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Abstract

Electrons confined to two dimensions, cooled down to millikelvin temperatures and subjected

to a strong perpendicular magnetic field form some of the most remarkable collective states

of matter. In this dissertation, we have carried out local probe and transport studies on col-

lective phenomena associated with two of these exotic states induced by strongly interacting

electrons. The collective phenomena studied are: (a) The electronic liquid-crystal phases that

emerge in partially filled high Landau levels (N ≥ 2). (b) The spin phase transition that

occurs at filling factor ν = 2/3.

The correlated phases in high Landau levels, which are responsible for reentrant integer

Hall quantization and anisotropic transport, were studied in transport under non-equilibrium

conditions by imposing a dc current drive. In these studies, we have observed that the dc

drive has a stabilizing influence on the orientation of the anisotropic phase at half-filling if

dc-drive and easy direction coincide, while the easy-direction of conduction is rotated to

point along the direction of the dc-current otherwise. At quarter fillings, the dc drive induces

anisotropic transport behavior consistent with stripe order. Furthermore, we have observed

that this emergent anisotropic phase also undergoes a current induced reordering. Initially,

dc-drive and easy direction are perpendicular, but with increasing drive they align.

Using a single-electron transistor, we studied the spin phase transition at filling ν =

2/3. In these studies, we were able to follow the evolution of localized states across the

first-order spin transition by measuring the local electronic compressibility. Localized-state

spectra reveal the hysteretic behaviour accompanying the transition. This hysteresis is due to

the formation of domains of different spin polarization. Using electrostatic gating we varied

the size of the sample undergoing the phase transition. For submicrometer dimensions the

hysteresis disappears, indicating domain sizes in excess of 500 µm.





Zusammenfassung

Zweidimensionale Elektronengase unter starken senkrechten Magnetfeldern und Tempera-

turen von einigen Milli-Kelvin bilden infolge der starken Wechselwirkung untereinander

bemerkenswerte kollektive Zustände aus. In dieser Dissertation wurden zwei dieser exoti-

schen Phänomene untersucht: 1. die elektronischen flüssig-kristallinen Phasen, bei teilge-

füllten, höherzahligen Landau Niveaus (N ≥ 2), 2. der Spin-Phasenübergang, bei Füllfaktor

ν = 2/3.

Die korrelierten Phasen bei höheren Füllfaktoren, die eine wiederkehrende ganzzahlige

Hall-Quantisierung zeigen wurden mittels DC-Transportmessungen unter Nichtgleichgewichts-

bedingungen untersucht. Bei diesen Experimenten konnten wir beobachten, dass der Gleich-

strom eine stabilisierende Wirkung auf die Ausrichtung der anisotropen Phase bei halbem

Füllfaktor hat, sofern Strom- und Vorzugsrichtung von vorneherein übereinstimmen, an-

derenfalls kommt es zu einer Ausrichtung der Vorzugsrichtung entlang der Stromrichtung.

Bei Füllfaktoren von 1/4 induziert der Gleichstrom ein anisotropes Transportverhalten, was

für die ”stripe order” zu erwarten ist. Diese auftretende anisotrope Phase zeigte ferner

eine durch den Anregungsstrom induzierbare Neuorientierung. Während Stromrichtung und

Vorzugsrichtung bei kleinen Anregungsströmen noch orthogonal zueinander ausgerichtet sind,

kommt es bei einer Erhöhung des Stromes zu einer Parallelisierung beider Richtungen.

Unter Verwendung von Einzelelektronentransistoren wurde der Spin-Phasenübergang bei

ν=2/3 untersucht. Aus der Messung der lokalen Elektronen-Kompressibilität konnte die Ent-

wicklung der lokalisierten Zustände über den Spin-Phasenübergang der 1. Ordnung hinweg

nachvollzogen werden. Die Spektren der lokalisierten Zustände zeigen deutlich das Hyste-

reseverhalten während des Phasenüberganges, als Folge der Ausbildung von Domänen mit

unterschiedlicher Spin-Polarisation. Die effektive Probengröße konnte durch Gatter vari-

iert werden. Dabei wurde beobachtet, dass die Hysterese im Submicrometer-Bereich ver-

schwindet, was eine Domänengröße von mehr als 500µm bedeutet.
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Symbols and Abbreviations

ac alternating current.

a.u. arbitrary units.

B External magnetic field.

B∗ Effective magnetic field experienced by CFs.

CDW Charge Density Wave.

CF Composite Fermion.

CF-LL Composite fermion Landau levels.

dc direct current.

e Electron charge.

ε Dielectric function of the background material.

ELC Electron Liquid Crystal.

EZ Zeeman energy.

EF Fermi energy.

FQHE Fractional Quantum Hall Effect.

h̄ωC Cyclotron energy.

I Electrical current.

IQHE Integer Quantum Hall Effect.

LL Landau level.

LLL Lowest Landau level.

` Magnetic length (` =
√

h̄/eB).

mb Electron band mass (mb = 0.067me in GaAs).

me Electron mass in vacuum.

MBE Molecular Beam Epitaxy.
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N Landau level index.

NMR Nuclear magnetic resonance.

ν Filling factor of electrons.

ν∗ Filling factor of composite fermions.

Φ0 Elementary magnetic flux quanta (Φ0 = h/e).

QHR Quantum Hall Regime.

RH Hall resistance.

RK The von Klitzing constant (RK = h/e2).

RL Longitudinal resistance.

RIQHE Reentrant Integer Quantum Hall Effect.

SET Single Electron Transistor.

T Temperature.

2D Two-dimensional.

2DES Two-dimensional electron system.

VC Coulomb energy.

VL Longitudinal voltage.

VH Hall voltage.

vdP van der Pauw.

ωC Cyclotron frequency.

z Position in 2D (z = x + iy).



Chapter 1

Introduction

The collective behavior of electrons in a two-dimensional system is a fundamental issue in

condensed matter physics. In the past 25 years, studies on the behavior of electrons confined

in a two-dimensional plane have revealed a plethora of new physical phenomena associated

with correlated many-electron states that emerge due to the strong electron-electron interac-

tions. Preeminent among these phenomena is the fractional quantum Hall effect; a quantum

phenomenon that is the result of the condensation of a collection of electrons into a new state

of matter. Their discovery and explanation in the early 1980s [1, 2] marked the beginning of

a new era in the field of the strongly correlated electron systems. Nowadays, investigations

on ultra clean two-dimensional electron systems subjected to a perpendicular magnetic field

and cooled down to millikelvin temperatures continue to disclose some of the most exotic

collective state of matter [3, 4].

The remarkable diversity of collective states that emerge in the quantum Hall regime have

turned the 2DES into a fascinating playground to investigate fundamental electron-electron

interactions. The prominent manifestation of electronic interactions in a 2DES subjected to a

perpendicular magnetic field is due to the massive degeneracy of the Landau levels that form

when the kinetic energy becomes quantized. This quenching of the kinetic energy makes

the system particularly susceptible to Coulomb correlations. The collective phenomena most

intensively studied are those associated with the fractional quantum Hall states. These states

correspond to incompressible quantum liquids with fractionally charged excitations, that ex-

hibit the fractional quantum Hall effect [5]. Another important collective ground states that

emerge in the quantum Hall regime is the Wigner crystal [6, 7]. In this state the electrons

arrange themselves on the vertices of a triangular lattice. Recently there has been evidence
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also for the existence of exotic phases that resemble liquid crystals [8].

In this work I will present experiments in which we have explored two different classes

of correlated many-electron states in the quantum Hall regime: the electronic liquid-crystal

phases that emerge when more than two Landau levels are populated and the fractional quan-

tum Hall state at filling 2/3 of the lowest Landau level which undergoes a spin phase transi-

tion. Although the origin of these two collective phenomena are distinct, they have a common

characteristic. Two or more electronic phases coexist and compete resulting in charge pattern

or domain formation. These patterns and domains are formed by the charge [8] and spin [9]

degrees of freedom and stabilized by competing interactions.

Most studies focusing on electron-electron correlation effects in 2DES have been done

at sufficiently high magnetic fields so that only the lowest Landau level is partially filled,

i.e., the degeneracy of the Landau level is such that it can accommodate all the electrons.

In this so-called extreme quantum limit the most pronounced fractional quantum Hall states

occur. These states have been the source of a tremendous amount of interesting physics.

Recently the physics in the extreme quantum limit has been enriched further by paying close

attention to the internal spin degree of freedom [10]. In the fractional quantum Hall regime

some ground states differ only in the configuration of the electron spins, which is determined

by the interplay between the Coulomb and Zeeman energies. Under certain conditions, a

spin-unpolarized fractional quantum Hall state competes in energy with the spin-polarized

fractional quantum Hall state. Spin phase transitions can occur between unpolarized, partially

polarized, and fully spin-polarized fractional quantum Hall liquids. Our studies focus on

the spin phase transition that occurs at filling factor ν = 2/3. It is believed that such a

transition is accompanied by domain formation of different spin orientation separated by

domain walls. In many aspects, this transition resembles a ferromagnetic first order phase

transition. To date, the ferromagnetic character of the spin phase transition has been revealed

through hysteretic behavior in macroscopic transport experiments. In this work, we use a

single electron transistor to measure the local compressibility and explore this transition from

a microscopic point of view.

Fractional quantum Hall states do not only occur in the partially filled lowest N = 0

Landau level. Also in the second N = 1 Landau level a number of fractional quantum Hall

states have been observed [11, 12]. Naively, one might expect similar behavior for higher

N ≥ 2 Landau levels as for the partially filled lowest Landau level, since we usually consider
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completely filled lower lying Landau levels as forming an inert background. However this is

incorrect. Recent transport studies on state-of-the-art samples have disclosed new collective

states in high index Landau levels [13, 14]. These states are quite distinct from the fractional

quantum Hall states. Among the main findings of these states are strong anisotropies in the

resistivity near half-filling of these higher Landau levels and the observation of re-entrant

Hall quantization around quarter-fillings. Although the precise nature of these phases is still

unclear, they are believed to be charge density waves exhibiting different long range ordered

density patterns [15]: stripes and multi-electron bubbles. The coexistence of a partially filled

high index Landau levels with multiple completely filled lower lying Landau levels, modifies

the balance between the repulsive and the attractive components of the Coulomb interaction,

so that Laughlin-like states [2] are no longer the favoured ground state of the system. The

system prefers to break up into domains composed of a mixture of the two adjacent integer

fillings instead of condensing into a fractional quantum Hall liquid. The morphology of these

charge density patterns depends on the filling of the partially filled level. Near half filling, the

pattern consists of stripes of alternating integer filling. Near one and three-quarter fillings, a

bubble phase emerges made up of bubbles of one integer filling, immersed in a sea of the other

integer filling. The bubbles form triangular crystal similar to the Wigner crystal. The stripe

morphology accounts for anisotropies in the resistivity, whereas re-entrant Hall quantization

is expected for the bubble phase. A more sophisticated model describes these states more

accurately as quantum liquid crystal phases [8]. This model takes into account quantum

fluctuations in the system. The electronic liquid-crystal states are classified according to

the symmetries they fulfil: smectic phase, nematic phase, stripe crystal, and isotropic liquid

phases. In order to improve our understanding of these correlated phases, we have studied

these phases in transport under non-equilibrium conditions by imposing a dc current drive.

The additional dc current modifies these phases in a controlled manner allowing us to gain a

better insight into their nature and properties.

1.1 Organization of this thesis

This thesis comprises six chapters:

Chapter two surveys some important concepts pertaining to the quantum Hall regime.

The two-dimensional electron system is introduced. A brief introduction to the integer and
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fractional quantum Hall effects is presented. A recent model of localization in the quantum

Hall regime, which includes Coulomb interaction is also presented.

Chapter three presents the technical background needed to carry out the experiments.

Section 3.1 describes the sample design as well as the geometry of the devices used in these

studies. Subsequently, the transport and local probe techniques are described in sections 3.2

and 3.3 respectively.

Chapter four is devoted to the correlated phases in high index Landau levels. An overview

of the main experimental evidence for the existence of these phases is presented and described

in the first section. The charge-density-wave and the electron liquid-crystal models are intro-

duced in section 4.2. The main results of this chapter come from a study of these phase under

non-equilibrium conditions by imposing a dc current drive. The remainder of this chapter

presents evidence consistent with current induced anisotropy and reordering of the electron

liquid crystal phases.

Chapter five presents results on the spin phase transition at filling factor ν = 2/3 using a

local probe technique. With a stationary single-electron transistor the localized states across

the spin are investigated. In the first section a brief introduction to the physics of the spin tran-

sition as well as experimental evidence from transport studies for its existence is presented.

Section 5.3 presents the microscopic manifestation of this first-order spin phase transition.

The phase transition is accompanied by hysteresis as shown in section 5.4. Finally, in section

5.5 the typical domain size is estimated.

Chapter six summarizes the main findings of the research performed in this dissertation.

Appendix A presents details of the sample fabrication.



Chapter 2

The Quantum Hall Regime

A two-dimensional electron system exhibits the quantum Hall regime when it is subjected to a

strong perpendicular magnetic field, and cooled down to kelvin temperatures1. The electrons

under these conditions are mathematically described by the Hamiltonian [17]

H =
∑
j

1

2mb

[
h̄

i
∇j + e ~A(~rj)

]2

+
e2

ε

∑
j<k

1

|~rj − ~rk|
+

∑
j

U(~rj) + gµB
~B · ~S (2.1)

The first term on the right side is the kinetic energy in the presence of a constant external

magnetic field ~B = ∇× ~A, the second term is the Coulomb interaction energy, the third term

is a potential that incorporates the effects of the uniform positive background and disorder,

and the last term corresponds to the Zeeman energy. Due to the applied magnetic field, the

kinetic energy of the 2D electrons is quenched and the energy spectrum is converted into a

ladder of massively degenerate Landau levels, each separated by the cyclotron energy gap.

The physics in the quantum Hall regime is governed by the competition between these

four energy scales. Apart from the energy scale introduced by the disorder potential, these

energies are as follows for GaAs based 2DES:

the cyclotron energy

h̄ωC = h̄
eB

mb

≈ 20B[T ]K, (2.2)

the Coulomb energy

VC ≡
e2

ε`
≈ 50

√
B[T ]K, (2.3)

1Recently, the quantum Hall effect was observed at room temperature in graphene [16]
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the Zeeman energy

EZ = 2gµB
~B · ~S =

g

2

mb

me

h̄ωC ≈ 0.3B[T ]K (2.4)

The Zeeman energy is defined as the energy required to flip a spin. µB is the Bohr magneton

µB = eh̄/2mb.

Equations 2.2-2.4 give the energy in Kelvin (K), with B[T] in Tesla (T). Here, the fol-

lowing values were used: band mass of electrons mb = 0.067me (me is the electron mass in

vacuum); dielectric constant ε = 12.6; Landé g-factor g = −0.44. Another relevant parame-

ter in the quantum Hall regime is the magnetic length, `B, which is defined as:

`B =
(

h̄

eB

)1/2

≈ 25√
B[T ]

nm. (2.5)

The present chapter attempts to introduce the basic elements required to understand some

of the most relevant concepts in the quantum Hall regime. This, in turn, serves as an intro-

duction for chapters 4 and 5, which describe experiments carried out in the limit where the

Coulomb interaction energy dominates.

2.1 Preliminaries

2.1.1 Two-Dimensional Electron Systems

A two-dimensional electron system (2DES) is created by confining electrons to a plane using

a suitable confinement potential [18]. In these systems, electrons can move along the plane

but are bound to it in the perpendicular direction. In practice, there are several ways to place

electrons in a plane, but the most adequate for studying correlation effects is to confine the

electrons to an interface between two crystalline semiconductors with different energy band

gaps [19].

Nowadays the best quality 2DESs2 have been obtained at the Gallium-Arsenide/ Aluminium-

Gallium-Arsenide (GaAs/AlxGa1−xAs) interface. The interface between these two semi-

conductor crystals can be grown with mono-atomic-layer precision using molecular beam

epitaxy (MBE) machines [20, 21]. This is because the two semiconductors crystals have al-

most the same crystal structure leading to a nearly stress-free interface. Upon doping the
2For the purposes of this work, a measure of the 2DES’s quality is its mobility. The higher the mobility, the

better the 2DES’s quality.
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AlGaAs material with donor impurities (in this case, silicon Si donors) placed at a distance

away from the interface, electrons are introduced into the system [22]. Since the AlGaAs has

a larger band gap than GaAs, electrons residing in the n-doped region of the AlGaAs find it

energetically favorable to transfer to the lower energy conduction band of GaAs. This causes

an accumulation of charge on the GaAs side of the interface. The charge imbalance gener-

ates an electric field normal to the interface, which bends the bands and a quasi-triangular

confinement potential develops for the conduction electrons on the GaAs side, as shown in

Fig. 2.1a. This potential causes a quantization of the electron energy, and leads to so-called

electric subbands Ei (i is the subband index). Since the energy difference between these elec-

tric subbands is on the order of 10 meV (100 K), at low temperatures and for densities below

5-6×1011 cm−2 all electrons reside in the lowest subband of the quasi-triangular potential

well. An alternative way to form a 2DES is to confine the electrons in a GaAs quantum well

which is flanked on either side by an AlGaAs barriers. This case is depicted in Fig. 2.1b.

