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Abstract

Exclusive processes are a special class of processes giving insight into the inner structure
of hadrons. In this thesis we consider two exclusive processes and compute their total cross
sections as well as the beam charge and beam polarization asymmetries for different kinemat-
ical constraints. These calculations offer the opportunity to get access to the nonperturbative
GPDs. Theoretically they can be described with the help of models. The first process we
investigate contains a GPD of the pion, which is basically unknown so far. We include dif-
ferent models and make predictions for observables that could in principle be measured at
HERMES at DESY and CLAS at JLab. The second process we consider is electron-deuteron
scattering in the kinematical range where the deuteron breaks up into a proton and a neu-
tron. This can be used to investigate the neutron, which cannot be taken as a target due to
its lifetime of approximately 15 minutes. For the calculation of the electron-deuteron cross
section we implement models for the proton and neutron GPDs. Once there are experimental
data available our calculations are ready for comparison.

Zusammenfassung

Exklusive Prozesse sind Prozesse, die einen Einblick in die innere Struktur von Hadronen
ermöglichen. In dieser Arbeit betrachten wir zwei exklusive Prozesse und berechnen deren
totale Wirkungsquerschnitte, sowie Asymmetrien bezüglich der Ladung und der Polarisation
des Elektronen- (Positronen-) Strahls für verschiedene kinematische Bedingungen. Durch
diese Rechnungen erhält man einen direkten Zugang zu den GPDs. Dabei handelt es sich
um nicht perturbative Objekte, die man mit Hilfe von Modellen beschreiben kann. Der erste
Prozess, den wir untersuchen enthält eine Pion GPD, welche bisher theoretisch wie experi-
mentell weitestgehend unbekannt ist. Wir untersuchen verschiedene Modelle um Vorhersagen
für Observablen zu machen, welche man prinzipiell bei HERMES am DESY und CLAS am
JLab messen kann. Im zweiten Prozess betrachten wir Elektron-Deuteron Streuung in einem
kinematischen Bereich, in dem das Deuteron in ein Proton und ein Neutron aufbricht. Dieser
Prozess kann zur Untersuchung des Neutrons benutzt werden, welches auf Grund seiner kurzen
Lebensdauer von etwa 15 Minuten, nicht als Target zur Verfügung steht. Für die Berechnung
des Elektron-Deuteron Streuquerschnitts verwenden wir Modelle für die Proton und Neutron
GPDs. Sobald experimentelle Daten zur Verfügung stehen, können unsere Ergebnisse mit
diesen verglichen werden.
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Introduction

In an early picture of the beginning of the last century the atom is described as having a
central small, but heavy nucleus surrounded by a light electron cloud. Evidence for that
was given by Rutherford’s scattering experiments, where α-particles are scattered off gold
atoms. The theory describing the electromagnetic interaction between the electrons and the
nucleus is Quantum Electrodynamics (QED). In scattering experiments similar to Rutherford
scattering it was shown that the nucleus itself has a substructure and is composed of protons
and neutrons. The proton [1, 2] was discovered first, followed by its charge-neutral partner,
the neutron [3]. Both particles have spin- 1

2 and can be treated as two different (isospin) states
of the same particle, the nucleon.

After the discovery of the nucleons further particles were discovered, namely the positron
(1932, [4]) and the muon (1937, [5, 6]) belonging to the class of leptons, followed by two mesons
which were the pion (1947, [7]) and the kaon (1947, [8]). To further study reactions between
elementary particles and produce new particles huge accelerators were build. Nowadays we
know several hundred “elementary” particles.

It is now the aim of the theory of elementary particles to describe all arising phenomena
relevant for these particles. Electric and magnetic properties can be described very well
by the Maxwell equations. Moreover, gravitation and the electromagnetic force are known
from classical physics. Two new forces were discovered arising from the weak and strong
interactions. The weak interaction is for example responsible for the radioactive β-decay or
proton-proton fusion in the sun and the strong interaction is responsible for example for the
α-decay and nuclear forces.

Gravitation does not play a role in elementary particle physics since it is very weak, 1036

times weaker then the electromagnetic force. Both of these two forces have an infinite range
whereas the weak and strong forces act over a short range only. The interaction range of the
weak force is 10−18 m and of the strong force 10−15 m.

Particles are classified according to the interactions they take part in. Gravitation and the
weak force act on all known particles. Those particles that also interact strongly are called
hadrons. Hadrons themselves are divided into two subclasses − baryons, like the proton or
the neutron which have a half-integer spin and mesons, like the pion or the kaon which have
an integer spin.

The history of the strong interaction has its origin in the measurement of the magnetic
moment of the proton using molecular hydrogen by Stern, Esterman and Frisch (see for
example [?, ?]). At that time the electron, the photon and the proton were the only known
elementary particles. It was a great triumph of the Dirac theory making a correct prediction
for the magnetic moment of the electron within experimental errors. Using the knowledge of
the Dirac theory a magnetic moment of the proton was predicted. Experiments were made by
Stern et al., but they did not measure the predicted value exactly. This showed that the proton
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unlike the electron must have an inner structure. The deviation from the point-like structure
can be measured and described by two functions, called form factors, giving the electric and
magnetic distribution inside the proton. Two further form factors are given for the neutron.
A new interaction had to be responsible for that. In addition to the two known interactions,
gravity and the electromagnetic interaction, the strong interaction was introduced.

From deep inelastic electron-nucleon scattering (DIS) it arose that the nucleon is composed
of point-like particles. It was Feynman who suggested the existence of this point-like particles
inside the nucleon in order to be able to explain the DIS experiments [9]. These objects,
which he called partons, were later on identified with quarks and gluons.

The quantum field theory describing the microscopic structure of strong interactions is
Quantum Chromodynamics (QCD) [10]. It is a non-Abelian gauge theory and is used to
explain the forces between hadrons as well as atomic nuclei. The theory is formulated in terms
of quantum fields of quarks and gluons which are assumed to be the elementary constituents
of the hadrons [11, 12, 13].

The strong interaction does not distinguish between protons and neutrons, which means
the strong force is charge independent. If we neglect small mass differences of 1 − 5MeV we
see that protons and neutrons as well as the pions, π+, π− and π0 have the same mass, which
means that they are degenerate states. In analogy to the hydrogen atom where degenerate
states that differ only in the magnetic quantum number are ascribed to angular momentum
invariance, it is obvious that the almost equality of the masses leads to an invariance group.
In analogy to the spin this group is called isospin. The proton and the neutron build an
isospin doublet while the three pions build an isospin triplet.

Another milestone in the evolution of the knowledge of the strong interaction came from
particles showing a strange behavior: they are produced via the strong interaction but they
decay via the weak interaction. This led to a new quantum number, strangeness. The strong
and the electromagnetic interaction conserve strangeness, while the weak interaction violates
strangeness. In addition to that hypercharge was defined, which is the sum of strangeness
and baryon number. With isospin and hypercharge one had found a generating invariance
group for the strong interaction. But this was not satisfying because no connection could be
made between the properties of mesons and baryons. The decisive breakthrough was made by
Gell-Mann and Ne’man [14, 15]. They classified hadrons according to the flavor SU(3)-group.
For exact SU(3)-invariance all particles within a SU(3)-multiplet must have the same mass.
The order of magnitude of the symmetry breaking was about 20% which was small enough to
calculate these effects perturbatively. A great success of this this theory was the prediction
of the Ω− which was discovered in 1964 [16]. The quark theory predicted that either quarks
do not exist as free particles or particles do exist in nature which have a fractional charge.
Until today there is no indication of fractional charge. But the quarks lead to another riddle.
The Ω− for example has spin- 3

2 and is the lightest particle consisting of three strange quarks,
each quark having spin- 1

2 . For reasonable potentials the spatial wave function is symmetric
and the orbital angular momentum is zero. To obtain the spin of 3

2 all quark spins have to be
aligned leading to a total symmetric wave function for the Ω−. But this contradicts the Pauli
exclusion principle since the Ω− is a fermion. Gell-Mann introduced a new degree of freedom
for the quarks, called color. According to that each quark exists in three colors. Rotations
in the color-space also build a SU(3)-group. Color SU(3) plays the fundamental role in the
strong interaction [17].

In 1974 a new particle, the J/ψ, was discovered [18]. It has a mass of roughly 3.1GeV and
a width of only 60 keV, which can be explained in QCD by introducing a further quark, called
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charm (c) quark. The J/ψ is a bound state of cc̄. The charm quark was already predicted
by Glashow [19] having a charge of 2

3 like the up quark. Up (u) and down (d) quarks are
those quarks the nucleons are composed of. Another quark entered the game when Υ was
discovered [20] which is a bb̄ state. Since then the b quark is known as the bottom or beauty
quark. Theoretically it was supposed that one more quark should exist. This is the t quark,
called top or truth quark. It has a mass of 174GeV which is of the order of the mass of a gold
atom. It took 18 more years until it was discovered in 1995 at the Fermi National Accelerator
Laboratory [21].

In the same way, as the photon is a gauge field mediating the electromagnetic interaction
between charged particles in the Abelian theory of QED, the non-Abelian gauge field mediates
the color interaction in QCD. This non-Abelian field binds the quarks together and is therefore
called gluon. Gluons carry color charge, in contrast to the charge-neutral photon, and can
thus interact with each other, even in the absence of quarks. A fundamental characteristic
of QCD is that quarks and gluons are not observed as free states. This experimental fact is
called confinement. The composed hadrons are all color neutral. The first direct experimental
evidence of gluons was found in 1979 when three-jet events were observed at the electron-
positron collider PETRA at Deutsches Elektronen-Synchrotron (DESY) [?].

Among many achievements, the discovery of asymptotic freedom is very important [22,
23, ?]. The effective coupling constant αs of QCD depends on the momentum transfer Q2

of the photon, αs = αs(Q
2). In contrast to the coupling constant αem in QED, αs decreases

with Q2. This means that at hard scales (small distances) with Q2 � 1GeV2 the coupling αs

becomes very small, αs � 1. Therefore one can calculate observables by means of perturbation
theory due to the small coupling, so the calculation can be performed in a straight forward
way [24, 25]. At this energy scale the hadrons can be pictured to be composed of quasi-free
partons, which is known as asymptotic freedom.

One of the most significant predictions of perturbative QCD is the scaling of the structure
functions in deep inelastic scattering [26, 9], where the momentum transfer Q2 and the energy
transfer ν of electrons are very large while the ratio Q2/ν is kept fixed. Bjorken claimed that
the structure functions depend only on the ratio rather than on the two independent variables
Q2 and ν. This picture is known as Bjorken scaling [27]. Forthwith after his proposal this
behavior was experimentally confirmed [28]. To understand this scaling behavior we assume
that the projectile electrons scatter off almost free point-like partons. In DIS the momentum
transfer Q2 is large, so that the spatial resolution of the target nucleon is high. Therefore
Bjorken scaling implies that the partons seem to be free and point-like when they are observed
with high spatial resolution. Corrections to the Bjorken scaling introduce a logarithmic Q2-
dependence. Bjorken scaling and its violations are very well established for electron-proton
scattering.

However, if we turn our attention to a region where the energy scale is low, around 1GeV2,
which is the scale of a typical hadronic mass, the situation changes. The coupling becomes
large, the powerful perturbation theory cannot be applied and the simple picture of a hadron
in terms of QCD degrees of freedom does not hold anymore. Moreover, it is still unknown
how quarks and gluons bind into hadrons. To unravel this puzzle a nonperturbative approach
is inevitable.

Hard processes are the main experimental tool to investigate the inner structure of the
hadrons. In these scattering experiments a target hadron is probed by an electron (or by a
muon or a neutrino beam). The advantage of a lepton beam is that the lepton has no inner
structure and does not interact strongly. A complication arises in hard scattering because hard
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and soft parts enter the game. The quark interaction with the projectile at large momentum
transfers can be described perturbatively in many hard processes while the quark structure
of the target hadron is a nonperturbative object. Factorization theorems state that it is
possible for several processes to separate the hard and the soft parts [29, 30, 31]. It was
proven that the cross section for example for inclusive deep inelastic scattering and Drell-Yan
(DY) processes or the physical amplitude for example in the case of deeply virtual Compton
scattering (DVCS) [32] and hard exclusive meson production [30] can be represented in terms
of a convolution of perturbatively calculable coefficient functions and nonperturbative objects.
The soft, nonperturbative part is represented by parton distribution functions (PDFs) in
inclusive processes and by generalized distribution functions (GPDs) in exclusive processes.
The PDFs can be interpreted as probability functions describing how the momenta of the
partons are distributed inside the nucleon. GPDs embody PDFs and form factors as limiting
cases and contain a wealth of information on the quark and gluon structure of the nucleons.
PDFs and GPDs are defined as hadronic matrix elements of partonic operators. A precise
definition will be given in the course of this thesis. Although one cannot calculate PDFs and
GPDs from QCD directly, factorization opens a door for the understanding of the hadronic
substructure.

As mentioned, GPDs provide information on the inner structure of hadrons which cannot
be accessed by inclusive measurements. GPDs and their behavior in deeply virtual Compton
scattering were systematically investigated by the Leipzig group [33]. They developed a unified
framework to describe the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP, [34, 35, 36,
37, 38]) and Efremov-Radyushkin-Brodsky-Lepage (ERBL, [39, 40, 41]) evolution. When
Ji and Radyushkin underlined the non-forward nature of parton distributions appearing in
DVCS [32, 42, 43] and meson production [30] a large interest in GPDs started. In their
publications it was shown that GPDs are connected to PDFs and form factors. GPDs have
access to the total angular momentum carried by the partons. Up to now it is not completely
solved to what extent the different partons contribute to the spin of the nucleon. GPDs offer
an opportunity to further solve this spin puzzle. Moreover, a proof of factorization for meson
electroproduction was given by Collins. A further key property of GPDs is that they provide
the possibility to see the nucleon in a three dimensional picture, investigated by Burkardt
[44].

The task is now to constrain GPDs. This is challenging since GPDs cannot be calculated
perturbatively. Hence one has to resort to models or lattice calculations and fit them to avail-
able experimental data. But since observables contain not GPDs themselves but convolutions
of GPDs with coefficient functions one faces a tremendously difficult problem of deconvo-
lution. Furthermore high luminosities are required because the exclusive cross sections are
rather small and detectors must be capable to ensure that the final state was exclusive.

In the following we provide a general framework in the first chapter. We introduce elastic
and inelastic scattering processes.

In the second chapter we introduce the generalized parton distribution functions and show
their connection to measurable objects. These can be parton distributions in a forward limit
or form factors. Since GPDs are nonperturbative objects we exhibit a model approach. The
concept of double distributions, as being the most important ansatz for modeling GPDs, will
be given in detail. Eventually we will calculate the scattering amplitude of some exclusive
processes. One exclusive process is DVCS where an electron emits a virtual photon which
scatters off one parton inside the proton leading to a final state consisting of the scattered
electron, a real photon and a recoil proton. In addition to that well-known process we will
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replace the virtual photon by the different weak gauge bosons, which are the W ± and the Z0

and unfold the differences in these reactions. By means of isospin symmetry quark distribution
functions can be related to each other. This leads to combinations of spin and flavor quark
distributions, which are important to finally determine the single quark distributions.

The third chapter deals with the process of electron-proton scattering e p→ e γ π n where
in a subprocess the virtual photon scatters of a virtual pion which is emitted from the proton.
After introducing the relevant kinematics we show the complete calculation of this process.
This includes the subprocess of deeply virtual Compton scattering off a pion which can be
calculated as the similar process of DVCS off a proton. The computation of DVCS includes
GPDs, therefore we will introduce models for the pion GPD. In the end we will give results
for the cross sections depending on the chosen kinematical constraints. We will study the
process for two experiment, HERMES at DESY and CLAS at Jefferson National Laboratory
(JLab).

In Chapter four we take the deuteron into account. We calculate the process e d→ e γ pn.
First we briefly discuss basic properties of the deuteron and introduce its GPDs and form
factors as well as the deuteron wave function. Finally we obtain the differential cross section.
The calculation of this electron-deuteron scattering process gives a direct access to nucleon
GPDs, especially to the neutron GPD, which is not known very well. Thus we implement
a model for these GPDs. We will give numerical results for the cross section for the CLAS
detector at JLab after the planned 12 GeV upgrade.
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Chapter 1

General framework

In this Chapter we outline some fundamental properties of scattering processes. We start by
introducing form factors which parametrize the hadronic current in the cross section of elastic
scattering processes. In a next step we consider inelastic scattering where parton distribution
functions appear. These functions will be defined and discussed. Furthermore we will briefly
mention factorization and evolution. In the last part of this chapter we will draw our attention
to exclusive scattering processes.

1.1 Basic kinematics and scattering processes

One of the most important tools to get information on the hadron structure are scattering
experiments. Theses experiments take place in large particle accelerators where such high
energies can be achieved, that even the nucleon structure can be resolved. Many models can
be compared to the extracted data from the experiments, helping to learn more about the
inner structure of hadrons.

A very clean way of probing the nucleon structure is using an electron beam, because the
electron is a point-like particle and interacts by means of the well-understood electromagnetic
force. Therefore, electron-nucleon scattering plays a crucial role in the investigation of the
nucleon structure.

1.1.1 Elastic scattering

We start here considering the simplest case of elastic scattering, where an electron scatters off
a spinless particle as for example an atom. The information on the electromagnetic structure
of a spinless target is contained in a form factor F (Q2). The four-momentum transfer between
the initial and final electron is q = pe − pe′ . Since q2 is negative we use Q2 = −q2. The form
factor is defined through the deviation from the elastic scattering cross section to the Mott
cross section, which describes the scattering off the spin- 1

2 electron off a spinless point charge
with internal charge density distribution,

σ(Q2)

σ(Q2)
∣

∣

Mott

=
∣

∣F (Q)
∣

∣

2
, (1.1)
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Figure 1.1: Elastic scattering of an electron off a proton. The blob is described by the nucleon form
factors.

where the Mott cross section is given by

σ(Q2)
∣

∣

Mott
=

(

Ze2

2Ee

)2
cos2 θ

2

sin4 θ
2

. (1.2)

Here Ee is the incident electron energy, Z the atomic number of the target and θ the scattering
angle in the rest frame of the target.

In a next step we consider a spin- 1
2 particle, like the proton or the neutron being the target

as shown in Fig. 1.1. To calculate the cross section we need the hadronic current, which has
the general structure

Jµ = ū(p′)(pµΓ1 + p′µΓ2 + γµΓ3)u(p), (1.3)

where ū(p′) and u(p) are the Dirac spinors of the nucleon and Γi are scalars that depend on
the only nontrivial scalar Q2. The structure of the hadronic current has to be determined,
conserving the Lorentz structure of the current. A term γ5γ

µ is ruled out due to parity
conservation. It follows from current conservation qµJ

µ = 0 that Γ1 is equal to Γ2 and Γ3 = 0.
Hence the only possible combination is (p+p′)µ. Using the Gordon decomposition the hadronic
current can be expressed as a linear combination of γµ and σµνqν , with σµν = i

2 [γµ, γν ]. The
current can finally be parametrised in terms of two form factors F1(Q

2) and F2(Q
2)

ū(p′)Γµu(p) = ū(p′)

[

F1(Q
2)γµ +

1

2mN
F2(Q

2)iσµνqν

]

u(p), (1.4)

where mN is the mass of the nucleon [45]. The general coefficients F1(Q
2) and F2(Q

2)
are called Dirac and Pauli form factors, respectively. They contain information about the
electromagnetic structure of the nucleon.

In the static limit Q2 = 0 the Dirac and Pauli form factors of the nucleon are normalized

according to F p
1 (0) = 1, F n

1 (0) = 0, F p
2 (0) = κp and F n

2 (0) = κn. F
p/n
1 (0) gives the charge of

the nucleon and F
p/n
2 (0) its anomalous magnetic moment. The anomalous magnetic moments

of the proton and the neutron are given by

κp = µp − 1 = 1.792847351(28)µN , (1.5)

κn = µn = −1.9130427(5)µN , (1.6)
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both given in units of the nuclear magneton-units µN = e~

2mN
[46]. In general it is more

illuminating to use linear combinations of F1 and F2

GE(Q2) = F1(Q
2)− τF2(Q

2), (1.7)

GM (Q2) = F1(Q
2) + F2(Q

2), (1.8)

with τ = Q2

4m2
N

. The index E labels the electric and M the magnetic form factor, respectively.

Theses functions are the so-called Sachs form factors. In the Breit frame, defined by ~pp = −~pp′

the form factors GE andGM are related to the nucleon charge and magnetic momentum. They
can be used to measure the electromagnetic size of the proton and the neutron. The values
at Q2 = 0 are

GEp(0) = 1, GMp(0) = µp, (1.9)

GEn(0) = 0, GMn(0) = µn. (1.10)

A technique to separate values for G2
E and G2

M is the Rosenbluth separation, therefore the
electron-nucleon cross section measurements are needed for different electron scattering angles
at a fixed value for Q2 [46]. For Q2 < 2GeV2 the parametrizations for GEp , GMp and GMn

are in excellent agreement with the available data in this Q2 range

GEp(Q
2) = GD(Q2), (1.11)

GMn(Q2) = µnGD(Q2), (1.12)

GMp(Q
2) = µpGD(Q2), (1.13)

GD(Q2) =
1

(1 +Q2/0.71GeV2)2
, (1.14)

where GD(Q2) is the dipole form factor.
An illustration of the quality of the dipole fits for GEp , GMp and GMn is given in [46] and

is shown in Fig. 1.2.
F1 and F2 can be experimentally determined as functions of Q2. The electric form factor of

the neutron is measured via electron-deuteron scattering. Preceded by a series of experiments,
Glaster et al [47] measured elastic electron-deuteron cross sections up to Q2 = 0.6GeV2. Their
fit is given by

GEn(Q2) = − τµN

1 + 5.6τ
GEp(Q

2). (1.15)

The latest experiment measuring the electron-deuteron cross section having data up to Q2 =
0.7GeV2 by Platchkov et al [48] has significantly smaller uncertainties than all experiments
before and the authors suggest the form

GEn(Q2) = −a τµN

1 + bτ
GEp(Q

2), (1.16)

where a and b depend on the potential of the deuteron wave function.

1.1.2 Deep inelastic scattering and parton distribution functions

Hard processes are the most important tool to further investigate the inner structure of nu-
cleons as well as other hadrons. These processes are divided into inclusive, semi-inclusive and
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(a) (b) (c)

Figure 1.2: Quality of dipole fits, taken from [46], for a) GEp
(Q2) including data from Refs. [49, 50,

51, 52, 53, 54, 55, 56, 57, 58] in the range 0.005− 2 GeV2, for b) GMp
(Q2) including data from Refs.

[49, 50, 52, 53, 54, 59, 60] and for c) GMp
(Q2) including data from Refs. [61, 62, 63, 64, 65, 66, 67]

exclusive processes. In the inclusive case the nucleon can break up, starting from a certain
threshold energy and decays, due to energy-momentum conservation, into an arbitrarily num-
ber of particles where only the scattered electron is detected while in the semi-inclusive case
further particles are detected in coincidence. In exclusive processes all final-state particles
have to be detected in coincidence, see Fig. 1.3.

We consider the process where an electron with momentum pe is scattering off a proton
with momentum pp. In the one-photon approximation the electron emits a virtual photon of
momentum pq which scatters off a quark within the proton. Corrections due to multi-photon
exchange are suppressed by αem and will be neglected in this work. In the deep inelastic
regime we consider the momentum transfer between the electrons , Q2, and ν =

pp·pq

mp
, which

(a) (b)

Figure 1.3: Inclusive scattering and its partonic picture. In the Bjorken limit the cross section can be
approximated by the cross section of scattering off a parton convoluted with the PDF.
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is connected to the energy loss of the electron in the proton rest frame, to be large compared
to all other quantities. Unlike in elastic scattering there are two independent variables

Q2 and ν. (1.17)

The invariant mass W of the final state system is connected to Q2 and ν by

W 2 = (pp + pq)
2 = m2

p + 2mpν −Q2, (1.18)

with mp = 938.3MeV. These two variables can be replaced by the dimensionless variables

xB =
Q2

2pppq
and y =

pp · pq

pp · pe
. (1.19)

The allowed range for the y is 0 < y < 1 and for the Bjorken variable 0 < xB < 1 where
elastic scattering corresponds to x = 1. The inclusive reaction ep → e′X is governed by Q2

and ν and depends in the so-called Bjorken limit

Q→∞, ν →∞ and xB fixed (1.20)

mainly on xB . This feature was already known from scattering of point-like particles as
electrons and muons and was the first hint that the nucleon is build of smaller point-like
particles, so-called partons.

The general form of the cross section in leading order in αem is given by

dσ

dΩdEe′
=

α2

Q4

Ee′

Ee
LµνW

µν . (1.21)

The leptonic tensor Lµν can be calculated by means of perturbative QED and one obtains

Lµν = 2
(

(pe′)µ(pe)ν + (pe′)ν(pe)µ − δµν(pe · pe′ −m2
e) + iεµνρσq

ρqσ
)

. (1.22)

The hadronic tensor W µν cannot be derived from first principles. It can be written in way
without any information about the final state X which is in accordance with the experimental
situation for inclusive measurements,

W µν =
1

4mp

∫

d4x

2π
eiqx

〈

pp, sp

∣

∣[Jµ(x), Jν(x)]
∣

∣pp, sp

〉

. (1.23)

The non-perturbative hadronic tensor contains the quark-quark correlation function [68, 69].
The most general form of the two-quark correlation function is

Φij(k, pp, sp) =
1

(2π)4

∫

d4ξ eikξ
〈

pp, sp|ψ̄j(0)ψi(ξ)|pp, sp

〉

. (1.24)

Here pp and sp denote the momentum and the spin of the proton and k the momentum of
the quark inside the nucleon. This quark-quark correlation function is a Dirac matrix and
can therefore be decomposed in the basis of Dirac structures (1, γ5, γ

µ, γµγ5, iσ
µνγ5) and a

combination of the Lorentz vectors k, pp and Lorentz pseudovector sp.
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Figure 1.4: Quark distribution functions for different parametrizations for a) u quarks and b) d quarks
in the proton at an input scale of Q2 = 4 GeV2, taken from the Durham HEP Databases. Q2 of 4 GeV2

is chosen since this belongs to a reasonable value which enters our cross section calculations in Chapter
three and four.

The above definition holds in the light-cone gauge A+ = 0 for the gluon field. In other
gauges, in order to have colour gauge invariance of the correlator in Eq. 1.24, a gauge link U
has to be inserted between the two quark fields

U(0, ξ) = Pexp

(

−ig
∫ ξ

0
dzµAµ(z)

)

. (1.25)

P denotes ordering along a path from 0 to ξ. It is not possible to calculate this correlation
function by means of perturbative QCD. In order to calculate the correlation one has either
to resort to models or lattice QCD.

