22̄ ⊕ 212 ,

8v → 14 ⊕ 41 → 14 ⊕ 221 ,

(2.10)

where the subscript denotes the representation under the group SO(4)l.

In type IIA string theory the massless fermionic degrees of freedom originate from
the (8s,8v) and (8v,8c) representation of SO(8)L × SO(8)R, while in type IIB they
originate from the (8s,8v) and (8v,8s) representation. Decomposing the fermions under
SO(8)L × SO(8)R → SO(4)l × SU(2)L × SU(2)R we find

(8s,8v) → 2(1,1)6 ⊕ 2(1,1)2 ⊕ 4(1,2)2̄ ⊕ (2,1)6̄ ⊕ (2,1)2̄ ⊕ 2(2,2)2 ,

(8v,8s) → 2(1,1)6 ⊕ 2(1,1)2 ⊕ (1,2)6̄ ⊕ (1,2)2̄ ⊕ 4(2,1)2̄ ⊕ 2(2,2)2 ,

(8v,8c) → 2(1,1)6̄ ⊕ 2(1,1)2̄ ⊕ (1,2)6 ⊕ (1,2)2 ⊕ 4(2,1)2 ⊕ 2(2,2)2̄ .

(2.11)

We see that half of the gravitinos, denoted by the subscript 6 and 6̄, come in the (1,1)
representation while the other half is in the doublet representations (1,2) and (2,1) of
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SU(2)L × SU(2)R. We will see below that the 6d graviton is in the (1,1) representa-
tion and thus this representation labels the gravity multiplet in six dimensions. Hence
the (1,2) and (2,1) representations correspond to additional gravitino multiplets, which
acquire a mass at the Kaluza-Klein scale in the compactification process. We have to
project out these representations to end up with a standard N = 2 supergravity in six
dimensions (as discussed above) [85,86]. After this projection, the fermionic components
in the (1,1) representation become part of the gravity multiplet, while the (2,2) com-
ponents correspond to the fermionic degrees of freedom in the N = 2 vector and tensor
multiplets in type IIA and IIB, respectively.3

The massless bosonic fields of type II supergravity can be decomposed analogously.
As stated in Section 1.1, the NS-NS sector consists of a tensor EMN in the 8v ⊗ 8v

representation, which gives the NS-NS fields

EMN = gMN + BMN + φ(10) ηMN , (2.12)

where gMN is symmetric and traceless and corresponds to metric degrees of freedom,
BMN is an anti-symmetric tensor and ηMN is the (fixed) ten-dimensional Minkowski
metric so that the ten-dimensional dilaton φ(10) corresponds to the trace of EMN . EMN

decomposes under the breaking SO(8)L × SO(8)R → SO(4)l × SU(2)× SU(2) as

Eµν : (1,1)9 ⊕ (1,1)1 ⊕ (1,1)3⊕3̄ ,

Eµm : 2(1,2)4 ,

Emµ : 2(2,1)4 ,

Emn : 4(2,2)1 .

(2.13)

Projecting out the doublets eliminates the six-dimensional vectors Eµm and Emµ, and
we are left with Eµν , i.e. the metric, the six-dimensional dilaton and the antisymmetric
two-tensor, which are part of the gravity multiplet, and the scalars Emn, which reside
in vector or tensor multiplets. Since the latter ones correspond to the internal metric
and B-field components, they can be associated with deformations of the SU(2)×SU(2)
background.

Finally, in the R-R sector we need to decompose the (8s,8c) representation in type
IIA and the (8s,8s) in type IIB. One finds

(8s,8c) → 4(1,1)4 ⊕ 2(1,2)3̄ ⊕ 2(1,2)1 ⊕ 2(2,1)3 ⊕ 2(2,1)1 ⊕ (2,2)4 ,

(8s,8s) → 4(1,1)3̄ ⊕ 4(1,1)1 ⊕ 2(1,2)4 ⊕ 2(2,1)4 ⊕ (2,2)3 ⊕ (2,2)1 .
(2.14)

We see that in type IIA only six-dimensional vectors in the R-R sector survive the
projection. Those which are in the (1,1) representation form the graviphotons in the
gravity multiplet, those in the (2,2) give the vectors in the vector multiplets.

Projecting out all SU(2)× SU(2) doublets leaves a spectrum that for type IIA com-
bines into a gravitational multiplets plus a vector multiplet of the non-chiral d = 6,N = 2
supergravity. For type IIB we obtain instead a gravitational multiplets and two tensor

3In type IIB, only the anti-self-dual part of the antisymmetric two-tensor is part of the gravity
multiplet [115]. The self-dual component forms a tensor multiplet together with scalars in the R-R
sector. This tensor multiplet is also in the (1,1) representation.
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multiplet of the chiral N = 2 supergravity. To be more precise, in type IIA the gravita-
tional multiplet contains the graviton, an antisymmetric tensor, two (non-chiral) gravi-
tini, four vector fields, four Weyl fermions and a real scalar. These degrees of freedom
precisely correspond to the (1,1) representation of the decompositions given in (2.11),
(2.13) and (2.14). The vector multiplet contains a vector field, four gaugini and four real
scalars. These arise in the (2,2) representation of the above decompositions. In type IIB
the gravitational multiplet contains the graviton, five self-dual antisymmetric tensor and
two (chiral) gravitini. These degree of freedom are found in the (1,1) representation of
the above decompositions. In addition there are two tensor multiplets each containing
an anti-self-dual antisymmetric tensor, two chiral fermions and five scalars. One of them
also originates from the (1,1) representation while the second one comes from the (2,2)
representation of the above decompositions.

2.2.2 Field decompositions in d = 4

Let us now turn to the case d = 4. One can decompose the spectrum for both the cases
of an SU(3)× SU(3) or SU(2)× SU(2) structure.

The decomposition of the ten-dimensional spectrum with respect to SO(2)×SU(3)×
SU(3) is completely analogous to the discussion of last section and has been worked out in
[33]. We only state the results here. Under SU(3)×SU(3), the (1,1) representation gives
the gravity and a tensor multiplet. The triplet representations form massive gravitino
multiplets, which are supposed to be projected out when performing the Kaluza-Klein
reduction. In type IIA, the (3,3) and (3̄, 3̄) form the hypermultiplet sector while the
(3̄,3) and (3, 3̄) form vector multiplets. In type IIB, the representations of vector and
hypermultiplets are exchanged.

Let us now turn to field decompositions with respect to an SU(2)× SU(2) structure
and find the corresponding N = 4 multiplets. This can be easily achieved by using the
results of the last section and reduce SO(1, 5) → SO(1, 3). Alternatively, one can use
the above results for SU(3) × SU(3) structures and the reduction SU(3) × SU(3) →
SU(2) × SU(2). The resulting fields form N = 4 multiplets. More precisely, we find
the gravity multiplet plus three N = 4 vector multiplets. The gravity multiplet contains
the graviton, four gravitini, six vector fields, four Weyl fermions and two scalars all in
the (1,1) representation. The vector multiplets each contain one vector, four gaugini
and six scalars. Two of them are also in the (1,1) representation while the third vector
multiplet is in the (2,2) representation. We see that, in contrast to d = 6, not all
fields in the (1,1) representation are part of the gravity multiplet but they also form two
vector multiplets. This corresponds to the fact that the six-dimensional gravity multiplet
reduces to a four-dimensional gravity multiplet plus two vector multiplets. The doublet
representations again contain massive gravitino multiplets, which are projected out in
the compactification procedure.

As we already discussed at the begin of Section 2.2, these multiplets still consist of
ten-dimensional fields that are reordered in such a way that they form N = 4 multiplets.
In the corresponding rewriting of the action only SO(1, 3)×SO(6) symmetry and N = 4
supersymmetry are manifest. Then we projected out the SU(2) × SU(2) doublets to
obtain a theory that actually allows only for N = 4 supersymmetry.

The couplings of the resulting theories are well-known and constrained by N = 2
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and N = 4 supersymmetry, respectively. The fields in the (1,1) representation descend
to the same number of four-dimensional fields in the compactification procedure. The
number of fields in higher representations can vary depending on the geometry of the
internal manifold Y . The aim of the first part of the thesis is to identify the geometry of
the scalar field spaces.

2.3 Geometric SU(n) structures

Before studying the pure spinor formalism and its application to SU(n)× SU(n) struc-
tures, let us discuss the subclass of geometric SU(n)-structure compactifications. On a
manifold Y of dimension 2n, an SU(n) structure is characterized by a single nowhere-
vanishing spinor η, which specifies the supersymmetry generator at low energies. By
forming spinor bilinears, the parameter space of η then can be mapped to the parameter
space of two nowhere-vanishing differential forms. More precisely, an SU(n) structure
is specified in terms of a real two-form J and a complex, locally decomposable n-form
Ω. In contrast, SU(2)-structure manifolds of dimension six admit two nowhere-vanishing
spinors ηi, i = 1, 2 that are linearly independent at any point of Y . As we show be-
low, their parameter space can be equivalently described by a real two-form J , a com-
plex, locally decomposable two-form Ω and a complex one-form K. The latter defines
an almost product structure that decomposes the tangent space into a two-dimensional
identity-structure part parameterized by K and a four-dimensional SU(2)-structure piece
parameterized by J and Ω.

A special case arises if one considers Calabi-Yau and K3 compactifications. These are
compactifications on manifolds of SU(n) holonomy, which are reviewed in [22] for n = 3
and in [21] for n = 2. The holonomy group is defined as the group of transformations
that appear in the Levi-Cevita connection and thereby is the group that acts on parallel
transports along closed loops. SU(n) holonomy means that the nowhere-vanishing spinor
on Y is moreover covariantly constant. From the definitions (2.15) and (2.23) we see that
the forms J and Ω (and K) are closed if η is covariantly constant. However, for general
SU(n) structures these forms are generically not closed. Indeed, their exterior derivatives
can be computed in terms of the intrinsic torsion of Y [19]. The torsion classes classify
the manifold Y and determine its properties.

2.3.1 SU(2) structures on Y4

Let us start with a four-dimensional compact manifold Y4. A prominent example of
such a manifold is K3. As discussed in Section 2.1, the defining spinor η and its charge
conjugate ηc are both globally defined and nowhere-vanishing and therefore they are both
singlets under the structure group SU(2). Moreover, they are linearly independent and
have the same chirality.

From the two singlets one can construct three distinct globally defined real two-forms
J , Re Ω and Im Ω by appropriately contracting with SO(4) γ-matrices [20]

η̄γmnη = − i Jmn , η̄cγmnη = i Ωmn , η̄γmnη
c = i Ω̄mn , m, n = 1, . . . , 4 , (2.15)

where the normalization η̄η = 1 is chosen and γmn denotes the anti-symmetric prod-
uct of gamma matrices as defined in Appendix A. However, these two-forms are not

27



CHAPTER 2. SU(N)× SU(N)-STRUCTURE BACKGROUNDS

independent but satisfy

Ω ∧ Ω̄ = 2J ∧ J 6= 0 , Ω ∧ J = 0 , Ω ∧ Ω = 0 , (2.16)

which follows from the Fierz identities given in (A.5). Conversely, the Fierz identities
also show that the choice of a real two-form J and a complex two-form Ω determines η
completely (up to normalization) if they satisfy the above relations. Therefore, J and Ω
equivalently define an SU(2) structure on the manifold.

Alternatively one can also define an SU(2)-structure in terms of stable forms [16]. A
stable p-form ω ∈ ΛpV ∗ on a vector space V is defined as a form whose orbit under the
action of Gl(V ) is open in ΛpV ∗, i.e. a p-form Ψ is stable if any “nearby” p-form Ψ̃ can
be reached by some linear transformation G such that Ψ̃ = GΨ. It can be shown that for
a stable two-form ω on a 2m-dimensional space this means that ωm 6= 0. Thus, a stable
two-form on an even-dimensional space defines a symplectic structure on it.

On a four-dimensional manifold Y4 the stable two-form J satisfies J ∧ J ∼ vol4 and
locally defines a symplectic structure that reduces the structure group from Gl(4) to
Sp(4, R).4 The existence of additional stable forms can reduce the structure group even
further. In this case one has to ensure that these stable forms do not reduce the structure
group in the same way. For example, one can take two linearly independent stable two-
forms Ji, i = 1, 2 that satisfy

Ji ∧ Jj = δij vol4 . (2.17)

J1 and J2 then define a holomorphic two-form Ω = J1 + i J2, which globally defines a
holomorphic subbundle in the tangent space and therefore breaks the structure group to
Sl(2, C) ≡ Sp(2, C).

Analogously, in the case of three stable two-forms Ji, i = 1, 2, 3, which satisfy (2.17)
the structure group is reduced even further. Since J3 is orthogonal to Ω = J1 + i J2

and its complex conjugate, it defines a product between the holomorphic and the anti-
holomorphic tangent bundle. Therefore, the Sl(2, C) is further broken to the SU(2)
subgroup which preserves this product.5 If one defines

J = J3 , Ω = J1 + i J2 , (2.18)

it is straightforward to check that (2.17) and (2.16) are indeed equivalent.

In terms of stable forms it is easy to identify the parameter space of SU(2) structures.
A triple of stable forms Ji has to fulfill (2.17) in order to define an SU(2) structure on Y4.
Thus the Ji span a three-dimensional subspace in the space of two-forms. By choosing
some volume form vol4, i.e. some orientation on Y4, we can interpret the wedge product
as a scalar product of split signature (3, 3) on the space of two-forms. With respect to
this scalar product, the Ji form an orthonormal basis for a space-like subspace. The orbit
of such a triple of Ji under SO(3, 3), the group of linear transformations that preserve the
scalar product and thereby lengths and angles in the space of two-forms, gives all possible
configurations that respect the orthonormality condition (2.17). Thus, the configuration
space can be written as SO(3, 3) divided by the stabilizer of the Ji. The stabilizer consists
of SO(3) rotations in the subspace orthogonal to the Ji, which leave the SU(2) structure

4Note that this symplectic structure may be non-integrable in the sense that dω 6= 0. Therefore, our
notion of a symplectic structure differs from the usual mathematical terminology.

5Of course, this breaking is just the well-known relation Sl(n, C) ∩ Sp(2n, R) = SU(n).
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invariant. Therefore, the configuration space for the Ji is SO(3, 3)/SO(3). The SO(3)
rotations in the stabilizer correspond to the action of the SU(2) structure group on the
space of two-forms. The Ji are singlets under the SU(2) structure group while the space
orthogonal to them forms an SU(2) triplet.

One should note that there is some redundancy in the descriptions of SU(2) structures
on a manifold. Any rescaling of the Ji does not change the unbroken SU(2) and therefore
does not correspond to a degree of freedom for the SU(2) structure. Hence we can fix
the normalization by (2.17). Furthermore, there is a rotational SO(3) symmetry between
the three forms Ji. However, this symmetry is not obvious from the definition (2.15). It
corresponds to SU(2) rotations on the Weyl-spinor doublet (η, ηc) which is a symmetry
because η and ηc have the same chirality on a four-dimensional manifold. One can check
that the three two-forms Ji indeed form a triplet under the action of this SU(2). By
modding out this symmetry, we arrive at the parameter space of an SU(2) structure over
a point on the manifold Y4, which is

MJi
=

SO(3, 3)

SO(3)× SO(3)
. (2.19)

We can use the double cover of the groups appearing in (2.19) to rewrite the result.
We know that

SO(3, 3) = Sl(4, R)/Z2 (2.20)

and

SO(3)× SO(3) = (SU(2)× SU(2))/Z2
2 = SO(4)/Z2 . (2.21)

Therefore, we can express the result (2.19) as

MJi
=

Sl(4, R)

SO(4)
. (2.22)

If one compares this with the parameter space Gl(4, R)/SO(4) of the metric over a point
of Y4, we see that the parameter space of SU(2) structures incorporates all metric degrees
of freedom except the volume factor. The missing degree of freedom corresponding to
the volume factor can be associated with the normalization of the Ji in (2.17).6

2.3.2 SU(3) and SU(2) structures on Y6

For SU(3) structures on Y6 the same analysis as in Section 2.3.1 can be done, see for
reference [19,20]. However, there are various differences compared to the case of Y4. First
of all, charge conjugation changes the chirality of a spinor. Therefore, the SU(3) singlets
η and ηc have opposite chirality and out of them one can construct a real two-form J
and a complex three-form Ω given by

J = − i η̄γmnηdxm ∧ dxn , Ω = − i η̄cγmnpηdxm ∧ dxn ∧ dxp , (2.23)

6Note that the choice of a triple of normalized Ji is just equivalent to the choice of a Hodge operator
on the space of two-forms. This is reflected by the fact that the Ji just span the positive eigenspace of
a Hodge operator in the space of two-forms.
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where γm1...mp now are anti-symmetrized products of six-dimensional gamma matrices.
Using the Fierz identities (A.6), all spinor bilinears can be expressed in terms of J and
Ω, thereby fixing the spinor η. Furthermore, the Fierz identities imply that

J ∧ J ∧ J = 3
4
i Ω ∧ Ω̄ 6= 0 , J ∧ Ω = 0 . (2.24)

Again, since J and Ω can be used to define η, they actually define the SU(3) structure.
A non-degenerate real two-form J is invariant under Sp(6, R) transformations, while a
complex three-form Ω with Ω∧ Ω̄ 6= 0 is invariant under Sl(3, C). Together this gives an
SU(3) ≡ Sp(6, R)∩Sl(3, C) structure group if (2.24) is fulfilled. Therefore, deformations
of J and Ω over a single point are parameterized by the coset space

MJ, Ω =
Sl(6, R)

SU(3)
. (2.25)

Since SU(3) ⊂ SO(6), this also defines a metric on Y . The additional degrees of freedom
rotating the SU(3) inside SO(6) correspond to SU(3) triplets, which are projected out in
the compactification process, and one gauge degree of freedom multiplying Ω and thereby
η by a phase. By modding out these degrees of freedom, one arrives at the (physical)
metric parameter space

Mg =
Sl(6, R)

SO(6)
. (2.26)

One can actually show that the three-form Ω is already determined by its real part
Re Ω [16]. Re Ω is required to be stable, which means that it transforms in an open orbit
under the action of Gl(6, R), i.e. every nearby point in parameter space can be reached
by some Gl(6, R) transformation.

If we assume that there are two such spinors η1 and η2 that are orthogonal at each
point, the structure group is broken further to SU(2). Each spinor defines an SU(3)
structure on its own, parameterized by (J (i), Ω(i)), i = 1, 2, as defined in (2.23), cf. [20,35].
With the use of the Fierz identities (A.6) one can express them in terms of an SU(2)
structure:

J (1) = J + i
2
K ∧ K̄ , Ω(1) = Ω ∧K ,

J (2) = J − i
2
K ∧ K̄ , Ω(2) = Ω ∧ K̄ .

(2.27)

The SU(2) structure is defined by the complex one-form [20,35]

Km := η̄c
2γmη1 (2.28)

and the two-forms J and Ω given by

Jmn = −1
2
i (η̄1γmnη1 + η̄2γmnη2) , Ωmn = i η̄2γmnη1 . (2.29)

J and Ω fulfill (2.16), while K satisfies

KmKm = 0 , K̄mKm = 2 , ιKJ = 0 , ιKΩ = ιK̄Ω = 0 . (2.30)

K also specifies an almost product structure

P n
m := KmK̄n + K̄mKn − δ n

m , (2.31)
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i.e. it obeys

P n
m P p

n = δ p
m . (2.32)

As can be seen from (2.27), this almost product structure is related to the almost complex
structures J (i) of the two SU(3) structures by

P n
m = −J

(1) p
m J

(2) n
p . (2.33)

From (2.30) we can see that Km and K̄m are both eigenvectors of P n
m with eigenvalue

+1. The vectors orthogonal to Km, K̄m have eigenvalue −1 as can be seen from (2.31).
Therefore, Km and K̄m even span the +1 eigenspace.

In terms of stable forms, an SU(2)-structure on Y6 can be defined by a global complex
one-form7 K which breaks the structure group SO(6) to SO(4) and – as on Y4 – by three
stable two-forms Ji that reduce this group further to SU(2). To assure this breaking of
the structure group, all of these forms have to be compatible with each other in that they
satisfy (2.17) and (2.30).

Actually, an almost product structure P n
m that has a positive eigenspace of dimen-

sion two and a globally defined, nowhere-vanishing spinor η are enough to define an
SU(2) structure on a manifold of dimension six. The reason is that P n

m reduces the
structure group to the group of those SO(6) transformations that leave its two- and four-
dimensional eigenspaces intact, in other words SO(2)×SO(4). This group acts on η via
its double cover, which is U(1)×SU(2)×SU(2), where we used Spin(4) = SU(2)×SU(2).
The spinor bundle correspondingly decomposes under SU(4) → U(1) × SU(2) × SU(2)
as 4 → (2,1)+1 ⊕ (1,2)−1. In order for η to be a singlet of the structure group, the
structure group must therefore reduced to SU(2). Hence, P n

m reduces the SU(3) struc-
ture defined by η to an SU(2) structure. This fits nicely with the fact that the existence
of P n

m is already enough to assure that the forms given in (2.23), which parameterize
an SU(3)× SU(3) structure, are of the form (2.27) and thereby indeed define an SU(2)
structure on the manifold. Correspondingly, the two globally defined spinors that reduce
the structure group to SU(2) are η and (vmγmηc) with vm is any (real) +1-eigenvector
of P .

Now let us derive the parameter space of SU(2) structures. As before, we have to
ensure that we compactify to N = 4, and therefore project out all SU(2) doublets, as
explained in section 2.2.2. As shown in [57] this projection forces the almost product
structure P to be rigid. Therefore, the parameter space splits into a part for the two-
dimensional identity structure and one for deformations of the SU(2) structure in the
four-dimensional subspace. The former is parameterized by K, the latter one by J and
Ω. The local parameter space of the SU(2) structure part was already derived in section
2.3.1 and is given by (2.19). The identity structure is parameterized by the complex one-
form K in a two-dimensional space. Its length corresponds to K ∧ K̄ and parameterizes
the volume of the two-dimensional space. The group SU(1, 1) ≡ Sl(2, R) leaves K ∧ K̄
invariant, while it acts freely on K. Therefore, its action parameterizes the remaining
freedom in choosing K. Since the phase of K is of no relevance, we have to mod out this
degree of freedom, and end up with the parameter space Sl(2, R)/SO(2). Hence, after
including the degree of freedom that correspond to the volume of the four-dimensional

7Note that every one-form is stable by definition.
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subspace, we end up with the parameter space

MK,Ji
=

SO(3, 3)

SO(3)× SO(3)
× R+ ×

Sl(2, R)

SO(2)
× R+ , (2.34)

where the two R+ factors are spanned by the “volume” factors of the two- and four-
dimensional eigenspaces given by K ∧ K̄ and J ∧ J .

We see that SU(n) structures are conveniently described by nowhere-vanishing forms.
Using this parametrization we could determine the parameter space of SU(n) structures.
This parameter space appears in the ten-dimensional theory rewritten in terms of a
d-dimensional language as the target space of scalar fields corresponding to geometric
deformations of the internal space Y . In the next chapter we want to improve on this
result by including all other scalar fields in the parameter space. The main tool for this
turns out to be generalized geometry.
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Chapter 3

Generalized geometry and
SU(n)× SU(n) structures

We have seen in the last chapter that the geometry of the parameter space of SU(n)
structures can be determined by translating the parameter space of a spinor η into the
language of forms by use of spinor bilinears. In this chapter we shall use the same strategy
to define formal sum of forms coming from spinor bilinears to describe SU(n) × SU(n)
structures. One then realizes that these formal sums of forms describe pure spinors in
generalized geometry and automatically include the NS-NS B field. It turns out that
generalized geometry is manifestly covariant under string symmetries that transform the
fields in the NS-NS sector, more precisely the metric and the B-field, into each other.
Improving on this idea then leads to exceptional generalized geometry, which incorporates
also the R-R sector.

3.1 Pure spinors and SU(n)× SU(n) structures

One can generalize the SU(n) structures discussed in the previous section by assuming
that the manifold admits two globally defined, nowhere-vanishing spinors η1 and η2. Each
of them defines an SU(n) structure on its own and if they are identical everywhere on
the manifold, this reduces to the case discussed in the previous section. In the other
limiting case where η1 and η2 are orthogonal at each point, the two SU(2) structures
intersect in some identity structure, which means that the spinor bundle is trivial and
compactification on this backgrounds preserves twice as many supercharges. However,
in principle one can also have the intermediate case of two globally defined, nowhere-
vanishing spinors η1 and η2 that are linearly independent at generic points but become
parallel at some points on the manifold.

Analogously to the last section, there is an equivalent formulation of SU(n)×SU(n)
structures in terms of globally defined stable forms. This is elegantly captured by the
notion of pure spinors and generalized geometry [40,41,116]. The latter is covariant with
respect to the T-duality group SO(2n, 2n), in which the structure group SU(n)×SU(n)
can easily be embedded. Furthermore, the covariance with respect to the T-duality group
enables one to glue together charts not only by geometric rotations in Gl(n, R) but also by
more general transformations. Due to this, flux for the two-form B can also be described
in terms of a twist of the generalized tangent bundle and even more general twists of
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this generalized tangent bundle, termed non-geometric fluxes, can be incorporated into
the background. Let us briefly review this concept for a 2n-dimensional manifold Y and
then apply this formalism to the case of SU(n)× SU(n) structures afterwards.

3.1.1 Pure spinors in generalized geometry

In generalized geometry one considers a generalized tangent bundle T Y which locally
looks like TY ⊕ T ∗Y and therefore admits a scalar product I of split signature that is
induced by the canonical pairing between tangent and cotangent space, i.e.

I(v + ξ, w + ζ) = ξ(w) + ζ(v) , (3.1)

where in the considered local patch v and w are vectors and ξ and ζ are one-forms.
On a 2n-dimensional manifold Y this bundle thus has a structure group contained in
SO(2n, 2n). The elements of T Y obey the Clifford algebra

{v + ξ, w + ζ} = ξ(w) + ζ(v) = I(v + ξ, w + ζ) , (3.2)

and we can construct in the usual way the group Spin(2n, 2n) out of this Clifford algebra.
In the following we can denote a basis of T Y by ΓΠ, Π = 1, . . . , 12. For the Lie algebra
one finds locally

so(2n, 2n) ≡ Λ2T Y = gl(2n, R)⊕ Λ2TY ⊕ Λ2T ∗Y . (3.3)

Therefore, one can understand the structure group SO(2n, 2n) to be generated by the
algebra of geometric transformations together with bi-vectors and two-forms.

Similarly to our discussion in the last section, one can introduce objects that break
the structure group SO(2n, 2n). For example, an almost complex structure J , defined
by its property

J 2 = −1 , (3.4)

can be defined if (and only if) the complexified generalized tangent bundle globally splits
into its eigenspaces, i.e.

(T Y )C = L+ ⊕ L− , (3.5)

where L± are the eigenspaces of J with the eigenvalues ± i. If J is globally defined on
Y , the structure group of T Y is broken from SO(2n, 2n) to U(n, n).

When two generalized almost complex structures J1,2 exist, the notion of compatibil-
ity can be defined. More precisely, J1 and J2 are called compatible if

1. J1 and J2 commute and

2. G := IJ1J2 is a positive definite metric on T Y , where I is the canonical scalar
product on T Y .

The first condition ensures that the splittings (3.5) can be done simultaneously, i.e. that

(T Y )C = L++ ⊕ L−+ ⊕ L+− ⊕ L−− , (3.6)

where the indices correspond to the eigenvalues of J1,2. The second condition ensures
that each of the four components in (3.6) is n-dimensional such that the two compatible
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generalized almost complex structures reduce the structure group to U(n)×U(n), where
each U(n) acts on two of the four components.

Let us now briefly review how to reformulate generalized geometry in terms of pure
spinors Φ [40, 41]. One first defines the annihilator space LΦ of a complex SO(2n, 2n)
Weyl spinor Φ as the subspace of complexified gamma matrices Γ which map Φ to zero,
i.e.

LΦ ≡ {Γ ∈ (T Y )C |ΓΦ = 0} . (3.7)

Note that LΦ is always isotropic as for each element Γ of LΦ we have

0 = Γ2Φ = I(Γ, Γ) Φ , (3.8)

which implies I(Γ, Γ) = 0 for all Γ ∈ LΦ.

A complex Weyl spinor Φ of SO(2n, 2n) is called pure if its annihilator space has
maximal dimension, i.e. dim LΦ = 2n. Φ is called normalizable if

〈Φ, Φ̄〉 > 0 , (3.9)

where the brackets denote the usual spinor product. As a consequence of Chevalley’s
theorem [117], which states

dim LΦ ∩ LΨ = 0 ⇔ 〈Φ, Ψ〉 6= 0 , (3.10)

normalizable pure spinors define a splitting

(T Y )C = LΦ ⊕ LΦ̄ . (3.11)

By matching the annihilator space LΦ with the + i eigenspace of a generalized almost
complex structure, one can show that both are equivalent up to the normalization factor of
Φ. Thus, generalized almost complex structures are equivalent to lines of pure SO(2n, 2n)
spinors. A pure spinor breaks the structure group of T Y further from U(n, n) to SU(n, n)
in that fixing its phase eliminates the U(1) factor [40, 41].

The compatibility conditions for two generalized almost complex structures translate
into a compatibility condition on the corresponding pure spinors. Two normalizable pure
SO(2n, 2n) spinors Φ1,2 are compatible if and only if their annihilator spaces intersect in
a space of dimension n, i.e.

dim(LΦ1 ∩ LΦ2) = n . (3.12)

Thus the pair Φ1,2 breaks the structure group to SU(n)×SU(n) (instead of U(n)×U(n)).
Therefore, pure spinors of generalized geometry provide a convenient framework to deal
with SU(n) × SU(n) structures. Whenever T Y = TY ⊕ T ∗Y globally, both SU(n)
factors can be projected to the tangent space TY . In this case the intersection of these
projections defines the structure group of the tangent bundle.