Figure 2.1: Schematic representation of the conduction bands in modulation-

doped AlGaAs/GaAs samples. Since the conduction band edge of GaAs lies lower

in energy than AlGaAs, electrons transfer from the doped AlGaAs region to the

undoped GaAs to form a 2DES at the interface between GaAs and AlGaAs (a),

or in the GaAs quantum well (b). The lowest two electric subbands E0 and E1 as

well as the Fermi energy EF are shown.

In both structures described above the 2DES is spatially separated from the ionized dopants.

As a result, the scattering of electrons by the ionized impurity potential is significantly re-

duced, meaning that the electrons in the 2DES are essentially free to move in the plane. It

turns out this is crucial for many of the phenomena observed in these systems: by reducing
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the electron-impurity interaction and the disorder, the interaction among the electrons gives

rise to a variety of collective phenomena that are not destroyed by the weak disorder.

2.1.2 Landau Quantization

Now we consider the effect of a strong magnetic field perpendicular to a noninteracting 2DES.

Under this condition, the Lorentz force causes the electrons to move onto circular orbits.

Quantum mechanics dictates that an electron orbit can only enclose a flux equal to an in-

teger multiple of the elementary flux quanta Φ0 = h/e. Hence, the orbital motion becomes

quantized. The quantum description of the system can be obtained by solving the Schrödinger

equation using the Hamiltonian in 2.1 (ignoring interaction and the Zeeman term). In the Lan-

dau gauge ~A = (0, Bx, 0), where ~B = Bẑ is the magnetic field pointing in the z-direction,

the problem is reduced to a shifted harmonic oscillator equation [23] ignoring the interaction

term. Thus, one can solve for the eigenfunctions Ψnk whose eigenenergies Enk are given by

Enk = En = (n +
1

2
)h̄ωc (2.6)

where n is an non-negative integer, and h̄ωc is the cyclotron energy (see Eq. 2.2). Note

that the magnetic field has induced a condensation of the continuous energy spectrum of the

noninteracting 2DES into a discrete set of highly degenerate levels. These levels are known

as Landau levels, and are equally spaced by the cyclotron energy gaps. In the disorder-free

case, these gaps between the levels are void of electronic states.

However, the Eq. 2.6 only describes that part of the electron energy associated with its

orbital motion. To this we must add the spin contribution. The Zeeman effect splits each

Landau level (LL) into two levels separated by the Zeeman energy EZ (see Eq. 2.4).

The degeneracy of Landau states mentioned above corresponds to the fact that the eigenen-

ergies are function of a single quantum number n, however 2D electrons have two degrees of

freedom so there is a missing quantum number k which is responsible for a large degeneracy

of each LL. This degeneracy may be regarded as follows: Many electronic orbits of equal

size can be placed in different positions along the plane of a given 2DES. The number of

states available in each spin-split LL is nL = eB/h. Since this quantity increases with B,

to keep the total electron density of the system constant, the Fermi energy EF has to move

so that fewer and fewer LLs are occupied with increasing B. The number of spin-split LLs

occupied at a given B is defined as the filling factor. The filling factor can be calculated as
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Figure 2.2: Upper panels: Schematic representation of three Landau levels, n =

0, 1, 2, in a nine-electron system for three different values of the magnetic field.

Here the splitting due to spin degeneracy is neglected for simplicity. In the panel-

A, the magnetic field is such that some electrons reside in the n = 0 as well as in

the n = 1 Landau level. When the strength of the magnetic field is increased, the

degeneracy of states in each Landau level increases, and electrons in the n = 1

LL drop into empty states with lower energy of the n = 0 LL (panel-B). When

the magnetic field is high enough, the upper LL will be entirely emptied and

all electrons reside in the lowest level, panel-C. Lower figure: Fan of Landau

energies En for n = 0, 1..., 9 and the variation of the chemical potential µ at

T = 0 with magnetic field B.
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the ratio between the number of electrons per unit area ne and the number of states per unit

area available in each spin-split LL nL

ν =
ne

nL

=
neh

eB
. (2.7)

Associated with the magnetic field are the flux quanta. Thus, the filling factor can be

rephrased in terms of elementary magnetic flux quanta Φ0 as the ratio of the number of elec-

trons to the number of elementary flux quanta threading the sample: ν = neΦ0/B, where

Φ0 = h/e. Whenever the electron density ne is an integral multiple of the density of states

per LL nL, i.e., when ν takes an integer value, there will be a jump of the chemical potential.

In this case the system is said to be incompressible (panel C in Fig. 2.2) in the sense that

removal of a single flux quanta by lowering the field, or adding a single electron into the

system, requires to overcome the energy gap between the LLs. As ν deviates from the integer

value, i.e., when the LL is only partially full, the chemical potential will vary continuously

as the density is changed because in this situation the LL can accommodate an extra charge

with a small energy cost. In this case, the system is compressible (Fig. 2.2 panels A and B).

Hence, the compressibility of a system provides a tool to understand the type of ground state

formed in an electronic system [24]. For instance a 2DES with fixed carrier density, tuning

the strength of a perpendicular magnetic field, the chemical potential shows sharp sawtooth-

like oscillations indicating that the ground state changes from insulating (incompressible) to

metallic (compressible) as is schematically depicted in the Fig. 2.2. Here, the sharp drops

are at integer filling factors where there is a gap in energy between two adjacent LLs. As

explained in the next section, the presence of these gaps combined with the existence of lo-

calized states, induced by disorder, leads to an effect in the transport properties called the

quantum Hall effect.

2.2 Quantum Hall Effects

The quantum Hall effect (QHE) appears when electrons confined to two dimensions are sub-

jected to a strong perpendicular magnetic field. This phenomenon is a quantum-mechanical

version of the classical Hall effect discovered by Edwin Hall in 1879. In the classical Hall

effect, a current I is imposed through the sample and a magnetic field B is applied perpen-

dicular to it. A voltage drop VL develops along the direction of the current flow. The ratio of
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VL to I is just the ordinary resistance of the material or longitudinal resistance RL = VL/I .

Simultaneously, a second voltage VH develops within the specimen perpendicular to the cur-

rent path. Due to the Lorentz force, the moving charges are deflected towards the side of

the sample and give rise to charge accumulation on one boundary of the sample and charge

depletion at the other. This, in turn, produces the Hall voltage VH perpendicular to both the

current direction and the magnetic field. The charge accumulation continues until equilib-

rium is reached; this happen when the electrostatic force resulting from the charge separation

cancels the magnetic force. Considering this steady state, a classical calculation would give

that the Hall resistance RH = VH/I rises linearly with the magnetic field while the longitu-

dinal resistance RL remains essentially constant at small magnetic field. If ne is the carrier

concentration of the material, the classical Hall resistance is expressed as:

RH = B/ene. (2.8)

While this expression for the Hall resistance discovered by Edwin Hall was expected to

remain valid in high magnetic fields and at low temperatures, Klaus von Klitzing in 1980 dis-

covered that when the electrons are confined to two dimensions the situation is dramatically

different [25]. For this discovery von Klitzing was awarded the 1985 Nobel Prize in Physics.

Fig. 2.3 depicts the outcome of one of our transport measurements performed on a very

clean sample. Here, the Hall resistance RH (upper curve) and the longitudinal resistance RL

(lower curve) are shown as a function of magnetic field B at a temperature less than 20 mK.

Basically, there are two main differences between the classical Hall effect and the quantum

Hall effect, which can be noticed phenomenologically from these data. One can observe

that the Hall resistance instead of rising linearly with magnetic field, shows plateaux around

specific field values, contrasting with the result expected from Eq. 2.8. Second, associated

with each of these plateaux is a drop to zero in the longitudinal resistance RL of the same

magnetic field range, indicating that there is no dissipation. But, the most remarkable aspect

is that on the plateau regions the Hall resistance RH is quantized in units of h/e2 in the

following way:

RH = (h/e2)(1/ν) (2.9)

where ν are the filling factors for incompressible states. These plateaux in RH and their

accompanying vanishing of RL are the hallmarks of the so-called quantum Hall effects. From
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the Fig. 2.3 two subset of filling factors can be observed. Integer values of ν correspond

to the integer quantum Hall effect (IQHE), while the fractional fillings correspond to the

fractional quantum Hall effect (FQHE). Although these two effects look qualitatively similar

in experiment, they are the result of quite different physics.

2.2.1 Integer Quantum Hall Effect

The IQHE and the FQHE arise whenever the 2DES becomes incompressible. The origin of

the IQHE lies on the fact that the ground state at integer filling factor, ν = i, consists of i

Landau levels fully occupied, with a gap to excitations. Under these conditions, the filling

factor ν is an integer i and the number of electrons per unit area is ne = inL. Using this

relation in the expression for the classical Hall resistance (Eq. 2.8) gives exactly the values

of the integer quantum Hall plateaux.

RH = (h/e2)(1/i), i = 1, 2, 3 · · · (2.10)

However, the gap in the energy spectrum is not the only important ingredient to explain the

IQHE, because it is unable to account for the presence of plateaux in RH and the persistence

of the vanishing of RL over extended regions of the applied magnetic field. The second crucial

ingredient is the disorder in the system [26, 27]. Disorder in high-quality heterostructures is

mostly due to the ionized donors placed randomly a distance away (referred to as the spacer)

from the 2DES. This spatial displacement reduces the amplitude of the random potential

experienced by the 2D electrons. This disorder potential varies on a length scale comparable

to the spacer thickness (see Fig. 2.4a). If this length scale is large compared to the magnetic

length, then the LLs simply follow the topography of the potential as shown in Fig. 2.4b.

In a magnetic field electrons move along contours of constant potential. In the schematic

illustration of the disorder potential landscape shown in Fig. 2.4a, one can distinguish two

different types of states. Equipotential lines encircling a potential hill or trapped in a valley

correspond to localized states. Electrons occupying such localized states cannot contribute to

current flow through the sample. A second type of states are the so-called extended states,

which are associated with equipotential trajectories that extent throughout the system and

can carry electrical current from the source to the drain [28]. Consequently, the sharply

defined Landau levels broaden into bands composed of localized states in the tails of the

broadened level and extended states at the center (see Fig. 2.4c). The energy ranges where
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Figure 2.3: The integer quantum Hall effect is characterized by well-developed

plateaux at quantized values of the Hall resistance RH , and vanishing values of

the longitudinal resistance RL at integer values of the filling factor ν. Here the

dashed diagonal line represents the classical Hall resistance, and the solid line the

experimental result. Inset: standard Hall bar device for the measurement of the

Hall effect. A current I is made to flow from one end of the sample to the other

and a magnetic field B is applied perpendicular to the sample. Two voltages are

measured: the Hall voltage VH is measured as the potential difference between

two contacts on opposite sides of the current path, while the longitudinal voltage

VL is measured as the potential difference between two contacts on the same side

of the current path. The longitudinal resistance RL and the Hall resistance RH are

defined as the ratios VL/I and VH/I respectively. The additional plateaux and

their corresponding small vanishing values of the resistance at fractional filling

factors ν correspond to the fractional quantum Hall effect. Both quantum Hall

effects are discussed in the text.
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only localized states are available represent a mobility gap. The existence of these localized

states allows us to understand the plateaux in RH and the vanishing of RL over a range of

magnetic fields. Because, as long as a variation in the magnetic field causes the addition or

removal of electrons from the localized states, the Fermi level remains within the mobility gap

and the number of occupied extended states unaltered. Bearing in mind that only the extended

states contribute to the electrical transport, then the transport properties of the system remain

constant. This leads to plateaux in RH and vanishing resistance in RL over extended regions

of magnetic field.

Figure 2.4: (a) Schematic illustration of a disorder potential showing closed

equipotential curves encircling low or high potential regions, and an open con-

tour connecting two opposite sides of the system. The closed contours represent

localized electronic states while the open contours correspond to extended state.

(b) Schematic representation of the energy fluctuations of the Landau levels as a

consequence of disorder. The average magnitude of the fluctuations is equal to the

broadening Γ of the Landau levels. (c) Density of states diagram for two Landau

levels in a system with disorder, the bands of extended and localized states are de-

picted. The extended states are located at the center of each impurity-broadened

Landau level while the localized states are found in the tails of the Landau levels.
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Although the previous explanation provides insights into the physics of the IQHE, it does

not explain the exact quantization of RH . That can be understood by considering edge states

(see Fig. 2.5a). At the boundaries of a real sample the depletion produces an upward bending

of the LLs 3, as shown in Fig. 2.5b. For each LL lying below the Fermi energy EF in the

bulk, there will be an intersection with EF in the vicinity of the sample boundaries. At the

intersection an one-dimensional edge channel forms, which runs along the sample boundary.

For N filled LLs, one gets N chiral edge channels along either side of the sample. Charge

propagation only proceeds in one direction and backscattering is not possible. Hence, edge

current transport will be dissipationless. Moreover, since the charge velocity is proportional

to the slope of the LL, edge channels on opposite sides of the sample carry current in opposite

directions. Classically, these edge states can be thought of as skipping orbits, which result

from the reflection of electrons moving along its cyclotron orbit at the boundary of the sample

(see Fig. 2.5c). The importance of these edge channels for the transport properties in the

quantum Hall regime has been emphasized by a model proposed by Büttiker [29] which

is based on ideas by Landauer [30] of relating two-terminal conductances to transmission

probabilities by attaching different electrochemical potentials and currents to each contact.

In this formalism a current flowing along a single edge channel located between two contacts

at different electrochemical potential µ1 and µ2 is [31]

I = eυD(E)(µ1 − µ2) =
e

h
∆µ, (2.11)

where υ is the velocity of the electron in the channel and D(E) = 1/2πh̄υ the density of

states. Since the voltage drop between the contacts is eV = ∆µ, the two-terminal resistance

of an edge state is equal to R = h/e2. For N channels R = h/Ne2. Now, the suppression of

backscattering due to the chirality of the edge channels, implies that they form equipotential

lines. Thus, the voltage drop measured by using two contacts placed along the boundary of

the sample will be zero, whereas the Hall resistance measured between opposite sides of the

sample will be quantized. Finally, this leads to RL = 0 and RH = h/Ne2, as expected under

quantum Hall conditions. This approach to the QHE is known as the edge channel model.

3The boundaries of the sample can be defined electrostatically, e.g. by patterned gates on the sample surface

which deplete the 2DES underneath, or by etching a mesa and removing the 2DES or at least the doped layer.
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Figure 2.5: The edge-state picture of the quantum Hall effect. (a) Illustration

of a Hall bar at filling factor ν = 2 (spin is not included) showing two edges

states (purple lines) in the vicinity of the lateral boundaries. Arrows indicate the

direction of electron flow on opposite sides of the sample. The width of the Hall

bar is denoted as W . (b) Energy states in the first three Landau levels in the

presence of a lateral confinement potential. States below the Fermi energy (EF )

are occupied (filled circles) while states above EF are empty (blank circles). The

edge channels are located at the intersection of the Landau levels with EF . Here,

the disorder-free case is considered for simplicity. (c) In the bulk of the sample,

electrons follow closed cyclotron orbits, while near the edge, the electron hits the

boundary and is reflected. This results in a skipping motion along the boundary

of the sample in opposite directions at the top and bottom boundary.

2.2.2 Fractional Quantum Hall Effect

Unlike the IQHE, whose origin is linked to the energy gaps in the single-particle energy

spectrum, the FQHE discovered by Daniel Tsui and Horst Störmer in 1982 [1] cannot be ex-

plained within a single-particle framework. In the fractional effect RH is quantized at h/e2ν

with ν rational fractions with odd denominators and it is accompanied by a vanishing of RL.

However, like the integer effect, the fractional effect is also the result of a gap in the excita-

tion spectrum. This gap results from a collective state where all the electrons in the system

participate in a highly correlated manner [32,5]. The essence of this highly correlated state is

captured by the wave function proposed by Laughlin [2]. It describes an incompressible and

homogeneous quantum liquid, whose electron distribution is such that the repulsive Coulomb

interaction is minimized. According to Laughlin, when a 2DES is threaded by m elementary

flux quanta per electron, i.e., at fractional filling factor ν = 1/m, the electron system con-

denses into a highly correlated quantum liquid, which can be mathematically represented by
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the following wave function [2]

Ψ1/m(z1, . . . , zNe) =
∏
j<k

(zj − zk)
m exp

− 1

4`2
B

∑
j

|zj|2
 , (2.12)

for a number Ne of electrons. Here zj = xj + iyj is the complex notation for the location

of the jth electron in the 2D plane with coordinates (xj, yj), and m is a positive odd integer.