The quark-quark correlation function can be parametrized in terms of parton distribution
functions q(x), ∆q(x) and δq(x),

Φ(x) =

∫

d2~kT dk
−Φ(k, pp, sp)

∣

∣

∣

k+=xp+
p

=
1

2

(

q(x)/n+ + λ∆q(x)γ5/n+ + δq(x)
γ5[s/p,T , /n+]

2

)

. (1.26)

In inclusive lepton-hadron scattering the unpolarized distribution function q(x) and the helic-
ity function ∆q(x) can be obtained1. These are twist-two functions. The twist of an operator
is defined in the operator product expansion as the difference between the mass dimension of
the operator and its spin. However it is common to use it in the sense that higher twist terms
are suppressed by a factor (MN/Q

2)t−2 in comparison to the lowest twist t = 2. The only
other twist two distribution function is the transversity function δq(x). In a non-relativistic
limit one has ∆q = δq, which does not hold for the relativistic case, where only an upper limit
can be given. The most important parton distribution for this thesis is q(x). Therefore we
show in Fig. 1.4 the u and d quark distributions of the proton for different parametrizations.
Many different models exist in the literature, but as can be seen in the figure they have only
minor deviation.

1Other common notations for the functions q(x), ∆q(x) and δ(x) are f1(x), g1(x) and h1(x), respectively.
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It is not possible to measure h1 in inclusive deep inelastic lepton-hadron scattering. Mea-
surements have to be made either in Drell-Yan (in the collision of two hadrons) or in semi-
inclusive DIS. In order to obtain δq, which is a chiral-odd function it has to be combined with
another chiral-odd function to achieve experimental access. Going to next order, twist-three
level, more distribution functions, chiral-even as well as chiral-odd, appear [70, 71].

The individual distribution functions can be projected out. We define

Φ[Γ] ≡ 1

2
Tr(ΦΓ) , (1.27)

where Γ represents a specific Dirac structure. With this definition the three leading twist
distributions are given by

q(x) = Φ[γ+](x), (1.28)

∆q(x) = Φ[γ+γ5](x), (1.29)

δq(x) = Φ[iσi+γ5](x). (1.30)

1.1.2.1 Factorization in inclusive processes

The electron-nucleon cross section can be factorized into a cross section that describes the
scattering off a point-like parton, convoluted with a parton distribution function. Here we
show how a cross section can be factorized in the case of deep inelastic scattering

d2σeN→e′X

dQ2dxB
=

∑

a

1
∫

x

dξ fa/N (ξ, µF )
d2σea→e′a′

dQ2dxB

(

qµ, ξP µ, µF , αs(µR)
)

, (1.31)

where power suppressed terms are neglected. The index a in the distribution function
fa/N (ξ, µ) labels the parton which can either be a quark of specific flavor or a gluon, while N
classifies the hadron that takes part in the reaction. The partonic subprocess that depends on
the hard scale can be calculated perturbatively in a series of the strong and the electromag-
netic coupling constants, αs and αem. Two different divergencies appear in this calculation.
Due to integrals over loop momenta the partonic subprocess is UV-divergent. These UV-
divergencies are removed by renormalizing the strong coupling constant at a scale µR. Apart
from that IR-divergences appear which correspond to the emission of soft or collinear partons.
At a factorization scale µF these divergent parts can be absorbed into the redefinition of the
bare distribution function. The possibility of factorizing a process has to be proven for each
process [72, 73].

1.1.2.2 Evolution in inclusive processes

Parton functions are nonperturbative objects but their dependence on the factorization scale
µF can be calculated in perturbative QCD. This is due to the fact that the electron-parton
subprocess exhibits the µR-dependence which can be computed to a given order in pertur-
bation theory. The cross section, which is an observable, has still to be independent of µR.
If the PDF is known at an initial scale µ0 it can be computed at any scale µ by means of
evolution equations.

The virtual photon in deep inelastic scattering experiments acts as a local probe that
resolves local distances being inversely proportional to its virtuality. Depending on Q2 one
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Figure 1.5: The two possible graphs for deeply virtual Compton scattering.

resolves different parton densities. Identifying Q2 with the initial scale µ the quark densities
in DIS are governed by the DGLAP equation [34, 35, 36, 37, 38]

µ2
F

d

dµ2
F

q(x, µ2
F ) =

∫ 1

x

dy

y
P

(

x

y
, αs(µ

2
F )

)

q(y, µF , µ
2
R), (1.32)

where P
(

x
y , αs(µ

2
F )
)

is the evolution kernel and q(y, µF , µ
2
R) the parton distribution depend-

ing on the factorization and renormalization scales. This equation says that a quark of
momentum fraction x, which is given on the left side of the equation, could have originated
from a quark with a larger momentum fraction y, given on the right side of the equation,
that has radiated a gluon and therefore lost some momentum. The probability of this gluon
radiation is proportional to the evolution kernel. For gluons there is a strong rise of the PDF
at small x for large µF , which is weaker for quarks.

The short and long distance parts are connected by the factorization scale µF . The kernel
and the PDFs depend on the choice of the factorization scheme, which determines how the
divergences are absorbed in the parton distributions. Physical observables are independent
of the choice of the factorization scheme.

1.1.3 Hard exclusive scattering processes

A special class of reactions are hard exclusive processes. In this case all final-state particles
have to be determined in coincidence. Much effort is invested to study this exclusive reactions
intensively (see for an overview [74]).

One prominent example of exclusive scattering is deeply virtual Compton scattering de-
picted in Fig. 1.5 [32, 42]. In this reaction an electron emits a virtual photon which scatters
off one quark of the proton. The final state consists of the scattered electron and proton and
in addition of a real photon. This process is only scratched here, but will be considered in
more detail in Sec. 2.5.1

e(pe) +N(pp)→ e′(pe′) + γ(pq′) +N ′(pp′). (1.33)

The virtuality of the exchanged photon Q2 is large Q2 � p2
p while the momentum transfer

between pp and pp′ is small. First experimental results can be found in [75, 76, 77, 78].
We present now kinematical variables that are commonly used,

t = ∆2 = (pp′ − pp)
2, (1.34)

P =
pp + pp′

2
. (1.35)
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Figure 1.6: The optical theorem states that the cross section ep→ e′X can be related to the imaginary
part of the amplitude of the deeply virtual Compton forward scattering.

The plus-momentum transfer between the nucleons is defined as

ξ = − ∆ · n−
2P · n−

=
p+

p − p+
p′

p+
p + p+

p′
, (1.36)

which is given in light-cone coordinates. These are defined in App. A. The kinematical
variable ξ is commonly referred to as skewness and is defined in the interval ξ ∈ [−1, 1]. In
the Bjorken limit it reduces to

ξ ≈ xB

2− xB
. (1.37)

The final-state proton has a different momentum than the initial state proton. This is in
contrast to DIS experiments where the momenta are the same. In the case of DIS one can
relate the forward scattering amplitude to the imaginary part of the cross section via the well-
known optical theorem, which is shown in Fig. 1.6. The cross section can be parametrized in
terms of PDFs. If we turn our attention to DVCS the situation changes. Due to the different
proton momenta the scattering amplitude of DVCS looks more similar to the cross section of
DIS and the amplitude is parametrized in terms of GPDs.

Apart from DVCS the final state can consist of a virtual photon, instead of the real one,
called double deeply virtual Compton scattering. It can also consist of a meson, in this case
the process is called hard exclusive meson production which is shown in Fig. 1.7. In that case
a meson distribution amplitude is needed to describe the meson production.

1.1.3.1 A few words on factorization and evolution in exclusive processes

A problem is that QCD cannot be solved exactly. In high energy processes where large scales
are present factorization theorems allow to write observables in terms of hard scattering and
universal nonperturbative functions, that can be measured.

It was shown by Collins and Freund [29, 30], that factorization holds for the DVCS am-
plitude to all orders in perturbation theory up to power suppressed terms,

A(γ∗p→ γ∗p) =
∑

i

∫ 1

−1
dxT i(x, ξ, ρ,Q2 −Q′2)F i(x, ξ, t), (1.38)
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Figure 1.7: Hard exclusive meson production

where F contains the GPDs and T is the hard scattering kernel, see [29, 31, 30], hence the
amplitude consists of a perturbative and a nonperturbative part. This factorization theorem
also holds for the production of virtual photons. The measurement of GPDs rests on the
factorization theorem.

For light meson electroproduction factorization is analogous. Collins provides a factoriza-
tion theorem for hard exclusive meson production [31, 30]. The scattering amplitude can be
written as

A(γ∗p→Mp) =
1

Q

∑

ij

∫ 1

−1
dx

∫

0
dz T ij(x, ξ, z,Q2)F i(x, ξ, t)φj(z), (1.39)

including the meson distribution amplitude φj(z). The amplitude for meson production re-
quires the photon and meson to be longitudinally polarized. All other contributions are
suppressed by further powers of 1/Q at least.

As the PDFs also the GPDs depend on a factorization scale and can be evolved, but
the situation is more complicated then in the DIS case. Evolution has to be considered
independently in different regions. In Fig. 2.1 we have displayed the different support regions
of GPDs. In the regions were either x ∈ [ξ, 1] or x ∈ [−ξ,−1] the evolution equations are
similar to the DGLAP equations [34, 35, 36, 37, 38]. In the region x ∈ [−ξ, ξ] the evolution
is related to a meson distribution amplitude, which obeys the ERBL evolution equation
[39, 40, 41] because the GPDs can be interpreted as the probability to find a quark-antiquark
pair, which corresponds to a meson.



Chapter 2

Generalized parton distribution

functions

In this chapter we take into account exclusive processes only. In the theoretical description of
these processes we encounter matrix elements of quark and gluon operators, which cannot be
computed perturbatively. They are parametrized in terms of generalized parton distribution
functions which we define in this chapter.

We start with the nucleon GPDs and continue with a GPD for the pion. Moreover, we
will discuss some basic properties of generalized parton distribution functions, while a more
detailed description can be found in [79]. In the last section we will focus on deeply virtual
Compton scattering as well as similar processes involving weak currents. These processes give
access to GPDs.

2.1 Definition of GPDs

2.1.1 Nucleon GPDs

Exclusive processes like DVCS and the formalism of generalized parton distribution functions
provide a broad range of information about the internal structure of hadrons. These func-
tions are a generalization of parton distribution functions appearing in inclusive processes to
functions describing exclusive reactions. GPDs depend on three kinematical variables rather
than only on one, as parton distributions, and can therefore give access to a more than one
dimensional picture of the hadron.

Besides virtual Compton scattering also hard exclusive meson production and the pro-
duction of a virtual photon instead of a real one can be parametrized in terms of GPDs.
Furthermore the virtual photon emitted from the electron in DVCS can be replaced by a
boson of the weak interaction, namely a W± or a Z0. This processes can also be described
in terms of GPDs.

The leading twist decomposition in terms of GPDs of the bilocal light-cone matrix elements
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(a) (b) (c)

Figure 2.1: Parton interpretation of GPDs in three kinematical regions: a) x ∈ [−1,−ξ], b) x ∈ [−ξ, ξ]
and c) x ∈ [ξ, 1]

of two quark operators for the vector and axial vector case are

F q =
1

2

∫

dz−

2π
eixP+z−

〈

pN ′

∣

∣

∣q̄
(

− z

2

)

γ+ q
(z

2

)

∣

∣

∣pN

〉 ∣

∣

∣

z⊥=z+=0

=
1

2P+

[

Hq(x, ξ, t)ū(pN ′)γ+u(pN ) +Eq(x, ξ, t)ū(pN ′)
iσ+ν∆ν

2mN
u(pN )

]

, (2.1)

F̃ q =
1

2

∫

dz−

2π
eixP+z−

〈

pN ′

∣

∣

∣q̄
(

− z

2

)

γ+γ5 q
(z

2

)

∣

∣

∣pN

〉 ∣

∣

∣

z⊥=z+=0

=
1

2P+

[

H̃q(x, ξ, t)ū(pN ′)γ+γ5u(pN ) + Ẽq(x, ξ, t)ū(pN ′)
iγ5∆

+

2mN
u(pN )

]

, (2.2)

where we omitted the polarization dependence of the hadrons for legibility [79]. The relativis-
tic state |pN 〉 denotes the nucleon of four-momentum pN , where the index N represents either
a proton or a neutron. As in the definition of PDFs this definition is valid for the light-cone
gauge where the gluon field fulfills the condition A+(x) = 0. Otherwise a Wilson line along
the light-like path has to be inserted between the quark fields. For further details see [80, 79].
Here u(pN ) and ū(pN ′) are the Dirac spinors of the nucleon and mN the nucleon mass. From
Lorentz-invariance it follows that the GPDs H, H̃, E and Ẽ depend on t, x and ξ. By ap-
plying time reversal invariance one obtains H(x, ξ, t) = H(x,−ξ, t). From the definition of
the GPDs it can be seen that (H(x, ξ, t))∗ = H(x,−ξ, t), hence H must be real. The same
applies to H̃, E and Ẽ.

For the functions defined in Eqs. 2.1 and 2.2 three different support regions are shown in
Fig. 2.1. The variable x can be element of the interval [ξ, 1]. In this case a quark is emitted
from the proton and reabsorbed after the scattering process where both momentum fractions
ξ + x and x− ξ are positive. In addition x can be element of [−1,−ξ]. Here an antiquark is
emitted and reabsorbed by the nucleon and both momenta are negative. These two regions
are referred to as DGLAP regions [34, 35, 37]. Finally, for x ∈ [ξ,−ξ], this can be interpreted
as the emission of a quark-antiquark pair with x+ ξ > 0 and x− ξ < 0 and is referred to as
ERBL region, [39, 40, 41]. Altogether there is no net spin transfer on the parton side because
in the DGLAP region the emitted and the absorbed parton has the same helicity and in the
ERBL region the helicity of the emitted partons couples to zero.

Furthermore there are GPDs for the gluon. For sake of completeness we give their defini-
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tion

F g =
i

P+

∫

dz−

2π
eixP+z−

〈

pN ′

∣

∣

∣
G+µ

(

− z

2

)

γ+G+
µ

(z

2

)

∣

∣

∣
pN

〉 ∣

∣

∣

z⊥=z+=0

=
1

2P+

[

Hg(x, ξ, t)ū(pN ′)γ+u(pN ) +Eg(x, ξ, t)ū(pN ′)
iσ+ν∆ν

2mN
u(pN )

]

, (2.3)

F̃ g = − i

P+

∫

dz−

2π
eixP+z−

〈

pN

∣

∣

∣G+µ
(

− z

2

)

γ+γ5 G̃
+
µ

(z

2

)

∣

∣

∣pN

〉 ∣

∣

∣

z⊥=z+=0

=
1

2P+

[

H̃g(x, ξ, t)ū(pN ′)γ+γ5u(pN ) + Ẽg(x, ξ, t)ū(pN ′)
γ5∆

+

2mN
u(pN )

]

, (2.4)

where the gluon field strength is denoted by Gµν(x).
When dealing with parton distribution functions of light quarks it is sometimes useful to

use isoscalar and isovector combinations of the quark flavor GPDs

HI=0 = Hu +Hd, (2.5)

HI=1 = Hu −Hd. (2.6)

2.1.2 Pion GPD

After defining the nucleon GPDs we will now add the pion GPD parametrizing the blob in
Fig. 2.2. We define

2P+Hq
π(x, ξ, t) =

∫

dz−

2π
eixP+z−

〈

pπ′

∣

∣

∣

∣

ψ̄q

(

−z
−

2

)

γ+ ψq

(

z−

2

) ∣

∣

∣

∣

pπ

〉 ∣

∣

∣

∣

z⊥=z+=0

. (2.7)

Again only in the light-cone gauge we can omit the gauge link as presented here. Because
of parity invariance the functions corresponding to H̃q and H̃g are zero. For pions isospin
invariance relates the π+, π− and π0 GPDs to the isosinlget combinations

Hu+d
π+ = Hu+d

π− = Hu+d
π0 (2.8)

and isotriplet combinations

Hu−d
π+ = −Hu−d

π− , (2.9)

Hu+d
π0 = 0, (2.10)

where we used Hu±d = Hu ± Hd. Aside from isospin invariance we can infer from charge
conjugation

Hu+d
π (x, ξ, t) = −Hu+d

π (−x, ξ, t), Hu−d
π (x, ξ, t) = Hu−d

π (−x, ξ, t) (2.11)

that the isosinglet sector corresponds to C = 1 and the isotriplet one to C = −1.

2.2 Limits

To get a better physical access to GPDs we consider the forward limit t→ 0 where the initial
and final state nucleon have the same momenta. By inserting Eq. 1.24 into Eqs. 1.28 and 1.29
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Figure 2.2: Deeply virtual scattering off a pion. The blob is parametrized by GPDs.

with the definition of the GPDs in Eq. 2.1 one can easily see that

Hq(x, 0, 0) = q(x), H̃q(x, 0, 0) = ∆q(x) x > 0, (2.12)

Hq(−x, 0, 0) = −q̄(−x), H̃q(−x, 0, 0) = −∆q(x) x < 0. (2.13)

The generalized parton distribution functions reduce to the ordinary helicity independent
parton distribution q(x) and the helicity dependent parton distribution ∆q(x). Since the
GPDs E and Ẽ are multiplied by ∆ in their definition there is no corresponding forward
limit. The information of the GPDs in the forward limit can thus not be accessed in inclusive
processes. Nevertheless it is common to indicate

Eq(x, 0, 0) = eq(x), (2.14)

which is connected to the angular momentum structure of the nucleon. For sake of complete-
ness we give the forward limit of the gluons

Hg(x, 0, 0) = xg(x), (2.15)

H̃g(x, 0, 0) = x∆g(x). (2.16)

2.3 Form factors and polynomiality

Another possibility to get access to observables connected to GPDs is given in this section.
We show how to derive form factors and structure functions from GPDs and start from a
decomposition of the nucleon current in terms of the form factors F q

1 (t) and F q
2 (t). For the

structure functions the starting point is the energy-momentum tensor. The Noether theorem
states that each symmetry of a system is connected to a conserved current. In the case of
translation it is the energy momentum tensor which is decomposed in terms of the structure
functions Aq,g(t), Bq,g(t), Cq,g(t) and C̄q,g(t),

〈

P ′|q̄(0)γµq(0)|P
〉

= F q
1 (t) ū(pN ′)γµu(pN ) + F q

2 (t) ū(pN ′)
iσµν∆ν

2mN
u(pN ), (2.17)

〈

P ′|T µν
q,g (0)|P

〉

= Aq,g(t) ū(pN ′)P {µγν}u(pN ) +Bq,g(t) ū(pN ′)
P {µiσν}∆ν

2mN
u(pN )

+Cq,g(t)
∆µ∆ν − gµν∆2

mN
ū(pN ′)u(pN )

+C̄q,g(t)g
µνmN ū(pN ′)u(pN ), (2.18)
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see also [32, 79, 81]. If we recall the definition of the GPDs in Eq. 2.1 and set z = 0 the matrix
element reduces to that of Eq. 2.17. When we then integrate over x one can read off the Pauli
and Dirac form factors

∫ 1

−1
dxHq(x, ξ, t) = F q

1 (t), (2.19)

∫ 1

−1
dxEq(x, ξ, t) = F q

2 (t), (2.20)

for the flavor q. They can be related to the nucleon form factor via isospin symmetry

F
u/p
1 = 2F p

1 + F n
1 , (2.21)

F
d/p
1 = 2F n

1 + F p
1 . (2.22)

Similarly we find in the axial vector case
∫ 1

−1
dx H̃q(x, ξ, t) = gq

A(t), (2.23)

∫ 1

−1
dx Ẽq(x, ξ, t) = gq

P (t), (2.24)

which are the pseudoscalar and axial nucleon form factors.
Lorentz and time-reversal invariance impose another constraint on GPDs. Therefore we

introduce the Mellin moments which are x-integrals over the GPDs weighted with x,

Hq
n+1(ξ, t) =

∫ 1

−1
dxxnHq(x, ξ, t), (2.25)

Eq
n+1(ξ, t) =

∫ 1

−1
dxxnEq(x, ξ, t). (2.26)

We have already seen the first Mellin moments for n = 0 in Eqs. 2.19 and 2.20, the form
factors. One can show that the Mellin moments can be written as

Hq
n+1(ξ, t) =

n
∑

i=0

i even

Aq
n+1,i(t)(2ξ)

i + mod(n+ 1, 2)(2ξ)n+1Cq
n+1(t), (2.27)

Eq
n+1(ξ, t) =

n
∑

i=0

i even

Bq
n+1,i(t)(2ξ)

i −mod(n+ 1, 2)(2ξ)n+1Cq
n+1(t), (2.28)

where mod(n + 1, 2) is 1 for even n and 0 for odd n. Due to Lorentz-invariance the ξ-
dependence on the right-hand side can only originate from factors of ∆µ in the form factor
decomposition. The xn moments are polynomials in ξ of order n + 1 and must be even due
to time-reversal invariance. Thus there are important constraints from polynomiality. As can
be seen very well from Eq. 2.28 the highest power of ξ in H +E cancels.

A special role is played by the second Mellin moments
∫ 1

−1
dxxHq(x, ξ, t) = Aq(t) + 4ξ2Cq(t), (2.29)

∫ 1

−1
dxxEq(x, ξ, t) = Aq(t)− 4ξ2Cq(t). (2.30)
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(a) (b)

Figure 2.3: a) Shows the momenta associated with the partons and hadrons appearing in the double
distribution and b) shows the corresponding support region of the double distribution

They enter the sum rule found by Ji [42]

2 〈Jq
3 〉 = Aq(0) +Bq(0) = lim

t→0

∫ 1

−1
dxx

(

Hq(x, ξ, t) +Eq(x, ξ, t)
)

, (2.31)

where 〈J q
3 〉 is the total angular momentum along z carried by quarks and antiquarks of flavor

q of a proton polarized in the +z direction. It connects the GPDs in their forward limit to
the structure functions of the energy-momentum tensor of Eq. 2.18. This sum rule is a special
case of the polynomiality relation from Eqs. 2.27 and 2.28. The same relation is given for the
gluons

2 〈Jg
3 〉 = Ag(0) +Bg(0). (2.32)

Moreover,

Jq(0) + Jg(0) =
1

2
(2.33)

shows that the angular momentum of the quarks and gluons adds up to one half. This is
the only known nucleon spin decomposition on quark-gluon level. It is in agreement with the
measurement of the value 1/2 of the nucleon spin. But it is not possible to decompose these
angular momenta further into a spin and orbital angular momentum part.

2.4 Double distributions

Double distributions are a parametrization of the non-diagonal matrix element of Eq. 2.1
defining the GPDs. According to [33] they are defined as
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〈

pN ′

∣

∣

∣
q̄
(

− z

2

)

(zγ) q
(z

2

)∣

∣

∣
pN

〉∣

∣

∣

z2=0

= ū(pN ′)(zγ)u(pN )

∫

dβ dα e−β(Pz)+iα(∆z)/2f q(β, α, t)

+ ū(pN ′)
iσµαzµ∆α

2m
u(pN )

∫

dβ dα e−β(Pz)+iα(∆z)/2kq(β, α, t)

+ ū(pN ′)
∆z

2m
u(pN )

∫

dβ dα eiα(∆z)/2Dq(β, α, t). (2.34)

and are discussed in a detailed review in [82]. The last term, the so-called D-term was
introduced by Polyakov and Weiss [83]. The support region for the two double distribution
functions f q and kq is given by the rhombus |α| + |β| ≤ 1, which is shown in Fig. 2.3 b) and
the one for the D-term by |α| ≤ 1. One can associate β with the momentum fraction x in a
forward parton density and (1 +α)/2 with the momentum fraction z in a meson distribution
amplitude as shown in Fig. 2.3 a). A consequence of time-reversal invariance is that f q and
kq have to be even in α and Dq has to be odd in α. A relation between the GPDs and the
double distributions is given by

Hq(x, 0, 0) =

∫

dβ dα δ(x− β − ξα) f q(β, α, t) + sgn(ξ)Dq

(

ξ

x
, t

)

, (2.35)

Eq(x, 0, 0) =

∫

dβ dα δ(x− β − ξα) kq(β, α, t) − sgn(ξ)Dq

(

ξ

x
, t

)

, (2.36)

where the lines of integration are shown in 2.3 b). The D-term only contributes to the ERBL
region. The double distributions play a prominent role in modeling GPDs, since Eqs. 2.35
and 2.36 satisfy polynomial constraints.

By integrating over the line x = β one obtains the forward quark distribution

q(x) =

∫ 1−x

x−1
dα f q(x, α, 0). (2.37)

Since we now have a simple connection to the known forward distribution function q(x) it is
obvious to use them in an ansatz as it was used in [74, 84]

f q(β, α) = q(β)hq(β, α), (2.38)

with the profile function hq(β, α) normalized to one

∫ 1−|β|

−1+|β|
dα hq(β, α) = 1. (2.39)

Note that this ansatz is very simple and does not include a t-dependence. The easiest way to
include a t-dependence is to multiply by the form factor which depends on t only and gives
automatically the right behavior for the forward limit. Two approaches will be shown in more
detail in Sec. 3.6.
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(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure 2.4: In this picture we show the different possible weak scattering processes for DVCS for
different lepton beams. Depending on the beam and the charge of the nucleon target a W± or the
neutral Z0 boson can be exchanged.
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2.5 Access to GPDs via DVCS and weak currents

In the last chapter we have introduced GPDs which can be studied in DVCS. This process
is shown in Fig. 2.5. In DVCS the electron beam emits a virtual photon. But it is also
possible that an electron beam emits a W− or a Z0 boson, which are gauge bosons of the
weak interaction. In addition to that there is a possibility of having a positron beam, where
a γ, a W− or a Z0 can be emitted. And furthermore by taking a neutrino or antineutrino
beam all three weakly coupling bosons can be emitted. Depending on the charge of the boson
and the target (proton or neutron) the boson scatters of a certain quark inside the nucleon.
Possible scattering processes are depicted in Fig. 2.4. We will consider only u and d quarks
and antiquarks emitted and absorbed by the nucleon. All heavier quarks are neglected.

In this section we first derive the Compton amplitude for DVCS. This result can also
be found in [32]. Hereafter, we repeat the calculation for those processes with W +, W− or
Z0 as exchange particles instead of a photon, as for example a Z 0 scattering on a d quark
inside the proton. In a next step we give the total scattering amplitude including the leptonic
part and emphasize the polarization of the exchanged bosons. We will see that only certain
combinations of initial- and final-state polarizations survive. Therefrom it follows that the
amplitudes are proportional to different combinations of F q and F̃ q from Eqs. 2.3 and 2.4
which contain the GPDs. To conclude we give two tables summarizing the different processes
and their corresponding combinations of F q and F̃ q including different pre-factors. These
tables show the differences and how we can distinguish between the processes. They are given
for positive (Tab. 2.1) and negative (Tab. 2.2) helicities of the boson. Finally we introduce
isospin to show how the matrix elements of these processes can be related to each other.
These relations depend on the isospin only.

2.5.1 Deeply virtual Compton scattering

Compton scattering played an important role in the history of physics. Scattering electrons
off a charged object gave a first indication that the electromagnetic wave is quantized [85].
Exploring the structure of hadrons with Compton scattering shows that the spin-dependent
part of the scattering amplitude at sufficiently low energy is ruled by the anomalous magnetic
moment of the hadron. We consider here DVCS at tree level in QCD. The process is dominated
by single-quark exchange and we will see that the amplitude can be expressed in terms of
GPDs.

In DVCS the initial proton with momentum pp absorbs a photon with momentum pq

producing a real final-state photon with momentum pq′ = pq − ∆ and a recoil proton with
momentum pp′ = pp + ∆. In the Bjorken limit the photon is absorbed by a quark with
momentum k − ∆

2 which becomes highly virtual and propagates perturbatively. This photon
is radiated by a quark. The process is shown in Fig. 2.5.