The compatibility condition of two pure spinors also restricts their chirality. Since
SO(n, n) transformations do not mix chiralities, one can always assume Φ1 and Φ2 to be
of definite chirality. Furthermore, two pure spinors Φ1 and Φ2 have the same chirality if
and only if [118]

dim(LΦ1 ∩ LΦ2) = 2k (3.13)

for k ∈ N. Therefore, two compatible pure spinors are of the same chirality if n is even
and of opposite chirality for n being odd.
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One can construct pure SO(2n, 2n) spinors out of the two globally defined SO(2n)
spinors η1 and η2 discussed at the beginning of this section, as follows

η1 ⊗ η̄2 =
1

4

2n∑
k=0

1

k!
(η̄2γm1...mk

η1) γmk...m1 , (3.14)

where γm1...mk is the totally antisymmetric product of SO(2n) γ-matrices. One can act
with SO(2n) gamma matrices from the left or from the right which in turn defines an
SO(2n, 2n) action on the bi-spinor η1 ⊗ η̄2. By extensive use of Fierz identities given in
Appendix A one can show that η1 ⊗ η̄2 is pure and normalizable. The same holds for
η1 ⊗ η̄c

2 and these two pure spinors are moreover compatible. Thus they can be used to
discuss SU(n)× SU(n) structures.

The map

τ : η1 ⊗ η̄2 7−→ τ(η1 ⊗ η̄2) ≡
1

4

2n∑
k=0

1

k!
(η̄2γm1...mk

η1) emk ∧ · · · ∧ em1 , (3.15)

with emk being a local basis of one-forms, identifies SO(2n, 2n) spinors with formal sums
of differential forms.1 The group SO(2n, 2n) acts on these formal sums of differential
forms via the representation (3.3). Note that (3.15) maps negative (positive) chirality
spinors to differential forms of odd (even) degree. Moreover, it is an isometry with respect
to the spinor product and the “Mukai pairing” of differential forms, defined by2

〈Ψ, χ〉 =
∑

p

(−)[(p−1)/2]Ψp ∧ χ2n−p , (3.16)

which maps two formal sums of differential forms to a form of top degree. Like the
spinor product, it is symmetric for n even, and anti-symmetric for n being odd. Using
the definition

λ αp = (−1)[(p−1)/2]αp (3.17)

for a p-form αp, we can write the Mukai pairing also in the form

〈Ψ, χ〉 = [Ψ ∧ λ χ]deg=2n . (3.18)

In the following we frequently use the isomorphism (3.15).

Before we go on, let us state two important facts. One can show that a pure spinor
Φ is always of the form [41]

Φ = e−B ∧ e− i J ∧ Ω , (3.19)

where B and J are real two-forms and Ω is some complex k-form, k ≤ 2n, that is locally
decomposable into complex one-forms. Furthermore, one can prove that two compatible
pure spinors are always of the form [116]

Φ1 = e−B ∧ τ(η1 ⊗ η̄2) , Φ2 = e−B ∧ τ(η1 ⊗ η̄c
2) , (3.20)

where the isomorphism τ is defined in (3.15).

1This isomorphism is canonical up to the choice of a volume form on the manifold [33].
2Here, [·] is the floor function which rounds down its argument to the next integer number.
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For later use let us define the generalized Hodge operator [30,63]

∗B = e−B ∗ λ eB , (3.21)

which acts on the space of forms, with λ defined by (3.17). Under the isomorphism given
in (3.15) the generalized Hodge operator is mapped to charge conjugation on the space
of SO(2n, 2n) spinors. Analogously to the conventional Hodge operator, the generalized
version can define a positive definite metric G(·, ·) ≡ 〈·, ∗B ·〉 on the space of forms, which
is just the composition of ∗B with the Mukai pairing. From (3.18) it is easy to see that
G acts on the space of forms by

G(e−B ∧Ψ, e−B ∧ χ) = 〈e−B ∧Ψ, ∗B e−B ∧ χ〉 = [Ψ ∧ ∗χ]deg=2n =
2n∑

p=0

Ψp ∧ ∗χp , (3.22)

which indeed is positive definite. Therefore, the Mukai pairing and the generalized Hodge
operator have the same signature.

As stated at the beginning of this section the generalized tangent bundle T Y locally
has the structure TY ⊕ T ∗Y . In the following, we first perform a local analysis and
consider the algebraic structure of the bundle over a point on the manifold. Therefore,
we abuse the notation TY ⊕ T ∗Y to denote T Y .

3.1.2 SU(2)× SU(2) structures on Y4

Pure spinors and SU(2)× SU(2) structures on Y4

Let us now apply the previous discussion to the case of SU(2) × SU(2) structures on a
four-dimensional manifold Y4. We start with the simpler case of SU(2) structures or in
other words with the case where a single SO(4) spinor η exists on Y4, which defines two
pure SO(4, 4) spinors η⊗ η̄ and η⊗ η̄c. Using the definitions (2.15) and (3.15) we identify

τ(η ⊗ η̄) = 1
4
e− i J , τ(η ⊗ η̄c) = 1

4
i Ω . (3.23)

The pure spinors in (3.23) actually are not of the most general form. To cover all
deformations of the pure spinors, we note that we can additionally shift these pure
SO(4, 4) spinors by a B-field leaving all conditions unchanged. Thus, we arrive at

Φ1 = 1
4
e−B−i J , Φ2 = i

4
e−B ∧ Ω . (3.24)

Let us now turn to the case of general SU(2)×SU(2) structures. We first analyze the
conditions for spinors to be pure and compatible. For the case at hand this is simplified by
the triality property of SO(4, 4) which isomorphically permutes the spinor representation,
its conjugate and the vector representation among each other, cf. for example [119]. In
particular, the quadratic form 〈·, ·〉 on the spinor space is mapped to the usual scalar
product on the vector space. This fact is used in the following.

For a pure spinor Φ the annihilator space LΦ has dimension four. In addition Cheval-
ley’s theorem (3.10) implies

〈Φ, Φ〉 = 0 . (3.25)

As shown in [118], this condition is also sufficient for Φ to be pure. Since the spinor
product is mapped to the standard vector product of SO(4, 4) under triality, the purity
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condition (3.25) translates into the corresponding complex vector being light-like vectors
under the triality map. Furthermore, for Φ to be normalizable we need

〈Φ, Φ̄〉 > 0 . (3.26)

Now let us consider two pure normalizable spinors Φi, i = 1, 2 which by definition
satisfy

〈Φi, Φi〉 = 0 , 〈Φi, Φ̄i〉 > 0 . (3.27)

If they are compatible, they also satisfy (3.12), which on Y4 reads

dim(LΦ1 ∩ LΦ2) = 2 . (3.28)

From (3.13) we conclude that both Φi have the same chirality which, together with (3.10),
implies that (3.28) is equivalent to

〈Φ1, Φ2〉 = 0 , 〈Φ1, Φ̄2〉 = 0 . (3.29)

Finally, we can choose the normalization

〈Φ1, Φ̄1〉 = 〈Φ2, Φ̄2〉 6= 0 . (3.30)

Let us now analyze which possible cases of SU(2) × SU(2) structures can occur on
four-dimensional manifolds. We just argued that Φ1 and Φ2 have the same chirality so
that the corresponding forms are of odd or even degree. We start with the case where
both spinors Φ1 and Φ2 have negative chirality. From (3.19) we see that both pure spinors
are of the form

Φi = Ui ∧ e− i Ji , i = 1, 2 , (3.31)

where Ui are two complex one-forms while Ji are two non-vanishing real two-forms.3 In
addition, the compatibility condition (3.29) implies

U1 ∧ U2 ∧ (J1 − J2) = 0 , U1 ∧ Ū2 ∧ (J1 + J2) = 0 , (3.32)

while the normalization (3.30) translates into

U1 ∧ Ū1 ∧ J1 = U2 ∧ Ū2 ∧ J2 6= 0 . (3.33)

Since U2 = aU1 + bŪ1 does not solve (3.32) and (3.33) we conclude that U2 is linearly
independent of U1 and Ū1 and therefore U1, Ū1, U2, Ū2 form a basis of T ∗Y4. Thus, we
can find four one-forms that form a basis at every point of Y4 and hence the manifold
Y is parallelizable. This means that the two factors of the SU(2) × SU(2) structure
just intersect in the identity. Thus, the structure group of the manifold is trivial. This
in turn implies that Y4 admits four globally defined SO(4) spinors corresponding to
string backgrounds with 32 supercharges. This fact can also be seen from (3.20). Since
Φ1,2 are of odd degree, η1 and η2 are of opposite chirality. Together with their charge
conjugated spinors they lead to four globally defined spinors. Since in this paper we focus
on backgrounds with 16 supercharges, we do not discuss this case any further.

Let us turn to the case where both spinors are of even degree. The most general form
for those two spinors is given in (3.20), where now η1 and η2 are of the same chirality to

3For simplicity we ignore the B-field which however can be easily included.
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ensure that Φ1 and Φ2 are of even degree. As we explained below Eq. (2.5) a spinor η1

and its charge conjugate ηc
1 are linearly independent and thus span the whole space of

Weyl spinors of a given chirality. Therefore, η2 has to be a linear combination of η1 and
ηc

1. However, this means that we can rotate Φ1 and Φ2 in such a way that they are of
the form

Φ1 = e−B ∧ τ(η1 ⊗ η̄1) , Φ2 = e−B ∧ τ(η1 ⊗ η̄c
1) . (3.34)

Therefore, they give a single SU(2) structure on the manifold, which takes the form
(3.24).4

To summarize, due to the fact that the pure spinors have definite chirality there is
no case which interpolates between the trivial structure and the SU(2) structure case.
This can also be understood from the fact that a pair of nowhere-vanishing spinors η, ηc

spans the space of given chirality. Therefore, all linearly independent spinors have to be
of opposite chirality and thus cannot be parallel to η at any point in Y4. Thus, generic
SU(2)×SU(2) structures cannot exist but always have to be SU(2) or trivial structures.
Note that our conclusion crucially depends on the assumption that η1 and η2 are nowhere-
vanishing. This is not necessarily true for warped compactifications. Therefore the case
of a generic warp factor deserves a separate analysis which, however, we do not go into
here.

The deformation space of SU(2)× SU(2) structures on Y4

In Section 2.2.1 we decomposed the ten-dimensional fields in representations of the struc-
ture group. Let us do the same now for deformations of the pure spinors Φ1,2. This will
enable us to derive the N = 4 space of scalars in Section 4.2.

Let us first observe that an eight-dimensional Weyl spinor of SO(4, 4) decomposes
under SU(2)× SU(2) as5

8s → (2,2)⊕ 4(1,1) , 8c → 2(2,1)⊕ 2(1,2) . (3.35)

Note that, exactly as in (2.5), the two conjugate spinors decompose differently. Eq. (A.11)
gives a canonical choice for the sign of the chirality operator. Hence, the 8s (8c) represen-
tation corresponds to forms of even (odd) degree. Let us denote the space of forms trans-
forming in the (r, s) representation of SU(2)×SU(2) by Ur,s. As done for SU(3)×SU(3)
representations in [34], they can be arranged in a diamond as given in Table 3.1, where
the prime is used to distinguish the several singlets.

In section 2.2.1 we showed that for a background to have 16 supercharges it is nec-
essary to remove all massive gravitino multiplets which corresponds to projecting out
all SU(2) doublets. This eliminates the entire 8c representation (or equivalently all odd
forms in U2,1′ , U1,2, U1′,2, U2,1) leaving only the 8s (i.e. the even forms in Table 3.1). This

4Strictly speaking, we can only call this a proper SU(2) structure for geometric compactifications
since for non-geometric backgrounds there is globally no projection map T Y → TY such that we can
compare the two SU(2) factors. However, we can do this projection locally, and thus may compare both
SU(2) structures pointwise. In this sense, we can define proper SU(2) structures even for non-geometric
backgrounds.

5We showed above that for backgrounds with 16 supercharges both SU(2) factors must be the same
after projection to the tangent space. However, as long as we stay in the framework of generalized
geometry and consider pure SO(4, 4) spinors, these two factors are different. Therefore we do the
decomposition for SU(2)× SU(2).
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U1,1′

U2,1′ U1,2

U1′,1′ U2,2 U1,1

U1′,2 U2,1

U1′,1

Table 3.1: Generalized SU(2)× SU(2) diamond.

is consistent with the result of the previous section that backgrounds with 16 supercharges
require an SU(2) structure described by pure spinors of positive chirality.

Now we are able to derive the parameter space of SU(2) × SU(2) structures, which
will be very helpful in order to identify the scalar field space of the low-energy effective
action. For this, let us first discuss the parameter space of one single normalizable pure
SO(4, 4) spinor. The purity and normalization conditions (3.25) and (3.26) have a natu-
ral interpretation in the isomorphic picture where Φ is a complex vector. Equation (3.25)
and (3.26) ensure that the real and imaginary part of Φ form a pair of space-like orthog-
onal vectors. Therefore, Φ is left invariant by the group SO(2, 4). From section 3.1.2 we
know that a pure normalizable SO(4, 4) spinor breaks the structure group to SU(2, 2).
Both pictures are consistent with each other since SU(2, 2) is just the double cover of
SO(2, 4). The pure spinor Φ therefore parameterizes the space SO(4, 4)/SO(2, 4). How-
ever, the phase of Φ does not affect the SU(2, 2) structure. Hence the actual parameter
space of a single pure spinor is

MΦ =
SO(4, 4)

SO(2)× SO(2, 4)
. (3.36)

The parameter space of SU(2) structures is more conveniently discussed in terms of
the real and imaginary parts of the two spinors Φi or in other words in terms of four real
vectors Ψa, a = 1, . . . , 4 in the space of even forms. Then the compatibility conditions
(3.29) and (3.30) just translate into the conditions

〈Ψa, Ψb〉 = c δab vol4 , (3.37)

where c parameterizes the scale of the Ψa. The four Ψa form the singlet corners in
Table 3.1 since they are (as the Φi) globally defined and thus must be singlets of the
structure group.

In order to understand the signature of the SU(2) × SU(2) diamond (Table 3.1) we
use the generalized Hodge operator ∗B defined in (3.21). Since there is ∗2

B = 1 on forms of
even degree, we see that the generalized Hodge operator corresponds to an almost product
structure on ΛevenT ∗Y . For B = 0, it coincides on two-forms with the conventional Hodge
star operator, which is of split signature over each point. In this case, the forms 1± vol
are eigenvectors of ∗B with eigenvalue ∓1 and we see that ∗B has split signature on
ΛevenT ∗Y over each point of Y . Since B refers to a continuous SO(4, 4) transformation,
it can be continuously switched on. Therefore the signature is independent of B and the
eigenspaces of ∗B (with eigenvalue ±1) at a given point on the manifold have the same
dimension. As with the standard Hodge operator, the generalized Hodge operator ∗B

can be globally defined on Y and therefore must be invariant under the SU(2)× SU(2)
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structure group. Hence, ∗B leaves the SU(2) × SU(2) representations invariant and its
eigenspaces coincide with these representations.

Using the form (3.24) and the fact that the Ji, i = 1, 2, 3, defined in (2.18), are
self-dual with respect to the standard Hodge operator one can show that the Ψa are
eigenvectors of ∗B with eigenvalue +1. This implies that the eigenspace with eigenvalue
+1 is spanned by the four spinors Ψa, i.e. by the SU(2) × SU(2) singlets, which is
consistent with (3.37). Therefore, the orthogonal complement U2,2 is the eigenspace
with eigenvalue −1. This shows that a choice of Ψa already determines the eigenspaces
of the generalized Hodge operator and thus the operator itself. Since the composition
of the Mukai pairing with ∗B is positive definite, the eigenvalue corresponding to some
eigenvector of ∗B gives also its signature under the Mukai pairing. Therefore we conclude
that the Mukai pairing is positive definite on the SU(2) × SU(2) singlets and negative
definite on U2,2.

Thus, we see that the Ψa define a space-like four-dimensional subspace in ΛevenT ∗Y4

in that they are due to (3.37) an orthonormal basis for this subspace, or in other words
they parameterize the space SO(4, 4)/SO(4), where SO(4) denotes rotations inside the
−1 eigenspace of ∗B, which leave the Ψa invariant. However, we also need to divide out
the rotational SO(4) symmetry among the Ψa since it does not change the SU(2)×SU(2)
structure. This leaves as the physical parameter space

MΨa =
SO(4, 4)

SO(4)× SO(4)
. (3.38)

This Grassmannian is the NS-NS parameter space of four-dimensional SU(2) × SU(2)
structures. As we discuss in Section 3.2.1, this already gives the complete parameter
space of type IIA on Y4, as there are no scalars coming from the R-R sector. For type
IIB, we shall see in the same section that the space in (3.38) is enlarged by the R-R
scalars to another Grassmannian.

3.1.3 SU(n)× SU(n) structures on Y6

SU(3)× SU(3) structures and pure spinors

Now let us turn to the pure spinor description for SU(3) × SU(3) structures on a six-
dimensional manifold Y6.

It has been shown in [40] that pure (complex) SO(6, 6) spinors are in one-to-one
correspondence to stable (real) spinors.6 More precisely, a pure spinor Φ is completely
determined by its real part χ ≡ Re Φ, which is a stable spinor. Indeed, a stable SO(6, 6)
spinor χ defines an almost-complex structure J on TY ⊕ T ∗Y by [33,40]

J = − 1√
3〈χ, ΓΛΓχ〉〈χ, ΓΛΓχ〉

〈χ, ΓΠΣχ〉ΓΠΣ . (3.39)

This generalized almost-complex structure then enables one to define the pure spinor

Φ = χ− iJ χ , (3.40)

6Here, stable again means that any nearby point in spinor space can be reached by some SO(6, 6)
transformation.
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and induces also a complex structure on the parameter space of χ. Furthermore, one
defines the Hitchin functional

H(χ) =
√

1
12
〈χ, ΓΠΣχ〉〈χ, ΓΠΣχ〉 = i〈Φ̄, Φ〉 , (3.41)

which is homogeneous of degree two. One can then show that the parameter space of χ
is special Kähler with a Kähler potential [32, 40]

K = − ln H(χ) . (3.42)

We come back to this in more detail in Section 4.3.2.

The next step is to consider the case of two compatible pure spinors. Again, a group-
theoretical decomposition of the pure SO(6, 6) spinor deformations in representations
of SU(3) × SU(3) helps to understand the moduli space [32, 41]. Under SO(6, 6) →
SO(6)× SO(6) the spinors decompose as

32+ → (4, 4̄)⊕ (4̄,4) , 32− → (4,4)⊕ (4̄, 4̄) . (3.43)

Here, we conjugated the representations of the second SU(3) (related to right-movers)
to be consistent with the conventions of Section 2.2. From (2.7) we see that under
SO(6, 6) → SU(3) × SU(3) we get for each spinor eight representations that can all
together be arranged in a diamond given in Table 3.2 [32, 41]. Here, Ur,s denote the

U1,1̄

U3̄,1̄ U1,3

U3,1̄ U3̄,3 U1,3̄

U1̄,1̄ U3,3 U3̄,3̄ U1,1

U1̄,3 U3,3̄ U3̄,1

U1̄,3̄ U3,1

U1̄,1

Table 3.2: Generalized SU(3)× SU(3) diamond.

set of (r, s) forms (the singlets coming from the 4̄ are denoted by 1̄, abusing notation).
The deformations of the pure spinor Φ+ are given in the odd rows while those of Φ−

are given in the even ones. Note that all representations Ur,s may be differential forms
of mixed degree. The singlets in the corners of Table 3.2 are the real and imaginary
parts of the two pure spinors Φ+ and Φ−. The remaining representations on the outside
of the diamond are SU(3) × SU(3) triplets, which are deformations that are projected
out in the compactification process. The space of physical deformations consists of the
representations in the interior of the diamond, as was already derived in Section 2.2.
Here one sees that it indeed coincides with the deformations of the pair of pure spinors.
In type IIA for instance, the deformations of Φ+ give the scalars in the vector multiplets
while the deformations of Φ− form part of the hypermultiplet sector.

Now let us turn to the compatibility condition. From (3.12) and (3.13) one observes
that the two pure spinors are of opposite chirality. In the following they are denoted by
Φ+ and Φ−. Furthermore, the compatibility condition (3.12) can be rephrased as [33]

〈Φ+, ΓΠΦ−〉 = 〈Φ+, ΓΠΦ̄−〉 = 0 , (3.44)
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where ΓΠ is a basis element of TY ⊕T ∗Y . This is a condition on the space of deformations
of the pure spinors. Therefore, it seems that the product structure of the parameter
space of Φ+ and Φ− is destroyed. However, the elements of TY ⊕ T ∗Y decompose under
SO(6, 6) → SO(6)× SO(6) → SU(3)× SU(3) as

12 → (6, 1)⊕ (1,6) → (3,1)⊕ (3̄,1)⊕ (1,3)⊕ (1, 3̄) . (3.45)

From this one observes that the set of ΓΠ consists of SU(3)× SU(3) triplets only. Fur-
thermore, the full expression in (3.44) needs to be a singlet, and therefore, (3.44) is only
a condition on the triplet deformations of Φ+ and Φ−. Since these are projected out in
N = 2 compactifications, the compatibility condition (3.44) is trivially satisfied. How-
ever, this was the only condition relating Φ+ and Φ− and therefore the deformation space
of Φ+ and Φ− stays a product of two special Kähler spaces.

It is instructive to apply this analysis to the case of a single SU(3) structure, i.e. to
η2 = η1. It then follows from (3.15), (3.20) and (2.23) that

Φ+ = 1
4
e−B+i J , Φ− = 1

4
i Ω . (3.46)

Therefore, the formalism of generalized geometry naturally reproduces the parametriza-
tion of the geometric degrees of freedom in terms of forms as discussed in Section 2.3.2
but complexifies the deformation space of J by incorporating the B field. The B field
here represents SO(6, 6) transformations which are generated by a two-form in the Lie
algebra (3.3).

On a six-dimensional manifold the group SO(6, 6) is the T-duality group, which
means it is the symmetry group of the NS-NS sector over each point of Y . Generalized
geometry is constructed in such a way that it is covariant with respect to the T-duality
group. Since the geometrical degrees of freedom of Y and the scalars coming from the
B-field transform into each other under the T-duality group, the B field is naturally
incorporated into the parametrization of generalized geometry.

SU(2)× SU(2) structures on Y6

Now we want to describe SU(2) × SU(2) structures on a six-dimensional space Y6 in
terms of generalized geometry. In the last section we reviewed the case of an SU(3) ×
SU(3) structure on Y6. We already stated that a normalizable pure SO(6, 6) spinor
Φ is in one-to-one correspondence with a real stable SO(6, 6) spinor and hence looses
half of its degrees of freedom. Two normalizable pure SO(6, 6) spinors Φ+ and Φ− are
compatible if they are of opposite chirality and (3.44) holds. In addition, we can impose
the normalization condition

〈Φ+, Φ̄+〉 = 〈Φ−, Φ̄−〉 , (3.47)

since the prefactor of each pure spinor is not physical.

The pure spinors Φ+ and Φ− obeying (3.44) and (3.47) only define an SU(3)×SU(3)
structure on Y6. In order to construct an SU(2)×SU(2) structure, one has to introduce
further objects that are globally defined and compatible with the spinors introduced so
far. One way to proceed is by mimicking the SU(2) structure construction of Section
2.3.2 and defining two SU(3)× SU(3) structures with compatibility conditions imposed
such that they intersect in an SU(2)× SU(2) structure. Each SU(3)× SU(3) structure

43



CHAPTER 3. GENERALIZED GEOMETRY AND SU(N)× SU(N) STRUCTURES

already defines a generalized metric on TY6⊕T ∗Y6, and these two generalized metrics must
coincide for consistency. It turns out that an SU(2)× SU(2) structure can alternatively
be defined by a pair of compatible pure spinors Φ+, Φ− and a generalized almost-product
structure P which has the following properties [57]:

1. P2 = 1 .

2. P is symmetric with respect to I.

3. P commutes with the generalized almost-complex structures JΦ± .

4. The eigenspaces of P to the eigenvalues −1 and +1 are of dimension 8 and 4,
respectively.

Note that the second and third conditions ensure that P is also symmetric with respect to
the metric defined by JΦ+ and JΦ− . Furthermore, P is also symmetric with respect to the
canonical SO(6, 6) scalar product by construction. This implies that the canonical pairing
is block-diagonal with respect to the splitting of the bundle induced by P . Therefore, P
reduces the structure group to SO(4, 4)×SO(2, 2). Since it commutes with JΦ+ and JΦ− ,
both generalized almost-complex structures are similarly block-diagonal with respect to
this splitting.

Thus, we conclude that reducing an SU(3) × SU(3) structure to an SU(2) × SU(2)
structure corresponds to the fact that one is able to globally split TY6 ⊕ T ∗Y6 into

TY6 ⊕ T ∗Y6 = (T2Y6 ⊕ T ∗
2 Y6)⊕ (T4Y6 ⊕ T ∗

4 Y6) , (3.48)

where T4Y6⊕T ∗
4 Y6 is the eight-dimensional vector bundle that is the −1 eigenspace of P at

every point, and T2Y6⊕T ∗
2 Y6 is correspondingly the four-dimensional vector bundle that

forms the +1 eigenspace of P at every point.7 The pure spinor pair Φ±, corresponding
to JΦ± , defines an SU(2) × SU(2) structure on T4Y6 ⊕ T ∗

4 Y6 and an identity structure
on T2Y6 ⊕ T ∗

2 Y6, i.e. T2Y6 ⊕ T ∗
2 Y6 is the trivial bundle. On T4Y6 ⊕ T ∗

4 Y6, we can redo the
analysis of Section 3.1.2 since the dimension of the bundle T4Y6 ⊕ T ∗

4 Y6 is eight.

Let us make this structure slightly more explicit by considering the pure spinors Φ±

that correspond to JΦ± . First, let us fix the generalized almost-product structure P and
investigate the structure of Φ+ and Φ−. Eq. (3.48) induces a splitting of the SO(6, 6)
spinor space Λ•T ∗Y6, i.e.

Λ•T ∗Y6 = Λ•T ∗
2 Y6 ∧ Λ•T ∗

4 Y6 , (3.49)

where Λ•T ∗
2 Y6 and Λ•T ∗

4 Y6 are the SO(2, 2) and the SO(4, 4) spinor bundles over Y6,
respectively. This decomposition carries over to the chiral subbundles

ΛevenT ∗Y6 = ΛevenT ∗
2 Y6 ∧ ΛevenT ∗

4 Y6 ⊕ ΛoddT ∗
2 Y6 ∧ ΛoddT ∗

4 Y6 ,

ΛoddT ∗Y6 = ΛevenT ∗
2 Y6 ∧ ΛoddT ∗

4 Y6 ⊕ ΛoddT ∗
2 Y6 ∧ ΛevenT ∗

4 Y6 .
(3.50)

The direct sum on the right-hand side holds globally, since, by use of P , we can define
chirality operators for Λ•T ∗

2 Y6 and Λ•T ∗
4 Y6 independently. In other words, the structure

group does not mix the spinor bundles ΛevenT ∗
4 Y6 and ΛoddT ∗

4 Y6 and the spinor bundles
ΛevenT ∗

2 Y6 and ΛoddT ∗
2 Y6.

7Properly written, (3.48) reads T Y6 = T2Y6 ⊕ T4Y6.
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Moreover, since the generalized almost-complex structures commute with P , they
split under (3.48) into a generalized almost-complex structure on each component. Cor-
respondingly, using (3.50), the pure spinors Φ+ and Φ− globally decompose into pure
spinors on the spinor sub-bundles. As already argued above, the spinor bundles on the
right-hand side of Eq. (3.50) do not mix under the action of the structure group, and
therefore, the components of Φ+ and Φ− on the sub-bundles can be analyzed separately.
Their components on Λ•T ∗

4 Y6 must define an SU(2) × SU(2) structure. However, we
already discussed the case of an SU(2) × SU(2) structure group on a vector bundle of
dimension eight in Section 3.1.2. We know from Section 3.1.2 that an SU(2) × SU(2)
structure group on T4Y6 ⊕ T ∗

4 Y6 is defined by two pure spinors that must have the same
chirality. Any additional nowhere-vanishing pure spinor would break the structure group
further. Thus, we can distinguish two cases: Either both spinor components on Λ•T ∗

4 Y6

lie in ΛoddT ∗
4 Y6 or in ΛevenT ∗

4 Y6. Note that in both cases we are left with two pure spinors
of opposite chirality in Λ•T ∗

2 Y6 which define a trivial structure on T2Y6 ⊕ T ∗
2 Y6.

In the first case, both pure spinors on T4Y6 ⊕ T ∗
4 Y6 are of negative chirality. As we

showed in Section 3.1.2, these two pure spinors define an SU(2)×SU(2) structure where
the two SU(2) factors have trivial intersection. Thus Y6 admits a trivial structure, i.e. is
parallelizable, and the background has 32 supercharges. As in Section 3.1.2, we do not
discuss this case any further.

The second possibility is that both spinor components are of positive chirality and de-
fine – analogously to section 3.1.2 – a proper SU(2) structure on the manifold. Thus, also
on Y6 the possibility of an intermediate SU(2)×SU(2) structures does not exist. Instead
one can only have an SU(2) structure or a trivial structure, as we already concluded in
our analysis for Y4 in Section 3.1.2. In the SU(2)-structure case we can write

Φ+ = Θ+ ∧ Φ1 , Φ− = Θ− ∧ Φ2 , (3.51)

where Θ± are SO(2, 2) spinors of opposite chirality and therefore define a trivial structure
on T2Y6⊕T ∗

2 Y6. The SO(4, 4) spinors Φ1 and Φ2 are pure and of even chirality and define
the SU(2) structure on T4Y6⊕ T ∗

4 Y6. This is precisely the situation we already discussed
in Section 2.3.2. There the SU(2) structure was defined in terms of the two spinors ηi.
The relation between the ηi and the Φ± is analogously to (3.20) described by

Φ+ = e−B ∧ τ(η1 ⊗ η̄2) , Φ− = e−B ∧ τ(η1 ⊗ η̄c
2) , (3.52)

where B is the NS-NS two-form, which is not determined by the ηi. We can insert the
definition of τ (3.15) and relate the components in (3.51) to the quantities K, J, B and
Ω via (2.28) and (2.29). We end up with

Θ+ = e−B(2)+
1
2

K∧K̄ , Θ− = K , Φ1 = i
4
e−B(4) ∧ Ω , Φ2 = 1

4
e−B(4)−i J , (3.53)

and therefore

Φ+ = i
4
e−B(2)+

1
2

K∧K̄ ∧ e−B(4) ∧ Ω , Φ− = 1
4
K ∧ e−B(4)−i J , (3.54)

where we denoted the components of B on Λ2T ∗
2 Y6 by B(2) and on Λ2T ∗

4 Y6 by B(4),
respectively. As mentioned earlier, there is some gauge freedom in choosing η1 and η2

out of the space of SU(2) singlets, which translates into a rotational gauge freedom
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between Φ1 and Φ2. Therefore, it is more convenient in the following not to specify the
Φi in terms of J and Ω.