This wave function is anti-symmetric under exchange of any two electrons, as required for

fermions [33]. The electron correlation is contained in the polynomial term (or Jastrow-type

term) [34], whereas the Gaussian term stems from the non-interacting case.

For m = 3, Eq. 2.12 describes the state at ν = 1/3. The term zj − zk represents the

interaction of the jth electron with all other electrons. At ν = 1/3 there are three elementary

flux quanta per electron, therefore the wave function of jth electron will have three zeros for

every other electron k it interacts with. One zero, or flux quanta, is located at the position of

the jth electron due to the Pauli’s exclusion principle. The remaining two zeros are also placed

at the position of the electron j in order to minimize the inter-particle Coulomb repulsion

energy. In this way, an electron will see a three-fold zero at the positions of the other electrons

and they are rearranged in such a manner as to be the furthest away from each other as

possible.

As prelude to one of the main topic in this thesis, we would stress that the internal orders

of FQH liquids are very different from the internal orders in other correlated systems such as

crystals, superfluids, etc. The order in the latter systems can be described by order parame-

ters associated with broken symmetries [34], whereas the order in FQH liquids is a kind of

ordering that cannot be described with broken symmetries [35, 36].

Using exact diagonalization studies, Laughlin showed that the above wave function is a

good description of the ground state at filling ν = 1/m. He also showed that the excitations

supported by this liquid correspond to fractionally charged quasi-particles. The creation of

one such quasi-particle costs a finite energy. One can elucidate this process by shifting the

filling factor away from ν = 1/m, by either adding or removing a flux quanta. Bearing in

mind that the state at ν = 1/m corresponds to having m flux quanta per electron of charge

e, then the introduction or removal of a flux quanta is equivalent to add either a quasi-hole

or a quasi-electron of charge e∗ = e/m. This non-zero energy required to create such quasi-

particle represents the gap in the many-body excitation spectrum, which leads to a plateau in

RH and a minimum in RL in the FQHE.
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Laughlin’s wave function can also account for the states at ν = 1 − (1/m) by using

particle-hole symmetry [37]. The remaining odd-denominator states, also referred to as

higher-order FQH states, can be understood in either one of two schemes. One is the hierar-

chical model, proposed independently by Haldane [38], Halperin [39], and Laughlin [40], in

which higher-order FQH states are constructed as a successive condensation of quasi-particles

of the Laughlin states. When ν deviates sufficiently from exact 1/m, the ensuing density of

quasi-particles can be high enough to overcome localization. These quasi-particles can inter-

act via their Coulomb repulsion and, at a critical density, condense themselves to form new

FQH states. In turn, the quasi-particles of these new ground states will form new FHQ states.

In this way, the quasi-particles of each new ground state give rise to a new fractional quantum

Hall state, so that eventually all the higher-order FQHE states are covered. In summary, one

can say that hierarchical FQH states are similar to Laughlin states for quasi-particles. The

second scheme is based on the introduction of compound particles referred to as composite

fermions [17]. These particles can be thought of as assembled from an electron and an even

number of magnetic flux quanta (more precisely vortices). Electrons capture vortices to turn

into composite fermions in order to minimize their interaction energy. As composite fermions

move about, the vortices bound to them produce Berry phases [41], which cancel part of the

Aharonov-Bohm phases originating from the applied magnetic field. Composite fermions

sense an effective magnetic field that is much smaller than the applied magnetic field B. The

effective magnetic field B∗ is given by

B∗ = B − 2neΦ0 (2.13)

Similar to ordinary electrons, the composite fermions execute circular orbits in the presence

of an non-zero B∗. This gives rise to the formation of their own Landau levels (CF-LL), and

each time an integral number of them is completely filled, the system will exhibit an integer

quantum Hall effect. The corresponding integer composite fermion filling factor, ν∗, can be

related to the electron filling factor, ν, by inserting B∗ in Eq. 2.7

ν =
ν∗

2ν∗ ± 1
(2.14)

Hence, the IQHE of composite fermions corresponds to the FQHE of electrons. For example

in the composite Fermion picture ν = 2/3 and ν = 2/5 corresponds to having two filled

Landau levels of composite fermions (ν∗ = 2) for negative and positive B∗.
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2.3 Localization in the Quantum Hall Regime

Localization is an essential ingredient to understand the quantum Hall effect. Localized states

explain the presence of plateaux in RH and the persistence of zero RL over a finite magnetic

field range. In section 2.2.1, these localized states were associated with the single-particle

drift of electrons along contours of the disorder landscape. It turns out that this single-particle

picture fails to account for the microscopic manifestation of localization. Recent experiments

carried out by Ilani et al. [42] showed that the observed localized states are utterly different

from those predicted by single-particle theory. These studies confirmed that the disorder

potential remains essential to the observation of localized states, but in addition Coulomb

interaction plays an important role, i.e., screening of the disorder potential cannot be ignored.

The localized states appear only when the screening ability of the electrons is hampered

because empty states are locally no longer available to rearrange and compensate the disorder

potential.

2.3.1 Basic Phenomenology of Localization

The above-mentioned experiments involve local measurements of the electronic compress-

ibility κ. This thermodynamic quantity is inversely proportional to the derivative of the chem-

ical potential µ with respect to the electron density n, i.e., κ ∝ (δµ/δn)−1. Such experiments

were performed using a single-electron transistor as a local detector of the electrostatic po-

tential (see section 3.3). A typical outcome of these experiments is depicted in Fig. 2.6a. The

plot shows a color map of the inverse compressibility, δµ/δn, as a function of magnetic field

(B) and density (n), which is tuned by using a back gate. In this color map, incompressible

and compressible behavior correspond to bright and dark regions respectively. The slope of

each incompressible region in the (B, n)-plane is given by dn/dB = eν/h, where ν is integer

or fractional. Hence, each incompressible region is associated with an integer or fractional

quantum Hall (QH) state in the (B, n)-plane. Integer QH phases at ν = 1, 2, 3 and 4, as well

as the fractional QH phase at ν = 1/3 are visible in this compressibility measurement. The

band of horizontal lines is associated with the insulating phase at very low densities.

Figure 2.6b shows a very fine measurement of the ν = 1 and ν = 2 incompressible

regions, which reveal that within each incompressible region there is a group of many parallel

(dark) lines. In order to understand the meaning of these lines, one has to recall that the
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Figure 2.6: a) Color map showing a measurement of the inverse of the compress-

ibility dµ/dn as a function of magnetic field, B, and density, n. This measurement

over a large range of B and n was taken using a stationary single-electron tran-

sistor placed on the surface of a heterostructure that has a 2DES buried below the

surface. Incompressible (bright) regions correspond to the quantum Hall (QH)

phases of the system, whereas dark regions are associated with compressible re-

gions. (b) This panel shows a detailed measurement of the ν = 1 and ν = 2

incompressible regions, many parallel (dark) lines are observable. Each line rep-

resents the evolution of the charging of an individual localized state in the density

field-plane. (c) Cross section along the dotted line through a group of lines cor-

responding to the QH phase at ν = 1. Each spike corresponds to the filling of an

individual localized state. (d) Longitudinal resistance, ρxx, measured as a function

of B and n. The bar in the bottom right corner gives the color scale.
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QHE arises from the interplay between localized and extended states (see section 2.1.2).

While extended electrons spread their charge over the entire volume of the system, a localized

electron is confined to a small region in space. Therefore, as opposed to an extended state4,

whenever a single electronic charge enters a confined region, it results in a discrete jump of

the local chemical potential and therefore a spike in its derivative with respect to the density

δµ/δn, or in the local compressibility. The meaning of each line becomes apparent taking a

profile at fixed density through a group of lines (Fig. 2.6c). Based on what was discussed

previously, each spike in δµ/δn represents the filling of an individual localized state, and

therefore each line describes the evolution of a localized state in the (B, n)-plane.

A careful examination of the bands of localized states reveals three properties common

to all bands. Firstly, the evolution of localized states within each band follows the same

slope as the envelope. Secondly, the number of these state in each group remains fixed as the

system evolves in the (B, n)-plane, i.e., no new states are added when the magnetic field is

increased. These two observations can not be reconciled with the single-particle picture. In

the single-particle picture the number of localized states would increase as the magnetic field

increases due to the LL degeneracy and these states would follow arbitrary trajectories when

plotting their occupation in the (B, n)-plane. Thirdly, each group of lines cover a region that

has a constant width, ∆n, in the (B, n)-plane. This ∆n is the same for different QH phases.

This observation is consistent with transport experiments carried out on the same sample as

function of B and n. Fig. 2.6d shows the measured longitudinal resistivity, ρxx, where one

can observe a clear correspondence between the incompressible regions where ρxx (white

regions) drops to zero and the regions where localized states appear in Fig. 2.6a.

In order to accommodate these experimental manifestations of localization, a simple

model that consider the interactions between the electrons and hence screening was formu-

lated in Ref. [42]. This model will be reviewed in the next section.

2.3.2 The Dot Model

To simplify the introduction of localization driven by Coulomb interaction, let us first con-

sider a 2DES in the vicinity of filling factor one (ν = 1). At high magnetic field, far from the

integer filling, the large compressibility within the LL provides nearly perfect screening of

4Since charge is spread over the entire system, the chemical potential will gradually change and therefore

the inverse compressibility will be smooth.
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the disorder potential. This is due to the fact that the density of states within the LL is large

enough, so that electrons can rearrange and create a nonuniform electron density distribution,

denoted as n(~r). The corresponding potential distribution in the plane of the 2DES is identi-

cal but opposite in sign to the bare disorder potential (see Fig. 2.7a). As explained in section

2.1.2, for a given B the local electron density in a LL, nLL, cannot exceed nmax = B/Φ0,

i.e., nLL fulfills the constraints 0 ≤ nLL ≤ nmax. At the center of the LL, these constraints

are irrelevant because the density fluctuations required for achieving perfect screening are

smaller than nmax. Each electron added to the system experiences a flat screened potential

and ends up being delocalized. However, as the filling factor increases towards ν = 1, the

required density for perfect screening in certain regions of the sample exceeds nmax. The sys-

tem locally fails to screen the bare disorder potential (see Fig. 2.7b). These regions coexist

with small compressible regions where the LL is not yet filled, i.e., regions where the density

n(~r) < nmax and screening is still active. Once a compressible region becomes surrounded

by incompressible regions, it behaves as a quantum dot. Strictly speaking, since the com-

pressible regions have a lower density inside them compared to their surroundings they are

anti-dots. As the density increases further, regions corresponding to the peaks in the screen-

ing density profile start to occupy the next LL and dots form (see Fig. 2.7c). The addition

and removal of charge into a dot or anti-dot is governed by Coulomb blockade physics, i.e., it

occurs discretely one particle at a time. This charging produces spikes in δµ/δn. Each spike

corresponds to filling one localized state within a dot or anti-dot.

Let us now consider why the spectrum of localized states exhibits a constant number of

lines running parallel to the line of integer filling in the (B, n)-plane. This behavior can be

attributed to the fact that the disorder potential remains invariant as the magnetic field is tuned.

Identical configurations of dots or anti-dots recur irrespective of the magnetic field strength.

The only effect of increasing the magnetic field is to raise nmax and hence the value of the

average density where the same dot and anti-dots reappear. Therefore, despite the increase of

nmax with the magnetic field, the number of localized states remains constant. At different

filling the same number of localized states appear, except that now the lines run parallel to

the underlying filling factor in the (B, n)-plane.

The localized states appear only in regions with a width of ∆n. This fact is associated

with the amplitude of the bare disorder potential. Each edge of an incompressible band rep-

resents the termination of the localized states. This occurs when compressible pockets (dots
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or anti-dots) form a connected network. Here the compressible pockets lose their quantum

confinement and therefore lose their discrete charging spectra. This is a percolation transition

from a compressible medium into an incompressible background. Within each LL exists two

such percolation transitions. The first occurs when the density is n = ∆ndisorder/2. The

second transition takes place when the density is n = nmax − ∆ndisorder/2. This explains

why each bunch of localized states has a width of ∆ndisorder, which is the same for different

QH phases. For each energy gap in the energy spectrum no matter its origin, the screening

ability of the system will be limited. Identical dots (or anti dots) will form and local charging

spectra within the same band of density ∆n appear.

In conclusion, this model states that the spectra of localized states are defined only by the

bare disorder potential and the presence of an energy gap.
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Figure 2.7: Schematic diagram illustrating the formation of dots and anti dots. (a)

When a LL is partially filled, the bare disorder potential (green curve) is entirely

screened by the electrons. To do so, the electrons form an inhomogeneous density

profile (black curve). (b) Close to complete filling, when the allowed density nmax

is reached the system locally turns incompressible and only certain areas (where

the density is lower than nmax) remain compressible. These compressible regions

form anti dots. (c) When the density is slightly higher than nmax, i.e., when the

next LL starts to be filled (nmin indicates the allowed minimal density of the next

LL), compressible areas, which form dots, emerge.



Chapter 3

Local Probe and Transport Techniques

Having presented part of the theoretical background, we now proceed to describe the samples

as well as the details of the measurement techniques involved in these studies. We first review

the transport measurement technique and then the local probe technique. The latter measures

the local electronic compressibility using a single electron transistor.

3.1 Sample Structures and Devices

Our experiments were carried out on structures made from alternating layers of GaAs/AlGaAs.

These are grown on GaAs substrates using molecular beam epitaxy by our collaborators. In

this work, we have used two different wafers. The experiments described in chapter 4 were

all performed on specimens cleaved from the LP8-9-01.2 wafer, a modulation-doped 30 nm

wide GaAs/Al0.24Ga0.76As quantum well, with silicon δ-doped layers placed symmetrically

on either side of the well. The electron mobility is 18× 106cm2/V s and a carrier density of

2.5× 1011cm−2 is measured in the dark, i.e., in the absence of additional light-induced carri-

ers. The data shown in Fig. 2.3 were taken on this wafer. A schematic drawing of the layer

sequence is shown in Fig. 3.1a. The W11-27-01.1 wafer has served to carry out the exper-

iments reported in chapter 5. This wafer consists of a GaAs/Al0.32Ga0.68As quantum well

with a width of 22 nm. The silicon δ-doping was placed 90 nm above the quantum well and

provided an electron density of 0.8× 1011cm−2. A backgate, consisting of 200 nm of heavily

doped n+-GaAs, was grown in-situ at a distance of 1.8µm underneath the quantum well. Bi-

asing the backgate allowed a continuous tuning of the density from 0.42 to 1.18× 1011cm−2.

The layer sequence of this wafer is depicted in Fig. 3.1b.
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Figure 3.1: Two sketches showing the different layer sequences of the wafers

utilized in this thesis. (a) Structure of the LP8-9-01.2 wafer grown by Loren

Pfeiffer and Kenneth West from Bell Laboratories. (b) W11-27-01.1 wafer grown

by Dieter Schuh and Gerhard Abstreiter at the Walter-Schottky Institut.

All the measurements in this thesis were performed on devices in the van der Pauw ge-

ometry. They were prepared with optical lithography. A typical arrangement of contacts used

in the transport measurements of chapter 4 is depicted in Fig. 3.2. Twelve contacts were

placed symmetrically around the mesa perimeter. A detailed description of the procedure for

defining and contacting the devices is presented in appendix A.

The mesa definition and ohmic contacts are the only necessary processing steps in the

devices used in the studies of chapter 4. However, the device used in the studies of the chapter

5 involves the fabrication of stationary single electron transistors (SETs). The devices were

fabricated by Basile Verdene from the Weizmann Institute of Science in Rehovot, Israel. On

the mesa, aluminum based SETs were fabricated at various locations. In Fig. 3.3a, we show

a sketch of the SET on the mesa, whereas a scanning electron microscope picture of a SET

is shown in Fig. 3.3b. A SET is a tunneling device whose current flow is governed by the

Coulomb blockade effect [43]. The device consists of a small metallic island coupled to

source and drain leads by tunnel junctions. The junctions are made from Al2O3, which is

obtained using a controlled oxidation inside the evaporation chamber of part of the aluminum

that forms either the island or the leads. As we shall explain below, with this device it is

possible to measure the electronic compressibility of the 2DES.
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3.2 Transport Measurement Technique

To investigate the 2DES, electrical transport is the most straightforward technique since this

system can be readily contacted electrically. To resolve the small energy scales involve in

the electron correlation physics described in this thesis, the sample has to be cooled down

to millikelvin temperatures. We carried out the electrical measurements in a top-loading

dilution refrigerator (Oxford Kelvinox TLM 3He/4He Dilution Refrigerator), which has a

base temperature of less than 20 mK. The refrigerator acquires its cooling power from a

continuous dilution of 3He in 4He in the mixing chamber [44]. In these experiments, once the

sample is glued and wired up to a chip carrier, the chip carrier is inserted into the socket of

a sample stage located in a top-loading sample holder. The sample holder, equipped with an

in-situ rotating sample stage, allows to lower the sample directly into the 3He/4He mixture.