We use the Feynman rules to calculate the scattering amplitude. The only part where
the processes involving a γ∗, W± or Z0 differs, is the vertex where these particles couple to
the quark. Therefore we specify these vertices here, while we do not give any other Feynman
rules explicitely. In the case of a virtual photon the vertex is given by

−ieeqγµ, (2.40)

where eq is the charge of the particle coupling to the photon, eq = 2
3 (−1

3) for the u (d) quark.
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Figure 2.5: QCD graph and crossed graph for deeply virtual Compton scattering displaying the mo-
menta of the active quark.

We can write down the Compton amplitude which has to be connected to the photon lines,

T ba
q = −(eeq)

2

∫

d4k

(2π)4
d4z eikz

(

γb i

/k − /∆
2 + q/+ iε

γa +

γb i

/k +
/∆
2 − q/+ iε

γa

)

βα

〈

pp′

∣

∣

∣
T q̄β

(−z
2

)

qα

(z

2

)∣

∣

∣
pp

〉

, (2.41)

where T inside the matrix element is the time-ordering operator, which orders subsequent
factors right to left consecutively in time. The first term in Eq. 2.41 describes a propagating
quark and the second term a propagating antiquark as depicted in Fig. 2.5. The hard scale
Q allows the separation of the perturbative part. A proof for the factorization is given in
[86, 87, 29].

Let us consider the first term of the Compton amplitude in Eq. 2.41 in some more detail.
To proceed further we choose a frame where the colliding proton and photon are collinear and
consider a kinematic region where the scattered proton and photon are very close to being
collinear. In that case all transverse momenta are of the order of ΛQCD and will be neglected.
From

Q2 = −q2 = −2q+q− + qT ≈ −2q+q− (2.42)

we then see that the plus and minus components q± are proportional to Q. All components
proportional to Q are considered to be big quantities. Moreover p+

p′ , p
−
q′ and k+ are big, while

p−p , p
−
p′ , p

+
q′ and k− are proportional to Λ2

QCD/Q and will therefore be neglected. We use
the Fierz transformation [17] to decompose the term q̄βqα in the matrix element in Eq. 2.41.
Neglecting components of four-vectors which do not produce big scalars in the Bjorken limit
and inserting

∫

dx dλ
2πe

iλ(x−k·n−) = 1 gives

T ba
q = −(eeq)

2

∫

d4k

(2π)4
dλ

2π
d4z dx eikzeiλ(x−k·n−)

(n+)µ(k · n− − ξ) + (n−)µ
Q2

4ξ

Q2

2ξ (x− ξ) + iε

×1

4
Tr
(

γbγµγa(1 + γ5)γ
ν
)

〈

pp′

∣

∣

∣T q̄
(−z

2

)

γνq
(z

2

)∣

∣

∣pp

〉

∣

∣

∣

∣

∣

z⊥=z+=0

+ crossed term. (2.43)
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Calculating the trace we find

T ba
q = −(eeq)

2

∫

d4k

(2π)4
dλ

2π
d4z dx eikzeiλ(x−k·n−)

〈

pp′

∣

∣

∣
T q̄
(−z

2

)

γ+q
(z

2

)∣

∣

∣
pp

〉

×
(

2(n+)β(n−)α
k · n− − ξ

Q2

2ξ (x− ξ) + iε
− 1

2

gµν
⊥

x− ξ + iε
+

1

2

−iεµν
⊥

x− ξ + iε

)∣

∣

∣

∣

∣

z⊥=z+=0

+ crossed term, (2.44)

with

gab
⊥ = gab−(n+)a(n−)b−(n+)b(n−)a and εab

⊥ = εabµν−(n+)a(n−)b−(n+)b(n−)a.
(2.45)

The only large component that is left is the plus component in the perturbative part. From
γλq̄γλq one gets γ−q̄γ+q, where γ− = pλγ

λ, γ+ = nλγ
λ. In the soft, non-perturbative part

only γ+ remains. Integrating over k and z leads to the final form

T ba
q = −(eeq)

2

∫

dx
dλ

2π
eiλx

〈

pp′

∣

∣

∣
T q̄
(−z

2

)

γνq
(z

2

)∣

∣

∣
pp

〉

×
(

2(n+)b(n−)a
k · n− − ξ

Q2

2ξ (x− ξ) + iε
− 1

2

gab
⊥

x− ξ + iε
+

1

2

−iεab
⊥

x− ξ + iε

)∣

∣

∣

∣

∣

z⊥=z+=0

+ crossed term. (2.46)

The crossed term can be calculated in the same way. By adding both terms some contributions
vanish and the result of the amplitude is

T ba
q = −(eqe)

2

∫

dλ

2π
dx eixλ

{

〈

P
∣

∣

∣
q̄
(−z

2

)

γ+ q
(z

2

)∣

∣

∣
P

〉

1

2

(

gba
⊥

x− ξ + iε
+

gba
⊥

x+ ξ − iε

)

+

〈

P
∣

∣

∣
q̄
(−z

2

)

γ+γ5 q
(z

2

)∣

∣

∣
P

〉

1

2

(

iεba⊥
x− ξ + iε

− iεba⊥
x+ ξ − iε

)}

. (2.47)

In this result for the Compton amplitude we find the four GPDs in

∫

dλ

2π

〈

P
∣

∣

∣
q̄
(−z

2

)

γ+ q
(z

2

)∣

∣

∣
P

〉

= H(x, ξ, t)ū(pp′) γ
+ u(p)

+E(x, ξ, t)ū(pp′)
iσ+ν∆ν

2mp
u(p), (2.48)

∫

dλ

2π

〈

P
∣

∣

∣
q̄
(−z

2

)

γ+γ5q
(z

2

)∣

∣

∣
P

〉

= H(x, ξ, t)ū(pp′) γ
+γ5u(p)

+E(x, ξ, t)ū(pp′)
iγ5∆+

2mp
u(p). (2.49)

These results are also given in [32].
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2.5.2 Weak current hadronic amplitude in deeply virtual scattering

In this section we derive the amplitude for the W ± and Z0 exchange. These calculations are
similar to the DVCS case, therefore we omit details. For the W ± we need in addition the
vertex of the coupling to a fermion which is given by

−ie
sin θw2

√
2
γα(1− γ5) (2.50)

where sin θw ≈ 0.48 is the weak mixing angle. We arrive at the Compton amplitude for a W +

and W− boson which is depicted in Fig. 2.4 e,f)

T µν
W+ =

−e2eq
sinθw2

√
2

∫

dλ

2π
dx eixλ 1

2
(2.51)

{

Mpn

(

iεµν
⊥ − g

µν
⊥

x− ξ + iε
− iεµν

⊥ + gµν
⊥

x+ ξ − iε

)

+Mpγ5n

(

− iεµν
⊥ − g

µν
⊥

x− ξ + iε
+
iεµν

⊥ + gµν
⊥

x+ ξ − iε

)}

,

T µν
W− =

−e2eq
sinθw2

√
2

∫

dλ

2π
dx eixλ 1

2
(2.52)

{

Mnp

(

iεµν
⊥ − g

µν
⊥

x− ξ + iε
− iεµν

⊥ + gµν
⊥

x+ ξ − iε

)

+Mnγ5p

(

− iεµν
⊥ − g

µν
⊥

x− ξ + iε
+
iεµν

⊥ + gµν
⊥

x+ ξ − iε

)}

.

where we have introduced the abbreviations

Mpn =

〈

pp

∣

∣

∣
ū
(−z

2

)

γ+d
(z

2

)∣

∣

∣
pn

〉

, (2.53)

Mnp =

〈

pn

∣

∣

∣d̄
(−z

2

)

γ+u
(z

2

)∣

∣

∣pp

〉

, (2.54)

Mpγ5n =

〈

pp

∣

∣

∣ū
(−z

2

)

γ+γ5d
(z

2

)∣

∣

∣pn

〉

, (2.55)

Mnγ5p =

〈

pn

∣

∣

∣
d̄
(−z

2

)

γ+γ5u
(z

2

)∣

∣

∣
pp

〉

. (2.56)

Furthermore it is possible to have Z0 exchange, where we need the vertices for the Z0 coupling
to a quark of charge eq and isospin I3. This is given by

−i e
sinθwcosθw

(

1

2
I3γµ(1− γ5)− sin2θweqγ

µ

)

. (2.57)

The coupling of the neutral boson to a u quark or to a d quark is different due to the charge
and isospin of the quarks. We can thus distinguish the corresponding Compton amplitudes.
Relevant graphs are shown in Fig. 2.4 a), b). As an example for Z 0 exchange we show here
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Figure 2.6: This plot shows the relevant indices for the calculation of the squared DVCS amplitude.

the result for scattering off a u quark inside a proton

T µν
z0(p,u)

=
−e2eu

sinθwcosθw

∫

dλ

2π
dx eixλ 1

2
{

Mp,u

(

1

4
− 2

3
sin2θw

)(

−gµν
⊥

x− ξ + iε
+

−gµν
⊥

x+ ξ − iε

)

+
1

4

(

iεµν
⊥

x− ξ + iε
− iεµν

⊥
x+ ξ − iε

))

+Mpγ5,u

((

1

4
− 2

3
sin2θw

)(

−iεµν
⊥

x− ξ + iε
+

iεµν
⊥

x+ ξ − iε

)

+
1

4

(

gµν
⊥

x− ξ + iε
+

gµν
⊥

x+ ξ − iε

))}

(2.58)

with the abbreviations

Mi,j =

〈

pi

∣

∣

∣
j̄
(−z

2

)

γ+ j
(z

2

)∣

∣

∣
pi

〉

, (2.59)

Miγ5,j =

〈

pi

∣

∣

∣j̄
(−z

2

)

γ+γ5 j
(z

2

)∣

∣

∣pi

〉

. (2.60)

The index i labels the nucleon and the index j the quark flavor. So for different scattering
amplitudes, where the target can be a proton or a neutron and the quark a u quark or a d
quark the matrix corresponding elements Mi,j and Miγ5j have to be replaced.

2.5.3 Total scattering amplitude

After having calculated the Compton amplitude we can include the exchanged particle as well
as the leptonic part.

The scattering amplitude of the complete process reads

M =
∑

λ′=±
Lαβgµ

αTµρε
∗ρ(λ′)εσ(λ′)gν

βT
∗
νσ. (2.61)

and is illustrated in Fig. 2.6. Lαβ is the leptonic tensor and Tµρ the hadronic tensor. The
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polarization vectors of the photons are given by

ε(+) = − 1√
2









0
1
i
0









, ε(−) =
1√
2









0
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−i
0









, ε(0) =
1√
2









1
0
0
0









. (2.62)

When computing unpolarized cross sections involving photons we have

−gµν ≈
∑

polarizations

ε∗µεν (2.63)

by virtue of the Ward identity. With this we arrive at

M =
∑

λ=±,0

∑

λ′=±

∑

λ′′=±,0

Lαβε∗α(λ′′)εµ(λ)Tµρε
∗ρ(λ′)εσ(λ′)ε∗ν(λ)εβ(λ′′)T ∗

νσ

=
∑

λ=±,0

∑

λ′=±

∑

λ′′=±,0

Lαβε∗α(λ′′)εβ(λ′′)εµ(λ)Tµρε
∗ρ(λ′)ε∗ν(λ)T ∗

νσε
σ(λ′). (2.64)

In the Compton amplitudes we have obtained a combination of gµν
⊥ and εµν

⊥ terms, see Eqs.
2.47, 2.51, 2.52 and 2.58, which are now combined with the polarization vectors. The quark
helicity has to be conserved and since the photon in the final state is real, it has to be
transverse. Thus the virtual boson can only have the polarization λ = ±. The only non-
vanishing contributions to Eq. 2.64 come from λ = λ′ = ±. All terms of mixed helicities
disappear which confirms boson helicity conservation. We are now going to investigate the
term εµ(λ)Tµµ′ε∗µ

′

(λ′) in more detail to see which effect the different polarizations make. εµ(λ)
is the polarization vector of the exchanged particle γ, W ± or Z0 and ε∗ρ(λ′) of the outgoing
real photon. We introduce the abbreviation α and β for the quark and the antiquark

α = x− ξ + iε, (2.65)

β = x− ξ − iε. (2.66)

In the case of a photon scattering off a u quark inside a proton we get the results

εµ(−)T µνε∗ν(−) = −(eeu)2
∫

dλ

2π
dx eixλ 1

2

{

−Mpu

(

1

α
+

1

β

)

+Mpγ5u

(

1

α
− 1

β

)}

, (2.67)

εµ(+)T µνε∗ν(+) = −(eeu)2
∫

dλ

2π
dx eixλ 1

2

{

−Mpu

(

1

α
+

1

β

)

−Mpγ5u

(

1

α
− 1

β

)}

. (2.68)

Results for a d quark and for a neutron can be obtained by changing Mij and the factor of
eu in front. Due to the factor of eq in front it makes a difference if the photons scatter of a
d or a u quark. It can be seen from Eqs. 2.67 and 2.68 that the propagators of quarks and



2.5 Access to GPDs via DVCS and weak currents 31

antiquarks contribute and thus both of them take part in the scattering process. In a similar
way we obtain for the W+

εµ(−)T µνε∗ν(−) =
−eqe2

sinθw2
√

2

∫

dλ

2π
dx eixλ

{

Mpn

(

1

α

)

−Mpγ5n

(

1

α

)}

, (2.69)

εµ(+)T µνε∗ν(+) =
−eqe2

sinθw2
√

2

∫

dλ

2π
dx eixλ

{

Mpn

(

1

β

)

−Mpγ5n

(

1

β

)}

. (2.70)

Firstly a right-handed positron decays into a right-handed antineutrino and a right-handed
W+. This positively charged boson couples via weak interaction to a ū quark. Secondly a
neutrino beam can emit a left-handed W+ which then couples to a d quark.

For the W− we have a similar behavior

εµ(−)T µνε∗ν(−) =
−eqe2

sinθw2
√

2

∫

dλ

2π
dx eixλ

{

Mnp

(

1

α

)

−Mnγ5p

(

1

α

)}

, (2.71)

εµ(+)T µνε∗ν(+) =
e2

sinθw2
√

2

∫

dλ

2π
dx eixλ

{

Mnp

(

1

β

)

−Mnγ5p

(

1

β

)}

. (2.72)

A left-handed W− can be emitted from a left-handed electron beam and couple to a ū quark
while a right-handed W− can be emitted from a right-handed antineutrino beam and couple
to a d quark. This behavior is confirmed by Eqs. 2.71 and 2.72. Now we show the remaining
weakly coupling boson, the Z0. Exemplifying the interacting with a u quark within a nucleon
i we get

εµ(−)T µνε∗ν(−) =
−eqe2

sinθwcosθw

∫

dλ

2π
dx eixλ 1

2

{(

1

4
− 2

3
sin2θw

)

{

Miu

((

1

α
+

1

β

)

+
1

4

(

−1

α
− −1

β

))

+Miγ5u

((

1

α
− 1

β

)

+
1

4

(

−1

α
+
−1

β

))}

(2.73)

εµ(+)T µνε∗ν(+) =
−eqe2

sinθwcosθw

∫

dλ

2π
dx eixλ 1

2

{(

1

4
− 2

3
sin2θw

)

{

Miu

((

1

α
+

1

β

)

+
1

4

(

1

α
− 1

β

))

+Miγ5u

((

− 1

α
+

1

β

)

− 1

4

(

1

α
+

1

β

))}

. (2.74)

As in the photon case the quarks and the antiquarks are involved in the scattering process.
Now we can consider the behavior of the scattering amplitudeM.
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Now we insert the just calculated terms εµT
µνε∗ν into the amplitude. We start with the

photon, recalling F q and F̃ q from Eqs. 2.1 and 2.2 The amplitude for right- (left-)handed
photons is proportional to

M ∼ e2q

(

±1

α

(

∓ F q + F̃ q
)

− 1

β

(

F q ∓ F̃ q
)

)

, (2.75)

the upper (lower) sign belonging right- (left-) handed photons. Because we have a right-
handed photon coupling to a quark as well as a left-handed photon coupling to an antiquark
this gives access to the difference of F q and F̃ q. Accordingly, a left-handed photon coupling
to a quark or a right-handed photon coupling to an antiquark gives access to the sum of
F q and F̃ q. Besides M is proportional to eq and we can therefore distinguish between u
and d quarks due to their different charges. To separate F q and F̃ q for the single flavors
one needs combinations of u and d quarks inside the proton and in addition to the proton
either combinations of the neutron or one can use the weak current which provides a different
combination of u and d quark distributions in F q and F̃ q as given in the following. To have the
distribution inside the neutron one can for example resort to the deuteron, since the neutron
is no stable particle. Here we well stick to weak currents.

One obtains the following proportionalities for the W + exchange considering positive
polarization

M ∼ eq
α

(

F q − F̃ q
)

(2.76)

and for negative polarization

M ∼ eq
β

(

F q − F̃ q
)

. (2.77)

Thus the W+ couples only to left-handed fermions and right-handed antifermions, respec-
tively. In both casesM is proportional to the difference of F q and F̃ q. Thus the W+ cannot
distinguish between the polarization of the final state photon. The difference F q − F̃ q for
x > 0 projects out the left-handed part of the quark distribution while for x < 0 the right-
handed part is projected out. Depending on the factor eq we can see whether a u or d quark
had coupled to the W+ boson.

In the case of a right-handed W− we find

M ∼ eq
β

(

F q − F̃ q
)

(2.78)

and for a left-handed

M ∼ eq
α

(

F q − F̃ q
)

. (2.79)

Due to charge conservation a right-handed W− couples to a d̄ quark and a left-handed W−

to a u quark.
Furthermore we take into account the Z0. A right-handed Z0 coupling to a u quark leads

to

M ∼ 1

α

(

1

2
− 2

3
sin2ϑ

)

(

F q − F̃ q
)

− 1

β

2

3
sin2ϑ

(

F q + F̃ q
)

, (2.80)
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and a left-handed Z0 leads to

M ∼ − 1

α

2

3
sin2ϑ

(

F q + F̃ q
)

+
1

β

(

1

2
− 2

3
sin2ϑ

)

(

F q − F̃ q
))

. (2.81)

Having a look at a right-handed Z0 coupling to a d quark shows

M ∼
(

1

α

(

− 1

2
+

1

3
sin2ϑ

)

(

F q − F̃ q
)

+
1

β

1

3
sin2ϑ

(

F q + F̃ q
)

)

(2.82)

and for negative polarization

M ∼
(

1

α

1

3
sin2ϑ

(

F q + F̃ q
)

+
1

β

(

1

2
− 1

3
sin2ϑ

)

(

F q − F̃ q
)

)

. (2.83)

Here we have a similar situation as in the photon case. But due to the difference in the coupling
to fermions it can be distinguished whether the Z 0 was left- or right-handed and whether it
scattered of a u or d quark. From these calculations we see that we either get the difference
or the sum of F q and F̃ q. These quantities contain the GPDs with different factors in front.
We give an overview for the different exchange particles and the corresponding combinations
of F q and F̃ q for each helicity separately. These contain the GPDs and are therefore of great
interest. The results for positive helicity are summarized in Tab. 2.1. Moreover the results
for negative helicity are given in Tab. 2.2.

Table 2.1: Matrix elements involving different exchange particles of positive helicity showing the
proportionality to the combinations of F q and F̃ q which include the GPDs H, H̃, E and Ẽ. The
abbreviations α and β for the quark and antiquark are given in Eqs. 2.65 and 2.66.

matrix element boson M proportional to

〈

P |d̄d|P
〉

γ∗ -1
9

(

1
α

(

F d − F̃ d
)

+ 1
β

(

F d + F̃ d
)

)

〈P |ūu|P 〉 γ∗ -4
9

(

1
α

(

F u − F̃ u
)

+ 1
β

(

F u + F̃ u
)

)

〈

P |d̄d|P
〉

Z0 −
(

1
α

(

− 1
2 + 1

3 sin2ϑ
)

(

F d − F̃ d
)

+ 1
β

1
3 sin2ϑ

)

(

F d + F̃ d
)

)

〈P |ūu|P 〉 Z0
(

1
α

(

1
2 − 2

3sin2ϑ
)

(

F u − F̃ u
)

− 1
β

2
3 sin2ϑ

(

F u + F̃ u
)

)

〈P |ūd|N〉 W+ 2
3

1
α

(

F u − F̃ u
)

〈

N |d̄u|P
〉

W− −1
3

1
β

(

F d − F̃ d
)
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Table 2.2: Matrix elements involving different exchange particles of negative helicity showing the
proportionality to the combinations of F q and F̃ q which include the GPDs H, H̃, E and Ẽ. The
abbreviations α and β for the quark and antiquark are given in Eqs. 2.65 and 2.66.

matrix element boson M proportional to

〈

P |d̄d|P
〉

γ∗ −1
9

(

1
α

(

F d + F̃ d
)

+ 1
β

(

F d − F̃ d
)

)

〈P |ūu|P 〉 γ∗ −4
9

(

1
α

(

F u + F̃ u
)

+ 1
β

(

F u − F̃ u
)

)

〈

P |d̄d|P
〉

Z0
(

1
α

1
3 sin2ϑ

(

F d + F̃ d
)

− 1
β

(

− 1
2 + 1

3 sin2ϑ
)

(

F d − F̃ d
)

)

〈P |ūu|P 〉 Z0
(

− 1
α

2
3 sin2ϑ

(

F u + F̃ u
)

+ 1
β

(

1
2 − 2

3 sin2ϑ
)

(

F u − F̃ u
)

)

〈P |ūd|N〉 W+ 2
3

1
β

(

F u − F̃ u
)

〈

N |d̄u|P
〉

W− −1
3

1
α

(

F d − F̃ d
)

(a) (b)

(c) (d)

Figure 2.7: Examples for the Bethe-Heitler process for γ, Z0, W+ and W− exchange.
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2.5.4 DVCS and Bethe–Heitler

So far we have considered only Compton scattering. But there is a second process, having
the same final state, the Bethe–Heitler (BH) process. In this reaction the electron emits two
photons, a real photon and a virtual photon which is absorbed by the proton and changes
the momentum of the proton. Examples of the Bethe–Heitler process are depicted in Fig. 2.7,
where we have not drawn any crossed graphs. Deeply virtual Compton scattering and the
Bethe–Heitler process cannot be distinguished experimentally. To compute the cross section
both contributions have to be taken into account. To calculate the Bethe–Heitler amplitude
we need the form factors which describe the coupling of the electron to the nucleon given
by the blob in Fig. 2.7. The ratio of the Compton to the Bethe–Heitler cross section is
approximately given by

∣

∣MDVCS

∣

∣

2
:
∣

∣MBH

∣

∣

2 ∼
(

1

Q2

1

1− ε

)

:

(

− 1

t

1

ε

)

, (2.84)

where ε is defined as

ε =
1− y − δ

1− y + y2/2 + δ
with δ =

y2x2
Bm

2
p

Q2
. (2.85)

Their interference term is of the order of their geometric mean. Thus in a kinematic range
where Q2 � t the Bethe–Heitler contribution clearly dominates, except for ε being close to
one, which entails that y is close to zero.

2.5.5 Isospin

Isospin provides a possibility to connect the different matrix elements appearing in the scat-
tering amplitude of DVCS. Measurements from deeply inelastic Compton scattering combined
with measurements from weak current between the electron and the proton lead to different
combinations of GPDs contained in these matrix elements. Strongly interacting particles
form charge multiplets as for example the nucleons (p, n) or the pions (π+, π−, π0). Particles
belonging to the same multiplet are observed to have similar properties and behave similar
under strong interaction, which indicates the existence of an invariance principle. This isospin
invariance is given by a three-dimensional rotation group. One can introduce operators I±
which can transform a charge state to its adjacent charge state. They fulfill the condition
I†+ = I−. Taking for example the multiplet consisting of a proton and a neutron, where |p〉
and |n〉 are the base vectors one finds the following matrix representation for the operators

I+ ⇒
[

0 1
0 0

]

, I− ⇒
[

0 0
1 0

]

. (2.86)

These operators I+ and I− obey the commutation relations

[I3, I±] = ±I±, [I+, I−] = 2I3. (2.87)

Defining the hermitian operators I1 = 1
2(I+ + I−) and I2 = 1

2i(I+ − I−) the Lie algebra can
be written as

[Ii, Ij ] =
3
∑

k=1

iεijkIk. (2.88)
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Isospin multiplets correspond to an irreducible representation of this algebra. State vectors
of strongly interacting particles can be denoted by |I,m, τ〉 where I(I + 1) and m are the
eigenvalues of I2 and I3. With τ we denote the remaining quantum numbers that are necessary
to fully describe the particle [88]. Strongly interacting particles are invariant under operations
of the Lie algebra in Eq. 2.88. Isospin symmetry imposes restrictions on the form of the
amplitude 〈f |S|i〉 of the process a+ b → c + d. Neglecting electromagnetic interactions, the
initial state is composed of strongly interacting particles belonging to an isospin multiplet
(see e.g . [88]),

|i〉 = |Ia,ma, τa〉 ⊗ |Ib,mb, τb〉
=

∑

I

〈IaIbmamb|Im〉 |I,m, τ〉 (2.89)

with I = ma +mb,ma +mb− 1, . . . , |ma−mb| and m = ma +mb = mc +md. The coefficients
in the last line of Eq. 2.89 are the Clebsch-Gordon coefficients. In analogy this can be done
for the final state and we find that

〈f |S|i〉 =
∑

I

〈

Icmc, Idmd

∣

∣Sττ ′

∣

∣Iama, Ibmb

〉

=
∑

I

〈mcmd|I m〉 〈mamb|I m〉Sττ ′(I). (2.90)

For the nucleons and quarks the isospin doublets are
(

p
n

)

,

(

u
d

)

. (2.91)

The antiparticle states are coupled by Clebsch-Gordon coefficients. This means, that not
the multiplets which arise after charge conjugation are transformed, but those particles that
transform under isospin as the corresponding particles. Therefore we have a minus sign in
the upper part of these doublets:

(

−n̄
p̄

)

,

(

−d̄
ū

)

. (2.92)

Each nucleon has isospin I = 1
2 with I3 = 1

2 for the proton and I3 = −1
2 for the neutron.

