
Quantum corrections to Drell-Yan

production of Z bosons

Dissertation
zur Erlanung des Doktorgrades

des Fachbereichs Physik
der Universität Hamburg

vorgelegt von
Elena S. Shcherbakova
aus Kujbyshev (USSR)

Hamburg 2011



.

Erstgutachter der Dissertation: Prof. Dr. B. A. Kniehl
Zweitgutachter der Dissertation: Prof. Dr. A. Mirizzi

Erstgutachter der Disputation: Prof. Dr. B. A. Kniehl
Zweitgutachter der Disputation: Prof. Dr. G. Moorgat-Pick

Datum der Disputation: 22. Juli 2011
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Abstract

In this thesis, we present higher-order corrections to inclusive Z-boson hadroproduction
via the Drell-Yan mechanism, h1+h2 → Z+X, at large transverse momentum (qT ). Specifi-
cally, we include the QED, QCD and electroweak corrections of orders O(αSα, α

2
Sα, αSα

2).
We work in the framework of the Standard Model and adopt the MS scheme of renor-
malization and factorization. The cross section of Z-boson production has been precisely
measured at various hadron-hadron colliders, including the Tevatron and the LHC. Our
calculations will help to calibrate and monitor the luminosity and to estimate of back-
grounds of the hadron-hadron interactions more reliably. Besides the total cross section,
we study the distributions in the transverse momentum and the rapidity (y) of the Z boson,
appropriate for Tevatron and LHC experimental conditions. Investigating the relative sizes
of the various types of corrections by means of the factor K = σtot/σBorn, we find that the
QCD corrections of order α2

Sα are largest in general and that the electroweak corrections
of order αSα

2 play an important role at large values of qT , while the QED corrections at
the same order αSα

2 are small, of order 2% or below. We also compare our results with
the existing literature. We correct a few misprints in the original calculation of the QCD
corrections, and find the published electroweak corrections to be incomplete. Our results
for the QED corrections are new.



Zusammenfassung

In dieser Arbeit präsentieren wir die Korrekturen höherer Ordnungen zur inklusiven
Hadroproduktion von Z-Bosonen über den Drell-Yan-Mechnismus, h1 + h2 → Z + X,
bei hohem Transversalimpuls (qT ). Insbesondere nehmen wir die QED, QCD und elek-
troschwachen Korrekturen der Ordnungen O(αSα, α

2
Sα, αSα

2) mit. Wir arbeiten im Rah-
men des Standardmodels und verwenden das MS-Schema der Renormierung und Fak-
torisierung. Der Wirkungsquerschnitt der Z-Bosonerzeugung wurde bereits bei mehreren
Hadronen-Speicherringen, einschließlich dem Tevatron und dem LHC, gemessen. Un-
sere Rechnungen werden dazu beitragen, die Luminosität zuverlässiger zu eichen und
zu überwachen und die Untergründe der Hadron-Hadron-Wechselwirkung zuverlässiger
abzuschätzen. Neben dem totalenWirkungsquerschnitt untersuchen wir auch die Verteilun-
gen im Transversalimpuls und in der Rapidität (y) des Z-Bosons unter den experimentellen
Bedingungen des Tevatron und des LHC. Indem wir die relative Größe der verschiedenen
Korrekturtypen mit Hilfe des Faktors K = σtot/σBorn untersuchen, finden wir, daß die
QCD-Korrekturen der Ordnung α2

Sα im allgemeinen am größten sind und daß die elek-
troschwachen Korrekturen der Ordnung αSα

2 bei großen Werten von qT eine wichtige Rolle
spielen, während die QED-Korrekturen derselben Ordnung αSα

2 klein sind, von der Ord-
nung 2% und darunter. Wir vergleichen unsere Ergebnisse auch mit der vorhandenen Lit-
eratur. Wir korrigieren einige Druckfehler in der Originalrechnung der QCD-Korrekturen
und finden, daß die veröffentlichten, elektroschwachen Korrekturen unvollständig sind. Un-
sere Ergebnisse für die QED-Korrekturen sind neu.



Contents

1 Introduction 7

2 Cross section 10

2.1 Parton distributions in the hadrons . . . . . . . . . . . . . . . . . . . . . . 10

2.2 DGLAP functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3 Partonic cross section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.4 Virtual integrations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.4.1 Phase space with two final particles . . . . . . . . . . . . . . . . . . 16

2.4.2 Integration By Part procedure . . . . . . . . . . . . . . . . . . . . . 18

2.4.3 Loop Integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.5 Bremsstrahlung integrations . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.5.1 Phase space with three final particles . . . . . . . . . . . . . . . . . 22

2.5.2 Van Neerven’s Integrals . . . . . . . . . . . . . . . . . . . . . . . . 24

2.6 d-dimension gamma matrices . . . . . . . . . . . . . . . . . . . . . . . . . 27

3 Diagrams, Singularity, Factorization 30

3.1 Interactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.2 Matrix elements construction . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.3 Singularities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.3.1 Modified minimal-subtraction scheme . . . . . . . . . . . . . . . . . 39

3.3.2 Soft singularities . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.3.3 Factorization of collinear singularities . . . . . . . . . . . . . . . . . 40

4 Analytical results 42

4.1 Z boson production at the order O(αSα).
Born level. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.2 Z boson production at the order O(α2
Sα).

QCD part . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.3 Z boson production at the order O(αSα
2).

QED part . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.4 Z boson production at the order O(αSα
2).

EW part . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3



4 CONTENTS

5 Numerical results 49

5.1 Parameters. Running constants . . . . . . . . . . . . . . . . . . . . . . . . 49
5.2 Hadronic cross sections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
5.3 Plots and numerical result . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

6 Conclusion 62

A Operator definitions of Parton Distribution Functions 64

B Analytical result for QED corrections 66

C Analytical result for EW corrections 73

D Analytical result for EW corrections, qq → Zqq part 85



List of Figures

2.1 Production of the weak boson Z in hadron-hadron interaction. . . . . . . 11

2.2 Comparison of the CTEQ6M fit to the H1 data [23] (above) and the ZEUS
data [24] (below) in separate x bins. The data points include the estimated
corrections for systematic errors. The error bars contain statistical only. [25]. 12

2.3 Overview of the CTEQ6M parton distribution functions at Q = 2 and Q =
100GeV [25]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.4 Matrix elements structure. See explanation in the text. . . . . . . . . . . 16

3.1 Diagrams contributing to the lowest order in Drell-Yan mechanism for Z
boson production. The diagrams ai with i = 1, ..., 4 present order O(αSα),
the diagrams ai with i = 5, 6 present order O(α2). . . . . . . . . . . . . . 34

3.2 Virtual diagrams contributing to the process qq̄ → BZ, with boson B as
gluon for calculating of order O(α2

Sα) or as photon for calculating of order
O(αSα

2). The diagrams v11, v12 and v13 correspond only to O(α2
Sα) case. . 35

3.3 Virtual diagrams contributing to the process qq̄ → gZ, electroweak case. . 36

3.4 a) Diagrams bi are contributed to the process qq̄ → Zqq̄ at the ordersO(α2
Sα)

and O(αSα
2) b) Diagrams ci are contributed to the process qq̄ → Zgg and

qq̄ → Zgγ at the orders O(α2
Sα) and O(αSα

2) correspondingly . . . . . . . 37

3.5 a) Diagrams ai contributing to subprocess qq → qqZ with exchange g, γ or
Z according to considering case; b) diagrams bi contributing to subprocess
qq′ → qq′Z. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.1 Illustration of the color structure in the mixed QED/QCD contribution to
the process q + q −→ Z + q + q. See explanation in the text. . . . . . . . . 46

5.1 The total cross section of Z boson production for
√
S = 14TeV (LHC

energy). The upper picture shows the full value of cross section. The lower
one shows the logarithmic values. . . . . . . . . . . . . . . . . . . . . . . . 53

5.2 The same as Fig. (5.1) for
√
S = 14TeV (Tevatron energy). . . . . . . . . . 54

5.3 NLO QCD and EW corrections (K − 1 factor) to the total σ for p+ p −→
Z+X for

√
S = 14TeV (LHC). Upper plot includes all NLO contributions.

Lower plot is the close up without QCD NLO. . . . . . . . . . . . . . . . 56

5



6 LIST OF FIGURES

5.4 The same as Fig. (5.3) for
√
S = 1.96TeV and for process p+ p̄ −→ Z +X

(Tevatron). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
5.5 The qT distributions to Z boson production at

√
S = 14TeV (LHC). Upper

picture shows the full value of cross section. Lower one shows the logarithmic
values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.6 The same as Fig.(5.5) at
√
S = 1.96TeV (Tevatron). . . . . . . . . . . . . 59

5.7 The rapidity distribution to Z boson production. Upper picture shows the
value at energy

√
S = 14TeV (LHC), the lower one shows the value at

energy
√
S = 1.96TeV (Tevatron). . . . . . . . . . . . . . . . . . . . . . . 60



Chapter 1

Introduction

The topic of this thesis is a precision investigation of Z boson production in hadron-
hadron interactions. In particular, we calculated transverse momentum qT and rapidity y
distribution as well as the total cross section of Z boson production in proton-proton and
proton-antiproton collisions, where QED, QCD and electroweak corrections were taken into
account up to the orders O(αSα, α

2
Sα, αSα

2) of the perturbation theory. The accuracy of
calculation for the theoretical description of this process is very important for the modern
physics. The measurements of the Z boson production and jets are fundamental probes
of the electroweak sector of the Standard Model (SM) and are an essential starting point
for searches of new physics beyond the SM. The exploring of the electroweak symmetry
breaking and search for physics beyond the Standard Model are significant goals of exper-
imental research. For this purpose the detectors systematics should be under control. One
of the ways to achieve it is the study very precisely the well-understood standard processes
like W or Z boson production. The cross section of the Z boson production with the high
transverse momenta qT and well-isolated leptons decay modes can be very easy triggered
in detectors such as ATLAS [1] and CMS [2]. This provide a clean experimental signature
with rather low background especially for the Z boson production.

The Drell-Yan process occurs in high energy hadron-hadron scattering. It takes place
when a parton of one hadron and another parton of the other hadron annihilate with
creating a boson (virtual photon or neutral weak boson) which then decay into a pair of
oppositely-charged leptons. This process was first suggested by Sidney Drell and Tung-
Mow Yan in 1970 [3] to describe the production of lepton-antilepton pairs in high-energy
hadron collisions. Experimentally, this process was first observed by J.H. Christenson et
al. [4] in proton-uranium collisions at the Brookhaven National Laboratory, Alternating
Gradient Synchrotron. The production of leptons pairs of invariant mass around 95 GeV
was discovered and studied in other experiments [5].

The first theoretical calculation of the corrections to the Z boson production in the
Drell-Yan process was done in the paper of Altarelli at al. [6], where the cross section
dσ/dQ2 was calculated for the prediction of a muons pair production of invariant mass Q2

via the Drell-Yan mechanism in QCD.

The next-to-leading (NLO) QCD corrections for the large qT vector boson production

7



8 CHAPTER 1. INTRODUCTION

have been computed in [7] by R. K. Ellis at al., then by R. J. Gonsalves at al. in [8] and
by P. B. Arnold and M. H. Reno in [9]. The QCD corrections at the next-to-leading order
to this process are the prime necessity for the correct description and amount to several
tens of percent depending on the observable under consideration.

The corrections of order O(α2
S) to the Drell-Yan K-factor were considered in [10] by

W. L. van Neerven and others. This result was checked by R. V. Harlander and W. B. Kil-
gore in [11], where they fixed a mistake. Next step of corrections, the calculation of ad-
ditional jets to Z/W production in hadrons collisions, was considered in papers [12]. The
next-to-next-to-leading corrections including two-loop QCD diagrams were firstly com-
puted for the total cross-section by T. Matsuura and others in [13].

To make a certain prediction in the calculation of the multiple gluon emission, which
plays significant role in the region of small transverse momenta qT , the contributions of
arbitrary many gluon’s must be re-sum ( [14], [15]).

The dilepton differential distributions are calculated by C. Anastasiou et al. in pa-
pers [16]. The pure weak one-loop corrections were considered by J. H. Kuhn et al. in [17]
while in [18] the leading logarithmic corrections were found. These works show that the
electroweak corrections at high energies can amount few percent. The complete mixed
O(α2αs) corrections are not yet available. The virtual two-loop form factor of order ααs

has been computed in [19] in terms of finite sums which have been then summed up ana-
lytically using explanation in [20].

We confine our attention to the large qT and calculate the second order O(α2
Sα) and

O(αSα
2) corrections to Z boson production in Drell-Yan process. Using our calculated

expressions together with the parton distributions functions, we make the prediction for
qT distributions at Tevatron and LHC colliders. We work in the framework of the SM
in the MS scheme. The cancellation of the divergences was carry out in the dimensional
regularization scheme, where for the implementation of γ5 matrix we used the idea of ’t
Hooft-Veltman method. The result of calculations includes:

– the QCD corrections of the order O(α2
Sα) in the perturbation theory, where we

considered loops and bremsstrahlung corrections to the QCD i+ j → Z + k Born process
(here i, j and k are gluons, quarks or antiquarks);

– the QED corrections of the order O(αSα
2) in the perturbation theory, where we

considered loops and bremsstrahlung photonic corrections to the QCD i+ j → Z+k Born
process and QCD corrections to QED i+ j → Z + γ Born process.

– the EW corrections of the same order O(αSα
2), where we considered loops diagrams in

the exchange of weak bosons, and mixed EW-QCD corrections of the interference diagram
q+ q → q+ q+Z with exchange of Z boson and the same diagram with exchange of gluon.

As a result of our calculations we present the total cross section σtot(qcutT ) of the Z boson
production up to the order O(αSα

2, α2
Sα). The cut transverse momentum qcutT comes from

the upper limit of the integration over kinematic parameters. We plotted also the rapidity

and transverse momentum distributions of the differential cross sections dσ
dqT

and dσ
dy

.

We investigated the relative size of the various types of the contributions with a help of

the so-called K factor: K = σtot

σBorn . The analysis of the numerical calculations showed
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that however the corrections of the QCD order are the biggest in all region of transverse
momentum qT or rapidity y, the EW corrections are also very important at high qT and
can reach values up to 20%. The QED corrections are small and can be visible only by
high transverse momenta qT , where they reach 1− 2%.

The thesis will be organized as follows.
In Chapter 2 we discuss the general method for calculating the cross section in the

perturbation theory. In section (2.1) we give the master formula for the calculation of
the hadronic cross section with a help of convolution of the partonic cross section (which
is given in section 2.3) and the parton distribution functions. The Dokshitzer-Gribov-
Lipatov-Altarelli-Parisi (DGLAP) equations for the parton distribution functions are given
in the section (2.2). In section (2.4) we discuss Integration By Part procedure, which re-
duces all integrals to the set of master integrals, and gives the set of scalar integrals, which
was used by loop calculation. Section (2.5) is devoted to the the method of integration the
bremsstrahlungen corrections to the Born processes. We used Passarino-Veltman reduc-
tions scheme [21] to calculate loops integrals in dimensional regularization. The phase space
integrals are considered in d dimensional space by using the van Neerven [22] method. In
section (2.6) we discuss the way to calculate traces with γ5 matrix in d dimensional space.

In Chapter 3 we discuss the steps of our calculation in more detail. At first, we give
the Lagrangian of the SM and Feynman rules which were used in the calculation of QCD
and EW corrections to the Z boson production (section 3.1). Then, in section (3.2) we
introduce relevant Feynman diagrams. Section (3.3) contains the details of singularities
consideration and the factorization of collinear singularities.

In Chapter 4 we present the analytical results of the calculated corrections. Namely,
we give the formulae for the QCD corrections (Section (4.2)), for the QED correction
(Section (4.3)) and for the EW corrections (Section (4.4)).

The numerical analysis is given in Chapter 5, where we present the total cross section
σtot(qcutT ), where qcutT is cutted transverse momentum, the differential rapidity distribu-

tion dσ
dy

and the transverse momentum distributions dσ
dqT

. To see the values of different

contributions to total result we analyze the K factor for the total cross section.
Finally we present the summary in Chapter 6.
The appendix contains the full analytical formula for QED and EW corrections.



Chapter 2

Cross section

The first observations of the deep-inelastic lepton-nucleon scattering with non hadronic
final states shown that its dependence the transverse momentum q2T decline slower in
distinction from the elastic scattering cross sections, which slopes steeply down by high q2T .
This means that inside hadrons must be point-like subparticles, which later were named
by Feynman ”partons”.

In the current theoretical framework, the high energy lepton-hadron and hadron-hadron
cross sections are related to calculable fundamental parton interaction cross section σi,j by
the QCD factorization theorems as a sum of the convolution partonic cross section with
universal parton distribution functions.

In this Chapter we will explain how the hadronic cross section can be calculated throw
consideration of the partonic interactions and will give formulae for integrated partonic
cross sections.

