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Abstract

In this thesis, ultracold bosonic gases and mixtures of bosons and fermions in optical lattices
are studied with special regard to finite-size and orbital effects. In preference for a Hubbard-
type single-band Hamiltonian, the influence of higher bands in optical lattices has been widely
neglected so far. Here, it is shown that the inclusion of higher orbitals leads to novel physical
effects such as a self-trapping behavior and the enhanced localization in attractively interacting
mixtures as well as a complex quantum phase evolution in purely bosonic systems. The on-site
interaction among the particles causes strongly correlated states, which are investigated using a
multiorbital exact diagonalization technique.

In attractively interacting Bose-Fermi mixtures (87Rb - 40K) in three-dimensional optical lattices,
the mutual interaction leads to a substantial deformation of the effective potentials and a squeezing
of the effective orbitals for both species. Mediated by the strongly altered fermion orbital, the
bosons exhibit a self-trapping behavior, where the nonlinear dependence on the width of the
fermion orbital overcompensates the boson-boson repulsion. The self-amplified modification
of the effective potentials, being enhanced with both increasing bosonic filling and stronger
interspecies scattering, has profound influence on the bosonic tunneling and the on-site interaction.
Introducing a renormalized Bose-Hubbard model with effective parameters, the critical lattice
depth for the bosonic quantum phase transition from a superfluid to a Mott insulator is determined.
It predicts a substantial shift of the transition in comparison with a purely bosonic system,
which has been observed in recent experiments. It is shown that this renormalized model is in
excellent agreement with experiments allowing for tunable interspecies interactions. In general,
this demonstrates the fundamental importance of interaction induced orbital changes in attractively
interacting quantum gas mixtures in optical lattices.

For bosonic gases in finite optical lattices with few sites, a surprisingly strong similarity to
macroscopic systems is found. The localization in finite systems with commensurate filling
resembles in many aspects the macroscopic quantum phase transition between a superfluid and
a Mott-insulator, including a striking similarity of the momentum distribution and the formation
of an energy gap. For noncommensurate filling, a coexistence of localized and delocalized
particles is observable in deep lattices in accordance to the equivalence of lattice sites. The
formed narrow ground-state band is extremely sensitive to lattice perturbations, such as confining
potentials, which cause the localization of all particles in a Bose-glass-like phase. For stronger
confinements, the precursor of Mott shells is identified. In deep lattices, an approximate
approach, where tunneling can be included on a perturbative level, allows to calculate excitation
energies, occupation numbers, and particle fluctuations for large three-dimensional systems with
an arbitrary shape of the confinement.

For weakly interacting quantum gases in optical lattices, the band structure is calculated for
experimental parameters using the Bogoliubov theory. The band structure is substantially modified
by interaction effects in agreement with results of momentum-resolved Bragg spectroscopy
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performed for 87Rb atoms in the superfluid phase. In strongly interacting systems, the dynamic
structure factor is studied by exact diagonalization addressing the fingerprints of the Mott-insulator
phase and of possible phases in Bose-Fermi mixtures.

Multiorbital effects in bosonic lattice systems can experimentally be accessed by preparing a
coherent superposition of particle number states in deep potentials, which is achieved by rapidly
ramping the optical lattice from shallow to deep. In great contrast to the prediction of the single-
band Hubbard model, a multifrequency evolution of the matter wave field is observable as each
particle number state evolves in accordance to its exact interaction energy. The inclusion of higher
orbitals leads to a Hamiltonian with effective multi-body interactions. The interaction energies
are calculated using the multiorbital diagonalization method, which fully includes many-particle
correlations and corrections from kinetic and potential energy. Due to the anticonfinement in the
experimental realization, it can be assumed that only bound orbitals are occupied allowing for a
highly accurate comparison of theory and experiment, which show a compelling agreement. In
addition, the comparison even allows to determine the s-wave scattering length for 87Rb atoms.
This demonstrates that state-of-the-art experiments permit to access highly correlated states and
that multiorbital physics plays an important role in optical lattices.
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Zusammenfassung
In der vorliegenden Arbeit werden ultrakalte bosonische Gase und Mischungen von Bosonen
und Fermionen in optischen Gittern untersucht. Dabei werden insbesondere endliche
Systeme und orbitale Effekte behandelt. Bisher wurde der Einfluss von höheren Bändern
in optischen Gittern weitestgehend vernachlässigt und das Hubbard-Modell verwendet, das
auf das niedrigste Band beschränkt ist. Hier wird gezeigt, dass die Berücksichtigung höherer
Bänder zu neuartigen Effekten führt wie dem Self-Trapping und der verstärkten Lokalisierung
in attraktiv wechselwirkenden Mischungen sowie einer komplexen Quantenphasenentwicklung in
bosonischen Systemen. Die Wechselwirkung zwischen den Teilchen an einem Gitterplatz führt
zu stark korrelierten Zuständen, die mit einem multiorbitalen exakten Diagonalisierungsverfahren
untersucht werden.

In attraktiv wechselwirkenden Bose-Fermi-Mischungen (87Rb - 40K) in dreidimensionalen
optischen Gittern bewirkt die gegenseitige Wechselwirkung eine große Veränderung der effektiven
Potentiale und Orbitale beider Atomsorten. Vermittelt durch das stark deformierte Orbital
der Fermionen zeigen die Bosonen ein Self-Trapping-Verhalten. Die Boson-Boson-Abstoßung
wird dabei durch die nichtlineare Abhängigkeit von der Breite des fermionischen Orbitals
überkompensiert. Die sich selbstverstärkende Verformung der effektiven Potentiale nimmt mit
höherer Füllung und stärkerer Boson-Fermion-Streuung zu und hat einen erheblichen Einfluss
auf das bosonische Tunneln und die Gitterplatzwechselwirkung. Durch die Beschreibung des
Systems mittels eines renormalisierten Hubbard-Modells mit effektiven Parametern kann die
kritische Gittertiefe des bosonischen Quantenphasenübergangs zwischen Supraflüssigkeit und
Mott-Isolator bestimmt werden. Das Modell sagt eine substanzielle Verschiebung des Übergangs
im Vergleich zu einem rein bosonischen System voraus, die auch in Experimenten beobachtet
wurde. Der Vergleich mit Experimenten, die es erlauben die Boson-Fermion-Wechselwirkung
zu verändern, liefert eine hervorragende Übereinstimmung. Dies verdeutlicht den wichtigen
Einfluss von wechselwirkungsinduzierten orbitalen Veränderungen in attraktiv wechselwirkenden
Quantengasmischungen in optischen Gittern.

Für bosonische Gase in endlichen optischen Gittern mit wenigen Gitterplätzen wird
eine überraschend gute Übereinstimmung mit makroskopischen Systemen aufgezeigt. Die
Lokalisierung in endlichen Systemen mit kommensurabler Füllung ähnelt dem makroskopischen
Phasenübergang von der supraflüssigen zur Mott-isolierenden Phase in vielerlei Hinsicht. Ins-
besondere wird eine auffällig große Übereinstimmung der Impulsverteilung und bei der Entste-
hung der Energielücke gefunden. Bei nichtkommensurablen Füllungen in tiefen Gittern ist eine
Koexistenz von lokalisierten und delokalisierten Teilchen beobachtbar. Das sich ausbildende
schmale Grundzustandsband reagiert extrem empfindlich auf Störungen im Gitter, die zum
Beispiel durch das Einschlusspotential verursacht werden und die Lokalisierung aller Teilchen
in einer Bose-Glas-artigen Phase verursachen. Für hohe Einschlusspotentiale wird ein Vorläufer
von Mott-Schalen gefunden. In tiefen Gittern erlaubt ein Näherungsverfahren, in dem das Tunneln
perturbativ behandelt werden kann, die Anregungsenergien, Besetzungszahlen und Teilchenfluk-
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tuationen für große dreidimensionale Systeme mit beliebigem Einschlusspotential zu berechnen.

Für schwach wechselwirkende Quantengase in optischen Gittern wird die Bandstruktur für
experimentelle Parameter unter Benutzung der Bogoliubov-Theorie berechnet. Die Bandstruktur
wird substanziell durch Wechselwirkungseffekte verändert und zeigt eine gute Übereinstimmung
mit den Ergebnissen der impulsaufgelösten Bragg-Spektroskopie von 87Rb-Atomen in der
supraflüssigen Phase. In stark wechselwirkenden Systemen wird der dynamische Strukturfaktor
mittels exakter Diagonalisierung in Hinblick auf charakteristische Merkmale der Mott-Isolator-
Phase und möglichen Phasen in Bose-Fermi-Mischungen untersucht.

Multiorbitale Effekte in bosonischen Gittersystemen können experimentell in tiefen Gittern
durch die Präparation einer kohärenten Überlagerung von Teilchenzahlzuständen zugänglich
gemacht werden. Dies wird erreicht durch eine schnelle Veränderung der Potentialtiefe von
einem flachen zu einem tiefen optischen Gitter. Im Gegensatz zu den Vorhersagen des
Hubbard-Modells ist eine Mehrfrequenz-Zeitentwicklung des Materiewellenfelds beobachtbar, da
sich die Teilchenzahlzustände entsprechend ihrer exakten Wechselwirkungsenergie entwickeln.
Die Berücksichtigung höherer Orbitale führt zu einem Hamilton-Operator mit effektiven
Vielkörper-Wechselwirkungen. Mit Hilfe der multiorbitalen Diagonalisierung werden die
exakten Wechselwirkungsenergien berechnet, die vollständig die Vielteilchenkorrelationen sowie
Korrekturen von kinetischer und potentieller Energie berücksichtigen. In der Realisierung dieses
Experiments kann aufgrund des fehlenden Einschlusspotentials angenommen werden, dass nur
gebundene Orbitale besetzt sind. Dies erlaubt einen sehr genauen Vergleich von Experiment und
Theorie, die hervorragend übereinstimmen. Zusätzlich gestattet der Vergleich die Bestimmung
der s-Wellenstreulänge für 87Rb-Atome. Dies zeigt, dass neueste Experimente den Zugang zu
hoch korrelierten Zuständen ermöglichen und die multiorbitale Physik in optischen Gittern eine
wichtige Rolle spielt.
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CHAPTER

1
Introduction

The Bose-Einstein condensation in dilute gases had been one of the long-known paradigms in
physics [7, 8] lacking its experimental realization until 1995 [9–11]. Remarkable properties of
this phase are the macroscopic occupation of a single quantum mechanical state, the superfluid
behavior, and the existence of a coherent matter wave. The interference of two overlapping
condensates [12], the quantization of vortices [13–15], and the evidence of the long-range phase
coherence [16] characterize this fascinating state of matter. In dilute gases, the interaction
of particles can be reduced to an effective single-particle picture, described by a nonlinear
Schrödinger equation, the Gross-Pitaevskii equation [17, 18], where elementary excitations can be
included using the Bogoliubov theory. By loading quantum degenerate bosonic atoms in optical
lattices, which are periodic potentials generated by retroreflected laser beams, the field of strongly
correlated physics with ultracold atoms has become accessible. While for shallow potentials a
superfluid phase is formed, in deep lattices the strong repulsion of the atoms leads to a Mott-
insulator phase, where the atoms localize at individual lattice sites. By varying the depth of the
periodic potential, it was demonstrated in 2002 that a quantum phase transition is observable
between the superfluid and the Mott-insulator phase [19]. This transition was predicted in the
context of liquid helium on porous media [20] and was later rediscovered for ultracold atoms
[21]. In addition to the accurately adjustable lattice depth, the scattering of ultracold atoms can
be tuned by Feshbach resonances [22, 23]. Both possibilities establish a perfect model system for
solid-state physics with adjustable tunneling and interaction strength.

The precise control of the experimental parameters allows to test common theories in condensed
matter physics and to identify their boundaries. Furthermore, the progress in this field might
contribute to the investigation of open questions in solid-state physics. A step forward in this
direction took place with the achievement of quantum degeneracy for fermionic atoms [24] and the
realization of bosonic multicomponent spinor gases [25, 26]. In addition, degenerate Bose-Fermi
mixtures [27, 28] present a fascinating complex system, where particles with a different quantum
statistics encounter each other. In solids, superconductivity and polarons are prominent examples
of boson-fermion physics, where electrons interact with phonons, while in optical lattices [29, 30]
bosons and fermions are on an equal footing. This allows to study the interplay of tunneling,
intra-, and interspecies interaction in detail. This novel system has attracted various theoretical
studies using the Bose-Fermi-Hubbard model [31, 32] and several phases have been predicted. In
particular, the phase separation between bosons and fermions competing with the supersolid phase
[32–34], the charge-density wave [34, 35], and the pairing of bosons and fermions forming phases
of composite particles [36, 37] have been investigated.
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Introduction

In this thesis, several aspects of ultracold atoms in optical lattices are studied with emphasis
on finite-size and orbital effects addressed with a multiorbital exact diagonalization technique.
Following a basic introduction to the field of cold atoms and optical lattices in the subsequent
chapter, in chapter 3 the fundamental question is addressed, how similar small systems are in
comparison to macroscopic ones. Applications are systems for quantum information processing
[38–40], experiments with double wells [41, 42], and few-sites systems dedicated to the
manipulation of single atoms [43, 44]. The precursors of the Mott-insulator transition for
commensurate systems and the Bose glass for noncommensurate filling are investigated by means
of the excitation spectrum, the momentum distribution, and the pair correlation function, which
exhibit surprisingly strong similarities to their macroscopic counterparts. This includes also the
formation of Mott-shell configurations in small systems as discussed in chapter 4. In the limit
of deep lattices, an approach for vanishing tunneling is presented, where particle fluctuations can
be included perturbatively, addressing the excitation spectrum for large systems with arbitrary
confining potentials. Using exact diagonalization, changes in the on-site energy in dependence on
the particle number are discussed, which are caused by an admixture of higher orbitals.

In chapter 5, it is shown that admixtures of higher orbital states in Bose-Fermi mixtures with
attractive interspecies scattering lead to substantial modifications of the commonly used single-
band Hubbard model. The mutual interaction of the constituents is studied causing a strong
squeezing of the effective orbitals. This behavior leads to a nonlinear self-trapping effect, which
is discussed in detail. Calculating the effective potentials experienced by the bosonic atoms, an
effective Bose-Hubbard model is presented with renormalized parameters for on-site interaction
and tunneling. This model predicts a shift of the critical potential depth of the phase transition from
a superfluid to a Mott insulator, which has been found in experiments with Bose-Fermi mixtures in
optical lattices [3, 29, 30]. Its dependence on both bosonic filling and interspecies scattering length
is addressed and an excellent agreement with a recent experiment [3] is found, which allows to
tune the interspecies interaction. The chapter demonstrates, in general, the important role of higher
Bloch bands in attractively interacting mixtures.

A promising technique to probe the excitations in optical lattices is Bragg spectroscopy [5, 45–47],
which is discussed in chapter 6. For the experimental parameters in Ref. [5], the chapter presents
a discussion of interaction induced changes of the band structure for the superfluid phase using
the mean-field Bogoliubov description [48–55]. For strongly interacting systems, the dynamic
structure factor is examined by exact diagonalization [56]. The fingerprints of the Mott-insulator
phase and of possible phases in Bose-Fermi mixtures are addressed.

The multiorbital physics of bosonic atoms in optical lattices can be accessed experimentally in
collapse and revival experiments [6, 57–60], where the lattice is rapidly ramped from shallow
to deep. The particle number statistics at each site is preserved, which leads to an evolution
of the particle number states in accordance to their interaction energy. In chapter 7, exact
diagonalization is performed to compute the energy of these highly correlated states and the
observable frequencies. The excellent agreement with the measured frequencies in Ref. [6]
demonstrates the significance of multiorbital physics in optical lattices and the accuracy of the
theoretical calculation.
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CHAPTER

2
Ultracold atomic gases
in optical lattices

This chapter presents an overview of ultracold atomic gases covering both theoretical and
experimental concepts which are relevant to this thesis. The field of ultracold atoms has been
rapidly evolving since the first achievement of Bose-Einstein condensation in dilute gases in 1995
[9–11]. Since then, the physics of cold atoms has been established as an important subject in
physics with its own branches and subbranches. It remains, however, closely related to atomic,
molecular, and solid-state physics. In spite of the fast progress, a number of excellent reviews have
been published giving a survey of the research carried out in this area. The detailed understanding
of the interaction process of atoms with light is crucial for the cooling of atoms and was addressed,
e.g., in Refs. [61–63], while the interaction of neutral atoms was reviewed in Refs. [48, 64–66]. In
dilute gases, many-particle interaction effects can usually be reduced to an effective single-particle
description, leading to the Gross-Pitaevskii equation. The aspects of weakly interacting quantum
gases, based on this equation, were reviewed in the articles [64, 67] and more recently in the
books [48, 65]. Additional aspects have also been addressed in review articles, e.g., solitons and
propagating condensates [68], one-dimensional gases [66, 69], rotating two-dimensional gases
[48, 65, 66], spinor gases [65, 70], Fermi gases [71], and the BEC-BCS crossover [66]. The
technical aspects of optical lattices were reviewed, e.g., in Refs. [72, 73], whereas the condensed
matter aspects, including the transition from a superfluid to a Mott insulator, are discussed in
Refs. [74–76].

This thesis deals with the many-particle aspects of ultracold gases in optical lattices, which usually
go beyond a Gross-Pitaevskii mean-field description. In the following, I survey the theoretical
background as well as important technical and experimental details. The basic principles of
the light-atom interaction are discussed in section 2.1.1, the cooling and trapping of atoms in
section 2.1.2, and the generation of optical lattices in section 2.1.3. In contrast to harmonic traps,
optical lattices exhibit a band structure known from solids, which is addressed in section 2.1.4.
After a survey of the scattering properties of ultracold atoms (section 2.2.1) including Feshbach
resonances (section 2.2.2), the Hamiltonian of the system is derived (section 2.3.1) and the
Hubbard model is introduced (section 2.3.2). Section 2.4 describes the method of exact
diagonalization including the basis generation, two-particle matrix elements, and the one-particle
density matrix. Observables reflecting one-particle and two-particle correlations are presented in
section 2.5 including experimental detection techniques. Finally, the superfluid phase, the Mott-
insulator phase, and the transition between these phases are discussed (section 2.6).
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2.1 Cold atoms in optical lattices

2.1.1 Light-atom interaction

The interaction of atoms with light is one of the foundations of quantum optics. The detailed
understanding was crucial for the achievement of Bose-Einstein condensation in dilute gases [9–
11], in particular, for the cooling and trapping of atoms, which is discussed in section 2.1.2. The
Nobel foundation appreciated the outstanding research in this field and awarded S. Chu, C. Cohen-
Tannoudji, and W. D. Phillips in 1997 with the Nobel prize in physics for the “development of
methods to cool and trap atoms with laser light” [77–80]. In section 2.1.3, the possibility to create
optical potentials with laser light is addressed. Particularly, optical lattices establish a new branch
in quantum optics with a close connection to solid-state physics.

Here, the basis concepts of the interaction of an atom with a light field are discussed [61, 63, 81].
Instead of treating the light field classically as an electromagnetic wave, it is described quantum
mechanically with the restriction to a single mode kL. This is an excellent approximation for a
laser field, where in the ideal case only one or very few modes are occupied by photons. This
approach is called dressed atom approach, since atom and light field couple and must be described
in a joint quantum mechanical state, or Jaynes-Cummings model. This procedure is advantageous,
since the Hamilton operator is time independent and the elementary processes, i.e., absorption
and emission, can be easily identified. In principle, also spontaneous emission, which emerges
from the coupling with empty modes, can be incorporated. In the following, we assume that the
spontaneous emission rates are small and thus the empty modes can be neglected.

Without interaction between the atom and the light field, the Hilbert space separates into the
subspace of photons, which is spanned by basis states |N〉 corresponding to N photons in the
mode kL, and the atomic subspace. A two-level atom can be assumed, since, in general, all other
states of the atom are off-resonant to the laser field. These two atomic states are labeled |g〉 for the
ground state and |e〉 for the excited state with a transition frequency ~ωA. Consequently, the basis
of the total noninteracting system is given by {|g,N〉, |e,N〉}N=0,1,.... Denoting the Hamiltonian
of the atom and the laser field ĤA and ĤL, respectively, it follows

(ĤL + ĤA) |g,N〉 = N~ωL,
(ĤL + ĤA) |e,N〉 = N~ωL + ~ωA.

(2.1)

For typical wavelengths of the laser light, we can assume that the classical electric field associated
with the light field is spatially uniform on the scale of the atom. The coupling of the atom with
light treated in the dipole approximation is given by

ĤAL = −d̂E(r), (2.2)

where E(r) is the electric field and d̂ = −er the electric dipole moment operator for the
atomic electrons [61, 63]. Thus, the Hamiltonian including the light-atom interaction becomes
Ĥ = ĤL + ĤA + ĤAL. The coupling is strong, if the detuning between atomic and laser light
frequency, denoted as

∆ = ωA − ωL, (2.3)
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Fig. 2.1: Energy of the dressed atom states
|N,A〉 = cos θ|g,N + 1〉 − sin θ|e,N〉 and
|N,B〉 = sin θ|g,N + 1〉 + cos θ|e,N〉 as a
function of the laser frequency ωL relative to
N~ωL+~ωA, where tan(2θ) = −Ωres/∆ and
0 ≥ θ ≥ π/2. The asymptotes correspond to
the uncoupled states |g,N + 1〉 and |e,N〉 for
θ → 0 and θ → π/2, respectively.

is small. Near-resonant coupling affects only pairs of states |g,N + 1〉 and |e,N〉, so that other
off-diagonal matrix elements are small. Note that the resonant coupling can be identified with
the absorption process ĤAL|g,N + 1〉 = 1

2~Ωres|e,N〉 and the process of stimulated emission
ĤAL|e,N〉 = 1

2~Ωres|g,N +1〉. The coupling strength is the resonant Rabi frequency Ωres, which
is given by

Ωres = −〈g|d|e〉E(r)/~. (2.4)

Neglecting off-resonant contributions, the Hamiltonian matrix has a 2 × 2 block structure. The
diagonalization of each block, corresponding to the pair |g,N + 1〉 and |e,N〉, leads to the
eigenvalues

E(N) = N~ωL +
~
2

(ωA + ωL)± ~
2

Ω, (2.5)

where ~Ω = ~
√

∆2 + Ω2
res is the energy splitting of each pair of eigenvectors |N,A〉 and |N,B〉,

the so-called ac Stark shift. The spectrum, which applies to each pair of states, is depicted in
Fig. 2.1 in dependence on the laser frequency ωL. For large detuning from the atomic frequency
∆2 � Ω2

res, the coupling is weak and the eigenvectors tend to the unperturbed basis states
|g,N + 1〉 and |e,N〉. In contrast, at resonance ∆ = 0 the eigenstates are uniform superpositions
of the basis states with an energy splitting ~Ωres.

Since the resonant Rabi frequency Ωres depends on the electric field amplitude, equation (2.5)
gives rise to a spatially varying potential for an atom at position r in the light field. Omitting
constant terms, for |∆| � Ωres, the expansion of the ac Stark shift (2.5) in a Taylor series to first
order in Ωres/∆ gives

V (r) ≈ −~
2

Ω2
res

∆
= −1

2
α(∆)|E(r)|2, (2.6)

where the polarizability is defined by

α(∆) =
|〈g|deE|e〉|2

~∆
(2.7)

with eE being the unit vector in the direction of the electric field. The associated force Fdip(r) =
1
2α(∆)∇|E(r)|2 is called dipole force. For red detuned light (ωL < ωA) the atoms are attracted
to the maxima of the electric field, whereas for blue detuned light (ωL > ωA) they are attracted to
the minima.
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In contrast to expression (2.6), where spontaneous emission processes are neglected, the light
field is not fully conservative. The strength of the scattering of an atom with the light field is
proportional to Γ2/∆2, where the damping rate Γ of the excited atomic state can be expressed as

Γ =
ω3
A

3πε0~c3
|〈g|deE|e〉|2 (2.8)

using a semiclassical approach [63]. A large detuning leads therefore to weak scattering but also
to a shallow dipole potential. Thus, the detuning is limited by the maximal laser intensity I(r).
Using the damping rate Γ, the dipole potential (2.6) can be written as

Vdip(r) = −3πc2

2ω3
A

Γ
∆

I(r). (2.9)

The possibility to use standing light waves to create periodic potentials is discussed further in
section 2.1.3.

2.1.2 Cooling of atoms

While a large detuning of the laser relative to the atomic frequency leads to a conservative dipole
force, resonant laser light can be used for a very efficient cooling technique, which is briefly
described in the following. Typically, the Bose-Einstein condensation in dilute gases requires
densities on the order of 1014 cm−3 and temperatures below 10−5 K [65]. In addition to laser
cooling, the atoms must be trapped to increase the atom density and cooled evaporatively. These
developments have been reviewed in numerous articles [62, 65, 77–79, 82–85].

The principle of laser cooling is based on the absorption and emission of laser photons [65, 79].
When a two-level atom in its ground state |g〉 and with momentum pA absorbs a photon, the
resulting excited atom has a momentum pA + ~kL. Subsequently, the atom emits a photon due
to spontaneous emission with a decay time τ = Γ−1. Of importance is that the momentum of the
emitted photon ~ks has an arbitrary direction, so that averaged over many absorption-emission
processes the sum over the recoil momenta cancels. Thus, balancing over many processes results
in total momentum transfer to the atom, namely

∆p̄ =
N∑
i=1

~kL −
N∑
i=1

~ks,i ≈ N~kL. (2.10)

The momentum transfer causes an average force, the so-called spontaneous force, which is
Fs = ∆p

∆t = ~kL/tc, where tc is the average time for an absorption-emission cycle.

Typically, the atoms are emitted from a dispenser and counter propagate the laser beam in a so-
called Zeeman slower. Laser photons can be absorbed by the atoms only if the Doppler shifted
frequency ωeff = ωL−kLv+O(v2) equals roughly the atomic transition frequency ωA. The time
for an absorption-emission cycle tc depends on the saturation of the laser intensity IL. Using the
saturation intensity Isat = hc/λ3τ , the spontaneous force can be written as [62]

FS =
~kL
2τ

IL
IL + [1 + 4τ2(ωeff − ωA)2] Isat

. (2.11)
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For infinite laser intensity, the force saturates and becomes FS = ~kL/2τ . This is, however,
only valid under the assumption that a closed optical transition exists, which is the reason why
Bose-Einstein condensation was firstly achieved for alkali atoms. Due to the Doppler shift only a
small fraction of the atoms which have a specific velocity v can interact with the light beam. In
a Zeeman slower an inhomogeneous magnetic field Bz is present causing a tuning of the atomic
frequency ωA(Bz) due to the Zeeman effect. Thus, passing through the inhomogeneous magnetic
field, the spontaneous force slows atoms in all velocity classes by shifting successively all atoms
to lower velocities.

Further cooling can be obtained in optical molasses [77, 79, 82, 85], where the precooled atoms
are irradiated from six orthogonal spatial directions with red detuned laser light. When counter
propagating one of the laser beams, an atom gets in resonance and is slowed due to the spontaneous
force. This leads to a further compression in the momentum space, but it does not prevent the
atoms from drifting apart in space. To obtain high densities, the atoms are trapped magneto-
optically. In the following, let us consider an atom having a ground state with spin F = 0 and
polarization mF = 0 and a degenerate excited state with F = 1 and mF = −1, 0, 1. In a
magneto-optical trap, an inhomogeneous magnetic field B(r) is applied in each spatial direction,
which vanishes at the center of the trap. It leads to a spatially varying splitting of the excited state
due to ∆E(r) = mFB(r)gFµF , where µF is the magnetic moment and gF the hyperfine g-factor.
In each spatial direction, red detuned σ+ light is irradiated from the left side, inducing transitions
with ∆mF = +1, and σ− light from the right side, inducing transitions with ∆mF = −1 (see
Figure 2.2). Due to the magnetic field, atoms on the left hand side from the center with mF = +1
have a lower energy and can interact with the red detuned laser, whereas atoms on the right hand
side have a lower energy for mF = −1. Because of the light polarization, the spontaneous force
is always directed towards the center of the trap, leading to a compression in space and thus to
higher densities.

While the basic principles of the laser cooling are elaborated above, further topics are discussed
here only in brief. In particular, it should be noted that the Doppler cooling techniques described
above are limited to a lowest temperature kBTDoppler = ~/2τ , where we find an equilibrium of
cooling and heating processes [63, 65, 78]. The Doppler energy kBTDoppler is much larger than the
recoil energy of a single emission process, which limits the cooling mechanisms fundamentally
and is given by

ER =
~2k2

L

2m
. (2.12)
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However, the setup of the magneto-optical trap allows an additional cooling below the Doppler
limit [65, 78, 82, 85]. For larger detuning, the lasers create a standing wave with a rotating
polarization due to the σ+ and σ− light. As discussed in the previous section, this leads to
a potential, which is in this case shifted by a half period for the different polarizations of the
atom. In this potential, the atoms loose kinetic energy when moving from a minimum upwards
to a maximum. At the maximum, they decay into the state with the other atomic polarization,
which has a minimum in its potential, and so on. This mechanism is called Sisyphus cooling.
Furthermore, several cooling techniques have been proposed to cool even below the recoil limit,
such as the velocity-selective coherent population trapping [78]. In experiments, the evaporative
cooling is often used to obtain low temperatures and high densities simultaneously [84]. For
this technique a finite magnetic trap is used to remove selectively high-energetic atoms from
the atomic cloud. The atoms rethermalize due to scattering, which is strongly suppressed for a
single component fermionic gas that must therefore be cooled sympathetically with a different
spin component or a different atomic species. The major drawback of evaporative cooling is the
high loss of atoms, which reduces the atom number typically to few percents.

2.1.3 Optical potentials

In section 2.1.1, it is shown that detuned laser light with respect to the atomic frequency establishes
an optical potential for atoms. In particular, equation (2.9) states that the strength of the optical
potential depends on the detuning and the intensity of the laser field. The intensity profile of a
laser is commonly approximated by a Gaussian profile, namely

I(x, y, z) =
2P

πW 2(z)
e−2(x2+y2)/W 2(z) (2.13)

for a laser beam propagating in z direction, where P is the power of the laser [63]. The Gaussian

beam waist W (z) = W0

√
1 + z2/z2

R corresponds to the radius, where the electric field reaches
1/e of its maximal value. The minimal beam waist W0 is typically around 100 µm. The laser
beam has a finite divergence on the scale of the Rayleigh length zR = W 2

0 π/λ, which is usually
much larger than the beam waist. Using equation (2.9) and (2.13), the expansion in a Taylor series
leads to a dipole trapping potential

V (x, y, z) ≈ −V 0
dip

(
1− x2 + y2

W 2
0 /2

− z2

z2
R

)
, (2.14)

for red detuned light, where V 0
dip = |Vdip(I = 2P/πW 2

0 )|. The trapping frequencies are
consequently given by ω2

x = ω2
y = 4V 0

dip/mW
2
0 and ω2

z = 2V 0
dip/mz

2
R. In particular, optical

trapping is desirable when magnetic trapping is not possible, e.g., when the magnetic field is
used to address spin degrees of freedom or to manipulate the atomic interactions via Feshbach
resonances (see section 2.2.2).

Another application of light potentials are optical lattices, which are created by two counter-
propagating laser beams. The interference of the electromagnetic field gives rise to a standing
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Fig. 2.3: Sinusoidal potential VP (x, y) =
−V0,x cos2(kx) − V0,y cos2(ky) of a two-
dimensional optical lattice.

wave with the periodicity a = λ/2, where λ = 2π/k is the wavelength of the laser. Assuming
Gaussian beams, it follows immediately for the superposition of the electric fields

E(r, t) = E0,z ex e
−x

2+y2

W2(z) (eikz−iωt + e−ikz−iωt)

= 2E0,z ex e
−x

2+y2

W2(z) cos(kz)e−iωt,
(2.15)

where the polarization is in x direction. Neglecting the finite Rayleigh length, the one-dimensional
periodic lattice potential is given by

V (x, y, z) = −V0 e
−2(x2+y2)/W 2

0 cos(kz), (2.16)

where V0 = 4V 0
dip. Note that for red detuned light the sites of the lattice are confined orthogonal

to the standing waves due to the finite beam waist.

In two dimensions, a lattice can be generated by two perpendicular pairs of counter-propagating
laser beams. For orthogonal polarization of the electric fields no additional interference terms
appear, so that a sinusoidal two-dimensional lattice is formed as depicted in Fig. 2.3. Accounting
for the confinement in the third direction, one obtains a two-dimensional array of one-dimensional
tubes. For sufficiently deep potentials, the tunneling within the lattice plane is negligible,
which allows to study strongly correlated one-dimensional atomic gases in the tubes, i.e., the
investigation of Luttinger liquids and, in particular, Tonk-Girardeau gases [66, 69].

Using counter propagating laser beams with orthogonal polarizations in three perpendicular
directions, a potential

V (r) =− V0,xe
−2 y

2+z2

W2
0 cos2(kx)− V0,ye

−2x
2+z2

W2
0 cos2(ky)

− V0,ze
−2x

2+y2

W2
0 cos2(kz)

(2.17)

is generated, which establishes a three-dimensional optical lattice. Thereby, identical beam waists
W0 are used and the effect due to the Rayleigh length, which is typically much larger than the beam
profile, is neglected. Since the potential is not separable in its spatial dimensions, it is preferable
to split it into a purely sinusoidal part VP (r) and a confinement potential VC(r), i.e.,

V (r) = VP (r) + VC(r). (2.18)
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This can be motivated by expanding the exponential functions in equation (2.17) in Taylor series
and neglecting the oscillating fraction in the confinement to obtain a harmonic potential. This
approach is only valid for large W0 and leads to a separation of the slowly varying potential from
the oscillating one. The purely periodic potential is given by

VP (r) = −V0,x cos2(kx)− V0,y cos2(ky)− V0,z cos2(kz), (2.19)

and the trapping potential is commonly written as

VC(r) =
1
2
m(ω2

xx
2 + ω2

yy
2 + ω2

zz
2). (2.20)

In many setups, the confinement due to the beam profile is superposed by an additional magnetic
or optical dipole trap with frequencies ωd,xi , so that the total confinement frequency in z direction
is ω2

z = 4(V0,x + V0,y)/mW 2
0 + ω2

d,z and respectively for the other directions. In the case of
blue detuned laser beams the atoms are trapped in the nodes of the electric field rather than
in the antinodes and the finite beam waist leads therefore to an anticonfinement, which can be
compensated by additional magnetic or optical trapping.

In theoretical approaches, the confinement VC is often neglected to derive analytical expressions,
to use periodic boundary conditions, or to simplify the problem. In fact, periodic potentials are
well studied in the context of solid-state physics. The additional confinement presents a new
challenge in the application of theoretical methods, which is addressed, in particular, in chapter 4.
Often, however, the confinement is weak enough so that the physics of the purely periodic system
is not greatly disturbed.

The discussion above is based on the assumption that the electric fields of the perpendicular laser
beams are superposed with orthogonal polarization. By varying the angles and the polarization
of the beams, a multitude of lattice structures can be realized. In addition, light fields that
are less detuned with respect to the atomic frequencies can establish potentials, which depend
on the polarization of the hyperfine levels. Such spin-dependent optical lattices can, e.g., be
obtained using counter propagating laser beams with polarizations that enclose a specific angle
[38, 72, 86]. In particular, the realization of optical lattices with a double-well unit cell [41] has
many applications. If the interwell dynamics can be neglected in such a system, a finite few-
particle system emerges resembling double-quantum-dots. The independent tuning of intra- and
interwell tunneling yields many possibilities for new experimental techniques [87, 88]. Of course,
the concept can be extended to more complicated sub- and superlattice structures [89].

