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Abstract

We study different quantum field theories at small fermion masses on the lattice. For this
the TSMB algorithm is used and its cost dependence on the quark mass and the physical
volume are studied. We reach quark masses of roughly one sixth of the strange quark
mass. Extentions of the TSMB and improvements of the updating sequence are discussed.
The appearance of chiral logarithms and the dependence of the pion mass-squared m2

π and
the pion decay constant fπ on the quark mass in Chiral Perturbation Theory is studied.
In a supersymmetric theory it is shown that a recovery of the SUSY Ward identity can be
achieved when going to the massless limit. Finally we discuss domain wall fermions as a
possibility to reduce chiral symmetry breaking and show that their dynamical simulation
with the TSMB is feasable on today’s computers.

Zusammenfassung

Wir betrachten verschiedene Quanten-Feldtheorien bei kleinen Fermionmassen auf dem
Gitter. Hierfür wird der TSMB Algorithmus benutzt, und seine Kosten in Abhängigkeit
von der Quarkmasse und dem physikalischen Volumen werden untersucht. Wir erreichen
dabei Quarkmassen von etwa einem Sechstel der Strange-Quarkmasse. Das Auftreten
von chiralen Logarithmen und die Quarkmassen-Abhängigkeit der Pionmasse-Quadrat
m2

π und der Pion-Zerfallskonstante fπ werden studiert. Erweiterungen des TSMB und
Verbesserungen der Update Sequenz werden diskutiert. In einer supersymmetrischen The-
orie wird gezeigt, daß eine Wiederherstellung der SUSY Ward-Identität erreicht werden
kann, wenn man zum masselosen Limes geht. Abschließend besprechen wir Domain Wall
Fermionen als Möglichkeit, die Brechung der chiralen Symmetrie auf dem Gitter zu re-
duzieren, und zeigen, daß ihre dynamische Simulation mit dem TSMB auf heutigen Com-
putern möglich ist.
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Introduction

Since ancient times mankind has been fascinated by the elementary structures of nature.
As early as 400 BC the Greek philosophers Demokrit and Leukipp considered the question
of whether all ingredients of matter are indivisible. They formulated the belief that all
matter of the universe is built up from a certain number of distinct, elementary particles
called atoms (from the Greek átomos = indivisible). It took more than 2000 years until
in the nineteenth century John Dalton showed that there are indeed smallest recognizable
building blocks of which every chemical element consists, which he called atoms, and that
they remain unchanged in all chemical and physical processes. However, despite the name
they were given, these atoms are not uncuttable. But at the beginning of the twentieth
century, works by J. J. Thomson and Robert Millikan gave evidence of the existence of the
electron, and until the 1930s further works by Ernest Rutherford, Niels Bohr and James
Chadwick established a solar system-like atomic model with electrons orbiting around a
nucleus. A theoretical explanation of this model was given by Erwin Schrödinger, Werner
Heisenberg and Max Born with the theory of quantum mechanics.

For a while it was believed that protons, neutrons and electrons were the elementary
particles. But very soon further particles were discovered: the neutrino, proposed by
Wolfgang Pauli to keep energy conservation in the β decay; the muon, identical to the
electron but 200 times heavier; pions, proposed by Hideki Yukawa as the particle to
mediate the force between the nucleons, i. e. the protons and the neutrons; kaons, mesons
similar to the pions, but somewhat “strange” due to their relatively long lifetime.

Paul Dirac proposed even more particles. He tried to combine Albert Einstein’s theory
of Special Relativity with Quantum Theory. But while Quantum Mechanics is a theory
of a single particle this is no longer possible once the theory is combined with the theory
of Relativity. This is due to the equivalence between energy and mass in the theory of
Relativity, stated by the relation E = mc2. According to this equivalence, particles can
be created and annihilated and every known elementary particle acquires an antiparticle.
Therefore quantum theory has to be a theory of many particles, and hence a theory of
fields, Quantum Field Theory (QFT). The first antiparticle, which was discovered by Carl
Anderson, was the positron.

The first success of Quantum Field Theory was Quantum Electrodynamics (QED), a
Quantum Field Theory of electron and photon interactions. This theory was mainly devel-
oped by Richard Feynman, Julian Schwinger and Shinichiro Tomonaga. One of the many
successes of QED was the precise prediction of the anomalous magnetic moment ge−2. In
1967 Steven Weinberg, and independently Abdus Salam and Sheldon Glashow were able to
unify the weak interactions, that are responsible for the β-decay, with the electromagnetic
interactions to a theory of electroweak interactions, the Glashow-Weinberg-Salam (GWS)
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Figure 1: Left panel: Pseudoscalar meson octet together with the singlet η ′ classified by

the strong hyper-charge Y and the isospin T3. Right panel: The up, down and strange

quarks as underlying particles of the Eightfold Way.

theory.

It was natural to hope that a Quantum Field Theory for the strong interactions be-
tween nucleons, pions, kaons and other hadronic particles was possible, too, and that it
could order the particle zoo. A first step towards such a theory was made in 1955 by
Murray Gell-Mann and Kazuhiko Nishijima by postulating new quantum numbers with
corresponding conservation laws. In 1964 Murray Gell-Mann found, that all particles fall
into families with properties mathematically the same as those of the “group of eight”.
The corresponding theory was called the Eightfold Way. In this theory the particles are
organized into octets, e. g. the pseudoscalar meson octet in figure 1.

It was soon realized that the Eightfold Way could be explained by some underlying
fundamental particles, the so-called quarks. Three of them were proposed, the up, down
and strange quark. They have a new quantum number, called colour, and they interact
through gluons. Requiring all free particles to be colourless allows for combining a quark
with an antiquark, leading to the mesons, or combining three quarks, leading to the
baryons. The corresponding Quantum Field Theory is Quantum Chromodynamics (QCD).
Unlike QED, which is based on the Abelian group U(1), QCD, as a theory of gauge fields,
requires a more complicated group, the non-Abelian group SU(3). The foundations to
construct such Quantum Field Theories were laid by Chen-Ning Yang and Robert Mills.

The detection of the J/Ψ required to introduce a fourth quark called charm, which is
heavier than the other three quarks. Later, even heavier quarks, the bottom and the top
quark, also called beauty and truth, were proposed and found.

This theory of quarks and gluons, QCD, together with the GWS theory of the elec-
troweak interactions and the so far undiscovered Higgs particle for the creation of electron,
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neutrino and quark masses is the present Standard Model of elementary particle physics.
The Standard Model has been tested down to distances of 10−16 cm, corresponding to
energies of about 100 GeV. Up to now all experimental results are in agreement with the
Standard Model.

Before the rise of Quantum Field Theories the principal technique for computations of
particle interactions in relativistic quantum mechanics was time-dependent perturbation
theory. This technique has been adapted for Quantum Field Theory to allow computations
through Feynman diagrams. This perturbative treatment is very successful when applied
to QED, and it is natural to try this for QCD, too. However in the late 1950s it was
generally believed that the strong interactions cannot be described perturbatively. In fact
it was recognized that a naive application of perturbation theory to a theory of mesons
would fail because of the large coupling constant in the interactions between mesons and
nucleons. In the framework of QCD this can be explained through quark confinement,
the mechanism, due to which isolated quarks can never be seen in nature. Actually, this
mechanism comes together with the asymptotic freedom, due to which the forces between
quarks become small at small distances. Therefore one can use perturbation theory for
small distances, i. e. high energies, but not for large distances or small energies, because
in this strong coupling region non-perturbative effects dominate. Quark confinement and
asymptotic freedom can be explained through the self-coupling of the gluons, an effect
that doesn’t exist for the photons in QED.

There are many questions in QCD that cannot be answered by perturbation theory.
Thus, it is important to be able to calculate the observed hadron spectrum and decay
rates from first principles. Such an approach would be very useful for finding out whether
there are deviations in the spectrum or in the hadronic matrix elements that may indicate
physics beyond the Standard Model. Furthermore one could check if QCD predicts further
particles, e. g. particles only consisting of gluons. These and many other questions can
only be answered in the strong coupling region. A tool for such non-perturbative calcula-
tions has been proposed in 1974 by Kenneth Wilson. The idea was to put Quantum Field
Theory on a discretized Euclidean lattice, which leads to the correct results in the limit of
vanishing lattice spacing. As Quantum Field Theory is related to Statistical Mechanics it
is possible to compute observables on the lattice by performing Monte Carlo simulations
on a computer. However it was soon realized, that with the computer power at the time, it
was impossible to extract results of full QCD. Furthermore, there were technical problems
with the representation of the quarks, the fermions of QCD. In a first approximation the
fermions were therefore neglected from the lattice simulations, and in 2000 the CP-PACS
collaboration was able to present a precise calculation in this so-called quenched approx-
imation of the hadronic spectrum. These calculations confirmed the general structure of
the observed spectrum, however with deviations of about 10%. Without further calcu-
lations including the fermions in the simulation, it cannot be decided if these deviations
indicate a discrepancy between experiment and the theoretical framework of QCD, or if
this is just a remnant of the quenched approximation.

With the Hybrid Monte Carlo (HMC) algorithm introduced in 1986 by Anthony
Kennedy et al. it became possible to include the dynamical fermions, and another ap-
proach was presented by Martin Lüscher in 1994 with the multi-boson representation of
fermions. However, simulations of full QCD are quite expensive, the computer power re-
quired is higher compared to quenched calculations by two or three orders of magnitude.
In 1996 István Montvay invented the two-step multi-boson (TSMB) algorithm, which
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promises to be more efficient especially at the phenomenologically important regime of
light quark masses. Furthermore this algorithm unlike HMC allows the inclusion of any
number of fermion flavours. And since the Eightfold Way with three quarks was so suc-
cessful in describing the particle zoo it is natural to assume that three quarks are a good
choice for the lattice simulations, too.

The study of this work is based on the TSMB algorithm. Therefore in the first chapter
we will give more details on the lattice formulation, and the TSMB algorithm is explained
in some detail along with new developments concerning this algorithm. In addition we
explain how to extract some important masses of the hadron spectrum.

In the second chapter we study the performance of the algorithm in QCD at different
quark masses and volumes. The physical masses of the up, down and strange quark are
relatively light, and it is known that lattice algorithms suffer critical slowing down when
approaching light quark masses. However this region is the important one because the
scaling as predicted by Chiral Perturbation Theory (χPT) sets in at already light masses
around a quarter of the strange quark mass, so that we put special emphasis on the
scaling behaviour with the quark mass in this work. It has been proposed that the TSMB
algorithm may have a less severe behaviour in this regime. We then apply χPT in this
chapter to the next-to-leading order results for the pion mass-squared and the pion decay
constant, where chiral logarithms appear.

Despite the great success of the Standard Model of elementary particle physics there
are good reasons to believe in new physics beyond it. One reason is, that there is a
general acceptance of the existence of a Grand Unified Theory (GUT). This follows the
tradition of James Maxwell, who unified the electric and magnetic forces, and of the
GWS theory of electroweak interactions. Apart from the Standard Model, which is valid
in the microscopic regime, there is the theory of General Relativity by Albert Einstein,
which is valid for cosmology. The best candidates for a GUT unifying the Standard
Model and General Relativity are superstring theories, string theories that are based
on supersymmetry. It is believed that supersymmetry may be crucial to these theories,
because of the incompatibility of quantum mechanics and the General Theory of Relativity.
Supersymmetry is a symmetry between bosons and fermions. Accordingly every known
fermion has to have a bosonic partner, and every known boson needs a fermionic partner.
Apart from their spin the supersymmetric partner should have the same properties. If
nature can, indeed, be described by supersymmetry, then this symmetry has to be broken,
because otherwise the supersymmetric partners would have the same masses and they
would have already been discovered.

There are further important considerations that favour supersymmetric theories. The
three gauge couplings of the Standard Model are running couplings, i. e. their strength
depends on the energy scale. Extrapolating the known values of the coupling constants
towards high energies as in figure 2, one sees that the three couplings never match simul-
taneously. This however would be desirable, because then a GUT with just one coupling
above this scale can be expected. Due to less severe ultraviolet divergencies of supersym-
metric theories such a matching could happen in these theories around mG ≈ 2 ·1016 GeV.
Such a high scale however causes a further problem, the hierarchy problem. There is an-
other scale mW ≈ 100 GeV, at which the breaking of the electroweak symmetry occurs.
This scale is related to the mass of the Higgs particle, which is expected at a mass similar
to mW . But due to radiative corrections the Higgs should acquire a mass of the order
of mG, which is a contradiction to the much smaller scale mW . It is still possible to fine
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tune the Higgs mass towards the scale mW . However, this would require fine tuning of
the free parameters of the GUT up to 26 digits of precision in every order of perturbation
theory, which is not regarded as a solution to the hierarchy problem. Supersymmetric
theories, however, would show a better behaviour. Due to a non-renormalization theorem
the radiative corrections of the order of mG cancel each other and the free parameters of
the GUT have to be fine tuned only once. This can be regarded as a partial solution of
the hierarchy problem.

So far there are no experimental indications for supersymmetry. Indirect indications
could be inferred from the measurement of the lifetime of a proton, where supersymmet-
ric theories predict higher values than the Standard Model. However, the best evidence
for supersymmetry would be the observation of a supersymmetric partner of an already
known particle. There is hope that within a few years the new collider generation will find
some of these supersymmetric particles. It is then to be decided which supersymmetric
theory can be used to describe the new particle spectrum. As with the spectrum in QCD,
this can only be done with lattice calculations. However, in the usual formulation super-
symmetry is explicitly broken on the lattice, and it is only recovered for massless gluinos,
the supersymmetric fermions. To keep supersymmetry breaking effects under control it
is important to have a small gluino mass. The DESY-Münster-Roma Collaboration has
explored the possibilities of simulating a simple supersymmetric model, the N = 1 Super-
Yang-Mills theory. In chapter three we will report the results of this study, showing that
it is feasable to approach supersymmetry on the lattice with sufficient precision by going
close towards the massless limit.

Apart from the algorithmic problems of fermions on the lattice there is the further
problem, that the most favoured formulation, the Wilson fermions, explicitly breaks chiral
symmetry. Since in nature spontaneously broken chiral symmetry is a very important
ingredient of the theory of low energy hadron interactions it would be advantageous to
realize this symmetry at non-zero lattice spacings. There are now several possibilities to do
this, but all of them are quite expensive, so they are usually only utilized in the quenched
approximation. One way to restore chiral symmetry on the lattice is by using domain
wall fermions, where a fifth dimension is introduced and the two chiralities of the lattice



6 Introduction

fermions are exponentially bounded on the two boundaries in the fifth dimension. Since the
extra cost of this formulation can be controlled by fixing the size in the fifth dimension, it
is worthwhile trying to include dynamical domain wall fermions in the simulation of QCD.
An exploratory study of this possibility is presented in the last chapter of this work.

In the appendices we give details on the computer programs that were used for the
different steps needed for the lattice simulations of this work.



Chapter 1

The lattice, updating algorithms

and measurement methods

In the first section of this chapter we will introduce the basic ingredients to formulate
gauge theories on a lattice. After a short description of the Metropolis and the Hybrid
Monte Carlo (HMC) algorithms we will explain the two-step multi-boson (TSMB) algo-
rithm which is flexible enough to be used for the different theoretical models that are
studied in this work. The TSMB algorithm represents the fermionic measure by means
of bosonic fields, so we will further explain how to update the gauge and boson fields as
required for the TSMB. Finally we explain how to extract some desired quantities from
the configurations produced by the updating algorithm. To get reasonable results one
should improve the signal-to-noise ratio by using different smearing techniques. These are
described together with the measurement routines.

1.1 The lattice

The theory that was found to explain the hadron spectrum outlined in the introduction
is the theory of quarks and gluons, Quantum Chromodynamics (QCD). The Lagrangian
for this theory is given by

LQCD[A, Ψ̄,Ψ](x) = −1

4
F a

µν(x)F a,µν(x) + Ψ̄(x) (i /D −m) Ψ(x). (1.1)

Here the field strength tensor is

F a
µν ≡ ∂µA

a
ν − ∂νA

a
µ + gfabcAb

µA
c
ν , (1.2)

Ψ and Ψ̄ are the fields for Nf flavours of quarks and m is their mass. Furthermore
/D = γµDµ is the covariant derivative.

In many ways this is a very formal statement. In perturbation theory, where an
expansion in the gauge coupling g2 is made, one encounters divergencies. These are
handled by first regularizing the theory, e. g. by going to less than four dimensions d − ε
and then subtracting the divergencies by some method, e. g. the MS scheme.

In 1974 Wilson proposed a new regulator, the lattice [1]. The lattice has proven to be a
very useful tool because it allows to calculate non-perturbative effects, i. e. no expansion in
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some parameter like the gauge coupling has to be made. The lattice regularizes the theory
by discretizing a finite box of the Euclidean space-time. In this way one can compute
expectation values of any observable O, formally given by

〈O〉 =
∫

D[A]D[Ψ̄]D[Ψ]Oe−SQCD

∫

D[A]D[Ψ̄]D[Ψ]e−SQCD
, (1.3)

by using Monte Carlo techniques to generate ensembles of field configurations and cal-
culate the observable O on them. In the limit of infinite volume and vanishing lattice
spacing (continuum limit) the results from the lattice calculation will give a clearly non-
perturbative determination of 〈O〉.

While in the continuum the gauge field is given in terms of parallel transporters along
infinitesimal distances this is no longer possible on a discretized Euclidean space-time
(with pure imaginary time coordinates). Here the shortest possible distance is the lattice
spacing a. This is the distance between a lattice point x ∈ Ω ⊂ Z

4 and its neighbour
x+ µ̂, where µ is one of the four directions of the lattice and µ̂ is a vector of length a in
that direction. A parallel transporter connecting these two lattice points is given by the
link Uµ(x) ∈ SU(N), with a link pointing in the other direction given by U †

µ(x). A link
can be related to the gauge field through

Uµ(x) ≡ e−aAµ(x). (1.4)

The simplest gauge invariant object that can be formed out of such links is the plaquette,
which is a closed loop in the µν-plane and with side length a. It is given by

Uµν(x) = U †
ν(x)U †

µ(x+ ν̂)Uν(x+ µ̂)Uµ(x). (1.5)

It can be used to describe the gauge part of the action. In [1] Wilson proposed to use

Sg[U ] = β
∑

x

∑

µν

(

1− 1

N
Re TrUµν(x)

)

, (1.6)

with the gauge coupling in a non-Abelian SU(N) theory given by

β =
2N

g2
. (1.7)

For QCD we have N = 3.
The lattice formulation for the fermion fields causes more problems. Putting the

fermions naively on the lattice one encounters more fermions in the continuum limit than
originally asked for. This is the fermion doubling problem due to which there are 2d=4 = 16
fermions, one at each corner of the Brillouin zone. This problem was already tackled by
Wilson in his original work [1] by giving the additional fermions a mass at the order of
the cutoff a−1. In the continuum limit they decouple from the dynamics and they are
localized in space-time. Hence only one fermion survives. This is achieved by

Sf [U, Ψ̄,Ψ] =
∑

x

Ψ̄†(x)Ψ(x)− κ
∑

x

∑

µ

(

Ψ̄†(x+ µ̂)Uµ(x)(r + γµ)Ψ(x)

+Ψ̄†(x− µ̂)U †
µ(x− µ̂)(r − γµ)Ψ(x)

)

(1.8)

=
∑

xy

Ψ̄†(y)Q[U ](y, x)Ψ(x), (1.9)
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the action for Wilson fermions. The Wilson-Dirac fermion matrix for the Nf fermion
flavours is Q(y, x), and κ is the hopping parameter. The latter has to be tuned towards
some critical value κcrit if massless quarks are asked for, which is the best approximation
for the lightest up and down quarks, and is still a good approximation to the strange
quark because the natural scale is ΛQCD ' 200− 300MeV. The need for this tuning with
Wilson fermions is due to the fact that they break chiral symmetry. For a long time chiral
symmetry breaking was considered to be unavoidable for any lattice fermion. This belief
was formulated by Nielsen and Ninomiya in their famous no-go theorem [2]. However
the last years brought progress in this direction, see chapter 4 for a possible solution and
further remarks.

While it is relatively easy to simulate the pure gauge theory (1.6) there are further
problems with the fermions when trying to find algorithms for them. This led the lattice
community to neglect the fermions from the simulation and include them only in the
process of measurement, i. e. when extracting the expectation values of observables. Hence
only valence quarks are included but the virtual loops of the sea quarks are turned off.
This is the so-called quenched approximation. This at first sight crude approximation is
somewhat justified by good agreement with experiments for some results [3], where an
agreement around 10% could be achieved. However there are other results where this
approximation fails completely [4, 5], and for all the other quantities one would like to
know if any deviation from the experiment is due to a bad theoretical model or just
a remnant of the quenched approximation. Therefore the effort to include fermions in
lattice simulations has been increased over the past years. In the next section we explain
an algorithm that can be used for updating pure gauge theories and an algorithm, the
HMC, that includes dynamical fermions, i. e. one that includes the virtual fermion loops.
After that we will turn to the TSMB algorithm with the aim, that it allows a simulation
of light quark fields.

1.2 Traditional updating algorithms

The aim of lattice simulations is to compute expectation values of observables formally
given by (1.3). For any reasonable theory it is impossible to take all the possible field
configurations and calculate the observables on them. By making a connection to sta-
tistical mechanics we can call e−S the Boltzmann factor of the theory. Due to the large
number of possible configurations only a small part of them will substantially contribute,
namely those with a large Boltzmann factor. Since a consideration of all configurations
is impossible, the Monte Carlo integration should make an importance sampling of the
configurations, taking the Boltzmann factor as a weight. Updating algorithms for this
importance sampling have to fulfill two important conditions. First of all they should
fulfill detailed balance, a sufficient but not necessary condition. The transition probability
for going from one configuration [ϕ] to another [ϕ′] is given by P ([ϕ] → [ϕ′]). Detailed
balance can then be formulated as

P ([ϕ]→ [ϕ′])e−S[ϕ] = P ([ϕ′]→ [ϕ])e−S[ϕ′ ]. (1.10)

The other important condition is ergodicity, i. e. it has to be possible to reach any other
configuration with the updating step. For the transition probability this reads for any pair
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of configurations

P ([ϕ]→ [ϕ′]) > 0. (1.11)

This condition is called strong ergodicity. This doesn’t mean that every elementary step
has to fulfill this strong condition, because if enough of these elementary steps are combined
to a bigger step, it is sufficient if this bigger step fulfills the strong ergodicity condition.

1.2.1 The Metropolis algorithm

The Metropolis algorithm was invented long before the lattice [6,7]. The transition prob-
ablity for going from one configuration [ϕ] to another [ϕ′] is given by

P ([ϕ]→ [ϕ′]) ∝ F
(

e−S[ϕ′]

e−S[ϕ]

)

, (1.12)

where F : [0,∞]→ [0, 1] is a mapping that has to fulfill

F (x)

F
(

1
x

) = x. (1.13)

The usual choice is

F1(x) = min(1, x), (1.14)

which gives the largest acceptance rate, an alternative choice is

F2(x) =
x

1 + x
, (1.15)

where in general every new proposal [ϕ′] might be rejected. It is easily checked that this
Metropolis algorithm fulfills detailed balance.

The procedure of the Metropolis algorithm is therefore to randomly choose some new
trial configuration and according to (1.12) with the choice F1(x) = min(1, x) accept the
new configuration if the Boltzmann factor has increased, and otherwise accept only with
a probability equal to the ratio of the Boltzmann factors. In practice not all possible trial
configurations are considered but only those where the field is changed by a small amount
on a single site. Strong ergodicity is then ensured by combining many elementary steps,
i. e. repeating this local update several times over the complete lattice.

A generalization has been proposed in [8], where an arbitrary probability distribution
PC([ϕ]→ [ϕ′]) is allowed, and the acceptance probability

PA([ϕ]→ [ϕ′]) ∝ min

(

1,
PC([ϕ′]→ [ϕ])e−S[ϕ′]

PC([ϕ]→ [ϕ′])e−S[ϕ]

)

(1.16)

compensates for PC . The total transition probability is then given by P = PAPC .

Sometimes one can use special versions of the Metropolis algorithm, e. g. the heatbath
[9,10] or the overrelaxation [11–14] algorithms. If applicable they are usually more efficient
than the Metropolis algorithm in decorrelating the field configurations.
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1.2.2 The HMC algorithm

In general the Metropolis algorithm can be applied to simulations including dynamical
fermions. However a straightforward implementation would by highly inefficient due to
the many calls to the fermion matrix multiplication. This difficulty led to developments of a
completely different kind of upating algorithms based on difference equations (discretized
differential equations). These algorithms work by integrating the difference equations
with some finite step size ∆τ and they require an extrapolation to zero step size. This
extrapolation is very expensive and a possible source for systematic errors. Therefore it
is advised to complement the difference equation integration by some correction scheme.
This is the idea of the Hybrid Monte Carlo (HMC) algorithms [15].

HMC algorithms are based on the Hamiltonian

H[P, π, U, φ] =
1

2

∑

xµj

P 2
xµj +

1

2

∑

x

π†xπx + S[U, φ], (1.17)

with φx a pseudofermion field and

S[U, φ] = Sg[U ] + φ†[Q†Q]−1φ (1.18)

being the lattice action after performing the Gaussian integrals over the fermionic variables
leading to a bosonic term in the action. The conjugate momentum of φx is πx, and for the
gauge field Uxµ it is an element of the Lie algebra Pxµ ∈ LSU(Nc). Expectation values
are then given by

〈F 〉 = Z−1

∫

[dPdUdπdπ†dφdφ†]e−H[P,π,U,φ]F [U, φ]. (1.19)

Performing e. g. leapfrog integrations of the discretized Hamiltonian equations a new
configuration can be generated following the general ideas of algorithms based on molecular
dynamics. This is done starting the conjugate momenta from a Gaussian distribution. The
endpoint of a classical trajectory can be considered as a new trial configuration for a global
accept-reject Metropolis step as in (1.16). The acceptance probability for the HMC is

PA([P,U, π, φ]→ [P ′, U ′, π′, φ′]) ∝ min
(

1, e−H[P ′,U ′,π′,φ′]+H[P,U,π,φ]
)

. (1.20)

The advantage of the algorithm is, that due to the underlying difference equation algorithm
a global change of the configuration is possible that keeps the action in the vicinity of
its minimum. Therefore the global Metropolis step can have a good acceptance rate,
depending on the chosen step size ∆τ of the integration.