2.1 Parton distributions in the hadrons

The collision of one hadron h1 with momentum P1 and another hadron h2 with momentum
P2 at high energies with a production of a weak boson, so-called Drell-Yan process, can
be described in the frame of the parton model. According to this model, in the limit of
big collision energy S and high value of virtual bosons mass q2 → ∞ (with fixed relation
q2/S), the reaction is going throw interaction of partons with production of a vector boson
V with momentum q (see Fig. (2.1)). The vector boson decaying into lepton pair can be
observed at the detectors in experiments. Each of partons is emitted from parent hadrons
and contains the part x of momenta of hadron.

The Drell-Yan process can be written as

h1(P1) + h2(P2) −→ V (q) +X, (2.1)

where for our case V is the Z boson with transverse momentum qT and mass q2 = m2
Z ; X

are unobservable particles which arise together with the vector boson. We have to integrate
over their momenta.

10
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h1(P1)

p1

h1(P2)

p2

}X

Z(q)

Figure 2.1: Production of the weak boson Z in hadron-hadron interaction.

In the framework of the particle interaction we can rewrite this process as a partons
interaction:

i(p1) + j(p2) −→ V (q) +X; (2.2)

here i(j) is the mass-less parton with momentum pi(j) = xi(j)Pi(j), which emits from the
corresponding hadron hi(j) (i, j = 1, 2). Let us denote fi(x, µ

2
F ) the probability of density to

find the parton i with momentum fraction x if it is probes at factorization scale µ2
F . Then

the hadronic cross-section of the Z boson production in the Drell-Yan process (2.1) can be
written as a convolution of parton densities functions with the partonic cross-section:

dσ

dq2T dy
=
∑

i,j

∫

dx1 dx2 fi(x1, µ
2
F )fj(x2, µ

2
F )
s dσ̂i,j
dt du

(x1P1, x2P2, µ
2
F ). (2.3)

Here the hadronic cross section σ is wrote as a derivative distribution of transverse mo-
mentum of observable boson qT and rapidity y. The parameters s, t and u are common
Mandelstam variables, which are composed of partonic momenta. The sum runs over all
parton flavors i and j, and the ”hat” at the partonic differential cross-section σ̂i,j means
that calculations were done in the MS scheme, which we will discuss later.
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Figure 2.2: Comparison of the CTEQ6M fit to the H1 data [23] (above) and the ZEUS
data [24] (below) in separate x bins. The data points include the estimated corrections for
systematic errors. The error bars contain statistical only. [25].

Because of the inherent non-perturbative effect in a QCD binding states, the parton
distribution functions (PDF) cannot be obtained by the perturbative QCD. Due to the
limitations in present lattice QCD calculations, the known PDFs are instead obtained by
using experimental data. The parton distributions can be determined from analyzing of a
set of standard experiments:

– deep inelastic scattering (DIS),
– lepton-pair production,
– high-pt direct-photon production,
– W - and Z-production,
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– high-pt jet-production,

– etc.

The Fig. (2.2) shows, as an example, the comparison of the theoretical PDF’s fit
CTEQ6m to the data of the H1 experiment [23] and data of ZEUS [24] experiment.

Figure 2.3: Overview of the CTEQ6M parton distribution functions at Q = 2 and Q =
100GeV [25].

There are a lot of groups that estimate the PDFs from experiments. In our calculation
we used the results of two groups. The first one is a CTEQ collaboration (G. Sterman,
J. Smith, J. C. Collins, W. Vogelsang, J. Huston, J. Pomplin etc. [25]), which parton
distribution functions were accounted in our main result. For our problem we used the
standard set of parton distributions in the MS scheme for proton and antiproton (CTEQ6).
At the Fig. 2.3 is shown the overall view of these PDF’s, at two scales Q = 2GeV and
Q = 100GeV .

The PDF from another group, MRS collaboration (A. Martin, J. Stirling, R. Thorne,
G. Watt [26]), was used in the special part of QED contributions, a photoproduction. We
will be discuss it in more detail below.

In the Appendix A are operators definitions [27] of the parton distribution functions
for reference.
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2.2 DGLAP functions

The parton distribution functions obey to DGLAP equations [28]. This equations describe
the evolution of the parton distribution ff (x,Q), ff̄ (x,Q) for quarks and antiquarks of
every flavor f (f̄), where particles can be considered at the Q scale as mass-less, together
with parton distributions of gluons fg(x,Q) in an explicit form:

d

d lnQ
fg(x,Q) =

αS(Q
2)

π

1∫

x

dz

z

{

Pg←q(z)
∑

f

[

ff (
x

z
,Q) + ff̄ (

x

z
,Q)

]

(2.4)

+Pg←q(z)fg(
x

z
,Q)

}

,

d

d lnQ
ff (x,Q) =

αS(Q
2)

π

1∫

x

dz

z

{

Pq←q(z)ff (
x

z
,Q) + Pq←g(z)fg(

x

z
,Q)

}

,

d

d lnQ
ff̄ (x,Q) =

αS(Q
2)

π

1∫

x

dz

z

{

Pq←q(z)ff̄ (
x

z
,Q) + Pq←g(z)fg(

x

z
,Q)

}

,

where the splitting functions Pi←j are here:

Pq←q(y) = CF

(
1 + y2

(1− y)+
+

3

2
δ(y − 1)

)

, (2.5)

Pg←q(y) = CF
1 + (1− y)2

y
,

Pg←g(y) = 2CA

(
1

(1− y)+
+

1

y
+ y(1− y)− 2

)

+ δ(y − 1)

(
11

6
CA − 2

3
TF

)

,

Pq←g(y) = nf
y2 + (1− y)2

2
.

The color factors CA and CF are associated with SU(2) group, nF is a number of flavors.
The ” + ” distribution in the splitting functions is defined by the relation

1∫

0

dy
f(y)

(1− y)+
=

1∫

0

dy
f(y)− f(1)

(1− y)
. (2.6)

The DGLAP equations describe the evolution of distribution functions in QCD for any
flavor, or any hadron components with an accuracy up to corrections of order αS, which
are not strong of large logarithms.

The DGLAP functions predict the generic view of partons distribution function evo-
lution, which is shown at the Fig. (2.3). By high x the partons radiate and are going to
states with lower x. At the same time, as a result of these radiation, new partons product
with small value of x. So, with increase of Q2, the parton distribution functions fall off at
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high x and grow much stronger at small x. By considering the wave function of proton
at the more smaller scales, we will have the proton, which contains the larger number of
partons, which momenta are shared the full momenta of the proton.

2.3 Partonic cross section

The partonic cross section dσi,j in the Eq. (2.3) can be found with a help of the general
formula

dσi,j =
1

2Ei2Ej|vi − vj|
|M(pi, pj → {pf})|2dΦ(n) (2.7)

where 2Ei2Ej|vi − vj| is the flux factor, |M(pi, pj → {pf})|2 is the partonic matrix
elements of interaction particles pi and pj with production of a set of final particles {pf},
Ei and Ej are the energies of incoming particles.

The integration under momenta of final states has following general structure:
∫

dΦ(n) =
(∏

f

∫
d3pf
(2π)3

1

2Ef

)

(2π)4δ(4)
(
pi + pj −

∑

f

(pf )
)
. (2.8)

This integral is known as relativistic-invariant phase volume of n-particles and it is dis-
tinctly Lorentz-invariant, cause constructed from invariant integrals under 3-momenta,
which are connected with delta-function of 4-momenta. This delta-function of 4-momenta
points at the energy conserving law.

Matrix elements |M(pi, pj → {pf})|2 are constructed of squared scattering amplitudes
for the process i+ j → {f}. By convention, the scattering amplitudes are expressed with
a help of so-called Feynman diagrams, which depend of model in which the calculations
is made. In the Chapter 3 we will consider the interactions and the set diagrams, which
was taken into account in Z boson production. In this chapter of discussion we will give
common consideration of basic steps by calculation of cross section.

In the Fig. (2.4) the scheme of calculation matrix elements is shown. Here the parameter
g marks the order in the perturbation theory of calculations. For calculation of the first
level in perturbation theory, we have to square tree diagrams. For calculation of the second
order of correction, we divided them to virtual and collinear (bremsstrahlung) corrections.
The loop diagrams can contain bubble, triangle, box corrections. They multiply by tree
diagram to obtain next order correction of g. The bremsstrahlung corrections contain
additional emitted particle.

We will describe the structure of diagrams, which we used by calculations, in more
detail in the next Chapter.

2.4 Virtual integrations

The virtual corrections of the Z boson production include calculations of loop integrals over
a phase space dΦ2. Let us firstly consider kinematic correlations, then we give the phase
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(a)

|M2| = g ×

(b)

+g2 ×

(c)

+g2 × +O(g3)

Figure 2.4: Matrix elements structure. See explanation in the text.

space formula for the two-to-two process. Then we consider one of the ways of calculating
of the loop integrals.

2.4.1 Phase space with two final particles

In the center-of-mass framework of incoming hadrons h1 and h2 for the process which was
shown in the Fig. 2.1, we have for momenta following formulations:

P1 =
1

2

√
S(1; 0, 0, 1), (2.9)

P2 =
1

2

√
S(1; 0, 0,−1),

q = (q0; ~qT , q3), q2 = Q2,

where q is momentum of boson, which we consider, S is summarized energy of incoming
particles. S can be found in definition:

S = (P1 + P2)
2; (2.10)
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and other global Mandelstam variables are defined as follows:

T = (P1 − q)2, (2.11)

U = (P2 − q)2. (2.12)

For partonic processes (2.2) in the center-of-mass framework of incoming partons i and
j momenta p1 and p2 can be written as

p1 =

√
s

2
(1; 0, 0, 1), (2.13)

p2 =

√
s

2
(1; 0, 0,−1).

For partonic momenta we introduced ”small” Mandelstam variables as usual:

s = (p1 + p2)
2, (2.14)

t = (q − p1)
2,

u = (q − p2)
2,

s2 = p2X ,

which can be rewritten in the center of mass of incoming particles system:

t = Q2 −
√
s(q0 − |~q| cos θ), (2.15)

u = Q2 −
√
s(q0 + |~q| cos θ),

q0 =
2Q2 − t− u

2
√
s

, cos θ =
u− t

u+ t
,

The energy conserve principle give us the formula, which obey invariants:

s+ t+ u = s2 +Q2 . (2.16)

The relations between global and ”small” Mandelstam parameters are following:

s = x1x2S, t = x1(T −Q2) +Q2, u = x2(U −Q2) +Q2; (2.17)

(T −Q2) = −
√
S(Q2 + q2T )

1/2e−y, (U −Q2) = −
√
S(Q2 + q2T )

1/2ey,

where the rapidity y is denoted as

y =
1

2
ln
q0 + q3
q0 − q3

=
1

2
ln
Q2 − U

Q2 − T
, (2.18)

and for our case of Z boson production Q2 is equal to M2
Z , the squared mass of the Z

boson.
Let us consider the form of phase space for process 1 + 2 → 3 + 4, where the first two

particles are partons with momenta p1 and p2, one of the produced particles is a boson with
momenta q and another one is a parton with momenta q1, which have to be integrated.
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For this case we can write the phase volume as follows:

dΦ(2) = (2π)dδ(d)(p1 + p2 − q − q1)
d~q

(2π)d−12q0
d~q1

(2π)d−12q01
. (2.19)

After integration over q1 we have

dΦ(2) =
1

(2π)d−2
δ+(q

2
1)
d~q

2q0

∣
∣
∣
∣
q1=p1+p2−q

. (2.20)

For two-to-two process the correlation q21 = s + t + u − Q2 is realized, so we can rewrite
our formula as

d~q

2q0
=

|~q|d−2d|~q|dΩd−2

2q0
=

Ωd−2

2
|~q d−3|dq0(sin θ)d−4d cos θ, (2.21)

where θ is the angle between three-space momenta ~p1 and ~q. After substitution this result
to (2.20) we obtain:

dΦ(2) =
dΩd−2

2(2π)d−2
δ(s+ t+ u−Q2)~q d−3dq0(sin θ)d−4d cos θ. (2.22)

In the partonic central of mass scheme using kinematic formulae (2.15) we can write the
final result for phase volume two-to-two:

dΦ(2) =
1

8πs

(4π)2−d/2

Γ(d/2− 1)

(
tu− s2Q

2

s

)d/2−2

δ(s2)dtdu. (2.23)

2.4.2 Integration By Part procedure

The estimation corrections leads to calculation of large number loop integrations over the
momenta of virtual particles, and phase-space integrations over the momenta of particles in
the final state. The methods for the analytic calculation of loop and phase-space integrals
are complicated. A solution to this problem can be constructing algorithms which reduce
the number of all integrals of the process to a few master integrals. This master integrals
can be calculated directly.

The famous method for the reduction loop integrals to some master integrals is integra-
tion by parts (IBP), which was introduced in papers [29], [30]. The integrals with common
propagators satisfy linear algebraic identities. These identities can be derived with the IBP
method and can be cleverly combined to produce reduction identities to master integrals.

Let us consider the integrals of type:

B(ν1, ν2, ν3, ν4) =

∫

ddk
1

[k2]ν1 [(k + p1)2]ν2 [(k + p12)2]ν3 [(k + p123)2]ν4
, (2.24)

where sum of momenta was denoted as pij...k = pi + pj + ... + pk. The momentum k is a
loop momentum. All external momenta pi are incoming to the loop and mass-less. The
powers νi can be positive or negative. Scalar bubble or triangle integrals correspond to
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zero powers νi. Negative powers correspond to triangle or bubble integrals with irreducible
numerators. To find the algebraic equations for the integrals we can use Integration By
Part procedure. The total derivatives of integrand (2.24) multiplied with combination of
a loop or external momentum integrate to zero:

0 =

∫

ddk
∂

∂kµ

ηµ

[k2]ν1 [(k + p1)2]ν2 [(k + p12)2]ν3 [(k + p123)2]ν4
, (2.25)

where ηµ = k, k + p1, k + p12, k + p123. After derivation we have four IBP identities:

T1 : 0 = [sν11
+ + (d− ν12334)− (ν11

+ + ν22
+ + ν44

+)3−]B (2.26)

T2 : 0 = [tν22
+ + (d− ν12344)− (ν11

+ + ν22
+ + ν33

+)4−]B (2.27)

T3 : 0 = [sν33
+ + (d− ν11234)− (ν22

+ + ν33
+ + ν44

+)1−]B (2.28)

T4 : 0 = [tν44
+ + (d− ν12234)− (ν21

+ + ν33
+ + ν44

+)2−]B (2.29)

where the notation νiijk... means the sum of indexes νi + νi + νj + νk + .... The operator
i+(i−) increases (decreases) νi by one in the integral B:

3±B = B(ν1, ν2, ν3 ± 1, ν4), (2.30)

products of operators have a straightforward interpretation:

3+1−B = B(ν1 − 1, ν2, ν3 + 1, ν4). (2.31)

The IBP Eqs. (2.26)-(2.29) are sufficient to reduce any integral of the box topology to
master integrals by using the algorithm of Laporta [31].

One of the computer program which used the method IBP is the Automatic Integral
Reduction (AIR) [32]. In our computations we made reductions of loop integrals with a
help of AIR.

2.4.3 Loop Integrals

The loop integrals, which are created by the calculating of corrections to the Born diagrams,
had to be integrated over a loop momentum. In the loop integrals we have terms which give
us a divergences at high (→ ∞) or small (→ 0) value of momentum. Because the final result
(the cross section which we will calculate) is finite, we have to regularize our integrals. One
of the way to make this is the technique of dimension regularization suggested by ’t Hooft
and Veltmann in 1972 [33]. One of the advantage of this regularization is that it conserves
gauge invariance. The dimensional regularization bases on the analytical extension from
four to arbitrary value d of the dimensionality,

∫

d4k → µ4−d
∫

ddk,

where µ is a regularization mass. The integratable momentum can be presented as

ddk = dk0|k|d−2d|k|dφ
d−3∏

k=1

sink θkdθk.
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The d dimensional integrals are convergent. After integration in d dimensional space
we can put d = 4 − 2ε to the answer and we get separately finite and infinite parts of
integrals after integration on soft and collinear corrections.

The loop diagrams which are coming from considering of QED and QCD corrections
can be calculated in the mass-less limit of initial momentum k: mk = 0. According to
the Passarino-Veltman reduction scheme [21], we can find the solution for two-, three- and
four-point mass-less loop integrals [13], [33].

In the below formula we presented two-, three- and four-point integrals which was used
by our calculations. All momenta of particles are incoming. In the below formulae we
didn’t write the regularization mass µ.

For the self-energy bubble diagram with the input momentum p, we can write following
formula of scalar integral:

∫
ddk

(2π)d
1

k2(k + p)2
= −i(4π)−d/2(−p2)ε/22

ε

Γ(1− ε/2)Γ2(1 + ε/2)

Γ(2 + ε)
(2.32)

where ε = (4− d)/2 and for Gamma function Γ(y) the follows expansions can be used:

Γ(ε) =
1

ε
− γe, ε→ 0, (2.33)

Γ(y + 1) = yΓ(y)

with Euler-Mascheroni constant γe ≈ 0.577216.

The triangle diagrams correspond to three point function. For the diagram with in-
coming momenta p1, p2 and p3 if p21 = p22 = 0, p23 6= 0 we have formula

∫
ddk

(2π)d
1

k2(k + p1)2(k − p2)2
= (2.34)

−i(4π)−d/2(−p23)−1+ε/2 4

ε2
Γ(1− ε/2)Γ2(1 + ε/2)

Γ(1 + ε)
.

