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Abstract

In this thesis, correlated quantum transport through small quantum dot systems in
contact with two metallic, non-magnetic leads is studied. To investigate the interplay of
nonequilibrium quantum transport and relaxation (due to the dissipative environment)
in this mesoscopic open quantum system, a perturbative diagrammatic approach is used
and a numerically exact scheme based on the fermionic path integral is considerably
extended.

In the first part of the thesis, the complex conductance signatures of a quantum dot
with one spin-split single-particle level are studied in the cotunnelling regime at low tem-
peratures. The regime of weak dot-lead tunnel coupling is tackled with the real-time di-
agrammatic transport theory. The single-electron Coulomb-blockade valley (Coulomb
diamond) can be subdivided into parts differing in at least one of two respects: the
kind of tunnelling processes, which (i) determine the single-particle occupations and
(ii) mainly contribute to the current. No finite systematic perturbation expansion of
the occupations and the current can be found that is valid within the entire Coulomb
diamond. Therefore, a non-systematic solution is constructed, which is physically cor-
rect and perturbative in the whole cotunnelling regime, while smoothly interpolating
between the different regions. With this solution the impact of a spin-flip relaxation
on transport is investigated. In particular, the study focuses on peaks in the differential
conductance that mark the onset of cotunnelling-mediated sequential transport. It is
shown that these peaks are maximally pronounced at a relaxation which is roughly as
fast as sequential tunnelling.

The second, main part of this work provides a numerically exact analysis of the
stationary charge current and the nonequilibrium quantum dynamics of a spatially
fixed spin-1/2 magnetic impurity that is coupled to the Coulomb-interacting single-level
quantum dot. The focus lies on the interplay between the nonequilibrium current and
the impurity polarisation in the deep quantum regime, in which all system energies are
of the same order of magnitude. First, by adopting it to the minimal magnetic Ander-
son model, the numerical scheme of the iterative summation of the path integral (ISPI)
is reviewed in detail. A generating function for the non-equilibrium current and the
orientation of the impurity spin is formulated as a real-time discrete path integral over
all paths of (i) the magnetic impurity spin and of (ii) effective Ising-like fluctuating spins
due to the Coulomb interaction, which are generated after a Hubbard-Stratonovich
transformation. With the use of the ISPI scheme, the sum over all these paths can be car-
ried out numerically, while exactly accounting for all lead-induced self-energies within a
sufficiently long, but finite memory time, thereby including all non-Markovian effects
on a systematic footing. Extrapolation to vanishing (Trotter) time discretisation and
infinitely large coherence times assures, that the results are numerically exact, as long as
the scheme converges.
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The ISPI scheme is then implemented to provide a systematic study of the stationary
charge current and long-time polarisation dynamics of the magnetic Anderson dot. For
a wide range of parameters, an initially polarised impurity spin shows an exponentially
decaying behaviour (relaxation) due to the interplay of the dot-lead tunnel coupling and
the electron-impurity interaction. The numerical results for the current and the spin
relaxation rates are compared to a mean-field-type Landauer-Büttiker current and decay
rates that are obtained by lowest-order perturbation theory, respectively. As far as the
current is concerned, the main effect of the electron-impurity interaction—an increase
of the dot’s resistivity—can be attributed to the change in the single-electron energy
structure and is reproduced qualitatively by the Landauer-Büttiker results with quanti-
tative corrections. This is not the case, however, for the observed correlation effects of
Coulomb interaction and electron-impurity scattering or mixtures of both. The pertur-
bative relaxation rates on the other hand only yield a crude, first approximation of the
impurity dynamics in the studied, inherently non-perturbative regime in the first place
(and only for small electron-impurity interaction, no Coulomb interaction, and rather
large temperatures). For the fully interacting dot, the predicted behaviour of the fully
coherent ISPI values and the sequential approximation can be diametrically opposed,
while the discrepancies between them can be as large as 100%.
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Zusammenfassung

Diese Arbeit widmet sich dem korrelierten Quantentransport durch nanoskopisch
kleine Quantenpunktsysteme in Kontakt mit zwei metallischen, nicht-magnetischen
Leitern. Von besonderem Interesse ist hierbei das Zusammenspiel von Nichtgleichge-
wichtstransport und Spin-Relaxation – hervorgerufen durch den Kontakt mit der dissi-
pativen Umgebung – in diesem mesoskopischen, offenen Quantensystem. Zur Behand-
lung dieser Fragestellung kommt eine diagrammatische Störungstheorie zum Einsatz
und es wird ein numerisch exaktes Verfahren zur Summation des fermionischen Pfadin-
tegrals wesentlich erweitert.

Schwerpunkt des ersten Teils dieser Arbeit ist die Untersuchung bestimmter Sig-
naturen der differenziellen Leitfähigkeit, die bei einem Einzelorbital-Quantenpunkt
mit spin-aufgespaltenem Orbitalniveau und bei tiefen Temperaturen im Regime der
Coulomb-Blockade auftreten. Um den Grenzfall schwacher Tunnelkopplung zwischen
Quantenpunkt und Metallkontakten zu behandeln, wird die diagrammatische Echtzeit-
Transporttheorie herangezogen. Dabei zeigt sich, dass der Coulomb-Diamant mit ein-
facher Elektronenbesetzung in verschiedene Bereiche unterteilt werden kann, die sich
im Hinblick auf mindestens einen der folgenden Aspekte unterscheiden: welche Art
von Tunnelprozessen (i) die Besetzung der Einteilchenzustände bestimmen und (ii)
hauptsächlich zum Ladungsstrom beitragen. Es wird gezeigt, dass keine systematische
Entwicklung der Besetzungszahlen in Ordnungen der Tunnelkopplung existiert, die
im ganzen Coulomb-Diamanten gültig ist. Daher wird eine zwar unsystematische, aber
physikalisch korrekte und perturbative Lösung entwickelt, die den Strom im ganzen
Coulomb-Diamanten beschreibt und dabei nahtlos zwischen den verschiedenen Teil-
bereichen interpoliert. Unter Verwendung dieser Lösung wird untersucht, in welcher
Weise sich eine Spin-Relaxation auf den Transport auswirkt. Dabei interessieren ins-
besondere jene Spitzen in der differentiellen Leitfähigkeit, die mit dem Einsetzen von
kotunnel-unterstütztem, sequenziellem Tunneltransport einhergehen. Es wird heraus-
gestellt, dass diese Leitfähigkeitsspitzen maximal ausgeprägt sind, wenn die Rate der
Spin-Relaxation etwa halb so groß wie die Tunnelrate ist.

Der zweite Teil der Arbeit beinhaltet eine numerisch exakte Analyse des stationären
Ladungsstroms und der Nichtgleichgewichts-Quantendynamik einer räumlich fixierten
Spin-1/2 Störstelle, die an den Coulomb-wechselwirkenden Quantenpunkt gekoppelt
ist. Hierbei liegt der Fokus auf dem Wechselspiel zwischen Nichtgleichgewichts-Strom
und Störstellen-Polarisation. Dabei wird das Regime angeschaut, in dem alle Systemen-
ergien von der gleichen Größenordnung und ausgeprägte Quanteneffekte zu erwarten
sind. Im Zuge einer umfassenden Anpassung der Methode der iterativen Summation
von Pfadintegralen (ISPI) an den magnetischen Quantenpunkt wird diese ausführlich
und detailliert vorgestellt. Als Grundlage für die numerischen Berechnungen wird
eine erzeugende Funktion für den Nichtgleichgewichts-Strom und die Orientierung des
Störstellenspins in Form eines zeit-diskreten, fermionischen Pfadintegrals formuliert.

iii



Die Pfadsumme erstreckt sich dabei über alle Pfade des Störstellenspins sowie eines ef-
fektiven, fluktuierenden Spinfeldes, das im Zuge einer Hubbard-Stratonovich-Transfor-
mation eingeführt wird und das die Korrelationseffekte der Coulomb-Wechselwirkung
abbildet. Mit Hilfe des ISPI Verfahrens gelingt es, diese Pfadsumme numerisch zu
berechnen, indem alle durch die Kontakte induzierten Selbstenergien innerhalb eines
endlichen, aber ausreichend langen Kohärenzzeitraums erfasst werden. Auf diese Weise
bildet es einen systematischen, konzeptionellen Rahmens zur Berücksichtigung aller
relevanten nicht-Markovschen Effekte. Darauf aufbauend erlauben geeignete Extrapo-
lationsmethoden die numerische Berechnung der Grenzwerte (i) verschwindender Zeit-
Diskretisierung und (ii) unendlicher Kohärenzzeit, sodass das Verfahren bei Konvergenz
(numerisch) exakte Resultate liefert.

Schließlich wird die angepasste ISPI Methode benutzt um den stationären Ladungs-
strom durch den magnetischen Quantenpunkt, sowie die Langzeitdynamik der Störstel-
len-Polarisation systematisch zu untersuchen. Innerhalb eines weiten Parameterbere-
ichs zeigt ein anfangs polarisierter Störstellen-Spin ein exponentielles Zerfallsverhalten
(Relaxation), das durch das Zusammenwirken der Tunnelkopplung zwischen Quanten-
punkt und Kontakten mit der Wechselwirkung zwischen Störstelle und Elektronen her-
vorgerufen wird. Die numerischen Ergebnisse für Strom und Störstellen-Polarisation
werden mit einer Mean-Field-Variante des Landauer-Bütticker Stroms bzw. mit sequen-
ziellen Relaxationsraten verglichen, wobei Letztere das Ergebnis einer Störungsrech-
nung in der niedrigsten Ordnung der Elektron-Störstellen-Wechselwirkung sind. Die
hauptsächliche Wirkung dieser Wechselwirkung auf den Strom, nämlich eine Erhöhung
des elektrischen Quantenpunkt-Widerstands, kann im wesentlichen auf eine Modifika-
tion des Einteilchenspektrums zurückgeführt werden. Unter Einbeziehung quantita-
tiver Korrekturen ist dieser Effekt durch einen Landauer-Büttiker-Strom reproduzier-
und erklärbar. Für die beobachteten Korrelationseffekte von Coulomb-Wechselwir-
kung, Elektron-Impurity-Streuung und einer Kombination der beiden, gilt dies jedoch
nicht. Auf der anderen Seite liefern die perturbativen, sequenziellen Relaxationsraten
nie mehr als eine erste, einfache Näherungslösung für die Störstellen-Dynamik (höch-
stens für schwache Elektron-Störstellen-Wechselwirkung, verschwindende Coulomb-
Wechselwirkung und hohe Temperaturen). Bei voller Wechselwirkung kann das von
der kohärenten ISPI-Methode vorhersagte Verhalten im diametralen Widerspruch zur
sequenziellen Näherung stehen, wobei die quantitativen Abweichungen bis zu 100%
betragen können.
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1
Introduction

AS ONE OF the greatest achievements of twentieth century physics, the theory of
quantum mechanics [5–7] has revolutionized man’s way to perceive the physical

world and—although its creation dates back almost a century now—is “younger” than
ever before and a driving force of scientific and technological progress. A theory of
the microscopic world, the realm of entities too small for (direct) human perception,
quantum mechanics has always been fascinating for its own sake. It describes a strange,
invisible world that is, so to speak, hidden “at the bottom” of the classical world and gov-
erned by laws that often are, if not (seemingly) absurd, at least in contradiction to our
(common sense) intuitions about nature. It was only decades after the theory was con-
ceived, however, that quantum phenomena could not only be studied and manipulated
directly in the laboratory but also found numerous technological applications, such as
the laser, the atomic clock, flash memory, and many more. Already the countless places
to find a laser application in every day situations illustrates that quantum mechanics has
now become an integral part of our lives.

One of its cornerstones is the so-called particle-wave duality [8]; in the quantum
world, a classical particle acquires a wave-like (dual) nature [9], while in turn classi-
cal waves exhibit particle-like behaviour [10]. The wave-like aspects of a physical entity
directly entail the existence of characteristic phenomena such as the eponymous quan-
tisation of a particle’s energy, superposition and interference of quantum waves, quan-
tum tunnelling, and entanglement. As it is impossible to experimentally study “pure”,
i.e., isolated quantum systems1, it has always been of fundamental interest to connect
them to the classical world (bottom-top approach) in ways that allow to see signatures
of quantum effects in the non-quantum part of the system (often called environment).
The H-atom in interaction with an electromagnetic field is a very prominent, if not the
paradigmatic example of such an experiment, where the quantization of the valence elec-
tron’s energy manifests in discrete lines in the luminescence spectrum [11, 12]. Yet, as
a trade-off to convenient experimental access to quantum phenomena, the necessity of
a connection with an environment entails the statistical effect of decoherence [13–16],
which is caused by dephasing [17] and/or dissipation [18–23] and is a limiting factor to
coherent quantum dynamics but also responsible for the appearance of classical physics.

1Any measurement requires, at some point, an interaction between the quantum system and the (classi-
cal) measuring apparatus.
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1. Introduction

In addition to the intentional scientific exploration of the quantum world, recent tech-
nological progress in the fabrication of ever-smaller integrated circuits, is about to cross
the border between classical electrodynamics and quantum physics (top-bottom). This
is both a chance and a challenge. For instance, the isolating oxide layers that separate
circuit paths of state-of-the-art microprocessors are only a few nanometres thick. As a
consequence, leak currents due to electrons tunnelling or hopping through the isolation
grow exponentially with the clock rate and operational voltage [24]. This is clearly an
unwanted quantum effect. On the other hand, the ability to produce complex semicon-
ducting and metallic structures of nanometre dimensions allows to integrate quantum
systems such as quantum dots (also called artificial atoms) [25–29], molecules [30, 31],
carbon nanotubes, sheets of graphene (see, e.g., [32] and [33]), and others into con-
ventional semiconductor electronics. The excellent control over materials, methods,
and fabrication processes is the reason why semiconductor-based solid state physics, to-
gether with quantum optics, is one of the most dynamical, progressive, and comprehen-
sive fields in modern physics. In recent years, steps have been made to integrate optical
devices into semiconductor electronics as well, thus combining optics and electronics
on a single chip (see [34] for silicon based devices).

Due to a high level of experimental control combined with their structural and spatial
simplicity, quantum dots are particularly versatile objects of research. They come in
many forms: In semiconductor layer systems (e.g., GaAs sandwiched between AlGaAs),
metallic top-electrodes can electrostatically “impress” a quantum dot geometry into the
two-dimensional electron gas at the GaAs/AlGaAs interface [29, 35, 36] and a similar
technique can be applied to quantum wires [37–39]. There are methods to create self-
assembled dots [28, 40], for example by depositing materials onto a substrate from the
gas phase. Bigger dots and nanoparticles can be made of different kinds of materials
(metallic, semiconducting, ferromagnetic, superconducting, etc.), e.g., by wet chemical
analysis or by etching them out of semiconductor substrates [41–45]. Additionally, dots
can be created within graphene and carbon nanotubes [46–48]. Even a single molecule,
trapped between electrodes, can be considered as a quantum dot [49]. This rich variety
of materials, sizes, shapes, and structures allows the tailoring of quantum dot systems
that meet almost any combination of requirements, which renders them an ideal tool
for the exploration of the quantum world.

Over the last decades, quantum dots were therefore heavily employed investigating
fundamental quantum phenomena (such as Pauli- and spin blockade [1, 36, 47, 49–52]
or the influence of a dissipative environment on the coherent dot dynamics [39, 53–63])
and developing novel devices with applications that go beyond those of conventional
(classical) electronics. For instance, dots that contain few particles (electrons, holes, ex-
citons) and are connected to macroscopic metallic- or semiconductor leads can be seen
as the electronic analogue of the H-atom (or another atom/molecule) in a light field. In
transport experiments, the single-particle excitation spectrum of single- and double dot
systems manifests in discrete peaks of the differential conductance of a current flowing
through the dots via weakly coupled tunnelling leads [35, 36, 51]—analogous to optical

2



spectroscopy experiments. Also, the scope of realised or proposed applications for quan-
tum dots is large. For instance, using them as a single-electron transistor [64–67] in an
attempt to replace a conventional electronic functional element by a quantum version
may seem to be merely aimed at enhancing the efficiency of classical electronics. The
mechanisms and physical processes that make it work, however, have an essential quan-
tum nature and are very different from those that apply in a classical transistor. Further-
more, classical electrodynamics often fail to describe systems, for which the electrons
intrinsic spin—a genuinely quantum mechanical entity—plays a vital role. This applies
particularly to situations when a particle’s spin can be addressed and manipulated indi-
vidually.

The scientific progress with the manipulation of spins and the idea to use them as
a fundamental degree of freedom in electronics has spawned a whole new field of re-
search and technology: spintronics [68–72]. As the name suggests (and once they can
be realised in experiments), pure spin(-tronic) currents would consist of moving spins
rather than charges and corresponding fundamental spintronic devices are spin injec-
tors/pumps and filters/valves, as well as (spin-) detectors, storage capacities (memory),
and transistors [73–75]. Compared to conventional electronics, this technology has a
lot of (potential) benefits: it may help to build much smaller, more efficient transis-
tors and memory devices that promise to be considerably less volatile than charge-based
memory (in the ultimate lower limit, individual cells contain a single spin). Further-
more, single-spin storage devices are an ideal candidate for a spin-qubit, the essential
ingredient of quantum computers [76–78]. A qubit is a quantum mechanical two-state
system2, which can (in contrast to a classical bit) be prepared in a superposition of both
the logical 0 and 1 states. Multiple qubits can be entangled, i.e., prepared in a coherent
superposition of all possible product states to form a quantum register. As long as this co-
herence is preserved, a logical operation (quantum gate) applied to a register of n qubits is
tantamount to applying the operation to all possible 2n permutations of n classical bits
simultaneously. A computing machine built of these quantum registers and -gates would
allow to exploit this possibility of massively parallel operation. In certain cases, such
a quantum computer may be superior to a classical machine, for example, when sim-
ulating another quantum system or solving numerically costly, yet partially recursive
problems (like the factorisation of a product of big prime numbers). Besides nuclear
spins of donors in silicon [79] and Josephson junctions [80, 81], promising candidates
to host qubits in solid-state devices are quantum dots [73, 82]. As coherent (unitary)
quantum evolution is essential for quantum operations, it is a crucial question how a
qubit can be protected from the influence of the (decoherence-inducing) environment.

In the present theoretical work, we ponder on questions in that general, spintronic
context, regarding the interplay of coherent quantum dynamics and decoherence effects
in an idealised, so-called Anderson model. It consists of a small Coulomb interacting
quantum dot (or molecule) with only a single orbital electron-level in tunnelling contact

2In case of a spin-1/2, it consists of the up- and down state representing the logical 0 and 1, respectively.
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1. Introduction

with macroscopic (metallic, non-magnetic) leads as a dissipative environment. While the
interaction with a single environmental degree of freedom may alter the phase relations
of a coherent quantum state in a controlled fashion, it is the aggregated stochastic ef-
fect of a macroscopic number of them that, in general, tends to irreversibly destroy
the correlations between the different properties of the wave-like quantum state. This
is particularly interesting when a bias voltage that is applied between the leads causes
a nonequilibrium situation with energy, charge, and spin flowing through the dot—in
other words: transport. The model’s rather simple structure allows to treat it within
a number of different theoretical frameworks, yet it is sufficiently complex to show a
rich and non-trivial dynamics. This makes it both a useful object of research for ad-
dressing fundamental questions of quantum dynamics and reproducing features seen in
experiments with more realistic systems.

1.1. Effect of Spin Relaxation on Transport Through a
Single-Level Dot

Even when the coupling is weak, electron- or hole excited states with a definite spin
orientation in few electron quantum dots have a finite life-time due to interactions with
various environments (leads, nuclear spin- or phonon bath). A dephasing of the electron
spin (transversal relaxation) can be caused, for instance, by the random time-evolution
of the effective magnetic field due to the nuclear spins in the dot’s host material. A
flip of the spin (longitudinal relaxation) can be caused by the dissipation of angular mo-
mentum or, in case of non-degenerate spin states, for example by a combined energy-
and spin dissipation into both spin- and phonon bath (see below). In experiments spin
relaxation is mostly considered as a limiting factor for coherent dynamics, resulting
in longitudinal spin coherence times T1 of anything between µs and hundreds of ms
[36, 53, 56, 60, 61, 83, 84], depending on quantum dot (its shape, material, structure),
temperature and applied magnetic fields [36, 53, 56, 61]. In semiconductor dots, two
microscopic mechanisms are considered to cause the flip of the electron spin. The relax-
ation is induced by acoustic phonons, whose energies match the difference between the
spin states, while the spin itself (angular momentum) is absorbed (i) by the nuclear spin
bath via the hyperfine interaction or (ii) transferred to orbital degrees of freedom via
the spin-orbit interaction [53, 56, 61, 62, 85, 86]. There are cases, however, in which a
decoherence effect like spin relaxation can also enhance the visibility of coherent trans-
port signatures. In their paper, Weymann and Barnás [58] study transport through
a single-level dot that is weakly connected to ferromagnetic leads with anti-parallel
magnetisation. In this system, a slow spin relaxation can enhance both the zero-bias
anomaly of the differential conductance for a spin-degenerate level and the conductance
step that appears at the onset of inelastic, coherent second-order tunnelling processes
(cotunnelling).
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This thesis investigates the effect of an intrinsic spin relaxation on similar transport
signatures at the inset of cotunnelling-mediated sequential transport in the Coulomb-
blockade regime [87] of a single-level dot with lifted spin-degeneracy. In this regime,
purely sequential tunnelling is energetically suppressed due to the mutual Coulomb
repulsion between two electrons on the dot. It is only the occurrence of inelastic co-
herent tunnelling of two (or more) electrons that can populate the single-particle state
with the higher energy, which can in turn be depopulated by incoherent processes. This
manifests as an increase (step) in the current. We show, that the visibility of the corre-
sponding peak in the differential conductance is enhanced by a small spin relaxation (see
also [4]). To that end, we derive a master equation that allows calculating the station-
ary transport through the dot using the well-established real-time diagrammatic tech-
nique by Schoeller and Schön [50]. It is a perturbative method based on the Keldysh
technique for nonequilibrium dynamics [88, 89] and is particularly apt to evaluate the
current close to single-particle resonances [51, 90].

1.2. Diluted Magnetic Semiconductors

In addition to the usual semiconducting and metallic host materials and substrates, an-
other class of materials attracts a lot of interest in the scientific community: diluted
(ferro-)magnetic semiconductors (for review articles, see Refs. [91–94]). As the name
suggests, they combine properties of (ferro-) magnetic materials, e.g., a persistent spon-
taneous magnetisation below some Curie temperature, with those of semiconductors.
They are produced by doping a semiconductor like Ga, ZnSe, CdSe, and others with
magnetic atoms like Mn2+, thus embedding spatially fixed magnetic impurities into the
substrate (in case of manganese with a spin of 5/2) [95–98]. Since the impurity’s mean
relative distance in these materials is rather large (as indicated by the attribute “diluted”),
their direct interaction is weak. Itinerant charge- and spin carriers (electrons, holes, ex-
citons), however, can mediated a comparably strong ferromagnetic interaction between
the impurities—strong enough to even result in ferromagnetism [99, 100].

As this ferromagnetism is caused by the presence of the itinerant particles, which in
turn can be controlled essentially by electrical means, the diluted magnetic semiconduc-
tors may allow for an all-electrical manipulation of their magnetisation. This elevates
the level of control over spins and magnetism in semiconductor spintronics to a new
level. To investigate this phenomenon in quantum dots is particularly promising, for
they combine the unique properties of magnetic semiconductors with the quantum na-
ture and versatility of quantum dots. For example, compared to the rather volatile
orientation of an electron spin in a dot the spin of magnetic impurities—and even more
so a small (ferromagnetic) ensemble of them—promise to be more stable. At the same
time, the magnetic properties of the dot can be switched by tuning the number of itiner-
ant carriers residing on the dot. For very small dots, it was shown that this mechanism
essentially depends on the spin of the many-particle state of the itinerant carriers and,
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therefore, can be sensitive to single-particle changes in the number of carriers [101–105].
In these cases, the total angular momentum of the charge carrier wave function shows
a dependence of the particle number that corresponds to Hund’s rule for the filling of
orbitals in atoms [106]. Abolfath et al. [107] also studied how the carrier-mediated
magnetism depends on other dot properties such as the confinement potential, the Cou-
lomb energy, and the temperature. With the ability to change the magnetism in the
dot not only via the number of carriers but also by adjusting the confinement potential
via a gate voltage, piezomagnetic quantum dots can by produced and used as magnetic
switches [108]. Their complex and rich electron-impurity dynamics also allows using
magnetic dots as voltage-controlled spin filters [74] and controlling their magnetoresis-
tance via a gate voltage [109].

Experimentally, there has been a lot of research regarding quantum dots with mag-
netic impurities. Light sources and electromagnetic fields are a very powerful and ef-
ficient tool for studying and manipulating these dots [110–116]. In general, optical
methods are well-established, reliable, and offer a large “toolbox”3 for sophisticated ex-
perimental manipulation. Most of these experiments, however, have to be performed on
ensembles of dots, as it is difficult to address them individually by optical means. Con-
versely, the fabrication of and experiments with purely electronic systems are generally
rather complicated and challenging. On the other hand, electrical means of manipula-
tion using conventional semiconductor electronics allow to study individual dots, while
integrating the essential parts of the experiment onto a single chip [117–121]. Due to
improvements in the fabrication processes, it is now possible to embed single manganese
ions into quantum dots and to study their properties [113, 115, 119–121]. Small quan-
tum dots with few (single) carriers and a single magnetic impurity mark the endpoint
of the ongoing miniaturisation process in the range of magnetic semiconductors. These
systems are certainly interesting to study for their own sake, since they help providing
answers to fundamental questions, e.g., concerning the effect dissipation has on coher-
ent quantum dynamics. Furthermore, as the technological development proceeds, small
magnetic dots containing single impurity spins may become important candidates for
highly efficient, high density spintronic devices and yet another possible solid-state real-
isation of a qubit. In this context, the role of decoherence is also of vital importance for
practical applications.

In the present work, we theoretically investigate the real-time nonequilibrium dy-
namics of a single-level quantum dot with one fixed, spin-1/2 magnetic impurity. In
this simple, idealised version of the magnetic Anderson model, the impurity can only
interact with on-dot electrons, which are also subject to the decohering influence of the
leads as a dissipative environment. As we are interested in the interplay between the
coherent on-dot dynamics and the dissipation due to tunnelling of electrons between
the dot and the leads, our studies focus on the deep quantum regime, in which all inter-
actions between system components are of the same order of magnitude (given by some

3For example, laser sources that generate ultra-short highly intensive pulses [113].
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reference energy E). An applied bias voltage between the leads results in a charge cur-
rent through the dot. While on the dot, the stochastically tunnelling electrons interact
with the impurity spin and affect its coherent propagation, which eventually leads to
a complete dissipation of an initial polarisation. To properly account for the real-time
behaviour of the impurity’s dynamics and characterise the dissipation, we have to study
long propagation times (compared to ~/E). To this end, we adopt the method of the
iterative summation of path integrals (ISPI) that was developed by Weiss et al. [122] to
the minimal magnetic quantum dot model. In the following section, we compare this
method to existing frameworks and explain why it is one of the most suitable choices
for describing this kind of model in the deep quantum regime.

1.3. Existing Theoretical Approaches for Real-Time
Transport Through Quantum Dots

There are a number of theoretical methods for calculating the real-time dynamics of
quantum dot systems. For many decades, various perturbative master equation ap-
proaches have been successfully employed to describe transport through quantum dots
(see, e.g., Refs. [35, 123]). Besides their generally moderate computational complex-
ity, whenever they provide a high, often excellent empirical adequacy, master equation
approaches allow for intuitive explanations of the physics at hand. In the essentially
non-perturbative regime considered in the last part of this work, though, these schemes
run into principle difficulties, as no small expansion parameter exists. Nevertheless, ow-
ing to the mentioned benefits, we employ a real-time diagrammatic technique [50] to
obtain a first approximation of the relaxation rate of the polarised impurity spin in the
presence of the dot-lead coupling. This is compared with fully-coherent, time dependent
numerical ISPI results.

In this context, the scattering Bethe ansatz approach [124–126] deserves a special
mention, as it may provide a complete analytical solution of the nonequilibrium, inte-
grable Anderson dot model. Aside from remaining technical problems, however, some
limitations render it inappropriate to use it for our purposes: At this point, it is re-
stricted to dots with a single, spin-degenerate level with on-site Coulomb interaction
and can only provide a stationary state solution. A whole class of important analytical
methods, which go beyond naive perturbation theory, are based on the renormalisa-
tion group (RG) [127–136]. Starting from a usual perturbation expansion (e.g., in the
dot-lead coupling), flow equations are derived that describe the systematic incorpora-
tion of certain (infinite) classes of higher order expansion terms into finite order ki-
netic equations. These RG methods can be used to analyse non-perturbative transport
phenomena like the Kondo effect [128–130] but are restricted to the large bias regime
(V B ≫ kBTK ), where TK is the Kondo temperature [137, 138]. Recently, the real-time
[127] and frequency formulations [131, 134] of the so-called real-time RG schemes in
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combination with the functional RG (fRG) proved to be particularly viable to study
this regime [131, 132, 135, 136]. Although these RG methods go beyond perturbation
theory, the restriction to the large bias regime can be seen as a remnant of their inherent,
perturbative foundations. For the case of both small temperature and bias voltage, the
Fermi-liquid theory was successfully applied to the Anderson model to obtain the three
lowest expansion terms of the self-energy in orders of Vbias and T [139, 140]. As of
today, cases in which neither the temperature nor the bias voltage is a small parameter
of the system (in other words, Vbias ≃ kBTK ) cannot be reliably described by either of
these approaches.

In addition to sophisticated analytical methods, a number of numerical approaches
have been developed in the last years that allow to simulate nonequilibrium situations in
quantum dots coupled to various environments. An important instance is derived from
the equilibrium versions of the numerical renormalisation group (NRG) [141, 142].
Based on the introduction of a discrete single-particle scattering basis, it was extended
to treat real-time dependent nonequilibrium systems [143–145]. The resulting, power-
ful and versatile real-time NRG is applicable to finite temperatures and not restricted
to simulating small systems. Due to the fact that, by construction, whole continuous
intervals of the energy spectrum are represented by a single, discrete state, however, real-
time NRG is not numerically exact. Another scheme that derives from the general RG
concept is the real-time version of the density matrix RG (TD-DMRG) [146, 147]. It
requires to represent the mesoscopic system at hand, e.g., a quantum dot plus macro-
scopic reservoirs, by a large but finite lattice-model. For this reason, the propagation
times, to which a system can be simulated, are limited by the eventual appearance of fi-
nite size effects. As long as transient (short-time) dynamics are considered or whenever
the observable of interest (the charge current in most cases) becomes stationary before
finite-size effects set-in, the TD-DMRG is a valuable numerical tool.

Moreover, numerically exact methods based on the quantum Monte-Carlo (QMC)
concept have been developed to investigate transport in quantum dots. Their common
functional principle consists of finding a (path-) integral formulation of the system’s
observables and evaluating them via the Monte-Carlo method. The latter draws its
effectiveness from a random sampling of the integrand according to a probability dis-
tribution that assigns a physical weight to an individual sample (random path). For
equilibrium (imaginary-time), the QMC approach is a well-established, powerful tool
and possible issues such as the fermionic sign problem are, if not solved, at least control-
lable. For nonequilibrium (real-time), the situation is more complicated. In addition to
the part of the (path-) integrand corresponding to the observable, the function used to
measure the physical weight of a random sample is itself highly oscillatory. As a conse-
quence, the summation of a large number of random contributions with opposite sign
and comparable absolute value poses severe numerical problems as far as accuracy and
computing times are concerned. This dynamical phase problem leads to high computa-
tional costs of the existing real-time QMC approaches [148–151], effectively restricting
the range of accessible parameters. In many cases, for instance, it is difficult reaching,
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with acceptable stochastic error, propagation times that are long enough to observe the
stationary behaviour of the system. On the other hand, despite the fact that these meth-
ods were developed only recently, artful optimisations have already been implemented
(and can be expected in the future) to stretch the boundaries of rtQMC.4 Hence, while
they are not restricted to small systems or interactions, the existing rt-QMC schemes
have problems when long propagation times are needed. A different technique to tackle
transport physics with the help of the QMC concept has been devised by Han and
Heary [153]. The first step for circumventing the dynamical phase problem is to con-
struct integral representations based on functions that are analytic on the whole com-
plex plane. This is done by the introduction of complex-valued chemical potentials and
imaginary “Matsubara voltages” (numerical analytic continuation)5, which allows to
“map” the nonequilibrium (real-time) to an equilibrium (imaginary-time) problem, to
which the corresponding standard QMC techniques are employed. The crucial factor
here is the finite number of Matsubara voltages used to obtain an approximate repre-
sentation of the real-time integrand. At present, there remain discussions about the
origin of the non-monotonous dependence of the conductance of a Kondo quantum
dot system on the bias voltage as reported in Ref. [153] and further, more fundamental
questions with regard to the underlying concept of the method. At last, we mention a
very recent work of Segal et al. [154], where the authors introduce a numerically exact,
iterative path integral simulation method that is very similar to ISPI.

In comparison to these theoretical frameworks, the ISPI scheme [122] features a dif-
ferent combination of characteristics—one that renders it particularly useful for the pur-
poses of the present work. Similar to the various QMC approaches and contrary the
(numerical) ones based on the RG, ISPI is numerically exact and deterministic. This re-
sults in rather high computational costs restricting the scope of feasible models to small
quantum dots and limits the strength of on-dot interactions to intermediate values. In
contrast to QMC, however, the computing times of the ISPI simulations scale linearly
with propagation time of the model and, hence, long time dynamics can be studied. Fur-
thermore, ISPI avoids the dynamical phase problem, as the numerical path integration
is carried out, for a given timd-descretisation, over all paths in state space rather than
random samples of them. At the same time, ISPI accounts for all relevant correlations
of the system in the deep quantum regime (provided that the simulation converges for
a given parameter set and reasonable running times). The model system we study in
this work—a single-level quantum dot with one magnetic impurity—is small enough to
be treated with ISPI, while its structure is sufficiently rich to show complex correlated
quantum dynamics.

4For example, Jung et al. [152] are working on an adoption of the dual fermion approach to nonequilib-
rium.

5In analogy to the analytic Fermi function, whose values on the complex plane are given by a discrete
(but infinite) sum over Matsubara frequencies
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1.4. Outline

The thesis is structured as follows. In chapter 2, the model system is introduced in detail
and we explain the essential idealisation steps. It is shown that the model is an instance
of an (mesoscopic) open quantum system, an important concept that is outlined shortly.
The rest of the chapter is devoted to the Keldysh framework as a necessary means to de-
scribe transport beyond linear response. It also features preliminary remarks to the no-
tion of transport itself, illustrated by basic phenomena caused by sequential tunnelling
and cotunnelling in the regime of weak dot-lead coupling. Building on that, chapter 3
contains an investigation of the influence of electron spin relaxation on the appearance
of conductance peaks that mark the inset of cotunnelling-mediated sequential transport
in the Coulomb-blockade regime. The analytical calculations are based on perturba-
tive rate equations, which are obtained with the real-time diagrammatic technique by
Schoeller and Schön [50].

In chapter 4, we adopt the ISPI approach to the single-level Anderson dot with a
spin-1/2 magnetic impurity. After deriving a path integral representation of the Kel-
dysh partition function, a formally exact generating function is constructed by adding
proper source terms to the action. The subsequently described, central element of the
ISPI scheme allows to systematically cut irrelevant time correlations beyond some finite
memory time and to calculate the generating function iteratively. We explain how the
numerical exactness of the method is preserved via appropriate extrapolation schemes
that allow to eliminate systematic errors due to time discretisation and the finite mem-
ory. The introduction of the method itself follows a systematic analysis of the impu-
rity spin dynamics and stationary charge current in chapter 5 based on ISPI. We focus
on the relaxation (dissipation) of a finite impurity spin polarisation in presence of the
electron tunnelling between dot and leads and study the dependence of the correspond-
ing relaxation rate on several combinations of model parameters. These findings are
compared to perturbative results obtained for a relaxation rate that is caused solely by
sequential electron-impurity spin flips (flip-flops). We also present a systematic analysis
of the current, which is compared to an approximate Landauer-Büttiker result. Chapter
6 both summarises the results of the thesis and provides an outlook to (i) possible fu-
ture research and (ii) further applications of the ISPI method. We provide supplemental
calculations and remarks in appendices A-H.
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2
Basic Principles of Transport through a
Single-Level Dot with Impurity

THE CENTRAL THEME of this thesis is the quantum mechanical transport of par-
ticles, charge and spin through a nanoscale device in contact with a macroscale

environment. The interplay of different physical theories—in particular of quantum dy-
namics and statistical physics—, the involvement of such different concepts as electron
tunnelling on one side and quantum dissipation and decoherence on the other side, act-
ing together in a single system, impose particular theoretical challenges, while offering
insight into rich and complex physics. When dealing with quantum transport, much
about the phenomena that govern the mesoscopic world can already be learnt from the
most elementary and idealised model systems.

For our work, we choose the single-level quantum dot (SLQD) as object of research.
Of all nanoscale quantum systems, a zero-dimensional quantum dot with a single elec-
tron orbital is certainly among the very simplest. It is due to its lack of internal structure,
that this basic model grants a comparably undisguised view on the fundamental physics
involved. Over the last years, SLQDs proved to be a valuable instrument for theoretical
and experimental investigations of transport in nanostructures (see, e.g., [71]). And al-
though this elementary model does not, of course, represent a realistic quantum dot in
all its details, its structural resemblance is in many cases adequate to reproduce—at least
qualitatively—the experimental results. Aside from conceptual arguments, a model as
simple as the SLQD is frugal in its demands for computational power, be it analytical
or numerical. Its usage stands in the tradition of bottom-up physical research to start ex-
ploring new physics from the smallest set of assumptions that is sufficient to reproduce
empirical data or predict novel effects. The less structure and complexity is needed for
an adequate representation of the physics at hand, the higher is the conceptional and
computational efficiency.

In this chapter, we present the model in detail and prepare the ground for the more
technical considerations in the later parts of the thesis, by giving a short introduction to
the basic concepts connected to nonequilibrium and transport in a mesoscopic system.
Particularly, we will outline one of the standard ways how mesoscopic transport and
quantum statistics are connected using the concept of the open quantum system within
the framework of the nonequilibrium Keldysh technique. We close the chapter with
introductory remarks on sequential transport in the SLQD.
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2. Basic Principles of Transport through a Single-Level Dot with Impurity

2.1. The Model System

The idealised system that will be considered in this work consists of a nanoscale central
region (CR) coupled to two metallic leads L and R via identical tunnelling barriers. An
additional gate electrode is used to tune the electrostatic dot potential. Figure 2.1 shows
a schematic picture of the system. A bias voltage Vbias will be symmetrically applied
between the leads, which act as electron reservoirs, and shifts their electrochemical po-
tentials relatively to each other. In this simple model, it is assumed that the voltage drops
instantaneously at the tunnelling barriers and is piecewise constant in the respective re-
gions. Depending on the internal structure of CR and the system parameters, this can
cause a charge current of electrons, which tunnel through the barriers. Inspired by re-
alistic experimental set-ups, it is assumed, that the leads are much bigger than the small,
point-like central region and can therefore be described as gases of free electrons [155].
We will go into more detail on the specific features of the leads’ model representation in
the following paragraphs (in particular, sections 2.1.2 and 2.2.1).

We already stated above that the central region we will be dealing with is an idealised
electron quantum dot with a single electronic orbital. Besides the orbital structure,
the simplest model we take into account—in chapter 3—at least includes the electron
spin as well. The basis of electronic eigenstates of the isolated dot therefore has four
elements |χ 〉, where χ ∈ {0,↑,↓, d}, and is characterised in general by the three scalar
parameters ε, ∆, and U . Symbol χ denotes, whether the dot is empty (0), contains
one electron with spin σ =↑,↓, or is in a spin singlet state with double occupation (d).
With the single-electron energies εσ , we define the mean energy ε := (ε↑ + ε↓)/2 and
the difference ∆ := |ε↑− ε↓|. An applied gate voltage Vgate can be used to adjust the
dot’s electrostatic potential ΦD := eαVgate + Φ0 and, thus, to shift ε. Here, e < 0 is
the elementary charge, α some proportionality constant, and Φ0 an arbitrary energy
offset. Hence, by choosing an appropriate Φ0, the mean energy can be identified with
dot potential: ε = ΦD . If the energy ε0 of the empty dot is set to zero, we achieve this
by defining zero potential ΦD = 0 as the point, at which the (spin-)average dot energy
does not change upon charging the empty dot with one electron. Without specifying a
particular physical origin, we allow for a non-zero level splitting∆; the reason could be
an external magnetic field or an intrinsic splitting due to crystallographic effects. Lastly,
the scalar energy parameter U > 0 characterises the Coulomb repulsion, which is “felt”
by two electrons in the small dot’s confinement. Hence, the energy of the two-electron
state is given by εd = 2ΦD +U .

In chapter 4, we embed a spatially fixed magnetic impurity into the quantum dot,
which is represented by a quantum mechanical spin 1/2. It can interact with a single
electron in the dot by the magnetic interaction 4J/~2M̂ · Ŝ , where M̂ and Ŝ are the
spin operators of the impurity and the electron, respectively. Since two electrons in
the SLQD form a singlet state |d〉 with zero total spin, they do not interact with M .
Similar to the one-electron states of the dot, we allow for a non-zero splitting ∆imp of
the impurity eigenstate energies |τ =↑,↓〉.
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2.1.1. The Hamiltonian

The Hamiltonian Ĥ of the entire system is the sum of the individual parts Ĥdot, Ĥleads,
and ĤT representing the dot, leads, and tunnel coupling, respectively. They are given
by

Ĥdot = Ĥ el
dot+ Ĥimp+ Ĥint (2.1a)

Ĥimp =∆impτ̂z/2 (2.1b)

Ĥint = 4J/~2M̂ · Ŝ ≡ J


σ

(στ̂z n̂σ + τ̂σ d̂ †
−σ d̂σ/2) (2.1c)

Ĥ el
dot =



σ

εσ n̂σ +U n̂↑n̂↓ ≡


χ

εχ |χ 〉〈χ | (2.1d)

Ĥleads =


p

Ĥp with Ĥp =


kσ

εk n̂kσ p (2.1e)

ĤT =


kσ p

γ d̂ †
σ

ĉkσ p + γ
∗ ĉ†

kσ p
d̂σ , (2.1f)

Ĥimp+ Ĥint

Ĥimp =∆impτ̂z/2

Ĥint = 4J/~2M̂ · Ŝ ≡ J


σ

(στ̂z n̂σ + τ̂σ d̂ †
−σ d̂σ/2)

impurity part
(only chapter 4 and
following)

where n̂κ = f̂ †
κ f̂κ is the particle number operator for fermions f in a state with index κ.

For dot electrons and κ = σ , we have f = d , whereas for the leads and κ = {k,σ , p}, we
have f = c . The d̂σ and ĉkσ p are the corresponding annihilation operators, σ denotes
the electron spin, k is a lead electron’s wave vector, and p ∈ {L,R} the lead index. With
the electrostatic potential −µp of lead p due to bias voltage Vbias, the energy of an
electron with wave vector k is given by εk p = εk−µp . The tunnelling Hamiltonian ĤT
is responsible for a transfer of electrons between dot and leads, where the first term on
the r.h.s. of (2.1f) describes tunnelling from a lead onto the dot, while the second term
describes the reverse process. The spin of the tunnelling electron is conserved [156].

The spin operator for the impurity was identified with M̂ = ~/2(τ̂x , τ̂y , τ̂z), where the
τ̂κ, with κ ∈ {x, y, z,+,−}, are the corresponding Pauli matrices; we use the common
convention τ̂± = τ̂x ± iτ̂y . An analogous representation can be employed for the dot
electron’s spin operator with corresponding matrices σ̂κ. To arrive at homogeneous
expressions for all parts of the Hamiltonian, however, we replaced all instances of σ̂κ
by the equivalent second quantised forms, using σ̂z = n̂↑− n̂↓ and σ̂+ = d̂ †↑ d̂↓. Wherever
in this thesis one of the indices σ, τ or p are used as numbers [as in (2.1c), for instance],
they are interpreted as signs, where ↑ and L correspond to+1, as ↓ and R correspond to
−1. On this note, we defineµp = peVbias/2. Since the structure of both leads is identical
on the Hamiltonian level, bothµp have to be equal in the zero-bias point. For simplicity,
we can then set these coinciding zero-bias potential values to zero: µp(Vbias = 0) = 0.
After we introduce the equilibrium approximation in section 2.2.1, we will be able to
identify the µp with the electrochemical potentials of thermal leads.
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Figure 2.1.: Schematic picture of the two mo-
del systems, considered in this work. (a) Gen-
eral structure of both models, which differ only
in the structure of the nanoscale central region
(CR). Two metallic, macroscopic leads (L and
R) are tunnel coupled to CR via identical barri-
ers and serve as electron reservoirs. With the
gate electrode, the electrostatic potential is ad-
justed. An applied bias voltage Vbias between
L and R (horizontal lines symbolize potential
levels) leads to a current of tunnelling electrons
(small circles with arrows) (b) In the simplest
case, the CR is a quantum dot with a single or-
bital electron level (indicated by horizontal black
line), which can be empty or occupied either by
(i) one electron in spin up |↑〉 or down |↓〉 state or
(ii) two electrons in a Coulomb-interacting sin-
glet state |↑,↓〉. U gives the strength of repul-
sion. (c) In chapter 4, we add a fixed magnetic
impurity M with spin 1/2 to the dot. (i) A sin-
gle electron on the dot interacts with M via a
spin-spin interaction (characterized by J ), while
(ii) for double occupation only Coulomb interac-
tion is present.

2.1.2. Reducing Parameters by Abstraction: the Infinity Limit

We want to complete this section with some remarks about the intended interpretation
of the Hamiltonians Ĥleads and ĤT in equations (2.1e) and (2.1f), respectively. Our goal is
to study the interplay between and the basic mechanisms of nanoscopic transport with
the help of an abstract, idealised model that has as little structure and few parameters as
needed to still represent the scrutinised class of real physical systems adequately. Aside
from a high computational efficiency, what is gained from this approach is a relatively
clear view on the physics. The less parameters an adequate model has, the easier may
their mutual dependencies be accessible by intuitive explanations. There are many ways
of how certain kinds of “non-essential” parameters may be eliminated from a model
representation.

As a very common example, which is applied to our model (several times), we men-
tion infinity limit idealisations and illustrate them shortly by means of the tunnelling
Hamiltonian ĤT . It has a very simple form: the tunnelling is described by just a sin-
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gle constant parameter γ—the tunnelling amplitude. This means, that the coupling ĤT
connects the dot states with all lead states equally strongly, i.e., independent of the ener-
gies of the states involved. This is a strong simplification, unphysical at the latest when
their number is infinite and γ is non-zero. There are ways to mitigate this situation.
We could choose a finite system, normalise ĤT with the a suitable parameter such as,
e.g., the number of particlesN , but would then have to drag an insignificant parameter
through all calculations. Or we could introduce an appropriate dependence on the lead
states (γ → γkσ p , for example an energy cut-off), eliminate N by setting it to infinity,
and pay the price of an infinite number of new parameters (which are disposed of once
again at a later stage of the calculations). This path is, in fact, often followed, since it
avoids serious mathematical problems due to involvement of low lying energy states
that may arise for a Hamiltonian like ĤT . These problems originate from the fact, that
in contrast to the infinite lead size, which is merely a counterfactual property, the struc-
ture of the coupling term is even manifestly unphysical.1 Still, we are going to adhere to
ĤT in the present form. We argue that with a proper interpretation of expression (2.1f)
and some care applied to the transport calculations, the conceptional and mathematical
issues can be resolved—at least, for our particular system. The benefit is, again, that we
can start our treatment with the intended, minimised set of parameters. Similar to the
lead Hamiltonian, the coupling term ĤT has to be understood as a part of an abstract
model, which represents a certain class of (more) realistic physical systems that is both
of finite size and has state dependent amplitudes γkσ p .

To see which conditions a system has to meet in order to fall into this class, we con-
sider the size Etun of the energy interval that is bounded by the minimal and maximal
energy differences, so-called transport channels (for a more precise definition, see sec-
tion 2.3.1), between dot states of allowed single-particle tunnelling processes. For our
purposes, it can be roughly approximated by the sum of characteristic dot energies and
defines the dominant energy scale for tunnelling. That is to say, Etun gives the order of
magnitude, by which energies of lead electrons that mainly contribute to transport dif-
fer. This is due to the conservation of energy, which causes a rapid decrease of tunnelling
transport involving reservoir electrons with energies far away from any of the dot’s
transport channels. In the case of model Hamiltonian Ĥ el

dot, it amounts to Etun =∆+U
(see section 2.3.1). Which lead electrons actually are involved in the transport, also
depends on the bias and gate voltage, or rather the associated energies eVbias and ΦD ,
respectively. If we further define Evar as the energy scale, on which the amplitudes γkσ p
and the density of states ϱ(K ) change their absolute value considerably, we arrive at at
least one necessary conditions for a system to be representable by ĤT : all energy win-
dows that are relevant for transport have to be much smaller than the scale on which the
tunnelling amplitude changes, i.e., Evar≫max(Etun, eVbias,ΦD). This condition ensures,
that the absolute value of the γkσ p is basically constant for all states with wave vector k
that lie in the energy interval of electrons contributing to transport.

1ForN →∞ and finite γ , ĤT violates the conservation of probability [157].
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2. Basic Principles of Transport through a Single-Level Dot with Impurity

We want to stress, that this is not a sufficient condition to avoid the mathematical
problems mentioned above. Rather, this has to be tried and checked for every system
and approach that is used to describe transport. As we will see in the next chapters,
for model (2.1) and both the perturbative approach developed by Schoeller and Schön
[50] and the ISPI approach by Weiss et al. [122], those difficulties do not arise or can be
circumvented. In the spirit of this section, this can be interpreted as the infinity limit
Evar → ∞. A spin and lead dependence of γ was excluded already in the beginning,
where we specified the leads as unpolarised and the tunnelling barriers as identical. But
even if the absolute value of γ is constant, that would still leave the possibility that γ de-
pends on the phase of a tunnelling electron. In view of the system at hand, however, it is
safe to assume that the phase of electrons approaching the tunnelling junctions from the
depth of the macroscopic reservoirs is a random function with respect to the direction
of k. Based on this supposition, it can be deduced that the tunnelling amplitude would
be independent of an electron’s incident angle even for general systems (see, e.g., Refs.
[90, 158]).

Here, we do not recapitulate the argumentation in detail, as it is not needed in case of
our simple model system: In the single-level dot and with the given tunnelling Hamil-
tonian, an electron that tunnels into or out off the leads is uniquely associated with a
transition between two of the dot’s four different eigenstates |χ 〉 ∈ {0,σ , d}. If, for in-
stance, the dot is empty, a spin-up electron that tunnels onto the dot necessarily transfers
it into eigenstate |↑〉. For dots with two or more single-particle orbitals, whose (inter-
acting) eigenstates are coherent superpositions of the single-particle states, there are in
general two or more possible paths (in state space) for tunnelling between a given pair of
dot eigenstates. Only in such systems might a relative, non-zero phase, associated with
different tunnelling amplitudes, be observable. It is in these cases, that the assumed
randomness of this relative phase (with respect to the propagation direction of the tun-
nelling electrons) leads to a destructive interference of coherent contributions due to a
superposition of different tunnelling paths. For the simple model that is studied in this
thesis, however, such superpositions cannot be created in the first place.

