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Abstract

The Free-Electron Laser (FEL) at the TESLA Test Facility (TTF2) produces laser-like
radiation in the vacuum-ultraviolet (VUV) and soft X-ray regime. To reach the minimum
radiation wavelength of 6nm, bunches of electrons with an energy of 1GeV, a peak current
of 2500 A and a normalized transverse emittance of less than 2 mm mrad are needed.

The high peak current is achieved by compressing the electron bunches longitudinally in
two magnetic chicanes. The first chicane is a modified version of bunch compressor 2 (BC2)
which was used at TTF1. The second chicane is a new bunch compressor, the so called
BC3. Since the charge density is very high when the bunches pass BC3, strong coherent
synchrotron radiation (CSR) is emitted by the electrons and the transverse emittance of
the bunch is diluted. Within this thesis different chicane layouts are compared analytically
and by computer simulations to find a chicane layout which minimizes emittance dilution.
A 6-bend S-shaped chicane is found to match the requirements of the VUV-FEL very well.

CSR will not only lead to a growth of the transverse emittance, but also to an am-
plification of small modulations in energy and charge density. The dependence of the
amplification on the modulation wavelength is studied for different chicane layouts and
various electron bunch parameters. Computer simulations and results obtained by a the-
oretical model are compared. It is shown that density modulations can be amplified in
BC3 by up to one order of magnitude. When the amplification in BC2 and BC3 is taken
into account, the total amplification factor might reach up to two orders of magnitude.

Zusammenfassung

Der Freie-Elektronen Laser (FEL) der TESLA Test Anlage (TTF2) erzeugt Laser-artige
Strahlung im vakuum-ultravioletten (VUV) und weichen Röntgenspektrum. Um die mini-
male Wellenlänge von 6nm erreichen zu können, müssen die Elektronenpulse eine Energie
von 1GeV und einen Spitzenstrom von 2500A haben. Ihre normierte transversale Emittanz
darf 2 mm mrad nicht überschreiten.

Der hohe Spitzenstrom wird erreicht, indem die Elektronenpulse in zwei Magnetschika-
nen longitudinal komprimiert werden. Die erste Schikane ist eine modifizerte Version des
Bunch Compressor 2 (BC2), der bei TTF1 verwendet wurde. Die zweite Schikane ist eine
neue Schikane und wird BC3 genannt. Da die Ladungsdichte sehr hoch ist, wenn die Elek-
tronenpulse BC3 passieren, wird starke kohärente Synchrotronstrahlung (CSR) erzeugt
und die transversale Emittanz wird vergrößert. In dieser Arbeit werden verschiedene
Magnetschikanen analytisch und mit Hilfe von Computersimulationen verglichen, um eine
Anordnung der Ablenkmagnete zu finden, bei welcher die Emittanzvergrößerung möglichst
gering ist. Es wird gezeigt, dass eine S-förmige Schikane aus sechs Dipolen die Anforderun-
gen des VUV-FEL’s sehr gut erfüllt.

CSR führt nicht nur zu einer Vergrößerung der transversalen Emittanz, sondern auch zu
einer Verstärkung kleiner Energie- und Ladungsdichtemodulationen. Die Abhängigkeit der
Verstärkung von der Modulationswellenlänge wird für verschiedene Schikanen und Elek-
tronenpulsparameter untersucht. Computersimulationen und die Ergebnisse eines theo-
retischen Modells werden verglichen. Es zeigt sich, dass Dichtemodulationen in BC3 um
eine Größenordnung verstärkt werden können. Berücksichtigt man die Verstärkung in
BC2 und BC3, so kann die gesamte Verstärkung zwei Größenordnungen erreichen.
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Chapter 1

Introduction

Since the early 1990’s there is a broad consensus within the high energy physics community,
that a linear accelerator which collides electrons on positrons at a center of mass energy
of Ecm = 500− 1000GeV would be of enormous importance for the further understanding
of particle physics. The concept of such a linear collider was already proposed in 1965 by
M. Tigner [1]. But it has been realized until today only in the Stanford Linear Collider
(SLC) in Stanford, USA, which collided electrons and positrons at Ecm = 91 GeV [2].

The highest energies for electron-positron collisions were reached at the Large Electron-
Positron Collider (LEP) at CERN (Conseil Européen pour la Recherche Nucléaire, Eu-
ropean Organization for Nuclear Research) in Geneva, Switzerland. LEP was a storage
ring of 27 km circumference and reached up to Ecm = 209 GeV [3]. It was shut down in
November 2000 and in 2001 the construction of the Large Hadron Collider (LHC) began
in the LEP tunnel. This new storage ring will collide protons on protons at a center of
mass energy of Ecm = 14 TeV [4]. The high-precision measurements which are possible at
a linear electron-positron collider will complement the LHC results. Together, both ac-
celerators have the potential to establish fundamentally new insight into particle physics
even beyond the Standard Model.

To design a linear collider which is based on superconducting technology, in 1992 the
international TESLA (TeV Energy Superconducting Linear Accelerator) collaboration was
initiated at the Deutsches Elektronen-Synchrotron (DESY) in Hamburg, Germany [5].
At that time groups from the National Laboratory for High Energy Physics (KEK) in
Tsukuba, Japan [6] and the Stanford Linear Accelerator Center (SLAC) in Stanford,
USA [7] also started to work on linear collider designs. In contrast to TESLA these
designs are based on normal-conducting technology.

Very soon it was proposed to include an X-ray Free-Electron Laser (FEL) in TESLA
sharing part of the accelerating structures [8]. Also the FEL demands a high beam quality
which is inherent to the TESLA design. Since the interest in X-ray FELs for research in
the field of condensed matter physics, chemistry, material sciences and structural biology
is very high, other projects are also under study worldwide. The principal example is
the Linac Coherent Light Source (LCLS) where it was proposed to make use of a linear
accelerator to drive an FEL for X-rays for the first time [9].

Although the TESLA linear collider and the X-ray FEL were initially proposed as a
combined system, they were later divided into independent projects to gain flexibility for
their distinct needs. Still, both are based on the same superconducting technology [10].

To prove the feasibility of a high-gradient superconducting accelerator, a TESLA test
facility (TTF) was built during the 1990’s [11, 12]. Also the principle of a Free-Electron
Laser based on the self-amplified spontaneous emission (SASE) scheme in the VUV regime
was proven by the generation of FEL radiation in the range from 80nm to 180nm [13]. To
expand the possibilities of the initial TTF a new test facility is being built and will start
operation in 2004 [14], providing a source of laser-like radiation in the range from 6 nm
up to approximately 100 nm.
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1.1 The X-Ray Free-Electron Laser

Over the past decades synchrotron radiation has become a major tool for the analysis
of structural and electrical properties of atoms, molecules and solid state matter. The
growing interest in dedicated radiation sources led to the development of the so called 3rd-
generation light sources (e.g. Advanced Photon Source (APS) in Argonne, USA, European
Synchrotron Radiation Facility (ESRF) in Grenoble, France, Super Photon Ring 8 GeV
(SPring-8) in Harima, Japan). These specially designed storage rings use insertion devices
like wigglers and undulators to increase the peak and average brilliance by several orders
of magnitude with respect to the spontaneously emitted light from the bending magnets.

The X-ray FEL will not only extend today’s light sources by increasing the brilliance
of the radiation (figure 1.1). Its sub-picosecond light pulses of very narrow bandwidth
will enable scientists to perform experiments which have never been possible before. For
example, diffraction patterns of single molecules can be produced with a single light pulse
from the X-ray FEL . This is of special interest in biology where molecules can often only
be crystallized on a very small scale or even not at all. To study dynamical processes on
an atomic scale, up to 4000 light pulses with an rms length of 80 fs each can be produced
within a bunch train 800 µs long. The radiation wavelength will be tunable in the range
of 0.1 − 6 nm.

The X-ray FEL includes a photo-injector which produces electron bunches with a charge
of 1nC. It will be located on the DESY site in Hamburg. The linac accelerates the electrons
to an energy of up to 20 GeV. The experimental hall will be located about 3.3 km to the
north-west of the DESY site. It is planned to start the construction of the X-ray FEL in
2006. In 2012 the first radiation is expected to be delivered to the experiments [10].

a) b)

Figure 1.1: The peak brilliance (a) and the average brilliance (b) of the FELs will surpass
today’s synchrotron radiation sources by several orders of magnitude over a wide range of
photon energies. (pictures by P. Gürtler)
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1.2 The TESLA Test Facility

The TESLA Test Facility (TTF) linac started operation in 1996. Initially, it consisted
of a thermionic electron gun and a single superconducting accelerating module. During
the following years TTF linac was extended to drive an FEL based on the self-amplified
spontaneous emission scheme (SASE). Its construction was finished in July 1999. At
that time, the linac included a radio-frequency (RF) gun which was built by the Fermi
National Accelerator Laboratory (FNAL) in Batavia, USA, two accelerating modules and
three undulator sections each 4.5m long. The beam was compressed by bunch compressor
chicanes at 15 MeV and at 140 MeV. Following a commissioning period, in February
2000 the first radiation from the SASE FEL was observed at a wavelength of 109 nm [15].
Saturation of the radiation intensity was reached for the first time in September 2001 at a
wavelength of 98 nm and until 2002 saturation was achieved in the wavelength range from
80 nm to 120 nm [13]. At the end of 2003 TTF was shut down and the construction of the
second phase of TTF began. By then a total operation time of 13000 h had accumulated.

A major step towards the X-ray FEL will be the second phase of the TESLA Test
Facility (TTF2) which will drive an FEL in the vacuum-ultraviolet and soft X-ray regime
(VUV-FEL) [14]. TTF2 is not just an expansion of TTF, but a completely new machine.
Only few components will be reused, some can be modified. In February 2004 the com-
missioning of the RF gun started. By the second half of 2004 the remaining construction
work will be finished and the VUV-FEL will start operation. In contrast to the original
test facility, the VUV-FEL will ultimately become a user facility.

The RF gun at TTF2 can produce electron bunches of up to 4nC charge. The electrons
are accelerated in the 1.5-cell cavity of the gun and the first accelerating module ACC1
to an energy of about 120 MeV. All cavities work at a frequency of 1.3 GHz. In the
following bunch compressor, called BC2 for historical reasons, the bunch length can be
reduced by about a factor of 8. Before the second compression step in BC3 the electrons
are accelerated in modules ACC2 and ACC3 to an energy of 450 MeV. In BC3 the bunch
length can be reduced by another factor of 5. The following two modules accelerate the
electrons up to 800 MeV. To prevent radiation damage to the undulators a collimation
section is included. The SASE FEL will produce radiation in the range of 6 − 100 nm.
At a later time, a 3rd-harmonic cavity, i.e. a cavity working at 3.9 GHz, will be included
in front of BC2 to improve bunch compression [16]. There is also space foreseen for two
additional accelerating modules which increase the electron energy to 1000 GeV. The
higher energy is needed to produce radiation of 6 nm wavelength. For a seeding option
additional undulators can be installed (figure 1.2).

The experimental hall will provide space for five experiments and some additional
space for preparation, on-line diagnostics and a synchronized optical laser for pump-probe
experiments (figure 1.3). Three of the experimental stations will use the FEL radiation
directly whereas the other two are served by a monochromator which narrows the spectral
bandwidth of the radiation. A reduction of the radiation intensity can be achieved by a
gas-filled cell of about 15 m length in front of the hall. More information on photon beam
diagnostics can be found in [18].

Experiments are proposed from a variety of research areas. The proposals include ex-
periments on atoms, ions, molecules and clusters as well as solids and surfaces or plasmas.
Additionally, some effort aims at the technical development of new experimental set-ups,
e.g. for pump-probe experiments using FEL radiation [18, 19].



10 Introduction

Figure 1.2: A sketch of TTF2 is given. The electrons are produced in the RF gun. They
are accelerated in the accelerating modules ACC1−ACC7. The bunch compression occurs
in the chicanes BC2 and BC3. Collimators protect the undulators from radiation damage.
The undulators can be bypassed. (picture taken from [17])

Figure 1.3: The experimental hall provides space for five different experimental stations.
(picture taken from [19])



Chapter 2

The Principle of Free-Electron Lasers

In 1971 J.M.J. Madey gave a quantum mechanical description of the stimulated emission
of bremsstrahlung by highly relativistic electrons passing periodic magnetic fields [20].
An externally applied electromagnetic wave which propagates parallel to the electrons
will be amplified and finally laser-like radiation will be produced. Since the electrons
are not bound to any medium, Madey called such a device free-electron laser (FEL). In
accordance with the theoretical description, in 1976 the stimulated emission was observed
at a frequency of 10 µm [21].

The formalism given by J.M.J. Madey assumes that the energy of the electromagnetic
wave changes only by a small amount during one passage through the periodic magnetic
field. This case is called the low-gain FEL. It is described in section 2.1. In a high-gain
FEL the energy of the electromagnetic wave can grow by several orders of magnitude
within a single passage. The high-gain case is described in section 2.2. There we will
see that the performance of an FEL depends not only on the peak current of the beam
and the electron energy but also on the energy spread of the beam and its transverse
emittance. Consequently, the requirements of the FEL define the performance which has
to be matched by the linac producing and accelerating the electron beam.

2.1 The Low-Gain FEL

The physical processes leading to the amplification of electromagnetic waves in low-gain
and high-gain FELs are described by a classical approach, for example in [22, 23, 24].
Based on [23] I will outline the principles of FEL physics. In a helical undulator1 the
trajectory of the electrons can be expressed as the combination of a uniform longitudinal
motion z = vz t and a transverse circular motion

(

vx

vy

)

= c
K

γ

(

− sin(kuz)
cos(kuz)

)

where K = e0Buλu
2πmec

is the undulator parameter given by the period length λu = 2π
ku

of the
magnetic field in the undulator and its amplitude Bu. The elementary charge is e0, me

is the electron mass and c is the speed of light. γ is the relativistic Lorentz factor of the
electrons. When an electromagnetic plane wave with the electric field components

~EL = EL,0





cos(ωLt − kLz − φ0)
sin(ωLt − kLz − φ0)

0





and the magnetic field components

~BL =
1

c ωL

d ~EL

dt

1If the motion of electrons in a planar undulator is considered, the results change only quantitatively.
The physical processes are the same.
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overlaps with the electron beam and moves parallel to it, the two will interact. EL,0 is
the amplitude of the electric field and φ0 is its initial phase. ωL and kL are the angular
frequency and the wave number of the electromagnetic wave, respectively.

Inside the undulator the electrons start to oscillate and transverse velocity components
are generated. These components are parallel to the transverse electric field components
of the wave and, consequently, energy can be exchanged between the electrons and the
wave. The magnetic field does not change the electron energy. Depending on the phase
difference between the electron oscillation and the electromagnetic wave, the energy is
transferred from the electrons into the wave or from the wave into the electrons. If the
phase difference changes very rapidly the energy exchange cancels in average. Only if the
phase difference is constant a net energy transfer is possible. This condition is met if the
wavelength of the electromagnetic wave matches the resonance condition

λL ≈ λu

2γ2
(1 + K2) (2.1)

In this case, the energy is transferred continuously from the electrons to the electromag-
netic wave.

A consequence of the energy transfer is that the resonance wavelengths shifts and the
resonance condition is not fulfilled anymore. It can be shown that the electron motion in
the ∆γ-Ψ phase space is given by the pendulum equation [23]

d2Ψ

dz2
= −Ω2 sin Ψ (2.2)

with Ω2 = 2e0
m0c2

EL,0K ku

γ2
resβz

. Ψ is the phase difference between the electron oscillation and

the electromagnetic wave. γ = γres + ∆γ is the Lorentz factor of the electrons which are
slightly off the resonance at γres. As a consequence of eqn. (2.2) ∆γ has to fulfill the
equation

∆γ =

√

C0 +
e0EL,0K

mec2kuβz
cos Ψ (2.3)

The constant C0 is determined by the initial conditions.

For the motion of the electrons in the ∆γ-Ψ phase space two cases have to be dis-
tinguished. If C0 <

e0EL,0K
mec2kuβz

equation (2.3) has only real solutions in a limited range of

phases Ψ. The electrons will oscillate in the phase space. If C0 >
e0EL,0K
mec2kuβz

all phases are
allowed and the electrons move unbounded. Both regimes are separated by the separatrix
with C0 =

e0EL,0K
mec2kuβz

(figure 2.1).

For the calculation of the gain G = increase of field energy
initial field energy of the field energy it is assumed

that the field amplitude is almost constant throughout the undulator. This is called the
low-gain approximation. If all electrons in the beam have the same deviation ∆γ from
γres at the entrance of the undulator, the gain is

G = −πe2
0N

3
uλ2

uK
2ne

ǫ0mec2γ3

d

dξ

(

sin2 ξ

ξ2

)

(2.4)

Here Nu is number of undulator periods. ne = Ne
V is the electron density in the volume V .

ξ = 2πNu
∆γ
γres

is the normalized relative energy deviation of the electrons. It is interesting
to note that the gain is proportional to the derivative of the line shape function of the
spontaneous undulator radiation. This is known as the Madey theorem [25]. The total
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Figure 2.1: The ∆γ-Ψ phase space is shown for electrons with different initial conditions.
Some electrons oscillate periodically, others perform unbounded motion.

Figure 2.2: The dependency of the normalized gain of the field energy on the initial
normalized relative energy deviation of the electrons is shown.
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gain of the field energy depends on the initial electron energy. If the electron energy is
slightly above the resonance energy the field energy increases. If the electron energy is
slightly below the resonance energy the field energy decreases (figure 2.2).

Since the gain is small in a low-gain FEL the electromagnetic wave has to pass the
undulator several times. That means, an optical cavity is needed which traps the wave
and couples only a small amount of the energy out.

2.2 The High-Gain FEL

During the passage of the electrons through the undulator the field amplitude grows and

the height of the separatrix ∆γmax − ∆γmin =
√

2e0EL,0K
mec2kuβz

increases. Hence, the number

of electrons oscillating periodically in the phase space increases and the electron beam
is longitudinally bunched at the resonance wavelength. So called micro-bunches develop.
Eventually, the field energy will increase by several orders of magnitude and saturates
when the density bunching of the electron beam is almost perfect (figure 2.3). In this
regime the low-gain approximation is not valid and the FEL process has to be described
for the high-gain case.

Figure 2.3: Electrons and radiation interact along the undulator. Micro-bunches develop
in the longitudinal bunch profile and the radiation power grows exponentially (picture
taken from [5]).

To take the bunching of the electrons into account for the calculation of the gain, the
time-dependence of the electromagnetic wave and the electron motion have to be solved
self-consistently. The radiation power will grow exponentially along the undulator and
the initial field amplitude may be very small. As described by A.M. Kondratenko and
E.L. Saldin it is also possible that there is no initial electromagnetic field but a small
density modulation in the electron beam [26]. The random distribution of the electrons
always leads to spectral components in the charge density spectrum which match the
resonance condition and start the FEL process. This mechanism is called self-amplified
spontaneous emission (SASE). An independent derivation was given by R. Bonifacio, C.
Pellegrini and L.M. Narducci [27]. That the SASE principle is indeed working for short



2.2 The High-Gain FEL 15

wavelengths was first demonstrated at the Low Energy Undulator Test Line (LEUTL) in
Argonne, USA. Here in October 2000 saturation of the radiation intensity was reached for
a wavelength of 390 nm [28]. One year later at the TTF-FEL saturation was reached at
80 nm wavelength [13].

For the derivation of the gain in the high-gain regime, the amplitude of the electro-
magnetic wave is allowed to change along the undulator. Also the electron density can
change, but the induced bunching is assumed to be small. All electrons have the same
initial energy. The electron beam is one-dimensional, i.e. it has no transverse extent. In
this case it can be shown (see e.g. [22]) that the complex field amplitude ẼL,0 = EL,0e

iΨL

is given by a linear third-order differential equation:

d3ẼL,0

dz3
+ 2iC

d2ẼL,0

dz2
− C2 dẼL,0

dz
= iΓ3ẼL,0 (2.5)

A slow variation ΨL of the phase of the electromagnetic wave is allowed. The electron
energy can deviate from the resonance energy. This is described by the detuning parameter

C(γ) = ku + kL − ωL
cβz(γ) . Γ3 = πj0K2(1+K2)ωL

IAcγ5 is the gain parameter with the Alven current

IA = 4πmec
µ0e0

. j0 = Ie
πσ2

r
is the initial current density given by the beam current Ie and the

beam cross section πσ2
r .

In case of a mono-energetic electron beam which matches the resonance energy, the
gain of an external electromagnetic wave along the undulator is given by

G(z) ≈ 1

9
e
√

3Γz (2.6)

if z ≫ 1
Γ . The gain grows exponentially with the gain length

LG =
1√
3Γ

=
1√
3

(

IAcγ5

πj0K2(1 + K2)ωL

)1/3

(2.7)

which can also be expressed in terms of the peak current I0 = j0πσ2
r and the beam cross

section πσ2
r :

LG =
1√
3

(

IAγ3λu

4πK2

σ2
r

I0

)1/3

(2.8)

One can see that it is preferable to use electron beams with a small transverse extent and
a high peak current.

The maximum gain is reached when the beam energy is on-resonance. If the beam
energy is off-resonance the gain will drop. This is an important difference to the low-gain
case where the gain vanishes on-resonance and the maximum gain is achieved slightly
off-resonance. The bandwidth of the FEL in the high-gain case is

∆λL

λL
= 2

∆γ

γ
= 2ρ (2.9)

ρ = 1
4π

√
3

λu
LG

is the FEL parameter. Assuming an uncorrelated energy spread, electrons

with ∆γ
γ > ρ will not contribute to the gain. A linear correlation in the energy of different

electrons will broaden the radiation spectrum.

A constraint on the normalized transverse beam emittance can be derived from
eqn. (2.9) . The emittance introduces a longitudinal velocity spread and thus acts like an
effective energy spread [22]:

ε <
β(1 + K2)

2γ
ρ (2.10)
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β is the beta function describing the beam focusing. Due to diffraction of the electro-
magnetic wave, a large transverse overlap of the wave and the electron beam can only be
achieved if the normalized emittance is [22]:

ε <
λL

2π31/4
γ (2.11)

We can see that a SASE-FEL imposes strict requirements on the electron beam parameters.
The undulators at the VUV-FEL have a period length of λu = 2.73 cm and a peak field
of Bu = 0.47 T. The undulator parameter is K = 1.20. If the electron beam has a
peak current of I0 = 2500 A, an energy of E0 = 1 GeV, an rms radius of σr = 70 µm
and the beta function is β = 4.5 m, the gain length is LG = 42 cm. When radiation of
λL = 6 nm is required, equation (2.9) limits the energy spread of the electron beam at
σE = 3MeV. According to equation (2.10) the normalized emittance has to be lower than
ε < 8.4mm mrad. Equation (2.11) results in a stricter limit for the normalized emittance:
ε < 1.4 mm mrad. The parameters of the undulators and the electron beam are taken
from ref. [14].



Chapter 3

Bunch Compression in Magnetic Chicanes

To drive the VUV-FEL, electron bunches with a peak current of up to 2500A are required.
Since the maximum charge density in the RF gun is limited by the space charge fields,
this value can only be reached by compressing the electron bunches longitudinally when
they have been accelerated to a highly relativistic energy. Unfortunately, all electrons then
have velocities close to the speed of light and the speed differences inside the bunch are
too small for trailing electrons to catch up with electrons ahead of them. The so called
velocity bunching is only an option in the low energy part of a linac and is not discussed
within this thesis. A scheme to utilize velocity bunching in the injector part of TTF2 is
investigated in [29].

The only way to change the length of an ultra-relativistic electron bunch is to make
use of the energy dependence of the path length in dispersive beam lines. Before an
electron bunch enters such a beam line an energy slope dE

ds is induced along the bunch in
the preceding accelerating modules. In arcs made of dipoles and quadrupoles, so called
FODO cells, the energy of trailing electrons needs to be lower than the energy of the
electrons ahead of them to compress the bunch. Unfortunately, these layouts produce
stronger nonlinear terms in the particle motion than chicanes which are built only of dipole
magnets. Therefore, they are not considered within this thesis. For further information
refer to [30].

In my thesis I will examine the motion of electrons in different chicanes which are built
only of dipoles. These chicanes are called magnetic chicanes in contrast to the FODO
cells which include quadrupoles in addition. Since the electron energy is assumed to be
ultra-relativistic, it is a good approximation to neglect the rest energy of the electrons:
E0 ≈ p0c. The velocity of the electrons is close to the speed of light.

General aspects of the bunch compression in magnetic chicanes are discussed in sec-
tion 3.1. The momentum-dependence of the electron trajectories in C-shaped chicanes and
S-shaped chicanes is derived in sections 3.2 and 3.3. Only external electric and magnetic
fields are taken into account in this chapter. The influence of bunch self-interaction is
discussed in the next chapter. For the bunch compressor at the Low Energy Undulator
Test Line (LEUTL) in Argonne, USA, a similar study of different chicane layouts was
performed by P. Emma and V. Bharadwaj [31].

