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Zusammenfassung

Es wird ein relativistisches Potentialkonzept für die Beschreibung der Nukleon-
Nukleon (NN) Wechselwirkung und Streuung im Energiebereich 0 < TLab < 3
GeV verfolgt. Paradigmatisch, NN Potentiale der Kernphysik bewähren sich
für nukleare Vielteilchen Probleme wenn die experimentellen NN Daten damit
bestens beschrieben werden. Mittelenergetische NN Streuung sieht, neben den
nukleonischen Freiheitgraden der mittel und lang reichweitigen Wechselwirkung,
die Quark-Gluon Freiheitsgrade (QCD) in Verbindung mit Mesonproduktion und
Hadron Anregungen. Die genaue Zuweisung und Parametrisierung der Wechsel-
wirkungen, zur jeweils dominierenden radial abhängigen Dynamik, ist das Thema
dieser Dissertation. Es werden, um der Poincaré Invarianz Rechnung zu tragen,
zwei gekoppelte Dirac Gleichungen durch Instant Form Dynamics eingeschränkt.
Eine ausführliche Zusamenenstellung der theoretischen und mathematischen Mit-
tel, wesentlich basierend auf den Arbeiten von Crater und Van Alstine, umfaßt
einen großen Teil der Arbeit. Die Vereinfachung der gekoppelten Dirac Gleichun-
gen in eine Art stationäre Schrödinger Gleichungen wird ausgeführt. Als Ergeb-
nis dieser Reduktion erhält man einen Satz gekoppelter radialer Schrödinger Gle-
ichungen mit explizite energieabhängigen Potentialen. Die Potentiale entsprechen
Ausdrücken von komplexen Funktionen und deren Ableitungen. Es wurde eine
umfangreiche Numerik entwickelt um die neuesten Neutron-Proton und Proton-
Proton Phasenverschiebungen, GWU/SAID-2003, nach Partialwellen entwickelt,
für Energien zwischen 0 und 3 GeV zu parametrisieren und berechnen. Dazu
zählt auch das Deuteron. Das Wechselwirkungsmodell wird durch π, ρ, ω and
σ Austausch geleitet und deren Kopplungskonstanten werden angepaßt. Dies
liefert im ersten Schritt einen guten Fit der Arndtschen Phasen zwischen 0 und
300 MeV. Es zeigen die Potentiale, unabhängig vom Drehimpuls, ein repulsives
Core-Potential mit Eigenschaften, das von Teilchenmassen und der relativistis-
chen Behandlung des Problems bestimmt wird. Durch ein optisches Potential
(OMP) erweitert, werden die Rechnungen von 300 MeV bis 3 GeV fortgesetzt.
Damit wird die QCD dominierte kurzreichweitige Zone, mit innerer Nukleon-
Anregung und Meson-Produktion, durch ein komplexes Potential im Ortsraum
beschrieben. Das optische Potential, als innere Fortsetzung zum Dirac Potential
des Mesonaustausches wo r > 0.5 fm, liefert für die Partialwellen sehr einfach eine
Anpassung von Theorie und Daten. Die optischen Potentiale subsummieren die
komplexe kurzlebige QCD Anregungstruktur in glatte Energieabhängigkeiten.
Es zeigt sich ein konsistentes Bild wenn die Nukleonen, als separate Cluster,
Anregungen und Meson-Produktion durchlaufen und die Bildung eines einzigen
Dibaryon Clusters nicht dominiert. Für zukünftige Arbeiten wird vorgeschlagen
den Teil des phänomenologischen OMP durch ein mikroskopisches OMP zu erset-
zen und Doppelanregungen von ∆(3, 3) und anderen Paaren explizite zu koppeln.
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Abstract

The relativistic potential concept is fostered for the description of nucleon-nucleon
(NN) interactions and scattering for energies 0 < TLab ≤ 3 GeV. It proves useful
to confirm and predict nuclear properties and reactions with the implicit knowl-
edge having the best possible agreement with experimental NN data. Medium
energy NN scattering, as is accepted for low energy nuclear physics in general, is
determined from proton, nucleon and meson degrees of freedom in the long range
soft interaction sector, the quark gluon degrees of freedom govern the short dis-
tance hard processes. The identification and parameterization, of the combined
long and short range NN domains, is the topic of this thesis. The formalism for
two coupled Dirac equations, within constraint instant form dynamics, is used to
study the NN interaction. The comprehensive review, of the important theoreti-
cal tools and associated mathematics, rests essentially on the work of Crater and
Van Alstine. The reduction of the coupled Dirac equations into Schrödinger type
equations is given. Explicitly energy dependent coupled channel potentials, for
use in partial wave Schrödinger like equations, with nonlinear and complicated
derivative terms, result. We developed the necessary numerics and study np and
pp scattering phase shifts for energies 0 to 3 GeV and the deuteron bound state.
The interactions are inspired by meson exchange of π, η, ρ, ω and σ mesons for
which we adjust coupling constants. This yields, in the first instant, high quality
fits to the Arndt phase shifts 0 to 300 MeV. Second, the potentials show a univer-
sal, independent from angular momentum, core potential which is generated with
the relativistic meson exchange dynamics. Extrapolations towards higher ener-
gies, up to TLab equal 3 GeV, allow to separate a QCD dominated short range zone
as well as inelastic nucleon excitation mechanism contributing to meson produc-
tion. A local or nonlocal optical model, in addition to the meson exchange Dirac
potential, produces agreement between theoretical and phase shifts data. The
optical model potentials reflect a short lived complex multi hadronic intermedi-
ate structure formation of which the optical model parameters give a consistent
picture. For future work, the here presented phenomenological access encour-
ages a more microscopic and detailed use of QCD, including explicit ∆(3, 3) pair
formation and some obviously predominant other pair mechanism.
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Chapter 1

Introduction

One of the fundamental problems in nuclear theory is to describe the properties
of atomic nuclei in terms of interactions between individual particles, such as
quarks, gluons, mesons, baryons, bosons and nucleons. Quarks were initially
introduced as constituent particles so as to introduce a semblance of order into
the particle zoo [273, 361]. Mesons are in this picture made up of a quark and
an antiquark and baryons of three quarks. The meson exchange theory may be
viewed as an effective representation of the strong nuclear interaction at low and
intermediate energies the typical energies for nuclear physics in the range of ∼
MeV. It is reasonable to expect the quark degrees of freedom to become important
only at very short distances and high energies ∼ GeV. The hadrons can then be
fitted into multiplets and their spectrum understood. In this way new particles
were even predicted [272].

Nucleons are composite objects with a rich excitation structure, whose scales
are in GeV, which can be attributed to constituent quarks, these are effective
particles with a typical scale of 300 MeV interacting strongly by gluon exchange.
It is a paradigm that quantum chromodynamics (QCD) is the fundamental theory
for the strong interaction and that the interaction between nucleons is sampling
the strong interactions. Moreover, QCD at the scale of 1 GeV becomes very
complicated, and hence it is rather difficult to say in this case a priori what
kind of physics emerges. In this energy region characteristics of QCD become
important such as the confinement of quarks and gluons and the spontaneous
breaking of chiral symmetry. In principle, it should be determined directly from
QCD. However, we do not yet have a good understanding of how such objects
can emerge from QCD [564].

At low and intermediate energies, QCD coupling constants are generally large
and prohibitive in order to use perturbative approaches. The existing models,
based on QCD, only account for a part of the hadron properties and one is still far
from describing the NN interaction in terms of QCD. This is essential before facing
more complex many nucleon systems such as nuclei and it is necessary to assume
simplified models. Only finite size particle degrees of freedom are assumed to be
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relevant. The quarks are confined inside the hadrons by the strong interactions
and outside the NN interaction arises from exchange of various mesons.

The interaction description for the nuclear few and many body systems uses
potential theory successfully. Hamiltonian mechanics recovers potentials as in-
teraction description. With this background knowledge in mind, it is of interest
to review cornerstones of nuclear physics which have a direct relation to NN
interactions.

The first theoretical calculations for nuclear matter was made by Heisenberg
and his student Euler in 1937 [215]. They calculated its properties to second
order in perturbation theory assuming a two body interaction of Gaussian type
for the nucleons. The work of Yukawa in 1937 [584] established the field theoret-
ical fundamental meson exchange approach whose roots are still valid. Nuclear
physics and its fundamental approaches become the forefront topic in physics
for several decades [585, 191, 135, 151]. The NN interaction as well as nuclear
many body problems determined the scene. When the strong short range repul-
sion in the NN interaction was identified, it became apparent that conventional
perturbation methods were inadequate for calculation of nuclear systems with
an infinitely strong hard core since two body potential matrix elements diverge.
Brueckner [101], Bethe [70] and Goldstone [290] (BBG) developed the famous
perturbation method based on g-matrix elements and eliminated thus divergen-
cies. An alternative approach to handle hard core was suggested by Jastrow [338].
He introduced a variational approach by the use of trial wave functions to treat
the two nucleon correlations. In addition to this, the recent approach was made
by Pandharipande [448].

In the 1960’s Brueckner theory brought substantial advances in nuclear physics
study [101]. The first high precision NN potential was found by Hamada and
Johnson in 1963 [316]. They used a hard core potential with a radius rc ∼ 0.5
fm. This potential accounted well for all data of this time between Tlab 0-300
MeV. The infinite core remained questionable and incompatible up to this date.
Soon after Hamada Johnson, Reid [474] found another high precision potential
with a soft core. With these potentials nuclear physics made great quantitative
progress in nuclear structure and nuclear reactions [233].

Despite the efforts, high precision NN potentials do not account for the sat-
uration properties of nuclear matter, and do not agree with experiment. The
binding depends on the potential and the saturation points lie along a band, the
Coester Band [132, 134], which does not contain the empirical values. The cause
of this failure was linked to lack of relativity in the theory.

A relativistic approach to nuclear structure was developed by Miller and Green
[419]. Using a Dirac-Hartree [322, 323] approach they were able to reproduce
the binding energies and root mean square radii of nuclei and the spin orbit
splitting of nuclear shell model orbits. A relativistic approach was applied to
proton-nucleus scattering by Clark and others [127]. In the late 1980’s relativistic
calculations for nuclear matter were performed using realistic potentials [92].
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CHAPTER 1. INTRODUCTION

Here, the term realistic refers to nuclear potentials which reproduce the two
nucleon phase shift data accurately χ2 ∼ 1. Representative examples are the
Nijmegen [523], Paris NN potential [372] and the models developed by the Bonn
group [394] and quantum inversion developed in Hamburg [277, 489].

All existing potential models are to some degree based on meson exchange.
They all include the one pion exchange contribution which essentially determines
the long range part of the interaction. The intermediate range has been well
described by inclusion of two pion exchange processes, σ-exchange and nucleon
resonances, ∆(3, 3), may be excited in intermediate states [394].

The NN interaction at large distances cannot be described perturbatively. In
the region where the two bags of the nucleons are not overlapping only colorless
objects should be exchanged. In this region we describe the NN interaction by
meson exchange. To guarantee asymptotic freedom, the mesons should interact
with the quarks in the nucleons only at their surface. In order to include quark
degrees of freedom in the NN interaction we must clearly consider two different
regions. The first one corresponds to the region in which the two nucleon cores
(quark bags) overlap. In this region quarks can be exchanged between the two
quark bags and the two nucleons interact through the one gluon exchange mech-
anism (Fig. 1.1a). The additional quark interchange is a necessary ingredient in
this basic mechanism since the nucleons are color singlets while the gluon is a
color triplet. Whatever color is transferred by the interchanged gluon it is bal-
anced by the additional quark exchange. This kind of interaction leads to hard
core NN phase shifts [439, 217]. When the two bags separate, nucleons are rep-
resented as color singlets and they interact via forces arising from the exchange
of color singlet objects which are identified with physical mesons (Fig. 1.1b).

Figure 1.1: Diagrams which describe the NN interaction within the different
radii. a) Overlapping two nucleons (short distances ): quark gluon exchange, b)
Non-overlapping two nucleons (longe distances): meson exchange.
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All the above models, theories and equations, such as Bonn-CD potential
[394], Bethe-Salpeter equations [71], Blankenbecler-Suger [79] and Gross equa-
tion [304, 305] are normally formulated with a kernel, which may be motivated
by field theory, are phenomenological and weakly relativistic or nonrelativistic.
They are simple enough to be solved accurately for realistic low energy nuclear
physics. Nonrelativistic quantum mechanics, with phenomenological NN inter-
actions, provide theories which are valid for energy momentum transfers below
pion production [352]. Relativity must be included for higher energy momentum
transfers. For many problems of current interest in nuclear physics these models
must be consistent with the principle of special relativity. Relativity is needed
to model reactions where particles are produced, reactions involving energy and
momentum transfers that are comparable to the mass scales of the problem,
bound systems where the binding energies are comparable to the masses of the
constituent particles, and coordinate system independent treatments of problems
in lepton hadron scattering [352].

If we want to describe the NN interaction simultaneously at large and short
distances, we need a comprehensive theory, certainly it must be relativistic.
Chapt. 2 is devoted to a discussion of the constraint Hamiltonian forms of the
relativistic dynamics.

S-matrix element, bound state mass, magnetic moment, and or any other
physical observable must be invariant under Poincaré transformations. The chal-
lenge of practical calculations, in the framework of Hamiltonian dynamics, is to
produce invariant results for observables. An important application of Hamilto-
nian dynamics is nuclear physics. Traditionally, nonrelativistic model Hamilto-
nians were used in this field, but since the advent of powerful accelerators and
technological need to far exceeding energies of involved masses, it has become
clear that the implementation of a relativistic framework is unavoidable. In ad-
dition, the common practice of leaning on field theory, to construct the so called
realistic nuclear forces, made it clear that also in nuclear physics one needs to
take the requirements of special relativity into account.

Wigner [572] analyzed the mathematical formulation of the physical require-
ment of special relativity in quantum mechanics. He showed that a necessary
and sufficient condition for quantum mechanical probabilities to have values that
are independent of the choice of inertial coordinate system, is the existence of a
unitary ray representation of the inhomogeneous Lorentz group (Poincaré group)
on the quantum mechanical Hilbert space. Note that the Schrödinger equation
and the existence of a Hamiltonian are consequences of applying Wigners analysis
to obtain invariance under time translations.

First, Dirac formulated the problem of including interactions in relativistic
classical mechanics [190]. This was done in Hamiltonian form, which has a natu-
ral canonical quantization. In the Hamiltonian formulation of classical mechan-
ics, the goal is to construct a representation of the Poincaré group as a group
of canonical transformations on phase space. Dirac analyzed these requirements
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CHAPTER 1. INTRODUCTION

infinitesimally, and showed that the problem is equivalent to the construction
of a representation of the Lie algebra of the Poincaré group in terms of Poisson
brackets that includes interactions in a consistent way. He gave three different
types of solutions to this problem called the point, light front and instant forms of
dynamics. Bakamjian and Thomas [27] constructed the first relativistic quantum
mechanical model of two interacting particles in Dirac instant form dynamics.
Foldy [239] recognized the importance of macroscopic locality as an additional
constraint on these models. Coester [133] extended the work of Bakamjian and
Thomas to systems of three particles, Sokolov [515] provided the general con-
struction for N particles with a scattering operator consistent with the principle
of macroscopic locality. An extensive overview of the whole subject is given in
Ref. [352].

In the usual instant form, with the equal time hypersurface x0 = const, trans-
lations and rotations transform quantum states in a very simple manner, because
they do not change the quantization surface. These kinds of static Poincaré
generators are called kinematical . The other generators, which change the quan-
tization surface, are called dynamical. For example, the Lorentz boost mixes time
and space coordinates and thus changes the hypersurface. The Hamiltonian itself,
of course, is a dynamical operator. Therefore, an eigenstate in a rest frame is no
longer an eigenstate in the boosted frame. Even though we know eigenstates in
the rest frame, an attempt to find a new eigenstate in the boosted frame requires,
in principle, requires as much effort as solving the entire problem.

Thinking of applications for nuclear physics one considers interacting fields
of nucleons and mesons. To arrive at generators which act in the space of a
fixed number of N nucleons one has to eliminate the mesonic degrees of freedom
as well as the ones for antiparticles. A way to do this has been proposed in
[285] and worked out in lowest order in the coupling constant for a field the-
ory of scalar nucleons interacting with a scalar meson field. Relativistic direct
interaction theories of particle lie between local field theory and nonrelativistic
quantum mechanics [352]. When a quantum mechanics of interacting relativis-
tic particles exists, the correspondence principle suggests in turn the existence
of a classical relativistic mechanics that would reproduce the quantum version
by canonical quantization [152]. A first study by Currie, Jordan and Sudarchan
[169] concludes in what is known as the non interaction theorem, that the com-
bined requirements of the Poincaré algebra and the world line condition for two
particles cannot be satisfied simultaneously unless there is no direct interaction
between them. Specifically, they showed that this combined set of commutation
relations is unitarily equivalent to the commutation relations for operators of
non-interacting particles.

The traditional treatment of interacting pairs of spinning particles began with
Breit’s suggestion for the spin dependent forces given in his 1929 paper [88].
Breit formed a single effective Hamiltonian by adding together two free Dirac
Hamiltonians plus an interaction patterned after that in the Darwin Lagrangian
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for two spinless particles [171]. In the mid 1970’s several investigators found a
relativistic constraint mechanics [191, 192, 194, 542, 543, 342, 545, 366] to the
problem of interacting particles. Some authors use a singular Lagrangian [342,
533, 196] as a starting point. Other bypass the Lagrangian and directly work with
constrained Hamiltonian systems [190, 27, 239, 366, 542]. Constraint dynamics
can be considered as a relativistic extension of classical mechanics problems with
holonomic constraints. Rather than reduce the problem immediately to one with
the minimum number of degrees of freedom, the problem is cast with extra degrees
of freedom, plus additional constraint equations.

A physically natural way of defining a constrained dynamical system in classi-
cal mechanics is through a limiting procedure where a strong attractive potential
forces the system at any fixed energy to live closer and closer to the constraint sur-
face. The effective classical dynamics obtained in this limit turns out to depend
only on the intrinsic properties of the constraint surface (e.g. the curvature) and
not on the details of the constraining potential chosen on the embedding space.
We use in Sec.2.5 an analogous procedure in quantum mechanics and consider
the quantization of a constrained classical system as the limit of quantizations of
classical systems, with extra potentials away from the surface of constraint.

When the equations are written down in covariant form it is clear that the
outcome will satisfy relativistic invariance and we refer to such methods as man-
ifestly covariant. Covariant interactions are discussed in Chapt. 5. The Dirac
equation [188] for a single spin 1/2 particle utilizes a matrix algebra to construct
a linear operator relationship between the energy and the momentum. Such a
linear dispersion relationship is particularly useful for constructing manifestly
cluster decomposable non perturbative scattering formalisms. Expectation val-
ues of the matrices can be related to physical fluxes, but the matrices themselves
commute with space time translation generators. The two body Dirac equations
of constraint dynamics successfully extend this one body minimal coupling form
to the interacting two body system.

Crater van Alstine, et al. developed Dirac’s constraint mechanics using super-
symmetry for two interacting spinning particles by external potentials [152]-[167].
By combining constraint dynamics with particle supersymmetries, they extended
those works to pairs of spin one half particles to obtain two body quantum bound
state equations that correct not only defects in the Breit equation but those in the
ladder approximation to the Bethe-Salpeter equation as well [546, 152]. These
two body dirac equations (see Sec. 5.1.1) of constraint dynamics possess a number
of important features which provide an alternative formulation of fundamental
field theoretic results, yielding standard perturbative spectra and correct defects
in phenomenological applications that result from patchwork introduction of in-
teractions in particular [167],

• provide a three dimensional but covariant rearrangement of the Bethe-
Salpeter equation,

6



CHAPTER 1. INTRODUCTION

• yield simple three dimensional Schrödinger like forms similar to their non-
relativistic counterparts,

• implement spin dependences which are determined naturally by their in-
corporation of Dirac’s one body structures,

• implement well defined strong potential structures that pass the necessary
test that they reproduce correct QED perturbative results when solved non
perturbatively,

• in phenomenological applications make unnecessary the ad hoc introduction
of cutoff parameters generally used to avoid singular potentials and

• have relativistic potentials which may be related directly to the interac-
tions of perturbative quantum field theory (for QCD) or may be introduced
semiphenomenologically.

These equations provide a non perturbative or strong potential framework for
extrapolating perturbative field theoretic results into the highly relativistic regime
of bound light particles in a quantum mechanically well defined way.

Constrained systems are widely investigated in modern physics. Gauge field
theories, quantum gravity and supergravity, string and superstring theories are
examples of systems with constraints. Only few models are exactly solvable,
realistic physical theories require approximate methods. A perturbation theory
is one of such techniques, it is usually applied to constrained field systems such
as gauge theories.

In Chapt. 6, we discussed three NN interaction models, well distinguished by
radial regimes, the long range meson exchange model (OBEP, OPEP) [393, 401],
the short range Effective field theory (EFT) [561, 351] and Optical model (OMP)
[275, 278, 489]. We did not use EFT in this work, but it is an alternative method
to describe interacting particles. A very brief introduction to the main EFT ideas
is presented in Chapt. 3.1. We know, that the particle dynamics on the level of
relativistic quantum mechanics stands between relativistic quantum field theory
and nonrelativistic quantum mechanics. This means, EFT exploits the existence
of scales in interacting systems.

EFT [561, 562] is a theoretical prescription for constructing theories spanning
multiple energy scales. The physics of a system may appear radically different
at various energy scales, due to low energy restrictions on available degrees of
freedom and symmetries. When trying to construct a theory which spans energy
scales, traditional methods of physics can be difficult to apply. Rather than
stumbling on this obstacle, however, EFT provides a method to use the physical
difference between energy regimes to its advantage.

How to implement EFT in nuclear physics was originally proposed by Wein-
berg [562] and employed by Lepage in Ref. [379]. It allows to think straightfor-
ward about the connection of EFT and potential models. As discussed in Sec.3.1,
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the focus is on power counting at the level of the Hamiltonian in the NN piece
of the hadronic Hilbert space. The effective Lagrangian consists of NN contact
interactions together with the standard heavy baryon chiral perturbation theory
Lagrangian

L = LHB + LNN .

To connect the two energy scales, the consensus of the majority of the nuclear
physics community holds that in nuclei

• nucleons are nonrelativistic,

• they interact via essentially two body forces, with small contributions from
many body forces,

• the two nucleon interaction generally possesses a high degree of isospin
symmetry,

• external probes usually interact with mainly one nucleon at a time.

By contrast, in QCD

• the u and d quarks are relativistic,

• the interaction is manifestly multi body, involving exchange of multiple
gluons,

• there is no obvious isospin symmetry,

• external probes can and often do interact with many quarks at once.

It should not be surprising that some new ideas are required to merge these
two extraordinarily different bodies of theory. Of course, we expect that QCD
encompasses the physics of hadronic interactions. The root of the problem must
therefore lie in the difference of energy scales.

In fact, constructing a QCD-based theory of the hadronic phase is a problem
which involves three separate energy scales spanning three orders of magnitude.
The first is the typical energy scale of QCD,

MQCD ∼ 1 GeV. (1.1)

The masses of all hadrons, except the pion, fall within this scale,1 and the scale
of chiral symmetry breaking is thought to be Mχ = 4πfπ, where fπ ' 93 MeV is
the pion decay constant. The second scale,

Mnuc ∼ 100 MeV, (1.2)

1We use units where ~ = c = 1.
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CHAPTER 1. INTRODUCTION

represents the typical momentum of nucleons in a nucleus: the inverse root mean
square charge radius of light nuclei, or the Fermi momentum of equilibrium nu-
clear matter. It contains also the pion decay constant itself, the mass difference
between the delta isobar and the nucleon, and the mass of the pion. The final
energy scale is the typical energy scale of a nucleus,

M2
nuc

MQCD
∼ 10 MeV. (1.3)

The binding energy per nucleon of a nucleus is typically a few MeV. For example,
the binding energy of 4He is 28.296 MeV, and the binding energy per nucleon of
infinite nuclear matter is 16 MeV or the binding energy of the deuteron (we
calculate in Sec. 7.4) is ∼ 2.2245MeV . Since the goal is to construct a theory
valid over an energy range of three orders of magnitude, and spanning regimes in
which the physics is quite disparate, the problem is somewhat daunting.

We need coordinates, corresponding to the quantum zero point energy climb-
ing to arbitrarily high values as k → ∞ or r < rc. If a singular potential itself is
not sufficient to determine the scattering problem, one might be tempted to clas-
sify the singular potentials as nonrenormalizable and abandon all hope. In the
modern version of the renormalization paradigm a low energy system with a clear
cut separation of scales can be described by an EFT involving explicitly only the
long wavelength degrees of freedom, and organized as an expansion in powers of
momenta [350]. The short range dynamics can always be treated as a set of local
operators. In the present context, the Dirac potential represents the long distance
part of the potential. Local operators in momentum space correspond to OMP
interactions in coordinate space. The essential point of EFT is that the details of
the short distance physics are not of importance to low energy scattering. Hence
one can simulate the delta function in an infinite number of ways. The simplest
choice of a smeared out delta function is a simple surface Gaussian square well or
Woods-Saxon shape. With a single potential, representing a given long distance
force and a surface Gaussian representing unknown short distance physics, an
interesting question is whether one can obtain an EFT with well defined low en-
ergy scattering observable, which are to a specified degree of accuracy insensitive
to the short distance physics encoded by the Gaussian. It is the purpose of the
optical model (Chapt. 6) to explore this issue. Note that we did not attempt
to renormalize the coupling strength of the potential itself [107]. In the physical
problems of interest, the coupling strength is completely determined by the long
distance physics so there is no freedom to renormalize this parameter.

In the Sec. 6.3, two existing global medium energy NN phenomenological
optical model potentials (OMP) such as vector and scalar are described and
compared with experiment and with each other. By an optical potential we also
mean a potential that represents the interaction between a nucleon or group of
nucleons and a nucleus. When inserted into the Schrödinger equation it gives the
differential cross section and polarization for elastic scattering the rection cross
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section and some other less important observable quantities [275]. These optical
potential can be obtained in several ways. Most fundamentally, they can be calcu-
lated from the NN interaction, this is difficult and has only recently been brought
to the stage of quantitative success. Alternatively, these optical potential may
be found phenomenological by postulation a form of potential and adjusting its
parameters to optimize the fit to the experimental data. Such phenomenological
analyses may be put on a firmer physical basis by using additional information
from nuclear models.

Optical potentials may also be classified by the range of experimental data
they are designed to fit. Global potentials give good overall fits to the scattering
from many nuclei over a range of energies. More precise fits can be obtained
for particular interactions either by incorporating nuclear structure and nuclear
reaction information into the calculation of the potential to fit particular sets of
data.

There are many ambiguities in optical model potentials. These are familiar
in phenomenological analyses, where it is often found that several potentials fit
the same data equally well. It is usually thought that one of these is the physical
potential, namely the one that is given by a microscopic calculation. It is im-
portant to identify the physical potential, that can be used with more confidence
in situations different form those from which it was obtained. It should however
by noticed that the physical potential may have a form that is significantly dif-
ferent from any of the phenomenological potentials. Furthermore, a potential is
of its nature a theoretical construct, so care is necessary to describe it as physi-
cal. It is possible that even among microscopic potentials might be ambiguities
in the sense that different types of calculations could conceivably give different
potentials that nevertheless give equally good fits to the data [326].

By a microscopic optical potential we mean a potential calculated from the
NN interaction and some nuclear properties, usually the density distribution.
Such potentials are distinguished from phenomenological potentials which are
obtained by direct fitting to experimental elastic scattering data.

The Dirac equation is used in the mean field approximation by which the
nucleon (meson) fields are replaced by their expectation values. Proton nucleon
(np) scattering is then described using isoscalar scalar and isoscalar vector mean
fields. Here these are taken, respectively, as a optical Gaussian type scalar po-
tential corresponding to the (fictitious) σ meson field and optical Gaussian type
vector potential (timelike vector) corresponding to the meson ω meson field, to-
gether with a Coulomb and full relativistic Dirac (including relativistic kinemat-
ics) potential. The determination of the energy range, energy dependence, and
isospin dependence are discussed in the last chapter.

The experimental background and motivation for analysis using an optical
model and full relativistic Dirac equations is given in Chapt. 7. The Arndt
[18] group has been supplies the experimental analysis of elastic NN scattering
phase shift data to 3 GeV in the laboratory of kinetic energy. The necessary
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numerics for studying np and pp scattering phase shifts for energies 0–3 GeV and
the deuteron bound state are developed in Chapt. 7.

The interactions are inspired by meson exchange of π, η, ρ, ω and σ mesons
for which we adjust coupling constants. This yields, in the first instant, high
quality fits to the Arndt [18] phase shifts 0–300 MeV. Second, the potentials
show a universal, independent from angular momentum, core potential of which
is generated from the relativistic meson exchange dynamics. Extrapolations to-
wards higher energies, up to TLab = 3GeV, allow to separate a QCD dominated
short range zone as well as inelastic nucleon excitation mechanism contributing to
meson production. A local and/or nonlocal optical model, in addition to the me-
son exchange Dirac potential, produces agreement between theoretical and data
phase shifts. The result of our calculation of the Dirac equations are given in Sec.
7.3. The optical potentials are complex and short ranged, typically of nucleon
size, that is known from analysis of electron scattering off a nucleon. This implies
that the production processes are localized at and within the confinement surface
of a nucleon. In Sec. 7.6 we display a geometry of the profile function, known
from high energy diffraction scattering, which remains valid at lower energies and
in the resonance dominated region. It is this result that lead us to expect that
meson production is a unique QCD aspect applicable from (300 MeV) threshold
up to highest energies.

The coupled two body Dirac equations, combined with the meson exchange
model, yield the appearance of a repulsive practically hard core potential inde-
pendent of partial wave. The universal core radius has a value rc = 0.5±0.025 fm.
This core radius is independent of a nucleon substructure. It depends only on
masses, in particular of the exchanged mesons, and the full relativistic treat-
ment of the NN system [280]. The meson exchange Dirac potential, which is
described by the NN Dirac instant form dynamics, should ultimately be lim-
ited to r ≥ rc ∼ 0.5 fm in its effect. This constraint eliminates the need for
regularization of the short range Dirac potential and boundary conditions are
automatically generated by the δ(r − rc) NN ↔ BB transition potentials [280].
The role of the higher partial waves deserves special attention, in particular when
the hard core radius is sizeable [280].
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Chapter 2

The Relativistic Particle
Problems

A concept of relativistic many body Hamiltonian dynamics is notoriously difficult.
All relativistic classical two body problems face the essential problem of separat-
ing center of momentum (CM) and relative motion. They do lead to uncoupled
systems of quasi particles, of reduced mass and combined mass.

Dirac’s famous paper of 1949 and there after [190, 191, 193], and the work of
Bakamjian and Thomas [27] are remarkable solutions to the relativistic dynam-
ical problem for classical and quantum mechanical systems. Poincaré invariance
determines the relativistic Hamiltonian dynamics. Dirac described three differ-
ent forms of Hamiltonian dynamics instant form, front form (light front form)
and point form. Two other forms, suggested by Leutwyler and Stern [382], did
not bring any significant extension when compared with the three general Dirac
forms.

The front form has already been used in various fields including both quan-
tum mechanics and quantum field theory. It has been successful especially in
deep inelastic scattering, where the kinematic variables of phenomenological ap-
proaches coincide with the specific variables of the front form. Although also
the point form was at first considered for an application in quantum field theory,
it was put aside after people realized that its quantization surface (a spacetime
hyperboloid) entails difficulties. However, for a quantum mechanical treatment,
the point form yields advantages.

The Bakamjian Thomas construction provides for any of the different forms
a simple way how to include interactions in the Poincaré generators by imposing
only linear conditions on the potential. In the point form, all interactions are
put into the four momentum operator, whereas the Lorentz generators remain
free of interactions and are kinematical. As a result, the point form is manifestly
Lorentz covariant. The dynamical equations, replacing the Schrödinger equation,
are then in general the eigenvalue equations for the four components of the four
momentum operator. Within the Bakamjian-Thomas framework the problem is
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reduced to one eigenvalue equation for the invariant mass operator.

2.1 The Poincaré Transformation

From a group theoretical point of view, the transformations of the system of
reference include translation, rotations and the Lorentz transformations which
are forming the Poincaré group. Under the infinitesimal transformation g of the
coordinate system, with the translation aµ and with the four dimensional rotation
ενµ,

xµ → x′µ = xµ + aµ + εµνxν , (2.1)

with
εµν = −ενµ.

The state vector φ is transformed as follows

φ→ φ′ = U(g)φ, (2.2)

where

U(g) = 1 + iPµa
µ +

i

2
Jµνε

µν , (2.3)

Jµν = −Jνµ. (2.4)

Here we define the metric tensor gµν = (1,−1,−1,−1). Once the set of infinites-
imal generators are known, every finite element of the group can be expressed
in terms of generators by exponentiation. In principle, the choice of a set of
generators is not unique, since any linear combination of generators is again a
generator so that one can replace some of them in favor of others. A standard
choice, according to the parameters specified above, by setting K j = J0j , is

• P µ generator of space time translations,

• Kj generator of Lorentz boosts,

• J j generator of space rotations.

Here, µ = 0, 1, 2, 3 and j = 1, 2, 3. The generators satisfy a set of commutation
relations which is called the Lie algebra of the corresponding Lie group. Every
set of generators forms a Lie algebra with different structure constants. Standard
commutation relations are [352]

[J j, Jk] = iεjklJ l, [Kj, Kk] = −iεjklJ l, [J j, Kk] = iεjklK l,

[P µ, P ν] = 0, [Kj, P k] = iδjkP 0, [J j, P k] = iεjklP l,

[Kj, P 0] = −iP j, [J j, P 0] = 0, (2.5)

where εjkl and δjk are the Levi-Civita and Kronecker symbols, respectively. The
commutation relation for the components of the four momentum are already
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CHAPTER 2. THE RELATIVISTIC PARTICLE PROBLEMS

written in a covariant way. This can also be done for the rest of the relations, if
one realizes that under a Lorentz transformation the K j and J j transform like the
six independent components of an antisymmetric tensor of rank 2. By setting
J0j = Kj, and J jk = εjklJ l , one arrives at the covariant set of commutation
relations of the generators of the Poincaré group

[Pµ, Pν] = 0,

1

i
[Pµ, Jκρ] = gµρPκ − gµκPρ ,

1

i
[Jµν , Jργ] = gµρJνγ − gνρJµγ + gνγJµρ − gµγJνρ. (2.6)

An important observation here is that now the metric gµν provides the structure
constants of the Lie-Algebra.

2.1.1 Casimir Operators of the Poincaré Group

Having the generators and their commutation relations one can start to construct
operators as functions of the generators. We have already mentioned that any lin-
ear combination of group generators is again a generator of the group. Another
interesting issue is to construct the Casimir operators of the group [140, 141].
These are generator polynomials that commute with all of the generators. The
Casimir operators are also important, because their eigenvalues provide quantum
numbers to label the representation in use. In general for physical systems one
wants to have a set of commuting self-adjoint operators, whose eigenvalues char-
acterize the state of the system. In this sense we want to determine the mass
and spin of our system of interest and construct the corresponding mass and spin
operators.

The Mass Operator: In analogy to the mass m of a particle in classical
relativistic mechanics, one defines the square of the mass operator M as the scalar
product of the four momentum operator P µ with itself

M2 = P µPµ = H2 − −→
P

2
. (2.7)

M2 commutes with all of the Poincaré generators, so it is a Casimir operator of
the Poincaré group. If M 2 satisfies the spectral condition, i.e. M 2 ≥ 0, then one
can define its square root and write

M =

√
H2 − −→

P 2, (2.8)

with these relations one can now express the Hamiltonian in terms of
−→
P and M

P 0 = H =

√
M2 +

−→
P 2. (2.9)
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2.1. THE POINCARÉ TRANSFORMATION

The Pauli-Lubanski Spin Operator : The second Casimir operator is con-
structed from the Pauli-Lubanski pseudovector

W µ := −1

2
εµνργPνJργ. (2.10)

The square of W µ is proportional to the square of the total intrinsic spin

W µWµ = −M2−→S 2. (2.11)

Having in mind that W µWµ commutes with all of the generators of the group,
one still has to derive the commutation relations for the components of W µ with
the generators and with themselves. For that purpose it is useful to write down
the components of W µ explicitly

W 0 =
−→
P · −→J and

−→
W = H

−→
J −−→

P × −→
K, (2.12)

we also note that W 0 and
−→
W are self adjoint. The commutation relations now

are

[J j,W 0] = 0, [J j,W k] = iεjklW l, [Kj,W 0] = −iW j,

[Kj,W k] = −iδjkW 0, [P µ,W ν] = 0. (2.13)

If we compare these commutation relations for W µ to those for the components of
P µ, we see that they are the same, meaning that W µ transforms like a four vector
under Lorentz transformations. Similar to the angular momentum operator, the
components of the Pauli-Lubanski operator do not commute

[W µ,W ν] = iεµνρσWρPσ.

A case where P µ = (M, 0), the Pauli-Lubanski vector W µ = (W 0,
−→
W ), is given

by

W 0 = 0, Wi =
1

2
MεijkJ

kj = MSi. (2.14)

and M2 = 0. Then since

PµP
µ = WµW

µ = WµP
µ = 0, (2.15)

Wµ and Pµ must be proportional to each other,

Wµ = hPµ,

where the helicity h is given by

h =

−→
P · −→J
|−→P |

. (2.16)
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The Newton-Wigner Position Operator: Bakamjian and Thomas con-
structed another operator, namely the so called Newton-Wigner position opera-
tor. The construction of this operator is the result of the need to have a hermitian
position operator in relativistic quantum mechanics. Newton and Wigner have
constructed this operator from the hermiticity requirement [432]. The definition
of the operator in the instant form of relativistic dynamics makes it also possible
to write the operator of total angular momentum as the usual sum of orbital an-

gular momentum defined by the cross product of
−→
X c and

−→
P and intrinsic angular

momentum (spin). The operator reads explicitly for the case of canonical spin

−→
X c =

1

2
[
1

H
,K]+ −

−→
P × (H

−→
J − −→

P ×−→
K )

MH(H +M)
. (2.17)

The state vector Eq. (2.2) φJλ(p) corresponding to a system with definite four
momentum pµ, mass M , total angular momentum J and its projection λ to the
z-axis, the following system holds

Pµ φ
Jλ(p) = pµ φ

Jλ(p),

P 2 φJλ(p) = M2 φJλ(p),

S2 φJλ(p) = −M2 J(J + 1) φJλ(p),

S3 φ
Jλ(p) = M λφJλ(p). (2.18)

A particular dynamical system is determined by the explicit form of these
generators, i.e., by a particular solution of the commutation relations Eq. (2.6).
If these generators are expressed in terms of the particle coordinates, we get a
version of relativistic quantum mechanics with fixed number of particles. If the
generators are expressed through the quantum fields, we obtain a form of the
quantum field theory. As soon as the generators are fixed the state vector is
determined by Eq. (2.18). For an interacting system some Poincaré generators
contain the interaction. Namely, the generators changing the position of the
surface, where the state vector is defined, contain the interaction. The generators,
which do not change the position of the surface, do not contain the interaction
and coincide with the generators of free system. Using this property, one can
classify different forms of dynamics.

In Sec. 2.4 we consider the three Dirac forms of the relativistic dynamics and
introduce the question how to add interactions to the operators that describe
the system of interest. Before we use these forms in our approach , we review
highlights of the constraint formalism and it’s quantization.
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2.2 Dirac’s Hamiltonian Approach with Con-

straints

2.2.1 Classical Nonrelativistic Lagrangian Formalism

Here, we only consider closed systems whose dynamics derive from an action
principle. We shall assume that the corresponding action is given as an integral
over time of a local function of the degrees of freedom, known as the Lagrangian
function. By time, we mean a variable parameterising time evolution of the
system, and not necessarily the time as measured by and observer. We shall first
consider the case of a system with a finite number of degrees of freedom, given
as N functions qn(t), n = 1, 2..., N of the time variable t. With the restrictions
specified above, we thus assume that the dynamics of the system is described by
an action functional of the form

A =

∫ t2

t1

dtL(qn, q̇n, t). (2.19)

Here, L(qn, q̇n, t) is a Lagrange function depending on generalized coordinates qn
and generalized velocities q̇n = d

dt
qn and time t.

The time evolution of the classical system is then obtained from the Euler-
Lagrange equations of motion. These equations follow from action by the vari-
ational principle, which states that the classical trajectories qn(t) of the system
are those for which the action is a stationary point of A. A necessary condition
for their existence is the vanishing of the first variation of the action, δA = 0,
and we have for t1 < t < t2,

δA =

∫ t2

t1

dt

{[
∂L

∂qn
− d

dt

∂L

∂q̇n

]
δqn +

d

dt

[
∂L

∂q̇n
δqn

]}
, (2.20)

which leads to the Euler-Lagrange equations

d

dt

∂L

∂q̇n
− ∂L

∂qn
= 0, (2.21)

or explicitly
∂2L

∂q̇n1∂q̇n2

q̈n2 +
∂2L

∂q̇n1∂qn2

q̇n2 −
∂L

∂qn1

= 0. (2.22)

Hence, time evolution of the system is described by a set ofN linearly independent
second order differential equations, provided the Hessian of the Lagrange function
has non vanishing determinant

Det
∂2L

∂q̇n1∂q̇n2

6= 0.

The Lagrangian is called singular if the Hessian vanishes, and regular otherwise.
In the case of a regular system, the general solution of Eq. (2.22) is given in

terms of (2N) integration constants for the N functions qn(t).
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2.2.2 Classical Nonrelativistic Hamiltonian Mechanics

In addition to the Lagrange formulation of classical mechanics there exists a
formulation due to Hamilton, the Hamiltonian formalism corresponding to the
Lagrangian [423, 296, 526, 527]. We will recapitulate this briefly in order to point
out where the peculiarities of constraint dynamics arise. Consider the differential
of the Lagrange function

dL = dqn
∂L

∂qn
+ dq̇n

∂L

∂q̇n
= dqn

∂L

∂qn
+ d

(
q̇n
∂L

∂q̇n

)
− q̇nd

(
∂L

∂q̇n

)
, (2.23)

leading to the relation

d

(
q̇n
∂L

∂q̇n
− L

)
= −dqn

∂L

∂qn
+ d

(
q̇n
∂L

∂q̇n

)
. (2.24)

Thus, defining the generalised momentum pn conjugate to qn as

pn :=
∂L

∂q̇n
, (2.25)

and the canonical Hamiltonian H by

H := q̇npn − L, (2.26)

the relation Eq. (2.24) takes the form

dH = −dqn
∂L

∂qn
+ q̇ndpn, (2.27)

or by using the Euler-Lagrange equations of motion Eq. 2.21

dH = −dqnṗn + q̇ndpn. (2.28)

The result Eq. (2.27) shows that, although the canonical Hamiltonian is a priori
a function of (qn, q̇n), it actually depends on these variables only through the
phase space variables qn and pn. Therefore, H is actually a function of qn and pn,
where pn in turn depends on qn and q̇n. Note that this result applies to regular
as well as singular systems.

However, only in the case of a regular system is the map from velocity space to
momentum space invertible. Indeed, such a one-to-one correspondence requires

Det

(
∂pn1

∂q̇n2

)
6= 0.

Hence, only for such systems can the dependence pn(qn, q̇n) be inverted uniquely
as q̇n(qn, pn), in which case the definition Eq. (2.26) corresponds to a Legendre
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transform of the Lagrange function L(qn, q̇n). From Eq. (2.28), we then read off
the Hamiltonian equations of motion

q̇n =
∂H

∂pn
, ṗn = −∂H

∂qn
. (2.29)

These are (2N) coupled first order (in time) differential equations, whose
general solution is determined in terms of (2N) integration constants. These
integration constants can be specified in terms of (2N) boundary conditions in-
volving qn(t) and pn(t), but here again, appropriate and consistent choices are to
be made depending on the system and possibly other physical considerations.

From the Hamiltonian equations of motion Eq. (2.29), we have the following
equation of motion for any function of phase space f(qn, pn; t), with a possible
explicit time dependence

df

dt
=
∂f

∂t
+
∂f

∂qn

∂H

∂pn
− ∂f

∂pn

∂H

∂qn
. (2.30)

Defining the Poisson bracket of two functions f and g on phase space by

{f, g} :=
∂f

∂qn

∂g

∂pn
− ∂f

∂pn

∂g

∂qn
, (2.31)

Eq. (2.30) takes the form

ḟ =
∂f

∂t
+ {f,H}. (2.32)

In this notation, the Hamiltonian equation of motion are

q̇n = {qn, H}, ṗ = {pn, H}. (2.33)

Although at this point, it seems that these Poisson brackets simply provide a
convenient notation, they actually play a fundamental role in classical as well as
quantum mechanics.

From the definition Eq. (2.31), it is easy to establish the following properties
of Poisson brackets (f, g and h are functions of phase space, and c1, c2 and c are
constants) [289]

• antisymmetry: {f, g} = −{g, f},
• linearity: {c1f + c2g, h} = c1{f, h} + c2{g, h},
• existence of null elements: {c, f} = 0,

• the Jacoby identity: {f, {g, h}} + {g, {h, f}}+ {h, {f, g}} = 0,

• the product rule: {fg, h} = f{g, h} + {f, h}g.
Finally, we have the fundamental Poisson brackets

{qn1 , qn2} = 0, {pn1 , pn2} = 0, {qn1 , pn2} = δn1,n2, (2.34)

from which any Poisson bracket can be obtained using the properties above.
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2.2.3 Nonrelativistic Constraint Hamiltonian Dynamics

Let us now consider a dynamical system with N degrees of freedom and with a
Lagrangian L(q1, q2, ..., qN , q̇1, q̇2, ..., q̇N) = L(q, q̇). The Lagrangian is singular if

Det

(
∂2L

∂q̇i∂q̇j

)
= 0. (2.35)

It means that, when the Lagrangian equations of motion are written in suitable
coordinates, the coefficient of at least one q̈ is zero. Also Eq. (2.35) means that the
equations given by Eq. (2.25) cannot be solved uniquely for each of the velocities
q̇ in terms of q, p. The N dimensional configuration space with coordinates qr
leads automatically to two 2N dimensional spaces, one is the tangent bundle
of Lagrangian coordinates and velocities qr, q̇r, and the other is the cotangent
bundle of phase space of coordinates and momenta qr, pr. If the p’s involve only
N−M independent functions of the q̇’s, there will be M independent constraining
relations

φm(q, p) ≈ 0, m = 1, 2, ...,M. (2.36)

The special weak equality sign ≈ is a reminder that these relations are, of course,
not valid over the entire 2N dimensional phase space but the solution pair (q, p)
[191, 194, 294, 283]. The relations Eq. (2.36) are called primary constraints of
the Hamiltonian formalism [525, 527, 526]. Now, we consider the quantity of
pnq̇n − L.

If we make variations for pnq̇n−L, in the variables q and q̇, in the coordinates
and the velocities, then variations will cause variations to occur in the momentum
variables p. This means that

δ(pnq̇n − L) = pnδq̇n + q̇nδpn −
∂L

∂qn
δqn −

∂L

∂q̇n
δq̇n

= q̇nδpn −
∂L

∂qn
δqn + δq̇n

(
pn −

∂L

∂q̇n

)

= q̇nδpn −
∂L

∂qn
δqn. (2.37)

the variation is not independent of the velocities. However, we may add to it any
linear combination of the φ’s Eq. 2.36, which are zero. The Hamiltonian, we may
change to an other Hamiltonian

H = H + λmφm, (2.38)

where the λm are any functions of the q’s and p’s.
Eq. (2.37) now gives

∂H
∂qn

δqn +
∂H
∂pn

δpn = q̇nδpn −
∂L

∂qn
δqn. (2.39)
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for variations δqn, δpn. It follows that

q̇n =
∂H

∂pn
+ λm

∂φm
∂pn

,

− ∂L

∂qn
=

∂H

∂qn
+ λm

∂φm
∂qn

,

and

ṗn = −∂H
∂qn

− λm
∂φm
∂qn

. (2.40)

From definition Eq. (2.31), one can rewrite the equations of motion. For any
function g(q, p), we have

ġ = {g,H} = {g,H + λnφn} = {g,H} + {g, λnφn}
= {g,H} + λn{g, φn} + {g, λn}φn
= {g,H} + λn{g, φn}. (2.41)

We have the constraints Eq. (2.36), but must not use one of these constraints
before working out a Poisson bracket.

An important consequence of these definitions Eq. (2.36) is the following

• the constraint Eq. (2.36) is trivially satisfied 0 = 0,

• the constraint Eq. (2.36) is independent of λm, {φm, φn} ≈ 0, determine
new constraint χ(qn, pn) = 0 so called secondary constraint,

• the constraint Eq. (2.36) defines an equation to be satisfied by the function
λm.

This defines a linear vector space (due to the linearity of the Poisson brackets)
and so any linear combination of constraints is again a constraint.

It is of great importance for our purposes the distinction between first class
and second class constraints. The first are defined as the constraints which com-
mute (i.e. have vanishing Poisson brackets) with all the other constraints. The
second ones have at least one non vanishing bracket with some other constraint.
It may happen that we can take linear combinations of second class constraints
and obtain some first class constraints. Dirac showed the profound difference be-
tween this two classes in Ref. [194]. Any quantity, which is weakly equal to zero
is necessarily strongly equal to a linear combination of the constraints, provided
the latter are regular constraints.

2.3 Relativistic Kinematics

Particle physics utilizes relativistic kinematics in many ways: to relate energies,
momenta and scattering angles in different frames of reference, to deduce the
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masses of unstable particles from measurements on their decay products, to work
out threshold energies for production of new particles, and in a variety of other
applications [408]. The problem we want to discuss here is what happens when
we replace Galilean spacetime with Minkowski spacetime. All observables can
be expressed in terms of invariants. The most exhaustive treatment of the sub-
ject of relativistic kinematic, is given in Ref. [104, 315], considerable interest
in experimental high energy physics. While the force between particles are only
imperfectly known, and are certainly for from classical, so long as the particles
involved in a reaction are outside the region of mutual interaction their mean
motion can be described by classical mechanics. Further, the main principle in-
volved in the transformations conservation of the four vector of momentum is
valid in both classical and quantum mechanics.

Figure 2.1: The light cone.

1. Let us consider the invariant of the four dimensional line element between
two events −→x 1 and −→x 2 with components

ds2 = cdt2 − d−→x 2, (2.42)

where cdt timelike interval and Cartesian coordinates d−→x = {dx, dy, dz}.
It has become usual to talk about three different types of intervals

• ds2 ≤ 0, (spacelike)
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2.3. RELATIVISTIC KINEMATICS

• ds2 ≥ 0, (timelike )

• ds2 ≡ 0, (lightlike).

A spacetime diagram shown in Fig. 2.1, often called a Minkowski diagram,
is a geometric representation of motions in spacetime [512]. The vertical
axis is usually plotted as the time axis. For timelike intervals we can further
distinguish

• s > 0, (future)

• s < 0, (past)

• s = 0. (present or elsewhere)

The future cone represents those areas where s is positive and ct is also
positive. The past cone comprises spacetime points with s positive and
with ct negative. Those volumes outside the two cones represent what is
sometimes called elsewhere, since they are events for which the metric s is
imaginary.

Depending upon the situation one sometimes plots a single spatial dimen-
sion, or two spatial dimensions. Any point in spacetime is called a world
point, and a series of world points representing the motion of some object
is called a world line Fig. 2.1.

2. We have the following Lorentz transformation between the coordinates in
the two systems




ct′

x′

y′

z′


 =




γ −v
c
γ 0 0

−v
c
γ γ 0 0

0 0 1 0
0 0 0 1







ct
x
y
z


 . (2.43)

4-Vector
The prototype four vector is the position vector in spacetime, representing
an event

s =




ct
x
y
z


 ,

contravariant, with components xµ, and

s = (−ct x y z),

covariant with components xµ.
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We are rewriting the invariant squared length Eq. (2.42)

ds2 = (−cdt dx dy dz)




cdt
dx
dy
dz


 = −(cdt)2 + dx2 + dy2 + dz2 = gµνdx

µdxν,

where gµν are tensor second rank with components

gµν =




−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


 , (2.44)

say metric tensor defined as the matrix inverse of the spacetime metric gµν,
so it has components gµν so that

gµνgνρ = δµρ .

Along timelike directions the invariant Fig. 2.1

dτ 2 = −ds2/c2 = dt2 − (dx2 + dy2 + dz2)/c2 (2.45)

is positive. Its square root is the element of proper time (chosen positive in
the future pointing direction). For neighboring events on a timelike curve
coincides with the time differential dt that is measured by a clock traveling
on that curve Fig. 2.1. The proper time differential dτ and the coordinate
time differential dt are related by

dt

dτ
= γ(v), (2.46)

where v is the speed of the clock as measured by an observer using coordi-
nates (ct, x, y, z).

3. The world line of a particle is a curve xµ = xµ(τ) , parametrized by the
proper time τ . The four velocity of the particle is the four vector

−→u =
dxµ

dτ
. (2.47)

The square of any four vector is an invariant and so

−→u 2 = V µVν = −c2, (2.48)

in any frame in rest frame −→u µ = (c, 0).
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2.3. RELATIVISTIC KINEMATICS

Associated with any particle is a quantity m0 called its rest mass. The four

momentum of a massive particle is
−→
P = m0

−→u , where −→u is the four velocity.
So

P µ = m0γ(v)(c,
−→v ) = (mc,−→v ), (2.49)

where −→v is usual three velocity,

m = γ(v)m0, and −→p = m−→v , (2.50)

are the relativistic inertial mass and relativistic momentum of the particle.
The relativistic mass m equals the rest mass m0 for a particle at rest and
increases with speed v and m→ ∞ for v → c.

The energy of a particle is defined as

E := m0γ(v)c
2 = mc2. (2.51)

A particle at rest has rest energy E0 = m0c
2, so mass and energy are really

equivalent! The kinetic energy of a particle is its energy due to motion,

W = E − E0 = (γ(v) − 1)m0c
2. (2.52)

The square of the four momentum is invariant,

P 2 = P µPµ = −m2
0c

2, (2.53)

and we can write the components of the four momentum also as

P µ = (E/c,−→p ) and E2 −−→p 2c2 = m2
0c

4. (2.54)

4. In the same way that we had a transformation between spacetime coordi-
nates, there is another Lorentz transformation between momentum energy
coordinates, as indicated below




E
c

′

p′x
p′y
p′z


 =




γ −v
c
γ 0 0

−v
c
γ γ 0 0

0 0 1 0
0 0 0 1







E
c

px
py
pz


 . (2.55)

We shall achieve both simultaneously and shall adopt from now on ~ = c = 1.

2.3.1 Invariant Variables in the Center of Momentum

Center of Momentum (CM)
Let us first consider two particle kinematics with four momenta p1 and p2 and
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with masses m1 and m2 in a Lorentz system [315]. It is possible to give the CM
in terms of the three invariants

p2
1 = m2

1, p
2
2 = m2

2, p1p2 or (p1 ± p2)
2. (2.56)

The CM energy E is in the CM system

p∗1 + p∗2 = {ε∗1 + ε∗2, 0}, and E∗ = ε∗1 + ε∗2. (2.57)

Hence
E∗2 = (ε∗1 + ε∗2)

2 = (p1 + p2)
2, (2.58)

since (p1 + p2)
2 is invariant. Now we can define the total mass M of the system

by square of its total four momentum,

P 2 := (p1 + p2)
2 = M2 = E∗2 = (ε1 + ε2)

2 − (−→p 1 + −→p 2)
2 (2.59)

or −→
P = MβCMγCM , E = MγCM , (2.60)

where

βCM =

−→
P

E
=

−→p 1 + −→p 2

ε1 + ε2
, (2.61)

is the velocity of the CM in laboratory system and the corresponding γ is

γCM =
E

M
.

