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Zusammenfassung:Wir betra
hten Quantenfeldtheorie auf ni
htkommutativer Raumzeit. Dazuwählen wir einen Ansatz, wel
her explizit dem ni
htkommutativen Minkowski-raum zugeordnet ist, nämli
h den Yang-Feldman Formalismus. Hier bestehtder Ansatz darin, versu
hen die Feldglei
hung der Quantenfelderzu lösen.In diesem Zusammenhang betra
hten wir zuerst eine We
hselwirkung inForm eines zusätzli
hen Masse-Terms. Dies benutzen wir, um die Frage desInfrarot-Cuto�s und des adiabatis
hen Limes zu erörtern. Es werden Klassenvon Abs
hneidefunktionen gefunden, wel
he den erwarteten Limes liefert.Des weiteren betra
hten wir vers
hiedene we
hselwirkende Modelle, das φ3Modell in vier und se
hs Dimensionen, das φ4 Modell und das Wess-ZuminoModell. Zu diesen bere
hnen wir Dispersionsrelationen und sehen, dass es ex-treme Unters
hiede in den Gröÿenordnungen im Verglei
h von logarithmis
hund quadratis
h divergenten Modellen gibt. Integrale, wel
he dur
h Twist-Faktoren endli
h gema
ht werden, werden rigoros im Sinne der Theorie deroszillierenden Integrale bere
hnet.
Abstra
t:We examine quantum �eld theory on non
ommutative spa
etime. For this we
hoose an approa
h whi
h lives expli
itly on the non
ommutative Minkowskispa
e, namely the Yang-Feldman formalism. Here the ansatz is to try to solvethe �eld equation of the quantum �elds. In this setting we �rst take a look atan additional mass term, and use this to dis
uss possible IR 
uto�s. We �nd
lasses of IR 
uto�s whi
h indeed yield the expe
ted limit. Furthermore, welook at intera
ting models, namely the φ3 model in four and six dimensions,the φ4 model and the Wess-Zumino model. For these we 
al
ulate dispersionrelations. We see that there exist huge di�eren
es in the orders of magnitudebetween logarithmi
ally and quadrati
ally divergent models. Integrals whi
hare made �nite by twisting fa
tors are 
al
ulated rigorously in the sense ofthe theory of os
illatory integrals.
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Chapter 1Introdu
tionQuantum �eld theory as it is given in standard textbooks today is modeledon Minkowski spa
e M or on a 
urved spa
etime whi
h lo
ally looks like M.There is no interplay between the parti
les des
ribed by the quantum �eldsand the underlying 
lassi
al spa
etime. This is unsatisfa
tory, sin
e one knowsfrom general relativity that the metri
, whi
h des
ribes the geometry of thespa
etime, depends on the distribution of matter and on the other hand themotion of the matter depends on the metri
. This 
annot be des
ribed by thestandard approa
hes to quantum �eld theory. One expe
ts that the pi
ture ofthe 
lassi
al spa
etime as a di�erential manifold with 
lassi
al metri
 breaksdown at very small length s
ales. This was already mentioned in [37℄ in 1934.By the in
orporation of gravity one expe
ts that distan
es below the orderof magnitude of the Plan
k length,
λP =

√
~G

c3
≈ 1.62 · 10−35m,be
ome meaningless. A hope is that the divergen
es in quantum �eld theory,whi
h make renormalization ne
essary and 
ome from high momenta, i.e.,small distan
es, disappear in the yet unknown new 
on
ept of spa
etime.A situation where the usual pi
ture of spa
etime breaks down is the mea-suring of the 
oordinates of an event to the order of magnitude of the Plan
klength. This was investigated in [13℄ semi
lassi
ally and it was shown thatsu
h an extreme pre
ision measurement 
auses a gravitational 
ollapse. Thisleads to the derivation of un
ertainty relations for the position 
oordinates

qµ. These 
an be written as
∆q0

(
∆q1 + ∆q2 + ∆q3

)
≥ λ2

P ,

∆q1 · ∆q2 + ∆q2 · ∆q3 + ∆q3 · ∆q1 ≥ λ2
P .7



8 Chapter 1: Introdu
tionThese un
ertainty relations 
an be realized, if one regards the 
oordinates aselements of an observable algebra, in whi
h the di�erent 
omponents of theposition ve
tor do not 
ommute any longer:
[qµ, qν ] = iλ2

PQ
µν .Here, Qµν is an element of the observable algebra unequal to zero. It is 
hosenin [13℄ to be a 
entral element and to ful�ll

QµνQµν = 0,
(

1

8
QµνQρτǫµνρτ

)2

= λ8
P1.This setting will be 
alled non
ommutative Minkowski spa
e and is explainedin more detail in se
tion 2.1. Closely related to this is to 
hoose Qµν to bea 
onstant matrix, most often denoted by σµν . In this thesis we will workmostly in one of these settings and try to formulate intera
ting quantum�eld theory on it. The non
ommutative Minkowski spa
e should not be seenas the �nal 
on
ept for spa
etime, but rather as an intermediate step towardsit. There is still no dire
t interplay between the �elds and the spa
etime onwhi
h they live. The only remainder from gravity is the appearing of thegravitational 
onstant G in the non
ommutativity s
ale λP . The hope is thatunderstanding the non
ommutative Minkowski spa
e and the formulation ofquantum �elds on it, helps to �nd a truly fundamental 
on
ept for spa
etime.Sometimes we repla
e λP by λn
 if we want to emphasize that we also 
onsiderdi�erent length s
ales asso
iated to the underlying non
ommutativity and arenot restri
ted to the Plan
k length.Non
ommutative spa
etime also arises in a 
ertain limit of string theorywith a 
onstant ba
kground B-�eld [36, 39℄. This setting 
an be des
ribed bya 
onstant σµν whi
h maps a ve
tor in time dire
tion to zero, i.e., time andspa
e still 
ommute. But this is not 
ompatible with the un
ertainty relationsmentioned above. Furthermore, Lorentz invarian
e is expli
itly broken. Wewill not 
onsider this setting here.Free quantum �elds 
an be de�ned in a straightforward way on non
om-mutative spa
etime, as shown in se
tion 2.2. But there are several di�erentapproa
hes to intera
ting quantum �elds. While they are equivalent on 
om-mutative spa
etime, they 
ease to be, if time does not 
ommute with spa
eany more. Se
tion 2.3 gives an overview of the di�erent approa
hes. It is notun
lear whi
h one is the most advantageous to 
hoose sin
e ea
h has someweakness. Espe
ially, there seems to be no 
onne
tion between quantum �eldtheory on non
ommutative Minkowski and non
ommutative Eu
lidean spa
e.