2.1.4 Band structure of optical lattices

In the following, an infinite cubic lattice is considered with a potential of the form (2.19). Since
the potential is separable in its spatial coordinates, the solution of the single-particle Schrödinger
equation separates in φx(x)φy(y)φz(z). Consequently, it is sufficient to restrict the following
discussion to the solution φ(z) of the one-dimensional Schrödinger equation, which is given by(

p̂2

2m
− V0 cos2(kLz)

)
φ(z) = Eφ(z), (2.21)
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Fig. 2.4: Band energies E(n)
q as a function of the quasimomentum q for (a) V0 = 5ER,

(b) V0 = 10ER, and (c) V0 = 20ER.

where p̂ = −i~ ∂
∂z and V0 is positive. Applying Bloch’s theorem for periodic potentials, φ(z) can

be written as a Bloch function
φ(n)
q (z) = eiqzu(n)

q (z), (2.22)

where n is the band index and q is the quasimomentum. The function u(n)
q (z) is periodic on the

interval [−a/2, a/2] with the lattice spacing a = π/kL. The reciprocal lattice vector in momentum
space is given by G = 2π/a = 2kL and defines the size of the Brillouin zone, which contains the
momenta q with −G/2 ≤ q ≤ G/2. Since the u(n)

q are periodic functions, the Bloch functions
can be written as Fourier series

φ(n)
q (z) = eiq̃Gz

∑
k

cke
ikGz (2.23)

with the dimensionless quasimomentum q̃ = q/G. Further, the periodic potential can be
decomposed in

VP (z) =
∑
m

νme
imGz. (2.24)

By inserting the Fourier series (2.23) and (2.24) in equation (2.21) and by comparison of
coefficients, it follows the algebraic equation

~2G2

2m
(k + q̃)2ck +

∑
m

ck−mνm = E(n)
q ck. (2.25)

The term ~2G2/2m, arising from the kinetic energy operator, equals four times the recoil energy

ER =
~2k2

L

2m
, (2.26)

which was earlier defined in equation (2.12) and consequently provides the natural energy scale for
optical lattices. For VP (z) = −V0 cos2(kLz), the only nonzero contributions in equation (2.24)
are ν0 = −V0/2 and ν±1 = −V0/4, so that the single-particle energy E(n)

q , corresponding to the
quasimomentum q of the nth Bloch band, can be determined by the eigenvalue equation

4ER (k + q̃)2ck −
V0

4
ck−1 −

V0

4
ck+1 = E(n)

q ck, (2.27)
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where the constant diagonal term −V0/2 is omitted. Equation (2.27) is solved via diagonalization
of a matrix equation with k = −k0, ..., k0, where, in practice, k0 ≈ 10 gives precise results for the
lowest bands.

Instead of using delocalized Bloch functions, a Wannier basis [74, 75] is preferred in the context
of Hubbard models (section 2.3.2). If the phases of the Bloch functions are properly chosen, the
Wannier functions are optimally localized at the lattice sites j and are defined by

w(n)(z − zj) =
1√
Ns

∑
q

e−iqzjφ(n)
q (z), (2.28)

whereNs is the number of lattice sites. In the reverse direction, the Bloch functions can be written
in terms of Wannier functions as follows

φ(n)
q (z) =

1√
Ns

∑
j

eiqzjw(n)(z − zj). (2.29)

For infinitely deep lattices the Wannier functions tend to the wave functions of the harmonic
oscillator, which is often used as an approximation in analytical calculations.

2.2 Scattering theory of ultracold atoms

2.2.1 Interaction of neutral atoms

The scattering of neutral atoms is, in principle, a complicated many-body problem. In particular,
the short-range scattering physics, where the electron shells of the atoms start to overlap, is a
subject of nontrivial molecular physics. Fortunately, the long-range behavior can be captured in
a rather simple model which is discussed in this section. In addition, for ultracold atoms only
scattering states with an angular momentum l = 0 (s-wave) for bosons and l = 1 (p-wave)
for fermions have to be taken into account. Particularly, the s-wave scattering for fermions is
strictly forbidden by Pauli’s exclusion principle, since two fermions can not be identical in all
quantum numbers. For cold atoms in the sub-millikelvin regime, the energy of the relative motion
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is usually below the centrifugal barrier of the effective potential for nonzero angular momentum.
Therefore, the s-wave scattering dominates for bosons and for fermions p-wave collisions remain
as the lowest order. Since usually the p-wave scattering is weak, ultracold fermionic atoms can
be treated as noninteracting particles in many approaches. Of course, the situation changes for
dipolar atoms, which have been experimentally addressed, e.g., in Refs. [90–94].

The long-range behavior can be described by the lowest-order van-der-Waals potential [64]

VvdW(r) = −C6/r
6 for r > rc, (2.30)

where r is the distance between two scattering atoms. The short-range cut-off is defined by the
length rc, which is on the order of the atom size. The simplest approach is to model the short-range
part (r ≤ rc) as a hard-core potential, which is of course not very realistic but still captures the
basic features. The van-der-Waals length is defined by

r0 = (2mrC6/~2)1/4 (2.31)

and is the typical extend of the last bound state in the potential, where mr is the reduced mass.
The length r0 is the distance at which the relative part of the kinetic energy equals the interaction
of the two particles. For alkali atoms, the length is on the order of 5 nm [64] being much larger
than the atomic scale rc but much smaller than the average particle distance. At low energies, the
scattering can be characterized by the s-wave scattering length a. Using a hard-core potential for
r ≤ rc, the scattering length can be calculated analytically [95]

a = ā [1− tan(Φ− 3π/8)], (2.32)

where ā = 0.478r0 and Φ = r2
0/2r

2
c is the so-called WKB phase [66]. The scattering length

depends on the van-der-Waals length r0 but also on the WKB phase Φ, which is sensitive to the
short-range parameter rc. The atoms interact attractively for positive values of a and repulsively
for negative values. The true interaction potential has one or several bound states in either case,
which leads to the possibility of molecule formation. However, this process occurs only via
three-body collisions for low energy scattering. The scattering can be expressed in terms of a
pseudopotential [65]

V (x) =
4π~2a

2mr
δ(x)

∂

∂r
r, (2.33)

which depends exclusively on the scattering length (2.32). Assuming regular wave functions at
r = 0, the pseudopotential simplifies because of the δ function to

V (x) =
4π~2a

2mr
δ(x). (2.34)

This form of the potential implies that particles interact only at coincident coordinates. Although
this approach neglects completely the inner part of the interaction potential, it provides a good
description of the long range scattering of ultracold atoms and is valid at typical densities.
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2.2.2 Feshbach resonances

Optical lattices offer an ideal testing ground for condensed matter theories, due to the
controllability and tunability of optical potentials. In addition, experiments with ultracold gases
allow to tune the interaction of particles by means of Feshbach resonances. The scattering length
is adjustable over a wide range from strongly attractive to strongly repulsive, which provides
unique possibilities. The underlying concept was originally introduced by Feshbach [96] in the
context of compound nucleus reactions and by Fano [97] for the description of multielectron
atoms. In experiments with ultracold atoms, the scattering can be tuned by changing the magnetic
field, due to different magnetic moments of the involved molecular states, which allows an easy
and precise control. Experiments using Feshbach resonances have been realized in this context
in Refs. [22, 23] and recently in more and more experimental setups. However, e.g., for the
investigation of spinor condensates, the magnetic field is already an experimental parameter
controlling the dynamics. In this case, Feshbach resonances can also be induced optically via
one- and two-photon transitions [98–100]. Spontaneous emission resulting from this technique
might, however, cause an additional heating of the atomic gas. Reviews on this subject are given
in Refs. [101–103].

Feshbach resonances occur when a closed scattering channel and a bound state in an open channel
couple resonantly as depicted in Fig. 2.6. The two channels correspond, e.g., to two different
spin configurations, i.e., a singlet and a triplet state. Scattering without a Feshbach resonance
corresponds to the open channel, where the atoms experience the unaltered scattering potential
Vopen(r). This potential leads to the so-called background scattering length a introduced in the last
section and denoted here abg. At large distances r →∞, the potential is chosen to be zero, so that
only the kinetic energy of the relative motion

E(k) =
~2k2

2mr
(2.35)

remains, where mr is the reduced mass. The potential of the closed channel Vclosed(r) at r → ∞
is assumed to be larger than the thermal energy for the ultracold collision and is therefore not
accessible.

For alkali atoms this potential difference arises from the Zeeman and the hyperfine energy of
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coupled states. In the presence of a magnetic field B along one axis this energy emerge originally
from the Hamiltonian of a single atom

ĤB = ahf Ŝ Î + 2µBBŜz − µnBÎz, (2.36)

where Î is the operator of the nuclear spin and Ŝ the spin operator of the single valence electron
[101], assuming zero orbital momentum. The Bohr magneton is labeled by µB and is much larger
than the nuclear magneton µn. For large magnetic fields (Paschen-Back regime), the Hamiltonian
has eigenstates labeled by the quantum numbers ms and mI , which are the projections of electron
and nuclear spin, respectively, rather than by the coupled hyperfine spin quantum number f and
its projection mf (Zeeman regime). Because of the large Bohr magneton, states with ms = −1/2
have a much lower energy in the Paschen-Back regime and are energetically well-separated from
the ms = 1/2 states. Atoms, prepared in the ms = −1/2 states, form molecular orbitals during
the collision. The respective molecular potentials show a van-der-Waals behavior at large distances
but can considerably differ from each other at short distances. Moreover, the potentials are offset
at r →∞ due to the hyperfine and Zeeman energy (Fig. 2.7).

Let us assume only one closed channel, which is valid for the description of an isolated Feshbach
resonance. As depicted in Fig. 2.6, two molecular potentials form an open and a closed channel.
The effective scattering in the open channel can be strongly modified due to a strong coupling
of valence electrons. The atoms can temporarily be captured in a quasibound state in the closed
channel. As usual, the coupling of the two channels [102–104] can be described in a Hamiltonian
of the form

Ĥ =

(
Êkin + Vopen(r) W (r)

W (r) Êkin + Vclosed(r)

)
, (2.37)

where Êkin is the kinetic energy operator and W (r) is the coupling between open and closed
channel, which is nonzero on the order of the atomic scale rc. Typically, the magnetic moments
of the open channel µopen and closed channel µclosed differ by ∆µ. The tunability of the Feshbach
resonance enters, since a change in the magnetic field by δB shifts the open channel by an energy
∆µ δB. At B = Bres the bound state in the closed channel shall be exactly in resonance with the
open channel at r → ∞. For large background scattering, the exact solution for the Hamiltonian
(2.37) leads, however, to a shifted magnetic field B0 at which the scattering amplitude diverges.
Approximately, it is related to the bare magnetic field Bres by

B0 ≈ Bres + ∆B
(1− x)x

(1− x)2 + 1
, (2.38)

where x = abg/ā and ∆B is defined in equation (2.42) [105]. In the vicinity of B0 the energy of
the bound state is given by

Eb(B) = ∆µ (B −B0). (2.39)

The nearly resonant scattering of a continuum state with a bound state for a low-energetic particle
is known as Breit and Wigner problem and leads to a resonant shift of the scattering phase by

δres(k) = −atan
(

Γ(k)/2
E(k)− Eb(B)

)
(2.40)
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with the resonance width Γ(k) [66]. The resonance width for small k is linear, which allows to
define a characteristic length r∗ by

Γ(k → 0) =
~2k

mrr∗
. (2.41)

Its inverse 1/r∗ is a measure how strong the two channels are coupled. The total scattering length,
due to the resonant phase shift δres and the background phase shift δbg, is a = limk→0 tan(δbg +
δres)/k. Defining the width of a Feshbach resonance as

∆B =
~2

2mrr∗abgµ
(2.42)

leads to a simple expression for the magnetic-field-dependent scattering length

a(B) = abg

(
1− ∆B

B −B0

)
. (2.43)

With the assumptions above, the position B0 and the width ∆B of a Feshbach resonance together
with the background scattering abg give therefore full information on the scattering amplitude
a(B) as depicted in Fig. 2.7. In particular, these parameters are experimentally well accessible.
Therefore, Feshbach resonances are an excellent tool for tunable interactions applicable to a wide
range of atoms. It should be noted that this also includes scattering between different atomic
species.

2.3 Hamiltonian for spin-polarized atoms

2.3.1 Hamiltonian for bosons and fermions

As discussed in section 2.2.1, the interaction between neutral atoms can in good approximation be
captured by a δ interaction potential

Vint(r, r′) = g δ(r− r′), (2.44)
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where r and r′ are the coordinates of two scattering atoms. The scattering constant g is given in
equation (2.34), namely

g =
4π~2as

2mr
, (2.45)

with as being the s-wave scattering length and mr the reduced mass. For 87Rb atoms the s-
wave scattering length is as ≈ 100a0. Although 87Rb is one of the most frequently used
species for Bose-Einstein condensates, the value for as given by recent calculations varies, i.e.,
(100.4 ± 0.1)a0 in Ref. [106] and (102.4 ± 0.5)a0 in Ref. [107]. For identical particles, i.e.,
mr = mB/2 the interaction potential reads

Vint(r, r′) =
4π~2as
mB

δ(r− r′). (2.46)

For the further treatment, the potential is translated into the language of second-quantization,
assuming bosonic particles. Using the bosonic field operator ψ̂B(r), which creates a particle at
coordinate r, and its hermitian conjugate ψ̂†B(r), which annihilates a particle at r, the two-particle
interaction reads

1
2
g

∫
d3r d3r′ ψ̂†B(r)ψ̂†B(r′) δ(r− r′) ψ̂B(r′)ψ̂B(r). (2.47)

Including the kinetic and potential single-particle energies, the Hamiltonian is given by

ĤB =
∫
d3r ψ̂†B(r)

[
p̂2

2mB
+ VP (r) + VC(r) +

g

2
ψ̂†B(r)ψ̂B(r)

]
ψ̂B(r). (2.48)

Here, by the virtue of equation (2.18), the single-particle potential of the optical lattice is split into
a periodic sinusoidal potential VP (r) and a slowly varying confinement VC(r).

As already mentioned, the interaction of spin-polarized ultracold fermions is relatively small and
can be neglected in most approaches. Consequently, the Hamiltonian for fermions is a one-particle
operator containing kinetic and potential energy, namely

ĤF =
∫
d3r ψ̂†F(r)

[
p̂2

2mF
+ V F

P (r) + V F
C (r)

]
ψ̂F(r) (2.49)

using the fermionic field operator ψ̂F(r). The potential V F
P (r) +V F

C (r) is not necessarily the same
as for bosons, as it depends on the detuning of atomic and laser frequency. An interesting and
nontrivial situation emerges when the fermionic atoms are loaded together with bosonic atoms in
an optical lattice. Due to the interaction between fermions and bosons, the fermionic subsystem
responses to the bosonic one and vice versa. The interaction between bosons and fermions can be
expressed by

ĤBF = gBF

∫
d3r ψ̂†B(r)ψ̂†F(r)ψ̂F(r)ψ̂B(r), (2.50)

due to the s-wave scattering of distinguishable particles with

gBF =
2π~2

mBF
aBF, (2.51)
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the boson-fermion scattering length aBF, and the reduced mass mBF = mBmF /(mB + mF ).
Hence, the total Hamiltonian for a Bose-Fermi mixture of atoms is

Ĥ = ĤB + ĤF + ĤBF. (2.52)

For explicit calculations, the bosonic and fermionic field operators are expanded in the spatial
bases

ψ̂B(r) =
∑
i

χi(r) b̂i, (2.53)

and

ψ̂F(r) =
∑
i

φi(r) f̂i, (2.54)

respectively. Thereby, b̂i annihilates a bosonic atom in the state with the wave function χi(r) and
f̂i annihilates a fermionic atom in the state φi(r).

2.3.2 The Hubbard model

The idea of the Hubbard model is to describe the physics in a lattice by the tunneling of particles
to neighboring sites and by the interaction particles experience when occupying the same site. To
realize this model basis functions are used that are optimally localized at the lattice sites, which
are the Wannier functions given in equation (2.28). The starting point for discussing the Bose-
Hubbard model [20, 21, 75] is the full bosonic Hamiltonian (2.48), which is expanded according
to equation (2.53) in a Wannier basis of the lowest band w(0)(r−rj). Commonly higher bands are
neglected as the on-site interaction is considerably smaller than the band gap to the first excited
band. The influence of higher bands, which leads to remarkable modifications of the single-band
Hubbard physics, is discussed in chapters 4, 5, and 7. Using the lowest-band Wannier basis, the
Hamiltonian can be written as

ĤB = −
∑
i,j

Jij b̂
†
i b̂j +

1
2

∑
i,j,k,l

Uijklb̂
†
i b̂
†
j b̂k b̂l, (2.55)

where

Jij = −
∫
d3r w(0)∗(r− ri)

(
p̂2

2mB
+ VP (r) + VC(r)

)
w(0)(r− rj) (2.56)

and

Uijkl = g

∫
d3r w(0)∗(r− ri)w(0)∗(r− rj)w(0)(r− rk)w(0)(r− rl). (2.57)

Since the Wannier functions are well localized in deep lattices (commonly this assumes V0 &
5ER), the hopping integral Jij of nonnearest neighbors is small and Uiiii � Uijkl for not all
{i, j, k, l} equal. Neglecting these minor terms, this leads to the Hamiltonian of the Bose-Hubbard
model

ĤBHM = −J
∑
〈i,j〉

b̂†i b̂j +
1
2
U
∑
i

n̂i(n̂i − 1) +
∑
i

εin̂i, (2.58)
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Fig. 2.8: (a) The Bose-Hubbard model with the hopping integral J and the on-site interaction U .
(b) The Bose-Hubbard parameter J and U as a function of the lattice depth V0 for 87Rb and a
lattice spacing a = π/kL = 515 nm.

due to b̂†i b̂
†
i b̂ib̂i = n̂i(n̂i − 1). Thereby, 〈i, j〉 denotes the sum over nearest neighbors with the

hopping integral

J ≡ J01 = −
∫
d3r w(0)∗(r)

(
p̂2

2mB
+ VP (r)

)
w(0)(r− a ek) (2.59)

for VC(r) = 0 with a the lattice constant and ek the unit vector along one of the lattice axes. In
principle, J may depend on the direction so that, in general, Jx 6= Jy 6= Jz . In the following,
however, the lattice is assumed to be isotropic. The last term in the Hamiltonian (2.58) arises from
the term Jii and describes the slowly varying confinement VC(r), where εi ≈ VC(ri), whereas
other contributions of Jii lead to a constant offset energy. The full interaction integral (2.57) is
approximated by the on-site interaction

U ≡ U0000 = g

∫
d3r |w(0)(r)|4. (2.60)

For a homogeneous lattice, the Bose-Hubbard model therefore depends only on the two parameters
U and J . While U describes the interaction of particles at the same site, J reflects the gain in
kinetic energy due to the tunneling of particles. Qualitatively, the absolute value of the on-site
interaction U increases with increasing lattice depth, whereas the hopping J decreases roughly
exponentially. Their quantitative dependency is shown in Fig. 2.8b and analytical expressions are
given in equation (2.117) and (2.118).

The same approach can be used to derive the Bose-Fermi-Hubbard model [31, 32] from the
full Hamiltonian (2.52). Using the parameters JB and JF for bosonic and fermionic tunneling,
respectively, UB for the bosonic on-site interaction, and

UBF = gBF

∫
d3r

∣∣∣w(0)
B (r− ri)w

(0)
F (r− ri)

∣∣∣2 (2.61)

for the boson-fermion on-site interaction, the Bose-Fermi-Hubbard Hamiltonian reads

ĤBFHM =− JB
∑
〈i,j〉

b̂†i b̂j − JF
∑
〈i,j〉

f̂ †i f̂j +
∑
i

εB
i n̂i +

∑
i

εF
i n̂i

+
1
2
UB
∑
i

n̂i(n̂i − 1) + UBF
∑
i

n̂im̂i.
(2.62)
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Fig. 2.9: The Bose-Fermi-Hubbard model with bosonic and fermionic hopping JB and JF,
respectively, bosonic on-site interaction UB, and boson-fermion on-site interaction UBF.

Here, the operators n̂i = b̂†i b̂i and m̂i = f̂ †i f̂i count the number of bosons and fermions at site i,
respectively.

2.4 Exact diagonalization

The main numerical results in this thesis are obtained using the method of exact diagonalization,
which allows to solve the many-particle Schrödinger equation numerically exact. In particular,
it includes the full correlations of particles neglected in mean-field approaches and permits to
compute accurately excited states. The drawback is the numerical expense, which is enormous
and restricts the applicability to few-particle systems. However, exact diagonalization allows
the precise treatment of strong interactions and finite systems. For systems with orbital
degrees of freedom, the basis of the Hilbert space may have infinite dimensions, so that the
numerical treatment has to be restricted to a suitable finite subspace. In this section the basic
aspects are highlighted, whereas a more comprehensive description of this method is given in
Refs. [81, 108, 109] including also several technical aspects. The computer program implementing
a finite-size multiorbit exact diagonalization algorithm was mainly designed in my diploma thesis
[81], although it was also improved and extended afterwards. In addition, a Bose-Fermi Hubbard
model was implemented using periodic boundary conditions.

The exact diagonalization method solves the stationary many-particle Schrödinger equation
Ĥ|Ψ〉 = E|Ψ〉 by expanding it in a basis set |N〉. Projecting the Schrödinger equation on the
state 〈N |, it follows

〈N |Ĥ
∑
N ′

|N ′〉〈N ′|Ψ〉 = E〈N |Ψ〉. (2.63)

Using the coefficient vector cN = 〈N |Ψ〉, this can be rewritten in a matrix equation for the
coefficient cN ∑

N ′

〈N |Ĥ|N ′〉 cN ′ = E cN . (2.64)

This equation is solved by diagonalization of the matrix 〈N |Ĥ|N ′〉, which gives the energy
eigenvalues E and the eigenvectors cN .

As discussed in detail in section 2.4.2, the Hamiltonian Ĥ contains only one- and two-particle
operators, so that 〈N |Ĥ|N ′〉 vanishes for most pairs of states |N〉 and |N ′〉. Numerically, this
allows to use a sparse matrix representation, where only the nonzero elements are stored together
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with their respective column or row indices. For the numerical diagonalization, the Arnoldi
package is used developed at Rice University in Houston, Texas [110].

2.4.1 Single- and many-particle basis

To solve the many-particle problem a Fock basis is used, which consists of fully (anti-)
symmetrized occupation number states for bosons (fermions). The occupation numbers reference
three-dimensional single-particle basis states |φi〉, often referred to as orbitals, that are indexed
by a single integer number. For simplicity, we assume that the energy ei corresponding to |φi〉
increases with this index, i.e, ei+1 ≥ ei. Due to the separable potential, the three-dimensional
single-particle basis states can be build up from the basis states in x, y, and z directions, i.e.,

|φi〉 = |ϕj(x)〉 |ϕk(y)〉 |ϕl(z)〉 (2.65)

with j, k, l = 0, 1, ... . Using the occupation number representation, the many particle-basis
is constructed using a Dijkstra-like algorithm [111]. It starts with the ground state of the system,
where all particles occupy the energetically lowest single-particle state |φ0〉, and considers possible
one-particle excitations. Iteratively, the lowest excitation is added to the basis set, while its
excitations are added to the list of possible excitations. The procedure stops at a given number
of basis states thereby ensuring that all omitted states have a higher energy than the included basis
states, i.e., Eomitted

i ≥ maxj Ebasis
j . If the Hilbert space is finite and all states shall be included in

the basis set a faster and simpler algorithm can be used. Starting with the vacuum state, it expands
recursively the whole tree of possible occupations by adding a particle to one of the sites.

For Bose-Fermi mixtures, the product space of bosons and fermions must be generated, unless a
self-consistent approach is used as introduced in section 2.4.4, where boson and fermion subspace
are diagonalized separately. Restricting the basis for a lattice with NS sites to the lowest band,
such as in the Bose-Hubbard (2.58) and Bose-Fermi-Hubbard (2.62) model, the separate Fock
spaces have the finite dimension

DB =
(NB +NS − 1)!
NB!(NS − 1)!

(2.66)

for NB bosonic atoms and

DF =
NS !

NF!(NS −NF )!
(2.67)

for NF fermionic atoms. The latter is reduced substantially due to Pauli’s exclusion principle,
allowing only the occupations zero and one. To describe the system in the whole parameter range,
e.g., the bosonic transition from a superfluid to a Mott insulator (see section 2.6), all lowest-band
states must be included in the calculation irrespectively of the fact that a Wannier or a Bloch basis
is used.

For the Bose-Hubbard and the Bose-Fermi-Hubbard model, the Hamiltonian exclusively depends
onU{B,BF} and J{B,F}. The many-particle basis in this model consists of the occupation numbers of
the lattice sites. This is advantageous, since observables such as the filling or particle fluctuations
can easily be calculated. Moreover, the two-particle operators in the Hubbard model, (2.58) or
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(2.62), are diagonal in the Wannier basis. As the implementation of the lowest-band Hubbard
model is rather straight forward, I will concentrate in the following on finite lattices with orbital
degrees of freedom. To allow the treatment of arbitrary separable potentials, a variable problem-
adapted single-particle basis is used. In this context, it is important to realize that the calculation
of the single-particle interaction integrals (2.73) is numerically inexpensive due to the δ function
in the interaction potential.

To allow for an inclusion of orbital degrees of freedom, the single-particle eigenbasis is used
to build up the many-particle basis for the finite system, which is most flexible ranging from
the treatment of particles in a harmonic trap to finite lattice systems with arbitrary perturbations.
However, it is not well suited for periodic boundary conditions or algebraic calculations, where
localized Wannier states are the common choice. The single-particle eigenbasis of the system can
be found by exact diagonalization of the single-particle problem using adequate wave functions.
For finite sinusoidal potentials without additional perturbations the single-particle eigenfunctions
correspond to Bloch functions (2.22). More precisely, they are the finite size correspondents
with a defined parity because of the symmetric potential. The many-particle basis consists of
subspaces of states with even and odd parity in each spatial direction, which are not mixed by
the interaction (2.47). Therefore, the basis can be reduced to a single-parity subspace, which
accelerates the diagonalization substantially. The basis functions in momentum space, being
the Fourier transforms of the wave functions, show sharp peaks at certain quasimomenta q and
−q. Additionally, higher order peaks at multiples of the reciprocal lattice vectors appear with
less intensity. The potential for finite lattices is truncated to (nx, 1, 1) sites for one-dimensional
and (nx, ny, 1) sites for two-dimensional lattices. It is continued at its boundary by a harmonic
confinement potential1.

The width of the lowest Bloch band, i.e., the energy difference of the lowest and highest energetic
state, of an infinite one-dimensional lattice determines the value of the Hubbard hopping integral
4J within the tight-binding approximation. For a double well the band width is only 2J and
converges rapidly with increasing number of sites to 4J . In practice, a number of 30 sites gives a
reasonable agreement with the definition (2.59) for lattice depths V0 & 5ER.

2.4.2 Calculation of matrix elements

As mentioned above, it is necessary for the diagonalization to calculate the elements of the
Hamiltonian matrix 〈N |Ĥ|N ′〉 in the Fock basis {|N〉}. Thereby, {|N〉} is the product space of
bosonic and fermionic subspaces {|N〉} = {|NB〉} ⊗ {|NF〉}. The many-particle states |N{B,F}〉
are represented by vectors |n1, n2, n3, ...〉, where ni corresponds to the occupation of a bosonic or
fermionic single-particle orbital. The Hamiltonian (2.52) consists of bosonic and fermionic one-
particle operators ψ̂†{B,F}(r)ψ̂{B,F}(r) and two-particle operators ψ̂†B(r)ψ̂†{B,F}(r)ψ̂{B,F}(r)ψ̂B(r).

1The confining potential V (x) = γV0x

`
2kx
nπ

´2 continues the periodic potential at |x| = x0, where n is the number
of sites (see Ref. [81]). The potential is continuously differentiable which determines γ (≈ 1) and x0 (≈ na/2).
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For a bosonic one-particle operator, it follows due to the expansion (2.53)

〈NB|
∫
d3r ψ̂†B(r)Ôψ̂B(r) |N ′B〉 =

∑
j,k

〈χj |Ô|χk〉 〈NB|b̂†j b̂k|N
′
B〉 (2.68)

and the respective expression for fermions. The latter term can be evaluated for bosons

〈NB|b̂†j b̂k|N
′
B〉 = δNBN

′
B
δjk nj + ∆jk

NBN
′
B

√
nj(nk + 1), (2.69)

where δNBN
′
B

is the Kronecker δ and ∆jk
NBN

′
B

= 1 if |N ′〉 = |..., nj − 1, ..., nk + 1, ...〉 and

∆jk
NBN

′
B

= 0 otherwise with ni = n′i for i 6= j and i 6= k. For fermions holds

〈NF|f̂ †j f̂k|N
′
F〉 = δNFN

′
F
δjk nj + ∆jk

NFN
′
F

(−1)εjk , (2.70)

where

εjk =
max(j,k)−1∑
ξ=min(j,k)+1

nξ (2.71)

due to the anticommutation relation of the fermionic operators.

While the two-particle boson-fermion interaction is discussed in section 2.4.4, the exact evaluation
of the boson-boson interaction is elaborated here shortly (see Refs. [81, 108, 109] for details). The
boson-boson interaction matrix element becomes

〈NB|
g

2

∫
d3r ψ̂†B(r)ψ̂†B(r)ψ̂B(r)ψ̂B(r) |N ′B〉 =

g

2

∑
i,j,k,l

χijkl 〈NB|b̂†i b̂
†
j b̂k b̂l|N

′
B〉, (2.72)

where the interaction integral is given by

χijkl =
∫
d3r χ∗i (r)χ∗j (r)χk(r)χl(r). (2.73)

Comparing with one-particle operators, a larger number of states |NB〉 and |N ′B〉 exists for which
〈NB|b̂†i b̂

†
j b̂k b̂l|N ′B〉 does not vanish. It gives a nonzero contribution, if |NB〉 and |N ′B〉 are related

as follows

|N ′B〉 = |NB〉,
|N ′B〉 = |..., ni − 2, ..., nk + 2, ...〉,
|N ′B〉 = |..., nj − 1, ..., nk + 1, ...〉,
|N ′B〉 = |..., ni − 1, ..., nj − 1, ..., nk + 2, ...〉,
|N ′B〉 = |..., ni − 2, ..., nk + 1, ..., nl + 1, ...〉,
|N ′B〉 = |..., ni − 1, ..., nj − 1, ..., nk + 1, ..., nl + 1, ...〉.

(2.74)

Thus, for each class of nonvanishing matrix elements, the sum
∑

ijkl χijkl b̂
†
i b̂
†
j b̂k b̂l must be

calculated. The algorithm, which computes the Hamiltonian matrix, has to determine if a
given pair of states {|NB〉, |N ′B〉} belongs to one of the classes in (2.74), which causes a major
contribution to the calculation time. Subsequently, the program evaluates the matrix elements
(2.72), which are derived in appendix A.1 (see also Refs. [81, 108, 109]). To allow a fast
computation, the interaction integrals χijkl are precalculated numerically and stored in a look-
up table. It should be noted that the matrix 〈NB|Ĥ|N ′B〉 is symmetric (or, in general, hermitian) so
that only the upper or lower triangle of the matrix has to be computed.
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2.4.3 One-particle density matrix

The many-particle eigenvectors that are obtained by exact diagonalization give full information
about the system. In contrast to an eigenvalue, an eigenvector is, in general, a quite complicated
quantity, which does not give intuitive insight into the physical system. Therefore, usually
several expectation values are calculated subsequent to the diagonalization such as the density,
the momentum distribution, and two-particle correlation functions. The single-particle expectation
values of density and momentum distribution are determined using the one-particle density matrix.
In the case of bosons, the density matrix for an eigenvector |ΨB〉 =

∑
N cN |N〉 reads

〈ΨB|b̂†j b̂k|ΨB〉 =
∑
N,N ′

c∗NcN ′〈N |b̂
†
j b̂k|N

′〉. (2.75)

Any expectation value of an operator of the form
∑

j,k ajk b̂
†
j b̂k can be expressed using the one-

particle density matrix

〈ΨB|
∑
j,k

ajk b̂
†
j b̂k|ΨB〉 =

∑
j,k

ajk〈ΨB|b̂†j b̂k|ΨB〉. (2.76)

Assuming ajk = a∗kj and using (2.69), this can be rewritten for the numerical calculation as

〈ΨB|
∑
j,k

ajk b̂
†
j b̂k|ΨB〉 =

∑
j,k

ρB
jk Re(ajk) (2.77)

with
ρB
jk = δjk

∑
N

|cN |2nj +
∑
N<N ′

2 Re(c∗NcN ′) ∆jk
NBN

′
B

√
nj(nk + 1). (2.78)

The sum over N < N ′ restricts the calculation to the the upper triangular matrix, which is also
used for the diagonalization of 〈N |Ĥ|N ′〉. Note that the matrix ρB

jk is not symmetric in j and k
but either ρB

jk = 0 or ρB
kj = 0.

Correspondingly, for fermions the one-particle density matrix is given by

〈ΨF|f̂ †j f̂k|ΨF〉 =
∑
N,N ′

c∗NcN ′〈N |f̂
†
j f̂k|N

′〉 (2.79)

and with (2.70) one obtains

〈ΨF|
∑
j,k

ajkf̂
†
j f̂k|ΨF〉 =

∑
j,k

ρF
jk Re(ajk), (2.80)

where
ρF
jk = δjk

∑
N

|cN |2nj +
∑
N<N ′

2 Re(c∗NcN ′) ∆jk
NBN

′
B

(−1)εjk . (2.81)

With these expressions, one easily obtains the expectation value for the density, namely

ρB(r) = 〈ψ̂†B(r)ψ̂B(r)〉 =
∑
j,k

ρB
jk Re(χ∗jχk), (2.82)
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ρF(r) = 〈ψ̂†F(r)ψ̂F(r)〉 =
∑
j,k

ρF
jk Re(φ∗jφk), (2.83)

for bosons and fermions, respectively. Using the momentum basis functions, which are the Fourier
transformed wave functions χ̃i(p) and φ̃i(p), i.e., for bosons

χ̃i(~k) =
1

(2π~)3/2

∫
d3r χ(r)e−ikr, (2.84)

the momentum distribution is given by

ρp,B(p) = 〈ψ̂†B(p)ψ̂B(p)〉 =
∑
j,k

ρB
jk Re(χ̃∗j χ̃k), (2.85)

ρp,F(p) = 〈ψ̂†F(p)ψ̂F(p)〉 =
∑
j,k

ρF
jk Re(φ̃∗j φ̃k). (2.86)

2.4.4 Self-consistent effective potentials

Instead of solving the full Bose-Fermi Hamiltonian (2.52)

Ĥ = ĤB + ĤF + ĤBF (2.87)

in the product basis of bosons and fermions {|NB〉} ⊗ {|NF〉}, one can also use an approximative
self-consistent method. In this approach, the bosonic and the fermionic subspace are diagonalized
separately using a self-consistent interaction potential for the boson-fermion interaction. For a
given fermion density ρF(r) = 〈Ψ̂†FΨ̂F〉, the effective Hamiltonian of the bosonic subsystem reads

Ĥeff
B (ρF) = ĤB + gBF

∫
d3r ρF(r) ψ̂†B(r)ψ̂B(r). (2.88)

The latter term represents the interaction with the fermion density and leads to a bosonic effective
potential

V eff
B (ρF) = V (r) + gBFρF(r). (2.89)

Consequently, the effective bosonic Hamiltonian (2.48) can be written as

Ĥeff
B =

∫
d3r ψ̂†B(r)

[
p̂2

2mB
+ V eff

B (ρF) +
g

2
ψ̂†B(r)ψ̂B(r)

]
ψ̂B(r). (2.90)

Starting with the density of noninteracting fermions ρ0
F, the boson density ρ0

B(r) = 〈Ψ†BΨB〉 is
determined by diagonalization of 〈N ′B|Ĥeff

B |NB〉. Subsequently, a new fermion density ρ1
F can be

calculated using the fermionic effective potential

V eff
F (ρB) = V (r) + gBFρB(r) (2.91)

and the effective Hamiltonian

Ĥeff
F =

∫
d3r ψ̂†F(r)

[
p̂2

2mF
+ V eff

F (ρB)
]
ψ̂F(r). (2.92)
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Fig. 2.10: The bosonic and the
fermionic subspace are diagonalized
separately using a self-consistent
interaction potential, which converges
within a few cycles.

This cycle, which is visualized in Fig. 2.10, is repeated until the effective potentials, the energies,
and densities converge. In practice, the convergence is achieved after few cycles. This method
is advantageous, since the number of basis states for each diagonalization can be reduced. In
addition, the effective potentials give an intuitive insight into the interaction of bosons and
fermions. However, only the ground state is accessible and several diagonalizations of the bosonic
and fermionic system must be performed. Moreover, the method is only an approximation, which
works well if bosons and fermions are weakly correlated.

2.5 Detection methods

As mentioned in the previous chapters the versatile tunability of system parameters makes optical
lattices an optimal model system, which demands reliable detection techniques to probe the actual
state of the quantum system. In this section, the most frequently used method, the time-of-flight
expansion, is described including the adiabatic mapping and the possibility to detect two-particle
correlations by analyzing shot-noise fluctuations. In addition, spectroscopic methods permit to
probe excited states of the system. The Bragg spectroscopy, recently applied to optical lattice
experiments, is discussed in chapter 6.

