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Vorsitzender des Prüfungsausschusses : Prof . Dr . Alexander Lichtenstein

Vorsitzender des Promotionsausschusses : Prof . Dr . Jochen Bartels

MIN-Dekan des Fachbereichs Physik : Prof . Dr . Heinrich H. Graener



i

Kurzfassung

Die dreidimensionale Rekonstruktion aus Abbildungen der kohärenten Beugung (coherent

diffraction imaging, CDI) einzelner Biopartikel (Proteine, Makromoleküle und Viren) ist

eines der wahrscheinlichsten Anwendungsfelder neuer Generation von Lichtquellen: Freie-

Elektronen Laser (FEL) sind mittlerweise am FLASH (DESY, Hamburg, Deutschland) und

am LCLS (Stanford, USA) verfügbar. Die extrem hellen und ultrakurzen FEL Pulse bi-

eten die Möglichkeit, mittels CDI Längenskalen bis in den Sub-Nanometerbereich hinein

aufzulösen.

Durch intensive FEL Pulse werden allerdings auch beträchtliche Schäden an Biopar-

tikeln durch Strahlung verursacht, selbst bei Nutzung von einzelnen Pulsen. Dies kann

wesentlichen Einfluss auf das Auflösungsvermögen beim Einsatz von CDI an einem FEL

nehmen und dessen Grenzen bestimmen. Derzeit ist eine experimentelle Untersuchung

von Strahlungsschäden an Aufnahmen von Einzelpartikeln sehr schwierig, da das Signal-

zu-Rausch Verhältnis von kleinen Biopartikeln sehr niedrig ist. Einzelne atomare Clus-

ter (Edelgase) sind vielversprechende Objekte, um Effekte auf CDI am FEL durch mit

Strahlungsschäden einhergehenden Prozesse aufzudecken/deutlich zu machen.

Diese Arbeit untersucht drei Aspekte im Themenfeld Strahlungsschäden, welche in drei

voneinander unabhängigen Kapiteln behandelt werden: (1) Simulationen zur Molekular-

dynamik beschreiben quantitativ Prozesse von Strahlungsschäden in atomaren Clustern

durch Bestrahlung mit einzelnen Pulsen; (2) gibt eine Analyse der Rekonstruktion von Beu-

gungsaufnahmen atomarer Cluster aus Einzelpuls-Messungen, welche zudem hilfreich beim

Verständnis der bei biologischen Proben auftretenden Strahlungsschäden sein kann; und (3)

beinhaltet Tests zu Auswirkungen der Verwendung von Wasserfilmen beim CDI, von deren

Verwendung angenommen wird, dass diese die Schäden durch Strahlung an Biopartikeln

minimieren.



Abstract

3D single particle coherent diffraction imaging (CDI) of bioparticles (such as proteins, macro-

molecules and viruses) is one of the main possible applications of the new generation of light

sources: free-electron lasers (FELs), which are now available at FLASH (Hamburg, Ger-

many) and LCLS (Stanford, U.S.A.). The extremely bright and ultrashort FEL pulses

potentially enable CDI to achieve high resolution down to subnanometer length scale.

However, intense FEL pulses cause serious radiation damage in bioparticles, even during

single shots, which may set the resolution limits for CDI with FELs. Currently, since the

signal-to-noise ratio is very low for small biological particles, direct experimental study of

radiation damage in the single particle imaging is fairly difficult. Single atomic (noble gas)

clusters become good objects to reveal effects of radiation damage processes on CDI with

FEL radiation.

This thesis studies three aspects of the radiation damage problem, which are treated in

three independent chapters: (1) Molecular Dynamics simulations to quantitively describe

radiation damage processes within irradiated atomic clusters during single pulses; (2) re-

construction analysis of single-shot CDI diffraction patterns of atomic clusters, which may

potentially help to understand the radiation damage occurring in biological samples; and

(3) testing the effects of coating water layers in CDI, which is supposed to minimize the

radiation damage in irradiated bioparticles.
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Chapter 1

Dynamics within Irradiated

Atomic Clusters

1.1 Introduction

Free-electron lasers (FELs), as the fourth generation light sources, have unique properties

such as high peak brilliance and short pulse lengths. They combine these advantages which

synchrotron radiation or table-top lasers already have. FLASH at DESY, as the first FEL

facility in the world [1, 2], is a powerful tool to study matter properties, such as geometry

and electronic structure, chemical composition and magnetic structure. Pulses of 10-200

femtoseconds allow measurement of ultrafast dynamics. Pulses with energies of up to 30-

100 µJ in a focus of around 20×20 µm2 can heat nanoscale samples to temperatures almost

ten times higher as those of the solar surface. Hence, this new light source offers unique

prospects for studies of matter properties. In this work, atomic clusters interacting with the

FEL radiation at FLASH are studied.

Atomic clusters fill the gap between molecular and bulk solids. On one hand, they are

almost spherical and have a loosely-bound structure, making them closely approximate a

simple model of molecules. The study of the atomic clusters can reveal possible radiation

damage processes in single-shot diffraction imaging of single biological particles (such as

proteins, viruses, etc.). On the other hand, they have densities similar to solids, but unlike

bulk solids they cause no energy dissipation into surrounding media when irradiated by

intense lasers. The atomic cluster is an ideal test object for the study of interaction between

matter and lasers. Therefore, the study of atomic clusters irradiated by FELs meets much

interest.

In this chapter, the ionization dynamics of the irradiated clusters is investigated through

a Molecular Dynamics (MD) model. The experimental results from ionic mass spectra and

photoelectron emissions are successfully reproduced by this model. Current work is focused

1
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(a) (b)

Figure 1.1: Time-of-flight (TOF) mass spectra of xenon atom and clusters ionized by ∼50 fs long

FEL pulses at wavelength 100 nm [4]: (a) various cluster sizes at average power density of 8× 1012

W/cm2 ; (b) Xe2500 clusters at various power densities.

on clusters of single species (such as xenon and argon) irradiated at wavelengths of 100 and

32 nm.

The first cluster experiments with FEL radiation were performed at the facility FLASH

at DESY [3]. The xenon clusters were ionized by vacuum ultraviolet (VUV) FEL radiation

at a wavelength of 100 nm (~ω = 12.7 eV), and the ions were measured by time-of-flight mass

spectrometer. The ionization threshold of a xenon atom is 12.1 eV, slightly below the photon

energy. In the case of an isolated atom, only singly-charged ions were observed (Fig. 1.1a).

This indicates that no multi-photon ionization process occurs in an isolated xenon atom. In

the case of clusters, higher charges than 1+ were detected at a laser intensity of 8 × 1012

W/cm2 . The ion charge can be up to 8+ when the clusters had sizes of 90,000 atoms. It

was estimated in the experiments that about 30 photons per atom were efficiently absorbed

within large clusters. The broad mass peaks, with tails and shifts of their positions, come

from both space charge effects and different initial kinetic energies of ions before entering

the mass spectrometer.

The population distribution of ion charge depends not only on the size of the xenon

cluster, but also on the laser intensity. In case of xenon clusters with a fixed size of 2500

atoms (Fig. 1.1b), ions of higher charges were observed when the intensity of laser pulses

increased. The strong dependence on the pulse intensity shows that some nonlinear processes

dominate the ionization of the irradiated clusters. The smooth tails of the Xe1+ mass peaks

indicate that no heavier fragments (such as Xe+n , n = 2, 3, ...) exist, and therefore, the

charged parts of the xenon clusters measured disintegrated completely in these cases.

Complete disintegration of highly charged clusters with high charges occurs in noble
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gas clusters irradiated with intense infrared (IR) lasers at higher intensity (> 1016 W/cm2)

[3]. The process of field ionization in the clusters is widely accepted to explain the related

experimental findings [3]. But for the VUV FEL radiation which is considered here, the

Keldysh parameter1 is much larger than 1 due to the high laser frequency. This means that

the field ionization process does not play a significant role as in noble gas clusters in the IR

regime.

To understand the FEL experimental results, the authors in [3, 4] performed dedicated

simulations based on classical inverse bremsstrahlung and classical motion of electrons in

an electric laser field. This classical inverse bremsstrahlung model describes successfully the

absorption of infrared light by ionized clusters. However, this model failed to explain so

high energy absorption in the FEL experiments, with a discrepancy of at least of one order

of magnitude. The energy absorption is much enhanced in the VUV regime.

Several research groups have proposed explanations on the enhanced energy absorption.

Authors in [5, 6] included atomic structure and plasma screening effects into the inverse

bremsstrahlung heating mechanism. In a dense plasma, electrons can experience more than

standard Coulomb potentials from point charges of atoms. On the other hand, large numbers

of quasi-free electrons can screen charges from atoms at long distances. Authors in [7, 8]

attributed the enhanced energy absorption to a charged environment with an inhomogeneous

charge distribution on the surface of the cluster system. The background charge lowers the

ionization thresholds, and therefore higher charges can be created. Authors in [9] suggested

a different mechanism of energy absorption through many-body recombination: in a strongly

coupled plasma system, many-body collisions lead to enhanced recombination of high-charge

states to form low-charge states, which can be ionized again by photons.

These improved mechanisms can qualitatively explain the amount of energy absorbed

in the irradiated xenon clusters. Naturally, a question comes: do these mechanisms to-

gether combine into one complete picture? Such a complete picture could be important to

understand the exact dynamics within the irradiated clusters.

This work combines the several possible mechanisms into one model and quantitively

explains the ion spectra measured in the experiments mentioned above. To be complete,

this work also calculates photoelectron emissions at different wavelengths for xenon and

argon clusters within the same model. This complete model can reveal more features of

the irradiated atomic clusters, and helps to understand radiation damage processes in single

particle imaging.

This chapter is organized in the following way. § 1.2 describes the physical processes

that occur in the clusters irradiated by VUV FEL. Then two published papers on inverse

bremsstrahlung cross section and recombination rate are presented in § 1.3–1.4. The molec-

ular dynamics model for numerical simulations is presented in § 1.5. Another two published

1The Keldysh parameter is defined as γ =
p

Ip/2Ep , with ionization potential Ip and ponderomotive

energy Ep = e2E2
0/4meω2 . ω and E0 are laser frequency and field strength, respectively. The regimes of

field (tunnel) ionization and multi-photon ionization are characterized by γ ≪ 1 and γ ≫ 1 respectively. In

the case of single xenon atom in Fig. 1.1a, γ ≃ 29 ≫ 1 .
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papers on the dynamics simulations of ion and photoelectron follow (§ 1.6–1.7). § 1.8 con-

tains further results and discussions not presented in the published papers, and is followed

by a brief summary.

1.2 Physical processes

In this part, the interactions and processes that occur in the clusters are briefly discussed.

The ionization dynamics is complex in an atomic clusters irradiated by FELs. The system is

in a highly non-equilibrium state during the irradiation. This work treats two wavelengths:

100 nm and 32 nm. We start with the 100 nm one, and later continue with 32 nm.

(i) Photoionizations of atoms. The photon energy at wavelength 100 nm is 12.7 eV,

which is just above the first binding energy of a xenon atom (12.1 eV). Single photoioniza-

tions of atoms occur in a cluster irradiated at the beginning of an FEL pulse. The slow

photoelectrons and ions form a cold plasma, which induces further interactions. The multi-

photon ionizations of single atom are significantly suppressed as indicated by the experiments

(Fig. 1.1a).

For argon atoms at the same wavelength, only double photoionizations can occur because

the first ionization energy is 15.8 eV. The two-photon energy (25.4 eV) is below the second

ionization energy (27.6 eV), and therefore, an argon atom can be only singly ionized in the

process.

(ii) Inverse bremsstrahlung heating. Photons can be absorbed by electrons during

elastic electron-atom collisions in the clusters. The primary kinetic energy of a photoelectron

from a xenon atom is small (0.6 eV at 100 nm wavelength). The inverse bremsstrahlung

process may heat the slow electrons and make the collisional ionizations possible. In the

classical limit, the absorption or emission of large number of photons at one time can be

treated as a continuous process, for instance, in the IR regime. But in the VUV regime,

few photon exchange dominates the processes and the classical approximation is not valid

[10, 11]. Therefore, quantum mechanical cross sections [12] for the inverse bremsstrahlung

should be applied in this regime. In § 1.3, the cross sections are calculated and are found

to be sensitive to atomic structure and plasma screening effect in the VUV regime. This

heating process plays an important role in the problem of high absorption mentioned in

§ 1.1.

(iii) Inelastic and elastic collisions between atoms/ions and electrons. Atoms

or ions can be ionized during collisions with impact electrons. Secondary electrons are

released and then increase the electron density in the clusters that may stimulate the heating

mechanism (ii). It creates high charges in irradiated clusters. Inelastic collisions may also

lead to multistep ionization and excitation of atoms or ions, which will be not considered in

the following simulation model (§ 1.5).

The system of the electron gas and ion cluster can be thermalized through the inelastic
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collisions. Due to the mass discrepancy between electrons and atoms, the thermalization

timescales are very different. The electron gas in the cluster needs a time of the order of

10-100 femtoseconds to thermalize [13], while thermalization of ions take much longer (pi-

coseconds, depending on masses and charge states of atoms). Since energetic photoelectrons

escape from the systems, the charged clusters will explode due to Coulomb interactions be-

tween ions. The inelastic collisions will be rare when the atoms in the cluster become spread

out during the explosion.

(iv) Many-body recombination of ions with electrons. This inelastic process can

be regarded as the inverse of the process of collisional ionization. The spectator electron(s)

close to the ion receives the kinetic energy released by the recombining electron. The re-

combination process decreases ion charge and the low charge state of the ion could be

photoionized again, absorbing more energy from the laser field. The calculations for many-

body recombination in § 1.4 show that this process significantly depends on electron density

and temperature, and that it cannot be neglected in a charge system with high electron

density and low electron temperature.

(v) Electromagnetic interaction of electrons/ions with laser field. Laser field

can be regarded as a highly-oscillating electric field within the dipole approximation. Since

the oscillating field is of high frequency (in the VUV regime) and ions have large masses,

the classical interactions of ions with the field are negligible. An electron which is much

lighter can be accelerated and decelerated by the field. The electron can exchange energy

with the field (i.e. it can absorb or emit) if it stays in potential field of atoms or ions. This

is the case discussed in (ii). For a free electron in vacuum, the energy exchange becomes

zero when averaged over oscillation circles. Hence, the interactions of electrons with laser

field can be neglected when electrons escape from clusters during radiation.

There are two phases occurring in an atomic clusters irradiated by single FEL pulses. The

first phase occurs on a timescale comparable to that of the pulse length from the beginning of

the pulse. It is highly non-equilibirium, and the processes (i-v) are then involved. The second

one follows afterwards, and it is an expansion phase. The cluster system is charged due to

the escape of electrons, and this causes its Coulomb explosion. The related processes are (iii)

and (iv), which are roughly balanced. In contrast to the first phase, it is quasi-equilibrium

with a slow expansion. The simulations in this work are focused on the non-equilibrium

phase.

At 32 nm wavelength, only argon clusters will be considered. The photon energy (37.8

eV) is above the second ionization threshold of argon atom (27.6 eV). The photoionization

of argon atoms is assumed to be sequential: Ar0+ →Ar1+ →Ar2+ . The first photoelectrons,

with energies around 22.0 eV, may easily escape from the argon clusters. The effect of

inverse bremsstrahlung becomes much weaker at such short wavelength than that at 100 nm

(see § 1.7). The simulations of argon clusters at 32 nm will be discussed in § 1.7.

In the next two sections, the rates (or cross sections) for the interactions (ii) and (iv) are

calculated. These two parts have been published.
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1.3 Inverse bremsstrahlung cross section estimated within

evolving plasmas using effective ion potentials2

Abstract

We estimate the total cross sections for field-stimulated photoemissions and photoabsorptions by

quasi-free electrons within a non-equilibrium plasma evolving from the strong coupling to the weak

coupling regime. Such a transition may occur within laser-created plasmas, when the initially

created plasma is cold but the heating of the plasma by the laser field is efficient. In particular,

such a transition may occur within plasmas created by intense vacuum ultraviolet (VUV) radiation

from a free-electron laser (FEL) as indicated by the results of the first experiments performed by

Wabnitz at the FLASH facility at DESY. In order to estimate the inverse bremsstrahlung cross

sections, we use point-like and effective atomic potentials. For ions modelled as point-like charges,

the total cross sections are strongly affected by the changing plasma environment. The maximal

change of the cross sections may be of the order of 75 at the change of the plasma parameters:

inverse Debye length, κ , in the range κ = 0 − 3Å−1 and the electron density, ρe , in the range

ρe = 0.01−1Å−3 . These ranges correspond to the physical conditions within the plasmas created

during the first cluster experiments performed at the FLASH facility at DESY. In contrast, for

the effective atomic potentials the total cross sections for photoemission and photoabsorption

change only by a factor of seven at most in the same plasma parameter range. Our results show

that the inverse bremsstrahlung cross section estimated with the effective atomic potentials is

not affected much by the plasma environment. This observation validates the estimations of the

enhanced heating effect obtained by Walters, Santra and Greene. This is important as this effect

may be responsible for high-energy absorption within clusters irradiated with VUV radiation.

Introduction

Processes of photoabsorption and photoemission by quasi-free electrons within a plasma

stimulated by an external laser field have been known and investigated for many years

[14, 15, 12, 10, 11, 5, 6, 16]. The process of field-stimulated absorption of radiation quanta

is known as inverse bremsstrahlung (IB), and it is an inverse process to the stimulated

photoemission. For a plasma in equilibrium the rates for both of these processes obey

detailed balance equations [17]. If the number of absorptions is larger than the number of

emissions, the thermal energy of electrons increases with time.

There exist various theoretical approaches to model the IB process (for a review see

[11, 16]. Their applicability depends on the physical parameters of the system such as the

drift velocity of electrons in the laser field, their thermal velocity, and the energy of radiation

quanta. The applicability of some models is restricted only to a specific regime defined by

these parameters [11]. In what follows we will use the quantum-mechanical approach to

calculate the IB cross section, σIB , as proposed by Kroll and Watson [12]. This approach

can be used to describe photoemission and photoabsorption by both slow and fast electrons.

In particular, within this approximation, if the field strength parameter, s = eE0/~ω
2 is

small, and the free electrons are slow, single-photon exchanges dominate. The quantity,

2This section has been published as Paper I : F. Wang, E. Weckert and B. Ziaja, J. Plasma Physics 75

289–301 (2009).
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E0 , denotes the electric field strength, ω is the photon frequency. For slow electrons, the

photoabsorption of n radiation quanta, γ , of energy ~ω : e(Ee) + nγ → e(Ee + n~ω) , may

significantly increase the thermal energy of the electrons.

If s is large, or if the free electrons are fast and undergo collisions with ions at large

momentum transfers, multi-photon exchanges occur. This latter case can be described by

the classical impact picture [12] that is only valid if the drift component of the kinetic energy

of the electron is much larger than the photon energy [10].

During IB heating the total energy absorption within the sample can be nonlinear with

respect to the exposure time and the pulse intensity, dEabs/dt ∝ Nion(I, t)σIB(I)Nel(I, t) ,

as the total numbers of ions and electrons, Nion(I, t) and Nel(I, t) , change with the pulse

intensity and the exposure time and, in addition, the cross section, σIB(I) , is also a function

of the pulse intensity.

The IB process has attracted much attention as a possible mechanism of efficient plasma

heating when the results of the cluster experiments with vacuum ultraviolet (VUV) free-

electron-laser (FEL) radiation performed at the FLASH facility at DESY became available

[3, 4, 18, 19, 20, 21]. These experiments covered the wavelength range from 100 nm (Eγ =

12.7 eV) down to 13 nm (Eγ = 95.4 eV ). single pulse durations did not exceed 50 fs, and

the maximal pulse intensity was, I ∝ 1014W cm−2 .

In the first experiment performed at 100 nm photon wavelength (VUV regime) with

Xe2500 clusters highly charged Xe ions (up to +8) of high kinetic energies were detected.

This indicated a strong energy absorption that could not be explained using standard the-

oretical approaches [4, 21, 22]. More specifically, the energy absorbed was almost an order

of magnitude larger than that one predicted with classical absorption models, and the ion

charge states were much higher than those observed during the irradiation of isolated atoms

at similar flux densities. This indicated that at this radiation wavelength some processes

specific to many-body systems are responsible for the enhanced energy absorption. Several

theoretical models have been proposed [5, 7, 23, 9] which could explain various aspects of

the increased photoabsorption and ionization dynamics observed in the experiments (for a

review see [24]).

The contribution of the IB process, considered as a possible mechanism of the efficient

electron heating, was evaluated in detail in [5, 6]. There it was proposed that the strong

energy absorption within an irradiated atomic cluster may result from the enhanced IB

heating of quasi-free electrons. This enhanced IB rate is estimated with the effective atomic

potential [25] which represents the attraction of the nucleus and the average screening effect

of bound electrons surrounding the nucleus. An energetic electron that passes through

the atom/ion is then scattered by the effective positive charge, Zeff , which is larger than

the net charge of the ion. This effect leads to an enhancement of the total IB rate that

is proportional to the squared effective charge of the scatterer. This mechanism was first

explored in [5]. Simulations of cluster irradiation including this mechanism revealed to the

creation of high charges within the irradiated clusters. These high charges were created in
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a sequence of electron impact ionizations. The ion charge state distributions were similar to

those observed in the experiment [3].

We stress here that the derivation of the IB rate from the effective atomic potentials as

performed in [5, 6] is in contrast to the standard approaches that assume Coulomb potentials

of point-like ions [14, 15, 11]. However, a heating mechanism similar to the one used in [5]

was recently successfully tested in [26]. It was applied to a model the heating of quasi-free

electrons in large rare-gas clusters irradiated with infrared laser pulses. These electrons

were heated during elastic large-angle backscatterings on ion cores. The potentials of the

ions were modelled with the parametrized atomic potential similar to that one in [5]. An

absolute x-ray yield obtained with this effective atomic potential was in better agreement

with the experimental data than that one obtained with the point-like atomic potential.

Here we aim to investigate in detail how the IB cross sections calculated using effective

atomic potential from [5, 26] depend on the changing plasma environment evolving from the

strongly coupled to the weakly coupled regime. Up to the authors’ knowledge this question

has not been addressed so far. Our results will validate the estimations of the heating rate

obtained with the effective potentials in [5, 6] by evaluating the impact of the changing

plasma conditions on IB cross sections.

As mentioned above, we will consider the limits of strongly and weakly coupled plasmas.

The results obtained with effective atomic potentials will be compared to the IB cross

sections calculated with point-like potentials.

Our results will give estimates for the accuracy of the IB modelling within the evolving

plasma in the regime relevant for the first cluster experiments [3]. Such estimates are

important for performing the simulations of plasma heating, especially within plasmas that

are created during the interaction of intense radiation with matter [5, 6, 26, 27, 28, 29].

Effective atomic potentials

For our tests we will use two different parametrizations of the effective atomic potential.

The first one was also applied in [5] to describe the enhanced heating of electrons within

atomic clusters irradiated with intense pulses of VUV radiation. The second one represents

the independent-particle-model (IPM) potential introduced in [30] and used in [26] in order

to estimate the cross section for elastic scattering of electrons on ions. The general form of

these spherically symmetric potentials is:

φ(r) =
1

4πǫ0

(
ie

r
+

(Z − i)e

r
Ω(r)

)
, (1.1)

where the charge Z is the nuclear charge, i = 0, 1, ... denotes the net ion charge. For point-

like ions, φ0(r) , we have: Ω(r) = 0 . In [5] an exponential profile is used to model the

screening by bound electrons: Ω1(r) = e−αir , where αi is chosen so that the ionization

energy of an ion calculated with this effective potential, φ1(r) , matches the corresponding

experimental value. in [26] the IPM potential [30] φ2(r) is used: Ω2(r) = [η/ζ(eζr−1)+1]−1 ,
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Figure 1.2: Effective atomic potentials for Xe ions. The potential applied in [5], φ1(r), and

the potential proposed in [30], φ2(r), are plotted for Xe+1 ion (left), and Xe+8 ion (right). The

corresponding point-like potentials, φ0(r), are also plotted for comparison.

where parameters η , ζ are element-specific and depend also on the ionization stage. We plot

the different potentials for Xe ions at two ionization stages, i = 1 and i = 8 in Fig.1. Despite

the different parametrization, the effective potentials are close to each other. As expected,

for small values of r ≤ 1Å (atomic size) there is a large discrepancy between the point-like

and the effective atomic potentials. For larger values of r the effective potentials approach

the point-like potentials.

The limiting values of Ω(r), 0 < Ω(r) < 1 , are identical for both potentials and corre-

spond to the physical limits of: (i) the potential created by a pure nuclear charge, Z, at

r = 0 ; and (ii) the potential created by net ion charge, i, at r = ∞ .

The charge density, ρ(r) , that generates these effective potentials, is spherically symmet-

ric and consists of the point-like positive nucleus charge, Z , screened by the cloud of bound

electrons:

ρ(r) =
Zδ(r)

4πr2
− (Z − i)

4πr
Ω′′(r) , (1.2)

where Ω′′(r) is the second derivative of Ω(r) . For a point-like ion of net charge, i, the

corresponding charge density is:

ρ(r) =
iδ(r)

4πr2
. (1.3)

Weakly and strongly coupled plasma

The temperature, density and charges of species determine the physical properties of plas-

mas. Two parameters are introduced in order to classify various plasma regimes [31]. The

Coulomb coupling parameter, Γ, is defined separately for each plasma component as the

ratio of its average potential energy to the average kinetic energy, Γ ∼| φ(r)/kT |. If Γ ≫ 1,

plasma enters the strong coupling regime, where many-body screening effects are significant.
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Figure 1.3: Regions of strongly and weakly coupled plasma. Plasma parameters, Γ and Y are

plotted as a function of screening parameter, κ , and electron density, ρe. The area filled with

pattern corresponds to the regime of classical ideal plasma. The area filled with colour represents

the regime of strongly coupled classical plasma. The remaining area represents the regime of

degenerate, strongly coupled plasma.

If Γ ≪ 1, a plasma is considered to be ideal. The second parameter is the degeneracy pa-

rameter, Y , that is the ratio of the Fermi energy of a given plasma component to its average

kinetic energy, Y ∼| EF /kT |. For Y ≫ 1, quantum statistics should be used (non-classical

plasma). For Y ≪ 1, the plasma can be treated classically.

Various plasma regimes are plotted in Fig. 1.3. They correspond to the estimated

physical conditions within the plasmas created during the first cluster experiments performed

at the FLASH facility at DESY [3]. For the typical electron densities within xenon clusters

in the range of ρe = 0.01−1 Å−3 plasmas enter the degenerate strong coupling regime if the

Debye screening parameter, κ ≡ λ−1
D is more than 1 − 3 Å−1. In this regime the ion-sphere

screening should be applied. For lower values of κ the weak coupling approach is valid.