9Therefore, we 
hoose a setting whi
h works expli
itly on the Minkowski ver-sion, namely the Yang-Feldman formalism. This is the most promising ap-proa
h from our point of view. A phenomenon in non
ommutative Eu
lideanspa
etime is the mixing of UV and IR divergen
es, whi
h is examined inse
tion 2.4. Yet it is not 
lear, how this shows up on the non
ommutativeMinkowski spa
e.In Chapter 3 we introdu
e the Yang-Feldman formalism and look at pos-sibilities to introdu
e an IR 
uto�. This 
uto� is ne
essary in order to keepus from manipulating expressions without a well-de�ned sense. We 
onsidera mass term as intera
tion. This 
an be seen as a kind of toy model, sin
e wealready have an expe
tation of what the result should be. First, we do thisfor 
ommutative spa
etime and then have a 
loser look at the new situationon the non
ommutative one. In Chapter 4 we look at intera
tions, namelythe φ3 model both in four and six dimensions, the φ4 and the Wess-Zuminomodel. Some of these models are logarithmi
ally divergent and the othersquadrati
ally. We look at their dispersion relations and see that the orders ofmagnitude of the modi�
ations are rather moderate for the logarithmi
allydivergent models but for the quadrati
ally divergent ones 
onsiderably num-bers of magnitude higher. In fa
t, for logarithmi
ally divergent models thedistortion of the group velo
ity is of the order of per
entages. If one assumesthat the Higgs model sees a non
ommutative stru
ture of spa
etime and be-longs to this 
lass of divergen
e (possibly a supersymmetri
 extension of themodel) this might be dete
table in forth
oming 
olliders. The last Chapter5 brings a 
on
lusion and an outlook.In the literature 
al
ulations for quantum �eld theory on non
ommutativespa
etime are often presented very vague and without well-de�ned obje
ts.Here, we try to treat everything as rigorous as possible. For example integralswhi
h are made �nite by twisting fa
tors are 
al
ulated using the theory ofos
illatory integrals. To our knowledge, this has not been done before. The
on
ept of os
illatory integrals is presented in Appendix B. In the wholesetting we keep λn
 �nite and do not treat the �elds as a formal power seriesin λn
.
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Chapter 2Quantum �eld theory onnon
ommutative spa
etime
2.1 Non
ommutative Minkowski spa
eIn this se
tion we present mainly the setting of non
ommutative Minkowskispa
e from [13℄. However, the presentation given here is slightly simpli�ed.For this se
tion we set λP = λn
 = 1.

[qµ, qν ] =: iQµν ,

[qµ, Qνρ] = 0.Furthermore, we require Qµν to ful�ll
QµνQµν = 0,

(
1

8
QµνQρτǫµνρτ

)2

= λ8
P1.These relations together with the 
ommutation relations imply the un
er-tainty relations

∆q0
(
∆q1 + ∆q2 + ∆q3

)
≥ λ2

P ,

∆q1 · ∆q2 + ∆q2 · ∆q3 + ∆q3 · ∆q1 ≥ λ2
P ,

(2.1)but not vi
e versa. Sin
e the un
ertainty relation 
annot be ful�lled bybounded operators, we will look at the Weyl realisations, i.e., instead ofthe qµ we look at eikµqµ . For these, the 
ommutation relation be
omes
eikµqµ

eilνqν

= e−
i
2
kµQµν lνei(kµ+lµ)qµ

. (2.2)11



12 Chapter 2: QFT on non
ommutative spa
etimeThe joint spe
trum of the Qµν is a subset of
Σ :=

{
σ ∈ T 2

0 (M)
∣∣∣σµνσµν = 0,

(
1

8
σµνσρτǫµνρτ

)2

= 1

}
.

Σ is a non
ompa
t manifold and invariant under Lorentz transformations:
σ ∈ Σ,Λ ∈ L⇒ ΛσΛT ∈ Σ,where L is the set of all Lorentz transformations and

(ΛσΛT )
µν

= Λµ
ρΛ

ν
τσ

ρτ .Furthermore,
∀σ, σ′ ∈ Σ ∃Λ ∈ L with σ′ = ΛσΛT .For σ ∈ Σ we will de�ne the (Eu
lidean) norm by

||σ||2 :=
1

2

∑

µ<ν

σµν2.This has the property that ||σ|| ≥ 1 ∀σ ∈ Σ. We de�ne
Σ(1) :=

{
σ ∈ Σ

∣∣||σ|| = 1
}
.

Σ(1) is 
ompa
t and invariant under rotations.One possibility is to 
hoose Qµν as the unit operator times a 
onstant ele-ment σµν ∈ Σ. The 
orresponding C∗-algebra with the Weyl realizations willbe denoted by Eσ. The representations of Eσ are, by von Neumann unique-ness, all equivalent to the algebra of 
ompa
t operators K on the Hilbertspa
e L2(R2). In fa
t, if we 
hoose the standard matrix
σ0 :=




0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0


 ,we 
an identify Eσ0

with the setting of quantum me
hani
s on the two di-mensional plane: q0 = X1, q1 = P1, q
2 = X2, q3 = P2, where X i and Pi arethe usual position and momentum operators. σ0 is an element of Σ(1).A dense set of elements of Eσ is the set of symbols

f(q) :=
1

(2π)2

∫
d4kf̂(k)e−ikµqµ

,



2.1 Non
ommutative Minkowski spa
e 13where f̂ is the Fourier transform of f and should be in L1(M). Most timeswe will 
hoose f ∈ S(M). The above de�nes the Weyl 
orresponden
e: W isa map from S(M) to Eσ with W(f) = f(q). The produ
t of two symbols is
f(q)g(q) =

1

(2π)4

∫
d4k1d

4k2f̂(k1)ĝ(k2)e
− i

2
k1σk2e−i(k1+k2)·q = (f ⋆σ g)(q).(2.3)This means that the produ
t on Eσ 
an be pulled down to the ⋆σ produ
t1on S(M). In terms of the Weyl 
orresponden
e this relation is W(f)W(g) =

W(f ⋆σ g). The fa
tor e− i
2
k1σk2 is 
alled twisting fa
tor.The produ
t of (2.3) is often 
ompared with the formal Moyal star produ
t

(
f ⋆M

σ g
)
(x) := e

i
2
∂y1µQµν∂y2νf(y1)g(y2)

∣∣∣
x=y1=y2

.To ensure that f ⋆σ g = f ⋆M
σ g one has to assume that f and g are analyti
.But for analyti
 fun
tions there exists no well-de�ned 
on
ept of lo
ality.2So, one should treat the statement with 
are, that f ⋆M