2.5.1 Time-of-flight experiments

In a time-of-flight experiment, the lattice potential and all additional trapping potentials are
switched off abruptly, which causes the atomic cloud to expand. Neglecting interaction effects
in the expanding cloud, the Bloch states (2.22) with quasimomentum q expand according to their
momentum distribution with contributions p = ~(q+nG), where G is a reciprocal lattice vector.
The ballistic expansion for each plane wave with momentum p is given by r = ~kt/m with
p = ~k. After a certain time-of-flight, the expanded atomic cloud is observed using absorption
imaging. If the initial extend of the atomic cloud in the optical lattice is small compared with
its size after the ballistic expansion, the momentum distribution is related to the imaged density
[19, 112] via

ρp(k) ≈
(

~t
m

)3

ρTOF
(
r =

~kt
m

)
. (2.93)

Therefore, a time-of-flight experiment images the momentum distribution in the lattice. Due to
the small lattice spacing in most experiments, an imaging of the density distribution in the lattice,
i.e., directly after switching off the trapping potentials, does not offer single-site resolution.
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Fig. 2.11: The momentum distribution for a finite two-dimensional lattice for several lattice depths
V0 (see chapter 3).

Using the lowest band Wannier basis (2.28), the momentum distribution can be written as

ρp(k) =
∑
i,j

w̃
(0)∗
i (k) w̃(0)

j (k) 〈b̂†i b̂j〉 (2.94)

due to equation (2.76), where w̃(0)
i (k) is the Fourier transformation of the Wannier function

w(0)(r− ri) and 〈b̂†i b̂j〉 = 〈Ψ|b̂†i b̂j |Ψ〉 [113]. Writing the Fourier transformation explicitly

ρp(k) =
1

(2π)3

∫
d3r

∫
d3r′

∑
i,j

w(0)∗(r− ri)w(0)(r′ − rj) eik(r−r′) 〈b̂†i b̂j〉 (2.95)

and by substitution of r− ri and r′ − rj , one obtains the simple expression

ρp(k) = |w̃(0)
0 (k)|2

∑
i,j

eik(ri−rj) 〈b̂†i b̂j〉. (2.96)

Thus, the momentum distribution can be described by means of the envelope function |w̃(0)
0 (k)|2

and an interference pattern
S(k) =

∑
i,j

eik(ri−rj) 〈b̂†i b̂j〉. (2.97)

For a Bose-Einstein condensate or a quasicondensate with a macroscopic occupation of the Bloch
state with quasimomentum q = 0, the momentum distribution shows a sharp interference pattern,
since the one-particle density matrix 〈b̂†i b̂j〉 is constant at large separations due to the long-range
order (see section 2.6.1). Restricting ourselves to the first Brillouin zone, a single sharp peak
at k = 0 is observable, which represents the fraction of condensed atoms. To measure the
interference pattern quantitatively one defines the visibility of interference fringes

ν =
ρp(kmax)− ρp(kmin)
ρp(kmax) + ρp(kmin)

. (2.98)

In two-dimensions, the maximum value ρp(kmax) can be found at the center of the second Brillouin
zone, e.g., kmax = (G, 0), and the minimum ρp(kmin) at kmin = (G/

√
2, G/

√
2). Both extremes

lie at the same distance from the center, which ensures that the Wannier envelope |w̃(0)
0 (k)|2

cancels in the ratio (2.98) [112, 114]. Thus, the visibility can be written as

ν =
S(kmax)− S(kmin)
S(kmax) + S(kmin)

. (2.99)
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Instead of switching off the lattice potential suddenly, it can also be turned off slowly. This
adiabatically transforms a deep lattice into a shallow one and finally releases the atoms from the
trapping potential. In this process the quasimomentum q is conserved and a Bloch state is mapped
onto the free-particle state with corresponding momentum p in the nth Brillouin zone [115, 116].
If the lowest band of a cubic lattice is homogeneously filled, one can observe a mapping of the
first Brillouin zone, i.e., the absorption image exhibits a square, where the length of the edge
corresponds to the length of the reciprocal lattice vector G. Just as well, a partially filled lowest
band or the population of higher bands can be visualized using this technique.

2.5.2 Two-particle correlations

In strongly interacting quantum systems, it is also desirable to explore the higher-order
correlations, which complements the information contained in the one-particle density matrix.
The density-density correlation is given by

〈ρ(r)ρ(r′)〉 = 〈ψ̂†(r)ψ̂(r)ψ̂†(r′)ψ̂(r′)〉

= 〈ψ̂†(r)ψ̂†(r′)ψ̂(r′)ψ̂(r)〉+ δ(r− r′)〈ρ(r)〉.
(2.100)

The last term in this equation is the self-correlation term, whereas the first part is the pair
distribution function g2(r, r′), which is commonly normalized by the particle density. The matrix
elements needed for the calculation of g2(r, r′) in a many-particle basis are given in appendix A.2.
The pair distribution function reveals detailed information on the spatial two-particle correlations,
i.e., the probability of finding a second atom at r′, if a first atom is located at r.

In a time-of-flight experiment, the correlations in momentum space are accessible rather than the
spatial correlations. The momentum pair correlation function reads

gp2(k,k′) = 〈ψ̂†(k)ψ̂†(k′)ψ̂(k′)ψ̂(k)〉 (2.101)

and equals the expectation value 〈ρp(k)ρp(k′)〉 when omitting the self-correlation term δ(k− k′)
〈ρp(k)〉. In the following, the signature of a state with a fixed occupation number per site, e.g., a
Mott insulator, is discussed. Expanding the bosonic field operators in a lowest-band Wannier basis
ψ̂(k) =

∑
i w̃

(0)
i (k)b̂i and using the relation

w̃
(0)
i (k) =

∫
d3r e−ikrw(0)(r− ri) = e−ikriw

(0)
0 (k), (2.102)

one gets

gp2,Mott(k,k
′) = N2|w̃(0)

0 (k)|2|w̃(0)
0 (k′)|2

(
1 +

1
N2

∣∣∑
i

ei(k−k′)ri ni
∣∣) (2.103)

for a state with fixed occupation numbers [66]. In experiments, the recorded absorption image is a
single realization of momentum distribution and not an average. Therefore, several images of the
same experiment differ by shot-noise fluctuations, yielding second-order correlations. From the
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recorded time-of-flight images, one can extract the experimental momentum correlation function
using

gp2,exp(∆k) =
∫
d3k 〈ρTOF(k + ∆k/2)ρTOF(k−∆k/2)〉∫
d3k 〈ρTOF(k + ∆k/2)〉〈ρTOF(k−∆k/2)〉

. (2.104)

In Refs. [117, 118], the bosonic Mott insulator has been observed by analyzing this correlation
function, which shows sharp correlation peaks at reciprocal lattice vectors k− k′ = G caused by
the sum in equation (2.103). In contrast, for a superfluid state an unmodulated correlation function
is expected. The same technique has also been applied to observe the fermionic band isolator
[119], where dips emerge in the noise correlation functions, since the sum in equation (2.103)
changes sign for fermions.

2.6 Superfluid and Mott insulator

One of the most interesting phenomena that occurs in optical lattices is the quantum phase
transition of bosonic atoms from a superfluid to a Mott-insulator phase at zero temperature, where
all thermal fluctuations are frozen out. This macroscopic phase transition is remarkable since
it is driven purely by the increase of interaction relative to tunneling energy, which causes the
long-range phase coherence of the superfluid to break down. In the Mott-insulator phase the
particles localize at individual lattice sites, due to their repulsive interaction. Originally, this
behavior was predicted for liquid helium on a porous surface [20]. More recently, it was proposed
that this quantum phase transition might be observable in optical lattices [21], where a relatively
perfect realization of a periodic potential is present. Furthermore, the interaction between the
atoms as well as the tunneling can be tuned directly by varying the strength of the potential,
which is proportional to the laser power and therefore precisely adjustable. Experimentally,
the superfluid to Mott-insulator transition was observed in a three-dimensional optical lattice in
Ref. [19] and subsequently in one [120] and two dimensions [118, 121]. In three dimensions, the
phase transition has been further analyzed in Refs. [112, 122, 123]. From a theoretical point of
view, the investigation of the phase transition is based on the Bose-Hubbard model described in
section 2.3.2.

2.6.1 Superfluidity

The existence of superfluidity is strongly connected to the Bose-Einstein condensation of particles.
In the following, this relationship is discussed including the basic definition of both phenomena
following Refs. [48, 66]. In experiments with ultracold bosonic atoms, the quantum degeneracy
is achieved by cooling the atoms below a critical temperature Tc. In a homogeneous gas,
the critical temperature for a Bose-Einstein condensate (BEC) is reached when the de Broglie
wavelength λT = h/

√
2πmkBT is comparable to the average interparticle distance n−1/3, i.e.,

λ3
Tn = nsζ(3/2), where ns is the spin degree of freedom and ζ(3/2) ≈ 2.61.2 In experimental

realizations, where the gas is trapped, the BEC transition is, in principle, smooth. However, for

2The Riemann zeta function is defined as ζ(s) = 1
Γ(s)

R∞
0

xs−1

ex−1
dx.
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typical particle numbers N a rather sharp transition temperature kBTc = ~ω̄(N/ζ(3))1/3 exists,
where ω̄ is the average trapping frequency by geometric means. It should be noted that in a
homogeneous system a real BEC exists only in three dimensions due to the density of states.
However, the trapping geometry of two-dimensional system changes the density of states so that
one expects even for weakly repulsive interaction a BEC at very low temperatures, whereas at
higher temperatures a quasicondensate with an algebraically decaying one-particle density matrix
is existent. In one-dimension, quasicondensation can be achieved only at T = 0 or even at finite
temperatures, if the cloud size is smaller than the phase coherence length [66].

The microscopic definition of a Bose-Einstein condensate states that there is exactly one
eigenvalue ϕ0 of the one-particle density matrix 〈ψ̂†(x)ψ̂(x′)〉 of order N , while all other
eigenvalues are nonextensive. This property is only well defined in the thermodynamic limit, but
for typical experimental particle numbers a distinction of normal phase and BEC is possible. In
other words, the condensation goes along with a macroscopic occupation of a single-particle state,
which is usually the ground state of the system. In principle, more than one eigenvalue can be
extensive, e.g., in multicomponent spinor condensates [65], which is denoted as fragmented BEC.
In translational invariant systems the single-particle levels are plain waves, while in an optical
lattice Bloch waves are present. In both cases, the eigenvectors correspond to states with defined
(quasi)momentum k and occupation number 〈b̂†kb̂k〉. Therefore, a BEC in the ground state is
reflected in a momentum distribution with a sharp peak at k = 0 for a trapped BEC and an
interference pattern with peaks at k = 0 + G for a BEC in a lattice. The one-particle density
matrix in an uniform system

〈ψ̂†(x)ψ̂(x′)〉 =
∫
d3k n(k) e−ik(x−x′) (2.105)

depends only on the distance x − x′ and vanishes for a normal system when |x − x′| → ∞. For
systems which exhibit a singularity in the momentum distribution, i.e., n(k) = n0 δ(k) + ñ(k),
the density matrix

〈ψ̂†(x)ψ̂(x′)〉 = n0 +
∫
d3k ñ(k) e−ik(x−x′) (2.106)

approaches a finite value n0 = N0/V when |x − x′| → ∞. This behavior, which evolves
nondiagonal matrix elements (x 6= x′) of the one-particle density matrix, is called off-diagonal
long-range order. In a trapped BEC, this quantity has been observed experimentally for two
points separated on the order of micrometers [16]. In interacting bosonic systems, the existence
of off-diagonal long-range order in the one-particle density matrix defines the Bose-Einstein
condensation.

The definition of superfluidity on a microscopic footing is rather subtle, but an intuitive picture
can be given on a macroscopic phenomenological level by introducing a complex order parameter
ψ(x) =

√
n(x)eiφ(x) [48, 66]. While n(x) = |ψ(x)|2 is the superfluid density, φ(x) defines the

superfluid velocity vSF = (~/m)∇φ(x). The latter expression leads directly to one of the most
interesting phenomenon of superfluidity, which is the quantization of the circulation

∮
ds vSF in

integer multiples of h/m. Assuming now that we can identify the order parameter of superfluidity
ψ(x) with the extensive eigenvector of the one-particle density matrix ψ(x) =

√
N0ϕ0(x), we see

that the BEC and the superfluid seems to be equivalent. However, this assumption holds only in the
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Gross-Pitaevskii regime. A more subtle theoretical description, covering also superfluidity in low
dimensions, deals with response of a system to a change in the boundary conditions. This probes
the stiffness of the system to an additional phase shift eiΦ, which offers a microscopic definition
of superfluidity (see Refs. [124–126]). It turns out that superfluidity and a finite compressibility
κ = ∂n/∂µ are sufficient conditions for the existence of a BEC in three dimensions or a
quasicondensate in one or two dimensions. This means that superfluidity is also necessary for
the existence of a BEC or a quasicondensate.

In the superfluid phase, the particles are spread out over the entire lattice, which goes hand in hand
with the macroscopic occupation of the lowest Bloch wave. The superfluidity manifests itself in
the long-range phase coherence of atoms throughout the lattice. As long as the interaction energy
is small compared with the gain in kinetic energy due to the delocalization, the atoms can be
described by a superfluid wave function. When the interaction can be neglected, the superfluid
state is a perfect BEC state |ΨSF〉 = 1√

N !

(
b̂†q=0

)N |0〉, where all atoms occupy the Bloch state
φq=0(r). In the Wannier basis, where the single-particle wave functions are optimally localized at
the lattice sites, the superfluid state can be written as

|ΨSF〉 =
1√
N !

(
1√
Ns

∑
i

b̂†i

)N
|0〉 (2.107)

using relation (2.29).

2.6.2 Mott insulator

To describe the effect of strong interaction in the lattice, the Bose-Hubbard model is used
(section 2.3.2), which depends on the two parameters U and J , which change when ramping
up the optical lattices as depicted in Fig. 2.12. The tunneling parameter J describes the gain in
kinetic energy due to the hopping of particles and the corresponding spatial extend of the wave
function, whereas the on-site interaction U captures the interaction of particles in the lattice. In the
case, where the repulsive interaction energy dominates the kinetic energy, the system minimizes
its interaction energy 〈Ĥint〉 = 1

2U〈
∑

i n̂i(n̂i − 1)〉 with U > 0. For integer filling n = N/Ns

and vanishing tunneling (J = 0), the Fock state with the same filling at all lattice sites

|ΨMI〉 =
(∏

i

1√
n!
b†ni

)
|0〉 (2.108)

is the ground state. In particular, for filling n = 1, where each lattice site is occupied with one
particle, the interaction energy 〈Ĥint〉 vanishes completely. As long as the tunneling J is small
compared to the interaction U of two particles at one site, the atoms remain localized, but |Ψ〉
can not be written as the simple product state (2.108). The process, where localization is driven
by interaction, was firstly discovered by N. F. Mott [127, 128] and the associated phase is called
Mott-insulator phase.

A crucial property of the Mott insulator is that there is a finite energy gap of U between the ground
state and the first excited state. This excitation corresponds to the creation of a particle-hole pair,
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J

U

a b

Fig. 2.12: (a) Optical lattice depicting the hopping parameter J and the on-site interaction U . For
deep lattices, the atoms tend to localize at individual lattice sites. In the Mott-insulator phase,
each lattice site is filled with the same integer number of atoms. (b) In the superfluid phase, which
exists below a critical lattice depth, the atoms are delocalized and are spread over the lattice.

where the hole leads to a gain in energy of (n − 1)U and the additional particle on one of the
other sites requires the energy nU . The energy nU for adding an additional particle causes that
the density remains unchanged when the chemical potential is infinitesimally altered. Because
of ∂n/∂µ = 0, the system is incompressible, which defines the Mott insulator, rather than the
existence of a state with integer local filling.

Furthermore, the localization of atoms on lattice sites causes the long-range order in the one-
particle density matrix to vanish. With increasing tunneling, however, the Mott state at J = 0 is
modified by an admixture of particle-hole pairs, which induces significant short-range coherence
[112, 122, 129]. This means that the created particles and holes are rather tightly bound to each
other, which is due to the large gap in the excitation spectrum. Using first order perturbation
theory, where the tunneling J is treated as a small perturbation on the interaction, the admixture
of particle-hole pairs can be expressed quantitatively as

|Ψ〉U/J ≈ |ΨMI〉+
J

U

∑
〈i,j〉

b̂†i b̂i|ΨMI〉, (2.109)

where |ΨMI〉 is the Mott-insulator state at J = 0 and 〈i, j〉 indicates the sum over nearest
neighbors.

2.6.3 Superfluid to Mott-insulator transition

The discussion of the superfluid phase on the one hand and of the Mott insulator on the other hand
implies a transition between both phases driven by the ratio of kinetic to interaction energy. In
the Bose-Hubbard model (section 2.3.2) this is reflected by the ratio of on-site interaction U to
tunneling energy J when neglecting additional site offsets εi. For J � U the system is superfluid,
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whereas for J � U the phase coherence is lost and atoms localize at individual lattice sites
required by the minimization of interaction energy. Although the model depends only on one
parameter, namely the ratio U/J , it is not exactly solvable.

In the following, the boundary of the superfluid phase and the Mott insulator is discussed using
a mean-field approach [20, 21, 49, 130]. The derivation of the phase diagram follows van
Oosten et al. [49]. By introducing the superfluid order parameter ψ =

√
〈ni〉 = 〈b̂†i 〉 = 〈b̂i〉,

the hopping operator b̂†i b̂j in the Bose-Hubbard Hamiltonian (2.58) can be substituted by the
mean-field expression ψ(b̂†i + b̂j) − ψ2. For z = 2d equivalent nearest neighbors, where d is
the dimension of the lattice, it follows

− J
∑
〈i,j〉

b̂†i b̂j = −J
∑
〈i,j〉

(
ψ(b̂†i + b̂j)− ψ2

)
= −zJ

(∑
i

b̂†i + b̂i

)
ψ + zJNsψ

2 (2.110)

with Ns the total number of lattice sites. In this decoupling approximation, the Bose-Hubbard
Hamiltonian becomes an effective single-site Hamiltonian Ĥeff =

∑
i Ĥ

eff
i with

Ĥeff
i = −zJ

(
b̂†i + b̂i)ψ + zJψ2 +

1
2
Un̂i(n̂i − 1)− µn̂i, (2.111)

where µ is the chemical potential. To apply perturbation theory with respect to the superfluid order
parameter, we write the Hamiltonian as Ĥeff

i /zJ = Ĥ
(0)
i − (b̂†i + b̂i)ψ with

Ĥ
(0)
i =

1
2
Ū n̂i(n̂i − 1)− µ̄n̂i + ψ2. (2.112)

The energies in this expression are scaled by 1/zJ , i.e., Ū = U/zJ and µ̄ = µ/zJ . The
unperturbed ground state is a local Fock state that minimizes the energy 〈Ĥ(0)

i 〉. For Ū(n− 1) <
µ̄ < Ūn, the state is given by |Ψ(0)

i 〉 = b̂†ni |0〉 = |n〉. The first order correction in ψ vanishes
since 〈n|(b̂†i + b̂i)|n〉 = 0. The second-order perturbation in energy gives

E(2) =
∑
m6=n

|〈m|̂(b†i + b̂i)|n〉|2

E
(0)
n − E(0)

m

=
n+ 1
−Ūn+ µ̄

+
n

Ū(n− 1)− µ̄
(2.113)

since only m = n± 1 contributes. As all odd powers of the expansion are zero, it follows

E(ψ) =
(1

2
Ūn(n− 1)− µ̄n

)
+
(
E(2) + 1

)
ψ2 +O(ψ4). (2.114)

Minimizing E(ψ) gives ψ = 0 for E(2) + 1 > 0 and ψ 6= 0 if E(2) + 1 < 0, so that the phase
boundary is defined by E(2) + 1 = 0. Solving this expression for the chemical potential, one
obtains

µ̄± =
1
2

[Ū(2n− 1)− 1]± 1
2

√
Ū2 − 2Ū(2n+ 1) + 1, (2.115)

which defines the upper and the lower boundary of the Mott-insulator phase. The Mott lobes in
phase space (µ̄/Ū , 1/Ū ) are depicted in Fig. 2.13 for n = 1 to n = 4. The smallest Ū , where
the system enters the Mott-insulator phase for a given n corresponding to the tips of the lobes,
requires µ̂+ = µ̂−, i.e., a vanishing square root in equation (2.115). Consequently, the critical
Ūc = (U/zJ)c is given by

(U/zJ)c = 2n+ 1 +
√

(2n+ 1)2 − 1 (2.116)
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Fig. 2.13: Phase diagram showing the Mott
insulator (MI) and the superfluid phase (SF).
The critical points (U/zJ)c for integer filling
n correspond to the tips of the Mott lobes.

and yields (U/zJ)c = 5.83 for n = 1 [20, 49, 130].

In the case of integer filling n, the system enters the Mott-insulator phase by varying zJ/U on
a line with a constant chemical potential. For a constant filling n′ = n + ε, however, the value
of the chemical potential bends around the Mott lobe with increasing zJ/U to the final value of
µ/U = n. Hence, the ground state of the system remains in the superfluid phase although only
a small fraction of atoms remains delocalized [20]. The idea, that these atoms tend to localize
when a disorder potential is present, is addressed in the fundamental article by Fisher et al. [20]. It
turns out, that the Mott lobes are surrounded by a glass phase, where the extend of the Bose-glass
phase depends on the disorder parameter. Thus, in the presence of disorder, the transition from
a superfluid to a Mott insulator occurs via the Bose glass phase. In addition to the localization
process caused by interaction, the atoms localize due to random site offsets of the lattice sites.
This leads to gapless excitations with a finite compressibility, but also with an infinite superfluid
susceptibility.

The transition point separating the superfluid phase from the Mott insulator has been studied with
several beyond mean-field methods reaching from quantum Monte Carlo in three dimensions
to DMRG in one dimension. These calculations have found substantial deviations from
equation (2.116), in particular, for the one-dimensional case. An accurate value for the critical
ratio (U/zJ)c for a three-dimensional lattice was obtained by quantum Monte Carlo simulation
in Ref. [131] which determines (U/J)3D

c as 29.36 for n = 1, being noticeably lower than
the mean-field result (U/J)3D

c = 6 × 5.83. In two dimensions an accurate value is given by
(U/J)2D

c = 16.74 [132]. The transition in one dimension is of Kosterlitz-Thouless type [20, 74].
Using DMRG (density-matrix renormalization group) calculations, a precise value for the critical
point (U/J)1D

c = 3.37 can be obtained [133, 134]. The value is, in principle, supported by
infinite-sized DMRG using periodic boundary conditions [135, 136], exact diagonalization [137],
quantum Monte Carlo [138], the Bethe ansatz [139], and by a strong-coupling expansion [132].
Note that in one dimension the result deviates drastically from the mean field value above. As a
new feature, in one-dimension a reentrant behavior occurs [133].

In experiments, the ratio U/J is altered by tuning the depth of the lattice potential. In contrast to
the symmetric case in three dimensions, high potential barriers in one or two directions lead to two-
or three-dimensional systems, since the tunneling J in the other directions is strongly suppressed.
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The values for U and J can be obtained using equations (2.59) and (2.60), respectively, by means
of the Wannier functions for a given lattice depth V0. For V0 � ER, the tunneling integral J can
be determined from the bandwidth of the one-dimensional Mathieu equation which tends to 4J ,
i.e.,

J =
4√
π

(
V0

ER

)3/4

e−
√

4V0/ER ER (2.117)

with kL = π/a. An analytical expression for U [74] can be obtained by approximating the
Wannier functions as the ground state of a harmonic oscillator

U =

√
8
π
kLas

(
V0

ER

)3/4

ER, (2.118)

which yields good results for deep lattices. It is important to realize that the tunneling parameter
J depends exponentially on V0, whereas U scales with V

3/4
0 . Combining both equations, an

analytical expression for the ratio U/J is given by

U

J
=

πas√
2a

e
√

4V0/ER , (2.119)

which holds for V0 � ER. However, more accurate values can be computed numerically using
equations (2.59) and (2.60).
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CHAPTER

3
Bosonic atoms in finite
optical lattices

This chapter has been published slightly modified in Ref. [1] D.-S. Lühmann, K. Bongs,
K. Sengstock, and D. Pfannkuche, Localization and delocalization of ultracold bosonic atoms
in finite optical lattices, Physical Review A 77, 023620 (2008).

3.1 Motivation

As a fascinating new development, experiments with a small number of lattice sites and in
particular finite optical chains have become focus of current research. Prominent examples are
quantum registers in the context of quantum information processing [38–40], the manipulation of
single atoms within a few sites [43, 44], and experiments with double well unit cells [41, 42]. In
this context a fundamental question arises: How similar are finite compared with macroscopic
systems? In this chapter, the problem of few repulsively interacting bosonic atoms in finite
one-dimensional and small two-dimensional lattices is studied. The central point is how finite
size effects influence the precursors of the Mott-insulator and the Bose-glass transition. The
rich physics of the crossover from a double well to mesoscopic systems is investigated by exact
diagonalization using a multiband basis, as described in the previous chapter. This allows accurate
results and the discussion of orbital effects, which have been widely neglected so far.

As shown in the following, small systems exhibit a surprisingly strong similarity to the localization
process in macroscopic systems. The momentum distribution, the formation of an energy gap, and
the pair correlation function show only a weak size dependence. A great advantage of studying
these systems by means of exact diagonalization is that we can gain intuitive insight into the
excitation spectrum and the nature of excited states. Finite systems offer also the possibility
to study the effects of noncommensurate filling, in which the localization is suppressed by the
equivalence of lattice sites. In deep lattices, a mixture of localized and delocalized particles can
be observed that is sensitive to lattice imperfections. Breaking the lattice symmetry causes the
localization of atoms in a Bose-glass-like phase [20, 140–143].
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3.2 Theoretical approach

The calculations are performed for repulsively interacting 87Rb atoms, which are present in
many experimental setups. Following the theoretical description in section 2.3, the Hamiltonian
including the full two-particle interaction in a periodic potential VP reads

Ĥ =
∫
d3r ψ̂†(r)

[
p̂2

2m
+ VP (r) +

g

2
ψ̂†(r)ψ̂(r)

]
ψ̂(r), (3.1)

where VP (r) is the periodic lattice potential. Thereby, the short range interaction potential is
approximated by a contact potential gδ(r− r′) with the interaction parameter g = 4π~2

m as, where
as is the s-wave scattering length and m the mass of the atoms. The periodic potential

VP (r) = V0x cos2(kx) + V0y cos2(ky) + V0z cos2(kz) (3.2)

is truncated to (nx, 1, 1) sites for chains and (nx, ny, 1) sites for two-dimensional lattices (see inset
of Fig. 3.1). At the boundaries, VP (r) is continued by a harmonic confinement (section 2.4.1).
The modeled optical lattice has the periodicity a = 515 nm, where k = π/a, and the depth of
the wells is varied from 1ER to 40ER given in units of the 87Rb recoil energy ER = ~2k2

2m =
2.16h kHz. The one-dimensional and two-dimensional lattices have a transversal confinement
V0,y = V0,z = 40ER and V0,z = 40ER, respectively, so that the transversal tunneling can be
neglected. Exact diagonalization is performed in the Bloch representation of the optical lattice
(see section 2.4.1). By using a few-particle basis, the two-particle interaction is fully included.
The truncation of the basis at a sufficiently high energy allows the inclusion of orbital effects. In
this chapter, up to 100 000 many-particle basis states and parity conservation if applicable are used
for the calculation. These basis states include the formed Bloch bands and the lowest bound states
in the confinement (corresponding to ”continuum” states in an open system).

3.3 Precursor of the Mott insulator in finite systems

3.3.1 The double well problem

Let us start the discussion with atoms in a double well which exhibit a crossover reminiscent of
the superfluid to Mott-insulator transition. Although the double well with commensurate filling
represents an intuitive and easy-to-handle model, the eigenstates and the spectrum have already a
structure similar to the studied one-dimensional lattices with three to ten sites. A double well with
two particles can easily be treated analytically with the restriction to the lowest band. The Hilbert
space separates into states with even and odd parity that do not couple. The subspace with even
parity comprises of the states

|2, 0〉 =
1√
2
b†2s |0〉 and |0, 2〉 =

1√
2
b†2as |0〉, (3.3)

where b†s is the creation operator of particles in the symmetric state and b†as in the antisymmetric
state (see inset of Fig. 3.1). Since the energy difference between symmetric and antisymmetric
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Fig. 3.1: Major coefficients cn for two (◦) and
eight atoms (�) in a double-well potential in
dependency on the lattice depth V0 calculated
by exact diagonalization. The lines without
markers are obtained using the LBA. The
inset shows a symmetric and an antisymmetric
basis wave function.

single-particle states χs and χas is twice the tunneling energy J , the energy of the states |2, 0〉 and
|0, 2〉 differs by 2Ω = 4J + ∆. The difference in the interaction energies ∆ is given by

∆ = g

∫
d3r [χ4

as(r)− χ4
s (r)] (3.4)

using the real space representation. The off-diagonal matrix element between both states is

I = g

∫
d3r χ2

s (r)χ2
as(r). (3.5)

Thus, by diagonalization of the respective 2× 2 matrix the ground state reads

Ψ0 = cos θ |2, 0〉+ sin θ |0, 2〉, (3.6)

where

θ = atan

(
Ω−
√

Ω2 + I2

I

)
. (3.7)

For very shallow lattices, where J approaches infinity, θ vanishes and Ψ0,V0→0 equals |2, 0〉, i.e.,
both particles occupy the energetically lower symmetric one-particle state.

In the limit of deep lattices, where J → 0, the difference between the symmetric and anti-
symmetric wave function χ2

s (x) − χ2
as(x) vanishes, i.e., ∆ → 0, and θ approaches −π/4.

Consequently, the ground state is given by

Ψ0(V0 →∞) =
1√
2
|2, 0〉 − 1√

2
|0, 2〉. (3.8)

Using the creation operators of a particle in the left and the right well b†l/r = 1√
2
(b†s ± b†as),

respectively, the ground state can be rewritten as

Ψ0(V0 →∞) = b†l b
†
r|0〉. (3.9)

Therefore, one particle is localized at the left site and one particle at the right site of the
double well. In addition to the localization, a fundamental property of a Mott-insulator-like
state is an excitation gap, which is given here by 2I . Because of its uneven parity, the first
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excited state Ψ1 = |1, 1〉 = b†sb
†
as|0〉 remains unchanged. The second excited state is given by

Ψ2 = cos θ′|2, 0〉+ sin θ′|0, 2〉 with θ′ = atan[(Ω +
√

Ω2 + I2)/I]. In deep lattices, the first and
second excited state

Ψ1/2(V0 →∞) =
1
2

(b†2l ∓ b
†2
r )|0〉 (3.10)

are therefore degenerate. Both states are symmetric-antisymmetric combinations of doubly
occupied sites and thus represent particle-hole excitations. In lattices these linear combinations
of particle-hole excitations build up the excited band as discussed further below.

Some of the coefficients cn in the expansion of the many-body wave function of the ground state
are plotted in Fig. 3.1. Already for a double well, it is instructive to compare these analytical results
obtained using the lowest band approximation (LBA) with numerical multiband calculations. For
filling factor ν = 1, deviations are well noticeable for shallow potentials (V0 . 10ER), whereas
for deep potentials the LBA leads to nearly perfect results. For higher filling factors the total
interaction energy and consequently the deviations increase, since higher one-particle bands are
occupied in order to minimize the interaction energy. Exemplarily, the coefficients of the states
|8, 0〉 and |0, 8〉 for filling factor ν = 4 are plotted in Fig. 3.1. Additionally, the lowest band
coefficients |6, 2〉, |4, 4〉, and |2, 6〉, which are not shown in Fig. 3.1, contribute. For filling factors
higher than ν = 1, the deviations do not vanish in deep lattices, since in that case ν interacting
particles are trapped at each site, leading to a modification of the effective single-particle orbitals.
This has direct implications for the Bose-Hubbard model (section 2.3.2) which is widely used
in this context and is commonly restricted to the lowest band. Figure 3.1 shows that for higher
filling factors (ν & 3) this restriction leads to noticeable deviations from a multiband calculation,
whereas for low filling factors the deviations are small. Experimentally, deviations for higher
fillings have been observed, e.g., by measuring the interaction energy U on a single lattice site.
The experimental observation and calculation in Ref. [144] can be confirmed restricting the exact
diagonalization to a single site. The on-site energy U of filling factor ν = 5 is, e.g., roughly 17%
smaller than for ν = 1 at V0 = 30ER.
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3.3.2 Finite one-dimensional lattices

In the following, let us extend the double well to a one-dimensional lattice or rather a chain with
Ns = 6 lattice sites and six particles. The momentum distribution ρp(kx) of the chain is shown for
different lattice depths V0 in Fig. 3.2, where ky = kz = 0. For very shallow lattices (V0 = 1ER) a
narrow central peak indicates the delocalization of all particles over the lattice, whereas for deep
lattices a broad Gaussian momentum distribution is observable. The latter can be assigned to
particles that are localized in the center of a single lattice site. Although the system is very small
the similarity to macroscopic experimental results, e.g., Refs. [19, 120], is striking. This is a first
indication that the localization mechanism is not strongly dependent on the number of lattice sites
(see also [145]) which is discussed in detail below.

For V0 = 1ER, minor dips in the momentum distribution at kn = nG/Ns are observable
(Fig. 3.2), where G = 2π/a is the reciprocal lattice vector. These dips originate from the
suppression of standing waves with odd parity in the confinement with wavelengths λn = Ns a/n,
where n = 1, 2, ..., because of the even parity of the ground state. Increasing the lattice
depth to V0 = 5ER, Bragg peaks located at the reciprocal lattice vector appear. At the same
time, the central peak drops rapidly in height and becomes broader, i.e., the particles begin to
separate to different sites as the interaction grows relative to the tunneling. At V0 = 10ER, the
minima are smeared out and only a small modulation of momentum density due to delocalized
particles remains. This progress proceeds with increasing lattice depth, so that for approximately
V0 = 30ER the momentum distribution has a Gaussian shape1, corresponding to completely
localized particles.

3.3.3 Two-particle correlations

However, a Gaussian momentum distribution may also arise from a superposition of delocalized
states and does not prove the localization at single lattice sites. Therefore, the pair correlation

1 The density on one site corresponds to the density of a single particle in a single-sited cos2 potential, but deviates
slightly from a harmonic approach.
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function
G2(r, r′) =

1
ρ(r′)

〈ψ̂†(r)ψ̂†(r′)ψ̂(r′)ψ̂(r)〉 (3.11)

at y = z = 0 is studied, which reflects the conditional density of N − 1 particles if one particle
can be found at r′. In Fig. 3.3 the pair correlation is shown for x′ = −a/2, i.e., for one particle
located at the third site. For V0 . 5ER other particles can be found at the same site, whereas
for V0 & 10ER the pair correlation completely vanishes on the third site. Hence, that site and
consequently all sites are occupied with exactly one particle in deep lattices.

The integral over the local correlation function

IG2(x,x) =
N/(N − 1)∫
dx ρ(x)

∫
dxG2(x, x) (3.12)

measures the average probability of finding two particles at the same position and is consequently
a good measure for the total spatial correlation of particles. In Fig. 3.4a the local correlation
integral is shown for chains with Ns sites and filling factor ν = 1. The calculations are restricted
to the lowest band which is quite accurate due to the low filling (see Fig. 3.3).

Overall, we see an exponential decay of the correlation integral with increasing lattice depth. In
deep lattices, the integral vanishes which reflects the localization of all particles. For V0 . 6ER the
correlation decreases with an exponent−cV 2

0 (see fit for NS = 10 in Fig. 3.4b). Thus, an increase
of the potential barriers causes a relatively strong separation of the particles in this regime due
to the strong overlap of wave functions. For V0 & 8ER the particles are located predominately
at single lattice sites and the extent to neighboring sites is small. In this region, the exponential
decay is weaker and the correlation drops with an exponent −c′V 1/4

0 . It is remarkable that this
calculation shows a crossover between two different correlation regimes already for such a small-
sized system.

In the studied systems, we observe a partial loss of spatial correlations in the region corresponding
to the superfluid phase (see also Ref. [145]). Moreover, finite correlations above the transition
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point are present, which can be understood quantitatively by using a perturbative ansatz to first
order in J/U [112, 118], where J is the tunneling matrix element and U the on-site interaction
energy. The perturbed wave function can be written as

Ψ′ = Ψν=1
MI +

J

U

∑
ij

b†ibjΨ
ν=1
MI , (3.13)

where Ψν=1
MI is the pure Mott insulator state at infinite lattice depth which has a vanishing local

correlation (see section 2.6.2). The operator b†ibj creates a particle-hole state with a hole at site j
and a doubly occupied site i. For doubly occupied sites, the pair correlation has a constant value
if neglecting the interaction. Hence, the expectation value of the correlation integral is roughly
proportional to (J/U)2. In a double-logarithmic plot in units of U/J (Fig. 3.4c) the correlation
integral shows a linear behavior between V0 = 6ER and 17ER, i.e., the integral is proportional to
(U/J)β . We observe a value for β that is slightly above β = −2 (about 13%). For shallow lattices,
this simple perturbative ansatz is obviously not suited and for very deep lattices (V0 > 20ER) the
expectation values are slightly above the power law fit (see also Ref. [112]).

