Yang-Feldman Formalism

on Noncommutative Minkowski Space

Dissertation
zur Erlangung des Doktorgrades
des Department Physik
der Universitdat Hamburg

vorgelegt von
Claus Doscher

aus Bremerhaven

Hamburg
2006



Gutachter der Dissertation:

Gutachter der Disputation:

Datum der Disputation:

Vorsitzender des Priifungsausschusses:

Vorsitzender des Promotionsausschusses:

Leiter des Department Physik:

Dekan der Fakultat MIN:

Prof. Dr. K. Fredenhagen
Prof. Dr. G. Mack

Prof. Dr. K. Fredenhagen
Prof. Dr. J. Louis

15. Dezember 2006
Dr. K. Petermann
Prof. Dr. G. Huber
Prof. Dr. R. Klanner

Prof. Dr. A. Frihwald



Zusammenfassung:

Wir betrachten Quantenfeldtheorie auf nichtkommutativer Raumzeit. Dazu
wihlen wir einen Ansatz, welcher explizit dem nichtkommutativen Minkowski-
raum zugeordnet ist, ndmlich den Yang-Feldman Formalismus. Hier besteht
der Ansatz darin, versuchen die Feldgleichung der Quantenfelderzu l6sen.
In diesem Zusammenhang betrachten wir zuerst eine Wechselwirkung in
Form eines zusatzlichen Masse-Terms. Dies benutzen wir, um die Frage des
Infrarot-Cutoffs und des adiabatischen Limes zu erortern. Es werden Klassen
von Abschneidefunktionen gefunden, welche den erwarteten Limes liefert.
Des weiteren betrachten wir verschiedene wechselwirkende Modelle, das ¢?
Modell in vier und sechs Dimensionen, das ¢* Modell und das Wess-Zumino
Modell. Zu diesen berechnen wir Dispersionsrelationen und sehen, dass es ex-
treme Unterschiede in den Grofenordnungen im Vergleich von logarithmisch
und quadratisch divergenten Modellen gibt. Integrale, welche durch Twist-
Faktoren endlich gemacht werden, werden rigoros im Sinne der Theorie der
oszillierenden Integrale berechnet.

Abstract:

We examine quantum field theory on noncommutative spacetime. For this we
choose an approach which lives explicitly on the noncommutative Minkowski
space, namely the Yang-Feldman formalism. Here the ansatz is to try to solve
the field equation of the quantum fields. In this setting we first take a look at
an additional mass term, and use this to discuss possible IR cutoffs. We find
classes of IR cutoffs which indeed yield the expected limit. Furthermore, we
look at interacting models, namely the ¢3 model in four and six dimensions,
the ¢* model and the Wess-Zumino model. For these we calculate dispersion
relations. We see that there exist huge differences in the orders of magnitude
between logarithmically and quadratically divergent models. Integrals which
are made finite by twisting factors are calculated rigorously in the sense of
the theory of oscillatory integrals.
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Chapter 1

Introduction

Quantum field theory as it is given in standard textbooks today is modeled
on Minkowski space M or on a curved spacetime which locally looks like M.
There is no interplay between the particles described by the quantum fields
and the underlying classical spacetime. This is unsatisfactory, since one knows
from general relativity that the metric, which describes the geometry of the
spacetime, depends on the distribution of matter and on the other hand the
motion of the matter depends on the metric. This cannot be described by the
standard approaches to quantum field theory. One expects that the picture of
the classical spacetime as a differential manifold with classical metric breaks
down at very small length scales. This was already mentioned in [37] in 1934.
By the incorporation of gravity one expects that distances below the order
of magnitude of the Planck length,

hG
Ap =] — ~ 1.62-10"%m,
C

become meaningless. A hope is that the divergences in quantum field theory,
which make renormalization necessary and come from high momenta, i.e.,
small distances, disappear in the yet unknown new concept of spacetime.

A situation where the usual picture of spacetime breaks down is the mea-
suring of the coordinates of an event to the order of magnitude of the Planck
length. This was investigated in [13] semiclassically and it was shown that
such an extreme precision measurement causes a gravitational collapse. This
leads to the derivation of uncertainty relations for the position coordinates
q". These can be written as

A¢° (Aql + A¢ + Aq?’) > )\,
A¢t AP+ AGF AP+ AP - Agt > )T

7



8 Chapter 1: Introduction

These uncertainty relations can be realized, if one regards the coordinates as
elements of an observable algebra, in which the different components of the
position vector do not commute any longer:

[a",4"] = iXpQ™.

Here, Q" is an element of the observable algebra unequal to zero. It is chosen
in [13] to be a central element and to fulfill

QMVQ;W = 07
1 2
<§Qﬂqu76uupT> = )\%]1

This setting will be called noncommutative Minkowski space and is explained
in more detail in section 2.1. Closely related to this is to choose Q" to be
a constant matrix, most often denoted by o*”. In this thesis we will work
mostly in one of these settings and try to formulate interacting quantum
field theory on it. The noncommutative Minkowski space should not be seen
as the final concept for spacetime, but rather as an intermediate step towards
it. There is still no direct interplay between the fields and the spacetime on
which they live. The only remainder from gravity is the appearing of the
gravitational constant G in the noncommutativity scale Ap. The hope is that
understanding the noncommutative Minkowski space and the formulation of
quantum fields on it, helps to find a truly fundamental concept for spacetime.
Sometimes we replace Ap by A, if we want to emphasize that we also consider
different length scales associated to the underlying noncommutativity and are
not restricted to the Planck length.

Noncommutative spacetime also arises in a certain limit of string theory
with a constant background B-field [36, 39]. This setting can be described by
a constant 0" which maps a vector in time direction to zero, i.e., time and
space still commute. But this is not compatible with the uncertainty relations
mentioned above. Furthermore, Lorentz invariance is explicitly broken. We
will not consider this setting here.

Free quantum fields can be defined in a straightforward way on noncom-
mutative spacetime, as shown in section 2.2. But there are several different
approaches to interacting quantum fields. While they are equivalent on com-
mutative spacetime, they cease to be, if time does not commute with space
any more. Section 2.3 gives an overview of the different approaches. It is not
unclear which one is the most advantageous to choose since each has some
weakness. Especially, there seems to be no connection between quantum field
theory on noncommutative Minkowski and noncommutative Euclidean space.



Therefore, we choose a setting which works explicitly on the Minkowski ver-
sion, namely the Yang-Feldman formalism. This is the most promising ap-
proach from our point of view. A phenomenon in noncommutative Euclidean
spacetime is the mixing of UV and IR divergences, which is examined in
section 2.4. Yet it is not clear, how this shows up on the noncommutative
Minkowski space.

In Chapter 3 we introduce the Yang-Feldman formalism and look at pos-
sibilities to introduce an IR cutoff. This cutoff is necessary in order to keep
us from manipulating expressions without a well-defined sense. We consider
a mass term as interaction. This can be seen as a kind of toy model, since we
already have an expectation of what the result should be. First, we do this
for commutative spacetime and then have a closer look at the new situation
on the noncommutative one. In Chapter 4 we look at interactions, namely
the ¢ model both in four and six dimensions, the ¢* and the Wess-Zumino
model. Some of these models are logarithmically divergent and the others
quadratically. We look at their dispersion relations and see that the orders of
magnitude of the modifications are rather moderate for the logarithmically
divergent models but for the quadratically divergent ones considerably num-
bers of magnitude higher. In fact, for logarithmically divergent models the
distortion of the group velocity is of the order of percentages. If one assumes
that the Higgs model sees a noncommutative structure of spacetime and be-
longs to this class of divergence (possibly a supersymmetric extension of the
model) this might be detectable in forthcoming colliders. The last Chapter
5 brings a conclusion and an outlook.

In the literature calculations for quantum field theory on noncommutative
spacetime are often presented very vague and without well-defined objects.
Here, we try to treat everything as rigorous as possible. For example integrals
which are made finite by twisting factors are calculated using the theory of
oscillatory integrals. To our knowledge, this has not been done before. The
concept of oscillatory integrals is presented in Appendix B. In the whole
setting we keep A, finite and do not treat the fields as a formal power series
in Ap.
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Chapter 2

Quantum field theory on
noncommutative spacetime

2.1 Noncommutative Minkowski space

In this section we present mainly the setting of noncommutative Minkowski
space from [13]. However, the presentation given here is slightly simplified.
For this section we set A\p = A\, = 1.

[, ¢"] =:iQ",
[¢", Q"] = 0.
Furthermore, we require Q" to fulfill
Q/WQ;W = O,

1 2
(1"0aur) =1

These relations together with the commutation relations imply the uncer-
tainty relations
A (Aq1 + A¢ + Aq3) > )3,

2.1
A AP+ A AP+ AP - Agt > N, 1)

but not vice versa. Since the uncertainty relation cannot be fulfilled by
bounded operators, we will look at the Weyl realisations, i.e., instead of
the ¢* we look at e”*#4" . For these, the commutation relation becomes

i Hogla? _ i v ; Iz
ezkuq 6zl,,q —e k@ luez(ku+lu)q ) (22)

11



12 Chapter 2: QFT on noncommutative spacetime

The joint spectrum of the Q" is a subset of

1 2
oo, =0, (gd“"a’”ewm> = 1} )

Y} is a noncompact manifold and invariant under Lorentz transformations:

Y= {o— € 17 (M)

ceX,ANe L=AoAT €%,
where L is the set of all Lorentz transformations and
(AcATY" = A* AN o7

Furthermore,
Vo,0' € ¥ 3A € L with o’ = AcAT.

For o € ¥ we will define the (Euclidean) norm by

1 14
lol*:= 5 > o™

pu<v

This has the property that ||o|| > 1 Vo € X. We define
> .= {o e 2|HO’H =1}.

¥ is compact and invariant under rotations.

One possibility is to choose Q" as the unit operator times a constant ele-
ment o* € 3. The corresponding C*-algebra with the Weyl realizations will
be denoted by &,. The representations of £, are, by von Neumann unique-
ness, all equivalent to the algebra of compact operators I on the Hilbert
space L*(R?). In fact, if we choose the standard matrix

we can identify &,, with the setting of quantum mechanics on the two di-
mensional plane: ¢° = X', ¢! = P, ¢* = X%, ¢® = P», where X? and P, are
the usual position and momentum operators. oy is an element of ().

A dense set of elements of &, is the set of symbols

1 N ik
/ Ak f(k)e ke,

f(Q) = (27T)2




2.1 Noncommutative Minkowski space 13

where f is the Fourier transform of f and should be in L'(M). Most times
we will choose f € S(M). The above defines the Weyl correspondence: W is
a map from S(M) to &, with W(f) = f(¢). The product of two symbols is

f(@)g(q) =

<271T>4 / dthad ko f(kn)g(h)e 2002 200 = (£ 5, g) (q).
(2.3)

This means that the product on &, can be pulled down to the x, product!
on S(M). In terms of the Weyl correspondence this relation is W(f)W(g) =
W(f *» g). The factor e=2%17%2 is called twisting factor.

The product of (2.3) is often compared with the formal Moyal star product

(f 5" g) (x) 7= 2@ %2 f (1) g (yo) :
T=Y1=Y2
To ensure that f*, g = f*M g one has to assume that f and g are analytic.
But for analytic functions there exists no well-defined concept of locality.?
So, one should treat the statement with care, that f +x g and therefore also
f %, g are local products. However, if one takes f 37 ¢ and f *x2.0 g to be
formal power series in A, they are indeed equal. "

The group of transformations acts on &, by 7.(f(¢)) = f(q — al) for
a € M. However, Lorentz symmetry is explicitly broken in this setting, since
for A € L the operators ¢ = A*,q¢" fulfill

[¢", ¢"] = i(AaAT)".

So, there exist distinct Lorentz frames, in which the noncommutativity ma-
trix, say, equals og.

To get rid of this explicit breaking of Lorentz invariance we look at the al-
gebra of continuous functions from ¥ to L!(R*) vanishing at infinity, endowed
with the product

(F x* G)(o, k) = /d‘*lF(a,k — )G(a,1)e 2%,

norm ||F|| = sup,cy, [ dk|F (0, k)| and the involution F*(o, k) = F(o,—k).
The C*-closure of this algebra will be denoted by &£. It is isomorphic to
Co(X, K). If we denote the elements of the algebra &, by ¢ we can see ¢* € €
as a direct integral over the ¢”. Furthermore, there exists the algebra of
bounded continuous functions from ¥ to L!'(R*). The completion of this

! This is a nonlocal product. Hence, one can see this setting as an example of a nonlocal
field theory.
2An analytic function is fixed globally by its derivatives at a single point.



14 Chapter 2: QFT on noncommutative spacetime

algebra will be denoted € and can be viewed as a subset of the multiplier
algebra M (&) of £. The algebra of bounded functions on X can be associated
with the centre Z of M (E).

The Weyl correspondence generalizes to continuous functions from X to
S(M) (vanishing at infinity or bounded) by W(f)W(g) = W(f x g), where
the star product is pointwise in X:

— 1

f*g(07 k) - (27‘(‘)2

Here, all Fourier transforms are at fixed o. The symbol f(c,q) = W(f)(0)
can be regarded as an element of &,:

/d4lf(a, k—1)g(o,1)e 2k,

flo,q) = / dkf (o, k)e e (2.4)

1
(2m)°
where ¢, denotes the element realized in &,. If f does not depend on o € ¥,
we will just write f(q).

The Poincaré group acts on symbols in the following way:

Tha(f)(0,q) = det(A) (AT oA™Y, Un agUy ), (2.5)

where Z/IA@qUZ/{;’; = gr-1,5-17 — A7tal. Loosely saying, one has to transform
both ¢* and @Q*”. This induces an automorphism on &£. No distinct frame
exists any more.3

Derivatives are defined as infinitesimal generators of translations:

Ogu f(0,q) = Oun f(0,q+ al) (2.6)

a=0

We find a Z-valued trace on &, denoted by [ d*q:

[ dato.0) = @2rPf0)

This trace is cyclic, and on the product of two symbols it fulfills

[ dafo.agio.0 = [ dtasioniglo.n)

3There exists the concept of twisted Poincaré symmetry [9, 42]. The commutation
relations of the generators of the Poincaré algebra are deformed in order to make the
relation [¢*, ¢”] = io*” with fixed o*" invariant under Poincaré transformations. However,
this is essentially equivalent to leaving the Poincaré algebra untouched but transform o#*
like in (2.5) [20].
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Formally, [d*qe®*® = (27)*(k). Using the Weyl correspondence, one can
define the pointwise product for symbols f(q) and ¢(q),

F(@) ow 9(0) =W WV (f(@) - W H9(a) = (f - 9)(q). (2.7)

However, this product is rather artificial and lies somewhat outside the al-
gebra structure of £. Of course, the concepts of derivatives, the trace and
the pointwise product also exist on &,. In this case the trace has values in C
instead of Z.

States on these noncommutative spaces describe localizations.* To every
state on &£ there exists a measure p on X and a measurable function 0 — w,
on X, where each w, is a state &,, such that

S(F(Q.q) = / A0 ) (£(, 40). (2.8)

3

The uncertainty relations (2.1) are fulfilled if we set

Ag = Aug" = Vw(gr?) — w(gh)?.

A measure of localization of a state will be the quantity Zu (Auq™)?. How-
ever, this measure of localization is not Lorentz invariant. It was shown in
[13] that it has the property

S (Ag) > V2 / du(o)(1 +|Jo]))

=0

using the notation of (2.8). The quantity on the right-hand side has its min-
imum if the support of the measure (o) is contained in the set X(1). For
o€ YW and x € M we can find a unique optimal localized state wy(x) on
&, around z, i.e.,

3
we(z)(g") = 2" and Z (A%(x)qgf =2. (2.9)
n=0

Using the above mentioned identification with quantum mechanics on a plane
these states can be identified with the ground state of the harmonic oscillator,
shifted by a vector x in phase space. With these we can easily build optimal
localized states on £ around x. We just have to choose a measure p with
its support on 2 and take the optimal localized states in &, around x.

4This is in accordance with the concept of noncommutative geometry from [12].



16 Chapter 2: QFT on noncommutative spacetime

Note that there does not exist a Lorentz invariant optimal localized state,
but rotational invariant ones.

In the commutative limit £ reduces to the commutative algebra of func-
tions on > X M. So, we get an additional manifold >, which has not been
observed in nature yet. It has to be eliminated somehow since at the end the
expectation values from the theory have to be real numbers and not functions
on Y. It is still an open question how to handle this problem. A natural idea
would be to take a Lorentz invariant state on £ and average over Y. But since
>’ is noncompact one cannot find such a state. However, there exist rotational
invariant ones and averaging over X" would be the most reasonable choice
in this setting.

In the following each of the settings &,,,& or M(E) will be called non-
commutative Minkowski space, abbreviated by M,.. However, most of the
time we will work in &, (and choose o € () or &, i.e., look at symbols
which have no additional dependence on o € ¥. The noncommutativity scale
will be absorbed into o, i.e., \;20 € ¥ actually. The continuation of the
whole setting to higher even dimensions, like six, is straightforward.

2.2 Quantum fields

Now we look at quantum fields on noncommutative spacetime. Let ® be
a Wightman field and F the algebra of polynomials of the field. (Here we
only consider hermitian scalar fields. The generalization to other fields is
straightforward.) One can easily write down

1
(2r)?

This lives formally on F ® M. If & = Py is the free field, it fulfills the
Klein-Gordon equation:

B(q) = / A b (k) @ e~ hne". (2.10)

(0, + M) Pre(q) = 0.

We want to give (2.10) a precise meaning. In [4] ®(¢) was taken to be a
functional on the subset of (Z-valued) states of M, which are in the domain
of all polynomials in the ¢*’s. The functional takes values in F. Note that
for elements w of this subset of states the function k — w (™) is in S (a
function from ¥ to S). So, the Fourier transform can be defined and

1

P(g)(w) = w(®(q)) = 2n P

/ At (ke ") = / aEB(k) (k) = (1)
(2.11)
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with f,(k) = (2;)2w(e_ik“q“). The last term has to be understood in the

sense of Wightman fields as operator-valued distributions on M.
Another definition is to consider multiplying by a symbol and taking the
trace:”

/ dqf(q)®(q) =

s / d*qd"kyd ko f (k) D (K )®(ef%”wk2eﬂ'<k1+kz>-q>

(2
/ frd o f (k) B (K )®(e’3k1@k25(k1+k2))
f s

(k) = @(f).
(2.12)

The result is similar to (2.11). Since more functions comply with (2.12) we
adopt this point of view, but it hardly makes a difference in calculations
which one we take. The tensor sign ® between the F and M, part will be
dropped from now on.

However, as on commutative spacetime, products of fields are not well-
defined:

/ d'f (@) B(q)B(g) = —

(2m)"

but f(k, + k) is not an element of S(M?), since it does not decrease rapidly
in the direction k; = —ko. Thus, the above expression is ill-defined. If the
fields are free fields, ® := Ppgpee, this can be cured by taking the so-called
normal-ordered or Wick product, denoted by : ®f :. This only applies to the
field part, i.e.,

/d4k1d4k2<i>(k1)<i>(k2)f(k1 + ks),

. Cbo(q)q)o(q) = /d4k’1d4k2 : ci)o(k’l)ci)o(k’g) : €_ik1q€_ik2q. (213)

1
(2m)*
The Wick product can be seen as the restriction of the product ®(z)®o(y) —
A (x —y) to the diagonal x = y. In a certain sense the subtracted A, is a
local subtraction (on commutative spacetime).

However, for higher products of fields a concept of locality is introduced in
[4]which is more adapted to noncommutative spacetime. Some terms, which
are subtracted using the usual Wick products, become nonlocal and finite.
Thus, they should not be subtracted any more. This leads to the notion of

5Note that the map of the Weyl correspondence W is not positive. So, if f € Sis a
positive function, the map g(q) — f d*qf(q)g(q) is not necessarily positive, and hence
does not define a state.
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quasiplanar Wick products, denoted by : ®p : . The first order, where this
differs from the usual Wick product, is three:

L Do (q)Po(q)Polq) : =: Po(q)Po(q)Po(q) : +ﬁ/dkA+(—kO')qA)g(k}>€_ikq,

As mostly we encounter the product of only two free fields it does not matter
which product we take. However, in 4.5 we have a look at the ¢* model. Here
we have a product of three free fields and use the quasiplanar Wick product.

The generalizations from commutative to noncommutative spacetime are
not always unique. For example

/ dqfi(0)2(q) fo() () .. falg)D(q) (2.14)

and

/ d*qf1(0) f2() - - Ful@)®"(q)

could both be seen as generalizations of

/ A4 fy(2) folz) - fol2) ().

While the last two expressions are ill-defined, it was shown in [45] that (2.14)
is indeed well-defined. Among others we use terms like this to form an IR
cutoff on noncommutative spacetime in sections 3.2.2 and 4.3.

2.3 Approaches to interactions

There exists a zoo of different approaches to interacting quantum field theory
on noncommutative spacetime. To make clear, where our approach fits in,
we give an overview of what has been done in this field of research. However,
we do not claim it to be complete.

A first classification of the different approaches is by the treatment of \,.:

e Fields are treated as formal power series in ..
e )\, is not infinitesimally small but finite.

We take the latter point of view since we do not see a possibility to build
a more fundamental concept of spacetime at small scales in the first ap-
proach. (Remember that the noncommutative Minkowski space is regarded
as an intermediate model only.) Another classification is by the metric and
commutativity of the time component:
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e Euclidean metric
e Minkowski metric

— Time still commutes with space.