3.1 General Remarks on Bunch Compression

The basic idea to reduce the length of an electron bunch in a magnetic chicane is that
the deflection of the electrons in dipole magnets is energy dependent. Hence, in a chicane
built of several magnets the path length of the electrons is energy dependent (figure 3.1a).
The path of a high energy electron is shorter than that of a low energy electron. Thus,
an energy slope has to be induced along the bunch in such a way that the tail has a
higher energy than the head to get a longitudinal compression of the bunch (figure 3.1b).
The longitudinal phase space is sheared (figure 3.1c). As a result not only the bunch
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length is reduced but the uncorrelated energy spread1 increases at the same time. This
is a consequence of Liouville’s theorem which states that the phase space density has to
remain unchanged under the influence of conservative forces (see e.g. [32]).

Figure 3.1: In a magnetic chicane the path length of electrons is energy dependent (a).
Electrons with a higher energy travel along a shorter path (dash dot) than electrons with
nominal energy (solid). If the energy is lower the path gets longer (dotted). Therefore
the high energy tail (light) of a bunch can catch up with its low energy head (dark) (b).
The longitudinal phase space of the beam is sheared and the uncorrelated energy spread
increases (c).

The phase space coordinates of the electrons are given in a frame Σ∗ which moves
relative to the laboratory frame ΣL along the reference trajectory ~r (figure 3.2).

Figure 3.2: The electron coordinates are given in a frame Σ∗ that moves along the
reference trajectory ~r. The frame Σ∗ moves relative to the laboratory frame ΣL. The
vertical axes Y and y are perpendicular to the X-Z-plane and the x-s-plane respectively.

When a bunch of electrons passes a magnetic chicane the transformation of the initial
phase space coordinates of an electron (xi, x

′
i, yi, y

′
i, li, δE,i) can be described to first order

1The uncorrelated energy spread is the energy spread of a short slice of electrons at a given longitudinal
position inside the electron bunch. It can vary along the bunch.
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by a linear matrix formalism [33]:
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(3.1)

lf = R51xi + R52x
′
i + li + R56δE,i is the length of the path travelled by an electron with

respect to the length of the reference trajectory. The contributions R51xi and R52x
′
i are

small and can be neglected. Thus, the difference lf − li ≈ R56δE,i is the length of the
path travelled by the electron along the chicane. The final longitudinal position sf of the
electron with respect to the bunch center will be

sf = si − (lf − li) = si − R56δE,i (3.2)

δE = ∆E
E0

is the relative energy deviation of the electron from the nominal energy E0. The
matrix element R56 is called the momentum compaction factor or longitudinal dispersion.

The energy of an electron at the initial position si,n deviates from the nominal energy to
first order by a correlated energy variation which is given by the linear energy slope u = dE

ds
along the bunch and an uncorrelated energy variation which is given by the uncorrelated

energy spread σǫ,i =

√

〈

ǫ2
i,n

〉

:

δE,n =
u si,n + ǫi,n

E0

Assuming an initial rms bunch length of σs,i =

√

〈

s2
i,n

〉

, the final rms bunch length will

be

σs,f =

√

(1 − R56
u

E0
)2σ2

s,i + R2
56

(

σǫ,i

E0

)2

(3.3)

One can see that the minimum achievable rms bunch length is limited by the initial uncor-
related energy spread σǫ,i. During compression the uncorrelated energy spread increases
to σǫ,f = σǫ,i

σs,i

σs,f
.

If one takes into account nonlinear contributions to the electron movement, the final
longitudinal position of an electron inside the bunch becomes:

sf = si − R56δE − R566δ
2
E − . . . (3.4)

These nonlinearities, which deform the bunch shape, limit the minimum achievable bunch
length further. Especially the second order term can be strong enough to fold over the
longitudinal phase space and thus produce a sharp peak at the head of the longitudinal
density profile.

The same happens if the initial energy variation along the bunch includes nonlinear
terms. Usually the energy variation is generated by running off-crest through accelerating
cavities. The accelerating voltage changes sinusoidally in time and the electron energy
gets a sinusoidal modulation along the bunch. The final energy Ef of an electron after
passing an accelerating section is

Ef = E0,i + ∆Ei + e0Vacc cos

(

2πsi

λ
+ φ0

)

(3.5)
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Here e0 is the elementary charge, Vacc is the amplitude of the accelerating voltage, si is the
initial longitudinal coordinate with respect to the bunch center, λ is the wavelength of the
electric field and φ0 is the phase offset with respect to the crest. E0,i is the initial nominal
energy and ∆Ei is the initial energy deviation of the particle. Since the bunch length is
usually much smaller than the wavelength of the accelerating radio-frequency (RF) field,
it is a good approximation to expand equation (3.5) to second order around si = 0:

Ef ≈ E0,i + ∆Ei + e0Vacc

(

cos φ0 − si
2π

λ
sinφ0 − s2

i

2π2

λ2
cos φ0

)

After acceleration the nominal energy is

E0,f = E0,i + e0Vacc cos φ0

and the relative energy deviation of an electron changes from δE,i = ∆Ei
E0,i

before acceleration
to

∆Ef

E0,f
=

E0,i

E0,f
δE,i − si

e0Vacc

E0,f

2π

λ
sinφ0 − s2

i

e0Vacc

E0,f

2π2

λ2
cos φ0

= AδE,i + Bsi + Cs2
i (3.6)

Substituting equation (3.6) in (3.4) results in the second order dependence of the final
position sf of an electron on its initial position si:

sf = R56AδE,i+R566A
2δ2

E,i+(1+R56B+2R566ABδE,i)si+(R56C+R566B
2+2R566ACδE,i)s

2
i

Further simplifications can be made since |δE,i A| << 1 and
∣

∣

∣

R566
R56

∣

∣

∣
∼ 1:

sf ≈ AR56δE,i + (1 + BR56)si + (CR56 + B2R566)s
2
i (3.7)

As we will see later, the R56 is always negative2 in magnetic chicanes and it is a good
approximation to set R566 = −3

2R56. Consequently, the effect of the second order terms of
the transfer matrix and the curvature caused by the RF can only cancel when C is positive.
That means |φ0| has to be larger than π/2 and the beam would have to be decelerated
to decrease the curvature in the longitudinal phase space. A better way to reduce the
curvature and thus to reduce the achievable bunch length is to include an additional
cavity that linearizes the phase space but leaves the mean energy almost unchanged. At
TTF2 this will be done with a 3rd-harmonic cavity, i.e. a cavity with a frequency of
3.9 GHz [16].

Figure 3.3 shows the development of a bunch with a small curvature in the initial
longitudinal phase space. During compression the longitudinal phase space folds over and
most of the charge accumulates at the head of the bunch. The width of the resulting peak
is mainly given by the uncorrelated energy spread.

Of main interest in bunch compressor chicanes are the final and the peak dispersion as
well as the momentum compaction factor. Ideally, the dispersion should vanish behind the
chicane, but in practice a small amount of residual dispersion often remains. The amount
of the residual dispersion depends on the chicane geometry.

Assuming that the chicane is built of n magnets with bending angles α1, . . . , αn all
orders of dispersion and momentum compaction can be defined as the coefficients of the

2In some publications the R56 is defined with a sign opposite to the definition in eqn. (3.1).
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Figure 3.3: The longitudinal phase space distribution and the charge profile are shown
in front of the chicane (a) and behind it (b). Due to the small initial curvature the phase
space distribution folds over during compression and a huge amount of charge accumulates
at the head of the bunch.

Taylor expansions of the transverse electron offset x(δE, α1, . . . , αn) and the path length
l(δE, α1, . . . , αn) for small energy deviations |δE| ≪ 1:

x(δE, α1, . . . , αn) = x(0, α1, . . . , αn) + R16(α1, . . . , αn)δE + R166(α1, . . . , αn)δ2
E + . . .

and

l(δE, α1, . . . , αn) = l(0, α1, . . . , αn) + R56(α1, . . . , αn)δE + R566(α1, . . . , αn)δ2
E + . . .

Following the definition of the coordinate system, the coordinates x(0, α1, . . . , αn) and
l(0, α1, . . . , αn) are the coordinates of an electron that travels along the reference trajec-
tory. Accordingly, they are both 0. Identifying the coefficients Rm6 and Rm66 with the
coefficients from the general Taylor expansion

w(δE, α1, . . . , αn) = w(0, α1, . . . , αn) +
∂w(δE, α1, . . . , αn)

∂δE

∣

∣

∣

∣
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+
1

2

∂2w(δE, α1, . . . , αn)

∂δ2
E

∣

∣

∣

∣
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δ2
E + . . .

we get

Rm6(α1, . . . , αn) =
∂w(δE, α1, . . . , αn)

∂δE

∣

∣

∣

∣

δE=0

(3.8)

Rm66(α1, . . . , αn) =
1

2

∂2w(δE, α1, . . . , αn)

∂δ2
E

∣

∣

∣

∣

δE=0

(3.9)

. . .

Here m stands for 1 or 5 and w for x or l. x(δE, α1, . . . , αn) and l(δE, α1, . . . , αn)
are given by the chicane geometry. In some cases one can also avoid the introduction
of the dependence on δE in x(α1, . . . , αn) and l(α1, . . . , αn) and calculate the elements
Rm6(α), Rm66(α), . . . recursively by using the following formula:

R
(n)
m6(α) = −n − 1

n
R

(n−1)
m6 (α) − 1

n
tan α

∂R
(n−1)
m6 (α∗)

∂α∗

∣

∣

∣

∣

∣

α∗=α

(3.10)
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For convenience I introduced the index n = 1, 2, . . . that denotes the order of the matrix

element, i.e. R
(0)
m6(α) = w(α), R

(1)
m6(α) = Rm6(α), R

(2)
m6(α) = Rm66(α), . . . . For a derivation

of formula (3.10) see appendix A.

The chicane layouts compared for BC3 are the usual 4-bend chicanes, which I will call
C-chicanes throughout my thesis, and S-shaped chicanes. These are sometimes called one-
period wigglers in other publications, but I will call them S-chicanes. Both types can be
symmetric or asymmetric. In the symmetric cases the bending angles of all magnets are
the same and the outer drift spaces have the same length (figures 3.4a and c). The lengths
of the first and the last drift space differ in the asymmetric C-chicane. The first two dipoles
then have a different bending angle than the last two dipoles (figure 3.4b). At the Low
Energy Undulator Test Line (LEUTL) in Argonne, USA, such a chicane was built [34]. In
an S-chicane it is possible to break the symmetry without changing the bending angle α of
the dipoles. Starting from the symmetric S-chicane the central magnets have to be shifted
under the angle α with respect to the Z-axis, i.e. they are not just longitudinally shifted
but also transversely. Literally speaking, they are shifted along the electron path in the
outer drift spaces (figure 3.4d). Another way to introduce an asymmetry in the S-chicanes
is to keep the lengths of the drift spaces3 constant, but to change the transverse position
of the central dipoles. In this case the bending angles of the dipoles change (figure 3.4e).
Of course combinations of these two cases are possible, but they are not considered within
this thesis. In the S-chicanes one can also split the central dipoles. This leads to 6-bend
S-chicanes which have some practical advantages (figure 3.4f).

Since I neglect the influence of synchrotron radiation on beam dynamics in this chapter
all these layouts only differ in the amount of the residual dispersion and the size of the
bending angles which are needed to reach a certain R56. The main differences between
the layouts will become evident when synchrotron radiation is included as we will see
in chapter 4. There we will also see why it might be preferable to build S-chicanes or
asymmetric chicanes.

Figure 3.4: Different bunch compressor chicanes have been compared for BC3. The
symmetric C-chicane with four dipoles of the same strength is sketched in a). In the
asymmetric C-chicane the first two dipoles have a strength different from the last two
dipoles (b). The symmetric S-chicane (c) can be modified in two ways: by changing
the outer drift lengths but keeping the bending angles (d) or by changing the angles but
keeping the drift lengths (e). The central dipoles of an S-chicane can be split into pairs of
dipoles (f).

3Throughout my thesis the length of a drift space is always the length along the Z-axis, i.e. it is
independent of the bending angle.
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3.2 Momentum-dependence of the Particle Trajectories in C-Chicanes

Behind a bunch compressor chicane the dispersion should vanish. This means, that behind
a magnetic chicane the mean transverse bunch offset 〈X〉 and its mean angle 〈X ′〉 in the
laboratory frame must vanish4. This limits the freedom of choice for the bending angles
of the magnets and the lengths of the drift spaces. Additionally, I assume that the central
drift space of the C-chicane is parallel to the Z-axis.

Electrons with nominal energy E0 are deflected in dipole 1 and dipole 2 by the angles α1

and −α1. In dipole 3 and dipole 4 they are deflected by the angles −α2 and α2. Electrons
with a small energy deviation are deflected by slightly different angles sinα1

1+δE
and sin α2

1+δE
.

The drift space between the first two dipoles has the length L12. The drift space between
the last two dipoles has the length L34. The drift space L23 between dipole 2 and dipole 3
does not contribute to the transverse offset and the dispersion. The length of the bending
magnets is LB (figure 3.5).

Figure 3.5: The C-chicane is sketched. It is assumed that the central drift is parallel to
the Z-axis and that all magnets have the same length.

An electron with nominal energy travels on the reference trajectory. In the laboratory
frame it will have a final transverse offset of

Xf = 2LB tan
α1

2
+ L12 tan α1 − 2LB tan

α2

2
− L34 tan α2 (3.11)

Since Xf
!
= 0 the dependence of α2 on α1 can be calculated by solving

2LB tan
α1

2
+ L12 tan α1 = 2LB tan

α2

2
+ L34 tan α2

for α2. Unfortunately, due to the occurrence of tan α2
2 and tan α2 this is analytically not

possible. But since α1 and α2 are usually small and close to each other we can approximate
the functions 2 tan α

2 by tan α on both sides and get

(LB + L12) tan α1 ≈ (LB + L34) tan α2

what is easy to solve:

α2(α1) ≈ arctan

(

LB + L12

LB + L34
tan α1

)

(3.12)

For an electron with a small energy deviation the final transverse electron offset xf in
the moving frame is energy dependent. It is the sum of the offsets accumulated in the

4I also assume that 〈X〉 and 〈X ′〉 of the incoming bunch are both zero.
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different parts (dipoles and drifts) of the chicane:

xf(δE, α1, α2) = 2LB tan
arcsin

(

sinα1
1+δE

)

2
+ L12 tan arcsin

(

sin α1

1 + δE

)

− 2LB tan
arcsin

(

sinα2
1+δE

)

2
− L34 tan arcsin

(

sin α2

1 + δE

)

− Xf(α1, α2)(3.13)

Making use of formulae (3.8) and (3.9) the first and second order dispersion can be calcu-
lated. They result in

R16(α1, α2) = −2
LB tan α1

2

cos α1
− L12 tan α1

(cos α1)2
+ 2

LB tan α2
2

cos α2
+

L34 tan α2

(cos α2)2
(3.14)

and

R166(α1, α2) =
(2LB − L12) tan α1

2 (cos α1)2
+

3L12 tan α1

2 (cos α1)4
− (2LB − L34) tan α2

2 (cos α2)2
− 3L34 tan α2

2 (cos α2)4

(3.15)

To simplify equations (3.11), (3.14) and (3.15) α2 is replaced by equation (3.12) and
then the equations are expanded to third order in α1:

Xf(α1) ≈
LB

4

(

(L12 + LB)3

(L34 + LB)3
− 1

)

α3
1 (3.16)

R16(α1) ≈
(

(L12 + LB)3

(L34 + LB)3
(
LB

4
+ L34) − (

LB

4
+ L12)

)

α3
1 (3.17)

R166(α1) ≈
(

(L12 + LB)3

(L34 + LB)3
(LB +

5

2
L34) − (LB +

5

2
L12)

)

α3
1 (3.18)

Now it is easy to see that in asymmetric C-chicanes the transverse bunch offset and the
first order dispersion usually do not vanish at the same time. Also the higher orders of
dispersion are never cancelled completely. Only in symmetric C-chicanes where α1 = α2

and L12 = L34 the final bunch offset and all orders of dispersion are always 0. In other
words, only the symmetric C-chicane is achromatic. The fact that Xf is not exactly 0 in
equation (3.16) is an expression of the error made by the approximation in (3.12).

When inserting typical values LB = 0.5 m, L12 = 5.15 m, L34 = 6.35 m, α1 = 4.0◦

the momentum compaction factor is R56 = −4.9 cm and the residual dispersion is R16 =
−0.46 mm. A similar amount of dispersion would be produced by a longitudinal dipole
alignment error of some millimeters. Since the alignment error is usually about a tenth of
a millimeter the residual dispersion behind symmetric C-chicanes will be about an order
of magnitude smaller. This is a great advantage of the symmetric C-chicane in comparison
to the asymmetric design.

The influence of the approximation made in equation (3.12) on the dispersion can
be estimated by comparing the results from the approximated functions with numerical
solutions. For the parameters given above, the relative error due to the approximation is
found to be of the order of some percent.

The transverse bunch offset and the dispersion reach their maximum absolute values

Xm(α1) = 2LB tan
α1

2
+ L12 tan α1 ≈ (L12 + LB)α1 +

(

L12

3
+

LB

12

)

α3
1 (3.19)
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and

R16,m(α1, α2) = −2
LB tan α1

2

cos α1
− L12 tan α1

(cos α1)2
≈ −(L12 +LB)α1 −

(

4L12

3
+

7LB

12

)

α3
1 (3.20)

between the second and the third dipole

To calculate the momentum compaction factors R56 and R566 behind the C-chicane we
have to repeat the same steps as for the dispersion calculation. The only difference is that
we need the path length lf(δE) instead of the final transverse electron offset xf(δE). Also
the path length can easily be derived from the chicane geometry. The total length of the
reference trajectory is:

Lf(α1, α2) = 2LB
α1

sin α1
+

L12
√

1 − (sin α1)2
+ L23 + 2LB

α2

sin α2
+

L34
√

1 − (sin α2)2
(3.21)

and the total path length of an electron with a small energy deviation is

lf(δE, α1, α2) = 2LB arcsin

(

sin α1

1 + δE

)

1 + δE

sin α1
+

L12
√
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)

1 + δE

sin α2
+

L34
√

1 −
(

sinα2
1+δE

)2
− Lf(α1, α2)

First and second order momentum compaction factors can be calculated from formulae
(3.8) and (3.9). After including (3.12) third order expansions of Lf(α1), R56(α1) and
R566(α1) result in:

Lf(α1) ≈ (L12+L23+L34+4LB)+
1

6

(

3L12 + 2LB +
(L12 + LB)2(3L34 + 2LB)

(L34 + LB)2

)

α2
1 (3.22)

R56(α1) ≈ −1

3

(

3L12 + 2LB +
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1 (3.23)

R566(α1) ≈
1

2

(

3L12 + 2LB +
(L12 + LB)2(3L34 + 2LB)

(L34 + LB)2

)

α2
1 ≈ −3

2
R56 (3.24)

The third order terms of the expansions vanish. Thus, the total length of the reference
trajectory and the momentum compaction factors depend only to second order on the
bending angle α1. In all practical cases it is sufficient to set R566 = −3

2R56.

3.3 Momentum-dependence of the Particle Trajectories in S-Chicanes

Two different asymmetric 6-bend S-chicanes are described here. In the first case the
bending angles in all dipoles are assumed to have the same value but the lengths of the
outer drifts differ. For the second case the bending angles differ but the lengths of the
outer drift spaces are the same. The symmetric S-chicane can be derived from both cases.
The length of the central drift space remains constant for all cases. The formulae for
offset, path length, dispersion and momentum compaction factors are first derived for a
general case and later simplified.

The bending angles of the first and the second dipole are α1 and −α1. They are
separated by the drift space L12. The third and fourth dipole have the bending angles
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−α2 and α2 and their separation is L34. The bending angles of the fifth and sixth dipole
are α3 and −α3 and they are separated by the drift space L56. The length of all dipoles
is LB. The drift spaces between dipoles 2 and 3 and between dipoles 4 and 5 have the
lengths L23 and L45 respectively. They are parallel to the Z-axis and do not contribute to
offset and dispersion (figure 3.6).

Figure 3.6: The 6-bend S-chicane is sketched. It is assumed that all magnets have the
same length. The drifts between dipole 2 and 3 as well as between dipole 4 and 5 are
parallel to the Z-axis.

As before, I assume that, in the laboratory frame, the mean transverse bunch offset 〈X〉
and the mean angle 〈X ′〉 vanish both in front of and behind the chicane. Therefore drift
lengths and bending angles depend on each other. For the symmetric 6-bend S-chicane
the final transverse bunch offset Xf in the laboratory frame is:

Xf(α) = 2LB tan
α

2
+ (L12 − L34 + L56) tan α

Since Xf
!
= 0 for a nominal bending angle α0 the required length L34 of the central drift

space can be calculated:

L34 = L12 + L56 + 2LB
tan α0

2

tan α0
(3.25)

For a general 6-bend S-chicane we get from simple geometric considerations the energy
dependence of the final transverse electron offset:

xf(δE, α1, α2, α3) = −Xf(α1, α2, α3) + 2LB tan
arcsin

(

sin α1
1+δE

)

2
+ L12 tan arcsin

(

sinα1

1 + δE

)

− 2LB tan
arcsin

(

sinα2
1+δE

)

2
− L34 tan arcsin

(

sin α2

1 + δE

)

+ 2LB tan
arcsin

(

sinα3
1+δE

)

2
+ L56 tan arcsin

(

sin α3

1 + δE

)

(3.26)

The first order dispersion is given by (3.8):

R16(α1, α2, α3) = −2
LB tan α1

2

cos α1
− L12 tan α1

(cos α1)2

+2
LB tan α2

2

cos α2
+

L34 tan α2

(cos α2)2

−2
LB tan α3

2

cos α3
− L56 tan α3

(cos α3)2
(3.27)
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And the second order dispersion is given by (3.9):

R166(α1, α2, α3) =
(2LB − L12) tan α1

2(cos α1)2
+

3L12 tan α1

2(cos α1)4
− (2LB − L34) tan α2

2(cos α2)2
− 3L34 tan α2

2(cos α2)4

+
(2LB − L56) tan α3

2(cos α3)2
+

3L56 tan α3

2(cos α3)4
(3.28)

These formulae are valid for all types of 6-bend S-chicanes which I consider in my thesis.
The two asymmetric cases are just simplifications of the general formulae. For the first
asymmetric case I assume that all bending angles are the same, i.e. α1 = α2 = α3:

xf(α1) = 2LB tan
α1

2
+ (L12 − L34 + L56) tan α1

R16(α1) = −2LB tan α1
2

cos α1
+ (L12 − L34 + L56)

tan α1

(cos α1)2

R166(α1) =
tan α1

2(cos α1)2

(

2LB − L12 + L34 − L56 + 3(L12 − L34 + L56)
1

(cos α1)2

)

After replacing L34 by eqn. (3.25) in the equations for Xf , R16 and R166 they can be
approximated to third order for small angles α1 and α0:

Xf(α1) ≈ −1

4
LBα3

1 +
1

4
LBα1α

2
0 (3.29)

R16(α1) ≈
3

4
LBα3

1 −
1

4
LBα1α

2
0 (3.30)

R166(α1) ≈ −3

2
LBα3

1 +
1

4
LBα1α

2
0 (3.31)

We can see that the final transverse bunch offset and the dispersion do not depend on
the lengths of the outer drift spaces. That means, if the bending angles stay constant
one can move the central magnets without changing the final properties of the chicane.
Additionally, one can see that there is always a certain amount of residual dispersion left
even in a symmetric S-chicane. Thus, an S-chicane is never achromatic. Since the length
of the central drift L34 is adjusted for a nominal angle α0 the residual bunch offset and
the dispersion will change if the bending angles of the dipoles change. This will happen
for example in a chicane like BC3 where it is required to run with different bending angles
(see chapter 6). For example, if the dipoles have a length of LB = 0.5m and L34 is chosen
for α0 = 3.85◦ the transverse bunch offset will be Xf = −50 µm if α1 = 5.4◦.

The second type of asymmetry in an S-chicane is achieved when different bending angles
α1 6= α2 6= α3 for the first, second and third dipole pair are used. The drift spaces have the
same lengths as in the symmetric case, i.e. L12 = L56 and L34 = L12 +L56 +2LB

tan(α0/2)
tan α0

.

Obviously, the bending angles are not independent of each other. From geometric
considerations we get α1 ≈ arctan( ∆h

L12+LB
+ tan α2) and α3 ≈ arctan(− ∆h

L12+LB
+ tan α2).

∆h is the change of the transverse position of the central dipoles. For small angles and
small offsets we get:

Xf(α2) ≈ −1

4
LBα3

2 +
1

4
LBα2α

2
0 −

3LB

2(L12 + LB)2
∆h2α2 (3.32)

R16(α2) ≈
3

4
LBα3

2 −
1

4
LBα2α

2
0 −

3LB + 12L12

2(L12 + LB)2
∆h2α2 (3.33)
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R166(α2) ≈ −3

2
LBα3

2 +
1

4
LBα2α

2
0 +

6LB + 15L12

(L12 + LB)2
∆h2α2 (3.34)

Again the final bunch offset and the dispersion show a third order dependence on the
bending angle. But this time they also depend to second order on the transverse dis-
placement of the dipoles. This is a major difference to the first asymmetric case where no
dependence on the dipole displacement was found.

