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Abstract

Interference effects between nearly mass-degenerate particles are ad-
dressed in this thesis, comprising higher-order calculations, a model-
independent method to calculate interference terms efficiently and a
phenomenological application to current Higgs searches at the LHC.

Predictions of cross sections and decay widths can be severely
affected by interference terms between quasi-degenerate states arising in
models beyond the Standard Model. We formulate a generalisation of
the narrow-width approximation (NWA) which allows for a consistent
treatment of such effects by factorising the interference term into on-shell
matrix elements of the production and decay parts, optionally further
approximated as simple interference weight factors, incorporating one-
loop and real corrections in a UV- and IR-finite way. We apply the
generalised NWA to interfering MSSM Higgs bosons in the process
χ̃0

4 → χ̃0
1 Φ → χ̃0

1τ
+τ−, Φ = h,H and achieve an agreement of better

than 1% with the unfactorised three-body decay of the neutralino χ̃0
4

at NLO. Further, we derive the approximation of the full propagator
matrix of the three neutral MSSM Higgs bosons in terms of Breit-
Wigner propagators and on-shell wave-function normalisation factors
Ẑ. This is found to accurately reproduce the full mixing properties also
in the case of complex MSSM parameters. Moreover, it enables the
implementation of the total width at the highest available order. Using
the Breit-Wigner and Ẑ-factor formalism, we calculate CP-violating
interference effects of the neutral MSSM Higgs bosons in the process
bb̄→ h1,2,3 → τ+τ−, induced by the phase φAt . We find a very significant,
destructive interference between h2 and h3, particularly for large µ. As
a consequence, a considerable parameter region in the complex Mmod+

h

scenario, which would appear to be ruled out if this interference were
neglected, actually escapes the current exclusion bounds from the LHC.
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Zusammenfassung

Interferenzeffekte in Prozessen neuer Physik am LHC
Interferenzeffekte zwischen quasi-massenentarteten Teilchen stehen im
Fokus dieser Arbeit, in der wir uns mit Strahlungskorrekturen, einer
modellunabhängigen Methode für die effiziente Berechnung von Inter-
ferenztermen und einer phänomenologischen Anwendung auf aktuelle
Higgs-Suchen am LHC beschäftigen.

Interferenzterme zwischen nahezu massenentarteten Zuständen,
die häufig in Modellen jenseits des Standardmodells auftreten, können
Vorhersagen von Wirkungsquerschnitten und Zerfallsbreiten maßgeblich
beeinflussen. Wir verallgemeinern die bisherige Näherung schmaler
Breiten (narrow-width approximation, NWA) so, dass Interferenzef-
fekte konsistent berücksichtigt werden. Der Interferenzterm wird in
Matrixelemente des Produktions- und des Zerfallsanteils, jeweils aus-
gewertet auf der Massenschale des zerfallenden Teilchens, faktorisiert
und lässt sich weiter durch Interferenz-Gewichtungsfaktoren nähern. In
beiden Optionen können virtuelle und reelle Strahlungskorrekturen auf
UV- und IR-endliche Weise hinzugefügt werden. Mit der verallgemein-
erten NWA berechnen wir den Prozess χ̃0

4 → χ̃0
1 Φ → χ̃0

1τ
+τ−, Φ =

h,H inklusive der Interferenz von h und H. Die genäherte Zerfalls-
breite weicht in nächstführender Ordnung um weniger als 1% vom
entsprechenden unfaktorisierten Drei-Körper-Zerfall des Neutralinos
χ̃0

4 ab. Außerdem leiten wir her, wie sich die volle Propagatormatrix
der neutralen Higgs-Bosonen durch Breit-Wigner-Propagatoren und
Wellenfunktions-Normierungsfaktoren (Ẑ) nähern lässt. Dadurch wer-
den die vollen Mischungseigenschaften auch im Fall von komplexen
MSSM -Parametern sehr präzise wiedergegeben. Zusätzlich ermöglicht
diese Formulierung die Berücksichtigung der totalen Breite in der höchst-
möglichen Ordnung. Unter Verwendung der Breit-Wigner-Propagatoren
und Ẑ-Faktoren berechnen wir die durch die Phase φAt hervorgerufe-
nen CP-verletzenden Interferenzeffekte neutraler MSSM Higgs-Bosonen
im Prozess bb̄ → h1,2,3 → τ+τ−. Dabei stellen wir insbesondere für
große µ eine erhebliche destruktive Interferenz zwischen h2 und h3 fest.
Diese führt dazu, dass eine beträchtliche Parameterregion im komplexen
Mmod+

h -Szenario, die unter Vernachlässigung des Interferenzterms aus-
geschlossen schiene, durch aktuelle experimentelle Ergebnisse bisher
nicht ausgeschlossen werden kann.
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6.3.2.3. Comparison of the Ẑ-factor approach with effective cou-

plings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
6.4. Breit-Wigner and full propagators in cross sections . . . . . . . . . . . . 74

ix



Contents

6.5. Impact of the total width . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
6.6. Summary: Higgs masses and mixings in the complex MSSM . . . . . . . 78

7. A generalised narrow-width approximation for interference effects 80
7.1. Factorisation vs. mass degeneracies in BSM . . . . . . . . . . . . . . . . 80
7.2. Concept and restrictions of the standard narrow-width approximation . . 82

7.2.1. Basic idea of the narrow-width approximation . . . . . . . . . . . 82
7.2.2. Conditions for the narrow-width approximation . . . . . . . . . . 83
7.2.3. Factorisation of the phase space and cross section . . . . . . . . . 84

7.3. Formulation of the generalised NWA at lowest order . . . . . . . . . . . . 87
7.3.1. Cross section with interference term . . . . . . . . . . . . . . . . . 87
7.3.2. On-shell matrix elements . . . . . . . . . . . . . . . . . . . . . . . 88
7.3.3. On-shell phase space and interference weight factors at lowest order 89
7.3.4. Discussion of the steps of approximations . . . . . . . . . . . . . . 92

7.4. Formulation of the generalised NWA at higher order . . . . . . . . . . . . 93
7.4.1. On-shell matrix elements at 1-loop order . . . . . . . . . . . . . . 93

7.4.1.1. IR-finiteness of the factorised matrix elements . . . . . . 95
7.4.1.2. Separate calculation of photon diagrams . . . . . . . . . 97

7.4.2. Interference weight factors at higher order . . . . . . . . . . . . . 98
7.4.2.1. Consistent interference weight factors at 1-loop order . . 98
7.4.2.2. Interference weight factors beyond the 1-loop level . . . 99

8. Neutralino 3-body decay with interfering Higgs bosons 101
8.1. Full example process χ̃0

4 → χ̃0
1 τ

+τ− via h,H at leading order . . . . . . . 101
8.1.1. 3-body decays: leading order matrix element . . . . . . . . . . . . 102

8.2. Full 3-body decay at the one-loop level . . . . . . . . . . . . . . . . . . . 103
8.2.1. Treatment of the Higgs propagators . . . . . . . . . . . . . . . . . 103
8.2.2. Contributing diagrams . . . . . . . . . . . . . . . . . . . . . . . . 104

8.2.2.1. Virtual corrections at the neutralino-Higgs vertex . . . . 105
8.2.2.2. Virtual corrections at the Higgs- τ+τ− vertex and real

photon emission . . . . . . . . . . . . . . . . . . . . . . 106
8.2.2.3. Self-energies involving mixing of neutral bosons . . . . . 107
8.2.2.4. Box diagrams . . . . . . . . . . . . . . . . . . . . . . . . 108

8.2.3. Modified Mmax
h scenario . . . . . . . . . . . . . . . . . . . . . . . 108

8.2.4. Comparison of the tree level and 1-loop result . . . . . . . . . . . 109

9. Application of the generalised NWA 111
9.1. Example process at lowest order in the gNWA . . . . . . . . . . . . . . . 111

9.1.1. Decomposition of the full process into 2-body decays . . . . . . . 111
9.1.2. Formalism of unsquared matrix elements in all helicity configurations112

9.1.2.1. Higgs production . . . . . . . . . . . . . . . . . . . . . . 114
9.1.2.2. Higgs decay . . . . . . . . . . . . . . . . . . . . . . . . . 115

9.2. Numerical evaluation at lowest order . . . . . . . . . . . . . . . . . . . . 117
9.2.1. Higgs masses and widths in the modified Mmax

h scenario . . . . . . 117
9.2.2. Results for tree level process χ̃0

4 → χ̃0
1 h/H → χ̃0

1 τ
+τ− . . . . . . . 117

x



Contents

9.3. Example process at 1-loop order in the gNWA . . . . . . . . . . . . . . . 121
9.3.1. 2-body decays in the production and decay parts . . . . . . . . . 121

9.4. Numerical validation of the gNWA at higher order . . . . . . . . . . . . . 123
9.4.1. On-shell matrix elements and R-factor approximation . . . . . . . 123
9.4.2. Separate treatment of photon contributions . . . . . . . . . . . . 126
9.4.3. gNWA prediction with most precise input values . . . . . . . . . . 127

9.5. Summary: Concept and application of the gNWA . . . . . . . . . . . . . 128

10.Interference and complex phase effects in Higgs searches at the LHC 131
10.1. Status of Higgs searches interpreted in MSSM scenarios . . . . . . . . . . 131
10.2. Relative impact of φAt on cross sections . . . . . . . . . . . . . . . . . . . 134

10.2.1. Overall non-zero phase effects . . . . . . . . . . . . . . . . . . . . 135
10.2.2. Distinction between interference and other phase effects . . . . . . 139

10.3. Impact on exclusion limits . . . . . . . . . . . . . . . . . . . . . . . . . . 144
10.4. Summary and outlook: ��CP interference in LHC Higgs searches . . . . . . 145

11.Conclusions 147

A. Parameter values in MSSM scenarios 150

B. Details of the renormalisation of the neutralino-chargino sector 151
B.1. Renormalisation transformations . . . . . . . . . . . . . . . . . . . . . . . 151
B.2. Parameter renormalisation in the NNN schemes . . . . . . . . . . . . . . 152

C. Kinematic relations 154

Bibliography 158

List of figures 174

List of tables 176

xi



Contents

xii



Chapter 1.

Introduction

Run II of the LHC is just starting operation at an unprecedented energy and luminosity
with the purpose to look for signs of physics beyond the Standard Model. Such signs
may show up directly as new particles or indirectly as deviations from Standard Model
(SM) properties. New physics might not only become visible as an excess of measured
data over the expected background. Another interesting case could be a deficit of events
due to reduced couplings or a destructive interference of a new physics signal with the
SM background continuum. A different kind of interference could also occur between two
nearby resonances of particles from a model beyond the SM spectrum. Such an effect
would modify the expectation for detecting those particles of the particular model.

The first run of the LHC has been highly successful with the discovery of a Higgs
boson [5, 6], which had been predicted [7] almost half a century before the discovery
as a consequence of a mechanism that was proposed to explain electroweak symmetry
breaking [7–11].

The Higgs boson is the last particle that can be accomodated within the SM. Any
discovery of a new particle would be a clear sign for physics beyond the Standard Model
(BSM). However, the discovered state itself might already carry footprints of a BSM
model with one or several Higgs bosons. More data is needed to learn more about the
observed boson whose properties are so far compatible with those predicted by the SM.

Many BSM models such as supersymmetry, a symmetry relating bosons and fermions,
introduce new particles. Their production and decay may lead to long processes that are
challenging to calculate without further approximations if higher-order corrections are
required. Therefore the narrow-width approximation (NWA), which splits a complicated
process into the on-shell production and decay of an unstable particle with a narrow width,
is a helpful simplification that is often employed. However, this treatment does not take
interference effects into account. In this thesis, we develop a generalisation of the standard
NWA in order to include also interference terms from nearly mass-degenerate particles
in the prediction of a cross section or decay width while maintaining the convenient
factorisation of the complete process into smaller pieces.

So far, neither additional Higgs bosons beyond the SM-like observed state nor other
new particles have been detected. Confronting the predictions for the production and
decay of neutral Higgs bosons in the Minimal Supersymmetric Standard Model (MSSM)
with observed limits from LHC searches allows to constrain the experimentally viable
parameter space of the model. However, these conclusions are based on the standard
NWA where any interference term is neglected. Among the Higgs bosons in the MSSM

1



1 Introduction

with real parameters, only the neutral CP-even states h and H can interfere. This
effect can play a role in a small parameter region. The situation is different for complex
parameters, where also h2 and h3 can interfere and their interference is relevant in a
large area of parameters. We investigate the implications of this interference for the
interpretation of search results from the LHC.

Thesis outline

This thesis is structured as follows. Chapter 2 gives a short overview of the interactions
of the SM with a focus on the electroweak symmetry breaking by a minimal Higgs
sector. After mentioning shortcomings of the SM, we turn to the MSSM in Chapter
3, introducing our notation for the MSSM at lowest order with complex parameters,
describing the particle content and particularly the two Higgs doublets. In Chapter 4
we specify the renormalisation schemes used in our calculations, and we compare the
stability of different schemes for the neutralino-chargino sector. Chapter 5 begins with
an analysis of the pole structure of the propagator matrix of the neutral Higgs bosons.
We then discuss wave function normalisation factors, Ẑ, which are needed for the correct
on-shell properties of Higgs bosons in the DR renormalisation scheme. The key result
of Chapter 6 is the approximation of the full propagators in terms of Breit-Wigner
propagators and Ẑ-factors obtained by expanding the full propagators around all of
their complex poles. In Chapter 7 we first review the principles and limitations of
the NWA. In the main part of the chapter, we develop an extension of the standard
NWA for the consistent on-shell approximation of the interference term including higher
order corrections. Chapter 8 presents the NLO calculation of the three-body decay
χ̃0

4 → χ̃0
1τ

+τ− via resonant Higgs bosons in a scenario with real parameters where h
and H interfere. This interference effect is approximated in Chapter 9 by applying
the generalised NWA to the two subprocesses χ̃0

4 → χ̃0
1 Φ and Φ→ χ̃0

1τ
+τ−, Φ = h,H

including vertex corrections, soft photon radiation and Ẑ-factors. In Chapter 10, for
a scenario with a non-vanishing complex phase φAt , we examine CP-violating Higgs
interference effects in the process bb̄→ τ+τ− and their impact on LHC exclusion bounds.
Finally, we conclude in Chapter 11.

2



Chapter 2.

Standard Model

The Standard Model of particle physics (SM) successfully describes all known elementary
particles and – apart from gravity – all fundamental forces, namely the electroweak [12–15]
and strong [16–19] interactions. The last missing piece of the SM was the Higgs boson
predicted to generate masses of the matter particles and force carriers. The long awaited
discovery of a new scalar at the LHC in 2012 and its confirmation over the last years as
a SM-like Higgs boson therefore represents a breakthrough of particle physics.

In this chapter, we provide a brief introduction of the underlying symmetries and
the particle content of the SM. In particular, we focus on the breaking of the electroweak
symmetry by a Higgs field before pointing out some shortcomings of the SM that require
new physics beyond the SM, mainly following Refs. [20–24].

2.1. Symmetries and interactions

The SM is a relativistic quantum field theory characterised by its global and local
symmetries. Its Lagrangian is invariant under the global symmetries defined by the
Poincaré group, i.e. the (homogeneous) Lorentz transformations and (inhomogeneous)
translations in Minkowski space-time. Besides, the SM is gauge invariant under local
transformation of the non-abelian, semi-simple Lie-group SU(3)C ⊗ SU(2)L ⊗ U(1)Y ,
where the C denotes colour, L left-handed fields charged under the weak isospin and Y
the weak hypercharge.

The SM contains fermions ψ (spin 1/2) as matter fields in the fundamental repre-
sentation of the gauge groups, vector bosons Aaµ (spin 1) as mediators of the interactions
in the adjoint representation and one scalar field Φ (spin 0). Poincaré invariance de-
termines their kinetic terms in the Lagrangian Lkin, which contains derivatives of the
fields. However, demanding also invariance under the gauge transformations requires
to substitute the derivatives by covariant derivatives (where summation over the gauge
index a is implied)

∂µ → Dµ := ∂µ − igT aAaµ, (2.1)

with the coupling g, N2− 1 generators Ta and generic gauge fields Aaµ of a general SU(N)
gauge group. The symmetry group of quantum chromodynamics (QCD), the theory of
the strong interaction, is SU(3)C with a conserved charge called colour. The generators
of SU(3) are λa

2
where λa, a = 1...8 are the Gell-Mann matrices. The eight gauge fields

3



2 Standard Model

gaµ are called gluons, and the strong coupling is denoted by gs. Electroweak interactions
are characterised by the SU(2)L ⊗ U(1)Y symmetry. For the SU(2)L group, which is
generated by the three Pauli matrices σa, there are three fields W a

µ , a = 1, 2, 3, the
coupling g2 and the weak isospin Ia = σa

2
. The abelian U(1)Y has the coupling g1, the

hypercharge Y and one gauge field Bµ. Hence, the covariant derivative involving all
generators of the SM symmetry groups reads

Dµ = ∂µ − ig1
Y

2
Bµ ± ig2

σa

2
W a
µ − igs

λa

2
gaµ. (2.2)

The sign convention is − in the SM and + in the MSSM (see Chapter 3). Applying the
covariant derivative, the kinetic term of the fermions reads (with ��D = γµDµ)

Lkin,f = ψi��Dψ. (2.3)

The field strength tensors F a
µν = ∂µAν − ∂µAν + gfabcAbµA

c
ν of all gauge groups, where g

are the specific gauge couplings and fabc the structure constants defining the respective
algebra (they vanish for the abelian U(1)), appear in the kinetic term of the vector
bosons:

Lgauge = −1

4
F a
µνF

aµν ≡ −1

4
gaµνg

aµν − 1

4
W a
µνW

aµν − 1

4
BµνB

µν (2.4)

The electric charge operator Q is given by the Gell-Mann-Nishijima relation:

Q = I3 +
Y

2
. (2.5)

2.2. Electroweak symmetry breaking

Higgs field and spontaneous symmetry breaking The SM in its form described
above predicts massless fermions and gauge bosons – in contradiction to experimental
results of non–zero fermion masses and three massive gauge bosons. Explicit mass
terms in the Lagrangian would violate gauge invariance and thereby spoil unitarity and
renormalisability. The only known mechanism of introducing massive gauge bosons of
the electroweak interactions in a renormalisable [25, 26] way is by spontaneous breaking
of the electroweak symmetry. In this case, only the symmetry of the vacuum is broken
while keeping the Lagrangian invariant. This is the so-called Brout-Englert-Higgs (BEH)
mechanism [7–11]. The breaking is achieved by a complex scalar SU(2)L doublet Φ with
hypercharge Y = 1,

Φ(x) =

(
φ+(x)

φ0(x)

)
, (2.6)
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2.2 Electroweak symmetry breaking

giving rise to a scalar term in the Lagrangian

LH = (DµΦ)† (DµΦ)− V (Φ). (2.7)

In order to guarantee renormalisability, no higher powers than (Φ†Φ)2 are allowed in the
potential V (Φ). Moreover, the potential needs to be bounded from below so that odd
powers of Φ are forbidden. Thus, the potential only depends on |Φ|2 = Φ†Φ:

V (φ) = −µ2Φ†Φ +
λ

4
(Φ†Φ)2. (2.8)

Further, for a stable potential (bounded from below), λ > 0 is required. If µ2 < 0, then
the minimum of the potential at Φ = 0 respects the full SU(2)L⊗U(1)Y symmetry and no
breaking emerges. Contrarily, µ2 > 0 induces the so-called “Mexican hat” potential which
exhibits an infinite set of degenerate minima on a circle of radius |Φ| =

√
2µ2

λ
= v√

2
6= 0,

where v is the non-vanishing vacuum expectation value (vev). The degenerate ground
states transform into each other under gauge transformations. However, selecting a
specific ground state spontaneously breaks the full SU(2)L ⊗ U(1)Y symmetry. Up to a
phase convention, the choice of the ground state is determined by the requirement that
the non-zero vev must reside in the neutral component of the Higgs doublet so that the
remnant symmetry is the unbroken U(1)em of electromagnetic gauge transformations:

〈Φ〉 =

(
0
v√
2

)
. (2.9)

The complex scalar doublet Φ(x) with four real degrees of freedom (dof) is then expanded
around the ground state,

Φ(x) =

(
φ+(x)

1√
2
(v +H(x) + iχ0(x))

)
, (2.10)

where φ+, φ− = φ+† and χ0 are three would-be Goldstone bosons [27, 28] with vanishing
vev. As unphysical degrees of freedom, they are absent in the unitary gauge and give
rise to the longitudinal modes of three gauge bosons. In contrast, the fourth dof is the
physical Higgs field H(x) that has led to the prediction of a massive Higgs boson [7].
Expanding the potential in terms of the physical fields, one identifies the Higgs mass,
which arises from the Higgs self-coupling λ, in the quadratic term:

m2
H =

∂V (H)

∂H2
= 2µ2 = λ

v2

2
. (2.11)

The Higgs mass is a free parameter of the SM and must be fixed by experimental
measurements.
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2 Standard Model

Masses of the gauge bosons One further expands the kinetic term around the
ground state

(DµΦ)†(DµΦ) =
1

2
(∂µH)(∂µH) +

1

8
g2

2(v +H)2(W 1
µ − iW 2

µ)(W 1µ + iW 2µ)

+
1

8
(v +H)2(g2W

3
µ + g1Bµ)(g2W

3µ + g1B
µ). (2.12)

The first term is the kinetic term of the physical Higgs field. The second term allows the
definition of two electrically charged bosons W±

µ as mass eigenstates with the mass MW

(extracted from the part proportional to v2):

W±
µ =

1√
2

(
W 1
µ ∓ iW 2

µ

)
, MW =

v

2
g2. (2.13)

The v2-part of the last term is equal to 1
2
(W 3

µ , Bµ)M2
0(W 3

µ , Bµ)T , where the mass matrix
of the neutral vector bosons

M2
0 =

v2

4

(
g2

1 g1g2

g1g2 g2
2

)
(2.14)

needs to be diagonalised in order to obtain the neutral mass eigenstates. Owing to
det
[
M2

0

]
= 0, one eigenvalue is zero. As the gauge boson of the unbroken U(1)em, the

photon γ has to remain massless also after electroweak symmetry breaking. The other
eigenvalue M2

Z = Tr
[
M2

0

]
belongs to the massive, neutral Z-boson. The mass eigenstates

result from the following rotation:(
Zµ

Aµ

)
=

(
cW sW

−sW cW

) (
W 3
µ

Bµ

)
,

MZ = v
2

√
g2

1 + g2
2,

Mγ = 0,
(2.15)

where the weak mixing angle θW is given by

sW ≡ sin θW =
g1√
g2

1 + g2
2

, cW ≡ cos θW =
g2√
g2

1 + g2
2

=
MW

MZ

. (2.16)

The electric unit charge can be expressed as e = g2sW = g1cW . All non-vanishing
gauge boson masses are proportional to v because they are generated by the spontaneus
breaking of SU(3)C ⊗ SU(2)L ⊗ U(1)Y −→ SU(3)C ⊗ U(1)em by the ground state of the
Higgs doublet. The SU(3)C is unaffected so that the gluons remain massless. They carry
colour and couple to colour-charged fermions. The photon interacts with all electrically
charged fields. The mediators of the weak interaction are the neutral Z-boson, to which
all fermions couple, and the charged W±-bosons, whose couplings to fermions are purely
left-handed. Apart from the photon, the gauge bosons have self-interactions. The
interactions of V = W±, Z with the Higgs boson are introduced by the trilinear (V V H)
and quadrilinear (V V HH) terms in Eq. (2.12). As a result, the physical Higgs field
restores unitarity of vector boson scattering, which would otherwise grow with energy.
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2.2 Electroweak symmetry breaking

Fermions and Yukawa couplings Fermions are categorised as colour-charged quarks
q, which are SU(3)C-triplets, and colour-neutral leptons l, i.e. singlets under SU(3)C .
They come in three generations with the same quantum numbers. As a chiral theory, left-
and right-handed fermions transform in different representations. Left-handed fermions
fL are SU(2)L doublets, right-handed fermions are weak singlets. A quark doublet qi,L
of generation i = 1, 2, 3 contains an up-type (ui) and a down-type (di) quark. Inside a
lepton doublet li,L, the up-type lepton is a neutral neutrino νi, and the down-type lepton
is charged. The SM does not contain any right-handed neutrinos. The right-handed
quarks and leptons are denoted by ui,R, di,R and ei,R.

An explicit mass term for the fermions would not respect the gauge symmetries of
the SM. Instead, they acquire their masses through Yukawa interactions between the
fermions and the Higgs fields,

LY = −qLyd Φ dR − qLyu ΦuR − lLyl Φ eR + h.c., (2.17)

where Φ = iσ2Φ
∗ = (φ0∗,−φ−)T , and yd,u,l are the 3 × 3 Yukawa matrices (in family

space) of the down-type quarks, up-type quarks and charged leptons, respectively. This
interaction is renormalisable and preserves the symmetries of the SM before electroweak
symmetry breaking. When the Higgs field obtains its vev, the fermions become massive.
The Yukawa matrices can be diagonalised by unitary transformations V in order to
obtain the diagonal mass matrices for f = u, d, l:

Mf = V f
L yfV

f†
R

v√
2
. (2.18)

The unitary CKM (Cabibbo, Kobayashi, Maskawa [29,30]) matrix

VCKM = V u
L V

d†
L (2.19)

provides a change from the weak eigenstate basis into the physical mass eigenbasis
of the quarks in the interaction terms of the Lagrangian. As a unitary 3 × 3 matrix,
VCKM contains one complex phase, which is the only source of CP-violation in the SM.
Neutrinos are assumed to be massless (although neutrino oscillations indicate small, but
non-zero neutrino masses, which hints at physics beyond the SM). Remarkably, as a
direct consequence of the BEH mechanism, the coupling strength yf of a massive fermion
f to the Higgs field is proportional to its mass: yf =

√
2mf
v

(and analogously for the W±-
and Z-bosons).

As an interesting fact, one Higgs doublet suffices in the SM to render both the up-
and the down-type fermions massive. The reason is that in Φ, the neutral φ0∗, which
develops a vev, stands in the upper component. Thus, electroweak symmetry breaking is
possible in the SM with a minimal Higgs sector consisting of only one complex scalar
doublet (the case is different in supersymmetry, see Chapter 3).
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2 Standard Model

SM Lagrangian The full Lagrangian of the SM is composed of the following terms:

LSM = Lgauge + LH + Lf + Lfix + LFP. (2.20)

The fermionic contributions are summarised in Lf = Lkin,f + LY . Each of the terms
Lgauge, LH and Lf is separately gauge invariant. However, quantisation and higher order
corrections require to fix a gauge by a new term in Lfix involving the unphysical degrees of
freedom of the gauge bosons. These need to be compensated for by introducing so-called
Faddeev-Popov ghost fields, giving rise to LFP.

2.3. Shortcomings of the Standard Model

Despite its tremendous success in describing very precisely almost all measurements
of particle physics experiments performed in the last decades, the SM cannot be the
complete theory of nature. It rather serves as an effective theory up to a cut-off scale Λ.
However, there are several experimental and theoretical indications for new physics at
higher energies than Λ.

The first issue concerns gravity, which cannot be accomplished as a quantum field
theory within the SM. Around the energy scale currently probed by particle colliders,
gravitational effects are expected to be negligible, but they become relevant at the Planck
scale of MP ∼ O(1019) GeV. Hence the validity of the SM is at the latest limited by MP .
The deficit of the SM to describe all four fundamental forces in a consistent framework
valid at all energies directly necessitates the embedding of the SM into a more universal
theory.

The SM is renormalisable so that it can in principle be run all the way up to the
maximal cut-off scale Λ ∼ MP if no new physics exists between the electroweak scale
MW and the Planck scale MP . In the absence of any physics beyond the Standard Model
(BSM) the enormous difference between these two scales by 17 orders of magnitude
could not be explained. On the other hand, the hierarchy of scales does not per se
pose a problem, but the question remains how this huge hierarchy can be stable in the
presence of quantum corrections. In fact, the mass of the Higgs boson is affected by
quantum effects of new physics. Fermion masses are protected by the approximate chiral
symmetry. Their quantum corrections are proportional to the mass and depend only
logarithmically on the cut-off scale, ∆mf ∼ mf ln Λ so that ∆mf → 0 in the chiral limit
of mf → 0. In contrast, masses of scalars are not protected by any symmetry of the SM.
Radiative corrections to squared scalar masses are independent of the bare mass itself
and quadratically sensitive to the cut-off scale. If no new physics enters below MP , the
Higgs mass M2

H = M2
H,0 + ∆M2

H receives a huge correction,

∆M2
H ∼ Λ2 ∼M2

P . (2.21)

In view of the discovered Higgs boson with MH ' 125GeV, an enormous cancellation
between the bare mass M2

H,0 and the correction term ∆M2
H is necessary in order to yield

the observed value at the electroweak scale. Since the Higgs mass is a free parameter
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2.3 Shortcomings of the Standard Model

of the SM, this cancellation is technically possible, but it is perceived as an extreme,
accidental fine-tuning and referred to as the “hierarchy problem”.

Moreover, if one demands the unification of all gauge couplings at a high scale,
new particles need to contribute to the coefficients of the running couplings, otherwise
the couplings g1, g2, g3 do not coincide [31]. It would be appealing to embed the semi-
simple SM group into a larger simple group of a Grand Unified Theory (GUT) with
MW � MGUT < MP . In addition, the SM does not explain the hierarchy of fermion
masses.

Besides the theoretical motivations to extend the SM, there is also experimental
evidence that new physics must exist. As mentioned above, the measurement of neutrino
oscillations, e.g. in Refs. [32, 33], are indicative of non-vanishing neutrino masses.
Furthermore, astrophysical observations imply that only 5% of the energy content of the
universe is made of ordinary matter, whereas Dark Matter (DM) and Dark Energy (DE)
constitute 27% and 68% [34], respectively. However, the SM does not offer any viable
candidate for DM, which ought to be stable on cosmological time scales and to interact
only weakly with SM particles. In addition, the observed matter-antimatter asymmetry
in the universe calls for additional sources of CP-violation beyond the single complex
phase in the CKM matrix in order to meet the Sakharov conditions [35].

Various extensions of the SM have been proposed in order to tackle its shortcomings.
For example additional dimensions of space-time, new strong dynamics in composite
Higgs models, further symmetries (such as supersymmetry or larger gauge groups of a
GUT) and string theory –or combinations of those approaches – offer interesting concepts
(see e.g. Refs. [36–39]) whereas no particles beyond the SM have been observed yet.

Among the BSM options, a strikingly elegant and widely studied solution to several
of the aforementioned problems of the SM is supersymmetry (SUSY) - a new symmetry
relating fermions to bosons. In this thesis we focus on SUSY, but mention also few
characteristics of other models beyond the SM when developing a model-independent
method in Chap. 7 for interference effects between new particles.
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Chapter 3.

Minimal Supersymmetric Standard
Model with complex parameters

Based on Refs. [22,40–45], this chapter introduces some basic concepts of supersymmetry
and outlines properties of the MSSM relevant for this thesis, with a focus on the Higgs
sector and the role of complex phases of MSSM parameters.

3.1. Supersymmetry

3.1.1. Features of supersymmetry

Supersymmetry relates bosons to fermions by a symmetry. It is mathematically well
motivated and has profound phenomenological implications, which are probed at the
LHC. For each SM fermion f , SUSY predicts a scalar superpartner, a sfermion denoted
by f̃ . Vice versa, each SM gauge boson receives a fermionic superpartner, a gaugino.
SUSY requires at least two Higgs doublets (see Sect. 3.2.1) and their fermionic partners
are called higgsinos. Each SM particle has the same quantum numbers as its superpartner
except the spin.

SUSY may offer a solution to the hierarchy problem. SM fermion loops in the Higgs
self-energy contribute proportional to −y2

fΛ
2, where yf is the Yukawa coupling and Λ

the cut-off of the integral. The sfermion contributions are proportional to yf̃Λ
2 and

therefore also quadratically sensitive to the cut-off, where yf̃ is the quartic scalar coupling
involving two Higgs bosons and two sfermions. Thus, the quadratic corrections to the
Higgs mass vanish if each fermion chirality state fL/R has a superpartner f̃L/R1 and if
the dimensionless couplings are related by

yf̃ = y2
f . (3.1)

The cancellation of the Λ2-term holds independently of the masses of the superpartners.
In addition, ∆M2

H contains terms proportional to ln Λ. If furthermore the masses were
exactly degenerate, mf = mf̃ , also the logarithmic contributions would vanish so that
∆M2

H = 0 in the case of exact SUSY (see Sect. 3.1.2). However, the non-observation of
SUSY partners so far indicates that SUSY – if existing in nature – must be broken (see

1The sfermions as scalars do not have a chirality. The subscript L/R of f̃ just denotes the superpartner
of the chiral fermion fL/R.
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3.1 Supersymmetry

Sect. 3.2.3). SUSY breaking induces a mass splitting in m2
f̃

= m2
f + ∆2. The cancellation

of the problematic quadratic correction is not spoiled by ∆2, but the logarithmic terms
combine to ∆M2

H ∼ ln
(
mf̃
mf

)
, which stays acceptably small if the splitting is of the order

or slightly above the weak scale. So in order not to re-introduce the fine-tuning of the
Higgs mass, SUSY is best motivated for superpartner masses around the TeV scale.

Another feature of SUSY is that it improves the unification of the running gauge
couplings because group theoretical factors of the superpartners influence the renormali-
sation group equation. Furthermore, the SUSY particle spectrum provides new neutral
and weakly interacting fields which constitute suitable candidates for cold dark matter.
Moreover, several parameters introduced by SUSY and SUSY breaking can in principle
be complex, offering contributions to the amount of CP-violation necessary to explain
the observed baryon asymmetry of the universe (see Sect. 3.4).

It is compelling that the phenomenological consequences of SUSY address many of
the shortcomings of the SM although the initial mathematical motivation for SUSY was
independent of them.

3.1.2. SUSY algebra and superpotential

Symmetry is a driving principle of constructing physical theories and has led to accurate
predictions in the case of the SM. However, the SM gauge groups might not exhaust all
symmetries of nature which are compatible with Lorentz invariance. In their famous
no-go theorem, Coleman and Mandula proved [46] that the only Lie group containing the
Poincaré group for a relativistic quantum field theory in 3 + 1 dimensions is the direct
product of the Poincaré space-time symmetries and inner symmetries. Since in a direct
product of groups all generators of one group commute with all generators of the other
group, this is only a trivial extension.

However, Haag, Łopuszanski and Sohnius [36] proposed to replace the ordinary
Lie algebra by a graded (or super-)Lie algebra. This bypasses the no-go theorem with
supersymmetry as the unique non-trivial extension of the spacetime symmetries of the
Poincaré algebra.

The supersymmetry generator Q alters the spin of a particle by 1/2 and thus relates
fermions to bosons. With Lorentz index µ, spinor indices α, β, α̇, β̇ and four-momentum
P µ, the SUSY algebra combines commutators and anticommutators:{
Qα, Q

†
α̇

}
= −2σµαα̇Pµ, {Qα, Qβ} =

{
Q†α̇, Q

†
β̇

}
= 0, [P µ, Qα] =

[
P µ, Q†α̇

]
= 0.(3.2)

Irreducible representations of the SUSY algebra are so-called supermultiplets, which
comprise SM particles and their superpartners and contain an equal number of fermionic
and bosonic degrees of freedom. Eq. (3.2) even implies[

Qα, P
2
]

= [Qα, Pµ]P µ + Pµ [Qα, P
µ] = 0, (3.3)

which predicts that all fields in one supermultiplet are mass degenerate if SUSY is
unbroken. Further, the SUSY generators Q,Q† commute with all generators of the gauge
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3 Minimal Supersymmetric Standard Model with complex parameters

group so that all fields within one multiplet share the same quantum numbers except
the spin. For the embedding of the SM into SUSY, there are on the one hand chiral
multiplets containing a left-handed SM Weyl spinor ψ, a scalar superpartner φ and a
bosonic auxiliary field F . On the other hand, a vector supermultiplet consists of a SM
gauge boson Aaµ, a gaugino λa and a real, bosonic auxiliary field Da, where the index a
refers to the adjoint representation of each gauge group. The auxiliary fields need to be
introduced in order to close the SUSY algebra2 also off-shell, i.e. without imposing the
equations of motion of the propagating fields, by balancing the fermionic and bosonic
degrees of freedom within one supermultiplet. F and Da vanish on-shell, have no kinetic
term, do not propagate, but can be involved in interaction terms. The most general set of
renormalisable, SUSY preserving non-gauge interactions is collected in the superpotential

W = Liφi +
1

2
M ijφiφj +

1

6
yijkφiφjφk, (3.4)

which is a holomorphic function of the complex scalar fields φi. The linear term is
only allowed if φi is a gauge singlet. The SUSY Lagrangian LSUSY = Lchiral + Lgauge +
LSUSYgauge consists of terms with the free and interacting chiral supermultiplets, the
gauge supermultiplets and the supersymmetric gauge interactions, respectively,

Lchiral = −Dµφ∗iDµφi + iψ†iσµDµψi + F ∗iFi +

[(
−1

2
W ijψiψj +W iFi

)
+ c.c.

]
,

(3.5)

Lgauge = −1

4
F a
µνF

µνa + iλa†σµDµλ
a +

1

2
DaDa, (3.6)

LSUSYgauge = −
√

2g
(
(φ∗T aψ)λa + λ†a(ψ†T aφ)

)
+ g(φ∗T aφ)Da, (3.7)

where F a
µν are the field strength tensors, g the gauge couplings, T a the gauge group

generators and Wi = ∂W
∂φi
, Wij = ∂2W

∂φi∂φj
. In the extraction of the scalar potential V , one

substitutes the auxiliary fields by their equations of motion, which reveal that Fi and Da

are algebraic in the scalar fields (i.e., no derivatives involved): Fi = −W ∗
i , F

i∗ = −W i

and Da = −g(φ∗T aφ). Therefore, the scalar potential consisting of an “F-term” VF and
a “D-term” VD,

V (φ, φ∗) = VF + VD = F i∗Fi +
1

2
DaDa = W ∗

i W
i +

1

2
g2
a(φ
∗T aφ)2, (3.8)

is bounded from below (on account of the sum of squares). Remarkably, it is determined
by those parameters of the theory that are already present in the SM, such as fermion
masses, Yukawa couplings in VF and gauge couplings in VD.

2The closure of the SUSY algebra means that the action is invariant under SUSY transformations.
Hence, the variation of the Lagrangian must be at most a total derivative.
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3.2 Definition of the MSSM

3.2. Definition of the MSSM

The minimal supersymmetric extension of the Standard Model (MSSM) [47–49] is the
minimal extension of the SM that introduces SUSY. Any supersymmetric model calls
for at least two Higgs doublets in order to render both the up-type and the down-type
fermions massive. In the SM (see Sect. 2.2), this is achieved by one scalar doublet Φ
with the vev in the lower component and Φ with the vev in the upper component. This
characteristic of the SM contrasts with the demand for a holomorphic superpotential
W where the complex conjugate of the Higgs doublet would break SUSY. Furthermore,
two Higgs doublets H1 ≡ Hd = (h0

d, h
−
d )T and H2 ≡ Hu = (h+

u , h
0
u)
T with opposite

hypercharges YH1,2 = ±1 are required for the cancellation of a gauge anomaly.
The MSSM is a two-Higgs doublet model constrained by supersymmetry. Three out

of the eight real degrees of freedom originating from the two complex scalar doublets
turn into longitudinal modes of the massive gauge bosons upon electroweak symmetry
breaking. Thus, five degrees of freedom remain that give rise to five physical Higgs bosons
(see Sect. 3.3.4). Their partners are the Higgsinos h̃0

d, h̃
−
d , h̃

+
u , h̃

0
u.

Apart from the additional Higgs doublet, the particle content is doubled with respect
to the SM. There is one scalar superpartner per left- or right-handed fermion. The
left-handed quark doublets are denoted as qi = (ui,L, di,L), and their superpartners are
q̃i = (ũi,L, d̃i,L), where i = 1, 2, 3 is the family index. Both qi and q̃i are contained in the
chiral supermultiplet Qi. As mentioned before, all members of a supermultiplet transform
in the same representation under the SM gauge groups; their representation is listed in
Tab. 3.1. As for the right-handed quarks, they are expressed as the conjugates of the
left-handed ones in order to define all chiral supermultiplets in terms of left-handed Weyl
spinors. In this convention, ui3 stands for the supermultiplet made of a right-handed
up-type quark singlet u†i,R ∼ ui,L and its superpartner ũ∗i,R ∼ ũi,L. Likewise for the

down-type quark singlets, di denotes the supermultiplet made up of di,L and d̃i,L.
The left-handed lepton doublets ei = (νi, ei,L) appear with the sleptons ẽi = (ν̃i, ẽi,L)

in the supermultiplet Li. Since there are no right-handed neutrinos in the SM and MSSM,
the supermultiplet ei simply contains the charged lepton singlets e†R and ẽ∗R.

Concerning the gauge supermultiplets, the partner of the B is called bino B̃, the
W±, W 3-fields are grouped with the winos W̃±, W̃ 3 and gluons ga with gluinos g̃a, a =
1...8. All chiral and gauge supermultiplets of the MSSM with their representations are
assembled in Tab. 3.1.

3.2.1. The MSSM superpotential

The non-gauge interactions of the MSSM are specified by the following superpotential:

WMSSM = uyuQ · H2 − dydQ · H1 − eye L · H1 + µH1 · H2, (3.9)

3The bar over the fermion name should be understood as a part of the symbol representing the
antiparticle instead of an operation like Dirac conjugation in the notation of Ref. [41].
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Chiral spin-0 (R = −1) spin-1/2 (R = +1) SU(3)C SU(2)L U(1)Y

(s)quarks Q (ũL, d̃L) (uL, dL) 3 2 1/3
ū ũ∗R u†R 3 1 -4/3
d̄ d̃∗R d†R 3 1 2/3

(s)leptons L (ν̃, ẽL) (ν, eL) 1 2 -1
ē ẽ∗R e†R 1 1 2

(R = +1) (R = −1)

Higgs, Higgsinos H1

(
h0d, h

−
d

)
(h̃0d, h̃

−
d ) 1 2 -1

H2

(
h+u , h

0
u

)
(h̃+u , h̃

0
u) 1 2 1

Gauge spin-1 (R = +1) spin-1/2 (R = −1)

B-boson, bino B B̃ 1 1 0
W-boson, wino W±,W 3 W̃±, W̃ 3 1 3 0
gluon, gluino ga g̃a 8 1 0

Table 3.1.: Chiral and gauge supermultiplets of the MSSM (with SU(3)C gauge index a =
1, ..., 8, but family indices suppressed) [40, 41]. Some of them mix into mass
eigenstates, see Tab. 3.2.

where the dot denotes the SU(2)-invariant product contracted by the total antisymmetric
tensor εαβ with the convention ε12 = 1. For instance, the last term can be expresses as
εαβµH1αH2β. The Yukawa matrices yu,d,e in family space (the sum over family indices is
implied) are the same as in the SM. They give rise to masses of the chiral supermultiplets.
A conventional mass term involving a scalar and its conjugate would violate SUSY. In
Eq. 3.4, however, the superpotential W of a general SUSY theory contains a bilinear
combination of scalar fields. In the MSSM, only one such combination is possible, namely
the µ-term with each of the Higgs doublets. The dimensionful parameter µ may be
understood a supersymmetric version of a Higgs and Higgsino mass term.

3.2.2. R-parity

In the SM Lagrangian, no renormalisable terms are possible that violate the lepton
number L or baryon number B so that they are rather accidentally conserved. On the
contrary, in the MSSM gauge invariance and renormalisability do not exclude B and L
violating terms (in addition to the B,L conserving superpotential given in Eq. (3.9)),
which may lead to a rapid proton decay. Although B- and L- violating processes have
not been observed experimentally, baryon and lepton number conservation cannot be
assumed to be a fundamental symmetry. So a new symmetry, called R-parity [50] as
the discrete subgroup Z2 of a continuous U(1), is introduced. It forbids the baryon and
lepton number violating terms, but allows all interactions in Eq. (3.9). The R-parity
R := (−1)3B+L+2s, where s denotes the spin, assigns +1 to SM particles and −1 to their
SUSY partners. The conservation of the R-parity implies that SUSY particles can only
be pair-produced and that the lightest supersymmetric particle (LSP) is absolutely stable.
As a consequence, the final state in a decay of any sparticle must contain an odd number
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3.2 Definition of the MSSM

of LSPs. If the LSP is neutral under charge and colour, it interacts only weakly and it is
suited as a candidate for non-baryonic cold dark matter [51, 52]. In the MSSM this role
might be played for instance by the lightest neutralino χ̃0

1.