σ g and therefore also
f ⋆σ g are lo
al produ
ts. However, if one takes f ⋆M

λ2n
σ g and f ⋆λ2n
σ g to beformal power series in λn
 they are indeed equal.The group of transformations a
ts on Eσ by τa(f(q)) = f(q − a1) for
a ∈ M. However, Lorentz symmetry is expli
itly broken in this setting, sin
efor Λ ∈ L the operators q′µ = Λµ

νq
ν ful�ll

[q′µ, q′ν ] = i(ΛσΛT )
µν
.So, there exist distin
t Lorentz frames, in whi
h the non
ommutativity ma-trix, say, equals σ0.To get rid of this expli
it breaking of Lorentz invarian
e we look at the al-gebra of 
ontinuous fun
tions from Σ to L1(R4) vanishing at in�nity, endowedwith the produ
t

(F ×⋆ G)(σ, k) =

∫
d4lF (σ, k − l)G(σ, l)e−

i
2
kσl,norm ||F || = supσ∈Σ

∫
dk|F (σ, k)| and the involution F ∗(σ, k) = F (σ,−k).The C∗-
losure of this algebra will be denoted by E . It is isomorphi
 to

C0(Σ,K). If we denote the elements of the algebra Eσ by qµ
σ we 
an see qµ ∈ Eas a dire
t integral over the qµ

σ . Furthermore, there exists the algebra ofbounded 
ontinuous fun
tions from Σ to L1(R4). The 
ompletion of this1This is a nonlo
al produ
t. Hen
e, one 
an see this setting as an example of a nonlo
al�eld theory.2An analyti
 fun
tion is �xed globally by its derivatives at a single point.



14 Chapter 2: QFT on non
ommutative spa
etimealgebra will be denoted Ẽ and 
an be viewed as a subset of the multiplieralgebraM(E) of E . The algebra of bounded fun
tions on Σ 
an be asso
iatedwith the 
entre Z of M(E).The Weyl 
orresponden
e generalizes to 
ontinuous fun
tions from Σ to
S(M) (vanishing at in�nity or bounded) by W(f)W(g) = W(f ⋆ g), wherethe star produ
t is pointwise in Σ:

f̂ ⋆ g(σ, k) =
1

(2π)2

∫
d4lf̂(σ, k − l)ĝ(σ, l)e−

i
2
kσl.Here, all Fourier transforms are at �xed σ. The symbol f(σ, q) = W(f)(σ)
an be regarded as an element of Eσ:

f(σ, q) =
1

(2π)2

∫
dkf̂(σ, k)e−ikqσ , (2.4)where qσ denotes the element realized in Eσ. If f does not depend on σ ∈ Σ,we will just write f(q).The Poin
aré group a
ts on symbols in the following way:

τΛ,a(f)(σ, q) = det(Λ)f(Λ−1σΛ−1T ,UΛ,aqU−1
Λ,a), (2.5)where UΛ,aqσU−1

Λ,a = qΛ−1σΛ−1T −Λ−1a1. Loosely saying, one has to transformboth qµ and Qµν . This indu
es an automorphism on E . No distin
t frameexists any more.3Derivatives are de�ned as in�nitesimal generators of translations:
∂qµf(σ, q) = ∂aµf(σ, q + a1)

∣∣∣
a=0

. (2.6)We �nd a Z-valued tra
e on E , denoted by ∫ d4q:
∫

d4qf(σ, q) = (2π)2f̂(σ, 0).This tra
e is 
y
li
, and on the produ
t of two symbols it ful�lls
∫

d4qf(σ, q)g(σ, q) =

∫
d4xf(σ, x)g(σ, x).3There exists the 
on
ept of twisted Poin
aré symmetry [9, 42℄. The 
ommutationrelations of the generators of the Poin
aré algebra are deformed in order to make therelation [qµ, qν ] = iσµν with �xed σµν invariant under Poin
aré transformations. However,this is essentially equivalent to leaving the Poin
aré algebra untou
hed but transform σµνlike in (2.5) [20℄.
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e 15Formally, ∫ d4qeikq = (2π)4δ(k). Using the Weyl 
orresponden
e, one 
ande�ne the pointwise produ
t for symbols f(q) and g(q),
f(q) ·pw g(q) = W

(
W−1(f(q)) · W−1(g(q))

)
= (f · g)(q). (2.7)However, this produ
t is rather arti�
ial and lies somewhat outside the al-gebra stru
ture of E . Of 
ourse, the 
on
epts of derivatives, the tra
e andthe pointwise produ
t also exist on Eσ. In this 
ase the tra
e has values in Cinstead of Z.States on these non
ommutative spa
es des
ribe lo
alizations.4 To everystate on E there exists a measure µ on Σ and a measurable fun
tion σ → ωσon Σ, where ea
h ωσ is a state Eσ, su
h that

ω(f(Q, q)) =

∫

Σ

dµ(σ)ωσ(f(σ, qσ)). (2.8)The un
ertainty relations (2.1) are ful�lled if we set
∆qµ = ∆ωq

µ :=
√
ω(qµ2) − ω(qµ)2.A measure of lo
alization of a state will be the quantity ∑µ (∆ωq

µ)2. How-ever, this measure of lo
alization is not Lorentz invariant. It was shown in[13℄ that it has the property
3∑

µ=0

(∆qµ)2 ≥
√

2

∫

Σ

dµ(σ)(1 + ||σ||)using the notation of (2.8). The quantity on the right-hand side has its min-imum if the support of the measure µ(σ) is 
ontained in the set Σ(1). For
σ ∈ Σ(1) and x ∈ M we 
an �nd a unique optimal lo
alized state ωσ(x) on
Eσ around x, i.e.,

ωσ(x)(qµ
σ) = xµ and 3∑

µ=0

(
∆ωσ(x)q

µ
σ

)2
= 2. (2.9)Using the above mentioned identi�
ation with quantum me
hani
s on a planethese states 
an be identi�ed with the ground state of the harmoni
 os
illator,shifted by a ve
tor x in phase spa
e. With these we 
an easily build optimallo
alized states on E around x. We just have to 
hoose a measure µ withits support on Σ(1) and take the optimal lo
alized states in Eσ around x.4This is in a

ordan
e with the 
on
ept of non
ommutative geometry from [12℄.



