Das Evolutionsverhalten von Lyman α -Absorbern im Rotverschiebungsbereich z < 2

Dissertation zur Erlangung des Doktorgrades des Fachbereichs Physik der Universität Hamburg

> vorgelegt von Eckart Janknecht aus Bremen

Hamburg 2005

Gutachter der Dissertation:	Prof. Dr. D. Reimers
	Prof. Dr. S. Refsdal
Gutachter der Disputation:	Prof. Dr. D. Reimers
	Prof. Dr. P. H. Hauschildt
Datum der Disputation:	18.2.2005
Vorsitzender des Prüfungsausschusses:	Dr. D. Grundler
Vorsitzender des Promotionsausschusses:	Prof. Dr. R. Wiesendanger
Dekan des Fachbereichs Physik:	Prof. Dr. G. Huber

Zusammenfassung

In der vorliegenden Arbeit wird das statistische Verhalten der Lyman α -Absorber des intergalaktischen Mediums (IGM), die sich in den Sehlinien zu insgesamt neun hellen Hintergrundquasaren befinden, im Rotverschiebungsbereich z = 0, 5 - 1, 9 untersucht. Die Lyman α -Linienauswahl kann auf der Basis hochaufgelöster Spektren ($R \geq 30\,000$) untersucht werden. Als Hauptresultate ergeben sich:

- Die Verteilung der Säulendichten der Absorber ist bis hinunter zu $N_{\rm HI} = 10^{12,90} \,{\rm cm}^{-2}$ vollständig und kann über annähernd drei Größenordnungen durch ein einfaches Potenzgesetz mit dem Exponenten $\beta = 1,60 \pm 0,03$ approximiert werden. β ist unabhängig von der Rotverschiebung.
- Die Verteilung der Dopplerparameter hat einen für den analysierten z-Bereich typischen Mittelwert $\overline{b} = (34 \pm 22) \text{ km s}^{-1}$; sie ändert sich nicht signifikant mit z.
- Sowohl die Lyman α -Linien geringerer $(N_{\rm HI} = (10^{12,90} 10^{14,00}) \text{ cm}^{-2})$ als auch diejenigen höherer Säulendichte $(N_{\rm HI} > 10^{13,64} \text{ cm}^{-2})$ treten über kurze Distanzen $(\Delta v < 200 \text{ km s}^{-1} \text{ bzw}. \Delta v < 100 \text{ km s}^{-1})$ mit einer 2σ -Signifikanz verstärkt paarweise auf, ohne daß jedoch ein Unterschied zwischen den Häufungseigenschaften beider Absorberklassen erkannt werden kann. Der Grad der Häufung ändert sich über den betrachteten z-Bereich nicht.
- Die Evolution der Anzahldichte der Absorber kann mit dem Potenzgesetz $\frac{dn}{dz} \propto (1+z)^{\gamma}$ beschrieben werden. Die Anzahldichte der schwächeren Linien fällt im Intervall z = 0, 7 - 1, 9 mit sinkendem z mit $\gamma = 0, 74 \pm 0, 31$ ab. Ihre Entwicklung wird damit, wie ein Vergleich mit Untersuchungen bei anderen Rotverschiebungen zeigt, gegenüber der Evolution bei höheren z abgebremst, um anschließend für $z \to 0$ in eine konstante Evolution überzugehen.
- Die stärkeren Absorber dünnen schneller aus ($\gamma = 1, 50\pm 0, 45$). Der für z = 1, 5-1, 7 postulierte Sprung in ihrer Evolution kann bis hinunter zu z = 0, 7 nicht gesehen werden; ein Vergleich mit Literaturwerten für die lokale Anzahldichte legt allerdings nahe, daß er später stattfindet.
- Zwischen den einzelnen Sehlinien tritt eine starke kosmische Varianz auf, die wahrscheinlich das fortgeschrittene Stadium der Strukturbildung im Universum bei z = 2 widerspiegelt. Die Konsequenz daraus ist ein sehr ungleichmäßiges Erscheinungsbild des Lyman α -Waldes in verschiedenen Sehlinien.

Abstract

The present work investigates the statistical properties of the Lyman α absorbers of the intergalactic medium (IGM) seen in the lines of sight towards nine bright background quasars in the redshift range z = 0.5 - 1.9. The combined Lyman α line sample can be analyzed on the basis of high resolution spectra ($R \geq 30,000$). The main results are summarized as follows:

- The distribution of the column densities of the absorbers is complete down to $N_{\rm HI} = 10^{12.90} {\rm ~cm^{-2}}$ and can be approximated by a simple power law with the slope $\beta = 1.60 \pm 0.03$ over almost three orders of magnitude. β is redshift independent.
- The distribution of the Doppler parameter has a mean value of $\overline{b} = (34 \pm 22) \text{ km s}^{-1}$ which is typical for the analyzed region. It does not change significantly with z.
- The Lyman α lines with lower column densities $(N_{\rm HI} = (10^{12.90} 10^{14.00}) \text{ cm}^{-2})$ as well as the higher column density lines $(N_{\rm HI} > 10^{13.64} \text{ cm}^{-2})$ show clustering with a 2σ significance over short distances $(\Delta v < 200 \text{ km s}^{-1} \text{ and } \Delta v < 100 \text{ km s}^{-1}$, respectively), without an obvious difference between the clustering properties of both absorber classes. The strength of the clustering does not vary over the observed redshift range.
- The evolution of the number density of the absorbers can be described with the power law $\frac{dn}{dz} \sim (1+z)^{\gamma}$. The number density of the weak lines decreases with decreasing z with $\gamma = 0.74 \pm 0.31$ in the interval z = 0.7 1.9. This indicates that its evolution, following a comparison with results at different redshifts, is decelerated compared with the evolution at higher z, turning into a constant evolution for $z \to 0$.
- The stronger absorbers thin out faster ($\gamma = 1.50 \pm 0.45$). The break in their evolution predicted for z = 1.5 1.7 cannot be seen down to z = 0.7; a comparison with values from the literature for the local number density gives, on the other hand, a hint that it occurs later.
- A strong cosmic variance is found between the individual lines of sight, probably reflecting the advanced stage of structure formation in the universe at z = 2. As a consequence, a very inhomogeneous appearance of the Lyman α forest in different lines of sight occurs.

Inhaltsverzeichnis

1	Ein	führun	g	1
2	Sta	nd der	Forschung zum Lyman α -Wald	6
	2.1	Kosmo	ologische Signifikanz	6
	2.2	Strukt	turbildung im Universum und Lyman α -Absorbermodelle	8
	2.3	Verteil	lungen der Säulendichten und Dopplerparameter	9
	2.4	Haufer	nbildung bei den Lyman α -Absorbern	10
	2.5	Evolut	tion der Anzahldichte	11
3	Beo	bachtu	ingsdaten	14
	3.1	Auswa	hl der Quasare	14
	3.2	Spekti	ren und Datenreduktion	15
	3.3	Festleg	gung der Rotverschiebungsbereiche	18
4	Ide	ntifikat	tion, Modellierung und Selektion der Lyman $lpha$ -Linien	22
	4.1	Linien	identifikation	22
	4.2	Linien	profilfit	25
		4.2.1	Fitprogramme	25
		4.2.2	Linienverbreiterungen	26
		4.2.3	Fitprozedur	29
	4.3	Altern	ative Analyseverfahren	31
		4.3.1	Messung der effektiven optischen Tiefe	31
		4.3.2	Dichtespektrum	32
		4.3.3	Monte Carlo-Inversion-Methode	34
	4.4	Linien	selektion	35

5	Ind	ividuel	le Quasarsehlinien	37
	5.1	$\operatorname{HE} 05$	15-4414	37
	5.2	$\mathrm{HS}074$	$47 + 4259 \dots \dots$	40
	5.3	$\mathrm{HE}01$	41-3932	40
		5.3.1	Absorptionssysteme	41
		5.3.2	Emissionslinien	45
		5.3.3	Physikalische Interpretation	51
	5.4	HE 042	$29-4901 + \text{HE} 2225-2258 \dots \dots$	52
	5.5	Quasa	re aus dem HST/STIS-Archiv	52
6	Sta	tistisch	e Analyse des Lyman α -Linienensembles	57
	6.1	System	natische Unterschiede zwischen Einzel- und Simultanfits	57
	6.2	Verteil	lung der Säulendichten	59
	6.3	Verteil	lung der Dopplerparameter	70
	6.4	N-b-V	erteilung	75
	6.5	b-Unte	ergrenze der N - b -Verteilung	75
		6.5.1	Einfache Geraden approximation $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	77
		6.5.2	Iterativer Potenzgesetzfit und Verknüpfung mit der Zustandsglei- chung des IGMs	79
	6.6	Haufe	nbildung	91
	6.7	Evolut	tion der Anzahldichte der Lyman α -Absorber	100
	6.8	Effekt	ive optische Tiefe bei $z \approx 2$	117
7	\mathbf{Erg}	ebnisse	e und Ausblick	119
\mathbf{A}	Qua	asarspe	ektren	124
в	Fitp	parame	eter der Lyman α -Linien	151

C Fitparameter des Metalliniensystems in der Sehlinie zu HE 0141-3932 176

Abbildungsverzeichnis

1.1	Lyman α -Wald von PKS 0454+039	3
3.1	Beobachtete Rotverschiebungsbereiche der Quasare	21
5.1	Evolution der Anzahldichte der Lyman α -Absorber niedrigerer Säulendichte in der Sehlinie zu HE 0515-4414	39
5.2	Evolution der Anzahldichte der Lyman α -Absorber höherer Säulendichte in der Sehlinie zu HE 0515-4414	39
5.3	Metallinien system bei $z=1,71$ in der Sehlinie zu HE $0141\mathchar`-3932$	42
5.4	Metalliniensystem bei $z=1,71$ in der Sehlinie zu HE 0141-3932 (Fortsetzung)	43
5.5	Metalliniensystem bei $z=1,71$ in der Sehlinie zu HE 0141-3932 (Fortsetzung)	44
5.6	EFOSC 2-Spektrum von HE 0141-3932 \ldots	46
5.7	EFOSC 2-Spektrum von HE 0141-3932 \ldots	46
5.8	UVES-Spektrum von HE 0141-3932	48
5.9	UVES-Spektrum von HE 0141-3932	48
5.10	Emissionslinien von HE 0141-3932	50
5.11	Metallinien system bei $z=1,64$ in der Sehlinie zu HE 2225-2258 $.$	53
5.12	Metalliniensystem bei $z=1,64$ in der Sehlinie zu HE 2225-2258 (Fortsetzung)	54
6.1	Vergleich der Säulendichten aus Einzel- und Simultanfits	58
6.2	Vergleich der Doppler parameter aus Einzel- und Simultanfits $\ . \ . \ . \ .$	59
6.3	Verteilung der Säulendichten, Intervallbreite $\Delta \log N_{\rm HI} = 0, 1$	62
6.4	Verteilung der Säulendichten, Intervallbreite $\Delta \log N_{\rm HI} = 0, 1$, mit Fehler- gewichtung	62
6.5	Verteilung der Säulendichten, Intervallbreite $\Delta \log N_{\rm HI} = 0, 1$, mit Fehler- gewichtung; kleinerer Ausschnitt	63
6.6	Verteilung der Säulendichten, Intervallbreite $\Delta \log N_{\rm HI} = 0, 5$	64
6.7	Verteilung der Säulendichten, Intervallbreite $\Delta \log N_{\rm HI} = 0, 5$, mit Fehler- gewichtung	64

6.8	Verteilungen der Säulendichten, Intervallbreite $\Delta \log N_{\rm HI} = 0, 1$, verschiedene Rotverschiebungsbereiche	65
6.9	Verteilungen der Säulendichten, Intervallbreite $\Delta \log N_{\rm HI} = 0, 1$, verschiedene Rotverschiebungsbereiche, mit Fehlergewichtung	67
6.10	Verteilung der Säulendichten, Intervallbreite $\Delta \log N_{\rm HI} = 0, 1$, verschiedene Spektralbereiche	68
6.11	Verteilung der Säulendichten, Intervallbreite $\Delta \log N_{\rm HI} = 0, 1,$ ultravioletter Spektralbereich, mit Fehlergewichtung	69
6.12	Verteilung der Säulendichten, Intervallbreite $\Delta \log N_{\rm HI} = 0, 1$, optischer Spektralbereich, mit Fehlergewichtung	69
6.13	Verteilung der Dopplerparameter	71
6.14	$Verteilung \ der \ Doppler parameter, \ verschiedene \ Rotverschiebungsbereiche \ .$	73
6.15	Punktediagramm der Dopplerparameter über die Säulendichten	76
6.16	Punktediagramm der Dopplerparameter über die Säulendichten, nach Fit- programmen unterschieden	76
6.17	Punktediagramm der Dopplerparameter über die Säulendichten, b- Untergrenze durch einfache Geradenapproximation	77
6.18	Punktediagramm der Dopplerparameter über die Säulendichten, b -Untergrenze durch iterativen Potenzgesetzfit, verschiedene z -Intervalle	83
6.19	Punktediagramm der Dopplerparameter über die Säulendichten, b- Untergrenze durch iterativen Potenzgesetzfit, gesamte Linienauswahl	84
6.20	Entwicklung des Achsenabschnitts log b_0 der iterativen Potenzgesetzfitgeraden mit z	86
6.21	Entwicklung der Steigung $\Gamma-1$ der iterativen Potenz gesetzfitgeraden mit z	86
6.22	Entwicklung der Dopplerbreitenuntergrenze b_{\min} aus der iterativen Potenz- gesetzfitgeraden an ausgewählten Säulendichtepositionen mit z	87
6.23	Entwicklung der Dopplerbreitenuntergrenze b_{\min} aus der iterativen Potenz- gesetzfitgeraden für eine feste Überdichte mit z	89
6.24	Zweipunktgeschwindigkeitskorrelationsfunktion für die schwächeren Absorber, Abstand bis 1000 km s^{-1}	93
6.25	Zweipunktgeschwindigkeitskorrelationsfunktion für die schwächeren Absorber, Abstand bis 10000 km s^{-1}	93
6.26	Zweipunktgeschwindigkeitskorrelationsfunktion für die stärkeren Absorber, Abstand bis 1000 km s ^{-1}	95
6.27	Zweipunktgeschwindigkeitskorrelationsfunktion für die stärkeren Absorber, Abstand bis 10 000 km s ^{-1}	95
6.28	Zweipunktgeschwindigkeitskorrelationsfunktion für individuelle QSO-Sehlinien, Abstand bis 1000 km s^{-1}	96

6.29	Evolution der Zweipunktgeschwindigkeitskorrelationsfunktion für die schwächeren Absorber 98
6.30	Evolution der Zweipunktgeschwindigkeitskorrelationsfunktion für die stärkeren Absorber
6.31	Evolution der Anzahldichte der schwächeren Lyman α -Absorber (Unter- grenze log $N_{\rm HI} = 12,70$)
6.32	Evolution der Anzahldichte der schwächeren Lyman α -Absorber (Unter- grenze log $N_{\rm HI} = 12,90$)
6.33	Evolution der Anzahldichte der schwächeren Lyman α -Absorber (Unter- grenze log $N_{\rm HI} = 13, 10$)
6.34	Vergleich der Evolution der Anzahldichten zweier Auswahlen schwächerer Lyman α -Absorber
6.35	Vergleich der Evolution der normierten Anzahldichten zweier Auswahlen schwächerer Lyman α -Absorber
6.36	Evolution der Anzahldichte der stärkeren Lyman α -Absorber $\ .$ 108
6.37	Evolution der Anzahldichte der stärkeren Lyman α -Absorber, nur Linien mit niedrigen Fitfehlern 109
6.38	Abhängigkeit des Evolutionsexponenten vom Säulendichteintervall 111
6.39	Vergleich der Evolution der Anzahldichte der schwächeren Lyman α -Absorber mit Literaturergebnissen $\ldots \ldots \ldots$
6.40	Vergleich der Evolution der Anzahldichte der stärkeren Lyman α -Absorber mit Literaturergebnissen

Tabellenverzeichnis

3.1	Parameter der Quasare	15
3.2	Daten- und Qualitätsangaben zu den Spektren	16
3.3	Rotverschiebungsbereiche der Quasare und Anzahlen detektierter Lyman α -Linien	20
4.1	Vergleich der Fitprogramme CANDALF und FITLYMAN	27
5.1	Fit parameter der Ovi-Absorber in der Sehlinie zu HS $0747{+}4259$ 	41
5.2	Parameter der Emissionslinien von HE 0141-3932 \ldots \ldots \ldots	49
5.3	Fitparameter der HI-Linien des Lymanlimit-Systems in der Sehlinie zu PG 1634+706	56
6.1	Parameter verschiedener Fits an die Säulendichteverteilung	61
6.2	Absorptionsweglänge ΔX für verschiedene z-Intervalle	66
6.3	Abhängigkeit der Fitparameter der Säulendichteverteilung von z und vom Spektralbereich	68
6.4	Parameter der <i>b</i> -Verteilung	71
6.5	Vergleich des Maximums der <i>b</i> -Verteilung mit Simulationen	74
6.6	$b\mathchar`-$ Untergrenze durch einfache Geraden approximation; Literatur vergleich $\ . \ .$	78
6.7	$b\text{-}{\rm Untergrenze}$ durch einfache Geraden approximation; Evolution mit z $\ .$.	79
6.8	Fitgeraden parameter für die $b\mbox{-}\mbox{Untergrenze}$ aus iterativem Potenzgesetz fit $% \mbox{-}\mbox{-}$.	82
6.9	b-Untergrenze mit iterativem Potenzgesetzfit; Evolution mit z	84
6.10	<i>b</i> -Untergrenze für die Überdichte $\delta = 1$ mit iterativem Potenzgesetzfit; Evolution mit z	89
6.11	Evolution des Exponenten der Zustandsgleichung des IGMs	91
6.12	Korrelationskoeffizienten für den Verlauf der Anzahldichte der Absorber mit der Rotverschiebung für verschiedene Linienauswahlen	105
6.13	Abhängigkeit des Exponenten γ des Evolutionsgesetzes für die Anzahldichte vom Säulendichteintervall	110

TABELLENVERZEICHNIS

B.1	Fitparameter o	ler Ly	yman α - Linien							175
C.1	Fitparameter	des	Metalliniensys	tems	z = 1,71	in	der	Sehlinie	zu	
	HE 0141-3932					• •				179

Kapitel 1

Einführung

Die Materie im Universum ist nicht homogen verteilt. Hydrodynamische Simulationen der Materieverteilung in Volumina mit Kantenlängen von einigen Mpc (1Mpc = 10^6 pc \approx 3, $26 \cdot 10^6$ Lichtjahre) zeigen, daß die Gasmassen sich vielmehr netzartig angeordnet haben: Unter dem Einfluß der Gravitation kollabiert die Materie in faden- und flächenartige Strukturen, die riesige Hohlräume umschließen. Die Keime für diese großskaligen Strukturen im All liegen in winzigen Dichteschwankungen in frühesten Entwicklungsphasen des Universums, die sich im Verlauf der Zeit durch gravitative Kontraktion zu immer stärkeren Dichtefluktuationen potenzieren. Lediglich an den Knotenpunkten der (auch als *Filamente* bezeichneten) Fäden verdichtet sich das Gas ausreichend, um Galaxien mit ihren Sternen entstehen lassen zu können. Die Filamente und Flächen werden dagegen von diffusen Gasmassen gebildet — dem intergalaktischen Medium (IGM), auch als intergalaktische Materie bezeichnet.

Das IGM ist *primordiale* (ursprüngliche) Materie, d.h. sie besteht im wesentlichen aus Wasserstoff und Helium. Sie leuchtet selbst nicht, kann aber in den Spektren von Quasaren¹ in Absorption gesehen werden: Das Quasarlicht durchleuchtet auf seinem Milliarden Jahre langen Weg durch das All Galaxien ebenso wie das IGM, so daß auf der Sehlinie vom Beobachter zu einem Quasar eine große Anzahl von intergalaktischen Absorbern identifiziert werden kann, die sich durch die Absorption der Strahlung bei für die Atome des IGMs charakteristischen Wellenlängen bemerkbar machen.

Das etwa $T \approx 10^4 \,\mathrm{K}$ heiße intergalaktische Medium ist durch das ionisierende UV-Hintergrundstrahlungsfeld der Quasare und Galaxien zwar hochionisiert²

¹Quasare (Kurzwort für *Quasi-Stellare Objekte* oder *QSO*, ein historisch entstandener Name, da sie ursprünglich für Sterne gehalten wurden) sind aktive Zentren von Galaxien, die sich aus drei Gründen ausgezeichnet für kosmologische Untersuchungen eignen: Sie sind zum einen extrem hell und dadurch über Entfernungen von z.T. mehreren Milliarden Lichtjahren noch detektierbar. Dabei zeigen sie über das gesamte elektromagnetische Spektrum hinweg eine hohe Strahlungsaktivität, im Radiobereich ebenso wie im Infraroten, im Visuellen, im UV und im Röntgenbereich. Schließlich stellen sie die am weitesten entfernten bekannten Objekte im Universum dar, so daß man mit ihnen in die frühesten Stadien des Kosmos schauen kann.

 $^{^{2}}$ In der astrophysikalischen Terminologie wird das Ionisationsniveau der chemischen Elemente mit einem römischen Zeichen symbolisiert: HI steht für neutralen, HII für einfach ionisierten Wasserstoff. CIV ist demnach dreifach ionisierter Kohlenstoff, OVI fünffach ionisierter Sauerstoff etc.

 $(n_{\rm HI}/n_{\rm H} \approx 10^{-4})$, doch auch die verbleibende Menge an neutralem Wasserstoff reicht aus, um den Quasarspektren die typische Struktur des Lyman α -Waldes aufzuprägen: Der Lyman α -Übergang $1s \longrightarrow 2p$ im neutralen Wasserstoffatom, der wegen seines großen Wirkungsquerschnitts mit relativ hoher Wahrscheinlichkeit auftritt, erzeugt bei der Lyman α -Ruhewellenlänge

$$\lambda_0 = 1215,6701\,\text{\AA} \tag{1.1}$$

eine Absorptionslinie im Spektrum. Durch die Hubble-Expansion des Universums entfernen sich die Lyman α -Absorber jedoch von der Erde, wobei die radiale Geschwindigkeitskomponente (oder *Fluchtgeschwindigkeit*) v entsprechend dem Hubble-Gesetz von der Entfernung r abhängt:

$$v = H_0 r, \tag{1.2}$$

$$H_0 = (72 \pm 7) \,\mathrm{km}\,\mathrm{s}^{-1}\,\mathrm{Mpc}^{-1} \tag{1.3}$$

heutiger Wert der Hubble-Konstanten (Freedman et al., 2001). Die von den Absorbern hervorgerufenen Lyman α -Linien sind daher gemäß dem relativistischen Dopplereffekt im Spektrum gegenüber der Ruhewellenlänge zu höheren Wellenlängen hin verschoben ("rotverschoben"), und zwar je nach Abstand zum irdischen Beobachter unterschiedlich stark um den Wert

$$z = \frac{\lambda - \lambda_0}{\lambda_0} = \frac{\lambda}{\lambda_0} - 1 = \sqrt{\frac{c+v}{c-v}} - 1 \tag{1.4}$$

 $(\lambda \text{ dopplerverschobene Wellenlänge, } c \text{ Lichtgeschwindigkeit})$. Im Spektrum sind die Linien also nach der Entfernung sortiert angeordnet und bilden einen "Wald" von Linien, auf der langwelligen Seite begrenzt durch die Lyman α -*Emissions*linie des Quasars selbst (s. Abb. 1.1).

Da die Rotverschiebung eine aus den spektralen Daten gewonnene Meßgröße ist, kann sie verwendet werden, um daraus mit (1.4) die Fluchtgeschwindigkeit des betrachteten Absorbers (oder allgemein eines Objekts) zu berechnen. Bei niedrigen z läßt sich daraus mit (1.2) und (1.3) wiederum die Entfernung abschätzen. Bei höheren Rotverschiebungen ist diese Umrechnung komplizierter, weil dann die Zeitabhängigkeit der Hubble-Konstanten berücksichtigt werden muß. Hat man r auf diese Weise ermittelt, kann die Rotverschiebung durch die endliche und konstante Ausbreitungsgeschwindigkeit des Lichts neben einer groben Entfernungs- auch als Zeitskala verwendet werden. Indem die Eigenschaften der Lyman α -Absorber bei verschiedenen z untersucht werden, läßt sich daher die Evolution des IGMs untersuchen.

Neben dem Lyman α -Übergang werden bei den stärkeren Absorbern auch weitere Lymanserienglieder

$$1s \longrightarrow np$$
 (1.5)

bei identischem z sowie Ionisation $(1s \longrightarrow \infty)$ beobachtet.

Abbildung 1.1: Lyman α -Wald in der Sehlinie zum Quasar PKS 0454+039, $z_{\rm em} = 1, 34$. Die Lyman α -Emissionslinie ist ebenso markiert wie der Bereich des Lyman α -Waldes. Die beiden stärksten Absorber in der Sehlinie bei z = 0, 86 bzw. z = 1, 15 können als gedämpftes Lyman α -System (DLA) bei ≈ 2260 Å bzw. als Lymanlimit-System (LLS) bei ≈ 2610 Å mit der zugehörigen Lymankante bei ≈ 1960 Å identifiziert werden (s. Text für nähere Erläuterungen). Das Spektrum wurde Charlton & Churchill (2000) entnommen.

Die Bedeutung des IGMs basiert vor allem auf zwei Befunden: Zum einen haben Forschungsergebnisse der letzten Jahren die erstaunliche Tatsache zutage gefördert, daß der Hauptanteil der baryonischen Materie³ (insbesondere bei hohen z) in den intergalaktischen Absorbern enthalten ist (s. Kap. 2.1); zum anderen haben sich die Galaxien aus dem primordialen Material des intergalaktischen Mediums gebildet. Es scheint jedoch auch in der umgekehrten Richtung eine Beeinflussung zu geben: Trotz des primordialen Charakters des IGMs zeigen Beobachtungen, daß diese nicht nur aus den leichtesten Elementen Wasserstoff und Helium besteht, sondern zumindest partiell auch mit schwereren chemischen Elementen (in der Astrophysik pauschal als Metalle bezeichnet) angereichert ist. Da diese nur im Inneren von Sternen durch Kernfusion gebildet werden können, deutet dieser Befund darauf hin, daß die Galaxien für die metallische Anreicherung des IGMs verantwortlich zeichnen. Z.B. könnte ein Teil der Sternmaterie durch Supernova-Ausbrüche⁴ aus der Muttergalaxie herausgetrieben und in den intergalaktischen Raum geschleudert worden sein. Auch Gezeitenkräfte, die bei der Begegnung zweier Galaxien auftreten, könnten Metalle in das IGM befördert haben. Bei diesen sogenannten feedback-Prozessen würde zugleich Energie in das intergalaktische Medium transportiert und das dort vorhandene Gas daran gehindert werden, abzukühlen und Sterne zu bilden. Details der Wechselwirkungen zwischen Galaxien und IGM sind allerdings noch unklar, insbesondere angesichts

 $^{^3\}mathrm{Da}$ die Baryonen im wesentlichen die Nukleonen in den Atomkernen umfassen, wird die "normale", aus Atomen bestehende Materie bei Massenbilanzen auch als baryonischen Materie bezeichnet.

⁴Als Supernova wird die Explosion eines am Ende seiner Entwicklung stehenden massereichen Sterns und das damit verbundene plötzliche Aufleuchten auf etwa das Milliardenfache seiner ursprünglichen Leuchtkraft bezeichnet. Bei dieser Explosion wird nahezu der gesamte Sternkörper zerrissen; zurück bleibt ein gasförmiger Supernova-Überrest und je nach Art der Supernova ggf. ein Neutronenstern oder ein Schwarzes Loch.

der riesigen Entfernungen, die bei den beschriebenen Prozessen zu überbrücken wären.

Ursprünglich wurden Lyman α -Absorber danach unterteilt, ob sich in dem gleichen Absorber (im Spektrum also bei identischer Rotverschiebung) Metallinien finden lassen oder nicht. Inzwischen hat sich jedoch herausgestellt, daß es sich hierbei wohl um einen Auswahleffekt handelt — die Metallinien der schwächeren Lyman α -Absorber befinden sich unterhalb der Detektionsschwelle. Physikalisch sinnvoller erscheint daher eine Klassifizierung der Lyman α -Absorber entsprechend ihrer Säulendichte neutralen Wasserstoffs $N_{\rm HI}$, die das Weglängenintegral über die Wasserstoffteilchendichte n darstellt:

$$N_{\rm HI} = \int n \cdot \mathrm{d}s. \tag{1.6}$$

Anschaulich ist $N_{\rm HI}$ ein Maß für die Dichte der Absorber (im folgenden wird in diesem Zusammenhang häufiger auch von "stärkeren" oder "schwächeren" Absorbern gesprochen): In einer fiktiven Säule von der Erde zum Quasar mit einem Querschnitt von 1 cm² wird die Zahl der neutralen Wasserstoffatome aufsummiert, so daß sich als Einheit für $N_{\rm HI}$ cm⁻² ergibt. Die Säulendichte wird durch einen Fitalgorithmus iterativ für eine gegebene Absorptionslinie bestimmt. Sie wird immer für *eine* Linie gemessen und gilt somit nur für den einen Absorber bei der Rotverschiebung dieser Linie.

Moderne Spektrographen wie der Ultraviolett-Visual Echelle Spectrograph (UVES) des Very Large Telescope (VLT) der ESO (European Southern Observatory) in Chile oder der High Resolution Echelle Spectrograph (HIRES) des Keck I Telescope auf Hawaii sind bei typischen Belichtungszeiten von einigen Stunden in der Lage, Absorber bis hinunter zu log $\frac{N_{\rm HI}}{\rm cm^{-2}} \approx 12,5$ aufzuspüren⁵. In den Spektren von Quasaren finden sich zahlreiche Lyman α -Linien mit 12, $5 \leq \log N_{\rm HI} \leq 14, 0$. Sie werden dem diffusen intergalaktischen Medium zugerechnet. Mit steigender Säulendichte sinkt die Zahl der Absorber sehr schnell. Die wenigen Absorber mit $\log N_{\rm HI} \gtrsim 17$ haben eine so hohe Wasserstoffatomdichte, daß Photonen mit einer Energie $h\nu > 13, 6 \,\mathrm{eV}$, die der Ionisationsenergie von Wasserstoff entspricht, weitestgehend nicht mehr hindurchkommen: Im Ruhesystem des Absorbers findet für $\lambda < 912$ Å (entsprechend 13,6 eV) kontinuierliche Absorption statt, d.h. die Quasarstrahlung wird hier fast vollständig absorbiert, und man sieht im Spektrum eine scharfe Lymankante. Der verantwortliche Absorber wird Lymanlimit-System (LLS) genannt. Ab $\log N_{\rm HI} \gtrsim 20$ schließlich beginnen sich die sogenannten Dämpfungsflügel der Absorptionslinien zu bilden, man spricht von Damped Lyman α Systems (DLAs) (Abb. 1.1).

Neben der Rotverschiebung und der Säulendichte gibt es noch eine dritte Beobachtungsgröße, mit der eine intergalaktische Absorptionslinie beschrieben wird: Den *Dopplerparameter* (oder die Dopplerbreite) b. Spektrallinien sind nicht unendlich scharf, sondern vielmehr durch verschiedene Effekte verbreitert. Die Ursachen der Verbreiterungen sind vielschichtig (für eine ausführliche Darstellung der Verbreiterungsmechanismen von Absorptionslinien s. Abschnitt 4.2.2); eine tragende Rolle spielt jedoch die Dopplerverbreiterung: Die Tatsache, daß sich einige Atome innerhalb eines intergalaktischen Absorbers auf den irdischen Beobachter zu- und andere von ihm wegbewegen, führt zu einer leichten Dopplerverschiebung der Wellenlängenpositionen, an denen die Atome die Strahlung

⁵Im folgenden wird $\log \frac{N_{\text{HI}}}{\text{cm}^{-2}} =: \log N_{\text{HI}}$ gesetzt.

absorbieren, zu kürzeren bzw. zu längeren Wellenlängen hin. Diese Verschiebungen addieren sich zu der Rotverschiebung durch die Hubble-Expansion. Mit der die thermische Bewegung der Atome beschreibenden Maxwell-Boltzmann-Verteilung ergibt sich effektiv eine Verbreiterung der Linien, die der wahrscheinlichsten Geschwindigkeit der Verteilung $v_0 = \sqrt{\frac{2kT}{m_{\rm A}}}$ (k Boltzmannkonstante, T Temperatur, $m_{\rm A}$ Atommasse) direkt proportional ist.

Die beobachteten Dopplerbreiten können allerdings nicht allein durch diese thermische Bewegung erklärt werden. Aus diesem Grund muß eine weitere Geschwindigkeitskomponente berücksichtigt werden. In der üblichen Analyse wird dieser Geschwindigkeitsanteil ξ_{Mikro} als stochastisch angenommen, in einer einfachen *mikroturbulenten* Näherung behandelt und wie der thermische Anteil durch eine Gauß-Verteilung beschrieben. Die Faltung beider Verteilungen ergibt dann eine Normalverteilung der Breite

$$v_{\rm ges} = \sqrt{v_0^2 + \xi_{\rm Mikro}^2} = \sqrt{\frac{2kT}{m_{\rm A}} + \xi_{\rm Mikro}^2}.$$
 (1.7)

(1.7) gibt die Gesamtgeschwindigkeit an, die die beobachtete Dopplerverbreiterung hervorruft.

 $v_{\rm ges}$ definiert die auf die Ruhewellenlänge λ_0 bezogene Dopplerbreite $\Delta \lambda_{\rm D}$,

$$\frac{\Delta\lambda_{\rm D}}{\lambda_0} = \frac{v_{\rm ges}}{c},\tag{1.8}$$

die die Gesamtbreite der Linie beschreibt, die nur durch den Dopplereffekt verursacht wird. Üblicherweise wird die Einheit Å der Dopplerbreite in km s⁻¹ transformiert, um zu verdeutlichen, daß es Geschwindigkeiten sind, die die Linienverbreiterung verursachen:

$$b \,[\mathrm{km\,s}^{-1}] := \frac{c}{\lambda_0} \cdot \Delta \lambda_\mathrm{D} = v_\mathrm{ges}.$$
 (1.9)

Untersucht man eine hinreichend große Zahl an Quasarsehlinien, kann man die Verteilungen der Parameter N, b und z, die die Lyman α -Linien beschreiben, und die Abhängigkeiten zwischen ihnen statistisch auswerten. Daraus lassen sich Aussagen über die Eigenschaften der Absorber ableiten. Die vorliegende Arbeit beschäftigt sich mit der Modellierung und Analyse des Lyman α -Waldes in den Spektren von insgesamt neun hellen Quasaren. Nach einem Überblick über den Status Quo der Forschung über den Lyman α -Wald in Kapitel 2 behandelt Kapitel 3 die zur Verfügung stehenden Daten und ihre Aufbereitung. Kapitel 4 illustriert, wie die Lyman α -Linien in den Spektren detektiert und modelliert wurden. Einige erwähnenswerte individuelle Merkmale sowie Teilergebnisse aus den einzelnen QSO-Schlinien werden in Kapitel 5 dargestellt, während sich Abschnitt 6 ausführlich mit den statistischen Eigenschaften des kompletten Linienensembles beschäftigt. Das abschließende Kapitel faßt die Ergebnisse zusammen und gibt einen Ausblick.

Kapitel 2

Stand der Forschung zum Lyman α -Wald

2.1 Kosmologische Signifikanz

Eine Kernfrage der Kosmologie ist seit langem die Frage nach der Gesamtmasse im Universum. Gewöhnlich wird die Materiedichte des Weltalls ρ_{tot} in Einheiten der kritischen $Dichte^1 \ \rho_c(t) = \frac{3H^2(t)}{8\pi G} (H(t)$ zeitabhängige Hubble-Konstante, G Gravitationskonstante) als dimensionsloser Dichteparameter $\Omega_{tot} = \frac{\rho_{tot}}{\rho_c}$ ausgedrückt. Messungen winziger Temperaturschwankungen der kosmischen Hintergrundstrahlung² mit dem WMAP-(Wilkinson Microwave Anisotropy Probe-)Satelliten haben das vielbeachtete Resultat

$$\Omega_{\rm tot} = 1,02 \ \pm \ 0,02 \tag{2.1}$$

ergeben (Spergel et al., 2003), also starke Evidenz für ein flaches Universum (für einen Überblick über den Zusammenhang zwischen CMB-Temperaturschwankungen und -Anisotropien sowie der Materiedichte siehe z.B. Trodden & Carroll, 2004).

Neueren Erkenntnissen zufolge repräsentiert die baryonischen Materie lediglich einen Bruchteil von Ω_{tot} — dominiert wird die Dynamik im Universum dagegen von der Dichte

¹Die kritische Dichte charakterisiert ein sogenanntes *flaches* Universum mit einem euklidischen Raum (als Grenzfall zwischen einem hyperbolischen und einem sphärischen Raum): In ihm ist die Materiedichte gerade gleich der kritischen Dichte ($\rho_{tot} = \rho_c$) und die dadurch hervorgerufene Raumkrümmung k = 0.

²Die kosmische Hintergrundstrahlung [cosmic microwave background, CMB], auch als Mikrowellenhintergrund bezeichnet, ist ein Relikt aus den frühesten Phasen des Universums: Sie stellt den Rest der elektromagnetischen Strahlung dar, die aufgrund der enormen Temperaturen beim Urknall vor ca. 14 Milliarden Jahren emittiert wurde. Die Strahlungsphotonen haben sich seitdem isotrop und unpolarisiert als Planck-Strahlung ausgebreitet. Ca. 380.000 Jahre nach dem Urknall war das Universum soweit abgekühlt, daß Protonen und freie Elektronen rekombinieren konnten, wodurch nicht mehr ausreichend freie Elektronen zur Verfügung standen, um mit den Photonen wechselzuwirken. Das Weltall wurde somit für Photonen transparent, und die Hintergrundstrahlung konnte sich seitdem ungestört ausbreiten, wobei sie allerdings durch die kosmische Expansion stark rotverschoben wurde. Heute wird sie in allen Himmelsrichtungen als Strahlung eines Schwarzen Körpers, der durch die Expansion auf mittlerweile $T_{\rm CMB} = 2,73 \,\rm K$ abgekühlt ist, mit einem Intensitätsmaximum bei $\lambda = 1,7 \,\rm mm$ detektiert. Die CMB gilt daher als direkter und unabhängiger Beleg für die Urknalltheorie.

 $\Omega_{\Lambda} \approx 0,73 \cdot \Omega_{\text{tot}} \approx 0,73$ der rätselhaften *Dunklen Energie*, die für eine beschleunigte Expansion des Weltalls sorgt³, sowie von der Dichte $\Omega_{\text{DM}} \approx 0,23$ der (nicht-baryonischen) *Dunklen Materie*, die für die Ausbildung der großskaligen Strukturen in der baryonischen Materie verantwortlich zu sein scheint⁴ (s. Kap. 2.2). Für den baryonischen Beitrag zu $\Omega_{\text{tot}} = \Omega_{\Lambda} + \Omega_{\text{DM}} + \Omega_{\text{B}}$ verbleibt lediglich

$$\Omega_{\rm B} = 0,02 \ h^{-2} \approx 0,04 \tag{2.2}$$

(Burles et al., 1999, 2001; Schramm & Turner, 1998), wobei $h = H_0/(100 \text{ km s}^{-1} \text{Mpc}^{-1}) = 0,72$ (vgl. (1.3)) die dimensionslose Hubble-Konstante ist.

Nur der barvonische Anteil der Materie ist jedoch astronomischen Beobachtungen zugänglich und kann verwendet werden, um die Evolution der großräumigen Strukturen, der Galaxien und der intergalaktischen Materie zu studieren. Eines der überraschendsten Resultate der letzten Jahre auf dem Gebiet der Erforschung der intergalaktischen Materie war sicherlich die Feststellung, welchen hohen Anteil an der baryonischen Materie die Lyman α -Absorber (insbesondere bei höheren z) stellen. So ergaben Massenabschätzungen der Absorber, daß sich bei z=3, zu einer Phase, in der Galaxien mit ihren Sternen noch vernachlässigbar sind, bis zu 90% aller Baryonen in ihnen befunden haben könnten (Shapiro et al., 1994; Kim et al., 2001; Davé, 2003). Der Anteil der Lyman α -Absorber sinkt bis z=1,5, der Epoche der intensivsten Sternbildung, etwas zugunsten des Massenanteils der Galaxien. Zugleich erwächst eine dritte, von der diffusen Lyman α -Komponente zu trennende baryonische Materieform: Die warm-heiße IGM-(warm-hot intergalactic medium-, WHIM-) Komponente mit Temperaturen im Bereich $T = (10^5 - 10^7)$ K, die über denen des diffusen IGMs liegen und die ausreichen, um Atome mit hohen Ionisationsgraden wie CIV und vor allem OVI in ausreichender Zahl zu produzieren, so daß diese in Absorption gesehen werden können. Sowohl theoretische Arbeiten (Cen & Ostriker, 1999; Davé et al., 2001) als auch Arbeiten von der Beobachterseite (Tripp & Savage, 2000; Tripp et al., 2000), in denen OVI-Absorberdichten bestimmt und ihr Baryonengehalt hochgerechnet wurde, liefern gewichtige Anhaltspunkte dafür, daß der WHIM-Beitrag zur Baryonendichte mit $z \rightarrow 0$ stark ansteigt. Die Resultate der Baryonen-Inventur des lokalen Universums unterliegen allerdings noch einer beträchtlichen Schwankung: Der WHIM-Anteil wird auf Werte von 24% (Valageas et al., 2002) über 30–40% (Davé et al., 2001) bis hin zu 45% (Davé, 2003) beziffert. Der Beitrag des Lyman α -Waldes dagegen ist auf immerhin noch 20% (Penton et al., 2000) bis 35% (Davé, 2003) zurückgegangen, während die Galaxien und deren Haufen mit etwa 10% auch in der Gegenwart weiter nur eine untergeordnete Rolle diesbezüglich spielen (Davé, 2003).

Das diffuse IGM, die WHIM-Phase und die Galaxienhaufen werden zur Gegenwart hin noch durch eine vierte Materiekomponente ergänzt, deren Beitrag zum Baryonen-Haushalt wie der des WHIMs ebenfalls erst mit $z \to 0$, allerdings in deutlich schwächerem Aus-

³Die Dunkle Energie entspricht einer abstoßend wirkenden Kraft, deren Einführung sowohl durch die Beobachtung ferner Supernovae, die als Entfernungsindikatoren genutzt werden (Perlmutter et al., 1999a,b; Garnavich et al., 1998; Schmidt et al., 1998), als auch durch die Entdeckung der CMB-Anisotropien (Spergel et al., 2003) notwendig wurde.

⁴Die Dunkle Materie wurde ursprünglich postuliert, um die Rotationskurven von Galaxien zu erklären: Die gesamte baryonische Masse in einer rotierenden Galaxie reicht alleine nicht aus, um die wirkenden Fliehkräfte zu kompensieren und ein stabiles Gebilde zu erzeugen.

maß, signifikant wird: Die heiße Materie (*hot matter*, HM), $T \ge 10^7$ K heißes Gas, das in Galaxienhaufen gravitativ gebunden ist und durch seine thermische Emission von Röntgenstrahlung nachgewiesen werden kann.

Ausgerechnet für die jetzige Epoche des Universums sind die Befunde also noch am wenigsten fundiert, was vor allem an der Unkenntnis des ionisierenden Strahlungsfeldes der Quasare und Galaxien sowie seiner Entwicklung mit z liegt. Festgehalten werden kann aber, daß das intergalaktische Medium während der gesamten Evolution des Universums einen großen Anteil an der Baryonendichte stellt, auch wenn Details der kosmischen Massenkomposition insbesondere für das lokale Universum noch einer Reihe von weiteren Forschungsanstrengungen bedürfen.

2.2 Strukturbildung im Universum und Lyman α - Absorbermodelle

Seit etwa einem Jahrzehnt sind hydrodynamische Simulationen der Verteilung der Materie in der Lage, die Eigenschaften des Lyman α -Waldes mit z.T. sehr guter Übereinstimmung hervorzusagen (Cen et al., 1994; Miralda-Escude, 1996 u.a.). Dabei hängen diese Eigenschaften nur marginal von den Details der Simulationen ab, sofern diese ein inflationäres Universum⁵ sowie essentielle Physik wie Gravitation, Gasdynamik und ein photoionisierendes Strahlungsfeld miteinbeziehen — in allen Fällen läßt sich das Erscheinungsbild des Lyman α -Waldes gut reproduzieren (Weinberg et al., 2003).

Die Simulationen basieren alle auf dem sogenannten CDM-Minihalo-(*cold dark matter minihalo*-)Modell: Das baryonische Gas strömt, getrieben durch starke Gravitationskräfte der Dunklen Materie, entlang der Filamente, die im Universum in netzartigen Strukturen angeordnet sind (s. Kap. 1), und verdichtet sich zu kleineren Klumpen, die wiederum an den Knotenpunkten der Fäden, den Vorgängern der Galaxien, miteinander verschmelzen.

Die Dynamik in der großskaligen Strukturbildung wird diesem Szenario zufolge also von der Dunklen Materie beherrscht. Nimmt man an, daß ihr Gravitationsfeld dominant ist, und vernachlässigt die Eigengravitation der baryonischen Materie, so kann letztere als in den Potentialtöpfen der Dunklen Materie, den sogenannten *Minihalos*, gravitativ gebundene Masse betrachtet werden: Das baryonische Gas sammelt sich in den Potentialsenken dieser Minihalos und ist stabil gebunden, wenn die Potentialwände noch so flach sind, daß kein Gravitationskollaps stattfindet, aber tief genug, um ein Entweichen des heißen Gases zu verhindern (Rees, 1986; Ikeuchi, 1986).

Das CDM-Minihalo-Modell (oder auch — in Verbindung mit der Dunklen Energie — Λ CDM-Minihalo-Modell) bezieht seine Attraktivität daraus, daß es die Beobachtungen ziemlich gut erklären kann, und wird daher derzeit favorisiert. Der Lyman α -Wald fällt in diesem Bild als natürliches und in den Spektren beobachtbares Endprodukt der durch die Dunkle Materie gesteuerten Strukturbildung an.

⁵Die Theorie des inflationären Universums beschreibt die ersten 10^{-35} s nach dem Urknall mit u.a. einer enorm schnellen, exponentiell verlaufenden Expansion des Kosmos, bei der sein Radius um etwa einen Faktor 10^{50} anwächst. Diese Theorie ist in der Lage, einige Phänomene wie die Flachheit des Universums oder auch die winzigen anfänglichen Dichtefluktuationen zu erklären.

Insbesondere wird mit dem CDM-Minihalo-Modell die gemessene Verteilung der Säulendichten (Kap. 2.3) sehr gut reproduziert: Während die Baryonendichte $n_{\rm B}$ in einem (als sphärisch-symmetrisch angenommenen) Absorber nach außen $\propto r^{-2}$ (r Abstand vom Zentrum des Absorbers) abnimmt, sinkt die Dichte neutralen Wasserstoffs $\propto r^{-4}$, da die äußeren Bereiche des Absorbers weitaus stärker vom externen Strahlungsfeld ionisiert werden als die abgeschirmten inneren Regionen (Ikeuchi et al., 1989). Die über rund neun Größenordnungen gemessenen Werte für die Säulendichte reflektieren dann, wie schon von Tytler (1987) vorgeschlagen, nicht unterschiedliche Klassen an Absorbern, sondern lediglich verschiedene Sehstrahlen durch die Absorber einer Population: Die dünnen Lyman α -Linien mit log $N_{\rm HI} \lesssim 14,0$ entstehen in den hochionisierten Außenbereichen, die Lymanlimit-Systeme und erst recht die DLAs dagegen im neutralen Kern der Absorber. Man kann zeigen, daß die mit zufälligen Sehlinien erzeugte Verteilung der Säulendichten in diesem Modell ungefähr $\propto N_{\rm HI}^{-1,5}$ verläuft (Milgrom, 1988; Rees, 1988), was sehr gut konform geht mit der tatsächlich beobachteten Verteilungsfunktion (siehe Kap. 6.2).

2.3 Verteilungen der Säulendichten und Dopplerparameter

Die Verteilungsfunktion der Säulendichte neutralen Wasserstoffs $f(N_{\rm HI})$, die die Zahl der Absorber pro Säulendichteintervall pro Weglänge angibt, wird in der Literatur eingehend untersucht. Üblicherweise wird ein Potenzgesetz

$$f(N_{\rm HI}) = A \cdot N_{\rm HI}^{-\beta}, \qquad (2.3)$$

A, β Konstanten, mit $\beta = 1, 4 - 1, 7$ (Penton et al., 2000; Kim et al., 2001) angenommen, das über mehrere $N_{\rm HI}$ -Größenordnungen hinweg gültig ist. Allerdings existiert ein Dissens, ob dieses Potenzgesetz bis hin zu den stärksten Absorbern extrapoliert werden kann oder ob der Exponent sich ab $N_{\rm HI} \gtrsim 10^{16}$ signifikant ändert (Giallongo et al., 1993; Meiksin & Madau, 1993; Petitjean et al., 1993). Daneben gibt es Indizien für eine z-Abhängigkeit von β (Davé & Tripp, 2001; Heap et al., 2002; Kim et al., 1997), die angesichts des unterschiedlichen Verlaufs der Absorberdichten von starken und schwachen Linien mit z (s. Abschnitt 2.5) auch plausibel ist.

Ebenfalls von Interesse ist die Verteilungsfunktion der Dopplerparameter, da über sie Einblicke in die Temperatur und die Kinematik der Lyman α -Absorber möglich sind. Wegen der geringen Atommasse von Wasserstoff und (1.7) und (1.9) können Dopplerparameter von $b \leq 10 \text{ km s}^{-1}$ für Wasserstoff ausgeschlossen werden (wohingegen die Linienbreiten der schwereren Metallatome in der Regel in diesem Bereich liegen), und auch Werte von $b < 15 \text{ km s}^{-1}$ sind für HI selten. Es wird eine Häufung um einen ungefähren Mittelwert $\overline{b} \approx 30 \text{ km s}^{-1}$ beobachtet, mit einer Standardabweichung $\sigma_b \approx 10 \text{ km s}^{-1}$ (z.B. Hu et al. (1995): $\overline{b} = (28 \pm 10) \text{ km s}^{-1}$; Lu et al. (1996): $\overline{b} = (23 \pm 8) \text{ km s}^{-1}$; Penton et al. (2000): $\overline{b} = (38 \pm 16) \text{ km s}^{-1}$). Dabei ist allerdings das von den Autoren jeweils untersuchte Rotverschiebungsintervall zu berücksichtigen, denn wie bei der Verteilung der Säulendichten ist auch bei der der Dopplerbreiten wiederholt eine Abhängigkeit von z postuliert worden, und zwar in dem Sinne, daß \overline{b} mit sinkendem z ansteigt (z.B. Williger et al., 1994; Lu et al., 1996; Kim et al., 1997; allerdings Kim et al., 2002a).

Die gesamte Verteilung kann gut mit einer Gauß-Verteilung der Form

$$n_b = \frac{1}{\sqrt{2\pi\sigma_b}} e^{-\frac{1}{2}\left(\frac{b-\overline{b}}{\sigma_b}\right)^2} \tag{2.4}$$

approximiert werden.

Im allgemeinen wird nur eine schwache Korrelation zwischen der Säulendichte und dem Dopplerparameter beobachtet. Pettini et al. (1990) schlugen eine solche Abhängigkeit zwischen N und b vor, Carswell et al. (1991) und Rauch et al. (1992) konnten dies mit ihren Daten jedoch nicht bestätigen. Es zeigte sich, daß es sich bei der vermeintlichen N-b-Korrelation wohl eher um ein Artefakt als Folge des niedrigen Signal-zu-Rauschen-Verhältnisses der Pettini et al. (1990)-Spektren handelte (Rauch et al., 1993).

Es scheint in der *N*-b-Verteilung jedoch eine untere Grenze b_{\min} für alle *N* zu existieren, die mit steigender Säulendichte wächst (Hu et al., 1995; Kirkman & Tytler, 1997; Kim et al., 2002b). Sie ist eng mit der wichtigen *Zustandsgleichung* des diffusen intergalaktischen Mediums

$$T = T_0 \left(\frac{\rho}{\overline{\rho}}\right)^{\gamma - 1} \tag{2.5}$$

 $(T, \rho \text{ Temperatur und Dichte des IGMs, } T_0 \text{ Temperatur des IGMs bei mittlerer Dichte } \overline{\rho}, \gamma \text{ Adiabatenindex; Hui & Gnedin, 1997}) verknüpft, die numerischen Simulationen zufolge eine direkte Konsequenz des Zusammenspiels von Aufheizung der intergalaktischen Materie niedriger Dichte durch Photoionisation sowie adiabatischer Abkühlung des Gases durch die Hubble-Expansion ist (Hui & Gnedin, 1997): Es läßt sich zeigen, daß das Vorhandensein einer unteren b-Grenze im N-b-Diagramm eine zwangsläufige Folge der Zustandsgleichung ist (Schaye et al., 1999, 2000). Daher kann der beobachtete Verlauf <math>b_{\min}(N)$ in die Zustandsgleichung rückkonvertiert und Folgerungen für die Temperatur des IGMs abgeleitet werden. Allerdings sind zur Bestimmung der Parameter der Konversionsformeln zwischen $b_{\min}(N)$ und $T(\rho)$ simulierte Lyman α -Wald-Spektren nötig. Schaye et al. (2000) finden auf diese Weise für T_0 ein Maximum bei z = 3 und interpretieren dies als unabhängige Evidenz dafür, daß bei diesem z, wie schon von Reimers et al. (1997) gezeigt, die $He II-Reionisation^6$ einsetzt. Kim et al. (2002b) folgern aus ihrem $b_{\min}(N)$, daß T_0 im Intervall 2 < z < 4 mit sinkendem z abnimmt, das intergalaktische Gas also im Verlauf der Zeit abkühlt.

2.4 Haufenbildung bei den Lyman α -Absorbern

Galaxien sind bekanntlich nicht homogen im Universum verteilt, sondern bilden Strukturen in Form von Haufen und Superhaufen. Daher liegt es nahe, auch bei den intergalaktischen Absorbern nach derartigen Kumulationen zu suchen. Bisherige Studien hierzu haben als

⁶Das intergalaktische HeII ist durch das Strahlungsfeld der Quasare und Galaxien fast vollständig ionisiert worden. Die Bestimmung des genauen Zeitpunkts, zu dem dieser Prozeß einsetzte, liefert wichtige Hinweise auf die Evolution der ionisierenden Strahlung, über die noch wenig bekannt ist.

Konsens lediglich ergeben, daß diese, wenn überhaupt, dann ein deutlich schwächer ausgeprägtes Häufungsverhalten an den Tag legen. Eine signifikante Haufenbildung fanden z.B. Ulmer (1996), Cristiani et al. (1995) oder Kim et al. (2001) in ihren Daten, aber auch einige Theoretiker in ihren Modellen (Cirković & Lanzetta, 2000; Pando et al., 1998; Cen et al., 1998; letztere ausgehend von einem ACDM-Universum), während Dobrzycki et al. (2002), Kirkman & Tytler (1997) und andere Autoren dies nicht bestätigen konnten. Erschwert wird die Suche nach benachbarten Absorptionslinien, in denen sich das paar- oder haufenweise Auftreten der Lyman α -Absorber widerspiegelt, jedoch durch die vielen Blends (Überlagerungen von zwei im Spektrum eng beieinander liegenden Absorptions- oder Emissionslinien) der breiten Lyman α -Linien. Die Identifizierung individueller Absorber wird dadurch schwierig, z.T. unmöglich. Dieses Problem stellt sich bei den Metallinien wie CIV mit ihren geringeren Dopplerbreiten von nur einigen $\mathrm{km}\,\mathrm{s}^{-1}$ nicht. Separate Komponenten sind in der Regel als solche erkennbar, und ein Signal in der sogenannten Zweipunktkorrelationsfunktion ξ , mit der der Grad der Haufenbildung quantifiziert wird, kann einfacher gemessen werden. In der Tat zeigen die mit den Lyman α -Linien assoziierten (bei gleichem z detektierten) Metallinien, bedingt durch diesen systematischen Meßunterschied, deutlich höhere ξ -Werte als die Lyman α -Linien (Cowie et al., 1995; Fernandez-Soto et al., 1996; Womble & Sargent, 1996). Diese sind allerdings immer noch klein verglichen mit den von Galaxien bekannten.

Es gibt darüberhinaus Evidenz dafür, daß die Intensität der Haufenbildung zunimmt mit der Stärke der untersuchten Absorber, mit sinkendem Durchschnittsabstand zwischen zwei Absorbern und mit abnehmendem z (entsprechend der im Verlauf der Entwicklung des Universums fortschreitenden Strukturbildung der Materie).

2.5 Evolution der Anzahldichte

Besonderes Interesse gilt in der Literatur der Anzahldichte der Wasserstoffsabsorber. Deren Entwicklung mit der Rotverschiebung, auch als Evolution bezeichnet, kann analytisch mit

$$\frac{\mathrm{d}n}{\mathrm{d}z} = \frac{c\,\sigma_0\,\rho_0}{H_0}\,\frac{1+z}{\sqrt{1+2\,q_0\,z}} \tag{2.6}$$

(s. Peterson, 1978 sowie Peterson, 1997, Gl. (9.63)) ausgedrückt werden. Hierbei kennzeichnen n die Zahl der Absorber, ρ_0 und σ_0 die lokale Anzahldichte in mit der Expansion mitbewegten Koordinaten bzw. den lokalen Absorptionswirkungsquerschnitt der Lyman α -Absorber und q_0 den Verzögerungsparameter⁷.

(2.6) berücksichtigt allerdings nicht die neueren von einem ACDM-Universum ausgehenden Erkenntnisse (vgl. Kap. 2.1 und 2.2), sondern setzt $\Omega_{\Lambda} = 0$ in einem sog. Standard-Friedmann-Universum voraus. Für ein $\Omega_{\Lambda} \neq 0$ -Modell gilt dagegen

$$\frac{\mathrm{d}n}{\mathrm{d}z} = \frac{c\,\sigma_0\,\rho_0}{H_0}\,\frac{(1+z)^2}{\sqrt{\Omega_\Lambda - (\Omega_\mathrm{M} + \Omega_\Lambda - 1)(1+z)^2 + \Omega_\mathrm{M}\,(1+z)^3}}\tag{2.7}$$

⁷Der Verzögerungsparameter q(t) ist eine kosmologische Größe, die die der Expansion des Universums entgegenwirkende Beschleunigung durch die Massenanziehung beschreibt. q_0 stellt den heutigen Wert von q(t) dar (z.B. Daly & Djorgovski, 2004: $q_0 = -0.35 \pm 0.15$).

(Liebscher, 1995) mit $\Omega_{\rm M} = \Omega_{\rm DM} + \Omega_{\rm B}$. Für den Spezialfall des Friedmann-Universums $(\Omega_{\Lambda} = 0 \text{ und } \Omega_{\rm tot} = \Omega_{\rm M} = 2q_0)$ reduziert sich (2.7) dann zu (2.6).

Mit den Werten aus Kapitel 2.1 folgt aus (2.7)

$$\frac{\mathrm{d}n}{\mathrm{d}z} \approx \frac{c\,\sigma_0\,\rho_0}{H_0} \,\frac{(1+z)^2}{\sqrt{0,7+0,3\,(1+z)^3}}.\tag{2.8}$$

Üblicherweise wird die in den Spektren tatsächlich beobachtete Entwicklung der Liniendichte mit dem Potenzgesetz

$$\frac{\mathrm{d}n}{\mathrm{d}z} = \left(\frac{\mathrm{d}n}{\mathrm{d}z}\right)_0 (1+z)^\gamma \tag{2.9}$$

(Sargent et al., 1980) gefittet. Die Normierungskonstante $\left(\frac{\mathrm{d}n}{\mathrm{d}z}\right)_0$ entspricht dabei bis auf einen Vorfaktor der lokalen Anzahldichte ρ_0 , denn nach (2.7) ist für z = 0

$$\left(\frac{\mathrm{d}n}{\mathrm{d}z}\right)_0 = \frac{c\,\sigma_0\,\rho_0}{H_0}.\tag{2.10}$$

Der Exponent γ schließt die *intrinsische* Evolution der Anzahldichte einer Population von Lyman α -Absorbern ebenso mit ein wie eine lediglich auf der Expansion des Universums beruhende Entwicklung.

Peterson (1978) stellte als erster fest, daß die Lyman α -Absorber eine solche intrinsische Evolution zeigen, und zwar im Sinne eines starken Abfalls der Liniendichte mit sinkender Rotverschiebung. Dies wurde inzwischen durch zahlreiche Studien bestätigt und zudem durch die Erkenntnis ergänzt, daß γ keineswegs konstant ist. Vielmehr fällt der Exponent in der Phase von z = 2 bis $z \leq 1$ stark ab. Physikalisch kann dies folgendermaßen plausibilisiert werden: Die Expansion des Universums und die damit verbundene Ausdünnung der Materie sowie sinkende Rekombinationsrate von ionisiertem Wasserstoff und freien Elektronen verursacht zunächst für z > 2 eine rapide Abnahme der Zahl der Lyman α -Absorber pro Rotverschiebungsintervall. Dieser Trend wird jedoch gebremst durch den ab $z \approx 2$ einsetzenden Abfall des ionisierenden Hintergrundstrahlungsfeldes (als Folge der sinkenden Population von Quasaren sowie von Galaxien mit hohen Sternentstehungsraten), der den Anteil neutralen Wasserstoffs erhöht. In der Summe ergibt sich ein steiler Abfall der Anzahldichte der Lyman α -Absorber für z > 2 und ein (zeitlich verzögert auftretender) annähernd konstanter Verlauf für z < 1, bei dem sich die Effekte der sinkenden Photoionisationsrate sowie der Hubble-Expansion in etwa aufheben (Davé et al., 1999).

Für die Phase 1 < z < 2 wurde häufig ein scharfer Sprung in der Evolution bei $z \approx 1,5$ anstelle eines moderaten Übergangs zwischen beiden Entwicklungsepochen vorgeschlagen. In der Tat suggerieren die Daten von z.B. Kim et al. (1997) ($\gamma = 2,78\pm0,71$ für z = 2,0-3,5) oder Kim et al. (2001) ($\gamma = 2,19\pm0,27$ für z = 1,5-4,0) für hohe z einerseits sowie von Weymann et al. (1998) ($\gamma = 0,1-0,3$ für z < 1,5) für niedrige Rotverschiebungen andererseits eine abrupte Änderung des Exponenten γ , und auch Simulationen des Lyman α -Waldes (Riediger et al., 1998; Theuns et al., 1998; Davé et al., 1999) legen dies nahe. Ungeachtet dessen ist über den genauen Verlauf der Absorberdichte zwischen z = 1 und z = 2 noch wenig bekannt, zumal gerade hier (bei $z \approx 1, 5$) die rotverschobene Lyman α -Linie vom UV in den visuellen Bereich übergeht und somit systematische Fehler, die durch die Unterschiede zwischen weltraum- und erdbodengebundener Beobachtungstechnik verursacht werden, eine Rolle spielen könnten. Präzisere Kenntnisse über die Entwicklung der Anzahldichte in dieser Phase wären u.a. für eine genauere Bestimmung der Evolution des ionisierenden Strahlungsfeldes hilfreich.

Bisherige Arbeiten zum Lyman α -Wald lassen darüberhinaus eine Abhängigkeit von γ von der Säulendichte in dem Sinne erwarten, daß für z > 1,5 die Anzahldichte der Absorber hoher Säulendichte deutlich stärker abnimmt als die der Absorber mit niedrigen $N_{\rm HI}$. Allerdings stehen insbesondere für die schwachen Linien für den betreffenden Rotverschiebungsbereich nur wenig Daten zur Verfügung.

Kapitel 3

Beobachtungsdaten

3.1 Auswahl der Quasare

Für die astronomische Spektroskopie sind zwei Parameter von grundsätzlicher Bedeutung: Das Verhältnis des Signals zum Rauschen (*signal to noise ratio*, SNR oder S/N) in den Spektren sowie deren Auflösung R.

Entscheidend dafür, daß bei Quasarspektren ein hohes S/N erzielt wird, ist neben der Belichtungszeit und der Teleskopgröße natürlich die Helligkeit der Quasare. Astronomen definieren die *scheinbare Helligkeit* m (die Helligkeit, mit der ein Objekt dem Beobachter erscheint; sie gilt meistens für einen bestimmten Spektralbereich, z.B. m_V für den visuellen, m_B für den blauen Bereich etc.) anhand einer logarithmischen Skala, bei der höhere Werte geringeren Helligkeiten entsprechen, und benutzen als Einheit mag (als Kurzform von Magnitudines oder Größenklassen). Bei den hellsten Quasaren wird $m_B \approx 14$ mag gemessen.

Die spektrale Auflösung $R = \frac{\lambda}{\Delta \lambda}$ ist definiert durch den Abstand $\Delta \lambda$ zweier scharfer Spektrallinien bei den Wellenlängen λ und $\lambda + \Delta \lambda$, bei dem diese gerade noch als separate Absorptionslinien erkennbar sind. Je höher R ist, desto dichter können daher zwei Absorptionslinien noch beieinander liegen, um dennoch als voneinander getrennt identifiziert werden zu können.

In der Praxis wird $\Delta\lambda$ durch den FWHM-(full width at half maximum-)Wert einer Absorptionslinie, also die volle Linienbreite an der Stelle, an der der Strahlungsfluß auf die Hälfte zurückgegangen ist, festgelegt: $\Delta\lambda = FWHM$. Benutzt man die Dopplerformel (1.8; $\Delta\lambda_{\rm D} \rightarrow \Delta\lambda$, $\lambda_0 \rightarrow \lambda$, $v_{\rm ges} \rightarrow v$), kann die Auflösung

$$R = \frac{\lambda}{FWHM} = \frac{c}{v} \tag{3.1}$$

alternativ auch in Geschwindigkeitseinheiten angegeben werden:

$$v = \frac{c}{\lambda} \cdot FWHM. \tag{3.2}$$

QSO	$z_{\rm em}$	$m_B \; [\mathrm{mag}]$	$m_V [\mathrm{mag}]$
PG 1634+706	$1,\!34$	14,9	14,7
PKS 0232-04	$1,\!44$	$16,\! 6$	$16,\! 5$
PG 1630+377	$1,\!48$	16,5	16,1
PG 0117+213	$1,\!50$	16,1	
HE 0515-4414	1,73	15,0	14,9
HE 0141-3932	$1,\!80$	16,2	
HE 2225-2258	$1,\!89$	16,3	
HS 0747+4259	$1,\!90$	$15,\!8$	$15,\!6$
HE 0429-4901	$1,\!94$	16,2	17,4

Tabelle 3.1: Parameter der Quasare

Tabelle 3.1 gibt einen Überblick über die Quasare¹, deren Spektren anhand der genannten Kriterien für eine Analyse des Lyman α -Waldes ausgewählt wurden, ihre Emissions-Rotverschiebungen $z_{\rm em}$ und Helligkeiten, soweit bekannt. In den beiden rechten Spalten von Tabelle 3.2 sind die Auflösung und das ungefähre S/N der untersuchten Spektralregionen zusammengefaßt. Die Spektren aller neun Quasare besitzen ein ausreichend hohes R, daß sämtliche Lyman α -Linien aufgelöst sind. Das S/N der einzelnen Spektren schwankt — auch innerhalb eines Spektrums — z.T. beträchtlich, so daß die noch beobachtbare Mindestsäulendichte stark von der betrachteten Quasarsehlinie und der jeweiligen spektralen Ordnung abhängt.