3.2.3. Soft SUSY breaking

If SUSY were an exact symmetry, particles and their superpartners would have exactly
the same mass. The non-observation of SUSY particles at energies reached up to now
implies that SUSY can only be realised as a broken symmetry. Breaking can be triggered
by non-vanishing F - or D-terms. Yet it remains an open question how this breaking
of supersymmetry is accomplished. Approaches of spontaneous SUSY breaking are not
viable in the MSSM. Instead, the breaking is assumed to happen in a hidden sector which
has no direct renormalisable couplings to the visible sector of the SM fields together
with their superpartners. While the phenomenology is largely insensitive to the exact
dynamics of the SUSY breaking in the hidden sector, it does depend on the so far
unknown way of mediation from the hidden to the visible sector. A crucial point is that
SUSY breaking terms in the Lagrangian must not reintroduce the quadratic divergences
in the Higgs mass correction whose cancellation were one feature of exact SUSY. The
terms proportional to Λ2 in ∆M2

H are avoided by allowing only so-called soft terms
that, by having a positive mass dimension, are super-renormalisable and maintain the
relations between dimensionless couplings, namely all gauge and Lorentz invariant terms
of dimension two and three.

In order to describe the SUSY breaking irrespective of the actual SUSY breaking
mechanism, the ignorance of the precise mediation of the breaking is parametrised in the
soft Lagrangian, Lsoft. The most general Lagrangian for soft SUSY breaking terms that
is allowed by gauge invariance and conserves R-parity is [40, 41]

Lsoft =− 1

2

(
M3 g̃

ag̃a +M2 W̃
aW̃ a +M1 B̃B̃ + c.c.

)
− Q̃†m2

Q̃
Q̃− L̃†m2

L̃
L̃− ũm2

ũ
ũ
† − d̃m2

d̃
d̃
†
− ẽm2

ẽ
ẽ
†

−
(
ũ au Q̃ · H2 − d̃ ad Q̃ · H1 − ẽ ae Q̃ · H1 + c.c.

)
−m2

H1
H∗1 · H1 −m2

H2
H∗2 · H2 − (m2

12H1 · H2 + c.c.). (3.10)

In the first line of Eq. (3.10), a denotes the gauge index and M1,M2,M3 are the soft
gaugino masses of the bino, winos and gluinos, respectively. Explicit mass terms of
gauginos do not damage gauge invariance because gauginos are in a real representation of
the gauge groups [41]. The second line provides the soft sfermion squared masses m2

f̃
for

f̃ = Q̃, L̃, ũ, d̃, ẽ. As a result of those mass terms, SM particles and their superpartners
are no longer mass degenerate. The third line introduces dimensionful trilinear couplings
au, ad, ae, which appear as the interaction between a Higgs boson and two sfermions.
Finally, the last line contains squared masses for the Higgs supermultiplets as well as
a bilinear term in the Higgs fields. The au,d,e and the m2

12 terms are analogous to the
SUSY-conserving Yukawa interactions and the µ-term in Eq. (3.9), but here only the
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3 Minimal Supersymmetric Standard Model with complex parameters

Higgses and not the Higgsinos are involved so that each line in Eq. (3.10) breaks SUSY.
Non-vanishing soft Higgs masses are required for electroweak symmetry breaking in the
MSSM, as we will see in Sect. 3.3.4.

While the SUSY preserving superpotential introduced only one additional parameter
(µ) with respect to the SM, the soft breaking gives rise to numerous masses, mixing
angles and couplings with possibly complex phases. Effectively, the MSSM contains 105
independent new parameters, which reduce the predictivity of the model. Therefore
simplifying assumptions, such as presuming universal masses and couplings at a high
scale or reducing the number of free parameters at a low scale, are often employed to
facilitate experimental analyses and phenomenological studies in a lower dimensional
parameter space. In fact, experimental constraints point to universal structures.

Since most MSSM parameters stem from the flavour sector, regarding SUSY breaking
as “flavour-blind”, i.e. universal with respect to flavour, reduces the set of free parameters
and simultaneously avoids severely constrained flavour changing neutral currents. This
reduces the sfermion mass matrices, which are generally 3×3 matrices in family space, to
their diagonal entries. Supposing in addition minimal flavour violation (MFV) [53–55],
namely that SUSY does not introduce any flavour violation beyond that already present
in the SM, the structure of the trilinear couplings is given by the Yukawa matrices:

au = Au yu, ad = Ad yd, ae = Ae ye. (3.11)

If one further neglects quark mixing between generations (as we do in fact in this thesis),
the a-matrices become diagonal:

aui = Aui yui , adi = Adi ydi , aei = Aei yei . (3.12)

Another simplifying assumption is the unification of gaugino masses M1 and M2 at the
GUT scale:

M1 =
5

3

s2
W

c2
W

M2. (3.13)

3.3. Physical fields of the MSSM

The field content of the MSSM allows for mixing of the particles introduced so far into
physical states, see Tab. 3.2. The mass eigenstates and mixing properties of the different
sectors will be described in more detail in the next sections.
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Names Physical states Gauge eigenstates

neutral Higgs bosons h,H,A h0u, h
0
d

charged Higgs bosons H± h+u , h
−
d

neutral gauge bosons A,Z B,W 3, h0u, h
0
d

charged gauge bosons W± W±, h+u , h
−
d

sfermions f̃1, f̃2 f̃L, f̃
∗
R

neutralinos χ̃0
1, χ̃

0
2, χ̃

0
3, χ̃

0
4 B̃, W̃ 3, h̃0u, h̃

0
d

charginos χ̃±1 , χ̃
±
2 W̃±, h̃+u , h̃

−
d

Table 3.2.: Physical mass eigenstates of the MSSM (apart from SM fermions, gluons and
gluinos) arising from mixtures of gauge eigenstates in Tab. 3.1.

3.3.1. Sfermion sector

The mixing of sfermions f̃L, f̃R within one generation into mass eigenstates f̃1, f̃2 is
parametrised by the matrix

M2
f̃

=

(
M2

f̃L
+m2

f +M2
Z cos 2β(I3

f −Qfs
2
W ) mfX

∗
f

mfXf M2
f̃R

+m2
f +M2

Z cos 2βQfs
2
W

)
, (3.14)

Xf := Af − µ∗ ·

{
cot β, f = up-type
tan β, f = down-type.

(3.15)

The trilinear couplings Af = |Af |eiφAf , as well as µ = |µ|eiφµ , can be complex. These
phases enter the Higgs sector via sfermion loops starting at one-loop order. Diagonalising
M2

f̃
for all f̃ separately, one obtains the sfermion masses mf̃1

≤ mf̃2
:(

f̃1

f̃2

)
= Uf̃

(
f̃L

f̃R

)
, (3.16)

where Uf̃ is a unitary matrix that leads to Uf̃Mf̃U
†
f̃

= diag(mf̃1
,mf̃2

). The Langrangian
can then be expressed in terms of the mass eigenstates,

Lf̃ = −
(
f̃ †1 , f̃

†
2

)
Uf̃Mf̃U

†
f̃

(
f̃ †1 , f̃

†
2

)T
. (3.17)

For the first two generations, the sfermion masses exceed the masses of their SM
partners so that the hierarchy of the matrix elements in Eq. (3.14) is approximately
diagonal. However, in the case of the stop and, for sufficiently high tan β, also sbottom,
the mixing can be rather large.
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3 Minimal Supersymmetric Standard Model with complex parameters

3.3.2. Gluino sector

The gluino g̃a, a = 1, 2, 3 with spin s = 1
2
has a mass of

mg̃ = |M3|, (3.18)

whereM3 = |M3| eiφM3 is the possibly complex gluino mass parameter. The gluino cannot
mix with any other fields and its mass term in the tree-level Lagrangian is given by

Lg̃ = −1

2
g̃|M3|g̃. (3.19)

Since the gluino does not directly couple to the Higgs, the phase φM3 enters the Higgs
sector at the two-loop level, but has an impact for example on the bottom Yukawa
coupling already at one-loop order.

3.3.3. Neutralino and chargino sector

At tree-level, mixing in the chargino sector is governed by the higgsino and wino mass
parameters µ and M2, respectively. In the neutralino sector it additionally depends
on the bino mass parameter M1. The charginos χ̃±i , i = 1, 2, as mass eigenstates are
superpositions of the charged winos W̃± and higgsinos H̃±, with mass matrix X,(

χ̃+
1

χ̃+
2

)
= V

(
W̃+

χ̃+
i

)
,

(
χ̃−1

χ̃−2

)
= U

(
W̃−

χ̃−i

)
, X =

(
M2

√
2MW sβ√

2MW cβ µ

)
.

(3.20)

In order to obtain the Dirac chargino masses, X is diagonalised by the biunitary trans-
formation

diag(mχ̃±1
,mχ̃±2

) = U∗XV †. (3.21)

At lowest order, the chargino Lagrangian reads [45]

Lχ̃± = χ̃−i [�pδij − ωL(U∗XV †)ij − ωR(V X†UT )ij]χ̃
−
j , (3.22)

where χ̃−i = χ̃−†j γ
0. Likewise in the neutralino sector, the neutral electroweak gauginos

B̃, W̃ 3 and the neutral Higgsinos h̃0
d, h̃

0
u mix into the mass eigenstates χ̃0

i , i = 1, ..., 4.
The mixing is encoded in the gaugino mass matrix Y ,

χ̃0
1

χ̃0
2

χ̃0
3

χ̃0
4

 = N


B̃

W̃ 3

h̃0
d

h̃0
u

 , Y =


M1 0 −MZcβsW MZsβsW

0 M2 MZcβcW −MZsβcW

−MZcβsW MZcβcW 0 −µ
MZsβsW −MZsβcW −µ 0

 .

(3.23)
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3.3 Physical fields of the MSSM

Since neutralinos are Majorana particles, one unitary matrix Ñ suffices to diagonalise
the symmetric mass matrix Y , which has real, but not necessarily positive eigenvalues,

Ñ∗Y Ñ−1 =: D′ = diag(m′χ̃0
1
,m′χ̃0

2
,m′χ̃0

3
,m′χ̃0

4
). (3.24)

In order to obtain non-negative mass eigenvalues, the Takagi factorisation [56,57] can be
applied. If m′

χ̃0
j
is negative, one can rotate this eigenvalue by a unitary transformation T

which can be chosen as a 4× 4 unit matrix with an i on the jth position instead of the 1.
Then, with N := T · Ñ , the diagonalisation

N∗D′N−1 = T ∗(Ñ∗Y Ñ−1)T−1 = N∗Y N−1

=: D = diag(mχ̃0
1
,mχ̃0

2
,mχ̃0

3
,mχ̃0

4
) (3.25)

yields mχ̃0
i
≥ 0 ∀i = 1, .., 4. Using χ̃0

i = Nijψ
0
j with ψ0 = (B̃, W̃ 3, h̃0

d, h̃
0
u), the neutralino

part in the Lagrangian can be expressed in the mass eigenbasis:

Lχ̃0 =
1

2
χ̃0
i [�pδij − ωL(N∗Y N †)ij − ωR(NY †NT )ij]χ̃

0
j . (3.26)

The gaugino mass parameters M1 and M2 as well as the higgsino mass parameter can in
principle be complex. However, only two of them are independent and one conventionally
sets φM2 = 0.

3.3.4. Higgs sector

3.3.4.1. Scalar potential

As mentioned before, the MSSM incorporates two complex scalar Higgs doublets with
opposite hypercharge YH1,2 = ±1,

H1 =

(
h0
d

h−d

)
=

(
vd + 1√

2
(φ0

1 − iχ0
1)

−φ−1

)
(3.27)

H2 =

(
h+
u

h0
u

)
= eiξ

(
φ+

2

vu + 1√
2
(φ0

2 + iχ0
2)

)
. (3.28)

The Higgs potential is composed of the Higgs parts of the F- and D-terms,

VF =

∣∣∣∣ ∂W∂H1

∣∣∣∣2 +

∣∣∣∣ ∂W∂H2

∣∣∣∣2 (3.29)

VD =
g2

2

2

3∑
a=1

(
H†1

σa

2
H1 +H†2

σa

2
H2

)2

+
g2

1

2

(
H†2

1

2
H2 −H†1

1

2
H1

)2

, (3.30)
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3 Minimal Supersymmetric Standard Model with complex parameters

and the soft breaking terms from the last line of Eq. (3.10):

VH = (VF + VD − Lsoft)
∣∣
H

= (|µ|2 +m2
H2

)(|h0
u|2 + |h+

u |2) + (|µ|2 +m2
H1

)(|h0
d|2 + |h−u |2)

+ [m2
12(h+

u h
−
d − h

0
uh

0
d) + h.c.] +

g2
1 + g2

2

8

[
|h0
u|2 + |h+

u |2 − |h0
d|2 − |h−d |

2
]2
. (3.31)

Hence the quadratic terms of VH contain on the one hand the SUSY parameter |µ|2
and on the other hand the soft terms mH1 ,mH2 . The bilinear terms come with the soft
coefficient m2

12 whose phase can be absorbed in a redefinition of µ and m2
12 by means

of a Peccei-Quinn symmetry [58,59]. As a special feature of SUSY, the quartic term is
determined by the gauge couplings g1, g2.

3.3.4.2. Conditions for electroweak symmetry breaking

Realising spontaneous electroweak symmetry breaking in the MSSM is more intricate
than in the SM due to the second doublet. With a SU(2)L transformation, one component
of each Higgs doublet can be rotated to have a vanishing vacuum expectation value,
〈h+

u 〉 = 〈h−d 〉 = 0 so that U(1)em is conserved in the vacuum state. Therefore we discuss
from now on the terms of neutral Higgs states in VH ,

V 0
H = (|µ|2 +m2

H2
)|h0

u|2 + (|µ|2 +m2
H1

)|h0
d|2 − [m2

12h
0
uh

0
d + h.c.] +

g2
1 + g2

2

8

[
|h0
u|2 − |h0

d|2
]2
.

(3.32)

Breaking of the SU(2)L ⊗ U(1)Y gauge symmetry by this scalar potential can only be
realised by a stable minimum of V 0

H different from the origin in field space. First of all, a
stable theory requires the potential to be bounded from below, but the quartic D-term
contribution vanishes identically for |hd| = |hd| (“D-flat direction”). Hence for stability in
the critical |hd| = |hd| direction, the following relation between µ and the soft parameters
must be fulfilled:

2|µ|2 +m2
H2

+m2
H1
> 2m2

12 > 0. (3.33)

On the other hand, electroweak symmetry breaking requires an unstable origin (h0
u, h

0
d) =

(0, 0), hence a saddle point at |h0
u| = |h0

u| = 0,

(µ|2 +m2
H2

) (µ|2 +m2
H1

) < m2
12. (3.34)

Eqs. (3.33) and (3.34) cannot be simultaneously satisfied for m2
H2

= m2
H1

– in particular
not for m2

H1
= m2

H2
= 0. Thus, the breaking of SU(2)L ⊗ U(1)Y to U(1)em requires

non-zero soft Higgs mass terms. Consequently, there is no EWSB in exact SUSY4.

4If m2
H1

= m2
H2

at the GUT scale, radiative corrections involving the large top Yukawa coupling can
drive m2

H2
to small values (unequal to m2

H1
) at the electroweak scale (“radiative EWSB”).
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If, however, m2
H1
,m2
H2

are non-degenerate and at least one of them non-zero, the
neutral Higgs components acquire non-vanishing, real vacuum expectation values

vd ≡ 〈h0
d〉, vu ≡ 〈h0

u〉, (3.35)

which follow from the conditions ∂h0
u
V = ∂h0

u
V = 0 for a stationary point of V 0

H at
(|h0

u| = vu, |h0
d| = vd). The vevs vu and vd are related to the vev of the SM Higgs by

v2
u + v2

d = v2
SM, (3.36)

and their ratio represents the up- and the down-type contribution to EWSB:

tan β :=
vu
vd
. (3.37)

The minimisation conditions yield the following relation:

M2
Z

2
= −µ2 +

m2
H1
−m2

H2
tan2 β

tan2 β − 1
. (3.38)

The three involved scales have a different origin. While µ is a SUSY parameter, m2
H1
,m2
H2

come from the soft breaking scale msoft, which is expected somewhat above the weak
scale. However, these a priori unrelated parameters need to combine to the left-hand
side of Eq. (3.38). This so-called µ-problem or little hierarchy problem might be solved
in the next-to minimal supersymmetric SM (NMSSM) [60] where µ arises naturally at
the electroweak scale as the vev of an additional Higgs singlet. Nevertheless, this thesis
deals with the MSSM.

3.3.4.3. Masses and mixings

Analogously to the SM, the Higgs doublets can be expanded around the vevs as shown
in the second equality of Eqs. (3.27,3.28), where φi denote the CP-even states and χj the
CP-odd ones. This expansion is inserted into the scalar potential, which contains (apart
from trilinear and quartic terms) the following linear tadpole and bilinear mass terms
with Φ0 := (φ0

1, φ
0
2, χ

0
1, χ

0
2) and Φ± := (φ±1 , φ

±
2 ):

VH ⊃ −
∑
i

TiΦ
0
i +

1

2
Φ0MφφχχΦ0T +

1

2
Φ−Mφ±φ±Φ+T , (3.39)

where Ti are the tadpole coefficients, Mφφχχ the 4× 4 real, symmetric mass matrix of the
neutral degrees of freedom and Mφ±φ± the 2× 2 Hermitian mass matrix of the charged
Higgs components. The minimum conditions for VH require the tadpole coefficients and
the relative phase ξ between H1 and H2 to vanish at tree level5. Since no phase is left, the
Higgs sector conserves CP at lowest order. Hence, Mφφχχ becomes block-diagonal because
entries of the type Mφiχj would involve CP-violating mixing. The mass eigenstates are

5The tadpole coefficients Ti and the phase ξ drop out at the tree-level, but they need to be considered
for the renormalisation. So the minimisation of the potential is necessary order-by-order.
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obtained by a diagonalisation of Mφφχχ and Mφ±φ± (by unitary matrices Un(α, βn) and
Uc(βc), respectively):

h

H

A

G

 =


−sα cα 0 0

cα sα 0 0

0 0 −sβn cβn

0 0 cβn sβn



φ0

1

φ0
2

χ0
1

χ0
2

 ,

(
H±

G±

)
=

(
−sβc cβc

cβc sβc

)(
φ±1

φ±2

)
, (3.40)

where we introduced the short-hand notation sx ≡ sinx, cx ≡ cosx. For later use we
define tβ ≡ tan β. The mixing angle α acts for the CP-even Higgs bosons h,H; βn for the
neutral CP-odd Higgs A and Goldstone boson G and βc for the charged Higgs H± and
the charged Goldsone boson G±. The minimum conditions for VH lead to β = βn = βc
at tree level. At higher orders, however, tan β must be renormalised whereas the mixing
angles α, βn and βc are not renormalised, see Sect. 4.4. The angles α and β are related by

tan(2α) =
m2
A +M2

Z

m2
A −M2

Z

tan(2β). (3.41)

At tree-level, the relation

m2
h/H =

1

2

(
m2
A +M2

Z ∓
√

(mA +M2
Z)

2 − 4m2
AM

2
Z cos2(2β)

)
(3.42)

leads to the upper limit mh ≤ MZ , which was excluded by LEP for a CP-even Higgs
boson [61]. Nevertheless, sizable 1-loop corrections (especially from the third generation
quarks and their superpartners due to the largest coupling) shift this upper bound to
roughly 140GeV or higher [62–66]. Many diagrams contribute to Mh at one-loop order;
the leading one-loop correction is

M2
h .M2

Z +
3g2m4

t

8π2M2
W

[
ln

(
M2

S

m2
t

)
+
X2
t

M2
S

(
1− X2

t

12M2
S

)]
(3.43)

with Xt ≡ At − µ cot β, M2
S =

1

2
(m2

t̃1
+m2

t̃2
), (3.44)

where At is the trilinear top coupling and M2
S the average squared stop mass, see

Sect. 3.3.1. However, the leading 2-loop corrections [67] lead to a considerable reduction
of the upper bound on Mh to about 130GeV.

The masses of the CP-odd and the charged Higgs bosons are at tree level related by

m2
H± = m2

A +M2
W , (3.45)

m2
A =

2m2
12

sin(2β)
. (3.46)

Three of the initially five independent parameter combinations in Eq. (3.32) are eliminated
by Eq. (3.36) via the measured gauge boson masses and by the two minimisation conditions.
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3.3 Physical fields of the MSSM

Thus, the Higgs sector is at lowest order fully determined by the two SUSY input
parameters (in addition to SM masses and gauge couplings) tan β and mH± (or, for
conserved CP , equivalently mA). Particles from other sectors can enter in loops so that
the Higgs boson masses also depend in particular on parameters from the sfermion sector,
such as the trilinear coupling Af , the stop and sbottom masses and in the sub-leading
terms on the higgsino mass parameter µ.

3.3.4.4. Higgs couplings and the decoupling limit

Models with a non-minimal Higgs sector consisting of doublets and singlets feature a
sum rule for the couplings of Higgs bosons φ to gauge bosons V = Z,W±:∑

φ

g2
φV V = g2

HSMV V
, (3.47)

so that the SM coupling is “shared” among the BSM Higgs bosons due to unitarity [68,69],
and, for example, the MSSM Higgs couplings to the gauge bosons are limited by those of
the SM, gMSSM

φiV V
≤ gHSMV V . However, if MA �MZ , the mixing angle α approaches

sin(α)→ − cos(β), cos(α)→ sin(β), sin(β − α)→ 1, cos(β − α)→ 0, (3.48)

so that H and A decouple from V V , and the hAZ-coupling ghAZ = cos(β − α) g
2cW

vanishes, while h couples like the SM Higgs boson. Hence, in this decoupling limit [70]
the MSSM Higgs sector appears SM-like, and the heavy Higgs bosons are difficult to find
in production and decay channels with gauge bosons. On the other hand, the couplings
to fermions can be either suppressed or enhanced, depending on the angles α and β.
The couplings of the neutral MSSM Higgs bosons to SM fields are shown in Tab. 3.3,
expressed in terms of the corresponding SM couplings, where u, d denote the up- and
down-type quarks and charged leptons. In the considered processes later in this thesis,
the couplings of Higgs bosons to τ -leptons and b-quarks are involved [42],

gtree
hττ,bb = +

igmτ,bsα
2MW cβ

, gtree
Hττ,bb = −igmτ,bcα

2MW cβ
. (3.49)

XY ghXY /g
(SM)
hXY gHXY /g

(SM)
HXY gAXY /g

(SM)
AXY

VV sin(β − α) cos(β − α) 0
uu cα/sβ sα/sβ iγ5 cot β

dd −sα/cβ cα/cβ iγ5 tan β

Table 3.3.: The couplings of the MSSM Higgs bosons to SM particles. V denotes the massive
vector bosons and u, d the massive fermions.
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3.4. Complex parameters in the MSSM

While the SM contains 19 free parameters (most of them from the flavour sector), the
MSSM with complex parameters comes with additional 105 parameters, most of which
model our lack of knowledge by which mechanism SUSY is broken. Assuming minimal
flavour violation, 41 parameters on top of the SM ones are left. There are the gaugino mass
parameters |M1|, |M2|, |M3|, |µ|, the masses mẽi ,mũi ,md̃i

,mL̃i
,mQ̃i

for the generations
i = 1, 2, 3, trilinear couplings |Af | of the sfermions with f = u, d, c, s, b, t, e, µ, τ , and tan β
and a mass in the Higgs sector. For the general MSSM including complex parameters
it is convenient to choose MH± as the input mass because even with CP-violation the
charged Higgs bosons remain mass eigenstates. In the CP-conserving case, mA can be
chosen equally well.

In addition to these 29 real parameters, there can be 14 CP-violating phases from
the complex parameters, but only 12 of them are physically independent. As mentioned
above, φM2 , the phase of the wino parameterM2, and φm2

12
, the phase of the soft breaking

parameter m2
12, can be rotated away a redefinition of the fields. Hence 12 independent

phases remain:

φM1 , φM3 , φµ, φAf . (3.50)

However, the phases are constrained by existing experimental bounds. Electric dipole
moments (EDMs) are via loop contributions sensitive to the particle spectrum of the
underlying model and therefore provide an opportunity to restrict the viable range of
the 12 phases listed in Eq. (3.50). Experimental bounds on EDMs of the neutron [71],
Thallium [72] and mercury [73] constrain the MSSM phases most severely. Furthermore,
bounds on EDMs of heavy fermions [74, 75], the electron [76, 77] and deuteron [78]
are also useful in restricting CP-violating phases of the MSSM. For example, Ref. [79]
addresses the possibility of measuring CP-asymmetries at the LHC, which are induced by
CP-violating phases. Despite the smallness of the measured EDMs, several sizeable phases
are allowed [80]. However, in scenarios where large CP-violating SUSY contributions
to the EDMs should cancel to result in values below the experimental bounds, some
fine-tuning would be needed. Nevertheless, even without cancellations, not all phases
are tightly constrained so that there is still open parameter space for complex MSSM
parameters. Refs. [81–83] review the interpretation of those bounds within the MSSM.
The Higgsino phase φµ is strongly constrained in the convention where φM2 is rotated away.
The limits on φM1 are less restrictive. The phases of the trilinear couplings φAf contribute
only at two-loop order to the EDMs and are therefore less constrained. In general, larger
values of φAt,b are allowed than for those of the first and second generation squarks. The
gluino phase φM3 is only strictly constrained if the first and second generation sfermions
are light. The phase of the trilinear selectron coupling φAe is weakly constrained, but
φAµ,τ and φAc,s are hardly constrained at all. One has to keep in mind that the limits
are parameter dependent; especially tan β has a significant impact on the translation of
EDM bounds into limits of phases of MSSM parameters.

In Chapter 10 we will investigate the impact of complex phases on the phenomenology
of MSSM Higgs bosons, applied to processes that are relevant at the LHC. Masses,
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3.4 Complex parameters in the MSSM

couplings and mixings in the Higgs sector are significantly affected by loop contributions
from the whole MSSM spectrum. Because of the large top Yukawa coupling, stop loops
have a leading effect at the one-loop level. Therefore we take φAt into account, but an
extension to other phases such as φAb and φM3 is also possible. In our study, we set the
Af1,2-phases of the sfermions from the first and second generation to zero.

Non-vanishing phases in the MSSM also have important consequences for cosmology
and might contribute to the explanation of the observed matter-antimatter asymmetry
in the universe.
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Chapter 4.

Higher-order corrections in the MSSM

In this chapter, we give a short overview of the basic concepts of regularisation and
renormalisation in different schemes, following Refs. [20, 21, 84]. Some parts of the
text are strongly based on [85]. After the introductory section, we will describe in
Sect. 4.3 the on-shell renormalisation of the neutralino-chargino sector of the MSSM and
discuss the stability of different versions of the scheme. The topic of Sect. 4.4 will be the
renormalisation of the MSSM Higgs sector in an hybrid on-shell and DR-scheme.

4.1. Concept of regularisation and renormalisation

A thorough comparison between theoretical predictions and experimental results de-
mands high precision calculations of the physical quantities. From the theoretical side,
observables such as cross sections or decay widths can be (for small enough couplings)
perturbatively expanded as a power series in the couplings. Achieving an appropriate
precision requires calculations beyond tree level in many processes because the contri-
butions from higher orders in perturbation theory can be very important. Higher-order
effects exist as real corrections by external particles or as virtual corrections in a loop.

However, technical problems arise because the momentum in a loop is not constrained
so that it has to be integrated over all possible values, potentially leading to divergent
integrals. At one-loop order, the arising tensor integrals can be fully decomposed into
scalar integrals, known as Passarino-Veltman reduction [86]. The type of divergence
caused by infinite momenta is known as ultraviolet (UV) divergence. In contrast, infrared
(IR) divergences can emerge in real and in virtual corrections with massless objects
approaching zero momentum.

The two-step procedure of regularisation and renormalisation consistently treats the
infinities to render all physical observables finite. In the general approach, regularisation
is an intermediate step to make divergent integrals mathematically well-defined. The
divergences are cancelled by so-called counterterms which are fixed by renormalisation
conditions so that the remaining physical parameters and fields become finite. This may
be performed in various schemes some of which are presented in the following sections.

26



4.1 Concept of regularisation and renormalisation

4.1.1. Regularisation

Dimensional regularisation (DREG) The procedure starts with regularistation.
Broadly applied in the SM is Dimensional Regularisation (DREG) [26] in which momenta
and Lorentz covariants are changed from 4 to D = 4− 2ε dimensions. Yet, there is no
well-defined generalisation of γ5 in arbitrary D dimensions. The concept of DREG is
that divergent integrals in D = 4 become finite in D < 4 with the replacement∫

d4q

(2π)4
→ µ4−D

∫
dDq

(2π)D
, (4.1)

where the arbitrary mass scale µ, the renormalisation scale, is introduced to preserve
the correct mass dimension of the expression. The UV and IR singularities manifest
themselves as 1

ε
-poles. DREG has the benefit of regularising UV and IR divergences

simultaneously and preserving both Lorentz and gauge invariance.

Cut-off regularisation An alternative regularisation is, for example, a cut-off at a
scale Λ for the absolute value of the momentum, |p| ≤ Λ, in a divergent integral. In this
scheme, which is neither Lorentz nor gauge invariant, the UV divergences will appear as
logarithms or powers of Λ.

Dimensional reduction (DRED) Despite the appealing benefits of DREG described
above, this regularisation leads to a mismatch of bosonic and fermionic degrees of freedom
and breaks supersymmetry explicitly [87] so that SUSY restoring counterterms need
to be introduced. In the MSSM, it is replaced by the scheme of dimensional reduction
(DRED) [88–90]. Here, space-time, momenta and momentum integrals are dealt with in
D = 4 − 2ε dimensions, whereas fields and γ-matrices remain in 4 dimensions. It has
been confirmed to be mathematically well-defined and SUSY preserving [91].

4.1.2. Renormalisation

Renormalisation removes divergences by a redefinition of the physical meaning of pa-
rameters and fields in the Lagrangian order by order in perturbation theory. First of
all, a set of independent parameters must be chosen. A counterterm is assigned to each
divergent (“bare”) parameter a0 and field φ0 by an additive or multiplicative prescription
with a renormalisation constant Za or Zφ, where a hat denotes a renormalised, i.e., finite
quantity

a0 = Zaâ = â+ δa (4.2)

φ0 =
√
Zφφ̂ =

(
1 +

1

2
δZφ

)
φ̂. (4.3)

Then the Lagrangian can be split into two parts,

L0(a0, φ0) = L(â, φ̂) + δL(â, δa, φ̂, δZφ), (4.4)

27



4 Higher-order corrections in the MSSM

where L0(a0, φ0) has the same functional form as L, but it depends on the bare fields and
parameters, and δL contains the counterterms. The set of Feynman rules is extended to
the existing rules with renormalised parameters plus new rules for counterterm vertices.

The divergent parts of the bare parameters or fields and their counterterms have
to cancel exactly to render the renormalised quantities and physical observables finite.
After the renormalisation has been carried out, the limit of removing the regularisation
is taken (e.g. ε → 0 in DREG or Λ → ∞ in the cut-off regularisation scheme). This
procedure results in finite Green’s functions.

While the coefficients in front of the divergences are unambiguous, the definition of
the finite parts of the counterterms is not unique. It depends on the chosen renormalisation
scheme. Physical results are independent of the scheme and the renormalisation scale
only if all orders of perturbation theory are included. Yet, in a truncated series the
remnant dependence on the renormalisation prescription is of the order of the higher
uncalculated orders [92]. Thus, a different physical meaning and a different numerical
value is attributed for example to the mass in different schemes. When comparing
experiment to theory, one has to keep in mind which renormalisation scheme has been
used.

Modified minimal subtraction (MS) scheme Among the most commonly used
schemes, there are the (modified) minimal subtraction (MS/MS) and the on-shell scheme.
While the MS scheme, used in connection with DREG, only absorbs the term proportional
to the divergence 1

ε
into the counterterm, the MS scheme subtracts also finite constants

for convenience because 1
ε
− γE + ln(4π) always appears as a combination, where γE is

the Euler constant.

Minimal subtraction scheme for SUSY: DR Similar to the MS scheme, the DR
scheme is also a renormalisation scheme employing minimal subtraction in the definition
of the counterterms. In order to apply it to supersymmetric theories, it is used in
conjunction with regularisation by dimensional reduction.

Instead of introducing counterterms, the scheme of constrained differential renor-
malisation (CDR) [93] makes Green functions already finite. Divergent expressions are
written as derivatives of finite functions in coordinate space. Finally, they are trans-
formed back to momentum space. This enables a direct identification with the scalar
and tensor one-loop integrals. At one loop-level, CDR has been shown to be equivalent
to DRED [94].

On-shell renormalisation scheme The on-shell scheme, on the other hand, fixes
the mass and field renormalisation constants through a condition that identifies the
renormalised (“physical”) mass with the pole of the propagator. The field renormalisation
constant is fixed by requiring a unit residue of the full propagator. As an example,
we mention the self-energy Σ(p2) of a scalar field φ with bare mass m0 (dropping the
hat on the renormalised mass m2 ≡ m̂2). Requiring at the one-loop level a pole of the
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4.1 Concept of regularisation and renormalisation

propagator at the physical (renormalised) mass p2 = m2 yields

p2 −m2 − δm2 + Σ(p2)
!

= 0 for p2 = m̂2 ⇒ δm2 = Σ(m2). (4.5)

Furthermore, the field renormalisation constant is determined from the unit residue:

δZφ = −∂Σ(p2)

∂p2

∣∣∣∣
p2=m̂2

≡ −Σ
′
(m̂2). (4.6)

Using Eqs. (4.5) and (4.6), the renormalised one-loop self-energy can be expressed as

Σ̂(p2) = Σ(p2)− δm2 + (p2 −m2)δZφ = Σ(p2)− Σ(m2)− (p2 −m2)Σ
′
(m2), (4.7)

which is a finite quantity. We will often encounter renormalised self-energies in Chaps. 5
and 6. If the self-energy develops an imaginary part, the pole of the propagator is located
off the real momentum axis and the complex pole has to be taken into account in the
on-shell condition, see Chapter 5.

4.1.3. Infrared divergences

Mass singularities appear for small or collinear momenta of massless particles such as
gluons and photons. Particles with a small momentum are called “soft”. Massless soft
particles lead to a divergence if the momentum approaches zero, therefore this kind
of divergence is termed “infrared” (IR). These mass singularities can be regularised by
introducing a ficticious mass λ = mγ,mg in the propagator of the particle. They are
not renormalised by a counterterm. Instead, one considers mass singularities arising
in virtual loops together with real amplitudes where photons (or gluons) are radiated
off electrically (or colour-)charged particles, and sums over all degenerate initial and
final states1. The real and virtual contributions have the same IR-structure so that they
cancel each other. This is an important result of the Kinoshita-Lee-Nauenberg (KLN)
theorem [95, 96], which holds at all orders of perturbation theory in the SM. For the
cancellation of IR-divergences in pure quantum electrodynamics (QED), it is sufficient
to sum over all final states with any number of soft emitted photons according to the
Bloch-Nordsieck theorem [97]. Furthermore, the real contribution of soft photons is
proportional to the lowest-order result,

dσreal,soft = δSB dσtree, (4.8)

where δSB is the factor for soft bremsstrahlung. It depends on the energy cut-off ∆Emax
soft

according to which photons are regarded “soft” (Eγ < ∆Emax
soft ) or “hard” (Eγ > ∆Emax

soft ).
Eq. (4.8) holds at the level of cross sections or squared amplitudes. In Chap. 7.4 we will
derive how to transfer it to the product of on-shell amplitudes and apply it to an example
process with soft photon bremsstrahlung in Chap. 8.

1States with additional soft or collinear radiation are indistinguishable in a detector with limited energy
or angular resolution, respectively.
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4 Higher-order corrections in the MSSM

4.2. Renormalisation of the Standard Model

In renormalisable theories, a finite number of counterterms is sufficient to cancel all
divergences. Gauge theories containing spontaneous symmetry breaking - such as the
SM - are renormalisable to all orders of perturbation theory [25,26]. We summarise in
this section the renormalisation of the SM at the one-loop level in the on-shell scheme.

4.2.1. Renormalisation of masses and fields

The renormalisation constants for the following SM masses, the electric charge and the
CKM-matrix,

M2
Z →M2

Z + δM2
Z , M2

W →M2
W + δM2

W ,

M2
H →M2

H + δM2
H , m2

fi
→ m2

fi
+ δm2

fi
,

e→ (1 + δZe)e, Vij → Vij + δVij, (4.9)

are sufficient for finite S-matrix elements, but for finite Green’s functions the field
renormalisation constants are also needed,

W± →
(

1 +
1

2
δZWW

)
W±, V 0

i →
(
δij +

1

2
δZij

)
V 0
j , V

0
1 ≡ Z, V 0

2 ≡ γ, (4.10)

H →
(

1 +
1

2
δZH

)
H, f

L/R
i →

(
δij +

1

2
δZ

L/R
ij

)
. (4.11)

Counterterms of parameters that depend on those listed in Eq. (4.9) can be expressed in
terms of the above renormalisation constants, such as the weak mixing angle cW = MW

MZ

(at 1-loop order),

δcW =
cW
2

(
δM2

W

M2
W

− δM2
Z

M2
Z

)
δsW =

c2
W

2sW

(
δM2

Z

M2
Z

− δM2
W

M2
W

)
. (4.12)

The renormalisation conditions are determined by the on-shell conditions that
diagonal propagators ought to have unit residues, fields (in the SM, it concerns γ, Z and
quarks) should not mix on-shell and the propagator has a pole at the physical mass. As
an example, this yields for the gauge bosons V = W,Z with the transverse part of the
self-energy ΣV

T and for γ − Z mixing:

δM2
V = ReΣV

T (M2
V ), δZV = −Σ

′V
T (M2

V ), δZγZ = −2ΣγZ
T (M2

Z)

M2
Z

, δZγZ =
2ΣZγ

T (0)

M2
Z

.

(4.13)

4.2.2. Charge renormalistion

In the on-shell scheme following Ref. [45, 98], which avoids the introduction of effective
quark masses, the electric charge e is renormalised in the Thomson limit. The renormali-
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4.3 Renormalisation of the neutralino-chargino sector

sation constant δZe is fixed by the requirement that it coincides with the eeγ coupling
in the case of on-shell external particles and for vanishing photon momentum in the
transverse self-energy ΣγZ

T and in the photon vacuum polarisation Πγ(0) = ∂Σγγ(k2)
∂k2 |k2=0:

δZe =
1

2
Πγ(0) +

sW
cW

ReΣγZ
T (0)

M2
Z

. (4.14)

From the very precise experimental input of the measured electromagnetic coupling
constant αem(0) = e(0)2

4π
it can be extrapolated to MZ by α(M2

Z) = α(0)
1−∆α

. The shift

∆α = ∆αlep + ∆α
(5)
had = −

(
ReΠ̂lep

γ (M2
Z) + ReΠ̂had,5

γ (M2
Z)
)

(4.15)

has a leptonic and a hadronic contribution (considering only the five lightest quarks) to
the photon vacuum polarisation Πγ . The renormalised vacuum polarisation evaluated at
M2

Z is related to Πγ(0) by the photon self-energy,

ReΠ̂γ(M
2
Z) =

ReΣγγ(M2
Z)

M2
Z

− Πγ(0). (4.16)

While ∆αlep has been calculated in Ref. [99], ∆α
(5)
had has to be determined from mea-

surements [100]. The renormalisation constant δZe can then be expressed in terms of
∆α by defining Πheavy

γ (0) as the photon vacuum polarisation restricted to exclusively
heavy particles (no leptons and the five light quarks) in the loops. Large logarithms from
α(M2

Z) at 1-loop order are absorbed into the tree-level expression. The final result is

δZ
(M2

Z)
e = δZe −

∆αlep + ∆α
(5)
had

2
=

1

2
Π

heavy

γ (0) +
sW
cW

ReΣγZ
T (0)

M2
Z

+
1

2
ReΠlight

γ (M2
Z). (4.17)

4.3. Renormalisation of the neutralino-chargino sector

On-shell renormalisation schemes of the neutralino-chargino sector have been developed
at the one-loop level in Refs. [101–108] for the MSSM with real parameters and extended
to the general case of complex parameters in Refs. [45, 109–111]. We have re-derived
(also in Ref. [85]) the renormalisation constants and mass corrections and implemented
our results into a FeynArts model file. We found agreement with the analytical results
and the model file from Ref. [45].

4.3.1. Renormalisation transformations for parameters and
fields

As seen in Sect. 3.3.3, the bino mass parameter M1, wino mass parameter M2 and
Higgsino mass parameter µ are, besides tan β and SM quantities, the three independent
parameters in the neutralino and chargino sector. Hence, the counterterms of their mass
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4 Higher-order corrections in the MSSM

matrices X, Y ,

Y → Y + δY, X → X + δX, (4.18)

depend on the renormalisation constants δM1, δM2, δµ,

M1 →M1 + δM1, M2 →M2 + δM2, µ→ µ+ δµ. (4.19)

The expressions for all elements can be found in the AppendixB.1. The field renor-
malisation constants are introduced such that left- and right-handed components are
distinguished and the renormalisation constants of incoming (unbarred) and outgoing
(barred) fields are treated independently in order to allow for the most general case of
CP-violation. The renormalisation transformations for the neutralinos read:

ωLχ̃
0
i → (1 +

1

2
δZL

0 )ijωLχ̃
0
j , χ̃0

iωR → χ̃0
i (1 +

1

2
δZ̄L

0 )ijωR

ωRχ̃
0
i → (1 +

1

2
δZR

0 )ijωRχ̃
0
j , χ̃0

iωL → χ̃0
i (1 +

1

2
δZ̄R

0 )ijωL. (4.20)

The transformations are analogous for charginos. However, targeted at a later application
to a process with external neutralinos, we focus on neutralinos in the following.

4.3.2. On-shell renormalisation conditions and field
renormalisation

The two-point vertex function Γ̂ij and the propagator Ŝ−1
ij are expressed with Σ̂ij as

follows:

Ŝij(p) = −[Γ̂ij(p)]
−1 = −i[(�p−mχ̃0

i
)δij + Σ̂ij(p)]

−1. (4.21)

Imposing on-shell conditions, we require that external on-shell particles do not mix,

Γ̂ijχ̃
0
j(p)|p2=m2

χ̃0
j

= 0, χ̃0
i (p)Γ̂ij|p2=m2

χ̃0
i

= 0, (4.22)

and that the residues of the diagonal propagators are normalised to unity,

lim
p2→m2

χ̃0
i

1

�p−mχ̃0
i

Γ̂iiχ̃
0
i (p) = iχ̃0

i , lim
p2→m2

χ̃0
i

χ̃0
i (p)Γ̂ii

1

�p−mχ̃0
i

= iχ̃0
i . (4.23)

The fermion self-energies Σij(p
2) of the neutralinos and charginos are decomposed into

left- and right-handed contributions as well as vector and scalar parts,

Σij(p
2) = �p

(
ωLΣL

ij(p
2) + ωRΣR

ij(p
2)
)

+ ωLΣSL
ij (p2) + ωRΣSR

ij (p2). (4.24)

The renormalised self-energies of the neutralinos have the form

Σ̂
(S)R/L
ij (p2) = Σ

(S)R/L
ij (p2) + ∆Σ

(S)R/L
ij , (4.25)
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4.3 Renormalisation of the neutralino-chargino sector

where the counterterms of the scalar and vector self-energies ∆Σ
(S)R/L
ij are determined from

the counterterm part of the neutralino Lagrangian, see Eq. (B.10) in the AppendixB.1,

∆Σ
R/L
ij =

1

2
(δZ̄

R/L
0 + δZ

R/L
0 ), (4.26)

∆ΣSR
ij = [−NδY †NT − 1

2
(NY †NT δZR

0 + δZ̄L
0 NY

†NT )]ij, (4.27)

∆ΣSL
ij = [−N∗δY N † − 1

2
(N∗Y N †δZL

0 + δZ̄R
0 N

∗Y N †)]ij. (4.28)

The neutralino field renormalisation constants occuring in Eqs.(4.26)-(4.28) are found by
solving the renormalisation conditions in Eqs. (4.22) and (4.23):

δZ
L/R
0,ij =

2

m2
χ̃0
i
−m2

χ̃0
j

· [m2
χ̃0
j
Σ
L/R
ij (m2

χ̃0
j
) +mχ̃0

i
mχ̃0

j
Σ
R/L
ij (m2

χ̃0
j
) +mχ̃0

i
Σ
SL/SR
ij (m2

χ̃0
j
)

+mχ̃0
j
Σ
SR/SL
ij (m2

χ̃0
j
)−mχ̃i/j(N

∗δY N †)ij −mχ̃j/i(NδY
†NT )ij], (4.29)

δZ̄
L/R
0,ij =

2

m2
χ̃0
j
−m2

χ̃0
i

· [m2
χ̃0
i
Σ
L/R
ij (m2

χ̃0
i
) +mχ̃0

i
mχ̃0

j
Σ
R/L
ij (m2

χ̃0
i
) +mχ̃0

i
Σ
SL/SR
ij (m2

χ̃0
i
)

+mχ̃0
j
Σ
SR/SL
ij (m2

χ̃0
i
)−mχ̃i/j(N

∗δY N †)ij −mχ̃j/i(NδY
†NT )ij], (4.30)

δZ
L/R
0,ii = −Σ

L/R
ii (m2

χ̃0
i
)−m2

χ̃0
i

[
Σ̂
′L
ii (m2

χ̃0
i
) + Σ̂

′R
ii (m2

χ̃0
i
)
]
−mχ̃0

i

[
Σ̂
′SL
ii (m2

χ̃0
i
) + Σ̂

′SR
ii (m2

χ̃0
i
)
]

∓ 1

2mχ̃0
i

[
ΣSR
ii (m2

χ̃0
i
)− ΣSL

ii (m2
χ̃0
i
) + (N∗δY N †)ii − (NδY †NT )ii

]
, (4.31)

δZ̄
L/R
0,ii = −Σ

L/R
ii (m2

χ̃0
i
)−m2

χ̃0
i

[
Σ̂
′L
ii (m2

χ̃0
i
) + Σ̂

′R
ii (m2

χ̃0
i
)
]
−mχ̃0

i

[
Σ̂
′SL
ii (m2

χ̃0
i
) + Σ̂

′SR
ii (m2

χ̃0
i
)
]

± 1

2mχ̃0
i

[
ΣSR
ii (m2

χ̃0
i
)− ΣSL

ii (m2
χ̃0
i
) + (N∗δY N †)ii − (NδY †NT )ii

]
. (4.32)

Owing to the Majorana nature of neutralinos, the renormalisation constants of incoming
and outgoing fields are related by δZL/R

0,ij = δZ̄
R/L
0,ij .