Quarks can be coupled by using Clebsch-Gordon coefficients in the same way as the
nucleons are coupled. The calculation of the matrix elements leads to the following relations:

〈

τ ′ p̄
∣

∣ūu
∣

∣p
〉

τ
=

∑

I

〈

− 1

2

1

2

∣

∣

∣

∣

10

〉〈

− 1

2

1

2

∣

∣

∣

∣

10

〉

Sττ ′(I)

=
1

2
Sττ ′(0) +

1

2
Sττ ′(1), (2.93)

〈

τ ′ p̄
∣

∣d̄d
∣

∣p
〉

τ
= −

∑

I

〈

1

2
− 1

2

∣

∣

∣

∣

10

〉〈

− 1

2

1

2

∣

∣

∣

∣

10

〉

Sττ ′(I)

=
1

2
Sττ ′(0)− 1

2
Sττ ′(1), (2.94)

〈

τ ′ p̄
∣

∣ūd
∣

∣n
〉

τ
= Sττ ′(1), (2.95)

〈

τ ′ n̄
∣

∣d̄u
∣

∣p
〉

τ
= Sττ ′(1), (2.96)
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where Sττ ′ is now a function depending only on the isospin. Altogether one obtains the
following relations for quarks in the nucleons

〈p|ūu|p〉 =
〈

n|d̄d|n
〉

=
1

2
Sττ ′(0) +

1

2
Sττ ′(1), (2.97)

〈

p|d̄d|p
〉

= 〈n|ūu|n〉 =
1

2
Sττ ′(0) − 1

2
Sττ ′(1), (2.98)

〈p|ūd|n〉 =
〈

n|d̄u|p
〉

= Sττ ′(1). (2.99)

This shows that the matrix elements are given as functions of two isospins only. Now it is
obvious that

〈

p|ūu+ d̄d|p
〉

= Sττ ′(0). By including [I+, I−] we obtain

〈

τ ′ I = 1, I3 = 0|I = 1, I3 = 0τ

〉

τ
=

〈

τ ′ I = 1, I3 = 1|I = 1, I3 = 1
〉

τ
, (2.100)

thus the matrix elements are independent of I3.
Here we see that isospin relates matrix elements including protons, neutrons and the

transition from proton to neutron and from a neutron to a proton. Thus one can determine
the transition matrix element from the knowledge of the proton and neutron matrix elements.
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Chapter 3

Scattering off a virtual pion

Pions are the lightest existing hadrons. According to the standard model they are composed
of quarks (u and d) and antiquarks (ū and d̄). The spins of the two quarks are aligned in
such a way, that the resulting spin of the pion is zero. Moreover, pions are pseudoscalars
under parity transformation. Altogether there are three pions, π0, π+ and π− forming an
isospin triplet with I = 1. Pions were theoretically predicted by Yukawa as the carrier of the
strong nuclear force. The first pions were found in 1947 by Powell and Lattes [7]. Due to
the spinless nature of the pion, it is much simpler than the spin- 1

2 nucleons. A generalized
parton distribution for the pion is needed to describe exclusive processes involving a pion.
Many models have been proposed so far for the pion GPDs [89, 90, 91, 92]. Experiments
can provide a pion beam, but there is a lack of pions as a target. However, the investigation
of a process like e p → e′ nπ+ γ in the regime where the transition between the proton and
the neutron occurs via a single pion emission enables such studies. The final state pion is
a π+, but we omit the + for simplicity in the following. Indeed, this reaction contains the
DVCS process e π → e′ π′ γ. The proton emits a pion and the electron scatters off that pion.
Although the emitted pion is virtual, we can take it as a pion source and keep the virtuality
small, allowing for an on-shell treatment. To calculate this process we divide it into two
modules: a proton emitting a pion and transforming into a neutron and a photon scattering
off a pion. They are connected by the pion propagator. Due to the analogy with DVCS,
discussed in Sec. 2.5.1, we call this process pion DVCS. The separation of the hadronic part
and the scattering off a virtual pion is depicted in Fig. 3.1.

The structure of this chapter is as follows: we introduce the kinematics of the full process
e p → e′ nπ γ. In addition to that we introduce the kinematics of the pion-photon center-of-
mass frame. Thereafter we give the most important ingredients of the cross section e p →
e′ nπ γ, which are the phase space and the scattering amplitude. Since we decompose the
process in modules we need the scattering amplitude of e π → e′ π′ γ which we give in the eπ
center-of-mass frame. To finally compute the total cross section we need a model for the pion
GPD on which we focus in Sec. 3.6. In the end we calculate the total cross section of this
reaction and we include in our calculation kinematical constraints arising due to the design of
the HERMES detector at DESY and the CLAS detector at JLab to predict measurable cross
sections.
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(a) (b)

Figure 3.1: For the calculation we separate the e p→ e′ π γ n process into a hadronic part and deeply
virtual Compton scattering off a pion which are connected by a propagating pion.

3.1 The e p→ e
′
π γ n process

In this section we consider the process e p → e′ π γ n depicted in Fig. 3.2 and 3.3, where the
initial electron emits a virtual photon and the initial proton emits a virtual pion. These
virtual particles then scatter and we find a real photon, a real pion, the scattered electron
and a neutron in the final state. All variables belonging to a special particle are labeled by an
index that represents the particle, as pe, and pe′ for the electron and the scattered electron,
respectively.

The aim is to compute the total cross section for the process e p → e′ π γ n. Depending
on the size of the cross section it might be possible to compare it to experimental data. The
general formula for the differential cross section is given by

dσ
∣

∣

ep→eπγn
=

1

Fep

∣

∣Tep (pepp → {pf})
∣

∣

2
dΦ4 (3.1)

where Fep is the flux factor, Φ4 the phase space of the four particle final state and Tep the
scattering amplitude of the process. In this chapter we derive these single components of the
cross section in detail and compute the total cross section as well as beam charge and beam
polarization asymmetries.

3.1.1 Electron-proton center-of-mass frame

The experiment takes place in the laboratory frame of the proton. This frame is connected
via a z-boost with the electron-proton center-of-mass frame. In this ep frame we have the
proton and the electron colliding head-on and moving along the z-axis, the electron going
in positive direction. The final-state electron and the neutron are moving along arbritrary
directions given by their azimuthal and polar angles, ψe′ , ψn, ϑe′ and ϑn. We define the



3.1 The e p→ e′ π γ n process 41

(a) (b)

Figure 3.2: Deeply virtual Compton scattering off a virtual pion emitted from a proton and b) its
crossed graph.

(a) (b)

Figure 3.3: a) The Bethe–Heitler process of ep→ eπγn and b) the crossed graph.
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particle four-momenta in the following way

pe = (Ee, 0, 0, |~pe|), (3.2)

pe′ = (Ee′ , |~pe′ | sinϑe′ cosψe′ , |~pe′ | sinϑe′ sinψe′ , |~pe′ | cosϑe′), (3.3)

pq = pe − pe′ , (3.4)

pp = (Ep, 0, 0,−|~pp|), (3.5)

pn = (En, |~pn| sinϑn cosψn, |~pn| sinϑn sinψn,−|~pn| cosϑn), (3.6)

pπ = pp − pn. (3.7)

First of all we want to express a differential cross section in terms of eight invariant variables.
Therefore all energies, momenta and angles have to be given in those variables. DVCS off a
proton has five invariant variables, which are xB, Q

2, t, ψn and ψe. In the reaction considered
here, we have in addition a pion in the final state, which leads to three additional invariants.
One is chosen to be xπ, giving approximately the ratio of the pion and the proton energy,
then we define tπ being the difference between the initial- and final-state pion and φπγ

π which
is the angle between the electron and the hadron plane. The angle φπγ

π is also the scattering
angle of the pion in the centre-of-mass frame of the photon and the pion. Altogether we have

−Q2 = (pe − pe′)
2, (3.8)

xB =
Q2

2pp · pq
, (3.9)

t = (pp − pn)2, (3.10)

xπ =
pπ · pe

pp · pe
, (3.11)

tπ = (pπ − pπ′)2, (3.12)

ψn, ψe, φπγ
π (3.13)

describing the process. We denote the initial, virtual pion by pπ and the final-state pion by
pπ′ . In addition we introduce the Mandelstam variable s

s =
Q2

xBy
+m2

p, (3.14)

which is the center-of-mass energy of the electron-proton collision. For the HERMES experi-
ment with an electron beam energy of 22.75GeV, s amounts to 51.81GeV2, while for the 12
GeV upgrade at JLab1 s will be 22.5GeV2. To compute the energies, momenta and angles of
the participating particles, and to connect the different kinematical frames in the following,
we need some frame-independent Lorentz-invariant scalar products, pi · pj, in terms of the

1For CLAS the beam energy will only be 11 GeV
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invariants:

pp · pq =
Q2

2xB
, pn · pp =

1

2
(m2

p +m2
n − t),

pe · pe′ =
1

2
Q2, pn · pe =

1

2

Q2

xBy
(1− xπ),

pe · pp =
1

2

Q2

xBy
, pπ · pe =

1

2

Q2

xBy
xπ. (3.15)

Now we can focus on the energies and momenta of the first particles. For the colliding electron
and proton we find

Ee =
s−m2

p

2
√
s
, |~pe| =

s−m2
p

2
√
s
, (3.16)

Ep =
s+m2

p

2
√
s
, |~pp| =

s−m2
p

2
√
s
, (3.17)

for the final-state electron the results are

Ee′ =
s−m2

p +Q2(1− 1
x)

2
√
s

= |~pe′ |, (3.18)

cosϑe′ =
1− y − xy − 2m2

px2y2

Q2

1− y + x
, (3.19)

and moreover the neutron components are given by

En =
(s−m2

p)(1 − xπ) +m2
p +m2

n − t
2
√
s

, (3.20)

|~pn| =

√

1

4s
((s−m2

p)(1− xπ) +m2
p +m2

n − t)2 −m2
n , (3.21)

cosϑn =
(s+m2

p)(1− xπ)−m2
p −m2

n + t
√

((s−m2
p)(1− xπ) +m2

p +m2
n − t)2 − 4sm2

n

, (3.22)

with mn = 938.6MeV. Still missing are the final pion and photon which cannot be calculated
straightforward at this point, but will be determined later in this work. It is very important,
especially for experimentalists, to know where to expect the particles inside the detector.
With help of the just derived quantities we are able to compute further scalar products which
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Figure 3.4: Electron (green) and neutron (red) distribution of their energy to the cosine of their
scattering angle in the electron proton center-of-mass frame.

will be of great interest in forthcoming calculations,

pe′ · pn = Ee′En − |~pe′ ||~pn|
(

cos(ψe − ψn)
√

1− cos2ϑe

√

1− cos2ϑn − cosϑe cosϑn

)

≈ 1

2

Q2

xy
(1− xπ)(1 − y) +O

(

m2
p

)

, (3.23)

pπ · pe′ =
1

2

Q2

xy
(1− y)− pe′ · pn

≈ 1

2

Q2

xy
xπ(1− y) +O

(

m2
p

)

, (3.24)

pπ · pq =
1

2

Q2

xy
(y + xπ − 1) + pe′ · pn

≈ Q2xπ

2xB
+O

(

m2
p

)

. (3.25)

For simplicity we approximated the scalar products in the limit of Q2 � m2, t. If we take a
closer look at the scattering angles of Eqs. 3.19 and 3.22 we see that the neutron is moving
very close to the z-axis

cosϑR
n → 1 (3.26)

while the electron has not such a preferred scattering region. In Fig. 3.4 we have plotted the
cosine of the polar angle versus the energy for the scattered electron and neutron. This shows
where these particles are expected to be. The points are produced with a numerical program
we use for the calculation of the total cross section. Thus also this plot shows, that the
neutron in the final state tends to have only a very small scattering angle while the electron
is spread over a broad range.

Regarding the scattered neutron there are two boundary conditions on t coming from the
minimum and maximum scattering angle cosϑn = ±1 corresponding to forward and backward
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Figure 3.5: Pion-photon scattering in the pion-photon center-of-mass frame.

scattering. In the process considered here we get for both conditions the same restriction on
t given by

t0 = −
xπ(m2

p(1 + xπ)−m2
n)

1− xπ
. (3.27)

This is the minimum of t, it is the smallest value of |t|. Its value |t| has to be bigger then
zero, because the final-state photon is real and therefore we need at least some momentum
transfer to produce this photon.

3.1.2 Kinematics for the π γ → π
′
γ
′ subprocess

In a next step we focus on the subprocess πγ → π ′γ′ and it is convenient to work in the
center-of-mass frame of the pion and the photon. The axes are chosen in such a way that
the initial γ and π are moving along the z-axis. The photon is moving along the positive
z-direction and the electron plane identifies with the x-z plane as shown in Fig. 3.5.

We further define the center-of-mass energy of the process

sπ = (pq + pπ)2

≈ Q2

xB
(xπ − xB) +O

(

m2
)

. (3.28)

The approximated form of sπ shows that we need to fulfill the condition

xπ > xB (3.29)

to remain in the kinematically allowed region, where sπ > 0.
In the pion-photon frame we label all quantities by the superscript πγ. The four-momenta

of the initial pion and photon are defined as

p πγ
π = −|~pπ|πγ~ez, (3.30)

p πγ
q = |~pq|πγ~ez, (3.31)
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while the electrons are defined to be in the x-z plane

pπγ
e′ =















Eπγ
e′

|~pe′ |πγ sinϑπγ
e′

0

|~pe′ |πγ cosϑπγ
e′















, (3.32)

pπγ
e =













Eπγ
e

|~pe|πγ sinϑπγ
e

0

|~pe|πγ cosϑπγ
e













. (3.33)

Finally we have the scattered pion with the coordinates

pπγ
π′ =













Eπγ
π′

−|~pπ′ |πγ sinϑπγ
π′ cosφπγ

π

−|~pπ′ |πγ sinϑπγ
π′ sinφπγ

π

|~pπ′ |πγ cosϑπγ
π′













. (3.34)

The angle φπγ
π is the scattering angle of the final photon, measured from the positive x-axis,

as shown in Fig. 3.5. The angle of the scattered pion is φπγ
π + π. The energies and momenta

expressed through the invariants for the initial pion and photon are

|~pπ|πγ =

√

√

√

√

(

sπ + t+Q2

2
√
sπ

)2

− t , Eπγ
π =

sπ + t+Q2

2
√
sπ

, (3.35)

|~pq|πγ =

√

√

√

√

(

sπ − t−Q2

2
√
sπ

)2

+Q2, Eπγ
γ =

sπ − t−Q2

2
√
sπ

, (3.36)

and for the final-state pion and photon

|~pπ′ |πγ =
sπ −m2

π

2
√
sπ

, Eπγ
π′ =

sπ +m2
π

2
√
sπ

, (3.37)

|~pq′ |πγ =
sπ −m2

π

2
√
sπ

, Eπγ
γ′ =

sπ −m2
π

2
√
sπ

. (3.38)

The scattering angle of the final pion is given by

cosϑπγ
π′ =

tπ − t−m2
π + 2Eπγ

π Eπγ
π′

−2|~pπ|πγ |~pπ′ |πγ
. (3.39)

Since the pion and the photon are scattered back-to-back it is sufficient to have cosϑπγ
π′ for

both particles.

Let us consider the final pion in more detail. For our process we require tπ to be small.
In this kinematics the value of cosϑπγ

π′ is very small because we take into account only large
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values of Q2 � |tπ|. We call this process forward DVCS. But one can also think of the process
in a range, where tπ is large. In that case we further on introduce the Mandelstam variable

uπ = −Q2 + t+m2
π − sπ − tπ (3.40)

and keep uπ small. Then we see that cosϑπγ
π′ → 1 becomes large. This shows that the two

kinematical regimes can be distinguished very well and we don’t run into danger to mix up
different kinematics. The latter case is called backward DVCS. We will come to this distinction
again in Sec. 3.3.2.

So far we do not know the energies and momenta of the initial and final electron in the
pion-photon centre-of-mass frame. Starting from the scalar products pepπ, pepq, pe′pπ and
pe′pq of Eq. 3.13 one obtains the energy and the angle of the initial- and final-state electrons

Eπγ
e =

(pe · pq)|~pπ|πγ + (pe′ · pπ)|~pq|πγ

Eπγ
q |~pπ|πγ +Eπγ

π |~pq|πγ
, (3.41)

cosϑπγ
e =

(pe · pq)E
πγ
π − (pe · pπ)Eπγ

q

(pe · pq)|~pπ|πγ + (pe · pπ)|~pq|πγ
, (3.42)

Eπγ
e′ =

(pe′ · pq)|~pπ|πγ + (pe′ · pπ)|~pq|πγ

Eπγ
q |~pπ|πγ +Eπγ

π |~pq|πγ
, (3.43)

cosϑπγ
e′ =

(pe′ · pq)E
πγ
π − (pe′ · pπ)Eπγ

q

(pe′ · pq)|~pπ|πγ + (pe′ · pπ)|~pq|πγ
. (3.44)

The energies and momenta of the electrons can be treated as equal because their mass is
negligible. The angle sinϑe′ is always positive due to the definition of the spherical coordi-
nates, where ϑ ∈ [0 .. π]. The explicit calculations of the energies and the momenta of the
electrons lead to complex results. Therefore we present a diagram, see Fig. 3.6 a), where
the energy is plotted versus the momentum for both of the electrons, showing their different
kinematic distribution. The points are obtained from the numerical program calculating the
cross section. Each point is a kinematical possible point in the allowed integration region.

Finally we can compute the proton components in the πγ-frame, using pppπ, pppq and
pppe leading to

Eπγ
p =

Q2 + (m2
p −m2

n + t)xB

2xBsπ
, (3.45)

cosϑπγ
p =

−Q4 + (sπ − t)(m2
p −m2

n + t)xB −Q2(sπ + t+m2
pxB −m2

nxB + txB)
√

Q4 + (sπ − t)2 + 2Q2(sπ + t)
√

Q4 + 2Q2(m2
p −m2

n + t)xB + w2

, (3.46)

including the lower order term w2 = (m4
p + (m2

n − t)2 − 2m2
p(m

2
n + 2sπ − t))x2

B . As for the
electrons we plot the proton energy and momentum shown in Fig. 3.6 b). This shows that
the angle of the proton tends to be relatively close to 180◦.

3.2 Four particle phase space integral

One main component of the cross section in Eq. 3.1 is the phase space. After introducing the
kinematical frame and the kinematics of the pion-photon subframe we can now compute the
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Figure 3.6: a) Distribution of the initial (red) and final (green) electrons in the pion-photon centre-of-
mass frame and b) the proton distribution in the pion-photon center-of-mass frame.

required phase space, which is generally defined as

∫

dΦn =





n
∏

f=1

∫

d3pf

(2π)3
1

2Ef



 (2π)4δ(4)



pe + pp −
n
∑

f=1

pf



 , (3.47)

where pf are the momenta of the final-state particles. This contains the integration over
the momenta of the n final-state particles having the momenta pf . The four-dimensional δ-
function conserves energy and momentum. dΦn is Lorentz-invariant so that the phase space
integral can be computed in any frame of reference.

In particular, the four-particle phase space element of the reaction e p → e ′ π γ n has the
form

∫

dΦ4 =

∫

d3pπ′ d3qq′ d
3pn d

3pe′

(2π)12
(2π)4

8EnEe′Eπ′Eq′
δ(4)(pe + pp − pe′ − pπ′ − pq′ − pn). (3.48)

This contains the two-particle phase space of the final pion and photon

∫

dΦ2 =

∫

d3pπ′ d3qq′

(2π)6
(2π)4

4Eπ′Eq′
δ(4)(pπ′ + pq′ − pπ − pq). (3.49)

The two-particle phase space can be calculated in the center-of-mass frame of the pion-photon
subsystem, where ~p πγ

π + ~pπγ
γ = 0 and Eπγ

π +Eπγ
γ =

√
sπγ = Eπγ

cm. Inserting this into Eq. 3.49
leads to

∫

dΦ2 =
1

(2π)2

∫

d3pπγ
π′

2Eπ′

d3pπγ
q′

2Eq′
δ(4)(pπγ

q + pπγ
π − pπγ

q′ − p
πγ
π′ )

=
1

16π2

∫

(pπγ
q )2dpπγ

q dΩπγ

Eπγ
q Eπγ

π
δ(Eπγ

cm −Eπγ
q −Eπγ

π ). (3.50)
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Integrating over the final δ-function gives

∫

dΦ2 =
1

16π2

∫

(~pπγ
q )2dΩ

Eπγ
q Eπγ

π

Eπγ
q Eπγ

π

~pπγ
q (Eπγ

q +Eπγ
π )

=
1

16π2

∫ |~pπγ
q |

Eπγ
q +Eπγ

π
dcosϑπγ

π′ dφ
πγ
π

=
1

16π2

∫

sπ −m2
π

2sπ
dcosϑπγ

π′ dφ
πγ
π . (3.51)

Since cosϑπγ
π is not one of the invariant variables we chose, we substitute it by tπ via

dtπ
dcosϑπγ

π′

=
(sπ −m2

π)
√

(sπ + t+Q2)2 − 4sπt

2sπ
. (3.52)

Including this substitution, the final form of the two-particle phase space reads

∫

dΦ2 =
1

16π2

∫

1
√

(sπ + t+Q2)2 − 4sπt
dtπdφπ. (3.53)

To determine dΦ4 we moreover need the integrations over the final electron and neutron
momenta

∫

d3pe′

(2π)32Ee′
and

∫

d3pn

(2π)32En
. (3.54)

These Lorentz-invariant three-momentum integrals should also be expressed in terms of the
invariants, which we use for the final integration to calculate the total cross section. Therefore
a variable transformation is made

d3pe′

2Ee′
=

1

2Ee′
(Ee′)

2dE′dcosϑedψe

=
1

2Ee′
(Ee′)

2dQ2dx dψey(m
2
p − s)|J1|−1, (3.55)

d3pn

2En
=

1

2En
(~pn)2dEndcosϑndψn

=
(~pn)2

2En
|J2|−1dtdxπdψn. (3.56)

For the Jacobians J1 and J2 we need

−Q2 = (pe − pe′)
2

= −2EeEe′ + 2|~pe||~pe′ | cosϑe′ (3.57)

and furthermore an expression for W 2

W 2 = (pp + pq)
2

= m2
p − 2EeEe′ + 2|~pe||~pe′ | cosϑe′ + (s−m2

p)− 2EpEe′ + 2|~pp||~pe′ | cosϑe′ (3.58)



50 Scattering off a virtual pion

to substitute cosϑe′ and Ee′ by Q2 and W 2. We neglect the electron mass and obtain the
differentials

dQ2

dEe′
= 2Ee(1− cosϑe′),

dQ2

d cosϑe′
= −2EeEe′ , (3.59)

dW

dEe′
= cosϑe′

(

2Ee + 2
√

E2
p −m2

p

)

− 2
√
s,

dW

d cosϑe′
= 2Ee′

(

Ee +
√

E2
p −m2

p

)

, (3.60)

which yield the Jacobians

J1 = 4EeEe′

(√

E2
p −m2

p −Ep

)

, (3.61)

J2 =
2

Ep

√

(E2
p −m2

p)(E
2
n −m2

n). (3.62)

We can easily change from W 2 to xB via

dW 2 = −Q
2

x2
B

dxB (3.63)

This leads to the Lorentz-invariants we use in our calculation

d3pe′

2Ee′
=

1

4

y

xB
dQ2dxB dψe′

=
1

4
dQ2dy dψe′ (3.64)

d3pn

2En
=

√

E2
n −m2

n

E2
p −m2

p

Ep

4En
dt dxπ dψn. (3.65)

In the limit of masses and t going to zero we have d3pn/(2En) → 1/4, which corresponds to
the results for the (massless) electron. Gathering the results we can now compute the phase
space for a two, three and four-particle final-states,

∫

dΦ2(πγ → π′γ′) =
1

16π2

∫

1
√

(sπ + t+Q2)2 − 4sπt
dtπ dφπ, (3.66)

∫

dΦ3(eπ → e′π′γ) =

∫

φ2
d3pe′

2Ee′(2π)3

=

∫

1

16(2π)5
1

√

(sπ + t+Q2)2 − 4sπt
dtπ dφπ dQ

2 dy dψe, (3.67)

∫

dΦ4(ep→ e′nπγ) =

∫

φ3
d3pn

(2π)32En

=

∫

φ3

√

E2
n −m2

n

E2
p −m2

p

Ep

4En

1

(2π)3
dxπ dt dψn. (3.68)

We can express Φ4 also in terms of invariants, but this expression is omitted here, since it is
a lengthy expression leading to no further information.
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An additional term appearing in the differential cross section is the flux factor which is
defined by

Fep(s,m
2
p) = 4

√

(pe · pp)2 −m2
em

2
p

= 2(s−m2
p), (3.69)

where we again neglected the electron mass.

3.3 The e π → e
′
π
′
γ subprocess

3.3.1 Kinematics for the electron-pion subprocess

When we deal with the process eπ → e′π′γ we shall work in the center-of-mass frame of the
electron and the virtual pion. This process is analogue to DVCS off a proton ep → e ′pγ
and can be treated in the same way. To deal with the electron-pion scattering process it is
convenient to introduce variables corresponding to the scattering off a proton target, these
are

xπ
B =

Q2

2pπ · pq
, (3.70)

tπ = (pπ′ − pπ)2, (3.71)

ξπ =
p+

π − p+
π′

p+
π + p+

π′

≈ xπ
B

2− xπ
B

. (3.72)

Similar to t we have tπ which is the momentum transfer between the pions. Analogue to xB

and ξ in the proton case, xπ
B is the fraction of the longitudinal momentum of the quark in

the pion and ξπ the longitudinal momentum transfer between the initial and final state pion.
We can expand xπ

B by neglecting masses and momentum transfer. This leads to

xπ
B =

xB

xπ
+O

(

m2

Q2

)

. (3.73)

Moreover we introduce further variables which are relevant for the calculations

seπ = (pe + pπ)2

≈ s · xπ, (3.74)

yπ =
pq · pπ

pe · pπ

≈ y. (3.75)

The variable xπ introduced in Eq. 3.13 can be approximated by

xπ =
pe · pπ

pe · pp

= 1− pe · pn

pe · pp

≈ Eπ

Ep
, (3.76)
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(a) (b)

Figure 3.7: a) Deeply virtual Compton scattering off a virtual pion and b) the corresponding Bethe–
Heitler process

this confirms the statement we made in the introduction, that xπ gives the ratio of the pion
and proton energy. The last formula is valid in any frame where the proton is moving fast.

In the calculation of the cross section, we further use επ, the ratio of the longitudinal and
transverse polarization of the virtual photon,

επ =
1− yπ

1− yπ + y2
π/2

. (3.77)

Having these variables we can also define the flux factor for the electron-pion scattering process

Feπ = 4
√

(pe · pπ)2

= 2(seπ −m2
π)

= 2xπ(s−m2
p) +O(m2). (3.78)

3.3.2 Squared amplitude of e π → e
′
π
′
γ

Since we have two processes, DVCS and Bethe–Heitler, both contributing to the cross section,
they will interfere at amplitude level. The complete amplitude reads

|Teπ|2 = |TDVCS|2 + |TBH|2 + TINT. (3.79)

For the calculation of the scattering amplitude we treat the virtual pion as an on-shell pion.
One way to determine the amplitude for virtual scattering off the pion is to derive it from
proton DVCS. Doing that, form factors and GPDs of the proton have to be replaced by those of
the pion. We are now going to deduce the amplitude from the well-known proton amplitude.
It is worth presenting also the proton amplitude, since we will use this in calculations in
Chapter 4. This leads to the same results as calculating the process from scratch as done
by Belitsky et al.[93]. We compare our results to those of Belitsky et al. and see that they
coincide, except in the overall sign in the Bethe–Heitler amplitude squared. But since the
amplitude has to be positive, we stick to our result.

It is common to parameterize the scattering amplitudes TDVCS, TBH and TINT in terms of
helicity amplitudes Mλ′µ′,λµ, where λ(λ′) is the proton helicity and µ(µ′) the photon helicity.