— Time and space do not commute.

As was already mentioned, on noncommutative spacetime there seems to be
no connection between results on Euclidean and on Minkowski space, since
the Osterwalder Schrader theorem |32, 33| is not applicable. Already it seems
to be impossible to define the Wick rotation. In the Minkowskian setting, the
uncertainty relations (2.1) do not hold if time and space still commute. Hence,
we choose noncommuting time. However, this makes approaches which are
equivalent on M inequivalent on M.
The most important approaches are:

Modified Feynman Rules: This is the most prominent approach. It was
first formulated in [18]. The usual Feynman rules are modified by adding
at each vertex the twisting factor

e_% Za<b kacky .

Here k, are the incoming momenta at that vertex, numerated in clock-
wise direction. The twisting factor is invariant under cyclic permutation
of the momenta. This modification of the Feynman rules is inspired by
changing the usual action, e.g., of the ¢* model to

2

5(6) = [ dlaztu000"ota) — "ota? ~ o)

2

m2

— [ dta30,0(0)00(a) - -0l J6x0x o ola)
It was shown in [19] that unitarity is violated in this approach if time
does not commute in space.® The modified Feynman rules approach is
used for both Euclidean and Minkowski metric. For the latter concrete
calculations seem to be very complicated if time does not commute
with space.

SHowever, in the shown derivation given in [19] the Minkowski metric is used. In order
to calculate the contribution of a Feynman graph, the loop integral is Wick rotated to
an imaginary time component. To keep the twisting factor from becoming exponentially
increasing in the imaginary time direction and making the integral nonconvergent the
authors analytically continue the 0% components, too. This is a very questionable step.
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Hamiltonian approach: This approach was first considered in [13]. A con-
cept of integral at fixed time ¢ is used to define an Hamiltonian H ().
This is entered into the Dyson series, and time ordering with respect
to the variable ¢ can be applied. However, in the graph expansion the
propagators are not the usual Feynman propagators. It was shown in
|5] that this approach fulfills unitarity also for noncommuting time.
In [6, 3] a UV-finite theory was developed. [29] investigates dispersion
relations for this approach. However, the interaction part of the Hamil-
tonian is treated in a very different way than the free part, which is
kind of unsatisfactory, and already at tree level the fields do not fulfill
the equation of motion, see [2|. Furthermore, problems of the asymp-
totic behaviour at ¢ — oo appear, similar to those in nonlocal theories
[24].

Yang-Feldman formalism: The ansatz is to solve the field equation of the
quantum fields on noncommutative spacetime. This approach was al-
ready used on M, in [5, 2| and it was shown that no problem with
unitarity appears. We will analyse this approach in detail in the follow-
ing chapters.

Adding a Grosse Wulkenhaar term: It was shown in [22] that adding
a harmonic potential to the free scalar field action renders the ¢*
model renormalizable. This approaches works explicitly in the Eu-
clidean setting. It seems unlikely that this result can be transferred
to the Minkowski case.

There exist further differences on how gauge theory can be implemented.
It seems that only U(N) gauge groups can be defined in nonexpanded ap-
proaches. These gauge theories have severe IR divergences. More gauge groups
can be defined if the Seiberg-Witten map [39] is used. This acts on formal
power series in \,. and maps commutative gauge fields to noncommutative
ones. The map is however not unique. We do not consider gauge theories
here. For supersymmetric models approaches exist in which the fermionic
variables 6 do not anticommute any more [30]. This will not be considered,
either.

Often one meets very formal calculations und loosely defined objects in
the literature. This is kind of typical for this field. However, we try to treat
everything as rigorous as possible.
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—O0—

Figure 2.1: Nonplanar Feynman graph in the ¢* model.

2.4 UV-IR mixing of divergences

We investigate the modified Feynman rules approach on Euclidean space. It
was discovered that the contributions of some nonplanar graphs, which di-
verge on commutative space, become finite on noncommutative space if the
incoming momentum is unequal to zero. An example for such a nonplanar
graph in the ¢® model is shown in figure 2.1. The internal loop integral ren-
ders finite due to the oscillating behaviour of the additional twisting factor.
However, if the incoming momentum is zero, the internal loop integral would
be UV divergent again. One could argue that an incoming momentum of zero
is unphysical. But if the nonplanar graph is a subgraph of another one, like
in figure 2.2, it is integrated over all incoming momenta of the internal non-
planar graph, even over zero. So, the integral over small momenta can give
a UV divergence. This phenomenon is called UV-IR mixing of divergences.
Such divergences can not be treated in the usual renormalization scheme. It
was discovered in [31, 10, 11| that this is not a problem if the model is only
logarithmically divergent. Here, we will show the reason at an example in the
¢3 model. This is compared with similar examples in the ¢} and ¢* model.
Our calculation is different from the ones given in the above mentioned litera-
ture. The contributions of the nonplanar graphs will be calculated rigorously
using the concept of oscillatory integrals, which is given in Appendix B. If
the reader is not familiar with this concept it would be advisable to have a
look at this appendix first. In particular, the generalized theorem of Fubini,
theorem B.4.2, will play an important role.

We emphasize, that the following calculations are only valid in the Eu-
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Figure 2.2: Feynman graph for the ¢ model, possible candidate for showing
UV-IR mixing.

clidean setting, since an analytic continuation would not be possible for the
Minkowskian case due to the twisting factor. We will first have a look at the
¢3 model. For the nonplanar graph 2.1 the phases of the twisting factor of
both vertices add and we get the (amputated) contribution:

eikol

P = [ A ey

This integral is not absolutely convergent but can be seen as an oscillatory
integral.” It is easy to see, that indeed a(k,l) = ((k_l)2+n12)(12+m2) is a symbol
of order —4 and ¢(k,l) = kol a phase function. So, the above defines a
distribution in k. The singular support is contained in the set V;¢(k, 1) =
ko = 0. Since (ko)? = M\ k? this is only the point & = 0. We will calculate
the above integral for k # 0. This calculation will be very detailed, since the
usual techniques for transforming absolutely convergent integrals are a priori
not applicable. We know that the integral is a C*°-function outside 0 and we
can use the result from section B.3 and see k as a fixed parameter.

We take a sequence of symbols {g,} like in proposition B.2.1 with g as in
(B.6). So, the integral (2.15) is the limit of

(2.15)

eikal

This integral is now absolutely convergent and we can perform the usual
transformations. We introduce Feynman parameters and write the integral

"It is not a simple Fourier transform since the variable k does not exclusively appear
in the phase function but in the symbol as well.
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as

1 ikol
/ doz/d“l ‘ ~gn(l).
0 (1 —a)((k =12+ m?) + a(l?+m?))
If we drop the g,, we can see the inner integral again as an oscillatory integral,
now depending on an additional parameter . We will introduce a different
sequence of symbols, namely g, (I — (1 — «)k). It is easy to see that this has
again the limit 1, as it only scales around a different point. (Remember that
k and « can be seen as fixed for the inner integral.) Using this, we get for
the oscillatory intergral (omitting the « integral for now):

/d4l eikol
(1 =) ((k=02+m2?)+ a(l? +m?))

Now, we make a variable transformation to I’ = |— (1—«)k and get (dropping
the prime again):

39n(l = (1 = @)k).

ikol
a4 € (D).
/ o a2V

We define b(k, o) :== m*+a(l—a)k? For a € [0, 1] we have b(k,a) > m? and
for bounded k it is bounded to above, too. We make a rotation in [ such that
the last component points in the direction of ko. The rotational invariant
gn will be dropped. We use the coordinates [ = (1, ) and get the oscillatory

integral '
/ d4l 67/5(13
(b+12 + 22)°

with s := |ko| = M.|k|]. As sz is a phase function in the x coordinate
alone, we can use the generalized theorem of Fubini B.4.2 and perform the x
integration first, which is an absolutely convergent integral. The result is

s ) S 1
— [ d3lesvot! . 2.1
2 / ‘ DI (b B (2.16)

This integrand is now a Schwartz function in 1, as it should be according to the
generalized theorem of Fubini. So, the integral is now absolutely convergent.

Now, we examine the behaviour of the integral at |k| — 0. Since b(k, a)
is bounded and greater or equal to m? we do not have to worry about this
quantity. The integral over a, which is yet to be done, is over a compact set
and does not change the divergent behaviour, either. Thus, we look at the
above integral for small s. The first part of (2.16) stays finite, since after the
angular integration we get (dropping prefactors from now on):

0o 2 00 2 00
/ die—vie S / Qe e _L / dle™ = 1.
0 b+ 12 0 bs?* + 12 s—0
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After a similar variable transformation the second part gives

/ T e
0 (bs? + 12)3/2°

For s = 0, this is now divergent at small [. Since the factor e~ V0’ ig
finite for small [ and s, we can examine the divergent behaviour of the above
integral by looking at

! 12 1
dl = — A h(sVv'b).
/o (bs? +12)3/2 V14 bs? + ArcCsch(sVh)

The first part stays finite. y = ArcCsch(z) is the inverse function of z =
m The latter behaves for large y, hence small x, like 2e7Y. Thus, ArcCsch(S\/l_))
behaves like log(2) — $log(b) — log(s). This shows that F(k) behaves like
log(|k|) for small k.

If the considered graph appears n times as a subgraph of another one,

like in figure 2.2, we would have to calculate
/d%F(k‘)” !
(kQ + m2)n+1((p _ k)Q + m2)’

where p is the outer momentum. This is finite for large k due to the n + 2
propagators. The contribution of small k£ can be estimated by

K
C’-/ dkk®log(k)™,
0

which is a finite integral. So, no IR divergence appears.

The situation is different for the ¢ model, which is quadratically diver-
gent. The calculation is the same until (2.16), except that the remaining
integral is over five dimensions. The first part gives

/'OO dle*SW Sl4 — i /OO dle*\/m l4
0 b+12 s ), bs? + 12’

and the second

/ TqevE_ L1 / T qevEE__
0 (b+12)32 &2 ), (bs? + 12)3/2

Both contributions diverge like s%, since the remaining integrals are finite for
s = 0. So, in six dimensions the contribution for small £ of the graph in figure

2.2 behaves like
K , 1
dkk® —.
|, ¥
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Figure 2.3: Nonplanar Feynman graph in the ¢* model.

This is divergent for n > 2. Since the divergence is at small k, it is called an
IR divergence. This is the so called UV-IR mixing.

Another model, where this can be seen, is the ¢* model in four dimensions.
Figure 2.3 shows a nonplanar tadpole graph, which is finite and gives the
oscillatory integral®

1 : 1 .
d4l —ikol — /d4l —isz
/ l2+m2e x2+l2+m26

The transformation to the second integral is similar as before. Again, we use
the generalized Theorem of Fubini to perform the z integration first. We get

1 P 2 o0 l2 2 2
d3l —svV124+m — 4 2 dl —sVI?4+m
7T/ 2t m2 8 0 l2—|—m26
— 47r2‘1 /OO dl—lz g~ Vitmis®,
52 Jo 12 + m?s?

So, for small s this behaves like 5% If the graph appears as subgraphs in
another one, like the one shown in figure 2.4, we can get an IR divergence.
Thus, this quadratically divergent model shows UV-IR mixing, too.

Remark 2.4.1. Actually, F(k) from (2.15) is a distribution in k. So, we have
shown that its scaling degree at k = 0 is 0 for the ¢3 model and 2 for the
#3 and the ¢* model. We can use the concept of scaling degree, introduced
by Steinmann [41], cf. Appendix A, to find a continuation of F(k)" to the

8This can also be seen as a simple Fourier transform.
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Goo€

Figure 2.4: Feynman graph for the ¢* model, showing UV-IR mixing.

origin. In the case of the ¢} model there exists a unique continuation. For
the other models the ambiguity can be described by 2n — 4 free parameters.
As all powers of F'(k) appear in the Feynman graph calculus, this leads to an
infinite number of free parameters in these quadratically divergent models.



Chapter 3

Yang-Feldman formalism

We introduce the Yang-Feldman formalism to solve perturbatively the field
equation for a quantum field. The Yang-Feldman approach was mainly de-
veloped in [44, 27, 28|. Closely related to this approach are the retarded
products. Steinmann [41] showed formally, i.e., without IR cutoff, how some
divergences cancel and and the remaining can be put into free constants
through continuation of distributions to the origin. The latter is equiva-
lent to renormalization in the Feynman graph formalism. Due to the suc-
cess of the Feynman graph formalism not much work was done in the Yang-
Feldman formalism. Recent developments for retarded products can be found
in [16]. The Yang-Feldman formalism was already used on the noncommu-
tative Minkowski space in [5, 2, 4] and it was shown that no problems with
unitarity appear. However, this approach is still underdeveloped both on
commutative and noncommutative spacetime.

In section 3.1 we introduce the Yang-Feldman formalism for classical
fields. We extend it to quantum fields in section 3.2. This makes an IR cutoff
necessary. To take a closer look at this problem we investigate the two-point
function for a mass term as interaction. We use this as a benchmark of the
IR cutoff since we already have an anticipation of what the result should be,
namely the same as for a free field of the shifted mass. A similar result is also
missing for the commutative case, so we first have a look at this in section
3.2.1. Then we use this result to show how the correct limit is obtained on
noncommutative spacetime in section 3.2.2.

We use a well known result of Epstein Glaser [17], which is for convenience
stated in Appendix D. Epstein and Glaser used the theorem to calculate time
ordered function. These are related to the n-point function on commutative
spacetime. As time ordering is not well-defined on noncommutative space-
time, we have a look at the latter and in particular calculate the two-point
function of the interacting field. The theorem from Epstein and Glaser lies

27
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restrictions on the support of the cutoff functions in momentum space. How-
ever, we will show that the class of cutoff functions can be extended. A large
part of what we present in this Chapter has already been published in [14].
Some minor mistakes have been corrected.

3.1 Classical fields

The main approach in this formalism is to solve the field equation, which for
a polynomial interaction —ggb“ is

(O+m?)p=—-I¢* . (3.1)

For the time being, we assume that ¢ is some classical field on the commu-
tative Minkowski space. We try to solve (3.1) perturbatively. The solution
will be denoted by ¢py. Let ¢mee be a field solving the free equation, i.e.,
(O + m?)Prree = 0. Now ¢y is treated as a formal power series in the cou-
pling A:

gblnt = Z )\n¢m (32)
n=0

and for early times ¢ — —oo the interacting field should be approximated by
the free field. Inserted into (3.1) and sorted by powers of A we get

(O +m*)¢o = 0,

(O+m?)g, = — > Oy O, ,  forn>0.

ki4..+kqg—1=n—1

where a is the same as in (3.1). With the initial condition mentioned before,
this is solved by

¢0 = ¢Heea
¢n = —Ag X Z Oky « - Oy for n > 0. (3.3)

ki1+...+kqg—1=n—1

where x denotes the convolution.! The convolution with Ag is a priori only
well-defined if the ¢ are elements of some test function space, e.g., S.
We now want to generalize this formalism in two ways:

1. The fields should live on the noncommutative Minkowski space.

'If we had required the free and interacting fields to coincide at t — +oo we would
have had to take A 4 instead of Ag.
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2. They should be quantum fields.

The first point is straightforward. Using (2.6), the field equation becomes

(O +m?)e(q) = Oz + m*)(q + 2)amo = =26 (q). (3.4)

The boundary condition on ¢r,; can be stated by requiring

lim wx(¢lnt (Q) - ¢Free(Q)) - 07

20— —00

where w, is the optimal-localized state given in (2.9). The solution is similar
as before:

b0 (Q) = QFree (Q) )

bn(q) = — | Ar X Z Oy - Oray | (@) forn >0

ki+...+kqg—1=n—1

= —/df Ag(z) > Gy (g — ) P, 1 (¢ — ).

ki1+...+kg—1=n—1

(3.5)

A proof that this fulfills the boundary condition and that convolution with
Apg is a well-defined process for symbols can be found in [45, 21].

The generalization to quantum fields gives rise to further problems, both
in commutative and noncommutative spacetime. We will have a closer look
at these in the following section.

3.2 Quantum fields, IR cutoff and adiabatic limit

We now want to generalize the solutions (3.3) or (3.5) to a quantum field
®(x), i.e., an operator-valued distribution, or ®(g), defined in the sense of
(2.12). Now we face two problems:

a) The convolution of a distribution with the retarded propagator Ag is
in general not well-defined.

b) The product of multiple @, is a priori not well-defined, either.

The solution to the first problem will be to introduce a cutoff function. There
are several possibilities to do this, and we will examine these in this section.
The second one is more complicated and leads to the necessity of renormal-
ization. We will have a closer look on these problems in Chapter 4, where
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several cases of interacting theories both on commutative and noncommuta-
tive spacetime are examined.

We will first have a look at problem a) on commutative spacetime. Let A
be an operator-valued distribution. The convolution B := Apr X A is not a
well-defined distribution since we have for some test function f,

/ dyf (y) / deAp(z)Aly - z) = / dedyAp(2)Ay) f(z +y) = (Ar® A) ()

. (3.6)
with f(z,y) = f(z + y). This function does not fall off fast in the direction
T = —y, 80 it is not in S(M?). We will cure this now by introducing an

additional cutoff function g € S (this is called the infrared cutoff, or IR
cutoff) and later let g approach 1 in some sense to be specified (this is called
the adiabatic limit).

Looking at (3.6) there are two obvious ways to handle this: To multiply
f(z+y) by g(x) or by g(y), which is equivalent to multiplying Ag or A by
g. A third possibility would be to take g € S(M?) and (Ar ® A)(f - g), but
this is not considered here.

Multiplying by g(y) can in our case be interpreted as a localization of the
interaction:

(O +m*)(x) = —Ag(2)¢" (z).
There is no similar interpretation for taking Ag - g. Nevertheless, this cutoff
was taken in [2] for fields on M., as the multiplication of A by g is more
complicated when A is not an operator-valued distribution on M but on M.
The adiabatic limit will be taken in the following steps:

1. Introduce the cutoff g. The fields, which we get, will depend on the
choice of ¢, e.g., using the second cutoff we would get

Byy(f) = — / dedyAp(e) S By B o) (5+9)e(y)

k14 ka—1=n—1
with (I)(),g = (I)o.

2. Calculate the expectation values of ®r 4, which then also depend on
g. Here we only have a look at the two-point function, i.e.,

<@Int,g(f)q)lnt,g<h)> .

3. The expectation values are a formal power series in the coupling con-
stant. Insert a sequence of test functions with g, — 1 (which is equiv-
alent to g, — (27)2J) in an appropriate topology, and then calculate
the limit of the expectation values in each order.
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It turns out that it will be important to sum up all contributions to the
expectation value of the same order before performing the adiabatic limit,
because there will be no well-defined adiabatic limit for separate terms, as
already seen by Epstein and Glaser [17].

The first two possibilities for an IR cutoff will be analysed and it turns out
that only the second one gives a reasonable adiabatic limit. We test them by
taking a mass term as interaction. The equation of motion for an additional
mass term is

(O+m?) @& = —pd.

The advantage of taking a mass term is that first we do not face the problem
of multiplying several distributions (problem b) on page 29). Second, we
already have a precise expectation of what the outcome should be: The two-
point function of the interacting field should be the same as the free field of
mass square m? + y, namely

(o (Pl () = (2m [ BB Fh(-k)

]_ ~ m2 7 m2
:27r/d3kmf(wl(( —HL),k)h(—wl(( —HL)y _k)
Wi

(3.7)

To contemplate Haag’s theorem [23| is appropriate at this point. Haag’s the-
orem says that representations of the CCR algebra for different masses are
inequivalent. But since we are dealing only with expectation values and not
with representations this theorem does not apply here.

Since we are working in perturbation theory, we have to treat everything
as a formal power series in the coupling u. Thus, we get at nth order for the
right-hand side of (3.7):

2 1
T Bror (
9

nl g m? + 1+ k2

(3.8)

e T I8 (=P T IR, _k>>

u=0

If we regard p — A(f*“) as a map into &’, which is C* around u = 0, this
equals

o [ antur s - = 5 [akiine-nonarm,

(3.9)
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We calculate this to first order and with (3.8) we get :

(2m)? / A f (kY h(= k) B AT ()

1 . . 1 . - .
=27 / d*k (—4—3 (wk, k)h(—wy, —k) + waof(wk, k)h(—wy, —k)
k

—ﬁ F(wre, K)o (o, —k)) .~ (3.10)

Remark 3.2.1. For s € C the Taylor series of (1 + x)° converges absolutely
around z = 0 with radius of convergence 1. Furthermore, if f and i have
compact support, then f and h will be analytic. So, we see that

() _ N~ o A ?)
AL = O AL
n=0
does not only hold in the sense of power series, but also in the weak topology

of D' for |u| < m?.

We will now have a look at whether the two different possibilities of
introducing a cutoff give the expected result on commutative spacetime first.

3.2.1 Adiabatic limit on commutative spacetime

We will first look at the cutoff introduced in [2]| (there for fields on noncom-
mutative spacetime). As the interacting and the free field coincide at zeroth
order, we get the expected two-point function A, at this order. But already
at first order this fails:

Proposition 3.2.2. The cutoff defined by

D, 4(z) = —/d4zAR(z)g(z)CI>n_Lg(:): —2)

does not give the correct adiabatic limit, i.e., (3.8) at first order on commu-
tative spacetime.