4.3.3. Parameter renormalisation and mass corrections

Independent parameters While the phase φM2 can be rotated away, the other phases,
in principle, have to be renormalised in addition to the absolute values of the parameters.

|µ| → |µ|+ δ|µ|, φµ → φµ + δφµ (4.33)
|M1| → |M1|+ δ|M1|, φM1 → φM1 + δφM1 (4.34)
|M2| → |M2|+ δ|M2| (4.35)

However, the phase counterterms, δφµ and δφM1 turn out to be UV-finite [45, 110] so
that the phases φµ and φM1 can be kept unrenormalised.
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4 Higher-order corrections in the MSSM

Loop-corrected masses The neutralino-chargino sector contains in total six masses,
the neutralino masses mχ̃0

i
, i = 1, 2, 3, 4 as well as the chargino masses mχ̃±i

, i = 1, 2. On
the other hand, the number of independent parameters limits the number of renormalisa-
tion conditions. In this case, the independent parameters are |µ|, |M1| and |M2|, so that
on-shell conditions can be imposed for no more than three out of the six states. The
masses of the three chosen states remain on-shell, while the remaining three masses receive
a non-zero loop-correction ∆mχ̃i to the one-loop-corrected massMχ̃0

i
= mχ̃0

i
+∆mχ̃i . Here

and in the following, we denote tree-level masses by lower-case m and a loop-corrected,
physical mass by an upper-case M .

The renormalisation conditions for the fields ensure correct on-shell properties, i.e.
fields do not mix on the mass shell, so that no mixing needs to be taken into account.
The physical masses are determined from the complex poles of the diagonal propagators
Ŝii,

M2
i = M2

χ̃i
− iMχ̃iΓχ̃i , (4.36)

which solve

M2
i

[
1 + Σ̂L

ii(M2
i )
] [

1 + Σ̂R
ii(M2

i )
]
−
[
mχ̃i − Σ̂SL

ii (M2
i )
] [
mχ̃i − Σ̂SR

ii (M2
i )
]

= 0. (4.37)

The corrections to the masses which do not belong to the input states amount to

∆mχ̃i = −mχ̃i

2
Re{Σ̂L

ii(m
2
χ̃i

) + Σ̂R
ii(mχ̃2

i
)} − 1

2
Re{Σ̂SL

ii (m2
χ̃i

) + Σ̂SR
ii (mχ̃2

i
)}

= −mχ̃iReΣ̂
L
ii(m

2
χ̃i

)− ReΣ̂SL
ii (m2

χ̃i
). (4.38)

Explicit expressions for the self-energies can be found, for instance, in Refs. [104,112].
The counterterms of the renormalised parameters are fixed by the on-shell conditions,

but the exact structure depends on the chosen renormalisation scheme, i.e., which three
among the six neutralino (denoted by N) and chargino (denoted by C) masses are on-shell.
In total, there are 20 distinct combinations. The following renormalisation schemes are
labelled by the choice of on-shell masses of the fixed input states:
• NCC: 4 possibilities to choose one neutralino and two charginos,
• NNC: 12 possibilities to choose two neutralinos and one chargino,
• NNN: 4 possibilities to choose three neutralinos. In particular, NNNi refers to
the scheme in which the mass of the ith neutralino (in addition to both chargino
masses) is shifted by ∆m

χ̃0
i

while the other three neutralinos stay on-shell.

In any case, the three input states must be chosen carefully [45, 108, 110, 113]. If all
three on-shell masses depend only weakly on one of the bino-, wino- or higgsino mass
parameters (M1,M2 or µ, respectively), the imposed renormalisation conditions are not
sufficiently sensitive to the underlying parameters. This insufficient fixing can give rise
to unphysically large loop contributions which are problematic for perturbativity and
numerical stability. Hence it is of utmost importance to choose a bino-, a wino- and a
higgsino-like state for the three on-shell renormalisation conditions, instead of three fixed
states. Having defined a particular scheme, the on-shell conditions ∆mχ̃0

i
= 0 for the
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4.3 Renormalisation of the neutralino-chargino sector

three selected input states χ̃i (a combination of one to three neutralinos and zero to two
charginos) are translated into the parameter counterterms. For the class of NNN schemes,
the resulting expressions of δ|M1|, δ|M1|, δ|µ| can be found in the Appendix B.2.

4.3.4. Comparison of NNN renormalisation schemes

Refs. [45,108] provide a comprehensive overview of stable renormalisation schemes across
the NCC, NNC and NNN classes with some examples from each class. In this section,
we present a detailed comparison of parameter counterterms and mass corrections in
all four NNN schemes. Our application to an example process in Chaps. 8 and 9 does
not involve any external charginos, but only external neutralinos, in particular χ̃0

1 and
χ̃0

4. Consequently, we choose a scheme which sets three neutralino masses on-shell. In
order to determine which NNN scheme is most appropriate in the considered modified
Mmax

h -scenario (see Sect. 8.2.3 and Tab.A.1), we investigate the stability of the four
possible choices numerically in this section. The mixing matrix N , which diagonalises Y
as in Eq. (3.25), has the following values in the example scenario:

N =


0.928 −0.119 0.318 −0.152

−0.327 −0.692 0.509 −0.394

−i 0.097 i 0.137 i 0.678 i 0.716

−0.147 0.699 0.425 −0.556

 . (4.39)

Consequently, χ̃0
1 is mostly bino (B̃)-like, χ̃0

2 is an admixture of mostly wino (W̃ 3) and
higgsino (h̃0

d), χ̃0
3 consists of both higgsinos (h̃0

d, h̃
0
u), and χ̃0

4 is predominantly composed
of even three states, W̃ 0, h̃0

d and h̃0
u. This highly mixed neutralino composition instead of

a clear gaugino hierarchy leads to an ambiguous choice of the numerically most stable
renormalisation scheme.

Following the prescription of Ref. [108], the bino-like state is identified with the
neutralino χ̃0

i that has the largest bino-content, i.e. |Ni1| ≥ |Ni′1| ∀i′ 6= i. According to
Eq. (4.39), this is χ̃0

1 in our case. Among the remaining three neutralinos, the wino-like
state χ̃0

j is determined by |Nj2| ≥ |Nj′2| ∀j′ 6= j. Here we encounter |N22| ' |N42|, so
there is an ambiguity whether to denote χ̃0

2 or χ̃0
4 as the wino-like state. These two

options are pursued in Tab. 4.1. Independent of this wino-choice, the most higgsino-like
state χ̃0

k with the largest |Nk3|2 + |Nk4|2 among the remaining two is in both cases χ̃0
3.

The emerging schemes are referred to as NNN4 or NNN2 since the mass of χ̃0
4 or χ̃0

2,
respectively, receives a loop correction. In contrast, the NNN1 scheme contains only
wino (χ̃0

2, χ̃
0
4)- and higgsino (χ̃0

3)-like input states so that M1 would be only weakly fixed.
Similarly, the NNN3 input states χ̃0

1 (bino) and χ̃0
2, χ̃

0
4 (wino) miss a proper µ-fixing.

According to Ref. [108], after the identification of the most bino- and wino-like states,
the residual choice of a higgsino-like state is not crucial for stability - unless M2 ' |µ|
or −M1 ' µ. The modified Mmax

h -scenario under consideration features M2 = µ.
Therefore we pay special attention to possible instabilities of the renormalisation constants
in our numerical evaluation with M2 = 200GeV fixed, but with a variation of µ ∈
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4 Higher-order corrections in the MSSM

state choice 1 choice 2

bino-like 1 1
wino-like 2 4
higgsino-like 3 3
scheme NNN4 NNN2

Table 4.1.: Definition of the most bino-, wino- and higgsino-like states according to the largest
|Ni1|2, |Nj2|2 and |Nk3|2 + |Nk4|2 in Eq. (4.39). The choice of the most wino-like χ̃0

j

is ambiguous, resulting in the two comparably stable schemes NNN4 and NNN2.

[195GeV, 250GeV], thus including the case of µ = M2. Fig. 4.1 shows the finite parts of
the parameter counterterms δ|M1|, δ|M2| and δ|µ|. While all of them are well-behaved in
the schemes NNN2 and NNN4 defined in Tab. 4.1, the three counterterms have indeed
an instability in the NNN3 scheme around µ = M2. Additionally, the scheme NNN1 is
not robust in the region of µ ' 240GeV.
The instabilities observed in the counterterms are also reflected by the shifts of the
physical masses. In scheme NNNi, the masses mχ̃0

i
and mχ̃1,2± are shifted from their

tree-level value to the loop-corrected mass by a correction ∆mχ̃. Fig. 4.2(a) shows ∆mχ̃ of
neutralino χ̃0

i in the corresponding scheme NNNi while the other χ̃0
j , j 6= i remain on-shell

in the same scheme. Therefore their vanishing mass shifts are omitted in the plot. ∆mχ̃0
2

and ∆mχ̃0
4
do not exceed 3.5GeV in the NNN2 and NNN4 scheme, while the correction

to mχ̃0
1
in the NNN1 scheme and mχ̃0

3
in the NNN3 scheme become unphysically large.

Turning to Figs. 4.2(b) and 4.2(c), we see that also the chargino masses are badly behaved
on account of very large shifts ∆M±

χ̃1,2
whereas they remain stable in the suitably chosen

schemes NNN2 and NNN4 even in the critical regions of µ ' 200GeV and µ ' 240GeV.

As a consequence, also physical observables like decay widths involving neutralinos
or charginos suffer from instabilities if the renormalisation scheme is inappropriate.
Fig. 4.3(a) displays the decay width of the process χ̃0

4 → χ̃0
1h at the improved Born level

(lowest order supplemented by finite Ẑ-factors to account for the mixing of Higgs bosons,
see Sect. 5.3.2) and at the one-loop level, comparing all NNN schemes. The relative
loop contribution r = Γloop/ΓImp.Born can be found in Fig. 4.3(b). While the NNN1 and
NNN3 schemes result in very large loop corrections due to the choice of unstable schemes
particularly for µ ' 200GeV and µ ' 240GeV, the schemes NNN2 and NNN4 both are
well-behaved.

In conclusion, we have identified stable and unstable on-shell renormalisation condi-
tions within the class of NNN schemes. We observed instabilities in particular for µ = M2

in accordance with Ref. [108] if the scheme is not appropriately chosen. Consequently,
the choice of a suitable renormalisation scheme depends on the parameter values and
the resulting bino, wino and higgsino admixture of neutralinos and charginos. In our
modified Mmax

h scenario, both the NNN2 and the NNN4 scheme provide a stable fixing of
M1,M2 and µ, whereas NNN1 and NNN3 proved to be badly behaved for the underlying
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Figure 4.1.: On-shell parameter renormalisation: (a) δ|M1|, (b) δ|M2|, (c) δ|µ| in the NNN1
(green), NNN2 (blue), NNN3 (red) and NNN4 (orange) schemes as functions of
µ in the modified Mmax

h scenario. NNNi denotes the scheme where χ̃0
i and χ̃±1,2

receive loop corrections to the masses, whereas χ̃0
j with i 6= j are the on-shell

input states.

neutralino mixing structure2. For a later application to a process with external χ̃0
1 and

χ̃0
4 in this scenario, we prefer to set mχ̃0

1
and mχ̃0

4
on-shell so that we choose NNN2 as a

suitable and stable scheme.

2In the meantime, the selection of a stable renormalisation scheme has been automatised in FeynArts
[114–118] and FormCalc [94, 119–122] in a model file with MSSM counterterms [123,124]. When we
investigated this issue, we selected a stable scheme manually according to our study performed here.
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Figure 4.2.: Mass shifts of neutralinos and charginos. (a) The mass correction ∆Mχ̃0
i
of

neutralino χ̃0
i in scheme NNNi, while ∆Mχ̃0

j
= 0 for i 6= j in scheme NNNi;

(b) ∆M±χ̃1
, (c) ∆M±χ̃2

in all NNN schemes depending on µ. Scenario and colour
coding identical to those in Fig. 4.1.
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Figure 4.3.: Stability of NNN renormalisation schemes: (a) 2-body decay width Γ(χ̃0
4 →

χ̃0
1h) at the improved Born level (tree level with Ẑ-factors, grey dotted) and

at one-loop order in the NNNi schemes; (b) Relative one-loop contribution
r = Γloop/ΓImp.Born under variation of µ. Scenario and colour coding identical to
those in Fig. 4.1.
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4.4 Renormalisation of the MSSM Higgs sector

4.4. Renormalisation of the MSSM Higgs sector

Higher-order corrections in the MSSM Higgs sector are very relevant and they have a big
impact on the phenomenology and thus the interpretation of searches for additional Higgs
bosons. Particles from other sectors contribute via loop diagrams to Higgs observables.
Hence beyond the lowest order, the Higgs sector is influenced by more parameters than
only MH± (or MA) and tan β. Much effort has been devoted to the precise calculation of
the masses and mixing properties of Higgs bosons in the MSSM with real [67,125–142]
and with complex parameters [84, 143–148]. We adopt the hybrid on-shell and DR-
renormalisation scheme defined in Ref. [84].

4.4.1. Renormalisation of the Higgs potential

For a one-loop renormalisation of the MSSM Higgs sector, one renormalises the linear and
bilinear terms in the Higgs potential from Eq. (3.31) by the following transformations:

Mφφχχ →Mφφχχ + δMφφχχ Mφ±φ± →Mφ±φ± + δMφ±φ± (4.40)
Ti → Ti + δTi, i = h,H,A (4.41)

tan β → tan β(1 + δ tan β), (4.42)

where the elements of the mass counterterm matrices in the mass eigenbasis are denoted
by

(δMhHAG)ij =
(
UnδMφφχχU†n

)
ij

= δm2
ij, i, j = h,H,A,G, δm2

ii ≡ δm2
i , (4.43)

(δMH±G±)kl =
(
UcδMφ+φ+U†c

)
kl

= δm2
kl, k, l = H±, G±, δm2

kk ≡ δm2
k. (4.44)

The rotation matrices Un(α, βn) and Uc(βc) stay unrenormalised. Finite Higgs self-
energies with the full momentum dependence require one field renormalisation constant
per Higgs doublet:

Hi → (1 +
1

2
δZHi)Hi, i = 1, 2. (4.45)

The field renormalisation constants δZij, δZkl of the physical fields are then obtained as
combinations of δZH1 , δZH1 and α, β:

δZhh = s2
αδZH1 + c2

αδZH2 , δZAA = δZH−H+ = s2
βδZH1 + c2

βδZH2 (4.46)
δZhH = sαcα(δZH2 − δZH1), δZAG = δZH±G∓ = sβcβ(δZH2 − δZH1) (4.47)
δZHH = c2

αδZH1 + s2
αδZH2 , δZGG = δZG−G+ = c2

βδZH1 + s2
βδZH2 , (4.48)

whereas the CP-violating terms vanish: δZhA = δZhG = δZHA = δZHG = 0.
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4 Higher-order corrections in the MSSM

4.4.2. Field and parameter renormalisation conditions

The gauge bosons (as in the SM, but with a different sign convention) and the charged
Higgs mass are renormalised on-shell resulting at one-loop order in

δm2
H± = ReΣH±H±(MH±). (4.49)

In order to minimise the potential, the one-loop tadpole coefficients have to vanish:

T
(1)
i + δTi = 0 ⇒ δTi = −T ,i i = h,H,A. (4.50)

The parameter tan β is not directly related to a (pseudo-)observable like a mass which
could be defined on-shell. Therefore, the DR-scheme is employed both for field renormal-
isation constants of the Higgs doublets and, constructed from them, for tan β such that
only purely divergent parts contribute,

δZDR
H1

= −Re
[
Σ
′(div)
HH (m2

H)
]
α=0

, (4.51)

δZDR
H2

= −Re
[
Σ
′(div)
hh (m2

h)
]
α=0

, (4.52)

δ tan βDR =
1

2
(δZDR

H2
− δZDR

H1
). (4.53)

4.4.3. Renormalised Higgs self-energies

Because the MSSM Higgs sector has only seven independent counterterms for the
parameters, δmH± , δM

2
Z , δM

2
W , δTh, δTH , δTA and δ tan β, the renormalised self-energies

can be expressed in terms of the previously defined quantities. For example in the neutral
Higgs sector,

Σ̂ij(p
2) = Σij(p

2) + δZij

(
p2 − 1

2
(m2

i +m2
j)

)
− δm2

ij, (4.54)

Σ̂ik(p
2) = Σik(p

2)− δm2
ik, (4.55)

where i, j = h,H denote the CP-even states and k = A the CP-odd state, the mass
counterterms δm2

ij, δm
2
ik and the field renormalisation constants δZij do not need to be

fixed by imposing another on-shell condition, but they are already given by Eqs. (4.43),
(4.44) and (4.46)-(4.48), respectively. In the MSSM with complex parameters, the CP-
violating self-energies in Eq. (4.55) contribute, and their impact on masses and mixings
will be analysed in detail in Chapters 5 and 6.

Use of programme packages for loop calculations in the MSSM We frequently
make use of the programme packages FeynArts [114–118] to generate the considered
processes, FormCalc [94,119–122] to perform the computation and FeynHiggs [67,146,
149–151] to incorporate precise, state-of-the-art quantities from the Higgs sector into our
calculations. In particular, we obtain the renormalised self-energies, loop-corrected Higgs

40



4.4 Renormalisation of the MSSM Higgs sector

masses and wave function normalisation factors (see Sect. 5.3.2) from FeynHiggs. Loop
integrals are evaluated with LoopTools [94].

In Sections 4.3.4, 6.4, 6.5, 8 and 9, we use FeynArts-3.7, FormCalc-7.4, LoopTools-2.8
and FeynHiggs-2.9.3, whereas in the remaining chapters we use the updated versions
FeynArts-3.9, FormCalc-8.4, LoopTools-2.12 and FeynHiggs-2.10.2.
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Chapter 5.

Mixing properties of Higgs bosons in
the complex MSSM

5.1. Higgs propagators

5.1.1. Propagator matrix and the effective self-energy

Radiative corrections give rise to a mixing between the neutral bosons. In general,
the Higgs bosons i, j = h,H,A do not only mix among themselves, but also with the
Goldstone and electroweak gauge bosons. For the propagators of the neutral Higgs bosons,
this implies in principle a 6× 6 mixing of {h,H,A,G,Z, γ}. However, the Goldstone and
Z-boson contribute only from the order of (Σ̂i,G/Z)2 on (and the photon even only from
four-loop order on) to the Higgs propagators [84]. We neglect these terms because they
arise at the same sub-leading two-loop order as the G/Z contributions to the two-loop
self-energies Σ̂ij that are also not contained in FeynHiggs [67, 146, 149, 150]. In contrast,
Higgs-G/Z mixings appear already at the one-loop level in processes with external Higgs
bosons, such as decay processes, so that they need to be included for a full one-loop
result. This is taken into account for an example process in Sect. 9.3. Apart from there,
we consider the 3 × 3 mixing of {h,H,A} as an approximation of the originally 6 × 6
mixing.

Furthermore, if CP is conserved, the CP-violating self-energies vanish, Σ̂hA = Σ̂HA =
0, so that only the two CP-even states h and H mix. However, in general we will allow for
non-zero phases from complex parameters. Hence all renormalised self-energies Σ̂ij(p

2) of
the Higgs bosons i, j = h,H,A are important ingredients in the description of the mixing
between the different interaction eigenstates. Thus, the matrix M of mass squares does
not only contain the tree-level masses m2

i on the diagonal, but also the renormalised
diagonal and off-diagonal self-energies,

M(p2) =

m
2
h − Σ̂hh(p

2) −Σ̂hH(p2) −Σ̂hA(p2)

−Σ̂Hh(p
2) m2

H − Σ̂HH(p2) −Σ̂HA(p2)

−Σ̂Ah(p
2) −Σ̂AH(p2) m2

A − Σ̂AA(p2)

 . (5.1)
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5.1 Higgs propagators

The renormalised irreducible 2-point vertex functions

Γ̂ij(p
2) = i

[
(p2 −m2

i )δij + Σ̂ij(p
2)
]

(5.2)

can be collected in the 3× 3 matrix Γ̂hHA in terms of M as

Γ̂hHA(p2) = i
[
p21−M(p2)

]
. (5.3)

Finally, the propagator matrix ∆hHA equals, up to the sign, the inverse of Γ̂hHA,

∆hHA(p2) = −
[
Γ̂hHA(p2)

]−1

. (5.4)

Accordingly, the matrix inversion yields the individual propagators ∆ij(p
2) as the the

(ij) elements of the 3× 3 matrix ∆hHA(p2),

∆hHA =

∆hh ∆hH ∆hA

∆Hh ∆HH ∆HA

∆Ah ∆AH ∆AA

 . (5.5)

The off-diagonal entries (for i 6= j) result in:

∆ij(p
2) =

Γ̂ijΓ̂kk − Γ̂jkΓ̂ki

Γ̂iiΓ̂jjΓ̂kk + 2Γ̂ijΓ̂jkΓ̂ki − Γ̂iiΓ̂2
jk − Γ̂jjΓ̂2

ki − Γ̂kkΓ̂2
ij

. (5.6)

All 2-point vertex functions Γ̂(p2) depend on p2 via Eq. (5.2). Here we do not write the p2-
dependence explicitly for the purpose of an simpler notation, but the full p2-dependence
is implied also below. The solutions of the diagonal propagators, ∆ii, can be compactified
in the following way:

∆ii(p
2) =

Γ̂jjΓ̂kk − Γ̂2
jk

−Γ̂iiΓ̂jjΓ̂kk + Γ̂iiΓ̂2
jk − 2Γ̂ijΓ̂jkΓ̂ki + Γ̂jjΓ̂2

ki + Γ̂kkΓ̂2
ij

(5.7)

=
i
[
Γ̂jjΓ̂kk − Γ̂2

jk

]
−i
(

Γ̂ii

[
Γ̂jjΓ̂kk − Γ̂2

jk

]
+
[
2Γ̂ijΓ̂jkΓ̂ki − Γ̂jjΓ̂2

ki − Γ̂kkΓ̂2
ij

]) (5.8)

=
i

p2 −m2
i + Σ̂ii − i

2Γ̂ij Γ̂jkΓ̂ki−Γ̂jj Γ̂2
ki−Γ̂kkΓ̂2

ij

Γ̂jj Γ̂kk−Γ̂2
jk

(5.9)

=
i

p2 −m2
i + Σ̂eff

ii (p2)
. (5.10)
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In Eq. (5.10), the effective self-energy is introduced,

Σ̂eff
ii (p2) = Σ̂ii(p

2)− i
2Γ̂ij(p

2)Γ̂jk(p
2)Γ̂ki(p

2)− Γ̂2
ki(p

2)Γ̂jj(p
2)− Γ̂2

ij(p
2)Γ̂kk(p

2)

Γ̂jj(p2)Γ̂kk(p2)− Γ̂2
jk(p

2)
. (5.11)

It separates the diagonal self-energy, Σ̂ii (which exists already at 1-loop order) from the
mixing 2-point functions (whose products only contribute to Σ̂eff

ii from 2-loop order on).
Hence, replacing the pure self-energy Σ̂ii by the effective one, Σ̂eff

ii , includes also the 3× 3
mixing contributions to the diagonal propagator in Eq. (5.10) while preserving formally
the structure of the propagator as in the unmixed case. In the limit of no mixing, the
second term in Eq. (5.11) vanishes.

5.1.2. Treatment of imaginary parts

In order to account for complex momenta (see below) and imaginary parts of self-energies,
we expand the self-energies around the real part of the complex momentum:

p2 ≡ p2
r + ip2

i , (5.12)

Σ̂ij(p
2) ' Σ̂ij(p

2
r) + ip2

i Σ̂
′

ij(p
2
r), (5.13)

where Σ̂
′
ij(p

2) ≡ dΣ̂ij(p
2)

dp2 . The reason for this expansion is that FeynHiggs evaluates the
self-energies at real momenta. For the inclusion of all products of real and imaginary
parts, we do not expand the effective self-energy from Eq. (5.11) directly according to
Eq. (5.12). Instead, in the same way as in Refs. [45,98], we expand all Γ̂ij(p

2) individually
before combining them into Σ̂eff

ii .

5.2. Higgs masses

5.2.1. Pole structure of the propagators depending on the
mixing

Due to imaginary parts of the self-energies, the propagator poles are not real, but they
lie in the complex mometum plane. The Higgs masses are determined as the complex
polesM2 of the diagonal propagators, or equivalently as the zeros of the inverse diagonal
propagators. For this purpose, we need to find the roots of the determinant of the matrix
Γ̂(p2),

det
[
Γ̂hHA

]
= − 1

det [∆hHA]
!

= 0. (5.14)

Then the loop-corrected masses M are obtained from the real parts of the complex poles
and the total widths Γ from the imaginary parts via

M2 = M2 − iMΓ. (5.15)
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5.2 Higgs masses

In the following, we will discuss the impact of higher-order and mixing contributions on
the pole structure of the propagators.

5.2.1.1. Lowest order

At lowest order, the self-energy contributions in Eq. (5.2) are absent and the matrix Γ̂
simply reads

Γ̂
(0)

hHA(p2) = i diag
{
Dh(p

2), DH(p2), DA(p2)
}
, (5.16)

Di(p
2) = p2 −m2

i , (5.17)

and the solutions of Eq. (5.14) are the three tree-level masses m2
i .

5.2.1.2. Higher order without mixing

Beyond tree-level, the self-energies are added at the available order. Restricting them to
the unmixed case, Σ̂ij = 0 for i 6= j, leads to

Γ̂
(no mix)

hHA (p2) = i diag
{
Dh(p

2) + Σ̂hh(p
2), DH(p2) + Σ̂HH(p2), DA(p2) + Σ̂AA(p2)

}
,

(5.18)

so that

det
[
Γ̂

(no mix)

hHA (p2)
]

=
∏

i=h,H,A

Di(p
2) + Σ̂ii(p

2) = 0 (5.19)

is achieved if p2 fulfils the following on-shell relation

p2 −m2
i + Σ̂ii(p

2) = 0 (5.20)

for any i = h,H,A. Thus, the full propagator matrix ∆ has three poles and each
propagator ∆ii(p

2) has exactly one pole p2 =M2
i that solves Eq. (5.20).

5.2.1.3. Higher order with 2× 2 mixing

If we now turn on the mixing between h and H, the matrix Γ̂ becomes block-diagonal
with the 2× 2 matrix Γ̂hH and the 2-point vertex function of A, which does not mix with
any other state:

Γ̂hHA(p2) =

(
Γ̂hH(p2) 0

0 Γ̂A(p2)

)
, (5.21)

det
[
Γ̂hHA(p2)

]
= det

[
Γ̂hH(p2)

]
· det

[
ΓA(p2)

]
. (5.22)

For a closer look at the relation between the roots of the determinant and the roots of
the inverse propagator, we write down the propagators and the effective self-energy of
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5 Mixing properties of Higgs bosons in the complex MSSM

the {h,H} system explicitly. They follow from Eqs.(5.6), (5.7) and (5.11) by setting
Σ̂hA = Σ̂HA = 0 or equivalently from the inversion of the 2× 2 submatrix Γ̂hH :

∆ii(p
2) =

i
[
Dj(p

2) + Σ̂jj(p
2)
]

[
Di(p2) + Σ̂ii(p2)

] [
Dj(p2) + Σ̂jj(p2)

]
− Σ̂2

ij(p
2)

=
i

p2 −m2
i + Σ̂eff

ii (p2)
,

(5.23)

∆ij(p
2) =

−iΣ̂ij(p
2)[

Di(p2) + Σ̂ii(p2)
] [

Dj(p2) + Σ̂jj(p2)
]
− Σ̂2

ij(p
2)
, (5.24)

Σ̂eff
ii (p2) = Σ̂ii(p

2)−
Σ̂2
ij(p

2)

Dj(p2) + Σ̂jj(p2)
. (5.25)

Comparing the inverse diagonal propagators with the determinant of the submatrix Γ̂hH ,
we find for i, j ∈ {h,H} , i 6= j,

1

∆ii(p2)
=

i

Dj(p2) + Σ̂jj(p2)
det
[
Γ̂hH(p2)

]
. (5.26)

Eq. (5.26) reveals that both inverse diagonal propagators, 1/∆hh and 1/∆HH , are pro-
portional to the determinant of Γ̂hH , which has two zeros. As opposed to the unmixed
case, both zeros of det

[
Γ̂hH(p2)

]
are poles of each of the diagonal propagators ∆hh,∆HH .

Consequently, it is not clear a priori how to label the poles and the masses. The in-
teraction eigenstates h and H are mixed into the mass eigenstates h1 and h2 with the
loop-corrected masses Mh1 ,Mh2 . The corresponding polesM2

h1
,M2

h2
solve

p2 −m2
i + Σ̂eff

ii (p2) = 0. (5.27)

for p2 =M2
ha

in any combination of i = h,H and a = 1, 2, where the effective self-energy
is defined in Eq. (5.25). In the 2× 2 mixing system, it is convenient to choose Mh1 ≤Mh2 .
As for the nomenclature in the 2× 2 case, the lighter mass eigenstate h1 is often denoted
as h and the heavier one as H because both are CP-even states. Remarkably, both
roots of Γ̂hH , M2

h1
and M2

h2
, are also complex poles of the off-diagonal propagators

∆hH(p2) ≡ ∆Hh(p
2) due to

1

∆ij(p2)
=

−i
Σ̂ij(p2)

det
[
Γ̂hH(p2)

]
. (5.28)

Since in this case A does not mix with h and H, the third poleM2
A solely solves

M2
A −m2

A + Σ̂AA(M2
A) = 0, (5.29)

but no other combination of A and ha satisfies the on-shell condition. MA is the
loop-corrected mass of the mass and interaction eigenstate A. In conclusion, solving
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5.2 Higgs masses

det
[
Γ̂hHA(p2)

]
= 0 is equivalent to solving 1

∆ii(p2)
= 0, where two of the three zeros stem

from each of the ∆ij, i, j = h,H, and the third solution from ∆AA.

5.2.1.4. Higher order with 3× 3 mixing

Now we turn to the most general case where complex MSSM parameters lead to CP-
violating self-energies Σ̂hA, Σ̂HA. Thus, all three neutral Higgs interaction and CP
eigenstates h,H,A mix into the loop-corrected mass eigenstates h1, h2, h3, which have no
longer well-defined CP quantum numbers, but are admixtures of CP-even and CP-odd
components. In this framework, Γ̂hHA is a full 3× 3 matrix with the determinant

det[Γ̂hHA] = −i
[
(Dh + Σ̂hh)(DH + Σ̂HH)(DA + Σ̂AA) + 2Σ̂hHΣ̂HAΣ̂hA

− (Dh + Σ̂hh)Σ̂HA − (DH + Σ̂HH)Σ̂hA − (DA + Σ̂AA)Σ̂hH

]
, (5.30)

where we dropped the explicite p2-dependence of each term for an ease of notation.
Comparing Eq. (5.30) with the diagonal and off-diagonal propagators from Eqs. (5.7) and
(5.6), respectively, we see that their inverse is proportional to the determinant of Γ̂hHA:

1

∆ii

=
det
[
Γ̂hHA

]
(Dj + Σ̂jj)(Dj + Σ̂jj)− Σ̂2

jk

, (5.31)

1

∆ij

=
det
[
Γ̂hHA

]
Σ̂jkΣ̂ki − Σ̂ij(Dk + Σ̂kk)

. (5.32)

From Eq. (5.31) we conclude that all three roots p2 =M2
ha
, a = 1, 2, 3 of det

[
Γ̂hHA(p2)

]
are complex poles of each of the three diagonal propagators ∆ii, i = h,H,A. This means
that

M2
ha −m

2
i + Σ̂eff

ii (M2
ha) = 0 (5.33)

holds for any combination of i and a in the presence of 3× 3 mixing. Moreover, Eq. (5.32)
implies that also the off-diagonal propagators have as many poles as the determinant has
zeros, namely three in the case of CP-violating mixing. In the unmixed case, Σ̂eff

ii = Σ̂ii

and each propagator has exactly one pole so that there is a unique mapping between i
and a, see Eq. (5.20). But for the general mixing case, it is not unique how to relate the
mass eigenstates to the interaction eigenstates. An assignment will be needed for the
definition of on-shell wave-function normalisation factors in Sect. 5.3.
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5 Mixing properties of Higgs bosons in the complex MSSM

5.3. On-shell wave function normalisation factors

5.3.1. Ratios of propagators

As we have seen in the previous sections and as it is also explained in Refs. [45, 98], the
effective self-energy Σ̂eff

ii can be split into the unmixed part Σ̂ii and the mixing terms.
One can further simplify Eq. (5.11) by writing

Σ̂eff
ii (p2) = Σ̂ii(p

2) +
∆ij(p

2)

∆ii(p2)
Σ̂ij(p

2) +
∆ik(p

2)

∆ii(p2)
Σ̂ik(p

2) (5.34)

for i 6= j 6= k 6= i. Eq. (5.34) represents the sum of the diagonal and off-diagonal
self-energies involving a Higgs boson i where the off-diagonal contributions are weighted
by the ratio between the respective off-diagonal and the diagonal propagator. For the
2× 2 mixing, this relation between Eqs. (5.23-5.25) can be directly seen. In the 3× 3
case, Eq. (5.34) follows from Eq. (5.11) due to

∆ij

∆ii

= − Γ̂ijΓ̂kk − Γ̂jkΓ̂ki

Γ̂jjΓ̂kk − Γ̂2
jk

= − Σ̂ij (Dk + Σ̂kk)− Σ̂jkΣ̂ki

(Dj + Σ̂jj) (Dk + Σ̂kk)− Σ̂2
jk

, (5.35)

analogously for j ↔ k, and Σ̂ij = −iΓ̂ij from Eq. (5.2) with i 6= j. The structure of the
ratio of propagators in Eq. (5.35) is illustrated by the comparison to the simple expansion
of the diagonal and off-diagonal propagators in powers of the self-energies, here up to
two-loop order,

∆ii(p
2) = i

(
1

Di

− Σ̂ii

D2
i

+
Σ̂2
ii

D3
i

+
Σ̂2
ij

D2
iDj

+
Σ̂2
ik

D2
iDk

+O(Σ̂3)

)
, (5.36)

∆ij(p
2) = i

(
− Σ̂ij

DiDj

+
Σ̂iiΣ̂ij

D2
iDj

+
Σ̂ijΣ̂jj

DiD2
j

+
Σ̂ikΣ̂kj

DiDkDj

+O(Σ̂3)

)
, (5.37)

where we dropped again the explicit p2-dependence on the right-hand side. The first
term in Eq. (5.36) simply represents the tree-level propagator of particle i. The second
term contributes at one-loop order with a diagonal self-energy between two lowest order
i-propagators. At the 2-loop level, there are several combinations that have a lowest order
i-propagator at each side. The propagator between the two self-energies can then be of
the Higgs boson i (between Σ̂2

ii) or j (between Σ̂2
ij) or k (between Σ̂2

ik). The off-diagonal
propagator in Eq. (5.37) starts from the one-loop level. At the two-loop level, there are
three contributions. These terms are illustrated by the diagrams in Fig. 5.1. If the mixing
is restricted to the 2× 2 case involving the states i and j, then the expressions containing
Σ̂ik and Σ̂jk vanish.
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5.3 On-shell wave function normalisation factors

∆ii =
i i

=
i
−

i i

Σ̂ii

+
i i i

Σ̂ii Σ̂ii

+
i j i

Σ̂ij Σ̂ji

+
i k i

Σ̂ik Σ̂ki

+O
(

Σ̂3
)

(a) Diagonal ∆ii.

∆ij =
i j

= −
i j

Σ̂ij

+
i i j

Σ̂ii Σ̂ij

+
i j j

Σ̂ij Σ̂jj

+
i k j

Σ̂ik Σ̂kj

+O
(

Σ̂3
)

(b) Off-diagonal ∆ij .

Figure 5.1.: Diagrammatic representation of the 3× 3 propagators up to 2-loop order. (a):
diagonal ∆ii, contributing from lowest order on; (b): off-diagonal ∆ij , starting
at 1-loop order, where i, j, k is a permutation of h,H,A.

Now, we expand the ratio of the propagators ∆ij and ∆ii from Eq. (5.35) up to
2-loop order,

∆ij

∆ii

= −Σ̂ij

Dj

+
Σ̂ijΣ̂jj

D2
j

+
Σ̂ikΣ̂kj

DjDk

+O(Σ̂3). (5.38)

These terms are visualised in Fig. 5.2. All of them begin with a self-energy starting on i
and end on a tree-level propagator of j.

∆ij

∆ii

= −
j

Σ̂ij

+
j j

Σ̂ij Σ̂jj

+
k j

Σ̂ik Σ̂kj

+O
(

Σ̂3
)

Figure 5.2.: Diagrammatic representation of the ratio of the propagators ∆ij and ∆ii from
Eq. (5.38) expanded up to 2-loop order, where i, j = h,H,A. Each diagram begins
with a self-energy starting on i.

If we multiply Eq. (5.38) by Σ̂ji, each term begins and ends on a off-diagonal self-
energy with index i and contains neither a lowest-order i-propagator nor Σ̂ii. This also
holds for the omitted higher orders. Likewise, ∆ik/∆ii ends on 1/Dk, and multiplied by
Σ̂ki it starts and ends on the index i. Hence, the second and third term in Eq. (5.34) are
composed of a combination of self-energies excluding Σ̂ii so that they indeed constitute
the mixing part of the effective self-energy.
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5 Mixing properties of Higgs bosons in the complex MSSM

Furthermore, the ratios of off-diagonal and diagonal propagators

R
(a)
ij :=

∆ij(p
2)

∆ii(p2)

∣∣∣∣
p2=M2

a

, (5.39)

stay finite at the complex polesM2
a, a = 1, 2, 3, in contrast to the propagators themselves.

5.3.2. Ẑ-matrix for on-shell properties of external Higgs bosons

Higgs bosons appearing as external particles in a process need the right on-shell properties
for a correct normalisation of the S-matrix. This is automatically the case in renormal-
isation schemes with on-shell renormalisation conditions for the fields such that their
residues equal unity and that different fields do not mix on their mass shells at the loop
level. In the Higgs sector, however, we apply the DR scheme for the parameter tan β and
for the field renormalisation, see Sect. 4.4.2 and Ref. [84]. The DR field renormalisation
conditions in Eqs. (4.51,4.52) do not ensure proper on-shell properties of the Higgs bosons.
In fact, the loop-corrected mass eigenstates h1, h2, h3, which occur as external, on-shell
particles e.g. in decay processes, are a mixture of the lowest order states h,H,A. Thus,
due to the mixing of on-shell states, finite wave function normalisation factors need to
be introduced.

They are calculated according to the LSZ reduction formula (Lehmann, Symanzik,
Zimmermann [152]) which shows that the S-matrix element with n external particles is
determined by the amputated n-point Green’s function G(n) taken on-shell, multiplied
by a wave function normalisation factor Z−1/2 per external particle. Following Ref. [20],
for a propagator G(2) with mass M , thus a 2-point Green’s function, the corresponding
2-point vertex function Γ(2) = −G−1

(2) recscaled by Z is required to have a unit residue at
M2,

ResM2(ZΓ(2)) = lim
p2→M2

(
−i

p2 −M2
ZΓ(2)

)
!

= 1. (5.40)

Hence we can calculate the normalisation factor Z as

Z = ResM2

{
G(2)

}
. (5.41)

The Green’s function is given in terms of the interaction eigenstates. In the case with
mixing, where the propagators have several poles, it is not clear how to relate the wave-
function normalisation factors of the interaction eigenstates to the poles corresponding
to the mass eigenstates. Applying this formalism to the MSSM Higgs sector, we obtain
the Z-factors for a neutral Higgs boson i = h,H,A on an external line from the residue
of the propagators at the complex poleM2

a, a = 1, 2, 3 [153,154]

Ẑa
i := ResM2

a

{
∆ii(p

2)
}
. (5.42)

In order to perform the limit, we expand the diagonal propagator around the complex
poleM2

a. Close toM2
a, the momentum-dependence of the effective self-energy Σ̂eff

ii (p2)
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5.3 On-shell wave function normalisation factors

can be approximated by

Σ̂eff
ii (p2) = Σ̂eff

ii (M2
a) + (p2 −M2

a) · Σ̂eff′

ii (M2
a) +O

(
(p2 −M2

a)
2
)
. (5.43)

Using Eq. (5.43) and the on-shell condition at the complex pole from Eq. (5.33), we
obtain [45], up to higher powers of (p2 −M2

a) in the denominator,

∆ii(p
2) =

i

p2 −m2
i + Σ̂eff

ii (p2)

=
i

p2 −m2
i + Σ̂eff

ii (M2
a) + (p2 −M2

a) · Σ̂eff′
ii (M2

a) +O ((p2 −M2
a)

2)

=
i

(p2 −M2
a) ·
[
1 + Σ̂eff′

ii (M2
a) +O(p2 −M2

a)
] . (5.44)

Thus, the residue of the propagator ∆ii yields

Ẑa
i = lim

p2→M2
a

−i(p2 −M2
a)

i

(p2 −M2
a)
[
1 + Σ̂eff′

ii (M2
a) +O(p2 −M2

a)
]
 (5.45)

=
1

∂
∂p2

i
∆ii(p2)

∣∣∣∣
p2=M2

a

(5.46)

=
1

1 + Σ̂eff′
ii (M2

a)
. (5.47)

Considering a diagram with the Higgs boson i on an external line, whose propagator
has three poles, there are three possibilities which residue to compute. If the amputated

Green’s function is evaluated atM2
a, the external i-line has to be multiplied by

√
Ẑa
i

for the correct S-matrix normalisation. So the resulting mass eigenstate as an outgoing
particle is ha. Alternatively, if the Green’s function is amputated atM2

b , it has to be
normalised by √

Ẑb
i =

1√
1 + Σ̂eff′

ii (M2
b)

(5.48)

to achieve the correct S-matrix element. For this choice, the external mass eigenstate is hb.
Moreover, mixing of the particles i and j can occur where the external particle is denoted
as i, and j is connected to the rest of the diagram. Then the complete normalisation
factor (see Refs. [154,155]) is given by

(Ẑa
i )−1/2 · ResM2

a

{
∆ij(p

2)
}

=

√
Ẑa
i

∆ij(p
2)

∆jj(p2)

∣∣∣∣
p2=M2

a

, (5.49)
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5 Mixing properties of Higgs bosons in the complex MSSM

where the ratio ∆ij(p
2)

∆jj(p2)
does not have a pole at p2 =M2

a, see Eq. (5.35). Thus, the wave
function normalisation factor for i − j mixing on an external on-shell line at M2

a is

composed of the overall normalisation factor
√
Ẑa
i times the on-shell transition ratio

Ẑa
ij ≡ Ra

ij =
∆ij(p

2)

∆ii(p2)

∣∣∣∣
p2=M2

a

. (5.50)

Since ∆ii and ∆ij have – in the case of 3 × 3 mixing – 3 complex poles, any of them
can be chosen for the evaluation of Ẑi, Ẑij and Ẑik, for exampleM2

a. Correspondingly,
Ẑj, Ẑji and Ẑjk will be evaluated atM2

b and Ẑk, Ẑki and Ẑkj atM2
c where a, b, c are a

permutation of 1,2,3, and i, j, k a permutation of h,H,A [156]. For 2× 2 mixing, only
the two indices involved in the mixing can be permuted.