Our dilution refrigerator is equipped with a high field superconducting magnet that can apply

a magnetic field up to 15 T (Tesla).

Figure 3.2: Schematic drawing of the device structure. (a) The van der Pauw

geometry depicted here has twelve contacts placed along the sample perimeter.

The bond pads to wire the device to the pins of a chip carrier are also shown. (b)

Magnified view of the mesa to show the details of the contacts. The quality of the

ohmic contacts depends on the orientation of the interface between the contacts

and the 2DES with respect to the crystallographic directions. The Christmas-tree

like shape used in the contacts allows to have the interface in both [110] and [110]

crystallographic directions.

A typical measurement consists of imposing an AC-current through the source and drain

contact of the sample and measuring the voltage difference which appears across two po-
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Figure 3.3: (a) Schematic drawing of the SET on the top surface of the het-

erostructure, which contains a 2DES and an in-situ grown backgate. (b) Scanning

electron image of an aluminum based SET. The main components of the device,

the source and drain leads and the small metallic island, are denoted.

tential probes. The AC-current (Iac) is injected by applying an AC-voltage across a large

resistor (10 MΩ) placed in series with the sample (see Fig. 3.4a.). Dividing the measured

voltage by the current yields the electrical resistance, which is the key quantity we analyze

in our transport measurements. These experiments were performed in a four-terminal mea-

surement configuration. The experimental set-up is shown in Fig. 3.4a. Using a function

generator (Stanford Research Systems Model DS345) a sinusoidal current with a frequency

of 13 Hz and a small amplitude of 10 nA was imposed as a current excitation. The magnetic

field ramp rate is also kept low in order to prevent sample heating. The voltage is detected

with a lock-in amplifier (Lock-In Amplifier model SR830 DSP) with an averaging time of

1 second. Its output is finally measured with a digital multimeter (Keithley 2000) and the

result is sent to the computer via a GPIB interface. The lock-in amplifiers were galvanically

isolated from mains by using isolation transformers.

To investigate our sample under nonequilibrium conditions, we have performed experi-

ments in the presence of a large DC current bias (Idc). The variable Idc is imposed in a floating

configuration. Its direction can be chosen independently from the Iac direction. When Iac is

parallel to Idc, both excitations were applied using the same function generator (Stanford Re-

search Systems Model DS345). However, when Idc was directed perpendicular to Iac, the

DC bias to produce Idc was generated with the help of a separate DC-voltage source (using a

Yokogawa 7651 DC source) and two 50 MΩ resistors, as shown in Fig. 3.4b.
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Figure 3.4: Schematic illustration of our lock-in amplifier based four-terminal

technique to measure the Hall and longitudinal resistance on a square sample with

twelve contacts. (a) Experimental set-up used in the measurements with only an

AC-current. A function generator and a resistor of 10 MΩ is used to drive a small

Iac through the sample. The Hall and longitudinal voltages are measured using

lock-in amplifiers. (b) Experimental set-up used in the measurements when an

additional DC-current (Idc) is imposed. Here the case is shown when Idc is applied

perpendicular to the Iac direction. A DC source, together with two resistors of 50

MΩ, are used to generate the Idc.

3.3 Local Probe Measurement Technique

Transport measurements allow us to probe the properties of a system from a macroscopic

point of view. However, they lack the ability to disclose microscopic information about the

phenomenon under study. In order to investigate the properties of a 2DES in the quantum

Hall regime from a microscopic stand point, we have carried out local probe studies using a

stationary single electron transistor (SET) placed on top of the sample containing the 2DES

(see Section 3.1). The SET acts as an electrometer. It allows to measure the local chemical

potential as well as changes in the chemical potential when the density is modulated.
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3.3.1 Local Electronic Compressibility

The electronic compressibility is a thermodynamic quantity that provides information about

the many-body density of states of the system [45,46,47,48]. The compressibility κ is simply

related to the chemical potential µ, and density n of the system according to:

κ =
1

n2

[
δn

δµ

]
(3.1)

Hence, to measure compressibility locally, one has to induce a change in density and

measure the corresponding change in the chemical potential. The density can be modulated

by applying an oscillating bias voltage on the back gate, which couples capacitively to the

2DES. To measure the change in the chemical potential δµ, one can use the following scheme.

The electrochemical potential V of the system is defined by the sum of the chemical potential

µ and the electrostatic potential φ, namely:

eV = µ + eφ (3.2)

In our experiments, the 2DES is kept in equilibrium: an external voltage source fixes the

electrochemical potential (see Fig.3.5). Now, suppose that the density at a certain location of

the 2DES increases. As a result the local chemical potential increases. This change in the

chemical potential δµ has to be compensated by a change in the electrostatic potential δφ of

opposite sign, since the electrochemical potential remains fixed:

δµ = −δφ (3.3)

Therefore, a measurement of the change in the local electrostatic potential δφ, is sufficient

to infer the change in the local chemical potential δµ of the system and therefore the local

compressibility. The local electrostatic potential can be detected with a SET deposited on top

of the sample. The 2DES then serves as the gate of the SET.

It might be worth mentioning that the chemical potential can be defined locally only when

the semiclassical approximation [49, 50] is valid.

3.3.2 Using a SET as a Local Electrostatic Probe

A SET is a device whose current flow can be turned on and off by changing the voltage

on a gate electrode [43, 51]. In experiments where a SET is used as a local electrostatic
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Figure 3.5: Schematic illustration of electrochemical potential V , chemical po-

tential µ and electrostatic potential φ of a 2DES in electrochemical equilibrium.

When the 2DES is in equilibrium, µ and eφ add up to a constant value eV . There-

fore, changes in the local eφ are equal and opposite in sign to changes in µ. In the

framework of the semiclassical approximation, the electrostatic potential is slowly

varying within the local region limited by the shaded box. Then, the chemical po-

tential within the local region is nearly constant or independent of position.

probe, the 2DES serves as the gate of the SET. The SET is placed on top of the surface of a

heterostructure containing the 2DES, so that changes in the local electrostatic potential of the

2DES are directly reflected as changes in the current flow through the transistor.

A SET consists of a small metallic island connected to source and drain contacts with two

tunnel junctions (see Fig. 3.6a). For current flow to occur through this device, an electron

has to hop on the island from the source lead and off the island to the drain lead. Due to

the small size of the island, the Coulomb energy for charging the island can not be ignored.

This charging energy of the island is given by U = e2/2C, where C is the electrostatic

capacitance of the island. It is the energy difference between the top most occupied state and

an empty state. If the empty state is not located within the voltage window defined by the

voltage applied across the source and drain leads no current can flow. This suppression of

current flow is referred to as Coulomb blockade (see bottom panels of Fig. 3.6). Therefore,

before an electron can tunnel onto the dot, it has to overcome the charging gap. By applying

a gate voltage, VG, to the 2DES the level µ(N + 1) can be lowered in to the voltage window

of the left and right leads, µL and µR respectively, thus a single electron can tunnel on the

island from the left lead and tunnel off the island to the right lead, resulting in current flow.
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Figure 3.6: (a) Sketch of a single-electron transistor composed of a metallic

island, two tunnel junctions and source and drain leads. The gate capacitatively

couples to the island. In the panels (b)-(d), the Coulomb blockade is schematically

illustrated. In (b) the gate voltage (VG) is such that the number of electrons on the

island remains stable and equal to N. Transport through the island is suppressed.

The blockade is lifted when µ(N + 1) is lowered so that it lies between the Fermi

levels of the left and right leads (c). The island can then be charged and discharged

and a non-zero current flows (d).

This process is repeated with increasing VG for each charge state, leading to the so-called

Coulomb-blockade oscillations [52, 53].

3.3.3 Measurements of the Electronic Compressibility

The local compressibility measurements were performed in a top-loading dilution refrigerator

(Oxford Kelvinox TLM 3He/4He Dilution Refrigerator) with a base temperature of less than

20 mK. To carry out the compressibility measurements, it is essential to choose properly

the working point of the SET, where it has maximal sensitivity. This is done in two steps.

First, by analyzing the I-V curve of the SET as a function of V2D, one obtains the voltage

VSET = (µL − µR)/e where the transistor has maximal sensitivity. Secondly, when keeping

VSET fixed to this value, the optimal voltage V2D where the δISET /δV2D is maximum is
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determined. This is the optimal working point of the SET (see Fig. 3.8). Once the working

point is set, it is possible to start the measurements of the electronic compressibility.

Figure 3.7: (a) Schematic illustration of the experimental set-up in the local

probe studies. Here d is the separation between the 2DES and the back gate.

As explained in section 3.3.1, a DC bias is applied to the back gate in order to set the

average density. On top of this constant bias, a small AC modulation is added at a frequency

of 23 Hz, δVBG, using a function generator (Stanford Research Systems Model DS345). It

induces a small density modulation δn. An AC current signal through the SET, δISET /δVBG,

will appear. It is recorded using a lock-in amplifier (Lock-In Amplifier model SR830 DSP).

To convert the detected AC current into a change of the chemical potential, δµ/δn, it is

necessary to know the sensitivity of the SET. The sensitivity can be measured by applying

a second AC excitation at a different frequency of 33 Hz to the 2DES (instead of the back

gate), δV2D. The current response of the SET at this 33 Hz is measured with the help of a

second lock-in amplifier, δISET /δV2D. Combining the two signals it is possible to determine

the compressibility of the 2DES in the following way:

δISET /δVBG

δISET /δV2D

=
δV2D

δVBG

=
Cg

e2

δµ2D

δn2D

' ε

n2e2d

1

κ
(3.4)

where Cg and d are the capacitance and the distance between the 2DES and the back gate

respectively. ε is the dielectric constant.
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Figure 3.8: (a) Coulomb-blockade oscillations measured at fixed VSET as a func-

tion of V2D. The AC excitation δV2D is added on top of the constant DC bias V2D

to measure the sensitivity of the SET.



Chapter 4

Electronic Liquid-Crystal Phases in the

Quantum Hall Regime

4.1 Introduction

In the past decade strong evidence has been found for the spontaneous development of charge

textures in a wide variety of electron systems with strong correlations. Among these, one

might mention high-Tc superconductors [54,55,56] and quantum-Hall systems [13,14,15,8].

This tendency of the charge degree of freedom to form periodic spatial patterns is a generic

feature of systems where there is a competition between repulsive and attractive forces acting

on different length scales [57, 58]. A growing body of experimental [13, 14] and theoretical

[15, 59, 60] evidence supports the existence of charge textures in the 2DES when high index

Landau levels are partially filled.

Lilly et al. [13] as well as Du et al. [14] discovered that when a very high mobility 2DES

(µ > 107m/V s) is subjected to a perpendicular magnetic field of moderate strength so that

multiple Landau levels (N ≥ 2) are occupied, remarkable transport anomalies arise. Such

anomalies include a strong temperature-dependent anisotropy in the longitudinal resistance

when the topmost Landau level (LL) with high index is half filled. Even though the anisotropy

is most pronounced at half filling of the LL, it remains considerable in a window of about

∆ν ≈ 0.2 around this point. Unlike the conventional transition between plateaux, ∆ν does

not shrink as the temperature is lowered. In this same ∆ν range, the Hall resistance varies

continuously with filling. Further away from half filling, the transport is essentially isotropic



48
CHAPTER 4. ELECTRONIC LIQUID-CRYSTAL PHASES IN THE QUANTUM HALL

REGIME

but exhibits re-entrant integer quantum Hall behavior close to one-quarter and three-quarter

fillings of the level.

4.1.1 Anisotropy

Figure 4.1 shows two longitudinal resistance traces and the Hall resistance taken at T=34

mK on the LP8-9-01.2 wafer with a mobility of 18 × 106cm2/V s. The two traces differ

only in the contact configuration used for the measurement. All the parameters, such as

the temperature and the magnitude of the current (10 nA), are kept identical in both data

sets. One can observe that the longitudinal resistance (RL) around n + 1/2 filling, where

n = 4, 5, ..., develops a strong dependence on the direction of the current. At these positions,

RL shows a strong peak when the current is injected along the [110] direction (black curve),

while a deep valley develops after rotating the current direction by 90o (red curve), i.e., when

the current flows along the [110] direction. Apparently, the low resistance path prefers to be

aligned along the [110] direction. At present, the native symmetry breaking field responsible

for this preferential orientation of the easy-axis still remains enigmatic [61,62,63]. However,

subsequent studies have revealed that by tilting the magnetic field away from the sample

normal, the high resistance direction can be changed from its original orientation to the in-

plane magnetic field direction [64, 65]. The direction of the anisotropy also flips by 90o as a

function of the density [66]. Equally striking is the fact that no anisotropy is found around

ν = 7/2 and ν = 5/2 1. Although not shown in the figure, these resistance anisotropies

around half-filling are also absent in the lowest Landau level N = 0. This suggests that

something dramatic is happening to the ground state of the 2DES as soon as the third and

higher LLs become populated. Based on this observation, together with the spontaneous

development of the anisotropy as the temperature is lowered below 100 mK [67], suggest

that a collective effect rather than a single-particle effect is responsible for these transport

anomalies.
1The longitudinal resistance in the vicinity of ν = 5/2 and 7/2 becomes strongly anisotropic as the sample

is tilted [64].
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4.1.2 Re-entrant quantum Hall behaviour

Anisotropic transport is not the only interesting feature in the transport in high index Landau

levels. Figure 4.2a shows a blow-up of the data of the same 2DES when the spin up N = 2-

LL is filled (4 < ν < 5). Apart from the anisotropy around ν = 9/2 in the longitudinal

resistance, one can observe that the resistance drops essentially to zero near ν = 4.25 and

4.75, as indicated by the arrows (and labeled with RIQHE). This vanishing of RL separated

from the adjacent IQH states by small isotropic satellite peaks, which shrink as T is lowered,

suggest that FQH states may be present. Indeed, these zero resistance states are accompanied

by plateaux in the Hall resistance, but they are quantized at the Hall resistance of the nearby

integer quantum Hall states h/4e2 and h/5e2. Hence, FQH states can be discarded as the

origin of these insulating phases. As we discussed in chapter 2, the IQHE results from the

localization of quasi-particles in the disorder potential. Thus, the re-entrance of the IQHE

away from the precise integer fillings, reflects that these quasi-particles become localized

again, even when their density increases. It seems likely that a mechanism alternative to

single-particle localization is at work, which gives rise to a collective insulating state.

4.2 Theoretical Approaches

Two years prior to the experiments of Lilly et al. [13] and Du et al. [14], Koulakov et al. [15]

and Moessner et al. [59] suggested on the basis of Hartree-Fock calculations that Coulomb

interactions may lead to stripe or charge-density wave (CDW) formation close to half filling

of high index LLs. Numerical exact diagonalization studies on a 2DES with 12 electrons

in the N ≥ 2 LL showed consistency with this charge-density-wave-ordering in the sys-

tem [68]. However, the temperature dependence can for instance not be explained in this

oversimplified model. By considering thermal and quantum fluctuations about the Hartree-

Fock state, Fradkin and Kivelson introduced a more sophisticated electronic liquid-crystal

picture [8, 69, 70] which explains the temperature dependence and captures the key transport

features observed. The distinct electronic liquid-crystals that come out of their model are a

more realistic scenario for explaining the above described transport phenomena as well as to

other results disclosed in our investigations.
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Figure 4.1: Longitudinal resistances RL for two different orientations of the

current: lower black curve for current along [110] direction and the red curve

corresponds to RL measured with current flow along [110] direction. Also shown

is the Hall resistance RH (upper black curve). Data are taken at T = 34mK. A

strong anisotropy in RL develops around ν = 9/2 (N = 2 Landau level), whereas

transport around ν = 7/2 in the N = 1 Landau level is isotropic suggesting

that different correlation physics is at work. The inset depicts the current flow

configurations in our square van der Pauw mesa geometry for recording these

data.
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Figure 4.2: (a) Zoom in around ν = 9/2 of Fig. 4.1. Arrows indicate the loca-

tions of RIQHE states. Panels (b) and (c) depict the measurement configurations

and the corresponding current distribution.