Only in very shallow lattices the correlation integral varies noticeably with the number of lattice
sites, whereas for V0 > 3ER the integral is nearly size-independent (even for a double well
system). In addition, the differences for V0 < 3ER are quite small for more than four lattice sites.
Thus, the localization of particles depends very weakly on the number of lattice sites Ns, which
indicates that the localization may occur in the same manner also in one-dimensional lattices of
macroscopic size. We conclude that the blocking mechanism, which is caused by the tunneling
prohibiting repulsion, is to a large extend insensitive to changes of the system size. Apparently,
the coherence length in the insulating region drops below the extend of the system. Consequently,
small systems become a good representation of larger ones. This explains the similarity of the
presented momentum distributions and experimental results.

3.3.4 Energy spectrum and two-dimensional lattices

Further insight can be gained by probing the excitations of the many-body system, which has been
addressed experimentally, e.g., in Ref. [120]. Exemplarily, the energy spectrum of a system with
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Fig. 3.6: The momentum distribution (normalized to 1) of a two-dimensional 3 × 3 lattice with
nine atoms for various lattice depths V0 using the LBA.

Ns = 6 sites, plotted in Fig. 3.5, shows the formation of narrow many-particle bands for deep
lattices. The bands are gapped by the interaction energy U of two particles on the same site. For
example, the first excited band consists of states where one particle interacts on average with one
other particle at the same site. The number of states in each band is given by the possibilities
to remove a certain number of particles and put them onto other sites resulting in an interaction
energy of nU (e.g., the first band has 30 states due to 6 possible sites for a hole and 5 possible sites
with double occupation). In particular, the energy of the nondegenerate ground state decreases
and the ground state becomes separated from the excited states which is characteristic for an
incompressible Mott-insulating state. In the limit of deep lattices, the interaction energy of the
ground state vanishes, since the wave function overlap decreases due to the localization at single
sites. The energy of the excited bands slowly increases due to the stronger confinement. Since
the sites are equivalent, the eigenstates of the bands are delocalized. These delocalized states that
form the excited bands in this commensurate system reappear within the ground-state band of
noncommensurate systems, which are discussed in the next section.

The results obtained so far for momentum distributions, correlation functions, and energy spectra
of quasi-one-dimensional chains can be generalized to two- or three-dimensional lattices. As an
example, a quasi-two-dimensional lattice with 3 × 3 lattice sites and integer filling factor ν = 1
is studied. The momentum distribution is presented in Fig. 3.6 for different potential depths.
It shows the crossover from delocalization to localization and compares well with experimental
results [118]. For 5ER and 7.5ER Bragg peaks at k = ±Gk̂x and k = ±Gk̂y appear in the
distribution. Due to the finite number of sites per lattice direction, additional dips at k = n

3G

can be observed. Increasing the lattice depth, the momentum distribution smears out due to the
localization of particles. This starts at approximately 10ER and is far advanced at 12.5ER, which
is in accordance with the critical point for infinite systems [132]. The two-dimensionality of the
system becomes apparent for a lattice depth V0 between 10ER and 15ER. Here, the momentum
distribution reflects the square symmetry of the boundary of a single lattice site. At roughly
V0 = 30ER the distribution becomes a Gaussian, which indicates that the particles are located
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deep in the wells. Then the confining potential experienced by the particles is circular symmetric
and can be approximated by a two-dimensional harmonic oscillator, which is reflected in the
momentum distribution.

Further information on the localization process is contained in the integral over the local
correlation function IG2(x,x) that is plotted in Fig. 3.4. Compared with the quasi-one-dimensional
chain, the localization process is shifted towards deeper potentials because of two reasons: The
interaction energy on each lattice site is diminished due to a smaller confinement in the y direction
and the tunneling is enhanced, since tunneling to four nearest neighbors is possible. For the
two-dimensional lattice, the formation of gapped excited bands in deep lattices and the energetic
separation of the ground state is observable in the same way as discussed for chains.

3.4 Noncommensurate filling

3.4.1 The noncommensurate double well

When a noncommensurate filling of the lattice is present the physical situation becomes more
complicated. The localization of all particles as in the Mott-insulator-like regime is suppressed
by the symmetry of the potential, since the equivalence of sites requires the same filling on all
sites. Consequently, particles which in principle would prefer localization must delocalize over the
whole lattice. The differences to commensurate filling can be illuminated by considering a double
well with three atoms restricted to the lowest band. The basis of even parity states comprises of
the two states

|3, 0〉 =
1√
6
b†3s |0〉 and |1, 2〉 =

1√
2
b†sb
†2
as |0〉. (3.14)

The difference in energy between both basis states is 2Ω = 4J + ∆ with

∆ = g

∫
d3r [χ4

as(r) + 4χ2
s (r)χ2

as(r)− 3χ4
s (r)] (3.15)

and the off-diagonal matrix element

I =
√

3g
∫
d3r χ2

s (r)χ2
as(r). (3.16)

Thus, the solution for the ground state is given by the same expression as for two particles, i.e.,

Ψ0 = cos θ |3, 0〉+ sin θ |1, 2〉. (3.17)

In deep lattices the tunneling energy J vanishes, but ∆, which had vanished for two particles,
becomes 4I/

√
3.

The ground state in the limit of deep lattices reads

Ψ0(V0 →∞) =
√

3
2
|3, 0〉 − 1

2
|1, 2〉 =

1
2
b†l b
†
r(b
†
l + b†r)|0〉, (3.18)

since θ becomes 2π/3. This represents a wave function with two localized atoms and one atom
that is delocalized between both wells. Consequently, the ground state is a mixture of localized
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and delocalized particles. Of great importance in this context is that in this limit the first excited
state, which has odd parity and is given by

Ψ1(V0 →∞) =
1
2
b†l b
†
r(b
†
l − b

†
r)|0〉, (3.19)

becomes degenerate with the ground state. Small asymmetries lead to linear combinations of
the two quasidegenerate states and result in the nonsymmetric states 1√

2
b†2l b

†
r|0〉 and 1√

2
b†l b
†2
r |0〉.

Consequently, in a potential with broken symmetry the third particle can always localize in one
of the wells, if the lattice is deep enough. This localization process depends on the potential
difference between the two wells compared with the energy difference between ground and first
excited state E1(V0) − E0(V0). The third and fourth excited state which form the “first excited
band” are separated from the ground state by 4I/

√
3.

3.4.2 Finite systems

These intuitive results for a double well transfer nicely to one- and two-dimensional lattices.
Exemplarily, a chain with Ns = 5 sites filled by five to ten particles is studied. The momentum
distribution for deep lattices (V0 = 40ER) obtained by exact diagonalization is shown in Fig. 3.7a.
For integer filling factors (N = 5 and N = 10) a Mott-insulator momentum distribution can be
observed as discussed in the previous section. When, for example, adding a sixth particle to
a chain with filling factor ν = 1, the additional particle cannot localize, since all lattice sites
are equivalent. Despite being delocalized at different sites, the particle has a high probability
density at the lattice site centers. Therefore, the momentum distribution reflects the lattice
structure very clearly. Correspondingly, it shows peaks at 0 and ±G as well as smaller peaks
at ±nG with n = 2, 3, ..., which originate from the delocalized particle. Additional to this
peak structure, the momentum distribution has an underlying Gaussian background, which arises
from the localized particles. Recapitulating the ground state for three particles in a double well
Ψ0(V0 → ∞) = 1

2b
†
l b
†
r(b
†
l + b†r)|0〉, the interpretation is straight forward: For noninteger filling

factors ν, the number of particles may be written as N = κNs + Nadd with the corresponding
integer filling factor κ and the number of additional particles Nadd. In deep lattices κNs particles
localize in the wells of the lattice and the remaining Nadd are delocalized.

The plotted momentum distribution for V0 = 40ER in Fig. 3.7a shows that forN = 6 particles the
Gaussian background is noticeably smaller than for five particles. This indicates that the localized
particles are influenced by the delocalized hopping particle, which experiences the same repulsive
interaction on all lattice sites and consequently interacts with all localized particles. For seven
particles the height of the peaks increases due to two hopping particles, whereas for eight particles
the background increases, since more sites are doubly occupied. Finally, for nine particles all sites
except one are doubly occupied which is equivalent to the tunneling of a hole in a lattice with
filling ν = 2. We also find the delocalization in deep lattices by analyzing the pair correlation
function G2(x, x′) with one particle fixed in the middle of a specific site. As seen before, the
spatial correlations vanish at that site for filling factor ν = 1. For noninteger filling (6 ≤ N ≤ 9)
the height of the correlation function varies for each site. Thus, regarding the integer number of
particles, at least some particles must be delocalized between the sites.
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Fig. 3.7: (a) Momentum distribution ofN = 5 to 10 atoms in a chain with five sites at V0 = 40ER.
For a perfectly symmetric potential the localization of all particles can only be observed at integer
filling. (b) The energy spectrum for six particles on five sites shows the formation of a lowest
many-particle band.

The energy spectrum for six particles in a chain with Ns = 5 sites is shown in Fig. 3.7b. For deep
lattices the formation of bands can be observed, which are roughly separated by the two-particle
interaction energy U . An interesting feature is the splitting of the second excited band which
would not be observable in the LBA. The states with higher energy have three doubly occupied
sites whereas the other states have one triply occupied site. Their energy is reduced by a stronger
deformation of the wave function accounting for the effective repulsive potential created by the
two other atoms at the same site. As seen before for a double well, the ground state becomes
quasidegenerate and lies within a band of Ns states. Therefore, the ground state is extremely
sensitive to small perturbations of the lattice potential, which is discussed in the next section.

It is hardly surprising that the rich physics of noncommensurate filling can also be found in two-
dimensional lattices, including the formation of a degenerate lowest band with the implications
discussed above. For a two-dimensional lattice it is interesting to explore the quantum mechanical
nature of the states that are contributing to the lowest band. For a 3 × 3 lattice with ten particles
the lowest band consists of nine states due to one particle exceeding commensurate filling. Similar
to Fig. 3.7a these states become quasidegenerate with increasing lattice depth representing all
delocalized combinations with the two-particle interaction energy U . In Fig. 3.8 the momentum
distribution of the lowest band states is plotted at V0 = 30ER (the seventh state is not shown).
The first and second excited state, the third and fourth excited state as well as the sixth and
seventh excited state are exactly degenerate. The strong interference pattern of the momentum
distribution is in eye-catching contrast with the Gaussian shape of a Mott insulator state and
reflects the delocalization. The general structure of the shown band states can be generalized to
larger noncommensurately filled lattices and to particle-hole excitations for commensurate filling.
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Fig. 3.8: The momentum distribution (normalized to 1) of the lowest band states of a two-
dimensional 3 × 3 lattice with ten atoms at V0 = 30ER (in LBA). The seventh excited state,
which corresponds to the sixth excited state (rotated by π/2), is not shown here.

3.4.3 Noncommensurate filling in a harmonic confinement

As indicated in the discussion above, an additional symmetry-breaking potential forces the
localization in noncommensurate systems. Perturbations of the periodic potential can cause linear
combinations of the lowest band states that allow the localization of the additional particles at
specific sites. Consequently, a small external confinement can destroy the partly delocalized phase
in the same way as small random site offsets caused by lattice fluctuations in a Bose glass [20].
The parameter which triggers the localization of the additional Nadd particles is the bandwidth of
the lowest band which must be similar or smaller than the site offsets to attain localized particles.
In experimental setups perfectly flat potentials are hard to achieve, due to the finite waist of the
laser beams, which establish the optical lattice, and additional external fields. We investigate this
effect by using a chain with five sites and six particles that experience an additional potential

Vadd = −2VT e−2x2/W 2
0 (3.20)

with VT = 40ER. The potential is motivated by the Gaussian beam waist W0 given in units
of the lattice constant a, but it can also be approximated by the harmonic potential 4VT

W 2
0
x2. The

momentum distribution at V0 = 20ER is shown in Fig. 3.9 for different beam widths W0 ranging
from W0 = 10a to W0 = 200a. The corresponding offset energies relative to the central site are
given by ε1 = 160

W 2
0 /a

2ER and ε2 = 4ε1 (see inset of Fig. 3.9). The width of the ground state band

at V0 = 20ER is roughly 1
50ER.

In order to localize the additional particle, the offset ε1 is important with respect to the bandwidth.
For W0 = 200a and W0 = 120a peaks due to delocalization can be well identified in the
momentum distribution, but atW0 = 80a (ε1 = 1

40ER) this structure is smeared out. AtW0 = 40a
(ε1 = 1

10ER) the momentum distribution matches the distribution for commensurate filling shown
in Fig. 3.2 (at V0 ≈ 15ER), i.e., the sixth particle is localized in the center of the lattice. Below
W0 = 40a the momentum distribution does not change noticeably. Instead, the density changes
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Fig. 3.9: The momentum distribution of six
atoms in a chain with five sites at V0 = 20ER
for a laser beam with a finite Gauss widthW0.
The inset shows the corresponding site offsets
ε1 and ε2.

drastically, since the gain in potential energy ε2 exceeds the repulsive interactionU of two particles
on the same site. At W0 = 20a the density on the two outer sites vanishes and the inner sites are
doubly occupied, due to a total energy gain of roughly 2(ε2 − U) ≈ 2 × (1.6ER − 0.6ER). For
the stronger confinement W0 = 10a, the central site is even occupied by four particles.

In addition to a harmonic potential, the lattice symmetry can also be broken by applying different
moderate perturbation potentials (such as single site offsets or a linear potential). The localization
process remains qualitatively the same for the studied finite systems, since basically local site
offsets are responsible for the localization. Consequently, in perturbed lattices a Bose-glass-
like localization of all particles can always be achieved in sufficiently deep lattices triggered
by the ratio of offset energies and bandwidth. However, at intermediate lattice depth a mixed
phase with Nadd delocalized particles can be observed, if the lattice fluctuations are smaller than
the bandwidth. Increasing the lattice depth (decreasing the bandwidth) first κNs particles and
in deeper potentials the remaining Nadd particles localize. Experimentally, the observation of
the mixed phase may be hindered by the finite temperature of the BEC. In stronger harmonic
confinements in which the offset energies match the interaction energy U (W0 . 20a for the
system above) a precursor of a shell structure can be observed, which shows regions with different
occupations per site. This is further discussed in the next chapter.

3.5 Conclusions

In this chapter, bosonic atoms in finite optical lattices were studied using an exact treatment which
includes the effects of higher bands. Due to the equivalence of sites, finite lattices with integer
filling factors exhibit a fundamentally different behavior than those with noninteger filling factors.
The well-studied superfluid to Mott-insulator transition can be recovered in finite commensurately
filled one- and two-dimensional lattices with few lattice sites. The reader should be aware
that the finite systems discussed here cannot exhibit macroscopic phases or a phase transition.
Nonetheless, the precursors to the superfluid phase and the Mott insulator map on many aspects
known from macroscopic systems. The results show the localization of atoms in deep lattices
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and reveal a striking similarity to the momentum distribution observed in macroscopic systems.
Furthermore, the local correlation is widely independent of the system size, which indicates that
the localization process in small systems compares with that in infinite systems. The localization
is also reflected by the formation of an energy gap in the energy spectrum. Finite-size effects can
be observed but do not dominate the behavior of the system. Therefore, simulations with few
lattice sites are also quite applicable to larger systems and offer an intuitive and detailed insight
due to the accuracy and the inclusion of orbital effects.

For noninteger filling factors only the particles that correspond to integer filling localize in
deep lattices whereas the additional particles are delocalized. The coexistence of localized and
delocalized particles in the ground state can be observed in the momentum distribution and the pair
correlation function. The energy spectrum shows the formation of a narrow lowest band in deep
lattices. This causes that the ground state is extremely sensitive to perturbations of the potential
such as lattice imperfections or additional confinements. Triggered by the ratio of bandwidth to
site offsets, one observes the localization of all particles which is similar to the localization process
in a Bose glass. In weakly confined systems this leads to a localization which occurs in deeper
potentials than in lattices with commensurate filling.

Briefly, the macroscopic physics of the Mott insulator and of the Bose glass transfer to finite
systems. Consequently, the detailed simulation of small systems offer important information
about larger ones. In addition, using exact diagonalization allows to gain detailed insight into
the localization behavior of experimentally relevant finite systems.
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CHAPTER

4

Excitation spectrum of
Mott-insulator shells

This chapter has been published slightly modified in Ref. [4] D.-S. Lühmann, K. Bongs, and
D. Pfannkuche, Excitation spectrum of Mott shells in optical lattices, Journal of Physics B: Atomic,
Molecular & Optical Physics, 42, 145305 (2009).

4.1 Motivation

The equivalence of lattice sites is the foundation of solid state physics as it causes bands and
lattice-periodic wave functions. Interesting physics emerges when the band is bend caused by
the inhomogeneity of the system, e.g., in clusters, where bulk and surface electrons show a
different physical behavior. In optical lattices, the inhomogeneity comes naturally due to the
finite waist of the lattice-establishing laser beams or due to an additional dipole trap. It has been
shown in a series of pioneering work [19, 21, 120] that the bosonic Mott-insulator phase can be
realized in optical lattices. However, further measurements [42, 144, 146] have demonstrated
that the situation is more subtle and Mott-insulator shells appear, i.e., plateaus with constant
filling factors descending in integer steps from the center of the trap. The existence of superfluid
regions between the Mott shells has been theoretically predicted [113, 122, 134, 147–149]. The
system has previously been studied numerically, using quantum Monte Carlo [113, 147, 148] and
DMRG [134], and analytically in Refs. [122, 149]. In addition to condensed matter aspects, the
coexistence of compressible and incompressible regions has important implications on adiabatic
heating in optical lattices [150].

This chapter presents a multiband exact diagonalization study of small systems exploring the
exact excitation spectrum and the precursor of shell formation. Based on this calculation, a
fast numerical method is proposed to calculate the ground-state filling and excitation energies
in the limit of deep lattices. Thereby, many-particle on-site energies are incorporated capturing
multiband effects. This approach is suitable for optical lattices with millions of atoms in
arbitrary spatial dimensions and allows a perturbative treatment of tunneling using an effectively
restricted Hilbert space. Results for small one-dimensional lattices obtained by this method are
in good agreement with the exact multiband diagonalization of the Hamiltonian. For large three-
dimensional systems, the formation of shells, local excitation gaps, and particle fluctuations are
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discussed reflecting the strong inhomogeneity of the system. In particular, interfaces between the
shells exhibit gapless local excitations characterized by strong particle fluctuations. Compared
with algorithms such as quantum Monte Carlo [113, 147, 148] and DMRG [134], this technique
gives numerically inexpensive results for large three-dimensional lattice systems in a specific
parameter regime.

4.2 Exact diagonalization

As mentioned previously, the interaction of the ultracold bosonic atoms with mass m is modeled
by a contact potential gδ(r−r′) with g = 4π~2

m as and the s-wave scattering length as (section 2.3).
Using the bosonic field operator ψ̂(r), the Hamiltonian including the repulsive two-particle
interaction reads

Ĥ =
∫
d3r

(
ψ̂†(r)

[
p̂2

2m
+ VP (r) + VC(r)

]
ψ̂(r)

+
g

2
ψ̂†(r)ψ̂†(r)ψ̂(r)ψ̂(r)

)
, (4.1)

where the periodic potential VP of the optical lattice is given by V0,x cos2(πx/a) +
V0,y cos2(πy/a) +V0,z cos2(πz/a) with the lattice spacing a. The atoms experience an additional
confinement potential VC caused by the finite Gaussian beam waist W0 of the laser beams and/or
an additional dipole trap with frequency ωd (see section 2.1.3). Using a harmonic approach, the
confining potential in x direction is given by

VC = Vh
x2

a2
, (4.2)

where Vh = 1
2mω

2
effa

2 with ω2
eff ≈

4(V0,y+V0,z)

mW 2
0

+ ω2
d,x.

For the exact diagonalization, the potential is truncated to an one-dimensional lattice with mx =
10 and my = mz = 1 sites by adding a smooth boundary (see section 2.4.1). The calculation is
performed for 87Rb atoms with as = 100a0, where a0 is the Bohr radius, N = 10 particles,
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a lattice constant a = 515 nm, and a transversal lattice depth V0,y = V0,z = 40ER, where
ER = h

8ma2 is the recoil energy. The lattice depth in the longitudinal direction is V0,x = 20ER,
leading to a system deep within the Mott-insulator phase for a vanishing harmonic confinement
(Vh = 0). The potential of the one-dimensional lattice, shown in Fig. 4.1, depicts the energy
offsets εi of the modeled chain, which are labeled ε0 = 0 for the two equivalent central sites and
ε4 for the outermost sites. The parabolic shape of the confinement leads to large energy offsets of
outer sites, although the offsets are small for central ones. At Vh = 0, the single-particle spectrum
shows three discrete bands that comprise ten delocalized Bloch states each (corresponding to the
number of sites), where the width of the lowest band is 4J ≈ 2.4×10−3ER. Due to the symmetry
of the potential, the two lowest bands contain nearly degenerate symmetric and antisymmetric
states localized at two equivalent sites. For larger values of Vh the “band” width is given basically
by the offset of the outermost sites (see Fig. 4.1). At Vh & 0.4ER, the outermost site offset
ε4 & 8ER causes the lowest two single-particle bands to overlap.

To calculate the many-particle spectrum by means of exact diagonalization, the many-particle
basis is limited to 500 000 Fock states with lowest energy and the orbital degrees of freedom in
y and z direction are frozen out. Afterwards, the matrix elements of (4.1) are calculated and
the 91 lowest eigenvalues determined (the ground state and the 90 states of the first band for
Vh → 0). The exact diagonalization method includes particle correlations and the admixture of
higher bands, i.e., orbital changes taking place for higher fillings, but is strongly limited to systems
with few lattice sites. The many-particle spectrum is plotted in Fig. 4.2 (upper half) relative to the
ground-state energy E0 as a function of the harmonic confinement Vh using a logarithmic scale.
For convenience, the band gap between the ground state and the first excited state is depicted in
gray.

For vanishing confinement (Vh = 0), the spectrum shows that the first excited band is gapped from
the ground state by the on-site interaction energy of two particles U ≈ 0.6ER, which corresponds
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to the gap of the macroscopic Mott-insulator phase. The atoms are strongly localized at single
lattice sites, so that all lattice sites are occupied by exactly one particle per site. Increasing the
harmonic confinement leads to abrupt crossovers to states with higher integer occupation numbers,
i.e., finite size correspondents to Mott shell configurations. In the many-particle spectrum these
crossover points are reflected by vanishing energy gaps. In between these points lobe-like energy
gaps can be observed, where the lobes correspond to the occupation number configurations 1-1-1-
2-2-1-1-1, 1-2-2-2-2-1, 2-3-3-2, 1-4-4-1, and finally for Vh > 1ER a states with 5 particles on the
two central sites.1 For Vh < 0.03ER the lattice is commensurately filled with one particle per site.
In this region, the excited band broadens with increasing Vh leading to a slowly decreasing energy
gap. At Vh ≈ 0.03ER, where the energy gap vanishes, a multitude of low-lying excitations are
possible leading to a compressible system. At this point, the double occupation of the central sites,
which corresponds to the on-site energy U , becomes energetically preferable to the occupation of
the outermost sites with ε4 = 20Vh. Analogous situations exist at the other crossovers, so that
the shell structure is dominated by the ratio of on-site interaction ni(ni−1)

2 U to individual site
offsets εi. The critical behavior separating different filling configurations manifests itself in the
disappearance of the excitation gap.

4.3 Classical approach

The nature of the excited states, however, is more complicated and the energy spectrum, which
contains important physics, is rather complex. Let us therefore consider the “classical” case of
vanishing tunneling (J → 0) which is valid deep within the Mott-insulator phase. Using this
approach, the basic features of the spectrum can be uncovered. Furthermore, larger systems can
be studied, for which finite tunneling can be reintroduced perturbatively in a second step, dealing
with a drastically reduced basis set. For J → 0, the truncated Bose-Hubbard Hamiltonian is given
by

Ĥ =
∑
i

n̂i(n̂i − 1)
2

U + εin̂i (4.3)

and the localized occupation number basis |n1, n2, ..., nM 〉 is an eigenbasis of the Hamiltonian,
where M = mxmymz denotes the number of sites. In principle, finding the ground state requires
to calculate the total energy E = 〈Ĥ〉 of all possible basis states. The efficiency of this method
is very limited due to the huge number of basis states (N+M−1)!

N !(M−1)! for large lattices, where N
is the number of particles. Following Refs. [122, 149], in the local density approximation an
effective local chemical potential µ̃(r) = µ − VC(r) can be introduced, and the ground state
is then constructed via filling each lattice site up to the local chemical potential µ̃ separately.
Using the continuous limit, the chemical potential µ(N) is calculated analytically in Ref. [149]
and numerically in Ref. [122]. The continuous limit is, however, only applicable to smooth
confining potentials. In general, the self-consistent determination of µ(N) is tedious. Therefore,
the following iterative algorithm can be used for the solution of (4.3) directly in the microcanonical
ensemble with a fixed total particle number N =

∑
i ni. It allows us also to construct the lowest

1For certain system parameters (N , mx, Vh) a degeneracy of the ground state can occur.
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Fig. 4.3: A comparison of Hubbard on-site interaction U , the many-particle interaction energy
u(n), and the total on-site energy e(n) per atom pair. The single-site many-particle wave function
is determined by exact diagonalization for n = 2 particles (highest energy) to n = 5 particles
(lowest energy).

excited states of the system, which we can compare with the exact calculation shown in the upper
half of Fig. 4.2. Starting with an empty lattice, the N particles are added successively to that site
j of the lattice, where the expense of energy µ+

j = njU + εj is presently minimal. This procedure
gives the lowest energy occupation for any particle number N , since µ+

j > 0 and all sites are
uncorrelated. The complexity of this algorithm is given by O(NM), since each step adds one
particle to one of M possible sites. This allows the calculation of the exact occupation numbers
for a million particles, e.g., N = M = 1003, within seconds on an ordinary desktop computer.
Hence, this method is considerable useful for the design and interpretation of experiments.

4.4 Orbital degrees of freedom

Compared with the exact diagonalization results for the one-dimensional lattice, the crossover
points can, in principle, be reproduced with this method but their positions are shifted. To study
this effect, which is enhanced for higher filling factors, the on-site interaction is calculated for
n particles by exact diagonalization using a multiorbital basis. Since the lattice is sufficiently
deep, it is valid to approximate the multiband Wannier functions wi(r) by the wave functions of
a single sinusoidal lattice site using hard boundary conditions, i.e, infinite walls at ±a/2. The
correlationless Hubbard on-site interaction

U = g

∫
d3r |w0(r)|4 (4.4)

does not incorporate that particles tend to avoid each other for repulsive interaction. This causes
broadening of the particle density and was addressed experimentally in Ref. [144]. Using the
correct many-particle wave function Ψn for n particles, the expectation value of the on-site

69



Excitation spectrum of Mott-insulator shells 4.4 Orbital degrees of freedom

interaction becomes

u(n) =
g

n(n− 1)

∫
d3r 〈ψ̂†(r)ψ̂†(r)ψ̂(r)ψ̂(r)〉, (4.5)

which is normalized to the interaction energy per atom pair. The results that are depicted in Fig. 4.3
show that u(n) determined by exact diagonalization deviates strongly from the Hubbard on-site
interaction U . As expected, the interaction energy u(n) decreases with an increasing number of
particles per site. However, not only u(n) changes when the modification of wave functions is
taken into account. In fact, the admixture of correlated states and the broadening of the density
change the expectation value of on-site kinetic and potential energy. The total on-site energy is the
eigenvalue of the many-particle Schrödinger equation

Ĥi Ψn = En Ψn (4.6)

restricted to single-site wave functions and using the full Hamiltonian (4.1) with Vh = 0. The
normalized on-site energies

e(n) =
2(En − E0

n)
n(n− 1)

(4.7)

are plotted in Fig. 4.3, where E0
n is the energy of the noninteracting system. It shows that

the total interaction energy e(n) lies between U and u(n). Nevertheless, the deviation of e(2)
from the Hubbard U is large. Using U = e(2), the crossovers are still shifted noticeably for
higher fillings (large Vh) comparing with the results of the fully quantum mechanical calculation
(upper half of Fig. 4.2). Therefore, the correct total interaction energy e(nj) for a single site
with the occupation nj is incorporated in the “classical” approach. Note that the optimization
problem remains the same if substituting the energy µ+

j = njU + εj for adding one particle by
µ+
j = e(nj + 1) − e(nj) + εj . In the lower half of Fig. 4.2 the energy spectrum for vanishing

tunneling (J → 0) is shown using the corrected values of the on-site interaction. In this case
the crossover energies corresponding to the vanishing gaps for J → 0 are in good agreement
with the exact diagonalization of the one-dimensional lattice. This result shows, in general, that
the introduced filling-dependent on-site interaction e(n) is appropriate to describe effects arising
from orbital changes. The small remaining shift of the crossover energies in Fig. 4.2 is due to the
“classical” treatment of the states in our approach.

The energy gap can be obtained by removing one particle from site j and adding it to site
k 6= j. Finding the minimum excitation energy ∆Ej,k for all possible j and k has, in general,
the complexity O(M2). The excitation energy is given by ∆Ej,k = µ+

j + µ−k , where

µ+
j = e(nj + 1)− e(nj) + εj > 0 (4.8)

for adding a particle at site j and

µ−k = e(nk − 1)− e(nk)− εk < 0 (4.9)

for removing a particle from site k. Thus, it is sufficient to minimize µ+
j and µ−k separately,

which reduces the complexity to linear order in M . Finding the next excited state is more
complicated, since this state may be an excitation of the ground state but also of the first excited
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Fig. 4.4: (a) Cut through the occupation number distribution ni of a three-dimensional lattice
(N = 106, J = 0, Vh = 7.5× 10−4ER, and V0 = 25ER) showing fillings ni = 1 (red) to ni = 5
(blue). (b) Particle fluctuations ∆ni due to finite tunneling (J = 10−3ER ≈ 2 × 10−3U ) appear
at the surfaces of the shells (z = 0 plane).

state. For the calculation of the spectrum, a slightly modified Dijkstra algorithm can be used,
where one considers the ground state as the node of a graph. This node is expanded according to
all possible excitations. Iteratively, the node with the minimum energy, which is not expanded yet,
is expanded. Consequently, the list of expanded nodes represents the states with the lowest energy.
It is necessary, however, to check whether a created excited state is already a node in the graph,
which is a major contribution to the complexity of the Dijkstra algorithm, but can numerically
be highly optimized. Using this procedure, the resulting energy spectrum (lower half of Fig. 4.2)
reproduces well the basic features, i.e., the band gap, the overall shape, and the density of states,
of the exact calculation (upper half). Because of interactions, the degeneracy of states is lifted in
the exact spectrum, so that the actual energies of many states are shifted.

4.5 Macroscopic lattices

Transferring the above results to macroscopic lattices is not straightforward. Enlarging the
system’s size causes the differences in offset energies of neighboring sites εj − εk to decrease
substantially when keeping the offset of the outermost sites fixed. This causes the width and the
height of the energy lobes in the spectrum to decrease because a huge number of configurations
become possible when increasing the number of particles and lattice sites. This process is
drastically enhanced in two- and three-dimensional lattices, where practically the band gap
vanishes for all confinement strengths Vh. The only exception is the real Mott-insulator phase,
where the outermost sites have an offset smaller than U . In fact, the excitation spectrum of the
total system becomes more or less continuous. This might appear contradictory to the insulating
property at first glance but the system is inhomogeneous and only some of the atoms can perform
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ba

Fig. 4.5: (a) An additional standing wave with periodicity 3a and amplitude U causes alternating
fillings in x direction (N = 3.5 × 105). (b) An added −50Vh|x| potential leads to two separate
atom spheres (N = 1.5 × 105). The fluctuations ∆ni for J = 10−3ER and z = 0 are shown at
the bottom (see Fig. 4.4 for the color map and other parameters).

gapless excitations. Therefore, local properties are more suited to describe the system, such as
particle number fluctuations and the local excitation spectrum. It has already been pointed out
[113, 134, 148, 149] that the regions with fixed occupation number, the Mott-insulator shells, are
surrounded by compressible shells for nonnegligible tunneling.

Exemplarily, the occupation number distribution ni for N = 106 particles in a three-dimensional
lattice is depicted in Fig. 4.4a. It shows the expected shell structure with filling factors five (in the
center) to one. An advantage of the presented numerical algorithm is that it is also applicable to
confining potentials which vary rapidly in space. It can thus be used to tailor more sophisticated
shell configurations for experiments. Since the on-site interaction energy U is relatively small
compared with the depth of the lattice wells, the local filling factors can be adjusted without a
stronger perturbation of the three-dimensional lattice. Additional laser beams or magnetic fields
can thus be used to obtain complex spatial distributions of atoms with specific filling factors.
Figure 4.5a shows the occupation number distribution for an added periodic potential in x direction
VC = Vhx

2/a2 + U cos2(πx/a′) with the periodicity a′ = 3a motivated by Ref. [89]. The
superlattice structure leads to alternating local fillings. As a second example, an added hat-shaped
(−|x|) potential causes the formation of two separate atomic clouds, shown in Fig. 4.5b, that are
in touch with each other at the origin.

4.6 Excitations and finite tunneling

At the outer surface of each shell, almost gapless excitations are possible via the hopping of a
particle to another site, whereas the inner surface can easily absorb particles. This is shown
quantitatively in Fig. 4.6a (upper half), where ∆E−i = µ−i + minj(µ+

j ) is the minimal energy
for removing one particle from site i and adding it to another site j. The minimal energy for
adding one particle to site i (and removing it from site j) is denoted as ∆E+

i = µ+
i + minj(µ−j )
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Fig. 4.6: The minimal excitation energy in the z = 0 plane (a) and for y = z = 0 (b) for particles
hopping from site i (E−i ) and to site i (E+

i ). The excitation energies only accounting for nearest-
neighbor hopping in the z = 0 plane (c) and for y = z = 0 including particle fluctuations ∆ni for
J = 5× 10−3ER (d).

(lower half of Fig. 4.6a). The local excitation gap vanishes at the outer and inner surfaces and
increases strongly within the shells. The excitation energies ∆E±i are explicitly shown for sites
with y = z = 0 in Fig. 4.6b. It reflects basically the harmonic shape of the confinement, so that
∆E+

i and ∆E−i are positive and negative parabolas, respectively, subtracted by integer multiples
of the on-site interaction. The situation changes drastically, if accounting only for excitations to
nearest neighbors as shown in Figs. 4.6c and 4.6d. Low energy excitations (either ∆E+

i or ∆E−i )
can occur exclusively on sites directly at the boundary between different shells. Within the bulk
the single-particle excitation gap is wide and nearly constant. Therefore, the nearest-neighbor
tunneling is, in general, strongly suppressed at these sites, where the system is a good insulator.

In the following, a perturbative approach is used to obtain particle fluctuations for finite tunneling
J . For each site i the subsystem containing the site i and all neighboring sites is considered. The
diagonalization of this subsystem with finite tunneling −J

∑
〈i,j〉 b̂

†
i b̂j allows an approximative

calculation of the particle fluctuations ∆ni =
√
〈n̂2
i 〉 − 〈n̂i〉

2. For the example above, weak
tunneling causes finite fluctuations ∆ni at the boundaries of the shells, which is shown in
Figs. 4.4b and 4.5 for J = 10−3ER and in Fig. 4.6d for J = 5×10−3ER. Note that due to the finite
cell size of the lattice, the results are not completely spherically symmetric. In accordance with the
nearest-neighbor excitation energies, the fluctuations affect only sites directly at the surfaces of the
shells. Because of the larger slope of the confinement and the lower filling, the tunneling decreases
for outer shells. Within the bulk of the Mott shells small particle fluctuations can be observed due
to the finite tunneling. However, the fluctuations on the surface enhance the tunneling of atoms
next to the surface, which is not covered by this perturbative approach and would require a self-
consistent calculation. The narrow energy gaps of particles close to the surface can in principle
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cause near-resonant tunneling to nonnearest neighbors, so-called variable range hopping [151].
Due to the relatively strong Vh (compared with J) and the regularity of the potential, only sites
on the surface, which are dominated by nearest-neighbor hopping, have suitably low excitation
energies.