From last invariant in Eq. (2.56), we write for the Lab-system

p1p2 = ε1ε2 = m1ε2. (2.62)

Hence
ε2 = E21, (2.63)

where E12 is the energy of the particle 2 it in the rest system of 1 and momentum

|−→p 21|2 =
(p1p2) −m2

1m
2
2

m2
1

, (2.64)

and the relative velocity is

v2
21 =

|−→p 21|2
E2

21

=
(p1p2) −m2

1m
2
2

(p1p2)2
. (2.65)

Using explicitly
P = p1 + p2, (2.66)
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and

p1p2 =
1

2
[(p1 + p2)

2 − p2
1 − p2

2] =
1

2
(M2 −m2

1 −m2
2), (2.67)

we obtain almost immediately the following expressions

ε∗1 =
M2 + (m2

1 −m2
2)

2M
, (2.68a)

ε∗2 =
M2 + (m2

1 −m2
2)

2M
, (2.68b)

ε∗2 + ε∗1 = M, (2.68c)

|−→p |2 = |−→p 1|2 = |−→p 2|2 =
M4 − 2M2(m2

1 +m2
2) + (m2

1 −m2
2)

2

4M2
, (2.68d)

v∗2
i =

( |−→p ∗|
ε∗i

)2

, (2.68e)

where ε∗i and v∗i are energy and velocity, respectively, of particle i, as seen from
their common CM system.

Now we shall proceed to a more complicated problem of relativistic dynamics.
It would seem that only in the relativistic kinematics there are no direct experi-
mental comparisons of physical quantities for two systems moving relative to each
other, but in the relativistic dynamics everything is in order according to rela-
tivist logic the accelerators are operating. Let us try to clear up the dynamical
concepts, even because the relativistic dynamics, rests upon a completely untrue
relativistic kinematics.

2.4 Forms of Relativistic Dynamics

2.4.1 Including Interactions to a Hamiltonian

In relativistic classical mechanics, a problem is usually formulated in terms of
a differential equation whose solution has to satisfy certain initial conditions.
Causality requires only that these initial conditions have to be posed on any
space like (or light like) hypersurface of Minkowski space (Sec. 2.3). In nonrel-
ativistic mechanics initial conditions are given at a particular time t = t0. The
time evolution of the system then takes place orthogonal to the initial hypersur-
face chosen. In quantum mechanics the situation is similar, but one has a wave
function, a solution of the dynamical equation describing the system of interest.
In this case, the quantization conditions are formulated on the hypersurface cho-
sen. In both cases are the transformation properties of the hypersurface under the
elements of the Poincaré group of central importance. Dirac [190] discussed three
cases of subgroups of the Poincaré group that leave hypersurfaces of Minkowski
space invariant, whereas the rest of the Poincaré group does not. For each sub-
group he outlines a form of relativistic dynamics. The respective subgroup is
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then also called the stability group of the corresponding form of dynamics. The
generators spanning the stability group are called kinematical, while the others
are called dynamical and are referred to as the Hamiltonians of the system. When
constructing a representation of the Poincaré algebra for a system of interacting
particles the kinematical generators are free of interaction terms, whereas the
dynamical generators contain explicitly interactions. From this point of view the
dimension of the stability group also corresponds to the number of interaction
independent generators. Dirac also asked the question how interactions could
be introduced in a system of free particles. He saw that the interaction terms
in the Hamiltonians have to satisfy nonlinear conditions to guarantee that the
interacting system is still described by a representation of the Poincaré algebra.

It is not clear from the beginning, how to add interactions to the operators.
In order to describe a relativistic quantum mechanical system, one has found a
set of generators of the Poincaré group that satisfies the correct commutation
relations given in Eqs. (2.6). The problem can be seen best in the commutation
relation

[P j, Kk] = iδjkH.

If interactions are added to the Hamiltonian, that means to the right hand side
of this equation, then they also have to appear in one or the other part of the
left hand side. This problem was noticed by Dirac [190]. In general, one can try
to add interactions to H and all the other generators, even different terms for
each generator, provided that the Poincaré algebra is still satisfied. Such a con-
struction is somewhat arbitrary and not straightforward at all. Dirac restricted
the examination to his three forms of dynamics, included potentials in the dy-
namical generators only and arrived at nonlinear conditions for the potentials,
which guarantee Poincaré invariance. The differences between the three forms
of dynamics are the following: including interactions only in the K ′s leads to
the instant form, including the potential in some of the P ′s and some of the K ′s
yields the front form, and including interactions only in the P ′s gives the point
form.

So what one rather wants are only linear conditions on the potentials and a
straightforward way to include given interactions in the Poincaré generators. Such
a prescription was developed by Bakamjian and Thomas [27]. The Bakamjian-
Thomas Construction provides a mean to add interactions to a noninteracting
few body theory in a way that automatically guarantees that the resulting gen-
erators of the Poincaré group satisfy the correct commutation relations. This
can be accomplished in the different forms of relativistic dynamics depending on
the initial choice of the set of Poincaré generators. From each initial set, some
different auxiliary operators are constructed (including the mass operator, which
commutes with all generators). After the interaction potential is added to the
mass operator, one gets some quite usual constraints on the potential, which en-
sure the validity of the commutation relations of the original generators. These
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can then be reconstructed from the auxiliary operators and describe the inter-
acting theory in a Poincaré invariant manner. This yields linear constraints for
the potential terms in each form of dynamics and a straightforward way for the
construction of the interacting Poincaré generators.

It is quite possible to construct the Poincaré generators for one free particle.
This construction can be generalized to yield operator representations for a sys-
tem of two free particles. In this case the operators are constructed as a tensor
product of single particle Hilbert spaces. The Poincaré generators are then sums
of generators for each particle

P µ
0 = P µ

1 ⊗ 12 + 11 ⊗ P µ
2 , (2.69)

Mµν
0 = Mµν

1 ⊗ 12 + 11 ⊗Mµν
2 . (2.70)

where the subscripts 1 and 2 denote the operators referring to the Hilbert spaces
of particles 1 and 2, respectively. The subscript 0 indicates that the operator
describes a system of free particles. The corresponding single particle states are
combined to two particle states by Clebsch-Gordan coefficients (See Appendix.B).
This construction can be done in any of the three forms of dynamics, however,
the respective Clebsch-Gordan coefficients will depend on the particular form of
dynamics.

The procedure to build interactions into the generators is now the following:

1. Construct the set of free two particle generators according to Eqs. (2.69)
and (2.70). This set satisfies the Poincaré algebra.

2. Construct a set of auxiliary operators (depending on the form of dynamics)
from the free generators with commutation relations related to the ones of
the original set of generators. One of these auxiliary operators is the mass
operator.

3. Add the interaction only to the mass operator without affecting the other
(auxiliary) operators. This implies only linear constraints on the poten-
tial. The constraints in this case have to guarantee that the algebra of the
auxiliary operators does not change.

4. Reconstruct the original set of generators from the auxiliary operators.
The interaction now enters the generators via the mass operator and the
Poincaré algebra is still satisfied, since the commutation relations of the
auxiliary operators were not changed.

In the following subsections we will discuss Dirac’s three forms of relativistic
dynamics in some detail.
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2.4.2 Instant Form

The laboratory observer studies the physical processes in the four dimensional
space time continuum described by the coordinates x = (t, ~r). The three dimen-
sional space ~r is a hyperplane given by the equation t = const. An observer
studies the evolution of his physical system from one plane t = const to other
one. The wave function ψ(~r, t) of a quantum system, for a given t, is defined on
this hyperplane.

This description in four dimensional space, from one fixed time plane to other
one, corresponding to the different time instants is called the instant form of
dynamics.

The time translations of the three dimensional plane are determined by the
Hamiltonian H = P0. The interaction enters also into three operators of the
Lorentz transformation Ji0, i = 1, 2, 3. Indeed, two simultaneous events in one
system of reference are not simultaneous ones in a moving system. Therefore, the
Lorentz transformations do not leave the plane t = const invariant, they change
the orientation of this plane relative to the time axis. This is the reason, why the
corresponding generators contain the interaction.

The other six generators, the translations and rotations inside the three di-
mensional space, namely, ~P and ~Ji = εijkJ

jk coincide with the generators of the
free system and are kinematical.

2.4.3 Point Form

In principle, one can define the wave function on any hyperplane in space time.
Any two points of this surface cannot be connected by a light signal and, hence,
an event in one of these points cannot be caused of the other one. A convenient
choice is the surface of hyperboloid, t2 − ~r 2 = const. It is invariant under
Lorentz transformations. With the state vector defined on the family of these
hyperboloids, we obtain the point form of dynamics.

In the point form the rotations and the Lorentz transformations do not change
the hyperboloid t2 − ~r 2 = const. Therefore all the six generators Jµν do not
contain the interaction. Whereas, the translations are much more complicated,
and all the generators Pµ contain the interaction. This means that the total
momentum of a system is not the sum of the particle momenta. This complicates
the situation inspite of the simplification of the Lorentz boosts.

2.4.4 Front Form

The observer moving with the velocity v along z-axis describes a physical process
in his coordinates (t′, x′, y′, z′), which are related to the laboratory ones by the
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Lorentz transformations:



t′

x′

y′

z′


 =




γ 0 0 +vγ
0 1 0 0
0 0 1 0

−vγ 0 0 γ







t
x
y
z


 , (2.71)

where

γ =
1√

1 − v2
.

According to Eq. (2.71), the plane t′ = const in the moving system corresponds
to

(t + zv) = const,

in the laboratory coordinates. The evolutions are considered from one plane
t + zv = const to other one. Since the value of const is not yet specified, the
factor γ can be absorbed by it. For the null plane we put t′ ∝ t + zv = 0. In
the limiting case, when v → c, we get the plane determined by the equation
t′ ∝ z+ = t + z = 0. The wave function is defined on this plane. This equation
coincides with the equation for the light front z = −t, moving along −z. This is
the reason, why the description in these coordinates is called the front form of
dynamics, or the light front dynamics.1

For an arbitrary four vector a we perform the following transformation to
front form coordinates

(a0, a1, a2, a3) → (a+, a1, a2, a−),

where we have defined

a+ = (a0 + a3)/
√

2, a− = (a0 − a3)/
√

2.

We also use the transverse vector part of a as

a⊥ = (a1, a2).

In front form dynamics only three generators P−, J1−, J2− do not leave the
light front plane invariant and contain the interaction. Other seven generators
P1, P2, P+, J12, J−+, J1+ and J2+ are the free ones.

Note also that, for a free particle, the relation between the energy and mo-
mentum

p2
0 = ~p 2 +m2, (2.72)

can be rewritten in the light front coordinates as

2p+p− − ~p2
⊥ = m2, or2p+p− = ~p2

⊥ +m2, (2.73)

1We use units with c = 1.
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with ~p⊥ = (p1, p2). So, the light front energy p− of a free particle is expressed by

p− =
~p2
⊥ +m2

2p+
, (2.74)

where
p± = (p0 ± p3)/

√
2, (2.75)

are the front form energy (-) and the longitudinal momentum (+). Unlike the
usual instant form dispersion

E = ±
√
p2 +m2, (2.76)

the front form dispersion relation has a rational structure. This expression does
not contain any square root, in contrast to the instant form.

The main difficulty of quantum field theory is the very complicated structure
of the state vector describing the particles and even the state without any parti-
cles, the vacuum state. The state vector is usually described as a superposition of
the bare quanta, corresponding to the non-interacting fields. If we switch off the
interaction between the fields, the number of particles is conserved. As soon as
we take into account the interaction, the state vector is a superposition of states
with different number of particles.

If interaction is a weak, like in the case of the quantum electrodynamics, it
does not change the state vector too much. Therefore, the dressed electron differs
from the bare one only by small admixtures of photons.

The situation is drastically different when the interaction is strong. In this
case, the structure of the real particle is extremely complicated. For example,
the proton consists of three quarks, but these quarks are not the same quarks
that appear in the initial Lagrangian of QCD. They are so called the constituent
quarks which consist of bare quarks and gluons. The state vector of the proton
is a complicated superposition of the bare fields. It has not yet been calculated
from first principles of QCD.
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Figure 2.2: A comparison of the three dynamical forms [29].

One should emphasize that not only the proton state, but also the state
without physical particles the vacuum state of the laboratory observer, is a com-
plicated superposition of the bare particles, or, in other words, of fluctuations
of the bare fields. At the same time, this description of emptiness in terms of a
complicated conglomerate of particles, seems unnatural. It would be much better
to work in the approach in which the vacuum is indeed nothing but emptiness.
Simplifying the vacuum wave function, we simplify not only it but also the wave
function of the proton and of other particles, eliminating from them, like in the
vacuum wave function, the fluctuations of fields. After that on can study the real
physical structure of particles.
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In Fig. 2.2, we shown of the three forms. Which of the three dynamical forms
should be preferred? The question is difficult to answer, in fact it is ill-posed.
In principle, all three forms should yield the same physical results since physics
should not depend on how one parameterizes the space time. It is dependent in
it, one has made a mistake. But usually one adjusts parameters to fit the physical
problem any simplify the amount of practical work. Since one knows little on the
typical solutions of a field theory, it might well be worth the effort to admit also
other than the conventional instant form. Howere, the purpose of the present
work is to introduce a framework for developing NN interaction models within
the context of the instant form of relativistic dynamics.

2.5 Quantization

We study here the canonical quantization of nonrelativistic Hamiltonian me-
chanics. As was discussed in Sec. 2.2.2, the basic structures that determine
the Hamiltonian description of the system are the Poisson bracket structure on
phase space, its values for the fundamental degrees of freedom and the classical
Hamiltonian H [191].

There exist a number of different quantization schemes which have been pro-
posed over the decades, each with its own merits and drawbacks.

1. The canonical quantization method [193, 513]: At the level of QED, the
canonical quantization method is not too difficult, but the canonical quan-
tization of more complicated theories, such as non-Abelian theories, is often
prohibitively tedious.

2. The Gupta-Bleuler [307, 80] or covariant quantization method: Contrary to
canonical quantization, it maintains full Lorentz symmetry, which is a great
advantage. The disadvantage of this approach is that ghosts or unphysical
states of negative norm are allowed to propagate in the theory.

3. The path integral [234, 235] method: This is perhaps the most elegant and
powerful of all quantization programs. One advantage is that one can easily
go back and forth between many of the other quantization programs to see
the relationships between them. The disadvantage of the path integral ap-
proach is that functional integration is a mathematically delicate operation
that may not even exist in Minkowski space (Sec. 2.3). A method to incor-
porate constraints in the notion of Feynman path integrals was formulated
by Faddeev [216].

4. The Becchi-Rouet-Stora-Tyupin(BRST) [49, 50, 51, 52] quantization method:
This is one of the most convenient and practical covariant approaches used
for gauge theories. Like the covariant quantization program, negative norm
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states or ghosts are allowed to propagate and are eliminated by applying
the BRST condition onto the state vectors.

All the information is contained in a single operator, making this a very attractive
formalism. We will especially discuss the canonical quantization method.

2.5.1 Canonical Quantization

On of the first methods to quantize a finite regular system is the so called canoni-
cal quantization [193, 296]. Corresponding to the fundamental degrees of freedom
that define phase space, and functions on this space, we have at the quantum
level linear operators acting on Hilbert space [522]. Being operators, these quan-
tities generally do not commute among one another, so that most often ordering
prescriptions are necessary in order to define quantum composite operators. Note
also that quantization of a classical system always introduces a new fundamental
constant, namely ~, which has the dimensions of [mass length2 time−1] [296].

The quantum Hilbert space carries an algebraic structure associated with
commutation relations, in a sense that it provides a linear representation of this
algebra of quantum operators. This however is not enough at the quantum level.
An additional structure must be introduced on Hilbert space, namely an inner
product, which will be denoted by Dirac’s bracket notation < | > [193]. This
inner product has to satisfy two main requirements.

• The Hermiticity properties of the quantum operators

q̂† = q̂, p̂† = p̂.

In particular, the quantum Hamiltonian operator Ĥ corresponding to the
classical Hamiltonian H must be defined with a choice of ordering such
that Ĥ is Hermitian, self adjoint. These different orderings may lead to not
equivalent quantum theories.

• The inner product must be a Hermitian inner product. This corresponds
to the following property under complex conjugation

< ψ|φ >∗=< φ|ψ >,

where ψ and φ are arbitrary quantum states.

The commutation relations of the fundamental quantum degrees of freedom
are simply given by the result of the associated Poisson bracket, multiplied by i~
(See Chapt. 4 ) its means that

{A,B} −→ i~[Â, B̂], (2.77)

where [Â, B̂] = ÂB̂−B̂Â, is the commutator of the operators Â, B̂. This prescrip-
tion is in this simple form however too naive and only works for special Hamilton
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operators and special observables. The precise meaning o (2.77) was analyzed by
Ashtekar [25].

For example, associated with the fundamental brackets given in Eq. (2.34),
we have the Heisenberg commutation relations

[q̂n1 , q̂n2] = 0, [p̂n1, p̂n2] = 0, [q̂n1 , p̂n2] = i~δn1,n2, (2.78)

where q̂n, p̂n are the fundamental quantum operators corresponding to the phase
space degrees of freedom [296].

The canonical quantization rules could be eventually applied in a smaller
Hilbert space, which is the counterpart of the reduced phase space R. However
there remains a problem because the knowledge of R is not sufficient. Wave
functions depend on configuration space variables, but R although symplectic is
not necessarily the cotangent space of some configuration space. And even more
severe, in most cases an explicit representation of R is not available and one only
knows it implicitly.

2.5.2 Quantization of Constrained Systems

The canonical quantization prescription has served us well in defining a straight-
forward and unambiguous way of quantizing a classical system in flat space.
However, it immediately runs into problems where constrained dynamics is in-
volved. It is easy enough to restrict the potential term to the constraint surface
the difficulty arises in treating the operator ordering ambiguities in quantizing
the kinetic terms.

Noticing the point that the Dirac brackets for the constrained system play the
role of the Poisson brackets for the unconstrained system, we can quantize the
classical constrained system. The Dirac brackets are to be replaced, in quanti-
zation, by the commutators (×1/i}). Along this canonical quantization method,
therefore, it is important that we describe the system in the language of the
Hamiltonian and not of Lagrangian formalism.

In case of vanishing matrix elements of constraints, it is to fix the multipliers
in the classical Hamiltonian by one way or another and solve the Schrödinger
equation with the corresponding Hamilton operator. Use the substitution rule
Eq. (2.77) as there were no constraints. Since by this we work in a Hilbert space
which is too big, define states to belong to the physical Hilbert space Γp if they
fulfill

< ψ′|Ĉr|ψ >= 0, (2.79)

where Ĉr are the quantum analogies of all constraints in the classical theory [527].

In case of constraints as conditions on states, which occur for a first class
theory with

H = H0 + λiφi.
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Again solve the Schrödinger equation for certain fixed values of the multipliers
and ignore the constraints. Then impose as conditions on the states

φ̂i|ψ >= 0. (2.80)

This requirement means that the state |ψ > is invariant under the action of gauge
transformations generated by constraints. A subspace, defined by such equations
(called physical subspace) is actual the Hilbert space of a theory. This implies
Eq. (2.79) for those constraints Cr which are first class. For consistency of Eq.
(2.80) also

[φi, φj]|ψ >= 0,

has to hold. However, the quantum analogies of Poisson bracket relations

{φi, φj} = 0,

do not necessarily become
[φ̂i, φ̂j] = f̂ ijl φ̂

l, (2.81)

because in general the structure coefficients are operators too and some of them
may occurs on the right of the φl. This order problem might be prevented by

[φ̂µ, φ̂ν]|ψ >= 0.

In the classical theory, the constraints do not only define constraint hyper-
surfaces but they also generate gauge transformations. Therefore one should
expect that in the quantum theory they do not restrict the full Hilbert space but
also generate equivalence classes of states. Define the infinitesimal change of an
operator

δĤ := εi[Ĥ, φ̂
i], (2.82)

and calculate the matrix element

< ψ′|δĤ|ψ >= ε < ψ′|Ĥφ̂|ψ > −ε < ψ′|φ̂Ĥ|ψ > . (2.83)

The first term on the right hand side vanishes due to Eq. (2.80), the second
would vanish in case of hermitian constraints [527].

If constraints identifies as an operator, than we use Dirac quantization rules.
The difficulty arising from the nonvanishing commutator of two constraints on
the physical state, the presence of second class constraints ξi are even more se-
vere. If ξ̂|ψ >= 0, there will be some

[ξ̂i, ξ̂j]|ψ >6= 0, (2.84)

since already classically

Det{ξi, ξj} 6= 0, (2.85)
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such that Ĉ|ψ >= 0 must lead to contradictions unless one assumes that the
constraints themselves vanish as operator Ĉr = 0, [191, 194, 527].

So, we can quantize any singular system using Eq. (2.77), but there is no
single rule for quantization of constrained systems.

In non relativistic theory all dynamical variables are bosonic and represented
by ordinary commuting numbers. On the other hand, in theory of particles one is
tempted, that all really fundamental particles, fermion and bosons are composite.

As it was suggested by Schwinger [507], the matrix determining the Poisson
brackets and the canonical commutation relations, must be skew Hermitian, then
the consistent classical and quantum dynamics may be constructed on the basis
of the variation principle. Remarkably, not only a real and skew symmetrical
matrix, but also an imaginary symmetrical one is possible. However, in the
second case the canonical variables should be anticommuting. The analysis in
a space of anticommuting variables (in the Grassmann algebra) as exhaustively
developed by [483]. The importance of using Grassmann algebras was essential for
the discovery of supersymmetries and the recent introduction of the superspace
formalism.

In order to define the associated manipulations, one must introduce the no-
tions of integration and derivation of Grassmann variables, and extend the notion
Poisson brackets to Grassmann odd phase space degrees of freedom. We discuss
it in the next section.

2.6 Grassmann Anticommuting Variables

The introduction of new variables in mathematics and other sciences has played
a significant role in the development of mathematics and science. This phe-
nomenon can be seen clearly in theoretical physics. Beginning from ordinary
classical mechanics using ordinary real number, complex variables have helped
the birth of quantum theory in which they are basic ingredient. Beside their
use as a mathematical tool, new variables may lead to more profound physical
consequences. The aim of this chapter is to show other new variables which we
could use in constraint dynamics with spin one half particle.

The analysis of Grassmann algebras is known to mathematicians and has
been used for a long time, but its application in physics began along with the
formulation of quantum field theory [410, 64]. The formulation of bosonic field
operators by using commutation relations in quantum field theory led directly
to the introduction of anticommuting relations for fermionic field operators by
Dirac [193],

{a, a†} = 1, {a, a} = {a†, a†} = 0. (2.86)

The form of these relations is identical to the anticommutation relations between
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Grassmannian coordinates θi and their derivatives ∂i ≡ ∂/∂θi,

{θi, ∂j} = δji , {θi, θj} = {∂i, ∂j} = 0, (2.87)

which leads one to conjecture the existence of fundamental anticommuting co-
ordinates. Since then, Grassmann variables have taken an important place in
theoretical physics. In particular, Grassmann variables have been playing a cen-
tral role in areas such as second quantization, non Abelian gauge theories, and
supersymmetry. We shall introduce a brief theory of supersymmetry.

Although the use of anticommuting variables are indispensable from almost all
theoretical physics works, there has been not much attention to their use as a kind
of coordinate appended to our usual space time dimension. The introduction of
extra Grassmann coordinates stems from the vast amount of research on unified
models of elementary particles and their interaction forces, based on the extension
to Minkowski space time.

The first attempt to unify gravitation and electromagnetic interactions was
explored by adding one bosonic extra coordinate to the the four dimensional space
time in Kaluza-Klein theory [344, 358]. Commuting variable coordinates are also
used in bosonic string theory [299, 502]. The introduction of extra Grassmannian
coordinates has its roots in superspace formulations [181]. Supersymmetry [222]
and supergravity [435] are those that use the superspace concept by introducing
spinorial Grassmann variable coordinates in their efforts to unify bosons and
fermions. These formulations are essential in the construction of ten dimensional
superstring theories, generalized version of string theories [299, 502].

2.6.1 Grassmann Algebra

Definition

Let θi, i = 1, . . . , n be a set of generators satisfying anticommutation relation

{θi, θj} = 0, for i, j = 1, . . . , n (2.88)

where {A,B} ≡ AB + BA for arbitrary A and B. These generators will define
a Grassmann algebra Gn with n generators. In particular, (θi)

2 = 0. If n → ∞,
the corresponding algebra will be denoted by G∞. We will limit our discussion
to finite dimensional Grassmann algebra. The generalization to the infinite case
is straightforward.

These generators will define a linear vector space, in which all possible poly-
nomials of θi will form a basis

1, θ1, . . . , θ2, θ1θ2, . . . , θn−1θn, . . . , θ1 . . . θn.

This basis will generate a 2n-dimensional vector space over the complex numbers,
whose elements are called supernumbers. The monomials θi1 . . . θip will be referred
to as a monomial of degree p.
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Functions of Grassmann Variables

Any function of θi, f(θi), can be written as a combination of monomials:

f(θ) = c0 +
n∑

p=1

ci1...ipθi1 . . . θip . (2.89)

We can choose without loss of generality the coefficients ci1...ip to be totally an-
tisymmetric in their indices. These coefficients usually are ordinary complex
numbers, and f(θ) is called a supernumber. A supernumber is an element of
the algebra Gn. In this case, c0 is called the body (which is an ordinary complex
number), and the rest is called the soul of the supernumber f(θ). In general,
every supernumber ζ can be expressed as a sum of the body ζB and the soul ζS,

ζ = ζB + ζS.

The inverse of a supernumber can be derived easily. Writing

ζ = ζB(1 + ζ−1
B ζS),

then

ζ−1 = ζ−1
B (1 + ζ−1

B ζS)
−1 = ζ−1

B

∞∑

n=0

(ζ−1
B ζS)

n, (2.90)

where a Taylor expansion is used in the last step. Then it is obvious that a
supernumber has an inverse if and only if its body is not vanishing.

We can also extend any analytic function on complex numbers to a super-
number valued function on Gn, using the usual Taylor expansion:

f(ζ) =

n∑

p=0

1

p!
f (p)(ζB)ζpS.

Here f (p)(ζB) is the p-th derivative of f at the point ζB, provided ζB is not
singular.

Another useful classification of supernumber is worked out by separating its
odd and even parts:

ζ = ζe + ζo,

ζe = ζB +

n/2∑

p=1

ci1...i2pθi1 ...i2p
,

ζo =

n/2−1∑

p=0

ci1...i2p+1θi1...i2p+1 ,
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for even n, or

ζe = ζB +

(n−1)/2∑

p=1

ci1...i2pθi1...i2p
,

ζo =

(n−1)/2∑

p=0

ci1...i2p+1θi1...i2p+1,

for odd n.
Odd supernumbers anticommute among themselves, and even supernumbers

commute with everything. The set of even supernumbers will generate a commu-
tative superalgebra of Gn, G

(+)
n . The set of odd supernumbers, G

(−)
n , do not form

an algebra. The product of an even and an odd supernumber will give an odd
supernumber. The product of two even supernumbers or two odd supernumbers
is an even supernumber. Finally, the square of an odd supernumber vanishes.

Derivatives

Now, we define the derivative of the elements of Grassmann algebra Gn in term
of its base elements

∂

∂θq
θi1 . . . θip = δi1qθi2 . . . θip − δi2qθi1θi3 . . . θip

+ . . .+ (−1)p−1δipqθi1 . . . θip−1 . (2.91)

This derivative will be denoted as left derivative. Its right partner is defined
similarly

θi1 . . . θip
∂

∂θq
= δipqθi1 . . . θip−1 − δip−1qθi1 . . . θip−2θip

+ . . .+ (−1)p−1δi1qθi2 . . . θip . (2.92)

Both derivatives are linear operators in Grassmann algebra Gn. To avoid ambi-
guity, from now on we will only use the left derivative, unless indicated explicitly.
The derivative operators satisfy anticommutation relation among themselves:

{ ∂

∂θi
,
∂

∂θj
} = 0. (2.93)

Also it is easy to verify from previous result that

{θi,
∂

∂θj
} = δij. (2.94)

Since any function on supernumbers can be written as superposition of the
base elements, the derivative of any function on Grassmann variables can be easily
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calculated using these results. Other properties can be derived easily from the
definition of the derivatives. For example, let u ∈ G

(+)
n , v ∈ G

(−)
n , and w ∈ Gn,

then

∂

∂θi
(uw) = (

∂

∂θi
u)w + u(

∂

∂θi
w), (2.95)

∂

∂θi
(vw) = (

∂

∂θi
v)w − v(

∂

∂θi
w). (2.96)

Also,
∂

∂θi
(
∂

∂θj
w) = − ∂

∂θj
(
∂

∂θi
w). (2.97)

The superanalyticity is defined in the same way as analyticity for ordinary
functions. If f(v) ∈ Gn, v ∈ G

(−)
n , is superanalytic, then it is simply a linear

function of v
f(v) = a + bv, (2.98)

where a and b are constants elements of Gn and depend on the nature of f(v). For
instance, if f(v) is taken to be even supernumber, then a is an even supernumber
and b is an odd supernumber. Let us consider an infinitesimal displacement dv in
G

(−)
n space. Assuming f(v) is superanalytic, then dv will induce an infinitesimal

displacement of f(v), df(v), in Gn space. For an arbitrary dv

df(v) = dv

[
d

dv
f(v)

]
, (2.99)

from which we get the general solution above.

Integration

Integration over Grassmann variables is defined as [181]
∫
dθi = 0,

∫
dθiθi = 1. (2.100)

The first relation follows from the requirement of invariance under any finite
translation a for commuting variables

∫ +∞

−∞

dxf(x) =

∫ +∞

−∞

dxf(x+ a),

which is extended to anticommuting variables. The second relation fixes the nor-
malization convention. It can be shown that dθi will also satisfy anticommutation
relation among themselves and with θi

{dθi, dθj} = 0, for i, j = 1, . . . , n

{dθi, θj} = 0. (2.101)
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It is clear from their definitions that differentiation and integration over an
anticommuting variable are essentially identical,

∫
dvf(v) =

d

dv
f(v) = b, v ∈ G(−)

n . (2.102)

and the integral of the derivative over anticommuting variables vanishes
∫
dv

d

dv
f(v) =

d2

dv2
f(v) = 0, v ∈ G(−)

n . (2.103)

The extension to multiple integration is defined by iteration of single integral.
∫
θi1 . . . θipdθp . . . dθ1 = εi1...ip,
∫
f(θ)dθp . . . dθ1 =

1

p!
εi1...ipc

i1...ip,

where εi1...ip is the Levi-Civita tensor.
For future use we still define here a Grassmann variant of the Dirac δ −

function by ∫
f(θ)δ(θ)dθ = f(0), (2.104)

so that

δ(θ) = 0,

∫
δ(θ)dθ = 1 and

∫
θδ(θ)dθ = 0.

In case n > 1 Grassmann variables θ1, θ2, ..., θn are encountered, we define

δn(θ) = δ(θn)δ(θn−1)...δ(θ1) = θnθn−1...θ1,

with all the obvious properties.

Conjugation

Complex conjugation (involution) is defined as one-to-one mapping of the al-
gebra onto itself f(θ) −→ f(θ), such that,

(f(θ)) = f(θ),

(f1(θ) + f2(θ)) = f 1(θ) + f 2(θ),

(f1(θ)f2(θ)) = f 2(θ) f1(θ),

for all f, f1, f2 ∈ Gn. A supernumber is said to be real if ζ = ζ.
Until now, we have assumed that the n generators θ1 . . . θn are real,

θi = θi, i = 1, . . . , n.

[Note that the base elements of the algebra need not to be real in this case.]
A complex Grassmann variable, θ, can be written as summation of its real and
imaginary parts θ = θR + iθI , and the real and imaginary parts can be replaced
by θ and θ as independent generators of Grassmann algebra.
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Quantization of the Grassmann Variables

Quantization sends the Grassmann algebra into a Clifford algebra. The key step
is to convert the dynamical variables of the classical theory into operators by
means of the prescription

{A,B} → (i~)−1[Â, B̂]±, (2.105)

where the plus sign denotes an anticommutator (to be used when A and B are
odd) and the minus sign corresponds to a commutator (to be used when at least
A and B is even). Applying this prescription to {θi, θj}∗ = iδij we obtain

[θ̂i, θ̂j]+ = ~δij, (2.106)

from which we conclude that we have a Clifford algebra. In this representation
we have

θ̂i =
~

2

1/2

σi, (2.107)

where the σi are the Pauli matrices.

2.7 Supersymmetry and Superfield

Sypersymmetry (susy), i.e., fermi-bose symmetry is on of the most peculiar dis-
coveries in the history of physics.

We can also generalize the concept of supernumber to that of superfield [485,
227]. A superfield is defined similarly to a supernumber except that now the
coefficients are fields instead of simply numbers. In most cases in physics they
are fields over spacetime F (x), where x = (x0,−→x ). Then a superfield F (x, θ, θ̄)
can be written as

F (x, θ, θ̄) = F 0(x) +

n∑

p=1

F i1... ip(x)θi1 . . . θip. (2.108)

The superfield is therefore equivalent to a finite number of ordinary fields, which
is a multiplet of fields. The transformation properties of superfields imply trans-
formation properties for the multiplet components.

The method of constructing supersymmetry Hamiltonians is based on an ex-
tension of the normal space due to the introduction of additional fermion coordi-
nates which form, together with the normal coordinates, the so called superspace.
In the superspace, the superalgebra (The algebra with the Grassmann variables)
can be realized linearly. Moreover, the boson and fermion fields are combined in
a single superfield.

Since we want to construct supersymmetric quantum field theories, and to
find representations of the susy algebra on fields. A convenient and compact
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way to do this is to introduce superspace and superfield, i.e. fields defined on
superspace. This is particularly simple for unextended susy, so we will restrict
here to N = 1 superspace and superfields. Then we have two extra two susy
generators Q and Q̄, as well as four generators Pµ of space time translations.
The idea then is to enlarge space time labeled by the coordinates xµ by adding
two plus two anticommuting Grassmann variables θ and θ̄. Thus coordinates on
superspace are (xµ, θα, θ̄α̇).

2.7.1 Spinors and the Poincaré Group

We begin with a review of the Lorenz and Poincaré groups and spinors in four
dimensional Minkowski space. The signature is taken to be +,−,−,− so that
p2 = +m2 and µ, ν, ... always are space time indices, while i, j, ... are only space
indices. then the metric gµν is diagonal with g00 = 1, gij = −1.

The Lorenz group has six generators, three rotations Ji and three boosts
Ki, i = 1, 2, 3 with commutation relations

[Ji, Jj] = iεijkJk, [Ki, Kj] = −iεijkJk, [Ji, Kj] = iεijkKj. (2.109)

To identify the mathematical structure and to construct representations of this
algebra one introduces the linear combinations

J±
j =

1

2
(Jj ± iKj), (2.110)

in terms of which the algebra separates into two commuting SU(2) algebras:

[J±
i , J

±
j ] = iεijkJ

±
k , [J±

i , J
∓
j ] = 0. (2.111)

These generators are not hermitian howere, and we see that the Lorentz group is
a complexified version of SU(2)×SU(2): this group is SL(2, C) [74]. To see that
this group is really SL(2, C) is easy: introduce the four 2 × 2 matrices σµ where
σ0 is the identity matrix and σi, i = 1, 2, 3 are the three Pauli matrices. Then
for every four vector xµ the 2 × 2 matrix xµσµ is hermitian and has determinant
equal to xµxµ which is a Lorentz invariant. Hence a Lorentz transformation
preserves the determinant and the hermiticity of this matrix, and thus must act
as xµσµ → AxµσµA

† with |detA| = 1. We see that up to an irrelevant phase, A
is a complex 2 × 2 matrix of unit determinant, i.e. an element of SL(2, C). This
establishes the mapping between an element of the Lorentz group and the group
SL(2, C).

The Poincaré group contains, in addition to the Lorentz transformations, also
the translations. More precisely it is a semi direct product of the Lorentz group
and the group of translation in space time. The generators of the translations are
usually denoted Pµ. In addition to the commutators of the Lorentz generators Ji
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(rotation) and Ki (boosts) one has the following commutation relations involving
the Pµ:

[Pµ, Pν] = 0, [Ji, Pj] = iεijkPk, [Ji, P0] = 0,

[Ki, Pj] = −iP0, [Ki, P0] = −iPj, (2.112)

which state that translations commute among themselves, that the Pi are a vector
and P0 a scalar under space rotations and how Pi and P0 mix under a boost. One
defines the Lorentz generators Mµν = −Mνµ as M0i = Ki and Mij = εijkJk. Then
the full Poincaré algebra reads

[Pµ, Pν] = 0,

[Mµν ,Mρσ] = igνρMµσ − igµρMνσ − igνσMµρ + igµσMνρ, (2.113)

[Mµν , Pρ] = −igρµPν + igρνPµ.

There are various equivalent ways to introduce spinors. Here we define spinors
as the objects carrying the basic representation of SL(2, C). Since elements of
SL(2, C) are complex 2× 2 matrices, a spinor is a two component object

(
ψ=ψ1

ψ2

)

transforming under an element M =

(
α β
γ δ

)
∈ SL(2, C) as

ψα → ψ′
α = Mβ

αψβ, (2.114)

with α, β = 1, 2 labeling the components. Now, unlike for SU(2), for SL(2, C)
a representation and its complex conjugate are not equivalent. M and M∗ give
inequivalent representations. A two component object ψ̄ transforming as

ψ̄α̇ → ψ̄′
α̇ = M∗β̇

α̇ ψ̄β̇, (2.115)

is called a dotted spinor, while the above ψ is called an undotted one. Comparing
the complex conjugate of Eq. (2.114) with Eq. (2.115) we see that we can identify
ψ̄α̇ with (ψα)

∗.
The representation carried by the ψα is called (1

2
, 0) (matrices M) and the

one carried by the ψ̄α̇ is called (0, 1
2
) (matrices M∗). They are both irreducible.

Now, any SL(2, C) matrix can be written as

M = exp(ajσj + ibjσj), (2.116)

M∗ = exp(ajσ
∗
j − ibjσ

∗
j ). (2.117)

This explicitly displays the generators as the spin 1
2

representation of the com-
plexified SU(2), in accordance with (2.110). One introduces the Dirac matrices
in the Weyl representation as

γ =

(
0 σµ

σ̄µ 0

)
, γ5 = iγ0γ1γ2γ3 =

(
1 0
0 −1

)
. (2.118)
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A four component Dirac spinor is made from a two component undotted and
a two component dotted spinor as

(
ψα

χ̄α̇

)
. Clearly it transforms as the reducible

(1
2
, 0) ⊕ (0, 1

2
) representation of Lorentz group. Then

(
ψα

0

)
and

(
0
χ̄α̇

)
are chiral

Dirac (or Weyl) spinors. A Majorana spinor (see Appendix.A.1) is a Dirac spinor
with χ ≡ ψ, i.e. it is of the form

(
ψ
ψ̄α̇

)
.

The Lorentz generators are

Σµν =
i

2
γµν, γµν =

1

2
(γµγν − γνγµ) =

1

2

(
σµσ̄ν − σν σ̄µ 0

0 σ̄µσν − σ̄νσµ

)
.

(2.119)
We see that indeed the undotted and dotted spinors transform separately, the

generators being iσµν for ψα and iσ̄µν for ψ̄α̇ with

(σµν)βα =
1

4

(
σµαγ̇ σ̄

νγ̇β − (µ↔ ν)
)
,

(σ̄µν)α̇
β̇

=
1

4

(
σ̄µα̇γσν

γβ̇
− (µ↔ ν)

)
. (2.120)

Note that e.g. σ12 = σ̄12 = − i
2
σ3 ≡ − i

2
σz so that the rotation generator M12 =

M12 is 1
2
σz as expected.

2.7.2 The Supersymmetry Algebra

The symmetry we are looking for must connect boson and fermions. In other
words, the generators Q of this symmetry must turn a bosonic state into a
fermionic one, and vice versa. We want to enlarge the Poincaré algebra by gen-
erators that transform either as undotted spinors QI

α or as dotted spinors Q̄I
·α

under the Lorentz group and that commute with the translations. The extra
index I = 1, ...N labels the different spinorial generators in case there are more
than one pair. This means that according to Eq. (2.120)

[Pµ, Q
I
α] = 0, [Pµ, Q̄

I
α̇] = 0,

[Mµν , Q
I
α] = i(σµν)

β
αQ

I
β, (2.121)

[Mµν , Q̄
Iα̇] = i(σ̄µν)

α̇
β̇
Q̄Iβ̇.

In particular, M12 ≡ J3 and thus [J3, Q
I
1] = 1

2
QI

1 and [J3, Q
I
2] = −1

2
QI

2. Since

Q̄I1 = −(QI
2)

† and Q̄I2 = (QI
1)

†,

one similarly has

[J3, (Q
I
2)

†] =
1

2
(QI

2)
† and [J3, (Q

I
1)

†] = −1

2
(QI

1)
†.
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We conclude that QI
1 and (QI

2)
† rise the z-component of the spin by half a unit,

while QI
2 and (QI

1)
† lower it by half a unit.

Since the QI
α transform in the ( 1

2
, 0) representation and the Q̄I

α̇ in the (0, 1
2
),

the anticommutator of QI
α and Q̄I

β̇
must transform as ( 1

2
, 1

2
), i.e. as a four vector.

The obvious candidate is Pµ so that we arrive at

{QI
α, Q̄

J
β̇
} = 2σµ

αβ̇
Pµδ

IJ . (2.122)

The δIJ can always be achieved by diagonalising an a priori arbitrary symmetric
matrix and by rescaling the Q and Q̄. furthermore, since Q̄ is the adjoint of Q,
positivity of the Hilbert space excludes zero eigenvalues of this matrix. Finally

{QI
α, Q̄

J
β} = εαβZ

IJ , {Q̄I
α̇, Q̄

J
β̇
} = 2εα̇β̇(Z

IJ)∗. (2.123)

The ZIJ = −ZJI are central charges which means they commute with all gener-
ators of the full algebra. The simplest algebra has N = 1, i.e. they are no indices
I, J and there is no possibility of central charges. this is the unextended susy
algebra. In the simplest extended case, N = 2, there is just one central charge
Z ≡ Z12.

As over said, we restrict here to N = 1. The odd superspace coordinates
θα and θ̄α̇ just behave as constant (xµ independent) spinors. Recall that as all
spinors they anticommute among themselves, i.e. Eq. (2.88), and idem for the
θ̄α̇.

Hence an arbitrary (scalar) function Eq. (2.108) on superspace, i.e. a super-
field, can always be expanded as

F (x, θ, θ̄) = f(x) + θψ(x) + θ̄χ̄(x) + θθm(x) + θ̄θ̄n(x)

+θσµθ̄vµ(x) + θθθ̄λ̄(x) + θ̄θ̄θρ(x) + θθθ̄θ̄d(x). (2.124)

Heir we have used the identities in (4.43). If F carries extra vector indices then
so do the component field f, ψ, .... Now, we want to realize the susy generators
Qα and their hermitian conjugates Q̄α̇ = (Qα)

† as differential operators on su-
perspace.2

We want that iεαQα generators a translation in θα by a constant infinitesimal
spinor εα plus some translation in xµ. The latter space time translation is deter-
mined by the susy algebra since the commutator of two such susy transformations
is a translation in space time. Thus we want

(1 + iεQ)F (x, θ, θ̄) = F (x+ δx, θ + ε, θ̄), (2.125)

2On this space, the Qα operators become differential operators Qα → − ∂
∂θ̄

+ iγµθ∂µ in
mach the same way that the Pµ and Mµν operators are realized by Pµ → −i∂µ, Mµν →
−i(xµ∂ν − xν∂µ + θ̄σµν

∂
∂θ

).
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where, we arrive

Qα = −i
(

∂

∂θα
− ic(σµθ̄)α∂µ

)
, (2.126)

and the hermitian conjugate is

Q̄α̇ = i

(
∂

∂θ̄α̇
− ic∗(θσµ)α̇∂µ

)
, (2.127)

and they satisfy the susy algebra, in particular

{Qα, Qβ̇} = 2σµ
αβ̇
Pµ = −2iσµ

αβ̇
∂µ, (2.128)

if c = 1, we can now give the action on the superfield F and determine δx:

(1 + iεQ + iε̄Q̄)F (xµ, θα, θ̄β̇) = F (xµ − iεσµθ̄ + 1θσµε̄, θα + εα, θ̄β̇ + ε̄β̇),

and the susy variation of a superfield is of course defined as

δεε̄F = (iεQ + iε̄Q̄)F. (2.129)

We find covariant derivatives Dα and D̄α̇ that anticommute with the susy
generators Q and Q̄. Then δεε̄(DαF ) = Dα(δεε̄F ) and idem for D̄α̇. It follows that

DαF = 0, or D̄α̇F = 0,

are susy invariant constraints one may impose to reduce the number of compo-
nents in a superfield. On finds

Dα =
∂

∂θα
+ iσµ

αβ̇
θ̄β̇∂µ,

D̄α̇ = − ∂

∂θ̄α̇
− iθβσµβα̇∂µ, (2.130)

where D̄α̇ = (Dα)
† and

{Dα, D̄β̇} = 2iσµ
αβ̇
∂µ, {Dα, Dβ} = {D̄α̇, D̄β̇} = 0,

{Dα, Qβ} = {D̄α̇, Qβ} = {Dα, Q̄β̇} = {D̄α̇, Q̄β̇} = 0. (2.131)

The covariant derivative plays an important role in the superfield theory. Two
comments are in order here. First, any linear combination of superfields is again,
a superfield. Second, the product of two superfields is also a superfield. If the first
assertion is absolutely obvious, the second, perhaps, requires some explanation.
It is instructive to check it explicitly, component by component.
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2.7.3 Chiral Superfields

Here, we encounter a new type of superfield (chiral) and a new realization of
susy in the superspace. The chiral superfields depend explicitly only on θ or only
on θ̄.

A chiral superfield φ is defined by the condition

D̄α̇φ = 0, (left chiral) (2.132)

and an anti-chiral one φ̄ by

Dαφ̄ = 0. (right chiral) (2.133)

This easily solved by observing that

Dαθ̄ = D̄α̇θ = Dαȳ
µ = D̄α̇y

µ = 0,

yµ = xµ + iθσµθ̄ , ȳµ = xµ − iθσµθ̄. (2.134)

Hence φ depends only on θ and yµ and φ̄ only on θ̄ and y. Concentrating on φ
we have component expansion

φ(y, θ) = z(y) +
√

2θψ(y) − θθf(y), (2.135)

or Taylor expanding in terms of x, θ and θ̄:

φ(y, θ) = z(x) +
√

2θψ(x) − θθf(x)

+iθσµθ̄∂µz(x) −
i√
2
θθ∂µψ(x)σµθ̄ − 1

4
θθθ̄θ̄∂2z(x). (2.136)

Physically, such a chiral superfield describes one complex scalar z and one Weyl
fermion ψ. The field f will turn out to be an auxiliary field. For ψ̄ we similarly
have

φ̄(y, θ̄) = z̄(x) +
√

2θ̄ψ̄(x) − θ̄θ̄f̄(x)

−iθσµθ̄∂µz̄(x) +
i√
2
θ̄θ̄θσµ∂µψ̄(x) − 1

4
θθθ̄θ̄∂2z̄(x). (2.137)

Finally, let us find the explicit susy variations of the component fields as
it results form Eq. (2.129): First, for chiral superfields it is useful to change
variables from xµ, θ, θ̄ to yµ, θ, θ̄. Then

Qα = −i ∂
∂θα

, Q̄α̇ = i
∂

∂θ̄α̇
+ 2θβσµβα̇

∂

∂yµ
, (2.138)

so that

δφ(y, θ) ≡ (iεQ + iε̄Q̄)φ(y, θ) =

(
εα

∂

∂θα
+ 2iθσµε̄

∂

∂yµ

)
φ(y, θ) =
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√
2εψ − 2εθf + 2iθσµε̄(∂µz +

√
2θ∂µψ) (2.139)

=
√

2εψ +
√

2θ(−
√

2εf +
√

2iσµε̄∂µz) − θθ(−i
√

2ε̄σ̄µ∂µψ).

Thus we read the susy transformations of the component field:

δz =
√

2εψ, (boson→ fermion)

δψ =
√

2iσµε̄∂µz −
√

2εf, (fermion→ boson) (2.140)

δf = −i
√

2ε̄σ̄µ∂µψ. (f → totalderivative)

2.7.4 Susy Invariant Action

To construct the field theoretical model we used Hamilton’s method because it
was not clear to us then how to formulate Lagrange’s approach consistently with
our invariance principle. On the contrary Hamilton’s approach appeared to be
very simple because the Hamiltonian of the system was among the generators of
the basic algebra. It became very simple to build a representation of the algebra
in terms of free field operators. Starting with this we can develop a method to
determine the form of interaction [293]. At this point it was found that the basic
invariance principle had to be completed with a special locality principle. Only
after that did we obtain a nonlinear set of equations for the possible interaction
terms.

The simplest nonsupersymmetric quantum mechanical problem is that of
one degree of freedom φ(t); the corresponding action has the form

S =

∫
dtL(t), L =

1

2

(
dφ

dt

)2

− V (φ), (2.141)

where V (φ) is the potential energy. Now, instead of the variable φ(t), we intro-
duce a supervariable F (x, θ, θ̄) Eq. (2.108). Analogous to the fact that the space
time (time in this case) linearly realizes the action of the translation generator,

t→ t + τ,

the superspace allows one to realize linearly all susy generators. Under the susy
transformations,

θ → θ + ζ, θ̄ → θ̄ + ζ̄, t→ t+ iθζ̄ − iζθ̄, (2.142)

where ζ and ζ̄ are the Grassmann parameters of the supertranslations.
Now all of our preparatory work has been completed, and we can finally turn

to a discussion of a regular method of building supersymmetric theories. By
definition, we want the action to be invariant under susy transformations:

δ

∫
d4xL(x) = 0. (2.143)
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this is satisfied if L itself transforms into a total derivative. We start from the
expression Eq. (2.141) for the action in ordinary quantum mechanics and can
thus write the action S as

Ssusy =

∫
dtdθdθ̄

(
1

2
D̄φDφ−W (φ)

)
, (2.144)

where W (φ) is an arbitrary function of φ, the called superpotential. This W
may depend on several different φi. Using the y and θ variables one easily Taylor
expands

W (φ) = W (z(y)) +
√

2
∂W

∂zi
θψi(y) − θθ

(
∂W

∂zi
fi(y) +

1

2

∂2W

∂zi∂zj
ψi(y)ψj(y)

)
,

(2.145)
where it is understood that ∂W

∂z
and ∂2W

∂z∂z
are evaluated at z(y). The important

observation is that any Lagrangian of the form
∫
d2θd2θ̄F (x, θθ̄) +

∫
d2θW (φ) +

∫
d2θ̄[W (φ)]†, (2.146)

is automatically susy invariant, i.e. it transforms at most by a total derivative in
space time.

The susy variation of any superfield is given by Eq. (2.129) and, since the ε
and ε̄ are constant spinor and the Q and Q̄ are differential operators in superspac,
it is again a total derivative in all of superspace:

δF =
∂

∂θα
(−εαF ) +

∂

∂θ̄α̇
(−ε̄α̇F ) +

∂

∂xµ
[−i(εσµθ̄ − θσµε̄)F ]. (2.147)

If now F is a chiral superfield like φ or W (φ) one changes variables to θ and y
and one has

δφ =
∂

∂θα
(−εαφ(y, θ))+

∂

∂θ̄α̇
(−ε̄α̇φ(y, θ))+

∂

∂yµ
[−i(εσµθ̄−θσµε̄)φ(y, θ)]. (2.148)

The analogous result holds for an anti chiral superfield W̄ (φ̄) = [W (φ)]†. This
proves the susy of the action resulting from the space time integral of the La-
grangian Eq. (2.146).

The terms
∫
d2θW (φ) + h.c. in the Lagrangian have the form of a potential.

The kinetic terms must be provided by the term
∫
d2θd2θ̄F . The simplest choice

is F = φ†φ. This is neither chiral nor anti chiral but real. To compute φ†φ one
must first expand the yµ in terms of xµ. We only need the terms ∼ θθθ̄θ̄, called
the D-term:

φ†φ
∣∣∣
θθθθ

= −1
4
z†∂2z − 1

4
∂2z†z + 1

2
∂µz

†∂µz + f †f + i
2
∂µψσ

µψ − i
2
ψσµ∂µψ

= ∂µz
†∂µz + i

2
(∂µψσ

µψ − ψσµ∂µψ) + f †f + total derivative.

(2.149)
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Then

S =

∫
d4xd2θd2θ φ

†

iφi +

∫
d4xd2θ W (φi) + h.c. (2.150)

yields

S =

∫
d4x
[
|∂µzi|2 − iψiσ

µ∂µψi + f †
i fi −

∂W

∂zi
fi + h.c.− 1

2

∂2W

∂zi∂zj
ψiψj + h.c.

]
.

(2.151)
More generally, one can replace φ†

iφi by a (real) Kähler potential K(φ†
i , φj). This

leads to the nonlinear σ-model. In any case, the fi have no kinetic term and hence
are auxiliary fields. They should be eliminated by substituting their algebraic
equations of motion

f †
i =

(
∂W

∂zi

)
, (2.152)

into the action, leading to

S =

∫
d4x
[
|∂µzi|2 − iψiσ

µ∂µψi −
∣∣∣∣
∂W

∂zi

∣∣∣∣
2

− 1

2

∂2W

∂zi∂zj
ψiψj −

1

2

(
∂2W

∂zi∂zj

)†

ψiψj

]
.

(2.153)
We see that the scalar potential V is determined in terms of the superpotential
W as

V =
∑

i

∣∣∣∣
∂W

∂zi

∣∣∣∣
2

. (2.154)

To illustrate this model, consider the simplest case of a single chiral superfield
φ and a cubic superpotential W (φ) = m

2
φ2 + g

3
φ3. Then ∂W

∂z
= mφ+ gφ2 and the

action becomes

SWZ =
∫

d4x
[

|∂µz|2 − iψσµ∂µψ −m2|z|2 − m
2
(ψψ + ψψ)

− mg(z†z2 + (z†)2z) − g2|z|4 + g(zψψ + z†ψψ)
]
.