In principle this algorithm can simulate QCD with dynamical fermions. However, it
seems that its critical slowing down for small quark masses is too extreme, because apart
from the usual critical slowing down there are indications for spikes in the quark force
when going to lighter masses [16]. For the limited numerical precision of the calculations
on a computer these spikes violate the important condition of reversability of the molecular
dynamics integration and much smaller step sizes than without these spikes are needed.
This increases the computing time for a new independent configuration. Therefore in
the next section we turn towards the TSMB algorithm, which is based on the multi-boson
representation of the fermion determinant and which is believed to have a better behaviour
at small quark masses.
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1.3 The TSMB algorithm

1.3.1 Multi-boson algorithms

The lattice version of the QCD action with Wilson fermions is

S[U, Ψ̄,Ψ] = Sg[U ] + Sf [U, Ψ̄,Ψ], (1.21)

with Sg[U ] given in (1.6) and Sf [U, Ψ̄,Ψ] given in (1.9). After performing the Grassmann
integration over Ψ̄ and Ψ this action can be written as

Seff [U ] = Sg[U ]− log detQ[U ]. (1.22)

For Nf identical flavours, i. e. for degenerate masses, the fermion determinant Q is block
diagonal and we can write

|detQ| = |detQ|Nf . (1.23)

This is the starting point for all multi-boson algorithms. The inclusion of the fermion
determinant is the most demanding task for a Monte-Carlo algorithm from the computa-
tional point of view. A first step towards the solution of this problem is the bosonisation
of the determinant

det(Q†Q) =

∫

D[φ†]D[φ] exp

(

−
∑

xy

φ†y
[

Q†Q
]−1

yx
φx

)

, (1.24)

where we can use the hermitean Wilson-Dirac fermion matrix Q̃ ≡ γ5Q = Q̃†, with
Q̃2 = Q†Q being positive definite (and bounded). However, this bosonisation cannot
be the final solution since the effort to compute [Q̃2]−1 is prohibitively large. The idea
of multi-boson algorithms as introduced by Lüscher [17] is to approximate the matrix

inversion by some suitable polynomial P
(1)
n1 of degree n1

|detQ|Nf =
1

det(Q̃2)−Nf /2
' 1

detP
(1)
n1 (Q̃2)

=

∫

D[φ†]D[φ] exp

(

−
∑

xy

φ†yP
(1)
n1

(Q̃2)yxφx

)

. (1.25)

The polynomial P
(1)
n1 has to approximate the function x−Nf/2 good enough for all eigen-

values of Q̃2. With ε and λ being the smallest and largest ones of these eigenvalues the
polynomial has to satisfy

lim
n1→∞

P (1)
n1

(x) = x−Nf /2 ∀x ∈ [ε, λ]. (1.26)

The polynomial can always be written as a product of monomials

P (1)
n1

(Q̃2) = c0

n1
∏

i=1

(Q̃2 − zi), (1.27)

where for even n1 the roots zi appear in complex conjugate pairs. Therefore one can write

P (1)
n1

(Q̃2) = r0

n1
∏

i=1

(Q̃− ρ∗i )(Q̃− ρi), (1.28)
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which allows to write the fermion determinant as a multi-bosonic path integral

∣

∣

∣
det(Q̃2)

∣

∣

∣

Nf
2 n1→∞

=

∫

D[φ†]D[φ] exp

(

−
∑

xy

n1
∑

i=1

φ(i)
y

† [
(Q̃− ρ∗i )(Q̃− ρi)

]

yx
φ(i)

x

)

. (1.29)

This is a major improvement compared to (1.24), the fermion matrix inversion could be
traded off for a polynomial approximation. For very small condition numbers λ/ε one
could try to run a Monte Carlo simulation applying this prescription. This has been tried
in [18]. However, simulations should preferably be done in the vicinity of the physical light
quark masses. Due to the relation

√

λ/ε ∝ (am0)
−1 (1.30)

this implies very large condition numbers (∼ 105−6) and the simulation will become very
costly or even impossible. It could become very costly because a very high polynomial
order n1 may be needed before the results loose their dependence on the polynomial
approximation. This can be seen from the expression for the quadratically averaged error
of the approximation:

δn1(ε, λ) ' exp

(

−Cn1

√

ε

λ

)

. (1.31)

Such large polynomial orders n1 are, however, impossible, because the polynomial in its
root-factorized representation as needed in this algorithm cannot be evaluated with the
given 64 bit precision of today’s computers. Another obstacle is the autocorrelation of
configurations which dramatically increases with n1.

1.3.2 Correction step

There exist several modifications of the multi-boson algorithm that allow simulations at
quark masses around the strange quark mass. Here we will present the one which still
allows for any number of fermions and is believed to allow for the smallest masses due to
the fact that it does not rely on inversion routines, since these become slow or unstable
for small masses.

With these modifications we want to reduce the polynomial order n1 without increasing
the error of our approximation. This seeming contradiction can be achieved by introducing
a global Metropolis step to correct the error of the approximation of the first polynomial

P
(1)
n1 as proposed in [19]. In this way the quality of the approximation and therefore its

polynomial order n1 can be reduced to any value at the price of lower acceptance rates in
the global correction step but without changing the quality of the final result. Indeed, the
idea is to reduce n1 just by so much that the acceptance rate is still reasonably high. We
tried to aim at acceptance rates of 50% to 60%.

For going from one field configuration [U ] to another [U ′] an exact updating sequence
has to fulfill the following condition of detailed balance:

P (U → U ′)
P (U ′ → U)

=
e−S[U ′,Ψ̄,Ψ]

e−S[U,Ψ̄,Ψ]
=

det
(

Q̃Nf [U ′]P (1)
n1 (Q̃2[U ′])

)

det
(

Q̃Nf [U ]P
(1)
n1 (Q̃2[U ])

)

e−S(n1)[U ′,φ†,φ]

e−S(n1)[U,φ†,φ]
. (1.32)
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Since the updating with the polynomial P
(1)
n1 fulfills

Pφ(U → U ′)

Pφ(U ′ → U)
=
e−S(n1)[U ′,φ†,φ]

e−S(n1)[U,φ†,φ]
(1.33)

we can use

PNC(U → U ′) = min



1,
det
(

Q̃Nf [U ′]P (1)
n1 (Q̃2[U ′])

)

det
(

Q̃Nf [U ]P
(1)
n1 (Q̃2[U ])

)



 (1.34)

as an acceptance probability in the global Metropolis correction step.

With this correction step we are now able to correct any inaccuracy of the polynomial
approximation. However, we have explicitly reintroduced a determinant not much different
in its form from the original fermion determinant. It is therefore clear that a direct
computation of this determinant is impossible. Following the idea of the multi-boson

algorithm we will approximate this new determinant by another polynomial P
(2)
n2 :

(

det Q̃2
)

Nf
2

detP (1)
n1

(Q̃2) ' 1

detP
(2)
n2 (Q̃2)

=

∫

D[η†]D[η]e−η†P
(2)
n2

(Q̃2)η, (1.35)

and this second polynomial P
(2)
n2 has to fulfill

lim
n2→∞

P (2)
n2

(x) = x−Nf /2P (1)
n1

(x)−1 ∀x ∈ [ε, λ]. (1.36)

Therefore we have

lim
n2→∞

P (1)
n1

(x)P (2)
n2

(x) = x−Nf /2 ∀x ∈ [ε, λ], (1.37)

and we call this multi-boson updating sequence with global Metropolis correction step the
“two-step multi-boson” (TSMB) algorithm [19]. The required probability can be calculated
from the normalized Gaussian random distribution

dρ(η) =
e−η†P

(2)
n2

(Q̃2)η

∫

D[η̃†]D[η̃]e−η̃†P
(2)
n2

(Q̃2)η̃
. (1.38)

The acceptance rate in the Metropolis step is then given by

P
(n2)
NC (U → U ′) = min

(

1, A(n2)(η, U → U ′)
)

(1.39)

with

A(n2)(η, U → U ′) = exp
(

−η†
[

P (2)
n2

(Q̃[U ′]2)− P (2)
n2

(Q̃[U ]2)
]

η
)

. (1.40)

Of course the result from only one noisy estimator η may differ drastically from the
result obtained from calculating the determinants exactly. However, since every transition
U → U ′ may happen numerous times in each trajectory, on an average every configuration
is accepted correctly. Therefore it is sufficient to use only one estimator η. We will discuss
determinant breakup as a possible improvement of this situation in section 2.1.2, see also
the end of this section.
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Now, the remaining task is to generate Gaussian vectors with a normalization as in
(1.38). It is very easy to generate Gaussian random vectors with a normal distribution

dρ(η̄) =
e−η̄†η̄

∫

D[η̃†]D[η̃]e−η̃†η̃
, (1.41)

and from these one derives Gaussian random vectors according to (1.38) with

η = P (2)
n2

(Q̃2)−
1
2 η̄. (1.42)

In principle P
(2)
n2

− 1
2 can be obtained by a generalization of the conjugate gradient inversion

algorithm [20] but this needs multiple applications of P
(2)
n2 (Q̃2) on a vector. Therefore

another polynomial P
(3)
n3 is introduced for the inverse square root of P

(2)
n2 :

lim
n3→∞

P (3)
n3

(x) = P (2)
n2

(x)−
1
2 ∀x ∈ [ε′, λ], ε′ ≤ ε. (1.43)

In order to avoid systematic errors the precision of this third polynomial should be very
good. For the same reason it is preferable to choose a smaller lower limit ε′ for the
approximation. We usually choose to work with ε′ = 1

100ε to be sure that the inverse

square root of P
(2)
n2 remains exact even if the smallest eigenvalue of Q̃2 drops below ε

occasionally. A practical way to obtain this polynomial is by Newton iteration:

P
(3)
k+1 =

1

2

(

P
(3)
k +

1

P
(3)
k P

(2)
n2

)

k = 0, 1, 2, . . . . (1.44)

Using this third polynomial the acceptance rate (1.40) can be written in terms of Gaussian
normal vectors η̄:

A(n2)(η̄, U → U ′) = exp

(

−
(

P (3)
n3

(Q̃[U ]2)η̄
)†
P (2)

n2
(Q̃[U ′]2)

(

P (3)
n3

(Q̃[U ]2)η̄
)

+ η̄†η̄

)

.

(1.45)

Detailed balance

We will now comment further on the question in which situations the TSMB algorithm
– as presented in this section – fulfills the condition of detailed balance. First remarks
concerning the noisy estimator in the correction step were already made in the paragraph
after equation (1.40).

In the Monte Carlo updating process we want to generate the canonical gauge field
distribution

ω[U ] =
e−Sg [U ]

det
(

P
(1)
n1

(

Q̃[U ]2
))

det
(

P
(2)
n2

(

Q̃[U ]2
)) . (1.46)

The distribution for the gauge and the boson field is then given by

ω[U, φ] =
e−S[U,φ]

det
(

P
(2)
n2

(

Q̃[U ]2
)) . (1.47)
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A sufficient condition to make sure that this distribution is reproduced is the condition of
detailed balance. This condition is fulfilled if the transition probability P ([U, φ]→ [U ′, φ′])
of the Markov process behaves as follows:

P ([U, φ]→ [U ′, φ′])
P ([U ′, φ′]→ [U, φ])

=
e−S[U ′,φ′] det

(

P
(2)
n2

(

Q̃[U ]2
))

e−S[U,φ] det
(

P
(2)
n2

(

Q̃[U ′]2
)) . (1.48)

The transition probability can be devided into two parts, i. e. into the transition probability
Pup([U, φ] → [U ′, φ′]), which is realized by the local updates for the gauge and the boson
fields and by the global heatbath for the boson fields, and into the transition probability
PNC([U, φ]→ [U ′, φ′]), which is the acceptance probability of the correction step. It thus
follows that

P ([U, φ]→ [U ′, φ′]) = Pup([U, φ]→ [U ′, φ′])PNC([U, φ]→ [U ′, φ′]). (1.49)

As far as Pup([U, φ]→ [U ′, φ′]) is concerned, it is known how to implement the updates so
that detailed balance is satisfied for the action S[U, φ]:

Pup([U, φ]→ [U ′, φ′])
Pup([U ′, φ′]→ [U, φ])

=
e−S[U ′,φ′]

e−S[U,φ]
. (1.50)

To satisfy this condition we prefer to do double sweeps with opposite orders in the local
updates. Other possibilities are to choose the order of the updates randomly or to use
chequerboard decomposition.

Putting equations (1.49) and (1.50) into (1.48) we find the condition for detailed bal-
ance for the acceptance rate of the correction step

PNC([U, φ]→ [U ′, φ′])
PNC([U ′, φ′]→ [U, φ])

=
det
(

P
(2)
n2

(

Q̃[U ]2
))

det
(

P
(2)
n2

(

Q̃[U ′]2
)) . (1.51)

This can be achieved if the new configuration [U ′, φ′] is accepted with the probability

PNC([U, φ]→ [U ′, φ′]) ∝ min



1,
det
(

P
(2)
n2

(

Q̃[U ]2
))

det
(

P
(2)
n2

(

Q̃[U ′]2
))



 , (1.52)

which is a global Metropolis step as discussed in section 1.2.1.
This proof of detailed balance was first given in [19]. Here we would like to make

some further remarks about its implementation. A straightforward implementation would
generate a new field configuration [U ′, φ′], i. e. both new boson and gauge fields. If this new
field configuration is accepted by the correction step then one proceeds with the update,
otherwise the fields have to be restored to their respective values [U, φ] before the update
can be continued. This, however, has one major drawback. There is no way to avoid
the resetting of the gauge field, but it would cause a bottleneck of the algorithm if the
boson fields had to be reset, too. The boson fields are represented by 12 complex numbers
at each lattice point, the gauge field by 36. Therefore already at small numbers n1 of
boson fields the memory requirement of the program is dominated by the boson field φ,
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and storing it twice would not be possible on many systems where memory is the limiting
factor. It is therefore desired to avoid the setting back of the boson field.

Indeed, it is obvious that a gauge update together with the correction step still fulfills
the condition of detailed balance because the proof given above works for this situation,
too. Therefore, we have an algorithm that allows to update the boson fields with respect
to detailed balance, and we have such an algorithm for the gauge field. However, one
has to be careful because it is not true that every combination of algorithms that fulfill
detailed balance is again an exact updating algorithm. An example for this is the updating
of a field at two lattice points x and y. If we take an algorithm that can make an update
on one of these points respecting detailed balance, then it is wrong to do the update in
a simple alternating order. A correct way is to update x once, then y twice and then
again x once. This is equivalent to making two consecutive updates on x followed by two
consecutive updates on y and then repeating this procedure.

This argument can be used for the TSMB algorithm, too. Knowing how to do an exact
update both for the boson and the gauge field, we can combine them by doing two updates
on the boson field followed by two updates with correction step on the gauge field. This
is what is done throughout the simulations used in this work.

Usually these two boson field updates, each of them consisting of some number of
boson heatbath and overrelaxation sweeps, completely decorrelate the boson field. If no
new gauge field is accepted in the two consecutive gauge updates one may try to gain some
computer time by skipping the boson field updates until a new gauge field is accepted.
Due to the decorrelation of the boson field this should still fulfill the condition of detailed
balance, but the effect on the autocorrelation remains to be seen.

1.3.3 Reweighting factor

The correction step introduced in section 1.3.2 allows to keep n1 fixed and the algorithm
becomes exact in the limit of infinitely high polynomial order n2. But this is still not
convenient for a practical simulation, because this would require several simulations with
different values of n2 in order to be able to extrapolate to n2 → ∞. It is better to fix
n2 to some relatively high order and correct for the remaining approximation errors in
the measurements. This indeed can be done by reweighting the configurations [21], here
Nf = 2 was used. In [22] it was shown how to get it for general flavour number Nf .

With this reweighting factor R[U ] the reweighted expectation value 〈O〉 can be calcu-
lated as follows:

〈O〉 =
〈OR[U ]〉
〈R[U ]〉 . (1.53)

Again one has several ways to compute the reweighting factor. Calculating all eigen-
values explicitly or to use preconditioned inversions is either impossible or problematic, so
again we calculate it using another polynomial:

lim
n4→∞

P (1)
n1

(x)P (2)
n2

(x)P (4)
n4

(x) = x−Nf /2 ∀x ∈ [ε, λ]. (1.54)

The reweighting factor R[U ] is then given by

R[U ] =
1

detP
(4)
n4 (Q̃2)

=

∫

D[η†]D[η]e−η†P
(4)
n4

(Q̃2)η

∫

D[η†]D[η]e−η†η
. (1.55)
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Using this representation the reweighting factor can be determined stochastically using
noisy estimators, as can be seen by considering an extended update procedure on a set of
variables including η. With the same argument as for the case of the noisy estimator in the
correction step any fixed number of noisy estimators will lead to a correct determination.
Here we took four to six estimators. Unlike with the correction step any number of noisy
estimators is allowed for the reweighting factor, detailed balance will always be satisfied.

It is now sufficient to measure quantities O from only one simulation but with different
sets of reweighting factors corresponding to sets of polynomials with different polynomial
orders n4. In practice n2 is already so large that the inclusion of the reweighting factor
has only a negligible effect, and therefore only one set of reweighting factors is used.

There might be some exceptional configurations with very small eigenvalues of Q̃2

below 10−7. In this case the polynomial P
(4)
n4 (x) cannot approximate the desired behaviour

if reasonable polynomial orders should be used. In addition the value of R[U ] will be
very noisy if few noisy estimators are used. Therefore it is very helpful to augment this
reweighting factor determination with the explicit calculation of some of the smallest
eigenvalues. For this some ε′, typically chosen slightly above ε, is fixed and all eigenvalues
with corresponding eigenvectors of Q̃2 are calculated that are below this ε′. For these

eigenvalues the exact reweighting is given by P
(1)
n1 (λ)P

(2)
n2 (λ)λNf /2 and the reweighting

factor takes the form

R[U ] '
∏

λ<ε′

P (1)
n1

(λ)P (2)
n2

(λ)λ
Nf
2

∏

λ>ε′

P (4)
n4

(λ)−1. (1.56)

The second factor can be calculated as before, but the eigenspace of the set of smallest
eigenvalues that are taken into account with the first factor has to be projected out from
the considered noisy estimators.

1.3.4 TSMB with many fermion flavours

So far we were making use of the fact that the fermion matrix Q for Nf fermion flavours
is block-diagonal, with each of its blocks consisting out of the fermion matrix Q for one
flavour.

In the physical situation the up and down quark are very light, while the strange quark
mass is somewhat heavier. As lattice simulations manage to run at increasingly light quark
masses it becomes desireable to give the different quarks different masses. This is possible
with a minor extension of the TSMB algorithm.

Let’s assume two different quark masses, N
(1)
f quark flavours of the one mass and N

(2)
f

flavours of the other mass. The fermion determinant can then be written as

|detQ| =
∣

∣detQ(1)

∣

∣

N
(1)
f
∣

∣detQ(2)

∣

∣

N
(2)
f . (1.57)

The original multi-boson algorithm without correction step can be applied to this measure
in a straightforward way:

1

det(Q̃2
(1))

−N
(1)
f

/2

1

det(Q̃2
(2))

−N
(2)
f

/2
' 1

detP
(1,1)
n1 (Q̃2

(1))

1

detP
(1,2)
n1 (Q̃2

(2))
. (1.58)
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The polynomials now have to approximate the function x−N
(1,2)
f

/2 good enough for all
eigenvalues of the corresponding fermion matrix Q̃2

(1,2) with a similar definition as before

(1.26).
A second approximation that will be realized by the correction step can be used, too:

1

det(Q̃2
(1))

−N
(1)
f

/2

1

det(Q̃2
(2))

−N
(2)
f

/2
'

2
∏

f=1

1

detP
(1,f)
n1 (Q̃2

(f)) detP
(2,f)
n2 (Q̃2

(f))
. (1.59)

Instead of (1.46) the gauge field distribution is now

ω[U ] =
e−Sg [U ]

∏2
f=1 det

(

P
(1,f)
n1

(

Q̃(f)[U ]2
))

det
(

P
(2,f)
n2

(

Q̃(f)[U ]2
)) . (1.60)

The condition of detailed balance for the correction step acceptance (1.51) translates to

PNC([U, φ]→ [U ′, φ′])
PNC([U ′, φ′]→ [U, φ])

=

2
∏

f=1

det
(

P
(2,f)
n2

(

Q̃(f)[U ]2
))

det
(

P
(2,f)
n2

(

Q̃(f)[U ′]2
)) (1.61)

=

∫

D[η†1]D[η1]D[η†2]D[η2]e
−∑2

f=1 η†
f
P

(2,f)
n2

(Q̃(f)[U
′]2)ηf

∫

D[η†1]D[η1]D[η†2]D[η2]e
−∑2

f=1 η†
f
P

(2,f)
n2

(Q̃(f)[U ]2)ηf

. (1.62)

For a noisy Metropolis acceptance step we therefore need a Gaussian distribution

dρ(η1, η2) =
e−

∑2
f=1 η†

f
P

(2,f)
n2

(Q̃(f)[U ]2)ηf

∫

D[η̃†1]D[η̃1]D[η̃†2]D[η̃2]e
−
∑2

f=1 η†
f
P

(2,f)
n2

(Q̃(f)[U ]2)ηf

(1.63)

and the acceptance rate is then given by

P
(n2)
NC (U → U ′) = min

(

1, A(n2)(η1, η2, U → U ′)
)

(1.64)

with

A(n2)(η1, η2, U → U ′) = exp



−
2
∑

f=1

η†f

[

P (2,f)
n2

(Q̃(f)[U
′]2)− P (2,f)

n2
(Q̃(f)[U ]2)

]

ηf



 .

(1.65)
With these modifications it is possible to run simulations with quark flavours that have

different masses, i. e. with several κ values. In [23] it was proposed to do simulations with
Nf = 2 + 1 quark flavours instead of Nf = 3. This should speed up the simulations if the
single quark is kept fixed at a much larger quark mass around the strange quark mass.
Furthermore this is closer to the physical situation, something that is not needed for chiral
perturbation theory, but might be useful otherwise.

Besides the benefits of Nf = 2 + 1 this modification of the algorithm can be used in
other promising ways. In [24,25] a similar method was used for a determinant breakup to
reduce the variance of the noisy estimator in the correction step. Although this increases
the costs of each update cycle they find in their algorithm that in this way the total
autocorrelation length is reduced significantly. We study this determinant breakup in the
context of the TSMB algorithm in section 2.1.2.
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1.3.5 The sign of the determinant

According to (1.25) the TSMB algorithm simulates a theory with a fermionic measure
|detQ|Nf and therefore neglects the sign of the determinant for odd Nf . To have the
correct measure this sign has to be included somewhere in the measurement process, and
a natural way is in the reweighting factor. This is of course only needed if Nf is odd while
for an even number of fermion flavours the fermionic measure will always be positive.
Since the best description of the physical situation is with either Nf = 3 or better with
Nf = 2+1 this sign will play a role, and a priori it is not known how many configurations
will have different signs and what influence that will have. This sign has to be considered
in other applications of the TSMB algorithm, too, e. g. in the N = 1 supersymmetric
Yang-Mills theory as considered in chapter 3 or in two-colour QCD with a chemical quark
potential µ [26, 27].

One efficient method to determine the sign of the determinant is to consider the spectral
flow of the smallest eigenvalues. It is known that at κval <

1
8 and for r = 1 the fermion

determinant has a positive sign [28]. By increasing κval in small steps up to the simulation
parameter κsea one can count the number of zero level crossings of the smallest eigenvalues.
The sign of the fermion determinant is given by

sign (detQ) = (−1)#{zero-level crossings}. (1.66)

Therefore the sign does not cause many problems from the theoretical point of view.
However, there could occur a practical problem. If there is some clearly non-zero fraction
of configurations that has a negative sign, then it could be that for some quantities the
expectation value for that observable on the subset of configurations with positive sign
is of the same order as on the subset of configurations with negative sign. The correct
expectation value will then be the difference of these two results. This will lead to large
statistical uncertainties in the final result due to the effect of cancellation even if the
determinations on the two different subsets were quite precise. In this case it would be
practically impossible to do measurements.

Luckily practice has shown that nearly always the configurations with negative sign of
the determinant come with very small reweighting factors and are so few that their sign
can be neglected completely [29,30]. A significant number of configurations with negative
sign seems to be connected to the appearance of phase transitions. Indeed it was shown
that in these cases it is crucial to include the sign, and that only then a correct result
was obtained, while this was not the case when using other algorithms where sign changes
seem to be highly surpressed [27]. However, in that study they suffer from the effect of
cancellation.

Throughout all the considered cases in this work no sign problem is expected. However,
one cannot rely on that and therefore it has to by checked carefully in every simulation.
For this the spectral flow method is used, and in section 2.3.3 this method is compared
with a direct computation of the eigenvalues of the non-hermitean fermion matrix.

The spectral flow method suggests that a negative sign is related to exceptionally small
eigenvalues due to the needed zero level crossing. It is therefore not needed to compute the
sign of the determinant on every configuration. Instead one should pick a small subsample
together with all those configurations that have exceptionally small eigenvalues. If on this
subsample the number of configurations with negative sign is statistically insignificant
then the sign doesn’t have to be calculated for the remaining configurations.
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1.4 Updating algorithms for boson and gauge fields

The TSMB algorithm presented in section 1.3 trades off the fermion determinant at the
price of introducing pseudofermionic boson fields. In this section we will present the
updating algorithms for these fields as they are used in this work. We will especially
emphasise on the peculiarities that have to be considered if these algorithms are to be
used in the context of the TSMB algorithm. In addition we will have a look at the
updating of the gauge fields.

The algorithms presented here are local updates, and therefore they are not affected
by the accumulation of roundoff errors leading to possible violations of the reversibility of
the HMC algorithm. Despite being a global update this is also true for the global heatbath
algorithm.

1.4.1 The gauge part of the action

There are quite a few algorithms that can be used to update the gauge field in a pure
gauge theory. One of the first algorithms that has been introduced is the Metropolis
algorithm [6], see also section 1.2.1, which is applicable under nearly all circumstances
that are relevant in field theory. Its idea is to propose a new gauge field U ′

x,µ and to accept
it with probability

Pacc(U
′
x,µ ← Ux,µ) = min(1, exp(S[U ]− S[U ′])). (1.67)

It would be a waste of time to calculate the action completely for every link that has to
be updated. Instead one computes only that part of the action that may change with the
specific link. In case of the Wilson gauge action this term can be written as a product of
that link with the so-called staple ∆Sx,µ. The acceptance rate is then given by:

Pacc(U
′
x,µ ← Ux,µ) = min(1, exp((Ux,µ − U ′

x,µ)∆Sx,µ)). (1.68)

In this way one can perform e. g. a N -step multihit Metropolis update while the cor-
responding staple has to be calculated only once. Other algorithms that can be used
efficiently with the staples description are the gauge heatbath algorithm [9, 10] and the
gauge overrelaxation algorithm [13]. For the gauge heatbath the acceptance rate of the
original heatbath as introduced by Creutz [9] would be very low due to the large fermionic
force and the resulting bad approximation of the square root. Therefore the heatbath
as proposed by Kennedy and Pendleton [10] should be used, which gives nearly 100%
acceptance rate.

For the TSMB algorithm it is important that we have a similar efficient formulation
for the boson part of the action as we have it with the staples for the gauge part. Indeed
it is possible to write the dependence on the gauge field Ux,µ as follows:

∆Sφ(Ux,µ, φ) = ReTr
(

Ux,µ∆S(1)
x,µ(φ) + Ux,µ∆S(2)

x,µ(φ)
)

. (1.69)

The terms in S
(1)
x,µ(φ) give the dependence on the nearest neighbour contributions and

S
(2)
x,µ(φ) the dependence on the next-to-nearest neighbour contributions. In S

(1)
x,µ(φ) there

is no further dependence on the gauge fields. Therefore it is possible to calculate this term
after the update of the boson fields and use it throughout the following gauge updates.
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Due to the next-to-nearest neighbour interactions in S
(2)
x,µ(φ) this term has to depend on

the gauge field. However, it can be written as

S(2)
x,µ(φ) =

4
∑

ν=1
ν 6=µ

(

f++
x,µνUx+µ̂,ν + f+−

x,µνU
†
x+µ̂−ν̂,ν + U †

x,νf
−+
x+ν̂,νµ + Ux−ν̂,νf

++
x−ν̂,νµ

)

. (1.70)

Here the terms f++, f+− and f−+ don’t depend on the gauge field. Therefore it is again
possible to calculate them after the boson fields have been updated. This greatly reduces
the time needed for the gauge update, because the spinor indices and the polynomial
indices can be summed over before the gauge update is started. The results from the
summation can be regarded as an auxiliary field. Of course this field has to be stored in
the memory, which takes additional space. The memory needed for the auxiliary fields
corresponds to 40 gauge fields, which in the case of QCD corresponds to roughly 13 boson
fields.