Proof. At first order we have

Dy 4(x) = — /d4zAR(z)g(z)CI>0(x —2).
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Thus, the two-point function at first order gives

(@o(f)Prg(h) + P1g(f)Po(h))

_ / dtzdyd s f(2)h(y) Ap(2)g( )AL (2 — y + 2) + Az —y — 2)

== gt | PRI (B 0)Y () + (A 9)"(-F)

- G [ S F Rk Gy (k).

2wk

Here C, (k) = #((A X §)(k)+(Axg)(—Fk)) is, as the sum of two terms which
are convolutions of a distribution with a Schwartz function, a polynomially
bounded C*°-function, see [35]. Now we can deduce that, if the adiabatic limit
of the above for any sequence g, € S is well-defined at all, it does not give
BmgASer)(k): Choose f / h to vanish on the positive/negative mass-shell, but
with derivatives in 0 direction unequal to zero on the shells. Then the above

gives zero for all ¢ € S, but 8m2AS:n2)(k) in general does not give zero for
such an f and h, compare (3.10). O

Now we look at the cutoff defined by

P, 4(z) = — /d4zAR(z)g(x —2)®,_q g(x — 2).

This cutoff arises naturally if one changes the action to
v m2 H 2
S[®] = [ dx | 0,P(x)0"P(x) + 5 —|—§g(a:) D3 (x) | .
Then the field equation becomes

(O+m?) &(z) = —pg(z)®(z). (3.11)

So with this cutoff the interaction can be localized to some bounded region
in spacetime.

Again the zeroth order is trivial. We will do the first order calculation
explicitly to show that it is important to first add all contributions of the
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same order before performing the adiabatic limit. At first order we get

(Po(f)Prg(h) + @1 y(f)Po(R))
—— [ dtadtzidtes flao)h(ag(o)
. (AR(ZL'() — $1)A+(ZL‘1 — $2) + A_:,_(IL‘Q — $1)AA(CL'1 — $2))

=— (27r)2/d4k0d4k:1 f(ko)h(—k1)g(k1 — ko)

: (AR(kO)A+(k1) + A+(kO>AA(/ﬁ)) . (3.12)

To simplify this expression, we perform different transformations on each
summand. We integrate out the zero component of the momentum appearing
in A+ using its d-function, and for the remaining zero component we carry
out a variable transformation to x = i(k;g/l — woy1) and get

1 d3ky 3k,
27 2(4)0 2&)1

~ 7 1 - 1
. +z.k —wr, —k +
[f(wo x, ko) h(—w1, —ki) (x+ie x + 2wy Zf)

dz g(w; — wo — 2, kg — ko)

—f(wo,ko)h(—w1+:c,—k1)< L ! ﬂ (3.13)

T+ x— 2w+ i€

We assume that ¢ has only support in a closed subset of Ry = {k € M|k? <
(2m)?}. Then the singularities = F2wp,; are not met, since the sum of two
vectors on the positive mass shell has a square greater or equal to (2m)?.
Thus the second and fourth € in the expression 3.13 can be dropped.

Now we make an expansion in z:

flo+ k) = fw k) + 2 flok),
h(—wic + ©, —k) = h(—wy, —k) + = h(z, k),

where f and h are again functions in S satisfying f(0,k) = 8y (wi, k) and
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h(0,k) = dph(—wy, —k). With this (3.13) transforms to

1 d3ko A3k

% 2&)0 2&)1

dz g(w; — wo — 2, kg — ko)

1

2wy + x
1

2w —x

+f‘(w0,k0)h(—w1,—k1)( S )

Tr+i€ T+ i€

. —']E(CU()‘Fl’,ko)iZ(—u)l,—kl)

- JE(W07 ko)h(—uh +x,—ky)

+ (f(x,ko)ﬁ(—wl,—kl) —f(wo,ko)h(x,k1)> . ]
T+ 1€
The last but one term drops out. This cancellation only occurs because we
have treated the sum of (®q(f)P1(h)) and (®1(f)Po(h)). The singularity of
wiie in the last line is cancelled by the additional factor of x. Thus, with
regard to the presupposed support of g, the remaining terms are smooth
functions of x, ko and k;. Then the adiabatic limit § — (27)%§ can be carried
out, e.g. in the topology of functions with compact support. The k; and =z
integration then give k; = ko and z = 0. With the properties of f and h we
then get exactly (3.10).

Remark 3.2.3. Here and in the following we replace distributions by a series of
functions which approximate the distribution in the weak topology of &’. An
example would be AR(p) = lime o #m. It is easy to see that this
is actually independent of the choice of sequence. Indeed, we will sometimes
change the sequence without further notice. For products of distributions in
different variables we can take the product of the corresponding sequences,

where the € in each factor coincide.

Now we look at arbitrary orders. The rest of this subsection is structured
in the following way

1. We calculate the two-point function of arbitrary order n.

2. We show that the theorem of Epstein and Glaser is applicable. With this
theorem we know that an adiabatic limit is well-defined for a certain
class (“class I”)of sequences of functions and independent of the choice

in class I. But we do not know, whether the result for the adiabatic
limit is indeed (3.8).

3. Therefore, we calculate the result. For this we can take a special choice
of sequence {g,} of class I. We split the two-point function into two
parts A(g.) + B(ga)-
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4. We show that B(g,) — 0 for a — oc.

5. We show that A(g,) yields (3.8) for a — oo. To do this we state a
lemma, which is proved at the end of this subsection.

6. We enhance the class of functions giving the correct limit beyond class I
given by the Epstein-Glaser theorem. The enhanced class will be called
class II.

7. At the end we summarise the result of this section in a theorem.

To keep track of this schedule we indicate the different parts by boldface
headings.

Part 1:

The field at mth order is

P g(yo) = (=1)™ / H dyiAr(yo —y1)g(y1) - - Ar(Ym—1 — Ym) 9 (Ym) Po(Ym)-

i=1
For the two-point function at nth order we get

n

D (@ (/)P (1)) (3.14)

m=0
n+1

/H d* vi f yo yn+1) H (yz) Z AR(yO - 3/1) cee AR(ymfl - ym)

) A—l—(ym - ym+1)AA(ym+1 - ym+2) s AA(:UH - yn+1)'

We define

FR(Yo, Ynt15 Y15 - Yn) = Z Ar(Yo = 11) - - AR(Ym—1 — Ym)
Ay (Y — merl)AA(merl — Ymi2) - DaYn = Yn1). (3.15)

So in momentum space the above is:

/Hd Edpidps Foh(o) [[900 Ealonpoikr, - k2 (3.16)
=1
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with

Similar to Fr we define F4 just by exchanging Ag and A4 in (3.15).

Part 2:

Now we claim that these functions Fg and F4 fulfill the requirements of the
Epstein-Glaser theorem, which is stated in Appendix D. To show that Fg
has retarded support , we look at the mth summand. This is only unequal to
zero if y;—y;11 €V, for j=0,...,m—1and Yi+1—Yj cV forj=m,...,n.
Since the sum of two elements in V+ is again in V, we can add these terms
and see that the support of each summand is in

{(Y0s Yns15 Y15 - - - Yn) € MZT"|
Yo —y; € Vy for j <m —1and y,41 —y; € V4 for j > m}.

which is a subset of Sg (see (D.1)). So their sum, Fp, also has support in Sg.
The proof for F4 works analogously
We still have to show that Fr — F); vanishes on the set R, (see (D.2)).

A

To do this we replace each AR/A by Ap — iA; (compare (A.3) and (A.4))

in (3.17) and in the corresponding expression for F4 and then multiply out.
Ai have their support on the positive respectively negative mass shell, so
A_(p )A+(p—i—k:) = 0if k? < 4m?. Thus, after the substitutions all terms with
a factor A_ vanish on R, as every summand has a factor of A . The remain-
ing terms are all of the form (dropping the prefactors and the J-function)

~

Ap(Ko) ... Ap(K, )AL (KA p(Kais)
AL p(K )ALLK Ap(Kpyh) . Ap(K,)

with K = g:o k; and a and b the number of the first respectively last
factor of A+ in that term. In FR - FA there are two terms of this form for
given a < b. One is coming from the summand with m = a in Fg the other
one from the summand m = b in F,. Their prefactors are equal, so these
terms cancel in FR — FA. Therefore FR — FA vanishes on R,,.
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From the Epstein-Glaser theorem we can now deduce that the adiabatic
limit exists if the sequence GG, has the correct properties. Here, GG, is of the
form

Gq <k17~'7k ):ga(kl)"”'ga(kn)'

The condition that G, tends to (27)>*6“™ in the topology of Op(M") is
guaranteed if g, — (27)20™ in O} (M). To fulfill the condition supp G, C R,
we could demand that the support of g, lies in some convex subset of %Rn.
An example for such a convex subset would be

v, = {k: € M|[ko| < %m} | (3.18)

Furthermore, if these two conditions are fulfilled the limit is independent
from the exact choice of sequence in this class. But it remains to be shown
that indeed (3.8) is the adiabatic limit. So in the following calculation we
assume that g has the desired support, and later we will take a special choice
of sequence g,, namely one which scales with a.

Part 3:

Now, with a variable transformation and performing one integral to get rid
of the d-function, (3.16) becomes

(=)™ /Hd“k Fko)h(=kn) [T (ke — ki)
X Z Ar(ko) .. Ar(km-1) Ay (k) A a(kpsr) - .. Aa(ky). (3.19)

We use (A.2)

N 1 1 1 1
A k; —
R/A( ) (27‘(‘) 20()] <k707j + wj =+ 7€ k?()’j — Wy + ZE)

1 1 1 2w;
T (2n) 2w ko —w; Hieko, +w; £ (3:20)
7r) wj ko; — w; 1€ ko j +w; L i€

with w; = wg,. In each summand the momentum #k,, is on the mass shell

due to the A+(km) With the supposed support property of ¢ the integrand
vanishes if some k; lie on the negative mass shell. So we can actually drop
the very last € in (3.20). Define
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Putting this together, (3.19) equals

G / H (; k.if(ko)k(_kn) Hg(kl — ki) [5(/€o,m — W)

.W.LI (WT(Z@)) _ﬁ (WT(@))]. (3.21)

Now we make a variable transformation to x; = ky; — w; and expand f.h
and 7" around z; = 0 to nth order into a Taylor series, i.e.,

n+1
(n +1)!

where f is in S, and similarly for i(—k) and T'(k).
We insert these expansions into (3.21) and split the whole expression into
a sum of A(g)+ B(g), where A(g) contains all terms without f, h or T, thus

1 n
A(g) = (27’(’)2 /21:[ QWZ ;

flw + 2, k) Z 1 8k flok, k f(z,k),

n

n
dz; H w—wim1 o —xe, ke — ki)
0 =1

n I’LO n m— x
L()Z:OE—()!aLokaro (Z5xm H —1—152 i’ aTk:Jrj

H . _Zezxj a T kj+] ) . Z x[rj :(—GO)LTLFL(_k-F,n)- (322)
j=m+1 "7 L= L

Part 4:

First we show that B(g,) vanishes for a special choice of sequence g, — 1.
We choose a sequence which scales with a, i.e., g,(z) = g (£) for some g € S
with ¢g(0) = 1.2 Then g,(k) = a*g(ak). Furthermore we demand that the
support of § is a subset of By (2) C V,, (this m being the mass). The terms
in B(g,) all contain a factor

(@m) [ [ Galwr = wics + 21 — 2120, ki — ki),
1=1

Thus, for the chosen sequence the integrand has support in |k, —k; 1| < %é
and, since x,, = 0 and |w; — w;—1] < |k — k4], also in z; < C% for some
C > 0 and all j.

21t is easy to see that for such a sequence §, — (27)26* in Oy (M)
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We consider the different terms in B(g,), coming from the expansion of
f,h and T and from splitting the sum over m. We integrate out z,, (thus,
terms with factors x,, from the expansion already disappear), renumber the
remaining x;, and perform a transformation of variables to l~<j =k; — k1
for j > 0 (ko remains). Then the terms have the form

n R n m 1 . n 1 . ~ ~
/Hd?’kinxijj e IL Uit ombon. )

i=1 j=1 j=1
(3.23)

where U, already includes the integration d3ky. This expression is always
finite since f € S. Furthermore the following properties hold:

e At least one b; = n + 1, since every term in B(g) contains f,horT.

e U, is C* and its support is contained in
{(xl, o x ke, K| 2] < Ca, K| < c/a}

for some C' > 0.

e The supremum of |U,| is bounded by Cjoa*™ for some Cyo > 0. Every
derivative with respect to some x; gives an additional factor of a coming
from the derivatives of §,. Each multiplication with some z; yields a
factor 1/a, since U, has bounded support. In other words, for all n-
multi-indices «, 3 there exists a constant C, 3 > 0 with

sup [2*DIU,| < Cy ga*™ o111,

We have to prove that all terms vanish for a — co. We show this only for
the terms (3.23), where only one b; = n + 1 and the other b’s equal 0. The
remaining cases are similar. We use

1
T+ 1€

1
= Fird(x) + P— (3.24)

as distributions. Here P denotes the principal value of the fraction, i.e., the
distribution

fo [Pt = [ o (5@ - fl-a).

xz
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To make the calculation more comprehensible we demonstrate how we are
dealing with the principal values in one dimension. Let f(z) =0 for x > X.

Then
1 X * i
[arliw <] ] [ ar @ - o) = \ [ o[ dyaﬂm\
IR
<= / dx;2$ sup |0f (y)] =2Xsup |0 f(y)|.
-X Y Y

2

Due to the g,’s U, will be of compact support. The terms we get using (3.24),
omitting factors of 4im, are of the following form,?

/ﬁd?’i@ ﬁdxj xy ﬁPi ﬁ 0(xj)Ug(21, . .. o K, ,l~<n)
i=1 j=1 P |

for some r after another relabelling of the z; and of the arguments of U,,. Its
absolut value can be estimated by

n T T 1 R _
‘/Hd?’kindxjx’fHPJC—jUa(xl,...,xT,O,...,O,kl,...,kn)
=1 j=1 j=2
c r

1 T n _ 1 z;
:' (QT_l ]H/c d:cj> Hd%idxl (ng—]/% dyj>

=2 7j=2

x?DfUa(arl,yQ...,yT,O,...,O,f{l,...,kn)

1 T % C 14+3n

j=2Y"%

where a = (n,0,...,0) and 5 = (0,1,...,1,0...,0) with |3| = r — 1. The
last integrations introduce a factor 2% each. At the end we have

14+3n+r—1
¢ ) a4n—n+r— 1

— — 0.
a

a—0o0

27’—100675 (

This shows that the limit of B(g,) vanishes for this choice of a scaling se-

quence {g,}.
Part 5:

It remains to treat A(g), given by (3.22). We use
T (ki) = U(—2wi) "

n+1

x

= g™ as a distribution.
xtie

30f course we have
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We get x,, = 0 from the J-function, and for the remaining variables z; we
perform variable transformation depending on m to coordinates y; with

Y=o — 215 -+ Ym-1=Tm-2 " Tm-1; Ym = Tm—1;
Ym+1 = —Tm+1; Ym+2 = Tm+1 — Tm+42; o Yn = Tn—1 — Tn-

Thus we have
. Z;’;jﬂyt for j < m,
! — > i1 Yt for j > m,

I

=0 D1 Ye t i€ =il Dty Yt T 1€

- _ZiltLO Lo g Ztr—i—ltl
-(Z( 2L0!y> - fm)(HZ y)>

Lo=0 r=0 1,=0 (2wr—1

(IS ) (£ S wion)] oo

r=m+11[,.=0 L,=0

To show that this gives the wanted result we need the following lemma:

Lemma 3.2.4. Forn € N and [, € Ng,r =0,...,n,

" S ST LSOO o S ANEL
S H T | [ R N U

0 Dt Yot ie =l D e Yo i€

(3.26)
where we have with a :== Y 1

I :Ifa<n, then P, =0.

.....

IIT : Ifa > n, then P4, (Y1, --.,Yn) is a homogeneous polynomial of degree
a—n.

We will give a proof of this lemma at the end of this section. In (3.25) we
will pull all sums over Lg, L, lo, [, ..., l, to the front of the sum over m. Since
there actually is no sum over I,,,, we will have to introduce a factor §y". Now
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we use Lemma 3.2.4 and get a polynomial Pr,ii . 1 1.Lntin(Y1s -y Un)-
What we arrive at is a C*°-function of the variables k; and y;. We choose a
sequence §, — (27)% with compact support. All integrations over y; and k;
but one can be carried out. Because of the properties of P given in Lemma

3.2.4 only terms survive where
Lo+ Y L+L,=n
t=0
Thus, we get as the limit of A(g,):

(—1) 11 - .
D S B s ==y ey SRR LR ICT S

L0+Z?:0 lt+Lp=n

where the sum extends over all nonnegative integers L; and [; with given
sum. The sums over the [;’s give a combinatorial factor and we can write

3 (=" 2n—a—> af b7,
0 JR R e rree ] G [CL VRN e}
(3.27)
This quantity will be called A,qjim(n).

We show that A.qim(n) equals (3.8) by induction.* The case n = 1 is
easily checked. Now we calculate 1/(n 4 1)0,,2 Aadiim(n) , which should yield
Aadtim(n + 1). We sort the terms of 1/(n + 1)0,,2 Aaqiim(n) by (—aO)Cfagh.
There are three contributions, namely from (a = ¢,b=d),(a =c—1,b =d)
and (a = ¢,b = d — 1).5 Their sum is

o [ @K1 00 P )

112(-2n+1-c—d)(2n—c—d
cldl (2uy)?rtl—e=d+2 \n—c—d

1 1 1 n+1—c—d\ 1
(c— D! Quy)? 24\ n+1—-c—d

2wk
1 1 1 n+1l—c—d\ 1
A (d—1)!Quy) 2 d\n+1—c—d)2w |

“The corresponding part in [14] contains some errors.
5Actually, this is only true if neither ¢ nor d equals 0 or n + 1. These cases can easily
be checked separately.
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Now we use

<2n—c—d>2(2n—|—1—c—d) (2n+1—c—d)c—|—d

n—c—d n—+1 n+l—c—d/n+1
_(2(n+1)—c—d
n n+l—c—d
and get
3 n+1 1
2 | k(-1 ——
n+1

11 | (2(n+1)—c—d>

el dl 2wy )2t —ed\ 1 —c—d
(=00)° f (k) Ogh(—ks).

The sum of these terms is equal to Auqim(n + 1), what had to be shown.
Part 6:
So far, we have shown that the correct adiabatic limit in nth order is obtained,
if the sequence of functions {g,} fulfills the two properties

1. §go — (27)2%0 in O, (M),

a—00

2. suppgq, C Vp.

Sequences with these two properties will be called sequences of class I,n. (The
n will be omitted in most cases.) The second property is rather restrictive,
as J, cannot be analytic, and therefore g, cannot have compact support in
position space.® Functions of compact support are needed if one wants to
interpret (3.11) as the restriction of the interaction to a finite region.

We will now enlarge the class of sequences, which give the correct adia-
batic limit. These will be called of class II,n. Suppose that a given sequence
ga of functions in S(M) can be decomposed into

9o = 90+ gs, (3.28)

where {¢°} is of class I,n and {g}} has the property that

chll(kt)~ H 3°(k;) —— 0 as a function in S(M") for 1 <r < n. (3.29)
t=1

a—00
t=r+1

6Instead of V,, we could have restricted the support of §, to any other convex subset
of %Rn, but the noncompactness of the support of g, remains the same.
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We observe that FR(pl,pQ; ki, ..., ky,) is a distribution in &'(M"*2). This will
be needed in order to show that the correct adiabatic limit is obtained. We
compute

n

/d4p1d4p2 H d4ktFR(p17p2’ ki, ... )]E( )h( ) H(g]g(k}) + gi(kr))
t=1 r=1
:/d4p1d4p2 H d4ktFR(plap27 ki, kn)f(pl)iL(pQ) Hgg(kr) (3.30)
t=1 =
+ /d4p1d4p2 Hd4ktFR(p1;p2, ki, ... )f(pl)h(p2) a(kiy oo k),
t=1

where ', is a sum of 2" — 1 terms of products of §°’s and §l’s, where each
has at least one factor of g!. From (3.29) we deduce that ', approaches 0 in
S, so the last line in (3.30) vanishes in the adiabatic limit and the remaining
term gives the desired result as {g°} is of class I.

An example for a sequence of class II is easily constructed if we take an
arbitrary function g € S with g(0) = 1 and scale it, i. e. g,(z) := g(x/a).
Then ¢ is normalized ([ d*kg(k) = ¢(0) = 1) and we have g,(k) = a*g(ak).
To prove that {g,} is of class II, we take a cutoff function b € S with

0 if [k|* > 4m?/n?
b(k):{ if [[? > 4m?/n

1 if |k < m?/n?,

and define

The sequence {gV} is clearly of class I. It remains to show that (3.29) holds.
For this we first show that the growth of sup,, [k*D’§%(k)| is polynomially
bounded in a (for all multi-indices «, 3):

sup [k D7b(k)a'g(ak)| < a'|B 7 sup k"D b(k)||D*g(ak)
k

181,2|<18] k
< a8l 3|1 Z sup |k* D b(k)| sup | DP2g (k).
|81,2]<|8] b v

The summmands in the last line are finite since b, § € S. On the other hand
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supy |k*DP gl (k)| falls off faster than any polynomial in a:
a®sup |k*DP(1 — b(k))a'g(ak)|
k

<a**g|! Z sup | D7(1—b(k))|[k* D™ g(ak)]

|61,21<6] [klzm/n

<a IRl g ST sup DR (1 b(K))| sup |(ak)*(D™g)(ak)]
Bral<I8l ¥ [k|>m/n

Saz+4+|ﬁ|—|a||ﬁ|l Z su/p|Df@1b(k;’)|+1 ) Z Sup  [Sag, (K,

where we have used that 1—b(k) = 0 for |k| < m/n and s, s, (k) := k*DP2g(k)
is a function in S. As the supremum of this function is taken outside a ball of
radius proportional to a, this falls off faster than 1/a*t4+181=Iel 5o the above
approaches 0 with a — co. To show that (3.29) is indeed fulfilled we have to
establish that

sup [ herDPabs) - T ke Dikthl —— 0

keiseeskn 3y t=r+1

for all multi-indices oy, 3;. This is now obvious, since the growth of the last
product is polynomially bounded and the first product falls off faster than
any polynomial (and we have r > 1). So scaling functions in S yields indeed
a sequence of class II, and among these there are also some with compact
support in position space.