All choices allowed by the mixing structure are generally possible owing to the
several poles of each propagator. However, they might not be equally numerically stable.
If the mass eigenstate ha contains only a small admixture of the interaction eigenstate i,
the propagator still has a pole atM2

a, but the contribution of i to ha is suppressed at
p2 6=M2

a.
In order to be definite, it is in any case necessary to define at which pole to evaluate

which normalisation and mixing Ẑ-factor. This choice corresponds to fixing an assignment
between the indices i, j, k of the lowest-order states and the indices a, b, c of the higher-
order mixed states and then using it consistently. The assignment (i, a), (j, b), (k, c),
which we label as scheme I, prescribes to evaluate Ẑi, Ẑij and Ẑik at M2

a. Once the
indices have been assigned we can clear up the notation by writing

Ẑa
∣∣
I

:= Ẑa
i , Ẑaj

∣∣
I

:= Ẑa
ij, Ẑbi

∣∣
I

:= Ẑb
ji, (5.51)

accordingly for the other indices such that the first index always refers to a mass eigenstate
(a, b, c ∈ {1, 2, 3})1 and the second index to an interaction eigenstate (i, j, k ∈ {h,H,A}).
Note that Ẑai = Ẑbj = Ẑck ≡ 1 in the index scheme I defined above. Once the index
scheme has been specified, one can leave out the subscript I.

Furthermore, it is convenient [84] to arrange the products of the normalisation
factors

√
Ẑa and transition ratios Ẑaj

Ẑaj =

√
ẐaẐaj (5.52)

(note the difference between Ẑaj and Ẑaj) into a non-unitary matrix:

Ẑ =


√
Ẑ1Ẑ1h

√
Ẑ1Ẑ1H

√
Ẑ1Ẑ1A√

Ẑ2Ẑ2h

√
Ẑ2Ẑ2H

√
Ẑ2Ẑ2A√

Ẑ3Ẑ3h

√
Ẑ3Ẑ3H

√
Ẑ3Ẑ3A

 . (5.53)

1This index notation differs from Refs. [45, 84, 147, 156,157], but it is only a matter of convention. We
regard our notation more intuitive in view of the use of Ẑ-factors e.g. in Eq. (5.74)
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5.3 On-shell wave function normalisation factors

The Ẑ-matrix defined above in Eq. (5.53) fulfils the unit residue condition for the mixing
case, written in the following compact form [45,98,147,156]:

lim
p2→M2

a

− i

p2 −M2
a

(
Ẑ · Γ̂hHA · Ẑ

T
)
hh

= 1, (5.54)

lim
p2→M2

b

− i

p2 −M2
b

(
Ẑ · Γ̂hHA · Ẑ

T
)
HH

= 1, (5.55)

lim
p2→M2

c

− i

p2 −M2
c

(
Ẑ · Γ̂hHA · Ẑ

T
)
AA

= 1. (5.56)

It is equally possible to begin with these equations (5.54-5.56) requiring unit residues to
derive the elements of the Ẑ-matrix whose solutions are given in Eqs. (5.47) and (5.50).

In the literature, different conventions for the Ẑ-factors have been employed. While
Refs. [153, 154, 158, 159] introduce the normalisation factors for h − H mixing in the
MSSM with real parameters, the full 3× 3 mixing in the presence of complex parameters
is considered in Refs. [45, 84, 98, 147,156,157]. In Ref. [157] and earlier publications, the
Ẑ-factors were evaluated at the real parts of the complex poles, i.e. the loop corrected
masses and only the real parts of Ẑa were included. In Ref. [156] the evaluation at
the full complex poles and the inclusion of imaginary parts according to Eq. 5.13 were
introduced which leads to more stable results as well as to the physically equivalent
choices of index assignments. The calculation of the Ẑ-factors of MSSM Higgs bosons
can be performed with the program FeynHiggs. Within FeynHiggs, their ordering,
described in Refs. [84, 160], proceeds through an algorithm that minimizes the sum over
the differences between the masses obtained from the diagonalisation and the associated
masses of the Ẑ-factor ordering, comparing all possible permutations of the Higgs states
involved in the mixing. With this prescription, discontinuities of Ẑ-factors can occur at
level crossings if two masses are nearly degenerate. Such a behaviour corresponds to a
swap of the composition of the mass eigenstates in terms of interaction eigenstates. Those
“jumps” of the Ẑ-factors can be avoided by the method for the assignment discussed in
Sect. 5.4.2.

5.3.2.1. Index scheme independence of the Ẑ-matrix

As discussed above, the pole structure of the full propagators allows for the freedom
at which pole to evaluate which Ẑ-factor. This initial ambiguity, however, results in
physically equivalent results, as we will proof in this section. For example, the residue of
∆ii atM2

a differs from the residue of ∆ii atM2
b and from the residue of ∆jj atM2

a such
that

Ẑa
∣∣
I

=
1

1 + Σ̂eff′
ii (M2

a)
6= 1

1 + Σ̂eff′
ii (M2

b)
= Ẑb

∣∣
I
, (5.57)

Ẑa
∣∣
I
6= Ẑa

∣∣
II

=
1

1 + Σ̂eff′
jj (M2

a)
(5.58)
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5 Mixing properties of Higgs bosons in the complex MSSM

where the schemes denoted by I and II represent the following assignments

I ↔ (i, a), (j, b), (k, c), (5.59)
II ↔ (j, a), (i, b), (k, c). (5.60)

Furthermore, for the choice (h, 1), (H, 2), (A, 3), the diagonal elements of the Ẑ-matrix are
equal to

√
Ẑa, a = 1, 2, 3 in scheme I. For other choices of the index assignment, these

simpler expressions (where the ratio of propagators equals 1) appear on 3 off-diagonal
positions in the Ẑ-matrix. While the values Ẑa and Ẑaj, a = 1, 2, 3; j = h,H,A do
depend on the assignment of (a, b, c) and (1, 2, 3), the values of the physical combinations
Ẑaj =

√
ẐaẐaj appearing as elements of the matrix in Eq. (5.53) are scheme independent.

We derive this property from the general ratios of propagators (for simplicity, we only
consider the 2×2 mixing in this derivation, but the arguments can be directly transferred
to the 3× 3 case),

∆ji(p
2)

∆jj(p2)
=

−Σ̂ij(p
2)

Di(p2) + Σ̂ii(p2)
, (5.61)

∆ii(p
2)

∆jj(p2)
=
Dj(p

2) + Σ̂jj(p
2)

Di(p2) + Σ̂ii(p2)
. (5.62)

Furthermore we exploit two relations that only hold at a complex pole, using the effective
self-energy from Eq. (5.25),

Σ̂2
ij(p

2)

Di(p2) + Σ̂ii(p2)

∣∣∣∣
p2=M2

a

= Σ̂jj(M2
a)− Σ̂eff

jj (M2
a) = (Σ̂jj(p

2) +Dj(p
2))
∣∣
p2=M2

a
, (5.63)

and applying the on-shell condition from Eq. (5.33) on the ratio of diagonal propagators,

∆ii(p
2)

∆jj(p2)

∣∣∣∣
p2=M2

a

=
1 + Σ̂eff′

jj (M2
a)

1 + Σ̂eff′
ii (M2

a)
. (5.64)

Now we are able to show that

1 + Σ̂eff′
jj (M2

a)

1 + Σ̂eff′
ii (M2

a)

5.64
=

∆ii(p
2)

∆jj(p2)

∣∣∣∣
p2=M2

a

5.62
=

Dj(p
2) + Σ̂jj(p

2)

Di(p2) + Σ̂ii(p2)

∣∣∣∣
p2=M2

a

5.63
=

(
Σ̂ij

Di + Σ̂ii

)2

p2=M2
a

(5.65)

5.61
=

(
∆ji(p

2)

∆jj(p2)

)2

p2=M2
a

. (5.66)
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5.4 Relation between interaction and mass eigenstates

This equality provides a transformation between scheme I (where i and a are associated,
hence Ẑai ≡ 1) and scheme II (where j and a are matched):

Ẑai|I =

(√
ẐaẐai

)
I

=
1√

1 + Σ̂eff′
ii (M2

a)

=
1√

1 + Σ̂eff′
jj (M2

a)

∆ji

∆jj

∣∣∣∣
p2=M2

a

=

(√
ẐaẐai

)
II

= Ẑai

∣∣∣∣
II

. (5.67)

While the values of Ẑa and Ẑai depend on the choice of the index mapping, Eq. (5.67)
ensures that the elements of the Ẑ-matrix are invariant under the choice of a, b, c as a
permutation of 1, 2, 3. We also tested this relation numerically for various parameter
points and always found agreement within the numerical precision.

5.4. Relation between interaction and mass eigenstates

The complex poles are strictly ordered according to their real parts such that Mh1 ≤
Mh2 ≤ Mh3 . If two masses Ma ' Mb are close to each other, the composition of the
two states ha, hb in terms of the original states i, j ∈ h,H,A might be interchanged
at a crossover. However, this might not always proceed smoothly as a function of the
input parameters, but a sudden exchange of the “characters” of ha and hb is possible. In
such a case, the effective self-energies and ratios of propagators needed for the Ẑ-factors
are evaluated at a different complex pole than before the crossing, corresponding to
an interchange of two rows of the Ẑ-matrix. We will analyse how the loop corrected
masses of the interaction eigenstates in the case without mixing evolve into the masses
Mha , a = 1, 2, 3, by continuously switching on the mixing contributions.

5.4.1. Numerical determination of the Higgs boson masses

There are several ways of how to compute the Higgs masses numerically. On the one
hand, FeynHiggs [67, 146, 149, 150] is based on the Feynman-diagrammatic approach
where the Higgs boson self-energies are calculated in the on-shell scheme. The masses
are determined from the complex poles of the propagators. FeynHiggs numerically
diagonalizes the mass matrix M applying a Jacobi-type algorithm [161]. With µa(p2)
being the ath eigenvalue of M(p2), the real parts of the zeros of the function µ2

a(p
2)− p2

yield the mass eigenvalues M2
ha

[157]. On the other hand, as argued in Sect. 5.2 and e.g.
in Refs. [84,98,157], finding the roots of Γ̂hHA(p2) is equivalent to solving

1

∆ii(p2)
= 0 (5.68)

for any i = h,H,A. This feature suggests an iterative procedure to solve Eq. (5.33)
because the momentum p2 appears both explicitly and as the argument of the effective
self-energy. We use the self-energies from FeynHiggs, evaluate them at complex momenta
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5 Mixing properties of Higgs bosons in the complex MSSM

according to Eq. (5.13) and calculate the effective self-energies. Starting at a tree-level
mass p2 = m2

i , we insert this initial momentum into the effective self-energy and obtain
the subsequent iteration of the momentum from Eq. (5.33) until the inverse diagonal
propagator approaches zero. In this iterative method, all poles of one propagator can be
found by starting at different initial momenta. In the special case of no mixing or 2× 2
mixing, the convergence is faster than for the 3× 3 mixing. The mass values that we
obtain by our iteration are in agreement with those obtained from FeynHiggs.

5.4.2. Dependence on the mixing term in the effective
self-energy

Regarding the mixing contribution to the diagonal propagators, Eq. (5.11) demonstrates
that the effective self-energy consists of an unmixed part, Σ̂ii, and the second term with
the mixing. In order to study the impact of the mixing on the mass determination
and the connection between the two Higgs bases, we multiply the mixing term by an
artificially introduced coefficient λ ∈ [0, 1]:

Σ̂eff
ii (p2, λ) := Σ̂ii(p

2)− λ · i
2Γ̂ij(p

2)Γ̂jk(p
2)Γ̂ki(p

2)− Γ̂2
ki(p

2)Γ̂jj(p
2)− Γ̂2

ij(p
2)Γ̂kk(p

2)

Γ̂jj(p2)Γ̂kk(p2)− Γ̂2
jk(p

2)
,

(5.69)

such that the limit λ = 1 recovers Eq. (5.11) and λ = 0 switches the mixing off. In the
next step, we investigate how the masses depend on the mixing coefficient in Eq. (5.69).
Varying λ in steps of ∆λ = 0.05, we run the iteration of finding the masses for each
value of λ ∈ [0, 1]. This means that every mass point shown in Fig. 5.3 represents the
square root of the real part of a complex pole, which has been determined by the value
of the final momentum of the iteration. Fig. 5.3 shows the iteratively determined, loop
corrected Higgs boson masses in the CP-violating Mmod+

h scenario (see Tab.A.1) with

MH± = 300GeV, tan β = 25, φAt = π/4, µ = 1000GeV. (5.70)

The mass solutions from the roots of the inverse propagator 1/∆hh(p
2) are shown in

Fig. 5.3(a) for the initial momenta m2
h (red circles), m2

H (blue triangles) and m3
A (green

diamonds). Analogously, Fig. 5.3(b) displays the masses found from 1/∆HH(p2) and
Fig. 5.3(c) those from 1/∆AA(p2) - all depending on λ.

As expected, for λ = 0 each propagator ∆ii(p
2) has only a single poleM2

i so that
there is a unique assignment between each lowest order mass m2

i and the loop-corrected
mass M2

i = ReM2
i . In this case, all iterations for the determination of poles of ∆ii(p

2)
result in the same (unique) pole and therefore yield the same loop-corrected mass value
regardless of the start momentum.

On the contrary, for the physical mixing (λ = 1), each propagator has three poles so
that there is no unique assignment between the tree-level mass of an interaction eigenstate
and a higher-order mass of a mixed state. However, with our mixing-dependent analysis
we can identify the mapping that provides the “smoothest” transition when λ is varied
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5.4 Relation between interaction and mass eigenstates

from 0 to 1. Imposing the criterion that there should be no jumps and requiring the
smallest difference |M(λ = 1)−M(λ = 0)|, we obtain in this case the assignment

Mh1 ↔ h, Mh3 ↔ H, Mh2 ↔ A, (5.71)

where Mh1 < Mh2 < Mh3 . Fig. 5.3(b) shows that the value of Mh2 at λ = 1 can also be
reached from MH(λ = 0), but the difference is larger. This prescription helps in avoiding
jumps of the Ẑ-factors.
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Figure 5.3.: Higgs boson masses determined iteratively, with variable mixing coefficient λ, in
the CP-violating Mmod+

h scenario with MH± = 300GeV, tanβ = 25, φAt = π/4
and µ = 1000GeV. The iterations starting at the tree-level masses m2

h (red
circles), m2

H (blue triangles) and m3
h (green diamonds) result in the roots of (a)

1/∆hh(p2), (b) 1/∆HH(p2) and (c) 1/∆AA(p2).
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5 Mixing properties of Higgs bosons in the complex MSSM

5.5. Use of Ẑ-factors for external Higgs bosons

The Ẑ-factors have been introduced for the correct normalisation of matrix elements with
external, on-shell Higgs bosons ha, p2 =M2

a. It should be noted that Ẑ as a non-unitary
matrix does not provide a unitary transformation between the interaction basis and the
mass basis. The fact that Ẑ is a non-unitary matrix is related to the imaginary parts
appearing in the poles of unstable particles. Using the Ẑ-matrix, one can express the
one-particle irreducible (1PI) vertex functions Γ̂ha involving a mass eigenstate h1, h2, h3

as an external particle as a linear combination of the well defined 1PI vertex functions of
the interaction eigenstates, Γ̂i:

Γ̂ha = ẐahΓ̂h + ẐaH Γ̂H + ẐaAΓ̂A + ... (5.72)

=

√
Ẑa

(
ẐahΓ̂h + ẐaH Γ̂H + ẐaAΓ̂A

)
+ . . . , (5.73)

where the ellipsis refers to additional terms arising from the mixing with Goldstone and
vector bosons, which are not described by the Ẑ-matrix. Thus, the overall normalisation
factor

√
Ẑa accounts for the unstable particle ha appearing as an external line. In

addition, the factors Ẑai from Eqs. (5.50) and (5.51) as ratios of propagators at p2 =M2
a

describe the transition between the states ha and i. The transition factor Ẑai occurs in
a diagram where ha is the external particle, but i directly couples to the vertex. All
possibilities for i = h,H,A need to be included for each ha, hence the sum arises. This
is depicted in Fig. 5.4 (cf. also Refs. [98, 160]). Conveniently, Eq. (5.73) can be written

p2 =M2
a

ha
Γ̂ha=

√
Ẑa

(
Ẑah

ha h
Γ̂h +

ẐaH

ha H
Γ̂H +

ẐaA

ha A
Γ̂A

)
p2=M2

a

+ . . .

Figure 5.4.: Ẑ-factors for external Higgs bosons: The vertex function Γ̂ha is constructed
from vertex functions Γ̂i, i = h,H,A, the transition factors Ẑai and the overall
normalisation factor

√
Ẑa. Mixing with Goldstone and gauge bosons is omitted.

in matrix form for all h1, h2, h3 asΓ̂h1

Γ̂h2

Γ̂h3

 = Ẑ ·

 Γ̂h

Γ̂H

Γ̂A

+ . . . . (5.74)

In this way, propagator corrections at external legs are effectively absorbed into the
vertices of neutral Higgs bosons. In Sects. 8-10 we will apply the Ẑ-factors to supplement
the Born result such that only other propagator type corrections (such as mixing with
the Goldstone and Z-bosons) as well as vertex, box and real corrections will have to be
calculated individually. On the other hand, we will numerically compare the Ẑ-factor
approximation with the full propagator mixing in Sect. 6.
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5.6 Effective couplings

5.6. Effective couplings

Since the Ẑ-matrix is not unitary, it does not represent a unitary transformation between
the {h,H,A} and the {h1, h2, h3} basis. However, it is not necessary to diagonalise the
mass matrix for the determination of the poles of the propagators. Hence there is a
priori no need to introduce a unitary transformation. Though, if a unitary matrix U
is desired for the definition of effective couplings, an approximation of the momentum
dependence of Ẑ is required. There is no unique prescription of how to achieve a unitary
mixing matrix, but a possible choice is the p2 = 0 approximation [84, 160]. As in the
effective potential approach, the external momentum p2 is set to zero in the renormalised
self-energies Σ̂ij(p

2) → Σ̂ij(0) so that they become real. Then U diagonalises the real
matrix M(0) and the propagators have real poles. U can be chosen real and it transform
the CP-eigenstates into the mass eigenstates,h1

h2

h3

 = U

h

H

A

 , U =

U1h U1H U1A

U2h U2H U2A

U3h U3H U3A

 , (5.75)

so that U2
aA quantifies the admixture of an CP-odd component inside ha [84]. The

elements of U can then be used to introduce effective couplings of the loop-corrected
states ha to any other particles X in terms of the couplings of the unmixed states i by
the relation

CU
haX =

∑
i=h,H,A

UaiCiX . (5.76)

absorbing some higher-order corrections, but neglecting imaginary parts and the full
momentum dependence of the self-energies. Hence, the application of U resembles the use
of Ẑ-factors in Eq. (5.72). Yet, the rotation matrix U introduced for effective couplings
as a unitary approximation is conceptually quite different from the Ẑ-matrix arising from
propagator corrections and introduced for the correct normalisation of the S-matrix.
They coincide only in the limit of p2 = 0. However, both capture effects of higher orders
that can conveniently be incorporated into an improved Born result. We shall compare
both approaches numerically in Sect. 6.3.2.3 while using Ẑ-factors everywhere else in this
thesis.
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Chapter 6.

Breit-Wigner approximation of the full
Higgs propagators

In the previous chapter, Ẑ-factors were introduced that account for propagator corrections
in the presence of mixing of the lowest-order Higgs bosons h,H,A into the loop-corrected
mass eigenstates h1, h2, h3. These Ẑ-factors arise from the on-shell values of different
combinations of the full mixing propagators, which depend on the momentum p2 in a
twofold way. On the one hand, the constituents Di(p

2) = p2 −m2
i give rise to an explicit

p2-dependence. On the other hand, the self-energies Σ̂ij(p
2) depend on the momentum

as well, but away from thresholds, their p2 dependence is not particularly pronounced.
In this chapter, we will develop an approximation of the full mixing propagators

with the aim to maintain the leading momentum dependence, but to simplify the mixing
contributions by making use of the on-shell Ẑ-factors. The real parts of the complex
poles are interpreted as the physical masses whereas the imaginary parts of the poles give
rise to decay widths of the Higgs bosons. Thereby, the physical meaning of the complex
poles is connected to the question of how to treat unstable particles in quantum field
theory.

6.1. Unstable particles and the total decay width

In the context of determining complex poles of propagators, we now briefly discuss
resonances and unstable particles, see e.g. Refs. [162–166]. While stable particles are
associated with a real pole of the S-matrix, for unstable particles the associated self-energy
develops an imaginary part, so that the pole of the propagator is located off the real
axis within the complex plane. As in the previous chapter, we denote the complex pole
of a Higgs boson ha by M2

a, whereas M (without an index or square) stands for the
scattering matrix. For a single pole, the scattering matrixM as a function of the squared
centre-of-mass energy s can be schematically written in the vicinity of the complex pole
in a gauge-invariant way as

M(s) =
R

s−M2
a

+ F (s), (6.1)

where R denotes the residue and F represents non-resonant contributions. Writing the
complex pole as M2

a = M2
ha
− iMhaΓha , the mass Mha of the unstable particle ha is
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6.2 Expansion of the full propagators around the complex poles

obtained from the real part of the complex pole, while the total width is obtained from
the imaginary part. Accordingly, the expansion around the complex poleM2

a leads to a
Breit–Wigner propagator with a constant width,

∆BW
a (p2) :=

i

p2 −M2
a

=
i

p2 −M2
ha

+ iMhaΓha
. (6.2)

In the following, we will use a Breit–Wigner propagator of this form, i.e. with a constant
width, to express the contribution of the unstable scalar ha with mass Mha and total
width Γha in the resonance region (a Breit–Wigner propagator with a running width can
be obtained from a reparametrisation of the mass and width appearing in Eq. (6.2)).

The transition from the Higgs propagators in the case of mixing to the Breit-Wigner
propagators corresponds to a change of basis from h,H,A to h1, h2, h3. The Breit-Wigner
propagators are obtained from poles of the S-matrix and therefore correspond to the
mass eigenstates.

6.2. Expansion of the full propagators around the
complex poles

Eqs. (5.31) and (5.32) imply for 3× 3 mixing that each propagator ∆ii,∆ij has a pole
at M2

1,M2
2 and M2

3. Because of this structure, an expansion of the full propagators
near one single pole is not expected to yield a sufficient approximation. Instead, we will
expand the full propagators around all three poles.

6.2.1. Expansion of the diagonal propagators

Beginning with an expansion of ∆ii(p
2) in the vicinity of M2

a and making use of the
expansion of the effective self-energy performed in Eq. (5.43), we obtain as in (5.44) for
p2 'M2

a

∆ii(p
2) =

i

p2 −m2
i + Σ̂eff

ii (p2)
' i

p2 −M2
a

· 1

1 + Σ̂eff′
ii (M2

a)
, (6.3)

where the first factor equals the definition of the Breit-Wigner propagator of the state ha
and the second factor is the Ẑa in scheme I where i and a are associated indices. On
top of that, Ẑa

∣∣
I

= Ẑ
2

ai as defined in in Eq.(5.52), and the elements of the Ẑ-matrix are
independent of the index scheme (see Eq. (5.67)). Thus, the following scheme-independent
approximation holds for p2 'M2

a:

∆ii(p
2) ' ∆BW

a (p2) Ẑa
∣∣
I

= ∆BW
a (p2) Ẑ

2

ai (6.4)

In this approach, the mixing contributions are summarised in the on-shell Z-factor
evaluated atM2

a. In contrast, the leading momentum dependence is contained in the
Breit-Wigner propagator parametrised by the loop-corrected mass Mha and the total
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6 Breit-Wigner approximation of the full Higgs propagators

width Γha from the complex pole. In addition, ∆ii(p
2) has a second pole atM2

b because
p2 −m2

i + Σ̂eff
ii (p2) = 0 holds also at p2 =M2

b . Analogously to Eq. (5.43), we can expand
Σ̂eff
ii aroundM2

b and obtain for the diagonal propagator

∆ii(p
2) =

i

p2 −m2
i + Σ̂eff

ii (p2)

' i

p2 −m2
i + Σ̂eff

ii (M2
b) + (p2 −M2

b) · Σ̂eff′
ii (M2

b)

=
i

(p2 −M2
b) ·
[
1 + Σ̂eff′

ii (M2
b)
] . (6.5)

Formally, 1

1+Σ̂eff′
ii (M2

b)
has the structure of the definition of a Ẑ-factor from Eq. (5.47), but

in the index scheme II where b is assigned to i, whereas Eq. (6.4) has been obtained in
scheme I with the (i, a) assignment. Using the relation (5.67), we can rewrite Eq. (6.5) as

∆ii(p
2) ' ∆BW

b (p2) · 1

1 + Σ̂eff′
ii (M2

b)

= ∆BW
b (p2) · 1

1 + Σ̂eff′
jj (M2

b)

(
∆ji

∆jj

)2

p2=M2
b

(6.6)

= ∆BW
b (p2) ·

(
Ẑb Ẑ

2
bi

) ∣∣∣∣
I

(6.7)

= ∆BW
b (p2) · Ẑ

2

bi, (6.8)

where the Ẑ-factors in Eq. (6.7) are expressed in the same scheme as in Eq. (6.4). Hence,
in the vicinity of p2 ' M2

b , the diagonal propagator ∆ii can be approximated by the
Breit-Wigner propagator of hb weighted by the square of Ẑbi that ensures the coupling
to the incoming fields as Higgs boson i, propagation as the mass eigenstate hb and the
coupling to the outgoing fields again as Higgs boson i. In the same manner, ∆ii can be
expanded around the third complex pole,M2

c , yielding

∆ii(p
2) ' i

(p2 −M2
c) ·
[
1 + Σ̂eff′

ii (M2
c)
] (6.9)

' ∆BW
c (p2) · 1

1 + Σ̂eff′
kk (M2

c)

(
∆ki

∆kk

)2 ∣∣∣∣
p2=M2

c

(6.10)

= ∆BW
c (p2) · Ẑ

2

ci. (6.11)

Thus, close to one of the complex poles (e.g. M2
a), the dominant contribution to the

full propagator ∆ii can be approximated by the corresponding Breit-Wigner propagator
(∆BW

a ) multiplied by the square of the respective Ẑ-factor (Ẑ
2

ai). However, close-by poles
may cause overlapping resonances. In order to include this possibility and to extend the
range of validity of the Breit-Wigner approximation to a more general case, we take the
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6.2 Expansion of the full propagators around the complex poles

sum of all three Breit-Wigner contributions into account:

∆ii(p
2) ' ∆BW

a (p2) Ẑ
2

ai + ∆BW
b (p2) Ẑ

2

bi + ∆BW
c (p2) Ẑ

2

ci =
3∑

a=1

∆BW
a (p2) Ẑ

2

ai. (6.12)

6.2.2. Expansion of the off-diagonal propagators

We proceed similarly for the off-diagonal propagators, which also have three complex
poles so that we can expand the propagators around them. Note that Ẑai =

√
Ẑa and

Ẑaj =
√
ẐaẐaj as defined in Eq. (5.52). Starting at p2 'M2

a, we express the Ẑ-factors
in scheme I,

∆ij(p
2) =

∆ij(p
2)

∆ii(p2)
∆ii(p

2) ' ẐajẐ
2

ai ∆
BW
a (p2) = ẐajẐai ∆BW

a (p2), (6.13)

Next, we approximate ∆ij near p2 =M2
b :

∆ij(p
2) =

∆ji(p
2)

∆jj(p2)
∆jj(p

2) ' ẐbiẐ
2

bj ∆BW
b (p2) = ẐbiẐbj ∆BW

b (p2). (6.14)

For p2 'M2
c , we switch to a scheme where the indices i and c belong together. Thereby

we can write

∆ij(p
2) =

∆ij(p
2)

∆ii(p2)
∆ii(p

2) ' ẐcjẐ
2

ci ∆
BW
c (p2) = ẐcjẐci ∆BW

c (p2), (6.15)

which is expressed in scheme-invariant Ẑ-factors. Finally, we take the sum of Eqs. (6.13)-
(6.15) to obtain

∆ij(p
2) '

3∑
a=1

Ẑai ∆BW
a (p2) Ẑaj. (6.16)

This sum is illustrated diagrammatically in Fig. 6.1.

i j
'

i h1 j
+

Ẑ1i Ẑ1j

i h2 j
+

Ẑ2i Ẑ2j

i h3 j

Ẑ3i Ẑ3j

Figure 6.1.: Diagrammatic illustration of the full mixing Higgs propagators compared to the
Breit-Wigner propagators where the Ẑ-factors encode the transition between the
interaction and the mass eigenstates.

Eq. (6.16) represents the central result of this chapter, covering also the diagonal
propagators in the special case of i = j. It shows how the full propagator can be
approximated by the contributions of the three resonance regions, expressed by the
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6 Breit-Wigner approximation of the full Higgs propagators

Breit-Wigner propagators ∆a(p
2), a = 1, 2, 3, reflecting the main momentum dependence.

The mixing among the Higgs bosons is comprised in the Ẑ-factors which are evaluated
on-shell. Nonetheless, even a part of the momentum dependence of the self-energies is
accounted for because the derivation of Eq. (6.12) is based on a first-order expansion
of the momentum-dependent effective self-energies. Furthermore, the Ẑ-factors serve
as transition factors between the mass eigenstates ha and the interaction eigenstates i
(altough Ẑ is not a unitary matrix tranforming the states into each other). Pictorially,
∆ij is a propagator that begins on the state i and ends on j while mixing occurs in
between, cf. Fig. 5.1. As Eq. (6.16) implies, the same picture emerges in the h1, h2, h2

basis. Also here, the propagator begins with i and ends on j. Thus, the coupling to
the rest of the diagram connected to the propagator is well-defined. In between, each of
the ha can propagate, and the correct transition is ensured by Ẑai and Ẑaj. All three
combinations are visualised in Fig. 6.1.

If CP is conserved and only h and H mix or if the two heavy states are nearly
degenerate and their resonances widely separated from the first complex pole, the full
3× 3 mixing is (exactly or approximately) reduced to the 2× 2 mixing. Then the mixing
Ẑ-factors involving the unmixed state vanish or become negligible so that some terms in
Eq. (6.16) become zero.

Beyond that, if no mixing occurs among the neutral Higgs bosons, all off-diagonal full
propagators as well as the off-diagonal Ẑ-factors vanish and each diagonal full propagator
consists of only a single Breit-Wigner term where the Ẑ-factor is based on the diagonal
self-energy instead of the effective self-energy. Thus, Eq. (6.16) covers all special cases.

6.2.3. Amplitude with Higgs mixing based on full or
Breit-Wigner propagators

h h

∆hh

h H

∆hH

h A

∆hA

H h

∆Hh

H H

∆HH

H A

∆HA

A h

∆Ah

A H

∆AH

A A

∆AA

Figure 6.2.: Contributions from all full mixing propagators ∆ij(p
2) for , i, j = h,H,A to a

generic amplitude (cf. Ref. [45]). If the Ẑ-factor approach is applied, each of the 9
full propagators needs to be approximated by the sum of the three corresponding
Breit-Wigner diagrams as shown in Fig. 6.1.
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6.2 Expansion of the full propagators around the complex poles

In a physical process where neutral Higgs bosons can appear as intermediate particles,
all of them need to be included in the prediction, see Fig. 6.2 and Ref. [45]. The Higgs
part of the amplitude then contains a sum over the irreducible vertex functions Γ̂Xi (for a
coupling of Higgs i at the first vertex X) and Γ̂Yj (for a coupling of Higgs j at the second
vertex Y ) times the fully momentum-dependent mixing propagators,

A =
∑

i,j=h,H,A

Γ̂Xi ∆ij(p
2) Γ̂Yj . (6.17)

Applying Eq. (6.16), the amplitude in Eq. (6.17) can be approximated by the sum over
Breit-Wigner propagators multiplied by on-shell Z-factors, in agreement with Ref. [45],

A '
∑

i,j=h,H,A

Γ̂Xi

[
3∑

a=1

Ẑai ∆BW
a (p2) Ẑaj

]
Γ̂Yj (6.18)

=
3∑

a=1

( ∑
i=h,H,A

ẐaiΓ̂Xi

)
∆BW
a (p2)

( ∑
j=h,H,A

ẐajΓ̂Yj

)
(6.19)

=
3∑

a=1

(
ẐahΓ̂Xh + ẐaH Γ̂XH + ẐaAΓ̂XA

)
∆BW
a (p2)

(
ẐahΓ̂Yh + ẐaH Γ̂YH + ẐaAΓ̂YA

)
(6.20)

=
3∑

a=1

Γ̂Xha ∆BW
a (p2) Γ̂Yha . (6.21)

The first bracket in Eq. (6.20) represents Γ̂Xha , i.e., the vertex X connected to the mass
eigenstate ha as for an external Higgs boson in Eq. (5.73). Subsequently, the second
bracket is equal to the coupling of ha at vertex Y , Γ̂Yha . As opposed to Sect. 5.5, the ha
is not on-shell here, but a propagator with momentum p2 between the vertices X and
Y , represented by the Breit-Wigner propagator ∆BW

a (p2). So the Ẑ-factors are not only
useful for the on-shell properties of external Higgs bosons, but they can also be used
as an on-shell approximation of the mixing between Higgs propagators. This will be
investigated numerically in Sect. 6.3.

6.2.4. Calculation of the interference term in the Breit-Wigner
formulation

In Eq. (6.16), the Breit-Wigner propagators are combined such that they approximate a
given full propagator. Conversely, we will now separate the ha part from the contribution
of the other mass eigenstates in the amplitude with Higgs exchange between the vertices
X and Y :

Aha = Γ̂Xha ∆BW
a (p2) Γ̂Yha ≡

∑
i,j=h,H,A

Γ̂Xi Ẑai ∆BW
a (p2) Ẑaj Γ̂Yj , (6.22)
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6 Breit-Wigner approximation of the full Higgs propagators

i.e. the exchange of the state ha coupling with the mixed vertices Γ̂ha from Eq. (5.73) as
for an external Higgs.

Γ̂Xha
ha

Γ̂Yha

= Γ̂Xh
Ẑah Ẑah

hah h
Γ̂Yh + +

ha

Ẑah ẐaH

h H
Γ̂Xh Γ̂YH

ha

Ẑah ẐaA

h A
Γ̂Xh Γ̂YA

+ +
ha

ẐaH Ẑah

H h
Γ̂XH Γ̂Yh +

ha

ẐaH ẐaH

H H
Γ̂XH Γ̂YH

ha

ẐaH ẐaA

H A
Γ̂XH Γ̂YA

+ +
ha

ẐaA Ẑah

A h
Γ̂XA Γ̂Yh +

ha

ẐaA ẐaH

A H
Γ̂XA Γ̂YH

ha

ẐaA ẐaA

A A
Γ̂XA Γ̂YA

=
∑

i,j=h,H,A
Γ̂Xi

Ẑai Ẑaj

hai j
Γ̂Yj

Figure 6.3.: Diagrammatic representation of the contribution Aha from Eq. 6.22 of ha (a =
1, 2, 3) to the amplitude A. The blue lines labelled by ha denote the Breit-Wigner
propagator ∆BW

a (p2) and the green lines labelled by i, j = h,H,A denote lowest
order propagators of h,H,A.

In order to calculate the squared amplitude as a coherent sum, all contributions of
h1, h2, h3 are summed up first before taking the absolute square,

|A|2coh =

∣∣∣∣ 3∑
a=1

Aha
∣∣∣∣2. (6.23)

On the contrary, the incoherent sum is the sum of the squared individual amplitudes,
which misses the interference contribution,

|A|2incoh =
3∑

a=1

∣∣∣∣Aha∣∣∣∣2, (6.24)

Thus, an advantage of the Breit-Wigner propagators is also the possibility to discern
the interference of several resonances from their individual contributions in a squared
amplitude

|A|2int = |A|2coh − |A|2inccoh =
∑
a<b

2Re
[
AhaA∗hb

]
, (6.25)
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6.3 Numerical comparison of full and Breit-Wigner propagators

which will be helpful in distinguishing genuine interference effects from general non-zero
phase effects on the cross section in Sect. 10.2.2. In contrast, the squared amplitude
based on the full propagators

|Afull|2 =
∣∣∣ ∑
i,j=h,H,A

Γ̂Xi ∆ij(p
2) Γ̂Yj

∣∣∣2 (6.26)

is sensitive to the overall effect of complex phases on the masses, couplings and mixing
propagators, but this formulation does not allow for the straightforward determination
of the pure interference term.

6.3. Numerical comparison of full and Breit-Wigner
propagators

After the analytical considerations so far, in this section we will numerically compare the
full propagators with their approximation as a combination of Breit-Wigner propagators
and Ẑ-factors. In order to investigate the applicability of the expansion of the full
propagators in one or all three resonance regions, we will first use a complex input
momentum around the three complex poles. For the later application to physical
processes where the squared momentum equals the centre-of-mass energy s, we will also
evaluate the propagators at p2 = s near the real parts of the complex poles. In Sect. 6.3.1
we choose a scenario where all three Higgs bosons are relatively light so that we can study
their mutual overlap. As a test of the Ẑ-factor approximation, we work in a scenario
with large mixing between H and A in Sect. 6.3.2

6.3.1. Scenario with 3 light Higgs bosons

For the numerical evaluation of the propagators, we work in the Mmod+
h scenario [167]

(see Tab.A.1). In this example, we fix the variable parameters

µ = 200GeV,
MH± = 160GeV,
tan β = 50, (6.27)

and introduce the complex phase φAt = π/4 to allow for CP-violating mixing. These
parameter values result in the following complex poles:

M2
1 = (15791− 70i)GeV2, M2

2 = (16202− 525i)GeV2, M2
3 = (17388− 385i)GeV2.

(6.28)

All of the loop-corrected masses obtained from the real parts of the complex poles listed
above are relatively light:

Mh1 = 125.7GeV, Mh2 = 127.3GeV, Mh3 = 131.9GeV (6.29)
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6 Breit-Wigner approximation of the full Higgs propagators

so that the mass differences are of the order of – but not smaller than – the total widths
from the imaginary parts of the complex poles, Γh1 = 0.6GeV, Γh2 = 4.1GeV, Γh3 =
2.9GeV. This parameter choice is not meant to be the experimentally viable. The
purpose is just to provide a setting with nearby, but resolvable resonances so that the
test of the Breit-Wigner approximation is not limited to well separated poles. The phase
of At induces CP-violating mixing, and the on-shell mixing properties are reflected by
the Ẑ-matrix obtained with FeynHiggs,

Ẑ =

 0.95− 0.04i 0.34 + 0.09i −0.05− 0.05i

0.05− 0.05i 0.02 + 0.03i 0.99− 0.02i

−0.35− 0.09i 0.94− 0.05i −0.006− 0.003i

 , (6.30)

which indicates that h1 couples mostly h-like, h2 mostly A-like and h3 mostly H-like.
Thus, the contribution of ha to ∆ij, i.e.

∆ij

∣∣∣
ha

(p2) = Ẑai ∆BW
a (p2) Ẑaj, (6.31)

is only significant if the product ẐaiẐaj is not suppressed. In this case, we can already
estimate that, for example, h3 hardly contributes to ∆AA.

We have analysed all propagators ∆ij aroundM2
1,M2

2 andM2
3 as well as for real

momenta. In the following, we show and discuss a selection of these cases.

6.3.1.1. Propagators depending on complex momenta

The analytical derivation of Eq. (6.16) builds on the expansion of the full propagators
around the complex poles, and the on-shell condition in Eq. (5.33) holds exactly only at
complex momentum. Therefore, we want to evaluate the self-energies and propagators
around the complex poles. Fig. 6.4 displays ∆hh(p

2) for p2 = 0.5M2
1 ... 1.5M2

1. In
particular, Fig. 6.4(a) shows Re [∆hh], and Fig. 6.4(b) shows Im [∆hh] versus the ratio
x1 = p2/M2

1 such that x1 = 1 corresponds to the complex pole p2 = M2
a. The black

line (labelled by ∆ full) represents the fully momentum dependent mixing propagator
from Eq. (5.10). Since the three poles do not have the same ratio between the real and
imaginary parts, scaling x1 does not run intoM2

2 andM2
3. ∆hh has a pole x = 1 and

a second peak at x ' 1.1 which is close to the real part ofM2
3. This structure is very

precisely reproduced by the sum
∑3

a=1 Ẑ
2

ah ∆BW
a (p2) according to Eq. (6.12) – as can be

seen from the red dotted line (labelled as
∑

BW · Z), which lies directly on top of the
black solid line.

In order to understand which of the Breit-Wigner propagators and Ẑ-factors dominate
at which momentum, we have a closer look at the dashed curves. The blue line (labelled by
h1) represents the contribution of h1 to ∆hh, i.e., Ẑ

2

1h ∆BW
1 (p2). It clearly reveals the pole

at x = 1, but strongly deviates from the full propagator at different momenta. The orange
line (labelled by h2) represents Ẑ

2

2h ∆BW
1 (p2). Since Ẑ2h is small in this scenario, the

contribution of h2 to ∆hh is numerically suppressed, but a tiny share is visible nearM2
2.
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6.3 Numerical comparison of full and Breit-Wigner propagators

The green line (labelled by h3) stands for Ẑ
2

3h ∆BW
3 (p2) and it contributes significantly to

∆hh nearM2
3 because Ẑ3h = −0.35− 0.09i is sizeable in this scenario. So we notice that

none of the individual Breit-Wigner propagators multiplied by the appropriate Ẑ-factors
suffices to approximate the full propagator, which has three complex poles. As a result,
only the sum of all three Breit-Wigner propagators times Ẑ-factors yields an accurate
approach to the full mixing. This holds for the real and the imaginary part.
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Figure 6.4.: Diagonal propagator ∆hh(p2) depending on the complex momentum p2 around
M2

1 with p2/M2
1 = 0.5...1.5. (a) real part, (b) imaginary part. The full mixing

propagator ∆ii, i = h,H,A (black, labelled by ∆ full) is compared to the sum
of Breit-Wigner propagators weighted by Ẑ-factors according to Eq. (6.12) (red
dotted, labelled by

∑
BW·Z). The individual contribution of ha, i.e. Ẑ

2
ah∆BW

a ,
is shown for h1 (blue, long-dashed), h2 (orange, dashed) and h3 (green, short-
dashed).

Having discussed the example of a diagonal propagator, we will now assess whether
the Ẑ-factor approximation succeeds also for off-diagonal propagators. For instance,
Fig. 6.5 depicts ∆HA versus x2 = p2/M2

2 such that x = 1 matches p2 =M2
2 where the

propagator diverges. Owing to the different ratio between the real and imaginary part of
each complex pole, scaling x2 does not run intoM2

1 andM2
3, but ∆HA peaks close to

their real parts. As in Fig. 6.4, the black line representing the full propagator and the
red, dotted line representing the sum of Breit-Wigner propagators according to Eq. (6.16)
agree very well. Additionally, we can tell apart the individual Breit-Wigner shapes.
Because the products of the relevant Ẑ-factors, here ẐaHẐaA, are non-negligible for all
a = 1, 2, 3, each Breit-Wigner propagator is important in the complete approximation of
both the real part (Fig. 6.5(a)) and the imaginary part (Fig. 6.5(b)) of ∆HA. The other
diagonal and off-diagonal propagators which are not displayed here have an equally good
agreement between the full calculation and the approximation.
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6 Breit-Wigner approximation of the full Higgs propagators
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Figure 6.5.: Off-diagonal propagator ∆HA(p2) depending on the complex momentum p2 around
M2

2 with p2/M2
2 = 0.5...1.5. (a) real part, (b) imaginary part. Labelling as in

Fig. 6.4.

6.3.1.2. Propagators depending on real momentum p2 = s

The calculation of the propagators at and around the complex poles together with the
evaluation of the self-energies at complex momenta according to Eq. (5.13) was needed
to fulfil the assumptions of the approximation. However, in collider processes, the Higgs
propagator might appear for example in the s-channel of a 2 → 2 scattering process
where the squared momentum equals the square of the centre-of-mass energy s. So here
we will check the Breit-Wigner approximation around the real parts of the complex poles.

Fig. 6.6(a) shows Re [∆hh] in the range
√
p2 ' Mh1 ,Mh2 ,Mh3 of the three loop-

corrected masses given in Eq. (6.29). The propagator has a pronounced peak around Mh1

and a smaller and broader one at Mh3 . Again, the approximation (red, dotted) defined
in Eq. (6.12) meets the full propagator (black) very precisely. The contribution of h1

multiplied by Ẑ1h of O(1) dominates near Mh1 . At Mh3 the Breit-Wigner shape of h3 is
dominant although multiplied only by Ẑ3h = −0.35− 0.09i, but also the tail of ∆BW

1 is
relevant. The resonance of h2 is strongly suppressed by the small Ẑ2h.