(2.155)

Note that the Yukawa interactions appear with a coupling constant g that is
related by susy to the bosonic coupling constants mg and g2.
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2.7.5 Vector Superfields

The N = 1 supermultiplet of next higher spin is the vector multiplet. The
corresponding superfield V (x, θ, θ) is real and has the expansion

V (x, θ, θ) = C + iθχ− iθχ+ θσµθvµ

+ i
2
θθ(M + iN) − i

2
θθ(M − iN)

+ iθθ θ
(
λ+ i

2
σµ∂µχ

)
− iθθ θ

(
λ− i

2
σµ∂µχ

)

+ 1
2
θθθθ

(
D − 1

2
∂2C

)
,

(2.156)

where all component fields only depend on xµ. There are 8 bosonic components
(C,D,M,N, vµ) and 8 fermionic components (χ, λ). These are too many com-
ponents to describe a single supermultiplet. We want to reduce their number
by making use of the supersymmetric generalization of a gauge transformation.
Note that the transformation

V → V + φ+ φ† , (2.157)

with φ a chiral superfield, implies the component transformation

vµ → vµ + ∂µ(2Imz), (2.158)

which is an Abelian gauge transformation. We conclude that (2.157) is its desired
supersymmetric generalization. If this transformation (2.157) is a symmetry (ac-
tually a gauge symmetry, as we just saw) of the theory then, by an appropriate
choice of φ, one can transform away the components χ,C,M,N and one com-
ponent of vµ. This choice is called the Wess-Zumino gauge, and it reduces the
vector superfield to

VWZ = θσµθvµ(x) + iθθ θλ(x) − iθθ θλ(x) +
1

2
θθθθD(x). (2.159)

Since each term contains at least one θ, the only nonvanishing power of VWZ is

V 2
WZ = θσµθ θσνθ vµvν =

1

2
θθθθ vµv

µ, (2.160)

and V n
WZ = 0, n ≥ 3.

To construct kinetic terms for the vector field vµ one must act on V with the
covariant derivatives D and D. Define

Wα = −1

4
DDDαV , W α̇ = −1

4
DDDα̇V. (2.161)

(This is appropriate for Abel Ian gauge theories and will be slightly generalized

in the non-Abelian case.) Since D3 = D
3

= 0, Wα is chiral and W α̇ antichiral.
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Furthermore it is clear that they behave as anticommuting Lorentz spinors. Note
that they are invariant under the transformation (2.157) since

Wα → Wα − 1
4
DDDα(φ+ φ†) = Wα + 1

4
D
β̇
Dβ̇Dαφ

= Wα + 1
4
D
β̇{Dβ̇, Dα}φ = Wα + i

2
σµ
αβ̇
∂µD

β̇
φ = Wα,

(2.162)

since Dφ = Dφ† = 0. It is then easiest to use the WZ-gauge to compute Wα. To

facilitate things further, change variables to yµ, θα, θ
α̇

so that

Dα =
∂

∂θα
+ 2iσµ

αβ̇
θ
β̇ ∂

∂yµ
, Dα̇ =

∂

∂θ
α̇ , (2.163)

and write

VWZ = θσµθvµ(y) + iθθ θλ(y) − iθθ θλ(y) +
1

2
θθθθ (D(y) − i∂µv

µ(y)) . (2.164)

Then, using σνσµ − gνµ = 2σνµ, it is straightforward to find (all arguments are
yµ)

DαVWZ = (σµθ)αvµ + 2iθα θλ− iθθ λα + θα θθD

+ 2i(σµνθ)αθθ∂µvν + θθθθ(σµ∂µλ)α,
(2.165)

and then, using DDθθ = −4,

Wα = −iλα(y) + θαD(y) + i(σµνθ)αfµν(y) + θθ(σµ∂µλ(y))α, (2.166)

with
fµν = ∂µvν − ∂νvµ, (2.167)

being the Abelian field strength associated with vµ.
Since Wα is a chiral superfield,

∫
d2θ W αWα will be a susy invariant La-

grangian. To obtain its component expansion we need the θθ-term (F -term) of
W αWα:

W αWα

∣∣∣
θθ

= −2iλσµ∂µλ+D2 − 1

2
(σµν)αβ(σρσ)αβfµνfρσ , (2.168)

where we used (σµν) β
α = tr σµν = 0. Furthermore,

(σµν)αβ(σρσ)αβ =
1

2
(gµρgνσ − gµσgνρ) − i

2
εµνρσ , (2.169)

(with ε0123 = +1) so that

∫
d2θ W αWα = −1

2
fµνf

µν − 2iλσµ∂µλ+D2 +
i

4
εµνρσfµνfρσ. (2.170)
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Note that the first three terms are real while the last one is purely imaginary.
A supersymmetric particle model consists of a collection of particle supermul-

tiplets and a set of potentials that describe the interactions between the particles.
The three potentials relevant to supersymmetry are: the superpotential W , the
Kähler potential K, and the potential V for the scalar fields in the theory, derived
from W and K. For N = 1 supersymmetry in four spacetime dimensions, the
two possible types of supersymmetric particle multiplets are: the chiral multiplet,
with a complex scalar field f with spin 0 and a chiral (that is, either right or
left handed) fermion y with spin 1

2
, and the vector multiplet, composed of a real

(nonchiral) fermion I with spin 1
2

and a vector field Aµ with spin 1. So in the
end, in a model with several generations of chiral multiplets (fi, yi), the action
with superpotential looks like (2.151).

In quantum field theory the phenomenon of spontaneous breakdown of chiral
symmetry manifest itself by the noninvariance of the vacuum under the action of
the corresponding axial charge, while the equations of motion remain invariant
under the chiral transformations, except for the mass terms. In quantum mechan-
ics we do not have an explicit equivalent state of the field theory vacuum, and
therefore the noninvariance of the wave equations themselves. However, one has
also to guarantee that the matrix elements of the axial vector current divergences
are still proportional to the masses of the constituent particles.

In the next chapter we want briefly to discuss some useful methods for parti-
cle physics so called effective field theory (EFT). EFT is a very powerful tool to
analyze physics at low energies, without having to solve the details of dynamics
at higher energy scales. One does not need to know whether there are supersym-
metric particles in the 1 TeV region in order to understand the interactions of
electrons and photons at energies of the order of me.
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Chapter 3

Effective Field Theory

The particle dynamics on the level of relativistic quantum mechanics stands be-
tween relativistic quantum field theory and nonrelativistic quantum mechanics.
In a previous chapters we extended nonrelativistic to relativistic quantum me-
chanics. The problems is to derive nuclear structure from quantum field theory.
If we do, we believe that we completely understand the nuclear structure.

The goal of this chapter is to demonstrate how to use effective field theory
in NN interactions.We do not use this theory but phenomenological models of
nuclear physics, we give a brief review of alternative models, which describe the
short range potential models from low energy quantum field theory, because EFT
is useful for systems with a clear separation of scales. Its aim is to finally arrive
at the complete EFT that faithfully reproduces QCD in the low energy regime
relevant for nuclear physics.

What is Effective Field Theory? In brief it’s a low energy approximation to
arbitrary high energy physics as the nucleon energies are typically well below the
complex spectrum of hadrons that exist with masses ≥ 1 GeV.

We do not know what happens in the limits k → ∞ or r → 0. We have a
theory for the sort distance details, but the resulting system is too complicated
to handle. So we encode the short distance high energy physics. This yields a
Schrödinger equation with a regularized potential, of which advocates claim that
its better physics and fits parameters to observables like the NN phase shift.

In particular, Weinberg [561, 562] employed power counting to the irreducible
NN interaction and obtained a leading order result by iterating such type of po-
tential in a Lippmann-Schwinger equation. This type of summation is necessary
to deal with the weakly bound state (or large S-wave scattering lengths) present
in the two nucleon system [414]. This is in contrast to conventional chiral per-
turbation theory in the meson and meson nucleon sectors, where all interactions
can be treated perturbatively. Meißner [415] studied Weinberg’s approach at
next-to-next-to leading order (NNLO), whose results are given in Ref. [446].

A novel power counting scheme was proposed by Kaplan, Savage and Wise
(KSW) [351]. They encoded the short distance NN interaction in a derivative
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of the high order expansions of local operators. This is in contrast with the
various models of extended NN potentials with free parameters chosen to fit
scattering data. Oller [442] had established a new convergent scheme to treat
analytical NN interactions from a chiral effective field theory. KSW amplitudes
are resumed to fulfill the unitarity or right hand cut to all orders below pion
production threshold. This is achieved by matching order by order in the KSW
power counting the general expression of a partial wave with resumed unitarity
cut, with the inverses of the KSW amplitudes. A similar power counting with
perturbative pions has been suggested by Lutz [392].

The use of Effective Field Theories in nuclear physics has grown out of at-
tempts to link the successful phenomenology of nonrelativistic potentials to the
underlying theory of strong interactions QCD. Beane and Savage [58] considered
the NN potential in quenched and partially quenched QCD.

As we have discussed the CD-Bonn [393, 401] and Argonne potential interac-
tion uses the OBEP at large distances, and the phenomenological interaction at
intermediate and small distances. One can also follow the standard ideology of
the quantum field theory, and model the second piece by the exchange effects for
heavier mesons. Larger meson masses mean shorter distances of the interaction,
this we can understand adding more mesons and using the corresponding Yukawa
interactions.

At present, we are probably not at all able to say what happens with the
nucleons when they are put near to one another. However, we do not really
need such a complete knowledge when describing low energy NN scattering and
structure of nuclei. All what we need is some kind of parameterization of the short
range, high energy effects when we look at their influence on the long range, low
energy observables. Such separation of scales is at the heart of the EFT. Recently,
ideas of the EFT for the NN scattering were pushed further, by also adding to
Lagrangian density

Dµ = ∂µ + 2i
−→
t ◦ (−→z ⊗ γµ

−→
Dµ),

terms which contain six quark fields, and calculating the full energy dependence
of phase shifts and mixing parameters in all partial waves [211]. The resulting
effective Lagrangian density has many adjustable parameters, but the number
of these parameters is comparable to that used in the parameterization of La-
grangian by exchanges. Also the description of the NN scattering data is of a
comparable quality.

This shows that the ideas of the EFT really work, namely, it is not important
which physical mechanism is used to model the short range effects a purely phe-
nomenological mechanism is equally good. Our knowledge of these short range
effects can be summarized in a form of optical potential model that we shall
discuss below.

Another point of effective field theory is that it can easily incorporate chiral
symmetry, and can be naturally extended to discuss systems with strange quarks,
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such as hypernuclei [491] and kaon condensation [349, 458].

3.1 Nucleon Nucleon Interactions From EFT

EFT can be used in several different ways in nuclear physics. Historically, the first
one was to set the separation scale Λ around the ρ-meson mass and keep as low
energy degrees of freedom the pions and the nucleons (and possibly the ∆ isobar),
as well as photons and leptons [561, 562, 445, 446, 362, 363]. This approach builds
on and extends the success of Chiral Perturbation Theory (ChPT) in the mesonic
and one baryon sectors. It shares with nuclear potential models the fact that
it describes nonrelativistic nucleons interacting through a potential, but it also
brings a number of ingredients of its own, such as a small expansion parameter,
consistency with the chiral symmetry of QCD, and systematic and rigorous ways
of including relativistic corrections and meson exchange currents.

Another way of applying EFT ideas in nuclear physics is made possible by
the existence of shallow bound states, that is, binding energies much below any
reasonable QCD scale [59, 364, 365, 119]. We can then set Λ around the pion
mass and keep as low energy degrees of freedom only the nucleons (and photons,
leptons). At least in the case of two and three body systems the bound states
will be within the range of validity of this simpler theory. This pionless effec-
tive theory can be considered as a formalization and extension of the old effective
range theory (ERT) [69] and the work on model independent results in three body
physics [209]. The new features, besides the existence of a small parameter on
which to expand, appear in a number of new short distance contributions describ-
ing exchange currents and three body forces, as well as in relativistic corrections.

3.1.1 Power Counting

A necessarily ingredient for EFT is a power counting scheme that dictates which
graphs to compute in order to determine an observable to a desired order in the
expansion. We wish to expand the effective potential in terms of increasing order
in Λ and mπ, so let us count powers of these quantities.

The main complication in the theory of nucleons and pions is the fact that a
nucleon propagator S(q) = i/(q0 − −→q 2/2M) scales like 1/Q if q0 scales like mπ

or an external three momentum, while S(q) ∼M/Q2 if q0 scales like an external
kinetic energy. Similarly, in loops

∫
dq0 can scale like Q or Q2/M , depending

on which pole is picked up. To distinguish between these two scaling properties
it is convenient to define generalized em n-nucleon potentials V (n) comprised
of those parts of connected Feynman diagrams with 2n external nucleon lines
that have no powers of M in their scaling (except from relativistic corrections).
Since there is no nucleon-antinucleon pair creation in the effective theory such
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a diagram always has exactly n nucleon lines running through it. V (n) includes
diagrams which are n-nucleon irreducible and parts of diagrams which are 1-
nucleon irreducible. To compute the latter contribution to V (n) one identifies all
combinations of two or more internal nucleon lines that can be simultaneously
on shell, and exclude their pole contributions when performing the

∫
dq0 loop

integrations. An example of the 2-pion exchange contributions to V (2) is shown
in Fig. 3.1. A general n-nucleon Feynman diagram in the EFT can be constructed

Figure 3.1: 2-pion exchange Feynman graphs contributing to the 2-nucleon poten-
tial V (2). The first four are 2-nucleon irreducible; the last diagram is 2-nucleon
reducible, and the poles from the slashed propagators are not included in the∫

dq0 loop integration.

by contracting the nucleon legs of V (r) potentials with r ≤ n. Treating the V (r)’s
like vertices, the

∫
dq0 loop integrations pick up the poles of all the connecting

nucleon lines. The reason for this construction is that within the V (r) potentials,
all nucleon propagators are off shell and scale like 1/q0 ∼ 1/Q. In contrast, when
one picks up the pole contribution from one of the nucleon lines connecting the
V (r) vertices, other nucleon lines will be almost on shell, and scale like M/Q2. A
contribution to the r-nucleon potential V (r) with ` loops, In nucleon propagators,
Iπ pion propagators, and Vi vertices involving ni nucleon lines and di derivatives,
scales like Qµ, where

µ = 4l − In − 2Iπ +
∑

Vidi ,

` = In + Iπ −
∑

Vi + 1 ,

In + r =
1

2

∑
Vini . (3.1)

In this power counting we take mπ ∼ Q and treat factors of the u and d quark
masses at the vertices as order Q2. Combining these relations leads to the scaling
law for the r-nucleon potential V (r) (r ≥ 2):

µ = 2 + 2`− r +
∑

i

Vi(di +
1

2
ni − 2) . (3.2)

62



CHAPTER 3. EFFECTIVE FIELD THEORY

Since chiral symmetry implies that the pion is derivatively coupled, it follows
that (di +

1
2
ni − 2) ≥ 0, which implies that for a 2-nucleon potential, µ ≥ 0, and

that µ = 0 corresponds to tree diagrams. It is straight forward to find the scaling
property for a general Feynman amplitude, by repeating the analysis that leads
Eq. (3.2) treating the V (r) potentials as r-nucleon vertices with µ derivatives,
µ given by Eq. (3.2). While Eq. (3.2) was derived assuming that

∫
dq0 ∼ Q

and nucleon propagators scaled like ∼ 1/Q, for these loop graphs they scale like
Q2/M and M/Q2 respectively. A general Feynman diagram is constructed by
stringing together r-nucleon potentials V (r).

3.1.2 Two Nucleon Scattering

We start by writing the Lagrangian involving only two nucleons. A system with
two nucleons with zero angular momentum L = 0 can exist in a spin singlet
(1S0) or spin triplet (3S1) state so there are two independent interactions with
no derivatives,

L = N †(i∂0 +
~∇2

2M
+ . . .)N − C0t(N

†PtN)2 − C0s(N
†PsN)2 + . . . , (3.3)

where

P i
t =

1√
8
σ2σ

iτ2,

PA
s =

1√
8
τ2τ

Aσ2 (3.4)

are the projectors in the triplet and singlet spin isospin states (σ’s act on spin
space, τ ’s on isospin space), M is the nucleon mass and N the nucleon field.

The scattering matrix, S = exp(2iδ), is related to the NN scattering amplitude
T by

S = 1 + i
Mk

2π
T.

Schwinger [505] has shown that the phase shift δ in the triplet np scattering is
related to the wave number k by the relation

kcotδ = −γ +
1

2
(γ2 + k2)r0 +O(k4r3

0),

where γ is related to the deuteron binding energy. We can write the T-matrix in
terms of the phase shift

T =
4π

M

e2iδ − 1

2ik
=

4π

M

1

k cot δ − ik

=
4π

M

1

− 1
as

+ r0s

2
k2 + . . .− ik

. (3.5)
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It can be shown that for potentials of range ∼ R (R ∼ 1/mπ in this case),
k cot δ is an analytic function around k = 0 and that it has a cut starting at
k2 ∼ 1/R2, so it is well approximated by a power series as shown in the last
line of Eq. (3.5). The parameter as (r0s) is called the singlet scattering length
(singlet effective range). For notational simplicity we specialize for now on the
spin singlet channel.

The effective potential to order ν in the derivative expansion can be expressed
in the form [561, 562, 446]

V (ν)(p′, p) =
1

Λ2

ν∑

n=0

[
(p, p′)

Λ

]n
cn, (3.6)

where the sum here is over all possible terms extracted from (3.3) and Λ is the
scale of the physics integrated out, taken to be mπ in the present context. Eq.
(3.6) is intended to be symbolic; (p, p′) indicates that either of these quantities
may appear in the expansion, in any combination consistent with symmetry, with
only their total power constrained. For instance, at n = 4 we have the structures
p4 + p′4 and p2p′2 with coefficients c4 and c′4, respectively. It is assumed that the
coefficients cn are natural; that is, of order unity. The fundamental assumption
underlying effective field theory for the NN interaction is that this expansion in
the potential, or equivalently that in the Lagrangian, may be sensibly truncated
at some finite order ν.

The physical scattering amplitude is obtained by iterating the potential Eq.
(3.6) using the Lippmann-Schwinger equation

T (p′, p;E) = V (p′, p) +M

∫
d3q

(2π)3
V (p′, q)

1

EM − q2 + iε
T (q, p;E), (3.7)

which generates the T -matrix. This procedure is illustrated in Fig. 3.2. By
assumption, truncating the expansion Eq. (3.6) and retaining only its first few
terms will be valid only for nucleon momenta well below Λ. It is clear that
a method of regularizing the otherwise divergent integrals which occur when
potentials such as Eq. (3.6) are inserted into the LS equation must be specified.

The graphs contributing to NN scattering generated by the Lagrangian in
Eq. (3.3) are shown in Fig. 3.2. The L-loop graph factorizes into a power,

L−loop graph ∼ (cΛ − ik)L, (3.8)

each one containing a linearly divergent piece and the unitarity cut ik (in the
center of mass system with total energy k2/M). The loop integral is linearly
divergent and the coefficient c is dependent on the particular form of the regulator
used, that is, the particular form the high momentum modes are separated from
the low momentum ones. Using a sharp momentum cutoff, for instance, we have
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c = 2/π, using dimensional regularization (DR), c = 0. The sum of all graphs in
Fig. 3.2 is a geometrical sum giving

T =
4π

M

1

− 4π
MC0s

+ cΛ − ik
. (3.9)

We see then that terms shown explicitly in Eq. (3.3) reproduce the first term of
the effective range expansion. The addition of terms with more derivatives will
reproduce further terms in the effective range expansion.

+ + + ...

Figure 3.2: Graphs contributing to the LO NN scattering amplitude.

Let us consider two separate situations.
Natural case: For a generic potential with range R, the effective range param-

eters have typically similar size a ∼ r0 ∼ R. Using DR, C0 can be chosen to be
C0 = 4πa/M (this choice is called minimal subtraction). The effective theory is
valid for k < 1/R and, in this range, T can be expanded as

T =
4π

M

(
−a + ika2 +

(
a2r0
2

+ a3

)
k2 + . . .

)
. (3.10)

Since C0 ∼ a, there is a one-to-one correspondence between the order in the ka
expansion, the number of C0s vertices and the number of loops in a graph. The
leading order (LO) is given by one tree level diagram, the next-to-leading order
(NLO) by the one-loop diagram, next-to-next-to-leading order (N2LO) by the
two-loop diagram involving C0 and one tree level diagram with a two derivative
vertex (not shown in Eq. (3.3)), and similarly for higher orders. We have then a
perturbative expansion, even though the microscopic potential can be arbitrarily
strong. If one uses a cutoff regulator the situation is slightly more complicated.
Choosing Λ ∼ 1/R ∼ 1/a we note that the most divergent piece of the multi loop
graphs is as large as the tree level graph and must be resumed to all orders, while
the energy dependent part containing powers of ikC0 is suppressed. The pieces
that need to be resumed at leading order merely renormalize the constant C0.
The one-to-one correspondence between the order in the ka expansion and the
number of loops is lost in any but the DR with minimal subtraction renormaliza-
tion/regularization scheme. The technical advantages arising from the use of DR
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and renormalization theory in this perturbative setting was used in the study of
dilute gases with short range interactions in Ref. [85].

Unnatural case: In the nuclear case the scattering lengths of the two S-wave
channels are much larger than the range of the potential. The physics correspond-
ing to the large scattering lengths occurs at the QCD scale MQCD ∼ 1 GeV, what
makes the discrepancy between nuclear and QCD scales even more startling. The
origin of the finetuned cancellations leading to the disparity between the under-
lying scale and the S-wave scattering lengths (and deuteron binding energy) is
presently unknown. It does not appear in any known limit of QCD like the chiral
limit (mq → 0) or large number of colors (Nc → ∞). We will just assume that
this cancellation happens, track the dependence of observables on the new soft
scale 1/as,t and perform our low energy expansion in powers of kR � 1 while
keeping the full dependence on kas,t ∼ 1. The singlet NN scattering amplitude,
for instance, will be expanded as

T = −4π

M

(
as

1 + ikas
+
k2a2

sr0s
2

1

(1 + ikas)2
+ . . .

)
. (3.11)

It is a little challenging to reproduce an expansion of this form in the EFT. If
one uses a momentum cutoff, for instance, the constant C0s has to be chosen to
be C0s = (4π/M)(1/as + cΛ). The one loop graph is then suppressed compared
to the tree level one by a factor ∼MkC0s ∼ k/Λ and one would naively imagine
that the leading order contribution is given solely by the tree level graph. But
there are cancellations between the graphs in Fig. 3.2 and all these graphs need
to be taken into account to reproduce the expansion of T above [364, 365]. In the
NN scattering case considered here it is not difficult to see which graphs have to
be included at each order, but in more complex situations this can be extremely
tricky. A more convenient way to proceed is to use a renormalization prescription
that shifts contributions from high momentum modes to the LECs in such a way
as to eliminate this accidental cancellations between different diagrams. One
can determine which diagrams contribute at each order on a diagram-by-diagram
basis (manifest power counting). One way to do that is to use DR with a power
divergence subtraction (PDS) [351].1 In this scheme, we add and subtract to the
denominator of the bubble sum in Eq. (3.9) an amount Mµ/4π, where µ is an
arbitrary scale, and absorb the subtracted term in a redefinition of the constant
C0s(µ), that now is a function of µ. We have for the LO amplitude

T = −4π

M

1
4π

MC0s(µ)
+ ik + µ

. (3.12)

The constants C0s(µ) is now chosen to be

C0s(µ) =
4π

M

1
1
as

− µ
, (3.13)

1Other schemes also solve this problem [413].
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in order to reproduce the LO piece of the expansion in Eq. (3.11).
One can easily go to higher orders and include terms with derivatives in the

Lagrangian. For instance, denoting by C2n the coefficient of operators with 2n
derivatives,

C2s =
4π

M

r0s
2

(
1

1
as

− µ

)2

, (3.14)

C4s =
4π

M


r

2
0s

4

(
1

1
as

− µ

)3

+
r3
1s

2

(
1

1
as

− µ

)2

 , (3.15)

where r1s is the coefficient of the third term of the effective range expansion the
shape parameter.

The β-function describing the evolution of the dimensionless coupling is

µ
∂

∂µ
ĉ0s(µ) = ĉ0s(µ) (1 − ĉ0s(µ)) , with ĉ0s ≡ −MµC0s/4π. (3.16)

The 3S1 NN amplitude is parameterized as

T =
4π

M

1

−γ + ρ(k2+γ2)
2

+ . . .− ik
, (3.17)

where γ2/M is the deuteron binding energy and ρ the effective range parameter.
In the case of photons, some of these terms are just those required by gauge

invariance and are determined by minimally coupling the photon to the nucleon
Lagrangian. Their coefficients are thus fixed by NN scattering data and gauge
invariance.

Consider some two nucleon operator of the form X = CX
2nN

†N †ΓX~∂
2nNN ,

where ΓX is some tensor in spin isospin space. Its matrix element on two nucleon
states is given by the diagrams involving the operator X sandwiched between two
nucleon scattering amplitudes and by one-loop one body diagrams that do not
involve X.

We have to make a distinction now between the cases where the operator
X connects two S-wave states, two non-S-wave states, or one S-wave and one
non-S-wave state. In the first case renormalization group invariance of the two
nucleon matrix element of X implies

µ
∂

∂µ
CX

2n(µ)

(
T

C0(µ)

)2

= 0, (3.18)

where T is the LO NN scattering matrix, which is µ independent. From that
it follows that CX

2n(µ) scales as ∼ (µ − 1/a)−2. Similarly, for the case where X
connects one S-wave or no S-wave states CX

2n(µ) scales as ∼ (µ − 1/a)−1 and
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∼ (µ− 1/a)0, respectively. Using dimensional analysis to fix the powers of Λ we
then have

CX
2n(µ) ∼ 1

M(1/a− µ)α
1

Λ2n+1−α
, (3.19)

where α is the number of S-wave states the operator X can connect (either 0, 1
or 2).

In a nutshell, the power counting rules valid for the two nucleon system are
[364, 365, 351, 413]:

fermion line → M/Q2,

loop → Q5

4πM
,

~∂ → Q,

∂0 → Q2/M,

C2n → 4π

MΛnQn+1
,

CX
2n → 4π

MΛ2n+1−αQα
, (3.20)

where C2n is the coefficient of the two nucleon interaction with 2n derivatives,
CX

2n is the coefficient of a two nucleon operator with external current X and 2n
derivatives, and Λ is the high energy scale Λ ∼ mπ.

Using this rule we can determine the contributions to NN scattering at any
given order. At LO, for instance, we have the series of diagrams shown in Fig. 3.2,
with all the vertices containing no derivative. That is the only non perturbative
resummation necessary. At NLO we have the insertion of one C2 operator in a
chain of C0 operators. At N2LO we have two insertions of C2 and one insertion of
C4, and so on. The resulting 3S1 phase shift, for example, is shown in Fig. 3.3, and
compared to the Nijmegen phase shift analysis (PSA) [523]. Analytic expressions
for the phase shifts can be found in Ref. [119]. They suggest convergence for
momenta k . 100 MeV, as it is reasonable for an EFT without explicit pions.
Electromagnetic effects in pp scattering were considered in the EFT approach in
Ref. [368].

So, we can divide the potentials into a short range part and a long range part

V = VS + VL, (3.21)

with VS and VL are the usual Gaussian type function, where R ' 0.5 ± 0.002fm
(we found it from the full relativistic equations, we will show later) is to be chosen
such that the short range physics has on the shallow bound state to lie down.
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Figure 3.3: 3S1 NN phase shift (in degrees) as function of the CM. The LO result
is the dashed (purple) line, the N2LO the dotted (red) line and N4LO the thick
(blue) solid curve. The dot-dashed (black) line is the Nijmegen PSA. From Ref.
[119], courtesy of M. Savage.

3.2 Quark Gluon Plasma from EFT

The system initially composed of individual baryons and mesons whose substruc-
ture can at lower energies be studied only indirectly transforms at an energy
density of roughly 1GeV/fm3 into a plasma of deconfined, though strongly inter-
acting, quarks and gluons. This transition is today at the focus of considerable
interest in the high energy and nuclear physics community due to the fact that
quark gluon plasma (QGP), the phase of hot deconfined matter, is currently be-
ing produced in ultra relativistic heavy ion collisions at RHIC in Brookhaven. A
similar large scale experiment is also being prepared at LHC in CERN.

The rapid progress in experimental heavy ion physics has set an important
challenge for theorists. One needs to have a solid understanding of the processes
that take place in the nuclear collisions and in particular obtain accurate numer-
ical predictions for the different quantities measured. Whether or not the plasma
produced in the present day experiments has had time to thermalize and reach
an equilibrium state, it is clear that one of the most important and fundamental
quantities describing the deconfined phase of QCD matter is the grand potential
of quark gluon plasma. Its value is of relevance both to the study of the evolu-
tion of the heavy-ion collision products in terms of ideal hydrodynamics, and to
cosmology, as the cooling rate of the very early universe depends on the energy
and entropy densities of its content.

One of the fundamental properties of QCD is its asymptotic freedom [302,
457], which states that at large energies the gauge coupling constant g of the
theory approaches zero. This can be seen most easily from the running of the
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coupling as obtained from the leading order solution to the renormalization group
equation

g2(Λ) =
24π2

(11N − 2nf)ln(Λ/ΛQCD)
, (3.22)

where Λ is the renormalization scale and ΛQCD ∼ 150 MeV a free parameter cor-
responding to the characteristic energy scale of the theory. Asymptotic freedom
implies that at very small distances the behavior of QCD tends to that of a free
field theory making the use of perturbation theory feasible in the description of
hard processes such as deep inelastic scattering. From the thermodynamic point
of view this means that at least in the limit of asymptotically high temperatures
or chemical potentials one might expect a perturbative approach to be fruitful in
the computation of the partition function.

EFT methods have proven to be very powerful in treating plasmas at ultra-
relativistic temperatures and densities. The EFT approach has recently been
summarized compactly in the form of elegant effective Lagrangian’s. For many
applications, it would be useful to have a unified approach that works at all
temperatures and densities. One promising approach is to generalize the EFT
that describes the ultrarelativistic regime. The effective Lagrangian’s for ultra-
relativistic quark gluon system will be reviewed below. The plasma problem of
high temperature QCD was first posed by Kalashnikov and Klimov in 1980 [343]
and by Gross, Pisarski, and Yaffe in 1981 [303]. The problem was that a 1-loop
calculation of the gluon damping rate, which is proportional to the imaginary
part of the gluon self energy, gives a gauge dependent answer. Over the next
10 years, there were about a dozen published attempts to calculate the gluon
damping rate, with almost as many different answers. In 1989, Pisarski pointed
out that a 1-loop calculation of the damping rate is simply incomplete [456]. A
consistent calculation to leading order in the QCD coupling constant gs must
include contributions from all orders in the loop expansion. He was able to carry
out the necessary resummation explicitly for the damping rate of a heavy quark.
The resummation consisted of replacing the gluon propagator in the 1-loop dia-
gram for the heavy quark self energy by an effective gluon propagator obtained by
summing up the hard thermal loop corrections (the terms proportional to g2

sT
2)

to the gluon self energy. This effective propagator was first calculated by Klimov
and by Weldon [359, 565], who used it to study the propagation of gluons and
the screening of interactions in the high temperature limit of the QGP.

The problem of the gluon damping rate is a little more complicated. It is not
enough to replace the gluon propagators in the 1-loop gluon self energy diagrams
by effective propagators, because there are also vertex corrections that are not
suppressed by any powers of gs.

In particular, the three gluon vertex has hard thermal loop corrections propor-
tional to g3

sT
2 which contribute at the same order as the bare vertex of order gs.

Similarly, the four gluon vertex has hard thermal loop corrections proportional
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to g4
sT

2, which contribute at the same order as the bare vertex of order g4
s . The

three gluon vertex, and the four gluon vertex are the complete set of diagrams
that need to be resumed in order to calculate the damping rate to leading order
in gs. The result of this resummation has been proven to be gauge invariant, thus
solving the plasmon problem.

The resummation required to solve the plasmon problem has a simple inter-
pretation in terms of an effective field theory. The complete damping rate to
leading order in gs is given by the imaginary part of the 1-loop gluon self energy
diagrams, with the gluon propagators replaced by effective propagators and with
the three gluon and four gluon vertices replaced by effective vertices obtained by
adding the hard thermal loop corrections to the bare vertices. This is equivalent
to calculating 1-loop diagrams in an EFT whose propagator is the effective gluon
propagator of Klimov and Weldon and whose vertices are the effective three gluon
and four gluon vertices that Pisarski and Braaten [84].

These propagators and vertices are related by gauge invariance, just like their
counterparts in the QCD Lagrangian. The Lagrangian density which summarizes
the EFT for a QGP at ultrarelativistic temperature or density has the form

Leff = LQCD + Lgluon + Lquark. (3.23)

The first term is the usual Lagrangian density for QCD:

LQCD = −1

2
trGµνG

µν + i
∑

ψγµDµψ, (3.24)

where Gµν = Ga
µνT

a is the gluon field strength contracted with generators T a

that satisfy tr(T aT b) = δab/2. The sum is over nf flavors of massless quarks. The
second term in Eq. (3.23) is the thermal gluon term:

Lgluon =
3

2
m2
gtrGµα〈

P αP β

(P ·D)2
〉Gmuβ, (3.25)

where D is the gauge covariant derivative in the adjoint representation. The
angular brackets < f(P ) > represent the average over the spacial directions p̂ of
the lightlike four vector P = (p,−→p ). The coefficient mg is the thermal gluon mass

m2
g =

g2

3
T 2 + nf

g2

18

(
T 2 +

3

π2
µ2

)
, (3.26)

where T is the temperature and µ is the quark chemical potential. The quark
term in Eq. (3.23) is

Lquark = im2
q

∑
ψγµ〈

P µ

P ·D 〉ψ, (3.27)

where mq is the thermal quark mass

m2
q =

g2

6

(
T 2 +

1

π2
µ2

)
. (3.28)
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3.2. QUARK GLUON PLASMA FROM EFT

Since an EFT approach seems to provide the most efficient description of the
plasma at ultrarelativistic temperatures and densities, it would be desirable to
have an EFT that describes the plasma at all temperatures and densities. The
propagator of this EFT should reproduce accurately the dispersion relations for
transverse photons, plasmons, and the charged particle modes of the plasma.
The dispersion relations should be real valued, so that damping effects can be
treated as perturbations. The EFT should also describe accurately the screening
effects of the plasma. Finally, the Lagrangian for this field theory should be gauge
invariant.
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Chapter 4

Relativistic One Body Wave
Problem

I believe that such a reminder is not only useful in setting the stage for the
discussion of quantum theory, but more importantly, the purpose of this section
is to specify explicitly the general approach that will be used later on in the
quantization of constrained systems. Some of the points discussed below are well
known and can be found in different places [76].

A correct quantum theory should satisfy the requirement of relativity, laws of
motion valid in one inertial system must be true in all inertial systems. Stated
mathematically, relativistic quantum theory must be formulated in a Lorentz
covariant forms. The theory of quantum mechanics is built upon the fundamental
concepts of wave functions and operators. Linear Hermitian operators act on
the wave function and correspond to the physical observables, those dynamical
variables which can be measured, e.g. position, momentum and energy.

We shall first consider the transition from nonrelativistic to relativistic quan-
tum mechanics, we shall endeavor to retain the principles underlying the nonrel-
ativistic theory. We review them briefly [76, 193]

1. The wave function

ψ(qi..., si..., t) (4.1)

is a complex function of all the classical degrees of freedom, q1...qn, of the time t
and of any additional degrees of freedom, such as spin si, which are intrinsically
quantum mechanics. The wave function has no direct physical interpretation;
however, |ψ(q1...qn, s1...sn, t)|2 ≥ 0 is interpreted as the probability of the system
having values (q1...qn, s1...sn) at time t .

2. Every physical observable is represented by a linear hermitian operator.
The operator correspondence in a coordinate realization is

Ei → i~
∂

∂t
and pi → −i~ ∂

∂qi
. (4.2)
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3. A physical system is in an eigenstate of the operator Ω if

ΩΦn = ωnΦn, (4.3)

where Φn is the nth eigenstate corresponding to the eigenvalue ωn. For a hermitian
operator, ωn is real.

4. The expansion postulate states that an arbitrary wave function, or state
function, for a physical system can be expanded in a complete orthonormal set
of eigenfunctions ψn of a complete set of commuting operators (Ωn). We write,
then,

ψ =
∑

n

anψn, (4.4)

where the statement of orthonormality is

∑

s

∫
(dq1...)ψ

∗
n(q1..., s..., t)ψm(q1..., s..., t) = δnm,

|an|2 records the probability that the system is in the n-th eigenstate.
5. The result of a measurement of a physical observable is any one of its eigen-

values. The average of many measurements of the observable Ω on identically
prepared systems is given by

< Ω >ψ=
∑

s

∫
(dq1...)ψ

∗
n(q1..., s..., t)Ωψ(q1..., s..., t). (4.5)

6. The time development of a physical system is expressed by the Schrödinger
equation

i~
∂ψ

t
= Ĥψ, (4.6)

where the Hamiltonian H is a linear Hermitian operator. It has no explicit time
dependence for a closed physical system, that is,

∂H

∂t
= 0,

in which case its eigenvalues are the possible stationary states of the system, and
a superposition principle follows from the linearity of H.

4.1 The Klein-Gordon Equation

The simplest physical system is that of an isolated free particle of spin 0. Let m
be it’s mass and e it’s charge, and suppose that it is moving in the electromagnetic

potential Aµ := (π,
−→
A ). To find the wave equation we using the correspondence

principle Eq. (4.2). Putting pµ := (E,−→p ), this rule can be written more simply

pµ → i∂µ,
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CHAPTER 4. RELATIVISTIC ONE BODY WAVE PROBLEM

following this it is natural to take as the Hamiltonian of relativistic free particle

H =
√
p2 +m2,

and to write for a relativistic quantum analogue of Schrödinger equations

i~
∂ψ

∂t
=

√
−~2∇2 +m2ψ. (4.7)

We remove the square root operator in Eq. (4.7), writing

H2 = p2 +m2. (4.8)

Equivalently, iterating Eq. (4.7) and using the fact that if [A,B] = 0, Aψ =
Bψ implies A2ψ = B2ψ, we have

−i~2∂
2ψ

∂t2
= (−~

2∇2 +m2)ψ. (4.9)

This is recognized as the classical wave equation
[
2 +

(m
~

)2
]
ψ = 0, (4.10)

where

2 =
∂

∂xµ

∂

∂xµ
. (4.11)

We have two difficulty
a) in squaring the energy relation we have introduced an extraneous negative

energy root
H = −

√
p2 +m2. (4.12)

b) If we interpret (i ~

2m
)
(
ψ∗ ∂ψ

∂t
− ψ ∂ψ∗

∂t

)
as probability density ρ. However, this

is impossible, since it is not a positive definite expression.
We shall find a first order equation, it still proves impossible to retain a

positive definite probability density for a single particle while at the same time
providing a physical interpretation of the negative energy root of Eq. (4.8).

4.2 The Dirac Equation

Dirac formulated his relativistic wave equation under the assumption that
derivatives of both time and space coordinates should occur to first order. It
turns out that such an equation describes particles of spin 1

2
. Such an equation

might assume a form

i~
∂ψ

∂t
=

~c

i

(
α1

∂ψ

∂x1
+ α2

∂ψ

∂x2
+ α3

∂ψ

∂x3

)
+ βmψ = Hψ. (4.13)
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4.2. THE DIRAC EQUATION

The wave function ψ, in analogy with the spin wave function (See below) of non-
relativistic quantum mechanics, is writing as a column matric with N components

ψ = (ψ1...ψN )T ,

and the constant coefficients αi and β are N ×N matrices. We now discuss the
correct energy momentum relation for a free particle. From Eq. (4.13), each
component ψσ of ψ must satisfy the Klein-Gordon second order equation, i.e we
require that

[E2 − p2 −m2]ψ = 0. (4.14)

Iterating Eq. (4.13), we find

−~
2∂

2ψ

∂t2
= −~

2
3∑

i,j=1

αjαi + αiαj
2

∂2ψ

∂xi∂xj
+

~mc3

i

3∑

i=1

(αiβ + βαi)
∂ψ

∂xi
+ β2m2ψ.

(4.15)
This wave equation and equation Klein-Gordon are identical if the four operators
β, αi anticommute and if their squares are equal to 1

αiαj + αjαi = 2δij, (4.16a)

αiβ + βαi = 0, (4.16b)

α2
i = β2 = 1. (4.16c)

Since the trace is just the sum of eigenvalues, the number of positive and negative
eigenvalues ±1 must be equal, and the αi and β must therefore be even dimension
matrices. The matrices Pauli hat N=2. Now we wish to include a mass term, and
therefore the smallest dimension in which the α and β can be realized is N=4.
In a particular explicit representation the matrices are

αi =

(
0 σi
σi 0

)
, β =

(
I 0
0 −I

)
,

where the σi are the 2× 2 Pauli matrices and the entries in β stand for 2× 2 unit
matrices. From Eq. (4.13), we make the identification of probability density

ρ = ψ∗ψ, (4.17)

as a positive definite.
It is necessary that the Dirac equation and continuity equation upon which

its physical interpretation rest be covariant under Lorenz transformations. In
discussing covariance it is desirable to express the Dirac equation in a four di-
mensional notation which preserves the symmetry between ct and xi. To this end
we multiply Eq. (4.13) by β/c and introduce the notation

γ0 = β, γi = βαi, i = 1, 2, 3
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CHAPTER 4. RELATIVISTIC ONE BODY WAVE PROBLEM

This gives (
i~γµ

∂

∂xµ
−m

)
ψ(x) = 0. (4.18)

From this equation for the free electron, we pass to the Dirac equation for an

electron in the electromagnetic field (ϕ,
−→
A ) by making the substitution

pµ → pµ − eAµ. (4.19)

One obtains
{γµ(i∂µ − eAµ) −m}ψ = 0. (4.20)

It is known that the Dirac equation has two dynamical symmetries, spin and
pseudospin symmetry. Both are approximately realized in nature: spin symmetry
in heavy light mesons and pseudospin symmetry in nuclei.

4.2.1 The Solutions of the Dirac Equation

Solving the Dirac equation is then equivalent to finding the eigen solutions of
the Hamiltonian H. The four general form of a free particle solution is

ψr(x) = ur(p)eiεr(pµxµ/~), (4.21)

where u(p) is a four component spinor independent of −→r . It is determined by
the eigenvalue equation

Hu(p) = Eu(p), (4.22)

where H is the following operator

H = αp+ βm. (4.23)

A simple calculation gives
H2 = p2 +m2. (4.24)

The only possible eigenvalues of H are therefore the two values ±
√
p2 +m2, i.e

E = εEp, (ε = ±1), (4.25)

Ep =
√
p2 +m2. (4.26)

The ur(p) satisfy the following relations

(p− εrm)ur(p) = 0, ūr(p)(p− εrm) = 0, (4.27)

ūr(p)ur
′

(p) = δrr′εr , (4.28)

4∑

r=1

εru
r
α(p)ūrβ(p) = δαβ. (4.29)
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4.2. THE DIRAC EQUATION

We may now superpose the plane wave solutions at our disposal to construct
localized packets. These packets are still solutions of the free Dirac equation, as
required by the superposition principle, since the Dirac equation is linear. The
solution writing of free particle with positive negative energy following form

ψ(x, t) =

∫
d3p

(2π~)3/2

√
m

E

∑

±s

[b(p, s)u(p, s)e−ip
µxµ/~ + d∗(p, s)v(p, s)e+ipµxµ/~].

(4.30)
We now look for the eigen solutions of a Dirac particle in a static central potential
V (r). The Dirac Hamiltonian is then

H = αp+ βm+ V (r). (4.31)

where

αp := αr

(
pr +

i

r
(1 + σL)

)
. (4.32)

We introduce the radial momentum

pr := −i1
r

∂

∂r
r, (4.33)

and the radial velocity
αr := α · r̂ = ρ1(σ · r)/r. (4.34)

From identity
(σ · A)(σ ·B) = (A · B) + iσ · (A × B), (4.35)

one obtains

(α · r)(α · p) = (σ·)(σ · p) = rp + iσ · L = rpr + i(1 + σL). (4.36)

Whence multiplying on the left by αr/r and using the obvious property α2
r = 1,

the identity

α · p := αr

(
pr +

i

r
(1 + σ · L)

)
. (4.37)

After some operations, we are leads to two coupled differential equation for
the radial functions F (r) and G(r), namely

[
− d

dr
+
ε(J + 1

2
)

r

]
G = (E −m− V )F, (4.38)

[
d

dr
+
ε(J + 1

2
)

r

]
F = (E +m− V )G. (4.39)

These equations here play the role of equation Schrödinger in the nonrelativistic
theory.

We strive to maintain these familiar principles as underpinnings of a full rel-
ativistic constraint dynamics on the language Grassmann algebra. We shall then
briefly consider the extension of the approach to systems with infinite number of
freedom, such as meson exchange theories, and to systems with anticommuting
or Grassmann degrees of freedom.

78



CHAPTER 4. RELATIVISTIC ONE BODY WAVE PROBLEM

4.3 Spin One Half Particle in Grassmann Vari-

ables

4.3.1 Spin and Grassmannian Coordinates

The most obvious application area of anticommuting variables is the descrip-
tion of spin. The spin operators commute with position and angular momentum
operators and this shows that spin is an intrinsic property which does not have
a direct relation to space time. In the case of angular momentum, using Dirac’s
quantum mechanical formalism, we have angular momentum kets |lm〉 and angu-
lar coordinates kets |θφ〉, which are related by Fourier transformation. The well
known spherical harmonics functions are the transformation coefficients between
the two representations. Now, extending this to half integer value of angular
momentum, we realize that spin is characterized by its double valuedness. At
this stage, because of their similarity, we will demand the existence of a parallel
analogue between angular momentum and spin concepts. At this stage, the gen-
eralization of angular momentum kets to include half integer values will produce
kets for spinors with j = 1/2. But where is the analogue of angular coordinate
kets? Since spin has nothing to do with space time, a suggestion was made that
spin can be described in an internal space which is distinct from space time [178].
Also, since fermions are anticommute among themselves, it is natural to introduce
anticommuting coordinates to describe this internal space.

Therefore, append two real anticommuting coordinates, θ1 and θ2, to space
time, then

(θ1)2 = (θ2)2 = {θ1, θ2} = 0. (4.40)

The wave functions ψ(θ) will have a terminating Taylor expansion

ψ(θ) = aθ1 + bθ2 + cθ1θ2 + d. (4.41)

Introducing the antisymmetric metric tensor η12 = −η21 = 1 will give a symplectic
invariant

(θ)2 := θiθi = θiηijθ
j = 2θ1θ2.

Note that θkθk = −θkθk. The corresponding covariant coordinates are defined by

θi = ηijθ
j, ηijηjk = δik, (4.42)

so

θ1 = θ2, θ2 = −θ1,

(θ)2 := θiη
jiθj = 2θ1θ2.
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4.3. SPIN ONE HALF PARTICLE IN GRASSMANN VARIABLES

One can then easily prove the following useful identities:

θαθβ = −1
2
εαβθθ, θ̄αθ̄β =

1

2
εαβ θ̄θ̄, (4.43a)

θαθβ = 1
2
εαβθθ, θ̄αθ̄β = −1

2
εαβ θ̄θ̄, (4.43b)

θσµθ̄θσν θ̄ = 1
2
θθθ̄θ̄gµν, θψθχ = −1

2
θθψχ. (4.43c)

Next, define the Grassmann operators θi with eigenvalues θi,

θi|θ〉 = |θ〉θi,
and construct the Grassmannian momentum operators Πi, which are the displace-
ment operators on wave functions in internal Grassmann space, the analogue of
momentum operators in space time,

Πi := −i~ ∂

∂θi
, (4.44)

Πi|π〉 = |π〉πi. (4.45)

The analogue of the Heisenberg commutation relations are

{θi, θj} = 0, (4.46a)

{Πi,Πj} = 0, (4.46b)

{θi,Πj} = i~δij. (4.46c)

Now all the rest is just an imitation of the usual position and momentum op-
erators relations in space time, except that we should apply anticommutation
rules for fermionic operators and commutation rules for bosonic operators. The
Grassmannian Sp(2) rotation operators in the internal θ-space are defined as
symmetric products of θi and Πi

Λij := θiΠj + θjΠi, (4.47)

and are bosonic operators. Then the commutation relations for these operators
are

[Λ11,Λ22] = −4i~Λ12, (4.48a)

[Λ12,Λ11] = +2i~Λ11, (4.48b)

[Λ12,Λ22] = −2i~Λ22. (4.48c)

Comparing these to the commutation relations of angular momentum operators
J

[J+, J−] = +2~J3, (4.49a)

[J3, J+] = +~J+, (4.49b)

[J3, J−] = −~J−, (4.49c)
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CHAPTER 4. RELATIVISTIC ONE BODY WAVE PROBLEM

we can identify spin generators S as

Λ11 = 2S+, Λ22 = 2S−, Λ12 = 2iS3, (4.50)

or

S1 = (θ1Π1 + θ2Π2)/2, (4.51a)

S2 = (θ1Π1 − θ2Π2)/2i, (4.51b)

S3 = (θ1Π2 + θ2Π1)/2i. (4.51c)

There still remains one antisymmetric product of θ and Π, i.e.

Σ = (θ1Π2 − θ2Π1)/i~ → (θ1
∂

∂θ1
+ θ2

∂

∂θ2
), (4.52)

which acts as a scale operator on spin wave functions of θ. Therefore

S2 = 3~
2Σ(Σ + 1)/8, (4.53)

and applying this to a linear function of θ,

ψ(θ) = 〈θ|ψ〉 = aθ1 + bθ2, (4.54)

will give the correct result
S2 = 3~

2/4.

Since

S3θ
1 = +

1

2
~θ1, (4.55a)

S3θ
2 = −1

2
~θ2, (4.55b)

it is confirmed that we are truly dealing with spin 1
2
, and the wavefunction of a

particle with spin 1
2

can be written as a linear combination of the Grassmannian
coordinates θ1 and θ2. Here (θ1, θ2) constitutes a spin- 1

2
doublet.

The conjugation property of these Grassmannian coordinates are defined as

(θi)∗ = −θi = θjηji, (4.56)

(θ1θ2)∗ := (θ1)∗(θ2)∗, (4.57)

from which the hermiticity of spin operators S is maintained, and the following
requirement for normalization is satisfied,

〈ψ|ψ〉 =

∫
〈ψ|θ〉dθ2dθ1〈θ|ψ〉

=

∫
(aθ1 + bθ2)∗dθ2dθ1(aθ1 + bθ2)

= |a|2 + |b|2 = 1. (4.58)
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4.3. SPIN ONE HALF PARTICLE IN GRASSMANN VARIABLES

Hence we are effectively manipulating two degrees of freedom which are equivalent
to two real Grassmannian coordinates.

The description of scalar particle states (spin 0) is given by the combinations
of the two Sp(2) singlets, 1 and θ1θ2

φ(θ) = 〈θ|φ〉 =
1√
2
(1 ± θ1θ2). (4.59)

The normalization condition follows directly from conjugation properties

〈φ|φ〉 =

∫
〈φ|θ〉dθ2dθ1〈θ|φ〉

=

∫
1

2
(1 ± θ1θ2)∗dθ2dθ1(1 ± θ1θ2)

= 1. (4.60)

One simple example of the application of this idea is Grassmannian formal-
ism of the electromagnetic interactions. Consider a spin 1

2
particle of unit charge

placed in an electromagnetic field. The interaction can be determined by encoun-
tering the standard minimal substitution,

p −→ p + A. (4.61)

In a uniform magnetic field B, the vector potential can be identified as

A =
1

2
B × x, (4.62)

and the substitution yields the familiar Zeeman coupling:

p2 → (p + A)2 = p2 + B · L +
1

4
(B × x)2. (4.63)

In order to account for the spin magnetic field interaction, the anticommuting
coordinates θ are introduced. The generalization of the substitution rule is given
by

π −→ π + gα, (4.64)

where

α = B ⊗ θ, (4.65)

is a Sp(2) spinor with components,

α1 = − i

2
B3θ1 +

1

2
(B1 + iB2)θ2, (4.66a)

α2 =
i

2
B3θ2 −

1

2
(B1 − iB2)θ1. (4.66b)
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The analogue of Eq. ( 4.63) is

Π1Π2 → Π1Π2 + g(α1Π2 + α2Π1) + g2α1α2

= Π1Π2 + gB · S +
1

4
g2B2θ1θ2, (4.67)

which is the contribution of kinetic energy from the anticommuting coordinates
and correctly adds to the orbital interaction. The factor g introduced above is
a reflection of the fact that the Lande factor is not fixed in a nonrelativistic
description. Let the direction of B defines the z-axis, and substitute,

Π1Π2 + gB · S → 1

2
g~B

(
θ1

∂

∂θ1
− θ2

∂

∂θ2

)
+ ~

2 ∂2

∂θ2∂θ1
, (4.68)

then one readily gets the eigenfunctions,

ψ(θ) = θ1, (
1

2
g~B +

1

4
g2B2θ1θ2)φ; E =

1

2
g~B, (4.69a)

ψ(θ) = θ2, (−1

2
g~B +

1

4
g2B2θ1θ2)φ; E = −1

2
g~B, (4.69b)

for spin up and down. Notice the occurrence of a scalar part φ with the same
eigenvalues as the spinors.

4.3.2 Nonrelativistic Spin One Half Particle with Con-
straints

As a next simple example we outline the discussion of the nonrelativistic spin-
ning particles [111].

We consider a nonrelativistic free particle with position coordinates xi(t), i =
1, 2, 3. For the purpose of describing the spin degrees of freedom we associate
with the particle three real anticommuting variables

θi = θi(t),

in addition to the position coordinates. We write the Lagrangian for the free
nonrelativistic spin one half particle as

L =
1

2
mẋ2 +

i

2
θ̇ · θ. (4.70)

To pass to the Hamiltonian we define the conjugate momenta

pi =
∂L

∂ẋi
= mẋi, (4.71)

πk =
∂L

∂θ̇k
=
i

2
θk, (4.72)
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whose generalized Poisson brackets are

{xi, pj} = δij, (4.73a)

{θk, πl} = δkl , (4.73b)

all other being zero. We obtain the primary constraints from Eq. (4.72)

χk = πk −
i

2
θk ≈ 0, (4.74)

which are consequences of the linearity of L, in θ̇. To check whether there are
secondary constraints we write down the total Hamiltonian

HT = Hc + λiχi =
p2

2m
+ λiχi, (4.75)

where the λi are anticommuting Lagrange multipliers. The consistence conditions

χ̇i = {χi, HT} ≈ 0, (4.76)

lead to λi = 0. Therefore we have secondary constraints and the χi are second
class:

{χiχk} = iδik. (4.77)

It is now possible to introduce Dirac brackets based on the second class constraints
χk; after this is done one one may consider χk = 0 as strong equations thus
eliminating the πk from the theory, which leaves the θi as the only Fermi variables,
with modified brackets

{θi, θj}∗ = iδij. (4.78)

The equation of motion are obtained by extremizing the action under small
deformations of the history of the system. The allowed deformations must obey
boundary conditions he number of which is equal to the number of integration
constants in the general solution of the equations of motion. Now, for the bose
variables xi, we demand as usual that xi be fixed at the initial and final times. It
is not possible however to impose a similar requirement on the θ’s, as this would
imply two boundary conditions for a first order differential equation.

We write the action as

S =

∫ t2

t1

Ldt +
i

2
θ(t1) · θ(t2), (4.79)

and state that the solution of the equations of motion are those histories which
yield no variation of S under the conditions

δx(t1) = 0, δx(t2) = 0, (4.80)
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δθ(t1) + δθ(t2) = 0. (4.81)

The x-dependence of the action is the usual one so it need not concern us any
longer. The novelty is in the θ part.

If we vary θ(t) we find

δS =

∫ t2

t1

dtiθ̇ · δθ +
i

2
[δθ(2) · θ(2) − δθ(1) · θ(1)] +

i

2
[δθ(1) · θ(2) − θ(1) · δθ(2)]

=

∫ t2

t1

dtiθ̇ · δθ − i

2
[δθ(1) + δθ(2)] · [θ(1) − θ(2)], (4.82)

where we abbreviated δθ(t1) = δθ(1), etc. The boundary term vanishes on ac-
count of condition Eq. (4.81) and extermination of S yields just

θ̇i = 0, (4.83)

is needed.
Now, let us suppose that θ(1) + θ(2) is given as 2χ, say. In that case there is

a unique solution to Eq. (4.83) with that boundary condition, namely θ(t) = χ
for all t is fulfilled.