Die ausgewählten Objekte liegen mit ihren Rotverschiebungen alle im Bereich $1, 3 < z_{\rm em} < 2, 0$, da ein Schwerpunkt der Untersuchungen dem ungeklärten Evolutionsverhalten der Anzahldichte der Absorber in der Phase 1 < z < 2 (s. Kap. 2.5) galt.

3.2 Spektren und Datenreduktion

Da die Lyman α -Linie für $z \gtrsim 1,5$ in den visuellen Bereich rotverschoben ist, sind für die Analyse des Lyman α -Waldes bei mittleren und hohen Rotverschiebungen neben UV-auch optische Daten notwendig.

Von zwei der neun in die Untersuchungen einbezogenen Quasare, HE 0515-4414 und HS 0747+4259 (Entdeckung beider Objekte publiziert in Reimers et al., 1998), konnten Daten in beiden Spektralbereichen gewonnen werden: Im UV jeweils mit dem *Space Telescope Imaging Spectrograph* (STIS) des *Hubble Space Telescope* (HST), der mit dem E230M-Gitter eine Auflösung von $R \approx 30\,000$ (oder $v \approx 10 \text{ km s}^{-1}$) liefert, und im Optischen mit dem hochauflösenden UVES-Spektrographen des VLT/Kueyen-Teleskops (die Spaltbreite von d = 0, 8'' ergab $R \approx 50\,000$) von HE 0515-4414 bzw. mit Keck/HIRES

¹Die Namensgebung von Quasaren erfolgt in der Regel anhand ihrer Koordinaten auf einer imaginären Himmelskugel, der *Rektaszension RA* (Breitenkoordinate) und der *Deklination* δ (Längenkoordinate), im Bezugsjahr 1950. Vorgestellt wird eine Abkürzung der Himmelsdurchmusterung, bei der der Quasar entdeckt wurde. Z.B. steht "HE" für den *Hamburg-ESO-Survey*, und der Quasar HE 0515-4414 hatte 1950 die Koordinaten RA = 05h 15min und $\delta = -44^{\circ} 14'$.

QSO	Tel./Spektrograph	Beobachtungsdatum	$t_{\rm Bel} \ [s]$	R	S/N
PG 1634+706	HST/STIS	5.5 + 26.6.1999	26400 - 29000^{a}	30 000	5 - 50
PKS 0232-04	HST/STIS	6./8.2.2001 + 19.1.2002	41 900	30 000	4-15
PG 1630+377	HST/STIS	27.2 + 8./12.10.2001	34100	30000	5 - 11
PG 0117+213	HST/STIS	31.12.2000 - 12.1.2001	42000	30000	4-12
HE 0515-4414	HST/STIS	31.1 - 2.2.2000	31500	30000	≈ 10
	VLT/UVES	7.10.2000 - 3.1.2001	31500	50000	10 - 50
HE 0141-3932	VLT/UVES	19.7 + 14 24.8.2001	39600	40000	≈ 25
HE 2225-2258	VLT/UVES	1728.6+14./15.7.2001	41800	40000	≈ 25
HS 0747+4259	HST/STIS	6./1216.9.2001	54200	30000	3-10
	Keck I/HIRES	28.2 + 1.3.2001	5400	38000	3 - 12
HE 0429-4901	VLT/UVES	1.2 + 18./19.3.2001	10 800	50000	≈ 8

^aabhängig vom Spektralbereich

Tabelle 3.2: Daten- und Qualitätsangaben zu den Spektren

(Auflösung mit $R \approx 38\,000$ etwas schlechter) von HS 0747+4259. Dadurch lag für diese zwei Quasare die größte untersuchbare Rotverschiebungsweglänge vor (Tab. 3.3 und Abb. 3.1).

Erweitert wurde die Auswahl durch drei ebenfalls mit UVES spektroskopierte helle Quasare aus dem Hamburg-ESO-Survey, deren Daten von der Hamburger Gruppe beantragt und im Servicemodus der ESO aufgenommen wurden: HE 0141-3932, HE 2225-2258 (Wisotzki et al., 2000) und HE 0429-4901 (noch nicht publiziert), letzterer mit einer Spaltbreite von d = 0, 8'', die anderen beiden mit d = 1, 0''. Die in diesen Spektren detektierten Lyman α -Linien stärkten die statistische Basis im Bereich 1, 5 < z < 2, 0.

Schließlich wurde das QSO-Ensemble im UV-Bereich (0, 5 < z < 1, 5) noch durch Daten aus dem STIS-Archiv ergänzt. Zu diesem Zweck wurden die frei zugänglichen Spektren von vier Quasaren — PKS 0232-04 (Shimmins et al., 1966), PG 1630+377 (Noguchi et al., 1980) und PG 0117+213 (Schmidt & Green, 1983) aus einem Beobachtungsprogramm von B. Jannuzi (HST-Antrag 8673/Beobachtungszyklus 9) und PG 1634+706 (Schmidt & Green, 1983) aus zwei Programmen von S. Burles (7292/7) und B. Jannuzi (8312/8) — aus der STIS-Datenbank heruntergeladen und mit dem Datenreduktions- und Datenanalyse-Softwarepaket IRAF in eine für die Auswertung brauchbare Form aufbereitet. Auch diese STIS-Daten wurden mit dem E230M-Gitter aufgenommen und bieten somit die gleiche Auflösung wie die anderen STIS-Spektren.

Tabelle 3.2 listet alle ausgewerteten QSO-Spektren mit den Daten, zu denen sie aufgenommen wurden, den Belichtungszeiten und Angaben zu ihrer Qualität auf.

Astronomische Spektren müssen, bevor sie ausgewertet werden können, noch von einer großen Zahl an Störeffekten bereinigt werden, und sowohl die Strahlungsfluß- als auch die Wellenlängenskala müssen auf eine physikalische Einheit kalibriert werden². Die gesamte

²Astrophysikalisch definiert ist der Strahlungsfluß (oder auch die Strahlungsflußdichte oder der Strahlungsstrom) F_{λ} als die gesamte Energie, die ein Objekt pro Zeiteinheit, pro Flächeneinheit und pro Wellenlängeneinheit abstrahlt. Der Strahlungsfluß wird in der Regel in erg s⁻¹ cm⁻² Å⁻¹ angegeben.

Prozedur faßt man unter dem Begriff Datenreduktion zusammen. Bei modernen Spektrographen wie UVES oder STIS wird diese Aufgabe mit einer entsprechend angepaßten Software und unter Zuhilfenahme von Kalibrationsdateien automatisch in der sogenannten Pipeline des Spektrographen erledigt. Von den hier untersuchten Quasaren lagen daher reduzierte und kalibrierte Daten vor.

Bei HE 0515-4414 mußte allerdings noch eine Nachbesserung vorgenommen werden: Der Strahlungsfluß war an einigen Stellen, bedingt durch eine fehlerhafte Korrektur des Rauschhintergrunds des CCD-Chips³ durch die Pipeline, kleiner als Null, was physikalisch natürlich keinen Sinn macht. Das Problem wurde behoben, indem in jeder spektralen Ordnung *gesättigte* Absorptionslinien (Linien, deren zentraler Strahlungsfluß gleich Null ist) gesucht und für die Nullpunktsdefinition zugrundegelegt wurden. In Ordnungen ohne gesättigte Linien wurde mit Hilfe der benachbarten Ordnungen extrapoliert. Auf der Grundlage dieser Neueichung der Flußskala wurde dann ein leicht verringerter Hintergrundwert (der von Ordnung zu Ordnung variierte) vom Rohdatenfluß subtrahiert und damit ein durchgehend positiver Strahlungsfluß im gesamten Spektrum erzeugt.

Die Keck-Daten von HS 0747+4259 wurden statt durch eine interne Pipeline von J. O'Meara mit dem Datenreduktions-Softwarepaket von T. Barlow reduziert.

In allen Fällen, mit Ausnahme der Keck-Daten, schloß die Reduktion nicht die Vakuumund die baryozentrische Korrektur der Wellenlängenskala mit ein: Zum einen müssen erdbodengebundene Aufnahmen der Brechung des Lichts durch die Atmosphäre Rechnung tragen und auf eine Vakuumwellenlänge

$$\lambda_{\text{Vak}} = n \cdot \lambda_{\text{Luft}},\tag{3.3}$$

n Brechungsindex der Erdatmosphäre, λ_{Luft} Wellenlänge in Luft, zurückgerechnet werden. Da n wiederum eine Funktion von λ_{Vak} ist, kann der Zusammenhang zwischen λ_{Vak} und λ_{Luft} nicht analytisch gelöst werden. Stattdessen muß die Konversion in Vakuumwellenlängen auf numerischem Weg realisiert werden. Entsprechende Umrechnungen wurden für die UVES-Spektren mit eigenen Programmen innerhalb des Datenanalysepakets MI-DAS durchgeführt.

Zum anderen ist es Standard, die Wellenlängen astronomischer Spektren auf den Massenschwerpunkt des Sonnensystems zu beziehen, indem die Dopplerverschiebung durch die Geschwindigkeitskomponente der Erdbewegung um die Sonne in Quasarsehlinienrichtung eliminiert wird. Hierzu müssen erstens der genaue Beobachtungszeitpunkt, von dem die Radialgeschwindigkeit $v_{\rm rad}$ der Erde relativ zu einem Bezugspunkt (hier dem Quasar) abhängt, und zweitens die Koordinaten des beobachteten Objekts bekannt sein. Mit diesen Angaben läßt sich $v_{\rm rad}$ relativ zu dem Objekt und damit die Wellenlängenverschiebung $\Delta \lambda$ berechnen. Diese Korrektur wurde für alle STIS- und UVES-Spektren mit MIDAS umgesetzt.

³Ein CCD (Abk. für "charge-coupled device") ist eine Anordnung von optischen Detektoren (den Bildelementen oder "Pixeln"), die den Energiefluß der einfallenden Photonen mittels des Photoeffekts durch die zur Intensität proportionale Photoelektronenladung messen. Die Elektronen bleiben im CCD-Chip gespeichert, bis die Ladungsverteilungen der Pixel zeilenweise ausgelesen, digital umgewandelt und zur Auswertung in einen PC übertragen werden. Astronomische Beobachtungen im Optischen werden heute fast ausschließlich mit CCDs durchgeführt.

In einem letzten Schritt mußten bei allen neun Quasaren die jeweiligen Einzelaufnahmen addiert werden, um ein Gesamtspektrum aus den einzelnen Belichtungen zu erhalten. Die Strahlungsflußwerte $F_{\lambda,i}$ der *n* Einzelspektren eines Quasars werden dabei mit ihrem jeweiligen statistischen Fehler (dem Rauschen) σ_i gewichtet, so daß sich für den Gesamtfluß

$$F_{\lambda} = \sigma^2 \cdot \sum_{i=1}^{n} \frac{F_{\lambda,i}}{\sigma_i^2} \tag{3.4}$$

mit

$$\sigma^2 = \left(\sum_{i=1}^n \frac{1}{\sigma_i^2}\right)^{-1} \tag{3.5}$$

ergibt. Das S/N verbessert sich durch die Zusammenfassung der Einzelspektren — bei identischer Belichtungszeit der Einzelaufnahmen — um einen Faktor \sqrt{n} .

Die reduzierten und kalibrierten Spektren aller Quasare sind im Anhang A abgebildet.

3.3 Festlegung der Rotverschiebungsbereiche

Wie schon angeführt, wurde bei der Auswahl der untersuchten Quasare systematisch der Rotverschiebungsbereich 0,5 < z < 2,0 abgedeckt, da in dieser Phase das Evolutionsverhalten der Lyman α -Absorberdichte noch eine Reihe von Fragen aufwirft. Dieses Rotverschiebungsintervall entspricht einem großen Teil der kosmischen Historie: Mit der Hubble-Konstanten (1.3) und den kosmologischen Parametern aus Kapitel 2.1 läßt es sich in ein Zeitintervall $5 \cdot 10^9$ a $\lesssim t_{\rm R} \lesssim 11 \cdot 10^9$ a ($t_{\rm R}$ "Rückblickzeit") umrechnen.

Der Empfindlichkeitsverlauf der einzelnen Detektoren mit der Wellenlänge schränkte die genauen Wellenlängen- und damit Rotverschiebungsabschnitte, in denen der Lyman α -Wald untersucht werden konnte, etwas ein. Bei HS 0747+4259 wurde, da der HIRES-Spektrograph zum Kurzwelligen hin stark an Empfindlichkeit einbüßt, ein über die spektrale Ordnung gemitteltes Mindestsignal gemäß $\langle S/N \rangle > 2$ als Kriterium für eine Analyse definiert. Infolgedessen schieden die ersten drei Ordnungen aus. Analog blieben bei HE 0429-4901 die ersten zwei Ordnungen unberücksichtigt. PG 1634+706 enthält ein Lymanlimit-System, das unterhalb von $\lambda < 1865$ Å jede Detektion weiterer Lyman α -Linien so gut wie unmöglich macht und daher für diesen Quasar die Wellenlängenuntergrenze definierte.

Am langwelligen Ende des Lyman α -Waldes, also in der Nähe der Quasaremissionslinie, muß der sogenannte *Proximity-Effekt* berücksichtigt werden: Durch das ionisierende QSO-Strahlungsfeld nimmt die Zahl der beobachtbaren Lyman α -Absorber in der Quasarumgebung zum Quasar hin kontinuierlich ab. Um diesen systematischen Einfluß auf die Anzahldichte der neutralen Absorber in Quasarnähe zu eliminieren, definiert man daher bei der Analyse von intergalaktischen Absorptionslinien eine *Proximity-Zone* um den Quasar und schließt die in dieser Zone liegenden Absorber von den Untersuchungen aus. Die Größe der Zone wird dabei in km s⁻¹ ausgedrückt (dies ist generell üblich bei der Beschreibung von Abständen zwischen zwei Absorber, eines Absorbers zum Hintergrundquasar, dem Auftreten eines Ions in einem Absorber relativ zu einem anderen Ion des selben Absorbers etc., sofern diese Abstände relativ klein sind verglichen mit der gesamten Sehlinie zum Quasar): Der Abstand in Geschwindigkeitseinheiten zwischen zwei Absorbern mit den Rotverschiebungen z_1 und z_2 ($z_2 > z_1$) ist definiert durch

$$\Delta v = \frac{c \left(z_2 - z_1\right)}{1 + \frac{z_1 + z_2}{2}}.$$
(3.6)

Für die Berechnung der Proximity-Zone kann (mit $z_2 = z_{em}$ für die Rotverschiebung des Quasars und $z_1 = z_p$ für die der Proximity-Grenze) näherungsweise

$$\Delta v = \frac{c \left(z_{\rm em} - z_{\rm p} \right)}{1 + z_{\rm em}}.$$
(3.7)

geschrieben werden, da die Proximity-Zone nur klein ist im Vergleich zur gesamten Sehlinie. Wie weit sich die Zone erstreckt, hängt von der Stärke des QSO-Strahlungsfeldes und damit in guter Näherung von der *absoluten Helligkeit* (der auf eine Standardentfernung normierten Helligkeit) des Quasars ab. Für das vorliegende QSO-Ensemble wurden entsprechend der unterschiedlichen absoluten Helligkeiten individuelle Proximity-Zonen festgelegt. Als Richtwert wurde zunächst $\Delta v = 5\,000$ km s⁻¹ für den als erstes ausgewerteten Quasar HE 0515-4414 gewählt, basierend auf Literaturwerten für vergleichbare QSO. Die anderen Proximity-Zonen wurden auf dieser Grundlage entsprechend der geschätzten absoluten Helligkeit des jeweiligen Quasars (die sich aus der scheinbaren Helligkeit und der Entfernung abschätzen läßt) definiert.

Bei den beiden Quasaren, für die Spektren im UV *und* im Optischen zur Verfügung standen, existierte im Übergangsbereich einmal eine spektrale Lücke (HS 0747+4259) von etwa 145 Å, die bei der Berechnung der gesamten z-Weglänge berücksichtigt werden mußte, und einmal ein Überlapp von etwa 50 Å (HE 0515-4414). Im letzteren Fall wurde so verfahren, daß nur Linien, die in *beiden* Spektren identifiziert werden konnten (neun), in die Linienauswahl übernommen wurden, und zwar mit den besser bestimmten Parametern der Linien aus den UVES-Spektren.

Um bei der Festlegung von beobachteten Schlinienabschnitten Δz die kosmologisch bedingte Rotverschiebungsabhängigkeit innerhalb des Intervalls zu eliminieren, wird ein gegebenes Δz oft in die Absorptionsweglänge ΔX transformiert. Unter Berücksichtigung des Λ CDM-Modells ist

$$\Delta X = \frac{1+z}{\sqrt{\Omega_{\rm M}(1+z) + \frac{\Omega_{\Lambda}}{(1+z)^2}}} \,\Delta z \tag{3.8}$$

(Boksenberg et al., 2003) mit $\Omega_{\rm M} \approx 0, 3$, $\Omega_{\Lambda} \approx 0, 7$ und $\Omega_{\rm tot} = \Omega_{\rm M} + \Omega_{\Lambda} \approx 1$. In der Regel überdecken verschiedene Sehlinien mehrfach den gleichen z-Bereich. Sollen für ein bestimmtes z-Intervall Aussagen über den Lyman α -Wald gewonnen werden, wird dem Rechnung getragen, indem von verschiedenen Sehlinien überstrichene Δz zunächst in ΔX -Werte umgerechnet und diese zu einer Gesamtabsorptionsweglänge aufsummiert werden.

Tabelle 3.3 beinhaltet die dem jeweiligen Mindest-S/N genügenden und um die Proximity-Zone reduzierten Wellenlängen- und Rotverschiebungsintervalle aller Quasare (Spalten zwei und drei). Die vierte und fünfte Spalte geben die Mittelwerte \overline{z} bzw. die z-Weglängen

QSO	$\lambda\lambda$ [Å]	zz	\overline{z}	Δz	ΔX	n^a	$n/\Delta X$
PG 1634+706	1865 - 2790	$0,\!534\!-\!1,\!295$	0,915	0,761	$1,\!665$	195	117
PKS 0232-04	2280 - 2941	$0,\!876\!-\!1,\!419$	$1,\!147$	0,544	1,309	128	97
PG 1630+377	2279 - 2980	$0,\!875\!-\!1,\!451$	1,163	0,577	1,396	118	84
PG 0117+213	2279-3009	$0,\!875 - 1,\!475$	$1,\!175$	0,600	1,460	160	109
HE 0515-4414	2278-3260	$0,\!874\!-\!1,\!682$	1,278	0,808	2,034	220	108
HE 0141-3932	3061 - 3384	1,518-1,784	$1,\!651$	0,266	0,745	97	130
HE 2225-2258	3057 - 3478	1,515-1,861	$1,\!688$	0,346	0,979	130	132
HS $0747+4259^{b}$	2140 - 2970	0,760-1,443	1,102	$0,\!683$	$1,\!615$	110	68
	3115 - 3484	1,562 - 1,866	1,714	0,304	0,864	79	91
HE 0429-4901	3188-3538	$1,\!622\!-\!1,\!910$	1,766	0,288	0,830	88	106
Σ				$5,\!176$	12,897	1325	

Tabelle 3.3: Ausgewertete Rotverschiebungsbereiche und Absorptionsweglängen der Quasare sowie detektierte Anzahlen an Lyman α -Linien

 a Anzahl der im angegebenen Spektralbereich detektierten Lyman $\alpha\text{-Linien}$

^bObere Zeile für die HST-, untere Zeile für die Keck-Spektren

 Δz , die sechste Spalte die mit (3.8) und mit $z = \overline{z}$ berechneten ΔX an. Die Gesamtabsorptionsweglänge für alle neun untersuchten Quasarsehlinien beträgt $\sum_{i=1}^{9} \Delta X_i = 12,897$. In den beiden rechten Spalten sind die Anzahlen der detektierten Lyman α -Absorptionslinien (absolut bzw. pro Absorptionsweglänge; insgesamt 1325) aufgeführt.

Abbildung 3.1 visualisiert zum besseren Überblick die von den Spektren abgedeckten Rotverschiebungsintervalle aller Quasare.

Abbildung 3.1: Beobachtete Rotverschiebungsbereiche aller analysierten Quasare

Kapitel 4

Identifikation, Modellierung und Selektion der Lyman α -Linien

Die Analyse von Absorptionssystemen in Quasarspektren erfolgt in drei Etappen: Zunächst müssen die Absorptionslinien bestimmten atomaren Übergängen bei bestimmten Rotverschiebungen zugeordnet, d.h. identifiziert werden; dann werden sie als solche modelliert ("gefittet") und schließlich anhand zu definierender fester Kriterien für das endgültige Linienensemble selektiert oder verworfen.

4.1 Linienidentifikation

Die Schwierigkeit bei der Identifikation der Linien liegt darin, daß jede Linie a priori zwei Unbekannte enthält, die Rotverschiebung und den atomaren Übergang, so daß die Zuordnung nicht trivial ist: Eine Linie kann z.B. einer (schmalen) Lyman α -Linie bei z_1 ebenso entsprechen wie einem CI-Resonanzlinienübergang bei einer Rotverschiebung $z_2 \neq z_1$.

Es gibt jedoch eine Reihe von physikalischen Anhaltspunkten sowie von Erfahrungswerten, anhand derer die Linien fast vollständig identifiziert werden können (auch wenn sich einige wenige zweifelhafte Fälle und auch Fehlidentifikationen grundsätzlich nicht vermeiden lassen):

- Eine grundlegende Feststellung ist, daß über 90% aller in Quasarspektren detektierten Absorptionslinien Lyman α -Linien sind, da das IGM fast ausschließlich aus Wasserstoff besteht und da der Lyman α -Übergang die mit Abstand höchste Oszillatorenstärke ($f_{Lv\alpha} = 0, 4164$) aller Übergänge im Wasserstoffatom besitzt.
- Wie in Kapitel 2.3 schon erläutert, wird für HI selten $b \leq 15 \text{ km s}^{-1}$ und nie $b \leq 10 \text{ km s}^{-1}$ gemessen, während für Metallinien fast immer $b \leq 10 \text{ km s}^{-1}$ ist. Die genauen b-Werte ergeben sich zwar erst aus der Fitprozedur (s.u.), können aber a priori per Auge abgeschätzt werden, so daß die Linienbreite als Unterscheidungsmerkmal verwendet werden kann.
- Nur bei einem kleinen Teil aller existierenden atomaren Übergänge sind die *f*-Werte hoch genug, reichen die Anregungsbedingungen aus und besitzen die entsprechenden chemischen Elemente gleichzeitig die nötigen Mindesthäufigkeiten, um in dem IGM detektiert werden zu können. Eine gute Hilfe bietet die Zusammenstellung der häufigsten Übergänge in QSO-Spektren von Verner et al. (1994), Tab. 1.
- Dubletts wie die starken von CIV, OVI oder SiIV oder Tripletts wie die von NI oder FeII geben zusätzliche direkte Anhaltspunkte für die Identifikation, da sowohl ihre Oszillatorenstärken und demzufolge die Linienstärkeverhältnisse als auch ihre Ruhewellenlängen und somit (bei vorausgesetztem z) die Differenzen der rotverschobenen Wellenlängen gut bekannt sind und dadurch Evidenz für eine korrekte Detektion liefern.
- Regelmäßig treten in den Spektren von Quasaren die *interstellaren* (d.h. die durch das Gas zwischen den Sternen der Milchstraße hervorgerufenen) Übergänge von Ionen wie FeII, MgII oder MnII auf. Da für sie z = 0 gilt, sind sie einfach aufzufinden.

Strategisch wurde bei der Linienidentifikation folgendermaßen verfahren: Als guter Start erwies es sich, zunächst die interstellaren Linien zu kennzeichnen. Anschließend wurden die mit ihren hohen Säulendichten ins Auge springenden stärksten Lyman α -Absorber herausgesucht. Identifiziert man bei der Wellenlänge $\lambda_{Ly\alpha}$ eine Lyman α -Linie mit log $N_{\rm HI} \gtrsim 14,00$ (die genaue Untergrenze hängt vom S/N ab), läßt sich dazu wegen (1.4) bei der Wellenlänge

$$\lambda_{\mathrm{Ly}\beta} = \frac{\lambda_{0,\mathrm{Ly}\beta}}{\lambda_{0,\mathrm{Ly}\alpha}} \cdot \lambda_{\mathrm{Ly}\alpha} = 0,84375 \cdot \lambda_{\mathrm{Ly}\alpha} \tag{4.1}$$

 $(\lambda_{0,Ly\beta} = 1025,7223 \text{ Å}; \text{ der Index 0 steht wie bisher und im folgenden für das Ruhesy$ $stem) grundsätzlich auch die zugehörige Lyman <math>\beta$ -Linie als entsprechend schwächere Linie $(f_{Ly\beta} = 0,0791)$ finden, sofern diese noch im durch die Daten abgedeckten Spektralbereich liegt und nicht geblendet ist. Für Absorber mit log $N_{\text{HI}} \gtrsim 14,5$ können darüberhinaus entsprechend die Lyman γ - und ggf. weitere Übergänge der Lymanserie mit sinkender Linienstärke detektiert werden.

Wichtig für die Suche nach den höheren Lymanseriengliedern ist neben der Wellenlänge die Orientierung an der $\ddot{A}quivalentbreite$

$$W_{\lambda} = \int_{\text{Linie}} \frac{F_{\text{Kont}} - F_{\lambda}}{F_{\text{Kont}}} \, \mathrm{d}\lambda \tag{4.2}$$

der Linien, die die Fläche zwischen dem Flußverlauf im Bereich der Linie und dem über die Linie interpolierten Kontinuum F_{Kont} darstellt. Für ein Rechteck mit identischem Flächeninhalt in einem auf Eins normierten Spektrum kann sie dann in einer einfachen Längeneinheit (Å) ausgedrückt werden. Die Äquivalentbreite ist über die sogenannte *Wachstumskurve* einer Absorptionslinie mit der Säulendichte N direkt verknüpft. Im linearen Teil dieser Kurve, d.h für kleine Säulendichten, gilt

$$W_{\lambda,0} [\text{\AA}] = 8,85 \cdot 10^{-21} \ (\lambda_0 [\text{\AA}])^2 f \ N[\text{cm}^{-2}]$$
(4.3)

und somit für das Verhältnis der Äquivalentbreiten zweier Übergänge des gleichen Ions im gleichen Absorber, z.B. Lyman α und Lyman β ,

$$\frac{W_{\lambda,0,\mathrm{Ly}\alpha}}{W_{\lambda,0,\mathrm{Ly}\beta}} = \frac{\lambda_{0,\mathrm{Ly}\alpha}^2 f_{\mathrm{Ly}\alpha}}{\lambda_{0,\mathrm{Ly}\beta}^2 f_{\mathrm{Ly}\beta}} \approx 7,3967.$$
(4.4)

Über die leicht berechenbaren Äquivalentbreitenverhältnisse läßt sich also gut abschätzen, ob eine Identifikation korrekt ist.

Die Rotverschiebungen der stärksten HI-Systeme bildeten dann die Grundlage für die Suche nach Metallinien. Sämtliche z-Werte wurden zunächst hinsichtlich der durch die Verner et al. (1994)-Liste gegebenen häufigsten Metallinien untersucht, unter Einräumung einer Toleranz von etwa $\Delta z \approx 0,001 - 0,002$ zwischen HI und dem jeweiligen Metallion, entsprechend $\Delta v \approx (100 - 400)$ km s⁻¹ (Gl. (3.6)). Der Grund dafür ist, daß sich verschiedene Ionen des gleichen Absorptionssystems nicht zwingend in den gleichen Volumina des Systems befinden müssen, andererseits zwischen voneinander getrennten Volumina radiale Geschwindigkeitsdifferenzen durch makroskopische Bewegungen auftreten können. Die Systeme, die sich als besonders metallreich herausstellten, wurden anschließend auch auf weniger häufige Linienübergänge überprüft, insbesondere auf solche der bereits identifizierten Ionen.

Oft existieren Metallsysteme, deren zugehöriges Lyman α nicht im spektroskopierten Bereich liegt und die daher unerkannt bleiben würden, wenn die Linienidentifikation lediglich auf der Grundlage der stärksten HI-Systeme erfolgen würde. Hier sind andere Anhaltspunkte wichtig, vor allem die häufigen und leicht zu identifizierenden CIV-Dubletts (1548/1550 Å), deren zugehöriges Lyman α wegen der deutlich unterschiedlichen Ruhewellenlänge besonders oft nicht im gleichen untersuchten Spektrum liegt. Die CIV-Rotverschiebungen wurden daher als Basis für die systematische Suche nach weiteren Metallinien genommen. Dies galt ebenfalls gelegentlich für andere starke atomare Übergänge oder mehrere höhere Lymanserienglieder des gleichen Absorbers ohne "sichtbares" Lyman α .

Durch die beschriebene Vorgehensweise läßt sich der Großteil aller Linien eines typischen Quasarspektrums identifizieren. Für die noch unklaren Fälle war zunächst ein erster Linienfitdurchgang (s.u.) notwendig, um die genauen Fitparameter zu bestimmen. Dabei wurden die noch unidentifizierten Linien entweder als Lyman α angenommen oder — bei für Lyman α unrealistischen Linienbreiten — mit den neutralen Werten f = 1 und z = 0 gefittet.

Anschließend wurde auch bei den Rotverschiebungen der Lyman α -Absorber, die nicht zu den stärksten Systemen gehören ((13, 30 – 13, 50) $\leq \log N_{\rm HI} \leq 14,00$), nach Lyman β und Metallinien gesucht. Ggf. neu identifizierte Linien wurden dann mit den korrekten Werten für f und λ_0 nachgefittet.

Die auf diese Weise erstellte Absorptionslinienliste enthält immer noch einige wenige unidentifizierte Linien, irrtümlich als Linien interpretierte Rauschpeaks, unerkannte oder auch fälschlicherweise für solche gehaltene Blends sowie Fehlidentifikationen, was unvermeidbar ist. Ihr Anteil dürfte insbesondere bei den hochaufgelösten UVES-Spektren mit dem hohen S/N aber vernachlässigbar sein und auch bei den übrigen Spektren unter 5%

liegen. Zudem sind die unechten, falsch oder nicht identifizierten Linien naturgemäß Linien mit sehr niedrigen Säulendichten und/oder niedrigen Dopplerparametern, die für das Lyman α -Linienensemble alle irrelevant sind bzw. spätestens durch Berücksichtigung des Signifikanzlevels (s. Kap. 4.4) aus der Auswahl herausfallen. Vor allem die Blends stellen jedoch ein nicht zu unterschätzendes Problem dar.

4.2 Linienprofilfit

Grundsätzlich muß beim Fitten von Absorptionslinien in den Spektren von Quasaren das effektive *Hintergrundkontinuum* definiert werden, da das Interesse nicht den absoluten, sondern den *relativen* Flüssen gilt. Dazu wird die absolute Flußskala gewissermaßen herausgerechnet, indem das beobachtete Spektrum durch das Quasarkontinuum dividiert wird. Der resultierende relative Strahlungsfluß ist dann an den nicht durch Absorptionslinien beeinflußten Stellen gleich Eins und liegt ansonsten zwischen Null und Eins. Insbesondere in Regionen hoher Liniendichte sowie in stark verrauschten Spektren ist es jedoch äußerst problematisch, das Kontinuum zuverlässig zu bestimmen; es kann hier leicht unter- (im ersten Fall) bzw. überschätzt (im zweiten Fall) werden. Da solche Fehlplatzierungen des Kontinuums systematische Auswirkungen auf die Linienparameter haben, stellt die Kontinuumsdefinition eine der Hauptfehlerquellen bei der Modellierung von Quasarabsorptionslinien dar.

4.2.1 Fitprogramme

Für das Fitten von Absorptionslinien existiert eine Vielzahl verschiedener Programme, von denen zwei für die hier untersuchten Spektren verwendet wurden:

Die Linien in den HST/STIS- und VLT/UVES-Spektren von HE 0515-4414 wurden mit dem MIDAS-Softwarepaket FITLYMAN (Fontana & Ballester, 1995) gefittet, das als Eingabe ein auf Eins normiertes Spektrum benötigt. Das Kontinuum wurde zu diesem Zweck mit MIDAS definiert, indem interaktiv Punkte in linienfreien Regionen festgelegt und diese durch ein Polynom gefittet wurden.

An das DLA-System, das sich in der Sehlinie von HE 0515-4414 befindet (s. Kap. 5.1), wurde, da es sich über einen Bereich von ca. 20 Å erstreckt, ein Quasikontinuum gefittet, d.h. die gedämpfte Linie wurde behandelt wie eine intrinsische Erscheinung des Quasars. Auf diese Weise war es möglich, die kleineren Linien innerhalb der DLA-Region zu fitten.

Eine Weiterentwicklung zu FITLYMAN stellt das 2002 von R. Baade entwickelte Programm CANDALF dar, bei dem das Kontinuum *simultan* zur Linienfitprozedur bestimmt wird. Durch diese parallele Vorgehensweise kann das Kontinuum auch in Fällen zuverlässig definiert werden, in denen es durch eine hohe Liniendichte kaschiert wird. CANDALF wurde für die Analyse aller Quasarspektren außer dem von HE 0515-4414, dessen Spektren bereits vor der Entwicklung von CANDALF gefittet wurden, verwendet.

Mit beiden Programmen wurden, auch hinsichtlich ihrer Konsistenz zueinander, umfangreiche Erfahrungen gesammelt, insbesondere anhand der OVI-Absorber im Spektrum von HE 0515-4414 (zu deren physikalischer Bedeutung siehe Kapitel 5.1 und Reimers et al., 2001). Da es sich bei diesen Systemen um komplexe Linienensembles mit mehreren, z.T. geblendeten atomaren Übergängen und einer Reihe von *simultan* (mit identischen Werten für $\log N$, b und z) zu fittenden Multipletts handelt, eigneten sie sich ausgezeichnet für einen anspruchsvolleren Vergleich der Programme. Die Parameter aller Ionen in den insgesamt sechs OVI-Absorptionssystemen wurden mit FITLYMAN bestimmt und mit denen von R. Baade mit CANDALF berechneten verglichen. Tabelle 4.1 faßt die Ergebnisse beider Programme exemplarisch für den Absorber bei z = 1,697 zusammen. In Blends zusätzlich gefittete Linien anderer Rotverschiebungen wurden der Übersichtlichkeit halber weggelassen. Mit CANDALF wurde neben den aufgelisteten Übergängen noch das SiIV-Dublett bei 1394/1403 Å gefittet, das sich mit FITLYMAN nicht modellieren ließ. Anstelle von z ist λ als Fitparameter angegeben. Für jede Linie sind die Fitparameter von FITLYMAN (obere Zeile) und CANDALF (untere Zeile) übereinander aufgeführt. Wie aus der Tabelle hervorgeht, sind die Säulendichten und die Dopplerparameter sämtlicher Linien im Rahmen ihrer Fehler miteinander konsistent. Einzige Ausnahme ist das schwächere der beiden Nv-Dubletts, das allerdings nur eine äußerst niedrige Aquivalentbreite hat und möglicherweise nicht real ist. Auch die jeweils sehr genau bestimmten Wellenlängen sowie die von den Programmen aus den Säulendichten berechneten Äquivalentbreiten lassen keine gravierenden Unterschiede erkennen. Mit FITLYMAN wurden zusätzliche Testrechnungen mit variierenden Startparametern, zusätzlichen Blendkomponenten etc. durchgeführt, ohne daß die Übereinstimmung mit CANDALF darunter litt. Auch die Ergebnisse von FITLYMAN für die Ionen der anderen fünf OVI-Absorber entsprechen, von wenigen Ausnahmen abgesehen, im Rahmen der Fehler den CANDALF-Werten aus Reimers et al. (2001).

Als Resultat kann davon ausgegangen werden, daß CANDALF im Vergleich zu FIT-LYMAN zwar in Regionen hoher Liniendichte leichter konvergiert, mit größerer Wahrscheinlichkeit das globale Fitminimum findet und etwas geringere Fitfehler produziert, die Wahl des Fitprogramms letztlich aber über die Gesamtheit des untersuchten Lyman α -Linienensembles betrachtet keinen signifikanten Einfluß auf die Ergebnisse hat (siehe auch Abb. 6.16). Dadurch ist sichergestellt, daß die Bestimmung der Fitparameter mit unterschiedlichen Programmen hier keinen systematischen Fehler impliziert.

4.2.2 Linienverbreiterungen

Unabhängig vom Fitprogramm wird beim Fitten der Absorptionslinien üblicherweise die vereinfachende Annahme vorausgesetzt, daß sich die Lyman α -Absorber als diskrete, voneinander unabhängige Materieelemente beschreiben lassen (realitätsnäher wäre es, ein diffuses intergalaktisches Medium zugrundezulegen, das sich durch Über- und Unterdichten relativ zur kosmischen Durchschnittsdichte $\overline{\rho}$ beschreiben läßt, s. Kap. 4.3). Die durch die individuellen Absorber hervorgerufenen Linien können dann durch ein *Voigtprofil V* beschrieben werden, welches sowohl das *Dopplerprofil D* als auch das *Lorentzprofil L* berücksichtigt.

Die auf die Ruhefrequenz ν_0 bezogene Dopplerbreite in Frequenzeinheiten $\Delta \nu_D$ ist mit (1.8) gegeben durch

$$\frac{\Delta\nu_{\rm D}}{\nu_0} = \frac{\Delta\lambda_{\rm D}}{\lambda_0} = \frac{v_{\rm ges}}{c}.$$
(4.5)

Atomarer Übergang	λ [Å]	$\log N$	$b [\mathrm{km s^{-1}}]$	$W_{\lambda,0}$ [Å]
HI 1215	$3278, 75 \pm 0, 00$	$13,48\pm0,02$	$15,8 \pm 0,5$	0,11
	$3278, 80 \pm 0, 00$	$13,48\pm0,03$	$15{,}9~{\pm}~0{,}7$	$0,\!10$
Сш 977	$2635, 13 \pm 0, 02$	$13,13\pm0,20$	$7,4 \pm 4,7$	$0,\!05$
	$2635, 12 \pm 0, 01$	$12,96\pm0,08$	$8,5~\pm~2,3$	0,04
Civ 1548	$4175, 62 \pm 0, 00$	$13,81\pm0,00$	$8{,}6~{\pm}~0{,}1$	0,11
	$4175, 68 \pm 0, 00$	$13,82\pm0,01$	$8{,}4~{\pm}~0{,}1$	$0,\!12$
Civ 1550	$4182,57\pm 0,00$	$13,81\pm0,00$	$8,6 \pm 0,1$	0,08
011 1000	$4182, 63 \pm 0, 00$	$13,82\pm0,01$	$8{,}4~{\pm}~0{,}1$	$0,\!09$
Civ 15/8	$4175, 15 \pm 0, 02$	$12,67\pm0,04$	$20,6 \pm 2,3$	0,02
	$4175, 21 \pm 0, 02$	$12,61\pm0,04$	$18{,}6~{\pm}~2{,}0$	$0,\!02$
Civ 1550	$4182, 10 \pm 0, 02$	$12,67\pm0,04$	$20,6 \pm 2,3$	0,01
011 1000	$4182, 15 \pm 0, 02$	$12,61\pm0,04$	$18{,}6~{\pm}~2{,}0$	$0,\!01$
Ny 1238	$3341, 17 \pm 0, 00$	$13,60\pm0,01$	$8{,}1~{\pm}~0{,}2$	$0,\!05$
111 1200	$3341, 24 \pm 0, 00$	$13,61\pm0,01$	$8{,}4~{\pm}~0{,}3$	$0,\!05$
Ny 1242	$3351,91 \pm 0,00$	$13,60\pm0,01$	$8,1 \pm 0,2$	0,03
	$3351,98 \pm 0,00$	$13,61\pm0,01$	$8{,}4~{\pm}~0{,}3$	$0,\!03$
Ny 1238	$3340, 93 \pm 0, 08$	$13,16\pm0,05$	77,3 $\pm 13,3$	0,03
111 1200	$3340, 88 \pm 0, 03$	$12,47\pm0,13$	$10{,}7~{\pm}~3{,}9$	$0,\!01$
Nv 1242	$3351,67 \pm 0,08$	$13,16\pm0,05$	77,3 $\pm 13,3$	0,02
	$3351, 62 \pm 0, 03$	$12,47\pm0,13$	$10{,}7~{\pm}~3{,}9$	$0,\!00$
Ovi 1031	$2783, 23 \pm 0, 01$	$14,39\pm0,04$	$12,4 \pm 1,5$	0,11
0 11 1001	$2783, 23 \pm 0, 01$	$14,40\pm0,04$	$11,8~\pm~1,3$	$0,\!11$
Ovi 1037	$2798, 58 \pm 0, 01$	$14,39\pm0,04$	$12,4 \pm 1,5$	0,09
0 11 2001	$2798, 58 \pm 0, 01$	$14,40\pm0,04$	$11,8~\pm~1,3$	$0,\!09$
Ovi 1031	$2\overline{782},91\pm0,03$	$1\overline{3,79\pm0,09}$	$17,9 \pm 4,1$	0,06
	$2782, 92 \pm 0, 03$	$13,77\pm0,09$	$16,7 \pm 4,0$	0,06
Ovi 1037	$2798, 25 \pm 0, 03$	$13,79 \pm 0,09$	$17,9 \pm 4,1$	0,03
0.112000	$2798, 27 \pm 0, 03$	$13,77\pm0,09$	$16,7 \pm 4,0$	$0,\!03$

Tabelle 4.1: Vergleich der Fitparameter λ , log N und b sowie $W_{\lambda,0}$ der Fitprogramme FITLYMAN und CANDALF anhand des OVI-Absorbers bei z = 1,697 in der Sehlinie zu HE 0515-4414. Für jeden atomaren Übergang gibt die obere Zeile das Resultat von FITLYMAN, die untere das von CANDALF an. Dubletts wurden jeweils simultan gefittet. Die Ruheäquivalentbreite ist kein Fitparameter, sondern wird in beiden Programmen aus der Säulendichte berechnet.

Mit ihr wird das Dopplerprofil definiert, das den Verlauf einer rein dopplerverbreiterten Linie beschreibt:

$$D(\nu) = \frac{1}{\sqrt{\pi} \,\Delta\nu_{\rm D}} \,\exp\left[-\left(\frac{\Delta\nu}{\Delta\nu_{\rm D}}\right)^2\right] \tag{4.6}$$

und wegen (1.9) und (4.5)

$$D(\nu) = \frac{c}{\sqrt{\pi}\nu_0 b} \exp\left[-\left(\frac{c\,\Delta\nu}{\nu_0 b}\right)^2\right]$$
(4.7)

mit $\Delta \nu$ als Abstand zur Ruhefrequenz.

Neben dem Dopplereffekt erzeugen Dämpfungen eine Verbreiterung der Spektrallinien. Man unterscheidet dabei zwischen der Strahlungsdämpfung und der Stoßdämpfung:

- Die quantenmechanische Ursache der Strahlungsdämpfung ist die Energie-Zeit-Unschärferelation $\Delta E \Delta t \geq \frac{h}{4\pi}$, in der *E* die Energie eines atomaren Zustands und Δt dessen Lebensdauer bedeuten. Die Endlichkeit des Zustands bedingt eine Breite ΔE der Energieterme, die zu einer *natürlichen Linienbreite* führt.
- Bei der Stoßdämpfung wird der Strahlungsvorgang durch Zusammenstöße der strahlenden Atome untereinander beeinflußt, wodurch sich die Energielevel ändern. Da damit die Energiedifferenzen zwischen den Niveaus steigen bzw. sinken, werden keine diskreten Wellenlängen emittiert oder absorbiert. Die Stoßdämpfung steigt mit dem Druck, da dann die Wechselwirkungen unter den Teilchen zunehmen.

Quantitativ beschreibt man diese Dämpfungseffekte durch die Lorentz-Verteilung $L(\nu)$ des Absorptionskoeffizienten innerhalb der Spektrallinie, deren Integral über die Linie auf Eins normiert ist:

$$L(\nu) = \frac{\gamma}{(2\pi\Delta\nu)^2 + (\gamma/2)^2}.$$
(4.8)

Die Dämpfungskonstante γ setzt sich dabei näherungsweise zusammen aus der Strahlungsdämpfungskonstanten γ_{Str} , die gleich der Summe der reziproken Lebensdauern der Niveaus ist, zwischen denen der Übergang stattfindet, und der Stoßdämpfungskonstanten $\gamma_{\text{Stoß}}$, die ein Maß für die Stoßrate zwischen den Teilchen darstellt.

Die Faltung der Doppler- und der Lorentz-Verteilung ergibt dann das Voigtprofil:

$$V = D \otimes L. \tag{4.9}$$

Im zentralen Bereich der Linie dominiert das Dopplerprofil. Da dieses aber entsprechend (4.6) nach außen exponentiell abnimmt, die Dämpfungen hingegen nach (4.8) nur $\sim \frac{1}{(\Delta \nu)^2 + \text{const.}}$, verliert der Doppleranteil mit steigendem Abstand zur Mitte sehr schnell

an Gewicht. Die Dämpfungsflügel spielen andererseits erst ab sehr hohen Säulendichten $(\log N_{\rm HI} \gtrsim 20)$ eine Rolle.

Zusätzlich muß noch das sogenannte Instrumentenprofil, ausgedrückt durch die Response R des Spektrographen, berücksichtigt werden. Die Ursache für die Response ist die Lichtbeugung, die für eine "Verschmierung" der Linie über den Bereich $\lambda - \lambda'$ sorgt. Das von ihr ausgebildete Instrumentenprofil wird gewöhnlich durch eine Gauß-Verteilung beschrieben. Die Faltung von R im Abstand $\lambda - \lambda'$ von der Linienmitte mit dem unverfälschten Strahlungsfluß T an der Stelle λ' ergibt dann den beobachteten Strahlungsfluß bei der Wellenlänge λ

$$F(\lambda) = \int_0^\infty T(\lambda') R(\lambda - \lambda') d\lambda'.$$
(4.10)

Für ideale Spektrographen und eine monochromatische Lichtquelle ist $R(\lambda - \lambda') = 1$ für alle λ und $F(\lambda) = T(\lambda)$. Fitprogramme differenzieren zwischen dieser instrumentellen sowie der intrinsischen, durch Dopplereffekt und Dämpfung verursachten Verbreiterung der Linien, so daß ein Wert für die instrumentell bedingte Linienverbreiterung angegeben werden muß, was in der Praxis durch Angabe der spektralen Auflösung gemäß (3.1) oder (3.2) geschieht.

4.2.3 Fitprozedur

Die drei grundlegenden Größen, mit denen intergalaktische Absorptionssysteme parametrisiert werden können, sind die Säulendichte N, der Dopplerparameter b und die Rotverschiebung z. Fitprogramme wie CANDALF oder FITLYMAN, die Linien mit einem Voigtprofil modellieren, suchen in einer iterativen Vorgehensweise diejenigen Werte für diese drei Parameter einer zu fittenden Absorptionslinie, für die die Summe der mit der jeweiligen Varianz des Fits gewichteten quadratischen Abstände zwischen der realen Absorptionslinie und dem Fit, über alle Punkte im gewählten Fitintervall berechnet, ein Minimum erreicht. Die Voigtprofilfunktion wird also in der Art an die Daten gefittet, daß für einen Satz von j Datenpunkten der Wert von

$$\chi^{2} = \sum_{i=1}^{j} \left(\frac{F_{i} - F(\lambda_{i}, a_{1}, ..., a_{M})}{\sigma_{i}} \right)^{2}$$
(4.11)

minimal wird. Dabei geben F_i , λ_i und σ_i Fluß, Wellenlänge und Fehler des *i*-ten Datenpunktes an, während M die Gesamtzahl der freien Fitparameter a_i bezeichnet. M umfaßt die 3l Fitparameter N, b und z der l simultan gefitteten Linien ebenso wie (bei CANDALF) die k Polynomkoeffizienten des Legendre-Polynoms k-ten Grades, mit dem simultan das Kontinuum approximiert wird (s. Kap. 4.2.1): M = 3l + k.

Das χ^2 für ein Fitintervall $\Delta \lambda$ mit *n* Pixeln wird im allgemeinen auf die Zahl der Freiheitsgrade N = n - M = n - 3l - k bezogen:

$$\chi^2_{\rm rel} = \chi^2 / N.$$
 (4.12)

Als Eingabe erfordern beide verwendeten Fitprogramme neben dem Spektrum inklusive einer Fehlerangabe für den Fluß die spektrale Auflösung, die Zahl der gleichzeitig zu fittenden Intervalle $\Delta\lambda$, deren Grenzen in λ und die Zahl der zu fittenden Absorptionslinien. CANDALF benötigt zusätzlich Startwerte für die Koeffizienten des Legendre-Polynoms. Je nach Komplexität des Kontinuums wurde k = 2 - 4 gewählt. Die einzelnen Koeffizienten können während des Fitdurchgangs wahlweise konstant gehalten oder variiert werden. Ein guter Startwert für den konstanten Teil des Polynoms ist es, wenn er in die Größenordnung des tatsächlichen (und über kleine $\Delta\lambda$ konstanten) Quasarflusses gelegt wird. Darüberhinaus sind in beiden Programmen die atomaren Daten der angenommenen Linienübergänge anzugeben, d.h. die Ruhewellenlänge λ_0 und die Oszillatorenstärke f. Diese Werte wurden durchgehend den umfangreichen Tabellen von Verner et al. (1994) entnommen. Außerdem müssen Startwerte für die drei Fitparameter vorgegeben werden, die zudem optional konstant gehalten oder variiert werden können. Ausgegeben werden dann die Parameter log N, b und z mit ihren Fitfehlern sowie (bei CANDALF) der Verlauf des Kontinuums.

Natürlich kann ein QSO-Spektrum nicht in einem Durchgang über den gesamten Wellenlängenbereich gefittet werden, da die Zahl der simultan zu bestimmenden freien Parameter 3*l* dann sehr schnell die Rechnerkapazitäten übersteigen würde (eine Obergrenze von 3*l* \approx 500 für besonders dichte und komplexe Linienensembles steht noch gerade im Verhältnis zum Zeitaufwand). Zudem können die unregelmäßig verlaufenden QSO-Kontinua über zu große spektrale Regionen nicht mehr zuverlässig definiert werden. Stattdessen wurden die Fits in Intervallen von typischerweise $\Delta \lambda \approx 20$ Å durchgeführt. Bestimmender Zeitfaktor ist dabei die Zahl der Iterationen, bis ein "vernünftiger" Fit erreicht ist: Es ist eher die Ausnahme, daß eine Absorptionslinie ungestört ist, stattdessen werden die Spektren von Blends dominiert. In diese wurden, beginnend mit einer einfachen Linie, pro Fitdurchgang sukzessiv weitere Linien hineinplatziert, bis sich das erzielte χ^2 nicht mehr signifikant reduzieren ließ. Unabhängig davon, ob Blends oder einzelne Komponenten gefittet wurden, war es die generelle Strategie beim Fitten, die Ausgabeparameter eines Fitdurchgangs als Eingabewerte für den nächsten Durchlauf zu wählen, um den Fit zu optimieren.

Verschiedene atomare Übergänge des gleichen Ions wurden, der physikalischen Realität entsprechend, mit identischen Werten für log N, b und z gefittet. Dies ist insbesondere bei den gesättigten Lyman α -Linien (log $N_{\rm HI} \gtrsim 13, 50 - 14, 00$) wichtig, die im flachen Teil der Wachstumskurve liegen, in dem die Berechnung von log $N_{\rm HI}$ zunehmend ungenauer wird. Darüberhinaus kann auch die Zahl der Subkomponenten eines Absorbers immer schwieriger bestimmt werden. Die Aufspaltung eines Absorbers mit vermeintlich hoher Säulendichte in mehrere schwache Absorber zeigt sich dagegen in Lyman β und ggf. weiteren Lymanseriengliedern wegen deren mit steigender Quantenzahl n monoton sinkender Äquivalentbreite. Zusätzlich sind diese Linien ungesättigt und ermöglichen eine wesentlich genauere Bestimmung der Fitparameter. Die Tatsache, daß hier — wenn möglich — die Lyman α -Fitparameter grundsätzlich im Simultanfit berechnet wurden, trägt beiden Effekten Rechnung.

Unterschiedliche Ionen des gleichen Absorptionssystems müssen dagegen nicht notwendigerweise die gleichen Werte b und z haben (log N ist natürlich sowieso unterschiedlich), da sie in verschiedenen Bereichen eines Absorbers mit leicht unterschiedlichen z-Werten und voneinander abweichenden thermischen und turbulenten Bedingungen auftreten können. Dies wurde bei den Fits ebenfalls berücksichtigt, indem die entsprechenden Parameter bei den Fitdurchgängen nicht fixiert wurden.

Nicht identifizierte Linien wurden, wie erläutert, als Lyman α bzw. bei $b < 10 \,\mathrm{km \, s^{-1}}$ mit f = 1 und z = 0 gefittet. Aus der Liste aller auftretenden Absorptionslinien wurden die Lyman α -Linien für die weiteren Untersuchungen extrahiert.

4.3 Alternative Analyseverfahren

Gelegentlich werden auch andere Methodiken zur Analyse intergalaktischer Absorptionssysteme verwendet, die die konventionelle und allgemein übliche Annahme von diskreten, mit einem Voigtprofil beschreibbaren Absorbern vermeiden und stattdessen ein kontinuierliches eindimensionales Feld des transmittierten Strahlungsflusses voraussetzen. Neben der größeren Realitätsnähe bieten diese Analyseverfahren vor allem den Vorteil, daß auch Simulationen von kontinuierlichen anstatt von diskreten Materieverteilungen ausgehen; Beobachtungen werden daher leichter mit ihnen vergleichbar. Drei dieser Methodiken (die Messung der effektiven optischen Tiefe sowie des Dichtespektrums für die Untersuchung des Lyman α -Waldes und die Monte Carlo-Inversion-Methode für die Behandlung intergalaktischer Absorptionssysteme allgemein) sollen hier kurz skizziert werden.

4.3.1 Messung der effektiven optischen Tiefe

Hin und wieder wird, insbesondere bei Spektren niedriger Auflösung, die optische Tiefe

$$\tau(\lambda) = \ln\left(\frac{F_{\text{Kont}}}{F}\right) \tag{4.13}$$

der Absorptionslinien untersucht. $\tau(\lambda)$ gibt an, auf welchen Wert F der Kontinuumsfluß F_{Kont} an der Stelle λ innerhalb der Linie abgeschwächt ist:

$$F = F_{\text{Kont}} \cdot e^{-\tau(\lambda)}.$$
(4.14)

Um zu Aussagen über das Verhalten der optischen Tiefe über einen großen Spektralbereich zu gelangen, wird die *effektive* optische Tiefe τ_{eff} über

$$e^{-\tau_{\rm eff}} = \langle e^{-\tau} \rangle \tag{4.15}$$

eingeführt, wobei der Mittelwert über die Wellenlänge zu nehmen ist. Aus (4.15) und (4.13) folgt dann

$$\tau_{\rm eff} = -\ln \langle e^{-\tau} \rangle = -\ln \left\langle \frac{F}{F_{\rm Kont}} \right\rangle. \tag{4.16}$$

Der Vorteil bei der Analyse von τ_{eff} ist vor allem, daß diese Größe nicht von der spektralen Auflösung abhängt. Ergebnisse, die aus Daten unterschiedlicher Auflösung hergeleitet werden, werden dadurch eher vergleichbar. Zusätzlich entfallen Probleme mit den subjektiven Methoden des Linienzählens sowie der Definition der Intervallbreiten Δz für die Anzahldichten dn/dz (s. Kap. 6.7). Stattdessen ist allerdings die Festlegung der Intervallbereiche in λ , über die der Mittelwert in (4.15) gebildet wird, beliebig. Ein großer Nachteil ist zudem, daß die Unsicherheit bei der Bestimmung des Quasarkontinuums noch stärker ins Gewicht fällt.

Die z-Evolution von τ_{eff} kann unter der Annahme von (2.9) analytisch zu $\tau_{\text{eff}} \propto (1+z)^{\gamma+1}$ hergeleitet werden (Rauch, 1998), so daß aus der z-Abhängigkeit der effektiven optischen Tiefe der Evolutionsindex γ gewonnen werden kann. Tytler et al. (2004) messen das *Flußdekrement* $D_A = 1 - e^{-\tau_{\text{eff}}}$, das den Anteil des absorbierten Flusses relativ zum Gesamtfluß angibt. Sie weisen auf eine weitere Schwierigkeit bei der Beschreibung des Lyman α -Waldes mit Hilfe der effektiven optischen Tiefe hin: Mit ihr können zwar auch aus Spektren mit niedrigem R, in denen individuelle Absorptionslinien nicht aufgelöst werden können, Aussagen über die Evolution des Lyman α -Waldes gewonnen werden. Der Beitrag der im Lyman α -Wald verborgenen Metallinien zu τ_{eff} bzw. D_A ist dann jedoch schwer zu quantifizieren. Er wird von den meisten Autoren nicht vom Ergebnis für D_A subtrahiert.

Rauch (1998) stellt darüberhinaus fest, daß das Konzept der effektiven optischen Tiefe zwar empfindlicher ist für die Messung des Exponenten γ und seiner Variation mit z als die Herleitung über die Anzahldichte der Linien. Die Beziehung zwischen τ_{eff} und dn/dz ist jedoch nicht trivial: Man benötigt, um beide Größen miteinander in Bezug zu setzen, eine a priori unbekannte Funktion für die N-, b- und z-Verteilungen der Absorber. Daneben wird bei der Herangehensweise über die effektive optische Tiefe die z-Abhängigkeit der N- und b-Verteilungen vernachlässigt.

4.3.2 Dichtespektrum

Eine neuartige Methode, die auf Croft et al. (1998) zurückgeht, untersucht die großskaligen Strukturen im IGM, indem das Lyman α -Waldspektrum in das ursprüngliche *power* spectrum (Dichtespektrum) der Dichtefluktuationen konvertiert wird. Die Vorgehensweise basiert auf der von einigen Theoretikern (Croft et al., 1998; Weinberg et al., 1998) eingeführten Fluktuierenden Gunn-Peterson-Approximation

$$\tau_{\rm HI} \propto \frac{\rho^{1,6}}{\Gamma_{\rm HI}} \tag{4.17}$$

($\Gamma_{\rm HI}$ Photoionisationsrate von HI), die die optische Tiefe von HI mit der Gesamtdichte ρ der baryonischen und der unterliegenden Dunklen Materie verknüpft und die für Dichten bis $\rho/\overline{\rho} \lesssim 10$ gültig ist. Der Lyman α -Wald, der die optische Tiefe als Beobachtungsgröße liefert, wird als eindimensionale "Landkarte" der Über- und Unterdichten im intergalaktischen Medium entlang der Sehlinie betrachtet, wobei diese "Landkarte" durch thermische Verbreiterungen und Pekuliargeschwindigkeiten noch leicht geglättet und verzerrt wird (Weinberg et al., 2003).

Prinzipiell ist es möglich, das Dichtefeld durch Inversion von (4.17) aus der spektralen Größe $\tau_{\rm HI}$ zu bestimmen. Dies verursacht jedoch eine Reihe von Schwierigkeiten: Die Proportionalitätskonstante von (4.17) ist nicht bekannt; $\Gamma_{\rm HI}$ ist nur unsicher bestimmt; in spektralen Bereichen, in denen der Strahlungsfluß gegen Null geht, ist $\tau_{\rm HI}$ nur schwer aus dem Fluß bestimmbar; schließlich bereitet die Tatsache, daß sich das Dichtefeld nicht linear mit z entwickelt, Probleme.

Stattdessen entwickeln Croft et al. (1998) folgende Strategie:

Zunächst wird der (normierte) Fluß $F(\lambda)$ in eine Wahrscheinlichkeitsverteilungsfunktion N(F), die angibt, welcher Flußwert wie oft vorkommt, konvertiert. N(F) wird mit einer von Weinberg (1992) eingeführten und als *Gaussianization* bezeichneten Technik umgewandelt in eine Gauß'sche Wahrscheinlichkeitsverteilungsfunktion des Dichtekontrastes $N(\delta)$ (mit dem Maximum bei $\delta = 0$; δ aus (6.18)). Dazu wird jedem Pixel des Spektrums ein Rang entsprechend seines Flußwertes und dem Rang wiederum ein Wert für die Überdichte δ zugeordnet. Dies ist möglich aufgrund des zwar nicht linearen, aber monotonen Zusammenhangs zwischen $\tau_{\rm HI}$ und ρ und damit auch F und δ . Die Amplitude der Fluktuationen von δ bleibt zunächst willkürlich und wird später durch eine Normierung der Gauß-Verteilung bestimmt. Aus $N(\delta)$ kann $\delta(x)$, der Dichtekontrast entlang der Sehlinie, hergeleitet werden. Insgesamt wird also die Verteilungsfunktion der Flüsse der einzelnen Pixel im Spektrum zurückgeführt auf eine anfängliche Gauß-Verteilung der Überdichte, aus der sich durch gravitative Einwirkung der beobachtete Dichtekontrast herausgebildet hat.

Das gewonnene Dichtefeld $\delta(x)$ wird nun verwendet, um über die Fourier-Transformation

$$\delta(k) = \frac{1}{2\pi} \int \delta(x) e^{-ikx} \,\mathrm{d}x \tag{4.18}$$

(wobei $k = \frac{2\pi}{\lambda_{\rm F}}$ die Wellenzahl, die zu der Wellenlänge $\lambda_{\rm F}$ des Fourier-Modes gehört, ist) das eindimensionale Dichtespektrum $P_{\rm 1D}(k)$ als mittlere Varianz des Dichtekontrastes zu definieren:

$$P_{\rm 1D}(k) = <\delta^2(k) > . \tag{4.19}$$

Mit Hilfe von (4.19) wird schließlich das dreidimensionale Dichtespektrum der Dichtefluktuationen

$$P(k) = -\frac{2\pi}{k} \frac{\mathrm{d}}{\mathrm{d}k} P_{\mathrm{1D}}(k) \tag{4.20}$$

eingeführt. Mit P(k) (anschaulich die Breite der Gauß-Verteilung der Überdichte) können nun aus einem Lyman α -Waldspektrum Informationen über das Dichtefeld entlang der Sehlinie extrahiert werden.

Die Vorteile dieser Analysemethode sind vor allem, daß Mehrdeutigkeiten, wie sie im allgemeinen bei Fitalgorithmen für Absorptionslinien auftreten (mehrere χ^2 -Minima, Blends etc.), vermieden werden. Da anstelle von einzelnen Linien die gesamte Flußverteilung untersucht wird, fällt auch die spektrale Auflösung und das Rauschen nicht so stark ins Gewicht. Daher kann die Methode auch auf Spektren angewendet werden, die eine zu niedrige Auflösung und/oder ein zu niedriges S/N für eine sichere Linienidentifikation haben. Daneben wird das Dichtespektrum auch von Theorien über die Strukturbildung der Materie im Kosmos vorhergesagt, so z.B. von der Theorie des inflationären Universums (Brandenberger, 1985). Messungen von P(k) erlauben daher, kombiniert mit einschränkenden Randbedingungen, die durch die Anisotropien im kosmischen Mikrowellenhintergrund gesetzt werden, eine unabhängige Überprüfung dieser Theorien (Croft et al., 1998). Zusätzlich stellt das Dichtespektrum einen geeigneten Test für kosmologische Modelle dar.

Allerdings versagt die Methode auf kleinen Skalen ($\frac{2\pi}{k} \lesssim 1, 5 h^{-1}$ Mpc; *h* dimensionslose Hubble-Konstante) wegen der dann nicht mehr linear verlaufenden Evolution der Strukturbildung der Materie sowie den Glättungen der Dichtefluktuationen durch lokale Geschwindigkeiten. Aber auch über sehr große Skalen ergeben sich Schwierigkeiten, vor allem durch die über große Δz inhomogene Photoionisationsrate, die Croft et al. (1998) bei der Zugrundelegung von (4.17) für ihr Konzept als Konstante betrachten.

4.3.3 Monte Carlo-Inversion-Methode

Ein alternatives Verfahren zur Analyse von Absorptionssystemen in den Sehlinien zu Quasaren allgemein, das ebenfalls eine kurze Erwähnung wert ist, schlägt die Gruppe um S. Levshakov vor (Levshakov et al., 1999, 2000, 2002, 2003a): Ihre Methode geht anstelle von diskreten und voneinander unabhängigen Absorbern von einer kontinuierlichen Gasscheibe aus, in der die Absorptionslinien gebildet werden. Die Wasserstoffgasdichte $\rho_{\rm H}$ und die Geschwindigkeit v des Gases variieren von Ort zu Ort in Sehlinienrichtung und lassen dadurch die komplexen Linienprofile entstehen. Jeder Punkt innerhalb des Linienprofils ergibt sich als kombinierter Beitrag sämtlicher Volumenelemente in der Sehlinie mit identischer Radialgeschwindigkeit. Der mit steigender Auflösung steigenden Komplexität der Profile, der der mikroturbulente Ansatz des Voigtprofilfittens begegnet, indem er davon ausgeht, daß auch die Subkomponenten eines Blends symmetrische Profile haben, versucht die *mesoturbulente* Analyse von S. Levshakov gerecht zu werden, indem sie *asymmetrische* Geschwindigkeitsverteilungen und damit Linienprofile voraussetzt (Levshakov & Kegel, 1997).

 $\rho_{\rm H}$ und v werden als Zufallsfelder betrachtet, die von der Schlinienkoordinaten x abhängen und durch ihre Werte in äquidistanten Intervallen Δx repräsentiert werden. Mit Monte Carlo-Simulationen lassen sich dann komplexe Linienprofile erzeugen, in denen sich konkrete Realisationen von $\rho_{\rm H}(x)$ und v(x) widerspiegeln. Dieser stochastische Ansatz erlaubt es aber zunächst nicht, beobachtete Linienprofile zu reproduzieren. Daher wurde von Levshakov et al. (1999, 2000) das *Monte Carlo-Inversion*-Verfahren entwickelt, mit dem konkrete Beobachtungen mit Hilfe des beschriebenen Modells analysiert werden können.