1.4.2 The boson part of the action

The boson part of the action associated with the pseudo-fermionic boson fields φ(i) can be
read off directly from (1.29). For the practical calculation of this action a slightly different

representation of the polynomial P
(1)
n1 is used:

P (1)
n1

(Q̃2) = r0

n1
∏

i=1

(

(

Q̃2 ± µi

)2
+ ν2

i

)

. (1.71)

This relates to (1.28) by ρj = µj + iνj and to (1.27) by zj = (µj + iνj)
2.

Writing out the action allows to write the boson action as

Sφ[U, φ, φ†] =
∑

x

n1
∑

i=1

(

φ(i)
x

†
A(i)φ(i)

x +
[

φ(i)
x

†
b(i)x + h.c.

])

, (1.72)

with a term classifying the local part of the interaction

A(i) = 1 + 16κ2 + µ2
i + ν2

i + 2µiγ5 (1.73)

and a term with nearest neighbour and next-to-nearest neighbour interactions

b(i)x = −κ
∑

µ

(1 + µi(γ5 − γ5γµ))U †
x,µφ

(i)
x+µ̂

+κ2
±4
∑

µ,ν=±1
µ6=±ν

(1 + γµ − γν − γµγν)U
†
x,µU

†
x+µ̂,νφ

(i)
x+µ̂+ν̂ . (1.74)

This is precisely in such a form that local updates like the heatbath algorithm or the
overrelaxation algorithm are applicable. For the boson heatbath a Gaussian random spinor
χ is generated and the boson field is replaced according to the following prescription:

φ(i)
x ← A(i)−

1
2χ−A(i)−1

b(i)x . (1.75)
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Even more efficient is the overrelaxation algorithm, which, however, leaves the action
invariant and therefore is not ergodic. Still it can be used, either by combining it with the
heatbath algorithm, or by using an ergodic updating algorithm for the gauge field, which
would be enough since the gauge field and the boson field interact. The prescription for
the boson overrelaxation is:

φ(i)
x ← −φ(i)

x − 2A(i)−1
b(i)x . (1.76)

Due to the specific form of the boson action there exists another way to create a new
boson field starting from a Gaussian random spinor χ:

φ(i)
x ←

∑

y

(Q− ρi)
−1
xy χ

(i)
y . (1.77)

This is called a global heatbath. It is very costly due to the matrix inversion needed for
the generation of the boson field φ, but it has the advantage of perfectly decorrelating the
boson field in one step.

There is a method to reduce the costs of the global heatbath [31]. Here the global
heatbath is applied on the spinor

η(i)
x = χ(i)

x + (Q− ρi)xyφ
(i)
x , (1.78)

and a new boson field is proposed as

φ(i)
x

′
= (Q− ρi)

−1
xy η

(i)
y − φ(i)

x . (1.79)

Performing the global heatbath in this way has the advantage that we have the choice of

doing the inversion ζ
(i)
x = (Q− ρi)

−1
xy η

(i)
y less precise. As a compensation for this error one

has to make a Metropolis step that accepts or rejects the proposed φ
(i)
x

′
with

Pacc(φ
(i)
x

′ ← φ(i)
x ) = min(1, exp(−∆S(i))) (1.80)

and
∆S(i) = 2Re

((

(Q− ρi)xyζ
(i)
y − η(i)

x

)(

(Q− ρi)xyφ
(i)
y −Qxyφ

(i)
y

′))
. (1.81)

Following this global quasi-heatbath it is possible to do a very lazy computation of the
matrix inversion. However, the proposed field should be accepted often enough so that this
expensive update still makes sense, and in addition a very unprecise computation of the
inversion may give some correlations on the original field even if the new field is accepted.
We have implemented this algortihm in such a way that the residuum for the inversion
is adjusted according to the quality of the previous global quasi-heatbath results. The
acceptance rate that we were aiming for was set to 80%-90%.

In the literature it is claimed that by using this global quasi-heatbath one can gain a
factor of 2-3 [31]. Indeed we found that the number of iterations needed for the matrix
inversion is greatly reduced. However, there is additional overhead for the setup of the
spinor η and for the Metropolis step so that the benefit of this method is highly dependent
on implementation details.

The property that it perfectly decorrelates the boson field makes this global heatbath
very attractive. But even with the improvements of the global quasi-heatbath it remains
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a very expensive updating algorithm. For these reasons we have decided to use the local
updating algorithms, and only after some updates a global quasi-heatbath is done. There
were usually 8− 15 updates between two calls to the global quasi-heatbath. This way the
time spent for the local updates was comparable to the time for the global updates, and the
frequency of global updates is still high enough so that the long tail in the autocorrelation
is reduced.

1.4.3 Even-odd preconditioning

Most of the computer time in the simulations is spent on some variant of the inversion of
the fermion matrix Q or its hermitean version Q̃. This inversion is done either explicitly
in the conjugate gradient inversion for the measurement of correlators or implicitly by
the polynomials of the multi-boson algorithm. The number of needed iterations for the
conjugate gradient inverter is directly related to the condition number λ

ε of the fermion

matrix Q̃2, and the polynomial order is determined by that factor due to equation (1.31),
too.

It is therefore advantageous to find some other matrix Q̄ as a replacement for Q that
has a smaller condition number but the same determinant

|detQ|Nf = det
(

Q̃2
)

Nf
2

= det
(

˜̄Q
2)

Nf
2
. (1.82)

Indeed this can be done by using the following representation of the Wilson-fermion matrix

Q = 1− κ
(

0 Deo

Doe 0

)

, (1.83)

where Deo acts only on odd sites and Doe only on even sites. Together with the identity

det

(

A B
C D

)

= detAdet
(

D − CA−1B
)

(1.84)

we find for the fermion determinant

detQ = det
(

1− κ2DoeDeo

)

. (1.85)

Another possible matrix that has this determinant is

˜̄Q = 1− κ2

(

0 0
0 DoeDeo

)

. (1.86)

Half of the eigenvalues of this matrix ˜̄Q are equal to one. The other half of the eigenvalues
can be related to the eigenvalues of Q. If v = (ve, vo) is an eigenvector of Q with eigenvalue
λ then it satisfies

(λve, λvo) = (ve − κDeovo, vo − κDoeve). (1.87)

Then we get from

(1− κ2DoeDeo)vo = vo − (1− λ)2vo = λ(2− λ)vo (1.88)
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that the eigenvalues of Q̄ are either one (in the even subspace) or they satisfy

λ̄ = λ(2 − λ). (1.89)

For very small eigenvalues we see that the eigenvalues of ˜̄Q are roughly twice as large
as those of Q. This speeds up the matrix inversion by roughly a factor of two, and the
polynomial orders can be chosen smaller by more than a factor of two, also.

However the matrix ˜̄Q already contains next-to-nearest neighbour interactions and
therefore the square of this matrix as it appears in the local boson action is quite com-
plicated. In general this should be no reason to abandon this preconditioning, but unfor-
tunately the implementation on parallel computers becomes impossible due to the large

distance interactions of ˜̄Q
2
. This can be avoided by applying (1.84) directly on (1.29), as

was proposed in [32]. The bosonic action can then be written as

S
(n1)
f,eo [U, φ] =

n1
∑

j=1

φ(j)†
(

Q̃− Poρ
∗
j

)(

Q̃− Poρj

)

φ(j), (1.90)

with Po being the projector on the odd subspace

Po =

(

0 0
0 1

)

. (1.91)

This action again has to be written in the form (1.72), and comparing the result with
(1.73) and (1.74) we find that only small changes are needed in the local bosonic action.
The term A(i) from equation (1.73) has to be replaced by a term that depends on the
parity of the site

A
(i)
ee = 1 + 16κ2

A
(i)
oo = 1 + 16κ2 + |ρi|2 − (ρi + ρ∗i )γ5,

(1.92)

and in equation (1.74) in the term b(i) the µi has to be replaced by − 1
2ρi or −1

2ρ
∗
i depending

on the interaction and the parity of the site.

These are minor modifications and the form of the bosonic action remains unchanged.
In this way the even-odd preconditioned matrix is as easy to use as the non-preconditioned
matrix from the point of view of the implementation.

The matrix Q̄might have the same determinant as Q, but it is not obvious how to relate
Q̄−1 to Q−1 as needed in the computation of fermionic correlators. There is, however, a
simple decomposition of Q into Q̄:

Q = LQ̄R =

(

1 0
−κDoe 1

)(

1 0
0 1− κ2DoeDeo

)(

1 −κDeo

0 1

)

. (1.93)

For the matrices L and R the inverse is easily found:

L−1 =

(

1 0
κDoe 1

)

, (1.94)

R−1 =

(

1 κDeo

0 1

)

. (1.95)
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When asking for the inverse of the matrix Q we are actually only interested in the
solution z of the equation

Qz = s, (1.96)

with s being some source vector. Since the standard conjugate gradient works only on
matrices that are hermitean and positive definite we apply it for Q̃2 on the source Q†s:

Q̃2z = Q†s. (1.97)

Using the relations given above for the matrices Q, L and R we find that the solution z
can also be written as

z = R−1γ5

(

˜̄Q
2)−1

˜̄QL−1s. (1.98)

The source s therefore has to be multiplied by L−1 and by ˜̄Q, and then the much faster

conjugate gradient on the preconditioned matrix ˜̄Q
2

can be applied. The result has to be
multiplied further by γ5 and R−1, which gives the original result z.

With the explanations given in this section the even-odd preconditioning can be applied
in the local updates, in the correction step and in the measurement of the correlators. This
should be done because the effort is not much larger than before while the polynomial
orders and the conjugate gradient iterations are greatly reduced. There is unfortunately
one remaining place where we are forced to use the non-preconditioned fermion matrix.
This is the global heatbath algorithm for the boson fields, where (1.90) has to be used.
Due to the efficiency of the global heatbath it is still worthwhile to use it, although without
preconditioning.

1.5 Measurement of basic quantities

When running the simulations we have the gauge coupling β and the fermion coupling κ
as tuning parameters. These are not very physical parameters. What we actually want
to fix is e. g. the physical volume L3 · T and the quark or pion mass. Therefore we have
to measure the volume, which is usually done by measuring the Sommer scale parameter
r0 [33, 34], and we have to measure the masses. Then we can tune the parameters β and
κ until the volume and the quark mass are at the desired values.

Since this is a generic procedure to be applied for nearly every model with gauge fields
we will give the basic definitions and some explanations on how to measure these quantities
in this section before going to some applications in the next chapters.

1.5.1 Smearing techniques

The quantities we want to measure are either gluonic, in which case they can be represented
on the lattice by closed loops of gauge links, the Wilson loops, or they are fermionic. In
the latter case they are calculated from propagators, i. e. inversions of the fermion matrix
as described in section 1.4.3. In any case we want to get the best possible result, i. e.
smallest errors with least effort. For this purpose it is useful to apply smearing. This
usually increases the signal to noise ratio or the projection on the ground state is increased.
The smearing technique we will use for the gauge fields is the APE smearing [35]. For the
fermionic quantities we will use Jacobi smearing [36].
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APE smearing

With one iteration of APE smearing every spatial link is replaced by the sum of itself and
the weighted sum of the four orthogonal space-like staples perpendicular to the direction
of the original link:

U s
k(x) = PSU(N)






Uk(x) + α

±3
∑

j=±1
j 6=±k

U †
j (x+ k̂)Uk(x+ ̂)Uj(x)






. (1.99)

The operator PSU(N) denotes the projection back into the group SU(N). This projection
is straightforward for the case of two colours as considered in chapter 3, but for N = 3 one
has several choices. In that case we are projecting back A toM = PSU(3)(A) by maximizing

Tr(M †A) using O(10) Cabibbo-Marinari hits on the SU(2) subgroups of SU(3). It can
easily be checked that this smearing algorithm is gauge covariant. Usually it is iterated
many times. Both the staple to link ratio α and the number of iterations NAPE have to
be optimized to get the best results.

There are other smearing algorithms for the gauge fields that are roughly as efficient,
e. g. Teper blocking [37]. However, APE smearing is much easier to implement on parallel
computers, which is why we have decided to use this method.

Jacobi smearing

For analytical calculations it is easiest to take pointlike sources and sinks when inverting
the fermion matrix. This, however, doesn’t resemble the physical states of the fermion in an
optimal way. To improve this situation one can use the intuition given from shell model
wavefunctions for the approximation of the ground state. This means that a smearing
technique for the fermion fields can be found by starting from the solution to a three
dimensional Klein-Gordon equation. Hence a spinor ψ is smeared as

ψ̄(x, t) =
∑

x′

F (x,x′)ψ(x′, t), (1.100)

with the Jacobi smearing defined through

F ab(x,x′) = δabδxx′ +

NJ
∑

i=1



κJ

3
∑

j=1

(

δx′,x+̂U
ab
j (x) + δx′+̂,xU

†
j

ab
(x)
)





i

. (1.101)

Again this smearing algorithm is gauge covariant. This smearing technique has two pa-
rameters κJ and NJ that have to be tuned to get the optimal results.

1.5.2 Sommer scale parameter r0

Of course we know the dimensionless parameter L
a from our simulations, which is just the

number of lattice sites in one direction. Therefore we need to relate the lattice spacing a
to some physical quantity which then gives us the lattice extension and of course relates
all other quantities given in lattice units to physical units. In quenched QCD the string
tension σ is often used. However, this is a quantity that should be measured at large
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distances, and with dynamical quarks string breaking effects might take place. In [33]
Sommer proposes a new method to set the scale for a. This is done by computing r0

a from
the static potential, which should be done at medium distances, and which can be related
to phenomenological models like the Cornell [38] or the Richardson [39] model.

The Sommer scale parameter as proposed in [33] is defined through the relation

r2F (r)
∣

∣

r=R(c)
= c, (1.102)

where F (r) is the force between static quarks and the hadronic length scale R(c) as usually
used for the definition of the Sommer parameter is

R(1.65) ≡ r0 ' 0.49 fm. (1.103)

On the lattice r0/a can be calculated from the static quark potential, which is in turn
determined from Wilson loops. The basic idea is simple, but since we want to match all
our results to this parameter it is crucial to get a precise determination. To achieve this we
follow the method proposed by Michael and collaborators [40,41] and some details in [42].

Using the variational approach of [43] we get matrices Wij(r, t) consisting of r · t loops
of smeared gauge links, where our smearing technique of choice is APE-smearing, and the
indices i, j label the level of smearing.

From the solutions to

Wij(r, t)φ(r)
(k)
j = λ(k)(r; t, t0)Wij(r, t0)φ(r)

(k)
j (1.104)

one gets the eigenvector φ(r)
(0)
j for the largest eigenvalue λ(0)(r; t = t0 + 1, t0). This

equation is solved by transforming it into an ordinary eigenvalue equation, where several
ways are possible:

W (r, t0)
−1W (r, t)φ = λφ (1.105)

W (r, t)W (r, t0)
−1(W (r, t0)φ) = λ(W (r, t0)φ) (1.106)

W (r, t0)
−1/2W (r, t)W (r, t0)

−1/2(W (r, t0)
1/2φ) = λ(W (r, t0)

1/2φ). (1.107)

In the literature [43] the third version has been used. However this can only be done with
extremely good statistics. Otherwise it is possible that, due to statistical fluctuations,
the matrix Wij gets negative eigenvalues making the (real) square root impossible. We
checked that the first two versions give numerically exactly the same result. For the final
determinations we choose the first version (1.105), where one has to be careful about the
fact that W (r, t0)

−1W (r, t) no longer has to be symmetric, complicating the calculation
of the corresponding eigenvectors.

Once the eigenvector φ(r)
(0)
j has been obtained, we can project the matrix Wij to the

ground state:

W̃0(r, t) = φ(r)
(0)
i Wij(r, t)φ(r)

(0)
j . (1.108)

This correlator leads to good estimates of the ground state energy

Ẽ0(r, t) = ln

(

W̃0(r, t)

W̃0(r, t+ 1)

)

. (1.109)
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The potential V (r) is estimated by averaging E0(r, t)/t over time extensions t with t ≥ 1
and weight given by the Jackknife error. Compared to some other methods this way of
extracting the potential seems to give the most reliable estimates with smallest error bars.

Rewriting the force in (1.102) the Sommer scale parameter is given in terms of the
potential as

r20
dV

dr

∣

∣

∣

∣

r0

= 1.65. (1.110)

Having a reliable static quark potential we can follow [44] by fitting the potential to

V (r) = V0 + σr − e[ 1
r
] (1.111)

with r = |r| and [ 1
r
] being the tree-level lattice Coulomb term

[
1

r
] = 4π

∫ π

−π

d3k

(2π)3
cos(k · r)

4
∑3

j=1 sin2(kj/2)
. (1.112)

Due to the small lattice size we had to drop in (1.111) the additional correction term
f ·
(

[1
r
]− 1

r

)

, which could have been used to estimate O(a) effects, fixing e = π/12. Bringing
together the above equations (1.110) and (1.111) we extract r0 from

r0 =

√

1.65 − e
σ

. (1.113)

Another reliable estimate of the Sommer scale parameter can be obtained from inter-
polating the force as it appears in (1.102). This is the original method proposed in [33]
and emphasized again in [34]. For this method the force is needed. At distance rI this
can be estimated as

F (rI) = V (r)− V (r− r

|r|), (1.114)

where the argument rI is defined from (1.112) as

rI = [
1

r
]− [

1

r− r

|r|
]. (1.115)

The two points neighbouring the estimated value of r0 are interpolated to the function

F1(r) = f1 + f2
1

r2
. (1.116)

For not too small values of r this is locally an excellent approximation to the r dependence
of the force. Therefore this function can be used to estimate the force as needed for (1.102),
leading to an alternative determination of the Sommer scale parameter. The systematic
errors of this method can be estimated by further interpolating the force to the function

Fs(r) = f1 + f2
1

r2
+ f3

1

r4
. (1.117)

For small values of r0 we found the systematic errors to be larger than the statistical ones,
but for values of r0

a > 3 they become negligible.
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The results for r0
a determined from the two methods show a disagreement slightly

beyond the statistical uncertainty. This, however, is to be expected, since the two de-
terminations may differ by O(a) effects. Any determination can be taken, but when
performing a continuum extrapolation one should stick to one definition to allow for a
smoother extrapolation.

Routinely we are using both methods to determine r0
a from the potential obtained from

(1.109), from the generalized eigenvalues of (1.104) and from Wilson loops with fixed APE
smearing level. We have found that by interpolating the force an estimate for r0

a can be
given with less statistics. Nevertheless once enough statistics is available for both methods
they give r0

a with roughly the same precision.

1.5.3 Hadronic observables and quark mass definitions

The masses and amplitudes can be computed from zero-momentum two-point functions
of the time-slice distance (x0 − y0)

CXY (x0 − y0) =
1

Vs

∑

x,y

〈

X†(x)Y (y)
〉

, (1.118)

where x ≡ (x0,x), Vs is the spatial volume and in our case the operators X and Y are one
of

X(x) = Y (x) = P5(x) ≡ q̄′(x)γ5q(x) −→ CPP (x0 − y0),
X(x) = Y (x) = A0(x) ≡ q̄′(x)γ5γ0q(x) −→ CAA(x0 − y0),
X(x) = Y (x) = Vi(x) ≡ q̄′(x)γiq(x) −→ CViVi

(x0 − y0).
(1.119)

Furthermore we consider the mixed correlator

X(x) = A0(x), Y (x) = P5(x) −→ CAP (x0 − y0). (1.120)

The correlators, e. g. the pion correlator CPP (x0 − y0) may then be written as

CPP (x0 − y0) =
1

Vs

∑

x,y

Tr
(

Q†
xy

−1
Q−1

yx

)

(1.121)

using q(x)q̄(y) = Q−1
xy and γ5Q

−1
xy γ5 = Q†

yx
−1

. With the relation (1.121) we can compute
the correlator using a conjugate gradient algorithm with the source at site y ≡ (y0,y).
This conjugate gradient algorithm has to be applied twelve times (in the case of QCD) to
get all needed combinations of the colour and spinor indices. The other correlators can be
calculated from the same results of the inversion, they only have to be multiplied by some
additional γ-matrices.

Of course we want to get results for these correlators with computational costs as
low as possible, i. e. we want to get some small final statistical error with the lowest
possible number of measurements and the fewest updates between the measurements.
We have found that this can be achieved by picking the source y in (1.121) at random
over the lattice. This reduces the final statistical error for hadronic observables and
furthermore reduces the autocorrelation of these quantities to values clearly below the
plaquette autocorrelation [29], see chapter 2.
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Once the correlators are known one can extract masses and amplitudes from the asymp-
totic behaviour:

CXY (t) =
ξ2XY

2mp

(

e−mpt + (−1)X+Y e−mp(Lt−t)
)

, (1.122)

ξXY =
√

〈0 |X(0)| p〉 〈0 |Y (0)| p〉. (1.123)

Here |p〉 is the zero-momentum state of the particle that is associated with the operators
X(x) and Y (x), mp is the corresponding mass and (−1)X is the time-parity of the operator
X(x). There is an obvious symmetry around Lt

2 , which we use to reduce the noise of the
correlators by time-symmetrization. The best results for mp and ξXY can be achieved by
a global fit over some range of time-slice distances t ∈ [Tmin,

Lt

2 ]. The optimal value of
Tmin is to be determined by checking the effective local mass meff(t) for the beginning of
the plateau. The effective local mass is implicitly defined by

CXY (t)

CXY (t+ 1)
=

e−meff (t)t + (−1)X+Y e−meff (t)(Lt−t)

e−meff (t)(t+1) + (−1)X+Y e−meff (t)(Lt−t−1)
. (1.124)

Actually the effective mass could be used as a mass estimate, and indeed it agrees very
well with the result from the global mass fit. However, the latter gives a more precise
determination of the mass and is therefore used.

In general the determination of the pion mass mπ or the ρ meson mass mρ is possible
without further complications. However, for small quark masses we find that we need
larger values of Tmin because the asymptotic behaviour of the correlators sets in later. This
results in larger errors for the hadronic observables. We have tried Jacobi smearing [36]
both on the source and the sink and as expected the overlap of the operators with the
ground state is improved.

Hadronic observables that we monitor are the pion mass mπ, the ρ meson mass mρ,
the pion amplitude gπ and the pion decay constant fπ. The pion mass is determined from
the asymptotic behaviour of the correlator CPP (t), and the ρ mass from the correlator

CV V (t) =
1

3

3
∑

i=1

CViVi
(t). (1.125)

The amplitude

gπ ≡ 〈0 |P5(0)| π〉 (1.126)

can be extracted from CPP (t) by identifying gπ = ξPP . For the pion decay constant

fπ ≡ m−1
π 〈0 |A0(0)| π〉 (1.127)

we use two different methods to be able to pick the best determination, because for light
quark masses with highly correlated data there is no clear preference for one of the meth-
ods. By the first method the amplitude 〈0|A0(0)|π〉 is determined from the correlator
CAA(t), and the pion mass is the previously obtained one. By the second method [45] the
amplitude ratio

rAP =
〈0 |A0(0)| π〉
〈0 |P5(0)| π〉

(1.128)
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is fitted by using the asymptotic behaviour

CAP (t)

CPP (t)
= rAP tanh

(

mπ

(

Lt

2
− t
))

. (1.129)

Again mπ is fixed at the value from the global fit to CPP (t). The pion decay constant is
then obtained by

fπ = m−1
π rAP gπ. (1.130)

Quark mass definitions

There are many different ways to get an estimate for the quark mass. In the limit of very
small quark masses all of them should show a linear behaviour between each other. Most
of the definitions for the quark mass make use of the fact that the pion mass-squared m2

π

in a first approximation goes to zero the same way as the quark mass does:

m2
π = const. ·mq +O(m2

q). (1.131)

Under the assumption that mρ is roughly a constant as a function of the quark mass
one widely used way to estimate the quark mass is to consider the ratio mπ

mρ
. However,

we believe that this is not a good candidate. Apart from the fact that there seems to
be no sign of a linear behaviour compared to other quark mass definitions in the range
of medium quark masses there is the further complication that the ρ meson may decay
into two pions ρ → ππ once mπ

mρ
< 1

2 . This makes the measurement of the ρ meson mass
mρ unnecessarily complicated. Another natural way to get a dimensionless quark mass
estimate from m2

π is to use the Sommer scale parameter and to define

Mr ≡ (r0mπ)2. (1.132)

This definition is going to be prefered in this work. Another definition that seems to work
as well comes from the axial Ward identity, the so-called partially conserved axial current
(PCAC) relation

∂µA
a
µ = 2mP a. (1.133)

In the above notation the quark mass can be defined as

mPCAC
q =

fπ

2gπ
m2

π. (1.134)

This is in physical units, but again a dimensionless quantity can by obtained by multiplying
with r0:

µr ≡ r0mPCAC
q . (1.135)

All the given quark mass definitions are dimensionless. This is quite convenient, but
we would like to compare the value of Mr with the strange quark mass. This can be done
by using unquenched Nf = 2 lattice data. The Ω− baryon mass mΩ− = 1.672 GeV and
r0 = 0.49 fm give r0mΩ− = 4.237. The CP-PACS collaboration gives results for the ∆
baryon mass in [46] at their largest β value β = 2.20 and for κ = 0.1363 and κ = 0.1368.
Interpolating between these results one can match r0m∆ = 4.237 if their pion mass is
r0mπ ' 1.76. This gives for the strange quark mass

Mr,strange ' 3.1. (1.136)
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Slightly different values are possible if Mr,strange is matched in another way, but for def-
initeness we shall stick to this definition. It should be mentioned that this definition is a
rather technical one for operational purposes. No attempt has been made to compute the
conventionally defined strange quark mass (for instance in dimensional regularization).

1.5.4 Autocorrelations and error analysis

To get meaningful results from the lattice simulations the error of the measured quantities,
both the statistical and the systematical one, has to be estimated. Systematical errors can
come from finite volume effects, O(a) errors, not good enough third polynomial, quenching
and many other sources. These errors should be kept below the statistical one.