Part 7:

To put everything together we have shown in this section:

Theorem 3.2.5. The IR cutoff

(O +m?) @(x) = —pugla) B(x).

gives for the two-point function of order n,

n

S @y ()P (),

m=0
the correct adiabatic limit, i.e.,

(2n)
n!

/ A4k F(k)(—k) s AT (k).

if the sequence of the cutoff functions {g,} is of class IL,n.
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It was important to consider the sum of all contributions to the two-
point function of the same order when carrying out the adiabatic limit, as
we already saw explicitly for the first order.

Now, we give the postponed proof for Lemma 3.2.4. It is the same proof
already given in [14]. As we want to work by induction we slightly enhance
the lemma to:

Lemma 3.2.6. Forne N and l, € Ng,r=0,...,n

n r I,
Z H Zt e yt H Zt i yt) Plo,...Jn (y17 cee ayn)7
m=0

Et =r+1 Yt 26 Zt m—+1 Yt i€
r=m+1

where we have with a ==Y} 1,
I:Ifa<n, then B, 4 =0.
Ifa=n, then B, ,;, =1.

IIT : Ifa > n, then Py, (Y1, .- .,Yn) is a homogeneous polynomial of degree
a —n and further:

ITa : Ifl, = 0, the term with highest power in y, is (—y,)* "
ITIb : If n =2 and ly = 0, the term with highest power in yy is yi .

L — 1 as
x1+1€
a distribution. For n = 2 the cases where (ly, [, [3) is equal to (a pelrrnutation
of) (1,0,0),(1,1,0),(> 2,> 1,0) or (> 1,> 1,> 1) are easily checked. For
the case (lo,l1,1l2) = (0,0,0) we compute

1 1 1 1 1 1

- - — - — + - :
Y ey +ys +1e Ys +iey; +re Yy + Yo + ey + 1€

_ 1 Y1+ Y2 B 1 —0.

Y1+ Yo iy +i(yr +yp)e iy iy +up)e

The remaining cases are permutations of (b,0,0) with b > 2. We show it here
for I, = b:

N

b
(y)" (—y2)"" 1 k b—2—k
o — = —(y; + -
PR LU O Oyl( v2)
(3.32)

e
Il

b—2—k
—Ys .
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For the cases [y or [ = b this can also be done and the parts IITa and IIIb of
the lemma are easily checked explicitly.

Now we want to work by induction. For this, we assume n > 3 and that
the lemma has been proven for all lower orders. From the sum (3.31) we split
off the terms with m = n,

n(slnH Zzt r+1 yt) _. A,

teri1 Yt T 1€

and with m =n — 1,

ln
(_1)”7155)71 1 H( Zt r+1 yt) . Yn - B

puir i) Sl r+13/1t""26 Yn + i€

The remaining summands each have a factor

(Zt m+1 yt)ln_l (Z?:m-i-l yt)ln
Zt ma1 Yt + 1€ Dt Yt T i€

L L ()
- 66” ' = . _5én n . +P0,ln7 ,ln< Yt, yn>7
Zt ma1 Yt Yn L€ Dttt Yo Yn F i€ 1 t:;rl
(3.33)

where we used the induction hypothesis for n = 2. If we reinsert these terms
into the remaining sum, we can split this into three parts, which we label
according to the order in (3.33) by C, D and E. Now we can combine A + D
to

n— n—1 T ’

Sln (_yn)l%l Zt =r+1 yt) 5l;n Zt m+1 ?J;)lr
T H o 11

Yn 1 1€ m—0 Zt r+1 yt + 1€ r=m-+1 Et =m+1 yt +ie

_ _5(l)n (_yn) B

o + i€ on,...,ln_z,o(yl, sy Yn—1 T+ yn) (3-34)

with I} = ; and ¢y} = y; fori <n—2and I/, { =0 and 2/, | = 2,1 + 2.
The terms B + C' give

5én_1 yfzn nz_l(_l)m H ( Zt =r+1 yt . ﬁ E: m-+1 yt)lr

yn+lem:0 r=0 Zt T+1yt+2€ Tm_HZt m+1yt+2€

l
_ Yn'
— g1 p ey Yn_1). (3.3
0 Yn + i€ lgyesln—2,0 (y1 Y 1) ( )



3.2 Quantum fields, IR cutoff and adiabatic limit 49
Now we have a closer look at

n—2 m— 1 n—2 r
( m Zt =r+1 yt . H Zt =m+1 yt)lr

=0 Zt ry1 Yt € =l D i1 Ye €

Pot, 10 Z Yt Yn)-

t=m+1

E =

m=0

The last polynomial gives 0 if [,_; 4+ [, < 2. Otherwise, by IIIb, the term
with highest power in Z?;;H y from Poy, 4, 18 (Z?;;LH )1t =2 and
we can write it as

ln—1+ln*2 n—2

n—1
Poylnfl,ln< Z Yt Yn) = Z ( Z yt)lnil+ln_2_apa(yn—1ayﬂ)a

t=m-+1 a=0 t=m+1

where ]Sa(yn_l,yn) is a homogeneous polynomial of degree o and Py = 1
If I, = 0, we can deduce from the explicit formula (3.32) that in each
P (Yn—1,yn) we have a term (—y,)*. Now in E we pull the sum over « to the
front and for each summand use the induction hypothesis for n — 2 to get

ln—1+ln_2
E = Z Plo,...,ln73,ln,2+ln7]_+ln7270{(yl7 A 7yn*2) ' Pa(yn*17 yn) (336)

a=0

So E' is a homogeneous polynomial of degree

ilr—Z—(n—Q)—a—i—a:ilT—n.
r=0 r=0

We have to check the following cases:
e/, 1=10,=0: F=0and
A+D+B+C=

1
Yp 1 1€

[Plo, Gln—2,0 (yla"'ayn—l) _Plo, oln—2,0 (ylv'-wyn—l_'—yn)} .

These polynomials are of degree >_"_ 1, — (n — 1), if this is greater or
equal to 0. If we expand the powers of y,,_1 + v, of the second polyno-
mial, we see that terms with no factor g, vanish and from the remaining
terms one factor is cancelled by the prefactor. So the remaining expres-
sion is of degree »""_ I, —n and I to Illa are easily checked.
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e/, 1=110,=0. F=B+C =0 and

Yn
Yn + 1€

Plo,...,lnfz,()(yla <oy Yn—a + yn)

This is of degree > " I, — (n—1) =>""_ I, — n. Again I to IIla are
easily checked.

e [,_1=0,[,=1: similar.

e l,1>2],=0:B+C =0. A+D and E both vanish if >""_ I,—n <0,
so I is checked. Set @’ := Z;:g l,. To show II we assume o' +1,,_; —n =
0 from which ¢’ — n < —2 follows. So from (3.34) we see that the
polynomial in A + D vanishes. In F only the term with o = 0 gives a
contribution, which is 1.
Now we want to show IIT and ITTa: We have ¢’ + 1,1 — n > 0 and
see that both A + D and E are homogeneous polynomials of the right
degree. We still have to show that not both are zero and they do not
cancel each other. This is done by establishing IIla. For that, we have
to look at the cases:

l.d —n < =2: A+ D = 0. The sum over « in E only goes to
a = a'+1,_1—n as for higher « the first polynomial in E vanishes.
The term with highest degree in ¥, comes from o =d' +1, 1 —n
and is (—y,,)* 1,

2. a/—n = —-2: A+ D = 0 and in E the term with highest « = [,, 1 —2
gives just (—y,)* =17, All other terms are of lower order in y,,.

3. @’ —n > —2: The highest degree of y,, in Eis l,,_; — 2 < d' +
ln—1 —n whereas A+ D gives a term (—y, )17+ (—y,)* "1 =
(=) Hsn

® [, 1 =0,[,>2:similar.

e/, 1>1,l,>1: A+ D=B+C =0, only E gives a contribution. I to
I1I are again easily checked.

This completes the proof. [l

3.2.2 Adiabatic limit on noncommutative spacetime

Now we look at the noncommutative case. Since the IR cutoff made by multi-
plying Ag by a function g already failed in the adiabatic limit on commutative
spacetime, we do not consider this cutoff again.
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The cutoff (3.11) can be viewed as coming from an interaction term

Sul(®) =4 [ de (a)0*(@). (3.37)

If we take fields on M, there is no unique generalization. A straightforward
way would be to simply take

St (P) = /dq 12Tr (g(q)®(q)®(q)) -

The limit g,(¢) — 1 again corresponds to g,(k) — (27)?6(k). Another pos-
sibility would be to take two ¢g(¢) in the form of (2.14):

S (®) = / dg 12Tr (9(0)®()9()(q))

This kind of cutoff is proposed in [45]. In the commutative limit this would
correspond to taking ¢? in (3.37) instead of g. This would just be a relabelling
and the adiabatic limit remains unchanged. These two possibilities take the
cutoff as a multiplication of an element in M,,.. A third one would be to take
instead the pointwise product with a function g € S, compare (2.7).

First take the cutoffs by the algebra product. We look at both at once by
considering a more generalized cutoff

Siun(®) = 5T (9 (0)2(0)g (0)2(0))

The ¢ and ¢® could be the same or one could even be 1 right from the
beginning. Using the cyclicity of the trace we get the field equation

(8, +m*) ©(q) = —1/2 (9 (0)2(0)9® (4) + 9P (0) ()9 (q)) - (3.38)

The solution at order m is

Do4(q) =Po(q) = Prrec(q);

Buny(0) == 5 [ 4200(2) (90— 2)Boossla — )9 g )

+9(q = D) Pu1g(0— 29" (0 - 2)).



52 Chapter 3: Yang-Feldman formalism

Using the Weyl formula (2.2) this gives

4 4441 A (ke
(I)m,g(q 27‘(‘ 2(m+1 /d H d k d (I)O ) =P+ ( )a

H [g(l)(kr)g(Q)(lr>AR(p - (kt + lt))
r=1 t=1
1 r—1
cos (5{(1@ —lL)o[-p+ > (ke +1)] + kool }) ]
t=1
Thus, at nth order, the two-point function is
D APy (N)Prmg() (3.39)
m=0
— (_1)n f[ d4k d4 )d4 d4 d4 d4
_(271')2(” 1 p p pl p2

f(p1)h(p2) Hé(l)(k‘ 3% (L)AL (p)3(p + D)

D 1o —p+ ) (k1) d(pr—p+ > (ke + 1))
‘HAR(p_Z(kt+lt))
. co (%{(k —l) p—i—til(kt-i-lt)] —l—k?ralr})
IT 2e— D (k+1)

~cos<%{(kr—l :;1 (ke +10)] + kyol, })]

where we have relabelled in each summand the variables %; and [; from 1 to
m:
k?l—>k’m, kg—>k’m_1... and l1—>lm, l2—>lm_1...,

and use the higher indices for the parts coming from @, (h). In order to
extend the sum in the argument of the second cos to r, we have to subtract
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2k,ol,.. As cos is even, these factors can now be pulled outside of the sum,
and we obtain

2n)? /H (A*k;d*1;)d*prd*pa f(p1)h(p2 H k;)g®
] cos (%{(kr —L)o[p+ Z(kt +1,)] - k:ralr}>

r=1 t=1

Fr(prpss ki + bk + 1), (3.40)

where F is the same as in (3.17). The difference is that here the last n
arguments are sums of variables k; and /; and it is multiplied by a product
of cosine terms depending smoothly on the variables p;, k; and [;. So, the
last two lines are again a tempered distribution in the p’s and infinitely
differentiable in the k’s and I’s as long as each k; + [; lies inside V},. In order
to achieve this, we may for example require §' and §* to have support in a
closed subset of V5,,. Obviously, the adiabatic limit exists and since the cosines
give 1 there, it is the same as in the commutative case. The generalization
to functions of class II (3.28) works similarly as before.

There is still the IR cutoff via the pointwise product (2.7) to be consid-
ered. For a mass term this would be

By, (q) = ﬁ / dzAn(z) / dkod g (ky )1 o (ko + ki )e 0@ (3.41)

It is easy to see that all formulas are the same as in the commutative case,
so in particular it gives the same adiabatic limit.
Thus, putting everything together, we have proven the following

Theorem 3.2.7. The IR cutoff

(Og +m?) @(q) = —p/2 (9™ (@) 2(0)9® (@) + ¢P () @(2)9(a)) .

gives for the two-point function of order n,

n

D (Bong () P (1),

m=0
the correct adiabatic limit, i.e.,

% / AR (R)R(—R)Om, AT (1),

if either
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e the sequences of the cutoff functions {g((ll)} and {gf)} are of class 11,2n
or

e the sequence of the cutoff functions {g(gl)} is of class IIn and g®® = 1.

The IR cutoff by taking the pointwise product (3.41) gives also the correct
adiabatic limit if the sequence {g,} is of class IIn.

Nevertheless, taking the pointwise product seems a bit unnatural as it
lies outside the algebra structure of M. Since the IR cutoff can be seen as
an intermediate technicality, this would not be too much of a drawback.

We will see in section (4.3) that in “truly interacting” models on noncom-
mutative spacetime it is quite difficult to handle the adiabatic limit rigorously.
The problem will be that no matter what kind of cutoff one takes it is not
possible to pull out a common factor from the different contributions of the
same order as in (3.40).



Chapter 4

Dispersion relations for
interacting models

Now we will have a look at interacting quantum field theory. We want to cal-
culate dispersion relations for interacting models on noncommutative space-
time. Dispersion relations are experimentally accessible. So, the compari-
son of theoretical predictions with experimental results can help to decide
whether noncommutative spacetime is realized in the real world or not. In
particular, we are going to compare the theoretical predictions of logarith-
mically and quadratically divergent models.

Section 4.1 gives the main definitions and concepts for calculating disper-
sion relations. If we regard interacting theories we have to consider a product
of multiple @, in the quantum version of (3.3). This brings problem b) on
page 29 into play. To see more clearly, what additional features the noncom-
mutativity of the spacetime brings in, we first have a look at the situation on
commutative spacetime in section 4.2. We will see in section 4.3 that, despite
of the successful treatment of a mass term in section 3.2.2, the adiabatic limit
for truly interacting models on noncommutative spacetime is quite difficult
to handle. In Section 4.4 we will have a look at the ¢® model, both in four and
six dimensions. The reason for looking at these different dimensions is that
the ¢ model is logarithmically divergent while ¢} is quadratically divergent.
Section 4.5 gives a short treatment of the ¢* model, another quadratically
divergent model. We will use quasiplanar Wick products to calculate the
first order contribution to the dispersion relation. Finally we will look at the
Wess-Zumino model in section 4.6, which is a supersymmetric model and
logarithmically divergent. Parts of this chapter have already been published
in [15].

25
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4.1 Dispersion relations

We look at the two-point function of an interacting model

<CI)Int (f)q)lnt (h)> :

Let T, be the translation by the vector a:

T.(f)(z) = f(z = a).

The two-point function should be translationally invariant in the adiabatic
limit, i.e.,

<(I)Int(Ta(f))q)Int(Ta(h))> = <(1)Int(f)q)lnt(h)>'

So, it can be written in the form

(Brae () Brae (1)) = / dadyf (2)h(y) Az — y)

with A a distribution. As we treat ®r,; as a formal power series in the coupling
constant A, we have to do the same with A. In zeroth order we get Ay = A .

We are interested in the support of A. From this support we can deduce
how the py component of the momentum depends on the spatial part p.
For example, the support of A, is the set {p € M|py = /m? + p?}. This
dependence is called dispersion relation. Usually in interacting theories on
commutative spacetime one expects it to be of the form

Aw) = [ dupl) AP ),

which is called the Kéllén-Lehmann spectral representation. Agf) is the two-
point function for mass /j. p is the spectral density and usually consists of a
§ function at the physical mass m?, which corresponds to one-particle states,
some isolated parts in the vicinity of (2m)?, corresponding to bound states,
and a continuous part starting at (2m)?, corresponding to multi-particle
states.

It turns out that the two-point functions of models on noncommuta-
tive Minkowski space show a slightly different behaviour. The reason is that
Lorentz symmetry is broken for a fixed noncommutativity matrix o. We are
mainly interested in the part corresponding to the one-particle states. Thus,
we want to have a look at that part of the support of A which transforms to
{p € M|py = /m? + p?} for A — 0. In analogy to the free case, we expect
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the part of A(k) which corresponds to the one-particle spectrum in the free
case to be of the form

o 0(0ko) F5(k, \)O(Fig (k. 3) (1)
with the property that Fy(k,0) = k? —m? and Fz(k,0) = 1. The support is
of course the subset of Ml where Fy/(k, \) vanishes.

As we are working in perturbation theory everything has to be treated as
a formal power series in \. We will only have a look at the first nonvanishing
modification from the free case. Let this order be n:

Fu(k,\) = k2 —m? — \"M (k) + O(A™1),
Fz(k,\) = 1+ A" Z(k) + O(A™1).

Thus, M(k) is a mass and Z(k) a field strength renormalization, both de-
pending on the momentum. From now on all quantities will be regarded only
up to order n in A and the O(A"*1) will be dropped.

We are interested in the support of the two-point function of the inter-
acting field. That is, we have to solve:

k2 — k2 —m2 — \"M (ko, k)

Since we are working with formal power series, the equation has to be solved
recursively by orders of \. This gives!

1
ko(k) = wk + A" — M (wy, k). (4.2)
2wk
If we expand (4.1) around this solution as a power series in A we get

%G+Wﬂmﬂﬁ—ﬁ—ﬂM®)

:ﬁWWm+M(mmmWW@+MmmWNWWw

A0+ ((Z(k4) = B MDA E) + (k)00 A 1))

If only this expansion was known Z(ky) would not be uniquely determined
since it could be absorbed into dyM (k).

!The 0 function in (4.1) cancels the negative solution for kg. As usual wy = Vk2 + m2.
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It will later turn out that the two-point function to the order of the first
nonvanishing modification will be of the following form:

AT (&) 428 (K2, (ko)?) 9,2 A ()

= A (k) + An (2 (K2, (ky0)?) 02 A ()

— 02X (m?, (kyo)?) A<m2>(k)> . (4.4)

If we assume that M (k) and Z(k) are of the form M ((ko)?) and Z ((ko)?),
we can identify, by comparison with (4.3),

M(s) = —=X(m?, s) (4.5)
Z(s) = 01M0%(m?, s). (4.6)

In the commutative limit the assumed form of M and Z give a momentum
independent mass and field strength renormalization. With this assumption
Z is on the region under consideration, namely s = (k, 0)?, i.e., k on the
mass shell, uniquely determined.

Remark 4.1.1. Formally, one can see the momentum dependent mass and
field strength renormalization coming from the nonlocal terms

n# o 2\ F efikq
Vs [ AR (ko)) )

and
A"m(m +m?) / dkZ ((ko)?) ®(k)e .

If we drop the initial interaction and only use these terms, the equation of
motion becomes

(O +m?) (Cb(q) - A"m / dkZ ((ko)?) @(k)ei’fq)
n# o)? T e tka
=)\ (27T>2/dkM((k )?) @(k)e ™. (4.7)

The equation of motion (4.7) is solved to order n by

Qg (Q) =Ppree (Q)a
0,(0) =~ [ drin(o) sy [k ((h)?) (ke

1 2\ & —ikq
+ m/de ((ko)?) do(k)e™,
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The terms in between are all zero. So, the two-point function at order n gives
(Do (f)Pr(h)) + (Pn(f)Po(h))
= —(2n)? [ ARF B (ko)) [Ar(R)As () + Ay (AR

+ / Ak F(R)R(—R)Z ((ko)?) As (k). (4.8)

We saw in section 3.2.1 that (3.12) gives (27r)2fdkf(k:)ﬁ(—k)@mzASer) for
G — (2m)20. Since we are working without cutoff here, we set formally

1 N

Ar(k) AL (k) + AL (R)AA(k) = — 50,2 AT (k). (4.9)

Then (4.8) can be transformed to

/ A f(R)R(—k) (M ((k0)?) e AL (k) + Z (ko)) AL (1))

- / dk f(k)R(~F) [M ((k)%) 02 AL (k)

+ (Z ((k10)?) = B2 M ((k)?) )Agm2>(k)] .

This is exactly (4.3).
To calculate the dispersion relation we have to solve
0=k*—m?>— "M ((ko)?), (4.10)

and take that part which corresponds to kg > 0 in the free case. Note, that
the solution of (4.10) is invariant under simultaneous Lorentz transformation
of k and o. Since we are working with formal power series, the equation has
to be solved recursively by orders of \.? This gives

ko(k) = wi + A”iM ((kyo)?). (4.11)

The group velocity is defined as the gradient with respect to k of the solution
ko. This is

Vhy =0 X" | M (ko)) = g (V(ka0)?) M ((k0)?)
k n 1 2 / 2
b A TN (V(kso)?) M’ ((k10)?) .