Bei der Monte Carlo-Inversionprozedur werden der mittlere Ionisationsparameter U_0 , die Wasserstoffsäulendichte $N_{\rm H}$, die Dispersionen σ von v und $\rho_{\rm H}$ in x-Richtung sowie die Häufigkeiten Z aller berücksichtigten chemischen Elemente berechnet. Mit diesen Parametern wird das Profil der Absorptionslinien im Spektrum bestimmt, um anschließend mittels Minimierung der χ^2 -Funktion optimiert zu werden. Das Verfahren wird umso genauer, je mehr Ionenübergänge in die Analyse mit einbezogen werden können.

4.4 Linienselektion

Da die Linien niedrigerer Säulendichte nur schwer vom Rauschen in den Spektren unterschieden werden können, ist es üblich, für jede Absorptionslinie das *Signifikanzlevel*

$$SL = \frac{W_{\lambda,b}}{\overline{\sigma}_{W_{\lambda,b}}} \tag{4.21}$$

zu definieren ($\overline{\sigma}_{W_{\lambda,b}}$ 1 σ -Fehler der beobachteten Äquivalentbreite $W_{\lambda,b}$ der Linie [der Index b steht für beobachtete Größen]; siehe z.B. Jannuzi et al., 1998). Durch die Wahl eines Mindestsignifikanzlevels wird vermieden, daß die Detektion der Linien von subjektiven Einschätzungen abhängt. In der Regel wird die Näherung $\overline{\sigma} \approx \sigma \approx \frac{FWHM}{\langle S/N \rangle}$ mit $\langle S/N \rangle$ als dem mittleren Signal-zu-Rauschen-Verhältnis in der Region der angenommenen Absorptionslinie verwendet (Caulet, 1989). Dies beschreibt zwar den durch die Bestimmung des Kontinuums verursachten Fehler, vernachlässigt jedoch den Fitfehler (Sembach & Savage, 1992). Hier wurde daher eine erweiterte Abschätzung von SL über einen Gesamtfehler

$$\sigma = \sqrt{\sigma_{\text{Kont}}^2 + \sigma_{\text{Fit}}^2} = \sqrt{\left(\frac{FWHM}{\langle S/N \rangle}\right)^2 + \sigma_{\text{Fit}}^2} = \sqrt{\left(\frac{\lambda}{R\langle S/N \rangle}\right)^2 + \sigma_{\text{Fit}}^2}$$
(4.22)

(mit (3.1)) vorgenommen.

 $\sigma_{\rm Fit}$ wird über (4.3) hergeleitet: Wegen

$$W_{\lambda,0} = W_{\lambda,b}/(1+z) \tag{4.23}$$

 ist

$$W_{\lambda,\mathrm{b}} = \operatorname{const} \lambda_0^2 f N \left(1 + z\right) \tag{4.24}$$

bzw.

$$dW_{\lambda,b} = const \,\lambda_0^2 f \,(1+z) \,dN. \tag{4.25}$$

Der Fitfehler kann daher mit (4.25) und (4.3)

$$\sigma_{\rm Fit} = \sigma_{W_{\lambda,b,\rm Fit}} \approx const \,\lambda_0^2 f \,(1+z) \,\sigma_N = W_{\lambda,0} \,(1+z) \,\sigma_N /N \tag{4.26}$$

gesetzt werden. Mit $\sigma_N = \ln 10 N \sigma_{\log N}$ (Beobachtungsgröße der Fitprogramme ist log N mit dessem Fehler) ergibt sich schließlich

$$\sigma_{\rm Fit} = W_{\lambda,0} \left(1 + z \right) \ln 10 \ \sigma_{\log N}. \tag{4.27}$$

Das Signifikanzlevel kann also mit

$$SL = \frac{W_{\lambda,0} \left(1+z\right)}{\sqrt{\left(\frac{\lambda}{R \left\langle S/N \right\rangle}\right)^2 + \left[\ln 10 \ \sigma_{\log N} \ W_{\lambda,0} \left(1+z\right)\right]^2}} \tag{4.28}$$

berechnet werden. $W_{\lambda,0}$, z, λ und $\sigma_{\log N}$ werden von den Fitprogrammen geliefert, R ist für jedes Spektrum bekannt. Das mittlere Signal-zu-Rauschen-Verhältnis $\langle S/N \rangle$ wurde approximiert, indem für jede spektrale Ordnung eine linienfreie, das S/N der betreffenden Ordnung gut repräsentierende Region definiert wurde (vorzugsweise aus der Mitte der Ordnung anstatt von den besonders verrauschten Rändern). Für dieses Intervall ist in guter Näherung

$$\langle S/N \rangle = \frac{\langle F_{\lambda} \rangle}{\sigma_{\langle F_{\lambda} \rangle}} \tag{4.29}$$

mit $\langle F_{\lambda} \rangle$ als dem mittleren Strahlungsfluß in dem Intervall und $\sigma_{\langle F_{\lambda} \rangle}$ als dessen Standardabweichung. Dieser Wert für $\langle S/N \rangle$ wurde dann für alle Linien der betreffenden Ordnung verwendet.

Die Selektionsschwelle für die Lyman α -Linien wurde wegen der hier vorgenommenen erweiterten Fehlerabschätzung mit

$$SL \ge 1$$
 (4.30)

vergleichsweise niedrig angesetzt. Hierbei handelt es sich generell jedoch nur um einen Orientierungswert und nicht um eine definitive untere Schranke, da für Absorptionslinien aus dem flachen Teil der Wachstumskurve, d.h. gesättigte Linien, die Bestimmung von $W_{\lambda,0}$ aus der Säulendichte über (4.3) nur noch eine schlechte Näherung darstellt und die Berechnung von SL nach (4.28) damit stark fehlerbehaftet wird: Es würden bei strenger Anwendung von (4.30) einige offensichtliche und starke Absorber durch das Sieb fallen.

Größenordnungsmäßig wurden durch die Selektion mit dem Signifikanzlevel etwa 5% aller mutmaßlichen Lyman α -Linien aus dem Gesamtensemble gestrichen.

Insgesamt wurden 1325 Lyman α -Linien in den festgelegten Rotverschiebungsintervallen aus Tab. 3.3 selektiert. Sie sind vollständig in Anhang B mit der Kennzeichnung des Quasars, in dessen Sehlinie sie detektiert wurden, sowie den Fitparametern und ihren Fehlern aufgelistet, sortiert nach z. 1105 von ihnen wurden mit CANDALF, 219 mit FITLYMAN gefittet. Die Fitparameter des DLAs in der Sehlinie zu HE 0515-4414 entstammen einem Fitprogramm von R. Quast.

Kapitel 5

Individuelle Quasarsehlinien

Bevor in Kapitel 6 auf die Korrelationen zwischen den Parametern des gesamten Lyman α -Linienensembles aus allen neun Quasarsehlinien eingegangen wird, sollen einige erwähnenswerte Besonderheiten in den individuellen Sehlinien hervorgehoben werden, die zum Teil (wenn nicht anders erwähnt) im Rahmen dieser Arbeit, zum Teil in anderen Studien untersucht wurden.

5.1 HE 0515-4414

In der Schlinie zu dem Quasar HE 0515-4414 befindet sich bei $z \approx 1, 15$ ein DLA-System. Wegen dieses Absorbers sowie aufgrund der Tatsache, daß die Helligkeit des Quasars ($m_B = 15, 0$ mag) Daten hoher Qualität erwarten läßt, war der Quasar bereits Objekt einer Vielzahl von Studien unterschiedlicher Zielsetzung durch die Hamburger Quasarabsorptionsliniengruppe.

Bereits 1996 wurde HE 0515-4414 erstmals mit dem CASPEC-Spektrographen der ESO mit allerdings mäßigem Signal (S/N = 5 im blauen Bereich, in dem der Lyman α -Wald beginnt) spektroskopiert. Das DLA-System mit seinen etlichen Metallinien wurde von de la Varga (1999) eingehend untersucht. Es zeigte sich, daß die Metallhäufigkeiten in dem DLA-System Werte von etwa 0,05 bis 0,1 des solaren Wertes erreichen, wobei ihre Verteilung einen großen Staubanteil in dem Absorber erwarten läßt. Das System zeigt eine überraschend große Aufspaltung der kinematischen Struktur (de la Varga et al., 2000).

Mit neueren hochaufgelösten UVES-Daten konnten zwei CI-Feinstrukturmultipletts in dem DLA-System nachgewiesen, ihre Anregungstemperatur bestimmt und daraus Folgerungen über die Bedeutung des CMB für die Anregung der Atome in dieser Phase der kosmischen Entwicklung abgeleitet werden (Quast et al., 2002). In den STIS-Spektren des Quasars wurden zudem bei Rotverschiebungen, die auch bezüglich der Substrukturen des DLAs mit den z-Werten der CI-Komponenten übereinstimmen, etwa 30 Absorptionsübergänge des Lymanbandes von molekularem Wasserstoff H₂ detektiert und daraus molekulare Häufigkeiten berechnet (Reimers et al., 2003). Im Rahmen der vorliegenden Arbeit stellte diese Ansammlung an H₂-Linien im UV-Bereich neben den vielen Metallinien des DLAs eine große Hürde für die korrekte Identifikation der Lyman α -Linien in den entsprechenden

spektralen Regionen dar.

Über die Astrophysik hinausreichende Bedeutung gewann HE 0515-4414 durch die Untersuchung der von Theoretikern hervorgesagten Variabilität der Feinstrukturkonstanten α anhand der FeII-Linien in den UVES-Spektren, die von Quast et al. (2004) nicht bestätigt werden konnte.

Neben dem DLA enthält die Sehlinie insgesamt sechs OVI-Systeme (von denen zwei mit dem QSO assoziiert sind, d.h. physikalisch mit ihm zusammenhängen), für die eine Absorberdichte $dn/dz \leq 10$ (*n* Zahl der Absorber) für Linien mit einer OVI-Mindestäquivalentbreite von $W_0 \geq 25$ mÅ und für 1, 2 < z < 1, 7 abgeschätzt wurde (Reimers et al., 2001), ein Wert, der deutlich unter dem von Tripp et al. (2000) bei niedrigem z liegt. Darüberhinaus ermöglichten die hochaufgelösten Daten einen Vergleich der Radialgeschwindigkeiten verschiedener Ionen der gleichen Absorptionssysteme: Es zeigten sich systematische Geschwindigkeitsunterschiede zwischen HI, CIV und OVI. Offenbar werden diese Ionen nicht in den gleichen Volumina eines Absorbers gebildet (Reimers et al., 2001).

Levshakov et al. (2003b) untersuchten die gleichen OVI-Absorber wenig später mit dem Ergebnis, daß sich die Ionisationszustände in diesen Absorbern fast ausschließlich durch Photoionisation herleiten lassen und Stoßionisation als konkurrierender Ionisationsmechanismus vernachlässigt werden kann.

Schließlich wurde der Lyman α -Wald dieses Quasars separat analysiert. Dabei wurde die Verteilung der Säulendichten gemäß (2.3) über fast drei Größenordnungen (13,00 $\leq \log N_{\rm HI} \leq 15,70$) mit $\beta = 1,61 \pm 0,04$ approximiert, in guter Übereinstimmung mit Literaturwerten bei ähnlichen z (Janknecht et al., 2002, 2003a).

In den gleichen Arbeiten wurde ein unterschiedliches Evolutionsverhalten schwacher und starker Absorptionssysteme festgestellt: Während sich die Anzahldichte der Absorber niedriger Säulendichte (13, 10 $\leq \log N_{\rm HI} \leq 14,00$) im untersuchten z-Bereich 0, 9 < z < 1,7wenig bis gar nicht entwickelt ($\gamma = 0,01 \pm 0,64$ mit dem Evolutionsindex aus Gl. (2.9), s. Abb. 5.1), verläuft die Evolution bei den starken Linien (13,64 $\leq \log N_{\rm HI} \leq 16,00$) mit $\gamma = 2,23 \pm 1,21$ (Abb. 5.2). Der von Weymann et al. (1998) und anderen postulierte Sprung in der Evolution der stärkeren Absorber kann in diesen Daten nicht erkannt werden, obwohl sie den kritischen z-Bereich vollständig abdecken (Janknecht et al., 2002, 2003a). Die Streuung der Datenpunkte ist allerdings in beiden Fällen ziemlich groß, da lediglich eine einzelne Sehlinie und damit möglicherweise ein stark individuell geprägtes Muster in der Verteilung der Absorber betrachtet wurde.

Ein weiteres überraschendes Ergebnis der Arbeit über den Lyman α -Wald von HE 0515-4414 war, daß sich die erwartete Haufenbildung der Absorber quantitativ nicht nachweisen ließ, und zwar unabhängig von den betrachteten Säulendichten und Abständen Δv . Es wurden Skalen bis $\Delta v = 10\,000$ km s⁻¹ untersucht, ohne daß die Zweipunktkorrelationsfunktion signifikant das 1 σ -Level überschritt (Janknecht et al., 2002).

Auch die in der Literatur gelegentlich vorgeschlagene Abhängigkeit der Lyman-Fitparameter davon, ob Lyman α alleine oder simultan mit Lyman β gefittet wird, konnte durch Janknecht et al. (2002) nicht bestätigt werden (siehe Kap. 6.1 für eine ausführlichere Darstellung).

Abbildung 5.1: Evolution der Anzahldichte der schwachen Lyman α -Absorber in der Sehlinie zu HE 0515-4414 (13, 10 $\leq \log N_{\rm HI} \leq 14, 00$). Der beste Fit wurde durch Minimierung des χ^2 -Wertes erreicht. Die gepunkteten Kurven stellen die 95%-Konfidenzbänder dar.

Abbildung 5.2: Wie Abbildung 5.1, für die stärkeren Lyman α -Absorber (13, 64 $\leq \log N_{\rm HI} \leq 16, 00$).

5.2 HS 0747 + 4259

Mit einer zweiten Schlinie zu dem QSO HS 0747+4259 wurden die Ergebnisse von HE 0515-4414 auf eine stabilere Grundlage gestellt. Das untersuchte Rotverschiebungsintervall konnte dadurch auf 0, 8 < z < 1, 9 ausgedehnt und die Zahl der detektierten Lyman α -Linien annährend verdoppelt werden (vgl. Tab. 3.3).

Die Säulendichteverteilung der Linien beider Sehlinien läßt sich mit dem Exponenten $\beta = 1, 61 \pm 0, 04$ für 13,00 $\leq \log N_{\rm HI} \leq 16,00$ beschreiben (Janknecht et al., 2003b) und unterstreicht damit das für HE 0515-4414 alleine gefundene Ergebnis. Auch die Resultate für die Anzahldichteevolution ändern sich mit dem kombinierten Linienensemble nicht entscheidend: Für die Absorber mit hohem log $N_{\rm HI}$ ergibt sich eine Evolution mit $\gamma = 1, 22 \pm 0, 59$; diejenigen mit niedriger Säulendichte zeigen dagegen eine damit nicht konsistente Entwicklung ($\gamma = -0, 13 \pm 0, 33$). Die vorhergesagte scharfe Wende im Evolutionstrend bei $z \approx 1,5$ kann weiterhin nicht bestätigt werden (Janknecht et al., 2003b). Die Verbesserung der Statistik durch die Berücksichtigung einer weiteren Sehlinie reduzierte jedoch nicht die Streuungen der Datenpunkte in den Evolutionsdiagrammen.

Die Spektren von HS 0747+4259 enthalten eine Reihe von OVI 1031/1037Å-Dubletts, deren Fitparameter in Tabelle 5.1 zusammengestellt sind. Die meisten der OVI-Linien wurden im ursprünglichen Fitdurchgang als Testlinien mit f = 1 gefittet; die angegebenen Säulendichten wurden daraus anschließend berechnet. Der angegebene Wert für Δv bezieht sich auf die Rotverschiebung der Lyman α -Linie des gleichen Absorbers und berechnet sich gemäß (3.6). Bei den OVI-Systemen z = 1,4649 und z = 1,4857 ist Δv unbekannt, weil das zugehörige Lyman α in der Lücke zwischen den STIS- und Keck-Spektren liegt. In einigen Fällen war eine OVI-Komponente geblendet oder konnte nicht identifiziert werden; zwei Detektionen sind unsicher.

Schätzt man die OVI-Absorberdichte der neun relativ sicheren Detektionen mit der Gesamtwegstrecke für die Rotverschiebung aus Tab. 3.3 ab, erhält man $dn/dz \ (W_0 \ge 25 \text{ mÅ}) = \frac{9}{0.987} \approx 9,1$ für 0,8 < z < 1,9. Dies geht gut konform mit der OVI-Absorberdichte in der Schlinie zu HE 0515-4414 (Kap. 5.1).

5.3 HE 0141-3932

HE 0141-3932 entpuppte sich im Verlauf der Analyse als in mehrfacher Hinsicht äußerst ungewöhnlicher Quasar: Sein Spektrum enthält — untypisch für Quasare — eine extrem schwache Lyman α -Emissionslinie. Darüberhinaus zeigen die Emissionslinien der Ionen signifikante Rotverschiebungsdifferenzen: Das genaue z hängt vom Ionisationsgrad ab. Schließlich sind dem Quasar gleich mehrere Absorptionssysteme vorgelagert, bei denen es sich offenbar um vom Quasar ejiziertes Gas handelt. Die chemische Zusammensetzung des Gases dieser physikalisch mit dem Quasar assoziierten Systeme ist eher atypisch.

Diese besonderen Merkmale von HE 0141-3932 werden ausgiebig auch in einer gesonderten Publikation (Reimers et al., 2005) diskutiert.

$z_{\rm OVI}$	$\Delta v [\mathrm{kms^{-1}}]^{a}$	$\log N_{\rm OVI}$	$b [\mathrm{km s^{-1}}]$	Kommentar
1,0777	$\approx -30,0$			Detektion unsicher; kein konverg. Fit
$1,\!4376$	-5,7	$\approx 13,75$	≈ 20	Ovi 1037 nicht identifiziert
1,4649		$\approx 14,00-14,30$	≈ 11	
$1,\!4857$		$\approx 14,25$	≈ 14	Ovi 1037 nicht identifiziert
1,5955	-17,1	14,66	38,1	
1,6132	-14,4	$\approx 14,00$	$\approx 20 - 32$	
$1,\!6331$	28,0	13,90	29,4	Ovi 1037 geblendet
1,7301	$\approx -13,0$			Detektion unsicher
1,7742	-13,8	$\approx 13,65$	≈ 36	Ovi 1037 geblendet
1,8076	-37,5	$\approx 13,80$	≈ 9	Ovi 1031 geblendet
1,8617	4,3	$\approx 13,70$	≈ 37	Ovi 1037 außerhalb d. Spektrums

Tabelle 5.1: Fitparameter der OVI-Absorber in der Sehlinie zu HS 0747+4259

 $^a \mathrm{bezogen}$ auf die Rotverschiebung der zugehörigen Lyman α -Linie

5.3.1 Absorptionssysteme

Mit dem Quasar assoziierte Absorptionssysteme, d.h. Systeme, die sich in vom Quasar ausgestoßenen Gas bilden, erkennt man am ehesten an der Komplexität ihrer Linienprofile (d.h. an den vielen Substrukturen in den Linien) sowie an ihren vielen Metallinien. HE 0141-3932 besitzt offensichtlich vier solcher assoziierter Systeme: Bei z = 1, 68; 1,71; 1,74 und 1,78. Von diesen wurde insbesondere das zweite intensiver untersucht, weil es seltene und sehr komplexe Nv 1238/1242 Å-Absorption zeigt. Neben Lyman α und Nv finden sich zu diesem Absorber außerdem das in mehreren Komponenten gesättigte CIV-Dublett, das SiIV 1393/1402 Å-Dublett, die stärksten SiII-Linien, SiIII 1206 Å, CII 1334 Å, AlII 1670 Å, AlIII 1854/1862 Å, FeII 2382 Å und die stärkere (2796 Å-)Komponente des MgII 2796/2803 Å-Dubletts (die schwächere Komponente geht in den Linien des atmosphärischen Wasserdampfs unter). Sämtliche Linien und die Fits an sie sind in den Abbildungen 5.3-5.5 dargestellt, die Fitparameter zu diesem Absorptionssystem sind in der Tabelle in Anhang C zu finden. Dabei entspricht v = 0 der Rotverschiebung der stärksten Lyman α -Komponente, z = 1,71005. σ_v folgt aus dem Fehler von z.

Eindeutig zeigt sich in der Geschwindigkeitsdarstellung die Substruktur des Systems: Alle aufgeführten Metallübergänge werden bei $v \approx 10 \text{ km s}^{-1}$ beobachtet, der überwiegende Teil bei den Geschwindigkeiten -30, -15, 30, 45 und 110 km s⁻¹. In größerem Abstand, bei 250, 280 und 310 km s⁻¹, finden sich dagegen nur noch die hochionisierten Spezies (CIV und NV; die Detektion von SiIV bei 310 km s⁻¹ ist äußerst unsicher, da die 1402 Å-Linie fast völlig fehlt), so daß sich zwei Substrukturgruppen (-50 km s⁻¹ < $v < 200 \text{ km s}^{-1}$ und 200 km s⁻¹ < $v < 350 \text{ km s}^{-1}$) definieren lassen.

Das z = 1,71-Absorptionssystem wurde eingehend auch von I. Agafonova und S. Levshakov mit ihrem auf der Monte Carlo-Inversion-Methodik (s. Kapitel 4.3.3) beruhenden Code analysiert. Unter Verwendung eines aus dem z = 1,78-Absorber abgeleiteten UV-Hintergrunds bestimmen sie eine extrem hohe Metallizität (= Grad des Metallgehalts des

UVES-Spektrum / HE 0141-3932, Absorptionssystem z=1.7100516

Abbildung 5.3: Metalliniensystem bei z = 1,71 in der Sehlinie zu HE 0141-3932. Das Spektrum ist in Schwarz, der Fit in Rot dargestellt. $v = 0 \text{ km s}^{-1}$ entspricht der Rotverschiebung der Lyman α -Hauptkomponente bei z = 1,71005. Linien anderer Absorptionssysteme sind entsprechend gekennzeichnet.

Abbildung 5.4: Metalliniensystem beiz=1,71in der Sehlinie zu HE
 0141-3932. Farben und $v=0~{\rm km\,s^{-1}}$ wie in Abb. 5.3.

UVES-Spektrum / HE 0141-3932, Absorptionssystem z=1.7100516

Abbildung 5.5: Metalliniensystem beiz=1,71in der Sehlinie zu HE
 0141-3932. Farben und $v=0~{\rm km\,s^{-1}}$ wie in Abb. 5.3.

45

Gases) von dem Neunfachen des solaren Wertes Z_{\odot} für die Substrukturgruppe hoher Ionisation, während sie für das andere Untersystem (-50 km s⁻¹ < v < 200 km s⁻¹) lediglich $Z = 2 \cdot Z_{\odot}$ finden (beide Werte bezogen auf Silizium). Sie folgern aus dieser über diese kleinen Skalen unrealistischen Diskrepanz, daß sich das in ihrem Modell vorausgesetzte Photoionisationsgleichgewicht des absorbierenden Gases mit dem ionisierenden Hintergrund (noch) nicht eingestellt hat und die hohe Metallizität der Substruktur hoher Ionen dann als Artefakt einer falschen Annahme ergeben haben könnte. Kombiniert mit einer Untersuchung der z = 1,68- und z = 1,78-Systeme schließen sie weiter, daß es sich bei diesen assoziierten Systemen um Gasmassen handelt, die aus der zirkumnuklearen Region um den Quasar durch starke, gerichtete Winde (sogenannte "Jets") weggeblasen werden. Die hohe Zahl an ejizierten Absorbern, ihre Ausrichtungen und Geschwindigkeitsvektoren deuten darauf hin, daß die Windrichtung mit der Sehlinie zur Erde zusammenfällt. Wir würden also zufällig in den Jet hineinschauen (Reimers et al., 2005).

5.3.2 Emissionslinien

In der Literatur findet sich eine Reihe von Beispielen anderer Quasare mit einer ungewöhnlich schwachen oder gar nicht vorhandenen Lyman α -Emissionslinie (McDowell et al., 1995; Leighly et al., 2004; Srianand & Petitjean, 2001). Eine Erklärung dafür wird in keinem der Fälle geliefert.

Die Lyman α -Emissionslinie von HE 0141-3932 kann besser im Kontext mit den übrigen Emissionslinien, die der Quasar zeigt, und einem Vergleich der Äquivalentbreiten und Rotverschiebungen aller Linien verstanden werden. Um diese Parameter bestimmen zu können, sind flußkalibrierte Daten mit gutem S/N und einer niedrigen Auflösung, die für die Messung der breiten Emissionslinien von Vorteil ist, notwendig. Da die UVES-Spektren hochaufgelöst und vor allem nicht kalibriert sind, wurde der Quasar daher am 2.10.2003 von C. Fechner mit dem EFOSC 2-Spektrographen des 3,6 m-Teleskops der ESO je eine Viertelstunde lang im Intervall $\lambda = (3270 - 5240)$ Å bzw. $\lambda = (3380 - 7520)$ Å nachbeobachtet. Die Spektren (Abb. 5.6 und 5.7; die Emissionslinien sind markiert) haben die gewünschte geringe Auflösung ($R \approx 700$ bzw. $R \approx 400$) sowie ein mit den UVES-Daten vergleichbares S/N. Die Datenreduktion, insbesondere die Flußkalibration, wurde von S. Misch mit Hilfe von MIDAS-Routinen durchgeführt. Anschließend wurde die Wellenlängenskala mit eigenen Prozeduren vakuum- und baryozentrisch korrigiert.

Unglücklicherweise liegen die Emissionslinien von Lyman α , dem Nv- (blauwärts) sowie dem MgII-Dublett (rotwärts) außerhalb des Wellenlängenbereichs der EFOSC 2-Spektren. Daher wurden hierfür die UVES-Spektren verwendet, die die spektralen Regionen dieser Linien abdecken. Sie mußten dazu mit Hilfe sogenannter *master response curves*, die die ESO für den UVES-Spektrographen für verschiedene Zeiträume und Wellenlängenregionen zur Verfügung stellt, flußkalibriert werden. Zu diesem Zweck wurde ein Programm geschrieben, das als Eingabe die Einzelaufnahme eines Spektralbereichs mit willkürlichen Flußeinheiten benötigt. Angegeben werden müssen dann

- ein Umwandlungsfaktor zwischen dem um Dunkelstrom und Bias reduzierten CCD-Pixelsignal und der elektrischen Ladung,
- die Belichtungszeit der Einzelaufnahme,

Abbildung 5.6: Flußkalibriertes EFOSC 2-Spektrum von HE 0141-3932, blauer Spektralbereich. Die physikalische Einheit der Flußskala ist $10^{-16} \,\mathrm{erg \, s^{-1} cm^{-2} \AA^{-1}}$.

Abbildung 5.7: Flußkalibriertes EFOSC 2-Spektrum von HE 0141-3932, gesamter visueller Spektralbereich. Physikalische Einheit der Flußskala wie in Abb. 5.6.

- ein *Binning*-Faktor, der angibt, wieviele CCD-Pixel zu einem Wellenlängenpunkt zusammengefaßt werden,
- ein Wert für die vor der Aufnahme vom Lichtstrahl durchquerte Luftmasse, die von dem Einfallswinkel des Strahls in die Erdatmosphäre abhängt und mit der dann in Kombination mit einem Standardverlauf der Extinktion mit der Wellenlänge die atmosphärische Extinktion unmittelbar vor der Aufnahme berechnet werden kann, sowie
- die master response curve eines *Standardsterns* (einer geeichten Lichtquelle, mit der der Strahlungsfluß eines Objekts verglichen werden kann und mit dem dadurch Störeffekte wie chromatische Effekte der Atmosphäre und optische Abbildungsfehler im Strahlengang sowie spektrale Empfindlichkeitsschwankungen des CCDs herauskorrigiert werden können) für den Zeitraum und den Wellenlängenbereich der Aufnahmen.

Mit diesen Parametern kann das unkalibrierte Spektrum in eines mit physikalischen Einheiten $(10^{-16} \text{erg s}^{-1} \text{cm}^{-2} \text{Å}^{-1})$ konvertiert werden. Mit der gleichen Prozedur muß anschließend auch der Flußfehler geeicht werden. Nachdem die Einzelspektren dann vakuumund baryozentrisch korrigiert sowie mit (3.4) und (3.5) zu einem Gesamtspektrum zusammengefaßt werden, liegt für jeden Spektralbereich ein in beiden Koordinaten kalibriertes Spektrum vor. Abbildung 5.8 zeigt einen Teil dieses Spektrums mit den Emissionslinien von Lyman α und Nv bei $\lambda \approx 3380$ Å. Es handelt sich hier entweder um Lyman α bei z = 1,78, um Nv bei z = 1,73 oder um einen Blend aus beiden (letzteres wird im folgenden angenommen). Abbildung 5.9 stellt die MgII-Emissionslinie bei $\lambda \approx 7820$ Å dar.

Auf der Grundlage der kalibrierten EFOSC 2- und UVES-Spektren konnten nun die Äquivalentbreiten und Rotverschiebungen der Emissionslinien bestimmt werden. Tabelle 5.2 listet $W_{\lambda,0}$ und z von allen stärkeren Emissionslinien auf. Die angegebenen Relativgeschwindigkeiten beziehen sich auf die intrinsische Rotverschiebung des Emissionssystems, z = 1,80 (hier setzt der Lyman α -Wald ein), und sind berechnet nach (3.6).

Die Äquivalentbreite und die Rotverschiebung des Lyman α /Nv-Blends wurden mit einem Gaußfit abgeschätzt. Dazu wurde das Kontinuum im Intervall $\lambda = (3300 - 3500)$ Å interaktiv festgelegt und das Spektrum gemäß $F_{\text{norm}} = \frac{F(\lambda)}{F_{\text{Kont}}} - 1$ auf Null normiert. Dann kann die Fläche unter der Linie und damit die Äquivalentbreite mit

$$W_{\lambda,\mathrm{b}}\left[\mathrm{\mathring{A}}\right] = A_0 \int_{-\infty}^{\infty} \exp\left(-\frac{(\lambda - A_1)^2}{2A_2^2}\right) d\lambda = \sqrt{2\pi} A_0 A_2 \tag{5.1}$$

berechnet werden, wobei A_0 , A_1 und A_2 die Fitparameter der Gaußkurve sind. Mit der Amplitude $A_0 = 0,30$ und der Breite der Gaußkurve $A_2 = 60,27$ ergibt sich für den Lyman α /Nv-Blend $W_{\lambda,b} = 45,25$ Å. Die Rotverschiebung des Lyman α -Beitrags zum Blend folgt aus der zentralen Wellenlänge $A_1 = 3381,09$ Å des Fits: $z = \frac{A_1}{\lambda_{0,Ly\alpha}} - 1 = 1,78$. Wegen (4.23) erhält man dann für die Äquivalentbreite im Ruhesystem $W_{\lambda,0} = 16,27$ Å.

Der Gaußfit stellt allerdings wegen der Asymmetrie der Linie sowie dadurch, daß das Quasarkontinuum durch den einsetzenden Lyman α -Wald äußerst schwer definierbar und zudem der kurzwellige Linienflügel durch die Daten nicht voll abgedeckt ist, nur eine

Abbildung 5.8: Flußkalibriertes UVES-Spektrum von HE
 0141-3932 mit der Lyman α -/Nv-Emissionslinie. Physikalische Einheit der Flußskala wie in Abb. 5.6.

Abbildung 5.9: Flußkalibriertes UVES-Spektrum von HE 0141-3932 mit der MgII-Emissionslinie. Physikalische Einheit der Flußskala wie in Abb. 5.6.

Atomarer Übergang	$W_{\lambda,0}$ [Å]	z	$v [\mathrm{km s^{-1}}]$	Kommentar
HI 1215 oder	16 ± 7	$1,78\pm0,01$	-2140	
Nv 1240	10 ± 7	$1,73\pm0,01$	-7500	asymmetrisch
Siiv 1398 + Oiv] 1402	11 ± 1	$1,75\pm0,01$	-5350	
Civ 1549	14 ± 1	$1,76\pm0,01$	-4280	asymmetrisch
Aliii 1858	19 1	$1,79\pm0,01$	-1070	
SiIII] $1892 + CIII$] 1909	13 ± 1		-1070	Blend, genaue Zusammensetzung unbekannt
Feiii 2075	5 ± 1	$1,79\pm0,01$	-1070	
MgII 2800	16 ± 1	$1,79\pm0,01$	0	geblendet mit FeII

Tabelle 5.2: Geschätzte Äquivalentbreiten und Rotverschiebungen der Emissionslinien im Spektrum von HE 0141-3932 sowie relative Geschwindigkeiten der entsprechenden Ionen. $v = 0 \text{ km s}^{-1}$ entspricht z = 1, 80. Die angegebenen Fehler sind rein statistisch.

grobe Näherung dar. Dies erklärt den relativ hohen Fehler von $W_{\lambda,0}$ (s. Tabelle 5.2), der abgeschätzt wurde, indem Gaußfits auf der Basis von leicht variierten Platzierungen des Quasarkontinuums durchgeführt und dafür dann jeweils die Ruheäquivalentbreite neu berechnet wurde. Für die Rotverschiebung überlagert sich zusätzlich ein systematischer Fehler: Legt man die Asymmetrie des CIV-Profils mit seinem kurzwelligen langgestreckten bzw. langwelligen steilen Linienflügel (s. Abb. 5.6) auch für Lyman α /NV zugrunde, liegt dessen Gaußfit, der ja einem symmetrisches Modell mit minimiertem χ^2 entspricht, bei einem etwas zu niedrigen z.

Die Äquivalentbreiten und Rotverschiebungen der anderen Emissionslinien wurden per Hand direkt aus den Spektren bestimmt. Die angegebenen Fehler von $W_{\lambda,0}$ sind Poissonfehler und beinhalten nicht die bei dieser Messung auftretenden systematischen Fehler. Die Fehler von z sind hergeleitet aus den (geschätzten) Fehlern für die Wellenlängen der Emissionslinien.

Trotz der vorhandenen Unsicherheiten läßt sich aus den Rotverschiebungen der Emissionslinien eine überraschende Tatsache herleiten: Offenbar gibt es einen Zusammenhang zwischen dem Ionisationsgrad und z. Die hochionisierten Spezies (CIV, SIIV, OIV], NV) liegen bei niedrigeren Rotverschiebungen als die niedrig ionisierten (HI, MgII, AlIII, FeIII), mit einer beachtlichen Differenz von $\Delta z \approx 0,5$ bzw. $\Delta v \approx 5000$ km s⁻¹. Die Abbildung 5.10, in der die Emissionslinien im Geschwindigkeitsraum (mit v = 0 entsprechend z = 1,80) dargestellt sind, visualisiert diesen Befund. Es finden sich wenige Beispiele (Espey et al., 1989; McDowell et al., 1995) von Quasaren mit vergleichbar hohen Radialgeschwindigkeitsunterschieden zwischen Linien hoher und niedriger Ionisation.

Auch die Äquivalentbreiten der Linien haben eher ungewöhnliche Stärken: Vergleicht man sie mit den repräsentativen Verteilungen der Äquivalentbreiten von QSO-Emissionslinien aus Francis (1993), zeigt sich, daß AlIII und FeIII ungewöhnlich hohe Linienstärken besitzen, während Lyman α (selbst wenn man annimmt, daß es sich bei dem Blend ausschließlich um Lyman α handelt), CIV und MgII anomal schwach sind (die MgII-Linie fällt *relativ* zu Lyman α betrachtet allerdings stark aus). Es gibt keine Kombination von Werten für die Metallizität in dem Gas, in dem die Emissionslinien entstehen, die ionisierende

Abbildung 5.10: Emissionslinien von HE 0141-3932 (Spektren von UVES und EFOSC 2). $v = 0 \text{ km s}^{-1}$ entspricht z = 1,80. Zur Orientierung sind bei $v = 0 \text{ km s}^{-1}$ und $v = -5000 \text{ km s}^{-1}$ zwei senkrechte gestrichelte Linien eingezeichnet. Die Einheiten der Flußskala sind beliebig.

Strahlung und die Säulendichten der Linien, mit der die beobachteten W_{λ} -Verhältnisse der Linien, insbesondere von Lyman α und MgII, reproduziert werden können. Lyman α müßte in allen Fällen deutlich stärker sein, als es tatsächlich (maximal) ist. Die physikalischen Eigenschaften des Gases bieten daher offenbar keine Lösung für die beobachteten Emissionslinien.

5.3.3 Physikalische Interpretation

Ein ähnlich gelagerter Fall eines Quasars mit einer extrem schwachen Lyman α -Emission und einer z-Abhängigkeit vom Ionisationsgrad ist der Quasar PG 1407+265 (McDowell et al., 1995). Konnten diese Beobachtungen in der zitierten Arbeit nicht befriedigend interpretiert werden, zeigten Nachbeobachtungen des Quasars im Radiobereich über mehrere Jahre hinweg mit einer Auflösung im Millibogensekunden-Bereich, daß das Objekt einen relativistischen und gerichteten Strahl ausstößt, in dessen Richtung wir zufällig schauen (Blundell et al., 2003). Solche Jets sind allen Modellen zufolge bei Quasaren die Regel, es ist aber statistisch betrachtet natürlich eher unwahrscheinlich, daß ihre Richtung nahezu identisch mit der Sehlinie ist. Bei PG 1407+265 handelt es sich jedoch offensichtlich um einen solchen seltenen Fall eines "pole-on" gesehenen Quasars.

Da HE 0141-3932 ein mit PG 1407+265 sehr vergleichbares Emissionsspektrum zeigt, liegt es nahe, anzunehmen, daß sich auch der hier untersuchte Quasar "pole-on" zeigt. Gestützt wird diese These durch die Ergebnisse aus der Analyse der vorgelagerten Absorptionssysteme (vgl. Kap. 5.3.1).

Mit der Annahme einer "pole-on"-Perspektive kann eventuell ein Teil der Beobachtungen erklärt werden: Durch den Blick in Richtung des Strahls ist es möglich, in die Broad Line Region des Quasars, die Region, in der die Emissionslinien entstehen, zu schauen. Nach einem Modell von Elvis (2000) entstehen Linien niedrigeren Ionisationsgrades in den äußeren Regionen der Akkretionsscheibe um das Quasarzentrum, da diese abgeschirmt sind von der ionisierenden Strahlung aus dem Zentrum. Linien höheren Ionisationsgrades, aber auch Lyman α , formieren sich entsprechend in den ungeschützten inneren Regionen. Das Δz zwischen Linien hoher und niedriger Ionisation kann daher nur bei einem "poleon"-Blick auf den Quasar, wie bei PG 1407+265 und auch HE 0141-3932 offenbar der Fall, gemessen werden; es wird damit von Blundell et al. (2003) auf einen geometrischen Effekt zurückgeführt. Genau diese Erklärung der z-Differenz mit Hilfe seines eigenen Modells wird andererseits von M. Elvis selbst angezweifelt (Elvis, 2000).

Ein weiteres Problem ergibt sich aus dem Elvis-Modell für HE 0141-3932 dadurch, daß Lyman α dann keinen Beitrag zu dem vermeintlichen Lyman α /Nv-Blend liefern kann, da $z_{Ly\alpha} = 1,78$ inkonsistent mit der Elvis-Modellannahme ist, daß sich Lyman α in den gleichen Regionen wie die hochionisierten Spezies bildet. Auch die mit der von CIV vergleichbare Nv-Linienbreite spricht eher dafür, daß es sich bei dem Blend ausschließlich um Nv handelt. Andererseits ist die Linie, als reines Nv interpretiert, extrem stark.

Die Ursache des Δz kann daher ebensowenig abschließend geklärt werden wie die der ungewöhnlichen Emissionslinienstärken sowie die der genauen Zusammensetzung des Blends; festzuhalten bleibt, daß schon ein geringer Lyman α -Anteil mit dem Elvis-Modell unverträglich ist und daß Lyman α in jedem Fall bemerkenswert schwach ist. Auch die chemische Zusammensetzung des Gases, in dem sich die Emissions- und damit die (physikalisch hiermit assoziierten) Absorptionsstrukturen bilden, läßt einige Fragen offen. Die für die Absorptionssysteme bestimmten relativen Überhäufigkeiten der Elemente Eisen, Magnesium und Aluminium sowie die Unterhäufigkeit von Stickstoff (Reimers et al., 2005) gehen zwar konform mit den Häufigkeiten, die aus den Emissionslinien hervorgehen. Das Elementhäufigkeitsmuster von HE 0141-3932 ist allerdings ebenso wenig konsistent mit gängigen Modellen für die chemische Anreicherung der Gasmassen in Quasaren und ihrer Umgebung wie die eher moderate Metallizität in den Absorptionssystemen ($Z \leq 2 \cdot Z_{\odot}$).

5.4 HE 0429-4901 + HE 2225-2258

In den Spektren der beiden anderen Quasare aus dem UVES-Antrag, HE 0429-4901 und HE 2225-2258, ist ein Metallsystem in der Sehlinie zu letzterem bei z = 1,6399 erwähnenswert. Es zeigt Übergänge der Ionen SiII (1190/1193, 1260, 1304 und 1526 Å), SiIII (1206 Å), SiIV (1393/1402 Å), OI (1302 Å), CII (1334 Å), CIV (1548/1550 Å), AlII (1670 Å), AlIII (1854 Å), MgII (2796/2803 Å) und eventuell CI (1656 Å), FeII (2344 Å) und MgI (2852 Å). Einige dieser Linien sind mit ihren Fits in den Abbildungen 5.11 und 5.12 dargestellt. Die Lyman α -Linie wurde mit zwei Komponenten mit log $N_{\rm HI} = 15,366$ sowie im Abstand $\Delta v = -135$ km s⁻¹ dazu mit log $N_{\rm HI} = 12,686$ gefittet.

5.5 Quasare aus dem HST/STIS-Archiv

In der Schlinie zu PG 1634+706 befindet sich bei z = 1,0413 ein Lymanlimit-System (LLS). Durch die Kombination der Datensätze aus zwei verschiedenen Beobachtungsprogrammen, die unterschiedliche Wellenlängenbereiche abdecken ($\approx (1800 - 2700)$ Å [HST-Antrag 7292; S. Burles] und $\approx (2300 - 3100)$ Å [8312; B. Jannuzi]), konnten dessen Komponenten bis zur Lymankante bei $\lambda \approx 1865$ Å identifiziert werden. Im Überlappbereich wurden die Einzelspektren der beiden Datensätze dabei gemäß (3.4) und (3.5) addiert.

Genau genommen handelt es sich um zwei benachbarte Absorber mit $z_1 = 1,0413336$ und $z_2 = 1,0403576$ (ein drittes System bei $z_3 = 1,0413028$ ist deutlich schwächer, nur ungenau bestimmt und lediglich durch Lyman α identifizierbar). Der Lyman α -Blend des Absorberpaares ist in Anhang A, Spektrum von PG 1634+706 (29. Ordnung, $\lambda \approx 2481$ Å) zu finden. Es spaltet sich erst in Lyman β (14. Ordnung/ ≈ 2093 Å) deutlich in zwei Komponenten auf. Die mit abnehmender Wellenlänge zunehmende Linienverdichtung durch immer höhere Lymanserienglieder zeigt sich insbesondere in den ersten drei Ordnungen ((1870 – 1890) Å). Auch hier sind die Komponenten der beiden Systeme (z.B. HI 919/920/923 Å; 1. Ordnung, Bereich (1877 – 1884) Å) zunächst noch leicht geblendet, ehe das Gesamtsystem schließlich bei $\lambda \approx 1868$ Å in eine kontinuierliche Absorption übergeht.

Die beiden Absorptionssysteme wurden mit einem Simultanfit für alle Serienglieder mit $n \leq 19$ (z_1) bzw. $n \leq 17$ (z_2) (n aus (1.5)) gefittet. Tabelle 5.3 zeigt das Ergebnis: Die Hauptkomponente bei z_1 läßt sich mit log $N_{\rm HI} = 17, 14 \pm 0, 06$ und $b = (31, 6 \pm 0, 8)$ km s⁻¹, das System bei z_2 mit log $N_{\rm HI} = 16, 44 \pm 0, 04$ und $b = (40, 1 \pm 0, 8)$ km s⁻¹ sowie einem

UVES-Spektrum / HE 2225-2258, Absorptionssystem z=1,6398533

Abbildung 5.11: Metalliniensystem bei z = 1,6399 in der Sehlinie zu HE 2225-2258. Das Spektrum ist in Schwarz, der Fit in Rot dargestellt. $v = 0 \text{ km s}^{-1}$ entspricht der Rotverschiebung der Lyman α -Hauptkomponente, z = 1,6398534.

UVES-Spektrum / HE 2225-2258, Absorptionssystem z=1,6398533

Abbildung 5.12: Metalliniensystem beiz=1,6399in der Sehlinie zu HE 2225-2258. Farben und $v=0~{\rm km\,s^{-1}}$ wie in Abb. 5.11.

Abstand $v = (-143, 3 \pm 1, 6) \text{ km s}^{-1}$ zu dem z_1 -Absorber modellieren. Es handelt sich damit um ein eher schwächeres LLS.

Es ist möglich, die Säulendichte eines LLS auch direkt aus dem Spektrum zu bestimmen, indem die Tiefe des Lymanlimits gemessen wird. Nach z.B. Tripp et al. (1997) oder Moller & Jakobsen (1990) ist die Säulendichte einer HI-Linie unmittelbar mit ihrer optischen Tiefe τ verknüpft:

$$N_{\rm HI} = 1, 6 \cdot 10^{17} \cdot \tau(\lambda) \cdot \left(\frac{912\,\text{\AA}}{\lambda_0}\right)^3.$$
(5.2)

Für den speziellen Fall des Lymanlimits ($\lambda_0 = 912$ Å) ist die Säulendichte dann mit (5.2) und (4.13) einfach durch $N_{\rm HI} = 1, 6 \cdot 10^{17} \cdot \tau(\lambda) = 1, 6 \cdot 10^{17} \cdot \ln\left(\frac{F_{\rm Kont}}{F(\lambda)}\right)$ gegeben und kann mit den Meßgrößen $F_{\rm Kont}$ und F direkt aus dem Spektrum abgeschätzt werden. Für das LLS in der Sehlinie zu PG 1634+706 wurde $F_{\rm Kont} = (12, 5 \pm 1, 0) \cdot 10^{-15} {\rm erg \, s^{-1} cm^{-2} Å^{-1}}$ und $F(\lambda_{\rm LK}) = (3, 7 \pm 0, 5) \cdot 10^{-15} {\rm erg \, s^{-1} cm^{-2} Å^{-1}}$ an der Wellenlängenposition der Lymankante, $\lambda_{\rm LK} = (1868, 1 \pm 0, 3)$ Å, bestimmt (Fehler alle geschätzt), woraus sich log $N_{\rm HI} = 17, 29 \pm 0, 06$ (Fehler fortgepflanzt) ergibt. Dies ist innerhalb von 2σ konsistent mit dem Wert aus dem Profilfit für die Hauptkomponente bei z_1 (s.o.). Ursächlich für die Lymankante sind allerdings die kombinierten Säulendichten der Systeme bei z_1 und z_2 . Es ist log $N_{\rm HI} (z_1 + z_2) = 17, 22 \pm 0, 05$, was sehr gut mit der aus der optischen Tiefe der Lymankante berechneten Säulendichte übereinstimmt.

Neben dem Lymanlimit-System befinden sich in der Sehlinie zu PG 1634+706 u.a. auch drei schwache und ein starker MgII-Absorber, allerdings im Optischen und damit jenseits des hier untersuchten Spektralbereichs. Die hohen Metallizitäten ($\geq Z_{\odot}$) von zwei der schwächeren Systeme deuten auf die nahe Präsenz von Galaxien hin (die starken MgII-Absorber werden ohnehin generell mit leuchtkräftigen Galaxien assoziiert). Die Systeme wurden im Detail studiert von Charlton et al. (2003) und Ding et al. (2003).

λ [Å]	λ_0 [Å]	n	Komponente	$\log N_{\rm HI}$	$b [{\rm km s^{-1}}]$
1866,363	914,286	19	z_1	$17, 14 \pm 0, 06$	$31, 6 \pm 0, 8$
1866,762	$914,\!919$	17	z_2	$16,44\pm0,04$	$40, 1 \pm 0, 8$
1866,955	$914,\!576$	18	z_1	$17, 14 \pm 0, 06$	$31,6\pm0,8$
$1867,\!599$	$915,\!329$	16	z_2	$16,44\pm0,04$	$40, 1 \pm 0, 8$
$1867,\!655$	$914,\!919$	17	z_1	$17,14\pm0,06$	$31,6\pm0,8$
$1868,\!492$	$915,\!329$	16	z_1	$17,14\pm0,06$	$31,6\pm0,8$
$1868,\!608$	$915,\!824$	15	z_2	$16,44\pm0,04$	$40,1\pm0,8$
$1869{,}502$	$915,\!824$	15	z_1	$17,14\pm0,06$	$31,6\pm0,8$
$1869,\!843$	$916,\!429$	14	z_2	$16,44\pm0,04$	$40,1\pm0,8$
1870,737	$916,\!429$	14	z_1	$17,14\pm0,06$	$31,6\pm0,8$
$1871,\!376$	$917,\!181$	13	z_2	$16,44\pm0,04$	$40,1\pm0,8$
$1872,\!272$	$917,\!181$	13	z_1	$17,14\pm0,06$	$31,6\pm0,8$
$1873,\!312$	$918,\!129$	12	z_2	$16,44\pm0,04$	$40,1\pm0,8$
$1874,\!208$	$918,\!129$	12	z_1	$17,14\pm0,06$	$31,6\pm0,8$
$1875,\!806$	$919,\!351$	11	z_2	$16,44\pm0,04$	$40,1\pm0,8$
1876,703	$919,\!351$	11	z_1	$17,14\pm0,06$	$31,6\pm0,8$
$1879,\!094$	$920,\!963$	10	z_2	$16,44\pm0,04$	$40,1\pm0,8$
$1879,\!993$	$920,\!963$	10	z_1	$17,14\pm0,06$	$31,6\pm0,8$
$1883,\!557$	$923,\!150$	9	z_2	$16,44\pm0,04$	$40,1\pm0,8$
$1884,\!458$	$923,\!150$	9	z_1	$17,14\pm0,06$	$31,6\pm0,8$
$1889,\!832$	$926,\!226$	8	z_2	$16,44\pm0,04$	$40,1\pm0,8$
1890,736	$926,\!226$	8	z_1	$17,14\pm0,06$	$31,6\pm0,8$
$1899,\!059$	930,748	7	z_2	$16,44\pm0,04$	$40,1\pm0,8$
$1899,\!968$	930,748	7	z_1	$17,14\pm0,06$	$31,6\pm0,8$
$1913,\!455$	$937,\!803$	6	z_2	$16,44\pm0,04$	$40,1\pm0,8$
$1914,\!370$	$937,\!803$	6	z_1	$17,14\pm0,06$	$31,6\pm0,8$
$1937,\!816$	949,743	5	z_2	$16,44\pm0,04$	$40,1\pm0,8$
$1938,\!743$	949,743	5	z_1	$17,14\pm0,06$	$31,6\pm0,8$
$1984,\!323$	$972,\!537$	4	z_2	$16,44\pm0,04$	$40,1\pm0,8$
$1985,\!272$	$972,\!537$	4	z_1	$17,14\pm0,06$	$31,6\pm0,8$
$2092,\!840$	1025,722	3	z_2	$16,44\pm0,04$	$40,1\pm0,8$
$2093,\!841$	1025,722	3	z_1	$17,14\pm0,06$	$31,6\pm0,8$
$2480,\!402$	$1215,\!670$	2	z_2	$16,44\pm0,04$	$40,1\pm0,8$
$2481,\!551$	$1215,\!670$	2	z_3	$14,16\pm2,79$	$88,0\pm103,3$
$2481,\!588$	$1215,\!670$	2	z_1	$17,14\pm0,06$	$31,6\pm0,8$

Tabelle 5.3: Fitparameter der HI-Linien des Lymanlimit-Systems bei z = 1,0413 in der Sehlinie zu PG 1634+706. n gibt die Quantenzahl des oberen Energieniveaus des detektierten Lyman-Übergangs an, λ_0 die zu dem Übergang zugehörige Wellenlänge. Die Teilkomponenten des Systems liegen bei $z_1 = 1,0413336, z_2 = 1,0403576$ und $z_3 = 1,0413028$.

Kapitel 6

Statistische Analyse des Lyman α -Linienensembles

6.1 Systematische Unterschiede zwischen Einzel- und Simultanfits

Stärkere Lyman α -Absorber, für die sich auch die zugehörigen Lyman β und ggf. höheren Serienglieder im Spektrum identifizieren lassen, sollten prinzipiell simultan mit diesen gefittet werden, da dies den atomphysikalischen Gegebenheiten entspricht und eine genauere Bestimmung der Fitparameter ermöglicht (Kap. 4.2.3). Wie schon erwähnt, wurde daher bei der Modellierung aller Spektren durchgehend simultan gefittet, soweit möglich.

In der Literatur finden sich Hinweise darauf, daß die Fitparameter systematisch davon abhängen, ob Lyman α alleine oder simultan mit dem Lyman β des gleichen Absorbers gefittet wird (Hurwitz et al., 1998; Shull et al., 2000). Nach Shull et al. (2000) haben die simultan (aus einer Wachstumskurvenanalyse hergeleiteten) Parameter der Absorber in insgesamt sieben Sehlinien im Mittel *höhere* Säulendichten (der Unterschied beträgt typischerweise $\Delta \log N_{\rm HI} \approx 0, 3$, mit Maximalwerten von bis zu einer Größenordnung) und *niedrigere* Dopplerparameter ($\langle b_{\rm sim}/b_{\rm einz} \rangle = 0, 52$) als die aus einem einfachen Lyman α -Profilfit gewonnenen Werte. Die Ergebnisse von Hurwitz et al. (1998) für die mit den gleichen Methodiken bestimmten Säulendichten zweier im Spektrum des Quasars 3C 273 detektierter Absorber gehen qualitativ in die gleiche Richtung.

Diese postulierte systematische Abhängigkeit der Fitparameter von der Fitstrategie wurde exemplarisch für die Linien im Spektrum von HE 0515-4414 überprüft. Dazu wurden die insgesamt 35 Lyman α -Linien, zu denen sich das entsprechende Lyman β finden ließ, neben dem Simultanfit zusätzlich mit einem einfachen Profilfit modelliert (in einem Fall ließ sich Lyman α alleine nicht fitten, da es mitten in dem CII-Linienkomplex des DLA-Systems bei z = 1, 15 liegt und die Parameter daher nur über das zugehörige Lyman β bestimmbar waren). In Abbildung 6.1 sind die aus den Simultanfits hergeleiteten gegen die aus den Einzelfits resultierenden Säulendichten von 32 der übrigen 34 Absorber aufgetragen. Zwei liegen mit log $N_{\rm HI} > 15$ außerhalb des dargestellten Bereichs. Für sie sowie für den Ausreißer in Abb. 6.1 bei (13,75;14,25) gilt Ähnliches wie für die CII-geblendete Linie:

Abbildung 6.1: Vergleich der aus Lyman α -Einzelfits bestimmten Säulendichten mit den Werten, die sich jeweils aus einem Simultanfit mit dem zugehörigen Lyman β ergeben, exemplarisch für die Absorber in der Sehlinie zu HE 0515-4414. Die durchgezogene Diagonale markiert übereinstimmende Werte beider Fitstrategien.

Die jeweiligen Lyman α -Linien liegen mitten in Blends mit ein bis zwei weiteren Komponenten und sind mit einem Einzelfit äußerst ungenau bestimmt. Die folgende Analyse konzentriert sich daher auf die verbleibenden 31 Linien.

Stellt man die HI-Parameter aus beiden Fits einander gegenüber, ergibt sich für das mittlere Verhältnis dieser 31 Linien $\langle N_{\rm HI}^{\rm sim}/N_{\rm HI}^{\rm einz} \rangle = 1,15 \pm 0,24$. Die Dopplerparameter, die in Abb. 6.2 dargestellt sind, hängen noch weniger von der gewählten Fitstrategie ab: $\langle b_{\rm sim}/b_{\rm einz} \rangle = 1,03 \pm 0,17$.

Der aus Abbildung 6.1 hervorgehende allenfalls marginale Trend hin zu höheren Säulendichten bei den Simultanfits ist wahrscheinlich eine Konsequenz aus der vereinfachenden Annahme, daß sich intergalaktische Absorptionslinien mit einem Voigtprofil beschreiben lassen.

Die in Shull et al. (2000) und Hurwitz et al. (1998) vorgeschlagene Abhängigkeit der HI-Parameter davon, ob Lyman α alleine oder simultan mit Lyman β gefittet wird, kann daher nicht bestätigt werden. Die hier festgestellten geringen Abweichungen (15% für die Säulendichte bzw. 3% für den Dopplerparameter) stehen vielmehr im Widerspruch zu den Ergebnissen der zitierten Arbeiten, in denen möglicherweise die schlechte Datenqualität

Abbildung 6.2: Vergleich der aus Lyman α -Einzelfits bestimmten Dopplerparameter mit den Werten, die sich jeweils aus einem Simultanfit mit dem zugehörigen Lyman β ergeben, exemplarisch für die Absorber in der Schlinie zu HE 0515-4414.

 $(R = 12\,000 - 15\,000$ bzw. $R = 3\,000$ in der spektralen Region des Lyman β -Waldes) zu den angegebenen Abhängigkeiten führte. Die hochaufgelösten Daten von HE 0515-4414 $(R = 30\,000$ für STIS und $R = 50\,000$ für UVES; Tab. 3.2) sollten dagegen auch für einfache Lyman α -Fits schon zuverlässige Werte liefern (bei Blends zumindest dann, wenn diese sich noch leicht in unterschiedliche Profile entfalten lassen), die durch eine simultane Fitprozedur zwar genauer werden, sich aber nur unwesentlich ändern. Bestätigt wird dieser Befund durch die Analyse des Lyman β -Waldes zweier Quasare ebenfalls unter Verwendung von UVES-Daten und dessen Vergleich mit den Ergebnissen für den Lyman α -Wald in Kim et al. (2002a). Auch dort finden sich keinerlei Hinweise auf systematische Abweichungen.

6.2 Verteilung der Säulendichten

Die differentielle Verteilungsfunktion der Wasserstoffsäulendichten $f(N_{\rm HI})$ wird üblicherweise nach Tytler (1987) als die Anzahl *n* der Lyman α -Absorptionslinien pro Säulendichteintervall $\Delta N_{\rm HI}$ und pro Absorptionsweglänge ΔX (ΔX aus (3.8)) definiert. Bei der zusammenfassenden Analyse mehrerer Quasarsehlinien wird dabei die Summe der einzelnen ΔX_i gebildet:

$$f(N_{\rm HI}) = \frac{n}{\Delta N_{\rm HI} \,\Sigma_i \Delta X_i}.$$
(6.1)

In Abbildung 6.3 ist die Verteilungsfunktion für sämtliche Linien aller neun Schlinien $(\Sigma_i n_i = 1325, \Sigma_i \Delta X_i = 12,897)$ doppeltlogarithmisch gegen die Säulendichte aufgetragen. Dabei wurden die Absorptionslinien in Intervallen $\Delta \log N_{\rm HI} = 0, 1$ zusammengefaßt. Die Säulendichteverteilungsfunktion kann im allgemeinen durch das Potenzgesetz (2.3) bzw. in der logarithmischen Darstellung durch die Geradengleichung

$$\log f(N_{\rm HI}) = \log A - \beta \cdot \log N_{\rm HI} \tag{6.2}$$

mit dem Achsenabschnitt log A und der Steigung $-\beta$ gut approximiert werden.

Zu niedrigen log $N_{\rm HI}$ hin bricht die Linearität von log f ab. Vermutlich handelt es sich dabei um einen Auswahleffekt: Die schwachen Linien gehen im Rauschen der Spektren unter. Die *Vollständigkeitsgrenze* des vorliegenden Linienensembles liegt bei einer optimistischen Sichtweise bei log $N_{\rm HI} = 12,70$, bei einer vorsichtigeren Abschätzung dagegen bei log $N_{\rm HI} = 12,90$ (s. Abb. 6.3). Ein Fit an die Datenpunkte mit dem Modell (6.2) wurde daher mit beiden Untergrenzen durchgeführt. Ebenfalls nicht eindeutig ist, bis zu welcher oberen Säulendichte eine einfache Linearität angenommen werden kann: Mit steigendem log $N_{\rm HI}$ flacht die Verteilung langsam ab, und β nimmt ab. Tabelle 6.1 faßt die Ergebnisse für die Fitparameter log A und β für alle gewählten Säulendichtebereiche und unter verschiedenen Randbedingungen zusammen.

Die Vollständigkeitsgrenze sollte eher vorsichtig gewählt werden, da schon leicht unvollständige Intervalle relativ große Auswirkungen auf β haben (Davé & Tripp, 2001). Wird daher für die vorliegende Linienauswahl sowohl die Ober- als auch die Untergrenze eher konservativ gewählt und ein einfacher linearer Verlauf nur für log $N_{\rm HI} = 12, 90 - 15, 70$ angenommen, erhält man log $A = 10, 0 \pm 0, 4$ und $\beta = 1, 64 \pm 0, 03$. Dieses Ergebnis, das auch die Resultate aus der Untersuchung der Sehlinie zu HE 0515-4414 alleine bzw. der kombinierten Sehlinien zu HE 0515-4414 und HS 0747+4259 (Kap. 5.1 und Kap. 5.2) bestätigt, geht konform mit anderen Studien der Säulendichteverteilung im unteren log $N_{\rm HI}$ -Bereich bei vergleichbaren Rotverschiebungen. So fanden Dobrzycki et al. (2002) mittels einer Wachstumskurvenanalyse $\beta \leq 1, 6 - 1, 7$. Hu et al. (1995) ermittelten einen Exponenten $\beta = 1, 46$ für log $N_{\rm HI} = 12, 30 - 14, 50$, und Kim et al. (2001) kamen je nach betrachtetem Säulendichtebereich auf $\beta = 1, 70 - 1, 74$.

Erweitert man den Fitbereich hin zu höheren Säulendichten (log $N_{\rm HI} = 12, 90 - 17, 20$), flacht die Verteilung mit log $A = 9, 1 \pm 0, 4$ und $\beta = 1, 58 \pm 0, 02$ ab. Tatsächlich wird in der Literatur häufiger die Ansicht vertreten, daß die Säulendichteverteilung nicht über alle beobachteten Größenordnungen hinweg mit einem einfachen Potenzgesetz beschrieben werden kann (Carswell et al., 1987; Giallongo et al., 1993; Meiksin & Madau, 1993; Petitjean et al., 1993; Penton et al., 2004). Es hat daher Versuche gegeben, diese Feinstruktur der Säulendichteverteilung theoretisch durch eine Ergänzung des CDM-Minihalo-Modells (s. Kap. 2.2) mit dem *Druckbindungsmodell* zu begründen. Diesem Modell zufolge, das auf Sargent et al. (1980) zurückgeht, sind die Lyman α -Absorber diskrete, voneinander unabhängige Objekte, die durch ein heißes und diffuses umgebendes Medium (*inter cloud*

$\log N_{\rm HI}$	$\Delta \log N_{\rm HI}$	$\sigma_{\log f}$	$\log A$	β
12,70-15,70	0,1	_	$9,4 \pm 0,4$	$1,61\pm0,03$
12,70-17,20	0,1	—	$8,9\pm0,3$	$1,57\pm0,02$
12,70-19,90	$_{0,1}$	—	$6,1\pm0,4$	$1,37\pm0,03$
$12,\!90\!-\!15,\!70$	$_{0,1}$	—	$10,0\pm0,4$	$1,64\pm0,03$
$12,\!90\!-\!15,\!70$	$_{0,1}$	x	$9,4\pm0,3$	$1,60\pm0,03$
$12,\!90\!-\!17,\!20$	$_{0,1}$	—	$9,1\pm0,4$	$1,58\pm0,02$
$12,\!90\!-\!17,\!20$	$_{0,1}$	x	$9,3\pm0,3$	$1,59\pm0,02$
$13,\!00\!\!-\!\!15,\!50$	$0,\!5$	x	$10,0\pm0,4$	$1,64\pm0,03$
$13,\!00\!-\!16,\!50$	$0,\!5$	—	$9,5\pm0,7$	$1,61\pm0,05$
$13,\!00\!\!-\!\!16,\!50$	$0,\!5$	x	$9,9\pm0,3$	$1,63\pm0,02$

Tabelle 6.1: Fitparameter der Säulendichteverteilung für unterschiedliche Randbedingungen. Angegeben sind (von links nach rechts): Der log $N_{\rm HI}$ -Bereich der im Fit berücksichtigten Datenpunkte; die gewählte Intervallbreite; eine Markierung, ob die Fitparameter auf der Basis einer Fehlergewichtung der Datenpunkte bestimmt wurden oder nicht; die Fitparameter log A und β mit ihren Fehlern.

medium) druckgebunden sind. Charlton et al. (1993) sagen mit Hilfe einer Kombination beider Modelle die Steigungsänderung in der Säulendichteverteilung voraus. Demnach findet bei log $N_{\rm HI} \approx 15$ ein Übergang von druckgebundenen Absorbern niedrigerer Säulendichte zu gravitationsgebundenen Absorbern mit höheren log $N_{\rm HI}$ statt (Charlton et al., 1994; Charlton, 1995), der zwei verschiedene Potenzgesetze für die Beschreibung der gesamten Verteilung erforderlich macht. Ein alternatives Erklärungsmodell schlagen Petitjean et al. (1993) vor: Ihnen zufolge spiegelt sich in dem mit steigender Säulendichte abnehmendem β der Wechsel von metallarmen zu metallreichen Systemen wider.

Unabhängig von dem theoretischen Modell, das imstande ist, die mögliche Steigungsänderung der Säulendichteverteilungsfunktion zu erklären, muß bei der Analyse der Verteilung berücksichtigt werden, daß der statistische Fehler von log f wegen der sinkenden Linienanzahl mit steigender Säulendichte systematisch und stark zunimmt: Nimmt man für n einen Poissonfehler $\sigma_n = \sqrt{n}$ an, ist — unter Vernachlässigung der Fehler für ΔN und ΔX —

$$\sigma_{\log f} = \sqrt{\left(\frac{\partial \log f}{\partial n} \,\sigma_n\right)^2} = \frac{\Delta N \,\Sigma_i \Delta X_i}{\ln 10 \,\cdot n} \cdot \frac{1}{\Delta N \,\Sigma_i \Delta X_i} \cdot \sqrt{n} = \frac{1}{\ln 10 \cdot \sqrt{n}}.\tag{6.3}$$

In den Abbildungen 6.4 und 6.5 sind zusätzlich zu den Datenpunkten die Fehlerbalken von log f dargestellt und verdeutlichen, daß die Datenpunkte bei den höchsten Säulendichten eine eher vernachlässigbare statistische Signifikanz haben. Der Fit in diesen Diagrammen wurde auf der Grundlage einer Gewichtung der Datenpunkte mit $1/\sigma_{\log f}^2$ gewonnen. Es ergeben sich für beide Säulendichtebereiche (12,90 – 15,70 bzw. 12,90 – 17,20) leicht abweichende Werte für β im Vergleich zu den Fits ohne Fehlergewichtung (s. Tab. 6.1), die allerdings innerhalb 1 σ mit diesen konsistent sind. Der Unterschied zwischen den beiden Säulendichtebereichen in den Steigungen ist bei den gewichteten Fits nur noch marginal

Abbildung 6.3: Verteilung der Lyman α -Säulendichten in Intervallen $\Delta \log N_{\rm HI} = 0, 1$ und Fits an die Verteilung für verschiedene Fitbereiche. Zur Berechnung von log f s. Text.