4.2.1 Charge Density Waves

The notion of a charge density wave (CDW) as a possible candidate for the ground state of a

2DES in a perpendicular magnetic field was put forward by Fukuyama et al. [71] even before

the discovery of the quantum Hall effect. Their idea was put on the side with the subsequent

discovery and explanation of the FQHE, where the Laughlin-type liquid states showed to

have energies lower than the states with CDW order. Recent Hartree-Fock calculations by

Koulakov et al. [15] and Moessner and Chalker [59] have found that states with CDW order

have energies lower than the Laughlin-type states in high index partially filled Landau levels

(N ≥ 2). These calculations focused on the case of zero temperature and have predicted

the existence of CDWs of different order. The appearance of CDW with different spatial



52
CHAPTER 4. ELECTRONIC LIQUID-CRYSTAL PHASES IN THE QUANTUM HALL

REGIME

configurations is triggered by a competition between the short-range attractive (exchange)

and the long-range repulsive (direct) components of the Coulomb interaction. The formation

of a striped phase in the N th Landau level is predicted when it is close to half full, while an

isotropic bubble phase is favorable as one moves away from half filling. The striped phase

consists of parallel stripes of alternating integer filling factors ν = 2N + 1 and ν = 2N .

The width of these stripes is on the order of the cyclotron radius Rc, i.e., on the order of 100

nm. Deviations from half filling leads to an areal increase of the stripes with the majority

filling factor until they form a sea with clusters of minority filling immersed in it. The bubble

phase consists of these clusters of minority filling factor ordered in a triangular lattice and

immersed in the sea of the majority integer filling. The same calculations predicted that in

the flanks of the Landau level a hierarchy of bubble phases, where the number of electrons

per bubble changes from ...3,2 and eventually 1, which corresponds to a Wigner crystal (a

triangular lattice of one-electron bubbles) [72], as one approaches integer filling. A density-

matrix renormalization group study has supported this conclusion [73].

Now let us discuss the formation of the correlated phases in high Landau levels. It is

known that a conventional charge density wave is favored by the exchange interaction and

suppressed by its high electrostatic energy cost [74]. However, in high Landau levels one can

form a charge density wave without incurring the electrostatic energy cost. To understand

how this can happen, let us consider the shape of the wave function for electrons in high

Landau levels. In the symmetric gauge, the wave function of single electron state resembles

a ring [15, 23], which has a diameter given by the cyclotron radius Rc = `B

√
2N + 1 (N is

the LL index) and a width given by the magnetic length `B =
√

h̄/eB (see Fig. 4.3c). This

picture of extended rings becomes more exact for high Landau levels (see Fig. 4.3c). Due to

the ringlike shape of the wave functions, it is possible to distinguish between the local density

of guiding centers (i.e., the filling factor) and the local charge density. While the former is

very inhomogeneous, the variations of the latter are rather small. Therefore, what we really

have is a guiding center density wave rather than a conventional charge density wave. The

energy of the system can be represented as the difference of the Hartree (direct) and exchange

components. Since the direct component is sensitive to the charge density variations, it does

not increase too much. However, the variations of the filling factor are important. This

leads to a considerable gain in exchange energy. Hence, while the gain in exchange energy

is considerable, there is not much electrostatic energy penalty to have the guiding centers
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cluster into stripes.

The stripe and bubble phase scenarios capture qualitatively the observed transport pheno-

mena (anisotropic transport and re-entrant integer quantum Hall effect) in the experiment. In

the stripe regime, all the high mobility samples with densities below 2 2.9× 1011 cm−2 show

that the hard transport direction (high resistance path) is aligned along the [110] crystallo-

graphic direction, and the stripes are oriented along the [110] direction, which we will refer

to as the easy direction. Because current channeling [75], resistance anisotropies in square

samples can be as high as R[110]/R[110] ≈ 3500, whereas they are substantially smaller for

conventional Hall bar (R[110]/R[110] ≈ 10) [64].

In square sample, when the current is injected along the easy direction, the current flow

is strongly channeled in a narrow region of the sample, as schematically illustrated in Fig.

4.2b. The current density along the sample boundaries is small, and so is the longitudinal

resistance measured between two terminals at the boundary parallel with the current flow

direction. However, when the current is injected along the hard direction, the current spreads

across the entire device (see Fig. 4.2c). Current flows closer to the boundaries and hence, the

longitudinal resistance is greatly enhanced, as seen in the experiment.

The bubble phase is susceptible to pinning by the ubiquitous disorder potential. There-

fore, its transport properties are dominated by the insulating character of the incompressible

sea of integer filling in which the bubbles are immersed. The transport properties are isotropic

and identical to those of the nearest integer quantum Hall state.

4.2.2 Electronic Liquid-Crystal Phases

The previous Hartree-Fock-based charge density wave approach suffers from overestimat-

ing the temperature at which the correlated phases should form. In such a picture, the stripes,

which are assumed to be the origin of the transport anisotropy observed in the experiment, are

predicted to melt at a few Kelvin [15, 59]. This contrasts with the experimental observation

that the anisotropy appears only below about 150 mK [13, 14]. A more sophisticated treat-

ment of the problem that came to reconcile this discrepancy with experiment was put forward

by Fradkin and Kivelson [8]. They suggest that quantum and thermal fluctuations restore the

broken translational symmetry in a smectic or striped-state. The resulting phase is a quantum

2Zhu et al. observed a density-induced 90o rotations of the anisotropy axes in transport. The transition

density is 2.9× 1011 cm−2 at ν = 9/2. [66]



54
CHAPTER 4. ELECTRONIC LIQUID-CRYSTAL PHASES IN THE QUANTUM HALL

REGIME

Figure 4.3: Charge density wave picture (CDW). (a) Schematic illustration of

striped-state at ν = 9/2 predicted by Hartree-Fock theory. This state can be

viewed as a periodic repetition of stripes with integer filling. (b) Modulation of

the filling factor (top), and the resulting electron density variation (bottom) along

the [110] crystal direction (hard-direction). (c) Cartoons of the electron wave

function in the symmetric gauge. As the LL index increases, the wave function

turns into a ring with larger diameter and smaller width. The ring-like shape of the

wave functions become more evident as the Landau level index increases. Taking

into account the average interparticle distance, the wave functions start to overlap

significantly. (d) Phase diagram according to the CDW-picture for the N = 2

Landau level. The correlated phases in this level are the stripe phase, the bubble

phase and the Wigner crystal. They cease to exist above a critical temperature Tc,

and turn into an isotropic liquid.
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nematic state with uniform charge density. Although in a nematic state the translational sym-

metry is recovered, the rotational symmetry remains broken and is sufficient to account for

anisotropic transport due to the orientational ordering of local regions with pre-existent stripe

order. Wexler and Dorsey [76] found that a nematic-to-isotropic phase transition occur at a

temperature of 200 mK, which is not far from what is observed in the experiment. Within the

model of Fradkin and Kivelson, moving away from half-filling, an insulating stripe-crystal

phase composed of pinned stripe segments is also predicted. A subtle characteristic of the

stripe-crystal phase is its anisotropic nature, which is difficult to disclose by using simple

transport studies because this phase is insulating in nature. One of main results of our stud-

ies concerning these states is precisely the anisotropic nature of the stripe-crystal phase. For

the sake of completeness, we note that all these new states of matter [77] predicted by the

so-called electron-liquid crystal model have symmetries intermediate between those of a ho-

mogeneous isotropic liquid and a crystalline solid [78, 79](see Fig. 4.4e).

Fradkin and Kivelson considered the existence of the striped-CDW state as starting point.

The regions of alternating integer filling factor ν = 2N + 1 and ν = 2N have Hall resis-

tances quantized to the values h/e2(2N + 1) and h/e2(2N), respectively. It follows from the

Büttiker formalism that 1D conducting edge states form at the boundary between two regions

of differently quantized Hall resistance. Because of the magnetic field, these edge states are

chiral (see Fig. 4.4a). In contrast to the edge states at the boundaries of a quantum Hall

device which are generated by the confinement potential at the boundaries of the sample (see

section 2.2.1), the chiral edge states of the ELC phases form self-consistently by virtue of the

Coulomb interaction.

Since the ELC edge states are separated by a distance on the order of the cyclotron radius,

their mutual interaction cannot be ignored. As shown in Fig. 4.4a, the distance between

the ELC edge states of opposite chirality is D2N+1 and D2N for edges bordering a ν =

2N + 1 and ν = 2N region respectively. For a half filled Landau level both distances are

equal. Away from exact half filling one distance increases at the expense of the other. It is

advantageous to pair up nearest neighbor ELC edge states and represent each pair as a single

non-chiral Luttinger liquid. This type of liquid is a strongly correlated electron systems that

are described by an internal interaction parameter D [80], which is derived from the distance

between the pair of chiral ELC edges states that form the one-dimensional liquid.

Due to the Coulomb interactions among the electrons in the Luttinger liquid, a Luttinger
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liquid displays charge-density fluctuations along its extended axis, i.e., along the x-axis in

Fig. 4.4b. These charge-density fluctuations are characterized by a wavelength, λLutt. given

by the internal interaction parameter according to

λLutt. =
4π`2

B

D
. (4.1)

As mentioned before, D depends on the distance between the ELC edges states and hence

the wavelength λLutt. depends directly on the filling factor.

In the ELC-picture, there are two types of quantum fluctuations that change fundamen-

tally the character of the ground state of the system. The first type of fluctuations corresponds

precisely to the charge-density fluctuation along the Luttinger liquids. The second type of

quantum fluctuations are related with the fact that the striped-phase is spontaneously gener-

ated. This introduces transverse fluctuations on the shape of each stripe, whose physical ori-

gin are the Goldstone modes that appear whenever a continuous symmetry is spontaneously

broken [81]. These shape fluctuations are characterized by their magnitude given by ∆Y (see

Fig. 4.4b).

The phase diagram of the ELC is schematically depicted in Fig. 4.4d. Along the hori-

zontal axis the evolution of the phases is plotted as a function of partial filling of the highest

occupied Landau level. The evolution of the phases with increasing the magnitude of the

transverse fluctuations is plotted along the vertical axis. In the absence of shape fluctuations,

the state of the system is crystalline. Charge fluctuations are responsible for the appearance

of the smectic phase. The strong interaction between neighboring Luttinger liquids, causes a

phase locking of the shape fluctuations. This may enhance the fluctuations until the stripes

break up into segments and the stripe-crystal state forms. Since this crystalline state is bound

to be pinned by impurities, it will be insulating. In the vicinity of ν = 2N the triangular

Wigner crystal emerges.

Along the vertical axis, the strength of the fluctuations increases. The smectic order is

destroyed in a sequence of two transitions. The first transition occurs when the magnitude of

the transverse motion of the stripes becomes comparable to their spacing. It triggers a transi-

tion to a quantum nematic phase. The nematic phase has short-range stripe order and broken

rotational symmetry (see Fig. 4.4e). Such a smectic-to-nematic phase transition is driven by

dislocations which destroy the stripe long-range ordering. These topological defects are pro-

duced when two stripes merge or a single one terminates (see Fig. 4.4c). A second transition

to an isotropic liquid takes place when the shape fluctuations become sufficiently strong so
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that the density of dislocations reaches a point where the stripes have no preferred direction

anymore. In this case, the system has recovered both translational and rotational symmetries

(see Fig. 4.4e).

Finally, let us mention some of the salient experimental signatures of these electronic

liquid-crystal phases in transport studies: The transport through the smectic phase is highly

anisotropic. The smectic state is compressible and does not exhibit a quantized Hall resis-

tance. In the nematic phase, the transport remains anisotropic due to the local orientational

order of the stripes. This phase is also compressible. The stripe and Wigner crystal phases are

insulating since they are pinned by disorder. Experimentally, the stripe-crystal phase shows

a re-entrant integer quantized Hall resistance because the transport properties are determined

by the incompressible ν = 2N liquid.

4.3 Correlated Phases in HLL under Driven Conditions

4.3.1 Introduction

The correlated electronic phases in high Landau levels (HLL) predicted in the CDW and ELC

models near half and quarter fillings will be referred to, from now on, as the equilibrium or

nondriven phases of the system. Here, we investigate these correlated phases in transport

under non-equilibrium conditions by imposing an external dc current drive3. These studies

were motivated by a number of questions: Is it possible to induce a different order or a

reorientation of the anisotropy upon driving the system? Can evidence be found in favor of

the anisotropic stripe crystal rather than the isotropic bubble phase to describe the system

near quarter fillings?

In our experiments, the variable external dc current drive Idc was imposed in a float-

ing configuration either along the [110] or the [110] crystal directions, i.e., the easy or hard

direction of the stripe or nematic phase respectively. To probe for any dc current induced

anisotropies or modifications to the order or orientation of these phases, the resistances along

and perpendicular to the dc current were compared. To measure these resistances, an addi-

tional small sinusoidal current Iac with a frequency of 13 Hz and an amplitude of 10 nA was

applied in either direction. The drain contact for the ac current was connected to ground. The

3The ac current is comparatively small, and barely disturbs the system. Hence, in the absence of the dc

current drive the system exhibits the "equilibrium" phases.
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Figure 4.4: Electronic liquid-crystal picture (ELC). (a) Schematic view of the

stripe phase with filling factor somewhere between ν = 9/2 and ν = 4. Here,

edge channels bordering a ν = 5 region become strongly coupled, while the

interaction between the edge channels running along the border of the ν = 4

region weakens. (b) The quantum fluctuations of two neighboring edge channel

pairs. The amplitude of the transverse deformations of the stripes are denoted

by ∆Y . (c) A dislocation in a nematic phase. (d) Phase diagram at T = 0 as

predicted by the ELC-picture. Here, we plot the strength of the transverse motion

of the stripes on the vertical axis. The horizontal axis is the filling factor axis and

covers the filling range between 2N and 2N + 1/2 of the N -th partially filled

Landau level. The gold colored lines represent the non-chiral Luttinger liquids,

which form away from ν = 2N +1/2 when the two chiral edge states surrounding

the ν = 2N +1 regions become strongly coupled. (e) Classification of the phases

of a 2DES with a partially filled Landau level with index N ≥ 2, according to

their broken symmetries.
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ac voltage Vac which developed across two terminals along the ac current path was detected

with a lock-in amplifier.

A typical outcome of our transport experiments under non-equilibrium conditions is dis-

played in Fig. 4.5. This color plot shows the resistance R = Vac/Iac as a function of filling

factor, ν, and dc current, Idc, for a 500 µm square sample. Red corresponds to large resis-

tance, and dark blue to zero resistance. The sample details are described in Sec. 2.1. These

data were obtained when Iac and Idc are directed in the hard [110]-direction, i.e., perpendic-

ular to the stripes. The inset in the top left corner depicts schematically the current flow and

voltage measurement arrangement. Data points making up this color graph were recorded by

keeping Iac fixed to 10 nA, while Idc was ramped up from -500 to 500 nA in 5 nA steps. For

each value of Idc the magnetic field was swept between 1.4 and 3.85 T. For the next Idc value

the field was swept down and so on.

At first glance, the resistance around half and quarter fillings from ν = 4 through ν =

15/2 develops a dependence on the dc current drive that is absent in the N = 1 Landau level.

This dramatic difference is an important indicator that something interesting is happening

in partially filled high Landau levels when driving the system. To describe the influence of

Idc on the correlated phases in HLL more precisely, let us focus on the filling factor range

between ν = 4 and ν = 5.

4.3.2 Basic Phenomenology

Fig. 4.6 shows a color map of the resistance R = Vac/Iac in the (ν, Idc)-plane, for a 300 µm

square sample. In this measurement the (Iac, Idc)-configuration is such that both Iac and Idc

run perpendicular to the direction of the stripes. Cartoons of the equilibrium or nondriven

phases in the CDW and ELC models are plotted above the color rendering. When following

the line Idc = 0, one obtains the resistance profiles at the top. The large peak in R, which

develops around ν = 4.5, is attributed to the stripe or nematic phase since the hard direction

is probed. The incompressible behavior of the bubble or stripe-crystal phase is manifested as

vanishing resistance around ν = 4.25 and ν = 4.75. This region of vanishing resistance is

separated from ν = 4 and ν = 5 quantum Hall minimum by a poorly and well-developed

resistance peak respectively. Introducing Idc as a parameter brings out clearly the phase

boundaries. The stripe or nematic phases cover the filling interval [4.36, 4.64]. The adjacent

bubble or stripe-crystal phases extend over filling intervals [4.18, 4.36] and [4.64, 4.82].
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Figure 4.5: Color map of the resistance R = Vac/Iac between filling factor

ν = 3 and ν = 15/2 at a temperature less than 20 mK for a 500 µm square

sample. The data were acquired when both Iac and Idc flow along the [110]-

direction (inset in top left corner). The behavior in the N = 1 Landau level

(around ν = 7/2) is very different in comparison with the higher Landau levels

(around ν = 9/2, · · · , 15/2).The bar in the bottom left corner gives the color

scale.