In an S-chicane transverse bunch offset and dispersion each have two local extrema.
They are located between the second and third dipole and between the fourth and fifth
dipole. The first extreme values are

Xm1(α1) = 2LB tan
α1

2
+ L12 tan α1 , (3.35)

R16,m1(α1) = −2
LB tan α1

2

cos α1
− L12 tan α1

(cos α1)2
(3.36)

and the second extreme values are

Xm2(α1, α2) = 2LB tan
α1

2
+ L12 tan α1 − 2LB tan

α2

2
− L34 tan α2 (3.37)

R16,m2(α1, α2) = −2
LB tan α1

2

cos α1
− L12 tan α1

(cos α1)2
+ 2

LB tan α2
2

cos α2
+

L34 tan α2

(cos α2)2
(3.38)

The first and second order momentum compaction factors can be derived from the path
length lf by making use of equations (3.8) and (3.9). In general the energy dependent path
length lf is

lf(δE, α1, α2, α3) = 2LB arcsin

(

sin α1

1 + δE

)

1 + δE

sin α1
+

L12
√

1 −
(

sin α1
1+δE

)2
+ L23

+ 2LB arcsin

(

sin α2

1 + δE

)

1 + δE

sin α2
+

L34
√

1 −
(

sin α2
1+δE

)2
+ L45

+ 2LB arcsin

(

sin α3

1 + δE

)

1 + δE

sin α3
+

L56
√

1 −
(

sin α3
1+δE

)2
− Lf

where

Lf(α1, α2, α3) = 2LB
α1

sin α1
+

L12
√

1 − (sin α1)2
+ L23 + 2LB

α2

sin α2
+

L34
√

1 − (sin α2)2
+ L45

+ 2LB
α3

sin α3
+

L56
√

1 − (sin α2)2

is the length of the reference trajectory. Again L34 is replaced by (3.25) and the resulting
equations are expanded. For the first asymmetric case the third order expansions are

Lf(α1) ≈ 2L12 + L23 + L45 + 2L56 + 7LB − 1

4
LBα2

1,0 + (L12 + L56 +
3

2
LB)α2

1 (3.39)

R56(α1) ≈ −(2L12 + 2L56 + 3LB)α2
1 (3.40)

R566(α1) ≈ (3L12 + 3L56 +
9

2
LB)α2

1 = −3

2
R56 (3.41)
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The third order terms of the expansion vanish. As before we can see that the final prop-
erties of the chicane remain unchanged when shifting the central magnets. In contrast to
the dispersion the momentum compaction factors depend weakly on the nominal angle α0

for which the length of the central drift is adjusted.

For the second asymmetric case the expansions result in:

Lf(α2) ≈ (4L12+L23+L45+7LB)−LB

4
α1,0+

(

2L12 +
3LB

2

)

α2
2+

3L12 + 2LB

3(L12 + LB)2
∆h2 (3.42)

R56(α2) ≈ − 6L12 + 4LB

3(L12 + LB)2
∆h2 − (4L12 + 3LB)α2

2 (3.43)

R566(α2) ≈
3L12 + 2LB

(L12 + LB)2
∆h2 − (6L12 +

9

2
LB)α2

2 = −3

2
R56 (3.44)

The quadratic dependence on the vertical displacement already found for the dispersion
is also found for the momentum compaction factors. Also the relation R566 = −3

2R56 is
confirmed.

For the estimation of the residual dispersion only two cases have to be compared. The
symmetric S-chicane and the asymmetric S-chicane with modified angles. We have seen
before that shifting the inner magnets but keeping the bending angles constant does not
change offset and dispersion. The length of all dipoles is LB = 0.5 m and their bending
angle is α = 3.8◦ for the symmetric case. For the asymmetric case only the two central
dipoles deflect the bunch by this angle. The first drift has the length L12 = 2.375 m.
All other parameters depend on these values or are irrelevant. It is assumed that the
length of the central drift is adjusted for the bending angle α0 = α. For the asymmetric
chicane, the transverse dipole shift is ∆h = 0.02 m. When these values are substituted,
the transverse bunch offset vanishes behind the symmetric S-chicane and the residual
dispersion is R16 = 0.073 mm. For the asymmetric S-chicane the final offset is just 2.4 µm
and the residual dispersion is R16 = 0.025 mm. The momentum compaction factor is in
both cases R56 = −4.9 cm.

Taking into account longitudinal misalignments of the dipoles, terms linear in bending
angle and displacement have to be added. Misalignments are normally of the order of
some 0.1 mm and therefore contribute to the offset and the dispersion at a comparable
level. One can conclude that even the asymmetric S-chicanes will produce a negligible
amount of residual offset and dispersion. In contrast to this, we have seen that in an
asymmetric C-chicane with the same R56 a residual dispersion is generated that is about
an order of magnitude higher and therefore not negligible. This looks like a profound
difference between C-chicanes and S-chicanes, but it has a simple explanation. The shift
of the central dipoles in the C-chicane has to be a lot larger than in the S-chicane to reach
a similar change in bending angle. Since the bending angles are very small they are more
sensitive to transverse shifts than to longitudinal shifts. For the cases compared here the
transverse shift of the four central dipoles in the S-chicane is just 2cm but the longitudinal
shift of the two central dipoles in the C-chicane is 60 cm.
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Chapter 4

Bunch Self Interaction due to Synchrotron Radiation, Space

Charge and Wake Fields

In the previous chapter I discussed the motion of electrons in external electric and magnetic
fields. Unfortunately, the electrons which pass a bunch compressor chicane also produce
strong electromagnetic fields themselves. These fields are the space charge fields that are
of course always present in bunches of charged particles, and the synchrotron radiation
fields that are emitted in the bending magnets.

The electric and magnetic components of the space charge fields exert forces on the
electrons which compensate each other better when the energy increases. Consequently,
for ultra-relativistic beams it is usually safe to neglect the influence of the space charge
forces. To drive FELs, on the other hand, a very high charge density is needed and
the space charge forces might still lead to a noticeable emittance growth even of ultra-
relativistic bunches. The influence of the space charge fields is the reason why bunch
compressors should not be located in the low energy part of a linac. As was pointed out
in [35] space charge fields can also lead to an amplification of small density modulations.
This effect is different from the CSR microbunch instability which is studied in chapter 7.
The amplification develops in long beam lines and is not an issue specifically related to
bunch compressors. It is not studied within this thesis.

The electromagnetic fields generated by the electrons interact with the conducting walls
of the vacuum chamber. Thus, one also has to consider the effect of resistive wall wake
fields and surface roughness wake fields as well as the shielding of the low frequency part
of the synchrotron radiation spectrum due to the chamber. Furthermore steps and tapers
in the cross section of the chamber can have an influence on the fields.

All these effects lead to an overall energy loss of the bunch and to a nonuniform energy
distribution inside the bunch. A uniform energy loss is not a major concern. The nonuni-
form energy distribution, however, will dilute the transverse emittance of the bunch due
to the dispersive effects in the chicane. In the first section of this chapter I define the
different transverse emittances which are used in this thesis.

The synchrotron radiation which is emitted in the bending magnets can lead to a
strong tail-head interaction of the electrons inside the bunch. The radiation power and its
spectrum depend not only on the bunch length, the charge and the energy but also on the
deflection strength in the magnets. In section 4.2 I will recapitulate the main aspects of the
synchrotron radiation emitted by a bunch of electrons passing a single bending magnet.
For simplicity I first neglect the development of the fields in magnets of finite length and
will only discuss the steady-state radiation of electrons in circular motion [36, 37, 38]. The
development of the CSR fields along the magnet is taken into account later. A detailed
analysis of the radiation of electrons passing a bending magnet of finite length is given
in [39].

Section 4.3 explains some features of the dynamics of a bunch passing a magnetic
chicane under the influence of CSR fields. In this context one also has to be aware of
the fact that the radiation emitted inside the magnets can travel through the vacuum
chambers and might interact with the bunch in the drift spaces where no new radiation is
emitted.
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In section 4.4 the influence of the vacuum chamber on the emission of the synchrotron
radiation is explained. The shielding due to the vacuum chamber suppresses the low
frequency part of the spectrum and thus reduces the total radiation power. This positive
effect increases when the chamber becomes narrower. Unfortunately, the negative effect
of the wake fields becomes more important in narrow chambers. Some basic aspects of
wake fields are discussed in section 4.5.

4.1 Definition of the Transverse Emittance

In general the transverse emittance is given by the transverse phase space coordinates x
and x′ of the particles in a bunch:

εx =

√

〈x2〉 〈x′2〉 − 〈xx′〉2

It is a measure of the area occupied by the particles in transverse phase space. Usually,
the emittance is normalized to remove the energy dependence: εx,n = εx

γ

Within this thesis three different emittance definitions are used which are calculated
from different sets of particles. They describe different aspects of the particle distribution.

The projected emittance is calculated from the transverse phase space coordinates x
and x′ of all particles within the bunch (figure 4.1 a). With the usual diagnostic systems,
e.g. screens, only the projected emittance can be measured. It gives an upper limit for
the slice emittance which is important for the FEL process.

The slice emittance is calculated from the transverse phase space coordinates of particles
with almost the same longitudinal position s. For different slices the slice emittance will
usually vary (figure 4.1 b).

To calculate the correlated emittance the particle distribution is cut longitudinally into
many short slices and for each slice s the mean transverse position xs = 〈x〉 and the
mean angle x′

s = 〈x′〉 are calculated. These new coordinates xs and x′
s of all slices are

used to calculate the correlated emittance. In other words, the correlated emittance is
the emittance of the slice centers (figure 4.1 c). It is a measure for the orientation of the
bunch in phase space. For a line distribution the projected and the correlated emittance
are identical.

Figure 4.1: Plots of the x-s phase space distribution are shown. For the calculation of
the projected emittance all particles are used (a). To calculate the slice emittance only
the particles in a short slice are considered (b). The correlated emittance is calculated
from the transverse phase space coordinates of the slice centers (c).

In the computer simulations the electron bunch is sometimes represented by a line-
distribution of gaussian charge distributions, so called sub-bunches, and a short slice of
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particles (see chapter 5). From these two distribution only the correlated and the slice
emittance can be calculated. To approximate the projected emittance, the slice is copied to
the positions of the sub-bunches along the line-distribution and the charge of each slice is
adjusted to match the charge of the sub-bunch at that position (figure 4.2). The projected
emittance is calculated from the transverse phase space coordinates of all particles in this
new distribution.

Figure 4.2: In computer simulation the bunch is often represented only by a slice of
particles and a line-distribution. The bunch shape can be approximated by a convolution
of the two distributions.

4.2 Synchrotron Radiation in a Bending Magnet

Electromagnetic radiation is always emitted by charged particles during acceleration.
When electrons are accelerated parallel to their direction of motion, i.e. in accelerat-
ing cavities, the radiation power is negligible. But the acceleration perpendicular to the
direction of motion in bending magnets can lead to a huge radiation power. In bunch
compressor chicanes the radiation power is small as long as different electrons emit the
synchrotron radiation incoherently. But for wavelengths longer than the bunch length, the
electrons radiate coherently and the power increases by many orders of magnitude. For
FELs the bunch length is so small that a huge part of the spectrum will be dominated by
coherent radiation and strong radiation will be emitted in the bunch compressor chicanes.
The electromagnetic fields exert longitudinal and transverse forces on the electrons inside
the bunch and dilute the transverse emittance.

If an electron bunch is in circular motion, three regimes of synchrotron radiation can
be distinguished [36]. As long as all electrons radiate individually, only incoherent syn-
chrotron radiation (ISR) is emitted and the total radiation power Pi.c. scales linearly with
the number of electrons Ne:

Pi.c. =
1

6πǫ0

Nee
2
0cγ

4

R2
(4.1)

When inserting typical values for particle energy E = γm0c
2 = 500 MeV, total charge

Nee0 = 1 nC and bending radius R = 7.5 m, the total incoherent power is Pi.c. ≈ 5 W.
Consequently, the ISR is usually not of great importance in bunch compressors.

If the electrons radiate like a single particle of charge Nee0 the entire spectrum is
dominated by coherent synchrotron radiation (CSR). The power Pf.c. scales with the square
of the number of electrons:

Pf.c. =
1

6πǫ0

(Nee0)
2cγ4

R2
(4.2)

A bunch of 1 nC total charge consists of Ne ≈ 6 · 109 electrons. Thus the total power is
almost ten orders of magnitude higher than in the incoherent case.



34 Bunch Self Interaction due to Synchrotron Radiation, Space Charge and Wake Fields

In most practical cases the synchrotron radiation emitted in bunch compressor chicanes
is not fully coherent. Only a fraction of the radiation spectrum is coherent whereas the
remaining part is still incoherent. The radiation power is dominated by the coherent
radiation and includes only a small incoherent part which can be neglected:

Pp.c. =
Γ
(

5
6

)

61/34π3/2ǫ0

(Nee0)
2c

R2/3σ
4/3
s

+
1

6πǫ0

Nee
2
0cγ

4

R2
≈ Γ

(

5
6

)

61/34π3/2ǫ0

(Nee0)
2c

R2/3σ
4/3
s

(4.3)

The power of the coherent part depends on the bunch length σs but not on the particle
energy, since only the high frequency part of the spectrum, i.e. the incoherent part,
changes with energy (figure 4.3). The incoherent part of the spectrum will expand to
higher frequencies when the energy increases and, consequently, the incoherent power
increases. If the electron energy becomes high enough the incoherent radiation power
starts to dominate. If the energy gets very low the radiation will be fully coherent.

Figure 4.3: The spectrum of a single electron in circular motion is show for different
relativistic factors γ. The radius of curvature is R = 5 m.

In general the radiation spectrum of an electron bunch in circular motion is given by [40]

dP

dω
(ω) =

dP1

dω

(

ω

ωc

)

(

Ne + Ne(Ne − 1)e−(σsω
c

)2
)

(4.4)

dP1

dω
(x) =

√
3e2

0γ

8π2ǫ0R
x

∫ +∞

x
K5/3(x

′)dx′ (4.5)

The critical frequency ωc = 3c
2Rγ3 divides the incoherent spectrum in two parts with the

same integrated radiation power.

Figure 4.4 shows an example of a partially coherent spectrum. The low frequency part
is dominated by coherent radiation whereas the high frequency part is incoherent. The
transition from incoherent to coherent radiation depends on the bunch length. Hence, the
total radiation power depends on the bunch length (figure 4.5).

The power increases when the bunch length decreases. A comparison of equations (4.1),
(4.2) and (4.3) shows that the three radiation regimes are separated at σs = σc ≈ 2

3
R
γ3
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Figure 4.4: The plot shows a partially coherent synchrotron radiation spectrum. The
frequency is normalized to the critical frequency and the spectral power distribution is
normalized to the spectral power which is radiated at the critical frequency. The frequency
at which the bunch starts to radiate coherently depends on the bunch length. For this
plot the parameters are: Nee0 = 1 nC, σs = 50 µm, γ = 500, R = 5 m.
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The bunch radiates incoherently if σs ≫ σcN
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e . Here a total charge of Nee0 = 1 nC is

used and σc = 27 nm.
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and σs = σcN
3/4
e ≈ 2

3
R
γ3 N

3/4
e . At the bunch compressor BC3 σs is at least three orders

of magnitude larger than σc. Thus, the synchrotron radiation which is emitted by the
electron bunches inside the dipoles is in the partially coherent regime.

Due to the dependence of the power on bunch length it is easy to understand why it
might make sense to reduce the bending angles of the magnets towards the end of a bunch
compressor chicane. Since the bunch gets shorter along the chicane the radiation power
increases. With a reduction of the bending angles towards the end of the chicane the
increase of the radiation power can be counteracted.

The conditions which separate the three regimes can also be derived from simple geo-
metric considerations. When an electron bunch travels along an arc of a circle the radiation
emitted by trailing electrons can catch up with electrons in front of them (figure 4.6). In-
side an arc of radius R and angle α the electrons can interact if their distance is smaller
than the slippage length

lsl = z − z∗ ≈ Rα3

24
(4.6)

Head and tail of a bunch of length σs can interact if the arc is longer than the overtaking
length lov ≈ (24σsR

2)1/3.

Figure 4.6: Inside a bending magnet the radiation which is emitted from trailing electrons
can catch up with electrons which are less than a slippage length lsl = z − z∗ in front of
them. Head and tail of a bunch can only interact if the magnet is long enough.

These simple formulae are based only on geometric considerations and are valid for
radiation with an opening angle larger than α

2 . Otherwise radiation and bunch would not
overlap throughout the entire arc. The opening angle of the radiation depends on the
frequency [41]. For very low frequencies ω ≪ ωc the critical angle θc is

θc ≈
1

γ

(

2ωc

ω

)1/3

(4.7)

The frequency for which θc = α
2 is ωα = 16ωc

γ3α3 = c
lsl

. If the slippage length lsl is larger
than the bunch length σs, the radiation with frequencies smaller than ωα will overlap
with the whole bunch throughout the full arc length. In other words, the wavelength of
the radiation λ must be larger than 2πσs to produce coherent radiation of the bunch.
Fully coherent radiation will be reached if the bunch is much shorter than the critical
wavelength:

2πσs ≪ λc =
4π

3

R

γ3
(4.8)
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This is the same condition which separates equation (4.2) from (4.3). The applicability
of (4.3) can now be estimated roughly as

2

3

R

γ3
≪ σs ≪

Rα3

24
(4.9)

For a bunch in circular motion the upper limit of this condition can be too low, since,
for bunch lengths a little larger than the slippage length, at least a fraction of the bunch
can radiate coherently and the total power of the bunch will be already a few orders of
magnitude higher than for incoherent radiation. Comparing equations (4.1) and (4.3)

shows that the radiation starts to be partially coherent if σs ≪ 2
3

R
γ3 N

3/4
e . This condition

usually limits the partially coherent regime at a much higher frequency.

When a bunch of electrons passes a magnet of finite length transient effects have to
be taken into account and the upper limit in equation (4.9) might be already too high.
The radiation is not in steady state and the formulae for radiation of a bunch in circular
motion are not valid. Since the particle energy is very high, relativistic effects have to be
taken into account when the interaction of the electrons inside a bunch is determined. An
electron at the bunch head is influenced by fields which are emitted at the retarded time
tr = t − 1

c |~r(tr)| by a trailing electron. |~r(tr)| is the distance of the two electrons at the
retarded time. Along the path of the electrons three stages have to be distinguished for
the field calculation [39]:

a) The head of the bunch is inside the magnet but is influenced by fields
which are emitted by the bunch tail at a position in front of the magnet
(figure 4.7a).

b1) Head and the position of the tail at the retarded time are both inside the
magnet (figure 4.7b1).

b2) Alternatively, it is also possible that the head is already behind the magnet
but at the retarded time the tail was in front of the magnet (figure 4.7b2).

c) The head is behind the magnet and the position of the tail at the retarded
time is inside the magnet (figure 4.7c).

For values typical for BC3 (γm0c
2 = 500 MeV, α = 4◦, R = 7.5 m, σs = 100 µm) the

condition
1

γ
≪
(

24σs

R

)1/3

≤ α ⇔ 1

24

R

γ3
≪ σs ≤

Rα3

24
(4.10)

given in [39] is fulfilled. In this case the total energy loss due to the longitudinal CSR
fields can be calculated by [39]

∆Etot ≈ −
(

31/3N2
e e2

0

4πǫ0R2/3σ
4/3
s

)

Rα

(

1 +
31/34

9

σ
1/3
s

R1/3α

(

ln

(

σsγ
3

R

)

− 4

)

)

(4.11)

The condition given in (4.10) is almost the same condition which was derived earlier
for the applicability of equation (4.3). But the total energy loss given by (4.11) is only
the same as for the steady state case if, additionally, the condition

σ
1/3
s

R1/3α
ln

(

σsγ
3

R

)

≪ 1 ⇔ σs ≪
Rα3

(

ln σsγ3

R

)3 (4.12)

is fulfilled [39]. Therefore the applicability of equation (4.3) is further limited. If this
second condition is not fulfilled, i.e. the bunch is too long, the steady state regime cannot
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a) b1)

b2) c)

Figure 4.7: When a bunch of electrons passes a bending magnet an electron at the bunch
head (black dot) is influenced by radiation which is emitted by a trailing electron at the
retarded time (grey dot). Four different cases have to be distinguished. The head is inside
the magnet and is influenced by radiation emitted at a retarded position of the tail which
is in front of the magnet (a). Head and retarded position of the tail are inside the magnet
(b1). Alternatively, the head can be already behind the magnet but the retarded position
of the tail is still in front of the magnet (b2). The head is behind the magnet and the
retarded position of the tail is inside the magnet (c).

be reached inside the magnet. The head of the bunch will be already behind the magnet
but it will be strongly influenced by radiation which is emitted by trailing electrons with
a retarded position inside or even in front of the magnet. Indeed, this is the case for the
typical BC3 parameters given above.

Of course, not only the total radiation power differs from the steady state case when a
bunch passes a magnet of finite length. Also the radiation spectrum can be significantly
different from the spectrum emitted by a bunch in circular motion. It is found in [42] that
only the high frequency part of the spectrum is close to the steady state spectrum whereas
the low frequency part is constant for ω → 0.

Until now only the total energy loss of the whole bunch is outlined but what happens
inside the bunch is neglected. If the synchrotron radiation would only cause a uniform
energy loss of all electrons, one would have to correct the bending angles of the magnets
in the chicane appropriately. The simple compression mechanism explained in chapter 3
would still work. Unfortunately, the energy is not just lost but also redistributed along
the bunch. The case of a one-dimensional bunch with gaussian charge density in circular
motion was described in [37]. In [39] analytical formulae are derived for the general case
of a one-dimensional bunch with arbitrary charge density passing a circular arc. When
a bunch of electrons enters a bending magnet a longitudinal force starts to build up due
to the generation of the longitudinal CSR fields. The force changes the energy of the
electrons and depends not only on the position of the bunch inside the magnet but also
on the longitudinal position s of the electrons inside the bunch.

The energy change per distance travelled inside a bending magnet of finite length can
be expressed for a bunch with a gaussian charge profile as [39]

dE(s, ρ)

c dt
= − 2Nee

2
0

4πǫ0

√
2π31/3R2/3σ

4/3
s

F0(s/σs, ρ) (4.13)
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with the form factor

F0(x, ρ) = ρ−1/3
(

e−(x−ρ)2/2 − e−(x−4ρ)2/2
)

+

∫ x

x−ρ

−x′e−x′2/2

(x − x′)1/3
dx′ (4.14)

where ρ = Rα3

24σs
. Rα is the length of the path the bunch has travelled inside the magnet.

In figure 4.8 the development of the rate of the energy change along a bending magnet
for a gaussian bunch of σs = 100 µm is plotted. A clear energy loss from the tail is visible
whereas the head gains energy. The radiation is dominated for a long time by the entrance
transient. The steady state regime will not be reached within a magnet of LB = 0.5 m,
which is the length of the magnets used in BC3.
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Figure 4.8: The rate of the energy change along the bunch is plotted at various positions
along a bending magnet. A gaussian bunch of Nee0 = 1 nC charge and a length of
σs = 100 µm (thick dash, a.u.) enters a dipole with a bending radius of R = 7.5 m. The
head of the bunch is at s

σs
> 0. Inside the dipole the electrons start to change their energy.

The rate of the energy change is very weak if the bunch has travelled just 15cm inside the
dipole (thin dotted). Even after 50 cm (thin solid) the shape of the rate of energy change
is considerably different from the steady state case (thick solid). After 60 cm (thin dash)
the entrance transient has moved in front of the bunch and the final shape of the rate of
energy change builds up.

The nonuniform energy redistribution which is induced by the longitudinal fields is
converted into nonuniform transverse electron offsets and angles in the dispersive parts of
the bunch compressor chicane. Since the electron energy behind the chicane depends on
the longitudinal electron position inside the bunch, only the correlated emittance of the
bunch is affected. The slice emittance is influenced by nonlinear effects like the transverse
dependence of the longitudinal field or the transverse fields.

When a bunch of electrons passes a bending magnet, transverse CSR fields are also
emitted. This was first described for a coasting beam in circular motion in [43]. An
analysis for a bunched beam with no transverse extent in circular motion is given in [44].
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It is found that the transverse force is mainly proportional to the line charge density λ(s)
at the observation point and has a logarithmic dependence on the transverse radius σr:

F⊥(s) ∝ λ(s)

R

(

2 ln
8R

σr
− C0

)

+
1

R

∫ ∞

0
ln s∗

(

1

3
λ′(s − s∗) − λ′(s + s∗)

)

ds∗ (4.15)

The constant C0 ≈ 3.91 was found numerically, R is the bending radius. The transverse
force is always centrifugal.