For the triangle diagram with incoming momenta p1, p2 and p3 in the case p21 6= 0,
p22 6= 0, p23 = 0, the scalar integral is here:

∫
ddk

(2π)d
1

k2(k + p1)2(k − p2)2
= (2.35)

−i(4π)−d/2((−p21)−ε/2 − (−p22)ε/2)
1

(p21 − p22)

4

ε2
Γ(1− ǫ/2)Γ2(1 + ε/2)

Γ(1 + ε)
.

And for the four point function with incoming momenta p1, p2, p3 and p4 for case p21 =
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p22 = p23 = 0, p24 6= 0, we have following expression:

∫
ddk

(2π)d
1

k2(k + p1)2(k − p2)2(k − p2 − p3)2
= (2.36)

−i(4π)−d/2 8
ε2

Γ(1− ε/2)Γ2(1 + ε/2)

Γ(1 + ε)

(

(−p24)ε/2
P12P23

F

(

1,
ε

2
; 1 +

ε

2
;− P13p

2
4

P12P23

)

−(−P12)
ε/2

P12P23

F

(

1,
ε

2
; 1 +

ε

2
;−P13

P23

)

− (−P23)
ε/2

P12P23

F

(

1,
ε

2
; 1 +

ε

2
;−P13

P12

))

,

with Pij = (pi + pj)
2. The hyper-geometric function F (a, b; c; x) can be presented as

F (a, b; c; x) =
Γ(c)

Γ(b)Γ(c− b)

1∫

0

tb−1(1− t)c−b−1(1− tz)−adt; (2.37)

Re(c) > Re(b) > 0 ∧ |arg(1− z)| < π.

By calculation loop diagrams of EW corrections to the Born process of Z boson pro-
duction, loops with massive initial and lines are arisen. In this case we can not neglect the
mass in propagators as in pure QED or QCD calculations. The master integrals for this
loop calculation can be found in papers [33], [34], [35]. Here we presented some integrals
which was used in our calculations.

For the bubble integrals with one massive initial line and nonzero incoming momenta
p1 we have the formula:

ID2 (p21;m
2
1,m

2
2) =

µ4−D

iπD/2
Γ(1− ε)

∫
dDl

(l2 −m2
1 + iε)((l + q1)2 −m2

2 + iε)

∣
∣
∣
m2

1=0
(2.38)

=

(
µ2

m2
2

)ε [1

ε
+ 2 +

m2 − p21
p21

ln
(m2

2 − p21 − iε

m2
1

)]

+O(ε),

where l is initial momentum, qn =
n∑

i=1

(pi).

The triangle diagram with one massive initial line and two nonzero incoming to loop
momenta can be calculated with a help of this formula:

ID3 (p21, p
2
2, p

2
3;m

2
1,m

2
2,m

2
3) =

µ4−D

iπD/2
Γ(1− ε) (2.39)

×
∫

dDl

(l2 −m2
1 + iε)((l + q1)2 −m2

2 + iε)((l + q2)2 −m2
3 + iε)

∣
∣
∣
p21=m2

1=m2
2=0

=
1

p22 − p23

( µ2

m2
2

)ε
[1

ε
ln

(
m2 − p23
m2 − p22

)

+ Li2

(
p22
m2

)

− Li2

(
p23
m2

)

+ ln2

(
m2 − p22
m2

)

− ln2

(
m2 − p23
m2

)]

+O(ε),
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And also we give here one example of box integral with two initial masses and three
nonzero incoming momenta is here:

ID4 (p21, p
2
2, p

2
3, p

2
4; s12, s23;m

2
1,m

2
2,m

2
3,m

2
4) =

µ4−D

iπD/2
Γ(1− ε) (2.40)

×
∫

dDl

(l2 −m2
1 + iε)((l + q1)2 −m2

2 + iε)((l + q2)2 −m2
3 + iε)((l + q3)2 −m2

4 + iε)

∣
∣
∣
p21=m2

1=m2
2=0

=
1

∆

[1

ε
ln

(
(m2

3 − p22)(m
2
4 − p24)

(m2
3 − s12)(m2

4 − s23)

)

− 2Li2

(

1− m2
3 − p22

m2
3 − s12

)

− Li2

(

1− m2
3 − p22

m2
4 − s23

γ+34
γ+34 − 1

)

− Li2

(

1− m2
3 − p22

m2
4 − s23

γ−34
γ−34 − 1

)

− 2Li2

(

1− m2
4 − p24

m2
4 − s23

)

− Li2

(

1− m2
4 − p24

m2
3 − s12

γ+43
γ+43 − 1

)

− Li2

(

1− m2
4 − p24

m2
3 − s12

γ−43
γ−43 − 1

)

+ Li2

(

1− (m2
3 − p22)(m

2
4 − p24)

(m2
3 − s12)(m2

4 − s23)

)

+ 2 ln

(
m2

3 − s12
µ2

)

ln

(
m2

4 − s23
µ2

)

− ln2

(
m2

3 − p22
µ2

)

− ln2

(
m2

4 − p24
µ2

)

+ ln

(
m2

3 − p22
m2

4 − s23

)

ln

(
m2

3

µ2

)

+ ln

(
m2

4 − p24
m2

3 − s12

)

ln

(
m2

4

µ2

)

− 1

2
ln2

(
γ+34

γ+34 − 1

)

− 1

2
ln2

(
γ−34

γ−34 − 1

)]

+O(ε),

where

γ±ij =
1

2






1−

m2
i −m2

j

p23
±
√

(1−
m2

i −m2
j

p23
)2 −

4m2
j

p23






,

∆ = (m2
3 − s12)(m

2
4 − s23)− (m2

3 − p22)(m
2
4 − p24).

In the Appendix C there are other integrals with massive initial lines which were com-
puted by calculation of EW corrections to Z boson production.

2.5 Bremsstrahlung integrations

The next type of corrections to the Born level is the emission of an additional particle. In
this case the phase space contains three final particles, the Z boson and two other, over
which momenta we have to integrate in d phase space to fixed divergences.

2.5.1 Phase space with three final particles

Let us consider the case of production of three particles like 1 + 2 → 3 + 4 + 5. In the
process (2.2) we put at place X two particles with momenta q1 and q2. For this case the
phase volume can be presented as:

dΦ(3) = (2π)dδ(d)(p1 + p2 − q − q1 − q2)
d~q

(2π)d−12q0
d~q1

(2π)d−12q01

d~q2
(2π)d−12q02

. (2.41)
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For the integration over momenta q1 and q2, firstly we introduce the vector K = q1 + q2
and rewrite the dΦ3, splitted two parts:

dΦ(3) =
1

(2π)(2d− 3)
δ(d)(p1 + p2 − q −K)δ+(q2 −Q2)ddqddK
︸ ︷︷ ︸

(2.42)

δ(d)(K − q1 − q2)δ+(q
2
1)δ+(q

2
2)d

dq1d
dq2

︸ ︷︷ ︸
.

For the second part we have

I2 = δ(d)(K − q1 − q2)δ+(q
2
1)δ+(q

2
2)d

dq1d
dq2 (2.43)

= δ+(q
2
1)δ+((K − q1)

2)dq21 (2.44)

=
1

2
δ+(K

2 − 2Kq1)(q
0
1)

d−3dq1d
d−2Ωq1

In the central mass scheme of momenta q1 + q2 (this means that is satisfied ~K = 0), we
have

I2 =
1

4K0

δ(q0 −K0/2)(q
0
1)dq

0
1d

d−2Ωq1 =
1

4
23−dKd−4

0 dd−2Ωq1 (2.45)

=
Ωd−3

4
23−dKd−4

0 sind−3 β1dβ1 sin
d−4 β2dβ2 (2.46)

=
s
d/2−2
2 πd/2−2Γ(d/2− 1)

4Γ(d− 3)
sind−3 β1dβ1 sin

d−4 β2dβ2,

where was assumes K2 = s2. For the first part from (2.42) we have

I1 = δ(d)(p1 + p2 − q −K)δ+(q2 −Q2)ddqddK (2.47)

=
1

2
Ωd−2|~q|d−3dq0 sind/2−2 θd cos θ

∣
∣
∣
K=p1+p2−q

=
(2π)d−2(4π)2−d/2

8πsΓ(d− 3)

(
tu− s2Q

2

s

)d/2−2

dtdu,

where was used result (2.23) for 2-to-2 kinematics.
After combining I1 and I2 for the phase volume dΦ3 we obtain the following integral:

∫

dΦ(3) =
s1−d/2

(4π)dΓ(d− 3)

π∫

0

sind−3 β1dβ1

π∫

0

sind−3 β2dβ2 (2.48)

0∫

−a

Q2(−a−u)

Q2
−u∫

−a−u

dtdus
d/2−2
2 (tu− s2Q

2)d/2−2,

which can be integrated in d-dimensional space after calculation of matrix elements.
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2.5.2 Van Neerven’s Integrals

The bremsstrahlung integration means integration over additional emitted particles in
processes like

i(p1) + j(p2) → V (q) + x1(q1) + x2(q2), (2.49)

where x1 and x2 are unobservable particles, over which momenta we will integrate, V is a
boson with q2 = Q2.

In the central of mass system the momenta in d dimensional space are parametrized as
follows

p1 =
s2 − u

2
√
s2

(1, 0, ..., 0, 1), (2.50)

p2 =

(
s2 − t

2
√
s2
, 0, ..., |~q| sin θ, |~q cos θ − s2 − u

2
√
s2

)

,

q =

(
s−Q2 − s2

2
√
s2

, 0, ..., |~q| sin θ, |~q| cos θ
)

,

q1 =

√
s2
2

(1, 0, ..., sin β2 sin β1, cos β2 sin β1, cos β1),

q2 =

√
s2
2

(1, 0, ...,− sin β2 sin β1,− cos β2 sin β1,− cos β1),

|~q| =
λ(s,Q2, s2)

2
√
s2

, cos θ =
1

2|~q|√s2

(−u(s−Q2) + s2(t− 2Q2)

s2 − u

)

,

where λ(x, y, z) =
√

x2 + y2 + z2 − 2xy − 2xz − 2yz.

From propagators by calculating real processes, following scalar products are coming:

p1q1 =
s2 − u

4
(1− cos β1), (2.51)

p1q2 =
s2 − t

4
(1 + cos β1),

p2q1 = a0 − b0 cos β1 − c0 cos β2 sin β1,

p2q2 = a0 + b0 cos β1 + c0 cos β2 sin β1,

Q2 + 2qq1 =
1

2
(A0 − B0 cos β1 − C0 cos β2 sin β1),

Q2 + 2qq2 =
1

2
(A0 + B0 cos β1 + C0 cos β2 sin β1),

Q2 + 2p1q1 = a− b cos β1,

Q2 + 2p1q2 = a+ b cos β1,
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where parameters a, b, a0, b0, c0, A0, B0 and C0 are here:

a = Q2 +
s2 − u

2
, b =

s2 − t

2
, (2.52)

a0 =
s2 − t

4
, b0 =

tu− s2(s+Q2)

4(s2 − u)
, c0 =

λ

4
,

A0 = s+Q2 − s2, B0 = λ cos θ, C0 = λ sin θ.

The integration of angular integrals was done in according to [22]. The d dimensional
integrals with determinants of order k and l can be calculated as

I(k,l)n =

π∫

0

dβ1 sin
d−3 β1

π∫

0

dβ2 sin
d−4 β2 (2.53)

×(a+ b cos β1)
−k(A+B cos β1+C sin β1 cos β2)

−l

= 21−i−jπ
Γ(d/2− 1− i)Γ(d/2− 1− j)Γ(d− 3)

Γ(d− 2− i− j)Γ2(d/2− 1)
2F1

(
i, j

d/2− 1
; cos2

χ

2

)

where a, b, A,B and C are functions of kinematics variables s, t, u etc. which are com-
ing from the scalar product (see relations (2.52)), 2F1

(
a,b
c
; x
)
= 2F1(a, b, c; x) is a hyper-

geometric function (2.37).

Using the change β1 → π − β1, we distinguish two cases for the sets of determinants.
In case ((q1p1)(q1p2))

−1 and ((q2p1)(q2p2))
−1 we have

cos2
χ+

2
=
a0 + b0
2a0

= 1− ss2
(s2 − t)(s2 − u)

=
tu− s2Q

2

(s2 − t)(s2 − u)
, (2.54)

while in cases ((q1p1)(q2p2))
−1 and ((q2p1)(q1p2))

−1 we have

cos2
χ−
2

=
a0 − b0
2a0

=
ss2

(s2 − t)(s2 − u)
. (2.55)

Denoting z = cos2(χ−/2) = ss2
(s2 − t)(s2 − u)

, we have two hyper-geometric functions

2F1(1, 1; 1− ε; z) and 2F1(1, 1; 1− ε; 1− z). For the former we use the expansion formula

2F1

(
1, 1

1− ε
; z

)

=
1

(1− z)1+ε

(
1 + ε2Li2(z) + ε3 (Li3(z)− S1,2(z)) (2.56)

+ε4 (Li4(z)− S2,2(z) + S1,3(z)) + ... ) ,



26 CHAPTER 2. CROSS SECTION

where Nielson’s polylogarithms are here:

Sn,m(z) =
(−1)n+m−1

(n−m)!m!

1∫

0

dx

x
lnn−1(x) lnm(1− xz), (2.57)

Li2(z) = S1,1(z) = −
1∫

0

dx

x
ln(1− xz),

S1,2(z) =
1

2

1∫

0

dx

x
ln2(1− xz),

Li3(z) = S2,1(z) =

1∫

0

dx

x
ln(x) ln(1− xz) =

1∫

0

Li2(x),

Li4(z) = S3,1(z) = −1

2

1∫

0

dx

x
ln2(x) ln(1− xz),

S1,3(z) = −1

6

1∫

0

dx

x
ln3(1− xz),

S2,2(z) = −1

2

1∫

0

dx

x
ln(x) ln2(1− xz).

In the second case of parametric function, the argument (1 − z) is translated to (z)
first:

2F1

(
1, 1

1− ε
; 1− z

)

=
1

z
− 1− z

z
2F1

(
1, 1

1 + ε
; z

)

(2.58)

+ Γ(1− ε)Γ(1 + ε)(1− z)εz−1−ε

and expanded as above in Eq. 2.56.
We also used following expansion of hyper-geometric functions:

2F1

(
1, 2

1− ε
; z

)

=
1

(1− z)

(

−ε+ (1 + ε)2F1

(
1, 1

1− ε
; z

))

, (2.59)

2F1

(
2, 2

1− ε
; z

)

=
1

(1− z)2

(

−ε(2 + ε) + (1 + ε)(1 + ε+ z)2F1

(
1, 1

1− ε
; z

))

.

Now we can go directly to integration of bremsstrahlung integrals.
For calculating integrals, the follows presentations were used:

1∫

−1

(1− z2)−
1
2
−ε

X + Y z
dz = π

4εΓ(1− 2ε)

Γ2(1− ε)

1

X
2F1

(
1, 1

2

1− ε
;
Y 2

X2

)

(2.60)
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2F1

(
1, 1

2

1− ε
; z

)

= 1 +
z

2

1∫

0

dt

(1− t)ε(1− tz)3/2
(2.61)

=
1√
1− z

− ε
1√
1− z

(

ln
1−

√
1− z

1 +
√
1− z

− ln
x

1− x
+ 2 ln 2

)

+O(ε2).

Some of this integrals can be found in the literature [22], [36]. For our calculation was
necessary to compute additional integrals.

The four-dimensional integrals for a2 6= b2 and A2 6= B2 + C2 has form:

I
(1,0)
4 = π

1

b
ln
a+ b

a− b
, (2.62)

I
(1,−1)
4 = π

[

2B

b
+
Ab− Ba

b2
ln
a+ b

a− b

]

,

I
(1,−2)
4 = π

[
4ABb+ a(C2 − 2B2)

b2
+

2(Ab−Ba)2 + C2(b2 − a2)

2b3
ln
a+ b

a− b

]

.

The 4-dimensional integrals for case b 6= −a and A2 6= B2+C2 give us follow additional
integrals:

Ī
(0,1)
4 =

π√
B2 + C2

ln
A+

√
B2 + C2

A−
√
B2 + C2

, (2.63)

Ī
(0,2)
4 =

2π

A2 − B2 − C2
,

Ī
(−1,1)
4 = π

[

B2 + C2 + AB

(B2 + C2)3/2
ln
A+

√
B2 + C2

A−
√
B2 + C2

− 2B

B2 + C2

]

,

Ī
(−1,2)
4 = π

[

− B

(B2 + C2)3/2
ln
A+

√
B2 + C2

A−
√
B2 + C2

+
2(B2 + C2 + AB)

(B2 + C2)(A2 −B2 − C2)

]

,

Ī
(−2,1)
4 = π

[

2B4 + 5B2C2 + 3C4 + A2(2B2 − C2) + 4A(B2 + C2)

2(B2 + C2)5/2
ln
A+

√
B2 + C2

A−
√
B2 + C2

−A(2B
2 − C2) + 4B(B2 + C2)

(B2 + C2)2

]

,

Ī
(−2,2)
4 = π

[

−A(2B2 − C)2 + 2B(B2 + C2)

2(B2 + C2)5/2
ln
A+

√
B2 + C2

A−
√
B2 + C2

+
2A2(2B2 − C2) + 2AB(B2 + C2) + 2C2(B2 + C2)

(B2 + C2)2(A2 − B2 − C2)

]

.