Let us now consider the statistical error of a set of primary quantities with (exact)
expectation values Aα, α = 1, 2, . . .. In the measurement sequence the observed estimates
for Aα are:

āα =
1

N

N
∑

i=1

a(i)
α . (1.137)

With enough statistics |āα − Aα| � 1 should be true. If the configurations used for the
measurement are independent one can use a naive error estimate, i. e. the variance. How-
ever, it is usually advisable to measure more often between two independent configurations
to reduce the error. If this is done the naive error has to be reweighted with the effective
statistics. For this the integrated autocorrelation length τint of that quantity is needed,
and with that the error estimate for the primary quantities can be estimated by

σ(Aα)2 =
2τint

N

(

a2
α − (āα)2

)

. (1.138)

The normalized autocorrelation function of a primary quantity is given by

CAαAα(t) =
〈a(i)

α (n)a
(i)
α (n+ t)〉

〈a(i)
α (n)a

(i)
α (n)〉

. (1.139)

For large t this function typically behaves like

CAαAα(t) ∝ e−|t|/τ , (1.140)

which leads to the definition of the exponential autocorrelation length τexp:

τexp(A) = lim
t→∞

sup
t

− log |CAαAα(t)| . (1.141)

However, the more important autocorrelation is the integrated one, because due to slow
modes there are usually some long tails in addition to (1.140) in CAαAα(t). The integrated
autocorrelation is defined as

τint(A) =
1

2
+

∞
∑

t=1

CAαAα(t). (1.142)

For secondary quantities such as the pion mass, r0 and any measurement including a
reweighting factor, or in general any function f(Aα) of the primary expectation values Aα,
one cannot compute the integrated autocorrelation in a straightforward way. But there
are several possibilities to get an estimate for the autocorrelation, and therefore for the
statistical error. Two of these possibilities shall be discussed in this section.
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Jackknife analysis with blocking

If Aα has been measured on a large set of independent configurations, then one can use
the distribution of the values f(āα) on different subsamples to get an estimate of the error
of the secondary quantity. However, there are usually not enough measurements for this
method. In that case a generalization, the jackknife analysis can be applied. Jackknife
averages of the primary quantities are obtained by leaving out one measurement in all
possible ways:

a(J :j)
α ≡ 1

N − 1

∑

i6=j

a(i)
α . (1.143)

This leads to the jackknife estimators

f (J :j)
α ≡ f(a(J :j)

α ) (1.144)

of the secondary quantities, with a corresponding average of

f
(J)
α ≡ 1

N

N
∑

j=1

f (J :j)
α . (1.145)

If we continue to assume that the used configurations are independent, we can use the
variance of the jackknife errors

σ2
(J)f̄α

≡ N − 1

N

N
∑

j=1

(

f (J :j)
α − f (J)

α

)2

(1.146)

as an estimate of the error.

Usually, however, the used configurations are not independent, and as for the primary
quantities we will underestimate the error if we don’t account for the correlation between
the measurements. This can be done by the technique of blocking. For this n successive
measurements are collected together in N/n blocks. Each of these blocks is now considered
as a single measurement, and again we can apply the jackknife analysis to the blocked data.

For the different blocking levels this leads to different estimates of the error σ
(B:n)
α (f(Aα)).

In the limit of infinite statistics, the error σ
(B:n)
f,α should approach an asymptotic value

σ
(B:unc)
f,α for increasing n. This value can be considered as the standard deviation for the

uncorrelated data. The integrated autocorrelation can then be extracted as

τint =
1

2





σ
(B:unc)
f,α

σ
(B:1)
f,α





2

. (1.147)

This method of the jackknife analysis combined with blocking is very easy to apply no
matter how complicated the function f(Aα) is. However, we have found that it becomes
unstable already at moderate statistics. This is understandable by realizing that the
statistics of the individual blocks are reduced compared to the total sample.
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Linearization

We will now discuss an advanced method to estimate the error. As has been proposed
in [47] the error estimates and autocorrelations can be obtained from linear combinations
of primary quantities. This method is based on the linearization of the deviation of the
secondary quantity from its true value. This deviation can be expressed as

f(ā)− f(A) '
∑

α

(āα −Aα)
∂f(A)

∂Aα
. (1.148)

The values of the derivatives at the true expectation values are constants, and therefore
the deviation has been expressed as a linear combination of primary quantities. This linear
combination can be handled in the same way as the primary quantities themselves. Since
we have the estimate

∂f(A)

∂Aα
' ∂f(A)

∂Aα

∣

∣

∣

∣

A=ā

≡ f̄α (1.149)

we can express the deviation as

f(ā)− f(A) '
∑

α

(āα −Aα)f̄α = āf̄ −Af̄ , (1.150)

where
Af̄ ≡

∑

α

Aαf̄α (1.151)

is a linear combination of primary quantities. Therefore Af̄ is a primary quantity, too. Its
estimate is

āf̄ ≡
∑

α

āαf̄α =
1

N

N
∑

i=1

a(i)
α f̄α. (1.152)

The variance of f(A) is

σ2
α '

〈

(āf̄ −Af̄ )
〉2
, (1.153)

which shows, that the error of f(A) can be estimated from the integrated autocorrelation
of the primary quantity Af̄ , i. e. the integrated autocorrelation of the secondary quantity
can be defined as the one of Af̄ . It should be noted, that 〈. . .〉 stands for the expectation
value in an infinite sequence of identical measurements having the same statistics as the
actual measurement.

Examples We now apply the method of linearization to some examples that are typically
encountered. An easy but important example is the ratio of two primary quantities as
needed for the inclusion of the reweighting factors from section 1.3.3. Let A be the
measured primary quantity and r the reweighting factor. Then the reweighted estimate is

f =
A1

A2
, (1.154)

with A1 = (rA) and A2 = r. With

∂f

∂A1
=

1

A2
,

∂f

∂A2
= −A1

A2
2

(1.155)
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we get for the linearized deviation

āf̄ =
1

N

N
∑

i=1

r(i)a(i)r̄ − r(i)ra

(r̄)2
= 0. (1.156)

The variance is estimated by

σ2
f '

2τ
(f̄)
int

N
a2

f̄
, (1.157)

where

a2
f̄

=
1

N

N
∑

i=1

(

r(i)a(i)r̄ − r(i)ra

(r̄)2

)2

(1.158)

and

τ
(f̄)
int '

1

2a2
f̄

N−1
∑

d=1

1

N − d

N−d
∑

i=1

(r(i)a(i)r̄ − r(i))(r(i+d)a(i+d)r̄ − r(i+d))

(r̄)4
. (1.159)

Another important example is the case of the effective masses as defined in (1.124).
We will therefore consider the following ratio

rt =
CXY (t)

CXY (t+ 1)
=

e−meff (t)τ + (−1)X+Y e−meff (t)τ

e−meff (t)τ ′
+ (−1)X+Y e−meff (t)τ ′ , (1.160)

where the factors are symmetrized around Lt/2, and with

τ ≡ Lt

2 − t
τ ′ ≡ Lt

2 − (t+ 1).
(1.161)

For any function F (rt) of this ratio we have

∂F

∂CXY (t)
=
∂F

∂rt
· 1

CXY (t+ 1)
,

∂F

∂CXY (t+ 1)
= −∂F

∂rt
· CXY (t)

(CXY (t+ 1))2
. (1.162)

For the i-th value of the linearized deviation this gives

D
(i)
t =

∂F

∂rt

∣

∣

∣

∣

rt=
CXY (t)

CXY (t+1)

C
(i)
XY (t)CXY (t+ 1)−CXY (t)C

(i)
XY (t+ 1)

(

CXY (t+ 1)
)2 , (1.163)

which implies

Dt =
1

N

N
∑

i=1

D
(i)
t = 0. (1.164)

Varying rt and meff(t) in (1.160) gives the derivative

∂meff (t)

rt
=

e−meff (t)τ ′
+ (−1)X+Y emeff (t)τ ′

rtτ ′
(

e−meff (t)τ ′ − (−1)X+Y emeff (t)τ ′
)

− τ
(

e−meff (t)τ − (−1)X+Y emeff (t)τ
) ,

(1.165)
which directly leads to the quantities needed for the error estimate in (1.153).

One can apply the linearization method also for slightly more complicated functions
than the above two examples, e. g. it has been worked out for the case of a mass fit.
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However, a straightforward application of even more complicated functions like the de-
termination of the Sommer scale parameter r0 from the variational method as described
in section 1.5.2 seems to be impossible due to the iterative determination of eigenvalues
and eigenvectors. However, the linearization method can also be applied numerically. For
this the derivative in (1.148) and (1.149) is determined numerically by slightly varying the
primary quantities. The resulting estimate of the derivative f̄α can then be used for the
further determination of error estimate. This numerical implementation is quite conve-
nient, because it allows an error estimate for quantities like Mr defined in (1.132) that is
superior to a simple combination of the error bars based on the assumption of uncorrelated
Gaussian distributions. But once this numerical linearization method is available for r0

and mπ it is very little effort to apply this for Mr. This numerical implementation has
been compared with the exact implementation in the cases of the effective mass and the
mass fit. The resulting error bars of the two different implementations of this method
were compatible.
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Chapter 2

QCD simulations with light quark

masses

Today lattice calculations are limited to a region of unphysical parameters due to huge
computational demands that arise if one wants to simulate QCD with quark masses close
to zero and if one wants to perform the continuum extrapolation in a large physical
volume. For that Kenneth Wilson estimated already in 1989 that one would need O(10)
PetaflopYears [48]. This estimate has been confirmed by Karl Jansen for chirally invariant
formulations of lattice QCD [49]. This is completely out of reach at a time where first
multi-Teraflop machines are announced [50–53].

However, one can already do many interesting studies of QCD at the parameters that
can be reached today. Here we will concentrate on the simulation of light dynamical
Wilson fermions.

The volume used these days has a spatial extension of 2− 3 fm. This might not be an
extremely large volume, but still it should be large enough to keep finite volume effects
under control. What remains is to tune the quark to a light mass and go sufficiently close
to the continuum limit. Luckily one doesn’t have to go all the way in either direction. One
can stay at somewhat larger quark masses than the physical values of the up and down
quark masses, because chiral perturbation theory (χPT) can be used to extrapolate the
data to smaller quark masses [54]. To allow such extrapolations the simulated quark mass
should not be too large. To see the curvature predicted by one loop χPT it is expected that
quark masses of mud ≤ ms

4 [55] are needed, with ms the strange quark mass. In addition
there are techniques that assist in the continuum limit. One can either use improved
actions to be able to extrapolate to the continuum limit already at larger lattice spacings
or one can include the O(a) effects into χPT [56].

This already sounds much better at first sight, but unfortunately a quarter of the
strange quark mass still has to be considered as relatively light and therefore as computa-
tionally demanding. This mass has to be compared with the existing simulations, where
the quark mass cannot be considered as light enough for χPT, because in most cases the
mass of the two dynamical quarks is still above half of the strange quark mass mud >

ms

2 ,
and the third quark is neglected completely. With these simulations the curvature pre-
dicted by χPT cannot be seen, i. e. the chiral logarithms are not yet found [57, 58].

In [49, 59–63] the costs of unquenched simulations were discussed. Some of the main
statements of these references will be presented in section 2.1, where we also study the
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scaling behaviour of the TSMB algorithm with respect to the quark mass. For this the
region of light quark masses is explored. In section 2.2 we will turn to the scaling with
respect to the lattice size.

Using the data from the study of the costs we analyze the eigenvalue spectrum of the
non-hermitean Wilson-Dirac matrix Q. Despite the coarse lattices used for this study this
can give interesting physical insights, because the used quark masses are the smallest for
Wilson fermions so far.

Furthermore with these light quark masses we can test the appearance of the chiral
logarithms. Next-to-leading order (NLO) calculations using χPT indicate a logarithmic
behaviour in many quantities when going towards light quark masses. This hasn’t been
seen in other simulations at larger quark masses, and it is interesting to see if these
logarithms appear in our simulations at smaller quark masses.

2.1 Quark mass dependence

The authors of references [49, 59–63] were asked at the Berlin Lattice Conference to give
a formula for the expected costs depending on the volume, the quark mass and the lattice
spacing. Since it is straightforward all of the authors agreed to include the volume as
(

L
fm

)z
into this formula. If the lattice spacing was included it was done according to

(

1
a GeV

)z
. For the mass two different ansätze were used, both using the fact that for very

small masses the quark mass will be proportional to the square of the pion mass. The

quark mass dependence could then be described as
(

1
amπ

)z
or as

(

mπ

mρ

)z
using the widely

referenced ratio of the pion and the ρ mass. Here are some of the results in these quantities
from some of the above references:

Lippert: β = 5.6 : 2.3(7) · 107 ·
(

L
a

)5
(

1
amπ

)2.8(2)

β = 5.5 : 1.6(4) · 107 ·
(

L
a

)5
(

1
amπ

)4.3(2) (2.1)

Wittig: 0.31(7) · 109

(

L

a

)4.55 ( 1

amπ

)2.77(40)

(2.2)

Christ: 1.4 · 1011 L
3T

(fm)4

(

mπ

mρ

)−5( 1

a GeV

)7

(2.3)

Ukawa: 2.8 ·
[

mπ/mρ

0.6

]−6 [ L

3 fm

]5 [ a−1

2 GeV

]7

. (2.4)

All of these statements give the cost in units of floating point operations needed for one
independent configuration. We are mainly concerned on the expected behaviour with the
volume and the mass.

There is a general agreement in the scaling with the volume by most of these authors.
In equation (2.3) a fourth power of the lattice extension is assumed which is below the
statements of the other authors. However, here have been used only 163 · 32 and 243 · 32
lattices and the results have been extrapolated to larger volumes. So the difference to the
fifth power should be within the uncertainty of this result. In equation (2.2) 4.55 is used
as a power for the lattice extension. This, however, was taken from [64], where the latest
estimate is now a fifth power in equation (2.1).
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To further compare the results of equations (2.1) and (2.2) is difficult, because they

have only one further parameter
(

1
amπ

)z
. With that the different dependence on the lattice

spacing and the quark mass cannot be disentangled. Indeed the different exponents for
different β values in equation (2.1) show that the scaling behaviour cannot be described
by this simple equation.

In the other two equations (2.3) and (2.4) the dependence on the mass was given in

the form
(

mπ

mρ

)z
. With that they assume that the quark mass is properly described by

the square of mπ

mρ
. This should be the case for extremely light quark masses. However, in

both cases the considered masses were somewhat larger than the ones we consider here
and even for our data this does not give a good description of the quark mass, as can be
seen from figure 2.1.

For this reason we have not taken the ratio of the pion and the ρ mass as a reference
for the quark mass. The problem with that ratio lies strongly in the ρ mass, which cannot
be considered to be a constant. This can be seen in table 2.3 in the range we want to
consider. In addition we have arrived at the situation mπ

mρ
= 0.5 where the ρ may decay in

a sufficiently large volume into two pions: ρ→ ππ. Therefore we have used

Mr ≡ (r0mπ)2 (2.5)

as a reference for the quark mass. In [29] we have then considered the formula

CπLa = FπLa(r0mπ)−zπ

(

L

a

)zL (r0
a

)za

(2.6)

as a description of the costs. To compare the results with the previously mentioned results
in [49, 59–63] we further used

CU = FU

(

mπ

mρ

)−zπρ
(

L

a

)zL (r0
a

)za

. (2.7)

In this form the results of equation (2.4) can be written as

FU = 5.9 · 106 flop
zπρ = 6, zL = 5, za = 2,

(2.8)

where FU is given in units of floating point operations (flop). Since we will restrict ourselves
to the situation r0

a = const. we cannot determine the parameter za with these simulations.
Anticipating the result zπ = 4 and making use of the fact that the masses are so light that
both Mr = (r0mπ)2 and µr = r0mq give a good approximation to the quark mass, see
figure 2.1, we can set zaq ≡ zπ

2 = za. The cost can therefore as well be parametrized as

CqL = FqL(amq)
−zaq

(

L

a

)zL

. (2.9)

This way the parameter r0 drops out which is very convenient. Indeed this parametrization
of the costs is in some sense similar to equations (2.1) and (2.2), where zπ = za was assumed
so that r0 could be removed from those equations. However, the simplification used in
(2.9) is based on explicit findings for the powers in equation (2.6).
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With equations (2.6), (2.7) and (2.9) we have found different ways in which we will
parametrize the costs for a dynamical quark simulation. This will help to estimate the costs
and feasability of future simulations. However, when doing so it has to be guaranteed that
the given extrapolation still is valid for the new parameters. Usually future simulations
will be at smaller masses and larger volumes than previous simulations. Due to the
special needs of χPT there is an increasing interest to do simulations at much smaller
masses than mud ≥ ms

2 which has been used so far. However, the estimates in equations
(2.1), (2.2), (2.3) and (2.4) were made in a region of roughly mud >

ms

2 with the HMC
algorithm. As has recently been shown [16] the HMC will produce so-called spikes in
the force when going into the region mud <

ms

2 . These spikes are probably related with
extremely small eigenvalues and correspondingly a very small fermion determinant. This
limits the precision of the calculation and therefore violates the reversability condition,
which is crucial for the HMC. This does not make simulations at smaller quark masses
impossible for the HMC because this problem can be solved by lowering the step size ∆τ
by an appropriate factor. However, this increases the cost estimates done in a region of
mud >

ms

2 by orders of magnitude and the extrapolations in (2.1)-(2.4) become invalid.

Up to now the only algorithm for dynamical Wilson fermions that is known to be able
to go to such small masses without further complications is the TSMB. This was explained
in [23] by looking at the condition numbers used in the runs of the N = 1 Super-Yang-
Mills theory [65,66], that are also summarized in section 3.3. The condition numbers that
appeared were of O(105). In [23] it was estimated that this would correspond to quark
masses of roughly ms

4 . Comparing with run (h) from table 2.2 and the results for this run
from table 2.3 this estimate was fulfilled quite well and indeed by now with the simulations
from this section there are simulations even below this quark mass. These simulation runs
will give a reliable cost estimate for a range of quark masses as needed for χPT.

It remains to discuss the definition of cost [47]. Possibilities are to measure auto-
correlation lengths of some important quantity or to achieve some given small error for
them. Using infinite statistics both definitions should be equivalent for some given lattice
action. It is not useful to give these costs in units of computer time, because that is
highly dependant on the computer speed and system and the degree of optimization of
the program. This would only make sense if the performance of the programs would be
different due to intrinsic differences between the algorithms. This is, however, not the case
because nearly every algorithm for dynamical quarks is dominated by the fermion-matrix-
vector-multiplications (MVMs). Here we give the costs either in floating point operations
(flop) or in MVMs with the main advantage that results are independent of the used com-
puter system. It is easy to convert between flops and MVMs by using the following exact
formula:

1 MVM = 1344 · L3T flop. (2.10)

Another possible unit would be the number of update cycles. This may seem to be a more
natural choice, but one has to be careful because the number of MVMs for one update
cycle is dependent on the polynomial orders and, in the case of global heatbath, on the
condition number of the fermion matrix. We will give the conversion factor from cycles to
MVMs for all of our runs.

Since the matrix multiplications dominate the computing time it is reasonable to ex-
press the costs and autocorrelations in units of MVMs. The part not directly related to
MVMs is given by the local updates. However, these are dominated by parts which can
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be essentially thought of as pieces of MVMs, too. As a result, the following approximate
formula for the total amount of MVMs needed for one update cycle can be obtained:

NMV M/cycle ' 6 (n1NΦ +NU ) + 2 (n2 + n3)NC + IGFG . (2.11)

NΦ is the number of local bosonic sweeps per update cycle, NU the number of local gauge
sweeps, NC the number of global Metropolis accept-reject correction steps, and IG and
FG give the number of MVMs and frequency of the global heatbath.

For data from APEmille and Cray the estimate of the cost of the local updates obtained
from (2.11) agrees with the actual costs up to 5%. Therefore the final costs in units of
MVM based on (2.11) are not much influenced by the approximation. This is not true
for the data presented for the P4-1700 system, since in this case the matrix multiplication
and the local updates are not treated homogeneously. Indeed the former is written in
assembler using SSE/SSE2 instructions while our code for the local updates is written in
C++ and compiled with the g++ compiler. As a result, the estimate for the cost of the
local updates is in this case underestimated by about a factor of three. Still we take the
above formula as a reference when tuning the parameters because the number of MVMs
is more generally applicable as it does not depend on implementation details. In addition,
in the future the local updates could be rewritten by using SSE/SSE2 instructions, too,
so eliminating the non-homogeneity with the MVMs.

So we want to determine the costs by measuring autocorrelations in units of MVM. It
remains to decide which are those important quantities to be used for the determination
of the autocorrelation. The choice should be such that one gets information about the
decorrelation of the gauge field as well as on the fermionic sector. It is a common choice

to use the average plaquette Tr
(

∑

xµν Uµν(x)
)

or its timelike part Tr
(

∑

xµ U0µ(x)
)

to

monitor the decorrelation of the gauge field, and for the fermionic sector the autocorrela-
tion of the pion mass mπ seems to be a reasonable choice. Unfortunately the pion mass is
a secondary quantity (a function of primary expectation values) and its autocorrelation is
much harder to determine than that of primary quantities. An alternative is the largest-
distance pion correlator. Its autocorrelation is a good estimate of the autocorrelation of
the pion mass itself, and it is much easier to determine because the pion correlator is a
primary quantity. Due to these problems with the pion autocorrelation another quantity
is widely used to monitor the decorrelation of the fermionic sector. This is the smallest
eigenvalue λmin of Q̃2, which is a primary quantity and therefore leads directly to good
results. However, with the linearization method as described in section 1.5.4 τmπ

int can be
reliably determined as any other autocorrelation.

To summarize we will use the average plaquette Tr (
∑

x Uµν(x)), the pion mass or
correlator and the smallest eigenvalue of Q̃2 to compute the autocorrelation.

2.1.1 Scaling behaviour in the light quark mass region

The general strategy to determine the exponents in (2.6), (2.7) and (2.9) is simple. Fix the
volume in lattice unites L

a , which of course is easy, and fix the lattice spacing. Then set
the quark mass to different values and extrapolate the needed costs to some appropriate
formula.

In practice the situation is more demanding. There is no explicit mass parameter in
the action, the only parameters we have available to set the lattice spacing a and the quark
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Table 2.1: Points of the Nt = 4 phase transition line as given by [67–69].

β 5.4 5.3 5.27 5.2 5.12 5.1 5.0 4.95 4.9 4.76

κ 0.148 0.158 0.16 0.165 0.17 0.172 0.177 0.18 0.182 0.19

Table 2.2: Bare couplings, parameters of the TSMB algorithm and total statistics in 1000

update cycles (Uk) of our runs around the Nt = 4 phase transition line on a 83 · 16 lattice.

run β κ n1 n2 n3 n4 λ ε Uk

(a) 5.28 0.160 20 40 70 100 2.8 1.75 ·10−2 80

(b) 5.04 0.174 28 90 120 150 3.0 5.25 ·10−3 33

(c) 4.84 0.186 38 190 240 300 3.6 1.44 ·10−3 31

(d) 4.80 0.188 44 240 300 300 3.6 7.2 ·10−4 12

(e) 4.76 0.190 44 360 380 500 3.6 2.7 ·10−4 144

(f) 4.80 0.190 44 360 380 500 3.6 2.7 ·10−4 224

(g) 4.72 0.193 52 600 750 800 3.6 0.9 ·10−4 196

(h) 4.68 0.195 66 900 1200 1100 3.6 3.6 ·10−5 200

(i) 4.64 0.197 72 1200 1500 1400 3.6 1.8 ·10−5 110

(j) 4.64 0.1975 72 1200 1350 1400 4.0 2.0 ·10−5 4

mass are the SU(3) gauge coupling β and the hopping parameter κ. The bare quark mass
am0 can be set using the hopping parameter κ = 1

2am0+8r . But the quark mass in the
Wilsonian formulation is subject to an additive renormalization, so we have to tune κ
towards a critical value κcrit(β) if we want to lower the quark mass. This, however, will
change the lattice spacing due to virtual loops of the fermions. Therefore β and κ have to
be tuned simultaneously.

The first thing to do is to fix the desired lattice spacing. It should be so large that
the physical volume is still large enough. Since most of our simulations were done on a
83 · 16 lattice and we would like to have a volume with a spatial extension of at least 2 fm
this limits a to be larger than 0.25 fm. With the Sommer scale parameter r0 ≈ 0.49 fm as
reference parameter this translates to r0

a ≤ 2. With r0
a = 2 we would not be close to the

continuum, something that would be considered to be the case for maybe a < 0.1 fm, but
this should be no concern for a study of the simulation costs. However, we would prefer to
choose the lattice spacing not much smaller than that, because the cost dependence could
be different far away from the continuum limit.

There is another important issue to take care of when fixing the lattice spacing. The
temperature

T =
1

Nta
, (2.12)

with Nt being the smallest lattice extension, should be such that the fields are in the
confined phase. Hence the temperature T should be below the temperature of the finite
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Table 2.3: Results of runs specified in table 2.2 for different basic physical quantities. The

values given in lattice units can be transformed to physical units by cancelling the lattice

spacing a with the help of the results for r0
a and using r0 = 2.53 GeV−1.

run r0/a afπ amπ amρ mπ/mρ Mr amq

(a) 1.885(30) 0.3738(50) 1.2089(36) 1.2982(32) 0.9312(17) 5.19(20) 0.2694(39)

(b) 1.715(20) 0.4321(23) 1.0428(41) 1.1805(38) 0.8834(14) 3.20(10) 0.1777(19)

(c) 1.616(110) 0.4171(47) 0.7886(40) 1.0251(48) 0.7693(32) 1.61(24) 0.09244(232)

(d) 1.903(159) 0.4199(75) 0.753(11) 0.999(12) 0.752(11) 2.05(40) 0.0815(20)

(e) 1.697(46) 0.4191(20) 0.7151(20) 0.9941(19) 0.7187(16) 1.473(88) 0.07220(71)

(f) 1.739(33) 0.3658(34) 0.5825(34) 0.9089(47) 0.6431(33) 1.026(51) 0.04773(95)

(g) 1.772(41) 0.3791(39) 0.5695(38) 0.9116(33) 0.6256(31) 1.018(61) 0.04271(126)

(h) 1.765(37) 0.3668(54) 0.5088(51) 0.8983(35) 0.5675(42) 0.806(50) 0.03500(90)

(i) 1.812(46) 0.3575(48) 0.4333(48) 0.8616(80) 0.5002(60) 0.616(45) 0.02367(58)

(j) 1.756(128) 0.3377(48) 0.4205(54) 0.859(12) 0.4894(65) 0.545(47) 0.02027(95)

temperature phase transition Tcrit. Again we find the restriction that the lattice spacing
should not be too small, because otherwise the fields will switch over to the deconfined
phase where the dynamics change and, more importantly, something like a pion mass can
no longer be defined meaningful.

For the 83 · 16 lattices we have to make sure that we stay below the Nt = 8 phase
transition line. Indeed it makes sense to go along a phase transition line with Nt < 8. Not
only we will make sure that we are in the correct phase, this will further fix the lattice
spacing for us, because Tcritr0 ≈ const., which was found to be valid for the mass region
considered in [23]. Both the Nt = 4 and the Nt = 6 thermodynamical transition lines
have the desired properties, as was found in previous simulations with Nf = 2 Wilson
quarks [70, 71]. As a starting point, we have chosen the Nt = 4 phase transition line as
given by the points of [67–69] and summarized in [71]. The points of this line as found in
the literature are given in table 2.1, and they can easily be extended using the guidance line
in [71]. The extrapolation is necessary because the last point of table 2.1 still corresponds
to a mass of roughly ms

2 .

Following that guidance and retuning while going to new points we went down along
that line, increasing κ and therefore going to lighter quark masses while at the same time
keeping the lattice spacing constant at about a ≈ 0.27 fm and r0

a ≈ 1.8, as can be seen
from the measurement of the basic quantities in table 2.3.