We will first consider the classical plasma regime, where the classical statistical mechanics

can be applied to model the screening. If the Coulomb interaction within plasma is weak,

Γ ≪ 1, mean field estimates for charge densities can be linearized and the Poisson equation

for the potential reduces to the Helmholtz equation of the form:

(∇2 − κ2)φD(r) = −4πeρ(r)
1

4πǫ0
. (1.4)

Solution of this equation can be obtained by the convolution of the charge density with the

Green function, G(r) = e−κ|r|/ | r | . At κ = 0 this Green function reduces to the Green

function for the unscreened Coulomb potential, G(r) = 1/ | r |. The general solution of the

Helmholtz equation then reads:

φD(r) =
1

4πǫ0

∫
d3r′

e−κ|r−r
′|

| r− r′ | e ρ(r′) . (1.5)
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Figure 1.4: Screened effective atomic potentials of Xe ions within weakly coupled plasma. Poten-

tial, φD,1(r), from Eq. (1.7) and potential, φD,2(r), from Eq. (1.8) are plotted for Xe+1 ion (left),

and Xe+8 ion (right) at three different values of κ ≡ λ−1
D , κ = 0, 1, 3 Å−1. The corresponding

Debye screened point-like potentials, φD,0(r), are also plotted for comparison.

If the source density is spherically symmetric, the integral over the spherical angle can be

performed. If the potential is investigated far away from the source, the dipole approximation

can be applied in the expansion of the term, e−κ|r−r′|/ | r − r′ |. Eq. (1.5) then reduces to:

φD(r) =
1

4πǫ0

∫
dr′ r′

2
4π eρ(r′)

(
θ(r − r′)

e−κr

r
+ θ(r′ − r)

e−κr
′

r′

)
, (1.6)

where θ(r′) is the step function. For the effective atomic potentials defined in the previous

section, the weakly screened potential reads

φD,1(r) =
1

4πǫ0

(
ie

r
e−κr +

(Z − i)eαiκ

κ+ αi
e−(κ+αi)r +

(Z − i)e

r
e−(κ+αi)r

)
, (1.7)

for Ω1(r) = e−αir, and:

φD,2(r) =
1

4πǫ0

(
ie

r
e−κr + (Z − i)e

(
e−κr

[
Ω2(r)

r
+ κΩ2(r)

]

−κ2

∫ ∞

r

dr′ e−κr
′

Ω2(r
′)

))
, (1.8)

for Ω2(r) =
[
η/ζ(eζr − 1) + 1

]−1
. We note that in the limit, κ≪ 1 Å−1, the second term,

(Z − i)eαiκ e
−(κ+αi)r/κ+ αi, in (1.7) can be neglected, and the potential, φD,1, approaches

the approximate screened potential used in [5]. These potentials are plotted in Fig. 1.4

for two Xe ionization states: Xe+1 and Xe+8, at three different values of κ = 0, 1, 3 Å−1.

Despite the different parametrization of the density of bound electrons, the two screened

effective potentials are close to each other. The largest discrepancy between the effective

and the point-like potentials occurs at distances less or comparable with the atomic size.

The asymptotic limits of all potentials are identical.

The results obtained so far depend on the assumption of weak coupling permitting the

linearization of the Poisson equation. If any of the plasma species is strongly coupled, this
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Figure 1.5: Screened effective atomic potentials of Xe ions within strongly coupled plasma. IS

approximation is used to model the strong screening. Potential, φIS,1(r), and potential, φIS,2(r),

from Eq. (1.10) are plotted for Xe+1 ion (left), and Xe+8 ion (right) at three different values of

density of electrons within a cell ρe, ρe = 0.01, 0.1, 1 Å−3 (correspondingly ρe = 1022, 1023, 1024

cm−3). The IS screened point-like potentials, φ0(r), are also plotted for comparison.

approximation is no longer valid and another approach should be applied. The potentials

near the target ions can then be computed by putting each ion into a separate cell. The

electrons are divided among the cells in order to provide net charge neutrality to each cell

[31]. The electron density around the target ion can be approximated as uniform. The

Poisson equation for each cell then reads

∇2φIS(r) = −4πeρ(r) + 4πeρe, (1.9)

where ρe is the uniform density of free electrons in this cell, and ρ(r) is the ion density (1.2)

that includes the density of bound electrons. This approximation is called the ion-sphere

(IS) model.

The general solution of this equation is:

φIS(r) = θ(R − r)

(
φ(r) − 4πeρe

[
R2

2
− r2

6

]
1

4πǫ0

)
(1.10)

where φ(r) is the unscreened atomic potential. The radius of IS cell, R, is estimated from

the neutrality condition at the cell edge, φIS(R) = 0. For a point-like ion, the cell size is

R = ((3i)/(4πρe))
1/3

. For the effective potentials R also depends on the parameters of the

unscreened potentials, i. e. αi, ζ, η. There is no simple analytical solution of the neutrality

condition in this case. The radius of a cell can then be either estimated with the asymptotic

conditions of this equation at r = 0 and r = ∞, or evaluated numerically. In Fig. 1.5 we plot

the screened effective potentials within strongly coupled plasma at three different values of

the density of free electrons, ρe = 0.01, 0.1, 1 Å−3, within a cell for Xe+1 and Xe+8 ions. As

in case of weak coupling, the screened effective potentials are close to each other. At r < 1 Å

the largest discrepancy between the effective and the point-like potentials occurs. However,

the application of the effective potentials extends the size of the cell, when compared to the
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case with point-like ions. This effect is more pronounced for Xe+1 ion, and less for highly

charged Xe+8 ion, when the contribution of the point-like term in the effective potentials

dominates, and sizes of cells are nearly identical for all potentials considered.

Cross sections for elastic electron-ion scattering within plasma

The quantum mechanical cross section for the elastic scattering of an electron on a cen-

tral potential in first Born approximation is obtained from the corresponding scattering

amplitude, that is proportional to the Fourier transform of the scattering potential [25]:

φ̃(∆k) =
−1

∆k

∫ ∞

0

dr r sin(∆k · r)φ(r). (1.11)

where ∆k = ki − kf is the wave vector transfer, ki, kf are the wave vectors of the electron

before and after the collision. The differential cross section then reads

dσel,B
dΩ

=| φ̃(∆k) |2
(

2m

~2

)2

, (1.12)

where m is electron mass. For the screened effective potentials as defined in the previous

section, the scattering amplitudes in first Born approximation are calculated as

φ̃D,1(∆k) = − 1

4πǫ0

[
ie

(∆k)2 + κ2
+ 2

(Z − i)eακ

((∆k)2 + (κ+ α)2)2
+

(Z − i)e

(∆k)2 + (κ+ α)2

]

(1.13)

φ̃D,2(∆k) = − 1

4πǫ0

[
ie

(∆k)2 + κ2
+

(Z − i)e

∆k

∫ ∞

0

dr sin(∆k · r) e−κr Ω2(r)

+
(Z − i)eκ

∆k

∫ ∞

0

dr r sin(∆k · r) e−κr Ω2(r)

− (Z − i)eκ2

∆k

∫ ∞

0

dr

(
sin(∆k · r)

(∆k)2
− r cos(∆k · r)

∆k

)
e−κr Ω2(r)

]
(1.14)

for the weak coupling case, and

φ̃IS,l(∆k) = − 1

4πǫ0

[
ie

(∆k)2
[1 − cos(∆k ·R)] +

(Z − i)e

∆k

∫ R

0

dr sin(∆k · r)Ωl(r)

− (4πeρe)

(
−R

3

3

cos(∆k ·R)

∆k2
+
sin(∆k ·R)

(∆k)5
− Rcos(∆k · R)

(∆k)4

)]
(1.15)

for the strong coupling case, where indices l = 1, 2 refer to the potential from [5] and

[30], respectively. Below we summarize our results on the elastic cross sections obtained

for Xe+1 and Xe+8 (plots not shown). The cross sections calculated with effective ion

potentials in the weak coupling regime change extensively with the parameter κ: they de-

crease with increasing κ. For comparison, at ∆k = 0.1 Å−1 the ratio of the cross sections,

RD ≡ (dσ(κ = 0)/dΩ)/(dσ(κ = 10)/dΩ) is RD ∼ 105 for Xe+1 and RD ∼ 107 for Xe+8.

In contrast, the cross sections in the strong coupling approach change less at the consid-

ered electron densities, ρe = 0.01 − 1 Å−3. They decrease with the increasing density, and
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RIS ≡ (dσ(ρe = 0.01)/dΩ)/(dσ(ρe = 1)/dΩ) is RIS ∼ 5 for Xe+1, and RIS ∼ 102 for Xe+8,

also at ∆k = 0.1 Å−1.

For point-like ions the impact of both weak and strong screening effect on the elastic

cross sections is much larger: (i) for both Xe+1 and Xe+8 ions, RD = 108, in the weak

coupling regime, and (ii) RIS = 40 for both Xe+1 and Xe+8 ions in the strong coupling

regime.

Cross sections for stimulated photoemission and photoabsorption

If an electron scatters on an ion in the presence of an external laser field, absorption or

emission of radiation quanta may occur. The quantum mechanical cross section for this

process was derived by Kroll and Watson in [12]. It sums the individual cross sections for

the exchange of n radiation photons:

(
dσ

dΩ′

)

IB

=
∞∑

n=−∞,n6=0

dσn
dΩ′

=
∞∑

n=−∞,n6=0

v′0
v0
J2
n(s∆v cos(Θ∆v,ǫ))

dσel,B
dΩ′

(∆v) , (1.16)

where v0 denotes time averaged velocity of the incoming electron, v′0 denotes velocity of the

outcoming electron and ∆v is the magnitude of the velocity transfer, ∆v = |∆v|. The kinetic

energies of the incoming, E0, and the outcoming electron, E′
0, fulfill the relation: E′

0 =

E0 + n ~ω, where ~ω is the photon energy, and n denotes the number of emitted/absorbed

photons. The field strength parameter, s, is defined as s = eE0/~ω
2. The angle Θ∆v,ǫ

measures the angle between the vector, ∆v, and the vector of the field polarization, ǫ.

Equation (1.16) holds whenever the Born approximation provides an accurate description

of the elastic process, in which case the elastic cross section depends on the velocity transfer

only [12]. We note here that the velocity transfer in this case is due not only to the change

of electron momentum but also to the change of the velocity magnitude after emission

or absorption of radiation photons. Asymptotics of the Bessel function, Jn, implies that

at small values of argument, s∆v ≪ 1 (low field and/or slow electrons) single photon

exchanges dominate. At high values of s∆v ≫ 1, the envelope of Bessel function behaves

like (s∆v)−1/2. This yields the classical limit of the stimulated absorption and emission

cross section (the impact model) [11].

We integrate Eq. (1.16) over the scattering angle and average over the direction of the

field polarization, ǫ:

〈σ〉IB =
1

4π

∫
dΩǫ dΩ

′ dσ

dΩ′
. (1.17)

Below we plot the averaged total cross section for stimulated photoemission and pho-

toabsorption as a function of the kinetic energy of the incoming electron for the various

parametrizations of the atomic potentials of Xe+1 and Xe+8 ions (Fig. 1.6). The value of

the field strength parameter, s, was chosen to match the experimental conditions during
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Figure 1.6: Averaged cross sections for stimulated photoemission and photoabsorption obtained

for various atomic potentials: (a),(b) point-like Coulomb potential, (c),(d) effective atomic potential

from [5], (e),(f) effective atomic potential from [30], at the fixed value of field strength parameter,

s = 0.01 fs/Å. Results for Xe+1 ions (left) and Xe+8 ions (right) were obtained at three different

values of κ = 0, 1, 3 Å−1 (weak screening case) and ρe = 0.01, 0.1, 1 Å−3 (strong screening case)

and are plotted as function of the kinetic energy of the incoming electron. Arrows show how the

cross sections change with the increasing values of κ and ρe.
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the first cluster experiment, s = 0.01 fs/Å at I ≤ 1014 Wcm−2 and at the photon energy,

Eγ = 12.7 eV.

For both parametrizations of the effective atomic potentials we obtain similar values of

the total IB cross sections, 〈σ〉IB . These values are much higher than the corresponding

ones obtained for the point-like potential, i.e. about 140 times larger for Xe+1 ions and four

times larger for Xe+8 ions. The discrepancy of the cross sections is smaller in case of highly

charged ion, as the contribution of the point-like term to the effective potentials Eqs. (1.13),

(1.14), (1.15) is then much larger than in case of singly charged ions. A significant increase of

the cross sections estimated with effective potentials in respect to the cross section estimated

with point like potentials has been first observed in [5, 26], and has lead to the hypothesis

of the enhanced plasma heating.

As next we characterize how the plasma environment affects the total IB cross section.

As our results should estimate these cross sections within a changing plasma environment,

e. g. in case of transition from the strongly coupled to the weakly coupled plasma regime,

we again consider a broad range of plasma parameters: (i) κ = 0, 1, 3 Å−1 in weakly coupled

regime, (ii) ρe = 0.01, 0.1, 1 Å−3 (ρe = 1022, 1023, 1024 cm−3).

For point-like potentials the total cross sections are strongly affected by the plasma

environment. At the considered plasma parameters the ratio of the maximal and the minimal

cross sections, R ≡ σmax/σmin, is R ≤ 75 for Xe+1 ion and R ≤ 14 for Xe+8 ion. The

corresponding ratios, estimated using the effective potentials, are: (i) R ≤ 4 for Xe+1 and

R ≤ 6 for Xe+8 with the parametrization from [5], and (ii) R ≤ 5 for Xe+1 and R ≤ 7

for Xe+8 with the parametrization from [30]. The maximal expected change of the cross

sections obtained using effective potentials can then be estimated with a factor of seven.

Summary

To sum up, we have calculated the total cross section for stimulated photoabsorption and

photoemission using point-like and effective atomic potentials within an evolving plasma.

The effect of a possible transition from the strongly coupled to the weakly coupled regime

on the cross section was evaluated.

The application of the effective atomic potentials increased significantly the total IB

cross sections by a factor of 140 for Xe+1 ions and by a factor 4 for Xe+8 ions in respect

to the corresponding cross sections calculated with point-like potentials. Similar effect was

observed in [5, 6].

The total cross sections for photoemissions and absorptions obtained with effective atomic

potentials can change by a factor of seven at most for plasma parameters in the range:

κ = 0 − 3 Å−1 and ρe = 0.01 − 1Å−3, and at a fixed value of the field strength parameter,

s = 0.01 fs/Å. This range of the plasma parameters correspond to that one expected for

plasmas created during the interaction of intense VUV radiation from a FEL with xenon
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clusters [3]. In contrast, for point-like ions the maximal change of the cross sections is much

larger and may be of the order of 75.

Our results show that the inverse bremsstrahlung cross sections estimated with effective

atomic potentials are not much affected by the changing plasma environment. This obser-

vation validates the estimate of the enhanced plasma heating effect from [5, 6] that may

explain the high energy absorption within clusters irradiated with intense VUV radiation.
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1.4 Multi-electron-recombination rates estimated within

dense plasma3

Abstract

We investigate the rates for multielectron recombination within a dense plasma with Maxwellian

electron energy distribution function. We find that these rates can be high within dense plasmas,

and they should be treated in the simulations of the plasmas created by intense radiation, in

particular for plasmas created by intense VUV radiation from free-electron-laser (FEL), or for

modeling the inertial confinement fusion (ICF) plasmas.

Introduction

Electronic many-body recombination processes that occur within dense, cold plasmas have

attracted much attention recently as a possible explanation of the strong energy absorption

within laser-created plasmas [9, 24]. During the first cluster experiment performed at the

free-electron-laser FLASH facility at DESY [3, 4] such plasmas were created after the irradi-

ation of the xenon clusters with VUV photons of energy, Eγ = 12.7 eV. Pulse duration did

not exceed 50 fs, and the maximal pulse intensity was, I ≤ 1014 W/cm2 . Highly charged Xe

ions (up to +8) of high kinetic energies were detected, indicating a strong energy absorption

that could not be explained using the standard approaches [22, 4, 21]. More specifically,

the energy absorbed was almost an order of magnitude larger than that one predicted with

classical absorption models, and the ion charge states were much higher than those observed

during the irradiation of isolated atoms at the similar conditions. This indicated that at

these radiation wavelengths some processes specific to many-body systems were responsible

for the enhanced energy absorption.

The lowest order many-body recombination is three-body recombination, where two con-

tinuum electrons are involved initially, and in the final state one of these electrons is captured

by the target ion. The excess energy released by the recombining electron is then carried

away by the other outgoing electron, therefore the three-body recombination does not in-

volve any emission of photons [32]. For this to happen it is necessary that the electron

density must be high enough so that the collisional processes are more probable than the

dissipative radiation processes [33]. The three-body recombination is the inverse of the elec-

tron collisional ionization, and this relation is used in deriving the relevant cross-section

formula, by detailed balance.

In the similar way higher-order recombination processes can be described. More than

two electrons are then involved. Rates for these processes strongly depend on the electron

density, and can again be calculated with the rates of the corresponding inverse many-body

collisional processes.

3This section has been published as Paper II : B. Ziaja, F. Wang and E. Weckert, High Energy Density

Physics 5 221–224 (2009).
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The mechanism of plasma heating due to many-body recombination that was proposed

in Ref. [9] in order to explain the experimental results of Ref. [3] can be best described as

a sequence of Auger processes followed by photoionization. According to [9], the strongly

coupled nanoplasma is created shortly after the exposure. Within this plasma, a probability

of finding two or more electrons being close to an ion is relatively high. One electron can

be captured by the ion, while the other electrons (spectators) carry away the excess energy

released by the recombining electron. The captured electron may then absorb a radiation

photon and become ionized once more. This cycle repeats many times during the duration

of the pulse, leading to an efficient heating of the electron cloud. Ions of charge up to +7

were predicted with this model for the Xe1000 cluster.

Here we aim to study a different many body recombination process that may also occur

within dense plasmas. This is multielectron recombination (MER) that is an inverse process

to multiple collisional ionization. Several electrons then recombine simultaneously, and a

single spectator electron carries away the excess energy. We will evaluate the significance of

this process within plasmas created by VUV FEL radiation from xenon and argon clusters

[3] and also within ICF plasmas [34]. We will first derive analytical formulas for MER

cross-section and rates, using the microscopic reciprocity relation and the detailed balance

principle [35]. Using these formulas, we will obtain numerically the MER rates for Xe and Ar

plasmas. These rates will give an estimate, how significantly these processes may contribute

to the ionization dynamics within dense plasmas.

Calculation of rates for multielectron recombination

MER is an inverse of themultiple collisional process (Fig. 1.7), where the primary electron

ionizes an atom, releasing one or more secondary electrons. At n = 1 we arrive at the

three-body recombination (one-electron recombination), at n = k we have k-electron recom-

bination. Inwhat followswe will use the notation as in Ref. [35].

Derivation of the MER cross sections and rates bases on the validity of the quantum

mechanical reciprocity relation:

w(i→ f) = w(f → i), (1.18)

where w(i → f) is the transition probability per unit time for the transition |i >→ |f >

between single quantum states of the states i and f . Reciprocity relation (1.18) is an essential

condition for the validity of the principle of detailed balance [35]. The conditions for validity

of the reciprocity relation can be obtained within the framework of the general scattering

matrix theory [35]. The result is that the reciprocity relation w(i → f) is not generally

valid, not even if the Hamiltionian of the system is invariant under space reflection (P ) and

time reversal (T ). However, relation (1.18) holds in the framework of perturbation theory,

and thus applies to radiative processes and to collisions in the Born approximation. The

reciprocity relation holds moreover for all collision processes involving unpolarized particles,

provided that the Hamiltonian is P - and T -invariant. In what follows we will consider
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Figure 1.7: Collisional processes within a dense plasma: (a) multiple collisional ionization and (b)

its inverse process: multielectron recombination. The electron, e, is a spectator.

only unpolarized particles, therefore the reciprocity relation will be valid for the processes

considered.

Explicit form of the reciprocity relation for specific processes can be derived directly

from quantum mechanics. Here, following Ref. [35], we will derive it through the principle

of detailed balance, by writing down the rate equations and using the explicit form of the

thermal distribution functions. This procedure is simple and straightforward, while the

relations so found are independent of this method, and are identical with those derived

directly from quantum mechanics. We will assume the electron distributions to be isotropic.

Balanced reaction equation for a collisional process (k-body multiple ionization) and its

inverse process (k-body multielectron recombination) in Fig. 1.7 can be written as:

A(E0) + e(E) ⇋ A+(E+) + e(E′) + e(E1) + . . .+ e(Ek), (1.19)

where A denotes atom or ion in the state of initial energy E0 , A+ denotes the ionized atom

or ion in the state of energy E+, e is electron of energy E(Ei). Energy of the spectator

electron changes from E ⇋ E′ during the process. This reaction leads to the balanced rate

equation:

ρ0

√
2E

me
ρe fe(E)Ω0+(E;E′, E1, . . . , Ek)dE

′dE1 . . . dEk

=ρ+

√
2E′

me
ρe fe(E

′) dE′

√
2E1

me
ρe fe(E1) dE1 . . .

√
2En
me

ρe fe(Ek) dEk

Ω+0(E
′, E1, . . . , Ek;E) dE, (1.20)

where we introduced the following notation: ρ0 denotes density of atoms/ions in initial

energy state E0, ρ+ denotes density of atoms/ions in the final energy state E+, ρe is

the electron density and me is the electron mass. The distribution, fe(E) , is a normal-

ized isotropic Maxwell-Boltzmann distribution of electron kinetic energy, and quantities

Ω0+(E;E′, E1, . . . , En) and Ω+0(E
′, E1, . . . , En;E) are differential cross sections (in respect

to energy) for the multiple collisional ionization and multielectron recombination respec-

tively. The angular distribution of electrons was assumed to be isotropic, and the integration

over scattering angles was performed.
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The rate for multielectron recombination is defined as:

Rk(RC) =ρk+1
e

∫ √
2E′

me

√
2E1

me
. . .

√
2Ek
me

fe(E
′) fe(E1) . . . fe(Ek)

Ω+0(E
′, E1, . . . , Ek;E)dE′ dE1 . . . dEk dE, (1.21)

and can be related to the collisional multiionization rate:

Rk(I) = ρe

∫ √
2E

me
fe(E)Ω0+(E;E′, E1, . . . , Ek) dE

′ dE1 . . . dEk dE, (1.22)

through a relation that follows from Eq. (1.20):

ρ+Rk(RC) = ρ0Rk(I). (1.23)

In a balanced state the relation between the atom/ion distributions in states E0 and E+

is given by a Saha relation [35]. For k-multielectron recombination and k-multiple ionization

this relation can be derived (not shown here) from Eq. (1.19) as:

ρ0

ρ+
=
g0
g+

eβ E+0

(
1

2
ρe λ

3
e

)k
, (1.24)

where β = 1/k
B
T is the inverse of the temperature within the system and λe = h√

2πmekB
T

is the thermal de Broglie wavelength of free electrons. Coefficients, g0, g+, are statistical

weights of the bound energy levels, E0, E+, respectively, and E+0 = E+ − E0 is the energy

needed for transition from state E0 to state E+ (ionization energy). After substituting Eq.

(1.24) to Eq. (1.23), we obtain:

Rk(RC) = Rk(I)
g0
g+

eβ E+0

(
1

2
ρe λ

3
e

)k
. (1.25)

From Eq. (1.20) also a microscopic relation between ionization and recombination cross

sections can be obtained:

g0E Ω0+(E;E′, E1, . . . , Ek) = g+
24k

h3k
(πme)

k E′E1 . . . Ek Ω+0(E
′, E1, . . . , Ek;E). (1.26)

This is a generalization of the Fowler relation obtained for three-body recombination [35, 36].

As expected, at k = 1 Eq. (1.26) reduces to the Fowler relation:

g0E Ω0+(E;E′, E1) = g+
24

h3
(πme)E

′E1 Ω+0(E
′, E1;E). (1.27)

For non-Maxwellian plasmas (i.e. with non-Maxwellian electron energy distribution func-

tion) Eq. (1.25) is not longer valid. The non-equilibrium rate for multielectron recombination

can then be still obtained from Eq. (1.21), using the recombination cross section derived

from the microscopic relation, Eq. (1.26), and convoluted with non-equilibrium electron

distributions. The difficulty lies in the correct parametrization of the differential multiple

ionization cross section, which is not known for an arbitrary value of n > 1 [37, 38, 39].

Therefore we restrict here to Maxwellian plasmas, for which the direct rate equation, Eq.

(1.25), can be used.
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Estimation of multielectron recombination rates for xenon and argon

We used Eq. (1.25) to estimate the rate for multielectron recombination within Maxwellian

plasmas. In order to calculate the collisional ionization rate, we used experimentally deter-

mined total cross sections for collisional multiionization from ground state from Ref. [40].

The limitations of data compilations are discussed in detail in [40]. From the data listed in

[40] we estimated the maximal relative experimental uncertainties of the cross sections. They

were: 9% for Ar→Ar+2 transition, 20% for Ar→Ar+3 transition and 11% for Ar→Ar+4 tran-

sition. For Xe correspondingly: 12% for Xe→Xe+2 transition, 14% for Xe→Xe+3 transition.

For Xe→Xe+4 transition there were no estimates of the experimental errors given.

Eq. (1.25) implies that the electrons recombine in most cases to the higher Rydberg

states, for which the statistical weights, g0, are large. Therefore here we estimate the recom-

bination rates to an ”average” Rydberg state. However, due to the depression of ionization

potential (IP) within a plasma, the number of available states above the ground level strongly

decreases with the increasing electron density. Therefore, the recombination to the lower

states becomes more probable. Using the rough estimate of a hybrid model from Ref. [31] to

estimate the IP depression, we found that the ground state level approaches continuum for

Ar plasma at densities 6 · 1023 cm−3 to 3 · 1024 cm−3 for the considered temperatures, 1-100

eV. For Xe plasma the corresponding density range is 1023 cm−3 to 1024 cm−3. Therefore in

our calculations we limit the densities to 1024 cm−3, and restrict to the ground state exci-

tations/recombinations. Further, we do not take the IP depression effect into account. The

reason is that we know only experimental cross sections for multiple ionizations from the

ground states. And we aim at making our predictions possibly independent of theoretical

modeling that may lead to strongly differing predictions (e.g. estimates of IP depression

from NLTE-4 Database [41]). Within the scheme proposed, our results will then constitute

the lower limit estimate for the true MER rates.

The recombination rates obtained are plotted in Fig. 1.8. Density range, ρ = 1022 − 1024

cm−3 at temperatures T = 1− 10 eV corresponds to plasmas created by intense VUV laser

pulse from FEL [28, 29, 42, 43]. The rates obtained for densities ρ = 1022 − 1025 cm−3 and

temperatures T ∼ 100 eV are relevant for IFC plasmas.