The presented method provides the lowest energetic states (including particle-hole excitations)
and is suitable to restrict the Hilbert space effectively. The obtained states can be used as
a starting point for exact diagonalization, quantum Monte Carlo, and dynamical mean-field
calculations including tunneling and finite temperatures. In particular, the diagonalization of the
one-dimensional lattice (Fig. 4.2) could be performed with much fewer basis states.

4.7 Conclusions

In summary, the excitation spectrum and exact site occupation numbers for confined optical lattices
deep within the Mott-insulator regime have been studied. In good agreement with the exact
diagonalization for small one-dimensional lattices, a numerical method has been presented that
allows for negligible tunneling the exact treatment of macroscopic optical lattices with arbitrary
shape of the confining potential. Adding slowly varying potentials to the optical lattice can give
rise to complex filling structures. I have calculated the numerically exact many-particle on-site
energies and have shown that introducing a filling factor depending on-site interaction can be
incorporated to cover orbital changes. For small systems, the many-particle spectrum contains
lobes, whereas for macroscopic systems nearly gapless excitations are always possible at the
boundaries of the Mott shells. Within a given Mott shell the local excitation energy varies strongly
leading to compressible sites close to the surface and incompressible inner sites. A perturbative
treatment for finite tunneling shows strong particle fluctuations at the boundaries between the
shells, where the Mott-insulator gap vanishes. Finally, the presented method can serve as a
reduction scheme for the Hilbert space for further numerical treatments.
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CHAPTER

5

Self-trapping of bosonic and
fermionic atoms

The main results in this chapter have been published in Refs. [2] D.-S. Lühmann, K. Bongs,
K. Sengstock, and D. Pfannkuche, Self-Trapping of Bosons and Fermions in Optical Lattices,
Physical Review Letters 101, 050402 (2008) and [3] T. Best, S. Will, U. Schneider, L. Hacker-
müller, D. van Oosten, I. Bloch, and D.-S. Lühmann, Role of Interactions in 87Rb-40K Bose-Fermi
Mixtures in a 3D Optical Lattice, Physical Review Letters 102, 030408 (2009).

5.1 Motivation

Degenerate mixtures of bosonic and fermionic atoms in optical lattices offer new insight into
a novel many-body system with strong particle correlations. The constituents behave contrary
to each other with respect to quantum statistics and intraspecies interaction. The coupling by
interspecies interaction gives rise to a fascinating system, which recently has become accessible in
ultracold atom experiments [3, 29, 30]. In its solid-state counterpart electrons interact with lattice
vibrations, where prominent examples are the superconductivity and the formation of polarons.
In optical lattices, bosons and fermions are more alike and allow to study the effect that fermions
induce on bosons and vice versa on an equal footing. In particular, the interplay between intra-
and interspecies interaction and tunneling of both components is reflected in a complex phase
diagram. The Bose-Fermi-Hubbard model, which is introduced in section 2.3.2 and serves as
the simplest description of Bose-Fermi mixtures in lattices, has been studied theoretically using
various approaches [31–37, 152–166]. In particular, the phase separation between bosons and
fermions, the supersolid phase [32–34], the charge-density wave [34, 35], and the pairing of bosons
and fermions forming phases of composite particles [36, 37] have been investigated.

Recently, the first experiments with bosonic 87Rb and fermionic 40K atoms have been realized in
optical lattices [29, 30] and have drawn much attention due to an unexpected large shift of the
bosonic phase transition between the superfluid phase and the Mott insulator. The effect, which is
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substantial even for a small ratio of fermionic to bosonic atoms, was controversially discussed
[30, 156, 161, 167], and a relatively small influence of the boson-fermion interaction on the
transition was proposed. Within the Bose-Fermi-Hubbard model, the repulsive on-site interaction
of bosons is partially screened by the attractive boson-fermion interaction, which was studied
numerically in Ref. [156] and analytically in Refs. [159, 162]. This effect reduces the effective
repulsive on-site interaction energy of the bosonic atoms U and extends the superfluid phase in the
phase diagram. In addition, a redistribution of the bosons due to a pinning to fermion occupied
sites must be taken into account, which can cause a bosonic accumulation [156]. Consequently,
the Bose-Fermi-Hubbard model predicts a moderate shift of the Mott-insulator phase transition
towards deeper lattice depths, whereas in experiments a large shift towards shallower lattices has
been found [29, 30]. Moreover, the loss of coherence due to an adiabatic heating in the optical
lattice was addressed [156, 161]. Due to the different temperature dependence of bosonic and
fermionic contributions to the entropy, the effective temperature of the 87Rb -40K mixture rises,
assuming that the lattice is ramped up fully adiabatically. This increase of temperature can lead to
a decrease of the bosonic visibility.

In preference for the single-band Hubbard-type Hamiltonian, the influence of interaction induced
orbital changes was widely neglected in calculations performed for optical lattices. In the
following, the enhanced localization of bosonic atoms by fermionic atoms in three-dimensional
optical lattices is investigated by means of exact diagonalization. In this chapter, I show that
the attractive interaction between bosons and fermions causes substantially modified single-site
densities. The nonlinearity of the interaction leads to a mutual trapping of 87Rb and 40K atoms in
the centers of the wells. Because of this mutual interaction, the fermion orbitals are substantially
squeezed, which results in a strong deformation of the effective potential for bosons. This effect is
enhanced by an increasing bosonic filling factor and causes a self-trapping of the bosons mediated
by the attractive boson-fermion interaction. Using renormalized Bose-Hubbard parameters, this
leads to a large shift of the transition between the superfluid and the Mott-insulator phase, which
coincides with first experimental results in 2006 [29, 30]. A nonlinear dependency of the critical
potential depth on the boson-fermion interaction strength is found, which is directly tunable in
experimental setups applying Feshbach resonances (section 2.2.2).

Succeeding the first two experiments with Bose-Fermi mixtures, a new experimental setup [3]
permits optical lattices with a rather homogeneous filling. In particular, using a Feshbach
resonance enables to tune the interspecies interaction. Analyzing the condensate fraction of the
bosonic atoms, this experiment shows an increasing shift of the Mott-insulator transition towards
shallower lattices with increasing attractive boson-fermion interaction. The results are in good
quantitative agreement with the presented renormalization of the Hubbard parameter and the self-
trapping behavior found in the exact diagonalization calculation. The results in this chapter, in
general, demonstrate the important role of higher Bloch bands for the physics of attractively
interacting quantum gas mixtures in optical lattices and are of direct relevance to experiments
with 87Rb - 40K mixtures.
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5.2 Self-trapping in Bose-Fermi mixtures

5.2.1 Exact diagonalization

The interaction between fully spin-polarized neutral atoms in the ultracold regime can be described
by a contact potential gδ(r − r′) as discussed in section 2.2.1. The strength of the repulsive
intraspecies interaction between 87Rb atoms is given by gB = 4π~2

mB
aB, where aB ≈ 100a0 is

the bosonic scattering length and a0 the Bohr radius. Neglecting p-wave scattering between 40K
atoms, the fermionic particles do not interact with each other. The interspecies interaction between
87Rb and 40K atoms far from a Feshbach resonance is attractive with the strength gBF = 2π~2

µ aBF,
where µ = mBmF

mB+mF
is the reduced mass and aBF ≈ −205a0 [168]. The Hamiltonian of a Bose-

Fermi mixture in an optical lattice is given by

Ĥ = ĤB + ĤF + ĤBF, (5.1)

where ĤB describes the system of interacting bosons, ĤF the system of noninteracting fermions,
and ĤBF the interaction between bosons and fermions [31, 32]. Using the bosonic and fermionic
field operators ψ̂B(r) and ψ̂F(r), the three parts of the Hamiltonian can be written as

ĤB =
∫
d3r ψ̂†B(r)

[
p̂2

2mB
+ V (r) +

gB

2
ψ̂†B(r)ψ̂B(r)

]
ψ̂B(r),

ĤF =
∫
d3r ψ̂†F(r)

[
p̂2

2mF
+ V (r)

]
ψ̂F(r),

ĤBF = gBF

∫
d3r ψ̂†B(r)ψ̂†F(r)ψ̂F(r)ψ̂B(r), (5.2)

with the periodic potential V (r) of the optical lattice.

As described in section 2.4, the exact diagonalization of the Hamiltonian (5.2) is performed in a
many-particle basis that includes higher orbital states and is truncated at a sufficiently high energy.
In the calculation, the bosonic and the fermionic subspace are diagonalized separately using a self-
consistent interaction potential, which converges within a few cycles. This method is presented in
section 2.4.4 and is recapitulated here shortly. For a known fermionic density ρF(r) = 〈Ψ̂†FΨ̂F〉
the effective Hamiltonian of the bosonic subsystem is given by

Ĥeff
B (ρF) = ĤB + gBF

∫
d3r ρF(r) ψ̂†B(r)ψ̂B(r). (5.3)

The latter term represents the interaction with the fermionic density and leads to a bosonic effective
potential

V eff
B (ρF) = V (r) + gBFρF(r). (5.4)

Starting with the density of noninteracting fermions, we determine the boson density ρB(r) =
〈Ψ†BΨB〉 by diagonalization of Ĥeff

B . Afterwards, the fermionic subsystem can be diagonalized
using the fermionic effective potential

V eff
F (ρB) = V (r) + gBFρB(r), (5.5)
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Fig. 5.1: The width of the density profile for (a) one fermionic 40K atom and (b) nB bosonic
87Rb atoms for V0 = 8ER ( ), V0 = 14ER ( ), and V0 = 20ER ( ). The dashed lines are
obtained for vanishing boson-fermion interaction. Because of the mutual attraction, the densities
are substantially squeezed.

which leads to a new fermion density. This loop is iterated until effective potentials and energies
are converged.

In the following, I concentrate on orbital changes in experiments with red detuned optical lattices
as used in Refs. [29, 30] with a lattice constant a = π/k = 515 nm [30]. Note that orbital effects,
in general, depend on the density, which varies with the lattice constant. In the experimental setup,
one fermion (nF = 1) and several bosons are present at each lattice site. The maximal number
of bosons at a lattice site varies due to the applied confinement and the boson-fermion interaction
and is reported to be nB & 5 in Ref. [30]. Here, we address the range 1 ≤ nB ≤ 10, although in
experiments the loss rate increases substantially for high filling factors [29]. To study the effect
caused by the mutual interaction, it is instructive to restrict the particles to a single lattice site.
Hence, the diagonalization1 is performed for atoms in a symmetric well with the shape

V (r) = V0

[
sin2(kx) + sin2(ky) + sin2(kz)

]
, (5.6)

since a simple harmonic approach as in Refs. [30, 167] leads to noticeably narrower 40K
densities. A smooth boundary is attached to the sin2-shaped single-site potential as described
in section 2.4.1.

To illustrate the orbital changes, Gaussians are fitted to the calculated densities for bosons and
fermions

ρB/F(r) = nB/F(
√

2πσB/F)−3 exp(−r2/2σ2
B/F), (5.7)

where deviations from the real shape are relatively small using

σB/F =
1√
2π

(
nB/F

ρB/F(0)

)1/3

, (5.8)

where ρB/F(0) is the peak density at the center of a site. Although all results are obtained using the
computed expectation value for the densities ρB/F, a Gaussian shape of the densities is assumed in

1We use parity conservation and up to 25 000 bosonic basis states for ten bosons.
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Fig. 5.2: (a) The effective potential V eff
B for nB bosonic 87Rb atoms at one symmetric site created

by one fermionic 40K atom. The dashed line represents the unperturbed lattice potential V (x) with
V0 = 14ER for vanishing boson-fermion interaction. (b) The effective potential V eff

F experienced
by the fermion.

the discussion for simplicity. The width of the Gaussians σB/F as a function of the bosonic filling
nB is shown in Fig. 5.1 for the lattice depths V0 = 8ER, 14ER, and 20ER, where ER = ~2k2

2mB
is

the recoil energy of 87Rb atoms. Since 40K atoms are much lighter than 87Rb atoms, the resulting
density profile for a 40K atom on a single lattice site is much broader than for the 87Rb atoms. For a
pure bosonic system (dashed lines), we observe an increase of the bosonic width with an increasing
number of 87Rb atoms, due to the boson-boson repulsion. The interaction with the single fermion
leads to a compression of the boson density (solid lines), which becomes even narrower than the
single-particle boson density. In fact, the bosonic width decreases slightly with an increasing nB

and reaches a minimum at nB = 7 − 8. This effective attractive behavior is surprising, since the
attractive interaction between bosons and fermions scales linearly with nB, whereas the repulsion
of the bosons is proportional to n2

B. This effect is caused by the strong squeezing of the density of
the fermion due to its effective potential

V eff
F = V (r) + gBFρB(r) ≈ V (r) + nBgBF(

√
2πσB)−3 exp(−r2/2σ2

B), (5.9)

that is deepened linearly with the number of bosons nB as shown quantitatively in Fig. 5.2b. The
increasing curvature of the fermionic effective potential, which equals

∂2

∂x2
V eff

F |r=0 ≈ 2V0k
2 + (2π)−3/2 |gBF|nB/σ

5
B (5.10)

using the Gaussian approach, causes the width of the fermion density to be similar to the bosonic
one for nB = 3 − 4 and even narrower for nB > 4. In our calculation, the occupation of higher
single-particle fermion orbitals, due to the squeezing of the fermion density, is roughly 10% for
nB = 4 and up to 40% for the filling factor nB = 10.

The effective potential experienced by the 87Rb atoms

V eff
B (ρF) = V (r) + gBFρF(r) ≈ V (r) + gBF(

√
2πσF)−3 exp(−r2/2σ2

F) (5.11)
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is plotted in Fig. 5.2a for V0 = 14ER. The curvature of the bosonic effective potential

∂2

∂x2
V eff

B |r=0 ≈ 2V0k
2 + (2π)−3/2 |gBF|/σ5

F (5.12)

is strongly enhanced by the nonlinear dependence on the fermion width σ5
F , which leads to a

deepening of the bosonic effective potential with increasing nB. The resulting energy gain in
〈ĤBF〉 overcompensates the repulsion energy of the bosons. Instead of a stronger repulsion, an
increasing nB causes a self-trapping of the bosons in the deepened center of the effective potential.
This effect is mediated by the squeezing of the fermion orbital due to the higher boson density.
The compression of boson and fermion densities should be observable in the experiments directly
by imaging a broadened momentum distribution or by using atomic clock shifts to measure the
peak density [144].

5.2.2 Variational approach

It is interesting how strong the self-trapping effect depends on correlations between the bosons.
Therefore, in addition to the exact calculation, a variational mean-field approach is presented and
discussed in this section, where the particle correlations are neglected. In the mean-field ansatz,
the wave functions of bosons and fermions are replaced by the root of the density

ψB(r) =
√
ρB(r) and ψF(r) =

√
ρF(r). (5.13)

To obtain an analytical expression for the energy functional 〈Ĥ〉, the sinusoidal single-site
potential is approximated as a spherically symmetric harmonic oscillator potential yielding

Vho = V0k
2r2 (5.14)

with k = π/a. Let us assume a Gaussian shape of the density, which seems not to be a strong
restriction following the results above. Consequently, the wave functions of bosons and fermions
are written as

ρB(r) = nB (
√

2πσB)−3 exp(−r2/2σ2
B)

ρF(r) = (
√

2πσF)−3 exp(−r2/2σ2
F).

(5.15)

Thus, the energy functional depends on σB and σF and reads

E(σB, σF) = 〈ĤB + ĤF + ĤBF〉, (5.16)

where the three parts of the Hamiltonian are given in equation (5.2). Using a mean-field ansatz,
the bosonic and fermionic field operator in the Hamiltonian are substituted by

ψ̂B(r)→ φmf
B (r)b̂mf and ψ̂F(r)→ φmf

F (r)f̂mf, (5.17)

where φmf
B/F(r) are the bosonic and fermionic mean-field orbitals, respectively. Consequently, one

obtains the expectations values for the products of field operators

〈ψ̂†Bψ̂B〉 = |φmf
B |2 nB = |ψB|2,

〈ψ̂†Fψ̂F〉 = |φmf
F |2 nF = |ψF|2,

〈ψ̂†Bψ̂
†
Bψ̂Bψ̂B〉 = |φmf

B |4 nB(nB − 1) =
nB − 1
nB

|ψB|4.

(5.18)
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Fig. 5.3: The width of the density profile for (a) one fermionic 40K atom and (b) nB bosonic 87Rb
atoms for V0 = 8ER ( ), V0 = 14ER ( ), and V0 = 20ER ( ). The solid lines are obtained using
a variational mean-field ansatz and the dashed lines correspond to the exact calculation in Fig. 5.1.
The variational approach, which neglects particle correlations, shows substantial deviations.

Inserting these expressions in equation (5.16) and integrating over spherical coordinates leads to
the energy functional

〈Ĥ〉 =
3
8

~2

(
nB

σ2
BmB

+
1

σ2
FmF

)
+ 3V0k

2
(
σ2

B + σ2
F
)

+
gB nB(nB − 1)

16π3/2σ3
B

+
gBF nB

(2π)3/2(σ2
B + σ2

F)3/2
.

(5.19)

It depends exclusively on the free parameters σB and σF, which can be determined by minimizing
〈Ĥ〉. Thus, the solution must satisfy the conditions

∂〈Ĥ〉
∂σB

= 0 and
∂〈Ĥ〉
∂σF

= 0. (5.20)

As these equations can not be solved analytically, σB and σF are calculated numerically.

The results are plotted in Fig. 5.3 for a lattice constant a = 515 nm, a bosonic scattering length
aB = 100a0, and an interspecies scattering length aBF = −205a0. In the figure, the variational
approach (solid lines) is compared with the exact calculation (dashed lines). For nB = 1, the width
σB of the 87Rb atoms and the width σF of the 40K atoms computed with both methods agree quite
well. This appears reasonable since each mean-field wave function represents a single particle.
Only for shallow lattices (V0 = 8ER) the widths obtained by variation of the energy functional
are considerably narrower. This can be attributed to the harmonic shape of the potential which
leads, in general, to a stronger compression of the density. With increasing number of bosons nB,
the variational ansatz shows a broadening of the bosonic wave function, whereas the exact results
show a compression of the boson density. Here, it becomes apparent that the mean-field wave
function does not incorporate the correlations of the 87Rb atoms, which partly avoid each other in
a correlated quantum mechanical state. As a consequence, the mean-field repulsion is considerably
larger. Mediated by the fundamentally different behavior of the bosons in the mean-field picture,
the changes on the fermion side are even more dramatic. The fermion width σF for more than two
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Fig. 5.4: (a) Bosonic width σB and (b) fermionic width σF in dependency on the interspecies
scattering length aBF and the lattice depth V0 for nB = 1 and aB = 100a0 using the variational
mean-field approach. The results for nB = 2 are shown in figure (c) and (d). The color bars for
σB and σF are shown left and right, respectively.

87Rb atoms is substantially less compressed than in the exact calculation. The latter has strong
implications for the Mott transition, since it influences directly the bosonic effective potential

V eff
B = V (r) + gBF|ψF(r)|2, (5.21)

which is deepened only to a minor extent with increasing nB (see Fig. 5.13). We can conclude that
no (or only a weak) self-trapping behavior is found using a variational approach. This indicates
that the mean-field ansatz neglects important physics and can not describe the system accurately
enough for our purpose. However, the variational approach can serve as a simple description for
a basic discussion of effects caused by the boson-fermion interaction. In general, it is restricted to
weak intra- and interspecies scattering.

For the lattice parameters above, the variational approach gives quite reasonable results for one
and two 87Rb atoms at a lattice site for intermediate lattice depths. Here, numerical inexpensive
results can be obtained for a large parameter space, which are shown in Fig. 5.4. The change
of both, σB and σF, are depicted as a function of the potential depth V0 and the boson-fermion
scattering length aBF. For one 87Rb atom, a squeezing of boson and fermion orbitals is caused by
an increase of one of these parameters (Fig. 5.4a and b). Note, that the color scale is different for
both species. Adding a second 87Rb atom, where the intraspecies scattering length is aB = 100a0,
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causes a larger gradient of the fermion width in the direction of aBF, while the bosonic width is,
overall, slightly broader (Fig. 5.4c and d). The interplay between boson-boson and boson-fermion
interaction, i.e., aB and aBF, is depicted in Fig. 5.5a and b. It shows that the boson density is
broadened with both, an increasing aB and an increasing aBF, whereas the fermion density is
mainly influenced by aBF.

5.3 Composite particles

Until now, the interaction of 87Rb and 40K atoms is studied restricted to a single lattice site, which
is applicable to commensurately filled systems. Multisite physics becomes important, when, e.g., a
redistribution of atoms within the lattice can occur, which is addressed in the following including
the orbital degrees of freedom. The same diagonalization method is used for small quasi-one-
dimensional chains as performed in section 3, where the scattering parameters of section 5.2.1 are
applied. For only one fermionic “impurity”, lattices are studied with 5− 7 sites, a bosonic filling
factor 1 ≤ nB ≤ 3, and 15ER ≤ V0 ≤ 20ER. In this systems, an additional effect caused by
the interspecies interaction becomes apparent. It has been shown that the self-trapping behavior
causes a local deepening of the bosonic effective potential for the fermion occupied site. The
gain in energy, due to the boson-fermion interaction, leads to a binding of several bosons to one
fermion, which is a phenomenon resembling polaron physics [169, 170]. Remarkably, we find that
the fermionic impurity causes, for the above parameters, the localization of six additional bosons
at its site.

For more than one fermion in the lattice, the binding effect remains but the gain in energy is largest
if all fermions interact with bosons, which causes that the bosons are rather equally distributed at
fermion occupied sites. E.g., a situation with two fermions interacting with three bosons each is
energetically preferable to one fermion bound to six bosons and a lonely fermion. Exemplarily,
this behavior is shown in Fig. 5.6 for a one-dimensional lattice with seven sites, NB = 12
bosonic atoms, i.e., bosonic filling nB = 12/7, and a variable number NF of fermionic atoms.
For one fermion, one observes that the central site, where the fermion is localized, is occupied
by eight bosons where the remaining four bosons are delocalized at the other six sites. In this
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Fig. 5.6: Bosonic site occupation niB for a one-dimensional lattice with seven sites and NB = 12
bosons. The NF fermions are localized at the sites with niB ≥ 1.

context, it is important to notice that the fermions always localize at individual sites due to the
interaction with the bosons, since for the chosen parameters the energy gain due to tunneling is
small. This resembles the localization of polarons in solids, which is also referred to as “self-
trapping” in the context of the Fröhlich Hamiltonian [171]. The self-trapping of the fermionic
atom causes its localization at a single site although all sites are equivalent (see discussion below).
The interspecies interaction leads therefore to a “spontaneous” symmetry breaking. For NF = 2
(3, 4, 6) fermions, each fermion shares its site with 6 (4, 3, 2) fermions and the other sites are
empty. For noncommensurate situations, the remaining bosons are delocalized (NF = 5) or the
fermion occupied sites are not equally filled (NF = 7). Furthermore, a superstructure occurs as a
very interesting feature which is most pronounced forNF = 2 to 4. However, since self-consistent
methods tend to break the spatial symmetry, this emerging structure might also be an artifact of the
calculation. This means, that ground states with (nearly) the same energy exist, where the fermions
and the respective bosons occupy different sites. Exemplarily, states for NF = 2, where the two
compounds (of one fermion and six bosons) are located at site i and site j 6= i, respectively,
have comparable energies. Regarding the results for NF ≤ 4, this leads to the assumption that
near-resonant hopping can occur, where a compound of one fermion and several bosons tunnels.
Such a behavior indicates a real composite particle as predicted in Ref. [36]. A break-up of such a
compound corresponds to the tunneling of a single boson or a fermion into an energetically higher
state. The self-trapping effect stabilizes therefore the formation of composite particles due to a
substantial gain in energy.

Nonetheless, the localization of fermions mediated by their interaction with the bosonic atoms
applies also to the experimental situation, where the symmetry is broken, in particular, by the
confinement which establishes a finite atomic cloud [29, 30]. Since bosons are attracted to sites
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that are occupied by fermions, bosons and fermions occupy only the central lattice sites. If the
fermionic filling nF < 1 or the fermionic cloud is smaller than the bosonic one (as in Ref. [30]),
this leads to an increase of the bosonic filling factor in mixtures in comparison with pure bosonic
systems. In experiments, the predicted high bosonic site occupation will be accompanied by high
losses due to three-body recombinations.

5.4 Shift of the critical potential depth

5.4.1 Renormalization of the Bose-Hubbard model

In the following, I discuss commensurately filled macroscopic cubic lattices and the implications
on the Mott-insulator phase transition that result from the deformation of the effective potential.
In optical lattices, the bosonic superfluid to Mott-insulator transition is triggered by the boson-
boson interaction strength relative to the hopping amplitude. In the Bose-Hubbard framework
[21, 74, 75], this is described by the ratio between the on-site interaction U and the hopping
parameter J that both depend on the depth of the lattice potential V0. For boson-fermion mixtures,
both U and J also depend explicitly on the filling factor. However, to estimate how the interaction
with the fermions influences the phase transition, an effective Bose-Hubbard model is used, where
the lattice potential is substituted by the bosonic effective potential V eff

B (nB) for a specific static
filling factor nB . This approach leads to a renormalization of the parameters U and J in the
effective bosonic system. The on-site interaction U is obtained directly from V eff

B (nB) and the
hopping J by band-structure calculations using a finite periodic continuation of V eff

B (nB). Thereby,
the parameter J is determined as 1/4 of the width of the lowest Bloch band of a one-dimensional
lattice with 30 sites [75], and U is the interaction of two particles

U = 〈gB

2

∫
d3r ψ̂†2B (r)ψ̂2

B(r)〉. (5.22)

Qualitatively, the bosonic effective potential, which is shown in Fig. 5.2a, reveals two important
aspects: First, even for a single boson the minimum is deepened substantially and decreases
further with an increasing number of 87Rb atoms; second, the shape of the effective potential
deviates strongly from the V0 sin2(kx) potential, leading to a broader barrier between neighboring
lattice sites. Both effects lead to a reduced hopping between neighboring sites, whereas the on-site
interaction energy is mainly increased by the stronger curvature of the effective potential. The
decrease in J , which is larger than the effect on U (inset of Fig. 5.7), causes narrower bands.

Using the effective potential V eff
B (nB), the ratio U/J is plotted in Fig. 5.7 as a function of

the lattice depth V0, where the dashed black line corresponds to a pure bosonic system. The
interacting system is represented by solid lines which are split for different filling factors nB,
since the deformation of the effective potential grows with an increasing filling factor nB. Even
for nB = 1 the self-trapping causes a large shift of U/J (V0) towards higher values, which is
further enhanced with an increasing nB. In the following, the renormalized values of U/J are
used and known results for the critical point (U/J)c to calculate the shift of the critical potential
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depth V c
0 . Following the mean field results derived in section 2.6.3, the critical ratio depends on

the filling factor nB and obeys the relation

(U/J)c = z
[
2nB + 1 + 2

√
nB(nB + 1)

]
, (5.23)

where z = 6 for a cubic lattice [49, 130]. In Fig. 5.7, the critical values for different filling factors
nB are depicted as horizontal gray lines. The critical lattice depths V c

0 (nB) for the pure bosonic
system are given by the intersections of the dashed black line with the horizontal lines (open
circles). According to the relation above, the phase transition for a pure bosonic system shifts
to deeper lattices for an increasing filling factor nB. For Bose-Fermi mixtures, the intersections
representing the critical potential depths are indicated by solid circles. In comparison with the
pure bosonic system, the phase transition in mixtures is shifted substantially towards shallower
lattices.

5.4.2 Loss of coherence in red detuned lattices

The parameters in the following have been chosen such that a comparison with the experiment in
Ref. [30] is possible, where a red detuned optical lattice with a = 515 nm is used. The critical
potential depth can be estimated from Fig. 5.7 as 12.3ER for nB = 1, increases to 13.8ER for
nB = 4, and decreases slightly for higher fillings. Comparing the boson-fermion mixture and
the pure bosonic system with the same bosonic filling, the shift ∆V c

0 of the phase transition is
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given by the difference of the respective critical lattice depths (see arrow for nB = 2). The
expected shift increases substantially with the filling factor, e.g., ∆V c

0 = −2.2ER for nB = 1
and ∆V c

0 = −5.2ER for nB = 4. In Refs. [29, 30], pure bosonic systems are compared to Bose-
Fermi mixtures with the same number of bosonic atoms, not accounting for the increase of the
local bosonic filling factor due to self-trapping, as discussed above. In addition, the confinement
in experiments causes the formation of shells with different filling factors nB. Therefore, the
reported shift in Ref. [30] of approximately −5ER is an average value of a system, where at the
center of the lattice nB > 5 and nF = 1. Accounting for the inhomogeneous filling, we average
our results for nB ≤ 5 to nB ≤ 7 leading to a shift between −4.2ER and −5.1ER, which is in
good agreement with the experiment. In principle, the experimental local filling factors can be
determined, e.g., using atomic clock shifts [144], which would allow a more accurate comparison
of experiment and theory.

Uniquely, experiments with ultracold atoms allow the precise tuning of the interaction strength by
Feshbach resonances. Hence, the shift of the critical potential depth ∆V c

0 can also be studied
in dependence on the scattering length aBF between bosons and fermions, while the bosonic
scattering length aB = 100a0 is kept constant. Such an experiment allows a closer investigation of
the mutual interaction and the effects due to orbital changes. In Fig. 5.8, I present the calculated
shifts ∆V c

0 for bosonic filling factors nB = 1 to nB = 5, where the solid lines are calculated
allowing for orbital deformations and the gray lines by using a rigid fermion orbital obtained
for V eff

F (r) = V (r). The latter corresponds to a single-band approach for fermions, leaving the
orbital degrees of freedom only to the bosonic subsystem. Because of a much weaker deformation
of the bosonic effective potential, both U and J are less affected than in the previous discussion.
For a rigid fermion orbital, U/J is independent of nB, but the difference from the pure bosonic
system increases with the lattice depth. Thus, ∆V c

0 increases slightly with nB. The scattering
length aBF, which enters linearly in the Hamiltonian (5.2), leads to an almost linear shift ∆V c

0 .
In great contrast, the dependence on aBF for the self-consistent calculation (solid lines), which
fully includes the orbital degrees of freedom, is superlinear due to self-trapping. Thus, the mutual
deformation of the effective potential is enhanced by a larger scattering length as well as by a
higher bosonic filling factor as discussed above. Therefore, the assumption of a fixed fermion
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Fig. 5.9: (a) The effective potential V eff
B for a site with nB bosonic 87Rb atoms and two fermionic

40K atoms for attractive interspecies interaction. (b) The shift of the phase transition ∆V c
0 for

repulsive interspecies scattering lengths aBF for filling factors nB = 1 to nB = 5.

orbital is only suited for weak interaction and low bosonic filling.

So far, results for the fermionic filling nF = 1 are presented, which is the typical experimental
situation. In principle, the number of fermionic atoms can exceed the number of bosonic atoms
which poses the problem of a fermionic filling factor larger than one for a suitable confining
potential. For two fermionic 40K atoms in a symmetric single well, the effective bosonic potential
is shown in Fig. 5.9a. For these calculations, a finite temperature (10nK) is applied that mixes the
degenerate fermionic orbitals. Surprisingly, one observes that the bosonic effective potential is less
deformed than for a single fermion. This counter-intuitive behavior is caused by the density of the
second fermion in the higher orbital, which hinders a stronger deformation of the boson density. It
indicates that the shift of the critical potential depth for the fermionic filling factor nF = 2 is even
slightly diminished in comparison with nF = 1.

5.4.3 Repulsive interspecies scattering

Feshbach resonances allow to tune the interaction between 87Rb and 40K atoms from attractive
to repulsive. For repulsive interspecies interaction, the separation of bosons and fermions plays a
role, which is not accounted for in our single-site calculation. However, the change of the on-site
interaction due to the mutual interaction is also important when considering models with particle
hopping. Applying the renormalization of the Hubbard parameters for repulsive interaction
between bosons and fermions (aBF > 0) the shift ∆V c

0 becomes positive, which is plotted in
Fig. 5.9b. Overall, it remains quite small (∆V c

0 . 2ER) and has a sublinear dependence on the
interspecies scattering length aBF. For 0a0 < aBF < 50a0, the shift is nearly equal for different
fillings nB, but for stronger interspecies repulsion the shift is the smaller, the higher the bosonic
filling. While V c

0 is almost linear for nB = 1, it saturates for nB ≥ 3 and even decreases for large
aBF.

While a self-amplified interaction effect is found for interspecies attraction, the broadening
of orbitals for repulsive interaction is hindered by the relatively steep on-site potential.
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Figure 5.10 shows the bosonic and fermionic effective potentials for three bosonic atoms per site.
Recapitulating that a 40K atom is much lighter than a 87Rb atom, the fermion density is broader
than the bosonic one even without interaction. Because of the repulsion, the fermionic effective
potential becomes shallower with increasing aBF as depicted in Figure 5.10b causing a further
broadening of the fermion density. For strong repulsion, the fermionic effective potential has the
shape of a double well. Due to the broad fermion density, the bosonic effective potential is much
less affected. This causes only a small change in the boson density and a relatively small shift in
the critical potential depth V c

0 as shown in Fig. 5.9b.

5.5 Experiments with tunable interactions

5.5.1 Experimental setup and particle losses

Recently, the first experiment with boson-fermion mixtures in a three-dimensional lattice and the
possibility of tunable interactions has been carried out in the group of I. Bloch (University of
Mainz) [3]. In this experiment a degenerate mixture of 4× 105 87Rb and up to 3× 105 40K atoms
are prepared in the hyperfine ground states |F = 1,mF = +1〉 and |F = 9/2,mF = −9/2〉,
respectively. In order to tune the interaction between 87Rb and 40K atoms [168, 172], a Feshbach
resonance at B0 = 546.9 G with ∆B = 2.9 G has been used. This allows to tune the interspecies
scattering length in accordance with equation (2.43), i.e.,

aBF(B) = abg

(
1− ∆B

B −B0

)
(5.24)

with an accuracy of±10a0 between−800a0 and−200a0 (below) and between−170a0 and 800a0

(above the resonance). Thus, the experimental setup permits to tune the bosons-fermion interaction
in a wide range from strongly attractive to strongly repulsive, while the boson-boson scattering
length aB ≈ 100a0 remains unchanged. The lattice laser operates at a wavelength λ = 755 nm,
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which is blue detuned with respect to the atomic frequencies causing a trapping in the nodes of
the lattice. At this specific wavelength, the lattice depth for bosons and fermions measured in the
respective recoil energies of 87Rb and 40K atoms, i.e., EB/F

R = ~k2
L/2mB/F, are the same. This

means that the single-particle Wannier functions of both species have the same width and therefore
maximum overlap. The optical potentials for 87Rb and 40K are given by

VB(r) = V0

[
sin2(kx) + sin2(ky) + sin2(kz)

]
,

VF(r) =
mB

mF
VB(r).

(5.25)

As usual, all energies are given in units of the recoil energy of 87Rb , i.e.,ER/h = 4.027 kHz. The
blue detuned optical lattice causes an anticonfinement which is overcompensated by an elliptical
dipole trap that compensates also the gravitational sag. The lattice is ramped up adiabatically
within 100 ms to a final lattice depth V0 between 2ER and 17ER in all three spatial directions.
After another 100 ms hold time, the trapping potentials and the magnetic field are switched off
instantaneously. Finally, the momentum distribution is observed using standard time-of-flight
absorption imaging (see section 2.5.1). The extracted visibility data from Ref. [3] is shown in
Fig. 5.11.

In the experiment, the ratio of 87Rb to 40K atoms has been NF = 1/4NB, NF = 1/2NB, and,
NF = 3/4NB. For shallow lattices (V0 . 3ER), the visibility shows a rather constant value for
all scattering lengths aBF. Furthermore, the visibility of the mixture at aBF = 0 is compatible
with the Mott transition in a pure bosonic system for all lattice depths. This means that bosonic
and fermionic system are in fact transparent for each other. For V0 & 9ER, this transparency is
accompanied by a rather symmetric decay of the visibility in a small interval around aBF = 0
for repulsive and attractive interaction, where |UBF| . UB. For stronger repulsive interaction, the
visibility remains constant and is slightly below the value for aBF = 0. For stronger attraction, the
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Fig. 5.12: Width of the density for (a) one 40K atom and (b) nB
87Rb atoms as function of the

interspecies interaction strength aBF. The results are plotted for a bosonic filling nB = 1 ( ),
nB = 2 ( ), and nB = 3 ( ). The dashed lines with respective colors are obtained using a
variational approach, which underestimates the orbital changes substantially.

decay of visibility proceeds until aBF = −300a0 to −400a0 (for V0 & 5ER). As the visibility has
been connected with the localization process in the Mott transition [19, 112], this rapid decrease
of visibility seems qualitatively to be compatible with the enhanced localization presented in this
chapter. However, a more profound analysis can be given by studying the fraction of condensed
atoms, which is discussed in section 5.5.3. First, the situation of very strong attractive interaction
is discussed, where the visibility increases again with larger attractive scattering.