The action can be rewritten in Hamiltonian from as

S =

∫ t2

t1

dt

(
ẋ · p +

i

2
θ̇ · θ − p2

2m

)
+

1

2
θ(1) · θ(2). (4.84)

Having an action principle we can discuss conservation laws. The action Eq.
(4.79) is invariant under translations, rotations, and Galilean transformations.
Let us therefore analyze the case of rotations. Under that translation we write

δxi = ωijx
j, δpi = ωijp

j, δθi = ωijθ
j, (4.85)

with ωij = −ωji.
The action Eq. (4.79) is clearly invariant under this transformation. On the

other hand, following Noether’s procedure, we can rewrite the variation of the
action as

δS = x · p|t1t2 −
i

2
[δθ(1) + δθ(2)] · [θ(1) − θ(2)] (4.86)

+(term vanishing when the equations of motion hold).

Now, the θ term in the above equation can be rewritten in this case as

i

2
ωik[θ

k(1) + θk(2)][θj(1) − θj(2)] =
i

2
ωik[θ

j(2)θk(2) − θj(1)θk(1)]. (4.87)

If we now insert Eq. (4.87) into Eq. (4.86) and recall Eq. (4.85) we find that

Jik = Lik + Sik, (4.88)
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is a constraint of motion, where

Lik = xipk − xkpi, (4.89)

Sik = iθiθk. (4.90)

In terms of their Dirac brackets Lik and Sik obey the customary algebra. For
example, if we define the spin vector

Si = −1

2
εijkSjk, (4.91)

we have

{Si, Sj} = εijkSk. (4.92)

It is interesting to mention here that had we neglected the surface term in Eq.
(4.79) and applied Noether’s procedure naively to the action S =

∫
Ldt we would

have arrived at a definition for the spin of opposite sign to Eq. (4.90.)

4.3.3 Relativistic Spin One Half Particle

Let us start from the Dirac equation

(~γµ∂µ +m)ψ = 0, (4.93)

which implies the Klein-Gordon equation

(−~
2
2

2 +m2)ψ = 0. (4.94)

To formulate the dynamics, and additional constraint is necessary, and to take
this constraint explicitly invariant introduce a new Grassmann variable θ5. The
constraint is in quantum falls

(pθ) + θ5 = 0, (4.95)

and Klein-Gordon equation reads

(p̂µp̂µ +m2) = 0. (4.96)

The commutation relations for the quantum operators are

[p̂µ, q̂ν] = −i~gµν , [θµ, θν ]+ = ~gµν, [θ5, θ5]+ = ~, (4.97)

while the primary constraints are converted into conditions on the physical states

L = [(p̂θ̂) +mθ̂5]ψ ≈ 0, H = (p2 +m2)ψ ≈ 0, (4.98)
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which obey the relations

[L,L] = iH,
[L,H] = 0, (4.99)

[H,H] = 0,

where
θ̂µ = (~/2)1/2γ5γµ, θ̂5 = (~/2)1/2γ5, (4.100)

satisfy
[θµ, θν]+ = −~gµν, [θ5, θ

µ]+ = 0, [θ5, θ5]+ = −~. (4.101)

Generators of the Lorenz group Jµν are constructed along the conventional
lines

Jµν = Lµν + Sµν. (4.102)

The quantum spin vector is then given by

Ŝi = −1

2
εijkθ̂j θ̂k = −~

4
iεijkσjσk = i

~

2
σi. (4.103)

To get the quantum operator as (anti)symmetrization is necessary

L̂µν =
1

2
(q̂µp̂ν + p̂ν q̂µ − q̂ν p̂µ − p̂µq̂ν), (4.104)

Ŝµν = − i

2
(θ̂µθ̂ν − θ̂ν θ̂µ) :=

i

4
~(γµγν − γνγµ). (4.105)

Grassmann coordinates schemes offer a natural framework for explaining the
occurrence of particle generations and the application of duality constraints turns
out to be a powerful tool for pruning the overabundance of states [179]. The na-
ture of the interaction between different fields is well determined by the anticom-
muting properties and integration rules of Grassmann variables. The assignment
of the correct component fields in the superfields and the construction of the
appropriate forms of the interaction between superfields are the main problems
in this formulation as well as the choice of the superfields itself. The dimen-
sion of the Grassmann manifold determines wholly the results that follow and
must therefore be chosen carefully. There is no explicit rule in determining the
number of Grassmann coordinates in one model of the theory, but the symmetry
of the model can offer guidance as to how many anticommuting variables are
needed to incorporate the corresponding internal symmetry. In other word, the
internal space is the Grassmannian space. The group structures in the Grassman-
nian manifold are represented by generators on the Grassmann coordinates which
reshuffle the monomials. This is in effect similar to the reshufflings of different
states associated with each monomials. The imposition of the duality constraints
will reduce the size of the residual group symmetry.
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Chapter 5

Relativistic Two Body Wave
Equations

To formulate the quantum theory of a particle, Dirac [189] used the Hamilto-
nian description of classical mechanics. The standard rules for constructing the
momenta and the Hamiltonian function, however, cannot be applied when the
Lagrangian is singular. In such a case it is not possible to extract the functional
dependence of all the velocities on the momenta in order to obtain a Hamiltonian
function of coordinates and momenta only. Dirac’s method concerns the study of
classical systems using the Hamiltonian method when the usual procedure fails
due to the singularity of the Lagrangian [194]. Dirac gave very general rules to
construct the Hamiltonian and calculate sensible brackets that can be used to
describe the classical and, by the canonical quantization procedure, the quantum
dynamics, which we studied in Sec. 2.2.3.

In this chapter, we are using techniques developed by Dirac to handle con-
straints in quantum mechanics and the method developed by Crater and Van Al-
stine. They derive the two body Dirac equations for eight nonderivative Lorentz
invariant interactions acting separately or together [158, 388]. These include
world scalar, four vector and pseudoscalar interactions among others. We can
also reduce the two body Dirac equations to coupled Schrödinger like equations
even with all these interactions acting together. Before we test this method in
nuclear physics, in the phase shift analysis of the NN scattering problems, we
review the constraint formalism and the form of the two body Dirac equations.

5.1 Hamiltonian Formulation of the Two Body

Problem with Constraint Dynamics

We know from Sec. 2.2.3, that constraints of the form

φj(q, p) ≈ 0, j = 1...M, (5.1)
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which must be satisfied weakly along the physical trajectory. The constraint Eq.
(5.1) say in effect that we cannot roam over the full plane space (q, p), we are
confined to a particular lower dimensional hyper surface of the full space. First,
we can with impunity have been carried out, need the constraints φj(q, p) = 0,
imposed [289, 417, 536]. The weakly sign ≈ signal this hold procedure. In this
way we obtain M number of constraints which Dirac called primary because of
their direct derivation from the Lagrangian. Notice that a Hamiltonian is required
to be independent of the velocities. If we are not able to erase the q̇ dependence,
then the straightforward application of the Hamiltonian method is impossible. To
solve this problem we proceed as follows. We add to H all primary constraints
multiplied by arbitrary functions of time λj , to obtain the total Hamiltonian H.
The Hamiltonian is obtained by a Legendre transformation of the velocities

H = H +

M∑

j=1

λjφj(q, p). (5.2)

For consistency, the constraints must not change under the temporal evolution
of our system establishing the consistency equations

φ̇j = [φj,H] ≈ 0, j = 1, ...,M. (5.3)

If these equations are consistent, three cases are possible, an equation can give an
identity, it can give a linear equation for the λj, it can give an equation containing
only p′s and q′s, in which case it must be considered as another constraint. The
constraints that arise from this procedure will be called secondary, for obvious
reasons. Also we emphasize again that any linear combination of constraints is
again a constraint.

Todorov studied the relativistic N - particle dynamics as a problem with
constraints of the type

2φi(q, p) := m2
i − p2

i + Φi(q, p, s), i = 1, ..., N, (5.4)

where Φi(q, p, s) are Poincaré invariant functions of the particles, coordinates, mo-
menta and spin components. We introduce pi and position qi of a particle, whose
Poisson bracket are satisfying the usually Poincaré transformation. However, the
Poisson brackets are degenerate on the mass shell for a relativistic particle

m2 − p2 = 0, (5.5)

Crater termed it relativistic Hamiltonian. Caveat, Crater and et al. use a metric
with the other sign1. He extended Todorov’s idea for four dimensional space-time
form in the two body system, he had two constraints

φi(q, p) ≈ 0, j = 1, 2. (5.6)

1ηµν = −gµν = (−1, 1, 1, 1).
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For spinless particles he had taken to be the generalized mass shell constraints of
the two particles [153, 582], namely Eq. (5.4) rewriting

H1 = p2
1 +m2

1 + Φ1(x, p1, p2) ≈ 0,

H2 = p2
2 +m2

2 + Φ2(x, p1, p2) ≈ 0, (5.7)

where H1,H2 are covariant constraints on the dynamical variables four momen-
tum p1, p2. The interaction functions Φ1,Φ2 must be equal Φ1 = Φ2 a relativistic
analog of Newton’s third law with relative distance x = x1−x2. The total Hamil-
tonian H from these constraints alone is

H = λ1H1 + λ2H2, (5.8)

with λi as Lagrange multipliers.
Thus the quantum forms for each individual particle constraint become Schrödinger

type equations [497]

Hi|ψ〉 =, 0 for i = 1, 2. (5.9)

In order that each of these constraints be conserved in time we must have

[Hi,H]|ψ〉 = i
dHi

dτ
|ψ〉 = 0. (5.10)

The CM eigentime τ is used, so that

[Hi, λ1H1 + λ2H2]|ψ〉 =

{[Hi, λ1]H1|ψ〉 + λ1[Hi,H1]|ψ〉 + [Hi, λ2]H2|ψ〉 + λ2[Hi,H2]}|ψ〉 = 0. (5.11)

Using Eq. (5.9), the above equation leads to the compatibility condition
between the two constraints

[H1,H2]|ψ〉 = 0. (5.12)

This condition guarantees that, with the Dirac Hamiltonian H, the system evolves
such that the motion is constrained to the surfaces on the mass shells described
by the constraints H1 and H2 [582, 155, 151]. The interaction constraint becomes

2p1Φ̇2 + 2p2Φ̇1 + {Φ1,Φ2} ≈ 0.

As described most recently in [582] this requires that

Φ1 = Φ2 = Φ(x⊥, p1, p2), (5.13)

with the transverse coordinate defined by

xν⊥ = xµ12(ηµν − PµPν/P
2), (5.14)

and total momentum
P = p1 + p2. (5.15)

Using Todorov variables [156, 539, 543],
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• Relative position, x1 − x2.

• Relative momentum, p = ε2p1−ε1p2
w

.

• Total CM energy, w =
√
−P 2.

• Total momentum, P = p1 + p2.

• (Conserved) constituent CM energies,

ε1 =
w2+m2

1−m
2
2

2w
, ε2 =

w2+m2
2−m

2
1

2w
.

(In terms of these, p1 = ε1P̂ + p, p2 = ε2P̂ − p where P̂ = P
w
.)

• Relativistic reduced mass and energy of a fictitious particle of relative mo-

tion, mw = m1m2

w
, εw =

w2−m2
1−m

2
2

2w
.

• On-shell value of the relative momentum squared,
b2(w) = ε2w −m2

w = ε21 −m2
1 = ε22 −m2

2 =
1

4w2 (w
4 − 2w2(m2

1 +m2
2) + (m2

1 −m2
2)

2).

CM momentum Eq. (5.15) and total energy

w2 = −P 2,

to define the relativistic momentum, we require that the difference

H1 −H2 = 0,

is independent of the interaction, Φ, namely Eq. (5.13) forms the differences of
constraints into a purely kinematical constraint

H1 −H2 = m2
1 + p2

1 + Φ1 −m2
2 − p2

2 − Φ2 ≈ 0 ⇒

2P · p+ (ε2 − ε1)w +m2
1 −m2

2 ≈ 0. (5.16)

In CM frame
P · p = 0, (5.17)

P = (−P 0,
−→
P = 0), p = (0,−→p ) and the relative momentum has a vanishing time

like component
(−w2,−→p 1 + −→p 2︸ ︷︷ ︸

0

) = P 2, (5.18)

p1 = (+ε1,
−→p ), p1

1 = −ε21 + −→p 2 = −m2
1,

p2 = (+ε2,
−→p ), p2

1 = −ε22 + −→p 2 = −m2
2,

P = p1 + p2 = −(ε1 + ε2) = −ε21 − ε22 − 2ε1ε2 = −w2. (5.19)

With
p =

ε2

w
p1 −

ε1

w
p2 = 0, (5.20)
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the time-like components of the particle momenta in the CM system are

ε1 =
w2 +m2

1 −m2
2

2w
,

ε2 =
w2 +m2

2 −m2
1

2w
. (5.21)

Since

H1 = −→p 2 − ε21 +m2
1 + Φ,

H2 = −→p 2 − ε22 +m2
2 + Φ, (5.22)

the combination of the constraints give an explicit relativistic Schrödinger equa-
tion for, one effective particle of relative motion

H = (ε2H1 + ε1H2)/w = −→p 2 − b2 + Φ ≈ 0. (5.23)

Thus quantum mechanically,

{−→p 2 + Φ(x⊥) − b2(w2, m2
1, m

2
2)
}
|ψ〉 = 0, (5.24)

where

b2(w2, m2
1, m

2
2) = ε2

1 −m2
1 = ε2

2 −m2
2

=
1

4w2

{
w4 − 2w2(m2

1 +m2
2) + (m2

1 −m2
2)

2
}
. (5.25)

This equation maintains the exact relativistic two body kinematics, i.e. classically

p2 − b2 = 0,

would imply

w =
√
p2 +m2

1 +
√
p2 +m2

2.

Note that both of the constituent invariant CM energies ε1 and ε2 are positive
for positive total CM energy w greater than the square root of |m2

1 −m2
2|. This

is a direct consequence of the Eq. (5.17) which in turn depends on the “third
law”condition necessary for compatibility.

In the CM system, p = p⊥ = (0,−→p ), x⊥ = (0,−→r ) and the relative energy and
time are removed from the problem. The equation for the relative motion is then

{−→p 2 + Φ(r) − b2
}
|ψ〉 = 0, (5.26)

which has the form of a stationary non-relativistic Schrödinger equation, with
2mV → Φ, 2mENR → b2. Thus the relativistic treatment of the two body prob-
lem for spinless particles gives a form that has the simplicity of the ordinary
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stationary nonrelativistic one body Schrödinger equation and yet maintains rel-
ativistic covariance. Spin and different types of interactions can be included in a
more complete framework [388, 166, 158, 421] and will be reviewed later.

The potential Φ may have a complicated dependence,

Φ = Φ(r2, r · p, P 2, p2, P · p). (5.27)

It is a general feature of relativistic mechanics that the potentials do not appear
only as functions of the relative coordinates x and relative momentum p. Ignoring
explicit dependences of Φ on total and relative momenta, one is still left with an
implicit dependence upon P through the vector r. It is only in the CM frame that
r reduces to the momentum independent vector (0,x) The potential Φ can also
exhibit, an explicit dependence on P 2. This can arise either from a dependence of
the coupling constants on P 2, or from dimensional requirements. The dependence
of Φ upon P · p can be ignored altogether, since the latter can be eliminated of
the constraints Eq. (5.17)

P · p = 0.

Finally the dependences upon r · p and p2 arise when nonlocal effects are approx-
imated by local functions or from the tensor structure of the interaction. For
two spinless particles the potential Φ is a function of r, p, and P .A Φ depen-
dence on the relative momentum p has to be symmetrized in such a way that the
eigenvalues of p2 come out to be real, if no other reason forbids this result [546].

For a scalar interaction the momenta p1 and p2 do not appear at the vertices
and therefore we have

Φ = Φ(r2, p2).

For a vector interaction p1 and p2 appear linearly at the vertices and to lowest
order of the coupling constants we have

Φ = [pν1, [p
µ
2 , Cµν(r, P )]+]+, (5.28)

where Cµν represents the relativistic instantaneous approximation of a vector field
propagator and satisfies the properties

Cµν(r, p) = Cνµ(r, p) = Cµν(−r, p).

To first order in C the term Eq. (5.28) could also arise from a minimal substitu-
tion in the free equations of the type

p1µ → p′1µ = p1µ − A1µ := p1µ − [pν2, Cµν]+,

p2µ → p′2µ = p2µ − A2µ := p2µ − [pν1, Cµν]+. (5.29)

Pseudoscalar type interactions correspond to potentials Φ which are propor-
tional to the matrices γ5η5,

Φ = γ5η5W (r2, p2),
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where the γ5 and η5 are the Dirac matrices acting on the fermion and antifermion
spinor, W (r2, p2) is the Pauli-Lubanski operator. If W1sα and W2sα are Pauli-
Lubanski spin operators of particles 1 and 2,

W1sα =
~

4
εαβµP

βσµν,

W2sα =
~

4
εαβµP

βξµν,

W 2
1s = W 2

2s = −3

4
~

2P 2,

WS = W1s +W2s, (total spin)

σµν =
1

2i
[γµ, γν], ηµν =

1

2i
[ηµ, ην],

which commute with all longitudinal variables and matrices. The pseudoscalar
interactions play, also an important role in the representation of confining inter-
actions and spontaneous breakdown of chiral symmetry [495].

An axial vector interaction is of the type

Φ = −γ̃ ·WLA(r2, p2) = − 2

p2
γ · pWL ·W1sA(r2, p2),

where γ̃µ = γµγ5, WL is the relative orbital angular momentum. Such potentials
cannot arise in the ladder approximation of parity conserving interactions in
renormalizable field theories. However they can arise from a local approximation
of fourth order irreducible diagrams in vector interactions in the Bethe-Salpeter
kernel [496]. They correspond to the exchange between the fermion and the
boson of two vector particles. The vector particles couple to the fermion line
at two different vertices with matrices γµ and γν, respectively. Furthermore the
fermion propagator joining the two vertices is proportional to (γ · p′1 +m′

1) and
one finds, among other terms, the product of three γ matrices which involve the
term iεµναβ γ̃

αp′β1 . On the boson line the vertices of the vector particle involve the
momenta p′2µ and p′′2µ.

In Eq. (5.26) to relativistic kinematical and dynamical corrections are in-
cluded. The corrections include dependences on the CM energy w and on the
nature of the interaction. For spinless particles, interacting by way of a world
scalar interaction S, one finds [151, 153, 159, 160]

Φ = 2mwS + S2, (5.30)

where
mw =

m1m2

w
. (5.31)

For timelike vector interactions, described by A, one finds [151, 539, 540, 159, 162]

Φ = 2εwA−A2, (5.32)
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where

εw =
w2 −m2

1 −m2
2

2w
. (5.33)

For combined spacelike and timelike vector interactions, that reproduce the cor-
rect energy spectrum for scalar QED [154],

Φ = 2mwS+S2+2εwA−A2+
1

2
∇2 log(1−2A/w)+

1

4
[∇ log(1−2A/w)]2. (5.34)

The variables mw and εw have been introduced by Todorov in his quasipotential
approach [539, 540]. In the nonrelativistic limit, Φ approaches 2µ(S +A), µ =
m1m2/(m1 +m2) for combined interactions. In the relativistic case, the dynam-
ical corrections include both quadratic additions to S and A and CM energy
dependences through mw and εw. The two logarithm terms at the end of Eq.
(5.34) are due to the transverse or spacelike part of the potential. Without those
terms, spectral results would not agree with the standard spinless Breit and Dar-
win approaches.

Eq. (5.26) provides a useful way to obtain the solution of the relativistic two
body problem for spinless particles with scalar and vector interactions. Below we
shall include spin.

These ways of putting the invariant potential functions, for scalar S and vector
A interactions, into Φ is used by Crater and Van Alstine for the case of two spin
one half particles. These forms are not unique but are motivated by classical field
theory, Crater and Van Alstine, and in quantum field theory, Sazdjian [162, 336].

5.1.1 Constraint Mechanics for Spinless Particles

Crater and Van Alstine used Dirac’s constraint mechanics and supersymmetry
(see Sec. 2.7) to derive a pair of coupled but compatible relativistic wave equa-
tions that generalize Dirac’s equation for a single spin one half particle in an
external field to a system of two spinning particles interacting through world
scalar and vector potentials.

To see how one introduces relativistic dynamics through a constraint approach
[156, 542, 545, 366], consider first two spinless particle Klein-Gordon equations.
In constraint quantum mechanics, these equations are treated as mass shell con-
ditions on the wave function

H1|ψ >= (p2
1 +m2

1 + Φ1(x, p1, p2))|ψ >= 0, (5.35a)

H2|ψ >= (p2
2 +m2

2 + Φ2(x, p1, p2))|ψ >= 0. (5.35b)

One further finds that the interaction functions, referred to as quasipotentials,
must be equal

Φ1 = Φ2 = Φw(x⊥, p1, p2). (5.36)
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This is a relativistic analog of Newton’s third law. The invariant variable

r =
√
x2
⊥, (5.37)

is the spatial interparticle separation (only) in the CM system. The fact that
x may only appear as x⊥ means that constraint mechanics controls the relative
time in a covariant way although the quasipotential Φw may depend on other
invariant combinations of x⊥, p1, p2 i.e.

` :=
√

(x⊥ × p)2,

where
(a× b)µ = ενkλµP̂νakbλ.

The two quantum constraints Eq. (5.35b) can be recombined in two linear inde-
pendent ways. The difference yields a wave equation that controls the relative
energy

(H1 −H2)|ψ >= 2P · p|ψ >= 0. (5.38)

The other independent combination

H = (ε2H1 + ε1H2)/w, (5.39)

leads to the stationary Schrödinger like form

H|ψ >= 0 → (p2 + Φw)|ψ >= b2(w)|ψ >= (ε2w −m2
w)|ψ > . (5.40)

In the CM system, Eqs. (5.38) implies the relation

p2|ψ >= p2
⊥|ψ >= p2|ψ >,

thus Eqs. (5.40) has a three dimensional Schrödinger like form. However, Eqs.
(5.40) is a fully covariant equation, with a CM energy dependent potential.

We imply that each particle Φi is constructed from constituent scalar and
vector potentials which are produced by other particle. We introduce vector and
scalar interactions through the minimal momentum and mass substitutions

pµ1 = pµ + ε1P̂
µ → pµ1 − Aµ1 = G1(r, `)p

µ + E1(r, `)P̂
µ := πµ1 ,

pµ2 = −pµ + ε2P̂
µ → pµ2 − Aµ2 = −G2(r, `)p

µ + E2(r, `)P̂
µ := πµ2 , (5.41)

m1 → m1 + S1 := M1(r, `), (5.42a)

m2 → m2 + S2 := M2(r, `), (5.42b)

in
H0
i = p2

i +m2
i .
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These substitutions are straightforward two body extensions of those generated
by standard covariant coupling of a single particle to vector or scalar external
fields. Thus the original free mass shell forms

H0
i = p2

i +m2
i , i = 1, 2, (5.43)

become

Hi = π2
i +M2

i , i = 1, 2. (5.44)

The procedure determines the Φi, in Eqs. (5.35b), in terms of constituent vector
and scalar potentials.

The decomposition of Eqs. (5.41-5.42b) associates the invariant functions
G1, G2 with spacelike vector potentials, E1, E2 with timelike vector potentials,
and M1,M2 with scalar potentials. These six scalar functions are not indepen-
dent. In fact, the third law condition on scalar, timelike and spacelike vector
parts yield

Φ1S = Φ2S,

Φ1A = Φ2A, timelike part (5.45)

Φ1A = Φ2A, spacelike part.

It implies

M2
1 −M2

2 = m2
1 −m2

2, E2
1 − E2

2 = ε21 − ε22, and G2
1 = G2

2 = G2.

There are only two invariant functions for the vector and one for the scalar
interaction. When vector interactions are generated by coupling to QCD fields
there will be further relations among the potentials. In that case, both Ei and
Gi become functions of an underlying generalized Coulombic potential A. With
this technique one allows for the presence of a short distance electromagneticlike
or gauge vector containing both timelike and spacelike parts, and a long distance
timelike vector, by parameterizing Ei in terms of two invariant functions A and
V, and G in terms of A alone. Thus

Aµi = Aµi (A(r, `),V(r, `)), (5.46)

and

Si = Si(S(r, `),V(r, `)). (5.47)

5.1.2 Constraint Mechanics for Spin One Half Particles

Crater and van Alstine [156] used supersymmetry to find compatible Dirac oper-
ators for two spinning particles. The particles are interacting through a system
of relativistic scalar and vector interactions. For two spin one half particles, we
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start from two compatible free Dirac equations, in terms of Todorov variables, in
the forms

L10|ψ >= (θ1 · p1 +m1θ51)|ψ >= 0, (5.48a)

L20|ψ >= (θ2 · p2 +m2θ52)|ψ >= 0, (5.48b)

using
p1 = ε1P̂ + p, p2 = ε2P̂ − p, (5.49)

yields
L10|ψ >= (+θ1 · p + ε1θ1 · P̂ +m1θ51)|ψ >= 0, (5.50a)

L20|ψ >= (−θ2 · p+ ε2θ2 · P̂ +m2θ52)|ψ >= 0, (5.50b)

in the effective one body variables of Todorov [539]. Crater and Van Alstine have
written the matrix coefficients of these Dirac equations not in terms of gamma
matrices but in terms of products of gamma matrices whose algebraic properties
permit more efficient calculation of the commutation relations appropriate to two
spinning bodies. These theta matrices

θµi := i

√
1

2
γ5iγ

µ
i ,

θ5i := i

√
1

2
γ5i, µ = 0, 1, 2, 3, i = 1, 2 (5.51)

satisfy the fundamental anticommutation relations

[θµi , θ
ν
i ]+ = −ηµν ,

[θ5i, θ
µ
i ]+ = 0,

[θ5i, θ5i]+ = −1, (5.52)

where [, ]+ is anticommutator. Projected theta matrices then satisfy
[
θi · P̂ , θi · P̂

]
+

= 1,
[
θi · P̂ , θµi⊥

]
+

= 0, (5.53)

where
θµ⊥ = θiν(η

µν + P̂ µP̂ ν). (5.54)

The algebraic significance of the theta matrices, in the dynamical description
provided by Eqs. (5.48), is that the Dirac operators L10 and L20 are exact
operator square roots of the corresponding mass shelf forms − 1

2
(p2

1 + m2
1) and

−1
2
(p2

2 +m2
2). Additional use of covariant CM projected versions of the Dirac α

and β matrices are

βµi = −γi · P̂ = 2θ5iθi · P̂ , (5.55)

αµi = 2θµi⊥θi · P̂ , (5.56)
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and
σµi = γ5iα

µ
i = i2

√
2θ5iθi · P̂ θ⊥i.

Crater and Van Alstine claim to have introduced the important but unfa-
miliar theta matrices in order to take advantage of their remarkable algebraic
properties to simplify the otherwise complicated consequences of compatibility
([L1,L2]− |ψ >= 0) when interactions are present. The fundamental anticom-
mutation relations, Eqs. (5.53), of the theta matrices lead directly through a
pseudo-classical correspondence limit, to a graded symplectic structure in which
the theta’s become two commuting sets of Grassmann variables (See Sec. 2.6.1).
The space possesses a graded Poisson bracket that takes the differential form of
Berezin and Marinov [65, 66]. When quantized, this bracket becomes a general-
ized quantum bracket that is sometimes a commutator, sometimes an anticom-
mutator depending on the nature of its operator arguments.

In terms of this bracket, all necessary commutation relations involving the
quantum theta’s can be carried out through operations that are isomorphic to
those involving the classical brackets. For dynamical variables Aα and Aβ that
have well defined character (odd or even) with respect to each spin or Grassmann
space, the generalized quantum bracket takes the form

[Aα, Aβ]−ηαβ
= AαAβ − ηαβAβAα, (5.57)

where [152]
ηαβ = (−1)εα1εβ1+εα2εβ2.

The variable

εα1 =

{
0 if Aα is even in space one (like p, x, θ51, θ1 · P̂ )

1 if Aα is odd in space one (like θ1 · x, θ51θ2 · P̂ ).
(5.58)

Similarly, εα2 keeps track of parity in space two. Note that the last variable is
then odd in both spaces doubly odd. This sorts the variables into those that
are even in both spaces, odd in both, even in space one while odd in space two,
and odd in space one while even in space two. In addition, there are additive
combinations that do not have well defined character e.g.,

θ1 · x + x · p, or θ1 · x+ θ2 · p.

For expressions that contain only one set of spin variables, when inserted as pairs
of arguments of the quantum bracket, for two even variables, or one odd and
one even, ηαβ = −1 and the bracket is a commutator. For two odd variables,
ηαβ = +1 and the bracket is an anticommutator. The product quantum bracket,
such that bracket of AαAβ with Aγ, is

[AαAβ, Aγ]−ηαγηβγ
.
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This implies that within the Grassmann space of a single particle, the product
of an odd with an odd is an even, the product of an even with an odd is an odd,
and that the product of an even with an even is an even. Using the definition, in
Eqs. (5.57), one finds that

[AαAβ, Aγ ]−ηαγηβγ
= Aα[Aβ, Aγ]−ηβγ

+ ηβγ [Aα, Aγ ]−ηαγ
Aβ. (5.59)

Next, use is made of this bracket to construct pairs of compatible Dirac equa-
tions for interacting particles.

Consider what happens when we attempt to introduce scalar interactions into
the two free particle equations Eqs. (5.48). If we make the minimal substitutions
Eqs. (5.41) of the spinless case, we do not obtain compatible two body Dirac
equations. That is, the brackets Eqs. (5.59),

L1|ψ >= (+θ1 · p+ ε1θ1 · P̂ +M1θ51)|ψ >= 0, (5.60a)

L2|ψ >= (−θ2 · p+ ε2θ2 · P̂ +M2θ52)|ψ >= 0, (5.60b)

produce an operator that does not vanish on |ψ >

[L1,L2]−|ψ > = [θ1 · p,M2θ52] + [M1θ51,−θ2 · p]−|ψ >

= −i(∂M1 · θ1θ52 + ∂M2 · θ2θ51)|ψ >6= 0. (5.61)

Crater and Van Alstine used supersymmetry arguments to extend the naive
L1 and L2 to forms that are compatible. The procedure has four steps.

(a) They found supersymmetry of the pseudo-classical limit of an ordinary
free one body Dirac equation.

(b) They introduced interactions for a single Dirac particle with external
potentials that preserved these supersymmetries. For scalar interactions this
required the coordinate replacement

xµ → x̃µ := xµ + i
θµθ5

m + S(x̃)
.

Since the Grassmann variables satisfy θ2 = 0, this self referent relation has a
terminating Taylor expansion.

(c) They maintained the one body supersymmetries, for each spinning parti-
cle, through the replacement

xµ⊥ = (x1 − x2)
µ
⊥ → (x̃1 − x̃2)

µ
⊥,

in the relativistic potentials Si, and thus obtained compatible classical constrains.
(d) Finally, they canonically quantized these constraints to obtain compatible

two body Dirac equations of the form

L1|ψ >= (+θ1 · p+ ε1θ1 · P̂ +M1θ51 − i∂L1 · θ2θ52θ51)|ψ >= 0,(5.62a)

L2|ψ >= (−θ2 · p+ ε2θ2 · P̂ +M2θ52 + i∂L2 · θ1θ51θ52)|ψ >= 0.(5.62b)
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Note, the requirement of compatibility leads to terms with a relatively simple
structure, like recoil terms which are functions of x⊥ that add to the naive forms
of Eqs. (5.60). The only additional nontrivial commutators needed to check
compatibility, [L1,L2]−|ψ >= 0, are

[−i∂L1 · θ2θ51θ52,−θ2 · p]− = (i∂L1 · p+
1

2
∂2L1)θ51θ52,

[θ1 · p, i∂L2 · θ1θ51θ52]− = (−i∂L2 · p−
1

2
∂2L2)θ52θ51,

[−i∂L1 · θ2θ51θ52,M2θ52]− = iM2θ51∂L1 · θ2,
[M1θ51,+i∂L2 · θ1θ52θ51]− = iM1θ52∂L2 · θ1,

[ε1θ1 · P̂ ,+i∂L2 · θ1θ52θ51]− = [ε1θ1 · P̂ ,+i∂L2 · θ1]+θ51θ52 = −iε1P̂ ·∂L2θ51θ52 = 0,

[−i∂L1 ·θ2θ51θ52, ε2θ2 ·P̂ ]− = −[−i∂L2 ·θ2, ε2θ2 ·P̂ ]+θ51θ52 = −iε2P̂ ·∂L1θ51θ52 = 0.

The last two commutators vanish since Li = Li(x⊥) and P̂ ·x⊥ = 0. Note that we
have used product rule Eqs. (5.59) to determine whether to compute commuta-
tors or anticommutators. Collecting coefficients of independent matrices, we find
the simple differential equations

∂M1 = M2∂L1, (5.63a)

∂M2 = M1∂L2, (5.63b)

∂L1 = ∂L2. (5.63c)

In the static limit ∂L → 0, each of our equations reduces to the standard one
body equation for interaction with an external scalar potential. If we solve these,
while identifying the free particle rest masses Mi(L = 0) = mi, we obtain

M1 = m1 coshL +m2 sinhL, (5.64a)

M2 = m2 coshL +m1 sinhL. (5.64b)

The recoil terms at the end of Eqs. (5.62) appeared as the quantum remnants
of the classical Grassmann-Taylor expansion of the mass potential generated by
its argument, the supersymmetric position variable x̃⊥. Note that this solution
of the compatibility condition implies

M2
1 −M2

2 = m2
1 −m2

2, (5.65)

the third law condition. As with the treatment of the scalar interaction using
supersymmetries, such methods reduce the problem of compatibility for spinning
particles to those conditions that are already needed for compatibility of spinless
particles. Elsewhere [156], they have extended their supersymmetric treatment
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to the case of timelike vector interactions. Just as in the scalar case, the naive
replacement in Eqs. (5.50)

εi → Ei(r, `),

does not lead to compatible two body Dirac equations. That is, when

L1|ψ >= (+θ1 · p+ E1θ1 · P̂ +m1θ51)|ψ >= 0, (5.66a)

L2|ψ >= (−θ2 · p+ E2θ2 · P̂ +m2θ52)|ψ >= 0, (5.66b)

they found

[L1,L2]−|ψ > = [θ1∂p, E2θ2 · P̂ ]− + [E1θ1 · P̂ ,−θ2∂p]−|ψ >
= −i(∂E1 · θ1θ2 · P̂ + ∂E2 · θ1θ1 · P̂ )|ψ >6= 0.

This enforcement of supersymmetries, for each spinning particle, leads to the
recoil corrected forms

L1|ψ >= (+θ1 · p+ E1θ1 · P̂ +m1θ51 + i∂J1 · θ2θ2 · P̂ θ1 · P̂ )|ψ >= 0,

(5.67a)

L2|ψ >= (−θ2 · p+ E2θ2 · P̂ +m2θ52 − i∂J2 · θ1θ1 · P̂ θ2 · P̂ )|ψ >= 0,

(5.67b)

The requirement of compatibility, [L1,L2]− |ψ >= 0, then yields the simple dif-
ferential equations

∂E1 = E2∂J1, (5.68a)

∂E2 = E1∂J2, (5.68b)

∂J1 = ∂J2. (5.68c)

Note, the static limit ∂J → 0, so that each of the equations reduces to the
standard one body equation for a spinning particle in an external timelike vector
potential. Solution of these equations with identification of the usual free particle
energies Ei(J = 0) = εi then gives

E1 = ε1 cosh J + ε2 sinh J, (5.69a)

E2 = ε2 cosh J + ε1 sinh J. (5.69b)

Just as for the scalar interaction, the recoil terms at the end of Eqs. (5.67) ap-
pear in the supersymmetric treatment as the quantum remnants of the Grassmann-
Taylor expansion of the energy potential generated by its argument, the super-
symmetric position variable x̃⊥. Note, this solution of the compatibility condition
yields

E2
1 − E2

2 = ε21 − ε22,
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the third law condition for spinless particles interacting through a timelike vector
potential.

Finally, a spacelike interaction, the naive choice

L1|ψ >= (+G1θ1 · p+ ε1θ1 · P̂ +m1θ51)|ψ >= 0, (5.70a)

L2|ψ >= (−G2θ2 · p+ ε2θ2 · P̂ +m2θ52)|ψ >= 0, (5.70b)

proves incompatible

[L1,L2]|ψ > = [G1θ1 · p,−G2θ2 · p]−|ψ >
= i(G2∂G1 · θ1θ2 · p−G1∂G2 · θ2θ1 · p)|ψ >6= 0. (5.71)

However,

L1|ψ >= (+G1θ1 · p+ ε1θ1 · P̂ +m1θ51 + iθ2 · ∂G1θ1⊥ · θ2⊥)|ψ >= 0,

(5.72a)

L2|ψ >= (−G2θ2 · p+ ε2θ2 · P̂ +m2θ52 − iθ1 · ∂G2θ2⊥ · θ1⊥)|ψ >= 0,

(5.72b)

are compatible provided that

G1∂G2 = G2∂G1. (5.73)

Thus G1 and G2 differ by at most a multiplicative constant. If the corresponding
Dirac equations are to become the usual free particle Dirac equations when the
interaction vanishes, G1 and G2 must be unity in this limit. Hence, the constant
must be one, and

G1 = G2 := G. (5.74)

When both, scalar and timelike four vector interactions, are present [156], the
compatible two body Dirac Eqs. (5.50) turn out to be

L1|ψ > = (+θ1 · p+ E1θ1 · P̂ +M1θ51

+i∂J · θ2θ1 · P̂ θ2 · P̂ − i∂L · θ2θ52θ51)|ψ >= 0, (5.75a)

L2|ψ > = (−θ2 · p+ E2θ2 · P̂ +M2θ52

−i∂J · θ1θ2 · P̂ θ2 · P̂ + i∂L · θ1θ51θ52)|ψ >= 0, (5.75b)

in which M1,M2, E1, E2, L and J are related by Eqs. (5.64) and (5.69). When
all three interactions are turned on at once, the solutions (5.63)-(5.64), (5.68)-
(5.69), and (5.73)-(5.74) yield the compatible two body Dirac Eqs. (5.50).

L1|ψ > = (+Gθ1 · p+ E1θ1 · P̂ +M1θ51 + iG(θ2 · ∂ lnGθ1⊥ · θ2⊥
+θ2 · ∂Jθ1 · P̂ θ2 · P̂ − θ2 · ∂Lθ52θ51))|ψ >= 0, (5.76a)

L2|ψ > = (−Gθ2 · p+ E2θ2 · P̂ +M2θ52 − iG(θ1 · ∂ lnGθ1⊥ · θ2⊥
+θ1 · ∂Jθ1 · P̂ θ2 · P̂ − θ1 · ∂Lθ51θ52))|ψ >= 0 (5.76b)
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Note, the requirement of compatibility generates three spin-dependent recoil
terms at the end of each Dirac equation, which can be written compactly as

θ2 · ∂




−Lθ51θ52
Jθ1 · P̂ θ2 · P̂
lnGθ1⊥ · θ2⊥


 (5.77a)

θ1 · ∂




Lθ51θ52,

−Jθ1 · P̂ θ2 · P̂
lnGθ1⊥ · θ2⊥


 . (5.77b)

The physically important case of electromagnetic like interactions, related time-
like and spacelike component interactions, deserves special mention. In that case,
our compatible two body Dirac equations reduce to

L1|ψ >= (+Gθ1 · p+ E1θ1 · P̂ +m1θ51 + iθ2 · ∂Gθ1 · θ2)|ψ >= 0,

(5.78a)

L2|ψ >= (−Gθ2 · p+ E2θ2 · P̂ +m2θ52 − iθ1∂Gθ1 · θ2)|ψ >= 0,

(5.78b)

in which the compatibility restrictions of Eqs. (5.69) and Eqs. (5.74) lead to

E1 =
G

2
(ε1 − ε2) +

w

2G
, (5.79a)

E2 =
G

2
(ε2 − ε1) +

w

2G
, (5.79b)

In Eqs. (5.78), the recoil terms are combined to yield the characteristic factor

θ1 · θ2 = θ1⊥ · θ2⊥ − θ1 · P̂ θ2 · P̂ .

5.2 Covariant Interactions

So far, we have been able to determine appropriate modifications of free Dirac
equations that lead to compatible two body Dirac equations in the presence of
scalar, timelike, and spacelike vector interactions. The resulting dynamical forms
of the two body Dirac equations are identical to their one body counterparts
in corresponding external fields except for the presence of recoil terms (see Eqs.
(5.77) that vanish when either of the particles becomes very heavy. But, how can
we determine the corresponding corrections needed for the construction of com-
patible Dirac equations containing pseudoscalar, timelike pseudovector, spacelike
pseudovector, and tensor interactions? The scalar and vector interactions em-
ployed alter classical relativistic properties, minimal mass and they are four mo-
mentum substitutions which are not available for pseudovector and pseudoscalar
interactions.
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However, regardless of the details of origin of the interaction terms, for each
of the cases treated so far ( supersymmetry, minimal substitution) they share
a common algebraic hyperbolic structure. In each case, the interactions gen-
erated by hyperbolic functions of the potential whose gradient determines the
magnitude of the corresponding recoil term. As we saw in our derivation of Eqs.
(5.63)-(5.65) and Eqs. (5.68)-(5.71), these structures arise from the solution of
the compatibility problem and enforce generalized third law conditions on the
interactions. As we shall see, if we use the hyperbolic structure to rewrite our
solutions for Li for the three interactions introduced so far in a compact form,
we find that such hyperbolic structures can be readily generalized to incorporate
their axial counterparts as well as the tensor interactions. The part presented
here and the next section are reviewing the pervious work done by Crater and
Van Alstine [158, 75]

5.2.1 Hyperbolic Description of Potentials

Using Eqs. (5.63)-(5.64), the scalar Eqs. (5.62) can be written in the form

L1|ψ >= (+θ1 · p+ ε1θ1 · P̂ + (m1 coshL+m2 sinhL)θ51 − iθ2 · ∂Lθ52θ51)|ψ >,
(5.80a)

L2|ψ >= (−θ2 · p+ ε2θ2 · P̂ + (m2 coshL+m1 sinhL)θ52 + iθ1 · ∂Lθ51θ52)|ψ > .
(5.80b)

These two Dirac equations, can be brought into a more general form through the
matrix

O1 = 2θ51θ52, (5.81)

which is a root of unity, O2
1 = 1, and is odd in each theta space. We then rewrite

Eq. (5.80) as

L1|ψ >= (L10 +m1(cosh(2∆) − 1)θ51 +m2 sinh(2∆)θ52 + iθ2 · ∂∆)|ψ >,

(5.82a)

L2|ψ >= (L20 +m2(cosh(2∆) − 1)θ52 +m1 sinh(2∆)θ51 + iθ1 · ∂∆)|ψ >,

(5.82b)

where
∆ = −O1L/2. (5.83)

If we rearrange these equations, we find that the combinations

S1|ψ >= (cosh(∆)L1 − sinh(∆)L2)|ψ >= 0, (5.84a)

S2|ψ >= (cosh(∆)L2 − sinh(∆)L1)|ψ >= 0, (5.84b)

take the general forms

S1|ψ >= (L10 cosh(∆) + L20 sinh(∆))|ψ >= 0, (5.85a)

S2|ψ >= (L20 cosh(∆) + L10 sinh(∆))|ψ >= 0, (5.85b)
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after we have used simple hyperbolic identities and brought the matrices on the
left of each Li to the right. Since the new constraints Eqs. (5.84) are nothing
but algebraic rearrangements of linear combinations of the old compatible con-
straints Li , they must themselves be compatible. However, we shall verify the
compatibility explicitly. We already know that the constraints L1 and L2 are
compatible

[L1,L2]−|ψ >= 0.

The commutator [S1,S2]− is a sum of four commutators. The first,

[cosh(∆)L1, cosh(∆)L2]− = cosh(∆)(cosh(∆)[L1,L2]− +

[L1, cosh(∆)]−L2 + [cosh(∆),L2]−L1) ≈ 0, (5.86)

vanishes weakly (we need to use the constraints Li ≈ 0.) Likewise,

[sinh(∆)L2, sinh(∆)L1]− ≈ 0. (5.87)

We are left with

−[cosh(∆)L1, sinh(∆)L1]− − [sinh(∆)L2, cosh(∆)L2]− =

−(cosh(∆)(sinh(∆)[L1,L1]− + [L1, sinh(∆)]−L1) −
sinh(∆)[cosh(∆),L1]−L1) + (1 → 2) ≈ 0. (5.88)

Thus
[S1,S2]−|ψ >≈ 0.

We now conjecture that the constraints in the general forms Eqs. (5.85) are
the proper forms of the introduction of relativistic interactions in the sense that
all interactions known appear simply as choices for the invariant form ∆. In
order to find compatible constraints of the external potential form L1 and L2 for
more general interactions from the S1 and S2 constraints, we must first show
that the new forms in Eqs. (5.85) are compatible for arbitrary ∆(x⊥). Then,
the constraints L1 and L2 which we uncover from the S1 and S2 constraints are
compatible, this is isomorphic to the proof given in Eq. (5.86) but with the roles
of Li and Si interchanged.

The new forms Eqs. (5.85) can be related to forms which were recently pro-
posed by Sazdjian

S1|Ψ >= (L10 + L20W)|Ψ >, (5.89a)

S2|Ψ >= (L20 + L10W)|Ψ > . (5.89b)

If we identify
|Ψ >= cosh(∆)ψ and W = tanh(∆),

then they are in equivalent forms. Note, in Sazdjian equations, for a given inter-
action say vector, the potential W has a simple matrix structure (i.e., θ1 ·θ2). On
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the other hand, when the equations are written in this form with a ∆ that has
the same matrix structure, the W may contain additional matrix structure since
the hyperbolic tangent is a nonlinear function of ∆. These additional terms will
not appear for interactions whose matrix structures are roots of unity since, for
such interactions (e.g., scalar, pseudoscalar, timelike vector and pseudovector),
the matrix structures of ∆ and tanh(∆) are the same. But, for those interactions
whose ∆’s are not multiples of root unity ( i.e., those for spacelike interactions),
the new equations are not equivalent to Sazdjian’s. Hence, in general, Sazdjian’s
form of the two body Dirac equations is a weak potential version (small ∆) of
Eqs. (5.85). Now, Sazdjian’s forms or the two body Dirac equations (and our
generalized version Eqs. (5.89) are compatible for arbitrary W provided that
W = W(x⊥). We have slightly altered Sazdjian’s proof of compatibility of Eqs.
(5.89). First, note that the relative energy constraints

P · p|Ψ >= 0,

follows from

(L10S1 − L20S2)|Ψ > = (L2
10 − L2

20)|Ψ >

= −1

2
(p2

1 +m2
1 − p2

2 −m2
2)|Ψ >

= −P · p|Ψ >= 0. (5.90)

In order to demonstrate the (weak) compatibility of the two constraints, one must
calculate

[S1, S2]|Ψ > = [L10,L20]−|Ψ > +[L10,L10W]−|Ψ > +

[L20W,L20]−|Ψ > +[L20W,L10W]−|Ψ >

= (L2
10 − L2

20)W|Ψ > −L10WL10|Ψ > −L10WL20W|Ψ > +

L20WL20|Ψ > +L20WL10W|Ψ >=

− P · pW(x⊥)|Ψ > −L10WL1|Ψ > +L20WL2|Ψ > . (5.91)

Using Eq. (5.89) and Eq. (5.90), and

[P · p,W(x⊥)]−|Ψ >= 0,

one then finds that each of the terms vanishes. Thus S1 and S2 are weakly
compatible. Next we show that compatibility of Sazdjian’s constraints

[S1, S2]−|Ψ >= 0,

plus the constraints themselves Si|Ψ >= 0 imply the compatibility of the forms
Eqs. (5.85)

[S1,S2]|Ψ >= 0.
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First, we observe that

Si|Ψ >= Si cosh(∆)|Ψ >= Si|Ψ > .

Therefore,

[S1,S2]|Ψ > = (S1 cosh(∆)S2 − S2 cosh(∆)S1)|Ψ >

= [S1 cosh(∆)]S2|Ψ > −[S2 cosh(∆)]S1|Ψ >

+ cosh(∆)[S1, S2]|Ψ >= 0. (5.92)

Hence, above forms Eqs. (5.85) of the two body Dirac equations are compatible
for arbitrary ∆(x⊥).

Now, from Eqs. (5.84), we see that the new constraints Si are related to the
original external potential ones by

L1|ψ >= (cosh(∆)S1 + sinh(∆)S2)|ψ >, (5.93a)

L2|ψ >= (cosh(∆)S2 + sinh(∆)S1)|ψ > . (5.93b)

Even though we used the scalar interaction to carry out the compatibility check
in Eqs. (5.86)-(5.88), the proof that the external potential Li constraints are
compatible for arbitrary ∆(x⊥), given the compatibility of the Si for arbitrary ∆,
is virtually identical to Eqs. (5.86)-(5.88). As we shall show, for eight invariant
forms for ∆(x⊥), the corresponding external potential form Li constraints can
actually be written in a form that looks like that of a one body Dirac equation,
that is,

L1|ψ > = (L10 + Z1(x⊥, p))|ψ >
= (θ1 · p+ ε1θ1 · P̂ +m1θ51 + Z1(x⊥, p))|ψ >
:= (H(x⊥)θ1 · p+ L1(x⊥))|ψ >= 0, (5.94a)

L2|ψ > = (L20 + Z2(x⊥, p))|ψ >
= (−θ2 · p+ ε2θ2 · P̂ +m2θ52 + Z2(x⊥, p))|ψ >
:= (−H(x⊥)θ2 · p+ L2(x⊥))|ψ >= 0. (5.94b)

Unlike the Si or Si forms of the two body Dirac equation, these external potential
forms have no gross kinetic terms depending on θj · p, i 6= j. This property
simplifies the reduction to a Schrödinger like form. Even at this stage, we see the
importance of the hyperbolic structure of the equations ( which the reader will
recall emerged automatically for the scalar in our supersymmetry approach) in
bringing Eqs. (5.93) to the external potential form through the identity

cosh2(∆) − sinh2(∆) = 1. (5.95)

Recall also the importance of this structure in guaranteeing a physical principle,
the third law.

109



5.2. COVARIANT INTERACTIONS

Such properties of the hyperbolic structure are classical in that they are nec-
essary to guarantee consistency even at the relativistic classical level. But, the
hyperbolic structure has a relativistic quantum mechanical consequence as well.
In two resent papers, [496, 498] Sazdjian has shown how to construct scalar
products that accompany his form of the two body Dirac equations given in Eqs.
(5.89). The result he obtains is (rewritten here in the notation of Crater paper)

< ΨP ′,a,ΨP,b >= (2π)3δ3(
−→
P

′
−−→
P )
∫
d3
[
Ψ†
a(x)

(
1 −W2 − 4ω2γ10γ20

∂W
∂P 2

)
Ψb(x)

]

= (2π)3ω3δ3(~P ′ − ~P )δabfa(ω).

Note that (as pointed out by Sazdjian) this scalar product is of the same kind
potential dependent even if W is energy independent. However, using the trans-
formation Eqs. (5.2.1) and a simple hyperbolic identity we find that the scalar
product that accompanies Crater’s form Eqs. (5.85) of the two body Dirac equa-
tions is given by

< ψP ′,a, ψP,b >= (2π)3δ3(
−→
P

′
−−→
P )
∫
d3
[
ψ†
a(x)

(
1 −W2 − 4ω2γ10γ20

∂W
∂P 2

)
ψb(x)

]

= (2π)3ω3δ3(~P ′ − ~P )δabfa(ω).

Note that for energy independent potentials, this scalar product is of the same
potential independent form as that for the one body Dirac equation with energy
independent potentials. Perhaps, the hyperbolic structure of the two body Dirac
equations will turn out to be a consequence of the requirement that the scalar
product take the simple ψ†ψ form for energy independent potentials.

We now investigate the constraints of external potential form Si generated
by eight choices for ∆(x⊥). In each case, we first construct the new general
hyperbolic constraints Eqs. (5.85) and then pass to the corresponding external
potential constraints through Eq. (5.93).

For scalar interactions, we shall verify that the choice

∆ = −O1L(x⊥)/2 = −[1112L(x⊥)/2]O1,

where
O1 = 2θ51θ52,

leads to the result given in Eqs. (5.62)-(5.64).
For timelike vector interactions, the choice

∆ = O2J(x⊥)/2 = [γ1 · P̂ γ1 · P̂ J(x⊥/2)]O1, (5.96)

where
O2 = 2θ1 · P̂ θ2 · P̂ ,

will lead to the result Eqs. (5.67)-(5.69).
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For spacelike vector interaction, the choice

∆ = O3J (x⊥)/2 = [(γ1⊥ · γ2⊥J (x⊥))/2]O1, (5.97)

where
O3 = 2θ1⊥ · θ2⊥,

will lead to the result Eqs. (5.72)-(5.74). The matrices O1, O2 and O3 are doubly
odd (odd in each spin space) and symmetric in the labels of the two spinning
particles. Here, O1 and O1 are roots of unity, O2

1 = O2
2 = 1. However, since

O3 = −β1β2σ1 · σ2,

and
(σ1 · σ2)

2 = 3 − 2σ1 · σ2,

one finds that
O2

3 = 3E1 + 2E2O3,

where
E1 = 1, E2 = 4θ51θ52θ1 · P̂ θ2 · P̂ = β1β2.

There exists a fourth doubly odd matrix combination

O4 = E2O3,

which, like O3 is not a root of unity (O2
4 = O2

3 6= 1). So, we uncover a fourth odd
interaction, the covariant polar part of the full tensor interaction

∆ = F(x⊥)O4/2 = [α1 · α2F(x⊥)/2]O1. (5.98)

We now construct the two external potential constraints L1 and L2 corresponding
to each of these four interactions. In this construction, the theta combinations of
the Dirac gamma matrices again prove useful. Their characters (even or odd) in
the general brackets Eq. (5.57) and Eq. (5.59) dictate whether one should employ
commutators or anticommutators to obtain the external potential forms from Eqs.
(5.93) and Eqs. (5.85). First note that for each of these four interactions, sinh(∆)
is a double odd function of the doubly odd variable ∆. Using Eq. (5.57) to guide
us to the proper bracket we obtain

L1|ψ > = cosh(∆)S1 + sinh(∆)S2

= cosh(∆)L10 cosh(∆) + cosh(∆)L20 sinh(∆)

+ sinh(∆)L20 cosh(∆) + sinh(∆)L10 sinh(∆)

= cosh2(∆)L10 + cosh(∆)[L10, cosh(∆)]−

+ cosh(∆)[L20, sinh(∆)]+ + sinh(∆)[L20, cosh(∆)]−

+ sinh(∆)[L10, sinh(∆)]+ − sinh2(∆)L10, (5.99)
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with a similar expression for L2. Note how the plus sign in conjunction with the
odd-odd nature of sinh(∆) combine to give a negative coefficient for sinh2(∆)
which in turn allows one to use the simple hyperbolic identity Eq. (5.95) in the
construction of the external potential form Eqs. (5.94). We need to compute the
four quantum brackets [Li0, cosh(∆)]− and [Li0, sinh(∆)]+ for i = 1, 2.