At the density, ρ = 1023 cm−3, and temperatures, T = 1 − 10 eV, the highest rates

are: the rate for 3-electron recombination (Xe), and 2-electron recombination (Ar). This

tendency keeps with increasing electron density. The absolute values of recombination rates

(n = 1 − 3) at ρ = 1023 cm−3 are then between 10−1 − 102 1/fs for Xe and 10−3 − 102 1/fs

for Ar, depending on the temperature.

In the region of high densities, ρ > 1024 cm−3, and at high temperatures, T = 100 eV,

relevant for ICF plasmas, the absolute recombination rates are high: 103 − 104 1/fs for Xe,

and 101 − 102 1/fs for Ar at ρ = 1025 cm−3. The 1-electron recombination is predominant

but the other recombination rates (n = 2, 3) are less by the factor of 10-1000 for both Xe

and Ar.
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Figure 1.8: Rates for multielectron recombination: 1, 2, 3-electron recombination to ground state

as functions of plasma density for a Maxwellian plasma. The results were obtained for: (a) xenon

with (b) closeup, and (c) argon with (d) closeup. Arrows show how the rates change with the

increasing values of electron temperature, T = 1, 10, 100 eV. Curves for n = 1 at T = 1− 10 eV are

very close to each other.
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Discussion and summary

The aim of our study was to estimate the contribution of the multielectron recombination

rates (n > 1) to the ionization dynamics within dense plasmas.

We derived the MER recombination rates for Maxwellian plasmas built of xenon or argon

atoms and ions, using the experimentally determined cross sections for multiple collisional

ionization of atoms from their ground state. The maximal experimental uncertainty of the

cross section was not exceeding 20%. Correspondingly, we considered the MER recombina-

tion to the ground state only. Plasma effects as IP depression, modifications of the cross

sections due to the charged many-body environment have not been treated. Rough estimates

have shown that the effect of IP depression may be strong at the densities larger than 1023

cm−3. The higher Rydberg states then disappear. Therefore our predictions that give the

lower limit of the true MER values may closer approach the true values at the increasing

plasma density.

We showed that in the ρ− T region relevant for plasmas created after irradiation of Xe

and Ar clusters with intense VUV pulses from FEL, MER recombination dominates over

the 1-electron recombination. The values of recombination rates (n = 1 − 3) are between

10−1 to 102 1/fs for Xe and 10−3 to 102 1/fs for Ar at ρ = 1023 cm−3, depending on the

temperature, 1−10 eV. In the ρ−T region of ICF plasmas, at ρ = 1024 cm−3 the 1-electron

recombination dominates but the 2- and 3-electron recombination rates are less by factor of

10-1000.

After writing up this paper we became aware of the Ref. [39], where the MER recom-

bination processes have also been treated. Four-body recombination rate, corresponding

to 2-electron MER recombination, was calculated there for Ar, using the similar detailed

balance treatment as in [35]. In contrast to our treatment, the empirical fits were used for

the parametrization of the total ionization cross sections from ground state. The effect of IP

depression was not taken into account. The obtained recombination rates together with the

double-ionization rate coefficients were included in the plasma kinetics code. Predictions for

Maxwellian and non-Maxwellian plasmas were obtained. It was found that the inclusion of

the MER effects influenced the average ionization stage of the plasma at electron densities

> 1022 cm−3. This agrees well with the observations from our model. However, the predic-

tions for non-Maxwellian plasmas obtained in [39] strongly depended on the parametrization

of the differential cross section used.

The results from Ref. [39] and our results that estimate the lower limit of the MER

rates indicate that the MER rates should be treated in the simulations of processes occur-

ring within ICF plasmas and FEL laser created plasmas. The quantitative validation, how

significantly the MER processes contribute to the plasma dynamics requires a dedicated

rate equation approach [39], where both competing processes: non-sequential ionization and

MER recombination are included. We emphasize also the strong need for the more sophis-

ticated calculations beyond the framework of the simple quantum-mechanical model [35].

In particular, recombination to higher Rydberg states should be treated, taking into ac-
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count the effect of IP depression, and the modification of collisional cross sections due to

the charged plasma environment. We note, however, that the estimates of IP depression

obtained from different models may differ significantly [41], and this will make the predic-

tions obtained model-dependent. Also, possible strong coupling and degeneracy effects for

non-ideal and non-classical plasma regime should be included in the analysis. This advanced

approach is, however, beyond the scope of the present study.
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1.5 Molecular Dynamics model

In this model, both ions and electrons are treated as point charges. The classical Coulomb

evolution of this charge system is simulated by molecular dynamics (MD), which is a numer-

ical integration of particle motions over time in phase space. The standard MD algorithm

is presented in Appendix A. In this model, there are two kinds of interactions: (i) potential

interactions between charged particles; (ii) fast collisions such as photoionization. The for-

mer is embedded in MD integration, while the latter is realized by Monte Carlo events in a

single MD simulation step.

The structure of the atom is important in the interaction between atoms and electrons,

especially in the inverse bremsstrahlung process with a laser field involved. When a free

electron approaches close to an atom (or ion), the shells of binding electrons in the atom

cannot perfectly screen the positively-charged nucleus inside the atom. The free electron can

therefore experience a partial potential from the nuclear charge. Hence, the atomic structure

that the electron experiences could be simply modeled as a centrosymmetric potential [5]:

φ(r, q) = − e

4πε0

(
q

r
+
Z − q

r
e−αqr

)
, (1.28)

where Z is the nuclear charge of the atom, q is charge of the atom, and αq is a model

parameter which is determined by matching the experimental ionization energy of a q-

charged ion. The potential approaches a Coulomb potential when the electron is far away

from the atom (r → ∞).

When a quasi-free electron stays in an atomic cluster, the electron experiences potential

not only from the atom closest to it, but also from the other background atoms. The other

moving electrons in the cluster, like plasma electrons, may screen potentials from background

atoms to this electron. The screening effect is determined by the Debye length,

λD =

√
ε0kTe
e2ne

, (1.29)

with Te being the electron temperature and ne the electron density in the cluster. In follow-

ing MD simulations, the Debye length is comparable to the atomic size and lies in regime

of weakly coupled plasma. The contribution of the screening effect can be approximated as

an exponential factor applied to the effective potential (see Eq. 1.7):

φ′(r, q) = φ(r, q)e−r/λD . (1.30)

The atomic potential with plasma screening effect is used for calculations of the quantum

mechanical cross sections of the inverse bremsstrahlung in § 1.3. The realization of the

inverse bremsstrahlung process will be presented later.

The classical motions of particles in the model naturally account for the Debye screening

effect when all background potentials described by Eq. (1.28) are taken into account. How-

ever, the attractive potential in Eq. (1.28) has an infinite depth at r = 0 , which may cause
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an integral problem of singularity in numerical simulations. The potential can be smeared

to remove the singularity:

φ(r, q) = − e

4πε0

q

r

(
1 − e−αr

)
, with lim

r→0
φ(r, q) = − e

4πε0
qα , (1.31)

where the parameter α is of the same order as αq . The lost inner atomic structure is not

important for classical motion of electrons, because: (i) the structure-sensitive collisions,

such as the inverse bremsstrahlung, have been treated separately; (ii) the separated elastic

collisions are considered through corresponding experimental cross sections. The repulsive

interaction between charged ions or electrons at large distances are described by the standard

Coulomb potential.

The other interactions are realized through Monte Carlo events. There are five types of

interaction events involved, as mentioned in § 1.2:

• Photoionization (PI), sequential ionization by photons;

• Inverse bremsstrahlung (IB), with atomic potential and plasma screening effect con-

sidered;

• Collisional ionization (CI), sequential ionization by impact electrons;

• Three-body recombination (RC), the inverse process to CI;

• Elastic collision (EL), between atoms (or ions) and electrons.

Each type of Monte Carlo event is assigned a chance to occur determined by the interaction

cross sections. The occurring time of an event or appearance of an event in each MD time

step are randomly chosen. The MD model integrated with Monte Carlo events enables

treatment of probabilistic processes or collisions in the irradiated clusters.

The photoionization probability of a single atom or ion is described by an exponential

decay function of exposure time t [44]:

P
P I

(t) = e−t/τPI , (1.32)

with the life time τ
P I

= ~ω/σ
PI
I . The cross section σ

P I
is the total PI cross section for a

single atom, and I is the laser intensity. The sum of photoionization cross sections from all

single atoms in a cluster is estimated to be only several percent of the cluster’s transverse

section4. The ionization probability is assumed to be uniform for all atoms in the cluster.

A Monte Carlo event of photoionization occurs at a randomly-chosen time:

t = −τ
P I

· lnR , (1.33)

4This assumption is valid for the cluster sizes considered in this work (the numbers of atoms are less

than 1000, and relevant PI cross sections see Appendix B). For a cluster of larger sizes at the same density,

the total PI cross section might be comparable to its transverse section. In other words, the light may not

penetrate through a much thicker cluster, as discussed in the next chapter.
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with R a uniform random number in range (0, 1) , following the probability distribution in

Eq. (1.32).

The next four types of interactions occur during the collisions between electrons and

atoms (ions). Electrons are assumed to travel “freely” in potential background between two

successive collision events for each electron. This is statistically described by the mean free

path (MFP) of an electron:

Le =
1

ρ · σ , (1.34)

with ρ being the atom (ion) density and σ the collisional cross section. According to Beer’s

law, the probability of an electron “free” moving in a cluster is:

Pe(t) = e−x/Le , (1.35)

with x being a traveling distance. The randomly-chosen distance x between two successive

collision events can be realized in the same way as Eq. (1.33). The collisional cross section

in the cluster is then the total cross section summed over all four types of collisions:

σtot = σ
IB

+ σ
CI

+ σ
RC

+ σ
EL
. (1.36)

The collision event is randomly chosen among these types. The chance of each type of event

is proportional to the respective cross section, i.e. σ/σtot .

Proper estimation of the MFP is critical for a meaningful realization of the Monte Carlo

events. In this model, electron temperature in the cluster and average charge of atoms are

used for estimations of total cross-sections during each MD simulation step. The cross sec-

tions for photoionization, electron–impact ionization and elastic process are obtained from

experimental measurements (see Appendix B). The cross sections for inverse bremsstrahlung

with both atomic structure and plasma screening effects considered are calculated in § 1.3.

The rates for three-body recombination are calculated in § 1.4, and the formulas for corre-

sponding cross sections is presented in Appendix C.

The ionization thresholds of an atom or ion may be modified by the charge background.

In this model, the ionization thresholds in environment of charged cluster use same values as

those of isolated atoms or ions. There are two reasons for this: (i) it is difficult to calculate

reliable ionization thresholds in such complex charge system; (ii) the requirement of energy

conservation in ionization events may change actual ionization thresholds indirectly. For

example, an impact electron with enough kinetic energy in a possible ionization event may

have a too low total energy for releasing a secondary electron due to background charges,

and therefore, the event is forbidden by energy conservation. The background charges do

influence ionization processes in this model, and modify ionization thresholds in some sense.

At the beginning of a MD simulation, the atomic positions in a cluster are initialized

on regular grid points within a sphere volume. The closest distance between atoms (grid

points), estimated from experimental cluster density, is 4.33 Å for xenon clusters, and 3.70 Å
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for argon clusters. The reasons for this initialization of atomic positions are: (i) the van der

Waals potential energy (∼ 10−4 eV) among atoms in the gas cluster is much smaller than

the Coulomb potential (∼ 1 eV) between two singly-charged atoms at same distance, and

therefore, the van der Waals interaction can be neglected at the beginning; (ii) Monte Carlo

events are more sensitive to statistical properties of the system, such as atom/ion density,

than to the individual atom positions.

The FEL pulse is assumed to be temporally rectangular and spatially uniform. The

results in § 1.8 show that the simulations mainly depend on photon fluence of the pulse and

that this rectangular pulse shape approximation is enough for current simulations. Sufficient

simulation time for the first phase is several times longer than the pulse duration which is

about 100 fs. After the laser pulse, photoionization and inverse bremsstrahlung events do

not occur in the simulated system. The remaining collision events continue, and the system

enters into a local thermodynamic equilibrium (LTE) phase with a balance between electron-

impact ionization and recombination events. The populations of electrons and ions inside

the cluster can be modified slightly due to cooling of the electron gas. The end of the second

phase which occurs on the time scale of a picosecond is beyond the scope of this work.

The MD simulation results statistically fluctuate. To obtain predictions from this MD

model, hundreds of independent simulations5 are performed and then the simulated results

are statistically averaged. The error can be estimated by the standard deviation of the

average.

In the following two sections, two published papers present simulation results on the

spectra of ions and photoelectrons for xenon and argon clusters irradiated by VUV FELs.

Simulations were performed with both a Boltzmann method and this MD model.

5Here, the “independent” means that random numbers for Monte Carlo events in different simulations

are uncorrelated. In practice, different seeds in random number generation are chosen for independent

simulations.
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1.6 Energetics, ionization, and expansion dynamics of

atomic clusters irradiated with short intense vacuum-

ultraviolet pulses6

Abstract

Kinetic equations are used to model the dynamics of Xe clusters irradiated with short, intense

vacuumultraviolet pulses. Various cluster size and pulse fluences are considered. It is found that

the highly charged ions observed in the experiments are mainly due to Coulomb explosion of the

outer cluster shell. Ions within the cluster core predominantly recombine with plasma electrons,

forming a large fraction of neutral atoms. To our knowledge, our model is the first and only one

that gives an accurate description of all of the experimental data collected from atomic clusters

at 100 nm photon wavelength.

Atomic clusters are excellent objects to test the dynamics within samples irradiated with

radiation from short wavelength free-electron-lasers (FELs) [45, 46, 47]. Their physical prop-

erties put them on the border between the solid state and the gas phase. Cluster studies

are important for planned experiments with FELs in solid state physics, materials science

and for studies of the extreme states of matter [48]. Accurate predictions of ionization, ther-

malization and expansion timescales within irradiated samples, which may be obtained with

cluster experiments [3, 22, 4, 21, 49], are also needed for exploring the limits of experiments

for single particle diffraction imaging [44, 50, 51, 52, 53, 54].

During the first cluster experiments performed at the FEL facility FLASH at DESY

with VUV photons of energy, E = 12.7 eV, and power densities up to a few 1013 W/cm2

[3] energetic, highly charged Xe ions were detected. The estimated energy absorption was

almost an order of magnitude higher than that predicted with classical absorption models

[22, 4, 21], and the ion charge states created were much higher than those observed during the

irradiation of isolated atoms in similar conditions. This indicated that at these wavelengths

some processes specific to many-body systems were responsible for an enhanced energy

absorption.

The physics underlying the dynamics within the irradiated clusters is complex. Several

interesting theoretical models have been proposed in order to describe the evolution of clus-

ters exposed to intense VUV pulses [5, 6, 7, 8, 23, 9, 55]. These include: (i) heating of

quasi-free electrons due to enhanced inverse bremsstrahlung (IB) [5, 6], (ii) enhanced pho-

toionization within the sample due to a lowering of the interatomic potential barriers [7, 8],

and (iii) heating due to many-body recombination processes [9]. Each of these various ap-

proaches leads in a different way to a significantly enhanced energy absorption in agreement

with the experimental data [3].

In order to evaluate the contribution of various processes to the ionization dynamics,

including the enhancement factors proposed in Refs. [5, 6, 7, 8, 9], we have constructed a

6This section has been published as Paper III : B. Ziaja, H. Wabnitz, F. Wang and E. Weckert, Phys.

Rev. Lett. 102 205002 (2009).
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unified model [28, 29] based on kinetic equations. It included the following predominant in-

teractions: photoand collisional ionization, elastic electron-ion and electron-atom scattering,

IB heating of quasifree electrons, shifts of energy levels within atomic potentials due to the

plasma environment, and shielded electron-electron interactions. IB rates were calculated as

in Refs. [5, 6], using the effective atomic potentials. This led to the strong enhancement of

these rates, comparing to the approaches that used the pointlike Coulomb potentials, e.g.,

[14, 15]. The calculated IB rates were included explicitly in the kinetic equations in the form

of the additional source terms.

These interactions were discussed in detail in Ref. [28]. We do not include atom-ion,

ion-ion and atom-atom collisions to our model, as their rates are small comparing to the

electron-ion(atom) collision rates.

Using a nonequilibrium Boltzmann solver, we followed the evolution of Xe clusters of

various size irradiated with rectangular shaped VUV pulses of intensity 1012 − 1014 W/cm2

and pulse duration, between 10 and 50 fs. We found that each physical mechanisms included

into the model contributed to the ionization dynamics, however, with differing weights. The

total ionization rate within the sample was most strongly affected by the IB heating rate ap-

plied. Within the theoretical framework defined above [28] we estimated that (i) many-body

recombination (four-body and higher) [9] could contribute only for clusters irradiated at low

pulse fluences, and (ii) the plasma environment effects estimated with electron screened

atomic potentials were small. This was in contrast to the estimates of Ref. [7] performed

with unscreened atomic potentials. Our studies [28, 29] extended the treatment of Ref. [6],

where neither the spatial inhomogeneity of the clusters was treated nor the gross movement

of electrons. It arises that both effects significantly contribute to the cluster dynamics.

The structure of charge created within the cluster was found experimentally to be strongly

inhomogeneous [56], and this inhomogeneity was induced by the dynamics of electrons.

The main aim of this Letter is to obtain a complete description of the energetics, ion-

ization and expansion dynamics of irradiated clusters. Our present analysis differs from the

analysis in [28, 29] by including the effect of three-body recombination and following the

expansion of the cluster until ions begin to leave the simulation box (up to ∼ 2 ps). In other

words, we now follow the dynamics starting from the geometry of dense, neutral clusters up

to a dilute gas of isolated ions, electrons, and neutral atoms.

The three-body recombination is the inverse of the collisional ionization, and this re-

lation is used here in deriving the relevant rates. Including the three-body recombination

into our code, we take into account the fact that the first phase of the cluster evolution is

nonequilibrium. Therefore, we follow the approach of Ref. [36] and estimate the three-body

recombination contribution, assuming an arbitrary electron distribution. This approach is

appropriate both for the nonequilibrium and the equilibrium evolution phase. The recombi-

nation rates are then estimated, using the microscopic reciprocity of differential cross sections

for collisional ionization and recombination [35]. The results from the model are averaged

over the spatial pulse profile. Furthermore, they are also cross-checked with independent
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molecular dynamics (MD) simulations. This leads to the following observations:

(i) In the previous work [28, 29] the hypothesis was proposed that the dominant contri-

bution to the observed ion spectra may come from the outer shell of the irradiated cluster.

In order to justify this hypothesis, the inclusion of the recombination within the cluster,

following its expansion and averaging the results obtained over the spatial pulse profile was

necessary. Only then could the predictions obtained with the model be compared to those

recorded by the time-of-flight detector during the experiment.

(ii) The impact of three-body recombination on the ionization dynamics is very impor-

tant. In particular, it has changed the estimated ion charge distribution within the ionized

cluster. In contrast with the results of Refs. [28, 29] the highest ion charges are now created

in the outer shell of the cluster and not within the cluster core. A large fraction of neutral

atoms could also be found within the cluster core. The proportion is dependent on the

cluster size and pulse fluence.

(iii) Including the cluster expansion has also allowed us to observe the differing expansion

dynamics for both small and large clusters.

(iv) We have tested our model with an independent, dedicated molecular dynamics sim-

ulation for smaller clusters. The results obtained from both methods are in good agreement.

This confirms that our analysis was not biased by our choice of simulation method.

The dynamics within the irradiated clusters depends on the pulse fluence and the cluster

size. We have performed simulations of irradiated clusters with parameter values corre-

sponding to those at the first FLASH cluster experiment at 100 nm wavelength [3, 21].

Below we compare the predictions to the experimental data.

The simulations were performed for clusters exposed to single rectangular shaped VUV

pulses of a fixed fluence. The temporal VUV FEL pulse shape varies from shot to shot.We

accounted for that approximately by performing a number of simulations with different pulse

lengths at each value of the fluence. The intensity was set to the fluence divided by the pulse

length. For the quoted ranges of pulse duration and a fluence range of 0.05 to 1.5 J/cm
2
,

the full intensity range was 1012 − 1.5 × 1014 W/cm
2
. The predictions obtained were then

averaged over the number of simulated shots. This scheme followed the experimental data

analysis [3, 4]. We estimate that the real value of pulse fluence may be up to 1.5 times

smaller and up to 2 times larger than that one estimated experimentally. This asymmetry

is due to systematic errors in the fluence estimation.

We obtain predictions for two limiting cases: (i) a cluster placed in the center of the

focused beam and (ii) the position of the cluster integrated over the approximately estimated

spatial profile of the pulse. As we will see later, at higher pulse fluences averaging over the

spatial pulse profile has a higher impact on the model predictions compared to the case

of a cluster placed in the center of the focused beam. This is due to the strong nonlinear

dependence of the ion charge created on pulse fluence, at higher pulse fluences. At lower

fluences this dependence is linear.
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Figure 1.9: Ion fractions, Ni/N , within the irradiated clusters estimated for four various cluster

sizes. Ni denotes here the number of Xe+i ions, and N is the total number of ions. We show also:

(e) average charge, Z, created within the irradiated cluster, and (f) average energy absorbed per

ion, E, as a function of the cluster radius, R. Experimental data, model predictions for clusters

placed in the center of the focussed beam and predictions integrated over the Gaussian spatial pulse

profile are shown.

First, we will investigate ionization dynamics at different cluster sizes. In Figs. 1.9(a)-

1.9(d) we plot the charge state distributions at the end of the expansion phase obtained for

four different cluster sizes irradiated with a fixed pulse fluence of 0.4 J/cm2 . The trend can

be understood in the following way. IB is the dominant mechanism of energy absorption

within our model. This process heats up the quasifree electrons within the cluster. The hot

electrons collide with ions and atoms, producing higher charges and releasing new electrons.

These processes compete with the three-body recombination processes that reduce the ion

charge and decrease the electron density. After the pulse is over, and the system reaches a

local thermodynamic equilibrium (LTE) state, the number of ionization and recombination

events saturates, changing slowly with the decreasing temperature within the cluster. We

find that during the exposure the cluster forms a shell structure [56] consisting of a positively

charged outer shell and a core of net charge equal to zero. Such a shell structure has

been previously found by other groups in the context of x-ray irradiation of clusters and

biomolecules [7, 57, 58]. The width of these shells depends on the cluster size. The charged

outer shell is large within small clusters (Natoms = 20, 70), and its Coulomb explosion drives

the expansion of these clusters. Within large clusters (Natoms = 2500, 90000) the neutral core

is large, and after the Coulomb explosion of the outer shell it expands hydrodynamically.

Highly charged ions within the core recombine efficiently with electrons. As a result, we

observe a large fraction of neutral atoms created within the core, the proportion depending

on the cluster size. This fraction is from 15% to 40% of the total number of particles. Within

small clusters a large fraction of the electrons released during the ionization processes can

leave the clusters early in the exposure. The remaining electrons are not heated efficiently
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Figure 1.10: Ion fractions, Ni/N , within the irradiated xenon clusters (Natoms = 2500). These

clusters were irradiated with rectangular shaped pulses of four various fluences. We show also: (e)

average charge, Z, created within the irradiated xenon cluster, and (f) average energy absorbed per

ion, E, as a function of the pulse fluence, F . Other notations are as in Fig. 1.9.

via IB processes due to their low density within the cluster. Consequently, only low charge

states are observed [Figs. 1.9(a) and 1.9(b)]. In contrast, within large clusters of 2500 and

90000 xenon atoms only a small fraction of the released electrons are able to escape from

the cluster. The width of the positively charged outer shell is small with respect to the

radius of the neutral core. Electrons confined within the core are then heated efficiently.

This leads to further collisional ionizations. In Fig. 1.9(c) and 1.9(d) we plot the respective

ion fractions. Our predictions are in agreement with the experimental measurements. The

trend of the size dependence is correct. At a fixed pulse energy the maximal and average

ion charge created increases with the cluster size until it saturates at larger cluster sizes.

This is in agreement with the experimental data [Fig. 1.9(e)]. Saturation of the ion charge

created within large clusters (irradiated with a pulse of a fixed fluence) is due to the fact

that for large enough clusters the energy absorbed from the pulse will not be sufficient for

the creation of higher charge states. We also show our estimates for the average kinetic

energy per ion, E, [Fig. 1.9(f)]. It increases with the cluster size and saturates for larger

clusters.

With the extended Boltzmann solver we were able to follow the different expansion

dynamics for large and small clusters (not shown due to limitations of space). In the case

of small clusters the expansion was driven by the Coulomb explosion, and ions then quickly

filled the whole volume of the simulation box. In the case of a dominating hydrodynamic

expansion of the sample, the evolution proceeded shell-after-shell as predicted by earlier

simulations [52].

The dependence of the ionization dynamics on pulse fluence has been investigated for

Xe2500 clusters. Below we show the plots of the ion fractions [Figs. 1.10(a)-1.10(d)]. Higher
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pulse fluences lead to the creation of higher charge states within the clusters in accordance

with the mechanism described above. At the lower pulse fluences, F = 0.05 − 0.3 J/cm2 ,

the small discrepancy between experiment and our predictions may be due to the fact that

an additional energy absorption due the many-body recombination effects within the cold

electron plasma can occur [28]. This could then lead to the creation of higher charge states

that we do not observe within our model, as manybody recombination [9] was not included

into it. At higher fluences, F = 0.84 − 1.5 J/cm2 , the ion fractions are in good agreement

with experimental data.

The average charge is plotted as a function of pulse fluence in Fig. 1.10(e). With in-

creasing pulse fluence the average charge created increases. The charges calculated are very

close to the corresponding experimental values. Also, as expected, the content of neutral

atoms found within the cluster decreases at the increasing pulse fluence: from 70% to 5%

for fluences, F = 0.05 − 1.5 J/cm2 (not shown).We also show the average kinetic energy

per ion as a function of the pulse fluence [Fig. 1.10(f)]. The sparse experimental data do

not allow the identification of the trend of the fluence dependence, i.e., whether it is linear

or nonlinear. Our predictions slightly underestimate the experimental predictions for ion

energy at high fluences but stay within the error limit given by the experimental uncertainty

of fluence estimation.

In summary, we used a microscopic Boltzmann model to investigate dynamics within

atomic clusters irradiated by single VUV pulses. The predictions obtained at various cluster

sizes and pulse fluences were found to be in good overall agreement with experimental

data considering the uncertainty of the pulse fluence estimation. The results obtained have

been successfully cross-checked with MD simulations showing that they are not biased by

the choice of our particular simulation method. Because of limitations of space we do not

discuss theMD results here. The present analysis shows that recombination contributes

significantly to the ionization dynamics. As expected, the recombination has the highest

impact within the cluster core where the electron density is highest. This indicates that the

ions detected during the experiment originate mainly from the outer region of the cluster [56].