2.6 d-dimension gamma matrices

The calculation of matrix elements includes also the calculations of traces of Dirac matrices
Tr(γµ...γ

ν). This Dirac algebra is well known and simple in 4-dimensional space. For d-
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dimensional integrations we must be very accurately with substantial 4-dimensional object
γ5.

The Dirac algebra for γµ matrices in d-dimensional time-space is presented here:

γµγµ = d, (2.64)

γµγνγµ = −(d− 2)γν ,

γµγνγργµ = 4gνρ − (4− d)γνγρ,

γµγνγργσγµ = −2γσγργν + (4− d)γνγργσ,

gνρgνρ = δνν = d.

In dimensional regularization the implementation of γ5 is problematical. This Dirac
matrix cannot be continued to d 6= 4 dimensions in a consistent and fully covariance way.
One of the way of computation traces with γ5 matrices in d dimension space was suggested
by ’t Hooft and Veltman in [33]. In this definition the γ5 matrix is satisfied the conditions

γ5 ≡ iγ0γ1γ2γ3, (2.65)

{γµ, γν} = 2gµν ,

{γµ, γ5} = 0, µ ≤ 3,

[γµ, γ5] = 0, µ > 3,

this leads to consistent gauge-invariant results. According to commutation relations we can
recombine gamma matrices in traces before extension from 4 to d dimension. We count γ5
as even number of gamma matrices, the pair of γ5 cancels. Remaining γ5 can be rewritten
with a help of ’t Hooft prescription. For our calculation of traces we used the ’t Hooft
prescription and we assumed that

Tr(γµγνγργτγ5) = −4iεµνρτ , (2.66)

ε0123 = −ε0123 = 1.

By calculating of squared diagrams we considered three cases:
1. The diagrams give us only one trace with γ5:

Tr(...γµ...γσγ5...γ
νγ5) (2.67)

Here we can used commutations relations from (2.65) and cancel double matrices with
using relation γ5γ

5 = 1. The traces without γ5 can be easy computed in d dimensional
space. The traces with only one γ5 give us antisymmetric tensor εµνρτ which has to be
convoluted with external momenta. Once we have performed the phase space integral of
the processes i(p1) + j(p2) → Z(q) + k(q1) (or i(p1) + j(p2) → Z(q) + k1(q1) + k2(q2) in
the bremsstrahlung corrections) over q1 and q2 momenta, only three vectors remain: p1, p2
and q. There is no non-zero construction of three vectors with antisymmetric tensor εµνρτ ,
so this terms vanish.

2. The squared diagram give us two traces with γ5.
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In this case we cannot neglect the antisymmetric tensor because of εµνρτεµνρτ 6= 0.
We have therefore to compute these diagrams using the ’t Hooft-Veltman definition of γ5.
Fortunately, in our case of Z boson production, these diagrams are all finite and we can
do the traces unambiguously in four dimensions.



Chapter 3

Diagrams, Singularity, Factorization

The calculation was done in the framework of the Standard Model. In this Chapter we
give a shortly view about Feynman Diagrams, with which help matrix elements were con-
structed, about cancellation of divergences and about factorization of the cross section.
The ultraviolet coupling renormalization has been done in MS scheme. The infrared and
collinear singularities have to be canceled in the sum of different contributions. Firstly, let
give us an introduction to the SM.

3.1 Interactions

The standard model of particle physics is a theory concerning the electromagnetic, weak,
and strong nuclear interactions. The local SU(3)c×SU(2)L×U(1)Y gauge symmetry is an
internal symmetry that essentially defines the Standard Model. The SM groups two major
theories - quantum electroweak theory and quantum chromodynamics - into an internally
consistent theory that describes the interactions between all known particles in terms of
quantum field theory.

The Standard Model Lagrangian can be presented as a sum of four parts:

LSM = Lgauge + Lfermion + Lhiggs + Lyukawa. (3.1)

The first part describes the gauge interaction and has term of gluons (Ga
µν), gauge

bosons (W a
µν) and photon (Bµν) fields tensors:

Lgauge = −1

4
Ga

µνG
aµν − 1

4
W a

µνW
aµν − 1

4
BµνBµν .

The gauge invariant gluonic field strength tensor

Ga
µν = ∂µA

a
ν − ∂νA

a
µ + gfabcAb

µA
c
ν (3.2)

contains the gluon field Aa
µ with a running from 1 to N2

C − 1 = 8 kinds of gluon (NC is
number of colors). The adjoined representation of the SU(3) color group with generators
ta = λa/2 correspond to eight 3× 3 matrices, where matrices λa are Gell-Mann matrices.

30
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Generators encode the fact that a gluons interaction with quarks rotates the quark’s color
in SU(3) space. Generators of SU(3) groups are subject to conditions:

[
ta, tb

]
= ifabctc, (3.3)

tai,jt
a
j,k = CF δik,

facdf bcd = CAδab,

tai,j, t
b
i,j = TRδij ,

where fabc are structure constants of SU(3) groups, CF =
N2

C−1
2NC

is the ”Casimir” color
factor associated with gluon emission from the quark, CA ≡ NC = 3 is the color factor
associated with gluon emission from a gluon, TR = 1

2
is the color factor for a gluon to split

to quark-antiquark pair.
The electroweak interaction is describe with the gauge bosons tensor W a

µν and the
electromagnetic field tensor Bµν . The unification is accomplished under an SU(2)× U(1)
gauge group. The corresponding gauge bosons are the threeW bosons of weak isospin from
SU(2) (W+, W 0, andW ), and the B0 boson of weak hyper-charge from U(1), respectively,
all of which are mass-less. The massive bosons W+, W and Z and the mass-less photon
are produced by the spontaneous symmetry breaking of the electroweak symmetry from
SU(2) × U(1)Y to U(1)em, caused by the Higgs mechanism. The generator of U(1)em is
given by Q = Y/2 + I3, where Y is the generator of U(1)Y , which is called as the weak
hyper-charge, and I3 is one of the SU(2) generators (a component of weak isospin). The
photon γ and weak boson Z are the superposition of W 0 and B0 bosons:

Z0 = −B0 sin θW +W 0 cos θW ,

γ = B0 cos θW +W 0 sin θW ,

where θW is the weak mixing angle, cos θW =
m2

W

m2
Z

.

The second term of SM Lagrangian (3.1) contains kinematic part of left-handled SU(2)
doublets L and right-handled SU(2) singlet r fermions:

Lfermions =
∑

L

L̄iγµDµL+
∑

r

r̄iγµDµr, (3.4)

where γµ are Dirac gamma matrices, and covariance divergence is here:

Dµ = i∂µ − gsG
a
µt

a − g′
1

2
YWBµ − g

1

2
~τL ~Wµ

with coupling constants gs, g
′ and g. The matrices ~τL = ~σ/2 are infinitesimal generators

of SU(2) group, so-called Pauli matrices:

σ1 = σx =

(
0 1
1 0

)

σ2 = σy =

(
0 −i
i 0

)

σ3 = σz =

(
1 0
0 −1

)

The summation in formula (3.4) runs over all fermions.
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The term of the Higgs sector with scalar doublet field Φ can be written as

Lhiggs = |DΦ|2 − V (Φ†Φ), (3.5)

V (Φ†Φ) =
λ2

4

(
Φ†Φ− v2

)2
,

where Higgs field Φ is a complex spinor of the group SU(2)L, Φ = 1√
2

(
ϕ+

ϕ0

)

; v is a

vacuum expectation value and λ is a positive constant.
Yukawa part in the Lagrangian (3.1) describes the interaction between a scalar field Φ

and mass-less quark and electron fields:

Lyukawa ≈ −gY L̄Φr + h.c. (3.6)

The topic of our research is devoted to Z boson production with calculation QCD and
EW corrections, so we need only in that part of SM Lagrangian which describe neutral
interactions. The Lagrangian of the neutral current can be written as

LNC = ejEMµ Aµ +
g

cos θ
jZµZ

µ, (3.7)

where electromagnetic jEM and neutral jZµ weak boson currents are following

jEMµ = j3µ +
1

2
jYµ , (3.8)

jZµ = j3µ − sin2 θjYµ ,

j3µ = L̄γµ
τ3
2
L,

jYµ = −L̄γµL− 2r̄γµr.

From the Lagrangian with a help of the perturbation theory or the path integral method
can be achieved the Feynman Rules for calculation matrix elements [37], [38]. In the
framework of SM the propagators of quarks with flavor fi = u, d, s, ..., gluons, photons and
massive weak bosons are presented here:

quark -

p
: −i γµpµ +m

p2 −m2 + iǫ

gluon
p

: −i gµνt
ab

p2 + iǫ

(

gµν + (ξ − 1)
pµpν
p2

)

photon
p

: −i 1
p2 + iǫ

(

gµν + (ξ − 1)
pµpν
p2

)

gauge boson
p

: −i 1
p2 −m2 + iǫ

(

gµν − (ξ − 1)
pµpν

p2 − ξm2

)

ghost
p

: −i 1
p2 − ξm2 + iǫ

(3.9)
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Here ξ is a gauge parameter, for ’t Hooft-Feynman gauge ξ = 1, for Landau gauge
ξ = 0, for unitary gauge ξ = ∞.

The couplings of interaction quarks with weak bosons (a), quarks with a photon (b),
of triple gauge-bosons interaction (c) and of triple gluons interaction (d) are there:

a)
q

q̄ V µ

: −ieγµ
(

Lfifj
1−γ5
2

+Rfifj
1+γ5
2

)

,

b)
q

q̄ γ
: −igγµtc,

c)
kµ2

2

kµ1

1 kµ3

3 : −ieK
(

gµ1µ2(k1 − k2)
µ3

+ gµ2µ3(k2 − k3)
µ1 + gµ3µ1(k3 − k1)

µ2

)

,

d)
kµ2,b
2

kµ1,a
1 kµ3,c

3 : gfabc

(

gµ1µ2(k1 − k2)
µ3

+ gµ2µ3(k2 − k3)
µ1 + gµ3µ1(k3 − k1)

µ2

)

,

(3.10)

where fabc is the color tensor, factor K is equal to 1 for (WWγ) vertex and to cos θW for
(WWZ) vertex. The left- and right-handed coupling L and R are different for each type
of bosons:

W− : Lfifj =
1√

2sinθW
(τ+)fifjUfifj , Rfifj = 0, (3.11)

W+ : Lfifj =
1√

2sinθW
(τ−)fifjU

†
fifj

, Rfifj = 0,

Z0 : Lfifj =
1

sin2θW
(τ3)fifi − δfifjefj tanθW , Rfifj = −δfifjefj tanθW ,

photon : Lfifj = Rfifj = δfifj .

θW is the electroweak mixing angle, τ± = (τ1±iτ2)/2 and τ3 are weak-isospin Pauli matrices,
U is unitary Cabibbo-Kobayashi-Maskawa mixing matrix, δ is Kronecker symbol, ef is the
electromagnetic charge of the quarks in units of electrons charge.

For our calculation of Z boson production, it is more conveniently to rewrite electroweak
couplings of interaction quarks with flavor f with neutral boson in following way:

iγµ(vf − γ5af ), (3.12)
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where vf and af are

vf =
I3 − 2Qf sin

2 θW
2 sin θW cos θW

, af =
I3

2 sin θW cos θW
(3.13)

with I3 being isospin of a quark.

3.2 Matrix elements construction

By calculation of the Z boson production in the Drell-Yan process, we consider partonic
process

i(p1) + j(p2) → Z(q) +X(pX) , (3.14)

where i, j can be quarks, antiquarks, gluons or photon in depend of considering subpro-
cesses, X is a set of particles, which accompanied to Z boson production, it can be one or
two quarks, gluons, etc.

(a 1)

q̄

q

g

Z

(a 2)

q̄

q

g

Z

(a 3)

g

q

q

Z

(a 4)

g

q

q

Z

(a 5)

q̄

q

γ

Z

(a 6)

q̄

q

γ

Z

(a 7)

γ

q

q

Z

(a 8)

γ

q

q

Z

Figure 3.1: Diagrams contributing to the lowest order in Drell-Yan mechanism for Z boson
production. The diagrams ai with i = 1, ..., 4 present order O(αSα), the diagrams ai with
i = 5, 6 present order O(α2).

The lowest order of the partonic process (3.14) can be presented according to Feynman
graphical visualization as it shown at the Fig. (3.1). For matrix elements witch give us
order O(αSα) we have squared diagrams of processes q + q̄ → Z + g, q + g → Z + q. For
the matrix elements which give us order O(α2), we have to consider Born diagrams with a
photon in final state q+ q̄ → Z+γ and a photoproduction q+γ → Z+q. The subprocesses
q̄q, gq, q̄g and gq̄ can be obtain by crossing.

For the calculation of the next order of corrections to the Born level, we must take into
account corrections by order αS and α, so we will have O(α2

Sα) and O(αSα
2) orders of

estimation. The corrections are divided as usual to the virtual and bremsstrahlung types.
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Figure 3.2: Virtual diagrams contributing to the process qq̄ → BZ, with boson B as
gluon for calculating of order O(α2

Sα) or as photon for calculating of order O(αSα
2). The

diagrams v11, v12 and v13 correspond only to O(α2
Sα) case.

The first part of contributions come from interference ofi the Born level diagrams with
the one-loop diagrams which are presented in the Fig. (3.2) and Fig. (3.3). In these pictures
you can see namely the contributions to the subprocess q+ q̄ → Z + g and q+ q̄ → Z + γ.

In relation to considering order of estimation, we take into account different types of
diagrams. For calculation matrix elements of QCD corrections of order O(α2

Sα), we have
to collect Born diagrams a1, a2 with all virtual diagrams at the Fig. (3.2), where in the
diagrams vi (i = 1, ..., 10) we put gluons at the both places of bosons B1 and B2. Another
order of corrections, O(αSα

2) can be found by the calculations of QED and EW corrections.
For the QED part of corrections we consider diagrams vi, i = 1, ..., 10 in the Fig. (3.2) with
one signed B line as a photon, and another B line as a gluon. By constructing matrix
elements, we square these diagrams with corresponding lowest levels diagrams from the
Fig. (3.1):
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– for the loop diagram which emit a photon (and has exchanging gluon inside) we take
the Born diagrams a5, a6;

– for the loop diagrams with an external gluon (and a photon is inside of the loop
diagram) we take diagrams a1, a2.

Diagrams contributing to the qg → qZ can be obtained by crossing.

In the Fig. (3.3) the virtual loop diagram which contribute to the order O(αSα
2) with

exchanging weak bosons are presented, so called EW contributions. This diagrams must
be squared with the Born diagrams a1, a2. By crossing we obtain other subprocesses for
the EW corrections calculations.
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Figure 3.3: Virtual diagrams contributing to the process qq̄ → gZ, electroweak case.
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Figure 3.4: a) Diagrams bi are contributed to the process qq̄ → Zqq̄ at the orders O(α2
Sα)

and O(αSα
2) b) Diagrams ci are contributed to the process qq̄ → Zgg and qq̄ → Zgγ at

the orders O(α2
Sα) and O(αSα

2) correspondingly

Another part of contributions of the second order of corrections comes from the two jets
productions accompanied Z boson as it shown in the Fig. (3.4), where is presented namely
the processes qq̄ → qq̄Z (diagrams bi), qq̄ → ggZ (diagrams ci only with i = 1, ..., 6) and
qq̄ → gγZ (all diagrams ci). The substitution to the subprocess gg → ZX can be similarly
obtained from ci alone.

Diagrams contributing to the subprocesses qg → qZ are obtained by crossing.

As in the virtual case, we collect the diagrams in such way which give us the needful
order of corrections, O(α2

Sα) or O(αSα
2). By considering of the QCD corrections we have

gluons in initial exchanging line in the process qq̄ → Zqq̄ and additional gluon emissions
in suprocesses qq̄ → Zgg: we take into account all diagrams from the Fig. (3.4). By
calculation the QED corrections for the process qq̄ → qq̄Z we square diagrams bi, (i = 1..8)
in the Fig. (3.4), one with gluon and another with photon in initial line. For subrpocesses
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qq̄ → Zgγ we take into account only diagrams ci, (i = 1, ..., 6) in the Fig. (3.4).
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Figure 3.5: a) Diagrams ai contributing to subprocess qq → qqZ with exchange g, γ or Z
according to considering case; b) diagrams bi contributing to subprocess qq′ → qq′Z.