Abbildung 6.4: Verteilung der Lyman α -Säulendichten in Intervallen $\Delta \log N_{\rm HI} = 0, 1$, statistischer Fehler von log f und Fits an die Verteilung für verschiedene Fitbereiche. Die Datenpunkte wurden beim Fit mit dem Fehler gewichtet.

Abbildung 6.5: Wie Abb. 6.4, kleinerer Ausschnitt.

 $(\beta = 1, 60 \pm 0, 03$ bzw. $\beta = 1, 59 \pm 0, 02)$, im Gegensatz zur Differenz der Steigungen bei den ungewichteten Fits (s.o.). Damit wird deutlich, daß die Linienzahl für $\log N_{\rm HI} \gtrsim 16$ statistisch nicht signifikant ist, um die Existenz zweier verschiedener Steigungen in der Verteilung bestätigen zu können.

Natürlich ist die Wahl der Größe der Intervalle $\Delta \log N_{\rm HI}$, in denen die Linien zusammengefaßt werden, willkürlich. Die Abbildungen 6.6 und 6.7 basieren auf einer gröberen Einteilung mit $\Delta \log N_{\rm HI} = 0, 5$, einmal ohne und einmal mit Gewichtung mit $\sigma_{\log f}$. Die Verteilung läßt sich für $\log N_{\rm HI} = 13,00-16,50$ gut mit $\beta = 1,61\pm0,05$ (ohne Gewichtung) bzw. $\beta = 1,63\pm0,02$ (mit Gewichtung) approximieren. Beide Werte sind innerhalb 1σ konsistent mit den entsprechenden β für die Intervallbreite 0,1 im vergleichbaren Bereich log $N_{\rm HI} = 12,90 - 17,20$ (nur zwei Linien liegen zwischen 16,50 und 17,20), was darauf hindeutet, daß die Wahl der Intervallbreite keinen relevanten Einfluß auf das Ergebnis hat.

Häufig wurde von der Beobachterseite eine Abhängigkeit des Indexes β von z postuliert (Kim et al., 1997; Heap et al., 2002; Davé & Tripp, 2001; Kim et al., 2002a; Misawa, 2002). So finden jeweils für $z \approx 0$ Davé & Tripp (2001) $\beta = 2,04 \pm 0,23$ und Heap et al. (2002) $\beta = 2,02 \pm 0,21$, während Kim et al. (2001) $\beta = 1,72 \pm 0,16$ für $\langle z \rangle = 1,6$ und $\beta = 1,38 \pm 0,08$ für $\langle z \rangle = 2,1$, Telfer et al. (2002) $\beta = 1,41 \pm 0,05$ für $\langle z \rangle \approx 2,3$ sowie Hu et al. (1995) und Kim et al. (1997) $\beta = 1,46$ bzw. $\beta \approx 1,4$ für $\langle z \rangle \approx 3$ herleiten (alle Werte für den niedrigen Säulendichtebereich bis etwa log $N_{\rm HI} \approx 14$, in dem die Linienanzahlen noch eine zuverlässige Beurteilung ermöglichen). Auch Simulationen von z.B. Theuns et al. (1998) legen einen klaren Zusammenhang $\beta(z)$ nahe.

Dem stehen die vergleichsweise niedrigen Steigungen von Penton et al. (2000, 2004) für

Abbildung 6.6: Verteilung der Lyman α -Säulendichten in Intervallen $\Delta \log N_{\rm HI} = 0, 5$ und Fit an die Verteilung.

Abbildung 6.7: Verteilung der Lyman α -Säulendichten in Intervallen $\Delta \log N_{\rm HI} = 0, 5$, statistischer Fehler von log f und Fit an die Verteilung. Die Datenpunkte wurden beim Fit mit dem Fehler gewichtet.

Abbildung 6.8: Verteilungen der Lyman α -Säulendichten in Intervallen $\Delta \log N_{\rm HI} = 0, 1$ und Fits an die Verteilungen für verschiedene Rotverschiebungsintervalle.

das lokale Universum gegenüber ($\beta = 1,72 \pm 0,06$ bzw. $\beta = 1,65 \pm 0,07$). Der Unterschied könnte allerdings auch methodisch bedingt sein, da Penton et al. (2000, 2004) einen konstanten Dopplerparameter beim Linienfitten annehmen.

einer möglichen Abhängigkeit $\beta(z)$ Um nach zu suchen, wurde die Säulendichteverteilungsfunktion für drei gleich große z-Intervalle (0, 5 - 1, 0; 1, 0 - 1, 5;(1, 5-2, 0) getrennt untersucht. Die Schlinien zu den Quasaren mußten dazu entsprechend der z-Intervalle unterteilt und die Absorptionsweglänge ΔX für alle Intervalle nach (3.8) neu berechnet werden. Tabelle 6.2 zeigt die Details dieser Berechnung. Als Intervallbreite wurde durchweg $\Delta \log N_{\rm HI} = 0,1$ gewählt. Die Verteilungen für alle drei z-Bereiche sind in den Abbildungen 6.8 und 6.9 dargestellt, einmal ohne und einmal mit einer Gewichtung mit dem Fehler von log f. Die Fits berücksichtigen jeweils die Punkte in dem Intervall log $N_{\rm HI} = 12,90 - 15,70$. Die Fitparameter, die in Tabelle 6.3 aufgeführt sind, sind offensichtlich weitestgehend unabhängig von z. Insbesondere die fehlergewichteten Fitgeraden lassen keinerlei β -Evolution erkennen. Der Anstieg von β von z = 1, 5 - 2, 0 $(\beta = 1, 55 \pm 0, 04)$ bis z = 1, 0 - 1, 5 $(\beta = 1, 58 \pm 0, 04)$ stellt allenfalls einen leichten Trend dar, der jedoch statistisch nicht signifikant ist. Die vorgeschlagene Entwicklung von β mit z kann daher für den hier untersuchten Rotverschiebungsbereich nicht bestätigt werden.

Unterteilt man das Lyman α -Linienensemble gemäß der Spektralbereiche, in denen die Linien detektiert wurden, zeigt sich, daß die Verteilung der Säulendichten der UV-Linien etwas steiler ist als die der im Optischen liegenden Linien (siehe auch Abb. 6.10): Während

Quasar	$\langle z \rangle$	Δz	ΔX		
0, 5 < z < 1, 0:					
PG 1634+706	0,767	0,466	0,948		
PKS 0232-04	0,938	$0,\!124$	0,275		
PG 1630+377	0,937	$0,\!125$	0,277		
PG 0117+213	0,937	$0,\!125$	0,277		
HE 0515-4414	$0,\!937$	$0,\!126$	$0,\!279$		
HS 0747+4259	$0,\!880$	0,240	0,516		
	4	$\Delta X_{\text{ges}} =$	= 2,572		
1,0	< z < 1	, 5:			
PG 1634+706	1,148	0,295	0,710		
PKS 0232-04	1,210	$0,\!419$	1,032		
PG 1630+377	1,226	$0,\!451$	$1,\!117$		
PG 0117+213	1,238	$0,\!475$	1,181		
HE 0515-4414	$1,\!250$	0,500	$1,\!247$		
HS 0747+4259	1,222	$0,\!443$	1,095		
	4	$\Delta X_{\text{ges}} =$	= 6,382		
1, 5	< z < 2	, 0:			
HE 0515-4414	1,591	0,182	0,501		
HE 0141-3932	$1,\!651$	0,266	0,745		
HE 2225-2258	$1,\!688$	0,346	0,979		
HS 0747+4259	1,714	0,304	0,864		
HE 0429-4901	1,766	0,288	0,830		
	4	$\Delta X_{\text{ges}} =$	= 3,919		
UV	-Bereicl	1:			
PG 1634+706	0,915	0,761	$1,\!665$		
PKS 0232-04	$1,\!147$	0,544	$1,\!309$		
PG 1630+377	1,163	0,577	1,396		
PG 0117+213	$1,\!175$	0,600	1,460		
HE 0515-4414	1,219	$0,\!691$	1,706		
HS 0747+4259	$1,\!102$	$0,\!683$	$1,\!615$		
	4	$\Delta X_{\text{ges}} =$	= 9,151		
Optise	cher Ber	eich:			
HE 0515-4414	1,604	$0,\!156$	0,433		
HE 0141-3932	$1,\!651$	0,266	0,745		
HE 2225-2258	$1,\!688$	0,346	0,979		
HS 0747+4259	1,714	0,304	0,864		
HE 0429-4901	1,766	0,288	0,830		
	4	$\Delta X_{\text{ges}} =$	= 3,850		

Tabelle 6.2: Berechnung der Absorptionsweglänge ΔX für verschiedene z-Intervalle und Spektralbereiche gemäß (3.8).

Abbildung 6.9: Verteilungen der Lyman α -Säulendichten in Intervallen $\Delta \log N_{\rm HI} = 0, 1$, statistische Fehler von log f und Fits an die Verteilungen für verschiedene Rotverschiebungsintervalle. Nur die Datenpunkte im Bereich log $N_{\rm HI} = 12,90 - 15,70$ wurden bei den Fits berücksichtigt; sie sind jeweils mit dem Fehler gewichtet.

	1			1	
z	$\log N_{\rm HI}$	$\Delta \log N_{\rm HI}$	$\sigma_{\mathrm{log}f}$	$\log A$	eta
0,5-1,0	$12,\!90\!-\!15,\!70$	$_{0,1}$	—	$9,3\pm0,7$	$1,59\pm0,05$
1,0-1,5	$12,\!90\!-\!15,\!70$	0,1	—	$10,8\pm0,5$	$1,70\pm0,04$
1,5-2,0	$12,\!90\!-\!15,\!70$	0,1	—	$9,5\pm0,8$	$1,61\pm0,06$
0,5-1,0	$12,\!90\!-\!15,\!70$	0,1	x	$9,1\pm0,7$	$1,57\pm0,05$
1,0-1,5	$12,\!90\!-\!15,\!70$	$_{0,1}$	x	$9,1\pm0,5$	$1,58\pm0,04$
1,5-2,0	$12,\!90\!-\!15,\!70$	$_{0,1}$	x	$8,7\pm0,6$	$1,55\pm0,04$
UV/Opt.					
UV	$12,\!90\!-\!15,\!70$	0,1	—	$10,8\pm0,5$	$1,70\pm0,03$
Opt.	$12,\!90\!-\!15,\!70$	0,1	—	$9,4\pm0,8$	$1,60\pm0,06$
UV	$12,\!90\!-\!15,\!70$	$_{0,1}$	x	$9,5\pm0,4$	$1,60\pm0,03$
Opt.	$12,\!90\!-\!15,\!70$	$_{0,1}$	x	$8,6\pm0,6$	$1,54\pm0,04$
UV	$13,\!20\!-\!14,\!50$	$_{0,1}$	х	$10,5\pm0,8$	$1,67\pm0,06$
Opt.	$13,\!30\!-\!14,\!40$	0,1	х	$10,4\pm1,6$	$1,67\pm0,12$

Tabelle 6.3: Abhängigkeit der Säulendichteverteilung von der Rotverschiebung und vom Spektralbereich für unterschiedliche Randbedingungen. Angegeben sind (von links nach rechts): Das z-Intervall bzw. der Spektralbereich; der log $N_{\rm HI}$ -Bereich der im Fit berücksichtigten Datenpunkte; die gewählte Intervallbreite; eine Markierung, ob die Fitparameter auf der Basis einer Fehlergewichtung der Datenpunkte bestimmt wurden oder nicht; die Fitparameter log A und β mit ihren Fehlern.

Abbildung 6.10: Verteilung der Lyman α -Säulendichten in Intervallen $\Delta \log N_{\rm HI} = 0, 1$ und Fits an die Verteilung für verschiedene Spektralbereiche.

Abbildung 6.11: Verteilung der Lyman α -Säulendichten in Intervallen $\Delta \log N_{\rm HI} = 0, 1$, statistische Fehler von log f und Fit an die Verteilung für den ultravioletten Spektralbereich. Die Datenpunkte wurden beim Fit mit dem Fehler gewichtet.

Abbildung 6.12: Verteilung der Lyman α -Säulendichten in Intervallen $\Delta \log N_{\rm HI} = 0, 1$, statistische Fehler von log f und Fit an die Verteilung für den optischen Spektralbereich. Die Datenpunkte wurden beim Fit mit dem Fehler gewichtet.

 $\beta_{\rm UV} = 1,60 \pm 0,03$, ist $\beta_{\rm Opt} = 1,54 \pm 0,04$ (jeweils für log $N_{\rm HI} = 12,90 - 15,70$). Hierin spiegeln sich natürlich die Ergebnisse für β für die unterschiedlichen z-Bereiche wider (vgl. Tab. 6.3), da die Lyman α -Linien im Optischen in etwa denen mit $z \gtrsim 1,5$, die im UV dagegen ungefähr denen mit $z \lesssim 1,5$ entsprechen. Wie bei den verschiedenen z-Intervallen ist der Unterschied in β auch bei den unterschiedlichen Spektralbereichen statistisch nicht signifikant.

Interessanterweise ist eine Vollständigkeit der Verteilung für den optischen Spektralbereich trotz der qualitativ relativ guten UVES- und Keck-Spektren bei konservativer Abschätzung nur bis log $N_{\rm HI} = 13,30$ hinunter gewährleistet (vgl. Abb. 6.12), ein ähnlicher Wert wie bei der UV-Verteilung (log $N_{\rm HI} = 13, 20$, Abb. 6.11), auch wenn der Linienverlust für log $N_{\rm HI} < 13$ im Optischen etwas moderater ausfällt (Abb. 6.10 zeigt einen direkten Vergleich der Verteilungen beider Spektralbereiche). Offenbar reicht die Qualität der optischen Daten nicht aus, um zumindest bis etwa log $N_{\rm HI} \approx 12,70$ hinunter sämtliche Lyman α -Linien detektieren zu können. Möglicherweise ist diese unerwartet hohe Vollständigkeitsgrenze der optischen Linien aber auch eine Folge der strengen Linienauslese mit Hilfe des Signifikanzlevels SL unter Miteinbeziehung des Fitfehlers bei der Berechnung von SL (Kap. 4.4). Eine weitere Ursache könnte die höhere Lyman α -Liniendichte und die damit verbundene höhere Zahl an Blends mit steigendem z, also tendenziell eher im optischen Bereich, sein (Kim et al., 2002a), was durch die z.T. etwas bessere Auflösung sowie das bessere S/N der visuellen Spektren eventuell nicht kompensiert wird. Bei hohen Rotverschiebungen würden dadurch systematisch mehr (insbesondere schwache) Linien verlorengehen. Demgegenüber stehen andererseits die sich zum UV hin stark häufenden Blends mit Metallinien, höheren Lymanseriengliedern etc., die sich sicherlich negativ auf die Vollständigkeitsgrenze der UV-Verteilung auswirkt.

Unter dem Strich dürfte das ausgewertete Linienensemble im Bereich $\approx 12, 70 - 13, 30$ im Optischen ein leichtes Defizit haben. Um dessen Größenordnung zu quantifizieren, kann man den besten Fit für die optischen Linien für log $N_{\rm HI} = 13, 30 - 14, 40$ mit $\beta = 1, 67 \pm 0, 12$ (s. Tab. 6.3) als maßgebend werten und ihn z.B. bis log $N_{\rm HI} = 12, 95$ hinunter extrapolieren. Demnach fehlen hier (zwischen 12,90 und 13,00), um auf ein entsprechendes log f zu kommen, rund 16 Linien, der vorhandene Bestand müßte um ca. 43% höher sein. Bei log $N_{\rm HI} = 12, 75$, wo die Vollständigkeit des Gesamtensembles auch bei optimistischer Sichtweise spätestens endet, betrüge das Minus an Linien 132%, bezogen auf die Zahl der tatsächlich detektierten Linien.

Letztlich ist die noch vollständig beobachtbare Mindestsäulendichte vom jeweiligen Spektrum und auch von der jeweiligen Ordnung innerhalb eines Spektrums abhängig, da das S/N von Ordnung zu Ordnung stark variiert. Bei der kollektiven Auswertung mehrerer Spektren muß es daher in der Summe zwangsläufig zu einer Verlagerung der Vollständigkeitsgrenze nach oben kommen.

6.3 Verteilung der Dopplerparameter

Ähnlich instruktiv wie die Verteilung der Säulendichten ist diejenige der Dopplerparameter der Lyman α -Linien. In Abbildung 6.13 ist die *b*-Verteilung der vollständigen Linienauswahl (ohne die 24 breitesten Linien mit $b > 100 \text{ km s}^{-1}$) in Intervallen $\Delta b = 5 \text{ km s}^{-1}$

Abbildung 6.13: Verteilung der Lyman α -Dopplerparameter in Intervallen $\Delta b = 5 \text{ km s}^{-1}$.

dargestellt. Die Verteilung hat die typische durch (2.4) in guter Näherung beschreibbare Form mit einem Maximum im Bereich $b = (20 - 25) \text{ km s}^{-1}$, einem darüber liegenden Mittelwert ($\overline{b} = (34 \pm 22) \text{ km s}^{-1}$) und einem zusätzlichen langen Schwanz zu höheren Dopplerbreiten hin. Bei einem großen Teil der Linien mit $b > 100 \text{ km s}^{-1}$ dürfte es sich um unaufgelöste Blends mehrerer Komponenten handeln, wohingegen der steile Abfall zu kleinen b hin natürlich aus der Lyman α -Auswahlbedingung $b > 10 \text{ km s}^{-1}$ resultiert.

Mittelwert und Median von *b* passen gut zu den Werten aus anderen Studien in vergleichbaren Rotverschiebungsregionen: So fanden Kim et al. (2001) $b_{\text{Median}} = 28 \text{ km s}^{-1}$ für $\langle z \rangle = 1,6$ und Kim et al. (2002a) $\overline{b} = 32,6 \text{ km s}^{-1}$ für $\langle z \rangle = 2,2$.

z	n	$b [\mathrm{kms^{-1}}]$	$b_{\rm Median} [{\rm km s^{-1}}]$
0, 5 - 2, 0	1325	34 ± 22	28
0, 5 - 1, 0	270	35 ± 23	29
1, 0 - 1, 5	595	33 ± 22	28
1, 5 - 2, 0	460	34 ± 22	28

Tabelle 6.4: Parameter der *b*-Verteilung: Angegeben sind für verschiedene *z*-Intervalle die Anzahl der Lyman α -Linien *n*, der Mittelwert und der Median.

Es ist mehrfach eine Abhängigkeit b(z) im Sinne von mit sinkender Rotverschiebung steigenden Dopplerbreiten postuliert worden: Im hochrotverschobenen Bereich finden Lu et al. (1996) $\overline{b} = (23 \pm 8) \text{ km s}^{-1}$ bei $\langle z \rangle = 3,7$, Kim et al. (1997) $b_{\text{Median}} = 26 \text{ km s}^{-1}$ bei $\langle z \rangle = 3,35$ bzw. $b_{\text{Median}} = 30 \text{ km s}^{-1}$ bei $\langle z \rangle = 2,31$ sowie Hu et al. (1995) $\overline{b} = (28 \pm 10) \text{ km s}^{-1}$ bei $\langle z \rangle = 2,9$. Der Mittelwert dieser Studie für $\langle z \rangle = 1,31$ paßt gut in dieses Entwicklungsschema hinein. Zum lokalen Universum setzt sich der Trend offenbar fort: Penton et al. (2000) leiten $\overline{b} = (38 \pm 16) \text{ km s}^{-1}$ für z = 0 her.

Daher wurde geprüft, ob sich auch innerhalb des hier untersuchten z-Bereichs eine solche Entwicklung von b mit z feststellen läßt. Die Abbildung 6.14, in der die b-Verteilung für drei unterschiedliche z-Intervalle gleicher Größe präsentiert wird, sowie die zugehörigen Parameter der Verteilung in Tabelle 6.4 verdeutlichen, daß dies offenbar nicht der Fall ist: Der maximale Mittelwert $\overline{b} = (35 \pm 23)$ km s⁻¹ für das Intervall z = 0, 5 - 1, 0 liegt nur marginal über denen der höheren Rotverschiebungsbereiche. Eine statistisch signifikante Evolution des Dopplerparameters liegt daher nicht vor. Möglicherweise ist der hier analysierte z-Bereich zu klein, um eine solche Evolution sehen zu können. Allerdings ist die Frage einer möglichen Abhängigkeit der Dopplerbreite von der Rotverschiebung noch nicht abschließend geklärt: So sehen Kim et al. (2002a) in ihren Daten ebenfalls keine Veränderung von \overline{b} in der Phase $\langle z \rangle = 3, 3 \rightarrow 2, 1$, und auch die Ergebnisse von Davé & Tripp (2001) ($\overline{b} = 25$ km s⁻¹ für $\langle z \rangle = 0, 2$) passen nicht in das geforderte Entwicklungsszenario.

Aufschlußreich ist ein Vergleich der hier hergeleiteten Dopplerparameterverteilungen mit den Ergebnissen von Theoretikern. So analysieren z.B. Jena et al. (2004) mit hydrodynamischen numerischen Simulationen die Verteilung des intergalaktischen Gases bei z = 1,95unter Verwendung von Simulationsboxen mit Kantenlängen 10 Mpc $\lesssim L \lesssim 80$ Mpc. Simulierte Sehstrahlen, die sie in ihren Modellen die Boxen durchqueren lassen, erzeugen Absorptionsspektren, deren Linien sie mit Voigtprofilen fitten. Eine Reihe von astrophysikalischen und kosmologischen Parametern variierend, erhalten sie in Abhängigkeit von diesen als Ausgabeparameter u.a. b_{σ} , ein Maß für den jeweiligen Maximalwert b_{Peak} der $b\mbox{-Verteilung}.$ Für ihr sogenanntes Standardmodell (Dichteparameter Ω wie die aus Kap. 2 der vorliegenden Arbeit, h = 0,71, Amplitude des Materiedichtespektrums $\sigma_8 = 0,9$, HI-Photoionisationsrate $\Gamma_{\rm HI} = 1,329 \cdot 10^{-12} \, {\rm s}^{-1}$ durch das UV-Strahlungsfeld bei z = 1,9, $X_{228} = 1,4$ [ein die Form des UV-Strahlungsfelds für $\lambda < 228$ Å beschreibender Parameter], Kantenlängen der Simulationsbox $L = 76,8\,\mathrm{Mpc}$ und der Zellen innerhalb der Box $C = 18,75 \,\mathrm{kpc}$) ergibt sich $b_{\sigma} = (24, 1 \pm 0, 3) \,\mathrm{km \, s^{-1}}$ (eigene Berechnung aus den Tabellen 6 und 7 von Jena et al., 2004). In Tabelle 6.5 ist b_{σ} neben dem Standardmodell für eine Auswahl weiterer Modelle gegeben. Dabei bezeichnen L4 und P5 einzelne Modelle, die mit den Ergebnissen aus den Beobachtungsdaten von Jena et al. (2004) gut verträglich sind und von ihnen daher favorisiert werden.

Um die b-Verteilung des vorliegenden Linienensembles mit den Resultaten aus den Jena et al. (2004)–Simulationen zu vergleichen, wurde daher für einzelne z-Intervalle der Maximalwert der Verteilungen berechnet. Dabei wurde neben den drei oben verwendeten Rotverschiebungsbereichen zusätzlich das Intervall z = 1, 7 - 2, 0 analysiert, das mit $\langle z \rangle = 1, 79\pm0, 06$ der Rotverschiebung aus den Simulationen am nächsten kommt (bei einer zu noch höherem $\langle z \rangle$ verschobenen Intervallwahl, z.B. z = 1, 8 - 2, 0, reicht die Linienzahl für eine zuverlässige Bestimmung des Verteilungmaximums nicht mehr aus). Um das Maximum möglichst exakt eingrenzen zu können, wurde eine Intervallbreite $\Delta b = 1$ km s⁻¹

Abbildung 6.14: Verteilung der Lyman α -Dopplerparameter in Intervallen $\Delta b = 5 \text{ km s}^{-1}$, verschiedene Rotverschiebungsbereiche.

z	$\langle z \rangle$	$b_{\sigma} [\mathrm{km s^{-1}}]$	Quelle
0, 5 - 1, 0	$0,85\pm0,12$	$19,6\pm0,5$	diese Arbeit
1, 0 - 1, 5	$1,22\pm0,14$	$22,7\pm0,5$	diese Arbeit
1, 5 - 2, 0	$1,70\pm0,10$	$24,8\pm0,5$	diese Arbeit
1, 7 - 2, 0	$1,79\pm0,06$	$23,8\pm2,6$	diese Arbeit
1, 9 - 2, 0	1,95	$24,1\pm0,3$	Jena et al. (2004), Standardmodell
1, 9 - 2, 0	1,95	$22,6\pm0,3$	Jena et al. (2004), Einzelmodell L4
1, 9 - 2, 0	1,95	$23,5\pm0,3$	Jena et al. (2004), Einzelmodell P5

Tabelle 6.5: Vergleich des Maximums der *b*-Verteilung mit Simulationen. b_{σ} ist dem jeweiligen Maximalwert der *b*-Verteilung b_{Peak} direkt proportional.

gewählt (für das Intervall z = 1, 7 - 2, 0 allerdings wegen der geringeren Linienzahl $\Delta b = 5 \text{ km s}^{-1}$). Daraus resultieren die Fehler von b_{Peak} und somit $b_{\sigma} = \frac{b_{\text{Peak}}}{0.9457}$ (Jena et al., 2004). b_{σ} ist mit dem Fehler für alle vier z-Intervalle in Tabelle 6.5 zu finden.

Der Vergleich der Ergebnisse für b_{σ} zeigt, daß der Wert aus den Beobachtungen für $\langle z \rangle = 1,79$ gut konform geht mit dem Standardmodell von Jena et al. (2004) für $\langle z \rangle = 1,95$. Dies trifft auch für $b_{\sigma}(1,70)$ noch zu, während die Maxima im niedrigeren z-Bereich eine Abnahme mit sinkender Rotverschiebung suggerieren, entgegen dem allgemein angenommenen Verlauf. Ob dieser Trend ein physikalisch realistisches Szenario widergibt, ist jedoch zweifelhaft.

Zumindest mit $b_{\sigma}(1, 79)$ ist auch das Resultat aus der Simulation P5 sehr gut verträglich, wohingegen das Modell L4 ein zwar noch mit $b_{\sigma}(1, 79)$ konsistentes, aber deutlich niedrigeres b_{σ} ergibt. Vermutlich liegt dies an der vom Standardmodell abweichenden Wahl der Amplitude des Materiedichtespektrums $\sigma_8 = 1,0$: Schon geringe Variationen in σ_8 erzeugen große Veränderungen in den Parametern, mit denen der Lyman α -Wald beschrieben werden kann. b_{σ} sinkt mit steigendem σ_8 (Jena et al., 2004; Bryan & Machacek, 2000; Theuns et al., 2000).

Zusammenfassend läßt sich eine gute Übereinstimmung zwischen den Beobachtungen und den Simulationen feststellen. Die theoretischen Werte für das Maximum der *b*-Verteilung bei z = 1,95 aus Jena et al. (2004) sind im Rahmen der Fehler konsistent mit den hier gewonnenen für einen vergleichbaren z-Bereich ($z \approx 1,8$).

Bei einer aus Beobachtungsdaten hergeleiteten Verteilung von b lassen sich systematische Fehlidentifikationen nicht vermeiden. Dies ist eine Folge der beschriebenen Blendeffekte ebenso wie der Schwierigkeit, das Quasarkontinuum korrekt zu bestimmen: Eine zu hohe oder zu niedrige Positionierung des Kontinuums kann sehr breite Linien mit kaum erkennbarer Linieneinsenkung vortäuschen bzw. unterdrücken. Bei einer verbesserten Bestimmung der b-Verteilung müßten daher künstlich erzeugte Daten vorgegeben, daraus mit einer Gauß-Verteilung der Form (2.4) mit angenommenen Werten für \overline{b} und σ_b die b-Verteilung hergeleitet und die beobachtete mit dieser simulierten Verteilung verglichen werden. \overline{b} und σ_b würden dann so lange variiert werden, bis eine gute Übereinstimmung zwischen den Verteilungen erzielt wäre. Mit dieser allerdings sehr zeitaufwendigen Vorgehensweise kann die beobachtete Verteilung hinsichtlich Blends und anderer systematischer Fehler korrigiert werden (Hu et al., 1995; Lu et al., 1996).

6.4 *N*-*b*-Verteilung

Oft untersucht wird neben der Häufigkeitsverteilung der Säulendichten und Dopplerparameter auch deren Verteilung gegeneinander, um eine mögliche Abhängigkeit zwischen beiden Parametern herzuleiten. Wie in Kap. 2.3 schon angeführt, wird gewöhnlich nur eine schwache Korrelation festgestellt, so auch für die hier untersuchte Linienauswahl. Die Parameter log $N_{\rm HI}$ und *b* sind in der Abbildung 6.15 als Punktediagramm dargestellt. Der Trend eines leichten Anstiegs von *b* mit stark ansteigender Säulendichte, dem die überwiegende Zahl der Absorber unterworfen ist, reflektiert die Tatsache, daß die Linien mit hohen log $N_{\rm HI}$ in Absorbern mit höherer Volumendichte und höherer Temperatur entstehen.

Der linienfreie Bereich links oben im Diagramm entspricht ebenfalls den Erwartungen: Hohe Dopplerbreiten bei niedrigen Säulendichten wurden auch in anderen Arbeiten bis dato nur in Ausnahmefällen beobachtet, da die Absorber ab einer bestimmten dichteabhängigen Temperatur nahezu vollständig ionisiert sind und daher keine Absorption mehr auftreten kann. Erst eine jüngere Studie (Richter et al., 2004) bei sehr niedrigem z findet einen solchen Ast im N-b-Diagramm mit breiten Linien niedrigerer Säulendichte. Unter der Annahme, daß der thermische Beitrag zu den hohen Dopplerbreiten dominiert, leiten Richter et al. (2004) hohe Temperaturen für die Absorber in dieser Region des N-b-Diagramms her und vermuten, das WHIM (vgl. Kap. 2.1) erstmals in Lyman α statt wie bisher nur in OVI-Absorption zu sehen. Da bei den hohen Temperaturen des WHIMs enorme Wasserstoffdichten notwendig wären, um trotzdem noch, wenn auch geringe, Säulendichten *neutralen* Wasserstoffs messen zu können, würde dies den WHIM-Beitrag zur Baryonendichte im lokalen Universum signifikant erhöhen.

Abbildung 6.16 zeigt das *N*-*b*-Punktediagramm mit unterschiedlichen Symbolen für die beiden verwendeten Fitprogramme FITLYMAN und CANDALF. Auch wenn ein Vergleich dadurch erschwert wird, daß die FITLYMAN-Linien um einen Faktor ≈ 5 unterrepräsentiert sind, ist kein grundlegender Unterschied in den Verteilungen erkennbar. Das Fazit aus Kap. 4.2.1, daß die Wahl des Fitprogramms keine systematischen Auswirkungen auf die Fitparameter hat, wird durch diese Darstellung bestätigt.

6.5 b-Untergrenze der N-b-Verteilung

Das Hauptinteresse bei der Untersuchung der N-b-Verteilung gilt der relativ scharfen unteren Grenze $b_{\min}(\log N_{\rm HI})$, die in der Regel für einen großen Säulendichtebereich definiert werden kann. b_{\min} steigt im allgemeinen mit steigendem log $N_{\rm HI}$ an. Wie in Kap. 2.3 bereits erläutert, kann diese Untergrenze direkt mit der Temperatur des intergalaktischen Mediums verknüpft werden. Man erwartet, daß b_{\min} weitestgehend thermisch interpretiert werden kann, während sich in der Auffächerung der N-b-Verteilung zu höheren bhin zusätzliche Beiträge zur Dopplerbreite widerspiegeln. Hierzu zählen insbesondere die Mikroturbulenz und — bei Absorbern sehr großer räumlicher Ausdehnung — die unterschiedlich starke Hubble-Expansion an den (in Schlinienrichtung) entfernten Randregionen des Absorbers (der "Hubble-Fluß"). Während also — in Erweiterung von (1.7) — für $b > b_{\min}$

Abbildung 6.15: Punktediagramm der Dopplerparameter über die Säulendichten. 1301 der 1325 Linien der Gesamtauswahl fallen in die dargestellten Bereiche von log $N_{\rm HI}$ und b.

Abbildung 6.16: Punktediagramm der Dopplerparameter über die Säulendichten, nach Fitprogrammen unterschieden: Mit FITLYMAN gefittete Linien sind durch Quadrate, mit CANDALF modellierte Linien durch Kreuze repräsentiert.

Abbildung 6.17: Punktediagramm der Dopplerparameter über die Säulendichten, kleinerer Ausschnitt als in Abb. 6.15. 1203 Linien fallen in die dargestellten Bereiche von log $N_{\rm HI}$ und b. Die Punkte der im Fit für die b-Untergrenze berücksichtigten Linien sind zusätzlich mit einem Kästchen umrandet. Der beste Fit an diese Punkte ist als Linie angegeben.

$$b^{2} = \frac{2kT}{m_{\rm A}} + \xi_{\rm Mikro}^{2} + b_{\rm Hubble}^{2} \,, \tag{6.4}$$

kann

$$b_{\min}^2 \approx \frac{2kT}{m_A}$$
 (6.5)

genähert werden.

Die *b*-Untergrenze des vorliegenden Linienensembles wurde mit zwei unterschiedlichen Methodiken analysiert, die im folgenden erläutert werden. Aus der zweiten Methodik (Kap. 6.5.2) ergeben sich dabei direkte Folgerungen für die Zustandsgleichung des IGMs (2.5).

6.5.1 Einfache Geradenapproximation

Versucht man die Untergrenze der Dopplerbreite für einen kleinen Säulendichtebereich zu bestimmen, kann man für den Verlauf von $b_{\min}(\log N_{\rm HI})$ in guter Näherung eine Gerade annehmen. Abbildung 6.15 verdeutlicht, daß für log $N_{\rm HI} > 14$ praktisch keine Aussage über den Verlauf von $b_{\min}(\log N_{\rm HI})$ möglich ist, weil die N-b-Verteilung hier stark ausdünnt und die rein thermisch verbreiterten Linien nur noch vereinzelt zu finden sind. Andererseits ist der untere Rand der N-b-Verteilung für log $N_{\rm HI} \leq 13$ nicht mehr von der Linienselektionsuntergrenze $b = 10 \text{ km s}^{-1}$ zu unterscheiden. Das Verhalten von b_{\min}

$\log N_{\rm HI}$	$b_{\min}^{a} [\mathrm{km s^{-1}}]$	$b_{\min}{}^{b} [\mathrm{km s^{-1}}]$	$b_{\min}{}^c [\mathrm{km}\mathrm{s}^{-1}]$
13,10	$10,2\pm0,2$	16	16
$13,\!50$	$12,1\pm0,0$	18	18
14,00	$14,5\pm0,2$	20	21

Tabelle 6.6: Vergleich der aus dem Geradenmodell (6.6) berechneten mit den aus Geradenmodellen aus der Literatur hergeleiteten Werten für die *b*-Untergrenze für einige willkürlich ausgewählte Säulendichten. Der angegebene Fehler ist der auf der Basis einer Studentschen t-Verteilung berechnete 2σ -Fehler von b_{\min} an der jeweiligen Stelle (log $N_{\rm HI}$)₀.

^aGerade aus dieser Studie

^bGerade von Kirkman & Tytler (1997)

^cGerade von Zhang et al. (1997)

kann daher nur für die Region dazwischen (es wurde log $N_{\rm HI} \approx 13, 1 - 14, 0$ gewählt) analysiert werden. In Intervalle $\Delta \log N_{\rm HI} = 0, 1$ unterteilt, wurde jeweils der minimale *b*-Wert gesucht und eine Gerade an die Minima gefittet. Die *b*-Minima der Intervalle sind in dem *N*-*b*-Punktediagramm 6.17, das einem kleineren Ausschnitt von Abb. 6.15 entspricht, mit Kästchen markiert; der Fit ist als durchgezogene Linie dargestellt. Man erhält $b_{\rm min} \, [\rm km \, s^{-1}] = (-67 \pm 20) + (5, 9 \pm 1, 5) \cdot \log N_{\rm HI}$ (angegeben sind hier und im folgenden jeweils die 1 σ -Fehler der Regressionsgeradenparameter). Eine feinere Intervallwahl ($\Delta \log N_{\rm HI} = 0, 05$) ergibt eine Fitgerade, die sich von der obigen nur unwesentlich unterscheidet.

Da zwei der neun Intervalle (13, 30-13, 40 bzw. 13, 80-13, 90) offensichtlich unvollständig sind (s. Abb. 6.17) und ihre Minima nicht die thermische Untergrenze repräsentieren dürften, kommt ein Fit ohne diese beiden Minima der tatsächlichen Untergrenze wahrscheinlich näher. Die verbleibenden Datenpunkte lassen sich am besten mit

$$b_{\min} \left[\mathrm{km \, s^{-1}} \right] = (-53 \pm 3) \, + \, (4, 8 \pm 0, 2) \, \cdot \log N_{\mathrm{HI}} \tag{6.6}$$

fitten.

Die Steigung dieser Geraden und damit die Entwicklung des Dopplerbreitenminimums mit der Säulendichte ist in recht guter Übereinstimmung mit der Untersuchung von Kirkman & Tytler (1997) sowie der numerischen Simulation von Zhang et al. (1997): Für den Säulendichtebereich log $N_{\rm HI} = 12, 5 - 15, 0$ finden erstere $b_{\rm min} [\rm km \, s^{-1}] = 14 + 4 \log \frac{N_{\rm HI}}{10^{12,5}} = -36 + 4 \log N_{\rm HI}$, während letztere für ein ähnliches Säulendichteintervall $b_{\rm min} [\rm km \, s^{-1}] = -56 + 5, 5 \log N_{\rm HI}$ herleiten (jeweils ohne Fehlerangabe). Allerdings liegen die $b_{\rm min}$ -Geraden in beiden zitierten Studien auf einem höheren Niveau, wie Tabelle 6.6, in der die minimale Dopplerbreite exemplarisch für einige Säulendichten gemäß den jeweiligen Geradenmodellen aufgeführt ist, verdeutlicht. Die Ursache dieser Diskrepanz dürfte zum einen methodisch bedingt sein (in beiden zitierten Arbeiten wird vermutlich ein anderes, nicht näher erläutertes Verfahren zur Bestimmung der Untergenze angewendet); zum anderen kann nicht ausgeschlossen werden, daß das hier analysierte Lyman α -Linienensemble einige unidentifizierte Metallinien enthält, die sich naturgemäß in der *N*-b-Verteilung am unteren Rand, bei niedrigen Dopplerparametern, wiederfinden. Die Orientierung an den jeweiligen *b*-Minima einzelner Intervalle $\Delta \log N_{\rm HI}$

z	a	m	$b_{\rm min,13,10} [{\rm kms^{-1}}]$	$b_{\rm min,13,50} [{\rm kms^{-1}}]$	$b_{\rm min,14,00} [\rm km s^{-1}]$
0, 5 - 1, 0	-56 ± 34	$5,3\pm2,5$	$12,5\pm2,7$	$14,6\pm0,3$	$17,3\pm2,7$
1, 0 - 1, 5	-56 ± 20	$5,1\pm1,5$	$10,9\pm1,6$	$12,9\pm0,2$	$15,5\pm1,5$
1, 5 - 2, 0	-94 ± 37	$8,1\pm2,7$	$12,9\pm2,8$	$16,1\pm0,3$	$20,2\pm3,0$

Tabelle 6.7: Vergleich der für ein Geradenmodell $b_{\min} = a + m \cdot \log N_{\text{HI}}$ berechneten Werte für die *b*-Untergrenze für unterschiedliche Rotverschiebungsintervalle an einigen exemplarisch ausgewählten Säulendichtepositionen. Die Regressionsgeradenparameter *a* und *m* sind jeweils mit ihren 1 σ -Fehlern angegeben. Der Index von b_{\min} gibt die log N_{HI} -Position an, an der b_{\min} berechnet wurde. Für die Fehlerbestimmung von b_{\min} siehe Tabelle 6.6.

führt daher vermutlich zu einer zu ungenauen Bestimmung der *b*-Untergrenze; im folgenden Kapitel wird ein genaueres Verfahren vorgestellt und durchgeführt.

Da für die Dopplerbreitenverteilungen bzw. ihre Mittelwerte im allgemeinen eine Entwicklung mit der Rotverschiebung erwartet wird (s. Kap. 6.3), müßte konsequenterweise auch für die Untergrenze von b eine Abhängigkeit von z beobachtbar sein. Daher wurde für drei verschiedene z-Intervalle je ein N-b-Punktediagramm erstellt und die Untergrenze entsprechend der oben beschriebenen Methode mit einer Fitgeraden $b_{\min}(\log N_{\rm HI})$ approximiert. Tabelle 6.7 zeigt b_{\min} für einige Säulendichtepositionen: Es ist kein eindeutiger Evolutionstrend von b_{\min} erkennbar. Die b-Untergrenze scheint von z = 1, 5 - 2, 0 bis z = 1, 0 - 1, 5 leicht zu sinken, um dann zu noch kleineren Rotverschiebungen hin wieder anzusteigen. Dabei muß allerdings berücksichtigt werden, daß die Anzahl der rein thermisch verbreiterten Absorptionslinien in den Unterauswahlen natürlich noch kleiner ist als in der Gesamtauswahl und dadurch das Problem der Unvollständigkeit in der Verteilung hier noch stärker zum Tragen kommt.

6.5.2 Iterativer Potenzgesetzfit und Verknüpfung mit der Zustandsgleichung des IGMs

Schaye et al. (1999) zeigen anhand von Simulationen des Lyman α -Waldes, daß die Zustandsgleichung des intergalaktischen Mediums (2.5), die auch

$$\log T = \log T_0 + (\gamma - 1) \log \left(\frac{\rho}{\overline{\rho}}\right) \tag{6.7}$$

geschrieben werden kann, direkt korreliert ist mit der *b*-Untergrenze im N-*b*-Diagramm¹. Sie demonstrieren dies, indem sie zeigen, daß für die Absorber im Bereich dieser Untergrenze zum einen der Logarithmus der (auf die Durchschnittsdichte skalierten) Dichte

$$\log\left(\frac{\rho}{\overline{\rho}}\right) = A + B \,\log N_{\rm HI} \tag{6.8}$$

des IGMs mit der Säulendichte, zum anderen der Logarithmus der Temperatur

¹Hier und im folgenden wird $\log \frac{T}{K} =: \log T$ und $\log \frac{b}{km s^{-1}} =: \log b$ gesetzt (log T_0 , log b_0 analog).

$$\log T = C + D \ (\log b)_{\min} \tag{6.9}$$

(A, B, C, D Koeffizienten) des intergalaktischen Mediums mit dem Minimum der (logarithmierten) Dopplerbreite über einfache lineare Zusammenhänge verknüpft werden kann. Aus (6.9) folgt dann

$$(\log b)_{\min} = \frac{1}{D} (\log T - C)$$
 (6.10)

und nach Einsetzen von (6.7) und (6.8)

$$(\log b)_{\min} = \frac{1}{D} \left[\log T_0 + (\gamma - 1) A - C \right] + (\gamma - 1) \frac{B}{D} \log N_{\text{HI}}$$
(6.11)

oder mit den Definitionen der Koeffizienten

$$\log b_0 = \frac{1}{D} \Big[\log T_0 + (\gamma - 1) A - C \Big]$$
(6.12)

und

$$\Gamma - 1 = (\gamma - 1) \frac{B}{D} \tag{6.13}$$

$$(\log b)_{\min} = \log b_0 + (\Gamma - 1) \log N_{\text{HI}}.$$
 (6.14)

(6.14) stellt im Gegensatz zu (6.6) ein Geradenmodell für die Untergrenze der doppeltlogarithmischen N-b-Darstellung mit der Steigung $\Gamma - 1$ und dem Achsenabschnitt log b_0 dar. Bestimmt man diese untere Gerade für die log $N_{\rm HI}$ -log b-Verteilung eines Linienensembles, ist es mit (6.12) und (6.13) theoretisch möglich, daraus γ und T_0 und damit die Parameter der Zustandsgleichung des IGMs zu berechnen. Hierfür müssen allerdings die Parameter A, B, C und D bekannt sein. Dies kann erreicht werden, indem Lyman α -Wald-Spektren, die auf einer bestimmten vorgegebenen Zustandsgleichung basieren, simuliert werden. An die N-b-Verteilung, die sich aus den simulierten Linien ergibt, kann dann die b-Untergrenze gefittet werden, und mit (6.8) und (6.9) ergeben sich die Koeffizienten A-D. Allerdings sind solche numerischen Simulationen extrem zeitaufwendig und hätten den Rahmen dieser Arbeit gesprengt. Es lassen sich aber mit der vorliegenden Linienauswahl einige Aussagen über die Fitgeradenparameter log b_0 und $\Gamma - 1$ und deren Evolution gewinnen, und eine Abschätzung von γ ist ebenfalls ohne die Simulationen möglich, wie in diesem Kapitel beschrieben wird.

Linienblends, Fehlidentifikationen und Rauschen im Spektrum können leicht unechte Lyman α -Absorptionslinien mit niedrigen Dopplerparametern produzieren. Die physikalische, durch den thermischen Zustand des intergalaktischen Gases definierte Untergrenze im *N-b*-Diagramm wird dadurch kontaminiert. Ein genaueres Verfahren zur Bestimmung der *b*-Untergrenze, das im Gegensatz zur in Kapitel 6.5.1 vorgestellten Methodik unempfindlich ist für die Existenz von unechten schmalen Linien, ist der von Schaye et al. (1999) entwickelte iterative Potenzgesetzfit, der auf die vorliegende Linienauswahl angewandt wurde.

Dabei wurden — entsprechend einer Empfehlung von Schaye et al. (1999), derzufolge Linien mit großen Fehlern in ihren Parametern bei der Analyse ignoriert werden sollten, um eine scharf definierte Untergrenze zu erhalten — nur Linien, für die $\frac{\sigma_N}{N} \leq 0.5$ und $\frac{\sigma_b}{b} \leq 0.5$, für die weitere Untersuchung verwendet (1054 der 1325 Linien bzw. 79,5 %). Dies führt dazu, daß vor allem Linien aus Blends, die systematisch höhere Fehler in ihren Linienparametern und gleichzeitig viele unechte schmale Linien erzeugen, zu einem großen Teil unberücksichtigt bleiben. Wie im vorhergehenden Kapitel wurden für den Potenzgesetzfit nur Linien im Bereich log $N_{\rm HI} = 13 - 14$ betrachtet.

In einem ersten Schritt wird bei dem iterativen Potenzgesetzfit zunächst eine Gerade an die vollständige log $N_{\rm HI}$ -log b-Verteilung gefittet. Danach wird die mittlere Absolutabweichung $\overline{|d|}$ aller Linien von der Fitgeraden berechnet. Sämtliche Linien, deren logarithmierte Dopplerparameter

$$\log b > \log b_{\rm Fit} + a \cdot \overline{|d|},\tag{6.15}$$

also mehr als einen bestimmten Wert $a \cdot |\overline{d}|$ (*a* festzulegender Zahlenfaktor) über dem Fit liegen, werden dann eliminiert. An die Verteilung der verbleibenden Linienauswahl wird erneut eine Gerade gefittet, $|\overline{d}|$ neu berechnet und die Linien, für die (6.15) (bei unverändertem *a*) gilt, gestrichen. Diese drei Schritte werden so lange wiederholt, bis keine Absorptionslinien mehr über der Fitgeraden liegen. Dann werden die Linien, für die

$$\log b < \log b_{\rm Fit} - a \cdot |\overline{d}|,\tag{6.16}$$

ebenfalls eliminiert. Der Fit durch die restlichen Datenpunkte ist die gesuchte Untergrenze.

Der Zahlenwert a muß dabei sensibel gewählt werden. Ein zu großes a bedeutet, daß zu wenig Linien eliminiert werden und der iterative Prozeß bei einer für die Untergrenze unrealistisch hohen Restlinienzahl zum Stillstand kommt. Wird a zu klein angesetzt, werden dagegen zu viele Linien ausgeschlossen; es befinden sich jedes Mal noch Linien oberhalb der Fitgeraden, und der iterative Fit konvergiert nicht. Testrechnungen mit $\Delta a = 0, 1$ zeigten, daß a = 1, 5 durchweg für alle hier untersuchten Linienunterauswahlen zu einer realistischen Konvergenz führt (zum Vergleich: Schaye et al. (2000) wählen a = 1, 0, Kim et al. (2002b) a = 0, 5).

Gemäß dieser Methode wurde die Untergrenze $(\log b)_{\min}$ für die vollständige (fitfehlerselektierte) Linienauswahl ebenso bestimmt wie für die Linien in fünf verschiedenen z-Intervallen ungleicher Größe, aber in etwa gleicher Linienzahl, sowie für die unterschiedlichen Spektralbereiche. Tabelle 6.8 gibt eine Übersicht über die einzelnen Unterauswahlen und ihre jeweiligen Linienzahlen, über den Anteil der im jeweiligen (abschließenden) Fit berücksichtigten Linien und über die Fitparameter log b_0 und $\Gamma-1$, während in Tabelle 6.9 für alle Linienauswahlen die expliziten Werte von b_{\min} an einigen Säulendichtepositionen zu finden sind. In Abbildung 6.18 sind die Verteilungen und die Fits an die Untergrenze für das Gesamtensemble sowie für die fünf z-Intervalle dargestellt. Dabei ist zu beachten, daß die Fits jeweils nur für die Linien im Bereich log $N_{\rm HI} = 13 - 14$ gelten, obwohl die Graphiken sämtliche Linien (mit Fitparameterfehlern unter 50 %) im dargestellten Säulendichtebereich umfassen. Abbildung 6.19 zeigt die Verteilung und den Fit für den gesamten z-Bereich noch mal in einer vergrößerten, nur den Fitbereich log $N_{\rm HI} = 13 - 14$

z	\overline{z}	n	$n_{ m Fit}$	$\log b_0$	$\Gamma - 1$
0, 5 - 2, 0	$1,36\pm0,34$	632	179(28,3%)	$-0,9\pm0,5$	$0,17\pm0,04$
0, 5 - 1, 0	$0,86\pm0,12$	130	30 (23,1%)	$-0, 1 \pm 1, 3$	$0,10\pm0,10$
1, 0 - 1, 2	$1,09\pm0,06$	115	31~(27,0%)	$0,7\pm1,4$	$0,05\pm0,11$
1, 2 - 1, 4	$1,30\pm0,06$	130	44 (33,8%)	$-3,2\pm1,4$	$0,34\pm0,10$
1, 4 - 1, 65	$1,54\pm0,08$	125	51~(40,8%)	$-1,7\pm1,0$	$0,23\pm0,08$
1,65-2,0	$1,75\pm0,07$	132	34~(25,8%)	$-0,6\pm0,7$	$0,14\pm0,05$
UV	$1,11\pm0,22$	426	129 (30, 3%)	$-1, 8 \pm 0, 8$	$0,23\pm0,06$
Optisch	$1,70\pm0,10$	211	33~(15,6%)	$-1,1\pm0,7$	$0,18\pm0,05$

Tabelle 6.8: Regressionsgeradenparameter aus (6.14), bestimmt mit einem iterativen Potenzgesetzfit, für verschiedene Linienauswahlen. Aufgelistet sind von links nach rechts Rotverschiebungs-/Spektralbereich (Spalte 1), die mittlere Rotverschiebung mit dem 1σ -Fehler für die jeweilige Auswahl (2), die Anzahl an Lyman α -Linien, für die log $N_{\rm HI} = 13 - 14 \wedge \frac{\sigma_N}{N} \leq 0.5 \wedge \frac{\sigma_b}{b} \leq 0.5$ (3), die Zahl bzw. der prozentuale Anteil der Linien, mit denen in der letzten Iteration die Untergrenze bestimmt wurde (4), der Achsenabschnitt (5) und die Steigung (6) (jeweils mit den 3σ -Fehlern) der Untergrenze.

berücksichtigenden Darstellung. Als beste Approximation an die *b*-Untergrenze der kompletten Linienauswahl in diesem Bereich ergibt sich (mit 1σ -Fehlern)

$$(\log b)_{\min} = (-0,95 \pm 0,18) + (0,17 \pm 0,01) \log N_{\rm HI}.$$
(6.17)

In allen z-Bereichen steigt $(\log b)_{\min}$ mit steigender Säulendichte an $(\Gamma - 1 > 0)$, wenn auch für z = 1, 0 - 1, 2 nur marginal. Dies entspricht qualitativ den Ergebnissen aus Kapitel 6.5.1.

Verfolgt man die Evolution der Regressionsgeradenparameter log b_0 und $\Gamma - 1$ (Tabelle 6.8 und Graphiken 6.20 und 6.21), zeigt sich, daß $\Gamma - 1$ von hohen z ausgehend bis $z \approx 1,3$ ansteigt, um anschließend abzufallen, während log b_0 entsprechend eine umgekehrte Entwicklung durchläuft. Ursache für dieses Maximum der Fitgeradensteigung im Intervall z = 1, 2 - 1, 4 ist das völlige Fehlen von schmalen Absorptionslinien mit $13,65 < \log N_{\rm HI} < 13,95$ (s. Abb. 6.18): Für sämtliche immerhin 23 Linien (einschließlich derjenigen mit hohen Fitfehlern) in diesem Säulendichteintervall ist $b > 26 \text{ km s}^{-1}$, was in der Konsequenz zu einem steileren Verlauf der Fitgeraden für den ganzen Bereich log $N_{\rm HI} = 13 - 14$ führt. Es drängt sich zunächst auf, dies als Indiz für einen Höchstwert der Temperatur des intergalaktischen Mediums bei $z \approx 1,3$ zu werten: Mit $b_{\rm min} \approx 26 \ {\rm km \, s^{-1}}$ und (6.5) ist $T_{\rm IGM} \approx 40\,000$ K. Diese Schätzung basiert zwar nur auf einem relativ kleinen Säulendichtebereich, andererseits ist die Linienverteilung im Bereich $\log N_{\rm HI} = 13,60 - 14,00$ für den Verlauf der Fituntergrenze und damit für die daraus abschätzbare Temperatur eindeutig entscheidender als die bei log $N_{\rm HI} \approx 13,00$, wo die Untergrenze für alle z-Intervalle auf in etwa gleichem Niveau liegt (Tab. 6.9, Spalte $b_{\min,13,00}$). Natürlich hat die Vollständigkeitsgrenze der Säulendichteverteilung im allgemeinen eine große Auswirkung auf die Regressionsgeradenparameter. Da diese Grenze hier jedoch bei log $N_{\rm HI} \leq 12,90$ liegt (vgl. Kap. 6.2), sollte dies keine Konsequenzen für die Parameter haben.

Abbildung 6.18: Punktediagramm der Dopplerparameter über die Säulendichten für alle Lyman α -Linien, deren Fitfehler in N und in b unter 50 % liegen, sowie für die Linien einzelner z-Intervalle mit dem jeweiligen Fit an die Untergrenze von b. Die in Rot dargestellten Fitgeraden wurden alle mit Hilfe eines iterativen Potenzgesetzfits hergeleitet (s. Erläuterung im Text) und gelten nur für log $N_{\rm HI} = 13 - 14$.

z	$b_{\rm min,13,00} [\rm km s^{-1}]$	$b_{\rm min,13,50} [\rm km s^{-1}]$	$b_{\rm min,13,60} [\rm km s^{-1}]$	$b_{\rm min,14,00} [\rm km s^{-1}]$
0, 5 - 2, 0	$17,5\pm0,7$	$21,3\pm0,1$	$22,1\pm0,3$	$25,9\pm1,3$
0, 5 - 1, 0	$17,1\pm1,4$	$19,2\pm0,6$	$19,7\pm1,0$	$21,6\pm3,1$
1, 0 - 1, 2	$19,7\pm1,9$	$20,7\pm0,5$	$21,0\pm1,1$	$21,8\pm3,3$
1, 2 - 1, 4	$16,3\pm1,9$	$24,2\pm0,1$	$26,2\pm0,7$	$35,8\pm4,3$
1, 4 - 1, 65	$18,3\pm1,5$	$23,9\pm0,1$	$25,2\pm0,5$	$31,2\pm2,8$
1,65-2,0	$17,5\pm1,1$	$20,6\pm0,0$	$21,3\pm0,3$	$24,2\pm1,5$
UV	$16,4\pm1,0$	$21,5\pm0,2$	$22,7\pm0,5$	$28,1\pm2,1$
Optisch	$16,0\pm1,0$	$19,7\pm0,1$	$20,5\pm0,2$	$24,2\pm1,3$

Tabelle 6.9: Werte für die *b*-Untergrenze für unterschiedliche Linienauswahlen an einigen exemplarisch ausgewählten Säulendichtepositionen. b_{\min} ist berechnet nach (6.14) und mit den jeweiligen in Tabelle 6.8 gegebenen Geradenparametern; vermeintliche Inkonsistenzen liegen an der begrenzten Angabe von Nachkommastellen für log b_0 und $\Gamma - 1$ in Tabelle 6.8. Die Fehler von b_{\min} sind bestimmt wie in Tabelle 6.6 beschrieben und stellen die 3σ -Fehler dar.

Abbildung 6.19: Vergrößerter Ausschnitt von Abb. 6.18 (links oben), in dem ausschließlich der Fitbereich log $N_{\rm HI} = 13 - 14$ dargestellt ist.

Andererseits sind die Werte für log b_0 und $\Gamma - 1$ bei z = 1,30 innerhalb 2σ noch konsistent mit den entsprechenden Ergebnissen bei z = 1,54 (in den Abb. 6.20 und 6.21 ist jeweils der 3σ -Fehler angegeben). Auch sind die Fehler rein statistische und enthalten keine systematischen Anteile, die die Methode des iterativen Potenzgesetzfits z.B. durch das Linienauswahlverfahren oder durch die Wahl von *a* impliziert.

Kim et al. (2002b) finden für ein Säulendichteintervall, das mit dem hier untersuchten vergleichbar ist (13,00-14,50), log $b_0 = -0,745\pm0,089$ und $\Gamma - 1 = 0,150\pm0,006$ für eine mittlere Rotverschiebung $\overline{z} = 2, 1$. Beide Werte gehen konform mit den hier bestimmten Werten für $\overline{z} = 1,75$ und legen nahe, daß es in der Phase $z = 2, 1 \rightarrow 1,8$ keine signifikante Änderung der *b*-Untergrenze gegeben hat. Den Trend des anschließenden Anstiegs von $\Gamma - 1$ mit sinkender Rotverschiebung aus Abbildung 6.21 sehen auch Kim et al. (2001), die für $\overline{z} = 1,61$ mit einem Teil der QSO-Sehlinien aus Kim et al. (2002b) $\Gamma - 1 = 0,17\pm0,01$ (log $N_{\rm HI} = 12,50 - 14,50$) berechnen.

Ebenso wie die z-Evolution der Regressionsgeradenparameter kann auch die des Dopplerbreitenminimums an einigen fixierten Säulendichtepositionen untersucht werden. Abbildung 6.22 zeigt $b_{\min}(z)$ für die Säulendichten 13,00, 13,50, 13,60 und 14,00 entsprechend der Werte aus Tabelle 6.9. Offenbar steigt die Mindestdopplerbreite bis $z \approx 1,3$ hinunter an, um dann zu noch kleineren z hin wieder abzufallen. Dieser Trend gilt zwar nicht für den b_{\min} -Wert bei log $N_{\text{HI}} = 13,00, b_{\min,13,00}$, aber diese Säulendichte ist für die Berechnung von b_{\min} mit Sicherheit nicht mehr geeignet, da die Verteilung hier bereits an das Auswahlkriterium $b = 10 \text{ km s}^{-1}$ heranreicht. Andererseits sind die Werte für $b_{\min,14,00}$ am anderen Ende der Fitgeraden stark fehlerbehaftet. Am aussagekräftigsten ist sicher der z-Verlauf von $b_{\min,13,50}$ und $b_{\min,13,60}$. So ist z.B. bei z = 1,54 $b_{\min,13,50} = (23,9\pm0,1) \text{ km s}^{-1} (3\sigma\text{-Fehler})$. Kim et al. (2001) finden bei z = 1,61 mit $b_{\min,13.50} = 25,0 \text{ km s}^{-1}$ eine nur geringfügig höhere Mindestdopplerbreite. Sie sehen eine ähnliche Entwicklung eines Anstiegs von b_{\min} mit sinkendem z zumindest bis zu ihrer Datengrenze $z \approx 1,5$ hinunter. Das b-Minimum bei log $N_{\rm HI} = 13,60$ berechnen Kim et al. (2002b) zu $b_{\min,13,60} = (19, 8 \pm 0, 8) \text{ km s}^{-1} (z = 2, 1)$, wohingegen aus Abb. 4 in Schaye et al. (2000) $b_{\min,13,60} = (20, 73^{+0.64}_{-0.33}) \text{ km s}^{-1}$ für z = 2,0 abgelesen werden kann. Beide Werte bewegen sich in etwa auf dem Niveau des entsprechenden Wertes aus dieser Arbeit, $b_{\min,13.60} = (21, 3 \pm 0, 3) \text{ km s}^{-1}$ für $z \approx 1, 8$, was obige Einschätzung unterstreicht, daß die Untergrenze sich von z = 2,1 bis z = 1,8 kaum oder gar nicht ändert. Erst für z < 1,8setzt möglicherweise ein Anstieg von b_{\min} ein, der zumindest bis z = 1, 3 andauert.

Allerdings muß die mögliche z-Evolution von b_{\min} ebenso wie die von $\Gamma - 1$ und log b_0 aus den genannten Gründen der nicht berücksichtigten systematischen Fehler mit Vorsicht genossen werden. Ließen sich diese quantifizieren und zöge man sie in die Betrachtungen mit ein, gingen die Trends in den Abbildungen 6.20–6.22 vermutlich auch mit einer konstanten Evolution noch konform.

Zudem würde sich als Konsequenz aus dem dargestellten z-Verlauf der analysierten Parameter eine Form der Temperaturentwicklung im intergalaktischen Medium im Bereich z < 2 ergeben, für die ein physikalisches Erklärungsmodell fehlt. Vielmehr wird für z < 2 allgemein eine eher monotone Entwicklung der Temperatur erwartet, die sich aus dem Zusammenspiel zwischen der adiabatischen Abkühlung durch die kosmische Expansion einerseits sowie der Aufheizung durch das photoionisierende Hintergrundstrahlungsfeld der

Abbildung 6.20: Entwicklung des Achsenabschnitts log b_0 der Fitgeraden aus Abb. 6.18 mit z. Die Datenpunkte entsprechen den Werten aus Tabelle 6.8. Als Fehlerbalken sind die 3σ -Fehler dargestellt.

Abbildung 6.21: Entwicklung der Steigung $\Gamma - 1$ der Fitgeraden aus Abb. 6.18 mit z. Die Datenpunkte entsprechen den Werten aus Tabelle 6.8. Als Fehlerbalken sind die 3σ -Fehler dargestellt.

Abbildung 6.22: Entwicklung der Dopplerbreitenuntergrenze an einigen ausgewählten Säulendichtepositionen mit z, berechnet auf der Basis der Fitgeraden aus Abb. 6.18. Gleiche Symbole entsprechen den b_{\min} bei gleichen log $N_{\rm HI}$. Aus Darstellungsgründen sind in der Abbildung einige Punkte inklusive der Fehlerbalken für z = 0,856 und z = 1,090etwas nach rechts bzw. links verrückt; korrekter Bezugswert ist jeweils das Symbol für log $N_{\rm HI} = 13,60$ (Δ). Als Fehlerbalken sind die 3σ -Fehler angegeben.

Quasare und Galaxien andererseits ergibt (Hui & Gnedin, 1997).

Das Dopplerbreitenminimum wird in Simulationen der N-b-Verteilung des Lyman α -Waldes üblicherweise bei einer festen Überdichte

$$\delta = \frac{\rho - \overline{\rho}}{\overline{\rho}} \tag{6.18}$$

statt einer fixierten Säulendichte berechnet. Dies hat den Vorteil, daß die Abhängigkeit der Säulendichte vom Expansionsstadium des Universums eliminiert wird: Bei konstantem δ sinkt log N mit fortschreitender Entwicklung, also mit abnehmendem z, aufgrund der Ausdünnung der Materie im All. Gleiche Säulendichten bei unterschiedlichen Rotverschiebungen entsprechen also verschiedenen (Über-)Dichten. Physikalisch sinnvoller scheint daher eine Analyse der z-Evolution von b-Untergrenzen zu sein, die sich auf ein konstantes ρ oder δ statt auf ein konstantes log N bezieht.

Die Konversion zwischen $N_{\rm HI}$ und δ ist nicht trivial, da sie von vielen physikalischen Annahmen wie dem ionisierenden Hintergrundstrahlungsfeld und der genauen Rotverschiebung, zu der die Reionisation einsetzte, abhängt. Davé et al. (1999) schlagen für einen auf Modellierungen von Haardt & Madau (1996) basierenden UV-Hintergrund und unter Vernachlässigung der He II-Reionisation bei z = 3

$$\delta + 1 = \frac{\rho}{\overline{\rho}} \approx 20 \left[\frac{N_{\rm HI}}{10^{14} \,{\rm cm}^{-2}} \right]^{0,7} \cdot 10^{-0.4 \, z} \tag{6.19}$$

bzw.

$$N_{\rm HI} \approx \left[0,05 \ (\delta+1) \ 10^{0,4z}\right]^{1,43} \cdot 10^{14} \,\rm cm^{-2} \tag{6.20}$$

vor.