We found a large fraction of neutrals exist within the core resulting from the recombination,

the proportion depending on the cluster size. This prediction is especially important, as

neutral fragments can be detected in an experiment only with a great difficulty. If we ignore

them, the total energy absorption due to the laser-cluster interaction may be extensively

overestimated.

In conclusion, we find that formation of high charge states and the strong absorption of

VUV radiation is quantitatively understood within the framework of our model.
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1.7 Emission of electrons from rare gas clusters after

irradiation with intense VUV pulses of wavelength

100nm and 32nm7

Abstract

Kinetic Boltzmann equations are used to describe electron emission spectra obtained after irradi-

ation of noble-gas clusters with intense vacuum ultraviolet (VUV) radiation from a free-electron-

laser (FEL). The experimental photoelectron spectra give a complementary and more detailed

view of nonlinear processes within atoms and clusters in an intense laser field compared to mass

spectroscopy data. Results from our model obtained in this study confirm the experimental

and theoretical findings on the differing ionization scenarios at longer (100 nm) and shorter (32

nm) VUV radiation wavelengths. At the wavelength of 100 nm the thermoelectronic electron

emission dominates the emission spectra. This indicates the plasma formation and the inverse

bremsstrahlung (IB) heating of electrons inside the plasma. This effect is clearly visible for xenon

(with the fitted temperature of 6-7 eV), and less visible for argon (with the fitted temperature

of 2-3 eV). The two-photon-ionization rate for argon that initiates the cluster ionization, is much

lower than the singlephotoionization rate for xenon. Also, more of the photoelectrons created

within an argon cluster are able to leave it, as they are more energetic than those released from

a xenon cluster. Therefore, the IB heating of plasma electrons in argon is less efficient than in

xenon, as the density of the electrons remaining within the cluster is lower.

At a wavelength of 32 nm the dominant ionization mechanism identified from the electron spectra

of argon clusters is the direct multistep ionization. The signature of the thermalization of electrons

is also observed. However, as the heating of electrons due to the inverse bremsstrahlung process is

weak at these radiation wavelengths and pulse fluences, the increase of the electron temperature

with the pulse intensity is mainly due to the increasing photoionization rate within the irradiated

sample.

Introduction

Studies performed with atomic clusters exposed to intense short wavelength radiation from

free-electron-lasers (FELs) [19, 49, 3, 4, 56, 59, 60] and to higher harmonic radiation [61]

reveal interesting information on the ionization dynamics of the irradiated samples. These

studies are important for planned experiments with FELs in solid state physics, materials

science and for studies of the extreme states of matter [48, 62, 63]. Accurate predictions

on the ionization, thermalization and expansion timescales that can be obtained with clus-

ter experiments are also needed for exploring the limits of experiments on single particle

diffraction imaging [44, 50, 51, 52, 53, 54].

Time-of-flight (TOF) mass spectroscopic studies performed at 100 nm radiation wave-

length demonstrated a strong energy absorption within clusters, compared to absorption

by single atoms. Coulomb explosion of Xe and Ar clusters resulting in emission of multi-

ply charged ions with keV kinetic energies was recorded, using mass spectroscopic methods

[3, 4, 21]. In contrast, the TOF ion spectra of Ar recorded at 32 nm wavelength exhibited

7This section has been published as Paper IV : B. Ziaja, T. Laarmann, H. Wabnitz, F. Wang, E. Weckert,

C. Bostedt and T. Möller, New Journal of Physics 11 103012 (2009).
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rather narrow peaks, showing that Ar fragments do not carry significant kinetic energies

[49]. This indicated a less efficient ionization mechanism.

The photoemission spectroscopy studies performed in [19, 49] gave a complementary and

more detailed view on ionization of atoms and clusters in an intense laser field, compared

to the results from mass spectroscopy. At a peak intensity of ∼ 4.4 × 1012 Wcm−2 and

average pulse duration of 100 fs, the kinetic energy distribution of emitted electrons strongly

decreased at kinetic energies of 30-40 eV. A characteristic electron temperature below 10

eV was obtained. Simulations with a time-dependent Thomas-Fermi model supported the

description of electron spectra as resulting from the thermoelectronic emission from the

plasma.

Photoelectron studies performed at 32 nm wavelength [49] suggested a differing ionization

dynamics within the irradiated clusters that is driven by a direct multistep photo- and

collisional ionization. The inverse bremsstrahlung (IB) heating of the nanoplasma is of minor

importance at these short radiation wavelengths. Non-dynamic Monte Carlo simulations

were performed for 32 nm wavelength in order to support this hypothesis [49]. Here we obtain

predictions for the photoemission spectra, using the comprehensive theoretical framework

of the kinetic Boltzmann model [27, 28, 29, 43]. Analysis of ionization dynamics at similar

photon energies was also performed in [64, 65]. So far, our model has been successful in

reproducing the mass spectroscopic results obtained from the first cluster experiment at

FLASH [3, 4] performed at 100 nm wavelength. Below we describe our results on the

electron emission spectra in detail.

Experimental scheme and simulations

First, we describe briefly the experimental scheme [19, 49]. The rare gas clusters of Xe,

Ar were prepared in a supersonic gas expansion. The average cluster size was tuned by

varying the stagnation pressure. The full-width at half-maximum of the size distribution

is then approximately equal to the average cluster size. FEL radiation was focused on the

cluster beam, using an elliptical mirror at grazing incidence. Pulse duration was estimated

indirectly with statistical and spectral methods. In case of irradiation with 100 nm radiation,

the estimated pulse length was ∼100 fs. In the case of irradiation with 32 nm radiation, the

pulse length was ∼25 fs. In both cases the peak intensity was up to ∼ 1013 Wcm−2.

The electrons generated during the laser cluster interaction were detected with the mi-

crochannel plate of a TOF spectrometer. Kinetic energies of electrons ranging from a few

electron volts up to a few tens of electron volts could be analysed. The measured elec-

tron distribution curve was converted into kinetic energy spectra [19, 49] and corrected

with respect to the calculated transmission of the spectrometer. The electron spectra were

obtained by averaging the single-shot spectra over many laser shots. Due to the strongly

varying transmission of the spectrometer towards low kinetic energies, the line shapes could

not be properly evaluated at energies below 5 eV.
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Our theoretical simulations were performed for clusters exposed to single rectangular

shaped vacuum ultraviolet (VUV) pulses of fixed fluence. The fluence was a product of the

experimentally recorded average pulse intensity and of the pulse length.We obtained predic-

tions for the position of the cluster integrated over the approximately estimated Gaussian

spatial profile of the pulse, along the lines of the experimental conditions. For the theoretical

simulations we have used a unified Boltzmann model [28, 29] based on kinetic equations.

It included the following interactions: photo- and collisional ionization, threebody recombi-

nation, elastic electron-ion and electron-atom scattering, IB heating of quasifree electrons,

shifts of energy levels within atomic potentials due to the plasma environment, and shielded

electron-electron interactions. IB rates were calculated as in [5, 6], using the effective atomic

potentials. The calculated IB rates were included explicitly in the kinetic equations in the

form of the source terms. These interactions and further details of the model were discussed

in [28].

Our model follows the full dynamics of irradiated clusters starting from the nonequi-

librium ionization phase up to the semi-equilibrium expansion phase. It treats all relevant

interactions within the irradiated sample. It gives a complete, consistent description of the

cluster evolution. This is the advantage of this model when compared to the simplified

models used for the simulations in [19, 49]. The hydrodynamic Thomas-Fermi model [66]

used in [19] described only the dynamics of small argon clusters Ar55 irradiated with 100 nm

radiation, whereas the experimental data were obtained for Ar300 and Xe70 clusters. This

model assumed the full single ionization of the sample at the initial state, so photoionization

was not treated there. In the framework of this hydrodynamic model the non-equilibrium

phase of sample evolution was neglected. Also, the frozen core approximation was used, i.e.

the positions of ions were fixed during the simulations.

Dedicated simulations performed in order to describe experimental results of [49] were

nondynamic Monte Carlo simulations. They were assuming: (i) statistical photoionization

of the sample constituents; (ii) instantaneous escape of electrons with an asymptotic kinetic

energy (only direct ionization events with positive kinetic energy were accepted) and (iii) no

motion of atoms/ions during the pulse (no other processes were included). This simulation

scheme just tested the hypothesis that the direct multistep ionization dominates the electron

spectra.

Ionization dynamics at 100 nm

Predictions obtained with other theoretical models [5, 6, 67, 8, 23, 9, 55] and with our model

[27, 28, 29, 43] demonstrated that a heating mechanism within a many-body system irradi-

ated with VUV radiation leads to the fast formation of an electron-ion plasma. Enhanced

IB [5, 6] was among the potential mechanisms of the plasma heating. As in [5, 6], we apply

this plasma heating mechanism in our model.

Shortly after the pulse is off, the plasma evolves towards a local thermodynamic equi-

librium (LTE). The electron emission spectrum for xenon gives a clear indication that the



CHAPTER 1. DYNAMICS WITHIN IRRADIATED ATOMIC CLUSTERS 39

heating of electrons was efficient and fast electron thermalization took place: the full emis-

sion spectrum can be well fitted by the Maxwell-Boltzmann (M-B) distribution (figure 1(a)).

The experimentally estimated temperature of T = 7.1 eV is in good agreement with the pre-

diction from our model, T = 6.5 eV (figure 1(a)). The photoelectron peak due to single

photoionization of neutral xenon atoms (<1 eV) cannot be properly identified as it shows

up below the spectrometer transmission limit of 5 eV (experimental data) and overlaps with

the peak of the M-B distribution (model predictions).

In the argon spectra the distinct two-photon-ionization peak at energies ∼10 eV is clearly

visible (figure 1(b)). This two-photon-ionization mechanism initiates the (single) ionization

of the neutral Ar cluster, as the photon energy (13 eV) is below the threshold for the sin-

gle photoionization (15.8 eV). The two-photon single ionization rate is about 40-80 times

smaller than the rate for the single photoionization of xenon at the considered pulse in-

tensity ∼ 4 × 1012 W cm−2. Also, at this pulse intensity the resonant excitation does not

contribute significantly to the total heating rate, and thus can be neglected [21]. Therefore,

the ionization in argon progresses much slower than in case of xenon. Also, more energetic

photoelectrons in argon (Ekin = 10 eV), compared to xenon (Ekin < 1 eV) are more likely

to escape from the irradiated cluster. As a result, a dilute plasma of quasi-free electrons is

created inside the Ar cluster, and therefore the IB heating within argon is much less efficient

than that in xenon.

Due to the presence of the large photoelectron peak at 10 eV and also to the additional

small peak at 23 eV, which is presumably due to single-photon ionization of neutral argon

atoms by third harmonic of FEL radiation [19], fitting the full M-B distribution to the

argon data is difficult (figure 1(b)). The final M-B fit to the experimental data reveals the

photoelectron temperature, T = 3.5 eV, and is in good agreement with the predictions on

photoelectron spectra from our model, T = 2.8 eV. Our photoelectron temperature estimates

are lower than those obtained in [19], where the data from the region below 5 eV have been

also used for fitting, and an asymptotic exponential fit was applied, instead of the full M-B

distribution [19] that is now fitted to the data.

Finally, we mention that the additional small peaks for argon which are presumably

due to the ionization of neutral atoms by third harmonic of FEL radiation [19] cannot be

obtained within our model, as we did not include the irradiation by the third harmonic

there.

We show also the results from the model on: (i) the total electron temperature in the

whole simulation box (measured after the thermalization of quasi-free electrons within the

cluster and after the escape of the photoelectrons from the simulation box), (ii) the average

charge state formed inside the cluster, and (iii) the estimated average energy per ion, as

functions of fluence in the range 0.05-0.5 J cm−2 (figure 3). For the considered pulse length

of 100 fs this corresponds to pulse intensities in the range 5×1011−5×1012 Wcm−2 . These

predictions confirm the above dynamics scenarios for xenon and argon. The total electron

temperature for argon clusters is lower than the temperature for xenon clusters due to the
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Figure 1.11: Electron emission spectra for: (a) Xe70, and (b) Ar300 clusters obtained after their

irradiation with FEL pulses (λFEL ∼ 100 nm) of average duration of 100 fs and pulse intensity,

4.4 × 1012 W cm−2. Logarithmic scale is used in order to facilitate the temperature fits. We show

also the results from our MD simulations. The vertical line at 5 eV shows the data cut off.

less efficient IB heating within the argon cluster. The density of the photoelectron plasma in

the argon cluster is lower, due to the slow two-photon-ionization rate of argon and the higher

escape rate of energetic photoelectrons from argon clusters. The lower electron temperature

results in a lower average charge state generated within the argon cluster, compared to

case of xenon clusters, and finally in a lower average ion energy. These quantities increase

sublinearly with the pulse fluence, and saturate at higher pulse fluences.

The results obtained with Boltzmann model were cross checked with our molecular dy-

namics (MD) simulations, showing that they are not biased by the choice of the particular

simulation method.

Ionization dynamics at 32 nm

Analysis of the photoelectron spectra at 32 nm performed in [49] indicated that the direct

multistep ionization may be the dominant ionization mechanism at this radiation wave-

length. Our predictions confirm this hypothesis. After performing dedicated simulations at

the highest pulse intensities, we found out that the IB heating contributes to the total energy

absorption by argon clusters only by the order of 2% at most at this particular wavelength.

These findings are in compliance with recent independent MD-calculations [68].

The direct multistep ionization process is initiated by single photoionization of Ar atoms

and indicated in the emission spectra by a pronounced 3p photoionization peak at ∼ 22

eV. Other processes follow the photoionization, i.e. (i) photoionization of Ar+1, (ii) the

escape of photoelectrons from the cluster, (iii) thermalization of quasi-free photoelectrons

within the plasma, (iv) creation of secondary electrons during collisions of photoelectrons

with ions/atoms within the cluster [28, 29] and (v) collisional (three-body) recombination

[43].

With the increasing number of photoelectrons emitted, the attractive Coulomb field in-

side the cluster grows. It reduces the kinetic energy of subsequently emitted electrons and
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Figure 1.12: Electron emission spectra for: (a-d) Ar80, and (e) Ar150 clusters. Clusters, Ar80

were irradiated with single FEL pulses (λFEL = 32 nm) of intensities in the range of 0.02−5×1013

W cm−2 and the average pulse duration of 25 fs. Cluster, Ar150, was irradiated with a FEL pulse

of intensity, 3× 1013 W cm−2. We show also the results from our MD simulations. The vertical line

at 5 eV shows the data cut off.



CHAPTER 1. DYNAMICS WITHIN IRRADIATED ATOMIC CLUSTERS 42

eventually prevents further electron emission, leading to the generation of a thermally equi-

librated nanoplasma. The contribution of thermalized electrons observed in photoemission

spectra increases with time, and, as expected, electron temperature increases with increas-

ing pulse intensity (figure 2). However, as the heating of electrons due to the IB process is

negligible (2% effect), the increase of the electron temperature with the pulse intensity is

mainly due to the increasing photoionization rate within the irradiated sample.

The predictions obtained from our model for: (i) the total electron temperature inside

the whole simulation box (measured after the thermalization of electrons within the cluster

and after the escape of the photoelectrons from the simulation box), (ii) the average charge

state created and (iii) the estimated average energy per ion, in the argon clusters Ar80 and

Ar150 support the above scenario (figure 3). These predictions were obtained for fluences in

the range 0.005 − 1.25 J cm−2. For the considered pulse length of 25 fs this corresponds to

the pulse intensities in the range 2 × 1011 − 5 × 1013 W cm−2.

At a low pulse fluence electrons are produced almost solely during the photoionization

process. These photoelectrons can then escape from the cluster. The escape of photoelec-

trons increases the potential energy of the system. The total electron temperature recorded

after the time longer than the electron thermalization time and photoelectron escape time is

low, as almost all photoelectrons have left the cluster and the simulation box by that time.

With the increasing pulse fluence more photoelectrons are released. They can escape

from the cluster until the attractive Coulomb field of the cluster becomes so large that it

prevents further electron emission. This leads to the generation of a thermally equilibrated

nanoplasma, as has been observed also in recent MD calculations [49, 68]. More electrons

can escape from the larger clusters, creating higher potential energy within the system. This

is reflected by a stronger increase of the estimated average energy per ion and of the total

electron temperature with the pulse fluence for Ar150 clusters than for Ar80 clusters. In

contrast, the average charge state created is not cluster-size dependent (figure 3), as it was

created mainly during photoionization. As in case of irradiation with 100 nm wavelength,

the dependence of the total electron temperature, the average charge state and the average

energy per ion on the pulse fluence is sublinear, and saturates at higher pulse fluences.

Performing our studies at 100 nm and 32 nm, we restricted ourselves only to the cluster

sizes and FEL pulse parameters that were investigated experimentally. This was done in

order to test the predictivity and accuracy of our model. As differing energy absorption pro-

cesses are predominant at different wavelengths, and the ionization dynamics is a nonlinear

function of pulse fluence (figure 3), the comparison of the results obtained at 100 nm and

32 nm is not straightforward. The photoionization rate for argon at 100 nm is five times

smaller than at 32 nm but the IB heating, which is negligible at 32 nm, contributes signif-

icantly to the energy absorption at 100 nm. In contrast, more photoelectrons can escape

from argon clusters at 32 nm, as they are more energetic than those released from clusters

at 100 nm. This greatly increases the potential energy within the clusters at 32 nm. Due to

these competing processes, the net energy absorption within the investigated clusters that is
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Figure 1.13: (a) Temperature of electrons inside the whole simulation box after the electron

thermalization and after the escape of photoelectrons from the simulation box, (c) average charge

state created within a cluster, and (e) estimated average energy per ion as functions of fluence at

100 nm wavelength for Xe70 and Ar300 clusters. Plots (b), (d) and (f) show the same parameters

estimated at 32 nm for Ar150 and Ar80 clusters. We show both the results obtained with Boltzmann

model (BM) and our MD code (MD).
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reflected by the estimated average energy per ion (figure 3(e) and (f)), does not differ much

for the case of irradiation with 100 nm and 32 nm wavelength.

In summary, our simulations performed within the framework of the Boltzmann model

that included all predominant interactions and followed the non-equilibrium and equilibrium

dynamics of irradiated samples, confirm the differing ionization scenarios at irradiation of

atomic clusters with short- and long-wavelength VUV radiation as posed in [19, 49]. The

physical mechanisms contributing are now understood and explained quantitatively. The

results obtained have been successfully cross-checked with MD simulations by the Rostock

group [68] and our own results showing that they are not biased by the choice of the par-

ticular simulation method. The MD results [68] are prepared for publication. All of the

experimental electron emission spectra recorded at 100 nm and at 32 nm are now quanti-

tatively reproduced and comprehensively understood within the framework of our kinetic

model.
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Figure 1.14: MD simulations of Xe70 clusters irradiated by FELs at 100 nm wavelength: (i)

ion fractions Ni/N; (ii) averaged ion charge Z; (iii) energy absorption per ions E; (iv) electron

temperature inside the clusters Te . Both the experimental data and the results from the Boltzmann

model (BM) are presented for comparison. The photon fluence in pulses is fixed at 0.40 J/cm2 with

variable pulse lengths (i.e. 100/50/10/4 fs for 0.4/0.8/1.0/10×1013 W/cm2 respectively). Note that

the relevant experimental data in Fig. 1.1a were obtained at laser intensity 0.8×1013 W/cm2 with

50 fs long pulses.

1.8 Results of the MD model

This part presents the MD simulations mentioned at the end of the published paper III

(§ 1.6). The paper uses a Boltzmann model (BM) to simulate irradiated xenon clusters with

variable cluster sizes and laser intensities. A program was developed for the MD model in

§ 1.5, but it was not optimized. Therefore, it is not suitable for large size clusters beyond

1000 atoms. Here, only the results of xenon clusters with 70 atoms are presented as a typical

example, which corresponds to Fig. 1.9b in the paper.

The simulated Xe70 clusters are irradiated by the FELs at 100 nm wavelength. The laser

intensity changes, but the photon fluence is fixed at 0.40 J/cm2 . The pulse lengths in the

simulations are between 4 fs and 100 fs, which corresponds to different rectangular pulse

shapes. The results shown in Fig. 1.14 are recorded shortly after the end of irradiation (to-

tally two times of the pulse lengths) in single simulations. The relevant physical quantities,

such as relative population of ion charge, average charge of ions and absorption energy, are

plotted with reference values from both the experiments and BM predictions. Error bars

are the standard deviations of the predictions from 100 independent MD simulations in each



CHAPTER 1. DYNAMICS WITHIN IRRADIATED ATOMIC CLUSTERS 46

case of pulse length.

As shown in Fig. 1.14, the simulations are not sensitive to the pulse shapes at fixed photon

fluence. The results in the MD model agree well with that in the BM and the experimental

data in the error range. The electron temperature inside clusters is around 15 eV shortly

after the irradiation.

The Boltzmann model, constructed by Ziaja et al. [27, 28], is a simulation model based

on the Boltzmann equation to study the problem of irradiated atomic clusters. The system

in the Boltzmann model is described by the particle density function ρ(r,v, t) in phase space.

The number of phase dimensions is reduced to two, r and v , in the BM with consideration

of spherical symmetry. The numerous equations of particle motion are substituted with the

Boltzmann equation. This reduction allows the computational performance of the method

to be much higher than the MD codes, where the computation requirements scales with the

square of particle number. In this work, the MD code is not optimized and is limited to

1000 atoms. The Boltzmann approach has a basic advantage that it does not scale with

number of particles directly.

Another advantage is that the predictions of physical quantities from Boltzmann simu-

lations have no value fluctuations. While fluctuation error is inevitable in MD simulations

due to statistics based on individual particles, and an additional uncertainty is induced by

Monte Carlo events. In each parameter case, more than 100 independent simulations were

performed, and the measured quantities were calculated and averaged with corresponding

standard deviations.

To sum, the MD model presented here uses the same cross sections as the Boltzmann

model. The MD model can only simulate the cases of small clusters. In these cases, the two

models agree with each other as illustrated by the above simulation results.

1.9 Summary and outlook

The high charge states and strong absorption of atomic clusters with the VUV radiation

are quantitatively understood. The predictions of the MD model and the Boltzmann model

are in agreement with all the experimental data obtained for irradiated clusters at 100

nm and 32 nm. The simulations show that the dominant mechanism, contributing a large

amount of photon absorption in the xenon clusters at 100 nm wavelength is the enhanced IB

effect. The enhanced IB effect becomes weak at 32 nm wavelength, and vanishes at shorter

wavelengths. Then the dominant process is direct photoionization of electrons followed by

collisional ionization.

From the Boltzmann model [29], we learn that a net neutral core with ions and slow

electrons exists during the Coulomb explosion phase, while ions in outer shells escape quickly

from the cluster. This is a good indication for imaging experiments. The neutral core could

be the measured sample, while the outer shell is sacrificed as a tamper layer proposed in
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[53, 69, 70]. The structure, made of light elements, possibly survives during an intense

pulse at the sacrifice of the tamper layer. The idea has been tested by recent experiments

on doped noble gas clusters [56]. The diffraction effect from the proposed tamper layer in

single particle imaging is discussed in § 5.



Chapter 2

Imaging of atomic clusters

2.1 Introduction

Ultrafast imaging techniques are useful tools to study the dynamics of molecular and con-

densed matter systems. Currently, most dynamical information is deduced from spec-

troscopy experiments [71], for example, the time scale of photoelectrons escaping from con-

duction band of metal [72]. In the preceding chapter, the measured spectra of ions and

photoelectrons measured were used for discussions and comparison with simulations of the

dynamics within atomic clusters (noble gas clusters) irradiated by FELs. The spectroscopy

experiments revealed an integration of the dynamics over temporal and spatial dimensions.

In contrast, imaging techniques enable us to see structural changes in the irradiated clusters

in real space and real time. In this chapter, coherent diffractive imaging (CDI) with FELs

is applied to extend the study of dynamics within irradiated clusters.

CDI is an extension of X-ray crystallography. In contrast to requiring identical copies

of a cell on a periodic lattice (known as a crystal), CDI images just single cell (or particle).

Hence, it has an alternative name: single particle imaging (SPI). One of its most important

features is that it is lensless between sample and detector, which enables CDI to avoid the

diffraction limit of X-ray microscopes based on the use of objective lenses. It was firstly

demonstrated with a synchrotron source [73], and has been widely applied in last ten years,

such as: deformation of a nanocrystal [74], a 3D artificial structure [75], a freeze-dried yeast

cell [76, 77] and a 3D human chromosome [78]. Even a table-top laser (high harmonic

generation) produces enough photons that can be used as a CDI source [79]. A remarkable

spatial resolution of around 5 nm was achieved by CDI using a synchrotron X-ray source

[80].

The emergence of FELs, such as FLASH [1], opens new opportunities to apply CDI.

The high coherence [81] and extreme intensity of FELs potentially enables CDI to achieve

a higher spatial resolution than at synchrotron sources. The FEL pulses are so intense that

48



CHAPTER 2. IMAGING OF ATOMIC CLUSTERS 49

they can destroy most specimens; however, the pulses are ultrashort on the femtosecond

scale, which enables FELs to image an object before its destruction [54]. The resolution

currently achieved by CDI with FELs such as FLASH is mainly limited by the available

wavelength range which is in the soft X-ray regime [82]. Using new hard X-ray FEL facilities

such as LCLS [83] in future, CDI may reach spatial resolution at the atomic scale [71].

However, dynamics simulations [44, 58, 57, 84, 70] show that the problem of radiation

damage during FEL imaging pulses is prominent when CDI enters the range of atomic

resolution. It limits high resolution CDI with FELs, especially for biological particles (such

as cells, macromolecules and proteins) which are of great interest in structural biology. In

biological samples, the main component elements, such as carbon, are light and very sensitive

to the radiation damage. Furthermore, there is the significant problem of low signal-to-noise

ratio signals in X-ray CDI of biological samples, which will be discussed in the next chapter.

The latter problem limits the direct experimental study of the radiation damage in CDI of

single biological particles.

The effect of radiation damage of polystyrene nano-balls within picoseconds has been

investigated through the time-delay holography [85]. The single FEL pulses traverse the

balls triggering a damage, and are reflected back onto the balls by a mirror to probe the

damage. An expansion of 6 nm within 350 fs was observed in the 140-nm-diameter balls

with 25 fs exposure to single pulses of soft X-ray FELs at 1014 W/cm2 . Since the elemental

constitution in polystyrene is carbon and hydrogen, the observation is meaningful for imaging

biological samples. The arrangement of these spherical particles on single imaging windows

was applied in these experiments to increase the diffraction signals, which are averaged

effects over individual particles. The sizes of the balls, which serve as starting points of

reference sources, limit the accuracy of the measured expansions in a holographic point of

view. Hence, further experimental study is necessary to understand the details of the effect

of radiation damage in single particles. It is critical to clarify the imaging limit of high

resolution CDI.