Stripe or Nematic Phase Regime

Let us first focus on the filling interval [4.36, 4.64] where at zero Idc the stripe or nematic

phase forms. By monitoring R as Idc is varied from zero, one can observe that the differential

resistance collapses: transition from red to blue near |Idc| ≈ 50 − 60 nA. Subsequently, at

higher current levels, the resistance remains low across an area (dark blue) which resembles

a diamond shaped region. This region is demarcated by a white dotted line. It is worth

mentioning the abrupt change between high and low resistance. Though it is not a conclusive

proof, it suggests that the observed behaviour does not simply originate from Joule heating.

Also note the behaviour of the resistance maximum in the stripe phase regime. This
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Figure 4.6: Color map of the resistance R = Vac/Iac in the (ν, Idc)-plane at a

temperature less than 20 mK for a 300 µm square sample. Red corresponds to

high resistance, blue to zero resistance. Here, both Iac and Idc flow along the hard

[110]-direction. Cartoons of the equilibrium phases in the CDW and ELC pictures

are drawn above the color map. Middle: Resistance at Idc = 0 as a function of

filling factor. Top: Resistance versus Idc for four different filling factors near

ν = 9/2. In each case, Idc varies from −100 to 100 nA.
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observation is summarized in the top panels of Fig. 4.6. For each panel, the dc current is

swept from −100nA to +100nA. One can observe a splitting of the resistance maximum for

partial filling factors above ν = 9/2. This observation is conform to early studies carried out

by Eisenstein’s group at Caltech [82].

Bubble or Stripe Crystal Phase Regime

We now focus on the electron and hole-bubble phase regimes, which cover the filling intervals

[4.18, 4.36] and [4.64, 4.82] respectively. In these regions, the resistance remains close to zero

until Idc reaches approximately 110 nA in the electron-bubble phase and 40 nA in the hole-

bubble phase. At these currents, the resistance in the system increases abruptly and develops

a nearly identical value compared with the resistance in the striped phase around ν = 4.5 at

zero Idc. Large resistance is only observed in a narrow region bordering a rhomb. This red

region coalesces together with high resistance region near ν = 4.5 into a frog shape. Upon

increasing the dc-current further, the resistance collapses in a similar fashion to the drastic

drop which occurred around ν = 4.5. After this drop, the resistance remains small (dark

blue) within a diamond shape nearly identical in height to the large diamond within the stripe

phase. These diamond shaped regions are demarcated by a white dotted line.

The physics of the 2DES within a given Landau level is expected to be symmetric with

respect to half filling because of particle-hole symmetry [83]. An important sign for particle-

hole symmetry in HLL is that bubble phases are present for electrons and holes. We note,

however, that the particle-hole symmetry is not obeyed well in the data when we compare

the dc current at which the insulating behavior around one-quarter and three-quarter fillings

disappears: Idc ≈ 110 nA and Idc ≈ 40 nA respectively. This asymmetry is also visible

in the activation energies, ∆, of the electron and hole-bubble phases: ∆1/4 ≈ 100 µeV and

∆3/4 ≈ 60 µeV [84]. Also other examples where particle-hole symmetry is not fulfilled at a

quantitative level will be encountered later.

4.4 Current-Induced Phenomena in the System

The abrupt changes in the resistance observed in Fig. 4.6 around half and quarter fillings

point to current-induced modifications in the order or orientation of the correlated phases.

In this section we present the results of a systematic study carried out on devices fabricated
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from the same heterostructure as the one used to obtain the data presented in Fig. 4.6. To

carry out these investigations, the independent choice of the drive (Idc) and probe (Iac) current

directions in the experimental setup has been crucial. The experimental setup was described

in Sec. 3.2.

Fig. 4.7 depicts color renderings of the measured resistance R = Vac/Iac between integer

filling 4 and 5 for the four possible (Iac,Idc)-configurations in a 300 µm square sample. At

zero Idc, the anisotropic behaviour in transport of the stripe phase near ν = 9/2 manifests it-

self as a large color difference: red when Iac flows in the hard [110]-direction perpendicular to

the stripes (panel A and D) and light blue when Iac is injected along the easy [110]-direction,

i.e., along the stripes (panel B and C). For the incompressible bubble or stripe-crystal phase

near ν = 4.25 and ν = 4.75 vanishing resistance is obtained irrespective of the ac current

orientation (dark blue) and the phases appear the same way as the adjacent integer quantum

Hall states do.

4.4.1 Stripe or Nematic Phase Regime: Description

As in Sec. 4.3, we first focus on how Idc affects the system in the filling interval [4.36, 4.64],

where the stripe or nematic phase appears. The bottom panels show data when Idc is in-

jected along the easy [110]-direction. A diamond shaped region of low resistance demarcated

by a whitish halo and extending up to Idc > +300nA and < −350nA is observed when

monitoring R along the easy direction (panel C). When the system is probed along the hard

[110]-direction, high resistance persists in a nearly identical diamond shaped region (panel

D). We now turn to the top panels. These color maps show data when Idc is injected along

the hard [110]-direction. Here, the resistance measured along the hard direction (panel A)

collapses much earlier near Idc ≈ 50 − 60 nA and subsequently remains low across an area

which resembles the above mentioned diamonds. The drop in resistance is accompanied by

a small area of negative differential resistance. Such regions are marked by white contours

(The color scale has been clipped at 0 Ω). Even though less clear, when the system is probed

along the easy direction the data in panel B imparts similar information: some transition takes

place at small Idc.
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Figure 4.7: Current induced anisotropy and reordering in the ELC-phase. The

2D colour graphs depict the differential resistance Vac/Iac as a function of filling

factor, ν, and the dc current, Idc for the four (Iac, Idc)-configurations in a 300

µm square sample. White contours enclose regions of negative R = Vac/Iac.

Cartoons of the equilibrium phases in the CDW and ELC pictures are drawn in the

relevant filling factor regions at the top. The right insets indicate the experimental

configurations for each measurement. Panels I and II highlight for two (Iac,Idc)-

configurations (configuration A and D) where anisotropy occurs (pale yellow).

The yellow pictograms are only intended to indicate schematically how the easy

axis is oriented.
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4.4.2 Interpretation: Current-Induced Reordering and Stabilization in

the Nematic Phase

Taken all together, the data lend strong support for the following scenario: Imposing Idc along

the easy direction stabilizes the original anisotropic phase. It survives up to a large critical

|Idc| > 300nA where it melts. This is reflected in panel C and D with the nearly identical

diamonds of low (blue) and high (red) resistance around ν = 9/2. It is tempting to link the

stabilizing influence in the easy direction to a suppression of the transverse shape fluctuations

in the ELC picture, i.e., the dc-drive would render the original undriven nematic phase more

orderly as addressed theoretically in Ref [85]. Conversely, dc-current flow perpendicular to

the easy direction (panel A and B), destabilizes and flips the anisotropy phase at low dc-

current to make the easy direction align with Idc. After reorientation this phase persists

up to the same critical Idc. The reorientation of the easy axis is likely not global but only

local where Idc is channeled once a low resistance dc-current path shorting the dc source

and drain contacts is established. The ac-resistance along the Idc direction drops drastically

as seen in panel A. The ac-resistance perpendicular to Idc would only change weakly, since

the orientational order is only affected in the area where the dc-current is channeled. This

is consistent with panel B and the weaker anisotropy seen between panel A and B. Since

a stripe or smectic phase is not-uniform and breaks translational symmetry (see Fig. 4.4e),

strongly non-linear or pinning associated behaviour such as hysteresis is anticipated for such

phases. Early studies carried out in our group disclosed that when driving the system along

the hard direction, no hysteresis is observed at ν = 9/2 between R-traces recorded during up

and down sweeps of the drive current [84]. The absence of hysteresis too suggests that the

less anisotropic and uniform nematic ELC phase better describes the behaviour of the system.

The dc current modifies the rotational symmetry and rotates the easy direction of conduction

to make it align with the dc-current.

4.4.3 Possible Mechanism of Reordering

At this point one of the most pressing question is: what is the driving force that causes

the reordering: the dc Hall electric field or the current itself? To answer this question we

have carried out a study of the sample size dependence. Fig. 4.8 depicts the outcome of

this investigation. These color maps represent the resistance R = Vac/Iac between integer
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filling 4 and 5 for two (Iac,Idc)-configurations. The experiments were carried out on three

different sample sizes: 180, 300, and 500 µm. These samples were fabricated from the

same heterostructure used previously. The data in the top panels were acquired when both

Iac and Idc are injected along the hard [110]-direction. The bottom panels corresponds to

data obtained when Iac and Idc are directed along the hard [110] and the easy [110]-direction

respectively. Schematic illustrations of these two (Iac,Idc)-configurations are displayed in the

bottom right panel.

Note that the critical dc-current at which the easy axis rotates to make itself align with Idc

(see filling interval [4.36, 4.64] in the top panels of Fig. 4.8) does not scale with the sample

size but stays constant. The observation can be understood if one assumes that most of the

current flowing through the sample is confined to narrow current paths, whose width remains

constant irrespective of the sample size. In this case, it would be reasonable to argue that

a critical current density triggers the reorientation. A schematic summary of the easy axis

orientation near ν = 9/2 as a function of Idc is shown on the top of Fig. 4.7 (panel I).

4.4.4 Bubble or Stripe Crystal Phase Regime: Description

We now address how Idc affects the incompressible pinned bubble or stripe-crystal phases in

filling regions [4.18, 4.36] and [4.64, 4.82] in Fig. 4.7. At small Idc the resistance initially

remains isotropic, i.e., independent of the ac current direction, and essentially zero in all

the configurations. As Idc reaches approximately 40 nA (near ν = 4.75) and 110 nA (near

ν = 4.25) a very pronounced resistance anisotropy develops reminiscent of the anisotropy

near ν = 9/2. The resistance rises to a large value (red) in a narrow region bordering a

rhomb when Iac flows parallel to Idc (panel A and C) and remains small when imposing Iac

perpendicular to Idc (panel B and D). Hence, the hard direction of this emerging anisotropic

phase coincides with the direction of the dc-current flow. Upon increasing Idc further, a

second transition takes place. In panels A and C the resistance drops back to a low value

(from red back to deep blue) near Idc = 130 nA for ν = 4.75 and Idc = 170 − 225 nA

for ν = 4.25 and remains small within a large diamond shape extending all the way up to

Idc = 400 nA. Conversely, in panels B and D the resistance now suddenly increases (dark

blue to light blue) and remains essentially the same within a nearly equally large rhomb. The

resistances in panels B and D do not reach as high value (light blue instead of red), but do

exceed for instance at the marked spot the resistances in panel A and C by nearly a factor of
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Figure 4.8: Color renderings of R = Vac/Iac in the (ν, Idc)-plane for samples

with different side lengths: 180, 300, and 500 µm. The data were taken at a tem-

perature less than 20 mK. The bar insert in the bottom left corner gives the color

scale. Top: Data acquired when both probe Iac and drive Idc currents are directed

along the hard [110]-direction. Bottom: Data acquired when the system is probed

along the hard [110]-direction and is driven along the easy [110]-direction. The

two (Iac,Idc)-configurations are schematically drawn in the bottom right panel.
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3. Hence, the anisotropy persists, but the hard and easy directions interchange. The easy-axis

becomes aligned with the dc-current direction.

4.4.5 Interpretation: Current-Induced Anisotropy in the Stripe-Crystal

Regime

In a macroscopic transport experiment the bubble and the rectangular or stripe-crystal phases

appear isotropic, because they are insulating. At the microscopic level, only the stripe-

crystal is anisotropic with the stripe sections extending in a particular direction. It turns

this phase into the more natural starting point for constructing an explanation for the ob-

served anisotropy. The data lend support for the following scenario. When imposing a dc

drive, the stripe sections become oriented along the dc Hall electric field. i.e., the easy di-

rection is perpendicular to the dc-current. This reminds of the orientation of conventional

liquid crystals in an external applied electric field. Depinning by this Hall field combined

with the existing stripe order would be in line with the appearance of anisotropic transport.

In fact, the nearly identical resistance values of this dc-current induced anisotropic phase and

the anisotropic phase near ν = 9/2 as well as the smooth transition between the high resis-

tance areas associated with both phases in panel A (coalescing to the frog shaped red colored

area) are indications for an intimate connection between the two. They do differ in that the

easy-axis of the nematic phase at ν = 9/2 is prescribed by the underlying crystal axis orien-

tation, whereas here the dc Hall electric field serves as the symmetry breaking field. Up and

down sweeps of Idc at fixed filling reveal a pronounced hysteresis near quarter fillings in this

regime (see early studies performed in our group [84] and also in Eisenstein’s group [86]).

The hysteresis is consistent with the depinning of an non-uniform state [87, 88] such as the

stripe-crystal. This hysteresis and the sharp threshold to conduction appear identical to the

previously reported hysteresis in the dc-experiments of Ref. [86], since the critical current

values are comparable when they are normalized to the sample width.

The sample size dependence plotted in Fig. 4.8 shows that the critical Idc, where anisotropic

transport emerges, scales roughly linearly with the sample side length. As mentioned above,

some of the dc-current is carried by the edge channels of the completely filled Landau levels

and produces a bulk dc Hall electric field. The linear scaling of the critical Idc implies an

approximately constant dc-Hall field at the depinning transition. This plausible results fur-
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ther support the assertion that this transition is triggered by the dc Hall electric field rather

than Idc itself. As in Ref. [86], traces taken during up and down sweeps of Idc, such as those

obtained in early studies in our group [84], remain quite sensitive to temperatures down to

below 20 mK. While the dissipation due to Idc may be responsible for melting near 400 nA

(large rhomb) in all panels of Fig. 4.7, it unlikely accounts for this transition nor for the

reordering observed at Idc = 50 nA around ν = 9/2. Microwave studies in the absence of

a dc current disclosed a resonance near quarter fillings, which was attributed to a pinning

mode [89]. The strength of this mode was comparable for polarization along the [110] and

[110] crystal directions. This polarization independence is however not necessarily inconsis-

tent with the anisotropic behaviour observed here, since the dc-Hall field determines the easy

axis.

4.4.6 Reordering in the Stripe-Crystal Phase

If the above scenario applies, one may then anticipate a reorientation at quarter fillings similar

to the reordering seen and discussed previously near ν = 9/2. Indeed, at larger dc drive the

orientation of the anisotropic phase seems to make the easy direction align with Idc. After

reorientation this phase persists up to Idc > 400 nA, where presumably it melts. The much

weaker anisotropy again indicates that reorientation of the easy axis only takes place locally.

The ac resistance perpendicular to Idc in panels B and D only rises moderately as it is a

serial connection of contributions from regions which still have low resistance and from a

region to which the dc current is mainly confined with large resistance where reorientation

took place. The panel II in Fig. 4.7 summarizes the transformation near ν = 4.75 as the

dc drive amplitude grows: Anisotropy develops near Idc = 40 nA, which we interpret as

originating from a depinned stripe crystal with stripe order that has been aligned along the

dc-Hall field. At large Idc (130 nA), the easy-axis of the depinned, anisotropic phase rotates

to end up parallel to Idc.
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4.5 Alternation in the Resistance along the Hard Direction

Up to this point, all the experiments discussed have been carried out at temperatures below 20

mK. Fig. 4.9 shows magnetotransport data in the third N = 2 and higher Landau levels for

current flowing along [110] (the hard direction). These data were acquired at a temperature of

90 mK. Usually, at the lowest temperature, one observes that the resistance peaks near half-

filling of the Landau level (LL) gradually decay as the LL index increases. In this experiment,

however, one observes that for LL with index N = 2 a large peak in resistance occurs around

ν = 9/2, but only a small peak develops near ν = 11/2. In a similar fashion in the N = 3

LL a large peak occurs at ν = 13/2 and a small peak around ν = 15/2. Although not shown

here, this alternation manifests itself starting from temperatures above 50 mK.

Figure 4.9: Magnetotransport data when the system is probed in the hard direc-

tion at a temperature of 90 mK. Note the difference between the resistance peak

which develops around ν = 9/2 and ν = 11/2. The same behaviour is observed

around ν = 13/2 and ν = 15/2.