2.2. Nonequilibrium Transport and Quantum Statistics

This section delivers a short introduction of the basic assumptions and ideas that are
used to integrate the theoretical concepts of nonequilibrium and transport phenomena
with the fundamental theory of statistical quantum physics. In this context, the notion
of the partition function and of the more general generating function will play a major
role in the theoretical considerations throughout this work.

The partition function Z is a central and fundamental concept both in thermodynam-
ics and statistical physics. It contains in compact form all the statistical information that
allows to describe an infinitely large system by few aggregated properties, as long as its
microscopic state distribution is characterised by a thermodynamic (equilibrium) en-
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2.2. Nonequilibrium Transport and Quantum Statistics

semble. Here, the infinite system is to be understood as an idealisation of a finite, real,
yet “very large” system, in which the statistical effects dominate the physical behaviour.
Often, the word “macroscopic” is used synonymously for “very large” in a thermody-
namic context and a prominent example is a cubic centimetre of air with its ∼ 1020

atoms. Depending on the particular physical situation, however, it can be adequate
to already consider significantly smaller systems as infinitely large. Equilibrium states
are reached only after infinite (“very long”) propagation time and are characterised—
according to the second law of thermodynamics—by a stationary value of the entropy
S. The infinity in time has, as the one in size, to be understood as a feature of the
underlying idealised concept (see section 2.1.2).

Due to the huge number of degrees of freedom, a full dynamical description of each
and every microscopic component of a macroscopic system is not useful or even possi-
ble. In these cases, a statistical (thermodynamic) approach is inevitable, since it allows
to reduce the number of relevant parameters drastically to a set of few statistical state
quantities, such as an (equilibrium) temperature T , pressure p, and chemical potential
µ. Statistical terms can then be calculated with the use of Z as generating function. If
Z is the partition function of a grand canonical ensemble, the expectation value of the
total number of particles, for example, is given by

N = ∂µ lnZ/β, (2.2)

whereβ−1 = kBT and kB is the Boltzmann constant. Hence, a thermodynamic represen-
tation combines a high empiric adequacy with a largely reduced descriptive complexity
in terms of intuitive and (experimentally) controllable quantities (such as the tempera-
ture). But, at the same time, its validity is strictly limited to thermal equilibrium. In con-
sequence, thermodynamics is not (directly) applicable to any nonequilibrium regime be-
yond linear response (see, e.g., Mahan [159]), where transport properties are connected
to equilibrium quantities via the fluctuation dissipation theorem [160, 161].

This immediately raises the question, how to deal with coherent transport through
a microscopic quantum dot that is interacting with macroscopic leads. Transport and
real-time dependence imply a nonequilibrium situation, while macroscopic leads with
applied bias voltage (electrochemical potential) and temperature should be described
(locally) in thermodynamical, i.e., equilibrium terms. But this is only a seeming contra-
diction, since statistical phenomena such as decoherence and dissipation are essential to
describe realistic transport of, e.g., directed currents beyond coherent oscillating dynam-
ics of (small) closed systems. It can often be resolved by combining a proper nonequilib-
rium framework with a model representation that “contains” as much thermodynamics
as possible. The concept of the open quantum system is a well-established framework for
such a representation. It allows us to build our nonequilibrium approach on top of an
(adopted) notion of the partition function. In the following, we shortly discuss the open
quantum system and proceed with an introduction to the nonequilibrium framework
named after L.V. Keldysh [88, 89].
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2. Basic Principles of Transport through a Single-Level Dot with Impurity

Figure 2.2.: Schematic illustration of our model (leads and dot) as an open quantum
system (OQS) embedded in an (unspecified) environment. The red arrows denote a
directed effective (particle) current through the OQS. The whole system (OQS plus
environment) is closed but in nonequilibrium. Red and blue wave-like patterns sym-
bolise the flow through the system. Their local relative amplitude in the leads is very
small, both due to the macroscopic dimensions of the leads themselves and the high re-
sistivity of the nanoscopic dot, which acts as a bottleneck for inter-lead particle transfer.
If the rate of transferred particles is much smaller than 1/τeq, with lead equilibration
time τeq, it is reasonable to assume that each reservoir stays in its individual equilib-
rium state. Compared to the microscopic size of the dot (blue hemisphere), however,
the resulting concentrated particle flow (blue peak) is large and deviations from equi-
librium cannot be neglected.

2.2.1. The Open Quantum System (OQS)

As the name implies, the essential feature of an open quantum system [162–164] is
that it is not closed, i.e, one or more of its extensive quantities such as energy, particle
number, or others may be interchanged with an unspecified environment. Only the
combination of the OQS with this environment is assumed to be closed. It is therefore
crucial that it is not part of the description of the OQS itself, hence, “invisible” and not
explicitly modelled. Conceptually, this situation resembles, e.g., the underlying model
for the grand canonical statistical ensemble of thermodynamics. There, a small fraction
of a closed system can exchange energy and particles with the much larger remainder,
which in turn acts as a reservoir or environment. But in contrast to any thermodynamic
model, a general OQS may be (and often is) in a nonequilibrium state.

Figure 2.2 shows a sketch of a nonequilibrium OQS similar to the model used in this
work and of the environment it is embedded in. The open system itself consists of two
“very large” (infinite) leads, which are connected to each other via a quantum dot or
another nanoscale constriction. A directed total current of particles, energy or other
quantities through the leads and the dot is indicated both by small red arrows at the
interface between OQS and environment and wave-like patterns in red and blue. Due
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2.2. Nonequilibrium Transport and Quantum Statistics

to the largely differing proportions of leads and dot, the resistivity of the whole OQS
for any kind of current flow is determined solely by the dot. The same current that
already yields strong deviations from the dot’s thermal state, will cause only negligible
fluctuations in the macroscopic leads. This is symbolised by the local relative amplitude
of the wave patterns compared to the system size. The small curling waves in the leads
nearly vanish in view of their spatial dimensions. In the dot, however, the same waves
are not only relatively large compared to its size but also grow in amplitude, when
squeezed through the nanoscale constriction.

In such situations, it may therefore be reasonable to assume that each lead is always in
a thermodynamic equilibrium state. All nonequilibrium physics and time dependence
is then contained in the dynamics of the dot and maybe its immediate vicinity. This
is tantamount to the assumption, that the average (waiting) time τT between two tun-
nelling events is very long compared to the lead equilibration time τeq: τeq ≪ τT . In
this thesis, we consider a theoretical model of a quantum dot with just one orbital level
and assume that such an approximation applies. The decision, whether or not a particu-
lar material or theoretical system can be successfully mapped onto our idealised model,
depends on the individual case and the considered transport regime.

Although it is not itself part of the model, the environment2 plays an important im-
plicit role in the concept of the OQS. For one thing, it contains the unspecified source
that provides an everlasting nonequilibrium situation. In the resulting idealised OQS
model, this manifests itself in two equilibrium leads with differing electrochemical po-
tentials, which—despite of being in (very high resistivity) contact—never reach some
common equilibrium state with chemical potential (µL+µR)/2. The particular struc-
tures of the current source and potentially complex external dynamics are, at the same
time, kept out of any consideration. Only in the vicinity of the contact point, viz., the
quantum dot, the externally caused nonequilibrium “re-appears.” Finally, due to this
“invisible” environment, the OQS has no boundaries at which particles could be (back-)
scattered. In the case of figure 2.2, this means that the right-moving particles, once they
passed the constriction, will not be reflected at any boundary and never return to in-
terfere with the dot. The environment provides for an infinite return time of particles
that move away from the dot or the central region, in general. This is a particularly use-
ful property, when the the main focus of attention lies on the stationary or long-time
nonequilibrium dynamics [125, 126].

2.2.2. The General Idea Behind the Keldysh Framework

With the open quantum system, we now have a model representation at hand, most
parts of which are described by thermodynamics. Thus, the remaining task is to find a
way to combine these local equilibrium parts with the nonequilibrium dynamics of the
dot. The two different approaches we use in this work are both based on the prevalent
Keldysh technique [89], which has proved itself to be versatile and adaptable to a wide

2Also called super-environment, sometimes, to clearly distinguish it from the leads as part of the system.
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2. Basic Principles of Transport through a Single-Level Dot with Impurity

range of models. A comprehensive, yet concise review can be found in the work of
Kamenev and Levchenko [88]. The following remarks base on that paper and provide
a short introduction to the general idea behind the Keldysh framework. Details of how
it is applied to our model are given in chapter 3 and section 4.1.

Initial State and Stationary Transport

All transport theories, that are capable of describing time dependent (as opposed to
stationary) quantum dynamics, have to refer to an initial configuration at some given
time ti , generally described by a density matrix ρ̂i .

3 This is simply owed to fact that
the Schrödinger-equation is a differential equation in time. When—as in chapter 3—
only stationary dynamics is of interest, however, this reference might at first glance
seem expendable or even unwanted, as it is the case, e.g., for particular master- and rate
equation approaches (see chapter 3). Here, the equations of motion for system states are
transformed into self-consistent linear equations by going to the stationary limit. The
motivation is to find a state, into which the system will propagate after an infinitely long
time and regardless of its initial state. In other words, it is a necessary condition for the
existence of an unique stationary state ρ̂ST, that the system can “forget” its initial one.
If it is met, the nonequilibrium situation (described by bias voltages, temperature, etc.)
completely determines the stationary physics and, hence, any reference to ρ̂i should be
avoided.

Nevertheless, in some cases there are good reasons to include information about the
initial state into the derivation even of a stationary state ρ̂ST. The standard example is a
quantum system, whose Hamiltonian Ĥ can be divided into two parts: Ĥ = Ĥ0+ ĤINT,
where Ĥ0 represents a known, solved problem and ĤINT describes some (often, but not
necessarily, small) deviation from it.4 The eigenstates of Ĥ0—and only they—are avail-
able ab initio; new physics emerges by the addition of ĤINT. Growing from zero to
its full value, an artificial time dependence or switching is attached to ĤINT between
initial time ti and some evaluation time tEV. In doing so, the conceptual discrimination
between system parts can be advantageous in two ways. First, it provides a convenient
reference point for calculations and, second, it may also foster to form intuitive expla-
nations of the physics at hand, since the full dynamics is systematically developed in
the well-understood terms of Ĥ0. The resulting resemblance to some hypothetical ex-
perimental procedure provides us with a physically consistent analogy as a foundation
for the mathematical derivations. If the switching is adiabatic and the proper stationary
limit performed, this procedure results in a stationary state ρ̂ST that is still connected to

3Throughout this thesis, we will often use the word state as referring to a density matrix (operator)
rather than to a Hilbert space vector |ψ〉, which can be represented by the corresponding projection
operator |ψ〉〈ψ|.

4If Ĥ0 is a single-particle Hamiltonian, it is usually referred to as the non-interacting or free part, hence,
ĤINT is called interaction part.
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the conveniently chosen initial (non-interacting) state and therefore provides the above
mentioned benefits.

All this applies particularly to perturbation theory: when in our model (2.1), for ex-
ample, the tunnel coupling (2.1f) is weak and correlations with leads can be neglected,
the dot’s stationary state may still be well-described in terms of its non-interacting eigen-
states. This can be seen in sections 2.3 and chapter 3. Yet, the procedure is not restricted
to weak interaction. Non-perturbative approaches like those based on the renormal-
isation group, to pick just one, often maintain such a description, too—though with
renormalised state quantities (for references, see chapter 4.2). Lastly, the mathematical
connection between ρ̂i and ρ̂ST facilitates the discovery of transitions in parameter space
between regions, in which the stationary state is determined by different physical pro-
cesses. This is shown in our investigation of the single-level dot’s cotunnelling regime
in section 3.2.

Recapitulation: the Equilibrium Case

To understand the peculiarities of the Keldysh technique, it is helpful to compare it to
the procedure of obtaining the equilibrium expectation value of an observable Ô. The
system, for which it is evaluated, shall be represented by a Hamiltonian of the form
Ĥ = Ĥ0+ ĤINT. In general, an expectation value of Ô in state ρ̂ is given by

〈Ô〉(ρ̂) =Tr{ρ̂ Ô}, (2.3)

the grand canonical equilibrium- or thermal state ρ̂Eq(ĥ) of a system with Hamiltonian

ĥ by

ρ̂Eq(ĥ) = X̂ /Tr X̂ with X̂ = exp{−β(ĥ −µN̂ )}, (2.4)

where N̂ is the particle number operator. Every such thermal state ρ̂Eq(ĥ) is, by def-
inition, stationary and unique. A switching of ĤINT that connects the states ρ̂(ti ) ≡
ρ̂Eq(Ĥ0) and ρ̂(tEV)≡ ρ̂Eq(Ĥ ) can therefore be chosen as adiabatic, i.e., “infinitely slow.”5

This is advantageous, because the resulting time dependence of Ĥ (t ) is then purely arti-
ficial and its particular form irrelevant. Without restricting the generality of the follow-
ing arguments, the initial time can be chosen to lie in the infinite past and the evaluation
time can be set to zero. The dynamics of ρ̂(t ) is given by the von Neumann equation
∂t ρ̂(t ) =−i/~[Ĥ (t ), ρ̂(t )] (see [162, 165], for example). Formal integration yields the

5In fact, it is the defining property of an adiabatic process, that it is slow enough to transport an equilib-
rium state along the corresponding path in parameter space.
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solution ρ̂(0) = Û (0,−∞)ρ̂(−∞)[Û (0,−∞)]† with the time evolution operator

Û (t , t ′) = 1̂− i
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(2.5)

From its unitarity and the property Û (t , t ) ≡ 1̂ follows Û (t ′, t ) = [Û (t , t ′)]†. With
the second equality in (2.5), a notation is defined by introducing the Dyson time order-
ing operator T̂ , which arranges all operators of a product in ascending order from right
to left. Details can be seen in Appendix A. The equilibrium (subscript ‘Eq’) expecta-
tion value of Ô with full interactions ĤINT can then formally be written without any
reference to ρ̂(0):

〈Ô〉INT
Eq =Tr{Û (−∞, 0) Ô Û (0,−∞)ρ̂(−∞)}, (2.6)

where we rearranged the operator product by using the invariance of the trace with
respect to cyclic permutations.

The r.h.s. of equation (2.6) describes the following procedure: propagate every vector
|ψ〉 of a suitable Hilbert space basis forward from time−∞ to 0, apply operator Ô, and
propagate backwards in time to −∞ before projecting on dual the vector 〈ψ|. For all
|ψ〉, the results are summed up and weighted according to initial state ρ̂(−∞). With
this, the desired connection between 〈Ô〉INT

Eq and the initial state ρ̂(−∞) is established.
But there is a price to be paid in form of the double time propagation. In equilibrium,
there is, however, a way to get around the backward propagation by reinterpreting the
backward switch-on between times 0 and −∞ as a forward switch-off from 0 to +∞.
Since all switchings are adiabatic, it is assumed, that the final state ρ̂(t f ) at t f = +∞ is
(physically) identical to the initial state. In other words, the time evolution from−∞ to
+∞ is equal to multiplication with an overall phase factor: Û (+∞,−∞) = e iϕ, where
ϕ is real. Upon insertion of 1̂= Û (−∞,+∞)Û (+∞,−∞) at the very left in the trace
in (2.6), we obtain

e iϕ〈Ô〉INT
Eq =Tr{Û (+∞, 0) Ô Û (0,−∞)ρ̂(−∞)}
=: Tr{T̂ Û (+∞,−∞)ρ̂Eq(Ĥ0)ÔtEV=0},

(2.7)

where the subscript of Ô denotes, which time is assigned to it (for the sake of ordering
by operator T̂ ). The resulting equilibrium time contour is shown in figure 2.3(a). It
requires knowledge of the states at both ends of the contour, with the implicit involve-
ment of ρ̂(t f )manifesting itself in the factor e iϕ.
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Figure 2.3.: Sketch of the time contours used to calculate the expectation value of
observable Ô. (a) The equilibrium contour starts at initial time ti (= −∞) with the
system being in a non-interacting initial state ρ̂i . Between ti and evaluation time tEV,
the interaction is switched on adiabatically (indicated by blue line and filling), so that
the system is at all times in a (time dependent) equilibrium state. After the state with
full interaction is reached at tEV, operator Ô is applied. The backward switch-on from
equation (2.6) is replaced by a forward switch-off that propagates the interacting- into
the final state ρ̂ f . The procedure rests upon the assumption, that final and initial
Hilbert space vectors are physically identical. (b) In case of a general switching and
genuine time dependence of the Hamiltonian, the Keldysh contour has to be used to
calculate 〈Ô〉(tEV). Its shape follows directly from equation (2.8). Forward and back-
ward propagation are inverse to each other; Hilbert vectors |ψ〉 acquire no phase factor.
Further insertion of 1̂≡ Û (tEV, t f )Û (t f , tEV) extends the contour to some later time
t f (dashed blue and black lines with semi-transparent filling). The only way to obtain
the corresponding state ρ̂ f is a posteriori (indicated by the question mark) and requires
to solve the nonequilibrium problem after fixing ρ̂i .
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The Keldysh Contour

In case of a genuine time dependence of the Hamiltonian Ĥ (t ), it is not possible to
bypass the backward time evolution. The reason is, that an assumption similar to the
equilibrium case, regarding the form of the final state ρ̂(t f ), can not be made. As we
stated above, determining the nonequilibrium dynamics is equivalent to solving a first
order differential equation in time: one (initial) state has to be fixed; everything else,
including the final state, should uniquely follow from the dynamical conditions given
by Ĥ (t ). The final state depends on the whole history of the system and can therefore
consistently be fixed (in addition to the initial one) only by actually solving the nonequi-
librium problem. Hence, for the calculation of the nonequilibrium expectation value
〈Ô〉(tEV), we are stuck with both time evolutions and an equation similar to (2.6):

〈Ô〉(tEV) =Tr{Û (ti , tEV) Ô Û (tEV, ti )ρ̂(ti )}. (2.8)

Note, that no (not even implicit) reference to ρ̂(t f ) is made. We end up with a forward-
backward time contour, the so-called Keldysh contour, which is shown in figure 2.3(b).
Since the forward evolution with Û (tEV, ti ) and corresponding backward part are in-
verse mathematical operations, no phase factor is acquired by any vector |ψ〉, when
propagated along the whole contour.

For the sake of mathematical convenience, the contour can be extended to reach some
later time t f by inserting the unity operator in (2.8) on the left of Ô. Assuming further,
that

(2.K1) Ĥ (t )≡ Ĥ (ti ) for −∞< t ≤ ti and

(2.K2) ρ̂(ti ) is a mixture of eigenstates of Ĥ (ti ),

allows to trivially extend the contour to the infinite past with ρ̂(−∞) = ρ̂(ti ). In the
limit t f →+∞, this yields

〈Ô〉(tEV) =Tr{Û (−∞,+∞)Û (+∞, tEV) Ô Û (tEV,−∞)ρ̂(−∞)}
=: Tr{T̂KÛKρ̂(−∞)ÔtEV

}, (2.9)

where ÛK = Û (−∞,+∞)Û (+∞,−∞) is the evolution operator along the whole, infi-
nite Keldysh contour and T̂K the corresponding time ordering operator. Analogous to
T̂ , it arranges operator products with ascending Keldysh times from right to left. The Kel-
dysh time distance between two points on the contour equals the length of the contour
segment that connects them. Its sign is positive, when moving according to the prop-
agation direction on each respective branch [indicated by arrows in figure 2.3(b)] and
negative otherwise. As a consequence, points on the backward branch are later in Kel-
dysh time than every point on the forward branch. Note, that, in general, supposition
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(2.K2) implies knowledge of the eigenstates of Ĥ (ti ). It therefore acts as a counterpart
to the respective assumption made for equilibrium systems, namely that Ĥ0 represents
an already solved problem.

There is an ambiguity in our subscript notation, which gives the position of ÔtEV
,

as “seen” by the time ordering operator in equation (2.9). It denotes a real-time and, as
our derivation went, Ô came to “sit” on the forward branch. But there are two contour
positions assigned to every real-time position—one on each branch—, while T̂K only sees
Keldysh times. Throughout this thesis, we resolve this ambiguous situation by fixing
every observable on the forward branch by default. From the physical point of view,
however, the choice of the contour branch is irrelevant.

The Keldysh Partition Function

At the beginning of this section, we introduced the equilibrium partition function Z
and mentioned its role as a generating function for expectation values of observables
using the example of the total particle number N ≡ 〈N̂ 〉. By comparing the identities
(2.4), (2.3), and (2.2), the grand canonical partition function can be identified with the
normalisation constant of the thermal state ρ̂Eq(ĥ):

Z =Tr(exp{−β(ĥ −µN̂ )}). (2.10)

But using of Z similar as in equation (2.2) is not restricted to quantities such as particle
number or thermodynamic energy. By adding the source term−ηÔ to the Hamiltonian
in (2.10), we can take advantage of its exponential form, to transform the partition
function into a generating function Z[η] for an arbitrary expectation value 〈Ô〉Eq. The
latter, we can then write as 〈Ô〉Eq =Tr{ρ̂Eq(ĥ)Ô} ≡ ∂η lnZ[η]/β|η=0. Obviously, the
partition function is obtained from Z[η] for η= 0.

With the remarks presented in the previous paragraphs, we are now able to moti-
vate the definitions of corresponding partition- and generating functions Z [η] for the
nonequilibrium case. The starting point is equation (2.9). We compare it with the re-
spective equilibrium equation, which we get by inserting (2.4) into (2.3):

〈Ô〉Eq =
Tr{e−β(ĥ−µN̂ )Ô}

Z[η= 0]

Tr{T̂K ÛK ρ̂(−∞)ÔtEV
}

1
= 〈Ô〉(tEV).

(2.Z1)

(2.Z2)

(2.Z3)

This provides us with the following analogies for the construction of Z .

(2.Z1) The role of the Boltzmann exponential factor in equilibrium should be taken
by the Keldysh propagator ÛK in the expression for 〈Ô〉(tEV). A suitable source
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term ∼ η (see below), added to ĥ, will again make Ô appear in the right place in
the expectation value after differentiation with respect to η.

(2.Z2) It is usual and convenient, to normalise the Keldysh generating function Z [η]
in such a way, that Z [η= 0] = 1.

(2.Z3) Though present in the respective expressions for the equilibrium and Keldysh
expectation values, an observable Ô other than ĥ should not appear in the parti-
tion function Z [0] itself.

Points (2.Z1) and (2.Z3) suggest, that the Keldysh partition function should be pro-
portional to Tr{ÛK ρ̂(−∞)}.6 From point (2.Z2) and the observations ÛK ≡ 1̂ and
Tr{ρ̂(−∞)} = 1, we see, that no additional normalisation factor is needed. In view of
these arguments, the definition of Kamenev and Levchenko [88] of the Keldysh parti-
tion function

Z [0] :=Tr{ÛK ρ̂(−∞)}= 1 (2.11)

provides a consistent and convenient starting point for the nonequilibrium approach
we employ in chapter 4. Also, the seemingly trivial form of Z should not lead to ir-
ritations. ÛK is only identical to 1̂, when no source term is present (η = 0) and both
forward and backward time evolutions are symmetrical. For non-vanishing η, this sym-
metry is broken and Z [η] will generally differ from 1. Still, due to the presence of
the exponential evolution operator, expression (2.11) proves to be useful even in itself.
A path integral representation of this partition function will allow for straightforward
addition of source terms and derivations with respect to η. This is shown in section 4.1.

Let us close this section with a few words on how the source terms are introduced.
With the Keldysh contourK , evolution operator ÛK can be written as

ÛK = Û (−∞,+∞)Û (+∞,−∞) = T̂K exp
�

− i

~



K
ĥ(t )dt

�

. (2.12)

Kamenev and Levchenko suggest to add a term i~Ôη(t ) to the Hamiltonian, so that
the sought-after expectation value is obtained from the resulting generating function
Z [η(t )] by means of the functional derivative

〈Ô〉(tEV) =
δ lnZ [η(t )]
δη(tEV)

�

�

�

�

�

η=0

. (2.13)

Note, that the logarithm is kept for the sake of a stronger resemblance to the equilib-
rium case (see above). Due to the normalisation property (2.Z2), it can just as well be
omitted. We will show in section 4.1.7, however, that the addition of source terms is

6In this expression, the operators are in correct Keldysh time order and T̂K can be omitted.
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2.3. Preliminary Remarks to Sequential and Cotunnelling Transport

a straightforward procedure, once a path integral representation of Z is derived. The
functional derivative in (2.13) can then be reduced to an ordinary derivative with respect
to a real number η.

2.3. Preliminary Remarks to Sequential and
Cotunnelling Transport

During the previous introductions of the model system and the concepts that form the
foundation of our theoretical approaches, though mentioned abundantly, the notion
of quantum transport itself remained abstract and in-explicit. Aim of this section is to
exemplary illustrate transport in the regime of weak coupling and small temperatures.
Since it is dominated by incoherent, sequential tunnelling processes, finding intuitive
explanations for elementary transport effects in this regime is comparably easy. Along
the way, we introduce the vocabulary of the transport language that will be used widely
in the remaining parts of this work.

The process when an electron that tunnels from a lead onto the dot or back is ac-
companied by a charge and spin transfer. Hence, single-electron tunnelling processes,
as defined by the coupling Hamiltonian (2.1f), are the elementary building blocks for a
theory of charge, spin, and energy transport.7 But although a transport phenomenon
is ultimately formed by an interplay of elementary and complex charge-moving tun-
nelling events, for the purposes of this thesis, we do not consider an individual event as
transport all by itself. Rather—as we use the concept here—transport is a dynamical pro-
cess, in the course of which charge, energy, and/or spin are transferred on average in a
quantumstatistical sense. According to this convention, individual tunnelling events ap-
pear on the level of small fluctuations; “transport”, we will call only the non-vanishing,
combined statistical dynamics of a macroscopic number of them. In doing so, we en-
sure that “current,” in the sense we use the notion here, is the effect of a nonequilibrium
situation in a macroscopic system.

2.3.1. Transition Rates and Rate Equations

A very intuitive and common way of describing the macroscopic, average dynamics
of a system is based on transition rates. Each rate is an aggregated quantity giving the
average number of transitions from matrix elements per time ρψ

φ
(t ) := 〈φ|ρ̂(t )|ψ〉 to

ρψ
′

φ′
(t + dt ), where |φ〉 and |ψ〉 are Hilbert vectors of a suitable basis and ρ̂(t ) is the

time dependent density matrix. Aim of this approach is to map the system dynamics
on a continuous-time Markov process (see, e.g., [162, 164, 166]) which is memoryless in
time. That is to say, for a Markov process, it is sufficient to know the system’s state

7At least for systems with a similar structure as the one shown in figure 2.1a that can be described as an
open quantum system with a coupling like ĤT .
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2. Basic Principles of Transport through a Single-Level Dot with Impurity

at one time t , to know it in the future t ′ > t . If such a mapping is possible, rates are
obtained, which are immediately connected to the time derivative of the system state
ρ̂(t ) and determined by the combined statistical dynamics of all irreducible processes
that cause the corresponding transitions. In case of our SLQD model, the transitions
are caused by the electron tunnelling. A complex process is called reducible if it can be
decomposed into several independent events connected by periods of (tunnelling-) free
propagation. The rates of all possible transitions define a fourth rank tensor Ŵ (t ), that
leads to the rate or master equation [50, 164, 166]

dρ̂

dt
(t ) = Ŵ (t )ρ̂(t ) ∀ψ,φ :

d

dt
ρψ
φ
(t ) =



φ′,ψ′
W ψ←ψ′

φ←φ′ (t )ρ
ψ′

φ′
(t ), (2.14)

operator notation tensor notation

which allows to determine the dynamical state ρ̂(t ) and, based on that, the transport
behaviour. The whole approach rests on a few assumptions besides the Markov prop-
erty [164]. For this introduction, the time scale, on which the system state changes, is
assumed to be much larger than the one for individual transitions.8 Also, the transition
rates should only depend on and inherit their time dependence from the Hamiltonian
of the system and not its dynamical state. In the regime of weak tunnel coupling and
low temperature (|γ | , kBT ≪ ∆, U ), these conditions are often met to an extent that a
reasonable up to excellent agreement of theory and experimental results can be reached.

In section 2.2.1, we introduced the open quantum system and the equilibrium ap-
proximation for the leads. The latter manifests mathematically in the factorisation of
the density matrix ρ̂(t ) into time independent, equilibrium lead states ρ̂p := ρ̂Eq(Ĥp)
[see equation(2.4) and (2.1e)] and the so-called reduced density matrix P̂ (t ) that contains
the complete dynamics of the system: ρ̂(t ) = P̂ (t )ρ̂leads with ρ̂leads := ρ̂Lρ̂R. In general,
the reduced density matrix, which is obtained by tracing out the lead degrees of freedom,
has the form

P̂ (t )≡Trleads ρ̂(t ) =


χ ,χ ′
Pχ

χ ′
(t )|χ ′〉〈χ |, (2.15)

where χ ∈ {0,↑,↓, d} denotes one of the four dot eigenstates.
For this short introduction, however, we focus on the stationary state dynamics and

the limit of sequential transport. The rates are then solely determined by incoherent tun-
nelling events of single electrons, which corresponds to perturbation theory of lowest
(second) order in the amplitude γ . By purely sequential dynamics, an initially diagonal
state P̂i cannot acquire coherences and P̂ (t ) stays diagonal for t > ti . We assume further
that an unspecified source of dephasing would destroy, during the system’s convergence
to stationarity, any coherence present in a general state P̂i . In these circumstances, the
stationary reduced density matrix P̂ st is diagonal. Its elements P st

χ can be identified with

8This is yet another common infinity limit idealisation.
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the occupation probabilities of the states |χ 〉. In the stationary limit, equation (2.14)
becomes the self-consistent, reduced linear matrix equation

Ŵ (1),stP̂ st = 0 ∀χ :


χ ′
W (1),st

χ←χ ′P
st
χ ′ = 0. (2.16)

Due to the assumption of P̂ st being diagonal, it has a vector- and Ŵ (1),st has a matrix
structure. The superscript integer indicates that only processes with exactly one tun-
nelling electron are taken into account for the calculation of the rates. For the rest of
this section, we will discuss the sequential, stationary regime only and omit the super-
script. We explained on page 20 in section 2.2.2, that this equation is only valid if the
system can “forget” the initial state in the course of purely sequential evolution, which
is consistent with the Markovian assumption.9

Since all information about the initial state is lost in the stationary limit, occupation
vector P̂ is obtained by solving the system of linear equations (2.16) and, hence, deter-
mined solely by the dynamical conditions that are given by the Hamiltonian and are
encoded into the transition rates. It implicitly characterises a proper stationary vector
P̂ as being unchanged by the interplay of all (statistical) tunnelling events during an in-
finitesimal time interval dt . This is the meaning of the attribute “self-consistent” in this
context.

The overall probability of finding the dot in one of its four eigenstates is a conserved
quantity and is equal to 1, while a product Wχ←χ ′Pχ ′ with χ ̸= χ ′ can be interpreted as
the amount of probability flowing out of |χ ′〉 into |χ 〉. Hence, to keep the balance, the
sum of a diagonal transition matrix element Wχ ′←χ ′ and the rates Wχ←χ ′ for transitions
from |χ ′〉 into other states |χ 〉 has to vanish:

∀χ ′ :


χ

Wχ←χ ′ = 0. (2.17)

In other words, the values of the diagonal elements are constrained by the conservation
of probability. As a result, the rank of Ŵ cannot exceed n − 1 with n = 4 being the
dimension of the dot’s Hilbert space, which allows for the existence of non-trivial so-
lutions of the homogeneous rate equation. What is not encoded into equation (2.16),
however, and was lost in the stationary limit, is the proper normalisation of the occupa-
tion vector. We have to add the corresponding condition



χ

Pχ = 1 (2.18)

separately, to obtain a set of equations that determines P̂ uniquely.

9In our detailed discussion of the cotunnelling regime in chapter 3, we present an example, for which
this particular requirement is not fulfilled.
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Charge Current

In this intuitive picture of occupation flowing between states due to single-electron tun-
nelling processes, a rate equation for the charge current I can be constructed in a simple
manner. Throughout this thesis, we define a current of positive charges flowing from
lead L to R as positive. At the same time, it is the product of the negative electron charge
e with the particle current. If considered as particles, electrons tunnelling, e.g., from L
onto the dot are therefore counted positive. Consequently, each tunnelling process that
contributes to a transition rate Wχ←χ ′ comes with a sign, that depends on the spatial
direction of the tunnelling; for a particle that tunnels through barrier p it equals to p
times S(χ ,χ ′) := sign[N (χ )−N (χ ′)], where N (χ ) is the number of particles in state
|χ 〉. The charge current I is then given by

I = e Tr{Ŵ I P̂} I = e


χχ ′
W I

χ←χ ′Pχ ′ ≡ e


χχ ′

�

W I�χ←χ ′
χ←χ ′P

χ ′

χ ′
(2.19a)

W I
χ←χ ′ :=

S(χ ,χ ′)

2

�

W L
χ←χ ′ −W R

χ←χ ′
�

and Wχ←χ ′ =


p

W p
χ←χ ′ . (2.19b)with

The rates W p
χ←χ ′ only include processes of particles that tunnel through barrier p. In

the operator version of (2.19a), as in any other similar context, P̂ and Ŵ I should be
interpreted as diagonal density matrix and fourth rank tensor, rather than as vector and
matrix, respectively. The factor 1/2 in definition (2.19b) is a consequence of the charge
conservation, as expressed by the continuity equation: since the current through barrier
L equals the one through barrier R, the factor prevents a double counting of the current,
while the minus sign accounts for the opposite relative directions. This corresponds to
the definition I := (I L− I R)/2, where I p is the charge current flowing from lead p into
the dot. A slightly different but equivalent definition is used in chapter 3.

Sequential Transition Rates

In the sequential regime, the rates for transitions between dot states χ and χ ′ can be
calculated with the help of Fermi’s golden rule (see, [167, 168], for example). For two
Hilbert states |ψ〉 and |ψ′〉 of the uncoupled system Ĥ0 := Ĥ el

dot
+ Ĥleads, the first-order

transition rate in ĤT is given by

Wψ←ψ′ =
2π

~
|〈ψ|ĤT |ψ′〉|2δ(Eψ− Eψ′), (2.20)

where |ψ〉= |χ 〉⊗|kLσL〉⊗|kRσR〉 and Eψ = εχ+εkL
+εkR

the corresponding total energy.
The Dirac delta function δ ensures the conservation of energy. To go from this expres-
sion to a rate Wχ←χ ′ of transitions between two states in the isolated dot’s Hilbert space
(the reduced state space), we have to sum over all combinations of lead components in
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2.3. Preliminary Remarks to Sequential and Cotunnelling Transport

|ψ〉 and |ψ′〉, weighting each addend according to the thermal distribution ρ̂leads. The
summation over the spin can be carried out right away, since it is conserved by ĤT and
uniquely determined by the final states of sequential transitions in a SLQD. In case of
χ =↑ and χ ′ = d, for instance, the spin of the tunnelling electron has to be σ =↓. In par-
ticular, note, that for all χ , χ ′, the spectral weights 〈χ |d̂ (†)σ |χ ′〉 are either 0 or 1. This is
also a reason why the phase of the tunnel amplitude γk = γ can be neglected (see section
2.1.2). How to calculate the resulting trace over the lead degrees of freedom

Wχ←χ ′ =
2π

~



kLkR



k′Lk′R

〈ψ′|ĤT |ψ〉〈ψ|ĤT ρ̂leads|ψ′〉δ(Eψ− Eψ′), (2.21)

is explicitly shown in appendix B. To carry out the last remaining sum over the wave
vectors k requires the sum to be transformed into an integral over the corresponding
electron energies εk. We assume, that the density of k-states is isotropic: ϱ(k) = ϱ(|k|).
In any system with the number N of quasi-continuous states, clearly, the following
identity should hold for this transformation to be well-defined:

N =


k

1=


V
ϱ(k)dk =

1

Sd (1)

 ε+
k

ε−
k

ϱ(εk)dεk



dΩ, (2.22)

whereV is the k-space volume of the system and the integration limits ε±k may in general
depend on the space direction Ω. With the number dν = Sd (|k|)ϱ(|k|)d |k| of states in a
spherical k-space shell, the density of states in energy space is defined by ϱ(εk) = dν/dεk.
Here, Sd (r ) with d = 2,3 is the surface area of a d -dimensional sphere with radius r
and the geometrical factor Sd (1) accounts for the proper normalisation of the angular
integral.10 In chapter 2.1.2, however, we argued that when the density of states can be
assumed constant over the energy range of electrons contributing to transport (ϱ(εk)≈
ϱ(εF) = const.), we can set ε±k to ±∞. This is the so-called wide-band limit. εF is
the leads’ Fermi energy for Vbias = 0. Since the tunnelling amplitude is assumed to
be constant, too, the energy integral in (2.21) will not depend on Ω and with



k →
ϱ(εF)



dεk, we arrive at

Wχ←χ ′ =
Γ

~
|〈χ |d̂ †

σ
|χ ′〉|2



p

f +p (εχ − εχ ′)

+
Γ

~
|〈χ |d̂σ |χ ′〉|

2

p

f −p (εχ ′ − εχ ),
(2.23)

where we defined f +p (ε) := f (ε−µp) and f −p (ε) := 1− f (ε−µp). The Fermi function
f (ε) = [1+ exp(βε)]−1 gives the thermal occupation for a free gas of fermions. The

10For d = 2 and d = 3, we have to insert Sd (r ) = 2πr and Sd (r ) = 4πr 2, respectively.
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2. Basic Principles of Transport through a Single-Level Dot with Impurity

scalar parameter Γ := 2π |γ |2ϱ(εF) is an energy that characterises the tunnel coupling
more completely than the tunnel amplitude γ , for it also includes information about
the leads behind the barrier via the density of states. From now on, Γ is regarded as
strength of the tunnelling interaction.

The first (second) term on the r.h.s. of equation (2.23) describes tunnelling of an
electron out of (into) the leads and onto (out of) the dot. Depending on the spectral
weight |〈χ |d̂ (†)σ |χ ′〉|2, not more than one of these terms can differ from zero; in addition
to σ , the tunnelling direction of the electron is also determined by the choice of the
initial and final dot states. For example, if χ ′ = 0 and χ =↓, the electron has to tunnel
onto the dot and the second term in equation (2.23) vanishes. The rate for tunnelling
onto the dot is proportional to the occupation f +p (ε) in the leads at the energy ε =
εχ − εχ ′ that is transferred to the dot in the process. Consequently, tunnelling into a
lead requires empty states at the energy ε= εχ ′−εχ transferred from dot to lead. Their
number is given by f −p (ε).

In general, the differences µ(χ ′,χ ) := εχ ′ − εχ , where N (χ ′) = N (χ ) + 1, between
end state energies of possible sequential transitions play an important role for transport
considerations and are called transport channels. In our SLQD model, there are four such
channels: µ(σ̃ , 0) = ΦD + σ̃∆/2 and µ(d , σ̃) = µ(−σ̃ , 0) +U , where σ̃ ∈ {g, e}= {↑,↓}
is an index, that orders the single-electron states according to their energy. In this spirit,
g (e) stands for the ground (excited) state. Whenever they appear as numbers, we put
g := −1 and e := 1. This definition is well-defined only when ∆ ̸= 0. It will be used
in cases, in which only relative and not absolute spin orientations are important. For
example, if the degeneracy of the single-particle states is broken by an external magnetic
field, the absolute spin directions of ground and excited states are interchanged by an
inversion of the field. If the physics does not change by such an operation—that is to
say, if it is invariant under inversion of magnetic field and all spin directions—we do not
specify a particular mapping of {↑,↓} to {g, e} but use only the energy-related symbols.
This is the case here and in chapter 3.

Figure 2.4 shows the so-called transport scheme of the SLQD model (2.1). The hori-
zontal direction depicts a spatial dimension and is interpreted as a schematic cut through
the system with left and right leads (blue and red shaded areas L and R) on both sides of
the dark grey vertical tunnelling barriers, which in turn enframe the SLQD as central
region. The chemical potentials of electrons in the respective areas are given in the ver-
tical (energy) dimension. With the exception of the tunnel coupling Γ, which is only
sketched graphically as the width of the barriers, energy distances are indicated by ver-
tical braces. The blue and red shaded areas in L and R represent the occupied states,
as given by the Fermi function f at temperature T and with (electro-)chemical poten-
tials µL and µR, respectively. In a blue area, all states are occupied, while occupation
decreases to (very nearly) zero in a red area, whose width scales with T . By convention,
the black, dashed, zero energy lies halfway between both Fermi levels, their energy
difference corresponding to eVbias. The four discrete transport channels of the dot are
symbolised by vertical lines in the central region.
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Figure 2.4.: Introduction of the transport scheme for our model (2.1) (without mag-
netic impurity, Ĥdot ≡ Ĥ el

dot). The two thick vertical lines symbolise the tunnelling
barriers, which separate the quantum dot as central region from the thermal leads L
and R. In the central dot part, we symbolise transport channelsµ(χ ′,χ ) by horizontal
grey lines. The label g (e) indicates the single-electron state with lower (higher) energy,
as referring to the single-particle ground (excited) state. The blue and red shaded ar-
eas in L and R represent the occupied states (given by the Fermi function f , see text)
of the free Fermi gases at temperature T and with (electro-)chemical potentials—also
called Fermi levels—µL and µR, respectively. In the blue areas, all states are occupied,
while occupation decreases to zero in the red areas, whose widths scale with T . By con-
vention, the black, dashed zero energy lies halfway between both Fermi levels, their
energy difference corresponding to eVbias. The tunnel coupling Γ is sketched graphi-
cally as the width of the barriers.

2.3.2. Sequential Transport and Coulomb Blockade

In the sequential transport regime, both the coupling Γ and the thermal energy kBT
are much smaller than the dot energies ∆ and U . As long as they are small enough
to allow for a perturbative treatment as described in the previous section, occupation
vector P̂ and charge current I are obtained by plugging equation (2.23) into the rate
equations (2.16) and (2.19), respectively. In sequential transport, the average dynamics of
the macroscopic system is caused by the interplay of incoherent one-by-one tunnelling
processes only. This results in the strict energy conditions, expressed by the Fermi
functions (see above).

The transport scheme in figure 2.5(a) shows a configuration, which leads to a non-zero
sequential current. The lowest two transport channels lie in the energy range between
the Fermi levelsµp , called transport window. Since every sequential tunnelling event has
to conserve the total energy, only electrons that are level with transport channels can
tunnel onto the dot. In turn, tunnelling into a lead requires empty (not fully occupied)
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2. Basic Principles of Transport through a Single-Level Dot with Impurity

states at the level of transport channels. In the shown configuration, occupied and
empty states of matching energy can only be found in lead L and R, respectively. As
a result, the bias voltage imposes a preferred direction for statistical tunnelling of elec-
trons, i.e, individual electrons are more likely (much more, in this case) to tunnel from
L to R than in the reverse direction. This leads to a net charge current from L to R.

Figure 2.5.: Illustration of sequential transport and the Coulomb blockade by means
of energy profiles as introduced in figure 2.4. Since the temperature is assumed to be
small, the very steep Fermi functions are depicted as to be step-like around µL/R. The
green (red) horizontal lines mark occupied (empty) states, out of (into) which electrons
can tunnel onto (out of) the dot sequentially. Due to the conservation of energy, these
lines have to be levelled with the transport channels. (a) If the dot is initially empty, an
electron can tunnel onto the dot only from the left lead [process (1./3.)], while a dot
in a single-electron state will be emptied into the right lead with unoccupied states at
the same energy [process (2./4.)]. Both the holes in L and the electrons above µR are
assumed to thermalise instantly. Hence, in the shown configuration, a preferred direc-
tion for tunnelling exists, which leads to a charge current from left to right. (b) Cou-
lomb blockade of sequential transport. Though two channels lie within the transport
window, no sequential current flows through the dot. Since channel µ(g,0) lies below
both Fermi levels and µ(e,0), due to ∆ > 0, lies above µR, the dot will be trapped in
state |g〉 (black dot on lowest channel). The absence of unoccupied states at matching
energy prohibits tunnelling into the leads [red dashed arrows (i)]. Tunnelling onto the
dot via channels µ(e,0) or µ(d,e) requires the dot to be in one of states |χ = 0, e,d〉,
which is thus inhibited (ii). Only through the highest channel µ(d,g), tunnelling onto
the dot would be possible. Due to the Coulomb energy U , however, this channel lies
above theµp and due to the small temperature T , no states at that energy are occupied
in the leads. For larger T and broader Fermi level (dotted blue line and light shading),
the blockade is lifted.

In order to contribute to a sequential current, it is therefore necessary but not suffi-
cient for a transport channel to lie within the transport window. This is shown in figure
2.5(b) for a configuration, in which a Coulomb blockade inhibits sequential transport
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through the dot [36, 50, 64, 169]. Since channel µ(g,0) lies below both chemical poten-
tials µp and µ(e,0) above µR due to ∆ > 0, the SLQD has to be in the single-electron
Hilbert state |g〉, also referred to as (single-level) ground state. Once the system prop-
agates into this state, which inevitably happens during its approach to stationarity, it
gets trapped in it; no free states exist in the leads at the matching energies for tunnelling
out. It is also said, that the lowest channel is Pauli-blocked. The forbidden tunnelling is
indicated by red dashed arrows, labelled with (i). Despite lying in the transport window,
the two channels µ(e,0) and µ(d,e) cannot contribute to transport, because tunnelling
onto the dot via those would require the SLQD to be in one of the states |χ = 0, e〉
[arrows (ii) in the figure].

The remaining, highest channel µ(d,g) belongs to a transition, which connects to the
stationary dot state |g〉. Tunnelling onto the dot would hence be possible, if occupied
electron states of matching energy could be found in the leads. But since the channel
is above the Fermi levels due to the Coulomb repulsion, given by U , this is not the
case. For this reason, a situation with blocked sequential transport of the kind shown
in 2.5(b) is called Coulomb blockade. As a result, we can identify two requirements
a channel µ(χ ′,χ ) has to meet, which together are sufficient for its contribution to a
sequential charge current:

(2.R1) The channel hast to lie within the transport window, that is to say, min(µp ) ≤
µ(χ ′,χ )≤max(µp ).

(2.R2) The average stationary probability to find the dot in either one of the states χ
and χ ′ has to be non-zero.

It can also be understood from the figure, why an effective Coulomb blockade requires a
low temperature. If kBT was of the same order of magnitude as the inter-channel energy
distances, the much slower exponential decrease of the occupation around theµp would
both result in a considerable occupation in L at the level of channel µ(d,g) (indicated
by the dotted line and light blue shading) and empty states in R at µ(g,0).

2.3.3. Beyond Sequential Transport: Cotunnelling

For the sake of simplicity and clearness, we only considered sequential tunnelling for
the calculation of the transition rates so far.11 But even when the coupling Γ is very
small compared to the dot energies ∆ and U , second- and higher-order contributions
in Γ may still considerably affect the transport behaviour. In particular, effects like the
Coulomb blockade might require to take second-order processes into account to avoid
unphysical results. We elaborate on these particular circumstances in chapter 3. For

11In this whole section, we assume that the model meets all conditions that are sufficient to adequately
describe it by a rate equation.
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now, just a short, qualitative introduction to second-order transport is provided. A
more precise and detailed discussion follows in the next chapter.

As we mentioned in section 2.3.1, transition rates Wχ←χ ′ are µ(χ ′,χ ) lead-averaged
quantities, which aggregate the statistical effect of those irreducible processes that cause
transitions between dot states χ and χ ′. Sequential rates like (2.23) approximate the full
rate by restricting the class of process taken into account to incoherent single-electron
processes. Cotunnelling processes, where either two electrons coherently tunnel once
or one electron tunnels twice—but also coherently—through a virtual intermediate state,
are the simplest examples for irreducible many-particle tunnelling. The rates that cor-
respond to this class of processes are of second-order in Γ and may also be calculated
by Fermi’s golden rule, as long as the Fermi levels are not in or very close to resonance
with a transport channel [170].

In the Coulomb blockade regime, sequential tunnelling is strongly (exponentially)
suppressed due to the small temperature (kBT ≪∆, U ). It follows that in this situation,
cotunnelling, although it scales with Γ2, is stronger than sequential tunnelling and dom-
inates the transport behaviour. Not only is it responsible for the leading contribution
of the current I in the Coulomb blockade regime, it also determines the stationary oc-
cupation of states that are simultaneously cut-off from sequential transport, as shown
in chapter 3. Figure 2.6 shows two examples for cotunnelling processes that can occur
in the Coulomb blockade configuration shown in figure 2.5(b).

In 2.6(a), one electron tunnels twice from L to R via virtual intermediate state |d〉.
The SLQD is assumed to be in the single-electron ground state, so that the transport
channel used has to be µ(d,g). A process of this kind is called elastic as the energy of
the dot remains unchanged. That this is possible at all relates to the fact that the second-
order process has to conserve the system energy only when regarded as a whole. The
elementary sub-processes of tunnelling from L into virtual state |d〉 and further from |d〉
into lead R, violate the energy conservation for the (short) time span that the tunnelling
lasts. Hence, the occupied (green shaded) and empty (red shaded) lead states that are
available for tunnelling onto and out of the dot, respectively, do not just lie exactly at the
discrete energies that are level with the transport channels, but also in broader regions
around them. According to Heisenberg’s uncertainty principle [165, 171], however, the
tunnelling probability has to decrease with larger energy distance to the channel, viz.,
violation of energy conservation. This is expressed by the shape of the green and red
shaded areas: the smaller their width at a certain energy the lower is the quotient of
tunnelling electrons. Because the elastic process as a whole has to be energy conserving,
empty states in R above µR are not available as final states. These excluded states are
defined by the dashed red line.12

In 2.6(b), an inelastic cotunnelling event is shown. The coherent two-particle process
consists of one electron tunnelling from L into the dot state |e〉 and the ground state
electron tunnelling from the dot into lead R. By the process, one electron is effectively

12Although not represented in the figure, occupied states in L below µL are excluded, too.
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transferred from L to R and the dot is excited from |g〉 to |e〉 (dashed arrow). It is
this effective excitation that qualifies the cotunnelling as inelastic. The energetic rules
regarding the available lead states for tunnelling are analogous to those for the elastic
case. Only the fact, that the energy for the dot’s excitation has to be provided by the
leads, results in an energy distance of∆ between the green shaded region in L and the red
shaded region in R. Again, the states in the dashed outlined regions cannot contribute
to transport via this process due to energy conservation.