While the visibility decrease is reversible for repulsive and intermediate attractive scattering, for
strongly attractive scattering high losses of 87Rb atoms have been observed experimentally. The
scattering length, where these losses become significant, corresponds roughly to the visibility
minimum in Fig. 5.11. Therefore, one can identify the visibility minimum as a critical value for
the loss regime. The observed ratio of lost 87Rb to 40K atoms is between three and four, which
means that three-body losses with two bosons and one fermion do not play a major role, which
was also observed in Ref. [29]. The loss coefficient for three-body collisions of 87Rb atoms is in
the range K3 = 4-7 × 10−30 cm6/s [173], so that, even without fermions, lattice sites with four
and more 87Rb atoms decay faster than the experimental hold time. Therefore, the dominating
process is presumably the three-body recombination of three 87Rb atoms in the presence of a 40K
atom.

The enhanced loss of atoms is caused by the on-site density accumulation due to the boson-fermion
interaction as described in the previous sections. Thereby, two distinct effects have to be taken
into account: first, a higher peak density due to the squeezing of the effective atomic orbitals
and, second, a higher bosonic occupation number per site as discussed in section 5.3. While
an occupation of one or two 87Rb atoms per site is dominant at aBF ≈ 0, the strongly attractive
interaction leads to an occupation of three or more atoms per site and, therefore, causes three-body
losses. In the experiment, a site will decay within the hold time τ if Ṅ3τ � 1. The three-body
loss rate Ṅ3 is proportional to σ−6

B and is strongly enhanced by the compressed 87Rb densities
due to the boson-fermion interaction. Using a variational model (see section 5.2.2), the boundary
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Fig. 5.13: Effective potential experienced by
87Rb atoms for filling factors nB = 1 to nB = 3
at aBF = −200a0. It is substantially altered due
to the deformation of the fermion density. The
dashed lines correspond to the variational model.

of the loss dominated regime with respect to the lattice depth V0 and the scattering length aBF

has been calculated in Ref. [3]. This approach agrees well with the experimentally measured
values. The increase of the visibility for interaction strengths beyond this critical value can thus
be associated with the removal of highly occupied sites with high peak densities. This leads to a
lower average filling factor and may cause an enhanced bosonic mobility due to defects and local
incommensurability.

5.5.2 Interaction induced orbital changes

In the following, I discuss interaction induced orbital changes and the shift of the transition point
for the blue detuned lattice used in the experiment [3]. While for the red detuned optical lattices
discussed before with a = 515 nm the single-particle on-site densities are different for both
species, they are equivalent when using a blue detuned lattice with a = 377.5 nm. Consequently,
the density overlap at small interspecies scattering aBF is maximal, which causes a large effect on
the Mott-insulator phase transition even for small values of the interspecies scattering length aBF.
First, let me concentrate on the direct interaction effect which manifests itself in the change of the
effective atomic orbitals and the effective potentials. The same exact diagonalization technique is
used as described in section 5.2.1 for one to three bosonic atoms per site and, of course, with a
variable interspecies interaction.

In Fig. 5.12 the Gaussian widths σB and σF of the respective 87Rb and 40K densities are shown
for V0 = 8ER, displaying the density compression with an increasing attractive interspecies
scattering length aBF. For aBF = 0, the broadening of the bosonic density due to boson-boson
scattering aB = 100a0 with an increasing number nB of 87Rb atoms per site is observable, while
the width of the 40K atoms is constant due to the vanishing interspecies interaction. For increasing
attractive scattering, the bosonic width decreases. The mutual interaction causes that the effect is
enhanced with a higher bosonic filling. For the background scattering aBF = −205a0 a higher
occupation goes along with a narrower density although the repulsive boson-boson interaction
energy increases. For nB = 2 and nB = 3, a saturation of the decrease is observable for
aBF < −300a0, which depends also critically on the lattice depth V0. Here, the 87Rb atoms
are strongly localized, which causes the kinetic energy and the repulsion to increase substantially.
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Fig. 5.14: (a) Ratio U/J obtained by variation in dependence on the lattice depth V0 and the
interspecies scattering length aBF for nB = 1 and aB = 100a0. The solid black line corresponds
to a critical U/J = 29.36, whereas the dashed line represents the mean-field value. (b) Critical
lattice depth V c

0 for a bosonic filling nB = 1 (–), nB = 2 (–), and nB = 3 (–) using equation (5.28).
For comparison, the dotted lines represent results obtained by exact diagonalization (see Fig. 5.16).

Comparing the widths of bosons and the fermion, we see that the bosonic filling nB has a stronger
effect on the fermion than on the boson density. The decrease of the fermionic width with an
increasing bosonic filling nB as well as with the strength of the attractive scattering aBF is quite
expected, since both parameters directly influence the strength of the fermionic effective potential
via

V eff
F ≈ VF(r) + nB aBF

2π~2

(
√

2πσB)3µ
exp(−r2/2σ2

B), (5.26)

where µ = mBmF
mB+mF

is the reduced mass. Additionally, the fermionic effective potential depends
on the bosonic width σB and vice versa. The strength of the decrease is nonetheless remarkable,
which becomes apparent when comparing with results obtained by the variational approach in
section 5.2.2. The latter indicates the same general behavior but in great contrast it predicts only
small changes of the width for both 87Rb and 40K as depicted in Fig. 5.12 (dashed lines). The
deviation between both methods at aBF = 0 is due to the harmonic approximation within the
variational approach, which causes narrower particle densities. Because of this, the values of σB

and σF obtained by variation and by diagonalization are quite comparable in the range between
aBF = −200a0 and 0a0, although the variational approach completely underestimates interaction
induced changes in σB and σF.

The effective bosonic potential in Fig. 5.13 shows the self-trapping of the 87Rb atoms with
increasing nB for aBF = −200a0. The effective lattice potential

V eff
B ≈ VB(r) + aBF

2π~2

(
√

2πσF)3µ
exp(−r2/2σ2

F) (5.27)

is strongly altered, which is enhanced by the deformation of the fermion density shown in
Fig. 5.12. The effect is drastically reduced for the variational approach (dashed lines), due to the
small changes in σF. Here, the change with increasing bosonic filling nB is small. The accidental
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Fig. 5.15: The ratio U/J calculated by exact diagonalization as a function of V0 and aBF for a
bosonic filling (a) nB = 2 and (b) nB = 3. The respective critical potential depths are depicted
by a solid line. Here, the initial resolution (50aBF, 1ER) is interpolated and U is obtained directly
from the nB-particle wave function. See Fig. 5.14a for a color scale.

agreement of both approaches for nB = 1 and aBF = −200a0 is due to the narrower harmonic
potential in the variational model.

5.5.3 Shift of the phase transition

From the discussion above, it is quite obvious that the transition from the superfluid to the Mott
insulator is strongly influenced by the boson-fermion interaction. As the fringe visibility offers
a relatively indirect access to the phase transition point, the time-of-flight images have been
used in Ref. [3] to extract the condensate fraction of bosonic atoms yielding a direct relation
to superfluidity. The condensate fraction can be defined experimentally as the sum of atoms
corresponding to quasimomentum zero divided by the total atom number [121]. With increasing
lattice depth, this value monotonically decays to zero for all aBF and number of fermions NF. The
kink position, where the condensate fraction of atoms vanishes, can be identified with the critical
lattice depth of the Mott-insulator transition (see inset of Fig. 5.17).

The influence of the mutual interaction on the superfluid to Mott-insulator phase transition, is
analyzed in the following using the renormalization of the Bose-Hubbard parameters U and J
developed in section 5.4.1. Thereby, the bosonic effective potential is used to determine the
hopping J from the band structure. The bosonic on-site interaction U is the expectation value
of the interaction energy of two 87Rb atoms in the effective single-site potential. Since a direct
comparison with the critical lattice depth V c

0 observed in experiment is possible, it is, however, not
sufficient to use the mean-field result for the critical ratio (U/J)3D

c ≈ 35.0 for nB = 1, leading to a
shift in the order of 0.5ER to 1ER and a slightly modified dependency on aBF. For a bosonic filling
nB = 1, a quantum Monte-Carlo calculation has been performed in Ref. [131] determining the
critical point (U/J)3D

c = 29.36 with great accuracy. Similar calculations for higher filling factors
are not available, so that we have to scale the quantum Monte-Carlo result with the mean-field
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Fig. 5.16: Critical potential depth
V c

0 for a bosonic filling factor nB =
1 to nB = 3 in dependence on
the interspecies scattering length
aBF. At aBF = 0, the results are
split only due to different critical
U/J . For attractive scattering, the
interaction induced change of the
fermion density causes a larger shift
of the Mott transition for higher
fillings.

formula (2.116) for higher filling factors, i.e.,

(U/J)3D
c =

29.36
3 +
√

8

(
2nB + 1 +

√
(2nB + 1)2 − 1

)
. (5.28)

This equation should give a reasonable rescaling of (2.116) for nB = 2 with (U/J)c = 49.86 and
nB = 3 with (U/J)c = 70.16 but, in principle, more accurate values would be highly desirable.

Let us start with the ratio U/J determined from the bosonic effective potential (5.27) using the
variational approach. The ratio is plotted for nB = 1 in Fig. 5.14a using a logarithmic scale. In
addition to the increase with the lattice depth V0, the effective potential depends on the interspecies
scattering length aBF and on the fermionic width σF. While the direct dependency on aBF is strong,
the effect of σF(aBF, nB) on the bosonic effective potential is weak for the variational approach
as depicted in Figure 5.13. Therefore, the value of U/J is not strongly influenced by the bosonic
filling. The critical lattice depth, where the Mott transition occurs, is plotted in Fig. 5.14a using
the critical quantum Monte-Carlo value (solid line) and the mean-field value (dashed line). For
higher fillings nB, the critical potential depths V c

0 are shown in Fig. 5.14b. Note that the major
difference between the curves comes from the scaling of V c

0 with nB in equation (5.28) rather
than from a direct dependence of U/J on nB. The variational approach describes the shift of the
Mott-insulator transition qualitatively correct, but differs up to severalER from results obtained by
exact diagonalization. In fact, the shift of the transition in comparison with aBF = 0 is substantially
underestimated by the variation model.

Using the self-consistent exact diagonalization presented in section 5.2.1 to determine particle
densities and the effective potentials leads to a considerably larger shift of the critical potential
depth. The ratio U/J is shown in Fig. 5.15 in dependence on both V0 and aBF. Figure 5.16 depicts
the critical potential depth V c

0 for bosonic filling nB = 1 to 3 in the range from strongly attractive
interspecies scattering aBF = −500a0 to repulsive scattering aBF = 100a0. For vanishing aBF, V c

0

is split for different nB because of the increase of the critical U/J with higher filling according to
equation (5.28). As discussed above, for attractive scattering the mutual trapping of bosons and the
fermion causes a compression of densities, an altering of the effective potentials, and thus a notable
change of the function U/J(V0). As a consequence, the critical potential depth V c

0 (aBF) decreases
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Fig. 5.17: Comparison of the experimentally observed critical lattice depth V c
0 for NF = 1/2NB

(orange diamonds) and NF = 3/4NB (blue circles) with the theoretical predictions from exact
diagonalization, where the green and red lines represent a bosonic filling factor nB = 1 and
nB = 2, respectively. Considering the redistribution the bosonic atoms (see text) and a separation
of bosons and fermions for repulsive aBF, the agreement is remarkably good. The dashed line
for aBF > 0 represents a fictive scenario, where bosons and fermions occupy the same sites.
The inset shows the condensed fraction of bosonic atoms for aBF = −295a0 (black circles)
and aBF = 235a0 (green circles) at NF = 1/2NB. The linear fits depict the experimental
determination of V c

0 . The figure is taken from Ref. [3].

faster, the higher the filling nB. At roughly aBF = −200, V c
0 is equal for filling factors nB = 1 to

3. For stronger attractive scattering, the transition occurs even at a shallower lattice if the filling
is increased. The theory predicts a remarkable shift of the superfluid to Mott-insulator phase
transition of up to 11ER comparing with vanishing interspecies interaction. Therefore, a clear
signature of this behavior must be observable in experiments with tunable 87Rb -40K scattering. It
is remarkable that for strongly attractive interaction the Mott-insulator transition occurs in shallow
lattices with V0 < 4ER, where the trapping potential is created mainly by 40K atoms and to a lesser
extend by light forces. Thereby, the deepening of the effective potential is strongly amplified by
the presented self-trapping effect.

Figure 5.17 shows the experimental data obtained in the group of I. Bloch [3]. Exemplarily,
the inset depicts the decay of the condensate fraction for aBF = −295a0 (black circles) and
aBF = 235a0 (green circles). For each interaction strength, a linear fit is applied to determine
the kink position, which can be attributed to the critical potential depth V c

0 of the Mott transition.
The critical points V c

0 are represented in Fig. 5.17 by blue circles and orange diamonds for
NF = 3/4NB and NF = 1/2NB, respectively. Although the experiment was designed to enable
a setup with a weak confining potential, some effects due to inhomogeneity must be taken into
account. One can assume that at aBF = 0 the lattice is predominately filled with one 87Rb atom
per site with a small admixture of doubly occupied sites irrespectively of NF. Therefore, a critical
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lattice depth of V c
0 corresponding to the filling one is expected around aBF = 0. The experimental

data is compared with theoretical predictions from Fig. 5.16 for bosonic filling nB = 1 (green
line) and nB = 2 (red line). Around aBF = 0, the observed transition seems to occur up to
1ER below the theoretical prediction for nB = 1. Considering the experimental uncertainties
and, in particular, the systematical error in attributing the kink position to the critical potential
depth, experiment and theory agree well. Additionally, the nonzero confinement may cause the
entrance into the Mott phase to occur via a localized Bose-glass phase, which would give rise to
an earlier decay of the condensate fraction. In other words, localization by disorder might play
an additional role in the experiment. Of course, also the theoretical calculation of U/J(V0) may
contain methodical and numerical inaccuracies.

Of particular interest is the shift of the transition point for attractive interspecies scattering.
Overall, the experimental results follow the theoretical curves with surprisingly good agreement.
This indicates that orbital degrees of freedom play in fact the major role in the shift of the Mott-
insulator phase transition. Further, the mutual interaction of bosons and fermions via the effective
potentials and the self-trapping behavior are of great importance, which becomes apparent when
comparing the experimental data with the variational approach in Fig. 5.14. With increasing
attractive scattering between 87Rb and 40K , 87Rb atoms are drawn to 40K occupied sites, since the
interspecies interaction UBF increases whereas the boson-boson repulsion U , which is explicitly
denoted as UB in the following, remains roughly constant. The process

, (5.29)

where 87Rb is colored red and 40K blue, occurs if

UnB=2
B + 2UnB=2

BF − UnB=1
BF ≈ UnB=2

B + UnB=2
BF < 0. (5.30)

Considering the exact interaction at each lattice site, the boson-boson interaction UB and the
boson-fermion interaction UBF depend on the bosonic filling indicated in the superscript. Both
exact diagonalization and the variational model predict that the occupation of a site with two 87Rb
atoms is preferable for aBF below −50a0 to −60a0.

Thus, below this value each site should be occupied by two bosons and one fermion for NF =
1/2NB (orange diamonds). The experimental critical points support this shift to higher filling
(red curve) for aBF . −60a0, although the experimental uncertainties make an estimate difficult.
For a larger number of 40K atoms (blue circles), a coexistence of sites with one fermion and one
or two bosons is expected. Here, the following redistribution can occur

, (5.31)

which becomes possible if
UnB=2

B + 2UnB=2
BF − 2UnB=1

BF < 0. (5.32)

Note that this process is impossible within the Bose-Fermi-Hubbard model (2.62), where the
interaction energies UnB

B and particularly UnB
BF are independent of nB. Within the model, the
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Fig. 5.18: The energy balance
of the process (5.31) obtained
by exact diagonalization (interpo-
lated) shows that a redistribution
of bosonic atoms becomes possi-
ble below aBF ≈ −200a0.

energy gain equals exactly UB which is greater than zero for repulsive boson-boson scattering.
Due to the mutual compression of the on-site densities, the gain in energy 2UnB=2

BF − 2UnB=1
BF can

overcome the boson-boson repulsion UnB=2
B . The variational model estimates that this process

occurs below aBF ≈ −400a0 for a critical value of UB/J . Since the difference UnB=2
BF − UnB=1

BF
depends critically on the orbital changes, this model underestimates this effect substantially. The
net energy of the process (5.31) is shown in Fig. 5.18 obtained by exact diagonalization, which
determines its criticality around aBF = −200a0. This is also compatible with the experiment,
since both results for intermediate and high fermion numbers follow the theoretical prediction for
nB = 2 below aBF ≈ −250a0, while for aBF ≈ −200a0 the theoretical predictions are to close to
tell.

One important aspect of the experiment are three-body losses, which require a bosonic filling equal
or higher than three. Therefore, also the processes

,

,

(5.33)

are important favoring the filling factor nB = 3, which are possible if

3UnB=3
B + 3UnB=3

BF + UnB=1
BF −

(
2UnB=2

B + 4UnB=2
BF

)
< 0,

3UnB=3
B + 3UnB=3

BF −
(
UnB=2

B + 2UnB=2
BF + UnB=1

BF

)
< 0,

(5.34)

respectively. In the Bose-Fermi-Hubbard model, these processes correspond to an energy expense
of one and two times UB and are consequently energetically not allowed. The variational
approach estimates aBF . −400a0 for both processes, whereas exact diagonalization predicts
aBF . −200a0. The latter shows a critical behavior similar to process (5.31). This explains
the high three-body losses for aBF . −200a0 in the experiment. Furthermore, the admixture of
Mott-insulator sites with nB = 3 with a lower transition depth (see Fig. 5.16) are possible in a
certain region below aBF < −200a0, where the losses are not yet dominating. Sites with bosonic
fillings higher than three, although energetically possible, must not be considered as they decay
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within the hold time of the experiment. For attractive scattering, we can conclude that there is
an excellent agreement of the experiment with the presented theoretical predictions. Nonetheless,
several aspects would be an interesting subject for further theoretical and experimental studies, in
particular, the bosonic redistribution and temperature effects.

On the repulsive side of the interspecies interaction aBF, the situation is quite different and the
experimental results show a roughly constant critical lattice depth. Although some structure is
perceptible for both intermediate and high fermion numbers the experimental uncertainties hinder
a definite interpretation. The exact diagonalization results imply a further increase of the critical
potential depth for all filling factors, which is surely not observable in the experiment. This
deviation is expected, since the theoretical description assumes that 87Rb and 40K atoms occupy
the same sites. As the 40K atoms create a repulsive effective potential for the 87Rb atoms, the
bosons and fermions separate. Theoretically, two distinct scenarios are predicted depending on
boson-boson and boson-fermion on-site interaction energies: first, a complete phase separation
of fermions and bosons with two or more domains, and second, a supersolid order [32–34],
where bosons and fermions are aligned in a checkerboard pattern. These theoretical descriptions,
however, exclude the confining potential, which could disfavor a supersolid order. On the basis of
the experimental results both scenarios are not distinguishable. However, the absence of a shift of
the Mott-insulator transition to deeper lattices indicates that bosons and fermions do not occupy
the same lattice sites.

5.6 Conclusions

In conclusion, it has been shown that orbital changes in attractive Bose-Fermi mixtures (87Rb -
40K) are nonnegligible as they lead to a substantial deformation of the effective potential and
a squeezing of the effective orbitals. We found a self-trapping behavior of the bosons in their
effective potential mediated by the interaction with the fermions. Using a model with effective
Bose-Hubbard parameters U and J , the expected shift of the critical potential depth separating
the superfluid phase from the Mott insulator was estimated. It depends strongly on the width of
the fermion orbital, which is substantially altered due to the mutual interaction. The results reveal
a strong dependence of the critical potential depth on the boson-fermion interaction strength aBF

and the bosonic filling factor nB. The theoretical model uses exact diagonalization to determine
the few-particle wave function, which is used to calculate the effective potential, the tunneling
energy J , and the on-site interaction energies. A variational approach, which has been discussed
in this chapter, shows a qualitatively similar behavior but underestimates the interaction induced
orbital changes strongly. The theoretical predictions are compatible with the large shift reported
in the first two experiments with 87Rb - 40K mixtures [29, 30]. The results of a recent experiment
with a tunable boson-fermion scattering length aBF [3] are discussed on the basis of the orbital
renormalization of the Bose-Hubbard parameters U and J and an excellent agreement of theory
and experiment has been found. Furthermore, processes that allow a redistribution of atoms in
the lattice have been studied. For repulsive interspecies interaction, the disagreement between
experiment and predictions of the renormalized Bose-Hubbard model indicates the separation of
bosons and fermions to different sites of the lattice. In general, it is shown that interaction induced
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orbital changes are of fundamental importance for attractively interacting quantum gas mixtures
in optical lattices. Theoretically, the full inclusion of orbital changes is a challenge for the efficient
calculation of lattice systems.
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CHAPTER

6
Momentum-resolved Bragg
spectroscopy

The main results in this chapter have been published in Ref. [5] P. T. Ernst, S. Götze, J. S. Krauser,
K. Pyka, D.-S. Lühmann, D. Pfannkuche, and K. Sengstock, Probing superfluids in optical lattices
by momentum-resolved Bragg spectroscopy, Nature Physics 6, 56 (2010).

6.1 Motivation

The experimental toolbox for manipulating atom-atom interactions and optical potentials has
rapidly developed in the last decade. Experiments with atomic mixtures, tunable interactions,
and optical lattices have become possible, which has also stimulated theoretical studies predicting
various phases with strong connections to condensed matter physics. On the detection side, the
time-of-flight mapping of the ground-state momentum distribution (section 2.5.1) is used in most
experiments with relatively few but notable exceptions, e.g., Refs. [120, 174]. This technique
gives good access to the ground-state properties of the system but offers no information on the
excitations of the systems. Particularly, in strongly correlated systems, the knowledge of the
excitations is crucial to understand the underlying physics. One way to access these excitation
is to perform a two-photon process which couples ground and excited state over a virtual third
state [175]. Thereby, a tunable amount of energy ~ω as well as momentum ~k are transfered
to the system, which allows to probe the dynamic structure factor S(ω, k). In ultracold atoms
experiments without periodic potentials, this technique has been used to investigate Bose-Einstein
condensates [176–179]. In optical lattices, Bragg spectroscopy has been applied with only one or
two different momenta [45–47].

Following a description of the experimental realization, interaction effects in the superfluid phase
are discussed, which lead to a modification of the band structure. In section 6.3, two different
mean-field approaches are discussed, the Bogoliubov-de Gennes equations and a tight-binding
approximation, being valid in the weakly interacting superfluid regime. The results are compared
with experimental results [5] for the two lowest bands in a two-dimensional lattice. For strongly
interacting systems (section 6.4), where the mean-field description is not appropriate, exact
diagonalization is used to compute the dynamic structure factor.
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,k2   2 k,  
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Fig. 6.1: Two-photon Bragg spec-
troscopy with two detuned laser
beams at an angle θ. The atomic
ensemble absorbs photons with ω1

and k1 and stimulated emits photons
with ω2 and k2 resulting in an en-
ergy and momentum transfer.

6.2 Experimental realization

Recently, the first fully momentum-resolved Bragg spectroscopy, which allows to investigate the
band structure of superfluids in optical lattices, has been performed in the group of K. Sengstock
(University of Hamburg) [5, 180, 181]. The applied two-photon Bragg process is depicted in
Fig. 6.1. It shows the atomic sample which is illuminated by two phase-coherent laser beams
enclosing an angle θ. The intersecting beams have frequencies ω1 and ω2 and wave vectors k1

and k2, respectively. The process of absorption and stimulated emission couples resonantly states
with an energy difference ~δ = ~(ω1 − ω2) and a difference in momentum

~kBragg = ~(k1 − k2) ≈ 2~k sin(θ/2)
ek1 − ek2

|ek1 − ek2 |
(6.1)

assuming k = k1 ≈ k2 for small δ and unit vectors ek1 and ek2 . It is important to note that
this technique permits the independent tuning of energy transfer via the laser detuning δ and
of momentum transfer by varying the angle θ. In the experiment, an average particle number
of 1.5 × 105 87Rb atoms are loaded in two- or three-dimensional optical lattices, which are
ramped up adiabatically. The Bragg lasers are aligned to excite atoms in the [1, 1] direction of
the lattice. Hence, the momentum transfer can be tuned from zero to the edge of the Brillouin
zone at kBZ = (π/a, π/a) with the lattice spacing a = 515 nm. For each momentum, the
resonance position is determined by measuring the transfer efficiency for various values of the
laser detuning δ, where two methods are employed: the coherent momentum transfer mapping and
the energy transfer mapping. In the first case, the Bragg pulse is applied for 1 ms and afterwards
all trapping potentials are switched off. Performing detection via time-of-flight allows to measure
the population of the quasimomentum state with q = ~kBragg. At small momenta this technique
is not applicable, since the momentum distribution of excited atoms and the ground state do not
separate. Here, the second method is used, where the system is given time to rethermalize before
the traps are switched off. The width of the condensate fraction of atoms gives information on
the amount of energy deposited in the system and therefore indirectly on the number of transfered
atoms.
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6.3 Mean-field description of excitations

6.3.1 Bogoliubov-de Gennes equations

In the following, let us concentrate on the description of excitations on a mean-field level, where
the excitations are small perturbations of the ground state. The condensate mean-field wave
function Ψ fulfills the time-dependent Gross-Pitaevskii equation

i~
∂Ψ
∂t

=
(
− ~2

2m
∇2 + V (r) + gN |Ψ|2

)
Ψ, (6.2)

where V (r) is the potential, N the number of atoms in the condensate, and g the scattering
constant (see section 2.3.1). Time-dependent excitations of the stationary solution ΨGPE with a
characteristic frequency ω can be included using the ansatz

Ψ(r, t) = e−iµt/~
(
ΨGPE + uq e

−iωt + v∗q e
iωt
)

(6.3)

with µ being the chemical potential and complex functions uq(r) and vq(r). By inserting Ψ(r, t)
and |Ψ(r, t)|2Ψ(r, t) in the time-dependent Gross-Pitaevskii equation, where only linear order
terms in uq and vq are kept, it follows

µΨGPE + (µ+ ~ω)uq e−iωt + (µ− ~ω)v∗q e
iωt =(

− ~2

2m
∇2 + V (r)

) (
ΨGPE + uq e

−iωt + v∗q e
iωt
)

+ gN |ΨGPE|2
(
ΨGPE + 2uq e−iωt + 2v∗q e

iωt
)

+ gNΨ2
GPE

(
vq e
−iωt + u∗q e

iωt
)
.

(6.4)

Comparison of coefficients leads to

µΨGPE =
(
− ~2

2m
∇2 + V (r) + gN |ΨGPE|2

)
ΨGPE, (6.5)

which defines ΨGPE as the solution of the stationary Gross-Pitaevskii equation. Further, by
assuming a real wave function ΨGPE we obtain the coupled Bogoliubov-de Gennes equations
[50–53]

(L+ 2M)uq +Mvq = ~ωquq
(L+ 2M) vq +Muq = −~ωqvq

(6.6)

using

L = − ~2

2m
∇2 + V (r)− µ (6.7)

and
M = gN |ΨGPE|2. (6.8)

The Bogoliubov-de Gennes equations (6.6) are linear so that, due to the periodic potential
V (r), the functions uq and vq are subject to Bloch’s theorem. To solve (6.6) numerically, it is
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advantageous to decouple the equations by applying a transformation to the functions ψq and φq
with

uq =
1√
2

(φq + ψq) and vq =
1√
2

(φq − ψq), (6.9)

which leads to

(L+M)ψq = ~ωqφq
(L+ 3M)φq = ~ωqψq

(6.10)

and finally to the decoupled equation

(L+ 3M) (L+M)ψq = (~ωq)2 ψq. (6.11)

Due to their periodicity, ψq, V (r), and M can be expanded in Fourier series, which leads to an
algebraic equation for the Fourier coefficients of ψq. This algebraic equation, which can easily be
solved numerically, is derived in appendix A.3.

6.3.2 Bose-Hubbard approximation

A simpler expression than the Bogoliubov-de Gennes equations (6.6) can be obtained for the
lowest band by using a Hubbard approach for the Hamiltonian, which is valid if the atomic
orbitals are tightly bound to the lattice sites. Slightly different approaches [48, 49, 54, 55] can be
used to derive the dispersion relation, where Ref. [55] is followed here. Using the Bose-Hubbard
Hamiltonian (2.58) within a time-dependent mean-field approach, where the operator b̂i is replaced
by a complex number ci, leads to a set of coupled Schrödinger equations

i~
∂

∂t
cj = −J(cj+1 + cj−1) + Uc†jcjcj (6.12)

by variation with respect to c∗j . The stationary solution can be found by writing cj = e−iµt/~zj ,
which results in

µzj = −J(zj+1 + zj−1) + Uz∗j zjzj . (6.13)

As the ground-state wave function must be equal for all lattice sites, we can define zi ≡ z0 =
√
n,

where n is the filling per site, which leads to

µ = nU − 2J. (6.14)

Bogoliubov excitations can be incorporated by replacing

cj → e−iµt/~ (zj + δ̂j), (6.15)

where δ̂j is the amplitude of the time-dependent Bogoliubov excitation. Evaluating

c†jc
2
j → e−iµt/~ (z∗j + δ̂†j) (z2

j + 2zj δ̂j + δ̂2
j )

≈ e−iµt/~ (z∗j z
2
j + 2z∗j zj δ̂j + z2

j δ̂
†
j),

(6.16)
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Z Fig. 6.2: The isosurface of the density
within the Thomas-Fermi approxima-
tion for a two-dimensional lattice with
a harmonic confinement in the direction
perpendicular to the lattice plane.

where quadratic and higher powers of δ̂j are neglected, it follows an equation for the Bogoliubov
excitations

µδ̂j + i~
∂

∂t
δ̂j = −J(δ̂j+1 + δ̂j−1) + 2nUδ̂j + nUδ̂†j (6.17)

using the relation for the ground-state solution (6.13). This equation can be solved by defining
quasiparticles

δ̂
(q)
j = uqe

ijqa−iωqtα̂q + v∗−qe
−ijqa+iωqtα̂†q (6.18)

with a wave vector q, energy ~ωq, and amplitudes uq and v−q. Comparison of coefficients and
using 4 sin(qa/2) = 2− eiqa − e−iqa result in two coupled equations for uq and v−q[

nU + 4J sin2(qa/2)
]
uq + nUv−q = ~ωquq[

nU + 4J sin2(qa/2)
]
v−q + nUuq = −~ωqv−q.

(6.19)

The diagonalization of this matrix equation for (uq,v−q) leads finally to an algebraic form of the
dispersion relation [48, 49, 54, 55]

~ωq =
√

4J sin2
(qa

2

) [
2nU + 4J sin2

(qa
2

)]
. (6.20)

6.3.3 Ground-state band

Experimentally, Bragg spectroscopy of superfluid 87Rb atoms in Ref. [5] has mainly been
performed in a two-dimensional lattice, where the lattice depths V0,x and V0,y are equal. To
compare the predictions of equation (6.20) with the experimental results, the on-site interaction U
must be calculated for the two-dimensional geometry. The magnetic dipole trap with frequency
ωd,z and the Gaussian beam waistW0 cause a confining potential in the z direction with an angular
frequency

ω2
z ≈

8V0

mW 2
0

+ ω2
d,z, (6.21)

where V0 = V0,x = V0,y. Therefore, the atoms are distributed in a two-dimensional array of tubes,
which is illustrated in Fig. 6.2. Due to an additional confinement within the lattice plane, the tubes
in the experiment are filled with a varying number of N particles. Due to the weak confinement
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Fig. 6.3: Energy spectrum for
resonant Bragg excitations in the
[1, 1] direction with momentum
~kBragg for harmonic trapping ( )
and optical lattices with V0 =
3ER ( ), V0 = 7ER ( ),
and V0 = 11ER ( ). The
experimental data (symbols) agrees
well with theoretical predictions
(shaded areas).

in the z direction, the Thomas-Fermi limit can be applied, where the kinetic energy is neglected.
This requires that the Thomas-Fermi radius

Z =
(

3Nasl4z
l2r

)1/3

(6.22)

is much larger than the axial oscillator length lz [48], i.e., Z/lz � 1, which is approximately
fulfilled for an adequate number of particles. Thereby, the radial oscillator length of a single site
is given by lr =

√
~/mωr with

ωr =
π

a

√
2V0

m
. (6.23)

The Thomas-Fermi density profile in the axial direction, i.e., perpendicular to the lattice plane, is
described by [48]

nz(z) =
1

4as

(
3Naslr
l2z

)2/3(
1− z2

Z2

)
, (6.24)

which is an inverted parabola, whereas the radial motion is frozen out. Here, we use the harmonic
approximation leading to a Gaussian radial density

nr(x, y) =
1
πl2r

e−(x2+y2)/l2r . (6.25)

Thus, the on-site interaction per particle pair is given by

U ≈ g

2N(N − 1)
1

2πl2r

∫ Z

−Z
dz n2

z(z), (6.26)

which has a strong influence on the band structure.

Figure 6.3 shows the experimentally observed resonance positions of the Bragg process [5]
together with theoretical predictions for the lowest band. As the Bragg process excites the atoms
along the [1, 1] direction in the lattice plane, the ground-state band is an equal superposition of the
lowest bands in x and y directions, i.e., ~ω2D = ~ω(kx) + ~ω(ky) with kx = ky = kBragg/

√
2

(see equation (6.30)). The transfered momentum kBragg is given in units of kBZ = |kBZ|, where
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Fig. 6.4: Theoretical dispersion re-
lation for V0 = 3ER (green),
V0 = 7ER (blue), and V0 = 11ER
(magenta). The solid lines depict
the single-particle band-structure
solution and the dashed lines corre-
spond to the tight-binding approach.
Interaction induced changes are in-
corporated using the Bogoliubov-
de Gennes equations (open sym-
bols) and by a Hubbard-type ap-
proximation (solid symbols).

kBZ corresponds to the Brillouin zone edge at (π/a, π/a). For comparison, the red triangles
correspond to a the case, where the lasers establishing the lattice are turned off and the atoms are
trapped only in the harmonic confinement, which has been investigated before in Refs. [176–179].
The shaded red area shows the lattice-free dispersion relation including interactions for 1× 105 to
3×105 particles [5]. For all lattice depths, a phonon-like behavior is observable at low momentum
reflected by the linear slope of the dispersion relation [48, 178]. The influence of the lattice
manifests itself at the edge of the Brillouin zone, where the periodicity fundamentally changes the
excitation spectrum and a band gap appears.Using the dispersion relation (6.20) derived within
the Bose-Hubbard model and equation (6.26) for the on-site interaction U , a good agreement with
experimental data is obtained. The boundaries of the theoretical predictions assume a particle
number per tube of N = 5-25 for V0 = 3ER (dashed green lines), N = 15-50 for V0 = 7ER
(blue), and N = 25-60 for V0 = 11ER (magenta). An increase of the particle number per tube
with increasing lattice depth V0 is expected, due to a stronger in-plane confinement, which grows
as

ω2
x/y =

4V0

mW 2
0

+ ω2
d,x/y. (6.27)

In fact, the confinement causes the tubes to be filled with different numbers of atoms decreasing
from the center of the lattice. Therefore, the particle number per tube N is to be understood as
an average over the lattice. In principle, the resonance frequency ω2D as a function of N must
be weighted with the occupation number distribution in the two-dimensional lattice, which gives,
however, quite similar results.

The strong influence of the interaction becomes apparent when comparing with the single-
particle dispersion relation. Figure 6.4 depicts the single-particle solution (2.27) (solid lines)
and the Hubbard-type approximation (6.20) with U = 0 (dashed lines) for V0 = 3ER, 7ER,
and 11ER. Note that these interaction-free solutions deviate for V0 = 3ER, where the tight-
binding approximation is not fully valid, whereas for V0 = 7ER and 11ER both solutions agree
almost perfectly. It turns out that the tight-binding approximation is probably also responsible for
the deviation of relation (6.20) (solid symbols) from the numerical solution of the Bogoliubov-
de Gennes equations (6.6) (open symbols). For V0 = 7ER, both approaches agree quite well and
for 11ER no noticeable difference is observable. Although both solutions are slightly different for
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Fig. 6.5: Band structure for (a) V0 = 3ER and (b) V0 = 7ER for wave vectors k along Γ-X and
Γ-M, i.e., in [1, 0] and [1, 1] direction, respectively.