First, we isolate the derivative parts of the constraints by using the product
rule Eq. (5.59) to decompose the following parts of these four quantum brackets

[θ1 · p, cosh(∆)]− = −iθ1 · ∂(∆) sinh(∆) + [θµ1 , cosh(∆)]− pµ, (5.100a)

[−θ2 · p, cosh(∆)]− = iθ2 · ∂(∆) sinh(∆) − [θµ2 , cosh(∆)]− pµ, (5.100b)

[θ1 · p, sinh(∆)]+ = −iθ1 · ∂(∆) cosh(∆) + [θµ1 , sinh(∆)]+ pµ, (5.100c)

[−θ2 · p, sinh(∆)]+ = iθ2 · ∂(∆) cosh(∆) − [θµ2 , sinh(∆)]+ pµ. (5.100d)

Thus the derivative parts of Eq. (5.99) are

cosh(∆)( − iθ1 · ∂(∆) sinh(∆) + iθ2 · ∂ cosh(∆))

+ sinh(∆)(iθ2 · ∂(∆) sinh(∆) − iθ1 · ∂ cosh(∆))

= iθ2 · ∂(∆) − i([cosh(∆), θµ1 ]− sinh(∆)

− [cosh(∆), θµ2 ]− cosh(∆) − [sinh(∆), θµ2 ]+ sinh(∆)

+ [sinh(∆), θµ1 ]+ cosh(∆))∂µ(∆).

Note that the choice of commutators versus anticommutators is dictated by
the facts that 4 is odd in both particles theta matrices and that the hyperbolic
sine is an odd function (while the hyperbolic cosine is an even function). (Note
also that [∂(∆),∆]− = 0.) As a result,

L1|ψ > = L10 + iθ2 · ∂(∆) − i([cosh(∆), θµ1 ]− sinh(∆) − [cosh(∆), θµ2 ]− cosh(∆)

−[sinh(∆), θµ2 ]+ sinh(∆) + [sinh(∆), θµ1 ]+ cosh(∆))∂µ(∆)

+ cosh(∆)([θµ1 , cosh(∆)]−pµ + [ε1θ1 · P̂ , cosh(∆)]− + [m1θ51, cosh(∆)]−

−[θµ2 , sinh(∆)]+pµ + [ε2θ2 · P̂ , sinh(∆)]+ + [m2θ52, sinh(∆)]+)

+ sinh(∆)(−[θµ2 , cosh(∆)]−pµ + [ε2θ2 · P̂ , cosh(∆)]− + [m2θ52, cosh(∆)]−

+[θµ1 , sinh(∆)]+pµ + [ε1θ1 · P̂ , sinh(∆)]+ + [m1θ51, sinh(∆)]+, (5.101)

along with a similar expression for L2.
In each of the brackets of Eq. (5.101) which contain θµi , that matrix may be

replaced by θi⊥ since it is contracted with either ∂µf(x⊥) or pµ (which satisfies
P · p ≈ 0).

5.2.2 The Important Eight Interactions

Crater and van Alstine considered four polar and four axial interactions [158].
The four polar interactions (or tensors of rank 0,1,2) are
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1.) scalar

∆L = −Lθ51θ52 = −L
2
O1, O1 := −γ51γ52, (5.102)

2.) timelike vector

∆J = Jθ1 · P̂ θ2 · P̂ := O2
J

2
= β1β2

J

2
O1, (5.103)

3.) spacelike vector

∆G = Gθ1⊥ · θ2⊥ := O3
G
2

= γ1⊥ · γ2⊥
G
2
O1, (5.104)

4.) tensor (polar)

∆F = 4Fθ1⊥ · θ2⊥θ52θ51θ1 · P̂ θ2 · P̂ := O4
F
2

= α1 · α2
F
2
O1. (5.105)

The four axial interactions, or pseudotensors of rank 0,1,2, are
5.) pseudoscalar

∆C =
C

2
:= E1

C

2
= −γ51γ52

C

2
O1, (5.106)

6.) timelike pseudovector

∆H = −2Hθ1 · P̂ θ2 · P̂ θ51θ52 := −E2
H

2
= β1γ51β2γ52

H

2
O1, (5.107)

7.) spacelike pseudovector

∆I = −2Iθ1⊥ · θ2⊥θ51θ52 := −E3
I

2
= −γ51γ1⊥ · γ52γ2⊥

I

2
O1, (5.108)

8.) and tensor(axial)

∆Y = −2Y θ1⊥ · θ2⊥θ1 · P̂ θ2 · P̂ := −E4
Y

2
= −σ1 · σ2

Y

2
O1. (5.109)

L, J , G, F , C, H, I, Y are invariant functions of x⊥. Too each of the eight
relativistic interactions correspond coupled compatible Dirac equations.

1. ) scalar: ∆ = − 1
2
O1L(x⊥).

Consequently,

cosh(∆) = E1 cosh

(
L

2

)
, sinh(∆) = −O1 sinh

(
L

2

)
. (5.110)

To construct the L1, one needs to know the elementary brackets

[E1, θ
µ
i⊥]− = [E1, θi · P̂ ]− = [E1, θ51]− = 0, (5.111)
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[O1, θ
µ
i⊥]+ = [O1, θi · P̂ ]+ = 0, (5.112)

[O1, θ5i]+ = −2θ5j , i 6= j. (5.113)

These imply that

[cosh(∆), θµi⊥]− = [cosh(∆), θi · P̂ ]− = [cosh(∆), θ5i]− = 0, (5.114)

[sinh(∆), θµi⊥]+ = [sinh(∆), θi · P̂ ]+ = [sinh(∆), θ5i]+ = 2 sinh(∆)θ5i.
(5.115)

To perform the remaining multiplications, we use

O1θ51 = −θ52, O1θ52 = −θ51,

along with hyperbolic identities, to obtain

L1|ψ > = (θ1 · p+ ε1θ1 · P̂ +m1 cosh(LO1)θ51

−m2 sinh(LO1)θ52 − iθ2 ·
∂L

2
O1)|ψ >, (5.116a)

L2|ψ > = (−θ1 · p+ ε2θ2 · P̂ +m2 cosh(LO1)θ52

−m1 sinh(LO1)θ51 + iθ1 ·
∂L

2
O1)|ψ > . (5.116b)

Since O1 is a root of unity, cosh(O1L) = cosh(L), sinh(O1L) = sinh(L).
Thus these equations are just the scalar equations Eqs. (5.62)-(5.64) that
we originally derived through supersymmetric techniques.2

2. ) timelike four vector: ∆ = 1
2
O2J.

Consequently,

cosh(∆) = E1 cosh(J/2), sinh(∆) = O2 sinh(J/2). (5.117)

Carrying out steps similar to those given above for the scalar interaction,
we obtain

L1|ψ > = (θ1 · p+ ε1 cosh(JO2)θ1 · P̂ + ε2 sinh(JO2)θ2 · P̂

+m1θ51 + iθ2 ·
∂J

2
O2)|ψ >, (5.118a)

L2|ψ > = (−θ2 · p+ ε2 cosh(JO2)θ2 · P̂ + ε1 sinh(JO2)θ1 · P̂

+m2θ52 − iθ2 ·
∂J

2
O2)|ψ > . (5.118b)

Since O2 is a root of unity, these equations are just those generated by
supersymmetric techniques Eqs. (5.67)-(5.69).

2See on the Sec. 2.7.
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3. ) spacelike vector: ∆ = 1
2
O3J (x⊥).

This case is more complex algebraically since O2
3 6= 1. However, we can

write
O3 = E2(E1 − 2R), (5.119)

where

R =
1

2
(E1 −O4) =

1

2
(1 + σ1 · σ2), (5.120)

is a root of unity R2 = 1. Thus

cosh(∆) = cosh

(E1J
2

−RJ
)

= cosh

(J
2

)
cosh(J ) −R sinh

(J
2

)
sinh(J )

= cosh3

(J
2

)
+

1

2
O4 sinh

(J
2

)
sinh(J ), (5.121)

sinh(∆) = E2 sinh

(
E1

J
2

−RJ
)

= E2

(
sinh

(J
2

)
cosh(J ) −R cosh

(J
2

)
sinh (J )

)

= E2 sinh3

(J
2

)
+

1

2
O3 cosh

(J
2

)
sinh(J ). (5.122)

One needs to know the elementary brackets

[E2, θ
µ
2⊥]+ = 2θ2⊥E2 = 2E2θ

µ
2⊥, (5.123)

[E2, θi · P̂ ]+ = [E2, θ5i]+ = 0. (5.124)

Since E2O4 = O3, one also needs to know

[O3, θ
µ
i⊥]+ = −2θµj⊥, i 6= j, (5.125)

[O3, θ⊥ · P̂ ]+ = [O3, θ5i]+ = 0. (5.126)

In addition, one must use

[O4, θ
µ
i⊥]− = −2θµi⊥O4 + [O3, θ

µ
i⊥]+

= −2θµi⊥O4 − 2θµj⊥E2

= 2O4, θ
µ
i⊥ + 2E2θ

µ
j⊥, i 6= j, (5.127)

[θi · P̂ ,O4]− = [θ5i,O4]− = 0. (5.128)

Consequently,

[cosh(∆), θµi⊥]− = − sinh

(J
2

)
sinh(J )(θµi⊥O4 + θµj⊥E2)

= sinh

(J
2

)
sinh(J )(O4θ

µ
i⊥ + E2θ

µ
j⊥), (5.129)
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[cosh(∆), θi · P̂ ]− = [cosh(∆), θ5i]− = 0, (5.130)

while

[sinh(∆), θµi⊥]+ = 2 sinh3

(J
2

)
θµi⊥E2 − cosh

(J
2

)
sinh(J )θµj⊥

= 2 sinh3

(J
2

)
E2θ

µ
i⊥ − cosh

(J
2

)
sinh(J )θµj⊥,

[sinh(∆), θi · P̂ ]+ = [sinh(∆), θ5i]+ = 0. (5.131)

One then uses

O4E2 = O3, O4O3 = E2O2
3 = 3E2 + 2O3,O2

4 = 3 + 2O4, (5.132)

along with the identities

θµ1⊥O3 + θµ1⊥E2 + θµ2⊥O4 + θµ2⊥ = 0, (5.133)

O4θ
µ
1⊥ + E2θ

µ
2⊥ + O3θ

µ
2⊥ + θµ1⊥ = 0, (5.134)

to perform the remaining multiplications. After using numerous hyperbolic
identities one finds

−[cosh(∆), θµ1⊥]− sinh(∆) − [sinh(∆), θµ1⊥]+ cosh(∆)

= 2 sinh

(J
2

)
cosh

(J
2

)
θµ2⊥, (5.135)

[cosh(∆), θµ2⊥]− cosh(∆) + [sinh(∆), θµ2⊥]+ sinh(∆)

= 2 sinh2

(J
2

)
θµ2⊥, (5.136)

cosh(∆)[θµ1⊥, cosh(∆)]− + sinh(∆)[θµ2⊥, sinh(∆)]+

= 2 sinh2

(J
2

)
θµ1⊥, (5.137)

− cosh(∆)[θµ2⊥, sinh(∆)]+ − sinh(∆)[θµ2⊥, cosh(∆)]−

= 2 sinh

(J
2

)
cosh

(J
2

)
θµ1⊥, (5.138)

so that

L1|ψ >= (+eJ θ1 · p+ ε1θ1 · P̂ +m1θ51 − i exp(J )θ2 ·
∂J
2

O3)|ψ >, (5.139a)

L2|ψ >= (−eJ θ2 ·p+ ε2θ2 · P̂ +m2θ52− i exp(J )θ1 ·
∂J
2

O3)|ψ > . (5.139b)

The external potential forms Eqs. (5.139) [with J = ln(J )], are just the
constraints Eqs. (5.72)-(5.74) that we had derived earlier.
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4. ) tensor (Polar):∆ = 1
2
O4F .

Now since O4 = E1 − 2R, we find that

cosh(∆) = cosh

(E1F
2

−RF
)

= cosh

(F
2

)
cosh(F) −R sinh

(F
2

)
sinh(F)

= cosh3

(F
2

)
+

1

2
O4 sinh

(F
2

)
sinh(F), (5.140)

sinh(∆) = sinh

(
E1

F
2
−RF

)

= sinh

(F
2

)
cosh(F) −R cosh

(F
2

)
sinh (F)

= sinh3

(F
2

)
+

1

2
O4 cosh

(F
2

)
sinh(F). (5.141)

In addition to the commutators given in Eq. (5.127) and Eq. (5.128) for
the spacelike vector, we need the anticommutators

[O4, θ
µ
i⊥]+ = −2θµj⊥E2 = −E2θ

µ
j⊥, (5.142)

[O4, θi · P̂ ]+ = 2O4θi · P̂ , [O4, θ5i]+ = 2O4θ5i. (5.143)

With their aid, we find that

[cosh(∆), θµi⊥]− = − sinh

(F
2

)
sinh(F)(θµi⊥O4 + θµj⊥E2)

= sinh

(F
2

)
sinh(F)(O4θ

µ
i⊥ + E2θ

µ
j⊥), (5.144)

[cosh(∆), θi · P̂ ]− = [cosh(∆/2), θ5i]− = 0, (5.145)

[sinh(∆), θµi⊥]+ = 2 sinh3

(F
2

)
θµi⊥ − cosh

(F
2

)
sinh(F)θµj⊥E2

= 2 sinh3

(F
2

)
θµi⊥ − cosh

(F
2

)
sinh(F)E2θ

µ
j⊥,

(5.146)

[sinh(∆), θi · P̂ ]+ = 2 sinh(∆)θi · P̂ , [sinh(∆), θ5i]+ = 2 sinh(∆)θ5i. (5.147)

After using these brackets to evaluate Eq. (5.101) and performing the
indicated multiplications by using Eqs. (5.129)- (5.135) and

O3θ
µ
1⊥ + E2θ

µ
1⊥ + O4θ

µ
2⊥ + θµ2⊥ = 0, (5.148)

θµ1⊥O3 + θµ2⊥E2 + θµ2⊥O4 + θµ1⊥ = 0, (5.149)
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we obtain

−[cosh(∆), θµ1⊥]− sinh(∆) − [sinh(∆), θµ1⊥]+ cosh(∆)

= 2 sinh

(FE2

2

)
cosh

(FE2

2

)
θµ2⊥, (5.150)

[cosh(∆), θµ2⊥]− cosh(∆) + [sinh(∆), θµ2⊥]+ sinh(∆)

= 2 sinh2

(FE2

2

)
θµ2⊥, (5.151)

cosh(∆)[θµ1⊥, cosh(∆)]− + sinh(∆)[θµ2⊥, sinh(∆)]+

= 2 sinh2

(FE2

2

)
θµ1⊥, (5.152)

− cosh(∆)[θµ2⊥, sinh(∆)]+ − sinh(∆)[θµ2⊥, cosh(∆)]−

= 2 sinh

(FE2

2

)
cosh

(FE2

2

)
θµ1⊥. (5.153)

We find that for polar tensor interactions

L1|ψ > = (exp(FE2)θ1 · p+ ε1 cosh(FO4)θ1 · P̂
+ε2 sinh(FO4)θ2 · P̂
+m1 cosh(FO4)θ51 +m2 sinh(FO4)θ52

+i exp(FE2)θ2 ·
∂F
2

O4)|ψ >, (5.154a)

L2|ψ > = (− exp(FE2)θ2 · p+ ε2 cosh(FO4)θ1 · P̂
+ε1 sinh(FO4)θ1 · P̂
+m2 cosh(FO4)θ52 +m1 sinh(FO4)θ51

−i exp(FE2)θ1 ·
∂F
2

O4)|ψ > . (5.154b)

and the four pairs of Dirac equations that we shall derive below for axial
interactions are new forms which accompany the three pairs of Dirac equa-
tions that we had found previously through quantization of supersymmetric
pseudo-classical forms.

The axial counterparts to the constraints Eqs. (5.93) in the case of polar
interactions are

L1|ψ >= cosh(∆)S1|ψ > − sinh(∆)S2|ψ >, (5.155a)

L2|ψ >= cosh(∆)S2|ψ > − sinh(∆)S1|ψ > . (5.155b)

where S1 and S2 are still given by Eqs. (5.85). Just as for polar Eqs. (5.93),
the compatibility of these two constraints follows from that of the Si. Note
that the minus sign combines with the fact ∆ is even-even for the axial
interactions to give a minus sign coefficient for sinh(∆).

118



CHAPTER 5. RELATIVISTIC TWO BODY WAVE EQUATIONS

We have chosen a minus sign in Eqs. (5.155) because sinh(∆) is even in the
number of theta matrices. Since this quantity will appear in commutators
instead of anticommutators, we find [in contrast to Eqs. (5.99) for polar
interactions] that

L1|ψ > = cosh2(∆)L10 + cosh(∆)[L10, cosh(∆)]−

+ cosh(∆)[L20, sinh(∆)]− − sinh(∆)[L20, cosh(∆)]−

− sinh(∆)[L10, sinh(∆)]− − sinh2(∆)L10. (5.156)

Steps analogous to those below Eqs. (5.99)(with commutators appearing in-
stead of anticommutators at appropriate places) show that the general form
of the Dirac operator for the axial interaction analogous to Eqs. (5.101) for
the polar is

L1|ψ > = L10 + iθ2 · ∂(∆) − i([cosh(∆), θµ1 ]− sinh(∆) − [cosh(∆), θµ2 ]− cosh(∆)

+[sinh(∆), θµ2 ]− sinh(∆) − [sinh(∆), θµ1 ]− cosh(∆))∂µ(∆)

+ cosh(∆)([θµ1 , cosh(∆)]−pµ + [ε1θ1 · P̂ , cosh(∆)]− + [m1θ51, cosh(∆)]−

−[θµ2 , sinh(∆)]−pµ + [ε2θ2 · P̂ , sinh(∆)]− + [m2θ52, sinh(∆)]−)

+ sinh(∆)([θµ2 , cosh(∆)]−pµ − [ε2θ2 · P̂ , cosh(∆)]− − [m2θ52, cosh(∆)]−

−[θµ1 , sinh(∆)]−pµ − [ε1θ1 · P̂ , sinh(∆)]− − [m1θ51, sinh(∆)]−, (5.157)

along with a similar expression for L2..

5. ) pseudoscalar: ∆ = 1
2
C.

Consequently,

cosh(∆) = cosh(C/2), sinh(∆) = sinh(C/2). (5.158)

As a result,

[cosh(∆), θµi⊥]− = [cosh(∆), θi · P̂ ]− = [cosh(∆), θ5i]− = 0, (5.159)

[sinh(∆), θµi⊥]− = [sinh(∆), θi · P̂ ]− = [sinh(∆), θ5i]− = 0, (5.160)

so that

L1|ψ >= (+θ1 · p+ ε1θ1 · P̂ +m1θ51 + iθ2 ·
∂L

2
)|ψ >,

L2|ψ >= (−θ2 · p+ ε2θ2 · P̂ +m2θ52 − iθ1 ·
∂L

2
)|ψ > . (5.161)

6. ) timelike pseudovector: ∆ = 1
2
E2H.

Then
cosh(∆) = cosh(H), sinh(∆) = E2 sinh(H). (5.162)
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Thus

[cosh(∆), θµi⊥]− = [cosh(∆), θi · P̂ ]− = [cosh(∆), θ5i]− = [sinh(∆), θµi⊥]− = 0,

[sinh(∆), θ1 · P̂ ]− = 2 sinh(∆)θi · P̂ , [sinh(∆), θ5i]− = 2 sinh(∆)θ5i.
(5.163)

In addition,

E2, θi·P̂ [E2, θ
µ
i⊥]− = 0, [E2, θi·P̂ ]− = 2E2θi·P̂ , [E2, θ5i]− = 2E2θ5i (5.164)

implies that

[sinh(∆), θµi⊥]− = 0,

[sinh(∆), θi · P̂ ]− = 2 sinh(∆)θi · P̂ , (5.165)

[sinh(∆), θ5i]− = 2 sinh(∆)θ5i.

When we substitute these brackets into Eq. (5.157), we find

L1|ψ > = (θ1 · p+ ε1 cosh(HE2)θ1 · P̂ + ε2 sinh(HO2)θ2 · P̂

+m1 cosh(HE2)θ51 +m2 sinh(HE2)θ52 − iθ2 ·
∂H

2
E2)|ψ >,

(5.166a)

L2|ψ > = (−θ2 · p+ ε2 cosh(HE2)θ2 · P̂ + ε1 sinh(HO2)θ1 · P̂

+m2 cosh(HE2)θ52 +m1 sinh(HE2)θ51 + iθ1 ·
∂H

2
E2)|ψ > .

(5.166b)

7. ) spacelike pseudovector: ∆ = − 1
2
I(x⊥)E3.

Using the identity

E3 = O1O3 = O2(E1 − 2R),

we find that steps similar to those given for the spacelike vector interaction
and the polar part of the tensor interaction given in case 4.) yield

L1|ψ > = (exp(O1I)θ1 · p+ ε1θ1 · P̂ +m1 cosh(IE3)θ51

+m2 sinh(IE3)θ52 − i exp(O1I)θ2 · ∂I2 E3)|ψ >, (5.167a)

L2|ψ > = (− exp(O1I)θ2 · p+ ε2θ2 · P̂ +m2 cosh(IE3)θ52

+m1 sinh(IE3)θ51 + i exp(O1I)θ1 · ∂I2 E3)|ψ > . (5.167b)

8. ) tensor-axial: ∆ = 1
2
Y (x⊥)E4.

Using the identity

E4 = O2O3 = O1(E1 − 2R),
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we find that steps similar to those given for the spacelike vector interaction
and the polar part of the tensor interaction given in case 4.) yield

L1|ψ > = (exp(O2Y )θ1 · p+ ε1 cosh(Y E4)θ1 · P̂ + ε2 sinh(Y E4)θ2 · P̂

+ m1θ51 − i exp(O2Y )θ2 ·
∂Y

2
E4)|ψ >, (5.168a)

L2|ψ > = (− exp(O2Y )θ2 · p+ ε2 cosh(Y E4)θ2 · P̂ + ε1 sinh(Y E4)θ1 · P̂

+ m2θ52 + i exp(O2Y )θ1 ·
∂Y

2
E4)|ψ > . (5.168b)

5.2.3 Combination of Interactions

In physical applications two or more of these eight interactions occur in com-
bination. We may use each of the eight interaction in Eqs. (5.85) and (5.93)
separately or as a sum

∆p = ∆L + ∆J + ∆G + ∆F , (5.169)

to generate sets of two body Dirac equations with corresponding interactions.
A particularly important combination occurs for electromagnetic interactions.
While time- and space- like vector interactions are characterized by the respective
matrices β1β2 and γ1⊥ · γ2⊥, a potential proportional to γ1 · γ2 would correspond
to an electromagnetic like interaction and would require that J = −G.

∆EM =
(O3 −O2)G(x⊥)

2
=
γ1 · γ2G(x⊥)

2
O1. (5.170)

Crater and Van Alstine found [166] that these and their sum

∆a = ∆C + ∆H + ∆I + ∆Y , (5.171)

would be used in Eqs. (5.85) but with the sinh(∆a) terms in Eqs. (5.84) appearing
with a negative sign instead of the plus sign as is the case polar interactions. There
is no sign change in Eqs. (5.85 ) for ∆a.

For systems with both polar and axial interactions [158], one uses ∆p−∆a to
replace ∆ in Eqs. (5.84), and ∆p + ∆a to replace the ∆ in Eqs. (5.85).

We examine the case of additive scalar and timelike vector interactions

∆ := ∆L + ∆J =
1

2
(O2J(x⊥) −O1L(x⊥)). (5.172)

Since both O1 and O2 are doubly odd matrices, the general form given in Eq.
(5.99) for L1, L2 constraint is still valid. We use Eqs. (5.110), Eqs. (5.117) and
O1O2 = E2 to obtain

cosh(∆) = cosh(∆J) cosh(∆L) + sinh(∆J) sinh(∆L)

= cosh(
J

2
) cosh(

L

2
) − E2 sinh(

J

2
) sinh(

L

2
), (5.173)
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sinh(∆) = sinh(∆J) cosh(∆L) + cosh(∆J) sinh(∆L)

= O2 sinh(
J

2
) cosh(

L

2
) −O1 cosh(

J

2
) sinh(

L

2
). (5.174)

We then make use of Eqs. (5.114)-(5.115) and similar relations for the timelike
vector interactions to obtain

[cosh(∆), θµi⊥]− = 0 = [sinh(∆), θµi⊥]+,

[cosh(∆), θi · P̂ ]− = 2 sinh(∆J) sinh(∆L)θi · P̂ ,
[cosh(∆), θ5i]− = 2 sinh(∆J) sinh(∆L)θ5i,

[sinh(∆), θi · P̂ ]+ = 2 sinh(∆J) cosh(∆L)θi · P̂ ,
[sinh(∆), θ5i]− = 2 cosh(∆J) sinh(∆L)θ5i.

Substitution of these results into Eq. (5.101) then yields

L1|ψ > = (θ1 · p+ ε1 cosh(O2J)θ1 · P̂ + ε2 sinh(O2J)θ2 · P̂ +m1 cosh(O1L)θ51

−m2 sinh(O1)θ52 + iθ2 ·
∂

2
(JO2 − LO1))|ψ >, (5.175a)

L2|ψ > = (−θ2 · p+ ε2 cosh(O2J)θ2 · P̂ + ε1 sinh(O2J)θ1 · P̂ +m2 cosh(O1L)θ52

−m1 sinh(O1)θ51 − iθ1 ·
∂

2
(JO2 − LO1))|ψ > . (5.175b)

When we use the fact that Oi’s are roots of unity in each hyperbolic function,
we are similar results Eqs. (5.75). Next, we treat the more complicated case of
additive timelike and spacelike interaction for which

∆ := ∆J + ∆G =
1

2
(O2J(x⊥) + O3G(x⊥)). (5.176)

When we use

cosh(∆) = cosh(∆G) cosh(∆J) + sinh(∆G) sinh(∆J),

sinh(∆) = sinh(∆G) cosh(∆J) + cosh(∆G) sinh(∆J),

Eqs. (5.114), (5.129) and (5.131), we find that

[cosh(∆), θµi⊥]− = [cosh(∆G), θµi⊥]− cosh(∆J) − [sinh(∆G), θµi⊥]+ sinh(∆J),

[sinh(∆), θi · P̂ ]− = sinh(∆G)[sinh(∆J), θi · P̂ ]+,

[sinh(∆), θ5i]+ = 0,

[cosh(∆), θi · P̂ ]− = sinh(∆G)[sinh(∆J), θi · P̂ ]+,

[cosh(∆), θ5i]− = 0,

[sinh(∆), θµi⊥]+ = [sinh(∆G), θµi⊥]+ cosh(∆J) − [cosh(∆G), θµi⊥]− sinh(∆J),
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So that

L1|ψ > = (exp(G)θ1 · p+ cosh(O2J)ε1θ1 · P̂ + sinh(O2J)ε2θ2 · P̂

+m1θ51 + i exp(G)θ2 ·
∂

2
(GO3 + JO2))|ψ >, (5.177a)

L2|ψ > = (− exp(G)θ2 · p+ cosh(O2J)ε2θ2 · P̂ + sinh(O2J)ε1θ1 · P̂

+m2θ52 − i exp(G)θ1 ·
∂

2
(GO3 + JO2))|ψ > . (5.177b)

For electromagnetic like interactions the potentials are related through

J = −G,

and the combination

∆ = (GO3 + JO2)/2 = (Gθ1 · θ2)/2,

then

L1|ψ > = (exp(G)θ1 · p+ cosh(O2J)ε1θ1 · P̂ − sinh(O2J)ε2θ2 · P̂

+m1θ51 + i exp(G)θ2 ·
∂

2
(Gθ1 · θ2))|ψ >, (5.178a)

L2|ψ > = (exp(G)θ2 · p+ cosh(O2J)ε2θ2 · P̂ − sinh(O2J)ε1θ1 · P̂

+m2θ52 − i exp(G)θ1 ·
∂

2
(Gθ1 · θ2))|ψ > . (5.178b)

If we identify
G = exp(G),

we reproduce Eqs. (5.78).
Next, we examine the still more complex structure generated by addition of

polar and axial interactions, such as produced by electromagnetics when the Fierz
transformated annihilation channel is included.3 We will construct Li constraints
from combinations of Si that yield the simple external potential forms. For the
polar interactions, ∆ is an odd-odd matrix and Li is is given by Eq. (5.101),
there as for the axial interactions, ∆ is an even-even interaction and Li is given
Eq. (5.157). We still start from general constraints Eqs. (5.85) but with ∆ =
∆O + ∆E := ∆+ and ∆− = ∆O − ∆E , taking

L1|ψ >= cosh(∆−)S1|ψ > + sinh(∆−)S2|ψ >, (5.179a)

L2|ψ >= cosh(∆−)S2|ψ > + sinh(∆−)S1|ψ > . (5.179b)

permit to use the simple hyperbolic identity Eq. (5.95). That is, the plus sign
coefficient of ∆O and the minus sign coefficient ∆E in conjunction with the odd-
odd nature of ∆O and sinh(∆E) for the polar interactions and the even-even

3See Appendix A.2.
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nature of ∆E and sinh(∆E) for the axial interactions combine to give a minus sign
coefficient for sinh2(∆−), which, in turn, allow us to use the simple hyperbolic
identity Eq. (5.95) in the construction of the external potential form Eq. (5.94).
Note that Eqs. (5.179) generalize our two earlier forms Eqs. (5.93) and Eqs.
(5.155) reducing to them when either ∆O = 0 or ∆E = 0. The compatibility of
these two constraints follows from those of the Si just as did that of Eq. (5.93).
Next, we consider how to generalize Eq. (5.101) and Eq. (5.157), the equations
for the external potential forms of the constraints. We begin with the identity

cosh(∆+) = cosh(∆O) cosh(∆E) + sinh(∆O) sinh(∆E),

sinh(∆+) = sinh(∆O) cosh(∆E) + cosh(∆O) sinh(∆E).

The even or odd character of the functions and their respective arguments dictate
whether the Li0 form commutators or anticommutators as they pass through
cosh(∆+) and sinh(∆+) in Eqs. (5.85). To evaluate it, we use

L10 cosh(∆+) = cosh(∆−)L10 +

[L10, cosh(∆O) cosh(∆E)]− + [L10, sinh(∆O) sinh(∆E)]+ (5.180)

L20 sinh(∆+) = − sinh(∆−)L20 +

[L20, sinh(∆O) cosh(∆E)]+ + [L20, cosh(∆O) sinh(∆E)]−. (5.181)

We find

L1|ψ > = cosh2(∆−)L10 + cosh(∆−)([L10, cosh(∆O) cosh(∆E)]−

+[L10, sinh(∆O) sinh(∆E)]+ + [L20, sinh(∆O) cosh(∆E)]+

+[L20, cosh(∆O) sinh(∆E)]−)

+ sinh(∆−)([L20, cosh(∆O) cosh(∆E)]−

+[L20, sinh(∆O) sinh(∆E)]+ + [L10, sinh(∆O) cosh(∆E)]+

+[L10, cosh(∆O) sinh(∆E)]− − sinh2(∆−)L10), (5.182)

accompanied by a similar expression for L2. Just as we did for polar and ax-
ial interactions alone, we isolate the derivative part of the interaction for this
combination. We find

[θ1 · p, cosh ∆O cosh ∆E ]− + [θ1 · p, sinh ∆O sinh ∆E ]+ =

−iθ1∂(∆+) sinh(∆+) + [θµ1⊥, cosh ∆O cosh ∆E ]−pµ

+[θµ1⊥, sinh ∆O sinh ∆E ]+pµ, (5.183)

[−θ2 · p, sinh ∆O cosh ∆E ]+ + [−θ2 · p, sinh ∆O sinh ∆E ]− =

+iθ2∂(∆+) cosh(∆+) − [θµ2⊥, sinh ∆O cosh ∆E ]+pµ

−[θµ2⊥, cosh ∆O sinh ∆E ]−pµ, (5.184)
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[−θ2 · p, cosh ∆O cosh ∆E ]− + [θ2 · p, sinh ∆O sinh ∆E ]+ =

+iθ2∂(∆+) sinh(∆+) − [θµ2⊥, cosh ∆O sinh ∆E ]−pµ

−[θµ2⊥, sinh ∆O sinh ∆E ]+pµ, (5.185)

[θ1 · p, sinh ∆O cosh ∆E ]+ + [θ1 · p, cosh ∆O sinh ∆E ]− =

−iθ1∂(∆+) sinh(∆+) + [θµ1⊥, cosh ∆O sinh ∆E ]−pµ

+[θµ1⊥, sinh ∆O cosh ∆E ]+pµ, (5.186)

The derivative part of Eq. (5.182) is

cosh(∆−)(−iθ1∂(∆+) sinh(∆+) + iθ2∂(∆+) cosh(∆+)) +

sinh(∆−)(iθ2∂(∆+) sinh(∆+) − iθ1∂(∆+) cosh(∆+))

= iθ2∂(∆+) − i([cosh ∆O cosh ∆E , θ
µ
1⊥]− sinh(∆+)

−[sinh ∆O cosh ∆E , θ
µ
1⊥]+ sinh(∆+)

−[cosh ∆O cosh ∆E , θ
µ
2⊥]− cosh(∆+)

+[sinh ∆O sinh ∆E , θ
µ
2⊥]+ cosh(∆+)

−[sinh ∆O cosh ∆E , θ
µ
2⊥]− sinh(∆+)

+[sinh ∆O cosh ∆E , θ
µ
2⊥]− sinh(∆+)

+[sinh ∆O cosh ∆E , θ
µ
1⊥]+ cosh(∆+)

−[cosh ∆O sinh ∆E , θ
µ
2⊥]− cosh(∆+))∂µ(∆+).

When we collect all terms, we find

L1|ψ > = L10|ψ > +iθ2∂(∆+) − i([cosh(∆O) cosh(∆E), θ
µ
1⊥]− sinh(∆+)

−[sinh(∆O) cosh(∆E), θ
µ
1⊥]+ sinh(∆+)

−[cosh(∆O) cosh(∆E), θ
µ
2⊥]− cosh(∆+)

+[sinh(∆O) sinh(∆E), θ
µ
2⊥]+ cosh(∆+)

−[sinh(∆O) cosh(∆E), θ
µ
2⊥]− sinh(∆+)

+[sinh(∆O) cosh(∆E), θ
µ
2⊥]− sinh(∆+)

+[sinh(∆O) cosh(∆E), θ
µ
1⊥]+ cosh(∆+)

−[cosh(∆O) sinh(∆E), θ
µ
2⊥]− cosh(∆+))∂µ(∆+)

+ cos(∆−)([θµ1⊥, cosh(∆O) cosh(∆E)]−pµ

+[θµ1⊥, sinh(∆O) sinh(∆E)]+pµ

+[ε1θ1 · P̂ , cosh(∆O) cosh(∆E)]− + [ε1θ1 · P̂ , sinh(∆O) sinh(∆E)]+

+[m1θ51, cosh(∆O) cosh(∆E)]− + [m1θ51, sinh(∆O) sinh(∆E)]+

−[θµ2⊥, sinh(∆O) cosh(∆E)]+pµ

+[θµ2⊥, cosh(∆O) sinh(∆E)]−pµ

+[ε2θ2 · P̂ , sinh(∆O) cosh(∆E)]+ + [ε2θ2 · P̂ , cosh(∆O) sinh(∆E)]−

+[m2θ52, sinh(∆O) cosh(∆E)]+ + [m2θ52, cosh(∆O) sinh(∆E)]−)+
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+ sinh(∆−)([θµ2⊥, cosh(∆O) sinh(∆E)]−pµ

+[θµ2⊥, sinh(∆O) cosh(∆E)]+pµ

+[ε2θ2 · P̂ , cosh(∆O) cosh(∆E)]− + [ε2θ2 · P̂ , sinh(∆O) cosh(∆E)]+

+[m2θ52, cosh(∆O) sinh(∆E)]− + [m2θ52, sinh(∆O) cosh(∆E)]+

+[θµ1⊥, sinh(∆O) cosh(∆E)]+pµ

+[θµ1⊥, sinh(∆O) cosh(∆E)]−pµ

+[ε1θ1 · P̂ , sinh(∆O) cosh(∆E)]+ + [ε1θ1 · P̂ , sinh(∆O) cosh(∆E)]−

+[m1θ51, sinh(∆O) cosh(∆E)]+

+[m1θ51, sinh(∆E) cosh(∆O)]−)|ψ >, (5.187)

With a similar expression for L2. This complicated expression simplifies to either
Eq. (5.101) or Eq. (5.157) if either ∆E or ∆O vanishes.

We specialize this result to the additive scalar and pseudoscalar interaction
for which

∆O = −L(x⊥)O1

2
, ∆E =

C(x⊥)

2
E1 =

C(x⊥)

2
. (5.188)

This combination is important not only as part of the Fierz transformed
annihilation structure of electrodynamics but also for phenomenological studies of
the two nucleon problem. This particular case is especially simple since virtually
all of the commutators and anticommutators in Eq. (5.187) vanish with the
exception of the anticommutators that involve the mi factors. These combine to
give

cosh(∆−)(2 sinh(∆L) sinh(∆C)m1θ51 + 2 sinh(∆L) cosh(∆E)m2θ52)

×(2 sinh(∆L) sinh(∆C)m2θ52 + 2 sinh(∆L) cosh(∆C)m1θ51)

= (2 sinh2(∆L)m1θ51 + 2 sinh(∆L) cosh(∆L)m2θ52.

Thus, in this case,

L1|ψ > = (θ1 · p+ ε1θ1 · P̂ +m1 cosh(LO1)θ51

−m2 sinh(LO1)θ52 + iθ2 ·
∂

2
(C − LO1))|ψ >, (5.189a)

L2|ψ > = (−θ1 · p+ ε2θ2 · P̂ +m2 cosh(LO1)θ52

−m1 sinh(LO1)θ51 − iθ1 ·
∂

2
(C − LO1))|ψ > . (5.189b)

We can now use the above expression Eqs. (5.187) with its analog for L2 to
calculate the general hyperbolic constraint, L1 and L2 for all eight interactions
acting in concert, i.e., for the general invariant matrix,

∆ = D+ = ∆p + ∆a, (5.190)
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where
∆p = ∆L + ∆J + ∆G + ∆F ,

∆a = ∆C + ∆H + ∆I + ∆Y .

The complete hyperbolic two body Dirac equations for all eight interaction acting
together are

L1|ψ >= {exp(G + FE2 + IO1 + YO2)

×[θ1 · p−
i

2
θ2 · ∂(LO1 − JO2 − GO3 −FO4 − CE1 +HE2 + IE3 + Y E4)]

+ε1 cosh(JO2 + FO4 +HE2 + Y E4)θ1 · P̂
+ε2 sinh(JO2 + FO4 +HE2 + Y E4)θ2 · P̂
+m1 cosh(−LO1 + FO4 +HE2 + IE3)θ51

+m2 sinh(−LO1 + FO4 +HE2 + IE3)θ52}|ψ >= 0, (5.191a)

L2|ψ >= {− exp(G + FE2 + IO1 + YO2)

×[θ2 · p−
i

2
θ1 · ∂(LO1 − JO2 − GO3 −FO4 − CE1 +HE2 + IE3 + Y E4)]

+ε1 sinh(JO2 + FO4 +HE2 + Y E4)θ1 · P̂
+ε2 cosh(JO2 + FO4 +HE2 + Y E4)θ2 · P̂
+m1 sinh(−LO1 + FO4 +HE2 + IE3)θ51

+m2 cosh(−LO1 + FO4 +HE2 + IE3)θ52}|ψ >= 0. (5.191b)

What is remarkable is that the above hyperbolic and exponential structures ac-
count for all of the interference terms between the various interactions. The
interactions acting separately or in subgroupings are simple reductions of the
above. For example, in the case of the combined scalar, timelike, spacelike and
pseudoscalar interactions,

∆ = ∆J + ∆L + ∆G + ∆C , (5.192)

and the two body Dirac Eqs. (5.191b) reduce to

L1|ψ > = (exp(G)θ1 · p+ E1θ1 · P̂ +M1θ51

+ i
exp(G)

2
θ2 · ∂(GO3 + JO2 − LO1 + CE1))|ψ >= 0, (5.193a)

L2|ψ > = (− exp(G)θ2 · p+ E2θ2 · P̂ +M2θ52

− i
exp(G)

2
θ1 · ∂(GO3 + JO2 − LO1 + CE1))|ψ >= 0. (5.193b)
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where
M1 = m1 cosh(L) +m2 sinh(L), (5.194a)

M2 = m2 cosh(L) +m1 sinh(L), (5.194b)

E1 = ε1 cosh(J) + ε2 sinh(J), (5.195a)

E2 = ε2 cosh(J) + ε1 sinh(J), (5.195b)

G = eG . (5.196)

The scalar generator produces the mass or scalar potential Mi terms, the timelike
vector generator produces the energy or timelike potential Ei terms, and the
spacelike vector generator produces the transverse or spacelike momentum G
terms, while the pseudoscalar generator produces only spin dependent terms.
The vector and scalar interactions also have additional spin dependent recoil
terms essential for compatibility.

The polar tensor interaction defined by the function F(x⊥) likewise con-
tributes both to the mass potential Mi terms as well as the energy or timelike
potential Ei terms. The spacelike vector generator G, F produces spacelike vector
dependent potential terms that are momentum dependent.

In the limit m1 → ∞ (or m2 → ∞ ), (when one of the particles become
infinitely massive), the extra terms ∂G, ∂J, ∂L and ∂C in Eqs. (5.193) vanish,
and one recovers the one body Dirac equation in an external potential.

5.3 Reduction of the Coupled Two Body Dirac

Equations

Now one can use the complete hyperbolic constraint two body Dirac equations
Eqs.(5.191), to derive the Schrödinger like eigenvalue equation for the combined
interactions: L(x⊥), J(x⊥), H(x⊥), C(x⊥),G(x⊥),F(x⊥), I(x⊥), Y (x⊥) [388]. We
only with the final forms stationary Schrödinger equations was include extra
optical potentials. The basic method we use here has some similarities to the
reduction of the single particle Dirac equation to a Schrödinger like form (the
Pauli reduction) and to related work by Sazdjian [498, 421].

The state vector |ψ〉 appearing in the two body Dirac equations Eq. (5.191b)
is a Dirac spinor written as

|ψ〉 =




|ψ〉1
|ψ〉2
|ψ〉3
|ψ〉4


 (5.197)

where each |ψ〉i is itself a four component spinor. |ψ〉 has a total of sixteen
components and the matrices Oi’s, Ei’s are all sixteen by sixteen.
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We use the block forms of the gamma matrices given by in [388]

β2 =

(
β 0
0 β

)
, β =

(
14 0
0 −14

)
,

γ52 =

(
γ5 0
0 γ5

)
, γ5 =

(
0 14

14 0

)
,

β2γ52 =

(
ρ 0
0 ρ

)
, ρ =

(
0 14

−14 0

)
,

β1γ51γ52 =

(
0 γ5

−γ5 0

)
, γ51γ52 =

(
0 γ5

γ5 0

)
, β2γ52γ51 =

(
0 ρ
ρ 0

)

and

Σµ
i = γ5iβiγ

µ
⊥i, i = 1, 2. (5.198)

The Σµ
i are four vector generalizations of the Pauli matrices of particle one and

two. In the CM frame, the time component is zero and the spatial components
are the usual Pauli matrices for each particle.

We rewrite Eqs. (5.193) by multiplying the first by
√

2iβ1 and the second by√
2iβ2 yielding [388]

[T1(β1β2) + U1(β1β2)γ51γ52]|ψ〉 = (E1 +M1β1)γ51|ψ〉, (5.199)

[T2(β1β2) + U2(β1β2)γ51γ52]|ψ〉 = (E2 +M2β2)γ52|ψ〉, (5.200)

in which the kinetic and recoil terms are

T1(β1β2) = exp(G)[Σ1 · p−
i

2
β1β2(Σ2 · ∂(−C + Gβ1β2Σ1 · Σ2)], (5.201)

T2(β1β2) = exp(G)[Σ2 · p−
i

2
β1β2(Σ1 · ∂(−C + Gβ1β2Σ1 · Σ2)], (5.202)

U1(β1β2) = exp(G)[− i

2
β1β2Σ2 · ∂(Jβ1β2 − L)], (5.203)

U2(β1β2) = exp(G)[− i

2
β1β2Σ1 · ∂(Jβ1β2 − L)], (5.204)

while the timelike and scalar potentials Ei,Mi are given above in Eqs. (5.194)
and (5.195)

The final result of the matrix multiplication in Eqs. (5.200) is a set of eight
simultaneous equations for the Dirac spinors |ψ〉1, |ψ〉2, |ψ〉3, |ψ〉4. In an arbi-
trary frame, the result of the matrix calculation produces the eight simultaneous
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equations (σµi |ψ〉 → Σµ
i |ψ〉1,2,3,4) [388].

T1(+1)|ψ1〉 + U1(+1)|ψ4〉 = (E1 +M1)|ψ3〉, (5.205)

T1(−1)|ψ2〉 + U1(−1)|ψ3〉 = (E1 +M1)|ψ4〉, (5.206)

T1(−1)|ψ3〉 + U1(−1)|ψ2〉 = (E1 −M1)|ψ1〉, (5.207)

T1(+1)|ψ4〉 + U1(+1)|ψ1〉 = (E1 −M1)|ψ2〉, (5.208)

− T2(+1)|ψ1〉 − U2(+1)|ψ4〉 = (E2 +M2)|ψ2〉, (5.209)

− T2(−1)|ψ2〉 − U2(−1)|ψ3〉 = (E2 −M2)|ψ1〉, (5.210)

− T2(−1)|ψ3〉 − U2(−1)|ψ2〉 = (E2 +M2)|ψ4〉, (5.211)

− T2(+1)|ψ4〉 − U2(+1)|ψ1〉 = (E2 −M2)|ψ3〉. (5.212)

We reduce the above set of eight equations to a second order Schrödinger like
equation by a process of substitution and elimination using the combination of
the four Dirac spinors given below [388]:

|φ±〉 := |ψ1〉 ± |ψ4〉, (5.213)

|χ±〉 := |ψ2〉 ± |ψ3〉. (5.214)

Eq. (5.205)+Eq. (5.208) yields

D++
1 |φ+〉 = E1|χ+〉 −M1|χ−〉, (5.215)

Eq. (5.209)+Eq. (5.212) yields

−D++
2 |φ+〉 = E2|χ+〉 +M2|χ−〉, (5.216)

Eq. (5.206)+Eq. (5.207) yields

D−+
1 |χ+〉 = E1|φ+〉 −M1|φ−〉, (5.217)

Eq. (5.206)-Eq. (5.207) yields

D−−
1 |χ−〉 = −E1|φ−〉 +M1|φ+〉, (5.218)

in which the kinetic recoil terms appear through the combinations

D++
1 := T1(+1) + U1(+1) =

exp G
[
σ1 · p+

i

2
σ2 · ∂

[
L+ G(1 − σ1 · σ2)

]]
, (5.219)

D++
2 := T2(+1) + U2(+1) =

exp G
[
σ2 · p+

i

2
σ1 · ∂

[
L+ G(1 − σ1 · σ2)

]]
, (5.220)

D−+
1 := T1(−1) + U1(−1) =

exp G
[
σ1 · p+

i

2
σ2 · ∂

[
−L + G(1 − σ1 · σ2)

]]
, (5.221)

D−−
1 := T1(−1) − U1(−1) =

exp G
[
σ1 · p+

i

2
σ2 · ∂

[
L− G(1 + σ1 · σ2)

]]
. (5.222)
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Solve Eq. (5.215) and Eq. (5.216) for |χ+〉 and |χ−〉 we obtain

|χ+〉 =
1

D (M2D
++
1 −M1D

++
2 )|φ+〉, (5.223)

|χ−〉 = − 1

D (E2D
++
1 + E1D

++
2 )|φ+〉, (5.224)

(5.225)

in which

D := E1M2 + E2M1. (5.226)

Solve Eq. (5.217) and Eq. (5.218) for |φ+〉

E1D
−+
1 χ+ −M1D

−−
1 χ− = B2φ+, (5.227)

in which

B2 := E2
1 −M2

1 . (5.228)

We combined Eq. (5.223) and Eq. (5.224) in Eq. (5.227) that yields the following
equation (simplified here for electromagnetic like interactions (∂J := ∂E1

E2
= −∂G)

and scalar interactions alone)

[E1D
−+
1

1

E1M2 + E2M1
(M2D

++
1 −M1D

++
2 )

+M1D
−−
1

1

E1M2 + E2M1
(E2D

++
1 + E1D

++
2 )]|φ+〉

= (E2
1 −M2

1 )|φ+〉. (5.229)

We display all the general spin dependent structures in Φ(r,p,σ1,σ2, w) explic-
itly, very similar to what appears in nonrelativistic formalisms. We do this by
expressing it explicitly in terms of its matrix (σ1,σ2), and operator p struc-
ture in the CM system (P̂ = (1, 0) ). We are working in the CM frame (i.e.
x⊥ = (r, 0)), so all the interaction functions (L(x⊥), J(x⊥), C(x⊥),G(x⊥)) are
functions of r =

√
x2
⊥ = |r|, F = F (r)

We derive explicitly the reduction of the following equations [388]

hE1[σ1 · p − iσ2 · (d + kσ1 · σ2)]hF1[σ1 · p − iσ2·(z + kσ1 · σ2)]|φ+〉 (a)

+hM1[σ1 · p − iσ2·(o + kσ1 · σ2)]hF3[σ1 · p − iσ2·(z + kσ1 · σ2)]|φ+〉 (b)

−hE1[σ1 · p − iσ2·(d + kσ1 · σ2)]hF2[σ2 · p − iσ1·(z + kσ1 · σ2)]|φ+〉 (c)

+hM1[σ1 · p − iσ2·(o + kσ1 · σ2)]hF4[σ2 · p − iσ1·(z + kσ1 · σ2)]|φ+〉 (d)

= B2|φ+〉. (5.230)
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in which

B2 = E1
2 −M1

2 = E2
2 −M2

2

= b2(w) + (ε21 + ε22)sinh2(J) + 2ε1ε2 sinh(J) cosh(J)

−(m2
1 +m2

2)sinh2(L) − 2m1m2 sinh(L) cosh(L). (5.231)

and

h := exp(G),

k :=
1

2
∇ log(h),

z :=
1

2
∇(−C + J − L),

d :=
1

2
∇(C + J + L),

o :=
1

2
∇(C − J − L),

with

F1 :=
M2

D ,

F2 :=
M1

D ,

F3 :=
E2

D ,

F4 :=
E1

D ,

D := E1M2 + E2M1.

Eq. (5.230) is a second order Schrödinger like eigenvalue equation for the newly
defined wavefunction |φ+〉 in the form.

(p2
⊥ + Φ(r,σ1,σ2, w))|φ+〉 = b2(w)|φ+〉. (5.232)

Eq. (5.258) for B2, that provide us with the primary spin independent part of Φ,
the quasipotential [539, 543]. Note that in the CM system p2

⊥ = p2, σ = (0,σ).
For future reference we will refer to the four sets of terms on the left hand side
as the Eq. (5.230) (a),(b),(c),(d) term.

Now we proceed with a different derivation than Long and Crater’s derivation
[388]. The aim is to produce a Schrödinger like form like in Eq. (5.232) involving
the Pauli matrices for both particles.

Substitute d, h, F1, z, k’s expressions to (a) term of Eq. (5.230), we obtain

(a) term = exp(G)E1{[σ1 · p − i

2
σ2 · ∇(C + J + L) − i

2
∇G · (σ1 + iσ1 × σ2)]
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× exp(G)
M2

D [σ1 · p− i

2
σ2 · ∇(−C + J − L)− i

2
∇G · (σ1 + iσ1 ×σ2)]}, (5.233)

working out the commutation relation of σ1 · p in above expression, we can find

(a) term= exp(G)E1×

{exp(G)
M2

D [p
2

− i

2
σ2 · ∇(−C + J − L)(σ1 · p)

− i

2
∇G · [(p + i(σ1 × p) − (σ1 · σ2)p + σ1(σ2 · p) − i(σ2 × p)]]

+
1

i
σ1 · ∂[exp(G)

M2

D [σ1 · p − i

2
σ2 · ∇(−C + J − L) − i

2
∇G · (σ1 + iσ1 × σ2)]]

− i

2
[σ2 · ∇(C + J + L) + ∇G · (σ1 + iσ1 × σ2)] exp(G)

M2

D [σ1 · p

− i

2
σ2 · ∇(−C + J − L) − i

2
∇G · (σ1 + iσ1 × σ2)]}. (5.234)

Likewise we can the find (b),(c),(d) terms.

(b) term= exp(G)M1×

{exp(G)
E2

D [p
2

− i

2
σ2 · ∇(−C + J − L)(σ1 · p)

− i

2
∇G · [(p + i(σ1 × p) − (σ1 · σ2)p + σ1(σ2 · p) − i(σ2 × p)]]

+
1

i
σ1 · ∂[exp(G)

E2

D [σ1 · p − i

2
σ2 · ∇(−C + J − L) − i

2
∇G · (σ1 + iσ1 × σ2)]]

− i

2
[σ2 · ∇(C − J − L) + ∇G · (σ1 + iσ1 × σ2)] exp(G)

E2

D [σ1 · p

− i

2
σ2 · ∇(−C + J − L) − i

2
∇G · (σ1 + iσ1 × σ2)]}, (5.235)

(c) term= − exp(G)E1×

{exp(G)
M1

D [(σ2 · p)(σ1 · p) − i

2
σ1 · ∇(−C + J − L)(σ1 · p)

− i

2
∇G · [(σ2(σ1 · p) − (σ1 · σ2)p + σ1(σ2 · p) + i(σ2 × p)]]

+
1

i
σ1 · ∂[exp(G)

M1

D [σ2 · p − i

2
σ1 · ∇(−C + J − L) − i

2
∇G · (σ2 + iσ2 × σ1)]]

− i

2
[σ2 · ∇(C + J + L) + ∇G · (σ1 + iσ1 × σ2)] exp(G)

M1

D [σ2 · p

− i

2
σ1 · ∇(−C + J − L) − i

2
∇G · (σ2 + iσ2 × σ1)]}, (5.236)
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(d) term= exp(G)M1×

{exp(G)
E1

D [(σ2 · p)(σ1 · p) − i

2
σ1 · ∇(−C + J − L)(σ1 · p)

− i

2
∇G · [(σ2(σ1 · p) − (σ1 · σ2)p + σ1(σ2 · p) + i(σ2 × p)]]

+
1

i
σ1 · ∂[exp(G)

E1

D [σ2 · p − i

2
σ1 · ∇(−C + J − L) − i

2
∇G · (σ2 + iσ2 × σ1)]]

− i

2
[σ2 · ∇(C − J − L) + ∇G · (σ1 + iσ1 × σ2)] exp(G)

E1

D [σ2 · p

− i

2
σ1 · ∇(−C + J − L) − i

2
∇G · (σ2 + iσ2 × σ1)]}. (5.237)

5.3.1 Pauli Reduction

The multiplication properties of a matrix form for the wave functions with the
Pauli matrices σ1 and σ2 Eq. (5.232), instead of a spinor form, make them
a particularly suitable choice. For this reason we transform the four component
spinor φ+ into 2×2 matrix wave function composed of a scalar spherical harmonic
part (spin zero) and a vector spherical harmonic part (spin one) by the redefinition
(in the CM system)

φ+ → φ+σy := Φ := φ+ φ · σ.
The above definition includes a transpose and left multiplication by σy. This
leads to the properties

σ1φ+ → σΦ, σ2φ+ → −Φσ. (5.238)

This in turn leads to

σ1 · σ2φ+ → −σ · Φσ = −3φ+ φ · σ, (5.239)

which shows the singlet and triplet nature of the two parts of the matrix wave
function. In general, since an arbitrary function F (σ1 · σ2) can be expanded into
a form

F (σ1 · σ2) = A+Bσ1 · σ2, (5.240)

we have

F (σ1 · σ2)φ+ = A +Bσ1 · σ2φ+ → [AΦ − Bσ · Φσ]

= (A− 3B)φ+ (A+B)φ · σ
= F (−3)φ+ F (+1)φ · σ. (5.241)

In computing the four sets of terms on left hand side of Eq. (5.230), we use the
identities

σ1 ·Aφ+ → σ · AΦ = A · φ+ σ · [Aφ+ iA× φ],

σ1 ·Aφ+ → −A · Φσ = −A · φ− σ · [Aφ− iA× φ].
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The calculation of Eq. (5.230) then proceeds by reducing the left hand side
to a form L + L · σ in which [πi1] we call L the scalar and L the vector term,
respectively. We define the left hand side of Eq. (5.230) in these terms as

ΠΦ = L = L+ L · σ := left hand side (5.230)

= (5.230a) + (5.230b) + (5.230c) + (5.230d). (5.242)

Having defined the left hand side in the terms L + L · σ we now proceed to
calculate L and L explicitly.