The next part of the jets contributions of subprocesses (3.14) is presented at the
Fig. (3.5), where the production of Z boson in the quark-quark interaction is considered,
namely qq → qqZ and qq′ → qq′Z subprocesses. The circle exchange line between two
quarks in the diagrams (di) can denote a gluon (for QCD correction of order O(α2

Sα), a
photon (for QED correction of order O(αSα

2)) or a Z boson (for EW correction of order
O(αSα

2)). As usual, we squared diagrams in such a way that we obtained the needful
order of corrections. The mixed QCD/QED corrections due to interference with shown
in Fig. (3.5) diagrams with gluon exchange and the same diagrams but with photon and
Z boson exchange is involved. This part of EW corrections was missed by Kuhn group
in calculation [17]. We included this part corrections to our result and considered the
influence of this part to the total cross section. We will show it in discussion of numerical
results.

3.3 Singularities

The final result for the cross section is finite in our renormalized model. But by calculation
loop and some bremsstrahlung diagrams one can see that integrals has divergences, both
ultraviolet and infrared. One of the most convenient and efficient ways to fixed them and
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take the right finite answer is calculation with continuing the dimensionality of space-time
to d = 4− 2ε. In this section we discuss how was fixed singularities.

3.3.1 Modified minimal-subtraction scheme

To renormalize the ultraviolet coupling, the calculation of partonic cross section s dσ̂
dtdu

was

done in modified minimal-subtraction scheme MS. In this renormalization scheme the 1/ε
poles in potentially divergent quantities are removed. The poles are accompanied by terms
involving Euler-Mascheroni constant γe and ln π, which are both also subtracted together
with 1/ε. So, we have replaces

Γ(2− d
2
)

(4π)d/2(m2)2−d/2
=

1

(4π)2

(2

ε
− γ + ln(4π)− ln(m2)

)

(3.15)

→ 1

(4π)2
(
− ln(m2/M2)

)
,

where M is an arbitrary mass parameter that have introduced to make the final equation
dimensional correct.

3.3.2 Soft singularities

The final state singularities was considered in accordance to the method which presented
in [7], [8]. In the dimensional regularization scheme with d = 4 − 2ε dimensions, the
collinear and soft singularities of the virtual loop corrections to the partonic interactions
2 → 2 lead to 1/ε poles. These are to be compensated by contributions coming from
subprocesses 2 → 3 shown in the Fig. (3.4) and the Fig. (3.5). As it was shown in the
section (2.5.1), the phase space dΦ(3) can be rewritten so:

dΦ(3) =
s−ε2 sε−1

(4π)dΓ(1− ε)(tu− s2Q2)ε
sin1−εβ1dβ1 sin

1−ε β2dβ2dtdu (3.16)

Soft or collinear limits in the parton kinematics (2.14) correspond to the case s2 → 0.
Then the factor s−ε2 in the phase space measure is used to separate explicitly the poles in
dimensional regulator ε and finite integrable distribution in 1/ε. Namely we have

1

s1+ε
2

= δ(s2)

(

−1

ε
+ ln s2,max −

ε

2
ln2 s2,max + . . .

)

(3.17)

+

(
1

s2

)

+

+

(
ln s2
s2

)

+

+ . . . ,
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where ”+” distributions is defined so that for any smooth test function f(s2) it takes place

s2,max∫

0

ds2
f(s2)

(s2)+
=

s2,max∫

0

ds2
s2

[f(s2)− f(0)],

s2,max∫

0

ds2
ln(s2)

(s2)+
f(s2) =

s2,max∫

0

ds2
s2

[f(s2)− f(0)] ln(s2)

and s2,max can be determined with a help of kinematic relations. With this definition we
can cancel all soft and collinear singularities that are related to the final state radiation.

3.3.3 Factorization of collinear singularities

The remaining collinear singularities in the initial states are eliminated due to the renor-
malization of the parton distribution functions. This relation reads

fh
i (x, µ

2) =
∑

j

1∫

x

dy

y
fh,bare
j (x/y)

(

δijδ(y−1)− µ−2ε

ε

αs

2π

Γ(1− ε)

Γ(1− 2ε)
Pij(y)+ . . .

)

, (3.18)

where Pij are the splitting functions in 1-loop approximation

Pqq(y) = CF

(
1 + y2

(1− y)+
+

3

2
δ(y − 1)

)

, (3.19)

Pgq(y) = CF
1 + (1− y)2

y
,

Pgg(y) = 2CA

(
1

(1− y)+
+

1

y
+ y(1− y)− 2

)

+ δ(y − 1)

(
11

6
CA − 2

3
TF

)

,

Pqg(y) =
y2 + (1− y)2

2
,

and the corresponding QED contributions can be obtained from the above formula with
the replacements αs → α, CF → 1 and CA → 0.

The calculation of the factorized cross-section dσ̄ can be done in a simple way:

sdσ̄i,j
dtdu

=
sdσi,j
dtdu

(3.20)

−αS

2π

∑

k

1∫

0

dz1Rk←i(z1,M
2)
sdσ

(1)
k,j

dt
|p1→z1p1δ(z1(s+ t−Q2) + u)

−αS

2π

∑

k

1∫

0

dz2Rk←j(z2,M
2)
sdσ

(1)
i,k

dt
|p2→z2p2δ(z2(s+ u−Q2) + t),
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where dσi,j is bare result of Feynman graphs, dσ
(1)
k,j denoted cross-section lowest order and

the structure function R has general form:

Rk←i(z,M
2) = −1

ǫ
Pk←i(z)

Γ(1− ǫ)

Γ(1− 2ǫ)

(
4πµ2

M2

)ǫ

+ Ck←i(z). (3.21)

The definition of the non-singlet part Ck←i(z) of (3.21) is undetermined and reflect the
freedom of choice in the definition of structure functions. For MS scheme there are defined
by CMS

k←i(z) = 0 and DGLAP functions Pk←i(z) are given in Eq.3.19.
By calculation QED correction, the factorization was done also with adding photonic

structure functions. In schematic way we can write:

sdσ̄
(2),QED
i,j

dtdu
=

sdσ
(2),QED
i,j

dtdu
(3.22)

−αS

2π

∑

k

1∫

0

dzRQCD(z,M
2)
sdσ

(1),QED
k,j

dt

− α

2π

∑

k

1∫

0

dzRQED(z,M
2)
sdσ

(1),QCD
i,k

dt
,

where σ(2),QED is the cross section of the order O(αSα
2), σ(1),QED is the cross section of

the first order (Born) O(αSα) and σ
(1),QCD is the Born cross section of the order O(α2

S).
The DGLAP splitting function RQCD are done for evolution dispersion in QCD, and

RQED – for evolution dispersion in QED.



Chapter 4

Analytical results

In this section we present the analytical result of calculation of the total cross section of
the Z boson production in the Drell-Yan process.

The total cross section of the Z boson production includes the tree level (QCD and QED
cases), the corrections of order αS (QCD part of corrections) and the corrections of order
α (QED and EW parts of corrections), which all are coming from the loop calculations
and from the consideration of the accompanying to boson production jets. In calculation
we separated the QCD, QED and EW parts.

The steps of calculations are follows. We started from the Feynman graphs, which was
evaluated with a help of DIANA program [39]. The set of diagrams which was considered in
the calculations, was discussed in the section (3.2). The output of the DIANA program give
us a set of topologies for considering subprocesses. Every type of topologies was recombined
with the Integration By Part procedure with a help of the AIR program [32]. The AIR give
us the reduction of systems of integrals to the set of master integrals. The Dirac algebra was
calculated in the d-dimensional space with ’t Hooft-Veltman presentation of γ5 matrix (see
discussion in section (2.5). The phase integrals for processes with accompanying particles
to the Z boson and the integration of initial momenta in loop integrals was done also in
the d-dimensional time-space. For the virtual integrals we used the Passarino-Veltman
reduction scheme [21], Sec. (2.4.3). By calculating phase integrals we followed to the van
Neerven method [22], Sec. (2.5.2). The ultraviolet QCD coupling renormalization has been
done in MS scheme. The final state of singularities was considered in accordance with
the method which presented in [7, 8], according to which the singularities were rewritten
in terms sε2. This was discussed in Sec. (3.3). The remaining collinear singularities in the
initial states are eliminated due to the renormalization of the parton distribution functions.

The analytical result was done as differential cross section by variables t, u and then
calculated numerically, what we will discuss in Chapter 5.

42
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4.1 Z boson production at the order O(αSα).

Born level.

In this section we give known formulae for lowest order of calculation of Z boson production.
The lowest level of result come from the tree diagrams which was given in the section (3.2)
in the Fig. (3.1).

The calculation of the differential partonic cross section of process i+j → Z+k, where
i, j and k are quarks or gluons, give us the following formulae:

sσ
(1),QCD
ij

dt
= αMS

S (µ2)
Kij

s
Ai,j(s, t, u)(v

2
q + a2q), (4.1)

where coupling constants vq and aq are given in Eq. (3.13) and for actual subprocess we
have following kinematic factors:

Aqq̄(s, t, u) =
u

t
+
t

u
+

2Q2(Q2 − u− t)

ut
, (4.2)

Aqg(s, t, u) = −Aqq̄(u, t, s),

Agg(s, t, u) = 0.

Colors coefficients are proportional to color factors CF and NC :

Kqq =
2παCF

NC

, Kqg =
πα

NC

, Kgg =
πα

2CFNC

. (4.3)

The QED partonic cross section of the process q + q̄ → Z + γ (diagrams a5 and a6 in
Fig. (3.1)) can be found here:

sσ
(1),QED
qq̄

dt
=
α(M2)

s

KqqQ
2
q

CF

Aqq(s, t, u)(v
2
q + a2q), (4.4)

where Qq is electric charge of quark q.
Another subprocess is due to the photo-production γ + q → Z + X (Fig. 3.1), which

contains the extra power of α, since emission of a photon. It is sufficient to take partonic
cross-sections at the tree level approximation. We add the photon spectra form elastic [40]
and inelastic [41] scattering in the Weizsäcker-Williams approximation. The cross-section
has the following form:

sσ
(1)
γq

dtdu
= 2πα2(M2)

Q2
q

s
Aγ(s, t, u)(v

2
q + a2q), Aγ(s, t, u) = Aqg(s, t, u). (4.5)

The corrections to lowest order of Z boson production must be considered in two
ways: with additional gluon interaction (+αS order, QCD part) or with additional weak
interaction (+α order). The last one is divided into photon (QED part) and weak bosons
(EW part) interactions. In the next sections we consider this three cases separately.
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4.2 Z boson production at the order O(α2
Sα).

QCD part

This partonic cross-sections of order O(α2
Sα) was calculated early by any groups (Ellis at

al. in [7], Gonsalves at al. in [8], Arnold at al. in [9]) and we have agreement with these
final results. Here we will present only short structure of answer, the full formulae are
quite big and can be found in given literature.

Firstly, we have to remark the misprint in the paper [8] in the formula (2.12), where in

the second line of formula must be sum
[(
BqG

2 (s, t, u,Q2) +CqG
2 (s, t, u,Q2)

) ∑

f ′<

(1)
]

and at

the third line must be CqG
3 (s, t, u,Q2) at the place CqG

2 (s, t, u,Q2).

For the calculation of the QCD partonic cross section of the order (α2
Sα) we take into

account the virtual and the collinear correction to the Born result, given in the previous
section (4.1). In the Fig. (3.2) the loop diagrams for the process q+ q̄ → g+Z are shown.
In the Fig. (3.4) and the Fig. (3.5) the set of diagrams, which give us the contribution of the
collinear correction to the processes q+ q̄ → Z+ q+ q̄, q+ q̄ → Z+g+g, q+ q → q+ q+Z
and q + q′ → q + q′ + Z, are presented. The diagrams if other considering process, like
q + g → q + g + g, g + g → Z + q̄ + q etc., are not presented since they are simply come
from crossing procedure.

For ”quark-antiquark” initial state the schematic form of the differential cross section
is as follows:

s dσq̄q

dt du
= Kqqα

MS
S (µ2)

[

δ(s2)Aqq̄(s, t, u)2(v
2
q + a2q) + (4.6)

αMS
S (µ2)

2π

(

δ(s2)

(

Bqq̄
1 (s, t, u,Q2) + nfB

qq̄
2 (s, t, u,Q2)

)

2(v2q + a2q)

+

(

Cqq̄
1 (s, t, u,Q2) + nfC

qq̄
2 (s, t, u,Q2)

)

2(v2q + a2q)

+Cqq̄
3 (s, t, u,Q2)2

∑

<f

(v2f + a2f )

)]

,

where Aqq̄ is the Born result for the quark-antiquark scattering from the Eq. (4.2), analyt-
ical formulae B1, B2, C1, C2 and C3 are quite big and we don’t present them here. They

can be found in papers [7–9] for case of production only Z weak boson. The sum
∑

<f

stands

for a sum over quarks with masses less than an appropriately chosen flavor threshold. We

take into account five quarks, so for our case
∑

<f

(1) = 5.
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For ”quark-gluon” initial state we have following formula for the differential cross sec-
tion:

s dσqg

dt du
= Kqgα

MS
S (µ2)

[

δ(s2)Aqg(s, t, u)2(v
2
q + a2q) + (4.7)

αMS
S (µ2)

2π

(

δ(s2)

(

Bqg
1 (s, t, u,Q2) + nfB

qg
2 (s, t, u,Q2)

)

2(v2q + a2q)

+Cqg
1 (s, t, u,Q2)2(v2q + a2q)

)]

,

where the Born factor for the qg process Aqg was presented in the Eq. (4.2), analytical
formula B1, B2 and C1 can be found in the literature [7–9].

The ”gluon-gluon” subprocess was calculated for crossed diagrams ci from the Fig. (3.4).
The differential cross section is follows:

s dσgg

dt du
= Kggα

MS
S (µ2)

αMS
S (µ2)

2π
Bgg(s, t, u,Q2)2

∑

f<

(v2f + a2f ) . (4.8)

For couple quarks subprocesses we divided the result for two cases:

1) both initial quarks has the same flavors (q + q → Z + q + q);

2) initial quarks has different flavors (q + q′ → Z + q + q′).

So we have two differential cross sections of the ”quark-quark” case with the different
color structure:

s dσqq

dt du
= Kqqα

MS
S (µ2)

αMS
S (µ2)

2π
(4.9)

[

Bqq
1 (s, t, u,Q2)2(v2q + a2q) + Bqq

2 (s, t, u,Q2)(a2q)

]

,

s dσqq′

dt du
= Kqqα

MS
S (µ2)

αMS
S (µ2)

2π
(4.10)

[

Bqq′

1 (s, t, u,Q2)2(v2q + a2q) +Bqq′

2 (s, t, u,Q2)2(v2q′ + a2q′)

+Cqq′

1 (s, t, u,Q2)(vqaq) + Cqq′

2 (s, t, u,Q2)(vq′aq′)

]

.
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4.3 Z boson production at the order O(αSα
2).

QED part

It is a common opinion, that QED contribution can be obtained directly from the QCD
one just by manipulating of couplings and color factors. This is obviously true for the
pure QED case. But in the mixed QCD/QED corrections some care should be taken.
By squaring amplitudes in the mixed case some contributions can drop out due to color
traces. To illustrate this effect let us consider, for example, subprocess d1 at the Fig. (3.5),
q+ q −→ Z + q+ q. The parts for the QED contribution of the order O(αSα

2) are coming
from product of two diagrams, one with a gluon and another (conjugated) with a photon
exchange, as it is shown at the Fig. (4.1). After evaluating color factors we can find that
it is proportional to (Trta)(Trta), where ta is the color matrix. Since the color matrices
are traceless, this contribution vanishes. However if one of the diagrams in the Fig. (4.1)
is crossed then the contribution is proportional to another color factor, which is non zero:
Tr(tata) = CFNc. In this case the QED result cannot be extracted from the QCD formula,
if separately diagram contributions are not known. The same situation occurs if we replace
a photon by Z boson in the Fig. (4.1).

Since one of the diagrams in the Fig. (4.1) must be crossed, there are not correspond
contributions to the flavor not-diagonal process (q + q′ → Z + q + q′).

g × γ

Figure 4.1: Illustration of the color structure in the mixed QED/QCD contribution to the
process q + q −→ Z + q + q. See explanation in the text.

In this section we give the order O(αSα
2) of the QED corrections to Z boson produc-

tions. The diagrams for this order of radiative corrections were chosen as it described in
the section (3.2): we collect the diagrams with exchanging gluon together with conjugated
diagrams with exchanging photon. Let us consider the corrections to Z boson production
separately for each subprocesses.

Partonic cross-section q̄ + q −→ Z +X

The partonic subprocess q̄q −→ Z + X of order O(αSα
2) contain following partonic

subprocesses:

a) q̄q −→ Zg/γ , loops (4.11)

b) q̄q −→ Zgγ bremsstrahlung

c) q̄q −→ Zq̄q bremsstrahlung.
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The first one come from the loop diagrams and divided for two case: with outgoing gluon
and virtual photon in loops and with outgoing photon and virtual gluon in loops. They
squared with the corresponding conjugated Born process q+ q̄ → Z + g or q+ q̄ → Z + γ.
The processes a) and b) should be considered together in order to obtain infrared finite
cross-section. The last subprocess is finite and gauge invariant itself. Therefore we can
present it separately in the formula below the differential cross section

s dσ̂q̄q

dt du
=

2πα2Q2
q(v

2
q + a2q)

Nc

1

s

{

δ(s2)Aqq̄(s, t, u) + CF
αs

π

(

δ(s2)B1 + B′1 + B′′1

)}

,(4.12)

where Aqq̄(s, t, u) is the Born contribution (4.2), expressions B1 and B′1 are NLO terms
(diagrams ci and vi=1..10 in the Figs. (3.4), (3.2)). The contribution B′′1 comes from the
subprocess q̄ + q → Z + q̄ + q only (diagrams bi in Fig. (3.4)). The electroweak coupling
constants vq and aq are given in Eq. (3.13) and Qq is the electric charge of a quark.