2If X is not infinitesimal small and M large, (4.10) might not have a solution of the
form ko(k). There might even be tachyonic solutions, i.e., with k2 < 0.
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In the last line we inserted the solution (4.11). From now on we take o to be
the standard noncommutativity matrix,

o=00=\,

O = O O

0
0
and define for this k; := (0, k2, k3) and k|| := (k;,0,0). Then

(ko)* = =L (kK + 2k%) and V(kyo0)® = —4Mi k.. (4.12)

With (4.5) the group velocity is

k k
Vhy = 1042 (14 2008 (i, (ko)) . (413)
0 0

We define the distortion of the group velocity in perpendicular direction to
be

A'Ufl — 2)\?1(:)\718(071)2 (mQ’ (k+0')2) . (414)
So,
Vko 1 — ki /kol
Avrel — | ’
e R Ty

We will later calculate this quantity for different models on noncommutative
spacetime. We want to emphasize that to calculate the dispersion relation
(4.13) or the mass and field strength renormalization in first nontrivial order
we only have to know X (k?, (ko)?) for k in the vicinity of the positive mass
shell.

4.2 Interacting models on commutative space-
time

We want to use the Yang-Feldman formalism to calculate two-point functions
of quantum fields of certain models. Before we will investigate quantum fields
on noncommutative spacetime we first have a look at the situation on com-
mutative spacetime. This gives the possibility to distinguish between features
coming from the quantum structure of the fields and those coming from the
noncommutativity of spacetime.

Mainly, we will calculate in this section the two point function of the ¢3
model. This is done in subsection 4.2.1. In subsection 4.2.2 we will have a
short look at the ¢* model. We will use the IR cutoff which already gave
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the correct adiabatic limit 3.2.1 and again make use of the Epstein-Glaser
theorem.To apply this theorem, again we have to add all contributions of
the same order before calculating the adiabatic limit. We will see that most
divergences cancel. One remains, which can be handled by the continuation of
a distribution to the origin using the concept of scaling degree of Steinmann
|41]. This gives a free parameter. We will see that this corresponds to a mass
renormalization.

4.2.1 ¢* model on commutative spacetime

We investigate the ¢3 model. For the ¢? interaction it is not possible to find a
positive-definite energy. However, the perturbation series is well-defined. One
can imagine that there exists an additional ¢*, which would make the energy
indeed positive-definite, but is of sufficient higher order in the coupling A,
such that effects of this term are not visible at the calculated orders.

The field equation for the interacting field reads

O+ m?)d(z) = —A*(x).

The naive solution (3.3) has to be modified since it involves products of fields
at the same point. Additionally, we have to introduce an IR cutoff. We choose
that cutoff which was already successfully applied in section 3.2.1.

We will look at the solution for the interacting field up to second order.
The first orders are

cI)O(-T) :q)Free (I),

Bi(z) =~ [ dydnle ~ p)gly) s Bo) s

Here we have taken the Wick-ordered product of two free fields at the same
point. In the second order we get from (3.3):

Dy() = — / dyAr(r —y)g(y) (Po(y)P1(y) + @1 (y)Po(y)) -

These fields can be represented by the graphs shown in figure 4.1. The two
contributions to ®, are represented by a sum of graphs. We will later see
that, although the graphs represent the different summands in ®, on their
one, it will be more appropriate to always look at their sum. Taking the
Wick ordered product in ®; is graphically equivalent to subtract tadpoles
right from the start, cf. figure 4.2. Graphs for the Yang-Feldman formalism
are explained in more detail in Appendix C.
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RAA!

Figure 4.1: The first orders of the interacting field in the ¢ model.

Figure 4.2: Subtraction of tadpoles.
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Figure 4.3: Second order contributions to two-point function of the ¢ model,
(DyDy).

Figure 4.4: Second order contributions to two-point function of the ¢ model,
(D1Dy).



64 Chapter 4: Dispersion relations

AR
VY

Figure 4.5: Second order contributions to two-point function of the ¢ model,
(PoDy).
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We calculate the two-point function up to second order. The zeroth order
ist that of the free case:

(Bo(f)Bo(h)) = (27)? / Ak F(E)(— k) A ().

The two-point function of first order, (®1(f)Pg(h) + Po(f)P1(h)), vanishes
since an odd number of fields is involved.
At second order we have

(@2(f)Po(h)) + (P1(f)P1(R)) + (Po(f)P2(h)). (4.15)

The contribution from (®(f)®Pg(h)), graphically represented by the sum of
the graphs shown in figure 4.3, is

2 / [T o (gl (w2)(se)

Ar(yo — y1)Ar(yr — ¥2) [Ar(y1 — y2) + A (1 — v2)] Ay (32 — u3).

The (®o(f)P2(h)) contribution is

2 [ TLau f(wn)slo)hm)

Ay (yo —y1) [Ar(yr — v2) + A_(y1 — v2)] Aalyr — y2)Aa(y2 — u3),

represented by the sum of graphs of figure 4.5, and the one from (®y(f)P2(h))
is

5 / [T s (o) ()9 va)hCos)

Ar(yo — y1) Ay (y1 — 12) A (v1 — y2) Au(y2 — y3),

represented by the sum of graphs of figure 4.4. Here, the planar and non-
planar graphs give the same contribution, which gives rise to the factors
of 2 appearing in front of each integral. On noncommutative spacetime the
contributions will be different.

Now, if we would treat the terms coming from the different graphs sep-
arately, we would, for example, in the lower left graph of figure 4.3 face the
problem that

Ap(z) - Ap(z)  withz =y —1p
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is a priori not well-defined. If we look at the set \W(AR,AQ (compare
Appendix A), we see that it contains elements of the form (z,0) if = lies on
the forward lightcone. However, we can use?

An(e) [ () + A (@) = i8(z0) [, (2) — A_(@)] [, () + A_ ()
= if(zo) [A%(z) — A% (z)] . (4.16)

A" are well-defined distributions for n € N. But for n > 1 there appears
a problem due to the multiplication with 6(zo) in x = 0, i.e., (0,0) €
'\7\7\}?‘(90, A.). So, the problem of multiplication has been reduced to the ori-
gin, where the expression (4.16) is not well-defined. But we can use concept
of scaling degreeto extend this distribution to the origin. Since sd(A%) = 4
two such continuations differ by the multiple of a ¢ function. We will later
show that this can be regarded as a mass renormalization.

Remark 4.2.1. We cannot use the concept of scaling degree at submanifolds
[7] to uniquely extend Ag - A, onto the forward lightcone. If z lies on the
forward lightcone and v is a unit vector perpendicular to the lightcone at
x pointing inwards, then Agr(z + Av) is essentially constant for small A >
0 and A, (z + A\v) behaves essentially like % So Ag - A, has the scaling
degree 1 at the lightcone and since the codimension of the lightcone is 1 the
continuation to x would be unique only up to a d-term. Thus, the overall

ambiguity corresponds to a function on the forward lightcone.

Let Tr(z) be a continuation of i(zo) [A2 (x) — A2 ()] to the point z = 0
and define correspondingly Tr(z) := Tr(z) — iA? (z) and Ta(x) := Tp(x) —
iA?% (). Then T4 (x) is a continuation of i0(—xo) [A% (z) — A2 (z)] and Ta(z) =
Tr(—x). Outside the origin Tr(z) = A% (x). It is easy to see that all Tg/p/a
are Lorentz invariant and their Fourier transform 7’ r/F/4 are C* in the vicin-
ity of the mass shell. Let

1= 2(2m)*Tr(m, 0,0,0). (4.17)

Since a different continuation differs by a J-function in position space, it
differs by a constant in momentum space. So, the parameter 1 can be used
to label the different continuations.

Now, we claim that the theorem of Epstein and Glaser (D.1.3) is appli-
cable for the sum (4.15), which is

/Hdyjf(yo)g(y1)g(yz)h(yg)FR(yo,yg;yl,yg)

3This was already discovered in [2].
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with

Fr(yo,ys; 91, 92) = 2| Ar(yo — y1)Tr(y1 — y2) Ay (Y2 — y3)
+ Ar(yo — y1) A% (Y1 — y2) Aa(y2 — y3)
Ay = y)Talys — 12) Ay — 19)]

The distribution F4 will be defined by exchanging Ar with Ay and Tg
with T4 respectively. Since Tk has retarded and T4 has advanced support
the proof, that Fp/, fulfills (D.1), is similar to the case for a mass term at
second order, shown on page 37.

Fourier transformation gives

FR/A(kO7k3§klak2) =

87126 (Z k; ) |: kZO)TR/A(k‘O + ]{Zl)A+(k50 + ki1 + ]{32)
(4.18)

+AR/a(ko) A2 (ko + k1) A r(ko + k1 + ko)
+A (ko) Tasr(ko + k1) A r(ko + ki + k) |.

To show that FR — F'4 vanishes on RQ, we replace AR/A by Ap — ZA and
TR/A by T — 2A2 The support of A2 lies above the positive 2m-mass shell,
the one of A_ lies on the negative m-mass shell and the one of A2 is be-
low the negative 2m-mass shell. Each term containing one of these last two

distributions can be dropped as all terms also contain A+ or A2 +, so the mul-
tiplication with this gives zero on Ry, because a vector k from on or above
the positive m-mass shell to somewhere on or below the negative m-mass

shell has k2 > 4m?2. Although the common support of A, and A%r is empty,
their regions of support can be linked by an arbitraryily small vector if one
goes to high momenta, see figure 4.6. So, the terms with A+ and A+ cannot
be dropped a priori. We calculate Fr — Fy on R, with the simplifications
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: : : ‘ ‘ _ k.
-6 -4 -2 2 4 6 M

Figure 4.6: Small spacelike vector, connecting the support of A+ with the
support of A? at high momenta.

mentioned before and get

Fr(ko, ks; by, ko) — Fa(ko, ks; ky, ko) = 8726 (K3)

AF(Ko) Tp (K1) AL (K,)
4 <Ko> &3 2 (k) Ap —iAL) (1)
+ KO) Tp —iA2) (K1) (Ap-— ¢A+§ (K>)
- (Ap— ZA+ Tr — ZA2 (K1) A+(K2)
— (Ap— ZA+ A2 (K) Ap(K>)
—~ AL (Ko) Tr(K)) Ap(Ky)
with K; = LO k;. This gives 0, since, after multiplying out, each term

has exactly one counter term with opposite sign. Hence all preliminaries for
the Epstein-Glaser theorem are fulfilled. So, the adiabatic limit exists and is
independent of the choice of sequence {g,}. As for the mass term this can be
of class II,2.

Note that it was important to consider all terms of order n = 2, including
(P1(f)P1(R)). We will later ignore its contribution to the dispersion relations

since, due to the A2 factor, the support of its adiabatic limit lies in momen-
tum space above the 2m-mass shell. But here we needed it, to be able to
use the theorem of Epstein and Glaser and to show that the adiabatic limit
exists and that it is independent of the sequence {g,}.

To have a closer look on how the resulting two-point function of the
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adiabatic limit looks in the vicinity of the mass shell,* we choose a function
f which has support, say, in the set

2 2
{k; e M‘ (%) <K< (%m) and ko > 0} . (4.19)

To be able to simplify the expressions in F r(ko, ks; k1, ko) we further assume
that f has support in a compact subset of (4.19) and the sequence of functions
{g.} has the property

suppJa C Be/a(0)

for some fixed € > 0 and g, — (27)*¢™ in O, (M). Then, for a large enough
(depending on the compact support of f), the vectors ko, ko + k; and ko +
k1 + ko can neither reach the 2m-mass shell nor the region above, if kq lies
in the compact support of f and k:/l\and ko in the one of g, . Thus, all
expressions containing some factor A2 in FR(k:O, ks; k1, ko) can be dropped
like the ones containing A_ or AZ. Note that, first, the adiabatic limit is
independent of the special choice of {g,} in a certain class and, second, every
f € S with support (4.19) can be approximated by functions, which have as
support a compact subset of (4.19) in the topology of S. Thus, the Epstein-
Glaser theorem assures that no information is lost by making the additional
assumptions concerning the support of f and .

With these assumptions we get for the two-point function at second order

8772/Hd4kjf(ko)g(kl)é(@)h(k?»)fs (Z kj)

) . ) 4.20
.[AR(kO)TF(kO + kDAL (ko + k1 + ko) (420)

A (ko) T (ko + k) Aa(ko + by + kg)] .

Now, after integrating out the J-function and performing a variable transfor-
mation, this is

snt [ T] s f(hn)ata — kg — k()

N Ar(kio)Tr (k1) Ay (k) + A (ko) T (k1) Aa(ka) |-

4In section 4.1 we showed that to calculate dispersion relations it is only important to
know the two-point function in the vicinity of the mass shell.
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We insert the expressions for AR/A/JF from Appendix A and make another
transformation of variables (different for each summand) to get

A3k A3k -
—/ 0d4k?1 2d G(ko1 — 2 — wo, ki — ko) g(wa — ko1, ko — ki) h(ks)

2(.(}0
' [f(wo + 2, ko) T (k1) A(—k 4 ) — - :
’ “\xtie T+ 2wy +ie
-~ ~ 7 1 1
_ f(k-}-,O)TF(kO,l +x, kl)h(—W2 +x, —k2> (ZE + je N T — 2wy + 26) } '

Similar to the calculation following (3.13), we expand f(wo -+, ko), h(—ws +
x,—ks) and Tp(km + x,k;) around x =0 (TF is C* around the mass shell)
and get, after passing to the adiabatic limit,

s(2n)” [ (m”[ L FR (=) + 00 f (e )~k )

4w1§ 4w

~ o (k)] = 0T (k) F (k) )

Ty is Lorentz invariant and Tp(k.) = s> ok (4.17). If we compare this

with (3.10) and (4.3), we see that the first terms gives a (constant) mass
renormalization. Its value is

NM =N\

and depends on the choice of continuation we made during the calculation.
The last term gives a (constant) field strength renormalization. It is

o) . 231 —
7z =2 g ) = 22 Vir — 9

Wk 72m2m?2

(4.21)

and independent of the chosen continuation. The method of continuation of
distributions in position space corresponds to the introduction of counter
terms in momentum space in the standard Feynman graph formalism.

4.2.2 ¢* model on commutative spacetime

Here, we take a quick look at the ¢* model. The calculation will be similar
to the one of the last subsection. There, a cancellation took place such that
multiplications like Ar with A, which are ill defined on the forward light-
cone, dropped out. The main purpose of this subsection is to show, that a
similar cancelation takes place for the ¢* model.
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The field equation is
O+ m*)®(z) = —\P*(2),
and the interacting field is to first orders:

CI)O(x) :(I)Free(x)a
Py () = — /dyAR(y)g(x —y): By(z—y)

Py(z) = / dyAr(z —y)g(y)
(: D5 (y) : P1(y)+ : Po(y)P1(y)Poly) : +P1(y) : PE(y) 1) ,

where the term : Oy (y)P1(y)Po(y) : is the continuation of ®y(z)P(y)Po(z) —
A(x — z)®1(y) to the diagonal x = y = 2. So, again all tadpoles are sub-
tracted.

The two-point function at zero order is trivial. At first order it vanishes
due to the Wick product in ®;. The contributions to the second order are

(D2(f)Po(h)) = 6/Hdyjf(yo)g(yl)g(yg)h(yg)AR(yg —y1)Ar(y1 — y2)

J=0

(A% (g1 — y2) + A (1 — y2) A (1 — y2) + A% (11 — y2)] Ai(y2 — v3),

@ (£)2:(1) =6 [ T]duss wn)stm)g(e)boe)

=0
Ar(yo — y1) A% (y1 — y2)Aa(y2 — y3),

and

(@o(£)2(n) =6 [ T dusf(w0)g(wn)al)) D (00 = )

AL - y2;+ Ay(yr = y2) A (1 — 12) + A% (11 — 12)]
: AA(yl - y2)AA(y2 - yz)-

Figure 4.7 shows graphs for some planar contributions.
Again Ag(z)A% (z) would be ill defined on the lightcone. However, as
before, a cancellation takes place. For the (®o(f)Pg(h)) terms it is

Ap(z) [A%(z) + Ay () A_(z) + A% ()]
— i8(20) [A+ (1) — A (2)] [A2(0) + A4 (0)A (@) + A (o)
= i0(z) [A%(z) — A% (2)] .
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Figure 4.7: Second order contributions to the ¢* two-point function, planar
graphs to ($2®¢) and (P;P4).
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The product 0(z¢)A3 (z) is ill defined only at the origin. As the scaling degree
of A% is 6 we get three arbitrary constants. One can be dropped, using a sym-
metry condition. Now, we can choose a continuation of if(zo) [A% (z) — A (z)]
and show correspondingly to case of the ¢® model that the preliminaries for
the Epstein-Glaser theorem are fulfilled.

4.3 Remarks on the adiabatic limit for inter-
acting models on M,

In Chapter 3 we succeeded in finding suitable IR cutoffs for quantum field
theory on M, for an additional mass term. Unfortunately, the situation for
truly interacting models is much more complicated and we have not been able
to find a suitable cutoff yet. The problem is, that there appear additional
twisting factors (even for planar graphs, see below), which depend on the
momenta in the cutoff functions and are different for each graph. However, we
have seen at several steps (adiabatic limit, cancellation of Ag- A, divergences
on the lightcone) that only the sum of all graphs of the same order shows
good behaviour. But the different graphs have different twisting factors, and
these cannot be pulled out as a common factor like in the case of a mass
term in section 3.2.2. So, the cancelation of divergences might not take place
in the adiabatic limit.> The adiabatic limit will probably very much depend
on the special choice of sequence g, — (27)%. At least we have not been
able to find a suitable large class of sequences which give the same limit. But
the reason might not be, that such a class does not exist, but only that the
calculations are too complicated to find it.

We give examples of possible IR cutoffs in the ¢® model on M, and give
their contribution for vertices, cf. Appendix C. The momenta of the vertex
are labelled as in figure 4.8:

e For the cutoff by
91(0)Pa(q)g2(a) Pu(q)g5(q), (4.22)
cf. (2.14), each vertex gives

(27T>74 / dp1dpagi (p1) G2 (p2) g3 (k1 + ke — p1 — p2 — ko)

e~ 2Q(=p1,k1,—pa,ka,ki+k2—ko—p1—p2)
)

with Q(k1, ko, ..., ky) == Zi<j kiok;. One or two of the three g;’s could
be equal to (27)%§. These cutoffs can be combined to give, for example,

5Derivatives of the twisting factors in the momenta of the cutoff functions spoil this.
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Figure 4.8: Typical vertex in the ¢3 model.

(9(0)Pa(@)Ps(q) + Pa(q)9(q)Po(q) + Pulq)Pr(q)g(q)) or
(0)Pa(0)9(q)Ps(q)g(q)-

e Multiplying ®,(q)®,(q) by g, using the pointwise product (2.7) gives

Q wi=

i

g(k)l + k?g — k0)6_5k10k2
at each vertex.

For these (and many others that we tried) the twisting factors of different
graphs cannot be pulled outside the sum of all graphs of the same order. It is
still an open problem, how to handle this problem. Note that, with the cutoff
(4.22), the contribution from each graph is well-defined on its own, but this
does not have to be the case if the adiabatic limit is regarded.

Therefore, we omit the cutoff in the next sections and perform formal
calculations. That is, we set from the beginning § = (27)24. In this case the
twisting factors simplify, and the overall twisting factors can for each graph
be calculated by looking at the crossing of contractions. Each crossing of lines
of the kind shown in figure 4.9 gives the twisting factor

6zk00k1 .

This can be derived similarly as in the case for Feynman graphs, shown in
[31]. So, without IR cutoff, no planar graphs have a twisting factor.

4.4 ¢ model on M,

We want to look again at the ¢* model, now on noncommutative spacetime,
both in four and six dimensions. The reason to investigate these different di-
mensions is that, in four dimensions the ¢® model is logarithmically divergent
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k/o
S

Figure 4.9: Crossing of lines.

1

but in six it is quadratically divergent. We want to compare their dispersion
relations on noncommutative spacetime.

Since it turned out, that the IR cutoffs were quite difficult to handle rigor-
ously (cf. section 4.3), we will make the calculation to some extent formal, i.e.,
without an IR cutoff. However, the factor coming from the nonplanar graphs
will be calculated rigorously, using the technique of oscillatory integrals.

We want to calculate dispersion relations for the model in four dimensions
first. The equation of motion for the ¢* model is

(O, +m?) ®(q) = —A®(q)*.
This gives for the interacting field
Do (q) =Prree(q);
Bilg) = [ detnlz): g~ )

Dy(q) = — /da:AR(x) (Po(q — 2)P1(q — ) + P1(q — 2)Po(q — ).

The Wick ordering, used in ®(q), acts only on the field part, see (2.13).
Thus, we get

1
(2m)*

®2(q) = / dkodkydkye™™ 1A g (ko)A g (ko + ki)
(B(—k1) = Bk + b+ ho)b(—hs) - 3ok
+: (i)(ko + ki + kg)(i)(—kg) : Cb(—kl)@%ko‘ﬂﬁ)e%(k0+k1)ak2.