Figure 2.6.: Sketch of the two different kinds of cotunnelling processes. Since the
energy configuration is the same as in figure 2.5(b), sequential transport is blocked.
Cotunnelling and higher-order tunnelling, however, is possible. As in figure 2.5, green
(red) shaded areas in the leads represent occupied (empty) states available for transport.
In contrast to the virtual, single-particle transitions that together form a coherent co-
tunnelling process, both these complex events (a) and (b) as a whole conserve the total
energy. Hence, electrons and empty states for cotunnelling are not only available at the
discrete transport channels, but also in broader regions around them. The quotient of
contributing tunnelling states at a certain energy level is symbolised by the horizontal
extent of the respective region. It always decreases with larger distance to the assigned
channel. Dashed outlined regions are not available for cotunnelling due to the conser-
vation of energy. (a) Elastic cotunnelling. By this kind of process, the energy of the dot
is unchanged. The SLQD remains in the single-electron ground state, while a single
electron tunnels twice: from the green area in L into the corresponding red region in
R through virtual intermediate state |d 〉. (b) Inelastic cotunnelling. The name refers
to the change in the dot energy that is caused by this process, which is indicated by
the dashed arrow. Two electrons tunnel coherently and, as in (a), effectively transport
one electron from L to R. Since the energy for excitation of the dot has to be provided
by the leads, electrons that tunnel from L have to be at least ∆ above µR. In turn,
electrons cannot tunnel into parts of the red region in R that are higher than µL−∆.
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3
Influence of Spin Relaxation on Transport
in Cotunneling Regime

The contents of this chapter have been published slightly modified in Ref. [4]: Daniel Becker
and Daniela Pfannkuche, Coulomb-blocked transport through a quantum dot with spin-
split level: Increase of differential conductance peaks by spin relaxation, Physical Review B
77, 205307, 2008.

COHERENCE EFFECTS, whose signatures can be seen in (spin-) electronic transport
through low dimensional nanoscopic structures like quantum dots[36, 53, 82], pro-

vide insight into fundamental aspects of quantum mechanics and have important appli-
cations in vital fields of research such as spintronics, quantum computing, and data
storage. [68, 71] For the occurrence of these effects spin-flip relaxation is widely con-
sidered as a limiting factor and therefore usually sought to be as small as possible. In
experiments spin-flip relaxation times T1 ranging from µs[60, 83] to ms[172, 173] have
been observed displaying dependences both on the sort of quantum dot and on the pa-
rameters of the experimental setup like temperature and magnetic field [36, 53, 56, 61].
Accordingly, the relaxation rates can be experimentally adjusted in a wide range either
by means of tuning of external parameters or by suitably tailoring the quantum dot
itself. Recently, spin-flip times of even several hundred milliseconds were measured
in n-doped (In, Ga)As/GaAs quantum dots charged with spin-polarized electrons at
low magnetic field and temperature. [84] For transport through few-electron quantum
dots in the presence of intrinsic spin relaxation, which is discussed in this chapter, mi-
croscopic mechanisms like phonon-induced spin decay due to spin-orbit or hyperfine
interaction have been investigated theoretically (see, e.g., Refs. [53, 56, 61, 62, 85, 86]).

Though relaxation mostly acts destructively on coherent electron dynamics, it can
also, however, considerably pronounce their effect, as Weymann and Barnás [58] show
for the case of Coulomb-blocked transport through a single-level quantum dot (SLQD)
coupled to ferromagnetic leads with antiparallel magnetization. The zero-bias anomaly
of the differential conductance and the conductance step at the onset of inelastic cotun-
neling are increased by a slow spin relaxation for a spin-degenerate and a spin-split dot
level, respectively.
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3. Influence of Spin Relaxation on Transport in Cotunneling Regime

We will show in this chapter that a similar, strongly pronounced effect should be ob-
servable even when the leads are non-magnetic. In the considered case a small relaxation
that is roughly as large as the tunnel coupling maximizes peaks of the differential conduc-
tance, which mark the onset of cotunneling-mediated sequential transport. This effect
is associated with sequential tunneling out of an excited single-particle state. Within a
SLQD model, the dot’s level has to be spin-split. For few-electron GaAs/Al0.3Ga0.7As
quantum dots with non-degenerate orbital levels these signatures of the single-particle
spectrum have been intensely studied both experimentally and theoretically by Schleser
et al. [87], whereby new insight was provided into the interplay between sequential
and cotunneling in the Coulomb blockade regime. In the present chapter we investi-
gate this interplay in further detail. Since said signatures appear close to resonance with
single-particle transitions, we have to base our calculations on the nonequilibrium Kel-
dysh formalism rather than second-order perturbation theory. [51, 87, 90] It is shown
that in order to obtain physically correct, perturbative results for the entire cotunneling
regime, one has to construct non-systematic rate equations similar to those proposed in
Ref. [174]. In the latter equations we identify terms that cannot belong to the second-
order perturbation expansion. By omitting these terms, one ensures that for the consid-
ered system the occupation probabilities are well-defined everywhere in the Coulomb
blockade regime. As in Ref. [58] we treat the effect of relaxation phenomenologically,
describing the intrinsic spin-flip processes by an effective rate θ. Thus no particular
mechanism has been specified.

The chapter is structured as follows. In Sec. 3.1 we introduce the model system and
explain restrictions on the system parameters. The diagrammatic transport theory and
the derivation of transport equations are sketched out in Sec. 3.2. Results are presented
and discussed in Sec. 3.3 and followed by a summary in Sec. 3.4.

3.1. Model

We consider a model system consisting of a SLQD, which is coupled to two metallic
leads (L and R) by identical tunneling barriers, so that a dc bias voltage Vbias, symmetri-
cally applied between both reservoirs, causes a tunneling current through the dot. An
additional capacitatively coupled gate electrode allows to adjust the electrostatic poten-
tial ΦD in the dot by applying a gate voltage. Such a system can be represented by the
Anderson-type Hamiltonian Ĥ = ĤD + ĤL+ ĤR+ ĤT with the quantum dot part ĤD ,
the Hamiltonians ĤL and ĤR of the left and right lead, respectively, and the tunneling
operator ĤT , describing the coupling between the dot and the leads. We assume that
the spin degeneracy of the two single-electron dot states is lifted (e.g., by a Zeeman-
field), leading to an energy difference of∆. Then the dot Hamiltonian can be written as
ĤD = (ε+ΦD) d̂

†
g d̂g+(ε+ΦD +∆) d̂

†
e d̂e+U d̂ †

e d̂ed̂ †
g d̂g. Here the index g (e) denotes the

spin of the single-electron ground state |g〉 (excited state |e〉) and d̂ †
σ (d̂σ ) with σ ∈ {g, e}
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3.1. Model

creates (annihilates) an electron with spin σ and energy εσ = ε+ ΦD + δσ ,e∆ when
acting on the empty dot state |0〉 (δ is the Kronecker delta). U is the Coulomb-energy
of the doubly occupied state |d〉. The leads play the role of macroscopic reservoirs and
are described as free electron gases with Hamiltonian Ĥr =



k,σ εk,r ĉ†
k,σ ,r ĉk,σ ,r , where

r ∈ {L,R} refers to the lead; k is the wave vector of an electron in reservoir r , σ is
its spin and εk,r its energy. The ĉ†

k,σ ,r (ĉk,σ ,r ) are the corresponding creation (annihi-
lation) operators. Due to the applied bias voltage, µr = (−1)δr,L eVbias/2—with e > 0
being the elementary charge—gives the electrochemical potential of reservoir r . The
coupling between the leads and the dot is described by ĤT =



k,σ ,r

�

γ d̂ †
σ ĉk,σ ,r + h.c .

�

,
where the first (second) term on the r.h.s. describes tunneling into (out of) the dot
with the complex tunneling parameter γ (γ ∗), which is assumed to be independent of
wave vector and spin of a tunneling electron as well as the reservoir out of which (into
which) it tunnels. With the constant density of states ρ of the reservoirs the coupling
can be characterized by the positive scalar parameter Γ := |γ |2ρ alone.1 The station-
ary tunneling current I is the expectation value of the current operator Î := ÎL, where
Îr =−i(e/~)



k,σ

�

γ d̂ †
σ ĉk,σ ,r − h.c .

�

2.
We demand that the reservoirs stay in equilibrium even when coupled to the SLQD.

For a perturbative calculation of the occupation probabilities and the current up to sec-
ond order in the tunnel coupling, Γ has to be very small compared to the dot energies
ε and U . Coulomb blockade of sequential transport is possible, if the thermal energy
is much smaller than U , i.e., β−1 ≡ kBT ≪ U with T being the temperature and kB
Boltzmann’s constant. We restrict our study to parameter sets with βΓ≪ 1, which is a
necessary condition for physical behavior of the second-order perturbation expansion
in Γ once the electro-chemical potential of a reservoir is close to resonance with the
energy of a single-charge excitation. [175] Furthermore, to be able to see transport sig-
natures of the excited state within the Coulomb blockade regime, the Zeeman-splitting
∆ must not be very much smaller than U but roughly of the same order of magnitude
(though not larger than U/2). This implies β∆≫ 1. For the particular parameter set
(Γ = 4.5× 10−3kBT ,∆= 45kBT , U = 225kBT ) we use throughout the following discus-
sions, this requirement may be difficult to meet for quantum dots made of GaAs or Si
and magnetic fields available in laboratories. On the other hand, the presented perturba-
tive framework can be applied to systems with Γ that is up to 10 times larger and with
U ,∆ that are 10 times smaller, while yielding the same qualitative results. In practice,
since it is purely of mathematical origin, the criterion βΓ ≪ 1 is not experimentally
relevant and imposes no restriction on the physics underlying the transports effects, we
present here. Therefore, the results of our approach can also be applied to experiments
on GaAs or Si quantum dots in which the energy difference between spin-split levels

1Thus, we define the coupling strength as (2π)−1 times the rate for sequential tunneling (obtained by
Fermi’s golden rule).

2I = IL =−IR due to the conservation of charge.
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3. Influence of Spin Relaxation on Transport in Cotunneling Regime

can be resolved in transport spectroscopy. [29] InAs nanowire quantum dots, however,
have an effective gyromagnetic factor g between 8 and 9[38] and an effective mass of
m∗ = 0.02me (me is the mass of a free electron).[39] In experiments with these dots an
adequately large spin-splitting should be feasible for Zeeman fields in the range of 1 to
10 T, even for the parameter set we use here.

We would also like to emphasize in this context, that the presented approach is not
restricted to quantum dots with one spin-split single-particle level but can in the same
way be employed for dots with two non-degenerate spinless orbitals. For very similar
systems (few-electron GaAs/AlGaAs quantum dots) the discussed conductance peaks
were seen in low magnetic fields. [87]

3.2. Master equations

For our calculations we use the real-time diagrammatic technique developed by Schoeller
and Schön [50]. It is based on the Keldysh formalism and allows to represent dynami-
cal, nonequilibrium properties of the model system by a formaly exact, infinite pertur-
bation expansion with small parameter Γ. From such an expression one can obtain a
systematically expanded quantity up to a finite order in the coupling.[57, 176–180] In
order to construct perturbative solutions for the occupation probabilities and the tun-
neling current, we first assume that intrinsic relaxation is absent. To compute the time-
dependent statistical expectation value Tr{ρ̂(t )Î r } of the current operator, we have to
calculate the density matrix ρ̂(t ), which contains the complete system dynamics. Since
the reservoirs are assumed to stay in equilibrium at all times, the density matrix’s reser-
voir degrees of freedom can be integrated out using Wick’s theorem. This yields the
reduced density matrix ρ̂D(t ), which depends only on the dot degrees of freedom. Via
an adiabatic switching between times t0 and t the initial state of the isolated dot, rep-
resented by ρ̂0

D ≡ ρ̂D(t0), is connected to the reduced density matrix of the coupled
system ρ̂D(t ). This relation is expressed by equation

ρ̂D(t ) = Π̂(t , t0)ρ̂
0
D , (3.1)

where Π̂(t , t ′) is a time evolution operator describing propagation of the reduced den-
sity matrix between t ′ and t . The propagator Π̂(t , t ′) can be represented as an infinite
sum of diagrams on the Keldysh contour, each of which is decomposable into parts Π̂0

corresponding to propagation that is not influenced by the reservoirs and irreducible
self-energy parts that describe coherent dynamics governed by the tunnel coupling and
allow the dot to change its state [50]. With the operator Σ̂, which consists of all irre-
ducible diagrams, a Dyson equation for Π̂ can be set up leading to the kinetic equation

ρ̂D(t ) = Π̂
0(t , t0)ρ̂

0
D +

 t

t0

d t2

 t2

t0

d t1Π̂
0(t , t2)Σ̂(t2, t1)ρ̂D(t1), (3.2)
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3.2. Master equations

when plugged into (3.1). In the limit of t0→−∞ and vanishing adiabatic switching, the
derivative of Eq. (3.2) with respect to t becomes a self-consistent conditional equation
for the stationary reduced density matrix ρ̂st

D , provided that the SLQD will eventually
forget its initial state ρ̂0

D due to the interaction with the macroscopic reservoirs 3. Since
we assume diagonality of the initial density matrix ρ̂0

D , which implicates diagonality of
ρ̂st

D
4, it is convenient to replace the latter by the vector P of the stationary probabilities

Pφ = 〈φ|ρ̂st
D |φ〉 for the dot to be in state |φ〉 with φ ∈ {0,g, e,d}. We then replace the

tensor operator Σ̂ with the matrix W , whose elements

Wφ′←φ :=
 0

−∞
d t ′Σφ

′←φ
φ′←φ(0, t ′) (3.3)

are interpreted as stationary rates of quantum dot transitions from state |φ〉 to state |φ′〉.
Since the total probability has to be conserved, the 4× 4 Matrix W has a rank of three.
Therefore the resulting self-consistent rate equation

WP= 0 (3.4)

has non-trivial solutions and, together with the normalization condition


φPφ = 1,
uniquely determines P as a vector of probabilities.[57, 174] A similar equation for the
current I r out of reservoir r into the dot can be formed, if we introduce an operator
Σ̂r , which consists of all irreducible diagrams of Σ̂, each having its last internal vertex
replaced by an external vertex stemming from Î r (t = 0). With a matrix W r , defined in
analogy to (3.3), we get

I =−e


φ

�

W LP
�

φ
= e


φ

�

W RP
�

φ
. (3.5)

Each of the Eqs. (3.4) and (3.5) yields an infinite system of coupled equations, if we
express W , W L, P, and I as expansions in Γ and sort all terms by order. The nth-order
occupation vector and current are given by

0=
n


l=1

W (l )P(n−l )

I (n) =−e


φ

n


l=1

�

W L(l )P(n−l )�

φ
.

(3.6)

With the terms W (n) and W r (n) we identify those parts of W and W r , respectively, that
are represented by irreducible diagrams with exactly n tunneling lines. Each of these

3In the stationary state, we can then w.l.o.g. set t = 0.
4This can be seen by looking at the structure of the diagrams that constitute propagator Π̂.
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3. Influence of Spin Relaxation on Transport in Cotunneling Regime

lines connects two vertices on the Keldysh contour and represents the Wick contrac-
tion of the corresponding reservoir operators. The ascending orders of P and I are then
calculated iteratively, starting with P(0) and I (1), where the P(n) are normalized according
to


φP(n)φ = δn,0. The first- and second-order equations describe transport caused by
sequential tunneling and cotunneling processes, respectively. The curve of the sequen-
tial current against the bias voltage resembles a staircase with thermally broadened steps
formed at bias values appropriate for single-charge excitations. Cotunneling further
broadens these steps [175] and dominates the transport behavior within the Coulomb
blockade regime (or cotunneling regime), where the gate voltage is tuned to charge the
SLQD with one electron, while the bias is too small to doubly occupy or to empty the
dot. [51, 170, 181, 182]
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Figure 3.1.: (a) Schematic picture of the diamond-shaped cotunneling regime showing
its subdivision into areas with different possible tunneling processes (hatched areas) as
well as into core (CR), shell (SR), and intermediate region (IR), in which the occupa-
tions Pg and Pe are determined either by cotunneling, sequential tunneling, or both
[colored (shaded) areas]. E stands for elastic and I for inelastic cotunneling, S is for se-
quential tunneling. (b) Calculated charging diagram [based on Eqs. (3.9) and (3.11)] of
the cotunneling regime with parameters∆= 45kBT , U = 225kBT , Γ= 4.5×10−3kBT
and θ = Γ/2. High values of the differential conductance G̃ = d Ĩ/dVbias (in units of
G0 =βΓ e2/~) outside and at the border of the diamond are clipped by the color scale
(values near the border and in the exterior: see text). The short horizontal line cor-
responds to the range of bias values in Fig. 3.2. Both (a) and (b) can be extended to
regions with opposite sign of eVbias by reflection with respect to the eVbias = 0 axis.

Depending on its strength Γ, the coupling of a microscopic system like a quantum
dot to macroscopic reservoirs will modify the dot’s behavior slightly (Γ≪ ε, U ) or dras-
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tically (Γ≫ ε, U ). Even in the first case [65] and for incoherent sequential transport
[183], the coupling may be too strong to assume that the dot propagates as if isolated
between two tunneling events. In such cases and all the more when transport of highly
correlated electrons is considered [184, 185], it may still be possible to represent the
dot as isolated but with renormalized instead of the bare system parameters. Strictly
speaking, this is also true for the system studied here and correctly accounted for by
the diagrammatic technique. [65]However, since the difference between renormalized
and bare energies scales with Γ, for the regime we investigate (Γ≪β−1≪ ε,∆, U ) it is
so small, that the effect of the renormalization on the discussed transport phenomena
is virtually unobservable. This can be seen, for example, in Fig. 3.1(b), where a light
vertical shade within the Coulomb blockade regime indicates the onset of inelastic co-
tunneling as soon as |eVbias| equals the renormalized excitation energy (see below), while
on the eVbias axis the position of the bare spin-splitting ∆ is marked. Obviously, both
positions do not considerably deviate from each other. Hence, throughout the follow-
ing discussions, we do not distinguish between the bare and renormalized quantities,
although all statements are strictly valid only for the latter ones.

Fig. 3.1(a) schematically shows the (sub-)structure of the cotunneling regime plotted
against eVbias and the dot potential energy. For convenience the latter is given relative
to the energy that is needed to charge the dot with one electron in the ground state:
e ΦεD := e ΦD − ε. On the one hand the diamond-shaped cotunneling regime (Coulomb
diamond) breaks up into three regions differing with respect to the kind of tunneling
processes that predominantly determine the occupation of the single-particle states. As
we discuss below Pg and Pe are given by sequential tunneling in the red colored (medium
gray) shell region (SR), by cotunneling in the green (dark gray) core region (CR) and by a
mixture of both in the yellow (light gray) intermediate region (IR).

On the other hand one can distinguish three sub-regimes of the Coulomb diamond
with different current-driving tunneling processes. The quantum dot is in state |g〉
(Pg ≈ 1) for |eVbias| < ∆ (dotted area) and the small finite current is maintained just
by energy-conserving elastic cotunneling (E) through virtual states |0〉 and |d〉 (elastic
regime). Once |eVbias| exceeds ∆, inelastic cotunneling processes can excite the dot into
state |e〉 while transferring energy from the reservoirs into the SLQD [87, 169]. Since
each of these processes effectively carries one electron through the dot, they cause an
additional electron flow (+I). When passing from the core to the shell part of this in-
elastic cotunneling regime—the corresponding areas are hatched with crossed lines and
dashed horizontal lines, respectively—cotunneling-mediated sequential tunneling out of
the excited state sets on and further increases the current (+S) [87].

Before we can study the transport in vicinity of the excited state resonances, it is nec-
essary to modify the rate equations (3.6), as they prove to be unsuitable to describe the
occupations and current in the intermediate region. As Weymann et al. show in Ref.
[174] it is due to the breakup of the cotunneling regime into core, shell, and interme-
diate region that no systematic second-order expansion of P or I exists, which is valid
within the entire regime. This can be explained as follows.
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3. Influence of Spin Relaxation on Transport in Cotunneling Regime

In the shell region only those sequential transitions are energetically forbidden—the
corresponding rates being exponentially small—that carry the dot out of the ground
state |g〉. Hence, after a finite time of propagation, the dot inevitably gets trapped in |g〉
and thereby forgets its initial state. So the stationary occupations are essentially deter-
mined by sequential tunneling alone. Even with all rates W(1)

φ′←g set to zero, the matrix
W (1) still has a rank of three and by Eq. (3.4) all P(0)φ are fixed except for normalization.

In the core region sequential transitions out of both single-particle states are forbid-
den. Then classically the dot can get trapped either in the ground or in the excited state,
so that the single-particle occupations depend on the initial dot state. Consequently,
they are no longer determined by the lowest- but by the second-order rate equation, i.e.,
they are essentially given by cotunneling. This becomes manifest in the structure of
W (1), which has a rank of two, when all rates W(1)

φ′←g,e are set to zero
Between shell and core lies the intermediate region, where the system continuously

changes between classical and cotunneling-dominated occupation, respectively. But as
well as no matrix W (1) can be constructed that continuously changes its rank, no single
rate equation exists that both determines the systematic second-order expansion of P in
terms of W (1), W (2) and is valid within all three regions simultaneously

Alternatively, we seek second-order approximations of P and I , which are valid in the
cotunneling regime and perturbative in the sense that they deviate from the systematic
expansions at most by terms quadratic and cubic in Γ, respectively. With the normal-
ized solution P′ of Eq. (3.4), in which W is replaced by the sum of the lowest two orders
W (1+2), Weymannet al. present an example for an approximation that is perturbative
even for arbitrary values of eVbias and e ΦεD .[174]Unfortunately, for our system P′ isn’t
well-defined within the entire core region, where the component P′e becomes negative
when |eVbias|<∆ [green (dark gray), dotted area in Fig. 3.1(a)]. To resolve this problem
we take into account that on the r.h.s. of the second-order equation5

W (1)P(1) =−W (2)P(0) (3.7)

the first-order probabilities P(0)0,d, which are exponentially small within the cotunneling
regime, are multiplied with the rates W(2)

φ′←0,d. Hence, these rates drop out of Eq. (3.7)
and its r.h.s. reduces to a vector V with components Vφ′ =−



φ(δφ,g+δφ,e)W
(2)
φ′←φ. As

a consequence the rates W(2)
φ′←0,d don’t contribute to systematic expansion orders given

solely in terms of W (1) and W (2), and all contributions to P′, they are contained in, are
unsystematic and should be omitted. With regard to the approximation of the current
the same is true for terms containing the rates WL(2)

φ′←0,d. By dropping the unsystematic
terms we arrive at

0=
�

W (1)+ W̃
(2)�

P̃ (3.8)

5Obtained by setting n = 2 in Eq. (3.6).
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Ĩ =−e


φ

[(W L(1)+ W̃
L(2)
)P̃]φ,and (3.9)

where W̃ (2)
φ′←φ = (δφ,g+δφ,e)W

(2)
φ′←φ.

Without specifying a particular spin-flip mechanism, we include relaxation via an
effective Hamiltonian

Ĥrel =


q

�

τd̂ †
g b̂ †

q d̂e + h.c .
�

, (3.10)

which describes the coupling of the dot electrons to a bath of free particles with temper-
ature T and Ĥbath =



q εq b̂ †
q b̂q

6. This coupling is characterized by the single complex
parameter τ, giving the amplitude for a spin-flip process from |e〉 to |g〉. We assume, that
the relaxation processes are completely incoherent to the electron tunneling and include
only the first order of the perturbation expansion with respect to Ĥrel. Then, in the dia-
grammatic representation, the self-energy operator up to second order becomes the sum
of all irreducible diagrams that have either up to two tunneling lines (Σ̂(1,2)) or exactly
one relaxation line (Σ̂(1)

rel
), which represents a Wick contraction of bath operators. The

latter operator gives rise to an additional matrix term Θ in the master equation, whose
matrix elements are defined in analogy to Eq. (3.3). Hence, we get the rate equation

0=
�

W (1)+ W̃
(2)
+Θ

�

P̃ (3.11)

for a relaxation-dependent approximation P̃. Evaluation of the relaxation diagrams then
yields the rates

Θg←e =−Θe←e =
2π |τ|2

~



dεq〈b̂q b̂ †
q 〉bρb(εq)δ(εq −∆)

Θe←g =−Θg←g =
2π |τ|2

~



dεq〈b̂ †
q b̂q〉bρb(εq)δ(εq −∆),

(3.12)

where ρb(εq) gives the density of states in the bath at energy εq and 〈·〉b denotes the
expectation value with respect to the bath degrees of freedom. Alternatively, these
spin-flip rates can be calculated using standard time-dependent perturbation theory and
Fermi’s Golden rule (see, e.g., Ref. [186]). The first equalities in the Eqs. (3.12) ex-
press the conservation of the total probability, which in the diagrammatic approach is
fulfilled by construction. Since we assume that the spin-splitting is large compared to
the temperature (∆β ≫ 1), the relaxation rates are approximately given by Θφ′←φ =
δφ,e(δφ′,g −δφ′,e)θ/~ with θ = 2π |τ|2ρb(∆) both for a fermionic and a bosonic bath
(as long as |µbath| ≪ ∆).7 P̃ as well as Ĩ are well-defined and perturbative within the

6The letter q denotes a complete set of quantum numbers.
7For a fermion bath with µbath = 0 these rates lead to the same relaxation terms as in Eq. (2) of Ref.
[58], if we identify θ= 2~/τsf.
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3. Influence of Spin Relaxation on Transport in Cotunneling Regime

cotunneling regime and seamlessly link in the intermediate region the systematic expan-
sions that are only valid either in the core or shell. We also note that, because Ĥrel and
Ĥr commute, the relaxation does not contribute (directly) to the current Ĩ , that is to
say, Eq. (3.9) remains valid without modification.

eVbias(kBT )

;

; ;

θ0

(a) (b)

(c) (d)

160 170 180 190
2

3

4

5

Ĩ(
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Figure 3.2.: Current Ĩ (in units of I0 = eΓ/~) and differential conductance G̃ versus
bias eVbias and relaxation θ with e ΦεD = (U + ∆)/2 and parameters ∆, U ,Γ as in
Fig. 3.1. It can be seen how the height of the cotunneling-mediated current step (a)
and of the corresponding conductance peak (b) as well as their positions depend on the
relaxation rate. In the range of 0≤ θ. Γ2/∆ (linear scale) the system is hardly affected
by the relaxation. Between Γ2/∆ and ∆ (logarithmic scale) the height of current step
and conductance peak first grow to a maximum value at θ0 ≈ 0.58Γ (dashed lines in
(a) and (b)) for increasing θ, then decrease again and vanish before θ =∆. Even faster
relaxation (reciprocal scale) has no further effect. Figures (c) and (d) show cuts through
(a) and (b), respectively, for five different values of θ. Both the step in (a,c) and peak in
(b,d) slightly shift towards higher absolute values of eVbias for increasing rates between
Γ2/∆ and∆.
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3.3. Results

In this section we argue that the rich internal structure of the Coulomb diamond with
its different overlapping regions and sub-regimes is responsible for the rather unexpected
transport behavior the quantum dot shows in the presence of spin-relaxation. That is
to say, the conductance peaks at the onset of sequential transport are, as stated above,
maximally pronounced for a small finite relaxation rate. The peaks are situated close
to the resonances with sequential transitions out of the excited state and therefore lie
within the intermediate region. It turns out that the evolution of the peak height can
be ascribed to the fact that in the core region of the Coulomb diamond the current Ĩ (θ)
is much more sensitive to changes of the relaxation rate θ than it is in the shell. At
small relaxation the current is diminished solely in the core region. Hence, the height
of the current step is increased, while its width remains almost constant as compared to
zero relaxation. It follows that the resulting conductance signatures in the intermediate
region grow with the relaxation rate as long as the latter stays below a level at which the
current in the shell region is affected.

At first we describe general features of electron transport through the SLQD be-
fore we explain in detail how it depends on the relaxation parameter θ. Fig. 3.1(b)
shows a calculated charging diagram, i.e., the differential conductance G̃ = d Ĩ /dVbias
against eVbias and e ΦεD , of the cotunneling regime. The parameters are ∆ = 45kBT ,
U = 225kBT , Γ = 4.5 × 10−3kBT and θ = Γ/2. The Coulomb diamond is defined
by pronounced red (dark gray) lines of high conductance, where one of the reservoir’s
electro-chemical potentials is close to resonance with the energy of a single-charge tran-
sition involving the ground state. Due to the Coulomb blockade the slightly weaker res-
onance lines of excited state transitions are not extended into the diamond. Instead, thin
red (dark gray) lines appear in that part of the intermediate region, in which |eVbias|>∆,
corresponding to the yellow (light gray), not dotted area in Fig. 3.1(a). [56, 87] These
are the signatures that mark the onset of cotunneling-mediated sequential transport out
of the excited state. The light vertical shades along the lines eVbias = ±∆ arise from
the above-mentioned opening of inelastic transport channels. Though being actually
invalid near the border of the Coulomb diamond and in its exterior, the approximate
solution Ĩ was used for Fig. 3.1(b) even in these regions, because its deviation from the
systematic solution I (1+2) turned out—for the chosen set of parameters—to be too small
to be visible. In general it may be necessary to use the systematic expansion for the bor-
der and outer region, which can be seamlessly connected to the approximate solution in
the shell region given that Γβ≪ 18.

The dependence of current and conductance on the relaxation rate θ in the vicinity of
the excited state resonance is shown in Fig. 3.2 part (a) and (b), respectively, [the range of
bias values eVbias is marked by the short horizontal line in Fig. 3.1(b)]. The parameters

8Of course, if ∆ is too small to lead to a sufficiently broad shell region, no (smooth) crossover can be
found.
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Figure 3.3.: Position of the Fermi levels µL and µR of left and right reservoir (blue
(very dark gray)) relative to the four energy differences µD (φ

′,φ) = εφ′ − εφ − eΦD
(light red (light gray) horizontal lines) between initial and finial state energy of the
single-particle transitions (parameters ∆, U ,ΦεD as in Fig. 3.1). In (a) bold green (light
gray) and red (dark grey) arrows represent elastic tunneling via virtual state |d〉 through
the dot in ground and excited state, respectively, indicated by filled green (light gray)
and red (dark gray) points (eVbias = 1.5∆). Double pointed arrows on the left show for
both cases how much energy the tunneling electron must gain to get into the virtual
state. (b) Coherent inelastic processes causing transitions |g〉 → |e〉 (green (light gray)
arrows) and |e〉→ |g〉 (red (dark gray) arrows) are illustrated (eVbias = 2∆). Electrons in
the red (dark gray) colored (green (light gray) hatched) part of reservoir R can tunnel
into the dot, if it is in initial state |e〉 (|g〉).

∆, U , and Γ are the same as in Fig. 3.1 and e ΦεD = (U+∆)/2. If the rate θ is smaller than
Γ2/∆, thus well below the lowest second-order tunneling rate, the relaxation hardly
affects Ĩ and G̃, so that the system behaves as for θ = 0. As the rates grow between
Γ2/∆ and θ0 ≈ 0.58Γ they eventually become much larger than every cotunneling rate,
while still being smaller than sequential rates of energetically allowed processes. Height
and slope of the current step as well as the height of the conductance peak increase
in this range to a maximum value at θ = θ0, since the relaxation diminishes Ĩ in the
inelastic part of the core and low bias part of the intermediate region but leaves it almost
unaltered in the sequential part of the shell region. A relaxation with rate θ0 ≤ θ ≤∆
is (roughly) as fast as or faster than sequential tunneling and while Ĩ in this parameter
range shows no further relaxation dependence in the core, it decreases in the shell region
for growing θ. As a result the current step and conductance peak decrease as well and
vanish before θ = ∆≫ Γ. For rates ∆ ≤ θ ≤ ∞ transport properties do not depend
on θ. Obviously there exists an optimal relaxation rate θ0 for which the signatures of
cotunneling-mediated sequential transport have maximal height and are considerably
more pronounced than for θ = 0. Also do the positions of the resonance signatures
move to higher absolute values of eVbias, when θ is increased between Γ2/∆ and ∆. As
θ0 depends on the ratio∆/U , the coupling Γ, and temperature β in a complicated way,
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we can give no simple estimation of its value in terms of the system parameters other
than: θ0 = c Γ with 0.3 . c . 1.2 for all parameter sets yielding reliable results. The
height of the conductance peaks depends most strongly on θ throughout the whole
range (Γ/∆)1/2 . θ/Γ . (∆/Γ)1/2 with Γ ≪ ∆ [see Fig. 3.2(b)], while its relative
variation for all values of c amounts to only a few percent. Therefore, we content
ourselves with the statement, that θ0 corresponds to a rate that is roughly as large as Γ
and very much larger than any cotunneling rate. In order to explain these observations,
we examine how the tunneling processes that dominate the current in the relevant parts
of the cotunneling regime are influenced by the relaxation.

In the inelastic part of the core region the current is caused solely by elastic and in-
elastic cotunneling, which also dominates the occupation of the single-particle states.
In particular, inelastic tunneling provides an occupation of the excited state of order
1 that doesn’t depend on Γ and is reduced by the relaxation, as soon as the magni-
tude of θ becomes at least comparable to W (2)

e←g. Since the P̃0,d are much smaller than
the single-particle occupations in the cotunneling regime, the current consists mainly
of two contributions associated with cotunneling out of state |g〉 and |e〉, which are
proportional to P̃g and P̃e, respectively. Hence, the cotunneling based on processes
with initial state |g〉 benefits from a change d P̃g(θ) ≈ −d P̃e(θ) > 0 caused by relax-
ation, whereas the current with the dot being initially in state |e〉 is decreased by it.
So in the core region the dependence of the current change d Ĩ on d P̃g(θ) is given by
d Ĩ /d P̃g(θ) ≈ −e/~



φ′
�

W L,(2)
φ′←g −W L,(2)

φ′←e

�

. The sums on the r.h.s. have the same sign,
which is for both contributions specified by the direction of current flow and thus by
the sign of Vbias. For the inelastic part of the core one can establish the relation

�

�

�



φ′
W L,(2)

φ′←e

�

�

�>
�

�

�



φ′
W L,(2)

φ′←g

�

�

� (3.13)

by looking at the energy dependence of elastic and inelastic processes. In the core, an
electron that elastically tunnels through the dot with initial (and final) state |χ = g, e〉
via virtual intermediate state |d〉 has to overcome at least the energy difference U +
δχ ,g∆− e(ΦεD + |Vbias|/2) > 0, which is by ∆ smaller for an initially excited dot than
for one in the ground state (s. Fig. 3.3 (a)). The latter is also true for tunneling via
virtual state |0〉, which can be seen analogously. As a consequence the rate for elastic
cotunneling is smaller for χ = g than for χ = e.

For the inelastic processes a similar energy argument can be applied. Inelastic tunnel-
ing out of the ground into the excited state cannot set in before e |Vbias| = ∆, because
the energy ∆, needed for the transition to take place, has to be provided by the reser-
voirs. In contrast, inelastic tunneling, causing the opposite transition, is always possible,
because in this case the transition energy is provided by the dot. Hence, if Vbias and ΦεD
specify a point in the core region, for χ = e there are always more electrons available for
inelastic processes compared to the case χ = g (s. Fig. 3.3 (b)). This results in a higher
rate for inelastic tunneling through a dot in initial state |e〉 and immediately leads to Eqn.
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(3.13). Using this equation and the fact that d P̃g(θ) is a positive, monotonic function in
θ, for the core we can derive

d |Ĩ |
dθ
=

e

~

d P̃g

dθ

�

�

�

�


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�−
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φ′←e
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�

�

≤ 0. (3.14)

Since in this region the single-particle occupations are determined mainly by cotunnel-
ing, they only depend on the relaxation, if θ is comparable to the second-order rates.
Due to the factor d P̃g/dθ on the r.h.s. of Eqn. (3.14), this dependence also holds for Ĩ ,
whose absolute value decreases for θ growing between Γ2/∆ and Γ and is constant for
slower or faster relaxation, respectively.

In the inelastic part of the shell region the maximal cotunneling-provided occupation
of the excited state is by a factor Γ smaller than in the inelastic core, since it is reduced by
sequential transport out of state |e〉, as long as θ.W L,(1)

0,d←e ≈ Γ. When the relaxation be-
comes faster than sequential tunneling, P̃e decreases and eventually goes to 0 for θ≫ Γ.
The difference in size of sequential and cotunneling rates compensates for the reduction
of the excited state occupation, so that the total current is higher in the shell compared
to the core region. It consists of contributions associated with sequential tunneling out
of states |χ = 0, e,d〉 and cotunneling out of the ground state.

When θ is not much larger than Γ these contributions are all of the same order of
magnitude, which is, however, not the case for their response to increasing relaxation.
Obviously, relaxation rates much higher than Γ completely depopulate the excited state
and the current caused by tunneling out of |e〉 vanishes. Its relative change in magnitude
compared to the case of low relaxation is therefore of order 1. For cotunneling out of
state |g〉, on the other hand, the maximum relative change is

P̃g(θ≫ Γ)− P̃g(θ≪ Γ)
P̃g(θ≪ Γ)

=
O (Γ)

(1−O (Γ)) ≈O (Γ). (3.15)

Hence, if the relaxation increases, the gain in the cotunneling current associated with P̃g

cannot compensate for the simultaneous suppression of the sequential current propor-
tional to P̃e, which results in a reduced total current. Similarly to the discussion of the
core, however, it can be argued that in the shell, where the single-particle occupations
are mainly determined by sequential processes, the total current can only show a con-
siderable relaxation dependence, if θ is neither much smaller nor much larger than Γ
or, equivalently, than the rates for sequential tunneling. As we stated above, the current
dependence on θ smoothly crosses over between the core- and shell-like behavior in the
intermediate region, so that both the current step and the conductance peak grow with
θ between Γ2/∆ and θ0 ≈ c Γ, while they decrease for θ > θ0 and vanish before θ =∆.
The fact that the current becomes less sensitive to relaxation for higher values of e |Vbias|,
showing a sharp step-like dependence in the intermediate region, also manifests in the
slight shift of the position of the excited state resonances to higher absolute bias values.

52



3.4. Summary

3.4. Summary

In this chapter we discussed Coulomb-blocked electron transport through a SLQD with
spin-split level that is coupled to two non-magnetic, metallic leads. We used the real-time
diagrammatic technique to systematically expand occupation probabilities and tunnel-
ing current up to the second-order in the strength Γ of the tunnel coupling, thereby
including sequential and cotunneling into the transport calculations. Two properties
were considered with respect to which the Coulomb blockade regime can be subdivided
into parts that differ at least in one of them: the kind of tunneling processes contribut-
ing to the current (elastic, inelastic, sequential transport) and those determining the
single-particle occupations (cotunneling in the core, sequential tunneling in the shell
region). At or close to the borders between these sub-regimes, signatures of the dot’s
excitation spectrum appear in the current and differential conductance. With the focus
on excited state signatures marking the onset of cotunneling-mediated sequential trans-
port, we studied how the current is influenced by a phenomenologically introduced
spin relaxation with rate θ. It turned out that for a relaxation rate of about half the
tunnel coupling the excited state resonances are maximally pronounced, being consid-
erably larger than without relaxation, while in the limit of infinite θ the resonances
completely vanish. We explained this behavior by a combination of two effects: (i) the
current decreases monotonically with growing relaxation rates and (ii) the excited state
occupation is in the cotunneling-dominated core and in the shell region only affected by
a relaxation with rates in the range Γ2/∆< θ. c Γ and c Γ. θ <∆ with 0.3 . c . 1.2,
respectively.

This relaxation dependence of the current may illuminate why the resonance signa-
tures measured in Ref. [87] are relatively sharp compared to the ones that were calcu-
lated for θ = 0. Furthermore it could provide means to directly influence the single-
particle occupations in experiments and allows to facilitate measurements of excited
state resonances by adjusting either the coupling Γ or the rate θ.
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4
Iterative Summation of Path Integrals

IT WAS SHOWN in the previous chapters, that many fundamental physics and princi-
pal features of transport through a SLQD can be explained both efficiently and intu-

itively within well-established, perturbative frameworks. At least this is true for cases,
in which an energy scale in the system is small enough to be considered as weak per-
turbation (of an otherwise solved problem) and, yet, related to a source of qualitatively
new behaviour. As an important example of this case, we discussed the limit of weak
tunnel coupling so far, a regime, which is also accessible by state-of-the-art experiments.
Without the small coupling, no tunnelling current would flow. On the other hand, even
the smallest contact will result in a stochastic dynamics caused by a multitude of fluctu-
ating tunnelling events and, depending on the parameters, a drastic change of the dot’s
(stationary) state. Not only are perturbative approaches often in good agreement with
experimental data. Their considerable explanatory power is to no small part due to the
intuitive picture of physical processes they provide.

Despite being a valuable and versatile tool (not only) in the theory of mesoscopic
transport, however, the applicability of perturbation theory is limited by the need for
a small parameter and there is physics that lie beyond its means. Obvious counter-
examples involve systems, in which the aforementioned condition does not hold, i.e.,
all appearing energy scales are of the same order of magnitude. This is, in fact, the
kind of situation, we want to study in this and the next chapter. But besides systems
that are found by this rather quantitative criterion, others may withstand a perturba-
tive analysis, even when a small parameter is present. Prominent examples include su-
perconductivity [187] and the Kondo effect [137, 138], both of which appear at low
temperatures. What all these cases have in common is a strong significance of coher-
ent (higher-order) processes, which determine the system’s observed properties, i.e., no
simple relation between a single (small) energy parameter and the altering effect on the
system can be found, which quantifies the contribution of expansion terms in orders of
this parameter. From a fundamental point of view, this is interesting, since coherence
effects are a characteristic feature of quantum mechanics. Systems with these as an es-
sential constituent thus grant a direct glance into the quantum world. Yet, quantum
effects and coherence are also promising ingredients for novel applications and devices
that show properties unknown in conventional electronics. Specifically, for our model
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of a SLQD with magnetic impurity, it is the interaction with and manipulation of a
quantum spin by a conventional (unpolarised) charge current, that is of interest. Specif-
ically, we want to explore the transport regime, where the tunnel coupling between dot
and leads is comparable (in size) to the dot energies and where lead induced correlations
are expected to be as important as the coherent on-dot dynamics.

Based on the principles and concepts we laid down in chapter 2, a fermionic path inte-
gral representation of the Keldysh generating functionZ [η] is derived in the following
section. Subsequently, the approach of the iterative summation of path integrals (ISPI)
is introduced in section 4.2. It was developed by Weiss et al. [122] and as we follow, in
large parts, the derivation shown in this paper, we also show how to adopt the method
to model (2.1) with the fixed spin-1/2 magnetic impurity. The chapter closes with a
discussion of the numerical complexity of ISPI and how it can, in certain circumstances,
be significantly reduced by restricting the path sum to certain classes of impurity spin
paths.

4.1. Generating Function and Fermionic Path Integral

Conceptional foundation of the derivations in this chapter is the Keldysh partition func-
tion Z (2.11). We showed at the end of section 2.2.2 how a generating function Z [η],
which is derived from the partition function, can be used to calculate expectation values
of arbitrary observables [see equation (2.13)]. The ISPI method builds on this relation,
for it employs a path integral representation of Z [η] as starting point of all numerical
calculations. The electronic part of the model that is studied in this thesis requires a
particular representation based upon the fermionic path integral [88, 188, 189] and the
Grassmann algebra.

All matters concerning the time evolution of a quantum system can in principle be
broken down to one kind of elementary question. What is the probability amplitude to
find a quantum system in Hilbert state |ψ f 〉 at t f > ti , when it was initially in state |ψi〉
at time ti ? In this context, the evolution operator Û (t , t ′) [see equation (2.5)], which is
described in section 2.2.2 and appendix A, plays the central role. It contains in its action
the complete dynamics as given by the system Hamiltonian. Hence, with the help of Û ,
the sought-after amplitude can be identified with matrix element

U ( f |i) := 〈ψ f |Û (t f , ti )|ψi〉. (4.1)

Therefore, as a first step towards a path integral representation of Z [η], we construct
a corresponding expression for the evolution operator. This is done by splitting the
propagation time t f − ti into a large number N − 1 of short time spans δt := (t f −
ti )/(N − 1), where the short time propagation is described by a comparably simple
approximate propagator, whose proper construction depends on the particular model
system.

56



4.1. Generating Function and Fermionic Path Integral

4.1.1. The Short Time Propagator

To this end, we have to consider the limit of “very short” propagation times δt in detail.
Our aim is to find a suitable short time propagator Ûδt (t ), defined by the relation

Û (t +δt , t ) = Ûδt (t )+O (δt
2). (4.2)

In other words, a short time evolution operator equals the full propagator up to terms
scaling quadratically in the durationδt of the short time span between t and t+δt . This
definition does not uniquely determine a particular Ûδt (t ), but rather a whole class of
operators. The generality of this relation grants a certain amount of flexibility, as to
the choice of the particular form of short time evolution operator. In the following this
flexibility is used to construct a variant most suitable to model (2.1). A time span shall
be regarded as “very short”, if

(4.S1) δt it is much smaller than all dynamical time scales in the system, as given by
the energy scales ε in the Hamiltonian and a possible time dependence of the
Hamiltonian itself: δt ≪ ~/ε.

(4.S2) The system can undergo, during δt , at most one transition between states that
are connected via an elementary process.

The possible elementary state transitions (processes) are given by the interaction or hy-
bridisation terms in the Hamiltonian. For model (2.1), examples are a single-electron
tunnelling event due to ĤT and a flip-flop process of electron- and impurity spin due to
the second term on the r.h.s. of equation (2.1c). The time scale of these transitions them-
selves, however, is infinitely smaller than δt . This is suggested by the qualifier “elemen-
tary”, as referring to instantaneous transitions with no time structure, and corresponds
to the limit of infinitesimal (infinitely small) duration dt . These abstract elementary
transitions, however, do not (directly) describe physically observable processes like, e.g.,
flip-flops. Rather they are a conceptual tool for the construction and physical interpre-
tation of quantum dynamics within the path integral formulation. The mathematical
relationship between elementary state transitions and the corresponding physical pro-
cesses will be shown in the following.

For an intuitive illustration of this relationship, we consider the free precessing mo-
tion of a quantum spin-1/2 in the perpendicular magnetic field B = Bex . In this system,
elementary state transitions are given by terms proportional to the Pauli matrices τ̂±,
which describe spin flips between states |τ =↑,↓〉. If the physical propagation of the spin
was given, as suggested above, by a sequence of periods of free propagation interrupted
by instantaneous, elementary transitions, the time-dependent orientation of a spin that
was initially in state |↑〉, for example, would be a piecewise continuous, step-like func-
tion. In reality, however, the spin orientation is a smooth function that oscillates with a
frequency proportional to the strength B of the magnetic field [see Fig. 4.1(a)]. Though
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individual step-like paths in state space (blue lines on the l.h.s.) describes an unphysical
time evolution, the path integral, which takes into account all possible paths of this kind,
yields the correct physics. As we show below, each path contributes a phase factor deter-
mined by its classical action. Hence, the path integral formulation can be interpreted in
the following way: a quantum system/particle travels simultaneously along all possible
paths (in state space) that involve free propagation and elementary transitions only [see
Fig. 4.1(a)].

Figure 4.1.: The relationship between the abstract concept of elementary state tran-
sitions and the real-time dynamics of a physical system, illustrated with the help a
spin-1/2 in a magnetic field perpendicular to its quantisation axis (B = Bex ). (a) If
the spin was initially in the state |↑〉, the physical evolution of the spin polarisation
〈τz〉 (red line) shows a smooth, oscillating behaviour (with a frequency that is propor-
tional to B). A time evolution described by a sequence of free propagation periods
and spin flips (blue line) would give an unphysical, step-like functional dependence of
the polarisation. (b) Though individual step-like paths in state space (blue lines on
the l.h.s.) do not correctly describe the spin’s physical evolution, the path integral,
which takes into account all possible paths of this kind, yields the correct physics.

Each path contributes a phase factor de-
termined by its classical action (see be-
low). According the path integral in-
terpretation, the spin travels along all
those paths simultaneously and elemen-
tary state transitions cannot be inter-
preted as real physical processes. Rather,
the are a conceptual tool used to con-
struct and interpret the path integral.

...
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With the assumptions (4.S1) and (4.S2), the structure of a short time evolution oper-
ator can be deduced from the full propagator (2.5). For a Hamiltonian Ĥ (t ) and short
times δt , we can write

Û (t +δt , t ) = e−i/~Ĥ (t )δt =
∞


n=0

(−iδt/~)n

n!
Ĥ n(t ) = 1̂− i

~
Ĥ (t )δt +O (δt

2). (4.3)

Hence, any operator, whose two lowest-order terms equal those of (4.3), qualifies as
short time propagator. In fact, we could just use Ûδt (t ) := 1̂− i/~Ĥ (t )δt to construct
the path integral. Another valid choice would be the normal-ordered evolution operator

: exp
n

− i

~
Ĥ (t )δt

o

: =
∞


n=0

(−iδt/~)n

n!
:Ĥ n(t ): , (4.4)

where in the normal-ordered form (or normal form) :Ô: of an operator Ô , creation
operators appear left of annihilation operators. The main relevance of version (4.4) lies
in the boundedness for bosonic Hamiltonians in the whole complex time plane [188],
but it is also convenient to use, when—as in the present work—the formulation of the
path integral is based on coherent states (see below).

For the model with impurity interaction and Coulomb repulsion, both of these two
examples for short time propagators, though valid, are not the optimal choice with re-
gard to clearness and simplicity of the following derivations. The reason is, that the nu-
merical ISPI approach is built upon a path integral expression, in which the two-particle
interactions (Coulomb and electron-impurity) manifest themselves in sums over tuples
(paths) of discrete state variables1 rather than integrals over continuous paths. For the
Coulomb interaction, this is achieved by a so-called Hubbard-Stratonovich transforma-
tion. The same procedure may very well be applicable to the impurity interaction as
well, if the impurity spin is described by spin coherent states [190–192] or in a semi-
fermionic framework [193, 194]. Yet, using the complete basis of states |τ =±1〉 to
represent the impurity will turn out to be the easier way. On the downside, it will
require to deal with a “mixed” basis, namely the tensor product of fermionic coherent
states for electrons and the discrete spin states for the impurity. Besides the Coulomb
interaction, it is the use of this basis, which leads to a slightly more complicated form
of Ûδt (t ). But once the appropriate short time propagator is found, the derivation of
the path integral goes the usual way for fermionic systems. In the remainder of this sec-
tion, we assume stationarity of Ĥ for convenience. The general, time-dependent results
are easily obtained from the final expressions by re-introducing the time index to the
respective Hamiltonian terms.

To construct a proper Ûδt , it is helpful to separate in Ĥ = Ĥ0 + ĤTR terms Ĥ0 that
are diagonal in the non-interacting many-particle basis {|ψ〉} from those terms ĤTR that

1The spin orientation τ =±1, e.g., in case of the impurity.
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cause elementary transitions. For the model Hamiltonian (2.1), we have

Ĥ0 =


σ

εσ n̂σ + Ĥimp+ J


σ

στ̂z n̂σ + Ĥleads (4.5a)

ĤTR =U n̂↑n̂↓+ J


σ

τ̂σ d̂ †
−σ d̂σ/2+ ĤT ,

Ĥ 0
dot Ĥ ∥

int

Ĥ U
dot Ĥ⊥

int

(4.5b)

with Ĥ 0
dot+ Ĥ U

dot= Ĥ el
dot and Ĥ ∥

int+ Ĥ⊥
int= Ĥint. If the Hamiltonian consisted only of

diagonal parts, the effect of acting with the corresponding evolution operator Û0(∆t ) :=
exp{−i/~Ĥ0∆t} for time interval ∆t := t f − ti on a non-interacting state |ψ〉 would
amount to a multiplication with phase factor exp{−iE0,ψ∆t/~}, where E0,ψ = 〈ψ|Ĥ0|ψ〉
is the (free) energy of state |ψ〉. In other words, a state |ψ〉 would propagate freely.
Transitions and interactions in the system enter via ĤTR. For simplicity, we call all
events caused by any of its parts “transitions” in the following paragraphs.