The analytical presentations of B1, B
′
1 and B′′1 are done in the Appendix B

The calculations were done in MS scheme.

Partonic cross-section qg −→ Z +X

For the partonic subprocess qg −→ Z +X we can present follow QED contributions to
the differential cross section:

s dσ̂qg

dt du
=

2πααsQ
2
q(v

2
q + a2q)CF

NA

1

s

{

δ(s2)Aqg(s, t, u) +
α

π

(

δ(s2)C1 + C ′1

)}

(4.13)

where Aqg(s, t, u) is the Born contribution (4.2) from diagrams a3 and a4 in Fig. 3.1.

The NLO QED corrections, coming from loop and bremsstrahlung diagrams C1 and C
′
1

are given in Appendix B.

Partonic cross-section qq −→ Z +X

The mixed QED/QCD contribution to process qq −→ Z + q+ q are due to interference
of diagrams which shown in Fig. (3.1) with gluon exchange and the same diagrams but
with photon exchange. As discussed in the text this contribution does not follow from
QCD calculation because of zero color trace effect. We have the follow differential cross
section for the quark-quark interaction:

s dσqq

dt du
=

2παsα
2Q2

q(v
2
q + a2q)CF

Nc

C ′1 , (4.14)

where C ′1 can be found in Appendix B.
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4.4 Z boson production at the order O(αSα
2).

EW part

The next part of corrections of the order O(αSα
2) is the EW corrections to the main pro-

cess of the Z boson production. This corrections include the loop diagrams with exchange
additional weak boson (see diagrams on the Fig. (3.3)) and the contributions from inter-
ference of the process q+ q −→ Z+ q+ q (the diagrams in the Fig. (3.1)) with Z the boson
exchange and the same process with the gluon exchange. This is the mixed QCD/weak
parton cross-section.

The virtual weak corrections were calculated by Kuhn et. al in [17]. The comparison
of their calculations with our calculations confirms the above result. However, we have
different setup form of the infrared singular integrals, which are called J12,13,14 in [17]
and regularized by introducing the small gluon mass λ. In our approach we used the
dimensional regularization and infrared integrals contain additional poles in ε. For practical
implementation the formula for the 1-loop scalar integrals from [35] can be used.

In the App.C we shown the result for the EW virtual correction of qq̄ initial state. Here
we present the new result of the EW corrections which are coming from the interference.

sdσqq
QCD/weak

dt du
=

2α2αs(v
4
u + 6u2a2u + a6u)CF

Ncs
× (4.15)

[{

fln(s, t, u) + I4(1, 1, t, 1)f
1,1
1 (s, t, u)

+ I4(1, 1, t,−1)f 1,1
−1 (s, t, u)− I4(1, 2, t,−1)f 1,2

−1 (s, t, u)

}

+

{

t↔ u

}]

.

The phase space integrals I4(i, j, t, k) and kinematic functions f(s, t, u) are given in Ap-
pendix D.



Chapter 5

Numerical Results

In this Chapter we present the numerical result of our work. We calculated the total
hadronic cross-section of the Z boson production in the hadron-hadron interactions with√
S = 14TeV for LHC and

√
S = 1, 96TV for Tevatron energies. At the same energies

we considered the distributions of the cross section in the rapidity y and the transverse
momentum qT . All results are shown on plots.

5.1 Parameters. Running constants

In this section we will give the parameters which was used by calculations. In the Tab. (5.1)
the set of the Standard Model mass parameters, which was used by calculations, is pre-
sented. In our estimation we taken into account only five flavors and ignored the top

Leptons ”up” quarks ”down” quarks Bosons
me = 511keV mu = 1.9MeV md = 4.4MeV mγ = 0
mµ = 105.7MeV mc = 1.32GeV ms = 87MeV mZ = 91, 1876GeV
mτ = 1.78GeV mt = 172.7GeV mb = 4.24GeV mW = 80, 398GeV

Table 5.1: Mass values of quarks and leptons in the Standard Model [42]

quark.

In the framework of the perturbative QCD, the predictions for observables are expressed
in the terms of the renormalized coupling αS(µ

2
R), a function of an unphysical renormal-

ization scale µR. In the renormalization group theory we can write the equations of third

order for the strong coupling αS =
g2S
4π [42]:

µ
d

dµ
g(µR) = −β0

g3S(µR)

16π2
− β1

g5S(µR)

128π4
− β2

g7S(µR)

8192π6
. (5.1)
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where βi are numerical constants:

β0 = 11− 2

3
nf , (5.2)

β1 = 51− 19

3
nf ,

β2 = 2857− 5033

9
nf +

325

27
n2
f .

Here nf is a number of quarks with mass less than the energy scale µ. The constants of
integration, which are produces by solving this differential equation for the strong coupling,
must be obtained from experiments. The most sensible choice for this constant is measure
αS at fixed-reference scale µ0. The standard one is µ0 = MZ . The other values of strong
coupling αS(µ) at the other values mass µR can be obtained from equation

ln
µ2

µ2
0

=

αS(µ)∫

αS(µ0)

dα

β(α)
.

To provide a parametrization of the mass µR dependence of the strong coupling αS, one
introduce the dimensional parameter Λ. The solution of equation (5.1) can be written as
expansion in inverse power of ln(µ2):

αS(µR) ≡ g2(µR)

4π
=

4π

β0 ln(µ2
R/Λ

2)

[

1− 2β1
β2
0

ln[ln(µ2
R/Λ

2)]

ln(µ2
R/Λ

2)
(5.3)

+
4β2

1

β4
0 ln

2(µ2
R/Λ

2)i

(
(
ln[ln(µ2

R/Λ
2)]− 1/2

)2
+
β2β0
8β2

1

− 5

4

)

] .

Here we can see the asymptotic freedom property: αS → 0 as µ → ∞, QCD becomes
strongly coupled at µ Λ.

The electroweak coupling α can be renormalized with a help of following equations [43]:

α(µ) ≡ e2(µ)

4π
(δαbos + δαlep + δαtop + δα

(5)
hadrons(M

2
Z)− δαudscb(M

2
Z)), (5.4)

where additional contributions of bosons, leptons, quarks interactions were taken into
account:

δαbos =
α

4π
(7 ln

M2
W

µ2
− 2

3
), (5.5)

δαlep = − α

3π

∑

l=e,µ,τ

ln
m2

l

µ2
,

δαtop = −4α

9π
ln
m2

t

µ2
,

δα
(5)
hadrons(M

2
Z) = 0.027572± 0.000359,

δαudscb(M
2
Z) =

11α

9π

(

ln
m2

Z

µ2
− 5

3

)

.
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In the evaluating of the distributions we taken M2 = M2
Z . We have chosen the fac-

torization and renormalization scale masses µ2
F and µ2

R to be the same as the factor-
ization scale M2 of the structure functions. And for weak mixing angle θW we used
sin2 θw = 1−m2

W/m
2
Z ≈ 0.2226

5.2 Hadronic cross sections

The analytical calculations give us the distribution of the partonic differential cross section

in the Mandelstam variables t and u: s dσ̂
dtdu

. To construct the hadronic cross section,

we have to use the master formula(2.3), which con volutes the partonic differential cross
section with the parton distribution functions. We put it here again:

dσ

dq2T dy
=
∑

i,j

∫

dx1 dx2 fi(x1, µ
2
F )fj(x2, µ

2
F )
s dσ̂i,j
dt du

(x1P1, x2P2, µ
2
F ). (5.6)

The relations between the Mandelstam variables s, t and u and the integrable parameters
momentum fractions x1, x2, the transverse momenta qT and the rapidity y was done in the
section (2.4) in the Eq. (2.17). After changing variables, we can integrate (5.6).

Our analytical formulae of partonic cross section contain terms 1/(s2)+, which come
from cancellation of the divergences of ε, associated with the limit s2 → 0. In order
to evaluate distributions, it is convenient to rewrite the integrals of variables (x1, x2) to
(x1, s2). The integration bound can be obtained from the conditions

0 ≤ x1, x2 ≤ 1 and s2 = x1x2S − x1(Q
2 − T )− x2(Q

2 − U) +Q2 ≥ 0 (5.7)

After that equation (5.6) can be rewritten explicitly in the form

dσ

dq2T dy
=
∑

i,j

1∫

x1,min

dx1

s2,max∫

0

ds2 fi(x1, µ
2
F )fj(x2(s2), µ

2
F )

x1S + U −Q2

s dσ̂i,j
dt du

(x1P1, x2(s2)P2, µ
2
F ) .(5.8)

where we have now relations

x2 =
s2 −Q2 − x1(T −Q2)

x1S + U −Q2
,

x1,min =
−U

S + T −Q2
,

s2,max = U + x1(S + T −Q2) , (5.9)

and T and U are given by

T = Q2 − e−y
√
S
√

Q2 +Q2
T , U = Q2 − e+y

√
S
√

Q2 +Q2
T . (5.10)
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5.3 Plots and numerical result

The partonic cross-section was convoluted with the parton distribution functions numeri-
cally in FORTRAN and C++ codes. We used generally the PDFs of the CTEQ collabora-
tion (J. C. Collins et al., [25]), which have been derived from the deep inelastic scattering
data using a full next-to-leading-order analysis based on MS scheme. We used namely the
CTEQ6M data with the standard MS scheme. The calculations were done to be used for
two colliders – Tevatron and LHC. According to type of colliders (LHC or Tevatron), the
PDFs were chosen for the parton-parton or parton-antiparton distributions. For the cal-
culation of the photoproduction γ+ q → Z +X (the diagrams a7 and a8 in the Fig. (3.1)),
the result of the MRS collaboration (A. Martin et al. [26]) was taken into account. This
parton distribution functions incorporate the QED contributions. They considered parton
analysis of the deep inelastic and the hard scattering data, including the α corrections to
parton evaluation.

The integration of the transverse momenta qT and the rapidity y was done numerically
with a help of CUBA library [44], where we used namely VEGAS and SUAVE algorithms
for multidimensional numerical integrations in FORTRAN and C++ codes. These al-
gorithms integrate vector integrands with a help of Monte Carlo method. Vegas uses
importance sampling as a variance-reduction technique, each interaction consists of a sam-
pling step followed by refinement of the gird. Suave uses Vegas-like importance sampling
combined with a globally adaptive subdivision strategy, the region with the largest error
at the time is dominated in considering dimension, before the request accuracy is reached.
Both methods give us the same results, but SUAVE algorithm is faster.

The results of the total cross section calculation for the Z boson production in the
Drell-Yan process are shown in the Fig. (5.1) and in the Fig. (5.2) for different scale
energies

√
S = 1.96TeV and

√
S = 14TeV in dependence of the cut momentum qcutT ,

which give us the upper limit of integration. The upper plots in these pictures present
the full summarized total cross section, which we marked with a solid black heavy line,
and contributions of different orders, which all together collect the result:

- the Born contribution is marked with a solid black fine line,

- the QCD corrections of order O(α2
Sα) are marked with a black dashed line,

- the sum of QED and EW corrections of order O(αSα)
2 are marked with a red dashed

line

- and also the part of photoproduction correction of order O(α2) is marked with a green
dashed line.

To see the behavior of the different type of contributions at large value of the cut-
momenta qT and to see the behavior of the small contributions, we plotted also their in
a logarithmic scale. In the bellow plots at the Fig. (5.1) and at the Fig. (5.2) the same
data of Z boson production are presented in the logarithmic scale. Some of the data are
negative, so we plot the contributions of the absolute value of corrections, for that reason
you can see knees and ankles at some lines.

At the Fig. (5.3) and the Fig. (5.4) we present the plots of a K factor for the total
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Figure 5.1: The total cross section of Z boson production for
√
S = 14TeV (LHC energy).

The upper picture shows the full value of cross section. The lower one shows the logarithmic
values.
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Figure 5.2: The same as Fig. (5.1) for
√
S = 14TeV (Tevatron energy).
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cross-section:

K =
σtot
σBorn

. (5.11)

Namely, we plotted K − 1 factor as distribution in the momenta qcutT in the LHC and
Tevatron energy ranges correspondingly and we separated the contributions in depending
of orders and subprocesses.

In the upper plots pf the Fig. (5.3) and the Fig. (5.4) we can see the contribution of
the QCD corrections of the order O(α2

Sα) (marked with a black dashed line) and the EW
corrections of the order O(αSα

2) (marked a blue dashed-point line). All other contributions
are smaller, so we consider their individually close up at the upper plots. The red line shows
the Born level of Z boson production of order O(α)2 (which comes from the diagrams
a5 and a6 in the Fig. (3.1)), the green line shows contributions of the QED corrections
which was calculated in the section (4.3), the blue dashed line presents the EW additional
contributions from the subprocesses q+q → Z+q+q (see the section (4.4)) and the purple
dashed line give us the contribution of the photoproduction (the diagrams a7 and a8 in the
Fig. (3.1)).

From the Fig. (5.3) and Fig. (5.4) we can see that the QCD contributions dominate
in the whole region of interest and can be larger as tens percents. The weak corrections
can also achieve big values and grow up for large qT . The QED corrections and the part
of qq-Chanel of EW corrections appear to be surprisingly small. The naive counting of
orders shows that formally these corrections are of the same order O(αsα

2) as pure weak
corrections. However they appear to be highly suppressed. We can see that the distribution
of order O(α2

Sα) is about 10− 20%, while the distribution of corrections of order O(αSα
2)

give us only about 2%.
In the Fig. (5.5) and the Fig. (5.6) we plot the differential cross section to Z boson

production in the transverse momentum qT distributions at
√
S = 14TeV (LHC energy)

and for
√
S = 1.86TeV (Tevatron energy) correspondingly. In the upper plots we show

the real value of contributions, where we separate as usual results by orders of O(α2
Sα) and

O(αSα
2). The born result is presented in the black dashed-point line, the QCD corrections

are shown with the black dashed line, the QED and the EW corrections are shown with
the red line, the photoproduction we marked the with green dashed line. And the black
heavy line present the sum of all contributions. To seeing also the small value of corrections
at large transverse momentum qT , we plot the logarithmic graphs. Note, that some NLO
contributions are negative at large qT , cause for this picture we take absolute values of
corrections. We can see that at big value of transverse momentum qT the contribution of
order O(αSα

2) start to play bigger role.
And finally we present the rapidity distribution of the differential cross section at en-

ergies for LHC and Tevatron (the Fig. (5.7)).
We compared our result with results of others groups. The QCD contributions were in

agreement with result of [7], [8], [9]. The QED corrections were calculated separately. To
check this result we gone into the so-called ”QED limit” for these subprocesses where it is
possible. So, we considered limits CF → 1 and CA → 0 for known QCD loops corrections,
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Figure 5.6: The same as Fig.(5.5) at
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this limiting formula given us correct result of QED case. The EW part, which was
particularly calculated by Kuhn in [17] also was congruented with our result.



Chapter 6

Conclusion

In this thesis, we present the calculations of the differential as well as the total cross section
for the Z boson production via the Drell-Yan process at the orders of the perturbation
theory O(α2

Sα) and O(αSα
2).

The production of Z boson in the hadron-hadron interactions plays very important role
in the modern physics in relation with the development of the colliders technique and the
building of new high energies hadron-hadron colliders like LHC. The leptonic decay modes
of Z boson decay in this process can be very easily triggered in detectors. The accuracy of
the calculated cross section give us good approximation in knowledge about the value of
background and help us to separate important events.

Our result includes the QCD, QED and EW corrections to the main Born processes and
has the general orders O(αSα, α

2
Sα, αSα

2). The calculations were done in the framework
of the Standard Model. We adopted the MS scheme of renormalization and factorization.
The integration over loop and bremsstrahlung momenta was done in the d dimension
phase space. The traces with γ5 matrix were accurately calculated using ’t Hooft-Veltman
definition of γ5.

Our analytical result for the QCD corrections of the order O(α2
Sα) is in good agreement

with early calculation. The QED corrections of the order O(αSα
2) cannot be extracted

directly from QCD formulae, because in the mixed αSα corrections the non-vanishing
colour factor appears in the quark-quark processes like q + q → Z + q + q. In this thesis,
for the first time the analytical result for QED corrections of the Z boson production is
presented. Our calculations of the EW corrections include the loop calculations and the
bremsstrahlung subprocess, which are the new contributions and were never calculated
before. Namely, we took into account the quark-quark interaction q + q → Z + q + q with
an exchange of weak neutral boson and gluon. So, in this work the full order corrections
up to the order αSα

2, α2
Sα were calculated for the first time.