The two-point function at first order vanishes again. At the second order
we get three terms

(D2(f)DPo(h)) + (PL(f)P1(R)) + (Po(f)Pa(R)).
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The term in the middle gives the contribution
(27t / Ak F ()R (= k) A (k) A a (k) / QAL (k— DAL(D) (1+ e ) . (4.23)

These correspond to the graphs shown in figure 4.4. Due to the factor A+(k—
)A () they are only unequal to zero for [ and k — [ on the positive m-mass
shell, hence k has to be on or above the 2m-mass shell. This is also the reason
why this contribution is well-defined, since the singularities of AR/A(k) are
not met. Hence, the term (4.23) is interpreted as coming from the two-particle
spectrum. It does not contribute to the dispersion relations that we want to
calculate and will therefore not be discussed further.
The sum of the first and third term gives

(2! / Ak F(E)(— k)AL (k)

<AR(/<;> [A+ x Ap(k) + Ag x A_(k) + A 5oy Ap(k) + Ag 420 A_ug)}

+ Ak {A_ < An(k) + Aa x Ay (k) + A ko Au(k) + Ag %oy Agm}) .

The terms containing the convolution stem from the planar graphs, the ones
containing the twisting from the nonplanar graphs. The planar graphs give
up to a factor of % the same as the second order contributions of the model
in commutative spacetime, see (4.20), where the cutoff functions §(k) have
to be replaced by (27)25(k). Though in particular, the planar graphs have to
be renormalized, i.e., from the continuation of a distribution to the origin a
free mass renormahzatlon —)\2,u, enters.
The nonplanar contributions can be transformed to

2m)* [ dRFR-E) (B 0S:(0) + B, 0BADS:R) . (142)
where

Si(k) = /dlA+(l) <AR(I<: — 1)+ Ag(k + l)> ehol.
(4.25)
Sa(k) = / AlAL(1) (AA(k — )+ Aalk+ z)) ekl

We want to calculate these integrals and show that Si(k) = Sy(k) in the
vicinity of the positive m-mass shell using the theory of oscillatory integrals.
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So, we set Q := {k € M|ky > 0 and 2 < Vk2 < 2} Due to the A+(l) the
[ integral will only be over the p051tlve mass shell. There, (k +1)> > m? and
(k — 1)* < m®. So the singularities of Ap or A, are not met in the above
integrals and we can savely set

1 1

AR/A (p) = (27r) m

We calculate

1 1 1 1 ,
Si(k) = — d3l— ikoly
) @m3/ %an—uP—nﬂ+<h+uﬁ—wﬂ>e |
(4.26)
using the theory of oscillatory integrals given in appendix B. With the notion

given there, we have t = 3,

o(k,1) = ko™ (1],1), (4.27)
and
1 1 1 1 1 NO (A TE T
B — -~ (ko) (VIPFm2 1))
alk. ) (2m)? 2wy ((k—l+)2—m2 * (k+l+)2—m2> ‘

a is an asymptotic symbol® on Q x R? of order -3. With this S; (k) = T,(a)(k).
From Theorem B.1.4 we can see that Ty(a)(k) is a C*°-function of £ on
Q since V,¢(k,1) is only zero for k,o" lightlike and this is not possible on
). So, we can assume k to be fixed and consider ¢ as a phase function on
{k} x R3 and a as a symbol on {k} x R? and use (B.7).
For k € Q let Ay, be a boost which takes the vector k to Ak = (vV/k2,0).
Let g € D(R) have the property

1 if g <1,
g@)Z{ .|‘

0 if |z| > 2,
and define -
Al)?
Gmﬂ%=9<L£§L>7

—)
where A, is only the vector part of the transformation, i.e., a 3 x 4 matrix
and the square is the Euclidean square of a 3-vector. Gy, is a C*-function
of 1 and for given k,n it has compact support in 1 and is in Sym({k},3,0)
for all n.

6Tt is only asymptotic, since [1| is not differentiable at 1 = 0, and one has to use

VEF+mZ — (1| < C(1+ 1)L, cf. [35].
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Lemma 4.4.1. Gy, — 1 in Sym({k},3,1) for n — oc.

Proof. We have to show that for all multi-indices (3

o (52)

It is easy to see that one can find positive constants d” such that V/3

sup(1 + |1))1=1 — 0. (4.28)
1

n—oo

| DYl pueia < d2(1+ 1)1,
With these one can construct positive constants C,f , such that

—)
DY(R4)?| < GRn+ U2, (4.29)

First, we show (4.28) for |5] = 0: ’g (%#) — 1| is only unequal to zero if

(£51£)2 > 1. We then get, with (4.29),

1
1+l >n——,
VG

Ayl
lg<< k+)>—1 <sup|g ) —14/C ﬁ—>0

Now let 5 be unequal to zero: With (4.29) one can easily see that
_> 18] Ny
o [ (A kl+ kl+) 1
Dyg ( ) = § : 9"g) <— n2y

where C~’,Z 5 are again positive constants. For each v > 1 the function 97g(x)
is only unequal to 0 if |z| < 2. Now, we need the following estimate, which
is also not hard to prove,

and with this

sup(1 + [1])
1

Cp (1 + U=V,

—

(Mgl )® > ap - (14 1) = by,

where a_: and by are again positive constants. So, if the argument of 97g,

namely M has to be smaller than 2 we conclude

LN 2+ %
n Qe
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i (g ((%)2) ) 1) ‘
E 91
copd o ( Kile? ) (L+ 1)

n2v
18] b \ 773
2+ b 1
<X:SUp\87 ]C’,ZB ( ”2> - —— 0.

Qg

Now, we can deduce

sup(L + [1)!1~
1

Y
Ck7ﬁ

This completes the proof. ]

With the above result, we conclude that Gy (1) - a(k,1) has compact sup-
port in 1 for the fixed k and approaches a in the topology of Sym({k}, 3, —2).
Now we want to calculate the integral (4.26). With the result from lemma
4.4.1 we see that it is the n — oo limit of

1 1 (K)kl+)2 1 1 ,
_ d3l_ zk0l+'
(2m)? / %’ ( n’ (k —14)? —m? " (ki) —m?)"

(4.30)
This integral is absolutely convergent, so the usual techniques for manipu-
lating integrals are available. We perform a (k-dependent) nonlinear trans-

formation on 1: I’ = K)khr. The integration measure does not change. This
transformation is chosen, such that [, = A,;lljr. The prime will be dropped

again and we get:

R / ol 12) 1 ) 1
e ) 2’ (k— AL )2 —m? ' (ht AL )2 — m?

. koA Ly

Now we calculate
(k+ A2 = (AN ((VE2,0) £1,))% = k2 + m? £ 2u V2,
Define o’ A,;lTUA,zl.

o’ is again antisymmetric, so (V'k2,0),0™ has vamshing time component.
_—

Let (v/k2,0)0" be its spatial part. Its length is \/—((\/p, 0)0')2 = \/—(ko)2.

The expression in the exponent now becomes

The two fractions can be put together to give ;= 4 el

—_

koA = (VE2,0)0'l, = —(VE2,0)0" - 1.
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_

We use spherical coordinates for 1 where the z-axis is along (v k2,0)0’. Then
the exponent equals y/—(ko)?lcos(f), and after performing the integration
over ¢ and 6 we get

lsm(@) I/ —(ko)? cos(6
(27) /dl/ deg( )wl(k2 e (k)2 cos(0)

2
_ 9(2m) / dl g 2 l sin(ly/—(ko)?
0 n? ) w(k? — 4w?) l\/ﬁ

For n — oo this gives the value of T, (a)(k) = S1(k), which is the absolutely
convergent integral

sin(l\/—(ka)2)' (4.31)

S(k) = —2(2m) /ooo e - 1) J-(ho)?

It is straightforward to see that Sy(k) gives the same result, since the only
difference for k € € is to replace ko by —ko.
So, we have S;(k) = Sa(k) = S(k) for k € Q. Then, we get for (4.24)

)" [ AkFER) (BrB)A (1) + As(AAE)) S(E)
Now we can use equation (4.9) and compare with (4.4) to get
2 (k% (ko)?) = S(k).

Actually, this is only the part coming from the nonplanar graphs. The con-
tribution of the planar graphs is up to a factor of % the same as in section
4.2.1 and gives momentum independent renormalizations.

We get, after a variable transformation, the following results:

—_ [ a :

@m)? Jo /= (ko)?m? + (412 = 3(ko)?m?)
2 4 (ko)

A (27r)2 /0 d \/—<k‘7)2m2 + 12<412 _ 3(ka)2m2)2

rel 2y _ 44 g2 4 > 3m°l
AVT((ko)") = ApeA (2m)? /0 dl<\/—(k‘0)2m2 + 12(412 — 3(ko)?m?)?

NM ((ko)?) = =X sin(l),

N7 ((ko)?) =

sin(l),

m2l

- > sin(l).
2(—(ko)?m? + 12)2 (412 — 3(ko)?m2)?
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We want to calculate these depending on the perpendicular momentum £k,
using (4.12) with k% = m?. We use the parameters \,. = A\p = 1 (i.e. we use
¢ = h =G = 1 and use the Planck length for the scale of noncommutativity),
o =09, m = 1077 and A\ = m. The coupling ) is of mass dimension 1 in four
spacetime dimensions. The orders of magnitude of the last two parameters
are chosen, such that the identification of the scalar ¢ with the Higgs field
is possible, see [34]. A mass of m = 107'7 corresponds to approximately
m = 122 GeV in common units. Actually, the value for the coupling would be
A = 0.72-m for this mass (using the standard Higgs model and experimental
results like the mass of the W-Boson). As we are only interested in the orders
of magnitude we can savely set A = m.

We use MATHEMATICA to calculate the remaining absolutly convergent
integrals numerically. M ((ko)?) is shown in figure 4.10. Z ((ko)?) is constant
in the plotted region within machine precision. It gives

NZ ((ko)?) ~ 1.32477-107°.

The same contribution stems from the planar graphs and together they have
the same value as the field strength renormalization in the commutative
case (4.21). The distortion of the group velocity is shown in figure 4.11. All
quantities have the behaviour, that their absolute values are largest for £, =
0 and they tend to zero for k; — oco. We see that the distortion of the group
velocity is of the order of magnitude of percentages for small perpendicular
momenta. This might be detectable if the Higgs boson is discovered in the
next generation of colliders (LHC or ILC). The relative mass renormalization
is almost —1 at £, = 0. If we use the correct value of A = 0.72 - m this
would correspond to y/m? 4+ A\2M (k. = 0) a2 85 GeV. This is not compatible
with the experiment. However, we still have a mass renormalization from the
planar part. With this, the mass at k; = 0 can be set back to 122 GeV, but
at higher perpendicular momenta we would have an increasing of the mass
by almost a factor of V2.

We emphasize again that, in order to calculate the dispersion relation at
the one-loop level, it is sufficient to know

Sy (k) = / TR (Agyath )+ Apalk+1) . (432)

for k£ in the vicinity of the mass shell. However, when we want to calculate
higher orders, the nonplanar fish-graphs shown in figures 4.3 and 4.5, which
gave the contributions (4.24), may appear as subgraphs and have to be inte-
grated over arbitrary k. Thus, there appears the problem that AR/A(k +1)

can become singular. The singularities of A r/A lie on the m-mass shell. So:
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m22M( (ko) ?)

-0.96 -
0.97 |

0.98 |

0.99 |

K. |
2 4 6 8 10 10

Figure 4.10: The relative mass correction m =2 \2M ((ko)?) as a function of
the perpendicular momentum %, for the ¢* model in four dimensions.

e The situation is smooth for 0 < k% < (2m)? since neither k + [, nor
k — [, can meet the mass shell.

e For k? > (2m)? and ko > 0 the vector k — [, can lie on the mass shell,
for kg < 0 the other one.

e For k spacelike, both k41, and k—[, can meet the mass shell. Second,
one expects singularities for ko lightlike, since there V,¢(k,l) = 0, cf.
(4.27) and (B.3). For k this is the tilted lightcone around k. Thus,
these overlap with the singularities from A R/A-

Thus, it is yet unclear, how to handle the integrals in S;/»(k) outside the set
0 < k% < (2m)?, as the preliminaries for oscillatory integrals are not fulfilled.
AR/A(kj:l+) cannot be treated as an asymptotic symbol, since the set where
it may become singular is not compact in k. Thus, one has to extend the
theory of oscillatory integrals to handle graphs of higher orders. Some ideas
can be found at the end of Appendix B.

The calculation above was for four dimensions. The calculation in six
dimensions is quite similar. We get a different prefactor and the [ integration
is two dimensions higher. So, instead of (4.26) we have

1 5 1 1 1 tikol,
Sa(k) = (2@5/“2@((k_l+>2—m2+<k+l+>2—m2)e |
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AVrel

1072

— | k. |
6 8 10 10

Figure 4.11: The distortion of the group velocity in perpendicular direction
AvF((ko)?) as a function of the perpendicular momentum k; for the ¢?
model in four dimensions.

The technique to calculate this oscillatory integral is analogously to the one
before: Multiply the integrand by g (( Akl*) ) (where Ay, is correspondingly

defined for six dimensions), make a variable transformation in [ and use
spherical coordinates in five dimensions, to get

sin®(03) | /oy
dl do (ko)? cos(63)
27T / / + ( ) (k= 4u7) "

A 12 14 sin(ly/—(ko)?)  cos(ly/—(ko)?)
- 3 dig{— 2 3 2
(2m)® Jo n? ) wi(k* — 4wy) (l /—(k0)2> <l /—(k0)2>
The factor of sin®(f3) stems from the spherical volume element in five dimen-

sion. Thus, with n — co, we get in six dimensions the improper Riemann
integral

—o [ 12
S(k) = (2m)3 /0 dl — (ko) 2w (k2 — 4w?)

[sml\l/ivlwka — cos(l\/—(ko)? ]
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This gives

2 [ l

= / di

@2m)3 Jo  —(ko)2\/—(ko)2m? + [2(412 — 3(ko)2m?)

| (Si“l(l) _ cos(l)) ,

2 [ l
(2m)? /0 dl—\/ —(ko)?m? + (412 — 3(ko)?m?)?

| <Si“l(l) - cos(l)) |

» ~ 4)\;11(:)\2 oo 3m2l
AvE((ko)) = g /0 dl(—(ka)2\/—(ka)2m2+l2(4l2 — 3(ko)?m?)?
m2l
—2(ko)2(—(ko)2m? + 12)2 (412 — 3(ko)?m?)?

N2M ((ko)?) = —A?

N7 ((ko)?) = A2

[
- (ko)ty/—(ko)?m? + 12(412 — 3(k0)2m2)2>

| (Sinl(l) - cos(l)) |

Again we plot M ((ko)?) and Z ((ko)?) and Av¥((ko)?) depending on
the perpendicular momentum k;. We use the same parameters as in four
dimensions except that we choose A = 1 instead of A = m, since the coupling
has no mass dimension in six dimensions. M ((ko)?) is shown in figure 4.12,
Z ((ko)?) in figure 4.12 and Av'®((ko)?) in figure 4.14. The main difference
compared to four dimensions is, that the order of magnitude is totally differ-
ent. Instead of percentages Av'®((ko)?) is of the order of 10% and similarly
for M ((ko)?). The reason for these differences in the order of magnitude
stems to a great part from a factor (ko)? in the denominator and the change
in A. The field strength renormalization is comparatively small because its
integral is absolutely convergent and the factor Slr;i — cos(l) is almost zero
where the fraction in front under the integral sign is unequal to zero and vice
versa.

However, the mass correction can again be brought to zero using the
mass renormalization from the planar graph.” But it is questionable if the
calculated result is reasonable since the use of perturbation methods seems
not to be justifiable if the result differs that much from the unperturbed

setting. (If we look as the mass renormalization it has to differ somewhere by

"In six dimensions there appears also a field strength renormalization in the ¢® model.
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Figure 4.12: The relative mass correction m™=2\>M ((ko)?) as a function of
the perpendicular momentum k, for the ¢® model in six dimensions.

a factor of 10(%) from the free case, either at small or at large &, no matter
how the planar mass renormalization is chosen.)

4.5 ¢* model on M,. using quasiplanar Wick
products

Now, we investigate the ¢* model on M,.. Here, we use quasiplanar Wick
products as defined in [4]. Quasiplanar Wick products are defined for free
quantum fields on noncommutative spacetime. They are similar to the well-
known Wick products for commutative spacetime. A product of multiple
fields is defined in the limit of coinciding points by subtracting contractions.
The subtracted contractions have to be local in a certain sense. The non-
commutativity of spacetime leads to a different concept of locality. Thereby,
some contractions, which are subtracted in the commutative spacetime, be-
come nonlocal and remain finite in the limit of coinciding points, and are
therefore not subtracted.

The field equation is

(O +m?) ®(g) = —Ad(q)*.
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Figure 4.13: The field strength renormalization \>Z((ko)?) as a function of
the perpendicular momentum k&, for the ¢® model in six dimensions.

L I I | ‘ kl ‘
-17
4 6 8 10 10

Figure 4.14: The distortion of the group velocity in perpendicular direction
Av((ko)?) as a function of the perpendicular momentum k; for the ¢
model in six dimensions.
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Figure 4.15: First order nonplanar contributions to the two-point function of
the ¢* model, (®;®¢) and (PP;).

This gives for the interacting field to first orders
(I)O(Q) :(I)Free<Q)a
Bilg) = [ detn(z)  Bh(q— )

__ (/dxAR(x) L DY(g—1)

1
(2r)?

In this case, the first order contribution does not vanish anymore. The part
(4.33) of ®41(q) gives

(@1 () (R)) + (@0 )Py (1)
— —(2n)? / A (KA (ko) (An(R)AL(F) + A (AR

_|_

/ dzAg(z) / dkA+(—ka)<i>o(k)e‘i’“(q‘x)>. (4.33)

Here, we have used that, due to the A+(k), the whole integral is only eval-
uated for k& on the mass shell. Then ko is spacelike and thus A (—ko) =
Ay (ko). We use equation (4.9) to transform the above to

/ Qe (k) R(—k) A (k)0 AT (k).

If we compare this with (4.4), we get in this case
1

S(k?, (ko)?) = “ e

A, (ko).
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It is well known® that for spacelike argument x

1 m
Ai(z) = Wﬁ

BesselK,, is the modified Bessel function of the second kind to order n. Thus,
we get

2 1 m ko )?
AM ((ko)?) —)\(%)4 \/WBesselKl (m\/ (k )),

1
(2m)*

" 4/ —(ko)?

BesselK; (m —x2) )

m

AV ((ko)?) = —2X5A

2(_(kjg)Q)%BesselKl (m _(]w)z)

VR

[\V]

[BesselKO <m —(ko*)2>

+ BesselK, (m —(ka)Q) ]) .

Since in this case ¥ is independent from its first argument, Z ((ko)?) is zero.

We calculate these for a set of parameters similar to the case in ¢* theory,
ie. \je = Ap = 1,0 =09, m = 1077 and A = 1. M ((ko)?) is shown in
figure 4.16 and The distortion of the group velocity is shown in figure 4.17.
Comparing with the ¢ model, we see that the order of magnitude for the
calculated quantities are equal. The sign is different. This latter is connected
to the fact that here, the calculated quantities are of first order in A and not
in second order.

The setting used here differs slightly from the one given in [4, 2|. The
reason is, that we have treated all quantities as a formal power series in the
coupling A. This was not done rigorously in the before mentioned publication.
However, at the end we insert a finite A\. So higher orders can cancel each
other and a finetuning process might still be possible. But as we mentioned
before, the use of perturbation methods are questionable if the first order
corrections are of this order of magnitude.

4.6 Wess-Zumino model

Now, we have a look at a supersymmetric model, namely the Wess-Zumino
model, which is one of the simplest of this kind. Supersymmetric models
have a better behaviour with respect to divergences because some divergent

8This could easily be calculated using the framework of oscillatory integrals, too.
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Figure 4.16: The relative mass correction m=2M ((ko)?) as a function of the
perpendicular momentum k; for the ¢* model using quasiplanar Wick prod-
ucts.
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Figure 4.17: The distortion of the group velocity in perpendicular direction
AvF((ko)?) as a function of the perpendicular momentum k; for the ¢*
model using quasiplanar Wick products.
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graphs, coming from different particle interactions, cancel each other. Super-
symmetry takes care that the parameters have the right values, e.g., that
fermions and bosons have the same mass parameter and that the coupling
constants of the different interactions have a particular dependence in order
to make the cancellation possible.” The calculation shown here is very close
to the one given by Zahn in |15].

When working with supersymmetric models notation is a rather involved
task. We use the conventions of [43] except for the metric. We keep our met-
ric of signature (4, —, —, —). Further changes have to be made to keep the
zero component of the generator of translations, F,, positive in representa-
tions of the supersymmetry algebra. We have to multiply ¢° by —1.19 The
same happens to 7" and +°. The usual (anti-)commutation relations of these
quantities do not change, except where the metric appears. In particular, we
have {y#, 7"} = 2nt".

The chiral superfield is'!

®(q) = ¢(q) + V20" xa(q) + 0*F(q) |
+i0°0" 090, 0(q) — —

1
00X (@) 87 = 0°6T0(a),

where 0 is a complex, x a Weyl spinor and F' an auxiliary field.

When dealing with complex quantum fields on noncommutative space-
time we have to mind that different orders of terms can give different twisting
factors. E.g., the term ¢*¢¢*¢ has only planar contractions, whereas ¢*¢*p¢p
has also a nonplanar one.'? To keep track of the orders in the field equations
we derive them from a Lagrangian. We use the formalism introduced in [45]
for classical fields on noncommutative spacetime.