We now turn to the determination of zπ, zπρ and zaq in equations (2.6), (2.7) and
(2.9) respectively. This study uses the 83 · 16 lattice simulations as given in table 2.2,
and the results were previously reported in [29]. Results for the autocorrelations are given
in table 2.4. A first thing to notice is that the autocorrelation of the fermionic sector
as described by the smallest eigenvalue λmin or the pion mass mπ and its correlator is
smaller by a factor of three to five than that of the gauge field sector. In case of mπ one
of the reasons for this is the intrinsic fluctuation of the pion propagator explained by the
freedom to randomly choose the position of the source for the inversion. However, this
argument does not hold for the smallest eigenvalue. These smaller autocorrelations in the
fermionic sector are expected but worthwhile to mention because of different findings in
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Figure 2.1: Scaling of different quark mass definitions. A good linear fit is possible for

the quark mass from the PCAC relation µr and Mr, while the ratio mπ

mρ
doesn’t relate that

nicely to the other definitions in this mass region.

the past, where they were larger by a factor of two [72].

Using the values in table 2.4 one can extract the behaviour of τ plaq
int , τmin

int and τmπ

int

as a function of the different dimensionless quark mass parameters Mr leading to zπ, mπ

mρ

leading to zπρ and amq leading to zaq. Since the different runs are at slightly different
values of r0

a they should be corrected to a common value of e. g. r0
a = 1.8 using the assumed

power za = 2. This small correction is only needed when extracting zπ and zπρ, while for
zaq there is no direct dependence on r0

a .

The results of this study are collected in the plots of figure 2.2. The linear fits to
τplaq
int give zπ ' 4, zπρ ' 6 and zaq ' 1.8. For the fermionic sector lower exponents are

found, indicating that cost estimates based on the plaquette autocorrelation alone give a
too pesimistic result. Altogether we can summarize these results as:

zπ ' 3− 4, zπρ ' 5− 6, zaq ' 1.3− 1.8. (2.13)

2.1.2 Determinant breakup

In [24, 25] algorithmic improvements for the simulation of staggered fermions coupled via
hypercubic smeared links (HYP) were proposed. This HYP algorithm uses a stochastic
estimate in a global Metropolis step similar to the correction step of the TSMB algorithm,
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Table 2.4: Integrated autocorrelations in update cycles obtained from runs specified by

table 2.2. The second column gives the number of MVMs per cycle in thousands. The

suffix min, plaq and mπ refer to the minimal eigenvalue of Q̃2, the average plaquette and

the pion mass, respectively.

run kMVM τmin
int τplaq

int τmπ

int

(a) 1.49 200(20)

(b) 2.45 340(60) 350(50) 140(20)

(c) 4.35 420(80) 150(20)

(d) 5.05 ' 310 490(90) 170(90)

(e) 7.34 550(110) 490(40) 207(33)

(f) 7.31 810(110) 800(90) 187(63)

(g) 10.5 320(80) 820(180) 188(13)

(h) 16.2 380(120) 940(330) 186(40)

(i) 20.4 670(210) 1500(300) 153(54)

(j) 17.4 ' 390 ' 1050

see section 1.3.2. However, the acceptance rate for this correction step in the HYP algo-
rithm was found to be very low, and already at small lattice sizes of 10 fm4, i. e. L ≈ 1.5 fm
it happened, that from 500 sample configurations not a single one was accepted [24]. They
identified a large variance in the noisy estimator as the source of the problem. However,
the straightforward solution to use several stochastic estimates violates the detailed bal-
ance condition [25, 73]. Therefore they came up with an alternative improvement for the
noisy estimator, which still reduces the variance but leaves the correction step exact. The
idea is to break up the determinant into several pieces by rewriting it as

∣

∣

∣det(Q̃)
∣

∣

∣

Nf

=

{

∣

∣

∣det(Q̃)
∣

∣

∣

Nf
Nb

}Nb

. (2.14)

The number of breakups Nb can be chosen arbitrarily, corresponding to an arbitrary
number of stochastic estimates in the correction step. For the HYP algorithm this leads to
a significant improvement using eight to twelve determinant breakups [24,25]. Something
similar was already proposed in [74], where, however, no direct performance gain was
found.

This determinant breakup can also be used with the TSMB algorithm [75] by using
the extention for many flavours from section 1.3.4. However, a priori it cannot be decided
if this will help to reduce the autocorrelations. Of course, the variance will be reduced due
to the breakup, and therefore one can expect shorter autocorrelations in units of update
cycles. But, on the other side, each update cycle will become more costly because the total
number of boson fields Nbn1 is increasing and more MVMs are needed in the correction
step.

We have chosen run (b) from table 2.2 to compare different numbers of breakups. For
each breakup we fixed the first polynomial order n1 by requiring a fixed acceptance rate of
55%− 60%. One way of fixing n2 would be to ask for the same distribution of reweighting
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Figure 2.2: Power fit of the autocorrelation of the plaquette, pion mass and smallest eigen-

value λmin of Q̃2 respectively given in units of 106 ·MVM. The best fit is done using χ2

minimization with respect to errors in both dimensions.

factors. However, in this run they are precisely peaked around one anyway. A roughly
equivalent way of fixing n2 is to keep the relative deviation at the interval ends constant.
This is how we fixed n2 and n3. The results from these simulation tests are given in
table 2.5. We were able to validate the expectation that the autocorrelation measured
in update cycles is reduced when breaking up the determinant. Furthermore we found
that the costs for one update cycle are rising less than expected by just looking at the
polynomial orders n1 and n2 and scaling (2.11) by them. The reason for this is that in
(2.11) the total number of iterations in the global quasi heatbath IG is not scaling with the
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Table 2.5: Run (b) from table 2.2 with determinant breakup in two, four and eight pieces.

All other polynomial and updating parameters are unchanged.

Nb (flavours) n1 n2 n3 kMVM τplaq
int [MVM ] τmin

int [MVM ] τmπ

int [MVM ]

1 (Nf = 2) 28 90 120 3.22 1.13(16) · 106 1.09(19) · 106 3.67(48) · 105

2 (Nf = 1 + 1) 20 84 100 4.45 6.05(53) · 105 6.45(90) · 105 2.36(36) · 105

4 (Nf = 4× 1
2) 14 72 80 6.20 1.55(37) · 106 1.95(50) · 106 3.60(56) · 105

8 (Nf = 8× 1
4) 10 64 80 9.79 1.17(29) · 106 1.63(39) · 106 4.77(58) · 105

number of boson fields but remains roughly constant when applying determinant breakup.
For this run with two degenerate quarks at a mass close to the strange quark mass and

on a 83 · 16 lattice we found that one can benefit from determinant breakup by almost a
factor of two. In this simulation point the optimal breakup seems to be Nb = 2. It remains
to be seen whether determinant breakup helps at smaller quark masses and larger volumes,
too. For smaller quark masses one can expect to gain even more, maybe by splitting the
determinant into more than two pieces. There is hope for this further improvement because
for the stochastic estimate in the correction step the most important contribution comes
from a tiny interval at the lower border ε. In this interval there are only few eigenvalues,
and without determinant breakup the variance will grow due to the steeper functional
behaviour for larger condition numbers. If the interpretation of the variance is correct,
then there is more room for improvement at smaller quark masses and there is a chance
that the determinant breakup can help even more. So far there is even less known about
the improvements due to determinant breakup at larger volumes. There the eigenvalue
spectrum is denser, which already might reduce the variance, but on the other hand there
are more important eigenvalues, and hence determinant breakup might still be as efficient.
To make a final decision on the use of determinant breakup these simulation tests have
to be repeated at other parameters, i. e. at smaller quark masses, larger volumes and
closer to the continuum limit. For the moment we have shown that determinant breakup
speeds up simulations by about a factor of two for intermediate quark masses and small
volumes, and that it has the potential for further improvements at other parameters.
Further investigations should be made, because future simulations can benefit from a
better knowledge about the determinant breakup.

2.2 Volume dependence

Apart from the scaling with the quark mass the volume dependence of the autocorrelations
is interesting. For this the run (f) from table 2.2 was repeated as run (f12) with the same
β and κ values on a 123 · 24 lattice, and runs (e) and (h) were repeated as (e16) and (h16)
on a 164 lattice. When going to a larger lattice the first polynomial order n1 has to be
increased, because otherwise the acceptance rate in the correction step would drop due to
a denser eigenvalue spectrum. All other polynomial parameters should remain essentially
unchanged assuming no large finite volume effects. If these effects are small, the interval
given by ε and λ remains. There is no need to change n2 and n3, they might even be
slightly reduced due to the increased n1. This is true for runs (e16) and (h16). For run
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Table 2.6: Simulation parameters for the analysis on larger volumes for run (e) at β =

4.76, κ = 0.190, for run (f) at β = 4.80, κ = 0.190, and for run (h) at β = 4.68,

κ = 0.195. Run (f12) is on a 123 · 24 lattice, (e16) and (h16) are on 164 lattices. The

lattice extension as given in the last column is deduced from r0/a.

run n1 n2 n3 λ ε L[fm]

(e) 44 360 380 3.6 2.7 · 10−4 2.31(6)

(e16) 72 350 440 3.6 2.7 · 10−4 4.57(9)

(f) 44 360 380 3.6 2.7 · 10−4 2.25(4)

(f12) 72 500 560 3.4 1.36 · 10−4 3.02(9)

(h) 66 900 1200 3.6 3.6 · 10−5 2.22(5)

(h16) 96 860 1100 3.6 3.6 · 10−5 4.51(16)

Table 2.7: Results of runs specified in table 2.6 for different basic physical quantities. The

values given in lattice units can be transformed to physical units by cancelling the lattice

spacing a with the help of the results for r0
a and using r0 = 2.53 GeV−1.

run r0/a afπ amπ amρ mπ/mρ Mr amq

(e16) 1.673(43) 0.4250(27) 0.7075(17) 0.9852(23) 0.7181(15) 1.401(79) 0.07210(32)

(f12) 1.993(54) 0.3645(31) 0.5866(27) 0.8880(90) 0.6606(67) 1.367(88) 0.04881(59)

(h16) 1.742(60) 0.3746(60) 0.5054(33) 0.8582(67) 0.5890(46) 0.773(63) 0.03396(60)

(f) the lower boundary ε was not optimal, which is why we used a better, i. e. smaller one
in run (f12). It should be stressed that this is no finite volume effect because the actual
smallest eigenvalue of Q̃2 is roughly the same in the two runs and only the algorithmic
parameters have been adjusted to be better suited for this situation. Due to the larger
condition number in this run it was necessary to increase n2 and n3, too. We give all the
parameters together with their values on the 83 · 16 lattice in table 2.6.

In the cost estimates of this work we usually neglect additional costs for parameter
tuning and equilibration, i. e. thermalization of the fields. This is reasonable, because
usually a configuration thermalized for similar parameters is available, and thermalization
starting from that configuration is quite cheap. Furthermore on small lattices this effect
is negligible anyway. This situation slightly changes on the 164 lattice. We didn’t have
similar configurations for this lattice size, and thermalization from a random configuration
(“hot start”) would have taken a substantial time on this lattice size before equilibrium
is reached. Therefore we have chosen another strategy. We have taken a configuration
from the corresponding 83 · 16 run and doubled each of the spatial extensions. This way
we acquired a 164 configuration without breaking the gauge, keeping the plaquette value
exactly unchanged and keeping the eigenvalues roughly unchanged. This configuration is
not thermalized, and furthermore the configuration has an intrinsic periodicity. However,
thermalization can be reached much earlier by this method, and the periodicity can be
monitored by measuring the different spatial slices of the plaquette. Results are shown
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Table 2.8: Integrated autocorrelations in update cycles obtained from runs specified by

table 2.6. The second column gives the number of MVMs per cycle in thousands. The

suffix plaq and mπ refer to the average plaquette and the pion mass, respectively.

run τplaq
int [flop] τmπ

int [flop]

(e) 4.59(37) · 1013 1.94(31) · 1013

(e16) 7.5(1.3) · 1014 5.02(55) · 1013

(f) 7.47(84) · 1013 1.76(59) · 1013

(f12) 2.40(41) · 1014 4.52(82) · 1013

(h) 1.7(6) · 1014 3.3(7) · 1013

(h16) 1.10(17) · 1015 8.3(8) · 1013

in figure 2.3. It can clearly be seen that the correlation as a remnant of the old 83 · 16
lattice has vanished after roughly 1000 update cycles in run (e16). For run (h16) this
took a little longer, here roughly 3000 update cycles were needed. But still this is a very
good way to speed up thermalization, since otherwise the costs for reaching a thermalized
configuration could have easily been higher by an order of magnitude.

To determine the exponent zL in (2.6), (2.7) and (2.9) it is needed to repeat some
of the runs of table 2.2 on larger lattices, either increasing the physical volume or going
closer to the continuum limit. With the simulations in table 2.6 we have chosen to keep
the lattice spacings roughly unchanged while increasing the physical volume.

Results for the autocorrelations of these runs in comparison with the corresponding
simulations on a 83 · 16 lattice are given in table 2.8. The autocorrelation of the plaquette
increases roughly by one order of magnitude when going from a 83·16 lattice to a 164 lattice,
while a factor of 13 could be expected from zL = 5 as given in [62], see (2.8). Therefore
our preliminary results seem to be in good agreement with those previous estimates by
other collaborations.

However, the more interesting sector is the fermionic one. Here we find that the pion
mass autocorrelation increases by less than a factor of three when going from a 83 · 16
lattice to a 164 lattice, and our results in this sector would be more consistent with
zL ' 2 − 2.5. This is remarkable, because it is below the trivial factor of zL = 4, which
would be the naive estimate including only the increased number of lattice points. Partly
this pleasant scaling behaviour can again be explained through the intrinsic fluctuations
of the pion propagator, and the increasing number of timeslices available for fixing the
source randomly.

2.3 Behaviour of the eigenvalue spectrum

The eigenvalue spectrum of the Wilson-Dirac fermion-matrix is interesting both physically
and for the simulation algorithms. From the physical point of view the low-lying eigen-
values are expected to dominate the hadron correlators [76, 77] and carry information of
the topological content of the background gauge field [78–80]. Due to the importance of
the question of the behaviour of the eigenvalue spectrum at light quark masses we study
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Figure 2.3: In the upper two panels the correlation of the spatial plaquette of run (e16) is

shown after 40 and after 1540 updates, respectively. In the lower left panel this correlation

of run (e16) at the middle of the lattice, i. e. at s = L
2 is plotted as a function of update

cycles. In the lower right panel the same is plotted for run (h16).

them on the 83 · 16 lattices where light quark masses are reached, although these lattices
are rather coarse.

We will first study the eigenvalues of the hermitean fermion-matrix, where the algo-
rithm of Kalkreuther and Simma [81] is used to calculate the smallest eigenvalues. In
section 2.3.2 we will study the non-hermitean matrix using the Arnoldi method [82, 83].

We will further study the presence of negative eigenvalues. This is not necessary for
Nf = 2, but it will give indications on the presence of a sign problem for cases with an
odd number of flavours as planned for the future [23].

2.3.1 Eigenvalues of the hermitean fermion-matrix and reweighting fac-

tors

The eigenvalues λ̃min of Q̃2 are among those quantities that are monitored during the
runtime of the simulation. It is always an important reference parameter for a gauge
configuration, and for multi-bosonic algorithms it is even more important because the
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Figure 2.4: Histories of the smallest eigenvalue λ̃min at β = 4.64, κ = 0.197 for the four

independent lattices. The lower limit of the polynomial ε is shown by the dashed line. The

measurement of physical quantities was started at the vertical line to exclude thermalization

effects. The lower left figure is the history with exceptionally small eigenvalues, while the

other three lattices show a typical behaviour.

polynomial approximation will only be good enough if all of the eigenvalues λ̃min are inside
the interval [ε, λ], compare with (1.26). This is no concern for the correctness of the TSMB
algorithm, because the ε of the third polynomial is usually set below the ε of the first and
second polynomial by a factor of 100, so that there is no systematic error introduced due
to the third polynomial. All other errors can be corrected by the reweighting factor. Still
it is obvious that for performance reasons we don’t want to let the smallest eigenvalue λ̃min

go below the ε of the first and second polynomial, which we usually tried to set below the
typical smallest eigenvalue by a factor of two or more. However, for small quark masses
as in (h) and (i) in table 2.2 the smallest eigenvalue may start to fluctuate alot. These
simulations were done on the APEmille installation in Zeuthen, which mainly consists of
eight crates. On one crate there always have to run at least four independent 83 ·16 lattice
replicas, which is indeed the setup we have chosen. In one of the four independent runs of
(i) it happened that the smallest eigenvalue dropped below ε by more than two orders of
magnitude. It did stay there for quite some time until it did recover. If this would have
been the only run another much better polynomial could have been chosen, which would
have pushed λ̃min back to the preferred situation. After that one should have switched
back to the original polynomial because this is much cheaper than this better polynomial
but still it is good enough in nearly all cases. Since, however, we had four lattices running
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Figure 2.5: Reweighting factors for run (h) (left panel) and (i) (right panel).

in parallel we took the opportunity to keep the polynomial fixed and to see if the expected
behaviour, the recovering of the smallest eigenvalue really sets in. As can been seen in
figure 2.4 this did happen.

Taking the opportunity to watch the recovering of the smallest eigenvalue did have one
drawback. The autocorrelations are completely spoiled by that effect and the reweighting
factors become very small. We therefore had to drop this lattice for the study of auto-
correlations. This is clearly allowed because we could have used a better polynomial for
a very short time and hence this lattice would have continued as the other ones. The
reweighting factors for the sum of the four independent lattices are shown in figure 2.5 for
runs (h) and (i), which were the only ones where we found something like a flattish tail.

In all other runs than (i) in table 2.2 we did not see eigenvalues staying below ε for
such a long time.

2.3.2 Eigenvalues of the non-hermitean fermion-matrix

Other than the eigenvalues of the hermitean fermion-matrix the eigenvalues of the non-
hermitean fermion matrix are not looked after during the simulation. However, they are
very interesting because they contain more information. Therefore it is worthwhile to
study them although it is more expensive to compute them.

The eigenvalues of Q depend trivially on the valence hopping parameter κval, because

Q = 1− κvalD. (2.15)

This is not true for the hermitean fermion-matrix Q̃ = γ5Q. The spectrum ofD is invariant
under complex conjugation and sign change, which can be seen from the symmetries

Q† = γ5Qγ5, ODO = −D, (2.16)

with Oxy = (−1)x1+x2+x3+x4δxy. One can therefore gain in speed by choosing an arbitrary
value κval = κ̄val and recover the results for the original κval by a shift. However, this
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may influence the numerical precision, so the value of κ̄val should be chosen such that it
gives the best compromise between computation time and precision.

One can further gain in speed by making use of the observation that the Arnoldi
algorithm is more efficient on the even-odd preconditioned matrix Q̄ than on Q itself.
Using an analytic relation the eigenvalues of Q̄ can be transformed back to the ones of Q.
For that purpose Q is written in the form

Q = 1− κ
(

0 Deo

Doe 0

)

. (2.17)

Then Q̄ is given by

Q̄ = 1− κ2

(

0 0
0 DoeDeo

)

. (2.18)

If v = (ve, vo) is an eigenvector of Q with eigenvalue λ then it satisfies

(λve, λvo) = (ve − κDeovo, vo − κDoeve). (2.19)

Then we get from

(1− κ2DoeDeo)vo = vo − (1− λ)2vo = λ(2− λ)vo (2.20)

that the eigenvalues of Q̄ are either one (in the even subspace), or they satisfy

λ̄ = λ(2 − λ). (2.21)

Because of the symmetries mentioned above, the solutions of (1.89) will give all the eigen-
values of the matrix Q.

We have studied the eigenvalue spectrum of the non-hermitean matrix for the runs
labeled with (a) and (c) to (j). In each case samples of ten configurations were analyzed
at an auxiliary value of κ̄val = 0.17. We determined both the 150 eigenvalues of the
preconditioned fermion-matrix Q̄ with smallest modulus and the 50 eigenvalues of the
non-preconditioned matrix Q with smallest real part. The results were then transformed
to the eigenvalues of Q at the κ value of the dynamical updates (κ ≡ κsea) using the above
formulas. The results are shown in figure 2.6. The dashed vertical line shows the limit for
the computation of the eigenvalues with smallest real part. Only the part of the spectrum
to the left of this line is known. In a similar way, by computing the eigenvalues with
smallest modulus, we have access to the part of the spectrum inside the dashed circle.
The circle is deformed and not centered at the origin because it has been transformed
together with the eigenvalues by using (1.89). In summary, the spectrum is not known
in those points of the complex plane which are both to the right of the vertical line and
outside the circle.

Since the sequence from (a) to (j) corresponds to decreasing quark masses it is not
a surprise that the eigenvalues have an increasing tendency to go to the left in the com-
plex plane. At the same time they are pushed away from zero as an effect of including
the fermionic determinant in the path integral measure. At very small quark masses a
pronounced hole near zero develops. For the continuum Dirac operator the spectrum is
expected as a vertical line with some gap near zero. On our coarse lattices there is an
additional horizontal spread of the eigenvalues and the picture is strongly deformed.
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Figure 2.6: Low-lying eigenvalues from a set of O(10) configurations for runs (a), (c) to

(j).

The size of the holes produced by the determinant is very important if we have in
mind the possibility of computing observables at a partially quenched valence κ value κval

higher than κsea used in the update. The distance between the origin and the smallest
real eigenvalue determines how much smaller masses (larger κval) one can reach by partial
quenching before encountering exceptional configurations.

2.3.3 Negative eigenvalues

As seen in section 1.3.5 it is important to include the sign of the determinant in the
measurement because it had to be neglected in the process of updating. It is, however,
unnecessary to calculate the sign of all configurations right from the beginning. A subsam-
ple of configurations should be chosen and the sign should be determined. As explained in
section 1.3.5 a negative sign is most likely when there are exceptionally small eigenvalues
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Figure 2.7: Spectral flow for three configurations of run (i) from table 2.2. These are the

only ones where zero-level crossings were found. The vertical line denotes κsea from the

simulation.

of Q̃2. Therefore configurations with such eigenvalues should be checked systematically.

In the simulations of this chapter the number of fermion flavours Nf = 2 is even, and
therefore only the square of the determinant is important. Hence the sign can be ignored.
However, this work is considered as preparatory work for later Nf = 3 or Nf = 2 + 1
simulations. If Nf = 2 + 1 is chosen the single quark will be around the strange quark
mass, and it is already known and seen again in this work that there is no problem with
the sign. Exceptional configurations appear basically never and no sign changes should
be expected. If, however, three degenerate quarks (Nf = 3) are to be simulated, the aim
will be most likely to tune the quark mass to very small values, maybe towards the values
reached with the simulations of table 2.2. Although this is not the physical situation such
simulations would perfectly make sense, because for use with chiral perturbation theory
such an approach might be easier due to fewer parameters. For such runs it is expected
that the situation for the sign of the determinant doesn’t change drastically from the
situation for Nf = 2. Therefore it is nice to know if the runs of this chapter give some
hint on the appearance of the sign problem.

One of the methods that can be used to find the sign of the determinant on a single
configuration is to consider the spectral flow as described in section 1.3.5. Having searched
for negative signs in all of the runs of table 2.2 we found a negative sign only on two
configurations of run (i). Actually we have found three configurations with zero-level
crossings, the spectral flow of these configurations is shown in figure 2.7. However, one of
these configurations has two zero-level crossings for κval < κsea = 0.197 and therefore the
sign of the determinant is positive according to equation (1.66).

The two configurations with negative determinant come from the long tail of the
reweighting factors as shown in the right panel of figure 2.5, both have reweighting factors
of O(10−4). Their relative statistical weight is O(10−7). Clearly the configurations with
negative sign of the determinant are statistically insignificant even at such small quark
masses as a fifth of the strange quark mass. And although (partially quenched) chiral
perturbation theory allows three degenerate quarks at this mass the additional computa-
tional costs for pushing a third quark towards such light masses is probably not worth the
effort. Therefore, provided the picture will not change dramatically on larger lattices, for
all physical circumstances it seems very unlikely that the sign of the determinant could
ever become a problem [29].

Since we found at least three configurations with zero-level crossings we want to take
the opportunity and compare the method of the spectral flow with some other method.
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Figure 2.8: Eigenvalues of the non-hermitean fermion matrix Q for the runs of figure 2.7.

In section 2.3.2 we were already looking at the smallest eigenvalues of the non-hermitean
matrix Q using the Arnoldi algorithm. If we have enough of these eigenvalues we can
find out the sign of the determinant by another method. The eigenvalues appear either in
complex conjugate pairs or they are real. Therefore detQ can only have a negative sign if
there is an odd number of eigenvalues at the negative side of the real axis. Comparing the
method of the spectral flow with the method using the non-hermitean eigenvalues from the
Arnoldi algorithm we see a very good agreement. The eigenvalues for the configurations
from figure 2.7 are shown in figure 2.8. The configuration that has two zero-level crossings
has two real negative eigenvalues, while for the two configurations with one zero-level
crossing the determination from the non-hermitean eigenvalues points towards a negative
sign.

2.4 Chiral logarithms and the applicability of Chiral Per-

turbation Theory

As stressed before, lattice simulations do not necessarily have to be done at the costly
and so far unreachable physical quark masses. Effective theories, i. e. Chiral Perturbation
Theory (χPT) can be used to extrapolate results obtained at larger masses to the physical
situation. In this section we will shortly introduce the foundations of χPT and we will see
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how well our data is described by it.

2.4.1 Chiral Perturbation Theory (χPT)

At vanishing quark masses the QCD Lagrangian (1.1) can be written as

L0
QCD(x) = −1

4
Fµν(x)F µν(x) + iq̄L /DqL + iq̄R /DqR. (2.22)

It is then invariant under global SU(Nf )L ⊗ SU(Nf )R transformations of the left- and
right-handed quarks in flavour space, the chiral symmetry transformations. Since indeed
the up, down and strange quarks are light this should be a good approximation for this
part of the hadronic spectrum. However, this kind of chiral symmetry is not seen in
nature. Instead the hadrons, e. g. the pseudoscalar meson octet shown in figure 1 in the
introduction, can only be classified in SU(3)V representations, while degenerate multiplets
with opposite parity are not found. This leads to the conclusion that the ground state, i. e.
the vacuum is not chirally invariant under SU(3)L ⊗ SU(3)R. It is spontaneously broken
to SU(3)V , where gL = gR for gL,R ∈ SU(3)L,R. The Goldstone bosons that have to
appear due to this spontaneous symmetry breaking can be identified as the eight lightest
hadronic states: π±,0, η, K±,0, and K̄0.

The fact that the pseudoscalar mesons can be interpreted as Goldstone bosons im-
plies strong constraints on their interactions. Because the other particles of the hadronic
spectrum are heavier than these pseudoscalar mesons this allows to build an effective field
theory containing only the particles of the pseudoscalar meson octet.

If we denote the coordinates describing the Goldstone fields as φa, a = 1, . . . , 8, then
the change of the Goldstone coordinates under a chiral transformation is given by

U(φ)
SU(3)L⊗SU(3)R−−−−−−→ gRU(φ)g†L, gL,R ∈ SU(3)L,R. (2.23)

The unitary matrix U(φ) can be written as

U(φ) = exp

(

2iΦ

f

)

, (2.24)

with

Φ(x) ≡ 1√
2
~λ~φ =







1√
2
π0 + 1√

6
η8 π+ K+

π− − 1√
2
π0 + 1√

6
η8 K0

K− K̄0 − 2√
6
η8






. (2.25)

For an effective low-energy chiral field theory we have to write down the most general
Lagrangian using the matrix U(φ) that still respects chiral symmetry. This Lagrangian
can be organized in terms of an increasing number of derivatives:

Leff (U) =
∑

n

L2n. (2.26)

To lowest order the only non-trivial effective chiral Lagrangian is uniquely given by

L2 =
f2

8
Tr
(

∂µU
†∂µU

)

(2.27)
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This Lagrangian can be expanded in Φ, which leads to the Goldstone kinetic terms and
infinitely many interaction terms between an increasing number of pseudoscalars. We can
therefore write:

L2 =
1

2
Tr (∂µΦ∂µΦ) +

1

6f2
Tr

((

Φ
↔
∂µ Φ

)(

Φ
↔
∂µ Φ

))

+O
(

Φ6/f4
)

. (2.28)

Applying perturbation theory to this effective theory allows to compute decay amplitudes
between the different pseudoscalar mesons.