16 Chapter 2: QFT on non
ommutative spa
etimeNote that there does not exist a Lorentz invariant optimal lo
alized state,but rotational invariant ones.In the 
ommutative limit E redu
es to the 
ommutative algebra of fun
-tions on Σ × M. So, we get an additional manifold Σ, whi
h has not beenobserved in nature yet. It has to be eliminated somehow sin
e at the end theexpe
tation values from the theory have to be real numbers and not fun
tionson Σ. It is still an open question how to handle this problem. A natural ideawould be to take a Lorentz invariant state on E and average over Σ. But sin
e
Σ is non
ompa
t one 
annot �nd su
h a state. However, there exist rotationalinvariant ones and averaging over Σ(1) would be the most reasonable 
hoi
ein this setting.In the following ea
h of the settings Eσ, E , Ẽ or M(E) will be 
alled non-
ommutative Minkowski spa
e, abbreviated by Mn
. However, most of thetime we will work in Eσ (and 
hoose σ ∈ Σ(1)) or Ẽ , i.e., look at symbolswhi
h have no additional dependen
e on σ ∈ Σ. The non
ommutativity s
alewill be absorbed into σ, i.e., λ−2n
 σ ∈ Σ a
tually. The 
ontinuation of thewhole setting to higher even dimensions, like six, is straightforward.2.2 Quantum �eldsNow we look at quantum �elds on non
ommutative spa
etime. Let Φ bea Wightman �eld and F the algebra of polynomials of the �eld. (Here weonly 
onsider hermitian s
alar �elds. The generalization to other �elds isstraightforward.) One 
an easily write down

Φ(q) :=
1

(2π)2

∫
d4kΦ̂(k) ⊗ e−ikµqµ

. (2.10)This lives formally on F ⊗ Mn
. If Φ = ΦFree is the free �eld, it ful�lls theKlein-Gordon equation:
(�q +m2)ΦFree(q) = 0.We want to give (2.10) a pre
ise meaning. In [4℄ Φ(q) was taken to be afun
tional on the subset of (Z-valued) states of Mn
 whi
h are in the domainof all polynomials in the qµ's. The fun
tional takes values in F . Note thatfor elements ω of this subset of states the fun
tion k → ω

(
eikq
) is in S (afun
tion from Σ to S). So, the Fourier transform 
an be de�ned and

Φ(q)(ω) = ω(Φ(q)) =
1

(2π)2

∫
d4kΦ̂(k)ω(e−ikµqµ

) =

∫
d4kΦ̂(k)f̌ω(k) = Φ(fω)(2.11)



2.2 Quantum �elds 17with f̌ω(k) := 1
(2π)2

ω(e−ikµqµ

). The last term has to be understood in thesense of Wightman �elds as operator-valued distributions on M.Another de�nition is to 
onsider multiplying by a symbol and taking thetra
e:5
∫

d4qf(q)Φ(q) =
1

(2π)4

∫
d4qd4k1d

4k2f̂(k1)Φ̂(k2) ⊗
(
e−

i
2
k1Qk2e−i(k1+k2)·q

)

=

∫
d4k1d

4k2f̂(k1)Φ̂(k2) ⊗
(
e−

i
2
k1Qk2δ(k1 + k2)

)

=

∫
d4kf̂(−k)Φ̂(k) = Φ(f). (2.12)The result is similar to (2.11). Sin
e more fun
tions 
omply with (2.12) weadopt this point of view, but it hardly makes a di�eren
e in 
al
ulationswhi
h one we take. The tensor sign ⊗ between the F and Mn
 part will bedropped from now on.However, as on 
ommutative spa
etime, produ
ts of �elds are not well-de�ned:

∫
d4qf(q)Φ(q)Φ(q) =

1

(2π)2

∫
d4k1d

4k2Φ̂(k1)Φ̂(k2)f̌(k1 + k2),but f̌(k1 + k2) is not an element of S(M2), sin
e it does not de
rease rapidlyin the dire
tion k1 = −k2. Thus, the above expression is ill-de�ned. If the�elds are free �elds, Φ0 := ΦFree, this 
an be 
ured by taking the so-
allednormal-ordered or Wi
k produ
t, denoted by : Φn
0 :. This only applies to the�eld part, i.e.,

: Φ0(q)Φ0(q) :=
1

(2π)4

∫
d4k1d

4k2 : Φ̂0(k1)Φ̂0(k2) : e−ik1qe−ik2q. (2.13)The Wi
k produ
t 
an be seen as the restri
tion of the produ
t Φ0(x)Φ0(y)−
∆+(x − y) to the diagonal x = y. In a 
ertain sense the subtra
ted ∆+ is alo
al subtra
tion (on 
ommutative spa
etime).However, for higher produ
ts of �elds a 
on
ept of lo
ality is introdu
ed in[4℄whi
h is more adapted to non
ommutative spa
etime. Some terms, whi
hare subtra
ted using the usual Wi
k produ
ts, be
ome nonlo
al and �nite.Thus, they should not be subtra
ted any more. This leads to the notion of5Note that the map of the Weyl 
orresponden
e W is not positive. So, if f ∈ S is apositive fun
tion, the map g(q) →

∫
d4qf(q)g(q) is not ne
essarily positive, and hen
edoes not de�ne a state.
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ommutative spa
etimequasiplanar Wi
k produ
ts, denoted by ... Φn
0

... . The �rst order, where thisdi�ers from the usual Wi
k produ
t, is three:... Φ0(q)Φ0(q)Φ0(q)
... =: Φ0(q)Φ0(q)Φ0(q) : +

1

(2π)2

∫
dk∆+(−kσ)Φ̂0(k)e

−ikq.As mostly we en
ounter the produ
t of only two free �elds it does not matterwhi
h produ
t we take. However, in 4.5 we have a look at the φ4 model. Herewe have a produ
t of three free �elds and use the quasiplanar Wi
k produ
t.The generalizations from 
ommutative to non
ommutative spa
etime arenot always unique. For example
∫

d4qf1(q)Φ(q)f2(q)Φ(q) . . . fn(q)Φ(q) (2.14)and ∫
d4qf1(q)f2(q) . . . fn(q)Φn(q)
ould both be seen as generalizations of

∫
d4xf1(x)f2(x) . . . fn(x)Φn(x).While the last two expressions are ill-de�ned, it was shown in [45℄ that (2.14)is indeed well-de�ned. Among others we use terms like this to form an IR
uto� on non
ommutative spa
etime in se
tions 3.2.2 and 4.3.2.3 Approa
hes to intera
tionsThere exists a zoo of di�erent approa
hes to intera
ting quantum �eld theoryon non
ommutative spa
etime. To make 
lear, where our approa
h �ts in,we give an overview of what has been done in this �eld of resear
h. However,we do not 
laim it to be 
omplete.A �rst 
lassi�
ation of the di�erent approa
hes is by the treatment of λn
:

• Fields are treated as formal power series in λn
.
• λn
 is not in�nitesimally small but �nite.We take the latter point of view sin
e we do not see a possibility to builda more fundamental 
on
ept of spa
etime at small s
ales in the �rst ap-proa
h. (Remember that the non
ommutative Minkowski spa
e is regardedas an intermediate model only.) Another 
lassi�
ation is by the metri
 and
ommutativity of the time 
omponent:
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• Eu
lidean metri

• Minkowski metri
� Time still 
ommutes with spa
e.� Time and spa
e do not 
ommute.As was already mentioned, on non
ommutative spa
etime there seems to beno 
onne
tion between results on Eu
lidean and on Minkowski spa
e, sin
ethe Osterwalder S
hrader theorem [32, 33℄ is not appli
able. Already it seemsto be impossible to de�ne the Wi
k rotation. In the Minkowskian setting, theun
ertainty relations (2.1) do not hold if time and spa
e still 
ommute. Hen
e,we 
hoose non
ommuting time. However, this makes approa
hes whi
h areequivalent on M inequivalent on Mn
.The most important approa
hes are:Modi�ed Feynman Rules: This is the most prominent approa
h. It was�rst formulated in [18℄. The usual Feynman rules are modi�ed by addingat ea
h vertex the twisting fa
tor

e−
i
2

∑
a<b kaσkb .Here ka are the in
oming momenta at that vertex, numerated in 
lo
k-wise dire
tion. The twisting fa
tor is invariant under 
y
li
 permutationof the momenta. This modi�
ation of the Feynman rules is inspired by
hanging the usual a
tion, e.g., of the φ4 model to

S(φ) =

∫
d4q

1

2
∂µφ(q)∂µφ(q) − m2

2
φ(q)2 − λ

4
φ(q)4

=

∫
d4x

1

2
∂µφ(x)∂µφ(x) − m2

2
φ(x)2 − λ

4
φ ⋆ φ ⋆ φ ⋆ φ(x).It was shown in [19℄ that unitarity is violated in this approa
h if timedoes not 
ommute in spa
e.6 The modi�ed Feynman rules approa
h isused for both Eu
lidean and Minkowski metri
. For the latter 
on
rete
al
ulations seem to be very 
ompli
ated if time does not 
ommutewith spa
e.6However, in the shown derivation given in [19℄ the Minkowski metri
 is used. In orderto 
al
ulate the 
ontribution of a Feynman graph, the loop integral is Wi
k rotated toan imaginary time 
omponent. To keep the twisting fa
tor from be
oming exponentiallyin
reasing in the imaginary time dire
tion and making the integral non
onvergent theauthors analyti
ally 
ontinue the σ0j 
omponents, too. This is a very questionable step.
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ommutative spa
etimeHamiltonian approa
h: This approa
h was �rst 
onsidered in [13℄. A 
on-
ept of integral at �xed time t is used to de�ne an Hamiltonian H(t).This is entered into the Dyson series, and time ordering with respe
tto the variable t 
an be applied. However, in the graph expansion thepropagators are not the usual Feynman propagators. It was shown in[5℄ that this approa
h ful�lls unitarity also for non
ommuting time.In [6, 3℄ a UV-�nite theory was developed. [29℄ investigates dispersionrelations for this approa
h. However, the intera
tion part of the Hamil-tonian is treated in a very di�erent way than the free part, whi
h iskind of unsatisfa
tory, and already at tree level the �elds do not ful�llthe equation of motion, see [2℄. Furthermore, problems of the asymp-toti
 behaviour at t→ ∞ appear, similar to those in nonlo
al theories[24℄.Yang-Feldman formalism: The ansatz is to solve the �eld equation of thequantum �elds on non
ommutative spa
etime. This approa
h was al-ready used on Mn
 in [5, 2℄ and it was shown that no problem withunitarity appears. We will analyse this approa
h in detail in the follow-ing 
hapters.Adding a Grosse Wulkenhaar term: It was shown in [22℄ that addinga harmoni
 potential to the free s
alar �eld a
tion renders the φ4model renormalizable. This approa
hes works expli
itly in the Eu-
lidean setting. It seems unlikely that this result 
an be transferredto the Minkowski 
ase.There exist further di�eren
es on how gauge theory 
an be implemented.It seems that only U(N) gauge groups 
an be de�ned in nonexpanded ap-proa
hes. These gauge theories have severe IR divergen
es. More gauge groups
an be de�ned if the Seiberg-Witten map [39℄ is used. This a
ts on formalpower series in λn
 and maps 
ommutative gauge �elds to non
ommutativeones. The map is however not unique. We do not 
onsider gauge theorieshere. For supersymmetri
 models approa
hes exist in whi
h the fermioni
variables θ do not anti
ommute any more [30℄. This will not be 
onsidered,either.Often one meets very formal 
al
ulations und loosely de�ned obje
ts inthe literature. This is kind of typi
al for this �eld. However, we try to treateverything as rigorous as possible.
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Figure 2.1: Nonplanar Feynman graph in the φ3 model.2.4 UV-IR mixing of divergen
esWe investigate the modi�ed Feynman rules approa
h on Eu
lidean spa
e. Itwas dis
overed that the 
ontributions of some nonplanar graphs, whi
h di-verge on 
ommutative spa
e, be
ome �nite on non
ommutative spa
e if thein
oming momentum is unequal to zero. An example for su
h a nonplanargraph in the φ3 model is shown in �gure 2.1. The internal loop integral ren-ders �nite due to the os
illating behaviour of the additional twisting fa
tor.However, if the in
oming momentum is zero, the internal loop integral wouldbe UV divergent again. One 
ould argue that an in
oming momentum of zerois unphysi
al. But if the nonplanar graph is a subgraph of another one, likein �gure 2.2, it is integrated over all in
oming momenta of the internal non-planar graph, even over zero. So, the integral over small momenta 
an givea UV divergen
e. This phenomenon is 
alled UV-IR mixing of divergen
es.Su
h divergen
es 
an not be treated in the usual renormalization s
heme. Itwas dis
overed in [31, 10, 11℄ that this is not a problem if the model is onlylogarithmi
ally divergent. Here, we will show the reason at an example in the
φ3

4 model. This is 
ompared with similar examples in the φ3
6 and φ4 model.Our 
al
ulation is di�erent from the ones given in the above mentioned litera-ture. The 
ontributions of the nonplanar graphs will be 
al
ulated rigorouslyusing the 
on
ept of os
illatory integrals, whi
h is given in Appendix B. Ifthe reader is not familiar with this 
on
ept it would be advisable to have alook at this appendix �rst. In parti
ular, the generalized theorem of Fubini,theorem B.4.2, will play an important role.We emphasize, that the following 
al
ulations are only valid in the Eu-
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etime