In this context, a representation in the interaction picture proves to be helpful es-
tablishing a suitable version of the short time propagator, as it can be applied to any
decomposition of the Hamiltonian into two terms Ĥ = Ĥ0+ Ĥ1. We start with the full
time propagator in the interaction picture (see appendix C)

Û (t f , ti ) =
∞


N=2

 t f

ti

· · ·
 t f

tN−2

Û0(∆t
(N−1))

�

− i

~
Ĥ1dtN−1

�

· · · Û0(∆t
(2))
�

− i

~
Ĥ1dt2

�

Û0(∆t
(1))

=
∞


N=2

 t f

ti

· · ·
 t f

tN−2

Ĥ1
t2

Ĥ1
t3

Ĥ1
t4

. . . Ĥ1
tN−1

ti t f
.

(4.6)

Here, we defined time differences ∆t
(k) := tk+1− tk with t1 := ti and tN := t f as well as

the graphical notations

Û0(∆t ) =:
ti t f

and − i

~
Ĥ1dt =: Ĥ1 . (4.7)

This definition is chosen in such a way that for each N the contour is broken down into
N − 1 pieces of free propagation that are connected by N − 2 interaction vertices.

With Ĥ0 defined in equation (4.5), we could identify Ĥ1 ≡ ĤTR. For reasons that will
become clear below, we do not fix a particular Ĥ1 at this point; it turns out, that it is
convenient to derive the final expression for Ûδt by adding the three interaction terms in
ĤTR one by one to Ĥ0. Rather, we just assume, that Ĥ1 describes elementary transitions
between the Hilbert states |ψ〉. The free propagator is represented by a line segment,
while Ĥ1 is depicted as transition vertex (box). Each vertex comes with an additional
factor −i/~ and dt , the latter of which can be interpreted as the time duration of the
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4.1. Generating Function and Fermionic Path Integral

elementary transition. Thus, the full evolution operator is the sum of all diagrams with
N − 2 = 0,1, . . . transition vertices at times t2, . . . , tN−1. Over all these vertex times
between ti and t f is integrated, while preserving the order t1 < t2 < . . .< tN−1 < tN . To
increase the ease of reading, we will skip the time integrals in front of the diagrammatic
expressions in the following.

According to (4.S1) and (4.S2), the system can either propagate freely during small
time δt or undergo exactly one elementary transition at some time 0< t < δt . Hence
the short time propagator can be written as

Ûδt = Ĥ10 δt
+

0 δt

= Û0(δt )−
i

~

 δt

0
dt Û0(δt − t )Ĥ1Û0(t )

= :Û0(δt )
�

1̂− i

~
Ĥ1δt

�

: +O (δt
2),

(4.8)

where the commutator relation [Û0(t ), Ĥ1] = O (t ) is used to pull Ĥ1 through to the
right of propagator Û0(t ). The remaining time integration can then be carried out to
yield an expression that is exact up to termsO (δt2). An error of the same size is obtained
by the normal ordering. The definition of normal order of the free evolution part only
refers to the electronic operators; since the free impurity Hamiltonian Ĥimp commutes
with the remaining terms in Ĥ0, its position is arbitrary. Of course, due to the pres-
ence of Ĥint, this is not true for the full Hamiltonian and the corresponding evolution
operator. Hence, in later steps of our derivation, the relative order of non-commuting
impurity operators has to be taken into account.

Once acquired, the short time propagator is used to break up a time evolution that
extends over an arbitrary time span from ti to t f into N − 1 repeated propagations of
duration δt , supposed that (N − 1)δt = t f − ti . This so-called Trotter break-up of the
time contour [195–197] yields, when plugged into equation (4.1), an approximation for
the matrix element of the full propagator

U ( f |i) = 〈ψ f |
N−1


k=1

Ûδt (ti +[k − 1]δt )|ψi〉+O (δt
2), (4.9)

which is again exact up to second-order terms in δt . For a stationary Hamiltonian, the
operator product becomes the power Û N−1

δt . Finally, by inserting a partition of unity—
here 1̂ =



ψ|ψ〉〈ψ|, for example—between every two short time propagators Ûδt in
(4.9) we arrive at the path integral (or rather path sum)

U ( f |i)≈


ψ2...ψN−1

〈ψ f |Ûδt |ψN−1〉 · · · 〈ψ3|Ûδt |ψ2〉〈ψ2|Ûδt |ψi〉. (4.10)
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The matrix element is approximated as a sum over all tuples/paths (ψN−1, . . . ,ψ2) of
state indices, where each tuple contributes a factor U :=

N−1
i=1 〈ψi+1|Ûδt

|ψi〉 with fix-
ing ψ1 := ψi and ψN := ψ f . A path contribution is non-zero, if none of the matrix
elements 〈ψi+1|Ûδt

|ψi〉 vanishes. With the structure of Ûδt in mind, it follows, that this
is the case if either |ψi〉 and |ψi+1〉 are equal (free evolution) or they are connected by an
elementary transition. A tuple Ψ := (ψN , . . . ,ψ1) that contributes to (4.10) can thus be
interpreted as a possible (time discrete) path the system can follow in the Hilbert space
to get from |ψi〉 to |ψ f 〉 by a sequence of free evolutions and elementary transitions.
The path integral is the sum over all such paths Ψ weighted with the productU (Ψ) of
short time evolution matrix elements for every step δt . The limit δt → 0 of this path
sum converges to the exact value

U ( f |i) = lim
δt→0



Ψ

Φ(Ψ) =:


D[ψ(t )]U [ψ(t )], (4.11)

which is often written in a continuous form as defined on the r.h.s.. This notation sug-
gests, that the exact matrix element can be calculated as the integral over all continuous
paths ψ(t ) with ti ≤ t ≤ t f and ψ(ti ) = ψi , ψ(t f ) = ψ f . Yet, a corresponding mea-
sure D[ψ] for such an integration does not exist, which is why the last step must not
be understood as a mathematical identity relation but only as definition of a symbolic
notation.

Nevertheless, though it has to be handled with care, this notation is widely used for
reasons of clearness and simplicity; it complies to physical intuition to describe observ-
ables, states and/or operators as continuous functions of time. Below we will exemplify,
that in the continuous limit, U [ψ(t )] can be identified (essentially) with the factor
exp{iS[ψ(t )]/~}, where S[ψ(t )] is the action of the system, when propagating along
path |ψ(t )〉. To do so, we introduce fermionic coherent states and start with the sim-
plest case of a non-interacting model, i.e., Ûδt ≡ :Û0(δt ): by setting Ĥ1 = 0 in (4.8). The
path integral for the full Hamiltonian is derived subsequently, by adding the different
transition terms Ĥ U

dot, ĤT , and Ĥ⊥
int, one after the other, in that order.

4.1.2. Fermionic Coherent States

Suppose there exists a Hilbert state |Ψ〉, which is eigenstate of all (electronic) annihi-
lation operators of model (2.1), that is to say, d̂σ |Ψ〉 = dσ |Ψ〉 and ĉkσ p |Ψ〉 = ckσ p |Ψ〉
and analogously for a dual vector 〈Ψ|. At the same time, every electronic operator
Ô[d̂ †, d̂ , ĉ†, ĉ] can be expressed as a function of the dot and lead electron creators and
annihilators. Then, the matrix element of a normal ordered operator with two such
eigenstates 〈Ψ′| and |Ψ〉 is given by

〈Ψ′| :Ô[d̂ †, d̂ , ĉ†, ĉ]: |Ψ〉=O(d′, d, c′, c)〈Ψ′|Ψ〉, (4.12)
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4.1. Generating Function and Fermionic Path Integral

where O[d′, d, c′, c] is a function that is obtained from Ô by replacing all annihilation
(creation) operators f̂ ( f̂ †) with the corresponding eigenvalues f (f′). We used f = c , d
and introduced f= c, d. It is shown below, that states like |Ψ〉 can be defined properly, but
require the introduction of Grassmann numbers and the corresponding algebra, which
is reviewed briefly. In the context of constructing a path integral, property (4.12) is
then particularly useful, since the matrix element with the short time propagator takes
a conveniently simple form. For the simplest case, in which the short time propagator
Ûδt equals the normal ordered free propagator :Û0(δt ): , we can write

〈Ψ′,τ′| :Û0(δt ): |Ψ,τ〉= exp
n

− i

~
H0(d

′, d, c′, c,τ)δt
o

〈Ψ′|Ψ〉δτ,τ′ , (4.13)

where H0(d
′, d, c′, c,τ) is the function obtained from the Hamiltonian by replacing the

electron operators with the corresponding eigenvalues [as in (4.12)] and the operator
τz in Ĥimp be the spin orientation of state |τ〉 (interpreted as number). With the states
|Ψ,τ〉, we introduced the “mixed” basis mentioned above that is used to derive the final
version of the path integral.

Consider, for a start, a single fermionic degree of freedom (d.o.f.) with creation and
annihilation operators f̂ † and f̂ , respectively, and anti-commutator relations

{ f̂ , f̂ †}= 1 and { f̂ , f̂ }= 0= { f̂ †, f̂ †}. (4.14)

The operator algebraA generated by f̂ † and f̂ is equal to the linear span of {1̂, f̂ , f̂ †, n̂}
over the field of complex numbers with n̂ = f̂ † f̂ . Any operator Ô that acts on the
Hilbert space h= span(|0〉, |1〉) with |1〉= f̂ †|0〉 can be expressed as linear combination
of these four operators. A fermionic coherent state |f〉 for a single fermion is defined as an
eigenstate of the annihilation operator (for more details, see [88, 188], for example):

f̂ |f〉= f|f〉 and 〈f| f̂ † = 〈f|f , (4.15)

where the eigenvalues f and f are (mutually independent) Grassmann numbers. Two num-
bers anti-commute with each other, {f, f }= 0, as does any number with the fermion op-
erators, {f, f̂ }= 0. In particular, f2 = 0. Grassmann numbers are generators of a so-called
Grassmann algebra. For instance, two numbers f and f generate the algebra A = spanb,
where b = {1, f, f , f f}. The similarity of A and the operator algebraA , suggests to asso-
ciate2 their respective generators, that is to say, f with f̂ and f with f̂ †. In general, for a
many-particle Hamiltonian with n fermionic d.o.f., the associated algebra is generated
by 2n independent Grassmann numbers—one for each creation and annihilation opera-
tor. By convention, Grassmann numbers that belong to creation operators are marked
with an over-bar. It can be easily checked, that the states

|f〉 ≡ (1̂− f f̂ †)|0〉 and 〈f| ≡ 〈0|(1̂− f̂ f ) (4.16)
2Associate, not identify.A and A are not isomorphic, due to the differing (anti-)commutation relations.
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satisfy equation (4.15). And just as every operator, which acts on Hilbert state h, lies in
A , every function of Grassmann numbers f and f is an element of A and can thus be
expressed as linear combination of elements of b. It follows, that functions over (subsets
of) R and C that can be expressed as an infinite series have, when the arguments are
Grassmann numbers, always a finite series expansion. As an important example, we
illustrate this by means of the exponential function:

ef =
∞


n=0

fn

n!
= 1+ f, ef = 1+ f , ef+f = 1+ f + f, and ef f = 1+ f f. (4.17)

Note that exp{f + f} ̸= exp{f }exp{f} = 1+ f + f+ f f. Since 〈f′|f〉 = 1+ f ′f = exp{f ′f},
coherent states are neither normalised nor are states for different d.o.f. even orthogonal
to each other.3 With coherent states the matrix elements of normal ordered fermionic
operators :Ô( f̂ , f̂ †): ∈A then evaluate to

〈f| :Ô( f̂ , f̂ †): |f〉= (1+ f f)O(f , f). (4.18)

For the over-complete basis of coherent states, a partition of unity can be obtained
with the help of properly defined notions of the Grassmann differentiation and integra-
tion. When acting on the algebra span({1, f}) generated by a single Grassmann number
f the derivative operator ∂f is defined as the linear operator

∂f1 := 0 and ∂ff := 1. (4.19)

It resembles the ordinary derivative in the (vector) space of polynomial functions of
degree one and less. Derivatives for different generators f and f′ inherit their anti-com-
mutative property: {∂f,∂f′}= 0.

Inspired by the integration over exact differential forms, the Grassmann integration
is defined as the linear operator



df=


df1 := 0 and


df f := 1. (4.20)

The second identity can be motivated by


df∂ff= 0= ∂f


df f. With the requirement that
integration is a non-zero operator, the second equality suggests the conclusion:



df f∝ 1.
Obviously, with definitions (4.19) and (4.20), differentiation and integration are identi-
cal operations. These operators are an essential ingredient of

1̂= ∂f ∂fe
−f f|f〉〈f|=



df dfe−f f|f〉〈f|, (4.21)

the resolution of unity for a single fermionic d.o.f. in the basis of coherent states (see
appendix D). The factor exp{−f f} cancels the scalar product 〈f|f〉. For reasons of simi-
larity to conventional resolutions of unity, the integral version is commonly used. This

3They all share the unique vacuum state |0〉.
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choice also leads to expressions of (4.11) that actually look very similar to ordinary
(bosonic) path integrals. Despite this notational compliance, however, the underlying
mathematical operations differ largely from each other.

Definition (4.16) can be generalised to many fermionic d.o.f. in a straightforward
fashion. For n fermions with annihilators f̂i , 1 ≤ i ≤ n and corresponding creation
operators, the coherent states and resolution of unity are given by

|F〉=
n


i=1

(1− fi f̂ †
i )|0〉 and 〈F|= 〈0|

n


i=1

(1− f̂i f i ) (4.22a)

1̂=


dFdFe−FF|F〉〈F| ≡
 n


i=1

h

df i dfi exp
�−f i fi

	

i

|F〉〈F|, (4.22b)

where symbol F, when used like a (Grassmann) number, is the vector F = (f1, . . . , fn)
and FF =



i f i fi the scalar product. The symbolic integral measures dF := dfn · · ·df1
and dF := df 1 · · ·df n are defined in analogy to an Euclidean volume form in the n-
dimensional vector space, formed by the vectors F. The opposite relative ordering with
respect to fermion index i ensures, that



i df i dfi = dFdF. Since creation and annihila-
tion operators appear pairwise in all Hamiltonian parts, so will the Grassmann numbers
in the path integral expressions. When this is the case, an analogous Grassmann version
of the usual multiplication rule of exponential terms in real and complex space holds
(see appendix D):

n


i=1

exp{f i fi}= exp
n

n


i=1

f i fi

o

. (4.23)

Based on these remarks, we can define coherent states D :=


σ (1− dσ d̂ †
σ )|0〉 and C :=



kσ p (1− ckσ p ĉ†
kσ p)|0〉 for the SLQD and the leads, respectively. We then identify the

coherent state for the whole electronic system with the tensor product

|Ψ〉 := |D〉⊗ |C〉 ≡


kσ p

(1− ckσ p ĉ†
kσ p
)


σ

(1− dσ d̂ †
σ
)|0〉. (4.24)

For the “mixed” basis of electron-impurity states, we introduce |Ψ,τ〉 =: |Ψτ〉 as short
notation. The unity partition in this basis is given by

1̂=


τ



dΨdΨe−ΨΨ|ΨτΨτ〉. (4.25)

4.1.3. The Gaussian Path Integral

Now, by inserting (4.25) on both sides of every short time propagator in (4.9), we arrive
at a fermionic path integral representation of the full evolution matrix element. Ac-
cording to (4.13), the resulting expression is particularly simple, when the propagator is
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normal ordered (which we ensured by definition (4.8)). We start its derivation with the
simpler case of the free evolution operator Û0 = limN→∞ :Û0(∆t/[N − 1]): N−1. In path
integral form, it can be written as (see appendix D)

Û0(t f , ti ) = lim
δt→0



{τ}
e iSimp

 N


j=1

[dΨ j dΨ j ]exp
n

N


k ,l=1

Ψk iGel
0 [{τ}]−1

k l Ψl

o

|ΨτN 〉〈Ψτ1 |

=:


D[ΨΨτ]exp
n

iS0[Ψ(t ),Ψ(t ),τ(t )]/~
o

|Ψτ(t f )〉〈Ψτ(ti )|,
(4.26)

where we defined {τ} := (τN , . . . ,τ1) and the symbolic measureD[ΨΨτ] for integration
over all continuous paths of the Grassmann vectorsΨ(t ),Ψ(t ) and impurity orientation
τ(t ) with ti ≤ t ≤ t f . In the continuous notation, the action of the non-interacting
model

S0[Ψ(t ),Ψ(t ),τ(t )]/~=
 t f

ti

�

iΨ(t )∂tΨ(t )−H0[Ψ(t ),Ψ(t ),τ(t )]/~
	

dt (4.27)

Ψ(t )∂tΨ(t ) =


σ

dσ (t )∂t dσ (t )+


kσ p

c kσ p(t )∂t ckσ p(t )with

appears. Analogous to (4.13), the Hamiltonian function H0[Ψ(t ),Ψ(t ),τ(t )] at time t
is obtained from Ĥ0 by replacing all fermion operators with corresponding Grassmann
fields, e.g., d̂σ → dσ (t ), and τ̂z with τ(t ). In the exact, discrete version, we separately
accounted for the impurity Ĥimp and the rest of the free system involving electronic
d.o.f. To this end, we use Ĥ el

0 := Ĥ0−Ĥimp. While S imp is the action of the free impurity,
Gel

0 [{τ}]−1
j k denotes the free inverse Green’s matrix with respect to the Hilbert state

|0τ〉 := |0〉 ⊗ |τ〉 of the “empty” system, i.e., with no electrons in dot and leads. They
read

S imp =−∆impδt

2

N


k=2

τk (4.28)

and

iGel
0 [{τ}]−1

j k =

















−1
1− iΦ0[τ2] −1

1− iΦ0[τ3] −1
. . . . . .

1− iΦ0[τN ] −1

















, (4.29)
0

0
where Φ0[τk] :=Hel

0 [τk]δt/~ and the diagonal matrix Hel
0 [τ] = E0,κδκ,κ′ , in turn, is

implicitly defined by the relationΨHel
0 [τ]Ψ=H el

0 [Ψ,Ψ,τ]. The index κ ∈ {σ},{kσ p}
consecutively numbers the fermion d.o.f. (dot and lead electrons) in the system and
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E0,κ = 〈κ|Ĥ el
0 |κ〉. Apparently, the choice made in definition (4.29), as to which of the

consecutive impurity spins τk and τk+1 of matrix element 〈Ψτk+1|Ûδt |Ψτk〉 enter the Φ0-
matrix, is ambiguous. In the expressions shown above, the later spins τk+1 are taken into
account. Just as well, we could have chosen the earlier spin or an arithmetic mean of
both. As long as a choice is consistent for all matrix elements, this arbitrariness reflects
the fact, that the discrete expressions are only accurate up to terms O (δt2). Within these
bounds, a freedom of choice remains.

For both the action and the Green’s matrix, also a discrete and continuous version
can be derived, respectively. They are related by

S0[{Ψ,Ψ,τ}] = ~
N


k ,l=1

ΨkGel
0 [{τ}]−1

k l Ψl + S imp (4.30)

and a corresponding continuous version, which is obtained in the limit δt → 0.4 A
discrete version of the action can be found in appendix D, the (electronic) continuous
free inverse Green’s function is given by

Gel
0 [τ(t )]

−1
t ,t ′ = δ(t − t ′)[i∂t −Ω0(t )], (4.31)

where Ω0(t ) =Hel
0 [τ(t )]/~.

Equation (4.26) represents the free propagator as a Gaussian path integral. The name
refers to the exponential structure of the integrand, whose argument is a polynomial
of second degree in the integration variables, viz., Ψ and Ψ. As in the bosonic case,
in which the accordant discrete representation of Û0 is an integral over complex num-
bers, fermionic Gaussian integrals are of fundamental importance for the evaluation of
physical quantities and, hence, in the course of the following considerations. For an
invertible complex n× n-matrix A and a many-particle system with coherent states |F〉
as introduced in (4.22a), the following identity holds (see, e.g., [88, 188]):



dFdF exp
�−FAF+(FG+GF)	= det(A)exp

�

GA−1
G
	

, (4.32)

where G and G are two arbitrary independent Grassmann vectors of dimension n. Note
that due to their algebraic structure fermionic path integrals like these always converge.
For a singular matrix A, however, this identity cannot be used as the l.h.s. vanishes while
the r.h.s. ceases to be a well-defined expression. This is only a seeming contradiction,
which appears, since the derivation of the r.h.s. requires, at some point, to factor the
term det(A) out of a polynomial expression (in terms of the matrix elements of A). For
singular A, this step would lead to a division by zero (of a polynomial, that is zero as
well). But if the Keldysh generating function Z [η] can indeed be expressed in form of

4The time step indices are replaced by continuous time parameters and the sums by time integrations.
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a Gaussian integral with regular matrix A, any physical quantity can (at least formally)
be evaluated using (4.32).

We illustrate this by calculating the matrix element U0( f |i) = 〈ψ f |Û0(t f , ti )|ψi〉 of
the free propagator based on equation (4.26). We choose, for simplicity, initial and
final state as |ψ f 〉 = |ψi〉 = |kσ p,τ〉, i.e., one electron with wave vector k and spin
σ sits in lead p, the impurity orientation is τ, and the SLQD is empty. Obviously,
since Û0(t f , ti ) = exp{−i/~Ĥ0∆t}, initial and final state have to be equal to yield a non-
vanishing U0( f |i). It can immediately be evaluated to exp{−i(εk + Eimp)∆t/~} with
Eimp = ∆impτ/2. This is the result we want to obtain via Gaussian integration by plug-
ging the discrete version of (4.26) into the definition of U0( f |i). First of all, it can be
seen, that the summation over all tuples {τ} is trivial; since the impurity orientation
cannot change in a freely propagating system, only the constant path (τ, . . . ,τ,τ) con-
tributes. Hence, the impurity action evaluates to −Eimp∆t/~, which does not depend
on δt anymore and can be pulled out of the limit. Second, acting with 〈ψ f | on |ΨτN 〉
yields the Grassmann number c(N )kσ p , the projection of 〈Ψτ1 | on |ψi〉 yields c (1)

kσ p
. We get

e−iS imp/~U0( f |i) = 〈kσ p,τ|Û0|kσ p,τ〉 ≡ 〈0τ|ĉkσ p(t f )ĉ
†
kσ p
(ti )|0τ〉

= lim
δt→0

 N


j=1

[dΨ j dΨ j ] c
(N )
kσ p
c
(1)
kσ p

exp
n


k l

Ψk iG0[τ]
−1
k l Ψl

o

= lim
δt→0

∂

∂ η

 N


j=1

[dΨ j dΨ j ] exp
n


k l

Ψk iG0[τ]
−1
k l Ψl −ηc (1)kσ p

c
(N )
kσ p

o�

�

�

η=0

= lim
δt→0

∂

∂ η
det{iG0[τ]

−1
k l −ηδk ,1δl ,N X}

�

�

�

η=0
,

Ak l (4.33)

where X = δκ,kσ p δκ,κ′ is implicitly given by equation Ψ1XΨN = c
(1)
kσ pc

(N )
kσ p . In the first

line, we identified U0( f |i) with the (non-interacting) expectation value of the operator
product ĉkσ p (t f )ĉ

†
kσ p(ti ) in the empty Hilbert state |0τ〉. It is the probability amplitude

to find a single electron in a certain state |kσ p〉 at time t f , if it was created in the same
state at time ti .

The second line in (4.33) shows the path integral representation of this expectation
value, as derived from (4.26). The operators have been replaced by corresponding Grass-
mann numbers, while the argument of the exponential function is essentially the elec-
tronic action Sel

0 of the considered system (non-interacting and empty). The central
idea how to evaluate the integral is shown in the step to line three. Analogous to
the procedure shown in section 2.2.2, we first construct a generating function from


dΨdΨexp{iSel
0 } by adding a source term iηc (1)kσ pc

(N )
kσ p to Sel

0 . The derivative of this func-
tion with respect to η, which is afterwards set to zero (line three), yields back the orig-
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4.1. Generating Function and Fermionic Path Integral

inal expression from line two. Finally, we write the exponent as


k l Ψk Ak lΨl and
evaluate the Gaussian integral using (4.32) for G= G= 0. Matrix Ak l is essentially equal
to (i times) the Green’s matrix (4.29), but with identicalΦ0[τk]≡Φ0 for all k due to the
constant impurity path and the element −ηX in the upper right corner (first line, last
column). Considering the rather simple structure of X, of the diagonal Φ0-block, and
the whole matrix Ak l , it is easy to see, that

e−iS imp/~U0( f |i) = lim
δt→0

∂

∂ η
det{Ak l}

�

�

�

η=0
= lim

δt→0

∂

∂ η
det{1+ηX(1− iΦ0)

N−1}
�

�

�

η=0

= lim
δt→0

∂

∂ η
det
n

1+η


κ′′
δkσ p,κδκ,κ′′δκ′′,κ′

�

1− i

~
E0,κ′δt

�N−1o�
�

�

η=0

= lim
δt→0

�

1− i

~
E0,kσ pδt

�N−1
= exp

n

− i

~
εk∆t

o

.

(4.34)

In the end, we used (N − 1)δt = ∆t and E0,kσ p ≡ εk . What is derived here for the free
propagator matrix element of a particular Hilbert state, is a basic example of a rather
general result: the expectation value of an operator Ô[ f̂ †, f̂ ] in some fermionic system
can be represented as path integral over O[f , f] times exp{iS} with the action S of the
system. The evaluation of this expression with the help of (4.32), however, is only
possible, if the action of a general system is quadratic in the Grassmann fields and the
corresponding path integral is Gaussian. For interacting systems, this condition is in
general not met.

In the following subsections, we show how to properly add the three transitions terms
(4.5b) to Ĥ0, to arrive at a Gaussian integral representation of Û for the full model
Hamiltonian (2.1). In this context, we will show, that the main task is to find suitable
extensions of the short time propagator. From that, we get a path integral expression
similar to (4.26) but for the evolution operator of the interacting system.

4.1.4. Discrete Hubbard-Stratonovich Transformation

First, we deal with the Coulomb term Ĥ U
dot. Considering it as perturbation Ĥ1 in equa-

tion (4.8) leads to a valid short time propagator and eventually to an exact path inte-
gral representation of the evolution operator. Since Ĥ U

dot contains a product of four
fermionic operators instead of two, however, this path integral is not Gaussian and rela-
tion (4.32) cannot be used for its evaluation. To fix this, the so-called discrete Hubbard-
Stratonovich transformation can be used. It constitutes a mapping of the interacting dot
electron system to a system of non-interacting electrons, which couple to a virtual field
of fluctuating spins. This results in an effective propagator, whose exponent is quadratic
in the fermion operators.
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4. Iterative Summation of Path Integrals

Since the commutator [Ĥ0, Ĥ U
dot] vanishes, the evolution operator for the system with

Coulomb interacting dot electrons can be factorised into a free part Û0(∆t ) and the
interacting part exp{−i/~Ĥ U

dot∆t}. To the latter, we apply the Hubbard-Stratonovich
transformation. Details regarding the steps taken are shown in appendix E. Here, we
content ourselves with stating the final result:

exp{−i/~Ĥ U
dot∆t}=

1

2



ζ=±1

exp
n

−i/~[
U

2
(n̂↑+ n̂↓)+ i~ζλ(∆t ) (n̂↑− n̂↓)]∆t

o

(4.35a)

λ(∆t )∆t = sinh−1 ξ + i sin−1 ξ , ξ =
Æ

sin[U∆t/(2~)]. (4.35b)with

Variable ζ can be interpreted as a fluctuating Ising-like spin field and solution (4.35) is
unique as long as 0 ≤ U∆t/~ ≤ π. Apparently, this condition limits the usability of
(4.35) for large time differences ∆t . Since we intent to use this identity only to derive
a short time propagator that leads to a Gaussian integral, this is not an issue. Rather,
the uniqueness condition can be seen as imposing an upper bound to the length of the
discretization time step δt for numerical calculations in dependence on the interaction
strength U . The exponential of the r.h.s. in (4.35) commutes with Ĥ0 and we can
write the full propagator as exp{−i/~(Ĥ0+ Ĥ U

dot)∆t}= 1/2


ζ exp{−i/~ Ĥ ζ
0 ∆t}. The

effective free electron (pseudo-) Hamiltonian Ĥ ζ
0 results from replacing the dot energies

εσ in Ĥ 0
dot with

εζ
σ
(∆t ) = εσ +

U

2
+ i~σζ λ(∆t ) (4.36)

in accordance with (4.35a). It is crucial to notice, that due to the presence of an imagi-
nary energy component, Ĥ ζ

0 should not be considered as an actual Hamiltonian. From
the transformed evolution operator, we get a short time propagator by normal ordering
after setting all occurrences of∆t to δt :5

Û U
δt

:=
1

2



ζ=±1

: exp{−i/~ Ĥ ζ
0 δt}: . (4.37)

Using this result, a Gaussian path integral similar to (4.26) can be derived for the Cou-
lomb interacting system. Its path sum then also extends over all tuples {ζ } :=(ζN , . . . ,ζ1)
of the Hubbard-Stratonovich (HS) fields, while the corresponding (pseudo-) Hamilto-
nian functions contain the modified energies εζσ (δt ).

4.1.5. Adding the Remaining Interaction Terms

The hybridisation term ĤT is quadratic in the number of fermions but contains both dot
and lead operators. Therefore, the stationary states of the isolated system are in general

5Note that the parameter λ depends on the time interval!
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4.1. Generating Function and Fermionic Path Integral

not eigenvectors of the system with tunnelling. Still, if we set Ĥ1 = ĤT in equation (4.8),
the resulting short time propagator is well-formed and leads to the correct Gaussian path
integral representation of the full propagator (Coulomb and tunnelling). We could leave
it at that. However, since the matrix elements

〈Ψτk | : exp{−i/~ Ĥ ζ
0 δt}

�

1̂− i

~
ĤTδt

�

: |Ψτj 〉

〈Ψτk | : exp{−i/~ (Ĥ ζ
0 + ĤT )δt}: |Ψτj 〉and

(4.38)

are equal up to second-order in δt for all 〈Ψτk| and |Ψτj 〉, we can as well use the short
time propagator that is obtained by adding the coupling term ĤT to Ĥ ζ

0 in definition
(4.37). For the further considerations, this variant is chosen for reasons of simplicity.

So far, we had to include the summation over impurity paths {τ} in integrals like
(4.26) for formal reasons only. Since no term in Ĥ ζ

0 + ĤT can change the impurity
spin orientation, the only path that contributes is constant with all stages equal to the
initial value τi . With the inclusion of the last remaining transition Ĥ⊥

int to our system,
this situation changes. This term is responsible for mutual flips of an electron- and the
impurity spin, which are also called flip-flop processes. It is because of these, that electrons
and impurity spin can influence each other non-trivially and dynamical effects such as
the relaxation of the impurity spin can appear. As above, we can use equation (4.8) to
derive the final version of the short time propagator:

Ûδt =
1

2



ζ

: exp{−i/~ (Ĥ ζ
0 + ĤT )δt}

�

1̂− i

~
Ĥ⊥

intδt
�

: . (4.39)

Again, a version written as single exponential : exp{−i/~Ĥ ζδt}: with Ĥ ζ := Ĥ ζ
0 +

ĤT + Ĥ⊥
int would be a valid choice, as well. Nevertheless, it is more convenient to use

(4.39) when constructing a path integral in the “mixed” basis, since it is separated in
parts that contribute to matrix element 〈Ψτk|Ûδt |Ψτj 〉 either for equal (∝ 1̂) or unequal
(∝ Ĥ⊥

int) impurity spin orientations. We want to emphasise, that this is just a calculatory
advantage; using the single exponential leads to equivalent results [up to terms O (δt2)].

In contrast to these variants, operator 1̂− i/~Ĥ ζδt , though fulfilling condition (4.2),
is not appropriate to construct a path integral for the model with flip-flop interaction.6

On the level of short time matrix elements, this manifests in the case of opposite left
and right impurity spin: the phase factor caused by the free propagation between two
instantaneous flip-flop events is missing

〈Ψτk |1̂− i/~Ĥ ζδt |Ψτj 〉|τk ̸=τ j
=− iJδt

2~
(δτk ,τ j+1d

k
↓ d

j
↑+δτk ,τ j−1d

k
↑ d

j
↓)e
ΨkΨ j . (4.40)

6It can still be used for the system with Coulomb interaction and tunnelling coupling only.
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4. Iterative Summation of Path Integrals

Such an expression would only be correct, if the transition process lasted the whole time
span δt instead of being instantaneous. In the resulting path integral, the system would
not propagate freely between consecutive flip-flop processes in neighbouring time steps
and yield an unphysical “continuous limit” δt → 0. It is the structure of the “mixed”
basis, which leads to this situation and requires a more careful choice of the short time
propagator Ûδt than necessary for a pure coherent state basis.

With (4.39), the path integral representation of the full evolution operator Û (t f , ti )
can now be derived in the same way as shown in appendix D for the free propagator. It
differs from (4.26) mainly by the additional path sum over tuples {ζ } and the additional
flip-flop polynomial P of dot electron Grassmann fields in front of the exponential
exp{iS/~}with the full action S[{Ψ,Ψ,τ,ζ }] = ~



k l ΨkGel[{τ,ζ }]−1
k l
Ψl+S imp, where

Gel is the full electronic Green’s matrix for the “empty” system

Û (t f , ti ) = lim
δt→0

2−N


{τ,ζ }

 N


j=1

[dΨ j dΨ j ]P[{τ}]e iS[{Ψ,Ψ,τ,ζ }]/~|ΨτN 〉〈Ψτ1 |. (4.41)

For a tuple {τ} = (τN , . . . ,τ1) with 0 ≤ m < N − 1 flips, the tuple Tflip := (km, . . . , k1)
ascendingly numbers the indices of flip-flop events, where each event k ∈ Tflip with
τk ̸= τk−1 is labelled according to the higher time step index of both spins. The flip-flop
polynomial is then given by

P[{τ}] :=
�

− iJδt

2~

�m 

k∈Tflip

d
k
−τk
d

k−1
τk

. (4.42)

With the help of an examplary impurity path, figure 4.2 illustrates the construction
of this polynomial for the whole Keldysh evolution operator (see next section).7 The
inverse Green’s matrix (Gel)−1 has the same structure as shown in equation (4.29). Just
the terms Φ0[τk] have to be replaced by Φ[τk ,ζk], where in analogy to the free case
we implicitly define ΨΦ[τ,ζ ]Ψ = (H ζ

0 + HT − Himp)[Ψ,Ψ,τ,ζ ]δt/~. The function
Himp[τ] = ∆impτ/2 has to be subtracted, as it is already accounted for in the impurity
action Simp.

4.1.6. The Keldysh Partition Function

The last ingredient missing to construct the path integral representation of the Keldysh
partition function Z from the one of the full evolution operator, is a coherent state
expression for the trace operation. In appendix D or, e.g., [188] is shown that for an
operator Ô in a fermionic Hilbert space with n d.o.f., we have

Tr Ô =


dFdFe−FF〈−F|Ô|F〉. (4.43)

7Equation (4.42) only describes the forward branch.
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k−1k−2k−3

backward forward

Figure 4.2.: Graphical illustration how to construct the flip-flop polynomials for the
examplary impurity path (blue) shown in sub-figure (a). The Keldysh contour (thick
black line) is divided into N − 1 = 8 segments of length δt between 2N = 18 time
vertices. The impurity path (tuple of black and red arrows) features 8 flip-flops with
m+ = 5 on the forward (upper) and m− = 3 flips on the backward (lower) branch.
As a first step, the flip index tuples T ±flip have to be constructed. Regardless of the
contour branch, to each flip-flop the index of the Keldysh time that is later with respect
to the real-time is assigned. Hence, if two consecutive spins have opposite orientations,
the corresponding flip-flop gets the time index of the spin on the right-hand side of
the flip (marked red). With this, we have T +flip = (8,6,5,4,2) and T −flip = (14,12,11).
Using equation (4.45), the given impurity path then yields the polynomial shown in
sub-figure (b). Note, that compared to the impurity the electrons flips in the opposite
direction (not shown).

State 〈−F| is obtained from 〈F| in (4.22a) by multiplying every Grassmann number f i
by −1. Now, the Keldysh partition function Z can be constructed by plugging (4.41)
into (2.11) and use the coherent state version of the trace. In doing so, we have to
take into account how the expression for the backwards evolution part of ÛK has to be
modified according to the Hermitian conjugate of the short time propagator (4.39): The
Hubbard-Stratonovich (HS) parameter λ is replaced by its complex conjugate and the
signs in front of Ω[τ,ζ ] in the Green’s matrix and in the flip-flop prefactors ∝ J have
to be inverted. The resulting expression

Z [0] = Tr{ρ̂(−∞)Û (−∞,∞)Û (∞,−∞)}

= lim
δt→0

2−2N


{τ,ζ }

 2N


j=1

[dΨ j dΨ j ]PK[{τ}]exp{iSK[{Ψ,Ψ,τ,ζ }]/~}

(4.43) (4.41)† (4.41)

(4.44)
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bears a strong resemblance to the full evolution operator. The polynomial PK now de-
pends on the Keldysh impurity path {τ} = (τ2N , . . . ,τ1). Analogous to the forward
evolution operator, T +flip = (k

+
m+ , . . . , k+1 ) is the tuple of ascending flip indices along the

forward path {τ+} := (τN , . . . ,τ1) with τk+ ̸= τk+−1 for all k+ ∈ T +flip. Accordingly,
T −flip = (k

−
m− , . . . , k−1 ) is the tuple of ascending flip indices along the backward path

{τ−} := (τ2N , . . . ,τN+1) with τk− ̸= τk−+1 for all k− ∈ T −flip. Hence, m = m+ + m−

is the total number of flip-flop events along the Keldysh contour. Note that a flip index
on the backward path is labelled according to the smaller step index of the flipping spins
corresponding to the later time. With this, we can write

PK[{τ}] := (−1)m
−
�

− iJδt

2~

�m 

j∈T −
flip

d
j+1
τ j
d

j
−τ j



k∈T +
flip

d
k
−τk
d

k−1
τk

. (4.45)

As before, the discrete Keldysh action is defined with the help of the electronic Green’s
matrix: it is SK[{Ψ,Ψ,τ,ζ }] = Sel

K + S imp
K with Sel

K = ~
2N

k ,l=1ΨkGel
K[{τ,ζ }]−1

k l Ψl , where
�

Gel
K

�−1 relates to the initial density matrix ρ̂(−∞) and S imp
K is the Keldysh impurity

action. They are given by

S imp
K =−∆impδt

2

N


k=2

(τk −τ2N−k+1) =−
∆imp

2



K
τ(t )dt (4.46)

and

iGel
K [{τ,ζ }]−1

k l =





































−1 −ρi
1− iΦ+[2] −1

1− iΦ+[3] −1
. . . . . .

1
. . .
. . . −1

1+ iΦ−[3] −1
1+ iΦ−[2] −1





































.

〈ΨN+1|ΨN 〉

〈−Ψ1|ρ̂(−∞)|Ψ2N 〉

(4.47)

We defined the phase terms Φ+[k] := Φ[τk ,ζk] and Φ−[k] := Φ−[τ2N−k+1,ζ2N−k+1], where
matrix Φ− is the complex conjugate of Φ. The unity matrix in row N + 1 and col-
umn N is the connection between the forward and backward branch of the Keldysh
contour in the infinite future, while the upper right matrix element −ρi is the man-
ifestation of initial state ρ̂(−∞) from equation (4.44). The upper left quarter of the
Keldysh Green’s matrix is identical to the full inverse Green’s function that appears in
the forward propagator (4.41). The lower right quarter is the corresponding G−1 for the
backward evolution.
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To fix the remaining upper right entry of (4.47), we have to specify the system’s initial
state. For all further considerations, we assume a configuration of the form

ρ̂(−∞) = |0,τi〉〈0,τi | ρ̂leads, (4.48)

where ρ̂leads = ρ̂Lρ̂R is the equilibrium density matrix of the leads and |0,τi〉 denotes
the empty dot with the impurity in some initial orientation τi . For general cases, this
is not identical with a thermal equilibrium configuration of the impurity. Rather, it
corresponds to a situation, in which the impurity spin has been deliberately prepared
in an initial state |τi〉 (before the dot-lead coupling is switched on) to allow for an easier
investigation of the polarisation dynamics. The matrix element of this ρ̂(−∞) evaluates
to (see appendix D)

〈−Ψ1|ρ̂(−∞)|Ψ2N 〉=N −1δτ1,τi
δτ2N ,τi

exp
n

−


kσ p

e−β(εkσ p−µp )c 1kσ p c
2N
kσ p

o

,

ρi = δκ,κ′δκ,kσ pe−β(εkσ p−µp ),hence
(4.49)

where, as before, the index κ ∈ {σ},{kσ p} numbers the electrons in the system. The
constantN =Tr[exp{−βp(Ĥp −µpN̂p )}] is the normalisation factor of the thermal
lead’s density matrix (see definition in section 2.3.1) and can be pulled out of the path
integral (4.44).

Compared to the case of free propagation (4.26), the introduction and usage of a
continuous notation for the full Keldysh partition function requires an even more
careful treatment. First of all, a well-defined continuous limit of the discrete paths
{τ,ζ } has to be found.8 Since the variables τ and ζ can only take the values ±1,
paths τ(t ), ζ (t ) should be elements of the space of non-continuous step functions with
τ(t ) = ±1 = ζ (t ) and a discrete set of flip points. Second, in the definitions of the
continuous action SK analogous to (4.27)

Sel
K = Sel

dot+ Sleads+ ST = ~


K
dtdt ′Ψ(t )Gel

K [τ(t ),ζ (t )]
−1
t ,t ′Ψ(t

′) (4.50a)

with

Sel
dot = ~



σ



K
dσ (t )[i∂t −Ωσ (t )]dσ (t )dt (4.50b)

Sleads = ~


kσ p



K
c kσ p(t )[i∂t −ωk]ckσ p(t )dt (4.50c)

ST =


kσ p



K
[γ dσ (t )ckσ p(t )+ γ

∗
c kσ p(t )dσ (t )]dt , (4.50d)

8This is not a problem for the free propagator (4.26), since the impurity path has to be constant anyway.
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the fields of the forward and backward parts are unconnected due to the diagonal struc-
ture of the continuous inverse Green’s function Gel

K [τ(t ),ζ (t )]
−1. The discrete version

(4.47), on the other hand, connects fields from both contour branches due to the element
1 in row N+1, column N and—in case of the leads—element−ρi in row 1, column 2N .
Thus, in the disconnected lead action (4.50c) any information about the lead’s initial
state is missing. Kamenev and Levchenko [88] discuss this issue in more detail. Yet, we
introduce the continuous notation as it is convenient to use, e.g., for the tracing over
the leads (see below). To this end, we define lead and dot frequencies ωk := εk/~ and
Ωσ (t ), respectively. The time dependence of the effective dot frequency Ωσ (t ) relates to
the impurity and HS field as well as to the Keldysh branch: on the forward branch (+),
we have

Ωσ (t ) = Ω
+
σ
(t )≡ [εσ +U/2+ Jστ(t )]/~+ iσζ (t )λ(δt ), (4.51)

while on the backward branch (−), we have the complex conjugate Ω−σ (t ) =Ω+σ (t )∗.

4.1.7. Adding Source Terms

With the path integral representation of the Keldysh partition function (4.44) and the
Green’s matrix of the model system (4.47) at hand, we can now construct the generating
functionZ [η] for some observable Ô that was introduced in section 2.2.2. The method
to obtain the expectation value 〈Ô〉(tEV ) from Z [η], which we introduced in equation
(2.13), requires to add an appropriate source operator to the exponential of the Keldysh
evolution operator in (2.11), followed by a functional derivative.

In the previous sections, we exemplified for the free evolution operator, that this pro-
cedure can be applied similarly to a path integral representation. In particular, we want
to apply it to expression (4.44). Since we are then dealing only with Grassmann inte-
grals over functions of complex and Grassmann numbers, the resulting expressions are
considerably easier to tackle. On the one hand, they do not involve operators but only
numbers and, furthermore, Grassmann integrals always converge. Finally, a functional
derivative like in equation (2.13) becomes an ordinary derivative with respect to a real
number, as in equation (4.34). To construct the generating function for 〈Ô〉(tEV ), we re-
place every instance of an impurity- or electron operator in observable Ô[ f̂ †

κ , f̂κ, τ̂i] by
the respective spin- and Grassmann fields from the forward contour branch at the time
step closest to tEV . Let us assume that tEV − ti = (k−1)δt . Then, the electron operators
are replaced by their corresponding Grassmann numbers with time step index k. For
the Pauli matrices τ̂i with i ∈ {x, y, z}, the following substitution rules apply

τ̂i (tEV) 7→ τ(k)i i ∈ {x, y, z}
τ(k)x := (1−τkτk−1)/2 τ(k)y :=−i(τk −τk−1)/2 τ(k)z := τk .with

(4.52)

Since matrix elements 〈τ′|τ̂x,y |τ〉 can only be non-zero for τ ̸= τ′, the Pauli matrices
have to be replaced by field expressions that take into account neighbouring spins in
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time. In other words, only if a flip-flop event occurs at time tEV , the fields τ(k)x,y can be
non-zero. On the forward branch of the Keldysh contour, a flip-flop with τk = −τk−1

is associated with time step k. Hence, both spins enter the definition of τ(k)x,y . As a
consequence, these definitions may seem to be time non-local, for they contain fields
that are δt apart. Yet, within the accuracy bounds of the path integral expression, they
should be considered as quasi-local in time. Just as the Φ0-matrices in (4.29) “wander”
to the diagonal in the continuous version (4.31) of the inverse Green’s function, the
discrete τ(k)x,y yield the correct time local continuous limit.

With the resulting O[f (k)κ , f(k)κ ,τ(k)i ], a generating function Z [η] for 〈Ô〉(tEV ) is ob-
tained from (4.44) by adding SO := ηO to the action SK . The expectation value is evalu-
ated according to

〈O〉(tEV) =−i∂ηZ [η]|η=0 ≡−i∂η lnZ [η]|η=0. (4.53)

To increase the conformity with equation (2.13), the factor −i could also be absorbed
into the source term. As an example that plays a crucial rule in all further calculations,
we present the source term for the charge current I

SI =−
ieη

2



kσ p

p
�

γ d (k)
σ
c
(k)
kσ p
− γ ∗c (k)

kσ p
d
(k)
σ
). (4.54)

Its explicit form has to be considered at this point, since it has to be added before the
lead d.o.f. are traced out in the next section. This is actually the case for all observables
that contain lead electron operators. However, the only example of such an observable
considered in this work is the charge current.

4.1.8. Tracing over the Electron Degrees of Freedom

As we explained in chapter 2, it is one of the crucial model features, that the leads stay
in equilibrium at all times, and the systems dynamics only appears in the quantum dot
part. We already made use of this fact in section 2.3.1 by tracing over all lead degrees of
freedom to arrive at effective rates for transition processes between dot states. In doing
so, the model with infinitely many d.o.f. was mapped to the small SLQD subsystem.
After choosing the initial state (4.49), we can do the same for the generating function
Z [η] within the path integral framework. To this end, we perform the path integral
over all Grassmann numbers c kσ p , ckσ p associated with lead electrons. This can be done
with the help of identity (4.32). According to equation (4.50), the full action Sel

K + SI

is the sum of terms containing either dot fields only (Sel
dot), lead fields only (Sleads), or a

mixture of both (ST + SI ). For convenience, we cut the Keldysh contour “in half” con-
sidering the forward and backward branch separately. Then, the resulting expressions
are integrals over the real time contour from −∞ to∞. In doing so, each time depen-
dent field acquires a branch index± indicating whether it belongs to the forward (+) or
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backward branch (−). Accordingly, expressions like the Green’s matrices below gain an
additional 2× 2-superstructure:

Sel
K = ~

 ∞

−∞
dt
 ∞

−∞
dt ′
�

D(t )
�

Gel
dot

�−1
t ,t ′D(t

′)+C(t )
�

Gleads

�−1
t ,t ′C(t

′)

+D(t )F †
t ,t ′C(t

′)+C(t )Ft ,t ′D(t
′)
	

(4.55a)

with

�

Gel
dot

�−1
t ,t ′ = δ(t − t ′)1dot

 

i∂t −Ω+σ (t ) 0
0 −i∂t +Ω

−
σ
(t )

!

(4.55b)

�

Gleads

�−1
t ,t ′ = δ(t − t ′)1leads

�

i∂t −ωk 0
0 −i∂t +ωk

�

(4.55c)

Ft ,t ′ =
γ ∗

~

h

1+
ieηp

2
δ(t − tEV)

i

δ(t − t ′)δκ,kσ pδκ′,σ ′δσ ,σ ′

�

1 0
0 −1

�

. (4.55d)

The definition of the matrix Ft ,t ′ is chosen in such a way, that the integral over the last
two terms of equation (4.55a) yields ST + SI , i.e., the part of the action mixing both
dot and lead electron fields. The minus signs of the (−−) components in each matrix
account for the (originally) negative direction of integration on the backward Keldysh
branch. As the Green’s functions gain a matrix superstructure, the fields F = (F+,F−)
and F= (F+,F−)T with F= C,D become 2-component vectors, when integrated over the
real time contour. If we further define

J(t ) :=
 ∞

−∞
dt ′Ft ,t ′D(t

′) =
γ ∗

~

h

1+
ieηp

2
δ(t − tEV)

i

δκ,kσ p

 

d+
σ

−d−
σ

!

(t ) (4.56)

and an analogous vector J, the part of path integral (4.44) that involves lead fields can
be written in a form manifestly equivalent to the l.h.s. of equation (4.32). With the use
of (4.55) and (4.56), we can identify A= −iG−1

leads, the fields F = C, and the “arbitrary”
vectors G and G with J and J, respectively. Hence, integration over the lead degrees of
freedom yields



D[CC]e i(Sleads+ST+SI )/~ = det{−iG−1
leads
}exp{i

 ∞

−∞
dt
 ∞

−∞
dt ′ J(t )

�

Gleads

�

t ,t ′J(t
′)}.

Senv/~

(4.57)

To further evaluate the r.h.s. of this equation, we have to calculate the lead’s Green’s
function and the determinant of its inverse. This requires using the discrete version
of the Green’s matrix, because inversion of the diagonal expression (4.55c) results in
vanishing (+−) and (−+) components. And what is more, the diagonal components
obtained this way contain no information about the initial state. As we lay out in

78



4.1. Generating Function and Fermionic Path Integral

appendix F, however, the Keldysh components of the Green’s function are given by
�

G+−
leads

�R,R′

t ,t ′ = ie−iεk(t−t ′)/~ f +p (εk)δR,R′

�

G−+
leads

�R,R′

t ,t ′ =−ie−iεk(t−t ′)/~ f −p (εk)δR,R′

�

G++
leads

�R,R′

t ,t ′ = θ(t − t ′)
�

G−+
leads

�R,R′

t ,t ′ +θ(t
′− t )

�

G+−
leads

�R,R′

t ,t ′ − iδt ,t ′/2
�

G−−
leads

�R,R′

t ,t ′ = θ(t − t ′)
�

G+−
leads

�R,R′

t ,t ′ +θ(t
′− t )

�

G−+
leads

�R,R′

t ,t ′ − iδt ,t ′/2,

(4.58)

where f ±p are the leads Fermi functions introduced in section 2.3.1. We introduced
R := (kσ p) for short and the step-function θ(t ) with θ(0) := 1/2. Note that δt ,t ′

denotes the Kronecker delta rather than the delta distribution. The Green’s function
can also be calculated directly with definition

�

Gαβ
leads

�

t ,t ′ := i〈T̂K ĉαR(t )ĉ †,β
R (t

′)〉 using the
Keldysh time ordering operator T̂K ; the α,β=± are contour indices. Also in appendix
F is shown, that the determinant of the inverse Green’s matrix evaluates to

det{−iG−1
leads
}=


kσ p

�

1+ e−β(εk−µp )
�

≡N (4.59)

and therefore cancels the normalisation constant in (4.49) that was introduced with the
thermal initial state of the leads. An important relation that is connected to causality
and can be read out of (4.58) is G++leads+G−−leads−G+−leads−G−+leads =−iδt ,t ′ .