Now we determine the parameter space of Φ±. By the splitting we described above, we
can do this independently for the pure spinors on T2Y6⊕T ∗

2 Y6 and the ones on T4Y6⊕T ∗
4 Y6.

On the eight-dimensional subspace T4Y6⊕T ∗
4 Y6 the arguments are the same as on Y4 and

thus Φ1 and Φ2 form the moduli space SO(4, 4)/(SO(4)× SO(4)) given in (3.38).

Additionally, the SO(2, 2) spinors Θ+ and Θ− each parameterize a moduli space on
their own. The reason is that the Lie algebra splits according to

so(2, 2) = sl(2, R)T ⊕ sl(2, R)U . (3.55)

The first sub-algebra sl(2, R)T just acts on Θ+, while the second sl(2, R)U acts on Θ−.
The degrees of freedom in Θ+ correspond to a two-form acting on the negative eigenspace
of P and a form of degree zero. Together they form an Sl(2, R)T doublet. Furthermore,
we have to mod out the gauge degree of freedom corresponding to the phase of Θ+.
From (3.19) we learn that the remaining complex degree of freedom of Θ+ is given by the
volume and the B-field. It spans the parameter space Sl(2, R)T /SO(2). Similarly, Θ−
can be expanded in the basis of one-forms on the negative eigenspace of P , which is two-
dimensional, and therefore defines an Sl(2, R)U doublet analogously to Θ+, exhibiting
the same normalization and gauge degree of freedom. Hence, Θ− spans the moduli space
Sl(2, R)U/SO(2). Note that for Y6 = K3×T 2, Θ± parameterize the Kähler and complex
structure deformations of the T 2, respectively.

The formalism of generalized geometry automatically incorporates the B-field degrees
of freedom. We can also incorporate the other string fields. Additionally to the parameter
space of the pure spinors, we have the dilaton field φ in the NS-NS sector, which is
complexified by the dualized B field in four dimensions, and forms the moduli space
Sl(2, R)S/SO(2). So altogether we have in the NS-NS sector the (local) scalar space

MΘ±,Φi
=

SO(4, 4)

SO(4)× SO(4)
× Sl(2, R)S

SO(2)
× Sl(2, R)T

SO(2)
× Sl(2, R)U

SO(2)
. (3.56)

In order to incorporate the scalars coming from the R-R sector, it is more convenient to
enlarge the manifestly covariant symmetry group from SO(6, 6) to the (local) symmetry
group of all string scalars. We discuss this in the next section.

3.2 Exceptional generalized geometry

Generalized geometry is a natural generalization of G-structures since it covers the com-
plete moduli space of the NS-NS sector of string theory. This is due to the fact that
the group acting on the generalized tangent bundle coincides with the T-duality group
SO(m, m), which arises as symmetry group of the NS-NS sector in m-torus compactifica-
tions. However, it is also possible to include the R-R sector of type II string theories by
extending the T-duality group SO(m, m) to the larger U-duality group Em+1(m+1) which
also includes transformations between the NS-NS and the R-R sector [54] and gives the
complete symmetry group for type II. To do so, one extends the generalized tangent
bundle T Y to the exceptional generalized tangent bundle EY [58, 59]. The spin group
over this bundle is then the U-duality group which coincides with the (non-compact
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version of the) exceptional group Em+1. It seems natural that the formalism of pure
spinors should extend to the case of exceptional generalized geometry [61]. In this sec-
tion, following [61] we discuss how we can parameterize the set of all scalar light fields
in type II compactifications with the help of exceptional generalized geometry. By ap-
plication to SU(n) × SU(n) structure backgrounds we derive then the parameter space
of all d-dimensional scalars of the ten-dimensional theory. As we shall see, the resulting
parameter spaces have the properties required by N = 2 and N = 4 supersymmetry.

As before, we first consider the simpler case of a four-dimensional Y4 and turn to the
case of a six-dimensional space afterwards. In both cases we first study the embedding
of the T-duality group SO(m, m) into the U-duality group Em+1(m+1) and find the geo-
metric realizations of the Em+1(m+1) representations by comparison of the BPS spectrum
of the related m-torus compactification, which fills out the fundamental representation
of Em+1(m+1) and is realized in terms of a direct sum of geometric bundles over the m-
torus [54]. Since the identification of Em+1(m+1) representations with fibre bundles should
be independent of the compactification manifold, it should hold for general compactifi-
cations on Ym. In a second step we then embed the pure spinor spaces of generalized
geometry in appropriate bundles and analyze the parameter space of the corresponding
sections. Finally, we identify the scalar spaces of N = 2 and N = 4 compactifications by
projecting out all representations containing massive gravitino multiplets.

3.2.1 Exceptional generalized geometry on Y4

Let us examine the construction of exceptional generalized geometry for the case of
SU(2)-structures on Y4. In this case the U-duality group is E5(5) = SO(5, 5) with the
T-duality subgroup being SO(4, 4). Let us first look at the decomposition of the rep-
resentations of SO(5, 5) in terms of its maximal subgroup SO(4, 4) × R+. The extra
R+-factor corresponds to shifts of the dilaton. The vector representation of SO(5, 5)
decomposes as [120]

10 → 8v
0 ⊕ 1+2 ⊕ 1−2 , (3.57)

while for the spinor representation we have

16 → 8c
+1 ⊕ 8s

−1 . (3.58)

The subscript denotes the charge of the representation under shifts of the dilaton. Finally,
the adjoint of SO(5, 5) decomposes as

45 → 280 ⊕ 8v
+2 ⊕ 8v

−2 ⊕ 10 . (3.59)

Note that because of SO(4, 4) triality, the three 8 representations can be interchanged
pairwise, which, however, has to be done in all three decompositions simultaneously.

Let us now determine the geometric realizations of these representations. For the
T-duality group SO(4, 4), the vector representation 8v is (locally) given in geometrical
terms by TY4⊕ T ∗Y4 and analogously the spinor representations 8s and 8c by ΛevenT ∗Y4

and ΛoddT ∗Y4, respectively. However, SO(4, 4)-triality can interchange the three eight-
dimensional bundles TY4 ⊕ T ∗Y4, ΛevenT ∗Y4 and ΛoddT ∗Y4. To assign them to the rep-
resentations in the right way, we note – as explained in [54] – that the NS-NS and
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R-R charges together form the 16 representation of E5(5).
8 Winding modes are wind-

ing one-cycles and therefore are represented by T ∗Y4, while Kaluza-Klein modes are the
momentum modes of the compactification, which correspond to the translation gener-
ators in TY4. Hence, the NS-NS charges live in the geometrical bundle TY4 ⊕ T ∗Y4.
The R-R charges arise from D-branes wrapped on internal cycles. For type IIA (IIB),
D-branes have an even (odd) number of space dimensions and therefore wrap even(odd)-
dimensional cycles of Y to give point particles in the 6-dimensional theory. They therefore
sit in ΛevenT ∗Y4 for type IIA and ΛoddT ∗Y4 for type IIB, respectively. Hence the 16 repre-
sentation corresponds to TY4⊕T ∗Y4⊕ΛevenT ∗Y4 in type IIA and to TY4⊕T ∗Y4⊕ΛoddT ∗Y4

in type IIB [58]. Consequently, the representation 8v is associated with ΛoddT ∗Y4 in type
IIA and ΛevenT ∗Y4 in type IIB, respectively. Altogether we thus have

10 = (ΛoddT ∗Y4)0 ⊕ (R)+2 ⊕ (R)−2 ,

16 = (TY4 ⊕ T ∗Y4)+1 ⊕ (ΛevenT ∗Y4)−1 ,

45 = (so(TY4 ⊕ T ∗Y4))0 ⊕ (ΛoddT ∗Y4)+2 ⊕ (ΛoddT ∗Y4)−2 ⊕ (R)0

(3.60)

for type IIA, while in type IIB we have

10 = (ΛevenT ∗Y4)0 ⊕ (R)+2 ⊕ (R)−2 ,

16 = (TY4 ⊕ T ∗Y4)+1 ⊕ (ΛoddT ∗Y4)−1 ,

45 = (so(TY4 ⊕ T ∗Y4))0 ⊕ (ΛevenT ∗Y4)+2 ⊕ (ΛevenT ∗Y4)−2 ⊕ (R)0 .

(3.61)

Here so(TY4 ⊕ T ∗Y4) denotes the Lie-Algebra of SO(4, 4) that acts on TY4 ⊕ T ∗Y4. The
subscripts give the charges under shifts of the dilaton, which do not have a geometric
interpretation. Note that the bundle ΛevenT ∗Y4 appears in different representations in
(3.60) and in (3.61). This shows that the embedding of the pure SO(4, 4) spinors Φ1, Φ2 ∈
ΛevenT ∗Y4 has to be different for type IIA and type IIB.

In type IIA backgrounds with 16 supercharges the situation is straightforward. We
already argued that in this case we have to project out all SU(2) × SU(2) doublets
or correspondingly ΛoddT ∗Y4 together with TY4 ⊕ T ∗Y4. Eq. (3.60) then implies that
SO(5, 5) is broken to SO(4, 4)× R+ by the projection. This in turn says that all scalar
degrees of freedom coming from the R-R sector are projected out together with the
massive gravitinos. Of course this conclusion is also reached by direct inspection of the
massless type IIA spectrum discussed in section 2.2.1. This observation also immediately
says that the local moduli space is unchanged and given by MΨa in (3.38).

The analogous discussion in type IIB is slightly more involved. From (3.61) we see
that neither the additional generators of SO(5, 5) are projected out nor can we embed
the pure spinors into the spinor representation of SO(5, 5). However, from (3.61) we
see that we can embed the SO(4, 4) spinors into the vector representation of SO(5, 5).
More precisely, we can either embed the complex pure spinors Φ1 and Φ2 into complex
SO(5, 5) vectors or, alternatively, use their real and imaginary parts denoted by Ψa in

8With charges we mean those solutions which are point-like particles in six dimensions that are
charged under the NS-NS and R-R vectors. In the NS-NS sector, the charges are formed by the momen-
tum and winding modes of the fundamental string that are charged under gmµ and Bmµ, respectively,
while the R-R charges descend from ten-dimensional D-brane solutions.
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the previous section and embed them into real SO(5, 5) vector representations. We use
(3.61) to decompose the SO(5, 5) vector into its components

ζ = (ζ+, ζs, ζ̃s) , (3.62)

where ζ+ lives in ΛevenT ∗Y4 while ζs, ζ̃s are the two singlets. Then the embedding of the
four Ψa into SO(5, 5) vectors ζa is given by

ζa = (Ψa, 0, 0) , a = 1, . . . , 4 , (3.63)

which are orthonormal due to (3.37). This results in a set of four orthonormal space-like
SO(5, 5) vectors ζa which – after modding out the rotational symmetry between them –
parameterize the space

Mζa =
SO(5, 5)

SO(4)× SO(1, 5)
. (3.64)

However, this cannot be the correct parameter space yet. As one can read off
from (3.61), the four vectors ζa are not charged under the dilaton shift. Thus, the
dilaton is not yet included in the parameter space (3.64). Reconsidering the splitting
of the fundamental representation (3.57) shows that the two singlets are charged under
dilaton shifts, and together form a real SO(1, 1) vector. If we impose a normalization
condition on this vector, it parameterizes SO(1, 1) and therefore the dilaton degree of
freedom φ. We can embed this SO(1, 1) vector into an SO(5, 5) vector ζ5 using (3.62),
i.e.

ζ5 = 1√
2
(0, eφ, e−φ) . (3.65)

We see that the ζI , I = 1, . . . , 5, are all space-like and satisfy (due to (3.37))

〈ζI , ζJ〉5 = δIJ , (3.66)

where we gauge-fixed the parameter c in (3.37) to be 1.

The stabilizer of this set of vectors is naturally given by SO(5) ⊂ SO(5, 5) which are
the rotations in the space perpendicular to all ζI . Therefore, the ζI , I = 1, . . . , 5, obeying
(3.66), span the space SO(5, 5)/SO(5).

The embedding of the NS-NS sector into SO(5, 5) given in (3.63) and (3.65) is not
yet generic, but can be rotated by some SO(5, 5) rotation. Part of these rotations just
rotate ζ5 and the ζa, a = 1, . . . , 4, into each other. The remaining parameters rotations
genuinely modify the embedding and therefore correspond to additional physical scalar
degrees of freedom. They are precisely the R-R scalars of type IIB coming from the real
spinor

C = C0 + C2 + C4 ∈ ΛevenT ∗Y4 . (3.67)

Their embedding into the group SO(5, 5) is given in [57]. The previous discussion shows
that in type IIB, apart from the pure spinors Ψa, the dilaton and the R-R scalars C are
also part of the moduli space and therefore the parameter space given in (3.64) has to be
modified. We just argued that the basic objects are five SO(5, 5) vectors ζI that satisfy
(3.66) and which are stabilized by SO(5). In addition there is an SO(5) gauge symmetry
rotating the vectors into each other. Therefore the physical parameter space is

MζI
=

SO(5, 5)

SO(5)× SO(5)
. (3.68)
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This is of course still the parameter space over a point of the ten-dimensional spacetime.
In Section 4.2 we derive from (3.68) the scalar field space of general compactifications on
an SU(2)-structure manifold Y4.

3.2.2 Exceptional generalized geometry on Y6

Now let us discuss the more involved case of a six-dimensional space Y6. The U-duality
group for d = 4 is E7(7) with the T-duality subgroup being SO(6, 6). Let us first re-
call the decomposition of the representations of E7(7) in terms of the maximal subgroup
Sl(2, R)S × SO(6, 6). The factor Sl(2, R)S is the S-duality subgroup acting on the four-
dimensional dilaton φ complexified by the dualized B-field. The fundamental represen-
tation of E7(7) decomposes as [121]

56 → (2,12) + (1,32) , (3.69)

while the adjoint of E7(7) decomposes as

133 → (3,1) + (1,66) + (2, 3̄2) . (3.70)

In full analogy to Section 3.1.1, we define the bundle EY which should form the funda-
mental representation of the U-duality group E7(7) and therefore should be of dimension
56. To understand the relation to the generalized tangent bundle T Y we consider (3.69)
and associate geometrical bundles with the representations of SO(6, 6). It was shown in
Ref. [54] that the electric and magnetic charges form the 56 representation of E7(7). The
(2,12) part in (3.69) represents the NS-NS charges, i.e. winding and momentum modes as
well as NS5-branes and KK-monopoles, and thus corresponds to a doublet in TY6⊕T ∗Y6.

9

The (1,32) represents the R-R charges, which correspond to ten-dimensional D-brane
solutions. In type IIA, they are elements of ΛevenT ∗Y6, while in type IIB they live in the
bundle ΛoddT ∗Y6 [54]. Therefore, (3.69) is realized geometrically by [58]

56IIA = (TY6 ⊕ T ∗Y6)2 ⊕ (ΛevenT ∗Y6)1 (3.71)

for type IIA and by

56IIB = (TY6 ⊕ T ∗Y6)2 ⊕ (ΛoddT ∗Y6)1 (3.72)

for type IIB. The subscript denotes the representation under the S-duality group Sl(2, R)S,
which has no geometric realization. Correspondingly, the decomposition of the adjoint
of the U-duality group is realized geometrically by

133IIA = (R)3 ⊕ (so(TY6 ⊕ T ∗Y6))1 ⊕ (ΛoddT ∗Y6)2 (3.73)

for type IIA and

133IIB = (R)3 ⊕ (so(TY6 ⊕ T ∗Y6))1 ⊕ (ΛevenT ∗Y6)2 (3.74)

9In contrast to [58], we do not distinguish the bundles TY6 ⊕ T ∗Y6 and Λ5TY6 ⊕ Λ5T ∗Y6 because
they are related by a volume form on Y6. Such a volume form we already chose to identify the SO(6, 6)
spinor bundles with ΛevenT ∗Y6 and ΛoddT ∗Y6. Thus, we can identify the bundles TY6 ⊕ T ∗Y6 and
Λ5TY6 ⊕ Λ5T ∗Y6, and write them as a doublet under the S-duality group.
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for type IIB. The spinor representations of SO(6, 6) are actually related to the R-R fields
C. In type IIA, the C-fields define an SO(6, 6) spinor of odd chirality via10

CIIA = C1 + C3 + C5 ∈ ΛoddT ∗Y6 , (3.75)

while in type IIB, the spinor is of even chirality and defined by

CIIB = C0 + C2 + C4 + C6 ∈ ΛevenT ∗Y6 . (3.76)

This fits nicely with the SO(6, 6) spinors appearing in (3.73) and (3.74). However, in
both (3.73) and (3.74) there appears a doublet of SO(6, 6) spinors in the adjoint of E7(7).
As we will see below, one linear combination of these spinors is in the stabilizer of the
SU(3) × SU(3) structure, while the remaining linearly independent linear combination
corresponds to the R-R scalar fields.

We conclude that the bundle EY should locally look like (3.71) in type IIA and like
(3.72) in type IIB. Analogously to Section 3.1.1, a metric on EY incorporates all scalar
degrees of freedom.

3.2.3 SU(3)× SU(3) in exceptional generalized geometry

We are now interested in the extension of the pure spinor formalism to representations
of E7(7). We know from Section 3.1.3 that for d = 4 a pair of pure spinors of opposite
chirality Φ+ and Φ− parameterize the degrees of freedom of the NS-NS sector. Both
of them should embed into representations of E7(7). Since they have opposite chirality,
we see from (3.69) and (3.70) that one of them should embed into the fundamental and
the other one into the adjoint representation. From (3.71) and (3.72) we see that Φ+

fits into the fundamental representation in type IIA, while in type IIB it is Φ−. Let us
restrict in the following to type IIA and remark that the exchange of chiralities leads to
the corresponding type IIB analysis.

Let us now review the embedding of the pure SO(6, 6) spinors into E7(7) represen-
tations as performed in [61]. Using the decomposition (3.69), the spinor Φ+ of positive
chirality is embedded into the fundamental representation via

λ = (λA
i , λ+) = (0, Re(Φ+)) , i = 1, 2 , (3.77)

where λ consists of a doublet of SO(6, 6) vectors λA
i and an SO(6, 6) spinor λ+ of even

chirality and therefore is an E7(7) vector. The stabilizer of λ has been determined in [61]
to be E6(2). Furthermore the phase of Φ+ is just a gauge degree of freedom. In the E7(7)

covariant formalism this gauge freedom manifests itself in the fact that λ and

λ̃ = (0, Im(Φ+)) (3.78)

describe the same SU(3)× SU(3) structure. They are related by the generalized almost
complex structure JΦ+ which embeds into the adjoint of E7(7). Therefore, after modding
out the transformations generated by JΦ+ , the parameter space for λ is

MSK =
E7(7)

E6(2) × U(1)
, (3.79)

10Note that we use the “democratic” formulation for the R-R fields, and that we only consider scalar
degrees of freedom. Therefore, all legs of the forms in (3.75) and (3.76) are internal.
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which one can show is special Kähler [68, 122–125] with a Kähler potential given by the
Hitchin functional [61]

KSK = − ln H(λ) = − ln
√

Q(λ) , (3.80)

where Q(λ) is the quartic invariant of E7(7) defined by

Q(λ) = 1
48
〈λ+, ΓABλ+〉〈λ+, ΓABλ+〉 − 1

2
εijλA

i λB
j 〈λ+, ΓABλ+〉

+ 1
2
εijεklλA

i λk AλB
j λl B .

(3.81)

Note that this is the straight-forward generalization of the Hitchin functional defined in
(3.41).

The pure SO(6, 6) spinor of negative chirality cannot be embedded into the funda-
mental of E7(7) but only into its adjoint. However, from (3.70) it can be seen that it
must be embedded as an Sl(2, R)S doublet. Therefore, a complex vector ui, i = 1, 2, is
introduced which is stable and normalized, i.e.

|u|2 = uiεijū
j = 1 . (3.82)

The Sl(2, R)S doublet ui describes the complexified dilaton degree of freedom. Note that
the overall phase of ui is just a choice of gauge. Then the pair (ui, Φ−) is embedded via

µ1 = (µ̂i
j, µ

A
B, µi−) = (0, 0, Re(uiΦ−)) . (3.83)

The calculation of the moduli space however is a bit more involved than expected. Naively
one would think that analogously to the gauge freedom of λ the gauge freedom in µ1 is
some phase rotation which relates µ1 to

µ2 = (0, 0, Im(uiΦ−)) . (3.84)

However, these two elements of the adjoint do not commute, and therefore determine a
third one which reads

µ3 = i
4k
〈Φ̄−, Φ−〉(uiūj + ūiuj, i |u|2(JΦ−)A

B, 0) , (3.85)

where JΦ− is the generalized almost complex structure corresponding to Φ− and defined
by [33]

(JΦ−)AB = i
〈Φ̄−, ΓABΦ−〉
〈Φ̄−, Φ−〉

. (3.86)

The normalization k is defined as

k =
√

1
2
|u|2〈Φ̄−, Φ−〉 . (3.87)

As explained in Section 3.1.1, JΦ− determines Φ− up to a phase. As a consequence, µ3

determines µ1 and µ2 up to a rotation between those two. Hence, each µa determines
the other two. It turns out that the µa define a highest weight SU(2) embedding of ui

and the pure spinor Φ− in E7(7) [61, 126]. Indeed, the µa fulfill the su(2) algebra

[µa, µb] = 2kεabcµc . (3.88)
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Purity of Φ− together with (3.82) is equivalent to the fact that the µa indeed form an
su(2) algebra. Furthermore, the µa share the same stabilizer and make the SU(2) gauge
freedom manifest. One can compute the stabilizer to be the group SO∗(12), which is a
non-compact version of SO(12). Therefore, the µa locally span the space [61]

MHK =
E7(7)

SO∗(12)
× R∗ , (3.89)

which can be shown to be hyper Kähler [126–128] with a hyper-Kähler potential [129]

χ =
√
− 1

12
tr(µaµa) . (3.90)

By modding out the SU(2) gauge freedom of the µa one ends up with the parameter
space

MQK =
E7(7)

SU(2)× SO∗(12)
. (3.91)

The compatibility condition (3.44) can be rewritten in an E7(7)-covariant way as

µa · λ = 0 . (3.92)

This compatibility condition enforces the two stabilizer groups to intersect in

SO∗(12) ∩ E6(2) = SU(6) . (3.93)

Therefore, the physical parameter space forms a fibre over both (3.79) and (3.91) and is

M =
E7(7)

U(2)× SU(6)
, (3.94)

where the U(2) is the R-symmetry group of the theory. This SU(6) structure reduces to
the usual SU(3)× SU(3) structure if one restricts E7(7) to SO(6, 6).

So far we reviewed how the SU(3)×SU(3) is embedded into E7(7) representations. In
order to find an N = 2 parameter space, one still has to project out all SU(3)× SU(3)
triplets or, equivalently, all 6 representations of SU(6). This eliminates all extra degrees
of freedom for the fundamental representation (3.69), giving the special-Kähler space we
already found in the last section. Comparing with the analysis in Section 2.2.2, one sees
that this special-Kähler space is parameterized by the scalar degrees of freedom in the
vector multiplet sector, consistent with N = 2 supergravity.

In contrast, the projection in the adjoint representation (3.70) leads to a space of
larger dimension as compared to the special-Kähler manifold parameterized by the pure
spinor Φ−. The inclusion of the R-R sector gives a fibration over this special-Kähler
manifold. Here, the fibre is parameterized by the deformations of the scalars coming
from the R-R fields C and by ui, which parameterizes the complexified dilaton. Since the
classical type II supergravities in ten dimensions are symmetric under shifts in the C fields
and in the complexified dilaton, the fibre admits a transitively acting symmetry group
of shift isometries. As already anticipated, the resulting space is quaternionic-Kähler,
parameterized by the scalars in the N = 2 hypermultiplets. Quaternionic-Kähler spaces
admitting the fibration structure are called special quaternionic-Kähler manifolds. The
map from the special-Kähler base to the quaternionic-Kähler manifold is known as the
c-map [65,66]. We discuss them in more detail in Section 4.3.3.
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3.2.4 R-R scalars and N = 4 compactifications on Y6

Let us now discuss the N = 4 case on Y6. The main difference to the last section is the
existence of a generalized almost-product structure P , which has already been introduced
in Section 3.1.3, and the projection to N = 4 instead of N = 2. In particular, we can use
the results of the discussion in the last section but do not project out the SU(3)×SU(3)
triplet. Instead we reduce the SU(3) × SU(3) structure group to SU(2) × SU(2) and
subsequently project out all SU(2)× SU(2) doublets.

Let us now discuss what happens when we project out all SU(2)×SU(2) doublets. We
already know from Section 3.1.3 that only the SO(2, 2)× SO(4, 4) subgroup of SO(6, 6)
survives this projection. Therefore, the (1,66) component in (3.70) is projected to the
direct sum of the adjoints of SO(2, 2) and SO(4, 4). Furthermore, the first component
in (3.70), i.e. (3,1), consists of SO(6, 6) singlets. Therefore, it is also a singlet under
SU(2) × SU(2) and thus invariant under the projection. Hence, we are left with the
last component in (3.70), which is the (2, 3̄2) representations, i.e. a doublet of SO(6, 6)
spinors.

Due to the existence of the generalized almost-product structure P , we can decom-
pose the SO(6, 6) spinor bundles as done in (3.50). Analogously to the discussion in
Section 3.1.2 one can argue that the space Λodd

4 T ∗Y6 consists of SU(2)× SU(2) doublets
only and therefore is removed by the projection to N = 4. We are therefore left with
only half of the degrees of freedom

ΛevenT ∗Y6 −→ ΛevenT ∗
2 Y6 ∧ ΛevenT ∗

4 Y6 ,

ΛoddT ∗Y6 −→ ΛoddT ∗
2 Y6 ∧ ΛevenT ∗

4 Y6 .
(3.95)

Therefore, only part of the U-duality group E7(7) survives this projection. In type IIA,
we end up with the subgroup GIIA whose adjoint is the subspace of (3.73) given by

gIIA = (R)3 ⊕ so(T2Y6 ⊕ T ∗
2 Y6)1 ⊕ so(T4Y6 ⊕ T ∗

4 Y6)1 ⊕ (ΛoddT ∗
2 Y6 ∧ ΛevenT ∗

4 Y6)2 . (3.96)

In type IIB, we find the subgroup GIIB whose adjoint is the subspace of (3.74) given by

gIIB = (R)3 ⊕ so(T2Y6 ⊕ T ∗
2 Y6)1 ⊕ so(T4Y6 ⊕ T ∗

4 Y6)1 ⊕ (ΛevenT ∗
2 Y6 ∧ΛevenT ∗

4 Y6)2 . (3.97)

Both GIIA and GIIB define SO(6, 6) × Sl(2, R)T/U subgroups of E7(7), as shown in [57].
The Sl(2, R)T/U factor is generated by one of the two sub-algebras in (3.55), depending
on whether one considers type IIA (T) or type IIB (U). Sl(2, R)T acts on the Kähler part
of the identity structure on T2Y6 ⊕ T ∗

2 Y6 and forms the extra factor in type IIA, while
Sl(2, R)U acts on its complex structure part and forms the extra factor in type IIB.

Finally, we determine the parameter space of SU(2) × SU(2) structure compactifi-
cations of type II theories in d = 4. We will mainly consider type IIA but the type
IIB results are easily obtained by swapping chiralities and an exchange of sl(2, R)T with
sl(2, R)U in the Lie algebra so(2, 2).

For this we use the embedding of the pure SO(6, 6) spinors into E7(7) representations
discussed in Section 3.2.2. The spinor Φ+ of positive chirality is embedded into the
fundamental representation as in (3.77). From (3.51) we see that Φ+ and thus λ transform
as a doublet under Sl(2, R)T . Thus, λ is mapped into the (12,2) representation in (3.69)
under the projection E7(7) → SO(6, 6) × Sl(2, R)T . Therefore, λ descends to a doublet
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of SO(6, 6) vectors, which are stabilized by SO(4, 6) × SO(2) ⊂ SO(6, 6) × Sl(2, R)T .
Furthermore, we have an U(1) gauge freedom since λ in (3.77) and λ̃ in (3.78) describe
the same SU(2)× SU(2) structure. They are related by the generalized almost-complex
structure JΦ+ which embeds into the adjoint of E7(7). Therefore, after modding out the
transformations generated by JΦ+ , the parameter space for λ is

Mλ =
SO(6, 6)

SO(2)× SO(4, 6)
× Sl(2, R)T

SO(2)
, (3.98)

which is related to the unconstrained special-Kähler parameter space of λ, given in (3.79),
by projecting out all SU(2)× SU(2) doublets. Here, the first factor in (3.98) is spanned
by the real and imaginary parts of Φ1, which are embedded as SO(4, 4) vectors into the
space of SO(6, 6) vectors. The second factor is spanned accordingly by Θ+, as has been
discussed below (3.55).