Figure 2.2: Feynman graph for the φ3 model, possible 
andidate for showingUV-IR mixing.
lidean setting, sin
e an analyti
 
ontinuation would not be possible for theMinkowskian 
ase due to the twisting fa
tor. We will �rst have a look at the
φ3

4 model. For the nonplanar graph 2.1 the phases of the twisting fa
tor ofboth verti
es add and we get the (amputated) 
ontribution:
F (k) =

∫
d4l

eikσl

((k − l)2 +m2) (l2 +m2)
. (2.15)This integral is not absolutely 
onvergent but 
an be seen as an os
illatoryintegral.7 It is easy to see, that indeed a(k, l) = 1

((k−l)2+m2)(l2+m2)
is a symbolof order −4 and φ(k, l) = kσl a phase fun
tion. So, the above de�nes adistribution in k. The singular support is 
ontained in the set ∇lφ(k, l) =

kσ = 0. Sin
e (kσ)2 = λ4n
k2 this is only the point k = 0. We will 
al
ulatethe above integral for k 6= 0. This 
al
ulation will be very detailed, sin
e theusual te
hniques for transforming absolutely 
onvergent integrals are a priorinot appli
able. We know that the integral is a C∞-fun
tion outside 0 and we
an use the result from se
tion B.3 and see k as a �xed parameter.We take a sequen
e of symbols {gn} like in proposition B.2.1 with g as in(B.6). So, the integral (2.15) is the limit of
∫

d4l
eikσl

((k − l)2 +m2) (l2 +m2)
gn(l).This integral is now absolutely 
onvergent and we 
an perform the usualtransformations. We introdu
e Feynman parameters and write the integral7It is not a simple Fourier transform sin
e the variable k does not ex
lusively appearin the phase fun
tion but in the symbol as well.
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es 23as ∫ 1

0

dα

∫
d4l

eikσl

((1 − α) ((k − l)2 +m2) + α(l2 +m2))2 gn(l).If we drop the gn we 
an see the inner integral again as an os
illatory integral,now depending on an additional parameter α. We will introdu
e a di�erentsequen
e of symbols, namely gn(l − (1 − α)k). It is easy to see that this hasagain the limit 1, as it only s
ales around a di�erent point. (Remember that
k and α 
an be seen as �xed for the inner integral.) Using this, we get forthe os
illatory intergral (omitting the α integral for now):

∫
d4l

eikσl

((1 − α) ((k − l)2 +m2) + α(l2 +m2))2 gn(l − (1 − α)k).Now, we make a variable transformation to l′ = l−(1−α)k and get (droppingthe prime again):
∫

d4l
eikσl

(m2 + α(1 − α)k2 + l2)2 gn(l).We de�ne b(k, α) := m2+α(1−α)k2. For α ∈ [0, 1] we have b(k, α) ≥ m2 andfor bounded k it is bounded to above, too. We make a rotation in l su
h thatthe last 
omponent points in the dire
tion of kσ. The rotational invariant
gn will be dropped. We use the 
oordinates l = (l, x) and get the os
illatoryintegral ∫

d4l
eisx

(b+ l2 + x2)2with s := |kσ| = λ2n
|k|. As sx is a phase fun
tion in the x 
oordinatealone, we 
an use the generalized theorem of Fubini B.4.2 and perform the xintegration �rst, whi
h is an absolutely 
onvergent integral. The result is
π

2

∫
d3le−s

√
b+l2

(
s

b+ l2
+

1

(b+ l2)3/2

)
. (2.16)This integrand is now a S
hwartz fun
tion in l, as it should be a

ording to thegeneralized theorem of Fubini. So, the integral is now absolutely 
onvergent.Now, we examine the behaviour of the integral at |k| → 0. Sin
e b(k, α)is bounded and greater or equal to m2 we do not have to worry about thisquantity. The integral over α, whi
h is yet to be done, is over a 
ompa
t setand does not 
hange the divergent behaviour, either. Thus, we look at theabove integral for small s. The �rst part of (2.16) stays �nite, sin
e after theangular integration we get (dropping prefa
tors from now on):

∫ ∞

0

dle−s
√

b+l2 sl2

b+ l2
=

∫ ∞

0

dle−
√

bs2+l2 l2

bs2 + l2
−−→
s→0

∫ ∞

0

dle−l = 1.
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ommutative spa
etimeAfter a similar variable transformation the se
ond part gives
∫ ∞

0

dle−
√

bs2+l2 l2

(bs2 + l2)3/2
.For s = 0, this is now divergent at small l. Sin
e the fa
tor e−√

bs2+l2 is�nite for small l and s, we 
an examine the divergent behaviour of the aboveintegral by looking at
∫ 1

0

dl
l2

(bs2 + l2)3/2
= − 1√

1 + bs2
+ Ar
Cs
h(s

√
b).The �rst part stays �nite. y = Ar
Cs
h(x) is the inverse fun
tion of x =

1
sinh(y)

. The latter behaves for large y, hen
e small x, like 2e−y. Thus, Ar
Cs
h(s
√
b)behaves like log(2) − 1

2
log(b) − log(s). This shows that F (k) behaves like

log(|k|) for small k.If the 
onsidered graph appears n times as a subgraph of another one,like in �gure 2.2, we would have to 
al
ulate
∫

d4kF (k)n 1

(k2 +m2)n+1((p− k)2 +m2)
,where p is the outer momentum. This is �nite for large k due to the n + 2propagators. The 
ontribution of small k 
an be estimated by

C ·
∫ K

0

dkk3 log(k)n,whi
h is a �nite integral. So, no IR divergen
e appears.The situation is di�erent for the φ3
6 model, whi
h is quadrati
ally diver-gent. The 
al
ulation is the same until (2.16), ex
ept that the remainingintegral is over �ve dimensions. The �rst part gives

∫ ∞

0

dle−s
√

b+l2 sl4

b+ l2
=

1

s2

∫ ∞

0

dle−
√

bs2+l2 l4

bs2 + l2
,and the se
ond

∫ ∞

0

dle−
√

b+l2 l4

(b+ l2)3/2
=

1

s2

∫ ∞

0

dle−
√

bs2+l2 l4

(bs2 + l2)3/2
.Both 
ontributions diverge like 1

s2 , sin
e the remaining integrals are �nite for
s = 0. So, in six dimensions the 
ontribution for small k of the graph in �gure2.2 behaves like ∫ K