Oft wird $b_{\min}(z)$ bei der mittleren Dichte $\rho = \overline{\rho}$, also $\delta = 0$, untersucht. Nach (6.20) folgt dann log $N_{\text{HI}} \approx 12,141 + 0,571 \cdot z$, d.h. für die z-Werte im hier untersuchten Rotverschiebungsintervall (z = 0, 5 - 2, 0) ist immer log $N_{\text{HI}} < 13,30$, ein Bereich, in dem keine Aussage über die b-Untergrenze mehr möglich ist. Dagegen ist für die doppelte Durchschnittsdichte $\rho = 2 \cdot \overline{\rho} \Rightarrow \delta = 1 \Rightarrow \log N_{\text{HI}} \approx 12,571 + 0,571 \cdot z$. Für z = 0, 5 - 2, 0liegt die Säulendichte dann in etwa im Bereich 13 - 14, in dem die Untergrenze bestimmt wurde. Daher wurde das Evolutionsverhalten von $b_{\min,\delta=1}$ untersucht. In Tabelle 6.10 sind die Säulendichten aufgeführt, die sich für die Überdichten $\delta = 0$ und $\delta = 1$ bei fünf verschiedenen z-Werten (entsprechend denen aus Tabelle 6.8) ergeben. In der rechten Spalte sind die b-Minima zu finden, die aus den jeweiligen Fitgeraden für die der Überdichte $\delta = 1$ entsprechenden Säulendichtepositionen folgen.

Der Verlauf von $b_{\min, \delta=1}(z)$ ist in Abbildung 6.23 graphisch dargestellt. Der Trend eines leichten Anstiegs und anschließenden Abfalls von b_{\min} mit sinkendem z ist auch hier sichtbar, allerdings scheint der Wendepunkt schon bei $z \approx 1,5$ und nicht wie bei $b_{\min, \log N_{\rm HI}}(z)$ erst bei $z \approx 1,3$ zu liegen. Natürlich muß die Evolution von $b_{\min, \delta}$ wegen der unsicheren Konversionsformel (6.19) entsprechend vorsichtig bewertet werden. Insbesondere das UV-Strahlungsfeld ist für z < 2, wo die Stärke des Haardt-Madau-UV-Hintergrunds insgesamt abnimmt (Haardt & Madau, 1996), möglicherweise überschätzt. Das intergalaktische Medium würde dann in dieser Epoche in Wirklichkeit weniger stark

Abbildung 6.23: Entwicklung der Dopplerbreitenuntergrenze mit z für eine für alle Rotverschiebungen fixierte IGM-Überdichte $\delta = 1$, berechnet auf der Basis der Fitgeraden aus Abb. 6.18. Als Fehlerbalken sind die 3σ -Fehler angegeben.

\overline{z}	$\log N_{\rm HI}(\delta=0)$	$\log N_{\rm HI}(\delta = 1)$	$b_{\min,\delta=1} [\mathrm{km}\mathrm{s}^{-1}]$
0,86	$12,\!63$	13,06	$17,4\pm1,2$
1,09	12,76	$13,\!19$	$20,2\pm0,8$
1,30	$12,\!88$	$13,\!31$	$20,9\pm0,9$
$1,\!54$	$13,\!02$	$13,\!45$	$23,3\pm0,2$
1,75	$13,\!14$	$13,\!57$	$21,1\pm0,2$

Tabelle 6.10: Säulendichtewerte für Überdichten $\delta = 0$ und $\delta = 1$ des IGMs, berechnet nach der Konversionsformel (6.19), und Dopplerbreitenminimum für $\delta = 1$ für verschiedene Rotverschiebungen. Die Fehler von b_{\min} sind die 3σ -Fehler und bestimmt wie in Tabelle 6.6 beschrieben.

durch das Strahlungsfeld aufgeheizt und $b_{\min,\delta}$ wäre hier systematisch zu hoch.

Eine allgemeinere $N_{\rm HI}$ - δ -Konversionsformel, die im Gegensatz zu (6.19) auch unterschiedliche kosmologische Modelle und verschiedene UV-Hintergrundstrahlungsfelder berücksichtigt, liefert Schaye (2001):

$$N_{\rm HI} \approx 2,7 \cdot 10^{13} \cdot (1+\delta)^{1,5-0,26} {}^{(\gamma-1)} \cdot \left(\frac{T_0}{10^4 \rm K}\right)^{-0,26} \cdot \frac{10^{-12} \, \rm s^{-1}}{\Gamma_{\rm HI}} \cdot \left(\frac{1+z}{4}\right)^{4,5} \cdot \left(\frac{\Omega_{\rm B} \, h^2}{0,02}\right)^{1,5} \cdot \left(\frac{f_{\rm g}}{0,16}\right)^{0,5} \, \rm cm^{-2}$$

$$(6.21)$$

 $(\Gamma_{\rm HI}$ Photoionisationsrate von neutralem Wasserstoff, $f_{\rm g}$ Massenanteil der Gasphase). Mit Hilfe dieser Näherung kann der Exponent der Zustandsgleichung (2.5), $\gamma - 1$, aus den oben gewonnenen Werten für die *b*-Untergrenze abgeschätzt werden: Wählt man $\Omega_{\rm B} h^2 = 0,02$ entsprechend (2.2) und $f_{\rm g} = 0,16$ (Schaye, 2001; Kim et al., 2002b), verschwinden die beiden letzten Faktoren. Setzt man zusätzlich $\delta + 1 = \left(\frac{T}{T_0}\right)^{\frac{1}{\gamma-1}}$ (aus (2.5) und (6.18)) sowie $T[{\rm K}] \approx 60, 6 \cdot (b_{\min}[{\rm km\,s^{-1}}])^2$ (aus (6.5)) und stellt nach $\gamma - 1$ um, erhält man

$$\gamma - 1 = 1,5 \cdot \left[\frac{\log \left(\frac{N_{\rm HI}[\rm cm^{-2}]}{2,7 \cdot 10^{13} \cdot (T_0/10^4 \rm K)^{-0.26} \cdot (10^{-12} \, {\rm s}^{-1}/\Gamma_{\rm HI}) \cdot ((1+z)/4)^{4,5}}{\log (60,6 \, (b_{\rm min}[\rm km \, {\rm s}^{-1}])^2/T_0[\rm K])} + 0,26 \right]^{-1}.$$
 (6.22)

Damit hängt $\gamma - 1$ noch von $N_{\rm HI}$, $b_{\rm min}$, z, T_0 und $\Gamma_{\rm HI}$ ab. Man kann nun wieder ein Haardt-Madau-Strahlungsfeld annehmen und $\Gamma_{\rm HI}$ dann für verschiedene Rotverschiebungen aus Haardt & Madau (1996), Abb. 6 ablesen; ebenso kann T_0 leicht aus Schaye et al. (2000), Abb. 3 ($\delta = 0$) für $z \approx 1-2$ extrapoliert werden, da log $T_0(z)$ dort für $z \approx 2-4$ eine Gerade ist (diese Entwicklung von T_0 für z < 2 ist vermutlich ein realistischeres Szenario als der Trend, den die Analyse von $\Gamma - 1$, log b_0 und b_{\min} oben suggerierte). Mit den für verschiedene z hergeleiteten b-Untergrenzen der N-b-Verteilungen läßt sich dann $\gamma - 1$ für konkrete Werte von log $N_{\rm HI}$ berechnen. Hier wurde $\gamma - 1$ an den Stellen log $N_{\rm HI} = 13,50$ und log $N_{\rm HI} = 13,60$ der $b_{\rm min}$ -Fits für die fünf z-Positionen aus Tabelle 6.8 bestimmt. In Tabelle 6.11 sind die Ergebnisse für $\gamma - 1$ mit den jeweiligen Literaturwerten für $\Gamma_{\rm HI}$ und T_0 für die verschiedenen z-Werte aufgeführt. Für beide Säulendichtepositionen ergibt sich ein leichter Anstieg von $\gamma - 1$ bis $z \approx 1,5$ hinunter, gefolgt von einem Abfall bis $z \approx 0.9$. Ob diese Evolution statistisch signifikant ist, muß allerdings dahingestellt bleiben. Eine Fehlerabschätzung von $\gamma - 1$ ist aufgrund der vielschichtigen Fehlerquellen schwierig. Vernachlässigbar dürften die Ablesefehler von T_0 und $\Gamma_{\rm HI}$ sein, da die Diagramme in eingescannter Form mit dem NASA-Programm DEXTER digitalisiert und ihnen somit präzise Werte entnommen werden können. Möglicherweise fällt jedoch log $T_0(z)$ für z < 2 leicht stärker ab als in Schaye et al. (2000) für z > 2. Geringfügig niedrigere Werte für log T_0 hätten zur Folge, daß $\gamma - 1$ leicht nach oben korrigiert werden müßte (vgl. (6.22)). Die weitaus größere Fehlerquelle stellen aber die physikalischen Annahmen

\overline{z}	$\log N_{\rm HI}$	$b_{\rm min} [{\rm km s^{-1}}]$	T_0 [K]	$\Gamma_{\rm HI} \ [10^{-12} {\rm s}^{-1}]$	$\gamma - 1$
$0,\!86$	$13,\!50$	19,2	7937	0,36	0,555
1,09	$13,\!50$	20,7	8271	$0,\!51$	0,649
$1,\!30$	$13,\!50$	24,2	8576	$0,\!70$	0,809
$1,\!54$	$13,\!50$	$23,\!9$	8951	$0,\!90$	0,838
1,75	$13,\!50$	$20,\!6$	9292	$1,\!08$	0,704
0,86	13,60	19,7	7937	0,36	0,534
1,09	$13,\!60$	21,0	8271	$0,\!51$	0,606
$1,\!30$	$13,\!60$	26,2	8576	$0,\!70$	0,814
$1,\!54$	$13,\!60$	25,2	8951	$0,\!90$	0,817
1,75	$13,\!60$	21,3	9292	$1,\!08$	$0,\!672$

Tabelle 6.11: Exponent der Zustandsgleichung des IGMs, $\gamma - 1$, für verschiedene Rotverschiebungen, auf der Basis der $N_{\rm HI}$ - δ -Konversionsformel von Schaye (2001) sowie der in dieser Arbeit bestimmten b-Untergrenzen für log $N_{\rm HI} = 13,50$ und log $N_{\rm HI} = 13,60$. Die Fehler von \overline{z} und $b_{\rm min}$ können Tab. 6.8 bzw. Tab. 6.9 entnommen werden. T_0 und $\Gamma_{\rm HI}$ sind abgelesen aus Schaye et al. (2000), Abb. 3 bzw. Haardt & Madau (1996), Abb. 6.

wie die Voraussetzung eines Haardt-Madau-Strahlungsfeldes dar. Angesichts der zu vermutenden Ungenauigkeit in der Bestimmung von $\gamma - 1$ dürften die Werte des Exponenten aus Tabelle 6.11 auch mit einer Null-Evolution konsistent sein.

Schaye et al. (2000) und Kim et al. (2002b) finden für $z \approx 2$ und log $N_{\rm HI} = 13,60$ jeweils $\gamma - 1 \approx 0,4$. Gleser et al. (2004) modellieren mit Monte Carlo-Simulationen die HeII-Reionisationsphase und untersuchen deren Auswirkung auf den thermischen Zustand des IGMs. Sie leiten für den Exponenten der Zustandsgleichung eine leichte Evolution mit z her: $\gamma - 1 = 0,29; 0,47; 0,56$ für z = 3; 2; 1. Ihre Werte liegen generell auf einem höheren Niveau als die Schaye et al. (2000)-Ergebnisse (auch für andere z) und gehen gleichzeitig eher konform mit den Werten aus Tabelle 6.11. Es bleibt festzuhalten, daß die Bestimmung von $\gamma - 1$ auf einer Reihe von unsicheren Annahmen beruht. Der Fehler in der Berechnung des Exponenten ist der limitierende Faktor bei der Herleitung der zeitlichen Entwicklung der Temperatur des IGMs bei mittlerer Dichte, T_0 (Schaye et al., 2000).

6.6 Haufenbildung

Die Häufungseigenschaften der baryonischen Materie lassen sich untersuchen, indem die Korrelation zwischen den auftretenden Lyman α -Absorbern entlang der Sehlinie berechnet wird. Der Grad der Haufenbildung der HI-Absorber kann durch die Zweipunktgeschwindigkeitskorrelationsfunktion

$$\xi\left(\Delta v\right) = \frac{n_{\rm b}\left(\Delta v\right)}{n_{\rm sim}\left(\Delta v\right)} - 1 \tag{6.23}$$

ausgedrückt werden, in der die Anzahl der im Spektrum in einer Distanz Δv zueinander beobachteten Lyman α -Linienpaare $n_{\rm b}$ verglichen wird mit der Zahl der in einem simulier-

ten Spektrum gezählten Paare $n_{\rm sim}$ im gleichen Abstand zueinander. Für zwei Absorber mit den Rotverschiebungen z_1 und z_2 wird der Abstand Δv dabei mit (3.6) berechnet.

 $n_{\rm sim}$ wurde durch Monte Carlo-Simulationen gewonnen, bei denen der Achsenabschnitt $\left(\frac{dn}{dz}\right)_0$ und die Steigung γ des Potenzgesetzes der Anzahldichtenevolution (2.9) vorgegeben und anschließend ein Spektrum erzeugt wurde, in dem die Linien gemäß diesem Evolutionsgesetz zufällig verteilt sind. Diese Prozedur wurde von einem von R. Baade entwickelten Fortran-Programm 1000 Mal durchgeführt, so daß statistische Fluktuationen weitestgehend eliminiert werden und die resultierende Linienverteilung, die sich aus dem arithmetischen Mittel der 1000 Durchläufe ergibt, keinerlei systematische Haufenbildungen oder Lücken ("Voids") zeigt. Danach werden von dem Programm sowohl im simulierten als auch im beobachteten Spektrum die Paare gezählt. Rotverschiebungsbereich, Säulendichteintervall, die sich daraus ergebende Linienzahl und der Abstand Δv können variiert werden, wobei die Vorgaben für das simulierte und das beobachtete Spektrum natürlich übereinstimmen müssen. Ist die Verteilung der beobachteten Absorptionslinien also lediglich der Anzahldichtenevolution und keinerlei sonstigen Inhomogenitäten unterworfen, ist $n_{\rm b} \approx n_{\rm sim}$ und $\xi \approx 0$. Eine starke Haufenbildung bedeutet $n_{\rm b} > n_{\rm sim}$ und $\xi > 0$, während $\xi < 0$ eine Antikorrelation signalisiert.

Bei der Untersuchung der Haufenbildungseigenschaften in *mehreren* QSO-Sehlinien muß zunächst jedes Quasarspektrum separat analysiert werden, da ein Absorber bei der Rotverschiebung z_1 in der Sehlinie zu QSO X natürlich keinerlei physikalischen Bezug zu einem Absorber bei $z_2 = z_1$ in der Sehlinie zum Quasar Y hat. Man kann jedoch die einzelnen Paaranzahlen n_b und n_{sim} der j analysierten Sehlinien jeweils zusammenaddieren und daraus ein Gesamt- ξ auf der Basis einer entsprechend verbesserten Statistik bilden²:

$$\xi_{\text{ges}}(\Delta v) = \frac{\sum_{i=1}^{j} n_{\text{b},i}(\Delta v)}{\sum_{i=1}^{j} n_{\text{sim},i}(\Delta v)} - 1.$$
(6.24)

Der Fehler von ξ_{ges} berechnet sich in guter Näherung alleine über $\sigma_{n_{\text{sim}}}$. $\sigma_{n_{\text{b}}}$ folgt direkt aus σ_{λ} bzw. σ_{z} ; da die Linienpositionen aber sehr gut bestimmt sind verglichen mit der Größe der untersuchten Linienabstände Δv bzw. Δz und zudem die Gesamtlinienzahl jeweils vorgegeben wird und keinen Spielraum für eine Verteilung von n_{b} läßt, ist $\sigma_{n_{\text{b}}} \approx 0$. Daher ist $\sigma_{\xi_{\text{ges}}} = \sqrt{\sum_{i=1}^{j} \left(\frac{\partial \xi_{\text{ges}}}{\partial n_{\text{sim},i}}\right)^2} \sigma_{n_{\text{sim},i}}^2$ und mit (6.24) $\sigma_{\xi_{\text{ges}}} = \frac{\sum_{i=1}^{j} n_{\text{b},i}}{\left(\sum_{i=1}^{j} n_{\text{sim},i}\right)^2} \cdot \sqrt{\sum_{i=1}^{j} \sigma_{n_{\text{sim},i}}^2}$. Nimmt man für den Fehler der simulierten Paaranzahl einen Poissonfehler $\sigma_{n_{\text{sim},i}} = \sqrt{n_{\text{sim},i}}$ an, folgt für den Gesamtfehler schließlich

$$\sigma_{\xi_{\text{ges}}} = \frac{\sum_{i=1}^{j} n_{\mathrm{b},i}}{\left(\sum_{i=1}^{j} n_{\mathrm{sim},i}\right)^{3/2}}.$$
(6.25)

²Es gilt das kosmologische Grundprinzip der Isotropie, d.h. in jeder Schlinienrichtung werden die gleichen Eigenschaften der Struktur, in diesem Fall die gleichen Haufenbildungscharakteristiken der Lyman α -Absorber erwartet. Die Zusammenfassung der Ergebnisse für die $n_{b,i}$ und $n_{sim,i}$ aus unterschiedlichen Schlinien ist daher zulässig.

Abbildung 6.24: Zweipunktgeschwindigkeitskorrelationsfunktion für die schwächeren Absorber, bis 1 000 km s⁻¹. Die Korrelationsfunktion ist mit der durchgezogenen Linie dargestellt; zur Orientierung ist $\xi = 0$ mit einer gepunkteten Linie markiert. Die gestrichelte und gepunktet-gestrichelte Linie sind der 1 σ - und 2 σ -Poissonfehler von ξ , bezogen auf $\xi = 0$. Die Linienpaare sind in Intervallen der Breite 100 km s⁻¹ zusammengefaßt.

Abbildung 6.25: Zweipunktgeschwindigkeitskorrelationsfunktion für die schwächeren Absorber, bis 10 000 km s⁻¹. Liniensymbole wie in Abb. 6.24. Die Intervallbreite ist 1 000 km s⁻¹.

Für bestimmte Intervalle Δz und $\Delta \log N_{\rm HI}$ sowie ein vorgegebenes Evolutionsgesetz (2.9) wurde zunächst für jede QSO-Sehlinie $n_{\rm b}$ gezählt und $n_{\rm sim}$ simuliert. Dabei wurde einmal $\Delta v_{\rm max} = 1000 \text{ km s}^{-1}$ gewählt, wobei die Paaranzahlen in Intervallen der Breite 100 km s⁻¹ zusammengefaßt wurden, und einmal $\Delta v_{\rm max} = 10\,000 \text{ km s}^{-1}$ (mit Intervallbreiten von 1000 km s⁻¹). Anschließend wurden mit (6.24) und (6.25) $\xi_{\rm ges}(\Delta v)$ und $\sigma_{\xi_{\rm ges}}(\Delta v)$ berechnet (im folgenden sei $\xi_{\rm ges} =: \xi$). Die Sehlinie von HS 0747+4259 wurde dabei wegen der spektralen Lücke im Bereich z = 1, 44 - 1, 56 formal als doppelte Sehlinie (einmal z < 1, 44 und einmal z > 1, 56) behandelt, so daß j = 10.

Da ein unterschiedliches Haufenbildungsverhalten für starke und schwache Absorber erwartet wird, ist es sinnvoll, entsprechende Untergruppen separat zu analysieren. Für die starken Linien wurde dabei die in der Literatur häufig benutzte Definition log $N_{\rm HI} > 13,64$ verwendet, während für die Absorber niedriger Säulendichte entsprechend der Vollständigkeitsgrenze der Säulendichteverteilung (s. Kap. 6.2) log $N_{\rm HI} = 12,90-14,00$ gewählt wurde. Bei den schwachen wie bei den starken Absorbern wurden jeweils die für die *Summe* aller Schlinien hergeleiteten Evolutionsgesetze zugrundegelegt, d.h. es wurden bei der Berechnung der einzelnen $n_{\rm sim,i}$ und $n_{\rm b,i}$ einheitliche Werte für $\left(\frac{dn}{dz}\right)_0$ und γ angenommen ($\gamma = 0,74$ für die schwachen bzw. $\gamma = 1,50$ für die starken Absorber), obwohl beide Parameter von Schlinie zu Schlinie stark variieren. Die Parameter stehen jedoch für die Gesamtauswahl auf einer statistisch breiteren Basis und sind entsprechend genauer bestimmt. Zudem zeigte sich in Testrechnungen mit variierenden Werten für $\left(\frac{dn}{dz}\right)_0$ und γ , die auch für einzelne Schlinien durchgeführt wurden, daß $\left(\frac{dn}{dz}\right)_0$ fast völlig ohne Auswirkungen auf das Ergebnis für ξ ist und auch γ über einen großen Bereich (0 – 3) einen vernachlässigbaren Einfluß auf ξ hat.

Die Abbildungen 6.24 und 6.25 zeigen $\xi(\Delta v)$ für die Absorber niedriger Säulendichte auf Skalen bis 1 000 km s⁻¹ bzw. 10 000 km s⁻¹. Gestrichelt bzw. gepunktet-gestrichelt dargestellt sind (wie auch in den folgenden Graphiken) die auf die gepunktet markierte $\xi = 0$ – Linie bezogenen 1 σ - und 2σ -Poissonfehler von ξ . Ein über dem 2σ -Level liegendes Signal ist dabei lediglich für $\overline{\Delta v} = 150$ km s⁻¹ bzw. $\overline{\Delta v} = 1500$ km s⁻¹ und 6 500 km s⁻¹ zu erkennen; ansonsten liegt $\xi(\Delta v)$ durchgehend unter dem 1 σ -Niveau. Der Ausschlag von ξ bei $\overline{\Delta v} = 150$ km s⁻¹ ($\xi = 0, 32, 1\sigma = 0, 13$) deutet ein Haufenbildungsverhalten der schwachen Absorber über kurze Distanzen an, denn das schwache Signal bei $\overline{\Delta v} = 50$ km s⁻¹ ($\xi = 0, 02, 1\sigma = 0, 10$) kann z.T. dadurch erklärt werden, daß einige der schwächeren Linien aufgrund von Blends unerkannt bleiben: Würden die Blends als Überlagerung mehrerer Linien identifiziert, ergäben sich weitaus mehr Paare mit niedrigen Δv , also höheren Werten für $n_{\mathrm{b},i}$ in diesem Δv -Bereich.

Haufenbildung tritt erwartungsgemäß auch bei den gravitativ stärker wechselwirkenden Absorbern höherer Säulendichte auf, allerdings nur über kurze Distanzen (Abb. 6.26): $\xi = 1,04 > 2\sigma$ für $\overline{\Delta v} = 50$ km s⁻¹ und $\xi = 0,36 > 1\sigma$ für $\overline{\Delta v} = 150$ km s⁻¹. Über größere Entfernungen betrachtet sind die starken Absorber offensichtlich weitestgehend unkorreliert, wobei sich bei $\overline{\Delta v} = 350$ km s⁻¹ interessanterweise eine Antikorrelation der Absorber ($\xi = -0, 41$) über dem 2σ -Level (-0, 25) zeigt. Die großskalige Untersuchung der Linien mit log $N_{\rm HI} > 13, 64$ liefert eine leichte Häufung (> 1 σ) bei den Abständen $\overline{\Delta v} = 500$ km s⁻¹ und $\overline{\Delta v} = 7500$ km s⁻¹ (Abb. 6.27).

Die gefundene Haufenbildung der schwächeren und der stärkeren Absorber auf kurzen

Abbildung 6.26: Zweipunktgeschwindigkeitskorrelationsfunktion für die stärkeren Absorber, bis 1000 km s⁻¹. Liniensymbole wie in Abb. 6.24. Die Intervallbreite ist 100 km s⁻¹.

Abbildung 6.27: Zweipunktgeschwindigkeitskorrelationsfunktion für die stärkeren Absorber, bis 10 000 km s⁻¹. Liniensymbole wie in Abb. 6.24. Die Intervallbreite ist 1 000 km s⁻¹.

Abbildung 6.28: Zweipunktgeschwindigkeitskorrelationsfunktion für die starken Absorber für individuelle QSO-Sehlinien. Liniensymbole wie in Abb. 6.24. Die Intervallbreite ist 100 km s^{-1} .

Skalen widerspricht dem Ergebnis aus Janknecht et al. (2002), wo bei einer Analyse der Sehlinie zu HE 0515-4414 alleine für beliebige Säulendichten und Δv kein Anzeichen für ein Signal in der Korrelationsfunktion gefunden wurde. Abbildung 6.28, in der ξ exemplarisch für einige individuelle Sehlinien dargestellt ist, illustriert jedoch, daß einzelne Sehlinien in der Regel offenbar keine ausreichende statistische Grundlage bieten, um ein Paarbildungsverhalten der Lyman α -Absorber nachzuweisen: Obwohl hier die vier Sehlinien mit den meisten starken Linien betrachtet werden (> 40), ist für $\Delta v < 200 \text{ km s}^{-1}$ ein allenfalls marginaler Ausschlag über dem 1 σ -, jedoch kein Wert über dem 2 σ -Level zu erkennen. Erst durch das Aufsummieren über mehrere Sehlinien zeigt sich das haufenweise Auftreten der Absorber zumindest über kleine Distanzen ($\Delta v < 200 \text{ km s}^{-1}$).

In der Literatur überwiegen die Studien, in denen ebenfalls eine signifikante Haufenbildung auf kurzen Skalen konstatiert wird, z.T. auch bei den Linien niedrigerer Säulendichte. In Rotverschiebungsbereichen, die zumindest teilweise in das hier untersuchte z-Intervall fallen, finden z.B. Kim et al. (2001) (z = 1, 5 - 2, 4) für einen Abstand $\Delta v = 100 \text{ km s}^{-1}$ und log $N_{\text{HI}} > 12, 7$ $\xi = 0, 4 \pm 0, 1$, Cristiani et al. (1995) (z = 0 - 3, 7) für die gleiche Entfernung und log $N_{\text{HI}} > 13, 8$ $\xi = 0, 89 \pm 0, 18$ bzw. $\xi = 1, 02 \pm 0, 26$ (für zwei verschiedene Quasare), Ulmer (1996) (z = 0 - 1, 3) für $\Delta v = (250 - 500) \text{ km s}^{-1}$ und log $N_{\text{HI}} > 13, 64$ $\xi = 1, 8^{+1,6}_{-1,2}$ und Hu et al. (1995) (z = 1, 9 - 2, 8) für $\Delta v = (50 - 150) \text{ km s}^{-1}$ und log $N_{\text{HI}} \approx 12, 9 - 14, 5$ $\xi = 0, 17 \pm 0, 05.$

Natürlich kann eine Häufung der Absorberpaare auf kurzen Skalen auch als Folge von sich mit unterschiedlicher Radialgeschwindigkeit bewegenden Gasmassen *innerhalb* eines Absorbers statt als Existenz benachbarter Absorber interpretiert werden. Solche lokalen Geschwindigkeitsfelder dürften zumindest für einen Teil der hier und in den zitierten Studien über kurze Abstände gemessenen Signale in der Korrelationsfunktion verantwortlich sein.

Bisherige Beobachtungsdaten suggerieren, daß die Kumulation der Absorber mit sinkender Rotverschiebung zunimmt (Kim et al., 2001; Ulmer, 1996). Die Tatsache, daß sich die Strukturen im Universum durch die Gravitation im Verlauf der Zeit immer stärker herausbilden, plausibilisiert dies ebenso wie die Feststellung, daß bei niedrigen Rotverschiebungen $\gtrsim 1/3$ aller Lyman α -Absorber mit Galaxien assoziiert sind (Lanzetta et al., 1995), von denen ein starke Haufenbildungsverhalten bekannt ist.

Auch hier wurde daher geprüft, ob die Zweipunktkorrelationsfunktion von z abhängt. Dazu wurden die zehn Sehlinien in die z-Intervalle 0, 5 - 1, 0, 1, 0 - 1, 5 und 1, 5 - 2, 0 unterteilt, d.h. aus jeder Sehlinie je nach Länge ein, zwei oder drei künstliche Teilsehlinien erzeugt. Wie oben beschrieben wurden dann (separat für jedes z-Intervall) die $n_{b,i}$ gezählt, die $n_{sim,i}$ simuliert (jeweils bis $\Delta v_{max} = 1\,000 \text{ km s}^{-1}$) und ξ und der 1σ - und 2σ -Poissonfehler für die einzelnen Δv -Intervalle berechnet.

Die Entwicklung von ξ mit z geht aus den Abbildungen 6.29 (Linien niedriger) und 6.30 (Linien höherer Säulendichte) hervor. Während bei den schwachen Linien der $\xi \approx 0$ – Wert für $\Delta v < 100 \text{ km s}^{-1}$ wieder auf Blendeffekten beruhen dürfte und für $\Delta v > 200 \text{ km s}^{-1}$ keine nennenswerte Paarbildung zu verzeichnen ist, findet sich etwas überraschend das stärkste Haufenbildungssignal für $\overline{\Delta v} = 150 \text{ km s}^{-1}$ im höchsten Rotverschiebungsbereich: $\xi = 0, 44 > 2\sigma$. Hingegen pendelt es sich in diesem Δv -Bereich mit sinkendem z um das 1 σ -Niveau ein ($\xi = 0, 18$; 1 $\sigma = 0, 19$ für $z = 1, 0 - 1, 5, \xi = 0, 33$; 1 $\sigma = 0, 30$ für

Abbildung 6.29: Evolution der Zweipunktgeschwindigkeitskorrelationsfunktion für die schwächeren Absorber, illustriert anhand von drei z-Intervallen. Liniensymbole wie in Abb. 6.24. Die Intervallbreite ist 100 km s⁻¹.

Abbildung 6.30: Evolution der Zweipunktgeschwindigkeitskorrelationsfunktion für die stärkeren Absorber, illustriert anhand von drei z-Intervallen. Liniensymbole wie in Abb. 6.24. Die Intervallbreite ist 100 km s⁻¹.

z=0,5-1,0),d.h. relativ zu σ verändert sich ξ für z<1,5 kaum noch.

Ähnlich verhält es sich mit den starken Linien bei $\overline{\Delta v} = 50 \text{ km s}^{-1}$: Von einem annähernd 2σ -Level ($\xi = 1, 40; 1\sigma = 0, 79$) sinkt die Haufenbildung mit sinkendem z über ein 1, 5 σ - (1,02/0,66) schließlich auf ein 0, 5 σ -Level (0,34/0,77). Allerdings relativiert der gegenläufige Trend (von $\xi \approx 0$ zu $\xi \approx 1, 5\sigma$), der sich bei den starken Absorbern vom höchsten zum mittleren z-Intervall bei $\overline{\Delta v} = 150 \text{ km s}^{-1}$ zeigt, diesen Befund stark. Zudem ist insgesamt weder bei den Linien hoher noch bei denen niedriger Säulendichte ein deutlich über 2σ liegendes Signal zu erkennen.

Es bleibt festzuhalten, daß kein einheitliches Evolutionsverhalten von ξ konstatiert werden kann. Die von Kim et al. (2001) oder Ulmer (1996) vorgeschlagene steigende Korrelation der Absorber mit sinkendem z kann nicht bestätigt werden. Der oben beschriebene Effekt, daß eine zu geringe Statistik (hier durch die Aufteilung der Linien in drei z-Bereiche) ein mögliches Haufenbildungsverhalten der Absorber kaschiert, könnte eine Ursache dafür sein. Vermutlich reicht also die Zahl der Absorber nicht aus, um eine Entwicklung von ξ mit z erkennen zu können. Eventuell zeigt sich eine Evolution von ξ aber auch erst über größere z-Bereiche als dem hier untersuchten, denn über relativ kurze Rotverschiebungsweglängen ist es schwierig, eine Haufenbildung hoher statistischer Signifikanz zu entdecken (Rauch, 1998).

6.7 Evolution der Anzahldichte der Lyman α -Absorber

Wie die Haufenbildung wird auch die Evolution der Anzahldichte der Lyman α -Linien gewöhnlich für zwei separate Untergruppen unterschiedlichen Säulendichtebereichs untersucht, da eine voneinander abweichende Entwicklung angenommen wird. Hier wurde die Untergrenze der schwächeren Linien variiert und für die Obergrenze log $N_{\rm HI} = 14$ gewählt, während die stärkeren Linien wie in Kapitel 6.6 mit log $N_{\rm HI} > 13,64$ festgelegt wurden (was bei ungesättigten Lyman α -Linien nach (4.3) der in der umfassenden Evolutionsstudie von Weymann et al. (1998) gewählten Untergrenze $W_{\lambda,0} > 240$ mÅ entspricht). Diese Definitionen erlauben wegen der häufigen Verwendung dieser Grenzen in der Literatur einen direkten Vergleich der Ergebnisse.

Der Wert für die Anzahldichte $\frac{dn}{dz}$ läßt sich in der Praxis herleiten, indem eine Intervallbreite Δz gewählt wird und die Zahl der Absorptionslinien n in den einzelnen Intervallen bestimmt wird. Um sicherzustellen, daß das Evolutionsverhalten nicht von Δz abhängt, wurden die Berechnungen für drei verschiedene Intervallgrößen (0,05; 0,06; 0,10) durchgeführt.

Bei der Kombination der Linienensembles mehrerer Sehlinien, die in der Regel verschiedene z-Bereiche abdecken, muß natürlich beachtet werden, daß in ein bestimmtes Rotverschiebungsintervall unterschiedlich viele Sehlinien fallen. Daher wurde für jede Intervallbreite Δz die Zahl der für jedes einzelne Intervall relevanten Sehlinien $n_{\rm S}$ (z.T. auch nicht-natürliche Zahlen, wenn eine Sehlinie nur einen Teil eines Intervalls abdeckt) berechnet und ein $\frac{dn}{dz}$ pro Sehlinie definiert ($n_{\rm S}$ kann auch aus Abb. 3.1 abgeschätzt werden). Da die Fluktuationen von Sehlinie zu Sehlinie groß sind, wurden nur z-Intervalle mit $n_{\rm S} > 1$ berücksichtigt, d.h. die Bereiche $z \leq 0,7$ und $z \gtrsim 1,9$, die nur von den Quasaren PG 1634+706 bzw. HE 0429-4901 abgedeckt werden, wurden aus der Analyse hier und im folgenden ausgeklammert.

Die differentielle Anzahl der Absorptionslinien pro Rotverschiebungsintervall kann dann mit

$$\frac{\mathrm{d}n}{\mathrm{d}z} \approx \frac{n}{\Delta z \cdot n_{\mathrm{S}}} \tag{6.26}$$

genähert werden. Sie wurde für verschiedene Säulendichtebereiche und Δz als Funktion der Rotverschiebung berechnet. An jeden $\frac{dn}{dz}$ -Verlauf wurden auf der Grundlage des Levenberg-Marquard-Algorithmus das Potenzgesetz (2.9) gefittet und auf diese Weise $\left(\frac{dn}{dz}\right)_0$ und γ hergeleitet.

Die Abbildungen 6.31-6.33 zeigen die Abhängigkeit von $\frac{dn}{dz}$ von z zunächst für die Absorber niedriger Säulendichte mit den log $N_{\rm HI}$ -Untergrenzen 12,70, 12,90 (entsprechend einer optimistischen bzw. vorsichtigen Abschätzung der Vollständigkeitsgrenze der Säulendichteverteilung, s. Kap. 6.2) und 13,10 (ein in anderen Studien oft benutzter Wert), jeweils für alle drei Δz . Dargestellt sind (wie auch in den folgenden Evolutionsdiagrammen) jeweils die Datenpunkte sowie die Fitkurven an diese mit ihren 2σ -Konfidenzintervallen.

Zieht man die Lage der Konfidenzintervalle als Maßstab für die Zuverlässigkeit eines Fits heran, sind die Ergebnisse für die Linien mit log $N_{\rm HI} = 12,90 - 14,00$ (im folgenden Auswahl 2 bzw. A2 genannt) gegenüber denen für die Linien im Bereich log $N_{\rm HI} = 12,70 - 14,00$ (=: A1) vorzuziehen: Während je nach Δz immerhin noch 50,0%, 63,2% bzw. 66,7% der A2-Punkte innerhalb der 2σ -Konfidenzintervalle liegen, fallen die entsprechenden Anteile bei A1 (37,5%, 36,8%, 66,7%) trotz höherer Linienzahl (956 im Gegensatz zu 791 bei A2) und damit besserer Statistik etwas niedriger aus. Vermutlich bestätigt dies, daß die Linienauswahl für log $N_{\rm HI} < 12,90$ nicht mehr vollständig ist.

Relevanter als eine weitergehende Analyse der Auswahl A1 ist daher eine genauere Betrachtung der Auswahlen A2 und A3 (Linien mit log $N_{\rm HI} = 13, 10 - 14, 00$). Zunächst wurde für diese Ensembles der lineare Korrelationskoeffizient r berechnet, um quantifizieren zu können, inwieweit die stark fluktuierenden Verteilungen der Punkte in den Evolutionsdiagrammen tatsächlich einen Zusammenhang zwischen der Rotverschiebung und der Anzahldichte der Lyman α -Absorber widerspiegeln. Dabei wurde jeweils die Intervallgröße $\Delta z = 0,05$ gewählt. Da der Korrelationskoeffizient nur für lineare Zusammenhänge gilt, wurde die Geradenform von (2.9),

$$\log\left(\frac{\mathrm{d}n}{\mathrm{d}z}\right) = \log\left(\frac{\mathrm{d}n}{\mathrm{d}z}\right)_0 + \gamma \cdot \log\left(1+z\right),\tag{6.27}$$

für die Berechnung des Koeffizienten verwendet. r kann umgerechnet werden in die Signifikanz t(r) dafür, daß $r \neq 0^3$. Die t-Werte können in guter Näherung mit einer Studentschen t-Verteilung beschrieben werden, so daß aus t die Wahrscheinlichkeit W dafür, daß eine Korrelation vorliegt, abgelesen werden kann.

³Es ist $r \in [-1; 1]$; $r = \pm 1$ indiziert eine perfekte Korrelation, während r = 0 anzeigt, daß die betrachteten Größen völlig unkorreliert sind.

Abbildung 6.31: Evolution der Anzahldichte der schwächeren Lyman α -Absorber (Untergrenze log $N_{\rm HI} = 12,70$) für drei verschiedene Intervallbreiten Δz . Gegeben sind jeweils die Datenpunkte (\diamond), der beste Fit an diese (durchgezogene Linien) sowie die 2σ -Konfidenzbänder für den Fit (gestrichelte Linien).

Abbildung 6.32: Evolution der Anzahldichte der schwächeren Lyman α -Absorber (Untergrenze log $N_{\rm HI} = 12,90$) für drei verschiedene Intervallbreiten Δz . Symbole wie in Abb. 6.31.

Abbildung 6.33: Evolution der Anzahldichte der schwächeren Lyman α -Absorber (Untergrenze log $N_{\rm HI} = 13, 10$) für drei verschiedene Intervallbreiten Δz . Symbole wie in Abb. 6.31.

Linienauswahl	r	t(r)	W(r)
A2	0,432	2,244	$96{,}5\%$
A3	0,243	$1,\!176$	$74,\!8\%$
A4	0,598	$3,\!502$	99,8%

Tabelle 6.12: Linearer Korrelationskoeffizient r, Signifikanzwert t(r) für $r \neq 0$ sowie Wahrscheinlichkeit W(r) für das Vorliegen einer Korrelation zwischen log (1 + z) und log $(\frac{dn}{dz})$ für verschiedene Linienauswahlen (zur deren Definition siehe Tab. 6.13).

Tabelle 6.12 zeigt die Ergebnisse: Für A2 ergibt die Berechnung des Korrelationskoeffizienten mit r = 0,432 einen signifikant von Null abweichenden Wert, und es folgt, daß log (1 + z) und log $(\frac{dn}{dz})$ mit einer 96,5%-Signifikanz miteinander korreliert sind. Für die A3-Absorber folgt dagegen r = 0,243 und lediglich eine 74,8%-Signifikanz für eine Korrelation.

Damit konform gehen die im Vergleich zu den A2-Linien geringeren Anteile der innerhalb der 2σ -Konfidenzintervalle liegenden Linien bei A3 (37,5%, 52,6%, 66,7% für die verschiedenen Δz , vgl. mit den Werten oben für A2). Vermutlich ist dies eine Folge der unterschiedlichen Linienzahl: Nur 74,1% der A2-Linien fallen in den A3-Bereich.

Zusammenfassend kann also festgestellt werden, daß das A2-Ensemble den besten Kompromiß zwischen den Anforderungen einer ausreichend großen Linienzahl und einer Vollständigkeit der Linienauswahl darstellt. Allerdings ist der Unterschied zwischen A2 und A3 gering, wie angesichts der gemeinsamen Linienschnittmenge von 74,1% zu erwarten. Abbildung 6.34 gibt einen direkten Vergleich beider Verteilungen ($\Delta z = 0,05$), deren normierte Anzahldichten, d.h. die $\frac{dn}{dz}$ -Werte eines Intervalls bezogen auf die Summe der $\frac{dn}{dz}$ -Werte aller Intervalle, in Abbildung 6.35 gegen z aufgetragen sind (da A3 eine Untermenge von A2 darstellt, ist das Niveau der Absolutwerte von $\frac{dn}{dz}$ bei A2 systematisch höher. Mit der Normierung auf das Gesamt- $\frac{dn}{dz}$ aller Intervalle lassen sich die Anzahldichten beider Verteilungen vergleichen). Ein systematischer Unterschied zwischen beiden Verteilungen läßt sich dabei nicht feststellen. Dennoch bleibt festzuhalten, daß das Evolutionsdiagramm von A2 eine deutlichere Korrelation zwischen Anzahldichte und Rotverschiebung als das von A3 zeigt.

Aus den Abbildungen 6.31-6.33 geht trotz der starken Streuung der Datenpunkte ein eindeutiger Abwärtstrend der Liniendichte mit sinkendem z hervor, unabhängig vom gewählten Säulendichteintervall. Die Tabelle 6.13, in der der Exponent γ des Potenzgesetzes mit dem 1 σ -Fehler für verschiedene log $N_{\rm HI}$ -Bereiche und Δz gegeben ist, unterstreicht dies: Die Evolution ist für alle drei Säulendichteregionen und alle drei z-Intervallbreiten, die in den Abbildungen 6.31-6.33 betrachtet werden, innerhalb 1 σ konsistent mit $\gamma > 0$, entsprechend einer im Verlauf der Zeit sinkenden Anzahldichte. So ist z.B. für $\Delta z = 0,05$ und die A2-Linien $\gamma = 0,74 \pm 0,31$.

Auf der breiten statistischen Basis von nunmehr neun Quasarsehlinien zeigt sich damit, daß sich die Anzahldichte der schwächeren Absorber — im Gegensatz zu den Ergebnissen für HE 0515-4414 und HS 0747+4259 alleine (Kap. 5.1, 5.2) — in der Phase z = 0, 7 - 1, 9 entwickelt.

Abbildung 6.34: Vergleich der Anzahldichtenevolution von A2 und A3. Der beste Fit an die zwei Verteilungen ist jeweils eingezeichnet.

Abbildung 6.35: Vergleich der Evolution der jeweils auf die Summe der $\frac{dn}{dz}$ -Werte aller Intervalle normierten Anzahldichten von A2 und A3.

Dabei gibt es nur unwesentliche Unterschiede zwischen den Ergebnissen für $\Delta z = 0,05$ und $\Delta z = 0,10$, während jene für $\Delta z = 0,06$ zu leicht höheren γ hin zu tendieren scheinen. Allerdings sind diese Abweichungen in keinem Fall (inklusive aller anderen in Tabelle 6.13 aufgeführten Säulendichteregionen) signifikant (vgl. auch Abbildung 6.38, in der der Exponent γ mit seinen Fehlerbalken über die jeweils mittlere Säulendichte eines log $N_{\rm HI}$ -Bereichs für alle drei Δz aufgetragen ist). Daher kann resümiert werden, daß die Wahl von Δz keinen entscheidenden Einfluß auf die Ergebnisse hat.

Die Entwicklung der stärkeren Lyman α -Absorber (log $N_{\rm HI} > 13, 64$; hier definiert als Auswahl A4) ist in Abbildung 6.36 dargestellt, wieder für alle drei Intervallbreiten Δz . Wie bei den schwächeren Linien liegt die Variation von γ in Abhängigkeit von Δz (Tabelle 6.13) im Rahmen der Fehler von γ . Auch hier wird jedoch die starke Streuung der Datenpunkte deutlich. Für $\Delta z = 0, 05$ liegen sogar nur 25% der Datenpunkte innerhalb der 2σ -Konfidenzintervalle. In Abbildung 6.37 wurden für dieses Δz nur die Linien mit Fehlern in den Fitparametern unter 50% berücksichtigt ($\sigma_{N_{\rm HI}}/N_{\rm HI} \leq 0, 5 \wedge \sigma_b/b \leq 0, 5$). Die Streuung der Punkte verringert sich durch diese Selektion kaum — immer noch liegen 2/3 aller Werte außerhalb der 2σ -Grenzen. Es ergibt sich allerdings mit $\gamma = 2, 04\pm 0, 48$ ein stärkerer Abfall in der Liniendichte mit sinkendem z, als wenn alle Linien zugrundegelegt werden ($\gamma = 1, 50\pm 0, 45$). Ein direkter Vergleich der $\frac{dn}{dz}$ -Werte zeigt, daß hierfür vor allem die Linien im Bereich z = 0, 9 - 1, 3 verantwortlich sind: Ein Großteil dieser Linien ist als Folge des vergleichsweise niedrigen S/N in diesem Bereich ungenau bestimmt und fällt bei einer Fitfehlerselektion heraus, so daß sich ein steilerer Verlauf im $\frac{dn}{dz}(z)$ -Diagramm ergibt.

Trotz der starken Streuung ergibt die Berechnung des Korrelationskoeffizienten für A4 mit $\Delta z = 0,05$ (r = 0,598, Tab. 6.12), daß bei den stärkeren Absorbern log ($\frac{dn}{dz}$) und log (1 + z) mit einer 99,8%-Signifikanz miteinander korreliert sind. Darüberhinaus zeigt sich eine signifikante Abnahme in der Liniendichte mit sinkender Rotverschiebung ($\gamma > 0$) für alle Δz (vgl. Werte für γ in Tabelle 6.13).

Um das Evolutionsverhalten der stärkeren mit dem der schwächeren Absorber zu vergleichen, wurde ein χ^2 -Test zwischen den Verteilungen der Linienanzahlen beider Mengen durchgeführt. Dazu wurde eine Teilmenge von A2 (alle Linien mit log $N_{\rm HI} = 12, 90-13, 30,$ n = 377) definiert, um zum einen den Überlapp zwischen A2 und A4 zu umgehen und voneinander unabhängige Verteilungen vergleichen zu können, und um zum anderen in etwa gleiche Linienanzahlen ($n_{\rm A4} = 354$) zu erhalten. Das Ergebnis des Tests, $\chi^2 = 26, 180$, kann mit Hilfe der unvollständigen Gammafunktion in eine 65,6%–Wahrscheinlichkeit dafür, daß die beiden Verteilungen verschieden sind, umgerechnet werden. Der χ^2 -Test läßt also kein eindeutiges Urteil zu, suggeriert jedoch tendenziell eher ein voneinander abweichendes Evolutionsverhalten. Dies wird gestützt durch die differierenden Ergebnisse für γ (s. Tabelle 6.13): Für alle Δz liegt der Gradient der A4-Linien durchweg deutlich über denen der verschiedenen Auswahlen schwächerer Absorber, insbesondere der A2-Linien. Allerdings muß einschränkend hinzugefügt werden, daß durch die hohe Ungenauigkeit bei der

Abbildung 6.36: Evolution der Anzahldichte der stärkeren Lyman α -Absorber (log $N_{\rm HI} > 13, 64$) für drei verschiedene Intervallbreiten Δz . Symbole wie in Abb. 6.31.

Abbildung 6.37: Evolution der Anzahldichte derjenigen stärkeren Lyman α -Absorber, deren Fehler in den Fitparametern $N_{\rm HI}$ und *b* jeweils unter 50% liegt, für die Intervallbreite $\Delta z = 0, 5$. Symbole wie in Abb. 6.31.

Bestimmung von γ die A4-Steigungen im Rahmen der Fehler σ_{γ} weitestgehend noch mit denen von A2 übereinstimmen.

Ein deutlicherer Kontrast zwischen den Entwicklungen der Anzahldichten der starken und schwachen Linien wird vermutlich durch einen Auswahleffekt kaschiert: Die Dichte der Linien niedrigerer Säulendichte fällt durch Fehlidentifikationen, sich häufende Blends mit Metallinien, niedriges S/N etc. bei *niedrigen z* systematisch zu niedrig aus im Vergleich zu den Linien höherer Säulendichte. Diese Probleme bei der Linienidentifikation resultieren in einen zu steilen Verlauf $\frac{dn}{dz}(z)$ bei den schwachen Linien und damit in ein zu hohes γ .

Die Abhängigkeit von γ vom Säulendichtebereich läßt sich physikalisch mit der gravitationsgesteuerten Strukturbildung im Universum plausibilisieren: Regionen niedrigerer Dichte im intergalaktischen Gas werden wegen ihrer schwächeren Eigengravitation stärker durch die Hubble-Expansion auseinandergetrieben als Regionen höherer Dichte. Der Absorptionswirkungsquerschnitt der schwächeren Lyman α -Absorber, die dem Gas niedrigerer Dichte entsprechen, erhöht sich daher im Verlauf der Zeit *relativ* zu dem der stärkeren Absorber, und es bilden sich im Verhältnis mehr Absorptionslinien niedrigerer Säulendichte.

Bei dem Vergleich der Absorber hoher und niedriger Säulendichte fällt auf, daß der Kontrast in γ schwächer ausfällt, wenn der Säulendichtebereich der schwächeren Absorber nach unten ausgedehnt wird. Um dies genauer zu untersuchen, wurde die Säulendichteuntergrenze der schwächeren Linien in Schritten von $\Delta \log N_{\rm HI} = 0,10$ zwischen log $N_{\rm HI} = 12,70$ und log $N_{\rm HI} = 13,50$ variiert und der Exponent γ für alle drei

T in income h			Δ			
Linienauswani			Δz			
log Nur	$< \log N_{\rm HI} >$	n	0,05	0,06	0,10	
IOG I VHI		10	$\gamma \pm \sigma_{\gamma}$			
12,70 - 14,00 (A1)	$13,26\pm0,35$	956	$0,94\pm0,25$	$1,20\pm0,15$	$0,96\pm0,22$	
12,80 - 14,00	$13,31\pm0,32$	868	$0,88\pm0,29$	$1,17\pm0,20$	$0,94\pm0,25$	
12,90 - 14,00 (A2)	$13,35\pm0,30$	791	$0,74\pm0,31$	$1,06\pm0,24$	$0,78\pm0,28$	
13,00 - 14,00	$13,42\pm0,27$	683	$0,60\pm0,36$	$0,96\pm0,28$	$0,74\pm0,32$	
13, 10 - 14, 00 (A3)	$13,48\pm0,25$	586	$0,50\pm0,38$	$0,88\pm0,30$	$0,62\pm0,35$	
13,20-14,00	$13,53\pm0,22$	506	$0,60\pm0,39$	$0,74\pm0,33$	$0,67\pm0,32$	
13,30 - 14,00	$13,59\pm0,20$	414	$0,75\pm0,42$	$0,76\pm0,38$	$0,81\pm0,31$	
13,40-14,00	$13,66\pm0,17$	319	$0,69\pm0,46$	$0,77\pm0,49$	$0,76\pm0,42$	
13,50-14,00	$13,73\pm0,14$	250	$0,42\pm0,48$	$0,73\pm0,58$	$0,53\pm0,48$	
13,64 - 16,00	$14,18\pm0,51$	338	$1,55\pm0,47$	$1,72\pm0,52$	$1,36\pm0,50$	
> 13,64 (A4)	$14,31\pm0,84$	354	$1,50\pm0,45$	$1,63\pm0,50$	$1,34\pm0,47$	

Tabelle 6.13: Abhängigkeit des Exponenten γ des Evolutionsgesetzes für die Anzahldichte vom betrachteten Säulendichteintervall für verschiedene Intervallgrößen Δz . Gegeben sind (von links nach rechts) der berücksichtigte Säulendichtebereich, der Mittelwert der Säulendichten aller Linien in diesem Intervall und deren Anzahl n sowie γ mit dem 1 σ -Fehler für drei verschiedene Δz (0,05, 0,06, 0,10).

 Δz berechnet. Tatsächlich zeigen die Ergebnisse in Tabelle 6.13, daß γ zumindest ab log $N_{\rm HI,min} = 13,10$ bis hinunter zu log $N_{\rm HI,min} = 12,70$ für alle z-Intervallbreiten systematisch ansteigt. Abbildung 6.38 visualisiert diesen Trend, wobei verschiedene Symbole unterschiedlichen Δz entsprechen. Auf einen Abfall von γ bis log $N_{\rm HI,min} = 13,10$ würde demnach wieder eine stärkere Steigung im Evolutionsdiagramm folgen, wenn noch schwächere Absorber einbezogen werden. Dies ist möglicherweise ein Indiz dafür, daß der Zusammenhang γ ($< \log N_{\rm HI} >$) komplizierter ist, als allgemein angenommen wird. So finden Kim et al. (2002a) einen monotonen Abfall von γ , wenn sie die Säulendichteuntergrenze schrittweise von log $N_{\rm HI} = 14,50$ bis log $N_{\rm HI} = 12,50$ reduzieren (allerdings durchgehend auch unter Miteinbeziehung der Absorber mit log $N_{\rm HI} > 14,50$). Auch Weymann et al. (1998) sehen einen einheitlichen Trend von γ mit $< \log N_{\rm HI} >$.

Das γ -Verhalten in Abbildung 6.38 wird jedoch dadurch relativiert, daß sämtliche Gradienten der Untermengen schwacher Absorber innerhalb 1 σ miteinander konsistent sind und die Linienauswahl für log $N_{\rm HI} < 12,90$ auch nicht mehr vollständig ist. Zudem steht der Verlauf von γ ($< \log N_{\rm HI} >$) im Kontrast zu der dichteabhängigen Strukturbildung im Universum (s.o.), die erwarten läßt, daß der Evolutionsexponent mit abnehmendem Säulendichtebereich monoton sinkt (Davé et al., 1999).

Eine wahrscheinliche Ursache für den gemessenen Verlauf von γ ist der erwähnte datenqualitätsbedingte Auswahleffekt: Ab log $N_{\rm HI} \lesssim 13$ wird die Detektion und Identifikation der Linien bei niedrigen z schwierig, wodurch sich systematisch zu hohe γ ergeben.

Die Abbildungen 6.39 und 6.40 bieten einen umfassenden Vergleich der Ergebnisse dieser Arbeit für die schwächeren (aus Gründen der Vergleichbarkeit mit den Literaturergeb-

Abbildung 6.38: Abhängigkeit des Exponenten γ des Evolutionsgesetzes für die Anzahldichte vom betrachteten Säulendichtebereich für verschiedene Δz . Das Säulendichteintervall ist mit dem jeweiligen Mittelwert aller Linien in diesem Intervall dargestellt. Die Intervallgrößen in z, 0,05, 0,06 und 0,10, sind durchgehend mit je einem Symbol markiert. Fehlerbalken für γ sind eingezeichnet. Aus Darstellungsgründen weichen die Werte für die mittlere Säulendichte für $\Delta z = 0,06$ und $\Delta z = 0,10$ jeweils leicht von ihrem tatsächlichen Wert, repräsentiert durch die Werte für $\Delta z = 0,05$, ab.

Abbildung 6.39: Vergleich der Evolution der Anzahldichte der Lyman α -Absorber im Bereich 13, 10 < log $N_{\rm HI}$ < 14,00 mit Literaturwerten. Die Linien der vorliegenden Arbeit sind in Intervallen $\Delta z = 0, 2$ zusammengefaßt und die resultierenden Datenpunkte in Rot dargestellt. Die rote Linie gibt den besten Fit an diese Datenpunkte wider, die schwarze gestrichelte Linie stellt eine Extrapolation des Fits für $z \to 0$ dar, und die schwarze gepunktete Linie markiert einen optimalen Fit an die anderen Datenpunkte im höheren z-Bereich, übernommen von Kim et al. (2002a). Die eingezeichneten Fehlerbalken der Datenpunkte dieser Studie entsprechen jeweils den 1 σ -Poissonfehlern von n.

nissen definiert durch die A3-Auswahl) bzw. die stärkeren Absorber mit verschiedenen Beiträgen zu der Entwicklung der Anzahldichte aus unterschiedlichen z-Bereichen aus der Literatur. In den doppeltlogarithmischen Darstellungen entsprechen verschiedene Symbole bzw. Farben jeweils den in unterschiedlichen Studien gemessenen Anzahldichten. Die Linien dieser Arbeit wurden jeweils in Intervallen $\Delta z = 0, 2$ zusammengefaßt, um mit den Intervallgrößen der anderen Untersuchungen vergleichbare Δz zu erhalten. Die resultierenden Punkte für diese Studie sind, ebenso wie der beste Fit an diese Punkte, in den Diagrammen rot hervorgehoben. Die Fehler in log $\left(\frac{dn}{dz}\right)$ ergeben sich aus einem angenommenen 1 σ -Poissonfehler für n.

Betrachtet man zunächst die Entwicklung der schwächeren Absorber (Abb. 6.39), wird deutlich, daß der hier analysierte Datensatz in einen z-Bereich vorstößt, der in der Literatur bisher (mangels hochaufgelöster UV-Daten) noch nicht untersucht wurde. Der beste Fit an die Datenpunkte dieser Arbeit ergibt $\gamma = 0,78 \pm 0,27$ und geht damit konform mit den Exponenten für A3 für die anderen Intervallbreiten (Tabelle 6.13). Der Fehler von γ fällt allerdings niedriger aus, weil die Fluktuationen der Datenpunkte mit steigendem Δz natürlich geringer werden.

Die Abnahme in der Liniendichte wird in dem hier untersuchten z-Intervall offenbar gebremst, wie aus einem Vergleich mit höheren z hervorgeht: Kim et al. (2002a) leiten aus einem besten Fit an verschiedene Datenpunkte für z > 1,5 aus der Literatur $\gamma = 1,18\pm0,14$ her (in Abb. 6.39 als schwarze gepunktete Linie dargestellt), was nur gerade eben noch innerhalb 1 σ konsistent mit dem Wert dieser Arbeit für z = 0,7-1,9 ist. Ihr "Zweitwert", bei dem zwei Schlinien ausgeschlossen werden, liefert mit $\gamma = 1,42\pm0,16$ ein mit dem hier gefundenen nicht mehr verträgliches Ergebnis.

Interessant ist auch, daß eine Extrapolation der Fitgeraden dieser Arbeit für $z \to 0$ mit der Studie von Penton et al. (2004) für das lokale Universum innerhalb 1σ in Einklang ist (schwarze gestrichelte Linie in Abb. 6.39), während eine Verlängerung der Kim et al. (2002a)-Fitgeraden den Penton et al. (2004)-Punkt um $\approx 2\sigma$ verfehlt. (Der Datenpunkt von Penton et al. (2004) steht im Gegensatz zu dem von Williger et al. (2003) bei $z \approx 0$, wo nur eine Schlinie betrachtet wird, auf einer stabilen statistischen Basis). Dies kann als weiterer Hinweis auf ein sich änderndes Evolutionsverhalten der Linien niedriger Säulendichte im Intervall z = 1 - 2 gewertet werden.

Schließlich suggeriert der Vergleich mit den Untersuchungen bei höheren und niedrigeren z einen kontinuierlichen und moderaten Übergang der Anzahldichte der schwächeren Linien zur Gegenwart hin.

Ein noch eindeutigerer Abwärtstrend mit $\gamma = 1,66 \pm 0,57$, der die Ergebnisse für die kleineren Δz aus Tabelle 6.13 ebenfalls bestätigt, ergibt sich wie bei den anderen Intervallbreiten auch hier für die stärkeren Absorber (Abb. 6.40). Auffällig ist der Ausreißer im Bereich z = 0, 9 - 1, 1, ohne den die Steigung im Evolutionsdiagramm mit $\gamma = 2, 11 \pm 0, 21$ deutlich höher und der Fehler sehr viel niedriger ausfallen würde und der sich in den Diagrammen der starken Linien bei anderen Δz (Abb. 6.36) bereits andeutet. Eine genauere Analyse dieses Rotverschiebungsbereichs, der von sechs der neun Schlinien abgedeckt wird, verdeutlicht, daß die hohe Liniendichte nicht auf die Fluktuation in einer einzelnen Schlinie

Abbildung 6.40: Vergleich der Evolution der Anzahldichte der Lyman α -Absorber im Bereich log $N_{\rm HI} > 13,64$ mit Literaturwerten. Details der Darstellung wie in Abb. 6.39, wobei die zusätzlich dargestellte gepunktete Linie für log (1 + z) = 0 - 0,4 einem eigenen besten Fit an die Datenpunkte von Weymann et al. (1998) entstammt. Penton et al. (2004), Savaglio et al. (1999) und Williger et al. (2003) berücksichtigen in ihren Studien jeweils nur Linien mit log $N_{\rm HI} > 14,00$.

zurückzuführen ist, sondern das dn/dz fast aller sechs Sehlinien in diesem z-Intervall über dem Niveau der benachbarten Intervalle liegt. Es handelt sich offenbar um eine zufällige Linienhäufung in diesem Bereich.

Auch hier fällt γ gegenüber Untersuchungen bei höheren z niedriger aus, verläuft die Entwicklung also flacher: Kim et al. (2002a) finden mit einem Fit an die Literaturwerte für z > 1, 5 eine Steigung $\gamma = 2, 47 \pm 0, 18$, die mit der hier berechneten nicht mehr ganz innerhalb 1 σ konsistent ist. Darüberhinaus nimmt die Anzahldichte im analysierten Bereich z = 0, 7 - 1, 9 kontinuierlich ab (von dem Ausreißer abgesehen), ohne daß der in der Literatur häufig postulierte Sprung in der Evolution bei z = 1, 5 - 1, 7 (Weymann et al., 1998; Dobrzycki et al., 2002; Impey et al., 1996) erkannt werden kann. Möglicherweise findet die auch von Theoretikern (Theuns et al., 1998; Davé et al., 1999) erfolgreich simulierte Evolutionswende in einer späteren Phase (z < 0, 7) statt, die durch den hier untersuchten z-Bereich nicht mehr abgedeckt wird. Ein Indiz dafür ist, daß zu niedrigeren z hin die Ausdünnung der Absorber offensichtlich weiter abgebremst wird, denn im Gegensatz zu den schwächeren Absorbern würde eine Extrapolation der hier gefundenen Entwicklung für $z \to 0$ zu einer, verglichen mit Penton et al. (2004) und Weymann et al. (1998), deutlich zu niedrigen Absorberdichte bei z = 0 führen (vgl. Abb. 6.40).

Fittet man die Datenpunkte von Weymann et al. (1998) mit einer Geraden (in Abb. 6.40 eingezeichnet; $\gamma = 0, 13 \pm 0, 06$), wird diese von der Fitgeraden an die Datenpunkte dieser Analyse erst bei z = 0, 6 geschnitten. Auch die steilere Variante ohne den Ausreißer erreicht die Weymann et al. (1998)-Gerade erst bei z = 0, 8. Falls der Entwicklungssprung stattgefunden hat, dann muß der z-Wert, bei dem er eintrat, also offenbar deutlich nach unten korrigiert werden.

Einschränkend muß allerdings ergänzt werden, daß die Konversionsformel (4.3), auf deren Gültigkeit der Vergleich der Ergebnisse von Weymann et al. (1998) und dieser Arbeit beruht, nur für ungesättigte Absorptionslinien gilt und streng genommen von dem Dopplerparameter abhängt. Gelegentlich wird in der Literatur für alle Linien $b = 25 \,\mathrm{km \, s^{-1}}$ angenommen (Penton et al., 2000, 2004). Dann entspricht die Untergrenze für die Äquivalentbreite $W_{\lambda,0} = 240 \,\mathrm{m}$ Å einer Mindestsäulendichte log $N_{\mathrm{HI,min}} = 14,00$. Diese ungleich höhere Untergrenze würde die Punkte dieser Studie in Abb. 6.40 signifikant nach unten verschieben und den daraus ableitbaren Entwicklungssprung wieder zu höheren z vorverlegen. Die Unsicherheit bei der W_{λ} - N_{HI} -Konversion relativiert daher die o.a. Lokalisierung des Sprungs.

Ungeachtet dessen verlagern auch neuere Untersuchungen von Kim et al. (2001), Kim et al. (2002a) (deren Fitgerade diejenige an die Weymann et al. (1998)-Punkte bei z = 1, 1 schneidet; Abb. 6.40) oder Penton et al. (2004) den Sprung hinunter bis zumindest z = 1, 0 - 1, 2. Penton et al. (2004) begründen dies in ihrer Arbeit damit, daß der Wert für $\left(\frac{dn}{dz}\right)_0$ aus Weymann et al. (1998) wegen der niedrigen Auflösung der dort untersuchten Spektren ($R \approx 1000$) über ihrem eigenen Wert liegt (s. Abb. 6.40). Da sie von einer internen Konsistenz der Weymann et al. (1998) - Daten und daher von einer dortigen korrekten Bestimmung von γ ausgehen, folgern sie weiter, daß durch die Kombination ihres eigenen $\left(\frac{dn}{dz}\right)_0$ mit der Steigung von Weymann et al. (1998) und der stärkeren Steigung bei hohen z der Evolutionssprung auf ein niedrigeres z datiert werden muß.

Unterstützt durch diese jüngeren Ergebnisse führt das vorliegende Linienensemble daher

zu dem Resultat, daß der scharfe Evolutionsübergang zwar stattgefunden hat, aber sehr viel später als bisher vermutet. In Simulationsrechnungen ergibt sich die plötzliche Verlangsamung in der Entwicklung als direkte Folge eines Abfalls des UV-Hintergrunds bei z = 2 (Davé et al., 1999). In ihnen wird jedoch in der Regel der Quasar-dominierte UV-Hintergrund von Haardt & Madau (1996) angenommen und damit möglicherweise der Beitrag der Galaxien unterschätzt. Mit diesen als Hauptquelle des UV-Strahlungsfelds für z < 2 würde letzteres weniger schnell abfallen, und der Sprung ließe sich natürlicherweise zu einem niedrigeren z hin verschieben. In die gleiche Richtung würde eine zeitlich forcierter ablaufende Strukturbildung, als in den Simulationsbedingt von den Flächen zu den Fäden und entlang dieser zu den Knoten des kosmischen Netzes tendiert und sich dort sammelt, reduziert sich mit sinkendem z die Zahl der Absorber über einer bestimmten Mindestäquivalentbreite entlang einer beliebigen Schlinie. Fällt dieser Konzentrationsprozeß der Materie in der Phase $z \approx 1-2$ stärker aus, nimmt auch die Absorberdichte stärker ab, und der Sprung müßte wieder zu niedrigeren Rotverschiebungen hin verlagert werden.

Als alternatives Szenario zu einem scharfen Übergang bei einer bestimmten Rotverschiebung kann bei Betrachtung der Zusammenstellung der Datenpunkte in Abb. 6.40 auch ein moderater Abfall der Liniendichte bis zur Gegenwart nicht ausgeschlossen werden. Ein solches Verhalten stünde allerdings im Widerspruch zu den oben zitierten Simulationsrechnungen des Lyman α -Waldes.