As the result of our calculations, we gave the analytical formula for the partonic sub-
process and the graphical output of our numerical calculation of the hadronic cross section.
The convolution of the parton cross section to the hadron cross section was done with help
of CTEQ6 and MRTSparton distribution functions. The numerical results are presented
by plots of the total cross section σtot and of the distributions in the transverse momentum
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dσ
dqT

and in the rapidity distribution dσ
dy

of the Z boson. We plotted the distribution of

the total cross sections in dependence of the cut-momenta qcutT at the energies for LHC and
Tevatron colliders.

For more detail presentation of the relative contributions of the different subprocesses
to the total cross sections, we plotted the K = σtot

σBorn
factor in dependence of the cut-

momentum qcutT . The contribution of the QCD corrections of order O(α2
Sα) is most impor-

tant at small qcutT . At large values of the momentum qcutT (for LHC energies qcutT > 1200GeV
and for Tevatron energies qcutT > 400GeV ) the EW contributions of the order O(αSα

2) play
a significant role and achieve up to 30% for LHC and 20% for Tevatron energies. The con-
tributions of order O(αSα

2) of the QED subrocesses are small and average out at 1− 2%.
Our numerical calculations were done in C++ and FORTRAN codes, where for nu-

merical integration was used the CUBA library. The next step of calculation of full order
of corrections to the Z boson production in the Drell-Yan process is the including in the
result the calculations of processes q + q̄ → Z. Our code can be easy changed and used
for calculation also of W boson, as well as Higgs boson production at the hadron-hadron
interactions.



Appendix A

Operator definitions of Parton

Distribution Functions

Here we collect the operators definitions [27, 45] of the parton distribution functions. All
the definitions have ultraviolet divergences and that must be renormalized away to define
finite parton distribution functions.

Quark Distribution Functions

The distribution function of the quark of flavor i in a hadron h with momentum pµ in
the plus direction is [45]:

φi/h(x) =

∫
dy−

2π
e−ixp

+y− (A.1)

〈p
∣
∣ψ̄i(0, y

−, 0⊥)
y+

2
P exp

[

−ig
y−∫

0

dy′−A+
a (0, y

′−, 0)ψta
]

ψi(0)
∣
∣p〉,

where ta are generating matrices for the adjoined representation of color group SU(Nc),
p+ is component to z-axis of momenta p, yµ denote position in space-time, ψ is quark
filed operator. The path ordered exponential of the gluon field A is needed to make the
definition gauge invariant. This distribution was done for unpolarized case without to take
into account a spin momenta transverse to collision axis.

Gluon Distribution Functions

The operator definition for the distribution function of gluons in a hadron h with
momentum pµ in the plus direction is:

φg/h(x) =
2∑

j=1

∫
dy−

2πxp+
e−ixp

+y−〈p
∣
∣G+ j(0, y−, 0⊥)PG

+ j ′(0 )
∣
∣p〉, (A.2)
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where G is gluon filed strength tensor and P denotes path-ordered exponential of the gluon
filed along the light-cone that makes the operator gauge invariant:

P = P exp
[

y−

∫

0

dy ′−A+
a (0 , y

′−, 0⊥)t
a
]

. (A.3)



Appendix B

Analytical result for QED corrections

Here we present the analytical result of the calculation of QED corrections to Z boson
production in the Drell-Yan mechanism. The calculation was done independently of the
QCD corrections and compared with them in limit αS → α, CF → 1, CA → 0 for this
subprocesses were we don’t have vanishing colour factors.

Partonic cross-section q̄ + q −→ Z +X

First part of the QED corrections is the distribution of qq̄ channel of the hadron-hadron
collisions. The partonic process q̄q −→ Z + X of the order O(αSα

2) contains following
partonic subprocesses:

q̄q −→ Zγ , q̄q −→ Zgγ and q̄q −→ Zq̄q .

The first two processes were considered together in order to obtain the infrared finite
cross-section. The last subprocess is finite and gauge invariant itself. Therefore we can
present this contributions separately in the formulae below:

s dσq̄q

dt du
=

2πα2Q2
q(v

2
q + a2q)

Nc

1

s

{

δ(s2)Aqq̄(s, t, u) + CF
αs

π

(

δ(s2)B1 +B′1 +B′′1

)}

,(B.1)

where Aqq̄(s, t, u) is the Born contribution (4.2):

Aqq̄(s, t, u) =
u

t
+
t

u
+

2Q2(Q2 − u− t)

ut
,

The functions B1, B
′
1 and B′′1 are NLO terms of corrections which come from diagrams ci

and vi=1..10 in the Fig. (3.4) and in the Fig. (3.2). The contribution B′′1 comes from the
subprocess q̄+q → Z+ q̄+q only (diagrams bi in the Fig. (3.4)). The electroweak coupling
constants vq and aq are given in the Eq. (3.13), Qq is the electric charge of a quark.
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For the NLO terms we obtained following expressions:

B1 = Aqq̄

[

LµF
(2Lt + 2Lu − 4LA − 3) + 4LA(LA + Ls − Lt − Lu − 1) + (Lt + Lu)

2

]

+L2
s

(

− 2s2

tu
− Aqq̄

)

+ Ls

(

8s

t+ u
+

4s2

(t+ u)2

)

+

(

2Aqq̄ +
4s2

tu

)(

Ls ln
(s−Q2

Q2

)

− Li2

(Q2

s

)
)

+ ζ(2)

(

4s2

tu
+ 8A0

)

+

{

Lt

(

t+ 4s

s+ u
+

st

(s+ u)2

)

+ LsLt

(

2(2s+ t)

u
− 4Aqq̄

)

+
2(2s2 + 2su+ u2)

tu

(

Lt ln
(s+ u

Q2

)

+ Li2

( t

Q2

)
)

−9t+ 17s

u
− 8s2

tu
+

2s

t+ u
+

s

s+ t

}

+

{

u↔ t

}

, (B.2)

B′1 =

[

4Aqq̄

(

− ln
((s2 − t)(s2 − u)

s2

)

− LµF
+ 2 ln

( s2
Q2

)− Ls

)

1

s2

]

A+

+ ln
( tu−Q2s2
(s2 − t)(s2 − u)

)
(

4s2(s−Q2)

tu(s2 − t)(s2 − u)
+

2(2s+ u− t)

t(s2 − t)
+

2(2s+ t− u)

u(s2 − u)

+
4Q2A0 − 2u− 2t− 2Q2 − 6s

tu−Q2s2
+

2(t+ u+ s+Q2)

tu

)

+ ln
((s2 − t)(s2 − u)

ss2

)
(

4s2(s−Q2)

tu(s2 − t)(s2 − u)
+

2(2s+ u− t)

t(s2 − t)
+

2(2s+ t− u)

u(s2 − u)

)

+ ln
(µ2

F

s2

)
(

s

(s2 − t)2
+

s

(s2 − u)2
− 2s+ u+ t

t(s2 − t)
− 2s+ t+ u

u(s2 − u)
+
Q2

t2
+
Q2

u2

−4Q2A0 − 2u− 2t− 2Q2 − 6s

tu−Q2s2

)

+
s

(s2 − t)2
+

s

(s2 − u)2
+

2(u/t+ s/t− s/u)

s2 − t
+

2(t/u+ s/u− s/t)

s2 − u

+
2(s−Q2 +Q2u/t+Q2t/u)

tu−Q2s2
+

2(t+ u− s)

tu
, (B.3)
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B′′1 =
9

4

1

λ
Lλ

(

3s(t− u)2(t+ u)(4Q2s+ (t+ u)2)

2tuλ4

−2s(t3 + u3) +Q2(−4s(t− u)2 + 2s2(t+ u)− (t− u)2(t+ u))

tuλ2

+
(t+ u)(4s2 + t2 + u2 + 2s(t+ u))

s2tu
+

6(s−Q2)(t2 + u2)

stu
+

2(6s+ t+ u)

s+Q2 − s2

+
(9s− 18Q2 + 8Q4/s)(t+ u)

2tu
+

3(t3 + t2u+ tu2 + u3)

stu
− 4Q2

s
+ 2

)

+
9

8st
Lλt

(

4s2 + t2 + 4su+ u2

s+Q2 − s2
+ 2Q2 − 4s− t− 3u

)

+
9

8su
Lλu

(

4s2 + u2 + 4st+ t2

s+Q2 − s2
+ 2Q2 − 4s− u− 3t

)

+
9

8t
Lst

(

−2s2 + 3t+ u

s
+

2(2s2 + 2su+ u2)

s2u

−2(2s− 2s2 + t+ 2u)

t
+

4s2 + t2 + 4su+ u2

s(s+Q2 − s2)

)

+
9

8u
Lsu

(

−2s2 + 3u+ t

s
+

2(2s2 + 2st+ t2)

s2t

−2(2s− 2s2 + u+ 2t)

u
+

4s2 + u2 + 4st+ t2

s(s+Q2 − s2)

)

+
27(t− u)2(t+ u)(−2Q2(2s+ t+ u) + (t+ u)(4s+ t+ u))

8tuλ4

−9(t3 + t2u+ tu2 + u3 −Q2(t+ u)(2s+ t+ u) + s(6t2 − 4tu+ 6u2))

4tuλ2

+
9s2

4u(s2 − t)2
+

9s2

4t(s2 − u)2
+

9

4

(

2 +
3s2

tu

)(

1

s2 − t
+

1

s2 − u

)

+
9

4s

(

1

t2
+

1

u2

)
(

4Q4 + 2tu−Q2(7s+ 4(t+ u))
)

+
9(3s(t+ u)− 4tu)

8stu
. (B.4)
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In the above formulae we introduced the following notations for logarithms:

Ls = ln
( s

Q2

)

, (B.5)

Lt = ln
(−t
Q2

)

,

Lu = ln
(−u
Q2

)

,

LA = ln
( A

Q2

)

,

LµF
= ln

(µ2
F

Q2

)

,

Lst = ln
( st2

Q2(s2 − t)

)

,

Lsu = ln
( su2

Q2(s2 − u)

)

,

Ltu = ln
( tu− s2Q

2

(s2 − t)(s2 − u)

)

,

Lλ = ln
(s+Q2 − s2 + λ

s+Q2 − s2 − λ

)

,

Lλt = ln
( sQ2(s2 − t)2

(s2(2Q2 − u)−Q2t)2

)

,

Lλu = ln
( sQ2(s2 − u)2

(s2(2Q2 − t)−Q2u)2

)

.

Partonic cross-section qg −→ Z +X

For the partonic subprocess qg −→ Z+X we can present the follow result of calculation
of QED contributions:

s dσqg

dt du
=

2πααsQ
2
q(v

2
q + a2q)CF

NA

1

s

{

δ(s2)Aqg(s, t, u) +
α

π

(

δ(s2)C1 + C ′1

)}

(B.6)

where Aqg(s, t, u) is the Born contribution (diagrams a3 and a4 in Fig. 3.1) (4.2):

Aqg(s, t, u) = −Aqq̄(u, t, s) = −s
t
− t

s
− 2Q2u

st
,

The NLO QED corrections, coming from crossed diagrams in the Figs. (3.4,3.2) are
given by



70 APPENDIX B. ANALYTICAL RESULT FOR QED CORRECTIONS

C1 = Aqg

[

LµF
(Lu − LA − 3

4
) +

1

2
L2
A − 3

4
LA

]

+
(t+ u)2 + u2

2st

(

2Li2

(Q2

s

)

+ L2
s + 2LsLu − 2Ls ln

(s−Q2

Q2

)
)

−(s+ u)2 + u2

st

(

Li2

( t

Q2

)

− LtLu + Lt ln
(s+ u

Q2

)
)

−(s+ u)2 + (t+ u)2 + 2u2

st

(

Li2

( u

Q2

)

+ Lu ln
(s+ t

Q2

)
)

+
(s+ u)2 + (t+ u)2

2st
L2
u −

2u(2s+ 2t+ u)

(s+ t)2
Lu +

(

− 2u+ t

s+ u
+

st

2(s+ u)2

)

Lt

−
(

s+ 4u

2(t+ u)
+

su

2(t+ u)2

)

Ls −
2(2s2 + 4su+ 5u2

st
ζ(2)− u

2(t+ u)

− 2u

s+ t
+

s

2(s+ u)
+

11(s2 + t2)− 2st+ 20(su+ tu) + 18u2

4st
. (B.7)

The next contribution C ′1 is quite big, we rewrite it in terms, proportional to logarithms:

C ′1 =
Lλ

λ
Fλ(s, t, u) + LsuFsu(s, t, u) + FA+(s, t, u)

+LtuFtu(s, t, u) + LλtFλt(s, t, u)− ln
(µ2

F

s2

)

Fµ(s, t, u) + F (s, t, u),

where logarithm notations Li was done in Eq. (B.5) and functions by logarithms Fa(s, t, u)
of Mandelstam variables are here:

Fλ(s, t, u) =
3s(t− u)2(t+ u)(−2Q2 + t+ u)

8tλ4

+
1

λ2

(

(t− u)2(t+ u)− s(t2 + u2)

4t
+

(t− u)(t+ u)2

8s

+
Q2(−t3 + s2(3t− u) + tu2 − 2s(3t2 − 4tu+ u2))

4st

)

+
64Q4 + 7s2 + 7t2 + 21tu+ 16u2 + 2s(t+ u)− 2Q2(30s+ 15t+ 16u)

8st

Ftu(s, t, u) =
1

2s
− 1

2t
+
Q2

st
+
Q2(Q2 − t− s)

2su2

−1

u
+
Q2

su
− t

2su
+
u

st
− 2Q4 − 2Q2(s+ t) + (s+ t)2

2st(Q2 − u)
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Fsu(s, t, u) = +

(

Q2 + t− 2Q2

st

(

(s− u)2 + (t− u)2
)

+
t2 + (t− 2u)2

s

)

1

tu− s2Q2
+

2Q2(u− s2) + (s+ t)2

st(Q2 − u)
+

−2Q2 + 3t− 2u

st

Fλt(s, t, u) =
2Q2(u− s2) + (s+ t)2

2st(Q2 − u)
− s2 − 2Q2

st

FA+(s, t, u) = −
[
(s+ u)2 + (t+ u)2

sts2
ln
( s2
Q2

)]

A+

+
3(s2 + t2 + 2su+ 2tu+ 2u2)

4st(s2)A+

+LµF

s2 + t2 + 2su+ 2tu+ 2u2

st(s2)A+

− t3 + 3t2u+ 4tu2 + 2u3

2st(s2)A+

Lλ

λ

−t
2 + 2tu+ 2u2

2st(s2)A+

Ltu −
s2 + 2su+ 2u2

st(s2)A+

Lsu

Fµ(s, t, u) =

(

− st

(s2 − t)3
+

u+ t

(s2 − t)2

−3s2 − 4st+ 2t2 + 6su− 4tu+ 4u2

2st(s2 − t)
− 1

s2 − u
+
Q2(u− s2)

2u2s

+
t((s+ t)2 + su+ (t− 4u)2)−Q2(2(s2 + t2) + st+ 4(su− tu+ u2))

st(tu− s2Q2)

+
5

2s
− Q2

2t2
+

3

2t
− 1

u
+
Q2

su
− t

2su

)

F (s, t, u) =
3s(t− u)2(t+ u)

4tλ4

+
−2t3 − 4Q2(s− 2t)(t− u) + 2tu2 − 2s2(t+ u) + s(7t2 − 10tu+ 3u2)

8stλ2

+
t(s2 + su+ 4(t− u)u)−Q2(s(t− 4u) + 4u(t− u))

2st(tu− s2Q2)
+

4st

(s2 − t)3

−4u+ 8t− 3s

2(s2 − t)2
+

−s2 − 4st+ 3t2 + 2su− 2tu+ u2

2st(s2 − t)
− s

t(s2 − u)

− 3

2s
− Q2

4t2
+

3

8t
− Q2(u− s2)

2u2s
− 1

u
+
Q2

su
− t

su
.
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The ”+” description is defined in this way:

s2,max∫

0

ds2
f(s2)

(s2)+
=

s2,max∫

0

ds2
s2

[f(s2)− f(0)],

s2,max∫

0

ds2
ln(s2)

(s2)+
f(s2) =

s2,max∫

0

ds2
s2

[f(s2)− f(0)] ln(s2)

Partonic cross-section qq −→ Z +X

Let us present the mixed QED/QCD contribution to the process qq −→ Z+q+q. This
contributions are due to the interference of the diagrams, which shown in the Fig. (3.1) with
the gluon exchange and the same diagrams but with the photon exchange. As discussed in
the text, this contribution does not follows from the QCD calculation because of the zero
color trace effect. We have follow differential partonic cross section:

s dσqq

dt du
=

2παsα
2Q2

q(v
2
q + a2q)CF

Nc

C ′1 , (B.8)

where function C ′1 is here:

C ′1 = + ln
((s2 − t)(s2 − u)

ss2

)9(2Q4 + 2s2 + 2s(t+ u) + (t+ u)2 − 2Q2(2s+ t+ u))

4stu

+
9(2s2Q

2(t2 + u2)− tu(t+ u)2)

4st2u2

+

{

Lλt
9(2s2 + (t+ u− 2s2)(s+Q2 − s2))

8(s+Q2 − s2)(s2 − t)t

+
9

4
Lst

(

u− t

2t(s2 − t)
+

1

s
+
s− s2 + u

t2
+

s22
stu

+
t− 2s2
2su

+
u− 2s2
2st

+
s2

t(s2 − t)(s+Q2 − s2)

)}

+

{

u↔ t

}

, (B.9)

and logarithm notations Li was done in Eq. (B.5).