After the integration, the exponent on the r.h.s. of (4.57) contains dot electron fields
only and has the form of an action Senv. It can be interpreted as comprising the effects
of the thermal leads (as environment) on the dot and takes the form

Senv = ~


σ p

 ∞

−∞
dt
 ∞

−∞
dt ′ dσ (t )γ (p, t − t ′)

n

1+
ieηp

2
[δEV(t

′)−δEV(t )]
o

dσ (t
′) (4.60a)

with the Keldysh matrix

γ (p, t − t ′) =
|γ |2
~2



k

�

G++
leads

−G+−
leads−G−+

leads
G−−

leads

�

(k p; t − t ′) (4.60b)

and the short notation δEV(t ) := δ(t − tEV). It is important to keep in mind, that
tEV is fixed on the forward contour branch. Therefore the delta distributions δEV(t )
and δEV(t

′) only appear in the first row and column, respectively. Since η has to be
considered infinitesimal as far as the evaluation of observables is considered, the term
proportional to η2δEV(t )δEV(t

′) in (4.60) can be neglected. The minus signs of the
(+−) and (−+) components of the matrix γ originate again from the inverse integration
direction along the backward branch. We perform the wide-band limit substitution


k→ ϱ(εF)


dεk to evaluate it further and, for t − t ′ ̸= 0, arrive at (see appendix F)

γ (p, t − t ′) =
Γ

2β~2

e−iµp (t−t ′)/~

sinh[π(t − t ′)/(~β)]

�−1 1
1 −1

�

. (4.61)
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We have to restrict the use of this equation to non-vanishing time differences, since the
real-time γ -matrix shows a (t − t ′)−1 divergence. This turns out to be a problem for
the numerical calculations, since the large matrix elements for small (t − t ′) can cause
numerical instabilities. In section 4.2.3, we show how this problem can be avoided. For
large time differences on the other hand, the absolute value of γ decays exponentially.
As can be seen in section 4.2.1, this important property can be exploited in a numerical
scheme and is the cornerstone of the ISPI method.

After the integration over the lead fields, the generating functionZ [η] for the charge
current only depends on the dot fields D(t ) and D(t ). The next step is to integrate over
the remaining dot fields, to arrive at a formally exact result for the generating function.
To do so, we have to write the environmental action with some (effective) environmen-
tal inverse Green’s function G−1

env in order to perform the Gaussian integration according
to (4.32). By plugging (4.61) into (4.60), we obtain

Senv = ~
 ∞

−∞
dt
 ∞

−∞
dt ′ D(t )

�

Genv

�−1
t ,t ′D(t

′) with
�

Genv

�−1
t ,t ′ =

�

G0
env

�−1
t ,t ′ +η

�

G I
env

�−1
t ,t ′ (4.62a)

and

�

G I
env

�−1
t ,t ′ = 1dot

eΓ

2β~2

sin[eVbias(t − t ′)/(2~)]
sinh[π(t − t ′)/(~β)]

�

δEV(t )−δEV(t
′) −δEV(t )

δEV(t
′) 0

�

, (4.62b)

where we used µp = peVbias/2. Despite the singularity at t − t ′ = 0 of the individual
matrix γ (p, t − t ′), their difference for p = L and R, as it appears in the part of Senv that
is proportional to η, is finite for all values of t and t ′. The matrix (G0

env)−1, however, is
divergent for t = t ′. It is for this reason, that we will not explicitly use its real-time form
throughout the following derivations and refrain from presenting it here.9 At this point,
source terms for observables Ô that only contain dot fields can be added to the action.
This is equivalent to adding some appropriate η(GO)−1 to the inverse Green’s function.
Depending on which observable is of interest, the effective full inverse Green’s function
(Geff)−1 is then given either by (Gel

dot)
−1+(Genv)−1 for the current or (Gel

dot)
−1+η(GO)−1+

(G0
env)

−1 otherwise. With this, we can write the remaining path integral as



D[DD]PK exp
n

i
 ∞

−∞
dt
 ∞

−∞
dt ′ D(t )

�

Geff�−1
t ,t ′D(t

′)
o

= 〈PK〉det{(iGeff)−1}.

Seff
K /~

(4.63)

This equation is actually the general definition of the expectation value of a polynomial
PK of Grassmann numbers in a system with Green’s function Geff. It is similar to equa-
tions (4.33) and (4.53) but in contrast to those, here we have to explicitly account for
the normalising determinant det{(iGeff)−1}. This is because the impurity and HS paths,

9It is essentially given by the sum γ (L) + γ (R) and differs from (4.62b) by having a cosine instead of a
sine in the numerator.
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which are involved in an individual contribution to Z , are in general not symmetric
on the forward and backward branch. As a consequence, the determinant of the effec-
tive Green’s matrix is unknown, while the respective constants are 1 both for the free
propagator matrix element (det iG−1

0 ) and the full Keldysh expectation value (Z [0]).
So far, we did nothing more than just rewriting the path integral. The next step is to

derive an expression for 〈PK〉 that refers solely to Geff. This can be done with the help of
Wick’s theorem. A version that is based on the path integral can be found in [88]. First,
we exploit the fact that, when an expectation value is considered, fermion operators and
Grassmann fields are interchangeable. This property is “built in” by construction of the
path integral and can be seen in equation (4.33). With the use of (4.45), we get

〈PK[τ(t )]〉 ∝ 〈


j∈T −
flip

d̂ †
τ j
(t<j )d̂−τ j

(t j )


k∈T +
flip

d̂ †
−τk
(tk)d̂τk

(t<k )〉, (4.64)

where τk = τ(tk+0+) is the value of the impurity field at the flip time tk . By this defini-
tion, we fix the value of τ immediately at the real-time later time step. The operators are
ordered with ascending Keldysh times from right to left, i.e., with larger index number
their real-times decrease on the backward branch. The superscript “<” indicates, that
the respective time lies an infinitesimal real-time step in the past: t<k = tk − dt . This is
the continuous limit δt → dt of the discrete expression with flip times lying δt apart.
Though it can be neglected in the continuous version, this information is used to prop-
erly re-discretise the following result for the subsequent numerical calculations. The
first important insight that we gain from the r.h.s. of (4.64) is the fact, that 〈PK[τ(t )]〉
vanishes for an odd number m of flip-flops. This is because every flip-flop contributes
both a creator and an annihilator for electrons with opposite spins to PK . Therefore, a
chain of m consecutive flip-flops yields an equally long alternating product of creators
and annihilators for each spin σ . If m is odd, so is the length of these alternating prod-
ucts, which therefore contain an unequal number of d̂ † and d̂ . When applied to any
state |ψ〉 in the trace (that is the expectation value), such an operator product changes
the particle count by 1, so that the projection with 〈ψ| always vanishes. Thus, we only
have to consider paths with even m, from now on.

We start by illustrating how an expression like (4.64) can be evaluated using Wick’s
theorem with the impurity path shown in figure 4.3. Afterwards, the expression for
arbitrary τ(t ) is derived. The exemplary path features a total of four flip-flops along the
contour, three on the forward, one on the backward branch. Thus, up to prefactors, the
flip-flop polynomial becomes

〈PK〉 ∝ 〈d̂ †
↑ (t

<
4 )d̂↓(t4)d̂

†
↓ (t3)d̂↑(t

<
3 )d̂

†
↑ (t2)d̂↓(t

<
2 )d̂

†
↓ (t1)d̂↑(t

<
1 )〉

= 〈d̂ †
↑ (t

<
4 )d̂↑(t

<
3 )d̂

†
↑ (t2)d̂↑(t

<
1 )〉 〈d̂↓(t4)d̂

†
↓ (t3)d̂↓(t

<
2 )d̂

†
↓ (t1)〉.

P ↑K P ↓K

(4.65)

Since the action Seff
K can be decomposed into disparate parts Seff

σ with associated Green’s
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τ(t )

t1 t2 t3

t4

−1

+1

−1

+1

Figure 4.3.: Examplary impurity path (blue) with 4 flip-flop events along the Kel-
dysh contour (black). Note, that contrary to the time-descrete path in figure 4.2, the
Keldysh contour is continuous and the (equally continuous) flip-flop times t1, . . . , t4
should not be confused with the discrete time vertices.

matrices Geff
σ for both electron spins σ , we are allowed to factorise the expectation value

of the mixed operator product accordingly. This is possible even if a source action SO

contains terms mixing fields of different spins. Since we do not study any such observ-
ables in this work, we do not elaborate on this point in detail but content ourselves
with a qualitative explanation as to why this is. An observable Ô that mixes both
spins is either quadratic in the dot electron operators or proportional to n̂↑n̂↓.10 If it
is quadratic, we can construct the path integral directly from equation (2.8) in section
2.2.2. That would result in an expression that is equal to Z [0] up to an additional
factor O[d , d,τ](tEV), which can be absorbed into PK . An observable Ô proportional
to n̂↑n̂↓ can be dealt with by absorbing it into the Coulomb Hamiltonian prior to the
Hubbard-Stratonovich transformation. Applying Wick’s theorem to (4.65) then yields
(see appendix F)

〈P ↑K〉=−det
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
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(Geff
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t4,t1

(Geff
↓ )
−+
t4,t3

!

.

Ξ↑ Ξ↓

(4.66)

From these expressions, we can extract the information needed to derive a general result
for a path τ(t ) with flip-flops at times Tflip = (tm, . . . , t1) with m even. Note, that in
continuous notation the entries of Tflip are actual (continuous) flip-flop times (more
precisely, they are real-times with an index reflecting their Keldysh order) and not time
indices as in section 4.1.5. It is only in the course of the subsequently explained re-
discretisation of these expressions, that the flip times are mapped to time-step indices.

Given the initial impurity orientation τi = τ(−∞), the matrix Ξτi
of dimension

m/2 is constructed by first tagging every other element of Tflip, but separately for each

10Due to the small Hilbert space and to particle number conservation
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contour branch, with an “<” superscript. In doing so, we have to ensure that (i) the
second flip on the forward contour receives a “<” and (ii) the last time on the forward
and the first time (in Keldysh order) on the backward contour have the same superscript.
With ascending step indices, the times of even numbered flips are assigned to the rows
and the times of odd numbered flips to the columns. The entries of the matrix are
then filled with the elements of the Green’s matrix Geff

τi
at the respective times and with

the corresponding contour indices. Accordingly, to build matrix Ξ−τi
, times of odd

numbered flip times are assigned to the rows, the even ones to the columns and all times
are, compared to Ξτi

, reciprocally tagged with “<”. This is shown in figure 4.4(a) and
(c) for the Ξτi

-matrix and an example path.
At this point, it is useful to re-discretise the result, which is a prerequisite for the

numerical treatment. To this end, we have to replace the flip-flop times t j with time
step indices k j = k+j and k j = k−j−m+ on the forward ( j ≤ m+) and backward ( j > m+)
branch, respectively. They were introduced in section 4.1.6. For the “lesser” times t<j ,
we have to substitute k<j := k j − α, where α = ±1 is the branch index of time step k j .
After these steps, we can write down the final expression for the generating function as

Z [η] = lim
δt→0

2−2N


{τ,ζ }
(−1)m

−
� Jδt

2~

�m
exp{i(SK)imp/~}



σ

det i(Geff
σ
)−1 detΞσ

(Ξτi
)q r = (G

eff
τi
)KE

q KO
r

, and (Ξ−τi
)q r = (G

eff
−τi
)KO

q KE
r
.with

(4.67)

The summation over impurity paths is restricted to tuples {τ} with τ1 = τ2N = τi . We
defined the m dimensional tuples/vectors K := (k<m, . . . , k<m++1, km+ , . . . , k1) and K :=
(km, . . . , km++1, k<m+ , . . . , k<1 ). The corresponding vectors with superscript E (O) denote
the m/2 dimensional sub-vectors consisting of only the even (odd) indices. Note that,
since they refer to times in Keldysh space, i.e., 1≤ k j ≤ 2N for all j , the Green’s matrix
elements in the definition of the Ξ matrices have no superscript branch indices. In
general, the elements of a Green’s matrix in Keldysh- and real-time space are related by

Gq r =Gα(q)α(r )
q̃ r̃ with

(

α(q) = + and q̃ = q for 1≤ q ≤N
α(q) =− and q̃ = 2N − q + 1 for N < q ≤ 2N

. (4.68)

In figure 4.4(b) and (c), we show how to properly assign the step- and contour indices
to the rows and columns of the elements of Ξ↑ for the same discrete impurity path as
shown in figure 4.2. Obviously, the row and column indices correspond to the dq↑ and
d r↑ fields (with ascending q and r ), respectively, of the flip-flop polynomial PK[{τ}]
in figure 4.2(b). Hence, those formal rules just implement the following procedure to
assign the proper time-step (and contour-) indices to the rows and columns of Ξτ.
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Figure 4.4.: Graphical illustration of the formal construction rules for the Ξ-matrices.
Both for a continuous impurity path [blue in (a)] and the corresponding discrete ver-
sion with N = 9 [sub-figure (b), identical to the path in figure 4.2], we determine the
indices q , r and α,α′ of the matrix elements (Geff

τi
)αα

′
q r of Ξτi

, where τi =↑. In (a), t1
to t8 are the real-times of the 8 flip-flops, numbered according to their Keldysh order.
Their corresponding time-step indices along the discrete contour in (b) are marked red.
The step indices above the time vertices in (b) refer to real-times with contour branch
index ± for the forward and the backward branch, respectively; the number below
refers to the Keldysh step index. A discrete flip’s position is given by the real-time later
step index. The flips of the discrete version (blue solid line) are shifted to the left by
δt/2 compared to the continuous path (dashed, red line), as they have to lie between
two neighbouring time vertices. For example, the fifth flip in (a) between real-times t<5
and t5 corresponds to the flip between steps 8< = 7= 7+ and 8= 8+ in (b). The upper
(left) part of sub-figure (c) shows how to proceed in the continuous case. First, every
other time of Tflip is tagged with superscript ‘<’, starting from the second flip time
t2, where the last time on the forward- and first on the backward branch must have
equal tags (none, in this case). Of the resulting tuple of real-times, the even numbered
entries (red) are assigned to the rows, the odd numbered ones to the columns of Ξ↑.
Their contour indices determine α and α′ (in the gray shaded squares). For the discrete
path, arrows marked with ‘<’ indicate how K and K are derived from the tuple of step
indices Tflip in the lower (right) part of (c). The indices are then assigned to the rows
and columns of Ξ↑ in accordance to equation (4.67).
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4.2. The ISPI Method

For a given impurity path {τ} with even m and τ1 = τ2N = τi :

(4.R1) Construct the flip-flop polynomial PK[{τ}]
(4.R2) Assign step indices q1 < . . .< qm/2 of (annihilator) fields dq1

τ , . . . , d
qm/2
τ that appear

in PK[{τ}] to the rows of Ξτ.

(4.R3) Assign step indices r1 < . . . < rm/2 of (creator) fields d r1
τ , . . . , d

rm/2
τ that appear in

PK[{τ}] to the columns of Ξτ.

With the formally exact expression (4.67) for the generating function and equation
(4.53), any observable can, in principle, be calculated. In reality, since this is a problem
with exponentially growing complexity, this can mostly never—neither analytically nor
numerically—be done without further simplifications. When used properly, however,
these expressions serve as the foundation for a successful numerical treatment, as we
show in the following section.

4.2. The ISPI Method

In recent years, a number of methods were developed that allow to study the dynamics
of a nonequilibrium system like the SLQD in contact with metallic wires and go be-
yond linear response or perturbation theory of first and second order. For example, if
the highly correlated stationary state of a quantum dot with strong on-site interactions
is of interest, the nonequilibrium Bethe ansatz [124–126] may be a suitable method to
consider. In case that the real-time dynamics is to be studied, worthwhile candidates
for theoretical frameworks can surely be found among such diverse schemes as the var-
ious renormalisation group methods (functional, numerical, . . . ) [127–129, 131, 132,
135–137, 141–143, 198, 199], the flow-equations approach [130], or real-time quantum
Monte-Carlo methods (rtQMC) [148, 150, 151]. At last, we can also include the ISPI
approach, as developed by Weiss et al. [122, 200, 201], into this list, which is by no
means complete. Each of these schemes has its specific characteristics, advantages, and
shortcomings—sometimes they complement each other, sometimes their scope of appli-
cations overlap.11

Before we introduce it in detail below, we briefly outline the specifics of ISPI as com-
pared to some of the above mentioned methods. ISPI is based on a formally exact, dis-
crete path integral representation of the Keldysh partition function. All approximations
we introduce below to further simplify this expression come with parameters that allow
to adjust the degree of approximation (quasi-)continuously, starting from zero (the ex-
act expression). Therefore ISPI is numerically exact, as opposed to, e.g., renormalisation
group approaches. It allows to describe the real-time dynamics of the SLQD in contact
with the metallic leads, which distinguishes it from stationary approaches like the Bethe

11For more details regarding other existing theoretical approaches, see chapter 1.
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4. Iterative Summation of Path Integrals

ansatz, for example. It is built upon the central assumption that the interaction with the
continuous bath restricts the life-time of correlations to some finite value as long as not
both the temperature T and bias voltage Vbias are zero or very small. In cases, when
this assumption is valid (essentially, outside the deep Kondo regime), ISPI permits to
study long propagation times (unlike rtQMC, due to the fermionic sign problem and
the dynamic phase problem), while still taking into account all relevant correlations. It
is specifically designed to describe a system, for which all appearing energy scales, par-
ticularly the interaction parameters U and J , are of the same order of magnitude as the
tunnel coupling Γ, which we choose as reference unit for the energy scale. This is in
striking contrast to the perturbative approach of chapter 3, where Γ had to be much
smaller than all dot energies.

Of course, in addition to the already mentioned case of T = Vbias = 0, there are
applications, systems as well as regimes, to which ISPI cannot be applied. The fact
that ISPI involves the complete summation of a path integral—the reason why it does
not suffer from the fermionic sign problem—leads to a high numerical complexity that
grows exponentially with the model size and restricts applications to rather small in-
teracting systems. As we discuss at the end of section 4.2.4, the SLQD with Coulomb
interaction and magnetic impurity is already at the limit (in size) for systems that are
treatable with today’s computational capacities and reasonable computing times. Also,
very short propagation times (below ∼ 1~/Γ) lie in principle well within the scope of
the ISPI method—their calculation does, in fact, not even require an iterative evaluation
of the generating function. The present formulation of the ISPI scheme, which em-
ploys a particular method of cancelling divergent terms in the inverse Green’s function
(shown in section 4.2.3), however, is not suitable to handle short propagation times.12

Finally, since the path integral is basically an expansion in orders of the Coulomb- and
electron-impurity interactions, ISPI only converges well in the regime with small to in-
termediate interaction strength (“few” Γ), when not “too much” expansion orders are
relevant.

In the present section, we review the iterative summation of the (fermionic) path in-
tegral and adopt it to the model of the single-level quantum dot with the fixed, spin-1/2
magnetic impurity (2.1b) that interacts with electrons on the dot via exchange interac-
tion (2.1c). While the iterative scheme for the calculation of Z [η] is explained, mainly
according to reference [122], particular attention is paid to the specific modifications
necessary to account for the magnetic impurity and its interaction with the electrons
on the quantum dot, since this is a new extension of existing methods. The section is
closed with the introduction of the extrapolation procedures to numerically eliminate
systematic errors that are due to the necessary time discretization and the assumed finite
coherence time.

12Since ISPI is not even needed in these cases, this is not a very important issue at this point.
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4.2.1. Finite Correlation Length Approach

In its full complexity, the exact generating function (4.67) is unserviceable to us, as its
exact evaluation for long propagation times13 would require calculating determinants
of two rather large matrices (and one inversion) for every instance of an exponentially
growing number of paths {τ} and {ζ }. For example, the numerical evaluation of expres-
sion (4.67) with a ratio of time interval and discretization step of around ∆t/δt ≈ 100,
a value not unusual for the calculations presented below, would involve around 4100

determinants of 100-dimensional matrices. Obviously, this is far beyond the reach of
any existing computer system. Even with one of the state-of-the-art QMC methods
[148, 150, 151], this kind of calculation would not yield results with acceptable statis-
tical errors in reasonable time. Hence, in order to utilise Z [η] for our purposes, we
cannot proceed without an additional, suitable numerical treatment.

In this context, it is worthwhile to study the contribution of long time correlations to
the system dynamics. Off-diagonal elements of the inverse Green’s matrix (Geff)−1

t ,t ′ are
closely related to time non-local correlations, i.e., their absolute values for some time
difference ∆t := t − t ′ indicate how strongly the system “remembers,” at a given time,
its state over ∆t in the past. This relation is actually oblique, as it is the Green’s func-
tion itself and not its inverse that gives the two-particle correlations. In section 4.2.3 and
appendix G, however, we show that G and G−1 behave very similar as far as elements at
large ∆t are concerned. To account for every matrix element of (Geff)−1 in the evalua-
tion ofZ [η] for arbitrary long propagation times is therefore tantamount to include all
possible time correlations indiscriminately. Yet, in many physical systems, particularly
if they can be described by quantum statistics, one can expect that correlations prevail
only over a certain (short) period, which we will call memory- or coherence time τc

and which is determined by the dynamical conditions. If this is the case, correlations
rapidly die off and can be neglected as soon as ∆t exceeds τc . In case of model (2.1),
the off-diagonal elements of the inverse Green’s function are given by the lead gamma
function γ (p, t − t ′) in expression (4.61). It follows directly, that all components of this
matrix show in fact a fast, even exponential decay with increasing distance from the
diagonal, as can be seen in figure 4.5. In addition to that, a non-zero bias voltage results
in an oscillatory behaviour of the real and imaginary parts of each component. Since
this decay is induced by the coupling to the leads alone, it can only be given in terms of
lead parameters. As it turns out, these parameters are the (inverse) temperature T and
(to a minor degree) the bias voltage Vbias. While the temperature is directly responsible
for the exponential decay, a growing Vbias is believed to lead to an increasingly effective
cancellation of long time correlations due to oscillations.

Thus, matrix elements of (Geff)−1 further away from the diagonal than τc do not
(considerably) contribute toZ [η]. In other words, it is the key observation that all cor-
relations beyond τc are not relevant for the system’s behaviour, while the effective value

13As “long” we characterise time differences∆t with∆tΓ/~' 10
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Figure 4.5.: Time dependence of the lead gamma
matrix with α = Γ/(2β~2), eVbiasβ = 4π, and
∆t := t − t ′. Shown are the absolute value and both
the real and imaginary part. For π|∆t |/(β~) ' 2,
the absolute value of γ++(∆t ) decays exponentially,
with a decay time proportional to the inverse tem-
perature. Both the real and imaginary part are oscil-
latory functions, whose periods are essentially given
by the bias voltage. Since γ (∆t ) is closely related
to correlations in the system, T and Vbias determine
the lead induced memory time.

of τc is determined via the numerical memory convergence procedure that is described
in section 4.2.4. This motivates the following approximation: with the effective coher-
ence time τc =: (K − 1)δt given, all matrix elements (Geff)−1

i j with |i − j | ≥ K are set to
zero. Depending on the propagation time t f − ti , this can drastically reduce the numer-
ical costs for the evaluation of Z [η]. It should be noted, however, that the appropriate
value of τc is not identical to the decay time of the gamma matrix and generally not easy
to obtain. This is due to the non-trivial way, in which correlations enter the generating
function, and complicated further by the fact that both T and Vbias influence the decay
time of γ . Rather, in the ISPI scheme, K is used as a numerical parameter in an extrapo-
lation procedure that yields results that are independent of the memory time14 but can
be obtained with minimised numerical efforts. It is introduced in section 4.2.4. Both
steps together, the dropping of the matrix elements beyond τc and the extrapolation to
infinite memory time, constitute the finite correlation range approach (FCA).

At first, to exploit the FCA, it is helpful to rearrange the elements of the Green’s
matrix. The Green’s matrix has a 2×2 Keldysh block structure, where each block has a
real-time substructure. With appropriate (identical) permutations of lines and columns,
these structures can be interchanged. The determinant of the matrix is left unaltered by
this operation. This is illustrated by the following example






















a++11 a++12 a++13 a+−11 a+−12 a+−13
a++21 a++22 a++23 a+−21 a+−22 a+−23

a++31 a++32 a++33 a+−31 a+−32 a+−33

a−+11 a−+12 a−+13 a−−11 a−−12 a−−13
a−+21 a−+22 a−+23 a−−21 a−−22 a−−23
a−+31 a−+32 a−+33 a−−31 a−−32 a−−33























7→























a++11 a+−11 a++12 a+−12 a++13 a+−13

a−+11 a−−11 a−+12 a−−12 a−+13 a−−13

a++21 a+−21 a++22 a+−22 a++23 a+−23

a−+21 a−−21 a−+22 a−−22 a−+23 a−−23

a++31 a+−31 a++32 a+−32 a++33 a+−33
a−+31 a−−31 a−+32 a−−32 a−+33 a−−33























,

a++13 a+−13

a−+13 a−−13

a++31 a+−31
a−+31 a−−31

(4.69)

where the lines indicate the Keldysh superstructure before and the real-time structure
after the transformation, respectively. When they are ascendingly numbered from 1
to 6, the permutation that was applied to both the lines and columns can be identified
14Or, equivalently, incorporate all relevant correlations.
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with (2 3 5 4) in cycle notation. The hatched elements are the ones that would be
set to zero for K = 2, i.e., τc = δt . While they are scattered all over the matrix in
the conventional Keldysh notation, after the rearrangement, they form solid blocks
a distance (counted in blocks) away from the main diagonal that corresponds to the
difference of their element’s real-time step indices. In the general case, the effective
inverse Green’s matrix for a given K can be written as

(Geff
σ
)−1

k l ≈



















A σ
1,1 A σ

1,2

A σ
2,1 A σ

2,2

. . .
. . . . . . A σ

Nc−1,Nc

A σ
Nc ,Nc−1 A σ

Nc ,Nc



















, (4.70)

where Nc = N/K and the blocks A σ
k ,l are K dimensional matrices, whose entries are

filled with elements of (Geff
σ )−1 from rows and columns in the range of {(ı − 1)K +

1, . . . , ıK} with ı = k , l . Due to the approximation, an A -block in one of the sec-
ondary diagonals is strictly upper (lower) triangular, if it is below (above) the main
diagonal. The Ξσ matrices in expression (4.67) inherit the same block structure as the
approximate inverse Green’s matrix exhibits in equation (4.70), with the exception that
the to A σ

k ,l corresponding blocks B σ
k ,l of a Ξσ matrix are, in general, not quadratic

as their dimensions depend on the number of flip-flop processes within the respective
coherence time interval.

This is exemplified in figure 4.6. The presented (discrete) impurity path of length
8δt consists of 2N = 18 vertices and features 12 flip-flop processes. Also shown is the
approximate matrix Ξ↓ for τc = 2δt , corresponding to K = 3, that is obtained after the
interchange of superstructures and setting Gαα′↓,q r = 0 for |q − r | ≥ K (hatched matrix
elements). The path with N = 9 can then be divided into Nc = 3 disjunct path segments
with K vertices on each branch. In analogy to the blocks A ↓

i ,i , the diagonal matrix
blocks B ↓

i ,i then contain all matrix elements Gαα′↓,q r with (i − 1)K < q , r ≤ iK (dashed
outlined boxes).

If the number of flip-flops in some of the segments is odd, or, more specifically, the
number of creator- and annihilator fields associated to one segment i do not coincide,
the matrix block B ↓

i ,i is not quadratic. In the example of figure 4.6, this is the case for
all three segments. The fields d−↓,1, d+↓,2, and d−↓,3 belong to the first, fields d+↓,4, d+↓,4, d−↓,4, d+↓,6,
d
−
↓,6, d

−↓,6 to the second segment, and the remaining fields d+↓,7, d+↓,9, d−↓,9 belong to segment
three. Hence, this construction scheme yields 2× 1-matrices B ↓

1,1 and B ↓
2,2, and a

2× 4-matrix B ↓
3,3. As we show in the next section, however, the iterative calculation

of the generating function requires the diagonal blocks to be quadratic, so that their
determinant can be calculated. This can be achieved by re-assigning the earliest and latest
creator fields d+↓,4 and d−↓,6 from the second segment to the first and third, respectively. In
doing so, all diagonal blocks become quadratic (blue arrows). This kind of reshaping of
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4. Iterative Summation of Path Integrals

the B σ
i ,i -blocks is possible for all paths. Therefore, from now on, we assume that all

diagonal blocks of the approximate Ξσ -matrices are quadratic.

Figure 4.6.: Exemplaryimpurity
path (above) with 12 flip-flops
and the corresponding approxi-
mate Ξ↓-matrix (below) for τc =
2δt (K = 3). The discrete path (ar-
rows on vertices) has a length of
8δt (N = 9) and can be divided
into Nc = 3 disjunct segments
of length K (separated by dotted
lines). Depending on the distri-
bution of flips, the number of creator- and an-
nihilator fields assigned to the different seg-
ments may differ. In that case, the diagonal
blocks B ↓

i ,i are not quadratic (dashed out-
lined boxes) and their determinants do not
exist. As a consequence, the B ↓ have to
be modified for the iterative calculation of
detΞ↓. This is done by an appropriate re-
assignment (blue arrows) of fields that belong
to flips closest the segment borders, so that
all diagonal blocks become quadratic (solid
boxes). Hatched elements are set to zero.

4.2.2. The Iterative Scheme

With the finite correlation length approach, the matrices (Geff
σ )−1 and Ξσ in equation

(4.67) can be written in block form, where all blocks besides those on the main or
neighbouring secondary diagonals vanish [see equation (4.70)]. The reshaping of the
B σ

i ,i -blocks, where necessary, ensures that we are dealing with matrices, whose diago-
nal blocks are quadratic and invertible. For the further considerations, it is convenient
to introduce a recursive notation to describe such a matrix X with block dimension D :

X= XD with XD−i+1 :=
X i ,i

XD−i





















X i+1,i

X i ,i+1
and X1 = X D ,D . (4.71)

Whole block matrices are doubly outlined, where the subscript gives their dimension in
blocks. The determinant of X can be calculated iteratively (or recursively) within D−1
iterations, while each iteration of the procedure consists of three steps:
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(4.I1) Perform one step of Gaussian elimination to get rid of the block in the second
row, first column.

(4.I2) In the resulting element of second row, second column, neglect products like
X k−1,k X k ,k+1, which connect path segments with indices differing by more
than one.

(4.I3) Expand the determinant after the first column, thus reducing the problem by one
in block dimension.

The first and third step actually suffice to yield the exact value of the determinant for
a block matrix like (4.70).In this sense, they are mere algebraic operations. Step (4.I2),
however, is different insofar as it introduces an additional approximation, necessary to
fully exploit the computational benefits of the FCA. With its help, an iteration step
k → k + 1 can be performed solely based on the knowledge of (i) the determinant
after step k and (ii) the spins orientations in segments k and k + 1. This is because
the inclusion of terms that connect segments with indices differing by more than one,
would require information about impurity spins in segments < k. Relative to those
spins in segment k + 1, these are farther than τc in the past. Thus, by the additional
approximation (4.I2), terms that are relatively small due to a coupling of spins farther
apart than τc are disregarded. It is consistent with the FCA and we show in appendix
G that it can indeed be expected to yield only small deviations from the “exact” value,
while considerably reducing the numerical costs of the method.

We can now derive a general iterative expression for the determinant of X. Operation
(4.I1), i.e., the first step of Gaussian elimination, is performed by multiplying the first
row of X with − X 2,1 X −1

1,1 and adding it to the second row. Since in this first iteration
no higher-order products are added to X 2,2, we can proceed with step (4.I3) to arrive at

X ′
2,2

XD−2





















X 2,3

X 3,2
detX= det X 1,1 det

X ′
2,2 = X 2,2− X 2,1 X −1

1,1 X 1,2.where

(4.72)

With this, we are almost done as the next iteration steps are largely identical and the itera-
tive expression for the determinant is formally given by detX= det X 1,1

D
i=2 det X ′

i ,i .
We just have to fix the general expression for the iterated, modified diagonal blocks X ′

i ,i ,
while considering iteration step (4.I2). This can be done with mathematical induction
(see appendix G) and yields an expression for the diagonal blocks that is completely
analogous to (4.72) for all i ≥ 2. We obtain the final iterative identity

detX= det X 1,1

D


i=2

det{X i ,i − X i ,i−1 X −1
i−1,i−1 X i−1,i}.

X ′
i ,i

(4.73)
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At this point, we have to address the question of how, besides the above mentioned
reshaping, to properly construct an approximate version of the Ξσ -matrices for finite
coherence time. In the exact version of the generating function (4.67), they have to be
filled with elements of the full Green’s matrix Geff

σ [{τ,ζ }], which depends on the whole
spin path {τ,ζ } between ti and t f . Formally, it can be calculated by inverting the full
inverse Green’s function, a numerically very costly procedure for a typical number of
N ∼ 100 time steps that would render the previous approximation steps useless. Rather,
in conformity with the FCA, we have to find approximate values for the elements of
blocks B σ

i ,i(±1) that solely depend on spins of segments neighbouring i(±1). Again, the
basic idea for finding such an approximation is based on the assumption that blocks on
the secondary diagonals contribute less to any matrix expression (inverse, determinant,
etc.) than those on the main diagonal. The easiest way to make use of this assumption
is to expand the inverse of (Geff

σ )−1 in orders of the non-diagonal blocks. This straight-
forward procedure, which is shown in appendix G, results in

G k ,k ≈ A −1
k ,k and G k ,l ≈− A −1

k ,k A k ,l A −1
k ,l (4.74)

for all 1 ≤ k , l ≤ Nc and with |k − l | = 1 (the electron spin index was omitted). The
blocks G k ,l are defined in analogy to the A -blocks of the inverse Green’s function.
From the approximate expressions on the r.h.s., the B -blocks are filled as described
above. Now, we possess (almost) all ingredients needed for calculating the generating
function iteratively from the knowledge of the inverse Green’s function.

4.2.3. Cancelling of Divergent Terms in the Generating Function

Before we can write down the iterative generating function, however, we have to deal
with the (t − t ′)−1 singularity of the lead’s contribution (G0

env)−1 to the inverse Green’s
function. There is an elegant way to get rid of the divergent elements in all the matrices
that appear in the generating function, while preserving the exponential decay with
growing distance to the diagonal. It was introduced by Weiss et al. [122] and makes use
of the fact that, in contrast to its inverse, the Green’s function itself is finite at t = t ′ (or,
more precisely, its limits for t ′→ t are). From a mathematical point of view, the idea is
to analytically cancel the divergent, spin-path independent factor in the fraction

Z [η]−Z [0]
ηZ [0] ≈ i〈O〉(tEV), (4.75)

which is the numerical expression used to evaluate the expectation value (4.53). In
other words, if the divergent part detG−1

div of Z does (i) neither depend on the paths
of impurity- and HS-spin nor (ii) the small parameter η, while (iii) its inverse is finite for
all values of t , t ′, we can divide the generating function by the singular factor without
affecting the expectation value 〈O〉(tEV). Ultimately, we would require that the FCA is
also applicable to the resulting generating function Z ′[η].
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Fortunately, all these conditions are fulfilled for our model system. The (t− t ′)−1 sin-
gularity is contained in the term (G0

env)−1, which originates from the dot-lead-coupling
and, hence, is independent both of τ(t ) and ζ (t ). Note that since τ and ζ are directly
associated to the system’s interactions, all terms that do not depend on them describe
the non-interacting (free) part of the system. Obviously, (G0

env)−1 does not depend on
η as well and even in case of Ô = Î , the corresponding source term (4.62b) is finite.
As it turns out, to meet condition (iii) it is necessary and, as we will see, convenient
to identify G−1

div with the sum of all non-interacting, source independent contributions,
viz., the free inverse electronic Green’s function:

(Gdiv)
−1
t ,t ′ ≡



σ

(Gel
0,σ )

−1
t ,t ′ =



σ

(Gel,0
dot,σ
)−1

t ,t ′ +(G
0
env,σ )

−1
t ,t ′ (4.76)

(G0
env,σ )

−1
t ,t ′ =



p

γ (p, t − t ′), (4.77)

(Gel,0
dot,σ
)−1

t ,t ′ = δ(t − t ′)

 

i∂t −ωU
σ

0
0 −i∂t +ω

U
σ

!

, (4.78)

with

withωU
σ := (εσ+U/2)/~. Since the generating function factorises into two independent

parts for each electron spin orientation σ , it is sufficient to deal with the corresponding
(Gel

0,σ)
−1
t ,t ′ only. Before its inverse is calculated, we Fourier-transform it into frequency

space, where it is a finite matrix function. This yields

(Gel
0,σ )

−1(ω) =

 

ω−ωU
σ
+ iΓ/~[F (ω)− 1] −iΓ/~F (ω)

iΓ/~[2− F (ω)] −ω+ωU
σ
+ iΓ/~[F (ω)− 1]

!

. (4.79)

We defined F (ω) := fL(ω) + fR(ω) and (Gel
0,σ)
−1
ω,ω′ =: 2πδ(ω −ω′)(Gel

0,σ)
−1 (ω). The

matrix is obviously finite for allω,ω′ as long as the coupling Γ does not vanish and can
be inverted algebraically. The result is then transformed back into time space by means
of complex contour integration. The whole inversion process is shown in appendix G,
where the rather lengthy expressions for the free Green’s function in time space (rather,
for its dimensionless version G̃) are presented in equation (G.18).

Its essential features are illustrated with the help of its ++ component in figure 4.7.
All components of (G̃el

0,σ)t ,t ′ only depend on the difference t − t ′ and decay exponen-
tially with growing |t − t ′|, where non-zero values of the dot frequencyωU

σ or the bias
voltage eVbias lead to an oscillating behaviour (blue line and shading). Compared to the
γ -matrix, the temperature dependence, though still present, is only weakly pronounced
and cannot be read from the figure. The real part of the Green’s function in figure 4.7(a)
is smooth and finite on the whole real-time axis and shows no singularities. The imagi-
nary part shares these characteristics with the exception of the point ∆t = 0, where it
shows a discontinuous jump and is not well-defined. However, since both the (left and
right) limits t ′→ t ± 0+ of ℑ(G̃el

0,σ)t ,t ′ exist, this singularity turns out to be unproblem-
atic for the following considerations. Before this point is analysed in detail, we cancel
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4. Iterative Summation of Path Integrals

Figure 4.7.: The ++ component of the dimensionless free Green’s function G̃el
0,σ , as

given by equation (G.18), versus time difference ∆t = t − t ′ for two combinations
of ωU

σ and eVbias and with βΓ = 1/5. The absolute value decays exponentially with
growing |∆t | and both real part (a) and imaginary part (b) oscillate, if ωU

σ or eVbias
are non-zero. With exception of the point∆t = 0, the free Green’s function is smooth
and finite on the whole real-time axis and shows no divergent behaviour. The imagi-
nary part jumps discontinuously at zero time difference and is not defined for∆t = 0.
For our further calculations and in contrast to the divergence of the γ -matrix, how-
ever, this singularity turns out to be harmless and there a several ways to account for it
properly (see text). One possible option is to introduce a high frequency cutoff term
exp{|ω|/ωc} with ωc > 0 to the inverse Green’s function in equation (4.79) before
inserting it and transforming it back into time space. The inset [vertical scaling identi-
cal to main figure (b)] shows the result of this procedure (dotted lines) with the exact
function (solid) forωc = 100Γ.

out the divergence factor in the generating function (4.67) by multiplying by−i detGel
0,σ ,

or equivalently, replacing i(Geff
σ )−1 with

Dσ[η] :=Gel
0,σ (G

eff
σ
)−1 = 1+Gel

0,σ (σΣ
0
σ
+ηΣη

σ
),

(Σ0
σ
)k l =

�−Jτk/~− iζkλ(δt ) 0
0 Jτk/~− iζkλ

∗(δt )

�

δk lδt .where
(4.80)

The value of Σησ depends on the observable Ô . In case of Ô = Î , we can identify it with
(G I

env)−1 as given by equation (4.62b) and with (GO)−1, otherwise.
The next step is to properly discretise the new matrix Dσ or, rather, the matrices

Gel
0,σ and Σησ , while accounting for the discontinuity of the free Green’s matrix. Due to

the way how the continuous inverse Green’s functions were defined and to the fact that
integrations over time carry a time unit, some attention has to be paid to the proper def-
inition of this discretization. In appendix G, we lay out that a discrete matrix Xk l with
corresponding time step δt can be consistently obtained from a continuous function
X (t , t ′) according to

Xk l :=
 tk+δt/2

tk−δt/2
dt

 tl+δt/2

tl−δt/2
dt ′ X (t , t ′) with tk = t1+(k − 1)δt . (4.81)
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Apparently, this requires that the continuous version of a discrete, dimensionless matrix
in real-time space carries the dimension of time−2 (note that the Dirac delta distribution
has dimension time−1). For the free Green’s matrix, this yields

(Gel
0,σ )k l =

1

δt
2

 tk+δt/2

tk−δt/2
dt

 tl+δt/2

tl−δt/2
dt ′ (G̃el

0,σ )t ,t ′ ≈ (G̃el
0,σ )tk ,tl

, (4.82)

where the approximate relation is valid as long as the integrand is continuous and the
time step δt small enough [see equation (G.18) for a definition of (G̃el

0,σ)t ,t ′].
Around the discontinuity of the free Green’s function in case of k = l , however, the

approximation does not hold, since in this point the r.h.s. is not defined. The integral
on the l.h.s., though, still yields a proper discrete value for (Gel

0,σ)k ,k , since the integrand
is finite and both left and right limits exist. Thus, an easy and consistent way to get rid
of this singularity is to define the diagonal elements of the free Green’s matrix as

(Gel
0,σ )kk := [(G̃el

0,σ )∆t→0− +(G̃
el
0,σ )∆t→0+]/2, (4.83)

i.e., as the average of both limits. It can be seen from the inset in figure 4.7(b) that this
value coincides well with the one obtained by introducing a high frequency cuttoff to
the Green’s function in energy space—the method used by Weiss et al. [122] to deal
with the singularity. To illustrate this, we numerically evaluated the real-time Green’s
function after multiplying expression (4.79) with a factor exp{|ω|/ωc}, where ωc =
100Γ. For ωU

σ =Vbias = 0, both methods result in a zero diagonal value. For ωU
σ = 3Γ

and eVbias = 4Γ, equation (4.83) yields (Gel
0,σ)k ,k ≈ 0.3384i and with the cutoff method

we obtain 0.3245i. The relative difference is about 4% and gets smaller for larger values
of ωc . In the end, both ways are consistent and compatible, but the use of equation
(4.83) has two advantages: it does not alter non-diagonal values of the Green’s function
whatsoever and avoids the introduction of an additional parameterωc .

For all the observables we consider in this work, the discrete version of Σησ can be
obtained from equation (4.81) in a straightforward manner. In case of the charge current,
for example, we plug in expression (4.62b) and get

�

Ση
σ

�

k l =
eΓδt

2β~2

sin[eVbias(k − l )δt/(2~)]
sinh[π(k − l )δt/(~β)]

�

δk m −δl m −δk m
δl m 0

�

, (4.84)

where we set tEV = tm = t1+(m− 1)δt .
With the expressions (4.80), (4.82), and (4.84), we have all ingredients needed to write

down a divergence-free generating function that nevertheless exponentially decays with
increasing |k − l |. The FCA can be applied to the discrete matrix Dσ[η]k l , which is
then re-ordered according to equation (4.69). As shown above, the result is a block
matrix, whose blocks D σ

i ,i(±1) are used to iteratively calculate Z ′[η] (see below). Yet,
before we can proceed, it has to be considered how the construction of the Ξ-matrices
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is affected by the transition from (Geff
σ )−1 to Dσ . The equations (4.74), which were

introduced in the previous section, involve blocks of the inverse Green’s function and
are difficult to handle numerically due to the divergence at∆t = 0. Therefore, our goal
is to use only the well-behaved matrices Dσ and Gel

0,σ to construct the Ξ-matrices. From
equation (4.80), we can immediately derive that Geff

σ = D−1
σ Gel

0,σ . We evaluate this by
using equation (4.74) to obtain the approximate inverse of Dσ and multiply the result
with the free Green’s matrix in block form. For iteration step k − 1→ k, these steps
yield (see appendix G for details)

G x,x = D −1
x,x

n

G0 x,x − D x,x D −1
x,x

G0 x,x

o

G x,x = D −1
x,x

n

G0 x,x − D x,x D −1
x,x

G0 x,x

o

,
(4.85)

where we defined the index x ∈ {k − 1, k} with x = k −δk ,x . With this, the B -blocks
can be constructed without the inverse Green’s function and we can now write Z ′[η]
iteratively as

Z ′(δt ,K)[η] =


{τ,ζ }Nc

Z ′Nc
with Z ′i>1 =



{τ,ζ }i−1

Λi ,i−1Z ′i−1, (4.86a)

Λi ,i−1 = Fi



σ



X=B ,D

det{X σ
i ,i − X σ

i ,i−1 X σ ,−1
i−1,i−1 X σ

i−1,i}, (4.86b)

Z ′1 := F1



σ



X=B ,D

det X σ
1,1.and (4.86c)

Here, we defined {τ,ζ }i = {τ}i ∪ {ζ }i with {s}i := (s∓iK , . . . , s∓(i−1)K+1) and s = τ,ζ as
(sub-)tuple of those impurity- and HS-spins that lie in the i -th path segment of length K
(see figure 4.8). Related to the number and position of flip-flop processes is the prefactor

Fi = 2−2K(−1)m
−
i

� Jδt

2~

�mi
e iΦ(i)

imp ,

Φ(i)imp =−
∆impδt

2~

iK


j=(i−1)K+1

(τ+j −τ−j ),where

(4.87)

and mi is the number of flip-flops in segment i , of which m−i lie on the backwards
branch. The factor 2−2K can as well be omitted, since it cancels out when evaluating an
observable with the help of equation (4.75). The subscripts of the generating function
in equation (4.86a) are there to point out that Z ′(δt ,K)[η] is not exact, but afflicted with
systematic errors that depend on two approximations and their associated parameters:
(i) the step width δt of the time discretization and (ii) the FCA with coherence time
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τc = (K − 1)δt . In the limit of infinitely small δt and infinitely large K , however, the
iterative expression becomes exact again:

Z ′[η] = lim
K→∞

lim
δt→0
Z ′(δt ,K)[η]. (4.88)

Figure 4.8.: Examplary discrete paths (tuples) for the impurity- [blue in sub-figure
(a)] and HS field [red in (b)]. For τc = 2δt (K = 3) both paths break down into
segments {s = τ,ζ }i of length K = 3 in real-time, which contain 2K = 6 spins (K
per contour branch). For example, path segment {τ}1 = (τ−3 ,τ+3 ,τ−2 ,τ+2 ,τ−1 ,τ+1 ) =
(↑,↓,↓,↑,↑,↑) is the tuple that contains the 6 “real-time earliest” impurity spins. Ac-
cordingly, we find that {ζ }3 = (ζ −9 ,ζ +9 ,ζ −8 ,ζ +8 ,ζ −7 ,ζ +7 ) = (↑,↑,↑,↓,↑,↓). For short,
we defined segments of combined impurity- and HS spins as {τ,ζ }i = {τ}i ∪{ζ }i . For
the second segment, we can write {τ,ζ }2 = (↑,↑,↓,↓,↑,↑,↓,↓,↑,↑,↓,↓)

4.2.4. Extrapolation Procedures

At first glance, it may seem that compared to the already exact version (4.67), there is
not much gained with the iterative expression (4.88). A choice of both very small time
steps δt and large values of K—the numerical equivalent of the exact limit—results in
large dimensions of the matrix blocks and, more importantly, an exponentially large
number of spin paths to sum over.

Nevertheless, in cases when the FCA is valid for our model system, there exists a
finite, yet unknown, physical (as opposed to its numerical analogon) memory for time
correlations and it can be expected that convergence to the exact limit is fast, once the
numerical parameter τc is of the same order of magnitude as this “true”(physical) mem-
ory. Depending on the other system parameters, this can be the case for values of K
that are accessible to a numerical treatment. In this section, we present criteria, how to
decide if such a situation is at hand and, if so, use them to obtain extrapolated values of
Z ′[η] that are independent of δt and K . These values, although still afflicted with some
numerical errors, can then be regarded as (quasi-)exact. Accordingly, the extrapolation
procedures can be regarded as a numerical equivalent of evaluating the analytical limits
in equation (4.88).
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4. Iterative Summation of Path Integrals

Once the extrapolation procedures are established, the iterative scheme as given by
equation (4.86), can unfold its full potential. It is apparent that all the iteration steps
given in equation (4.86) have the same numerical complexity. Since the system propa-
gates by one coherence time τc with each iteration, this means that the numerical costs
of the ISPI procedure scale linearly with evolution time tEV− ti . As we explained in the
introduction to this section, this is one of the major benefits of the ISPI method.

Prior to discussing the extrapolation, however, we have to assess the question of rea-
sonable upper and lower bounds for the choice of the numerical parametersδt and K , re-
spectively. For the time step, we already found two limiting conditions: in the course of
the Hubbard-Stratonovich transformation in section 4.1.4, the condition ~/δt ≥ U/π
was derived, while the term [Jδt/(2~)]mi in prefactor Fi [equation (4.87)] suggests that
~/δt should at least be greater than J/2. As a generalisation of these results, we require
that the upper limit for the time step should be related to the maximum of the system’s
energies:

~/δt ' max(ΦD ,∆,∆imp, U , J/2, eVbias, kBT ). (4.89)

As far as the energies are considered that do not characterise an interaction (all except U
and J ), this is just a rough estimation. In case of the bias voltage, for example, it turns
out that even at eVbias = 4Γ reliable results can be obtained for ~/δt = 2Γ.

An estimation of the lower bound for the coherence time parameter τc can be gained
from the study of the exponential decay of the elements of Dσ . These are essentially
determined by the free Green’s function and the γ -matrix, as shown in figures 4.5 and
4.7. However, since the time correlations can just be limited by the influence of the
reservoirs, only three parameters come into consideration, anyway: the temperature
T , the bias voltage Vbias, and the coupling Γ. Obviously, without a tunnel coupling
correlations in the dot would never die out. On the other hand, the whole transport
scheme rests on a finite coupling, which we chose as reference value for all appearing en-
ergies. This manifests itself in the fact, that the free Green’s function essentially decays
as exp{−Γ/~ |∆t |} [see equation (G.18)]. As a consequence, this leaves only the lead
parameters β and Vbias as candidates, which are relevant for the estimate of τc :

τc ≃ ~min(|eVbias|−1 ,β). (4.90)

We want to stress, that connected to this relation is the requirement that not both the
temperature and the bias voltage are zero or very small. Although long time correlations
cancel out in that case as well, they do so only algebraically (for T = Vbias = 0). As a
consequence, the numerical errors of our method will increase gradually for lower and
lower values of both T and Vbias. For all following considerations, we implicitly assume
that δt and τc are chosen in agreement with (4.89) and (4.90).