In Section 3.2.2 it already turned out that the pure SO(6, 6) spinor of negative chiral-
ity is tensored with an Sl(2, R)S doublet ui and can then be embedded into the adjoint
of E7(7) as done in (3.83). As discussed there, the embedding has some SU(2) gauge
choice as the embeddings (3.84) and (3.85) are completely equivalent and together with
(3.83) actually form the SU(2) generators. According to (3.51), µ1 is a singlet under
Sl(2, R)T and therefore is mapped into the adjoint of SO(6, 6) in (3.70) under the pro-
jection E7(7) → SO(6, 6) × Sl(2, R)T . From (3.83) and (3.51) one can see that µ1 + i µ2

is actually mapped to the antisymmetric tensor product µ1 + i µ2 = (uiΘ−) ∧ Φ2. The
stabilizer of this object consists of those elements of SO(6, 6) that either leave both uiΘ−
and Φ2 invariant or rotate them into each other. The stabilizer therefore can be identi-
fied with SU(2)×SO(2, 6), which together with the SU(2) gauge freedom combines into
SO(4)× SO(2, 6). We end up with the parameter space

Mµ =
SO(6, 6)

SO(4)× SO(2, 6)
, (3.99)

which is related to the unconstrained quaternionic-Kähler parameter space of µa, given in
(3.91), by projecting out all SU(2)× SU(2) doublets. As discussed above, the spacelike
four-plane in (3.99) is spanned by the real and imaginary parts of Re(uiΘ−) and Φ2,
understood as SO(2, 2) and SO(4, 4) vectors embedded into SO(6, 6).

Finally, we consider the common parameter space of both objects, imposing the com-
patibility condition (3.92). The common stabilizer of both λ and µ is the common
subgroup of SO(4, 6) and SO(2, 6) and can be determined to be SO(6). The gauge free-
dom on the other hand is enhanced from SO(2)× SO(4) to SO(6) due to the fact that
rotations between the Λeven

4 T ∗Y components of Φ+ and Φ− are pure gauge freedom, as
already discussed in Section 3.2.1. Thus, the parameter space is

Mλ,µ =
SO(6, 6)

SO(6)× SO(6)
× Sl(2, R)T

SO(2)
, (3.100)

which is the parameter space of the spacelike six-plane spanned by the real and imaginary
parts of Re(uiΘ−), Φ1 and Φ2. The embeddings (3.77) and (3.83) can be deformed by
some E7(7) transformation. This corresponds to the SO(6, 6) deformations which we
discussed already in the last sections and to additional degrees of freedom that can be
identified with the R-R scalars.

55



CHAPTER 3. GENERALIZED GEOMETRY AND SU(N)× SU(N) STRUCTURES

The spaces (3.38), (3.68) and (3.100) give the central result of this Chapter, reflecting
the parameter spaces of SU(2) × SU(2) structures in d = 4 and d = 6. They are the
target spaces of all SO(1, d − 1) scalars in the rewritten ten-dimensional theory. The
next step is the dimensional reduction to the d-dimensional, effective theory, in which
we truncate the theory in order to find a finite-dimensional field content. In Section 4.2
we shall use the results (3.38), (3.68) and (3.100) to identify the scalar field space of
the d-dimensional effective theory in d = 4 and d = 6. As we will see, its dimension
may differ from the parameter space of the ten-dimensional theory but it inherits the
geometry of the parameter space.
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Chapter 4

The effective action

The aim of this chapter is to discuss consistent Kaluza-Klein truncations and to derive
the d-dimensional low-energy effective field theory for compactifications to N = 2 and
N = 4 supergravities. For simplicity, we shall focus on identifying the scalar field space
of the low-energy effective action. A derivation of possible gaugings and the potentials
will we presented in [84].

So far we just parameterized the ten-dimensional field content over each point of
10d spacetime in a form where instead of the ten-dimensional Lorentz symmetry group
only the subgroup SO(1, d− 1)× SO(10− d) (and consequently, only 8 or 16 of the 32
supercharges) is manifest. In this formulation no Kaluza-Klein truncation is performed
but instead all fields still carry the full ten-dimensional coordinate dependence of the
background (1.1). This is the approach of Ref. [62], which we reviewed in Section 2.2. In
the corresponding effective theories the spaces derived in (3.38) and (3.68) for d = 6 and
(3.94) and (3.100) for d = 4 appear as target space of the Lorentz-scalar deformations,
consistent with the constraints of the corresponding d-dimensional supergravity.

Alternatively, one can perform a Kaluza-Klein truncation and only keep the light
modes of the background (1.1). We shall do exactly this in the following in order to
derive the scalar field spaces of the effective theories.

4.1 Consistent truncations and fluxes

The Kaluza-Klein reduction on a compact space Y10−d in general leads to an infinite
tower of massive states over a massless, d-dimensional spectrum. However, most of the
massive states are negligible in the low-energy limit and therefore can be removed from
the spectrum. This corresponds to a truncation of the theory at a given energy scale such
that only the light modes with masses below this scale appear in the resulting action.
There are several consistency conditions for such a truncation to work.

First of all, light modes must survive this truncation, as otherwise we do not describe
the physics at this energy scale correctly. Furthermore, it is crucial that this truncation
preserves supersymmetry. Therefore, we assume that there is a finite-dimensional sub-
space Λ•

finiteT
∗Y ⊂ Λ•T ∗Y of forms on Y that contains the light modes of the effective

theory and that we can expand the pure spinors in this basis. Secondly, the Mukai pairing
〈·, ·〉 should be non-degenerate on Λeven

finiteT
∗Y and Λodd

finiteT
∗Y . This ensures that the gener-

alized Hodge-star operator ∗B is well-defined on Λeven
finiteT

∗Y and Λodd
finiteT

∗Y . Furthermore,
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for SU(3) × SU(3)-structure compactifications this assumption is enough to guarantee
that the special-Kähler structure of the moduli spaces of Φ+ and Φ− each survive the
compactification. For SU(2)×SU(2)-structure compactifications, we find that this even
ensures that the d-dimensional scalar field space takes the form of a symmetric space,
more precisely, of a Grassmannian.

As already discussed in Section 2.2, there should be no SU(n) × SU(n) n-plets in
the spectrum Λ•

finiteT
∗Y , since we want to stay at energy scales below the mass of the

massive gravitino multiplets. As a further assumption, one wants the exterior derivative
d to be well-defined on Λ•

finiteT
∗Y , in other words d maps from Λp

finiteT
∗Y to Λp+1

finiteT
∗Y

so that one can also expand field strengths and torsion in this finite set of forms.

On a four-dimensional manifold Y4 with an SU(2) × SU(2) structure, the above
assumptions are already very strong. As discussed in Section 3.1.2, projecting out the
SU(2) × SU(2) doublets eliminates all elements in Λodd

finiteT
∗Y . As a consequence, the

exterior derivative d maps Λeven
finiteT

∗Y to zero so that all elements in Λeven
finiteT

∗Y are closed
and the manifold has even SU(2) holonomy, i.e. we deal with K3.

In order to find non-trivial examples in this case, we have to relax some of the above
conditions. Indeed we can allow SU(2) × SU(2) doublets in Λ•

finiteT
∗Y which do not

correspond to light deformations but only to torsion classes. These torsion classes are
related to a non-trivial warp factor in the compactification and we do not study them
here any further. Let us instead turn to the case d = 6.

On a six-dimensional manifold Y6 the Mukai pairing 〈·, ·〉 given in (3.18) is anti-
symmetric, giving a natural symplectic structure on ΛevenT ∗Y and ΛoddT ∗Y . Let us for
later convenience denote the dimension of ΛevenT ∗Y and ΛoddT ∗Y by 2(nv + 1) and 2nh,
respectively. We can choose a symplectic basis

ΣΛ = (ωI , ω̃
I) , I = 1, . . . , nv + 1, Σ̃Λ̃ = (αA, βA) , A = 1, . . . , nh, (4.1)

with respect to the Mukai pairing for both Λeven
finiteT

∗Y and Λodd
finiteT

∗Y such that

〈ωI , ω̃
J〉 = δJ

I , 〈αA, β̃B〉 = δB
A , (4.2)

with all other Mukai pairings vanishing. Then the exterior derivative d induces a natural
algebra of charges on Λ•

finiteT
∗Y , given by

dαA ∼pI
AωI + eAI ω̃

I , dβA ∼ qAIωI + mA
I ω̃I ,

dωI ∼mA
I αA − eAIβ

A , dω̃I ∼ −qAIαA + pI
AβA .

(4.3)

Here, the symbol∼ denotes “equal up to terms that vanish under the Mukai pairing”. The
charges pI

A, eAI , q
AI , mA

I parameterize the intrinsic torsion of M as well as background
flux of the NS three-form H. The parameters eAI and mA

I already appear in SU(3)-
structure compactification while pI

A and qAI only arise in genuine SU(3)×SU(3)-structure
compactifications and are often referred to as non-geometric fluxes. Together they form
a doubly symplectic matrix [34,130,131]

QΛ
Λ̃

=

(
pI

A eAI

qAI mA
I

)
(4.4)

such that we can rewrite (4.3) as

dΣΛ ∼ QΛ
Λ̃
Σ̃Λ̃ , dΣ̃Λ̃ ∼ QΛ̃

ΛΣΛ . (4.5)
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Note that the same matrix QΛ
Λ̃

must appear in both equations of (4.5) in order to ensure
the validity of partial integration, i.e. the property∫

Y

〈dΣΛ, Σ̃Λ̃〉 =

∫
Y

〈ΣΛ, dΣ̃Λ̃〉 . (4.6)

Furthermore, d2 = 0 implies the quadratic constraints

QΛ
Λ̃
QΣ̃

Λ = 0 , QΛ
Λ̃
QΛ̃

Σ = 0 . (4.7)

An additional piece of information in the compactification is the amount of R-R flux
on Y . This amounts to the fact that the field strengths of the R-R fields are only locally
given by the exterior derivative of the R-R fields C as F± = dC but globally admit a piece
that is not exact, which we call the R-R form flux F±

flux. Here, the superscript indicates
whether we consider type IIA or IIB: In type IIA (IIB) the R-R field strengths are a
formal sum of differential forms of even (odd) degree. In the remainder of this chapter,
we focus on type IIA and discuss even-degree form flux F+

flux. The formulas for type IIB
compactifications are completely analogous and can be obtained by interchanging even
and odd forms and thereby pure spinor chiralities.

In a consistent truncation, we can expand F+
flux in terms of Λeven

finiteT
∗Y , leading to

F+
flux = fΛΣΛ = f IωI + f̃I ω̃

I . (4.8)

It turns out that all entries of QΛ
Λ̃

and fΛ are indeed charges in the effective theory
[34,71,72].

All charges appearing in (4.4) and (4.8) are quantized, i.e. integer-valued. More
generally, charge quantization can be imposed for all charges, independent of their ten-
dimensional origin (e.g. also for charges coming from non-geometric fluxes). The reason
is that massive BPS states wrapping internal cycles of Y descend to massive particles
with quantized charges in the (full) d-dimensional theory. Even though all of these states
are removed by the truncation, they give rise to Dirac charge quantization of all other
charges in the theory, including those coming from QΛ

Λ̃
and fΛ. The responsible BPS

spectra are generalizations of the spectrum discussed for instance in [54].

If the structure group on Y6 is SU(2) × SU(2), we can furthermore apply (3.50) to
Λ•

finiteT
∗Y6 and use the fact that Λodd

finiteT
∗
4 Y6 is projected out. Let us choose vi, i = 1, 2,

as a basis of Λodd
finiteT

∗
2 Y6 and ΩI , I = 1, . . . , n + 6 as a basis of Λeven

finiteT
∗
4 Y6. The basis of

Λeven
finiteT

∗
2 Y6 then consists of (1, v1 ∧ v2). As a consequence of this splitting, the charge

algebra (4.3) simplifies to [36,37,39]

dvi ∼ tiv1 ∧ v2 + T i
IΩ

I ,

dΩI ∼ T̃ I
iJvi ∧ ΩJ .

(4.9)

As we already remarked, the above analysis crucially depends on the assumption of
a constant warp factor. For non-trivial warping, both (4.3) and (4.9) can change and
Λ•

finiteT
∗Y6 may also contain n-plet representations [32].

After this initial discussion, let us now discuss the low-energy effective action of
SU(2)× SU(2)- and SU(3)× SU(3)-structure compactifications in more detail.
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4.2 N = 4 compactifications

The aim of this section is to determine the scalar field space of SU(2) structure com-
pactifications for d = 4 and d = 6. The results should be consistent with N = 4
four-dimensional supergravity and its six-dimensional counterparts, respectively. In a
supergravity theory with 16 supercharges, only discrete choices can be made. More pre-
cisely, the number of vector (or tensor) multiplets together with the choice of gauge
group completely determine the supergravity theory (see for instance [82] and references
therein). As a consequence, the scalar field space is highly constrained. For example, for
type IIA the scalar field spaces are given by Grassmannian spaces of the form (1.3).

In Chapter 3 we rewrote the ten-dimensional theory in a way that is only manifestly
covariant with respect to the d-dimensional Lorentz group and the structure group and
gave the parameter space of the corresponding scalar fields. However, the result was
an equivalent description of the ten-dimensional theory since no reduction had been
performed. In order to derive the scalar field space of the d-dimensional theory, we make
use of a consistent truncation as discussed in the last section and reduce thereby the
spectrum. This will lead us from the (rewritten) ten-dimensional theory to the truncated
supergravity in d dimensions.

Now we want to determine the scalar field space of SU(2) structures. Let us start
with the case of type IIA for d = 6, for which we determined the local parameter space
to be given by (3.38), parameterized by four real spinors Ψa in ΛevenT ∗Y4. We use a
consistent truncation as introduced in the last section and truncate the space of even
forms to a finite subspace Λeven

finiteT
∗Y4 with the assumption that the Mukai pairing is non-

degenerate on it. Concretely this means that we can expand the four real spinors Ψa

in a basis of Λeven
finiteT

∗Y4. The generalized Hodge-star operator ∗B, which, via the Ψa, is
globally defined, splits Λeven

finiteT
∗Y4 into the eigenspaces of ∗B, i.e.

Λeven
finiteT

∗Y4 = Λeven
+ T ∗Y4 ⊕ Λeven

− T ∗Y4 , (4.10)

where the subscripts ± denote the eigenvalues with respect to ∗B. Furthermore, these
eigenspaces are orthogonal to each other with respect to the Mukai pairing. Λeven

+ T ∗Y4

consists of SU(2) × SU(2) singlets only, and thus over each point it is spanned by the
Ψa. Therefore, each element of Λeven

+ T ∗Y4 can be written as a linear combination of
the Ψa where the coefficients may depend on the base point on Y4, i.e. are functions on
Y4. However, only constant coefficients survive the Kaluza-Klein truncation, and thus
Λeven

+ T ∗Y4 is spanned by the Ψa only and has dimension four.

Now let us turn to the eigenspace Λeven
− T ∗Y4. It consists of sections in U2,2 and

therefore we cannot make the same argument as for Λeven
+ T ∗Y4. In contrast to the bundle

of SU(2) × SU(2) singlets, U2,2 might be twisted over the manifold and the dimension
of Λeven

− T ∗Y4 may differ from four, say n + 4. Thus, Λeven
finiteT

∗Y4 is a vector space of
signature (4, n + 4). The four spinors Ψa satisfy the orthonormality conditions (3.37),
and therefore span a four-dimensional space-like subspace in Λeven

finiteT
∗Y4. The parameter

space describing these configurations is just R+×SO(4, n + 4)/SO(n + 4), where the R+

factor corresponds to the gauge freedom contained in the choice of the parameter c in
the orthonormality condition (3.37).

In order to find the moduli space we still have to remove all gauge redundancies. This
amounts to removing the scale factor c and the SO(4)-symmetry between the four real
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components of the compatible pure spinors. Modding out both redundancies we finally
arrive at the moduli space

MIIA
d=6 =

SO(4, n + 4)

SO(4)× SO(n + 4)
× R+ , (4.11)

where we now also included the dilaton via the R+ factor consistently with (non-chiral)
N = 4 supergravity.

The derivation presented so far did not use the absence of SU(2) doublets. We
merely confined our attention to deformations of the pure spinors, which are of even
degree. However, let us note that dΨa is an SU(2) × SU(2) doublet and therefore it
cannot correspond to a deformation parameter after projecting out the doublets. At best
it can be related to the warp factor, as already discussed in the last section. Thus, in the
absence of a warp factor and without any doublets we have dΨa = 0 and Y4 has to be a
K3 manifold. This is consistent with the moduli space (4.11), which for n = 16 coincides
with the moduli space of K3 manifolds (modulo the R+ factor).

We want to stress that the arguments given below (4.10) can be made for any vector
bundle that consists of only singlets under the structure group. Since the structure
group does not act on the vector bundle, it must be the trivial bundle and we can give
a number of nowhere-vanishing sections of the vector bundle that form an orthonormal
basis at every point. Since these sections are globally defined and nowhere-vanishing,
they can be associated with objects that define the structure group and therefore they
(or locally rescaled versions thereof) survive the Kaluza-Klein truncation. Furthermore,
we can conclude that any further mode in this bundle that survives the truncation can
be expanded in this basis. The coefficients of the expansion are constrained by the
truncation to be constant. Therefore any further mode can just be a linear combination
of the sections in the orthonormal basis. Therefore, the space of light modes resulting
from a Kaluza-Klein truncation on this vector bundle has the same dimension as the
bundle itself.

Let us apply this theorem to SU(2)× SU(2)-structure compactifications of type IIB
(in d = 6), starting from the target space (3.68), which is parameterized by five vectors
ζI , I = 1, . . . , 5, obeying (3.66) in a ten-dimensional space R5,5 of split signature and
therefore defining a spacelike five-dimensional subspace Z+. By use of the SO(5, 5)
metric the orthogonal complement is defined as a five-dimensional timelike subspace Z−.
Since Z+ consists of only structure-group singlets, we can apply the theorem, which tells
that the Kaluza-Klein truncation leads to a five-dimensional spacelike space spanned by
the ζI . On the other hand, Z− descends to a timelike space of arbitrary dimension,
say n + 5. Therefore, the ζI parameterize a spacelike five-plane in a space of signature
(5, n + 5), which represents the moduli space

MIIB
d=6 =

SO(5, n + 5)

SO(5)× SO(n + 5)
. (4.12)

In the same way we can determine the N = 4 moduli space of SU(2) structure
compactifications to four dimensions, starting from the parameter space (3.100). For this
we note that the subspace of positive signature in the first factor in (3.100) is spanned
by SU(2) × SU(2) singlets. By applying the above theorem, we know that after the
Kaluza-Klein truncation this subspace is still of dimension six. However, the space of
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negative signature is spanned by (2,2) representations of SU(2)× SU(2). Therefore, its
dimension can be different globally, say n+6. Note that also the second factor in (3.100)
consists of SU(2)× SU(2) singlets only and we can apply the theorem here, too. Thus,
the scalar field space is given by

MIIA
d=4 =

SO(6, 6 + n)

SO(6)× SO(6 + n)
× Sl(2, R)T

SO(2)
. (4.13)

Similarly, the type IIB scalar field space can be determined by exchanging Sl(2, R)T /SO(2)
and Sl(2, R)U/SO(2) and therefore reads

MIIB
d=4 =

SO(6, 6 + n)

SO(6)× SO(6 + n)
× Sl(2, R)U

SO(2)
. (4.14)

The scalar field spaces derived in this section are the final result of the first part of
this thesis. We see that by assuming the existence of an arbitrary consistent truncation,
we could already derive the scalar field spaces of SU(2)-structure compactifications. It
turns out that these scalar field spaces are consistent with the requirements of four-
dimensional N = 4 supergravity and its higher-dimensional analogues. Furthermore, the
parametrization of the scalar field spaces in terms of pure spinors and its generalizations
in exceptional generalized geometry can be shown to reflect the construction of the scalar
field space from its superconformal cone, as we further discuss in [57]. Let us now review
the analogous discussion in N = 2 compactifications to set the stage for the discussion
of N = 1 vacua in gauged N = 2 supergravities.

4.3 N = 2 effective actions

We just saw that in SU(2)× SU(2)-structure compactifications the scalar field space is
restricted to be a symmetric space of Grassmannian type, in accordance with N = 4
supergravity. In SU(3) × SU(3)-structure compactifications one would like to draw a
similar conclusion. However, N = 2 supergravity is less restrictive and therefore a full
determination of the N = 2 theory does crucially depend on the considered background
Y . Still there are a number of features that are generically present in the effective theory
of SU(3) × SU(3)-structure compactifications. The low-energy theory turns out to be
a gauged N = 2 supergravity theory. As we discuss in the following, the scalar fields
parameterize a product of a special Kähler and a (special) quaternionic-Kähler manifold.
Furthermore, the charges appearing in (4.3) and (4.8) correspond to gaugings in the low-
energy effective action. Before we go into more detail, let us first review the basic facts
of N = 2 supergravity (for a comprehensive review, see [92]).

4.3.1 N = 2 supergravity

The possible field content and couplings of N = 2 supergravity are highly restricted
by its supersymmetric nature. In particular, each field must come in a representation
of the N = 2 supersymmetry group. The representations of supersymmetry algebras
can be classified for any number of supersymmetries [132]. In four-dimensional N = 2

62



4.3. N = 2 EFFECTIVE ACTIONS

supergravity, the standard field content consists of1

• the gravitational multiplet, consisting of the metric gµν , an SU(2) doublet of spin-
3/2 fields ΨA,A = 1, 2, called gravitini, and a vector A0, the graviphoton,

• nv vector multiplets, which each contain a vector Ai, i = 1, . . . , nv, a doublet of
spinors λiA, the gaugini, and a complex scalar field ti.

• nh hypermultiplets, which contain a doublet of spinors ζα, α = 1, . . . , 2nh, the
hyperini, and four real scalar fields qu, u = 1, . . . , 4nh.

It turns out that the scalars ti and qu form a non-linear sigma model in which they can
be understood as coordinates on a moduli space

M = Mv ×Mh . (4.15)

Here, Mv is a special-Kähler manifold spanned by the complex scalars ti and Mh is
a quaternionic-Kähler manifold of holonomy SU(2) × Sp(2nh). The SU(2) piece is the
mentioned R-symmetry of the theory, so the scalars in the hypermultiplets are charged
under the R-symmetry. We discuss the properties of the scalar field spaces in more detail
in the following two sections.

The Lagrangian of ungauged N = 2 supergravity is well-known, see for instance [92].
The bosonic part we are interested in is

L = −ImNIJ F I
µνF

µν J − ReNIJ F I
µνF

J
ρσε

µνρσ + gī(t, t̄) ∂µt
i∂µt̄

̄ + huv(q) ∂µq
u∂µq

v ,
(4.16)

where the field strengths F I
µν , I = 0, . . . , nv include the graviphoton and their kinetic

matrix NIJ is a function of the nv scalars ti, which we will define in (4.24). In the kinetic
terms of the scalars gī and huv denote the metrics on Mv and Mh, respectively.

Let us now discuss the geometry of the two factors in (4.15) and derive their origin in
SU(3) × SU(3)-structure compactifications. We start with the vector multiplet scalars
on Mv and afterwards turn to Mh.

4.3.2 The vector multiplet sector and special-Kähler manifolds

In the vector multiplet sector gī denotes the metric of the 2nv-dimensional space Mv,
which N = 2 supersymmetry constrains to be a special-Kähler manifold [133,134].

Each special-Kähler manifold is in particular Kähler, i.e. the metric can locally be
expressed as the second derivative of some function of the coordinates called the Kähler
potential Kv, i.e.

gī = ∂i∂̄K
v . (4.17)

Equivalently, Kähler manifolds admit a Kähler two-form which is closed and non-dege-
nerate and locally reads

Kv = − i

2π
∂∂̄Kv . (4.18)

1Additionally, one could dualize scalars in the vector and hypermultiplets to build tensor multiplets.
In non-Abelian theories, these multiplets can become inequivalent. We will not discuss such theories in
the following.
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A special Kähler manifold of dimension nv furthermore admits patchwise an embedding
into a flat symplectic space of dimension 2nv +2, which is parameterized by a symplectic
vector of holomorphic functions V Λ = (XI(t),FI(t)). If we equip the symplectic space
with the standard symplectic metric

Ω =

(
0 1

−1 0

)
, (4.19)

the Kähler potential can be expressed in terms of V Λ via

Kv = − ln i
(
V̄ ΛΩΛΣV Σ

)
= − ln i

(
X̄IFI −XIF̄I

)
. (4.20)

Note that with help of the Kähler potential, we can define a Kähler-covariant derivative
∇i = ∂i + Kv

i , where Kv
i = ∂iK

v.

Furthermore, we see that the Kähler potential is invariant under symplectic rotations
S, where S is an (2nv + 2) × (2nv + 2) matrix that leaves the metric Ω of Sp(nv + 1)
invariant, i.e. S obeys ST ΩS = Ω. In terms of (nv + 1)× (nv + 1) matrices S is given by

S =

(
U Z

W V

)
, (4.21)

where U , V , W and Z obey

UTV −WTZ = V TU − ZTW = 1 ,

UTW = WTU , ZTV = V TZ .
(4.22)

In N = 2 supergravity, these symplectic rotations reflect electric-magnetic duality
transformations of the vector multiplet sector of the Lagrangian. They act on the sym-
plectic vector HΛ ≡ (F I , GI) according to

HΛ → H ′Λ = SΛ
ΣHΣ , (4.23)

where GI ≡ ∂L/∂F I are the field strengths of the dual magnetic gauge bosons, which
only appear on-shell in that they are not part of the Lagrangian (4.16). The matrix of
gauge couplings is also expressed in terms of the holomorphic vectors (XI(t),FI(t)) and
reads

NIJ = F̄IJ + 2 i
ImFIKImFJLXKXL

ImFLKXKXL
, (4.24)

where FIJ = ∂IFJ , and transforms under a symplectic rotation non-linearly, according
to

N → (VN + W ) (U + ZN )−1 . (4.25)

The matrix N has the following properties:

FI = NIJXJ , ∇kFI = N̄IJ∇kX
J . (4.26)

The equations of motion derived from L are invariant under Sp(nv + 1) rotations acting
via (4.23) and (4.25). Due to the symplectic invariance it is a matter of convention which
vector fields are called electric and which are called magnetic. It is customary to denote
the gauge fields which do appear in L as electric and their duals as magnetic.
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Let us now make contact with the effective action of SU(3)× SU(3)-structure com-
pactifications. In Section 4.1 we classified the spectrum of light modes in terms of the
charges QΛ

Λ̃
and (f I , fI). Now we expand the pure spinor Φ+ in terms of the basis vectors

ΣΛ and Σ̃Λ̃ introduced in (4.1), respectively, leading to

Φ+ = V ΛΣΛ = XIωI + FI ω̃
I . (4.27)

The coordinate vector V Λ = (XI ,FI) is a symplectic vector of complex dimension 2nv+2
and depends holomorphically on the nv complex coordinates ti spanning the Kähler
manifold Mv. It turns out that one can always find a symplectic frame in which XI =
(1, ti) and furthermore FI = ∂IF , where F is the holomorphic prepotential, which is
homogeneous of degree two, such that the Kähler potential (3.42) with (3.41) leads to
the standard form of special-Kähler geometry (4.20). Note that the parameter space is
projective because the complex prefactor of Φ+ is pure gauge and has to be modded out.

Before we turn to the hypermultiplet sector, we want to introduce some techniques
from special geometry that will prove useful in the remainder of this thesis. On any special
Kähler manifold of dimension nv one can define the projection operator Π J

I by [66]

Π J
I = 1

2
e−Kv

ΠI bΠ̄
b

K (ImG)−1 KJ = δJ
I + 2eKv

(ImF)IKX̄KXJ = δJ
I + Kv

I XJ , (4.28)

where Kv
I denotes the holomorphic derivative of the Kähler potential Kv given in (4.20)

and Π
j

I is given by

Π
j

I = (Π
j

0 , Π
j

i ) = (−e
j

i X i, e
j

i ) , (4.29)

where e
j

i denotes the vielbein of Mv. From the definition follows

∇iX
J = Π J

i , and ∇iFJ = Π K
i FKJ . (4.30)

Furthermore, Π J
I has the properties

XIΠ J
I = 0 , Π J

I ImFJKX̄K = 0 , Π J
I Π K

J = Π K
I , (4.31)

and therefore is indeed a projection map which projects to the space orthogonal to XI .
From the definition (4.28) we we see that Π J

I fulfils the reality condition

(ImF)−1 LIΠ̄ J
I (ImF)JK = Π L

K . (4.32)

From (4.49) and (4.28) we see that

XINIJ = XIFIJ , Π J
I N̄JK = Π J

I FJK . (4.33)

The projection Π J
I canonically leads to the decompositions

CI =C
(Z)
I + C

(P )
I = −Kv

I XJCJ + Π J
I CJ ,

C̃I =C̃(Z) I + C̃(P ) I = −C̃JKv
JXI + C̃JΠ I

J

(4.34)

for any vectors CI and C̃I . Note that C
(Z)
I and C̃(Z) I each live in a one-dimensional

subspace, while C
(P )
I and C̃(P ) I parameterize the remaining n directions. With (4.34)

one can easily show that (ImF)IJ is of signature (nv, 1) [135]: Using (4.33) we find

C̄I(ImF)IJCJ = C̄(Z) I(ImN )IJC(Z) J − C̄(P ) I(ImN )IJC(P ) J . (4.35)

Since (ImN )IJ is negative definite [136], we conclude that (ImF)IJ is of signature (nv, 1).
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4.3.3 The hypermultiplet sector, quaternionic-Kähler manifolds
and the c-map

In the hypermultiplet sector huv denotes the metric on the 4nh-dimensional space Mh,
which N = 2 supersymmetry constrains to be a quaternionic-Kähler manifold [137,138].
Such manifolds have a holonomy group given by SU(2)×Sp(nh). Equivalently, they admit
a triplet of complex structures Jx, x = 1, 2, 3 which satisfy the quaternionic algebra

JxJy = −δxy1 + εxyzJz . (4.36)

The metric huv is Hermitian with respect to all three complex structures. Correspond-
ingly, a quaternionic-Kähler manifold admits a triplet of hyper-Kähler two-forms Kx

uv =
huw(Jx)w

v which are covariantly closed with respect to the Sp(1) connection ωx, i.e.