Alle Ergebnisse zur Evolution der Anzahldichte der Lyman α -Absorber verschiedener Säulendichte in diesem Kapitel müssen vor dem Hintergrund der z.T. beträchtlichen Streuungen der Datenpunkte gesehen werden. Diese Streuungen konnten gegenüber den Arbeiten zu HE 0515-4414 alleine bzw. HE 0515-4414 und HS 0747+4259 trotz einer Verdreifachung der untersuchten Gesamtweglänge Δz nicht nennenswert reduziert werden. Für alle neun Quasare standen hochaufgelöste Spektren ($R \ge 30\,000$) zur Verfügung, in denen der Lyman α -Wald vollständig aufgelöst ist (da $b_{\rm HI} > 10 \rm km \, s^{-1}$). Die Vermutung liegt daher nahe, daß die Variationen von Sehlinie zu Sehlinie prinzipieller Natur sind, d.h. ein stark inhomogenes Erscheinungsbild des Lyman α -Waldes widerspiegeln. Tatsächlich finden auch Kim et al. (2002a) und Tytler et al. (2004) für z < 2,5 bzw. z = 1,9 oder Impey et al. (1999) für das lokale Universum (z < 0, 2) Hinweise auf eine starke kosmische Varianz. Diese Fluktuationen können offenbar nur mit einer sehr viel höheren Zahl an Quasarsehlinien ausgeglichen werden (Weymann et al. (1998) finden ihren Null-Evolutionstrend mit geringen Streuungen (Abb. 6.40) mit einer Gesamtauswahl von 63 Quasarspektren, allerdings mit einer sehr viel niedrigeren Auflösung, so daß sie insgesamt weniger Lyman α -Linien detektieren als hier).

Die Ursache für die großen Unterschiede zwischen verschiedenen Sehlinien, die sich über den gleichen z-Bereich erstrecken, ist vermutlich das fortgeschrittene Stadium der Strukturbildung im Universum bei z < 2. Die Strukturen sind gravitativ stärker entwickelt, es haben sich vermehrt Über- und Unterdichten ausgebildet. Auf individuelle Sehlinien schlägt sich dies in Form von stark variierenden Häufigkeiten insbesondere der massereichereren Absorber höherer Säulendichte für ein bestimmtes z-Intervall nieder. Die Strukturbildung gewinnt also in dieser Phase zunehmend an Gewicht gegenüber der Hubble-Expansion, die für den generellen Abfall der Anzahldichte verantwortlich zeichnet.

6.8 Effektive optische Tiefe bei $z \approx 2$

Jena et al. (2004) untersuchen mit umfangreichen hydrodynamischen Simulationen die effektive optische Tiefe τ_{eff} bzw. den mit dieser über

$$\tau_{\rm eff} = -\ln\left\langle\frac{F}{F_{\rm Kont}}\right\rangle =: -\ln\left\langle F_{\rm norm}\right\rangle.$$
(6.28)

verknüpften mittleren normierten Strahlungsfluß $\langle F_{\rm norm} \rangle$ bei z = 1,95. Um die beobachteten Flußverteilungen der vorliegenden QSO-Auswahl mit den Resultaten dieser numerischen Simulationen vergleichen zu können, wurden τ_{eff} und $\langle F_{\text{norm}} \rangle$ daher für den maximalen Rotverschiebungsbereich der hier untersuchten Schlinien, z = 1, 81 - 1, 91, berechnet (Jena et al. (2004) gewinnen ihre Ergebnisse für einen damit gut vergleichbaren Bereich z = 1, 9 - 2, 0 und für die gleiche Intervallbreite $\Delta z = 0, 1$). Die Schlinien zu drei Quasaren der hier untersuchten Auswahl fallen in das gewählte Intervall: Diejenigen zu HE 2225-2258, HE 0429-4901 und HS 0747+4259 (vgl. Abb. 3.1). Die Flußverteilungen der entsprechenden Spektren wurden daher für die Bestimmung von $\langle F_{norm} \rangle$ zugrundegelegt. Dazu wurden in allen drei Spektren Wellenlängenfenster um die im betrachteten z-Intervall liegenden Metallinien definiert und anschließend eliminiert, da in den Simulationen von Jena et al. (2004) lediglich die HI-Absorption des IGMs niedriger Dichte berücksichtigt wird (entsprechend hätten auch LLS und DLAs eliminiert werden müssen, wenn die untersuchten Regionen solche Absorber enthalten hätten). Die verbleibende Flußverteilung $F(\lambda)$ wurde durch den jeweiligen Kontinuumsfluß $F_{Kont}(\lambda)$, der Ausgabewert von CAN-DALF ist, dividiert. Als über die Wellenlängenpositionen aller drei Sehlinien gemitteltes Resultat ergibt sich

$$\langle F_{\rm norm} \rangle = 0,895 \pm 0,004$$
 (6.29)

für $\langle z \rangle \approx 1,86$, d.h. etwa 10,5% des Strahlungsflusses werden bei diesem z durch das diffuse intergalaktische Medium absorbiert. Der Fehler von $\langle F_{\text{norm}} \rangle$ folgt aus F und F_{Kont} sowie deren Fehlern: Wegen $\langle F_{\text{norm}} \rangle = \frac{1}{n} \sum_{i=1}^{n} \frac{F_i}{F_{\text{Kont},i}}$ (n Zahl der Wellenlängenpositionen) ist

mit dem Fehlerfortpflanzungsgesetz $\sigma_{\langle F_{\text{norm}} \rangle} = \frac{1}{n} \sqrt{\sum_{i=1}^{n} \left(\frac{\sigma_{F_i}}{F_{\text{Kont},i}}\right)^2 + \sum_{i=1}^{n} \left(\frac{F_i \cdot \sigma_{F_{\text{Kont},i}}}{F_{\text{Kont},i}^2}\right)^2}$. Für den Fehler des Kontinuumflusses wurde $\sigma_{F_{\text{Kont},i}} \approx 15$ Flußeinheiten genähert. Daraus resultiert insgesamt der in (6.29) gegebene Fehler.

Für die effektive optische Tiefe folgt aus (6.28) und (6.29)

$$\tau_{\rm eff} = 0,111 \pm 0,004. \tag{6.30}$$

Jena et al. (2004) erhalten aus ihren Simulationen Relationen zwischen τ_{eff} bzw. $\langle F_{\text{norm}} \rangle$ und verschiedenen Inputparametern. Für das Standardmodell, das diesen Relationen zugrundeliegt (zu dessen Definition s. Kap. 6.3 der vorliegenden Arbeit), ergibt sich $\tau_{\text{eff}} = 0,136 \pm 0,003 \text{ und } \langle F_{\text{norm}} \rangle = 0,873 \pm 0,002$ (eigene Berechnung aus den Tabellen 6 und 7 von Jena et al., 2004). Aus den von ihnen favorisierten Einzelmodellen (mit den Bezeichnungen L4 und P5) folgt hingegen $\tau_{\text{eff}} = 0,143 \pm 0,003 \text{ und } \langle F_{\text{norm}} \rangle = 0,866 \pm 0,002$ (L4) bzw. $\tau_{\text{eff}} = 0,131 \pm 0,003 \text{ und } \langle F_{\text{norm}} \rangle = 0,877 \pm 0,002$ (P5).

Sowohl die Ergebnisse aus dem Standardmodell als auch diejenigen aus den favorisierten Simulationen L4 und P5 sind auch innerhalb 2σ noch inkonsistent mit den in (6.29) und (6.30) gegebenen Ergebnissen. Allerdings muß dabei der Unterschied in z ($\Delta z \approx 0, 1$) berücksichtigt werden, denn für τ_{eff} wird mit sinkender Rotverschiebung eine Abnahme (analog zur sinkenden Lyman α -Liniendichte) gemäß $\tau_{\text{eff}} \propto (1+z)^{\gamma+1}$ erwartet (Rauch, 1998). Extrapoliert man, ausgehend von (6.30), z.B. mit $\tau_{\text{eff}} \propto (1+z)^{3,37\pm0,20}$ für 1,5 < z < 4 (Kim et al., 2002a), erhält man $\tau_{\text{eff}}(z = 1,95) = 0,124 \pm 0,005$, was den Ergebnissen aus den Jena et al. (2004)-Simulationen deutlich näher kommt (mit dem dortigen Standardmodell ist dies z.B. innerhalb 2σ verträglich). Die verbleibende Diskrepanz dürfte mit der für die Herleitung der effektiven optischen Tiefe entscheidenden Kontinuumsbestimmung zusammenhängen: Jena et al. (2004) legen das Kontinuum separat fest, im Gegensatz zu der zuverlässigeren simultanen Bestimmung durch CAN-DALF hier. Unter Berücksichtigung dieses methodischen Unterschieds kann von einer guten Übereinstimmung der Beobachtungen mit den Simulationen der Strahlungsflußverteilung im Bereich $z \approx 2$ ausgegangen werden.

Kapitel 7

Ergebnisse und Ausblick

In der vorliegenden Arbeit wurde das Gesamtensemble aller Lyman α -Absorptionslinien, die in den Spektren von neun Quasaren über eine Gesamtweglänge von $\Delta z = 5,176$ detektiert wurden, analysiert. Die Verteilungen der Säulendichten, Dopplerparameter und Rotverschiebungen der insgesamt 1325 als signifikant eingestuften Linien sowie die Zusammenhänge zwischen diesen Größen wurden untersucht und daraus Folgerungen für die Eigenschaften der Lyman α -Absorber im Bereich z = 0, 5 - 1, 9 abgeleitet.

Im folgenden sind die zentralen Ergebnisse dieser Arbeit zusammengefaßt:

- 1. Die HI-Parameter hängen nicht systematisch davon ab, ob Lyman α alleine oder simultan mit dem zugehörigen Lyman β gefittet wird, im Gegensatz zu den Behauptungen in anderen Studien.
- 2. Die Verteilung der Säulendichten ist bis hinunter zu log $N_{\rm HI} = 12,90$ vollständig. Sie läßt sich über annähernd drei Größenordnungen (log $N_{\rm HI} = 12,90 - 15,70$) mit einem einfachen Potenzgesetz approximieren. Die Steigung $\beta = 1,60\pm0,03$ ist konsistent mit anderen Analysen in vergleichbaren z-Intervallen. Es kann kein statistisch signifikanter Trend $\beta(z)$ für den betrachteten z-Bereich festgestellt werden.
- 3. Die Verteilung der Dopplerbreiten hat das erwartete Aussehen einer Gaußkurve mit einem zusätzlichen ausgedehnten Schwanz zu hohen *b* hin und einem für den analysierten *z*-Bereich ebenfalls typischen Mittelwert $\overline{b} = (34 \pm 22)$ km s⁻¹. Eine Entwicklung der Dopplerparameterverteilung mit *z* kann in der untersuchten Rotverschiebungsphase nicht erkannt werden. Das Maximum der Verteilung im höheren *z*-Bereich ($z \approx 1, 8$) ist gut konsistent mit den entsprechenden Werten, die aus hydrodynamischen Simulationen des IGMs resultieren.
- 4. Die Verteilung der Säulendichten und Dopplerparameter gegeneinander zeigt die erwartet schwache Korrelation zwischen beiden Parametern. Die weitestgehend linienfreie Region bei hohen b und niedrigen log $N_{\rm HI}$ kann damit erklärt werden, daß die intergalaktischen Absorber ab einer bestimmten, dichteabhängigen Temperatur nahezu vollständig ionisiert sind, so daß keine Absorption mehr beobachtet werden kann.

- 5. Die untere Grenze der *N*-b-Verteilung, die Informationen über den thermischen Zustand des IGMs liefert, wurde mit zwei verschiedenen Verfahren bestimmt:
 - Eine einfache Geradenapproximation ergibt einen mit anderen Arbeiten vergleichbaren Anstieg von b_{\min} mit steigender Säulendichte im Bereich log $N_{\rm HI} = 13 14$, allerdings auf niedrigerem Niveau als dort. Es kann kein eindeutiger Trend der unteren Grenze des Dopplerparameters mit z festgestellt werden.
 - Auch der präzisere iterative Potenzgesetzfit an die Untergrenze liefert ein mit steigender Säulendichte ansteigendes *b*-Minimum. Dies gilt ebenfalls bei Betrachtung einzelner *z*-Intervalle.

Die Steigung der Fitgeraden an die *b*-Untergrenze, $\Gamma - 1$, wächst bis hinunter zu $z \approx 1,3$ an, um anschließend wieder abzufallen. Eine ähnliche Entwicklung durchläuft b_{\min} an ausgewählten festen Säulendichtepositionen (die Evolution von b_{\min} bei der Überdichte $\delta = 1$ indiziert ein früheres Maximum bei $z \approx 1, 5$). Folgerungen daraus für die Evolution der Temperatur des intergalaktischen Mediums sind jedoch fragwürdig wegen der nicht berücksichtigbaren systematischen Fehler dieser Methode.

Der Verlauf des Exponenten der Zustandsgleichung des IGMs, $\gamma - 1$, steigt bis $z \approx 1,5$ hinunter leicht an, um anschließend bis $z \approx 0,9$ abzufallen. Eine Reihe nicht quantifizierbarer systematischer Fehler schränkt die Signifikanz dieses Ergebnisses allerdings ein.

- 6. Sowohl die schwächeren (log $N_{\rm HI} = 12, 90 14, 00$) als auch die stärkeren Lyman α -Linien (log $N_{\rm HI} > 13, 64$) zeigen über kurze Abstände ($\Delta v < 200$ km s⁻¹ bzw. $\Delta v < 100$ km s⁻¹) mit einer 2σ -Signifikanz Paarbildung. Damit können entsprechende Vorhersagen von Λ CDM-Simulationen bestätigt werden. Die Häufungen der Absorber können jedoch nicht in individuellen Sehlinien erkannt, sondern erst durch das Aufsummieren über mehrere Sehlinien nachgewiesen werden. Über größere Distanzen ($\Delta v > 1000$ km s⁻¹) treten die Absorber nur vereinzelt haufenweise auf. Im Gegensatz zu anderen Studien kann ein Unterschied zwischen den Häufungseigenschaften beider Absorberklassen ebenso wenig festgestellt werden wie eine eindeutige und einheitliche Evolution $\xi(z)$.
- 7. Für die schwächeren Lyman α -Aborber (log $N_{\rm HI} = 12, 90 14, 00$) liegt mit einer 96,5%-Signifikanz eine lineare Korrelation zwischen log (1 + z) und log $\left(\frac{\mathrm{d}n}{\mathrm{d}z}\right)$ vor. Das Potenzgesetz $\frac{\mathrm{d}n}{\mathrm{d}z} \propto (1 + z)^{\gamma}$ für die Evolution der Anzahldichte zugrundelegend, sinkt die Dichte im Bereich z = 0, 7 1, 9 mit abnehmendem z mit $\gamma = 0, 74 \pm 0, 31$.
- 8. Aus dem Vergleich mit den Untersuchungen anderer Autoren bei abweichenden z folgt, daß die Abnahme der schwächeren Linien in der Phase z = 1 2 zunächst abgebremst wird, um sich dann zu kleineren z hin mit einem in etwa gleichbleibenden Wert für γ und ohne scharfen Evolutionssprung kontinuierlich bis in die Gegenwart fortzusetzen.
- 9. Es gibt Indizien für einen ansteigenden Wert von γ , wenn die Untergrenze der Säulendichte schwächerer Absorber zu niedrigeren log $N_{\rm HI}$ hin ausgedehnt wird.

Der Trend ist allerdings statistisch nicht signifikant und beruht möglicherweise auf einem Auswahleffekt bei der Linienidentifikation. Er steht zudem im Widerspruch zu bisherigen Ergebnissen sowie physikalischen Erklärungsmodellen der Entwicklung des Lyman α -Waldes.

- 10. Rotverschiebung und Anzahldichte der stärkeren Absorber sind mit einer 99,8%-Signifikanz linear miteinander korreliert. Auch hier sinkt die Anzahldichte bei abnehmendem z ($\gamma = 1,50 \pm 0,45$ für z = 0,7 - 1,9) und damit deutlich stärker als die der schwächeren Pendants, auch wenn die Entwicklungen noch innerhalb 1σ miteinander konsistent sind. Ein deutlicherer Kontrast zwischen beiden Absorberklassen wird vermutlich — neben der hohen Streuung in γ — wieder durch den Auswahleffekt bei der Linienidentifikation kaschiert, der für systematisch zu hohe γ -Werte bei den schwächeren Linien sorgt.
- 11. Auch die Abnahme der Liniendichte der stärkeren Absorber wird gegenüber höheren Rotverschiebungen (z = 1, 5 - 4, 0) abgebremst, ohne daß jedoch der für z = 1, 5 - 1, 7 vorhergesagte Evolutionssprung erkannt werden kann. Die hergeleitete z-Entwicklung der Anzahldichte sowie Vergleiche mit den Anzahldichten anderer Studien für das lokale Universum suggerieren vielmehr einen späteren Entwicklungssprung (z < 0,7) und einen anschließend annähernd konstanten Verlauf bis zur Gegenwart. Der genaue z-Wert für die Evolutionswende muß dabei wegen der fehlerbehafteten Konversion zwischen Äquivalentbreite und Säulendichte vermutlich noch etwas nach oben korrigiert werden.

Der späte Eintritt der Verlangsamung in der Entwicklung könnte einen Hinweis auf einen stärkeren Galaxienbeitrag zum UV-Hintergrund und/oder auf ausgeprägtere Strukturbildungsprozesse liefern, als in Simulationen des Lyman α -Waldes im allgemeinen angenommen wird.

- 12. Trotz einer großen Zahl an untersuchten Quasarspektren hoher Auflösung $(R \ge 30\,000)$ als Grundlage für das Lyman α -Linienensemble ist die Streuung der Datenpunkte in den Diagrammen der Anzahldichteevolution groß und kann nur langsam mit einer Erhöhung der z-Intervallbreiten reduziert werden. Offensichtlich sind die starken Variationen von Sehlinie zu Sehlinie in dem betrachteten z-Bereich prinzipieller Natur: Sie zeichnen vermutlich ein bei z < 2 bereits weit fortgeschrittenes Stadium der Strukturbildung im Universum nach. Die Folge ist ein sehr inhomogenes Erscheinungsbild des Lyman α -Waldes in verschiedenen Sehlinien.
- 13. Eine Analyse der Strahlungsflußverteilung von den drei Quasaren, deren Sehlinien den höchsten Rotverschiebungsbereich abdecken (z = 1, 81 - 1, 91), ergibt $\langle F_{\text{norm}} \rangle = 0,895 \pm 0,004$ für den mittleren normierten Strahlungsfluß bzw. $\tau_{\text{eff}} = 0,111 \pm 0,004$ für die effektive optische Tiefe. Extrapoliert man diese Ergebnisse mit einem Potenzgesetz für τ_{eff} zu z = 1,95, ergibt sich eine gute Übereinstimmung mit den Werten, die aus hydrodynamischen numerischen Simulationen des intergalaktischen Mediums bei diesem z folgen.
- 14. Einer der Quasare, HE 0141-3932, besitzt ein ungewöhnliches Emissionslinienspektrum, in dem die Lyman α -Emissionslinie allenfalls schwach, möglicherweise sogar gar nicht zu sehen ist und in dem sich eine große Rotverschiebungsdifferenz

 $(\Delta z \approx 0,05)$ zwischen den Emissionslinien niedrigerer und höherer Ionisation zeigt. Eine mögliche Erklärung für beide Befunde ist, daß der Quasar "pole-on" gesehen wird.

Die vorliegende Arbeit trägt also zur Klärung einer Reihe der in Kapitel 2 aufgeworfenen Fragen bei; dennoch bleiben einige Punkte offen:

- Entwickelt sich der Exponent der Säulendichteverteilung β mit der Rotverschiebung? Flacht die Verteilung zu höheren log $N_{\rm HI}$ hin (> 16), entsprechend einiger theoretischer Vorhersagen, ab?
- Wie entwickelt sich die Temperatur des intergalaktischen Mediums von ihrem Maximalwert bei z = 3, der Phase der He II-Reionisation, bis in die Gegenwart, und wie verändern sich die Parameter der Zustandsgleichung des IGMs mit z?
- Bei welcher genauen Rotverschiebung findet die Wende in der Evolution der stärkeren Lyman α-Absorber statt, und warum zeigen die schwächeren Pendants einen vergleichsweise eher moderaten Übergang in eine annähernd konstante Entwicklung zur Gegenwart hin?
- Wie verläuft die Ausbildung der großräumigen Strukturen im Universum mit z?
- Welchen Beitrag leisten die Galaxien zum UV-Hintergrund für z < 2, und wie sieht die generelle Evolution des ionisierenden Hintergrunds mit z aus?

Der letzte Punkt betrifft vor allem die numerischen Simulationen des Lyman α -Waldes, in denen gewöhnlich der nur auf der Strahlung von Quasaren basierende UV-Hintergrund von Haardt & Madau (1996) vorausgesetzt wird. Ein davon stark abweichender UV-Hintergrund würde die aus den Simulationen abgeleiteten Vorhersagen, insbesondere des Verlaufs des Evolutionsexponenten γ mit z, substanziell ändern (Davé et al., 1999). Hier besteht durch realistischere Strahlungsfelder in den Modellen (nach Davé et al. (1999) könnte z.B. der Beitrag von Galaxien mit hohen Sternentstehungsraten zum UV-Hintergrund für z < 1 bis zu 50% betragen) sicherlich die Aussicht, den aus den Simulationen hervorgehenden Verlauf der Anzahldichtenevolution der stärkeren Lyman α -Absorber genauer an die Beobachtungen anzupassen.

Daneben dürfte die Genauigkeit der hydrodynamischen Simulationen zunehmend von dem rasanten Fortschritt in der Computertechnik und von der Entwicklung neuer Algorithmen profitieren, die es ermöglichen werden, die Modellierungen der großskaligen Strukturen im Universum auf der Basis von immer besser aufgelösten und größeren Simulationsboxen durchzuführen.

Auch auf der Beobachterseite gibt es noch Potentiale zur Erforschung der offenen Fragen im Bereich des Lyman α -Waldes. Dies bezieht sich in erster Linie auf neue

Beobachtungsmöglichkeiten, insbesondere im UV, wie durch den hochempfindlichen Cosmic Origins Spectrograph (COS), mit dem die genaue Rotverschiebung des Sprungs in der Entwicklung der stärkeren Absorber weiter eingegrenzt, eventuell aber auch die verbleibende Lücke im Evolutionsdiagramm der schwächeren Lyman α -Absorber (Abb. 6.39) für z < 0,7 geschlossen werden könnte. Ob COS am Hubble-Weltraumteleskop tatsächlich zum Einsatz kommt, ist allerdings zur Zeit noch äußerst fragwürdig. Im Optischen hingegen lassen die hochauflösenden Keck/HIRES- und VLT/UVES-Spektrographen weitere Daten hoher Qualität für die Analyse des Lyman α -Waldes bei höheren Rotverschiebungen erwarten. So wurde im Rahmen des Large Programme bei der ESO eine Reihe von Quasaren mit z > 2 mit UVES spektroskopiert. Das Großprojekt ist u.a. auf ein besseres Verständnis der Häufungseigenschaften der Lyman α -Absorber, der Form des UV-Hintergrunds sowie der thermischen Entwicklung des IGMs im höheren z-Bereich ausgerichtet. Ahnlich vielversprechend ist der Sloan Digital Sky Survey (SDSS), bei dem ein Viertel des gesamten Himmels durchmustert wird. Die riesigen SDSS-Datenmengen bieten eine enorme statistische Basis für Studien der IGM-Physik. Werden sie mit Methodiken ausgewertet, die sich auf Strahlungsfluß-Statistiken (Kap. 4.3) statt auf individuelle Absorptionslinien konzentrieren, sind auch die niedrigen Auflösungen der SDSS-Spektren $(R \approx 2000)$ ausreichend (siehe z.B. McDonald et al., 2004).

Speziell die Analyse der Anzahldichtenevolution der Absorber betreffend, sind möglicherweise auch neue methodische Strategien erfolgsversprechend. So bringt das allgemein praktizierte Zusammenfassen aller Linien innerhalb eines Intervalls Δz zu einer Absorberdichte dn/dz eine gewisse Willkür durch die Wahl der Intervallgröße mit sich. Liebscher (1995) schlägt ein statistisch genaueres Verfahren vor, bei dem anstelle der Anzahldichte der *mittlere Abstand* zwischen zwei Absorbern gegen z aufgetragen und daraus das Evolutionsverhalten des Lyman α -Waldes abgeleitet wird. Eine alternative Vorgehensweise könnte auch die Bildung einer *kumulativen* Verteilung sein, d.h. für jede z-Position wird der Anteil der Absorber, für die $z_{Abs} < z$ ist, angegeben. Auch hier wird das Problem der Wahl einer Intervallbreite umgangen.

Es sind jedoch inzwischen auch völlig andere Ansätze entwickelt worden, die den Lyman α -Wald für kosmologische Untersuchungen nutzen. Hier ist insbesondere das Konzept des *power spectrums* (Dichtespektrums) der Dichtefluktuationen zu nennen (Croft et al., 1998), das in Kap. 4.3.2 ausführlich erläutert wurde. Durch Messungen dieses primordialen Dichtespektrums ist eine unabhängige Überprüfung kosmologischer Vorhersagen möglich.

Anhang A

Quasarspektren

Keck/HIRES-Spektrum von HS 0747+4259, Fortsetzung

VLT/UVES-Spektrum von HE 0429-4901

VLT/UVES-Spektrum von HE 2225-2258, Fortsetzung

HST/STIS-Spektrum von PG 0117+213, Fortsetzung

139

HST/ von PG 1630+377 ′STIS--Spektrum

142

-Spektrum von PG 1630+377, Fortsetzung HST/STIS-

HST/STIS-Spektrum von PG 1634+706

HST/STIS-Spektrum von PG 1634+706, Fortsetzung

145

HST/STIS-Spektrum von PG 1634+706, Fortsetzung

HST/STIS-Spektrum von PG 1634+706, Fortsetzung

-Spektrum von PKS 0232-04, Fortsetzung HST/STIS

Anhang B

Fit
parameter der Lyman α - Linien

QSO	λ [Å]	σ_{λ} [Å]	z	\logN	$\sigma_{\log N}$	$b~[\rm kms^{-1}]$	$\sigma_b \; [\rm kms^{-1}]$
$PC = 1634 \pm 706$	1008 518	0.075	0 5600312	12 025	0.940	27 554	17.004
PC 1624 + 706	1010 652	0,075	0,5099512 0.5716861	12,000	0,240 0.961	19 271	5 557
PC 1634 + 706	1910,052 1018 170	0,025	0,5778707	13,090	0,201	10,571 38 540	16 607
PC 1634 + 706	1918,170 1018,775	0,002	0,5783680	10,299 10.850	0,210	12 128	0.534
$PC = 1634 \pm 706$	1010 800	0,030	0,5703080	12,009 13.076	0,200	13,120 28 755	9,004
PC 1634 + 706	1919,090	0,070	0,5792652	10,070	0,224 0.254	26,755	10,030 11.640
PG 1034 + 700 PC 1624 + 706	1921,045 1022.951	0,040	0,5807291	12,009	0,204	10,340 20.727	11,040 10.121
PC 1634 + 706	1922,201	0,044	0,5812272	13,303	0,130	33,625	14 873
PC 1624 + 706	1920,812	0,005	0,5849791	12,514	0,109	55,025	20.640
PC 1634 + 706	1929,400	0,100 0.042	0,5871805	13,000 13,120	0,371	13 878	30,040 11 795
PC 1634 ± 706	1034 326	0,042 0.065	0,5050555	13,150 14,170	0,342	118 728	11,725
PC 1634 ± 706	1934,520 1035.662	0,005	0,5911001	14,179 15 404	0,550 0.577	12 882	8 700
PC 1634 ± 706	1935,002 1048 186	0,019	0,5922597	13 306	0,577	42,002 17.851	8,139
PC 1634 ± 706	1053 448	0,038	0,0023013	13 268	0,101	74 761	44 461
PC 1634 ± 706	1953,440 1050 040	0,103 0.043	0,0008902	13,200 13,133	0,279 0.152	74,701 25,750	9 767
PC 1634 ± 706	1060 533	0,045	0,0122570 0.6127181	13,155	0,132 0.185	14558	5 784
PG 1634 ± 706	1964 992	0,025 0.079	0.6163857	10,400 12,722	0,100	18 612	19/128
PC 1634 ± 706	1066 /30	0,015	0,6175600	12,122	0,410	31,707	11,420
PG 1634 ± 706	1967, 701	0,045	0.6186130	13,304 13,237	0,102 0.270	10 211	12 555
PG $1634+706$	1972679	0,000 0.074	0,0100100	13,257 13,347	0,210 0.211	43778	12,000
PG 1634+706	1972,010 1975 154	0,074 0.055	0,0227000 0,6247453	12,011 12,741	0,211 0,350	17,038	14,553
PG 1634+706	1976 098	0,000	0,0211100 0.6255218	12,741 13,801	0,000 0.179	45 830	18 287
PG $1634 + 706$	1976 614	0,100 0.052	0,6259457	13,001	0,122	34.468	7 146
PG 1634 ± 706	1977 347	0.040	0,6265490	12,001 12,932	0,122 0.213	16 226	9 383
PG 1634+706	1989.288	0.039	0.6363717	13.305	0.195	18.049	8.886
PG 1634+706	1990.032	0.032	0.6369838	14.240	0.133	42.868	7.473
PG 1634+706	1993.120	0.068	0.6395237	14.053	0.104	50.783	11.617
PG 1634+706	1993.605	0.036	0.6399229	13.866	0.157	23.414	6.031
PG 1634+706	2003.269	0.025	0.6478723	13,439	0.114	15.861	4.982
PG 1634+706	2003.572	0.031	0.6481212	13.432	0.114	19.666	6.459
PG 1634+706	2010.164	0.018	0.6535441	15.297	0.568	39.005	7.532
PG 1634+706	2011.878	0.089	0.6549539	13.033	0.236	36.460	20.386
PG 1634+706	2014,761	0.057	0.6573254	14,105	0.052	109,266	11,097
PG 1634+706	2024,708	0,048	0,6655082	$13,\!157$	0,204	28,691	12,143
PG 1634+706	2025,734	0,026	0,6663515	13,421	0,145	19,696	6,506
PG 1634+706	2027,313	0,044	0,6676508	13,252	0,214	21,843	10,417
PG 1634+706	2028,512	0,067	0,6686366	$13,\!380$	0,192	33,706	14,755
PG 1634+706	2036,071	0,051	$0,\!6748552$	12,951	0,187	$25,\!251$	11,499
PG 1634+706	$2041,\!596$	0,043	0,6793997	$15,\!672$	0,998	$36,\!638$	9,115
PG 1634+706	2044,889	0,051	$0,\!6821086$	13,033	0,249	25,885	$13,\!439$
PG 1634+706	$2045,\!568$	0,033	$0,\!6826668$	13,099	0,167	19,427	7,814
PG 1634+706	2046,762	0,022	$0,\!6836495$	13,339	0,121	$14,\!580$	4,674
PG 1634+706	$2047,\!142$	$0,\!055$	$0,\!6839614$	13,225	0,189	28,442	15,382
PG 1634+706	$2047,\!552$	0,034	$0,\!6842992$	13,091	0,183	$15,\!242$	$7,\!643$
PG 1634+706	$2052,\!959$	0,067	$0,\!6887466$	$14,\!489$	0,314	$37,\!877$	26,871
PG 1634+706	$2053,\!252$	1,277	$0,\!6889880$	$13,\!894$	1,859	66,840	86,113
PG 1634+706	$2053,\!947$	0,052	$0,\!6895598$	13,301	0,319	24,089	$11,\!376$
PG 1634+706	$2054,\!660$	0,040	$0,\!6901464$	$13,\!647$	0,109	35,911	7,755
PG 1634+706	$2055,\!822$	0,022	$0,\!6911019$	13,360	0,080	24,565	4,771
PG 1634+706	$2058,\!302$	0,059	$0,\!6931416$	$13,\!272$	0,120	49,564	13,359
PG 1634+706	$2061,\!821$	0,023	0,6960365	$13,\!234$	0,090	21,774	5,089
PG 1634+706	$2063,\!091$	0,035	0,6970809	12,771	0,200	$14,\!198$	8,205
PG 1634+706	2064, 135	0,030	0,6979397	$13,\!556$	0,203	40,500	11,188
PG 1634+706	2069,883	0,036	0,7026683	$13,\!239$	$0,\!137$	20,182	7,560
PG 1634+706	2072,075	0,060	0,7044718	$12,\!634$	0,311	14,269	$13,\!524$

PG 1634+706	$2081,\!634$	0,014	0,7123348	$13,\!585$	$0,\!055$	$23,\!373$	2,900
PG 1634+706	2087,282	0,055	0,7169806	$13,\!137$	0,133	35,009	$11,\!541$
PG 1634+706	2097, 123	0,026	0,7250758	13,164	0,099	21,151	5,419
PG 1634+706	2098,152	0,012	0,7259226	13,707	0,048	24,756	2,483
PG 1634+706	2100, 115	0,034	0,7275370	12,991	0,164	20,586	7,899
PG 1634+706	2100,711	0,125	0,7280269	$13,\!656$	0,122	132,991	26,689
PG 1634+706	2111,724	0,076	0,7370864	13,047	$0,\!178$	35,516	16,363
PG 1634+706	2113,502	0,035	0,7385492	$13,\!140$	0,143	17,902	7,031
PG 1634+706	2122,819	0,129	0,7462128	13,245	0,126	94,854	27,490
PG 1634+706	2131,029	0,059	0,7529667	12,924	0,147	30,927	11,975
PG 1634+706	2133,788	0,032	0,7552362	13,143	0,104	22,995	6,405
PG 1634+706	2134,666	0,019	0,7559583	13,956	0,047	38,567	$3,\!675$
PG 1634+706	$2135{,}584$	0,119	0,7567137	13,104	$0,\!185$	51,244	26,026
PG 1634+706	$2141,\!379$	0,044	0,7614804	$13,\!595$	$0,\!057$	63,712	8,405
PG 1634+706	$2143,\!078$	0,060	0,7628779	13,068	0,114	44,189	12,399
PG 1634+706	2146,942	0,031	0,7660566	13,310	0,149	29,655	7,593
PG 1634+706	2147,412	0,107	0,7664431	13,731	0,095	127,236	22,412
PG 1634+706	$2147,\!557$	0,019	0,7665619	$13,\!293$	$0,\!125$	$19,\!661$	4,934
HS 0747+4259	2150,697	0,096	0,7691452	14,071	0,098	83,177	17,767
PG 1634+706	2151,573	0,042	0,7698656	12,743	0,163	18,909	8,662
PG 1634+706	2157,365	0,096	0,7746306	13,362	0,111	71,595	19,475
PG 1634+706	2159,639	$0,\!125$	0,7765010	13,296	$0,\!129$	79,321	25,270
PG 1634+706	2164,397	0,056	0,7804145	12,588	0,204	19,961	11,580
PG 1634+706	2171,853	0,107	0,7865482	13,600	0,077	157,358	24,587
HS 0747+4259	$2172,\!642$	0,052	0,7871966	$13,\!629$	0,136	31,014	10,260
PG 1634+706	2175,903	0,063	0,7898798	13,300	0,090	63,920	13,211
HS 0747+4259	2180,374	0,071	0,7935572	$13,\!827$	0,260	$27,\!678$	13,087
PG 1634+706	2181,410	0,064	0,7944095	12,972	$0,\!177$	30,641	13,238
PG 1634+706	$2187,\!585$	0,009	0,7994891	$14,\!891$	0,089	54,322	2,860
HS 0747+4259	$2192,\!906$	0,142	0,8038658	$13,\!476$	$0,\!174$	63,313	27,190
HS 0747+4259	2199,941	0,038	0,8096528	13,384	0,228	13,178	7,360
PG 1634+706	2210,262	0,006	0,8181427	$13,\!991$	0,071	18,660	1,477
PG 1634+706	$2211,\!159$	0,111	$0,\!8188804$	12,760	0,272	46,422	25,337
HS 0747+4259	$2211,\!316$	0,032	0,8190099	$13,\!897$	0,102	31,545	$5,\!688$
HS 0747 $+4259$	2214,088	0,036	0,8212904	13,168	$0,\!174$	14,319	7,079
PG 1634+706	2220,246	0,034	$0,\!8263561$	$12,\!959$	0,098	28,763	7,015
PG 1634+706	2222,519	0,023	0,8282252	$13,\!137$	0,067	26,034	4,682
PG 1634+706	$2223,\!012$	0,036	0,8286313	12,714	$0,\!141$	$18,\!601$	7,553
HS 0747 $+4259$	$2226,\!491$	0,061	0,8314925	$13,\!358$	0,214	20,817	11,283
PG 1634+706	$2248,\!657$	$0,\!041$	0,8497262	$13,\!026$	0,092	$33,\!620$	7,926
PG 1634+706	2249,750	0,020	$0,\!8506254$	$13,\!016$	$0,\!080$	17,219	3,883
PG 1634+706	2250, 367	0,024	0,8511329	12,937	$0,\!092$	18,088	$4,\!655$
PG 1634+706	$2258,\!341$	0,014	0,8576923	$13,\!348$	$0,\!059$	22,155	2,974
PG 1634+706	2262,020	$0,\!085$	0,8607185	$12,\!656$	$0,\!175$	36,223	$16,\!371$
PG 1634+706	2267, 187	0,014	0,8649686	$13,\!065$	$0,\!052$	18,991	2,736
PG 1630+377	2280,124	$0,\!140$	0,8756111	13,218	$0,\!243$	49,951	28,222
PG 1630+377	2280,961	0,022	0,8762989	$13,\!974$	0,069	$31,\!387$	4,003
PG 1634+706	$2283,\!540$	0,017	0,8784209	$13,\!159$	$0,\!155$	19,416	4,739
PG 1630+377	$2283,\!661$	$0,\!049$	$0,\!8785200$	$12,\!993$	0,162	21,925	9,391
PG 1634+706	$2283,\!892$	0,044	0,8787102	$13,\!681$	$0,\!057$	$54,\!490$	4,976
PG 0117 + 213	$2285,\!209$	$0,\!049$	$0,\!8797934$	$13,\!801$	0,067	$55,\!843$	$10,\!630$
HE 0515-4414	$2285{,}54$	0,09	$0,\!8800701$	12,93	$0,\!22$	$21,\!12$	11,09
PG 0117 + 213	$2285,\!974$	0,029	$0,\!8804232$	$13,\!405$	$0,\!106$	20,563	5,325
PG 1634 + 706	$2286,\!417$	0,038	$0,\!8807878$	12,791	0,089	32,933	$7,\!446$
HE 0515-4414	$2286,\!83$	$0,\!04$	$0,\!8811265$	$13,\!41$	$0,\!09$	$33,\!64$	8,50
HS 0747 $+4259$	$2288,\!155$	0,080	$0,\!8822170$	$12,\!948$	0,231	23,766	14,868

PG 0117+213	$2288,\!628$	0,020	0,8826065	14,983	0,203	59,557	7,850
HE 0515-4414	2288,66	0,07	0,8826347	$12,\!68$	0,22	19,10	12, 13
PG 1630+377	2289,261	0,056	0,8831269	12,796	0,207	21,243	11,418
HS 0747+4259	2289,990	0,050	0,8837263	$13,\!370$	0,114	31,568	9,104
PKS 0232-04	2290,138	0,055	0,8838480	12,718	0,268	13,371	11,209
HE 0515-4414	2291,60	0,08	0,8850496	13,01	0,18	29,98	14,66
PKS 0232-04	2292,302	0,045	0,8856284	12,759	0,246	11,917	9,483
HE 0515-4414	2294,25	0,05	0,8872296	12,88	$0,\!15$	22,93	9,11
PG 1634+706	2294,782	0,046	0,8876681	12,995	0,070	52,230	8,864
HS 0747+4259	2294,954	0,079	0,8878102	13,283	0,178	35,129	15,109
HE 0515-4414	2296,96	0,08	0,8894598	$13,\!30$	0,11	53,50	$20,\!65$
PG 1630+377	2297,978	0,032	0,8902976	$13,\!017$	0,145	14,778	6,254
PG 0117+213	2301,188	0,070	0,8929380	$13,\!664$	0,179	51,742	16,486
HE 0515-4414	2301,20	0,04	0,8929510	$13,\!41$	0,09	27,52	8,92
HE 0515-4414	$2301,\!87$	0,07	0,8935009	13, 13	0,19	22,46	12, 17
PG 1630+377	2302,699	0,020	0,8941811	14,801	0,792	22,020	6,963
PG 0117+213	2304,822	0,053	0,8959272	12,981	0,283	12,163	10,523
HS 0747+4259	$2305,\!158$	0,043	0,8962036	$13,\!905$	0,172	27,475	7,509
PKS 0232-04	2306,201	0,057	0,8970619	12,962	0,240	$15,\!458$	10,918
PG 0117+213	$2307,\!498$	0,018	0,8981282	$13,\!539$	0,112	14,630	3,488
HE 0515-4414	2307,57	0,06	0,8981876	$13,\!29$	0,10	42,55	$14,\!67$
PG 1634+706	$2307,\!617$	0,097	0,8982266	13,121	0,090	94,103	19,261
HE 0515-4414	2310,79	0,06	0,9008397	$13,\!55$	0,06	70,74	9,82
PG 1634+706	$2311,\!474$	0,020	0,9013989	13,192	0,038	39,045	$3,\!691$
PG 0117+213	$2313,\!571$	$0,\!189$	0,9031242	$13,\!507$	0,151	116,730	44,452
PG 0117+213	2313,734	0,023	0,9032581	13,725	0,089	28,194	5,012
PG 1634+706	$2314,\!821$	0,074	0,9041526	$12,\!397$	0,176	31,502	14,361
HE 0515-4414	2314,91	0,02	0,9042259	13,70	0,04	41,48	5,05
PG 1634+706	$2316{,}571$	0,003	0,9055915	$14,\!378$	0,043	$25,\!439$	0,784
PG 0117+213	$2316,\!613$	0,038	0,9056267	$12,\!898$	0,157	$16,\!686$	$7,\!389$
PG 1630+377	$2317,\!173$	0,040	0,9060871	$13,\!673$	0,074	34,507	6,374
PG 1634+706	$2317,\!665$	0,087	0,9064917	$13,\!023$	0,084	$85,\!380$	$18,\!247$
PG 1630+377	$2318,\!027$	0,018	0,9067897	$15,\!197$	0,337	37,715	$5,\!126$
HE 0515-4414	$2318,\!69$	0,03	0,9073311	$13,\!37$	$0,\!16$	21,97	5,71
HE $0515-4414$	2318,79	$0,\!15$	0,9074199	$13,\!60$	$0,\!14$	89,30	$46,\!27$
PG 0117+213	$2319,\!110$	0,015	0,9076801	$13,\!676$	0,079	$18,\!437$	2,827
PKS 0232-04	$2319,\!298$	0,111	0,9078347	$13,\!068$	0,229	39,292	$21,\!611$
PKS 0232-04	$2320,\!607$	$0,\!051$	0,9089118	$13,\!376$	0,115	$33,\!806$	$9,\!484$
PG 0117+213	2320,764	0,027	0,9090412	$14,\!123$	0,069	50,591	6,039
PKS 0232-04	$2321,\!875$	0,083	0,9099549	$13,\!304$	0,147	$43,\!559$	$15,\!481$
PG 1634+706	$2322,\!919$	0,042	0,9108136	12,732	0,121	$25,\!870$	$7,\!642$
PG 1634+706	$2323,\!843$	0,006	0,9115740	$14,\!616$	0,030	$53,\!228$	1,509
PG 1634+706	$2325,\!034$	0,033	0,9125530	12,763	0,104	$27,\!137$	6,742
PKS 0232-04	$2325,\!414$	0,035	0,9128664	$12,\!976$	0,216	10,129	$7,\!351$
PKS 0232-04	2326,069	0,102	0,9134045	$13,\!385$	0,158	$47,\!836$	$19,\!682$
PG 1630+377	$2327,\!273$	0,021	0,9143952	$15,\!184$	0,184	74,031	6,589
HE 0515-4414	2329,59	0,02	0,9162979	$13,\!83$	$0,\!14$	18,69	$3,\!96$
HE 0515-4414	2330, 31	0,06	0,9168956	$13,\!22$	0,16	25,37	$12,\!38$
PG 1634+706	$2331,\!087$	0,071	0,9175322	$12,\!589$	0,366	29,978	$18,\!817$
HE 0515-4414	$2331,\!25$	$0,\!04$	0,9176663	$13,\!28$	$0,\!15$	13,44	5,71
PKS 0232-04	$2331,\!335$	0,065	0,9177363	$13,\!141$	0,230	19,230	$11,\!961$
PG 1630+377	$2331,\!852$	0,037	0,9181617	$13,\!364$	0,148	18,011	$6,\!697$
HE $0515-4414$	$2331,\!91$	$0,\!03$	0,9182120	$13,\!58$	$0,\!08$	21,15	$5,\!14$
PG 1634+706	$2331,\!917$	0,007	0,9182157	$14,\!129$	0,030	33,745	$1,\!434$
PG 0117+213	$2335,\!021$	0,032	0,9207686	$13,\!279$	0,098	23,367	5,864
HE $0515-4414$	$2335,\!57$	$0,\!05$	0,9212162	$13,\!63$	$0,\!16$	21,98	8,08

HE 0515-4414	2336,41	0,02	0,9219135	14,27	0,09	37,92	4,47
PG 0117+213	2336.871	0.089	0.9222904	12,835	0.226	28,630	16,716
HS 0747+4259	2338.122	0.031	0.9233191	14.511	0.190	46.156	7.045
PKS 0232-04	2338,909	0,090	0.9239665	13,348	0.284	46,747	22,973
PKS 0232-04	2339,802	0,040	0.9247018	12,802	0.371	12,239	10,790
PG 1634+706	2339.967	0.047	0.9248371	12.978	0.101	50.703	10.177
HE 0515-4414	2340.08	0.04	0.9249309	13.22	0.08	30.35	7.26
PKS 0232-04	2340.272	0.039	0.9250878	13.414	0.164	19.892	6.968
PKS 0232-04	2340,947	0,028	0.9256436	14.379	0.116	$41,\!430$	6,711
HS 0747+4259	$2341,\!157$	0,048	0.9258158	13.567	0,100	34.685	8,247
HE 0515-4414	2341,37	0,02	0.9259940	13.33	0.06	18,02	3.69
PG 1634+706	$2341,\!660$	0,004	0,9262301	14,276	0,038	29,482	0,990
HS 0747+4259	2343,391	0,266	0,9276536	15,193	0,878	43,936	16,339
PG 1634+706	$2343,\!851$	0,015	0,9280318	13,923	0,077	52,807	4,548
HE 0515-4414	2344.98	0.07	0.9289618	15.08	1.05	25.17	9,92
PG 0117+213	2347,203	0.094	0.9307898	12,882	0.203	33.863	17,552
PKS 0232-04	2348.279	0.084	0.9316748	12.631	0.361	15.671	16.553
HE 0515-4414	2349.76	0.09	0,9328899	13.37	0.12	45.15	15.09
PKS 0232-04	2350.144	0.081	0.9332089	13.453	0.239	27.282	11.396
PKS 0232-04	2350.747	0.084	0.9337044	13.890	0.106	48.584	12.844
PG 1630+377	2352.102	0.045	0.9348189	12.779	0.295	12.944	9,906
PKS 0232-04	2352.523	0.108	0.9351657	13.206	0.206	40.275	20.195
PG 1630+377	2352.720	0.088	0.9353275	13.492	0.119	60.086	18.346
PG 0117+213	2359.092	0.038	0.9405693	13.442	0.246	25.649	9.937
PKS 0232-04	2359.377	0.045	0.9408034	13.031	0.207	13.773	8.566
PG 0117+213	2359.624	0.247	0.9410067	13.585	0.257	75.207	34,402
PG 1634+706	2359.896	0.007	0.9412308	13,939	0.023	32.205	1.245
HE 0515-4414	2360.24	0.02	0.9415153	14.10	0.09	26.77	3.08
PG 1634+706	2360.694	0.012	0.9418871	13.053	0.046	17.825	2.279
HE 0515-4414	2361.05	0.03	0.9421774	13.09	0.11	16.31	5.17
HS $0747 + 4259$	2362.460	0.046	0.9433396	13.270	0.175	17.982	8.318
PG 1630+377	2364.359	0.026	0.9449021	13.839	0.051	32.921	4,452
HS $0747 + 4259$	2365.928	0.033	0.9461921	14.638	0.174	57.724	8,151
PKS 0232-04	2370.391	0.109	0.9498637	12.810	0.342	28.611	22.601
PG 1634 + 706	2371,435	0,100 0.013	0.9507225	12,810 12,888	0,012 0.052	19 609	2541
HS $0747 + 4259$	$2372\ 372$	0.083	0,9514934	13,000	0,002 0.173	32,952	14 828
PKS 0232-04	2372 861	0.036	0.9518952	12,100 12,946	0.326	10.898	9.055
PKS 0232-04	2373 228	0.088	0.9521978	13,510 13,577	0,020 0.135	50,718	13 852
HE 0515-4414	237345	0,000	0.9523829	12,57	0,100 0.27	16.98	10,002
PG 1630 ± 377	2374 337	0.013	0.9531097	18 484	1.483	48 445	8 132
PG 0117+213	2374 700	0,010 0.105	0.9534085	13 908	0.148	10,110 102,775	20 495
PG $1630+377$	2375,874	0,100 0.037	0,9543739	13,300	0,110 0.216	25,305	9 735
PG $1634 + 706$	2376 344	0.024	0.9547602	13 081	0,210 0.165	$34\ 671$	7 077
PG $1630+377$	2376,911 2376,911	0,021 0.021	0,9517002 0.9552272	14426	0,100 0.146	37,017	5 976
PG 1634 ± 706	2370,311 2377,313	0.086	0.9555574	13,120 13,027	0.288	63 793	20 328
PG 0117+213	2378 401	0,000	0,9564524	13,370	0,200 0.304	62,240	26,020
PG $1630+377$	2378 546	0.033	0.9565716	13 004	0.308	$14\ 276$	8 869
PKS 0232-04	2379 296	0,000	0.9571885	13,054	0.188	24 339	11 927
PG 1630 \pm 377	2379 367	0.042	0,9572471	14,001	0,100	21,000 41.742	10 742
PG 0117+213	2380 311	0.092	0.9580238	13,210	0,115 0.225	43,007	12 729
PKS 0232-04	2381,137	0,002 0.042	0.9587031	12 953	0,220 0.214	12 286	8 144
PKS 0232-04	2385 022	0.042	0.9618989	13,000	0,214 0 203	14 426	8 271
PKS 0232-04	2386 466	0.074	0.9630865	15 999	2,200 2,675	15 688	12 180
PKS 0232-04	2386 824	0.247	0.9633814	13,220 13,827	0.516	31,260	20 959
PG 1634 ± 706	2387460	0,21	0.9639118	13784	0.041	48 820	3 961
PG 1630 + 377	2387 850	0.158	0.9642253	12.636	0.377	30.070	29 353
		0,100	5,5512200	,000	.,		-0,000

PG 1634+706	2388,362	0,013	0,9646462	14,517	0,029	51,153	1,832
PG 0117+213	2390,019	0,020	0,9660097	13,174	0,101	13,385	3,786
PKS 0232-04	2390,647	0,177	0,9665261	12,941	0,281	47,236	32,782
PG 0117+213	2391,576	0,017	0,9672907	14,577	0,104	49,147	4,132
HE 0515-4414	2391,92	0,04	0,9675731	12,84	0,14	18,75	7,40
PG 1630+377	2393,048	0.063	0.9685014	12,680	0.215	19,522	11,824
HS 0747+4259	$2393,\!177$	0.039	0.9686072	13,302	0.131	20,033	6,827
PG 0117+213	2393.215	0.019	0.9686388	13.846	0.046	35.200	3.344
PKS 0232-04	2395.066	0.073	0.9701615	13.673	0.070	80.635	13.216
HS 0747+4259	2396.105	0.023	0.9710161	13.299	0.129	12.264	4.192
HS $0747 + 4259$	2397.065	0.023	0.9718052	13.734	0.090	22.779	3.839
PKS 0232-04	2397.396	0.165	0.9720775	13,291	0.155	84.949	30,780
HE 0515-4414	2398.55	0.02	0.9730236	13.46	0.05	35.58	4.46
PG 0117+213	2399.555	0.137	0.9738534	14.107	0.256	45.983	16.961
PG 0117 + 213	2400,325	0.029	0 9744868	13422	0.314	25,645	9 168
HS $0747 + 4259$	2400,520	0,020 0.033	0.9746617	13 989	0,350	14 419	5 829
PG 0117+213	2400 961	0,027	0.9750100	13,000 13,181	0.092	21,563	5 010
PG 1630+377	2401 460	0.043	0.9754212	12,101 12,818	0,002 0.153	18 833	8 051
HE 0515-4414	2402.70	0.12	0.9764385	13.06	0.13	51.88	20.59
PG 1634 ± 706	2403.060	0,12 0.057	0.9767373	12,827	0,10 0.185	54 695	15,00
PG 1634+706	2403,923	0.025	0 9774469	12,654	0,100 0,112	23.378	5254
PG 1634+706	2404786	0.010	0.9781567	13,399	0.030	27,898	2 044
PG $1634 + 706$	2405 192	0.024	0.9784906	12,661	0.102	16538	3 998
PG $1630+377$	2405,896	0,021 0.048	0.9790700	12,001 13 448	0,102 0.134	38458	9 963
PG 0117+213	2406,690	0.013	0.9796710	14,110 14,518	0,101 0.241	26,535	3 736
PG 1630+377	2406742	0.038	0.9797656	12,722	0,211 0,209	13,032	7 838
HE 0515-4414	2407.12	0.03	0.9800752	12,75	0,200 0.14	11.81	4 47
HS $0747 + 4259$	$2407\ 227$	0.030	0.9801651	$14\ 152$	0,115	36 467	5 318
PG 0117+213	2407.420	0.039	0.9803235	13.219	0.111	24.523	7.100
PKS 0232-04	2409.830	0.067	0.9823061	12.814	0.277	15.193	12.645
HS $0747 + 4259$	2410 402	0.068	0.9827765	12,953	0.284	15,100 15,031	12,620
PG 1634 + 706	2410.453	0.060	0.9828188	12.985	0.731	16,052	7.091
PG 1634+706	2411.361	0.173	0.9835655	13.581	0.243	64.104	15.719
PG 1634+706	2411.701	0.008	0.9838452	14,131	0.048	30.700	2.337
PKS 0232-04	2411.938	0.173	0.9840399	13.294	0.213	58,536	30.417
PG 0117+213	2412.718	0.041	0.9846818	13.948	0.064	50.367	6.847
PG 0117+213	2414.433	0.071	0.9860926	12.709	0.288	16.150	13.461
PG 0117+213	2416.467	0.099	0.9877658	13.657	0.403	68.230	27.980
HS $0747 + 4259$	2417.376	0.038	0.9885131	13.252	0.170	14.887	6.785
PG 1634+706	2419.483	0.005	0.9902460	15.332	0.056	64.314	1.467
PKS 0232-04	2419.925	0.037	0.9906103	13.365	0.102	27.663	6.756
PKS 0232-04	2423.698	0.084	0.9937138	13.528	0.104	72.880	16.321
HE 0515-4414	2425.91	0.03	0.9955342	13.02	0.08	23.68	6.09
PG 0117+213	2427.256	0.043	0.9966407	12.666	0.182	14.951	8.122
PG 0117+213	2429.000	0.036	0.9980754	13.048	0.102	24.085	6.513
PG 1634+706	2429.481	0.005	0.9984706	13,532	0.015	23.967	0.897
PG 1634+706	2430.106	0.026	0.9989849	12.716	0.068	26.398	4.927
PKS 0232-04	2433.039	0.095	1.0013978	12.967	0.271	29.314	17.330
PG 1630+377	2433.526	0.047	1.0017978	13,197	0.087	36.670	8.247
PG 1634+706	2433.833	0.086	1.0020503	13.058	0.085	82.057	16.923
PKS 0232-04	2434.057	0,201	1,0022352	13,310	0,242	81,265	42,950
HS 0747+4259	2434,102	0,038	1,0022717	13,779	0,072	38,500	6.105
PG 1634+706	2435.246	0,005	1.0032125	14,540	0,022	53,467	1.148
PG 1630+377	2435,482	0,013	1,0034072	13,705	0,055	20,673	2,166
HE 0515-4414	2436,65	0,03	1,0043696	$12,\!69$	0,11	15,08	5,13
PG 0117+213	2438,221	0,040	1,0056597	$13,\!428$	0,098	$37,\!144$	7,857

PG 1634+706	2440,379	$0,\!170$	1,0074354	$12,\!609$	0,267	$46,\!688$	30,938
PG 0117+213	2440,742	0,037	1,0077336	14,110	0,060	56,416	6,268
PG 1634+706	2441,096	0,026	1,0080254	$13,\!275$	0,068	32,710	5,631
PKS 0232-04	2441,301	0,063	1,0081936	13,303	0,164	25,765	10,830
PG 1630+377	2441,579	0,033	1,0084226	$13,\!809$	0,066	35,392	5,318
HS 0747+4259	$2441,\!661$	0,104	1,0084897	13,262	0,234	29,687	17,723
PG 1634+706	2441,744	0,128	1,0085580	12,569	0,273	35,656	25,126
PG 0117+213	2442,077	0,029	1,0088321	13,191	0,143	15,674	$5,\!689$
PG 1630+377	$2442,\!688$	0,055	1,0093349	$13,\!846$	0,055	66,915	9,709
HE 0515-4414	2442,79	0,12	1,0094210	12,71	0,23	29,94	$10,\!68$
PG 0117+213	2443,851	0,017	1,0102912	$13,\!244$	0,102	11,003	3,182
PG 1630+377	2444, 137	0,028	1,0105267	12,916	0,140	11,422	5,337
PG 0117+213	$2444,\!614$	0,039	1,0109189	$13,\!580$	0,084	29,203	6,484
PG 0117+213	$2445,\!254$	0,063	1,0114454	$13,\!588$	0,104	36,518	9,379
PKS 0232-04	$2445,\!849$	0,126	1,0119345	13,103	0,254	40,189	24,055
PG 1634+706	2447,390	0,042	1,0132025	12,371	0,162	17,093	7,950
PKS 0232-04	$2447,\!452$	0,038	1,0132531	13,532	0,087	31,370	6,452
PG 0117+213	2448,238	0,017	1,0138998	$13,\!580$	0,101	12,361	3,212
PG 1630+377	$2449,\!619$	0,020	1,0150360	13,276	0,066	20,753	3,582
PG 0117+213	2450, 249	0,056	1,0155544	13,714	0,054	81,980	10,902
PG 1634+706	2450,835	0,052	1,0160367	12,715	0,114	38,756	10,089
HE 0515-4414	$2451,\!62$	0,09	1,0166833	12,83	0,31	21,33	17,51
HE 0515-4414	2452,00	0,07	1,0169966	13, 17	0,41	18,38	$13,\!66$
HE 0515-4414	2452,36	0,05	1,0172881	$13,\!67$	$0,\!12$	26,89	7,54
PG 1634+706	2452,387	0,009	1,0173127	14,495	0,025	44,437	1,383
PG 1634+706	2453, 186	0,279	1,0179700	12,791	0,348	54,005	33,349
PKS 0232-04	$2453,\!196$	0,059	1,0179784	12,863	0,186	21,447	10,767
PG 1630+377	2453,202	0,032	1,0179831	13,014	0,110	19,608	5,768
PG 1630+377	2453,999	0,024	1,0186391	13,904	0,033	48,748	5,016
PKS 0232-04	$2454,\!679$	0,029	1,0191980	13,769	0,052	39,119	4,874
PG 1630+377	2454,728	0,067	1,0192384	12,912	0,198	25,043	11,199
HE 0515-4414	2455, 36	0,04	1,0197576	12,70	$0,\!14$	14,27	6,76
HE 0515-4414	2456,53	0,03	1,0207218	13,27	0,06	33,21	4,92
PG 1634+706	2457, 134	0,018	1,0212178	13,325	0,034	38,903	3,373
PG 1634+706	$2457,\!829$	0,112	1,0217896	$12,\!378$	0,255	32,793	21,267
PG 1634+706	2458,501	$0,\!059$	1,0223419	12,262	0,206	21,051	11,370
PG 0117+213	2460,908	0,030	1,0243223	12,747	0,170	13,180	6,181
PKS 0232-04	2462,270	0,040	1,0254423	12,981	$0,\!153$	16,758	7,281
HE 0515-4414	$2462,\!61$	0,02	1,0257231	13,56	$0,\!05$	21,45	2,96
HE 0515-4414	2463, 11	0,02	1,0261303	13,27	0,08	21,20	5,30
HE 0515-4414	2464, 29	0,01	1,0271033	$15,\!39$	0,29	40,78	3,82
HS 0747+4259	$2464,\!346$	0,047	1,0271504	13,707	0,284	33,469	13,806
PG 1634+706	$2464,\!356$	0,027	1,0271588	$12,\!491$	0,133	12,922	5,230
PG 1634+706	$2464,\!691$	0,012	1,0274337	$13,\!106$	0,041	18,345	2,228
PG 0117+213	2465,096	0,050	1,0277668	$12,\!956$	0,132	25,026	8,849
PKS 0232-04	2467,260	0,103	1,0295475	12,936	0,332	28,663	20,809
HS 0747+4259	2468, 132	0,052	1,0302644	$13,\!867$	0,082	$47,\!605$	8,371
HE 0515-4414	$2468,\!35$	$0,\!05$	1,0304401	$13,\!82$	0,20	21,34	5,31
HE 0515-4414	2468,79	0,07	1,0308058	14,20	0,11	35,73	7,51
PG 0117+213	2469, 315	0,039	1,0312377	$13,\!356$	0,086	31,119	6,718
HS $0747 + 4259$	2469,720	0,044	1,0315711	13,269	0,179	15,935	$7,\!607$
PG 0117+213	2470,906	0,014	1,0325466	$14,\!863$	$0,\!639$	21,062	5,210
PG 1630+377	$2471,\!910$	0,070	1,0333723	$13,\!080$	0,165	26,952	11,905
HS 0747+4259	$2472,\!689$	0,037	1,0340129	$14,\!656$	0,730	28,340	10,540
PG 1630+377	$2474,\!047$	0,048	1,0351301	$12,\!865$	0,167	$17,\!623$	8,526
PKS 0232-04	$2474,\!385$	0,083	1,0354083	14,787	0,296	42,605	9,084

HS 0747+4259	$2475,\!076$	0,044	1,0359769	$13,\!453$	0,149	20,484	7,391
PG 1630+377	$2475,\!210$	0,037	1,0360868	13,576	0,057	44,670	6,209
PG 1630+377	2476,441	0,023	1,0370994	13,295	0,072	20,991	3,986
PKS 0232-04	2476,724	0,045	1,0373325	12,707	0,230	10,878	8,799
PKS 0232-04	2478,851	0,074	1,0390818	12,522	0,326	13,190	13,970
PG 1634+706	2480,402	0,013	1,0403576	16,435	0,041	40,071	0,783
PG 1634+706	2481,551	2,568	1,0413028	14,156	2,793	88,043	103,303
PG 1634+706	$2481,\!588$	0,009	1,0413336	17,142	0,060	31,609	0,771
PKS 0232-04	2485,304	0.070	1,0443904	12,617	0.250	17,125	12,609
HS 0747+4259	2485.850	0.018	1.0448395	13.853	0.136	18,238	3.238
PKS 0232-04	2486,226	0.021	1.0451490	13,510	0.058	25,227	3,488
HS 0747+4259	2488.483	0.058	1.0470052	13.378	0.109	35,390	9.726
PG 0117+213	2488.794	0.013	1.0472608	19.334	1.624	51.893	8.090
HS 0747+4259	2490.471	0.019	1.0486403	15.428	0.550	38.691	6.593
HE 0515-4414	2491.19	0.01	1.0492340	13.74	0.03	28.71	2.36
PG 0117 + 213	2492.047	0.054	1.0499368	12.539	0.249	14.386	10.311
PG 0117 + 213	2492 967	0.036	1,0506934	12,918	0.185	17 499	7 194
PG 1630+377	2493.743	0.019	1.0513322	13.626	0.050	29.121	3.286
PG 0117+213	2494 756	0.087	1 0521657	14,325	0 109	58 415	7 510
HS $0747 + 4259$	2496834	0.054	1,0538749	13,138	0,100 0.171	19707	9 266
PG 1634 + 706	2497519	0.037	1,0544380	12,558	0 108	22 971	6 661
PKS 0232-04	2497 977	0,001	1,0548146	12,000 12,875	0.308	41 187	31 301
HE 0515-4414	2499 42	0.18	1,0560033	13.42	0.13	91.53	33 29
PG 1634 ± 706	2500 802	0,10 0.007	1,0500000000000000000000000000000000000	14 318	0,10	49 215	1.997
PG 1630 ± 377	2500,802	0.085	1,0575182	12 8/10	0,020 0.273	22.048	15 790
PKS 0232-04	2501,200 2502,317	0.050	1,0573102 1 0583845	12,010 13,060	0,210 0.164	19.352	8 734
$PG 0117 \pm 213$	2502,917	0,000 0.126	1,0505040 1,0507720	13,000	0,104 0.212	37717	15 970
PKS 0232-04	2501,000 2504.057	0,120 0.106	1,0598164	10,110 12771	0,212	25 /28	18/180
$PG 0117 \pm 213$	2504,007	0,100 0.079	1,0000104 1,0602502	12,111 13,612	0,205 0.136	26,420 36,117	9 586
PKS 0232-04	2504,955	0,015	1,0002002	10,012 12.774	0,100 0.231	20.848	13 503
PG 0117 \pm 213	2505 743	0.063	1,0009191	12,111 12,070	0,201 0.175	20,010	11 0/8
HS $0747 + 4259$	2506 490	0.039	1,0012000 1,0618176	13 688	0.139	25,012 25,941	7 508
PG 1634 ± 706	2506,450	0,000	1,0010170 1,0619277	12,000	0,105	31 030	6 188
HE 0515-4414	2508 79	0,055	1,0015277 1.0637191	12,002 12.71	0,000	17.63	6.12
$PG 1630 \pm 377$	2500,15 2512,173	0,00 0.176	1,0057121	12,71 13 710	0,14	213 621	30 752
PC 0117 \pm 213	2512,175	0,170	1,0004920 1.0670288	13,710 12,640	0,009	125,021	6 330
HE 0515 4414	2512,020 2514.04	0,004	1,0070200	14 49	0,155	54.07	4 18
HE 0515 4414 HE 0515 4414	2514,04 2515.60	0,02	1,00000011	14,42	0,05	28.02	254
$PC 1630 \pm 377$	2515,00 2516,551	0,01	1,0090110 1,0700033	13,40	0,11	20, <i>32</i> 52,400	2,04
PC 0117 + 213	2510,551 2518,671	0,017	1,0700933 1.0718380	14 257	0,029 0.175	16 633	10.057
PC 0117 + 213	2510,071	0,004 0.117	1,0718580 1.0723518	14,007	0,170	40,033	7 750
PC 0117 + 213	2519,290 2510,063	0,117	1,0720003	14,450 13,500	0,100 0.178	12 662	4 501
PC 1634 + 706	2519,903 2521,560	0,028 0.012	1,0729003 1.0749913	10,090	0,178	15,002 17.145	9 174
HE 0515 4414	2521,003	0,012 0.02	1,0742213 1.0752174	12,004 13.35	0,044	31.06	4 05
HE 0515-4414 HE 0747 4950	2522,18	0,02	1,0752174 1,0762024	14 405	0,05	51,90 68 072	4,90
PC 0117 + 212	2524,209 2524,407	0,031	1,0705954 1.0765561	19 499	0,150	00,972	15,201 15,507
PG 0117+213 PC 1624 + 706	2524,407	0,084	1,0705501 1.0778542	12,430	0,085	02,307 46 462	2 701
FG 1034 + 700 HS 0747 + 4950	2525,965	0,022	1,0778742	16,240	1,029	40,403	10 202
DC 0117 + 912	2520,010	0,020	1,0770204	10,272	1,030	50,021	6 6 9 6
PG 0117+213	2520,069	0,039	1,0770894	13,000	0,054	51,559 68 02	16 76
ПЕ 0010-4414 DVS 0020 04	2520,15	0,10	1,0779001	13,21	0,09	42.225	10,70
F NO 0232-04	2020,203	0,110	1,0780337	12,920 10 750	0,180	42,220 25 975	19,937
$\Gamma = 1034 \pm 700$	2021,304	0,044	1,0700059	12,708	0,080	əə,∠7ə əo ə∍≠	10,000
$n_{5} 0(4) + 4259$ $n_{5} 1624 + 706$	2028,0U3	0,025	1,0799253	10,351	1,130	28,834 EE 976	10,209
rG 1034+700	2529,694 2520.27	0,138	1,0809048	12,589	0,183	55,876 57,94	24,603
пь 0515-4414 DC 1624 - 706	2030,27	0,10	1,0813780	13,32	0,10	07,34 06.000	10,39
PG 1034+700	2551,477	0,010	1,0823716	13,467	0,025	26,830	1,628