Extrapolating to the Limit of Vanishing Time Step

Due to the Trotter break-up of the time contour (the time discretization), the path inte-
gral and, in consequence, all expressions that are based on it are, by construction, exact
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(a) (b)

0 0.25 0.5 0.75 1.0
(δtΓ/~)2

0.5

1.0

1.5

〈I〉
/I

0

(0.6,0.0)
(1.0,0.5)
(1.5,1.0)

(eVbias, U )/Γ

0 0.25 0.5 0.75 1.0
(δtΓ/~)2

0.6

0.8

1.0
〈τ

z 〉

0.3
0.6
0.9

J/Γ

Figure 4.9.: Graphical illustration of the extrapolation procedure to (numerically)
obtain expectation values in the limit δt → 0 and with finite τc . For all plots, we
chose τc = ~/Γ, tEVΓ/~ = 4, βΓ = 1, and ΦD = ∆ = ∆imp = 0. When plotted
against (δtΓ/~)2, the values (crosses, circles, and squares) are fitted to linear functions
(solid lines). A small relative standard deviation from the linear behaviour indicates
that unsystematic errors are small compared to the systematical trotter error. In that
case, it is safe to extrapolate to δt = 0 and treat this value as exact limit. (a) Charge
current in units of I0 = eΓ/h for J = 0. (b) Expectation value 〈τz〉 of the impurity spin
orientation for eVbias = 0.5Γ and U = 0.5Γ. The impurity was initially in the spin-up
state [τi = 1 in (4.48)].

only up to terms that scale with δt2 (see section 4.1). This precise knowledge about the
expected behaviour of deviations from the exact value, in other words, the systematic
errors, can be used to formulate a strong theoretical criterion for being close to conver-
gence.

(4.C1) For one fixed τc and several values δt(1) < δt(2) < . . . < δt(n) of the discretization
step, closeness to the exact, “true” value 〈O〉(τc ) of some observable is measured
by how well the results 〈O〉(τc ,δt(1)), . . . , 〈O〉(τc ,δt(n)) are described by linear
function of δt2.

In figure 4.9 is shown how this criterion is used for extrapolation to the limit δt → 0.
For a fixed value of τc = ~/Γ and several differing values of δt (corresponding to consec-
utive numbers K = 2,3, . . .), we calculated the charge current 〈I 〉 [figure part (a)] and the
impurity spin orientation 〈τz〉 [part (b)] at evaluation time tEV = 4~/Γ for temperature
βΓ = 1 and with ΦD = ∆ = ∆imp = 0. For each configuration of physical parameters
(as opposed to the numerical parameters δt and τc ), we plot the calculated expectation
values (plot marks) against (δtΓ/~)2 and fit them to a linear function (solid lines). The
smaller the relative error of this fit is, the better criterion (4.C1) is fulfilled by the nu-
merical results. In all plots of 4.9(a), the errors (based on the sample standard deviation)
are below 1%, while in sub-figure (b) they grow from around 1% for J = 0.3Γ to about
10% for J = 0.9Γ. From this, we can infer that the unsystematic numerical error, which
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results in randomly distributed deviations from the “true” calculation result and allows
to estimate the numerical stability of the ISPI implementation for a certain set of pa-
rameters, is relatively small. It is mainly given by the sample standard deviation from
the theoretically known behaviour of the systematic errors due to the time discretisa-
tion (a linear function of δt2) and has to be propagated for the extrapolation to infinite
memory times. Another unsystematic error arises from the numerical derivative of the
generating function (as given by equation 4.75) and manifests in small imaginary parts
of the observable. Its relative size ranges typically between 10−5 to 10−3 and is in most
cases at least one order of magnitude smaller than the deviations of the numerical values
from the linear fit. It can therefore mostly be neglected. This is also true for the results
in figure 4.9, where the relative deviations from the linear behaviour are small and we
can safely take the value at δt = 0 of the fitted function as the numerical (quasi-)exact
limit for infinitely small time step (though, with a somewhat lower reliability for 〈τz〉
at J = 0.9Γ).

Extrapolating to the Limit of Infinite Memory Time

After the extrapolation to δt → 0, the numerically obtained expectation values 〈O〉(τc )
are independent of the step width of the Trotter break-up δt . What remains is to get
rid, by some additional extrapolation, of the τc dependence as well. Compared to the
removal of the Trotter error, however, this turns out to stand on less solid theoreti-
cal grounds, as a strict mathematical dependence of the systematic error on the value
of the finite memory time is unknown. Therefore, the criteria we present here rather
have the status of empirical observations that were established by a combination of (i)
comparison with analytical results and (ii) reasons of epistemic simplicity (see below),
while their interpretation involves physical intuition and experience using the numer-
ical approach. With this said, we formulate (and subsequently discuss) the following
convergence criteria.

(4.C2) Several differing values 〈O〉(τc ) indicate convergent behaviour, if

a) they show a linear dependence on 1/τc with relatively small mean devia-
tions.

b) their dependence on 1/τc can be described by a reasonably smooth and
“flat” function that exhibits a local extremum (principle of least dependence,
see also [55, 200–202])

Apparently, criterion (4.C2.b) is a weaker indicator of convergence than is the first,
(4.C2.a), which should be generally preferred. Several qualifiers such as “relatively small”
or “reasonably flat” are not quantifiable strictly and for general cases but have to be
interpreted in the context of a particular situation, in the light of one’s experience and
physical intuition, and, if possible, adjusted by comparison to known results, which
were obtained by other means. Nevertheless, though being “empirical”, both criteria
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should not be regarded as mere hand-waving guidelines to obtain a limit τc → ∞, at
will. Not only were they already successfully applied by [55, 202] (for the QUAPI
method, which is closely related to ISPI), Weiss et al. [122, 200, 201], who were able to
reproduce important well-known results, e.g. the Landauer-Büttiker current [203, 204],
for a SLQD in contact with metallic leads. Aside from that, there are also theoretical
arguments for the utility and validity of (4.C2).
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Figure 4.10.: Graphical illustration of the extrapolation to the limit τc →∞. If the
values 〈O〉(τ−1

c ) (crosses, circles, and squares) are well-described by a linear function, it
is assumed that the numerical parameter τc is close to or larger than the “true” mem-
ory time of the system and that the linear behaviour continues until τ−1

c = 0. (a)
Extrapolation of the charge current. For all three combinations of eVbias and U the
(relative) standard deviations to the linear fit are below 1%. (b) Impurity orientation.
The (relative) standard deviations for the linear fits are well below 1%.

Since we are interested in the limit τc → ∞, it is an obvious choice to study how
the numerically obtained expectation values 〈O〉 depend on the inverse powers of τc .
Without any a priori knowledge, a linear relation in τ−1

c , as demanded by (4.C2.a), is
the simplest, non-constant functional dependence to assume. Close to convergence, we
expect that 〈O〉(τ−1

c ) does not change strongly and reaches a stationary value at τ−1
c = 0.

Close enough to this limit, if it is not already constant, any smooth function of the
inverse coherence time is approximately linear. Hence, if values 〈O〉(τ−1

c ) for decreasing
τ−1

c can be fitted well to a linear function, we consider this to be a reliable convergence
indicator and extrapolate to τ−1

c = 0. It is the underlying assumption, that in this case
the numerical parameter τc is of the same order of magnitude or bigger than the “true”,
yet unknown, physical coherence time and, therefore, the linear behaviour will persist
until infinity. This is illustrated in figure 4.10 both for the current and the impurity
spin in sub-figure (a) and (b), respectively, where the physical parameters correspond to
those in figure 4.9.

Criterion (4.C2.b) applies to a more complex situation. It comes into play, when the
〈O〉(τ−1

c ), while still showing a relatively weak dependence on the inverse memory time
(the function is “flat”), are—by virtue of featuring a local extremum—not described well
by a linear function. Such a behaviour is the result of a trade-off between accuracy and
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computational costs that has to be found, when choosing the parameters δt and K . The
minimisation of the Trotter error requires as small time stepsδt as possible. At the same
time, an as large as possible coherence time τc is needed to optimally account for the
bath correlations. Naturally, these optimisations with respect to accuracy are limited
by the quickly increasing numerical costs. For a certain range of K values, it may
be possible to decrease both δt and τ−1

c simultaneously and, in doing so, obtain more
accurate results. Yet, at some point, a further increase of the memory time eventually
requires to choose larger time steps in order to keep running times of the simulations in
check. This will, in turn, lead to a larger Trotter error and, as a consequence, a decrease
of the accuracy. It can also cause the function 〈O〉(τ−1

c ) to feature a local extremum.
Suppose, for example, that for some choice of parameters, the values 〈O〉(τ−1

c ) tend to
fall both for decreasing δt and increasing τc . Hence, as long as the computational costs
allow choosing larger K without the need to increase δt , the value of 〈O〉(τ−1

c ) would
decrease. As soon as δt has to be enlarged to limit the running time of the simulation,
however, the decrease of 〈O〉 due to larger K can be over-compensated by an increase
due to larger δt , thus, resulting in a local minimum. As in the linear case, a “weak”
dependence on τ−1

c motivates the assumption that hopefully “not much” will happen
when approaching τ−1

c = 0 and that convergence is close.
In cases like this, the principle of least dependence (PLD) proves to be useful. The

whole idea of the extrapolation to infinite τc (which does not work well in the outlined
situation) is to eliminate any dependence of 〈O〉 on the memory time. Inspired by this
fact, the principle of least dependence suggests to choose that value as approximate limit
τc → ∞ of 〈O〉(τ−1

c ), which depends least on τc . Apparently, this value is identical
to the local extremum. By definition, this choice has the benefit of being most stable,
i.e., independent of the choice of fit function. In the spirit of the previous paragraph,
it also is a palpable candidate for the best compromise between accuracy and running
time. To actually implement this principle into our method, though, we will not fit
any function to the calculated expectation values, but just pick the value closest to the
extremum. This is illustrated in figure 4.11(a). For ΦD = −Γ/2, ∆ = Γ/2, J = −Γ/2,
βΓ= 5,∆imp =U = 0, and four different propagation times, the calculated values show
a local minimum for coherence times between τcΓ/~ = 0.5 and 1.15 With increasing
evaluation times tEV, the variations of 〈τz〉(τ−1

c ) grow as well. In the figure, a different
scaling of the vertical axis for each tEV emphasises these variations by showing them
in relation to the respective mean value. All plots share the same lower limit of the
scale: τmin

z = 0.025, but have different upper limits τmax
z . For example, the red curve for

tEV = 44~/Γ is plotted for τmax
z = 0.32. The PLD is applied by just picking the smallest

from each set of values for a given tEV as limit τc →∞. In sub-figure (b), the results of
this “extrapolation” are shown for propagation times between tEVΓ/~ = 0 and 80 with
〈τz〉(0)≡ τi = 1. They are well described by an exponentially decaying function (solid
line, standard deviation ∼ 0.005)—in agreement with the physically expected behaviour

15The fitted functions (solid lines) are just a guide to the eye.
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4.2. The ISPI Method

(see next chapter).
To recapitulate, the conditions (4.C2), on which both these extrapolation procedures

rely, are empirical, as is the underlying assumption that τc exceeds the physical mem-
ory time, once these criteria are met. Furthermore, they require to be interpreted with
experience and with respect to the particular physical situation. For example, with in-
creasing values of the interaction parameters—especially at low temperatures—statistical
errors grow rapidly and, at some point, render the extrapolation schemes useless or at
least doubtful. Yet, whether and when this point is reached, is not always easy to de-
cide, and it would surely be advantageous to have a better physical understanding of
how the expectation values depend on τc to improve the extrapolation. Nevertheless,
the two procedures of obtaining values in the limit of infinite memory time yield, un-
der the right conditions, very accurate results that agree well with outcomes that have
been obtained either analytically or by numerical methods with overlapping scopes of
application, where available (see the next chapter and [55, 122, 200–202]).

(a)

(b)
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Figure 4.11.: (a) Impurity spin orientation against τ−1
c for four different values of

evaluation time tEV. The vertical axis is scaled differently for each time to emphasise
the relative size of variations. For all plots, the lower bound of the scale is set to τmin

z =
0.025, while the upper bound τmin

z is given in the plot legend. As model parameters,
we chose ΦD =−Γ/2,∆=Γ/2, J =−Γ/2,βΓ= 5, and∆imp =U = 0. The solid lines,
polynomial fits, are guides to the eye. The dashed, grey line corresponds to the green
plot for tEVΓ/~ = 80, when scaled like the blue line for tEVΓ/~ = 4. Since all plots
show a local minimum, we pick from each set of values the smallest one as best estimate
of the limit τc →∞ of 〈τz〉. This implements the principle of least dependence (PLD,
see text). (b) 〈τz〉 as function of tEV, where all values were obtained using the PLD.
If it was initially in the spin-up state, the impurity orientation is expected to decay
exponentially (see chapter 5). The calculated values confirm this expectation, as they
deviate only slightly (standard deviation 0.005) from an exponential fit curve (solid
line).
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4. Iterative Summation of Path Integrals

Restricting the Number of Flip-Flops per Memory Time

Let us close this chapter with some remarks about the computational costs of the ISPI
method and a way to reduce them. Since the number of spin paths to sum over at each
iteration step grows exponentially with τc , the running time of the numerical simula-
tion mainly depends on the parameter K . For vanishing electron-impurity interaction
(J = 0), i.e., in the absence of flip-flop processes, the number of paths grows essentially
like 2K , as only the constant path (τi , . . . ,τi ) contributes to a sum in (4.86). In this case,
simulations with values of 2≤K ≤ 6 with reasonable running times of up to a few days
can be carried out with our sequential version of the code.16 As shown in figure 4.9(a),
this allows to produce up to 5 data points for an extrapolation to δt → 0—more than
enough in almost all cases.

When the electron-impurity interaction is non-zero, the computational costs are con-
siderably higher. The number of paths to sum up then grows like 4K , leading to running
times of over a month for values as small as K = 4 (comparable in complexity to K = 8
for a SLQD without impurity). However, to decide whether and how well the simula-
tion results show a linear dependence on δt2, necessary for the extrapolation to δt = 0,
we need at least three data points, corresponding to K = 2,3,4. In cases, when the “true”
coherence time in the system is too large to obtain a reliable result for δt = τc (K = 2),
a value for δt = τc/4 (K = 5) would even be needed. On contemporary computers,
this can not be calculated in reasonable time, at least not without a strongly parallelized
code.

Fortunately, there is a way to drastically reduce the running times for J ̸= 0, while af-
fecting the final results—in most cases—only within the bounds of the numerical errors.
It is based on the observation that the path-dependent prefactor Fi in equation (4.87)
contains a small number [Jδt/(2~)] to the power of flip-flops 0≤ mi ≤ 2(K−1) in path
segment i . Hence, an individual path segment contributes the less to a sum in equation
(4.86) the higher its number of flip-flops. At the same time, the number of impurity
path segments {τ}i with mi flip-flops—given by 4C 2(K−1)

mi
with C n

k = n!/[k!(n− k)!]—
grows for mi between 0 and K − 1 and decreases again for k ≤ mi ≤ 2(K − 1). Together
with the observation that, aside from the prefactor, each path contribution is roughly
of the same order of magnitude, this motivates the following assumption.

(4.T1) Depending on the observable Ô as well as the model parameters, particularly
J , δt , and K , there exists a mmax

i < 2(K − 1), so that all contributions from
(impurity spin) paths with mi >mmax

i can be neglected in the iterative scheme.

For increasing number of flip-flops per path segment, the rapidly decreasing weight of
individual paths due to prefactor [Jδt/(2~)]mi , may be (over-)compensated, at first, by
their increasing numbers for 0≤ mi ≤ K − 1. Considering the smallness of [Jδt/(2~)],
however, and by taking into account that the number of paths decreases for even larger
mi , it is reasonable to assume that the prefactor cannot be compensated for all classes

16A parallelized version is possible but requires a strongly refined focus on numerical procedures.

104



4.3. Summary

of paths. At the latest, when the number of flip-flops is very close to the maximum
2(K−1), this is easy to see: Both the path classes with mi = 0 and mi = 2(K−1) contain
the same number of elements (four), while each contribution from a path in the second
class comes with a prefactor [Jδt/(2~)]2(K−1). For typical values of K = 4, δtΓ/~= 1/2,
and J = Γ it amounts to ∼ 2.5× 10−4. Hence, it is very likely that the value of any
observable would not change within the accuracy bounds of the numerical method if
we neglected the path class with mi = 2(K − 1). In many situations, in fact, more than
just the path class with the highest flip-number can be neglected. However, since we
cannot present a theoretical estimation of mmax

i that is valid for general cases, we just
included it into our code as additional parameter. Then we performed a numerical
estimation by means of a spot sample of the parameter space. It turns out, that for
many parameter configurations and K = 4, good results can already be obtained with
mmax

i = 2. This can reduce the running times from over a month to a few days. Figure
4.12 shows an example of such a “sample point.” For K = 4 and increasing numbers of
flip-flops, both 〈I 〉 and 〈τz〉 converge rather quickly to the value that is produced by the
full path sum.

1 2 3 4 5 6
mmax

i

0.490

0.492

〈I〉
/I

0

0.97

0.99

〈τ
z 〉

Figure 4.12.: Current (crosses) and impu-
rity interaction (circles) for tEVΓ/~ = 4,
βΓ = 1, ΦD = ∆ = ∆imp = 0, δtΓ/~ =
1/3, K = 4, and increasing values of mmax

i =
1, . . . , 6. It can be seen, that both for 〈I 〉 and
〈τz〉, the values for mmax

i = 2 already coincide
well with the result for the full path summa-
tion with mmax

i = 2(K − 1) = 6. The run-
ning time, which for the latter amounts to
more than one month, is reduced to a few
days if paths with three and more flip-flops
are neglected.

4.3. Summary

In this chapter, we have derived a fermionic path integral representation of the Keldysh
partition function for the SLQD with spin-1/2 magnetic impurity, from which a gen-
erating function was constructed. Based on this generating function, we reviewed how
the numerically exact ISPI method can be used to calculate expectation values of observ-
ables Ô by neglecting long-time correlations as it is known that they are exponentially
suppressed. In doing so, we had to adopt and extend the method that was originally
developed for a simple SLQD to the full model (2.1) with impurity. This required to
find a proper short time propagator, which allowed to construct the generating func-
tion Z [η] [see equation (4.67)] for arbitrary observables, based on the mixed basis of
fermionic coherent states for the electrons and the usual, discrete spin states |τ =↑,↓〉
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4. Iterative Summation of Path Integrals

for the impurity. The final expression captured the effect of the non-trivial two-body
interactions (Coulomb- and flip-flip scattering) in the path sum over discrete spin-1/2
fields ({τ,ζ }), while all other degrees of freedom could be traced out analytically.

Compared to the SLQD without impurity, the electron-impurity interaction not
only manifests itself in an additional spin field to sum over numerically, which already
effectively doubles the speed of (exponential) growth of computing times with increas-
ing interactions or system size. Furthermore, for each impurity path with flip-flops the
determinants of additional matrices Ξτ, which contain elements of the full electronic
Green’s function, have to be evaluated. Since its exact values are not known, we had
to find an approximation of the Green’s function in order to calculate Z [η]. This ap-
proximation had to be consistent with the finite correlation length approach, while still
yielding the (formally) exact result for τc →∞. What is more, as diagonal blocks of Ξτ
are not necessarily quadratic for all possible path segments (spin tuples of length 2K),
we developed and implemented rules to consistently reshape these blocks, so that the
iterative scheme of path summation can be applied.

Finally, we discussed extrapolation procedures to eliminate the systematic errors of
the iterative scheme due to finite time step δt and memory time τc = (K − 1)δt . In
case of J ̸= 0, the high numerical costs for even the most moderate extrapolation to
δt = 0 made it necessary to devise an additional approximation to reduce running times
of the simulation for K = 4 and higher. It is based on the observation that classes of
impurity paths generally contribute the less to the path sum the more flip-flop events
they feature. To implement this procedure, we had to devise an algorithm that builds,
for a given maximum number mmax

i of flip-flops per coherence time, tables of compati-
ble path segments, ensuring that for neighbouring segments no subpath of length K has
more than mmax

i flip-flops.
As can be seen from the results in the previous section, the iterative summation of

path integrals is a powerful numerical scheme to calculate the real-time evolution of a
SLQD—with or without impurity—in the deep nonequilibrium quantum regime. The
non-perturbative, exact method is applicable to a parameter regime, where all (interac-
tion) energies are of the same order of magnitude and accounts for all relevant correla-
tions in the system. Since the computational complexity scales linearly with the propa-
gation time, very long times of 80~/Γ and more can be reached [see figure 4.11(b)]. In
the next chapter, we will use the ISPI method to investigate the dynamics of model sys-
tem (2.1), focusing on the stationary current and relaxation behaviour of the impurity
spin.
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5
Spin-Relaxation by a Charge Current:
Exact Results

THE ISPI SCHEME was originally developed for the Coulomb-interacting single-lev-
el quantum dot (SLQD). By reproducing well-known and, where available, exper-

imentally confirmed results that were described either analytically or with the help of
established theoretical methods, Weiss et al. [122] were able to verify the general valid-
ity of the method. Based on that, further steps into previously unexplored parameter
ranges and towards potentially new physics have been made, as well. We are not going
to review these (published) results here, but focus our attention mainly on those novel
transport features that are introduced to the model along with the interacting impurity.

In this context, it is crucial to notice, that new dynamics and transport behaviour can
only arise due to the transverse- or flip-flop interaction Ĥ⊥

int, as given by equation (4.5).
Without the possibility for flip-flops, the orientation of the impurity spin and, by exten-
sion, its quantum state could not change and not participate in the dynamics. What is
more, the remaining longitudinal part of the interaction Ĥ ∥

int would then only account
for a constant energy shift of the electron levels—an effect that could equivalently be
achieved by the application of a magnetic field. With the Zeeman energy ∆, this situa-
tion is already accounted for in the model without impurity. Hence, to see non-trivial
dynamics that follows from the presence of the impurity spin, we have to consider the
effects of the electron-impurity flip-flops. The simplest phenomenon that we can study
in this regard is the time dependence of the impurity orientation 〈τz〉.

5.1. A Rate Equation for the Impurity Spin

Figure 5.1 shows the time evolution of 〈τz〉 for different values of the interaction param-
eter J , where the impurity was set to be in the spin-up state initially.1 For the remaining
model parameters, we choose ΦD =∆=∆imp = 0, U =Γ/2, βΓ= 1, and eVbias = 0.6Γ.
The impurity spin orientation, which we also call polarisation, shows an exponentially

1This is equivalent to setting τi = 1 in equation (4.48), which will be used as initial condition throughout
the rest of the chapter.
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5. Spin-Relaxation by a Charge Current: Exact Results

decaying behaviour for intermediate to long propagation times. Not surprisingly, the
polarisation decays the faster, the stronger the impurity interacts with the electron spins.
The decay can be explained by a rate equation ansatz, similar to the one shortly reviewed
in section 2.3. In doing so, we assume that the impurity orientation in contact with a
“bath” of the tunnelling electrons is governed by a Markovian dynamics and can be de-
scribed solely by the time dependent probabilities Pτ(t ) of finding the impurity in state
|τ〉 at time t , which are given by the nonequilibrium Bloch equations

Ṗτ(t ) =WτP−τ(t )−W−τPτ(t ) with P↑(t )+P↓(t ) = 1. (5.1)

The time independent Wτ are effective rates for transitions (effective spin flips, see be-
low) from state |−τ〉 to state |τ〉. We can then identify 〈τz〉(t ) = P↑(t )−P↓(t ) and solve
equation (5.1) in a straightforward manner (for details, see appendix H) to obtain

〈τz〉(t ) = τi e−2W (t−ti )+
w

2W

�

1− e−2W (t−ti )
�

, (5.2)

where we defined the average rate W := (W+ +W−)/2 and the difference in rates
w := W+ −W−. As usual, τi denotes the initial impurity orientation. For the cho-
sen parameters the model system is isotropic, i.e., symmetric with respect to (relative)
spin orientations. Furthermore, the anti-ferromagnetic interaction favours anti-parallel
orientation of electron- and impurity spin. Over long propagation times, the coupling
to the unpolarised leads then also destroys any polarisation of the impurity. It follows
immediately, that in those cases the rates for up- and down flips are equal as well, and,
for τi = 1, we get

〈τz〉(t ) = e−2W (t−ti ) (5.3)

from equation (5.2), where we set W+ =W− =: W . Apparently, this simple theoretical
prediction agrees well with the numerical results from the figure.

This can be ascribed to the choice of parameter range we study in this section. While
in this regime the interaction energies of the system are all of the same order of mag-
nitude and allow for a considerable influence of correlated effects on the transport be-
haviour, the rather high temperature and bias voltage nevertheless reduce the relevance
of coherent dynamics to an overall secondary role. This is beneficial for the purpose
of this chapter, which is to establish the validity of the ISPI method for the description
of the exact impurity dynamics of and the stationary current through our version of a
magnetic Anderson model. On the one hand, we show below that the exact numerical
results will be in sufficient accordance with a simple perturbative theory to obtain a first
intuitive explanation of the impurity dynamics and “transfer” its plausibility to the ISPI
results. On the other hand, coherence-induced deviations from the simple theory are
large enough to clearly illustrate the need for a non-perturbative theoretical description.
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Figure 5.1.: The expectation value 〈τz〉 of the impurity orientation as a function of
time for four different strengths J of an anti-ferromagnetic electron-impurity interac-
tion. The system was initially “prepared” in a spin-up state [τz (0)≡ τi = 1] and we set
ΦD =∆=∆imp = 0, U = Γ/2, βΓ = 1, and eVbias = 0.6Γ. For times larger than a few
~/Γ (see text), the calculated impurity orientation (plot marks) can be well-fitted to ex-
ponentially decaying functions (solid lines), while higher values of J lead to ever-faster
decay- or relaxation times.

5.2. Impact of the Electron-Impurity Interaction on the
Charge Current

Before we continue to explore the dependence of the rate W on model parameters such
as the interaction strength J and the bias voltage Vbias, we proceed by explaining the
observed decrease of the current 〈I 〉 for growing values of J , which is shown in figure
5.2. Throughout the whole chapter, the following physical situation is simulated. At
times t < 0, the leads and the dot are uncoupled and in initial state ρ̂(−∞) [see equation
(4.48)], in which the dot contains no electrons and the impurity is in state |τi =↑〉. Ex-
actly at t = 0 the tunnel coupling is switched on instantaneously and remains constant
for all later times:

Γ(t ) = Γθ(t ). (5.4)

For t > 0 and bias voltages Vbias ̸= 0, the current starts to flow and the impurity polari-
sation decays.2 Both reach some stationary value at times, which depend on the system
parameters. As can be seen in figure 5.1, the time t ST, at which the impurity reaches its
stationary value, strongly depends on J and is, for the interaction strengths considered
here, at least of the order of ∼ 100~/Γ. The current, on the other hand, shows a very

2The spin-relaxation also occurs at zero bias voltage.
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fast relaxation behaviour, which is caused by the strong coupling between the leads and
the dot. For the parameters considered in this work, it is in fact so fast that we can only
estimate the upper limit for reaching stationarity being t ST . ~/Γ. This is because our
particular implementation of the ISPI scheme does not allow to calculate the dynamics
for very short propagation times (see section 4.2). Since we are more interested in the
transient dynamics of the impurity spin, however, this is not an issue for the further
considerations.

Both the grey dots and red crosses in figure 5.2 are obtained by ISPI, while for the lat-
ter case only the longitudinal electron-impurity interaction is taken into account. This
is done by restricting the path integral to impurity paths with zero number of flip-flops
(mmax = 0). The solid grey and dashed red lines are fits to a polynomial function a+b J p ,
with p ≈ 2.4 and p ≈ 2.1, respectively. We performed a simple (lower limit) error esti-
mate (blue shadings and dotted lines), which is solely based on the statistical (numerical)
deviations and how they are propagated by the extrapolation procedures. It is a conser-
vative estimate, since we (i) do not account for further numerical errors that manifest in
small imaginary parts of the numerically derived observables and (ii) we do not know or
assess the size of possible unaccounted systematic errors in the extrapolation to infinite
memory time. Nevertheless, the depicted estimate should provide a reasonable margin
of error.

5.2.1. The Landauer-Büttiker Current

We can draw two main conclusions from figure 5.2. First, the current decreases (nearly)
quadratically with J and second, this decrease is mainly caused by the energy shift of
the single-electron levels due to the longitudinal part of the electron-impurity interac-
tion, since both the grey solid line and the red dashed curve agree rather well. Whether
both curves coincide within the error margin or the observed deviations between the
grey and red data points, which grow with increasing J , are a signature of correlated
flip-flop dynamics is, at this point, inconclusive. What can be stated clearly, though, is
that the flip-flop term Ĥ⊥

int has a much smaller influence on the charge current at this
rather large temperature (incoherent regime) than the longitudinal part of the interac-
tion. To understand this behaviour, it is worthwhile to compare the ISPI results with
the Landauer-Büttiker (LB) current 〈I 〉LB (see [204]), which is in general given by

〈I 〉LB =
eΓ

2h



σ

 ∞

−∞
dω [ f +L (ω)− f +R (ω)] ℑ[(Gσ )

−+
ω
− (Gσ )

+−
ω
],

(Gσ )
r
ω

(5.5)

where Gσ is the (full) Green’s matrix for spin σ and the superscript r indicates the
retarded component. For the dot with the full Coulomb and electron-impurity inter-
action, however, we do not possess a closed expression of Gσ . Nevertheless, a non-
equilibrium current can still be obtained with the help of this formula, as long as the
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Figure 5.2.: Charge current 〈I 〉 in units of I0 = eΓ/h against J [other parameters as
in figure 5.1]. For increasing interaction, the current decreases by about 15% in the
range 0 ≤ J ≤ Γ, showing a nearly quadratic behaviour. The grey line corresponds to
a fit polynomial ∝ J p with p ≈ 2.4, while the blue, dotted lines denote a conservative
estimate of the error bounds (see text). The red, dashed line is a polynomial fit (∝ J p )
of the current for a purely longitudinal interaction (red crosses), when no flip-flop pro-
cesses are possible and the impurity can be considered as effective magnetic field. It also
declines nearly quadratically with p ≈ 2.1, which suggests that the current is mainly
affected by the longitudinal part of the electron-impurity interaction. This is proba-
bly due to the relatively high temperature and, consequently, a short coherence time,
which strongly limits the influence of coherent dynamics. The growing deviations be-
tween the grey and red data points, however, may be an indication of the increasing
importance of correlated flip-flops with larger J .

Green’s function that is plugged in for Gσ incorporates at least the interaction with the
leads. Hence, if we were interested in the current through the “quasi-free” dot with
switched-off electron-impurity interaction neglecting any correlation effects due to the Cou-
lomb interaction, we could calculate it by plugging-in the free retarded Green’s function

(Gel
0,σ )

r
ω
= lim

δω→0

 ω+δω

ω−δω

dω′

2π
[(Gel

0,σ )
−+
ω,ω′ − (Gel

0,σ )
+−
ω,ω′] =

2iΓ/~
(ω−ωU

σ
)2+(Γ/~)2

, (5.6)

which we get with the help of equation (G.14). Actually, sinceωU
σ = (εσ +U/2)/~ con-

tains the Coulomb energy U , this Green’s function is not really free of interaction but
rather it implements the (quasi-“free”, classical, or single-particle) part of the Coulomb
interaction that can be mapped to shifts of the single-particle energies. With the help of
the HS-transformation in section 4.1.4, we identified it with U/2, which is independent
both of electron spin and the fluctuating HS-fields. In case of the electron-impurity
interaction, we can assume that, as a first approximation, the longitudinal term Ĥ ∥

int
causes a similar effect, viz., an energy shift by ±J . In contrast to the Coulomb interac-
tion, however, this shift depends on the time and (impurity-) path, since its sign is given
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by the relative alignment of electron- and impurity spin.
In this context, it should be noted that the imaginary part of the retarded Green’s

function basically gives the local density of states for the dot electrons of different spin.
This allows a rather simple physical interpretation of the current formula. The joint
density of dot-electron states is just given by a Cauchy-Lorentz (or Breit-Wiegner) func-
tion, whose width equals the tunnel coupling strength and whose resonance lies at the
single-electron energy ωU

σ . The (non-interacting) current is then given by the integral
over the energy-dependent difference of the left and right lead’s occupation multiplied
by the density of available dot states at that same energy.

A major question is now, how the density of states is affected by the longitudinal im-
purity interaction. For a fixed orientation of the impurity- and electron spin, Ĥ ∥

int causes
oppositely directed shifts for each of the single-particle channels that are connected to
the empty and doubly occupied dot (the green and red dashed lines in figure 5.3). In
other words, if the single-level channel for tunnelling into or out of the empty dot is
lowered by J for electrons of spin σ , the channel that involves the doubly occupied dot
is raised by the same amount (both relative to the channels for J = 0). The channels for
electrons with spin −σ are shifted in the respective opposite directions.

This inspires us to the following mean-field-type ansatz to account for Ĥ ∥
int. When

compared to the case J = 0, half of the density of states for each spin is shifted by J , the
other by −J :

(Gel,J
0,σ )

r
ω

:=
iΓ

~



α=±1

1

(ω−ωU
σ
+αJ/~)2+(Γ/~)2

. (5.7)

In general, we assume that all four Keldysh components of the free Green’s function
transform accordingly for J ̸= 0. Besides for the calculation of the LB current, this ansatz
will then also be employed below to calculate a rate for a sequential approximation of
the flip-flop rates Wτ. With equations (5.5) and (5.7), we can now evaluate a LB current
for a quantum dot, whose interactions manifest only in single-particle energy shifts.

In which way an increasing J thus affects the transport conditions is illustrated with
the help of the transport scheme in figure 5.3, where the ratios of the depicted energy
distances correspond to the parameters used in figure 5.1. As usual, the blue shaded
regions on both sides of the dot symbolise the occupation of the leads, the difference of
which is highlighted by a hatching (required by the rather small quotient of bias voltage
and temperature of 0.6). The black horizontal lines mark the transport channels for
J = 0. A sweep in the interaction strength J shifts these channels up- or downwards
depending on the relative spin orientation between the dot electron and impurity (red
and green dashed lines). For 0 ≤ J ≤ Γ, the sweep direction is indicated by the red and
green arrows. Since the impurity spin can change by flip-flop processes, it is not possible
to (uniquely) assign an electron spin to these shifted channels, which we therefore call
“virtual.” Any spin assignment is only time-local and path-dependent. For instance, if
the impurity is in the spin-up state at a given time for a given impurity path and the
interaction is anti-ferromagnetic, the green (red) channels correspond to spin-down
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5.2. Impact of the Interaction on the Charge Current

Figure 5.3.: Schematic illustration of
how an increasing J between zero and Γ
affects the transport environment. The
ratio of the energies corresponds to the
model parameters from figure 5.1. For
βΓ = 1, the occupation of lead states
(blue shaded areas on left and right)
changes slowly compared to the size
of the transport window. The bias in-
duced occupation difference is indicated
by the hatched area on the left, while
the black horizontal lines indicate the
transport channels for J = 0. For posi-
tive J > 0, an individual electron’s energy on the dot is shifted due to the longi-
tudinal part of the impurity interaction. The direction of the shift depends on
the mutual orientation of impurity- and electron spin, while its amount is equal
to |J |. This is indicated by the dashed (virtual) channels in green and red and the
corresponding arrows. We call them “virtual”, since it is not possible to assign
a unique (electron) spin to them. This is due the fact that the impurity orienta-
tion can change as an effect of the transverse (flip-flop) interaction. For example,
if τz = +1, the green (red) channels correspond to electron spin-down (spin-up).
Furthermore, we depicted the local density of states (shaded Lorentz curves to the
right) as given by the imaginary part of expression (5.7) for J = 0 (grey) and J =Γ
(red and green).

(spin-up) electrons. This is also reflected in the local density of dot electron states, which
we depict on the r.h.s. of the figure.

For J = 0, the density of both spin states is degenerate and its resonance lies between
the black transport channels (grey shaded area), since it is offset by half the Coulomb
energy with respect to the single-particle channel. A non-vanishing interaction lifts this
degeneracy, shifting the resonance energies for the spin directions upwards and down-
wards by ±J . Again, a unique assignment of an electron spin to one of the densities is
not possible. As long as the charge current for non-polarised leads is considered, how-
ever, this is not a problem, as it is only important by how much the degeneracy of the
channels is lifted due to the impurity interaction. From the figure, we can also read
out, why the Landauer Büttiker current has to decrease for growing J . According to
equations (5.5) and (5.7), 〈I 〉LB is given by the area under product of two functions: (i)
the difference between the lead occupations, f +L (ω)− f +R (ω) (depicted by the hatched
area to left), and (ii) the local density of states in the dot (Lorentz curves on the r.h.s.).
It can be seen that the difference in occupation is largest around the Fermi level, where
it has the biggest overlap with the grey shaded density of states for J = 0. With increas-
ing J , the density resonances “move away” from the Fermi level, where f +L (ω)− f +R (ω)
decreases visibly. As a direct consequence, the current drops.
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5. Spin-Relaxation by a Charge Current: Exact Results

To quantify the decrease of the LB current in detail, we derive an analytic expression
for it, using complex contour integration (see appendix H). This yields

〈I 〉LB =
πeΓ

2h



σ , p,α

p
�ℜ f +p (ω

U
σ
+[αJ + iΓ]/~)+



q=±1

qξ q
p (ω

U
σ
+αJ/~)

	

(5.8a)

ξ q
p (ω) := ξ (ω− [µp − iqΓ]/~) and ξ (ω) :=

1

2π
ℑΨ(0)

�1

2
+

iβ

2π
~ω
�

, (5.8b)with

where Ψ(0)(z) is the digamma function and q = ±1. A comparison of the numerical
data points from figure 5.2 and the LB current (green solid line, same model parame-
ters) is shown in figure 5.4. It can be seen that the 〈I 〉LB behaves similar to the ISPI
current with deviations ranging between 2% and 4.2%; it lies almost within the error
margin of the numerical results, although the deviations are systematic insofar as the
Landauer-Büttiker result is consistently higher than the full-coherent, interacting cur-
rent. Physically, this result is to be expected, as the quantum fluctuations due to the
on-site Coulomb interaction should increase the quantum dot’s resistance. We can also
see, that all current values show a qualitatively similar functional dependence on the
interaction strength J . We therefore conclude, that the observed current drop with
increasing J is (mainly) caused by the shift of the dot electron energies due to the lon-
gitudinal part of the electron-impurity interaction. It causes a declining joint density
of states for dot electrons in the vicinity of the Fermi level. From a engineering point
of view this may be good news, since it means that a control current that is used to
manipulate the impurity dynamics, is in turn only weakly affected by the dynamics of
the localised spin (small back action).

Figure 5.4.: Same as figure 5.2, but now with
the Landauer-Büttiker current (LB, green line)
for comparison with the ISPI results. Although
the LB current lies almost within the error mar-
gin (it deviates by at most 4.2% with a min-
imum of 2%) and exhibits a similar qualita-
tive behaviour, the differences between the grey
ISPI values and the LB current are considerable,
owing to the presence of the Coulomb- and elec-
tron impurity interaction.

0 0.25 0.5 0.75 1.0
J/Γ

0.50

0.54

0.58
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Comparing the ISPI results with full interactions (grey dots in figure 5.4) with the
values obtained for switched-off electron impurity scattering (‘no flips’, red crosses),
however, reveals a slowly growing discrepancy between both values. This indicates that,
not surprisingly, flip-flop processes become more and more important for increasing
interaction strength J . Also, the current with flip-flop scattering is lower than with-
out, meaning that the flip-flop processes increase the resistivity of the dot. For the
parameters used here, particularly the rather high temperature of βΓ = 1, this effect is
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5.2. Impact of the Interaction on the Charge Current

relatively small, both compared to (i) the numerical error of the ISPI values and (ii) the
(single-particle) effect of the longitudinal interaction component.

Figure 5.5.: For parameters ΦD = ∆ = ∆imp = 0, U = Γ, βΓ = 1, and four differ-
ent values of the bias voltage, this figure shows how the current 〈I 〉 depends on the
interaction strength J . The current decreases with the interaction strength mainly
on account of the longitudinal component. The values for different Vbias are scaled,
so that all fit curves drop by half the figure’s height and their start- and end points

are one sixth of the height apart. This facilitates the visual com-
parison of the fit’s curvatures, which are quite similar. For the
present parameter set and eVbias & Γ, the current value’s accu-
racy drops considerably as soon as J exceeds values of about
0.7Γ. Therefore, we neglected the corresponding data points
(in the hatched area) when calculating the fits. This indicates

that already for an interaction strength of
about J ∼ Γ and a Coulomb interaction
of U =Γ relevant correlations persist con-
siderably longer than ~/Γ, making it diffi-
cult to obtain reliable simulation results
for K ≤ 3 and reasonable time-steps δt .
The accuracy may be enhanceable, how-
ever, by using higher values of K (mem-
ory time) in the simulation.

It is worth noticing, that although the green curve and the grey ISPI points have a
similar shape, they are far from being congruent; they do not just deviate by a con-
stant value (as if they had been shifted apart vertically) but their differences depend on
J . Moreover, while the grey and red plot points are physically consistent (see above),
the red points show even less agreement with the LB curve than the grey ones (with
full interaction). Intuitively, the agreement with the LB curve should be better without
flip-flop scattering (taking into account only the longitudinal component of the interac-
tion), as the difference between the red points and the LB curve is solely due to quantum
fluctuations caused by the Coulomb interaction. Therefore, the rather strong qualita-
tive similarities between the LB current and the fully interacting ISPI results may be
a kind of “coincidence,” caused by a compensation of Coulomb correlation effects by
(coherent) flip-flop processes. This does not, however, affect the general validity of our
previous reasoning that the current drop is mainly caused by the effect of the impurity
interaction on the dot’s single-particle energy structure. If anything, it indicates that
already in the rather incoherent regime of temperatures around βΓ = 1, correlation
effects due to the two-body interactions play a considerable role for the nonequilibrium
current through the dot.
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5. Spin-Relaxation by a Charge Current: Exact Results

At the end of this section, we shortly discuss how the decrease of the current due
to the impurity interaction depends on the bias voltage. Figure 5.5 shows (differently
scaled) current curves against J for four values of Vbias. All curves comply reasonably
well with the explanations given above, as they also decrease “almost quadratically.” The
relative scaling emphasises this fact, as it allows to compare the curvatures of the plots
visually. In the darkly hatched region, however, the accuracy of the numerical results
drops significantly. Hence, we did not incorporated them into the calculation of the
fit curves (solid lines). The relatively high numerical error indicates that already for an
interaction strength of about J ∼ Γ combined with a Coulomb interaction of U = Γ,
relevant correlations persist considerably longer than ~/Γ. This makes it difficult to
obtain reliable simulation results for K = 2,3 and reasonable time-steps δt . It may be
possible to improve the accuracy, though, by using higher values of K—at the expense
of much longer running times.

Note that, except for the current in figures 5.2 and 5.4, we do not present error esti-
mates for all numerical results. On one hand, there are issues considering the compa-
rability of estimates that are obtained by different extrapolation methods for infinite
memory time [linear or principle of least dependence, see section 4.2.4]. On the other
hand, if the ISPI method is stable in a given parameter range, the errors are mostly of
the same order of magnitude, their relative size (in the few to < 10 percent range) com-
parable with the shown errors of the current and slowly increasing with the interaction
strength. If, as for an interaction strength J & 0.7Γ in figure 5.5, the accuracy of some
results is lower-than-average, we point it out explicitly and treat them accordingly.

5.3. First Approximation of Impurity Spin Dynamics:
Sequential Flip-Flops

In the next step, we take a closer look at the rate for flip-flop events W or, rather, the
inverse relaxation time τ−1

R = 2W for cases, when equation (5.3) applies. In figure 5.6,
we present results of sweeps for J , again with 0 ≤ J ≤ Γ, but for a Coulomb energy set
to U = Γ and four different bias voltages. These show a “close to quadratic” behaviour
as well, this time growing from zero (no relaxation).

To investigate the origin of the quadratic dependence of τ−1
R on J , as shown in figure

5.6, we develop a simple theoretical description of the flip-flop rate W , starting from the
general equation (2.9) for a time-dependent Keldysh expectation value. Similar to the
theory in chapter 3, the subsequent steps taken to arrive at an analytic expression for the
rates of sequential flip-flop processes are based on the real-time diagrammatic technique
developed by Schoeller and Schön [50]. As a first step, we argue that the electronic part
of the dot is already (nearly) stationary on the time scale of the impurity dynamics. This
is supported by (i) the observation that the time, on which the charge current assumes its
stationary state (upper limit: t ST . ~/Γ, see section 5.2), is very short when compared
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5.3. First Approximation of Impurity Spin Dynamics: Sequential Flip-Flops

to the corresponding time for the impurity spin (lower limit: t ST & 100~/Γ) and also
(ii) by the fact that the impurity orientation is well described by a master equation (5.1)
with time-independent rates. In itself, the charge current, a spin-independent quantity,
does not suffice to indicate the actual stationarity of the electronic system. Since in
our model, a time dependence of the current’s spin components can only be caused by
the time-dependence of the impurity orientation, however, we can estimate that it is
negligibly small in the studied parameter range—the orientation of the single spin 1/2
that is the impurity is dissipated only slowly within several tens or even hundreds of
~/Γ.3

0 0.25 0.5 0.75 1.0
J/Γ

0
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Figure 5.6.: Inverse impurity relaxation
time τ−1

R (relaxation rate) versus interac-
tion strength J , for four different values of
Vbias. The parameters correspond to those
from figure 5.5. As in figure 5.1, the solid
lines are fits to polynomial functions ∝ J p

and, likewise, all resulting values of p are
close enough to 2 (between 1.7 and 1.95),
to motivate looking into a perturbative de-
scription of the relaxation process (see be-
low). The polarisation decays faster with
increasing J .

This said, we can use equation (2.9) to write the probability for finding the impurity
spin in state |−τ〉 at time∆t , under the condition that it was in state |τ〉 at time 0, as

P (−τ,∆t |τ, 0) =:Π−τ←τ−τ←τ(∆t , 0) =Tr
�

ρ̂τ0 Û (0,∆t )|−τ〉〈−τ|Û (∆t , 0)
	

, (5.9)

where ρ̂τ0 := |τ〉〈τ| ρ̂el, st
dot ρ̂leads is the (initial) density matrix at time t = 0 and ρ̂el, st

dot denotes
the stationary state (superscript ‘st’) of the dot’s electronic subsystem. The fourth-rank
tensor Π̂ is the full propagator of the reduced density matrix for the impurity (an analo-
gous operators appears in chapter 3). Now, by inserting the interaction picture version
(4.6) of the full time evolution operator Û with Ĥ1 = Ĥ⊥

int, we obtain the following
diagrammatic version of (5.9)

P (−τ,∆t |τ, 0) =
Ĥ⊥int

t1

Ĥ⊥int
t2

τ −τ

−ττ

0 ∆t +
Ĥ⊥int

t1

Ĥ⊥int

t2

Ĥ⊥int

t3

Ĥ⊥int
t4

τ

τ

−τ τ −τ

−τ
0 ∆t + . . . (5.10)

It requires to sum over all diagrams with an equal number of flip-flop vertices with
an odd number of vertices on each branch, thus making sure that the impurity spin is

3Except for the instantaneous switching at t = 0 the Hamiltonian is not explicitly time dependent.
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5. Spin-Relaxation by a Charge Current: Exact Results

actually flipped at t =∆t . The diagrammatic symbols are identical to those introduced
in section 4.1.1, where the lines stand for “non-flipping” time evolution according to
Hamiltonian Ĥ0 and a Keldysh time ordered integration over the vertex positions is
implied. The quotes are there to emphasise that the propagation is, in fact, not free at
all, as Ĥ0 ≡ Ĥ − Ĥ⊥

int contains the full Coulomb interaction, the coupling to the leads,
and the longitudinal impurity interaction. Each flip-flop vertex contributes a factor
∓iJ/(2~), where the sign depends on the contour branch, and two dot electron fields to
the diagram. They can thus be written as time integrals over expectation values of dot
fields. For example, the first diagram on the r.h.s. of equation (5.10), translates to [205]

Ĥ⊥int

t1

Ĥ⊥int
t2

τ −τ

−ττ

0 ∆t =
J 2

4~2

 ∆t

0
dt1

 ∆t

0
dt2 0〈d−−τ(t2)d

−
τ
(t2)d

+
τ
(t1)d

+
−τ(t1)〉0. (5.11)

As in section 4.1.8, we would like to employ Wick’s theorem to expand the expectation
value into a sum of products of Green’s matrix elements—the total pairing. This time,
however, we have to use the Green’s matrix of the model without flip-flops, as described
by Ĥ0 (denoted by the subscript ‘0’). Since Ĥ0 contains the two-particle Coulomb in-
teraction a direct application of the theorem is actually not possible. Rather, we could
again use the Hubbard-Stratonovich transformation to write the expectation value as a
path integral (sum) over the HS-field ζ :

0〈d−−τ(t2)d
−
τ
(t2)d

+
τ
(t1)d

+
−τ(t1)〉0 = lim

δt→0
2−2N



{ζ }
ζ〈d−−τ(t2)d

−
τ
(t2)d

+
τ
(t1)d

+
−τ(t1)〉ζ , (5.12)

where {ζ } denotes a Keldysh path between times t1 and t2 and the expectation value
with subscript ‘ζ ’ has to be taken with respect to action Sel

K [{ζ }], which is obtained
from the equations (4.50) and (4.51) by setting {τ} ≡ 0. As this action is quadratic in
the electron fields, Wick’s theorem can be applied to each individual summand on the
r.h.s. In principle, we could use this approach to correctly account for the Coulomb
interaction. However, evaluation of the path sum would be numerically costly and
thwart the advantage that we want to gain from the whole rate equation approach: a
first, rather simple and intuitive understanding of the basic impurity dynamics in terms
of elementary processes. Hence we make the assumption, that similar to the case of
the charge current, we can neglect the effects of fluctuations and account only for the
single-particle effects (the energy shift of U/2) of the Coulomb interaction:

0〈d−−τ(t2)d
−
τ
(t2)d

+
τ
(t1)d

+
−τ(t1)〉0 ≈ ζ〈d−−τ(t2)d

−
τ
(t2)d

+
τ
(t1)d

+
−τ(t1)〉ζ

�

�

�{ζ }=0
. (5.13)

Although this approximation is uncontrolled in the sense that we cannot give a theoret-
ical expression for the error as a function of U , we can estimate that, in the considered
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5.3. First Approximation of Impurity Spin Dynamics: Sequential Flip-Flops

parameter range, it will be accurate enough to suit our purposes. We notice that the
flip-flop part of the interaction is directly connected to the spin relaxation, while the
Coulomb fluctuations only influence it indirectly via their effect on the electron system,
i.e., the charge current. As we consider values of parameter J that are not actually small
in a perturbative sense, below we observe discrepancies between the numerically exact
and the perturbative dynamics of the order 10%. On the other hand, the (direct) effect
of Coulomb fluctuations even on the current turn out to be up to one order of mag-
nitude smaller. Hence, we conclude that as far as the impurity dynamics is concerned,
neglecting higher-order perturbation terms in J —a systematical approximation—entails
errors at least on order of magnitude larger than those caused by neglecting the Cou-
lomb fluctuations. For our purposes, this approximation is sufficiently accurate.