The aim of applying this approach to lattice gauge field theory is to estimate the
quark mass dependence of the hadronic observables. The quarks can be added as external
classical fields to (2.22), leading to

LQCD = L0
QCD + q̄γµ(vµ + γ5aµ)q − q̄(s− iγ5p)q, (2.29)

where vµ(x), aµ(x), s(x) and p(x) are hermitean, colour neutral matrices in flavour space.
For a = v = 0 the lowest order effective Lagrangian (2.27) then takes the form

L2 =
f2

8
Tr
(

∂µU
†∂µU + U †χ+ χ†U

)

, (2.30)

where
χ = 2B0(s+ ip). (2.31)

This allows to give predictions about the hadronic spectrum and decay constants in terms
of the constants f and B0. For instance for degenerate quark masses the pion mass-squared
at tree-level is given by

M2
π = 2mudB0, (2.32)

and the pion decay constant is
fπ = f. (2.33)

Higher orders in perturbation theory can be calculated [54], where the characteristic chiral
logarithms appear. In (one-loop) next-to-leading order (NLO) the above quantities then
scale with the quark mass as follows:

Mr

2µr
= Br0 −

Mr · Br0
16π2(fπr0)2

ln

(

(Λ3r0)
2

Mr

)

+O(M2
r ) (2.34)

fπr0 = fr0 +
Mr

8π2fr0
ln

(

(Λ4r0)
2

Mr

)

+O(M2
r ). (2.35)

In both cases the Sommer scale parameter r0 has been used to get dimensionless quantities
and therefore allow for an easy comparison with lattice data. A more detailed review about
the topic of effective field theories and χPT can be found in [84], and a recent summary
of lattice results fitted to this formulas is in [85].

2.4.2 Chiral logarithms at light quark masses

So far the application of (2.34) and (2.35) was not crowned with success, because recent
results still show that the data is more compatible with a linear fit than with chiral
logarithms from the NLO results of χPT, see [57,58]. The reason for this failure is plausible:
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Figure 2.9: Left panel: Fit of the pseudoscalar meson mass-squared with the one-loop

χPT formula (2.34). Right panel: Fit of the pseudoscalar meson decay constant with the

one-loop χPT formula (2.35).

the used quark masses of mud ≥ ms

2 are too heavy, so that the one-loop approximation of
χPT doesn’t give a reliable description of the data.

With the runs studied in this chapter we have results for smaller quark masses. How-
ever, to be precise we are not allowed to directly apply the χPT formulas (2.34) and (2.35)
to our data. These formulas should be applied to continuum results, while our results are
on rather coarse lattices. This was fine for an algorithmic study, but this should be avoided
if χPT is to be applied. Furthermore χPT is an effective theory, i. e. a phenomenological
theory. Therefore one has to apply the above formulas to renormalized quantities, while
we have given up to now only the unrenormalized ones.

Still it is worthwhile to repeat the fits to (2.34) and (2.35) as in [57, 58], because this
can give insights about the region of applicability of χPT, i. e. which quark masses have
to be realized on the lattice. And indeed the expectations from [55] would suggest that
the quark masses we have reached should be small enough to make the chiral logarithms
visible.

Our data together with best fits to (2.34) and (2.35) are shown in figure 2.9. Clearly
some curvature can be seen, and the results may be fitted nicely to the formulas of χPT.
The results from the fit to (2.34) are Br0 = 8.2, fπr0 = 0.27 and Λ3r0 = 3.5. The results
from the fit to (2.35) are fr0 = 0.60 and Λ4r0 = 4.3. Further constraint fits are possible,
and in any case we get reasonable values, similar to the ones deduced in [85].

The fact that our data in the region of small quark masses with ms

5 ≤ mud ≤ 2ms

3
qualitatively shows the expected logarithmic behaviour of chiral perturbation theory is
quite satisfactory. However, one has to keep in mind the remarks about the coarse lattice
and the neglected renormalization factors. Therefore the results shown here should only
be taken as a hint to estimate the correct quark mass region and further work is needed
to finally deduce the physical values of the fit parameters.
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Chapter 3

N = 1 Supersymmetric Yang-Mills

theory

The TSMB algorithm was originally proposed for the N = 1 supersymmetric Yang-Mills
theory [19]. This theory is very QCD-like in the sense that there is a SU(Nc) gauge field
and a fermion field. In unbroken supersymmetry this fermion, called gaugino or gluino,
is massless, while a massive gluino breaks supersymmetry softly. Differences are that
the fermion is in the adjoint and not in the fundamental representation and that it is
a Majorana and not a Dirac fermion. Due to the Majorana nature of the gluino it can
effectively be treated as half a fermion, i. e. Nf = 1

2 . This makes this theory easier to
handle for multibosonic algorithms, because the function to be approximated in (1.26) is
less singular at x = 0. In addition, the symmetry features of this N = 1 SUSY theory can
be used to test the quality of the dynamical fermion because there have to be the same
number of bosonic and fermionic degrees of freedoms. Otherwise the supersymmetry would
break down, which could be seen in the Ward identities.

In this chapter we will introduce some basics of this simple supersymmetric model.
With that we will discuss some problems of bringing it onto the lattice, and we will have
a look at some physical results including the supersymmetric Ward identities.

3.1 Introduction of the theory

It is widely believed that it is possible to describe nature with just one single theory, called
GUT (grand unified theory) or TOE (theory of everything). In that theory gravitation
and the fundamental forces from elementary particle physics are unified non-trivially.

It was shown early by Coleman and Mandula [86] that it is impossible to unify non-
trivially the space-time symmetry, i. e. the Poincaré group with the inner symmetries as
known from the theory of electroweak interactions or from QCD. Either the resulting group
will be a trivial product of the Poincaré group and the Lie group of inner symmetries, or
the arising theory will have a trivial S matrix, i. e. the scattering amplitude will vanish.
This is the no-go theorem of Coleman and Mandula.

Soon it could be shown that this no-go theorem could be bypassed by extending the
concept of the Lie group. While usually a Lie group is fully described by the commutating
relations between its generators it was now tried to include the anti-commutating relations
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[87]. This led to two classes of generators that can be classified as bosonic and fermionic.
A systematic study showed that the Z2 graded Lie algebra is the only one that can be
used in conjunction with quantum field theory [88]. Applied to the original problem this
leads to the Super-Poincaré algebra that is used in supersymmetric theories.

The first supersymmetric toy model is the Wess-Zumino model [89]. It consists out of
a real scalar field, a real pseudo-scalar field and a Majorana spinor field.

It would be very complicated to guess the correct symmetries for a theory that includes
the correct kinds of particles. To simplify the work with supersymmetric theories the
superfield formalism was introduced. These superfields live in a superspace, which is the
usual Minkowskian space-time together with additional fermionic dimensions. For further
explanations and references see [90–94]. In this notation it is easy to construct non-abilian
supersymmetric gauge theories. One of the most simplest non-abilian supersymmetric
gauge theories is constructed from the supersymmetric field tensor WA as:

L =
1

4
WAWA |θθ + (h.c.). (3.1)

Using the usual non-abilian field strength tensor

Fµν = ∂µAν − ∂νAµ + [Aµ, Aν ] (3.2)

and the covariant derivative in the adjoint representation

Dµλ̄ = ∂µλ̄+ [Aµ, λ̄] (3.3)

and going over to Wess-Zumino gauge fixing and Euclidean space-time we get the following
Lagrangian:

L = − 1

2g2
Tr (FµνFµν) + Tr

(

λ̄γµDµλ
)

− Tr (DD) . (3.4)

Using the equations of motion D = 0 for the auxiliary field D we get the on-shell action
of the N = 1 supersymmetric Yang-Mills theory:

S =

∫

d4x

{

1

4
F a

µν(x)F a
µν(x) +

1

2
λ̄a(x)γµDµλ

a(x)

}

. (3.5)

As mentioned in the introduction of this chapter this action looks alot like the QCD
action. Differences are a factor of 1

2 in front of the fermionic part of the action and the
fact that the fermion field isn’t a Dirac spinor in the fundamental representation but a
Majorana spinor in the adjoint representation.

The action (3.5) is by construction invariant under the SUSY transformations

δAµ = −2gλ̄γµε

δλ = − i
g
σ · Fε

δλ̄ =
i

g
ε̄σ · F. (3.6)

The Lagrangian changes only as δL = ε̄∂µjµ with the supercurrent

jµ(x) = Tr

(

i

g
Fντ (x)γµσντλ(x)

)

. (3.7)
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It is possible to break this symmetry softly by adding a gaugino mass term for the
fermion to the action:

S =

∫

d4x

{

1

4
F a

µν(x)F a
µν(x) +

1

2
λ̄a(x)γµDµλ

a(x) +m0λ̄
a(x)λa(x)

}

. (3.8)

With this mass term the action is no longer invariant under the supersymmetry transfor-
mations (3.6) and supersymmetry is only recovered in the limit m0 → 0. In section 3.4 we
will see more precisely what that means by looking at the Ward identities, which display
the consequences of supersymmetry.

3.2 SYM on the lattice

Once knowing how to put QCD on the lattice (see section 1.1) it is easy to put the
N = 1 supersymmetric Yang-Mills theory (SYM) on the lattice. The action using Wilson
fermions can be written as:

S = Sg + Sf (3.9)

Sg = β
∑

pl

(

1− 1

Nc
ReTrUpl

)

(3.10)

Sf =
1

2

∑

x



λ̄a
xλ

a
x − κ

4
∑

µ=1

[

λ̄a
x+µ̂V

ab
xµ(1 + γµ)λb

x + λ̄a
xV

ab
xµ

T
(1− γµ)λb

x+µ̂

]



 . (3.11)

As in QCD the fields were rescaled by a factor of
√

1
2κ with κ = 1

2m0+8r and we have fixed

the Wilson parameter r = 1. The adjoint gauge field is defined as

V ab
µ (x) ≡ 2Tr

[

U †
µ(x)T aUµ(x)T b

]

= V ab
µ (x)

∗
= V ab

µ (x)
T −1

, (3.12)

with T a = 1
2τ

a, see section A.2.1.
With the fermion matrix

Qab
xy[U ] = δabδxy − κ

4
∑

µ=1

(

δy,x+µ̂(1 + γµ)V ab
xµ + δy+µ̂,x(1− γµ)V ab

yµ
T
)

(3.13)

and the Majorana condition1

λ = λC = Cλ̄T (3.14)

with C the charge conjugation operator the fermionic action can be rewritten as

Sf =
1

2

∑

xy

λa
xCQ

ab
xyλ

b
y. (3.15)

The fermionic path integral can be written as
∫

D[λ]e−Sf = Pf(CQ) = ±
√

detQ. (3.16)

1This definition is based on the analytic continuation of Green’s functions from Minkowski to Euclidean

space [95, 96].
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There is only one integration variable λ and not λ̄ because of the Majorana condition
(3.14).

The soft supersymmetry breaking term vanishes for m0 = 0, and therefore the bare
mass parameter κ has to be tuned to κcrit. At κcrit there is a first order phase transition, at
least in the continuum limit. At non-zero lattice spacing the effects of this phase transition
can be seen in the distribution of the gaugino condensate [97].

The TSMB algorithm makes use of the determinant, and by comparing with (1.37)
we see that a Majorana fermion can be simulated using an effective fermion number of
Nf = 1

2 . However, this approach does not include the sign of the Pfaffian and it has to
be included in the reweighting step. But while in QCD in the confined phase we know
that in the continuum limit there should be no sign problem this is less clear in the theory
with Majorana fermions, because the Pfaffian in general could have any sign. Luckily
there have been no indications for severe problems due to this. Some configurations with
negative sign were found on a 63 · 12 lattice at negative gaugino mass [30], but on larger
lattices at positive gaugino mass there was none.

3.3 Simulations for the Ward identity

We now turn to the simulation of the N = 1 supersymmetric Yang-Mills theory. Here we
use the SU(2) gauge group. First numerical studies of SYM with SU(3) were reported
in [98]. In section 3.4 we will consider the SUSY Ward identity on the lattice. The
dependence of the spectrum on the hopping parameter κ was already studied in [30]. For
this κ values up to 0.1925 were studied on a 123 · 24 lattice at β = 2.3. Going to larger κ
values corresponding to smaller gluino masses was not possible in that work because of the
shrinking of the physical volume. The reason for this is the renormalization of the lattice
spacing by fermionic virtual loops. Once the physical volume is too small the finite size
effects will become too large for a study of the mass spectrum. This should be the case
for κ > 0.1925, while for κ ≤ 0.1925 finite size effects should be below the order of the
statistical uncertainties of [30]. This should be true despite the fact that L

r0
is smaller than

what one would accept in QCD because of the fact that the π-mass in QCD is relatively
small, while corresponding masses in the N = 1 Super-Yang-Mills theory are expected to
be somewhat larger [66, 99].

For this study of the Ward identity we can go further in κ at the same 123 ·24 lattice and
the same β = 2.3 because Ward identities are valid in a finite volume, where their structure
remains unchanged but only the coefficients may be volume dependent. These coefficients
are, however, essentially renormalizations defined at the scale of the UV cutoff a−1, so any
κ value should be fine. Therefore we will use κ = 0.1925, κ = 0.194 and κ = 0.1955 for our
simulations. The last point seems to be too close to the critical value of κcrit = 0.1955(5)
as determined in [22]. However, that value was determined on a 63 · 12 lattice by looking
at the vanishing of the gluino mass, so that study includes both O(a) and finite volume
effects that should be non-negligible. Indeed we will see that the Ward identities allow
an independent determination of κcrit, and it will turn out that in the absence of finite
volume effects and with smaller O(a) effects the critical hopping parameter is somewhat
larger than anticipated in [22]. Nevertheless the simulation points that we have chosen
correspond to quite small gluino masses and are well suited for a study of the SUSY Ward
identity. The most important run parameters are reported in table 3.1. However, most
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Table 3.1: Parameters of the 123 · 24 lattice simulations at β = 2.3. For further details

see [66].

κ ε · 104 λ n1 n2 updates offset Nlat

0.1925 3.0 3.7 32 150 216000 50 9

0.194 1.0 4.5 28 160 42000 20 9

0.1955 0.125 5.0 32 480 65800 10-15 8

of these runs consist out of several runs with different parameters, mainly due to the fact
that an optimal choice of polynomials or a better updating sequence was looked for. Here
only the parameters that were used in the majority of the runs are quoted. For more
details see [66].

For the updating of the boson fields the local heatbath and overrelaxation algorithms
were used. The global heatbath is applicable here, too. However, it was not yet used in
these simulations and was only introduced for later runs on a 163 ·32 lattice [100]. For the
gauge field the widely usable multihit Metropolis algorithm was used. The more efficient
heatbath and overrelaxation algorithms cannot be used, because they require the action
to be quadratic in the field to be updated, which is not the case for the action given in
(3.9) due to the adjoint representation of the gluino field.

When running the simulation the behaviour of some important observables has to be
monitored closely. For the TSMB algorithm one of the most important observables is
the smallest eigenvalue λmin of Q̃2. It should be above the ε of the second polynomial
most of the time, and above the ε of the third polynomial all of the time. The latter is
especially important in this run because Neuberger’s formula [101] was used and not the
Newton iteration (1.44). Therefore the approximation of the third polynomial breaks down
completely below ε. If, however, the ε of the second polynomial is undercut sometimes
this will increase the autocorrelation but otherwise no systematical error is introduced as
long as the reweighting factor is calculated properly.

The run at κ = 0.1925 had been studied in detail in [30]. The histogram for λmin for
the other two runs is in figure 3.1. Although the smallest eigenvalue λmin is nearly never
below the ε of the second polynomial it is still worthwhile to have a look at the reweighting
factors. In the ideal case they should be peaked closely around one. Indeed this is the
case as can be seen in figure 3.2.

3.3.1 The sign of the Pfaffian

As described in section 3.2 the updating is done using the measure |
√

det(Q)| which might
differ from the correct measure, the Pfaffian, by a sign

Pf(CQ) =
∣

∣

∣

√

det(Q)
∣

∣

∣ · sign(Pf(CQ)). (3.17)

As seen before this is not necessaryly a problem because we can include the sign in the
reweighting process. But again we would like to see that only a negligible sub-sample has
negative reweighting factors so that no problems with numerical cancellation arise that
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Figure 3.1: Distribution of the smallest eigenvalue λmin of Q̃2 for the two simulation points

with smaller gluino mass. The dashed line indicates the value of ε used in the simulation.

would lead to large statistical fluctuations. If it is indeed the case that only a small sub-
sample of the configurations is affected by a negative sign then we don’t have to calculate
the correct sign for all configurations since the effect is negligible and it is enough to show
for a sub-sample that indeed all or nearly all configurations have the same sign, usually a
positive one.

As explained before odd numbers of negative eigenvalues of Q̃ are responsible for the
negative sign of the Pfaffian. A change in the sign therefore has to come with extremely
small eigenvalues and hence the configurations with extremely small eigenvalues are the
ones where a negative sign of the Pfaffian is most likely. These configurations have been
analyzed for a negative sign systematically using the method of the spectral flow. In
addition the run with κ = 0.194 has been analyzed further. Roughly 10% of all the
configurations have been taken randomly and were analyzed in the same way. In none of
the analyzed configurations we found zero-level crossings at a κ value below the simulation
parameter κsea. Therefore all configurations have a positive sign. In figure 3.3 a few
examples of the spectral flow for this simulation point are shown. These examples show
the worst case scenarios that we have found, and still it is obvious that none of them
has a zero-level crossing before κsea. Actually even up to κval = 0.1955 there is no such
crossing, so that these configurations could have been taken to analyze the Ward identity
at κ = 0.1955 using partial quenching. However, in that case important dynamical effects
might have been neglected.

3.3.2 The finite temperature phase transition

The situation for the N = 1 SU(2) Super-Yang-Mills theory on the lattice is not very
different from the situation of QCD concerning the finite temperature phase transition.
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Figure 3.2: Distribution of the reweighting factors on a sub-sample of the configurations

with Gaussian fit.

Table 3.2: Phase transition points as determined from figures 3.4 and 3.5 and from [102].

Nt β κphase

4 2.1 0.2000(25)

4 2.2 0.1730(7)

4 2.25 0.1600(50)

4 2.3 0.0

6 2.3 0.190(2)

For some very small values of β one can be sure that one is in the confined phase everywhere
below the critical line κcrit(β). For large values of β one will be clearly at the deconfined
phase for typical values of Nt = 8, 12, 16. The situation that is best suited for meaningful
simulations due to other limitations like the lattice size and lattice spacing is most likely
around the phase transition lines corresponding to the chosen lattice size. It is therefore
important to look at the phase transition lines and to make sure that the simulations
belong to the confined phase.

If simulations are done on a 123 · 24 lattice the straightforward way of determining
the phase would be to look out for the Nt = 12 phase transition for a gauge coupling of
β = 2.3 as in the simulations. For this a 243 · 12 lattice would be needed, and simulations
would be needed for many different values of κ. So already from these considerations it
is obvious that this determination of the phase would require more computer power than
the actual simulation. Indeed the situation is even worse. The larger Nt is, the larger
is the phase space that has to be considered. With that it becomes exponentially more
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Figure 3.3: The flow of eigenvalues as a function of the hopping parameter for different

configurations produced at β = 2.3 and κ = 0.194. The vertical line indicates the hopping

parameter of the simulation.

difficult to tunnel from one phase to the other and already for Nt = 12 it is next to
impossible to ever see this phase transition anywhere near the real phase transition point.
The determination of the phase transition point would therefore have large errors due to
an hysteresis effect. For this it wouldn’t even help to start two simulations, one from a
cold start and one from a hot start.

It is therefore obvious to determine the phase transition for some smaller values of Nt

and then relate the results to Nt = 12. The idea behind this is simple, we determine the
temperature

Tcrit =
1

Nta
(3.18)

at the phase transition line for some small value of Nt and assume that the determination
of this temperature is not affected by too large O(a) effects so that Tcrit in physical units
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Figure 3.4: Polyakov lines |L| for different values of β and for Nt = 4.

is roughly the same for a larger lattice, i. e. a larger Nt. This will of course require the
connection of the lattice spacing a to some physical scale. As throughout this work the
Sommer scale parameter r0 is a good choice. We can therefore compute 1

Ntr0
on the phase

transition line for some small lattice and can make a connection to this by measuring r0

on the larger lattice.

The physical value of r0 can be determined from effective theories. So far there are
no collider experiments or any other occasion where a supersymmetric particle has been
observed. Therefore no effective theory can be made up to estimate r0. One could use
the QCD value of 0.49 fm, but this could probably be way off. Nevertheless one can still
measure r0 on the lattice. It can then be used to determine the phase as described above.
However, it is not possible to use this value of r0 to relate the lattice spacing a to some
physical scale.

This method by using the Sommer scale parameter to relate different thermal lattices
to each other has the obvious disadvantage that r0

a has to be measured. This is quite
tricky on small lattices. We will therefore determine the phase transition line for Nt = 4
and Nt = 6 and then we will see if we can already decide on which side we are. Only if
this is not possible the complicated method of determining r0 will be applied, for which
we need a huge statistics in order to compensate for the small lattice.

Several simulation points for 83·4 and 123·6 lattices corresponding toNt = 4 andNt = 6
were considered and the phase was determined by measuring the order parameter |L|, the
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Figure 3.5: Polyakov lines |L| for β = 2.3 and Nt = 6.

absolute value of the Polyakov line in the thermal direction. The plaquette could have
been used instead of the Polyakov line, since that observable makes a jump at the phase
transition line, too. However, it is theoretical more sound to use the Polyakov line. Results
for Nt = 4 are shown in figure 3.4 and for Nt = 6 in figure 3.5. For Nt = 4 and β = 2.3 no
phase transition was found. This is in agreement with the determination of [102], where
the phase transition for quenched SU(2) QCD was determined to be β = 2.3. And since
the only difference of this supersymmetric theory and QCD is inside the fermionic sector
we can use that determination from a quenched simulation.

The results are given in table 3.2 and figure 3.6. In the figure there are extrapolations
for the finite temperature phase transition lines guided by the measured points. For Nt = 4
this is a very reliable extrapolation. For Nt = 6 we have only one point, but from what is
known about phase transition lines in general [71,103] this should be a good extrapolation.
Following that general knowledge we have further extrapolated the Nt = 8 line, although
we have no data at all on this line. This extrapolation is done without taking the critical
line κcrit into account.

Previously the DESY-Münster did consider the 83 ·16 lattice at β = 2.3 and κ = 0.190
in [30]. Since this is the phase transition point for Nt = 6 it can be taken as granted that
they were in the confined phase. They further did consider the point of κ = 0.1925 on that
lattice, and κ = 0.1925 on the 123 · 24 lattice. Both runs were consistent with the results
from κ = 0.190 in the sense that no jump in some observables like the plaquette was found.
Indeed this is in good agreement with the extrapolation for Nt = 8 in figure 3.6, where
the phase transition line is around κ = 0.22 for β = 2.3.

We therefore have two strong indications that the runs as given in table 3.1 are in
the confined phase. There is no big jump in the results of important quantities like the
plaquette compared to points where we are sure that we are in the confined phase, and
we are below κ = 0.22 as determined from the extrapolation in figure 3.6 for Nt = 8 while
we only have to make sure to be below Nt = 12.

Combining these indications leads to a very clear picture of the finite temperature phase
transition and it is unnecessary to increase the statistics for a reliable determination of
the Sommer scale parameter r0

a .
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Figure 3.6: Phase transition points for Nt = 4 and Nt = 6 from table 3.2. Dashed lines

indicate extrapolations for the phase transition line for Nt = 4, Nt = 6 and Nt = 8.

3.4 The SUSY Ward identity

In this section we will have a look at the supersymmetric Ward identity. As an introduction
on this topic we will first have a look at the continuum formulation of the supersymmetric
Ward identity in section 3.4.1. In section 3.4.2 we will take a look at the Ward identity on
the lattice and discuss how it can be used to monitor the restauration of supersymmetry
when performing the continuum limit. The numerical investigation is in section 3.4.3.

3.4.1 The Ward identity in the continuum

For every symmetry of the theory there exists a Noether current which is conserved. Here
we are interested in the Noether current corresponding to the supersymmetry transfor-
mations (3.6). In these transformations we replace the global parameter ε by a local
parameter ε(x):

δAµ = −2gλ̄γµε(x)

δλ = − i
g
σ · Fε(x)

δλ̄ =
i

g
ε̄(x)σ · F. (3.19)
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These new transformations are applied to the fields of the path integral for the expectation
value of some operator O

〈O〉 =
1

Z

∫

D[Aµ]D[λ]Oe−S , (3.20)

where Z is the proper normalization factor. Since the general change of variables of the
path integral does not change the value of that integral it follows that the expectation
values do not change:

〈O〉 = 〈O〉ε . (3.21)

Assuming that the theory is free of a supersymmetric anomaly we can suppose that the
measure is invariant under the local supersymmetry transformations (3.19) [104]. This
gives

0 = −〈δSO〉+ 〈δO〉 . (3.22)

With the assumption that the product of operators is localized outside the domain of ε(x)
and

δS = −
∫

d4x ε(x)∂µSµ(x) (3.23)

with the supercurrent, i. e. the Noether current given by

Sµ(x) = −2
i

g
Tr (Fντ (x)σντγµλ(x)) , (3.24)

we can derive the supersymmetric Ward identity

〈∂µSµ(x)O(y)〉 = 0. (3.25)

Breaking supersymmetry softly as done in (3.8) by adding a mass term the SUSY
Ward identity no longer holds. It is broken by a term coming from the variation of the
added mass term. The variation of this term takes the form

χ(x) = 2
i

g
Tr (Fντ (x)σντλ(x)) (3.26)

and it consequently appears in the Ward identity:

〈∂µSµ(x)O(y)〉 = m0 〈χ(x)O(y)〉 . (3.27)

Now it has become clear why supersymmetry is regained only in the limit m0 → 0. The
SUSY Ward-Takahashi identity (3.25) is broken by a term proportional to m0. Therefore
we are able to tell if supersymmetry is broken or not by looking at the Ward identity.
This is something we will use to scrutinize the quality of our lattice approximation with
respect to supersymmetry closely. On the lattice supersymmetry is also broken by lattice
artifacts, but in the continuum limit this breaking should vanish.

3.4.2 The Ward identity on the lattice

In the action (3.9) SUSY is explicitly broken by the gluino mass term, by the Wilson term,
which is also responsible for chiral symmetry breaking, and by the lattice discretization.
One can now derive the SUSY Ward identity similar to the calculation in section 3.4.1
but this time starting from the lattice action (3.9) and using a lattice formulation of the
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supersymmetry transformations (3.19). These lattice SUSY transformations should of
course recover the continuum form in the continuum limit. In addition we want that they
commute with the parity P, time reversal T and charge conjugation C transformations on
the lattice. These requirements are fulfilled by [66, 105, 106]:

δUµ(x) = − ig0a
2 (ε̄(x)γµUµ(x)λ(x) + ε̄(x+ µ̂)γµλ(x+ µ̂)Uµ(x)) ,

δU †
µ(x) = ig0a

2

(

ε̄(x)γµU
†
µ(x)λ(x) + ε̄(x+ µ̂)γµλ(x+ µ̂)U †

µ(x)
)

,

δλ(x) = 1
2Pµν(x)σµνε(x),

δλ̄(x) = − 1
2 ε̄(x)σµνPµν(x).