Atomic clusters, as a simple model of molecules, are unique objects for study of damage

dynamics in CDI experiments with FELs. Noble atoms such as xenon have a much stronger

photon-scattering ability than carbon. This enables CDI to image single atomic clusters

of nanometer sizes. Xenon atoms are also much heavier than carbon, and this leads to

a slow damaging expansion, which is easier for imaging experiments to follow. Atomic

clusters have a loose-bound structure and a quasi-uniform density, which simplifies the

model of chemical bounds or conformation motions inside biological particles. The model

simplifications improve computational capability of the dynamics simulations, which may

explain and extend the CDI results from irradiated atomic clusters. The CDI study of single

atomic clusters may reveal important features in the damage dynamics of single bio-particles

with FEL radiation, which is difficult to realize in CDI experiments. Moreover, it covers

many other interests, for example, on the interaction between solids and FELs due to the

solid-like density in central area of a cluster (Ref. [45], p. 268).
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Figure 2.1: Sketch of Young’s double-slit experiment. It includes all elements of CDI: coherent

light wave (from the point source), 1D object of single spatial frequency (the double-slit), and

proper sampling on the screen (to see the periodic pattern in the far field). The periodic pattern

is connected to the object by a direct Fourier transform. The challenge for CDI is to determine

the structure of the object from the measured pattern in which the diffracted wave’s intensity is

recorded while its accompanying phase is not.

The first single-shot CDI experiments of atomic clusters with sizes of around 100 nm

were performed at FLASH. This chapter presents the analysis of the measured diffraction

pattern data. As a primary step in the broader context of radiation damage study, the

analysis is focused on reliable reconstructions of the cluster objects from the CDI data.

The diffraction theory and related methods are applied to extract interesting information

from the pattern data. In the single-shot imaging experiments, the effects of radiation

damage, photon transmission and diffraction are coupled together in the irradiated clusters.

The separation of the radiation damage effect is challenging and is very interesting for

further study on complicated dynamics of radiation damage with FELs. This work was

directed by Prof . Henry Chapman at Center for Free-Electron Laser Science (CFEL), and

was in collaboration with Prof . Thomas Möller’s experimental group in Technishe Universtät

Berlin.

This chapter is organized as follows. § 2.2 introduces the formulation, the phase problem

and its solution in CDI. § 2.3 presents an analysis of the experimental diffraction pattern

data. Then detailed discussions follow in § 2.4, and finally a short summary is presented in

§ 2.5.

2.2 Coherent diffraction imaging

The phenomenon of coherent diffraction has a long history of revealing the nature of light

waves. It is demonstrated by the famous Young’s double-slit experiment, and is well de-

scribed by diffraction theory. The experiment contains all of the elements of today’s CDI

experiments (Fig. 2.1), but the related physical problems are quite different. The former is
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(a) (b)

Figure 2.2: Geometries of light wave propagation and its measurement. (a) light wave propagates

from a 2D aperture A in z = 0 plane to z plane. The aperture is transparent inside and totally

opaque outside. The light wave at (x, y) in z plane is sum of propagations from each point (x′, y′)

inside the aperture with relative distance r. (b) A pixel (rp) on the detector observes intensity of a

light wave forward scattered by a small aperture/object (comparing to pixel size of the detector) at

scattering angle θp . Its wave vector is k before being scattered and k′ after scattered. The Ewald

sphere is a sphere with radius |k| . The outgoing wave vector satisfies |k′| = |k| in elastic scattering,

and is on the Ewald sphere. The two geometries are connected by the scattering angle θp .

the forward problem to explain diffraction patterns from the structure of an illuminated ob-

ject; the latter is an inverse problem to solve object’s structure from the measured patterns.

The idea of CDI was firstly mentioned by David Sayre (1952) [86] with the inspiration of

introducing the Nyquist-Shannon sampling theorem [87] into X-ray crystallography. Impor-

tant progress followed (1970s) in the algorithms helping to solve the phase problem in CDI

[88, 89]. The CDI method was then experimentally demonstrated in 1999 [73].

In this section, a formulation of diffraction theory in the far field is introduced to un-

derstand the formulas of CDI, which is important for the discussions in § 2.4. The phase

problem in CDI and its solutions are then briefly presented and further details may be found

in the next section of data analysis.

2.2.1 Far field diffraction

Light, as a classical electromagnetic wave in media, is described by Maxwell’s equations.

Analytic vector solutions to these equations are difficult to obtain except in some cases

of regular boundary conditions. For instance, the solution of light scattered by a uniform

sphere is given by Mie theory (see § 2.4.3). In general, an approximation of a scalar wave

function is employed when the spatial scale in a problem is much larger than the wavelength

of light. Then Maxwell’s equations can be reduced to scalar forms, which are more easily

manipulated.

In the scalar approximation a light wave U(x, y, z) propagating from aperture A in the

z = 0 plane to z plane, as shown in Fig.2.2a, follows the Huygens-Fresnel principle (Ref. [90],
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§ 4.1.2):

U(x, y, z) =
1

iλ

∫

A

U(x′, y′, 0)
ei

2π
λ
r

r

(z
r

)
dx′dy′ , (2.1)

where λ is the wavelength, and the point-to-point distance r =
√

(x− x′)2 + (y − y′)2 + z2 ≫
λ . The light wave at each point in the aperture propagates as spherical wave ei

2π
λ
r/r with

component contribution along propagation direction (i.e. z/r factor). To simplify this equa-

tion, we assume the Fresnel approximation, i.e. the first order of the Taylor expansion about

r = z(1 + ρ2/2z2 + · · · ) , where ρ =
√

(x− x′)2 + (y − y′)2 ≪ z. The condition ρ ≪ z re-

quires that the propagation is in forward direction within small divergent angle. This leads

to the Fresnel diffraction formula:

U(x, y, z) =
ei

2πz
λ

izλ

∫

A

U(x′, y′, 0)ei
π

zλ
[(x−x′)2+(y−y′)2] dx′dy′ . (2.2)

The denominator r2 in the integral (Eq. 2.1) is approximated by z2 . In the limit of the

far field approximation: z ≫ r′2/λ with r′2 = x′2 + y′2 , the r′2-related phase term in the

exponent is neligible1. Hence, we obtain the Fraunhofer diffraction formula:

U(x, y, z) =
ei

2πz
λ

izλ
ei

π
zλ

(x2+y2)

∫

A

U(x′, y′, 0)e−i
2π
zλ

(xx′+yy′) dx′dy′ . (2.3)

Elastic scattering is implicitly assumed in this diffraction theory: there is no change of wave

number between incoming and outgoing waves, i.e. |k′| = |k| = 2π/λ ≡ k . All outgoing

wave vectors constitute a sphere in reciprocal space, called the Ewald sphere (see Fig.2.2b).

We are interested only in the small angle region of the forward scattering where the Fresnel

approximation in Eq. (2.2,2.3) is valid. With the paraxial approximation in this region, the

wave-vector transfer q ≡ k′ − k can be written as (see Fig.2.2b):

qx,y = k′x,y = k sin θp ≃ k tan θp = krp/z ∝ rp ,

qz = −k(1 − cos θp) = −2k sin2(θp/2) ≃ −kθ2p/2 ≃ −q2x,y/2k , or

qz =
√
k2 − q2x,y − k ≃ k(1 − q2x,y/2k

2) − k = −q2x,y/2k .

The subscript p denotes a pixel, and rp denotes the radial position of this pixel on the

detector. Note that qz is negative. The second phase term in Eq.(2.3) becomes:

ik(x2 + y2)/2z = ikz tan2(θp)/2 ≃ ikzθ2p/2 ≃ −iqzz .

Therefore, Eq.(2.3) can be rewritten in a simple form as:

U(qx, qy, z) =
eikz

izλ
e−iqzz

∫

A

U(x′, y′, 0)e−i(qxx
′+qyy

′) dx′dy′ . (2.4)

1In the Fresnel diffraction regime (z ≤ r′2max/λ), the r′2-related phase term is not negligible. The following

derivations remain useful in this case [91]. A technique is to treat U(x′, y′, 0) eiπr′2/zλ as U(x′, y′, 0) in

Eq. (2.2), and to separate the phase term later to obtain the true wavefield when needed.
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The integral on right-hand side turns into an exact 2D Fourier transform of the aperture A .

The first phase term before the integral, eikz , is x-y (the detector) plane independent, and

therefore, is a trivial term. The second phase term, e−iqzz , depends on the x-y plane, and

is a standard wave propagator along the z-direction in free space2. It is responsible for the

defocus phenomenon which will be discussed later in § 2.4.1. It is also used for simulations

of wave propagation in the multislice method, which is discussed in § 2.4.4. The two phase

terms vanish in the measured diffraction intensity |U(x, y, z)|2 .

In Fig. 2.2b, a pixel, rp , on the detector corresponds to |q| = 2k sin(θp/2) on the Ewald

sphere, not to its component qx,y = k sin θp , which is equal to |q| only in the paraxial

approximation: sin(θp/2) ≃ (sin θp)/2 . Therefore, the measured intensity may contain some

limited qz information about an experimental aperture due to the curvature of the Ewald

sphere at large scattering angle3. Furthermore, the pixel rp measures the z-component of

the diffraction intensity at its position, and needs a correction factor of 1/ cosθp at large θp .

Eq. (2.4) may be generalized to cases of 2D or 3D objects. According to Babinet’s prin-

ciple (Ref. [94], § 2.3.18), a 2D opaque object, complementary to the aperture A , produces

the same diffracted intensity except at the origin. So far, we have discussed only the pure

diffraction effect (from sharp border of a 2D aperture). For further generalization that takes

into account the transmission of light in an object, we need to introduce some results from

scattering theory.

In scattering theory, an incident plane wave ψ(i)(r) = eiki·r elastically scattered by a

potential ϕ(r) is described by the scalar wave equation:

(∇2 + k2)ψ(r) = −4πϕ(r)ψ(r) . (2.5)

A general solution to this differential equation is (Ref. [95], § 13.1.1)

ψ(r) = ψ(i)(r) + ψ(s)(r) = ψ(i)(r) +

∫
G(r − r′)ϕ(r′)ψ(r′)dr′ , (2.6)

with ψ(s) the scattered wave and G(r, r′) = eik|r−r′|/|r− r′| the Green’s function. The

solution may be expanded in iterative form as the Born series:

ψ(s)(r) = ψ(1)(r) + ψ(2)(r) + · · ·

=

∫
G(r, r′)ϕ(r′)ψ(i)(r′)dr′ +

∫
G(r, r′)ϕ(r′)ψ(1)(r′)dr′ + · · · (2.7)

2In the paraxial (or Fresnel) approximation, this equals: (i) eik(x2+y2)/2z , which is called the Fresnel

propagator (in real space); or (ii) e−iz(q2
x+q2

y)/2k when moved to the left-hand side of Eq. (2.4) (in reciprocal

space). The latter is the main part of the Fourier transform of (i) (refer to Eq. 2.18). Note that the wave

propagates from z1 = 0 to z2 = z and the z can be substituted for ∆z = z2 − z1 .
3Miao et al. [92] suggested a method, so-called “ankylography”, to recover the qz information by mapping

a single diffraction pattern from the detector plane to the Ewald sphere. Both the non-uniform sampling and

some constraints used in the literature were not well proved [93]. Extraction of the limited qz information

is still an open question.
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The n-order contribution ψ(n) , derived from n − 1 order by propagation with the Green

function, considers the effect of the light being scattered n times. If the scattering potential

is very weak, i.e. single scattering process dominates, the Born series except the first order

can be omitted. This is known as the first Born approximation. Its validity is limited by an

estimated maximum phase shift [96]:

ka ·
∣∣∣∣
4πϕ(r)

k2

∣∣∣∣
max

< 2πc , (2.8)

where a is the typical radius of the potential and c is a constant around 0.2. In the far field

(|r| ≫ |r′|), |r − r′| ≃ r − r̂ · r′ , the scattered wave in the Born approximation becomes

ψ(s)(r) =
eikr

r

∫
ϕ(r′)eiq·r

′

dr′ , (2.9)

with q = kr̂ − ki ≡ ks − ki . The integral on the right-hand side, called the scattering

amplitude, is a Fourier transform of the potential. When the light wave is scattered by a

weak 3D object (weak means transparent to the light with small phase variance as it will

be defined soon), the amplitude of the potential function ϕ(r) is proportional to its electron

density. Within the range of small angle forward scattering (paraxial approximation), the

factor of the spherical wave before the integral has the form:

eikr

r
≃ 1

z
eikz(1+ρ

2/2z2) ≃ ikz

z
eikzθ

2
p/2 ≃ ikz

z
e−iqzz .

If the object is thin in the z direction, the Fourier transform in Eq. (2.9) can be reduced to

a 2D representation:

ψ(s)(qx, qy, z) =
eikz

z
e−iqzz

∫
ϕ̃(x′, y′)ei(qxx

′+qyy
′)dx′dy′ , (2.10)

where ϕ̃(x′, y′) =
∫
eiqzz

′

ϕ(r′)dz′ is the 2D transmission projection of the weak object. For

a pure 2D object ϕ(x′, y′) = ϕ(r′)δ(z′) , the equation (2.10) has exactly the same form as

Eq. (2.4). Note that Eq. (2.9) is not limited by the requirement of small angle scattering.

A 3D object may be regarded as a medium with the same volume that the incident plane

wave penetrates. This is described by the Helmholtz equation

(∇2 + n2k2)ψ = 0 , (2.11)

with the refractive index of the medium n = c/v =
√
εµ/ε0µ0 =

√
ε . If the dielectric

medium is homogenous, i.e. ε(r) = const. , the wave solution for the medium is simply

a planar wave: eink·r . This solution will be used for later discussion in § 2.4.2. If the

permittivity ε(r) is not spatially uniform, the equation can be solved as the scalar wave

equation Eq. (2.5) with

ϕ(r) =
k2

4π

(
n2(r) − 1

)
=
k2

4π
(ε(r) − 1) . (2.12)
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Note that the scalar wave approximation in Eq. (2.11) implicitly assumes (Ref. [95], § 13.1.1):

the variation of ε(r) is relatively flat on the scale of the wavelength. The complex index of

refraction n = 1−δ+ iβ ≡ 1+δn. For a weak object |δn| ≪ 1, n2 ≃ 1+2δn . The scattering

potential

ϕ(r) =
k2

2π
δn =

k2

2π
(−δ(r) + iβ(r)) . (2.13)

corresponds to a complex object. The real part leads to a phase shift of the incident wave,

and the imaginary part to absorption. When the size condition derived from Eq. (2.8) is

satisfied,

a < a0 ≡ λc

2|δn(r)|max
, (2.14)

the object is called optically thin (or weak), which is the requirement for the first Born

approximation. The condition is usually satisfied in the hard X-ray regime where relative

refractive index of matter is quite small.

For an optically thick object, the multiple scattering process is dominant, and structural

information about the object which the scattered photons carry is no longer straightforward.

Instead of the object is the exit surface wave of the illuminating light after interaction with

the object. This occurs to objects with strong phase variance, also to those with strong

absorption where light may not penetrate. This situation occurs often in the soft X-ray

regime where absorption edges of atoms are often probed. A simulation tool of the exit

surface wave is the multislice method, which assumes a single scattering process is dominant

in each slice of the object along the illumination direction. This assumption is valid when

the thickness of each slice approaches the infinitely small. In the current work, the relevant

wavelength is in the soft X-ray regime (13.8 nm). Further datails about the multislice

method are discussed in § 2.4.4.

This section has shown the formulas: Eq. (2.4) for 2D and Eq. (2.9) for 3D, which are

derived for the coherent diffraction imaging in the far field. A Fourier transform connects the

object (or exit surface wave) in real space to the diffracted intensity measured in reciprocal

space. The assumption of plane waves in their derivations requires a monochromatic and

coherent light source4, which can be extended to matterwaves such as electron diffraction

and neutron diffraction. This work is focused on CDI with an FEL source.

2.2.2 Phase problem

Since only the photon intensity is recorded by a detector, such as a charge-coupled device

(CCD), the phase information contained in the wavefront at the detector plane is lost5,

4Polarization of the light is not necessary. The Thomson scattering from a single electron contributes a

polarization factor to the scattered intensity: cos2 θp for linear polarization perpendicular to the beam; 1

for parallel to the beam; and (1+cos2 θp)/2 for the unpolarized case.
5Some imaging techniques like holography or grating interferometry, with the benefit of a known structure

reference (such as a point, line, or phase grating), can encode the phase information of objects into the

measured intensity on a detector. These techniques are beyond the scope of this work.
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and hence the object cannot be recovered directly by an inverse Fourier transform of the

measured data, as indicated by Eq. (2.4,2.9). This problem is called the Phase Problem. The

missing phases could be retrieved if the measured intensities are correctly sampled [97, 98].

This is related to the following sampling theorem.

The Nyquist-Shannon sampling theorem [87] states that a 1D signal with maximum

frequency B can be completely determined by sampling at the Nyquist rate (2B) or larger. If

we use sampling rate 2B′ < 2B , then the information at high frequencies f > B′ will be lost,

and be transfered into artificial low frequencies, known as “aliasing”. It is straightforward

to extend this treatment to the 2D or 3D case: the minimum sampling factor (sampling rate

over maximum frequency) is two for each dimension.

Sayre [86, 99] pointed out the possibility to image a single unit cell in crystallography

through the proper sampling of a continuous diffraction intensity in reciprocal space. Assume

that a 2D complex object has a size of M ×M pixels, corresponding to 2M2 independent

real elements. In CDI, its diffraction pattern is measured with resolution size N ×N . The

ratio of pattern size over object size α = N2/M2 is called the oversampling factor. This

factor may be estimated directly from a diffraction pattern by observing its inverse Fourier

transform (i.e. autocorrelation) [100]. The phase problem, in a sense, is a problem to solve

2M2 independent variables of real values from N2 real equations indicated by the Fourier

transform in Eq.(2.4). For the problem to be solvable, an overdetermining condition α > 2

is necessary6. This oversampling factor is important in the phasing process. Normally, a

pattern sampled with the Nyquist rate satisfies the oversampling condition (α = 2n for n-D

case). If a diffraction pattern is undersampled, it is still possible to retrieve phases after

interpolating the measured pattern to a larger resolution size required7 [98]. However, such

a phase retrieval based on the undersampled pattern may induce some unreliable features

in a reconstructed object due to the missing of low spatial frequencies (i.e. high frequencies

in reciprocal space), as the sampling theorem says8.

The phase problem is to solve an object from measured intensity pattern. It is an ill-posed

inverse problem in diffraction theory, because it has an unknown number of independent vari-

ables (i.e. M2) and no unique solution (some global uncertain degrees, refer to § 2.3.2). A

solution to the analogical (and nonlinear) equations mentioned above might be mathemat-

ically acceptable, but should be physically unacceptable due to the noises presented in the

measurements [101]. A physical solution is always an approximate one and requires sufficient

6In practice, it depends on size of the object support, missing data in beamstop or pattern defects, etc.

On the other hand, some global degrees of freedom of reconstructed object are uncertain, such as constant

phase, or conjugation, which will be discussed later.
7The interpolation does not change maximum scattering angle in the pattern, which determines the

object resolution in real space (i.e. M2 is unchanged). Therefore, the oversampling ratio α can increase in

this way.
8The cases with oversampling ratios less than 2n (but larger than 2) for n-D objects have been discussed

in [97]. It may be possible for certain distribution of spatial frequency in 2D or 3D objects. It could be

interesting to compare consistence of information contained in a diffraction pattern recorded with different

oversampling ratios.
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Figure 2.3: Basic iterative algorithm for phase retrieval. Constraints in real space are: object

support, real and positive values of object, etc. In reciprocal space, generating phases are kept, but

amplitudes are replaced by the measured ones as constraints.

and consistent information contained in the pattern. The pattern should be of high signal-

to-noise ratio and proper oversampling. The prior knowledge or constraints from physical

considerations do help to approach the physical solution. The methods to solve the phase

problem are introduced in the following part.

2.2.3 Phasing method

To retrieve the missing phases is a nonlinear optimization problem. It may be solved through

an iterative method: to find out the solution that best fits all constraints in both direct and

Fourier space.

Before introducing the method, the meanings of some items will be clarified. In following

discussions, the phases of real space and reciprocal space are used instead of direct space and

Fourier space respectively. A support of an object is a binary matrix defining which pixel

belongs to the object. It is a physical constraint in real space and can be pre-defined or

achieved from an algorithm which will be mentioned soon. A beamstop is zero-intensity

area in centre of a measured diffraction pattern where the incident laser beam is stopped to

protect the detector. A mask is a binary matrix defining which pixel is reliable in the pattern.

It defines where the constraint of measured intensity should be applied in reciprocal space.

In numerical processing of images, the discrete Fourier transform (DFT) is used instead of

its continuous form in the formulation above.

The iterative method, as illustrated in Fig.2.2.3, works back and forth in real and recip-

rocal space and approaches the solution that best satisfies all defined constraints. The basic

algorithm is:

(1) apply random phases to the measured diffraction amplitude;

(2) generate corresponding complex-value object via inverse DFT of the new complex-

value pattern;
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(3) apply constraints in real space: reduce nonzero pixels outside object support to zero;

or reduce imaginary part or negative values inside object (depending on type of object

in problem), and so on;

(4) generate complex-value pattern via DFT of the new object after being constrained;

(5) apply modulus constraints in reciprocal space: replace the amplitude with measured

one in masked (reliable) pixels, and keep the phases for next iteration;

(6) repeat steps (2-5) to obtain proper phasing results within acceptable errors.

There are some detailed algorithms used in the step (3): Error Reduction (ER) [88],

Hybrid Input-Output (HIO)[89], Relaxed Averaged Alternating Reflectors (RAAR) [102].

These algorithms only present different ways to reduce the pixels that dissatisfy support

constraint in real space:

gER

n+1(x) =





P

M
gn(x) , x ∈ S ;

0 , x /∈ S .
(2.15)

gHIO

n+1(x) =




P

M
gn(x) , x ∈ S ;

(I − βP
M

) gn(x) , x /∈ S .
(2.16)

gRAAR

n+1 (x) =




P

M
gn(x) , x ∈ S ;

[−βI + (1 − 2β)P
M

] gn(x) , x /∈ S .
(2.17)

The gn(x) is an estimated object at the nth iteration, S the support, and β a feedback

parameter (with an experience value of around 0.9). The operator P
M

≡ F−1P
M
F , with

Fourier transform F , is the projection operator in real space, after applying the modulus

constraint P
M

in reciprocal space. In this work, both algorithms HIO and RAAR are applied

separately in combination with ER (one ER iteration every 20 iterations of HIO/RAAR).

There are some other similar algorithms that are not used in this work: Hybrid Projection

Reflection (HPR) [103], Charge Flipping (CF) [104, 105] and Difference Map (DM) [106].

The convergence behavior of all these algorithms during iterations is quite different and

depends on problems [107].

Usually the support constraint of an object is fixed during iterations. It can be estimated

from the autocorrelation image, or a priori knowledge of the object’s shape. The estimated

support may be loose or inaccurate, and limits the reconstruction quality (e.g. defocused

object is obtained as discussed in § 2.4.1).

The “Shrinkwrap” algorithm [108] iteratively generates a tight support. It begins with an

initial support, estimated from the autocorrelation images (direct inverse Fourier transform
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of diffraction pattern), or even a simple rectangular support. During the iterative procedure,

a new support is estimated by the amplitude of a new object above a constant ratio threshold,

and updated every certain numbers of phasing iterations. To generate the new support, the

amplitude is blurred through a convolution with a Gaussian kernel which has, typically, a

decreasing width as the number of iterations increases. The support may gradually shrink

to a compact and stable one. This tight support can be used as a fixed support for further

fine reconstructions.

The support generated from this process depends on the quality of the pattern data.

Information about the shape of an object could be lost due to a large beamstop or very

noisy pixels at area of low spatial frequency. Its advantage is to avoid the requirement of a

prior knowledge of the object shape, and to improve the reconstruction quality. However,

this becomes difficult in the case of an object with low border-contrast or a dilute density.

The solutions obtained from the iterative method are not unique. There are some global

uncertainties due to the limited information in the diffraction patterns measured (see § 2.3.2).

Furthermore, some solutions may correspond to local minimums to all constraints, and there-

fore, they are not the best solutions. It is difficult to define the global minimum for a solution

in such a complex and nonlinear phase space. A practical way is to compare the solutions

from many independent phase retrievals. Reliable solutions can be achieved statistically

by average of these independent phasing results with respective confidences. In this post-

processing, the trivial inconsistencies among independent results need to be removed before

a meaningful average, as discussed in § 2.3.2. Finally, the reconstructed object images are

obtained through inverse Fourier transform of the retrieved complex diffraction pattern.

Iterative methods to solve the phase problem have been applied successfully in many

important single particle imaging experiments [73, 77, 75, 54, 78].

2.3 Imaging of atomic clusters

2.3.1 Imaging experiments

The first cluster imaging experiments have been performed at the FLASH facility at DESY

by Prof . T . Möller and collaborators, who kindly provided the unpublished data to the

author for the purposes of this analysis. The atomic clusters, the size of which is controlled

by gas pressure, were injected into the focus area of a linearly-polarized Free Electron Laser

(FEL) beam (Fig.2.4). After each FEL pulse, the diffraction signals scattered from the

clusters were recorded by a detection system. In the detection system, a microchannel plate

(MCP) and a phosphor screen were applied to transfer the recorded VUV photon signals into

visible light which a charge-coupled device (CCD) camera can detect. The FEL pulses were

so intense that the camera pixels aligned with the direct beam usually needed a beamstop

on front for protection. In Fig.2.4, a planar mirror with a small central hole was applied to

protect the CCD camera, and the beam passing the hole was stopped by a beam dump.
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Figure 2.4: Setup of the cluster imaging experiments (illustration provided by T . Möller). The

single VUV FEL pulses interact with the incoming beam of cluster objects. The signals of forward

scattered photons are transfered into visible light before being recorded by the CCD camera.

Table 2.1: Parameters for the single-shot imaging experiments.

gas cluster xenon

cluster diameter 50−150 nm

wavelength 13.8 nm

pulse duration 10 fs

focus intensity 1012 − 1014 W/cm2

sample-detector distance 23.58 mm

size of a pixel on detector 0.124 mm

number of pixels on detector 696×520
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(a) (b)

Figure 2.5: The quality of the diffraction pattern data: (a) q-averaged pattern intensity with

minimum value subtracted, and (b) a central profile of cluster 571.