We recall that the striped state predicted around half fillings in high LLs consist of alter-

nating stripes with integer filling factor ν = 2N + 1 and ν = 2N (see Sec. 4.2). It was also
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discussed that 1D conducting edge states exist at the boundaries between two regions with

different filling factor. MacDonald and Fisher [90] assumed that the current along the easy

direction of the striped phase flows in these conducting edge states and formulated a transport

theory. In their model, dissipation and transport orthogonal to the stripes occurs via scattering

events between adjacent 1D conducting edge channels. Adopting the language introduced by

Müller et al. [91], we have denoted the regions with higher filling factor as the well regions,

while the regions with lower filling factor are called the barrier regions.

Phenomenologically, the observation can be understood as follows: At filling factor ν =

9/2, the barrier has a height equal to the cyclotron gap. However, for filling factor ν = 11/2,

the barrier corresponds to the Zeeman gap. At higher temperatures, the barrier defined by

the Zeeman gap will become more transparent than the barrier governed by the cyclotron

gap. Backscattering at ν = 11/2 will be suppressed as the probability for tunneling between

adjacent 1D conducting edge channels increases. However, at ν = 9/2, the backscattering

remains strong. This produces a larger resistance near ν = 9/2 than at ν = 11/2 as observed

in the experiment. The same arguments apply to Landau levels with higher index.





Chapter 5

Spin Phase Transition in the Quantum

Hall Regime

5.1 Introduction

In recent years it has been recognized that the spin degree of freedom plays an important

role for fractional quantum Hall liquids [92, 93]. In early fractional quantum Hall (FQH)

studies, it was usually assumed that the electron system is fully polarized. At very strong

magnetic field B⊥ all electron spins are aligned and the spin degree of freedom is indeed

effectively frozen out. The appearance of the fractional quantum Hall effect is then due solely

to Coulomb interactions. However, it was pointed out by Halperin [10] that the assumption

of full spin polarization initially used by Laughlin [2] to account for the FQH-states may not

be valid at small densities due to the fact that in GaAs-based 2DESs the Zeeman splitting

is small. By lowering ne the FQH regime can be shifted to fields, where spin remains an

important extra dynamical degree of freedom, because the Zeeman splitting drops linearly

with magnetic field and hence more rapidly than the Coulomb interaction (
√

B⊥) [10,94,95].

Rich phase transition physics may ensue, since multiple FQH ground states that differ only in

their spin configuration compete. Recent photoluminescence measurements confirmed that

indeed many of the fractions such as 2/3 and 2/5 are not necessarily spin polarized [96].

Transport experiments have disclosed signatures for spin phase transitions at, for example

ν = 2/3 and ν = 2/5, from a spin-unpolarized to a fully spin-polarized FQH states as for

instance when the density is increased. Tilted-field experiments performed by Eisenstein et
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al. [97] showed the first evidence for a spin phase transition in the ν = 2/3 FQH-state. They

observed that the resistance at ν = 2/3 exhibited reentrant behavior, i.e., the state would

weaken, then later revive as the sample was rotated further. Qualitatively, the interpretation of

these experiments is that the ν = 2/3 state undergoes a phase transition from an unpolarized

ground state at small tilt angles to a fully polarized state at larger angles. In addition to the

tilted-field technique, there are others possibilities to study spin phase transitions. Exploiting

the fact that the spin phase transition takes place at a critical ratio g̃crit of the Zeeman and

Coulomb energies EZ/EC , is possible to drive this transition conveniently in different ways.

A manner consists in the application in-situ of a hydrostatic pressure, which produces changes

in the band structure and the spin-orbit coupling. This in turn will lead to a reduction in the

magnitude of the electronic g-factor and therefore a lowering of the Zeeman energy [98,

99, 100, 101, 102] which favors the formation of spin-unpolarized states. A second manner

to study this transition is by sweeping the electron density maintaining fixed filling factor

ν = 2/3. In this case, the functional dependencies of the Zeeman and Coulomb energies

on magnetic field or density, allow the possibility to alter g̃crit and trigger the spin phase

transition.

5.1.1 Motivation

Recent experiments carried out in our group have explored in more detail this spin phase

transition at ν = 2/3 and uncovered very interesting physics pertaining to the nature of the

transition. In particular, the magnetotransport experiments at low temperatures T < 20mK

performed by Smet et al. [9, 103] showed that the phase transition between the unpolarized

and fully spin polarized ν = 2/3 FQH state is ferromagnetic in nature. This 2/3 spin phase

transition is accompanied by hysteresis in transport, which suggests 2D Ising ferromagnetism

and domain formation. NMR studies performed by Stern et al. [104] have supported this do-

main formation. Experiments at higher temperatures T = 0.4K and large currents in narrow

quantum wells (15nm) carried out by Kronmüller et al. [105] disclosed an anomalously large

increase of the resistance peak at ν = 2/3 [106]. Although at ν = 2/3 there is already a small

resistance peak at small currents, it is strongly enhanced when driving larger currents through

the sample [107, 108, 109]. Experiments have also showed that the interaction between elec-

trons and the nuclei of the GaAs host plays an important role in the transition regime [110].

Here, we studied the spin transition at ν = 2/3 from a microscopic viewpoint. Using a
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single-electron transistor, we follow the evolution of localized states across this spin phase

transition by measuring the local electronic compressibility (see Sec. 3.2). These studies were

mainly motivated by the transport experiments in Ref. [9, 103], and NMR experiments [104]

which suggested a domain formation at the transition.

5.2 Spin Phase Transition at ν = 2/3

5.2.1 Origin of the Spin Transition

The spin phase transitions from an unpolarized to a fully polarized state can be elegantly

explained in the composite Fermion (CF) model [4,3]. As mentioned in chapter 2, composite

Fermions are quasi-particles that may be visualized as being composed of one electron and

an even number of magnetic flux quanta Φ0 [17]. This model allows us to understand the

FQHE in terms of the IQHE of these quasi-particles. In the composite Fermion language,

ν = 2/3 corresponds to having two filled composite Fermion Landau levels (CF-LL). Each

CF-LL is characterized by its orbital (n = 0, 1, 2, · · ·) and spin quantum number (↑ or ↓).
When ν = 2/3 occurs at low enough magnetic fields, the two occupied levels correspond to

the two possible spin orientations of the particles: levels (0, ↑) and (0, ↓), and the system is

unpolarized. As the perpendicular magnetic field B⊥ increases, the separation between these

two different spin states increases more rapidly (linearly) than the energy separation to the

next orbital level does (
√

B⊥). Therefore, a coincidence between the spin down state of the

lowest CF-LL (0, ↓) and the spin up of the second CF-LL (1, ↑) will occur, as illustrated in

Fig. 5.1. At this coincidence, B⊥ = BC , the system will undergo a quantum phase transition

to a fully polarized state.

5.2.2 Signature in Transport for the Spin Transition

At the coincidence of these two spin-resolved levels with different index and opposite spin the

quantum Hall effect disappears since the gap closes. Figure 5.2 shows a transport experiment

near ν = 2/3. The longitudinal resistance RL is plotted as a function of B⊥ and ∆n2/3. Here

∆n2/3 is the deviation of the density from the electron density at which the average filling

factor in the sample equals 2/3, ∆n2/3 = nav − 2/3 · B⊥/Φ0. When moving along the line

∆n2/3 = 0, the resistance is close to zero, then increases and subsequently drops back to
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Figure 5.1: Evolution of the composite-fermion Landau level diagram as a func-

tion of applied perpendicular magnetic field B⊥ at fixed filling factor ν = 2/3,

i.e., when two composite-fermion Landau levels are completely filled. The dashed

red curve indicates the Fermi energy, EF . The composite-fermion Zeeman energy

increases linearly with B⊥ while the cyclotron energy of composite-fermions h̄ωc

increases only as
√

B⊥. As a result, a crossing of the (0, ↓) and (1, ↑) levels oc-

curs as B⊥ is raised. At the coincidence, B⊥ = BC , a quantum phase transition

from an unpolarized ground state with an equal number of spin up and spin down

composite fermions, to a fully polarized ground state occurs.

zero as B⊥ is increased further. This reentrant behavior is the signature in transport for the

spin phase transition [97, 111, 112]. Figure 5.3 illustrates clearly this reentrant behavior. The

longitudinal resistance RL is plotted as a function of ∆n2/3 at the fixed field BC = 4.85T .

Also shown in Fig. 5.3 is the hysteretic behavior of the resistance near the transition. The

dashed line was taken while sweeping up the density whereas the solid line was recorded

during a down sweep of the density. The observation of hysteresis evidences that the spin

phase transition is ferromagnetic in nature [9, 103]. Since first-order phase transition may

be accompanied by hysteresis, it follows that the spin phase transition may be occurring as

a first-order phase transition. In the following section the ferromagnetic character of this

quantum phase transition is discussed.
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Figure 5.2: Ferromagnetic phase transition with easy-axis anisotropy between

the spin-unpolarized and fully spin-polarized 2/3 fractional quantum Hall state.

This plot shows a color map of the longitudinal resistance RL as a function of

magnetic field B and carrier density. The density is measured relative to n2/3 =

(2/3)(B/Φ0). During this experiment RL was acquired only when the magnetic

field was swept down. At BC and ν = 2/3 the quantum Hall effect disappears and

the resistance becomes finite as the system undergoes the spin phase transition.

5.2.3 Ferromagnetic Nature of the Spin Transition

When two Landau levels are brought energetically close to alignment, correlations frequently

force a transition of the system towards an ordered many-particle ground state similar to that

of a low dimensional ferromagnet [101,102,9,103,113,114,115]. Since the spin phase tran-

sition at ν = 2/3 in the composite fermion picture involves the alignment of two composite-

fermion Landau levels, one may except that this transition too belongs to the realm of fer-

romagnetism. At the transition, the degeneracy gives rise to domains of different spin po-

larizations that are separated by domain walls. In this case, the exchange energy cost for

spin misalignment forces quasiparticles initially distributed among the two CF-LL with op-

posite spin orientation to take on identical spin orientations as one CF-LL overtakes the other.

Indeed, the hysteresis in the resistance as seen in Fig. 5.3 is conform with Ising ferromag-

netism [101, 9, 114].

To explain the formation of domains with different spin polarization from a phenomeno-
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logical viewpoint, one has to consider the effect of the hitherto neglected disorder in the

system. On the one hand, we stressed in Section 2.3 that a spatially random disorder po-

tential introduces density fluctuations within the sample. On the other hand, the spin phase

transition from an unpolarized to a polarized state takes place at a critical ratio g̃crit of the

Zeeman and Coulomb energies EZ/EC and therefore at a critical density or B⊥. Hence,

regions within the sample with a lower density than this critical value will be unpolarized

while those regions with higher densities will be polarized giving rise to domains or areas

with opposite spin configurations.

Figure 5.3: The longitudinal resistance RL in the vicinity of the spin phase tran-

sition at ν = 2/3. When comparing data acquired during up sweeps (line dashed)

with data recorded during down sweeps (solid line) of the density, hysteresis is

observed in RL.

Hysteresis is usually tied to the physics of domain walls. In Ising quantum Hall ferro-

magnets, domain wall motion may be hindered by imperfections and different domain con-

figurations may appear as the path to approach the transition is varied. These microscopic

differences influence the resistance detected on a macroscopic scale as it is sensitive to the

configuration of the medium where the charge-carrying quasiparticles travels through. This

likely is the source for the observed hysteresis.
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5.3 Microscopic Manifestation of the Spin Phase Transition

Figure 5.4 shows the result of a typical measurement of the compressibility in the vicinity of

ν = 2/3 obtained with a single-electron transistor (SET). A description of the SET-technique

can be found in Sec. 3.3. The data were taken at a temperature less than 20 mK. As the figure

clearly shows, a large set of dark lines departs from the left as well as the right. These lines

or spikes in the compressibility run parallel to the horizontal ∆n2/3 = 0, marking constant

average filling 2/3. Consistent with the model of localization in the quantum Hall regime

outlined in Sec. 2.3, each line corresponds to the evolution in the (B, ∆n2/3)-plane of the

charging of an individual localized state in a dot or anti-dot close to the SET. Dots or anti-

dots correspond to those regions of the sample where the degeneracy of the Landau level

being filled is exhausted and the system fails to screen the bare disorder potential. Because

the disorder potential is rigid as we tune the B-field, the configuration of dots or anti-dots

remains identical at different B-fields and spikes recur at the same ∆n2/3 irrespective of the

B-field. The resulting horizontal charging lines continue until the spin phase transition is

approached. Once the transition is reached, the gap closes and the important prerequisite

for observing localization, namely the existence of a gap, is no longer fulfilled. When this

occurs, the screening ability of the system is improved and the localized states disappear.

Hence, as the spin transition is approached the localized states or charging lines fade or vanish

altogether rather abruptly. The disappearance of localized states represents the microscopic

signature of the spin phase transition.

5.3.1 Comparison of the Spectra on both Sides of the Spin Transition

According to the localization picture governed by Coulomb interactions (see Sec. 2.3), the

spectrum of localized states depends solely on the bare disorder potential and the presence of

a gap. Therefore, the presence of a gap below and above the spin transition should produce

identical spectra of localized states on both sides of the transition, as is schematically shown

in Fig. 5.5.

Fig. 5.4 allows to compare the localized-state spectrum at fields below the spin transition,

namely in the unpolarized regime, with the spectrum at fields above the spin transition, where

the electron system is fully spin polarized. Contrary to expectation highlighted in Fig. 5.5, the

spectra on both sides of the transition do not match. Some localized states in the unpolarized
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Figure 5.4: Spectra of localized states measured near the 2/3-spin phase tran-

sition. The plot shows a colour map of the local inverse compressibility ac-

quired as function of B field and carrier density (measured relative to n2/3 =

(2/3)(B/Φ0)). Data points making up this colour graph were recorded by step-

ping B from 4.5 to 7 T in 5 mT steps and sweeping the density from high values to

low values for each value of the B-field. Dark lines or spikes in the inverse com-

pressibility run parallel to the horizontal ∆n2/3 = 0. Each dark line corresponds

to the charging of an individual localized state near the SET. The spectra of lo-

calized states below the transition and above it are clearly different, suggesting a

change in the underlying screened potential across the spin phase transition. Con-

versely, below and above the transition the spectra are nearly invariant to changes

in magnetic field. The white dotted lines serve as guides to the eye. Roughly

within a 0.2 T field interval separating these two white lines, the charging lines

fade, bend or disappear and the transition takes place. This experiment was carried

out in a top-loading dilution fridge with a base temperature < 20 mK.
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Figure 5.5: Schematic illustration of the expected behaviour for the localized

states as a function of B field and carrier density (measured relative to n2/3 =

(2/3)(B/Φ0)) on both sides of the spin phase transition at filling factor 2/3 within

the screening model of localization. Here, identical sets of horizontal black lines

appear at fields below and above the transition. Because the bare disorder potential

is not expected to change with B-field, identical spectra are anticipated on both

sides of the transition.

side vanish as the spin phase transition is approached, but they do not re-emerge on the other

side of the transition. Instead, new localized states at different values of ∆n2/3 appear with

no apparent correlation between the new and old values. In addition, the expected gradual

disappearance of localized states when the gap closes is not observed. Rather, the spectrum

disappears abruptly and is replaced by a new one. This observation cannot be reconciled with

the localization picture described in the dot model.

In the localization picture based on non-linear screening, the mismatch between the spec-

trum of localized states above and below the spin transition suggests that the configuration

of anti-dots and dots is modified. However, this would imply a change in the bare disorder

potential across the spin transition which is very unlikely. A more likely scenario is that the

nature of Coulomb interaction and screening behaviour alters when crossing the transition,

because there Landau levels with different spin and orbital quantum numbers become occu-

pied (see Fig. 5.1). A comparison of localized spectra with different spin and orbital quantum

numbers can also be made for integer filling factors. However, there the spectra for differ-
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ent integer fillings would be collected at substantially different densities or magnetic fields.

For instance, in Ref. [42] charging spectra at different integer filling factors were published.

There, qualitatively similar spectra were found with only some modifications to them. These

modifications may be a result of the change in quantum numbers. The spin phase transition

at filling factor 2/3 provides a unique opportunity of comparing localized-state spectra of

different spin and orbital quantum numbers at the same magnetic field and carrier density.

Screening enters in the physics of the spin phase transition because it sets up a density

profile that compensates the bare disorder potential when the system is compressible (see

section 2.3). It determines the size and shape of the dots and anti-dots, which form when

screening breaks down. The discrepancy in the spectra of localized states on both sides of the

spin transition suggests that the screening-induced density profile is different well above and

well below the transition. Because spikes follow horizontals, we conclude that the screening-

induced density profile, and therefore the configuration of dots and anti-dots, remains largely

unaltered when staying on the same side of the transition. We conjecture that the difference in

the density profile below and above the transition stems from modified screening conditions

encountered when Landau levels with different quantum numbers are occupied. Differences

in orbital wave function spreading as well as the gap due to exchange enhancement may

produce differences in the polarizability of the electronic system [116].