0

dkk3 1

k2n
.
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Figure 2.3: Nonplanar Feynman graph in the φ4 model.This is divergent for n ≥ 2. Sin
e the divergen
e is at small k, it is 
alled anIR divergen
e. This is the so 
alled UV-IR mixing.Another model, where this 
an be seen, is the φ4 model in four dimensions.Figure 2.3 shows a nonplanar tadpole graph, whi
h is �nite and gives theos
illatory integral8
∫

d4l
1

l2 +m2
e−ikσl =

∫
d4l

1

x2 + l2 +m2
e−isx.The transformation to the se
ond integral is similar as before. Again, we usethe generalized Theorem of Fubini to perform the x integration �rst. We get

π

∫
d3l

1

l2 +m2
e−s

√
l2+m2

= 4π2

∫ ∞

0

dl
l2√

l2 +m2
e−s

√
l2+m2

= 4π2 1

s2

∫ ∞

0

dl
l2√

l2 +m2s2
e−

√
l2+m2s2

.So, for small s this behaves like 1
s2 . If the graph appears as subgraphs inanother one, like the one shown in �gure 2.4, we 
an get an IR divergen
e.Thus, this quadrati
ally divergent model shows UV-IR mixing, too.Remark 2.4.1. A
tually, F (k) from (2.15) is a distribution in k. So, we haveshown that its s
aling degree at k = 0 is 0 for the φ3

4 model and 2 for the
φ3

6 and the φ4 model. We 
an use the 
on
ept of s
aling degree, introdu
edby Steinmann [41℄, 
f. Appendix A, to �nd a 
ontinuation of F (k)n to the8This 
an also be seen as a simple Fourier transform.
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Figure 2.4: Feynman graph for the φ4 model, showing UV-IR mixing.origin. In the 
ase of the φ3
4 model there exists a unique 
ontinuation. Forthe other models the ambiguity 
an be des
ribed by 2n− 4 free parameters.As all powers of F (k) appear in the Feynman graph 
al
ulus, this leads to anin�nite number of free parameters in these quadrati
ally divergent models.



Chapter 3Yang-Feldman formalismWe introdu
e the Yang-Feldman formalism to solve perturbatively the �eldequation for a quantum �eld. The Yang-Feldman approa
h was mainly de-veloped in [44, 27, 28℄. Closely related to this approa
h are the retardedprodu
ts. Steinmann [41℄ showed formally, i.e., without IR 
uto�, how somedivergen
es 
an
el and and the remaining 
an be put into free 
onstantsthrough 
ontinuation of distributions to the origin. The latter is equiva-lent to renormalization in the Feynman graph formalism. Due to the su
-
ess of the Feynman graph formalism not mu
h work was done in the Yang-Feldman formalism. Re
ent developments for retarded produ
ts 
an be foundin [16℄. The Yang-Feldman formalism was already used on the non
ommu-tative Minkowski spa
e in [5, 2, 4℄ and it was shown that no problems withunitarity appear. However, this approa
h is still underdeveloped both on
ommutative and non
ommutative spa
etime.In se
tion 3.1 we introdu
e the Yang-Feldman formalism for 
lassi
al�elds. We extend it to quantum �elds in se
tion 3.2. This makes an IR 
uto�ne
essary. To take a 
loser look at this problem we investigate the two-pointfun
tion for a mass term as intera
tion. We use this as a ben
hmark of theIR 
uto� sin
e we already have an anti
ipation of what the result should be,namely the same as for a free �eld of the shifted mass. A similar result is alsomissing for the 
ommutative 
ase, so we �rst have a look at this in se
tion3.2.1. Then we use this result to show how the 
orre
t limit is obtained onnon
ommutative spa
etime in se
tion 3.2.2.We use a well known result of Epstein Glaser [17℄, whi
h is for 
onvenien
estated in Appendix D. Epstein and Glaser used the theorem to 
al
ulate timeordered fun
tion. These are related to the n-point fun
tion on 
ommutativespa
etime. As time ordering is not well-de�ned on non
ommutative spa
e-time, we have a look at the latter and in parti
ular 
al
ulate the two-pointfun
tion of the intera
ting �eld. The theorem from Epstein and Glaser lies27
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tions on the support of the 
uto� fun
tions in momentum spa
e. How-ever, we will show that the 
lass of 
uto� fun
tions 
an be extended. A largepart of what we present in this Chapter has already been published in [14℄.Some minor mistakes have been 
orre
ted.3.1 Classi
al �eldsThe main approa
h in this formalism is to solve the �eld equation, whi
h fora polynomial intera
tion −λ
a
φa is

(� +m2)φ = −λφa−1. (3.1)For the time being, we assume that φ is some 
lassi
al �eld on the 
ommu-tative Minkowski spa
e. We try to solve (3.1) perturbatively. The solutionwill be denoted by φInt. Let φFree be a �eld solving the free equation, i.e.,
(� + m2)φFree = 0. Now φInt is treated as a formal power series in the 
ou-pling λ:

φInt =
∞∑

n=0

λnφn, (3.2)and for early times t→ −∞ the intera
ting �eld should be approximated bythe free �eld. Inserted into (3.1) and sorted by powers of λ we get
(� +m2)φ0 = 0,

(� +m2)φn = −
∑

k1+...+ka−1=n−1

φk1
. . . φka−1

for n > 0.where a is the same as in (3.1). With the initial 
ondition mentioned before,this is solved by
φ0 = φFree,
φn = −∆R ×

∑

k1+...+ka−1=n−1

φk1
. . . φka−1

for n > 0. (3.3)where × denotes the 
onvolution.1 The 
onvolution with ∆R is a priori onlywell-de�ned if the φk are elements of some test fun
tion spa
e, e.g., S.We now want to generalize this formalism in two ways:1. The �elds should live on the non
ommutative Minkowski spa
e.1If we had required the free and intera
ting �elds to 
oin
ide at t → +∞ we wouldhave had to take ∆A instead of ∆R.



3.2 Quantum �elds, IR 
uto� and adiabati
 limit 292. They should be quantum �elds.The �rst point is straightforward. Using (2.6), the �eld equation be
omes
(�q +m2)φ(q) = (�x +m2)φ(q + x)|x=0 = −λφa−1(q). (3.4)The boundary 
ondition on φInt 
an be stated by requiring

lim
x0→−∞

ωx(φInt(q) − φFree(q)) = 0,where ωx is the optimal-lo
alized state given in (2.9). The solution is similaras before:
φ0(q) = φFree(q),
φn(q) = −


∆R ×

∑

k1+...+ka−1=n−1

φk1
. . . φka−1


 (q) for n > 0

= −
∫

dx ∆R(x)
∑

k1+...+ka−1=n−1

φk1
(q − x) . . . φka−1

(q − x).