Fig. 6.6(b) visualises Re [∆AA] with a broad peak at Mh2 . The black curve of the
full propagator is again directly beneath the red, dotted curve of the Breit-Wigner
approximation, which in this case stems nearly entirely from h2 because Ẑ2A ' 1. Within
∆AA, the contribution of h1 only has a minor impact, which can be seen as a small kink
in Fig. 6.6(b). Although ∆BW

1 (p2) gets close to its pole, the resonance of h1 is strongly
suppressed by the small Ẑ-factor Ẑ1A = 0.05(1 + i). As we anticipated above from the
structure of Ẑ in Eq. (6.30), ∆BW

3 is a negligible component of ∆AA for this parameter
point.

So far we have seen that the Breit-Wigner formulation combined with on-shell
Ẑ-factors reproduces accurately the main momentum dependence of the full diagonal
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Figure 6.6.: Diagonal propagators ∆hh(p2) ((a)) and ∆AA(p2) ((b)) depending on the real
momentum p2 = s around

√
s 'Mh1 , Mh2 , Mh3 . Labelling as in Fig. 6.4.

and off-diagonal propagators by adding the contributions from all resonance regions. If
all resonances are sufficiently separated (not shown in this example) or if all but one
contributing products of Ẑ-factors are negligible, a single Breit-Wigner term is enough
to approximate the full propagator in one of the resonance regions. In the general case,
however, all Breit-Wigner terms need to be included. Even if the peaks are not located
very close to each other compared to their widths, the tail of one resonance supported by
a substantial product of Ẑ-factors can leak into another resonance region.

6.3.2. Scenario with large mixing

While the scenario in the previous section is characterised by three relatively similar
masses, we now choose a setting with quasi degenerate heavy states h2 and h3. In
Sect. 6.3.1 we considered the Mmod+

h -scenario with the standard value of µ = 200GeV
in combination with the complex phase φAt = π/4, leading to a moderate mixing
predominantly between h and A. In Ref. [167] it was suggested to choose also different
values, µ = ±200,±500,±1000GeV. So in addition to the choice above, we now apply
the following modification of the parameters in Eq. (6.27):

µ = 1000GeV,
MH± = 650GeV,
tan β = 20. (6.32)

This results in the complex poles

M2
1 = (15797− 0.2i)GeV2, M2

2 = (415336− 1673i)GeV2, M2
3 = (415554− 1857i)GeV2,

(6.33)
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6 Breit-Wigner approximation of the full Higgs propagators

therefore in similar masses of the heavy Higgs bosons,

Mh1 = 125.33 GeV, Mh2 = 644.47GeV, Mh3 = 644.63GeV, (6.34)

and in a large mixing between H and A, visible in the Ẑ-factors evaluated with FeynHiggs.

Ẑ '

1.01 0 0

0 1.15− 0.27i −0.47− 0.66i

0 0.49 + 0.65i 1.13− 0.28i.

 (6.35)

The quantity Ẑ is defined in Eq. (5.53) as a non-unitary matrix for the correct nor-
malisation of vertices with on-shell Higgs bosons. Here, we apply the Ẑ-factors in a
slightly different context, namely on Higgs bosons appearing as momentum-dependent
propagators connecting the incoming and outgoing state. In the scenario in Sect. 6.3.1, Ẑ
is approximately unitary,

Ẑ · Ẑ
†
(µ = 200GeV) '

 1 −0.1i 0.2i

0.1i 1 0

−0.2i 0 1

 ' 1. (6.36)

On the contrary, in this scenario with µ = 1000GeV, the product Ẑ · Ẑ
†
deviates strongly

from 1:

Ẑ · Ẑ
†
(µ = 1000GeV) '

1 0 0

0 2 −1.7i

0 1.7i 2

 . (6.37)

Hence we want to examine whether the Breit-Wigner propagators with Ẑ-factors still
yield a viable approximation of the full mixing in this scenario with large mixing.

6.3.2.1. Propagators depending on complex momenta

Due to the large difference between Mh1 and Mh2 ' Mh3 , the propagators ∆hh, ∆hH

and ∆hA are strongly suppressed aroundM2
2. Fig. 6.7(a) shows Re [∆HH ] for complex

momentum aroundM2
2. The full calculation (black) and the Breit-Wigner approximation

(red, dotted) are in good agreement although the curves do not lie directly on top of one
another as in the scenario of Sect. 6.3.1. The two heavy states h2 and h3 with a mass
difference of less than 0.2GeV and total widths of Γh2 = 2.6GeV and Γh3 = 2.9GeV are
too close to be resolved. Ẑ

2

2H∆h2 (orange) and Ẑ
2

3H∆h3 contribute with similar magnitude,
but opposite signs so that the result differs strongly from the single terms. A comparable
situation is shown in Fig. 6.7(b) for Re [∆HA].
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Figure 6.7.: Real parts of (a) the diagonal propagator ∆HH(p2) and (b) the off-diagonal
∆HA(p2) depending on the complex momentum p2 aroundM2

2 with p2/M2
2 =

0.5...1.5. Labelling as in Fig. 6.4.

6.3.2.2. Propagators depending on real momentum p2 = s

Fig. 6.8 shows the same selection of propagators as in Fig. 6.7, but in this version evaluated
at real momentum. The approximation from Eq. (6.16) leads to a good agreement between
the propagators in the full mixing calculation (black) and the Breit-Wigner formulation
(red, dotted), displayed for Re[∆HH ] in Fig. 6.8(a) and for Re[∆HA] in Fig. 6.8(b). While
the h1-part (blue) is negligible due to the much lower mass Mh1 , h2 (orange) and h3

(green) both contribute substantially because their complex poles are very close to each
other. These comparisons show that the Breit-Wigner approximation is also applicable in
scenarios of quasi-degenerate states and a strong resonance-enhanced mixing. However,
we note that the agreement between the full propagators and those with on-shell mixing
factors is slightly less accurate here than in the scenario with moderate, nearly unitary
mixing.

6.3.2.3. Comparison of the Ẑ-factor approach with effective couplings

The effective coupling approach mentioned in Sect. 5.6 makes use of the unitary, real
U-matrix instead of the Ẑ-matrix. However, U is not evaluated at the complex pole, but
at p2 = 0 (see Sect. 5.6) and it does not comprise the imaginary parts of the self-energies.
As U is applied in the effective coupling approach, we compare it to the Ẑ-factor approach
which does take the imaginary parts into account, but cannot be directly interpreted as
a unitary transformation between the states of the different bases.

Based on Ẑ- and U-factors from FeynHiggs, Fig. 6.9 displays the real parts of
∆HH and ∆HA at real momentum around Mh2 'Mh3 , calculated as a fully momentum
dependent mixing propoagator (black), using the Ẑ-matrix approach (red, dotted) defined
in Eq. (6.16), i.e. ∆Z

ij '
∑3

a=1 Ẑai ∆
BW
a Ẑaj, and the U-matrix variant (grey, dashed) in
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Figure 6.8.: Real parts of (a) the diagonal propagator ∆HH(p2) and (b) the off-diagonal
∆HA(p2) depending on the real momentum p2 = s around

√
s ' Mh2 , Mh3 .

Labelling as in Fig. 6.4.

the p2 = 0 approximation as

∆U
ij '

3∑
a=1

Uai ∆
BW
a Uaj. (6.38)

While in Fig. 6.9(a) the curve representing the Ẑ-factor method is almost identical to
the curve of the full ∆HH (with a relative deviation at the peak of 0.8%), the U-method
differs from the full result by up to 14%. In Fig. 6.9(b), not even the shape of ∆HA is
correctly approximated by the U-approach whereas the Ẑ-approach comes close to the
full ∆HA (albeit visible deviations).

From this analysis we conclude that the Ẑ-factors combined with Breit-Wigner
propagators are well-suited to describe the Higgs propagators including their mixing
as mass eigenstates also in scenarios with close-by resonances and strong mixing. This
approach captures the leading momentum dependence and adequately accounts for the
imaginary parts. In contrast, the combination of U-factors and Breit-Wigner propagators
is – despite its unitary nature – incomplete with respect to the mixing effects in the
resonance region and regarding the significance of imaginary parts.

6.4. Breit-Wigner and full propagators in cross
sections

As an application of the derivations above, we calculate a cross section with Higgs
exchange. We study the example process bb→ h,H,A→ τ+τ−, where the intermediate
Higgs bosons are once represented by the full mixing propagators ∆ij and once by Breit-
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Figure 6.9.: Comparison of the U (grey, dashed) and Ẑ (red, dotted) approximation with the
full propagators (black, solid) for real parts of the diagonal propagator ∆HH(p2)
and the off-diagonal ∆HA(p2) depending on the real momentum p2 = s around√
s 'Mh2 , Mh3 . (a) ∆HH(p2) and (b) ∆HA.

Wigner propagators multiplied by Ẑ-factors. In order to disentangle this investigation
from other higher-order effects, we restrict the Higgs-fermion-fermion vertices to the
tree-level and do not include the emission of real particles in the initial or final state, but
focus on the propagator corrections.

For the implementation of the full propagator method, we adapted, checked and
extended a model file obtained [45]. New scalars ij are introduced that correspond to
the full propagator ∆ij(p

2) and couple to the first vertex as the interaction eigenstate
i and to the second vertex as j. Those propagators are used in the FormCalc calcula-
tion supplemented by two-loop self-energies from FeynHiggs with the full momentum
dependence.

Considering only mixing between h and H at this point, we choose a CP-conserving
scenario, the so-called Mmax

h -scenario [168,169] with tan β = 50, MH± = 153GeV, but
we modify it by setting Af3 = 2504GeV. The outcome are large off-diagonal Z-factors
Ẑ12 ' 0.65 + 0.29i, Ẑ21 ' −0.64 − 0.29i and Ẑ11 ' 0.85 − 0.22i, Ẑ22 ' 0.84 − 0.23i.
The masses of the CP-even Higgs bosons are very close, Mh1 = 126.20GeV and Mh2 =
127.55GeV, while the widths obtained from the imaginary part of the complex poles are
Γh1 = 0.94GeV and Γh2 = 1.21GeV. Despite its large width of ΓA = 3.58GeV, the third
neutral Higgs boson does not overlap significantly with the other two resonances due to
the mass of Mh3 = 119.91GeV, and no mixing with the other two states occurs due to
the real parameters implying CP-conservation.

Fig. 6.10 shows the partonic cross section σ̂(bb→ h,H,A→ τ+τ−) as a function of
the centre-of-mass energy

√
ŝ, where ŝ = (pb + pb)

2 is the squared sum of the momenta
of the b- and b-quarks in the initial state. The calculation based on the full propagators
(represented by the blue, solid line) is in very good agreement with the cross section
based on the coherent sum of the h1, h2, h3 contributions (red, dashed) according to
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6 Breit-Wigner approximation of the full Higgs propagators
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Figure 6.10.: The partonic cross section σ(bb → τ+τ−) in a modified Mmax
h -scenario with

tanβ = 50 and MH± = 153GeV. The cross section is calculated with the full
mixing propagators (blue, solid), approximated by the coherent sum of Breit-
Wigner propagators times Ẑ-factors with the interference term (red, dashed)
and the incoherent sum without the interference term (grey, dot-dashed). The
individual contributions mediated by h1 (light blue), h2 (green) and h3 (purple)
are shown as dotted lines.

Eq. (6.23). Both curves lie on top of each other and contain two peaks originating from
h1 (light blue, dotted) and h2 (green, dotted). The resonances of h1 and h2 partly
overlap due to the mass difference of the order of the total widths, but the two peaks
can still be distinguished. The term of h3 peaks at a lower mass in this scenario, but for
completeness it is also shown (purple, dotted). The incoherent sum |h1|2 + |h2|2 + |h3|2
(grey, dash-dotted) from Eq. (6.24) clearly overestimates the full cross section on account
of the missing interference term that turns out to be destructive in this case. It is
accurately taken into account in the full calculation and in the coherent sum of Breit-
Wigner propagators with Ẑ-factors. Chapters 7-10 of this thesis will further deal with
interference phenomena of this kind in more detail and how to efficiently compute them.

6.5. Impact of the total width

This section addresses the impact of the precise value of the total width. So far, we have
obtained the Higgs widths from the imaginary part of the complex pole as in Eq. (5.15)
in order to consistently compare with the full propagator mixing. If the self-energies in
Σ̂eff
ii are calculated at the one-loop level, the total width extracted from a complex pole

of ∆ii is then a tree-level width. Correspondingly, partial two-loop contributions to the
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6.5 Impact of the total width

imaginary parts of the self-energies give rise to partial one-loop corrections of the decay
width. However, two-loop self-energies evaluated at p2 = 0, as they are approximated
in FeynHiggs, do not contribute to the imaginary part of the pole so that the width
determined from the imaginary part of the complex pole remains at its tree-level value.
Corrections to Higgs boson decays in the MSSM at and beyond the one-loop level are
known and turn out to be important, see e.g. Ref. [147]. Thus, the sum of the partial
decay widths into any final state X of a Higgs boson ha,

Γtot
ha =

∑
X

Γ(ha → X), (6.39)

leads to a more accurate result for its total width than from the imaginary part of the
corresponding complex pole,

ΓIm
ha = −Im[M2

a]/Mha , (6.40)

at the same order. FeynHiggs contains the partial Higgs decay widths and their sum
at the leading two-loop order. Having checked the excellent agreement between the full
propagators and the Breit-Wigner propagators with the width from the imaginary part
of the complex pole in the previous sections, now we implement the total width from
FeynHiggs into the Breit-Wigner propagators for the most precise phenomenological
prediction.

In the modified Mmax
h scenario, the higher-order corrections have a significant impact

on the Higgs decay widths so that Γtot
h1

= 2.55GeV and Γtot
h2

= 3.24GeV are much larger
than the widths obtained from the imaginary part of the complex pole. This affects the
order of magitude of the cross-section σ̂

(
bb→ τ+τ−

)
and the structure of the resonances

as can be seen in Fig. 6.11. The coherent sum of Breit-Wigner propagators including the
interference term (red, dashed) and the incoherent sum without the interference term
(grey, dash-dotted) using ΓIm from the imaginary parts of the complex poles are the same
as in Fig. 6.10. In contrast, total widths Γtot

FH obtained from FeynHiggs as the sum of
higher-order partial width are implemented into the Breit-Wigner propagators in the
cross section based on the coherent sum of all ha-contributions (black, solid) and the
incoherent sum (black, dotted).

The larger widths have a drastic effect. Not only do they suppress the cross section,
but the separate resonances are also less pronounced. Here, the incoherent sum without
the interference term again overestimates the cross-sections. In addition, it lacks the
two-peak structure. This observation emphasizes the importance of including the total
width at the highest available precision and to take the interference term into account.
One can also see that two resonances might be too close to be resolved if they are smeared
by large widths.

77



6 Breit-Wigner approximation of the full Higgs propagators
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Figure 6.11.: Effect of the total width as an input for Breit-Wigner propagators: The partonic
cross section σ̂(bb→ τ+τ−) in the same modified Mmax

h -scenario as in Fig. 6.10
with tanβ = 50 and MH+ = 153GeV. Breit-Wigner propagators with the total
widths from the imaginary part of the complex pole including (red, dashed) and
excluding (grey, dash-dotted) the interference term. Breit-Wigner propagators
with the total widths from FeynHiggs including (black, solid) and excluding
(black, dotted) the interference term.

6.6. Summary: Higgs masses and mixings in the
MSSM with complex parameters

Before moving to a detailed study of interference effects in another example process, we
want to briefly summarise aspects of the Higgs mass determination as well as the key
features and limitations of approximating the full propagators in terms of the Breit-Wigner
propagators and Ẑ-factors.

We have studied the structure of the full propagators. In the case of 3× 3 mixing
between all three neural Higgs bosons h,H,A and the mass eigenstates h1, h2, h3, each
propagator has three complex poles, which are the zeros of the determinant of the inverse
propagator matrix. We determined the masses in an iterative procedure and found good
agreement with the eigenvalues from the diagonalisation method of FeynHiggs. However,
the relation between the interaction and mass eigenstates is not unambiguous. The
different choices are physically equivalent, but not always numerically equally stable. In
this context, we propose an ordering that allows for a smooth transition between the
unmixed and the mixed case.

The Ẑ-factors are introduced to ensure correct on-shell properties of the S-matrix,
taking also mixing of the neutral Higgs bosons into account. We have derived process
independently how the full propagators can be expanded around all of their complex poles.
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6.6 Summary: Higgs masses and mixings in the complex MSSM

This approximation results in the sum of Breit-Wigner propagators of the corresponding
resonances, weighted by Ẑ-factors which encompass the transformation between the
interaction and the mass eigenstates and transitions among the Higgs bosons, evaluated
at the complex poles. We find very good agreement between the approximation in
Eq. (6.16) and the full propagators. The formalism of Breit-Wigner propagators and
on-shell Ẑ-factors has several appealing advantages in describing the Higgs propagator
mixing: Firstly, it avoids the momentum dependent evaluation of self-energies, which is
a good approximation away from thresholds, and thereby simplifies and accelerates the
calculation. Secondly, it enables the separation of the individual ha contributions and the
extraction of the pure interference term, which will be relevant for chapters 7-10. Thirdly,
the Breit-Wigner propagator turns into a δ-distribution in the limit of a vanishing width,
thus facilitating the separate calculation of the production and decay of an intermediate
Higgs particle by means of the narrow-width approximation (NWA), see Sect. 7.2. On
the other hand, the use of Ẑ-factors is not entirely restricted to external Higgs bosons
as they would appear in the NWA, but they also provide a good approximation of the
mixing properties of intermediate Higgs bosons represented by a Breit-Wigner propagator
in the on-shell and off-shell region. Fourthly, the Breit-Wigner formulation allows for
the implementation of a more precise total width by incorporating important higher-
order effects from the partial widths that are not included in the imaginary part of the
complex pole with self-energies of the same order. Hence, in the following chapters,
we will predominantly use the combination of Ẑ-factors and Breit-Wigner propagators
(or external, on-shell Higgs bosons) instead of the fully momentum dependent mixing
propagators of the interaction eigenstates.
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Chapter 7.

A generalised narrow-width
approximation for interference effects

7.1. Factorisation vs. mass degeneracies in BSM

In sections 6.4 and 6.5, we have already noticed that interference effects between two
unstable states with similar masses can be important in processes where these different
quasi-degenerate states appear as intermediate particles between a given initial and
final state. Calculating the full process with stable incoming and outgoing particles and
taking into account all possible fields in the intermediate steps allows for the inclusion
of the interference term. However, for processes involving many external legs or loop
corrections, it is often not feasible to perform the full calculation. Instead, treating
the on-shell production of an unstable particle and its subsequent decay separately is
often more convenient if the intermediate particle can kinematically become resonant.
The decay may be further decomposed into the respective steps. This approach has the
advantage to simplify a complicated process by splitting it into several subprocesses that
are computable with less effort so that higher-order corrections can be incorporated more
easily.

This method is called the “narrow-width approximation” (NWA) because treating
the resonant exchange of an unstable particle as a stable outgoing (in the production
part) or incoming (in the decay) state corresponds to assuming a vanishing total width
or – as an approximation – a total width that is much smaller than the mass. The
application of the NWA is useful since the sub-processes can often be calculated at a
higher loop order than it would be the case for the full process, and it is also beneficial
in terms of computational speed. Indeed, many Monte-Carlo generators make use of
the NWA. An important condition of this approximation, however, is the requirement
that there should be no interference of the contribution of the intermediate particle for
which the NWA is applied with any other close-by resonance, see e.g. Refs. [45, 170–172].
Hence, the applicability of the NWA in its standard version is restricted to cases without
a relevant interference term. While within the SM this condition is usually valid for
processes occuring at high-energy colliders such as the LHC or a future Linear Collider,
many models of physics beyond the SM have mass spectra where two or more states can
be nearly mass-degenerate. If the mass gap between two intermediate particles is smaller
than the sum of their total widths, the interference term between the contributions from
the two nearly mass-degenerate particles may become large.
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7.1 Factorisation vs. mass degeneracies in BSM

For instance, mass degeneracies can be encountered in the MSSM which may, in
particular, contain approximately mass-degenerate first and second generation squarks
and sleptons. In the decoupling limit [173], the MSSM predicts a SM-like light Higgs
boson, which is compatible with the signal discovered by ATLAS [5] and CMS [6] at
a mass of about Mh ' 125GeV, and two further neutral Higgs bosons and a charged
Higgs boson H±, which are significantly heavier and nearly mass-degenerate. While in
the CP-conserving case the heavy neutral Higgs bosons H and A are CP-eigenstates
and therefore do not mix with each other (see Sect. 5.1), CP-violating loop contributions
can induce sizable interference effects [1, 2, 45, 85]. The compatibility of degenerate
NMSSM Higgs masses with the observed Higgs decay rate into two photons was recently
pointed out e.g. in Ref. [174]. Another example are degenerate Higgs bosons in (non-
supersymmetric) two-Higgs doublet models, see for example Refs. [175,176]. Furthermore,
degeneracies can also occur in models of (universal) extra dimensions where the masses
at one Kaluza-Klein level are degenerate up to their SM masses and loop corrections, see
for example Refs. [177–179]. Small mass differences of sequential Z ′ and W ′ bosons are
analysed in an extension of the SM as an effective field theory in Ref. [180].

On the other hand, models with new particles on various mass levels often exhibit
long cascade decays, so that there is a particular need in these cases for an approximation
which enables the simplification of the complicated full process into smaller pieces that
can be treated more easily and more precisely. However, several cases have been identified
in the literature in which the NWA is insufficient due to sizeable interference effects, e.g.
in the context of the MSSM in Refs. [170,172,181–183] and in the context of two- and
multiple-Higgs models and in Higgsless models in Ref. [184].

In this chapter, we develop a generalised NWA (gNWA), which extends the standard
NWA (sNWA) by providing a factorisation into on-shell production and decay while
taking into account interference effects. In Ref. [45] such a method was introduced at
the tree level and applied to interference effects in the MSSM Higgs sector. We extended
this method further in Ref. [85], in particular by incorporating partial loop contributions
into an interference weight factor. A similar coupling-based estimation of an interference
between new heavy quarks at lowest order was suggested in Ref. [185]. The interference
of nearly degenerate, new vector bosons was considered in Ref. [180] in an approach of
the product of involved couplings and on-shell parton luminosities. Based on our work in
Refs. [1, 2], we formulate in this thesis a gNWA constructed from an on-shell evaluation
of the interference contributions which is applicable at the loop level, incorporating
factorisable virtual and real corrections. Furthermore, we investigate different levels of
approximations by further simplifying the on-shell matrix elements in the interference
term by interference weight factors. We also discuss additional improvements by the
incorporation of corrections that are formally of higher orders. The application to an
example process follows in Sect. 9.
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7 A generalised narrow-width approximation for interference effects

7.2. Concept and restrictions of the standard
narrow-width approximation

Before addressing the extension of the NWA with the purpose of including an interference
term, we first review the well-known and widely used standard NWA, also pointing out
the underlying conditions which limit the applicability of the NWA in its original version
and mentioning already existing extensions of it which address the limitations apart from
interferences.

7.2.1. Basic idea of the narrow-width approximation

According to the basic idea of the NWA to factorise a complicated process into the
on-shell production and the subsequent decay of a resonant particle, the following picture
in Fig. 7.1 visualises the splitting of an arbitrary process. For the generic example case
ab → cef involving an intermediate, resonant particle d with mass M and off-shell
momentum q2, this approach results in the production part ab→ cd and decay d→ ef ,
where d appears on an external line with q2 = M2.

a

b

c e

f

d

q2,M,Γ

q2 = M2 a

b

c e

f
×

d

q2 = M2

d

q2 = M2

Figure 7.1.: The resonant process ab→ cef via the exchange of d (with mass M , total width
Γ and momentum q2) is split into the production ab → cd and decay d → ef
with particle d on-shell.

The total width Γ plays a crucial role in resonant production and decay. The NWA is
based on the observation that the on-shell contribution in Eq. (6.2) is strongly enhanced
if the total width is much smaller than the mass of the particle, Γ � M . Within its
range of validity (see the discussion in the following section), the NWA provides an
approximation of the cross section for the full process in terms of the product of the
production cross section – or the previous step in a decay cascade – times the respective
branching ratio:

σab→cef ' σab→cd × BRd→ef . (7.1)

Although unstable particle fields do not correspond to asymptotic states, the usage of
Eq. (7.1) implies the treatment of the unstable particle d as an external particle on its
mass shell.

In the following, we focus on scalar propagators. Nonetheless, although the produc-
tion and decay are calculated independently, the spin of an intermediate particle can be
taken into account by means of spin correlations [186,187] giving rise to spin–density
matrices. While we do not consider the non-zero spin case explicitly, the formalism of
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7.2 Concept and restrictions of the standard narrow-width approximation

spin–density matrices should be applicable to the gNWA discussed below in the same
way as for the sNWA.

7.2.2. Conditions for the narrow-width approximation

The NWA can only be expected to hold reliably if the following prerequisites are fulfilled
(see e.g. Refs. [170,188]):
• A narrow mass peak is required in order to justify the on-shell approximation.

Otherwise off-shell effects may become large, cf. e.g. [181,189,190].
• Furthermore, the propagator needs to be separable from the matrix element. How-
ever, loop contributions involving a particle exchange between the initial and the
final state give rise to non-factorisable corrections. Hence, the application of the
NWA beyond lowest order relies on the assumption that the non-factorisable and
non-resonant contributions are sufficiently suppressed compared to the dominant
contribution where the unstable particle is on resonance. Concerning the incorpora-
tion of non-factorisable but resonant contributions from photon exchange, see e.g.
Ref. [191].
• Both sub-processes have to be kinematically allowed. For the production of the
intermediate particle, this means that the centre of mass energy

√
s must be well

above the production threshold of the intermediate particle with mass M and the
other particles in the final state of the production process, i.e.

√
s�M +mc for

the process shown in Fig. 7.1. Otherwise, threshold effects must be considered [192].
• On the other hand, the decay channel must be kinematically open and sufficiently
far above the decay threshold, i.e. M �

∑
mf , where mf are the masses of the

particles in the final state of the decay process, here me +mf . Off-shell effects can
be enhanced if intermediate thresholds are present. This is the case for instance
for the decay of a Higgs boson with a mass of about 125 GeV into four leptons.
Since for an on-shell Higgs boson of this mass this process is far below the threshold
for on-shell WW and ZZ production, it suffers from a significant phase-space
suppression. Off-shell Higgs contributions above the threshold for on-shell WW and
ZZ production are therefore numerically more important than one would expect
just from a consideration of Γ/M [193].
• As another crucial condition, interferences with other resonant or non-resonant

diagrams have to be small because the mixed term would be neglected in the NWA.
Interference effects between a narrow signal and a broad background continuum
have been recently discussed in the context of the Higgs signal and constraining its
total width, see for example Refs. [193–215]. But these kind of interference effects
are not the focus of our work. In contrast, the major part of the following chapters
is dedicated to a generalisation of the NWA for the inclusion of interference effects
between nearly mass degenerate resonances [1, 45].
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7 A generalised narrow-width approximation for interference effects

7.2.3. Factorisation of the phase space and cross section

In order to fix the notation used for the formulation of the gNWA in Sect. 7.3, we
review some kinematic relations, using Refs. [23, 216] as resources. More details on basic
kinematics used in this thesis can be found in Appendix C.

The phase space The phase space Φ is a Lorentz-invariant quantity. Its differential is
denoted by dlips (differential Lorentz-invariant phase space) or dΦn. It is characterised
by the number n of particles in the final state [23]

dΦn ≡ dlips (P ; p1, ..., pn) = (2π)4δ(4)(P −
n∑
f=1

pf )
n∏
f=1

d3pf
(2π)32Ef

, (7.2)

where pf and Ef for f = 1, ..., n are the four-momenta and energies, respectively, of the
outgoing particles, and P is the sum of the four-momenta in the initial state.

Factorisation Eq. (7.1) is based on the property of the phase space and the matrix
element to be factorisable into sub-processes. The phase space element dΦn with n
particles in the final state as in Eq. (7.2) will now be expressed as a product of the
k-particle phase space Φk with k < n and the remaining Φn−k+1 [23, 216],

dΦn = dΦk
dq2

2π
dΦn−k+1, (7.3)

where q denotes the momentum of the intermediate particle that appears in the final
state of a process with dlips(P ; p1, ..., pk−1, q) and in the initial state of dlips(q; pk, ..., pn).
Now Φk(q) can be interpreted as the production phase space P → {p1, ..., pk−1, q} and
Φn−k+1(q) as the decay phase space q → {pk, ..., pn}. The factorisation of dΦn is exact, no
approximation has been made so far because the dependence on q2 is maintained instead
of setting it on the mass shell. Next, we rewrite the amplitude with a scalar propagator
as a product of the production (P) and decay (D) part such that the Breit-Wigner
propagator ∆BW(q2) as defined in Eq. 6.2 connects the production and decay matrix
elementsMP andMP :

M =MP
1

q2 −M2 + iMΓ
MD ⇒ |M|2 = |MP |2

1

(q2 −M2)2 + (MΓ)2
|MD|2. (7.4)

Beyond the tree level, this factorisation is only possible if non-factorisable loop-contributions
are absent or negligible. Regarding the application, one can classify the kinematic cases
in two categories. On the one hand, for a scattering process a, b→ X to any final state
X (in particular a, b→ c, e, f for the example in Fig. 7.1), the flux factor is given by

Fscatter = 2λ1/2(s,m2
a,m

2
b) (7.5)
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7.2 Concept and restrictions of the standard narrow-width approximation

with the kinematic function [216]

λ(x, y, z) := x2 + y2 + z2 − 2(xy + yz + zx). (7.6)

On the other hand, for a decay process a→ X (for example a→ c, e, f), the flux factor
is determined by the mass of the decaying particle,

Fdecay = 2ma. (7.7)

Then the full cross section (or partical decay width) is given as

σ =
1

F

∫
dΦ|M|2. (7.8)

If appropriate, the sum or average over spins is implicitly understood here. For the
decomposition into production and decay, we do not only factorise the matrix elements
as in Eq. (7.4). Based on Eq. (7.3), also the phase space of the full process is factorised
into the production phase space ΦP and the decay phase space ΦD (here defined for the
example process in Fig. 7.1, but they can be generalised to other external momenta),
which depend on the momentum of the resonant particle:

dΦ = dlips(
√
s; pc, pe, pf )

dΦP = dlips(
√
s; pc, q)

dΦD = dlips(q; pe, pf ). (7.9)

Under the assumption of negligible non-factorisable loop contributions, one can then
express the cross section in (7.8) as

σ =
1

F

∫
dq2

2π

(∫
dΦP |MP |2

)
1

(q2 −M2)2 + (MΓ)2

(∫
dΦD|MD|2

)
. (7.10)

In this analytical formula of the cross section, the production and decay matrix elements
and the sub-phase spaces are separated from the Breit-Wigner propagator. However, the
full q2-dependence of the matrix elements and the phase space is retained. The off-shell
production cross section of a scattering process with particles a, b in the initial state and
the production flux factor F reads

σP (q2) =
1

F

∫
dΦP |MP (q2)|2. (7.11)

The decay rate of the unstable particle, d→ ef , with energy
√
q2 is obtained from the

integrated squared decay matrix element divided by the decay flux factor FD = 2
√
q2,

ΓD(q2) =
1

FD

∫
dΦD|MD(q2)|2. (7.12)

85



7 A generalised narrow-width approximation for interference effects

Hence one can rewrite the full cross section from Eq. (7.10) as

σ =

∫
dq2

2π
σP (q2)

2
√
q2

(q2 −M2)2 + (MΓ)2
ΓD(q2). (7.13)

In the limit where (ΓM)→ 0 the Dirac δ-distribution emerges from the Cauchy distribu-
tion,

lim
(MΓ)→0

1

(q2 −M2)2 + (MΓ)2
= δ(q2 −M2)

π

MΓ
. (7.14)

For the integration of the δ-distribution, the integral boundaries are shifted from q2
max, q

2
min,

i.e. the upper and lower bound on q2, respectively, to ±∞ because the contributions
outside the narrow resonance region are expected to be small. So this extension of
the integral should not considerably alter the result. The zero-width limit implies that
the production cross section, decay width and the factor

√
q2 are evaluated on-shell at

q2 = M2. This applies both to the matrix elements and the phase space elements. The
described approximation leads to the well-known factorisation into the production cross
section times the decay branching ratio,

σ
(MΓ)→0→

+∞∫
−∞

dq2

2π
σP (q2) 2

√
q2 δ(q2 −M2)

π

MΓ
ΓD(q2) = σP (M2) · ΓD(M2)

Γ
≡ σP · BR,

(7.15)

with the branching ratio BR = ΓD/Γ, where ΓD denotes the partial decay width into the
particles in the final state of the considered process, and Γ is the total decay width of
the unstable particle. While Eq. (7.15) has been obtained in the limit (MΓ)→ 0, it is
expected to approximate the result for non-zero Γ up to terms of O( Γ

M
).

Going beyond the approximation of Eq. (7.15) for the treatment of finite width effects,
the on-shell approximation can be applied just to the matrix elements for production
and decay if both subprocesses are kinematically allowed while keeping a finite width
in the integration over the Breit-Wigner propagator in the form of Eq. (7.13). This
is gauge invariant and motivated by the consideration that the Breit-Wigner function
is rapidly falling causing that only matrix elements close to the mass shell q2 = M2

contribute significantly. It results in a modified NWA improved for off-shell effects, see
e.g. Ref. [193,194],

σ(ofs) = σP (M2)

[∫
dq2

2π

2M

(q2 −M2)2 + (MΓ)2

]
ΓD(M2). (7.16)

86



7.3 Formulation of the generalised NWA at lowest order

7.3. Formulation of the generalised narrow-width
approximation at lowest order

If all conditions in Sect. 7.2.2 are fulfilled, the NWA is expected to work reliably up to
terms of O( Γ

M
). This section addresses how to generalise the NWA [1,45,85] such that

interference effects of nearly mass-degenerate resonances can be included at leading order.
The formulation of the gNWA will be extended to the one-loop level in Sect. 7.4

7.3.1. Cross section with interference term

Interference effects can be large if there are several resonant diagrams whose intermediate
particles (here labelled by 1 and 2) are close in mass compared to their total decay
widths:

|M1 −M2| . Γ1 + Γ2. (7.17)

In these nearly mass-degenerate cases, the Breit-Wigner functions ∆BW
1 (q2), ∆BW

2 (q2)
overlap significantly, and an integral of the form

q2
max∫

q2
min

dq2∆BW
1 (q2)∆∗BW2 (q2) · f(M, pi, ...) (7.18)

is not negligible. The boundaries q2
min, q

2
max are the lower and upper limits of the

kinematically allowed region of q2, and the function f summarises a possible dependence
on matrix elements M and momenta pi in the phase space. Such interference effects
might especially be relevant in models of new physics where an enlarged particle spectrum
leads to mass degeneracies in some parts of the parameter space.

Let h1, h2 be two resonant intermediate particles, for example two Higgs bosons,
with similar masses occurring in a process ab→ cef , i.e. ab→ chi, hi → ef (cf. Fig. 7.1
with d = h1, h2). If non-factorisable loop corrections can be neglected, the full matrix
element is given by

M =Mab→ch1

1

q2 −M2
1 + iM1Γ1

Mh1→ef +Mab→ch2

1

q2 −M2
2 + iM2Γ2

Mh2→ef . (7.19)

Here we dropped the q2-dependence of the matrix elements for an ease of notation, but
the full momentum dependence is implicitly implied. Furthermore, as mentioned above
in Sect. 7.2, we explicitly treat the case of scalar resonant particles. Spin correlations of
intermediate particles with non-zero spin can be taken into account using spin–density
matrices. The squared matrix element contains the two separate contributions of h1, h2
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7 A generalised narrow-width approximation for interference effects

and in the second line of Eq. (7.20) the interference term,

|M|2 =
|Mab→ch1|2|Mh1→ef |2

(q2 −M2
1 )2 +M2

1 Γ2
1

+
|Mab→ch2|2|Mh2→ef |2

(q2 −M2
2 )2 +M2

2 Γ2
2

+ 2Re
{ Mab→ch1M∗

ab→ch2
Mh1→efM∗

h2→ef

(q2 −M2
1 + iM1Γ1)(q2 −M2

2 − iM2Γ2)

}
. (7.20)

Thus, the full cross section from Eq. (7.13) with the matrix element from Eq. (7.20) can
be written as

σab→cef =

∫
dq2

2π

[
σab→ch1(q2) 2

√
q2 Γh1→ef (q

2)

(q2 −M2
h1

)2 + (Mh1Γh1)2
+
σab→ch2(q2) 2

√
q2 Γh2→ef (q

2)

(q2 −M2
h2

)2 + (Mh2Γh2)2

]

+

∫
dlips(s; pc, q)dq

2dlips(q; pe, pf )

2π · 2λ1/2(s,m2
a,m

2
b)

2Re
{ Mab→ch1M∗

ab→ch2
Mh1→efM∗

h2→ef

(q2 −M2
1 + iM1Γ1)(q2 −M2

2 − iM2Γ2)

}
.

(7.21)

We will use Eq. (7.21) as a starting point for approximations of the full cross section.
The first two terms can again be approximated by the NWA improved for off-shell effects
by considering a finite width in the propagator according to Eq. (7.16), or by the usual
narrow-width approximation in the limit of a vanishing width from Eq. (7.15) as σ × BR.
The interference term still consists of an integral over the q2-dependent matrix elements,
the product of Breit-Wigner propagators and the phase space.

7.3.2. On-shell matrix elements

While the interference term in Eq. (7.21) depends on the momentum q2 via the Breit-
Wigner propagators and the matrix elements of the production and decay part, we now
propose an approximation that simplifies the evaluation of the matrix elements of the
sub-processes, but encompasses the momentum dependence of ∆BW(q2). Our approach
is to evaluate the production (P) and decay (D) matrix elements

Pi(q2) ≡Mab→chi(q
2), Di(q2) ≡Mhi→ef (q

2) (7.22)

on the mass shell of the intermediate particle hi [1,85]. This is motivated by the assump-
tion of a narrow resonance region [Mhi − Γhi ,Mhi + Γhi ] so that off-shell contributions
of the matrix elements in the integral are suppressed by the non-resonant tail of the
Breit-Wigner propagator if P and D vary only mildly1 with q2. Then the interference

1We refer here to partonic cross sections. For hadronic cross sections, the folding with parton density
functions (pdfs), which have a pronounced q2-dependence, needs to be taken into account.
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7.3 Formulation of the generalised NWA at lowest order

term from the last line of Eq. (7.21) is approximated by

σint =

∫
dΦPdq

2dΦD

2πF
2Re

P1(q2)P∗2 (q2)D1(q2)D∗2(q2)

(q2 −M2
1 + iM1Γ1)(q2 −M2

2 − iM2Γ2)
(7.23)

=
2

F
Re
∫
dq2

2π
∆BW

1 (q2)∆∗BW2 (q2)

[∫
dΦP (q2)P1(q2)P∗2 (q2)

] [∫
dΦD(q2)D1(q2)D∗2(q2)

]
' 2

F
Re
∫
dq2

2π
∆BW

1 (q2)∆∗BW2 (q2)

[∫
dΦP (q2)P1(M2

1 )P∗2 (M2
2 )

]
·
[∫

dΦD(q2)D1(M2
1 )D∗2(M2

2 )

]
. (7.24)

Eq. (7.24) represents our master formula for the interference contribution. At this stage,
we have only evaluated the matrix elements on the mass shell of the particular Higgs
boson by setting q2 = M2

hi
(this is also important for ensuring the gauge invariance

of the considered contributions). So the on-shell matrix elements can be taken out of
the q2-integral. But the dependence of the matrix elements on further invariants and
momenta is kept. For 2-body decays, it is possible to carry out the phase space integration
without referring to the specific form of the matrix elements. In general, however, the
matrix elements are functions of the phase space integration variables.

The approximation in Eq. (7.24) is a simplification of the full expression in Eq. (7.23)
since the integrand of the q2-integral is simplified. We will use Eq. (7.24) in the numerical
calculation of an example process in Sect. 9.

We will furthermore investigate additional approximations of the integral structure
in Eq. (7.24), which would simplify the application of the gNWA. This issue is discussed
at the tree level in the following section.

7.3.3. On-shell phase space and interference weight factors at
lowest order

The following discussion, which focuses on the tree-level case, concerns an optional
technical simplification of the master formula in Eq. (7.24). It will be numerically applied
in Fig. 9.4 below and extended to the 1-loop level in Sect. 9.3.

As a possible further simplification on top of the on-shell approximation for matrix
elements, one can also evaluate the production and decay phase spaces on-shell. This is
based on the same argument as for the on-shell evaluation of the matrix elements because
off-shell phase space elements are multiplied with the non-resonant tail of Breit-Wigner
functions. Now the q2-independent matrix elements and phase space integrals can be
taken out of the q2-integral,

σint '
2

F
Re
{[∫

dΦPP1(M2
1 )P∗2 (M2

2 )

] [∫
dΦDD1(M2

1 )D∗2(M2
2 )

] ∫
dq2

2π
∆BW

1 (q2)∆∗BW2 (q2)

}
.

(7.25)

The choice at which mass, M1 or M2, to evaluate the production and decay phase space
regions is not unique. We thus introduce a weighting factor between the two possible
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7 A generalised narrow-width approximation for interference effects

options, as an ansatz based on the individual contributions to the production cross
sections and branching ratios:

wi :=
σPi BRi

σP1 BR1 + σP2 BR2

. (7.26)

Then we define the on-shell phase space regions as the weighted sum of both phase space
factors, for the production and decay subprocesses each,

dΦP/D := w1 dΦP/D(q2 = M2
1 ) + w2 dΦP/D(q2 = M2

2 ). (7.27)

In Eq. (7.25), a universal integral over the Breit-Wigner propagators emerges,

I :=

q2
max∫

q2
min

dq2

2π
∆BW

1 (q2) ∆∗BW2 (q2), (7.28)

which depends on the masses and widths of the interfering particles. Process-dependent
information affects the integration boundaries q2

min, q
2
max, but as in the sNWA, only a

mild dependence on the exact boundaries is expected because the dominant contribution
stems from the resonance region where both Breit-Wigner functions have large values.
The integral is analytically solvable,

I =

arctan
[

Γ1M1

M2
1−q2

]
+ arctan

[
Γ2M2

M2
2−q2

]
+ i

2

(
ln
[
Γ2

1M
2
1 +

(
M2

1 − q2
)2]− ln

[
Γ2

2M
2
2 +

(
M2

2 − q2
)2])

2πi
(
M2

1 −M2
2 − i(M1Γ1 +M2Γ2)

)

q2max

q2min

. (7.29)

In the limit of equal masses and widths, M = M1 = M2 and Γ = Γ1 = Γ2, the product of
Breit-Wigner propagators becomes the absolute square, and the integral is reduced to

I(M,Γ) =

q2
max∫

q2
min

dq2 1

(q2 −M2)2 + (MΓ)2
=

[
− 1

MΓ
arctan

[
M2 − q2

MΓ

]]q2
max

q2
min

. (7.30)

This absolute square of a single Breit-Wigner function is also present in the usual NWA in
Eq. (7.14), and for vanishing Γ it can be approximated by a δ-distribution. Here, however,
we consider the more general case and allow for different masses and widths from the two
resonant propagators. We evaluate only the matrix elements and differential phase space
on-shell, but we do not perform a zero-width approximation. This approach is analogous
to the finite-narrow-width approximation without the interference term in Eq. (7.16).

Under the additional assumption of equal masses, the interference part can be
approximated in terms of cross sections, branching ratios and couplings in order to avoid
the explicit calculation of the product of unsquared amplitudes and their conjugates.
This will also avoid the phase space integrals in the interference term as in Eq. (7.25).
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7.3 Formulation of the generalised NWA at lowest order

For this purpose, each matrix element is written as the coupling of the particular
production or decay process, CPi or CDi , times the helicity part p(M2

i ) or d(M2
i ),

respectively,

Pi(M2
i ) = CPi p(M

2
i ), Di(M2

i ) = CDi d(M2
i ). (7.31)

The on-shell calculation of helicity matrix elements (without making use of sum rules for
squared matrix elements) is demonstrated in Sect. 9.1.2 where also left- and right-handed
couplings are distinguished. Here we use the schematic notation of Eq. (7.31), but it
could directly be replaced by the L/R-sum as in Eq. (9.14) below.