9This follows from the nonrenormalization theorem, see for example [8].

10This follows from the fact that Tr(oo - Py) = Tr{Q, Q} is a positive operator. With
the conventions and signature of [43] only P° would be positive.

' The anticommutation relations among the fermionic variables § and € are unchanged.
Approaches, where even these are deformed, can be found, e.g., in [30].

12This was already noted in [1].
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The action is

/ dq*L(q) = / dq* (@@

= / dg? <i6M)Z6“X —¢*0¢ + F*F

o Fm@@ L Yoo ¢ h.c.} ‘
0202 2 3 62

- Km (éF B %XX) +A(PF — chb)) + h.c.]

+ total derivatives )

As we have seen in section 2.1 [ dg¢* is cyclic. So it does not matter whether
we would have taken ®® in the Lagrangian instead. The equations of motion
are derived via the variation principle:

variation d¢* : O¢ +mE* + M¢*F* + F*¢*) — Axax® =0 (4.34)
variation dyg : i7" 9,5 — mx* — A¢"X* + X%¢") =0 (4.35)
variation 0 F™* : F—mg*— X ¢"¢" =0. (4.36)

To simplify the forthcoming calculation, we introduce Majorana spinors :
) = (ii) o =9 = (X Xa)s
and the projectors
(1, 0 (0 0
P, = (O O> and P_ := (0 12) :
Thus, we have
1

Pe=o(LF"),  X"Xa=¥P and X" =Py,

With this notation, (4.35) and its hermitian conjugate become
(i — mLa) = X (Pr(¢ + dp) + P_ (Yo" + ¢™¢))
Oup(=iv" —mly) = A (¥ + ¢P) Py + (V6" + ¢") P-) |

where we have introduced the notation @ := 9,7* (and likewise for momenta
k,). The contraction of the free fermion field is

(4.37)

(o) (a)) = (27)2(—Hy + MLy )pa (k)3 (s + k).
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Now, we insert the equation of motion of the auxiliary field F', (4.36),
into (4.34) and get

(O +m*)d = MNP —mA(¢p + ¢"¢ + ¢d") — N*(¢"d¢ + ¢p¢").  (4.38)

Note that the last part is of order A\? and therefore does not appear in the
calculation of ¢;.

So far, we have dealt with classical (bosonic or fermionic) fields on non-
commutative spacetime. Now we replace them by quantum fields (here de-
noted by the same symbols). We have a closer look at the scalar field ¢ and
want to calculate the two-point function (¢*(f)¢p(h)). From (4.38) we get

A

b1(k1) = An(ky) / Qkae=3427%1 i k) Py — o)
—m (Bo(k2)dolkr — ko) + Gilka)do(kr — ko) + So(k2) Gk — k2)) |- (4.39)

As we are now dealing with quantum fields, we have to ask whether the
products of fields on the right hand side of (4.38) are well-defined as they arise
from multiplying distributions at the same point like, e.g., ¢¢(¢)do(q). We do
not normal order these. Although the summands alone have divergences, their
sum is well-defined. In fact, the vacuum expectation value of ¢; vanishes:

(@1(0)) = [ dadka (B)Ank) [ (207 Tr (P-(~Ho + mD)) Ao ()5 (1)
- 2m<2w>2A+(k2)5<k1)} -0,

since Tr (P,(—I%Q + mIl)) = 2m. This calculation seems rather formal but
can be made rigorous, and the expression (4.39) equals the one where the
right-hand side is normal ordered. In other words, the additional term needed
for normal ordering the fermion fields cancels the ones for normal ordering
the scalar fields. This is one example for how divergences cancel each other
in supersymmetric field models.

As it is easy to see, the two-point function of the scalar field at first order
vanishes:

(¢o(f)¢1(h)) = (61(f)¢o(h)) = 0.
Thus, we have to look at second order. ¢5 can be divided into three parts:
$2 = Apg X [&opﬂh + 1 P_ty (Yukawa part)
—m (dod1 + P10 + God1 + P1do + God] + 1¢;)  (¢* part)
— (¢o%0d0 + Podody) ] (¢* part)
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Note that the ¢? part comes directly from the A\? part of (4.38). We do not
normal order this part since the quadratical divergence coming from it cancels
(partly) divergences coming from other parts as we will see later.

First, we calculate the fermion fields at first order. These appear in the
Yukawa part. For this we define the Green’s functions Sg(z) = (—id —
m1)Agr(z) and Sg(z) := (i@ — m1)Ag(z). These fulfill

(i — mL4)Sr(x — y) = (—idy — m1y)Sp(z — y)y = 6Y(x — y)14,

Sp(k) = (—=F —m1)Ag(k) and Sg(k) = (¥ — m1)Ar(k).

The fermion field (4.37) gives at first order

ﬁl(kl) = SR(kl)/deG;kal
[Py (Bolha)dolhs = ko) + dulka) (ks — b))
+ P (Dolka) (k1 — k) + Gi(kz)do(ky — ko)) |

and

?Zl(lﬁ) = /dk‘ze_;’mkl
[ (Jo(ha)do(hs — ko) + Bo(k)d(hs — ko)) P
+ (Dolka)Bykn — k) + i (ka)oky — o)) P-| Sihy).

There is no need to normal order the products of fields on the right-hand
sides, since only products of commuting fields appear.'?

We are only interested in the modification of the dispersion relations. So,
we do not look at (¢5(f)¢1(h)) since all terms coming from these contain A%
or A, %9, A, and thus vanish in the vicinity of the m-mass shell.

It remains to examine the sum (¢5(f)p2(h)) + (¢5(f)Po(h)), from which

R 13The products of different fields like the terms appearing in the expressions for ¢ or
1 do not make problems (at first order), since the field algebra parts of the factors live
on a tensor product of Fock spaces. Thus, ¥o(x)po(z) is rather ¢p(x) @ 1 -1 ® ¢g(x) =
o(z) ® ¢o(x) and this is a well-defined operator-valued distribution on S. The situation
for ¥o(q)po(q) is corresponding.
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we will calculate the first summand now. The Yukawa part of ¢, gives

2m)* [ dhFDR-RA () Ar(-k)
/dl (1+ e~ [A+(1)AR(—k — D)Tr (P-(F + I/— m1) Py (—l/+ m1))
+ Ay (DAR(L = k)Tx (Py(l/— ¥ — m1)P_(=l/+ m1)) } .

We use PP = P_P, =0, so the terms which have factors of m drop out.
After a short calculation we see that Tr (P_y*Py~") = 2n**. The remaining
terms transform to

~2(2n)! / AkdLF(R)R(—k) A (k) A (k)AL (1)
[AA(k; SO+ k) L+ Ak — D) — k) - z} (1+e7*) . (4.40)

The contribution coming from the ¢ part,

3m? (2 / Ak F(E)(—k)A 4 (k) A a(R)
: / dIAL (1) (AA(k—Z)+AA(k+z)) (1+e7™h) ) (4.41)

can be visualized by the graphs 4.5 given for the ¢* calculation in section
4.4. The contribution we get here, has an additional factor of m? due to the
coupling and a factor of 3 as each summand of the ¢3 part gives the same
contribution. Remember that the fields in ¢; can be seen as being normal
ordered, so we get no tadpoles here.

Now, we take a look at the contribution coming from the ¢* terms. The
calculation is quite similar to the one given in section 4.5. The result is

—(2m)? /dkf( Yh(— )A+(I<:)AA(I<;)/dZA+(Z)2(1+e‘““’l). (4.42)

The term without the twisting factor is quadratically divergent. In section
4.5 it was cancelled by using quasiplanar Wick ordering. Here it is cancelled
by divergences appearing in other contributions, as we will see now.

The sum of (4.41), (4.40) and (4.42) gives

)t [ abFRIR-R)A (DAL [t (1+ e
A(D) [AA(k+l)(3m2—2(l+k)~l)+AA(k—l)(3m2—2(l—k)~l)—2(27r)2 .
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The second line can be transformed, using AL ()(m2—1%) =0 and —(21)? =
Aalk+1) ((k£1)2 —m?), to

AL Aa(k+1) + Au(k — z>] (k% +m?).

The calculation of (¢3(f)po(h)) works quite similar and altogether we
have

(@o()2(h)) + (P5(f)¢o(h)) =
r)* [ QRFEH) (24 ) (DAL (S (8) + A, ALK
with
Si(k) = / Q1A (1) (An(h — 1) + Ap(k+1)) (14,
So(k) = / dIAL (1) (AA(k — 1)+ Ak + z)> (14 e7™hot) |

Comparing with (4.24) we see that we almost get the same as in the
case for the ¢3 model except for an additional factor of (k? + m?). (Here we
also consider the planar contribution.) In the vicinity of the mass shell the
contribution from the nonplanar graphs is

Swzap (K2, (ko)?) = (K* + m*) Sy 0 (K2, (ko)?),

where Y43 ,,,, is the result from section 4.4 and equals (4.31). Thus, from the
nonplanar contributions we get

M((ko)?) = —2m*Sys o (m?, (ko)?)
Z((ko)?) = 2m*0M0% 45 (m?, (ko)?) 4+ Xy np (M, (ko)?)
AV ((ko)?) = 222 N2m?00V s (m?, (ko)?).

As before, we calculate these for the parameters A\, = A\p = 1, 0 = 0y,
m = 107" and A\ = 1. Apart from a factor of 2 the values for Av'®" and M
are the same as in the ¢3 model." The field strength renormalization Z is
the sum of the quantity of the ¢3 model and twice the the negative of its
mass renormalization. Since the absolute value of the former is much smaller
than the latter in the plotted region, Z looks almost like —2 times the plot
shown in figure 4.10.

!4Note that in the ¢3 model the coupling has a mass dimension and we chose A = m.
In the Wess-Zumino model the coupling has no mass dimension but a factor of m? enters
through the prefactors of the calculated quantities.
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Remark 4.6.1. In standard literature about supersymmetry, e.g., [40], one of-
ten finds the statement, that the Wess-Zumino model has only a field strength
renormalization. Note that this is not a contradiction to our result since a dif-
ferent definition is used. With the definition invoked by [40] the field strength
renormalization of the scalar field would be of the form

(1+ 286 +m?o,
while our definition corresponds to
(14 Z) (0¢ + (m*+ M)¢) .

These are connected by setting Z = Z' and M = —Z'm?/(1 + Z").

The distortion of the group velocity of this logarithmically divergent
model is again quite moderate. If one identifies the field ¢ with the Higgs
boson, the distortion might be detectable in future colliders, if the Higgs will
be detected at all.



Chapter 5
Summary and outlook

rel

We have seen that the distortion of the group velocity Av " is of drastically
different order of magnitude in logarithmically divergent models (43 and
Wess-Zumino model) compared to quadratically divergent models (¢3 and ¢*
model). It is of the order of percentages in the first kind and of order of 10%
for the latter kind. With these huge values for the quadratically divergent
models, perturbation theory in A might be inappropriate for investigating
these except for very tiny coupling A. The order of magnitude of the relative
mass renormalization M (ko?)/m? is of order 1 in logarithmically divergent
models. The mass renormalization can be used to fix the mass at vanishing
perpendicular momentum £k, but for higher values of k£, the mass changes,
and this change should be detectable. If we consider the noncommutative
Minkowski space to correspond to £, we still have to integrate over different
o € %. Thus, there will be no distinct direction for &k, but the mass will still
depend on the momentum.

It is quite remarkable that the difference of orders of magnitude between
models of different divergence class is so large while for models of the same
class it is of order 1. There is no clear connection, for example, between the
¢® model in six and the ¢* model in four dimensions despite their quadratical
divergence. It is worth while to further investigation, if there is some deeper
reason behind this or if it is just by accident.

So far, no distortion of the group velocity has been detected on particles.
Of course, the result depends on the concrete choice of the constants A, m
and \,.. We have chosen these to be compatible with the interpretation of
the field with the Higgs boson. Although, the investigated models are not a
possibility for the Higgs model, one could assume that the dispersion relation
of the latter might also fall into this classification. If the Higgs is described by
a logarithmically divergent (maybe supersymmetric) model, the distortion of
the dispersion relation is quite mild but might be detectable in the LHC or

97
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ILC (if the Higgs is detected at all).

That effects from noncommutativity are not observed on known particles
might have its reason in that not all particles see this noncommutativity of
spacetime. Remember, that this concept of spacetime was only thought to
be an intermediate step. The uncertainty relations were derived in [13] by
taking gravity into account in a detection process. So, it is not too naive to
assume that the Higgs, which generates masses of other particles, couples
differently to gravity and might see a noncommutative structure while other
particles do not.

But there are still a lot of open conceptual problems to solve. An IR cut-
off with a well-defined adiabatic limit for a reasonable class of sequences for
interacting models on M. would be desirable. Furthermore, if we do not see
the coupling A\ as infinitesimally small, contributions from different orders
might cancel each other by a finetuning process. So, higher order contribu-
tions should be calculated. For this the concept of oscillatory integrals has
to be extended. It would be interesting to see if some kind of UV-IR mixing
appears also on M. and whether it is harmless on logarithmically divergent
models, too. Also, the treatment of massless fields or local gauge transforma-
tions are still problematic, see for example [46]. Results for noncommutative
electrodynamics would be interesting since electrodynamics is experimentally
tested to very high precision. The distortion of dispersion relations gives rise
to further conceptional problems. Since the asymptotic behaviour is not that
of a free field the LLSZ formalism is not applicable. So it is not clear how to
define the S-Matrix for interacting fields.

All in all there are a lot of open problems. If the colliders show the pre-
scribed dispersion relations for the Higgs they are surely worth investigating.
Another possibility would be to look at a change of the concept of the non-
commutative spacetime. E.g., the commutator Q" might not be a central
element and be involved in the interaction. But these changes would make
rigorous calculations probably very difficult. The best thing would be not to
blindly test certain assumptions, but derive the setting from deeper concepts.
However, this might be even harder.
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Appendix A

Conventions and useful formulae

In four-dimensional Minkowski space M we use the metric
,r]l“/ = dla‘g(+7 Ty T _)'w/

and indices running from 0 to 3 and analogously for higher dimensions.
Mostly, we use upper indices for vectors in position space, like z*, and lower
indices for vectors in momentum space, like p,. Tensors of type (r,s) on
Minkowski space will be denoted by 7 (M). For z € C, z will denote the
complex conjugate.

S denotes the Schwartz space, D is the space of smooth functions with
compact support and O, are the distributions of rapid decrease. Dual spaces
are generally denoted by a prime, e.g., §’. The Fourier transform and its
inverse in d dimensions are defined by

R 1 dl’ xeikw
b= / d (),

f(k) = f(=k).

For f € Sand T € 8’ we have

[NJisH

The convolution for f,g € S is
fxg(x):= /ddyf(x —9)9(y)-
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Hence,

Free field of mass m:

CI)( : / —ip4x + aT(p)eieriB ,
27r 2 QWP )
with  wp := \/p? + m2,
py = (Wp, P)-

The vacuum expectation value of ®(f)®(h) is denoted by (®(f)P(h)).
Delta-functions:

6@ = 1,
(2m)2
Ai(z —y) = (2(2)2(y)), (A1)
B 1 . 1 6(po— wp)
+(p) (27T>319(p0) (p ) G 2y
A_(z) = Ay (—z) = Ay (z),
Ag(z) = 10(z0)(Ay(z) — A_(2)),
A . 1 -1
AR(p) - ll\H(l) (2%)% »2—m? 1t Z'EP()’
. 1 1 1 1
B 1% (2m)% 2wp <P0 +wp+ie  py—wp + Zf) ' (A2

The definition of Ag is chosen such that

(O, + m»)Ag(x —y) = 5(d)(x — ).

Ay(x) := Agr(—2x),

Ap(z) =1 (0(x0)As(z) + 0(—x0)A_(2)),

Ag(z) = Ap(z) —iA_(x), (A.3)
Ay(z) = Ap(z) —iA (). (A4)

B,(r) denotes the open ball of radius r around x. Vi is the full for-
ward /backward lightcone. I% is the set of nonnegative multi-indices of order
length s.
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On M. we have the commutation relation:
[q", q"] = iQ"".
In Weyl form this is
eiknd" gilva” — o= 5kuQ"ly ilku+1u)a" (copy of 2.2)

Furthermore,

/d4qe““q = (27m)*6(k).
The starproduct or twisted convolution for f,g € S(M?),0 € TZ(MY) is
defined by its Fourier transform in the following way:

/ d1f(k — D)g(1)e 3k,

— 1

[ > g(k‘) = (27T)2

The index o at the star will mostly be omitted.

The wave front set of a distribution 7" € §'(M) will be denoted WF (7).
It is a subset of M x (M'\ {0}). Define WF,(T) := ({z} x M')NWF(T"). The
set WF,(T') can be seen as the set of singular directions of the distribution
T at x. It is the set of all directions in which the Fourier transform of g7’
may not fall off faster than any polynomial for some function g with compact
support and g(x) # 0. For an exact definition of the wave front set see, e.g.,
[35, 26]. The following properties hold:

VAS>0: A WF,(T) = WF,(T),
WF(T + S) € WE(T) U WE(S).

If WE,(T) = () then T is C* around z. If WE(T, ) := |J, s (WF.(T) +
WF,(S)) does not contain an element of the form (z,0), then the product

T - S is a well-defined distribution and WF(T" - S) € WF(T, S).

WE(AL) = {(z" k,)|z #0,2"z, =0 and IXA > 0: k' = —\z"}
U{(0,k,)|k,E" =0 and ky < 0},

WF(A2) = {(z", k, )|z # 0,2"z, = 0 and 3IX > 0: k" = —Aa"}
U{(0,k,)|k, k" > 0 and ky < 0},

WF(A_) = —=WF(A,),

WF(0) = {(2", k,)|2° = 0,ko #0 and k =0},

WF(AR) = {(z*, k,)[z" > 0,22, =0 and IN #0: k* = —Xz*}

U{(0,k,)|k,k” > 0 and ko # 0},
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where 6y(z) = 0(xo).
For a distribution 7' € S'(R?\ {0}) or T € S'(RY) the scaling degree
sd(T) is defined as

sd(T) = inf{a € R‘)\‘ST(Ax) = o} .

Then we can deduce:

e If sd(7T) < d, then there exists a unique extension T € S'(R%) of T such
that sd(T") = sd(T) and T' = T outside the origin.

o If d < sd(T) < oo, then there exist extensions T € S'(RY) of T, such
that sd(T') = sd(T") and T' = T outside the origin. For two such exten-
sions T', T", there exists a polynomial P of degree sd(T") — d or smaller,

such that T — T" = P(d)d.

For Ay in d dimensions we get sd(A”) = n(d — 2) for n € N More on the
concept of scaling degree can be found in [41, 7].
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Appendix B

Oscillatory integrals

When calculating nonplanar graphs in quantum field theory on noncom-
mutative spacetime, we encounter many integrals which are not absolutely
convergent! but made finite by an oscillating factor. An example for such an
integral in one dimension is

b

exptk = lim lim exp ik,

1 1
Ak —— Ak ——
.é V1+k? a——cob—oo f, T+ K?

where both limits exist and the result is independent of their order. However,
this notion of an improper Riemann integral makes a priori only sense in one
dimension. If one looks at higher dimensions a more sophisticated mathe-
matical framework is needed, which is the theory of oscillatory integrals. The
main definitions and results of this concept are given in this appendix.

We deal with not absolutely convergent integrals, so the usual rules of ma-
nipulating integrals are a priori not applicable. An example of a function not
absolutely integrable for which the theorem of Fubini fails, is the following:

= if In e Nwith 2" — 1 <z < 2" —1
and 2" — 1 <y < 2" —1,
f(x,y): 1 1 : n n+1
—5m M IneNwith2" -1 <z <2" -1

and 21 — 1 <y < 22 _ 1,

which is kind of oscillating and decreasing at infinity. As easy to see, we

!'We use the following terminology: An integral [ dz f(z) is said to be absolutely conver-
gent if [ dz|f(x)| < oo in the sense of Lebesgue integrals. In this case f is called absolutely
integrable or measurable.
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Figure B.1: Function f

have

a(z) ZZ/dyf(%y) =0,
b(y) :Z/dxf(w,y) = {1 ro<y<t

0 else.
So,
/dxa(az)zo%l:/dyb(y).

This is similar to the case of an alternating series like Y- (—1)"<. One can
get an arbitrary value if one sums the terms in a different order. One can
expect that accordingly in more than one dimensions one can find for a not
integrable function, which is kind of oscillating, for each number a variable
transformation, with which the integral of this function gives this number.?

2In one dimension the situation is different because there is essentially one way to go
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However, oscillatory integrals, as defined below, have a well-defined sense. We
give some important properties of these integrals which are useful to actually
calculate one. Furthermore, a version of Fubini’s theorem holds, shown in
section B.4. The connection to the improper Riemann integral is given in
proposition B.5.1.

B.1 Basic definitions and results

The theory of oscillatory integrals was to a great part developed by Hérman-
der |25]. However, to keep things from becoming unnecessary complicated,
we use the theory as given in [35].

Let 2 be an open set in R?.

Definition B.1.1. A phase function on Q x R’ is a continuous function
¢ QxR — R with

1WA >0, (k1) € Q x R ok, \) = Aok, 1),
2. ¢ is C*™ on Q x (R"\{0}),
3. V¢, Vig) # (0,0) on Q x (R\{0}).