A detailed analysis of the electromagnetic fields for a bunched beam with no transverse
extent moving along an arc of a circle was later given in [45] and [46]. In contrast to
the longitudinal fields, which cause a pure tail-head interaction, for the calculation of the
transverse fields head-tail effects also have to be taken into account. Another difference to
the longitudinal fields is that the transverse fields decrease very fast behind the magnets.
In agreement with [44] the force is always centrifugal and has a logarithmic dependence
on the radius.

4.3 Particle Dynamics in a Magnetic Chicane under the influence of

CSR fields

As we have seen in the previous section, the CSR fields alter the energy of the electrons
when they pass a bunch compressor chicane. The trajectories of the electrons along the
chicane will differ and consequently the transverse emittance grows. Due to the dependence
of the fields on the longitudinal position of the electrons inside the bunch all electrons in a
short slice will have similar trajectories and the slice emittance will stay almost constant.
However, the final phase space coordinates of the slice centers will differ. Therefore the
transverse correlated emittance, i.e. the volume populated by the slice centers, grows.

The full electron distribution can be expressed as the sum of many short slices at the
positions of the slice centers. Consequently, the shape of the full distribution depends
strongly on the orientation of the phase space distributions of the slices with respect to
the phase space distribution of the slice centers. By changing the initial Twiss parameters
the phase space distributions of the slices are rotated, whereas the phase space coordinates
of the slice centers remain almost unchanged. Thus, the normalized projected emittance
can be minimized by adjusting the initial Twiss parameters.

Also the amount of the slice emittance shows a dependence on the Twiss parameters.
The longitudinal CSR fields depend on the transverse electron position. Additionally,
the transverse CSR fields contribute to the transverse dynamics of the electrons. When
the cross-section of the bunch becomes smaller these effects are weaker. Consequently, to
reduce the overall effect of the CSR fields on the slice emittance, it is a good choice to
minimize the beta function towards the end of a chicane, since there the CSR fields are
strongest [47]. But one has to keep in mind that the minima of the slice emittance and
the projected emittance are usually not obtained with the same initial Twiss parameters.

The impact of the energy redistribution due to the longitudinal CSR fields on the trans-
verse phase space coordinates of the slice centers can be estimated by geometric consider-
ations. Because of the nonuniform energy distribution, electrons at different longitudinal
positions will be deflected differently in the bending magnets of the chicane. Additionally,
the deflection in subsequent magnets will differ since the energy of the electrons changes
along the chicane (figure 4.9).

To calculate the final transverse phase space coordinates of a particle at a slice center
it is assumed that the initial transverse coordinates are xi = 0 and x′

i = 0. Behind
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Figure 4.9: Plotted are the trajectories of different electrons along a C-chicane. Each
electron gets individual energy kicks inside the magnets and the trajectories diverge.

the chicane the transverse position xf and the angle x′
f of the particle will depend on

its energy deviation which builds up along the chicane. Since in S-chicanes stronger
magnets are needed than in C-chicanes the total energy deviations of the particles will
be stronger. But the strength of the coupling of longitudinal and transverse phase space
depends on the chicane geometry. Consequently, the emittance growth depends on the
chicane geometry [48].

For a C-chicane the energy deviations of the particle in the four magnets are δE,1,
(δE,1 +δE,2), (δE,1 +δE,2 +δE,3) and (δE,1 +δE,2 +δE,3 +δE,4). The deflection of the particle
in a magnet is small and differs from the nominal angle α0 approximately by the factor

1
1+δE

. Since the energy deviations are also very small it is a good approximation to set
1

1+δE
≈ 1 − δE.

To describe the coupling of the particle’s energy to its transverse offset and angle in a
symmetric C-chicane, formula (3.11) has to be generalized to the case where the bending
angles in all four magnets differ. To first order, behind the symmetric C-chicane the offset
of a particle at the center of a slice will be

xf(α0, δE,2, δE,3, δE,4) ≈
α0

2
(δE,2(2L23 + 4L12 + 7LB) + 2δE,3(L12 + LB) − δE,4LB) (4.16)

If no energy slope dE
ds was induced in the longitudinal phase space of the incoming bunch,

the bunch will not be compressed when it passes the chicane. Then the energy of the
particle changes in all magnets by almost the same amount, δE,1 = δE,2 = δE,3 = δE,4, and
we get:

xf(α0, δE) ≈ α0δE (L23 + 2L12 + 2LB) (4.17)

The final angle x′
f is the sum of the individual bending angles in the dipoles. They are

approximately α1 = α0(1− δE,1), α2 = −α0(1− (δE,1 + δE,2)), α3 = −α0(1− (δE,1 + δE,2 +
δE,3)) and α4 = α0(1 − (δE,1 + δE,2 + δE,3 + δE,4)). To first order x′

f is

x′
f(α0, δE,2, δE,4) ≈ α0(δE,2 − δE,4) (4.18)

Hence, the influence of the energy redistribution on the angle compensates partly and
when there is no compression x′

f should vanish. The compensation takes place for every
slice along the bunch. If a bunch passes a C-chicane but remains uncompressed, the
trajectories of all slices should be parallel to the Z-axis behind the chicane.

For a symmetric 6-bend S-chicane the same considerations lead to a final transverse
offset of

xf(α0, δE,2, . . . , δE,6) ≈
α0

2
(δE,2(4L23 + 8L12 + 13LB) + 2δE,3(L12 + LB) (4.19)

−δE,4(2L23 + 4L12 + 7LB) − δE,5(2L12 + 2LB) + δE,6LB)
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and in the case of an uncompressed bunch to

xf(α0, δE) ≈ α0δE

(

L23 + 2L12 +
7

3
LB

)

(4.20)

Comparing C-chicanes and S-chicanes with the same R56 shows that the final transverse
offsets of the slices are smaller behind an S-chicane1. On the other hand, the angle behind
the S-chicane is

x′
f(α0, δE,2, δE,4, δE,6) ≈ α0(δE,2 − δE,4 + δE,6) (4.21)

When comparing this to equation (4.18) which was derived for the C-chicane one has to
keep in mind that the energy changes in the last dipole of the C-chicane by δE,4 and in
the last dipole of the S-chicane by δE,6. These should have a very similar value. The δE,2

is a little smaller in the S-chicane since the bunch is still a little longer at the position of
the second dipole. Thus, the absolute value of the final angle should be comparable to the
one behind a C-chicane but it changes sign. In case of no compression a small residual
angle remains behind the S-chicane.

A compensation scheme that is similar to an S-chicane can also be achieved with two
C-chicanes. They have to be separated by quadrupoles which flip over the transverse phase
space but do not change the absolute values of the coordinates. Such a transformation is
also called −I-transformation [48].

As we have seen before in chapter 3.3 it is possible to shift the central magnets of
an S-chicane without changing the bending angles. In this case neither dispersion nor
momentum compaction factors are changed. But if we take the energy redistribution due
to the longitudinal CSR fields into account, it can be shown that the final offset xf of a
slice center depends on the amount of the longitudinal shift ∆l of the central magnets. To
first order the final transverse offsets of the slice centers and thus the correlated emittance
can be cancelled if the shift is

∆l =
1

2δE,2 + 4δE,4 + 2δE,5
(−δE,2(8L12 + 4L23 + 13LB) − δE,3(2L12 + 2LB) (4.22)

+δE,4(4L12 + 2L23 + 7LB) + δE,5(2L12 + 2LB) − δE,6LB)

A positive ∆l is a shift towards the end of the chicane. Using nominal operation parameters
of BC3, i.e. a compression of the bunch length by a factor of 5, and assuming that

the energy changes inside the dipoles proportional to σ
−4/3
s (see eqn. (4.3)), a shift of

∆l = 35 cm is needed to cancel the transverse offsets. Indeed, this value is close to the
value ∆l = 60 cm, which is used in the simulations in chapter 6. It is the result of a
comparison made in [83].

Also the effect of the transverse CSR fields can be estimated by geometric considera-
tions. Under the assumption of no bunch compression the absolute values of the transverse
fields will be almost the same in all magnets of the chicane. Due to the logarithmic depen-
dence of the transverse fields on the bunch radius, the change of the beta function along
the chicane has a negligible effect. Only the signs of the transverse fields change with
the signs of the bending angles. Accordingly, to first order, the influence of the transverse
fields on the transverse phase space coordinates should be compensated behind the chicane
and the correlated emittance should remain unchanged. Nonlinearities will have a small
impact on the slice emittance. In case of compression the transverse fields increase along
the chicane and a residual effect even on the correlated emittance can be expected. The

1In practice, the value of L12 is smaller for the S-chicane than for the C-chicane whereas L23 and LB

are the same, at least for the chicanes which are compared within this thesis.
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impact of the transverse fields is usually smaller than the impact of the longitudinal fields
but it is not negligible.

These simple considerations are confirmed by computer simulations which include the
CSR fields. A line-distribution of 1 nC total charge and an energy of 450 MeV is tracked
with the code TraFiC42.0 through a symmetric C-chicane and a symmetric 6-bend S-
chicane. Initially, the distribution has a gaussian charge profile and an rms length of
250 µm. The line-distribution is represented by gaussian charge distributions, so called
sub-bunches. The transverse phase space was not populated. The chicane layouts match
the symmetric C-chicane and the symmetric 6-bend S-chicane which are used in chapter 6.
They have a momentum compaction factor of R56 = −5 cm. For general information on
the computer simulations refer to chapter 5.

To indicate the influence of the longitudinal and the transverse CSR fields three different
cases are compared:

a) longitudinal and transverse CSR fields are included in the simulations
b only longitudinal CSR fields are included in the simulations
c) only transverse CSR fields are included in the simulations

A mono-energetic electron bunch will not be compressed when it passes the chicanes.
In this case the influence of the transverse CSR fields on the final phase space coordinates
of the sub-bunches is small in both chicanes (figures 4.10 and 4.11). Nevertheless, the
transverse sub-bunch offsets are larger behind the C-chicane than behind the S-chicane.
On the other hand, the trajectories of the sub-bunches are almost parallel to the Z-axis
behind the C-chicane whereas they diverge slightly behind the S-chicane. In the S-chicane
the sub-bunches accumulate a stronger energy deviation than in the C-chicane.

If a linear energy slope 1
E0

dE
ds = −16 m−1 is induced along the bunch it will be com-

pressed in to a final rms length of 50µm. The transverse CSR fields than have a noticeable
influence on the final phase space distribution in both chicanes (figures 4.12 and 4.13).
The angles x′ of the sub-bunches have comparable absolute values behind the two chicanes
but the signs are different. The transverse offsets xf are smaller behind the S-chicane.

The development of the longitudinal and transverse phase space coordinates as well as
the longitudinal and transverse CSR fields along the C-chicane is plotted in figure 4.14.
For the S-chicane the development is plotted in figure 4.15. The bunch is not compressed.
The chicane and bunch parameters are the same as above but the simulations utilized the
code CSRTrack (see chapter 5). The pictures are taken just in front of the magnets and at
the end of each magnet. The last picture is taken 2m downstream of the last magnet. The
data shown in figures 4.10 and 4.11 corresponds to the second to last row in figures 4.14
and 4.15 respectively. Small differences of the phase space coordinates are due to slightly
different positions along the chicanes and due to the different simulation codes. Note the
different scale.

The longitudinal CSR fields are very similar in all dipoles of the chicanes (figures 4.14
and 4.15). The transverse CSR fields change sign with the signs of the bending angles. It
is interesting to note that the longitudinal CSR fields drop off very slowly along the drift
spaces which follow the dipoles. Even in front of the next dipole the longitudinal CSR
fields are not negligible. In contrast to this the transverse CSR fields decay very fast in
the drifts.

In figure 4.16 the final transverse phase space distributions which are obtained by the
computer simulations are compared to the distributions calculated by equations (4.16) and
(4.18) for the C-chicane and by equations (4.20) and (4.21) for the S-chicane. The energy
deviations which are needed for the analytical calculations are taken from the simulation
data. The results agree very well.
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Figure 4.10: Each column shows the longitudinal and transverse phase space coordinates
of a mono-energetic bunch that passed a C-chicane but remained uncompressed. To obtain
the results the computer simulations used longitudinal and transverse CSR fields (left
column), only longitudinal CSR fields (middle column), only transverse CSR fields (right
column). Initially, the bunch had a gaussian charge profile and vanishing transverse phase
space coordinates. Dark dots represent particles with a higher charge than lighter dots.
In some plots numerical noise is visible.
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Figure 4.11: Each column shows the longitudinal and transverse phase space coordinates
of a mono-energetic bunch that passed an S-chicane but remained uncompressed. To
obtain the results the computer simulations used longitudinal and transverse CSR fields
(left column), only longitudinal CSR fields (middle column), only transverse CSR fields
(right column). Initially, the bunch had a gaussian charge profile and vanishing transverse
phase space coordinates. Dark dots represent particles with a higher charge than lighter
dots. In some plots numerical noise is visible.
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Figure 4.12: Each column shows the longitudinal and transverse phase space coordinates
of a bunch that was compressed in a C-chicane. The compression is achieved by inducing a
linear energy slope. To obtain the results the computer simulations used longitudinal and
transverse CSR fields (left column), only longitudinal CSR fields (middle column), only
transverse CSR fields (right column). Initially, the bunch had a gaussian charge profile
and vanishing transverse phase space coordinates. Dark dots represent particles with a
higher charge than lighter dots.
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Figure 4.13: Each column shows the longitudinal and transverse phase space coordinates
of a bunch that was compressed in an S-chicane. The compression is achieved by inducing
a linear energy slope. To obtain the results the computer simulations used longitudinal
and transverse CSR fields (left column), only longitudinal CSR fields (middle column),
only transverse CSR fields (right column). Initially, the bunch had a gaussian charge
profile and vanishing transverse phase space coordinates. Dark dots represent particles
with a higher charge than lighter dots.
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Figure 4.14: The development of the longitudinal phase space distribution (left column),
the transverse phase space distribution (second column), the longitudinal CSR fields (third
column) and the transverse CSR fields (right column) along a C-chicane is shown for a
bunch that is not compressed. For each of the four magnets the data is plotted right in
front of the magnet and at the end of the magnet (rows from top to bottom). The last
row contains the data 2 m behind the last magnet. The labels of the axes are given only
in the last row but are valid for all rows. The noise in the transverse fields is due to the
limited simulation accuracy.
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Figure 4.15: The development of the longitudinal phase space distribution (left column),
the transverse phase space distribution (second column), the longitudinal CSR fields (third
column) and the transverse CSR fields (right column) along an S-chicane is shown for a
bunch that is not compressed. For each of the six magnets the data is plotted right in
front of the magnet and at the end of the magnet (rows from top to bottom). The last
row contains the data 2 m behind the last magnet. The labels of the axes are given only
in the last row but are valid for all rows. The noise in the transverse fields is due to the
limited simulation accuracy.
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Figure 4.16: The transverse phase space distributions behind a C-chicane (left) and
behind an S-chicane (right) are shown. The data taken from computer simulations (black)
is compared to the distributions which are calculated by equations (4.16) and (4.18) for
the C-chicane and by equations (4.20) and (4.21) for the S-chicane (grey).

4.4 Shielding due to the Conductive Walls of the Vacuum Chamber

The electromagnetic fields generated by a bunch of electrons interact with the conducting
walls of the vacuum chamber. Inside a narrow vacuum chamber the low frequency part of
the fields parallel to the chamber walls is suppressed and the radiation power decreases.
Literally speaking, the shielding occurs because wavelengths larger than the size of the
vacuum chamber cannot propagate inside the chamber. Since the low frequency part of the
spectrum is emitted coherently by the electrons the total power can be strongly reduced
by the shielding effect.

The simple model of a bunch circulating between two infinitely large parallel plates
with infinite conductivity was discussed in [36] and later the results were generalized for
the case of finite parallel plates in [40]. By using image charges a derivation is performed
in [38]. Two asymptotic cases can be distinguished. One is the weak shielding regime,
which is described in [49], and the other is the strong shielding regime, which is described
in [50].

In case of circular motion the spectrum of a bunch moving between two infinitely large,
parallel plates with infinite conductivity which are separated by the distance h is [36]

dPshield

dω
(ω) =

dP ∗
shield

dω

(

ωR

c

)

(

Ne + Ne(Ne − 1)e−( σsω
c )

2)

(4.23)
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1

3π2ǫ0

N2
e e2

0

h

nh/πR
∑

p=1,3,5,...

g4
p

n3

(
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(

g3
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3n2

))

with gp = pπR
h . This formula is valid for ω ≪ ωc = 3c

2Rγ3. It can also be used for
non-circular motion as long as the bending radius R is much larger than the radiation
formation length Lrad = 2

√
πhR [51]. An analysis for a bunch entering a bending magnet

from a straight pass is given in [52].

The shielding becomes important for bunches with a length σs ≫ h
π

√

3h
2πR otherwise

the radiation spectrum is shifted to too high frequencies [51]. Assuming a bunch length of
σs = 100 µm and a bending radius of R = 5 m the height of the vacuum chamber should
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be less than 1 cm for an efficient shielding. In figure 4.17 one can see that all frequencies

below the threshold frequency ωth =
√

2
3

c
R

(

πR
h

)3/2
are suppressed.
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Figure 4.17: The normalized spectrum of a bunch circulating in free space (dashed)
is compared to the normalized spectrum of a bunch circulating between two infinitely
large plates which are separated by the distance h = 0.1 m (solid). Low frequencies are
suppressed due to the shielding effect of the plates. If the separation of the plates gets
smaller the threshold moves to higher frequencies.

To study the dependence of the total radiation power on the chamber height approx-
imate functions can be used. The case of strong shielding is given if nth > nc. Here

nth =
√

2
3

(

πR
h

)3/2
is the threshold harmonic and nc = R

σs
is the characteristic harmonic.

Using BC3 parameters (R = 7.5 m, h = 15 mm (maximum possible height), σs = 250 µm)
we get nth ≈ 51000 and nc ≈ 30000. Thus the strong shielding formula for the total power
is valid. It also gives a good approximation if nth is not too much lower than nc, but the
radiation power is underestimated [50]:

Pshield(h) =
1

4πǫ0

4N2
e e2

0c

3πRh

∞
∑

p=1,3,...

I0(p) (4.24)

I0(p) = 3π
pπR

h
K0

(

2
p3/2

√

2/3(πR/h)3/2

R/σs

)

(4.25)

The dependence of the radiated power on the chamber height h for a 50µm bunch and
a 250 µm bunch of 1 nC charge is plotted in figures 4.18a and 4.18b. Both plots show
the power calculated by the strong shielding formula (4.24) and the power obtained by a
numerical integration of the spectra. It is obvious that in case of nth < nc the power is
underestimated by (4.24). For a 50µm bunch the chamber has to be very flat to influence
the radiation power. The spectrum of a 250 µm bunch is dominated by lower frequencies
and shielding starts to be efficient in chambers which are higher.
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a) b)

Figure 4.18: The dependence of the total CSR radiation power on the chamber height
is plotted for a bunch of 50 µm rms lengths (a) and a bunch of 250 µm rms lengths (b).
The strong shielding formula (solid) is good for chambers with a small height. But if the
chamber height increases the radiation power obtained by numerical integration of the
spectra (dots) is underestimated.

4.5 Wake Fields

In the preceding section the conductivity of the vacuum chamber was assumed to be
infinite. Additionally, the surface of the chamber was assumed to be perfectly smooth. In
reality of course this is not given and additional effects can become important. These are
the resistive wall wake fields, which depend on the resistivity of the chamber walls, the
surface roughness wake fields, which depend on the structure of the surface of the chamber,
and the wake fields which are emitted due to steps and tapers in the cross section of the
chamber.

In contrast to CSR, which is mainly a tail-head interaction, the wake fields are a head-
tail interaction. Also the wake fields lead to an energy redistribution along the bunch and
to an emittance growth. In some cases the modification of the phase space distribution
due to the longitudinal wake fields can be utilized. This is for example done at the Sub-
Picosecond Photon Source (SPPS) at the Stanford Linear Accelerator Center (SLAC) [53].

A finite conductivity of the chamber walls decreases the phase velocity of the fields
travelling with the electron bunch. Thus, they fall behind and trailing particles will
consequently travel through fields emitted by particles ahead of them [54, 55, 56]. If the
surface resistivity is high, e.g. in stainless steel chambers, the longitudinal and transverse
forces exerted by the fields can have a considerable effect on the dynamics of the beam [57].
Narrow chambers are therefore build of aluminium or copper. For mechanical reasons
sometimes stainless steel chambers with a copper coated surface are used, e.g. in BC3.
The influence of the resistive wall wake fields on the beam dynamics in BC3 is expected
to be a lot smaller than the influence of the CSR fields.

The impact of surface roughness wake fields on the beam is studied in several theoretical
approaches for different structures of the surface (for a summary see [58] and [59]). The
agreement of the experiments which were performed at DESY with some of the theories
is good [60]. For the undulator chambers of the VUV-FEL it is expected that the effect of
the surface roughness wake fields is small in comparison to the resistive wall wake fields.
These aluminium chambers have an inner diameter of 9.5mm and a measured rms surface
roughness of 0.6 µm. The copper coated BC3 chambers have an inner height of 8 mm
and the surface roughness is specified to be better than 0.8 µm. Measurements of the
surface profile, which were done by the manufacturer [61], result in an rms roughness of
just 0.32 µm (figure 4.19). One can conclude that the effect of surface roughness wake
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fields should be small for these chambers.

Steps in the cross section of a vacuum chamber can strongly influence the fields trav-
elling with the bunch. To reduce their impact smooth tapers are usually used in beam
lines [55, 62, 63, 64, 65]. Tapers can be found at the beginning and the end of the BC3
vacuum chambers, since their height is smaller than the diameter of the attached beam
pipes. Steps are not used in the chicane, but at the bellows which connect the individual
parts of the chamber there are short gaps. Also the slits for the vacuum pumps might
have a small impact on beam dynamics.

The influence of the wake fields on beam dynamics strongly depends on the mechanical
and electrical properties of the chamber as well as the properties of the electron beam. A
thorough analysis for the vacuum chambers which are used at BC3 was not done. The
decision to use a copper coated surface with a roughness better than 0.8µm is based only on
quick estimates of the effects and reflects mainly a common agreement that stainless steel
chambers with a small height should be avoided. The good surface quality is achieved
with a standard production process (milling and galvanic copper coating). During the
production of the chambers it was not possible to coat the full inner surface with copper.
The outermost millimeters of the surface had to be left out. This might influence the
beam if the dipoles of BC3 are operated with very high or very low bending angles.

Figure 4.19: The measured surface profile of the copper coated chamber for BC3 is
plotted. Almost all points lie within ±1µm and the rms value of the surface roughness is
0.32 µm.
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Chapter 5

CSR Simulation codes

In the usual optics and tracking codes for accelerator development the bunch self in-
teraction due to synchrotron radiation and also due to space charge fields is neglected.
Therefore special CSR tracking codes (e.g. TraFiC4 [66], CSRTrack [67] and a code by
R. Li [78]) have been developed or existing codes have been expanded (e.g. Elegant [68],
TREDI [69, 70]). An overview of the existing codes and their current status can be found
in [71], [72] and [73].

The main difference between these codes is the description of the electromagnetic fields
and the electron distributions. The simplest and therefore fastest way to calculate the CSR
fields is the one-dimensional (1D) method which is also called projected method. It is based
on analytical formulae derived for the longitudinal CSR fields of a 1D charge distribution
moving in an arc of a circle [39]. Further derivations are given in [74] and [75]. The code
Elegant uses this CSR model [76] and it is also implemented in the code CSRTrack.

For point-like particles the full three-dimensional (3D) integration of the retarded
Lienard-Wiechert potentials would be the correct calculation of the electromagnetic fields.
Unfortunately, many particles are needed to reduce noise. Additionally, the fields diverge
at the positions of the particles. A better way to describe a bunch of charged particles is
to use smooth charge distributions, so called sub-bunches. The shape of the sub-bunches
is elliptical and they have a gaussian charge density. Also their electromagnetic fields
can be obtained at each observation point by 3D integration. A direct implementation of
such a model in tracking codes is, unfortunately, impractical since the calculation effort is
very high and only few sub-bunches can be tracked in a reasonable time. To reduce the
calculation effort, the 3D sub-bunches are described as a convolution of a 1D longitudi-
nal profile and a two-dimensional (2D) transverse density function. Then the fields can
be approximately calculated by 1D integration and the solution of analytical functions
[77]. This is called the convolution method. It is implemented in the codes TraFiC4 and
CSRTrack.

When the vertical plane1 is neglected the integration of the electromagnetic fields can
be simplified to a 2D calculation. The formalism is described in [78]. There also its
application in a tracking code is outlined.

A third way of calculating the electromagnetic fields is to use a Green’s function ap-
proach. To obtain the longitudinal and horizontal fields at the observation points the
Green’s functions are calculated on a 2D mesh which is interpolated in a second step [79].
Calculating the fields on a mesh is a lot less time consuming than 3D integration for all
particle to particle interactions and also the time needed for the mesh interpolation is
negligible.