3.3 The e π → e′ π′ γ subprocess 53

All in all there are 24 amplitudes which reduce to twelve by applying parity invariance:

Mλ′+,λ+ leading order in
1

Q
and αs, (3.80)

Mλ′+,λ0
1

Q
suppressed, (3.81)

Mλ′+,λ− suppressed by either αs or
1

Q2
. (3.82)

The four leading order amplitudes in 1/Q can be expressed via the GPDs H, H̃, E and Ẽ.
As we can read from the definition of the pion GPD in Eq. 2.7 there is only one GPD

parameterizing the vector matrix element, while the axial vector case does not exist for a pion.
Due to the fact that the pion is a spin-zero particle there appear no spinors and comparing
the pion GPD and the nucleon GPDs we can make the replacement

ū(p′)Hq(x, ξ, t)γ+u(p) + ū(p′)Eq(x, ξ, t)
iσ+ν∆ν

2m
u(p) → Hq

π, (3.83)

F̃ q → 0. (3.84)

The number of GPDs is obtained by counting helicity amplitudes under the constraints due
to spatial parity only. For spin-zero targets there is only

〈

p2|O(−z−, z−)|p1

〉

= p+

∫ 1

−1
dx e−ixp+z−Hq(x, η, t). (3.85)

Since the pion is a spin-zero particle it cannot flip helicity and therefore there is no replacement
for the GPD Eq of the proton. Thus it follows that

Hq
p → Hq

π, (3.86)

Eq
p → 0. (3.87)

3.3.2.1 DVCS amplitude

Now we would like to consider the proton DVCS amplitude in some detail. The amplitude
for such a process can be written as a convolution of a perturbatively calculable contribution
describing the hard scattering the and non-perturbative part containing GPDs, as mentioned
in Sec. 1.1.3.1. We consider the kinematical region where the momentum transfer between
the initial- and final-state proton is small compared to Q2. The final result for the proton
DVCS amplitude for helicity conserving, transverse photons is given by

∑′

spins

|TDVCS|2 =
1

Q2

2

1− ε
∑

λ,λ′

1

2
|Mλ′+,λ+|2 (3.88)

with λ, λ′ being the proton helicities [79].
∑′

spins
denotes the sum over the final-state

proton and photon spins and the average over the initial proton. The prefactor 2/(Q2(1− ε))
is related to the transversely polarized photons. The squared amplitude contains the nucleon
GPDs which are themselves contained in the Compton form factors H, H̃, E and Ẽ

∑

λ,λ′

1

2
|Mλ′+,λ+|2 =

(

1− ξ2
)(

|H|2 + |H̃|2
)

−
(

ξ2 +
t

4m2

)

|E|2 − ξ2 t

4m2
|Ẽ |2

−2 ξ2 Re
(

H∗E + H̃∗Ẽ
)

. (3.89)



54 Scattering off a virtual pion

The Compton form factors are defined as

F(ρ, ξ, t) =
∑

q

e2q

∫ 1

−1
dxF q(x, ξ, t)

(

1

ρ− x− iε −
1

ρ+ x− iε

)

+O(αs), (3.90)

F̃(ρ, ξ, t) =
∑

q

e2q

∫ 1

−1
dx F̃ q(x, ξ, t)

(

1

ρ− x− iε +
1

ρ+ x− iε

)

+O(αs). (3.91)

According to the definitions in [94, 95] the Compton form factors H and E are obtained by
replacing F q in Eq. 3.90 with Hq and Eq and analogue for H̃ and Ẽ by replacing F̃ q in Eq.
3.91 with H̃q and Ẽq.

The structure for the amplitude changes when we replace the proton with the pion. In
the proton case the helicity amplitude contains all four Compton form factors while for the
pion we have only Hπ. The factor (1 − ξ2) in front of H2 appears due to the spinors which
are not present for pions anymore, so the cross section has to be divided by (1 − ξ2). The
final form for the pion is

∑′

spins

|TDVCS|2 =
1

Q2

2

1− επ
|Hq

π(x, ξπ, tπ)|2, (3.92)

where Hπ is the Compton form factor for the pion. In Sec. 3.6.1 in Fig. 3.10 we show the real
and imaginary part of the x-integrated pion Compton form factor for four different models
and for three different values of ξπ = 0.2, 0.3, 0.4. These models will be explained in Sec.
3.9.1 and 3.9.2. Those plots show the the model dependence of the expected tπ behavior for
fixed values of ξπ integrated over x.

3.3.2.2 Backward scattering and transition distribution amplitudes

Extensions of these studies in the backward regime — where tπ is large — involving a transi-
tion from a photon to a meson [96] or from a baryon to a meson or a photon [97] were recently
proposed. In our case we need a transition from a pion to a photon which is depicted in Fig.
3.8 b). In the latter regime, the nonperturbative objects playing the role of the GPDs are
named Transition Distribution Amplitudes (TDAs). First phenomenological studies can be
found in [98, 99]. In the backward region uπ has to be small. Compared to the kinematical
regime of DVCS discussed above, the role of tπ and uπ changes. In the backward regime the
Bethe–Heitler process is expected to be suppressed.

We show here the definition of the TDA for the transition γ → π− as given in [100]

dz−

2π
eixP+z−

〈

π−(pπ−
)
∣

∣

∣d̄
(

−z
2

) [

−z
2
;
z

2

]

γµu
(z

2

) ∣

∣

∣γ(pγ , ε)
〉∣

∣

∣

z+=zT =0

=
1

P+

ie

fπ
εµεP∆⊥V π−

(x, ξ, t), (3.93)

dz−

2π
eixP+z−

〈

π−(pπ−
)
∣

∣

∣
d̄
(

−z
2

) [

−z
2
;
z

2

]

γµγ5u
(z

2

) ∣

∣

∣
γ(pγ , ε)

〉∣

∣

∣

z+=zT =0

=
1

P+

e

fπ
(ε ·∆)P µAπ−

(x, ξ, t), (3.94)
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(a) (b)

Figure 3.8: a) Deeply virtual Compton scattering off a virtual pion parametrized by GPDs in the
kinematical regime of small tπ. b) The kinematical regime of small uπ which corresponds to backward
scattering, parametrized by TDAs.

dz−

2π
eixP+z−

〈

π−(pπ−
)
∣

∣

∣d̄
(

−z
2

) [

−z
2
;
z

2

]

σµνu
(z

2

) ∣

∣

∣γ(pγ , ε)
〉∣

∣

∣

z+=zT =0

=
e

P+
εµεP∆⊥Pσ

[

ερT
π−

1 (x, ξ, t) − 1

fπ
(ε ·∆)∆⊥ρT

π−

2 (x, ξ, t)
]

, (3.95)

where P = (pπ− + pγ)/2 and ∆ = pπ− − pγ . V π−

is the vector and Aπ−

the axial vector TDA,

and T π−

1,2 are the chiral-odd tensorial TDAs. Due to the photon polarization ε there are four
TDAs in the leading twist decomposition. TDAs can be related to vector and axial vector
form factors and can be modeled by double distributions. For further details see [101]. In
Sec. 3.8 we will show some plots depicting the two different regimes of forward and backward
Compton scattering.

3.3.2.3 Bethe–Heitler amplitude

In addition to DVCS we have to consider the Bethe–Heitler amplitude. The form factors for
the nucleon are defined in the following way

〈

pp′ |jµem|pp

〉

= ū(pp′)
(

F1γ
µ + F2

σµν∆ν

2mp

)

u(pp). (3.96)

The amplitude of the Bethe–Heitler process has the form

∑′

spins

|TBH|2 = − 4

tεP

[

1− ξ2

ξ

t− t0
t

(

F 2
1 (t)− t

4m2
p

F 2
2 (t)

)

+ 2(F1(t) + F2(t))
2 +O

(

1

Q

)]

.

(3.97)
Since form factors are measured experimentally very well, the Bethe–Heitler process can be
treated accurately in a numerical analysis [102, 103]. For y → 1 the BH contribution could
blow up since the factor 1/ε, containing y, goes to zero in that limit. However at HERMES
and CLAS y is restricted to y < 0.85. We have included the factor P = 1 + (cosφ)O(1/Q),
which is the ratio of exact and approximated lepton propagators. The lepton virtualities are
independent of φπ to leading order in 1/Q. But experimentally this φπ dependence cannot
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be neglected, therefore we keep the term P . For our numerical calculations we use for P :

P =
(As −B cosφπ)(Au −B cosφπ)

AsAu
, (3.98)

with

As =
Q2(1− yπ)tπ

yπ
, (3.99)

Au =
Q2(1− yπ)− tπ

yπ
, (3.100)

B =
2Q2

yπ

√

1− yπ −
1

4
y2

πγ
2
π

√

(1− xπ
B)(tπ,0 − tπ), (3.101)

γπ =
2xπ

Bmp

Q
, (3.102)

up to relative corrections of order xπ
Bt/Q

2 or xπ
Btπ/Q

2. For more details on P see [79]. An
exact expressions for the amplitude is given in [95].

In the pion case one has as a first parametrisation, with ∆µ
π = (pπ′ − pπ)µ and P µ

π =
1
2(pπ + pπ′)µ

〈pπ′ |jµem|pπ〉 = a1∆
µ
π + a2P

µ
π . (3.103)

Applying time-reversal invariance one obtains

〈pπ′ |jµem|pπ〉 = −a1∆
µ
π + a2P

µ
π . (3.104)

Parity does not lead to a change. But because both relations have to be valid (before and
after time invariance) a1 has to vanish. This leads to the final form of the pion form factor

〈pπ′ |jµem|pπ〉 = (pπ′ + pπ)µFπ(Q2). (3.105)

For the pion we obtain an expression analogous to the proton for the Bethe–Heitler amplitude

∑′

spins

|TBH|2 = −4(1− ξ2
π)(tπ − tπ0)

t2πεπξ
2
πP

F 2
π +O

(

1

Q

)

. (3.106)

3.3.2.4 Interference term

The interference term appearing in the squared amplitude is given by

TINT = T ∗
BHTDVCS + T ∗

DVCSTBH. (3.107)

Considering only virtual and real photons with the same helicity the result of the cross section
for proton scattering is

∑′

spins

TINT = el
8
√

2m

tQξP
cosφπ

1
√

ε(1− ε)
ReM̂++

+el
8
√

2m

tQξP
Pl sinφπ

√

1 + ε

ε
ImM̂++. (3.108)
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This term includes el which is the lepton beam charge and Pl the lepton beam polarization.
For our calculation we are going to take into account only electrons (no positrons) and have
therefore el = −1. M̂++ is known [104] and has the form

M̂++ =
√

1− ξ2

√

(t0 − t)
2m

(

F1(t)H + ξ(F1(t) + F2(t))H̃ −
t

4m2
F2(t)E

)

(3.109)

including GPDs as well as form factors. The amplitude reduces in the pion case to

∑′

spins

|TINT| = el
4
√

2

tπQξπP

(

cosφπ
1

√

επ(1− επ)

√

(1− ξ2
π) (tπ0 − tπ)Fπ(tπ)Re

(

Hπ

)

+Pl sinφπ

√

1 + επ
επ

√

(1− ξ2
π) (tπ0 − tπ)Fπ(tπ) Im

(

Hπ

)

)

. (3.110)

This interference term consists in leading order in Q of two terms which we refer to as

∑′

spins

|TBCA| = el
4
√

2

tπQξπ
cosφπ

1
√

επ(1− επ)

√

(1− ξ2
π) (tπ0 − tπ)Fπ(tπ)Re

(

Hπ

)

,(3.111)

∑′

spins

|TBPA| = el
4
√

2

tπQξπ
Pl sinφπ

√

1 + επ
επ

√

(1− ξ2
π) (tπ0 − tπ)Fπ(tπ) Im

(

Hπ

)

, (3.112)

where TBCA is proportional to the beam charge asymmetry and TBPA to the beam polarization
asymmetry. Because it is much simpler to measure asymmetries compared to cross sections
we will focus our attention on these asymmetries in Sec. 3.7

3.4 Hadronic part of e p→ e
′
π γ n

We separate the process into different parts as depicted in Fig. 3.1. In addition to the eπ
amplitude we furthermore need the hadronic part (lower part in the figure). Hence we will
now to take into account the transition between the proton and the neutron by the emission
of a pion. This hadronic part is calculated by the sum over the proton spin

∑′

spins

|ū(pp′)γ5u(pp)|2 =
∑′ (

ū(pp′)γ5u(pp)
) (

ū(pp′)γ5u(pp)
)∗

= −1

2
Tr
(

(/pp′ +mp)γ5(/pp +mp)γ5

)

= −1

2
(4m2

p − 4pp · pp′)

= −t. (3.113)

The vertex of the pion-nucleon-nucleon coupling is described by the dimensionless coupling
gπNN = 14.7 which is given by the Goldberger Treiman relation.

Eventually the hadronic part and the scattering off the pion are connected by the propa-
gating pion. Therefore we have to implement the pion propagator

1

m2
π − t

(3.114)

into the cross section.
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3.5 Differential cross section for the process e p→ e
′
π γ n

In the last sections we have derived all components which are necessary to compute the cross
section. Analytically we can express the eight-fold differential cross section

dσ(ep→ eπγn)

dQ2 dy dxπ dtπ dt dφπdψe′dψn
= Φ4 Fep

∑

spins

|Teπ|2
−t

(m2
π − t)2

g2
πNN

(

Λ2 −m2
π

Λ2 − t

)2

. (3.115)

∑

spins sums over the final-state electron and photon polarization. Furthermore we have
averaged over the proton polarization and summed over the neutron polarization and kept
the lepton polarization fixed. We have included a phenomenological factor (Λ2−m2

π)/(Λ2− t)
that cuts the 1/(m2

π − t) behavior of the pure pole term for large −t. As a cut-off mass we
take a value of Λ = 0.8GeV as suggested in [105]. With the flux factor of Eq. 3.69, the phase
space from Eq. 3.68 and the amplitudes for DVCS, BH and the interference term (Eqs. 3.92,
3.106 and 3.110) we can completely determine this differential cross section,

dσ(ep→ enπγ)

dQ2 dy dxπ dtπ dt dφπdψe′dψn
=

(

1

4
+ a1

)

xπ

(2π)3
dσ(eπ → eπ′γ)

dQ2 dyπ dtπ dφπ ψe

−t
(m2

π − t)2

×g2
πNN

(

Λ2 −m2
π

Λ2 − t

)2

, (3.116)

where we have used the abbreviation a1 = (xB(−m2
n +m2

p(1− xπ)2)y)/(2Q2(1− xπ)). It can
be seen in the last equation that the differential cross section for the four-particle final state
contains the differential cross section of the scattering process eπ → eπ ′γ, which is given by

dσ(eπ → eπ′γ)
dQ2 dyπ dtπ dφπdψe′

= F3 Φ3

∑

spins

|Teπ|2. (3.117)

Finally we know the differential cross section for e p → e′ π γ n. To obtain the total
cross section, we numerically integrate over the eight invariant variables. This is done using
the Vegas routine. Therefore we need to insert a model for the pion GPD to perform the
integration and in addition we need to determine the integration limits and have to take into
account experimental constraints on the kinematics and the dimensions of the detector.

3.6 Models for the pion GPD

Let us now focus on the required pion GPD. We use for our calculation of the cross section a
model for the pion GPD, where we have a factorized tπ-dependence,

Hq
π(x, ξπ, tπ) = Hq

π(x, ξπ)F (tπ). (3.118)

This is a simple approach but adequate for our purpose, because the pion GPD is still un-
known. On the level of the cross section the pion GPD is contained in the Compton form
factor, which is generally defined in Eq. 3.90, and reads for the pion

Hπ(x, ξπ, tπ) =
∑

q

e2q

∫ 1

−1
dxHq

π(x, ξπ)F (tπ)

(

1

ξπ − x− iε
− 1

ξπ + x− iε

)

+O(αs). (3.119)



3.6 Models for the pion GPD 59

For the tπ-independent function in Eq. 3.119 we use the double distribution ansatz shown in
Sec. 2.4 which contains the pionic parton distributions. We neglect any evolution effects since
we stay in a narrow range of Q2. We can rewrite the Compton form factor in terms of the
integrals given in [106],

Iq(ξπ) =

∫ 1

−1
dxHq(x, ξπ)

1

ξπ − x− iε
, (3.120)

I q̄(ξπ) =

∫ 1

−1
dxH q̄(x, ξπ)

1

ξπ − x− iε
=

[

Iq(−ξπ)
]∗
, (3.121)

here we use the definitions H q̄(x, ξπ) = −Hq(−x, ξπ) and H̃ q̄(x, ξπ) = H̃q(−x, ξπ). We obtain

Hπ = Fπ(t)

(

4

9

∫ 1

−1
dx
(

Iu + I ū
)

+
1

9

∫ 1

−1
dx
(

Id + I d̄
)

)

. (3.122)

These integrals can be divided into an imaginary and a real part

ImIq(ξπ) =

∫
2ξπ

1+ξπ

0
dx I(x, ξπ) q(x), (3.123)

ImI q̄(ξπ) =

∫ 2ξπ
1+ξπ

0
dx I(x, ξπ) q̄(x), (3.124)

ReIq(ξπ) =

∫ 1

0
dx
(

R(x, ξπ) q(x) +R(x,−ξπ) q̄(x)
)

, (3.125)

where q(x) and q̄(x) are the quark distribution functions and the functions I(x, ξπ) and
R(x, ξπ) are given by

R(x, ξπ, b = 1) =
3

4ξ3π(1− x)3

(

2ξπ(1− x)(x− ξπ)

+x(1− ξπ)
[

x(1 + x)− 2ξπ

]

log
|x(1 + x)− 2ξπ|

x(1− ξπ)

)

, (3.126)

R(x, ξπ, b = 2) =
5

16ξ5
π(1− x)5

(

2ξπ(1− x)(x− ξπ)
[

3(x− ξ2
π − 5ξ2

π(1− x)2
]

+3x2(1− ξπ)2
[

x(1 + x)− 2ξπ

]2
log
|x(1 + x)− 2ξπ|

x(1− ξπ)

)

, (3.127)

I(x, ξπ) =
πΓ(2b+ 2)

22b+1Γ2(b+ 1)

(1− ξπ)b

ξ2b+1
π

1

(1− x)2b+1

(

2ξπ
1 + ξπ

− x
)b

xb. (3.128)

The function R(x, ξπ) is continuous in the full integration interval and has finite limits at x = 0
and x = 1. I(x, ξπ) vanishes at the endpoints of the integration region ensuring convergence.
It is a better ansatz to take b = 2, because the b = 1 strongly depends on the PDF for x→ 0,
which is unknown. Now we want to determine the imaginary and real part of the Compton
form factor of Eq. 3.122. For the positive charged pion, consisting of a u and a d̄ quark, the
valence and sea distributions vπ and q̄ π are given by

vπ = uπ
v + d̄π

v = 2(uπ − ūπ), (3.129)

q̄ π = ūπ = dπ. (3.130)
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Inserting these distributions into Eq. 3.122 we get the imaginary part

ImHπ(x, ξπ, tπ) = Fπ(tπ)

∫ 1

−1
dx I(x, ξπ)

(

4

9
(uπ + ūπ) +

1

9
(dπ + d̄π)

)

= Fπ(tπ)

∫ 1

−1
dx I(x, ξπ)

(

5

9

(

1

2
vπ + 2q̄ π

))

(3.131)

and for the real part

ReHπ(x, ξπ, tπ) =

∫ 1

−1
dx

(

R(x, ξπ)

(

4

9
uπ +

1

9
dπ

)

+R(x,−ξπ)

(

4

9
ūπ +

1

9
d̄π

))

(3.132)

of the Compton form factor. Now we have to include the pion quark distribution functions into
the Compton form factor. The valence density of the pion is experimentally well measured in
Drell-Yan dilepton production, whereas the sea-quark density is unconstrained so far.

3.6.1 Pion PDFs

First we consider a parametrization given by Glück, Reya and Schienbein (GRS) [107]. Ne-
glecting the strange quark content in the low resolution scale µ2

LO = 0.26GeV2 the constituent
quark independent relation given in [107] by GRS is

vπ(n, µ2)

vp(n, µ2)
=

q̄ π(n, µ2)

q̄ p(n, µ2)
=

gπ(n, µ2)

gp(n, µ2)
, (3.133)

where v, q̄ and g are the parton contents of the proton and pion with vp = up
v + dp

v, q̄ p =
(ū p + d̄ p)/2 for the proton and vπ = uπ+

v + d̄π+

v , q̄ π = (ū π+

+ d̄π+

)/2 and dπ+

v = ūπ+

v for the
positive charged pion. Besides Glück, Reya and Schienbein have taken the Mellin n-moments

v(n,Q2) ≡
∫ 1

0
xn−1v(x,Q2)dx, (3.134)

and similarly for q̄ and g. The better vπ is measured, the better the sea density for the pion
can be estimated. With the definition of s

s ≡ ln

[

ln[Q2/(0.204GeV)2]

ln[µ2
LO/(0.204GeV)2]

]

, (3.135)

the parametrization of the valence distribution in the kinematical range of 0.5GeV2 ≤ Q2 ≤
105 GeV2 and 10−5 ≤ x < 1 is given by

xvπ(x, µ2) = N xa
(

1 +A
√
x+Bx

)(

1− x
)D
. (3.136)

and the light sea-quark distribution is parametrized as

xq̄ π(x, µ2) =

[

xa
(

A+B
√
x+ Cx

)

(

ln
1

x

)b

+ sαexp

(

−E +

√

E′sβln
1

x

)]

(1− x)D (3.137)



3.6 Models for the pion GPD 61

The parameters are given in the Appendix C, Eqs. C.1 and C.2. We choose an input scale of
Q = 2GeV. Any next-to-leading order corrections are neglected in this work. To avoid the
simple tπ-factorized ansatz one can think of a model with a tπ-dependent GPD. To do that
we use a tπ-dependent pionic parton distribution function. The pionic parton distributions
including a tπ-dependence are parametrized as

vπ(x, tπ) = vπ(x) etπ f(|x|), (3.138)

q̄ π(x, tπ) = q̄ π(x) etπ f(|x|). (3.139)

For an optimal description of small, intermediate and large x the function f(x) is parametrized
as

f(x) = α′(1− x)3 log
1

x
+B(1− x)3 +Ax(1− x)2, (3.140)

with α′ = 0.9GeV−2. For the pionic parton distribution of GRS the parameters are A =
2.19GeV−2, B = −0.38GeV−2. For further detail see [104]. Another parametrization we
include is the Sutton, Martin, Roberts, and Stirling [108] parametrization. They give different
parametrization for various choices of the sea-quark distribution, where we choose a sea-quark
distribution of 15%. The parton distribution functions at Q2 = Q2

0 = 4GeV2 are

vπ = Avx
(α−1)(1− x)β, (3.141)

q̄ π = x(u+ d̄+ s̄) = As(1− x)ηs , (3.142)

assuming that u = d̄ = s̄. Appropriate parameters are α = 0.64, β = 1.08, As = 0.9 and
ηs = 5. We can add a tπ-dependence in the same way as for GRS, where the parameters for
the function f q(x) are A = 1.35GeV−2 and B = 0.58GeV−2. In Fig. 3.9 we show vπ and
q̄ π for the two models of Glück, Reya and Schienbein and of Sutton, Martin, Roberts and
Stirling to show the differences between them.

In Fig. 3.10 we show the real and imaginary parts of the Compton form factor for different
models. This shows, that the real part of the Compton form factor is sensitive to the different
models for small ξπ.

3.6.2 Pion form factor

To determine the pion Compton form factor including the pionic parton distribution without
a tπ-dependence we furthermore need the pion form factor Fπ, containing the tπ-dependence.
For very low values of Q2 up to Q2 = 0.28GeV2 it is experimentally measured by scattering
high energy pions off atomic electrons [109]. Going to higher Q2 one can study the reaction
ep→ e′π+n. This process can be treated as quasi elastic scattering of the electron off a virtual
pion from the proton. The longitudinal cross section is proportional to the pion form factor
in the t-pole approximation, [109]. Up to Q2 = 1.6GeV2 the data follow a monopole form.
Lattice data [110, 111, 112] are in good consistency with the data and show that a monopole
ansatz describes the pion form factor very well, also for higher values of Q2. It is seen that

Fπ(tπ) =
1

(

1− tπ
m2

mono

) (3.143)

gives a very good description of the data for mmono = 0.727(16)GeV [110].
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Figure 3.9: Pion PDFs at Q2 = 4 GeV2 on the left for the valence distribution and on the right for
the sea-quark distribution by Glück, Reya and Schienbein (green, dashed line) and by Sutton, Martin,
Roberts and Stirling (red, solid line).
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Figure 3.10: The upper three figures show the real parts of the Compton form factor integrated over x
for ξπ = 0.2, 0.3 and 0.4 from left to right and the lower three figures show the corresponding imaginary
parts. The red (solid) line refers to the tπ-dependent Glück, Reya and Schienbein parametrization for
the pion PDF, the green (dashed) line to the tπ-independent Glück, Reya and Schienbein parametriza-
tion for the pion PDF, the blue (dotted) line refers to the tπ-dependent parametrization by Sutton,
Martin, Roberts and Stirling for the pion PDF and the pink (small dotted) line to the tπ-dependent
Glück, Reya and Schienbein parametrization for the pion PDF, where the parameter b is set to 1. In
all previous cases b was equal to 2.
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3.7 Experimental extraction

In order to be able to measure the cross section several aspects have to be fulfilled. The
luminosity has to be sufficient and the acceptance and efficiency of the detector have to be
good enough. If the Compton amplitude of e p→ e′ π γ n can be experimentally extracted, we
can compare our results to the data. The Compton amplitude is sensitive to the theoretically
implemented model of the pion GPD. By inserting different models we can thus test their
reliability.

The experiments measure the DVCS contribution through the interference with the Bethe–
Heitler process. As we have seen in Eq. 2.84 the Bethe–Heitler contribution dominates in the
kinematics we consider.

One possibility to eliminate the Bethe–Heitler contribution is to take the difference of the
cross section for opposite beam charge or polarization. Hence we are left with a combination
of the Compton amplitude and the interference. A clean separation can for example be
achieved in experiments using electron and positron beams, because DVCS is linear in e l and
BH quartic, the interference term is projected out in the cross section differences and vanishes
in their sum.

The beam polarization asymmetry can be measured using a longitudinally (L) polarized
lepton beam and an unpolarized (U) target and is defined as

ALU(φ) =
dσ(−→e , φ)− dσ(←−e , φ)

dσ(−→e , φ) + dσ(←−e , φ)
, (3.144)

where the arrows indicate positive (→) and negative (←) beam helicity.
When the time intervals between the flipping of the beam spin is short enough, efficiency

and acceptance effects, which are not correlated to the beam spin, cancel out. This is valid
for asymmetries, but not for absolute cross sections. Therefore measuring asymmetries is less
susceptible to systematic effects than measurements of cross sections.

For proton DVCS this asymmetry is well known. It has a sinφ modulation and is pro-
portional to the imaginary part of the Compton form factor H in e p → e′ γ p and given
by

ALU(φ) ∼ F1 ImH sinφ. (3.145)

In the process e p→ e′ π γ n we have the analog asymmetry

ALU(φπ) ∼ Fπ ImHπ sinφπ. (3.146)

Experimental measurements of the beam polarization asymmetry associated with DVCS are
given in [113, 114] and are depicted in Fig. 3.11.