We write the left hand Eq. (5.230)

L + L · φ := ΠΦ = Π1Φ + Π2Φ + Π3Φ + Π4Φ, (5.243)

and Π1Φ = (5.230a),Π2Φ = (5.230b),Π3Φ = (5.230c),Π4Φ = (5.230d). Notice
that each Πi is a product of four matrix factors

Πi = [πi1][πi2][πi3][πi4].

Explicitly Π1 is defined

Π1 = hE1︸︷︷︸
π11

[σ1 · p − iσ2 · (d + kσ1 · σ2)]︸ ︷︷ ︸
π12

hF1︸︷︷︸
π13

[σ1 · p − iσ2·(z + kσ1 · σ2)]︸ ︷︷ ︸
π14

= [πi1][πi2][πi3][πi4]. (5.244)

Due to the properties Eq. (5.238), each of the πij terms acts on the matrix
wave function F to produce yet another matrix form

[πij]Φ = Zi = Zi + Zi · σ.

The multiplication of each of the four ΠiΦ terms can now proceed as

[πi1][πi2][πi3][πi4]Π = [πi1][πi2][πi3]Ni = [πi1][πi2]Pi = [πi1]Qi = Li = Li + Li · σ,

where Ni := Ni + Ni · σ, same for Pi,Qi. For each of the four matrix multiplica-
tions ΠiΦ, i = 1, 2, 3, 4 we obtain a term of the form Li+Li · σi. For the complete
calculation of Eq. (5.243)

R := L1 + L2 + L3 + L4

R := L1 + L2 + L3 + L4.

Inspection of Eq. (5.230) reveals that the matrix structures of the terms Eq.
(5.230a) and Eq. (5.230b) are the same. In fact Eq. (5.230a) becomes Eq.
(5.230b) (and vice versa) if we make the variable exchanges

E1 ⇔M1, F1 ⇔ F3,d ⇔ o. (5.245)

135



5.3. REDUCTION OF THE COUPLED TWO BODY DIRAC EQUATIONS

This simplifies the calculation of Eq. (5.243): we can calculate the first term
Π1Φ, which is Eq. (5.230a), and then find the second term Π2Φ, which is Eq.
(5.230b), by the variable exchanges of Eq. (5.245). Inspection of Eq. (5.230)
reveals that the matrix structures of the terms Eq. (5.230c) and Eq. (5.230d)
are the same. In fact Eq. (5.230c) becomes Eq. (5.230d) (and vice versa) if we
make the variable exchanges

E1 ⇔M1, F2 ⇔ F4, bfd⇔ o. (5.246)

In light of the simplification produced by the variable exchanges of relations
Eq. (5.245) and Eq. (5.245), we proceed to calculate Eq. (5.243): first we
calculate Π1Φ = L1 = L1 + L1 · σ, then use it to find Π2Φ = L2 = L2 + L2 · σ,
by the variable exchanges Eq. (5.245), then we calculate Π3Φ = L3 = L3 +L3 · σ
and use it to find Π4Φ = L4 = L4 +L4 · σ by the variable exchanges Eq. (5.245).

Calculation L1 = L1 + L1 · σ:

[π11][π12][π13][π14]Π = [π11][π12][π13]N1 = [π11][π12]P1

= [π11]Q1 = L1 = L1 + L1 · σ,
Starting with the right most term N1 (it is understood that σ1 and σ2 act in

accordance with Eq. (5.238),

[π14]Φ = [σ1 · p − iσ2·(z + kσ1 · σ2)]Φ = N1 := N1 + N1 · σ, (5.247)

where N1 and N1 are

N1 = [p + i(z + k)] · φ,
N1 = [p + i(z − 3k)] · φ+ i[p − i(z + k)] × φ,

[π13]N1 = hF1N1 = P1 := P1 + P1 · σ,

P1 and P1 are

P1 = hF1N1, P1 = hF1N1, (5.248)

nonumber [π12]P1 = [σ1 · p − iσ2 · (d + kσ1 · σ2)]P1 = Q1 := Q1 + Q1 · σ,
(5.249)

and Q1 and Q1 are

Q1 = [p + i(d + k)] · P1,

Q1 = [p + i(d − 3k)] · P1 + i[p − i(d + k)] × P1,

[π11]Q1 = hE1Q1 = L1 := L1 + L1 · σ,

where finally L1 and L1 are

L1 = hE1Q1, L1 = hE1Q1, (5.250)
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Combining the multiplicative factors, the scalar part of L1 is therefore

L1 = hE1[p + i(d + k)] · hF1([p + i(z − 3k)]φ+ i[p − i(z + k)] × φ), (5.251)

while the vector part of L1 is

L1 = hE1([p + i(d − 3k)] · hF1[p + i(z + k)]φ+ i[p − i(d + k)]

×hF1([p + i(z − 3k)]φ+ i[p − i(z + k)] × φ)). (5.252)

Now, we repeat our previous results for other scalar and vector parts of Li, i =
2, 3, 4 and Li, i = 2, 3, 4, and combining they are

4∑

i=1

Li = h[hE1(F1 + F2) + hM1(F3 − F4)]p · (p + i(z − 3k))φ

+i(hE1[h(F1 + F2)(d + k) −∇(h(F1 + F2))]

+hM1[h(F3 − F4)(o + k) −∇(h(F3 − F4))]) · (p
+i(z − 3k))φih[hE1(F1 − F2) + hM1(F3 + F4)]p · (p
−i(z + k)) × φ− (hE1[h(F1 − F2)(d + k)

−∇(h(F1 − F2))] + hM1[h(F3 + F4)(o + k)

−∇(h(F3 − F4))]) · (p − i(z + k)) × φ, (5.253)

for the scalar portion. We can simplify the vector portion below

4∑

i=1

Li = h[hE1(F1 + F2) + hM1(F3 − F4)]p · (p + i(z + k)) · φ

+i(hE1[h(F1 + F2)(d + 3k) −∇(h(F1 + F2))]

+hM1[h(F3 − F4)(o − 3k) −∇(h(F3 − F4))])

×(p + i(z + k))φih[hE1(F1 − F2) + hM1(F3 + F4)]

×p × (p + i(z − 3k))φ+ (hE1[h(F1 + F2)(d + k)

+∇(h(F1 + F2))] + hM1[h(F3 − F4)(o + k)

+∇(h(F3 − F4))]) × (p + i(z − 3k))φ− h[hE1(F1

−F2) + hM1(F3 + F4)]p × [(p − i(z + k)) × φ]

+i(hE1[h(F1 − F2)(d + k) + ∇(h(F1 − F2))]

+hM1[h(F3 + F4)(o + k) + ∇(h(F3 + F4))]) ·
×(p − i(z + k)) × φ. (5.254)
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Using the following vector identities (A = Ar̂),

p × (p × φ) = p(p · φ) − p2φ,

ip × (A × φ) =

[
A′ − A

r

]
r̂(r̂ · φ) +

(
iA · p −∇ · +A

r

)
φ,

r̂(r̂× φ) = r̂(r̂ · φ) − φ, (5.255)

iA × (p × φ) = iAipφi − iA · pφ,
ripφi = r(p · φ) + L × φ,

leads to a second order Schrödinger like eigenvalue equation for the four compo-
nent wave function |φ+〉 = |ψ〉1 + |ψ〉4 in the general form

(p2 + Φ(r,p,σ1,σ2, w))|φ+〉 = b2(w)|φ+〉. (5.256)

Simplification of the final result by using identities involving σ1 and σ2 and
grouping by the p2 term , Darwin term (r̂ · p), spin orbit angular momentum
term L · (σ1 + σ2), spin orbit angular momentum difference term L · (σ1 − σ2),
spin spin term (σ1 · σ2), tensor term (σ1 · r̂)(σ2 · r̂), additional spin dependent
terms L · (σ1 × σ2) and (σ1 · r̂)(σ2 · p) + (σ2 · r̂)(σ1 · p) and spin independent
terms. Collecting all terms for the (a) + (b) + (c) + (d) terms above Eq. (5.230),
we obtain {

p2 − i

[
2G ′ − E2M2 +M1E1

D (J + L)′
]

(r̂ · p)

− i(J − L)′

2
((σ1 · r̂)(σ2 · p) + (σ2 · r̂)(σ1 · p))

−1

2
∇2G−1

4
G ′2 − 1

4
(C + J − L)′(−C + J − L)′ +

1

2

E2M2 +M1E1

D G ′(J + L)′

+(σ1 · σ2)

[
1

2
∇2G+

1

2
G ′2 − 1

2

E2M2 +M1E1

D G ′(J + L)′

−1

2
G ′C ′ − 1

2

G ′

r
− 1

2

(−C + J − L)′

r

]

+
L · (σ1 + σ2)

r

[
G ′ − 1

2

E2M2 +M1E1

D (J + L)′
]

−L · (σ1 − σ2)

r

1

2

E2M2 −M1E1

D (J + L)′

+
L · (σ1 × σ2)

r

i

2

M2E1 −M1E2

D (J + L)′

+(σ1 · r̂)(σ2 · r̂)
[
−1

2
∇2(−C + J − L) − 1

2
∇2G − G ′(−C + J − L)′ − G ′2 +

3

2r
G ′

+
3

2r
(−C + J − L)′ +

1

2

E2M2 +M1E1

D (J + L)′(G − C + J − L)′
]}

|φ+〉

= e−2GB2|φ+〉, (5.257)
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where

D := E1M2 + E2M1,

B2 = E1
2 −M1

2 = E2
2 −M2

2,

= b2(w) + (ε21 + ε22)sinh2(J) + 2ε1ε2 sinh(J) cosh(J),

− (m2
1 +m2

2)sinh2(L) − 2m1m2 sinh(L) cosh(L). (5.258)

Ei,Mi, C, J, L,G are all functions of the invariant r. We point out that Eq.
(5.257) differs from the forms presented in [388]. Whereas the above equation
involve four component spinor wave functions, the ones given in [388] are obtained
in terms of matrix wave functions involving one component scalar and three
component vector wave functions.

All of the above equations when reduced to radial form in next section having
also a first derivative terms from the r̂·p and (σ1 · r̂)(σ2 ·p)+(σ2 · r̂)(σ1 ·p) terms.
An advantage of the above for the relativistic case is that they are Schrödinger
like equations which we solve numerically.

5.3.2 Reduction to Radial Form

The general form of the eigenvalue equation given in Eq. (5.257) is

[p2 − ig′r̂ · p +
g′

2r
~L · (σ1 + σ2) − ih′(σ1 · r̂σ2 · p + σ2 · r̂σ1 · p)

+ kσ1 · σ2 + nσ1 · r̂σ2 · r̂ + l~L · (σ1 − σ2) + ij~L · (σ1 × σ2) +m]|φ+〉
= B2e−2G|φ+〉. (5.259)

The m term is the spin independent part involving derivatives of the potentials.
For the equal mass case, two terms drop out (see Eq. (5.257)), and the above
equation becomes [75]

[p2 − ig′r̂ · p +
g′

2r
~L · (σ1 + σ2) − ih′(σ1 · r̂σ2 · p + σ2 · r̂σ1 · p)

+ kσ1 · σ2 + nσ1 · r̂σ2 · r̂ +m]|φ+〉 = B2e−2G|φ+〉. (5.260)

We introduce the spin dependent scale change

|φ+〉 ≡ exp(F +Kσ1 · r̂σ2 · r̂)|ψ+〉 ≡ (A+Bσ1 · r̂σ2 · r̂)|ψ+〉. (5.261)

with F,K,A,B to be determined. We find that

p|φ+〉 = (A+Bσ1 · r̂σ2 · r̂)p|ψ+〉 − i(A′ +B′
σ1 · r̂σ2 · r̂)r̂|ψ+〉

− i
B

r
[(σ1 − σ1 · r̂r̂)σ2 · r̂ + (σ2 − σ2 · r̂r̂)σ1 · r̂]|ψ+〉, (5.262)
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and
g′

2r
L · (σ1 + σ2)|φ+〉 = (A+Bσ1 · r̂σ2 · r̂)

g′

2r
L · (σ1 + σ2)|ψ+〉

+
g′

2r
B[2σ1 ·σ2−4irσ1 · r̂σ2 · r̂ r̂·p+2ir(σ1 · r̂σ2 ·p+σ2 · r̂σ1 ·p)−6σ1 · r̂σ2 · r̂]|ψ+〉.

We thus find that

−ig′r̂ · p|φ+〉 = (A+Bσ1 · r̂σ2 · r̂)(−ig′r̂ · p)|ψ+〉 + C|ψ+〉

and

− ih′(σ1 · r̂σ2 · p + σ2 · r̂σ1 · p)|φ+〉
= (A+Bσ1 · r̂σ2 · r̂)(−ih′[σ1 · r̂σ2 · p + σ2 · r̂σ1 · p])|ψ+〉 +D|ψ+〉

and finally

p2|φ+〉 = (A+Bσ1 · r̂σ2 · r̂)p2|ψ+〉 − 2i(A′ +B′
σ1 · r̂σ2 · r̂)r̂ · p|ψ+〉

+ i
2B

r
[2σ1 · r̂σ2 · r̂ r̂ · p − (σ1 · r̂σ2 · p + σ2 · r̂σ1 · p]|ψ+〉 + E|ψ+〉,

(5.263)

where C and D and E do not involve p and are given by

C = −g′(A′ +B′
σ1 · r̂σ2 · r̂), (5.264)

D = −2h′(σ1 ·r̂σ2 ·r̂A′+B′)−2h′
B

r
[L·(σ1+σ2)+2−σ1 ·r̂σ2 ·r̂+σ1 ·σ2], (5.265)

and

E = −(A′′+B′′
σ1·r̂σ2·r̂)−

2

r
(A′+B′

σ1·r̂σ2·r̂)−2
B

r2
(σ1·σ2−3σ1·r̂σ2·r̂). (5.266)

The general form of the eigenvalue equation then becomes after some detail [75]

(A+Bσ1 · r̂σ2 · r̂)[p2 − ig′r̂ · p +
g′

2r
L · (σ1 + σ2)

− ih′(σ1 · r̂σ2 · p + σ2 · r̂σ1 · p)]|ψ+〉

+ (
g′

2r
B[2σ1 · σ2 − 4irσ1 · r̂σ2 · r̂ r̂ · p

+ 2ir(σ1 · r̂σ2 · p + σ2 · r̂σ1 · p) − 6σ1 · r̂σ2 · r̂]

− 2i(A′ +B′
σ1 · r̂σ2 · r̂)r̂ · p + i

2B

r
[2σ1 · r̂σ2 · r̂ r̂ · p

− (σ1 · r̂σ2 · p + σ2 · r̂σ1 · p)]

+ (kσ1 · σ2 + nσ1 · r̂σ2 · r̂)(A+Bσ1 · r̂σ2 · r̂) +R +m)|ψ+〉
= B2 exp(−2G)(A +Bσ1 · r̂σ2 · r̂)|ψ+〉 (5.267)
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in which R = C +D + E.
Now, to bring this equation to the desired Schrödinger like form with no

linear p term we multiply both sides by

(A+Bσ1 · r̂σ2 · r̂)−1 =
(A−Bσ1 · r̂σ2 · r̂)

A2 −B2
(5.268)

and find, using the exponential form above that appears in Eq. (5.261), (and
some detail [75])

(A +Bσ1 · r̂σ2 · r̂)−1[−2i(A′ +B′
σ1 · r̂σ2 · r̂)]̂r · p

= −2i(F ′ +K ′
σ1 · r̂σ2 · r̂)r̂ · p, (5.269)

and

(A+Bσ1 · r̂σ2 · r̂)−1i
2B

r
[2σ1 · r̂σ2 · r̂ r̂ · p − (σ1 · r̂σ2 · p + σ2 · r̂σ1 · p)]

=
2i sinh(K) cosh(K)

r
[2σ1 · r̂σ2 · r̂ r̂ · p − (σ1 · r̂σ2 · p + σ2 · r̂σ1 · p)] +G

where [75]

G = −2 sinh2(K)

r2
L · (σ1 + σ2), (5.270)

and

(A+Bσ1 · r̂σ2 · r̂)−1 g
′

2r
B[2σ1 · σ2 − 4irσ1 · r̂σ2 · r̂ r̂ · p

+ 2ir(σ1 · r̂σ2 · p + σ2 · r̂σ1 · p) − 6σ1 · r̂σ2 · r̂]

=
ig′ sinh(K) cosh(K)

2r
[−4rσ1 · r̂σ2 · r̂ r̂ · p + 2r(σ1 · r̂σ2 · p + σ2 · r̂σ1 · p)

− 2iσ1 · σ2 + 6iσ1 · r̂σ2 · r̂] +H (5.271)

where [75]

H =
g′ sinh2(K)

2r
[2L · (σ1 + σ2) − 2σ1 · r̂σ2 · r̂ + 2σ1 · σ2 + 4].

Note that G and H do not contain linear p type of terms. Now collect the three
different linear p type of terms in Eq. (5.267):

(−2iF ′ − ig′)r̂ · p, (5.272)

(−2i
sinh(K) cosh(K)

r
−ih′+ig′ sinh(K) cosh(K))(σ1·r̂σ2·p+σ2·r̂σ1·p), (5.273)

(4i
sinh(K) cosh(K)

r
− 2i sinh(K) cosh(K)g′ − 2iK ′)σ1 · r̂σ2 · r̂ r̂ · p. (5.274)
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If we set the first of the above equations to 0, we obtain the expected result (for
the uncoupled portion of the equation)

F ′ = −g′/2. (5.275)

If we set h′ = −K ′ and use p = r̂(r̂.p) − r̂×L
r

then the two expressions (5.273)
and (5.274) combine to

(2
sinh(K) cosh(K)

r
+ h′ − g′ sinh(K) cosh(K))

σ1 · r̂σ2 · r̂~L · (σ1 + σ2)

r
(5.276)

which contains no r̂ · p. Thus the matrix scale change

|φ+〉 = exp(−g/2) exp(−hσ1 · r̂σ2 · r̂)|ψ+〉 (5.277)

eliminates the linear p terms.

Further note that

(A+Bσ1 · r̂σ2 · r̂)−1(kσ1 · σ2 + nσ1 · r̂σ2 · r̂)(A +Bσ1 · r̂σ2 · r̂)
= (kσ1 · σ2 + nσ1 · r̂σ2 · r̂),

(A+Bσ1 · r̂σ2 · r̂)−1C|ψ+〉 = −g′(F ′ +K ′
σ1 · r̂σ2 · r̂)|ψ+〉, (5.278)

and (after some algebraic detail [75])

(A+Bσ1 · r̂σ2 · r̂)−1D|ψ+〉 = −2h′(K ′ + F ′
σ1 · r̂σ2 · r̂)|ψ+〉

−2h′
cosh(K) sinh(K)

r
[L · (σ1 + σ2) + 2 − σ1 · r̂σ2 · r̂ + σ1 · σ2]|ψ+〉

+2h′
sinh2(K)

r
[σ1 · r̂σ2 · r̂L · (σ1 + σ2) + 3σ1 · r̂σ2 · r̂ − σ1 · σ2]|ψ+〉. (5.279)

also

(A+Bσ1 · r̂σ2 · r̂)−1E|ψ+〉 = −[F ′′ + F ′2 +K ′2 + (2F ′K ′ +K ′′)σ1 · r̂σ2 · r̂]

−2

r
[F ′ +K ′

σ1 · r̂σ2 · r̂] − 2
cosh(K) sinh(K)

r2
(σ1 · σ2 − 3σ1 · r̂σ2 · r̂)

+2
sinh2(K)

r2
(σ1 · r̂σ2 · r̂ − σ1 · σ2 − 2). (5.280)

So combining all terms and grouping by p2 term , spin independent terms, spin-
orbit angular momentum term L · (σ1 +σ2), spin-spin term (σ1·σ2), tensor term
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(σ1·r̂)(σ2 · r̂), additional spin independent term we have our Schrödinger-like
equation

{p2 +
2g′ sinh2(K)

r
− g′F ′ − 2h′K ′ − 4h′

cosh(K) sinh(K)

r

− F ′′ − F ′2 −K ′2 − 2

r
F ′ − 4

sinh2(K)

r2

+ L · (σ1 + σ2)[
g′

2r
+
g′ sinh2(K)

r
− 2 sinh2(K)

r2
− 2h′

cosh(K) sinh(K)

r
]

+ σ1 · r̂σ2 · r̂L · (σ1 + σ2)×

(2h′
sinh2(K)

r
+ 2

sinh(K) cosh(K)

r2
+
h′

r
− g′ sinh(K) cosh(K)

r
)

+ σ1 · σ2[k +
g′ cosh(K) sinh(K)

r
+
g′ sinh2(K)

r
− 2h′

cosh(K) sinh(K)

r

− 2h′
sinh2(K)

r
− 2

cosh(K) sinh(K)

r2
− 2

sinh2(K)

r2
]

+ σ1 · r̂σ2 · r̂[n− 3g′ cosh(K) sinh(K)

r
− g′ sinh2K

r
− g′K ′ − 2h′F ′

+
2h′ coshK sinhK

r
+ 6h′

sinh2(K)

r
− (2F ′K ′ +K ′′) − 2

r
K ′

+ 6
cosh(K) sinh(K)

r2
+ 2

sinh2(K)

r2
] +m}|ψ+〉 = B2e−2G|ψ+〉 (5.281)

Comparing Eq. (5.260) with Eq. (5.257) we find

k =
1

2
∇2G+

1

2
G ′2 − 1

2
G ′ log′ D − 1

2
G ′C ′ − 1

2

G ′

r
− 1

2

(−C + J − L)′

r
,

g′ = 2G ′ − E2M2 +M1E1

D (J + L)′ = 2G ′ − log′D = −2F ′,

h′ =
(J − L)′

2
= −K ′,

n = −1

2
∇2(−C + J − L) − 1

2
∇2G − G ′(−C + J − L)′ − G ′2 +

3

2r
G ′

+
3

2r
(−C + J − L)′ +

1

2
log′ D(G − C + J − L)′,

m = −1

2
∇2G−1

4
G ′2 − 1

4
(C + J − L)′(−C + J − L)′ +

1

2
G ′ log′ D.

Eq. (5.281) and it’s derivation is an important part of this work which become
by Bin Liu and Crater. It will provide us with a way to derive phase shift equa-
tions using work by other authors who developed methods for the nonrelativistic
Schrödinger equation. We using the radial form of the coordinate space form of
this equation (5.257).
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5.3.3 The Radial Eigenvalue Equations

The following are radial eigenvalue equations corresponding to Eq. (5.257)
after getting rid of the first derivative terms for singlet states 1S0,

1P1,
1D2( a

general singlet 1Jj), triplet states 3P1( a general let 3Jj), a general s = 1, j = l+1
( 3P0,

3S1 states ), and a general s = 1, j = l + 1 (3D1 state). 1S0,
1P1,

1D2 ( a
general singlet 1Jj) L · (σ1 + σ2) = 0, σ1 · σ2 = −3, σ1 · r̂σ2 · r̂ = −1.

{− d2

dr2
+
j(j + 1)

r2
+
g′2

4
+h′2 +

g′′

2
+
g′

r
−3k− j−g′h′−h′′− 2h′

r
+m}v = B2ε−2Gv

(5.282)
3P1( a general triplet 3Jj) L · (σ1 + σ2) = −2, σ1 · σ2 = 1, σ1 · r̂σ2 · r̂ =1.

{− d2

dr2
+
j(j + 1)

r2
+
g′2

4
+h′2 +

g′′

2
+ k+n+ g′h′ +h′′ +m}v = B2ε−2Gv, (5.283)

s = 1, j = l+1 ( 3S1 states ) L ·(σ1 +σ2) = 2(j−1), σ1 ·σ2 = 1, σ1 · r̂σ2 · r̂ = 1
2j+1

(diagonal term), and σ1 · r̂σ2 · r̂ =
2
√
j(j+1)

2j+1
(off diagonal term).

{− d2

dr2
+
j(j − 1)

r2
+

3g′ sinh2 h

r
+ 6h′

cosh h sinh h

r
− 6 sinh2 h

r2

−g
′ cosh h sinh h

r
− 2h′

sinh2 h

r
+ 2

cosh h sinh h

r2
+
g′2

4
+ h′2 +

g′′

2
+
g′

r

+k + 2(j − 1)[
g′

2r
+
g′ sinh2 h

r
− 2

sinh2 h

r2
+ 2h′

cosh h sinh h

r
]

+
2(j − 1)

2j + 1
[2h′

sinh2 h

r
− 2

cosh h sinh h

r2
+
h′

r
+
g′ cosh h sinh h

r
]

+
1

2j + 1
[
3g′ cosh h sinh h

r
− g′ sinh2 h

r
− 2h′

cosh h sinh h

r
+ 6h′

sinh2 h

r

−6
cosh h sinh h

r2
+ 2

sinh2 h

r2
+ n+ g′h′ + h′′ +

2h′

r
] +m}u+

+
2
√
j(j + 1)

2j + 1
{3g′ cosh h sinh h

r
− g′ sinh2 h

r
− 2h′

cosh h sinh h

r
+ 6h′

sinh2 h

r

−6
cosh h sinh h

r2
+ 2

sinh2 h

r2
+ n + g′h′ + h′′ +

2h′

r

+2(j−1)[
2h′ sinh2(h)

r
−2 cosh(h) sinh(h)

r2
+
h′

r
+
g′ cosh(h) sinh(h)

r
]}u− = B2ε−2Gu+,

(5.284)
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s = 1, j = l − 1 ( 3P0,
3D1 states ) L · (σ1 + σ2) = −2(j + 2), σ1 · σ2 = 1,

σ1 · r̂σ2 · r̂ = − 1
2j+1

(diagonal term), and σ1 · r̂σ2 · r̂ =
2
√
j(j+1)

2j+1
(off diagonal term).

{− d2

dr2
+

(j + 1)(j + 2)

r2
+

3g′ sinh2 h

r
+ 6h′

cosh h sinh h

r
− 6 sinh2 h

r2

−g
′ cosh h sinh h

r
− 2h′

sinh2 h

r
+ 2

cosh h sinh h

r2
+
g′2

4
+ h′2 +

g′′

2
+
g′

r

+k + 2(j + 2)[
g′

2r
+
g′ sinh2 h

r
− 2

sinh2 h

r2
+ 2h′

cosh h sinh h

r
]

+
2(j − 1)

2j + 1
[2h′

sinh2 h

r
− 2

cosh h sinh h

r2
+
h′

r
+
g′ cosh h sinh h

r
]

− 1

2j + 1
[
3g′ cosh h sinh h

r
− g′ sinh2 h

r
− 2h′

cosh h sinh h

r
+ 6h′

sinh2 h

r

−6
cosh h sinh h

r2
+ 2

sinh2 h

r2
+ n+ g′h′ + h′′ +

2h′

r
] +m}u−

+
2
√
j(j + 1)

2j + 1
{3g′ cosh h sinh h

r
− g′ sinh2 h

r
− 2h′

cosh h sinh h

r

+6h′
sinh2 h

r
− 6

cosh h sinh h

r2
+ 2

sinh2 h

r2
+ n+ g′h′ + h′′ +

2h′

r

−2(j+2)[
2h′ sinh2(h)

r
−2 cosh(h) sinh(h)

r2
+
h′

r
+
g′ cosh(h) sinh(h)

r
]}u+ = B2ε−2Gu−,

(5.285)

Substituting for g′, h′, m, n, k we obtain the radial equations and potentials Φ
given in the text.

s = 0, j = l:

A

[{
− d2

dr2
+
j(j + 1)

r2
− B′

(
d

dr
− 1

r

)
+

1

2
∇2F − 1

4
K ′F ′

}
uj0j+

N
w(m1 −m2)

D(1)
U ′

√
j(j + 1)

r
uj1j

]
= B2(−3)uj0j. (5.286)

s = 1, j = l:

E

[{
− d2

dr2
+
j(j + 1)

r2
+ (S −Q)′

d

dr
+ 2

Q′

r
− ∇2Q+ S ′Q′

}
uj1j+

T
(ε1 − ε2)(m1 +m2)

D(1)
U ′

√
j(j + 1)

r
uj0j

]
= B2(1)uj1j. (5.287)
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s = 0, j = l + 1:

{[
E +

j

2j + 1
(O − E)

](
− d2

dr2
+
j(j − 1)

r2

)
+

[
E(S −Q)′ +

j

2j + 1
(E(Q− S)′ +O(Q+R)′)

]
×

d

dr
+

1

2j + 1
[Q′[E(−j2 + j + 2) +O(j2 − 2j)]−

ES ′j(j + 1) − OR′j2]
1

r
+

1

2j + 1
[∇2Q(−(j + 1)E+

Oj) +Q′(ES ′(j + 1) −OR′j)]

}
u +

√
j(j + 1)

2j + 1
×

{
(E − O)

(
− d2

dr2
− (2j + 1)

d

dr
− j2 − 1

r2

)
+

[E(S −Q)′ −O(R +Q)′]
d

dr
+ (E[(2 − j)Q + S(j + 1)]′+

O[(2 − j)Q− (j + 1)R]′)
1

r
− (E +O)∇2Q+

Q′(OR′ + ES ′)

}
u+ = B2(1)u . (5.288)

s = 1, j = l − 1:

{[
E +

j + 1

2j + 1
(O − E)

](
− d2

dr2
+

(j + 1)(j + 2)

r2

)
+

[
E(S −Q)′ +

j + 1

2j + 1
(E(Q− S)′ +O(Q+R)′)

]
×

d

dr
+

1

2j + 1
[Q′[E(j2 + 3j) − O(j2 + 4j + 3)]+

ES ′j(j + 1) +OR′(j + 1)2]
1

r
+

1

2j + 1
[∇2Q(−jE+

O(j + 1)) +Q′(ES ′j − OR′(j + 1))]

}
u+ +

√
j(j + 1)

2j + 1
×

{
(E −O)

(
− d2

dr2
+ (2j + 1)

d

dr
− j(j + 2)

r2

)
+

[E(S −Q)′ − O(R+Q)′]
d

dr
+ (E[(3 + j)Q− Sj]′+
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O[(3 + j)Q+ jR]′)
1

r
− (E +O)∇2Q+

Q′(OR′ + ES ′)

}
u = B2(1)u+. (5.289)

where we have

B2(−3) = B2(1) = B2 = E2
1 −M2

1 = E2
2 −M2

2 =

b2(w) + (ε21 + ε22)sh
2(J) + 2ε1ε2sh(J)ch(J) −

(m2
1 +m2

2)sh
2(L) + 2m1m2sh(L)ch(L),

D2(−3) = D2(−1) = D2(1) = D2 = E1M2 + E2M1

= (ε1m2 + ε2m1)ch(J + L) + (ε1m1 + ε2m1)sh(J + L),

K = 3H + C + J − L− G − 5F − 3I − 3Y + 2 ln(D(1)),

A = e(2G+4F−2H)D(3)

D(1)
,

B = 2G + 4F − 2H − ln(D(1)) − J + L+ 3I + 3Y,

F = H − C + J − L− 3G − 3F − 3I − 3Y,

N = e(2H−2F−I−Y+J−L),

U = J + L + I − Y,

O = e(2G−2H−4F)D(−1)

D(−3)
,

E = e(2G+2H)D(−1)

D(1)
,

Q =
1

2
(H − C + J − L + G + I + Y ),

R =
1

2
(3H + C + J − L− 5G + 7F + I + Y ) + ln(D(−3)),

S =
1

2
(3H + C + J − L + 3G − F + I + Y ) + ln(D(1)),

T = e(−2H+2F+L−J+I+Y )D(−1)

D(1)
.

5.4 Numerical Procedures

The standard form of Eq. (5.257) for singlet and coupled channels is

A(r)f ′′ +B(r)f ′ + C(r)f = 0, (5.290)

where A(r), B(r), C(r) are matrix functions. For a normal form we multiply with
A−1 viz.

f ′′ + A−1(r)B(r)f ′ + A−1(r)C(r)f = 0. (5.291)
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Such equation have been the subject for numerical analysis in the past. In partic-
ular nuclear physics problems this was solved by an iteration scheme developed by
Raynal, see ECIS [471]. The singlet channel can most easily be solved by closed
form factorization, but in practical terms one does not gain much in performance
when compared with the interactive scheme. To solve above equation, we can
use different numerical methods.

We used next notations, x0 < x1 < ..., f(xi) = fi, f
′(xi) = f ′

i , f
′′(xi) = f ′′

i , ....
Starting with some arbitrary values xn, 0 ≤ n ≤ N, then with f0 = 0, we first
need to find solutions to the homogeneous equation, the above yields recursively

f ′′
1 +D1f1 = 0, (5.292)

where D1 = A−1(r)C(r), and D2 = −A−1(r)B(r) are matrix functions. With the
solution f ′

1

f ′′
2 +D1f2 = D2f

′
1 := W, (5.293)

where W is the inhomogeneous term. The existence of a regular solution f2 of
the above differential equations yields

f ′′
3 +D1f3 = D2f

′
2,

f ′′
4 +D1f4 = D2f

′
3,

...

f ′′
n−1 +D1fn−1 = D2f

′
n−2,

f ′′
n +D1fn = D2f

′
n−1.

It is clear that these equations for f ′′
n are formally similar to those which determine

the first derivative f ′
n−1 using any numerical method, after this we can solve the

equations numerical very well. One such method is a Lagrange interpolation

f ′
n−1 =

N∑

k=0

`′kfk +R′
N , (5.294)

where

R′
N (r) =

f (N+1)

(N + 1)!
(ξ)π′

N(r) +
πN(x)

(N + 1)!

d

dx
f (N+1)(ξ),

`′ =

N∑

j=0,j 6=k

πN (r)

(r − rk)(r − rj)π′
N(rk)

,

ξ = ξ(r), (r0 < ξ < rN ),

πN (r) = (r − r0)(r − r1)...(r − rN),

and π′
n(r) is its derivative. For four points Eq. (5.294) is

f ′
p = f(r0 + ph) =

1

h
{−3p2 − 6p+ 2

6
f−1 +

3p2 − 4p− 1

2
f0

− 3p2 − 2p− 2

2
f1 +

3p2 − 1

6
f2 +R′

3}. (5.295)
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Similarly, in Eq. (5.293) we apply Milne’s method,

f ′
n+1 = f ′

n−3 +
4h

3
(2f ′′

n−2 − f ′′
n−1 + 2f ′′

n +O(h5)), (5.296)

f ′
n+1 = f ′

n−1 +
h

3
(f ′′
n−1 + 4f ′′

n + f ′′
n+1 +O(h5)), (5.297)

and any other numerical differentiation method [529].
Another powerful method is the Numerov algorithm [278], which we use only

after elimination of the first derivative terms. In this case with the ansatz

f = gh,

in Eq. (5.291), we find

g′′h+ gh′′ + 2g′h′ + A−1B(g′h + gh′) + A−1Cgh = 0. (5.298)

To eliminate the first derivative terms h′, we solve the differential equation

2g′h′ + A−1Bgh′ = (2g′ + A−1Bg)h′ = 0, (5.299)

for any h′ 6= 0 and boundary condition

lim
r→∞

g(r) = 1 = unit matrix.

The solution of this first order differential equation

g′ = −A
−1B

2
g, (5.300)

is readily found for singlet channel equation by using

g(r) = g(∞) exp

[
−1

2

∫ r

∞

A−1(x)B(x) dx

]
, (5.301)

or more generally numerical integration of the differential equation starting with
the boundary conditions

lim
r→∞

g(r) = 1.

Therewith emerges a modified differential equation without first derivatives for
h when the solution for g is inserted and new potentials are defined. The new
equation for

h′′ = U(r)h, (5.302)

is readily solved with the Numerov algorithm [278], and matched asymptotically
to known free solutions and thus yields the S-matrix.
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5.4.1 Numerov Algorithm

The solution of radial Schrödinger equations is certainly not new and generally
deserves no mention. Here, we dwell upon the details since we found the specified
elements to have a normal form of related problems in other fields of physics and
engineering which were tested with parallel computing facilities. The Numerov
algorithm has been widely used for singlet and coupled channels Schrödinger
equations since it gives sufficient numerical accuracy with minimal operations
[472]. The standard form of linear homogeneous or inhomogeneous Schrödinger
equations which we have to solve is

f ′′
i (r) =

∑

j

Vij(r)fj(r) +Wi(r), (5.303)

where Wi(r) = 0 for homogeneous equations.
In case of Schrödinger equations which include a first derivative

f ′′
i (r) =

∑
V 0
ij(0)fj(r) +

∑
V

(1)
ij (r)f ′

j(r), (5.304)

we identify

Wi(r) :=
∑

V
(1)
ij (r)f ′

j(r), (5.305)

in which the derivative solution f ′
j(r) is obtained iteratively. To determine the

scattering matrix S, we need to compute only the regular solution

fi(r) → fi(α, r),

with the iteration counter α = −1, 0, 1, ..., N.

f ′′
i (−1, r) =

∑
V

(0)
ij (r)fi(−1, r), (5.306)

with
fi(−1, r)|r→0 = 0.

fi(r) → fi(α, r),

with the iteration counter α = 0, 1, ..., N. We start the iteration with

f ′′
i (0, r) =

∑
V

(0)
ij (r)fi(0, r),

Wi(0, r) = 0,

for a regular solution
fi(0, r)|r→0 = 0.

Thus
f ′′
i (α, r) =

∑
V

(0)
ij (r)fi(α, r) +Wi(α, r), (5.307)
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with
Wi(α, r) =

∑
V

(1)
ij (r)f ′

j(α− 1, r),

and the derivatives are computed by a three or five point Lagrange interpolation
formula. The potential V

(0)
ij (r) and V

(1)
ij (r) are properly regularized near the

origin to guarantee a stable numerical solution and convergence of the iterative
scheme. This is well satisfied for our NN optical model. For singlet channels the
algorithm is

fn+1 = 2fn − fn−1 +
h2

12
(un+1 + 10un + un−1) , (5.308)

or
(

1 − h2

12
Vn+1

)
fn+1 =

(
2 +

10h2

12
Vn

)
fn −

(
1 − h2

12
Vn−1

)
fn−1

+
h2

12
(Wn+1 + 10Wn +Wn−1) . (5.309)

These expressions generalize for coupled channels using standard vector and ma-
trix algebra.

A significant reduction of operations is found by using the substitution

ξn =

(
1 − h2

12
Vn

)
fn, (5.310)

in Eq. (5.309). It gives
ξn+1 = 2ξn − ξn−1 + Un, (5.311)

and the inhomogeneous equation

ξn+1 = 2ξn − ξn−1 + Un +
h2

12
(Wn+1 + 10Wn +Wn−1) , (5.312)

with

Un =
h2Vn

1 − h2

12
Vn
ξn.

Back-transformations from ξi → fi use either of the two possibilities

fi = ξi +
1

12
Ui, or fi =

ξi+1 + 10ξi + ξi−1

12
. (5.313)

5.4.2 Calculation of Phase Shift

We evaluate the equation Eq. (5.257) numerically for uncoupled and coupled
channels using a Numerov method (Sec. 5.4). The physical solutions are matched
asymptotically, limr→∞ to Riccati-Hankel functions

u+
α (r, k) ∼ 1

2i

[
−h−α (rk) + h+

α (rk)Sα(k)
]
. (5.314)
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The irregular outgoing wave Jost solutions are

J +
α (r, k) ∼ h+

α (rk), (5.315)

and the regular solutions are asymptotically

lim
r→∞

ψ
(±,0)
` (r, k, q)N` = j`(rq) + h

(±,0)
` (rk)

q

k
T

(±,0)
` (k2, k, q), (5.316)

to determine the half off-shell t-matrix T
(±,0)
` (k2, k, q) and the normalization N`.

Spherical Riccati functions are symbolized by j`(x), h
±
` (x) and h0

`(x) = n`(x).
The on-shell t-matrix gives the S-matrix by the relation

S(k) = 1 + 2i T (+)(k2, k, k). (5.317)

To solve for coupled channels 3SD1,
3PF2, etc., two linear independent regular

solutions are calculated [256, 278].
The VPI/GWU solutions [11] are parameterizations of the elastic channel NN

S-matrix. They consider

S1 = (1 + iK4)(1 − iK4)
−1, (5.318)

which inverts to give

K4 = i(1 − S1)(1 + S1)
−1 = ReK4 + iImK4. (5.319)

The real part of this K-matrix is related to a unitary S-matrix (S6) and therewith
phase shifts δ± and ε are defined by

S6 =
(1 + i ReK4)

(1 − i ReK4)
=

{
cos 2ε exp 2iδ− i sin 2ε exp i(δ− + δ+)

i sin 2ε exp i(δ− + δ+) cos 2ε exp 2iδ+

}
.

(5.320)
The absorption parameters ρ± and µ relate to the imaginary part of that K-matrix
by

ImK4 =

{
tan2 ρ− tan ρ− tan ρ+ cosµ

tan ρ− tan ρ+ cos µ tan2 ρ+

}
. (5.321)

These relations simplify to K = tan δ + i tan2 ρ for uncoupled channels.
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Chapter 6

Application to NN Interactions

6.1 Boson Exchange Models

All existing potential models are to some degree based on meson exchange. They
all include the one pion exchange contribution which essentially determines the
long range part of the interaction. As such, the meson exchange model has
been very successful in describing the empirical features of the NN force. Both
the tensor and spin orbit forces are easily accounted for in the meson exchange
model [393, 394].

The starting point for meson exchange theory is a phenomenological La-
grangian which describes the interaction between baryons and meson fields. For
the NN interaction at low and intermediate energies the three relevant meson
fields show sysmmeties of scalar (s),(σ, δ), pseudoscalar (ps), (π, η) and vector
(v), (ρ, ω) fields.

The interaction Lagrangian that couples these fields to the nucleons in lowest
order are

Ls = gsψψφ
(s), (6.1)

Lps = −igpsψγ5ψφ(ps), or Lpv = − fps
mps

ψiγ5ψ∂µφ
(ps), (6.2)

Lv = −igvψγµψ∂φ(v)
µ − fv

4M
ψiσµν

(
∂µφ

(v)
ν − ∂νφ

(v)
µ

)
ψ, (6.3)

where M is the nucleon mass and ψ is the nucleon Dirac field with its adjoint
defined by ψ = ψγ0, while φ(s), φ(ps) and φ(v) are the scalar, pseudoscalar and
vector meson fields respectively. Correspondingly, gs, gps and gv are the coupling
constants. There is also a tensor coupling fv between nucleons and the vector
mesons. Actually, there are two alternative ways to couple pseudoscalar fields to
nucleons. The one given above is the pseudoscalar coupling ps. The so called
gradient coupling or pseudovector pv coupling is an effective coupling derived from
chiral symmetry [394, 560]. The ps and the pv couplings are equivalent for on-
shell nucleons when the coupling constants are related by fps = gps(mps/2M). The
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coupling constants are constrained by NN scattering data. Empirical information
also constrains the ratio of gv to fv.

From the Lagrangian, the Hamiltonian can be derived, and using time de-
pendent perturbation theory the NN interaction can be visualized in terms of
Feynman diagrams involving meson baryon coupling. This field theory was first
developed for quantum electrodynamics. When electromagnetic interactions are
involved, it is necessary to apply perturbation theory, which appears quite rea-
sonable for a coupling constant α ≈ 1/137. Meson baryon coupling constants
originate from the strong interaction and are generally large of the order 1-10,
thus, the perturbation expansion becomes increasingly divergent at shorter dis-
tances. For intermediate and long ranges the diagrammatic expansion is assumed
to converge. However, due to the quark structure and finite size of the nucleons
the meson exchange model for the NN interaction generates little confidence at
short range. This problem has been never overcome and a saving argument is
the strongly repulsive core which keeps the nucleons apart and hides the genuine
quark gluon processes between the nucleons. Traditionally, the short range part
of the NN interaction is treated phenomenologically by introducing vertex form
factors, which are effectively to the extended by adjusting several parameters in
fits to NN data. The form factors suppress the meson exchange at small distances.
Using this short range regularization, the meson exchange theory yield quantative
results in the framework of time ordered perturbation theory [401] for NN ener-
gies TLab < 300MeV. Above 1 GeV and above, this meson exchange mechanism
becomes relatively small in comparison with the kinetic energy and the hard core
domain starts to display violently the quark gluon dynamics. From the NN phase
shift for TLab > 1GeV we get the impression that this violent core dynamics can
be regularized with a few complex boundary conditions whose energy dependence
reflects our ignorance about low energy QCD dynamics. In summary, the lowest
order contribution to the NN scattering establishes one boson exchange, which
comprise the exchange of the six nonstrange mesons

V OBE =
∑

α=π,η,ρ,ω,δ,σ

V OBE
α . (6.4)

The heavy vector mesons ρ and ω are important at short distances where the
NN interaction becomes repulsive, a feature which is enhanced by relativistic
kinematics. Nevertheless, the intermediate distance attraction is generated by σ
meson which accounts for correlated pairs of pions with total spin J = 0 and
isospin T = 0 [327]. In the one boson approximation the contribution from
these processes is effectively included by exchange of a fictitious scalar meson
usually denoted by sigma [394]. The long range part of the NN interaction is
well established both theoretically and experimentally to arise from Coulomb and
one pion exchange.

Most of the uncertainty in nuclear processes comes from the short distance
interactions (r < 0.75fm) between two or more nucleons. Even when one is
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interested only in low energy phenomena, the short distance contributions are
important. In perturbation theory, for instance, the influence of short distance
physics on low energy observable appears in the existence of ultraviolet diver-
gent integrals, that is, in the dominance of high momentum modes over the
small momentum ones. Sensitivity of large distance observables on short dis-
tance physics is not an unusual situation in physics, it is in fact pervasive in
many fields. One way of dealing with it, as we shall do, is to model the short
distance physics and solve the problem within a semimicroscopic approach. In
the case of nuclear systems this would lead either to a calculation of nuclear pro-
cesses directly from QCD (which is currently impossible and would be, even if
possible, a highly inefficient way of approaching the problem) or to the use of
meson exchange/quark/skyrmion/... models.

6.2 Instant Form Potentials

We first consider how to model G and L, corresponding to vector and scalar
interactions.

We may rewrite the external potential form of the covariant two body Dirac
equations for two relativistic spin one half particles interacting through scalar
and vector potentials as, see Eqs. (5.193) without the pseudoscalar interaction,

S1|ψ〉 ≡ γ51(γ1 · (p1 − A1) +m1 + S1)|ψ〉 = 0, (6.5a)

S2|ψ〉 ≡ γ52(γ2 · (p2 − A2) +m2 + S2)|ψ〉 = 0. (6.5b)

Aµi and Si introduce the interactions that the ith particle experience due to the
presence of the other particle, both are spin dependent [546, 152, 156, 153,
154, 155, 157]. In order to identify these potentials we use Eqs. (5.193), and
(5.194,5.195). Then we find that the momentum dependent vector potentials Aµ

i

are given in terms of three invariant functions [156, 157] G, E1, E2

Aµ1 = ((ε1 − E1) − i
G

2
γ2 ·

∂E1

E2
γ2 · P̂ )P̂ + (1 −G)pµ − i

2
∂G·γ2⊥γ

µ
2⊥, (6.6)

Aµ2 = ((ε2 − E2) − i
G

2
γ1 ·

∂E2

E1
γ1 · P̂ )P̂ + (1 −G)pµ − i

2
∂G·γ1⊥γ

µ
1⊥, (6.7)

where

G = exp(G), (6.8)

(with P̂ 2 = −1, where P̂ ≡ P/w) while the scalar potentials Si are given in terms
of three invariant functions [152, 156, 157] G, M1,M2

S1 = M1 −m1 −
i

2
Gγ2 ·

∂M1

M2

, (6.9)
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S2 = M2 −m2 −
i

2
Gγ1 ·

∂M2

M1
. (6.10)

In QCD, the scalar potentials Si are semiphenomenological long range inter-
actions. The vector potentials Aµ

i are semiphenomenological in the long range
while in the short range are closely related to perturbative quantum field theory.
Of course this rewrite does not change the fact that S1 and S2 still satisfy the
compatibility condition

[S1,S2]|ψ >= 0. (6.11)

In order that Eq. (6.5a) and Eq. (6.5b) satisfy Eq. (6.11), it is necessary that
the invariant functions G, E1, E2, M1 and M2 depend on the relative separation,

x = x1 − x2,

only through the spacelike coordinate four vector

xµ⊥ = xµ + P̂ µ(P̂ · x),

perpendicular to the total four momentum P. For QCD and QED applications, G,
E1, E2 are functions [153, 157] of an invariant A. The explicit forms for functions
E1, E2, G are

E1 = G(ε1 −A), (6.12)

E2 = G(ε2 −A), (6.13)

and

G2 =
1

(1 − 2A
w

)
. (6.14)

The function A(r) is responsible for the covariant electromagnetic like Aµ
i . Even

though the dependencies of E1, E2, G on A is not unique, they are constrained
by the requirement that they yield an effective Hamiltonian with the correct
nonrelativistic and semirelativistic limits (classical and quantum mechanical [162,
336]). For QCD and QED application , M1 and M2 are functions of two invariant
functions [152, 157], A(r) and S(r)

M2
1 (A, S) = m2

1 +G2(2mwS + S2), (6.15a)

M2
2 (A, S) = m2

2 +G2(2mwS + S2). (6.15b)

The invariant function S(r) is responsible for the scalar potential since Si = 0,
if S(r) = 0, while A(r) contributes to the Si (if S(r) 6= 0 ) as well as to the
vector potential Aµ

i . So, finally, the five invariant functions G, E1, E2, M1 and
M2 (or G = −J, L) depend on two independent invariant potential functions S
and A. (Compare also the spin independent portions to Eqs. (5.30,5.32) through
calculation of E2

i −M2
i − b2.)
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Expressing G, E1, E2, M1 and M2 in terms of S and A is important for
semiphenomenological and other applications that emphasize the relationship of
the interactions to effective external potentials of the two associated one body
problems. However, the five invariants G, E1, E2, M1 and M2 can also be ex-
pressed in the hyperbolic representation [158] in terms of the three invariants L,
J and G (see Eqs. (5.194), (5.195) and (5.196)). L, J and G generate scalar,
timelike vector and spacelike vector interactions respectively and enter into our
Dirac equations via the sum ∆L+∆J +∆G where Eqs. (5.102,5.103,5.104) define
∆L,∆J ,∆G.

We may use Eq. (5.93) to relate the matrix potentials ∆ to a given field
theoretical or semiphenomenological Feynman amplitude. As mentioned earlier,
a matrix amplitude proportional to γµ1 · γ2µ corresponding to an electromagnetic
like interaction would require [160] J = −G. Matrix amplitude proportional to
either I1I2 or γ1 · P̂ γ2 · P̂ would correspond to semiphenomenological scalar or
timelike vector interactions. The two body Dirac equations in the hyperbolic form
of Eq. (5.93) give a simple version [158] for the norm of the sixteen component
Dirac spinor. The two body Dirac equations in external potential form, Eq.
(6.5a) and Eq. (6.5b), (or more generally (5.193) are simpler to reduce to the
Schrödinger like form and are useful for numerical calculations (see Sazdjian [421]
for a related reduction). We describe the parameterization of the pseudoscalar
interaction C below in Eq. (6.17).

6.2.1 Modeling the Invariant Interaction Functions

Bin Liu and Crater had used the following scalar interactions in two body Dirac
equations (see Eqs. (6.9, 6.10), 6.15b)):

S = −g2
σ

e−mσr

r
− (τ1·τ 2)g

2
a0

e−ma0r

r
− g2

f0

e−mf0
r

r
, (6.16)

where g2
σ, g

2
a0 , g

2
f0

are coupling constants for the σ, a0 and f0 mesons and mσ, ma0

and mf0 the corresponding masses. (τ1·τ 2) is 1 or −3 for isospin triplet or singlet
states.

Pseudoscalar interactions are assumed to enter into two body Dirac equations
in the form (see Eq. (5.257))

C = (τ1·τ 2)
g2
π

w

e−mπr

r
+
g2
η

w

e−mηr

r
+
g2
η′

w

e−mη′r

r
, (6.17)

where w = ε1 + ε2 is the total energy of the two nucleon system. g2
π, g

2
η, g

2
η′ are

coupling constants for mesons π, η and η′ respectively and mπ, mη and mη′ the
corresponding masses. This form for C yields the correct limit at low energy.

Vector interactions enter into two body Dirac equations in the form (see Eqs.
(6.12) and (6.14))

A = (τ1·τ 2)g
2
ρ

e−mρr

r
+ g2

w

e−mwr

r
+ g2

φ

e−mφr

r
, (6.18)
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where g2
ρ, g

2
ω, g

2
φ are coupling constants for mesons ρ, ω and φ and mρ, mω and

mφ are the corresponding masses.
In the constraint equations, A and S are relativistic invariant functions of the

invariant separation r =
√
x2
⊥ (see below for the distinction between A and A).

Since it is possible that A and S, as identified from the nonrelativistic limit, can
take on large positive and negative values, it is necessary to modify G, E1, E2, M1

and M2 so that the interaction functions remain real when A become large and
repulsive [167]. These modifications are not unique but must maintain correct
limits.

Model 1 Crater and van Alstine [167] used the Adler-Piran potential in order
to compute meson spectra

A = exp(−βr)[VAP − c4
r

] +
c4
r

+
e1e2
r
,

S = VAP +
e1e2
r

−A = (VAP − c4
r

)(1 − exp(−βr)). (6.19)

For Ei = G(εi −A) to be real we need only ensure that G be real which requires
that A ≤ w/2. This restriction on A is enough to ensure that

Mi = G
√
m2
i (1 − 2A/w) + 2mwS + S2,

be real as well (so long as S ≥ 0). (As we shall show below in our discussion on
the static limit, the case of S < 0 does not require any further restrictions.) In
order that A satisfy this inequality, we must modify it and S so that

S(r) + A(r) = VAP (r) + e1e2/r ≡ A+ S̄,

with A and S̄ given by the right hand sides of Eq. (6.19) respectively. Then we
reidentify A and S such that

A = A, A ≤ 0, (6.20)

A =
AA0√
A2 + A2

0

, A > 0 (6.21)

S = S̄ + A−A, (6.22)

where A0 = w/2. This parameterization gives A and S that are continuous
through their first derivatives. We next consider problems that may arise in the
limit that one of the masses becomes very large. We must modify the Mi so that
they have the correct static limits (when say m2 → ∞).