An example of a phase function is £*l,, which is used in Fourier trans-
formation.

Definition B.1.2. A C*®-function a : Q x R* — C is called symbol of order
r€Ron QxR if VK C Q compact and Yo € I5, 3 € I, the seminorms

lallkas = sup (1) DR D a(k, 1) (B.1)
keK IR
are finite. The set of all such symbols equipped with the topology given by
the seminorms will be denoted by Sym(,¢,r).
A function a : Q x R" — C is called asymptotic symbol, if it can be
written as a = aj + ag with a; € Sym(€2,¢,7) and as having compact support
in [ and the map k — az(k,-) is C* as a map from  to L>(R?").

Loosely saying, derivatives in [ have to lower the asymptotic polynomial
behaviour of a and derivatives in £ must not increase it. Hormander [25] gave
a generalized notion of symbols of type p,d with 1 > p>0and 1 >0 >0
and, compared to (B.1), the exponent of 1 + [I| is p|f| — d|a| — r. So, the
derivatives in k are allowed to increase the order of the asymptotic polynomial
behaviour. We do not need this generalized form.

to infinity. That is why the concept of improper Riemann integrals exists.

107



Remark B.1.3. If » < 7' then Sym(Q,¢,r) C Sym(€,¢,7") and the C>-
functions of compact support are dense in Sym(£2,¢,7) in the topology of
Sym(€,¢,r"). For a; € Sym(Q,¢,71) and as € Sym(Q,¢,73) the product a; - as
is in Sym(€, ¢, + r2) and accordingly for asymptotic symbols. D,‘leﬂ ay is
in Sym(Q, ¢, — |8]).

Now we want to give a natural extension to expressions like

/ dl a(k, 1)e’?*D. (B.2)

if the integral is not absolutely convergent:

Theorem B.1.4. Let ¢ be a phase function. We can associate with ¢ a
linear map from the asymptotic symbols to D'(5Y), denoted by Ty(a), which is
uniquely determined by:

1. If a has compact support in | then Ty(a)(k) = [dl a(k,1)e**®) and is
a C*®-function of k.

2. The restriction of Ty, to Sym(§),t,r) is a continuous function from

Sym(Q,t,r) to D'(Q).
Furthermore, the wave front set WF(T,(a)) is contained in
{(k, Vio(k,1)|(k,1) € Q x R\{0} with Vip(k,1) =0} . (B.3)

We use the notion of [ dl a(k,l)e?**) for the distribution Ty(a)(k) even
if the integral is not absolutely convergent. The case s = 0, where Q = R°
equals a single point, is allowed. In this case the functions only depend on [
and Ty(a) € C.

Remark B.1.5. It is easy to see that the notion of asymptotic symbols can
be generalized further. The function a could be split into more parts: a =
a;+as+as+. ... For the additional terms, k — a;(k, -) should again be a C*°-
map into some “integrable space” having compact support in [. An example
for such an “integrable space” would be L*(R"), which was already used
for the original definition of asymptotic symbols in definition B.1.2, or the
elements of &'(R") which are C* around [ = 0.* The important point is that
the integrals [ dkf(k)a;(k,1)e’**™) should each be well-defined for f € D(Q),
one in the sense of oscillatory integrals, and their sum independent of the
splitting. So one could even allow for some k& — a;(k,-) to be distributions
instead of C*°-maps. This could, of course, increase the wave front set beyond
(B.3).

3 As the phase function does not have to be continuous in [ = 0, a;(k.-) should, e.g., not
contain derivatives of J-functions at that point.

108



Actually, in the following we are only going to treat symbols instead of
asymptotic symbols. The extension to asymptotic symbols will be obvious.

B.2 Calculating oscillatory integrals

To actually calculate an oscillatory integral for a given phase function ¢ and
some symbol a of order r, according to theorem B.1.4, a possibility is to find
a sequence of symbols a,, with compact support in [ which have as their limit
a in the topology of symbols 7’ with 7/ > r.* Here, the following proposition
is useful:

Proposition B.2.1. Let g be a function in S(R") with g(0) = 1. Then Ve > 0
the sequence g,(l) := g(I/n) has the limit 1 for n — oo in the topology of
Sym(§2,t,€).

Proof. Let 0 < € < 1. The cases with € > 1 follow easily. We have to prove

(3]

For |B] = 0 we write ¢g(I) = 1 +1g(l) with § € S. We make a variable
transformation to I' = % and use that (B.4) is smaller or equal to the sum of
the suprema over the sets |I| > 1 and |I'| < 1. The first gives

— 0. (B.4)

n—oo

sup(L + [1])!"17
l

1 /1 - 1
cup L (L) 500 < Lm0 o

[I7]>1 ne n—o00

The supremum in the last expression is finite since g € S. The other term
gives

1 1 —e
sup - (— ; m) Vg (1)

ESRONG
1 ~ / / 1 / -
<L (swa@)) (st (24m) ) —o0
n 4 |")1<1 n n—00

Here, the latter supremum in the last expression is smaller than 1 for all n
since [(* + 1)~¢ has its maximum on [0, 1] at the point [ = 1.

n

40Of course, the value of the oscillatory integral does not depend on whether we see it
as a symbol of order r or r’. The only difference is, that such a sequence a,, might not
exist in the topology of symbols of order r, compare with remark B.1.3.
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Now we assume |3| > 1. Then |§]| — € > 0. Furthermore

ot (5) =am 70 ;)

and DPg € S. The strategy will be similar to the above: Transform to I’ and
split the supremum. The first term gives

18] —e
1 1 /1
sup 1+ [I'|]n)P=<|(D"q) (1| < sup — <— + l’) DPq) (I
w5 (14 1) (D) (0] < sup o (S411) - [(D%) )
1
<2 — sup |HW|} Dg) (I')| — o.
ne |l’| >1 n—o00

For the other one we have

1
sup — (1 + |I'|n)P=< [ (DPg) (I
(U ) 7 | (D%) (1)
L (2om)" a0
ne <1 n 1]

12|f3‘ sup‘(Dﬁ ) ‘—>O

n 14 n— o0

]

Remark B.2.2. With such a function g one can easily see that g, - @ has the
limit a in the topology Sym(€2,¢,r + €). So, we have for f € D(Q)

n—oo

Ty(a)(f) = lim [ dkdl f(k)g (i) a(k, 1)e*D.

From the proof of proposition B.2.1 we see, that D”?g,, — 0 in the topology
of Sym(£2, ¢, €). Hence,

/dl DPg.(Da(k,1)e*®) —— 0 (B.5)
as a distribution. Most of the time we will take g to be a function in C§°(R?")
with

1 if|ll <1
) = B.6
9() {0 if 1| > 2. (B:6)

The restriction on the sequence g, to be scaling can be loosened, but
it is important, loosely saying, that the functions fall off more slowly when
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the region, where they almost equal 1, increases. An example of a sequence,
where the derivatives do not fall off more slowly would be

{1 if 1] <n—1,

(1) =
W= e 1m0 i a1

with ¢ as in (B.6) (with ¢ = 1). The sequence ~,, does not approach 1 in the
topology of some Sym(€,¢,r).

A different method, to calculate the integrals, than multiplying with scal-
ing functions stems from the following lemma and can be seen as the gener-
alization of integration by parts:

Lemma B.2.3. For every phase function ¢ on Q x R' there exist A, €
Sym(Q,t,0) and B,,C € Sym(Q,t,—1) such that

Ve = e with V = A0+ B,o, + C.
Proof. See [35]. O

With this differential operator V', one can calculate

Ty(a)(f) = tim [ dkdl f(k)g (%) ol VD

n—oo

= lim [ dkdl (VTf(k;)g (%) a(k;,l)) REICR)

n—oo

n—oo

— / dkdl (VT“““*” F(k)a(k, 1)) eiokd),

= tim [ dkdl (VT f(R)a(k, 1)) g (%) (k)

where ¢ is like in (B.6). The last integral is absolutely convergent, so the g
was dropped. VT denotes the transposed differential operator, i.e.,

VI=-A4,0'-B,o;+C—(0'A,) — (9{B,).

The passage from V to V' in the first step was possible since the integrand
has compact support and so the boundary terms vanish. In the second step
we used (B.5) so the terms with derivatives of g vanish.

B.3 Further results

If the phase function ¢ and the symbol a are continuous functions of an
additional parameter z with values in C*°(Q2 x (R*\ {0})) and Sym(%,¢,r),
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then Ty(a)(f) will also depend continuously on z. Thus, we can pass to limits
under the integral sign. In particular, we can differentiate with respect to z
under the integral sign, if this is possible for ¢ and a.

From the restriction on the wave front set of Tj;(a) given in Theorem
B.1.4 we see that Ty(a)(k) is a C*°-function of k in the set

Q(C™) == {k|k € Q,V1 € R\{0} : V,¢(k,1) #0}.

For given k € Q(C™) the function ¢(k, -) is a phase function on R* and a(k, )
is a symbol of the same order r on R*. (We have s = 0 here.) So we can
regard k£ as an additional parameter. The integral over [ for this k is defined
and we have:

T(@)(k) = T (ak,) = [ dla(k et (B.7)

Furthermore, differentiation with respect to k& can be performed under the
integral sign:

O Ty(a)(k) = /dl (ia(k, D)oL (k, 1) + OLa(k, 1)) e*D,

Now a(k,1)0;¢(k,1) is an asymptotic symbol of order r 4+ 1 and the above is
again defined as an oscillatory integral. Proofs can be found in [26] or [25].

B.4 Theorem of Fubini for oscillatory integrals

As we have seen above, in not absolutely convergent integrals the order of
integration can in general not be interchanged. That this is nevertheless pos-
sible for oscillatory integrals show the following two generalizations of the
theorem of Fubini.

Theorem B.4.1 (Theorem of Fubini for the “distributional variable” k). If
Q is of the form Q = Q; X Q9 and the phase function ¢ has the property
(Vi,d, Vi) # (0,0) we can perform the kyo-integration at the end:

/dkdl f(k)a(k, 1)e ™D /dkz (/ dk,dl f(kbkz)a(khkz,l)ew(kl’k%l)) ;

where f € D(Q) and on the left hand side the oscillatory integral is defined
with a symbol and phase function depending on ks as an additional parameter.

Proof. See [25], (1.2.4). O
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A new result, to our knowledge, is the following theorem of Fubini where
we split the variable [ € R? into two components:

Theorem B.4.2 (Theorem of Fubini for the “oscillatory variable” [). Let
[ = (u,v) € R" X R™2, ¢ :=t; + t5. and the phase function have the property
that ¢(k,u,v) = ¢1(k,u)+p2(v), where ¢y is a phase function in the variables
k and u. (¢o does not have to be a phase function and could even be zero.)
Then, for a € Sym(Q,t,r) and f € D(QQ), the function

H(v) = / dkdu f(k)a(k,u, v)e E
is in S(R®) and furthermore

/ dvH (v)e'®() = / dkdl f(k)a(k,1)e®*D. (B.8)
Proof. First, we show that H € S(R"), what is equivalent to

sup [v" DI H(v)] < o0 (B.9)
for all multi-indices a, 3. We have
v*DyH(v) = / dkdu f(k)v*Dla(k, u,v)e®®¥),

using the fact that the differentiation can be performed under the integral
sign (see section B.3). In the following considerations it is important that we
are dealing with symbols on Q x R!. This means that derivatives with respect
to u reduce the asymptotic polynomial behaviour for large v and vice versa.
We note that:

e v is in Sym(,t, |«a|).
e If a € Sym(Q,¢,r) then D%a € Sym(Q,t,r — |3]).

So v*Dfa is a symbol of order 7 + |a| — || and (B.9) is proved if we can
show that

/ dkdu f(k)a(k,u,v)e®®)| < oo

sup
v

for an arbitrary symbol a. We use that ¢; is also a phase function on  x R?,
so according to Lemma B.2.3 there exist symbols Ai, Ai of order 0 and B,,C
of order -1, all on  x R?, with

Vel — (A4L00 + A200 + B,0) + C) e'rlb) = gior(hn),
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As ¢1 does not depend on v the symbols Ai can be set to zero. With this we
have

sup
v

=sup lim ‘/dkdu f(K)a(k,u,v)g (E) Vet (k)
n

v T—00

/dkdu f(k)a(k,u,v)e'®Fw

—sup lim ’ / dkdu (V' f(k)a(k,u,v)) g (%) i (k)

v N—X

=sup
v

/ dkdu (VT[THH] f(k;)a(k;,u,v)) gidr )|

From the second to third line it was important that Ai vanishes since we
are not integrating over v. The last integral is absolutly integrable in k,u
and v and the integrand is a continuous function of these variables, so the
supremum of the integral over k and v has to be finite. Thus, H € S(R")
has been shown now.

To prove B.8 we use the same V as before and make use of Fubini’s
theorem for absolutely integrable functions:

/ dvH (v)e'®2) = / dv ( / dkdu (VT““*“” f(k:)a(k:,u,v)) ewl(k,u)) i (0)

= / dkdudv (VT“*“” f(k)a(k,u’v)> i1 (k) i (v)

= / dkdl f(k)a(k,1)e?®D.

B.5 Connection to other definitions

For one dimension there already exists a description on how to calculate
expressions like (B.2), namely the improper Riemann integral. For this, a
has to be decreasing, i.e., of order smaller than 0.° Oscillatory integrals are
well-defined even if the value of the symbols a increases with [. The following
proposition states that, if the improper Riemann is applicable too, the result
equals the oscillatory integral. As we could not find a similar statement in
[25] or [35], we give a proof.

SFunctions which behave like @ for large |!|, which are of order 0, are also allowed.

The following proposition can easily be generalized to this case.
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Proposition B.5.1. Let g be as in (B.6), a € Sym(Q, 1,r) with r < 0 and
d(k,1) = ¢(k)-1 a phase function® with ¢(k) # 0. Then the oscillatory integral
equals the improper Riemann integral:

lim dl g (1) a(k,)e®® = lim [ dl a(k,1)e*®!
0 n

n—oo n—oo 0

Proof. This is clear if » < —1 since then both integrals are absolutely con-
vergent. In the other case the integral on the left-hand side equals

n ] 2n l
/ dla(k,1)e™! + / dig (ﬁ) a(k, 1)e !,
0 n

The first term already has the correct limit, so the proposition is proved if
the other one approaches 0. To see this we make a variable transformation
and integrate by parts:

2n
/ dlg (i) a(k,1)et)!
n n

2
=n / dlg(Da(k, nl)e®n!
1

T W [g(Dya(k, nb)e @)

+W /1 Al (9g(Da(k,nl) 4+ g(D)n(da)(k, nl)) e¢*m

The boundary terms vanish in the limit n — oo since a is a symbol of order
r < 0 and hence decreasing at infinity. For the remaining integrals we have

2
/ didg(1)a(k, nl)e**nt
1

< sup |9g(1)| sup fa(k. )] —0

n—0

l€[n,2n]
and
2 .
/ dlg(1)n(Dha) (k, nl)e @bt
1
< / dl ‘ g <—> (0ha) (K, 1)t
n n
< / dlsup |g(1)|du(1+ 17~ — 0,
n 4 n—
where the last integral is absolutely convergent. ]

6The most general form of a phase function in one dimension is 8(—1)¢. (k)-1+0(1)¢_ (k)-
[. This case can easily be derived from the one given here.
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To show how the last theorem and the theorem of Fubini can be used to
calculate oscillatory integrals numerically, we give an example for s = 0,¢; =
t2 =1:

v”u i v17u .
/dudvme :/d(/dﬁ )

. —/ 2
= m/dv plTe VIite®,

The absolute value of the first integrand increases in v-direction but the last
integral is absolutely convergent and can be treated by the usual numerical
methods.

Another prescription of how to interpret expressions like (B.2) is to multi-
ply it with a function f(k) and then perform first the k-integration and then
the [-integration. This works, for example, for [ dl le™*! since the remain-
ing function of [ is absolutely convergent. But this does not have to be the
case, a and ¢ could for example not dependent on k at all. If it is absolutely
convergent, then the result gives, of course, the same as the calculation with
oscillatory integrals:

Proposition B.5.2. Let a be a symbol, ¢ a phase function and f € D(Q)
with

F(l) := / dk f(k)a(k,1)e**D
absolutely integrable. Then
[ PO =T (),

Proof.
. l |
Ty(a)(f) = Jggo/dkdl flk)g (E) a(k, 1)et®D

—1m [ dig (%) F) = / di F(i).
]

If the phase function is of the kind k*l, then the oscillatory integral is
related to the Fourier transform. If a does not depend on k it can be seen
as an element of S’. Then the oscillatory integral gives exactly the Fourier
transform of a € §'.
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As we see in section 4.4 an extension of the theory of oscillatory integrals
to the case where a(k,l) is needed, if we want to calculate higher order
diagrams in the Yang-Feldman formalism on M. There are two natural
approaches for such an extension:

1. The distributions a could be approximated by a sequence of symbols
(@n)nen, such that for each a, the oscillatory integral is well-defined.
The oscillatory integral for a can then be achieved from the limit
n — oo after integrating, if this is well-defined and to a large extend
independent of the choice of the sequence.

2. One could regard the relation

n—oo

/ dkdlf(k)a(k, 1)e*®) = lim [ dkdlf(k)g.(Da(k,1)e*®) (B.10)

for a sequence g, of symbols with compact support and approaching
1, as a definition. The right-hand side of (B.10), with finite n, is even
defined for a a distribution. If the limit exists and is independent of
the choice of the sequence g, out of some large class of sequences, this
would be a reasonable extension, too.
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Appendix C

Graphs for Yang-Feldman
formalism

Here, we show how to calculate the contributions to n-point functions with
graphs like those shown in figures 4.3, 4.4 or 4.5.

The graphs for the Yang-Feldman formalism we present here are similar
to those used in [2]. We analyse the r-point functions of the ¢* model. The
field equation is

(O+m*)® = —\o* L,

The naive solution is given in (3.3). The fields are built up recursively as in
figure 4.1.

The rules to calculate the contributions of graphs to the r point functions
of the ¢* model in momentum space are as follows:

1. Draw r tree graphs of retarded propagators. The directions are up-
wards. At each vertex there should be at most a — 1 branching outs
consisting of other retarded propagators. (The empty tree is allowed.)

2. Add leaves such that each vertex has exactly a—1 branching outs. (The
empty tree has one leaf.)

3. Connect each leaf by another one. The lines (“contractions”) are di-
rected from left to right. (Maybe there are additional rules, e.g., no
tadpoles are allowed if Wick ordering is involved.) If this is not possi-
ble (e.g. the number of leaves could be odd) the contribution of this
graph is zero.

4. Otherwise calculate the contribution of this graph to the r-point func-
tion in the following way:
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(a)

(e)

Numerate each retarded propagator and contraction by a different
number. Each gets a momentum k flowing in the direction of the
line.

For the retarded propagator with number j write AR(k:j), for a
contraction (27)2A, (k;).

For each root [ with outgoing momentum k;, write f;(k;,). (Incom-
ing momenta are counted as the negative is outgoing.)

The contribution coming from each vertex depends on the actual
cutoff. If it is a formal calculation, i.e., without cutoff, each vertex
with outgoing momenta {k; } gives

(2m)205(Y ky)-

If the cutoff is defined by multiplying the field monomial with a
cutoff function g like in section 4.2 it is

(2m) 2 2g() ky)-

On noncommutative spacetime further twisting factors might arise.
Some examples are given in section 4.3.

Integrate over all momenta. The order of this contribution is the
number of vertices.

A graphical example is given in figure C.1. Things can become more com-
plicated, if fields of higher spins or multiple interactions are involved, see,
e.g., the Wess-Zumino model in section 4.6. The topology of the graphs are
similar to the graphs from Feynman rules. Note, that in the Yang-Feldman
formalism each graph might not give a well-defined contribution on its own.
It is necessary to sum over all graphs of the same order.
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T

Figure C.1: Example of building up a contribution to the three-point function
in the ¢* model.
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Appendix D

Theorem of Epstein and Glaser

Epstein and Glaser examine in |17] vacuum expectation values (I-point func-
tions) of time-ordered products defined by retarded or advanced solutions.
These, denoted by Fr/a(p,q),p € R*; ¢ € R*", shall fulfill

suppFr/a C {(m;y) e M""|Vi < n3j <1 with T —y; € Vi} =: Sg/a.

(D.1)
V. denotes the full closed forward /backward light cone. Furthermore, their
Fourier transforms Fp/4(p; k) should be equal on the set

R, =<keM"

<Z k) <4m?*vIc{l,...,n} (D.2)

i€l

for some m € R.
Then the following theorem holds:

Theorem D.1.3. If a pair of tempered distributions Fria € S'(M'"™) has the
support (D.1) and their Fourier transforms coincide for k € R, then their
Fourier transforms are tempered distributions in p and infinitely differentiable

in k forall k € R,.

Hence, we can choose an arbitrary sequence of test functions G, € S(M")
which have support in a closed subset of R, and converge to (2m)*¢“") in
the topology of O (M™)" and the adiabatic limit,

lim [ dkdpf(p)Ga(k)Fr(p, k),

a—00

1Oy, are the distributions of rapid decrease, see [38] for a rigorous definition. These act
on smooth functions which are polynomially bounded. Fg,4 is on R, smooth and also
polynomially bounded since it is a tempered distribution.
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exists for all f € S(M') and is independent of the choice of the sequence G..
As the Fourier transforms of Fr and F4 coincide in R, the adiabatic limit
for such a G, is the same for both.
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