3ER, they are experimentally not clearly distinguishable. Regardless of the model, the interaction
changes the excitation spectrum notably. Whereas for V0 = 3ER the interaction effects are
relatively small, interactions modify the dispersion substantially in deeper lattices. For 11ER,
the energies are several times larger than for vanishing interaction. At the edge of the Brillouin
zone, where the relative change is smallest, the excitation energies are considerably higher, e.g.,
about 11J for V0 = 11ER, than the single-particle band width 4J .

6.3.4 Excited bands

As the two-photon Bragg process is not restricted to lowest band excitations, this method offers
excellent access to the physics of higher bands. Neglecting the interaction, the band structure is
given by the momentum-resolved single-particle excitation spectrum (see section 2.1.4). Here, let
us restrict ourselves to the case of two-dimensional lattices not regarding excitations orthogonal
to the lattice plane. Within the plane, three points of high symmetry are of special interest in the
Brillouin zone: the center (Γ), the centers of the edges (X), and the corners of the square (M). The
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Fig. 6.6: Band structure plotted for asymmet-
ric lattice depths V0,x = 7ER and V0,y =
7.5ER, where X and M denote the points
(π/a, 0) and (π/a, π/a) in the Brillouin zone,
respectively.
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band structure can be calculated using equation (2.27) and is plotted in Fig. 6.5 for 3ER and 7ER.
In general, the two-dimensional band structure can be obtained from the one-dimensional problem
via

ω
(nx,ny)
2D (kx, ky) = ω(nx)(kx) + ω(ny)(ky), (6.28)

where the ni = 0, 1, ... denote the band indices, provided that the potential is separable in the axis
directions and interaction effects are not dominant. Thus, along the Γ-X direction we have

ω
(nx,ny)
Γ-X = ω(nx)(k) + ω(ny)(0) (6.29)

and along the Γ-M direction

ω
(nx,ny)
Γ-M = ω(nx)(k/

√
2) + ω(ny)(k/

√
2), (6.30)

where k =
√
k2
x + k2

y . Therefore, ω(nx,ny)
Γ-M is two-fold degenerate for nx 6= ny. For broken

symmetry, these bands split up, which is depicted in Fig. 6.6. This effect is also experimentally
observable, when the intensities of the lattice beams are not equally adjusted.

In the experiment, the momentum transfer is in the [1, 1] direction, i.e., the atoms are excited solely
along the Γ-M direction. The experimental results for the first excited band are shown in Fig. 6.7
for 3ER and 7ER, where the dotted lines represent the single-particle band structure. The solid
lines are the numerical solution of the Bogoliubov-de Gennes equations (6.6). Compared with
the lowest band, the relative changes of the excitation energies due to interaction are relatively
small. Therefore, already the single-particle energies provide, in principle, a good description
of the measured spectrum, while the small interaction effects can not be clearly resolved in the
present experiment. Surprisingly, both descriptions overestimate the excitation energies noticeably
for small momenta, which is most pronounced for V0 = 3ER. The shift of the experimental
data can be attributed to the influence of the confinement. For 3ER, the energies of the first
excited band lie energetically above the barriers between the lattice sites but still low enough that
a clear band structure evolves. Therefore, a large effect of the confining potential is expected,
which is incorporated by solving the single-particle problem using a finite lattice with an attached
harmonic potential (see Fig. 4.1). For 3ER, the dispersion relation is governed by the strength
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of the harmonic confinement and only to a much lesser extend by the size of the lattice, where
Ns = 100 sites are used. The dashed green line in Fig. 6.7 depicts the finite-size solution and can
explain the experimental results, which lie below the single-particle band structure. By contrast,
at 7ER the effect of the confinement is drastically reduced, since the first excited band lies only
partly above the potential barriers, where results for Ns = 30 are plotted. It should be noted that
the finite-size calculation does not include interactions. However, it seems to be justified to expect
the same amount of interaction induced shift as in the infinite case, which corresponds to the
difference between single-particle solution (dotted lines) and the Bogoliubov-de Gennes solution
(solid lines).

6.4 Exact diagonalization

The Bogoliubov theory described in the last section offers a good description for weakly
interacting atomic gases such as superfluids in optical lattices. However, the regime of
strong interactions and correlations is not accessible within this description. The two-photon
Bragg spectroscopy is an excellent tool to investigate these systems as it provides insight into
the excitation spectrum and correlations by measuring the dynamic structure factor S(ω, k).
Theoretically, exact diagonalization of the Hamiltonian is suited to describe systems with strong
correlations and to compute the excitations for a variable range of interaction parameters.
Exact diagonalization has been applied to determine the dynamic structure factor S(ω, k) in
Refs. [56, 182]. Furthermore, S(ω, k) has been addressed using perturbation theory [182], an
extended fermionization treatment [183], and quantum Monte Carlo [183, 184]. The aim is to
identify signatures of strong correlations which are present, e.g., in the Mott-insulator phase or in
the supersolid phase [32–34, 185–195].

6.4.1 The dynamic structure factor

In the following, the exact numerical solution for one-dimensional lattices is obtained. Thereby,
the Hamiltonian (2.58) is diagonalized using a Wannier basis, where the many-particle basis states
are represented by vectors |N〉 = |n1, ..., ni, ..., nNs〉, where ni corresponds to the occupation of
site i (see section 2.4). The exact diagonalization is performed for lattices with Ns = 10 sites
using periodic boundary conditions, which means that a particle can hop from the first site i = 0
to the last site i = Ns and vice versa. The study of a single-component Bose gas is analogue to
results presented in Ref. [56].

The excitation of atomic gases by a photon with energy ~ω and momentum ~k probes the dynamic
density-density response of the system. Its signature is imprinted on the dynamic structure factor
[56]

S(ω, k) =
∑
ν

|〈Ψν |ρ̂†k|Ψ0〉|2 δ(ω − Eν) (6.31)

assuming the validity of the linear response regime. The eigenstates Ψν , where Ψ0 denotes the
ground state, and the energies Eν , which are relative to the ground-state energy, are obtained by
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exact diagonalization. The operator ρ†k describes the Bragg process, which creates an excitation
with momentum k, and can be written as

ρ̂†k =
∑
q ∈BZ

ĉ†q+k ĉq. (6.32)

Thereby, ĉ†q+k ĉq annihilates a particle in the Bloch state φq and creates a particle in the state φq+k.
For noninteracting bosons, one finds S(ω, k) = Nδ(ω−Ek), where Ek is the energy of the Bloch
wave φk, reflecting the dispersion relation of a single-particle. As the system has a finite extend,
the Brillouin zone (BZ) contains Ns different discrete quasimomentum states with

q =
2π
a

m

Ns
and m = −Ns

2
+ 1,−Ns

2
+ 2, ...,

Ns

2
. (6.33)

Due to relation (2.29), we can write the operator

ĉq =
1
Ns

Ns∑
j=1

eiqxj b̂j (6.34)

as a sum of annihilation operators in a Wannier basis. Inserting this expression in equation (6.32)
leads to a simple expression for the Bragg excitation

ρ̂†k =
1
Ns

∑
q ∈BZ

Ns∑
j,l=1

e−i(q+k)xj+iqxl b̂†j b̂l =
Ns∑
j=1

e−ikxj n̂j , (6.35)

since the sum over the phase factor
∑

q∈BZ e
iq(xl−xj) vanishes for j 6= k, due to xl−xj = na with

integer n. The computed eigenvectors |Ψν〉 =
∑

N C
ν
N |N〉 with energies below a cut-off energy

Emax are represented by coefficients in the Wannier basis, which leads to

〈Ψν |ρ̂†k|Ψ0〉 =
Ns∑
j=1

e−ikxj
∑
N

Cν∗N C
0
N nj . (6.36)

The momentum transfer k is restricted to the Ns discrete vectors in the Brillouin zone given
in equation (6.33). Note that the structure factors for k and −k are identical and S(ω, k) =
Nδ(ω − E0) for k = 0 with E0 = 0. Further, it is convenient to normalize the dynamic structure
factor by

Sn(ω, k) = S(ω, k) /
∫
dω S(ω, k). (6.37)

To visualize the results it is necessary to replace the δ function in the definition (6.31) by a smooth
function, e.g., a narrow Gauss function

δ(ω − Eν)→ (
√

2π∆)−1e−(ω−Eν)2/2∆2
. (6.38)

The width of the Gauss function ∆ affects the perceptibility of the fine structure. In experiments,
the observed Bragg spectrum is mainly broadened by the finite Bragg pulse duration and the
inhomogeneous filling in the lattice, which limits the energy resolution in practice. Choosing
∆ = 0.2J allows to visualize the fine structure but also pays tribute to the inevitable experimental
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Fig. 6.8: The energy spectrum for an one-dimensional lattice with Ns = 10 sites (a) a
commensurate filling nB = 1 and (b) for filling nB = 0.5 as a function of the on-site interaction
UB. At UBF = 0, the highest computed energy is about 7J and 9J , respectively.

broadening. In addition, the size of the system has an crucial impact on the fine structure, which
is discussed below. In experiments, the confinement potential, which can cause Mott shells with
superfluid interfaces, influences the observed dynamic structure factor [184].

The dynamic structure factor is shown in Fig. 6.9a-e for a commensurate filling of one atom per
site and a varying ratio UB/J ≥ 0. The results for UB/J = 0, 5, 10, and 15 are completely
analogous to results presented in Ref. [56]. The continuous variation of the parameter UB turns
out to be advantageous with respect to both the interpretation of observed features and its transfer
to larger systems. Overall, we see a smooth behavior when varying the ratio UB/J , which is
expected for the Mott transition, in general, and for finite systems, in particular. For UB = 0,
the single-particle band dispersion is observable with a single peak for each momentum between
0J (for k = 0) and 4J (for k = π/a). For small UB, only one sharp peak is observable at
low momenta, whereas for higher momenta already a broadening is noticeable. At intermediate
and high momentum, several peaks contribute to S(ω, k), in contrast to the Bogoliubov picture,
where effective single-particle excitations with a well-defined ω(k) exist. Note that the resonance
positions in Fig. 6.9a-e, reflecting excitations in the systems, continuously transform into each
other when varying the ratio UB/J . For UB & 6ER, the resonance positions as a function of
UB/J have the linear slope UB. Consequently, these excitation can be connected to the Mott-
insulator phase, where particle-hole excitations are gapped by UB. The energy spectrum is shown
in Fig. 6.8a, where the energy gap between the ground state and the first band, corresponding to
particle-hole excitations, is clearly resolved. In this plot also the second band is shown with a
slope 2UB corresponding to two particle-hole excitations. In principle, the full first excited band
is accessed in Bragg spectroscopy. While for noninteracting (or weakly interacting) systems, the
dynamic structure factor reflects a sharp dispersion relation ω(k), this is not necessarily the case
for strongly interacting particles. Regarding Fig. 6.9a-e, we see that an excitation with a defined k
in the Mott-insulator phase corresponds to a superposition of eigenstates in the first excited band,
where for higher momenta states in the center of the band dominate S(ω, k). The number of
resonances in the dynamical structure factor is, however, rather size-dependent, so that one can
probably expect a rather blurred structure factor S(ω, k) for large systems with continuous bands
(corresponding to ∆ � 0.2J). In addition, a direct comparison of different system sizes Ns is
complicated due to the discrete Brillouin zone vectors that depend also onNs (see equation (6.33)).
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Fig. 6.9: The dynamic structure factor Sn(ω, k) for a one-dimensional lattice with Ns = 10 sites.
The plots (a)-(e) show results for a commensurate filling with nB = 10 bosons and column (f)-(j)
for half filling with nB = 5 bosons.
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Fig. 6.10: (a) Centroid position ωc of the dynamic structure factor as a function of the momentum
k forUB/J = 0, 2, ..., 20 (bottom to top). The dashed gray lines are Bogoliubov mean-field results
of equation (6.20) for UB/J = 0, 2, 4, and 6. (b) Centroid position in dependence on the on-site
interaction energy UB for momentum transfers k = 0.2 π/a, ..., π/a (for symbol assignment see
left plot). The dashed gray lines correspond to Bogoliubov excitations and predict a fundamentally
different behavior for UB & 6ER.

The overall shape and linear slope of the resonances as a function of UB/J in the Mott-insulator
phase are a more universal property, though, with a weak size dependence.

The basic behavior of S(ω, k) can in this case be captured in the centroid position of the dynamic
structure factor

ωc =
∫
dω ω Sn(ω, k). (6.39)

This quantity is, in particular, useful for the comparison with experimental systems with large
broadening. The centroid frequency ωc is shown in Fig. 6.10 as a function of both the momentum
of the excitation k and the on-site interaction energy UB. In both cases, the formation of an energy
gap with increasing UB is observable reflecting the Mott-insulator phase. Despite the limited
resolution in k space, the single-particle band dispersion for UB = 0 is clearly identifiable in
Fig. 6.10a, which transforms continuously into a gapped spectrum. For large UB and k 6= 0,
the centroid positions reflect the dispersion within the first excited band consisting of particle-
hole states (see Fig. 6.8a). In Fig. 6.10b, the linear slope of ωc for UB & 6J is connected to
the excitation gap of the Mott-insulator phase. For large values of UB, the slope matches precisely
UB. The centroid position allows to compare the results with the Bogoliubov approximation (6.20),
which is indicated in Figs. 6.10a and 6.10b by dashed gray lines for UB/J ≤ 7. For small k, the
mean-field approach matches quite well with the centroid positions of the exact calculation for
UB/J ≤ 4, whereas at UB/J = 6 the deviation becomes suddenly large (Fig. 6.10a). This can
be attributed to the entrance in the Mott-insulator phase that is not covered in the Bogoliubov
description. For large values of k, the centroid positions lie above the mean-field values for
UB/J . 8 and below for UB/J & 8.

The right column of Fig. 6.9 shows the dynamic structure factor Sn(ω, k) for the same system
with half filling, i.e., nB = 5 bosons. As discussed in detail in chapter 3, noncommensurate
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systems show a fundamentally different behavior, which stems from the fact that localization is
hindered due the equivalence of lattice sites. In particular, the main contributions to Sn(ω, k) are
within the single-particle band width 4J , which is only the lower part of the ground-state band
(Fig. 6.8b). Although the particles do not localize, they tend to avoid each other with increasing
on-site repulsion. Several new features are perceptible at UB > 0 comparing with the single-
particle dispersion (UB = 0). While for low momenta, the energy of the resonances rises with
increasing UB, for high momenta new excitation below ωc(UB = 0, k) emerge. In addition, a
weak resonance with linear slope UB is observable, which is most pronounced at high momentum
and arises from the energetically disfavored double occupation of lattice sites. Comparing with
the commensurate case, the total strength of

∫
dω S(ω, k) for noncommensurate filling, being

connected with properties of the ground state [56], is considerably higher, which must also be
considered for inhomogeneous experimental systems.

6.4.2 Bose-Fermi mixtures

In this section, the dynamic structure factor for boson-fermion mixtures is addressed. Here, let us
assume that the Bragg excitation is resonant to the bosonic subsystem only and that the fermions do
not redistribute as a consequence of the bosonic excitation. For attractive interspecies interaction,
we can assume a homogeneous filling of bosons and fermions in the lattice, as discussed in chapter
5. The self-trapping effect causes an strongly altered bosonic effective potential, which leads to a
renormalization of the Bose-Hubbard parameters UB and J . Therefore, for attractive interspecies
interaction we can apply the results in the last section with effective parameters UB(V0) and J(V0).
Here, repulsive interspecies scattering in studied, where at half fermionic filling anticorrelated
phases have been predicted [32–34]. For simplicity, we restrict ourselves to the single-band Bose-
Fermi-Hubbard model, but, in principle, interaction induced orbital changes can be introduced,
which is discussed in chapter 8. Since the Bose-Fermi system is quite complex, I focus the
discussion on bosonic excitations for rigid fermionic configurations. Excluding correlated boson-
fermion states, this corresponds to the effective potential approach in section 5.2.1 without a self-
consistent treatment of boson and fermion subspaces. In particular, it allows to probe the bosonic
response to a given fermionic configuration, which is useful for the interpretation of experimental
results.

For the exact diagonalization the Bose-Fermi-Hubbard model (2.62) is applied, which depends
on the on-site interactions UB and UBF as well as on the hopping parameters JB and JF. The
on-site interactions are assumed to be repulsive so that UB > 0 and UBF > 0. The basis states
|N〉B⊗|Ψ0

F〉 are used, where |N〉B are all possible bosonic Fock states and |Ψ0
F〉 is a single fermion

state. Consequently, the system exclusively depends on the ratios UB/J and UBF/J , where J
denotes the bosonic tunneling JB.

In particular, for systems with half fermionic filling it is of importance to distinguish between two
scenarios: the alternating filling and the alignment of fermions in a single domain. For strong
interspecies repulsion, we expect in both cases sites that are either occupied by a boson or by a
fermion. However, only when a domain is formed bosons and fermions are spatially separated.
To distinguish between both scenarios, the dynamic structure factor for an one-dimensional lattice
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Fig. 6.11: The dynamic structure factor Sn(ω, k) for a one-dimensional lattice with Ns = 10
sites, five bosons and five fermions, and an interspecies interaction UBF = 5J . While the first
column (a)-(e) shows results for alternating fermionic filling, the plots (f)-(j) depict Sn(ω, k) for a
configuration, where the fermions are aligned next to each other.
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Fig. 6.12: The dynamic structure factor Sn(ω, k) for UBF = 10J with (a)-(e) alternating fermionic
filling and (f)-(j) for fermions aligned in a domain.
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with Ns = 10 sites, nB = 5 bosons, and nF = 5 fermions is computed, where periodic boundary
conditions are applied. Figure 6.11 and 6.12 depict Sn(ω, k) for both scenarios in dependence
on the on-site interaction UB for UBF = 5J and 10J . While the columns a-e show results for an
alternating fermionic filling, the columns f-j present Sn(ω, k) for the alignment of fermions in a
domain.

For alternating filling, one observes a strong resonance around UBF, which is weaker for small UB

at low momentum. For UB < UBF, a second strong resonance with a slope about UB is visible.
Thus, the basic excitations are given by the double occupation of sites with either two bosons
or with a boson and a fermion. For UB > UBF, the resonance with slope UB is much weaker.
Interestingly, the excitations show a pronounced avoided crossing behavior at UB = UBF. In
particular, it should be noted that both excitations have a relatively sharp resonance and that for
UB � UBF the excitations are dominated by the bosonic excitations to fermionic sites. ForUB = 0,
no sin2(ka/2) shaped dispersion is observable due to the superlattice structure experienced by
the bosonic atoms. At the Brillouin zone edge k = π/a, which corresponds to the superlattice
structure 2a, a strong resonance at ω = 0 occurs for all values of UB. As a consequence, the
relative amplitude for excitations with ω > 0 decreases.

A similar situation can be observed at k = 0.2π/a for the scenario in which the fermions are
aligned next to each other. Here, the wave vector also corresponds to the superlattice structure,
which includes ten lattice sites. Remarkably, the structure factor shows several resonances for
all momenta and values of UB, which is in great contrast to the alternating alignment discussed
before. The set of resonances with slope UB for UB/J & 6 can be directly connected to the
formation of a Mott insulator as discussed in the previous section (Fig. 6.9a-e). These excitations
correspond to particle-hole excitations representing the relatively broad first excited Mott-insulator
band. In addition, however, also strong resonances with energy UBF are observable corresponding
to excitations of bosons to fermion occupied sites showing a similar band structure.

The differences between both scenarios can be further highlighted by varying the interspecies on-
site interaction UBF, which is presented in Fig. 6.13. Note that here the horizontal modes belong
to an excitation with energy UB, whereas the modes with linear slope correspond to UBF. For
UBF � UB, both fermionic configurations are clearly distinguishable. For fermions being aligned
in a domain, only excitations with UB are observable resembling the purely bosonic system with
commensurate filling (Fig. 6.9a-e). This indicates the spatial separation of bosons and fermions.
Consequently, we obtain a system where the bosonic atoms behave like a conventional Mott
insulator.

For alternating filling, excitations with UB and UBF are observable for UBF � UB, where the
resonance scaling with UBF is much stronger despite its much higher energy. This means that
bosonic excitations which involve tunneling to nonnearest neighbors are only partly suppressed.
The dynamic structure factor is, however, dominated by the occupation of a boson at a fermionic
site leading to a band gap energy UBF. The alternating fermionic filling causes, in particular, that
the resonances are relatively sharp. This is caused by the small effective tunneling matrix element
connecting equivalent sites, i.e., two nearest sites being occupied by fermions or two nearest
sites being not occupied by fermions. This is also directly observable in the energy spectrum
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Fig. 6.13: The dynamic structure factor Sn(ω, k) as a function of the interspecies on-site
interaction UBF for UB = 5J . Plots (a)-(e) depict results for alternating fermionic filling and
(f)-(j) for fermions aligned in a domain.
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Fig. 6.14: The energy spectrum for (a) alternating fermionic filling and (b) fermions aligned in a
domain as a function of UBF at UB = 5J . At UBF = 0, the highest calculated energy is about 15J .

in Fig. 6.14a, which shows narrow and clearly resolved bands corresponding to excitations with
UB, 2UB, 3UB, UBF, UBF +UB, and 2UBF. In contrast, for the case, where the fermions are aligned
in a domain, the bands in the energy spectrum (Fig. 6.14b) are broad and overlap each other.

6.5 Conclusions

For weakly interacting atomic gases in optical lattices, the band structure can be derived using
mean-field theory. Two different approaches, the Bogoliubov-de Gennes equations [50–53] and a
Hubbard-type approximation [48, 49, 54, 55], have been described and compared with each other
using experimental parameters. The band structure is substantially modified by interaction effects
and is in good agreement with two-photon Bragg spectroscopy of a superfluid in an optical lattice
[5]. In addition, deviations for excited bands arising from to the confinement have been calculated.

Further, we can conclude that Bragg spectroscopy is also a feasible tool to explore the nature
of excitations in highly correlated systems. The fingerprint of these correlations, however, give
rise to nontrivial structures in the dynamic structure factor S(ω, k). For one-dimensional finite
lattices, S(ω, k) has been computed for a smoothly varying ratio of tunneling to on-site interaction.
It changes notably when driving the system from the superfluid to the Mott-insulator phase,
including the formation of an energy gap. Moreover, the presented results show that the dynamic
structure factor allows to distinguish systems with a spatial separation of bosons and fermions
from a scenario with alternating filling. Although the results in this section are restricted to
one-dimensional and, in particular, finite-sized systems, they give valuable information for the
experimental verification of complex phases.
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CHAPTER

7
Multiorbital quantum phase
evolution in optical lattices

The main results in this chapter have been published in Ref. [6] S. Will, T. Best, U. Schneider,
L. Hackermüller, D.-S. Lühmann, and I. Bloch, Time-resolved observation of coherent multi-body
interactions in quantum phase revivals, Nature 465, 197 (2010).

7.1 Motivation

The realization of the quantum phase transition of bosonic atoms from the superfluid to the Mott-
insulator phase [19, 118, 120] is one of the most prominent examples that demonstrate the great
benefits of optical lattices. Both the accurate tuning of the lattice depth and the modification
of the particle-particle interactions open amazing possibilities, which are not easily accessible in
solid-state physics. By focusing on a single well of the optical lattice, the fundamentally different
behavior of the superfluid and the Mott-insulator phases becomes apparent. The superfluid phase
is, in principle, indistinguishable from a coherent state at each lattice site with a Poissonian particle
number distribution. This state is clearly not an eigenstate of the particle number operator and
exhibits strong particle fluctuations. Being the eigenstate of the annihilation operator, however,
the state remains unchanged by the detection of a particle. The atoms in each microtrap can be
regarded as a matter wave field. In the Mott phase, the single-site states are local Fock states with
a defined particle number. By contrast, for a single-particle Fock state, the detection of a particle
eliminates the possibility to detect another. By varying the depth of the optical lattice, we can
squeeze the matter wave field from a coherent state to a Fock state and vice versa.

When the lattice is suddenly ramped from shallow to deep, the particle number statistics of the
superfluid phase is preserved in the deep lattice. This leads to a coherent superposition of particle
number states at each lattice site that evolves in time corresponding to the Hamiltonian at the final
lattice depth. Since the tunneling between neighboring sites can be neglected in very deep lattices,
the Hamiltonian describes the interaction of particles at single lattice sites. Thereby, each particle
number state evolves according to its characteristic interaction energy. Experimentally, the time
evolution can be monitored by the visibility of the momentum distribution (see section 2.5.1),
which undergoes a characteristic sequence of collapses and revivals [57–60]. This property is
directly connected to the evolution of the matter wave field at each lattice site and allows to probe
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both the interaction energies and the particle number statistics.

In the Bose-Hubbard model, which is widely used in the context of optical lattices, all number
states evolve with multiples of a single on-site energy [60]. In contrast, recent measurements,
which are able to detect up to 40 revivals [6], show that different energies contribute to the
time evolution. This is a direct evidence for multiband physics causing deviations from the
particle-number-independent on-site interaction. Experimentally, the changes of the on-site
interaction with the particle number has been addressed before in Ref. [144] by using atomic
clock shifts. However, the high resolution of the collapse and revival measurement enables a
detailed comparison with accurate theoretical calculations. Since the atoms are tightly confined
on the sites for deep lattices, the correlations between the particles due to their interaction become
crucial. Performing a diagonalization of the many-particle system, the exact particle-dependent
on-site interaction energies are computed, which are in striking agreement with the experimental
data [6]. In particular, the influence of kinetic and potential energy, the role of bound and nonbound
orbitals, and the broadening of the effective orbitals are addressed.

7.2 Particle fluctuations

As described previously in section 2.6.1, for vanishing on-site interaction U all atoms occupy the
lowest Bloch wave φq=0(r). In a Wannier basis, the many-body wave function reads

|ΨSF, U=0〉 =

(
1√
Ns

∑
i

b̂†i

)N
|0〉, (7.1)

which visualizes the strong particle fluctuations at each lattice site. We can approximate this
many-body state as

|ΨSF, U=0〉 ≈
∏
i

|φi〉, (7.2)

where the single-site states |φi〉 consist of a sum of local Fock states with different particle
numbers, i. e.,

|φi〉 =
∑
n

c(i)
n |n〉i. (7.3)

In the limit of large lattices with a constant filling factor, the atom numbers are Poissonian
distributed, so that the superfluid state at U = 0 can approximately be written as product of
coherent states with a constant relative phase to each other, namely

|φi〉 = |α〉 = e−|α|
2/2

∞∑
n=0

αn√
n!
|n〉, (7.4)

where n̄ = |α|2 is the mean particle number per site. As mentioned, the coherent state is the
eigenstate of the local annihilation operator b̂, i.e.,

b̂|α〉 = α|α〉. (7.5)
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coefficients |cn|2 for the mean
filling n̄ = 2 using a Gutzwiller
approach and equation (2.119). The
dashed gray line depicts the particle
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the Mott-insulator phase.

When the ratio of on-site interaction U to tunneling J increases, the distribution of the local
particle number states becomes sub-Poissonian [60, 196]. For large values of U/J , when the
system forms a Mott-insulator phase (section 2.6.2), the single-site states |φi〉 have a definite
particle number for commensurate integer filling. Consequently, the many-particle state reads

|ΨMott, U/J→∞〉 =
∏
i

|n〉i. (7.6)

As in both limiting cases U/J → 0 and U/J → ∞ the many-particle state can be written as
product of single-site wave functions

|ΨGW〉 =
∏
i

∑
n

c(i)
n |n〉i, (7.7)

it is instructive to choose this ansatz for all values of U/J , which is the so-called Gutzwiller
trial wave function [21, 74, 197]. Assuming a homogeneous system, where all single-site wave
functions are identical |n〉i = |n〉, the Hamiltonian can be approximated by an effective single-site
Hamiltonian [198]

〈HGW〉 = −zJ
∣∣∑
n

c∗ncn+1

√
n+ 1

∣∣2 +
U

2

∑
n

|cn|2n(n− 1). (7.8)

The energy functional 〈HGW〉 can be minimized, where the normalization in respect to the
coefficients and the mean particle number,∑

n

|cn|2 = 1 and
∑
n

|cn|2 n = n̄, (7.9)

respectively, must be fulfilled. Exemplarily, for a mean filling n̄ = 2 the square of the coefficients
and the fluctuations ∆n2 are shown in Fig. 7.1, where we assume |cn|2 ≈ 0 for n ≥ 6. In deep
lattices, the particle fluctuations vanish and only the coefficient c2 contributes. Thus, the system
enters the Mott-insulator phase with a commensurate filling of two atoms per site.
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Fig. 7.2: (a) Experimental visibility taken from Ref. [6] as a function of the hold time for a final
lattice depth VH = 40.3ER. Exemplarily, the momentum distributions at certain revival times
are shown. Obviously, the experimental data can not be described in a single-band picture with a
constant on-site interaction U . (b) A detail of the Fourier transformation and (c) the experimental
sequence for the lattice depth and the strength of the dipole potential are shown below. The
Fourier-limited peak width is about 100 Hz.

7.3 Time evolution

It has been shown in Ref. [60] that the coherent superposition of particle number states at each
lattice site in the superfluid phase can be probed experimentally by performing a nonadiabatic
ramp from a shallow to a deep lattice. In a time scale that is fast compared with tunneling time but
slow enough that all atoms remain in the vibrational ground state of the lattice wells, the lattice
is ramped up from the initial lattice depth VL to the final lattice depth VH. This ensures that the
atom number distribution is preserved during the rapid increase of the lattice depth. At the final
lattice depth, the particle number states at each site evolve separately due to the interaction. In the
Bose-Hubbard model, the time evolution at each site can be described by

|φ(t)〉 =
∑
n

cne
−i Un(n−1)t/2~ |n〉, (7.10)

where U is the on-site interaction per particle pair. Due to the scaling of the on-site interaction
U with n(n − 1)/2 in phase factor, the particle number states dephase leading to a collapse at
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tcol ≈ h/σnU , where σ2
n is the variance of the atom number distribution [57–60]. After an

evolution time trev = h/U the phase factors become equal modulo 2π and the initial state revives.
This leads to periodic collapses and revivals of the matter wave field ψ, which is the expectation
value of the atomic field operator

ψ = 〈φ(t)| b̂ |φ(t)〉. (7.11)

The macroscopic matter wave field ψ is directly connected to the experimentally accessible fringe
visibility of atoms in optical lattices [60]. Therefore, revivals after integer multiples of trev can be
observed in the visibility data. In Ref. [60], the number of revivals is limited to a number of five,
which is due to the strong inhomogeneity in the optical lattice caused by the confinement of the
lattice lasers at the final lattice depth. This confining potential leads to a varying mean number of
atoms from the center to the edge of the lattice and a strong damping of the observed visibility.

Using a new experimental setup described in section 5.5, the group of I. Bloch at the University of
Mainz achieves a drastic increase of the number of observable revivals [6]. The progress is mainly
due to the advantage of using a blue detuned lattice, causing an anticonfinement, in combination
with a red detuned dipole trap, which allows the tunability of the harmonic confinement. In the
experiment, a three-dimensional lattice with a lattice spacing a = 369 nm is generated and loaded
with ultracold 87Rb atoms. By adjusting the elliptical red detuned optical dipole trap for a given
lattice depth V0, optical lattices with very shallow confinements are achieved. The best results for
the collapse and revival measurements are even obtained using a weak overall anticonfinement.
With this setup it is possible to observe up to 40 revivals, which is shown exemplarily in Fig. 7.2.
From these results, it is obvious that more than one frequency is important for the time evolution.
Therefore, the single-band Hubbard model (7.10), where the on-site interaction scales precisely
with Un(n − 1)/2, breaks down. The corrections due to higher bands in collapse and revival
experiments have been addressed in Ref. [199]. Applying perturbation theory, effective two- and
three-body interactions have been predicted leading to a beat frequency behavior. A perturbative
approach, however, does not provide an accurate description for the strong interactions considered
here. The frequencies arising from the full multiorbital treatment are derived and computed in the
following section.

7.4 Exact calculation of on-site energies

Orbital changes cause a reduction of the on-site interaction energy with increasing particle
numbers as particles tend to avoid each other for repulsive scattering. Therefore, the interaction
energy depends explicitly on the number of atoms per site and an admixture of higher-band orbitals
must be considered. Although, the modifications are less pronounced than for boson-fermion
mixtures (section 5), they notably change the on-site interaction per particle pair. The problem
of n interacting bosons at a lattice site is solved by exact diagonalization yielding a full inclusion
of orbital changes and particle correlations. In deep lattices, where the final lattice depth in the
collapse and revival experiment is 20ER < VH < 45ER, it is valid to restrict this calculation to a
single lattice site. Thus, we can write the single-band Bose-Hubbard on-site interaction as

UBH = g

∫
d3r |w0(r)|4 ≈ g

∫
d3r |ϕ0(r)|4, (7.12)
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Fig. 7.3: Comparison of the Bose-Hubbard on-site interaction UBH, the many-particle expectation
value of the interaction energy UED, and the total energy EED obtained by the eigenvalue of
the Schrödinger equation. The results are plotted for two to four 87Rb atoms, a lattice spacing
a = 369 nm, and a scattering length as = 102a0. The dashed gray and the solid black lines
correspond to the Hubbard interaction UBH computed using Wannier functions w0(r) and single-
site eigenfunctions ϕ0(r), respectively.

which is shown quantitatively in Fig. 7.3, where the dashed gray line represents the on-site
interaction using Wannier functions w0(r) (section 2.1.4) and the solid black line is obtained
using the single-site solutions ϕ0(r) with hard boundary conditions. Both energies are noticeably
higher than indicated by the experiment. With the exact many-particle wave function obtained by
diagonalization, the on-site interaction per particle pair can be evaluated using

UED =
g

n(n− 1)

∫
d3r 〈ψ̂†(r)ψ̂†(r)ψ̂(r)ψ̂(r)〉, (7.13)

which fully includes many-particle correlations (see section 4.4). The latter denotes the admixture
of many-particle states of the Fock basis, where some or all particles occupy higher single-particle
orbitals. The expectation value UED neglects, however, the changes in potential and kinetic energy
due to the broadening of the density. Therefore, the total change of the energy due to the interaction
must be taken into account, which is the eigenvalue of the many-particle Schrödinger equation

Ĥi Ψn = en Ψn. (7.14)

Normalized to the energy per particle pair, we obtain the correct interaction energies

EED =
en − e0

n

n(n− 1)/2
, (7.15)

where e0
n is the energy of noninteracting particles. As shown in Fig. 7.3, the total change in energy

is considerably smaller than expected for the interaction integral UED in equation (7.13).

As mentioned before, in the experimental realization [6] a slight anticonfinement is present, which
allows that atoms can leave the system via free-space states or via multiple tunneling processes.
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Performing a time-of-flight detection, the fraction of atoms that is lost during the hold time in
the experiment does not contribute to the observed signal. It is therefore a good assumption to
project the quantum mechanical state on many-particle Fock states with only bound orbitals, while
other contributions can be considered as lost. This has a profound influence on the observable
interaction energies. Let us consider a confined system, where particle loss occurs only via three-
body recombination. Here, an infinite number of orbitals and therefore an infinite number of
Fock states contribute causing a notable reduction of the interaction energy. However, the exact
diagonalization is restricted to a large but finite number of orbitals in order to achieve convergence.
Note that the exact values are therefore always (slightly) lower than the computed ones. Applying
this model leads to interaction energies EED for two 87Rb atoms that are about 8% lower than
the experimentally observed values. Experimental errors (see below) and the uncertainty in the
scattering length of 87Rb atoms [106, 107] are considerably smaller. Thus, the experimental data
supports the assumption that only bound orbitals are occupied.

With the restriction of a finite number of orbitals the diagonalization becomes exact, as all
possible many-particle states are included in the calculation. The number of orbitals influences
the computed energy, where, in general, the energy is lower, the more orbitals are included. For
a separable symmetric three-dimensional optical lattice, the three-dimensional orbitals are simple
products of one-dimensional wave functions

ψ{j,k,l}(r) = ϕj(x)ϕk(y)ϕl(z) (7.16)

with j, k, l = 1, ..., s. The many-particle states |N〉 can be represented by the occupation numbers
of the three-dimensional orbitals ψ{j,k,l}. The number of many-particle states |N〉 defines the
finite dimension of the Hilbert space

(n+m− 1)!
n!(m− 1)!