If we then make the additional assumption M1 'M2, the helicity matrix elements
coincide, p(M2

1 ) ' p(M2
2 ), d(M2

1 ) ' d(M2
2 ). As a consequence, the matrix elements differ

just by fractions of their couplings,

P2(M2
2 ) ' CP2

CP1

P1(M2
1 ), D2(M2

2 ) ' CD2

CD1

D1(M2
1 ). (7.32)

This enables us to replace the products of an amplitude involving the resonant particle 1
with a conjugate amplitude of resonant particle 2 by absolute squares of amplitudes as
follows, where i, j ∈ {1, 2}, i 6= j, and no summation over indices is implied:

σint
7.25' 2Re

{[
1

F

∫
dΦPP1P∗2

] [
1

2Mi

∫
dΦDD1D∗2

]
2Mi

∫
dq2

2π
∆BW

1 (q2)∆∗BW2 (q2)

}
(7.33)

7.31' 2Re

{[
1

F

∫
dΦP |Pi|2

C∗Pj
C∗Pi

][
1

2Mi

∫
dΦD|Di|2

C∗Dj
C∗Di

]
2Mi

∫
dq2

2π
∆BW

1 (q2)∆∗BW2 (q2)

}
(7.34)

7.11,7.12
= σPi ΓDi · 2Mi · 2Re

{
C∗PjC

∗
Dj

C∗PiC
∗
Di

∫
dq2

2π
∆BW

1 (q2)∆∗BW2 (q2)

}
(7.35)

= σPi BRi · 2MiΓi · 2Re {xi · I} . (7.36)

In the last step, we divided and multiplied by the total width Γi in order to obtain the
branching ratio BRi =

ΓDi
Γi

. The universal integral I over the overlapping Breit-Wigner
propagators is given in Eq. (7.28). Furthermore, we defined a scaling factor as the ratio
of couplings [45,85,185],

xi :=
C∗PjC

∗
Dj

C∗PiC
∗
Di

=
CPiC

∗
Pj
CDiC

∗
Dj

|CPi |2|CDi |2
. (7.37)

Using Eq. (7.36) and the scaling factor xi with i = 1, j = 2 or vice versa allows us to
express σint alternatively in terms of the cross section, branching ratio, mass and width
of either of the resonant particle 1 or 2. Since no summation over i or j is implied in
Eq. (7.36), both contributions are accounted for by the weighting factor wi ∈ [0, 1] from
Eq. (7.26).
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7 A generalised narrow-width approximation for interference effects

In the next step, we summarise the components of σint apart from σPi and BRi,
which also occur in the usual NWA, by defining an interference weight factor

Ri := 2MiΓiwi · 2Re {xiI} . (7.38)

Hence, in this approximation of on-shell matrix elements and production and decay phase
spaces with the additional condition of equal masses, the interference contribution can
be written as the weighted sum

σint ' σP1 BR1 ·R1 + σP2 BR2 ·R2, (7.39)

or in terms of only one of the resonant particles,

σint ' σPi BRi · 2R̃i, (7.40)

R̃i := 2MiΓi · Re {xiI} ≡
Ri

2wi
. (7.41)

Finally, we are able to express the cross section of the complete process in this R-factor
approximation, comprising the exchange of the resonant particles 1 and 2 as well as their
interference, in the following compact form

σ ' σP1 BR1 · (1 +R1) + σP2 BR2 · (1 +R2) (7.42)

' σPi BRi · (1 + 2R̃i) + σPj BRj (7.43)

Furthermore, it is possible to replace the term σi BRi in the two separate processes
without the interference term by the finite-width integral from Eq. (7.16).

7.3.4. Discussion of the steps of approximations

Starting from the master formula in Eq. (7.24), we presented in the previous sections two
levels of approximations for the interference term with two resonant particles. The first
approximation in Sect. 7.3.2 represents our main result. It relies only on the on-shell
evaluation of the matrix elements, justified by a narrow resonance region, but no further
assumptions (beyond those already used in the sNWA) are implied. Different masses
and finite widths are taken into account. This version requires the explicit calculation
of unsquared on-shell amplitudes, preventing the use of e.g. convenient spinor trace
rules. Furthermore, the phase space integration depends on q2 so that the universal,
process-independent Breit-Wigner integral I from Eq. (7.28) does not appear here.

The second approximation in Sect. 7.3.3 has been formulated only at tree level so
far. It is based on the additional approximation, motivated by the same argument as for
the matrix elements, of setting the differential Lorentz- invariant phase spaces on-shell at
either mass, scaled by a weighting factor. This simplifies the q2-integration because only
the universal integral I is left. Furthermore, it avoids the unusual calculation of on-shell
amplitudes in an explicit representation (see Sect. 9.1.2) by expressing the interference
part as an interference weight factor R in terms of cross sections, branching ratios, masses
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7.4 Formulation of the generalised NWA at higher order

and widths, which are already needed in the simple NWA, in combination with the
universal integral I and a scaling factor x which consists of the process-specific couplings.
Yet, this approximation holds only for equal masses. As discussed in the context of
Eq. (7.18), the interference term is largest if the Breit-Wigner shapes overlap significantly
due to the relation ∆M . Γ1 + Γ2. Nevertheless, the masses are not necessarily equal
in the interference region. Instead, the overlap criterion in Eq. (7.17) can as well be
satisfied if one of the widths is relatively large. In this respect, the equal-mass condition
is more restrictive than the overlap criterion. However, the equal-mass constraint is just
applied on the matrix elements and phase space, whereas different masses and widths are
distinguished in the Breit-Wigner integral. The R-factor method is technically easier to
handle because the constituents of R can be obtained by standard routines in program
packages such as FormCalc [94,119–122] and FeynHiggs [67,146,149,150] that we use
in the numerical computation. For one example process, this is done in Sect. 9. An
extension of the generalised narrow-width approximation to the 1-loop level follows in
the next section.

7.4. Formulation of the generalised narrow-width
approximation at higher order

In our formulation of the gNWA at higher order, we will start with the method of on-shell
matrix elements in Sect. 7.4.1 and turn to the R-factor approximation in Sect. 7.4.2. At
the 1-loop level we write the product of the production cross-section times partial decay
width in the standard NWA as

σP · BR 7−→
σ1
PΓ0

D + σ0
PΓ1

D

Γtot
, (7.44)

where the total width is obtained from FeynHiggs [67, 146, 149, 150] incorporating
corrections up to the 2-loop level as in the evaluation of the branching ratio and in
the Breit-Wigner propagator. While restricting the numerator of Eq. (7.44) formally to
one-loop order to enable a consistent comparison with the full process, at the end (in
Sect. 9.4.3) all constituents of the NWA will be used at the highest available precision, i.e.
σbest
P · BRbest for the most advanced prediction with the branching ratio obtained from

FeynHiggs.

7.4.1. On-shell matrix elements at 1-loop order

In analogy to the procedure in Sect. 7.3.2 at the tree level, on-shell matrix elements are
used here in the 1-loop expansion. Special attention must be paid to the cancellation of
infrared (IR) divergences from virtual photons (or gluons) in 1-loop matrix elements and
real photon (gluon) emission off charged external legs. In preparation for the example
process χ̃0

4 → χ̃0
1 h/H → χ̃0

1 τ
+τ− (see Sect. 9.1), we focus on IR-divergences from photons

in loops of the decay part and soft final state photon radiation.
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7 A generalised narrow-width approximation for interference effects

The aim is to approximate only the 1-loop contribution, but to keep the full
momentum dependent expression at the Born level withM0

i =M0
i (q

2),

|M0|2 = |M0
h|2 + |M0

H |2 + 2Re
[
M0

hM0∗
H

]
. (7.45)

In contrast, the 1-loop matrix elements are factorised into the on-shell production and
decay parts times the momentum dependent Breit-Wigner propagator ∆BW

i ≡ ∆BW
i (q2).

The squared matrix elements are expanded up to the 1-loop order. Since the emission of
soft real photons is proportional to the Born contribution, the virtual contribution is
supplemented by the absolute value squared of the tree-level matrix element, multiplied
by the QED-factor δSB of soft bremsstrahlung [21,217],

2Re
[
M0M1∗]+ δSB|M0|2 ' 2Re

[(
P1
hD0

h + P0
hD1

h + δSBP0
hD0

h

)
P0∗
h D0∗

h · |∆BW
h |2

]
+ 2Re

[(
P1
HD0

H + P0
HD1

H + δSBP0
HD0

H

)
P0∗
H D0∗

H · |∆BW
H |2

]
+ 2Re

[{(
P1
hD0

h + P0
hD1

h

)
P0∗
H D0∗

H

+ P0
hD0

h

(
P1∗
H D0∗

H + P0∗
H D1∗

H

)
+ δSBP0

hD0
hP0∗

H D0∗
H

}
·∆BW

h ∆BW∗
H

]
. (7.46)

The first line of Eq. (7.46) represents the pure contribution from h, factorised into
production and decay, the second line accordingly for H. The third and fourth lines
constitute the 1-loop and bremsstrahlung interference term as the product of h- and
H-matrix elements and Breit-Wigner propagators. For a consistent comparison with the
full 1-loop result, each term is restricted to 1-loop corrections in only one of the matrix
elements.

The 1-loop prediction of the full process in the approximation of on-shell matrix
elements consists — besides the Born cross section without an approximation2 — of
the squared contribution of h and H and the interference term σint1

M at the strict 1-loop
level3,

σ1
M = σ0

full +
σ1
Ph

Γ0
Dh

+ σ0
Ph

Γ1
Dh

Γtot
h

+
σ1
PH

Γ0
DH

+ σ0
PH

Γ1
DH

Γtot
H

+ σint1
M , (7.47)

σint1
M =

2

F
Re
{∫

dq2

2π
∆BW
h (q2)∆∗BWH (q2)([∫

dΦP (q2)(P1
hP0∗

H + P0
hP1∗

H )

] [∫
dΦD(q2)D0

hD0∗
H

]
+

[∫
dΦP (q2)P0

hP0∗
H

] [∫
dΦD(q2)(D1

hD0∗
H +D0

hD1∗
H + δSBD0

hD0∗
H )

])}
.

(7.48)

2If the full Born cross section cannot be calculated, this term can be replaced by the gNWA at the
Born level.

3With strict 1-loop we refer to the expansion of the products of matrix elements whereas 2-loop Higgs
masses, total widths and wave function renormalisation factors are employed.
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7.4 Formulation of the generalised NWA at higher order

For the prediction with the most precise constituents, we use 2-loop branching ratios,
BRbest

i . We include also the products of 1-loop matrix elements. Their contribution to
the interference term is denoted by σint+

M ,

σint+
M =

2

F
Re
{∫

dq2

2π
∆BW
h (q2)∆∗BWH (q2)

·
[∫

dΦP (q2)(P1
hP0∗

H + P0
hP1∗

H )

] [∫
dΦD(q2)(D1

hD0∗
H +D0

hD1∗
H + δSBD0

hD0∗
H )

]}
.

(7.49)

The approximation of the whole process based on on-shell matrix elements and incor-
porating higher-order corrections wherever possible is denoted by σbestM , which reads
then

σbestM = σ0
full +

∑
i=h,H

(
σbestPi

BRbest
i − σ0

Pi
BR0

i

)
+ σint1

M + σint+
M . (7.50)

The best production cross section σbestPi
and branching ratios BRbest

i mean the sum of
the tree level, strict 1-loop and all available higher-order contribution to the respective
quantity. Therefore, the products of tree level production cross sections and branching
ratios are subtracted because their unfactorised counterparts are already contained in
the full tree level term σ0

full. If a more precise result of the production cross sections is
available, it can be used instead of the explicit 1-loop calculation that was performed in
our example process.

7.4.1.1. IR-finiteness of the factorised matrix elements

On-shell evaluation The UV-divergences of the virtual corrections are cancelled by
the same counterterms as in the full process at 1-loop order. Although it would be
technically possible in most processes to compute the full bremsstrahlung term without
the NWA, i.e. δSB |M0

full|2, the IR-divergences from the on-shell decays need to be exactly
cancelled by those from the real photon emission. But the IR-singularities in the sum of
the factorised (on-shell) virtual corrections and the momentum-dependent real ones would
not match each other. Consequently, the tree level matrix elements are also factorised, and
the IR-divergent parts of the 1-loop decay matrix elements D1

h(M
2
h ,M

2
),D1

H(M2
H ,M

2
)

and the soft QED-factor δSB(M
2
) have to be calculated at the same mass M = Mh or

MH . The LO matrix elements are evaluated at their mass-shell, i.e. D0
i (M

2
hi

). The NLO
matrix elements are split into the part containing loop integrals on the one hand and the
helicity matrix elements on the other hand. While the individual Higgs masses can be
inserted into the finite helicity matrix elements (see Sect. 9.1.2 ), the loop integrals have
to be evaluated at the same mass M2 as in δSB to preserve the IR-cancellations. Hence,
a choice must be made whether to define M = Mh or MH . We evaluate the numerical
difference in Sect. 9.4.2.

The production matrix elements are completely evaluated on their respective mass-
shells, P0

i (M2
hi

) and P1
i (M2

hi
). This is possible because the initial state in this example
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7 A generalised narrow-width approximation for interference effects

contains only neutral particles. But the calculation can be directly generalised to charged
initial states according to the procedure described for the decay matrix elements. The
IR-singularities in the product of initial and final state radiation are then cancelled by
those from a virtual photon connecting charged legs of the initial and final state. Such
non-factorisable contributions can be treated in a pole approximation in analogy to
the double-pole approximation (DPA) that has been used for instance for the process
e+e− → W+W− → 4 leptons, see Ref. [218]. An alternative approach for the treatment
of IR-singularities is formulated in Refs. [164,191]. There, the singular parts from the
real photon contribution are extracted, and the DPA is only applied for those terms
which exactly match the singularities from the virtual photons. In our calculation, we do
not split up the real corrections in this way, but employ instead the procedure described
above. We discuss a possibility of splitting the diagrams with virtual photons into an
IR-singular and a finite subgroup in Sect. 7.4.1.2.

Cancellation of IR-divergences According to the Kinoshita-Lee-Nauenberg (KLN)
theorem [95, 96], the IR-divergence from a virtual photon is cancelled by the emission of
a real photon off a charged particle from the initial or final state, i.e., in our example
process as soft bremsstrahlung in the final state of a Higgs decay. We will derive the
IR-finiteness of the on-shell matrix elements in analogy to the cancellation of the IR
divergencies for the full 3-body decay. Writing the momentum-dependent 3-body matrix
elements with the resonant particle either hi = h or H as the sum of the tree level (M0

hi
)

and virtual (Mv
hi
) contributions,

Mhi(q
2) =M0

hi
(q2) +Mv

hi
(q2), (7.51)

and adding to the squared matrix element the corresponding contribution from real soft
photon (MBr

hi
) radiation, we find

|Mh +MH |2 + |MBr
h +MBr

H |2 =
∑

hi=h,H

(
|Mhi |2 + |MBr

hi
|2
)

+ 2Re
[
MhM∗

H +MBr
h MBr∗

H

]
. (7.52)

Because the complete sum in Eq. (7.52) and the individual h- and H-terms are IR-
finite, the interference term must be IR-finite by itself. With the proportionality of the
bremsstrahlung contribution to the tree level term,

MBr
h (q2)MBr∗

H (q2) = δSB(q2)M0
h(q

2)M0∗
H (q2), (7.53)

and keeping only the terms of O(α) relative to the lowest order, the interference term
Intα(q2) results in

Intα(q2) = 2Re
[
Mh(q

2)M∗
H(q2)

∣∣
α

+MBr
h (q2)MBr∗

H (q2)
]

(7.54)
= 2Re

[
Mv

h(q
2)M0∗

H (q2) +M0
h(q

2)Mv∗
H (q2) + δSB(q2)M0

h(q
2)M0∗

H (q2)
]
. (7.55)
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7.4 Formulation of the generalised NWA at higher order

As described above, the on-shell evaluation is performed at the individual mass Mhi in
all production and tree level matrix elements and the helicity elements, whereas the soft
photon factor δSB and the 1-loop form factors of the decay are evaluated at the same
mass M in the on-shell interference term Intαos of O(α) relative to the lowest order,

Intαos = 2Re
[
Mv

h(M
2
h ,M

2
)M0∗

H (M2
H) +M0

h(M
2
h)Mv∗

H (M2
H ,M

2
)

+δSB(M
2
)M0

h(M
2
h)M0∗

H (M2
H)
]

(7.56)

= 2Re
[{(
Pvh(M2

h)D0
h(M

2
h) + P0

h(M2
h)Dvh(M2

h ,M
2
)
)
· P0∗

H (M2
H)D0∗

H (M2
H)

+P0
h(M2

h)D0
h(M

2
h) ·

(
Pv∗H (M2

H)D0∗
H (M2

H) + P0∗
H (M2

H)Dv∗H (M2
H ,M

2
)
)

+δSB(M
2
)P0

h(M2
h)D0

h(M
2
h)P0∗

H (M2
H)D0∗

H (M2
H)
}

∆h(q
2)∆∗H(q2)

]
. (7.57)

Since the virtual production matrix elements are IR-finite in our example process, we
can drop the first term in each of the brackets in the first and second line of Eq. (7.57)
for the discussion of IR-singularities, which are contained in Intαos|IR,

Intαos|IR = 2Re

[
P0

h(M2
h)P0∗

H (M2
H) ·∆h(q2)∆∗H(q2)·(

Dvh(M2
h ,M

2
)D0∗

H (M2
H) +D0

h(M
2
h)Dv∗H (M2

H ,M
2
) + δSB(M

2
)D0

h(M
2
h)D0∗

H (M2
H)
)]
.

(7.58)

Moreover, the M2
hi
-dependent helicity matrix elements dhi(M2

hi
) from Sect. (9.1.2) can

be factored out by Dhi = Chidhi so that the IR-singularities from Intαos|IR can be further
extracted:

Intαos|IR = 2Re
[
P0
h(M2

h)P0∗
H (M2

H) ·∆h(q
2)∆∗H(q2) · dh(M2

h) d∗H(M2
H)(

Cv
h(M

2
)C0∗

H + C0
hC

v∗
H (M

2
) + δSB(M

2
)C0

hC
0∗
H

)]
. (7.59)

Compared to Eq. (7.55) which can also be factorised into q2-dependent form factors
and helicity matrix elements, the structure of the IR-singularities is the same. In
Eq. (7.59), all of those contributions are just evaluated at M2 instead of q2. Hence
the cancellation works analogously so that Eq. (7.56) is an IR-finite formulation of the
factorised interference term. Because the Ẑ-factors can be factored out in the same way
for the on-shell approximation as for the full matrix elements, their inclusion preserves
the cancellations of IR-divergences.

7.4.1.2. Separate calculation of photon diagrams

As an alternative to the method described above, it is possible to reduce the number of
diagrams whose loop integrals need to be evaluated at the common mass M instead of
their on-shell mass Mi by splitting the 1-loop decay matrix elements into an IR-finite
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7 A generalised narrow-width approximation for interference effects

and an IR-divergent part,

D1
i = D1,noγ

i +D1,γ
i . (7.60)

Both subgroups of diagrams are rendered UV-finite by the corresponding counterterms.
Since the diagrams without any photon are already IR-finite, their loop integrals can
safely be calculated on-shell, D1,noγ

i (M2
hi

). Hence, only the loop-integrals of the photon
contribution need to be evaluated at a fixed mass M , resulting in D1,γ

i (M2
hi
,M

2
) and

δSB(M
2
).

If the fixed Higgs mass were inserted into both the loop integrals and the helicity
matrix elements, the IR-cancellation would work in the same way as for the unfactorised
process, just with the special choice of q2 = M

2. In our approach, the helicity matrix
elements are determined at the specific masses Mhi as it is demonstrated in Eqs. (9.26)
and (9.36). Furthermore, those mass values are equal in the matrix elements at lowest and
higher orders as loop-corrected masses are used also at the improved Born level. Because
the Mhi-dependent helicity matrix elements can be factored out, the IR-singularities
cancel in the decay contribution to the interference term of O(α) relative to the lowest
order, with D0

i at M2
hi
,

(DhD∗H)α = D1,γ
h (M2

h ,M
2
)D0∗

H +D0
hD

1,γ∗
H (M2

H ,M
2
) + δSB(M

2
)D0

hD0∗
H . (7.61)

On the one hand, this approach requires the separate calculation of purely photonic and
non-photonic contributions. On the other hand, it enables the on-shell evaluation of
IR-finite integrals and is thus closer to the full result. However, in case of a virtual photino
contribution one needs to be careful not to break supersymmetry by treating the photon
differently than its superpartner. Thus, the possibility of such a separate treatment of
the photon diagrams, whose numerical impact is small in the studied example process,
should be considered in view of the investigated model and its particle content.

7.4.2. Interference weight factors at higher order

In the previous section, we derived how to include virtual and real contributions in the
product of factorised matrix elements in a UV- and IR-finite way. However, special
attention is needed to ensure the correct treatment of the on-shell matrix elements of the
interference contribution.

7.4.2.1. Consistent interference weight factors at 1-loop order

We now discuss additional approximations with which the R-factor method introduced in
Sect. 7.3.3 can be extended beyond the tree level. We develop a method that facilitates
an approximation of the interference term based on higher-order cross sections and decay
widths, but only tree level couplings. This technically simpler treatment comes at the
price of the further assumption, as in the tree level version of the interference weight
factor, that both Higgs masses be equal. Thus, the method presented in this section is
an optional, additional approximation with respect to Eq. (7.46).
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7.4 Formulation of the generalised NWA at higher order

Under the assumption of equal masses, the product of unsquared matrix elements
for the production and decay of h and H can be re-expressed at the tree level in terms
of either h or H with the help of Eq. (7.37). Hence, one can choose to keep the 1-loop
matrix elements and to replace only the tree level ones so that only lowest-order couplings
will be present in the x-factor. We will now apply this prescription to the third term in
Eq. (7.46) containing the 1-loop virtual corrections to the interference term Intv:

Intv = 2Re
[{(
P1
hD0

h + P0
hD1

h

)
P0∗
H D0∗

H + P0
hD0

h

(
P1∗
H D0∗

H + P0∗
H D1∗

H

)}
∆BW
h ∆BW∗

H

]
' 2Re

[(
P1
hD0

h + P0
hD1

h

)
P0∗
h D0∗

h ·
C0∗
PH

C0∗
Ph

C0∗
DH

C0∗
Dh

·∆BW
h ∆BW∗

H

]
+ 2Re

[{
P0
HD0

H ·
C0
Ph

C0
PH

C0
Dh

Cc0
DH

(
P1∗
H D0∗

H + P0∗
H D1∗

H

)
∆BW
h ∆BW∗

H

}∗]
= 2Re

[(
P1
hP0∗

h |D0
h|2 + |P0

h|2D1
hD0∗

h

)
x0
h ·∆BW

h ∆BW∗
H

]
+ 2Re

[(
P1
HP0∗

H |D0
H |2 + |P0

H |2D1
HD0∗

H

)
x0
H ·∆BW

H ∆BW∗
h

]
. (7.62)

Hence we exploited the choice of expressing the product of h- and H-matrix elements
either in a weighted sum of both or in terms of one of them. The latter choice, as selected
in Eq. (7.62), has the advantage that the matrix elements containing loop contributions
of h and only tree level contributions of H are transformed in terms of h and vice versa.
Including the flux factor and the phase space integrals as in Eq. (7.35), adding soft
bremsstrahlung according to the last line of Eq. (7.46) and keeping in mind that

1

F

∫
dΦP2Re

[
P1
i P0∗

i

]
= σ1

Pi
,

1

2Mi

∫
dΦD

(
2Re

[
D1
iD0∗

i

]
+ δSB|D0

i |2
)

= Γ1
Di
,

(7.63)

the expressions from Eq. (7.62) lead to

σ1,R
int =

σ1
Ph

Γ0
Dh

+ σ0
Ph

Γ1
Dh

Γtot
h

R̃h +
σ1
PH

Γ0
DH

+ σ0
PH

Γ1
DH

Γtot
H

R̃H , (7.64)

where R̃i has been defined in Eq. (7.41).

7.4.2.2. Interference weight factors beyond the 1-loop level

Eq. (7.64) is meant for the consistent comparison with the full result in the strict one-loop
expansion. Using the most precise predictions of all components and the unfactorised
tree level result leads to the final prediction:

σbest
R = σ0

full +
∑
i=h,H

(
σbestPi

BRbest
i − σ0

Pi
BR0

i

)
+ σint1

R + σint+
R , (7.65)

σint1
R =

(
σ1
Ph
BR0

h + σ0
Ph
BR1

h

)
R̃h +

(
σ1
PH

BR0
H + σ0

PH
BR1

H

)
R̃H , (7.66)

σint+
R =

1

2
σ1
Ph

(
BR1

hR̃h + BR1
HR̃hH

)
+

1

2
σ1
PH

(
BR1

HR̃H + BR1
hR̃Hh

)
, (7.67)
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7 A generalised narrow-width approximation for interference effects

where σint1
R denotes the contribution to the interference term for which the product

of production cross sections and partial decay widths is restricted to the 1-loop level,
but the branching ratios are at all levels normalised to the 2-loop total width from
FeynHiggs [67,146,149,150]. In addition, σint+

R contains terms beyond the 1-loop level.
In Eq. (7.67), we introduced the generalised interference weight factors R̃ij,

R̃ij = 2MjΓjRe {xijI} , (7.68)

involving the scaling factors xij,

xij =
CPhC

∗
PH
CDhC

∗
DH

|CPi|2|CDj |2
, (7.69)

to account for the product of 1-loop production and decay matrix elements in Eq. (7.49).
For the most precise prediction, the 1-loop branching ratios in Eqs. (7.66, 7.67) can
additionally be replaced by BRbest

i − BR0
i which is beyond theM-method in Eq. (7.49).

As in Eq. (7.50) for theM-method, the products of tree level production cross section and
branching ratios have to be subtracted because their contribution is already accounted
for by σ0

full. The most precise branching ratios can be obtained from FeynHiggs [67, 146,
149,150] including full 1-loop and leading 2-loop corrections.
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Chapter 8.

Neutralino 3-body decay with
interfering Higgs bosons

Within the MSSM, we study a simple example process which features for certain parameter
choices a sizeable interference term between the contributions of two neutral Higgs
bosons. In this and the next chapter, we restrict the discussion to the MSSM with real
parameters so that only the CP-even Higgs bosons can mix and interfere among each
other. Afterwards, CP-violating mixing and interference will be the topic of Chap. 10.

8.1. Full example process χ̃0
4 → χ̃0

1 τ
+τ− via h,H at

leading order

In the following, we will consider Higgs production from the decay of the heaviest
neutralino and its subsequent decay into a pair of τ -leptons, χ̃0

4 → χ̃0
1 τ

+τ− via the
exchange of the Higgs bosons h and H, see Fig. 8.1. The focus of the chosen example
process lies on providing a test case for the method rather than on the phenomenology of
the process itself. For a comparison with the gNWA in Chap. 9, we have chosen a process
which can be calculated also at the 1-loop level without the on-shell approximation.
Furthermore, it is a useful example process because of its simple kinematics, where the
full process is a 3-body decay, which can be decomposed into two simple 2-body decays,
see Fig. 9.1.

χ̃0
4

χ̃0
1

τ+

τ−h
χ̃0

4

χ̃0
1

τ+

τ−H

Figure 8.1.: χ̃0
4 → χ̃0

1τ
+τ− with h orH as intermediate particle in the two interfering diagrams.

The decay process is treated as a 3-body decay here and will be decomposed into
two 2-body decays in Chap. 9.

Moreover, the intermediate particles are scalars. Thus, for this process the treatment
of interference effects can be trivially disentangled from any spin correlations between
production and decay. Due to the neutralinos in the initial state and in the first decay
step, soft bremsstrahlung only appears in the final state, and there is no photon exchange

101



8 Neutralino 3-body decay with interfering Higgs bosons

between the initial and final state. Restricting this test case to the MSSM with real
parameters, only the two CP-even states h,H mix due to CP-conservation, instead of
the 3 × 3 mixing of h,H,A in the complex case. We neglect non-resonant diagrams
from sleptons, which is a good approximation for the case of heavy sleptons. Slepton
contributions to neutralino 3-body decays have been analysed in Ref. [107]. As a first
step, we also neglect the exchange of an intermediate pseudoscalar A, Goldstone boson
G and Z-boson for the purpose of a pure comparison of the factorised and the full Higgs
contribution. For the most accurate prediction within the gNWA, which will be discussed
in Sect. 9.4.3, we will add the tree-level A,G- and Z-exchange, but they do not interfere
with h and H in the CP-conserving case of real parameters.

The decay width will be calculated using FeynArts-3.7 [114–118], FormCalc-7.4
[94, 119–122] and LoopTools-2.8 [94, 219], both as a 3-body decay with the full matrix
element and in the narrow-width approximation as a combination of two 2-body decays
- with and without the interference term. Precise quantities of the Higgs sector such
as masses, widths and Ẑ-factors are obtained from FeynHiggs-2.9.3. In this and the
following section, the gNWA will be applied at the tree level. The application at the loop
level has been introduced conceptually in Sect. 8.2 and will be presented numerically in
Sect. 9.4.

8.1.1. 3-body decays: leading order matrix element

In order to compare the gNWA to the unfactorised LO result, we calculate the amplitude
M2

hk
of the 3-body decay via hk = h,H. From the matrix element of the form

Mhk = iChkχ̃0
i χ̃

0
j
Chkττ ū(p4, s4)v(p3, s3)

1

q2 −M2
hk

+ iMhkΓhk
ū(p2, s2)u(p1, s1) (8.1)

we obtain the spin-averaged, squared amplitude consisting of the separate h,H contribu-
tions and the interference contribution,

|M|2 = 8(p1 · p2 +mχ̃0
1
mχ̃0

4
)(p3 · p4 −m2

τ )

(
|Chχ̃0

1χ̃
0
4
|2|Chττ |2

(q2 −m2
h)

2 +m2
hΓ

2
h

+
|CHχ̃0

1χ̃
0
4
|2|CHττ |2

(q2 −m2
H)2 +m2

HΓ2
H

+ 2Re
[
Chχ̃0

1χ̃
0
4
C∗Hχ̃0

1χ̃
0
4
ChττC

∗
Hττ ·∆BW

h (q2)∆∗BWH (q2)
])
, (8.2)

where the momenta and masses are labelled as p1 → p2, p3, p4 with m1 ≡ mχ̃0
4
,m2 ≡

mχ̃0
1
,m3 = m4 ≡ mτ . In order to calculate the decay width in one of the Gottfried-

Jackson frames [186], the products of momenta are rewritten in terms of two combined
invariant masses, here e.g. m23,m24:

p1 · p2 =
1

2
(m2

23 +m2
24)−m2

τ , p3 · p4 =
1

2

(
m2

1 +m2
2 −m2

23 −m2
24

)
,

q2 = (p1 − p2)2 = m2
1 +m2

2 −m2
23 −m2

24 . (8.3)
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8.2 Full 3-body decay at the one-loop level

This yields the partial decay width for the 3-body decay [23],

Γ =
1

(2π)3

1

32m3
χ̃0

4

∫
|M|2dm2

23dm
2
24, (8.4)

which we will use for a comparison with the gNWA.

8.2. Full 3-body decay at the one-loop level

The numerical validation of the gNWA at the next-to-leading order requires the calculation
of the example process χ̃0

4 → χ̃0
1 τ

+τ− with intermediate h and H as the full 3-body
decay including virtual and real corrections.

8.2.1. Treatment of the Higgs propagators

In principle, we could employ the full mixing Higgs propagators including the momentum
dependent self-energies to describe the Higgs exchange in our example process. However,
the purpose of this unfactorised calculation is – in addition to the phenomenological
one-loop analysis of this 3-body decay – the consistent comparison with the gNWA at
NLO where the Higgs bosons appear as external particles. Accordingly, in the NWA, the
Higgs states are normalised by Ẑ-factors. Thus it is desirable to treat the Higgs bosons in
the 3-body decay in the same way in order to disentangle the uncertainty introduced by
the factorisation from the expansion of the full mixing propagators around the complex
poles. As we showed process independently in Chapter 6, the sum of Breit-Wigner
propagators combined with Ẑ-factors provides indeed a good approximation of the full
mixing propagators. Therefore we apply the Breit-Wigner propagators parametrised
by the loop corrected masses and total widths in the 3-body decay. Even though we
use Eq. (6.16) instead of the fully momentum dependent propagators ∆ij, we refer to
the calculation of the 3-body decay as the “full” result as opposed to the factorised
one. In addition, in the three-body decay at one-loop order, the Higgs propagator with
momentum-dependent self-energies would only occur at the strict one-loop level, while
the Ẑ-factors incorporate important higher-order contributions. The Ẑ-factors are already
used for the improved Born level. The Breit-Wigner approach has the further advantage
that it allows us to implement the total Higgs widths as sums of the partial decay width
at the highest avaible order from FeynHiggs, both in the Breit-Wigner propagators of
the unfactorised process and in the branching ratio of the decay.

Technical realisation In conclusion, the use of Ẑ-factors on the internal Higgs lines
(but outside loops1) is consistent and physically meaningful. However, applying Ẑ-factors
for Higgs boson propagators appearing inside loops would destroy the cancellation of

1 In the terminology of FeynArts [114–118], a propagator can have three possible attributes: “External”
refers to an external line, “Internal” denotes an internal propagator which is not part of any loop,
and “Loop” is inside a loop [220]. (Furthermore, an external propagator can be incoming, outgoing
or undirected, but we do not need this distinction in our discussion.)
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8 Neutralino 3-body decay with interfering Higgs bosons

UV-divergences between loop diagrams and counterterms needed for the renormalisation.
In order to avoid this trouble and to allow at the same time for Ẑ-factors in lowest-order
Higgs boson propagators, we modified the Hmix.mod model file from FeynArts [114–118].
In the distributed add-on model file, the two new scalar classes S[0] and S[10] replace the
interaction eigenstates h=S[1], H=S[2], A=S[3]. The couplings C of S[0] and S[10] are
constructed as a linear combination of the couplings of S[1], S[2] and S[3] to any other
particles X [123,160]:

CS[0,{a}]X =
3∑
i=1

UaiCS[i]X , (8.5)

CS[10,{a}]X =
3∑
i=1

ẐaiCS[i]X . (8.6)

Thereby, inserting S[0] corresponds to using effective couplings, see Sect. 5.6. The original
Hmix.mod model file allows the scalar S[0] with U on all kinds of propagators whereas the
use of S[10] is restricted to external lines so that in this implementation, Ẑ-factors are only
applied to Higgs bosons in the initial or final state. However, as we derived in Eqs. (6.16)
and (6.21), Ẑ-factors encode the mixing properties of the full Higgs propagators close to
the complex poles and achieve in combination with the Breit-Wigner propagators a good
approximation of the full mixing. Fig. 6.9 highlights the importance of including relevant
imaginary parts, which are disregarded by the U-matrix. As a consequence, on internal
lines (outside loops) the scalars S[10] containing Ẑ-factors should be preferred over S[0]
comprising U-factors. Hence, we redefined the insertion of a neutral Higgs boson in the
following way:
• Inside loops, only the lowest order Higgs states h,H,A are inserted with their tree

level masses and unmixed couplings2.
• On internal lines (“intermediate”, out of loops) and on external lines, the mixed

states ha = S[10, {a}], with a = 1, 2, 3, are inserted.
This method results in Eq. (5.72) for external Higgs bosons and in Eq. (6.22), as intended.
We also apply scalars S[10] with Ẑ-factors at the lowest order so that “tree” level always
means the improved Born level in our calculations.

8.2.2. Contributing diagrams

In addition to the Born level diagrams depicted in Fig. 9.1, we now need to compute the
vertex, self-energy, box and real corrections to our example process in the unfactorised
version. Ref. [107] provides a 1-loop calculation of the decay of the next-to-lightest
neutralino χ̃0

2 into χ̃0
1 and a pair of leptons, thus a similar process, but with a dominant

contribution from an on-shell slepton, while the Higgs propagators are treated as non-

2Technically, we achieved this by allowing S[0] in loops with the class description Mass[Loop]→
MHiggstree and setting U = 1. This procedure is possible because we do not use U anywhere else
in the calculation. Otherwise we could have defined a new class of scalars in the add-on modelfile or
modified the use of the original scalars S[1|2|3].
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8.2 Full 3-body decay at the one-loop level

resonant. In the following, we focus on the diagrams contributing to resonant intermediate
Higgs bosons, as well as box-diagrams with and without Higgs bosons. The 1-loop integrals
are computed with LoopTools [94, 219].

8.2.2.1. Virtual corrections at the neutralino-Higgs vertex

Figure 8.2.: Example triangle diagrams of the 3-body decay χ̃0
4 → χ̃0

1τ
+τ− with 1-loop

corrections at the χ̃0
4χ̃

0
1Ĥe-vertex, where Ĥe denotes a Higgs boson mixed by

Ẑ-factors, Hf an internal Higgs boson (see text) and H ≡ H±. u and ũ represent
the up-type (s)quarks, χ̃0 are the neutralinos and χ̃ the charginos.

Virtual SM and MSSM particles contribute to the correction of the χ̃0
i χ̃

0
jhk-vertex. A

selection of diagrams is displayed in Fig. 8.2. We treat here the intermediate Higgs bosons
Ĥe appearing outside of the vertex loop contribution with Ẑ-factors at the connecting
vertices, while Hf denotes an internal Higgs boson within the loop without any Ẑ- or
U-factors (e, f = 1, 2, 3), as discussed above. Furthermore, H ≡ H± denotes the charged
Higgs bosons. The neutralinos are labelled by χ̃0

n, n = 1, 2, 3, 4 and the charginos by
χ̃m, m = 1, 2. The first example diagram contains up-type quarks um and a squark ũwm
of generation m = 1, 2, 3 and type w = 1, 2.

The triangle corrections appearing at the χ̃0
i χ̃

0
jhk-vertex are renormalised by the

counterterm

δC
R/L
ijk =

e

2cW sW
δc

(∗)
ijk +

(
δZe −

δsW
sW
− δcW

cW

)
C
R/L
ijk

+
1

2

4∑
l=1

(δZ
R/L
li C

R/L
ljk + δZ̄

L/R
jl C

R/L
ilk + δZhkhlC

R/L
ijk ) (8.7)

in the on-shell scheme, see Ref. [109] and references therein. In Eq. (8.7), hl = {h,H,A,G}
for l = 1, 2, 3, 4, denote the neutral Higgs and Goldstone bosons. The parameters
M1, M2, µ are related to the choice of the three electroweakinos which are renormalised
on-shell and thus define the choice for the on-shell renormalisation scheme for the
neutralino-chargino sector, as explained in Sect. 3.3.3. In our scenario used for the
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8 Neutralino 3-body decay with interfering Higgs bosons

numerical analysis, we identify χ̃0
1 as the most bino-like, χ̃0

3 as the most higgsino-like and
χ̃0

4 as the most wino-like state and hence renormalise these three neutralinos on-shell. By
this choice of an NNN scheme, we avoid large mass corrections to the remaining neutralino
and the charginos. Alternatively, χ̃0

2 instead of χ̃0
4 could be identified as the most wino-like

state because the two corresponding elements in the matrix N , which diagonalises the
neutralino mass matrix (see Sect. 3.3.3), have nearly the same magnitude. Thus, this
alternative choice would lead to a comparable sensitivity to the three parameters of this
sector and thereby also to a stable renormalisation scheme. But since χ̃0

4 is involved in
our process as an external particle, we prefer to set it on-shell. The 1-loop effect on the
2-body decay widths Γ(χ̃0

4 → χ̃0
1h/H) is shown in Fig. 9.6.

8.2.2.2. Virtual corrections at the Higgs- τ+τ− vertex and real photon
emission

Figure 8.3.: Example triangle diagrams of the 3-body decay χ̃0
4 → χ̃0

1τ
+τ− with 1-loop

corrections at the Ĥeτ
+τ−-vertex, where the particles are labelled as is Fig. 8.2.

Furthermore, the hkτ+τ−-vertex diagrams shown in Fig. 8.3 are UV-divergent, and
the last diagram is also IR-divergent due to the virtual photon. The UV-divergences are
cancelled by the counterterm, analogous to the SM, δChkτ+τ− = δCL

hkττ
ωL + δCR

hkττ
ωR,

with [21,98]

δC
L/R

hkτ+τ− = Ctree
hkτ+τ− ·

(
δZe +

1

2
δZhkhk +

1

2
δZhH

Ctree
hlττ

Ctree
hkττ

− δM2
W

2M2
W

− δsW
sW

+ s2
βδtβ

+
δmτ

mτ

+
1

2

{
δZL/R

τ + δZR/L†
τ

})
, (8.8)

where k, l = h,H and δZL/R
τ are the left-/right-handed field renormalisation constants of

the τ -lepton. The tree-level couplings Ctree
hkτ+τ− are given in Eq. (3.49). The IR-divergent

terms vanish for squared matrix elements in the combination of virtual corrections
containing a photon in the loop with real photons emitted as soft bremsstrahlung (SB)
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8.2 Full 3-body decay at the one-loop level

off one of the τ -leptons. Soft photons are defined by the energy cut-off Emax
soft . As a

prescription for the energy cut-off we use here a fraction of the mass of the decaying
particle, namely Eγ ≤ Emax

soft = 0.1mχ̃0
4
. All photons below this energy are considered as

soft so that they are described by the soft photon factor δSB multiplying the tree level
result,

ΓSB = δSB Γtree. (8.9)

We use the result for δSB of Ref. [21] implemented in FormCalc [94, 119–122]. More
details on the separation of soft and hard, collinear and non-collinear QED corrections
for this process can be found in Ref. [107].

8.2.2.3. Self-energies involving mixing of neutral bosons

Figure 8.4.: Example self-energy diagrams contributing to the 3-body decay χ̃0
4 → χ̃0

1τ
+τ−

with 1-loop corrections to the Higgs propagator which mixes with the neutral
Goldstone boson G0 and the Z-boson. As in Fig. 8.2, Ĥe denotes a Ẑ-mixed
neutral Higgs boson and Hf an internal Higgs boson (see text).

The diagrams with self-energy corrections of the intermediate Higgs boson Ĥe are
classified in two categories. On the one hand, there are the mixing contributions between
the three neutral Higgs bosons (reduced to 2×2 mixing in case of real MSSM parameters).
They are approximated by the Ẑ-factors, which were checked to accurately reproduce the
full Higgs propagator mixing close to the complex pole (see Chap. 6 and Refs. [3, 45]).
Consequently, no explicit propagator corrections with Higgs self-energies are included.
With the Ẑ-factors, the strict one-loop order is extended to take more precise mixing
effects in the Higgs sector into account. On the other hand, the Ẑ-factors do not contain
mixing with other neutral particles. Hence, the propagator corrections of a Higgs with
the neutral Goldstone boson G and the Z-boson are calculated explicitly. Some example
diagrams are shown in Fig. 8.4. However, in case of CP-conservation, the mixing between
h/H and G/Z vanishes.
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8 Neutralino 3-body decay with interfering Higgs bosons

8.2.2.4. Box diagrams

Figure 8.5.: Example box diagrams of the 3-body decay χ̃0
4 → χ̃0

1τ
+τ− (with and without

Higgs bosons), where the particles are labelled as is Fig. 8.2. Only internal Higgs
bosons Hf appear in the loop.

Finally, the χ̃0
4 cannot only decay into χ̃0

1τ
+τ− via a resonant Higgs boson3, but also

through box diagrams. Fig. 8.5 depicts some example diagrams with and without Higgs
bosons. No counterterms are necessary because the boxes are UV-finite by themselves.
The box diagrams are explicitly calculated including the full MSSM spectrum in the
loops, but, as expected, those non-resonant contributions are found to be numerically
suppressed. This is important for the comparison with the gNWA at the 1-loop level in
Sect. 9.4.1 since the boxes cannot be factorised.

8.2.3. Modified Mmax
h scenario

In order to evaluate the full process numerically, we specify a scenario. In this study, we
restrict the MSSM parameters to be real so that there is no new source of CP-violation
compared to the SM and only the two CP-even neutral Higgs bosons, h and H, mix and
interfere with each other. The aim here is not to determine the parameters which are
currently preferred by recent limits from experiments, but to provide a setting in which
interference effects between h and H become large in order to investigate the performance
of the generalised narrow-width approximation for this simple example process.

The Mmax
h scenario [168,169] is defined such that the loop corrections to the mass

Mh reach their maximum for fixed tan β, MA and MSUSY. This requires a large stop
mixing, i.e. a large off-diagonal element Xt of the stop mixing matrix in Eq. (3.14). A
small mass difference ∆M ≡MH −Mh requires a rather low value of MA, or equivalently
MH± , and a high value of tan β. On the other hand, tan β must not be chosen too large
because otherwise the bottom Yukawa coupling would be enhanced to a non-perturbative

3or a resonant slepton, but we focus on resonant Higgs bosons - for the inclusion of all particles see
Sect. 9.4.3.
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8.2 Full 3-body decay at the one-loop level

value. We modify4 the Mmax
h scenario such that Mh is not maximised, but the mass

difference ∆M is reduced by raising Xt. As one of the Higgs sector input parameters, we
choose M±

H for a later extension to CP-violating mixings instead of MA, which is more
commonly used in the MSSM with real parameters. The charged Higgs mass is scanned
over the range MH± ∈[151GeV, 155GeV]. The other parameters are defined in Tab. 8.1,
and we assume universal trilinear couplings Af = At.