The parameters used in the experiments are listed in Tab. 2.1. The sizes of cluster

objects are 3 to 11 times as long as the FEL wavelength which is 13.8 nm. The single pulses

are ultrashort (ten femtoseconds) and very intense (1012−14 W/cm2) within focus spot of

tens micrometers. The maximum scattering angle in the measurements is 48◦ at middle

edge of the detector. The diffraction patterns measured in the experiments are of good

quality. The number of clearly-defined fringes can be up to 8 (cluster 571) as shown in

Fig. 2.5(a) and Fig. 2.7. These intact fringes contain information for the reconstruction of

the objects. However, from the central profile of a single pattern in Fig.2.5(b), we can see a

very large background, almost 90% , which may come from the complex detection system.

After subtracting a background intensity estimated by the minimum value, as Fig. 2.5(a)

shows, the patterns have rare counts outside the radius of 100 pixels, corresponding to the

effective scattering angle of around 25◦ .

Here, only three typical patterns are chosen for reconstruction (Fig.2.7): cluster 571/940/

292. Since the effective scattering angle is small, the pattern size 420 × 420 is chosen for

cluster 571, and 340×340 for cluster 940/292. The oversampling ratios estimated from

autocorrelations in these cases are larger than ten in each dimension. This can be verified

from the pixel sizes of reconstructed objects (Fig. 2.12-2.14). The phasing method mentioned

in § 2.2.3 is applied to retrieve the phases of these patterns.

2.3.2 Phase retrieval process

This part will present several questions existed in the phasing processes of the chosen diffrac-

tion patterns. A complete phasing process in this work, as illustrated by a flowchart in

Fig. 2.6, generally includes following steps: (i) subtract background signals, and prepare a

mask for the diffraction pattern; (ii) determine the guess of initial object support from the

object autocorrelation (inverse Fourier transform of the diffraction pattern, and area of its

amplitude above a threshold is a rough guess of support, which is generally two times larger
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Figure 2.6: Flow chart of

a complete reconstruction pro-

cess for a diffraction pat-

tern. The independent re-

constructions are applied to

achieve a statistically reliable

result, which is described by

a phase retrieval transfer func-

tion (PRTF, see § 2.3.3). The

oval parts are discussed as

subtopics in the text.

than object in each direction due to the property of autocorrelation); (iii) use the iterative

phasing method and the “Shrinkwrap” algorithm to generate a tight support of object, and

probably need physical constraints to improve the support; (iv) use the iterative method

with the fine support fixed to retrieve phases for the diffraction pattern, many times and

independently; (v) average the independent phasing results to obtain a complex diffraction

pattern with statistical confidence, which is defined by a phase retrieval transfer function

(PRTF, see § 2.3.3); and (vi) the final reconstructed object is an inverse Fourier transform

of the complex diffraction pattern. Here, only specific issues in the steps (i, iii, v) are con-

cerned. These issues are presented as subtopics (see the ovals in the flowchart): (1) for step

(i); (2) for step (iii); and (3-5) for step (v).

Before the subtopics, a few words about the step (iv, v) will help to understand the

context of the (3-5). The strategy behind the two steps is to “sample” solution space (ran-

domly) by independent reconstructions, and obtain statistically best solution by averaging

over the “sampling points” (uniform) in solution space. The more the “sampling points”,

the more reliable the averaging solution. The independence in reconstructions is realized

through uncorrelated start points of initialized phase in the iterative method. Before av-

eraging over the independent phase results, some inconsistencies and uncertainties among

these phase results need to be identified. Otherwise, the average becomes meaningless. The



CHAPTER 2. IMAGING OF ATOMIC CLUSTERS 63

(a) (b) (c)

Figure 2.7: Diffraction patterns from cluster imaging experiments. (a-c) correspond to cluster

571/940/292 with background subtracted. Central holes are beamstops. Dashed black closed-curves

indicate unreliable area in the patterns.

(3-5) discuss the relevant inconsistencies. Some global degrees of freedom are still uncer-

tain: a overall constant phase, absolute position of object and conjugation state of object,

etc. These uncertainties lead to non-unique solutions in the complete phasing processes.

Fortunately, these uncertainties do not compromise the structural information about the

objects in the reconstruction results. The statistical confidence of the final phase result

after averaging is defined by PRTF in the next part.

(1) Pattern preparation

Signals from the experimental background may lead to the nonzero minimum in the

measured pattern (Fig.2.5b). The background that has to be subtracted can be estimated

by an additional measurement when beam is switched off (known as dark image), or simply

by the minimum value in the pattern (as used here). Due to the high laser intensity near

the beam axis, a beamstop is applied to avoid detector damage, and therefore there is no

photon counting in this pixel area. In some pixels, photon counting is probably saturated,

i.e. it exceeds the counting (dynamic) range, and is then not reliable. These pixel areas,

along with defect speckles or fringes, have to be excluded in a pattern mask, a binary matrix

which defines the reliable counting area (Fig.2.7). Since the effective scattering angle is small

(∼ 25◦), the scattering-angle-related corrections of the pattern intensity are not considered,

such as the linear polarization factor of FELs and component measurement on the detector,

which are mentioned in § 2.2.1.

(2) Unconstrained modes

In the step (iii), a problem of the unphysical modes appears in a reconstructed object,

which aims to generate a tight support. It comes from the limited constraints in reciprocal

space due to large size of beamstop. A Gaussian mode g(x) = e−x
2/2σ2

x in Fourier space
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becomes: (for simplify, only 1D formula is shown in following part.)

G(k) =

∫
g(x) eikx dx =

√
2πσxe

− k2

2
σ2

x ∝ e
− k2

2σ2
k , (2.18)

where σx ·σk = 1 . The Gaussian mode remains mainly in 1σ area of radius σx in real space

and σk in reciprocal space. During phasing iterations, the constraints of object support

and pattern mask work only on pixel area outside the object support in real space and the

beamstop in reciprocal space. When the support or beamstop is large, the Gaussian mode,

probably together with a finite number of higher-order harmonic modes, may survive under

the constraints. The eigenstates of these modes can be simulated given certain shapes of

the support and the beamstop [77]. In practice, the condition for the existing modes in 2σ

area can be estimated as9

Sx ·Bk &
2N

π
, (2.19)

with pixel radius of support Sx , pixel radius of beamstop Bk , and pattern resolution size

N × N . In our example of cluster 571 (Fig.2.8), Sx · Bk · π/2N ≃ 1.8 , the condition is

satisfied10. The cluster object may contains at least one unphysical Gaussian mode. Due to

the limit of constraints mentioned above, the weight coefficients of these unphysical modes in

a reconstructed object can be arbitrary, and mixed with ones which constitute the realistic

object. Hence, it is difficult to subtract all of the unphysical parts of the modes from the

phasing result. Authors in [77] suggested an artificial way to reduce such uncertainty by

minimizing the object variance from the complex average in the support. But a better

solution may be to include finer constraints from physical considerations.

Here, a priori knowledge is applied in order to avoid the unexpected modes. The atomic

clusters are optically thick, and only few photon penetrates through central part of a cluster

object. The amplitude nearby the object’s center should be close to zero, causing a ring

structure (see § 2.4.2). A central hole, with a size smaller than the expected ring structure

(Fig.2.8c), is added to the support obtained from the “Shrinkwrap” algorithm. The ring

structure of the support can significantly reduce the unphysical mode effect in the recon-

structions (Fig.2.12).

(3) Complex conjugation

This issue, together with following (4,5), is critical for meaningful average in the post-

phasing step (v). When an object is complex, its conjugation changes only the diffraction

9The condition results from σx · σk = 1 , and depends on the definition of Discrete Fourier Transform

(DFT). Usually, in the fft (Fast Fourier Transform) or fftw programs, its 1D form is defined as F (k) =
1
N

P

x
f(x) e−i2πkx/N . It corresponds to σx · σk = N/2π .

10It is possible to break the mode condition by cutting the pattern to low scattering angle, i.e. low

spatial resolution, and binning pixels to decrease oversampling rate; because Sx ∝ 1/dm = 2 sin(θm/2)/λ ∝

tan(θm/2) ∝ N , and Bk ∝ N (with dm maximum spatial resolution and θm maximum scattering angle).

But here it is impossible due to small number of pixels inside the object.



CHAPTER 2. IMAGING OF ATOMIC CLUSTERS 65

(a) (b) (c)

Figure 2.8: A reconstruction result of cluster 571 with modes. (a) object amplitude, containing

at least one Gauss mode. (b) object phase, which is almost flat. (c) modified support (white area)

with a priori knowledge to reduce possible modes. The size of the inner removed range is smaller

than the expected attenuation area indicated by the dashed circle. The reconstruction results based

on this new support are shown in Fig.2.12.

(a) (b)

Figure 2.9: Conjugation relation between two independent phasing results. (a) phase difference

between them: phase circle structure comes from 2π modulation, and corresponds to the doubled

single phasing result. (b) their phase average, equal to phase difference after conjugating one of

them.

phase, not the diffracted intensity, in reciprocal space. Therefore, diffraction patterns can-

not recognize if it is the object measured or its conjugation. The uncertainty of complex

conjugation permits a reconstruction result chosen as a reference without consideration of

its conjugation state. Retrieval phases in another independent reconstruction may be conju-

gated with the reference, as showed by the phase difference in Fig.2.9. The conjugation has

to be reduced before averaging with the reference. Practically, an additional point reflection

in real space is necessary before averaging the objects, because

g̃(x) ≡
∫
G(k)∗ eikxdk =

(∫
G(k) eik(−x)dk

)∗

= g(−x)∗ . (2.20)

The conjugation state of object is one of global uncertainties in the reconstructions.

(4) Phase vortices

In some cases, phase difference has a vortex structure centered at zero frequency (Fig.2.10).
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(a) (b) (c)

Figure 2.10: Vortex structure found in phase difference between independent phasing results. (a)

a phase difference with two left-hand vortices (i.e. phase jumps two times due to 2π modulo); (b)

an artificial phase with two right-hand vortices. (c) phase result after combining (a) with (b) by a

complex multiplication.

The vortex is a spiral structure with integer times of 2π in a phase matrix. The integer

corresponds to the number of vortices, which have two possible spiral directions (left- or

right-hand). In practice, this can be reduced by multiplying an artificial phase with the vor-

tex in the inverse direction. The structure might be related to the initialization of random

phases, and the constraints during phasing iterations. However, the questions, where the

structure comes from and how to describe it mathematically, are not fully understood [109].

In this work, a reconstructed object without vortex structure is chosen as a reference due

to its unphysical features (similar structure in real space) produced by the structure.

(5) Phase ramp

When an object g(x) is shifted by x0 pixels in object plane, with a constant phase δ, the

object in Fourier space

G̃(k) ≡
∫ [

g(x+ x0)e
iδ
]
e−ikxdx = ei(kx0+δ)G(k) . (2.21)

The phase shift along k pixel direction is linear, which is called “phase ramp” (Fig.2.11).

The phase ramp, i.e. position shift of the object and a constant phase, does not change

the measured intensity |G(x)|2 , and therefore, is uncertain in phasing process. In practice,

the centre of the object support should be shifted to centre of the reconstruction image11.

When overlap in an achievable accuracy of one pixel at least, two reconstructed objects may

have a discrepancy of phase ramp, of 2π at most, over whole image plane (i.e. i2πx · 1/N
in DFT). After averaging over many independent reconstructions, this phase discrepancy

caused by object shift of less one pixel can be significantly reduced. For small objects which

has a width of few pixels covered by the ramp, the phase discrepancy could be negligible.

11Sometimes the object centre has to be shifted to the corner of the image. It depends on the definition

of the origin in the Fourier transform program used. In the same way, the central shift of diffraction pattern

in the reciprocal space can cause phase ramp in the object (real space).
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(a) (b)

Figure 2.11: Phase ramp in a phase difference. (a) colorful strips show phase ramp due to the

relative shift of two objects in real space. (b) phase difference after adjusting position of one object

and subtracting the constant phase discrepancy. It becomes close to 0 (or 2π).

Therefore, higher-order (e.g. quadratic) correction [109] of this phase ramp within one-pixel

accuracy of object overlapping is not considered here.

2.3.3 Phasing results

This part will present the phasing results on the three diffraction patterns. Before it, the

definition of resolution in the results needs to be clarified. From the Bragg’s law, the perfect

resolution in real space for a diffraction pattern is

dm =
λ

2 sin(θm/2)
, (2.22)

where θm is maximum scattering angle defined by middle point on pattern edge. The differ-

ent resolution sizes are used: 420 × 420 for cluster 571, 340 × 340 for cluster 940/292.

The perfect resolution is: dm ≃17.0 nm and 19.3 nm respectively. The actual resolution in

reconstructed objects is smaller than this perfect one. The pixel size in real space is half of

dm due to sampling requirement for spatial frequencies. Reliability of the retrieved phases

may be described by phase retrieval transfer function:

PRTF =

〈
G(x, y)

|G(x, y)|

〉

n

, (2.23)

with x, y pixel indices in the patterns. Phases retrieved in the n independent reconstructions

are averaged. If the phase of one pixel varies randomly, then the modulus of the complex

average on this pixel is zero; if all phases are same, it becomes one. The PRTF matrix

marks reliable phases with corresponding confidences at each pattern pixel. Its dependence

on spatial frequency q is one of effective ways to define the resolution limit in reconstructions.

The phasing results are briefly listed below. The discussions in detail on these results

are presented in the next section. Note that the definition of spatial frequency is q = 1/d

in Fig. 2.15. It uses the same convention with k = 1/λ , instead of k = 2π/λ used in all

formulas.



CHAPTER 2. IMAGING OF ATOMIC CLUSTERS 68

(a) (b)

(c) (d)

Figure 2.12: Averaged results of cluster 571 reconstructions. There were 100 independent

reconstructions performed. (a) object amplitude, the size is about 370 nm in diameter. (b) object

phase, phase shift in the object is ∼ 90◦ . (c) diffraction pattern data, the minimum intensity has

been shifted to zero. (d) PRTF matrix, that shows the reliability of retrieval phases.
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(a) (b)

(c) (d)

Figure 2.13: Averaged results of cluster 940 reconstructions. 300 independent reconstructions

were performed. (a) object amplitude, the size is about 90 nm in diameter. (b) object phase, phase

shift in the object is less than 10◦. (c) diffraction pattern data. (d) PRTF matrix.

(a) (b)

(c) (d)

Figure 2.14: Averaged results of cluster 292 reconstructions. 300 independent reconstructions

were performed. (a) object amplitude, two separate clusters stay on different object planes. (b)

object phase, phase shift in the big one is ∼ 10◦. (c) diffraction pattern data. (d) PRTF matrix.
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Figure 2.15: The q-averaged PRTF to show resolution limits in the reconstructions. The resolution

limits is estimated to be around 25 nm (at q = 0.04 nm−1 , convention see text).

Cluster 571 (Fig.2.12)

The fixed support with ring structure (Fig.2.8c) is used for about 100 independent recon-

structions. From the average of these reconstructions, the irregular ring shape of the cluster

can be seen (see Fig. 2.18 for details of the ring structure). The cluster image size is about

370 nm in diameter. The gradual phase shift can be observed on the ring structure. The

total phase shift is estimated to be larger than 90◦ . The PRTF function shows the reliable

phase retrieval that can reach 7th fringe. The resolution limit is about 25 nm (Fig.2.15).

Cluster 940 (Fig.2.13)

In the support of this object, only one central pixel is removed to avoid unphysical modes,

while the hole in the reconstructed object is 3 pixels large. The cluster image size is about

90 nm. The ring structure with such a small hole indicates that the penetration length of

the FELs in the clusters could be less than the cluster size. The object phase is quite flat,

and the shift is less than 10◦ . The PRTF function shows that the resolution limit is about

23 nm (Fig.2.15).

Cluster 292 (Fig.2.14)

In this case, the image of two separate clusters were reconstructed. Since the objects

have only a few pixels, it is hard to apply ring supports. The big cluster has image size of

about 70 nm, while the small cluster has image size of about 30 nm. The phase shift for the

big one is above 10◦ , and for the other one much less than 10◦ . The PRTF function shows

that the resolution limit is about 26 nm (Fig.2.15). The small cluster could be difficult to
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observe at this resolution limit without the presence of the big cluster12.

2.4 Discussions

2.4.1 Defocus in cluster 292

Coherent diffraction imaging is lensless. The focus problem is directly related to the phase

retrieval in reciprocal space. An object out of focus has loose support rather than its focus

(tight) support. In reverse, the constraint of such loose support during phasing process leads

to a defocus problem. This problem can be avoid by using tight support achieved through

“Shinkwrap” algorithm. The defocus problem also occurs in case of two or more objects,

which are in different object planes with distances much larger than the focus length. It

is impossible to focus all objects at one time. This situation had been verified by both

simulations and experiments in [111, 75]. There are two separate objects in cluster 292.

It is interesting to determine if both of them are in same object plane13.

Looking back to Eq. (2.4), it may be rewritten as:

F (z) · eiqzzU(qx, qy, z) =

∫
U(x′, y′, 0)e−i(qxx

′+qyy
′) dx′dy′ , (2.24)

where factor F (z) = e−ikz/izλ is a trivial constant in qx-qy or x′-y′ plane, and can be

neglected in this problem. The left-hand side of the equation is what is obtained in phasing

process. The wave propagator eiqzz , which only contributes to retrieval phase, is responsible

for the defocus problem. A small shift, −δz , of the object’s focus plane along z axis is equal

to a δz shift in the propagator on detector plane. The depth of focus can be defined at

maximum phase shift of π/2 in the propagator:

z
f

=
π/2

|qz|max
=

λ

4(1 − cos θm)
, (2.25)

with θm the maximum scattering angle detected. In this work, this value is estimated to be

around 10 nm, much smaller than the cluster sizes.

There is a practical way to find the focus plane: propagate the exit surface wave of

an object and the position of its tightest shape is the focus plane. The propagation of the

reconstructed exit surface wave from z0 to z0−δz follows a convolution with the propagator:

g(x)|z
0
−δz = F−1

{
F
{
g

0
(x)|z

0

}
· eiqzδz

}
, (2.26)

where F is the Fourier transform operator. Note that the propagator works in reciprocal

space. In case of many objects in a 2D reconstruction, the focus plane for each object can

be figured out by this method. However, it does not mean that 3D information of each

12A similar situation on biomolecule imaging has been discussed by T. Shintake [110].
13The cases of cluster 571/940 have no defocus problem due to the tight supports used. Therefore, the

calculated propagation of the exit surface waves in the two cases is not presented.
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(a) (b)

Figure 2.16: Estimation of defocus length in cluster 292. Two horizontal profile lines, with

length 25 pixels cross center positions: (a) of the big cluster and (b) the small one, are chosen to

reveal propagations. The results for both real part (Left) and imaginary (Right) in each case are

showed with interpolation of the 25 pixels. The color mapping is linear and similar to Fig.2.14a.

The white lines indicate the focus planes. Distance between two focus planes is about 700 nm. The

scale bar is 100 nm.

Figure 2.17: Estimated geometry of objects in cluster 292. The distance between two objects

in y direction is estimated to be 20 nm, not presented here. Note that the clusters are assumed to

be spherical in z direction. The position geometry of objects may have a uncertainty of 3D point

reflection (see text).
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single object can be recovered, because each tightest object is still a 2D “projection” on the

respective object plane.

To show the propagations, two short horizontal lines with length of 25 pixels are chosen

cross center of each cluster in cluster 292. Both real and imaginary parts of the objects are

showed in Fig.2.16. Due to small phase shift in each object, the real part roughly represents

the amplitude, while the imaginary part the phase. From the real parts, we can estimate

the δz positions of the most compact objects.

It is found that the two clusters are not in the same object plane. The focus plane for

the big cluster is at −δz ≃ −600 nm, and for the small one −δz ≃100 nm. There is no

obvious change for object amplitudes (i.e. object size). This definitely limits accuracy of

the estimated positions of the focus planes14. The phase shift of the big one in focus plane

becomes about 8◦ , and that of the small one less than 5◦ . The distance, of around 700 nm,

between two object planes is then much larger than the size of the objects. Fig.2.17 presents

an estimated geometry of the two-cluster system.

Finally, recalling Eq. (2.20), the uncertainty of conjugation state in the reconstructed

objects manifests itself as the possibility of an alternative geometry of the cluster positions.

A 3D point reflection of the position geometry shown in Fig. 2.17 is also a possible solution.

The Eq. (2.20) explains the point reflection in x-y plane due to the 2D diffraction pattern.

Since the z positions of the clusters are estimated from real part of the exit wave after the

propagation, the δz values will also change signs (i.e. 1D point reflection) after conjugation

of the objects, indicated by Eq. (2.26).

2.4.2 Ring structures in cluster 571/940

As mentioned in § 2.2.1, a plane wave changes its form when transmits a bulk of uniform

media

ei(kz−ωt) → ei(nkz−ωt) = ei(n−1)k∆z ei(kz−ωt) ,

with refractive index of the media n = 1 − δ + iβ and penetration depth ∆z. The media-

related transmission factor

ei(n−1)k∆z = e−kβ∆z e−ikδ∆z , (2.27)

contributes to the attenuation and phase shift of the plane wave in the media. The amplitude

of the plane wave follows a decay over penetration depth. If a penetration depth zp is defined

at a threshold ratio rth = e−kβzp , the phase shift within the defined depth can be written

as:

φp = −kδ zp =
δ

β
ln rth , (2.28)

14In Fig. 2.16, the obvious size changes of the big cluster exists in a propagation scale of 1∼2 µm.
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Figure 2.18: Ring structure in reconstructed cluster objects: (a) ring radii and widths estimated

above threshold values of half maximum amplitude; (b) phase shifts in the ring structures. The

value fluctuations indicate imperfect sphere structure of the clusters.

which depends only on the refractive index n . The following discussions on ring structures

in reconstructions are based on this picture.

The refractive index for an atomic cluster can be estimated from its density by theoretical

calculation [112]: n = (1.0066, 0.046) for xenon cluster at density15 (4.33 Å)−3 . At rth =

Exp(−1) ≃ 0.37 , the penetration length is 48 nm, which is much less than diameter of

the cluster 571/940 object. This leads to ring structure in images of the clusters due to

spherical geometry. The ring structures, as object supports, were used in the phasing process

to remove unconstrained modes (see § 2.3.2). According to Eq. (2.28), the corresponding

phase shift could be positive and very small, around 0.046 π . It could be independent of

object sizes.

In the reconstructed objects, ring structures are not perfect with radii and widths fluc-

tuated on azimuthal orientations (Fig. 2.18a). The cluster 571 has ring radius ∼20 pixels

(170 nm) and width ∼7 pixels (60 nm). The cluster 940 has ring radius ∼4 pixels (40 nm)

and width ∼3 pixels (30 nm). In the plots, two ways are used to estimate the ring radii:

radii average over inner and outer ring border; radial maximum amplitude on the ring. The

overlap between two radii estimations indicates that the expected feature of radial decay

distribution on ring structure is not observed at such low resolution. If use zp = 48 nm,

an ideal sphere with radius larger than 40 nm has ring width of less than 8 nm. A decay

of object amplitude within this width is definitely not resolvable within current resolution

limit of 25 nm, even within the perfect resolution (17 nm). This increases the difficulty to

extract further quantitive information from the ring structures.

The absolute phase shifts on the ring structures are plotted in Fig. 2.18b. The signs of

the phase shifts are unknown, because the conjugate states of the objects are undetermined

by diffraction intensity (refer to Eq. 2.20). The absolute phase shift in cluster 571 is

around 0.7 π , while that in cluster 940 is below 0.03 π . According to Eq. (2.28), the large

discrepancy between the phase shifts in the two clusters indicates that the n values or cluster

densities of the two clusters could be much different.

15The same density for xenon clusters was used by the dynamics simulations in the preceding chapter.
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However, this transmission picture does not take diffraction effect into account. The

irregular shape of ring structures in reconstructions mainly results from diffraction of im-

perfect surfaces of the objects. The diffraction effect is described by Eq. (2.9) with constant

ϕ(r′) inside object. Unfortunately, the diffraction formula, which works only in regime of

weak phase shift or absorption, can not explain the ring structures here.

The multislice method which considers both transmission and diffraction effects is in-

troduced in § 2.4.4 to understand the ring structures, as an extension of discussions in this

section. The real sizes of the objects, as input parameters in the multislice simulations, can

be obtained from the diffraction patterns via simulations with Mie theory.

2.4.3 Mie theory simulation

Mie theory, basically, is an analytical solution to the problem of electromagnetic plane wave

scattered by an uniform spherical particle, described by Maxwell’s equations. The solution

uses spherical vector wave functions as expansion bases for both scattering and internal

field. The related coefficients can be determined by boundary conditions on surface of the

spherical particle. In principle, Mie theory works for all possible ratios of object diameter to

wavelength. The numerical accuracy of solution depends on the limited number of expansion

bases used in simulations.

Mie theory is widely used for estimation of particle size by matching the measured diffrac-

tion patterns in the far field. For a spherical object, the scattering of polarized light field is

described by following formulas [113]:

Er = S1(θ)
e−ikr

ikr
Er0 , El = S2(θ)

e−ikr

ikr
El0 ; (2.29)

I(θ) ∝ |S1(θ)|2 + |S2(θ)|2
r2

, (2.30)

where S(θ) are scattering-angle dependent amplitude elements, and r , l refer to electric fields

perpendicular to and parallel with the scattering plane, respectively. The single dependence

of the diffraction on the scattering angle (or q) results from spherical symmetry in the object.

The information on real size of clusters is crucial to understand possible changes due to

radiation damage in the experiments. The Mie theory is used to obtain such information

directly from the diffraction patterns. As a first step, the irradiated clusters are assumed to

be spherical and density-uniform in Mie calculations.

In Mie theory, there are three input parameters: ratio between sphere size and wave-

length, refractive index and scattering angle. The previously calculated refractive index

n = (1.0066, 0.046) is used here. Other parameters are the same as the imaging exper-

iments. According to Eq. (2.30), the simulated Mie patterns can be reduce to 1D, as a

function of spatial frequency q(θ) . The simulated and experimental patterns are q-averaged

for comparison due to imperfect shapes of the clusters. There are many popular Mie calcu-

lation programs for single spheres [114], such as BHMie [115] and Miev0 [116]. The “Miev0”

code which includes self-tests is chosen in this work.
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Figure 2.19: Mie fitting for the patterns of cluster 571/940. The q-averaged I(q) of the pattern

data were used. The respective fitting radii are: 156 nm and 48 nm. (The q has same convention

as in Fig. 2.15.)