We can already see the main difference between these methods. The 1D method uses
a very simple calculation of the electromagnetic fields, but can track a complex bunch
consisting of some 100000 particles. The 3D method, on the other hand, uses a complex
calculation of the fields, but can only track a simple bunch made of some 1000 sub-
bunches, even when making use of the convolution method. The calculation effort of the

1The horizontal plane is the plane in which the charge distributions are deflected in the dipoles. The
vertical plane is perpendicular to it.
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2D Green’s function method lies in between the other two methods. The resulting fields
are more realistic than those obtained with the 1D method and a relatively complicated
beam consisting of some 10000 sub-bunches can be tracked.

5.1 Description of the Simulation Methods and their Application in

Codes

In chapter 4.2 we have already seen that the energy of the electrons changes due to the
coherent synchrotron radiation when they pass a bending magnet. The energy change
depends on the position of the electron bunch in the bending magnet and on the position
of the electrons with respect to the bunch center. For bunches with a general longitudinal
density profile λ(s) the rate of energy change due to the longitudinal CSR fields along the
magnet is [39]:

dE(s, α)

c dt
≈ − 2e2

4πǫ031/3R2/3

(

(

24

Rα3

)1/3(

λ

(

s − Rα3

24

)

− λ

(

s − Rα3

6

))

+

∫ s

s−Rα3/24

ds′

(s − s′)1/3

dλ(s′)

ds′

)

(5.1)

The first part describes the influence of an entrance transient which overtakes the bunch
and fades out in a sufficiently long dipole. The second part describes the transition to the
steady state result and reflects that a particle can only be influenced by particles less than
a slippage length behind. The CSR fields in a drift behind a bending magnet can also be
described analytically within this model [39].

To make use of the analytical formulae at a time t the 3D distribution, which is used in
the simulations, is projected onto a reference trajectory ~rref(s, t). From this projection the
longitudinal charge density λ(s, t) is calculated (figure 5.1). Before the density profile can
be inserted in the analytical formula one has to make sure that noise due to the limited
number of particles is smoothed. Otherwise the results would be artificially distorted. The
code CSRTrack uses gaussian 3D sub-bunches for the description of the charge distribution.
The user himself has to make sure that the initial distribution of the sub-bunches results in
a good profile. When point-like particles are tracked, as in the code Elegant, a smoothing
algorithm has to be implemented. The smoothing parameters as well as the number of
particles have to be carefully checked in order to make sure that only the noise is suppressed
but real density fluctuations are not taken out.

Within this model transverse dependencies of the longitudinal CSR fields and the trans-
verse CSR fields are not taken into account. Since the derivation of the analytical formulae
is based on the electromagnetic fields of point-like particles, the singularities in the fields
at the positions of the particles had to be removed by a renormalization [39]. This is done
by subtracting the longitudinal fields between electrons in uniform linear motion. Thus,
only the radiated fields are described and the space charge fields are ignored.

The advantage of the 1D approach is that the effort of the calculations scales linearly
with the number of particles or sub-bunches inside the bunch. Very complicated bunches
which are built of some 100000 particles or sub-bunches can be tracked on a single CPU.

By numerically integrating the 3D retarded scalar and vector potentials

Φ(~r, t) =
1

4πǫ0

∫

ρ(~r′, t′)

|~r − ~r′|dV ′ , ~A(~r, t) =
µ0

4π

∫ ~J(~r′, t′)

|~r − ~r′| dV ′



5.1 Description of the Simulation Methods and their Application in Codes 55

Figure 5.1: For the 1D field calculation the charge distribution (grey dots) is projected
onto a reference path ~rref(s, t) to get the longitudinal density profile λ(s, t).

of a bunch consisting of several sub-bunches, the bunch shape, including transverse di-

mensions, is taken into account correctly. The full 3D fields ~E(~r, t) = −~∇Φ(~r, t) − ∂ ~A(~r,t)
∂t

and ~B(~r, t) = ~∇ × ~A(~r, t) are obtained at the time t for an observation point at ~r. The
space charge fields are included implicitly.

In general, one has to calculate the electromagnetic fields for each sub-bunch acting on
every other sub-bunch. The computation effort thus scales with the square of the number
of sub-bunches. Since each 3D integration of the potentials is very time consuming, usually
approximations are used in simulation codes. Only if the sub-bunches are spherical, can
the 3D integrations be reduced to the solution of 1D integrations and analytical functions,
without making any approximations [75].

The codes TraFiC4 and CSRTrack adopt a calculation method that was developed
in [77]. A 3D sub-bunch is interpreted as the convolution2 of a longitudinal 1D profile
λ(s, t) with a transverse 2D density function η(x, y), which is usually chosen to be gaussian
(figure 5.2). Then the 3D electromagnetic fields of the sub-bunch can also be calculated
by a convolution of 1D fields with the 2D density function:

~E(~r, t) = η(x, y) ∗ ~E1D(~r, t) , ~B(~r, t) = η(x, y) ∗ ~B1D(~r, t)

The fields of a 1D line distribution ~E1D, ~B1D can be split into singular parts ~E1D
s and

~B1D
s , which are dominated by local effects, and non-singular parts ~E1D

ns and ~B1D
ns , which

depend mainly on long-range interactions:

~E1D(~r, t) = ~E1D
s (~r, t) + ~E1D

ns (~r, t) , ~B1D(~r, t) = ~B1D
s (~r, t) + ~B1D

ns (~r, t)

The singular parts can be expressed analytically and the non-singular parts can be calcu-
lated numerically [77]. The 3D fields are then given by

~E(~r, t) = η(x, y) ∗ ~E1D
s (~r, t) + η(x, y) ∗ ~E1D

ns (~r, t)

≈ η(x, y) ∗ ~E1D
s (~r, t) + ~E1D

ns (~r, t) (5.2)

and

~B(~r, t) = η(x, y) ∗ ~B1D
s (~r, t) + η(x, y) ∗ ~B1D

ns (~r, t)

≈ η(x, y) ∗ ~B1D
s (~r, t) + ~B1D

ns (~r, t) (5.3)

The approximation is justified if the transverse dimensions of the sub-bunch are of the same
order or smaller than its length. Then the transverse dependence of the non-singular part
is negligible. If the transverse dimensions are larger, the small transverse dependence can
be sampled by an interpolation of a few solutions at different transverse coordinates. The

2The convolution is denoted with ”∗” in the formulae.
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transverse sampling is not implemented in the codes TraFiC4 and CSRTrack. Therefore
the transverse size of the sub-bunches should not be too much larger than their length.

In comparison to the full 3D integration the calculation effort for the fields is reduced
by about two orders of magnitude, but the scaling with N2 is unchanged. Typically some
thousand sub-bunches can be tracked this way when several CPUs are used in parallel.
For CSR simulations at DESY a LINUX cluster with 22 CPUs can be used. Even on this
computer only up to about 10000 sub-bunches can be tracked through a bunch compressor
chicane within several days.

Figure 5.2: A 3D sub-bunch can be represented as a convolution of a 1D profile and a
2D density function.

Since the effort for calculating the CSR fields is very high, the number of sub-bunches
has to be reduced and a careful modelling of the bunch profile is needed. Random or
quasi-random distributions cannot be used since they produce too much noise. A common
approach is to describe the bunch by two different distributions. One distribution is the
so called generating bunch which is used to calculate the CSR fields. It is tracked self-
consistently, i.e. under the influence of its own CSR fields, through the beam line. Usually
the generating bunch is just a 1D line distribution of 3D sub-bunches whose distances
and lengths are chosen to give a smooth profile. In this case the transverse phase space
coordinates of the sub-bunches are zero. The second distribution is the sampling bunch.
It consists of randomly distributed point-like particles which are tracked within the fields
generated by the generating bunch but do not radiate themselves. Often the sampling
bunch represents only a short slice in the center of the generating bunch (figure 5.3).

Splitting the bunch into these two distributions is in many cases in good agreement
with the usage of a full 3D generating bunch [67]. But there are also cases where this
simplification is not applicable and the transverse phase space of the generating bunch
has to be populated (e.g. see chapter 7).

In most cases a lot more than 1000 sub-bunches are needed to populate the full 6D
phase space. Thus the applicability of the 3D method is limited unless very many CPUs
are available. On the other hand, the very fast 1D method uses overly simple fields. The
need for a fast but accurate field calculation is met by the 2D Green’s function method [80].
The electromagnetic fields generated by a moving charge distribution, i.e. a sub-bunch,
are calculated by using a Green’s function approach:

~Esb(~r, t) =
qsb

q0
M−1 ~E(green)(~rref + M(~r − ~rsb), t)

~Bsb(~r, t) =
qsb

q0
M−1 ~B(green)(~rref + M(~r − ~rsb), t)

The observation point is at ~r and the sub-bunch of charge qsb is at ~rsb. The Green’s
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Figure 5.3: For 2D and 3D simulations the bunch is split into two distributions. The
generating bunch consists of sub-bunches which are lined up. The charge of the sub-
bunches is adjusted to match the desired charge profile. The generating bunch is used to
calculate the electromagnetic fields and it is tracked under the influence of these fields. A
second distribution, the sampling bunch, is a random distribution of point-like particles.
It is tracked under the influence of the fields which are generated by the generating bunch
but does not radiate itself.

functions ~E(green)(~rg, t) and ~B(green)(~rg, t) describe the electromagnetic fields at a distance
~rg − ~rref from a reference charge q0 travelling on a reference trajectory ~rref . By making
use of the convolution method, the longitudinal and horizontal electromagnetic fields

~E(green)(~rg, t) = E(green)
x (x, y)~ex + E(green)

y (x, y)~ey

~B(green)(~rg, t) = B(green)
z (x, y)~ez

of the reference charge are calculated once on a 2D mesh. To get the fields of the reference
charge at the position ~rg − ~rref of the observation point with respect to the reference
charge q0 the mesh is interpolated. ~rg − ~rref is obtained by the shift ~rref and the rotation
transformation M. The scaling qsb

q0
and the rotation M−1 result in the longitudinal and

horizontal electromagnetic fields at the observation point ~r generated by a sub-bunch of
charge qsb moving on its trajectory ~rsb.

The advantage of the Green’s function method is that the convolution method is used
only to calculate the electromagnetic fields at the mesh points and not for each interaction
between the sub-bunches. The number of mesh points is usually a lot smaller than the
square of the number of sub-bunches. The calculation time needed for the interpolations
and transformations is small.

For the Green’s function method the description of the 3D charge distribution is the
same as for the convolution method. However, the Green’s function method is fast enough
to populate at least the horizontal phase space of the generating bunch. As for the
convolution method the transverse size of the sub-bunches is limited. Both methods
are implemented in such a way that the sub-bunches always have the same orientation
with respect to the bunch trajectory. Due to dispersive effects the bunch itself can be
rotated. Thus, the orientation of the sub-bunches with respect to the bunch axis changes
and, consequently, an incorrect effective bunch shape is used for the field calculation.
For the Green’s function method the incorrect orientation of the sub-bunches leads to
an additional error in the field calculation. The retarded sub-bunch trajectories which
are used in the Green’s function solver depend on the sub-bunch orientation. Thus, not
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only an inaccurate bunch shape but also inaccurate sub-bunch trajectories are assumed
for the field calculation. Both errors can be minimized by using sub-bunches with small
transverse dimensions. As long as the bending angles of the dipoles are of the order of
some degrees, the transverse size of the sub-bunches can be about an order of magnitude
larger than their length.

On the other hand, one has to take care that the transverse size of the sub-bunches
is not too small. Otherwise the transverse fields get artificially strong close to the sub-
bunches. Usually the transverse dimensions of the generating bunch have to be similar
to the transverse dimensions of the sampling bunch. Thus, in most cases, at least the
horizontal cross section of the generating bunch should be populated with some sub-
bunches. Their horizontal size must be large enough that they overlap and give a smooth
transverse profile. Their vertical size can be as large as the vertical diameter of the
sampling bunch. The initial transverse dimensions of the sampling bunch are given by the
initial Twiss parameters.

5.2 Particle Tracking

To include the calculation of the longitudinal CSR field in the code Elegant, special beam
line elements were implemented by M. Borland [76]. The point-like particles are tracked
through a short slice of these elements without the influence of CSR. In a second step,
the CSR fields are calculated based on the particle distribution behind the slice and on
the particle trajectories along the slice. It is assumed that the longitudinal distribution is
fixed and does not change at retarded times, i.e. the retardation is not taken into account
correctly. The effect of the CSR field is applied as an energy kick behind the slice. Since
the influence of CSR on beam dynamics within the slice is neglected, the slice length must
be very short to reduce the error. Usually each element of the beam line which includes
CSR fields has to be cut in 10 − 100 slices.

The code CSRTrack [67] tracks 3D sub-bunches through a beam line consisting only
of drifts and horizontal bending magnets. The field calculation can be either the 1D
projected method, the 2D Green’s function method or the 3D convolution method. This
makes the code very flexible. Unfortunately, an early version of the code was used in this
thesis which neglected vertical sub-bunch coordinates. Each tracking step includes a self-
consistent loop for the field and trajectory calculation. At a given time t0 the sub-bunch
coordinates and the CSR fields are known. From this the trajectories of the sub-bunches
through a slice of the beam line can be extrapolated. Knowing the trajectories of the sub-
bunches along the slice makes it possible also to extrapolate the development of the CSR
fields. These fields are then used to track the sub-bunches through the slice and the final
phase space coordinates are compared to the extrapolated coordinates already obtained.
If their difference is smaller than a pre-determined error, the same calculation steps can
be repeated for the next beam line slice. Otherwise, the fields and trajectories of the
sub-bunches are calculated again, as long as the deviation between two successive tracking
steps is too large. If the slice length is small enough convergence should be reached within
very few iterations, often already with the first iteration.

The new TraFiC4 2.0 [81] uses a similar self-consistent tracking algorithm. In the field
solver only the convolution method is implemented. The field calculation is almost the
same as the convolution part in CSRTrack. Indeed, both field solvers were initially written
by M. Dohlus. TraFiC4 2.0 can track the full 6D phase space coordinates of the sub-
bunches through drifts, quadrupoles and bending magnets with an arbitrary orientation
in space. That means, not only horizontal but also vertical bends are possible.
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The rewriting of TraFiC4 became necessary after an error in the implementation of
the self-consistent loop in the old TraFiC4 was found. The original idea was to track two
distributions by using a leap-frog scheme. One distribution is the generating bunch and
the second is initially just a copy of it. These two distributions are than iteratively tracked
through each slice of the beam line. If the tracking is not accurate enough both distri-
butions accumulate different errors with each tracking step and eventually they diverge.
This of course leads to unusable results.

5.3 Comparison of the Models

Since the three calculation methods are based on different assumptions it is interesting to
compare the simulation obtained. A line-distribution is tracked through a single dipole
and through a C-chicane. The same initial conditions and chicane settings are used in the
simulations which are performed with the code CSRTrack. The distribution has a gaussian
charge profile and is compressed from an initial peak current of 500A to a peak current of
2500 A in the chicane. The total charge of the distribution is 1 nC. The electron energy
is 450 MeV.

The three methods result in almost the same longitudinal fields behind a single bending
magnet (figure 5.4 a). Also the transverse fields calculated by the Green’s function method
and the convolution method are the same (figure 5.4 b). But behind the last magnet of a C-
chicane the projected method results in considerably different longitudinal fields (figure 5.5
a), whereas the other two methods still show the same results for the longitudinal and
the transverse fields (figure 5.5 a and b). The results obtained with the projected method
differ because the bunch shape develops differently along the chicane. Accordingly, the
shape of the final profile varies from profiles which are obtained with the Green’s function
method and the convolution method (figure 5.6).

The differences of the methods also become obvious when the longitudinal and trans-
verse phase space distributions behind the C-chicane are compared. The longitudinal
phase space distributions are almost the same for the Green’s function method and the
convolution method. But if the projected method is used the longitudinal phase space
distribution is deformed (figure 5.7 a). In the transverse phase space the difference is
even more pronounced (figure 5.7 b). Consequently, not only the correlated emittance
will be influenced, but also the slice emittance. For the simulations shown here the pro-
jected method results in a normalized slice emittance of 0.988 mm mrad and a normalized
correlated emittance of 0.982 mm mrad whereas the Green’s function method results in
1.042 mm mrad and 1.658 mm mrad. The normalized emittances are 1.037 mm mrad and
1.723mm mrad if the convolution method is used. When the electron energy increases the
deviation of the projected method from the other two methods gets smaller.



60 CSR Simulation codes

a) b)

Figure 5.4: The longitudinal (a) and transverse (b) CSR fields along the bunch are
plotted behind a single dipole. The curves which are obtained from the three calculation
models agree very well and lie almost on top of each other.

a) b)

Figure 5.5: The longitudinal (a) and transverse (b) CSR fields along the bunch are
plotted behind a C-chicane. The results obtained with Green’s function method (grey)
and the convolution method (black) agree very well and lie on top of each other. But the
results from the projected method differ (light grey).

Figure 5.6: The longitudinal current profile is plotted for an initially gaussian bunch
that passed a C-chicane. The results from the Green’s function method (grey) and the
convolution method (black) are the same. They lie on top of each other. The profile that
is obtained with the projected method differs (light grey).
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a) b)

Figure 5.7: The longitudinal (a) and transverse (b) phase space distributions behind the
C-chicane are shown. They are almost the same for the convolution method (black) and
the Green’s function method (dark grey). The curves lie on top of each other. For the
projected method (light grey) the phase space distributions differ.
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Chapter 6

The second Bunch Compressor at TTF2

TTF2 will include two bunch compressors, a C-chicane and an S-chicane. These two chi-
canes have to compress the electron bunches longitudinally to achieve the required peak
current of up to 2500 A. At the same time they have to be flexible enough to also deliver
bunches with only about 500 A peak current. The first compression stage is based on the
bunch compressor 2 (BC2) which was already used at TTF1. The second stage is a new
bunch compressor called BC3. Requirements on the electron beam and design constraints
for BC3 are given in the first section of this chapter. Also the geometries of the simulated
chicanes are described there. The different chicanes are compared in section 6.2. Simu-
lation results for different initial electron distributions and chicane settings are given. It
is shown, that a symmetric 6-bend S-chicane matches our requirements very well. Sec-
tion 6.3 describes some technical aspects of BC3 and gives an overview of the whole bunch
compressor beam line including diagnostics and other components.

6.1 Requirements on the Electron Beam and Remarks on the Chicane

Layouts

The requirements on performance and beam quality of the TTF2 linac are determined by
the VUV-FEL (see also chapter 2). It is foreseen that the FEL will cover a wavelength
range from λ = 6.4 nm to λ = 120 nm [14]. For this purpose the beam energy has to be
tunable from E0 = 1000 MeV to E0 = 230 MeV. A bunch peak current of I = 2500 A is
needed to produce laser-like radiation with wavelengths smaller than λ = 30 nm. In this
case the electron bunches with a charge of 1 nC have to be compressed to an rms length
of 50 µm, assuming a gaussian charge distribution. A normalized transverse emittance
lower than 2 mm mrad and a total rms energy spread of less than 1 MeV have to be
preserved throughout the whole linac. In reference [14] various other operational modes
are described, but the values given here are the most challenging ones. Therefore I will
focus on these in my comparison.

As a starting point for the design of BC3 the nominal conditions have been defined.
Gaussian electron bunches are compressed from an rms length of 250 µm to 50 µm. This
change in bunch length is achieved with R56 = −5 cm and σE

E0
= 0.004. To keep some

flexibility for different operational modes the R56 should be tunable in the range of −2.5cm
to −10 cm. Since the R56 has mainly a quadratic dependence on the bending angle, it has
to be possible to change the bending angle of the dipoles by a factor of two. The nominal
beam energy at the entrance of BC3 is E0 = 450MeV. The relative rms uncorrelated energy
spread in front of BC3 is assumed to be σǫ

E0
= 1 · 10−4 and the normalized transverse slice

emittance is assumed to be εx = 1 mm mrad.

The length of the full BC3 section is limited to 21.9 m since it is located between the
accelerating modules ACC3 and ACC4. Some of this space is needed for quadrupoles,
steerers and diagnostics both in front of and behind the magnetic chicane. For the chicane
itself therefore only 14 m can be used.

Within these boundary conditions different chicane layouts are compared. They all
have the same overall length of 14m. Since the peak current rather than the bunch length
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is important for the FEL, the bending angles are slightly adjusted so that all chicanes
compress the bunch to the same final peak current. This means, the deformation of the
longitudinal phase space due to the CSR fields is taken into account in the simulation
settings.

The work on BC3 was started by A. Loulergue and A. Mosnier from CEA Saclay (Com-
misariat à l’Energie Atomique in Saclay, France). They compared some bunch compressor
chicanes in computer simulations and gave a recommendation for BC3 [82, 83, 84, 85].
The comparison made within my thesis covers not only these chicanes but also includes
some additional layouts. For my comparison all layouts and the initial electron distribu-
tions match the constraints discussed earlier. Since it was proposed to use dipoles for BC3
which have the same design and the same properties as the BC2 dipoles, all simulations
are based on dipoles of 0.5 m length. The gap height of these dipoles is H = 25 mm and
sets a limit on the maximum possible vacuum chamber height. More information on the
dipoles is given later in this chapter.

Some basic features of the chicanes which I compare within my thesis were discussed in
chapters 3 and 4. Sketches of the chicanes are shown in figure 3.4. Here I will only point
out some properties of the chicanes which were simulated. The symmetric C-chicane uses
four dipoles of equal strength. For the symmetric 4-bend S-chicane the two central dipoles
have twice the strength of the outer two dipoles. In the asymmetric 4-bend S-chicane the
two central dipoles are shifted by ∆l = 0.6m towards the end of the chicane. The bending
angles of the dipoles remain unchanged. Splitting the central dipoles of both S-chicanes
in pairs of dipoles leads to the 6-bend S-chicanes. All six magnets have the same strength.
The asymmetric 4-bend S-chicane proposed by A. Loulergue and A. Mosnier with dipoles
of 0.3m (outer dipoles) and 0.6m (inner dipoles) length was also simulated. This layout is
0.26 m longer than the other chicanes. Asymmetric layouts with modified bending angles
were initially not simulated and were therefore not taken into account for the comparison
on which the decision for BC3 is based. But to get a complete comparison, simulations
of an asymmetric C-chicane and a 6-bend S-chicane with modified bending angles were
performed later. The lengths of dipoles and drifts1 for the various chicanes are given in
table 6.1. To distinguish the two asymmetric cases of the 6-bend S-chicane the case where
the bending angles of the six dipoles are the same is called first asymmetric case (AC1)
and the case where the bending angles of the dipoles differ is called second asymmetric
case (AC2). The longitudinal dipole offset of ∆l = 0.6 m, which is used for three of the
asymmetric chicanes, was found to be a good solution in ref. [83]. This value agrees well
with an estimation I performed later. It makes use of eqn. (4.23) and results in a value of
0.35 m (see chapter 4.3).

6.2 Simulations of the Bunch Compressor Chicanes

The comparison of the different chicanes presented in this section is divided into two
parts. The first part compares simulation results of the chicanes with the nominal settings
which were given in the previous section. The only parameter variation that was done is a
variation of the chamber height. In the second part additional simulations were performed
with different chicane settings and electron bunch parameters.

1The length of a magnet is the yoke length and not the arc length. With the length of a drift I always
mean the length of the projection onto the Z-axis (see figures 3.5 and 3.6). Therefore both values are
independent of the bending angle.
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C-chicanes S-chicanes Saclay
4 bends 6 bends S-chicane

sym. asym. sym. asym. sym. AC1 AC2

LB [m] 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.3/0.6
L12 [m] 5.75 5.15 2.875 6.475 2.375 2.975 2.375 3.64
L23 [m] 0.5 0.5 6.2495 6.2495 0.5 0.5 0.5 6.3797
L34 [m] 5.75 6.35 2.875 2.275 5.2495 5.2495 5.2495 2.44
L45 [m] - - - - 0.5 0.5 0.5 -
L56 [m] - - - - 2.375 1.775 2.375 -

Table 6.1: For the different chicanes the lengths of the dipoles and the drift spaces are
given. See figures 3.5 and 3.6 for the nomenclature.

6.2.1 Initial Simulations for BC3

The electron distribution was created by tracking a particle distribution from the RF gun
up to 1m in front of the entrance of BC3 with the computer code ASTRA [86]. For the CSR
simulations the 3D distribution was projected to a 1D line distribution [87]. It has a peak
current of about 400A. The rms bunch length is σs = 266µm and the relative rms energy
spread is σE

E0
= 0.004. The current profile is not gaussian. The bunch parameters allow

a compression to a peak current of 2500 A with an R56 close to −5 cm. The distribution
consists of 405 sub-bunches. The basic bunch parameters and the initial longitudinal phase
space distribution are shown in figure 6.1. In the simulations this distribution was used
only to generate the CSR fields. Thus, it is called the generating bunch.