, (7.17)

where m = s3 is the total number of single-particle orbitals. However, only Fock states with
even parity in all spatial dimensions can mix with the energetically lowest many-particle state. Of
special interest is that the number of bound orbitals changes when the lattice depth is increased.
At roughly V0 = 34ER, the number of bound orbitals changes from three to four per spatial
dimension, which is depicted in Fig. 7.4a. Below this threshold, 33 = 27 bound orbitals must be
included, whereas 43 = 64 orbitals contribute above V0 = 34ER. Between 32ER and 36ER, the
energies in Fig. 7.3 are interpolated, which leads to smooth crossover from 33 to 43 orbitals. Below
18ER, only two bound orbitals exist per spatial dimension at each lattice well, and the energy
difference to the single-band model is drastically reduced. However, this regime is experimentally
not accessible, since for shallow final lattice depths only a small number of revivals is observable
due to a nonnegligible tunneling.

Regarding the periodicity and the orthogonality of wave functions, hard boundary conditions with
infinite walls are chosen. However, also weak boundaries could, in principle, be considered, which
influences, in particular, the highest bound orbital in each spatial dimension. The deviation is
largest when the highest bound orbital lies just below the edge of the potential barrier. Choosing
a very weak confining potential, the deviation in the total interaction energy is roughly between
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Fig. 7.4: (a) Single-site potential and single-particle energies for V0 = 32ER and V0 = 36ER
with three and four bound states, respectively. (b) Effective one-dimensional orbitals for n = 2 to
4 87Rb atoms. The solid black and dashed gray line represent the single-particle single-site wave
function ϕ0(r) and the Wannier function w0(r), respectively.

0.5% and 1% in comparison with a hard confinement. Furthermore, a weak confinement causes
that the crossover from 33 to 43 orbitals occurs already at V0 ≈ 31ER.

The admixture of excited many-particle states ψ{j,k,l} with {j, k, l} 6= {1, 1, 1} is shown in
Fig. 7.5a in dependence on the lattice depth and the particle number. The fraction of the particles
occupying excited states increases drastically with the atom number, i.e., about 1% for three
particles and 5% for five particles. Note that the admixture of states increases also slightly with
an increasing lattice depth. Since each of the many-particle states comprises of the occupation
numbers of the three-dimensional orbitals, the results can be projected on the single-particle
orbitals, which is plotted in Fig. 7.5b for n = 2 and n = 5 particles using a logarithmic
scale. For convenience, the occupation of energetically degenerate orbitals ψ{j,k,l} belonging to
a permutation of the indices [jkl] are summed up. The occupations comprising only second and
third band admixtures are colored in blue and green, respectively. Since the parity is conserved in
scattering processes, only many-particle states with the parity of the ground state can contribute.
This has also an impact on the projections on single-particle orbitals, where the occupation of the
second band being energetically favorable compared to the third band is suppressed.

Another interesting question is how the on-site density changes due to the interaction. Let us focus
directly on the change of the effective one-dimensional orbital wave function. Assuming that the
three-dimensional wave function is a simple product of one-dimensional ones, which is not strictly
the case, the effective orbital wave function can be defined by

φz(z) =

√
ρ (0, 0, z)
ρ2/3(0, 0, 0)

. (7.18)

These effective orbitals are shown in Fig. 7.4b for V0 = 40ER, where a broadening due to
interaction for n = 2 to 4 particles is perceptible. For comparison, the single-site (solid black)
and Wannier wave functions (dashed gray) are shown, which agree perfectly at this lattice depth.
Using the effective orbitals in a single-band picture, the broadening changes the value of the on-
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Fig. 7.5: (a) Fraction of atoms in excited many-particle states as a function of the lattice depth
and the number of atoms n for as = 102a0 and 43 single-particle orbitals. (b) The occupation of
single-particle orbitals ψ{j,k,l}, where all permutations [jkl] are summed up, for n = 2 and n = 5
particles calculated for 33 orbitals, the lattice depth V0 = 40ER, and as = 102a0.

site interaction noticeably. In comparison with the many-particle expectation value for UBH in
equation (7.13), this correction of the Hubbard interaction U is, however, considerably smaller. In
addition to the broadening, the correlations between the particles play therefore the major role for
the reduction of the on-site energy. Thus, we observe a true many-particle correlation effect that
can not be captured in an effective mean-field or single-band description.

7.5 Multiorbital time evolution

In the time evolution (7.10), the Hubbard on-site energy can be replaced by the exact particle-
number-dependent energy En = EED(n) for each state |n〉, namely

|φ(t)〉 =
∞∑
n=0

cne
−i Ent/~ |n〉. (7.19)

Evaluating

b̂ |φ(t)〉 =
∞∑
n=0

cn+1

√
n+ 1 e−i En+1t/~ |n〉, (7.20)

the matter wave field can be expressed as

ψ = 〈φ(t)| b̂ |φ(t)〉 =
∞∑
n=0

c∗ncn+1

√
n+ 1 e−i(En+1−En)t/~. (7.21)
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The fringe visibility is to first order proportional to the square of the matter wave field

|ψ|2 =
∞∑

n,m=0

Cn,m e
−i(En+1−En−Em+1+Em)t/~, (7.22)

where the coefficients read

Cn,m = c∗ncn+1cmc
∗
m+1

√
n+ 1

√
m+ 1. (7.23)

Further, assuming real coefficients we can write

|ψ|2 =
∑
n

Cn,n +
∑
n>m

2Cn,m cos(ωn,mt) (7.24)

with frequencies
ωn,m = (En+1 − En − Em+1 + Em)/~. (7.25)

Due to the particle number dependence of the interaction energy, several frequencies ωn,m can be
observed in the experiment [6]. By performing a discrete Fourier transformation of the measured
fringe visibility, it is possible to determine the frequencies ωn,m. The finite time interval of the
recorded data leads to a finite resolution in energy. Therefore, it is of fundamental necessity
to observe the collapses and revivals for a long time, which has become possible with the
experimental setup in Ref. [6]. As the mean filling per site n̄ is typically small, the coefficients
Cn,m are negligible for large values of n and m. Therefore, only few frequencies are observable
in the Fourier transformation of the visibility data (Fig. 7.2b), where contributions on the order of
the on-site energy U are

h f1,0 = E2, C1,0 =
√

2 c0c
2
1c2,

h f2,1 = E3 − 2E2, C2,1 =
√

6 c1c
2
2c3,

h f3,2 = E4 − 2E3 + E2, C3,2 =
√

12 c2c
2
3c4.

(7.26)
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Peaks on the order of twice the on-site energy U can be attributed to

h f2,0 = E3 − E2, C2,0 =
√

3 c0c1c2c3,

h f3,1 = E4 − E3 − E2, C3,1 =
√

8 c1c2c3c4,

h f4,2 = E5 − E4 − E3 + E2, C4,2 =
√

15 c2c3c4c5.

(7.27)

While the on-site interaction E2 for two atoms can be measured directly, other observable
frequencies depend on more than a single energy En.

The experimental and theoretical results are plotted in Fig. 7.6 for peaks on the order of U
(diamonds) and 2U (circles). As mentioned, the signal of other contributions is weak due to the
smallness of the respective coefficients Cn,m. It should be noted that there are no free parameters
in this comparison, except for the s-wave scattering length as of 87Rb atoms. Calculations in
Refs. [106, 107] predict for as values ranging from 100a0 to 103a0 (see section 2.3.1). The best
agreement of experiment and theory is obtained for a scattering length 102a0, which corresponds
to the solid lines in Fig. 7.6. The darker and lighter shaded areas are boundaries for as = 101a0-
103a0 and as = 100a0-104a0. The experimental error is mainly due to the calibration of the
lattice depth, which is performed by measuring the transition of 40K atoms between the first and
the second band. Since the 40K atoms are very weakly interacting, the transition is sharp and can
be calculated using the single-particle band structure. However, the edge of the transition has a
finite width, which causes an error of about 2% in the calibration. In addition, the lattice depth for
40K atoms must be converted to 87Rb atoms, where the conversion factor is 1.51 with an error of
1.5% [6]. For the measurement of the bosonic energies, the total uncertainty in the lattice depth
V0 is therefore 2.5% and is of a systematic nature, i.e., leading to a shift of all data points. This
systematic error is much larger than the statistical error (see Fig. 7.8).

It is striking that the influence of the number of bound states is perceptible in the experimental
data. In Fig. 7.7, where the first order peaks in U are shown, the theoretical values for 33 orbitals
are indicated for V0 > 34ER by dashed lines, which are noticeably higher than the experimental
frequencies. This is an additional verification that only bound orbitals are occupied. Note that
this feature is not influenced by the systematic error in the lattice calibration, which causes an
uncertainty in the interaction strength.
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Since the theoretical calculation is exact, this type of measurement determines directly the s-wave
scattering length (2.34). We can see that the measured frequencies for V0 = 28.5ER are, in
general, slightly too low compared with the theory and in respect to the other data points, which
might be caused by an inaccurate calibration of the lattice depth or the confinement. Furthermore,
deviations are noticeable for V0 = 25.5ER, whereas results in deeper lattices are, in general, more
accurate due to a smaller tunneling. Despite these small discrepancies, a compelling agreement
between experiment and theory is apparent for the scattering length as = 102a0. Applying the
theoretical model, the s-wave scattering length can be extracted from the experimental results,
which is depicted in Fig. 7.8. For the shown data, the scattering length can be estimated
as as = 101.5a0 ± 1.0a0 and without the experimental data at V0 = 28.5ER one obtains
as = 101.9a0 ± 0.5a0. However, in addition to the statistical error also systematic uncertainties
must be taken into account. The systematic error in the determination of the scattering length as
caused by the lattice calibration is about 2.3% and dominates therefore the small statical error.
Thus, improvements in the calibration procedure can would allow more accurate results for as.

The particle-number-dependent multiorbital energies give rive to a Hamiltonian with effective
multi-body interactions. The on-site interaction can be expressed as the expansion

Ĥint =
U2

2
n̂(n̂− 1) +

U3

6
n̂(n̂− 1)(n̂− 2) +

U4

24
n̂(n̂− 1)(n̂− 2)(n̂− 3) + . . . , (7.28)

where U2, U3, and U4 correspond to an effective two-, three-, and four-body interaction,
respectively. In the case where the n-body interaction energy Un becomes very small for n > 3,
U2 and U3 offer an approximate description for few particles per lattice site [199]. The effective
Hamiltonian allows the mapping to systems with direct multi-body interactions, e.g., in the vicinity
of Efimov resonances. The calculation and the experimental results are depicted in Fig. 7.9a.
The multi-body energies Un can be derived iteratively from the multiorbital energies En, i.e.,
U2 = E2, U3 = E3 − 3U2, and U4 = E4 − 6U2 − 4U3. Since experimental and theoretical
data match excellently, direct multi-body interactions in the experiment can be regarded as
negligible. The resulting energies Un decrease relatively fast with the particle number n, allowing
an approximative effective single-band description for few particles on a lattice site by means of
multi-body interactions.
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orbitals. (b) The Fourier spectra for initial lattice depths VL = 3ER to 13ER reveal the change
in the number statistics from a Poissonian to a strongly number-squeezed distribution indicating
the transition from a superfluid to a Mott-insulator. The peak positions measured at a final lattice
depth VH = 40ER agree with the theoretical predictions (dashed vertical lines) for as = 102a0.
For shallow lattices, the interaction energy of up to six particles can be determined. The figure is
taken from Ref. [6].

Moreover, the experiment allows to probe directly the number squeezing along the superfluid to
Mott-insulator transition by varying the initial lattice depth as shown in Fig. 7.9b. In the superfluid
phase, one expects a Poissonian distribution of the coefficients cn, which becomes sub-Poissonian
when the ratio of interaction to tunneling is increased. For shallow initial lattices (VL = 3ER
and 6ER) five distinct frequencies are resolved, which allows to measure the interaction energy
of up to six particles. Close to the Mott insulator, the distribution cn becomes strongly number-
squeezed and only two frequencies remain, which is imprinted in the Fourier coefficients Cn,m
by the relations (7.26) and (7.27). In a perfect Mott-insulator phase, all except one coefficient cn
vanish as shown exemplarily in Fig. 7.1 causing a decreasing signal for an increasing lattice depth.

7.6 Conclusions

In general, the results demonstrate the high accuracy of both experimental data and theoretical
predictions. Experimentally, a multi-frequency collapse and revival of the matter wave is
observable, when ramping the three-dimensional lattice suddenly from shallow to deep, so that
the particle number statistics of the superfluid phase is preserved at each lattice site. The phases
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of the particle number states evolve in time according to their interaction energy, which can be
extracted by Fourier transformation of the measured visibility as a function of time. The different
contributing energies are a direct evidence for multiorbital physics, since the Hubbard model
predicts only energies that are multiples of the single-band on-site interaction U . Performing
an exact diagonalization of the many-particle system, the particle-number-dependent on-site
interaction energies are computed including fully the quantum mechanical correlations. The
calculation includes also changes of the potential and the kinetic energy that are usually neglected
in the on-site interaction energy. It is shown that essentially only bound orbitals are occupied.
Thus, a finite number of Fock states contribute to the correlated state for n particles and the
diagonalization provides exact values. The observable frequencies computed from the exact
particle-number-dependent interaction energies are in excellent agreement with the experimental
data. Notably, a kink in the observed frequencies as a function of the final lattice depth is
perceptible which can probably be attributed to a crossover from three to four bound orbitals per
spatial dimension. In addition to the lattice depth, the computed frequencies depend exclusively
on the s-wave scattering for 87Rb atoms. A comparison of theory and experiment determines
the s-wave scattering length to as = 102a0 with a small statistical error, where the dominating
systematic error is about ±2a0. The multiorbital particle-number-dependent energies give rise to
an effective Hamiltonian with multi-body interactions.

In conclusion, orbital changes in the particle-number-dependent on-site interaction are exactly
calculated and are in compelling agreement with a recent high-precision collapse and revival
measurement. This demonstrates that highly correlated states can be accurately accessed in
ultracold atom experiments. Theoretically, an adequate description requires the exact multiorbital
treatment of the interaction as presented in this thesis.
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CHAPTER

8
Outlook

For attractively interacting Bose-Fermi mixtures in optical lattices, the renormalization of the
Bose-Hubbard Hamiltonian (chapter 5) leads to a large shift of the superfluid to Mott-insulator
transition. The dependence on the interspecies scattering length predicted by this theory has
been verified experimentally for 87Rb - 40K mixtures [3]. The self-trapping, which causes
deepened effective potentials with increasing filling, suggests an increase of the bosonic filling
per site. Although an indirect experimental evidence for this effect has been found [3], its
direct confirmation is still missing. Due to a notable gain in energy, the self-trapping effect
stabilizes boson-fermion compounds, which gives rise to physics resembling polaron phenomena
in solids. In this field, many interesting questions addressing the fundamental behavior of
composite particles are unanswered. In particular, the existence of composite particles in optical
lattices is not experimentally confirmed. Theoretically, the dynamics of attractive boson-fermion
mixtures could provide evidence of such particle compounds.

Experimentally, the multiorbital renormalization of the Bose-Hubbard parameters can be studied
by measuring U and J directly. On the one hand, the collapse and revival experiment presented
in chapter 7 is an excellent candidate to determine the on-site interaction energies precisely. In
such an experiment both the boson-boson interaction and the boson-fermion interaction contribute
to a complex evolution of the quantum phases. In addition, also atomic clock shifts [144] can be
used to measure the modified on-site interactions. On the other hand, momentum-resolved Bragg
spectroscopy (chapter 6) is an excellent tool to investigate the changes in the tunneling amplitude
J due to self-trapping. In particular, it allows to probe directly the band structure of the effective
bosonic and fermionic potentials, which would give detailed information on the mutual interaction.

For repulsive interspecies interaction, theoretical studies of the Bose-Fermi-Hubbard model [32–
34] predict a competition between a phase separation of bosons and fermions and a supersolid
phase, where both species are aligned in a checkerboard pattern. Both, the influence of the
confinement and interaction induced changes are neglected so far in these studies but might be of
crucial importance for the competition of phases. It has been shown that evidence of a supersolid
phase might be found in the dynamic structure factor, which identifies Bragg spectroscopy as a
possible experimental tool to detect this phase. The detection of separated fermionic and bosonic
clouds could, in principle, also be achieved by in-situ absorption imaging.

Although the renormalization of the Hubbard model due to effective potentials is a very promising
way to include orbital effects in the description of bosonic gases and Bose-Fermi mixtures, it
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has also certain drawbacks, which are discussed in the following. The great advantage of using
the renormalized theory is the reutilization of known results of the Hubbard model being widely
used for solids and optical lattices. Furthermore, the Hubbard model depends effectively only on
one parameter, namely the ratio U/J , and is therefore relatively easy to handle. However, the
renormalization is only applicable when the lattice is locally commensurately filled, i.e., bosonic
and fermionic filling factors are constant in larger regions of the lattice. As mentioned this property
is not necessarily fulfilled, e.g., when bosonic and fermionic atoms start to separate to different
sites of the lattice. Thus, the prediction of an anticorrelated phase is not in the scope of this
effective bosonic theory. The use of static filling factors hinders the investigation of the dynamics,
i.e., the hopping of particles, which modifies the effective parameters.

A theory which is accurate in all this points is the multiband Hubbard model, which is, however,
quite complicated to handle. In recent works, this model has been restricted to only two bands
in order to simplify the Hamiltonian [162, 164]. This restriction might, however, not describe
the on-site effects accurately enough to allow quantitatively correct results. As a matter of fact,
the on-site interaction in deeper lattices is very strong causing also higher bands to be noticeably
occupied. A different approach might be promising, though. Assuming that the interaction on
each site is strong, the correlated on-site physics must be described accurately. It has been shown
that exact diagonalization is suited to compute the on-site wave functions, the on-site energies, and
the tunneling from the effective potentials. The idea is to separate the on-site from the intersite
physics, which is the basic concept of the Hubbard model and is justified, since on-site and intersite
dynamics are subject to different time scales. While the on-site physics can be described by
exact diagonalization, which provides precise results for the on-site interaction and the tunneling,
the intersite physics gives rise to an effective Hamiltonian, which can be treated using various
methods.

For simplicity, let us start the discussion of this point with a purely bosonic system. As pointed
out in chapters 4 and 7, it is shown that the on-site energy can be computed as the eigenvalue En
of the single-site problem. This leads to an effective multiband Bose-Hubbard Hamiltonian

ĤEBH = −
∑
〈i,j〉

Ĵi(n̂i, n̂j) b̂
†
i b̂j +

∑
i

Ê(n̂i), (8.1)

where also the particle-number-dependent changes in the hopping matrix element J are included.
These corrections can be determined by computing the overlap of higher orbital states according to
the definition of J in equation (2.59). In this definition the exact shape of the Wannier functions is
assumed, while in this thesis often single-site functions have been used. The presented exact
diagonalization technique could, however, easily be modified. An alternative approach is to
determine the tunneling from the effective bosonic potential. While the particle-number-dependent
on-site energy in bosonic systems is extensively discussed in this thesis, the strength of the effect
on the tunneling J is a priori not clear. As discussed in chapter 7, the multiorbital on-site energies
can also be modeled by effective multi-body interactions.

For mixtures of bosonic and fermionic atoms with attractive interspecies interaction, we know
from discussing the effective potentials that the changes in J are large. In accordance to the
effective Bose-Hubbard model above, we can define an effective Hamiltonian for boson-fermion
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mixtures

ĤEBFH = −
∑
〈i,j〉

ĴB
i,j(n̂i, m̂i, n̂j , m̂j) b̂

†
i b̂j −

∑
〈i,j〉

ĴF
i,j(n̂i, n̂j) f̂

†
i f̂j +

∑
i

Ê(n̂i, m̂i), (8.2)

where n̂i and m̂i count the number of bosons and fermions at site i, respectively, and mi is zero
or one. For the operator n̂i, it can be reasonable to restrict the model to a maximum number
of bosons per site. The operator Ê(n̂i, m̂i) assigns the total on-site energy including intra- and
interspecies interaction obtained by exact diagonalization. In the Bose-Fermi-Hubbard model, it
corresponds to Ê(n̂i, m̂i) = 1

2UBn̂i(n̂i−1)+UBFn̂im̂i, which is strongly modified by the mutual
interaction and the self-trapping behavior as shown in this thesis. As a matter of fact, both bosonic
and fermionic tunneling, ĴB

i,j and ĴF
i,j , depend on the occupations at site i and j. We can assume

that the intrasite dynamics is much faster than the tunneling, so that ĴB
i,j and ĴF

i,j can be calculated
from the Wannier orbitals in the effective potentials experienced by bosons and fermions. Since
the interaction induced changes on sites occupied by bosons and a fermion are much stronger than
on purely bosonic sites, we can approximate ĴB

i,j(n̂i, m̂i = 0, n̂j , m̂j = 0) as the unmodified Bose-
Hubbard tunneling J . At the first glance, the presented model appears to be extremely complex,
but the additional expenses for most numerical methods are small, once the effective parameters
are calculated. As a trial, this extended Bose-Fermi-Hubbard model has been implemented by
exact diagonalization. However, the limitation of the system size hinders an accurate description
of the intersite physics, which meets the accuracy of the modeled on-site physics. In particular,
quantum Monte Carlo methods are known to yield precise results in three-dimensional systems
(see, e.g., Ref. [131]) and could easily incorporate the effective inclusion of multiorbital physics
described above.

In general, the precise control of lattice depth and particle interaction permits an excellent
comparison of theory and experiment. This allows a detailed study of interaction and correlation
effects as well as the limitations of commonly used theoretical models such as the single-band
Bose-Hubbard and the Bose-Fermi-Hubbard model. Doubtlessly, the interplay of theory and
experiment in this field is very promising to study paradigms of solid-state physics and to address
still outstanding questions.
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9
Summary

Ultracold bosonic gases and mixtures of bosons and fermions in optical lattices have been studied
using a multiorbital exact diagonalization technique. The great accuracy of this method allows
a detailed understanding of interaction effects, which have recently become accessible in high-
precision experiments [3, 6] with ultracold atoms in optical lattices. In Bose-Fermi mixtures the
mutual interaction causes a self-trapping of the bosonic atoms, which leads to a shift of the critical
potential depth separating the bosonic superfluid and the Mott-insulator phase in dependence on
the bosonic filling and the interspecies scattering length. In bosonic lattice systems, multiorbital
effects are revealed in collapse and revival experiments allowing for an accurate extraction of
particle-number-dependent on-site interaction energies. Exact diagonalization permits further to
explore the excitations in small strongly correlated systems. In particular, the intrinsic differences
of commensurate and noncommensurate filling are directly imprinted on the excitation spectrum.
Furthermore, a surprising agreement of mesoscopic and macroscopic systems has been found.
Experimentally, momentum-resolved Bragg spectroscopy [5] is a promising method to probe
excitations in optical lattices, which has been successfully demonstrated for weakly interacting
superfluids. Computing the dynamical structure factor for strongly interacting systems using exact
diagonalization reveals the typical fingerprint of the Mott-insulator phase in bosonic gases and
possible phases in Bose-Fermi mixtures.

In more detail, the localization of ultracold bosonic atoms in finite lattices with commensurate
filling resembles in many aspects the macroscopic quantum phase transition between a superfluid
and a Mott insulator, including a striking similarity of the momentum distribution and the
formation of an energy gap. It is shown that the local correlations are widely independent of
the system size, indicating that the detailed simulation of small systems can offer important
insight into the physics of large systems. For noncommensurate filling, the physical behavior
changes fundamentally and a coexistence of localized and delocalized particles can be observed
in deep lattices accounting for the equivalence of lattice sites. Because of a narrow lowest band,
the ground state is extremely sensitive to lattice perturbations, which cause the localization of
all particles in accordance with the Bose-glass phase. In finite systems with varying harmonic
confinement, precursors of Mott-shell configurations are identified, where a vanishing gap in
the energy spectrum defines a crossover between two configurations. Using a classical approach
with vanishing tunneling, the basic features of the spectrum can be reproduced in deep lattices.
Excellent agreement for the crossover points can be obtained, when including orbital changes in
the on-site interaction energy. This demonstrates that particle-number-dependent on-site energies
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are suitable to cover orbital effects in deep lattices. Furthermore, changes in the kinetic and the
potential energy are nonnegligible as they lead to substantial modifications of the on-site energy.
For deep lattices, the classical approach allows to obtain the site occupation numbers and the local
excitation spectrum of macroscopic lattices for an arbitrary confining potential, where gapless
excitations are present at the boundaries of the Mott shells. A perturbative treatment for finite
tunneling connects these gapless excitations to strong particle fluctuations.

In Bose-Fermi mixtures with attractive interspecies interaction, orbital induced changes are of
fundamental importance as they lead to a strong squeezing of the effective orbitals. The mutual
interaction causes a substantial deformation of the effective potentials experienced by both bosons
and fermions. Mediated by the strongly altered fermion orbital, the bosonic atoms show a self-
trapping behavior, where the repulsive bosonic on-site interaction is overcompensated by the
nonlinear dependence on the width of the fermion orbital. It manifests itself in a substantial
deepening of the bosonic effective potential with increasing bosonic filling. It is shown that these
interaction induced orbital changes can be incorporated in an effective Hubbard model for the
bosonic particles. Using a self-consistent multiorbital diagonalization scheme, the renormalized
Hubbard parameters, the on-site interaction U and the tunneling J , are calculated. A large shift of
the critical potential depth separating superfluid and Mott-insulating phase is found being strongly
dependent on the bosonic filling factor and the interspecies scattering length. Estimating these
effects by a variational approach shows a qualitatively similar behavior but underestimates the
interaction induced changes notably. This demonstrates, in general, the importance of including
on-site correlations of particles in lattice models. The predicted shift is compatible with 87Rb -
40K experiments at a fixed interspecies scattering length [29, 30]. Recent experimental results
[3] with a tunable scattering length show an excellent agreement with the interaction induced
renormalization of the Bose-Hubbard model and support the self-trapping effect in attractively
interacting Bose-Fermi mixtures. For repulsive interspecies scattering, the absence of a shift
predicted by the same model indicates that bosons and fermions do not occupy the same lattice
sites.

By applying momentum-resolved Bragg spectroscopy to superfluids in optical lattices, it has been
shown in Ref. [5] that the band structure is notably modified by interaction effects. For the
experimental parameters, the Bogoliubov theory of weakly interacting gases is applicable and
offers a good description of the probed excitations. Furthermore, Bragg spectroscopy is a feasible
tool to explore correlations in strongly interacting systems. These correlations are imprinted on
the dynamic structure factor, which is calculated for one-dimensional bosonic systems and Bose-
Fermi mixtures. By varying smoothly the ratio of interaction to tunneling, characteristic excitation
modes of the Mott insulator have been identified. Moreover, the bosonic response in possible
phases for Bose-Fermi mixtures with repulsive interspecies scattering, such as an anticorrelated
phase at half filling, has been addressed. In particular, the observed features in the dynamic
structure factor for an anticorrelated filling can be distinguished from a phase separation scenario
of bosons and fermions.

The breakdown of the single-band Hubbard picture in bosonic gases manifests itself in the time
evolution of coherent states in deep optical lattices. In the experimental realization [6] a multi-
frequency evolution is observable, which is revealed by a complex pattern of collapses and revivals
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of the matter wave field. Each single-site particle-number state evolves in accordance to its
exact interaction energy, showing a direct evidence for multiorbital physics in optical lattices.
Performing exact diagonalization, the particle-number-dependent on-site energies are calculated
including the full quantum mechanical correlations and the corrections from kinetic and potential
energy. Caused by the anticonfinement in the experiment, it can be assumed that only bound
orbitals are occupied allowing for a highly accurate comparison of theory and experiment. The
computed frequencies are in excellent agreement with the experimental results for various lattice
depths. The comparison allows to estimate the s-wave scattering length to roughly 102a0, where
uncertainties are dominated by the lattice calibration. The multiorbital interaction energies give
rise to an effective Hamiltonian with multi-body interactions. In general, the results demonstrate
the important role of multiorbital physics in optical lattices and its experimental accessibility.
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A.1 Two-particle matrix elements

In this section the matrix elements

I =
g

2
〈NB|

∑
i,j,k,l

χijklb̂
†
i b̂
†
j b̂k b̂l|N

′
B〉, (A.1)

are evaluated for the calculation of the boson-boson interaction (see also Refs. [81, 108, 109]). For
simplicity, |N〉 is used in the following as an abbreviation for |NB〉. Assuming real wave functions
χi, the interaction integral.

χijkl =
∫
d3r χi(r)χj(r)χk(r)χl(r). (A.2)

is symmetric in i, j, k, and l.

For the first case given in equation (2.74), i.e., |N ′〉 = |N〉, the interaction matrix element becomes

I1 =
g

2
〈N |

∑
i

χiiiib̂
†
i b̂
†
i b̂ib̂i +

∑
i 6=j

χijij b̂
†
i b̂
†
j b̂ib̂j +

∑
i 6=j

χijjib̂
†
i b̂
†
j b̂j b̂i |N〉

=
g

2
(∑

i

χiiiini(ni − 1) + 2
∑
i 6=j

χijijninj
)

=
g

2
(∑

i

χiiiini(ni − 1) + 4
∑
i<j

χijijninj
) (A.3)

For the second case that |N ′〉 = |..., ni − 2, ..., nk + 2, ...〉 one gets

I2 =
g

2
〈N |χiikk b̂†i b̂

†
i b̂k b̂k |..., ni − 2, ..., nk + 2, ...〉

=
g

2
χiikk

√
ni(ni − 1)(nk + 1)(nk + 2)

(A.4)

The other classes of interaction matrix elements can be calculated analogously. For |N ′〉 =
|..., nj − 1, ..., nk + 1, ...〉 follows

I3 =
g

2
(

2χjjjk(nj − 1)
√
nj(nk + 1) + 2χkjkknk

√
(nk + 1)nj

+ 4
∑

i(6=j,6=k)

χijikni

√
nj(nk + 1)

)
,

(A.5)

for |N ′〉 = |..., ni − 1, ..., nj − 1, ..., nk + 2, ...〉

I4 =
g

2
2χijkk

√
ninj(nk + 1)(nk + 2), (A.6)
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for |N ′〉 = |..., ni − 2, ..., nk + 1, ..., nl + 1, ...〉

I5 =
g

2
2χiikl

√
ni(ni − 1)(nk + 1)(nl + 1), (A.7)

and finally for |N ′〉 = |..., ni − 1, ..., nj − 1, ..., nk + 1, ..., nl + 1, ...〉

I6 =
g

2
4χijkl

√
ninj(nk + 1)(nl + 1). (A.8)

A.2 Pair correlation function

In the following, the matrix elements of the pair correlation function are calculated. The pair
correlation reflects the conditional density of N − 1 particles assuming that one particle is located
at r′ and is given by

ĝ2(r, r′) =
∫
d3x d3x′ ψ†(x)ψ†(x′)δ(r− x)δ(r′ − x′)ψ(x′)ψ(x)

= ψ†(r)ψ†(r′)ψ(r′)ψ(r)

= χ∗i (r)χ∗j (r
′)χk(r)χl(r′)b

†
ib
†
jblbk.

(A.9)

This correspond to density-density correlation (2.100) omitting the self-correlation δ(r− r′)ρ̂(r).
To calculate the matritx elements, we define for real wave functions

fijkl(r, r′) = χi(r)χj(r′)χk(r)χl(r′), (A.10)

where only the indices {i, k} and {j, l} commute. With this restriction, the calculation of
matrix elements g2(r, r′) = 〈N |ĝ2(r, r ′)|N ′〉 is completely analogous to the derivation of the
Hamiltonian matrix elements in the last section [81]. For the case that |N ′〉 = |N〉, it follows

g2(r, r′) =
∑
i

fiiiini(ni − 1) +
∑
i 6=j

(fijij + fijji)niαnjβ, (A.11)

for |N ′〉 = |..., ni − 2, ..., nk + 2, ...〉

g2(r, r′) = fiikk
√
ni(ni − 1)(nk + 1)(nk + 2), (A.12)

for |N ′〉 = |..., nj − 1, ..., nk + 1, ...〉

g2(r, r′) =(fjjjk + fjjkj)(nj − 1)
√
nj(nk + 1) + (fkjkk + fjkkk)nk

√
(nk + 1)nj

+
∑

i(6=j,6=k)

(fijik + fijki + fjiik + fjiki)ni
√
nj(nk + 1),

(A.13)

for |N ′〉 = |..., ni − 1, ..., nj − 1, ..., nk + 2, ...〉

g2(r, r′) = (fijkk + fjikk)
√
ninj(nk + 1)(nk + 2), (A.14)

for |N ′〉 = |..., ni − 2, ..., nk + 1, ..., nl + 1, ...〉

g2(r, r′) = (fiikl + fiilk)
√
ni(ni − 1)(nk + 1)(nl + 1), (A.15)

and finally for |N ′〉 = |..., ni − 1, ..., nj − 1, ..., nk + 1, ..., nl + 1, ...〉

g2(r, r′) = (fijkl + fijlk + fjikl + fjilk)
√
ninj(nk + 1)(nl + 1). (A.16)
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A.3 Bogoliubov-de Gennes equations

The starting point for the numerical solution of the Bogoliubov-de Gennes equations is the
decoupled equation (6.11)(
− ~2

2m
∂2

∂z2
+ V (z)− µ+ 3M

) (
− ~2

2m
∂2

∂z2
+ V (z)− µ+M

)
ψq = (~ωq)2 ψq (A.17)

with M(z) = gN |ΨGPE(z)|2. Due to Bloch’s theorem, ψq can be expressed as a product of a
lattice periodic function ϕ(z) and a plane wave factor e−iqzG, where G is the reciprocal lattice
vector G = 2π/a and a is the lattice spacing. For each quasimomentum qG in the first Brillouin
zone (−1/2 < q < 1/2) a discrete set of eigenfunctions is found. To obtain an algebraic equation,
the periodic functions ϕ(z), V (z) and M(z) are expanded in Fourier series

ψq(z) =
∑
k

cke
i(k−q)zG, (A.18)

V (z) =
∑
n

νne
inzG, (A.19)

M(z) =
∑
ξ

φξe
iξzG, (A.20)

where νn and φξ have the dimension of an energy and are given in units of the recoil energy ER.
The spatial derivative leads to a term A = ~G2/2M = 4ER, which is used in the following.
Expanding the parentheses in equation (A.17) and inserting the Fourier series (A.18)-(A.20) lead
to the following terms appearing on the left hand side of equation (A.17)(

~2

2m

)2
∂4

∂z4
ψq = A2

∑
k

ck(k − q)4ei(k−q)zG, (A.21)

− ~2

2m
∂2

∂z2
V ψq = A

∑
k,n

ckνn(k + n− q)2ei(k+n−q)zG, (A.22)

2
~2

2m
∂2

∂z2
µψq = −2Aµ

∑
k

ck(k − q)2ei(k−q)zG, (A.23)

− ~2

2m
∂2

∂z2
Mψq = A

∑
k,ξ

ckφξ(k + ξ − µ)ei(k+ξ−q)zG, (A.24)

− V ~2

2m
∂2

∂z2
ψq = A

∑
k,n

ckνn(k − q)2ei(k+n−q)zG, (A.25)

V 2ψq =
∑
k,n,n′

ckνnνn′e
i(k+n+n′−q)zG, (A.26)

− 2V µψq = −2µ
∑
k,n

ckνne
i(k+n−q)zG, (A.27)
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4VMψq = 4
∑
k,n,ξ

ckνnφξe
i(k+n+ξ−q)zG, (A.28)

µ2ψq = µ2
∑
k

cke
i(k−q)zG, (A.29)

− 4µMψq = −4µ
∑
k,ξ

ckφξe
i(k+ξ−q)zG, (A.30)

− 3M
~2

2m
∂2

∂z2
ψq = 3A

∑
k,ξ

ckφξ(k − q)2ei(k+ξ−q)zG, (A.31)

3M2ψq = 3
∑
k,ξ,ξ′

ckφξφξ′e
i(k+ξ+ξ′−q)zG. (A.32)

The right hand side of equation (A.17) gives

(~ωq)2ψq = (~ωq)2
∑
k

cke
i(k−q)zG. (A.33)

Comparison of coefficients with respect to ei(β−q)zG leads to an algebraic equation

[A(β − q)2 − µ]2 cβ +
∑
i

[
A(β − q)2(νi + φi)

+A(β − i− q)2(νi + 3φi)− 2µ(νi + 2φi)
]
cβ−i

+
∑
i,j

[
νiνj + 4νiφj + 3φiφj

]
cβ−i−j = (~ωq)2cβ

(A.34)

for the coefficients cβ , which can be solved by diagonalization of the respective matrix equation.
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[120] T. Stöferle, H. Moritz, C. Schori, M. Köhl, and T. Esslinger, Transition from a Strongly
Interacting 1D Superfluid to a Mott Insulator, Phys. Rev. Lett. 92, 130403 (2004).

[121] I. B. Spielman, W. D. Phillips, and J. V. Porto, Condensate Fraction in a 2D Bose Gas
Measured across the Mott-Insulator Transition, Phys. Rev. Lett. 100, 120402 (2008).
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