The beam charge asymmetry is defined as [104]

AC(φ) =
dσ(e+, φ)− dσ(e−, φ)

dσ(e+, φ) + dσ(e−, φ)
. (3.147)

It is approximately given by a cosφ dependence. Also this asymmetry is well known for
proton DVCS. It is proportional to the real part of the Compton form factor H in e p→ e ′ γ p
and given by

AC(φ) ∼ F1 ReH cosφ, (3.148)
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Figure 3.11: Figure taken from HERMES [113] showing the beam spin asymmetry ALU for hard
electroproduction of photons as a function of the azimuthal angle φ. The data correspond to the
missing mass region between -1.5 and +1.7 GeV. The dashed curve represents a sinφ dependence with
an amplitude of 0.23, while the solid curve represents the result of a model calculation taken from
[115]. The horizontal error bars represent the bin width, and the error band below represents the
systematic uncertainty.

for e p→ e′ π γ n we have the analogous asymmetry

AC(φπ) ∼ Fπ ReHπ cosφπ. (3.149)

Experimental results for the beam charge asymmetry of e p → e′ γ p are given in [76] and
shown in Fig. 3.12.

We consider in the following calculations of weighted cross sections which are defined as

Acos φπ

BCA =

∫

dφπ 2 cos φπ
dσBCA

dφπ
, (3.150)

Asin φπ

BPA =

∫

dφπ 2 sinφπ
dσBPA

dφπ
. (3.151)

This weighted beam charge (BCA) and beam polarization (BPA) cross sections will be com-
puted for the HERMES and CLAS experiments and their results will be presented in Sec.
3.9.1 and 3.9.2.

3.8 Theoretical and kinematical cuts for HERMES and CLAS

Now we consider the kinematics for HERMES at DESY and CLAS at JLab. A maximum
value of Q2 is experimentally given by

Q2
max,HERMES = 4GeV2 Q2

max, JLab = 8GeV2 (3.152)

while we chose a minimum value of

Q2
min = 2GeV2 (3.153)

to justify factorization as well as the approximations done in the calculation of the cross
section.
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Figure 3.12: Figure taken from HERMES [76] showing the beam charge asymmetry AC for the hard
electroproduction of photons off protons as a function of the azimuthal angle φ, for the exclusive
sample before background correction. Statistical uncertainties are shown. The dashed line shows the
pure cosφ dependence.

To stay in a physical regime values for t are constrained such that | cosϑn| ≤ 1 and this
leads to a minimum value t0 as given in Eq. 3.27. Furthermore we impose a maximum value
for |t| for two reasons, first to maximize the probability that the proton emits a pion and
not a heavier particle as for example the ρ meson and secondly to keep the virtuality of the
pion small to ensure the assumption to take the pion as on-shell for the calculation of the
scattering amplitude. The cross section is dominated by small values of |t|, therefore only a
small fraction of it is lost when imposing a constraint on t.

The boundary values for tπ (tπ,0 and tπ,1) follow from cosϑπγ
π′ = ±1. In the case of DVCS

we constrain to small tπ while we require large values for the TDA case. The boundary
conditions are given by

tπ,0 =
1

2sπ

[

−Q2(sπ +m2
π) + (sπ −m2

π)
(

t− sπ +
√

Q4 + (sπ − t)2 + 2Q(sπ + t)
)]

≈ xB( t (xB − xπ) +m2
πxπ)

(xB − xπ)xπ
, (3.154)

tπ,1 =
1

2sπ

[

−Q2(sπ +m2
π) + (m2

π − sπ)
(

sπ − t+
√

Q4 + (sπ − t)2 + 2Q(sπ + t)
)]

≈ −Q
2xπ

xB
(3.155)

in their exact form and in the Bjorken limit. But for DVCS we impose an upper cut on |tπ|.
As we will see in Chapter 4 constraining t is very important since off-shell effects become
more important for larger values of |t|.

Another integration variable is y, which is less then 0.85 in both kinematics. In the
considered Bjorken limit we find that y ' yπ, thus we do not reach the critical point επ → 0
in the Bethe–Heitler term. For both experiments we constrain

ymin = 0.15, (3.156)

ymax = 0.85. (3.157)
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Figure 3.13: Distribution of the energy versus the cosine of the scattering angle for the pion (left)
and the photon (right) in the proton rest frame. The distributions are shown for forward (red) and
backward (green) scattering.

Apart from that xB is constrained by the experiment as well and the allowed region is

0.01 < xB < 0.5 HERMES, (3.158)

0.1 < xB < 0.6 CLAS. (3.159)

We want to avoid final-state interactions, like further pion exchange, between the neutron
and the pion, and resonances. Therefore we require minimum momenta for the pion and the
neutron so that they do not have enough time close to each other to interact at all. This is
satisfied when we take a minimum value of W 2 which is bigger then just the mass of the final
state particles,

W 2 = (pq + pp)
2 > α (

√
sπ +mn)2, (3.160)

where α is chosen to be α = 1.1. We take a value bigger then 1 to impose some momentum
to the particles. In the HERMES experiment a lower limit is imposed

W 2 > 10GeV2. (3.161)

The variable xπ has to be bigger than xB. Due to kinematical and experimental constraints
on y and t, xπ is never reaching 1, thus we do not have to set an upper limit.

In order to get a sufficient detectability, the final-state pion and photon should be fast
enough. We require at least

sπ > 4GeV2. (3.162)

To get an idea where to find the scattered pion and photon in the lab frame we plot
cosϑ versus the corresponding energy for the pion and the photon. These points are created
numerically and represent the possible kinematical values. Fig. 3.13 a) shows cosϑπ versus
the energy of the pion Eπ in the proton rest frame. The ’+’ represent the scattering in
a kinematic regime, where tπ < −0.5GeV2 and the squares in the regime where we have
uπ < −0.5GeV2. Here one can see very well that we have two distinct regions for forward
and backward scattering which can be distinguished experimentally. In forward scattering



3.8 Theoretical and kinematical cuts for HERMES and CLAS 67

the pions have small energies of up to 2 GeV but a wide scattering angles, while they have a
large energy and very small polar angles for backward scattering. The same is shown in Fig.
3.13 b) for the photon. Here it is the other way round, in the forward scattering regime, the
photon has a high energy and a small deflection angle and in the backward regime it has small
energies up to 2 GeV and a broader scattering range. In both cases the two particles differ
considerably from each other. Due to their explicit distinction in momentum and energy they
can be distinguished in the detector.

For the two different experiments there are certain constraints on the threshold energy
and the scattering angles.

For HERMES these are

Eγ > 0.8GeV, (3.163)

Eπ > 1.0GeV. (3.164)

Constraints on the scattering angle in the HERMES detector are

2.3◦ < ϑπ < 11.5◦ (3.165)

and from the additional recoil detector, which is of particular interest for our scattering
process,

40◦ < ϑπ < 140◦. (3.166)

For CLAS 12 the minimum energies are

Eγ > 0.08GeV, (3.167)

Eπ > 0.2GeV (3.168)

and constraints on the scattering angles are

5◦ < ϑπ < 135◦, (3.169)

2◦ < ϑγ < 40◦. (3.170)

Furthermore CLAS has a better angular acceptance since it is a 4π detector while Hermes is
composed of two parallel layers in front of the target.

3.8.1 Pion and photon in the proton laboratory frame

To confirm the distributions of the pion and photon angles just discussed we make a Taylor
expansion of the energies and cosines of the particles in the proton rest frame. We expand
m2

p, m
2
n, m

2
π, t→ 0. Further on we take the limit tπ → 0 for forward and uπ → 0 for backward

scattering.
Treating first forward scattering gives for the pion

ER
π ≈ 1

2mpx2
π

[

(m2
π − tπ)xπ + 2 sinφπ

√

(t− t0)(1 − xπ)(xπ − xB)xπ(tπ − tπ0) +

t ( (2− xπxB − (1− xπ)xπ )
]

+O
(

m2

Q

)

, (3.171)

cosϑR
π ≈ 1− xπ(1− xπ

B)mp

ER
π

+O
(

m

Q

)

. (3.172)
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Here we have a pion with a small to medium energy and a scattering angle showing no strong
tendency. For the photon we get

ER
γ ≈ Q2

2mpxB
+O (m), (3.173)

cosϑR
γ ≈ 1−

2(1 − y)m2
px

2
B

Q2
+O

(

m4

Q4

)

. (3.174)

This shows that the photon has a huge energy and a very small scattering angle.
By interchanging pion and photon we find in the backward regime for the pion energy and

its polar angle

ER
π ≈ Q2

2mpxB
+O (m), (3.175)

cosϑR
π ≈ 1−

2m2
px

2
B(1− y)
Q2

+O
(

m2

Q2

)

. (3.176)

As we can read from Eqs. 3.175 and 3.176, this leads to high energy pions moving in the
forward direction.

For the photon we find

ER
γ ≈ sinφπ

√

(t− t0)(1 − xπ)(xπ − xB)(−uπxπ)

mpx2
π

+O
(

m2

Q

)

. (3.177)

cosϑR
γ ≈ 1−

2m2
pxπ(xπ − xB)

|uπ|
+O

(

m2

Q2

)

. (3.178)

In contrast to the pion the photon is left with a quite small energy and is scattered broadly.
These approximations are in good agreement with Fig. 3.13.

3.9 Results for the cross section and measurable asymmetries

3.9.1 Results for HERMES

In this section we give the expected cross section for the HERMES experiment at DESY. Ex-
perimentally the precision of measurements depends on the understanding of the systematics
of the detector and its statistical accuracy. The letter is determined by the available beam
current, the target density and the total measurement period weighted with a factor composed
of beam and target polarization and the ratio of polarized and unpolarized nucleons.

We computate the cross sections and asymmetries for different constraints and make use
of a numerical integration. The obtained values have thus an error due to the numerical
uncertainty. This error is of the order of 1− 2% and is not given explicitely below.

First of all we give the numerical result for deeply virtual scattering off a proton on
the one hand and a pion on the other hand. Without imposing any cuts, and taking
2GeV2 < Q2 < 4GeV2 and t > −0.5 the results for the Bethe–Heitler processes are

Q2 > 2GeV2 proton pion

BH 116 pb 132 pb
(T.3.1)
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This shows that the cross section for the pion is slightly bigger than the corresponding cross
section for the proton, which is due to the behavior of the form factors.

Now we do the numerical computations for the process e p → e′ π γ n starting from the
eight-fold differential cross section of Eq.3.116, performing the integration over the three polar
angles φπ, ψn and ψe, over the momentum transfers t and tπ and further on over Q2, y and
xπ. The integration limits have already been discussed in Sec. 3.8. We use for the calculation
two different models for the pion PDF. For the first model, J1, we take the pionic parton
distribution from Eqs. 3.136 and 3.137 [107] and include the form factor for a tπ-dependence.
We set the profile parameter b = 2. For the second model, J2, we add a tπ-dependence as
shown in Eqs. 3.138 and 3.139 to the parton distribution and hence do not need the form
factor to obtain a tπ-dependent GPD. Here again we take b = 2.

The contributions to the cross section, DVCS, BH and the two interference terms BCA
and BPA as well as the corresponding event rates for the HERMES experiment for a minimum
value Q2 of 2GeV2 are

Model J1 #/year Model J2 #/year

DVCS 126 fb 1190 130 fb 1229

BH 3207 fb 30306 3207 fb 30306

BCA -46 fb 435 -205 fb 1938

BPA 0 0 0 0

(T.3.2)

Since BPA is proportional to sinφπ the φπ integration leads to zero. This term does thus not
contribute to the total cross section. The value for the Bethe–Heitler cross section does not
depend on the parametrization of the PDFs and is thus independent of the model. Due to
the small luminosity of L = 3 · 1032 (cm2s)−1 [?] at HERMES the event rate per year is small.

To have realistic results we have to add constraints relevant for the HERMES detector.
First of all the particles must have a minimum energy as given in Sec. 3.8. As it is shown in
Fig. 3.13 a huge fraction of the pions have an energy below the threshold of 1.0GeV and we
are left with the reduced cross sections

Model J1 #/year Model J2 #/year

DVCS 30 fb 284 32 fb 302

BH 778 fb 7352 778 fb 7352

BCA -20 fb 189 -98 fb 926

(T.3.3)

Secondly the detector is limited in size and by taking into account only those reactions,
where the final-state pion and photon reach the detector (including the recoil detector) we
obtain

Model J1 #/year Model J2 #/year

DVCS 5.1 fb 48 3.8 fb 36

BH 118 fb 1115 118 fb 1115

BCA -0.2 fb 2 -2.1 fb 198

(T.3.4)
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DVCS and Bethe–Heitler cross sections can in principle be measured, but since experimen-
talists have a much better access to the weighted beam charge and beam polarization asym-
metries of Eqs. 3.150 and 3.151, we perform these weighted integrations and get the following
results for the two models

Model J1 #/year Model J2 #/year

Acos φ
BCA -46 fb 434 -22 fb 207

Asin φ
BPA -15 fb 141 -25 fb 236

(T.3.5)

This shows that we can expect approximately 1200 events per year for the cross section
and only up to 400 events for the weighted asymmetries. The measurement of cross sections
at HERMES is affected by uncertainties related to acceptance effects. These uncertainties
cancel to a large extent in the measurement of asymmetries. Thus, any comparison should
be done at the level of asymmetries. However, since the event rate per year is small, it
will be impossible to reach the statistical accuracy required for the measurement of these
asymmetries.

3.9.2 Results for JLab

Another possible experiment, where the process e p→ e′ π γ n can be measured, is the CLAS
experiment at JLab after the 12 GeV upgrade. The beam energy will be only 11GeV for
CLAS. Therefore the resulting center-of-mass energy is less then half of the center-of-mass
energy available at HERMES. But in contrast to HERMES the detector covers a 4π range.
Even more important, the luminosity at JLab is much higher, namely L = 1035(cm2/s)−1

[?]. In the calculation for JLab we use four different models. Two of them have already been
introduced in the last chapter but are recalled here for sake of completeness:

- Model J1: It contains the pionic distribution functions from Glück, Reya and Schienbein
[107]. The profile parameter b is set to b = 2. Furthermore we added a tπ-dependence (Eqs.
3.138 and 3.139) to the pionic distribution function.

- Model J2: It contains the pionic distribution functions from GRS [107] and b is set to
b = 2, but no further tπ-dependence is added to the pionic parton distribution. Instead of
that the tπ-dependence is provided by multiplying with the form factor as shown in Eq. 3.118.

- Model J3: It contains the pionic distribution functions from GRS [107] but b is set to
b = 1. A tπ-dependence is added to the pionic distributions.

- Model J4: This model contains the pionic distribution functions from Martin, Sutton,
Roberts and Stirling [108] and b is set to b = 2. A tπ-dependence is added to the pionic
distributions.

Compared to the first model we always change one part, either the tπ-dependence or b
or the parametrization of the pionic parton distributions. Hence it is easier to see the single
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effects. Since we do not take final-state interactions into account, we take a minimum value
for sπ of 4GeV2 and start with 2GeV2 < Q2 < 8GeV2. We immediately implement all
constraints on energies and angles required by the detector and obtain

Model J1 #/year Model J2 #/year

DVCS 6.9 fb 23310 5.8 fb 23259

BH 175.3 fb 552195 175.3 fb 552195

BCA -8.7 fb 27405 -8.6 fb 27090

(T.3.6)

Model J3 #/year Model J4 #/year

DVCS 8.5 fb 26775 5.1 fb 16065

BH 175.3 fb 552195 175.3 fb 552195

BCA -10.0 fb 31500 -17.8 fb 56070

(T.3.7)

In the case of JLab kinematics there are more than half a million events per year for the
e p→ e π γ n process. Hence we can constrain Q2 further and start at Q2 = 2.5GeV2. This is
desirable because theoretically we need high Q2 to justify factorization and to make approx-
imations valid in the Bjorken limit. This leads to

Model J1 #/year Model J2 #/year

DVCS 2.2 fb 6930 2.4 fb 7276

BH 60.2 fb 183948 60.2 fb 183948

BCA -1.9 fb 5985 -2.2 fb 6952

(T.3.8)

Model J3 #/year Model J4 #/year

DVCS 2.7 fb 8505 1.7 fb 5355

BH 60.2 fb 183948 60.2 fb 183948

BCA -2.4 fb 7560 -0.5 fb 1575

(T.3.9)

Due to the high luminosity we are still left with more then 180000 events per year. Aside
from Q2 we increase the minimum value for sπ > 5GeV2 to ensure that we do not take final
state interactions into account and get

Model J1 #/year Model J2 #/year

DVCS 0.5 fb 1874 0.5 fb 1874

BH 21.1 fb 66498 21.1 fb 66498

BCA -0.8 fb 2520 -0.4 fb 1264

(T.3.10)
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Model J3 #/year Model J4 #/year

DVCS 0.7 fb 2205 0.4 fb 1890

BH 21.1 fb 66498 21.1 fb 66498

BCA -0.8 fb 2520 -1.7 fb 2839

(T.3.11)

By cutting Q2 > 2.5GeV2 and sπ > 5GeV2 we are still left with about 70000 events per
year. These are enough events to analyze data, once they will be available.

In a next step we consider the resulting weighted cross sections as in the HERMES case.
We give the values for the weighted cross sections of Eqs. 3.150 and 3.151 and the percentage
of this cross sections compared to the Bethe–Heitler cross section. The DVCS and BCA
contributions are much smaller that the Bethe–Heitler part and they furthermore partly
cancel other. Thus the total cross section is approximately equal to the Bethe–Heitler cross
section.

For the first model the weighted cross sections are

Model J1 %

Acos φ
BCA -15 fb 8

Asinφ
BPA -67 fb 48

(T.3.12)

The weighted cross sections for the polarization is much bigger than the beam charge asym-
metry, but both of them are reasonably large. ABPA is close to 50% of the Bethe–Heitler term
and is large enough that it could be measured.

In the following we would like to compare the different models. First we will skip the
tπ-dependence (model J2) which gives

Model J2 %

Acos φ
BCA -11 fb 6

Asinφ
BPA -56 fb 32

(T.3.13)

Here we see that the weighted cross sections for the beam polarization is clearly smaller
than for the model J1. The third model leads to

Model J3 %

Acos φ
BCA -17 fb 10

Asinφ
BPA -71 fb 41

(T.3.14)

Here the percentage of Asin φ
BPA is bigger then for the first two models. Finally by changing

the pionic parton distributions we get
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Figure 3.14: The left figure shows the differential cross section in tπ for deeply virtual Compton
scattering and the right figure for the corresponding Bethe–Heitler process. The red (solid and pluses)
line refers to the model J1, the green (dashed and crosses) line to model J2, the pink (small dotted
and squares) line to model J3 and the blue (dotted and stars) line to model J4.

Model J4 %

Acos φ
BCA -31 fb 17

Asinφ
BPA -53 fb 30

(T.3.15)

This comparison shows that we get significantly different numbers for the considered models.
Comparing these results to experimental data will show which model gives the best descrip-
tion of the data. As before we can now further constrain the value of Q2. We set Q2

min

to 2.5GeV2 and show the results for the weighted cross sections and the percentage of the
corresponding Bethe–Heitler term for all four models

Model J1 % Model J2 % Model J3 % Model J4 %

Acos φ
BCA -3.4 fb 6 -4 fb 7 -4 fb 7 -8.3 fb 10

Asinφ
BPA -21 fb 35 -21 fb 35 -26 fb 43 -38 fb 35

(T.3.16)

For 30% of the Bethe–Heitler term, there are 57000 events per year. Since this number
is high enough we proceed by taking the condition sπ > 5GeV2 and obtain

Model J1 % Model J2 % Model J3 % Model J4 %

Acos φ
BCA -1.3 fb 6 -1.4 fb 7 -1.5 fb 7 -2.6 fb 12

Asinφ
BPA -6.2 fb 30 -5.8 fb 28 -7.3 fb 35 -6.1 fb 29

(T.3.17)

If we take the first model J1 the weighted cross sections Asinφ
BPA is 30% of the Bethe–Heitler

cross section which means that there are about 23000 events per year.
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Figure 3.15: The two plots show the differential cross sections in tπ for the weighted interference terms,
on the left side Asin φπ

BCA and on the right side Acos φπ

BPA . Labeling as in Fig. 3.14.
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Figure 3.16: The left figure shows the differential cross section in xπ for deeply virtual Compton
scattering and the right figure for the corresponding Bethe–Heitler process. Labeling as in Fig. 3.14.
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Fig. 3.14 shows the tπ-dependence of the DVCS and Bethe–Heitler cross sections including
all cuts for JLab kinematics and Q2 > 2.5GeV2, sπ > 4GeV2 and tπ > −0.9GeV2. The
decrease for small |tπ| in the differential DVCS cross section is due to the applied cuts. The
plots show very well the expected decrease of the differential cross section for decreasing tπ.

To see what we expect from the experiment we show in Figs. 3.15 and 3.17 the weighted
differential asymmetries for tπ and xπ for the different models. These asymmetries show very
clearly the differences of the models, especially for the beam charge asymmetry. Furthermore
these plots show that the beam polarization asymmetry is bigger than the beam charge
asymmetry, which is in consistency with experimental results of electroproduction of photons
off protons. Unfortunately there is no positron beam at JLab, therefore it is not possible
to measure a beam charge asymmetry there. Nevertheless, results for the beam polarization
asymmetry are theoretically very interesting and hence presented here.

The behavior for xπ is shown in Fig. 3.16. Here we see that xπ contributes to the differential
cross section roughly below 0.5. To see where this maximum originates from we recall that
we have an upper limit on t. This implies a maximum value for xπ

xπ < xπ,max =
1

2

[
√

( |t|max

m2
p

)2

+ 4
|t|max

m2
p

− |t|max

m2
p

]

≈ 0.5. (3.179)

A further constraint is that we impose lower cuts on sπ and Q2. From this we obtain in the
Bjorken limit the approximated expression

xπy ≈ sπ +Q2

s
, (3.180)

which implies a lower limit on xπ

xπ,min ≈ sπ,min +Q2
min

ymaxs

≈ 0.35. (3.181)

This lower limit is not reached in the differential cross section. But having these two limits
on xπ we understand, that the range of xπ is constrained.

Since the event rate at JLab is high we can now reduce the maximum value of |t| further.
This is important to ensure that we take into account only the one-pion exchange. Taking
the Bethe–Heitler process as an example we show the changes of the cross section for different
upper limits on |t|

t > −0.5GeV2 t > −0.3GeV2 t > −0.2GeV2

Q2 : 2 . . . 8GeV2 175 fb 56 fb 6.8 fb

Q2 : 2.5 . . . 8GeV2 65 fb 5.8 fb 0 fb

(T.3.18)

A cross section of 5 fb still corresponds to approximately 15000 events per year. Thus reduc-
ing |t|max is an option that can be taken into account. But of course it is desirable to gain
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more events per year. Therefore we consider ymax once more. In the formula for the energy
of the scattered electron in the proton rest frame

Ee′ = Ee(1− y) (3.182)

y governs the energy of the scattered electron. If we take ymax = 0.95 while the beam en-
ergy is 11 GeV we are left with Ee′ = 550MeV. Assuming that this energy is high enough
to detect the electron we could rise the event rate by increasing ymax. For the dominating
Bethe–Heitler cross section and the measurable beam polarization asymmetry the results are
for t > −0.3GeV2 and 2GeV2 < Q2 < 8GeV2

ymax 0.95 0.9 0.85

BH 369 fb 144 fb 59 fb

Asin φ
BPA -10.7 fb -6.1 fb -3.6 fb

(T.3.19)

and for t > −0.3GeV2 and 2.5GeV2 < Q2 < 8GeV2

ymax 0.95 0.9 0.85

BH 117 fb 32 fb 5 fb

Asinφ
BPA -2.1 fb -0.9 fb 0 fb

(T.3.20)

Here we have to make a compromise of what we would like to impose theoretically and
what can be performed experimentally. In any case we can gain a sufficient event rate.

The computed values for the cross sections and asymmetries can be compared to the
experiment after the upgrade at JLab will be made and data are analyzed. In addition to the
models presented here it is possible to implement further available models. Experiments will
then show which one fits best.

In addition we show in Fig. 3.18 and 3.19 the differential cross sections and asymmetries in
t. These plots include all cuts explained in Sec. 4.7 and sπ > 4GeV2, 2.5GeV2 < Q2 < 8GeV2

and tπ > −0.9GeV2. The left side of Fig. 3.18 shows the differential cross section for DVCS
and the right side for Bethe–Heitler. In both cases we see the decrease for decreasing t. Further
more these plots show very clearly that there is no contribution for t > −0.2GeV2. This is in
agreement with the results of T.3.18 where we get no cross section for t > −0.2GeV2. In Fig.
3.19 the weighted asymmetries show very clear the differences of the implemented models.

The results manifest that we get a sufficient event rate for CLAS. Thus the process
e p→ e π γ n offers a possibility to investigate the pion GPD Hπ. Besides we implemented dif-
ferent models which can be distinguished in the weighted asymmetries very well. The CLAS
experiment can provide important measurements in the future to determine Hπ and reveal
the inner structure of the pion.
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Figure 3.18: The left figure shows the differential cross section of ep → e′πγn in t for deeply virtual
Compton scattering and the right figure for the corresponding Bethe–Heitler process. Labeling as in
Fig.3.14.
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Chapter 4

Electron deuteron scattering

Before considering any scattering processes involving the deuteron we will give a brief sum-
mary how the deuteron, the nucleus of the deuterium, was discovered.

In order to remove the discrepancy between different mass measurements of hydrogen
Birge and Menzel [116] proposed in 1931 the existence of an isotope, the deuterium. This
hypothesis was experimentally confirmed some months later [117]. The deuteron has been of
great interest since then. It is the only stable two-nucleon bound state and therefore very
interesting for nuclear theory. Already in 1933 deuterons were used as accelerated projectiles
[118, 119] and the first photodisintegrations γd → pn were measured in 1934 [3]. At that
time it was thought that the nucleus was composed of protons and electrons, the only known
charged particles. This idea was supported by the observation that nuclei emit electrons
through β-decay. Furthermore the electrons were meant to cancel some of the positive charge
of the proton. Even after the discovery of the neutron [3], shortly after the discovery of the
deuteron, this problem was not settled, since the first assumption of the neutron was that it is
composed of an electron and a proton. Only after accepting the Fermi theory of the β-decay
[120, 121] the electron-proton model of the neutron began to abandon.

In this chapter we will first briefly discuss basic properties of the deuteron and introduce
its GPDs and the wave function to finally compute the total cross section of the process
e d→ e′ p γ n.

4.1 Basic properties of the deuteron

The deuteron is a very weakly bound particle. It does not have excited states, since these
states are not bound anymore. Its binding energy can be obtained by measuring the γ-rays
coming from radiative np capture with thermal nucleons [122]. It is precisely measured in
different ways which are in very good agreement and it is found to be

Ebin = 2.22463(4)MeV. (4.1)

Besides the deuteron mass is measured very precisely

md = 1.87614(19)GeV. (4.2)
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Combining the binding energy and the mass of the deuteron leads to a precise determination
of the neutron mass via [123]

mn = md −mp +Ebin. (4.3)

= 939.56536(8)GeV (4.4)

From electron scattering experiments the charge radius of the deuteron is known to be about
2.1 fm [122].

The total angular momentum of the deuteron J is composed of the nucleon spins and
their orbital angular momentum L

~J = ~sp + ~sn + ~L. (4.5)

Using photometry Murphy and Johnston [124] determined the molecular spectrum of deu-
terium and concluded that the spin of the deuteron is J = 1, which is in agreement with the
further experimental measurements. Since the nucleon spins can either add up to 0 or 1 the
orbital angular momentum can take not only L = 0. There are four ways to obtain a total
angular momentum of one:

• ~sp and ~sn parallel with L = 0,

• ~sp and ~sn antiparallel with L = 1,

• ~sp and ~sn parallel with L = 1,

• ~sp and ~sn parallel with L = 2.