With this, we can apply Wick’s theorem to the r.h.s. of equation (5.13), which then
equals the total pairing. Every summand of the total pairing can again be represented by
a diagram, where each contraction for each spin direction is symbolised by a directed
line, connecting two flip-flop vertices. At a creator (annihilator) dot electron field, a
contraction line starts (ends). Hence, a vertex that flips the impurity spin from τ to −τ
is connected to both an incoming electron line with spin σ =−τ and an outgoing line
with σ = τ.

Ĥ⊥int

t1

Ĥ⊥int

t2

Ĥ⊥int

t3

Ĥ⊥int
t4

τ

τ

−τ τ −τ

−τ

0 ∆tτ

−τ
τ
−τ

(a)
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Ĥ⊥int
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t4
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−τ τ −τ

−τ

0 ∆t
τ

−τ
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Figure 5.7.: Examples for two flip-flop diagrams of fourth order in Ĥ⊥int. (a) This
diagram is reducible, for it can be vertically cut (dashed line), without cutting one of
the contraction lines. During the time period between the latest vertex before and
the earliest vertex after the cut (grey shaded region), the system propagates “freely,”
i.e., without any flip-flops (but is subdue to electron tunnelling and the full Coulomb
interaction). (b) Example of an irreducible diagram. At all times between the earliest
and latest vertex, a vertical line crosses at least one contraction line. In this case, the
short propagation lines at the very ends of the diagram are just drawn to carry the state
labels of the real-time early and late contour ends. For the sake of the argument, they
should be considered as infinitely short.

In the last step, the real-time order of all vertices regardless of the contour branch is
fixed for all the diagrams that are constructed in this way. In doing so, we make sure
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5. Spin-Relaxation by a Charge Current: Exact Results

that the integrals, into which the resulting diagrams translate, have continuous func-
tions as integrands; we discussed in section 4.2.3 and illustrated with figure 4.7, that the
Green’s function jumps discontinuously at coinciding times t = t ′.4 More importantly,
the real-time order of the vertices can be decisive when it comes to a property that is
particularly important to determine flip-flop rates: a diagram’s so-called reducibility (see
also chapter 3). With respect to this property, all diagrams with fully contracted vertices
and fixed real-time order can be divided into two (disjunct) groups. If a diagram can, at
some point (between its earliest and latest vertex), be cut vertically without crossing a
contraction line it is called reducible, otherwise irreducible. Figure 5.7 presents an exem-
plary diagram for each of both cases. In the whole grey highlighted region of sub-figure
(a), a vertical cut (dashed line) leaves the contraction lines intact. Hence, the diagram is
reducible, while the aforesaid grey region marks a period of (flip-flop-) “free” time evo-
lution according to Ĥ0. The diagram of sub-figure (b), however, can not be vertically
cut without crossing a contraction line. Hence, it is irreducible.

As we will see below (and have already seen in chapter 3), the distinction between
reducible and irreducible diagrams is vital, as only the irreducible diagrams contribute
to a transition rate. The reason for this lies in the fact, that irreducible diagrams are
directly connected to and describe complex, coherent processes. This is illustrated best
with the help of an example. Both diagrams in figure 5.7 describe an effective flip-flop
process between times 0 and ∆t ; the system starts in impurity state |τ〉 at t = 0 and
ends in the state with opposite orientation at time ∆t . But while the process in (a) can
be viewed as concatenation of two different incoherent (sequential) processes of second-
order (before and after the cut), the indivisible process in (b) is coherent over the whole
time period. As a consequence, if we know everything about second-order processes,
we do so for processes such as the left in figure 5.7, as well. Only by including coherent
higher-order flip-flops as described by 5.7(b) we can then further increase our knowledge
about the system’s flip-flop dynamics.

To fully exploit this conceptional distinction, we apply the Dyson equation (see, e.g.,
[188]) to expression (5.10). By realising, that each of the diagrams contributing to the
flip-flop probability are either irreducible or can be decomposed into irreducible sub-
processes (connected by periods of flip-less propagation), we can write

Π̂ = Π̂0+Π̂0Σ̂Π̂0+Π̂0Σ̂Π̂0Σ̂Π̂0+ . . .= Π̂0+Π̂0Σ̂Π̂

(A ·B)τ′2←τ2

τ′1←τ1
(t ′, t ) =



τ,τ

 t ′

t
dt ′′ Aτ

′
2←τ
τ′1←τ
(t ′, t ′′)Bτ←τ2

τ←τ1
(t ′′, t ),with

(5.14)

where Π̂0 denotes the (flip-flop-) “free” propagator, operator Σ̂ is given by the sum of all
irreducible diagrams, and A,B =Π,Π0,Σ. By plugging the r.h.s. of the Dyson equation
into (5.10), we arrive at an identity that expresses the probability for a spin flip at time
∆t solely by the irreducible kernel Σ̂ and the probability to find the spin in either of

4This not only applies to the free Green’s function, as this property is a consequence of the exchange of
order of particle creation and annihilation.
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5.3. First Approximation of Impurity Spin Dynamics: Sequential Flip-Flops

its eigenstates at earlier times 0< t <∆t (for details, see appendix H). Since Π̂0 cannot
change the impurity spin in our system, the first term on the r.h.s. of equation (5.14)
does not contribute to P (−τ,∆t |τ, 0). Since we are not interested in the actual flip-flop
probability but rather the flip-flop rate, i.e., the flip probability per time, we derive with
respect to∆t and get (appendix H)

dP

d∆t
(−τ,∆t |τ, 0) =



τ′

 ∆t

0
dt Σ−τ←τ

′
−τ←τ′(∆t , t )P (τ′, t |τ, 0). (5.15)

It can be seen from this equation, that as soon as flip-flop rates are considered, the irre-
ducible diagrams (as represented by Σ̂) play the essential role. Note that this formally
exact kinetic equation is not Markovian—the probability at time ∆t depends on all in-
termediate probabilities to find the impurity in one of its eigenstates.

Thus, to make it usable for us, we now exploit the assumptions that the electronic
system is stationary and the rates are time-independent. They are embedded in the rate
equations (5.2), which predict that the impurity spin reaches a stationary state, as well.
For the cases studied this chapter, it is characterised by a vanishing polarisation [see
equation (5.3)]. If the flip-flop rates are stationary for all times, however, they have to
have the same constant value also in the stationary regime, in which equation (5.15) still
applies. Hence, we can set P (τ′, t |τ, 0) ≡ P st

τ′ = 1/2 to pull the probabilities out of the
integral on the r.h.s. of equation (5.15), while the l.h.s. vanishes. Also, we have to set
the time ∆t to infinity, as the equation has to be fulfilled for arbitrary long positive
propagation times, if the system is already stationary at t = 0. This is again an example
of the idealisation of an infinite limit. Since the integrand, basically a polynomial of
Green’s matrix elements, decays exponentially with time, the integral converges fast for
growing ∆t and, hence, setting it to infinity implements the assumption, that the time
scale for coherent flip-flops is limited only by the system’s memory time. The flip-flop
rates can then be identified with the integral

W−τ =−
 ∞

0
dt Σ−τ←τ−τ←τ(t , 0) (5.16)

over all irreducible diagrams with the appropriate real-time late and early state entries.
Due to the infinite number of diagrams, of which Σ̂ is composed, we cannot calculate

it exactly. However, in view of the dependence of the relaxation time on the interac-
tion strength J —as figure 5.6 shows, it is nearly quadratic—, we can assume that of all
diagrams contributing to equation (5.16), the second-order terms are dominant in this
rather incoherent regime. As can be seen from equation (5.11), those diagrams also scale
with J 2. By restricting the irreducible kernel to only the lowest-order diagrams, we
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obtain the following approximate flip-flop rates:

W (2)
−τ =−

 ∞

0
dt

(

Ĥ⊥int

Ĥ⊥int

τ −τ

−ττ

0 tτ
−τ +

Ĥ⊥int

Ĥ⊥int

τ −τ

−ττ

0 tτ
−τ

)

, (5.17)

where the superscript integer denotes the vertex-order. These are the simplest possible
irreducible diagrams and describe incoherent, sequential flip-flops in the system. Con-
versely, a quadratic dependence of the inverse relaxation time on J suggests, that the
impurity dynamics is dominated by sequential flip-flops.

As we explained above, the exact Green’s function for the system with Coulomb inter-
action is not known and we only calculate an approximation of this rate as given by the
generalisation of equation (5.13) to arbitrary operator polynomials. This is equivalent
to using the non-interacting Green’s function (Gel

0,σ)ω,ω′ from equation (G.14), which
contains, besides the full coupling to the leads, an energy shift of U/2 (obtained by the
Hubbard-Stratonovich transformation). Finally, analogous to equation (5.7), we trans-
form to the phenomenological, mean-field-type Green’s function (Gel,J

0,σ )ω to account for
the longitudinal part of the impurity interaction, as well, and get (see appendix H)

τ−1
R ≈

J 2Γ2

16π~4



α,α′=±

 ∞

−∞
dω

[ f +L (ω)+ f +R (ω)][ f −L (ω)+ f −R (ω)]

[(ω−ωU
↑ +αJ/~)2+(Γ/~)2][(ω−ωU

↓ +α
′J/~)2+(Γ/~)2]

,

(5.18)
where we used that τ−1

R = W+ +W−. We content ourselves with the integral expres-
sion for the inverse rate here, as it is not only easily evaluated numerically, but—similar
to the integral LB current—it reveals the physical structure and allows for the intuitive
interpretation of the processes behind sequential flip-flops. In the numerator of the
integrand, we have the sum of all four possible ways to multiply one of the lead’s oc-
cupations with another or the same lead’s probability to find an empty state at some
energy. Each of these four combinations is then multiplied by the Lorentz density for
the two different spin states each shifted by ±J . This suggests the following interpreta-
tion. A sequential flip-flop process consists of three “atomic” components: the actual
flip-flop and two tunnelling processes of single electrons with opposite spin (not neces-
sarily in that order). Since they evolve coherently, these components form an effective
spin-flip process |χ ,τ〉 → |χ ,−τ〉, where χ ∈ {0,σ , d} and the underlying flip-flop na-
ture is masked by the tunnelling electrons.5 To every choice of α and α′ in the sum
(5.18), we can assign certain such effective flip processes.

We illustrate this by an example. Suppose the impurity is in state |τ =↑〉. From
the diagrams in equation (5.17), we can then read out that, during the process, a spin-↓
electron tunnels onto the dot via lead p [red contraction line, factor f +p in the numerator

5The dot electron state does not change.
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5.3. First Approximation of Impurity Spin Dynamics: Sequential Flip-Flops

of equation (5.18)], while a spin-↑ electron tunnels out via lead p ′ [blue line, factor f −p ′ ].
Thus, by fixing τ, we already know all three atomic processes, but neither in which
order they occur nor which states they connect. This can be fixed, however, as soon as
the electronic part of the dot state is specified. If, for example, the dot is in state |0,↑〉,
the only possible path in state space to arrange a flip-flop, an incoming spin-↑ electron,
and an outgoing spin-↓ electron is the following:

(5.F1) The spin-↓ electron tunnels onto the dot: |0,↑〉→ |↓,↑〉.
(5.F2) The actual flip-flop occurs: |↓,↑〉→ |↑,↓〉.
(5.F3) The spin-↑ electron leaves the dot: |↑,↓〉→ |0,↓〉.
The relevant density of states for process (5.F1) is the Lorentzian with a resonance at the
single-particle energy for spin-↓ electrons shifted by−J due to the longitudinal impurity
interaction: ωU↓ −J . Accordingly, the density for process (5.F3) is peaked aroundωU↑ −J .
Hence the flip process |0,↑〉 → |0,↓〉 is represented by the summand with α = α′ = 1
in integral (5.18). Analogously, we can proceed when the dot is in the doubly occupied
(α = α′ = −1) or one of the single-electron states (α = σ = −α′). In case of the latter
(χ = σ ), the same integrand represents two possible paths for the impurity spin flip, as
the system can propagate through either the empty or doubly occupied dot.

All these possible ways, in which the effective flip can take place, add up to the sum
in expression (5.18), and conversely, each of the possible ways to choose a combination
of Fermi functions and densities corresponds to a particular flip-flop process. The prob-
ability density for a spin-σ electron of a certain frequency ω to tunnel into the dot via
lead p is given by the product of f +p (ω), the occupation, times the density of states
∝ 1/[(ω−ωU

σ ± J )2+(Γ/~)2]. An analogous probability can be assigned to the second
tunnelling out of the dot. Thus, the (sequential) inverse relaxation time (5.18) is basi-
cally given by the total probability density of the two necessary tunnelling processes to
occur at a certain energy, integrated over all energies and summed over all possible paths
in the state space for every transition |χ ,τ〉→ |χ ,−τ〉.

As a first step, we use the sequential flip-flop approximation to study a “region” of
the deep-quantum regime, where we can expect it to yield the best possible agreement
with the numerically exact ISPI results:6 the case of relatively small electron-impurity
interaction (J = Γ/2), vanishing Coulomb repulsion U = 0 and rather high temperature
βΓ= 1. In this configuration, J is the smallest parameter (though it is not small in a per-
turbative sense) and the temperature suppresses long time correlations. This is done for
two reasons: (i) to test the general validity/adequacy of the sequential approximation
and, by providing an explanation for the quadratic dependence of the relaxation rate on
J , (ii) gain some first (limited) insight into the physical processes that determine the im-
purity dynamics (see the beginning of this section). Of course, since the sequential rate

6“Best possible agreement” should not, however, be confused with “good agreement.”
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Figure 5.8.: Comparison of the numeri-
cally exact [ISPI, crosses] and the sequen-
tial [equation (5.18), blue solid line] inverse
relaxation time as they depend on the bias
voltage. The model parameters are ΦD =
∆ = ∆imp = U = 0, J = Γ/2, and βΓ = 1.
Quantitatively, the sequential and ISPI relax-
ation times differ by up to 10%. This is not
surprising, since J is not a small parameter
in the system and we cannot expect that all
rates of higher-order in J are negligible. Also,

some of the deviations may result from using the phenomenological Green’s func-
tion (Gel,J

0,σ )ω . It is notable, however, that both curves exhibit quite similar features
on a qualitative level. This is illustrated by the rescaled curve (red scale to the
right) for the sequential decay time (dashed, red line), which agrees well with the
ISPI data points. For small voltages, the relaxation speed increases slowly, similar
to some power law, while it grows faster, more or less linearly, for eVbias & 1.25Γ.
Therefore, we can assume that the intuitive picture of sequential flip-flops is also
valid to explain the qualitative behaviour of these (particular) ISPI values, which
describe the rather incoherent regime of large T (see text).

(5.18) contains no correlation effects whatsoever we only expect to see (some) agreement
to the ISPI rate in cases, where the effect of higher order correlations is negligible or
very small (as in the rest of this section). Conversely, with the completely incoherent
sequential approximation, we posses a tool that may be useful to spot signatures of cor-
relation effects in the impurity dynamics (see next section).

In figure 5.8 is shown, how the ISPI result (blue crosses) compares to the sequential
relaxation time (blue solid line). Although the latter is of the right order of magnitude,
it is systematically larger than the exact value, differing considerably by up to ∼ 10%.
Since J is not a small energy parameter of the system, we can presume that the devia-
tions can mostly be attributed to coherent higher-order flip-flop processes, which are
neglected in equation (5.18). Another likely source of systematic errors is the usage
of the phenomenological, free Green’s function (Gel,J

0,σ )ω for the derivation of the rates.
Nevertheless, when it comes to qualitative features, both results agree rather well. This
is shown with the help of the rescaled curve for the sequential rates (red dashed lines).
Both the sequential and the exact τ−1

R grow monotonically from their finite value at zero
bias voltage. For small voltages, this increase is similar to a power-law (nearly quadratic
behaviour), for voltages larger than about eVbias & 1.25Γ, the inverse relaxation time
rises more or less linearly.

Within the intuitive picture of sequential flip-flops developed above, these features
become understandable. In the integral form of the decay time (5.18), the growing bias
voltage affects the integrand’s numerator via the Fermi functions. Particularly those

124



5.3. First Approximation of Impurity Spin Dynamics: Sequential Flip-Flops

Figure 5.9.: Illustration how the sequential relaxation time depends on the bias volt-
age in a system without Coulomb interaction. The total squared density of states [sum
over all α and β in equation (5.18)] in the dot is depicted by the grey shaded curve be-
tween the tunnelling barriers, while the red shaded areas correspond to the number
of lead particles available for the two-electron tunnelling processes that are involved in
a sequential flip-flop. (a) If both electrons tunnel through the same barrier (black ar-
rows), the available states are confined to small regions around the Fermi levels, which
are shifted by a change of Vbias (blue arrows) while their size and shape stay unaltered.
Thus, unless the bias voltage is not considerably larger than 2J , the flip-flops caused
by these processes do not vary largely. (b) In case that the electrons tunnel through
different barriers (black arrows), the voltage sweep affects the number of available lead
particles drastically, while now the centres of the corresponding (red shaded) areas are
unaltered. The number of states for tunnelling through the dot from L to R (shown
on the l.h.s.) grows to a multiple of its zero-bias value (outlined with red dots). At the
same time, the area for tunnelling in the opposite direction (on the r.h.s) shrinks to
zero. For small voltages, the relaxation grows only slowly as the increase of right mov-
ing electrons is almost compensated by the declining number of left movers. At some
point, the number of right moving electrons grows fast and more or less linearly, while
tunnelling to the left is practically non-existent. Eventually, for even higher voltages,
the relaxation saturates.

two of four possible products of Fermi functions with differing lead index. As we ex-
plained above, the possibility for sequential flip-flops in the system is directly connected
to the number of available lead electrons and holes for the two tunnelling particles, in-
volved in the process. This number, in turn, scales with the area under the product
functions f +p1

f −p2
and their degree of overlap with the Lorentz single-particle densities

at resonance points ±J . For p1 = p2, the area under the Fermi product is unaltered
by an increase of Vbias but merely shifted towards the single-particle resonances for
0 ≤ eVbias ≤ 2J and away from them for even higher voltages. In the end, this leads
to a first small increase of the relaxation due to these terms when eVbias approaches 2J
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5. Spin-Relaxation by a Charge Current: Exact Results

followed by a slow decrease for eVbias considerably bigger than 2J . Due to the rather
large width Γ (HWHM) of the local densities, though, these variations are smeared out
over an accordingly large voltage range and the relaxation can thus be regarded as ap-
proximately constant in the bias range considered here. This is shown in figure 5.9(a).

The area under the products f +p f −−p , on the other hand, changes drastically with the
bias voltage. The number of available electrons in the leads for tunnelling through the
dot against the voltage drop rapidly goes to zero with rising Vbias, while the correspond-
ing number of lead electrons to tunnel with the current direction grows fast and, eventu-
ally, linearly. Figure 5.9(b) illustrates this situation graphically. It can be seen that for
small bias voltages the increase in relaxation speed due to tunnelling with the current
flow is nearly compensated for by the decline in relaxation caused by electrons that go
against the current. This accounts for the rather slow growth of τ−1

R for εVbias . 1.25Γ
in figure 5.8. When the voltage grows further, the almost linear increase of the area un-
der f +L f −R dominates the bias dependence of the relaxation—flip-flops due to tunnelling
against the current become completely negligible. Eventually, for voltages that consid-
erably exceed 2J , the relaxation rate saturates (not shown).

5.4. Influence of Temperature, Bias Voltage, and
Coulomb Interaction

We complete this chapter by studying how the relaxation rate and current are influ-
enced by a finite Coulomb interaction for J = Γ at different temperatures. In view
of our derivation of the sequential rates τ−1

R from equation (5.18), specifically of the
assumptions involved, we expect to find stronger deviations from the ISPI values than
for U = 0 and J = Γ/2, the case shown above. First of all, a larger J generally en-
tails an ever increasing importance of higher-order, coherent (non-sequential) processes.
Since the temperature is closely related to the lead-induced coherence time τc of the
system, we expect an increasing prevalence of non-sequential flip-flops for declining T .
Also, a faster relaxation leads to a larger, time-dependent imbalance between the spin-
components of the charge current and violates the assumption of a stationary electronic-
and dynamical state. In other words, an overall stronger relaxation may lead to (slightly)
time-dependent relaxation rates. Other obvious simplifications that are “less justified”
for stronger interactions regard the free Green’s function (5.7): neither does it contain
the non-trivial effects of the Coulomb interaction (as included by the sum over fluctuat-
ing HS-fields) nor is the mean-field-type way, in which we introduced the longitudinal
energy shift J into (Gel,J

0,σ )ω , by any means exact. In general, what we state for the re-
laxation time, is also valid for the current. As the Coulomb- and impurity interaction
increase, the differences between the numerical ISPI results and the LB current (5.8)
will, by trend, grow. Particularly at lower temperatures, we expect that the charge cur-
rent is not independent of the flip-flop interaction Ĥ⊥

int any more. Hence, although the
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LB current is still a more valuable approximation for stronger interactions, compared
to the sequential flip-flop theory, we should expect to see considerable deficiencies of
the mean-field-type LB current to adequately describe the physics at hand. Neverthe-
less, comparing the ISPI results with the incoherent LB values can help to identify the
signatures of correlation effects.

0 1 2 3
Vbias/Γ

0.25

0.50

0.75

τ
−1 R
(1

0−
1 Γ
/~
)

0 0.5 1.0 1.5 2.0
Vbias/Γ

0

1

2

〈I〉/I0

(a) (b)

1.0
2.0
5.0

βΓ

Figure 5.10.: Inverse relaxation time and current versus bias voltage for three (cur-
rent: two) different temperatures and U = Γ/2, J = Γ (parameters not explicitly given
are zero). (a) Shown are the ISPI values (plot marks) and the sequential results, where
the solid curves give their actual values and the dashed lines are rescaled individually
for each temperature to minimise the quadratic deviations to the ISPI points. When
compared to the system without Coulomb- and with smaller impurity interaction (fig-
ure 5.8), we see larger relative deviations between the ISPI results and the sequential
flip-flop approximation. The qualitative differences are also stronger: The indication
of a saturation behaviour featured by the sequential relaxation curves for bias voltages
& 2.5Γ, particularly for βΓ = 2,5, cannot be read out from the ISPI data. Reasons for
the observed discrepancies are: (i) increasing relevance of coherent flip-flop processes
of higher-order in Ĥ⊥int for growing J and smaller T (longer memory time), (ii) the
considerable size of the Coulomb interaction, that we could not fully account for in
the derivation of the sequential flip rates, and, partly as a consequence of that, (iii) the
usage of an only approximate (free) Green’s function for calculating the sequential re-
laxation. (b) The LB current (solid lines) and the ISPI current (plot marks) coincide
reasonably, showing a monotonous, almost structureless behaviour. As in figure 5.4,
the approximate LB current based on Green’s function (5.7) is larger the the numerical
results.

In figure 5.10, results of a voltage sweep for 0 ≤ eVbias ≤ 4Γ, J = Γ, U = Γ/2 and
temperatures βΓ = 1, 2, and 5 are given. The ISPI values of the inverse relaxation
time in (a) are given by the plot marks, while the solid lines are the corresponding
sequential rates. For each temperature, the dashed lines are rescaled versions of the solid
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5. Spin-Relaxation by a Charge Current: Exact Results

curves of the same colour that minimise the squared deviations to the numerical data
(as in figure 5.8). In accordance with the simple dynamical picture from figure (5.9),
the sequential rates exhibit the typical features (power-law growth, followed by a (quasi-
)linear behaviour, which finally saturates), which are the more pronounced the lower
the temperature is. As expected, the ISPI data points deviate considerably from this
lowest-order approximation. Also, the degree of both the quantitative differences and
the deviations in the qualitative behaviour increase with lower temperatures. The ISPI
current in sub-figure (b) is compared to the LB current (solid lines). While the latter is
consistently larger than the numerical result (similar to figure 5.4), both coincide quite
well and grow monotonically from zero.
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Figure 5.11.: Inverse relaxation time against the Coulomb interaction strength U for
three different temperatures and J = Γ, eVbias = 0.6Γ (all other parameters as in the
figures above). For τ−1

R , the absolute differences between the simulation results (plot
marks) and the sequential approximation (solid lines) are comparable for all three tem-
peratures. The relative deviations for smaller T (βΓ = 5), however, are considerably
large, reaching a magnitude of up to 100% (see text). Where the low-temperature relax-
ation rate drops, the sequential theory predicts a rising rate (yellow marks and lines).

Figure 5.11 illustrates the effect of a change in Coulomb energy between 0 ≤ U ≤
Γ on the relaxation rate. As before, the solid lines give the sequential flip-flop rates.
Quantitatively, the sequential theory agrees with the numerics, insofar as it predicts the
relaxation to change rather weakly with U . Particularly for the lower temperatures,
however, the relative deviations from the ISPI results are strong: the maximum relative
difference is as high as almost 100% (for βΓ = 5, U = 0.875Γ and relative to the ISPI
value) and while the ISPI rates decline for βΓ= 5, the sequential rates grow.

For all the previous considerations and although it is based on an effective single-
particle theory, the LB current proved to be a useful approximation of the nonequilib-
rium electron (charge) dynamics. As we focussed on the relaxation rate of the impurity
spin, rather high temperatures and small (or even vanishing) interactions, this is not sur-
prising. In the regime of intermediate interactions (in particular for stronger Coulomb
repulsion) and low temperatures, however, the numerical results will eventually show
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significant discrepancies to the LB theory. As the latter is purely incoherent, such devi-
ations directly hint at the presence and relevance of coherent dynamics. Therefore, the
remainder of this chapter is devoted to a study of certain correlations effects that appear
in the nonequilibrium current for intermediate interaction strength U , J ∼ Γ. In fig-
ure 5.12, four different current curves at two different temperatures are shown—one for
each possibility to either have (i) only mean field dynamics (LB), (ii) the full Coulomb
interaction (“no flip”) without and flip-flop processes, (iii) flip-flop dynamics without
many-body Coulomb correlations, or (iv) the fully interacting dot (“full int.”). The
Coulomb energy is varied over the interval 0 ≤ U ≤ Γ, while the electron-impurity in-
teraction and the bias voltage are set to J =Γ and Vbias = 2Γ, respectively. The situation
“no U ” is implemented by setting ΦD to U/2 (the single-electron part of the Coulomb
energy) and the HS-parameter λ to zero. Sub-figure (a) and (b) show the results for
βΓ= 1 andβΓ= 5. respectively. Only for the “single-interaction” currents, we present
margin of errors, where the red shaded area belongs to “no U ” and the values of “no
flip” are tagged with usual error bars (see below).

As long as the Coulomb interaction is small, all current values in both sub-figures
lie close. The only physical difference between the currents at this point regards the
inclusion or exclusion of the transversal component of the electron-impurity interaction
(flip-flop processes). Hence the rather good agreement of the U = 0 values suggests, that
even for lower temperatures flip-flop processes (alone) only weakly affect the current.
Particularly in figure 5.12(a), the congruence of the “no U ” current with the LB result
is remarkable. ForβΓ= 5, on the other hand, these curves differ by a slowly increasing
that has doubled at the upper end of the considered U interval compared to U = 0.
Although the error of the ISPI values allows no conclusive statement, it seems that for
decreasing temperatures, the flip-flop processes start to influence the current, resulting
in an additional resistivity. In case of the “no flip” current, the impurity is fixed and the
physical situation is equivalent to a Coulomb-interacting SLQD in a (effective) magnetic
field. Both curves in (a) and (b) show a very similar dependence on U , featuring a local
maximum of at around U = Γ/2; for the lower temperature, the relative height of the
broad current peak is twice as big as forβΓ= 1. This is an interesting effect, as we have
an increasing degree of correlation effects and still the dot’s resistivity decreases (at least
for U . Γ/2). We suppose that the Coulomb correlations yield to an effective joint
density of states in the dot, that differs considerably from the simple mean-field-type
that was used to obtain the LB results.

The main reason, why no margin of confidence is indicated for the fully interact-
ing case, regards the comparability of the error data. Calculating the fully interacting
current is a very time-consuming task (and more unstable than the time-local impurity
polarisation), which is why, at this point, the extrapolation to δt → 0 only involves two
time steps. They correspond to K = 3,4 for a given coherence time, as the relevant cor-
relations in this parameter regime live too long to yield adequate values for K = 2. This
does not, however, render these values completely unreliable: we still see a compelling
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linear behaviour of the 1/τc extrapolation (with errors in the range of 1% based on the
sample standard deviation) and can compare them to data points, for which more time
steps can be calculated. For U = 0, for example, we can calculate a value with the same
extrapolation parameters as the yellow squares (the red crosses at U = 0) and compare
them to the “fully extrapolated” value. The red crosses in both sub-figures deviate from
the exact value by 3.3% and 2.5% and the figures are scaled to show only a small win-
dow of current variations of about 8% and 16% around the U = 0 value for βΓ = 1
and βΓ = 5, respectively. Hence, we want to stress, that in view of the figure’s scaling
it can still be said that all current values agree quite well. If the sub-figures would show
the current starting from 〈I 〉 = 0, the error bars were barely visible and, accordingly,
all the data points lay close as in figure 5.10(b). Furthermore, the subsequent yellow
data points up to about U = Γ/2 lie on a increasing slope, which is quite similar to the
behaviour shown by the blue “no flip” values. At least for Coulomb interactions not
exceeding U = Γ/2 it seems, that the lack of data points for the extrapolation δt → 0
may merely results in a few-percent shift to lower current values, while the relative
positioning (the shape of the curve) is more or less unaffected.

The situation changes for U & Γ/2, where the data points start to show a high vari-
ability and the numerics are less stable. Whether the strong variations that can be seen
in the case of stronger Coulomb interactions, are the signatures of a physical (corre-
lation) effect or an numerical artefact remains unclear for now. In the future, it may
be possible to enhance the accuracy and stability of the simulation, though, by using
higher values of K . If our previous interpretations are correct, we can draw an inter-
esting conclusion from the rising current slopes in (a) and (b). As the relative increase
of the current from its value at U = 0 to its maximum is significantly higher for the
fully interacting dot (yellow squares and red cross) than for the dot without flip-flops
(blue crosses), it seems that mixed coherent (higher-order) scattering processes of both
the Coulomb- and the electron-impurity interaction are necessary to fully understand
and predict the nonequilibrium dynamics in this deep quantum regime.

5.5. Summary

This chapter contained a first systematic investigation of the long-time dynamics of an
initially polarised impurity spin in a SLQD that is coupled to unpolarised, metallic
leads, in the deep quantum regime, while taking into account all relevant correlations.
We were able to describe the simulated exponential decay of the impurity polarisation
by a simple rate equation and used the real-time diagrammatic technique by Schoeller
and Schön [50] to derive an analytical expression for relaxation rates that implement the
effects of sequential flip-flop processes in the system. For most of the studied parameter
configurations, sequential flip-flops turn out to be the prevalent cause of the impurity
spin relaxation, which can be deduced from the nearly quadratic dependence of the
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Figure 5.12.: This figure com-
pares (i) the LB current (dashed),
(ii) the Coulomb interacting
current without flip-flop scatter-
ing (“no flips”), (iii) the current
without Coulomb scattering
but full impurity interaction (“no U ”, see text),
and (iv) the fully interacting current (“full int.”)
in their dependence on the Coulomb interac-
tion U for βΓ = 1 [sub-figure (a)] and βΓ = 5
[sub-figure (b)]. The other (non-zero) parame-
ters are J = Γ and Vbias = 2Γ. The red shaded ar-
eas indicate the error margin for “no U ,” usual
error bars are given for “no flip.” For both tem-
peratures, the LB current and the current with-
out Coulomb scattering show only a weak de-
pendence on U , as they only “feel” the single-
particle energy shift. The current with full Cou-
lomb interaction but fixed impurity (=⇒ effec-
tive magnetic field) shows a local maximum for
U ∼ Γ/2, which is more pronounced for βΓ = 5. All current values lie close together
for small Coulomb energy, indicating again that flip-flip processes do not strongly af-
fect the dot’s resistivity. In particular, the LB and “no U ” curves in (a) are in very
good agreement. For the lower temperature, however, small differences between the
current with flip-flop scattering and the LB values can be seen and seem to increase
with the Coulomb interaction (size of energy shift U/2 in case of “no U ”). Whether
this feature is a genuine physical effect or an numerical artefact, remains inconclusive,
as the LB values lie within the error margin of “no U ” (about 5%). The yellow ISPI
values for the fully interacting dot vary strongly over the considered U interval, but
are scattered around the “no flips” and “no U ” curves. We refrain from giving error
bars for these values (see discussion, also concerning the red crosses at U = 0).
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simulated, fully coherent inverse relaxation times on the interaction strength J . This
allowed us to develop an intuitive explanation of the observed relaxation dependence
on various system parameters, based on two-electron tunnelling processes (figure 5.9).

Yet, although sequential theory and numerical results turn out to agree quite well in
some situations, the sequential theory never exceeds the status of a crude, first approx-
imation of the dynamics in the inherently non-perturbative regime studied here. As
soon as both interaction strengths U and J are of order ∼ Γ (especially so for tempera-
tures as low as βΓ = 5), the predicted behaviour of the fully coherent ISPI values and
the sequential approximation can be diametrically opposed, while the discrepancies be-
tween them can be as large as 100%. This can be attributed to the various assumptions
needed to derive the sequential flip-flop rates.
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Along the way, we analysed the (stationary) charge current and how it is affected by
the electron-impurity interaction. Since the leads are unpolarised and the current is not
sensible to the spin orientation of a tunnelling electron, the flip-flop component Ĥ⊥

int
does not largely affect the current. Within the margin of error, the decrease of 〈I 〉 with
growing J is solely caused by an effective shift of the single-particle dot energies due to

the longitudinal part of the interaction. This was checked (see figure 5.4) both by
“turning-off” the flip-flops in the simulation (by setting mmax to zero) and a compari-
son to an approximate Landauer-Büttiker current based on the free Green’s function
(Gel,J

0,σ )ω from equation (5.7). The LB current is systematically higher than the ISPI val-
ues but yields, nevertheless, often viable first approximations to the ISPI results. Our
study of intermediate to strong interaction regimes (see figure 5.12), however, revealed
several interesting signatures of correlations effects, which cannot be reproduced by our
mean-field-type LB expression. It seems that at lower temperatures and in combination
with the Coulomb interaction, flip-flop processes can have a (small) effect on the dot’s
resistivity. More importantly, we saw that Coulomb correlations can increase the cur-
rent compared to the incoherent case and might have observed an interplay of both
Coulomb- and impurity correlations both for βΓ = 1 and βΓ = 5. Further optimisa-
tions provided, the ISPI scheme might help clarifying these fundamental and fascinating
questions in the future.
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6
Conclusions and Outlook

GENERAL TOPIC OF this work is the nonequilibrium transport of particles, charge,
and spin through an idealised, fundamental example of an open quantum system:

a single-level quantum dot (SLQD) in contact with macroscopic leads. The thesis is
divided into three main parts: The study of certain transport features in the Coulomb-
blockade regime in chapter 3 is followed by a description of how to adopt the numerical
exact, deterministic method of the iterative summation of path integrals (ISPI) by Weiss
et al. [122] to the SLQD with an additional magnetic impurity in chapter 4. After that,
this fully coherent numerical scheme is used to investigate the real-time impurity spin-
and current dynamics in the deep quantum regime, in which all the system energies are
of the same order of magnitude.

In chapter 3, the real-time diagrammatic technique by Schoeller and Schön [50] pro-
vides us with Markovian rate equations, which are used to calculate the stationary den-
sity matrix of the SLQD (without impurity) and charge current flowing between the
leads. As we are interested in the Coulomb-blockade regime, the tunnel-coupling Γ has
to be weak and the temperature small (more precisely, Γ≪ β−1 ≪ U , where U is the
Coulomb energy). The rate equations are then expanded in orders of Γ, where the first-
and second-order terms that are taken into account describe sequential and cotunnelling
transport, respectively. In the Coulomb-blockade valley associated to single-particle oc-
cupation of the dot, the sequential current is exponentially suppressed and second-order
cotunnelling dominates the transport.1 It corresponds to the set of voltage configura-
tions, for which both lead’s electrochemical potentials lie between the (energetically)
lowest and highest so-called transport channels (energy distances between dot states
that differ by one in particle number). In case the two single-electron energies differ by
∆ with 0 < ∆ < U/2, this Coulomb-blockade (or cotunnelling-) valley exhibits a rich
internal structure, which is shown in figure 3.1 and gives rise to a complex transport
behaviour.

For |eVbias|<∆, only elastic cotunnelling is present, the current is small, and the dot
is in the spin state with the lower energy (the single-particle ground state). If |eVbias|>∆,
however, and as long as both chemical potentials µp (with p = L,R) lie (i) above the

1This is, in fact, true for all Coulomb-blockade valleys. For the SLQD, there exist three valleys, one for
each occupation number. All valleys together form the Coulomb-blockade regime.
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empty-dot channels and (ii) below the channels for tunnelling in and out of the doubly
occupied state, inelastic cotunnelling provides for a finite occupation of the spin state
with higher energy (excited state). Finally, for an increasing bias this occupation is
reduced due to sequential transport, once at least one of the channels for tunnelling
with the excited-state is in resonance with or lies between the µp . Among other things,
this cotunnelling-mediated sequential transport manifests in a current step close to the
resonance of an excited-state channel with a lead’s chemical potential or, equivalently,
in a peak of the differential conductance dI/dVbias.

We focus on this conductance peak by studying its dependence on a phenomenologi-
cal rate θ for spin relaxation between the excited- and ground state. When tuning θ be-
tween zero and infinity, we first find the conductance peak growing, from its finite size
for vanishing relaxation, to assume a maximum height for θ ≃ Γ/2. Faster relaxation
lets it shrink again and completely vanish in the limit θ →∞. This can be explained
by the fact that the current on both “sides” of the conductance peak (corresponding
to bias voltages smaller or larger than the peak’s position) is affected differently by the
spin relaxation. On the smaller-bias side, the current and the dot’s occupation are solely
determined by cotunnelling contributions, which scale roughly as Γ2/U . For larger
bias, however, the spin relaxation competes with sequential tunnelling proportional to
Γ. In both cases, the current decreases with growing θ. Hence, while for θ ≃ Γ/2, the
current is already almost maximally diminished on the small-bias side of the peak, it is
still hardly affected by the relaxation for larger voltages. As a result, the conductance
peak reaches its maximum height for this small but considerable relaxation. This phe-
nomenon could provide means to directly influence the single-particle occupations in
experiments and allows to facilitate measurements of excited state resonances by adjust-
ing either the tunnel coupling Γ or the relaxation rate θ.

In chapter 4, the ISPI method is adopted to a SLQD that contains a quantum me-
chanical spin-1/2 impurity. To do so, we shortly review the notions of Grassmann
numbers and fermionic coherent states, which are subsequently used to derive a (time-
discrete) path integral representation of the Keldysh partition functionZ . In the course
of the derivation, a discrete Hubbard-Stratonovich transformation maps the model with
on-dot Coulomb repulsion to a system of free particles that interact with fluctuating,
Ising-like virtual spin fields. By adding suitable source terms to the system’s action, we
obtain a generating function from Z that allows to calculate expectation values of arbi-
trary observables. Integrating over all electronic degrees of freedom eventually yields
an expression of this generating function that is basically a discrete path sum over the
determinant of the (path-dependent) inverse Green’s matrix.

To perform this sum, whose number of summands grows exponentially with prop-
agation time, the actual ISPI scheme is applied. It allows to strongly reduce the com-
putational costs by systematically neglecting irrelevant (long-) time correlations. The
procedure is based on (i) the observation that correlations in the macroscopic leads de-
cay exponentially with some finite memory time and (ii) the assumption that the on-dot
correlations are limited to essentially the same value by virtue of the tunnel coupling.
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For the sake of numerical stability, we show in section 4.2.3 how to deal with (cancel)
divergent elements of the discrete inverse Green’s matrix without affecting the valid-
ity of the expressions. The resulting generating function is afflicted with systematical
errors; in addition to the step-width δt of the time-discretization also the system’s mem-
ory time τc is finite. Nevertheless, exact (numerically) values can be obtained with
appropriate extrapolation schemes that numerically implement the limits δt → 0 and
τc →∞. Such schemes are reviewed in section 4.2.4 along with a restriction of the path
sum to impurity paths with less than maximum number of flips. While not being a part
of the original ISPI scheme, the latter is, if convergent, capable of further reducing the
numerical costs of the simulation by at least one order of magnitude.

Finally, chapter 5 contains a systematical analysis both of the stationary current and
the dynamics of the impurity spin orientation as functions of the interaction strengths
J and U , the bias voltage Vbias and, in less detail, the temperature T . It is focused on the
essentially non-perturbative, deep quantum regime that is characterised by the absence
of a small model parameter. For all considered sets of parameters, we observe an expo-
nential decay of the impurity spin, during propagation times of tens or even hundreds
of ~/Γ, if its initial state is polarised. In contrast to this slow relaxation, the current
assumes its stationary value at the latest after ∼ ~/Γ and can, for our purposes, be con-
sidered as time-independent. The simplest ansatz that reproduces the exponential decay
of the impurity spin is a rate equation, where the rates for impurity flip processes are
constant in time. To get a (more intuitive) understanding of the physics behind these
simulated results, we compare them to analytical expressions (of the current and the
relaxation rate), which are both fairly accurate and easy to interpret. Note, that there
are some similarities between the systems and situations that are described in chapters
3 and 5. In both cases, the current through the dot is influenced by some on-dot relax-
ation processes and the ensuing interplay between correlated dynamics and decoherence
leads to interesting signatures in the mesoscopic system. In chapter 3, the correlated tun-
nelling current is influenced by a relaxation of the electron spin due to the coupling to
some unspecified, dissipative bath. In chapter 5, it is the coherent spin dynamics due
to the electron-impurity interaction that couples the impurity to the tunnelling elec-
trons from the macroscopic leads, which leads to the impurity spin relaxation. Hence,
both chapters have in common, that they discuss some interplay of correlated quantum
dynamics with decoherence effects. On the other hand, as the considered transport
regimes and the respective sources of relaxation differ in both cases, the observed effects
are not directly related or comparable.

In case of the ISPI current, we consider a slightly modified variant of the result from
Landauer and Büttiker [204], which includes the Coulomb- and electron-impurity in-
teraction solely via shifts of the single-particle energies. The observed reasonable agree-
ment between both current values allows us to explain essential qualitative features of
the simulated current with the help of an intuitive picture in terms of tunnelling elec-
trons. We conclude that, as a first approximation, the charge current is only affected
by the longitudinal part of the electron-impurity interaction. The numerical rate for
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impurity spin flips2 we compare to the analytical rate of sequential flips, which is con-
structed with the help of Schoeller’s and Schön’s real-time diagrammatic technique. In
most of the parameter configurations studied, this lowest-order approximation in J is
of the correct order of magnitude and is influenced similarly by variations of the model
parameters. For vanishing U and J . Γ/2, the resulting relaxation times versus Vbias
even show a compelling qualitative agreement. Hence, we assume that in this case a
reasonable understanding of the physics at hand is conveyed by the intuitive picture of
sequential impurity spin flips. These complex processes are composed of two (sequen-
tial) single-electron tunnellings and a flip-flop process; the corresponding rates are given
by the energy integral over the probability density for the two (sequential) tunnelling
processes to occur.

Although the LB current and the sequential flip rates deliver some first insight into
the processes determining current and relaxation, they do not, by any means, exhaus-
tively explain the simulation results. The sequential relaxation rate is essentially a per-
turbative entity and, as in the considered transport regime interaction strength J is not a
small parameter of the system, higher-order flip-flop processes contribute considerably
to the relaxation. Furthermore, accuracy and adequacy of both the LB current and
the sequential rate suffer from the fact that they are based on a phenomenological, free
Green’s function that includes the interactions via single-particle energy shifts. In con-
trast to that, the ISPI simulation fully accounts for all the on-dot interactions, relevant
time correlations, and real-time dependencies. The systematic exploration of the pa-
rameter space reveals that both the quantitative and qualitative deviations between the
analytical approximations and the numerical simulation increase with growing on-dot
interactions and decreasing temperatures.

With this last chapter, we merely get a first glimpse of the interesting, new physics
that comes into reach with the ISPI scheme. Already for the presented investigation
of the impurity spin relaxation, a number of questions are left out of consideration, so
far. How precisely does the inverse relaxation time depend on the temperature? How
does an external magnetic field or a shift in the gate voltage affect the decay time? Is
it possible to have a finite stationary polarisation in case of a ferromagnetic electron-
impurity interaction (J < 0)? Can we (clearly) detect a time-dependence of the relax-
ation rates themselves and under which conditions? These are just a few of the many
questions, that can be asked in the general context of chapter 5. But we do not have to
stop there. For example, the simulation can easily be extended to calculate the x- and
y-components of the impurity spin, thus yielding the complete coherent spin dynamics
on the Bloch sphere. This would be particularly interesting, if an oscillating term∝ τ̂x,y

were added to the impurity Hamiltonian as in the work of Mitra and Millis [206, 207].
This would pave the way for studying the real-time dephasing of the oscillating impu-
rity spin and the violation of the fluctuation dissipation theorem in the presence of the
longitudinal and the flip-flop interaction. Also, it might be worthwhile to consider the

2The underlying elementary processes are flip-flops between an electron- and an impurity spin.
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time-dependent spin current that is caused by the decay of the impurity spin.
As a more technical point, the simulation’s efficiency and accuracy would benefit

considerably from a way to cancel the divergent terms in the original, real-time version
of the generating function that does not require multiplying it with the free Green’s
function. Particularly the latter is still an issue with current computers and for interme-
diate interactions. Not only would such a scheme expand the frontiers of the treatable
parameter range towards stronger interactions (mostly due to reduced running times).
It also allowed to implement an arbitrary real-time dependence of model parameters
like the tunnel coupling or the bias- and gate voltages. Possible follow-up matters to
investigate include the application of pulsed or ac voltages and tunnel coupling. In the
medium term, it would be interesting to look at a model containing two or more im-
purities, as electrons in a small quantum dot can mediate a ferromagnetic interaction
and, as a consequence, a finite magnetisation between embedded manganese impurities
[101–105]. Accordingly, we would expect to see similar effects for a SLQD with two or
more spin-1/2 impurities, while the ISPI simulation allowed to scrutinise the real-time
dynamics and all-electrical control of the dot’s magnetisation. Due to the numerical
costs increasing with system size, however, in view of today’s computational capacities,
adding another impurity to the dot would very likely require to set the Coulomb inter-
action either to zero or to infinity.
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A
Evolution Operator and Von Neumann
Equation
It is the defining property of the time evolution operator Û (t , t ′) for a system with
Hamiltonian Ĥ (t ), that it connects Schrödinger states at times t and t ′ by

|ψ(t )〉= Û (t , t ′)|ψ(t ′)〉. (A.1)

Since the normalization of the states has to be preserved, Û has to be unitary and from
the case t = t ′ follows Û (t , t )≡ 1̂. Furthermore, we have

Û (t , t ′)Û (t ′, t ) = Û (t , t ) = 1̂ =⇒ Û (t ′, t ) = Û−1(t , t ′)≡ Û †(t , t ′). (A.2)

By plugging (A.1) into the Schrödinger equation i~∂t |ψ(t )〉 = Ĥ (t )|ψ(t )〉, we arrive at
the following equation of motion

i~∂t Û (t , t ′) = Ĥ (t )Û (t , t ′), (A.3)

which can be solved formally by separation of variables and iterated integration:

Û (t , t ′) = 1̂− i

~

 t

t ′
dt1 Ĥ (t1)Û (t1, t ′)

= 1̂− i

~

 t

t ′
dt1 Ĥ (t1)

h

1̂− i

~

 t1

t ′
dt2 Ĥ (t2)Û (t2, t ′)

i

= 1̂− i

~

 t

t ′
dt1 Ĥ (t1)+

�

− i

~

�2
 t

t ′
dt1

 t1

t ′
dt2 Ĥ (t1)Ĥ (t2)Û (t2, t ′)

= 1̂− i

~

 t

t ′
dt1 Ĥ (t1)+

�

− i

~

�2
 t

t ′
dt1

 t1

t ′
dt2 Ĥ (t1)Ĥ (t2)+ . . .

. . .+
�

− i

~

�n
 t

t ′
dt1

 t1

t ′
dt2 · · ·

 tn−1

t ′
dtn Ĥ (t1)Ĥ (t2) · · · Ĥ (tn)+ . . .

=: T̂ exp
�

− i

~

 t

t ′
Ĥ ( t̃ )d t̃

�

.

(A.4)

With the last step, a notation for the infinite series of integrals is defined. T̂ is the time
ordering operator as introduced in section 2.2.2.
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That ρ̂(t ) = Û (t , t ′)ρ̂(t ′)Û †(t ′, t ) is indeed the formal solution of the Von Neumann
equation ∂t ρ̂(t ) = −i/~[Ĥ (t ), ρ̂(t )], can be checked by just inserting the former into
the latter and using the above mentioned properties of Û .

i~∂t ρ̂(t ) = i~∂t[Û (t , t ′)ρ̂(t ′)Û †(t ′, t )]

= [i~∂t Û (t , t ′)]ρ̂(t ′)Û †(t ′, t )+ Û (t , t ′)ρ̂(t ′)[i~∂t Û †(t ′, t )]

= Ĥ (t )Û (t , t ′)ρ̂(t ′)Û †(t ′, t )− Û (t , t ′)ρ̂(t ′)[Ĥ (t )Û (t , t ′)]†

= [Ĥ (t ), Û (t , t ′)ρ̂(t ′)Û †(t ′, t )]

= [Ĥ (t ), ρ̂(t )].

(A.5)

In the step from the second to third row, we used the Schrödinger equation (A.3).
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B
Sequential Rates: Tracing out the Leads
We start from equation (2.21), insert the tunneling Hamiltonian ĤT from (2.1f) and
write the states |ψ〉 and |ψ′〉 explicitly as tensor product states. With the spin σ that is
uniquely determined by the choice of χ and χ ′, this yields

~

2π |γ |2 Wχ←χ ′ =


kLkR
k′Lk′R



k1 p1
k2 p2

〈χ ′k′Lk′R|d̂ †
σ

ĉk1 p1
+ ĉ†

k1 p1
d̂σ |χkLkR〉×

〈χkLkR|(d̂ †
σ

ĉk2 p2
+ ĉ†

k2 p2
d̂σ )ρ̂leads|χ ′k′Lk′R〉δ(Eψ− Eψ′). (B.1)

Off all four termes, that would result from expanding the operator sums, only those two
contribute that eventually conserve the particle number. This is because the operator
products are sandwiched between the pair of dual states 〈ψ′| and |ψ′〉. The correspond-
ing summation is equivalent to a trace over the leads. We arrive at

Wχ←χ ′ ∝


kLkR



k1 p1
k2 p2

�

|〈χ |d̂ †
σ
|χ ′〉|2 Trleads{ĉ†

k1 p1
|kLkR〉〈kLkR|ĉk2 p2

ρ̂leads}
+ |〈χ |d̂σ |χ ′〉|

2
Trleads{ĉk1 p1

|kLkR〉〈kLkR|ĉ†
k2 p2
ρ̂leads}

�

×
×δ(Eψ− Eψ′).