Appendix C

Analytical result for EW corrections

In this Appendix we presented the analytical formula for EW correction to Z boson pro-
duction. This result coincide with calculations in paper [17].

For subprocess q + q̄ → Zg the result can be given as in the below formula.

dσq̄q
dtdu

= (C.1)

αSαKqq

[

K1

2s12
Aqq(s, t, u) + αS

(

K1FK1 +K2FK2 +K3FK3 +K2K3FK2K3 + Frest

)]

,

where colour factors are here:

K1 =
4s2

9c2
+
( c

2s
− s

6c

)2

, K2 =
16s4

81c4
+
( c

2s
− s

6c

)2

, K3 =
3c2 − s2

12s4
, (C.2)

FK1 = (C.3)

+ ln(M2
R)

NC

m2
Z − 4m2

t

−(m2
t (8m

2
W − 5Q2)2(2Q2s12 + t2 + u2))

288m2
W (m2

W −Q2)tu)

+ ln

(
M2

Rm
2
Z

m2
H

)
Q6(2Q2s12 + t2 + u2)

8m2
W (m2

W −Q2)(m2
H − 4m2

Z)tu

+

(

ln(4µ2
Rπ)

7

4
− ln(4µ2

Rπ)nG
1

3
− ln(4µ2

Rπ)nGNC
5

27

)

(2Q2s12 + t2 + u2)

2tu

+NC

(

B0(m
2
Z ,m

2
t ,m

2
t , 1) + 1

)

(2Q2s12 + t2 + u2)
m2

t (8m
2
W − 5Q2)2

144m2
W (m2

W −Q2)(m2
Z − 4m2

t )tu

+nG(2Q
2s12 + t2 + u2)

72m2
W (m2

W −m2
Z)(32m

4
W − 38m2

Wm
2
Z + 9m4

Z)tu

m8
Z

+nGNC(2Q
2s12 + t2 + u2)

648m2
W (m2

W −m2
Z)(160m

4
W − 166m2

Wm
2
Z + 33m4

Z)tu

m8
Z

73



74 APPENDIX C. ANALYTICAL RESULT FOR EW CORRECTIONS

FK1K2 = (C.4)

+
ζ2

m2
Z − t

3(m2
W −Q2)2(2Q4 − 2Q2u+ u2)

2(4m2
W −Q2)Q2u

+

{

u < − > t

}

FK2 = +C1(s12,m
2
Z)
s12(t

2 + 4tu+ u2 − 4Q2(t+ u))

4tu
(C.5)

+C2(u,Q
2,m2

Z)
1

(m2
Z − u)3

3Q4s12u

2

+C2(u,Q
2,m2

Z)
1

(m2
Z − u)2

Q2(4Q4 − 2u(t+ u)−Q2(4t+ 3u)

2

+C2(u,Q
2,m2

Z)
1

m2
Z − u

Q2s12(Q
2 + 4u)

2u

+C2(u,Q
2,m2

Z)
−8Q6 + 2Q4(5t+ 8u)− 5Q2(t2 + 2tu+ 2u2) + u(t2 + 2tu+ 2u2)

4tu

+C2(t, Q
2,m2

Z)
1

(m2
Z − t)3

3Q4ts12
2

+C2(t, Q
2,m2

Z)
1

m2
Z − t)2

Q2(4Q4 − 2t(t+ u)−Q2(3t+ 4u)

2

+C2(t, Q
2,m2

Z)
1

m2
Z − t

Q2(Q2 + 4t)s12
2t

+C2(t, Q
2,m2

Z)
−8Q6 + 2Q4(8t+ 5u)− 5Q2(2t2 + 2tu+ u2) + t(2t2 + 2tu+ u2)

4tu

+B0(u,m
2
Z , 0, ǫ)

1

m2
Z − u

(2Q2 − (2Q4)/t− t)

4
+ B0(u,m

2
Z , 0, ǫ)

−3Q2 + t+ u

2t

+B0(t,m
2
Z , 0, ǫ)

1

m2
Z − t

2Q2 − (2Q4)/u− u

4
+ B0(t,m

2
Z , 0, ǫ)

−3Q2 + t+ u

2u

+

{

D1(s12, u,Q
2,m2

Z)

4tu

(

−8Q6(t+ 2u) + 4Q4(t2 + 6tu+ 6u2)

+u(t3 + 3t2u+ 4tu2 + 2u3)−Q2(t3 + 8t2u+ 18tu2 + 12u3)

)

+ ln(m2
Z − u)

1

(m2
Z − u)3

−3Q2(Q2 − u)s12
2

+ ln(m2
Z − u)

1

(m2
Z − u)2

−(Q2 − u)(5Q4 − u(t+ u)−Q2(5t+ 6u))

4u

+ ln(m2
Z − u)

1

m2
Z − u

−(5Q2 − 4t− 3u)(Q2 − u)

4u

+ ln(m2
Z − u)

Q6t− 4Q2u2(t+ 2u) +Q4u(−t+ 8u) + u2(t2 + 2tu+ 2u2)

2tu3

}

+

{

t < − > u

}
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FK3 =
u

(m2
Z − u)3

(−3m2
W ts12) (C.6)

+
1

6m2
W t(m

2
W − u)

(

1 +
ζ2
8

)
(
−Q2(2Q4 − 2Q2t+ t2)

+2m2
W (2Q4 − 2t2 +Q2(t− 9u) + 6tu− 3u2)

)

+
C1(s12,m

2
W )

12m2
W tu

(
s12(4m

4
W (t+ u) +Q2(−t2 − 4tu− u2 + 2Q2(t+ u))

+m2
W (6Q2(t+ u)− 2(t2 + 4tu+ u2)))

)

+C2(u,Q
2,m2

W )
1

m2
Z − u

−(2m2
W +Q2)s12(m

2
W + 4u)

12u

+C2(u,Q
2,m2

W )
1

(m2
Z − u)2

−(2m2
W +Q2)(m2

W (4Q2 − 4t− 5u) + 2s12u)

12

+C2(u,Q
2,m2

W )
1

(m2
Z − u)3

−m2
W (2m2

W +Q2)s12u

4

+
C2(u,Q

2,m2
W )

24m2
W tu

(
(2m2

W +Q2)(2m4
W s12 +m2

W (4Q4 − 6Q2t+ 4t2 − 8Q2u+ 6tu+ 4u2)

+(Q2 − u)(2Q2(s12 − u) + t2 + 2tu+ 2u2))
)

+C3(u,Q
2,m2

W ,m
2
W )

u

(m2
Z − u)3

−3m2
W s12
2

+C3(u,Q
2,m2

W ,m
2
W )

1

(m2
Z − u)2

−m2
W (m2

W (4Q2 − 4t− 5u)− 2us12)

2

+
C3(u,Q

2,m2
W ,m

2
W )

4tu

(
2m4

W s12 +Q4(t− u)− u(t2 + u2) +Q2(−t2 + tu+ 2u2)

+2m2
W (2Q2s12 + 2t2 + tu+ u2 −Q2(t+ u))

)

+C3(u,Q
2,m2

W ,m
2
W )

1

m2
Z − u

m2
W (−2u2 +m2

W s12)

2u

+B0(u,m
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u
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+
D1(s12, u,Q

2,m2
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W tu
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W (Q2(4t+ 6u)− 2(t2 + 4tu+ 3u2))
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+
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(
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W ((t+ u)3 −Q2(t2 + 6tu+ u2))

)

+ ln(m2
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+
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+
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m2
W

+
NC

2tu

m4
t (2Q

2s12 + (t+ u)2)

Q2m2
W

+B0(m
2
W ,m

2
H ,m

2
W , 1)

(

− m4
H(t+ u)

2(m2
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4Q2m2
W tu

+
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Z − s12)

− ln(m2
t )NC

m4
t s12

Q2m2
W (m2

Z − s12)
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+
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+
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−2176c10 + 21472c8 − 31332c6 + 18082c4 − 3235c2 + 51

10368c6s2
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2
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+
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2
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+
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+
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z − u)

)

/2 +
s12

2(m2
Z − s12)
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864c4s2tu

+
(

ln(m2
Z)

2 − ln(m2
Z) ln(M

2
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Q2

+ ln(M2
R)
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u
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1
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)
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+ ln(m2
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1
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10368c4s3

×Q
4((Q4(−1 +Q2/t))/t2 + (Q4(−1 +Q2/u))/u2)
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H
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576c4s2tu

)

+ ln(m2
Z) ln(M

2
R)

2Q4 − 2Q2u+ u2

u(m2
Z − t)
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4(288t− 2690u) + 706c2u− 17u

3456c4s6t

]

+ ln(m2
t )

NC

m2
Z − s12
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{
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+

1

(m2
Z − t)

Q4

u

+ ln(m2
Z)

1

(m2
Z − u)2

10Q6

u
+ ln(m2

Z)
1

(m2
Z − t)2

10Q6

t

+ ln(m2
Z)

1

(m2
Z − u)2

10Q4t

u
+ ln(m2

Z)
1

(m2
Z − t)2

10Q4u

t

+ ln(m2
Z)

1

m2
Z − u

8Q4

t
+ ln(m2

Z)
1

m2
Z − t
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−257− 1022c2 + 1488c4 − 992c6 + 512c8

2592c4s2

+
(257− 1028c2 + 1542c4 − 1136c6 + 608c8)Q2(t+ u)

1728c4s2tu

)

+
(
ln(M2

R)
2 + ζ2

)
(
t

u
+
u

t

)
(−257 + 1022c2 − 1596c4 + 1424c6 − 512c8)t

5184c4s2u
.

In our formula we denoted by s = sin θW , c = cos θW , s12 is Mandelstam variable and
equal to the squared momenta of incoming particle (p1 + p2)

2. The integrals, which come
from bubble, triangle and box diagrams are here:

B0(s,m
2
1,m

2
2) = 2− 1

2
ln
m2

1m
2
2

M4
+
m2

2 −m2
1

2s
ln
m2

1

m2
2

+ φ, (C.7)

where φ = −
√
a

2s
ln
m2

1 +m2
2 − s−√

a

m2
1 +m2

2 − s+
√
a
, if a > 0

φ = −
√
−a
2s

arctan

√
−a

m2
1 +m2

2 − s
, if a < 0

a = (m2
1 +m2

2 − s)2 − 4m2
1m

2
2;
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B0(s,m
2
1,m

2
2, 1) = 1− 1

2
ln
m2

1m
2
2

M4
+

m2
1 +m2

2

2(m2
2 −m2

1)
ln
m2

1

m2
2

(C.8)

B0(t,m
2, 0, ǫ) = 4− 2(L− LM) +

1

2
(L+ LM)2 +′ fracm2t

(

2L− 1

2
L2 − LLM − Li2

(
t

m2

))

,

L = ln

(
m2 − t

m2

)

, L = ln

(
m2

M2

)

;

B0(0, 0,m
2) = 1− ln

m2

M2
,

C1(s,m
2) =

1

s

(

Li2

(−m2

s

)

+ ln
( s

m2

)

ln

(
s+m2

m2

)

− 1

2
ln2
( s

m2

)

− ζ2

)

(C.9)

C1(t,m
2) = ζ2 −

1

t
Li2

(

1 +
t

m2

)

C2(t, Q
2,m2) =

1

Q2 − t

(1

2
ln2

(
m2 − t

m2

)

− 1

2
ln2

(
m2Q2

(m2 − t)(m2 − t+Q2)

)

(C.10)

+
1

2
ln2

(
m2 − t+Q2

m2

)

+ Li2

(
t

m2

)

− Li2

(
t−m2

Q2

)

− ζ2

)

,

C2(s,Q
2,m2) =

1

Q2 − s

(

−ζ2 +
1

2
(ln2(m2)− ln2(Q2)) + ln(|m2 − s|) ln
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Q2
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)

+ ln
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∣
∣
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∣
∣
∣
∣

)

ln

(∣
∣
∣
∣
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m2

∣
∣
∣
∣

)

+ReLi2

( s

m2

)

−ReLi2

(
s−m2

Q2

)

,

C3(t, Q
2,m2,m2) =

1

Q2 − t

[

Li2

(
t

m2

)

− 2ReLi2

(
Q2

2Q2
+ i

a

2m2
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(C.11)

− ReLi2

(
m2Q2

z

)

+ ReLi2

(
(m2 − t)Q2

z

)

+ 2

(

π − 2 arctan

(
a

Q2

))

arctan

(
a

Q2 − 2t

)

+ ln

(
Q2
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)

ln

(
Q2 − t

t

)

+ ln

(
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)
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(
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(−Q2(Q2 − 2t) + a2

w
+ i 2a

Q2 − 2

w
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− 2ReLi2

(
+Q2(Q2 − 2t) + a2

w
− i a

2t

w

)

a =
√

Q2(4m2 −Q2)
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w = (Q2 − 2t)2 + a2.
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D1(s, t, Q
2,m2) =

1

st+m2(t+ u)

[

Li2

(

1 +
m2 − t

Q2

)

− Li2

(

1 +
m2

s

)

(C.12)

+ 2Li2

(
t

m2

)

− 2Li2

(

1− Q2

s

)

+ 2Li2

(

1− Q2m2

s(m2 − t)

)

+ ln

(
m2Q2

s(m2 − t)

)

ln

(
m2M2

(m2 − t)2

)]

For calculating of the next four-point diagram, the formula (4.37) in [35] was used:

D3(s, t, Q
2,m2

2,m
2
3) =

1

δ

(

−2Li2

(
1−m2

2

m2
2 − u

)

− 2Li2

(
1−m2

3

m2
3 − t

)

(C.13)

− ReLi2(1− w2x34 − iw2y34)− ReLi2(1− w2x34 + iw2y34)

− ReLi2(1− w3x43 − iw3y43)− ReLi2(1− w3x43 + iw3y43)

+ 2Li2

(

1− m2
2m

2
3

(m2
2 − u)(m2

3 − t)

)

+ ln

(
m2

2 − u

M2

)

ln

(
m2

3 − t

m2
3

)

+ ln

(
m2

3 − t

M2

)

ln

(
m2

2 − u

m2
2

)

− x2 + y2
)

;

δ = tu−m2
2t−m2

3u w2 =
m2

2

m2
3 − t

w3 =
m2

3

m2
2 − u

x34 =
a34(a34 − 1) + b34b34

(a34 − 1)2 + b234
y34 = − b34

(a34 − 1)2 + b234

x43 =
a43(a43 − 1) + b43b43

(a43 − 1)2 + b243
y43 = − b43

(a43 − 1)2 + b243

a34 =
1− r23

2
b34 = −

√

(4m2
3/Q

2 − (1− r23)
2)

2

a43 =
1 + r23

2
b43 = −

√
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2/Q
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2

r23 =
m2

2 −m2
3
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x =
1

2
ln(x34x34 + y3y34) y = phase{x34, y34}

The results for other chanels (q+ g → q+ z, q̄q → Z+ g etc.) can be found by crossing
procedure.



Appendix D

Analytical result for EW corrections,

qq → Zqq part

Here we present the mixed QCD/weak partonic differential cross-section for qq −→ Z+q+q
process. It comes from the interference of the diagrams which shown in the Fig. (3.1) with
gluon exchange and the same diagrams with Z boson exchange.

sdσqq
QCD/weak

dt du
=

2α2αs(v
4
u + 6u2a2u + a6u)CF

Ncs
× (D.1)

[{

fln(s, t, u) + I4(1, 1, t, 1)f
1,1
1 (s, t, u)

+ I4(1, 1, t,−1)f 1,1
−1 (s, t, u)− I4(1, 2, t,−1)f 1,2

−1 (s, t, u)

}

+

{

t↔ u

}]

.

In the above formula I4 represent some phase space integrals given in Appendix C of
Ref. [36]. The explicit expressions read

I4(1, 1, t, 1) =
1√
X+

ln
(u(Q2 − s2) + 2Q2s+

√
X+

u(Q2 − s2) + 2Q2s−√
X+

)

, (D.2)

I4(1, 1, t,−1) =
1√
X−

ln
(2Q4 −Q2(t+ u)− st+

√
X−

2Q4 −Q2(t+ u)− st−√
X−

)

,

I4(1, 2, t,−1) = 2
4Q6 + st(t+ u)− 2Q4(s+ 2(t+ u)) +Q2(−2s2 − 2s(t+ u) + (t+ u)2)

4Q2sX−

+
2Q6 − s(s+ u)t+Q2u(s+ t+ u)−Q4(2s+ 3u+ t)

2X−
I4(1, 1, t,−1) ,

X+ = (u(Q2 − s2) + 2Q2s)2 − 4Q4s(s+ u) ,

X− = (2Q4 −Q2(t+ u)− st)2 − 4Q4s(s+ u).
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And kinematics’s factors are here:

fln(s, t, u) = − ln
(Q2t− s2(s+Q2))2

Q2(s+ t)(s2 − t)2
Q2(s22 + (s2 − t)2−u(2s+ u)) + s(2s2(s−Q2) + (t+ u)2
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