To calculate the transverse slice emittance and the slice energy spread, a short sampling
bunch was generated which consists of randomly distributed test particles in the middle of
the generating bunch. It has an initial length of 10µm and an uncorrelated energy spread
of 10−4. The energy slope along the slice is the same as the energy slope in the middle of
the generating bunch. The slice was tracked inside the fields which were generated by the
generating bunch but does not generate any electromagnetic fields itself. The transverse
density distribution of the slice is gaussian (figure 6.2). The initial Twiss parameters of
the slice 1 m in front of the chicane are taken from TTF2 beam optics data. The values
are βx = 75.52m, αx = 5.36, βy = 51.29m and αy = 2.82. The normalized slice emittance
is εx = 1 mm mrad. Since the slice only contains 501 randomly distributed electrons it
does not match these values exactly.

To estimate the effect of shielding, simulations of the symmetric 6-bend S-chicane were
performed with different heights of the vacuum chamber. The maximum height is given
by the gap height of the magnets. Since some of the space is needed for the chamber walls
the maximum inner height is 15 mm.

The simulations were done with the old version of the code TraFiC4 (see chapter 5).
The projected emittance is calculated from a convolution of the generating bunch and the
sampling bunch (see chapter 4.1).

6.2.1.1 Simulation Results

The simulation results for the horizontal emittances as well as the slice and the total
energy spread are summarized in table 6.2. The growth of the correlated and the projected
emittance is much higher in the C-chicanes than in the S-chicanes. Also the slice emittance
grows more in the C-chicanes. The values of the slice energy spread and the total energy
spread are similar for all chicanes. This matches the expectations from chapter 4.3.

When comparing the results for the various chicanes it becomes obvious that the asym-
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Figure 6.1: Shown here are the longitudinal phase space distribution of the generating
bunch (upper left), its energy distribution (upper right) and its current profile (lower left).
In the upper left plot bright dots represent sub-bunches with a low charge and dark dots
represent sub-bunches with a high charge.

Figure 6.2: The longitudinal (upper left), horizontal (upper right) and vertical (lower
left) phase space distributions of the sampling bunch are plotted.
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metric chicanes have only a slight advantage. Also the difference between 4-bend and
6-bend chicanes is small. The growth of the emittance in the vertical phase space is very
similar for all chicanes (table 6.3).

slice emit. corr. emit. proj. emit. slice σE

E0
total σE

E0

[mm mrad] [mm mrad] [mm mrad] [10−4] [10−3]

initial values 0.952 0.009 1.001 1.797 4.030
Saclay S-chicane 1.054 0.389 2.255 2.806 3.820
4-bend S-ch. asym. 1.050 0.411 2.243 2.729 3.814
6-bend S-ch. AC1 1.061 0.554 2.557 2.998 3.747
4-bend S-ch. sym. 1.065 0.386 2.386 2.772 3.821
6-bend S-ch. sym. 1.067 0.509 2.724 2.897 3.753
C-chicane sym. 1.146 1.541 4.172 3.137 3.975
C-chicane asym. 1.142 1.453 4.089 3.143 3.965
6-bend S-ch. AC2 1.072 0.510 2.420 3.061 3.746

Table 6.2: The horizontal normalized emittances as well as the slice energy spread and
the total energy spread calculated from the simulation results for the different chicanes.

slice emit. proj. emit.
[mm mrad] [mm mrad]

initial values 0.983 0.990
Saclay S-chicane 1.011 1.050
4-bend S-chicane asym. 1.012 1.052
6-bend S-chicane AC1 1.014 1.059
4-bend S-chicane sym. 1.010 1.046
6-bend S-chicane sym. 1.012 1.054
C-chicane sym. 1.016 1.045
C-chicane asym. 1.018 1.044
6-bend S-chicane AC2 1.015 1.059

Table 6.3: The vertical normalized emittances behind the different chicanes are given.

In figures 6.3 and 6.4 the final longitudinal phase space distributions of the generating
bunch behind the symmetric C-chicane and the symmetric 6-bend S-chicane are shown.
The differences are very small. But when the horizontal phase space distributions are
compared the difference between the two chicanes becomes obvious (figure 6.5). Behind
the C-chicane the area occupied by the distribution in the horizontal phase space is larger
than the area occupied behind the S-chicane. Hence, the transverse emittance is larger
behind the C-chicane. Figures 6.3 and 6.4 also show that it could be possible to compress
the bunch further and to achieve a higher peak current. The minimum bunch length is
limited by the uncorrelated energy spread. Since the strength of the CSR fields scales
with the peak current, they will dilute the transverse emittance more strongly when the
peak current increases. Additionally, the absolute jitter of the peak current due to jitter
in the mean energy or the energy slope will increase.

For all simulations the bending angles of the magnets have been adjusted to closely
match a final peak current of 2500 A (see table 6.4).

The influence of the shielding (see chapter 4.4) due to the conducting walls of the
vacuum chamber on the emittances and the energy spread is shown in figure 6.6. The
simulations were done for a symmetric 6-bend S-chicane. Since the total radiation power
is smaller in flat chambers, the correlated and the projected emittance drop. The slice
emittance and the slice energy spread are almost independent of the chamber height. Also
the total rms energy spread shows only a weak dependence on chamber height. It is always
higher than for the unshielded case.
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Figure 6.3: The longitudinal phase space distribution (upper left), the energy distribution
(upper right) and the current profile (lower left) are shown for a bunch that passed the
symmetric C-chicane. In the upper left plot bright dots represent sub-bunches with low
charge and dark dots represent sub-bunches with high charge.

Figure 6.4: The longitudinal phase space distribution (upper left), the energy distribution
(upper right) and the current profile (lower left) are shown for a bunch that passed the
symmetric 6-bend S-chicane. In the upper left plot bright dots represent sub-bunches with
low charge and dark dots represent sub-bunches with high charge.
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Figure 6.5: The initial horizontal phase space distribution of the generating bunch is
shown in the left plot. The horizontal phase space distribution behind a symmetric C-
chicane is shown in the middle plot and the right plot shows the horizontal phase space
distribution behind a symmetric 6-Bend S-chicane. Bright dots represent sub-bunches
with a lower charge than dark dots.

bending angles R56 Ipeak

[deg] [cm] [A]

Saclay S-chicane 3.57/7.14 −5.10 2519
4-bend S-chicane asym. 3.63/7.26 −5.11 2530
6-bend S-chicane AC1 3.91 −5.15 2519
4-bend S-chicane sym. 3.63/7.26 −5.11 2529
6-bend S-chicane sym. 3.91 −5.15 2513
C-chicane sym. 3.69 −5.07 2508
C-chicane asym. 4.06/3.35 −5.06 2506
6-bend S-chicane AC2 4.30/3.90/3.50 −5.15 2517

Table 6.4: For the different chicanes the bending angles of the dipoles, the R56 and the
final peak current of the generating bunch are given.

Figure 6.6: In the left plot the normalized slice emittance (short dash), the normalized
correlated emittance (long dash) and the normalized projected emittance (solid) are given
for different heights of the vacuum chamber. The right plots show the total energy spread
(upper right) and the slice energy spread (lower right) for different chamber heights.
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Based on the simulation results presented here, a symmetric 6-dipole S-shaped chicane
was found to be a good compromise between different constraints. The reduction of the
emittance growth in the asymmetric chicanes is insignificant. Also the difference between
a 4-bend S-chicane and a 6-bend S-chicane is insignificant. The growth of the projected
emittance and to a certain extent that of the slice emittance is considered to be too high
only for the C-chicanes.

The influence of the vacuum chamber was simulated only for the symmetric 6-bend
S-chicane. It was decided to use a vacuum chamber at BC3 with an inner height of 8mm.
The stronger shielding of the CSR due to the vacuum chamber (see chapter 4.4) reduces
the projected and correlated emittances by about 30% in comparison to a vacuum chamber
with the maximum possible height of 15 mm.

6.2.2 Simulations with different Chicane Settings and Bunch Parameters

For a comparison of the different chicanes with a larger range of settings gaussian distribu-
tions were used to generate the CSR fields. The value of the R56 was varied and also the
dependence of the final longitudinal and transverse phase space distributions on the bunch
charge was studied. These simulations were done with the computer code CSRTrack and
make use of the Green’s function method (see chapter 5).

In the simulations of the chicanes with different values of R56 the generating bunch
has an initial length of σs = 250 µm and consist of 601 equally spaced sub-bunches. Each
sub-bunch has a length of σsb = 2.5 µm and the distance between their centers is also
2.5 µm. The charge of the sub-bunches is matched to obtain a gaussian profile in the
longitudinal direction with a peak current of 500 A. The full distribution has a length of
±3σs. The linear energy slope dE

ds along the bunch is adjusted so that the chicanes always
compress the bunch to a peak current of 2500 A.

When the charge is varied the bunch length is adjusted accordingly to always achieve
the same initial peak current of 500 A. The longitudinal phase space of a 1 nC bunch of
250 µm rms length is plotted in figure 6.7.

The sampling bunches for the emittance calculation always consist of 1000 normally
distributed particles (figure 6.8). All simulations use the same Twiss parameters 1.0 m
in front of the chicane. The horizontal values are the same as before: βx = 75.52 m,
αx = 5.36. Vertical phase space coordinates are not tracked by the version of the code
CSRTrack used in this thesis. The sampling bunch has an initial length of 10 µm and an
uncorrelated energy spread of 10−4. The energy slope along the slice is the same as the
energy slope along the generating bunch.

6.2.2.1 Comparison of the Chicanes for various R56

To check the influence of the strength of the bending magnets on the phase space develop-
ment, the R56 of the chicanes was chosen as −2.5cm, −5cm and −10cm in the simulations.
The energy slope was simultaneously changed from 1

E0

dE
ds = −32m−1 to 1

E0

dE
ds = −16m−1

and 1
E0

dE
ds = −8 m−1 to keep the compression factor the same. These values correspond

to a total relative energy spread of the generating bunch of σE
E0

= 0.008, σE
E0

= 0.004 and
σE
E0

= 0.002. The bending angles are slightly adjusted so that the final peak current is
always about 2500 A (table 6.5).

In figure 6.9 the dependence of the normalized emittances and the slice energy spread on
the R56 is plotted. The emittances produced by the C-chicanes show a stronger dependence
on the R56 than those produced by the S-chicanes. As long as the R56 is small the
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Figure 6.7: The initial longitudinal phase space distribution of the generating bunch
is shown (upper left). Also the energy distribution (upper right) and the current profile
(lower left) are plotted. Bright dots represent sub-bunches with lower charge than dark
dots.

Figure 6.8: The initial longitudinal (left) and transverse (right) phase space distributions
of the sampling bunch are plotted.

bending angles [deg]
R56 = −2.5 cm R56 = −5 cm R56 = −10 cm

Saclay S-chicane 2.53/5.06 3.59/7.18 4.94/9.88
4-bend S-ch. asym. 2.57/5.14 3.64/7.28 5.01/10.02
6-bend S-ch. AC1 2.77 3.91 5.32
4-bend S-ch. sym. 2.57/5.14 3.64/7.28 5.01/10.02
6-bend S-ch. sym. 2.77 3.90 5.31
C-chicane sym. 2.62 3.74 5.24
C-chicane asym. 2.88/2.38 4.11/3.39 5.76/4.75
6-dip. S-ch. AC2 3.15/2.75/2.35 4.29/3.89/3.50 5.70/5.30/4.91

Table 6.5: The bending angles of the dipoles in the different chicanes are given for the
different values of R56.
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emittances are very similar for all chicanes. But if the R56 is increased the emittances
behind the C-chicanes grow faster than those behind the S-chicanes. The slice energy
spread develops similarly for all chicanes. The differences between the symmetric and the
asymmetric chicanes as well as between the 4-bend and 6-bend S-chicanes are small. All
results agree well with the results obtained in the previous section. It is also confirmed
that for BC3 a symmetric 6-bend S-chicane is a good choice. The simulation results for
the three R56 values are summarized in tables 6.6, 6.7 and 6.8. The slice emittance and
the slice energy spread are the emittance and the energy spread of the sampling bunch.
Thus, the slice energy spread changes with the energy slope.

Figure 6.9: Plots of the normalized slice emittance (upper left), the normalized projected
emittance (upper right), the normalized correlated emittance (lower left) and the growth
factor of the slice energy spread (lower right) in dependence of the R56 are given. The
results for the 6-bend S-chicanes are shown in black, the results for the C-chicanes are
shown in dark grey and for the 4-bend S-chicanes the results are shown in light grey.
Asymmetric chicanes are marked with a dashed line and symmetric designs are marked
with a solid line.

slice emit. corr. emit. proj. emit. slice σE

E0
total σE

E0

[mm mrad] [mm mrad] [mm mrad] [10−4] [10−3]

initial values 0.959 0.0 0.959 3.398 7.668
Saclay S-chicane 0.970 0.040 1.244 3.083 7.093
4-bend S-ch. asym. 0.971 0.052 1.245 3.078 7.086
6-bend S-ch. AC1 0.967 0.075 1.289 3.068 6.973
4-bend S-ch. sym. 0.977 0.059 1.336 3.094 7.100
6-bend S-ch. sym. 0.970 0.096 1.410 3.069 6.990
C-chicane sym. 0.976 0.435 2.275 3.414 7.249
C-chicane asym. 0.978 0.420 2.254 3.426 7.243
6-bend S-ch. AC2 0.966 0.068 1.197 3.066 6.989

Table 6.6: The normalized emittances as well as the slice energy spread and the total
energy spread are given for the case of R56 = −2.5 cm.
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slice emit. corr. emit. proj. emit. slice σE

E0
total σE

E0

[mm mrad] [mm mrad] [mm mrad] [10−4] [10−3]

initial values 0.959 0.0 0.959 1.911 3.834
Saclay S-chicane 1.002 0.133 1.765 2.926 3.044
4-bend S-ch. asym. 0.999 0.197 1.775 2.943 3.032
6-bend S-ch. AC1 1.002 0.263 1.949 2.976 2.898
4-bend S-ch. sym. 0.995 0.320 1.886 2.839 3.052
6-bend S-ch. sym. 1.003 0.448 2.106 2.875 2.923
C-chicane sym. 1.045 1.645 4.259 2.764 3.412
C-chicane asym. 1.043 1.581 4.128 2.777 3.400
6-bend S-ch. AC2 0.992 0.305 1.805 2.890 2.913

Table 6.7: The normalized emittances as well as the slice energy spread and the total
energy spread are given for the case of R56 = −5 cm.

slice emit. corr. emit. proj. emit. slice σE

E0
total σE

E0

[mm mrad] [mm mrad] [mm mrad] [10−4] [10−3]

initial values 0.950 0.0 0.950 1.251 1.917
Saclay S-chicane 1.052 0.283 2.763 3.504 1.184
4-bend S-ch. asym. 1.043 0.386 2.838 3.539 1.174
6-bend S-ch. AC1 1.017 0.365 3.132 3.085 1.160
4-bend S-ch. sym. 1.046 0.720 2.898 3.433 1.164
6-bend S-ch. sym. 1.015 0.849 3.051 2.928 1.136
C-chicane sym. 1.228 5.961 8.531 3.088 1.648
C-chicane asym. 1.204 5.603 8.160 3.113 1.627
6-bend S-ch. AC2 1.004 0.471 2.838 2.949 1.137

Table 6.8: The normalized emittances as well as the slice energy spread and the total
energy spread are given for the case of R56 = −10 cm.

6.2.2.2 Charge dependence of the final Phase Space Distribution

In chapter 4.2 we have seen that the CSR fields depend on the total charge of the bunch.
Consequently, the effect of charge variation was studied. Simulations of the symmetric
C-chicane and the symmetric 6-bend S-chicane were performed with a bunch charge of
qtot = 0.5 nC, 1 nC, 2 nC and 3 nC. The charge variation was obtained by changing the
bunch length but keeping the initial peak current at 500 A. Two cases are distinguished.
For the first comparison the energy slope dE

ds and the R56 are kept constant. The total
energy spread changes in proportion to the bunch length. In the second comparison the
total energy spread is constant and thus the energy slope and the R56 have to be adjusted
accordingly. The compression factor is always 5.

If the bunch charge is varied but the energy slope is kept constant, a strong influence
on the shape of the final longitudinal phase space distribution and the profile is observed
(figure 6.10). A peak develops in the profile when the charge decreases. The reason for
this behavior is that the total energy spread decreases when the bunch charge decreases
and the energy spread which is induced by the CSR fields becomes more dominant. The
total strength of the CSR fields should decrease when the bunch charge decreases since

the field strength is proportional to
q2
tot

σ
4/3
s

(see eqn. (4.3)).

If the total energy spread is kept constant during the charge variation the final longitu-
dinal phase space distributions and profiles do not show a strong dependence on the charge
(figure 6.11). But now not only the bunch length but also the R56 has to be increased
when the bunch charge increases to keep the final peak current at 2500 A. Consequently,
also the CSR fields depend more strongerly than before on the charge variation since they
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scale proportional to
q2
tot R

1/3
56

σ
4/3
s

(see eqn. (4.3)). The dependence on the bending radius 1
R2/3

is replaced by R
1/3
56 (see eqn. (3.23), (3.40), (3.43)).

Since the charge variation has a different influence on the CSR fields for the two cases
which were discussed, also a different influence on the transverse emittance can be ex-
pected. When the energy slope is constant the emittances and the enlargement of the
slice energy spread decrease slowly with increasing charge (figure 6.12). On the other
hand, if the total energy spread stays constant and the R56 is varied with the charge
the increasing CSR fields lead to a growth of the emittance when the charge increases
(figure 6.13). An S-chicane is always a better choice than a C-chicane.

The two comparisons show that in terms of the emittance and the slice energy spread it
is preferable to keep the total energy spread of the bunch constant and to vary the R56 of
the chicane when the bunch charge is lowered below 1nC. But if the bunch charge should
be increased above 1 nC, it is a better choice to keep the R56 constant and to vary the
energy spread of the bunch. Unfortunately, then also the total energy spread of the bunch
increases. Since the energy spread has a strong correlated contribution the spectral width
of the FEL increases (see chapter 2). This limits the maximum allowed energy spread.

In the comparison of differently charged bunches the initial normalized slice emittance
was always assumed to be 1 mm mrad. This is of course not true since the emittance is
strongly influenced by the space charge fields in the RF gun and the first accelerating
module. One can expect that the emittance of bunches with a low charge will be smaller
than the emittance of bunches with a high charge. Accordingly, it might be interesting
to decrease the charge when operating the VUV-FEL. As we have seen in the second
comparison (figure 6.13), it is possible to compress short bunches with a low charge to the
desired peak current of 2500 A without diluting the transverse emittance too much.

A jitter in the bunch charge can be produced by the RF gun in two ways. First, the
bunch shape is constant and the peak current changes. Then the emittance and the energy
spread will jitter correspondingly. Second, the bunch shape changes and the peak current
is constant. This case is similar to the first comparison I made in this section. The peak
current will be stable but the emittance increases with decreasing charge.
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Figure 6.10: The final longitudinal phase space distributions and the current profiles
are given for bunch charges of qtot = 0.5, 1.0, 2.0, 3.0 nC. The left column shows the
results behind a C-chicane and the right column shows the results behind an S-chicane.
The initial energy slope dE

ds is the same for all simulations. In the phase space plots sub-
bunches with a high charge are represented by darker dots than sub-bunches with lower
charge.
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Figure 6.11: The final longitudinal phase space distributions and the current profiles
are given for bunch charges of qtot = 0.5, 1.0, 2.0, 3.0 nC. The left column shows the
results behind a C-chicane and the right column shows the results behind an S-chicane.
The initial total energy spread σE is the same for all simulations. In the phase space plots
sub-bunches with a high charge are represented by darker dots than sub-bunches with
lower charge. The noise in some of the the profiles is a numerical error of the simulations.
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Figure 6.12: The dependence of the normalized slice emittance (upper left), the nor-
malized projected emittance (upper right), the normalized correlated emittance (lower
left) and the growth factor of the slice energy spread (lower right) on the bunch charge is
plotted. The energy slope is the same for all simulations. The results for a C-chicane are
given in grey and the results for an S-chicane are given in black. Note that bunches with
a lower charge are shorter.

Figure 6.13: The dependence of the normalized slice emittance (upper left), the normal-
ized projected emittance (upper right), the normalized correlated emittance (lower left)
and the growth factor of the slice energy spread (lower right) on the bunch charge is plot-
ted. The total energy spread is the same for all simulations. The results for a C-chicane
are given in grey and the results for an S-chicane are given in black. Note that the R56

increases with the charge.
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6.3 Layout of the Bunch Compressor Chicane

We have seen that a symmetric 6-bend S-chicane is a good choice for BC3. In this section
I will give an overview of the final layout of BC3. Some technical aspects are discussed
connected with the chosen layout and with the use of magnets of the same design as
the BC2 dipoles. The mechanical and magnetic properties of these magnets are verified,
to ensure that they fit the requirements of BC3. Firstly, the iron yoke has to be wide
enough for the broad vacuum chamber that is needed in the dispersive sections to cover
the large R56 range. Additional space is required for a straight beam pipe if the dipoles
are switched off. Secondly, the field errors have to be small enough to ensure tolerable
emittance growth. An estimation of the needed field quality and a comparison of these
results with field measurements made at the BC2 dipoles is given.

At BC3 the length of the outer drifts of the chicane is 2.38m and the central drift has a
length of 5.259 m which agrees within the alignment tolerances of ±0.2− 0.3 mm with the
exact value of 5.2594m obtained from equation (3.25). The second and third dipole as well
as the fourth and fifth dipole are separated by 0.5 m. The nominal bending angle of the
dipoles is α = 3.85◦. Then the first order momentum compaction factor is R56 = −5 cm.
The total length of the chicane is 14.019 m. The positions of the dipoles and the lengths
of the drift spaces are given in figure 6.14.

Figure 6.14: Layout of the bunch compressor chicane.

The total gap width of the dipoles is 221 mm and the usable width inside the chamber
in dipoles 2−5 is 208mm. The mid-point of these four dipoles is transversely displaced by
180mm with respect to the Z-axis. The chicane can be operated with an R56 ranging from
−1.5cm to −10cm. These values correspond to a minimum bending angle of α = 2.1◦ and
a maximum of α = 5.4◦. Figure 6.15 shows the cross section of one of the central dipoles.
The horizontal beam positions for different R56 values are given. Dispersion variation
inside the dipole is taken into account and a small safety margin is added. For nominal
settings (R56 = −5 cm) the beam will not pass the central magnets exactly in the middle.

Plots of the maximum dispersion, the maximum offset, the final dispersion, the final
offset, the path length with respect to the straight pass and the first order momentum
compaction factor versus the bending angle are shown in figure 6.16. The graphs are
calculated with the equations derived in chapter 3.3. The final transverse bunch offset is
always small enough to be neglected. The final dispersion might not be negligible when
the bending angle becomes large. The path length travelled by the bunch increases by
some 10mm in comparison to the projected length of the chicane. This results in a change
of the arrival time at the accelerating cavities downstream of the chicane and has to be
taken into account in their phase settings. For further information on beam dynamics in
both TTF2 bunch compressors refer to [17].
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For mechanical reasons BC3 will have a vacuum chamber which is built of copper plated
stainless steel. It combines the low surface resistivity of copper with the high mechanical
stability of stainless steel. Since the total height of the dipole gap is 25 mm and the walls
of the chamber have to be 5 mm thick for stability reasons, the maximum usable height
is 15 mm. To get a stronger suppression of the CSR fields due to the shielding effect,
the inner height of the chamber is only 8 mm (see chapters 4.4 and 6.2). As was already
pointed out in chapter 4.5 the influence of wake fields in such a narrow chamber was only
estimated. A thorough analysis was not performed. Additionally, the production process
of the chambers only allowed to put a copper coating on the central part of the upper and
lower surfaces. The short vertical walls of the chamber as well as the outermost parts of
the upper and lower surfaces are not copper coated. Thus, an increase of the resistive wall
wake fields can be expected when the beam passes the chamber close to these regions.

Figure 6.15: A cross-section of a central dipole is shown. There is enough space between
the coils of the dipole for a beam pipe passing straight on. The vacuum chamber between
the poles is wide enough to use the bunch compressor with an R56 ranging from −1.5 cm
to −10cm. Both beam pipes are sketched in light grey. The ellipses inside the rectangular
vacuum chamber show projections of the horizontal beam positions for different R56 and
take into account the change in dispersion throughout the dipole. The height of the ellipses
is arbitrarily chosen to make them visible.
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Figure 6.16: The dependence on the bending angle is given for the maximum transverse
bunch offset (upper left), the maximum dispersion (upper right), the final offset (middle
left), the final dispersion (middle right), the path length which is travelled by the bunch
with respect to the chicane length (lower left) and the first order momentum compaction
factor (lower right).
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6.3.1 Estimation of Field Quality and Alignment Tolerances needed for the

Dipoles

Besides the mechanical constraints, the field specifications of the dipoles have also to
match the needs of BC3. When running BC3 with R56 = −10 cm a bending angle of
α = 5.4◦ is needed. Since the maximum possible beam energy is about E0 = 500 MeV
and the magnets have a length of LB = 0.5 m, the dipoles should be able to produce a
magnetic field of B = E0

c e0

α
LB

= 0.32 T. The dipoles are designed for a maximum field of
Bmax = 0.375 T.