(3.28)

The infinitesimal parameters ε̄ and ε satisfy the Majorana condition and Pµν(x) can in
general be any lattice representation of the continuum field strength Fµν(x), e. g. as

defined from the simple plaquette Uµν(x): Pµν(x) = 1
2ig0a

(

Uµν(x)− U †
µν(x)

)

. However,

for the numerical analysis we want Pµν to transform under parity and time reversal in the
same way as Fµν does in the continuum. Therefore it is convenient to replace the simple
plaquette by the clover plaquette [66, 106]:

U (cl)
µν (x) =

1

4
(Uµ,ν(x) + Uµ,−ν(x) + U−µ,ν(x) + U−µ,−ν(x)) (3.29)

P (cl)
µν (x) =

1

2ig0a

(

U (cl)
µν (x)− U (cl)

µν
†
(x)
)

(3.30)

Repeating the derivation of the Ward identity with the lattice action (3.9) and the
SUSY transformations (3.28) we derive the lattice version of the SUSY Ward-Takahashi
identity for a gauge invariant operator O(y):

〈(

∑

µ

∇µS
(ps)
µ (x)

)

O(y)

〉

= m0 〈χ(x)O(y)〉+
〈

X(ps)(x)O(y)
〉

−
〈

δO(y)

δε̄(x)

〉

. (3.31)

As a lattice derivative the backward derivative

∇b
µf(x) =

f(x)− f(x− µ̂)

a
(3.32)

is used and the SUSY current S
(ps)
µ (x) is the point-split (ps) one

S(ps)
µ (x) = −1

2

∑

ντ

σντγµTr
(

P (cl)
ντ (x)U †

µ(x)λ(x+ µ̂)Uµ(x) + P (cl)
ντ (x+ µ̂)Uµ(x)λ(x)U †

µ(x)
)

,

(3.33)
and the operator χ(x) that we know already from the mass term in the continuum is

χ(x) =
∑

ντ

σντTr
(

P (cl)
ντ (x)λ(x)

)

. (3.34)

The remaining terms that stem from the breaking of SUSY are collected in the X (ps)(x)
term. All we need to know about this term is that in the naive continuum limit it is
X(...)(x) ≈ aO11/2(x), where O11/2(x) is a dimension- 11

2 operator. The exact expression

of X(ps)(x) is given in [105].
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The last term in (3.31) is a contact term that vanishes for non-zero distance |x − y|
corresponding to the on-shell situation. Since that will be the region where we do the
numerical investigation we can safely drop this term from now on. Before having a closer
look at the role of the operator X (...)(x) in the next paragraph it should be mentioned
that the definition of the SUSY current on the lattice is arbitrary up to O(a) terms since
they vanish in the continuum limit. Another choice is the local current

S(loc)
µ (x) = −

∑

ντ

σντγµTr
(

P (cl)
ντ (x)λ(x)

)

. (3.35)

This definition is more convenient for analytic perturbative calculations [107, 108]. It

satisfies a WI similar to (3.31) but with a symmetric lattice derivative ∇s
µ = f(x+µ̂)−f(x−µ̂)

2a

and a SUSY-breaking term X (loc) that differs from X (ps) by O(a) effects.

Renormalization

The Ward identity (3.31) is a relation between bare correlation functions. When switching
over to the renormalized Ward identity the operator X (ps)(x) needs a seperate treatment.
It follows closely the procedure for the axial WIs in QCD [109, 110], with SUSY-specific
topics discussed in [111, 112] and previous presentations of this topic in [66, 106].

Since X(ps)(x) ≈ aO11/2(x) in the naive continuum limit we have to study the renor-
malization of O11/2(x). This renormalization will introduce mixing with operators of equal

or lower dimensions d ≤ 11
2 and that transform the same as O11/2(x) under the symmetries

of the lattice action. A closer look at the possible operators [66,106] shows that the mixing
pattern in the on-shell situation is given by

OR
11/2(x) = Z11/2

[

O11/2(x) + a−1(ZS − 1)∇µSµ(x) + a−1ZT∇µTµ(x) + a−2Zχχ(x)
]

+
∑

i

Z
(i)
11/2O

(i)
11/2

R
(x). (3.36)

Depending on the choice between S
(ps)
µ (x) and S

(loc)
µ (x) the lattice derivative has to be

the backwards or the symmetric one, and the mixing current Tµ(x) has to be either

T (ps)
µ (x) =

∑

ν

γνTr
(

P (cl)
µν (x)U †

µ(x)λ(x+ µ̂)Uµ(x) + P (cl)
µν (x+ µ̂)Uµ(x)λ(x)U †

µ(x)
)

(3.37)

or

T (loc)
µ (x) = 2

∑

ν

γνTr
(

P (cl)
µν (x)λ(x)

)

. (3.38)

Substituting O11/2(x) in (3.31) with the solution of (3.36) leads to

ZS 〈(∇µSµ(x))O(y)〉+ ZT 〈(∇µTµ(x))O(y)〉 = mS 〈χ(x)O(y)〉 +O(a), (3.39)

with

mS = m0 − a−1Zχ (3.40)

being the subtracted gaugino mass.
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In the derivation of (3.39) we assumed the vanishing of the correlation

a

〈[

Z−1
11/2
OR

11/2(x)−
∑

i

Z
(i)
11/2
O(i)

11/2

R
(x)

]

O(y)

〉

= O(a) (3.41)

in the continuum limit, which holds on-shell due to the fact that the multiplicative renor-

malization factors Z11/2 and Z
(i)
11/2 are logarithmically divergent in perturbation theory.

One can now identify the renormalized SUSY current

Ŝµ(x) = ZSSµ(x) + ZTTµ(x), (3.42)

and with that the renormalized Ward identity (3.39) formally takes the form of the bare
continuum Ward identity (3.27).

In the analogous situation of the axial Ward identity in QCD one can define the
renormalized axial current Ĵ5

µ(x) = Z5J
5,lat
µ (x) with J5,lat

µ (x) a generic discretization of
the axial current. In this situation a rigorous argument [109, 110] proves that the current
Ĵ5

µ(x) coincides with the correctly normalized continuum axial current. Unfortunately

this argument cannot be reproduced for the SUSY current Ŝµ(x) because the proof in
QCD relies on some special properties of the axial variation. It leaves the quark field
proportional to itself and it leaves the gauge fixing term invariant. Both is not the case
for the supersymmetric variation. For the moment it is therefore unclear whether Ŝµ(x)
coincides with the correctly normalized SUSY current up to some possible multiplicative
renormalization or not. Some new input on this topic is hoped for from perturbative
calculations [105,113,114]. If the two currents coincide, then Ŝµ(x) is conserved when mS

vanishes. This is the restoration of SUSY in the continuum limit.

Insertion operators

We are interested in the numerical investigation of the SUSY Ward identity (3.39). This
equation holds for any operator O(y), but for a large class of operators the Ward identity is
trivial because both sides of the equation are zero due to the vanishing of the expectation
values if the quantum numbers of O(y) are not the same as those of χ(x), ∇µSµ(x) and
∇µTµ(x). We will now try to look out for enough operators O(y) that don’t lead to a
trivial statement in the Ward identity. For a more detailed study of this topic see [66,106].
Before we start we will have a closer look on how the Ward identity (3.39) will be used
to get a numerical answer to the question if the SUSY current Ŝµ(x) is conserved for our
simulations when the supersymmetric limit of mS = 0 is approached.

Because this will turn out to be convenient for the numerical analysis we will consider
the zero spatial momentum Ward identity obtained from the integration (summation) over
the spatial coordinates of (3.39):

∑

~x

〈(∇0S0(x))O(y)〉+ ZT

ZS

∑

~x

〈(∇0T0(x))O(y)〉 =
mS

ZS

∑

~x

〈χ(x)O(y)〉+O(a). (3.43)

For a proper operator O(y) the correlators in this equation are 4 · 4 matrices in Dirac
indices. It is therefore possible to pick a system of two equations and solve it for ZT

ZS
and

mS

ZS
. However, one has to ensure that these two equations are non-trivial and independent.

For this it is convenient to replace the generic insertion operator O(y) by

O(y)→ ŌT (y) ≡ C−1O(y), (3.44)
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where we have made use of the Majorana condition (3.14).
With this operator we will have a closer look at the correlator of equation (3.43) that

contains the SUSY current. For the other two correlators identical considerations apply.
The explicit structure of this correlator is

C
(S,O)
α,β (t) = adO+ 9

2

∑

~x

〈

(∇0S0)α (x)Ōβ(y)
〉

, t = x0 − y0. (3.45)

The dimensional factor in front of that correlator has been inserted to have a dimensionless
correlation, which is what we compute in the numerical calculations.

This correlator can be expanded in the basis of the 16 Dirac matrices Γ:

C
(S,O)
α,β (t) =

∑

Γ

C
(S,O)
Γ (t)Γα,β . (3.46)

As it has been shown in [66,106] using discrete symmetries only two contributions survive:

C
(S,O)
11 (t) ≡

∑

~x

〈

∇0S0(x)O(y)
〉

(3.47)

C(S,O)
γ0

(t) ≡
∑

~x

〈

∇0S0(x)γ0O(y)
〉

. (3.48)

Both contributions are real due to the Majorana nature of the operators. With them
and the still to be specified operators O(y) we can determine amS

ZS
and ZT

ZS
by solving the

following system of equations:

C
(S,O)
11 (t) + ZT

ZS
C

(T,O)
11 (t) = amS

ZS
C

(χ,O)
11 (t)

C
(S,O)
γ0 (t) + ZT

ZS
C

(T,O)
γ0 (t) = amS

ZS
C

(χ,O)
γ0 (t).

(3.49)

We will now come back to the question of appropriate operators O(y). The first thing to
notice is that we are looking for gauge invariant operators O(y) that have spin 1

2 . The
operators will have at least dimension 7

2 , and for practical reasons we will restrict ourselves
to these kind of operators. An operator with the correct symmetries is

Tr
(

P (cl)
µν (y)λ(y)

)

. (3.50)

From this operator we have to project out spin- 1
2 components. Some possibilities for that

are S0(y), T0(y), χ(y) and

χ(sp)(y) =
∑

i<j spatial

σijTr
(

P
(cl)
ij (y)λ(y)

)

, (3.51)

where only spacelike plaquettes are used. Since there can be only two independent spin- 1
2

contributions the above examples are related. This relation is found to be

χ(y) = γ0T0(y)− 2χ(sp)(y), (3.52)

S0(y) = 2γ0(γ0T0(y)− 2χ(sp)(y)). (3.53)

For the following numerical study one could carry out the analysis for two different sets
of operators O(y). In this way the influence of O(a) effects could be studied. For the

moment we will only use the operators T
(loc)
0 (y) and χ(sp)(y) to solve (3.49).
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Figure 3.7: amS

ZS
as a function of the time-separation t with insertion operator χ(sp)(x).

3.4.3 Numerical investigation of the Ward identity

We now turn to the numerical determination of amS

ZS
and ZT

ZS
by solving (3.49) for the

operators T
(loc)
0 (y) and χ(sp)(y). Differences between the results for the two operators will

signal the effects of O(a) lattice artifacts.

The experience of [30, 112] tells us that the point-like insertion operators will give a
poor signal for the correlations. In these two references this problem was countered by
introducing smearing. Therefore we will use APE [35] and Jacobi [36] smearing on the
gluon and gluino fields respectively to reduce the statistical fluctuations. The optimal
parameters are found on sub-samples of gauge configurations to be NJ = 18, κJ = 0.2,
NAPE = 9 and εAPE = 0.5 [66, 106]. Since APE smearing can only be used on spatial

links the smearing is expected to work out less good for T
(loc)
0 (y).

To be able to measure more often, i. e. to write out the gauge field more often we have
chosen the site y of the operator O(y) randomly for each configuration. In addition we
find no correlations between two consecutive measurements which allows to estimate the
errors of amS

ZS
and ZT

ZS
by a naive jackknife procedure.

On a sub-sample of the configurations reweighting factors were computed. They are
shown in figure 3.2. They can be used to repeat the measurement of the ratios amS

ZS
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Figure 3.8: ZT

ZS
as a function of the time-separation t with insertion operator χ(sp)(y).

and ZT

ZS
. No significant difference was found when including them, which shows that the

approximations of the second polynomials used in these simulation runs are good enough.

A first approximation of the results is achieved by simply solving the system of equa-
tions (3.49) for each time-separation t, see figures 3.7 and 3.8. This allows to find a tmin

above which (3.43) should be valid and contact terms should be absent. Then another
method is used to get the final results, where an overdetermined system of equations is
constructed and fitting is done for all considered time-seperations (tmin, . . . ,

Lt

2 ) simulta-
neously. The results for different tmin can be found in the tables 3.3, 3.4, 3.5 and 3.6.
The results for t ≥ 3 seem to be free of effects from the contact term in (3.31). The final

results are for tmin = 3 when O(y) = χ(sp)(y) and for tmin = 4 when O(y) = T
(loc)
0 (y).

The dependence on κ can be seen in figures 3.9 and 3.10. It is nice to see that ZT

ZS
does

not show a strong dependence on κ, and through that on mS . We find for the point-split
current

Zps
T

Zps
S

= −0.039(7), (3.54)
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Figure 3.9: ZT

ZS
as a function of 1/κ with the insertion operator χ(sp)(x) (filled diamonds)

and T
(loc)
0 (x) (filled triangles).

and
Z loc

T

Z loc
S

= 0.185(7) (3.55)

for the local one. An estimate of this ratio for the point-split current and β = 2.3 can be
obtained from the 1-loop perturbative calculation in [105]. At that order one obtains

ZT

ZS
≡ ZT

∣

∣

∣

∣

1−loop

= −0.074. (3.56)

There is quite a good agreement in the order of magnitude between the numerical and the
perturbative estimate. The discrepancies might be contributed evenly to each calculation.
For a discussion on the quality of 1-loop unimproved perturbation theory in N = 1 Super-
Yang-Mills theory see [108]. For the numerical data one has to say that there is some minor
dependence on ZT

ZS
that still could push this value to the perturbative one. In addition

there is quite some statistical uncertainty between the results from O(y) = χ(sp)(y) and

O(y) = T
(loc)
0 (y).

For amS

ZS
the expectation is that it vanishes when κ approaches κcrit. The latter was

determined on a 63 · 12 lattice in [22] as κcrit = 0.1955(5). The estimate from the point-
split current would be κcrit = 0.19750(38) and κcrit = 0.19647(27) from the local one.
The difference between the result from [22] and the determination using the SUSY Ward
identity can be explained by systematic effects. The main difference should be due to
the fact that in [22] a much smaller 63 · 12 lattice was used, where strong O(a) and finite
volume effects are to be expected. Since the Ward identity holds in any volume there
should be no finite volume effect, but of course there will be some O(a) effect. This and
the statistical uncertainty could explain the discrepancy, too.
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Figure 3.10: amS

ZS
as a function of 1/κ with the insertion operator χ(sp)(x) (diamonds) and

T
(loc)
0 (x) (triangles). A linear extrapolation is also reported. The filled triangle indicates

the determination of κcrit from the first order phase transition of [22].

As a conclusion of this study of the SUSY Ward identity we can say that the results for
amS

ZS
and ZT

ZS
agree with the Ward identity (3.39) up to O(a) effects that are comparable in

size to the statistical errors. This gives a strong indication that with the parameters chosen
for this work it is possible to simulate the N = 1 supersymmetric Yang-Mills theory on the
lattice in such a way that supersymmetry is recovered in the continuum limit. Of course
for a final answer of that question the continuum extrapolation has to be performed, and
hence simulations at different β values would be needed.
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Table 3.3: Summary of the results for amS

ZS
at β = 2.3 with point-split currents.

κ operator tmin = 3 tmin = 4 tmin = 5

0.1925 χ(sp) 0.176(5) 0.166(10) 0.135(14)

0.1925 T
(loc)
0 0.132(16) 0.124(21)

0.194 χ(sp) 0.148(6) 0.130(11) 0.146(21)

0.194 T
(loc)
0 0.095(27) 0.090(27)

0.1955 χ(sp) 0.0839(35) 0.0820(7) 0.053(14)

Table 3.4: Summary of the results for amS

ZS
at β = 2.3 with local currents.

κ operator tmin = 3 tmin = 4 tmin = 5

0.1925 χ(sp) 0.166(6) 0.166(11) 0.146(16)

0.1925 T
(loc)
0 0.144(18) 0.143(25)

0.194 χ(sp) 0.124(6) 0.126(12) 0.142(24)

0.194 T
(loc)
0 0.076(30) 0.098(35)

0.1955 χ(sp) 0.0532(40) 0.064(8) 0.047(15)

Table 3.5: Summary of the results for ZT

ZS
at β = 2.3 with point-split currents.

κ operator tmin = 3 tmin = 4 tmin = 5

0.1925 χ(sp) −0.015(19) −0.036(31) 0.045(56)

0.1925 T
(loc)
0 0.11(7) −0.03(7)

0.194 χ(sp) −0.038(19) −0.024(43) −0.08(7)

0.194 T
(loc)
0 0.11(13) 0.02(13)

0.1955 χ(sp) −0.051(13) −0.064(26) −0.05(5)

Table 3.6: Summary of the results for ZT

ZS
at β = 2.3 with local currents.

κ operator tmin = 3 tmin = 4 tmin = 5

0.1925 χ(sp) 0.183(14) 0.207(27) 0.19(5)

0.1925 T
(loc)
0 0.29(6) 0.22(6)

0.194 χ(sp) 0.202(15) 0.176(33) 0.186(6)

0.194 T
(loc)
0 0.27(9) 0.30(11)

0.1955 χ(sp) 0.179(10) 0.170(21) 0.170(45)
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Chapter 4

Dynamical domain wall fermions

When putting fermions naively on the lattice the resulting continuum theory has 2d fermion
species for every original one, with d being the dimension of space-time. This is the famous
Nielsen-Ninomiya no-go theorem [2], according to which every free fermion lattice Hamil-
tonian which satisfies some mild assumptions suffers from the effect of fermion species dou-
bling. So far we have treated this problem by giving the unwanted species a heavy mass
of the size of the cutoff. This is the approach proposed already by Wilson in his original
work [1]. Another approach are staggered fermions proposed by Kogut and Susskind [115].
Both approaches have in common that some parts of the SU(Nf )⊗SU(Nf ) chiral flavour
symmetry are broken for any non-zero lattice spacing a. With Wilson fermions this has
as a result that the fermion mass aquires an additive renormalization. When going to the
continuum limit this makes it necessary to fine tune the fermion mass. This is a compli-
cated and unwanted procedure, but it is generally assumed that we recover the correct
continuum target theory so this procedure was accepted for a long time.

However, the price for these kind of fermions is quite high. The degree of restoration
of the chiral symmetry is directly related to how close we went towards the continuum.
But going a factor of two closer to the continuum is very costly. There is the obvious
factor of 24 due to the increased number of lattice points, and as seen in chapter 2 there
are further costs that are coming from the slowing down of the algorithms. It is usually
considered that going down a factor of two in a costs more by a factor of roughly 26−7.

The situation has changed and there are now many ways to realize fermions with im-
proved chiral properties, see [116] for a list of them. A very interesting approach is to
enlarge the four-dimensional lattice in a fifth dimension. The gauge fields are defined in-
dependent of this fifth dimension and the fermions can be constructed such that, although
all fermion species are heavy, two chiral states appear that are exponentially bounded to
the boundaries in the fifth dimension, the so-called domain walls. This approach to the
problem of species doubling is called domain wall fermions. With them the continuum
limit is disentangled from the chiral limit. For the limit of vanishing lattice spacing in the
fifth dimension it has been shown [117–119] that the domain wall fermion formulation is
equivalent to the overlap formulation [120–123] where the Ginsparg-Wilson relation [124]
for lattice chiral symmetry [125] is fulfilled.

This is a very promising approach. Therefore we want to have a first look at these
domain wall fermions in this chapter, although one has to be aware that the computational
cost increases by the additional dimension. However, due to the improved chiral properties
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the effect on the total costs might be less severe. But even if that is too optimistic the chiral
properties make it worthwhile to study this approach. In section 4.1 we will introduce the
model as it will be used in our study. The implementation with the TSMB algorithm is
discussed in section 4.2 with some exploratory studies started in section 4.3. Domain wall
fermions can be used for many other theories, too, e. g. the N = 1 Super Yang-Mills theory
as discussed in chapter 3. Some of the literature on this topic is discussed in section 4.4.

4.1 Shamir’s formulation

We will now construct the fermion action. This is done according to the prescription of
Shamir [126]. An outline of this project is given in [127, 128].

The domain walls were originally introduced by Kaplan [129,130], were further devel-
oped by Neuberger and Narayanan [120–123] and then by Shamir and Furman [126, 131].
The fermion fields are defined on a five dimensional space-time lattice with a fifth di-
mension of even size Ns and free boundary conditions of the Dirac operator along that
dimension. With (x, s) being a point on the five dimensional lattice and s being the co-
ordinate in the fifth dimension the link variables obey Uµ(x, s) = Uµ(x) independently
of s and U5(x, s) = 1. It is therefore natural to interpret the additional dimension as an
internal flavour space. The fermion part of the action is given by

SF [U, ψ̄, ψ] =
∑

x,s;x′,s′

ψ̄(x, s)DF (x, s;x′, s′)ψ(x′, s′), (4.1)

with the domain wall fermion Dirac operator

DF (x, s;x′, s′) = δs,s′Dx,x′ +D⊥
s,s′δx,x′ (4.2)

constructed from the standard four dimensional Wilson fermion matrix

Dx,x′ = δx,x′ (4− am0)−
1

2

4
∑

µ=1

(

δx′,x+µ̂(1 + γµ)Ux,µ + δx′+µ̂,x(1− γµ)U †
x′,µ

)

(4.3)

and

D⊥
s,s′ =







−σPLδs′,2 + amfPRδs′,Ns
+ σδs′,1 s = 1

−σPLδs+1,s′ − σPRδs−1,s′ + σδs,s′ 1 < s < Ns

+amfPLδs′,1 − σPRδs′,Ns
+ σδs′,Ns

s = Ns .
(4.4)

The bare fermion mass of the light boundary fermion is given by mf , −m0 is a five-
dimensional mass representing the “height” of the domain wall and should be chosen as
negative. The lattice spacing in the fifth dimension as relative to a is given by σ ≡ a

as
.

Furthermore the right-handed and left-handed chiral projectors are given by

PR,L =
1

2
(1± γ5) . (4.5)

The theory with a standard gauge action and this fermion action shows remarkable fea-
tures. The two chiral components of the Dirac fermion are bound exponentially to the two
domain walls, i. e. all correlation functions tend towards their limit like e−Ns [126]. Due
to this limiting behaviour small Ns are expected to be enough for a sufficient separation
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between the two chiral modes. For Ns =∞ chiral symmetry is exact already at non-zero
lattice spacing a. This has the advantage that the continuum limit a → 0 and the chiral
limit Ns → ∞ no longer have to be realized simultaneously and the costs to achieve the
chiral limit increases only linearly with Ns.

For mf = 0 there is a left-handed fermion near the boundary s = 1 and a right-handed
fermion near the boundary s = Ns. They describe the Nf quarks. If the exponential
overlap between the two fermion states is neglected these states describe massless quarks.
For finite Ns or when setting mf 6= 0 the right-handed and left-handed components of the
quarks are mixed and they get an effective mass

meff = m0(2−m0)
(

mf + (1−m0)
Ns
)

, 0 < m0 < 2 (4.6)

in the free theory. Obviously m0 = 1 would be optimal to surpress finite Ns effects to
the effective mass. In the interacting theory there might be no optimal value due to
fluctuations in m0, but m0 = 1.9 is a widely used choice.

Besides the wanted light fermion there are Ns− 1 four dimensional fields with a heavy
mass at the order of the cutoff. As with usual Wilson fermions these heavy fields should
decouple from the dynamics in the continuum limit because the effect should be local.
This indeed is true for small Ns, but as Ns is increased towards the chiral limit the heavy
modes might introduce bulk effects because they could contribute to the effective action
Seff [U ]. Therefore these effects have to be subtracted. This is done by the introduction of
bosonic Pauli-Villars type fields [131]. Although their action is non-negative these fields
are simply called Pauli-Villars fields in the domain wall fermions literature and we will
follow that terminology.

The action for the Pauli-Villars field in case of Nf = 2 flavours is given by

SPV =
∑

x,s;x′,s′;x′′,s′′

φ†x′′,s′′D
†
F x′′,s′′;x′,s′(amf = 1)DF x′,s′;x,s(amf = 1)φx,s (4.7)

and the integration over the Pauli-Villars fields results in

∫

D[φ†]D[φ]e−SPV =
1

(detDF (amf = 1))2
. (4.8)

The extention to general fermion flavours Nf goes as for the physical fermions.

The complete action is given by

S = SG[U ] + SF [U, ψ̄, ψ] + SPV [U, φ†, φ]. (4.9)

This is the common formulation of domain wall fermions today. Quark operators can be
defined as

qx = PLψx,s=1 + PRψx,s=Ns, (4.10)

q̄x = ψ̄x,s=NsPL + ψ̄x,s=1PR. (4.11)

This definition has some finite overlap with the surface states in the chiral limit Ns →∞
and hence is a possible definition for the quark operators. Indeed this is the simplest
possible choice and is used most of the time.
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4.2 Domain wall fermions with the TSMB algorithm

We now turn to the use of the TSMB algorithm for domain wall fermions. Most of the
simulations done so far are in the quenched regime, and there are few with dynamical
fermions. Usually they use the HMC or the HMD-R algorithm. We believe that one can
benefit from the good scaling behaviour and the easy extension to odd fermion flavours of
the TSMB algorithm. We further believe that it is possible to use dynamical domain wall
fermions with the computer power that is available today, because there are arguments
that predict the possibility to use coarse lattices (large as) and small extensions (small
Ns) in the fifth dimension [132]. A detailed description of the TSMB algorithm for domain
wall quarks is given in [127].

The domain wall fermion matrix (4.2) satisfies

D†
F = γ5R5DFγ5R5, (4.12)

with

(R5)s,s′ ≡ δs′,Ns+1−s , 1 ≤ s ≤ Ns (4.13)

being the reflection in the fifth dimension. Therefore DF is not hermitean as needed for
the TSMB algorithm. But as with standard Wilson fermions we can define a hermitean
version of the fermion matrix

D̃F = γ5R5DF . (4.14)

With this the fermion measure is

∫

D[ψ̄]D[ψ]e−SF =
(

det D̃2
F

)

Nf
2
, (4.15)

and the measure for the Pauli-Villars field can be written in D̃F as

∫

D[φ†]D[φ]e−SPV =
1

(

det D̃2
F (amf = 1)

)

Nf
2

. (4.16)

Having written both measures in this way it is straightforward to apply the TSMB algo-
rithm along the lines of section 1.3, where the Pauli-Villars fields are described by negative
flavour numbers. Actually for even Nf it is very easy to approximate the Pauli-Villars

fields, since a polynomial with order n1 =
Nf

2 is already exact. An advantage of the TSMB
algorithm is that odd flavour numbers can be used without further difficulties, only the
polynomial order has to be increased to approximate the requested root.