In the spinless case, the potential forms Eq. (6.19) are determined by requiring
the desired nonrelativistic limit and compatibility of the covariant generalized
mass shell constraints for the constituent particles,

Hi = (pi − Ai)
2 + (mi + Si)

2 ≈ 0,
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in which constituent vector potentials are given by

Aµi = αip
µ
1 + βip

µ
2 ,

introduced by minimal substitutions. The classical compatibility condition on
the two constraints,

{H1,H2} ≈ 0,

implies that only two of the four scalars αi, βi and one of the two scalars Si
are independent. These three independent system scalars, A,V and S, must be
functions of x⊥ and are related to constituent potentials Aµ

i , Si by

M2
1 = (m1 + S1(S,A))2 = m2

1 +G(2mwS + S2), (6.23)

M2
2 = (m2 + S2(S,A))2 = m2

2 +G(2mwS + S2), S > 0. (6.24)

At first sight, Eq. (6.23) does appear to give M1 → m1 + S. (Note G→ 1 in
this heavy mass limit). However, this limit is only true if m1 + S ≥ 0.

We now take advantage of the hyperbolic parameterization given in Eqs.
(5.194). Let us assume that L is a monotonic function of S for S ≥ 0 given
by

exp(L) =
M10 +M20

m1 +m2
≡ exp(L0(S)), S ≥ 0, (6.25)

in which Mi0 are defined as the forms of Mi given in Eqs. (6.23). We choose
this form since only in the region where S is large and negative do we expect
problems. We desire a form for Mi which goes over to mi + S when S becomes
large and negative and one of the constituent rest masses is large. At the same
time we require an expression that has the correct weak potential behavior. The
original forms in Eq. (6.23) for Mi do have the correct weak potential form. So,
for weak potentials, using Eq. (5.194) and Eq. (6.23) we solve for sinh(L) and
obtain

sinh(L) ≈ S

w

(
1 +

εwS

wmw

)
. (6.26)

We then need a modification of this, valid in regions of large negative S that
at S = 0 is continuous through second derivatives with that obtained above,
that yields correct strong coupling static limit spectral results, and yields correct
weak coupling equal mass results obtained non perturbatively (i.e. numerically).
Although these restrictions are not sufficient to uniquely define an extrapolated
sinh(L) they are severe enough to narrow the choices significantly. For the present
treatment, we choose

sinh(L) =
S

w

(
1 +

εwS√
w2 + S2mw

)
. (6.27)

This satisfies the continuity condition and gives numerical results that satisfy
the other two restrictions. Consequently, for S < 0 and large m2 we obtain a
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spectrum (both ground and excited states) that for this extreme case agrees with
that of the exact solution obtained from the one body Dirac equation

(γ1 · p1 +m1 + S)ψ = 0. (6.28)

Furthermore, Van Alstine obtained a spectrum for equal and unequal mass cases
that agrees with the standard perturbative results as given in [160].

Another choice that works just as well is

sinh(L) =
S

w

(
1 +

S√
(wmw/εw)2 + S2w

)
, (6.29)

while one that satisfies the continuity condition, works well numerically for the
extreme limit above, but fails the perturbative test

sinh(L) =
S

w

(
1 +

εwS√
m2
w + S2w

)
.

Since this applications in QCD combine both scalar and electromagnetic like
vector interactions we must impose similar conditions for the case of Eq. (6.23)
with A 6= 0. Following the same procedure, combining Eqs. (5.194,6.23) for weak
S but arbitrary A, yields

sinh(L) ≈ S

wD

(
1 +

(εw − A)S

wDmw

)
, (6.30)

in which D = 1/G2 = 1 − 2A/w. We then test our assumption for the case
S = A = −α/r, as before for the extreme cases of unequal mass, large coupling
and equal mass, small coupling. We find an extrapolation that works reasonably
well

sinh(L) =
S

wD

(
1 +

(εw −A)S√
w2 + S2Dmw

)
, S < 0. (6.31)

We note that these requirements rule out the plausible choice

sinh(L) =
S

wD

(
1 +

S√
mwDw/(εw −A))2 + S2

)
,

whose A = 0 counterpart worked well above.
We emphasize that a crucial feature of the sinh(L) extrapolations is that for

fixed S, in the static limit (e.g. m2 >> m1) sinh(L) → S/w which leads to
M1 → m1 + S. Note that as opposed to what happens for scalar potentials,
strong A potentials have no problem in the static limit where the restriction
A < w/2 → ∞ on A is automatically satisfied.
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Model 2 This model comes from the work of H. Sazdjian [336]. Using a spe-
cial techniques of amplitude summation, he is able to sum an infinite number
of Feynman diagrams (of the ladder and cross ladder variety). For the vector
interactions, he obtained results that correspond to Eq. (5.32) to Eq. (5.34) and
Eq. (6.12) to Eq. (6.14)(modified here in Eq. (6.21) for A ≥ 0). For scalar
interactions (L(S,A)) he obtained two results. One again agrees with Eq. (5.30)
and Eq. (6.15b). As we have seen above this must be modified (see Eq. (6.31))
for S ≤ 0. His second result is the one we use here for our second model for
(L(S,A)). That replaces Eq. (6.31)and Eq. (6.23) with the model:

S + A > 0,

then

S −→ −A+
(S + A)w√

4(S + A)2 + w2
, (6.32)

while if
S + A < 0,

we let
S −→ −A + S + A. (6.33)

In both case we let

sinhL = sinh(−1

2
ln(1 − 2(S + A)

w
) − G). (6.34)

6.3 The Nucleon Nucleon Optical Model

Von Geramb et al. [256] analyzed partial wave amplitudes for NN scattering to
2.5 GeV, in which resonance and meson production effects are evident for energies
above pion production threshold. This analyses was based upon boson exchange
or quantum inversion potentials. They also added short range Gaussian potentials
to their real reference model potentials, Nijmegen or inversion potentials. The
energy dependences of these Gaussian was very smooth save for precise effects
caused by the known ∆ and N? resonances.

Here we will analyze the SP03, and SM00 partial wave amplitudes for NN
scattering to 3 GeV with complex short range Gaussian potential on the radius
r ∼ 0.5fm, in addition to the real Dirac reference potential. Before that, we will
discuss shortly the effective Hamiltonian formalism of Feshbach [232].

First, Feshbach in his work Ref. [232] used the generalized optical potentials
with projection operators. His approach, the total many body wave function Ψ
is partitioned into an open channel segment PΨ, a part that is of interest for
particular phenomenon, and a closed channel segment, the remaining part of the
wave function QΨ

Ψ = PΨ +QΨ. (6.35)
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P space is include all real longe range interactions, Q contains NN reactions.
The components PΨ and QΨ will in general be coupled by interactions. Let

ψi be the wave functions of the target in its different states, i = 0 will denote the
ground state, i = 1, 2, ..., the 1st, 2nd,..., excited states. For total system

Ψ =

∞∑

i=0

ui(r)ψi(r1, r2, ..., rA), (6.36)

where (r1, r2, ..., rA) stand for positional as well as intrinsic coordinates of the
A particles in the target, while ui(r) are functions of the position and intrinsic
coordinates r of the projectile. The projection operator P is such that acting on
the function Ψ of Eq. (6.35) it projects out a number of terms uiψi corresponding
to a given set of channels of interest

PΨ =
n∑

i=0

uiψi, (6.37)

it means that include the open channels. We define Q and P projection operators
that satisfy the relations

P +Q = 1, PQ = 0, P 2 = P, Q2 = Q. (6.38)

It is a matter of convenience to choose QΨ to be orthogonal to PΨ, as is insured
by Eq. (6.38).

By eliminating the Q channels, a Schrödinger equation is obtained for the
P channels, and an effective Hamiltonian can be derived, which in turn can be
used to analyze various aspects of the nuclear many body problem [256]. The
resulting equations depend only on the existence of an projection operator, not
on explicit realization thereof. To find the effective Hamiltonian, we are starting
with Schrödinger equation

(E −H)Ψ = 0, (6.39)

where Ψ is given by Eq. (6.35) so that

(E −H)(PΨ +QΨ) = 0. (6.40)

Acting on the left by P or Q and on the right by P and using Eq. (6.38), we get
the two equations

(E −HPP )(PΨ) = HPQ(QΨ), (6.41a)

(E −HQQ)(QΨ) = HQP (PΨ), (6.41b)

where HPP = PHP , HQQ = QHQ and similarly for HQP and HPQ. Solving the
second equation, with outgoing wave boundary conditions

QΨ =
1

E −HQQ + iε
HQP (PΨ). (6.42)
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Substitution into the first equation yields

(E −Heff)(PΨ) = 0, (6.43)

where the energy dependent effective Hamiltonian is

Heff = HPP +HPQ
1

E −HQQ + iε
HQP . (6.44)

From this Eq. (6.44), we see that Heff is a complex operator, the first term on the
right side is a divergent free interaction and the second term is singular, which de-
scribe a coupling between the PΨ and QΨ. The operator (E −HQQ + iε)−1 pro-
vides then a propagation within the QΨ part only. This equation, the Lippman-
Schwinger equation, is an integral equation for Ψ with a Green’s function kernel.
The operator HQQ consist of a discrete

HQQΦs = EsΦs,

and a continuum spectrum

HQQΦ(E , α) = EΦ(E , α),

where α is an extra index which completes the classification of the continuum
states [380]. Finally, if we use

lim
ε→0+

∫ b

a

f(x)

x− x0 + iε
dx = P

∫ b

a

f(x)

x− x0
dx− iπf(x0), (6.45)

we have

Re Heff (E) = HPP +
∑

s

HPQ|Φs >< Φs|HQP

E − Es

+P
∫
dα

∫
dEHPQ|Φ(E , α) >< Φ(E , α)|HQP

E − E , (6.46)

Im Heff(E) = −π
∫
dαHPQ|Φ(E, α) >< Φ(E, α)|HQP . (6.47)

The optical model is highly nonlocal, but local equivalent potentials are com-
monly used. Substituting the second into the first equation, we get the dispersion
type relation

Re Heff(E) = HPP +
∑

s

HPQ|Φs >< Φs|HQP

E − Es
− 1

π
P
∫

Im Heff

E − E dE . (6.48)

Von Geramb et al. for their optical potential together with meson exchange
model in Refs. [278, 256], described the Q space functions as doorway states,
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describing the QCD entrance sector from finite size nucleons, mesons and possible
other particles.

Here, in the NN interaction towards higher energies, the Dirac potential is the
background real reference potential Vref . For a two body problem with scalar and
vector interaction, a relativistic reduced mass and energy of a fictitious particle
of relative motion

mw =
m1m2

w
,

and

εw =
w2 −m2

1 −m2
2

2w
,

the invariants is then
ε2ω − −→p 2 = m2

ω. (6.49)

We can apply the techniques already developed for the no spin potentials to the
above Eq. (6.49) by the substitutions εω 7→ εω − A, and mω 7→ mω + S. It yields

−→p 2 + 2mωS + S2 + 2εωA− A2 − ε2ω +m2
ω = 0. (6.50)

The effective single particle Eq. (6.50) is often referred to as a Schrödinger
equivalent equation since it has the same radial form as Schrödinger equation
with relativistic kinematics. Thus, given a Dirac optical potential, one can use it
in a Schrödinger analysis, with relativistic kinematics simply by converting to the
second order form. This relation holds for pairs of particles in form of coupled
systems

{−→p 2(1) + 2mω(1)S(1) + S2(1) + 2εω(1)A− (1)A2(1) −
ε2ω(1) +m2

ω(1)}|ψ1ψ2 >= C(1, 2)|ψ1ψ2 >,

{−→p 2(2) + 2mω(2)S(2) + S2(2) + 2εω(2)A− (2)A2(2) −
ε2ω(2) +m2

ω(2)}|ψ1ψ2 >= C(1, 2)|ψ1ψ2 > .(6.51)

with product wave function and orthogonality of their intrinsic parts yields

< ψ2|{−→p 2(1) + 2mω(1)S(1) + S2(1) + 2εω(1)A− (1)A2(1) − ε2ω(1) +m2
ω(1)}|ψ1ψ2 >

= − < ψ2|C(1, 2)|ψ1 > |ψ2 >= −V21|ψ2 >,

< ψ1|{−→p 2(2)︸ ︷︷ ︸
H2

+ 2mω(2)S(2) + S2(2) + 2εω(2)A− (2)A2(2)︸ ︷︷ ︸
V22

− ε2ω(2) +m2
ω(2)︸ ︷︷ ︸

k2
2

}|ψ1ψ2 >

= − < ψ1|C(1, 2)|ψ2 > |ψ1 >= −V12|ψ1 > .

The right hand sides define coupling matrix elements between channel 1 and 2.
Rewrite the two equations as

(H0
1 + V11 − k2

1)|ψ1 >= −V12|ψ2 >, (6.52)

(H0
2 + V22 − k2

2)|ψ2 >= −V21|ψ1 >, (6.53)
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with incoming flux restricted to channel 1, we invert formally and substitute the
second equation

|ψ2 >= −(H0
2 + V22 − k2

2)
−1V21|ψ1 > . (6.54)

into the first one

(H0
1 + V11 − k2

1)|ψ1 >= −V12(H
0
2 + V22 − k2

2)
−1V21|ψ1 > . (6.55)

We may evaluate the singular integral in terms of its principle value and pole
contribution (outgoing waves)

{V12(H
0
2 + V22 − k2

2)
−1V21|ψ1 >} = P

∫
dE V12(H

0
2 + V22 − k2

2)
−1V21|ψ1 > −

iπ

∫
δ(E2 − k2

2) dE V12(H
0
2 + V22 − k2

2)
−1V21|ψ1 >, (6.56)

from which follows that the elimination of the second channel introduces effec-
tively a complex interaction. The imaginary part comes from the loss of flux,
in case the second channel is energetically open. Coupling closed channels does
not generate an imaginary potential. This is the case for NN scattering below
the meson production threshold Tlab < 300 MeV, or excitation of NA at very low
energy. The optical potential comprises a complicated substructure of channel
coupling but in summary appears to be quite simple and distinguished energy
dependent real and imaginary path

V
OMP

(r, E) + iW
OMP

(r, E).

In the center-of-momentum system, p = p⊥ = (0,p), x⊥ = (0, r) and the
relative energy and time are removed from the problem. The equation for the
relative motion is then

{−→p 2 + Vref + V
OMP

+ iW
OMP

− k2}|ψ >= 0, (6.57)

where Vref is the Dirac reference potential from Eq. (5.257).
The optical potential considered here may be taken as Woods-Saxon, surface

Gaussian or any linear combination of them, it consists of two part. Consider
one part is a potential S which transforms as a scalar

S =
S0(k

2)

1 + exp( r−R0

a
)
, (6.58)

the other part , a potential A, which transforms as a vector

A =
A0(k

2)

1 + exp( r−R0

a
)
. (6.59)

The new OMP model is dependent on the fitting of data to determine the param-
eters in the assumed potential. The resulting Dirac equation (6.57) is suitable
for simultaneous analyses of np and nn scattering data up to several GeV.
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6.3.1 Refined Optical Model Potential

A fundamental difficulty in an EFT description of nuclear forces is that they are
necessarily non perturbative, so that an infinite series of Feynman diagrams must
be summed. Which diagrams must be summed may be known, and summing
them is equivalent to solving a Schrödinger equation. However, an EFT yields
graphs which require renormalization, giving rise to a Schrödinger potential which
is singular to solve conventionally. In effective field theories, the potential will
in general have a singular behavior, such as 1/r2, 1/r3, δ3(r), and worse. Such
potentials do not allow a conventional solution of the Schrödinger equation, or
equivalently, lead to divergent diagrams in the field theory. In field theory it is
well known how to deal with divergences one merely regularizes the integrals and
then renormalize the coupling of the theory, absorbing terms that diverge as the
cutoff is removes them into the definition of the renormalized coupling. When
this is done, there is no cutoff dependence in the theory.

OMP-1: In this model, we solve the Schrödinger equation (6.57) for NN scat-
tering with a radial weight function applied to the Dirac potential. In practical
terms, this reduces the hard core Dirac potential with a Fermi distribution.

We assume the interaction between two nucleons is described by a potential,
V = VS + VL, consisting of a short and long range part. This separation is
justified by the weak and small long range interaction where changes are small
on the scale of the nucleon diameter ∼ 1 fm. The short range interaction is strong
and its scale is 0.1 fm. The short range interaction acts directly on quarks and
causes quark spin flip or quark exchange. Only the short range interaction is able
to transform a nucleon into a ∆(3, 3) or N ∗ and generates directly or indirectly
mesons. We simplify things in this model by taking the long range potential VL
to be Vref and a weighted Vref as V

OMP
in the short range domain.

The real potential is identified with the Dirac potential

ReV = VDirac + V
OMP

= VDirac − V0
VDirac

(1 + e(r−R0)/a)
, (6.60)

where the real optical potential is fixed with

V
OMP

= −V0
VDirac

(1 + e(r−R0)/a)
. (6.61)

It vanishes rapidly outside the short range domain r > 0.5 fm. The imaginary
optical potential is a short range surface peaked normalized Gaussian

ImV = W
OMP

= W0NG e
−

(r−R0)2

a2 , (6.62)

where NG is the normalization. The total potential V is

V = VDirac + V
OMP

+ iW
OMP

, (6.63)

166



CHAPTER 6. APPLICATION TO NN INTERACTIONS

Eq. (6.57) yields

{−→p 2 + V − k2}|ψ >= 0. (6.64)

As pointed out by Beane et al. [57] and Lepage [379], EFT uses a similar model,
but specifies a high momentum cut-off as regularization. In EFT the cut-off has
a physical meaning like in renormalizable theories [379]. In fact the strategy of
effective field theories is such that one should not pick either too low a cut-off
or too high a cut-off : if one chooses too low a cut-off , one risks the danger
of throwing away relevant degrees of freedom and hence correct physics while if
one chooses too high a cut-off, one introduces irrelevant degrees of freedom and
hence makes the theory unnecessarily complicated. The astute in doing EFT is
in choosing the proper cut-off. In subsection 7.6.1 are shown numerical results of
Eq. (6.64).

OMP-2: The short range dynamics can always be treated as a set of local
operators. In this model, the Dirac potential represents the long range part of
the potential. Local operators in momentum space correspond to OMP interac-
tions in coordinate space. We assume that the short range physics is represented
by the OMP plus the Dirac’s reference potential.

The short range physics is represented by a real optical potential

V
OMP

=
V0

(1 + e(r−R0)/a)
, (6.65)

of Woods-Saxon type and the imaginary part

W
OMP

= W0NG e
−

(r−R0)2

a2 , (6.66)

of a normalized Gaussian type, where NG is the normalization. The total poten-
tial V is given by

V = VDirac + V
OMP

+ iW
OMP

, (6.67)

with adjustable V0 and W0 as function of energy and partial wave, R0 and a are
fixed. Eq. (6.57) yields

{−→p 2 + V − k2}|ψ >= 0. (6.68)

In subsection 7.6.1 we show results for OMP-2 calculations. We expect results
which are qualitatively similar to OMP-1.

OMP-3: We now consider the more interesting case of an interaction with both
long and short range dynamics well separated.

The long range interaction is identified with the Dirac potential with a sharp
cut-off somewhat outside the hard core radius rc = 0.5 fm, viz.

VL = VDirac

(
1 − 1

(1 + e(r−Rs)/as)

)
, (6.69)
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with Rs = 0.514 fm and as=0.02 fm.
The short range interaction, VS(r) for r < rc or r ∼ rc, is dominated by the

intrinsic dynamics of strongly overlapping (> 75%) two nucleons. The notion
of nucleons, as individual entities, is not predominant for the dynamics of this
domain. The highly non perturbative quark gluon dynamics becomes relevant
for the (strongly overlapping NN) six quark system. The nucleon spin looses
its immediate relevance in the interaction of quarks in favor of quark gluon fla-
vors. At the end, from this complicated microscopic structure remains only a
smooth short range scalar and vector potential. We apply the techniques already
developed for the no spin potentials to

ε2ω − −→p 2 = m2
ω,

by the substitutions εω 7→ εω − A, and mω 7→ mω + S. It yields

{−→p 2 + 2mωS + S2 + 2εωA− A2 − ε2ω +m2
ω}|φ >= 0. (6.70)

The effective single particle Eq. (6.70) is a Schrödinger type equation with rela-
tivistic kinematics.

The combined interactions include both quadratic additions to S and A as
well as CM energy dependences through mw and εw. A recoil term must also be
added. This is an expression containing logarithmic terms, Eq. (6.72f), which
are due to the transverse or spacelike part of the potential. Without those terms,
spectral results would have not agreed with the standard (but more complex)
spinless Breit and Darwin approaches.

The OMP-3 model wave equation is

{−→p 2 − k2 + Vscalar + Vvector + Vrecoil + V
OMP

+ iW
OMP

+ Vref}|ψ >= 0, (6.71)

where

Vref = VDirac

(
1 − 1

(1 + e(r−Rs)/as)

)
, (6.72a)

Vscalar = 2mwS + S2, (6.72b)

where

S = S(r) =
S0

(1 + e
r−Rs

as )
, (6.72c)

Vvector = 2εwA−A2, (6.72d)

where

A = A(r) =
A0

(1 + e
r−Rs

as )
, (6.72e)

and

Vrecoil =
1

2
∇2 log(1 − 2A/w) +

1

4
[∇ log(1 − 2A/w)]2, (6.72f)
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with Rs = 0.514 fm and as = 0.02 fm. The potential strengths S0 and A0 are
fixed by the condition

2mω(k
2)S + S2 + 2εω(k

2)A− A2 ∼ k2, (6.72g)

which implies that the two interacting nucleons have exhausted and transfered all
NN kinetic energy of relative motion into intrinsic excitations of the multiquark
system. This condition is approximately satisfied with S0 = −480 MeV and
A0 = 600 MeV and the energy dependence of mω and εω, see Todorov variables
in Sec. 5.1. We use these parameters for all energies TLab and in all partial waves.
The surface OMP uses normalized Gaussians for its
real

V
OMP

= V0(TLab)NG e
− (r−Ro)2

a2
o , (6.72h)

and imaginary

W
OMP

= W0(TLab)NG e
−

(r−Ro)2

a2
o (6.72i)

parts, where R0 = 0.514 fm and a0 = 0.01 fm, NG is the normalization coefficient.
The OMP surface potential parameters V0 and W0 are adjusted freely for all the
partial waves and at any energy. This independent adjustments are justified as
it accounts for low density of possible intermediate states and in particular the
strong channel dependence of ∆(3, 3) and other N ? resonances and excitations.

Let us recall a classical nuclear physics reaction, the 3He +3He induced reac-
tion with meson production 3He+3He → 3He+3He + meson. In this example, the
smooth and long range ion-ion potential is unable to produce a meson. Rather,
we associate the meson production with a pair of nucleons, one from each ion, as
a hard process.

On the QCD level we expect, as predominant effect, spin-flip and exchange
of one active valence quark in each of the two nucleons. We suppose a grinding
impact which is favored in the partial wave channels 1D2,

3D2,
3PF2,

1F3 and
3F3. This limitation is a consequence of QCD confinement. Contrary to the 3He
example of complex nuclear scattering there are no quarks in the outer surface
and tail region for NN. This situation is described by the peaked Gaussian optical
model with proper parameters in geometry and strengths V0 and W0. We envis-
age the time development in a scheme shown in Fig. 6.1. This view must first be
supported by more numerical work and secondly use of the microscopic theory of
optical models. To define a g-matrix, as effective medium and density dependent
quark-quark interaction, shall be an obvious goal for the future [6, 278]. Such mi-
croscopic approach would permit to calculate the real and imaginary strengths V0

and W0 without fitting procedure. Before we reach this goal a good understand-
ing of what is needed form QCD is required. Tables (7.7-7.12) contain V0 and
W0 values. A comprehensive discussion and graphical representation of potential
details to the OMP-3 are given in subsection (7.6.2).
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Figure 6.1: Quark exchange mechanism and spin-flip. A reaction scheme for
p+p→ p+p+2π0 in which the meson production is mediated by two intermediate
∆s and their decay. The spin-flip or quark exchange is caused by contact or short
range qq interactions in the overlapping/touching confinement zone of the two
nucleons.
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Chapter 7

Numerical Results

7.1 Implicit Knowledge

The history of particles and constituents of atomic nuclei is as long as 13 billion
years. The standard character of this history are quarks and leptons. Immediately
following the big bang, these characters were the ingredients of a hot (1015K) and
extremely dense particle soup. Today the universe has cooled down considerably
and the sparkling stars, during a fright bright night, are living signs of all begin-
ning. As the universe aged and cooled the matter within it went through a variety
of phases as it adapted to the different conditions. One of the most significant of
these phases occurred when the free deconfined quarks became bound (confined)
to form matter and were no longer able to exist in isolation. The process by which
quarks changed from a deconfined to a confined state is not well understand. In
recent years we have gained a great deal of insurgent into quarks confinement,
however we still lack a full theoretical understanding derived from first princi-
ples. To appreciate the significance of confinement and chiral symmetry breaking
(CSB), or dynamical chiral symmetry breaking (DCSB), it is important to under-
stand our current model of how all matter in the universe, from the galaxies to
subatomic particles behave. The interaction of all matter that governs our daily
lives can be explained in terms of fundamental particles (quarks and leptons) and
the gauge or interaction force particles (gravitons, photons, gluons, W and Z).

In order to visualize how these particles and their interactions fit into our cur-
rent understanding of the universe, imagine that we are looking at the universe
through a magnifying glass. At a first glance, we see galaxies, the stars and plan-
ets. We can describe the motion of these objects by the gravitational interaction
and classical mechanics. Gravitational interaction, from a submicroscopic point
of view, involves the exchange of gravitons. These particles have not yet been
observed.

As we look more closely at a star, we see charged particles like protons and
electrons. Charged particles obey the laws of the electromagnetic interaction, of

171



7.1. IMPLICIT KNOWLEDGE

which we describe the visible phenomena in terms of classical electrodynamics and
make essential use of the special theory of relativity. The interaction of charged
particles requires quantum theory and exchange of photons. Not satisfied, we
stare more closely into the atomic nuclei and discover protons, neutrons and
nucleons as the smallest constituents of matter. After a careful investigation,
we discover quarks which cannot escape from protons and neutrons. The force
between quarks is called the strong interaction. It involves the exchange of gluons
and it is responsible for keeping matter together. Finally, we discover that some
particles are not stable, they can transform into other particles, they decay. These
decays are described by the weak interaction and involve the exchange of W and
Z mesons.

The paradigm for describing the strong interaction is called quantum chromo-
dynamics (QCD). The basic ingredient of QCD are quarks and gluons. Quarks
carry a fractional electric charge and feel the electromagnetic force, but they
carry also another form of charge called color. QCD evolved from this idea and
is closely modeled on the theory of quantum electrodynamics (QED) which ex-
plains electromagnetic interactions between electrically charged particles through
the exchange of photons. Gluons transmit the color force between one quark and
another, in the same way the photons transmit the electromagnetic force between
electrically charged particles. However, there is one crucial difference between
photons and gluons. Photons are electrically neutral, uncharged, so they do not
interact with other photons. Gluons on the other hand have color charge and
they interact strongly with each other as well as with quarks. Gluons are mass-
less and appear to be free only within ∼ 1 fm which is also the typical size of
nucleons and hadrons in general. Hadrons are strongly interacting particles and
every hadron is either a baryon (3 quarks state) or a meson (quark antiquark
pair). Gluons are confined to a hadron, much as quarks are, gluons as well as
quarks make themselves behave as particles like only indirectly by generating jets
of hadrons (baryon and meson) in high energy collisions.

The nature of the strong interaction between quarks and gluons in QCD
depends on the relevant energy scale. Coupling constants are energy dependent.
Asymptotic freedom is the property that the coupling between quarks and gluons
decreases as the energy scale increases (high energy is the values of > 50 GeV).
At high energies, quarks are free and have a very small mass in this high energy
weak coupling limit where perturbative QCD calculations are valid. Perturbative
QCD can be compared with experimental results from high energy accelerators.
Indeed, the success of asymptotic freedom and perturbative QCD has been part
of the whole story of the standard model. Away from the high energy region
perturbative theory fails in many regards.

In the low energy infrared (IR) region where quarks and gluons are confined
inside hadrons, the coupling is so large that the perturbative methods must be
replaced by new theoretical concepts. At this points it is appropriate to discuss
briefly some of the primary concept such as confinement and CSB. Confinement
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has proven to be difficult to understand quantitatively. When a high energy
proton is colliding with another proton, this may be visualized as a destructive
process after which the quarks should steam apart. We do not see individual
quarks emerging, instead, the quarks regroup quark antiquark pairs are created
and ultimately hadron jets carry away momentum and energy conserving the
overall electric charge. In the IR region, the strength of the quark and gluon
interaction becomes increasingly large. This implies that the quarks bind more
tightly together giving rise to confinement, for low energy nuclear physics gener-
ating individual nucleons and mesons. The quark gluon content of the hadrons
disappear in favour of point like hadrons.

One can obtain an intuitive idea about the nature of confinement by picturing
quarks as being bound by strings or flux tubes as first proposed by Nambu [430]
and which have recently been studied on the lattice. When the quark antiquark
pair inside a meson is close together it exchanges gluons and creates a very strong
color free field that binds the quark together. At short distances, much smaller
than the size of a meson, the quarks move as if they were free. When quarks are
further apart the color interaction becomes stronger through the interaction of
gluons with one another. The color field lines of force, between the quarks and
antiquarks, are squeezed into a tubelike region. The further the quarks are pulled
apart the higher the energies that must be added to the system. Eventually a
limit is reached where it is energetically cheaper for the color force field to snap
into a new quark antiquark pair. Energy is conserved in this process because
the energy of color force fields is converted into the mass of new quarks, the
color force field can relax back to an unstretched state. Therefore, in QCD the
observed hadrons are composites of quarks with a surface where quark antiquark
pairs assemble to mesons.

A complementary picture of confinement was proposed by Wilson. The Wil-
son criteria for confinement requires that the potential between two (infinitely)
heavy quarks rises linearly with distance, exactly how the potential is defined in
terms of Wilson loops is as a technical point which is not relevant here. Never-
theless, it is important to note that the strong coupling approximation of lattice
gauge theory demonstrates that quarks are indeed confined. While we have a
qualitative description of how confinement works, we do not have a quantitative
one.

The other low energy aspect of quark gluon systems is chiral symmetry break-
ing (CSB) or dynamical chiral symmetry breaking (DCSB). We visualize CSB as
follows: At high energy, where the interaction between quarks is weak and chiral
symmetry preserved the quarks are free, are moving (speed of light) with almost
zero mass. If these quarks move apart the color interaction between them be-
comes stronger and they start to slow down. At the point where the strength of
the interaction reaches a critical limit, the quarks gain dynamic mass by breaking
the chiral symmetry. This process is referred to as DCSB. How the structure of
the QCD vacuum generates this DCSB is one of the mysteries of strong inter-
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action physics. The process of DCSB generates 98% of the mass of the proton,
neutron, hadron in general and thus 98% of the mass of a human body and and
all other matter is generated by this remarkable non perturbative phenomenon.

In low energy scattering the in-state comprises two well separated protons
(nucleons) each containing three constituent quarks which are confined. During
their approach they are marginally deflected by the long range Coulomb inter-
action r > 10 fm, some more effects are guaranteed from π and σ exchange for
relative distances 1 < r < 10 fm. For separation distances r < 1 fm we expect
ultimately an overlap of the confined six quark system.

One of the clearest signals of the quark gluon degrees of freedom that one may
expect is a resonance whose properties are related to those degrees of freedom
[387]. It is customary that six quark resonances in two baryon reactions are called
dibaryons. In terms of a bag model, the originally separated bags are fusing into
a single intermediate bag with six quark content, forming a dibaryon. Dibaryon
formation, in slow motion, is the topic of medium energy proton-proton, more
general NN scattering with a long list of questions:

• How is the relative kinetic energy of the two nucleons transformed into two
nucleons and one or more mesons?

• Do metastable dibaryon systems exist?

• What is the livetime of metastable dibaryons?

• How do constituent quarks behave during dibaryon formation and meson
nucleon decay?

• What are the volume and surface QCD physical quantities?

• What geometric changes are due during dibaryonic fusion and fission?

Theoretically, all the QCD models, including lattice QCD calculations, predict
that there should be quasistable dibaryon resonance, but in contrast, experimen-
tally, no quasistable dibaryon has been observed, except the molecular deuteron
state [555]. The existing models are quite successful for the meson and baryon
sectors, but not enough for hadronic interactions. Microscopic models, such as dy-
namical quark model, bag models, Skyrme models, and QCD sum rules, relate the
internal baryon structure to the strong interaction of the confined constituents.

According to the quark model, mesons are composed of a pair of quark and
antiquark, while baryons are composed of three quarks. Both mesons and baryons
are color singlets. Most of the experimentally observed hadrons can be easily
accommodated in the quark model. Any state with quark content other than qq
or qqq is beyond the quark model, which is termed as nonconventional or exotic.
However, besides conventional mesons and baryons, QCD itself does not exclude
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the existence of nonconventional states such as glueballs (gg; ggg; . . . ), hybrid
mesons (qqg), and other multiquark states (qqqq, qqqqq, qqqqqq, qqqqqq; ...).

In the early days of QCD, Jaffe proposed the H particle [333] with the MIT
bag model, which was a six quark state. Unfortunately, it was not found exper-
imentally. For two years there has accumulated some experimental evidence of
possible existence of glueballs and hybrid mesons with exotic quantum numbers
such as JPC = 1−+ [314].

In the original bag model each baryon is a cavity with quarks and gluons.
First, consider a six quark system with three quarks in one baryon and three in
another baryon. The distribution of quarks in the two baryon system depends
upon the relative separation between the two baryons. When two bags approach
each other they can overlap and consequently form a new bag which contains
six quarks. The shape and size of this bag depends on the configuration of
the six quark state. There are two individual bags for the long range part of
the interaction. If only quarks and gluons are considered there will not be any
interaction between these two bags and the quarks are confined in two separate
regions. So in the absence of a new mechanism the original bag model can not
describe the long range interaction between baryons. Such a new mechanism is
provided by chiral symmetry, i.e., by requiring the underlying dynamics to be
chiral symmetric.

For nuclear studies, we need to combine the resulting short range quark pic-
ture and the well studied meson exchange mechanisms to construct a model which
can quantatively describe the NN data. Wang [554, 552] and other have devel-
oped some progressive model to obtain the full NN interaction from QCD. Cahill
et al. [105] have developed EFT which takes spontaneous CSB into account.
Constituent quarks and Goldstone bosons appear here as the effective degrees of
freedom for low energy QCD physics. This model has been applied both to π and
σ meson internal structures and to meson interactions, but not yet to NN inter-
actions [532]. Glozman, Riska and Brown [284, 477] propose a phenomenological
model, with consistent quarks and Goldstone bosons as the effective degrees of
freedom for describing baryon spectroscopy and a π, σ quark coupling model has
been tried for NN interactions [521]. Models with constituent quarks and effec-
tive one gluon exchange [54] have been developed for the description of hadron
spectroscopy.

7.2 NN Potentials Using Dirac Constraint In-

stant Form Dynamics

The formalism of coupled two body Dirac equations, within constraint instant
form dynamics, is used to study the NN interaction. This particular approach for
two spin 1/2 particles was developed by Crater, Van Alstine, Long and Liu [152,
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156, 388, 167, 75]. They define a Poincaré invariant interaction in terms of eight,
by their symmetries classified, interactions with the implication that they satisfy
certain compatibility conditions [388]. This approach yields in its final form
explicitly energy dependent coupled channel potentials for use in partial wave
Schrödinger like equations [75]. We rederived and followed their expressions up
to a certain point and developed our own numerics to study np and pp scattering
phase shifts, for 0 < TLab < 3GeV. The comparison with recent data makes use
of GWU/VPI SAID phase shift solutions SM00 and SP03 [18].

The NN interaction is described within the paradigm of exchange mechanism
involving π, ρ, ω σ and other mesons exchanges [401] to make up what we call the
Dirac potential. A comparison with most recent experimental data, GWU/VPI
SP03 phase shifts, requires the adjustment of coupling constants and a regular-
ization of the short range interaction domain r < 0.15 fm. For energies above
pion production threshold 280 < TLab < 3000 MeV we added a phenomenolog-
ical complex optical model potential to the short range region r < 0.5 fm and
around r ∼ 0.5 fm, downgraded the Dirac potential, which we treat as a reference
potential, in the nomenclature of previous approaches. This addition brings the
theoretical elastic channel S-matrix in perfect agreement with the experimental
data S-matrix from GWU/VPI and, more importantly, permits the identifica-
tion of the QCD predominant reaction domain along the relative distance of the
nucleons.

The coupled two body Dirac equations, combined with the meson exchange
model, yield as first new result the appearance of a repulsive, practically hard core
potential, independent of partial wave. The universal core radius has a value rc =
0.5±0.025 fm. This core radius emerges independently of a nucleon substructure.
It depends only on masses, in particular of the exchanged mesons, and the full
relativistic treatment of the NN system. This feature is not present with equal
distinctness in any of the current NN best fit potentials of np and pp data [523,
574, 401]. For purpose of comparison, we show results of the Argonne AV18
potential [574].

The fitting process of coupling constants uses data in the submeson production
domain, 0 < TLab < 280MeV, of np and pp partial wave phase shifts. For
TLab > 280MeV, single and double intrinsic nucleon excitations, ∆(3, 3) and other
low excited hadrons, as well as simple and complex reactive meson productions
contribute. This is well known and demands beyond NN a more complex coupled
channels problem to solve. We curtail the problem to NN scattering using an
optical model potential (OMP) in [256, 278] addition to the Dirac NN reference
potential. Despite of complicated inelasticities, the rules of angular momentum,
isospin selection and the complex energy dependences, some of the partial waves
show that the real phase shifts δ(T ) are well reproduced (extrapolated) by the
Dirac potential alone. Most clearly, this is realized in the 1S0,

3P0 and 3P1 channels
and TLab < 1100MeV [256, 279].

In Fig. 7.1 we show an intuitive and guiding scheme which distinguishes
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interaction domains as function of separation between the two nucleons. This
scheme is in accordance with coupled channels.

Figure 7.1: NN scattering and reaction scheme for TLab < 3GeV.

7.3 Dirac Potentials and Partial Wave Phase

Shifts

We use the convention of [388, 75] with the Coulomb parameter

η(k) =
εω e

2

k
δpp,
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for pp scattering which includes the timelike Coulomb interaction. This energy
dependent η(k) is to be compared with standard nonrelativistic Coulomb po-
tentials [574]. Magnetic moment effect are neglected. The model specification
for L(x⊥), J(x⊥), C(x⊥) and G(x⊥) follows Liu and Crater model I [75] to specify:

scalar

S = −g2
σ

e−mσr

r
− (τ1 · τ2)g2

a0

e−ma0r

r
− g2

f0

e−mf0
r

r
,

pseudo scalar

C = (τ1 · τ2)
g2
π

ω

e−mπr

r
+
g2
η

ω

e−mηr

r
−
g2
η′

ω
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,

and vector

A = (τ1 · τ2)g2
ρ

e−mρr

r
+ g2

ω

e−mωr

r
+ g2

φ

e−mφr

r
,

interactions (See Section.6.2.1). All Yukawa form factors are regularized with a
normalized Gaussian

e−mr

r
→ NG(a)

∫
dx3 e

−mx

x
e−(~r−~x)2/a2 with a = 0.14142 fm. (7.1)

This models π, η, ρ, ω, δ and σ exchanges. Meson masses and coupling con-
stants are listed in Table. 7.5. In Figs. 7.6 - 7.11 are shown Dirac potentials for
three values, TLab = [0.1, 1, 2]GeV (red lines). In comparison are shown the re-
sults of the popular Argonne AV18 potential (blue line) [574]. The remarkable
feature of the Dirac potentials is their universal repulsive core with rc ∼ 0.5 fm.
The only exception is the 3PF1 channel where the ansatz of repulsion turns, sur-
prisingly, to attraction. Such attractions may occur also in other channels when
the fitting of coupling constant is not properly limited. With the introduction of
the optical model, inparticular with OMP-3, this feature is eliminated in favour
of short range QCD dynamics.

In Figs. 7.12 - 7.17 are shown the phase shifts of SM00 (green), SP03 (blue)
and theoretical results, real Dirac potential solutions (red), real Dirac potentials
with adjusted complex OMP-1 and OMP-2 added are coinciding with the data
of SP03 (blue lines).

The Dirac instant form dynamic yields partial wave spin, isospin and energy
(α channel) dependent NN potentials V D

α (r, T ) to which we add a local or nonlocal
optical model potential, version like OMP-1, OMP-2 and OMP-3 are used, whose
strengths are fitted to data.

Since local/nonlocal potentials imply similar results, we restricted ourselves
here to the local optical potential and reference the more general and nonlocal
case [256].
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7.4 Calculation of the Deuteron Wave Functions

Using Dirac potential, the resolution of the Schrödinger equation in the T = 0,
J = 1 np channel leads to the bound state wave function. It is only loosely
bound, having a binding energy EB much less than the average value between
air of nucleons in all the other stable nuclei. The tensor force requires that the
deuteron wave function be a mixture of 3S1 and 3D1 components. Successful
NN potentials must have several basic characteristics in order to satisfactorily
describe the deuteron static properties and the NN scattering data. The deuteron
is a very unique nucleus in many respects. We discussed here some characteristics
of deuteron.

In momentum space, the deuteron wave function is given by

ΨM
d (k) =

[
ψ0(k)Y1M

01 (k̂) + ψ2(k)Y1M
21 (k̂)

]
ζ0
0 ,

where
YJM
LS (k̂) =

∑

mLmS

< J,M |L,mL;S,mS > YM
L (k̂)|S,mS >,

are the normalized eigenfunctions of the two nucleon orbital angular momentum
L, spin S, and total angular momentum J with projection M ; ζMT

T denotes
the normalized eigenstates of the total isospin T with projection MT of the two
nucleons. The normalization is

〈ΨM
d |ΨM

d 〉 =

∫ ∞

0

dkk2
[
ψ2

0(k) + ψ2
2(k)

]
= 1.

The momentum space wave functions be Fourier transformed into the config-
uration space wave functions u and w by

uL(r)

r
=

√
2

π

∫ ∞

0

dkk2jL(kr)ψL(k) ,

with u0(r) ≡ u(r), u2(r) ≡ w(r), and jL the spherical Bessel functions. The
normalization is ∫ ∞

0

dr
[
u2(r) + w2(r)

]
= 1.

The asymptotic behavior of the wave functions for large values of r are

u(r) ∼ ASe
−γr,

w(r) ∼ ADe−γr
[
1 +

3

(γr)
+

3

(γr)2

]
,

where AS and AD are known as the asymptotic S- and D-state normalizations,
respectively. In addition, one defines the D/S-state ratio

η ≡ AD/AS. (7.2)
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Other deuteron parameters of interest are the quadrupole moment

Qd =
1

20

∫ ∞

0

drr2w(r)
[√

8u(r) − w(r)
]
, (7.3)

the root mean square or matter radius

rd =
1

2

{∫ ∞

0

drr2
[
u2(r) + w2(r)

]}1/2

, (7.4)

and the S− and D-state probability

PS =

∫ ∞

0

dru2(r), PD =

∫ ∞

0

drw2(r). (7.5)

The magnetic moment of the deuteron is determined entirely by the D state
probability PD

µd = µs −
3

2

(
µs −

1

2

)
PD, (7.6)

where µs = µn + µp is the isoscalar nucleon magnetic moment.

Table 7.1: Parameters for the deuteron properties

Parameter Bonn-b Argonne Nijmegen-II Nijmegen-I

−εd(MeV ) 2.2245 2.2258 2.2259 2.22589
PD(%) 4.85 5.759 5.652 5.677
AD/AS 0.0256 0.02215 0.02232 0.02242
κ (1/fm) 0.23153 0.2316 0.2316 0.2315

Fuda Front Fuda Instant Dirac instant form Experiment

2.225 2.224 2.2245 2.224575
4.64(5.05) 4.41(4.99) 5.2621 —
0.0256 0.0257 0.02529 0.0256
0.2317 0.2315 0.2341 -
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Figure 7.2: Deuteron densities |ψ0(x)|2 and |ψ1(x)|2 which depends upon the
projection of the total deuteron angular momentum M = 0 (left, therefore one
may regard as the ”static” state of the deuteron) and M = 1 (right, as a spinning
harmonic oscillator state), the size and shape of the deuteron. The figure has been
adopted from [261, 242]
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Figure 7.3: The S- and D-wave deuteron wave functions in the momentum space
calculated from the Dirac potential (red) which in Table. 7.2 listed the numerical
data, Argonne AV18 (blue), Nijmegen-I (cobalt), Nijmegen-II (yellow), Bonn-B
(dashed magenta), Fuda [252, 253] (dot-dashed magenta).
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Table 7.2: The values of deuteron wave from Dirac potential.

R (fm) kS(fm
−3) kD(fm−3)

0.0 12.19866 -0.01421
0.3 3.61446 -0.20387
0.6 1.11872 -0.21497
0.9 0.41844 -0.17809
1.2 0.16213 -0.13799
1.5 0.05454 -0.10417
1.8 0.00714 -0.07769
2.1 -0.01313 -0.05754
2.4 -0.02053 -0.04239
2.7 -0.02176 -0.03108
3.0 -0.02016 -0.02268
3.3 -0.01743 -0.01646
3.6 -0.01444 -0.01187
3.9 -0.01160 -0.00851
4.2 -0.00910 -0.00606
4.5 -0.00699 -0.00428
4.8 -0.00527 -0.00301
5.1 -0.00390 -0.00210
5.4 -0.00283 -0.00146
5.7 -0.00200 -0.00101
6.0 -0.00138 -0.00070
6.3 -0.00092 -0.00049
6.6 -0.00058 -0.00035
6.9 -0.00034 -0.00026
7.2 -0.00018 -0.00020
7.5 -0.00007 -0.00017
7.8 0.00000 -0.00014
8.1 0.00004 -0.00012
8.4 0.00007 -0.00011
8.7 0.00008 -0.00010
9.0 0.00008 -0.00009
9.3 0.00007 -0.00008
9.6 0.00007 -0.00007
9.9 0.00006 -0.00006
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7.5 The Nucleon Nucleon Optical Potential

The notion of an optical model is useful in cases when the S-matrix is not unitary
and flux disappears into open inelastic or reaction channels. The optical model is
often expressed in terms of a complex and energy dependent local potential where
the imaginary part effectively describes the loss of flux without specification of
the inelastic channels. A less popular alternative to a complex optical model
potential is the introduction of pseudo channels. Here we follow the optical
potential approach [256] with the underlying reaction scheme shown in Fig. 7.4.

The source of the BB channel (dibaryon formation), in the NN core domain,
is mediated by a delta-function or a narrow Gaussian function. Intrinsic nucleon
excitations are also mediated by a narrow Gaussian, also in the core domain. In-
elasticities are either generated by coupling BB (dibaryon) to asymptotic many
body final states, composed of two nucleons and mesons, or decay of XY, com-
posed of one or two intrinsic nucleon excitations, into asymptotic many body
final states. Within the inner core region, r < rc, NN and XY wave function
components are strongly attenuated either by a real potential which leaves no
room for a remaining CM kinetic energy, or a strong absorption.

The optical model, or coupled channel treatment, suggest strongly a limita-
tion of the meson exchange mechanism to r > rc. The meson exchange Dirac
potential, which is described by the NN Dirac instant form dynamics, should ul-
timately be limited to r ≥ rc ∼ 0.5 fm in its effect. This constraint eliminates the
need for regularization of the short range Dirac potential and boundary condi-
tions are automatically generated by the localized δ(r−rc) NN ↔ BB transition
potentials. This proposal is demonstrated in Fig. 7.5. The strengths and location
of δ-function interactions establish boundary conditions which are to be deter-
mined by BB and XY models. Herein lies the essential point of our new model.
Dirac potentials play only the role of a weakly distorting shield which prevents us
from seeing the naked refinement surface of hadronic QCD dynamics- it recalls
the P-matrix formalism. A realization of the full coupled channels problem which
replaces a particular optical model by explicitly treated ∆(3, 3) channels, is in
progress.

Without repeating the specification of details, the coupling scheme has the
structure shown in Fig. 7.4 Below pion production threshold, TLab ∼ 280MeV,
the NN S-matrix is unitary for all practical purposes. Above this energy, excita-
tion of ∆(3,3), most likely two ∆(3,3) resonances are the predominant mechanism.
It is obviously present in the NN 1D2,

3F3 and 3PF2 channels. Isospin conser-
vation suppresses a coupling to N∆ in the np T = 0 channels. NN scattering,
for energies below 3 GeV in general show, compared with nucleon-nucleus scat-
tering, a weak and smoothly energy dependent coupling to inelastic channels. A
perturbative treatment of inelastic and reaction channels with DWBA methods
is thus certainly justified.

A key issue for all secondary applications, of NN scattering, is a high quality
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HBB + VNN
BB δ(r − rc) + VBB Dibaryonxy

VBB
NNδ(r − rc) + VXY

NNg(r − rc) +HNN + V Dirac

NN NN elasticxy
VNN

XY g(r − rc) + HXY + VXY N?N?decay.

Figure 7.4: Coupled channels reaction scheme.

reproduction of the elastic NN scattering channel. Inverse scattering methods
are useful for this purpose. These methods use the experimental data in form of
partial wave phase shifts as input and determine the optical model potential as a
correction to a theoretically defined and numerically realized reference potentials.
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GeV, showing a long range OPEP tail, an attractive pocket ∼ 0.75 fm and a core
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potentials show, in all channels, only small differences. Regularization does not
affect the conclusion drawn about the core geometry but helps to keep numbers
reasonable near the origin. Also inserted are Gaussian form factors g(r − r0) ∼
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2/a2) which are used with the optical model (blue line curve). In
this figure r0 = rc = 0.5 fm and a = 0.2 fm.
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Table 7.3: The meson parameters for Fuda instant form potential [251, 252, 253].

Mesons π η σ ρ ω δ
Channel 138.03 548.8 516.77 (674.72) 769 782.6 983.0

13.83 2.83 6.95(13.01) 0.88 23.55 3.10

Table 7.4: The meson parameters for CD-BONN potential.

Mesons π η σ ρ ω δ
Channel 138.03 547.45 400 - 768.5 782.6 983.0
1S0 13.6 - 3.96451(452) 0.84 20
3P0 13.6 - 7.866(560) 0.84 20
3P1 13.6 - 2.346(424) 0.84 20
1D2 13.6 - 2.236(400) 0.84 20
3F3 13.6 - 1.53(-) 0.84 20

Table 7.5: The meson parameters for Dirac potential.

Mesons π η σ ρ ω
Channel 138.03 547.45 280-780 768.5 782.6
1S0,

1D2,
1G4,

1 I6 13.84 3.00 9.95(577.44) - 0.93
3P0 13.84 3.00 1.4(500.00) - 20.0
3P1 13.84 3.00 2.72(437.00) - 7.93
3F3,

3H5 13.84 3.00 2.48(500.00) - 6.73
1P1,

1 F3,
1H5, 13.84 3.00 6.52(500.00) - -

3D2,
3G4,

3 I6 13.84 3.00 9.7(500.00) - 20.0
3PF2 13.84 3.00 3.28(500.00) - 3.66
3FG4 13.84 - 1.4(500.00) 26.6(780.00) - 14.28
3HJ6 13.84 3.00 6.66(550.00) - 14.63
3SD1 13.84 3.00 9.6(500.00) - -10.51
3DG3 13.84 3.00 5.25(500.00) 0.63(280.00) -
3GI5 13.84 3.00 2.43(383.00) -
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Figure 7.6: Energy dependent Dirac potentials (red) for singlet S = 0, T = 1
channels with TLab 0.1, 1 and 2 GeV. The AV18 channel potential is shown as
blue line.
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Figure 7.7: Energy dependent Dirac potentials (red) for singlet S = 0, T = 0
channels with TLab 0.1, 1 and 2 GeV. The AV18 channel potential is shown as
blue line.
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Figure 7.8: Energy dependent Dirac potentials (red) for triplet S = 1, T = 1
uncoupled channels with TLab 0.1, 1 and 2 GeV. The AV18 channel potential is
shown as blue line.
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Figure 7.9: Energy dependent Dirac potentials (red) for triplet S = 1, T = 0
uncoupled channels with TLab 0.1, 1 and 2 GeV. The AV18 channel potential is
shown as blue line. A comparison of these Dirac potentials shows surprisingly an
attractive peak outside the hard core radius. This feature is not visible in AV18.
Its narrow geometry scale is 0.2 fm, when compared with the nucleon of 1 fm. We
suggest to associate it with a QCD mechanism for which the OMP-3 gives further
details, see Subsec. 7.6.2, and Fig. 7.27-7.28, but no complete understanding.
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Figure 7.10: Energy dependent Dirac potentials (red) for triplet S = 1, T = 1
coupled channels with TLab 0.1, 1 and 2 GeV. The AV18 channel potential is
shown as blue line. These channels show a large variation in the Dirac potentials.
The pocket around the hard core radius changes dramatically and in the partial
wave 3F2 we get a short range attraction. The fit to the 3PF2 data was notori-
ously difficult and not satisfying when compared with the other channel results.
Together with 1D2 and 3F3, the 3PF2 channel shows the strongest and divers
effect in the QCD transition surface. This feature is not a question of adding and
fitting heavier mesons into OBEP.
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Figure 7.11: Energy dependent Dirac potentials (red) for triplet S = 1, T = 0
coupled channels with TLab 0.1, 1 and 2 GeV. The AV18 channel potential is
shown as blue line.
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Figure 7.12: Singlet channels S = 0, T = 1, np [0,3]GeV, SM00; continuous so-
lution (green), single energy solutions, open green circles, with error bars, SP03
continuous solution (blue), single energy solutions, full blue circles, with error
bars; real phase shift data δ(T ) and theoretical results; real Dirac potential so-
lutions, full red line, real Dirac potentials are coinciding with the data of SP03
blue line.
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Figure 7.13: Singlet channels S = 0, T = 0, np [0,1.2]GeV, SM00; continuous so-
lution (green), single energy solutions, open green circles, with error bars, SP03
continuous solution (blue), single energy solutions, full blue circles, with error
bars; real phase shift data δ(T ) and theoretical results; real Dirac potential so-
lutions, full red line, real Dirac potentials are coinciding with the data of SP03
blue line.
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Figure 7.14: Triplet channels S = 1, T = 1, np [0,3]GeV, SM00; continuous so-
lution (green), single energy solutions, open green circles, with error bars, SP03
continuous solution (blue), single energy solutions, full blue circles, with error
bars; real phase shift data δ(T ) and theoretical results; real Dirac potential so-
lutions, full red line, real Dirac potentials are coinciding with the data of SP03
blue line.
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Figure 7.15: Triplet channels S = 1, T = 1, np [0,1.2]GeV, SM00; continuous so-
lution (green), single energy solutions, open green circles, with error bars, SP03
continuous solution (blue), single energy solutions, full blue circles, with error
bars; real phase shift data δ(T ) and theoretical results; real Dirac potential so-
lutions, full red line, real Dirac potentials are coinciding with the data of SP03
blue line.
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Figure 7.16: Coupled channels S = 1, T = 1, np [0,3]GeV, SM00; continuous so-
lution (green), single energy solutions, open green circles, with error bars, SP03
continuous solution (blue), single energy solutions, full blue circles, with error
bars; real phase shift data δ(T ) and theoretical results; real Dirac potential so-
lutions, full red line, real Dirac potentials are coinciding with the data of SP03
blue line.
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Figure 7.17: Coupled channels S = 1, T = 1, np [0,1.2]GeV, SM00; continu-
ous solution (green), single energy solutions, open green circles, with error bars,
SP03 continuous solution (blue), single energy solutions, full blue circles, with
error bars; real phase shift data δ(T ) and theoretical results; real Dirac potential
solutions, full red line, real Dirac potentials are coinciding with the data of SP03
blue line.
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Figure 7.18: Available absorption phase shifts ρ(T ). Dirac potentials generate no
absorption and OMP-1, OMP-2 and OMP-3 parameters are adjusted to reproduce
the continuous energy solutions of ρ(T ). SM00, continuous solution (green) single
energy solutions (open green circles with error bars) and SP03 continuous solution
(blue) single energy solutions (full blue circles with error bars).
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Figure 7.19: Continuation of Fig. 7.18.