M1 M2 M3 MSUSY Xt µ tβ MH±

100GeV 200GeV 800GeV 1TeV 2.5TeV 200GeV 50 (153GeV)

Table 8.1.: Parameter settings of the modified Mmax
h scenario in our numerical analysis. A

value in brackets indicates that the parameter is varied around this central value.

8.2.4. Comparison of the tree level and 1-loop result

Fig. 8.6 shows the resulting decay width of χ̃0
4 into χ̃0

1 and a τ+τ−-pair as the full 3-body
decay. As mentioned above, the Z-, A-, G- and slepton-exchange is not included in this
section, but the interference between the contributions of h and H to the 3-body decay
is taken into account. The tree-level and 1-loop results are based on the product of
Ẑ-factors and Breit-Wigner propagators with higher-order Higgs masses and total widths.
As discussed above, this is referred to as the full result that will consistently serve as a
reference for the validation of the gNWA at the 1-loop level.

The full 1-loop decay width includes the vertex corrections at the production and the
decay vertex and box contributions as well as self-energy corrections to the propagator
and bremsstrahlung off the τ -leptons in the final state. The NLO decay width (solid) is
enhanced relative to the LO result (dashed) in most of the analysed parameter interval,
up to 11%, as the plot of the ratio r = (Γloop − Γtree)/Γtree shows. However, around
MH± ' 152GeV, the 1-loop corrections vanish.

In the next chapter, we will calculate the same process using the NWA at lowest
and next-to-leading order.

4Our modification of the Mmax
h should not be confused with the “updated” Mmax

h scenario defined in
Ref. [167].
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8 Neutralino 3-body decay with interfering Higgs bosons
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Figure 8.6.: The 1→3 decay width Γ(χ̃0
4 → χ̃0

1τ
+τ−). Upper panel: Tree-level mediated by

resonant h,H including their interference (dashed) and full 1-loop result with
vertex, soft photon and propagator corrections to the resonant h,H-exchange
and, in addition, non-resonant box contributions (solid), both supplemented by
higher-order Higgs masses, total widths and Ẑ-factors. Lower panel: Relative
loop contribution r = (Γloop − Γtree)/Γtree in percent.
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Chapter 9.

Application of the generalised NWA
We validate the method for the example process from Chap. 8 by confronting the one-loop
result within the gNWA with the result of the full process at the tree and the one-loop
level. In the considered example process we study interference effects between the two
neutral CP-even MSSM Higgs bosons h and H and how they can be approximated by
the gNWA introduced in Chap. 7. Besides the validation against the full NLO result for
this process, we also incorporate contributions beyond the one-loop level into the gNWA.
The discussed cases are meant to illustrate that the proposed method is applicable to a
wide range of possible processes in different models.

9.1. Example process at lowest order in the gNWA

χ̃0
4

χ̃0
1

τ+

τ−
×

h,H h,H

Figure 9.1.: The 3-body decay χ̃0
4 → χ̃0

1τ
+τ− with h or H as intermediate particle in the

two interfering diagrams from Fig. 8.1 is decomposed into two 2-body decays
χ̃0

4 → χ̃0
1h/H and h/H → τ+τ−.

The example process of the 3-body decay χ̃0
4 → χ̃0

1 τ
+τ− with the intermediate,

resonant Higgs bosons h and H is now decomposed by means of the NWA into two
subsequent 2-body decays for the production (χ̃0

4 → χ̃0
1h/H) and the decay (h/H → τ+τ−)

of either of the two Higgs bosons, see Fig. 9.1 in comparison to Fig. 8.1. Both subprocesses
and the interference term will first be computed at the tree level. In Sects. 8.2 and 9.4,
the application of the gNWA at the loop level will follow.

9.1.1. Decomposition of the full process into 2-body decays

In this section, we calculate the 2-body decay widths of the subprocesses needed in the
NWA. The matrix element for the production of hk = h,H is

Mχ̃0
4χ̃

0
1hk

= iū2Chkχ̃0
4χ̃

0
1
u1, (9.1)

|Mχ̃0
4χ̃

0
1hk
|2 = |Chkχ̃0

4χ̃
0
1
|22(p1p2 +mχ̃0

4
mχ̃0

1
) . (9.2)
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9 Application of the generalised NWA

In the rest frame of χ̃0
4 we have p1p2 = m1E2 with

E2 =
m2

1 +m2
2 −M2

hk

2m1

. (9.3)

Then the decay width of χ̃0
4 → χ̃0

1hk for the production of hk = {h,H} equals

Γ(χ̃0
4 → χ̃0

1hk) =
|Chkχ̃0

4χ̃
0
1
|2

16πm3
χ̃0

4

(
(mχ̃0

4
+mχ̃0

1
)2 −M2

hk

)√
(m2

χ̃0
4
−m2

χ̃0
1
−M2

hk
)2 − 4m2

χ̃0
1
M2

hk
.

(9.4)

Summing over spins in the final states, the partial decay widths of h and H into a pair
of τ -leptons and the branching ratios read at tree level, improved by 2-loop Higgs masses
and total widths from FeynHiggs [67, 146,149,150],

Γ(hk → ττ) =
1

π
|Chkττ |2

[
M2
hk

4
−m2

τ

]3/2

M2
hk

, BRk =
Γ(hk → τ+τ−)

Γtot
hk

, (9.5)

where Γtot
hk

is the total width. Loop-corrections to the partial decay widths of these
subprocesses are calculated with FormCalc [94, 119–122] in Sect. 9.3.1.

9.1.2. Formalism of unsquared matrix elements in all helicity
configurations

For the calculation of the interference term according to Eq. (7.24), we need the on-shell
matrix elements of the production and decay part. Instead of evaluating absolute values
of squared, spin-averaged matrix elements by applying spinor traces, we now aim at
expressing the unsquared matrix elements explicitly in order to evaluate them on the
appropriate mass shell. Therefore, we need to represent spin wave functions in terms of
energy and mass. Following Ref. [221], a Dirac spinor with an arbitrary helicity can be
written as

u(p) =

( √
E +m χ

√
E −m ~σ · p̂ χ

)
, (9.6)

where χ is a two-component spinor. The eigenstates χ of the helicity operator ~σ · p̂ with
eigenvalues λ = ±1

2
satisfy [

1

2
~σ · p̂

]
χλ = λχλ. (9.7)
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9.1 Example process at lowest order in the gNWA

For the unit vector p̂ in the direction parametrised by the polar angle θ and azimuthal
angle φ relative to the z-axis, the two-component spinors are expressed as

χ+1/2(p̂) =

(
cos θ

2

eiφ sin θ
2

)
, χ−1/2(p̂) =

(
−e−iφ sin θ

2

cos θ
2

)
. (9.8)

For the specific choice of ~p ∝ ez we have θ = 0 and φ is arbitrary so that it can be set to
0. Thus, the 2-spinors take the simpler form

χ1/2(p̂ = ez) = e1 ≡

(
1

0

)
, χ−1/2(p̂ = ez) = e2 ≡

(
0

1

)
. (9.9)

We label the unit vectors in space as {ex, ey, ez} whereas the basis of the 2-spinors is
denoted by {e1, e2}. The two-component spinors in the opposite momentum direction
p̂ = −êz are constructed using

χ−λ(−p̂) = ξλχλ(p̂) (9.10)

from Ref. [221] with ξλ = 1 in the Jacob-Wick convention for a second particle spinor [222],
resulting in

χ+1/2(−ez) = e2, χ−1/2(−ez) = e1. (9.11)

Defining ε+ :=
√
E +m and ε− :=

√
E −m for a simpler notation, we can rewrite the

particle and antiparticle four-component spinors as

uλ(p) =

(
ε+χλ(p̂)

2λ ε−χλ(p̂)

)
=

(
ρλ

ψλ

)
, vλ(p) =

(
ε−χ−λ(p̂)

−2λ ε+χ−λ(p̂)

)
=

(
σλ

ϕλ

)
.

(9.12)

Here we introduced the nomenclature ρ/ψ for the upper/lower 2-spinor within a particle 4-
spinor u and likewise σ/ϕ for an antiparticle v. For later use, we now list the combinations
of λ = ±1

2
and p̂ = ±ez explicitly:

u+(ez) =

(
ε+e1

ε−e1

)
, u−(ez) =

(
ε+e2

−ε−e2

)
, u+(−ez) =

(
ε+e2

ε−e2

)
, u−(−ez) =

(
ε+e1

−ε−e1

)
,

v+(ez) =

(
ε−e2

−ε+e2

)
, v−(ez) =

(
ε−e1

ε+e1

)
, v+(−ez) =

(
ε−e1

−ε+e1

)
, v−(−ez) =

(
ε−e2

ε+e2

)
.

(9.13)

In the following, we will apply this formalism to Higgs production and decay within our
example process.
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9 Application of the generalised NWA

9.1.2.1. Higgs production

As illustrated in Fig. 9.1, the incoming spinor u1 (in the example case χ̃0
4) decays into u2

(χ̃0
1) and a scalar (h/H). The matrix element P of this production process is decomposed

into a right- and left-handed part,

P = ū2CRωRu1 + ū2CLωLu1, (9.14)

where CR/L are form factors. Using γ0, γ5 in the Dirac representation, and the 2-spinor
notation introduced in Eq. (9.12), we calculate the spinor chains with arbitrary helicity
of λ1, λ2 = ±1

2
,

pR := ū2ωRu1 =
1

2
(ρ∗2 − ψ∗2)(ρ1 + ψ1), (9.15)

pL := ū2ωLu1 =
1

2
(ρ∗2 + ψ∗2)(ρ1 − ψ1). (9.16)

Given the 2-body decay in the rest frame of particle 1, it follows that E1 = m1 and
consequently ε− = 0, ψ1 = 0. In order to obtain the helicity matrix elements pλ2λ1

R/L , we
insert the explicit spinors from Eq. (9.13) into the generic Eq. (9.16):

p++
R = ū2+ωRu1+ =

1

2
(ε2+ − ε2−)ε1+ e1 · e1

=
1

2

(√
E2 +m2 −

√
E2 −m2

)√
2m1,

p++
L =

1

2

(√
E2 +m2 +

√
E2 −m2

)√
2m1,

p−−R = p++
L , p−−L = p++

R ,

p+−
R/L = p−+

R/L ∝ e1 · e2 ≡ 0. (9.17)

Since the helicity matrix elements are real, their complex conjugates p∗R/L = ū1ωL/Ru2

are equal to the results in Eq. (9.17). The products of matrix elements are summed over
all helicity combinations (but no averaging is done yet), with i, j ∈ {R,L}, leading to1

Aij :=
∑

λ1,λ2=±1/2

pi · p∗j , (9.18)

ARR = A++
RR + A−−RR = 2m1E2 = m2

1 +m2
2 −M2,

ALL = A++
LL + A−−LL = ARR,

ARL = A++
RL + A−−RL = 2m1m2,

ALR = A++
LR + A−−LR = ARL, (9.19)

1These helicity matrix elements correspond to the FormCalc-HelicityMEs via Aij = 4 ·MatF(i, j).
The factor of 4 arises because the FormCalc expressions are multiplied later on by 2 for each external
fermion.
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9.1 Example process at lowest order in the gNWA

where the energy relation of a 2-body decay with m1 → {m2,M} was applied:

E2 =
m2

1 +m2
2 −M2

2m1

. (9.20)

Finally, the squared production matrix element is constructed as

PP∗ =
∑

i,j=R,L

CiC
∗
jAij

= (|CR|2 + |CL|2)(m2
1 +m2

2 −M2) + (CRC
∗
L + CLC

∗
R) 2m1m2. (9.21)

If the left- and right-handed form factors coincide (CL = CR ≡ C), Eq. (9.21) is reduced
to

(PP∗)C = 2|C|2
(
(m1 +m2)2 −M2

)
. (9.22)

However, in the interference term we need the product PhP∗H with different Higgs masses
in E2 from Eq. (9.20). This distinction leads to

Aij =
∑

λ1,λ2=±1/2

phi · pH∗j , (9.23)

ARR = ALL = m1

(
εh2+ ε

H
2+ + εh2−ε

H
2−
)
, (9.24)

ARL = ALR = m1

(
εh2+ ε

H
2+ − εh2−εH2−

)
. (9.25)

As before, we give the resulting product of matrix elements for the independent CR/L
and for simpler use in the special case of CR/L ≡ C,

PhP∗H =(Ch
RC

H∗
R + Ch

LC
H∗
L )m1

(
εh2+ ε

H
2+ + εh2−ε

H
2−
)

+ (Ch
RC

H∗
L + Ch

LC
H∗
R )m1

(
εh2+ ε

H
2+ − εh2−εH2−

)
(9.26)

C−→4ChCH∗m1ε
h
2+ε

H
2+ = 2ChCH∗

√
(m1 +m2)2 −M2

h

√
(m1 +m2)2 −M2

H . (9.27)

Eq. (9.26) shows that the method of on-shell matrix elements enables us to distinguish
between different masses of the intermediate particles, in this example Mh and MH .

9.1.2.2. Higgs decay

In the decay of a Higgs boson into a pair of fermions, the representation of antiparticle
spinors from Eq. (9.13) is also needed. Furthermore, the fermions are generated back to
back in the rest frame of the decaying Higgs boson. So if we align the momentum direction
of the particle spinor u4 with the z-axis, p̂4 = ez, the momentum of the antiparticle
spinor v3 points into the direction of p̂3 = −ez.
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9 Application of the generalised NWA

Analogously to Eq. (9.14), the decay matrix element is in general composed of a left-
and right-handed part,

D = ū4CRωRv3 + ū4CLωLv3, (9.28)

dR := ū4(ez)ωRv3(−ez) =
1

2
(ρ∗4 − ψ∗4)(σ3 + ϕ3), (9.29)

dL := ū4(ez)ωRv3(−ez) =
1

2
(ρ∗4 + ψ∗4)(σ3 − ϕ3). (9.30)

With the mass M of the decaying Higgs boson, the fermion masses m3 = m4 ≡ m and
the resulting energies E3 = E4 ≡ M

2
, the spinor chains dR, dL are now calculated for all

helicity configurations of λ3, λ4 = ±1
2
,

d++
R = d−−L =

√
E2 −m2 − E,

d++
L = d−−R =

√
E2 −m2 + E, d+−

R/L = d−+
R/L = 0. (9.31)

Summing over all helicity combinations, we obtain

ARR = ALL = M2 − 2m2, ARL = ALR = −2m2. (9.32)

So the product of on-shell decay matrix elements results in

DD∗ =
(
|CR|2 + |CL|2

)
(M2 − 2m2)− (CRC

∗
L + CLC

∗
R) 2m2. (9.33)

In case of identical left- and right-handed couplings C of the decay vertex, Eq. (9.33)
simplifies to

DD∗ = 2|C|2(M2 − 4m2). (9.34)

As in the production case, we are interested in the contribution to the on-shell interference
term, so we distinguish between Eh = Mh

2
and EH = MH

2
,

ARR = ALL = 2

(√
(E2

h −m2)(E2
H −m2) + EhEH

)
,

ARL = ALR = 2

(√
(E2

h −m2)(E2
H −m2)− EhEH

)
. (9.35)

Finally, the product of decay matrix elements with different masses reads

DhD∗H = 2
(
Ch
RC

H∗
R + Ch

LC
H∗
L

)(√
(E2

h −m2)(E2
H −m2) + EhEH

)
+ 2

(
Ch
RC

H∗
L + Ch

LC
H∗
R

)(√
(E2

h −m2)(E2
H −m2)− EhEH

)
(9.36)

C−→ 8ChCH∗

√(
M2

h

4
−m2

)(
M2

H

4
−m2

)
, (9.37)
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9.2 Numerical evaluation at lowest order

where the last line applies for identical L/R form factors.
The outcome of the explicit spinor representations in the context of factorising a

longer process into production and decay is the possibility to express the interference
term with on-shell matrix elements depending on the mass of the intermediate particle.
The method was here introduced in a generic way and then applied to the example of
Higgs production and decay with two external fermions in each subprocess in the rest
frames of the decaying particles.

9.2. Numerical evaluation at lowest order

9.2.1. Higgs masses and widths in the modified Mmax
h scenario

For the numerical application of the gNWA to the example process of χ̃0
4 → χ̃0

1 h/H →
χ̃0

1 τ
+τ− and the validation against the full calculation, we choose again the modified

Mmax
h scenario defined in Sect. 8.2.3. The resulting Higgs masses and widths are of crucial

interest regarding the applicability of the standard NWA and for the significance of the
interference term. Under variation of the input Higgs mass MH± , the resulting masses
and widths of the interfering neutral Higgs bosons h,H change as shown in Fig. 9.2
with results from FeynHiggs [67, 146, 149, 150] including dominant 2-loop corrections.
Fig. 9.2(a) displays the dependence of the masses of h (blue, dotted) and H (green,
dashed) on MH± . Within the analysed parameter range of MH± = 151...155GeV, their
mass difference ∆M (red) in Fig. 9.2(b) is around its minimum atMH± ' 153GeV smaller
than both total widths Γh (blue, dotted) and ΓH (green, dashed). While Γh decreases, ΓH
increases with increasing MH± . This is caused by a change of the predominantly diagonal
or off-diagonal structure of the Ẑ-matrix which has a cross-over around MH± ' 153GeV
in this scenario. Since both widths contribute to the overlap of the two resonances, the
ratio RMΓ = ∆M/(Γh + ΓH) gives a good indication of the parameter region of most
significant interference. This is visualised (in orange) in Fig. 9.2(c) and compared to the
ratios ∆M/Γh (blue, dotted) and ∆M/ΓH (green, dashed), which only take one of the
widths into account and are therefore a less suitable criterion for the importance of the
interference term. Fig. 9.2(d) presents the ratio Γi/Mi for i = h (blue, dotted) and H
(green, dashed) as a criterion for a narrow width. Both ratios lie in the range of about
0.5% to 3.5%, and this represents the expected order of the NWA uncertainty.

9.2.2. Results for tree level process χ̃0
4 → χ̃0

1 h/H → χ̃0
1 τ

+τ−

In order to understand the possible impact of interference terms, we confront the prediction
of the standard NWA (sNWA) with the 3-body decay width of our example process
χ̃0

4 → χ̃0
1τ

+τ− at the tree level (improved by 2-loop predictions for the masses, widths
and Ẑ-factors) in the modified Mmax

h scenario.
First of all, we verify that the other conditions from Sect. 7.2.2 for the NWA are

met. The widths of the involved Higgs bosons do not exceed 3.5% of their masses, hence
they can be considered narrow (see Fig. 9.2(d)). At tree level, there are no unfactorisable
contributions so that the scalar propagator is separable from the matrix elements. Besides,
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Figure 9.2.: Higgs masses and widths from FeynHiggs [67, 146,149,150] including dominant
2-loop corrections in the modified Mmax

h scenario.(a): Higgs masses Mh (blue,
dotted) and MH (green, dashed). (b): Mass difference ∆M ≡MH −Mh (red)
compared to total widths Γh (blue, dotted) and ΓH (green, dashed). (c): Mass
difference ∆M divided by total width of h (blue, dotted), H (green, dashed)
and sum of both widths (orange). (d): Ratio Γi/Mi for h (blue, dotted) and H
(green, dashed).

our scenario is far away from the production and decay thresholds since Mhk � 2mτ

holds independently of the parameters, and with neutralino masses of mχ̃0
4
' 264.9GeV

and mχ̃0
1
' 92.6GeV, also mχ̃0

4
− (mχ̃0

1
+Mhk) > 32GeV does not violate the threshold

condition. The neutralino masses are independent of MH± . Thus, the NWA is applicable
for the individual contributions of h and H, so the factorised versions

ΓiNWA := ΓPi(χ̃
0
4 → χ̃0

1hi)BRi(hi → τ+τ−) (9.38)

should agree with the separate terms of the 3-body decays via the exchange of only one
of the Higgs bosons, hi,

Γi1→3 := Γ(χ̃0
4
hi→ χ̃0

1τ
+τ−) (9.39)
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9.2 Numerical evaluation at lowest order

within the uncertainty of O
(

Γhi
Mhi

)
. This is tested in Fig. 9.3. The blue lines compare

Γh1→3 (solid) with the factorised process ΓhNWA (dotted), the green lines represent the
corresponding expressions for H. The standard narrow-width approximation (sNWA) is
composed of the incoherent sum of both factorised processes, i.e.,

ΓsNWA = ΓPh BRh + ΓPH BRH . (9.40)

This is confronted with the incoherent sum of the 3-body decays which are only h-
mediated or H-mediated. For a direct comparison with the sNWA, the interference term
is not included,

Γincoh
1→3 = Γh1→3 + ΓH1→3. (9.41)

The sNWA (dotted) and the incoherent sum of the 3-body decay widths are both shown in
grey. Their relative deviation of 0.8−3.3% is of the order of the ratio Γ/M from Fig. 9.2(d).
Consequently, the NWA is applicable to the terms of the separate h/H-exchange within
the expected uncertainty.

incoh . sum

h

H
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Figure 9.3.: The 1→3 decay width (solid) of χ̃0
4 → χ̃0

1τ
+τ− at tree level with separate

contributions from h (blue), H (green) and their incoherent sum (grey) confronted
with the sNWA (dotted).

However, the fifth condition in Sect. 7.2.2 concerns the absence of a large interference
with other diagrams. But with ∆M < Γh + ΓH throughout the analysed parameter
range (see Fig. 9.2(c)), we expect a sizeable interference effect in this scenario owing to a
considerable overlap of the Breit-Wigner propagators and a sizeable mixing between h
and H. Since the masses and widths of the interfering Higgs bosons depend on MH± ,
the size of the interference term varies with the input charged Higgs mass. Based on the
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9 Application of the generalised NWA

minimum of the ratio RΓM = ∆M/(Γh + ΓH) and a significant mixing between h and H,
we expect the most significant interference contribution near MH± = 153GeV.

Fig. 9.4 presents the partial decay width Γ(χ̃0
4 → χ̃0

1τ
+τ−) in dependence of the

input Higgs mass MH± . In the sNWA (grey), the interference term is absent. In contrast,
the full 3-body decay2 (black) takes the h and H propagators and their interference into
account. Comparing the prediction of the sNWA with the full 3-body decay width
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Figure 9.4.: The 1→3 decay width of χ̃0
4 → χ̃0

1τ
+τ− at tree level with contributions from h,H

including their interference (black) confronted with the NWA: sNWA without the
interference term (grey, dotted), gNWA including the interference term based
on on-shell matrix elements denoted byM2 (red, dashed) and on the R-factor
approximation denoted by R (blue, dash-dotted).

reveals an enormous discrepancy between both results, especially in the region of the
smallest ratio RΓM around MH± ' 153GeV, due to a large negative interference term.
Consequently, the NWA in its standard version is insufficient in this parameter scenario.

In the generalised narrow-width approximation, on the other hand, the sNWA
is extended by incorporating the on-shell interference term. The red line indicates
the prediction of the complete process in the gNWA using the on-shell evaluation of
unsquared matrix elements in the interference term as derived conceptually in Eq. (7.24)
and explicitly in Sect. 9.1.2. Furthermore, the blue line demonstrates the result of the

2In this section, the full tree level refers to the sum of h- and H-mediated 3-body decays including
the interference term (but without A- and Z-boson exchange or non-resonant propagators) at the
improved Born level, i.e. including Higgs masses, total widths and Ẑ-factors at the leading 2-loop
level from FeynHiggs [67, 146,149,150].
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9.3 Example process at 1-loop order in the gNWA

gNWA using the additional approximation of interference weight factors R defined in
Eq. (7.38). While the sNWA overestimates the full result by a factor of up to 5.5 on
account of the neglected destructive interference, both variants of the gNWA result in a
good approximation of the full 3-body decay width.

The slight relative deviation between either form of the gNWA and the full result
amounts to (ΓgNWA − Γ1→3) /ΓsNWA ' 0.4%− 1.7% if normalised to the sNWA and to
(ΓgNWA − Γ1→3) /Γ1→3 ' 0.5% − 9.2% if normalised to the 3-body decay width. The
largest relative deviation between ΓgNWA and Γ1→3 arises in the region where the reference
value Γ1→3 itself is very small so that a small deviation has a pronounced relative effect.
This uncertainty, however, is not intrinsically introduced by the approximated interference
term, but it stems from the factorised constituents ΓhNWA, ΓHNWA already present in the
sNWA, see Fig. 9.3.

9.3. Example process at 1-loop order in the gNWA

Motivated by the good performance of the gNWA at the tree level, in this section we
investigate the application of the generalised narrow-width approximation at the loop
level by incorporating 1-loop corrections of the production and decay part into the
predictions.

In this example, the calculation of the full process at the 1-loop level is still man-
ageable (see Sect. 8.2), where full here means the 3-body decays with Breit-Wigner
propagators and Ẑ-factors, though without the Z-, A- and G-boson exchange. But
we aim at validating the generalised narrow-width approximation at the 1-loop level
so that it can be applied on kinematically more complicated processes for which the
factorisation into production and decay is essential to enable the computation of higher
order corrections.

Our strategy is to combine the NLO corrections for the production and decay
subprocesses in such a way that the gNWA prediction can be consistently compared to
the full 1-loop calculation. Only the box diagrams are left out in the gNWA compared
to the 3-body decays.

9.3.1. 2-body decays in the production and decay parts

The gNWA at NLO requires the 1-loop contributions to the 2-body decays as subprocesses.
For the production, we calculate the full 1-loop corrections to Γ(χ̃0

4 → χ̃0
1h/H) in the

NNN on-shell renormalisation scheme, see Refs. [109–111], with the same choice of
on-shell states as in the 3-body-decay described in Sect. 8.2.2.1. Higgs mixing is taken
into account by Ẑ-factors, but mixing with G-/Z-bosons is generated explicitly, which,
however, vanishes in this CP-conserving scenario. Some example diagrams for vertex
corrections are shown in Fig. 9.5(a). Fig. 9.6(a) presents the resulting 2-body decay
widths for the production of h (blue) and H (green) at the tree level (dashed) and the
1-loop level (solid). While the 1-loop corrections increase Γ(χ̃0

4 → χ̃0
1h), they decrease

the production of H from the decay of χ̃0
4. The substantial relative effect can be seen in

Fig. 9.6(b).
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9 Application of the generalised NWA

(a) Higgs production

(b) Higgs decay.

Figure 9.5.: Example diagrams of the 2-body decays for (a) Higgs production in χ̃0
4 → χ̃0

1h/H
with vertex corrections and (b) Higgs decay in h/H → τ+τ− with vertex and
real corrections.
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(b) Relative loop contribution in χ̃0
4 → χ̃0

1h/H.
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(c) Higgs decay h/H → τ+τ−.
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(d) Relative loop contribution in h/H → τ+τ−.

Figure 9.6.: 2-body decay widths of (a) χ̃0
4 → χ̃0

1hi and (c) hi → τ+τ− with hi = h (blue)
and H (green) at the tree level (dashed) or at the 1-loop level (solid), and the
relative effect of the loop contributions (b), (d).

For the decay, the full vertex corrections to hi → τ+τ− are included. Furthermore,
real soft photon emission off the τ -leptons in the final state is included. In order to allow
for a meaningful comparison between the gNWA and the full calculation, the energy
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9.4 Numerical validation of the gNWA at higher order

cut-off is defined by the same value Emax
soft = 0.1mχ̃0

4
as in the 3-body decay. Example

diagrams are displayed in Fig. 9.5(b), where the last two cases are IR-divergent. The
emission of a real photon is not directly calculated as a 3-body decay, but still with
the 2-body phase space in the soft-photon approximation. The numerical influence of
the corrections of O(α) on Γ(hi → τ+τ−) is shown in Fig. 9.6(c). The 1-loop and real
corrections slightly decrease both decay rates (for hi = h,H) by 1.2% to 1.5% as displayed
in Fig. 9.6(d).

9.4. Numerical validation of the gNWA at higher
order

The on-shell factorisation of the interference term has already been applied at the leading
order in Sect. 9.2.2. In this section, we will investigate this approximation at the next-to-
leading order. Since a wide range of processes even with many external particles can be
computed at lowest order without applying the NWA, we use the full leading order result
of the three-body decay (i.e., without NWA) and add the 1-loop contribution for which
we use the gNWA. With this procedure, we apply the on-shell approximation only when
necessary without introducing an avoidable uncertainty at the tree level. As a further
step, one could split the real photon contribution into IR-singular and finite terms and
apply the NWA only on the singular ones according to Refs. [164,191].

9.4.1. On-shell matrix elements and R-factor approximation

In Fig. 9.7, we compare the numerical results of the method of on-shell matrix elements
using Eqs. (7.47) and (7.48), denoted by M2, and of the interference weight factor
approximation from Eq. (7.64), denoted by R̃, with the full 1-loop result as calculated in
Sect. 9.4. The upper panel shows the prediction of the partial width Γ(χ̃0

4 → χ̃0
1τ

+τ−).
The lines of the gNWA based on matrix elements (red, dashed) and the full 1-loop
calculation (black, solid) lie nearly on top of one another. Also the additional R̃-factor
approximation (blue, dash-dotted) yields a good qualitative agreement with the full
result, but less accurate than achieved by the on-shell matrix elements. The lower panel
visualises the relative deviation of the decay width predicted by the two versions of
the gNWA from the full result. As expected, the R-factor method reproduces the full
result best where the difference between Mh and MH is smallest, i.e., in the centre of the
analysed parameter interval. But the assumption of equal masses becomes worse away
from the centre of the analysed interval, leading to a deviation from the full 1-loop result
of up to 4.5%. Thus, for those parameters the matrix element method performs clearly
better within an accuracy of better than 1%.

In order to further investigate how well the gNWA predicts the interference term
at the 1-loop level, we take a closer look in Fig. 9.8 at the pure loop contribution
Γloop,pure = Γloop − Γtree of the full three-body decay (black, solid), the gNWA using
on-shell matrix elements (red, dashed, denoted byM2) and the R̃-factor approximation
(blue, dash-dotted, denoted by R̃). While at the tree level we found that both versions of

123



9 Application of the generalised NWA

151 152 153 154 155

-2

0

2

4

151 152 153 154 155

-2

0

2

4

MH + @ GeV D

G
gN

W
A

G
fu

ll

-
1

@%
D 151 152 153 154 155

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

0.0035

0.0040
151 152 153 154 155

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

0.0035

0.0040

MH + @ GeV D

G
@G

eV
D

GH Χ� 4
0 ® Χ� 1

0 Τ + Τ -L gNWA NLO

full

M

R
�

Figure 9.7.: Upper panel: The decay width χ̃0
4 → χ̃0

1τ
+τ− at the 1-loop level with resonant

h,H-exchange and, for the full 3-body decay (black, solid), with box contributions.
The gNWA with on-shell matrix elements is denoted byM2 (red, dashed), and
the gNWA with interference weight factors is denoted by R̃ (blue, dash-dotted).
Lower panel: The relative deviation of the gNWA (matrix element and R-factor
approximation) from the full 1-loop result in percent.

the gNWA work comparably well (see Fig. 9.4), theM2-method provides a significantly
better prediction of the interference term at the 1-loop level.

When the gNWA is used to approximate one-loop effects, we need to compare the
accuracy of the approximation with the overall size of the loop correction. Fig. 9.9 provides
a comparison between the precision of the gNWA with respect to the full calculation (for
on-shell matrix elements denoted byM2 in red and the R-factor approximation denoted
by R̃ in blue) and the relative size of the 1-loop correction to the 3-body decay width
in black. While the loop correction ranges from −1% to 11% in this example case, the
deviation of the matrix element method from the full result remains below 1%. The
uncertainty of this approximation is therefore significantly smaller than the typical size
of the loop correction in this case. The deviation of the R-factor approximation from the
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Figure 9.8.: Pure loop contributions in the full calculation (black, solid) and approximated by
the gNWA using the matrix element method denoted byM2 (red, dashed) and
using the R-factor approximation denoted by R̃ (blue, dash-dotted).
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Figure 9.9.: Precision of the gNWA at the 1-loop level using the matrix element method
denoted byM2 (red, dashed) and using the R-factor approximation denoted by
R̃ (blue, dash-dotted) compared to the relative size of the loop contribution in
the full calculation (black). The ±1% region is indicated in grey.

full result is found to be larger, within −3% to 4.5% in this case, but it is still about a
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9 Application of the generalised NWA

factor of two smaller than the size of the loop correction in the region where the latter is
sizable.

The plot shows that the overall performance of the gNWA with theM-method is
good except for the region around MH± ' 152GeV–152.5GeV where theM-method
uncertainty exceeds the relative size of the full loop correction slightly. But here the full
loop correction is in fact very small. Keeping in mind that the full calculation is subject
to uncertainties itself (e.g. from missing higher-order corrections) which might reach the
level of 1% (for illustration, the ±1% range is indicated in the plot), theM-method can
be regarded as adequate to approximate loop corrections to the interference term within
the expected uncertainty of the full result (as long as non-factorisable corrections remain
numerically suppressed). On the other hand, the R-factor method gives rise to larger
deviations and should therefore be regarded as a simple estimate of the higher-order
result including interference effects.

9.4.2. Separate treatment of photon contributions

As discussed in Sect. 7.4.1.2, the factor δSB, which multiplies the squared tree level matrix
element to account for the contribution of soft bremsstrahlung, and the IR-divergent loop
integrals must be evaluated at the same mass to enable the cancellation of IR-singularities
between real and virtual photon contributions. In order to reduce the ambiguity whether
to choose the common mass M = Mh or MH , the IR-finite diagrams can be evaluated
at their correct mass shell. Fig. 9.10 compares the dependence of the gNWA result on
the ambiguous mass choice, i.e., the relative deviation between ΓgNWA(M = Mh) and
ΓgNWA(M = MH), for the matrix element method. The dashed green line represents the
universal treatment where the loop integrals in all decay one-loop matrix elements are
evaluated at M2 whereas the solid red line shows the separate calculation of the photonic
contribution as described in Sect. 7.4.1.2. The impact of the dependence of the gNWA
on the choice of the mass M is found to be rather small, giving rise to a maximum
deviation of 0.23% for the universal treatment of all one-loop matrix elements for the
decay. Restricting this approximation just to the photonic contribution is seen to have
an insignificant effect in this example, reducing the deviation to 0.2%.
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i ),

is shown for the universal treatment of all one-loop matrix elements for the
decay and for the case where the photonic contribution is treated separately.

9.4.3. gNWA prediction with most precise input values

As a first step, we defined the gNWA at the 1-loop order for a consistent compari-
son between the gNWA and the full 1-loop calculation. As an exception, the Higgs
masses, total widths and wave function normalisation factors Ẑ have been obtained
from FeynHiggs [67, 146,149,150] at the 2-loop order and used both in the gNWA and
the full calculation. In this section we want to exploit the factorisation and include all
components at the highest available precision. This means for the gNWA with the on-shell
matrix element method and the R-factor approximation that we use the calculated 1-loop
production part and the FeynHiggs branching ratios in ΓP (χ̃0

4 → χ̃0
1hi)·BRD(hi → τ+τ−).

Furthermore, the product of on-shell matrix elements from Eq. (7.46) is expanded up to
the product of 1-loop matrix elements in Eq. (7.50). The higher-order extension of the
R-factor approximation is defined in Eq. (7.65).

So far we have neglected additional contributions that do not play a role in the
discussion of the interference effects between contributions with h and H exchange in the
decay of χ̃0

4 → χ̃0
1τ

+τ− for the considered CP-conserving scenario. In order to obtain a
more phenomenological prediction of Γ(χ̃0

4 → χ̃0
1τ

+τ−) we now take into account also the
resonant exchange of the CP-odd Higgs boson A, the neutral Goldstone bosonG and the Z-
boson, as well as the non-resonant 3-body decay via a τ̃ . We include the contributions from
A, G, Z and τ̃ -exchange at the tree-level, while at the loop level we incorporate the most
precise gNWA result (where those additional contributions are neglected). Fig. 9.11(a)
shows the prediction of the higher-order improved gNWA, supplemented by the full tree-
level contribution including A, G, Z and τ̃ -exchange diagrams, as solid lines using on-shell
matrix elements (red) and the R-factor approximation (blue). The corresponding results
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9 Application of the generalised NWA

where the A, G, Z and τ̃ -exchange contributions have been neglected are indicated by the
dashed lines. The contributions from A, G, Z and τ̃ are found to yield a non-negligible
upward shift in this example.

Fig. 9.11(b) shows the impact of including the most precise branching ratios and
the product of 1-loop matrix elements in the gNWA, denoted by Γbest

gNWA. For the matrix
element method (in red, denoted byM2), this amounts to up to 1.2% relative to the
1-loop formulation used above for the comparison with the result for the 3-body decay.
For the R-factor approximation (in blue, denoted by R̃), the effect of up to 0.4% is
smaller because the effect on the interference term beyond the 1-loop order turns out to
be negative. With reference to the gNWA including only h and H, the relative impact of
the higher-order corrections is slightly higher (1.6% for the matrix element method and
0.6% for the R-factor approximation).

The numerical size of the contributions beyond the 1-loop order depends on the
process and scenario, but the gNWA allows for their inclusion also in the interference
term.
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Figure 9.11.: (a) The gNWA using the most accurate predictions for all parts of the process,
supplemented with a tree-level result with (solid) and without (dashed) the
additional A, G, Z and τ̃ -exchange contributions, for theM2-method (red) and
the R̃-approximation (blue). (b) The relative effect of the most precise branching
ratios and the product of 1-loop terms on the prediction of the gNWA with
on-shell matrix elements (red, denoted byM2) and the R-factor approximation
(blue, denoted by R̃).

9.5. Summary: Concept and application of the gNWA

In Chapters 7-9, we have formulated and tested a generalisation of the standard narrow-
width approximation that extends the applicability of this important tool to scenarios
where interference effects between nearly mass-degenerate particles are important. This
can be the case in many extensions of the SM where the spectrum of the new particles
is such that the mass difference between two or more particles is smaller than the
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9.5 Summary: Concept and application of the gNWA

sum of their total decay widths. In such a case, their resonances overlap so that the
interference cannot be neglected if the two states mix. In order to still enable the
convenient factorisation of a more complicated process into production and decay of
an intermediate particle, we have demonstrated how to factorise also the interference
term. This is achieved by evaluating the production and decay matrix elements on the
mass-shells of the resonant particles in analogy to the terms present in the standard
NWA. If one additionally assumes equal masses of the intermediate particles, it is possible
to further approximate the interference contribution by an interference weight factor, R,
in terms of production cross sections, decay branching fractions, ratios of couplings and
a universal, process independent integral over Breit-Wigner propagators.

We have developed this generalised narrow-width approximation both at the tree-
level and at one-loop order. Following the analytic derivations, we have discussed the
application to a simple example process in the context of the MSSM with real parameters.
We have considered the three-body decay of the heaviest neutralino via a resonant neutral,
CP-even Higgs boson, h or H, into the lightest neutralino and a pair of τ -leptons. This
process is well-suited for a test of the gNWA since it is sufficiently simple so that the
full process can be calculated at the loop level and compared with the predictions of the
gNWA. Within the gNWA this process can be decomposed into basic kinematic building
blocks, namely two subsequent 2-body decays, and the interference contributions involve
only scalar particles. The discussion of interference effects can therefore be disentangled
from spin-correlation issues. Furthermore, the process involves charged external particles,
so that the issue of the cancellation of IR divergencies between virtual loop corrections
and bremsstrahlung contributions is relevant, while the fact that only the final state
particles are charged reduces the complexity of the IR-divergent contributions and makes
their treatment transparent.

We have validated the gNWA at the Born level (supplemented by higher-order Higgs
masses, widths and Ẑ-factors for the mixing) and at the 1-loop level including corrections
of O(α) with respect to the lowest order. Within the considered parameter region, the
chosen modified Mmax

h -scenario leads to a small difference between the loop-corrected
masses of Mh and MH smaller than their total widths. This configuration results in a
large negative interference term so that in the standard NWA, where the interference
contribution is not taken into account, the 3-body decay width is overestimated by a
factor of up to five in this example. Hence, the standard NWA is clearly insufficient in
this scenario. The inclusion of the factorised interference term, however, leads to an
agreement with the unfactorised decay width within few percent. At the tree level, the
method of on-shell matrix elements and the R-factor approximation lead to very similar
results.

However, at the Born level the methods for calculating multi-leg processes without
further approximations are very advanced. Accordingly, a particular interest in the NWA
concerns its application to the loop level, where the difficulty in computing processes
involving a variety of different mass scales grows very significantly with the number of
external legs of the process. In many cases the factorisation into different sub-processes
provided by the NWA is essential to enable the computation of higher-order contributions.
In cases where a full tree level calculation is feasible, the NWA can therefore be applied
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9 Application of the generalised NWA

just at the loop level in order to facilitate the computation of the higher-order corrections,
while the lowest order contributions are evaluated without further approximations in
order to avoid an unnecessary theoretical uncertainty.

For a validation of the gNWA beyond the LO we have performed the 1-loop cal-
culation of Γ(χ̃0

4 → χ̃0
1τ

+τ−) including all vertex corrections, self-energies involving
Higgs-Goldstone/Z mixing, Higgs-Higgs mixing contributions via finite wave function
normalisation factors, box diagrams, as well as soft photon radiation. All higher order
corrections except for the box diagrams factorise, which makes a separate calculation of
the 1-loop production and decay part possible as long as the non-factorisable contributions
remain sufficiently small. We have shown that within the gNWA the factorised interfer-
ence term at the next-to-leading order is both UV- and IR-finite. In order to preserve
the cancellations of IR-singularities between virtual and real photon contributions also
in the on-shell matrix elements, all IR-divergent integrals in matrix elements and the
soft-photon factor were evaluated at the same mass value. This prescription could be
further improved by extracting the singular parts from the real photon contribution and
applying the NWA only to those terms which match the singularities from the virtual
photons. Furthermore, we have extended the interference weight factor to the 1-loop
level. In the numerical comparison to the 3-body decay width, the gNWA based on
1-loop on-shell matrix elements agrees with the full 1-loop result within an accuracy of
better than 1%, which is much below the typical size of the loop corrections in this case.
The gNWA with interference weight factors, on the other hand, deviates from the full
result by up to 4%, which is still about a factor of two smaller than the size of the loop
correction in the region where the latter is sizable. Therefore the method of on-shell
matrix elements appears to be a well-suited approach for predicting the interference term
at 1-loop order within roughly the remaining theoretical uncertainty of the full result,
while the additional R-factor approximation may be of interest as a technically simpler
rough estimate of the higher-order result including interference effects.

In our discussion we have first focussed on the strict O(α) contribution relative to
the lowest order within the gNWA (except for masses, total widths and wave function
normalisation factors, for which we have incorporated dominant 2-loop contributions
throughout this work) for the purpose of a consistent comparison with the 3-body decay
width. In the most accurate final result the factorisation into subprocesses for production
and decay has the virtue that higher-order corrections can naturally be implemented
into each of the subprocesses, which formally corresponds to a higher-order effect for
the full process. This applies also to the interference term, where we have discussed the
incorporation of higher-order contributions for the two considered versions of the gNWA.

While much of our discussion has been directed to the specific example process
that we have investigated, we have provided a generic formulation of the gNWA and we
have commented on various features that are relevant for more complicated processes.
The method presented here should therefore be transferable to processes with more
external legs, with a more complicated structure of IR divergencies, and to cases where
the interference arises between particles of non-zero spin.
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Chapter 10.

Interference and complex phase effects
in Higgs searches at the LHC

After the methodological studies in the previous chapters about the approximation of
interference terms, we will now investigate phenomenological implications of interference
effects on the interpretation of searches at the LHC for additional neutral MSSM Higgs
bosons. In particular, we focus on interference effects between the heavy Higgs bosons h2

and h3. They are nearly mass-degenerate in large parts of the parameter space. In the
context of CP-violating mixing, their interference term is expected to become significant
so that one needs to re-evaluate the limits that have been obtained by assuming real
MSSM parameters and neglecting interference effects between all neutral Higgs bosons.

In this chapter, we briefly quote the properties of the discovered Higgs boson and
summarise the search strategies for additional Higgs bosons at the LHC. Beyond the
assumptions employed so far in the collider searches, we examine the overall effect of
a complex phase on the cross section σ(bb̄ → τ+τ−) with s-channel Higgs exchange.
Furthermore, we distinguish the overall phase effect from the genuine interference effect.

10.1. Status of Higgs searches interpreted in MSSM
scenarios

A Higgs boson has been discovered by ATLAS [5] and CMS [6]. The combined analyses
of both experiments result in a mass of M exp

h = 125.09± 0.24GeV [223]. Investigations
of the spin J and tensor coupling structure reveal that this particle has spin 0 [224, 225].
All measurements are up to now consistent with the SM hypothesis of a CP-even scalar
with JPC = 0++ [226,227], but a substantial admixture of a CP-odd component cannot
be ruled out at the present level of sensitivity. The Higgs boson is searched for in
several bosonic (γγ, ZZ, Zγ, WW ) and fermionic (τ+τ−, µ+µ−, bb̄) decay channels in
combination with various production modes (gluon fusion, weak vector boson fusion,
Higgs strahlung and in association with tt) [228, 229]. So far, the γγ, ZZ,WW decay
modes have been established and there is evidence for the decay into τ+τ− [230, 231].
Among the production modes, the tt-associated production has the largest uncertainty,
but the best-fit results for the signal strengths, branching fractions and couplings to
fermions and vector bosons determined from those analyses are in general compatible
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10 Interference and complex phase effects in Higgs searches at the LHC

with the expectations for a SM Higgs boson of the measured mass, see Refs. [228,229]
and references therein.