The matching results of Mie pattern intensity (Fig.2.19) show that the estimated real

radius of the cluster in cluster 571 is 156 nm, and that for cluster 940 is 48 nm. The fit-

ting sizes are quite close to that of the reconstructed objects (170/40 nm respectively) within

the achieved resolution limit (25 nm). The fitting results do not change much when slightly

different values of refractive index are used in Mie calculations. Both peaks (maximums and

positions) and local depths (or minimums) are not perfectly reproduced in the Mie fitting.

There are two reasons at least: (i) irregular fringe shapes in the diffraction patterns (i.e.

the cluster objects are not fully spherical) lead to deviation of peak positions and depths

after q-average; (ii) large signal background in the imaging experiments (Fig. 2.5b) comes

from the imaging environment (such as dark signals, incoherent scattering of photons) and

the detection system (such as point spread function, noise from the MCP and the Phosphor

screen).

A Mie object can be obtained from a complex Mie pattern calculated with Eq.(2.29) by

direct inverse Fourier transform. The Mie objects is calculated using the size values fitted

in cluster 571/940 and with same resolutions. Fig.2.20 shows center-cross profiles of the

Mie objects. The Mie objects have sharp borders. The radii of the Mie objects are almost

the same as input sizes. Both of the objects have flat phases with value −0.18 π , which have

no obvious phase shift and are different from the estimations in the last section (+0.046 π).

Note that the irrelevant phases outside the Mie objects have been set to zero.

However, no ring structure is repeated in the Mie objects, while the calculated absorption

efficiency factor Qabs > 0.90 clearly shows the strong absorption of light in Mie calculations.

The spatial details of light absorption are missing probably due to the limit number of

expansion bases used in numerical calculations, which is possibly set only for acceptable

accuracy of simulated diffraction intensity, not of simulated phase. This problem is probably

neglected when only size information is sought. The absence of this absorption information

reduces the reliability of the nearly zero phase shifts in Mie objects.

In short, the Mie theory can allow the sizes of the clusters to be determined directly from
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Figure 2.20: Mie object calculated from complex Mie patterns. Both profiles of amplitude and

phase are presented. The Mie image sizes of the objects well match the input size parameters. The

phases of both objects are almost uniform, around −0.18 π . There is no obvious phase shift inside

the Mie objects. The strong absorption effect (i.e. ring structure of amplitude), indicated by the

absorption coefficient in Mie calculations, does not appear in the complex Mie objects.

the measured diffraction patterns, but the ring structures of absorption are not reproduced

in current numerical Mie simulations. The above discussions are based on assumption of

homogenous clusters. A more realistic cluster may have dilute density on its surface. It

could be modeled as a coated sphere of two-layer structure, which had been solved in Mie

theory [115]. The cases of inhomogeneous clusters will be studied in future.

In the next section, the multislice method is applied to describe both effects of diffraction

and strong absorption in the irradiated clusters.

2.4.4 Multislice propagation simulation

The Multislice method is an accurate simulation tool for exit surface wave (see § 2.2.1)

of a thick three-dimension object in CDI. It was firstly invented for transmission electron

microscopy (TEM) on crystals of limited thickness [117]. The method is based on the finite

difference form of Schrödinger’s equation with backscattering being neglected [118, 119]. It

had been generalized to soft X-ray sources in a similar formulation [120, 77].

Inside thick objects, light is always scattered many times by atoms. This effect of multiple

scattering is described by the Born series in scattering theory (see Eq. 2.7). The first Born

term (approximation) is applied in optically thin object where only single scattering is

considered. The multislice method regards a thick and inhomogeneous object as a set of

many slices with finite thickness δz . Each slice is thin enough (δz < a0 , see Eq. 2.14) that

single scattering dominates and the first Born approximation is valid. Hence, the effects of

transmission (single scattering) and diffraction (light propagation) can be separated for each

slice based on the far field diffraction (relation of Fourier transform). Then, the multiple

scattering can be reproduced by accumulation of the single scattering effects over all slices.

In each slice, the transmission of the wavefield ψ(x, y) in the object is projected on
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corresponding scattering plane z , and then propagates freely to the next scattering plane

z + δz :

ψ′(x, y)|z = ψ(x, y)|z · eikδz·n(x,y)|z (2.31)

ψ(x, y)|z+δz = F−1

{
F {ψ′(x, y)|z} · e−i

q2
x+q2

y
2k

δz

}
, (2.32)

where n(x, y)|z is refractive index of the object at z plane and e−i(q
2
x+q2y)/2k·δz is kernel

of the Fresnel propagator16. The exit surface wave is obtained at end of the thick object

immediately after iterations of all slices. The free-space propagation in Eq. (2.32) takes the

small angle scattering (i.e. Fresnel approximation) into account. It had been extended to

the cases of large angle scattering by authors in [77]:

ψ(x, y)|z+δz = F−1

{[
qz

k + qz
F {ψ(x, y)|z} +

k

k + qz
F {ψ′(x, y)|z}

]
· eiqzδz

}
, (2.33)

where qz becomes close to zero and eiqzδz approaches the Fresnel propagator in approxima-

tion of small angle scattering (see § 2.2.1).

In CDI multislice simulations, an object may be illuminated by plane wave eikz within

its transverse section on x-y plane. The thickness of each slice should satisfies the condition

in Eq. (2.14), and the thinner the slice, the better the accuracy in the simulations. The pixel

size dp in slices of the object should obey Bragg’s law required by the far field diffraction:

dp =
1

2
dm =

1

2

λ

2 sin(θm/2)
>

λ

2
√

2
, (2.34)

where the maximum angle θm in forward scattering should be less than 90◦ . Otherwise,

the propagation direction is changed due to back scattering, and therefore, the relevant

propagators are ill defined. The exit surface wave obtained at the end of the object may be

out of focus. The focus plane is usually at center of the object along illumination direction

where the wavefield has smallest object support. The exit surface wave should propagate

freely back to the focus plane using Eq. (2.26) with the corresponding propagator to obtain

so-called “object” image in focus.

In this work, the cluster objects are assumed to be homogenous with same refractive

index used in the previous sections. The objects of cluster 571/940 are optically thick

with thickness larger than a0 ≃30 nm. The pixel sizes and resolution sizes used here are

same as in the phasing processes. The simulated exit surface waves in focus planes are shown

in Fig 2.21. The peak positions of amplitude and phase shifts in profiles of the reconstructed

objects are almost perfectly reproduced. The slight differences result from both irregular

shape of the objects and their low resolutions in the reconstructions. According to the

simulations, the signs of the phase shifts inside objects are negative, while these are unknown

in the reconstructions.

16It is the form in reciprocal space. The convolution operation in Eq. (2.32) applies the propagation to

each point in real space.
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Figure 2.21: Simulations of exit surface wave with multislice method (Second Row) in compar-

ison with the reconstructed objects (First Row) at 13.8 nm wavelength. The exit surface waves

propagated back to focus planes reproduce the ring structures in the reconstructed objects. Note

that input real sizes of objects in simulations are obtained from the Mie theory fitting.
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The multislice method is not suitable for the case of cluster 292, which has an inter-

esting phenomenon of defocus. Sizes of the cluster objects (with radius of around 35/15

nm) in this case are comparable to the wavelength (13.8 nm). According to Eq. (2.34), the

objects can have only several pixels in a multislice simulation, similar as the corresponding

reconstruction. This may lead to large errors in such simulations. However, a critical reason

behind is: the multislice formulation used here is based on the scalar assumption of light

wave, which could be invalid in such case of object size comparable to wavelength.

2.4.5 Radiation damage in the irradiated clusters

So far, the experimental pattern data and corresponding reconstructions results seem un-

derstood assuming that the irradiated clusters are homogenous. Radiation damage has not

been considered. The sizes of objects and details in reconstructed images are consistent

and not sensitive to the refractive index within the achieved resolutions. However, single

FEL pulses are very intense and melt almost everything on their path, including the clusters

investigated above. It is a fundamental interest to see and understand details about the

interaction processes. In this part, the possible processes of radiation damage and measure-

ments of relevant phenomena occurring in the irradiated clusters are briefly discussed.

The photon energy at 13.8 nm wavelength is 90.0 eV, which is above the sixth ionization

threshold of xenon atom (71.8 eV) and below the seventh (92.1 eV). Electrons on outer-shell

of xenon atoms can be directly ionized by the FEL photons. The dynamic simulations in

the previous chapter conclude that the enhanced inverse bremsstrahlung absorption does

not play a significant role at such short wavelength. Both photoionization and collisional

ionization can be dominant processes in the irradiated clusters. Photoelectrons may deliver

residual photon energies to ions through electron-impact ionization. The photon energies

may be deposited in ions by a chain of ionization processes. If no significant mechanism

but photoionization contributes to photon absorption, ions with charge higher than six are

expected to be rare in the clusters. Energetic electrons may escape and leave the clusters

charged.

During the irradiation there may be two typical spatial distributions of ions depending on

the size of the clusters, as illustrated in Fig 2.22. (i) is for optically thick clusters which the

FELs can hardly penetrate. The illumination fades out in the clusters and triggers ionization

processes, which create high ion charges on their irradiated surface and lower charges as

photons or electrons penetrate deeper. This leads to a cascade of ions with different charges

on beam direction inside the clusters. (ii) is for much smaller clusters where illumination

of the FELs can be assumed uniform. The generating ions in such clusters may spread

almost uniformly if photoelectrons or secondary electrons in ionization processes have no

preference on outgoing directions. The time-dependent details about charge population and

spatial distribution of ions in the above two cases could be obtained through simulations

with dynamic models17, which are planed for the near future.

17The xenon clusters in the imaging experiments have a huge number of atoms. For instance, a xenon
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Figure 2.22: Hypothetical geometries of

clusters during irradiation and explosion

phase: (i) thick cluster which a single FEL

pulse can not fully penetrate; (ii) small

cluster which the pulse can illuminate fully

and uniformly. Black color denotes neutral

atoms, gray color ions (the lighter the color,

the higher the charges, and electrons are not

shown).

In the single-shot imaging experiments, the measured diffraction patterns are accumula-

tions of scattering signals varied during single pulses, which are around ten femtoseconds.

According to the discussions in the previous chapter, atoms and ions in the irradiated clusters

are almost stationary over such a short timescale. A significant contribution to the varied

signals comes from ions with varied charge states, which have low photon-scattering ability

due to the missing of outer-shell electrons. The electron structure of the clusters which

determines their optical properties may be significantly changed due to the intense pulses.

In addition, the Thomson scattering from electron gas inside the clusters may contribute to

the background of the signals.

Little detail can be obtained about the radiation damage from the analysis of the exper-

imental data in the previous sections. There are two possible reasons: the FEL pulses are

so short that the damage is less visible; or the spatial resolutions achieved (above 25 nm)

is too low to resolve the damage details. The achieved resolution in the reconstructions is

mainly limited by the FEL wavelength (13.8 nm). An irradiated cluster with size between

that of type (i) and (ii) in Fig 2.22 may be very sensitive to its optical properties due to

possible transition between the two types. Unfortunately, the typical radius of such cluster,

estimated to be around 50 nm or smaller, can be resolved only by several pixels as indicated

by the multislice simulations in Fig 2.21.

The single-shot imaging experiments can change electron configurations in the irradiated

clusters through varying experimental parameters, for instance, the FEL source parameters:

cluster with radius of 50 nm has around five million atoms. The number is far beyond computation capability

of the unoptimized MD model in the previous chapter. The Boltzmann model may simulate such clusters

due to its sufficient reduction of degrees of freedom.
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pulse length, laser intensity and wavelength. Contrast of the variable parameters may re-

veal more information about the radiation damage. However, such single-shot experiments

cannot measure what occurs in the irradiated clusters after the FEL single shots.

A non-neutral cluster after the irradiation may enter into a expansion phase due to

Coulomb interactions between ions. The expanding motions of ions occur at time scale of

picoseconds, much longer than the single FEL pulse. As shown in Fig 2.22, the expansion

geometry strongly depends on spatial configuration of ions (and electron gas inside as well)

during the FEL irradiation. Time, as a new dimension, should be added into the imaging

experiments to resolve the expansion phase.

There is a general method called pump and probe (P&P), using two laser pulses with

time delay variable. The first pulse pumps the investigated system and the second pulse

probes the system after the excitation. This method can resolve the whole time evolution of

the excited system if the system is reproducible and time resolution is sufficient. In the field

of CDI with FELs, it has been demonstrated by the picosecond-delay imaging experiment

with optical laser pumping and FEL imaging [121]. The FEL probing was applied to image

structure change at nanometer scale due to its high intensity and short wavelength. The P&P

imaging experiment with two FEL pulses is not demonstrated until now. It is practically

difficult to synchronize two separated FEL pulses with a particle beam meeting at a focus

spot of micrometer size18.

The complicated dynamics within the clusters after irradiation with FELs will be much

more deeply understood once the P&P technique is ready. Such developments will help to

figure out the limit of imaging using FEL pulses.

2.5 Summary and outlook

In summary, the objects of xenon clusters have been successfully reconstructed from the

pattern data in the single-shot imaging experiments performed at FLASH at wavelength

13.8 nm. The cluster objects have clear single ring structures which indicate strong photon

absorption during the exposure to the FEL irradiation. The smallest size of cluster objects

is about 30 nm in diameter. The resolution limit achieved in the reconstructions is 25 nm.

In cluster 292, the two clusters are found to stay in different focus planes, with distance

700 nm much larger than sizes of the clusters.

The Mie theory simulations show that the real size of cluster 571/940 is very close to

the reconstructed size within achieved resolution. The calculations of multislice propagation

consistently reproduce their ring structures. These simulations assume that the irradiated

clusters are density-uniform and not damaged by the FELs. The information about radiation

18A dedicate machine at FLASH, called the Autocorrelator [81], has been built to separate single FEL

pulse into two children pulses: intensity of one fourth each, range of time delay from −3 ps to 20 ps, and

maximum splitting angle 2◦ . It is potentially useful for this new type of experiments.
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damage seems hard to extract from the current experimental patterns due to their limited

spatial resolution.

There are a great many interesting questions related to imaging of atomic clusters. For

example, the idea of sacrificial tamper coating a measured object (such as macromolecule)

was proposed to protect the object exposed to intense FEL radiation [53]. Its effect was

witnessed by the spectra measurements of xenon clusters coated by argon atoms [56]. It will

be very interesting to see this effect in imaging experiments. Both dynamics simulations and

imaging experiments can be extended further, to investigate such questions in parallel. It will

be very exciting to see interactive progress made in future between dynamic (and diffraction)

simulations and cluster imaging experiments (and spectra measurements as well).

A new FEL facility in the world, LCLS [83], is on operation now. Its FEL radiation

wavelength can potentially reach the hard X-ray regime (1.5 Å), which is much smaller than

the size of the atomic clusters. Its advantages of shorter wavelength and less attenuation

enable discovery of more structural details at atomic scales. The studies of the atomic clus-

ters will provide meaningful indications for single particle imaging experiments of biological

samples with X-ray FELs.



Chapter 3

Imaging of biological samples

3.1 3D coherent diffraction imaging (CDI) of single bio-

particles with XFELs

This section presents the scheme of 3D CDI technique with X-ray FELs, and the potential

challenges for imaging biological particles, such as proteins, macromolecules and virus par-

ticles, at high resolution. These challenges require advanced experimental techniques and

data analysis. However, one of the challenges, radiation damage within imaged samples,

seems difficult to be fully taken into account in a data model. The damage effect should be

minimized as much as possible by a careful choice of experimental parameters. One idea to

reduce sample damage is to coat a sample with a sacrificial tamper [53]. It will be briefly

discussed at the end of this part, and the corresponding diffraction effect will be investigated

in the next section.

Imaging with FELs is quite different from that with synchrotron radiation. FEL radiation

is so intense that most samples will be destroyed. On the other hand, FEL pulses are very

short (with pulse lengths of tens of femtoseconds), and the structure of an object can be

probed before its destruction [54]. It is impossible to image the same object for a second

time. Synchrotron radiation is much less intense, and sample damage caused is much less.

This allows diffraction measurements of the same object on different (known) orientations

by rotating the sample holder [75]. In 3D CDI with FELs, identical objects are necessary

for the collection of many 2D diffraction patterns from different views. Spraying techniques,

such as aerojet [122] and electrospray [123], have been developed for efficient delivery of such

identical objects (in droplets of solution or in gas phase) in vacuo to FELs beams. As shown

in Fig. 3.1, the aim is that single objects in particle stream are shot in series by single pulses,

with diffraction signals recorded on a CCD detector. Those objects that are hit dissociate

quickly after single pulse radiation.

The first challenge in 3D CDI with FELs is the missing information of object orienta-

84
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Figure 3.1: Schematic view

of 3D single particle CDI with

XFEL pulses (figure from [124]).

Identical particles with random

orientations are injected sequen-

tially into the XFEL beam area.

Diffraction patterns are recorded

by a CCD detector after single

pulses.

tions. 3D CDI needs a sufficient number of 2D diffraction patterns at different orientations

to construct a 3D diffraction pattern, which is used to solve the 3D structure by the phasing

process in CDI (see preceding chapter). Due to the delivery techniques, object orientations

are unknown in the CDI with FELs. The assembling of a 3D pattern from measured 2D

patterns is no longer straightforward. A solution, called common line method, has been ap-

plied in cryo-electron microscopy (cryo-EM) [125]. Here, it compares a pair of 2D diffraction

patterns in reciprocal space from same object in different views, and there should exist a

common line crossing the origin. Positions of the line in each pattern may uniquely iden-

tify the relative orientations between the two views. This method has been used in CDI

simulations by authors in [126].

Another challenge is the low signal-to-noise ratio (SNR) in the measured diffraction

patterns, which is specific to biological samples in the hard X-ray regime. The elastic

scattering is very weak for light atoms such as carbon, which constitute the backbone of

biological particles. An idea of classification from Cryo-EM [125] is applied to improve

SNR in 2D diffraction patterns [127, 128, 129]. The measured 2D patterns are classified

into groups through identifying highly correlated pattern pairs. Those patterns in same

groups have very similar views, and their average will improve the SNR if they are properly

classified. However, when particle size becomes smaller and smaller (for example, for single

proteins or macromolecules, 10 nm or less), single pixels on the detector record photons with

maximum of 2 or 3 counts (see § 3.2). The classification method based on the analysis of pair

correlation is seriously limited by very low SNR [130], and will fail to recognize close views

from noisy patterns. Without the improved SNR to find the lines, the common line approach

becomes extremely difficult to determine relative orientations of 2D patterns. In contrast,

X-ray crystallography has a large number of identical unit cells in the crystal, which scatter

much more photons and concentrate them on Bragg peaks. It is a big challenge for CDI

(single particle imaging) to reach the resolutions that X-ray crystallography achieves.

Assuming the noise follows Poisson distribution in a simple case, the above two chal-

lenges together constitute a problem to determine orientations of randomly orientated 2D
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diffraction patterns with presence of significant Poisson noise. This problem has been stud-

ied separately by two groups with respective algorithms: Generative Topographic Mapping

(GTM) [131] and Expansion-Maximization-Compression (EMC) [130]. Their algorithms are

based on the same technique, called expectation maximization (EM), which uses an iterative

method to find a maximum of defined likelihood of parameters in a data model that con-

nects input diffraction data and latent variables (orientations). One of the slight differences

between them is [132]: GTM uses a zero-centered Gaussian distribution for error tolerance

of latent variables, which can be extended to other types of possible noise beyond Poisson

noise; while EMC in the form given by the literature handles only the Poisson noise. The

advantage of these methods is that they can surprisingly extract orientation information

from high levels of known noise. For example, the Poisson noise can be down to average

photon counts of 0.01 over whole single patterns. However, the weakness at present is that

both methods are extremely computationally time consuming and scale as the sixth to ninth

power of the number of pixels of object size. It is plausible to speed up iterative conver-

gence to a solution (i.e. computation performance) by adding more physical constraints to

these general methods. So far, EMC has been applied for 3D assembling of experimental

2D patterns at low resolution [133].

The third challenge is radiation damage during single FEL pulses. For X-rays with energy

12 keV, a conventional damage barrier is about 200 photons/Å
2
. It can be extended to very

high dose1 [44] so long as FEL pulse is short enough [134, 135]. At present, pulse lengths

of FELs, which can reach around three femtoseconds at LCLS, are promising to minimize

radiation damage during single pulses. Several dynamic simulations [44, 58, 57, 70] related to

CDI of biological particles with XFELs at 12 keV have revealed possible damage processes:

(i) K-shell electrons in atoms (carbon, oxygen,nitrogen and sulphur) are ionized and escape,

and then Auger decay follows of about 1-10 fs lifetimes; (ii) Auger electrons may cause

impact ionizations and produce secondary electrons of low energies; (iii) electrons trapped

in bioparticles may slow down their Coulomb explosion. (iv) quickly escaping ions may be

protons, the lightest ions, and highly-charged sulphur ions (due to large photoionization

cross sections). (v) heavy atoms or inhomogeneous density in bioparticle may lead to large

local distortions or atom displacements.

It is important to include above possible damages into a complete data model for 3D

CDI analysis at high resolution. However, the diffraction effects from radiation damage

are difficult to quantify. For example, the electron gas contributes to background signal

which depends on electron density and is a cumulative effect during a single pulse; motions

of particles could be modeled as certain noise in real space when density of an object is

uniform, but it becomes difficult when the density is inhomogeneous. The experimental

study of those damage processes [85] is critical to those simulation models, but unfortunately,

such experiments are limited by low SNR in CDI of single bioparticles. As mentioned in

the preceding chapter, atomic clusters (or other good model objects for bioparticles) can be

chosen in such experiments and may help to understand possible damages. Since modeling

1The dose will be about 106 photons/Å
2

for the ideal parameters of the LCLS [83].
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the damage effects for data analysis is difficult, minimization of radiation damage in CDI

experiments is preferred.

There is an interesting idea to reduce radiation damage, introduced by authors in [53]: an

object is coated by a sacrificial tamper, such as liquid water or other liquids. This is natural

in the spraying techniques: single bioparticles may be injected into vacuum within droplets

of water. They simulated such a system using a 1D hydrodynamics model, and concluded

that a sacrificial layer of water with thickness above a certain value significantly reduces

atomic motions in the object. The argument is supported by independent simulations of

a MD model [69]. The two groups investigated the diffraction signals contributed by the

simulated radiation damages and the tampers. The diffraction signals from the former are

reduced, while those from the latter increase.

However, the two groups did not answer the important question in the context of 3D CDI

with FELs: how much does an effective tamper (with certain thickness) affect orientation

information of imaged object in diffraction patterns? Atomic positions of the tampers for

each identical object, such as two drops of liquid water, vary significantly. Hence, the

identical objects with water layers become not fully identical. This variation must induce a

negative effect in 3D data assembling to some extent, which could be critical for application

of the interesting idea. Note that this variation effect behaves like some kind of random

noise in real space. The question will be addressed in the next section.
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3.2 Coherent diffraction of a single virus particle: the

impact of a water layer on the available orienta-

tional information2

Abstract

Coherent diffractive imaging using X-ray free electron lasers (XFELs) may provide a unique

opportunity for high resolution structural analysis of single particles sprayed from an aqueous so-

lution into the laser beam. As a result, diffraction images are measured from randomly orientated

objects covered by a water layer. We analyse theoretically how the thickness of the covering water

layer influences the structural and orientational information contained in the recorded diffraction

images. This study has implications for planned experiments on single particle imaging with

XFELs.

Introduction

X-ray FELs are expected to open new horizons for structural studies of biological systems,

especially for studies of non-crystalline samples, such as viruses or living cells. In general,

radiation damage limits the accuracy of the structure determination of biological particles

in standard diffraction experiments. However, computer simulations of damage formation

have strongly suggested [44, 57, 51, 58, 52] that radiation tolerance may be extended to

very high doses with ultrafast exposures, as will be possible with the presently operating

and developing X-ray FELs, such as LCLS, SCSS, and the European XFEL. This is due

to their photon pulses being of a shorter duration than the time atoms require to move a

distance comparable to the required resolution. This improved radiation tolerance indicates

the possibility of recording images of single biological particles at high resolution without

the need to concentrate scattered radiation into Bragg reflections. This application of FELs

could have a tremendous impact on structural studies at both the molecular and cellular

level, with profound implications for biology and medicine. Recent experiments performed

at FLASH [54, 123] have demonstrated the proof of this imaging principle.

There are, however, still many technical and physical issues that need to be resolved in a

more quantitative manner, especially if one aims for structural information at high resolu-

tion. Here we address the important question of how a specific method of object preparation

may affect the structural information that can be extracted by diffraction imaging methods.

In particular, we investigate the possible loss of structural information due to the presence

of a water layer surrounding the imaged object. Particles injected into an FEL beam by

spraying techniques will be covered by an evaporating water layer [136, 137]. A thick layer

of water around the imaged object is considered to be a method of slowing down the radi-

ation damage. i.e. slowing the movement of ions due to repulsive Coulomb forces within

2This section has been submitted as Paper V: F. Wang, E. Weckert, B. Ziaja, D.S.D. Larsson and D. van

der Spoel.
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the irradiated sample [53]. Here we investigate in detail how the thickness and structure of

the surrounding water layer (WL) influences the diffraction images of virus particles. We

consider surrounding water layers of 0.5−2.5 nm average thickness. The loss of orientational

and structural information due to the presence of a water layer and its varying molecular

structure is quantified theoretically, using molecular dynamics (MD) and coherent diffrac-

tion imaging simulations. The effect of Poissonian noise (PN) for scattered photons is also

taken into account.

Pattern Generation

We consider here a small bioparticle to reduce the computational effort, but the results

obtained can be generalized for larger objects as the mean photon count per pixel approx-

imately scales with the object radius. The test object for the simulations is the Satellite

Tobacco Necrosis virus (STNV), whose capsid structure has been solved by X-ray crystallog-

raphy [138] (Protein Data Bank ID: 2BUK): object size ∼17 nm, ∼0.18M atoms, icosahedral

symmetry. We generate realistic water shells around the virus using the Tip3P model of liq-

uid water [139] with average thicknesses of 0.5/1.5/2.5 nm, and use the molecular dynamics

(MD) simulation package GROMACS [140, 141] to simulate these systems in vacuum. In

this scheme we keep the positions of the equilibrated virus atoms fixed, and only allow the

surrounding water molecules to move during the simulations, as we consider the effects of

”random” water layers on diffraction images. The related effects of slightly different protein

conformations within the virus shell [142] as well as effects due to the radiation damage

processes are not considered in this work. The MD simulation of radiation damage within

a homogeneous carbon cluster in [53, 69] suggested that a thick water layer coating, as a

sacrificial tamper, can significantly reduce the damage inside the cluster. In the case of

STNV, a water tamper with 2.5 nm thickness would be sufficient to achieve a comparable

effect [53].