∇Kx ≡ dKx + εxyzωy ∧Kz = 0 . (4.37)

In other words, Kx is proportional to the Sp(1) field strength of ωx, thus leading to

Kx = dωx + 1
2
εxyzωy ∧ ωz . (4.38)

One can introduce a set of vielbein one-forms on the quaternionic-Kähler manifold
Mh by UAα = UAα

u dqu that defines the metric huv via

huvdqudqv = UAαεABCαβUBβ , (4.39)

where Cαβ is the Sp(nh) invariant metric. UAα satisfies the reality condition

UAα = εABCαβUBβ = (UAα)∗ . (4.40)

One can also express the triple of two-forms Kx
uv in terms of the vielbein via

Kx = UAα ∧ UBα(σx)AB . (4.41)

Let us now consider isometries on Mh, which are necessary in order to discuss
gaugings in the theory, as we do in Section 4.3.4. Such isometries should respect the
quaternionic-Kähler structure of the manifold. This means that the generating Killing
vector kλ should be tri-holomorphic, i.e. it should preserve the quaternionic-Kähler two-
forms up to SU(2) rotations

Lkλ
Kx = εxyzKyW z

λ , Lkλ
ωx = ∇W x

λ , (4.42)

where W x
λ is an SU(2) compensator associated with kλ and Lk denotes the Lie derivative

with respect to the vector field k, defined on a differential form α by

Lkα = ikdα + d(ikα) . (4.43)

Here, ikα denotes the contraction of the vector k with the differential form α. Note that
Eq. (4.42) tells us that the SU(2) compensator is zero if the Lie derivative of the SU(2)
connection ωx vanishes. With the help of the curvature two-forms Kx one can map such
tri-holomorphic Killing vectors to an SU(2) triplet P x

λ of functions, defined by

2ku
λ Kx

uv = −∇vP
x
λ . (4.44)
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This equation is solved by using the SU(2) connection and the SU(2) compensator

P x
λ = ωx(kλ) + W x

λ . (4.45)

Note that for a vanishing Lie derivative of the connection one-forms ωx, cf. (4.42), the
Killing prepotentials take a simple form in terms of the SU(2) connection ωx [70]:

P x
λ = ωx

uku
λ . (4.46)

Now let us investigate how this quaternionic-Kähler space appears in the low-energy
effective action of SU(3) × SU(3)-structure compactifications. Analogously to Mv, the
space parameterized by Φ− is special Kähler. One can expand Φ− in terms of the basis
vector Σ̃Λ̃ given in (4.1) and finds

Φ− = U Λ̃Σ̃Λ̃ = ZAαA + GAβA . (4.47)

This leads to the symplectic vector U Λ̃ = (ZA,GA) of complex dimension 2nh that is
holomorphic in the coordinates za of this special-Kähler space, which we call Msk in the
following. Analogously to Mv, the Kähler potential can be computed, using (3.42) with
(3.41), to be in the standard form

Kh = − ln i
(
Ū Λ̃ΩΛ̃Σ̃U Σ̃

)
= − ln i

(
Z̄AGA − ZAḠA

)
. (4.48)

Note that one can always find a symplectic frame where ZA = (1, za). Analogously to
(4.24), the period matrix is defined by

MAB = ḠAB + 2 i
(ImG)ACZC(ImG)BDZD

ZE(ImG)EF ZF
, (4.49)

with GAB = ∂A∂BG. It satisfies

GA = MABZB , ∇cGA = M̄AB∇cZ
B . (4.50)

One can define the same projection operators and decompositions for Msk as done in the
last section from (4.28) on for Mv.

In Section 3.2.2 we discussed that the R-R scalar fields together with the four-
dimensional complexified dilaton form a fibration over the space parameterized by Φ−.
After the truncation this corresponds to a fibration over the special-Kähler manifold Msk

of dimension 2nh − 2, forming the space Mh of dimension 4nh. Before the truncation
we saw that the fibration of the ten-dimensional parameter space is described by the
c-map [65, 66]. Due to the consistency of the Kaluza-Klein truncation, this structure
carries over to the moduli space of the truncated theory. Therefore, Mh is the c-map im-
age of Msk and in particular it is special quaternionic-Kähler. As discussed above, Msk

is spanned by the complex coordinates za, a = 1, . . . , nh − 1. The other hypermultiplet
scalars are the dilaton φ, the axion φ̃ which is dual to the four-dimensional tensor field
Bµν and 2nh scalars ξΛ̃ = (ξ̃A, ξA), A = 1, . . . , nh, that arise by expanding the R-R form

fields C ∈ ΛoddT ∗Y in the basis Σ̃Λ̃ = (αA, βA) defined in (4.1) as

C = ξΛ̃Σ̃Λ̃ + AΛΣΛ = ξAαA + ξ̃AβA + AIωI + BI ω̃
I , (4.51)
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where the coefficients AΛ = (AI , BI) are one-forms in four-dimensions and parameterize
the gauge fields in the vector multiplets. Due to their Ramond-Ramond origin the cou-
plings of ξA, ξ̃A are strongly restricted. Furthermore, the dilaton φ and the axion φ̃ have
universal properties that are independent of the chosen compactification manifold. To-
gether these scalars define a G-bundle over Msk, where G is the semidirect product of a
(2nh +1)-dimensional Heisenberg group with R. As a consequence (2nh +2) independent
isometries exist, as we shall discuss further shortly.

In [66] it was observed that there is a specific parametrization of the quaternionic
vielbein UAα (4.39) which turns out to be useful on special quaternionic-Kähler manifolds.
Specifically, one defines the quaternionic vielbein as2

UAα = 1√
2

(
ū ē −v −E

v̄ Ē u e

)
, (4.52)

where the one-forms are defined as

u = i eKh/2+φZA(dξ̃A −MABdξB) ,

v = 1
2
e2φ
[
de−2φ − i(dφ̃ + ξ̃AdξA − ξAdξ̃A)

]
,

E b = − i
2
eφ−Kh/2Π b

A (ImG)−1 AB(dξ̃B −MBCdξC) ,

e b = Π b
A dZA .

(4.53)

In these expressions Π b
A is defined analogously to (4.29) by

Π b
A = (Π b

0 , Π b
a ) = (−e b

a Za, e b
a ) , (4.54)

where e b
a is the vielbein of Msk, i.e. it satisfies gab̄ = e b

a ē c̄

b̄
δbc̄, (a, b = 1, . . . , nv − 1 with

gab̄) being the metric on Msk. By definition, Π b
A has the property Π b

A ZA = 0. Note that
the quaternionic-Kähler geometry is completely determined in terms of the holomorphic
prepotential G of the special Kähler submanifold Msk. Furthermore, it is important to
mention that the parametrization of the vielbein specified by (4.52) and (4.53) singles
out a particular SU(2) frame on Mh. We come back to this issue in Section 5.3.

Due to its specific construction, Mh has (2nh + 2) isometries which are generated by
the following set of Killing vectors [67, 68]

kφ = 1
2

∂

∂φ
− φ̃

∂

∂φ̃
− 1

2
ξA ∂

∂ξA
− 1

2
ξ̃A

∂

∂ξ̃A

,

kφ̃ = −2
∂

∂φ̃
,

kA =
∂

∂ξA
+ ξ̃A

∂

∂φ̃
,

k̃A =
∂

∂ξ̃A

− ξA ∂

∂φ̃
.

(4.55)

2Our notation follows Ref. [63].
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They act transitively on the G-fibre coordinates (φ, φ̃, ξA, ξ̃A) and the subset {kA, k̃A, kφ̃}
spans a Heisenberg algebra which is graded with respect to kφ. The corresponding com-
mutation relations are given by

[kφ, kφ̃] =kφ̃ , [kφ, kA] = 1
2
kA ,

[kφ, k̃
A] =1

2
k̃A , [kA, k̃B] = −δB

Akφ̃ ,
(4.56)

while all other commutators vanish. In the following, we collect the Killing vectors
{kA, k̃A} in a symplectic vector kΛ̃ = (kA, k̃A).

In Section 5.3 we shall also need the explicit form of the Killing prepotentials P x
λ ,

which were defined in (4.44). For special quaternionic-Kähler manifolds it can be checked
that Killing prepotentials take the form (4.46). Finally, using the explicit form of the
vielbein (4.52) given above, one can calculate ωx in terms of the one-forms (4.53) [66]

ω1 = i(ū− u) ,

ω2 = u + ū ,

ω3 = i
2
(v − v̄)− i eKh (

ZA(ImG)ABdZ̄B − Z̄A(ImG)ABdZB
)

.

(4.57)

It is rather surprising that all N = 2 supergravities coming from SU(3) × SU(3)-
structure compactifications admit (2nh + 2) isometries in the hypermultiplet sector. As
we discuss next, these isometries can also be gauged in the low-energy effective action.

4.3.4 Electric and magnetic gaugings in N = 2 supergravity

In the last two sections we discussed the couplings of N = 2 scalars in terms of geometry.
Furthermore, scalar and vector fields can be coupled via the standard gauge principle.
For this we promote a global symmetry of the scalar field space to a local symmetry by
coupling this symmetry to a gauge vector of the theory via a covariant derivative. The
scalar field corresponding to this symmetry in turn is charged under the gauge vector.
The corresponding theory is called gauged supergravity [92].

The symplectic invariance of the Lagrangian under electric-magnetic duality trans-
formations, as discussed in Section 4.3.2, is broken by the charges appearing in the
gauging. The resulting theory crucially depends on which charges (electric or magnetic)
the fermions and scalars carry. If all matter fields carry only electric charges, i.e. are
charged with respect to the gauge fields which are declared electric in the ungauged case,
then the Lagrangian is given by a standard N = 2 gauged supergravity. However, it is
possible that some fraction of the matter fields also carry magnetic charges, as frequently
occurs in string compactifications. In this case it is still possible to symplectically rotate
the vectors to the electric frame such that all the matter fields are electrically charged
i.e. the initial electric and magnetic charges are constrained to be mutually local. How-
ever, as the theory is no longer symplectically covariant the Lagrangian in the electric
frame might not be of the standard supergravity form. In particular, FI is no longer
constrained to be the derivative of a prepotential, or in other words, a holomorphic F
might not exist in the given symplectic frame [105–107]. Recently the formalism of the
embedding tensor has been introduced in [106,107] to discuss both electric and magnetic
charges in the theory. It treats the electric vectors A I

µ and the magnetic vectors BµI on
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the same footing and naturally allows for arbitrary gaugings. Let us now briefly introduce
the formalism, following [106,107].

The N = 2 theory has a group G0 of global isometries on M generated by the Killing
vectors kα̂, α̂ = 1, . . . , dim(G0). The electric and magnetic charges of the N = 2 theory
are collected in the embedding tensor Θ α̂

Λ , whose electric and magnetic components we
denote by Θ α̂

Λ = (Θ α̂
I ,−ΘIα̂), where Λ labels the (2nv +2) electric and magnetic gauge

fields.3 Given the set of global generators kα̂, the embedding tensor selects the gauged
subset

TΛ = Θ α̂
Λ kα̂ = (Θ α̂

I kα̂,−ΘIα̂kα̂) , (4.58)

i.e. it selects the generators of the local gauge group G. The embedding tensor itself is a
spurionic object, which means that it is formally considered to transform as defined by
its index structure (adjoint × fundamental) such that Sp(nv + 1)-covariance is restored
in the Lagrangian. In this way, electric and magnetic gaugings are treated on the same
footing. Choosing a specific value for the embedding tensor then fixes the gauge group
G and breaks the global symmetry G0 to G×H, where H is the maximal commutant of
G. Consistency of the embedding tensor projection onto the local subset requires that
the generators TΛ form a closed subalgebra G of G0. This is ensured by the quadratic
constraint

f γ̂

α̂β̂
Θα̂

MΘβ̂
N + Θα̂

M(kα̂) P
N Θγ̂

P = 0 , (4.59)

where f γ̂

α̂β̂
are the structure constants of the global symmetry group G0. In addition,

supersymmetry imposes a linear constraint

Θα̂
(Λ(kα̂)ΣΞ) = 0 . (4.60)

It is also important to note that the requirement of mutually local charges is expressed
as an additional constraint on the embedding tensor

ΩΛΣΘα̂
ΛΘβ̂

Σ = ΘI[α̂Θ
β̂]

I = 0 , (4.61)

where ΩΛΣ is the inverse Sp(nv + 1) metric.

In principal, the gauge group G that is selected by the embedding tensor can be
Abelian or non-Abelian. In N = 2 supersymmetry any non-Abelian gauge group G
always has a Coulomb branch, where the scalars ti in the adjoint representation have a
vacuum expectation value which breaks G → [U(1)]rank(G). Thus, in general we can go
far out on the Coulomb branch and safely integrate out all massive vector multiplets,
leaving an Abelian theory with charged hypermultiplets at low energies. Furthermore,
only Abelian gaugings appear in generic string compactifications since the special Kähler
manifold Mv in general does not admit any isometries. As we argue in more detail in
the next chapter, we only need to consider charged hypermultiplets there, but not non-
Abelian vector multiplets. Therefore we restrict to Abelian gaugings in the following.

For an Abelian theory, no isometries on Mv are gauged and the non-trivial Killing
vectors – denoted by kλ – act only onMh (see, for instance, [139,140]). This immediately
implies that the constraints (4.59) and (4.60) are trivially satisfied and we only have to

3Here the minus sign in Θ α̂
Λ is introduced such that ΘΛα̂ = ΩΛΣΘ α̂

Λ = (ΘIα̂,Θ α̂
I ) transforms

covariantly under symplectic rotations, where ΩΛΣ is the inverse Sp(nv + 1) metric.
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4.3. N = 2 EFFECTIVE ACTIONS

impose (4.61). The gauge transformation of the scalar fields qu in the hypermultiplets
then takes the form:

δαqu = αΛΘ λ
Λ ku

λ(q) , (4.62)

where ku
λ(q) are the components of the Killing vectors kλ, and αΛ are the transformation

parameters. In the kinetic terms for the scalars qu the ordinary derivative is replaced by
the covariant derivative

∂µq
u → Dµq

u = ∂µq
u − A Λ

µ TΛqu

= ∂µq
u − A I

µ Θ λ
I ku

λ + BµIΘ
I λku

λ ,
(4.63)

while the derivatives of the ti are unchanged. Inserting the replacement (4.63) into the
Lagrangian (4.16) introduces both electric and magnetic vector fields. This upsets the
counting of degrees of freedom and leads to unwanted equations of motions. Therefore,
the Lagrangian has to be carefully augmented by a set of two-form gauge potentials BM

µν

with couplings that keep supersymmetry and gauge invariance intact. As we do not need
these couplings in this thesis, we refer the interested reader to the literature for further
details [106,107,141].

An analysis of the symplectic extension of gauged N = 2 supergravity Lagrangian
in d = 4 including electric and magnetic charges has been carried out in [74–76].4 Due
to the discussion in the next chapter, we are specifically interested in the scalar part of
supersymmetry variations, i.e.

δεΨµA = DµεA − SABγµε
B + . . . ,

δελ
iA = W iABεB + . . . , (4.64)

δεζα = NA
α εA + . . . ,

where the ellipses indicate further terms which vanish in a maximally symmetric ground
state. γµ are Dirac matrices and εA is the SU(2) doublet of spinors parameterizing the
N = 2 supersymmetry transformations.5 SAB is the mass matrix of the two gravitini,
while W iAB and NA

α are related to the mass matrices of the spin-1
2

fermions, cf. for
instance [142]. The symplectic extensions of these expressions in the embedding tensor
formalism are given by are

SAB = 1
2
eKv/2V ΛΘ λ

Λ P x
λ (σx)AB ,

W iAB = ieKv/2gī (∇̄V̄
Λ)Θ λ

Λ P x
λ (σx)AB , (4.65)

NA
α = 2eKv/2V̄ ΛΘ λ

Λ UA
αuk

u
λ .

Let us explain the notation used in equations. (4.65). The matrices (σx)AB and (σx)AB

are found by applying the SU(2) metric εAB (and its inverse) to the standard Pauli
matrices (σx) B

A , x = 1, 2, 3, and are given in Appendix A.

4The case of global N = 2 supersymmetry has been studied in the embedding tensor formalism
in [141].

5Note that the SU(2) R-symmetry acts as the Sp(1) introduced above on the quaternionic-Kähler
manifold.
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Given the supersymmetry variations (4.64) and (4.65), a Ward identity leads to the
general formula for the classical scalar potential V [94, 142]:

V δAB = −12SBCS̄
AC + gīW

iACW ̄
BC + 2NA

α Nα
B , (4.66)

and it has been argued that this expression holds true in the presence of magnetic charges
[70,107].

At the end of this section let us discuss how charges appear in gauged N = 2 su-
pergravities coming from SU(3) × SU(3)-structure compactifications. In order to have
gaugings in the scalar sector, we need isometries on Mv ×Mh. While there is no a-
priori reason for Mv to admit any isometries, we know that Mh is a quaternionic-Kähler
manifold Mh in the image of the c-map and therefore has 2nh + 2 isometries. It is well-
known that the dilaton direction kφ gets loop corrections that break the isometry, i.e. it
is anomalous and therefore is not gauged in SU(3) × SU(3) compactifications (see for
instance [143] for the computation of the one-loop correction). All other Killing vectors
can be gauged in the effective action of such compactifications. The electric and mag-
netic charges for the Killing vectors kA, k̃A and kφ̃ in the effective low-energy effective
action are induced by fluxes, intrinsic torsion classes and non-geometric fluxes, i.e. by
the coefficients in (4.3) and (4.8) (see [34,71,72] and references therein).

By considering the supersymmetry transformation of the two massless gravitini one
can then derive the Killing prepotentials and thereby the gravitino mass matrix [33,34]

SAB =

(
−2e

1
2

K−+φ
∫

Y
〈Φ+, dΦ̄−〉 −e2φ

∫
Y
〈Φ+, F+〉

−e2φ
∫

Y
〈Φ+, F+〉 2e

1
2

K−+φ
∫

Y
〈Φ+, dΦ−〉

)
. (4.67)

By comparing this result with (4.65) and the Killing prepotentials for the vectors in
(4.55) we can read off the corresponding embedding tensor as

Θ Λ̃
Λ =

(
eAI pI

A

mA
I qAI

)
, Θ φ̃

Λ = (fI , f I) . (4.68)

In particular, the doubly symplectic matrix QΛ̃
Λ = Θ Λ̃

Λ describes gaugings of the Killing
vectors kΛ̃ = (kA, k̃A) and the R-R flux fΛ gaugings of the Killing vector kφ̃ under the

gauge fields AΛ = (AI , BI) coming from the R-R sector (see (4.51)). Thus, we identify
the embedding tensor Θ λ

Λ with

Θ λ
Λ = (QΛ

Λ̃
, fΛ) (4.69)

for the 2nh + 1 Killing vectors kλ = (kΛ̃, kφ̃). Note that the quadratic constraints of Q
given in (4.7) correspond to the locality constraint (4.61) and the requirement that the
gauged Killing vectors with the algebra (4.56) commute [72,144].

We see that the gaugings in N = 2 supergravity are completely determined by the
chosen consistent truncation in the SU(3)×SU(3)-structure compactification. Moreover,
all Killing vectors in the Heisenberg algebra of special quaternionic-Kähler manifolds can
be gauged. In Section 5.3 we shall use these gaugings to construct N = 2 supergravities
with N = 1 supersymmetric vacua.
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Chapter 5

N = 1 vacua of N = 2 supergravity
and type II compactifications

Now let us discuss the appearance and properties of N = 1 vacua in gauged N = 2
supergravities and apply this discussion to SU(3) × SU(3)-structure compactifications,
based on [108, 109]. In such N = 1 vacua, N = 2 supersymmetry is spontaneously bro-
ken to N = 1 by a super-Higgs mechanism that gives mass to one of the gravitini. This
leads effectively to an N = 1 supergravity with an additional, massive N = 1 gravitino
multiplet, which subsequently can be integrated out. In order to show the existence of
N = 1 vacua, we first review the no-go theorem of [93,94] and then show how to circum-
vent it by including magnetic charge. Afterwards, we determine the properties of the
corresponding N = 1 vacuum by integrating out the massive gravitino multiplet. This
leads to an N = 1 effective theory whose couplings we determine in terms of the parental
N = 2 theory. Furthermore, we focus on the class of N = 2 supergravities coming from
SU(3)×SU(3)-structure compactifications and construct the general solution for the ap-
pearance of N = 1 vacua and determine their couplings. Finally, we qualitatively discuss
the lift to flux configurations in ten-dimensional SU(3) × SU(3)-structure backgrounds
and comment on relevant quantum effects in the corresponding string theory.

5.1 Spontaneous N = 2 → N = 1 supersymmetry

breaking

Spontaneous N = 2 → N = 1 supersymmetry breaking in a Minkowski or AdS ground
state requires that for one linear combination of the two spinors εA,A = 1, 2, parameter-
izing the supersymmetry transformations, say εA1 , the variations of the fermions given in
(4.64) vanish, i.e. δε1λ

iA = δε1ζα = δε1ΨµA = 0 (see e.g. [110, 111] for a review). Further-
more, in a supersymmetric Minkowski or AdS background the supersymmetry parameter
obeys the Killing spinor equation1

Dµε1A = 1
2
µγµε

∗
1A . (5.1)

1Note that the index of ε∗1A is not lowered with εAB but ε∗1A is related to εA
1 just by complex

conjugation. |µ| is related to the cosmological constant via Λ = −3|µ|2, while the phase of µ is unphysical.
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The requirement of a maximally symmetric ground state ensures that the terms which
are indicated by the ellipses in (4.64) automatically vanish, so that one is left with

WiAB εB1 = 0 = NαA εA1 , and SAB εB1 = 1
2
µε∗1A . (5.2)

Here we have chosen to write the parameter of the unbroken N = 1 supersymmetry ε1 as
a vector εA1 in the space of N = 2 parameters. For the second, broken generator, which
we denote by εA2 , we should have

WiAB εB2 6= 0 or NαA εA2 6= 0 , and SAB εB2 6= 1
2
µ′ε∗2A (5.3)

for any µ′ that obeys |µ′| = |µ|, i.e. only differs from µ by an unphysical phase.

Before we attempt to solve (5.2) and (5.3) let us assemble a few more facts. A
necessary condition for the existence of an N = 1 ground state is that the two eigenvalues
mΨ1 and mΨ2 of the gravitino mass matrix SAB are non-degenerate, i.e. mΨ1 6= mΨ2 . In
a Minkowski ground state one also needs mΨ1 = 0 or, more generally, one of the two
gravitini has to become massive, while the second one stays massless, cf. (5.2) and (5.3).
Furthermore, the unbroken N = 1 supersymmetry implies that the massive gravitino
has to be a member of an entire N = 1 massive spin-3/2 multiplet, which has the spin
content s = (3/2, 1, 1, 1/2). This means that two vectors, say A0

µ, A
1
µ and a spin-1/2

fermion χ have to become massive, in addition to the gravitino. Therefore, the would-be
Goldstone fermion (the Goldstino), which gets eaten by the gravitino, is accompanied by
two would-be Goldstone bosons (the sGoldstinos) [145]. The field content of the massive
spin-3/2 multiplet in terms of massless N = 1 multiplets is then one spin-3/2 multiplet,
one vector multiplet and one chiral (Goldstino) multiplet. Naively, one might think that
both the N = 1 vector and chiral multiplet come from N = 2 vector multiplets in
a non-Abelian theory, without the need for additional charged hypermultiplet scalars.
However, vector multiplet scalars are singlets under the SU(2) R-symmetry of N = 2
supergravity and therefore cannot give rise to a mass splitting between the gravitini [146].
In an Abelian theory, on the other hand, the sGoldstinos have to be ‘recruited’ out of a
charged N = 2 hypermultiplet, while the need for two gauge bosons implies that at least
one N = 2 vector multiplet has to be part of the spectrum. Thus, the minimal N = 2
spectrum which allows for the possibility of a spontaneous breaking to N = 1 consists of
the N = 2 supergravity multiplet, one hypermultiplet and one vector multiplet.

In geometric terms, the presence of two sGoldstinos in the hypermultiplet sector
means that Mh has to admit two commuting isometries, say ku

1 , ku
2 , and that these

isometries have to be gauged [99]. The definition (4.44) then implies that we need to
have two non-zero Killing prepotentials P x

1 , P x
2 in the ground state. Furthermore, these

prepotentials must not be proportional to each other because otherwise we could take
linear combinations of ku

1 and ku
2 such that one combination has vanishing prepotentials.

However, we can use the local SU(2) invariance of the hypermultiplet sector to rotate
into a convenient SU(2)-frame where P x

1,2 both lie entirely in the x = 1, 2-plane. Thus,
without loss of generality we can arrange

P 3
1 = P 3

2 = 0 = ∂uP
3
1 = ∂uP

3
2 . (5.4)

From (4.65) we learn that in such a frame both SAB and W iAB are diagonal in SU(2)
space and hence one can further choose the parameter of the unbroken N = 1 generator
to be ε1 =

(
ε
0

)
or ε1 =

(
0
ε

)
. This corresponds to the choice of Ψµ 1 or Ψµ 2 as the massless
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N = 1 gravitino.2 In Section 5.1.2 we verify that two gauged Killing vectors with non-
aligned Killing prepotentials are necessary for partial supersymmetry breaking to appear
and also discuss the case of more than two gauged Killing vectors.

5.1.1 The electric no-go theorem

After this initial discussion of the necessary ingredients, let us now discuss the obstruc-
tions to spontaneous N = 2 to N = 1 supersymmetry breaking. Using the superconfor-
mal tensor calculus, Cecotti et al. showed that an N = 2 gauged supergravity with only
electric charges cannot have an N = 1 Minkowski ground state [93, 94]. More precisely,
it was shown that in this case the gravitino mass matrix is proportional to the unit ma-
trix and hence the masses are degenerate. This implies that the ground state either has
the full N = 2 supersymmetry or none at all, ruling out the possibility of spontaneous
partial supersymmetry breaking. We shall now review this no-go theorem for purely
electric gaugings with the help of the embedding tensor formalism, without using super-
conformal tensor calculus. It turns out that the no-go theorem follows from the gravitino
and gaugino variations alone. The hyperino equation gives additional constraints on the
hypermultiplet sector, and we postpone its discussion to Section 5.1.3.

Assume that we are at a point XI
0 in the vector multiplet moduli space and at a point

qu
0 in the quaternionic-Kähler manifold at which supersymmetry is broken to N = 1 and

the conditions (5.2) hold. For simplicity, we shall drop the subscript and simply denote
this point by XI and qu. The gravitino equation in (5.2) for electric gaugings is given by

SAB εB1 = 1
2
eKv/2XIΘ λ

I P x
λ σx

ABε
B
1 = 1

2
µε∗1A . (5.5)

The (complex conjugate) of the gaugino variation in (5.2) leads to

WiAB εB1 = i eKv/2(∇iX
I)Θ λ

I P x
λ σx

ABε
B
1

= i eKv/2(∂iX
I)Θ λ

I P x
λ σx

ABε
B
1 + i Kv

i µε∗1A = 0 ,
(5.6)

where in the second line we have used ∇iX
I = ∂iX

I + Kv
i XI and inserted the gravitino

equation (5.5). Note that in total (5.5) and (5.6) give 2(nv + 1) equations to solve. Let
us now specialize to a frame where a prepotential exists. We can then express XI in
terms of special coordinates as XI = (1, ti) and we find that the gaugino equation (5.6)
simplifies to

Θ λ
i P x

λ σx
ABε

B
1 = −e−Kv/2µKv

i ε∗1A . (5.7)

Inserting this back into the gravitino equation (5.5) yields

Θ λ
0 P x

λ σx
ABε

B
1 = e−Kv/2µ (1 + tiKv

i ) ε∗1A . (5.8)

From the definition of the Kähler potential (4.20) one derives the identity XIKv
I = −1,

which in special coordinates XI = (1, ti) reads 1 + tiKv
i = −Kv

0 . This further simplifies
(5.8) to give

Θ λ
0 P x

λ σx
ABε

B
1 = −e−Kv/2µKv

0 ε∗1A , (5.9)

2Note that all our expressions can also be written in an SU(2)-covariant way by replacing the “3”-
direction with εA

1 σx
ABεB

2 and the direction spanned by (P 1 − iP 2) with εA
1 σx

ABεB
1 . So, for instance, (5.4)

then reads εA
1 σx

ABεB
2 P x

1,2 = εA
1 σx

ABεB
2 dP x

1,2 = 0.
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which allows us to combine (5.7) and (5.9) into the 2(nv + 1) equations

Θ λ
I P x

λ σx
AB εB1 = −e−Kv/2µKv

I ε∗1A . (5.10)

To summarize, by using the existence of the special coordinates XI = (1, ti) we have
been able to rewrite the original 2(nv + 1) equations arising from the gravitino (5.5) and
gaugino (5.6) variations in a compact manner (5.10).

If we now consider a Minkowski vacuum, i.e. setting µ = 0, the expression σx
ABε

B
1 is

the only complex quantity appearing in (5.10) and the left-hand side of (5.10) simply
describes an su(2) variation of εA1 . For µ = 0, the su(2) variation of the doublet has to
vanish, which only happens for the trivial variation, i.e.

Θ λ
I P x

λ = 0 . (5.11)

If we then insert (5.11) back into the matrices appearing in the supersymmetry transfor-
mations (4.65), we see that SAB (and WiAB) identically vanish, and thus partial super-
symmetry breaking is not possible, i.e. we have recovered the original no-go theorem [93].
The important step in this derivation was using the existence of a prepotential and the
special coordinates XI = (1, ti) to find nv independent equations in (5.7). Therefore, this
no-go theorem might be circumvented by using a symplectic frame in which no prepoten-
tial exists at the N = 1 point. It turns out that this is possible, and the first examples of
spontaneous partial supersymmetry breaking used precisely such frames where the pre-
potential does not exist [97–99]. On the other hand, such symplectic frames are related
to the standard one by a symplectic transformation which just rotates electric and mag-
netic charges into each other. Therefore, in the following we still assume the existence of
a prepotential but generalize our discussion by allowing for both electric and magnetic
charges. This covers all possible gauged supergravities and in particular the examples
mentioned above. In the next section, we show that this generalization indeed gives rise
to the possibility of spontaneous partial supersymmetry breaking.