But since the parity of the deuteron is even, the L = 1 state is excluded, because parity
associated with orbital motion is (−1)L. Hence we are left with the s-wave (L = 0) and the
d-wave (L = 2) having parallel spin.

Furthermore the deuteron has isospin I = 0. In conclusion it is a spin triplet and an
isospin singlet.

4.1.1 Magnetic moment of the deuteron

One important property of the deuteron is its magnetic dipole moment. First measurements
were already made in 1934 by Rabi [125]. Considering only the L = 0 part would lead to a
magnetic moment just equal to the sum of the magnetic moments of the nucleons

µd = µp + µn = 0.879804µN , (4.6)

where µN is the nuclear magneton. In contrast to that, the observed value is 0.8574376(4)µN

which is a slight deviation from the measured value. This discrepancy can be ascribed to the
small admixture of the d state (l = 2) in the deuteron wave function

ψd = asψ(L = 0) + adψ(L = 2). (4.7)

Therefrom the magnetic moment follows to be

µd = a2
sµ(L = 0) + a2

dµ(L = 2), (4.8)

where µ(L = 0) is given in Eq. 4.6. Comparing this result to the measured value a good
consistency is obtained from a2

s = 0.96 and a2
d = 0.04.
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4.1.2 Electric quadrupole moment of the deuteron

A further significant feature is the electric quadrupole moment Qd of the deuteron, which
neither the proton nor the neutron possesses and hence must come from the L = 2 contri-
bution. This quadrupole moment was discovered in 1939 [126] and has the consequence that
the nuclear force cannot be central but has to be more complex.

The proton-neutron interaction depends on the orientation of their spins to each other as
well as their spin orientation with respect to the line passing through the two nucleons. This
explains the quadrupole moment and indicates that the proton distribution in the deuteron
ground state is extended in the direction of the total spin of the system. The quadrupole
moment is given by

Qd =
1

20

∫ ∞

0
dr r2w(r)

(√
8u(r)− w(r)

)

. (4.9)

Calculations of the quadrupole moment need relativistic potentials and lead to an admixture
of the d-wave of a few percent, which is consistent with the value deduced from the magnetic
dipole. Although there is a good agreement for the admixture of the d-wave for µd and Qd

the percentage of the admixture for the magnetic moment is quite uncertain. The nucleons
in the deuteron are neither free nor strongly bound, other effects like spin-orbit interactions,
relativistic effects and meson exchanges can as well have an effect on µd, but may also cancel
each other. Scattering experiments verify a d-wave admixture in the range of 4%. For further
details see [127].

4.2 Deuteron in exclusive processes

In the scattering process where an electron scatters off the deuteron, the deuteron can either
serve as a source of weakly bound protons and neutrons or it acts as a single particle. In
the latter case the deuteron stays intact after the scattering. This occurs in a non negligible
fraction of events and is studied e.g . in [128, 129, 130] but will not be further considered in
this thesis. We investigate the incoherent case where the deuteron breaks up.

A simple approach to model deuteron scattering is that the interaction takes place with
one quark of one of the nucleons while the other nucleon is just a spectator. This is known
as impulse approximation and depicted in Fig. 4.2. Possible kinematical scattering regions
are shown in Fig. 4.1. In our work we use the impulse approximation and retain only lowest
Fock-space states in the deuteron wave function. Then the deuteron light-cone wave function
can be linked to the non-relativistic deuteron wave function, which we are going to use in the
numerical calculations.

To describe scattering processes involving the deuteron we introduce relevant kinematical
variables, the GPDs and the form factors of the deuteron.

4.2.1 Kinematics

In the following we present the required deuteron variables, which will be labeled with a
subscript d to distinguish from proton variables used before,

Pd =
1

2

(

pd + pd′

)

, ∆d = pd − pd′ , ξd = −∆d · n−
Pd · n−

, td = ∆2
d. (4.10)
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(a) (b) (c)

Figure 4.1: Kinematical regions for scattering off a deuteron, a) shows the emission and reabsorption
of a quark, b) the scattering off a quark-antiquark pair and c) off a nucleon-antinucleon pair which is
highly suppressed due to the high invariant mass of the nucleon pair.

Figure 4.2: Impulse approximation for electron-deuteron scattering

Furthermore the deuteron has the polarization vectors εd(pd, λd) and εd′(pd′ , λd′) with the
polarization λd, λd′ of the initial- and final-state deuteron, respectively. These vectors fulfill
the conditions

εd · pd = εd′ · pd′ = 0. (4.11)

Positivity of ∆2
d,⊥ implies a minimal momentum transfer td,0 for fixed ξd

td,0 = −4ξ2dm
2
d

1− ξ2
d

(4.12)

while for a given td there is an upper boundary for ξd

ξ2d ≤ −td
4m2

d − td
. (4.13)

In addition we label the momentum transfer t between the initial and final active nucleon
from Eq. 1.34 with tp to emphasize that it belongs to the nucleon.

4.2.2 Deuteron GPDs

Theoretical arguments for applying factorization theorems for the nucleon target are also
valid in the deuteron case and hence a formalism for deuteron GPDs can be developed [131].
The deuteron is the simplest and therefore best known nucleus, after the proton, and is thus
an optimal starting point to investigate hard exclusive scattering off nuclei [132, 133, 134].
Scattering experiments involving the deuteron are e.g . made at HERMES (DESY) and CLAS
(JLab) and data are published in [135, 136].

The GPDs for the deuteron are nonperturbative matrix elements of quark-antiquark oper-
ators on the light-cone. These matrix elements determine the DVCS amplitude on a spin-one
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target. Their general decomposition given in [130] can be written in terms of nine GPDs Hi

and H̃i ,

Vλd,λd′
=

∫

dκ

2π
eixκ2Pd·n−

〈

pd′ , λd′
∣

∣ψ̄d(−κ · n−) /γ ψd(κ · n−)
∣

∣pd, λd

〉

=
5
∑

i=1

ε∗βd′ V
(i)
β,α ε

α
d Hi(x, ξd, td), (4.14)

Aλd,λd′
=

∫

dκ

2π
eixκ2Pd·n−

〈

pd′ , λd′
∣

∣ψ̄d(−κ · n−) /γ γ5 ψd(κ · n−)
∣

∣pd, λd

〉

=
5
∑

i=1

ε∗βd′ A
(i)
β,α ε

α
d H̃i(x, ξd, td), (4.15)

where |pd, λd〉 represents the deuteron state of momentum pd and polarization λd.

The tensors V (i) and A(i) depend on pd, pd′ and n−. Applying parity invariance it turns out

that V
(i)
β,α are linear combinations of five tensor structures while A

(i)
β,α are linear combinations

of seven tensors but only four of them are independent [128, 129, 130].

In a symbolic way the matrix elements of Eqs. 4.15 and 4.14 can be expressed as a convo-
lution of the deuteron wave function ψd and the corresponding nucleon GPDs

Vλd,λd′
(x, ξd, td) ∼ ψ∗

d′(α
′, ~k′⊥, λ

′
1, λ

′
2)⊗H,E(x, ξ, t) ⊗ ψd(α

′, ~k⊥, λ1, λ2), (4.16)

Aλd,λd′
(x, ξd, td) ∼ ψ∗

d′(α
′, ~k′⊥, λ1, λ

′
2)⊗ H̃, Ẽ(x, ξ, t) ⊗ ψd(α

′, ~k⊥, λ1, λ2), (4.17)

where α = p+
2 /p

+
d is the plus-momentum carried by the initial active nucleon, labeled with

the index 2, and k⊥ is its transverse momentum in a frame where the the total transverse
momentum of the deuteron vanishes.

4.2.3 Deuteron form factors

The vector and axial currents for the spin-one deuteron are parametrized by the elastic form
factors Gi, G̃i [137].

〈

pd′
∣

∣ψ̄(0)γµψ(0)
∣

∣pd

〉

= −G1(td)ε
∗
d′εd P

µ
d +G2(td)

[

εµd (εd′ · Pd)

+ε∗µd′ (εd · Pd)
]

−G3(td)(εd · Pd)(ε
∗
d′ · Pd)

P µ
d

2m2
d

(4.18)

〈

pd′
∣

∣ψ̄(0)γµγ5ψ(0)
∣

∣pd

〉

= −iG̃1(td)ε
µ
αβγε

∗α
d′ ε

β
dP

γ
d

+iG̃2(td)ε
µ
αβγ∆α

dP
β
d

εγd(ε∗d′ · Pd) + ε∗γd′ (εd · Pd)

m2
d

(4.19)
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These form factors are given by the first x-moments of the deuteron GPDs as in to the nucleon
case

∫ 1

−1
dxHi(x, ξd, td) = Gi(td), i = 1, 2, 3, (4.20)

∫ 1

−1
dx H̃i(x, ξd, td) = G̃i(td), i = 1, 2, (4.21)

∫ 1

−1
dxH4(x, ξd, td) = 0, i = 4, 5, (4.22)

∫ 1

−1
dx H̃3(x, ξd, td) = 0, i = 3, 4. (4.23)

In the case of H4,H5, H̃3 and H̃4 the first moments do not correspond to form factors of the
local vector and axial vector currents and thus they vanish. The form factors are related to
the charge monopole GC , the magnetic dipole GM and the charge quadrupole GQ moments:

G1(td) = GC(td)−
2

3
η GQ(td), (4.24)

G2(td) = GM (td), (4.25)

(1 + η)G3(td) = GM (td)−GC(td) + (1 +
2

3
η)GQ(td), (4.26)

with η = Q2

4m2
d

which are normalized as

GC(0) = 1, (4.27)

GQ(0) = m2
dQd, (4.28)

GM (0) =
md

mp
µd. (4.29)

Experimental values are GM (0) = 1.714 and GQ(0) = 25.38 [138].

4.2.4 Helicity amplitudes

In the region ξd < x < 1 the GPDs can be represented in terms of scattering amplitudes of a
quark in a deuteron [139]

Aλd′±,λd± =
1

2
(Vλd,λd′

+Aλd,λd′
) (4.30)

with the condition
A−λd′−µ,−λd−µ = (−1)λd′−λdAλd′µ,λdµ. (4.31)

From parity invariance it follows that there are nine independent quark helicity amplitudes.
Since

A0−,0− = (−1)0−0A0+,0+, (4.32)

there are only four quark helicity dependent distributions H̃i but five quark helicity indepen-
dent distributions Hi and the number of the amplitudes is reduced by one. Time invariance
does not reduce the number any further and leads to the condition

A(x, ξd, td)λd′µ,λdµ = (−1)λd′−λdA(x,−ξd, td)λd′µ,λdµ. (4.33)
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H2,H4 and H̃4 appear only in longitudinal deuteron polarization. Moreover, there are the
gluon distributions in the deuteron as presented in [131]

4
(n−)α · (n−)β

P · n−

∫

dκ

2π
eixκ2Pd·n−

〈

pd′ , λd′ |Fαµ(−κn−)F β
µ (κn−)|pd, λd

〉

=
∑

i

ε∗βd′ V
(i)
βα ε

α
dH

g
i (x, ξd, td), (4.34)

− 4
(n−)α · (n−)β

P · n−

∫

dκ

2π
eixκ2Pd·n−

〈

pd′ , λd′ |Fαµ(−κn−)F̃ β
µ (κn−)|pd, λd

〉

=
∑

i

ε∗βd′ A
(i)
βαε

α
d H̃

g
i (x, ξd, td) (4.35)

where F̃αβ = 1
2ε

αβγδFγδ and the tensors V (i), A(i) are as for the quarks given in Eqs. 4.14 and
4.15.

The Q2 behavior of the amplitudes and the selection rules for photon and meson helicity in
ed→ edγ and ed→ edM respectively, remain the same. This is because they depend only on
the hard scattering kernel and do not depend on the target spin. All distributions appear in
Compton scattering. Pion exchange does not contribute here, in contrast to the nucleon case
where it gives information about Ẽq

p . The interference term gives for higher Q2 information
about linear combinations of GPDs weighted with the electromagnetic form factors G1,2,3(t).

4.3 Deuteron wave function

The wave function describes the physical state of the deuteron. It can be expanded in terms
of s- and d-wave functions. We adopt the notation given in [138]:

ψM (~r) =
u(r)

r
Y1M

01 (θ, φ) +
w(r)

r
Y1M

21 (θ, φ), (4.36)

where u(r)/r and w(r)/r are the radial wave functions and YJM
LS (θ, φ) the spin spherical

harmonics [138]

YJMd

LS (θ, φ) =
∑

mL,mS

〈J,Md|L,mL;S,mS〉YLMd
(θ, φ) |S,mS〉 . (4.37)

YLM are the spherical harmonics (given in Appendix B) and 〈J,Md|L,mL;S,mS〉 are the
Clebsch-Gordon coefficients. |S,mS〉 represents the deuteron state with spin S and its third
component mS . The reduced radial wave functions u(r) and w(r) give the probabilities for
the s- and d-state, respectively, which are given by

Ps =

∫ ∞

0
u2(r)dr, Pd =

∫ ∞

0
w2(r)dr. (4.38)

Altogether they need to fulfill

Ps + Pd = 1. (4.39)
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Due to short range repulsion the radial wave function u(r)/r is significantly reduced at r <
1 fm. For a given local potential the radial wave functions can be obtained from the coupled
Schrödinger equation [123]

(

d2

dr2
− γ2

)

u(r) = m
(

V00(r)u(r) + V02(r)w(r)
)

(4.40a)

(

d2

dr2
− γ2 − 6

r2

)

w(r) = m
(

V20(r)u(r) + V22(r)w(r)
)

, (4.40b)

where m is twice the reduced mass of the proton and the neutron

m =
2mpmn

mp +mn
. (4.41)

In momentum space the deuteron wave function is given by

ΨMd

d (~qr) = ψ0(qr)Y1Md

01 (ϑ, φ) + ψ2(qr)Y1Md

21 (ϑ, φ), (4.42)

where qr is the relative momentum of the deuteron. The normalization is given by
∫ ∞

0
dqr q

2
r

(

ψ2
0(qr) + ψ2

2(qr)
)

= 1. (4.43)

The s- and d-wave functions ψ0(qr) and ψ2(qr) are also obtained by a coupled Schrödinger
equation

ψ0(qr) = − m̄

γ2 + q2r

∫

dq′r q
′2
r

(

V00(qr, q
′
r)ψ0(q

′
r) + V02(qr, q

′
r)ψ2(q

′
r)
)

(4.44a)

ψ2(qr) = − m̄

γ2 + q2r

∫

dq′r q
′2
r

(

V20(qr, q
′
r)ψ0(q

′
r) + V22(qr, q

′
r)ψ2(q

′
r)
)

, (4.44b)

which can be solved by matrix inversion [140] and are linked by a Fourier transform. The
variable γ of Eq. 4.42 is given by [123]

γ2 =
4m2

pm
2
n − (m2

d −m2
p −m2

n)2

4m2
d

. (4.45)

We have plotted the numerical solution from Schiavilla [?] for the s- and d-waves which are
depicted in Fig. 4.3 in configuration and momentum space. These will also be used in our
numerical calculation of the cross section.

4.3.1 Deuteron potential

To determine the wave function we need to know the potential of the deuteron. The interaction
between the two nucleons is in lowest order composed of an attractive central potential, which
depends only on the distance ~r between the two nucleons. Since there is no spin singlet state of
the deuteron, the potential is strongly spin dependent. Thus there is a term for the potential
depending on certain combinations of the nucleon spins. Applying parity and time reversal,
the potential has the form

V (r) = −
(

~sp · ~sn

~
− 1

4

)

V1(r) +

(

~sp · ~sn

~
+

3

4

)

V2(r), (4.46)
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Figure 4.3: Deuteron wave function including the Argonne v18 potential in a) configuration space and
in b) momentum space including the s-wave (green, dashed line) and d-wave (red, solid line).

with Vi giving separately the singlet and triplet behaviors, and ~sp and ~sn being the proton
and neutron spin, respectively [127].

Wave functions with mixed orbital angular momentum states result from a non-central
potential. This is called tensor potential. It depends on ~r instead of r. Without loss of
generality the tensor contribution to the inter-nucleon potential can be chosen to be of the
form VT (r)S12, where VT (r) gives the force, the radial dependence and magnitude while the
tensor character is given by

S12 =
3(~sp · ~r)(~sn · ~r)

r2
− ~sp · ~sn. (4.47)

This leads to a deformation of the order of a few percent. The exchange of a virtual pion
gives rise to the tensor potential. Due to parity conservation and the intrinsic negative parity
of the pion there are two possibilities to conserve the total angular momentum, either the
emitting and receiving nucleons must recoil with l = 1 or they must reverse their initial spin
direction. Besides the deuteron potential becomes repulsive at short distances. This prevents
the nucleus from getting to dense which is especially important in heavier nuclei.

The two bound nucleons inside the deuteron are not on their mass-shell. Therefore the
calculation of the binding energy, which is needed for relativistic corrections of the potential,
involves off-shell nucleon-nucleon interactions. This off-shellness is empirically underestimated
and can only be provided from theory [141]. Despite a lot of work it has not been possible to
assess the off-shell problem to the binding energy of a nucleus. Progress on that problem was
made in nuclear few-body physics, e.g . by the Nijmegen [142, 143] and Argonne [?] groups.

In this thesis we are using the deuteron wave functions including the Argonne v18 potential
[?, 144], which we will briefly discuss here.

4.3.1.1 Argonne v18 potential

The Argonne v18 potential [144] consists of a charge independent part with 14 operator com-
ponents, three additional charge dependent operators and one charge asymmetric operator,
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Figure 4.4: Deuteron cross section in the case where the deuteron breaks up.

with an electromagnetic interaction. This electromagnetic interaction contains the Coulomb
potential, the Darwin-Foldy potential which gives a correction to central potential, vacuum
polarization and magnetic moment terms with finite size effects, and in total 40 adjustable
parameters. The Argonne v18 potential fits np, pp, low-energy nucleon-nucleon scattering
parameters and deuteron properties.

The strong interaction potential is given in terms of S, I, I3 which are spin, isospin and
the third component of the isospin of a nucleon-nucleon pair, respectively. The predominant
isospin conserving part of the nucleon-nucleon interaction is written as a linear combination
of components proportional to the two isoscalars 1 and ~τi ~·τj , [145], but moreover it also
contains isospin breaking terms. Charge symmetry breaking terms are required for isovector
(τi,z + τj,z) and isotensor (3τi,zτj,z − ~τi ~·τj) structures. The full nucleon-nucleon interaction
is the sum of a (dominant) isoconserving strong interaction, electromagnetic interaction and
finally additional isospin-breaking terms.

4.4 Deuteron state

The deuteron state is represented by
∣

∣

∣
ΨMd

d

〉

, where Md is the projection of the total angular

momentum along the z-axis. In terms of the partial wave basis, the deuteron state in the
basis of total helicity is given by

∣

∣

∣
ΨMd

d

〉

= |I〉
∑

L=0,2

∫ ∞

0
dqr q

2
r |qr(L, 1) 1Md〉 ψL(qr)

= |I〉
∑

L=0,2

∫ ∞

0
dqr q

2
r |1Md〉 ψL(qr). (4.48)

|I〉 represents the isospin state of the deuteron. The deuteron state projected to momentum
space is [146]

〈

q̂
∣

∣

∣Ψ
Md

d

〉

= ΨMd

d (~qr), (4.49)

where q̂r = ~qr/|qr| represents the angular dependence. Now ΨMd

d (~qr) can be expressed in terms
of the spin spherical harmonics and the deuteron wave function (Eq.4.42) in momentum space.
In the following formulas isospin will be omitted, since it is zero for the deuteron and does
not effect the following calculations.
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As mentioned in Sec. 4.1, the deuteron has J = 1 as well as S = 1, while the orbital
angular momentum can either be zero or two. Expanding the wave function in terms of
orbital angular momentum leads to

ΨMd

d (~qr) = Y00(q̂r) |1Md〉ψ0(qr)

+

{
√

(2−Md)(3−Md)

20
Y2,Md−1(q̂r) |11〉

−
√

(2−Md)(2 +Md)

10
Y2,Md

(q̂r) |10〉

+

√

(2 +Md)(3 +Md)

20
Y2,Md+1(q̂r) |1− 1〉

}

ψ2(qr). (4.50)

We can separate for the single components of Md

Ψ1
d(~qr) = Y00 |11〉ψ0(qr) +

(

√

1

10
Y20 |11〉 −

√

3

10
Y21 |10〉+

√

3

5
Y22 |1− 1〉

)

ψ2(qr),

Ψ0
d(~qr) = Y00 |10〉ψ0(qr) +

(

√

3

10
Y2−1 |11〉 −

√

2

5
Y20 |10〉 +

√

3

10
Y21 |1− 1〉

)

ψ2(qr),

Ψ−1
d (~qr) = Y00 |1− 1〉ψ0(qr) +

(

√

3

15
Y2−2 |11〉 −

√

3

10
Y2−1 |10〉

+

√

1

10
Y20 |1− 1〉

)

ψ2(qr). (4.51)

The states |1Md〉 in the Eq. 4.51 describing the deuteron are obtained from the coupling of
the two nucleons using Clebsch-Gordon coefficients. In general this is

|1Md〉 = C(sp, sn, S,mp,mn,Md) |spmp〉 |snmn〉 (4.52)

and more explicitely we have

|1 1〉 =

∣

∣

∣

∣

1

2

1

2

〉 ∣

∣

∣

∣

1

2

1

2

〉

=

∣

∣

∣

∣

1

2

1

2

〉

, (4.53)

|1 0〉 =
1√
2

(∣

∣

∣

∣

1

2

1

2

〉 ∣

∣

∣

∣

1

2
− 1

2

〉

+

∣

∣

∣

∣

1

2
− 1

2

〉 ∣

∣

∣

∣

1

2

1

2

〉)

=
1√
2

(∣

∣

∣

∣

1

2
− 1

2

〉

+

∣

∣

∣

∣

−1

2

1

2

〉)

, (4.54)

|1 − 1〉 =

∣

∣

∣

∣

1

2
− 1

2

〉 ∣

∣

∣

∣

1

2
− 1

2

〉

=

∣

∣

∣

∣

−1

2
− 1

2

〉

, (4.55)

|0 0〉 =
1√
2

(∣

∣

∣

∣

1

2

1

2

〉 ∣

∣

∣

∣

1

2
− 1

2

〉

−
∣

∣

∣

∣

1

2
− 1

2

〉 ∣

∣

∣

∣

1

2

1

2

〉)

=
1√
2

(∣

∣

∣

∣

1

2
− 1

2

〉

−
∣

∣

∣

∣

−1

2

1

2

〉)

, (4.56)

the state |0 0〉 is of course not relevant in the deuteron case.
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(a) (b)

(c) (d)

Figure 4.5: This figure shows the structure of the upper blob of the deuteron cross section from Fig.
4.4 which includes the active quark only for a) Compton scattering, b) Bethe–Heitler process and c,d)
the two appearing graphs in the interference term.

4.5 Electron-deuteron cross section

For the cross section we need the matrix element | 〈pn|O|d〉 |2 where the operator describes
the upper blob in Fig. 4.4, which is shown in detail in Fig. 4.5. We express the state 〈pn| by
its spin state and average over the deuteron polarization and obtain

1

3

∑

Md=Md′

∑

m1=m1′

〈SmS(pn)|O|d〉 〈SmS(pn)|O|d〉∗

=
1

3

∑

Md=Md′

∑

m1=m1′

〈SmS(pn)|O|d〉 〈d|O|S mS(pn)〉 , (4.57)

where m1 is the polarization of the spectator nucleon. The spectator nucleon does not change
its spin. Now |SmS(pn)〉 is the state of the proton and the neutron representing their spins.
The operator O contains the GPDs in case of nucleon DVCS, nucleon form factors in case of
BH or both when considering the interference term. Now we insert the coupled state of the
two nucleons from Eq. 4.52 and the explicit form of the deuteron state from Eq. 4.51 and sum
over the deuteron polarization as well as the spectator nucleon polarization

1

3

∑

Md=Md′

∑

m1=m1′

〈SmS(pn)|O|d〉 〈d|O|S mS(pn)〉
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=
1

3

{[

〈

m2′

∣

∣

∣
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∣

∣

∣

1
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1
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〉
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Y00ψ0

)2
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3

20

(

Y21ψ2

)2
+

1

10

(

Y20ψ2
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+

√

1

10
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(md=1)

+
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〈

m2′

∣

∣

∣

∣

O
∣

∣

∣

∣

− 1

2
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−1

2

∣

∣

∣

∣

O
∣

∣

∣

∣

m2′

〉

(

3

5

(

Y22ψ2

)2
+

3

20

(

Y21ψ2

)2
)]

(md=1)

+

[

〈

m2′

∣

∣

∣

∣

O
∣

∣

∣

∣

1

2

〉〈

1
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∣
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∣

O
∣

∣

∣

∣
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〉

(

1

2
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Y00ψ0

)2
+

1

5

(

Y20ψ2

)2

+
3
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Y2−1ψ2

)2
−
√

1

5
Y00Y20ψ0ψ2
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+

[

〈
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∣

∣
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∣

∣

∣

∣
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O
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Y20ψ2
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−
√

1
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+
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∣

∣
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∣

∣

∣
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∣

O
∣
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∣
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(

3
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(

Y2−1ψ2
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3

5
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+
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〈
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∣
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O
∣

∣

∣

∣

− 1
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−1
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∣
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∣

O
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∣

∣

∣
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〉

(

(

Y00ψ0

)2
+

1
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Y20ψ2
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+

3
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(

Y2−1ψ2
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+

√

1
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Y00Y20ψ0ψ2

)]

(md=−1)

}

, (4.58)

where the subscript 2′ labels the final-state active nucleon. We are left with the wave functions,
the spherical harmonics and a matrix element with only one free parameter m2′ . Mixing terms
involving the matrix elements

〈

m2′ |O|12
〉 〈

−1
2 |O|m2′

〉

or
〈

m2′ |O| − 1
2

〉 〈

1
2 |O|m2′

〉

occur for all
contributions of Md, but they always cancel each other and so they do not appear in the final
result. Rearranging Eq. 4.58 leads to the simpler form

1

3

∑

Md=Md′

∑

m1=m1′

〈SmS(pn)|O|d〉 〈d|O|S mS(pn)〉

(4.59)
=

(〈

m2′

∣
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∣

∣

O
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∣

∣

∣

1
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〉〈
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∣
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∣

∣
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〉

+
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∣

∣
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∣

∣
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∣

∣
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∣

∣

∣

m2′
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×
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0

1

2
(Y00)

2 + ψ2
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1

10

∣

∣Y20
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∣

2
+

1

5

∣
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∣

2
+

1

5

∣
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∣

∣

2
)

+ ψ0ψ2
1

3

(

√

1

10
−
√

1

5

)

Y00Y20

)

.