The magnetic properties of the dipoles which were built for BC2 were measured at
DESY [88]. The maximum field of these dipoles is about Bmax = 0.41 T with an error
of ∆B ≈ 0.05 mT over almost the whole width of the yoke (figure 6.17). The relative
field error is then ∆B

B = 1.2 · 10−4. The field accuracy needed for BC3 is estimated from
analytical formulae [89, 90] and by particle tracking simulations in the following section.

������������������������������
���� �	� � 	� ���
���


���� ������������������������������
���� ��� � �� ��������

�� !

"#$%&'"#$%&("#$%&)"#$%$""#$%$%
*%"" *+" " +" %"",-../

0123 45678845678645678945678:45678;45678<
=744 =94 4 94 744>?@@A

BCDE
Figure 6.17: The transverse field profiles of the four dipoles which were built for BC2
are shown for the case that they produce their maximum magnetic field. During standard
operation of the bunch compressor the beam will pass the dipoles close to the mid-axis at
x = 0 mm. Here the field varies less than ∆B = 0.05 mT.

Also the magnet alignment has to stay within certain limits (see also [91] and [89]). As-
suming typical alignment tolerances of ±0.2−0.3mm [92] errors of the transverse position
of the dipoles are uncritical. A longitudinal misalignment will add only a small amount to
the residual dispersion of the chicane and to the final transverse bunch offset. Also a small
rotational error around the vertical or horizontal dipole axis is of no importance. But if a
dipole has a roll error, i.e. a rotation around the Z-axis, a coupling of the magnetic fields
into the vertical plane might dilute the vertical emittance. The upper limit for the roll
angle of a single dipole of bending angle α at a position with a beta function βy can be
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estimated as [89]

∆φ <
E0

σE|α|

√

2∆εy

γβy
(6.1)

Then the growth of the normalized vertical emittance will be less than ∆εy. The initial
vertical beta function at the first dipole is βy ≈ 50 m. Assuming a bending angle of
α = 5.4◦ and a relative rms energy spread of σE

E0
= 0.002 the roll angle of the first dipole

should not exceed ∆φ = 0.2◦ to keep the emittance growth below ∆εy = 0.01 mm mrad.
Since the beta function at the other magnets is lower, their roll angle is allowed to be
larger.

6.3.1.1 Field Errors in Dipole Magnets

Inside a horizontally deflecting dipole magnet the magnetic field By consists of a strong
dipole term Bdip and weak higher order terms Bn which can be expressed by an expansion
of the field in the horizontal mid plane (y = 0):

By(x, y = 0) = By(0) +
x

1!

∂By

∂x

∣

∣

∣

∣

x=0

+
x2

2!

∂2By

∂x2

∣

∣

∣

∣

x=0

+ . . . (6.2)

Within a circle of radius r0, which is usually chosen to be half the gap height, the magnetic

field can be expressed as a sum of multipole components Bdip bn+1 =
∂nBy

∂xn

∣

∣

∣

x=0

rn
0

n! :

By(x, y = 0) = Bdip

(

b1 + b2
x

r0
+ b3

x2

r2
0

+ . . .

)

(6.3)

The coefficients bn are called multipole coefficients. b2 is the quadrupole coefficient and
b3 is the sextupole coefficient. The normalized multipole strength Kn is given by Kn =
c e0
E

∂nBy

∂xn

∣

∣

∣

x=0
= 1

BdipR
∂nBy

∂xn

∣

∣

∣

x=0
. R is the bending radius of the magnet. With these

definitions the multipole components can be expressed as:

b2 = RK2r0, b3 =
1

2!
RK3r

2
0, . . . (6.4)

Each multipole component of the magnetic field inside a dipole adds to the emittance.
The emittance growth is either due to an enlargement, e.g. caused by a dispersion mis-
match, or due to a nonlinear deformation of the horizontal phase space distribution. As

long as the horizontal beam size σx =

√

εxβx

γ + R2
16

(

σE
E0

)2
is dominated by the dispersive

contribution, σx ≈ R16
σE
E0

, uncorrelated error kicks ∆x′ add statistically to the horizontal
phase space coordinates:

σx′ ≈
√

εx

γ βx
+ σ2

∆x′ (6.5)

The growth ∆εx of the normalized horizontal emittance εx is2:

∆εx ≈ γβxσ
2
∆x′ (6.6)

2If the horizontal beam size is dominated by the horizontal beam optics, σx ≈
√

εx βx

γ
, the emittance

growth is ∆εx

εx
≈ 2

σ
∆x′

σ
x′

. A quadrupole component can only dilute the emittance due to a dispersion

mismatch.
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It depends on the beta function βx at the location of the dipole and the relativistic factor
γ. σ2

∆x′ is a small additional divergence induced by the multipole component. In the four
central dipoles of BC3 the horizontal beam size is dominated by the dispersion and the
emittance growth is given by (6.6). Since the horizontal beam size is very small in the outer
dipoles their contribution to the emittance can be neglected. In case of the quadrupole
component the divergence error is given by a dispersion kick ∆R26 = K2LBR16:

σ∆x′,quad = ∆R26
σE

E0
= K2LBR16

σE

E0
(6.7)

LB is the length of the dipole, R16 is the dispersion at the location of the dipole. The
divergence error due to a sextupole error is:

σ∆x′,sext =
1

2
K3LBR2

16

(

σE

E0

)2

(6.8)

Substituting (6.7) in (6.6) results in the growth of the normalized horizontal emittance
induced by a quadrupole component:

∆εx,quad ≈ γ βx K2
2 L2

B R2
16

(

σE

E0

)2

(6.9)

The emittance growth induced by a sextupole component is

∆εx,sext ≈
1

4
γ βx K2

3 L2
B R4

16

(

σE

E0

)4

(6.10)

For the quadrupole and sextupole coefficients it can now be estimated that their values
should not exceed

b2 ≈ r0

ασE
E0

√

∆εx

γ

1

βx R2
16

(6.11)

and

b3 ≈ r2
0

α
(

σE
E0

)2

√

∆εx

γ

1

βx R4
16

(6.12)

in a dipole of bending angle α. The contribution of each multipole component to the
normalized emittance is ∆εx. In a row of m identical dipoles the total emittance growth is
the sum of the contributions in each dipole. Only dipoles at positions with high dispersion
R16 and high beta function βx contribute to the emittance growth.

I specify that the quadrupole component and the sextupole component in the dipoles
of BC3 should each add ∆εx ≤ 0.05 mm mrad to the normalized emittance. To estimate
the maximum allowed multipole coefficients b2 and b3 for the BC3 dipoles we only have to
consider the four inner dipoles. The outer two are at positions with vanishing dispersion.
The values of the beta function at the locations of the four dipoles are β1 ≈ 45m, β2 ≈ 40m,
β3 ≈ 7 m and β4 ≈ 7 m. For symmetry reasons the absolute value of the dispersion is
always R16 ≈ 0.275 m. The bending angle is α = 5.4◦. The beam has an energy of
E0 = 500 MeV or γ ≈ 1000 and a relative energy spread of σE

E0
= 0.002.

Using these values we get a maximum allowed quadrupole coefficient of b2 = 1.7 · 10−4

within a radius of r0 = ±12.5mm. An analysis of tracking data which I obtained with the
code MAD [93] for a gaussian particle distribution using the same parameters as above
results in an allowed quadrupole coefficient of b2 = 1.8 ·10−4. For the sextupole coefficient
the formula results in b3 = 3.9 ·10−3 and the simulations result in b3 = 3.1 ·10−3. One can
see that the acceptable values for the field errors in the dipoles are larger than the field
errors measured in the dipoles of BC2.
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6.3.2 Influence of Jitter on Beam Dynamics in BC3

In addition to the static errors jitter can also have an influence on the beam dynamics.
In a bunch compressor chicane two sources of jitter can be identified. One is the power
supply ripple which influences the bending angle of the magnets and the second is the
jitter of the accelerating phase and amplitude in the upstream accelerating modules which
change the bunch energy and the energy slope dE

ds along the bunch.

All dipoles are connected to a single power supply. The current of this power supply
is stable within ∆I

I0
≤ 10−4 [94]. When the current changes by such a small amount the

small hysteresis of the dipoles is not negligible and the magnetic field will jitter less than
the current [88]. To first order, the bending angle depends linearly on the magnetic field.
Thus, the power supply ripple produces a jitter of the bending angle by ∆α

α < 10−4. For
a nominal bending angle of α = 3.85◦ the path length jitter which is induced is less than
4 µm and influences the timing by less than 10 fs. The effect on beam dynamics due to
the change in the compression factor and the CSR fields is insignificant.

A change ∆E in the bunch energy E0 due to jitter in the RF amplitude and the RF
phase has an impact on the mean bending angle α by which the electron are deflected.
Accordingly, a jitter in the energy has a similar influence as the power supply ripple. The
bending angle is proportional to 1

E0
. Thus, an energy jitter will transform into an angle

jitter ∆α
α = ∆E

E0
. Since the R56 as well as the path length depend quadratically on the

bending angle they will jitter by twice the amount. For a single accelerating module the
jitter of the RF amplitude is expected to be ∆Vacc

Vacc
= 10−3 [95] and the phase jitter is

about ∆φ = 0.1◦ [96]. The beam is accelerated in ACC2 and ACC3 from an energy of
130MeV to 450MeV. The influence of the phase jitter on the energy is found to be small.
Thus, the relative energy jitter in front of BC3 is the same as the relative jitter of the RF
amplitude:∆E

E0
= 10−3. The impact of such an energy jitter on the bunch compression and

the CSR fields in the chicane is small. But the path length will jitter by about 40 µm and
the timing will jitter by about 130 fs assuming a bending angle of α = 3.85◦.

An additional effect of the phase jitter σφ is that it changes the total energy spread
of the bunch and consequently the final bunch length [97]. The energy slope u = dE

ds
along the bunch behind an accelerating module is approximately the same for all electrons
within the bunch. It depends on the RF phase φ and a phase error ∆φ.

u(∆φ) = (Ef − Ei)
2π

λRF

sin(φ + ∆φ)

cos φ
(6.13)

In the accelerating module the bunch is accelerated from an energy of Ei to an energy of
Ef . The wavelength of the RF field is λRF. The bunch has a length of σs,i in front of the
bunch compressor chicane and is compressed to a final length of

σs,f = σs,i − R56σs,i

(

1 − Ei

Ef

)

2π

λRF

sin(φ + ∆φ)

cos φ
(6.14)

A phase jitter σφ will lead to an error in the final bunch length of

∆σs,f =

∣

∣

∣

∣

dσs,f

d∆φ

∣

∣

∣

∣

σφ (6.15)

≈ |(σs,f − σs,i) cot φ| σφ (6.16)

Assuming typical BC3 parameters of σs,i = 250 µm, σs,f = 50 µm, a nominal phase in
ACC2 and ACC3 of φ = 15◦ and a phase jitter of σφ = 0.1◦ this results in a jitter of the
final bunch length of 1.3 µm or 2.6%.
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If the bunch has a gaussian profile the peak current will jitter also by 2.6%. Since
the strength of the CSR fields depends on the bunch shape also a jitter in the transverse
emittance, beam position and direction is induced. If the bunch is not gaussian but
contains charge concentrations the jitter of the peak current and the CSR fields will be
stronger [98].

6.3.3 Overview of the Bunch Compressor Section

BC3 is located between the accelerating modules ACC3 and ACC4. The available space
is 21.9m. The chicane itself has a length of 14m and the remaining space contains various
diagnostic systems and quadrupoles for optics matching. Horizontal and vertical steering
magnets are included to correct the beam orbit. The diagnostic section in front of the
chicane has a length of 3.1 m and the diagnostic section behind the chicane has a length
of 4.8m.

The transverse beam position and beam profile can be measured at various positions
along BC3. The transverse emittance, the bunch length and the bunch current can be
measured in front of the chicane and behind it.

Two quadrupoles are installed in front of the chicane to match the optics of the incoming
beam. The transverse beam position can be measured with two beam position monitors
(BPM) of the strip-line type. The beam trajectory may be adjusted with a horizontal
and a vertical steering magnet. At the end of ACC3 there is an additional BPM, a pair
of steerers and a pair of quadrupoles. They can also be used for optics matching and for
trajectory corrections.

To measure the incoming beam profile a screen which emits optical transition radia-
tion (OTR) is located in front of the first dipole of the chicane. In combination with the
quadrupoles it can be used for a determination of the emittance. To measure the trans-
mission of the chicane, current monitors (so called toroids) are built in at the beginning
and at the end of the BC3 section.

For beam profile measurements inside the chicane, one OTR screen is located at the
zero crossing of the transverse beam offset. Here also the dispersion vanishes. Another
OTR screen is located between the fourth and the fifth dipole, i.e. at a position with
maximum dispersion. Special arrays of pick-up BPMs are located behind the second and
the fourth dipole. These enable measurements of the beam position over almost the whole
width ∆X = ±100 mm of the chamber. The drift space between the second and third
dipole can be used later for additional diagnostics or collimation. Since the BPMs and
one of the OTRs are located in dispersive sections they can be used for energy and energy
spread measurements.

The synchrotron radiation which is emitted in the dipoles can be used for diagnostic
purposes at three synchrotron radiation ports. Their positions are chosen for a nominal
operation of BC3 with a bending angle of 3.85◦. Two are located inside the chicane behind
the third and the fifth dipole. The first port points at a position 24 cm behind the start of
the second dipole. The second port points at a position 24cm behind the start of the fourth
dipole. The positions of the source points correspond to a deflection of 1.85◦. The distance
between the source points of the radiation and the windows is about 2.2 m. Since the two
ports have a width of 24mm and a height of 8mm only a narrow radiation cone is visible.
This limits their usability but due to mechanical constraints no better solution was found.
The third synchrotron radiation port is located a short distance behind the last dipole. It
points at a position 8.4cm behind the start of this dipole. This corresponds to a deflection
of 0.65◦. The distance between the window and the source point is 1.3m. The port is 8mm
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high and 26 mm wide. As was shown in chapter 4.2 the coherent synchrotron radiation
is not in steady state inside the dipoles of BC3. Accordingly, if the synchrotron radiation
ports are used for diagnostic purposes the total radiation power and the spectrum have
to be carefully calculated. Also the effect of shielding due to the vacuum chamber should
be included.

In the diagnostics section behind the chicane two strip-line BPMs and two pairs of
steerers can be used for trajectory corrections. A quadrupole triplet is available for optics
matching and emittance measurements. For the emittance measurements an OTR screen is
included. Additionally, the beam profile can be measured by a wire scanner. A diffraction
radiation screen can be used for bunch length measurements. A wall current monitor and
a phase monitor are also present. In figure 6.18 the whole BC3 section is sketched.

Figure 6.18: The sketch shows the magnets and the diagnostic components that are
included in the BC3 section.



Chapter 7

CSR Microbunch Instability

As was pointed out in [99], [100] and [101], coherent synchrotron radiation can lead to an
amplification of density and energy fluctuations in an electron bunch that passes a bunch
compressor chicane. This leads to a growth of the transverse emittance and, eventually,
to a fragmentation of the phase space distribution.

A theoretical analysis, as described in the next section, shows that the amplification
of a sinusoidal modulation depends on its wavelength. Shorter modulations will be more
strongerly amplified than longer modulations. The uncorrelated energy spread and the
transverse emittance of the electron bunch will suppress the amplification. In section 7.2
the simulation results for a special C-chicane, the so called benchmark chicane, are com-
pared to the theoretical predictions. Section 7.3 compares simulation results for a sym-
metric C-chicane and a symmetric 6-bend S-chicane. In the last section of this chapter
the modulation amplification is studied for a beam line which consists of the two bunch
compressor chicanes at TTF2.

7.1 Theoretical Description of the Modulation Amplification

The basic idea of the amplification mechanism is that a modulation in the longitudinal
beam profile induces an energy modulation at the same frequency due to the CSR fields
generated in the dipoles. The energy modulation is, in turn, converted back to a charge
density modulation since the path lengths of the electrons differ due to the dispersive
effects in the bunch compressor chicane. Behind the chicane the density modulation can
exceed the initial one by a large amplification factor. This mechanism can start from
either a density or an energy modulation.

Equations which describe the amplification of a sinusoidal modulation as a function of
its wavelength are derived in [102] for a one-dimensional beam of infinite length passing
a 3-bend chicane. The lengths of the drift spaces in the chicane are assumed to be much
longer than the dipoles. If the separation of the two central dipoles of a 4-bend C-chicane
is small the equations can also be applied to this case. The equations cannot be used
to calculate the amplification in S-chicanes. The beam model includes neither transverse
emittance nor an energy slope along the bunch. That means, the bunch is not compressed
when it passes the chicane. The initial density modulation has to be small in comparison
to the mean charge density.

For the derivation of the equations some additional simplifications are made. It is
assumed that transient effects in the dipoles can be neglected and the CSR fields are in
steady state. In [102] the condition

LB ≫
(

24R2

k

)1/3

⇔ λ ≪ 2π
Rα3

24
(7.1)

is given. LB is the length of the outer two dipoles. The central dipole has twice the length.
The bending radius of the dipoles is R. k = 2π

λ is the wave number of the modulation. In
case of the BC3 dipole parameters (LB = 0.5 m, R = 7.5 m) the modulation wavelength
λ must be much smaller than 580 µm. Also the effect of CSR shielding by the vacuum
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chamber as well as the transverse size of the bunch are not taken into account. Thus, the
condition

(

R

h3

)1/2

≪ 2π

λ
≪
(

R

σ3
x

)1/2

has to be fulfilled [102]. The chamber height at BC3 is h = 8mm and the transverse beam
size is roughly σx = 0.1 mm. Hence, the applicability of the equations is limited to the
range 1600 µm ≫ λ ≫ 2 µm.

Along a 3-bend chicane the density modulation develops in five stages. In the first
dipole the initial density modulation induces an energy modulation due to the CSR fields
which are produced by the electrons. Consequently, the electrons will travel along paths
with different lengths in the following drift space. In the second dipole the path length
differences are converted into a density modulation. This new density modulation has the
same wavelength as the initial modulation and adds to it. At the same time, the density
modulation will again enlarge the energy modulation as in the first dipole. These processes
are repeated in the second drift space and the third dipole.

When the density modulation and the energy modulation amplify each other inside a
dipole we expect an exponential growth of both modulations. But since the energy modu-
lation influences the density modulation only via dispersive effects the energy modulation
can be assumed to be constant along the dipole for the calculation of development of the
density modulation. Only if

LB ≫
(

γ0IA

I0

)1/4 λ1/3

(2π)1/3
R2/3 (7.2)

will an exponential growth take place inside a dipole [102]. I0 is the peak current of the
unmodulated current profile. IA = 4πmec

µ0e0
≈ 17045 A is the Alfven current. γ0 is the

relativistic Lorentz factor. Using BC3 parameters the wavelength of the modulation must
be less than 5 µm for an exponential growth of the modulation. We will see later that the
amplification of these short modulations will be suppressed by the uncorrelated energy
spread and the emittance. Thus, the regime of exponential growth is not reached and the
modulation grows linearly along a dipole.

In [102] the amplification factor, which is also called gain, of a small density modulation
on top of a bunch with no uncorrelated energy spread is found to be

G(λ) =
2Γ2

(

2
3

)

35/3

(

I0

γ0IA

)2 (2π)8/3 |R56|2 L2
B

λ8/3R4/3
(7.3)

R56 is the first order momentum compaction factor of the chicane. One can see that for
small wavelengths λ the gain diverges whereas for long wavelengths the gain vanishes.

When the electron bunch has an uncorrelated energy spread
σγ

γ0
the modulation am-

plitude is reduced in the dispersive parts of the chicane due to the nonuniform motion
of the electrons. Especially, very short modulations will be strongly suppressed. The
amplification factor is found to be [102]

G(λ) =
2Γ2

(

2
3

)

35/3
g2
0 f

(

2πσγ

γ0λ
|R56|

)

(7.4)

Here

g0 =
I0

σγIA

(

γ0

σγ

)1/3 LB

(R2 |R56|)1/3
(7.5)
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depends only on chicane and bunch parameters. The wavelength dependence is described
by

f(k̂) = 3k̂2/3e−
k̂2

2

(

1 +

√
πk̂2 − 2

√
π

2k̂
e

k̂2

4 erf(k̂/2)

)

(7.6)

It has a maximum at k̂ ≈ 2.15. The exponential term e−
k̂2

2 suppresses the gain for high
k̂, i.e. for short wavelength modulations (figure 7.1).

Figure 7.1: The function f(k̂) is plotted versus the normalized wave number k̂. It
describes the frequency dependence of the modulation amplification for a bunch which
includes uncorrelated energy spread.

Due to the assumptions made on the electron bunch and the chicane geometry equa-
tions (7.3) and (7.4) cannot be used if the influence of transverse emittance or compression
of the bunch length on the amplification of modulations should be studied. The equations
cannot be used at all to calculate the amplification of modulations in S-chicanes.

In [103] a theoretical approach is presented that is based on the solution of a linearized
Vlasov equation. An integral equation is derived that describes the development of a
modulation in the longitudinal charge density of an electron bunch along a bunch com-
pressor chicane. The bunch can have a linear energy slope, uncorrelated energy spread
and emittance. No assumptions are made on the layout of the chicane. Thus, the integral
equation can be applied to S-chicanes. In [104] a simplification of the integral equation is
given that is only applicable to C-chicanes.

Some simplifications which I discussed before are also applicable within this model.
Transient effects in short magnets are neglected, i.e. the CSR fields are in steady state. The
shielding effect of the vacuum chamber is not included. The wavelength of the modulation
is shorter than the bunch length. The transverse charge distribution and the energy
distribution are both gaussian. The longitudinal charge distribution is uniform with a
small sinusoidal modulation.

Along the chicane the amplification factor of a small initial density modulation of

amplitude A
(0)
k is defined as [103]

Gk(z) =
|Ak(z, s)|
cf(z)A

(0)
k

(7.7)
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z is the longitudinal bunch position along the chicane and s is the electron position inside
the bunch. The wave number of the modulation is k. cf(z) = 1

1−urR56(z) is the compres-

sion factor which depends on the relative energy slope u = 1
E0

dE
ds and the momentum

compaction factor R56. The development of the modulation amplitude is given by

Ak(z, s) = cf(z)gk(z)eikcf(z)s (7.8)

The factor gk(z) for a given wave number k is obtained from a numerical integration of

gk(z) = g
(0)
k (z) +

∫ z

0
K(z, z′)gk(z′)dz′ (7.9)

The function

g
(0)
k = A

(0)
k e

− cf (z)2k2εx
2β0

(β2
0R2

51(z)+R2
52(z))− 1

2
cf(z)2k2 σ2

γ

γ2
0

R2
56(z)

(7.10)

depends on the matrix elements R51(z), R52(z), R56(z) which relate the longitudinal
electron position inside the bunch to its initial transverse coordinates x, x′ and its reletive
energy deviation δE

E0
. The beta function at the entrance of the chicane is β0. The initial

uncorrelated energy spread is σγ and the initial transverse emittance is εx. The kernel

K(z, z′) =
ikI0

IAγ

c2ǫ0

R(z)2
Z(kcf(z

′), z′) cf(z
′) cf(z) R56(z

′ → z)

e
− k2εx

2β0
(β2

0R2
51(z,z′)+R2

52(z,z′))−
k2σ2

γ

2γ2
0

R2
56(z,z′)

(7.11)

depends on the initial beam current I0 and the matrix elements R51(z, z′) = cf(z)R51(z)−
cf(z

′)R51(z
′), R52(z, z′) = cf(z)R52(z) − cf(z

′)R52(z
′) and R56(z, z′) = cf(z)R56(z) −

cf(z
′)R56(z

′). The factor

R56(z
′ → z) = −

∫ z

z′

R16(z
′, z∗)

R(z∗)
dz∗ (7.12)

is an element of the first order transfer matrix between the points z′ and z along the
chicane. It is given by the dispersion R16(z) and the bending radius R(z). The synchrotron

radiation impedance Z(k, z) = −iR(z)2

c2ǫ0

k1/33−1/3Γ( 2
3)(

√
3i−1)

4πǫ0R(z)2/3 relates the spectral synchrotron

radiation power generated by a single circulating electron Pk = Re(Z(k, z)) Ī2
e to the mean

current Īe = e0c
2πR of a single electron.

In the following sections simulation results are compared to gain curves, i.e. the modu-
lation amplification factor versus the wavelength. The gain curves are numerically calcu-
lated by a Mathematica code written by G. Stupakov [105, 106] The optical functions are
obtained from tracking a beam with the tracking code Elegant [68] through the chicane.