5.1.2 A way out - magnetic charges

We shall now repeat the discussion of Section 5.1.1 with magnetic gaugings included.
We will also discuss partial supersymmetry breaking to both Minkowski and AdS vacua,
i.e. we keep µ nonzero in (5.2). First, we note that the condition which comes from the
vanishing of the gaugino variation (5.6), now with electric and magnetic gaugings, gives
rise to

eKv/2(∂iX
IΘ λ

I − ∂iFIΘ
Iλ)P x

λ σx
ABε

B
1 + Kv

i µε∗1A = 0 , (5.12)

where the second term in the brackets is due to the presence of magnetic charges ΘIλ.
Contracting (5.12) with ti and adding it to 2SABε

B
1 = µε∗1A we arrive at

e−Kv/2µ(1 + tiKv
i )ε∗1A = (XIΘ λ

I −FIΘ
Iλ)P x

λ σx
ABε

B
1 − ti(Θ λ

i −FiJΘJλ)P x
λ σx

ABε
B
1

= (Θ λ
0 −F0JΘJλ)P x

λ σx
ABε

B
1 .

(5.13)
Using again 1 + tiKv

i = −Kv
0 in (5.13) and combining it with (5.12) yields 2(nv + 1)

equations, replacing the conditions (5.10) of the previous section:

(Θ λ
I −FIJΘJλ)P x

λ σx
ABε

B
1 = −e−Kv/2µKv

I ε∗1A . (5.14)
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These equations give conditions on the embedding tensor and on the prepotential. How-
ever, in order to ensure that the second supersymmetry is broken the conditions (5.14)
should not simultaneously hold for the second supersymmetry generator

εA2 = (εABε
B
1 )∗ . (5.15)

Inserting (5.15) into (5.14), we arrive at the additional condition

(Θ λ
I − F̄IJΘJλ)P x

λ σx
ABε

B
1 6= e−Kv/2µ̄′K̄v

I ε∗1A for some I , (5.16)

for any µ′ that obeys |µ′| = |µ|.

Minkowski vacua

Let us proceed by first analyzing Minkowski vacua (µ = 0). For this case (5.14) and
(5.16) simplify to

(Θ λ
I −FIJΘJλ) P x

λ σx
ABε

B
1 = 0 for all I , (5.17a)

(Θ λ
I − F̄IJΘJλ) P x

λ σx
ABε

B
1 6= 0 for some I . (5.17b)

The crucial point is that the existence of an N = 1 vacuum requires that there is a set of
charges for which (5.17a) vanishes while (5.17b) does not. If (5.17b) were also to vanish
for all I, then the vacuum would preserve the full N = 2 supersymmetry.3 On the other
hand, for an N = 1 vacuum it is sufficient to find that for some I (5.17b) does not vanish.
Let us also reiterate that (5.17a) and (5.17b) do not have to hold over all of field space
but only at the N = 1 point. As N = 1 supersymmetry is preserved, one can show that
this point is a minimum of the potential, see [108].

Before solving (5.17) let us first recall that we must have two commuting isometries
k1 and k2 on Mh, as discussed at the beginning of Section 5.1, and that at the N = 1
point the corresponding Killing prepotentials P x

1 and P x
2 are both non-vanishing and not

proportional to each other. Consider (5.17) with just one gauged isometry, say k1. In
this case (5.17a) factorizes into two parts, i.e. either (Θ 1

I − FIJΘJ1) or P x
1 σx

ABε
B
1 must

vanish. However, from (5.17b) we see that both of these expressions have to be non-
zero. Therefore, for one gauged isometry we can only have N = 2 or N = 0. We shall
first study the case with two gauged isometries and discuss the case with more gauged
isometries later. Recall that we choose the SU(2) frame where (5.4) holds. Furthermore,
we can make use of the complex combination

P±
1,2 = P 1

1,2 ± i P 2
1,2 . (5.18)

We will now construct an embedding tensor Θ1,2
Λ such that in this SU(2) frame the

supersymmetry generated by εA1 = (ε1
1, 0) is unbroken. Using (5.18), (5.17) becomes

P−
1 (Θ 1

I −FIJΘJ1) + P−
2 (Θ 2

I −FIJΘJ2) = 0 for all I , (5.19a)

P−
1 (Θ 1

I − F̄IJΘJ1) + P−
2 (Θ 2

I − F̄IJΘJ2) 6= 0 for some I . (5.19b)

3For the subset of I for which (5.17b) does also vanish, we can add and subtract the equations (5.17a)
and (5.17b) such that σx

ABεB1 is the only complex quantity in the resulting equations. Analogously to
the discussion above (5.11), this then leads to (Θ λ

I − FIJΘJλ)P x
λ = 0. If this is the case for all I, we

have SAB = 0 and thus an N = 2 vacuum.
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Applying the elementary identity

Im(FIJLJ)−FIJ Im LJ = (ImF)IJ L̄J , (5.20)

which holds for any complex vector LI , we can solve (5.19a) in terms of an arbitrary
complex vector CI by choosing

Θ 1
I =− Im(P+

2 FIJCJ) , ΘI1 = − Im(P+
2 CI) ,

Θ 2
I = Im(P+

1 FIJCJ) , ΘI2 = Im(P+
1 CI) ,

(5.21)

where the Killing prepotentials and FIJ are evaluated at the local N = 1 minimum.
Note that since P x

1 and P x
2 are not aligned, the expression (5.19b) cannot vanish for any

non-zero CI .

We also need to enforce the mutual locality constraint (4.61), which for the case at
hand reads

ΘI1Θ 2
I −ΘI2Θ 1

I = 0 . (5.22)

If we now insert the solutions (5.21) into this constraint, we find a condition on the
coefficients CI :

C̄I(ImF)IJCJ = 0 . (5.23)

In deriving this we have used that Im(P−
1 P+

2 ) 6= 0, which holds because the prepotentials
P x

1 and P x
2 are not aligned. Therefore, we have found that CI has to be null with respect

to (ImF)IJ . Since (ImF)IJ is of signature (nv, 1), as we have shown in (4.35), this
constraint can be easily satisfied. Therefore, we have found that breaking N = 2 to
N = 1 supersymmetry is possible.

We can perform a symplectic rotation S given by (4.21) to transform the charge
vector ΘΛ1,2 = (ΘI1,2, Θ 1,2

I ) such that we only have electric charges, in other words ΘI 1,2

vanishes in the rotated frame. We see from (5.21) that then also the symplectic vector(
CI

FIJCJ

)
=

P−1
Im(P+

1 P−2 )

(
ΘI1

Θ 1
I

)
+

P−2
Im(P+

1 P−2 )

(
ΘI2

Θ 2
I

)
(5.24)

has to become purely electric under S, i.e.

(U I
J + ZIKFKJ)CJ = 0 , (5.25)

and thus the matrix U I
J + ZIKFKJ is not invertible. As discussed in [105], this precisely

means that we transform into a symplectic frame where no prepotential exists at the
N = 1 point, as demanded by the no-go theorem we reviewed in Section 5.1.1.

Let us now consider the case with n gauged commuting isometries. We can always go
to a new basis of Killing vectors kλ where there are only three Killing vectors that have
P x

λ 6= 0 at the N = 1 point. Imposing (5.17a) then tells us that at least one combination
of the P x has to vanish and, therefore, there are effectively only two Killing vectors with
non-vanishing P x

λ at the N = 1 point. We can identify these two Killing vectors with
those used above to construct the N = 1 solution. The other Killing vectors do not play
a role in the supersymmetry breaking, but could give rise to additional masses as the
derivatives of their P x

λ ’s could be non-zero, as we discuss in Section (5.2).

The above result is quite surprising. By appropriately choosing the embedding tensor,
the conditions for partial N = 1 supersymmetry breaking arising from the gravitino and
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the gaugino variations can be fulfilled for any point on any special Kähler manifold Mv

and for any quaternionic-Kähler manifold Mh that admits two commuting isometries
with Killing prepotential P x

1 and P x
2 that are not proportional to each other at the

N = 1 point. Of course, we still have to satisfy the non-trivial condition NαAεA1 = 0 of
(5.2). We shall turn to this issue in Section 5.1.3 and finally show in Section (5.3) that
it can be solved for any special quaternionic-Kähler manifold.

Before we consider the analysis of AdS vacua, let us discuss a simple example given by
the four-dimensional quaternionic-Kähler manifoldMh = SO(1, 4)/SO(4) with arbitrary
Mv. Mh is parameterized by the quaternionic coordinates (q0, q1, q2, q3) and admits the
commuting Killing vectors kλ = ∂

∂qλ for λ = 1, 2, 3. The Killing prepotentials are given

by [97,98]
P x

λ = 1
q0 δ

x
λ , (5.26)

which, when inserted into our solution for the embedding tensor components (5.21), yield

Θ 1
I =− Re(FIJCJ) , ΘI1 = −Re CI ,

Θ 2
I = Im(FIJCJ) , ΘI2 = Im CI .

(5.27)

In this case, it can easily be shown that the hyperino variation NαAεA1 = 0 is automatically
satisfied and we recover the N = 1 vacuum given in [97]. However, the example in [97]
was for a specific choice of Mv, whereas we have just shown that partial supersymmetry
breaking is possible for arbitrary Mv.

AdS vacua

Let us now consider partial supersymmetry breaking in an AdS vacuum, i.e. for µ 6= 0.
We again require that there are two commuting Killing vectors with non-aligned Killing
prepotentials and choose an SU(2) frame where P x

1 and P x
2 are in the x = 1, 2 plane. We

shall also make use of the identity

Kv
I = 2eKv

(ImF)IJX̄J , (5.28)

which follows from the definition of the Kähler potential (4.20). We then find that the
gaugino conditions (5.14) simplify and, as a consequence, the first condition for partial
supersymmetry breaking is4

P−
1 (Θ 1

I −FIJΘJ1) + P−
2 (Θ 2

I −FIJΘJ2) = −2eKv/2µ(ImF)IJX̄J . (5.29)

This is just the Minkowski condition (5.19a) with an additional inhomogeneity propor-
tional to µ. If we now again make use of the identity (5.20), the solution to (5.29) can
be obtained analogously to the Minkowski case (5.21)

Θ 1
I =− Im(FIJ(P+

2 CJ
AdS + eKv/2 µ̄

P+
1

XJ)) ,

ΘI1 =− Im(P+
2 CI

AdS + eKv/2 µ̄

P+
1

XI)) ,

Θ 2
I = Im(FIJ(P+

1 CJ
AdS − eKv/2 µ̄

P+
2

XJ)) ,

ΘI2 = Im(P+
1 CI

AdS − eKv/2 µ̄

P+
2

XI) ,

(5.30)

4The second condition similarly follows from (5.16).
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where again CI
AdS is an arbitrary vector. The mutual locality constraint (5.23) now reads

C̄I
AdS(ImF)IJCJ

AdS + |µ|2
2|P1|2|P2|2 = −2

Re(P−1 P+
2 )

Im(P−1 P+
2 )

eKv/2 Im
(

µ̄

P+
1 P+

2

C̄I
AdS(ImF)IJXJ

)
.

(5.31)
For instance, if we choose the phase of CI

AdS appropriately, the right-hand side of this
constraint vanishes and we end up with

C̄I
AdS(ImF)IJCJ

AdS = − |µ|2
2|P1|2|P2|2 , (5.32)

which tells us that C̄I
AdS is timelike with respect to (ImF)IJ . Once again, as (ImF)IJ

is of signature (nv, 1), cf. discussion in (4.35), this condition is easily satisfied. It is
straightforward to check that the second condition (5.16) is automatically satisfied and
we find that the breaking from N = 2 to N = 1 is possible for any solution in (5.30)
with non-zero CI

AdS obeying (5.32). Similarly to the Minkowski case, the discussion for
n gauged commuting isometries always reduces to the above, i.e. to just two gauged
isometries with non-vanishing prepotentials, while the other gauged isometries can only
induce mass terms at the N = 1 point.

This concludes our analysis of the gravitino and gaugino variations. We found that in
both Minkowski and AdS spacetimes partial supersymmetry breaking does not constrain
the special-Kähler geometry, but essentially only imposes a condition on the structure of
the embedding tensor. In other words, this is a constraint on the choice of gauge vectors.
In addition, two commuting isometries have to exist on the scalar field space Mh. This
imposes additional constraints in the hypermultiplet sector, to which we now turn.

5.1.3 The hyperino equation

The solution of the hyperino equation is more model dependent. We already stated
that the quaternionic-Kähler manifold Mh has to admit two commuting isometries with
Killing prepotential P x

1 and P x
2 that are not proportional to each other at the N = 1

point. In addition, the N = 1 hyperino supersymmetry conditions

NαA εA1 = Nα1 = 0 , NαA εA2 = Nα2 6= 0 (5.33)

have to be satisfied. Before we continue, let us rewrite (5.33) in a more convenient form.
The insertion of (4.65) into (5.33) and subsequent complex conjugation implies

ku U2
αu = 0 , ku U1

αu 6= 0 , (5.34)

where we have defined

ku = V Λ
(
Θ 1

Λ ku
1 + Θ 2

Λ ku
2

)
. (5.35)

By contracting the decomposition [142]

UAαuUBα
v = − i

2
Kx

uvσ
xAB − 1

2
huvε

AB , (5.36)

with kv and using the explicit form of the Pauli matrices (A.1) we see that (5.34) implies

ku
(
J1 v

u − i J2 v
u

)
= 0 , kuJ3 v

u = i kv . (5.37)
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Note that these two conditions automatically satisfy both conditions in (5.34). The
second condition of (5.37) simply states that k is holomorphic with respect to the complex
structure J3. Furthermore, using the relation between the three J ’s given in (4.36), the
first equation in (5.37) follows from the second one. For our subsequent analysis it is
convenient to define a new pair of Killing vectors ku

1,2 by using the real and imaginary
parts of the ku defined in (5.35), such that the following holds5

J3 v
uku

1 = −kv
2 , J3 v

uku
2 = kv

1 . (5.38)

Note that this is nothing more than a change of basis in the space spanned by the two
Killing vectors. The coefficients in this change of basis do not depend on the coordinates
of Mh, as the embedding tensor components are constant, but only on the value of V Λ.
As the related Killing prepotentials P x

1,2 will also not be proportional to each other, we
can equally use the new Killing vectors to construct a partial supersymmetry breaking
solution, instead of the original Killing vectors k1,2 appearing in (4.63).

The conditions (5.37), or equivalently (5.38), also constrain the Killing prepotentials.
Written in terms of the associated Kähler two-forms the first condition of (5.37) reads

ku
1K1

uv = −ku
2K2

uv , ku
1K2

uv = ku
2K1

uv , (5.39)

which, together with the definition of the prepotentials (4.44), implies

P 1
1 = −P 2

2 , P 2
1 = P 1

2 . (5.40)

This in turn simplifies our embedding tensor solutions (5.21), which after a redefinition
of CI read

Θ 1
I = Re

(
FIJ CJ

)
, ΘI1 = Re CI ,

Θ 2
I = Im

(
FIJ CJ

)
, ΘI2 = Im CI ,

(5.41)

and, similarly, the AdS solutions (5.30) become

Θ 1
I = Re

(
FIJ (CJ

AdS − i eKv/2 µ̄

P+
1

XJ)
)

,

ΘI1 = Re
(
CI

AdS − i eKv/2 µ̄

P+
1

XI
)

,

Θ 2
I = Im

(
FIJ (CJ

AdS + i eKv/2 µ̄

P+
1

XJ)
)

,

ΘI2 = Im
(
CI

AdS + i eKv/2 µ̄

P+
1

XI
)

.

(5.42)

The hyperino conditions (5.38), or equivalently (5.33), are difficult to solve in general.
In Section 5.3 we will show that for special quaternionic-Kähler manifolds the condition
(5.33) together with all other constraints can be fulfilled. In the following, however, we
do not confine our analysis to this class of manifolds but instead only assume that an
N = 1 solution exists, i.e. we assume that equations (5.38), (5.41) and (5.42) are satisfied
without specifying a particular explicit solution.

5In order to keep the notation simple we shall use the same letter k to denote the original Killing
vectors, as well as the redefined ones. The same holds for the respective Killing prepotentials P x.

81



CHAPTER 5. N = 1 VACUA OF N = 2 SUPERGRAVITY AND TYPE II COMPACTIFICATIONS

5.1.4 Massive, light and massless scalars

The Minkowski and AdS ground states described above are local N = 1 minimum in
N = 2 field space i.e. the N = 2 supersymmetry variations were solved for an N = 1
vacuum which can be a point in each of Mh and Mv or a higher-dimensional vacuum
manifold. In the latter case there are exactly flat directions (moduli) of the minimum
along which N = 1 supersymmetry is preserved. In addition, there can be light scalars
in the spectrum (i.e. with masses much smaller than m3/2) with couplings that either
preserve N = 1 supersymmetry or spontaneously break it at a scale beneath m3/2. This
breaking is negligible at the scale m3/2 and therefore we also include all light scalar fields
in the definition of the N = 1 field space. As we will see in Sections 5.2.3 and 5.2.4 the
light fields contribute to the superpotential and D-terms in the effective action and any
spontaneous N = 1 supersymmetry breaking will be captured by these couplings. In the
following we denote the scalars of the N = 1 field space by t̂ and q̂, where there is natural
split into fields descending from the N = 2 vector and hypermultiplets, respectively.

Let us now give a more specific description of the distinction between scalars with
masses of O(m3/2) and massless (or light) scalar fields. The latter are the deformations
which preserve the N = 1 supersymmetry conditions (5.2). Equivalently, we can say that
(5.37) and (5.41) or (5.42) are preserved i.e. the (constant) embedding tensor is still given
by (5.41) or (5.42) across the N = 1 field space. On the other hand, any deformation
that violates the N = 1 supersymmetry conditions (5.2) should have a mass of O(m3/2).
Consistency of the low-energy effective theory implies that all fields with mass of O(m3/2)
should be integrated-out along with the massive gravitino.

As an example, let us consider the Minkowski solution (5.41) at a point t = t0 and
determine the deformations t = t0 + δt which preserve (5.41). This implies

FIJkC
Jδtk = 0 , (5.43)

which, for generic prepotential F , gives nv+1 homogeneous equations for nv deformation
parameters. Therefore all nv scalars in the vector multiplets are generically stabilized
with masses of O(m3/2) and only for specific prepotentials an N = 1 moduli space can
occur for the vector scalars. A corresponding condition arises for the scalars of Mh from
(5.33) or (5.37) which, however, cannot be stated as succinctly as (5.43).

5.2 The low energy effective N = 1 theory

Let us now derive the low-energy effective N = 1 theory that is valid below the scale of
supersymmetry breaking set by m3/2. This derivation is based on [109]. We will begin by
outlining the procedure employed and briefly summarizing the results which we obtain.

In the previous section we discussed the properties of an N = 2 supergravity that
admits N = 1 Minkowski or AdS backgrounds. We expect the following features should
appear in general. An N = 1 massive spin-3/2 multiplet with spins s = (3/2, 1, 1, 1/2)
and mass m3/2 is generated along with a set of massive N = 1 chiral- and vector mul-
tiplets, whose masses are also of O(m3/2). All of these multiplets have to be integrated
out to obtain the N = 1 low-energy effective action.6 At the two-derivative level this is

6If the N = 2 theory has a supersymmetric mass scale above m3/2 then all multiplets at that scale
are also integrated out.
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achieved by using the equations of motion of the massive fields to first non-trivial order
in p/m3/2, where p � m3/2 is the characteristic momentum. The low-energy effective
theory should then contain the leftover light N = 1 multiplets, i.e. the gravity multiplet,
n′v vector multiplets and nc chiral multiplets. These multiplets either have a mass below
m3/2 or are exactly massless. The case when all the multiplets are massless arises when
the N = 2 supergravity is gauged with respect to just the two Killing vectors that are
responsible for the partial supersymmetry breaking. If, on the other hand, the N = 2
supergravity is gauged with respect to additional Killing vectors, then some of the N = 1
multiplets can have a light mass or, more generally, contribute to the N = 1 effective
potential. However, the derivation of the low-energy effective action is insensitive to
which additional gaugings appear. Whether or not such gaugings preserve the N = 1
supersymmetry or spontaneously break it only becomes clear on examining the ground
states of the effective potential.

Integrating out all massive fields of order of m3/2 in the N = 2 gauged supergravity
should naturally lead to an N = 1 effective Lagrangian. Its bosonic matter Lagrangian
therefore has a standard form, given by [147,148]

L̂ = − K
Â ˆ̄B

DµM
ÂDµM̄

ˆ̄B − 1
2
fÎĴ F Î−

µν F µν Ĵ− − 1
2
f̄ÎĴ F Î+

µν F Ĵ+
ρσ − V , (5.44)

where

V = VF + VD = eK
(
KÂ ˆ̄BDÂWD ˆ̄B

W̄ − 3|W|2
)

+ 1
2
(Re f)ÎĴD

ÎDĴ . (5.45)

We will use hatted indices to label the fields of theN = 1 effective theory. M Â = M Â(t̂, q̂)
collectively denote all complex scalars in the theory, i.e. those descending from both the
vector and hypermultiplet sectors in the original N = 2 theory. K

Â ˆ̄B
is a Kähler metric

satisfying K
Â ˆ̄B

= ∂Â∂̄ ˆ̄B
K(M, M̄). F Î±

µν denote the self-dual and anti-self-dual N = 1
gauge field strengths and fÎĴ is the holomorphic gauge kinetic function. The scalar
potential V is determined in terms of the holomorphic superpotential W , its Kähler-
covariant derivative DÂW = ∂ÂW + (∂ÂK)W and the D-terms DÎ , defined by

DÎ = −2 (Re f)−1ÎĴ PĴ , (5.46)

where PĴ is the N = 1 Killing prepotential.

The objective of this section is to compute the coupling functions K,W , f and P of the
effective N = 1 theory in terms of N = 2 ‘input data’. N = 1 supersymmetry constrains
W and f to be holomorphic while the metric K

Â ˆ̄B
has to be Kähler. Showing that the

low-energy effective theory has these properties serves as an important consistency check
of our results.

Before we turn to the derivation of these couplings let us briefly anticipate the results.
One interesting aspect relates to theN = 1 scalar manifold that descends from theN = 2
product space M = Mh ×Mv, where Mv is already a Kähler manifold but Mh is not.
In Section 5.2.1 we will show that integrating out the two heavy gauge bosons in the
gravitino multiplet amounts to taking a quotient of Mh with respect to the two gauged
isometries k1, k2 discussed in the previous section. This quotient

M̂h = Mh/R2 (5.47)
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has co-dimension two, corresponding to the fact that the two Goldstone bosons giving
mass to the two gauge bosons have been removed. We shall see that the quotient M̂h is
indeed Kähler, which establishes the consistency with N = 1 supersymmetry. In order
to obtain the final N = 1 scalar field space, we also have to integrate out all additional
scalars that gained a mass of O(m3/2). However, these scalars are not Goldstone bosons

and thus integrating them out corresponds to simply projecting Mv × M̂h to a Kähler
subspaceMN=1 = M̂v×M̂h , where M̂v coincides withMv or is a submanifold thereof.7

Integrating out the two massive gauge bosons also projects the N = 2 gauge kinetic
function to a submatrix. In Section 5.2.2 we will show that one of the two massive
gauge bosons is always given by the graviphoton.8 Integrating out this vector leads to
a holomorphic gauge kinetic function f that is the second derivative of the holomorphic
prepotential on M̂v, similarly to the case of N = 1 truncations [85,86].

Finally, as our N = 1 effective theory descends from an N = 2 supergravity, its
superpotential W and the D-terms can only be non-trivial if there are additional charged
scalars present, i.e. if there are further gaugings at a scale beneath m3/2. As discussed
above, this precisely occurs when isometries other than k1 and k2 are gauged in the
original N = 2 theory. Since both W and D appear in the N = 1 supersymmetry
transformation of the gravitino and gaugini, we can consider the corresponding N = 2
supersymmetry transformations restricted to N = 1 fields and then read off the appro-
priate terms. We will carry this out in Sections 5.2.3 and 5.2.4. Using the complex
structure of MN=1, we will then also check the holomorphicity of W in Section 5.2.3.

Let us now turn to the detailed derivation of the N = 1 couplings, starting with the
metric on the quotient M̂h.

5.2.1 The Kähler metric on the quotient M̂h

The first step in determining the sigma-model metric on the quotient M̂h is to eliminate
the two massive gauge bosons via their field equations, which are algebraic in the limit
p � m3/2. In order to be able to use the constraints (5.37) and (5.38) derived from
the hyperino conditions, we first have to rewrite the combination Θλ

Λkλ, λ = 1, 2, that
appears in (4.63) in terms of the new Killing vectors defined in (5.35). This change
of basis can be compensated by an appropriate change of Θλ

Λ, such that the covariant
derivatives given in (4.63) continue to have the same form, albeit with rotated kλ and
Θλ

Λ. From (4.16) we then obtain

∂L
∂Aλ

µ

= −2kv
λhuv∂µq

u + m2
λρA

ρ
µ = 0 , λ, ρ = 1, 2 , (5.48)

where we have defined
Aλ

µ ≡ AΛ
µΘλ

Λ = AI
µΘλ

I −BµIΘ
Iλ , (5.49)

and its mass matrix
m2

λρ = 2ku
λhuvk

v
ρ . (5.50)

7Note that the M̂h in (1.4) can also be a subspace of the M̂h given in (5.47), but for notational
simplicity we did not introduce a separate symbol for this situation.

8This is related to the fact that solutions of gravitino and gaugino conditions (5.23) only exist because
the matrix (ImF)IJ has signature (1, nv), where the positive direction precisely corresponds to the
graviphoton.
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Using the quaternionic algebra (4.36) and the hyperino conditions (5.37) written in terms
of the associated Kähler forms Kx, we see that this mass matrix is diagonal

m2
λρ = m2 δλρ , (5.51)

where
m2 = 2|k1|2 = 2|k2|2 . (5.52)

Inserting the algebraic field equations (5.48) back into the Lagrangian yields a modified
kinetic term for the hypermultiplet scalars, which reads

L̂ = ĥuv∂µq
u∂µqv . (5.53)

ĥuv is the metric on the quotient M̂h and is given by

ĥuv = huv −
2k1uk1v + 2k2uk2v

m2
= π̃w

u hwv , (5.54)

where kλu = kw
λ hwu and

π̃u
v = δu

v −
2ku

1k1v + 2ku
2k2v

m2
. (5.55)

From (5.54) it is easy to see that ĥuv satisfies

ĥuvk
v
λ = 0 , ĥuvh

vwĥwr = ĥur , (5.56)

where hvw is the inverse metric of the original quaternionic manifoldMh, i.e. hvwhwu = δv
u.

We can then use (5.55) to define the inverse metric on the quotient as ĥuv = π̃u
whwv. The

first equation in (5.56) states that the rank of ĥuv is reduced by two relative to huv, which
precisely corresponds to the two Goldstone bosons that have been integrated out. The
second equation in (5.56) tells us that the inverse metric on the quotient ĥuv = π̃u

whwv

actually coincides with the inverse of the original metric hvw.

Consistency with N = 1 supersymmetry requires that ĥuv is a Kähler metric. In order
to show this we first need to find the integrable complex structure on the Kähler manifold.
It seems likely that one of the three almost complex structure of the quaternionic manifold
descends to the complex structure on the quotient. Indeed, J3 plays a preferred role in
that it points in the direction (in SU(2)-space) normal to the plane spanned by P x

1 , P x
2

and is left invariant by the U(1) rotation in that plane. One way to calculate J3 on the
quotient is to employ the same method that we just used for the metric and apply it
to the two-form K3

uv. This is possible in an (auxiliary) two-dimensional σ-model of the
form9

LK3 = K3
uvDαquDβqvεαβ , α, β = 1, 2 , (5.57)

where the covariant derivatives are again given by (4.63). As above, we derive the
algebraic equation of motion for Aλ

α and insert it back into (5.57) to arrive at

LK3 = K̂uvε
αβ∂αqu∂βqv , (5.58)

where

K̂uv = K3
uv −

2k2uk1v − 2k1uk2v

m2
= π̃w

u K3
wv . (5.59)

9This Lagrangian has nothing to do with the theory considered so far and is only used to derive the
form of the complex structure – or rather its associated fundamental two-form – on the quotient.
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Here we have used the relations (5.38) to conclude that ku
λK3

uvk
v
ρ = m2ελρ, where ε21 = 1.

We find that the rank of K̂uv is reduced by two due to ku
λK̂uv = 0, analogous to the result

for the metric hµν .

For two commuting isometries k1 and k2 we have the identity [92]

2ku
1kv

2K
x
uv + εxyzP y

1 P z
2 = 0 , (5.60)

which, together with (5.37), allows us to simplify the expression for the mass:

m2 = P 1
1 P 2

2 − P 1
2 P 2

1 . (5.61)

On the other hand, from the definition of the prepotentials (4.44) we find

k2v = ku
1 K3

uv = ω2
vP

1
1 − ω1

vP
2
1 ,

k1v = ku
2 K3

uv = ω1
vP

2
2 − ω2

vP
1
2 ,

(5.62)

where we have used (5.4) and (5.38). Inserting (5.62) and (5.61) into (5.59) we arrive at

K̂uv = ∂uω
3
v − ∂vω

3
u . (5.63)

Thus, on M̂h there exists a fundamental two-form K̂ which is indeed closed

dK̂ = 0 . (5.64)

Furthermore, we find that Ĵ defined via K̂uv = ĥuwĴw
v is the projected complex structure

J3, i.e.
Ĵu

v = π̃u
wJ3w

v , (5.65)

and since π̃ commutes with J3, due to (5.37), Ĵ is the associated complex structure, i.e.
it satisfies Ĵu

v Ĵv
w = −π̃u

w, which on the subspace reads Ĵ2 = −1.10 This completes the
proof that M̂h is a Kähler manifold, with Kähler form K̂ and complex structure Ĵ .