PG 0117+213	$2533,\!866$	0,018	1,0843372	$13,\!281$	0,089	13,277	3,161
PKS 0232-04	$2534,\!695$	0,038	1,0850186	12,837	$0,\!196$	11,437	$7,\!196$
PG 1634+706	$2535,\!293$	0,053	1,0855106	$12,\!230$	0,244	12,801	10,165
PG 0117+213	$2535,\!488$	0,014	1,0856707	$13,\!884$	0,063	24,000	2,326
PKS 0232-04	$2535,\!821$	0,205	1,0859450	$13,\!233$	0,258	$83,\!476$	42,985
PG 1634+706	2537,573	0,061	1,0873860	$13,\!892$	0,070	$55,\!681$	6,547
PKS 0232-04	2538,036	0,141	1,0877671	12,748	0,312	32,195	25,108
PG 1634+706	2538,164	0,032	1,0878721	13,731	$0,\!095$	$34,\!602$	3,403
PG 0117+213	$2538,\!485$	0,075	1,0881362	13,080	0,123	42,222	13,024
PG 1634+706	2538,502	0,210	1,0881500	$13,\!610$	0,068	247,923	29,992
PKS 0232-04	2539,336	0,029	1,0888367	14,059	0,038	56,160	5,026
HE 0515-4414	2539,43	0,03	1,0889124	13,03	$0,\!28$	13,51	$5,\!83$
HE 0515-4414	2539,73	0,03	1,0891631	12,99	$0,\!13$	13,99	6,95
PKS 0232-04	2540,262	0,048	1,0895985	13,086	$0,\!140$	22,514	8,153
PG 1630+377	2542,867	0,051	1,0917414	14,172	0,075	40,905	4,545
PG 0117+213	$2543,\!296$	0,049	1,0920936	12,869	0,119	26,365	8,401
PG 1630+377	$2543,\!532$	0,046	1,0922879	14,070	0,095	36,986	8,759
HE 0515-4414	2544,90	0,08	1,0934108	13,40	$0,\!53$	60,50	30,59
PG 0117+213	$2545,\!052$	0,085	1,0935387	12,767	0,160	35,351	14,600
HS 0747+4259	$2545,\!321$	0,018	1,0937599	14,799	0,381	30,166	5,701
PKS 0232-04	2545,731	0,068	1,0940970	12,844	0,176	24,636	11,705
PG 0117+213	2545,991	0,037	1,0943109	12,702	0,130	17,207	6,492
PG 1630+377	2546,734	0,115	1,0949223	12,434	0,272	27,524	20,884
PKS 0232-04	2547,022	0,038	1,0951586	13,237	0,085	28,270	6,245
HE 0515-4414	2547, 14	0,05	1,0952519	12,77	0,24	23,13	10,75
PG 1630+377	2548,108	0,006	1,0960525	$16,\!619$	0,411	40,317	2,987
PG 1630+377	2549,989	0,111	1,0975999	12,764	0,166	46,360	19,273
HS 0747+4259	2550,676	0,021	1,0981643	13,876	0,067	28,732	3,408
PG 0117+213	$2551,\!239$	0,052	1,0986275	12,418	0,215	14,019	9,343
HE 0515-4414	2552,86	0,05	1,0999624	12,89	0,13	31,00	$14,\!54$
HE 0515-4414	2553, 61	0,04	1,1005775	12,98	0,08	27,80	5,66
PG 1630+377	2555,167	0,011	1,1018586	14,254	0,049	34,088	2,141
HE 0515-4414	2555,79	0,02	1,1023713	13,05	0,10	13,78	4,07
HE 0515-4414	2556,84	0,41	1,1032376	13, 13	0,18	114,80	58,73
PKS 0232-04	2557,330	0,038	1,1036381	12,975	0,147	15,284	$6,\!619$
HE 0515-4414	2557,78	0,12	1,1040076	12,63	0,34	20,28	$15,\!10$
HE 0515-4414	2558,83	0,02	1,1048746	12,81	0,11	12,26	3,88
PG 1630+377	2563,283	0,016	1,1085347	13,568	0,048	23,377	2,586
HS 0747+4259	2563,387	0,043	1,1086204	13,121	0,190	13,561	7,400
PG 1630+377	2567,985	0,027	1,1124028	13,739	0,038	47,851	4,268
PKS 0232-04	2568, 195	0,041	1,1125753	12,992	0,179	13,080	7,280
HE 0515-4414	2569,20	0,05	1,1134050	13,04	0,15	20,90	9,50
HE 0515-4414	2569,54	0,07	1,1136813	12,71	0,27	14,59	7,84
PG 0117+213	2569,761	0,035	1,1138641	12,559	0,193	10,734	6,808
PG 0117+213	2570,607	0,029	1,1145593	13,769	0,212	13,302	3,297
HE 0515-4414	2570,72	0,05	1,1146513	$13,\!33$	0,06	$51,\!30$	8,62
HS 0747+4259	2572,440	0,021	1,1160674	14,457	0,099	35,248	3,272
PG 1630+377	$2573,\!550$	0,014	1,1169809	13,790	0,031	33,387	2,247
HS 0747+4259	2574,077	0,044	1,1174138	13,395	0,116	28,255	7,714
PG 0117+213	2574,475	0,044	1,1177413	13,837	0,071	63,552	8,553
PG 0117+213	2575,915	0,018	1,1189258	13,519	0,151	21,288	4,065
PG 0117+213	$2577,\!983$	0,048	$1,\!1206274$	$12,\!688$	0,276	$13,\!120$	8,006
PG 0117+213	2578,316	0,030	1,1209010	13,236	0,135	22,525	5,966
HS 0747+4259	2578,416	0,069	1,1209832	12,926	0,257	22,150	$13,\!182$
PKS 0232-04	2579,043	0,020	1,1214994	14,059	0,046	41,872	3,472
HS 0747+4259	$2579,\!281$	0,022	1,1216950	$13,\!347$	0,104	14,807	4,038

HS 0747+4259	2580,260	0,021	1,1225003	$13,\!599$	0,073	22,946	3,788
HE 0515-4414	2580,27	0,09	1,1225071	13,46	0,07	73,19	$16,\!61$
PG 0117+213	2581,325	0,010	1,1233765	13,508	0,035	20,821	$1,\!689$
HE 0515-4414	2582,00	0,02	1,1239306	12,99	0,07	19,30	4,26
PKS 0232-04	$2582,\!530$	0,049	1,1243672	12,703	0,240	14,164	9,420
PG 1630+377	2582,987	0,027	1,1247437	13,586	0,042	47,794	$4,\!635$
PG 1634+706	$2583,\!801$	0,054	1,1254129	$12,\!634$	0,139	37,430	10,878
HS 0747+4259	$2583,\!890$	0,055	1,1254858	13,423	0,548	42,660	25,997
PG 0117+213	2586,091	0,071	1,1272964	13,868	0,091	73,862	9,145
PG 1630+377	$2588,\!606$	0,013	1,1293658	13,556	0,047	20,508	2,187
HE 0515-4414	2589,16	0,03	1,1298251	$12,\!65$	$0,\!13$	12,75	$4,\!40$
PG 0117+213	2590,142	0,027	1,1306294	12,898	0,143	15,592	$5,\!427$
PG 1634+706	2590,248	0,005	1,1307159	$13,\!691$	0,017	23,226	0,819
PKS 0232-04	2591,338	0,031	1,1316128	$13,\!678$	0,065	$33,\!539$	4,959
PKS 0232-04	2592,042	0,039	1,1321920	12,928	0,172	13,201	7,005
PG 0117+213	2592,243	0,047	1,1323574	$14,\!248$	0,074	44,251	6,253
PG 1634+706	$2593,\!054$	0,089	1,1330246	$12,\!473$	0,233	31,855	17,012
PG 0117+213	2593, 111	0,047	1,1330710	$14,\!330$	0,091	41,090	7,012
PG 1634+706	2593,784	0,014	1,1336248	13,599	0,033	30,782	2,137
PG 0117+213	2595,065	0,019	1,1346783	$15,\!817$	$0,\!640$	42,305	7,308
HS 0747+4259	$2596,\!832$	0,075	1,1361319	13,166	0,193	$25,\!828$	12,586
PG 0117+213	$2598,\!454$	0,145	1,1374665	$13,\!946$	0,400	65,092	31,509
HS 0747+4259	2598,550	0,048	1,1375453	$13,\!899$	0,220	$17,\!279$	6,840
HE 0515-4414	2598,88	0,10	1,1378196	$12,\!62$	0,38	13,04	$16,\!61$
HS 0747+4259	2598,911	0,067	1,1378423	$13,\!540$	0,215	16,717	8,828
PG 1634+706	2599,347	0,015	1,1382007	$14,\!583$	0,027	43,314	2,267
PG 1634+706	2602,578	0,009	1,1408589	14,146	0,021	45,448	1,749
PG 0117+213	2602,706	0,051	1,1409645	12,702	0,247	14,791	9,278
PKS 0232-04	2604, 261	0,067	1,1422432	$12,\!685$	0,281	15,126	12,442
PG 1634+706	2604,525	0,036	1,1424603	$13,\!622$	0,171	64,002	12,197
PG 1634+706	$2604,\!638$	0,035	1,1425536	12,732	0,250	19,458	7,549
HE 0515-4414	2604, 82	0,08	1,1426996	$13,\!07$	$0,\!11$	40,73	$12,\!13$
PKS 0232-04	2604,887	0,049	1,1427581	12,713	0,240	12,123	9,132
PKS 0232-04	$2607,\!895$	$0,\!050$	1,1452328	$12,\!634$	0,243	$11,\!640$	9,349
PG 1630+377	2609,385	0,099	1,1464583	$12,\!661$	0,267	28,560	18,106
PKS 0232-04	2609,838	0,069	1,1468304	$12,\!806$	0,207	$21,\!830$	12,016
HS $0747 + 4259$	2610,426	0,031	1,1473145	$13,\!587$	0,063	$33,\!450$	4,922
PG 1630+377	2610,859	0,042	1,1476710	$14,\!849$	0,292	27,362	$6,\!656$
PG 1630+377	2611, 197	1,006	1,1479491	$13,\!679$	$1,\!669$	44,739	$54,\!887$
PKS 0232-04	2611,947	0,044	1,1485658	$12,\!949$	0,148	$19,\!810$	7,732
HE $0515-4414$	$2614,\!69$	0,08	$1,\!1508204$	$19,\!88$	$0,\!02$	73, 17	$5,\!27$
PG 0117+213	$2615,\!180$	0,029	1,1512247	$13,\!056$	0,078	22,744	4,781
PKS 0232-04	$2615,\!514$	0,038	1,1515001	$13,\!230$	0,097	$25,\!442$	6,327
HS $0747 + 4259$	$2616,\!598$	0,014	1,1523914	$13,\!905$	0,080	20,786	2,318
HE 0515-4414	$2618,\!28$	$0,\!04$	$1,\!1537732$	14,11	$0,\!12$	34,89	5,78
PG 1634+706	$2618,\!347$	0,011	$1,\!1538305$	$13,\!350$	0,021	34,021	1,769
PG 1630+377	2619,201	0,024	1,1545326	13,727	0,033	$48,\!344$	3,792
PG 1634+706	2620,995	0,023	1,1560083	$12,\!872$	0,054	$28,\!840$	3,966
HE 0515-4414	$2621,\!89$	$0,\!13$	$1,\!1567457$	$13,\!04$	0,16	41,03	$25,\!62$
PG 1630+377	$2623,\!973$	0,037	$1,\!1584578$	$13,\!616$	0,047	$52,\!676$	6,003
PKS 0232-04	$2625,\!003$	$0,\!344$	$1,\!1593054$	$13,\!271$	0,213	$118,\!119$	58,927
PG 1630+377	$2625,\!548$	$0,\!341$	$1,\!1597540$	$13,\!062$	0,402	$51,\!571$	$43,\!932$
HE $0515-4414$	$2625,\!81$	$0,\!04$	$1,\!1599699$	$13,\!60$	$0,\!04$	56,21	6,33
PG 0117+213	$2626,\!091$	0,068	1,1602005	$12,\!946$	$0,\!146$	29,805	$11,\!290$
PG 1630+377	$2626,\!820$	$0,\!019$	1,1608003	$16,\!079$	$0,\!552$	$45,\!953$	6,257
HE $0515-4414$	$2627,\!57$	0,03	1,1614174	$12,\!92$	$0,\!11$	12,07	$5,\!00$

PG 1634+706	2628,049	0,008	1,1618114	$13,\!864$	0,015	43,302	1,329
PG 0117+213	2628,910	0,026	1,1625190	14,104	0,038	55,042	4,096
HS 0747+4259	2629,779	0,071	1,1632345	12,763	0,285	14,090	12,298
HE 0515-4414	2629,79	0,02	1,1632471	14,04	0,03	57,40	$3,\!67$
PG 1634+706	2629,865	0,041	1,1633052	12,885	0,085	36,583	7,278
HE 0515-4414	2631, 21	0,02	1,1644151	14,03	0,06	26,47	2,33
HE 0515-4414	2632,42	0,01	1,1654054	14,36	0,14	27,90	2,88
PG 0117+213	2633,808	0.027	1,1665480	14.049	0.073	28,722	3.910
PKS 0232-04	2633,986	0,145	1,1666946	13,085	0,232	38,874	24,834
HE 0515-4414	2634.18	0.08	1,1668526	13,27	0.09	57.15	13,00
PG 1630+377	2634.670	0.054	1,1672577	13,188	0.143	22,535	8,766
PG 0117+213	2634.675	0,029	1,1672618	15,960	5,848	14,645	17,131
PG 1634+706	2634,696	0,036	1,1672791	12,916	0,080	33,782	6,377
PG 0117+213	2634,904	0,136	1,1674501	14,031	0,175	58,165	8,909
HE 0515-4414	2638,96	0.01	1,1707832	14,13	0.03	48,20	2.15
PG 0117+213	2639,242	0,098	1,1710183	13,418	0.086	85,962	16,881
PG 1634+706	2639.945	0.008	1.1715965	13.366	0.022	23.604	1.302
PG 1630+377	2643.896	0.009	1.1748466	14.356	0.083	30.473	2.010
PG 1634+706	2644.670	0.025	1.1754832	12.760	0.065	25.190	4.256
PG 1630+377	2645.947	0.056	1.1765336	13.392	0.064	60.508	9.322
PKS 0232-04	2647.292	0.027	1.1776404	13.935	0.055	30,699	3,969
PKS 0232-04	2647.844	0.070	1.1780945	13.035	0.221	20.041	11.282
PG 1634+706	2648.122	0.035	1,1783231	12.730	0.081	31.720	6.150
PKS 0232-04	2649.008	0.104	1,1790514	13.326	0.116	62,438	18.474
PG 1630+377	2649.035	0.037	1,1790742	12.923	0.104	21.745	6.132
HE 0515-4414	2650.10	0.03	1,1799477	14.03	0.04	36.77	3.05
HE 0515-4414	2650.73	0.09	1.1804649	13.41	0.14	38.02	9.31
PKS 0232-04	2650.977	0.112	1,1806713	12.925	0.213	36.300	18,957
PG 1630 + 377	2651.125	0.082	1.1807932	12.684	0.191	26.879	13,740
PG 1634+706	2651.301	0.036	1.1809382	12.459	0.113	20.799	6.316
PG 0117+213	2651.831	0.064	1.1813741	12.648	0.177	21.611	10.633
PKS 0232-04	2653.767	0.026	1.1829665	12.987	0.136	10.608	4.732
PG 1634+706	2654.054	0.014	1.1832029	13.086	0.034	26,191	2.265
HE 0515-4414	2654.25	0.06	1.1833652	13.80	0.04	90.39	6.51
HE 0515-4414	2654.67	0.01	1.1837107	14.15	0.09	25.78	2.31
PKS 0232-04	2656.758	0.050	1.1854267	13.432	0.085	38.634	8.020
PG 1634+706	2656.790	0.008	1.1854533	13.436	0.019	26.047	1.278
PKS 0232-04	2658.242	0.057	1.1866475	12,835	0.203	16.374	9.641
PG 0117+213	2659.292	0.059	1.1875112	12.449	0.260	12.527	10.397
PG 1630 + 377	2660.866	0.064	1.1888061	13.747	0.111	30.506	6.777
PG 1634 + 706	2661.050	0.085	1,1889574	11.982	0.333	14.530	15.023
PG 1630 + 377	2661.419	0.029	1,1892611	14.438	0.247	23.669	4.414
HS $0747 + 4259$	2661.929	0.051	1.1896805	14.275	0.347	24.582	8.326
PG 1630+377	2663.519	0.028	1,1909886	13.445	0.066	26.615	4.394
PKS 0232-04	2663 624	0.040	1,10000000 1,1910744	13,407	0.113	20,010 22.175	6 267
PKS 0232-04	2665 816	0,046	1 1928780	13,107	0,110 0.216	11.648	7 968
PKS 0232-04	2666 508	0,010 0.037	1,1920100 1,1934474	10,120 14 178	0,210 0.131	36.275	6,360
PG 1634 ± 706	2671,313	0.007	1 1973999	14,110 14,002	0,101 0.021	32,009	1 050
PG 0117 \pm 213	2672 261	0,001	1 1081706	13 311	0,021	17863	5 122
HE 0515-4414	2672,201	0,055	1,1983645	13,011 13.05	0,050	38.86	9.73
PG 1630 ± 377	2675 285	0.019	1 2006672	13 290	0.059	19.092	2 994
PG 1634+706	2676 622	0.017	1,2000012 1.2017665	13,250	0.027	40.385	2,354 2 701
HS 0747 ± 4259	2677 887	0.261	1 2028073	13 371	0.351	46.036	28 015
PG 1634 ± 706	2679 128	0,201 0.042	1 2038280	13,004	0.056	49 956	6 941
PG 0117+213	2679 460	0.035	1.2041009	13.679	0.051	36.533	4 957
PG 0117+213	2679.892	0.047	1.2044567	12.745	0.338	13.284	8.484
J. J		~,~ - .	-,	,• ••	-,	,	-,

PG 1630+377	2681,045	0,023	1,2054053	13,429	0,047	29,641	3,522
PG 0117+213	2681,296	0,025	1,2056116	13,525	0,039	40,570	3,899
HS 0747+4259	2682,206	0,057	1,2063599	12,986	0,195	25,549	10,796
PKS 0232-04	2683,458	0,047	1,2073903	12,883	0,163	16,644	7,990
HE 0515-4414	2683,51	0,22	1,2074344	13,48	0,07	190,69	34,54
HS 0747+4259	2683,512	0,063	1,2074347	12,814	0,184	21,298	10,590
PKS 0232-04	2684,092	0,026	1,2079113	13,535	0,064	25,030	4,290
PKS 0232-04	2684,648	0,046	1,2083688	12,915	0.163	16,301	7,995
HS 0747+4259	2686,181	0.016	1,2096299	14,387	0.072	43,143	2,984
PKS 0232-04	2686.317	0.061	1.2097422	13,182	0.121	33,339	10.045
PG 0117+213	2687.165	0.038	1.2104396	13.091	0.079	29.165	6.101
PG 0117+213	2687.897	0.031	1.2110417	12.928	0.168	15.764	5,500
PG 0117+213	2688.427	0.123	1.2114773	13.038	0.167	44.381	20.138
HS $0747 + 4259$	2688.444	0.059	1.2114910	12.847	0.172	21.878	9,909
PKS 0232-04	2688.831	0.053	1.2118101	12,718	0.222	13.255	9.251
PKS 0232-04	2689539	0,053	1,2123920	13,110	0,106	31,345	8 463
PKS 0232-04	2691.171	0.104	1.2137344	12.626	0.325	18.617	17.332
PKS 0232-04	2692.435	0.057	1.2147747	13.891	0.055	62.751	9.205
PKS 0232-04	2693,183	0.055	1 2153899	12,001 12,734	0,355	10.217	11 012
HE 0515-4414	$2694\ 29$	0.14	1,2160000 1,2162994	13.32	0.08	10,211 104 46	21.93
PG 0117+213	2694 629	0.070	1,2165788	12,485	0,306	12433	12,606
PG 0117+213	2694.972	0.025	1.2168617	13.097	0.094	14.660	4.375
HE 0515-4414	2696.76	0.01	1.2183286	12.86	0.01	12.20	0.01
PG $1634 + 706$	2697,147	0.017	1,2186502	13,525	0.023	44 722	2,549
PKS 0232-04	2697,210	0.069	1,2180002 1,2187022	13,938	0,020 0.059	79 160	10,654
HE 0515-4414	2697.32	0.11	1.2187893	13.51	0.06	101.39	18.33
PG 0117+213	2699.523	0.048	1.2206053	13.067	0.128	22.097	7.610
HS $0747 + 4259$	2700.954	0.032	1.2217818	14.288	0.112	40.476	6.289
HE 0515-4414	2701.79	0.05	1.2224721	13.75	0.07	35.58	6.93
PKS 0232-04	2703.901	0.064	1.2242062	13.298	0.135	28.331	9.885
HE 0515-4414	2704.50	0.05	1.2247022	13.64	0.07	38.62	4.63
PG 1630+377	2704.580	0.189	1.2247645	12.836	0.349	31.737	28,735
PG 0117+213	2705.540	0.054	1.2255547	12.923	0.142	23.007	8,751
PG 0117+213	2708.433	0.080	1.2279338	12.852	0.164	30.421	13.005
PKS 0232-04	2708.991	0.072	1.2283932	12.721	0.258	15.541	12.077
PG 0117+213	2710.783	0.021	1.2298669	13.505	0.073	25.943	3.814
PG $1630+377$	2711.519	0.079	1.2304725	12.975	0.137	35.555	12,589
HS $0747 + 4259$	2714 964	0.096	1,2333062	12,610 12,622	0,101 0.254	21,663	15,000
PG 1630+377	2715 839	0.030	1,2340260	13 009	0,201 0.093	19 131	4 973
PG 0117+213	2717551	0.011	1,2354347	14 096	0.042	29 133	1 924
HS $0747 + 4259$	2718.213	0.016	1.2359793	13.928	0.044	31.588	2.610
PG 1634 + 706	2718.245	0.009	1.2360054	13.165	0.028	17.936	1,408
PG 0117+213	2718,285	0.024	1,2360383	13,100 13,321	0,020 0.073	24 320	4 094
PG $1630+377$	2720.384	0,021 0.126	1,2377654	12,549	0,326	26,783	21 550
PKS 0232-04	2722,306	0 101	1,2393458	12,010 12,004	0,020 0.165	37,304	15 929
PG 1630 ± 377	2723,300	0.019	1,2000100 1,2402623	12,551 13,544	0,100 0.047	27,001	3 085
PG 0117+213	2723,120 2723,550	0.087	1,2403691	12,945	0,011 0,136	39730	13 888
PG $1630+377$	2724.742	0.043	1.2413503	13.393	0.097	26.343	5.759
PG $1630+377$	2725,546	0.020	1,2420114	14,000	0.044	41 478	2.678
PG $1634 + 706$	2728,668	0.009	1,2445790	13,101	0.026	20,382	1 436
PG 0117+213	2729.002	0.044	1.2448539	12.919	0.123	21,030	7.033
PG 1630+377	2729.257	0.022	1.2450642	13.958	0.043	33,609	3.184
HE 0515-4414	2729.68	0.03	1.2454133	12.63	0.13	12.95	6.10
PG 1630+377	2730.279	0.020	1,2459044	14.359	0.057	41.704	3.091
PKS 0232-04	2732.594	0.085	1,2478087	13,053	0,174	28.460	13.266
PG 0117+213	2733,165	0,028	1,2482784	$13,\!610$	0,086	17,883	4,207

PG 0117+213	$2734,\!185$	0,096	1,2491177	12,754	0,387	21,020	18,408
PKS 0232-04	2734,410	0,054	1,2493024	12,929	0,196	14,833	8,838
PG 0117+213	2734,685	0,040	1,2495287	13,169	0,139	19,534	6,898
HE 0515-4414	2734,72	0.03	1.2495618	13.36	0.05	24.65	4,23
PG 1634+706	2735,366	0,009	1,2500893	13,464	0,026	21,316	1,380
PG 0117+213	2735.535	0.026	1.2502282	13.878	0.057	38.620	4.506
PKS 0232-04	2738.232	0.062	1.2524467	13,119	0.185	18.711	9.639
PG 0117+213	2739.893	0.022	1.2538128	15.016	0.131	27.954	3.542
PG 0117 + 213	2740.144	0.108	1.2540193	14,191	0.174	63,494	11.235
HE 0515-4414	2743 11	0.08	1,2564616	12.76	0.18	20.74	11.68
PG $1634 + 706$	2743456	0.027	1,2567440	13,178	0.042	38,948	4 253
PG 1634 ± 706	2745586	0.021	1,2584957	13 039	0,012 0.046	29 790	3 664
PG 0117+213	2746284	0.027	1,2590701	13,000	0.072	22,158	4 169
HE 0515-4414	2750.57	0.02	1,2600101 1,2625932	13,210	0.06	3474	4 02
$PC = 1630 \pm 377$	2751 278	0.046	1,2020002 1.2631782	13 051	0,00	27 020	7 248
HE 0515 4414	2753.24	0,040	1,2001102 1.2647020	13.44	0,105	82 31	16 10
PG 1634 ± 706	2753,24 2753,370	0.014	1,2041929	10, 44 12 761	0.054	13 690	2317
PC 1634 ± 706	2754 243	0,014	1,2045005 1.2656173	12,101	0,004	28 262	1 515
$PC = 1630 \pm 377$	2754,245	0,010	1,2050175	12.824	0,021	23,202	2 304
HS 0747 + 4250	2755 264	0,010	1,2058890 1,2664574	10,004 10.751	0,033 0.179	18 344	2,394
HF 0515 4414	2755,204 2755,40	0,030	1,2004574 1,2665721	12,751 13.57	0,172	54.80	3,011
$\frac{112}{100} \frac{0010-4414}{100}$	2755,40	0,03	1,2005721 1.2674115	13,018	0,03	38,30	3,97 4 750
$FG 1034 \pm 700$	2750,424	0,030	1,2074115	10.010	0,040	18 002	4,759
DC 1620 + 277	2737,721	0,047	1,2004705	12,000	0,140	10,995	7,502
PG 1050+577	2100,000	0,014 0.017	1,2093908	13,380 12,746	0,041	21,392	2,040
$PC = 1624 \pm 706$	2759,540	0,017	1,2090102 1,2600591	19 591	0,045	20,800	2,400
$FG 1034 \pm 700$ HE 0515 4414	2759,520	0,009	1,2099501 1,2710725	12,001	0,010	34,312 26.07	2.06
DKS 0222 04	2700,88	0,01	1,2710735	12,40	0,03	20,07	2,00
F K5 0232-04	2703,041	0,007	1,2733460	10,049	0,101	19107	6 6 97
PG 1050+577	2704,012	0,042	1,2740040	12,007	0,120	10,107	0,037
PG 0117+215	2705,005	0,019	1,2744085	15,405	0,054	21,815	2,009
HE 0515-4414	2700,38	0,01	1,2750020	14,40 19.10	0,02	41,11	0,77
$\frac{\Pi E}{DC} = \frac{0010 - 4414}{277}$	2707,95	0,15	1,2700940 1.9771510	13,10 13,240	0,13 0.075	04,79	20,04
PG 1030+377	2706,200	0,055	1,2771012	13,340 12,794	0,075	44,054	0,299
PG 1034+700	2709,843	0,007	1,2784490	13,724	0,017	20,920	0,988
PK5 0232-04	2770,509	0,020	1,2789973	14,701	0,068	44,255	2,429
HS 0747+4259	2771,636	0,088	1,2799248	13,330	0,125	45,836	13,806
HS 0/4/+4259	2772,779	0,041	1,2808645	12,978	0,170	13,318	0,818
PG 1634+706	2773,005	0,017	1,2810503	12,867	0,062	15,119	2,798
HE 0515-4414	2773,33	0,09	1,2813166	13,04	0,25	18,92	11,39
PKS 0232-04	2774,036	0,036	1,2818986	13,305	0,158	14,010	5,772
PG 1630+377	2776,119	0,294	1,2836120	13,105	0,204	87,900	45,112
PG 1634+706	2776,431	0,036	1,2838687	13,380	0,056	41,446	5,023
PKS 0232-04	2776,534	0,034	1,2839531	13,346	0,152	13,875	5,281
HE 0515-4414	2777,00	0,06	1,2843348	13,58	0,04	85,28	9,58
PG 1634+706	2777,406	0,073	1,2846705	13,306	0,072	59,828	10,782
PG 1634+706	2778,832	0,014	1,2858440	13,262	0,032	26,631	2,230
HS 0747+4259	2779,119	0,060	1,2860799	13,763	0,075	51,528	9,501
HS 0747+4259	2780,495	0,027	1,2872115	14,376	0,064	44,156	3,671
PG 0117+213	2781,639	0,027	1,2881528	13,340	0,082	24,529	4,664
PG 1630+377	2782,064	0,047	1,2885027	12,913	0,136	18,959	7,408
PG 0117+213	2783,403	0,031	1,2896039	13,755	0,061	50,096	5,766
не 0515-4414	2783,56	0,00	1,2897334	14,53	0,01	31,18	0,21
PG 0117+213	2784,832	0,012	1,2907790	14,648	0,138	35,878	3,210
PG 1634+706	2785,007	0,013	1,2909234	12,925	0,057	17,796	2,474
HS 0747+4259	2785,486	0,072	1,2913170	14,257	0,172	80,536	16,924
PG 1630+377	$2786{,}547$	0,021	1,2921899	$13,\!245$	0,078	12,832	3,365

PG 1630+377	2786,848	0,037	1,2924374	12,878	0,154	11,745	6,080
PG 1634+706	2787,454	0,012	1,2929360	13,218	0,027	27,942	1,950
HE 0515-4414	2789.29	0.07	1,2944474	12,74	0,12	33,20	8,61
HE 0515-4414	2790.35	0.05	1,2953180	12,95	0,22	21,69	6.71
HE 0515-4414	2790,76	0,07	1,2956594	13,42	0,08	47,53	6,23
HE 0515-4414	2792,40	0.06	1,2970042	12,80	0.26	15,36	6.43
HE 0515-4414	2792,79	0,02	1,2973241	13,57	0,06	25,29	3,82
HE 0515-4414	2793, 19	0,18	1,2976511	$13,\!38$	0,10	98,51	18,72
PG 0117+213	2794,705	0,046	1,2989005	$13,\!279$	0,078	35,414	7,698
HS 0747+4259	2795,288	0,029	1,2993801	$13,\!484$	0,104	26,960	5,543
HE 0515-4414	2796,08	0,01	1,3000326	$13,\!44$	0,09	12,00	2,20
HE 0515-4414	2796,62	0,09	1,3004767	13,75	0,28	58,51	$9,\!60$
HE 0515-4414	2799,82	0,03	1,3031106	$13,\!15$	0,06	33,85	6,32
PG 0117+213	2801,376	0,045	1,3043884	13,266	0,077	37,928	7,130
HS 0747+4259	2804,555	0,094	1,3070036	13,228	0,125	44,849	15,334
PKS 0232-04	2805,055	0,051	1,3074144	13,333	0,105	29,855	7,805
PG 1630+377	2807,123	0,086	1,3091160	12,921	0,185	30,928	13,919
PG 1630+377	2809,432	0,054	1,3110153	13,228	0,108	31,949	8,495
PG 1630+377	2810,321	0,054	1,3117460	12,961	0,154	20,241	8,539
PKS 0232-04	2810,392	0,069	1,3118045	12,785	0,319	12,892	12,087
HE 0515-4414	2817,90	0,09	1,3179847	13,16	0,11	53,16	19,02
PG 1630+377	2819,946	0,021	1,3196642	13,853	0,049	32,082	3,089
HE 0515-4414	2821,12	0,06	1,3206276	13,21	0,09	50,84	9,77
PG 1630+377	2824,954	0,026	1,3237838	14,054	0,112	22,995	4,218
PG 0117+213	2825,174	1,808	1,3239644	$15,\!179$	8,476	19,388	56,450
PG 1630+377	2825,484	0,131	1,3242193	13,949	0,127	57,148	11,354
PG 0117+213	2826,065	0,070	1,3246970	16,162	0,479	56,294	5,769
HS 0747+4259	2826,357	0,091	1,3249375	12,789	0,209	24,795	14,565
PKS 0232-04	2826,997	0,149	1,3254642	13,018	0,192	46,670	22,945
PG 0117+213	2827,771	0,010	1,3261010	16,379	1,294	13,595	3,079
HS 0747+4259	2828,842	0,060	1,3269815	12,770	0,274	14,899	10,580
PG 0117+213	2829,115	0,034	1,3272058	12,733	0,168	12,474	6,008
HS 0747+4259	2829,787	0,048	1,3277588	13,062	0,151	22,241	8,139
HS 0747+4259	2830,441	0,083	1,3282965	12,931	0,164	29,770	13,711
PKS 0232-04	2832,677	0,050	1,3301359	13,509	0,067	44,152	7,313
HS 0747+4259	2832,787	0,174	1,3302265	13,135	0,164	72,416	29,658
HS 0747+4259	2833,883	0,029	1,3311284	13,191	0,085	21,071	4,557
HE 0515-4414	2834,92	0,04	1,3319788	$13,\!11$	0,06	39,90	$7,\!69$
HS 0747+4259	2837,556	0,056	1,3341496	$13,\!111$	0,114	30,285	8,527
PG 1630+377	2839,839	0,017	1,3360276	13,921	0,034	35,520	2,444
PG 0117+213	2841,526	0,072	1,3374153	$13,\!632$	0,273	49,461	14,803
PG 0117+213	2842,463	0,030	1,3381865	18,891	2,088	15,407	3,501
PG 1630+377	2842,994	0,116	1,3386229	12,861	0,214	35,508	18,643
HS 0747+4259	2843,003	0,022	1,3386302	$13,\!334$	0,080	14,680	3,329
PG 0117+213	2843,378	0,058	1,3389389	18,137	5,082	14,848	9,367
HS 0747+4259	2843,576	0,021	1,3391013	$13,\!845$	0,052	27,590	3,173
PG 1630+377	2843,893	0,049	1,3393623	12,887	0,156	18,914	7,923
HE 0515-4414	2844, 14	0,03	1,3395674	$13,\!85$	0,03	53,02	4,31
HE 0515-4414	2845, 19	0,34	1,3404300	12,72	0,37	51,98	41,61
HS 0747+4259	2845,206	0,087	1,3404423	13,284	0,168	27,086	11,106
PG 0117+213	2847,276	0,038	1,3421454	16,305	0,408	31,743	3,898
HS 0747+4259	$2847,\!450$	0,232	1,3422886	$12,\!995$	0,371	37,112	28,982
HS 0747+4259	2848,261	0,088	1,3429558	$13,\!595$	0,106	44,631	11,961
PG 0117+213	2848,274	0,053	1,3429662	$15,\!125$	0,155	29,986	4,212
HE 0515-4414	2849,39	0,03	1,3438853	13,02	0,08	17,70	$3,\!50$
PKS 0232-04	2849,889	0,046	1,3442949	$12,\!861$	0,213	10,292	7,771

PG 0117+213	2850,304	0,137	1,3446362	13,516	0,343	55,575	26,287
PG 1630+377	2850,417	0,019	1,3447292	14,278	0,049	33,458	2,533
HE 0515-4414	2851,11	0,04	1,3453003	12,62	$0,\!17$	10,06	5,09
HS 0747+4259	2856, 187	0,097	1,3494754	13,361	0,131	44,084	14,727
PG 0117+213	2857, 325	0,055	1,3504119	13,201	0,117	29,343	8,439
PG 1630+377	2857,416	0,157	1,3504861	13,128	0,197	54,289	25,045
HS 0747+4259	2857,552	0,156	1,3505979	13,265	0,165	58,401	24,679
HE 0515-4414	2858,67	0,02	1,3515179	12,89	0,10	10,55	3,13
PG 1630+377	2860,504	0,103	1,3530266	13,251	0,123	52,792	15,754
PKS 0232-04	2860,600	0,055	1,3531056	13,117	0,141	23,148	8,507
PKS 0232-04	2863,773	0,064	1,3557156	13,296	0,216	15,340	7,579
PKS 0232-04	2864,196	0,028	1,3560632	14,340	0,088	18,864	3,861
HE 0515-4414	2864,51	0,02	1,3563190	13,96	0,07	22,43	$2,\!24$
PKS 0232-04	2864,755	0,050	1,3565234	14,110	0,092	27,846	4,996
PG 0117+213	2866,174	0,184	1,3576904	13,072	0,233	44,282	26,227
PG 0117+213	2866,763	0,046	1,3581752	$13,\!149$	0,171	21,461	6,520
PG 0117+213	2867,716	0,045	1,3589587	12,725	0,158	15,096	7,152
PKS 0232-04	2869,456	0,127	1,3603906	13,344	0,252	72,897	27,242
HS 0747+4259	2871,141	0,062	1,3617767	12,757	0,255	17,582	10,813
PG 0117+213	2872,816	0,021	1,3631545	13,213	0,064	17,565	3,053
HE 0515-4414	2872,82	0,02	1,3631577	13,00	0,10	11,38	3,33
HE 0515-4414	2873, 15	0,14	1,3634315	13,10	0,11	59,28	16,25
HS 0747+4259	2876,297	0,029	1,3660179	13,157	0,136	13,458	4,409
HS 0747+4259	2876,795	0,029	1,3664275	13,732	0,058	30,583	4,510
HS 0747+4259	2878,733	0,259	1,3680214	14,041	0,318	24,125	43,060
PG 0117+213	2879,038	0,059	1,3682727	13,308	0,076	45,477	8,690
HE 0515-4414	2880,15	0,04	1,3691908	13,02	0,09	22,25	$5,\!84$
PG 0117+213	2880,421	0,042	1,3694098	13,177	0,084	28,356	6,265
HS 0747+4259	2881,547	0,019	1,3703364	13,464	0,081	15,844	3,032
PG 0117+213	2882,868	0,016	1,3714228	13,858	0,048	27,595	2,591
HE 0515-4414	2882,92	0,05	1,3714652	$12,\!64$	0,14	15,73	5,32
HS 0747+4259	2884,478	0,059	1,3727475	13,267	0,099	$33,\!804$	8,607
PKS 0232-04	2886, 284	0,098	1,3742326	12,760	0,241	$22,\!643$	14,950
PKS 0232-04	2889,415	0,193	1,3768081	13,168	0,191	$63,\!629$	29,338
HS 0747+4259	2889,807	0,074	1,3771309	13,036	0,168	24,308	11,017
PG 1630+377	2890,341	0,029	1,3775698	$13,\!474$	0,075	20,978	4,460
PG 1630+377	2890,818	0,055	1,3779623	12,948	0,192	15,124	8,733
PKS 0232-04	2891,201	0,021	1,3782776	$13,\!423$	0,115	12,044	$3,\!183$
PKS 0232-04	2892,333	$0,\!075$	$1,\!3792090$	$13,\!213$	0,144	30,157	$11,\!147$
PG 1630+377	2893,797	0,047	1,3804129	12,938	$0,\!184$	13,362	$7,\!117$
HS $0747 + 4259$	2894,719	0,073	1,3811712	13,037	0,216	18,167	$10,\!904$
HE 0515-4414	2899,42	$0,\!00$	1,3850366	$13,\!93$	$0,\!01$	44,46	$0,\!57$
HE 0515-4414	2900,54	$0,\!00$	$1,\!3859615$	15,03	$0,\!01$	29,11	$0,\!19$
PG 0117+213	2900, 820	0,016	1,3861904	$14,\!850$	0,061	$31,\!436$	1,810
PKS 0232-04	2901,573	0,079	1,3868093	$12,\!850$	0,210	23,356	$12,\!497$
PG 0117+213	$2901,\!849$	0,079	$1,\!3870365$	$14,\!106$	0,079	$73,\!990$	$10,\!950$
PKS 0232-04	$2902,\!871$	0,097	$1,\!3878770$	$13,\!333$	$0,\!135$	43,242	12,780
PG 1630+377	$2903,\!357$	0,028	1,3882772	$13,\!537$	0,056	29,828	4,047
PKS 0232-04	2904,222	0,016	1,3889890	$13,\!990$	$0,\!053$	26,995	2,201
HE $0515-4414$	$2904,\!37$	$0,\!05$	$1,\!3891076$	12,91	$0,\!11$	$23,\!63$	8,05
HS 0747 $+4259$	2904,707	0,055	$1,\!3893876$	$12,\!978$	0,167	$17,\!394$	$8,\!389$
PG 0117+213	$2906,\!015$	0,061	$1,\!3904634$	$12,\!950$	$0,\!130$	26,212	9,055
PG 0117+213	$2910,\!403$	0,032	$1,\!3940731$	$13,\!454$	0,052	34,805	$4,\!618$
PG 0117+213	$2911,\!440$	0,034	$1,\!3949261$	$13,\!349$	0,060	31,932	$4,\!970$
HE $0515-4414$	$2913,\!11$	0,02	$1,\!3962970$	$13,\!83$	0,03	$33,\!23$	2,55
PG 0117+213	$2914,\!013$	0,011	$1,\!3970424$	$14,\!320$	0,039	$27,\!845$	$1,\!386$

PG 0117+213	$2915,\!629$	0,019	1,3983719	14,814	0,057	26,780	1,503
HE 0515-4414	2915,94	0,05	1,3986254	12,74	0,24	15,74	7,79
PKS 0232-04	2916,069	0,023	1,3987337	13,371	0,053	25,328	3,392
PG 1630+377	2917,871	0,039	1,4002161	13,297	0,171	16,218	4,758
PG 0117+213	2918,214	0,055	1,4004982	$12,\!653$	0,180	16,027	8,437
PG 1630+377	2918,411	0,028	1,4006604	14,096	0,041	37,252	4,422
PG 1630+377	2919,162	0.052	1,4012784	13,023	0.145	20,188	7.286
HS 0747+4259	2919,388	0.032	1,4014637	13,456	0,082	23,932	4,671
PKS 0232-04	2919,569	0.021	1,4016129	13.877	0,036	34,750	2,982
PKS 0232-04	2920.393	0.022	1.4022911	13,701	0.044	27.873	3.033
PKS 0232-04	2921.364	0.043	1.4030893	12.902	0.131	19.869	6.855
PKS 0232-04	2922.006	0.065	1.4036179	12.659	0.222	18.165	10.663
HS $0747 + 4259$	2922.859	0.074	1.4043188	13.299	0.148	37.808	12.116
PG 0117+213	2923.652	0.033	1.4049717	13.276	0.073	24.303	5.010
PKS 0232-04	2925.278	0.011	1.4063088	13.694	0.085	13,207	1.750
HE 0515-4414	2925.35	0.15	1,4063705	12.71	0.33	16.40	28.96
HE 0515-4414	2928.69	0.05	1.4091134	12.63	0.17	11.78	5.90
HE 0515-4414	2929.45	0.03	1.4097382	13.71	0.04	35.23	4.00
HS $0747 + 4259$	2929 604	0.032	1 4098674	13,75	0.096	20.959	4 410
PKS 0232-04	$2931\ 052$	0.099	1 4110586	12,916	0.179	31 434	14 656
HS $0747 + 4259$	2932.035	0,071	1,1110000 1,4118673	13,307	0 139	28 388	10.127
HE 0515-4414	2932.67	0.02	1.4123899	14.17	0.05	35.76	2.67
HS $0747 + 4259$	2933 349	0.055	1 4129486	13 152	0.175	16 541	8 055
HE 0515-4414	2933.86	0.06	1 4133683	12,85	0.15	19.31	8.28
HE 0515-4414	2936.89	0.08	1.4158627	13.48	0.28	15.00	7.82
HE 0515-4414	2937.06	0.02	1.4159994	14.25	0.04	24.78	2.04
HE 0515-4414	2937.43	0.12	1.4163051	12.96	0.49	15.33	12.80
HS $0747 + 4259$	2937.507	0.034	1.4163684	14.809	1.810	16.825	11.273
PKS 0232-04	2937.781	0.089	1.4165936	12.812	0.204	23.298	13.158
PG 1630 + 377	2939.895	0.023	1.4183325	14.124	0.044	32.144	2.774
PG 1630+377	2941.433	0.026	1.4195978	13.863	0.042	37.885	3.635
PG 0117+213	2941.482	0.050	1.4196383	13.269	0.092	30.381	7.054
HS 0747+4259	2943.164	0.087	1.4210219	12.810	0.335	21.501	15.560
PG 1630+377	2943.201	0.155	1.4210522	13.461	0.100	97.805	24,478
HS 0747+4259	2944.194	0.093	1.4218693	12.694	0.385	18.377	16.444
PG 0117+213	2946.479	0.351	1.4237489	13.664	0.864	24.307	20.495
HS 0747+4259	2946.921	0.133	1.4241123	12.915	0.242	37.683	21.179
PG 0117+213	2946.955	0.012	1.4241403	14.980	0.047	29,990	1.302
HE 0515-4414	2948.15	0.03	1.4251230	13.08	0.08	20.04	6.33
PG 1630+377	2948.625	0.035	1.4255142	13.364	0.061	33.251	5.086
HS 0747+4259	2948.902	0.041	1.4257421	13.249	0.121	23,930	6.564
PG 1630+377	2951,041	0.050	1,4275013	12,796	0,164	19,261	8,146
PG 0117+213	2951,888	0.060	1,4281981	13,105	0,161	31,450	10,275
HE 0515-4414	2952.19	0.03	1,4284486	13.36	0.06	28,78	3.59
PG 0117+213	2955.017	0.126	1.4307721	13.480	0.359	71.930	29.447
HS $0747 + 4259$	2957.869	0.222	1.4331183	13.020	0.449	25.175	27.474
PG 1630 + 377	2958.119	0.006	1.4333236	15.545	0.040	25.747	0.594
HS 0747+4259	2958.235	0.049	1.4334195	13.323	0.222	13,448	6.260
PG 1630+377	2959.537	0.029	1.4344902	13.364	0.112	24,603	5.026
PG 1630+377	2960,189	0,021	1,4350265	13,558	0,099	25,522	4,276
PG 0117+213	2960,503	0,014	1,4352847	13,715	0,040	23,837	1,925
PG 1630+377	2962,121	0,016	1,4366156	13,761	0,035	29,377	2,325
HS 0747+4259	2963,464	0,061	1,4377209	13,920	0,103	39,987	8,153
PG 0117+213	2965,041	0,157	1,4390177	13,088	0,145	67,037	23,415
PG 1630+377	2965,893	0,064	1,4397190	12,402	0,270	12,043	10,547
HE $0515-4414$	2967, 36	$0,\!02$	$1,\!4409297$	$14,\!09$	0,04	29,72	2,56
HE 0515-4414	2967, 91	0,04	1,4413742	13,07	$0,\!17$	15,32	6,29
--------------	--------------	-----------	---------------	------------	-----------	------------	------------
HE 0515-4414	2968, 63	0,06	1,4419664	13,28	0,08	39,92	8,25
PG 0117+213	$2968,\!682$	0,037	1,4420125	13,742	0,219	29,536	7,838
PG 0117+213	2969, 150	0,288	1,4423977	$13,\!674$	0,276	$60,\!664$	18,984
PG 0117+213	$2973,\!892$	0,018	$1,\!4462987$	$13,\!977$	0,071	15,142	2,086
PG 1630+377	2974,308	0,026	1,4466405	13,262	0,073	$19,\!637$	3,796
PG 0117+213	$2975,\!577$	0,008	1,4476846	$15,\!632$	0,073	20,846	0,760
PG 1630+377	2976,072	0,031	1,4480922	$13,\!140$	0,094	18,232	4,614
HE 0515-4414	2976,55	0,02	1,4484857	$13,\!86$	$0,\!04$	26,29	2,41
PG 1630+377	2977,767	0,074	$1,\!4494859$	$12,\!645$	0,251	15,498	11,525
PG 0117+213	2979,881	0,023	$1,\!4512252$	13,764	0,066	28,537	3,744
HE 0515-4414	2987,74	0,09	$1,\!4576863$	$13,\!17$	$0,\!10$	$43,\!55$	$10,\!90$
PG 0117+213	2990,934	$0,\!105$	1,4603171	$13,\!024$	$0,\!123$	49,539	$15,\!455$
HE 0515-4414	2991,16	0,03	1,4605023	$14,\!26$	$0,\!08$	$37,\!17$	$4,\!12$
HE 0515-4414	2991, 49	0,35	1,4607716	$13,\!86$	$0,\!14$	98,30	40,20
HE 0515-4414	2997, 89	0,02	1,4660366	14,07	$0,\!05$	29,47	2,82
PG 0117+213	2998,291	0,008	1,4663688	$14,\!487$	0,046	27,150	1,092
HE 0515-4414	2998,53	$0,\!13$	1,4665679	12,99	0,21	32,04	14,76
HE 0515-4414	2999,54	0,12	1,4673961	12,97	$0,\!18$	33,04	13,73
HE 0515-4414	3000, 18	0,02	1,4679227	13,91	$0,\!05$	23,94	2,33
PG 0117+213	$3001,\!643$	0,036	1,4691260	12,749	0,112	16,539	$5,\!425$
PG 0117+213	3004,573	0,030	$1,\!4715367$	$13,\!244$	$0,\!052$	31,380	$4,\!190$
HE 0515-4414	$3017,\!23$	0,09	$1,\!4819469$	13,03	0,27	18,47	$15,\!27$
HE 0515-4414	3017,72	0,04	$1,\!4823536$	12,96	0,16	12,40	$6,\!90$
HE 0515-4414	3038,02	0,14	1,4990503	$14,\!34$	0,10	63, 17	13,78
HE 0515-4414	3039,07	$0,\!05$	$1,\!4999127$	$14,\!95$	0,28	32,86	4,57
HE 0515-4414	$3051,\!86$	0,02	1,5104312	13,92	$0,\!04$	$30,\!67$	2,52
HE 0515-4414	$3054,\!88$	$0,\!05$	1,5129224	$13,\!20$	$0,\!10$	26,30	$6,\!40$
HE 0515-4414	3056,06	0,07	1,5138870	$13,\!82$	0,10	35,29	8,08
HE 0515-4414	3056,75	0,04	1,5144585	14,03	0,07	32,90	5,07
HE 0515-4414	3058,73	0,03	1,5160824	$13,\!04$	$0,\!13$	$12,\!67$	5,32
HE 0515-4414	3060, 10	0,07	1,5172095	13,41	0,09	40,46	9,09
HE 0515-4414	3062,75	0,05	1,5193923	13,08	$0,\!17$	16,03	10,59
HE 0515-4414	3064, 45	0,05	1,5207883	$13,\!34$	0,12	$20,\!61$	$7,\!37$
HE 2225-2258	$3064,\!621$	0,042	1,5209317	13,212	$0,\!379$	14,908	8,096
HE 2225-2258	$3065,\!017$	0,116	1,5212574	$13,\!685$	$0,\!152$	38,792	10,844
HE 0141-3932	$3066,\!540$	0,050	1,5225098	12,956	0,075	42,781	$7,\!600$
HE 2225-2258	3067,042	0,016	1,5229228	13,426	0,058	15,795	2,133
HE 0515-4414	$3067,\!07$	0,04	1,5229464	$13,\!17$	$0,\!17$	10,35	$5,\!07$
HE 0141-3932	$3069,\!629$	0,326	1,5250514	12,954	0,206	104,494	$41,\!652$
HE 2225-2258	3070, 327	0,010	1,5256248	$14,\!670$	$0,\!110$	34,609	2,257
HE 0515-4414	3071,95	0,04	1,5269631	13,70	$0,\!10$	19,24	$6,\!80$
HE 2225-2258	3073,799	0,074	1,5284811	12,536	0,232	18,387	11,064
HE 0515-4414	3074,52	0,01	1,5290712	13,79	$0,\!04$	24,73	2,05
HE 0141-3932	3074,701	0,027	1,5292233	$12,\!650$	0,069	21,073	3,953
HE 0515-4414	3075,56	0,03	1,5299327	$13,\!48$	0,05	31,70	4,31
HE 0141-3932	3079,824	0,013	1,5334376	12,916	0,091	11,799	2,409
HE 0141-3932	$3079,\!898$	0,013	1,5334980	13,669	0,018	52,246	2,260
HE 0141-3932	3082,065	0,004	1,5352805	15,092	0,063	37,124	0,966
HE 0141-3932	3083,702	0,010	1,5366271	13,016	0,033	15,375	1,452
HE 0515-4414	3085,01	0,03	1,5377026	13,59	0,03	52,18	5,05
HE 0141-3932	3085,441	0,004	1,5380576	13,603	0,013	17,939	0,541
HE 0515-4414	3086,69	0,02	1,5390869	$13,\!83$	0,02	$53,\!64$	2,92
HE 2225-2258	3089,248	0,072	1,5411896	13,018	0,093	43,378	10,254
HE 2225-2258	3090,379	0,009	1,5421200	13,737	0,025	22,503	1,198
HE 0141-3932	3090,566	0,016	1,5422732	13,171	0,025	$35,\!657$	2,271

HE 0515-4414	3091,40	0,02	1,5429623	13,30	0,04	33,85	3,57
HE 0141-3932	3091,787	0,016	1,5432777	13,161	0,025	35,130	2,201
HE 2225-2258	3093,967	0,023	1,5450712	13,151	0,050	24,299	3.157
HE 0515-4414	3094.58	0.04	1.5455791	12.96	0.12	16,54	5,50
HE 0515-4414	3098,18	0,05	1,5485369	12,49	0,14	16,09	6,05
HE 0141-3932	3100,341	0.008	1,5503144	13.354	0.014	31,336	1,129
HE 0141-3932	3102.175	0.009	1,5518228	13,441	0.013	36.881	1,189
HE 2225-2258	3102.914	0.049	1.5524306	13.305	0.051	53.010	6.910
HE 0515-4414	3103.35	0.05	1.5527902	12.92	0.16	12.40	5.96
HE 0141-3932	3103.957	0.028	1.5532887	12.676	0.063	23.945	3.970
HE 0515-4414	3104.52	0.05	1.5537546	12.61	0.29	16.05	11.76
HE 2225-2258	3105.244	0.136	1.5543476	13.202	0.135	52,600	17,192
HE 0515-4414	3105.68	0.12	1.5547061	12.75	0.25	20.52	9.15
HE 2225-2258	3106.070	0.020	1.5550269	13.727	0.039	31.857	2.197
HE 0141-3932	3106 368	0.007	1,5552723	13 109	0.020	19 400	0.995
HE 0515-4414	3106.96	0.05	1,5557580	12,100 12,53	0.19	19,100	6.80
HE 2225-2258	3110 700	0.061	1 5588353	12,00 12,707	0,10	27,984	8 406
HE 0515-4414	3114 94	0.05	1,5623225	12,701 12.55	0.11	23,501	7.02
HE 0515-4414	3118.63	0.03	1,5653621	13.08	0.05	38.35	5.33
HS 0747 ± 4259	3120 192	0,00	1,5666434	13,00 13,762	0,00	50,00 50,288	8 175
HE 0141-3932	3120,361	0,001	1,5667831	13,702 13,294	0,012	25,200	0 790
HS 0747 ± 4259	3125,461	0.028	1,5709780	10,201 14 121	0.080	31 851	5 107
HE 0515-4414	3126.48	0,020 0.12	1,5705100 1,5718101	13.91	0.06	118 72	22 97
HE 2225-2258	3120,40 3127,340	0,12 0.164	1,5716191 1 5725236	13,21 13,551	0,00 0.242	110,72 145,222	30 160
HE 01/1 2022	3127,540 3128,581	0,104	1,5725250 1,5735441	12,001	0,242 0.023	140,222 17 197	1 060
HE 0515-4414	3120,001	0,000	1,5755441 1,5743794	12,000 12.87	0,025 0.06	50.67	9 59
HE 2225 2258	3129,00 3130,701	0,00	1,5745754 1,5752883	14 114	0,00	36 300	3,03
HE 2225-2258	3131 208	0,012 0.711	1,5752000 1,5757051	13,114 13,578	0,000	88 752	18 135
HE 2225-2258	3131,200 3133,478	0,711	1,5757001 1,5775720	13,070	0,411	27 032	17/3
HE 01/1 2022	3133,470 3134,110	0,012	1,5775725	13,421 13,163	0,023	21,952	6 844
HE 0141-3932	3134,115	0,045	1,5701001 1,5700250	13,103 13,566	0,055	24 461	0,044
HE 0141-3932	3136 254	0,004	1,5790259 1 5708550	13,000	0,013 0.007	60 668	1 911
HE 0515 4414	3130,254 3137,77	0,003	1,5750555	13,323 13.07	0,007	37 53	1,211 11.67
HE 01/1 2022	3138 204	0,00	1,5811050 1,5815345	13,07	0,00	20.025	0.842
HE 0515 4414	3138,234 3138,77	0,000	1,5810040 1,5810054	12,230	0.14	25,525 15.81	3 56
HS 0747 ± 4250	3130,77	0,04 0.121	1,5819254	12,00 12,201	0,14 0.107	20.242	15.016
HE 0515 4414	2120 40	0,121 0.02	1,5822580	19,07	0,197	19,242	2.67
HS 0747 ± 4250	3139,40	0,02 0.078	1,5824420 1 5826581	12,97	0,00 0.274	10,00 52.406	2,07
HE 0515 4414	3139,000	0,078	1,5820581 1,5828371	12,910	0,274	$\frac{52,490}{24,33}$	11,412
HE 0515-4414 HE 0141 2022	2141 256	0,03	1,5020371	12,90 12,610	0,07	24,00 20.760	4,17
ПЕ 0141-5952 ЦЕ 2225 2259	3141,200 2141,202	0,031	1,0009707	12,010 12,102	0,052 0.122	32,102	4,200
ПЕ 2220-2200 ЦЕ 2005 2059	3141, 323 2149, 127	0,010	1,3640237	13,192 12,792	0,122	22,908	3,002
ПЕ 2220-2206 ЦЕ 0747 - 4950	5142,157 2142,442	0,010	1,3840931	10,100	0,049 0.109	20,190	2,037
H5 0747 + 4239	5145,445 2144 09	0,050	1,0007094	12,038	0,102	32,090 10 70	7,334
ПЕ 0010-4414 ЦЕ 0005 0050	5144,02 2146 727	0,04	1,0002420	13,00	0,04	40,10	0,98 1 401
HE 2220-2208	3140,737	0,010	1,0884792	13,402 12,717	0,025	23,100	1,401
HE 0141-3932	3148,231	0,004	1,0897247	13,717	0,007	33,007 19,07C	0,507
HE 2225-2258	3148,764	0,038	1,5901468	12,601	0,115	18,976	5,541
ПЁ 0313-4414	5149,17 2140 7 02	0,07	1,5904810	12,11	0,08	41,31	ð,42
ПЕ 0141-3932	3149,793	0,011	1,5909930	12,802	0,033	20,702	1,624
пЕ 0515-4414 UE 0141 2022	3150,46	0,02	1,5915444	12,24	0,10	10,59	2,59
HE 0141-3932	3150,977	0,006	1,5919673	14,409	0,008	43,035	0,606
не 0515-4414	3151,07	0,04	1,5920416	12,27	0,10	16,59	3,98
HE 2225-2258	3151,327	0,010	1,5922555	13,732	0,065	30,843	2,427
HE 0141-3932	3151,839	0,015	1,5926765	13,751	0,021	38,895	1,298
HE 0515-4414	3152,73	0,05	1,5934087	12,23	0,12	19,03	5,85
HE 2225-2258	3152,739	0,042	1,5934166	12,785	0,106	29,253	$6,\!634$

HE 0141-3932	3154, 173	0,031	1,5945958	12,753	0,046	41,801	4,612
HS 0747+4259	3154,597	0,070	1,5949451	14,039	0,103	40,660	8,524
HE 0141-3932	3155,419	0.018	1.5956208	12,978	0.026	39.991	2,561
HS 0747+4259	3155,464	0,039	1,5956581	14,585	0,146	25,204	2,866
HE 2225-2258	3156,255	0,066	1,5963092	13,421	0,102	32,731	5,663
HE 2225-2258	3156.832	0.028	1.5967836	14.250	0.097	23.153	3.047
HE 2225-2258	3157,347	0.052	1.5972070	$14,\!135$	0.072	37.458	3,165
HS 0747+4259	3157.652	0.023	1.5974576	$13,\!196$	0.091	12,806	3,023
HE 0515-4414	3159.97	0.02	1.5993682	13.16	0.03	27.38	2.54
HE 0515-4414	3160.50	0.03	1.5998023	12.73	0.08	19.37	3.40
HE 0141-3932	3160.831	0.034	1.6000727	12.597	0.054	36.568	4.801
HE 0515-4414	3162.91	0.01	1.6017857	13.96	0.02	33.06	1.23
HE 0141-3932	3163.471	0.009	1.6022444	12.927	0.021	24.666	1.307
HE 0515-4414	3163.52	0.01	1.6022844	13.69	0.03	26.23	1.31
HE 2225-2258	3165.141	0.093	1.6036180	12,960	0.118	43.140	12.362
HE 2225-2258	3165974	0.010	1,6043038	13,872	0.019	29.820	1 545
HE 2225-2258	3166 830	0.015	1,6050074	13,751	0,010 0.021	35,600	2.075
HE 0515-4414	3167.01	0.06	1,0050014 1,6051548	12,701 12.54	0.09	24.82	6.48
HE 2225-2258	3167.962	0,009	1 6059393	13,785	0.015	32,829	1 155
HS 0747+4259	3170 809	0.049	1,000000000000000000000000000000000000	13,700 13,237	0,010 0.114	22,333	6 519
HE 2225-2258	3171 208	0,010	1,6086088	10,201 19 777	0.118	52,668	14 451
HE 01/1-3032	3171,200	0,035 0.017	1,6088456	12,111 12,650	0,110	24.758	2 458
HE 0515 4414	3171,400 3172,70	0,017	1,0000400 1,6106737	12,000 12.02	0,030	24,100	2,400
HE 0141 2022	3173,72	0,03	1,0100757	12,90 13.915	0,05	34.085	1 221
HE 0141-3932	3174,309 3174,853	0,009	1,0112090 1,6116076	10,210 10,227	0,015	16,061	6 362
HE 0141 2022	3174,000 3175,050	0,045	1,0110070	12,007 12.015	0,144 0.020	22 784	0,502 2.514
HE 0141-5952	3175,239 2175 22	0,018	1,0119410 1,6110071	12,910	0,029	19 25	2,014
IIE 0515-4414	3175,33 2175 96	0,01	1,0119971	13,02 12.01	0,03	10,00	1,52
ПЕ 0010-4414 ЦЕ 0005 0059	3173,80 2176 610	0,01	1,0124500	13,01 12,700	0,05	23,00	2,01
ПЕ 2220-2208 ЦЕ 0141-2020	3170,019	0,027	1,0130004	12,700 12,700	0,073	19,574	3,180
HE 0141-3932	3170,781	0,002	1,0131930	15,707	0,004	27,571	0,287
HS 0747+4259	3176,788	0,042	1,6131992	15,293	0,059	40,634	3,050
HS 0747+4259	3177,492	0,052	1,6137781	14,537	0,143	21,194	3,451
HE 2225-2258	3177,984	0,024	1,6141833	13,272	0,032	42,111	3,264
HE 2225-2258	3179,273	0,029	1,6152431	12,873	0,060	26,203	3,993
HE 0141-3932	3179,397	0,006	1,6153454	13,323	0,011	34,321	0,878
HE 0515-4414	3181,33	0,03	1,6169325	12,41	0,20	17,82	9,07
HE 2225-2258	3181,438	0,007	1,6170239	13,617	0,014	28,222	0,958
HE 0515-4414	3181,64	0,14	1,6171943	13,05	0,05	117,32	24,66
HS 0747+4259	3181,687	0,021	1,6172293	13,561	0,047	24,813	2,668
HE 2225-2258	3183,020	0,032	1,6183258	13,135	0,045	43,361	4,560
HE 0141-3932	3184,820	0,068	1,6198063	13,026	0,047	92,542	7,903
HE 0141-3932	3185,424	0,012	1,6203033	12,654	0,049	19,051	1,934
HE 2225-2258	3186,649	0,018	1,6213104	12,987	0,089	21,081	3,314
HE 0515-4414	3186,94	0,01	1,6215501	13,34	0,01	34,76	1,44
HE 0429-4901	3190,594	0,105	1,6245561	13,228	0,146	45,716	14,948
HE 0141-3932	3190,737	0,020	1,6246737	12,736	0,037	31,469	2,821
HE 0141-3932	3192,973	0,007	1,6265126	12,848	0,025	19,136	1,129
HS 0747+4259	3193,152	0,042	1,6266601	13,307	0,124	27,146	6,351
HE 0141-3932	3194,162	0,016	1,6274911	12,707	0,046	27,412	2,598
HE 0515-4414	3194,60	0,02	1,6278477	12,80	0,04	33,01	4,21
HE 2225-2258	3194,727	0,131	1,6279556	12,881	0,108	82,391	19,475
HE 0429-4901	3196,377	0,070	1,6293128	$13,\!144$	0,122	$33,\!454$	9,660
HE 0515-4414	$3197,\!24$	0,01	1,6300226	$13,\!48$	0,02	23,39	1,05
HE 0515-4414	3197,70	0,02	1,6304051	$13,\!29$	0,04	$23,\!84$	1,59
HE 0429-4901	$3197,\!978$	0,043	1,6306297	$12,\!813$	0,165	13,561	5,814
HE 2225-2258	3198,071	0,031	$1,\!6307067$	$12,\!633$	0,080	21,392	$4,\!433$