For simplicity let us now take into account the s-wave ψ0 of the deuteron only, where we
have L = 0. In this case Eq. 4.58 simplifies to

1

3

∑

Md=Md′

∑

m1=m1′

〈SmS(pn)|O|d〉 〈S mS(pn)|O|d〉∗
∣

∣

L=0
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. (4.60)

Only certain spin combination can contribute because the spin of the nucleon taking place in
the interaction has to conserve its spin. In the case of a s-wave there is no orbital angular
momentum that could balance a spin flip of the nucleon. Furthermore the final-state photon
is real and therefore we have in leading order only transverse photons. Thus we are left with

1
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∣

− 1

2
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(4.61)

which describes scattering off an unpolarized nucleon.

In the center-of-mass frame of the electron-deuteron system the deuteron moves along the
z-axes. Thus the polar angle ϑd of the deuteron is zero, which implicates that the spherical
harmonics Y21 and Y22 dissappear. In this kinematic regime only the two contributions in Eq.
4.58 involving Y 2

00 and Y 2
20 survive. The d-wave ψ2 is suppressed compared to ψ0, especially

for very low energy values the d-wave is negligible [123], which can be seen very clearly in Fig.
4.3. The term containing ψ2 is further suppressed by a factor of 1/5 compared to the term
containing ψ0, as seen in Eq. 4.59. Hence the s-wave contribution strongly dominates.

For our calculation of the total cross section we can decompose the differential cross
section into the phase space element, the flux factor and the scattering off one of the nucleons.
Electron-deuteron scattering includes two possibilities, either the proton or the neutron acts
as the active quark. To start with we choose scattering off the proton and keep the neutron as
a spectator nucleon. Then the neutron spin is fixed. Since the s-wave contribution strongly
dominates, we neglect the d-wave contribution. Averaging over the deuteron spin leads to

1

3

∑

Md=Md′

∑

mn=mn′

dσ(ed→ epγn)

dQ2 dyd dψe′ dtd dxp dψn dtp dφp

= Φd
4 Fed

∑′

spins

|Tep|2 C2(sp, sn, S,mp,mn,mS) ηdψ
2
0(q)Y

2
00(q̂)

≈ 1

4

xp

(2π)3
1

2
ηdψ

2
0(q)Y

2
00

dσ(ep→ ep′γ)
dQ2 dyp dtp dφp ψe

, (4.62)

where ηd is a correction factor for relativistic effects in the deuteron wave function. This is
needed because we are using a non-relativistic wave function in our numerical computations.
It ensures that in the case where the deuteron wave function is replaced by a δ-function we
have the relation

∫

dσ(ed→ enpγ)

dQ2 dyd dψe′ dtd dxp dψn dtp dφp
dtd dxp dψn =

dσ(ep→ ep′γ)
dQ2 dyp dtp dφp ψe

+
dσ(en→ en′γ)

dQ2 dyn dtn dφn ψe
. (4.63)
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To obtain ηd we substitute dtd dxp dψn by d3qr, tp by qr and the wave function by a δ-function

d3pn

2En
=

1

4
dtd dxp dψn =

d3qr
8En

, (4.64)

td = m2
d +m2

n −
√

4m2
dm

2
n +m2

dq
2
r , (4.65)

ψ2
0 = 4πδ(|~qr|), (4.66)

while xp is approximately 1/2. Taking into account for the moment only the scattering process
off the proton and using the abbreviation dΓ5 = dQ2 dyd dψe′ dtp dφp leads to

∫

dσed

dΓ5 d3pqr

d3qr =

∫

d3qr
1

4En

1

32(2π)4
ηd4πδ(|~qr |)

!
=

dσep

dΓ5
. (4.67)

Therefrom we get

ηd =
1√
s

16(2π)3
(

1

2
(s−m2

d) + 2mdmn

)

. (4.68)

Eq. 4.62 includes the differential cross section for scattering off a proton which is well-
known and given e.g . in [79],

dσ(ep→ ep′γ)
dQ2 dyp dtp dφpdψe′

=
1

Fep
Φp

3 |Tep|2. (4.69)

For the total cross section we need in addition the scattering off a neutron.

Since the deuteron is a loosely bound particle, the cross section of the electron-deuteron
scattering should be approximately equal to the sum of the scattering off a proton plus
scattering off a neutron. Therefore we determine the total cross sections of all of these
processes and compare the results.

The deuteron can be used as a quasi-free neutron target. From the interference term of
Eq. 3.110 being proportional to

F1H+ ξ(F1 + F2)H̃ −
t

4m2
p

F2E (4.70)

it is obvious that in proton DVCS the GPDs H q and H̃q dominate, because the form factor F1

is much bigger than F2. But for the neutron the situation changes, F1 is much smaller than
F2 and hence the leading term is F2E . The GPD Eq is basically unknown and unconstrained
and thus the least known GPD accessible in DVCS. A measurement of neutron DVCS allows
a flavor decomposition of GPDs. Moreover Eq and Hq enter Ji’s sum rule on equal footing
which gives an interesting insight on the nucleon orbital angular momentum. Thus neutron
DVCS and therefore deuteron DVCS is highly relevant to reach new information on the GPDs.
First experimental constraints on the GPD Eq expressed in terms of a constraint on the quark
angular momentum are given in [?, ?].

To calculate nucleon DVCS we need the corresponding GPDs as an input. Thus we start
by giving a model for these GPDs.
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4.6 Modeling nucleon GPDs

In this section we are presenting the model assumptions we use for the nucleon GPDs, im-
plemented in e d → e′ γ pn cross section. As in the pion case we use the double distribution
ansatz. Therefore we need the parton distributions and the form factors of the nucleons. For
the GPDs H and E we need the unpolarized nucleon PDFs, in the case of H̃ and Ẽ the
polarized PDFs are involved. In this case we take into account only a tp-dependent model,
because such a model is more realistic.

4.6.1 Unpolarized nucleon PDFs

In [147] Pumplin et al give a model for the unpolarized parton distribution functions of a
quark in the nucleon (CTEQ6M). Describing the data at a value of a low energy input scale
Q0 = 1.3GeV the functional form of the unpolarized distribution is

x q(x,Q0) = A0x
A1(1− x)A2eA3x(1 + eA4x)A5 , (4.71)

with independent parameters for the different parton flavor combinations uv = (u− ū), dv =
(d − d̄) and ū + d̄, including the assumption s = s̄ = 0.2 (ū + d̄) at Q0. PDFs of higher
Q are determined by evolution equations. But for energies at experiments we consider in
this work, no further evolution is necessary. To distinguish ū and d̄ distributions the ratio is
parametrized as

d̄(x,Q0)

ū(x,Q0)
= A0x

A1(1− x)A2 + (1 +A3x)(1− x)A4 . (4.72)

All numbers Ai are given in Appendix C.3.
To obtain a tp-dependent GPD, without using the tp-factorized ansatz, we adopt the for-

malism used for the pion. The tp-dependent PDFs are constructed by making an exponential
ansatz [104]

q(x, tp) = q(x) etpfq(|x|), (4.73)

where the function fq(x) is given by

fq(x) = α′(1− x)3 log
1

x
+Bq(1− x)3 +Aqx(1− x)2, (4.74)

with Au = 1.22, Ad = 2.59, Bu = 0.59 and Bd = 0.59.
In analogy the ansatz for the GPD E can be taken by the PDF

eq(x, tp) = eq(x) etpgq(|x|) (4.75)

where eq(x) is the forward limit eq(x) = Eq(x, tp = 0). It is normalized in a way that it gives
the contribution of the quark flavor q to the anomalous magnetic moment

∫ 1

0
dx eq(x, tp = 0, µ) = κq. (4.76)

The function eq(x) can be approximated by

eq(x) = Nqκqx
−α(1− x)βq (4.77)
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including

Nq =
Γ(2− α+ βq)

Γ(1− α)Γ(1 + βq)
, (4.78)

while gq(x) has the same form as fq(x) in Eq. 3.140,

gq(x) = α′(1− x)3 log
1

x
+Dq(1− x)3 + Cqx(1− x)2. (4.79)

The free parameters are given in Appendix C.4 and are taken from [148].

4.6.2 Polarized nucleon PDFs

A parametrization for the polarized PDFs is e.g . given by Blümlein and Böttcher [149, 150].
At an input scale of Q2

0 = 4.0GeV2 they are parametrized as

x∆fi(x,Q
2
0) = ηiAix

ai(1− x)bi

(

1 + γix+ ρix
1
2

)

. (4.80)

There are two factors controlling the behaviors of x, namely xai controlling the low-x behavior
and (1− x)bi for large x. The Ai are the normalization constants

A−1
i =

(

1 + γi
ai

ai + bi + 1

)

B(ai, bi + 1), (4.81)

B(a, b) =
Γ(a)Γ(b)

Γ(a+ b)
, (4.82)

where B(a, b) is the Euler-Beta function. They are chosen in a way that they fulfill the
condition ηi =

∫ 1
0 dx∆qi(x,Q

2
0). The parameters needed to determine the polarized parton

densities are given in Appendix C.5. The polarized valence distributions read

∆uv(x) = ∆u(x)−∆ū(x), (4.83)

∆dv(x) = ∆d(x)−∆d̄(x), (4.84)

1

6
∆Q̄(x) = ∆q̄(x) = ∆ū(x) = ∆d̄(x) = ∆s(x) = ∆s̄(x). (4.85)

We would like to implement a tp-dependence in the parton distribution as we did for the
unpolarized distribution, by using the ansatz

∆qv(x, tp) = ∆qv(x) e
tp f̃q(x) (4.86)

with the profile function f̃ q(x) being equal to f q(x) in Eq. 4.74.

4.6.3 Nucleon Compton form factors

The electron-proton cross section is parametrized by the Compton form factors (CFF), which
themselves contain the GPDs. They are a key ingredient of the cross section and therfore
presented below. Recalling the definition of the Compton form factors from Eqs. 3.90 and
3.91 as well as the integrals Iq, I q̄ and Ĩq, Ĩ q̄ from Eqs. 3.120 and 3.121 we can now compose
the CFF of the nucleon

H(x, ξ, t) =
∑

e2q
(

Iq + I q̄
)

=
4

9

(

Iu + I ū
)

+
1

9

(

Id + I d̄
)

, (4.87)
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which contain the parton distribution functions. This can be done in an analogue way for the
GPDs H̃ and E while for Ẽ we have

Ẽ = Iq + I q̄. (4.88)

Ẽ has no imaginary part since it is only defined between −ξ and ξ and does not exceed the
poles. For the GPD Ẽ we take the parametrization

lim
t→m2

π

Ẽu−d(x, ξ, t) =
θ(|x| ≤ ξ)

2ξ
φ

(

x+ ξ

2ξ

)

2mpfπgπNN

m2
π − t

, (4.89)

with the pion decay constant fπ = 0.131GeV and the coupling gπNN = 14.7 as before. Here
we implement the pion distribution amplitude, given by [106]

φ(z) = 6z(1 − z). (4.90)

4.7 Theoretical and kinematical cuts for CLAS

We perform the numerical integration including kinematical and boundary conditions of the
CLAS experiment at JLab after the upgrade. At CLAS the limits on Q2 are given by

Q2
min = 1GeV2 Q2

max, JLab = 8GeV2. (4.91)

For the integration we take a minimal value of

Q2
min = 2GeV2. (4.92)

For the momentum transfer between the nucleons involved in the electron-nucleon scattering
part, we have the boundary conditions

tp,0 =
1

2sp

[

−Q2(sp +m2
p) + (sp −m2

p)

(

td − sp +
√

Q4 + (sp − t)2d + 2Q(sp + td)
)]

≈
xB( td(xB − xp) +m2

pxp)

(xB − xp)xp
, (4.93)

tp,1 =
1

2sp

[

−Q2(sp +m2
p) + (m2

p − sp)

(

sp − td +
√

Q4 + (sp − td)2 + 2Q(sp + td)
)]

≈ −Q
2xp

xB
(4.94)

in their exact form and in the Bjorken limit. This shows that the minimum value tp,0 is
function linear in td. We will see the importance of this td-dependence in Sec. 4.8.

The main contribution to the cross section is coming from values of xp around 0.5, depicted
in Fig. 4.7. Therefore we need to impose no constraints on xp.
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Figure 4.6: Distribution of the energy versus the cosine of the scattering angle for the scattered protons,
electrons and photons.

The variable y is constrained by the experiment

0.15 < y < 0.85. (4.95)

The upper cut on y is due to the detectability of the electron. The angle of the scattered
electron is given by

sin2 ϑe′

2
=

Q2

4E2
e (1− y) (4.96)

which shows that the angle gets large for large values of y. These cannot be detected anymore.

Experimental cuts for xB are

0.1 < xB < 0.6. (4.97)

Finally we have to constrain td. Due to cosϑd < |1| we get a minimum value for td

td,0 = − xp(m
2
d −m2

n −m2
dxp)

1− xp
. (4.98)

We take un upper cut of td,max = −0.5GeV2 which will be discussed in more detail in Sec.
4.8.

To get an idea how the energies and scattering angles of the final-state particles are
distributed we plot these values as shown in Fig. 4.6. These points are created within the
vegas routine in the numerical program. The plots show that the scattered protons are spread
over a wide scattering range having a small energy, while the scattered electron and photon
both have a large energy and small scattering angle.

4.8 Cross section results

Since the deuteron is a loosely bound particle, its cross section should be approximately equal
to the sum of the corresponding proton and neutron cross sections. Therefore we start with
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giving the results for the nucleon (N) cross sections

∫

dσeN

dtNdQ2dyNdφNdψe′
dtNdQ

2dyNdφNdψe′

=

∫

1

FeN
ΦN

3 |TeN |2dtNdQ2dyNdφNdψe′ . (4.99)

The scattering amplitudes of the proton were given in Sec. 3.3.2.1 and are obtained for the
neutron by replacing the form factors and GPDs. Adopting the boundary conditions from
electron-deuteron scattering in Sec. 4.7 for electron-proton scattering for Q2, xB and y, with
an upper cut of tp at −0.5GeV2, the results are:

proton neutron

DVCS 18.5 pb 7.9 pb

BH 103.6 pb 21.8 pb

BCA -5.1 pb -0.2 pb

(T.4.1)

We see that the Bethe–Heitler contribution for the proton strongly dominates while it is
much smaller in the neutron case.

Now we integrate out the differential electron-deuteron cross section as given in Eq. 4.62.
In this calculation we require sp > 4GeV2. In electron-deuteron scattering the electron scat-
ters either off the proton or the neutron and we give these results separately. They have to
be added to obtain the complete electron-deuteron cross section.

deuteron: proton neutron

DVCS 18.6 pb 8.0 pb

BH 74.9 pb 17.0 pb

BCA -3.6 pb -0.8 pb

(T.4.2)

Here we see, that the DVCS cross sections are in good agreement with the results for DVCS
off a nucleon, while the Bethe–Heitler cross section is suppressed. Therefore we consider the
Bethe–Heitler amplitude in more detail. It reveals an implicit dependence on td. This is be-
cause the Bethe–Heitler amplitude depends on ξp = xp

B/(2− x
p
B) and (tp − tp,0)/tp and these

variables than again depend on td and xp. So we see that the implemented BH amplitude
of electron-nucleon scattering exhibits a td-dependence. This has to be treated with care. In
electron-deuteron scattering td is the virtuality of the active nucleon, which we chose for this
discussion to be the proton. Approaching the on-shell proton leads to td → m2

p. First of all
we show in Fig. 4.7 the distribution of td and xp and see that xp is scattered around 0.5, while
the dominating contribution of td is given for td > 0.4GeV2. We show in Fig. 4.8 a) the td-
dependence of the squared Bethe–Heitler amplitude for two different beam energies. Because
we expect that the off-shell effect is weaker for higher center-of-mass energies we show the
td-dependence for s = 50GeV2 and additionally for s = 500GeV2. The plot confirms that the
BH amplitude decreases stronger for s = 50GeV2. It shows very clearly the steep dependence
on td. In addition to that we show in Fig. 4.9 the td-dependence for the variables xp

B and
(tp−tp,0)/tp appearing in the Bethe–Heitler amplitude as shown in Eq. 3.106. Here we can see
that the td-dependence of xp

B is very weak for large s, but is significantly stronger for small
s. In the case of (tp − tp,0)/tp there is in both cases a clear td-dependence, but it is again
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Figure 4.7: Distribution of td and xp in electron-deuteron scattering.
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Figure 4.8: Bethe–Heitler amplitude squared in the relevant range of td and qr for Q2 = 2.25 GeV2,
ψe′ = ψn = 0, xB = 0.15, xp = 0.5 and tp = −0.41 GeV2. The solid line is the td-dependence at a
center-of-mass energy of s = 50 GeV2 and the dashed line of s = 500 GeV2.

stronger for s = 50GeV2. Hence the Bethe–Heitler part of the cross section decreases due to
the decrease of (tp − tp,0)/tp, which plays an important role due to the factor of (tp − tp,0)/tp
in the Bethe–Heitler amplitude. In contrast to this there is no such term in the DVCS case,
hence we get no deviation from electron-proton scattering in the DVCS cross section.

There is a simple connection between td and the relative momentum of the deuteron qr

given by

td = m2
d +m2

n −
√

4m2
dm

2
n +m2

dq
2
r . (4.100)

Thus we can also consider the squared amplitude of the Bethe–Heitler process depending on
the relative momentum qr instead of td. We show the same plots as for td also for qr. The
dependence is weak for a higher center-of-mass energy, which is shown in Fig. 4.8 b). We show
the Bethe–Heitler term up to qr = 0.5, because we need to keep qr small compared to md. In
addition to that we also present the qr-dependence of xp

B and (tp − tp,0)/tp which also shows
that the qr-dependence is stronger for an lower energy as depicted in Fig. 4.10. To keep the
off-shell effect small we have to keep the relative momentum of the deuteron small which is
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equivalent of having td close to m2
p.

To limit this td- or qr-dependence we replace the deuteron wave function by a narrow
gaussian distribution, which should then reduce this effect and lead to bigger values for the
Bethe–Heitler contribution to the cross section. By inserting a gaussian distribution, fG1,
normalized in the same way as the deuteron wave function

fG1

(

|~pqr |2
)

=
1√

0.0004431
exp

[ −|~pqr |2
0.02GeV2

]

, (4.101)

and taking a minimum value for td of 0.8GeV2 we obtain

proton neutron

DVCS 19 pb 8.3 pb

BH 100.8 pb 20.5 pb

BCA -4.3 pb -0.7 pb

(T.4.3)
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These results are already much closer to those in table T.4.1. Now we reduce the width
of the gaussian distribution further

fG2

(

|~pqr |2
)

=
1√

0.00015666
exp

[ −|~pqr |2
0.01GeV2

]

and get

proton neutron

DVCS 19.5 pb 8.2 pb

BH 104.2 pb 22.5 pb

BCA -4.9 pb -0.5 pb

(T.4.4)

This shows that DVCS and BH are in good agreement with scattering off a single nucleon.
Moreover, the cross section reaches very high numbers equivalent to 300 million events per
year which is a very good starting point for an analysis.

When neglecting off-shell effects we have the result that the electron-deuteron scattering is
approximately equal to the sum of electron-proton and electron-neutron scattering. Although
we have seen that the off-shell effects are not negligible in the Bethe–Heitler case they do not
effect DVCS. Thus, regarding the GPDs, we can still treat the off-shell nucleon inside the
deuteron as on-shell and adopt the on-shell GPDs. Thus we have a process where we can test
the GPDs of the neutron. As in the case of e p → e′ π γ n we can now implement different
models for the GPDs and compare our results to experimental data, when available, to see
the liability of the models. We have seen how significantly the Bethe–Heitler cross section
depends on the off-shellness, hence we have to keep the virtuality of the proton (or neutron)
very small.

HERMES offers another possibility to measure electron-deuteron scattering. Data are
already taken but not yet analyzed. Therfore the computation of the cross section can in the
near future also be made for the HERMES experiment.
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Chapter 5

Summary and outlook

In this work we have investigated two exclusive processes, e p → e′ π γ n and e d → e p n γ.
They give us the possibility to access GPDs, which are important objects to further reveal
the inner structure of hadrons.

After an overview of the general framework we introduced GPDs. We then showed how
GPDs are related to the well known form factors and PDFs. For our studies we implemented
models for GPDs, in particular for the pion and the nucleons. At the end of Chapter 2 we
examined different processes giving the opportunity to access GPDs. We summarized the
different quark and flavor combinations of GPDs occurring in each process and showed how
they can be related using isospin symmetry.

In Chapter 3 we analyzed the exclusive process e p → e′ π γ n. We introduced the kine-
matics and derived the differential cross section in terms of a pion GPD convoluted with the
hard scattering kernel. Even though it is non-trivial to extract the GPDs from data, relevant
experiments are performed at DESY and JLab. We numerically computed cross sections and
asymmetries using four different models and found that the asymmetries display sizable dif-
ferences for the distinct models. For phenomenological applications, it is important to assess
to which extent the cross section and asymmetry measurements are influenced by the design
of an experiment, in particular its luminosity, and the imposed kinematical constraints.

The last section in Chapter 3 focused on the result of the cross section of this exclusive
electron-proton scattering process, where we have taken into account the two different ex-
periments, HERMES at DESY and CLAS at JLab. For HERMES the luminosity is low and
the detector is placed behind the colliding point. Thus the particles that should be detected
must be located in a small range of forward angles and have energies greater than a thresh-
old energy. Slow pions are especially difficult to detect. Implementing these constraints we
obtain a very small event rate per year. It would thus not be possible to reach the statistical
accuracy required for the measurements. In contrast to that, the CLAS detector at JLab is a
4π detector and covers the region around the target, thus not many events are lost. Although
the beam energy will only be 11 GeV after the planned JLab upgrade, the high luminosity
makes it possible to detect several 104 events per year. Here we studied in detail how the
cross section changed when varying the kinematical constraints and to what extent the results
depend on the implemented models for the GPD. The values for the cross sections and the
corresponding event rates show that it is possible to measure this cross section at CLAS.
In addition to the cross section we have computed weighted asymmetries. These are easier
to measure because acceptance and efficiency uncertainties of the detector cancel to a large
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extent. We got reasonable values for both, the beam polarization and beam charge asymme-
tries. Experimental results of electroproduction of photons off protons at HERMES show that
the beam polarization is larger than the beam charge asymmetry. The results we obtained
for BCA and BPA show the same behavior. Our work clearly shows that this measurement
can significantly help to constrain the GPD of the pion, which gives a unique insight into the
structure of the pion.

In Chapter 4 we investigated the process e d → e p γ n after a brief discussion of the
deuteron. We showed analytically how to derive the differential cross section by implementing
the nucleon form factors, the nucleon GPDs and the deuteron wave function. This process
was studied for the CLAS detector at JLab. We computed the total cross section which is
supposed to be approximately equal to the sum of the processes e p→ e′ p′ γ and e n→ e′ n′ γ.
The deuteron target can be used as a quasi-free neutron target. There is an obvious interest
in neutron DVCS because it allows a flavor decomposition of GPDs. Measurements are
mandatory since neutrons are more sensitive to the d quarks than protons.

Our results show that off-shell effects play an important role for the Bethe–Heitler cross
section. Due to a kinematic factor in the Bethe–Heitler amplitude, its cross section is signif-
icantly suppressed. We found that this effect can be limited by replacing the deuteron wave
function with a narrow gaussian distribution. In that case the result was then approximately
equal to the sum of electron-proton and electron-neutron scattering. But we also saw, that
the off-shell effects influence only the Bethe–Heitler process and not DVCS. Therefore it is
still possible to use the on-shell GPDs for the off-shell nucleons inside the deuteron. Electron-
deuteron scattering provides a substantive way to investigate the GPDs of the neutron, which
is of special interest for the very reason that the neutron is an instable particle. It leads to a
better comprehension of the nucleon properties as for example the composition of the nucleon
spin.

Using the results of Chapter 4 it is possible to implement further models for nucleon
GPDs. Then these models can be elaborated by comparing to future data. Besides the CLAS
experiment, we will focus our attention in the near future on the HERMES experiment. At
HERMES data of electron-deuteron scattering were already taken. Therefore, the calculation
will be made for the HERMES experiment as well. Once the data are analyzed a comparison
with our calculations can be made and the implemented models can be improved.



Appendix A

Light-cone coordinates

To describe deep inelastic processes it is useful to introduce light-cone coordinates. The
coordinate system is chosen in a way, that the momenta of the target

(

pp

)

µ
and of the hard

probe qµ possess only non vanishing components in time and in one space dimension, usually
the z-axis. It is useful to define two light-like four-vectors

n+ = 1√
2









1
0
0
1









, n− = 1√
2









1
0
0
−1









, (A.1)

with (n+)2 = (n−)2 = 0, and n+ · n− = 1. These vectors are unit vectors on the light-cone.
In general every four-vector can be decomposed according to

aµ = (a · n+)(n−)µ + (a · n−)(n+)µ + (a⊥)µ. (A.2)

Light-cone vector components are defined through

aµ = [a+, a−,~aT ] =
[a0 + a3

√
2

,
a0 − a3

√
2

, a1, a2
]

, (A.3)

where a1 and a2 are the transverse components. Furthermore, it is valid in each frame of
reference, that a+ = a · n− , a− = a · n+.



Appendix B

Spherical harmonics

Analytic expressions for the spherical harmonics needed in Chapter 4 are

Y00(q̂) =
1√
4π
, (B.1)

Y20(q̂) =

√

5

16π

(

3 cos2 θ − 1
)

, (B.2)

Y21(q̂) = −
√

15

8π
cos θ sin θ eiφ, (B.3)

Y22(q̂) =

√

15

32π
sin 2φ ei2φ. (B.4)

To obtain those functions including negative quantum number m the simple relation

Yl,−m = (−)mY ∗
l,m (B.5)

can be used.



Appendix C

Details for PDF fits

The partonic parametrization of the valence quarks from Glück, Reya and Schienbein[107]
include the parameters

N = 1.21 + 0.487s+ 0.009s2,

α = 0.517 − 0.020s,

A = −0.037 − 0.578s,

B = 0.241 + .0251s,

D = 0.383 + 0.624s (C.1)

and for sea-quarks

α = 1.147,

a = 0.309 − 0.134
√
s,

A = 0.219 − 0.054s,

C = 1.100 − 0.452s,

E = 4.521 + 1.583s,

β = 1.241,

b = 0.893 − 0.264
√
s,

B = −0.593 + 0.240s,

D = 3.526 + 0.491,

E′ = 3.102. (C.2)

Free parameters for the unpolarized PDFs used for the numeric calculations from [147] we
needed for the unpolarized PDF q(x) using the following parameters:
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A0 A1 A2 A3 A4 A5

uv 1.7199 0.5526 2.9009 -2.3502 1.6123 1.5917

dv 1.4473 0.6160 4.9670 0.8408 0.4031 3.0000

ū+ d 0.0616 -0.2990 7.7170 -0.5283 4.7539 0.6137

d/ū 33657.8 4.2676 14.8586 17.0000 8.6409 -

(C.3)

and for the unpolarized PDF e(x), taken from [148] the parameters are:

βq Cq Dq α

u 3.99±0.22 1.22GeV−2 (0.38 ± 0.11)GeV−2 0.55

d βu + 1.6 2.59GeV−2 −(0.75 ± 0.05)GeV−2 0.55

(C.4)

Free parameters for the polarized PDFs used for the numeric calculations from [149]are:

ηi ai bi γi

uv 0.926 0.197 2.403 21.34

dv -0.341 0.19 3.24 30.8

q̄ -0.353 0.367 8.51 0

(C.5)
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