(B.2)

The remaining two terms for tunneling out off and onto the dot, respectively, can be
further evaluated, if we consider the restrictions for the values of the variables that can
be read of the operator products in each of the traces. Clearly, the leads involved in
each tunneling process have to be equal: p1 = p2 = p. Hence, off the outer sums, only
the one over k p has to be considered. Furthermore, depending on p we can derive
the conditions εk p

− εk′p
=∓εk2

and εk−p
− εk′−p

= 0. Finally, it can be concluded, that
k1 = k2. By taking all those constraints into account, we arrive at

Wχ←χ ′ ∝ |〈χ |d̂ †
σ
|χ ′〉|2



k p

Trp{ĉ†
k p

ĉk p ρ̂p}δ(εχ − εχ ′ − εk)

+ |〈χ |d̂σ |χ ′〉|
2

k p

Trp{ĉk p ĉ†
k p
ρ̂p}δ(εχ − εχ ′ + εk).

(B.3)

Now, we can identify ĉ†
k p

ĉk p = n̂k p and ĉk p ĉ†
k p
= 1̂− n̂k p and make use of the fact, that

the expectation value of the particle number operator 〈n̂k p〉 := Trp{ρ̂p n̂k p} with wave
vector k of lead p is given by the Fermi function f (εk −µp) = [1+ exp(βεk p)]

−1, the
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thermal occupation function for a free gas of fermions. Here, we used εk p = εk −µp .
To carry out the remaining sum over k, we transform it into an integration over energy
space (see section 2.3.1) in the wide-band limit:



k → ϱ(εF)


dεk, where ϱ(εF) is the
density of states at the Fermi level εF. In the end, this yields expression (2.23).
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C
The Interaction Picture
The interaction picture is useful to conceptually separate a Hamiltonian Ĥ into parts
Ĥ0 and Ĥ1, which are often called the free and the interaction part, respectively. It is
a mixture of the Schrödinger picture, in which the time dependence is carried by the
Hilbert states, and the Heisenberg picture, where it is assigned to the operators. In the
interaction picture, operators propagate in time according to the free evolution part
only. The Hilbert states carry the “remaining” time dependence, which is given by the
condition that the resulting expectation values are equivalent to the Schrödinger picture.
Since all relations between states and operators are essentially differential equations in
time, a reference point (initial condition) ti has to be fixed. In this point, the Schrödinger
and interaction picture coincide. In the following, we denote operators and Hilbert
states in the different pictures with the superscripts “S” and “I ” for the Schrödinger and
interaction picture, respectively. Thus, we obtain the defining relations

|ψS(t )〉= Û (t , ti )|ψS(ti )〉, |ψS(ti )〉= |ψI (ti )〉, |ψI (t )〉= Û I (t , ti )|ψI (ti )〉
Ô S = Ô I (ti ) and Ô I (t ) = Û0(ti , t )Ô S Û0(t , ti ) (C.1)

〈ψI (t )|Ô I (t )|ψI (t )〉= 〈ψS(t )|Ô S |ψS(t )〉,
where Û is the Schrödinger full evolution operator (A.4) and Û0 the free evolution
operator, which is the result of replacing Ĥ with Ĥ0 in Û . The interaction picture
propagator Û I can then be determined by the equations (C.1) to be

ÛI (t , ti ) = Û0(ti , t )Û (t , ti ). (C.2)

To derive an integral expression of Û I similar to (A.4), we form a Schrödinger equation
by deriving (C.2) with respect to time and use (A.3):

i~∂t Û I (t , ti ) = i~∂t[Û0(ti , t )Û (t , ti )]

= i~[{∂t Û0(ti , t )}Û (t , ti )+ Û0(ti , t )∂t Û (t , ti )]

= [−Ĥ0Û0(ti , t )Û (t , ti )+ Û0(ti , t )Ĥ Û (t , ti )]

= Û0(ti , t )[Ĥ − Ĥ0]Û0(t , ti )Û0(ti , t )Û (t , ti )

= Ĥ I
1 (t )Û

I (t , ti ).

(C.3)

Completely analogous to appendix A, from this equation we obtain the identity

Û I (t , t ′) = T̂ exp
�

− i

~

 t

t ′
Ĥ I

1 ( t̃ ) d t̃
�

. (C.4)
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We can use this to derive the alternative version of the full evolution operator, that was
used in equation (4.6). With (C.2), we can write

Û (t , t ′) = Û0(t , ti )Û
I (t , t ′)Û0(ti , t ′)

= Û0(t , ti )T̂ exp
�

− i

~

 t

t ′
Ĥ I

1 ( t̃ ) d t̃
�

Û0(ti , t ′)

= Û0(t , t ′)− Û0(t , ti )
i

~

 t

t ′
dt2 Ĥ I

1 (t2) Û0(ti , t ′)

+ Û0(t , ti )
�

− i

~

�2
 t

t ′
dt2

 t

t2

dt3 Ĥ I
1 (t3)Ĥ

I
1 (t2) Û0(ti , t ′)+ . . .

= Û0(t , t ′)+
 t

t ′
dt2 Û0(t , t2)

�

− i

~
Ĥ1

�

Û0(t2, t ′)

+
 t

t ′
dt2

 t

t2

dt3 Û0(t , t3)
�

− i

~
Ĥ1

�

Û0(t3, t2)
�

− i

~
Ĥ1

�

Û0(t2, t ′)+ . . .

=
∞


N=2

 t

t ′
· · ·
 t

tN−2

Û0(∆t
(N−1))

�

− i

~
Ĥ1dtN−1

�

· · · Û0(∆t
(2))
�

− i

~
Ĥ1dt2

�

Û0(∆t
(1))

(C.5)

with∆t
(k) := tk+1− tk with t1 := t ′ and tN := t .
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D
Coherent States, Grassmann Numbers and
Gaussian Integration
Partition of Unity

We check that (4.21) is indeed a partition of unity by plugging-in the corresponding
expressions for the coherent states (4.16) and the exponential function (4.17):



df dfe−f f|f〉〈f|=


df df (1− f f)(1̂− fd̂ †)|0〉〈0|(1̂− d̂ f )

=


df df
�|0〉〈0| − f|1〉〈0| − f |0〉〈1| − f f |0〉〈0|+ ff |1〉〈1|
+ f ff


0

|1〉〈0|+ f ff


0

|0〉〈1| − f fff


0

|1〉〈1|	

=


df df
�|0〉〈0| − f|1〉〈0| − f |0〉〈1|+ ff (|0〉〈0|+ |1〉〈1|)	

= (|0〉〈0|+ |1〉〈1|)
  

1̂



df df ff = 1̂


df f = 1̂.

(D.1)

In the second step (second to third line), we exploited the fact that in a Grassmann alge-
bra with n generators, polynomial terms larger than n vanish, for they contain at least
two equal factors. Either way, the Grassman integration over both generators would
have eliminated them anyways, since all integrands that do not contain both generators
(exactly once) vanish. Hence, all terms with less than two Grassmann numbers evaluate
to zero, too, and we are left with the unity operator 1̂. This prove can be extended to
bases of multi-fermion coherent states and equation (4.22b). A straightforward version
is shown by Negele and Orland [188].

Exponential Law

As an example for the fact, that the Grassmann analogies for usual real and complex
exponential expressions hold, when Grassmann numbers appear pairwise, we prove
equation (4.23):

exp
n

n


i=1

f i fi

o

= 1+
n


i=1

f i fi +
1

2!

� n


i=1

f i fi

�2

+
1

3!

� n


i=1

f i fi

�3

+ . . .
1

n!

� n


i=1

f i fi

�n

= . . .
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. . .= 1+
n

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exp{f i fi},

(D.2)

where Tn(k) is the set of injective maps t of {1,2, . . . , k} into {1,2, . . . , n} with t (1) <
t (2) < . . . < t (k) and Sk is the symmetric group of degree k. It is because Grassmann
numbers with the same index appear in pairs, that no signs are collected by ordering all
Grassmann products with ascending numbers of indices.

Derivation of Gaussian Path Integral

To derive the path integral expressions (4.26) explicitely, we insert the partition of unity
(4.25) for the whole model (2.1) on both sides of every short time propagator in (4.9),
assuming free propagation, Ûδt ≡ :Û0(δt ):

Û0(t f , ti )

≈


τ1...τN

 N


j=1

[dΨτj dΨ
τ
j ]e

−N
j=1ΨiΨi

h
N


j=1

〈Ψτj+1| :Û0(δt ): |Ψτj 〉
i

|ΨτN+1〉〈Ψτ1 |

=
 N


i=1

[dΨ j dΨ j ]exp
n

i
N


i=2

�

iΨ j

Ψ j −Ψ j−1

δt
− H0

~
[Ψ j ,Ψ j−1,τi]

�

δt −Ψ1Ψ1

o

×|ΨτN+1〉〈Ψτ1 |

≈
 N


i=1

[dΨ j dΨ j ]exp
�

iS0[{Ψ,Ψ,τi}]
	|ΨτN+1〉〈Ψτ1 |.

(D.3)
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The discrete action can be identified with

S0[{Ψ,Ψ,τi}] =
N


i=2

�

iΨ j

Ψ j −Ψ j−1

δt
− H el

0

~
[Ψ j ,Ψ j−1,τi]

�

δt −
∆imp∆t

2~
τi ,

S imp

(D.4)

which, in the limit δt → 0, converges to the continuous expression (4.27). The approxi-
mative relation in the last line of (D.3) has to be used, since term−Ψ1Ψ1 is unaccounted
for in the definition of the discrete action. In the limit of infinitely small δt , however,
this boundary contribution that can be neglected. The term S imp we derived here is
equal to (4.28) for an impurity path (τi , . . . ,τi )with constant orientation—the only one
that can contribute in the case of free time evolution.

The Trace Operation

The proof of expression (4.43) shown here, is based on the explanations from [188]. Let
{|k〉} be the complete set of Fock states in a fermionic Hilbert space with n d.o.f. We
use the coherent state partition of unity (4.22b) to rewrite the trace of an operator Ô in
the Fock basis as

Tr{Ô}=


k

〈k|Ô|k〉=


k



dFdFe−FF〈k|F〉〈F|Ô|k〉

=


k ,k ′



dFdFe−FF〈0|fi1 · · · fik
|F〉〈F|α(k ′)|k ′〉

=


k ,k ′



dFdFe−FF〈0|fi1 · · · fik
|F〉〈F|α(k ′)f j1

· · · f jk′
|0〉

=


k ,k ′



dFdFe−FF(−1)k
′〈F|α(k ′)f j1

· · · f jk′
|0〉〈0|fi1 · · · fik

|F〉

=


k ,k ′



dFdFe−FF〈−F|α(k ′)|k ′〉〈k|F〉

=


k



dFdFe−FF〈−F|Ô|k〉〈k|F〉

=


dFdFe−FF〈−F|Ô|F〉.

(D.5)

It is equally possible to attach the minus sign to the ket instead of the bra state. The
crucial step is the one from line four to five. It is easy to see, that the correct sign for all
possible numbers k ′ is automatically obtained, if a sign is attached to every Grassmann
number in 〈F|.
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D. Coherent States, Grassmann Numbers and Gaussian Integration

Matrix Element of Thermal State

Equivalent to calculating (the fermionic part of) matrix element (4.49) for the free, ther-
mal leads is to evaluate expression 〈−F|exp{i αi n̂i}|F〉 with n̂i = f̂ †

i f̂i of a general
fermionic system with n d.o.f. As a first step, for a single d.o.f., we consider:

〈f|eαn̂|f〉= 〈f|1̂+
∞


k=1

αk

k!
n̂k |f〉= 〈f|1̂+ n̂

∞


k=1

αk

k!
|f〉= 〈f|1̂+(eα− 1)n̂|f〉

= [1+(eα− 1)f f]〈f|f〉= [1+(eα− 1)f f](1+ f f) = 1+ eαf f
= exp{eαf f}.

(D.6)

Since for n differing fermions the particle number operators n̂i commute pairwise, we
can write exp{i αi n̂i} =



i exp{αi n̂i}. With this, we get for the sought-after matrix
element

〈−F|exp{


i

αi n̂i}|F〉= 〈−F|


i

exp{αi n̂i}|F〉= 〈−F|


i

[1̂+(eαi − 1)n̂i]|F〉

=


i

[1− (eαi − 1)f i fi]〈−F|F〉

= exp{−


i

(eαi − 1)f i fi}exp{−


i

f i fi}

= exp{−


i

eαi f i fi}.

(D.7)

In the last step, we used the exponential law as shown above. Replacing the summation
index as i → kσ p and setting αi →−β(εkσ p −µp), immediately yields the result from
equation (4.49).
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E
Hubbard-Stratonovich Transformation
In the following, we review how the system of Coulomb interacting dot electrons (Ĥ U

dot)
can be mapped to a system of non-interacting electrons, coupled to a field of Ising-like
fluctuating spins, as described by equation (4.35). The dot’s particle number operators
obey the commutator relations n̂2

σ = n̂σ and [n̂σ , n̂σ ′] = 0. With these, we have

∀
n>0

: (n̂↑− n̂↓)
2n = (n̂↑− n̂↓)

2 and ∀
n>0

: (n̂↑− n̂↓)
2n−1 = (n̂↑− n̂↓). (E.1)

Then, with∆n̂ := n̂↑− n̂↓, we get

exp
�

A∆n̂2	=
∞


m=0

Am

m!
∆n̂2m = 1̂+∆n̂2

∞


m=1

Am

m!
= 1̂+(eA− 1)∆n̂2 (E.2a)

and

exp
�

B∆n̂
	

=
∞


m=0

B m

m!
∆n̂m = 1̂+

�B1

1!
+

B3

3!
+ . . .

�

∆n̂+
�B2

2!
+

B4

4!
+ . . .

�

∆n̂2

= 1̂+ sinh(B)∆n̂+(cosh(B)− 1)∆n̂2 (E.2b)

Note that operator (E.2b) with the quadratic exponent has a term proportional to ∆n̂,
whereas (E.2a) has not. To express the quartic exponential by means of the Gaussian
one therefore requires, as a first step, to find a Gaussian operator lacking a ∆n̂-term.
Since sinh is an odd function, while cosh is even, such an operator is given by the sum

1

2

�

e+B∆n̂ − e−B∆n̂
�

=
1

2



ζ=±1

exp{ζ B∆n̂}= 1̂+(cosh(B)− 1)∆n̂2. (E.3)

It follows immediately, that the Gaussian (E.3) equals the quartic exponential operator
(E.2a), if cosh(B) = e A. For a purely imaginary A = ±i |ℑA| and a complex number
B = |ℜB | ± i |ℑB | with positive real part, we obtain the conditional equation

cosh(|ℜB |)cos(|ℑB |)± i sinh(|ℜB |) sin(|ℑB |) = cos(|ℑA|)± i sin(|ℑA|), (E.4)

where we used the addition theorem of the cosh function to arrive at the l.h.s.. For
0≤ |ℑA| ≤π/2 there exists the unique solution:

|ℜB |= sinh−1
Æ

sin(|ℑA|) and |ℑB |= sin−1
Æ

sin(|ℑA|), (E.5)
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E. Hubbard-Stratonovich Transformation

which can be easily checked. We illustrate this for the real part of (E.4) by calculating
the product of cosh(|ℜB |) and cos(|ℑB |):

cosh(|ℜB |) =
Æ

1+ sinh2(|ℜB |) =
Æ

1+ sin(|ℑA|)
cos(|ℑB |) =

Æ

1− sin2(|ℑB |) =
Æ

1− sin(|ℑA|)
cos(|ℑA|) =

Æ

1− sin2(|ℑA|) = cosh(|ℜB |)cos(|ℑB |).thus

(E.6)

The imaginary part can be checked analogously. With this result, we can perform the
desired mapping for our system. Using the identities n̂↑n̂↓ = 1

2 (n̂↑ + n̂↓)− 1
2 (n̂↑ − n̂↓)2,

ℑA = U∆t/(2~), and B = λ∆t , we obtain equation (4.35) for the evolution operator
exp{−i/~Ĥ U

dot∆t}.
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F
Lead Green’s Function
Green’s Function and Determinant

To evaluate the identities (4.58) and (4.59), we consider the discrete version of the free
inverse Green’s matrix G−1

leads for the leads. It is worthwhile noticing that it is a block
matrix, whose constituent blocks are all diagonal. Hence, by appropriate permutations
of rows and columns, it can be sorted with respect the fermion d.o.f. In other words
G−1

leads is equivalent to the direct sum of inverse Green’s functions g−1
R of the individual

lead electrons with R = (kσ p):

G−1
leads
=


R

g−1
R . (F.1)

It follows immediately, that the determinant and inverse of G−1
leads are given by

det{G−1
leads
}=


R

det{g−1
R } and Gleads =



R

gR. (F.2)

Thus, all we are left with to arrive at (4.58) and (4.59), is to calculate determinant and
inverse of

i g−1
R =



































−1 −e−β(εk−µp )

1− iφ −1
1− iφ −1

... . . .

1
...
. . . −1

1+ iφ −1
1+ iφ −1



































, (F.3)

where the lead’s phase φ = εkδt/~ is independent of the impurity- and HS fields and,
thus, of time. First, we calculate the determinant and obtain

det{i g−1
R }= lim

δt→0
det{(−1)2N + e−β(εk−µp )(1− iεRδt/~)N−1(1+ iεRδt/~)N−1}

= lim
δt→0

det{(−1)2N + e−β(εk−µp ){1+(εRδt/~)2}N−1}
≈ lim

δt→0
det{1+ e−β(εk−µp ) exp{(εRδt/~)2(N − 1)}}

= 1+ e−β(εk−µp ).

(F.4)
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F. Lead Green’s Function

Hence, det{iG−1
leads} =



R(1+ exp{−β(εk −µp)}). The additional sign in front of the
i in (4.59) does not alter the value of the determinant, since the Green’s matrix has an
even dimension by construction. What is left to prove equation (4.59), is to show that
this equals the constant N . To this end, we define the many-particle lead states with
m particles |ψleads〉 = |R i1 , . . . ,R im

〉, where the fermion states |R ik
〉 with 1 ≤ k ≤ m are

occupied and all other states are empty. Then we get:

N =Tr[exp{−β


p

(Ĥp −µpN̂p)}]

=


ψleads

〈ψleads|exp{−β


p

(Ĥp −µpN̂p)}|ψleads〉

=
∞


m=0



i1,...,im

exp{−β
m


k=1

(εRik
−µpk

Npk
)}

= 1+


R1

e−β(εR1
−µp1

Np1
)+


R1,R2

e−β
2

k=1(εRk
−µpk

Npk
)+ . . .

=


kσ p

�

1+ e−β(εk−µp )
�

.

(F.5)

To calculate the Green’s function, we have to invert (F.3), which results in (see [88])

i g++R =
1

1+ρ













1 −ρ(1+ iφ) −ρ(1+ 2iφ) · · ·
1− iφ 1 −ρ(1+ iφ) · · ·
1− 2iφ 1− iφ 1

...
...

...
. . . . . .













+O (δt
2), (F.6a)

i g+−R =
−ρ

1+ρ













· · · 1+ 2iφ 1+ iφ 1
· · · 1+ iφ 1 1− iφ
. . . 1 1− iφ 1− 2iφ
. . . . . .

...
...













+O (δt
2), (F.6b)

i g−+R =
1

1+ρ













...
... . . . . . .

1− 2iφ 1− iφ 1 ...

1− iφ 1 1+ iφ · · ·
1 1+ iφ 1+ 2iφ · · ·













+O (δt
2), and (F.6c)

i g−−R =
1

1+ρ













. . . . . .
...

...
. . . 1 −ρ(1− iφ) −ρ(1− 2iφ)
· · · 1+ iφ 1 −ρ(1− iφ)
· · · 1+ 2iφ 1+ iφ 1













+O (δt
2), (F.6d)

where we defined ρ := exp{−β(εk −µp)}. To get from these discrete matrices to the
continuous equations (4.58), we first identify ρ/(1+ρ) = f +(εk −µp) and (1+ρ)−1 =
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f −(εk−µp). Second, we notice that any matrix element in row k (corresponding to real-
time t ) and column l (corresponding to t ′) comes with a factor 1∓iεk(k−l )δt/~, where
the sign depends on the real-time difference t − t ′ ≡∓(k− l )δt . For example, in matrix
i g+−R the upper right corner corresponds to the real-time coordinates t = t ′ = ti and thus,
the matrix element in row 3, column N comes corresponds to real-times t = ti + 2δt
and t ′ = ti and comes with a factor 1− 2iεkδt/~. Then, with the approximation

1− iεk(t − t ′)/~= exp{−iεk(t − t ′)/~}+O (δt
2), (F.7)

and (F.2) we obtain the result (4.58) in the limit δt → 0.

Evaluating the γ -matrix

Replacing the summation over the lead wave vectors by the integration over energies εk
in equation (4.60b) yields for t̃ := t − t ′ ̸= 0

γ (p, t̃ ) =
iΓ

~2

 dεk

2π
e−iεk t̃/~

 

θ( t̃ ) f +p (εk)−θ(− t̃ ) f −p (εk) − f +p (εk)
f −p (εk) θ(− t̃ ) f +p (εk)−θ( t̃ ) f −p (εk)

!

=
iΓ

2β~2
e−iµp t̃/~

�

θ( t̃ ) f̂ +( t̃ )−θ(− t̃ ) f̂ −( t̃ ) − f̂ +( t̃ )
f̂ −( t̃ ) θ(− t̃ ) f̂ +( t̃ )−θ( t̃ ) f̂ −( t̃ )

�

=
Γ

2β~2

e−iµp t̃/~

sinh[π t̃/(~β)]

�−1 1
1 −1

�

,

(F.8)

where we calculated the Fourier transform f̂ of the Fermi function by a complex con-
tour integration

f̂ ±( t̃ ) =
β

π



dεk f ±(εk)e
−iεk t̃/~ =

β

π



dεk f (εk)e
∓iεk t̃/~

=±2i
∞


m=0

exp
n

−(2m+ 1)
π t̃

~β

o

=±2ie−
π t̃
~β

∞


m=0

exp
n

−2π t̃

~β

om

=± 2ie−
π t̃
~β

1− e−
2π t̃
~β

=± 2i

e
π t̃
~β − e−

π t̃
~β

=±i
h

sinh
�π t̃

~β

�i−1

(F.9)

Applying Wick’s Theorem

We show how to arrive at the result (4.66) by applying Wick’s theorem to 〈P ↑K〉. It states
that the expectation value of a operator product is equal to the total pairing, i.e., the
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F. Lead Green’s Function

sum of all possibilities to form contractions, pairs, of creators and annihilators:

〈P ↑K〉= 〈d̂ †
↑ (t

<
4 )d̂↑(t

<
3 )d̂

†
↑ (t2)d̂↑(t

<
1 )〉+ 〈d̂ †

↑ (t
<
4 )d̂↑(t

<
3 )d̂

†
↑ (t2)d̂↑(t

<
1 )〉

= 〈d̂↑(t<3 )d̂ †
↑ (t

<
4 )〉〈d̂↑(t<1 )d̂ †

↑ (t2)〉− 〈d̂↑(t<3 )d̂ †
↑ (t2)〉〈d̂↑(t<1 )d̂ †

↑ (t
<
4 )〉

= i2[(Geff
↑ )
++
t<1 ,t2
(Geff
↑ )
+−
t<3 ,t<4
− (Geff

↑ )
+−
t<1 ,t<4
(Geff
↑ )
++
t<3 ,t2
]

= i2 det







(Geff
↑ )
++
t<1 ,t2

(Geff
↑ )
+−
t<1 ,t<4

(Geff
↑ )
++
t<3 ,t2

(Geff
↑ )
+−
t<3 ,t<4






,

(F.10)

where in the third step the definition of the Green’s function was used. This relation
could also be obtained in the framework of the fermionic path integal as can be seen
in [88], for example. The corresponding expression for 〈P ↓K〉 is obtained in exactly the
same way.
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G
Supplementary Calculations for ISPI
Neglecting Block Connections Beyond the Coherence Time

We use mathematical induction to show that for all i ≥ 2, the modified diagonal blocks
of matrix X in section 4.2.2 are given by

X ′
i ,i = X i ,i − X i ,i−1 X −1

i−1,i−1 X i−1,i , (G.1)

when step (4.I2) is applied at each iteration. As this relation is already established for
i = 2 [see equation (4.72)], we just need to check for the iteration step i → i + 1. After
iteration i − 1, we have

X ′
i ,i

XD−i





















X i+1,i

X i ,i+1
detX= det X 1,1[

i−1


k=2

det X ′
k ,k]det . (G.2)

In the i -th iteration cycle, the first step is to eliminate X i ,i+1 in the remaining D− i+1
dimensional block matrix. By this, block X i+1,i+1 is changed to

X i+1,i+1− X i+1,i

�

X ′
i ,i

�−1 X i ,i+1

= X i+1,i+1− X i+1,i

�

X i ,i − X i ,i−1 X −1
i−1,i−1 X i−1,i

�−1 X i ,i+1

= X i+1,i+1− X i+1,i X −1
i ,i

�

1− X i ,i−1 X −1
i−1,i−1 X i−1,i X −1

i ,i

�−1 X i ,i+1

= X i+1,i+1− X i+1,i X −1
i ,i X i ,i+1

−
∞


k=1

X i+1,i X −1
i ,i

�

X i ,i−1 X −1
i−1,i−1 X i−1,i X −1

i ,i

�k X i ,i+1.

(G.3)

To this expression, we can apply operation (4.I2). Apparently, all terms in the sum over
k, which originate from the higher order expansion orders of the inverse matrix sum in
the third line, couple spins in segments i−1 and i+1. Hence, they can all be neglected.
This yields the final result

X ′
i+1,i+1 = X i+1,i+1− X i+1,i X −1

i ,i X i ,i+1. (G.4)

It is important to keep in mind that the whole procedure for the iterative calculation of
the determinant rests on a crucial assumption: the absolute value of matrix elements is
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G. Supplementary Calculations for ISPI

largest close to the main diagonal and decays rapidly with increasing distance to it. An
assumption like (4.I2) would certainly not be justified for an arbitrary block matrix with
the same form as X. However, in the spirit of the coherence time approximation, we
can argue that non-diagonal blocks of the inverse Green’s and Ξ-matrices contribute less
to the determinant than diagonal ones. In the expansion (G.3), the first and second term
contain zero and two non-diagonal blocks, respectively. All higher orders (in the k-sum)
contain four and more and are, hence, considerably smaller. The second term cannot
be neglected without loosing all connection between spins in different segments. The
higher order terms do not further change the result qualitatively, but merely provide
(relatively) small corrections.

Expansion of a Block Matrix in Orders of Segment-Connecting Blocks

We expand the inverse of block matrix X in orders of those matrix blocks X i ,i±1 that
lie on the secondary diagonals and describe connections between spins on different path
segments. To do so, we define

Xd =











X 1,1
. . .

X D ,D











and Xn =

















X 1,2

X 2,1
. . .

. . . X D−1,D

X D ,D−1

















, (G.5)

so that X=Xd +Xn. With this, the inverse of X can be evaluated to

X−1 = (Xd +Xn)
−1 =

�

[1+Xn(Xd )
−1]Xd

�−1

= (Xd )
−1�

1+Xn(Xd )
−1�−1 = (Xd )

−1
∞


k=0

[−Xn(Xd )
−1]k

= (Xd )
−1− (Xd )

−1Xn(Xd )
−1+(Xd )

−1Xn(Xd )
−1Xn(Xd )

−1− . . .

=: X−1
0 +X−1

1 +X−1
2 + . . .

(G.6)

In matrix notation, the two lowest order terms are given by

X−1
0 =











X −1
1,1

. . .
X −1

D ,D











(G.7)

and

X−1
1 =−

















X −1
1,1 X 1,2 X −1

2,2

X −1
2,2 X 2,1 X −1

2,2 X −1
2,2 X 2,3 X −1

3,3

X −1
3,3 X 3,2 X −1

2,2

. . .
. . .

















. (G.8)
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If we set (Geff
σ )−1 for X, these terms yield equation (4.74) for the approximate Green’s

function. To further include the third expansion term from equation (G.6) would con-
tribute the addends

X −1
k ,k X k ,k−1 X −1

k−1,k−1 X k−1,k X −1
k ,k

+ X −1
k ,k X k ,k+1 X −1

k+1,k+1 X k+1,k X −1
k ,k

(G.9)

to diagonal elements in row k. We can argue in the same way as above, as to why
the CTA permits to neglect these contributions. Not only are they of higher order
in the non-diagonal blocks and, thus, relatively small. To calculate them also requires
knowledge of spins in three consecutive segments (k , k±1), which contravenes the CTA
and impedes the iterative calculation of Z [η]. The second term on the other hand has
to be included, since it connects close-lying spins in neighbouring segments.

After the cancellation of the divergent elements in the generating function in section
4.2.3, the situation complicates slightly. The sought-after approximate Green’s function
is given by the matrix product D−1

σ Gel
0,σ . In this case, we approximate the inverse of

Dσ according to (4.74) and multiply it with the free Green’s matrix in block form. Yet,
this straightforward procedure has to be adapted once more to fully comply with the
CTA, since diagonal elements would involve spins from both neighbouring segments,
while the system only “remembers,” at a given iteration, the spins in a path of two
segments length. Hence, as far as the system is considered, at iteration k − 1 → k
segment k − 1 is the beginning of the whole “remembered” spin path, while segment
k is its end. Therefore, it suffices to assume that the block matrices used for a CTA-
conform approximation have block dimension 2. As a result, the approximate value of
a matrix product X−1Y at iteration step k − 1→ k is given by






X −1
k−1,k−1

−X −1
k−1,k−1

X k−1,k X −1
k ,k

−X −1
k ,k

X k ,k−1 X −1
k−1,k−1

X −1
k ,k













Y k−1,k−1 Y k−1,k

Y k ,k−1 Y k ,k






. (G.10)

With X=Dσ and Y=Gel
0,σ , we obtain equation (4.85).

Inversion of the Inverse Free Electronic Green’s Function

To invert (Gel
0,σ)
−1
t ,t ′ from equation (4.76), we first transform it into Fourier space, where

it is finite for all ω,ω′ and, hence, can be handled more easily. For this, we replace
the time dependent dot-electron fields in the action Sel

0,σ =


dt dt ′ dσ (t )(Gel
0,σ)
−1
t ,t ′dσ (t ′)

with dσ (t ) = (2π)
−1


dω exp{−iωt}dσ (ω) and dσ (t ) = (2π)
−1


dω dσ (ω)exp{iωt} to
obtain

(Gel,0
dot,σ
)−1
ω,ω′ =

�

1 0
0 −1

�

dt dt ′ e iωtδ(t − t ′)(i∂t −ωU
σ
)e−iω′ t ′
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=
�

1 0
0 −1

�

dt e iωt (ω′−ωU
σ
)e−iω′ t (G.11)

= 2πδ(ω−ω′)
 

ω−ωU
σ

0
0 −ω+ωU

σ

!

,

and, with γ (p, t − t ′) = (2π)−1


dω exp{−iω(t − t ′)}γ (p,ω) [see equation (F.7) in
appendix F],

(G0
env,σ )

−1
ω,ω′ =



p



dt dt ′ e i(ωt−ω′ t ′)γ (p, t − t ′)

=
1

2π



p



dt dt ′ dω′′ e i(ω−ω′′)t e−i(ω′−ω′′)t ′γ (p,ω′′)

= 2π


p



dω′′ δ(ω−ω′′)δ(ω′−ω′′)γ (p,ω′′)

=
2πiΓ

~
δ(ω−ω′)



p

�

fp(ω)− 1/2 − fp(ω)
1− fp(ω) fp(ω)− 1/2

�

,

(G.12)

where we used the identity


exp{±iωt}dt = 2πδ(ω) in both derivations. In the last
step of (G.12), we exploited the fact that, after replacing



k by an energy integration,
the elements of the γ -matrix are essentially given by the Fourier transform of the Fermi
function. Strictly speaking, this is only the case for the off-diagonal elements. The
diagonal entries contain the Heaviside step functions and require a little more work.
Due to the presence of the step function, each addend in a diagonal element of γ leads
to a time-ordered integral in the third line of equation (G.12). For the ++ component,
we have

iΓ

2π~



p



dt dt ′ dω′′ e i(ω−ω′′)t e−i(ω′−ω′′)t ′[θ(t − t ′) f +p (ω)−θ(t ′− t ) f −p (ω)]

=
iΓ

2π~



p



dω′′
n

 ∞

−∞
dt
 t

−∞
dt ′ e i(ω−ω′′)t e−i(ω′−ω′′)t ′ f +p (ω)

−
 ∞

−∞
dt
 ∞

t
dt ′ e i(ω−ω′′)t e−i(ω′−ω′′)t ′ f −p (ω)

o

(G.13)

=
iΓ

2π~



p



dω′′
n

 ∞

−∞
dte i(ω−ω′)t

 −∞

0
dt ′ e i(ω′−ω′′)t ′ f +p (ω)

−
 ∞

−∞
dte i(ω−ω′)t

 ∞

0
dt ′ e−i(ω′−ω′′)t ′ f −p (ω)

o

= . . .
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=
iΓ

~
δ(ω−ω′)



p



dω′′
n h

πδ(ω′−ω′′)+ i
P

ω′−ω′′
i

f +p (ω)

−
h

πδ(ω′−ω′′)− i
P

ω′−ω′′
i

f −p (ω)
o

=
iΓ

~
δ(ω−ω′)



p

n

π[ f +p (ω)− f −p (ω)]+ i


P dω′′

ω′−ω′′ [ f +p (ω)+ f −p (ω)]
o

=
2πiΓ

~
δ(ω−ω′)

f +p (ω)− f −p (ω)

2
,

0

(G.13)

where P denotes the Cauchy principal value. We used the identity
∞

0 exp{iωt}dt =
πδ(ω) + iP /ω. If we now add equations (G.11) and (G.12) and perform the summa-
tion over lead index p, we arrive at the final result (4.79) for the free inverse Green’s
function in frequency space. It can be easily inverted yielding

(Gel
0,σ )ω,ω′

=
2πδ(ω−ω′)

(ω−ωU
σ
)2+(Γ/~)2

 

ω−ωU
σ
+ iΓ/~[1− F (ω)] −iΓ/~F (ω)

iΓ/~[2− F (ω)] −ω+ωU
σ
+ iΓ/~[1− F (ω)]

!

.

(G.14)

The next step of transforming it back into time space is done by complex contour inte-
gration. The denominator in front of the matrix ensures that all the integrals converge.
Two kinds of integrals appear in the conversion process, which we deal with separately.
Using the residue theorem, the first kind evaluates to

 ∞

−∞

dω

2π

(ω−ωU
σ
)e−iω(t−t ′)

(ω−ωU
σ
)2+(Γ/~)2

= e−iωU
σ (t−t ′)

 ∞

−∞

dω

2π

ω e−iω(t−t ′)

ω2+(Γ/~)2

=
2πi e−iωU

σ (t−t ′)

2π

h

−θ(t − t ′)
e−Γ/~(t−t ′)

2
+θ(t ′− t )

eΓ/~(t−t ′)

2

i

=− i sign(t − t ′)

2
e−iωU

σ (t−t ′)e−Γ/~|t−t ′|.

(G.15)

In the second kind of integral, the Fermi function appears in the numerator of the
integrand. Therefore, the residue sum also involves the Fermi function’s infinitely many
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residues at the frequencies iΩm with Ωm = (2m+ 1)π/(~β). Thus, we get

iΓ

~

 ∞

−∞

dω

2π

f (ω−µp/~)e−iω(t−t ′)

(ω−ωU
σ
)2+(Γ/~)2

=
iΓ

~

 ∞

−∞

dω

2π

f (ω)e−i[ω+µp/~](t−t ′)

(ω− [ωU
σ
−µp/~])

2+(Γ/~)2

=− Γ

2πi~
e−iµp/~(t−t ′)

 ∞

−∞
dω

f (ω)e−iω(t−t ′)

(ω−ω1)
2+(Γ/~)2

=
Γ

~
e−iµp/~(t−t ′)

h

θ(t − t ′)
n

− 1

β~

∞


m=0

e−Ωm(t−t ′)

(ω1+ iΩm)
2+(Γ/~)2

+
i~
2Γ

e−i[ω1−iΓ/~](t−t ′) f (ω1− iΓ/~)
o

+θ(t ′− t )
n 1

β~

∞


m=0

eΩm(t−t ′)

(ω1− iΩm)
2+(Γ/~)2

+
i~
2Γ

e−i[ω1+iΓ/~](t−t ′) f (ω1+ iΓ/~)
oi

=−sign(t − t ′)Γ

β~2
e−iµp/~(t−t ′)e−π|t−t ′|/(β~)

∞


m=0

�

e−2π|t−t ′|/(β~)�m

(ω1+ i sign(t − t ′)Ωm)
2+(Γ/~)2

+
i

2
e−iωU

σ (t−t ′)e−Γ/~|t−t ′| f (ω1− i sign(t − t ′)Γ/~)

=:ω1

(G.16)

With these results and the definition

Gp(t − t ′) :=
Γ

β~2

∞


m=0

e−iµp/~(t−t ′)�e−2π|t−t ′|/(β~)�m

(ωU
σ
−µp/~+ i sign(t − t ′)Ωm)

2+(Γ/~)2
, (G.17)

we can now write down all four Keldysh components of the free Green’s function in
real-time space. We obtain (Gel

0,σ)t ,t ′ := (G̃el
0,σ)t ,t ′[t]−2 with

(G̃el
0,σ )

++
t ,t ′ =

i

2
e−Γ/~|t−t ′|e−iωU

σ (t−t ′){ f −L (ω̃
U
σ
)− f +R (ω̃

U
σ
)− sign(t − t ′)}

+ sign(t − t ′)e−π|t−t ′|/(β~){GL(t − t ′)+GR(t − t ′)}
(G.18a)

(G̃el
0,σ )

+−
t ,t ′ = (G̃

el
0,σ )

++
t ,t ′ −

i

2
e−Γ/~|t−t ′|e−iωU

σ (t−t ′){1− sign(t − t ′)} (G.18b)

(G̃el
0,σ )

−+
t ,t ′ = (G̃

el
0,σ )

++
t ,t ′ +

i

2
e−Γ/~|t−t ′|e−iωU

σ (t−t ′){1+ sign(t − t ′)} (G.18c)

(G̃el
0,σ )

−−
t ,t ′ = (G̃

el
0,σ )

++
t ,t ′ + i sign(t − t ′)e−Γ/~|t−t ′|e−iωU

σ (t−t ′), (G.18d)
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where ω̃U
σ := ωU

σ − i sign(t − t ′)Γ/~ and [t] is a distribution that provides for the
correct time dimensions (see below). Apparently, all components explicitly show an
exponentially decaying behaviour for growing |t − t ′| and are also finite for small up to
infinitesimal values of the time difference (see section 4.2.3). At t = t ′, the imaginary
part of (Gel

0,σ)t ,t ′ has a discontinuity, which is, however, irrelevant for the cancellation
procedure shown in section 4.2.3 (see discussion there).

Units of Continuous Functions and their Discretization

To find a consistent way of attaching time units to continuous versions of discrete matri-
ces such as the inverse Green’s function (Gel

0 )
−1 in equation (4.29), we consider a matrix

Ak l := akδk lδt , where the elements ak have the dimension of time−1. By performing
the same steps taken to go from the discrete expression (4.29) to the continuous version
(4.31)—namely to pull out one δt and, in the limit δt → 0, transform it to the differ-
ential dt—we arrive at At ,t ′ = a(t )δ(t − t ′), where a(t ) is a suitable function. In the
following example

a1 a2

a3

a4
an−3

an−2an−1
an

a(t )

t

δt

,

the grey line is a plot of a function a(t ) that may be the result of the “continuation” of
sequence ak (blue lines with cross marking the value). Obviously, this matrix At ,t ′ can
be re-discretised using equation (4.81). The resulting values ãk are given by the heights
of the blue bars, which in turn are fixed by the condition that the area of each bar equals
the integral over a(t ) over interval tk∓δt/2. Depending on the size of δt and the curve
a(t ), values ak and ãk may differ from each other. Within the same accuracy bounds, we
can (and will) set ãk = a(tk)≡ ak .

Having established that equation (4.81) indeed defines a suitable discretization proce-
dure for matrices like the inverse Green’s function, we derive an expression for the unity
matrix 1k l = δk l that is consistent with it. The obvious ansatz 1t ,t ′ = δ(t − t ′) does
not have the right dimension, while the straightforward approach that was used above
yields 1t ,t ′ = δ(t − t ′)/dt , which is not a well-formed expression. A better solution is
to define Ak l := 1k lδt = δk lδt to obtain 1t ,t ′ = δ(t − t ′)/δt , which is well-defined and
has the proper dimensions. Unfortunately, this last form depends on the time step—a
contradiction to a uniquely defined continuous limitδt → 0. With the key observations
that an appropriate unity matrix has to be proportional to δ(t − t ′) and an additional
factor with dimension time−1, however, we can make the ansatz

1t ,t ′ =
δ(t − t ′)

[t]
, (G.19)
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where [t]−1 can be understood as a function that has the value 1 and carries the dimen-
sion of time−1. It is actually a distribution, whose defining property can be derived by
plugging (G.19) into (4.81), demanding that this yields back the Kronecker delta.

δk l =
!
 tk+δt/2

tk−δt/2
dt

 tl+δt/2

tl−δt/2
dt ′

δ(t − t ′)

[t]
= δk l

 tk+δt/2

tk−δt/2
dt [t]−1 (G.20)

This suggests the following general definition of the [·] distribution:
 tb

ta

f (t )[t]n dt := {F (tb )− F (ta)}(tb − ta)
n, (G.21)

where n is an integer, dF (t ) = f (t )dt , and f a test function. From the condition, that
1

2 = 1, we can derive the following rule for dimensionally correct multiplication of
continuous matrices X and Y (both have to carry the dimension of time−2):

(X Y )(t , t ′) =


dt ′′ X (t , t ′′)Y (t ′′, t ′)[t ′′]. (G.22)

162



H
Landauer-Büttiker Current and Sequential
Flip-Flop Rates
Solving the Rate Equations for the Impurity Spin Orientation

The rate equations (5.1) are inhomogeneous, linear differential equations, which can be
solved in a number of ways. Here, we employ the separation of variables after decou-
pling both equations, using the conservation of probabilities:

Ṗ↑(t ) =
dP↑
dt
(t ) =W+− (W++W−)P↑(t ) =W+− 2W P↑(t )

dP↓
dt
(t ) =W−− 2W P↓(t ).

(H.1)

We are only interested in the time evolution of the spin orientation, given by 〈τz〉(t ) =
P↑(t )−P↓(t ). Thus, by subtracting the second equation in (H.1) from the first we obtain

d〈τz〉
dt
(t ) =

w
  

W+−W−−2W 〈τz〉(t ). (H.2)

The separation of variables yields:
 t

ti

dt ′ = (t − ti ) =
 〈τz 〉(t )

〈τz 〉(ti )

dτz

w − 2W τz

=− 1

2W
ln
hw − 2W 〈τz〉(t )

w − 2W τi

i

, (H.3)

where we used the short notation 〈τz〉(ti ) = τi . After applying the exponential function
on both sides, this equation can be easily solved for 〈τz〉(t ) and leads to the solution
(5.2).

Calculation of the Landauer-Büttiker Current

To calculate the Landauer-Büttiker current as given by equations (5.5) and (5.6), we have
to evaluate basically one kind of integral, whose integrand is the product of a Fermi-
and Lorentzian function, which can be done by a complex contour integration. With
the fermionic Matsubara frequencies Ωm = (2m+ 1)π/(~β), we get

 ∞

−∞

f (ω−µ/~)dω
(ω−ω0)

2+(Γ/~)2
=
 ∞

−∞

f (ω)dω

(ω− [ω0−µ/~])2+(Γ/~)2
= . . .

=: ω̃

(H.4)
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=
 ∞

−∞

f (ω)dω

(ω− ω̃+ iΓ/~)(ω− ω̃− iΓ/~)

=πi
� ~

2iΓ
{ f (ω̃+ iΓ/~)+ f (ω̃− iΓ/~)}

− 1

~β

∞


m=0

� 1

(iΩm − ω̃+ iΓ/~)(iΩm − ω̃− iΓ/~)

− 1

(iΩm + ω̃− iΓ/~)(iΩm + ω̃+ iΓ/~)

��

=
π~
Γ
ℜ f (ω̃+ iΓ/~)

+
π

2iβΓ

∞


m=0

� 1

Ωm − iω̃−Γ/~ −
1

Ωm − iω̃+Γ/~

− 1

Ωm + iω̃−Γ/~ +
1

Ωm + iω̃+Γ/~

�

(H.4)

=
π~
Γ
ℜ f (ω̃+ iΓ/~)

+
~

4iΓ

∞


m=0

� 1

m+ 1/2− iβ
2π (~ω̃− iΓ)

− 1

m+ 1/2− iβ
2π (~ω̃+ iΓ)

− 1

m+ 1/2+ iβ
2π (~ω̃+ iΓ)

+
1

m+ 1/2+ iβ
2π (~ω̃− iΓ)

�

=
π~
Γ
ℜ f (ζ /~)+

~
4iΓ

�

Ψ(0)
�

1

2
+

iβ

2π
ζ

�

−Ψ(0)
�

1

2
− iβ

2π
ζ ∗
�

−Ψ(0)
�

1

2
+

iβ

2π
ζ ∗
�

+Ψ(0)
�

1

2
− iβ

2π
ζ

�
�

=
~
Γ

�

πℜ f (ζ /~)+
1

2
ℑΨ(0)

�

1

2
+

iβ

2π
ζ

�

− 1

2
ℑΨ(0)

�

1

2
+

iβ

2π
ζ ∗
�
�

,

where we defined ζ := ~ω0−µ+ iΓ and used the following identity for the difference
of digamma functions Ψ(0)(z):

Ψ(0)(z1)−Ψ(0)(z2) =
∞


m=0

�

1

m+ z2

− 1

m+ z1

�

. (H.5)

By setting ω0 = ωU
σ in (H.4) and plug it into the expression for the LB current, we

obtain (5.8).
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Calculating the Sequential Flip-Flop Rates

To arrive at the kinetic equation (5.15) for the flip-flop probability, we first plug in the
r.h.s. of (5.14) into (5.9). This yields

P (−τ,∆t |τ, 0) = (Π0ΣΠ)
−τ←τ
−τ←τ(∆t , 0)

=


τ1,...,τ4

 ∆t

0
dt
 t

0
dt ′ (Π0)

−τ←τ4
−τ←τ3

(∆t , t )Στ4←τ2
τ3←τ1

(t , t ′)Πτ2←τ
τ1←τ(t

′, 0)

=


τ1

 ∆t

0
dt
 t

0
dt ′ (Π0)

−τ←−τ
−τ←−τ(∆t , t )Σ−τ←τ1

−τ←τ1
(t , t ′)P (τ1, t ′|τ, 0).

(H.6)

In the last step, we used the fact that due to the electron number conservation the real-
time late state indices of a diagram have to be equal, if its early indices are. This allows
to identify the full propagator matrix element in the integral with the conditional prob-
ability to find the impurity in state |τ1〉 at time t ′, when it was in state |τ〉 at time 0. The
result is derived with respect to∆t :

dP

d∆t
(−τ,∆t |τ, 0)

=


τ1

n 1

d∆t

 ∆t

∆t−d∆t

dt
 t

0
dt ′ (Π0)

−τ←−τ
−τ←−τ(∆t , t )Σ−τ←τ1

−τ←τ1
(t , t ′)P (τ1, t ′|τ, 0)

+
 ∆t

0
dt
 t

0
dt ′
�dΠ0

d∆t

�−τ←−τ
−τ←−τ

(∆t , t )Σ−τ←τ1
−τ←τ1

(t , t ′)P (τ1, t ′|τ, 0)
o

=


τ1

 t

0
dt ′ Σ−τ←τ1

−τ←τ1
(∆t , t ′)P (τ1, t ′|τ, 0),

(H.7)

where we used (Π0)(∆t ,∆t ) = 1̂ and

�dΠ0

d∆t

�−τ←−τ
−τ←−τ

(∆t , t ) =
d

d∆t
Trel{ρ̂el〈τ|Û0(0,∆t )|−τ〉〈−τ|Û0(∆t , 0)|τ〉}

= Trel{ρ̂el〈τ|∂∆t Û0(0,∆t )|−τ〉〈−τ|Û0(∆t , 0)|τ〉}
+Trel{ρ̂el〈τ|Û0(0,∆t )|−τ〉〈−τ|∂∆t Û0(∆t , 0)|τ〉}
=

i

~
Trel{ρ̂el〈τ|Û0(0,∆t )Ĥ0|−τ〉〈−τ|Û0(∆t , 0)|τ〉}

− i

~
Trel{ρ̂el〈τ|Û0(0,∆t )|−τ〉〈−τ|Ĥ0Û0(∆t , 0)|τ〉}= 0.

(H.8)

The derivative vanishes, since the Hamiltonian Ĥ0 ≡ Ĥ − Ĥ⊥
int commutes both with

its corresponding time evolution operator Û0 and the projector |τ〉〈τ|. The subscript
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‘el’ refers to the whole electronic subsystem (both the lead and dot electrons). The
sequential diagrams in equation (5.17) that give the sequential, second-order flip-flop
rates evaluate to:1

W (2)
−τ =−

J 2

4~2

 ∞

0
dt
�

ζ〈d−−τ(0)d−τ (0)d+τ (t )d+−τ(t )〉ζ

+ζ〈d−−τ(t )d−τ (t )d+τ (0)d+−τ(0)〉ζ
	

�

�

�{ζ }=0

=
J 2

4~2

 ∞

0
dt
�

(Gel
0,−τ)

+−(t ) (Gel
0,τ)
−+(−t )+ (Gel

0,−τ)
+−(−t ) (Gel

0,τ)
−+(t )

	

=
J 2

16π2~2

 ∞

0
dt
 ∞

−∞
dω
 ∞

−∞
dω′

�

(Gel
0,−τ)

+−(ω) (Gel
0,τ)
−+(ω′)e−i(ω−ω′)t

+(Gel
0,−τ)

+−(ω)(Gel
0,τ)
−+(ω′)e i(ω−ω′)t	

=
J 2

16π2~2

 ∞

−∞
dω
 ∞

−∞
dω′(Gel

0,−τ)
+−(ω)(Gel

0,τ)
−+(ω′)

 ∞

−∞
e−i(ω−ω′)t dt

=
J 2

8π~2

 ∞

−∞
dω (Gel

0,−τ)
+−(ω)(Gel

0,τ)
−+(ω),

(H.9)

where the expectation value with subscript ‘ζ ’ is taken from equation (5.12) and the we
used the free Green’s function from equation (G.14). Now, by going from (Gel

0,σ) to the
phenomenological Green’s function (Gel,J

0,σ ) from equation (5.7), we arrive at the final
expression (5.18) for the inverse relaxation time in case of sequential flip-flops.

1This last derivation and the short paragraph at the end were slightly changed to account for the corre-
sponding modification in section 5.3 on page 118. The final result is unchanged.
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