200



CHAPTER 7. NUMERICAL RESULTS

0

15

30

45

0 0.4 0.8 1.2
T

Lab
 [GeV]

ρ 
(T

) 
[d

eg
]

1p
1

0

10

20

30

0 0.4 0.8 1.2
T

Lab
 [GeV]

ρ 
(T

) 
[d

eg
] 3s

1

−30

−20

−10

0

0 0.4 0.8 1.2
T

Lab
 [GeV]

ρ 
(T

) 
[d

eg
]

3d
1

0

10

20

30

0 0.4 0.8 1.2
T

Lab
 [GeV]

ρ 
(T

) 
[d

eg
]

3d
3

−10

−5

0

5

0 0.4 0.8 1.2
T

Lab
 [GeV]

ρ 
(T

) 
[d

eg
]

3g
3

Figure 7.20: Continuation of Fig. 7.18.
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7.5.1 1S0,
3P0 and 3P1 Channels

NN phase shift data, see Figs. 7.12-7.17 and absorption 7.18, show in almost all
channels and for TLab > 280MeV a complicated energy dependence and devia-
tions from the Dirac potential predictions. Exceptional cases are the 1S0,

3P0 and
3P1 channels, shown in Figs. 7.12, 7.14. They show a practical perfect reproduction

δData = δDirac, for 0 < TLab < 1100 MeV (7.7)

by the Dirac potential alone. However, the absorption

ρData 6= 0, whereas ρDirac = 0 for 280 < TLab < 1100 MeV. (7.8)

This demands an optical potential V
OMP

+ iW
OMP

that leaves the real phase
shifts δ(k) unchanged but generates an absorption ρ(T ) > 0 for 280 < TLab <
1100MeV. As optical model interaction, we used OMP-1, OMP2 and OMP-3/or
a narrow normalized Gaussian, see Fig. 7.5,

W (r) =

{
W0NG(r0, a0) exp(−(r − r0)

2/a2
0),

Wδ δ(r − r0),
(7.9)

with V
OMP

= 0. The following conclusions are drawn: The phase shifts δ(T ), ρ(T )
for 280 < TLab < 1100 MeV imply an optical potential at the surface of the
repulsive core for 1S0,

3P0 and 3P1 partial waves. Intermediate dibaryons are
practically not formed, the BB channel is realized by a dibaryon fusion/scission
picture as shown in Fig. 7.21. The BB dibaryon quark dynamic is reduced to
energy dependent complex boundary conditions at the core radius permitting
meson production. The meson exchange mechanism Fig. 7.22 is not valid inside
the core radius. Caveat, at this stage of our work, we integrated from the origin
through the core region realizing a small real wave function at the core radius
[280]. In Fig. 7.23, 7.25 are shown the np OMP-1 strengths values. The crucial
center of baryon NN and BB transition radius is r0 = 0.5 ± 0.025 fm. At higher
energies TLab > 1.1GeV, the transition surface becomes more and more faded,
washed out and translucent when the energy of dibaryon states matches the total
energy of the NN system. Intermediate short lived dibaryons JPBB = 0+, 0−, 11

are formed, see Fig. 7.21.

We estimate, from the phase behavior in these three channels, the total energy
(lowest mass) of a dibaryon system mBB = 2400 ± 150MeV and a width Γ >
150MeV.

Coupling to dibaryons is realized for TLab > 1100MeV and the fusion/scission
picture may change gradually into a fusion/fission picture as shown in Fig. 7.21.
The hadronic pair excitation, however, is likely to dominate the dynamics as also
for higher energies, Fig. 6.1.
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Figure 7.21: Left, caused by the Pauli exclusion principle for a six quark dibaryon
and TLab,NN < 1100MeV suggests a futile ringing of the nucleons and a suppres-
sion of dibaryon formation. One or half nucleons may experience a transition,
N 7→ ∆(3, 3) XY hadrons. It gives the impression of a fusion/scission mecha-
nism. Right, the formation of dibaryons, at sufficient high energy, is governed
by medium to longer ranged quark gluon flux tubes with fusion into a six quark
hadron sized dibaryon with sequential decay. This inspires a fusion/fission mech-
anism.

7.6 First Geometrical Interpretation

One important aspect of using effective NN interactions is related to regulariza-
tion at short distances. It is known that the meson theory breaks down at short
range, (r ∼ 0.5) fm, due to the intrinsic structure of the nucleons [394]. For that
reason, in most meson models, the one boson exchange potentials are usually reg-
ularized to remove the singularities at the origin by introducing a form factor in
a phenomenological way. Usually monopole, dipole, exponential, Woods-Saxon
or other form factors [524, 574] have been used accounting for the finite size of
the nucleons and pions. It has been established [523] that the most important
feature is the principal range of the form factors, while their detailed analytical
structure does not have a large impact on NN processes and the overall results
are insensitive to the details of how the form factors have been chosen. The ef-
fective NN interactions in the medium, which are usually parameterized in terms
of meson exchange type propagators of Yukawa shape, are clearly missing meson
nucleon vertex form factors. In folding calculations for optical model and tran-
sition potentials, an averaging over the intrinsic momentum distribution of the
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Figure 7.22: Meson exchange mechanism.

target nucleus is carried out. In these conditions the use of on-shell meson ex-
change propagators might lead to spurious effects since contributions from large
off-shell momenta can be overestimated. Such uncertainties are avoided by intro-
ducing nucleonic form factors depending on the off-shellness of the nucleon and
suppressing large off-shell energies and momenta [306]. Thus one may exclude
contributions from small distances where the composite structure of mesons and
nucleons would become visible. As phenomenological approach we choose the
folding model, see Eq. (6.57).

In the previous section, we found a universal repulsive core radius with rc ∼
0.5 fm for all channels. It means that the meson exchange mechanism generates
potential energies which are small in comparison with nucleon masses. However,
the repulsive core reaches within a fraction of the nucleon radius several GeV and
more. Such core formation implies hard momentum mechanism which cannot be
taken from the nucleon as a whole but rather from its constituents.

This implies that the meson exchange mechanism should be limited to r >
rc where OBEP effects remain small when compared with the nucleon mass or
kinetic energies TLab > 300 MeV. The repulsive core, has for TLab < 300 MeV, no
other effect but to reduce the relative wave function to extremely small values.
This has no sizeable effect for low energy nuclear phenomena and high precision
NN potentials [278] which give excellent fits to phase shifts data. Use of such
potentials in few and many body nuclear physics produced no essential worries.
This view has changed with NN models [433, 520, 401].

In this section we are studying the geometrical picture of NN scattering around
the region ∼ 0.5 fm and the strengths and local OMP-3 in which the particle
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absorption processes are the relevant mechanisms where ultimately QCD effects
dominate.

Our calculation is a solution of the energy dependent full relativistic equations
in coordinate space.

7.6.1 Numerical Results of OMP-1 and OMP-2

In Sec. 6.3, we discussed three different OMP models, which can give us perfect
fits to the experimental phase shift data. The results of OMP-1 and OMP-2
models are plotted in Figs. (7.23-7.26) with TLab > 300 MeV and three values
of the cut-off radius R0. The OMP-1 and OMP-2 models are very simple ap-
proaches to introduce the optical model. Its real part is proportional to the short
range Dirac potential, thus V0 controls only the strength of the short range Dirac
potentials. What part of radial range acts as short range is controlled by R0. The
imaginary OMP is a normalized Gaussian. It can be radially shifted by R0, the
width control parameter is a. The T = 0 1P1 channel data are limited within
0 < TLab < 1.1 GeV, the rest curves are made by SAID. The potential strengths
V0, W0 vary smoothly and suggest the coupling to ∆(3, 3) to be resonance like
for TLab < 1 GeV. OMP-1 is highly qualitative and should not be used to draw
serious conclusion.
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Figure 7.23: The numerical results from OMP-1. Real optical potential strengths
V0 (left) in V

OMP
= −V0VDirac(1 + exp((r − R0)/a))

−1
~

2/m for different Woods-
Saxon radii R0 = 0.5, 0.6, 1 fm and diffuseness a = 0.02. Imaginary potential
strengths W0 (right) W

OMP
= W0NG exp(−(r − R0)

2/a2), a = 0.2 of normalized
Gaussian type.
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Figure 7.24: Continuation of Fig. 7.23
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Figure 7.25: The numerical results from OMP-2. Real optical potential strengths
V0 (left) in V

OMP
= V0(1 + exp((r − R0)/a))

−1
~

2/m for different Woods-Saxon
radii R0 = 0.5, 0.6, 1 fm and diffuseness a = 0.02. Imaginary potential strengths
W0 (right) in W

OMP
= W0NG exp(−(r−R0)

2/a2), a = 0.2 of normalized Gaussian
type.
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Figure 7.26: Continuation of Fig. 7.25
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7.6.2 Numerical Results of OMP-3

This model combines the long range part of the Dirac potential, OBEP for r > 0.5
fm, and the QCD relevant region r ∼ 0.5 fm which we describe with the OMP-3
of Subsec. 6.3.1. It is, no doubt, a phenomenological model. Its merits are a
consistent picture, expressed in terms of energy dependent V0 and W0, for all
partial waves of pp and np scattering. The Dirac potential is cut-off within 0.514
fm. This choice eliminates all sudden attractions of the Dirac potential for r ∼ 0.5
fm. The short range scalar and vector potential was fixed with Eq. 6.72g. The
real Gaussian potential may be repulsive, V0 > 0, as well as attractive, V0 < 0,
and the imaginary Gaussian strengths are absorptive, W0 < 0.

Figs. 7.27 and 7.28 show the channel and energy dependence of V0 and W0

for isospin T = 1, essentially pp data. In the low energy region, TLab < 300
MeV, we observe often an attractive pocket with V0 < 0. Low partial waves
show a significantly stronger repulsion as high partial waves. We interpret it as
a consequence for need of angular momentum transfer to the six quark modes.
Lack of NN orbital angular momentum yields repulsion. The obviously favored
1D2 channel responds with attraction in the QCD domain.

The absorption W0 shows only a dramatic difference in the 1D2 channel.
However, SM00 and SP03 show unexpected large changes Figs. 7.12 and 7.18.
This suggest, another solution may bring W0(

1D2) again down. np channels,
T = 0, shown in Figs. 7.29-7.32 allow a similar interpretation, as given for
T = 1, but lack of absorption data classifies them as preliminary.

An animation of the OMP-3 results is shown in Figs. 7.33-7.50. The parame-
ters are listed in Table. 7.6. The fitted potential strengths for GWU/VPI SAID
SP03 are listed in Tables. 7.7-7.12.

Table 7.6: The parameters for OMP-3, obtained from Eq. (6.71).

Potentials Potential strength [MeV] Radius [fm] Diffuseness [fm]
Vref Eq. (5.257) (Figs. 7.6-7.11) 0.514 0.02
Vscalar -480 0.514 0.02
Vvector 600 0.514 0.02
VOMP Figs.7.27, 7.29 0.514 0.01
WOMP Figs.7.28, 7.30 0.514 0.01
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Figure 7.27: The real potential strengths OMP-3 V0(TLab) of the Gaussian for
isospin T = 1 singlet and triplet channels
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Figure 7.28: The imaginary potentials strengths OMP-3W0(TLab) of the Gaussian
for isospin T = 1 singlet and triplet channels.
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Figure 7.29: The real potential strengths OMP-3 V0(TLab) of the Gaussian for
isospin T = 0 singlet and triplet channels.
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Figure 7.30: The imaginary potentials strengths OMP-3W0(TLab) of the Gaussian
for isospin T = 0 singlet channels, the experimental data do not existent for other
channels.
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Figure 7.31: The real (upper) and imagine (below) potential strengths OMP-3
V0(TLab) of the Gaussian for isospin T = 1 coupled channels.
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Figure 7.32: The real (upper) and imagine (below) potential strengths OMP-3
V0(TLab) of the Gaussian for isospin T = 0 coupled channels.
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a. Dirac reference potential b. Saxon-Wood potential

c. Dirac+Saxon.W (a.+b.) d. OMP real potential

e. OMP imaginary potential f. full real (a.+b.+d.)

Figure 7.33: Three dimensional representation of the potential strengths for 1S0,
T = 1. a.) The energy depend Dirac reference potential for r > 0.514 fm using
Eq.(5.257). b.) Superposition of scalar and vector potentials Eq. (6.71). c.) The
sum of (a.) and (b.). d.) The OMP-3 real potential. e.) Imaginary part of
OMP-3. f.) The total real potential.
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a. Dirac reference potential b. Saxon-Wood potential

c. Dirac+Saxon.W (a.+b.) d. OMP real potential

e. OMP imaginary potential f. full real (a.+b.+d.)

Figure 7.34: Three dimensional representation of the potential strengths for 1D2,
T = 1. (Continuation of Fig. 7.33).
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a. Dirac reference potential b. Saxon-Wood potential

c. Dirac+Saxon.W (a.+b.) d. OMP real potential

e. OMP imaginary potential f. full real (a.+b.+d.)

Figure 7.35: Three dimensional representation of the potential strengths for 1G4,
T = 1. (Continuation of Fig. 7.33).
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a. Dirac reference potential b. Saxon-Wood potential

c. Dirac+Saxon.W (a.+b.) d. OMP real potential

e. OMP imaginary potential f. full real (a.+b.+d.)

Figure 7.36: Three dimensional representation of the potential strengths for 3P0,
T = 1. (Continuation of Fig. 7.33).
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a. Dirac reference potential b. Saxon-Wood potential

c. Dirac+Saxon.W (a.+b.) d. OMP real potential

e. OMP imaginary potential f. full real (a.+b.+d.)

Figure 7.37: Three dimensional representation of the potential strengths for 3P1,
T = 1. (Continuation of Fig. 7.33).
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a. Dirac reference potential b. Saxon-Wood potential

c. Dirac+Saxon.W (a.+b.) d. OMP real potential

e. OMP imaginary potential f. full real (a.+b.+d.)

Figure 7.38: Three dimensional representation of the potential strengths for chan-
nel 3f30, T = 1. (Continuation of Fig. 7.33).
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a. Dirac reference potential b. Saxon-Wood potential

c. Dirac+Saxon.W (a.+b.) d. OMP real potential

e. OMP imaginary potential f. full real (a.+b.+d.)

Figure 7.39: Three dimensional representation of the potential strengths for 3H5,
T = 1. (Continuation of Fig. 7.33).
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a. Dirac reference potential b. Saxon-Wood potential

c. Dirac+Saxon.W (a.+b.) d. OMP real potential

e. OMP imaginary potential f. full real (a.+b.+d.)

Figure 7.40: Three dimensional representation of the potential strengths for 1P1,
T = 0. (Continuation of Fig. 7.33).
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a. Dirac reference potential b. Saxon-Wood potential

c. Dirac+Saxon.W (a.+b.) d. OMP real potential

e. OMP imaginary potential f. full real (a.+b.+d.)

Figure 7.41: Three dimensional representation of the potential strengths for 1F3,
T = 0. (Continuation of Fig. 7.33).
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a. Dirac reference potential b. Saxon-Wood potential

c. Dirac+Saxon.W (a.+b.) d. OMP real potential

e. OMP imaginary potential f. full real (a.+b.+d.)

Figure 7.42: Three dimensional representation of the potential strengths for 1H5,
T = 0. (Continuation of Fig. 7.33).
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a. Dirac reference potential b. Saxon-Wood potential

c. Dirac+Saxon.W (a.+b.) d. OMP real potential

e. OMP imaginary potential f. full real (a.+b.+d.)

Figure 7.43: Three dimensional representation of the potential strengths for 3D2,
T = 0. (Continuation of Fig. 7.33).
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a. Dirac reference potential b. Saxon-Wood potential

c. Dirac+Saxon.W (a.+b.) d. OMP real potential

e. OMP imaginary potential f. full real (a.+b.+d.)

Figure 7.44: Three dimensional representation of the potential strengths for 3G4,
T = 0. (Continuation of Fig. 7.33).
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a. Dirac reference potential b. Saxon-Wood potential

c. Dirac+Saxon.W (a.+b.) d. OMP real potential

e. OMP imaginary potential f. full real (a.+b.+d.)

Figure 7.45: Three dimensional representation of the potential strengths for 3S1,
T = 0. (Continuation of Fig. 7.33).
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a. Dirac reference potential b. Saxon-Wood potential

c. Dirac+Saxon.W (a.+b.) d. OMP real potential

e. OMP imaginary potential f. full real (a.+b.+d.)

Figure 7.46: Three dimensional representation of the potential strengths for 3D1,
T = 0. (Continuation of Fig. 7.33).
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a. Dirac reference potential b. Saxon-Wood potential

c. Dirac+Saxon.W (a.+b.) d. OMP real potential

e. OMP imaginary potential f. full real (a.+b.+d.)

Figure 7.47: Three dimensional representation of the potential strengths for ε1,
T = 0. (Continuation of Fig. 7.33).
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a. Dirac reference potential b. Saxon-Wood potential

c. Dirac+Saxon.W (a.+b.) d. OMP real potential

e. OMP imaginary potential f. full real (a.+b.+d.)

Figure 7.48: Three dimensional representation of the potential strengths for 3P2,
T = 1. (Continuation of Fig. 7.33).
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a. Dirac reference potential b. Saxon-Wood potential

c. Dirac+Saxon.W (a.+b.) d. OMP real potential

e. OMP imaginary potential f. full real (a.+b.+d.)

Figure 7.49: Three dimensional representation of the potential strengths for 3F2,
T = 1. (Continuation of Fig. 7.33).
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a. Dirac reference potential b. Saxon-Wood potential

c. Dirac+Saxon.W (a.+b.) d. OMP real potential

e. OMP imaginary potential f. full real (a.+b.+d.)

Figure 7.50: Three dimensional representation of the potential strengths for ε2,
T = 1. (Continuation of Fig. 7.33).
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Table 7.7: Values of the OMP3 potentials strengths for the single channels
1S0,

1D2,
1G4 (T = 1) GWU/VPI SAID. The values calculated in the Eq. (6.71).

1S0
1D2

1G4

TLab(MeV) V0 W0 V0 W0 V0 W0

200.0 -259.140 -0.290 -317.055 28.082 -4.369 -0.729
300.0 127.180 -0.463 -404.961 12.056 -46.016 0.399
400.0 476.603 -1.902 -431.259 -69.757 -86.119 0.655
500.0 789.076 -6.584 -412.549 -182.512 -122.769 -3.230
600.0 1065.215 -15.737 -363.114 -289.911 -154.600 -13.008
700.0 1306.225 -29.543 -295.055 -370.895 -180.736 -28.556
800.0 1513.827 -47.304 -218.423 -421.749 -200.741 -48.412
900.0 1690.179 -67.803 -141.352 -451.167 -214.566 -70.589
1000.0 1837.801 -89.677 -70.194 -473.266 -222.503 -93.313
1100.0 1959.499 -111.712 -9.650 -501.437 -225.129 -115.507
1200.0 2058.286 -133.023 37.092 -544.453 -223.258 -136.966
1300.0 2137.312 -153.105 68.231 -605.102 -217.891 -158.261
1400.0 2199.779 -171.792 83.212 -680.954 -210.162 -180.455
1500.0 2248.873 -189.152 82.598 -766.464 -201.288 -204.740
1600.0 2287.681 -205.371 67.932 -855.505 -192.523 -232.087
1700.0 2319.118 -220.635 41.608 -943.524 -185.100 -262.998
1800.0 2345.853 -235.070 6.735 -1028.744 -180.184 -297.391
1900.0 2370.228 -248.715 -32.994 -1112.155 -178.822 -334.631
2000.0 2394.182 -261.550 -73.441 -1196.403 -181.888 -373.680
2100.0 2419.180 -273.550 -110.149 -1283.983 -190.040 -413.279
2200.0 2446.131 -284.740 -138.480 -1375.396 -203.658 -452.127
2300.0 2475.314 -295.228 -153.749 -1467.978 -222.805 -488.935
2400.0 2506.301 -305.187 -151.352 -1555.986 -247.166 -522.361
2500.0 2537.883 -314.777 -126.906 -1632.124 -276.005 -550.819
2600.0 2567.989 -324.046 -76.379 -1689.926 -308.110 -572.307
2700.0 2593.616 -332.846 3.775 -1725.326 -341.741 -584.537
2800.0 2610.746 -340.930 116.487 -1734.120 -374.585 -585.842
2900.0 2614.275 -348.411 263.933 -1699.975 -403.697 -577.623
3000.0 2597.935 -356.920 447.405 -1564.955 -425.459 -569.398
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Table 7.8: Values of the OMP3 potentials strengths for the triplet channels
3P0,

3P1,
3F3 (T = 1) GWU/VPI SAID. The values calculated in the Eq. (6.71).

3P0
3P1

3F3

TLab(MeV) V0 W0 V0 W0 V0 W0

200.0 -81.883 -0.961 407.409 1.413 -120.689 12.218
300.0 162.446 3.971 679.522 1.759 -127.031 39.568
400.0 415.644 0.445 911.738 -0.523 -90.805 7.054
500.0 666.280 -20.046 1108.429 -3.735 -27.079 -84.406
600.0 905.344 -58.284 1273.705 -7.740 51.693 -209.847
700.0 1126.028 -108.415 1411.413 -14.284 135.477 -338.178
800.0 1323.515 -161.227 1525.135 -25.980 216.471 -443.642
900.0 1494.759 -207.597 1618.192 -44.990 288.919 -511.510
1000.0 1638.274 -241.052 1693.639 -72.032 348.919 -539.186
1100.0 1753.921 -258.996 1754.268 -105.970 394.237 -534.068
1200.0 1842.687 -262.651 1802.609 -144.030 424.114 -509.588
1300.0 1906.475 -256.019 1840.926 -182.502 439.084 -480.721
1400.0 1947.889 -244.334 1871.219 -217.700 440.778 -460.007
1500.0 1970.017 -232.467 1895.226 -246.938 431.739 -454.854
1600.0 1976.218 -223.703 1914.419 -269.262 415.235 -466.513
1700.0 1969.908 -219.144 1930.006 -285.773 395.065 -490.740
1800.0 1954.343 -217.837 1942.931 -299.418 375.373 -519.852
1900.0 1932.405 -217.542 1953.874 -314.259 360.462 -545.576
2000.0 1906.388 -215.871 1963.249 -334.311 354.600 -561.895
2100.0 1877.782 -211.451 1971.206 -362.165 361.834 -567.071
2200.0 1847.061 -204.655 1977.631 -397.665 385.802 -564.087
2300.0 1813.465 -197.575 1982.144 -437.005 429.542 -559.087
2400.0 1774.785 -193.031 1984.100 -472.611 495.304 -557.897
2500.0 1727.152 -192.779 1982.591 -494.152 584.362 -561.546
2600.0 1664.819 -195.601 1976.441 -490.959 696.826 -562.785
2700.0 1579.949 -196.696 1964.210 -455.963 831.449 -547.059
2800.0 1462.395 -190.733 1944.192 -391.034 985.444 -503.195
2900.0 1299.492 -182.210 1914.418 -313.315 1154.289 -451.311
3000.0 1075.837 -208.261 1872.649 -261.670 1331.546 -498.079
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Table 7.9: Values of the OMP3 potentials strengths for the coupled channels
3P2,

3F2,
3PF2 (T = 1) GWU/VPI SAID. The values calculated in the Eq. (6.71).

3P2
3F2

3PF2

TLab(MeV) V0 W0 V0 W0 V0 W0

200.0 -154.526 -0.686 -782.756 0.104 -13.008 0.00
300.0 -123.450 1.010 -733.547 -0.095 -9.359 0.00
400.0 -102.523 0.998 -691.454 -0.097 -5.170 0.00
500.0 -88.884 -1.947 -655.228 -0.095 -0.991 0.00
600.0 -80.170 -7.612 -623.965 -0.362 2.744 0.00
700.0 -74.473 -15.277 -597.061 -1.007 5.719 0.00
800.0 -70.304 -24.138 -574.170 -1.964 7.714 0.00
900.0 -66.553 -33.449 -555.160 -3.078 8.613 0.00
1000.0 -62.445 -42.539 -540.072 -4.208 8.382 0.00
1100.0 -57.509 -50.803 -529.075 -5.290 7.071 0.00
1200.0 -51.528 -57.707 -522.425 -6.361 4.805 0.00
1300.0 -44.510 -62.822 -520.422 -7.531 1.770 0.00
1400.0 -36.639 -65.875 -523.367 -8.930 -1.785 0.00
1500.0 -28.243 -66.798 -531.518 -10.641 -5.567 0.00
1600.0 -19.751 -65.758 -545.051 -12.652 -9.235 0.00
1700.0 -11.652 -63.147 -564.011 -14.829 -12.416 0.00
1800.0 -4.460 -59.533 -588.275 -16.927 -14.710 0.00
1900.0 1.330 -55.566 -617.508 -18.630 -15.695 0.00
2000.0 5.280 -51.860 -651.117 -19.627 -14.940 0.00
2100.0 7.047 -48.880 -688.211 -19.688 -12.009 0.00
2200.0 6.425 -46.865 -727.558 -18.729 -6.471 0.00
2300.0 3.382 -45.804 -767.544 -16.853 2.096 0.00
2400.0 -1.899 -45.524 -806.125 -14.322 14.095 0.00
2500.0 -8.981 -45.854 -840.788 -11.485 29.900 0.00
2600.0 -17.132 -46.881 -868.510 -8.658 49.852 0.00
2700.0 -25.287 -49.203 -885.710 -5.988 74.250 0.00
2800.0 -32.010 -54.079 -888.210 -3.406 103.343 0.00
2900.0 -35.449 -63.252 -871.193 -0.774 137.323 0.00
3000.0 -33.303 -78.161 -829.155 1.563 176.316 0.00
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Table 7.10: Values of the OMP3 potentials strengths for the single channels
1P1,

1F3,
1H5 (T = 0) GWU/VPI SAID. The values calculated in the Eq. (6.71).

1P1
1F3

1H4

TLab(MeV) V0 W0 V0 W0 V0 W0

200.0 460.453 0.156 -94.307 0.00 -284.79450 0.00
250.0 562.608 0.186 -69.417 0.00 -276.60664 0.00
300.0 649.552 -0.011 -45.964 0.00 -271.17457 0.00
350.0 726.158 -0.316 -23.057 0.00 -266.22250 0.00
400.0 796.110 -0.739 -0.064 0.00 -260.22159 0.00
450.0 862.039 -1.683 23.426 0.00 -252.28500 0.00
500.0 925.658 -4.103 47.635 0.00 -242.06290 0.00
550.0 987.892 -9.492 72.620 0.00 -229.63751 0.00
600.0 1049.021 -19.733 98.314 0.00 -215.41817 0.00
650.0 1108.809 -36.844 124.550 0.00 -200.03633 0.00
700.0 1166.638 -62.696 151.098 0.00 -184.24061 0.00
750.0 1221.650 -98.762 177.693 0.00 -168.79184 0.00
800.0 1272.873 -145.988 204.066 0.00 -154.35808 0.00
850.0 1319.363 -204.811 229.980 0.00 -141.40968 0.00
900.0 1360.334 -275.351 255.257 0.00 -130.11427 0.00
950.0 1395.296 -357.748 279.810 0.00 -120.23185 0.00
1000.0 1424.187 -452.544 303.677 0.00 -111.00980 0.00
1050.0 1447.512 -560.973 327.052 0.00 -101.07790 0.00
1100.0 1466.474 -684.896 350.312 0.00 -88.34341 0.00
1150.0 1483.109 -826.073 374.056 0.00 -69.88606 0.00
1200.0 1500.425 -984.323 399.130 0.00 -41.85311 0.00
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Table 7.11: Values of the OMP3 potentials strengths for the triplet channels
3D2,

3G4,
3I6, (T = 0) GWU/VPI SAID. The values calculated in the Eq. (6.71).

3D2
3G4

3I6
TLab(MeV) V0 W0 V0 W0 V0 W0

200.0 -766.39 0.00 -125.440 0.00 -211.320 0.00
250.0 -843.96 0.00 -185.387 0.00 -231.363 0.00
300.0 -878.06 0.00 -238.122 0.00 -249.697 0.00
350.0 -879.69 0.00 -283.196 0.00 -266.503 0.00
400.0 -857.93 0.00 -320.605 0.00 -281.899 0.00
450.0 -820.14 0.00 -350.717 0.00 -295.940 0.00
500.0 -772.13 0.00 -374.205 0.00 -308.641 0.00
550.0 -718.34 0.00 -391.972 0.00 -319.978 0.00
600.0 -662.00 0.00 -405.083 0.00 -329.904 0.00
650.0 -605.33 0.00 -414.693 0.00 -338.360 0.00
700.0 -549.65 0.00 -421.977 0.00 -345.283 0.00
750.0 -495.64 0.00 -428.055 0.00 -350.622 0.00
800.0 -443.43 0.00 -433.929 0.00 -354.342 0.00
850.0 -392.82 0.00 -440.404 0.00 -356.441 0.00
900.0 -343.46 0.00 -448.022 0.00 -356.958 0.00
950.0 -294.99 0.00 -456.990 0.00 -355.986 0.00
1000.0 -247.21 0.00 -467.107 0.00 -353.680 0.00
1050.0 -200.31 0.00 -477.697 0.00 -350.271 0.00
1100.0 -154.96 0.00 -487.535 0.00 -346.073 0.00
1150.0 -112.56 0.00 -494.777 0.00 -341.500 0.00
1200.0 -75.35 0.00 -496.889 0.00 -337.071 0.00
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Table 7.12: Values of the OMP3 potentials strengths for the coupled channels
3S1,

3D1,
3SD1, (T = 0) GWU/VPI SAID. The values calculated in the Eq.

(6.71).

3S1
3D1

3SD1

TLab(MeV) V0 W0 V0 W0 V0 W0

200.0 -105.367 0.00 -556.062 -0.309 11.140 0.00
250.0 -93.988 0.00 -537.185 -0.385 14.701 0.00
300.0 -84.402 0.00 -520.524 0.098 18.824 0.00
350.0 -76.296 0.00 -505.798 0.475 23.584 0.00
400.0 -69.366 0.00 -493.000 0.283 28.969 0.00
450.0 -63.321 0.00 -482.318 -0.353 34.895 0.00
500.0 -57.890 0.00 -474.060 -0.966 41.218 0.00
550.0 -52.831 0.00 -468.570 -1.269 47.754 0.00
600.0 -47.935 0.00 -466.154 -1.573 54.289 0.00
650.0 -43.038 0.00 -467.000 -2.805 60.596 0.00
700.0 -38.022 0.00 -471.101 -6.128 66.451 0.00
750.0 -32.826 0.00 -478.175 -12.416 71.645 0.00
800.0 -27.452 0.00 -487.586 -22.018 76.000 0.00
850.0 -21.971 0.00 -498.270 -35.180 79.384 0.00
900.0 -16.533 0.00 -508.650 -53.112 81.727 0.00
950.0 -11.370 0.00 -516.565 -78.864 83.034 0.00
1000.0 -6.807 0.00 -519.184 -115.822 83.399 0.00
1050.0 -3.264 0.00 -512.935 -159.546 83.023 0.00
1100.0 -1.270 0.00 -493.422 -175.928 82.226 0.00
1150.0 -1.464 0.00 -455.345 -54.868 81.464 0.00
1200.0 -4.603 0.00 -392.430 475.971 81.341 0.00
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Conclusions

Medium energy NN scattering, as is accepted for low energy nuclear physics in
general, is determined from proton, nucleon and meson degrees of freedom in
the long range soft interaction sector, the quark gluon degrees of freedom gov-
ern the short distance hard processes. The identification and parameterization,
of the combined long and short range NN domains, is the topic of this thesis.
The formalism for two coupled Dirac equations, within constraint instant form
dynamics, is used to study the NN interaction. Explicitly energy dependent cou-
pled channel potentials, for use in partial wave Schrödinger like equations, with
nonlinear and complicated derivative terms, result. The interactions are inspired
by meson exchange of π, η, ρ, ω and σ mesons for which we adjust coupling con-
stants. This yields, in the first instant, high quality fits to the Arndt phase shifts
0 to 300 MeV. Second, the potentials show a universal, independent from an-
gular momentum, core potential which is generated with the relativistic meson
exchange dynamics. Extrapolations towards higher energies, up to TLab equal 3
GeV, allow to separate a QCD dominated short range zone as well as inelastic
nucleon excitation mechanism contributing to meson production. A local optical
model, in addition to the meson exchange Dirac potential, produces agreement
between theoretical and phase shifts data. The optical model potentials reflect a
short lived complex multi hadronic intermediate structure formation, r ∼ 0.5 fm,
of which the optical model parameters give a consistent picture. For future work,
the here presented phenomenological access encourages a more microscopic and
detailed use of QCD.

241





Appendix A

Tools, Definitions and
Conventions

A.1 Majorana Representation

The four γ matrices have real elements and satisfy

γµγν + γνγµ = 2gµν, (A.1)

with g00 = −1.
The sixteen basic matrices γi (i = 1, 2, ...16) are 1,γ5 = γ0γ1γ2γ3, γµ, γ5γµ, γµγν

(µ < ν). They are all real and γ2
5 = −1, γT5 = −γ5, where T denotes the ordinary

transposed of a matrix. [566]
For any four by four matrix Γ define the adjoint

Γ̃ = −γ0Γ
Tγ0. (A.2)

then, for any two hermitian anticommuting spinors α1 and α2,

ᾱ1γα2 = ᾱ2Γ̃α1, ᾱ = αγ0. (A.3)

Now γ̃i = γi for 1, γ5, γ5γµ, while γ̃i = −γi for γµ, γµγν(µ < ν). The 16 matrices
γi have squares equal to ±1. For any γi define γi so that γiγ

i = +1. The following
rearrangement formula is then valid

(ᾱ1ψ)α2 = −1

4

∑

i

(ᾱ1γiα2)γ
iψ, (A.4)

where α1, α2 and ψ are any three spinors. The minus sign comes from the anti-
commutation property of the spinors.
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A.2 The Fierz Transformation

Fierz transformation [236] is a name given to the expression of a certain product
of nondiagonal matrix elements of Dirac Γ-matrices as an expansion into products
of diagonal matrix elements, such as

(āΓi b)(b̄Γj a) =

16∑

k,l=1

ckl(āΓk a)(b̄Γl b). (A.5)

Here Γi stands for one of the 16 Dirac matrices {1, γ5, γµ, γ5γµ, σµν} constituting
a linearly independent basis in the space of complex 4 × 4 matrices. The matrix
elements denote products in Dirac-index space only, i. e.,

(āΓi b) = ψ̄a(r, t) Γi ψb(r, t). (A.6)

The Fierz transformation is useful for expressing exchange matrix elements in
terms of densities, currents, and other diagonal ones, which greatly eases their
use in, for example, relativistic mean-field theories.

In the context of nonlinear self-coupling of meson fields, higher-order versions
of the Fierz transformation have become of interest. If we express the order as
the number of Γ-matrices involved, the above Eq. (A.5) is of second order, and
third

(āΓi b)(b̄Γj c)(c̄Γk a) =
16∑

l,m,n=1

clmn(āΓl a)(b̄Γm b)(c̄Γn c), (A.7)

and fourth order:

(āΓi b)(b̄Γj c)(c̄Γk d)(d̄Γl a) =

16∑

m,n,p,q=1

cmnpq(āΓm a)(b̄Γn b)(c̄Γp c)(d̄Γq d).

(A.8)
In many applications, the wave function indices will all be summed over, so that
it is sufficient to deal with an expression symmetrized over the indices. Thus, on
the left-hand side of Eq. (A.5) in the second-order case we can write

∑

ab

(āΓi b)(b̄Γj a) =
1

2

∑

ab

[
(āΓi b)(b̄Γj a) + (b̄Γi a)(āΓj b)

]
, (A.9)

and the right-hand side of Eq. (A.5) will be symmetrized exactly in the same
way.

Using the notation
∑

{abc...} to refer to the sum over all permutations of the
symbols a, b, c . . ., we can reformulate the Fierz transformation problem for the
symmetrized matrix element as

∑

{ab}

(āΓi b)(b̄Γj a) =
∑

{ab}

∑

kl

ckl(āΓk a)(b̄Γl b), (A.10)
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where the factor 1
2

has been dropped on both sides.
It is important to realize that because of the product structure, the right-hand

side is symmetric under an exchange of the Γ matrices as well. It is thus useful
to introduce a notation for symmetrized terms,

Γk ⊗ Γl =
∑

{ab}

(āΓk a)(b̄Γl b) = (āΓk a)(b̄Γl b) + (āΓl a)(b̄Γk b), (A.11)

which can easily be generalized to higher order, for example, in third order the
symmetrized problem becomes

∑

{abc}

(ā i b)(b̄ j c)(c̄ k a) =
∑

l≤m≤n

clmnΓl ⊗ Γm ⊗ Γn, (A.12)

with
Γl ⊗ Γm ⊗ Γn =

∑

{abc}

(āΓl a)(b̄Γm b)(c̄Γn c), (A.13)

where symmetrization could equivalently be carried out in the indices l, m, n
instead of a, b, c. Terms of fourth and higher orders are defined analogously.

The second-order Fierz transformation as defined in Eq. (A.5) can be viewed
as a system of equations obtained by comparing coefficients in the 44 = 162

dimensional space spanned by the spinors ψa, ψb, ψ̄a, and ψ̄b. The coefficients are
given by the components of the Γ-matrices and thus can be expressed as complex
integers. The unknowns ckl are 16 × 16 in number, so that we have exactly the
right number of equations, and since the Γ-matrices form a basis for the 4 × 4
complex matrices, the decomposition (A.5) is always possible.

The solution of this system of linear equations can be carried out using the
standard Gauss elimination algorithm, provided that the coefficients are not
treated in floating point arithmetic, but as exact complex fractions.

For third-order Fierz transformations the dimension of the system of equa-
tions is 163 and it is 164 for fourth order, that is, the complexity in going from
second order to fourth order is in the ratio 1:16:256. For the latter case practical
solution would require substantial computing resources, but fortunately in cases
of practical interest the number of terms in the expansion can be reduced sub-
stantially by symmetry and invariance requirements. In the symmetrized case of
the preceeding section, for example, the dimension in fourth order is reduced by
the number of permutations 4!.

The expansion into products of the diagonal matrix elements of the Γ-matrices
is always possible, but usually is not the most useful expression of the Fierz
transformation. To see this, let us look at an important special case: that of
identity matrices on the left-hand side. The decomposition problem thus is

(ā b)(b̄ a) =
∑

jk

cjk(āΓj a)(b̄Γk b), (A.14)
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or, in symmetrized form,

∑

{ab}

(ā b)(b̄ a) =
∑

jk

cjkΓj ⊗ Γk. (A.15)

Since the left-hand side is a Dirac scalar, this means that the right-hand
side also can contain only scalar combinations of Γ-matrices. The only scalar
combinations built out of products of two Γ-matrices are 1 ⊗ 1, γ5 ⊗ γ5, γµ ⊗ γµ,
γ5γµ ⊗ γ5γ

µ, and σµν ⊗ σµν , assuming the familiar index summation convention.
The Fierz transformation problem in this case thus can be restated as (note that
here because of the complete symmetry of all terms, the symmetrization can be
omitted):

(ā b)(b̄ a) = c1(ā a)(b̄ b) + c2(ā γ5 a)(b̄ γ5 b) + c3(ā γµ a)(b̄ γ
µ b) (A.16)

+c4(ā γ5γµ a)(b̄ γ5γ
µ b) + c5(ā σµν a)(b̄ σ

µν b).

Note that symmetrization works slightly differently in this case: the scalar
products sometimes make certain index combinations appear repeatedly in the
expansion, but it is still sufficient to include only one ordering of the Γ matrices
in the symmetrized terms.

Eq. (A.16) corresponds to 256 equations for the 5 unknown coefficients.
Clearly most equations will be redundant; eliminating them from the statement
of the problem, however, turns out to complicate the solution, but the high de-
gree of redundancy provides a welcome check for completeness and consistency
of the assumed decomposition.

The decomposition of the symmetrized term in second order is

(ā b)(b̄ a) = 1
4
(ā a)(b̄ b) + 1

4
(ā γ5 a)(b̄ γ5 b) + 1

4
(ā γµ a)(b̄ γ

µ b) (A.17)

−1
4
(ā γ5γµ a)(b̄ γ5γ

µ b) + 1
8
(ā σµν a)(b̄ σ

µν b).

In third order the symmetrization is no longer trivial as it was in the second-
order case. It may be surprising that terms with γ5σµν must be included; these
can be equivalently formulated using the identity

γ5σµν = i
2
εκλµνσ

κλ, (A.18)

but retaining the matrix γ5 makes the space-reversal properties of the terms more
readily apparent. Note that either way our basis still consists of only 16 linearly
independent matrices.
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Technical Details

B.1 Clebsch-Gordan Coefficient

A mathematical symbol used to integrate products of three Spherical Har-
monics. Clebsch-Gordan coefficients commonly arise in applications involving
the addition of angular momentum in quantum mechanics [78]. If products of
more than three Spherical Harmonics are desired, then a generalization known as
Wigner 6j-Symbol or Wigner 9j-Symbol is used. The Clebsch-Gordan coefficients
are written

Cj
m1m2

= (j1j2m1m2|j1j2jm),

and are defined by

ΨJM =
∑

M=M1+M2

CJ
M1M2

ΨM1M2,

where J ≡ J1 + J2. The Clebsch-Gordan coefficients are sometimes expressed
using the related Racah V-Coefficient

V (j1j2j;m1m2m), (B.1)

or Wigner 3j-Symbol 
 j1 j2 j

m1 m2 m


 .

Connections among the three are

(j1j2m1m2|j1j2m) = (−1)−j1+j2−m
√

2j + 1


 j1 j2 j

m1 m2 −m


 ,

(j1j2m1m2|j1j2jm) = (−1)j+m
√

2j + 1V (j1j2j;m1m2 −m) (B.2)
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V (j1j2j;m1m2m) = (−1)−j1+j2+j


 j1 j2 j1

m2 m1 m2


 . (B.3)

They have the symmetry

(j1j2m1m2|j1j2jm) = (−1)j1+j2−j(j2j1m2m1|j2j1jm), (B.4)

and obey the orthogonality relationships

∑

j,m

(j1j2m1m2|j1j2jm)(j1j2jm|j1j2m′
1m

′
2) = δm1m′

1
δm2m′

2
,

∑

m1,m2

(j1j2m1m2|j1j2jm)(j1j2j
′m′|j1j2m1m2) = δjj′δmm′ .

Racah W-Coefficient are written

(J1J2[J
′]J3|J1, J2J3[J

′′]) =
√

(2J ′ + 1)(2J ′′ + 1)W (J1J2JJ3; J
′J ′′),

and

(J1J2[J
′]J3|J1J3[J

′′]J2) =
√

(2J ′ + 1)(2J ′′ + 1)W (J ′
1J3J2J

′′; JJ1).

Wigner 3j-Symbol

The Wigner 3j-symbols have the symmetries


 j1 j2 j

m1 m2 m


 =


 j2 j j1

m2 m m1




=


 j j1 j2

m m1 m2


 = (−1)j1+j2+j


 j2 j1 j

m2 m1 m




= (−1)j1+j2+j


 j1 j j2

m1 m m2




= (−1)j1+j2+j


 j j2 j1

m m2 m1




= (−1)j1+j2+j


 j1 j2 j

−m1 −m2 −m


 . (B.5)
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The symbols obey the orthogonality relations

∑

j,m

(2j + 1)


 j1 j2 j

m1 m2 m




 j1 j2 j

m′
1 m′

2 m


 = δm1m′

1
δm2m′

2
, (B.6)

∑

m1,m2


 j1 j2 j

m1 m2 m




 j1 j2 j ′

m1 m2 m′


 = δjj′δmm′ , (B.7)

where δij is the Kronecker Delta.
General formulas are very complicated, but some specific cases are


 j1 j2 j1 + j2

m1 m2 −m1 −m2


 = (−1)j1−j2+m1+m2

×
[

(2j1)!(2j2)!

(2j1 + 2j2 + 1)!(j1 +m1)!

(j1 + j2 +m1 +m2)!(j1 + j2 −m1 −m2)!

(j1 −m1)!(j2 +m2)!(j2 −m2)!

]1/2

(B.8)
j1 j2 j

j1 −j1− m


 = (−1)−j1+j2+m

×
[

(2j1)!(−j1 + j2 + j)!

(j1 + j2 + j + 1)!(j1 − j2 + j)!

(j1 + j2 +m)!(j −m)!

(j1 + j2 − j)!(−j1 + j2 −m)!(j +m)!

]1/2

(B.9)


 j1 j2 j

0 0 0


 =





(−1)g
√

(2g−2j1)(2g−2j2)!(2g−2j)!
(2g+1)!

g!
(g−j1)!(g−j2)!(g−j)!

if J = 2g

0

if J = 2g + 1,

(B.10)

for J ≡ j1 + j2 + j.
For Spherical Harmonics Ylm(θ, φ),

Yl1m1(θ, φ)Yl2m2(θ, φ)

=
∑

l,m

√
(2l1 + 1)(2l2 + 1)(2l + 1)

4π


 l1 l2 l

m1 m2 m


Y ∗

lm(θ, ψ)


l1 l2 l

0 0 0


 .

For values of l3 obeying the Triangle Condition ∆(l1l2l3),

∫
Yl1m1(θ, φ)Yl2m2(θ, φ)Yl3m3(θ, φ) sin θ dθ dφ
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=

√
(2l1 + 1)(2l2 + 1)(2l3 + 1)

4π


l1 l2 l3

0 0 0




 l1 l2 l3

m1 m2 m3




and

1

2

∫
Pl1(cos θ)Pl2(cos θ)Pl3(cos θ) sin θ dθ =


l1 l2 l3

0 0 0




2

. (B.11)

Wigner 6j-Symbol
A generalization of Clebsch-Gordan Coefficients and Wigner 3j-Symbol which
arises in the coupling of three angular momenta. Let tensor operators T (k) and
U (k) act, respectively, on subsystems 1 and 2 of a system, with subsystem 1 char-
acterized by angular momentum j1 and subsystem 2 by the angular momentum
j2. Then the matrix elements of the scalar product of these two tensor operators
in the coupled basis J = j1 + j2 are given by

(τ ′1j
′
1τ

′
2j

′
2J

′M ′|T (k) · U (k)|τ1j1τ2j2JM)

= δJJ ′δMM ′(−1)j1+j
′

2+J




J j ′2 j ′1

k j1 j2



 (τ ′1j

′
1||T (k)||τ1j1)(τ ′2j ′2||U (k)||τ2j2), (B.12)

where




J j ′2 j ′1

k j1 j2



 is the Wigner 6j-symbol and τ1 and τ2 represent additional

pertinent quantum numbers characterizing subsystems 1 and 2. The analytic
forms of the 6j-symbol are written for simple cases




a b c

0 c b



 =

(−1)s√
(2b + 1)(2c+ 1)

,




a b c

1 c b



 =

2(−1)s+1X√
2b(2b + 1)(2b+ 42)2c(2c+ 1)(2c+ 2)

,




a b c

2 c b



 =

2(−1)s[3X(X − 1) − 4b(b+ 1)c(c+ 1)]√
(2b− 1)2b(2b+ 1)(2b+ 2)(2b+ 3)(2c− 1)2c(2c+ 1)(2c+ 2)(2c+ 3)

,

where

s := a+ b + c, (B.13)

X := b(b + 1) + c(c+ 1) − a(a + 1). (B.14)
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Wigner 9j-Symbol
A generalization of Clebsch-Gordan Coefficients and Wigner 3j-Symbol and Wigner
6j-Symbol which arises in the coupling of four angular momenta and can be writ-
ten in terms of the Wigner 3j-Symbol and Wigner 6j-Symbol. Let tensor operators
T (k1) and U (k2) act, respectively, on subsystems 1 and 2. Then the reduced ma-
trix element of the productT (k1) × U (k2) of these two irreducible operators in the
coupled representation is given in terms of the reduced matrix elements of the
individual operators in the uncoupled representation by

(τ ′τ ′1j
′
1τ

′
2j

′
2J

′||[T (k1) × U (k2)](k)||ττ1j1τ2j2J)

=
√

(2J + 1)(2J ′ + 1)(2k + 1)
∑

τ ′′





j ′1 j1 k1

j ′2 j2 k2

J ′ J k





×(τ ′τ ′1j
′
1||T (k1)||τ ′′τ1j1)(τ ′′τ ′2j ′2||U (k2)||ττ2j2), (B.15)

where





j ′1 j1 k1

j ′2 j2 k2

J ′ J k





is a Wigner 9j-symbol. The explicit formulas are





a b C

d e F

G H J





=
∑

x

(−1)2x(2x+ 1)

×




a b C

F J x








d e F

b x H








G H J

x a d



 ,





a b J

c d J

K K 0





=
(−1)b+c+J+K

√
(2J + 1)(2K + 1)




a b J

d c K



 ,





S S 1

L L 2

J J 1





=




S L J

L S 1








J L S

L J 1





5





2 L L

L 1 1





+
(−1)S+L+J+1

15(2L+ 1)




S J L

J S 1









2 L L

L 1 1





.
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The matrix elements of the tensor product of two operators are given by

[T (ki1) × T (k2)]
(k3)
k3

=
∑

k1k2

(R1k1R2k2|R1R2R3k3)T
(k1)
k1

T
(k2)
k2

, (B.16)

and for the scalar product are

(T (k) · U (k)) = (−1)k
√

2k + 1[T (k) × U (k)]
(0)
0 . (B.17)

Wigner-Eckart theorem:

< JM |T (κ)
k |J ′M ′ >= (−1)J−M


 J κ J ′

−M k M ′


 < J ||T (κ)||J ′ > . (B.18)

This relation is known as the Wigner-Eckart theorem. The coefficient < J ||T (κ)||J ′ >
is called the reduced matrix element of T (κ) and is independent of the magnetic
quantum numbers M,M ′ and k.

B.2 Operators for Radial Form

In order to obtain the final eigenvalue radial equations of the wave equations Eqs.
(5.257), it is useful for numerical calculation of the coupled and the uncoupled
equations in the variable r, we have used the following operators

1. p2

2. (σ1 · σ2) spin-spin term
3. L · (σ1 + σ2) spin-orbit angular momentum term
4. L · (σ1 − σ2) spin-orbit angular momentum difference term
5. (σ1 · r̂)(σ2 · r̂) tensor term
6. r̂ · p Darwin term
7. L · (σ1 × σ2) additional spin dependent terms
8. (σ1 · r̂)(σ2 · p) + (σ2 · r̂)(σ1 · p) spin independent terms.
We are listed the following expressions for numerical calculation:

Or =< L||r̂k||L >= (−1)L
√
L̂L̂k̂


 L k L

0 0 0


 , (B.19)

OL =< L′||~L||L >=

√
L(L + 1)L̂δL′L, (B.20)

Oσ =< s′||σ||s >=
√

6, (B.21)

O∇ =< L0||∇0||L0 >=
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



if L = L+ 1 → L+1
L̂(2L+3)

(
∂
∂r

− L
r

)

if L = L− 1 → L
L̂(2L−1)

(
∂
∂r

+ L+1
r

)
.

(B.22)

Now, one can use the Eq.(B.15), to drive a simple form of the operators

Oσ1×σ2 =< S ′||[σ1 × σ2]k||S >= 6
√
k̂ŜŜ ′





1/2 1/2 S ′

1/2 1/2 S

1 1 k




, (B.23)

Or̂×r̂ =< L′||[r̂× r̂]k||L >=

(−1)L
′+k+L

√
k̂
∑

L

< L′||r̂||L >< L||r̂||L >





1 1 k

L L′ L



 . (B.24)

Finally, we becomes
1.

O∆ =< L′S ′J || − ~
2c2∆||LSJ >= −~

2c2
(
d2

dr2
− L(L + 1)

r2

)
δLL′δSS′, (B.25)

2.

a) Oσ1σ2a =< L′S ′J ||(σ1 · σ2)||LSJ >= 2S(S + 1) − 3, (B.26)

b) Oσ1σ2b =< L′S ′J ||(σ1 · σ2)||LSJ >=

6(−1)L
′+S+S′+J

√
Ŝ ′Ĵ





S ′ J L

J S 0









1/2 1/2 S

1/2 1/2 0



 , (B.27)

3.

OLS =< L′S ′J ||(~L · ~S)||LSJ >= (J(J + 1) − L(L + 1) − S(S + 1)), (B.28)

4.

OLσ1±σ2 =< L′S ′J ||~L · (σ1 ± σ2)||LSJ >=

√
6(−1)S

′+J+L+S
√
ŜŜ ′





L′ S ′ J

S L 1



OL





1/2 S ′ 1/2

S 1/2 1



 (1 ± (−1)S

′−S) =

√
6(−1)S

′+J+L+S

√
L(L + 1)L̂ŜŜ ′





L′ S ′ J

S L 1









1/2 S ′ 1/2

S 1/2 1



 (1±(−1)S

′−S),

(B.29)
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B.2. OPERATORS FOR RADIAL FORM

5.

Oσ1rσ2r =< L′S ′J ||(σ1 · r̂)(σ2 · r̂)||LSJ >=





1 1 0

1 1 0

0 0 0




Oσ1σ2b+

15





1 1 0

1 1 0

2 2 0





√
2J + 1





L′ S ′ J

L S J

2 2 0




Oσ1×σ2Or̂×r̂, (B.30)

6.

Or̂·~p =< L′S ′J ||(r̂ · p)||LSJ >

= (−1)L
′+S′+J+1+2LĴ

∑

L

< L||̂r||L >< L0||∇0||L0 >





1 1 0

L L L



 , (B.31)

7.

OL·(σ1×σ2) =< L′S ′J ||L · (σ1 × σ2)||LSJ >=

(−1)S
′+J+L

√
Ĵ





L′ S ′ J

S L 1



OLOσ1×σ2 , (B.32)

8.

Oσ1rσ2p =< L′S ′J ||(σ1 · r̂)(σ2 · p) + (σ2 · r̂)(σ1 · p)||LSJ >=

∑

k

3k̂Ĵ





1 1 0

1 1 0

k k 0









L′ S ′ J

L S J

k k 0




< L′||[̂r×p]k||L >< S ′||[σ1×σ2]k||S > (1+(−1)k)

=
∑

k

3k̂Ĵ





1 1 0

1 1 0

k k 0









L′ S ′ J

L S J

k k 0




Or̂·~pOσ1×σ2(1 + (−1)k). (B.33)

Using above expressions, we can get their coupled and uncoupled radial eigen-
value equations from Eqs.(5.257).
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