In order to generate diffraction patterns, we use the snapshot coordinates of atoms after

simulating with physical time sufficiently long to randomize the water layer, and calculate

the diffracted intensity with the following formula:

I(q) =

∣∣∣∣∣
∑

i

fi(q) e
2πiq·ri

∣∣∣∣∣

2

r2e Φin Ωpix , (3.1)

where q is the wavevector transfer (same convention as Fig. 2.15); fi are the atomic form

factors for each element species; re is the classical radius of the electron; Φin is the photon

fluence, and Ωpix is the solid angle for one pixel. Fig. 3.2 shows the average diffracted

intensity versus resolution calculated using the following parameters [83]: wavelength 1.5 Å ,

and Φin = 1014 ph/µm2 (i.e. 1012 photons per pulse within the spot size of 100×100 nm2).

The solid angle Ωpix in the patterns is determined by the Nyquist sampling rate. The

maximum q value corresponds to a perfect resolution of 1.8 Å in real space. The most



CHAPTER 3. IMAGING OF BIOLOGICAL SAMPLES 90

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0  0.1  0.2  0.3  0.4  0.5  0.6

M
ea

n 
ph

ot
on

 c
ou

nt
 p

er
 p

ix
el

q ( Å−1 )

STNV

WL

STNV+WL

STNV with 2.5nm WL
pure STNV only
2.5nm WL only

liquid water peak position

Figure 3.2: Average diffraction intensity I(q) from the virus covered with a water layer of 2.5

nm thickness, calculated with parameters: 1.5 Å wavelength, 1012 photons per pulse, 100×100 nm2

focus spot. The maximal photon count was 2 − 3 counts in one pixel. The separate contributions

from the pure virus and the water layer are shown as references. Significant contributions from

water molecules lie within the liquid water peak range (∼ 3 Å) indicated by the vertical line.

significant contribution from the water layers lies in the q-range of bulk water (∼ (3Å)−1).

We note here that due to the coherent interference between contributions from water layer

and the virus the curve STNV+WL is not a strict sum of virus (STNV) and water layer

(WL) contributions.

The diffraction patterns obtained from such small single virus particles have too low

photon statistics for a reasonable 2D reconstruction. Therefore, patterns of a large number

of individual particles need to be averaged with the correct orientation to improve the signal-

to-noise ratio (SNR). This procedure requires a classification of the diffraction patterns

according to the different rotation angles of the object [127, 130, 131].

Analysis of Correlations between Diffraction Patterns

In order to quantify the possible loss of orientational and structural information, the q-

dependence of the correlation of diffraction patterns for different relative particle orientations

α is calculated in analogy to [129], as

G(α, q) ≡ Ĩ(α, q) · Ĩ(0, q)√
〈Ĩ(α, q)2〉q ·

√
〈Ĩ(0, q)2〉q

, (3.2)

with Ĩ(α, q) = I(α, q)− 〈I(α, q)〉q . For all further calculations only rotations perpendicular

to the incident beam direction are considered, however, the results can be generalized for

arbitrary rotation axes. Large-angle rotations can be reduced by the icosahedral symmetry

of the sample and are not considered here.

In Fig. 3.3, we present the q-dependence of pattern correlations between snapshots of

pure water layers calculated from two independent simulations using the same evolution
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Figure 3.3: Demonstration of randomness in water layers obtained from molecular dynamics

simulations: the pattern correlations between snapshots taken from two independent simulations at

same time and at the same orientation. The error bars show the spread of correlation values along

10 randomly chosen orientations. The water layers have a 1.5 nm average thickness.

time. The correlations are calculated using Eq.(3.2) at the same orientation. The correlation

curves do not show any significant change between 100 ps and 1.6 ns simulation time. This

indicates that a random water layer around the virus is achieved after a single molecular

dynamics simulation time of about 100 ps. There is almost no correlation for q larger than

0.2 Å
−1

, while at low q , the water layers are still highly correlated due to their relatively

stable shell shapes outside the virus. We study the effects of these random water layers on

virus orientational classification by correlation analysis.

As an example, in Fig. 3.4, the diffraction pattern correlations between the STNV parti-

cles with WLs or PN were calculated as function of relative rotation angle at a given small q

range ([0.069, 0.104] Å
−1

). In a purely mathematical treatment of the calculated diffraction

patterns, for an ideal virus capsid, the correlation is trivially one for the same orientation

and it decreases with the increasing angular difference in orientation (Fig. 3.4). In a more

realistic model, after introducing Poisson noise and water layers of different thickness, the

correlation of the diffraction images is significantly reduced. This increases the difficulty of

identifying the orientation of the particles. The reduction of correlation, described by cor-

relation fluctuations, originates from two parts: (i) heterogeneity of the sample, depending

on the rotational symmetry of the virus, e.g. the correlation as a function of orientation

even for perfect diffraction images depends slightly on the absolute orientation of the virus

particle; and (ii) randomness in real space (WLs) or in reciprocal space due to the Poisson

noise (PN). Here we would like to emphasize that the case with WL only is an unrealistic

(statistically limiting) case. We show this case in order to evaluate the contribution of the

diffraction from WLs, especially in the range of liquid water peak, unbiased by the statistical

noise effects. However, only the full WL+PN case can be used to draw any experimentally

feasible conclusions. The correlation curves calculated after including the PN/WL effect

have a larger variance than in the pure virus case. Due to the limited number of patterns

used in the diffraction simulations the variances are estimated within a limited accuracy. In
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Figure 3.4: Examples of rotation-angle dependent correlation curves at the fixed range of

q = [0.069, 0.104] Å
−1

: (1) correlation between noise-free patterns of pure STNV in different

orientations; (2) STNV particle with water layers of 1.5 nm average thickness each from a different

MD simulation; correlation between noise-free patterns for different orientations; (3) correlation as

in (1), but patterns include Poisson noise at level of photon flux 1015 photons/µm2 per pulse; (4)

both WL+PN contributions are included. Error bars show estimated variance obtained for different

absolute orientations and due to Poisson noise. The fitting function presented in Eq. (3.3) fits well

the averaged correlation curves.

what follows we focus on the averaged correlation curves. However, it would be not enough

for the average correlation to identify nearby patterns if the fluctuation variance would be

too large. Then even nearby patterns would have a good chance of escaping detection.

The averaged correlation curves can be parameterized by a Gaussian fit:

G(α, q) = a(q) e−α
2/2b(q)2 + c(q) , (3.3)

with q-dependent fitting parameters a , b and c .

We fit the three parameters, using the correlation curves obtained from our simulations

with fitting errors less than 2%. Results are shown in Fig. 3.5. The parameters a(q) and c(q),

that determine the magnitude of the correlation, strongly depend on the imaged structure.

They show the highest values for pure virus structure, and decrease significantly as soon

as WL or PN are included. The rotation-independent background c(q) always decreases

strongly for high values of q. When ”random” water layers are included, the parameters

a(q) and c(q) are significantly suppressed at the range of the liquid water peak (∼ (3Å)−1).

In the water layer case with average 2.5 nm thickness, the parameter a(q) is decreasing to

less than 0.1, which is comparable to the correlation variance. After including both WL

and PN, the fitted a(q) and c(q) are smaller than in the cases with a WL or with PN only,

implying a much reduced correlation.

Fig. 3.6 shows the parameter b(q) for different cases. As can be seen, this parameter is

determined only by the structure of virus. Adding WL and PN does not change the value

of b(q) that corresponds to half of the Shannon angle αS , αS = (2R0 q)
−1, where R0 is the
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Figure 3.5: The q-dependence of fitting parameters a(q) and c(q) in cases: (i-ii) virus with water

layers (WLs) only; (iii-iv) virus with Poisson noise (PN) only and virus with both WLs and PN.

The unit for photon fluxes, which PN levels correspond to, is ph/µm2 per pulse.
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Figure 3.6: The q-dependence of the fitting parameter b(q) for pure virus structure, and with WL

and with PN included. The fit is b(q) = (4R0 q)−1 (half of the Shannon angle) at the average virus

radius, R0 ∼ 71 Å.

average virus radius. The Shannon angle denotes the q-dependent angular span of a Shannon

speckle on the detector. The minimum rotation distance required to distinguish between

two speckles corresponds to half of the Shannon angle. The Shannon angle is therefore the

natural unit of orientational resolution (similarly to the definition of resolution in optical

microscopy). Randomness introduced by WL or PN does not affect the reference resolution,

given by half of αS . This implies that the information about the structure that is contained

in b(q) is preserved after including WL or PN.

Therefore, the accuracy of the orientation of the patterns according to different rotation

angles is determined by the parameters a(q) and c(q). Depending on the details of the recon-

struction method, the orientational classification can be possible also at lower correlation

values, assuming that their values are still above the statistical fluctuation level. We do

not discuss any specific reconstruction methods here, since this is beyond the scope of this

paper.

We would like also to emphasize that our analysis is based on the comparison of corre-

lations between pairs of single patterns. Beyond this method, there are other sophisticated

techniques to recover the orientation of the diffraction images via analysis of a large number

of patterns [131, 130]. These methods can possibly reconstruct the image at lower levels

of signal that is not accessible by the simple pattern-to-pattern correlation method. This

would require further and more elaborate studies beyond the scope of this communication.

Finally, we state that in our diffraction simulations, we have simulated only the empty

capsid without filling it with RNA genome. The RNA structure inside a virus capsid appears

to be disordered as determined from single particle EM analyses. Similar to these methods, it

is expected that its contribution will average out for the large number of exposures considered

here.
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Summary

We have investigated a possible loss of orientational and structural information due to the

presence of a water layer surrounding the imaged object, using the pattern-to-pattern cor-

relation method. Our analysis shows that liquid water layers reduce the orientational in-

formation. The thicker the water layer, the more difficult the orientational classification is.

The structural information is blurred at values of q above the liquid water peak position

(∼ (3Å)−1) which also indicates the achievable orientational resolution by the corresponding

Shannon angle.

It has been shown through simulations that a water layer of a certain thickness slows

down the Coulomb expansion of the virus particle [53, 69, 136, 137]. Depending on the size of

the virus, there is an optimal thickness of the water layer, where the structure is preserved

and possibly without too large reduction in the orientational and structural information

contained in diffraction patterns.
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3.3 Summary and outlook

There are some challenges in 3D CDI with FELs, especially for biological particles. The

idea of an imaged object coated with a thick tamper, such as a layer of liquid water, can be

used to reduce radiation damage during FEL illumination. Coating layers of liquid water

with efficient thickness have significant diffraction signals at the peak range of liquid water

(∼ (3Å)−1). Randomness in such water layers leads to obvious suppression of pattern-pair

correlations at this signal range, even between the patterns in a same view. The orientation

information is statistically preserved in the patterns, but the correlation contrast becomes

lower, and this increases the difficulty in recognizing the orientations, especially in the water

peak range. However, it is quite plausible to recover orientation of each pattern beyond the

water peak range.

A future data model could be built on GTM or EMC if their computation performances

are improved significantly. The data model should include diffraction effects from radiation

damage (and the tamper effect as well, if applied), such as scattering ability of ions, free

electron gas and accumulation over pulse length. The signal background might be included

into the model, such as that from incoherent scattering or an imperfect imaging environment.

Because it might be significant when SNR is too low.

Variation in conformations of a bioparticle seems inevitable when it is prepared in liquid

water at room temperature by current spraying techniques. Therefore, “identical” objects

used for 3D imaging are not perfectly identical, and this will degrade resolution to the

level of typical length scale of the conformation variance [142]. The same problem occurs

in single particle cryo-EM, which can achieve best resolutions around 8 Å [143, 144]. The

newly emerging techniques, such as manifold mapping [145], are used to extract possible

conformations from a large number of measured patterns. This kind of method allows

constructing conformation models directly from imaging experiments, which is also one of

the great interests of structural biology.

It will be challenging to build a complete data model with above possible effects consid-

ered, and to isolate reliable 3D structural information about “identical” objects as much as

possible.

Returning to the orientation problem, there are some ideas and techniques which are

potentially useful to determine the orientations of flying particles. For example, rare species

of ions such as sulphur in an irradiated particle can be used to estimate orientation of the

particle by Velocity Map Imaging (VMI) techniques, if such ions have preference of escaping

directions. Gas-phase particles with polarity could be aligned by a laser pulse before a FEL

imaging pulse. The estimated orientation information may make a data model easier to

handle low SNR data.

There are also some possible ways to increase SNR in imaging of biological particles.

For example, holography [146] can be extended to image bioparticles [134, 147] with specific

considerations of geometry or reference. In a similar way, Shinktake [110] suggested to use
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gold balls as spectators in imaging of bioparticles. Actually, the strong scattering spectators

do not significantly increase the scattering information from weak bioparticles due to the

large contrast between them [80]. It may help when objects have comparable scattering

ability, for example, using a number of copies of bioparticles in one imaging window to in-

crease diffraction signals. There are several variants of this case: (i) the copies are randomly

assemble in the same object plane [85, 148], and averaged structure information can be ob-

tained from single-shot patterns. (ii) the copies are aligned in one direction using polarity

properties of neutral molecules [149], and meaningful structure or dynamics information

stays in diffraction patterns along the aligning direction. (iii) nanocrystals (the copies are

fully 3D ordered on normal lattice) have a much better SNR (while there exists a finite size

effect, i.e. satellite Bragg’s peaks), and it can potentially solve those proteins for which only

small crystals are available, at comparable resolution as X-ray crystallography.

Beyond the scheme of 3D CDI with FELs discussed in § 3.1, there are potential techniques

that could extract sufficient 3D information from single 2D diffraction patterns, although

this is still an open question. If some reliable techniques appear in this direction, it would

change the current situation of 3D CDI with FELs.

There are many interesting ideas and techniques, as mentioned above, related to biological

imaging with FELs on front of us. With more FEL facilities (such as LCLS II and European

XFEL) going into operations, it is expected that lots of exciting progress ahead would be

made in this new field.



Appendix A

Algorithm in Molecular

Dynamics simulations

Molecular Dynamics (MD) is a general algorithm for simulation of time evolution of a

molecule or a system constituting of point particles with mutual interactions. The motion

of each particle is classical and is described by Newton’s equations:

∂ ri
∂t

= vi ,

∂ vi
∂t

=
Fi
mi

,

where (ri,vi) are six degrees of freedom (DOF) in phase space for ith particle, and Fi is

a force sum that this particle experiences from other particles or background field. For a

system with N particles, determination of its evolution requires the solution of ordinary

differential equations in 6N dimensions:

∂y

∂t
= f(t, y) , (A.1)

where y is a vector to represent all DOF in phase space with initial conditions y(t0) = y0 .

In MD, the problem is solved numerically by discrete integration over finite time steps.

f(t, y) is updated each time step, and is determined by the configuration of y in previous

time step. The numerical integration in a single time step is critical to simulation accuracy.

There are many sophisticated integration algorithms such as Verlet-Stoermer integration

and Runge-Kutta integration.

In this thesis, the Runge-Kutta-Fehlberg integrator at 7(8)th order (RKF78) [150] is

applied. The formula for integration of a single time step ∆t is:

yn+1 = yn + ∆t

12∑

α=0

cαkα , (A.2)

98
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where

k0 = f(tn, yn) ;

kα = f(tn + aα∆t, yn + ∆t

α−1∑

β=0

bαβkβ) (α > 0) .

The truncation error in one step is at the order of (∆t)7 , which is estimated by following

formula:

Terr =
41

840
∆t (k0 + k10 − k11 − k12) . (A.3)

When the error goes beyond the tolerable error range for a single step, the integration should

be calculated again in this step with smaller time interval ∆t . The relevant coefficients are

listed in the following Butcher tableau.

aα bαβ c̃α cα

α\β 0 1 2 3 4 5 6 7 8 9 10 11

0 0 0 41
840 0

1 2
27

2
27 0

2 1
9

1
36

1
12 0

3 1
6

1
24 0 1

8 0

4 5
12

5
12 0 − 25

16
25
16 0

5 1
2

1
20 0 0 1

4
1
5

34
105

6 5
6 − 25

108 0 0 125
108 − 65

27
125
54

9
35

7 1
6

31
300 0 0 0 61

225 − 2
9

13
900

9
35

8 2
3 2 0 0 − 53

6
704
45 − 107

9
67
90 3 9

280

9 1
3 − 91

108 0 0 23
108 − 976

135
311
54 − 19

60
17
6 − 1

12
9

280

10 1 2383
4100 0 0 − 341

164
4496
1025 − 301

82
2133
4100

45
82

45
164

18
41

41
840 0

11 0 3
205 0 0 0 0 − 6

41 − 3
205 − 3

41
3
41

6
41 0 0 41

840

12 1 − 1777
41000 0 − 341

164
4496
1025 − 289

82
2193
4100

51
82

33
164

12
41 0 1 0 41

840

The most time consuming parts of computation in MD simulations are calculations of

mutual interactions among N particles, which are usually done using loops. They scale with

particle number as N2 . There are many sophisticated techniques to minimize such com-

putational costs within acceptable accuracy. For example, the weak two-body interactions

which act over long distances, such as that due to Coulomb potential, can be simplified by

multipole approximation. In perfect cases the scaling behavior can be reduced to N lnN .

The MD programs developed for this thesis is not optimized, and can only deal with small

numbers of particles.
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Experimental cross section data

All cross section (CS) data in this part come from experimental measurements. For con-

venience of using these data in simulation programs, some CS data are parameterized by

empirical formulas with respective fitting plots shown. Note that relevant references can be

found in the plots.

Photoionization cross sections

Eγ = 12.7 eV (100 nm) , σγ(Xe
0+ → Xe1+) = 0.40 Å

2
, σ2γ(Ar

0+ → Ar1+) = 0.010 Å
2
;

Eγ = 37.8 eV (32 nm) , σγ(Ar
0+ → Ar1+) = 0.050 Å

2
, σγ(Ar

1+ → Ar2+) = 0.026 Å
2
;

Eγ = 90 eV (14 nm) , σtotγ (Xe) = 0.24 Å
2
;

Eγ = 1.8 keV (7.0 Å) , σtotγ (Xe) = 5.6 × 10−3 Å
2
;

Eγ = 8.3 keV (1.5 Å) , σtotγ (Xe) = 6.0 × 10−4 Å
2
.

Note that 1 Å2 = 100 Mb. References:

J.A.R. Samson and W.C. Stolte, J. Electron Spectrosc. Relat. Phenom. 123(2002)265

J.B. West and J. Morton, At. Data Nucl. Data Tab. 22(1978)103

Electron impact cross sections: argon

Total cross section

σ(E) =





A0 +A1ln(E) +A2ln(E)2 +A3ln(E)3 +A4ln(E)4 , E ≤ 13.5 eV ;

B0 +B1e
−E/B2 +B3e

−E/B4 , E > 13.5 eV .
(B.1)

100
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The following parameters Ai , Bi (i = 0, 1, 2, 3, 4) are fitted from experimental data. The

units for the parameters are (Å
2
, eV).

subscript A B

0 1.29 2.11

1 1.79 29.8

2 1.16 17.2

3 0.405 8.12

4 0.102 259.7
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Single ionization

σq(E) = eA
(

1 − Iq
E

)c
ln

(
E

Iq

)
Iq
E
, (B.2)

with ionization energy Iq for Ar(q−1)+ −→ Arq+ . The fitting values of parameters A and c

are listed in the TableB.1. The fitting plots are shown below. (units: Å
2
, eV)
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Table B.1: Electron impact ionization cross sections for Argon. (unit: Å
2
)

Iq Ref.1 Ref.2 Ref.3

Arq−1 −→ Arq (eV ) A c A c A c

0+ −→ 1+ 15.8 2.427 1.101

1+ −→ 2+ 27.6 0.802 -0.233

2+ −→ 3+ 40.9 -0.052 -0.419

3+ −→ 4+ 59.7 -0.952 -0.350

4+ −→ 5+ 75.2 -1.564 -0.385 -1.577 -0.207

5+ −→ 6+ 91.2 -1.732 -0.046 -1.956 -0.509

6+ −→ 7+ 125 -2.262 0.370

7+ −→ 8+ 143

8+ −→ 9+ 423 -3.916 -0.114

9+ −→ 10+ 479

10+ −→ 11+ 539 -4.746 -0.081

11+ −→ 12+ 618 -5.000 0.300

1 H. Straub, Phys.Rev. A 52(1995)1115
2 A. Muller et. al., J.Phys. B 13(1980)1877
3 H. Zhang et. al., J.Phys. B 35(2002)1829
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Electron impact cross sections: xenon

(Fitting results provided by Beata Ziaja)

Total cross section

σ(E) = Ea · eb . (B.3)

The parameters are listed below with unit cm2 .

E(eV ) a b

[ 0. , 0.8 ] -1.50 -36.80

[ 0.8 , 5.0 ] 1.70 -36.17

[ 5.0 , 9.0 ] 0.0 -33.38

[ 9.0 , +∞ ] -0.55 -32.20

 1e−17

 1e−16

 1e−15

 1e−14

 1e−13

 0.1  1  10  100  1000  10000

E ( eV )

Cross section (cm2)

Single ionization

Similar fitting formula as Eq.(B.2) with unit cm2.

Xeq−1 −→ Xeq Iq(eV ) A c

0+ −→ 1+ 12.1 -33.90 0.40

1+ −→ 2+ 21.2 -35.12 -0.36

2+ −→ 3+ 32.1 -35.96 -0.72

3+ −→ 4+ 46.7 -36.30 -0.48

4+ −→ 5+ 59.7 -36.60 -0.82

5+ −→ 6+ 71.8 -36.56 -0.48

6+ −→ 7+ 92.1 -36.83 -0.32

7+ −→ 8+ 105.9 -37.36 -0.38

 1e−17

 1e−16

 1e−15

 10  100  1000  10000

E ( eV )

Cross section (cm2)

0+ −−> 1+
1+ −−> 2+
2+ −−> 3+
3+ −−> 4+
4+ −−> 5+
5+ −−> 6+
6+ −−> 7+
7+ −−> 8+
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Cross section formula

Energy-splitting in electron-impact ionization

In electron-impact ionization, the intrinsic momentum distribution of a bound electron being

ionized leads to a broadened distribution of outgoing energy. It is described by the binary-

encounter-dipole (BED) model [37, 38]:

dσ(Es;Ein, EI
)

dEs
∝ 1

(Ein − Es)3
+

1

(E
I

+ Es)3
≡ f(Es;Ein, EI

) , (C.1)

where Ein , Es are kinetic energies of the incident electron and the outgoing second electron

respectively, and E
I

is the ionization energy. The formula implies Ein ≥ E
I

+ Es which

keeps the energy conservation in the process of ionization. The left energy Ek ≡ Ein − E
I

splits into two pieces of kinetic energies for two outgoing electrons. The cross section is

symmetrically distributed on two splits of the kinetic energies: Es and Ek − Es .

Practically, the cumulative probability is convenient for realization of the distribution in

simulations. The probability of the energy splitting at Es is normalized as:

R(Es) =

∫ Es

0 f(Es;Ein, EI
) dEs∫ Ek

0
f(Es;Ein, EI

) dEs

=
E2
inE

2
I

[
(E

I
+ Es)

2 − (Ein − Es)
2
]

2(E2
in − E2

I
)(E

I
+ Es)2(Ein − Es)2

+
1

2
. (C.2)

It is a monotone function due to accumulation of positive numbers. The inverse dependence

of Es on R is complicated and can be evaluated numerically based on the monotone prop-

erty. The numerically obtained Es follows the splitting distribution in Eq (C.1) when the

probability R is uniform. In simulations, R is a random number in range (0,1) to decide the

splitting energy Es .
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Cross section formula for three-body recombination

The recombination process is treated as an inverse collisional ionization process in § 1.4 based

on the principle of detailed balance. In the MD simulations, three-body recombination, 2e+

In+ → e+ I(n−1)+ , is assumed to be dominant in recombination processes. The estimated

cross sections for three-body recombination can be defined through that of electron-impact

ionizations:

σn→n−1
RC

(Ein) =
gn−1

gn

ρeλ
3
e

2
σn−1→n

CI
(EI + 2Ein) , (C.3)

with n ion charge, Ein kinetic energy of the incident electron to be absorbed by the ion, ρe

ion density and EI ionization energy for q− 1 charge state to q . gn is the statistical weight

of the bound energy level of a ion with charge n . The λe = h3/
√

2πmekTe is the thermal

de Broglie wavelength of free electrons. The formula assumes that the kinetic energies of

electrons in recombination follow the Maxwell-Boltzmann distribution and the spectator

electron has comparable kinetic energy to the one to be recombined.



Appendix D

Rotation representation

Euler angles

The most common definition of a 3D rotation is its representation by Euler angles,

φ , θ , and ψ . In so-called x-convention: rotation is firstly by an angle φ around the z-

axis; then by an angle θ around new x-axis; and finally by an angle ψ around new z-axis.

φ , ψ ∈ (0, 2π] , θ ∈ (0, π] . The corresponding rotation matrix is

R(φ , θ , ψ) =




cψ sψ 0

−sψ cψ 0

0 0 1







1 0 0

0 cθ sθ

0 −sθ cθ







cφ sφ 0

−sφ cφ 0

0 0 1




=




cψcφ − cθsφsψ cψsφ + cθcφsψ sψsθ

−sψcφ − cθsφcψ −sψsφ + cθcφcψ cψsθ

sθsφ −sθcφ cθ


 ,

with the convention sA ≡ sinA and cA ≡ cosA . If the matrix elements R32 , R23 are

nonzero, Euler angles can be expressed as following:

φ = tan−1

(
−R31

R32

)
, θ = cos−1 (R33) , ψ = tan−1

(
R13

R23

)
.

Quaternions

Compared to the representations of Euler angles and rotation matrices, unit quaternions

provide a simple and direct notation for 3D rotations. It has the advantage of numerical

robustness in applications. For a vector ~v rotated by angle α around the ~u (unit vector)

direction,

~v′ = q ~v q−1 , q = cos
(α

2

)
+ ~u sin

(α
2

)
= q0 + q1i + q2j + q3k ,
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with i2 = j2 = k2 = ijk = −1 and q20 + q21 + q22 + q23 = 1 . The corresponding orthogonal

rotation matrix is:

R(q0, q1, q2, q3) =




1 − 2(q22 + q23) 2(q1q2 − q0q3) 2(q0q2 + q1q3)

2(q0q3 + q1q2) 1 − 2(q21 + q23) 2(q2q3 − q0q1)

2(q1q3 − q0q2) 2(q0q1 + q2q3) 1 − 2(q21 + q22)


 .

The trace of the matrix is

Tr(R) = 4q20 − 1 , with q0 = cos
(α

2

)
.

Therefore, from the rotation matrix we can obtain the angle for direct single rotation:

cosα =
1

2
[Tr(R) − 1] .
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