5.4 Hysteresis in Local Compressibility Measurements

The local compressibility shares another important signature of the spin transition with trans-

port data, namely hysteresis. Hysteresis, as already mentioned, is indicative of glassy be-

haviour in the disordered electron system when it undergoes a ferromagnetic first order quan-

tum phase transition from the unpolarized fractional quantum Hall liquid to the completely

polarized fractional quantum Hall liquid. It was also discussed that impediments to free

domain walls motion lead to different domain configurations. Since the local electronic com-

pressibility measured by a single-electron transistor (SET) is sensitive to the spatial location

of charging events, the microscopic differences in the domain configurations bring about hys-

teresis depending on the path taken to approach the transition.

Figure 5.6 plots the local compressibility in the magnetic field range where the spin

phase transition happens, and compares data acquired during upward sweeps of density n
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Figure 5.6: Hysteretic behaviour in the local electronic compressibility. These

two-dimensional graphs show the local electronic compressibility data acquired

during up sweeps (left panel) of density n and down sweeps (middle panel) as

well as a subtraction of both (right panel) in the range of magnetic field where the

spin phase transition at filling factor 2/3 happens.
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(left panel) with data recorded during downward sweeps (right panel). The right panel was

generated by subtracting these two sets of data. In the left and middle panel the spectrum

of localized states follows a behaviour very similar to that displayed in Fig. 5.4, i.e., a set

of charging lines departs from the left vanishing as the transition region is reached and re-

emerging on the other side of the transition. The observation emphasized in the previous

section, namely different spectra of localized states on both sides of the transition, is also

present here. In general, far away from the spin phase transition, domains will be absent and

no hysteretic behaviour is observed in the compressibility deep in the polarized or unpolar-

ized regime. However, in the transition region where domains are relevant, the local com-

pressibility unveils hysteretic behaviour. This observation represents the first microscopic

experimental evidence of hysteresis for the spin phase transition at filling factor 2/3.

For completeness, we note that in transport studies it has been argued that changes in

the nuclear spin polarization of the GaAs host can also contribute to hysteretic behaviour.

Dynamic nuclear polarization by the externally imposed current, for instance, may produce

such changes in the nuclear spin polarization near the transition [105, 117, 107]. The local-

compressibility experiments here, have been carried out in the absence of an imposed current.

5.5 Extracting the Typical Domain Size

Unlike transport, which inevitably senses a macroscopic area, local probe studies can focus on

only a microscopic area. If the hysteresis is tied to domain formation, it is tempting to argue

that if one scales down further and further the active area monitored by the single-electron

transistor the hysteresis will disappear when the area probed by the SET is comparable to the

typical size of the domains. In order to scale down the size of the sample undergoing the

transition, we utilize an electrostatic gating technique. The stationary SET is used as a top

gate in addition to its main role as a detector.

By applying a voltage difference, VTG = VSET−V2D, between the single-electron transis-

tor (SET) and the two-dimensional electron system, the electron density directly underneath

the SET can either be enhanced or depleted compared to the surrounding bulk. Fig. 5.7

illustrates schematically the situation at fixed magnetic field where the electron density un-

derneath the SET is partly depleted. In this case, the externally imposed density difference

between the local density nlocal under the SET and the bulk density nbulk, ensures that the
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bulk is still compressible, while in the region underneath the SET the density is closer to

filling factor 2/3. The compressibility becomes negligible and the screening in the region un-

derneath the SET is no longer capable of entirely compensating the bare disorder potential.

Under these conditions, the bulk will not contribute any 2/3 compressibility spikes and the

observed features will correspond solely to the artificial electron pocket or anti-dot defined

by VTG.

Figure 5.7: Schematic illustration of the spatial density profile in the two-

dimensional electron system, when a voltage difference between the SET and the

2DES VTG is applied in such a way that the electron density is lowered directly

underneath the SET. The local electron density under the SET is denoted as nlocal.

Far from the SET the electron density is the bulk density nbulk. In contrast to the

VTG, which influences the density locally, the VBG affects the density uniformly

in space.

An example of compressibility data in the (B, n)-plane when a large VTG bias voltage

is applied is shown in Fig 5.8. Under these conditions a pocket of electrons underneath the

SET is created by using a VTG = −120 mV. During this experiment, in order to maintain

a working point of the SET with high sensitivity, VTG was corrected slightly as a function

of B. Hence, it is not really constant but the correction is on the 1% level. In this plot,

the wide span of n allows to compare the spectrum of localized states of the surrounding

regions and the spectrum of localized states of the electron pocket created under the SET.
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The set of horizontal lines at densities above 7.5× 1010 cm−2 corresponds to the spectrum of

localized states in the surrounding bulk region. The more distant charging events are detected

by the SET, but with diminished amplitude. At densities around 6× 1010 cm−2, the spectrum

of localized states corresponding to the region under the SET is well defined. In the next

subsection, a study of the hysteresis at the spin phase transition under these conditions has

enabled us to obtain a lower bound for the domain size.

Figure 5.8: Color map of the local electronic compressibility in the (B,n)-plane

when a voltage difference is applied between the single-electron transistor and the

two-dimensional electron system, VTG = VSET −V2D = −120 mV. By spanning

a large range of n the spin phase transition at ν = 2/3 can be seen both under

the SET as well as in the surrounding bulk. The transition in the surrounding

region occurs at higher density, while the transition under the SET occurs at lower

densities.
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5.5.1 Domain Structure Size

Fig. 5.9 shows a color map of the electronic compressibility in the (B, n)-plane at a bias

voltage difference VTP of −120 mV for up and down sweeps of the density. The left and

middle panels depict the compressibility when the density is swept up and down respectively.

The third panel has been obtained by subtracting the up and down sweeps. The hysteretic be-

havior has vanished (compare with Fig. 5.6). This observation conforms to our expectations

for a glassy system studied on a length scale comparable or smaller than the typical domain

size. Because the monitored region is comparable to the SET size (50 nm×500 nm), it is

reasonable to conclude that domain structure occurs on a scale larger than 500 nm.

Finally, the discrepancy between the spectra on either side of the transition survives when

zooming in on a small enough area, as in Fig. 5.9, for which the absence of hysteresis

signals the absence of domains. This observation substantiates that the mismatch between

the localized-spectra on the two sides of the spin transition is unrelated to domain physics

near the transition itself.
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Figure 5.9: Local electronic compressibility data in the (B,n)-plane when a

voltage difference between the single-electron transistor and the two-dimensional

electron system, VTG = VSET − V2D, of -120 mV is applied. Left: The local

compressibility data acquired during up sweeps of the density n in the magnetic

field regime where the spin phase transition at filling factor 2/3 happens. Middle:

Local electronic compressibility data acquired when the density is swept down.

Right: Color map generated by subtracting the sweep up and sweep down data.

Hysteresis has vanished.



Chapter 6

Conclusions

This dissertation presents experimental research on phenomena that emerge from electron-

electron interactions in the quantum Hall regime. These studies were performed on high

quality GaAs-based heterostructures. Magnetotransport studies at very low temperatures (be-

low 20 mK) were carried out on the electronic liquid-crystal phases that appear in partially

filled high index Landau levels (N ≥ 2). Local probe studies, using a stationary single-

electron transistor, were performed near the spin phase transition at filling factor ν = 2/3. In

the following, we present the conclusions of these studies.

6.1 Electronic Liquid-Crystal Phases

Chapter 4 presents transport measurements carried out in the regime where electronic liquid-

crystal (ELC) phases are expected. These experiments were performed on square van der

Pauw geometries with side lengths of 90, 180, 300, and 500 µm, which were lithographically

defined. The square geometry is preferred over a Hall bar configuration for these studies,

because any resistance anisotropy is exponentially enhanced due to current channeling and

spreading. These studies are either performed in the presence or absence of a dc current,

driven or nondriven conditions respectively.

Transport studies under nondriven conditions

• We observed clear evidence for the existence of the correlated phases in high index

Landau levels [13]. Large anisotropic transport appeared around half-fillings and reen-
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trant Hall quantization near quarter-fillings of Landau levels with index N ≥ 2.

• The majority of our transport studies were performed at temperatures less than 20 mK.

Usually, at this temperature, the resistance maximum at half-filling gradually decays

as the LL index increases. However, at higher temperatures (90 mK) the resistance

maximum alternates between large and small values for (2N + 1/2) (2N + 3/2) fill-

ing, respectively. We explain this observation by differences in the barrier height for

tunneling across the stripes.

Transport studies under driven conditions

• We have observed a stabilizing effect on the orientation of the anisotropic phase at

half filling when dc current drive and easy direction coincide. We speculate that this

stabilizing influence of dc current is linked to a suppression of the transverse shape

fluctuations of the nematic phase in the ELC picture.

• We found some evidence for a reordering in the anisotropic phase around half filling.

The easy direction is rotated to point along the dc current direction. If initially the

dc current is perpendicular to easy direction, by increasing the dc current they align.

Furthermore, we found evidence that indicate that the dc current flowing through the

anisotropic correlated phase around half-filling could be triggering the reorientation of

this phase.

• We have found that a dc current drive also induces anisotropic transport near one-

quarter and three-quarter filling consistent with stripe order. The result favors the stripe-

crystal phase rather than the isotropic bubble phase to describe the system near quarter

fillings in the high Landau levels.

• We have found evidence suggesting that the depinning of the stripe-crystal phase is

due to the dc Hall electric field. The depinned phase exhibits anisotropy. Initially the

easy direction of the emergent anisotropic phase coincides with the direction of the dc

Hall electric field, i.e., perpendicular to the dc current direction. At larger dc-current,

eventually easy-direction and dc-current align in a similar fashion as the reordering that

takes place near half-filling.
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Based on these observations, we can say that a dc current drive plays the role of an external

breaking symmetry field. The data provide compelling evidence for the liquid crystal picture

of the collective states in high Landau levels.

6.2 Spin Phase Transition at Filling Factor 2/3

In this section we present the conclusions derived from the local probe studies performed

near the spin phase transition at filling factor ν = 2/3. Although this transition has been

investigated using other techniques before, this work is the first microscopic study.

• We were able to probe and follow the evolution of individual localized states as one

crosses the spin phase transition by measuring the local electronic compressibility. Fur-

thermore, we observed that the localized states appear in a band parallel to the line of

constant filling factor ν = 2/3.

• We observed that the spectra of localized states below and above the spin transition are

different. According to the current understanding of localization in which screening

plays a crucial role, this discrepancy between spectra either implies that the bare disor-

der potential varies with density or the details of screening change. Since it is unlikely

that the bare disorder potential changes, modified screening behavior when Landau

levels with different spin quantum numbers become populated is the most likely expla-

nation.

• We have observed hysteretic behavior accompanying the spin transition when compar-

ing data acquired during up sweeps of density with data acquired during down sweeps.

Hysteresis is indicative of domains formation.

• Using electrostatic gating we were able to vary the size of the sample undergoing the

phase transition. For submicrometer dimensions the hysteresis disappeared. We can

conclude that the domain size is in excess of 500 nm.

• We found evidence that indicate that the mismatch between the localized-spectra on

either side of the transition is unrelated to domain physics near the transition. This

relies on the fact that the discrepancy between the spectra on the two sides of the spin
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transition survives when zooming in on an area where the absence of hysteresis signals

the absence of domains.

6.3 Outlook

The correlated phases in high Landau levels (HLL) have not been investigated at a micro-

scopic level. Measurements with a single-electron transistor mounted on the tip of a scanning

probe microscope as well as scanning tunneling microscopy are among the most promising

techniques to accomplish this task.

Measurements of the Hall potential distribution in the quantum Hall regime are very use-

ful to infer the current distribution within the two-dimensional electron system. In the course

of this work, experiments using inner ohmic contacts to measure the Hall voltage distribution

in the correlated phases in HLL were carried out but require improvements. To eliminate the

contribution of the dc-Hall voltage from the dc-current flowing through the edge channels

of the completely filled levels, it is necessary to measure the Hall voltage distribution at a

temperature high enough that the correlated phases are absent. A substraction of the results

obtained at high and low temperature may provide valuable additional information on the

reordering and the accompanied changes in the current distribution.



Appendix A

Sample Preparation

A.1 Materials

All the devices used in this thesis were defined by optical lithography on high quality Al-

GaAs/GaAs heterostructures grown with molecular beam epitaxy by collaborators at Bell

Labs (USA), the Walter Schottky Institute (Germany), and the Weizmann Institute of Science

(Israel).

The data presented in this thesis were acquired from the samples grown at Bell labs (chap-

ter 4) and the Walter Schottky Institute (chapter 5). However, the samples fabricated at the

Weizmann Institute were crucial in the first stages of the investigations described in chapter

4.

The following table shows the most important characteristics of the material used.

Wafer Name Density Mobility Laboratory

LP8-9-01.2 2.5 · 1011 cm−2 18 · 106 cm2/Vs Bell Labs

VU4-97 2.1 · 1011 cm−2 10 · 106 cm2/Vs Weizmann Institute

W11-27-01.1 0.8 · 1011 cm−2 − · 106 cm2/Vs Walter Schottky



94 APPENDIX A. SAMPLE PREPARATION

A.2 Optical lithography

This section outlines the steps used to prepare the devices in the experiments presented in

chapter 4.

A.2.1 Mesa definition

The mesa is defined during the following steps:

1. Clean sample, first with acetone, then with propanol.

2. Coat the sample with photoresist. Apply a few drops of Shipley S1805 photoresist on

the sample previously adjust on the plate of the spinner, and spin for 30 seconds at 4.5

krpm.

3. Bake for 2 seconds on top of a hotplate set to 90 ◦C.

4. Expose the photoresist to 6 seconds of UV light with the mask aligner.

5. Develop photoresist. Immerse and shake the sample in AZ 726 developer for 35 sec-

onds. Then rinse in a stream of deionized water for about 3 minutes. Blow dry well

with dry N2. In this step, exposed areas of the photoresist are removed.

6. Prepare the etch solution. The etch solution is prepared by mixing together the follow-

ing chemical components:

• 50 ml of H2O

• 1 ml of H2O2

• 50 ml of H3PO4

Stir the etch solution using a magnetic stirrer until the temperature of the solution is

between 20-25 ◦C.

7. Etch the exposed areas. Immerse the sample in the etch solution by using a Kimex

dish for the appropriate amount of time. The typical etch rate of the solution is 250

nm/min).

8. Clean the sample, first with deionized water, then acetone, then with propanol. Finally,

blow dry sample with N2.
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A.2.2 Electrical contacts

Electrical contacts to the 2DES are made by alloying a gold-germanium-nickel (Au/Ge/Ni)

sequence of metals, which have been deposited on the top of the mesa with thermal evapora-

tion. The process is carried out following the next steps:

1. Coat the sample with photoresist AZ5214E and spin for 30 seconds at 6 krpm.

2. Bake for 4 seconds on top of a hotplate set to 90 ◦C.

3. Expose the photoresist for 60 seconds with UV light in the mask aligner.

4. Bake for 60 seconds on top of a hotplate set to 120◦C.

5. Expose the sample for 70 seconds without mask (flood exposure).

6. Develop photoresist. Immerse and shake the sample in AZ 726 developer for 40 sec-

onds. Rinse in a stream of deionized water and blow dry the sample with N2.

7. Clean the sample before introducing it into the evaporator in the following manner:

• Clean the sample in an O2 plasma for 30 seconds.

• Immerse the sample in Semicoclean for 2 minutes.

• Immerse the sample in HCl for 5 seconds.

• Immerse the sample in deionized water for 1 second.

• Blow dry the sample with N2

8. Evaporate contact materials. The metals (Au/Ge/Ni) are evaporated with the following

thickness and rates:

• 320 nm of Au at a rate of ≈ 0.2 nm/s

• 160 nm of Ge at a rate of ≈ 0.2 nm/s

• 120 nm of Ni at a rate of ≈ 0.1 nm/s

9. Alloying the contact material in an oven with forming gas at a pressure of 300 mbar, as

follows:

• 370 ◦C for 120 seconds, without gas flow.
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• 440 ◦C for 120 seconds, without gas flow.

• rapid cool down to room T, with gas flow.

A.2.3 Bonding pads

The bond pads facilitate the wire-bonding to the sample. The pads are made of Cr/Au and

are deposited as follows:

1. Coat the sample with photoresist AZ5214E and spin for 30 seconds at 6 krpm.

2. Expose the photoresist with UV light in the mask aligner.

3. Develop photoresist.

4. Deposit metal. The metals (Cr/Au) are evaporated in the following order:

• 20nm of Cr at a rate of ≈ 0.1 nm/s

• 100nm of Au at a rate of ≈ 0.2 nm/s

5. Lift off.
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