In order to display the Kähler potential let us explicitly introduce complex coordi-
nates. Since Ĵ is an honest complex structure, we can group the 4nh − 2 coordinates qu

into two sets of coordinates q2a−1 and q2b, a, b = 1, . . . , 2nh − 1 such that Ĵ is constant
and ‘block-diagonal’ in this basis, taking the form

Ĵv
u =


0 −1
1 0

. . .

0 −1
1 0

 . (5.66)

We can then define the following complex coordinates

za := q2a−1 + i q2a , z̄ā := q2a−1 − i q2a (5.67)

and the associated derivatives

∂a = 1
2

(
∂q2a−1 − i ∂q2a

)
, ∂̄ā = 1

2

(
∂q2a−1 + i ∂q2a

)
. (5.68)

10This together with (5.64) implies that the Nijenhuis-tensor N(Ĵ) vanishes.
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From Ĵw
u Ĵ t

vK̂wt = K̂uv we see that, in terms of complex coordinates, the two-form K̂uv

given in (5.63) has no (2, 0) and (0, 2) parts. In other words, K̂ab = ∂aω
3
b − ∂bω

3
a = 0 and

K̂āb̄ = ∂̄āω̄
3
b̄
− ∂̄b̄ω̄

3
ā = 0 . This in turn implies11

ω3
a = i

2
∂aK̂ , ω̄3

ā = − i
2
∂̄āK̂ , (5.69)

where K̂ is the (real) N = 1 Kähler potential. Inserting these expressions into (5.63) one
obtains the Kähler-form

K̂ab̄ = ∂aω̄
3
b̄ − ∂̄b̄ω

3
a = − i ∂a∂̄bK̂ . (5.70)

So far, we have only integrated out the two vector bosons of the massive gravitino
multiplet including their Goldstone degrees of freedom. As we have just shown, the
removal of the two Goldstone bosons amounts to taking the quotient of the original
quaternionic-Kähler manifold Mh with respect to the two gauged isometries k1,2. This

quotient M̂h = Mh/〈k1, k2〉 has co-dimension two and is indeed a Kähler manifold
consistent with the unbroken N = 1 supersymmetry. However, additional scalars, both
from vector and/or hypermultiplets, can acquire a mass of O(m3/2) due to the partial

supersymmetry breaking. Integrating out these scalar fields results in a submanifold M̂v

of the original N = 2 special Kähler manifold Mv and a submanifold of M̂h. Thus, the
final N = 1 field space is the Kähler manifold

MN=1 = M̂v × M̂h (5.71)

with Kähler potential
KN=1 = K̂v + K̂ . (5.72)

5.2.2 The gauge couplings

Let us now check the holomorphicity of the gauge couplings. In section 5.2.1 we integrated
out the two heavy gauge bosons in the low-energy limit by neglecting their kinetic terms
and using their algebraic equations of motion. In order to compute the gauge couplings
of the remaining light gauge fields that descend to the N = 1 theory we have to explicitly
project out the heavy gauge bosons in the coupled kinetic terms in (4.16). From (5.49) we
see that the projection is determined by the embedding tensor solutions given in (5.41).
In other words, we should impose the projection

ΘλIG ±
I + Θλ

I F I± = 0 , λ = 1, 2 , (5.73)

and then compute the gauge couplings of the remaining gauge fields. Taking complex
combinations and inserting the embedding tensor solutions (5.41) yields12

CI(FIJ(t̂)−NIJ(t̂))F J+ = 0 = C̄I(F̄IJ(t̂)−NIJ(t̂))F J+ (5.74)

and a similar set of equations for F J−, where we have restricted NIJ to N = 1 fields.
Note that FIJ is evaluated in the N = 1 background, which means that scalar fields

11Note that one could add a further term in (5.69) that does not contribute in (5.63) and corresponds
to a Kähler transformation.

12We only discuss the Minkowski case here. The AdS case is completely equivalent, in that (5.42) only
leads to a different prefactor (i.e. not CI) but the conclusion remains the same.
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not obeying (5.43) are fixed at their background values, while the scalars of the N = 1
theory that do obey (5.43), which we denote by t̂, can vary arbitrarily, see Section 5.1.4.

Using the definition of NIJ (4.24) we find that (5.74) implies

XI(ImF)IJ(t̂)F J+ = 0 , (5.75)

where we have dropped a non-vanishing prefactor. This condition projects out one linear
combination of the F I that is heavy. Note that from now on we shall not explicitly
write the t̂-dependence. For the following analysis it will be useful to define the related
projection operator

Π̄I
J ≡ δI

J + 2eKv

X̄IXK(ImF)KJ , (5.76)

such that (1− Π̄) projects onto the heavy gauge boson while Π̄ projects onto the orthog-
onal gauge bosons.

Before we identify the second heavy gauge boson let us check which physical field is
projected out by (5.75). Looking at the full N = 2 gravitino variation [92], we see that
it contains the ‘dressed’ graviphoton term

T̃+
µν = −2 i XI(Im N̄ )IJF J+

µν + . . . . (5.77)

It is straightforward to check that the projection XI(Im N̄ )IJ appearing here coincides
with (5.75). Therefore, (5.75) can be understood as projecting out the graviphoton.

The second projection condition implied by (5.74) reads

C(P ) I(ImF)IJF J+ = 0 , (5.78)

where we have defined C(P ) I = ΠI
JCJ . Expressing this in terms of the projection operator

Γ̄I
J ≡ δI

J −
C̄(P ) IC(P ) K(ImF)KJ

C(P ) M(ImF)MN C̄(P ) N
, (5.79)

we see that (1− Γ̄) projects onto the second heavy gauge boson while Γ̄ projects to the
orthogonal gauge bosons. With the help of the two projection operators, which one can
show commute, we are now in the position to define the light vector fields which remain
in the N = 1 theory by

F Î+ ≡ F I+
∣∣∣
N=1

= Π̄I
J Γ̄J

KFK+ , (5.80)

where Î = 1, . . . n′v = (nv − 1), i.e. we have projected out two of the N = 2 vectors.

Let us now return to our original task and compute the gauge coupling functions of
the N = 1 action. This can be done by imposing the two projections (5.75) and (5.78)
in the gauge kinetic term NIJ F I+

µν F µν J+ of (4.16). In other words, we should compute

NÎĴ F Î+
µν F µν Ĵ+ with F Î+ given by (5.80). Inserting the definition of NIJ (4.24) we find

that the N = 1 gauge coupling functions appearing in (5.44) are giving by

f̄ÎĴ(t̂) = − i F̄ÎĴ , (5.81)

where the second term of NIJ drops out due to the identity

XI(ImF)IĴF Ĵ+ = 0 , (5.82)
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which can be shown by inserting (5.80) and using e−Kv = −2X̄IIm(F)IJXJ .

As promised, we see that the gauge couplings are manifestly holomorphic. Further-
more, fÎĴ(t) can only depend on the scalar fields that descend from N = 2 vector
multiplets, but not on those descending from hypermultiplets. In fact, this is analogous
to the situation in N = 2 → N = 1 truncations, where the graviphoton also has to
be projected out and, as a consequence, the gauge couplings are holomorphic and only
depend on the scalars of the vector multiplets [85, 86].

5.2.3 The superpotential

Our next task is to determine the N = 1 superpotential W . This is most easily done
by comparing the supersymmetry transformation of the N = 1 gravitino Ψµ 1 (4.64)
with the conventional N = 1 transformation given, for example, in [147]. (An analogous
computation for N = 1 truncations of N = 2 theories can be found in [33, 85, 86]).
Focusing on the scalar contribution one has

δεΨµ 1 = Dµε− S11γµε̄ + . . . = Dµε− e
1
2

KN=1

Wγµε̄ + . . . , (5.83)

where we have already inserted our choice ε1 =
(

ε
0

)
.

Using the definition of the gravitino mass matrices (4.65) we find that the N = 1
superpotential is given by

W = e−
1
2

KN=1

S11 = 1
2
e−K̂/2V ΛΘ λ

Λ P−
λ . (5.84)

In this expression we have to appropriately project out all scalars with masses of O(m3/2).
In other words, W should be expressed in terms of N = 2 input couplings restricted to
the light N = 1 modes. As we discussed at the end of section 5.2.1, this projection
preserves the Kähler and complex structure of Mv × M̂h. Therefore, we should be able
to check the holomorphicity of W without knowing the precise N = 1 spectrum.

Before we continue, let us discuss the situation where the original N = 2 supergravity
is only gauged with respect to the two Killing vectors k1, k2 that induce the partial
supersymmetry breaking. In this case the index λ in (5.84) only takes the values λ = 1, 2
and all fields in the N = 1 effective theory are exactly massless, i.e. they are N =
1 moduli. Their vacuum expectation values are not fixed, or, in other words, they
parameterize the entire N = 1 background. As a consequence the superpotential has to
be proportional to the cosmological constant. This can be seen explicitly by inserting
the gravitino mass matrix (5.2) into (5.84) which gives

|W|2 = e−KN=1|S11|2 = −3e−KN=1|µ|2 , (5.85)

in agreement with the standard N = 1 relation [147].

If additional Killing vectors are gauged, then their corresponding Killing prepotentials
appear in (5.84) and the index λ runs over all non-trivial Killing directions. For this case
we will now show that W is holomorphic with respect to the N = 1 complex structure
determined in the previous section.

Inspecting the superpotential W (5.84) we see that the scalars of Mv already ap-
pear holomorphically via V Λ. Therefore, we are left to show that the anti-holomorphic
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derivative of W with respect to the scalars of M̂h vanishes, i.e.

∂̄āW = 1
2
e−K̂/2V ΛΘ λ

Λ (∂̄āP
−
λ − 1

2
(∂̄āK̂)P−

λ ) = 0 . (5.86)

Let us first note that using (5.69) we can express ∂̄āK̂ in terms of ω3
ā. Furthermore, from

the definition of Killing prepotentials (4.44) we see that

−2K−
uvk

v
λ = ∂uP

−
λ + i ω−u P 3

λ − i ω3
uP

−
λ , (5.87)

which implies

∂̄āW = −1
2
e−K̂/2V ΛΘ λ

Λ (2K−
āvk

v
λ + i ω̄−ā P 3

λ ) . (5.88)

From the quaternionic algebra (4.36) and Kx
uv = huw(Jx)w

v it is easy to see that K− is
actually a (2, 0)-form and thus only has holomorphic indices. This immediately implies
that the first term in the bracket vanishes. From (5.62) we can infer that both ω1 and
ω2 live entirely in the space spanned by k1v and k2v, which in fact is divided out. This
implies that ω−ā is zero on M̂h and therefore the second term in (5.88) also vanishes.
Thus, the superpotential W is holomorphic, consistent with N = 1 supersymmetry.

5.2.4 The D-terms

Our final task is to explicitly compute the N = 1 D-terms appearing in the effective
potential (5.45). This proceeds analogously to the calculation of the superpotential in
Section 5.2.3, but by comparing the N = 2 and N = 1 gaugino variations instead of
the gravitino variations. Once again, this procedure is similar to the one used in N = 1
truncations [85,86], but here we shall more closely follow the review given in [63].

The N = 2 gaugino variation is given by [92]

δελ
iA = γµ∂µt

iεA − G̃i−
µνγ

µνεABεB + W iABεB + . . . , (5.89)

where W iAB was defined in (4.65) and G̃i−
µν = −gij̄∇j̄X̄

I(ImN )IJF J−
µν + . . . are the

‘dressed’ anti-self-dual field strengths, with the ellipses denoting higher-order fermionic
contributions.

In order to identify the gaugini of the effective N = 1 theory we evaluate (5.89) for
our choice of the preserved supersymmetry parameter ε1 =

(
ε
0

)
and obtain

δελ
i1 = γµ∂µt

iε̄ + W i11ε + . . . , (5.90)

δελ
i2 = −G̃i−

µνγ
µνε + W i21ε + . . . . (5.91)

Comparing with the standard N = 1 gaugino variation [147,148]

δελ
Î = F Î−

µν γµνε + iDÎε + . . . , (5.92)

we conclude that the λi2 are candidates for N = 1 gaugini. However, not all λi2 descend
to the effective N = 1 theory as some of them are massive and have to be integrated
out. The N = 1 gaugini should be defined as those with the light N = 1 gauge fields
(5.80) appearing in their supersymmetry variations. Using the projection operators Π
(5.76) and Γ (5.79) and the definition (5.80), we can restrict the gauge fields appearing
in N = 2 gaugino variation (5.91) to the light N = 1 gauge fields. By comparing the
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resulting expression with the N = 1 gaugino variation (5.92), we can identify the N = 1
gaugini as

λÎ = −2eKv/2∇iX
Îλi2 , (5.93)

where we have used the same projector (5.80) to define ∇iX
Î = ΠI

JΓJ
K∇iX

K . In order
to reach this result, we have made use of the special geometry relation [92]

∇iX
Îgī∇̄X̄

Ĵ = −1
2
e−Kv

(ImN )−1 ÎĴ −X ÎX̄ Ĵ (5.94)

and also that the projector (5.76) is defined such that the following property holds

X Î = ΠI
JΓJ

KXK = 0 . (5.95)

We can now take the N = 1 supersymmetry variation of (5.93) (to lowest fermionic
order), use (5.91), insert the definition of W i21 (4.65) and compare the result with the
standard N = 1 expression (5.92) to read off the D-term:

DÎ = 2ieKv/2∇iX
ÎW i21

= −2eKv∇iX
Îgī∇̄X̄

Ĵ
(
Θ λ

Ĵ
−NĴK̂ΘK̂λ

)
P 3

λ , (5.96)

where we have used ∇iFĴ = FĴK̂∇iX
K̂ in the second line. In order to see that this

expression agrees with the standard N = 1 D-term (5.46), we again make use of (5.94)
and (5.95) to see that it can be written as

DÎ = −(Ref)−1 ÎĴ
(
Θ λ

Ĵ
− fĴK̂ΘK̂λ

)
P 3

λ . (5.97)

This result agrees with the standard N = 1 supergravity expression (5.46) if we identify
the N = 1 Killing prepotential as follows

PĴ = 1
2

(
Θ λ

Ĵ
− fĴK̂ΘK̂λ

)
P 3

λ . (5.98)

If we now consider gaugings with respect to just the Killing vectors k1 and k2 responsible
for partial supersymmetry breaking, we see that the D-term vanishes by our N = 1
supersymmetry condition (5.4), as expected for a supersymmetric vacuum.

Note that both the D-terms (5.97) and the Killing prepotentials (5.98) are complex,
in agreement with the analogous results from N = 1 truncations [63, 149]. The reason
is that these quantities appear in the supersymmetry variations of the gaugini in (5.91)
which are paired with the (complexified) anti-self-dual field strengths G̃i−

µν . Therefore,
(5.97) describes a complex linear combination of the electric and the magnetic D-terms.
More precisely, from (5.98) we see that the electric and magnetic Killing prepotentials of

the N = 1 theory are given by 1
2
Θ λ

Ĵ
P 3

λ and 1
2
ΘK̂λP 3

λ .13

Before we close this section let us note that one can also check that the supersymmetry
transformation of the N = 1 fermions in chiral multiplets that descend from the N = 2
gaugini λi1 (cf. (5.91)) correctly reproduce the F-terms. Furthermore, one might expect
that it is necessary to take field redefinitions of the gaugini and the hyperini with respect
to the Goldstino, such that we can rewrite the fermionic Lagrangian in terms of physical

13We thank G. Dall’Agata and D. Cassani for discussions on this points.
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fermions, i.e. fermions that cannot be gauged away by further field redefinitions of the
massive gravitino Ψµ2 [111]. However, it is straightforward to check that any such field
redefinitions are projected out when one identifies the N = 1 fields as in (5.93). In other
words, the N = 1 fermionic field space is defined by quotienting the N = 2 counterpart
by the Goldstino direction.

Let us draw attention to an important difference with N = 2 → N = 1 supergravity
truncations [86, 149]. For the case of partial supersymmetry breaking considered here,
the condition (5.95) does not fix any scalars, as the projection operators ΠI

J and ΓJ
K are

field-dependent quantities which vary over the N = 1 moduli space in such a way that
(5.95) is automatically fulfilled. In the case of N = 1 truncations [85,86], the equivalent
projection operators are constant and therefore some scalars are projected out by the
condition ΠI

JXJ = 0.

This completes our analysis of the low-energy effective theory in the N = 1 vacua of
N = 2 gauged supergravity with electric and magnetic charges. We have proven that
this theory enjoys N = 1 supersymmetry, as is required for the consistency of the partial
supersymmetry breaking mechanism. We shall now focus on a specific class of c-map
examples, where the hypermultiplet scalars parameterize a special quaternionic-Kähler
manifold.

5.3 Partial supersymmetry breaking on special qua-

ternionic-Kähler manifolds

In Section 5.1.3 we found that in order to realize N = 1 vacua we need to have two
commuting isometries on Mh which are furthermore holomorphic with respect to J3.
This is certainly not satisfied on a generic quaternionic-Kähler manifold and so Mh is
constrained from the outset by this requirement. It is difficult to analyze this condition
on an arbitrary Mh which admits two isometries. To proceed, we shall focus our atten-
tion on the subclass of special quaternionic-Kähler manifolds [65, 66], which we already
discussed in Section 4.3.3. These manifolds arise at string tree-level in SU(3) × SU(3)-
structure compactifications of type II string theories. Beyond their interest in string
compactifications, we have chosen to concentrate on this specific subclass as they have a
large number of isometries.

Let us now return to the conditions for partial supersymmetry breaking arising from
the hypermultiplet sector. The initial analysis in this section follows [63]. It will be
useful in the following to express the parameter of the unbroken N = 1 supersymmetry
in terms of a vector of complex coefficients

εA1 =

(
n1

n2

)
ε1 , (5.99)

where the Killing spinor ε1 is the generator of the unbroken supersymmetry in N = 1
notation. Inserting (5.99) and (4.46) into the gravitino equation (5.2), we obtain

n1u(k) + 1
4
n2(v − v̄)(k) = i

2
(n1)∗ e−Kv/2µ ,

1
4
n1(v − v̄)(k) + n2ū(k) = i

2
(n2)∗ e−Kv/2µ ,

(5.100)
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where we have used the following abbreviations for the Killing vectors k = ku∂u:

k ≡ V ΛΘ λ
Λ kλ , and u(k) ≡ kvuv . (5.101)

In deriving (5.100), we also used the fact that the Killing vectors kλ, defined in (4.55),
do not have a component in the base directions, i.e. dZI(kλ) = 0 holds.

Turning to the hyperino equation (5.2), and making use of (4.65), (4.52), (4.53) and
(5.99), we find

n1u(k) + n2v(k) = 0 ,

−n1v̄(k) + n2ū(k) = 0
(5.102)

and
n2Eb(k) = 0 ,

n1Ēb(k) = 0 .
(5.103)

In (5.103) we have used that all Killing vectors (4.55) are in the fibre directions and
therefore e(k) = ē(k) = 0. If we now take the difference of the gravitino (5.100) and
hyperino (5.102) conditions, we arrive at

n2(3v + v̄)(k) = −2 i(n1)∗e−Kv/2µ ,

n1(v + 3v̄)(k) = 2 i(n2)∗e−Kv/2µ .
(5.104)

Here we see that possible solutions for Minkowski and AdS vacua preserving N = 1
supersymmetry differ significantly due to the µ-term on the right-hand side of (5.104).
By comparing (5.104) with the original hyperino constraint (5.102), we see that the only
way to solve the conditions for a Minkowski vacuum with both n1 and n2 non-zero is to
set v(k) = v̄(k) = 0. As we shall describe further in the next section, one can then easily
check that such a vacuum preserves N = 2 supersymmetry [63]. Therefore, in order to
find an honest N = 1 vacuum we are forced to set n1 or n2 to zero. On the other hand,
for AdS vacua a similar check shows that n1, n2 and v(k) must all be non-zero in order
to solve (5.104). Due to the different nature of these possible solutions, we analyze the
Minkowski and AdS cases separately in the following.

5.3.1 Minkowski vacua

We will first consider the case of a Minkowski vacuum, setting µ = 0 in all the expressions
above. As we have just discussed, there are two cases to consider, depending on whether
both n1 and n2 are non-zero or not [150]. If both n1 and n2 are non-zero, one sees from
(5.104) that (v− v̄)(k) = 0 and then the original hyperino conditions (5.102) implies that
u(k) = ū(k) = 0. Inserting this into (4.46) and (4.57) we see that all three prepotentials
P x vanish separately and the vacuum actually has N = 2 supersymmetry [63].14 If we
consider instead the case where one of the components of nA is zero we can evade this
conclusion. In the remainder of this section we will show that such a solution does exist,
and that the conditions for preserved N = 1 supersymmetry (5.2) can be solved for two
commuting isometries.

14It is important to keep in mind that this conclusion crucially depends on the fact that we confine
our analysis to the Killing vectors (4.55) which correspond to translations in the fibre. If on the other
hand isometries in the special Kähler base exist, partial supersymmetry might be possible for this case.
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To proceed, we will set one of the complex coefficients in (5.99) to zero

n2 = 0 , n1 6= 0 . (5.105)

This leads to a simplified set of gravitino (5.100) and hyperino (5.102), (5.103) equations
to solve:

v(k) = v̄(k) = u(k) = Ēb(k) = 0 , (5.106)

with ū(k) and Eb(k) undetermined. In order to avoid an N = 2 vacuum we must ensure
that ū(k) 6= 0, such that P x does not vanish and we can have the possibility of partial
supersymmetry breaking. As we will see, this implies Eb(k) 6= 0.

Our first task is to construct two commuting Killing vectors k1 and k2 out of the
set provided by the c-map construction (4.56). By considering the inner product of the
quaternionic one-forms (4.53) with the Killing vectors (4.56), we see that kφ is not a good
choice for our purposes as (v+ v̄)(kφ) 6= 0. Therefore, if we were to use this Killing vector
we would not be able to satisfy the N = 1 vacuum conditions (5.106). This leads us to
make the following general ansatz in terms of the remaining Killing vectors

k1 = rB
1 kB + s1 Ak̃A + t1kφ̃ ,

k2 = rB
2 kB + s2 Ak̃A + t2kφ̃ ,

(5.107)

where for the moment rB
1,2, s1,2 A, t1,2 are arbitrary real coefficients. By demanding that

k1 and k2 commute, we then find a constraint on the coefficients15

rA
1 s2 A − rA

2 s1 A = 0 . (5.108)

If we consider the inner product of the quaternionic one-forms (4.53) with our ansatz
for the Killing vector combinations (5.107), we immediately observe that both k1 and k2

automatically satisfy the conditions (v + v̄)(k1,2) = 0 , while (v − v̄)(k) = 0 imposes

V ΛΘ 1
Λ (s1 AξA − rA

1 ξ̃A + t1) + V ΛΘ 2
Λ (s2 AξA − rA

2 ξ̃A + t2) = 0 . (5.109)

The solution of this condition then fixes the two coefficients t1 and t2

t1,2 = rA
1,2ξ̃A − s1,2 AξA , (5.110)

where ξ̃A and ξA are the Ramond-Ramond scalars evaluated at the N = 1 vacuum. We
can now make use of the solution for the embedding tensor components (5.21) found
from the gravity plus vector multiplet sector, which by construction fulfil (5.19a) and
(5.19b). We already solved the first two equations in (5.106). Since (5.19a) implies the
gravitino and gaugino equation, we find that also u(k) = 0, such that in (5.106) it only

15At this point, we can already see that we cannot have partial supersymmetry breaking in Minkowski
space with just the universal hypermultiplet as the condition (5.108) reads

det

(
r1 r2

s1 s2

)
= 0 .

This in turn means that k1 and k2 are actually linearly dependent, i.e. only one linear combination of kA

and k̃A is gauged, the prepotentials P x
1 and P x

2 are aligned and no N = 1 solution can be constructed,
cf. Section 5.1.2.
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remains to solve Ēb(k) = 0, which comes from the hyperino equation and gives further
constraints on rA

1,2 and s1,2 A. We shall now rewrite the solution for the embedding tensor
components (5.21) in the notation of this section and then turn to solving the remaining
equation Ēb(k) = 0.

Using (4.46) and (4.57), we see that the Killing prepotentials are given by

P+
1,2 = 2 i ū(k1,2) , (5.111)

where we have used the complex notation introduced in (5.18). If we now insert the
definition of the one-form ū (4.53) and make use of (4.33), we find that the solution for
the embedding tensor components (5.21) can be expressed as

Θ 1
I =− Im(Z̄A(s2 A − ḠABrB

2 )FIJCJ) ,

ΘI1 =− Im(Z̄A(s2 A − ḠABrB
2 )CI) ,

Θ 2
I = Im(Z̄A(s1 A − ḠABrB

1 )FIJCJ) ,

ΘI2 = Im(Z̄A(s1 A − ḠABrB
1 )CI) ,

(5.112)

where we have absorbed the prefactor 2eKh/2+φ into CI .

Let us now solve Ēb(k) = 0. Inserting (5.112) into (4.53) we find

XI(ImF)IJC̄JΠ B
A ZC

(
(s2 B − GBDrD

2 )(s1 C − GCErE
1 )

− (s1 B − GBDrD
1 )(s2 C − GCErE

2 )
)

= 0 ,
(5.113)

where, for convenience, we have contracted the expression with ΠA b in order to introduce
the projection operator Π B

A , cf. (4.28). Furthermore, we have used the identity (5.20) to
pull out the prefactor XI(ImF)IJC̄J . This prefactor is non-zero for all CI fulfilling (5.23),
see (4.35), and can be neglected. We can parameterize the Killing vector coefficients rA

1,2

and s1,2 A by

rA
1,2 = Im(DA

1,2) , s1,2 A = Im(GABDB
1,2) , (5.114)

where DA
1,2 are two complex vectors. We can then decompose DA

1,2 into the components
canonically defined by the projection Π B

A as done in (4.34). Using this, the condition
(5.113) simplifies to

D
(P ) A
1 D

(Z) B
2 = D

(P ) A
2 D

(Z) B
1 . (5.115)

The only solution to this equation is DA
2 = aDA

1 with a complex factor a, and in the
following we will just write DA. Note that for a real, the two Killing vectors are the same
and the embedding tensor components (5.112) just cancel against each other, giving an
ungauged supergravity with an N = 2 vacuum. Furthermore, for any complex a, its real
part drops out due to this cancellation. Thus, we can choose a = i, since any additional
real prefactor can be absorbed into the embedding tensor. After absorbing a prefactor
− i Z̄A(ImG)ABDB into the definition of CI , the embedding tensor (5.112) similarly to
(5.27) simply reads

Θ 1
I = Im(FIJCJ) , ΘI1 = Im CI ,

Θ 2
I = Re(FIJCJ) , ΘI2 = Re CI .

(5.116)
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It remains to check that the two Killing vectors commute when the coefficients are pa-
rameterized by (5.114). To do so, we insert (5.114) together with DA = DA

1 = − i DA
2

into the commutation condition (5.108) and find

0 = D̄A(ImG)ABDB . (5.117)

Thus, the complex vector DA must be null with respect to the matrix (ImG)AB, which
is of signature (nh − 1, 1), cf. (4.35).

In order to make contact with the literature, we can rewrite the embedding tensor
components in a more convenient basis. Instead of expressing Θ Λ̃

Λ in the basis of k1,2

plus the other (ungauged) isometries, we can make a change of basis and go back to the
standard basis of c-map Killing vectors (4.55). To do this, we collect, as in Section 4.3.3,
the Killing vectors kA and k̃A, as well as the fibre coordinates ξA and ξ̃A, in the Sp(nh)
vectors

kΛ̃ =

(
k̃A

kA

)
(5.118)

and

ξΛ̃ =

(
ξA

ξ̃A

)
. (5.119)

The embedding tensor then reads

Θ Λ̃
Λ = Re

(
C̄JDB

(
F̄JIGBA F̄JIδ

A
B

δI
JGBA δI

JδA
B

))
,

Θ φ̃
Λ = −Θ Λ̃

Λ ξΛ̃ = Re

(
DA(ξ̃A − GABξB)C̄J

(
F̄JI

δI
J

))
,

(5.120)

where DA and CI have to satisfy commutation (5.117) and mutual locality (5.23) condi-
tions respectively.

Now let us give the explicit form of tensors SAB, W iAB and Nα
A for the embedding

tensor solution (5.120):

SAB = 2eKv/2+Kh/2+φ[XI(ImF)IJC̄J ][Z̄A ImGABDB]

(
0 0

0 1

)
, (5.121a)

WiAB = 4 i eKv/2+Kh/2+φ[Π J
i (ImF)JKC̄K ][Z̄A ImGABDB]

(
0 0

0 1

)
, (5.121b)

NαA = 2
√

2 i eKv/2+Kh/2+φ[XI(ImF)IJC̄J ]

·DB

(
0 0 0 0

0 [1
2
e−Kh

Π a
B ] [(ImG)BAZ̄A] 0

)
, (5.121c)

where we used the relations between the projector Π J
i and the Kähler covariant deriva-

tives of XJ and FJ (4.30).
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Note that the solution (5.120) can be constructed for any point of the moduli space
Mv ×Mh and does only depend on the second derivatives of the prepotentials F and
G at the N = 1 point. Furthermore, the solution is completely covariant under Mirror
symmetry, which essentially exchanges the two special Kähler manifolds.