In general with the TSMB the sign of the determinant needs a special treatment.
With domain wall fermions, however, this sign is expected to be irrelevant due to relations
between domain wall fermions and the overlap fermions, where a positive determinant is
expected for positive mass mf [117–119].

For some computers it might be a problem that for an implementation of the domain
wall fermions all bosonic fields need Ns times more memory due to the fifth dimension
and because the memory requirement of the TSMB algorithm is dominated by these fields.
However, a closer look reveals that this is no real concern. It is still possible to write the
gauge action according to (1.69) and (1.70), see [127]. With this it is possible to keep the
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Table 4.1: Polynomial parameters of the simulations on a 83 · 4 lattice for different lattice

spacings and extensions of the fifth dimension.

σ Ns n1 n2 n3 n4 ε λ

1.0 8 44 240 300 300 1.1 · 10−2 56.0

1.0 12 56 300 450 470 7.1 · 10−3 57.0

1.0 16 64 350 470 500 5.2 · 10−3 58.0

1.0 24 72 450 640 640 3.2 · 10−3 59.0

0.5 6 48 270 350 360 7.1 · 10−3 43.0

0.5 12 64 400 570 570 4.6 · 10−3 44.0

multi-boson fields on disk reading and writing them one after the other whenever they are
updated. In this way memory is no bottleneck for the algorithm, and the time requirement
for disk access is negligible compared to the time of the updates. Organized that way the
TSMB algorithm has a rather low storage requirement, even for domain wall fermions.

4.3 First exploratory studies

At the beginning of this exploratory study of dynamical domain wall fermions we have
chosen to use two degenerate quark flavours on a 83·4 lattice, and the parameters are chosen
close to the Nt = 4 thermodynamic phase transition. The parameters are taken from the
set considered in [133]. Typical parameters were am0 = 1.9, amf = 0.1, σ ∈ {1.0, 0.5}
and 5.2 ≤ β ≤ 5.45.

In a first step the necessary polynomials have to be found for different values of Ns.
Results are shown in table 4.1. Due to the even number of fermion flavours no polynomial
is needed for the Pauli-Villars fields. However, their polynomial orders would be much
lower than for the boson fields anyway, because for them the mass is fixed at amf = 1. The
results from table 4.1 enable a first prediction of the cost dependence on Ns. First of all it
has to be noticed that the costs in MVMs for one update cycle increase somewhat faster
than

√
Ns. Furthermore the first polynomial order is found to increase like that. With

the general experience that the autocorrelation τint in update cycles increases roughly as
n1 and the fact that the time for one MVM is directly linearly to Ns we find, that the
necessary computation work increases roughly as N 2

s or N3
s . This fast increase favours

settings with small Ns, where the lattice spacing is chosen smaller than usual, namely
σ < 1 [132, 134, 135].

As these test runs show it is possible to simulate dynamical domain wall fermions with
the TSMB algorithm. So the next step is to check the improved chiral properties that
are claimed to show up in the limit of large Ns. From quenched studies [46] it is known
that the improved chiral properties show up only if the four-dimensional fermion matrix
D does not have very small eigenvalues, i. e. a gap near zero should be realized in the
spectrum of D̃ = γ5D. In our unquenched simulation tests such a gap was not found, see
figure 4.1. Maybe the lattice spacing in the fifth dimension is too large, and furthermore
larger values of Ns could help. The spectral flow of the domain wall fermion matrix DF
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Figure 4.1: Left panel: Eigenvalue flow for the hermitean Wilson-Dirac matrix. Right

panel: Eigenvalue flow for the hermitean domain wall fermion matrix. In both cases the

vertical line indicates the mass parameter of the simulation.
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Figure 4.2: Left panel: Wave function profiles for the eigenstates of DF corresponding to

the eight smallest eigenvalues. Right panel: Wave function profile for the eigenstates of

DF corresponding to the largest eigenvalue.

is shown in figure 4.1.

Although the parameters of the simulations are obviously not yet tuned properly to see
the improved chirality it is still possible to investigate features of the domain wall fermion
formulation. In figure 4.2 we can see that the wave function of the largest eigenvalue is
concentrated around the middle of the fifth dimension, while the smallest eigenvalues are
peaked at the domain walls.

A preliminary conclusion of this exploratory study of dynamical domain wall fermions
is, that a simulation is feasable from the algorithmic point of view. But at the same time
we find that more work is needed in finding the best way to benefit from the domain
wall fermion formulation, with possible improvements over the present situation could
come from going closer to the continuum limit, by increasing the extension in the extra
dimension or by using improved actions.
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4.4 Other applications of domain wall fermions

Apart from zero and finite temperature QCD many other works can benefit from the
domain wall fermion formalism. For a recent review on the applications see [116].

In [117,136,137] the use of domain wall fermions for supersymmetric theories has been
explored, and these ideas have been applied to the case of the N = 1 Super-Yang-Mills
theory as discussed in chapter 3. Because of the close relation between the two topics
we would like to shortly have a look at the study done in [137]. This SUSY theory is
softly broken by a gluino mass term, and we have treated this term by tuning κ towards
its critical value. In the limit where we reach the critical value the gluino mass vanishes
and in the continuum limit supersymmetry is recovered. In sections 3.4 and 3.4.2 we have
considered the Ward identity (3.31) to monitor the restoration of supersymmetry, and
indeed we found that SUSY-breaking effects decrease when we get closer to the line of
massless gluinos, see figure 3.10.

There is obviously a strong relation between the chiral symmetry breaking and the
supersymmetry breaking. If we break chiral symmetry and give the gluino some finite
mass, then SUSY is broken proportional to this mass term. As we have seen domain wall
fermions can help to improve the chiral properties already at non-zero lattice spacing. It
is therefore natural to try this method in the N = 1 Super-Yang-Mills theory. At mf = 0
and in the limit Ns → ∞ domain wall fermions ensure that the gluinos are massless and
the only remaining supersymmetry breaking operators are irrelevant. Hence no fine-tuning
is needed and SUSY is recovered in the continuum limit.

One of the interesting questions is how the breaking of supersymmetry as seen in
the Ward identity can be controlled by the domain wall fermions. A first analytic study
together with some heuristic argumentations was done in [137]. So far they were unable to
do the necessary numerical calculations due to the large computational costs. Afterwards
they plan to study the spectrum of the theory. At the end it will be interesting to compare
their results with the results from using standard Wilson fermions as in chapter 3 [30].
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Conclusions

In this thesis QCD and N = 1 Super-Yang-Mills theory have been studied, in both cases
with the aim of attaining a relatively small fermion mass.

First of all, we have argued that it is important to include the dynamical fermions in
so-called unquenched simulations. The reason is that otherwise not all features of the full
theory are visible on the lattice. We have further argued that small fermion masses are
an important ingredient when trying to reproduce continuum physics. In QCD Stephen
Sharpe and Noam Shoresh have estimated that quark masses of roughly a quarter of
the strange quark mass are needed to allow extrapolations to smaller masses using chiral
perturbation theory [55]. For the N = 1 Super-Yang-Mills theory supersymmetry is
explicitely broken by the lattice, and it is only recovered in the massless limit.

In the first chapter we outlined two algorithms, the HMC and the TSMB, which
allow for the inclusion of dynamical fermions. Since the TSMB algorithm allows small
fermion masses, which we were able to verify in this thesis, we opted for this algorithm.
We present new considerations about its implementation, including the use of auxiliary
fields to speed up the algorithm and the form of the updating sequence to ensure detailed
balance. Furthermore, an extention of the TSMB is discussed which enables the simulation
of many fermion flavours with different masses. This can also be used for determinant
breakup as inspired by [24, 25].

In the second chapter we studied the costs of QCD simulations with two degenerate
quark flavours. The costs are parametrized as a formula depending on the quark mass,
the volume and the lattice spacing. Such a formula will be helpfull for future simulations
when estimating the costs for some desired simulation parameters and deciding if the
simulation is feasable with the available computer power. The existing cost estimates
are derived at quark masses around that of the strange quark and thus are not reliable
when considering the small quark masses which are required for chiral perturbation theory.
We find that the costs with the TSMB algorithms grow roughly quadratically with the
inverse quark mass when simulating lighter quarks. This cost estimate is based on the
decorrelation of the plaquette, for which we found zπ ' 4, where zπ

2 gives the power
dependence of the costs on the quark mass. Looking at the important fermionic sector
the even better behaviour zπ ' 3 is found, indicating a fast decorrelation of the pion mass
and the minimal eigenvalue of the fermion matrix. In any case our findings are better
than previous estimates for other algorithms, where a cubic dependence was expected,
i. e. zπ ' 6. Further algorithmic improvements like the determinant breakup were shown
to speed up the simulations by another factor of two in one specific simulation point, and
further simulations are proposed at lighter quark masses and larger volumes.

As stressed before, small quark masses are important for chiral perturbation theory,
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which, in turn, predicts chiral logarithms coming from the next-to-leading order terms.
So far these chiral logarithms haven’t been found on the lattice. The explanation given
for this are the too heavy quarks above half of the strange quark mass. The results from
our simulations for the cost estimate can be used for searching for the chiral logarithms
down to a sixth of the strange quark mass, and, indeed, we find the expected behaviour for
masses below half of the strange quark mass. These findings are very promising, although
one should be aware of the coarseness of the lattice. Thus further simulations are needed
to go to the continuum limit. If the results of this thesis can be confirmed for smaller
lattice spacings, a region will have been found which is both feasable to simulate with
the TSMB algorithm, and which allows a reliable extrapolation using chiral perturbation
theory.

Our cost formulas can be used to estimate the costs for obtaining 100 independent
gauge configurations in different settings. A physically very interesting simulation point
would be a 243 · 48 lattice with lattice spacing a = 0.125 fm and two degenerate quark
fields at roughly a quarter of the strange quark mass. This would correspond to a lattice
extension of 3 fm and Lmπ ' 6. The costs for such a simulation with the TSMB would be
roughly 9 · 1016 − 3 · 1018 flop, depending on whether one considers the pion mass or the
plaquette autocorrelation as relevant. Another interesting simulation point even closer
to the continuum limit would be a 323 · 64 lattice with lattice spacing a = 0.06 fm at
the same quark mass. This would correspond to a lattice extension of roughly 2 fm and
Lmπ ' 4. The costs for this simulation would be 6 · 1017 − 4 · 1019 flop. These simulations
can therefore be done with roughly 3−1300 sustained GigaflopYears. Note, however, that
in these estimates the costs for parameter tuning and reaching equilibrium are neglected.
This is justified by the studies in this work where doubling of the lattice was found to
be beneficial for the thermalization. In any case the necessary order of magnitude of
computer power for such simulations is expected to be available for the lattice community
within the next years.

We furthermore investigated the eigenvalue spectrum of the fermion matrix. This
contains alot of physically important informations, however, so far lattice results differ
from the expected spectrum, which must be obtained at small quark masses close to the
continuum limit. Although the lattices we investigated were very coarse the spectrum is
still interesting due to the small masses, and indeed we see the expected dependence on
the quark mass.

In chapter three we turned towards the N = 1 Super-Yang-Mills theory. By looking at
the finite temperature phase transitions forNt = 4 andNt = 6 we have shown that previous
simulations of this theory were in the confined phase as required. We proceeded with
further simulations at even lighter gluino masses. One of the important questions when
simulating this theory on the lattice is, whether, indeed, supersymmetry was realized well
enough. This is by no means a trivial question, because supersymmetry is broken explicitly
on the lattice due to the gluino mass and by lattice artefacts. The supersymmetric Ward
identities as a manifestation of supersymmetric invariance are a good tool to answer the
question about the realization of supersymmetry on the lattice. We found that the Ward
identities hold up to O(a) effects, and that it is possible to simulate this supersymmetric
theory on the lattice with the algorithms and methods used by the DESY-Münster-Roma
Collaboration.

In the last chapter we had a look at other formulations of fermions on the lattice.
The chosen formulation, the domain wall fermions, adds a fifth dimension to the four-
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dimensional lattice, and at infinite extension in the extra dimension exact chiral symmetry
is restored, decoupling the chiral from the costly continuum limit. In this formulation
chiral fermions are bound exponentially to the surfaces of the fifth dimension. There have
been promising results with this formulation in the quenched approximation, and here
we started a first exploratory study to include dynamical domain wall fermions with the
TSMB algorithm. We have shown that this is feasable, while, however, the improved
chiral properties could not yet be found. Larger extensions in the fifth dimension may be
necessary, and improved actions may help further. Studies with dynamical domain wall
fermions are at the limit of today’s computer capacity, but due to their very good chiral
properties it is worthwhile to start these simulations.

In the appendices of this thesis we present details on the computer programs used for
the updating, and the performance for some computer platforms used are given.
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Appendix A

Notations and conventions

A.1 Gamma matrices

The gamma matrices in the Euclidean are related to those in the Minkowskian:

γeucl.
1,2,3 ≡ −iγmink.

1,2,3

γeucl.
4 ≡ −iγmink.

4 ≡ γmink.
0 .

(A.1)

In the Euclidean they fulfill

γµ ≡ γeucl.
µ = γ†µ (A.2)

and

{γµ, γν} = 2δµν . (A.3)

Furthermore we define γ5 as

γ5 = γ1γ2γ3γ4, (A.4)

with vanishing anticommutor with the other gamma matrices:

{γ5, γµ} = 0. (A.5)

One possible choice for the gamma matrices is

γ1 =









0 0 0 −i
0 0 −i 0
0 i 0 0
i 0 0 0









γ2 =









0 0 0 −1
0 0 1 0
0 1 0 0
−1 0 0 0









γ3 =









0 0 −i 0
0 0 0 i
i 0 0 0
0 −i 0 0









γ4 =









0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0









(A.6)

This is the chiral representation, in which case γ5 takes the special diagonal form γ5 =
diag(1, 1,−1,−1).

There is an important relation between the gamma matrices to be noted. When
running a simulation most of the time is spent on the application of the fermion matrix Q
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as defined through (1.8) and (1.9). This requires the computation of w± = (1 ± γµ)v for
some Lorentz vector v. Furthermore the hermitean fermion matrix Q̃ = γ5Q is used, so
w′
± = γ5(1± γµ)v is needed, too. Due to γ2

µ = 11 we find w± = ±γµw± and w′
± = ∓γµw

′
±.

Therefore the different components of the result are not independent and only half of them
have to be calculated. Since the calculation of each component requires some SU(3) matrix
multiplications the program is speeded up by nearly a factor of two if this “gamma-trick”
is exploited.

A.2 Generators of the SU(Nc)

The generators T a, a = 1, 2, . . . , N 2
c − 1, are hermitean, traceless matrices generating the

SU(Nc). They fulfill

[T a, T b] = ifabcT
c (A.7)

{T a, T b} =
1

Nc
δab + dabcT

c, (A.8)

with fabc the totally antisymmetric structure constant and dabc totally symmetric

dabc = 2Tr({T a, T b}, T c). (A.9)

A.2.1 Generators for Nc = 2

Usually the Pauli matrices

σ1 =

(

0 1
1 0

)

σ2 =

(

0 −i
i 0

)

σ3 =

(

1 0
0 −1

)

(A.10)

are used for the generators of SU(2):

T a =
1

2
σa. (A.11)

Commutator and anticommutator for the Pauli matrices are

[σa, σb] = 2iεabcσ
c (A.12)

{σa, σb} = 2δab. (A.13)

εabc is the totally antisymmetric third rank tensor completely defined through its antisym-
metry and ε123 = 1. One can read of

fabc = εabc

dabc = 0. (A.14)

A.2.2 Generators for Nc = 3

For Nc = 3 the generators are defined as

T a =
1

2
λa, (A.15)
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from the Gell-Mann matrices

λi =

(

σi 0
0 0

)

, i = 1, 2, 3 λ4 =





0 0 1
0 0 0
1 0 0





λ5 =





0 0 −i
0 0 0
i 0 0



 λ6 =

(

0 0
0 σ1

)

λ7 =

(

0 0
0 σ2

)

λ8 = 1√
3





1 0 0
0 1 0
0 0 −2



 .

(A.16)

Therefore fabc and dabc for Nc = 3 are completely defined through

1 = f123 = 2f147 = 2f246 = 2f257 = 2f345 = −2f156 = −2f367 =
2√
3
f678

1√
3

= d118 = d228 = d388 = −d888

− 1

2
√

3
= d448 = d558 = d668 = d778

1

2
= d146 = d157 = d247 = d256 = d344 = d355 = −d366 = −d377. (A.17)
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Appendix B

Implementation issues and usage

notes on the programs

For the studies in this work programs were needed for QCD, for N = 1 SYM and for
the domain wall fermions. These three programs differ from each other, but the general
organization is somewhat similar1. We will now discuss the implementation of the QCD
program. It is explained what has to be done when using the program to generate con-
figurations, and how to measure quantities on these configurations. The TSMB algorithm
needs polynomials for matrices with large condition numbers. The fastest way for gener-
ating these polynomials is by using the program quadropt, which uses the CLN library
(class for large numbers or class library for numbers) [138].

The program we use both for updating the gauge and boson fields and for measurements
is nf3qcd2. The TSMB updates are done according to the description in section 1.4, and
some of the theory for the measurements is explained in section 1.5.

The flow of the program may vary depending on the settings in the file config.dat,
where one can choose between the update and the measureOnly mode. For the moment
we will concentrate on the update mode.

At startup of the program the fields are initialized. For the gauge field this means
that either a hot start is done, i. e. all gauge links are set to random SU(3) matrices, or
the field is read from a file, which allows to continue a previous simulation run3. The file
for the gauge field is named L:filename, where L stands for the numerical label of the
lattice. Usually this label is zero, but when several lattices are running in parallel this label

1For QCD we have another version of the code besides the one written in C++. It is written in TAOmille

and runs on the APEmille in Zeuthen. Some details of that program are quite different, but the general

structure is similar to the C++ code.
2The program for N = 1 SYM is called su2sym, the one for domain wall fermions is called dwqcd. The

QCD program for the APEmille is called mbQcd.
3To be precise there is a further alternative for setting the gauge field. There is a routine

Simulation::SetTestFields(), which sets both the gauge and the boson fields to some predefined val-

ues. These predefined values depend on the site and internal indices like the Lorentz, spinor, colour and

boson number indices. They don’t depend on pseudo-random numbers, i. e. they are the same whenever

this routine is called, and more importantly they are independent of the chosen grid that is used for the

parallelization. This routine is valueable when debugging problems of the parallelization. Furthermore

it can be used to compare the APE program with the C++ program, and comparisons with yet another

independent program wqcdb written by István Montvay are possible, too.
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allows to distinguish the different replicas. This file furthermore contains the status of the
pseudo-random number generator and some information about the run parameters. There
is a routine to read the boson field from a file, too. However, with the global heatbath
(1.77) it is best to generate a new and completely independent boson field at the beginning
of the program. This should be done from time to time anyway, and furthermore this is
convenient because this removes the need to store these fields, which takes a non-negligible
amount of time and disk space.

After the phase of the initialization a test of the chosen polynomials is run. The
first applies the first polynomial to a Gaussian random vector and compares the result
for the root representation formula and the recursive formula. A further test applies

(Q̃2)Nf

(

P
(2)
n2 (Q̃2)P

(1)
n1 (Q̃2)

)2
(or something slightly different in the case of determinant

breakup), which should be close to the identity operator, and another test computes the

error of the inverse square root represented by the third polynomial P
(3)
n3 (Q̃2). Furthermore

a correction step is run without having changed the gauge field. This gives another test
of the third polynomial.

Afterwards the fields are updated according to the settings in config.dat. For the
gauge field heatbath, overrelaxation and N -hit Metropolis updates are available, and be-
fore each of them local heatbath and overrelaxation updates for the boson fields are pos-
sible. After some number of update cycles a global quasi heatbath can replace the local
boson updates to remove the long tail in the autocorrelation. It is always required to
perform an even number of updates of one kind due to the way detailed balance is imple-
mented, namely after one update of one kind is done there has to be another one with the
path of updates reversed, see section 1.3.2 for more details.

After some update cycles, set through the variable UpdatingInMeasuring-Cycles

in config.dat, a measurement is performed and typically the gauge field is written. This
time the gauge field is written in a file L:G:filename, where L has the same meaning
as above and G labels the different gauge field files so that they can be stored and found
easily. Possible measurements supported by the latest version of the program are the
determination of the extremal eigenvalues of Q̃2, the reweighting factor, the sign of the
determinant, Wilson loops, pion and kaon correlators, eigenvalues of the non-hermitean
matrix Q, timeslices and spaceslices of plaquettes and other quantities. Usually not all
measurements are done during the process of updating. Switching to the measureOnly

mode further measurements can be done on the stored gauge fields.

Before the program exists the run statistics are printed out, including the acceptance
rates in the correction step and the global quasi heatbath. Furthermore performance
results and runtimes are given.

This program contains quite a number of routines, so that the source code now consists
of 21650 lines. While most routines have no strong dependence on other parts of the
program this is not true for the parallelization, which is spreaded all over the program.
Therefore this part requires some further explanation. The parallelization for the matrix
vector multiplication is straightforward. There is no assumption on the present status of
the vectors, and the matrix routine calls all necessary routines to get the needed data from
neighbouring nodes. For the gauge and the boson field the situation is different. Here it
is assumed that all first and second neighbours of the active sites are available on the
node at all times. In the local updates the new field therefore has to be communicated to
the neighbouring nodes. To minimize the overhead for communication as many sites as
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Figure B.1: Classification of the regions as needed for the local updates. All sites in one

region can be updated together, communication with neighbouring nodes is done only when

a new region is to be updated. Left panel shows the regions as needed for splitting up one

dimension, right panel for two dimensions.

possible should be communicated together. This is possible by going a path through the
lattice with respect to the regions as given in figure B.1.

More details on how to use the program can be found in the subdirectory doc/, where
a description on how to use the program as a black box is given.

Apart functionality and usability one of the important requirements for a simulation
program in lattice field theory is efficiency. As has been discussed in section 2.1 the
time needed for the updates and measurements is dominated by the Wilson-Dirac fermion
matrix. Performance results for the P4-1700 cluster can be found in tables B.1 and B.2,
for the Cray T3E the results are in tables B.3 and B.4. The APE supports only 32
bit precision4. Running on one APEmille node the performance is 218 MFlops. This is
independent of the lattice size since the APE does not have a cache. When three directions
are parallelized, as it is recommended for the APE, the performance due to the overhead
from the communication drops to roughly 126 MFlops.

The results for the P4-1700 cluster and the Cray T3E show, that it is always useful
to compare the different possibilites of splitting up the lattice before starting a longer
simulation in a new setting. Only this way it can be guaranteed that the best performance
is achieved. However, there are obviously some guidelines to follow. Of course, the highest
performance is achieved if the program runs on only one processor, while the fastest way is
usually to run on as many processors as possible. By comparing the times needed for MPI
communication, e. g. for 32 bit and 64 bit, we see that the time is roughly proportional to
the amount of data to be transfered. This has been achieved by minimizing the latency
time of the MPI calls. However, increasing the number of directions to be parallized
increases also the latency time. Therefore it is still needed to compare the performance
for the different scenarios. This is especially true on the Cray T3E, since the torus structure
of the network makes an estimate of the performance more complicated. Furthermore on
the Cray the distribution of the program depends on the utilization by programs from
other users. This may require several tests before a grid is found that is best on average.

4There is an internal type called double on the APEmille which corresponds to 64 bit precision. However,

this cannot be used if efficiency is needed. With the double datatype a complex normal operation a · b + c

would require four cycles, which has to be compared to just one cycle if the internal 32 bit complex datatype

is used. The next version of the APE (apeNEXT) is supposed use 64 bit throughout.
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Table B.1: Performance measurements for the even-odd preconditioned, hermitean Wilson-

Dirac fermion matrix ˜̄Q. The lattice size is 12 3 · 24 , results are for the P4-1700 lattice

cluster and 64 bit floating point precision. Grid is given in T [×Z [×Y [×X ]]].

CPU grid Performance [MFlops] Time for calc. [ms] Time for MPI [ms]

1 660.6 84.4 0.0

2 526.7 42.2 10.7

3 477.4 28.1 10.8

4 440.9 21.1 10.5

6 383.5 14.1 10.2

8 336.9 10.6 10.1

12 271.4 7.0 10.1

2× 2 393.5 21.1 14.3

3× 2 358.3 14.1 11.9

2× 3 330.5 14.1 14.1

4× 2 341.3 10.6 9.9

2× 4 293.9 10.6 13.2

3× 3 316.4 9.4 10.2

6× 2 306.7 7.0 8.1

4× 3 298.1 7.0 8.6

8× 2 261.4 5.3 8.1

4× 4 264.5 5.3 7.9

2× 2× 2 305.7 10.6 12.2

3× 2× 2 288.4 7.0 9.1

4× 2× 2 264.6 5.3 7.9

2× 2× 2× 2 240.7 5.3 9.2

Table B.2: Performance measurements for the even-odd preconditioned, hermitean Wilson-

Dirac fermion matrix ˜̄Q. The lattice size is 12 3 · 24 , results are for the P4-1700 lattice

cluster and 32 bit floating point precision. Grid is given in T [×Z ].

CPU grid Performance [MFlops] Time for calc. [ms] Time for MPI [ms]

1 1188.1 46.9 0.0

2 975.1 23.5 5.1

3 855.4 15.6 6.1

4 799.9 11.7 5.7

2× 2 710.0 11.7 7.9
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Table B.3: Performance measurements for the even-odd preconditioned, hermitean Wilson-

Dirac fermion matrix ˜̄Q. The lattice size is 12 3 · 24 , results are for the Cray T3E-1200

and 64 bit floating point precision. Grid is given in T [×Z [×Y [×X ]]].

CPU grid Performance [MFlops] Time for calc. [ms] Time for MPI [ms]

1 88.9 626.7 0.0

2 80.3 313.4 33.7

3 76.9 208.9 32.6

4 75.2 156.7 28.6

6 70.4 104.5 27.5

8 69.9 78.3 21.3

12 64.4 52.2 19.9

2× 2 74.7 156.7 29.7

3× 2 71.1 104.5 26.2

2× 3 68.2 104.5 31.8

4× 2 70.9 78.3 20.0

2× 4 65.6 78.3 27.9

3× 3 66.3 69.6 23.8

6× 2 67.3 52.2 16.8

4× 3 65.2 52.2 19.1

8× 2 64.5 39.2 14.8

4× 4 61.8 39.2 17.2

2× 2× 2 69.4 78.3 22.0

3× 2× 2 66.2 52.2 18.0

4× 2× 2 64.9 39.2 14.5

2× 2× 2× 2 63.3 39.2 15.9

Table B.4: Performance measurements for the even-odd preconditioned, hermitean Wilson-

Dirac fermion matrix ˜̄Q. The lattice size is 12 3 · 24 , results are for the Cray T3E-1200

and 32 bit floating point precision. Grid is given in T [×Z ].

CPU grid Performance [MFlops] Time for calc. [ms] Time for MPI [ms]

1 125.9 442.7 0.0

2 118.1 221.4 14.6

3 110.1 147.6 21.2

4 107.9 110.7 18.4

2× 2 104.1 110.7 23.2
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