7.2 CSR Instability in the Benchmark Chicane

During a workshop on coherent synchrotron radiation in January 2002 [71] it was decided
to make a comparison of various CSR simulation codes for a special benchmark chicane.
I made simulations with the code TraFiC4. First results were presented at the High
Brightness Electron Beams Workshop later that year [73]. The benchmark chicane is a
C-chicane. Its basic parameters and the parameters of the charge distributions are given
in table 7.1. The distributions are line-distributions.
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dipole length LB 0.5 m beam energy E0 5.0 GeV

1st and 3rd drift L12/L34 5.0 m flat top current I0 6000 A

2nd drift L23 1.0 m norm. emittance εx,y 0 / 1 · 10−6 m rad

bending radius R 10.35 m unc. energy spread σǫ 0 / 3 · 10−5

bending angle α 2.77 deg

momentum comp. R56 −2.5 cm

Table 7.1: Parameters of the benchmark chicane and the electron bunch.

The longitudinal current profile of the electron bunch consists of a central part with a
uniform current and a gaussian head and tail. The current modulation is added to the
full profile (figure 7.2). The shape of the profile is obtained by adjusting the charge of the
sub-bunches. All sub-bunches have the same length. The distance between the centers of
two subsequent sub-bunches is the same as their rms length.
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Figure 7.2: An example of a modulated current profile is sketched. The profile has a
gaussian head and tail and a uniform central part. The sinusoidal modulation is added
to the full profile. In this sketch the modulation amplitude is exaggerated. The initial
relative amplitude which is used in the simulations is below 10−3 and would not be visible
in the plot.

Since the longitudinal profile is obtained by a summation over gaussian sub-bunches,
each sub-bunch has to be shorter than the wavelength of the modulation. Test simulations
showed that at least 15 sub-bunches should be used per modulation period. If fewer sub-
bunches are used, the gain decreases (figure 7.3). Actually, in my simulations I used up
to 20 sub-bunches per period. The central part of the current profile has a length of 20
modulation periods. Consequently, the flat top consists of up to 400 sub-bunches.

The gaussian head and tail of the bunch have a total length of 90µm each. To simulate
a bunch with a modulation of 2 µm wavelength the sub-bunches have a length of 0.1 µm.
That means, to model the head and the tail 1800 sub-bunches are needed and the full
distribution consists of 2200 sub-bunches. This distribution does not include uncorrelated
energy spread or transverse emittance.

The simplest way to include uncorrelated energy spread is to copy the full distribution
to several energy levels in the longitudinal phase space and to adjust the charge in a way
that the energy profile is gaussian. At least three levels with higher and three with lower
energy should be populated. Unfortunately, this leads to distributions consisting of more
than 10000 sub-bunches. When adding transverse emittance the number would be even
higher.
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Figure 7.3: The gain, which is calculated from simulation results, depends on the number
of sub-bunches used per modulation period. At least 15 sub-bunches have to be used per
period to get good results.

In the simulations the maximum usable number of sub-bunches is about 10000. Oth-
erwise the simulations would take too long. To reduce the number of sub-bunches the
uncorrelated energy spread and the emittance were considered only for the modulated flat
top part of the distribution. Unfortunately, strong deformations of the CSR fields start to
build up at the edges of this region and, eventually, the full phase space distribution gets
disturbed. The simulation results are only usable if at least a part of the modulated flat
top remains undisturbed (figure 7.4).

A major problem in the simulations arises from the use of 1D line distributions. Since
the density modulation is converted into an energy modulation the transverse sub-bunch
positions will also be modulated in the dispersive parts of the chicane. Thus, the local
transverse density changes. In very thin bunches this can have a considerable influence on
the transverse CSR fields and the sub-bunch motion is disturbed. Eventually, the longi-
tudinal density modulation is destroyed (figures 7.5 and 7.6). To reduce this disturbance
a very large transverse size of the sub-bunches or a careful modelling of the transverse
phase space is needed. When the transverse sub-bunch size gets too large the convolution
method is not valid (see chapter 5). Distributing sub-bunches in the transverse phase
space increases the number of sub-bunches by large factors and thus also the computation
time. Consequently, for the following simulations in this section the influence of trans-
verse CSR fields was switched off, even though the code TraFiC4 was used which is an
implementation of the 3D convolution method (see chapter 5). This can be justified since
the amplification of the density modulations is a longitudinal effect. For the distributions
used here, the global shape of the profiles does not change much when the transverse CSR
fields are switched off (figures 7.5).

In general, when the transverse CSR fields are switched off in a 3D simulation code,
the results are not better than the results from the 1D projected method which is a lot
faster. Consequently, the 3D convolution method is only a good choice for simulations of
bunches with density modulations if the transverse phase spaces are carefully populated
with sub-bunches to suppress the noise. The 2D Green’s function method shows similar
challenges. The simulations in sections 7.3 and 7.4 were done with the code CSRTrack
and make use of the projected method.

Nevertheless, the simulation results obtained for the benchmark chicane match well
with the expectations from the numerical gain curves (figure 7.7).
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Figure 7.4: The left column shows the initial longitudinal phase space (upper plot) and
the initial current profile (lower plot) of a distribution with energy spread in the central
part. The right column shows the final longitudinal phase space (upper plot) and the final
current profile (lower plot).
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Figure 7.5: On the left side the final longitudinal phase space (upper plot) and the final
current profile (lower plot) are plotted for the case that longitudinal and transverse CSR
fields are included in the simulations. On the right side the final longitudinal phase space
(upper plot) and the the final current profile (lower plot) are plotted for the case that only
longitudinal CSR fields are included. In the upper plots dark dots represent sub-bunches
with higher charge than bright dots.
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Figure 7.6: Enlargements of the final longitudinal phase space (upper plots) and the
final current profile (lower plots) are shown. The left column shows the results from
simulations which include longitudinal and transverse CSR fields and the right column
shows the results if only longitudinal CSR fields are included. The spike near the center
of the lower left plot is a numerical error in the output file of TraFiC4.

Figure 7.7: Shown are the gain curves obtained from a numerical integration of eqn.(7.7)
for a beam without energy spread and emittance (solid black), with energy spread but
no emittance (solid grey), without energy spread but with emittance (dashed black) and
with energy spread and emittance (dashed grey). These curves are compared to the gain
obtained from simulation data without energy spread and emittance (circles), with energy
spread but without emittance (crosses) and without energy spread but with emittance
(diamonds).
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That the gain develops linearly along a dipole is confirmed by the simulations (fig-
ure 7.8). The development of the gain along the chicane is shown in figure 7.9. The
amplitudes of the density and the energy modulations are small throughout most parts of
the chicane. But inside the last dipole the modulation amplitudes are strongly enhanced
(figure 7.10). Since the longitudinal CSR fields travel downstream of the last dipole the
energy modulation is amplified behind the chicane. The dispersion is zero and the density
modulation remains unchanged. Also this behavior can be seen in figure 7.9.

Figure 7.8: The development of the simulated gain along the last dipole of the bench-
mark chicane is plotted for a bunch without uncorrelated energy spread and a modulation
wavelength of 4µm (black), a bunch without uncorrelated energy spread and a modulation
wavelength of 5 µm (medium grey) and a bunch with uncorrelated energy spread and a
modulation wavelength of 3.6 µm (light grey).
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Figure 7.9: The development of the longitudinal phase space distribution (left) and the
current profile (right) along the chicane is shown (from dark to bright). Initially, there
is no energy modulation but a small current modulation (black). The initial current
modulation is too small to be visible. Until the end of the second dipole (dark grey) and
the third dipole (medium grey) the phase space distribution is deformed by the CSR fields
but only a small energy modulation builds up. Also the current modulation is only slightly
stronger. At the end of the last dipole (grey) the modulation of the energy and the current
is strong. After a short drift behind the last dipole (light grey) the energy modulation
is even stronger. The current modulation is unchanged. The steps in the phase space
distributions and the spikes in the current profiles around s = 0 are due to a numerical
error in the output files of the first version of TraFiC4.

Figure 7.10: The development of the longitudinal phase space distribution (left) and the
current profile (right) along the last dipole is shown (from dark to bright). At the start
of the last dipole energy and density modulation are small (black). Inside the dipole they
are amplified and at the exit both modulations are strong (light grey).
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7.3 Comparison of C-chicanes and S-chicanes

S-chicanes require stronger dipoles than C-chicanes if they have the same R56. Conse-
quently, one can expect a stronger amplification of initial modulations. Here I compare a
symmetric C-chicane and a symmetric 6-bend S-chicane. The chicane and electron bunch
parameters are summarized in tables 7.2 and 7.3. The current profile of the electron bunch
is gaussian. Thus, the gain curve along the bunch has a gaussian shape. In all plots always
the peak gain is given. The simulations are performed with the code CSRTrack [67]. The
1D projected method is used.

dipole length LB 0.5 m beam energy E0 450 MeV

1st and 3rd drift L12/L34 5.75 m peak current I0 500 / 2500 A

2nd drift L23 0.5 m norm. emittance εx,y 0 / 1 · 10−6 m rad

bending radius R 7.82 m unc. energy spread σǫ 0 / 1 · 10−5 / 1 · 10−4

bending angle α 3.665 deg

momentum comp. R56 −5 cm

Table 7.2: Parameters of the symmetric C-chicane and the electron bunch.

dipole length LB 0.5 m beam energy E0 450 MeV

1st and 5th drift L12/L56 2.375 m peak current I0 500 / 2500 A

2nd and 4th drift L23/L45 0.5 m norm. emittance εx,y 0 / 1 · 10−6 m rad

3rd drift L34 5.250 m unc. energy spread σǫ 0 / 1 · 10−5 / 1 · 10−4

bending radius R 7.44 m

bending angle α 3.853 deg

momentum comp. R56 −5 cm

Table 7.3: Parameters of the symmetric 6-bend S-chicane and the electron bunch.

For the first comparison the peak current of the electron bunch is 500A and the bunch
is not compressed in the chicanes. If the bunch has a normalized transverse emittance
of εx = 1 mm mrad, equation (7.7) results for both chicanes in a very small gain. In the
S-chicane the maximum gain of a modulation in the charge density of such a bunch is 2.
In the C-chicane the modulations are not amplified at all (figure 7.11). If the peak current
of the bunch is 2500 A the gain increases to a maximum value of 20 in the S-chicane. In
the C-chicane the gain does not exceed 8 (figure 7.12).

In figure 7.12 one can also see that simulations and numerical predictions agree well if
the bunch is longer than the modulation wavelength. But if the modulation is longer than
the rms length of the bunch the gain which is derived from the simulations drops below the
numerical predictions. The simulations were done with gaussian bunches of σs = 250 µm
and 50 µm length.

Also when a bunch with an initial peak current of 500 A is compressed by a factor of 5
the amplification in the C-chicane and the S-chicane is different. Now the maximum gain
in the S-chicane is about 15, whereas it is just 7 in the C-chicane (see figure 7.13).

In all three cases it is observable that energy spread and transverse emittance suppress
the gain of short modulations. Especially, if a bunch with an uncorrelated energy spread of
σǫ
E0

= 10−4 and with a normalized transverse emittance of εx = 1mmmrad is compressed in
a C-chicane the gain of modulations up to an initial wavelength of 80 µm does not exceed
one. In S-chicanes only modulations longer than 55 µm are amplified. If the uncorrelated
energy spread is σǫ

E0
= 10−5 shorter modulations are also amplified. In C-chicanes the

threshold lies at 7 µm and in S-chicanes it lies at 8 µm.
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a) b)

Figure 7.11: The gain curves which are given by equation (7.7) are plotted for the C-
chicane (a) and the S-chicane (b). Solid curves show the gain for bunches with a normalized
transverse emittance of εx = 1 mm mrad. Dashed curves show the gain for bunches with
vanishing emittance. The relative rms uncorrelated energy spread is 0 (black), 10−5 (grey)
and 10−4 (light grey). The peak current of the electron bunch is 500 A. The bunch is not
compressed in the chicanes.

a) b)

Figure 7.12: The gain curves which are given by equation (7.7) are plotted for the C-
chicane (a) and the S-chicane (b). Solid curves show the gain for bunches with a normalized
transverse emittance of εx = 1 mm mrad. Dashed curves show the gain for bunches
with vanishing emittance. The relative rms uncorrelated energy spread is 0 (black), 10−5

(grey) and 10−4 (light grey). The peak current of the electron bunch is 2500 A. It is not
compressed in the chicanes. The simulations agree well with the numerical results if the
bunch has a length of σs = 250 µm and neither emittance nor energy spread (diamonds).
Also when emittance is added simulations and numerical results agree well (circles). But
if the bunch has a length of only σs = 50 µm in the simulations, the gain of modulations
longer than the rms bunch length drops below the numerical predictions (crosses).

a) b)

Figure 7.13: The gain curves which are given by equation (7.7) are plotted for the C-
chicane (a) and the S-chicane (b). Solid curves show the gain for bunches with a normalized
transverse emittance of εx = 1 mm mrad. Dashed curves show the gain for bunches
with vanishing emittance. The relative rms uncorrelated energy spread is 0 (black), 10−5

(grey) and 10−4 (light grey). The initial peak current of the electron bunch is 500 A. It
is compressed to a peak current of 2500 A. The simulations (diamonds), which include
10−4 relative rms uncorrelated energy spread but no transverse emittance, fit well to the
predictions. But for long modulations the theoretical model starts to overestimate the
simulated gain.
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In figure 7.14 it can be seen that the gain does not depend on the number of modulation
periods in the bunch profile. The simulations were performed for a modulation wavelength
of 50 µm. The bunch includes no emittance or energy spread. It has a peak current of
2500 A and is not compressed. Hence, the profile does not need to be really modulated.
Any disturbance in the charge density will be amplified. The gain depends on the length
of the disturbance and the local current.

a) b)

Figure 7.14: The gain in the C-chicane (a) and in the S-chicane (b) is plotted for different
numbers of modulation periods on top of a uniform profile with a current of 2500 A. The
dashed lines are the numerical predictions. The differences between the simulations and
the predictions lie within the simulation accuracy.

Since the gain of very short modulations is suppressed by the emittance and especially
by the uncorrelated energy spread these short modulations are not a concern. Long mod-
ulations, on the other hand, are only suppressed if they are longer than the bunch length.
They can become important. The difference between S-chicanes and C-chicanes is not of
major importance. In BC3 one can expect that modulations in the range of 50−150µm are
amplified by factors of up to 10. The lower boundary of this range depends on the value
of the uncorrelated energy spread. If the uncorrelated energy spread is just σE

E0
= 10−5

modulations with an initial wavelength larger than 10 µm are amplified.

7.4 CSR Instability in BC2 and BC3

We have seen in the last section that the gain in BC3 is moderate. But in the TTF2 linac
one has to consider the interaction of BC2 and BC3. An initial density modulation will be
amplified in BC2 and an additional energy modulation will build up. In BC3 the density
and the energy modulation will be amplified. Their gain will depend on the amplitudes of
both modulations in front of BC3. The gain which is predicted by the theoretical model
should be smaller than the gain which is calculated from the simulation results since the
model only considers an initial density modulation in the current profile and neglects the
influence of the initial energy modulation.

Here simulations are performed which start just in front of BC2 and end a little down-
stream of BC3. The initial rms bunch length is σs = 2 mm. Its current profile is gaussian
with a small sinusoidal modulation. A linear energy slope is induced in the longitudi-
nal phase space to allow a compression in BC2 by a factor of 8. In ACC2 and ACC3
the electron bunch is accelerated from an initial energy of 130 MeV to a final energy of
450 MeV. It passes through the modules slightly off-crest to increase the energy slope.
The compression factor in BC3 is 5. The final bunch length is σs = 50 µm. The phase
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space curvature which is induced by the R566 in BC2 is artificially taken out in front of
ACC2. The curvature induced by the RF is small and its influence on beam dynamics is
insignificant. No uncorrelated energy spread is included in the simulations, but transverse
emittance is taken into account.

As expected the simulation results show that the gain in BC2 follows exactly the the-
oretical predictions (figure 7.15a). But the gain in BC3 is about a factor of 3 higher
than predicted by eqn. (7.7) since the amplification process starts not only from a density
modulation but also from an energy modulation (figure 7.15b). Thus the total gain of an
initial density modulation is higher (figure 7.16).

The gain in the beam line is negligible only for short modulations. If σǫ
E0

= 10−4 only
modulations longer than 400µm in front of BC2 will become important. The exact location
of the cut-off will strongly depend on the amount of uncorrelated energy spread in the
bunch. If σǫ

E0
= 10−5 the cut-off will be at shorter modulation wavelengths. Additionally,

the peak gain will be higher in this case. The gain is important over a broad range and
might reach up to 100.

a) b)

Figure 7.15: The numerical gain curves in BC2 (a) and BC3 (b) are compared to simu-
lation results (dots). The simulations were done only for the case that the initial bunches
include transverse emittance but no uncorrelated energy spread.

Figure 7.16: The numerical gain curves in the beam line starting in front of BC2 and
ending behind BC3 are compared to simulation results (dots). The simulations include
emittance only. The numerical gain curves are multiplications of the individual gain in
BC2 and BC3.



Chapter 8

Conclusion and Outlook

SASE FELs rely on high quality electron bunches in terms of a small transverse emittance,
a small energy spread and a high longitudinal charge density. At TTF2 low emittance
bunches are produced in an RF gun. However, their peak current is limited due to the space
charge fields and they must be compressed longitudinally before they pass the undulators.
In the low energy part of a linac bunch compression can be done by velocity bunching.
But if the electrons are ultra-relativistic, dispersive beam lines with an energy dependent
path length are the only possibility to reduce the length of electron bunches. In the TTF2
linac two magnetic chicanes, BC2 and BC3, are included to compress the electron bunches
in two stages. BC2 is a standard C-shaped chicane built of four dipoles and is based on
the second bunch compressor which was already used at TTF1. BC3 had to be newly
designed.

A main concern in bunch compressor chicanes is the coherent synchrotron radiation
(CSR) which is generated by the electrons in the bending magnets. The longitudinal CSR
fields lead to a nonuniform energy redistribution along the bunch and thus to chromatic
effects in the chicane. Consequently, the transverse correlated emittance grows. The
transverse CSR fields blow-up the transverse phase space distribution and dilute the slice
emittance. Also higher order effects of the longitudinal CSR fields contribute to the slice
emittance.

Various symmetric and asymmetric C-shaped and S-shaped chicanes are compared an-
alytically and by computer simulations within this thesis. From geometric considerations,
which included the impact of the longitudinal CSR fields, it is shown that the correlated
emittance behind an S-shaped chicane is smaller than that behind a C-shaped chicane
which compresses the electron bunches by the same amount. This prediction is confirmed
by the computer simulations.

For the computer simulations the chicane settings and the parameters of the incoming
electron bunch are varied to find an appropriate layout for BC3. A symmetric S-shaped
chicane built of six dipoles is found to be a good solution. In this chicane the growth
of the transverse emittance due to the CSR fields is smaller than that in the C-shaped
chicanes. Asymmetric S-shaped chicanes and S-shaped chicanes built of four dipoles are
only slightly better in terms of emittance growth than the chosen layout.

The mechanical and magnetic properties of dipole magnets designed for BC2 are an-
alyzed. They match the requirements of BC3 and allow to build a very flexible bunch
compressor chicane. The bending angles can be varied between 2.1◦ and 5.4◦. This corre-
sponds to an R56 ranging from −1.5 cm to −10 cm. The magnets can also be switched off
and the beam can pass through BC3 without deflection. The total length of the magnetic
chicane is 14 m. Together with the quadrupoles, the steering magnets and the diagnostic
systems both in front of and behind the chicane the total length of the BC3 section is
21.9 m.

The impact of CSR is estimated in the computer simulations by making use of differ-
ent calculation methods. The simplest, and thus fastest, is the one-dimensional projected
method which only calculates the longitudinal CSR fields of a one-dimensional charge dis-
tribution. The most complicated but also most correct method is the three-dimensional
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integration of the scalar and vector potentials. Unfortunately, this second method is
too slow for a direct implementation in computer codes. Therefore the calculation ef-
fort is reduced by using a convolution of a longitudinal one-dimensional profile and a
transverse two-dimensional charge density to describe the three-dimensional sub-bunches
which model the charge distribution. By making slight approximations the calculation of
the electromagnetic fields can then be reduced to a sum of a one-dimensional integration
and analytical functions. Nevertheless, only some 1000 sub-bunches can be used to model
the charge distribution. Otherwise the calculation time would be too high.

To overcome the limitation of the three-dimensional convolution method in terms of
the number of sub-bunches which can be tracked, a two-dimensional calculation of Green’s
functions on a mesh can be used. This method is faster than the convolution method
and yields more precise results than the projected method. Due to these advantages the
Green’s function method is very well suited for the calculation of the electromagnetic fields
in bunch compressor simulations.

CSR will not only lead to an emittance growth but also to an amplification of density or
energy modulations in the electron bunch. This effect is called CSR microbunch instability.
The amplification factor depends on the modulation wavelength and increases towards
shorter modulations. However, uncorrelated energy spread and emittance suppress the
amplification of very short modulations.

The simulations performed within this thesis show a good agreement with the predic-
tions from a theoretical model, although the amplification of modulations with wavelengths
exceeding the rms bunch length is overestimated by the theoretical model. This is caused
by the assumption of infinite bunch length on which the derivation of the model is based.

For a symmetric 6-bend S-shaped chicane the amplification factors are higher by a
factor of 2 − 3 than those in a symmetric C-shaped chicane. From this point of view a
C-chicane might have been the preferred layout for BC3. Nevertheless, when the lower
emittance growth in S-chicanes is taken into account, they still seem to be a good choice.
A quantitative comparison of both chicanes is only possible, when the exact shape of the
electron bunch is known, since the emittance growth and the growth of the energy spread
induced by the CSR microbunch instability strongly depend on the initial phase space
distribution of the electron bunch.

Using BC3 parameters for the simulations shows that modulations in the wavelength
range of 10− 150 µm are amplified by factors up to 10. The lower boundary will increase
if the assumed uncorrelated energy spread is higher.

In a beam line consisting of two bunch compressors one should expect a stronger amplifi-
cation than the theoretical model predicts. In the first bunch compressor the amplification
process starts from a pure density modulation. But in the second bunch compressor the
amplification starts from a combined density and energy modulation which was induced
in the first bunch compressor. This behavior is confirmed by simulations of a beam line
starting in front of BC2 and ending behind BC3. The total amplification factor is found
to reach up to two orders of magnitude.

The simulations of modulated electron bunches presented in this thesis neglect the
influence of wake fields. Additionally, the CSR fields are only calculated by the simple
projected method. Thus, the influence of space charge and transverse CSR fields is not
taken into account. All these effects lead to a nonlinear modification of the phase space
distribution. From simple physical arguments one can expect that very short modulations
in the micrometer range in either energy or charge density should be further suppressed.
In contrast to this, long modulations might be even amplified, e.g. as explained in [35] for
a space charge driven instability.
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A more realistic development of the full 6D phase space distribution of the electron
beam can only be obtained in start-to-end simulations. They should take into account
space charge fields throughout the full beam line and wake fields when possible, e.g. the
geometric wake fields in the cavities. The CSR fields in the bunch compressor chicanes
should be calculated by using the Green’s function method. Also the reduction of the CSR
power due to the shielding effect of the vacuum chamber is important. The beam model
has to include transverse emittance and uncorrelated energy spread.

These very demanding simulations are feasible due to a considerable development of
the simulation codes during the past years and an increasing speed of the computers.
Especially the implementation of the Green’s function method in the CSR codes makes
it possible to simulate the behavior of charge distributions consisting of several 10000
sub-bunches on the computers available at DESY. This should be enough to populate
the horizontal phase space and to include uncorrelated energy spread in the beam model.
Consequently, it is a lot easier to incorporate CSR simulations in start-to-end simulations
which usually make use of bunches consisting of several 10000 up to some 100000 particles
generated by space-charge codes like ASTRA.

The simulation results obtained will allow a better understanding of beam dynamics
and can be a good basis for the commissioning of a new accelerator, e.g. the VUV-FEL.
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Appendix A

Recursive calculation of Dispersion and Momentum

Compaction Factor

From the definitions of the matrix elements in formulae (3.8) and (3.9) we see that it
is easy to calculate dispersion and momentum compaction factor up to any order when
the energy dependencies of the particle offset x(δ) and the path length l(δ) are known.
But in some situations it may be more convenient to use x(α) and l(α) directly without
introducing the dependence on the energy. For convenience I will denote dispersion and

momentum compaction factor with R
(n)
m6(α). The order of the matrix element is given by

n. Offset and path length are denoted with R
(0)
m6(α).

A particle with an energy deviation δE is deflected in a rectangular dipole by the angle

sinα∗ = sinα
1+δE

. For the calculation of the R
(n)
m6(α) also the derivatives

∂δ

∂α
= − 1

tan α
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sin α
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(A.1)

are needed. Following the definition in formula (3.8) the first order matrix element is
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(A.2)

To derive the second order matrix element from formula (3.9) is a little more complicated:
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Following the same steps also the third order or even higher order matrix elements
can be calculated. Already from (A.2) and (A.3) the following recursive formula can be
derived which describes the matrix elements up to any order n ≥ 1:
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(n−1)
m6 (α∗)

∂α∗

∣

∣

∣

∣

∣

α∗=α

(A.4)
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