Now we want to compute the Kähler potential following (5.70) and (5.69). Note that
the Killing vectors given in (5.107) with (5.110) and (5.114) fulfill P 3

1,2 = 0 in the N = 1
locus but there is dP 3

1,2 6= 0, in constrast to (5.4).16 Therefore, we need to perform a local
SU(2) R-symmetry rotation to ensure dP 3

1,2 = 0. This is achieved by the transformation

Λ = efxσx

, (5.122)

such that

fx
∣∣∣
N=1

= 0 , dfx
∣∣∣
N=1

= (P 1
1 P 2

2 − P 1
2 P 2

1 )−1(P x
1 dP 3

2 − P x
2 dP 3

1 ) . (5.123)

Then, (5.70) is modified to

K̂ = dω3 + df 1 ∧ ω2 − df 2 ∧ ω1 . (5.124)

Differentiation of ω3 given in (4.57) results in

dω3 = i(v ∧ v̄ + u ∧ ū + E ∧ Ē + e ∧ ē) . (5.125)

The additional terms in (5.124) are computed from (5.123) to be

df 1 ∧ ω2 − df 2 ∧ ω1
∣∣∣
N=1

= Im
[DA(dξ̃A − GABdξB) ∧ (Z̄Adξ̃A − ḠAdξA)

DA Im(G)ABZ̄B

]
. (5.126)

This determines the Kähler two-form in the N = 1 locus to be

K̂
∣∣∣
N=1

= i
(
v ∧ v̄ + u ∧ ū + E ∧ Ē + e ∧ ē

)
+ Im

[DA(dξ̃A − GABdξB) ∧ (Z̄Adξ̃A − ḠAdξA)

DA Im(G)ABZ̄B

]
.

(5.127)

By use of the complex structure related to this Kähler two-form we can identify the
holomorphic component of ω3 in (4.57) to be ω3

a = i
2
(va − ∂aK

h). Plugging this into
(5.69) and integrating we then find

K̂ = Kh + 2φ . (5.128)

Before we proceed, let note that K̂ given in (5.128) is still expressed in terms of the
original N = 2 field variables. Using the N = 1 complex structure Ĵ it is possible to

16This is due to the fact that some scalar directions can get a mass in the partial super-Higgs
mechanism, see Section 5.1.4. These directions can be identified with the deformations of the ex-
pressions appearing in the solution (5.120) for the embedding tensor, i.e. with the deformations of
DAGAB(z) and DA(ξ̃A − GAB(z)ξB). Therefore, in order to find the correct Kähler potential given by
(5.70), we should integrate out such massive scalars. One of the consequences would be that we set
Re(DA(dξ̃A − GAB(z)dξB)) = Im(DA(dξ̃A − GAB(z)dξB)) = 0 in the N = 1 theory, which implies
dP 3

1,2 = 0.

97



CHAPTER 5. N = 1 VACUA OF N = 2 SUPERGRAVITY AND TYPE II COMPACTIFICATIONS

express K̂ in terms of proper holomorphic N = 1 field variables. However, in general
this computation is rather involved and we leave it for future investigation.

Inserting the Killing prepotentials (4.46) into the general expression for the superpo-
tential (5.84) we find

W = V ΛΘ Λ̃
Λ UΛ̃ , (5.129)

where the symplectic vector UΛ̃ on Msk was defined in (4.27). Note that the superpo-
tential in (5.129) is indeed holomorphic.

5.3.2 AdS vacua

Let us now consider the case of an AdS vacuum preserving N = 1 supersymmetry. For
µ 6= 0, we see from combined gravitino and hyperino condition (5.104) that both n1 and
n2 must be non-zero. By manipulating (5.104), we are led to the following conditions

n1n2(v + v̄)(k) = −1
2
i e−Kv/2µ(|n1|2 − |n2|2) , (5.130a)

n1n2(v − v̄)(k) = − i e−Kv/2µ(|n1|2 + |n2|2) = − i e−Kv/2µ|ε1|2 . (5.130b)

If the kφ direction is not gauged, then we have that (v+v̄)(k(L)) = 0 and we can conclude
that the complex coefficients of the preserved supersymmetry generator (5.99) must be
equal |n1| = |n2| [63].17 This agrees with the result using a different approach in type II
supergravity in ten dimensions [116]. In the following we shall restrict to |n1| = |n2| and
parameterize the coefficients as

n1 = ei ϕ/2n , and n2 = e− i ϕ/2n , (5.131)

where ϕ is a phase.

Before we proceed to analyze the supersymmetry variations in detail, we shall make
a remark about the amount of unbroken supersymmetry. For AdS vacua, we take the
general ansatz for the Killing vectors k1 and k2 used in the Minkowski case (5.107),
and demand that they commute i.e. that (5.108) is satisfied. The embedding tensor
components which solve the gravitino and gaugino equations are then given by (5.30),
but as we now break to a differentN = 1 vacuum with a different preserved Killing spinor
(5.99) we must perform an SU(2)-rotation. By comparing (5.131) with the spinor used in
Section (5.1.2), which has n1 6= 0 and n2 = 0, we see that the appropriate SU(2)-rotation
is given by

MA
B = 1√

2

(
ei ϕ/2 −ei ϕ/2

e− i ϕ/2 e− i ϕ/2

)
. (5.132)

The only term in the embedding tensor components (5.30) that transforms non-trivially
under this rotation is P+

1,2:

P−
1,2 −→ P̃−

1,2 = i Im(ei ϕP−
1,2)− P 3

1,2 . (5.133)

In order to find the embedding tensor components which solve the gravitino and gaugino
conditions (5.30) we assumed that P 3

1,2 = 0. In the new SU(2)-frame we have to adjust
k1 and k2 such that

P̃ 3
1,2 = Re(ei ϕP−

1,2) = 0 . (5.134)

17The dilaton isometry is spoilt by quantum corrections in N = 2 supergravity (see [143] for the
one-loop result). Therefore we do not consider gaugings with respect to this isometry.
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Analogously to the Minkowski case (5.114), we make the following ansatz for the Killing
vector coefficients

rA
1,2 = Im(DA

AdS 1,2) , s1,2 A = Im(GABDB
AdS 1,2) , (5.135)

where we have used the decomposition (4.34) with respect to the projector Π B
A to express

DA
AdS 1,2 as

DA
AdS 1,2 = D

(Z) A
AdS 1,2 + D

(P ) A
AdS 1,2 . (5.136)

Inserting this ansatz into (5.134) and using the expressions (4.46), (4.57) and (4.53) we
find

Re(ei ϕZA(ImG)ABD̄
(Z) B
AdS 1,2) = 0 , (5.137)

which is solved by
D

(Z) A
AdS 1,2 = i ei ϕR1,2Z

A , (5.138)

where R1,2 are real numbers. Inserting the above expressions into the transformation of
the Killing prepotential (5.133) then leads to

P̃−
1,2 = e2φ(t1,2 − Im((i R1,2e

i ϕZA + D̄
(P ) A
AdS 1,2)(ξ̃A − GABξB))) + i e−Kh/2+φR1,2 . (5.139)

We remind the reader that the prepotentials P̃ x
1 and P̃ x

2 should not be aligned for a
proper N = 1 vacuum.

We still have to solve the equations coming from the hyperino variation. In the
Minkowski case we only had to solve the condition Ē(k) = 0, whereas we now see from
(5.103) that we that we have an addition condition E(k) = 0 in the AdS case. Further-
more, (5.102) also now gives an additional non-trivial condition, which is rephrased as
(5.130b). Considering again the projector decomposition (4.34) for DA

AdS 1,2, we see that

(5.130b) gives a condition on C1,2, while (5.103) restricts D
(P ) A
AdS 1,2 in (5.136). Let us start

with (5.103). By insertion of (5.107) into (5.135) and using the definition (4.28) and the
relations (4.33), we can write (5.103) as

(P̃ 2
2 + i

2
P̃ 1

2 )D
(P ) A
AdS 1 − (P̃ 2

1 + i
2
P̃ 1

1 )D
(P ) A
AdS 2 = 0 ,

(P̃ 2
2 − i

2
P̃ 1

2 )D
(P ) A
AdS 1 − (P̃ 2

1 − i
2
P̃ 1

1 )D
(P ) A
AdS 2 = 0 ,

(5.140)

where for simplicity we took the complex conjugate in the first equation. As the prepo-
tentials of k1 and k2 must not coincide in an N = 1 vacuum, (5.140) implies that both

D
(P ) A
AdS 1 and D

(P ) A
AdS 2 must vanish. Then from the commutation relation (5.108), together

with (5.135), (5.136) and (5.138), it follows that R1 or R2 is zero. We can choose R2 = 0
and note that by taking linear combinations of k1 and k2 we can always set t1 = 0.
Furthermore, the resulting Killing vectors can be rescaled such that R1 = t2 = 1.

Let us now solve (5.130b). Inserting the embedding tensor (5.30) with (5.139) and
(5.135), we find

XI(ImF)IJC̄J
AdS = i

3 + 4 i ρ

2 + 2 i ρ
eKh/2−Kv/2−3φµ , (5.141)

where we abbreviated

ρ = eKh/2+φ Re(ei ϕ(ZAξ̃A − GAξA)) . (5.142)
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Using again the decomposition (4.34) we can insert (5.141) into (5.30). If we now go
back to the standard basis of (5.118) and (5.119), the embedding tensor reads

Θ Λ̃
Λ = −Re

((
FIJ

δI
J

)
(4eKh/2+Kv/2−φµ̄XJ + C

(P ) J
AdS )

)
· Re(ei ϕ( GA , ZA )) ,

Θ φ̃
Λ = e−Kh/2−φ Im

((
FIJ

δI
J

)
(4eKh/2+Kv/2−φ(1

2
− i ρ)µ̄XJ + (1− i ρ)C

(P ) J
AdS )

)
,

(5.143)

where we have rescaled C
(P ) I
AdS by the factor i e2φ. If we plug our result (5.143) into the

constraint (5.31), we find

C̄
(P ) J
AdS (ImF)JIC

(P ) I
AdS = eKh−6φ |µ|2

1 + ρ2
. (5.144)

This can be easily solved, since the left-hand side is naturally greater than zero (see the
discussion in (4.35)).

Finally, for the embedding tensor solution (5.143) the tensors appearing in the super-
symmetry transformations SAB, W iAB and Nα

A are given by

SAB = µ

(
e− i ϕ −1

2

−1
2

ei ϕ

)
, (5.145a)

WiAB = −1
2
eKv/2−Kh/2+φ(ImF)iJC̄

(P ) J
AdS

(
e− i ϕ −1

−1 ei ϕ

)
, (5.145b)

NαA = 1√
2
i µ

(
e− i ϕ 0 −1 0

−1 0 ei ϕ 0

)
, (5.145c)

where we have again used (4.30).

The embedding tensor given by (5.143) can be defined at any point on Mv ×Mh.
Furthermore, for any choice of the moduli spaces Mv and Mh – as long as Mh is in the
image of the c-map – we have found a construction for the gaugings that lead to N = 1
AdS vacua. The only constraints on the solution (5.143) is (5.144), which can easily
be fulfilled. In this way, the results of this section are completely analogous to those of
Section 5.3.1.

We want now to determine the Kähler potential and the superpotential of the corre-
sponding N = 1 vacuum. In contrast to the Minkowski case, there are both P̃ 3

1,2 = 0 and

dP̃ 3
1,2 = 0, cf. (5.134), and we can use (5.70) and (5.134) to compute the Kähler two-form

K̂ on M̂h

K̂ = 2 Im
(
ei ϕu

)
∧ Re v − 2 Im

(
ei ϕĒ ∧ e

)
+ 2 i eKh

Re
(
ei ϕu

)
∧
(
ZA(ImGAB)dZ̄B − Z̄A(ImGAB)dZB

)
.

(5.146)

From this we can identify the holomorphic part of ω̃3 to be ω̃3
a = 2(Im(ei ϕua)− i(v+ v̄)a).

Inserting this into (5.69) leads to the Kähler potential

K̂ = 4φ . (5.147)
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Finally, inserting the Killing prepotentials (5.133) and (4.46) into the general expression
for the superpotential (5.84), we find

W = 1
2
V Λ(Θ φ̃

Λ + ΘΛ̃
Λ(ξΛ̃ + 2 i eKh/2−φ Im(ei ϕUλ̃))) . (5.148)

The Kähler potential K̂ in (5.147) also coincides with the expression obtained in
orientifold truncations of the type II compactifications considered for instance in [63,91].

5.4 Realization in string theory

Let us now comment on how the solutions of Section 5.3 can be realized in string theory.
We shall only consider smooth N = 2 compactifications of the type II string on here, but
similar realizations should be possible for the heterotic string and for type II orientifolds.
For further discussion of four-dimensional N = 1 Minkowski and AdS vacua from string
theory see [32,38,116,151–158].

Here, we use the results of Chapter 4 where we determined the embedding tensor
to be of the form (4.69), where its components are defined in (4.5) and (4.8). For the
N = 1 Minkowski solution (5.120) we can then identify the charges appearing in (4.68)
as follows

eAI = Re(F̄IJC̄JGABDB) , (5.149a)

pI
A = Re(C̄IGABDB) , (5.149b)

mA
I = Re(F̄IJC̄JDA) , (5.149c)

qAI = Re(C̄IDA) , (5.149d)

fI = Re(F̄IJC̄J(ξAGAB − ξ̃B)DB) , (5.149e)

f I = Re(C̄I(ξAGAB − ξ̃B)DB) . (5.149f)

Let us recall that charges are quantized in string theory and therefore all entries of the
embedding tensor are integral, as we already discussed in the paragraph after (4.8). This
implies that partial supersymmetry breaking may only be possible at discrete points on
Mv and Mh, where the expressions in (5.149) are integer-valued. This condition might
restrict the form of the prepotential and therefore the allowed moduli spaces Mv ×Mh.

The issue of mirror symmetry in SU(3)×SU(3)-structure compactifications has been
discussed at length in Ref. [34], where it was found that, apart from an exchange of the
prepotentials F ↔ G, the charges are exchanged as follows

mA
I ↔ −pA

I , eAI ↔ eIA , qAI ↔ qIA . (5.150)

An inspection of (5.149) shows that the solutions indeed obey this symmetry if we also
simultaneously exchange CI ↔ DA.

If we set pI
A and qAI to zero in (5.149), the product C̄IDB must vanish and we end

up with the trivial solution. Therefore, an N = 1 Minkowski vacuum can only occur
when non-geometric fluxes are turned on. This is in agreement with the compactification
no-go-theorem [101–103], which states that there can be no stable Minkowski vacuum
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with only fluxes turned on. This statement is believed to also be true for backgrounds
with torsion. Here we explicitly see that non-geometric fluxes can compensate for the
form field fluxes and torsion, leading to a vanishing energy density i.e. to vanishing µ. In
this way, the solution of Section 5.3.1 evades the no-go theorem.18

Before we turn to the AdS case, let us also note that the N = 1 solutions given in
(5.149) are not within the class of solutions considered in [32] as one of the complex
parameters n1 or n2 introduced in (5.99) has to vanish. Rather, they correspond to the
class of solutions denoted Type A in [150], which have been much less investigated. It
would be interesting to further investigate this class of models.

We shall now consider the solution for N = 1 AdS vacua. Comparing (5.143) with
(4.68) we can read off

eAI = −Re(FIJ(4eKh/2+Kv/2−φµ̄XJ + C
(P ) J
AdS )) Re(ei ϕGA) , (5.151a)

pI
A = −Re((4eKh/2+Kv/2−φµ̄XI + C

(P ) I
AdS ) Re(ei ϕGA) , (5.151b)

mA
I = −Re(FIJ(4eKh/2+Kv/2−φµ̄XJ + C

(P ) J
AdS )) Re(ei ϕZA) , (5.151c)

qAI = −Re((4eKh/2+Kv/2−φµ̄XI + C
(P ) I
AdS ) Re(ei ϕZA) , (5.151d)

fI = e−Kh/2−φ Im(FIJ(4eKh/2+Kv/2−φ(1
2
− i ρ)µ̄XJ + (1− i ρ)C

(P ) J
AdS )) ,(5.151e)

f I = e−Kh/2−φ Im(4eKh/2+Kv/2−φ(1
2
− i ρ)µ̄XI + (1− i ρ)C

(P ) I
AdS ) . (5.151f)

If we turn off non-geometric fluxes (pI
A = qAI = 0), we see that non-trivial solutions do

exist but must obey
Re(XI µ̄) = 0 . (5.152)

It would be interesting to further investigate the ten-dimensional origin of this condition.

Let us close this section by discussing possible quantum corrections in string the-
ory. First of all, worldsheet instantons correct the Kähler potentials Kv in type IIA
and Kh in type IIB. However, since we never used their explicit forms, all our results
are unchanged and hold for any instanton-corrected Kähler potential. What we did use
explicitly were the isometries resulting from the special fibration structure of Mh. Space-
time instanton effects generated from wrapped Euclidean branes generically break all of
the isometries of Mh. However, it has been argued that the isometries which are gauged
due to fluxes are precisely those protected (by the flux itself) from spacetime instanton
effects [160]. It would be very interesting to identify (5.149) and (5.151) as solutions of
the ten-dimensional supergravity equations of motion.

18A related result on the necessity of non-geometric fluxes for Minkowski vacua in orientifold com-
pactifications has recently been found [159].
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Conclusions

In the first part of this thesis we showed that SU(2) × SU(2) structures always reduce
to either SU(2) or identity structures and we derived the general form of the scalar field
space for all SU(2) backgrounds in four and six spacetime dimensions.

We defined SU(2)× SU(2) structures in the pure spinor formalism and embedded it
into the paradigm of exceptional generalized geometry. Thereby we derived the parameter
space of SO(1, d − 1) scalars for the ten-dimensional theory. Furthermore, we showed
how to derive the scalar field space of the d-dimensional effective theory for the class of
consistent truncations.

In particular, for type IIA compactifications to six dimensions, we derived the space
of scalar degrees of freedom to be

MIIA
d=6 =

SO(4, n + 4)

SO(4)× SO(n + 4)
× R+ , (6.1)

where n is some integer number and the R+ corresponds to the six-dimensional dila-
ton. The space MIIA

d=6 consists of only scalars coming from the NS-NS sector, as the
corresponding type IIA compactification has no R-R scalar degrees of freedom.

In contrast, in the analogous type IIB setting it is necessary to embed both pure
spinors into representations of the U-duality group SO(5, 5) before truncating the theory.
As we showed, R-R scalars enlarge the moduli space to

MIIB
d=6 =

SO(5, n + 5)

SO(5)× SO(n + 5)
. (6.2)

We used the same strategy to determine the scalar field spaces for SU(2) structure
compactifications to d = 4. Additionally, we had to introduce a generalized almost prod-
uct structure to force the structure group to be SU(2), which divided the tangent bundle
and its generalizations into a four-dimensional SU(2)-structure and a two-dimensional
identity-structure piece. By using the same techniques as in the case d = 6, we derived
the scalar field space to be of the form

MIIA/IIB
d=4 =

SO(6, n + 6)

SO(6)× SO(n + 6)
×

Sl(2, R)T/U

SO(2)
, (6.3)

where the extra factor is either Sl(2, R)T /SO(2) acting on the complexified Kähler struc-
ture scalar of the identity structure or Sl(2, R)U/SO(2) acting on the complex structure
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scalar of it depending on whether we consider type IIA or type IIB. We also showed that
we can interpret the flat superconformal cone over this space in terms of pure spinors
and their embeddings into E7(7) representations.

In the derivation we mainly used algebraic properties of the pure spinors but did
not impose explicitly any differential constraint. The reason being that the metric on
scalar field space is determined by the algebraic properties while differential constraints
affect the potential of the effective action. However, by analyzing the light spectrum
of the effective supergravity we argued that we have to project out all SU(2) doublet
degrees of freedom in order to remove the massive gravitino multiplets. Their presence
would alter the standard supergravity with 16 supercharges and in particular change the
scalar geometry. Since the exterior derivative of the pure spinors dΦ is an SU(2) doublet
this effectively also constrains the class of compactification manifolds. In the absence
of a warp factor it implies that K3 is the four-dimensional compactification manifold
Y4, while for the higher-dimensional Y5,6 a component of the almost product structure
appears locally as K3.

For all spaces the number of light modes is determined by the integer n with n = 16
for K3. Generically, this number is related to the global twisting of the bundle of forms
that are in the (2,2) representation of SU(2)×SU(2). All other details of the dimensional
reduction are encoded in the possible gauging of the supergravity action and in the warp
factor. The moduli spaces which we derived here could already have been predicted
from the general form of supergravity theories with 16 supercharges. However, here we
showed explicitly how these moduli spaces arise in the compactification procedure. More
precisely, we gave an example how the U-duality covariant formalism can be used to
determine the moduli space for backgrounds that break part of the supersymmetry.

In the second part of the thesis, we carried out a systematic analysis of when sponta-
neous N = 2 → N = 1 supersymmetry breaking can take place in gauged supergravities
with general vector multiplet couplings and special hypermultiplet couplings. Our results
provide a new perspective on the circumvention of well-known no-go theorems which for-
bid partial supersymmetry breaking in a Minkowski vacuum for a class of supergravity
theories [93,94,103,104]. In particular, we have found the general solution to the condi-
tions for spontaneous N = 2 → N = 1 supersymmetry breaking in Minkowski and AdS
space.

Allowing for mutually local electric and magnetic charges, we evaded the absence of a
holomorphic prepotential and translated the gravitino and gaugino equations into a set
of conditions for spontaneous partial supersymmetry breaking in terms of the charges,
encoded in the embedding tensor, which left the special-Kähler manifold without any
constraint. In contrast, we showed the quaternionic-Kähler manifold must allow for a
pair of Killing vectors which are constrained by the hyperino equation in that they must
build a holomorphic vector with respect to a specific almost complex structure.

In a next step, we derived the N = 1 low-energy effective action of a partially broken
N = 2 gauged supergravity by integrating out all modes with a mass of the order of
the massive N = 1 gravitino multiplet that results from the super-Higgs mechanism.
In particular, the two vectors gauging the pair of Killing vectors are part of the massive
gravitino multiplet. Their removal corresponds to taking the quotient of the quaternionic-
Kähler manifold with respect to the pair of isometries. We showed that the resulting space
is Kähler, consistent with N = 1 supersymmetry, and derived its Kähler potential. The
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removal of the pair of gauge vectors furthermore lead to a projection on the gauge kinetic
function. Since one of the two gauge vectors is given by precisely the graviphoton, one
can show that the projected gauge kinetic function is holomorphic and thereby fulfills
the N = 1 constraints. Finally, we identified the superpotential and the D-terms that
can be generated by additional gaugings at a scale below the N = 2 → N = 1 breaking
scale. Their form is determined by the N = 2 data. Furthermore, we checked the
holomorphicity of the superpotential.

We then focussed on the case of special quaternionic-Kähler manifolds, which appear
in general SU(3) × SU(3)-structure compactifications, and constructed for this class of
manifolds a pair of Killing vectors out of the Heisenberg algebra of Killing vectors that
arises in the c-map construction such that they solve the additional necessary conditions
coming from the hyperino variation. The resulting solutions for the embedding tensor
components could be rephrased in terms of the second derivatives of the prepotentials.
For the Minkowski case, we found that the set of conditions for partial supersymmetry
breaking are mirror symmetric under the exchange of the prepotentials of the special
Kähler (F) and special quaternionic-Kähler (G) geometry. Our final conclusion is that
spontaneous N = 2 → N = 1 supersymmetry breaking is possible at any point on the
special Kähler manifold and at any point on the special quaternionic-Kähler manifold in
gauged supergravity.

It is natural to ask about the stringy realization of this mechanism for partial super-
symmetry breaking. By comparing our solution for the embedding tensor components
with the charges appearing in flux compactifications, we found that the charges needed
to solve the N = 1 Minkowski vacuum conditions include non-geometric fluxes. This
explains how we have evaded the no-go theorem forbidding the compactification of super-
gravity to Minkowski space in four dimensions [101–103], which applies only to geometric
fluxes. For an N = 1 AdS vacuum, we found that geometric fluxes alone are sufficient to
solve the supersymmetry conditions. For both cases, a possible direction for future work
would be to understand the lift of the general N = 1 solutions.

Finally, we should note that the fluxes appearing in a supergravity derived from string
theory are quantized, and therefore partial supersymmetry breaking may only be possible
at discrete points on Mv ×Mh, where the second derivatives of the prepotentials obey
an integer condition. Furthermore, flux quantization may put some constraints on the
allowed moduli spaces. We shall leave a more thorough analysis of this point for future
work.
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Appendix A

Conventions and technical details

In this appendix we collect our conventions used throughout the thesis.

The SU(2) matrices (σx)AB which appear in the N = 2 supersymmetry variations
are given by

(σ1)AB =

(
1 0
0 −1

)
, (σ2)AB =

(
− i 0
0 − i

)
, (σ3)AB =

(
0 −1
−1 0

)
,

(σ1)AB =

(
−1 0
0 1

)
, (σ2)AB =

(
−i 0
0 −i

)
, (σ3)AB =

(
0 1
1 0

)
.

(A.1)
These can be found from the usual Pauli matrices by applying the antisymmetric SU(2)
metric εAB, which in our conventions has the properties

εABεBC = −δAC , ε12 = ε12 = +1 . (A.2)

For SO(N) the gamma matrices γm satisfy

{γm, γn} = 2gmn , m, n = 1, . . . , N , (A.3)

where gmn is the SO(N) metric, which can be used to raise and lower the index of the
gamma matrices. For N even the chirality operator is given by γ0 = iN/2 1

N !
εm1...mN γm1...mN

,
where ε specifies the orientation of the manifold. For antisymmetric products of gamma
matrices we abbreviate

γm1...mk
= γ[m1 . . . γmk] . (A.4)

The antisymmetric products of two gamma matrices γmn fulfill the SO(N) commutation
relations and generate the action of SO(N) on spinors η.

As explained e.g. in [161], for any N one can define the charge conjugation matrix,
which maps a spinor η to its charge conjugate ηc. For N = 4k, k ∈ N0, the charge con-
jugation matrix commutes with the chirality operator and therefore charge conjugation
preserves the chirality of a spinor. For N = 4k + 2, charge conjugation anti-commutes
with the chirality operator and thus exchanges the chirality of spinors.

With (2.15) and (3.14) we can compute the SO(4) Fierz identities to be

ηαη̄β = 1
2
(P−) β

α − 1
8
i Jmn (γmnP−) β

α , for α, β = 1, . . . , 4 ,

(ηc)αη̄β = 1
8
i Ω̄mn (γmnP−) β

α ,

ηα(η̄c)β = 1
8
i Ωmn (γmnP−) β

α ,

(A.5)
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where P± = 1
2
(1± γ0) are the chiral projection operators.

Analogously, the SO(6) Fierz identities for two spinors η1 and η2 can be derived by
using (3.14) together with the definitions (2.23), (2.28) and (2.29) to be

(ηi)α(η̄i)
β =

1

2
(P−) β

α − 1

4
i J (i)

mn (γmnP−) β
α for i = 1, 2, and α, β = 1, . . . , 8 ,

(ηc
i )α(η̄i)

β =
1

24
i Ω̄(i)

mnp (γmnpP−) β
α ,

(ηi)α(η̄c
i )

β =
1

24
i Ω(i)

mnp (γmnpP+) β
α ,

(η1)α(η̄c
2)

β =
1

2
Km (γmP+) β

α − 1

8
i KmJnp (γmnpP+) β

α ,

(ηc
2)α(η̄1)

β =
1

2
K̄m (γmP−) β

α − 1

8
i K̄mJnp (γmnpP−) β

α ,

(η2)α(η̄1)
β =

1

4
i Ω̄mn (γmnP−) β

α ,

(η1)α(η̄2)
β =

1

4
i Ωmn (γmnP−) β

α .

(A.6)

With the help of

(η1)α(η̄1)
β = (η1)α(η̄c

2)
δ(ηc

2)δ(η̄1)
β , (η1)α(η̄c

1)
β = (η1)α(η̄2)

δ(η2)δ(η̄
c
1)

β , (A.7)

etc., we can derive the relations (2.30) and (2.27) for the forms involved.

For SO(N, N) spinors, the gamma matrices ΓA are defined by

{ΓA, ΓB} = 2IAB , A,B = 1, . . . , 2N , (A.8)

where I is the SO(N, N) metric. We can also write the gamma matrices in terms of
raising and lowering operators Γm+ and Γm− such that

{Γm+ , Γn+} = 0 ,

{Γm− , Γn−} = 0 ,

{Γm+ , Γn−} = 2gmn for all m, n = 1, . . . , N ,

(A.9)

where gmn is the SO(N) metric. As for SO(N) gamma matrices, we abbreviate the
antisymmetric product of SO(N, N) gamma matrices by

ΓA1...Ak
= Γ[A1 . . . ΓAk] . (A.10)

The antisymmetric products of two gamma matrices ΓAB fulfill the SO(N, N) commuta-
tion relations, and generate the action of SO(N, N) on spinors Φ. The chirality operator
is given by Γ0 = 1

(2N)!
εA1...AdΓA1...Ad

, where ε is naturally normalized by

εm1+m1−...mN+mN− = 1 , (A.11)

if N is even. In this case it defines a canonical choice of positive chirality.
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Over a point on a k-dimensional manifold Yk we can define SO(k, k) gamma matrices
via the operators

Γm+ ≡ dxm∧ , Γm− ≡ ιxm , (A.12)

which act on forms and where ιxm denotes the insertion of the tangent vector xm. They
naturally fulfill the Clifford algebra (A.9) since

[dxm∧ , ιxn ]ωp = δm
nωp (A.13)

for any p-form ωp. Therefore, we can canonically define an SO(k, k) action on the space
of forms Λ•T ∗Yk. The chirality operator Γ0 acts on a p-form ωp by

Γ0 ωp = (−1)p ωp , (A.14)

hence the Weyl spinor bundle of positive (negative) chirality is given by the bundle of
even (odd) forms. The generators of this SO(k, k) action naturally split into three types
according to the number of raising and lowering operators. Transformations of the type
Γm+n− preserve the degree of a form and span the algebra of the geometrical group
Gl(k, R). The generators Γm+n+ and Γm−n− correspond to two-forms and bi-vectors.
Hence we conclude

so(k, k) = gl(k, R)⊕ Λ2T ∗Y ⊕ Λ2TY . (A.15)
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