Although the discovered scalar has quite SM Higgs-like properties, significant devia-
tions from the SM are possible in individual Higgs couplings, cross sections and branching
ratios. Moreover, the SM might be the low-energy limit of a more fundamental theory
with more than one Higgs boson. Any viable BSM model must accomodate a SM-like
Higgs boson with the measured mass. Both at LEP [232] and at the Tevatron [233–236],
searches for several Higgs bosons in a two-Higgs-doublet model and the MSSM have been
performed.

At the LHC, neutral MSSM Higgs bosons are for low and medium values of tan β
predominantly produced in gluon fusion, gg → ha (a = 1, 2, 3). At high tan β, the
production in association with a pair of bottom quarks dominates due to the enhanced
bottom Yukawa coupling involved in bb̄→ ha (in the five-flavour scheme where the bottom
quark is regarded as a parton in the proton) and in gg → bb̄ha (in the four-flavour scheme
whithout a bottom parton density distribution in the proton). Searches for neutral MSSM
Higgs bosons during Run I of the LHC have been carried out in the τ+τ− [237–240], in
the µ+µ− [241–243] and in the bb̄ [244] decay channels, but no evidence for additional
Higgs bosons has been found yet. The decay modes to down-type fermions are enhanced
at large tan β whereas the branching ratios of the heavy Higgs bosons into vector bosons
vanish in the decoupling limit (see Sect. 3.3.4.4). The non-observation up to now can be
translated into limits of the underlying parameters of the hypothesized model, here the
MSSM, where the τ+τ−-channel provides much stronger constraints than the µ+µ− final
state.

The results of the searches are on the one hand reported as nearly model-independent
limits on the product of the on-shell production cross section (separately in the gg and
bb̄ production mechanism) and the branching ratio (into τ+τ−, µ+µ− or bb̄) of a scalar
resonance as a function of its mass, assuming a narrow width. On the other hand, these
limits are interpreted in example scenarios within the MSSM parameter space. The
analyses with τ+τ− final states by CMS [239] and ATLAS [240] are presented in several
MSSM benchmark scenarios such as the (updated)Mmax

h and theMmod±
h scenarios defined

in Refs. [167,169]. Furthermore, the CMS search [239] is also interpreted in the other
benchmark scenarios of Ref. [167]. In the Mmax

h scenario, the radiative corrections to the
lightest Higgs boson mass are maximised. In the decoupling region and for tan β & 10,
the prediction for Mh1 overshoots the measured mass of the SM-like Higgs boson in
this scenario. Hence, if the observed state should be identified with the lightest MSSM
Higgs boson, the allowed parameter space in the Mmax

h scenario is severely restricted.
However, reducing the stop mixing parameter yields a value of Mh1 that is in agreement
with the measured Higgs mass within the theory-dominated (conservative) uncertainty
of ∆Mh1 = 3GeV in the major part of the parameter space. This is realised in the
Mmod±

h scenario, where the ± refers to the sign of Xt in the particular version of the
scenario. The standard value of the higgsino mass parameter is µ = 200GeV in the
Mmod±

h scenario. However, leading threshold corrections ∆b to the relation between
the bottom quark mass and the bottom Yukawa coupling are generated by b̃g̃ and t̃χ̃±
one-loop diagrams which depend on µ and tan β and modify the bottom Yukawa coupling.
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10.1 Status of Higgs searches interpreted in MSSM scenarios

For large values of tan β, these terms can become very important. At the two-loop
level, the ∆b corrections also enter the Higgs mass prediction. As a consequence, the
exclusion bounds from searches for heavy MSSM Higgs bosons are affected by ∆b and
therefore by the absolute values and signs of µmg̃ and µAt. In order to account for
this dependence, the variation of µ = ±200,±500,±1000GeV within the benchmark
scenarios was proposed in Refs. [167,245,246].

In Fig. 10.1, we show the exclusion bounds obtained with HiggsBounds-4.2.0
[247–250] linked to FeynHiggs-2.10.2 in the Mmod+

h scenario for the default value of
µ = 200GeV (green) and for µ = 1000GeV (orange) as one of the suggested modifications.
HiggsBounds confronts predictions of cross sections, branching ratios, masses and total
widths of neutral and charged Higgs bosons with cross section limits from LEP, the
Tevatron and the LHC. Based on the expected limit of a model prediction, the analysis
with the highest sensitivity is determined for each Higgs boson of the model. If the model
prediction for this particular analysis is larger than the observed limit, the model point
is excluded at the 95% confidence level (CL).

Fig. 10.1 shows the MH± − tan β plane of the Mmod+
h scenario where the horizontal

band at low tan β is excluded by LEP results whereas the upper left part of the plane
is excluded by searches at the LHC. The scenario with µ = 1000GeV provides stronger
limits because in this case the decay channel of a heavy Higgs boson into higgsino-like
neutralinos and charginos is kinematically closed. Consequently, the branching ratios of
the visible channels into τ+τ− and µ+µ− are increased so that the searches become more
sensitive.

Figure 10.1.: Excluded parameter regions in the Mmod+
h scenario obtained with HiggsBounds

for µ = 200GeV (green) and µ = 1000GeV (orange).

The unexcluded parameter region is mostly compatible with the measured mass
of about 125GeV within the theoretical uncertainty of about ±3GeV [167]. Thus the
scenario is phenomenologically interesting. Instead of requiring the lightest neutral Higgs
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10 Interference and complex phase effects in Higgs searches at the LHC

boson h1 to have a mass close to the observed one, the role of the observed state could in
principle also be played by the second lightest neutral MSSM Higgs boson [167,251,252].
Here, however we focus on scenarios where the additional Higgs bosons are heavier than
M exp

h .
One such benchmark scenario is the light τ̃ scenario [167] characterised by µ =

500GeV, Aτ̃ = 0 and Ml̃3
= 245GeV (the other parameters can be found in Tab.A.1).

The phenomenology of this scenario features an enhanced diphoton rate of Higgs decays,
but in the context of CP-violation we are mostly interested in the consequences of the
enhanced µ-parameter. In Sect. 10.2.1, we will study this scenario in addition to the
Mmod+

h scenario with µ = 200GeV, 500GeV, 1000GeV.

10.2. Relative impact of φAt on cross sections

Factorising the search results into the production and decay part, as employed in
HiggsBounds and experimental analyses, limits the applicability by the same conditions
as those of the sNWA, see Sect. 7.2.2, for example assuming small widths of all Higgs
bosons compared to their masses and vanishing interference terms. Furthermore, no
complex MSSM parameters have been considered up to now in the presentation of
LHC limits in benchmark scenarios. We therefore propose to take interference effects
between several Higgs resonances into account (which may already arise in the case of
real parameters, though restricted to low values of MA and large tan β) and to allow for
complex parameters in a modification of the already existing benchmark scenarios. In
particular, we consider the phase φAt of the trilinear coupling of t̃ squarks, which is least
restricted by current experimental bounds (see Sect. 3.4) and has an important effect on
Higgs observables owing to the numerical relevance of stop loops. By setting

Ab = Aτ = At, (10.1)

all trilinear couplings of sfermions from the third generation obtain the same phase.
We evaluate the effect of φAt on the cross section σ(bb̄ → τ+τ−) mediated by Higgs
bosons while neglecting non-Higgs contributions. On the one hand, we perform the full
propagator calculation including momentum dependent mixing self-energies as described
in Eq. (6.17). On the other hand, we apply the approximation of Breit-Wigner propagators
combined with the on-shell Ẑ-factors according to Eq. (6.21). The couplings of the Higgs
bosons to a pair of bottom quarks or tau leptons are given in Eq. (3.49). We compute
the relative effect of the complex phase φAt on the cross section with respect to the cross
section in the case of real parameters. Furthermore we evaluate the relative contribution
of the interference term compared to the incoherent sum of the individual resonances. Our
approach is to calculate the higher-order propagator corrections, but to treat the vertices
only at the tree level since the impact of vertex corrections factorises in this context.
Vertex corrections to the production and decay subprocesses are already contained in e.g.
FeynHiggs [67, 146,149,150] and other public codes that compute Higgs cross sections
and branching ratios. Non-factorisable box diagrams are not covered by our approach,
but they are expected to be numerically suppressed in the Higgs resonance region. In the
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10.2 Relative impact of φAt on cross sections

comparison of model predictions and experimental results, we will combine the relative
interference or complex phase contribution based on propagator type corrections to
rescale the product of state-of-the-art production cross sections and branching ratios in
order to obtain an improved prediction.

We determine which two among the three neutral MSSM Higgs bosons are closest
in mass. Accordingly, we calculate the cross section at the centre-of-mass energy

√
s = M =

{
1
2
(Mh2 +Mh1), if Mh2 −Mh1 < Mh3 −Mh2

1
2
(Mh2 +Mh3), if Mh2 −Mh1 ≥Mh3 −Mh2

(10.2)

so that h2 is always involved in the degeneracy.

10.2.1. Overall non-zero phase effects

A complex phase influences several quantities, such as the propagator-type corrections
and the resulting Ẑ-factors, which turn from the 2× 2 case of real parameters to 3× 3
matrices in the presence of a non-vanishing phase, enabling especially the CP-violating
mixing between h2 and h3. In turn, the mixing structure alters the couplings and total
widths. Another important effect is visible in the masses, which are via loop diagrams
sensitive to the full particle content and parameters from all sectors of the MSSM,
particularly to At and its phase. As an example, Fig. 10.2 shows the dependence of Mh1 ,
obtained with FeynHiggs, on φAt for MH± = 250GeV (blue) and MH± = 600GeV (red)
with tan β = 10 (dotted) and tan β = 30 (solid) in the Mmod+

h scenario with µ = 200GeV.
A non-zero phase reduces the mass value with respect to Mh1(φAt = 0), and Mh1 has a
minimum around φAt = π, i.e. for a negative, real At. In scenarios that are in accordance
with the measured Higgs mass, the predicion of Mh1 should not deviate from M exp

h by
more than ∆Mh1 as a necessary condition. The allowed mass window is indicated in
grey for ∆Mh1 = 3GeV. If the theory uncertainty shrank to ∆Mh1 = 2GeV, the allowed
masses would correspond to the range limited by the grey, dashed lines. For tan β = 10
in this example, Mh1(φAt = 0) is close to 125GeV, while around φAt ' π values slightly
below the uncertainty band are obtained1. In our investigation of non-zero phase effects
in several scenarios, we will always exclude the parameter regions where the lightest
Higgs mass Mh1(φAt) is in conflict with the allowed range of M exp

h ± 3GeV.
In order to quantify the relative impact of φAt on a cross section σ, we define the

following quantity

δ =
σ(φAt 6= 0)

σ(φAt = 0)
− 1, (10.3)

and evaluate the cross section σ(bb̄→ τ+τ−) using the full mixing propagators. Fig. 10.3
provides the numerical results for δ in theMmod+

h scenario and the light τ̃ scenario. In most
of the MH±-tan β plane, Fig. 10.3(a) shows moderate negative effects down to δ ' −10%
in the Mmod+

h scenario with the default value of µ = 200, and φAt = π/4 in comparison

1This could be compensated by increasing |At|.

135



10 Interference and complex phase effects in Higgs searches at the LHC

MH+ = 250GeV

MH+ = 600GeV

tan β = 10

tan β = 30

0 π

2
π 3π

2
2π

120

122

124

126

128

130

ϕAt

M
h
1
[G

eV
]

Figure 10.2.: Dependence of Mh1 (from FeynHiggs) on φAt for MH± = 250GeV (blue) and
MH± = 600GeV (red); tanβ = 10 (dotted) and tanβ = 30 (solid) in theMmod+

h

scenario with µ = 200GeV. The mass window of M exp
h ±∆Mh1 is shaded in

grey for ∆Mh1 = 3GeV. The dashed, grey lines indicate ∆Mh1 = 2GeV.

to the original scenario with real parameters. This means that the cross section including
the non-vanishing value of φAt is slightly smaller that the cross section for φAt = 0. The
red dashed line indicates the δ = 0 contour of a vanishing net effect. In the corner of
relatively low MH± and tan β, the cross section σ(φAt = π/4) is larger than σ(φAt = 0).
The white areas are excluded in this scenario owing to |Mh1(φAt = π/4)−M exp

h | > 3GeV.
Further constraints from collider limits will be considered in Sect. 10.3; here we focus on
describing the change of cross sections.

In Fig. 10.3(b) we notice a stronger reduction of the cross section caused by the
maximal phase φAt = π/2, down to δ ' −30%, and a smaller region where the cross
section is enhanced.

Fig. 10.3(c) differs from Fig. 10.3(b) by the value of µ: as recommended in Ref. [167],
we consider also µ = 500GeV within the Mmod+

h scenario. As pointed out in Ref. [253],
CP-violating terms in the matrix of squared Higgs masses scale with Im [µAt] /M

2
SUSY.

Thus, the enhanced higgsino mass parameter leads to more sizeable effects of φAt on
σ, where δ can be as low as 60% in a small region at relatively low MH± and tan β. In
addition, δ is smaller than −30% in the upper left half of the analysed parameter plane.

This significant suppression of σ for µ = 500GeV does not exclusively occur in the
Mmod+

h scenario. It can be observed, for example, also in the light τ̃ scenario whose
default value of µ is 500GeV, see Fig. 10.3(d). The contours of δ from φAt = π/2 resemble
the pattern in the Mmod+

h scenario with the same values of µ and φAt .
Hence, our analysis of modified cross sections in presence of φAt 6= 0 is in agreement

with the predicted strong dependence of CP-violating effects on the imaginary part of
the product of µAt. The effects for µ = 200GeV and φAt = π/4 in the Mmod+

h scenario
are of the order of a few percent and therefore expected to be hardly detectable. In the
same scenario, but with the maximal φAt = π/2, the most significant effects arise in the
deeply excluded region at low MH± and very high tan β, but the moderate effects in the
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10.2 Relative impact of φAt on cross sections

center of the analysed parameter plane might be required to be included for an accurate
interpretation of Higgs searches in a complex benchmark scenario. The impact of φAt
is even more pronounced in combination with a larger value of µ so that effects of the
order of those in Figs. 10.3(c) and 10.3(d) are expected to lead to a significant shift of
exclusion bounds obtained for the corresponding scenarios with real parameters. We will
recalculate exclusion limits in Sect. 10.3, where we will directly compare the theoretical
prediction with and without the interference term.
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Figure 10.3.: Relative impact δ = (σφ − σ0)/σ0 of the phase φ ≡ φAt on the cross section
σ(bb̄→ τ+τ−) via Higgs propagators including the full mixing. (a-c): Mmod+

h

scenario with µ = 200GeV and φAt = π/4 (a) versus φAt = π/2 (b) and
µ = 500GeV, φAt = π/2 (c). Light τ̃ scenario with µ = 500GeV, φAt = π/2
(d). The white areas correspond to |Mh1(φAt)−M

exp
h | > 3GeV.
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10.2 Relative impact of φAt on cross sections

10.2.2. Distinction between interference and other phase effects

In the previous section, we have discussed the effect of the phase φAt by comparing
the cross section σ(φAt 6= 0) in the case of complex parameters with σ(φAt = 0), both
calculated using the full mixing propagators. In this section we would like to disentangle
the overall phase effect (influencing not only the interference term, but also masses,
couplings and widths) from the pure interference effect. We investigate both effects in
the Mmod+

h scenario with µ = 1000GeV. In order to avoid tension with present or future
EDM constraints on φAt (see Sect. 3.4), we restrict this phase to the value of π/4 in this
section.

Fig. 10.4(a) shows the overall phase effect δ defined in Eq. (10.3) based on the full
propagators. Similar to Figs. 10.3(c) and 10.3(d), the most significant effects arise for
low MH± and low tan β, here down to a minimum of δ = −96.8%, whereas in the central
part of the parameter plane δ ranges from −10% to −20%.

In contrast, for the determination of the pure interference, we switch to the Breit-
Wigner propagators where the mixing is expressed by the Ẑ-factors. The performance of
this approximation confronted with the full propagators has been examined in Chapter
6 where we found very accurate agreement between both calculations, with only small
deviations in scenarios of large mixing. The Mmod+

h scenario with µ = 1000GeV and
φAt = π/4 exhibits indeed substantial mixing. We therefore calculate the relative
deviation ε between the cross section σfull based on the full propagators and the cross
section σBWẐ

coh based on the coherent sum of Breit-Wigner propagators with Ẑ-factors,
where the total widths are obtained from the imaginary parts of the complex poles,

ε =
σBWẐ

coh (φAt)

σfull(φAt)
− 1. (10.4)

Fig. 10.4(b) reveals that both methods agree very well, with a maximum deviation of
±2% around MH± = 500GeV, tan β = 28 and of about 0.8% along the green band.
Otherwise the two calculations lead to the same results within 0.1%. Hence the use
of Breit-Wigner propagators is suitable in this context. As highlighted in Sect. 6.2.4,
the formulation of the Higgs propagators in the mass basis conveniently enables the
separation of the individual resonances. Their incoherent sum is denoted by σincoh and
the coherent sum including the interference term by σcoh, both calculated with φAt 6= 0.
As a measure of the relative contribution of the interference term

σint = σcoh − σincoh, (10.5)

we define

η =
σcoh(φAt)

σincoh(φAt)
− 1 =

σint(φAt)

σincoh(φAt)
. (10.6)

Fig. 10.4(c) displays η, which indicates a destructive interference, i.e. η < 0, throughout
the parameter plane (apart from the red region of 0 ≤ η < 0.4% in the lower left
corner and the narrow stripe at MH± ≤ 130GeV). η reaches a minimum of −96.9%
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10 Interference and complex phase effects in Higgs searches at the LHC

at MH± = 480GeV, tan β = 29 so that the cross section is almost completely erased
by the drastic, negative interference term. Around this minimum, there is a “valley” of
substantial destructive interference, covering large parts of the MH±-tan β plane.
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Figure 10.4.: Impact of φAt = π/4 in the Mmod+
h scenario with µ = 1000GeV on the cross

section σ(bb̄→ τ+τ−) via neutral Higgs bosons: (a) overall phase effect δ, (b)
relative difference ε between the full propagator mixing and the Breit-Wigner
approximation with Ẑ-factors using the total width ΓIm from the imaginary
part of the complex pole, (c) pure interference effect η based on Breit-Wigner
propagators with ΓIm, and (d) η based on Breit-Wigner propagators with the
total width Γtot from FeynHiggs.
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10.2 Relative impact of φAt on cross sections

In Fig. 10.4(c), the Breit-Wigner functions ∆BW
a are based on the total widths ΓIm

ha

obtained from the imaginary part of the complex pole, see Eq. (6.40). By contrast, the
total widths Γtot

ha
as the sum of the partial widths according to Eq. (6.39) from FeynHiggs

are inserted into the Breit-Wigner propagators in Fig. 10.4(d). Due to the p2 = 0
approximation of the partial two-loop self-energies used in FeynHiggs, ΓIm

ha
corresponds

to a tree-level width. The total width Γtot
ha

reaches significantly larger values than ΓIm
ha
,

particularly in the interference region due to the Ẑ-factor enhancement. As a consequence,
the cross section is suppressed by the larger width, as in Sect. 6.5, resulting in a substantial
difference between σBWẐ

coh (ΓIm
ha

) and σBWẐ
coh (Γtot

ha
). However, the pronounced dependence on

Γha cancels out in the ratio in Eq. (10.6) so that the results of η in Fig. 10.4(d) are nearly
identical to those in Fig. 10.4(c). Within the region of most significant interference, where
η ≤ −50%, both implementations of the total width agree with each other at a precision
of 2%. For MH± . 300GeV or tan β . 8, the two methods lead to slightly different
results of η because in that region the mass differences between theMha are larger than in
the decoupling regime. So the precise values of the total widths do matter in the question
if or how much two close-by, but not exactly degenerate, resonances overlap. This affects
mainly the interference between h1 and h2. In the remaining parameter plane, h2 and h3,
which are involved in the relevant interference, are quasi degenerate while h1 is much
lighter. Therefore the h2 − h3 overlap is equally fulfilled also for a smaller width because

R32 :=
Mh3 −Mh2

Γh2 + Γh3

� 1 (10.7)

(see Fig. 10.5(a)) for any method of the total width, and the relative deviation of the
two versions of η does not exceed 5%. Hence, while Γtot

ha
gives a more complete result,

both versions of η are equally suited for determining the impact of the interference on
exclusion bounds. Here we use ΓIm

ha
, which matches the method of full propagators.

In order to understand the location of the strongest interference, we examine the
couplings that play a role in the interference term compared to those in the incoherent
sum:

c23 =
2Re[gh2ττ gh2bb g

∗
h3ττ

g∗h3bb
]

|gh2ττ gh2bb|2 + |gh3ττ gh3bb|2
, (10.8)

where ghaff̄ with a = 1, 2, 3, f = τ, b are the tree-level couplings gif f̄ from Eq. (3.49)
for i = h,H,A, combined with two-loop Ẑ-factors from FeynHiggs-2.10.2 according to
Eq. (5.73):

ghaff̄ =
∑

i=h,H,A

Ẑaigif f̄ . (10.9)

Since the masses mτ ,mb and other constants cancel out in Eq. (10.8), the ratio c23

is determined by the Ẑ-factors and the angles cosα and sin β. Fig. 10.5(b) shows
that c23 already indicates the interference region whereas effective couplings based on
real U-factors in Fig. 10.5(c) or the pure tree-level couplings in Fig. 10.5(d) yield a
completely different pattern. The interference contribution in the squared matrix element
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10 Interference and complex phase effects in Higgs searches at the LHC

is proportional to [45]

|M|2int ∝ c−4
β 2Re

[
(c2
αẐ2HẐ

∗
3H + s2

βẐ2AẐ
∗
3A)2∆BW

2 (s)∆BW*
3 (s)

]
. (10.10)

In the decoupling region of mA � MZ and for tan β � 1, the heavy Higgs bosons h2

and h3 have very similar masses Mh2 'Mh3 and widths Γh2 ' Γh3 so that the product
∆BW

2 (s)∆BW*
3 (s) ' |∆BW

2 |2 becomes approximately real. In this limit, the relations
Ẑ2H ' Ẑ3A and Ẑ2A ' −Ẑ3H and cosα ' sin β simplify Eq. (10.10) to:

|M|2int ∝ −8t4β (ImẐ2H ReẐ2A − ReẐ2H ImẐ2A)2 |∆BW
2 (s)|2. (10.11)

Hence Eq. (10.11) reveals that in the decoupling limit the interference term of h2 and
h3 can only contribute substantially if the two following conditions are met. Firstly, a
large mixing is needed. This means that the 2-3 submatrix of Ẑ must not be purely
diagonal (Ẑ2A = Ẑ3H = 0, Ẑ2H = Ẑ3A = 1) or purely off-diagonal (Ẑ2H = Ẑ3A = 0,
Ẑ2A = Ẑ3H = 1), where one of the mass eigenstates would be a completely H-like scalar
and the other a completely A-like pseudoscalar. Instead, all four involved Ẑ-matrix
elements should have non-vanishing values.

Secondly, a non-zero interference term requires imaginary parts of the Ẑ-factors,
which originate from the imaginary parts of the Higgs self-energies. Consequently,
replacing the Ẑ-factors by real U-factors in an effective coupling approach renders the
interference term zero in the decoupling limit even though the U-matrix may contain
equally large diagonal and off-diagonal elements. Even if the conditions of mixing
elements and imaginary parts a fulfilled, there might still be a cancellation between the
two terms within the bracket in Eq. (10.11).

Outside the decoupling limit, with unequal masses, widths and mixing properties
of h2 and h3, the full product of angles from the couplings, Ẑ-factors and complex
Breit-Wigner functions has to be taken into account. Thereby, a significant interference
term can also arise without the above-mentioned conditions. However, in the relevant
part of the considered parameter plane, the decoupling limit is reached. Given the
quasi-degeneracy of Mh2 and Mh3 shown in Fig. 10.5(a), the structure of the Ẑ-matrix
provides in fact a well-suited indication of the relevance of the interference term. In
particular, the square of the bracket and the absolute square of the Breit-Wigner function
in combination with the overall minus sign in Eq. (10.11) explain the observed destructive
interference effect.
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Figure 10.5.: (a): Ratio R32 of mass difference Mh3 −Mh2 and sum of total widths Γh2 + Γh3 .
(b): Ratio c23 of couplings in the interference term compared to those in the
incoherent sum, including Ẑ-factors; (c): as in (b), but including U-factors;
(d): as in (b) , but for tree-level couplings with neither Ẑ nor U. All values are
obtained from FeynHiggs.
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10 Interference and complex phase effects in Higgs searches at the LHC

10.3. Impact on exclusion limits

Given the remarkably large interference effects that we encountered in the previous
section, it is necessary to reconsider the interpretation of experimental searches for
additional neutral Higgs bosons if one wants to include complex phases in the MSSM.
The interference terms between h1, h2, h3 need to be included in the theoretical prediction
in order to allow for a consistent comparison.

In order to include the interference effect in the evaluation within HiggsBounds-4.2.0
[247–250], appropriate input data is needed in the form of modified individual contribu-
tions of h1, h2 and h3. Therefore, the overall interference σint term is split into the three
combinations of ha and hb (a, b = 1, 2, 3):

σ = σh1 + σh2 + σh3 + σint12 + σint13 + σint23 (10.12)

= σh1

(
1 +

σint12 + σint13

2σh1

)
+ σh2

(
1 +

σint12 + σint23

2σh2

)
+ σh3

(
1 +

σint13 + σint23

2σh3

)
(10.13)

= σh1 (1 + η1) + σh2 (1 + η2) + σh3 (1 + η3), (10.14)

where the individual interference contributions ηa for each Higgs boson ha and b, c 6= a
are defined as

ηa =
σintab

+ σintac

2σha
. (10.15)

The ηa are applied to modify the prediction of σ(bb̄ → ha) in the input data for
HiggsBounds by rescaling

σMSSM(bb̄→ ha)

σSM(bb̄→ ha)
−→ σMSSM(bb̄→ ha)

σSM(bb̄→ ha)
· (1 + ηa) (10.16)

for a = 2 and 3 while the effect for h1 can be neglected in the present analysis.
HiggsBounds then compares the modified production ratio, normalised by the SM
expectation, times the MSSM branching ratio of ha → τ+τ− with the observed limit. The
reduced rates on account of the destructive interference term between h2 and h3 lead to
an interesting outcome: Some parameter points that are excluded when the interference
term is not taken into account despite the non-vanishing value of φAt = π/2 or in the
CP-conserving case where the interference term is absent have a model expectation
smaller than the observed limit if the CP-violating interference term is included. Conse-
quently they can no longer be excluded at the 95% CL. For the Mmod+

h scenario with
µ = 1000GeV and φAt = π/4, such an effect is shown in Fig. 10.6, where the blue region
corresponds to the conventional use of HiggsBounds based on the sNWA, i.e. neglecting
the interference term. In contrast, the interference term parametrised by η2 and η3 is
taken into account in the results shown in red. We notice that a substantial, previously
excluded area centered between MH± ∼ 450GeV and 700GeV for tan β between roughly
18 and 32 remains now open, following the shape of the region where the interference
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10.4 Summary and outlook: ���CP interference in LHC Higgs searches

effect is most significant in Fig. 10.4(c). Furthermore, the exclusion bounds are slightly
weakened in the high-MH± range.

Figure 10.6.: Parameter regions excluded by HiggsBounds for µ = 1000GeV, φAt = π/4
without the interference term (blue) and including the interference term (red)
by modifying the input data for HiggsBounds with η (see text).

10.4. Summary and outlook: CP-violating interference
in LHC Higgs searches

In this chapter, we have investigated the impact of the phase φAt on the cross section
σ(bb̄ → τ+τ−) via Higgs exchange, both in the full propagator calculation and in the
approach of Breit-Wigner propagators and have found very good agreement between these
two methods. A complex phase does not only give rise to a CP-violating interference
term, but it also affects for example masses, widths and the mixing structure. The effect
of φAt is amplified by a large value of µ, which we evaluated for different combinations of
µ and φAt .

In a second step, we disentangled the overall phase effect from the genuine interference
effect. By exploiting the formalism of the Breit-Wigner propagators in the mass basis to
treat each resonance separately, we calculated the difference between the coherent and
incoherent sum of the contributions of three neutral MSSM Higgs bosons. We found
very large, negative interference effects in the Mmod+

h scenario with µ = 1000GeV and
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10 Interference and complex phase effects in Higgs searches at the LHC

φAt = π/4, which arise from the strong propagator mixing that is also reflected by the
Ẑ-matrix. In particular, the imaginary parts of the Higgs self-energies are essential for a
sizeable interference term between h2 and h3 in the decoupling limit.

Such a drastic interference effect can reduce the theoretical prediction for the MSSM
Higgs production from bb̄ and the subsequent decay into τ+τ− so significantly that it
becomes smaller than the actually observed limit. Consequently, a noticeable region of
the parameter space that was excluded in the case where the interference term was absent
cannot be excluded anymore if the interference is properly taken into account. This
scenario highlights the importance of the interference term in the correct interpretation of
experimental results and motivates further studies of CP-violating benchmark scenarios.

In future investigations, we will analyse the impact of additional imaginary parts of
MSSM parameters that influence the Higgs sector notably, such as the phase φM3 of the
gluino mass parameter, φµ (albeit severely constrained) and independent phases of φAb
and φAτ . In order to improve the sensitivity to interference effects at low and medium
values of tan β, we will also include the interference term in the process gg → ha → τ+τ−.
In conclusion, the above studies motivate the analysis of experimental results in run II of
the LHC in scenarios with complex parameters, taking interference effects into account.
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Chapter 11.

Conclusions

In this thesis we have investigated interference effects of new particles beyond the SM,
particularly in the Higgs sector of the MSSM both for the cases of real and complex
parameters. We have approached this topic from three different perspectives - from aspects
of higher-order calculations over the development of a new method to the comparison
with LHC data.

In Chapters 7-9, we have formulated and validated a model-independent method
to facilitate the calculation of interference terms between quasi mass-degenerate par-
ticles in an on-shell approximation, incorporating also higher-order corrections. Our
method thereby extends the standard narrow-width approximation, which does not take
interference terms into account.

In Chapters 5 and 6, we have analysed the mixing structure of neutral Higgs bosons
in the MSSM including the case of CP -violation induced by complex phases. We have
derived an approximation of the full propagators in terms of Breit-Wigner propagators
and on-shell mixing factors, which conveniently allows to calculate the interference term.

Finally in Chapter 10, we have studied the phenomenological implications of inter-
ferences between neutral MSSM Higgs bosons for the case of complex parameters in view
of the search results at the LHC. Strongly destructive effects open up parameter regions
that would be regarded as excluded if no interference terms were taken into account.

In the following, we will summarise our main results of these three directions.

Higher-order mixing and CP-violating effects in the MSSM Higgs sector

The Higgs sector of the MSSM is via loop diagrams highly sensitive to parameters from all
MSSM sectors. Particularly, if some parameters have imaginary parts, these lead to CP-
violation in the Higgs sector so that the neutral scalars h,H and the pseudoscalar A mix
into the mass eigenstates h1, h2, h3. Neglecting mixing with Goldstone and gauge bosons,
the full propagators of the interaction eigenstates, containing momentum dependent
mixing self-energies, have three complex poles. We derived analytically that the full
propagators can be approximated by Breit-Wigner propagators of the corresponding
mass eigenstates, multiplied by on-shell wave function normalisation factors (Ẑ). We
tested and confirmed that the Ẑ-factors accurately reproduce the mixing properties,
in particular also the imaginary parts, while the Breit-Wigner propagators contain
the leading momentum dependence. A single Breit-Wigner propagator arises from the
expansion of a full propagator around one of its complex poles. By taking the sum
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of all three Breit-Wigner propagators combined with the appropriate Ẑ-factors for the
transition between mass and interaction eigenstates, this approximation is valid in all
resonance regions and covers especially also the case of nearby poles and overlapping
resonances. The formalism of Breit-Wigner propagators and Ẑ-factors benefits from the
possibility to implement the most accurate value of the total width, including higher-order
terms beyond those present in the full propagators. Furthermore it enables to separate
the contributions of each of the mass eigenstates and to determine their interference
conveniently.

Interference effects in BSM processes with a generalised NWA

We developed a generalisation of the well-known NWA in order to include also interference
terms in the useful factorisation of a complicated process into the on-shell production and
the subsequent decay of an unstable particle with a narrow width. Interferences in BSM
models can occur if the mass difference of two states is smaller than the sum of their total
widths such that their resonances overlap. We factorise the interference contribution
in terms of on-shell matrix elements, which can optionally be further simplified as
interference weight factors and a process-independent integral to be combined with
the standard NWA. Processes with many external legs can often be calculated at tree-
level without the NWA. Hence the main advantage of the generalised NWA lies in the
application to processes where the factorisation into production and decay subprocesses is
indispensable to make calculations at higher order feasible. Therefore we introduced the
gNWA both at lowest order and for one-loop and real corrections in a UV- and IR-finite
way, as we showed explicitely.

For a validation of the gNWA concept, we calculated the decay width Γ(χ̃0
4 →

χ̃0
1τ

+τ−) on the one hand as a three-body decay via intermediate Higgs bosons and
on the other hand factorised into two steps of the two-body decays χ̃0

4 → χ̃0
1h/H and

h/H → τ+τ−. Both calculations were performed at the tree-level and at one-loop order
with additional soft photon radiation, supplemented by two-loop Ẑ-factors, which account
for the h−H mixing. In the modified Mmax

h scenario with real parameters we found a
substantial destructive interference effect between the two CP-even Higgs bosons if their
mass difference is smaller than the sum of their total widths and mixing is present. This
caused an enormous discrepancy between the sNWA and the three-body decay by up
to a factor of 5. In contrast, the gNWA reproduced the unfactorised result within an
uncertainty of few percent. Calculating the full lowest-order result and factorising only
the loop contribution further improved the accuracy of the gNWA prediction. Hence our
gNWA is a useful tool to combine higher-order and interference effects while maintaining
the beneficial factorisation into production and decay (as long as non-factorisable terms
such as box diagrams are small). Moreover, higher-order corrections to each of the
subprocesses can be readily combined resulting in terms beyond the achievable order of
the unfactorised process. We introduced the gNWA in a model-independent way so that
it can be applied to other processes and BSM models.
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Impact of complex phases on Higgs searches at the LHC

Interference effects between Higgs bosons can become highly relevant in the assessment
of excluded and allowed parameter configurations. While the CP-conserving interference
between h and H is restricted to a narrow parameter region with real parameters, h2

and h3 can be quasi mass-degenerate, mix and interfere in a large part of the MSSM
parameter space in the case of CP-violating phases. The dominant influence on the Higgs
sector is caused by the phase of the trilinear stop coupling, φAt , which is augmented
by large values of µ. We studied different combinations of φAt and µ as modifications
of the Mmod+

h scenario. For the process of bb̄ → h1,2,3 → τ+τ− with µ = 1000GeV
and φAt = π/4, we distinguished the overall non-zero phase effect from the genuine
interference effect. We found a drastic destructive interference between h2 and h3 of up
to −97% in the decoupling regime so that a considerable parameter region escaped the
exclusion bounds.

In conclusion, interference effects between quasi mass-degenerate particles can be
very important in the interpretation of experimental results from searches for new physics
at the LHC and future colliders. We provided model-independently a generalised NWA
for the efficient calculation of interference terms at higher order. Particularly in the
MSSM Higgs sector with complex parameters, huge CP-violating interference effects lead
to a significant shift of current exclusion limits. In order to fully exploit the eagerly
awaited data of the LHC Run II, such effects should be taken into account as precisely
as possible.
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Appendix A.

Parameter values in MSSM scenarios

Scenario Mmax
h mod. Mmax

h Mmod+
h CMmod+

h light τ̃
Reference [168,169] our modification [167] our modification [167]
MSUSY 1000 1000 1000 1000 1000
Ml̃3

1000 1000 1000 1000 245
Xt/MSUSY 2 2.5 1.5 1.5 1.6

Ab At At At At At

Aτ At At At At 0
Af1,2 0 0 0 0 0
φAt 0 0 0 var 0
µ ±200 200 200∗ 200∗ 500
M1 GUT 100 GUT GUT GUT
M3 800 800 1500 1500 1500

Table A.1.: Overview of parameter values in GeV (apart from the dimensionless ratio) for
scenarios that are used or referred to in this thesis. Xt is given in the on-shell
scheme. At = Xt + µ cotβ in all listed scenarios. GUT denotes the relation
in Eq. (3.13) between M1 and M2. The asterisk denotes the variation µ =
±200, ±500, ±1000GeV. var implies variation, in this thesis φAt = 0, π/4, π/2.
Further details can be found in the references.

150



Appendix B.

Details of the renormalisation of the
neutralino-chargino sector

B.1. Renormalisation transformations

The counterterms of the elements of the neutralino and chargino mass matrices X, Y are
given by

δY11 = δM1 (B.1)
δX11 = δY22 = δM2 (B.2)
δX22 = −δY34 = −δY43 = δµ (B.3)

δX12 =

(
δMW

MW

+
δsβ
sβ

)
·X12 =

sβδM
2
W√

2MW

+
√

2sβc
2
βMW δtβ. (B.4)

δX21 =

(
δMW

MW

+
δcβ
cβ

)√
2MW cβ =

δM2
W

MW

cβ√
2
−
√

2MW cβs
2
βδtβ (B.5)

δY14 = δY41 =
sβsW
2MZ

δM2
Z +MZsW sβc

2
βδtβ +MZsβδsW , (B.6)

δY23 = δY32 =
cβcW
2MZ

δM2
Z +MZcW cβs

2
βδtβ −MZcβδcW , (B.7)

δY24 = δY42 = −sβcW
2MZ

δM2
Z −MZcW sβc

2
βδtβ −MZsβδcW , (B.8)

δY13 = δY31 = −cβsW
2MZ

δM2
Z +MZsW cβs

2
βδtβ −MZcβδsW . (B.9)
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B Details of the renormalisation of the neutralino-chargino sector

We obtain the renormalised Lagrangian

Lχ0 →
1

2
χ̃0
i

[
(1 +

1

2
δZ̄L

0 )ikωR + (1 +
1

2
δZ̄R

0 )ikωL

]
·
[
�pδkl − ωL(N∗{Y + δY }N †)kl − ωR(N{Y † + δY †}NT )kl

]
·
[
(1 +

1

2
δZL

0 )ljωL + (1 +
1

2
δZR

0 )ljωR

]
χ̃0
j

= LBornχ0
+

1

2
χ̃0
i �p[

1

2
(δZ̄R

0 + δZR
0 )︸ ︷︷ ︸

∆ΣRij

ωR +
1

2
(δZ̄L

0 + δZL
0 )︸ ︷︷ ︸

∆ΣLij

ωL]ijχ̃
0
j

− 1

2
χ̃0
iωR[NδY †NT +

1

2
(NY †NT δZR

0 + δZ̄L
0 NY

†NT )]ij︸ ︷︷ ︸
−∆ΣSRij

χ̃0
j

− 1

2
χ̃0
iωL[N∗δY N † +

1

2
(N∗Y N †δZL

0 + δZ̄R
0 N

∗Y N †)]ij︸ ︷︷ ︸
−∆ΣSLij

χ̃0
j +O(δ2). (B.10)

B.2. Parameter renormalisation in the NNN schemes

In a general scheme with χ̃0
i , χ̃

0
j and χ̃0

k on-shell, the solution of Eq. (4.38) implies [45]

δ|M1| = [(Re{e−iφµNi3Ni4}Re{N2
j2} − Re{e−iφµNj3Nj4}Re{N2

i2})Nk

+ (Re{e−iφµNj3Nj4}Re{e−iφM1N2
k2} − Re{e−iφµNk3Nk4}Re{N2

j2})Ni

+ (Re{e−iφµNk3Nk4}Re{N2
i2} − Re{e−iφµNi3Ni4}Re{N2

k2})Nj]/L (B.11)
δ|M2| = [(Re{e−iφµNj3Nj4}Re{e−iφM1N2

i1} − Re{e−iφµNi3Ni4}Re{e−iφM1N2
j1})Nk

+ (Re{e−iφµNk3Nk4}Re{e−iφM1N2
j1} − Re{e−iφµNj3Nj4}Re{e−iφM1N2

k1})Ni

+ (Re{e−iφµNi3Ni4}Re{e−iφM1N2
k1} − Re{e−iφµNk3Nk4}Re{e−iφM1N2

i1})Nj]/L
(B.12)

δ|µ| = −[(Re{N2
i2}Re{e−iφM1N2

j1} − Re{e−iφM1N2
i1}Re{N2

j2})Nk

+ (Re{N2
j2}Re{e−iφM1N2

k1} − Re{e−iφM1N2
j1}Re{N2

k2})Ni

+ (Re{N2
j2}Re{e−iφM1N2

k1} − Re{e−iφM1N2
k1}Re{N2

k2})Nj]/(2L), (B.13)
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B.2 Parameter renormalisation in the NNN schemes

where we defined the following shorthand notations:

Ni := Re{mχ̃0
i

[
ΣL
ii(m

2
χ̃0
i
) + ΣR

ii(m
2
χ̃0
i
)
]

+
[
ΣSL
ii (m2

χ̃0
i
) + ΣSR

ii (m2
χ̃0
i
)
]
}

− 4
2∑

k=1

4∑
l=3

δYlkRe{NikNil} (B.14)

L := 2(Re{e−iφM1N2
k1}
[
Re{e−iφµNi3Ni4}Re{N2

j2} − Re{e−iφµNj3Nj4}Re{N2
i2}
]

+ Re{N2
k2}
[
Re{e−iφµNj3Nj4}Re{e−iφM1N2

i1} − Re{e−iφµNi3Ni4}Re{e−iφM1N2
j1}
]

+ Re{e−iφµNk3Nk4}
[
Re{N2

i2}Re{e−iφM1N2
j1} − Re{N2

j2}Re{e−iφM1N2
i1}
]
). (B.15)
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Appendix C.

Kinematic relations

We list some basic kinematic relations that are useful for the calculation of decay
widths [23,216].

2-body decay

For a decay with pa → pb, c, the momenta and energies in the final state are determined
by the following mass relations.

|~p| ≡ |~pb| ≡ |~pc| =
√

(m2
a − (mb +mc)2) (m2

a − (mb −mc)2)

2ma

(C.1)

|~p|2 =
(m2

a −m2
b +m2

c)
2

4m2
a

−m2
c =

(m2
a +m2

b −m2
c)

2

4m2
a

−m2
b (C.2)

Eb =
m2
a +m2

b −m2
c

2ma

(C.3)

Ec =
m2
a −m2

b +m2
c

2ma

(C.4)

Special case of equal masses In the case of particles with the same mass mb = mc

in the final state, the energies are reduced to

Eb = Ec =
ma

2
, |~pb|2 = |~pc|2 =

m2
a

4
−m2

b .

Width With the 2-body phase space and the flux factor F = 2
√
s = 2ma, the

differential width reads

dΓ =
1

F
|M|2dlips(a; b, c) =

1

32π2
|M|2 |~pb|

m2
a

dφd cos θ. (C.5)

3-body decay

The phase space is more complicated for 3 particles in the final state: a→ b, c, d. With
pij := pi + pj and m2

ij = p2
ij , it is convenient to choose a frame in which a pair of particles

is produced at rest. According to the three possible pairs within the three-body final
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state, there exist three equivalent, so-called Gottfried-Jackson frames [186]. With the
choice of the bc-rest frame ~pb + ~pc = 0, the phase space can be parametrised in the
following way [23]:

dΓ =
1

(2π)3

1

8ma

|M|2dEbdEc =
1

(2π)3

1

32m3
a

|M|2dm2
bcdm

2
cd (C.6)

The energies

E∗c :=
m2
bc −m2

b +m2
c

2mbc

E∗d :=
−m2

bc +m2
a −m2

d

2mbc

(C.7)

are the boosted energies of c and d in the mbc rest frame. The integration limits of mcd

are functions of mbc which itself is limited by the kinematic bounds of the momentum
relation pa − pd = pb + pc:

(E∗c + E∗d)
2 − (

√
E∗2c −m2

c +
√
E∗2d −m2

d)
2 ≤ m2

cd

≤ (E∗c + E∗d)
2 − (

√
E∗2c −m2

c −
√
E∗2d −m2

d)
2, (C.8)

(mb +mc)
2 ≤ m2

bc ≤ (ma −md)
2. (C.9)

The upper bound is reached if particle d is produced at rest, the lower bound if b and c
are at rest.
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