HS 0747+4259	3200,743	$0,\!054$	$1,\!6329041$	$14,\!259$	0,079	39,508	$5,\!494$
HS 0747+4259	3201,572	0,059	1,6335859	$13,\!889$	0,102	27,904	5,288
HE 0141-3932	3202,187	0,003	1,6340917	13,121	0,010	17,280	0,462
HS 0747+4259	3203,855	0,035	1,6354644	$13,\!389$	0,078	28,007	4,965
HE 0515-4414	3205, 49	0,09	1,6368113	13,04	0,04	102, 17	11,09
HE 0515-4414	3206,01	0,01	1,6372356	12,93	0,03	18,94	$1,\!15$
HE 2225-2258	3206,059	0,189	1,6372771	12,828	0,165	96,448	30,932
HE 0141-3932	3207,029	0,013	1,6380748	13,069	0,017	44,413	1,826
HE 0429-4901	3207,633	0,101	1,6385723	13,192	0,143	41,271	13,819
HE 2225-2258	3207,749	0,021	1,6386673	12,686	0,144	12,405	3,472
HE 0515-4414	3208, 26	0,01	1,6390902	13, 13	0,02	20,89	0,91
HE 0515-4414	3208,93	0,01	1,6396357	13,01	0,02	19,96	1,00
HE 2225-2258	3209,191	0,007	1,6398534	15,366	0,088	60,365	2,879
HE 0515-4414	3209,74	0,02	1,6403041	$12,\!63$	0,05	23,25	3,08
HE 0429-4901	3210,523	0,049	1,6409494	$13,\!875$	0,114	21,403	4,618
HE 0141-3932	3211,106	0,006	1,6414284	12,860	0,018	15,082	0,796
HE 0429-4901	3211,106	0,046	1,6414289	14,047	0,114	23,983	4,338
HE 0515-4414	$3211,\!86$	0,04	$1,\!6420506$	$12,\!37$	0,08	$23,\!67$	4,72
HE 2225-2258	$3213,\!513$	0,013	1,6434084	13,047	0,033	20,030	1,707
HE 0429-4901	3214,255	0,025	1,6440192	$14,\!343$	0,145	32,593	3,026
HE 2225-2258	3214,376	0,019	1,6441190	$13,\!041$	0,037	27,971	2,660
HE 2225-2258	$3215,\!610$	0,016	1,6451339	12,997	0,036	23,292	2,139
HE 0515-4414	$3215,\!80$	0,04	$1,\!6452910$	12,70	0,08	32,42	$6,\!64$
HE 0515-4414	$3216,\!47$	0,01	$1,\!6458391$	$13,\!54$	0,01	28,69	0,75
HE 0429-4901	$3216,\!808$	0,042	$1,\!6461189$	$13,\!190$	0,084	$27,\!343$	$5,\!581$
HE 0141-3932	$3218,\!998$	0,016	$1,\!6479208$	$12,\!578$	0,034	24,423	2,206
HE 0429-4901	3221,181	0,013	$1,\!6497169$	$15,\!214$	0,271	34,909	3,353
HE 0141-3932	$3221,\!290$	0,008	$1,\!6498061$	$13,\!887$	0,011	$51,\!581$	0,570
HE 0141-3932	$3221,\!531$	0,003	$1,\!6500040$	$13,\!877$	0,012	22,520	0,448
HS 0747 + 4259	3221,738	0,014	$1,\!6501741$	13,703	0,036	24,132	1,777
HE 2225-2258	$3222,\!823$	0,087	$1,\!6510674$	$12,\!514$	0,139	36,924	12,302
HE 0141-3932	$3223,\!618$	0,004	$1,\!6517212$	$13,\!423$	0,008	32,282	0,575
HE 0429-4901	$3224,\!445$	0,015	$1,\!6524014$	$15,\!557$	0,377	$37,\!637$	4,177
HE 2225-2258	$3224,\!605$	0,016	$1,\!6525331$	$12,\!980$	0,037	$23,\!545$	$2,\!191$
HE 2225-2258	$3226,\!581$	$0,\!054$	$1,\!6541584$	$12,\!275$	0,159	$18,\!431$	$7,\!631$
HE 0429-4901	$3226,\!805$	$0,\!118$	$1,\!6543424$	$13,\!294$	$0,\!178$	$58,\!344$	19,531
HE 0141-3932	$3228,\!449$	$0,\!059$	$1,\!6556950$	$12,\!417$	0,093	$36,\!633$	$8,\!641$
HE 2225-2258	$3228,\!675$	0,006	$1,\!6558812$	$13,\!428$	0,019	$20,\!355$	0,886
HE 0429-4901	$3228,\!820$	0,072	$1,\!6559999$	$13,\!324$	0,138	$41,\!649$	$11,\!499$
HE 0141-3932	$3229,\!136$	0,024	$1,\!6562601$	$12,\!470$	0,065	$21,\!949$	$3,\!155$
HE 2225-2258	$3229,\!624$	0,019	$1,\!6566615$	$12,\!885$	0,053	22,511	2,749
HE 2225-2258	3230,774	0,010	$1,\!6576073$	$13,\!901$	0,013	34,908	1,169
HE 2225-2258	$3231,\!398$	0,008	$1,\!6581209$	$13,\!581$	0,022	19,537	0,847
HE 0515-4414	$3233,\!45$	0,01	$1,\!6598063$	$14,\!30$	0,01	31,88	$0,\!61$
HE 0515-4414	3234,03	0,06	$1,\!6602864$	$13,\!11$	$0,\!11$	30,29	4,22
HE 0429-4901	$3235,\!147$	0,025	1,6612045	$13,\!375$	0,059	$22,\!636$	3,200
HS 0747+4259	3235,264	0,018	$1,\!6613007$	$14,\!095$	0,027	45,857	2,134
HE 0141-3932	3236,735	0,002	1,6625109	$13,\!338$	0,006	$17,\!880$	0,288
HE 2225-2258	$3237,\!147$	0,033	1,6628503	12,734	0,062	28,015	4,501
HS 0747+4259	$3237,\!877$	0,062	1,6634505	$12,\!897$	0,107	28,830	8,163
HE 2225-2258	3238,285	0,016	1,6637862	13,256	0,023	37,532	2,145
HE 0429-4901	3239,964	0,014	1,6651673	15,207	0,137	56,881	3,320
HE 2225-2258	3240,026	0,020	1,6652182	$12,\!920$	$0,\!040$	27,325	2,732
HE 0515-4414	3240,13	0,00	1,6653045	$13,\!66$	0,00	37,66	$0,\!48$
HE 0141-3932	3240,663	0,016	1,6657424	12,385	0,055	18,334	2,238
HS 0747+4259	3240,735	$0,\!104$	$1,\!6658014$	$12,\!867$	0,128	$40,\!648$	13,796

HE 0141-3932	3241,532	0,018	1,6664567	12,827	0,031	41,202	2,791
HE 0515-4414	3241.97	0.01	1,6668160	13.08	0.02	25.02	1,01
HE 0429-4901	3242.373	0.123	1.6671489	12.816	0.245	25.812	15.480
HE 2225-2258	3242.868	0.004	1.6675562	13.517	0.011	20.554	0.560
HE 0515-4414	3243.06	0.00	1.6677115	14.42	0.01	49.62	0.38
HE 0429-4901	3243 379	0.015	1 6679760	15 034	0.242	32 663	3 400
HE 0141-3932	3243,673	0.016	1,6682183	12,001 12,466	0.039	21,000	2 139
HE 2225-2258	3245 092	0.018	1,0002100 1,6603851	13 939	0,005	41 099	2,100 2 570
HE 0515 4414	3245,052 3245,76	0,010	1,0055051	10,202 12.64	0,020	24.25	2,010 2.17
HE 0420 4001	3246,10	0,02	1,0055002 1,6705246	12,04	0,00	24,20 30,572	6 170
HE 0141 2022	3240,411	0,040	1,0705240 1,6721075	10,220 10,021	0,000	24 163	1 000
HE 0141-3932 HE 0420 4001	3248,401	0,009	1,0721075 1,6721677	12,931 12/20	0,021 0.062	24,103	5 130
HE 0429-4901	3240,474 2949 597	0,040	1,0721077	12,439	0,002	34,898 32.076	0,130
HE 2220-2206	3240,307	0,004	1,0722003	12,090	0,010	22,970	0,079
ПЕ 2220-2206 ЦЕ 0141-2020	3240,001	0,078	1,0723020	15,252	0,072	04,318	0,000
HE 0141-3932	3249,107	0,023	1,0727372	12,827	0,032	40,478	3,003
HE 0515-4414	3250,19	0,01	1,6735810	14,12	0,01	121,36	1,79
HE 0141-3932	3250,204	0,003	1,6735907	13,269	0,007	23,258	0,423
HE 0515-4414	3250,21	0,00	1,6735985	14,82	0,02	37,82	0,25
HS 0747+4259	3251,393	0,028	1,6745688	13,503	0,039	35,098	3,337
HS 0747+4259	3255,393	0,030	1,6778588	12,975	0,093	15,659	4,240
HE 0515-4414	3258,20	0,10	1,6801688	14,34	0,14	49,89	3,97
HE 0515-4414	$3258,\!61$	0,01	1,6805041	$15,\!24$	0,03	31,69	0,94
HE 0429-4901	3259,099	0,012	$1,\!6809076$	15,591	0,217	47,946	3,163
HE 0141-3932	3260, 185	0,535	$1,\!6818005$	12,953	$0,\!686$	45,002	25,149
HE 0141-3932	3260,414	0,004	$1,\!6819890$	13,924	0,056	21,956	0,970
HE 2225-2258	3260,988	0,003	$1,\!6824614$	15,494	0,043	52,066	0,810
HE 0141-3932	3262, 159	0,004	$1,\!6834245$	16,053	0,026	61,942	$0,\!489$
HE 2225-2258	$3264,\!431$	0,018	$1,\!6852932$	$12,\!694$	$0,\!050$	18,820	2,491
HE 0429-4901	$3268,\!664$	0,047	$1,\!6887752$	13,281	0,065	38,070	6,139
HE 2225-2258	$3270,\!980$	0,004	$1,\!6906804$	$13,\!663$	0,012	26,360	$0,\!657$
HE 2225-2258	$3272,\!084$	0,003	$1,\!6915889$	$13,\!815$	0,010	22,946	0,509
HE 2225-2258	$3273,\!394$	0,121	$1,\!6926668$	13,577	0,066	$176,\!621$	19,593
HE 0141-3932	$3274,\!129$	0,012	$1,\!6932710$	12,573	0,028	22,398	$1,\!630$
HS $0747 + 4259$	3274,758	0,062	$1,\!6937881$	$13,\!290$	0,107	$37,\!617$	6,794
HS 0747 + 4259	3275,728	0,084	$1,\!6945868$	$13,\!458$	0,088	61,419	13,396
HE 2225-2258	3276,733	0,016	$1,\!6954128$	13,360	0,022	45,286	2,156
HE 0429-4901	3277,026	0,070	$1,\!6956537$	13,956	0,058	51,791	6,648
HE 0141-3932	$3277,\!833$	0,023	1,6963179	12,707	0,032	37,356	2,935
HE 0429-4901	$3277,\!895$	0,061	$1,\!6963687$	$13,\!611$	0,115	30,784	5,602
HS 0747+4259	3278,165	0,050	1,6965911	13,357	0,073	51,010	7,508
HE 0141-3932	3279,181	0,019	1,6974269	12,336	0,050	18,629	2,473
HE 2225-2258	3280,627	0,107	1,6986160	13,689	0,085	236,889	24,189
HE 0141-3932	3281,748	0,002	1,6995380	13,445	0,005	20,516	0,241
HE 0429-4901	3282,530	0,013	1,7001815	13,692	0,048	15,824	1,528
HE 0429-4901	3283,010	0,110	1,7005765	12,641	0,261	21,129	14,674
HE 0141-3932	3283,632	0.007	1,7010877	12,703	0.019	18,101	0.901
HE 2225-2258	3284.984	0,004	1,7022001	13,894	0.011	24,999	0.552
HE 2225-2258	3285.438	0.045	1,7025734	13.638	0.034	98,647	5,777
HE 0141-3932	3289,099	0.046	1.7055852	13.481	0.052	50.323	3.319
HE 0429-4901	3289.444	0.033	1.7058687	12.815	0.099	16.292	4.249
HE 0141-3932	3289.826	0,004	1,7061830	14,004	0,085	26.365	1.263
HE 0141-3932	3290.158	0,205	1,7064565	13,549	0.357	43.873	14.560
HE 0141-3932	3290.947	0.303	1,7071053	13,203	0.240	74.147	20.113
HS $0747 + 4259$	3291.136	0.033	1,7072606	13.078	0.064	27.597	5.314
HE 2225-2258	3292.527	0.017	1,7084054	13.085	0.029	33.689	2.367
HS $0747 + 4259$	3292.920	0.060	1.7087284	12.977	0.092	33,469	7.924
	,	-,	_,	,~	-,		•,5=1

HE 2225-2258	$3293,\!637$	0,004	1,7093183	13,966	0,016	17,150	0,454
HE 2225-2258	3294, 129	0,027	1,7097230	13,211	0,049	27,715	3,317
HE 0141-3932	3294,529	0,001	1,7100517	16,059	0,019	73,184	0,427
HE 2225-2258	3295,578	0,034	1,7109147	12,781	0,057	34,049	4,676
HE 0429-4901	3295,721	0,041	1,7110320	13,445	0,053	38,524	5,435
HE 2225-2258	3297,027	0,013	1,7121068	12,950	0,031	21,894	1,710
HE 0429-4901	3297,256	0.013	1,7122952	15,212	0,202	41,296	3,192
HE 0141-3932	3297.367	0.008	1.7123865	13.796	0.012	34.916	0.735
HE 0141-3932	3297.896	0.002	1.7128218	14.360	0.014	19.829	0.236
HE 2225-2258	3299.673	0.042	1.7142832	12.779	0.084	28.574	6.900
HS $0747 + 4259$	3300.995	0.007	1.7153709	14.998	0.055	20.442	0.561
HS $0747 + 4259$	3301.813	0.040	1.7160432	12.915	0.143	25.774	8.574
HS $0747 + 4259$	3303.696	0.009	1.7175927	13.983	0.041	22.786	1.366
HE 0141-3932	3303.724	0.026	1.7176155	12.834	0.033	53.768	3.759
HE 0429-4901	3303 771	0.013	1 7176543	13 413	0.041	17 087	1 600
HE 2225-2258	3305 148	0.013	1 7187873	13,300	0.018	36 488	1 679
HE 0429-4901	3306.458	0.019	1,7198648	13.070	0.059	15.735	2.395
HE 2225-2258	3306.853	0.016	1,7201898	12.819	0.041	19.252	2.181
HE 0141-3932	3307 413	0.037	1 7206498	12,010 12,472	0.054	43 097	5 300
HE 2225-2258	3307,475	0.020	1,7207007	12,112 12,777	0.046	21 811	2,812
HE 0429-4901	3307 633	0,020	1,7208315	13,199	0.049	20,811	2,012 2,492
HS $0747 + 4259$	3308 658	0.011	1,7216744	15,100 15,145	0,010 0.036	39253	1,102
HE 0141-3932	3309 954	0.014	1,7227404	12,134	0.027	34,200	2 083
HS $0747 + 4259$	3310 163	0,011 0.564	1,7229120	12,101 13 410	2,010	68 698	$104\ 046$
HE 0429-4901	3310 483	0.026	1,7231758	13,110 13,046	0.062	20,737	3 283
HE 0141-3932	$3311\ 694$	0,020	1,7241720	13,777	0.002	25,101 25,261	0.186
HE 2225-2258	3312.334	0.023	1.7246985	13.744	0.024	73.146	2.855
HE 2225-2258	3312.537	0.007	1.7248651	13.669	0.028	27.288	1,173
HE 0141-3932	3313.309	0.116	1,7254999	13.373	0.068	106.286	12.856
HE 2225-2258	3314.090	0.163	1.7261424	13.125	0.244	34.402	11,756
HE 0141-3932	3314,399	0.001	1,7263968	14.728	0.007	41.617	0.353
HE 2225-2258	3314.482	0.017	1,7264649	13.465	0.108	21.501	1.717
HE 0429-4901	3314.895	0.019	1.7268046	13,426	0.038	25.357	2,299
HS $0747 + 4259$	3316.221	0.024	1,7278957	13.382	0.059	23.175	3.339
HS $0747 + 4259$	3316.880	0.029	1,7284380	13,132	0.094	17.660	4.069
HS $0747 + 4259$	3318.879	0.010	1,7300816	15,988	0.083	37.368	1.030
HE 2225-2258	3319 288	0.005	1 7304182	13,542	0,009	24 451	0.568
HE 0141-3932	$3321\ 196$	0.022	1 7319881	12,430	0.045	29,640	3,000
HE 0141-3932	3322,722	0,022 0.030	1,7332432	12,100 12,490	0,010 0.050	39,010	4379
HS $0747 + 4259$	3323 805	0.060	1,7341338	13,350	0.062	50,105	8 232
HS $0747 + 4259$ HS $0747 + 4259$	3324 898	0.097	1,7350332	12,884	0,002 0.144	34 834	11 992
HE 0141-3932	3326 221	0.018	1,7361217	14,362	0,051	22,260	0.692
HE 0141-3932	3326 635	0.038	1,7364618	13 832	0,001	22,200 22,221	3 938
HE 0429-4901	$3327\ 103$	0,050 0.053	1,7368466	13,052	0,120 0.072	38 931	6.828
HE 0141-3932	3327,100 3327,161	0.028	1,7368947	13,100 13,496	0,012 0.171	24142	4 987
HS $0747 + 4259$	3327,101 3327,261	0,020 0.047	1,7369771	13,175	0,101	32447	7 158
HE 0141-3932	3327536	0,0176	1 7372029	12,995	0,101 0,402	27.038	8 158
HS $0747 + 4259$	3327,895	0,170 0.025	1,7374983	12,300 13 413	0,102 0.092	16708	2,100
HS $0747 + 4259$	$3328\ 515$	0,020	1 7380085	14129	0.037	30,700	2,000 3 584
HS $0747 + 4259$	3329 292	0,020	1,7386478	13,662	0.078	31,304	4746
HS $0747 + 4259$	3330.737	0.041	1.7398362	13.680	0.082	29.242	4.004
HS $0747 + 4259$	3331.607	0.031	1.7405517	14,225	0.031	45.014	2.863
HE 0141-3932	3332.767	0.105	1.7415063	13.023	0.095	60,193	8.828
HE 2225-2258	3332.781	0.004	1.7415175	13,784	0.007	31.939	0.483
HE 0141-3932	3333.151	0.003	1,7418216	13.065	0.031	16.954	0.684
HE 0141-3932	3333,860	0,116	1,7424053	12,539	0,161	44,183	9,651

HE 0141-3932	$3334,\!889$	0,008	1,7432520	$13,\!005$	0,023	23,786	0,931
HE 0141-3932	3335,758	0,048	1,7439667	12,950	0,057	46,325	4,956
HE 0429-4901	$3335,\!895$	0,017	1,7440794	13,302	0,041	20,975	2,176
HE 0429-4901	3336,737	0,024	1,7447722	13,372	0,040	29,902	3,080
HE 0141-3932	$3337,\!586$	0,012	1,7454705	12,744	0,025	30,776	1,724
HE 2225-2258	3338,102	0,008	1,7458944	12,894	0,028	14,597	1,097
HE 0429-4901	3338,205	0,081	1,7459795	13,225	0,107	37,326	9,041
HE 0429-4901	3339,379	0,017	1,7469448	$14,\!542$	0,063	$43,\!641$	$2,\!679$
HE 2225-2258	3340, 123	0,014	1,7475575	$12,\!688$	0,045	15,309	1,850
HE 2225-2258	3340,858	0,006	1,7481620	$13,\!613$	0,009	34,051	0,810
HE 0141-3932	3343,921	0,004	1,7506813	12,925	0,010	19,487	0,524
HE 2225-2258	3344,043	0,081	1,7507819	13,094	0,232	66,472	23,502
HE 2225-2258	3344,223	0,008	1,7509298	$13,\!550$	0,064	21,744	1,534
HE 2225-2258	3345,502	0,045	1,7519816	12,982	0,100	24,576	4,484
HE 2225-2258	3346,010	0,008	1,7523994	13,821	0,015	23,722	$0,\!698$
HE 0429-4901	3347,299	0,097	1,7534604	12,742	0,165	31,438	12,979
HS 0747+4259	3347,678	0,025	1,7537714	13,269	0,049	25,355	3,097
HE 2225-2258	$3351,\!470$	0,018	1,7568909	12,732	0,042	20,424	2,312
HE 0429-4901	3357,423	0,031	1,7617878	12,782	0,087	17,289	3,959
HE 2225-2258	3360, 215	0,003	1,7640845	13,562	0,008	22,426	0,422
HE 2225-2258	$3361,\!383$	0,053	1,7650452	12,338	0,102	25,940	7,038
HE 0141-3932	$3361,\!626$	0,002	1,7652451	13,240	0,005	21,661	0,299
HS 0747+4259	3365,097	0,017	1,7681005	13,277	0,053	23,582	2,469
HE 2225-2258	3365,476	0,005	1,7684126	13,339	0,014	18,826	0,690
HE 2225-2258	3366,002	0,024	1,7688445	12,684	0,059	20,600	3,336
HS 0747+4259	$3366,\!458$	0,030	1,7692198	13,128	0,086	27,614	4,495
HE 2225-2258	3367, 151	0,003	1,7697902	14,118	0,005	40,589	0,399
HE 0141-3932	3372,383	0,020	1,7740937	12,662	0,031	36,924	2,653
HS 0747+4259	3372,608	0,007	1,7742794	14,788	0,081	34,001	1,433
HE 0141-3932	3373,990	0,029	1,7754158	12,320	0,057	28,938	4,004
HE 0429-4901	3376,245	0,029	1,7772710	12,976	0,066	20,852	3,572
HE 0141-3932	3378,723	0,019	1,7793089	12,788	0,033	48,993	3,044
HS 0747+4259	$3379,\!056$	0,023	1,7795829	13,697	0,042	23,567	2,436
HS 0747+4259	3379,555	0,068	1,7799937	13,010	0,172	19,646	6,430
HE 0141-3932	$3380,\!670$	0,001	1,7809110	14,368	0,002	39,487	0,182
HE 0141-3932	3381,746	0,001	1,7817954	$15,\!642$	0,059	19,612	0,303
HS 0747+4259	3382,224	0,008	1,7821892	14,377	0,045	31,108	1,297
HE 0141-3932	3382,723	0,007	1,7825999	13,326	0,035	$23,\!617$	0,756
HE 0141-3932	3383,201	0,022	1,7829926	$13,\!435$	0,028	37,757	1,582
HS 0747+4259	$3383,\!963$	0,030	1,7836199	12,855	0,102	$17,\!633$	4,219
HE 2225-2258	$3384,\!172$	0,068	1,7837917	12,812	0,064	$57,\!550$	8,830
HE 0429-4901	$3384,\!294$	0,106	1,7838922	$13,\!186$	0,080	79,168	$14,\!436$
HS 0747+4259	$3384,\!623$	0,029	1,7841620	12,984	0,100	21,490	4,557
HS 0747+4259	$3386,\!544$	0,011	1,7857429	13,412	0,030	19,504	1,399
HE 2225-2258	$3387,\!504$	0,013	1,7865320	13,343	0,017	35,984	$1,\!651$
HE 2225-2258	3388,366	0,004	1,7872417	13,818	0,009	28,090	0,584
HE 2225-2258	3389,283	0,142	1,7879955	$12,\!607$	0,132	54,337	$17,\!624$
HE 0429-4901	$3391,\!527$	0,034	1,7898412	12,748	0,102	16,701	4,405
HE 2225-2258	$3391,\!582$	0,020	1,7898865	12,969	0,129	18,614	6,440
HE 2225-2258	$3393,\!549$	0,042	1,7915047	12,977	$0,\!049$	43,872	4,553
HE 0429-4901	3393,718	0,056	1,7916439	12,716	$0,\!122$	22,526	7,059
HE 2225-2258	$3399,\!041$	0,017	1,7960222	$12,\!665$	$0,\!042$	19,585	2,237
HE 2225-2258	$3401,\!524$	0,044	1,7980652	$12,\!433$	$0,\!076$	28,279	$5,\!617$
HE 0429-4901	$3402,\!448$	0,045	1,7988254	13,068	$0,\!082$	25,993	$5,\!405$
HE 0429-4901	$3403,\!115$	0,012	1,7993741	$13,\!811$	$0,\!024$	24,284	1,307
HE 2225-2258	$3404,\!291$	0,003	1,8003412	13,399	0,008	19,828	0,414

HS 0747+4259	$3404,\!399$	0,006	1,8004296	15,020	0,046	33,543	0,886
HS 0747+4259	3405,396	0,027	1,8012499	13,548	0,058	31,305	3,387
HE 0429-4901	3405,597	0.019	1,8014154	13,264	0.036	27,610	2,440
HE 0429-4901	3407,047	0,016	1,8026086	13,361	0,030	27,256	1,981
HE 0429-4901	3408,188	0,024	1,8035465	13,121	0,047	26,979	3,163
HE 0429-4901	3409,100	0,009	1,8042969	13,544	0,023	20,839	1,077
HE 0429-4901	3410,748	0,011	1,8056527	14,031	0,016	43,920	1,382
HS 0747+4259	3412,292	0,042	1,8069230	15,173	0,098	26,623	1,967
HE 2225-2258	3412,527	0,031	1,8071156	12,332	0,089	17,461	4,075
HS 0747+4259	3413.095	0.017	1,8075829	$16,\!150$	0,086	23,647	0.870
HE 2225-2258	$3413,\!254$	0,009	1,8077142	13,318	0.016	30,994	1,513
HE 2225-2258	$3413,\!857$	0,009	1,8082104	12,869	0,032	15,407	1,133
HE 2225-2258	3414,618	0,013	1,8088357	13,024	0,024	28,403	1,855
HE 0429-4901	3414,716	0,087	1,8089166	$13,\!242$	0,070	75,440	11,896
HE 2225-2258	3415,335	0.012	1,8094262	12,477	0.180	11,392	2,815
HE 2225-2258	3415,728	0.089	1,8097489	12,698	0,205	36,362	17.955
HE 2225-2258	3416,608	0,007	1,8104732	13,690	0,018	31,139	1,412
HE 2225-2258	3417,142	0,011	1,8109125	13,308	0.054	15,400	1,369
HE 2225-2258	3417.488	0.011	1.8111967	13.505	0.026	18.130	0.840
HE 0429-4901	3417.509	0.190	1.8112140	12.963	0.145	70.476	26.958
HS 0747+4259	3417.684	0.049	1.8113585	12.834	0.087	30.809	6.493
HE 0429-4901	3418.665	0.033	1.8121647	13.024	0.083	24.387	4.277
HE 2225-2258	3418.884	0.004	1.8123449	13.509	0.007	26.002	0.458
HS $0747 + 4259$	3420.327	0.040	1.8135322	13.009	0.065	35.884	5.389
HE 2225-2258	3421.033	0.035	1.8141133	12.181	0.097	17.624	4.581
HE 0429-4901	3426.654	0.203	1.8187364	12.516	0.227	48.885	26.622
HE 2225-2258	3427.497	0.056	1.8194302	12.505	0.077	39.602	7.297
HS 0747+4259	3428.547	0.035	1.8202941	12.339	0.128	12.170	4.700
HS $0747 + 4259$	3430,424	0.026	1.8218379	12.860	0.057	22.475	3.301
HE 2225-2258	3431.407	0.039	1.8226463	12.289	0.083	23.031	4.987
HS 0747+4259	3433.036	0.169	1.8239868	13.665	0.337	27.246	8.291
HS $0747 + 4259$	3433.947	0.046	1.8247361	12.749	0.214	25.673	8.911
HS $0747 + 4259$	3435.207	0.008	1.8257723	13.829	0.019	28.493	1.104
HE 0429-4901	3435.987	0.046	1.8264142	12.660	0.327	11.478	7.277
HE 0429-4901	3436.171	0.059	1.8265651	13.927	0.035	57.878	6.065
HS 0747+4259	3437.005	0.037	1.8272513	13.130	0.071	50.094	5.586
HE 0429-4901	3437.130	0.016	1.8273542	14.140	0.035	31.091	1.525
HE 2225-2258	3438.642	0.018	1.8285981	12.563	0.045	20.946	2.459
HE 2225-2258	3439.257	0.010	1.8291042	12.831	0.047	11.626	1.069
HE 2225-2258	3439.575	0.009	1.8293653	13.168	0.023	16.408	0.920
HE 2225-2258	3442,422	0.142	1.8317074	13.061	0.073	82.306	14.142
HE 2225-2258	3443.010	0.085	1.8321911	13.125	0.115	20.176	5.683
HE 0429-4901	3443,849	0.386	1,8328815	13,041	0.174	160,711	56,129
HS 0747+4259	3451,584	0.014	1,8392438	13,300	0,045	25,054	2,177
HE 0429-4901	3452.722	0.009	1.8401802	13.470	0.020	23,336	1.100
HS 0747+4259	3453.397	0.021	1.8407354	12.658	0.112	13.746	3.283
HE 0429-4901	3453,992	0.030	1.8412249	12.717	0.074	19.671	3.768
HS 0747+4259	3454.982	0.072	1.8420393	12.829	0.085	45.582	9.381
HE 0429-4901	3455.969	0.007	1.8428513	13,781	0.015	26.360	0.831
HE 0429-4901	3457.085	0.042	1.8437690	13.073	0.051	41.993	5.549
HE 2225-2258	3457.853	0.034	1.8444012	12,485	0.057	31.122	4.383
HS 0747 + 4259	3458.557	0.034	1,8449796	12.945	0.052	33.737	4.343
HE 2225-2258	3459.443	0.023	1.8457090	12.328	0.060	18,417	2.960
HS 0747 + 4259	3461.370	0.035	1,8472939	13.320	0.086	24.879	3.153
HE 2225-2258	3461.887	0.040	1.8477192	12.363	0.072	28.576	5.196
HS 0747+4259	3462,033	0,013	1,8478394	14,135	0,022	35.886	1.209
	, .	/	'	,	/	/	, -

HE 0429-4901	3463,032	0,038	1,8486613	12,320	0,149	11,997	4,940
HE 0429-4901	3465, 339	0,091	1,8505590	12,909	0,091	54,284	11,766
HS 0747+4259	3467,386	0,055	1,8522424	12,773	0,099	26,612	6,259
HE 2225-2258	3467,814	0,013	1,8525944	$15,\!682$	0,055	35,207	0,637
HS 0747+4259	3468,219	0,019	1,8529276	13,588	0,047	28,809	2,429
HS 0747+4259	3468,851	0,011	1,8534476	13,766	0,026	22,977	1,187
HE 2225-2258	3469,183	0,013	1,8537208	15,033	0,050	30,747	0,880
HE 2225-2258	3470, 117	0,051	1,8544891	$12,\!179$	0,204	16,340	6,280
HE 0429-4901	3470,994	0,078	1,8552103	12,323	0,217	19,563	10,361
HS 0747+4259	3471,519	0,022	1,8556422	12,934	0,043	30,236	2,591
HE 0429-4901	3475, 149	0,009	1,8586282	$13,\!349$	0,023	19,662	1,110
HS 0747+4259	$3475,\!835$	0,020	1,8591930	12,554	0,076	12,458	2,684
HE 2225-2258	3476,903	0,010	1,8600709	12,758	0,022	20,061	1,203
HE 0429-4901	3477, 141	0,025	1,8602667	12,789	0,161	18,441	4,572
HE 0429-4901	3477,758	0,176	1,8607748	12,986	0,146	59,155	17,453
HS 0747+4259	$3478,\!884$	0,005	1,8617007	14,260	0,026	27,212	0,741
HS 0747+4259	3480,728	0,006	1,8632172	$14,\!183$	0,012	42,944	0,964
HE 0429-4901	$3481,\!989$	0,033	1,8642545	13,102	0,041	41,755	4,145
HS 0747+4259	3482,851	0,023	1,8649637	13,006	0,054	27,734	3,286
HE 0429-4901	3484,730	0,006	1,8665096	$13,\!939$	0,013	28,046	$0,\!650$
HE 0429-4901	$3491,\!496$	0,039	1,8720756	$12,\!697$	0,078	24,547	4,910
HE 0429-4901	$3493,\!683$	0,013	1,8738741	$13,\!196$	0,028	23,077	$1,\!611$
HE 0429-4901	3494,978	0,015	1,8749398	$13,\!285$	0,025	29,065	$1,\!840$
HE 0429-4901	3496,729	0,009	$1,\!8763795$	13,367	0,020	21,374	1,058
HE 0429-4901	3501,963	0,064	$1,\!8806851$	$12,\!667$	0,092	35,047	8,053
HE 0429-4901	3503, 194	0,018	1,8816981	12,974	0,036	23,017	2,135
HE 0429-4901	$3512,\!653$	0,005	1,8894790	$14,\!365$	0,019	34,520	0,667
HE 0429-4901	3514,181	0,116	$1,\!8907354$	12,962	0,114	75,327	$17,\!540$
HE 0429-4901	$3516,\!680$	0,021	1,8927916	$12,\!894$	0,046	$24,\!674$	2,675
HE 0429-4901	3520, 120	0,009	1,8956213	14,001	0,009	53,820	1,099
HE 0429-4901	3521,883	0,169	1,8970712	$13,\!433$	$0,\!191$	42,038	10,931
HE 0429-4901	3522,289	0,008	$1,\!8974049$	$14,\!140$	$0,\!059$	17,886	1,712
HE 0429-4901	3523,390	0,009	1,8983111	14,736	0,036	42,959	1,218
HE 0429-4901	3527,925	0,033	1,9020418	12,860	$0,\!053$	33,185	4,346
HE 0429-4901	3528,956	0,034	1,9028891	12,793	$0,\!059$	30,982	4,394
HE 0429-4901	$3531,\!524$	0,066	1,9050022	$12,\!533$	$0,\!110$	37,409	8,969
HE 0429-4901	$3536,\!436$	0,020	1,9090422	$13,\!959$	0,031	29,320	1,226
HE 0429-4901	$3537,\!025$	0,016	1,9095271	14,033	0,029	$26,\!646$	1,005

Tabelle B.1: Parameter sämtlicher gefitteter Lyman α - Linien

Anhang C

Fitparameter des Metalliniensystems in der Sehlinie zu HE 0141-3932

Ion	$\lambda \; [{ m \AA}]$	$\sigma_{\lambda} \; [\rm{\AA}]$	$v~[\rm km~s^{-1}]$	$\sigma_v \; [\rm km \; s^{-1}]$	$\log N$	$\sigma_{\log N}$	$b \; [\rm km \; s^{-1}]$	$\sigma_b \; [\rm km \; s^{-1}]$
Hi 1215	3289,099	0,046	-494,1	4,2	13,481	0,052	50,323	3,319
Hi 1215	3289,826	0,004	-428,0	0,4	14,004	0,085	26,365	1,263
Hi 1215	$3290,\!158$	0,205	-397,7	18,7	$13,\!549$	0,357	43,873	14,560
Hi 1215	3290,947	0,303	-325,9	$27,\!6$	13,203	0,240	$74,\!147$	20,113
Hi 1215	$3294,\!529$	0,001	0,0	0,1	$16,\!059$	0,019	73,184	0,427
Hi 1215	3297,367	0,008	258,3	0,7	13,796	0,012	$34,\!916$	0,735
HI 1215	$3297,\!896$	0,002	306,5	0,2	$14,\!360$	0,014	19,829	0,236
NV 1238	3356,777	0,003	-43,9	$0,\!3$	$13,\!221$	0,022	9,338	0,422
NV 1238	$3357,\!140$	0,013	-11,5	1,2	$13,\!241$	0,052	$21,\!446$	$2,\!487$
NV 1238	3357,440	0,003	$15,\!3$	$0,\!3$	$12,\!956$	0,039	$1,\!455$	0,235
NV 1238	3357,690	0,004	$37,\!6$	$0,\!4$	$14,\!004$	0,008	26,514	0,501
NV 1238	$3358,\!459$	0,002	106,3	0,2	$13,\!610$	0,006	20,934	$0,\!341$
NV 1238	3360, 104	$0,\!005$	$253,\!2$	$0,\!4$	$13,\!104$	0,016	$15,\!462$	0,730
NV 1238	$3360,\!439$	0,001	283,1	$_{0,1}$	$13,\!375$	0,007	6,510	0,206
NV 1238	3360,737	0,001	309,7	$_{0,1}$	$13,\!599$	$0,\!004$	8,501	$0,\!133$
NV 1242	$3367,\!570$	0,003	-43,9	0,3	$13,\!221$	0,022	9,338	0,422
NV 1242	$3367,\!934$	0,013	-11,5	$1,\!2$	$13,\!241$	$0,\!052$	$21,\!446$	$2,\!487$
NV 1242	$3368,\!235$	0,003	$15,\!3$	$0,\!3$	$12,\!956$	0,039	$1,\!455$	0,235
NV 1242	$3368,\!485$	0,004	$37,\!6$	$0,\!4$	14,004	0,008	26,514	0,501
NV 1242	$3369,\!257$	0,002	106,3	0,2	$13,\!610$	0,006	20,934	$0,\!341$
NV 1242	$3370,\!907$	$0,\!005$	253,2	$0,\!4$	$13,\!104$	0,016	$15,\!462$	0,730
NV 1242	3371,244	0,001	283,1	$_{0,1}$	$13,\!375$	$0,\!007$	6,510	0,206
NV 1242	$3371,\!543$	0,001	309,7	$_{0,1}$	$13,\!599$	$0,\!004$	8,501	$0,\!133$
CIV 1548	$4195,\!169$	0,002	-37,1	0,1	$14,\!235$	0,008	$11,\!830$	$0,\!155$
CIV 1548	$4195,\!852$	0,009	11,7	0,7	$14,\!831$	$0,\!012$	33,735	0,778
			17	6				

Civ 1548	4196,411	0,007	51,7	$0,\!5$	$14,\!438$	0,026	$19,\!539$	0,418
Civ 1548	4197,194	0,001	107,6	0,1	14,456	0,002	$18,\!657$	0,090
Civ 1548	4197,926	0,004	159,9	$0,\!3$	$13,\!071$	0,012	15,160	0,483
Civ 1548	4199,141	0,121	246,7	8,7	$13,\!288$	$0,\!115$	45,748	6,062
Civ 1548	4199,204	0,002	251,2	$0,\!1$	$13,\!616$	0,015	9,829	0,212
Civ 1548	4199,462	0,002	269,7	$0,\!1$	12,916	0,031	2,332	0,291
Civ 1548	4199,665	0,001	284,2	0,0	$13,\!965$	0,010	5,014	0,107
CIV 1548	4200,050	0,001	$311,\!6$	$0,\!0$	$14,\!364$	0,005	$10,\!534$	0,088
Civ 1550	4202,146	0,002	-37,1	$_{0,1}$	$14,\!235$	0,008	11,830	$0,\!155$
Civ 1550	4202,830	0,009	11,7	0,7	14,831	0,012	33,735	0,778
Civ 1550	4203,391	0,007	51,7	$0,\!5$	14,438	0,026	19,539	0,418
Civ 1550	4204,175	0,001	107,6	$0,\!1$	$14,\!456$	0,002	$18,\!657$	0,090
Civ 1550	4204,908	0,004	159,9	$0,\!3$	$13,\!071$	0,012	15,160	0,483
Civ 1550	4206,125	0,121	246,7	8,7	$13,\!288$	$0,\!115$	45,748	6,062
Civ 1550	4206,189	0,002	251,2	0,1	$13,\!616$	0,015	9,829	0,212
Civ 1550	4206,447	0,002	269,7	0,1	12,916	0,031	2,332	0,291
Civ 1550	4206,650	0,001	284,2	0,0	$13,\!965$	0,010	5,014	0,107
Civ 1550	4207,035	0,001	$311,\!6$	0,0	$14,\!364$	0,005	$10,\!534$	0,088
Siiv 1393	3776,745	0,001	-32,0	$0,\!1$	12,841	0,005	4,478	0,142
Siiv 1393	3776,916	0,001	-18,4	0,1	$12,\!639$	0,023	2,091	0,170
Siiv 1393	3777,029	0,002	-9,4	0,1	12,884	$0,\!175$	1,082	0,189
Siiv 1393	3777,317	0,001	$13,\!4$	0,1	13,418	0,018	10,312	0,235
Siiv 1393	3777,565	0,001	33,1	0,1	12,916	0,024	4,044	0,232
Siiv 1393	3777,729	0,001	46,1	0,1	12,921	0,018	3,968	0,250
Siiv 1393	3777,862	0,174	$56,\!6$	$13,\!8$	$12,\!540$	0,317	33,833	21,061
Siiv 1393	3778,328	0,004	93,7	$0,\!4$	12,141	0,090	6,722	1,139
Siiv 1393	$3778,\!540$	0,001	110,4	0,1	$12,\!659$	0,012	3,419	0,257
Siiv 1393	3778,719		124,7		12,080		0,100	
Siiv 1393	$3781,\!152$		1 317,8		11,842		3,732	
Siiv 1402	$3801,\!173$	0,001	-32,0	0,1	$12,\!841$	0,005	4,478	0,142
Siiv 1402	3801,345	0,001	-18,4	0,1	$12,\!639$	0,023	2,091	0,170
Siiv 1402	3801,460	0,002	-9,4	$0,\!1$	12,884	$0,\!175$	1,082	0,189
Siiv 1402	3801,749	0,001	$13,\!4$	$0,\!1$	13,418	0,018	10,312	0,235
Siiv 1402	3801,999	0,001	$33,\!1$	0,1	12,916	0,024	4,044	0,232
Siiv 1402	3802,164	0,001	46,1	0,1	12,921	0,018	3,968	0,250
Siiv 1402	3802,297	0,175	$56,\!6$	$13,\!8$	$12,\!540$	0,317	33,833	21,061
Siiv 1402	3802,767	0,004	93,7	0,4	12,141	0,090	6,722	1,139
Siiv 1402	3802,980	0,001	110,4	0,1	$12,\!659$	0,012	3,419	0,257
Siiv 1402	$3803,\!160$	·	124,7	·	12,080	, 	0,100	·
Siiv 1402	$3805,\!609$		2 317,8		11,842		3,732	
Siii 1190	3225,756	0,004	-30,9	0,3	12,088	0,041	$8,\!137$	0,618
Siii 1190	$3226,\!187$	0,001	9,2	0,1	$12,\!579$	0,009	5,354	0,150
Siii 1190	3226,576	0,001	45,3	0,1	12,349	0,012	2,787	0,225
Siii 1190	3227,273	0,001	110,1	0,1	$12,\!215$	0,011	2,817	0,206

 1 Detektion unsicher 2 Detektion unsicher

Si11 1193	$3233,\!544$	0,004	-30,9	0,3	12,088	0,041	8,137	0,618
Si11 1193	3233,976	0,001	9,2	0,1	12,579	0,009	5,354	0,150
Si11 1193	3234,365	0,001	45,3	0,1	12,349	0,012	2,787	0,225
Si11 1193	3235,064	0,001	110,1	0,1	12,215	0,011	2,817	0,206
Si11 1260	$3415,\!235$	0,041	-50,3	$3,\!6$	12,332	0,060	35,163	4,146
Si11 1260	$3415,\!457$	0,004	-30,9	0,3	12,088	0,041	8,137	0,618
Si11 1260	$3415,\!667$	0,006	-12,4	0,5	11,771	0,078	6,062	0,992
Si11 1260	3415,914	0,001	9,2	0,1	12,579	0,009	5,354	$0,\!150$
Si11 1260	$3416,\!176$	0,007	32,3	$0,\!6$	12,784	0,012	24,361	0,763
Si11 1260	3416,325	0,001	45,3	0,1	$12,\!349$	0,012	2,787	$0,\!225$
Si11 1260	3416,694	0,010	77,7	0,9	$11,\!667$	0,058	9,671	1,427
Si11 1260	3417,064	0,001	110,1	0,1	12,215	0,011	2,817	0,206
Si11 1304	$3535,\!019$	0,001	9,2	0,1	12,579	0,009	$5,\!354$	$0,\!150$
Si11 1304	$3535,\!445$	0,001	45,3	0,1	$12,\!349$	0,012	2,787	0,225
Si11 1304	3536,209	0,001	110,1	0,1	12,215	0,011	2,817	0,206
Si11 1526	4137,581	0,001	9,2	0,1	12,579	0,009	$5,\!354$	$0,\!150$
Si11 1526	4138,079	0,001	45,3	0,1	$12,\!349$	0,012	2,787	0,225
Si11 1526	4138,973	0,001	110,1	0,1	12,215	0,011	2,817	0,206
SiIII 1206	3269, 198	0,039	-44,0	$3,\!6$	11,782	$0,\!146$	12,949	3,719
SiIII 1206	3269,340	0,001	-30,9	0,1	12,560	0,020	4,253	0,341
SiIII 1206	$3269,\!479$	0,004	-18,2	$0,\!3$	12,366	0,023	3,755	$0,\!686$
SiIII 1206	$3269,\!580$	0,004	-8,9	$0,\!4$	$12,\!305$	0,030	$3,\!307$	$0,\!530$
SiIII 1206	3269,790	0,002	10,3	0,2	$13,\!119$	0,028	7,333	0,341
SiIII 1206	3270,009	0,009	30,4	0,8	$13,\!087$	0,019	$18,\!235$	0,717
SiIII 1206	3270,192	0,002	47,2	0,1	$12,\!584$	0,050	3,235	0,414
SiIII 1206	3270, 399	0,097	66,1	8,9	$11,\!449$		$1,\!105$	$16,\!670$
SiIII 1206	$3270,\!502$	0,002	$75,\!6$	0,2	11,804	0,036	2,360	0,719
SiIII 1206	$3270,\!671$	0,002	91,1	0,2	$12,\!149$	0,016	$7,\!377$	0,466
SiIII 1206	$3270,\!879$	$0,\!001$	110,2	0,1	$12,\!464$	0,009	4,740	0,214
SiIII 1206	$3271,\!041$	0,004	125,1	$0,\!4$	11,772	0,031	4,937	$0,\!660$
CII 1334	3616, 261	0,003	-32,3	$0,\!3$	$13,\!030$	0,019	$5,\!396$	$0,\!482$
CII 1334	$3616,\!473$	0,006	-14,8	$0,\!5$	$12,\!885$	0,030	$7,\!424$	$0,\!897$
CII 1334	3616,779	0,001	$10,\!6$	$_{0,1}$	$13,\!698$	0,006	5,929	$0,\!172$
CII 1334	$3616,\!993$	0,002	28,3	0,2	$13,\!149$	$0,\!017$	$5,\!443$	$0,\!552$
CII 1334	$3617,\!194$	0,001	45,0	0,1	$13,\!637$	0,038	$3,\!177$	$0,\!249$
CII 1334	$3617,\!547$	0,029	74,2	2,4	$12,\!659$	$0,\!097$	$14,\!501$	$3,\!963$
CII 1334	3617,752	0,010	91,2	$0,\!8$	$12,\!112$	0,209	$2,\!639$	$5,\!210$
CII 1334	$3617,\!975$	0,092	109,7	7,6	$15,\!466$		1,230	$19,\!605$
Alii 1670	4528,021	0,011	6,7	0,7	$11,\!012$	0,060	$4,\!893$	$1,\!395$
Aliii 1854	$5026,\!557$	0,003	10,7	0,2	11,818	0,014	$6,\!629$	$0,\!340$
Aliii 1854	$5027,\!109$	0,009	43,7	$0,\!5$	$11,\!546$	0,029	9,145	0,838
Aliii 1862	$5048,\!436$	$0,\!003$	10,7	0,2	11,818	0,014	$6,\!629$	$0,\!340$
Aliii 1862	$5048,\!991$	$0,\!009$	43,7	$0,\!5$	$11,\!546$	0,029	$9,\!145$	$0,\!838$
Feii 2382	$6457,\!544$	0,016	$5,\!9$	0,7	$12,\!222$	0,072	3,766	$1,\!649$
Feii 2382	$6458,\!400$		45,7	$546,\!8$	$12,\!968$		0,517	
Mg11 2796	$7577,\!459$	0,007	-31,6	$0,\!3$	$11,\!546$	0,023	$5,\!477$	$0,\!549$

Mg11 2796	$7577,\!908$	0,011	-13,9	0,4	$11,\!153$	0,045	$2,\!883$	$1,\!182$
Mg11 2796	$7578,\!512$	0,002	10,0	0,1	12,323	$0,\!005$	$6,\!987$	$0,\!135$
Mg11 2796	$7579,\!099$	0,019	$33,\!3$	0,7	$11,\!619$	$0,\!053$	7,743	$1,\!359$
Mg11 2796	$7579,\!420$	0,003	45,9	0,1	12,019	$0,\!015$	$2,\!846$	0,286
MgII 2796	$7581,\!040$	0,002	110,0	$_{0,1}$	$11,\!840$	0,011	$2,\!678$	0,262

Tabelle C.1: Fitparameter des Metalliniensystems z = 1,71in der Sehlinie zu HE 0141-3932. Bezugswert für v ist die stärkste Lyman α -Komponente bei $\approx 3294,5$ Å. Zusätzlich gefittete Linien anderer Absorptionssysteme wurden der Übersichtlichkeit halber weggelassen. Querstriche kennzeichnen hohe, vom Programm nicht mehr angegebene Fehler in den Fitparametern.

Literaturverzeichnis

- Blundell, K. M., Beasley, A. J. & Bicknell, G. V. 2003, ApJL, 591, 103
- Boksenberg, A., Sargent, W. L. W. & Rauch, M. 2003, astro-ph/0307557
- Brandenberger, R. H. 1985, RMP, 57, 1
- Bryan, G. L. & Machacek, M. 2000, ApJ, 534, 57
- Burles, S., Nollett, K. M., Truran, J. W. & Turner, M. S. 1999, Physical Review Letters, 82, 4176
- Burles, S., Nollett, K. M. & Turner, M. S. 2001, ApJL, 552, 1
- Carswell, R. F., Webb, J. K., Baldwin, J. A. & Atwood, B. 1987, ApJ, 319, 709
- Carswell, R. F., Lanzetta, K. M., Parnell, H. C. & Webb, J. K. 1991, ApJ, 371, 36
- Caulet, A. 1989, ApJ, 340, 90
- Cen, R., Miralda-Escudé, J., Ostriker, J. P. & Rauch, M. 1994, ApJL, 437, 9
- Cen, R., Phelps, S., Miralda-Escude, J. & Ostriker, J. P. 1998, ApJ, 496, 577
- Cen, R. & Ostriker, J. P. 1999, ApJ, 514,1
- Charlton, J. C., Salpeter, E. E. & Hogan, C. J. 1993, ApJ, 402, 493
- Charlton, J. C., Salpeter, E. E. & Linder, S. M. 1994, ApJL, 430, 29
- Charlton, J. C. 1995, in "Quasar Absorption Lines", Proceedings of the ESO Workshop, Ed.: Meylan, G., S. 405
- Charlton, J. C. & Churchill, C. W. 2000, in "Encyclopedia of Astronomy and Astrophysics", Ed.: Mac Millan and the Institute of Physics Publishing (astro-ph/0006002)
- Charlton, J. C., Ding, J., Zonak, S. G. et al. 2003, ApJ, 589, 111
- Ćirković, M. M. & Lanzetta, K. M. 2000, MNRAS, 315, 473
- Cowie, L. L., Songaila, A., Kim, T. S. & Hu, E. M. 1995, AJ, 109, 1522
- Cristiani, S., D'Odorico, S., Fontana, A., Giallongo, E. & Savaglio, S. 1995, MNRAS, 273, 1016

- Croft, R. A. C., Weinberg, D. H., Katz, N. & Hernquist, L. 1998, ApJ, 495, 44
- Daly, R. A. & Djorgovski, S. G. 2004, ApJ, 612, 652
- Davé, R., Hernquist, L., Katz, N. & Weinberg, D. H. 1999, ApJ, 511, 521
- Davé, R. & Tripp, T. M. 2001, ApJ, 553, 528
- Davé, R., Cen, R. & Ostriker, J. P. 2001, ApJ, 552, 473
- Davé, R. 2003, in "Maps of the Cosmos", Proceedings, International Astronomical Union, Symposium Nr. 216, Sydney (astro-ph/0311518)
- Ding, J., Charlton, J. C., Bond, N. A. et al. 2003, ApJ, 587, 551
- Dobrzycki, A., Bechtold, J., Scott, J. & Morita, M. 2002, ApJ, 571, 654
- Elvis, M. 2000, ApJ, 545, 63
- Espey, B. R., Carswell, R. F., Bailey, J. A., Smith, M. G. & Ward, M. J. 1989, ApJ, 342, 666
- Fernandez-Soto, A., Lanzetta, K. M., Barcons, X. et al. 1996, ApJ, 460, 85
- Fontana, A. & Ballester, P. 1995, ESO Messenger, 80, 37
- Freedman, W. L., Madore, B. F., Gibson, B. K. et al. 2001, ApJ, 553, 47
- Francis, P. J. 1993, ApJ, 405, 119
- Garnavich, P. M., Kirshner, R. P., Challis, P. et al. 1998, ApJL, 493, 53
- Gleser, L., Nusser, A., Benson, A. J., Ohno, H. & Sugiyama, N. 2004, astro-ph/0412113
- Giallongo, E., Cristiani, S., Fontana, A. & Trèvese, D. 1993, ApJ, 416, 137
- Haardt, F. & Madau, P. 1996, ApJ, 461, 20
- Heap, S. R., Williger, G. M., Davé, R. et al. 2002, in "Extragalactic Gas at Low Redshift", ASP Conference Proceedings Vol. 254, Ed.: Mulchaey, J. S. und Stocke, J., S. 63
- Hu, E. M., Kim, T.-S., Cowie, L. L., Songaila, A. & Rauch, M. 1995, AJ, 110, 1526
- Hui, L. & Gnedin, N. Y. 1997, MNRAS, 292, 27
- Hurwitz, M., Appenzeller, I., Barnstedt, J. et al. 1998, ApJL, 500, 61
- Ikeuchi, S. 1986, Astrophysics & Space Science, 118, 509
- Ikeuchi, S., Murakami, I. & Rees, M. J. 1989, MNRAS, 236, 21
- Impey, C. D., Petry, C. E., Malkan, M. A. & Webb, W. 1996, ApJ, 463, 473
- Impey, C. D., Petry, C. E. & Flint, K. P. 1999, ApJ, 524, 536

Janknecht, E., Baade, R. & Reimers, D. 2002, A&A, 391, L11

- Janknecht, E., Baade, R. & Reimers, D. 2003a, in "Astronomy, Cosmology and Fundamental Physics", Proceedings, Springer, Ed.: Shaver, P. A., DiLella, L. und Giménez, A., S. 459
- Janknecht, E., Baade, R. & Reimers, D. 2003b, in "The IGM/Galaxy Connection", Proceedings, Kluwer Academic Publishers, Ed.: Rosenberg, J. L. und Putman, M. E., S. 77
- Jannuzi, B. T., Bahcall, J. N., Bergeron, J. et al. 1998, ApJS, 118, 1
- Jena, T., Norman, M. L., Tytler, D. et al. 2004, astro-ph/0412557
- Kim, T.-S., Hu, E. M., Cowie, L. L. & Songaila, A. 1997, AJ, 114, 1
- Kim, T.-S., Cristiani, S. & D'Odorico, S. 2001, A&A, 373, 757
- Kim, T.-S., Carswell, R. F., Cristiani, S., D'Odorico, S. & Giallongo, E. 2002a, MNRAS, 335, 555
- Kim, T.-S., Cristiani, S. & D'Odorico, S. 2002b, A&A, 383, 747
- Kirkman, D. & Tytler, D. 1997, ApJ, 484, 672
- Lanzetta, K. M., Bowen, D. V., Tytler, D. & Webb, J. K. 1995, ApJ, 442, 538
- Leighly, K. M., Halpern, J. P. & Jenkins, E. B. 2004, in "AGN Physics with the Sloan Digital Sky Survey", Proceedings, Ed.: Richards, G. T. und Hall, P. B. (astro-ph/0402535)
- Levshakov, S. A. & Kegel, W. H. 1997, MNRAS, 288, 787
- Levshakov, S. A., Kegel, W. H. & Takahara, F. 1999, MNRAS, 302, 707
- Levshakov, S. A., Agafonova, I. I. & Kegel, W. H. 2000, A&A, 360, 833
- Levshakov, S. A., Agafonova, I. I., Centurión, M. & Mazets, I. E. 2002, A&A, 383, 813
- Levshakov, S. A., Agafonova, I. I., D'Odorico, S. et al. 2003a, ApJ, 582, 596
- Levshakov, S. A., Agafonova, I. I., Reimers, D. & Baade, R. 2003b, A&A, 404, 449
- Liebscher, T. 1995, "Bestimmung der kosmologischen Parameter Ω_0 und λ_0 aus dem Lyman α forest", Diplomarbeit, Hamburg
- Lu, L., Sargent, W. L. W., Womble, D. S. & Takada-Hidai, M. 1996, ApJ, 472, 509
- McDonald, P., Seljak, U., Burles, S. et al. 2004, astro-ph/0405013
- McDowell, J. C., Canizares, C., Elvis, M. et al. 1995, ApJ, 450, 585
- Meiksin, A. & Madau, P. 1993, ApJ, 412, 34
- Milgrom, M. 1988, A&A, 202, 9

- Miralda-Escudé, J., Cen, R., Ostriker, J. P. & Rauch, M. 1996, ApJ, 471, 582
- Misawa, T. 2002, "Spectroscopic Analysis of HI Absorption Line Systems in 40 HIRES QSOs", Dissertation, Tokio
- Moller, P. & Jakobsen, P. 1990, A&A, 228, 299
- Noguchi, T., Maehara, H. & Kondo, M. 1980, Tokyo Astronomical Observatory, Annals, Second Series, 18, 55
- Pando, J., Lipa, P., Greiner, M. & Fang, L.-Z. 1998, ApJ, 496, 9
- Penton, S. V., Shull, J. M. & Stocke, J. T. 2000, ApJ, 544, 150
- Penton, S. V., Stocke, J. T. & Shull, J. M. 2004, ApJS, 152, 29
- Perlmutter, S., Aldering, G., Goldhaber, G., et al. 1999a, ApJ, 517,565
- Perlmutter, S., Turner, M. S. & White, M. 1999b, Physical Review Letters, 83, 670
- Peterson, B. A. 1978, in "The Large Scale Structure of the Universe", Proceedings, IAU-Symposium Nr. 79, Dordrecht, Ed.: Longair, M. S. und Einasto, J., S. 389
- Peterson, B. A. 1997, "An Introduction to Active Galactic Nuclei", Cambridge University Press
- Petitjean, P., Webb, J. K., Rauch, M. et al. 1993, MNRAS, 262, 499
- Pettini, M., Hunstead, R. W., Smith, L. J. & Mar, D. P. 1990, MNRAS, 246, 545
- Quast, R., Baade, R. & Reimers, D. 2002, A&A, 386, 796
- Quast, R., Reimers, D. & Levshakov, S. A. 2004, A&A, 415, L7
- Rauch, M., Carswell, R. F., Chaffee, F. H. et al. 1992, ApJ, 390, 387
- Rauch, M., Carswell, R. F., Webb, J. K. & Weymann, R. J. 1993, MNRAS, 260,589
- Rauch, M. 1998, Annual Review of Astronomy and Astrophysics, 36, 267
- Rees, M. J. 1986, MNRAS, 218, 25
- Rees, M. J. 1988, in "QSO absorption lines: Probing the universe", Proceedings of the "QSO Absorption Line Meeting", Cambridge University Press, Ed.: Blades, J. C., Turnshek, D. und Norman, C. A., S. 107
- Reimers, D., Köhler, S., Wisotzki, L. et al. 1997, A&A, 327, 890
- Reimers, D., Hagen, H.-J., Rodriguez-Pascual, P. & Wisotzki, L. 1998, A&A, 334, 96
- Reimers, D., Baade, R., Hagen, H.-J. & Lopez, S. 2001, A&A, 374, 871
- Reimers, D., Baade, R., Quast, R. & Levshakov, S. 2003, A&A, 410, 785

- Reimers, D., Janknecht, E., Fechner, C. et al. 2005, A&A, in Druck
- Richter, P., Savage, B. D., Tripp, T. M. & Sembach, K. R. 2004, ApJS, 153, 165
- Riediger, R., Petitjean, P. & Mücket, J. P. 1998, A&A, 329, 30
- Sargent, W. L. W., Young, P. J., Boksenberg, A. & Tytler, D. 1980, ApJS, 42, 41
- Savaglio, S., Ferguson, H. C., Brown, T. M. et al. 1999, ApJ, 515, L5
- Schaye, J., Theuns, T., Leonard, A. & Efstathiou, G. 1999, MNRAS, 310, 57
- Schaye, J., Theuns, T., Rauch, M., Efstathiou, G. & Wallace, L. W. 2000, MNRAS, 318,817
- Schaye, J. 2001, ApJ, 559, 507
- Schmidt, B. P., Suntzeff, N. B., Phillips, M. M. et al. 1998, ApJ, 507, 46
- Schmidt, M. & Green, R. F. 1983, ApJ, 269, 352
- Schramm, D. N. & Turner, M. S. 1998, Reviews of Modern Physics, 70, 303
- Sembach, K. & Savage, B. D. 1992, ApJS, 83, 147
- Shapiro, P. R., Giroux, M. L. & Babul, A. 1994, ApJ, 427, 25
- Shimmins, A. J., Day, G. A., Ekers, R. D. & Cole, D. J. 1966, Australian Journal of Physics, 19, 837
- Shull, J. M., Giroux, M. L., Penton, S. V. et al. 2000, ApJL, 538, 13
- Spergel, D. N., Verde, L., Peiris, H. V. et al. 2003, ApJS, 148, 175
- Srianand, R. & Petitjean, P. 2001, A&A, 373, 816
- Telfer, R. C., Zheng, W., Kriss, G. A. & Davidsen, A. F. 2002, ApJ, 565, 773
- Theuns, T., Leonard, A. & Efstathiou, G. 1998, MNRAS, 297, 49
- Theuns, T., Schaye, J. & Haehnelt, M. G. 2000, MNRAS, 315, 600
- Tripp, T. M., Lu L. & Savage, B. 1997, ApJS, 112, 1
- Tripp, T. M. & Savage, B. D. 2000, ApJ, 542, 42
- Tripp, T. M., Savage, B. D. & Jenkins, E. B. 2000, ApJL, 534, 1
- Trodden, M. & Carroll, S. M. 2004, "TASI Lectures: Introduction to Cosmology" (astro-ph/0401547)
- Tytler, D. 1987, ApJ, 321, 49
- Tytler, D., Kirkman, D., O'Meara, J. M. et al. 2004, astro-ph/0403688
- Ulmer, A. 1996, ApJ, 473, 110

Valageas, P., Schaeffer, R. & Silk, J. 2002, A&A, 388, 741

de la Varga, A. 1999, "Damped Lyman α Absorbers in the lines of Sight of Quasars HE 1122-1649, HE 0515-4414, HE 2243-6031 and HS 0741+4741", Dissertation, Hamburg

de la Varga, A., Reimers, D., Tytler, D., Barlow, T. & Burles, S. 2000, A&A, 363, 69

Verner, D. A., Barthel, P. D. & Tytler, D. 1994, A&AS, 108,287

Weinberg, D. H. 1992, MNRAS, 254, 315

- Weinberg, D. H., Katz, N. & Hernquist, L. 1998, in "ASP Conference Series 148, Origins", Proceedings, Ed.: Shull, J. M., Woodward, C. E. und Thronson, H.; S. 21 (astroph/9708213)
- Weinberg, D. H., Davé, R., Katz, N. & Kollmeier, J. A. 2003, in "The Emergence of Cosmic Structure", Proceedings, American Institute of Physics Press, Ed.: Holt, S. und Reynolds, C., Vol. 666, S. 157
- Weymann, R. J., Jannuzi, B. T., Lu, L. et al. 1998, ApJ, 506,1
- Wilkes, B. J. 1984, MNRAS, 207, 73
- Williger, G. M., Baldwin, J. A., Carswell, R. F. et al. 1994, ApJ, 428, 574
- Williger, G. M., Heap, S. R., Weymann, R. J., Davé, R. & Tripp, T. M 2003, in "The IGM/Galaxy Connection", Proceedings, Kluwer Academic Publishers, Ed.: Rosenberg, J. L. und Putman, M. E., S. 265
- Wisotzki, L., Christlieb, N., Bade, N. et al. 2000, A&A, 358, 77
- Womble, D. S. & Sargent, W. L. W. 1996, in "Cold Gas at High Redshift", Kluwer, Dordrecht, Ed.: Bremer, M. N. et al., Vol. 206, S. 249
- Zhang, Y., Anninos, P., Norman, M. L. & Meiksin, A. 1997, ApJ, 485, 496

Abkürzungen der Zeitschriften:

A&A	Astronomy and Astrophysics	
1010		

A&AS Astronomy and Astrophysics, supplement series

ApJ Astrophysical Journal

- ApJS Astrophysical Journal, supplement series
- ApJL Astrophysical Journal Letters
- AJ Astronomical Journal
- Monthly Notices of the Royal Astronomical Society MNRAS
- RMP **Reviews of Modern Physics**
- http://xxx.lanl.gov/archive/astro-ph astro-ph

Mein besonderer Dank gilt Prof. Dr. Dieter Reimers für die Bereitstellung des interessanten Themas sowie für viele konstruktive Diskussionen.

Robert Baade bin ich zu Dank dafür verpflichtet, daß er das Fitprogramm CANDALF sowie eine Reihe weiterer für die Auswertung verwendeter Programme zur Verfügung stellte.

Zusätzlich danken möchte ich Dirk Goldbeck, Cora Fechner, Robert Baade, Roger Böger, Matthias Hünsch und Uwe Wolter für zahlreiche fruchtbare und für die Erstellung dieser Arbeit hilfreiche Anregungen.

Eckart Janknecht