(3.5)
A proof that this ful�lls the boundary 
ondition and that 
onvolution with
∆R is a well-de�ned pro
ess for symbols 
an be found in [45, 21℄.The generalization to quantum �elds gives rise to further problems, bothin 
ommutative and non
ommutative spa
etime. We will have a 
loser lookat these in the following se
tion.3.2 Quantum �elds, IR 
uto� and adiabati
 limitWe now want to generalize the solutions (3.3) or (3.5) to a quantum �eld
Φ(x), i.e., an operator-valued distribution, or Φ(q), de�ned in the sense of(2.12). Now we fa
e two problems:a) The 
onvolution of a distribution with the retarded propagator ∆R isin general not well-de�ned.b) The produ
t of multiple Φki

is a priori not well-de�ned, either.The solution to the �rst problem will be to introdu
e a 
uto� fun
tion. Thereare several possibilities to do this, and we will examine these in this se
tion.The se
ond one is more 
ompli
ated and leads to the ne
essity of renormal-ization. We will have a 
loser look on these problems in Chapter 4, where
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ases of intera
ting theories both on 
ommutative and non
ommuta-tive spa
etime are examined.We will �rst have a look at problem a) on 
ommutative spa
etime. Let Abe an operator-valued distribution. The 
onvolution B := ∆R × A is not awell-de�ned distribution sin
e we have for some test fun
tion f ,
∫

dyf(y)

∫
dx∆R(x)A(y− x) =

∫
dxdy∆R(x)A(y)f(x+ y) = (∆R ⊗A)(f̃)(3.6)with f̃(x, y) = f(x + y). This fun
tion does not fall o� fast in the dire
tion

x = −y, so it is not in S(M2). We will 
ure this now by introdu
ing anadditional 
uto� fun
tion g ∈ S (this is 
alled the infrared 
uto�, or IR
uto�) and later let g approa
h 1 in some sense to be spe
i�ed (this is 
alledthe adiabati
 limit).Looking at (3.6) there are two obvious ways to handle this: To multiply
f(x + y) by g(x) or by g(y), whi
h is equivalent to multiplying ∆R or A by
g. A third possibility would be to take g ∈ S(M2) and (∆R ⊗ A)(f̃ · g), butthis is not 
onsidered here.Multiplying by g(y) 
an in our 
ase be interpreted as a lo
alization of theintera
tion:

(� +m2)φ(x) = −λg(x)φa(x).There is no similar interpretation for taking ∆R · g. Nevertheless, this 
uto�was taken in [2℄ for �elds on Mn
, as the multipli
ation of A by g is more
ompli
ated when A is not an operator-valued distribution on M but on Mn
.The adiabati
 limit will be taken in the following steps:1. Introdu
e the 
uto� g. The �elds, whi
h we get, will depend on the
hoi
e of g, e.g., using the se
ond 
uto� we would get
Φn,g(f) := −

∫
dxdy∆R(x)

∑

k1+...+ka−1=n−1

Φk1,g . . .Φka−1,g(y)f(x+y)g(y)with Φ0,g = Φ0.2. Cal
ulate the expe
tation values of ΦInt,g, whi
h then also depend on
g. Here we only have a look at the two-point fun
tion, i.e.,

〈ΦInt,g(f)ΦInt,g(h)〉 .3. The expe
tation values are a formal power series in the 
oupling 
on-stant. Insert a sequen
e of test fun
tions with ga → 1 (whi
h is equiv-alent to ǧa → (2π)2δ) in an appropriate topology, and then 
al
ulatethe limit of the expe
tation values in ea
h order.



3.2 Quantum �elds, IR 
uto� and adiabati
 limit 31It turns out that it will be important to sum up all 
ontributions to theexpe
tation value of the same order before performing the adiabati
 limit,be
ause there will be no well-de�ned adiabati
 limit for separate terms, asalready seen by Epstein and Glaser [17℄.The �rst two possibilities for an IR 
uto� will be analysed and it turns outthat only the se
ond one gives a reasonable adiabati
 limit. We test them bytaking a mass term as intera
tion. The equation of motion for an additionalmass term is (
� +m2

)
Φ = −µΦ.The advantage of taking a mass term is that �rst we do not fa
e the problemof multiplying several distributions (problem b) on page 29). Se
ond, wealready have a pre
ise expe
tation of what the out
ome should be: The two-point fun
tion of the intera
ting �eld should be the same as the free �eld ofmass square m2 + µ, namely

〈
Φ

(m2+µ)Free (f)Φ
(m2+µ)Free (h)

〉
= (2π)2

∫
d4k∆̂

(m2+µ)
+ (k)f̌(k)ȟ(−k)

=2π

∫
d3k

1

2ω
(m2+µ)
k

f̌(ω
(m2+µ)
k ,k)ȟ(−ω(m2+µ)

k ,−k).
(3.7)To 
ontemplate Haag's theorem [23℄ is appropriate at this point. Haag's the-orem says that representations of the CCR algebra for di�erent masses areinequivalent. But sin
e we are dealing only with expe
tation values and notwith representations this theorem does not apply here.Sin
e we are working in perturbation theory, we have to treat everythingas a formal power series in the 
oupling µ. Thus, we get at nth order for theright-hand side of (3.7):

2π

n!

∫
d3k∂n

µ

(
1

2
√
m2 + µ+ k2

f̌(
√
m2 + µ+ k2,k)ȟ(−

√
m2 + µ+ k2,−k)

)∣∣∣∣∣
µ=0

. (3.8)If we regard µ → ∆
(m2+µ)
+ as a map into S ′, whi
h is C∞ around µ = 0, thisequals

1

n!

∫
dxdyf(x)h(y)∂n

m2∆
(m2)
+ (x− y) =

(2π)2

n!

∫
d4kf̌(k)ȟ(−k)∂n

m2∆̂
(m2)
+ (k).(3.9)
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al
ulate this to �rst order and with (3.8) we get :
(2π)2

∫
d4kf̌(k)ȟ(−k)∂m2∆̂

(m2)
+ (k)

= 2π

∫
d3k

(
− 1

4ω3
k

f̌(ωk,k)ȟ(−ωk,−k) +
1

4ω2
k

∂0f̌(ωk,k)ȟ(−ωk,−k)

− 1

4ω2
k

f̌(ωk,k)∂0ȟ(−ωk,−k)

)
. (3.10)Remark 3.2.1. For s ∈ C the Taylor series of (1 + x)s 
onverges absolutelyaround x = 0 with radius of 
onvergen
e 1. Furthermore, if f and h have
ompa
t support, then f̌ and ȟ will be analyti
. So, we see that

∆
(m2+µ)
+ =

∞∑

n=0

µn

n!
∂n

m2∆
(m2)
+does not only hold in the sense of power series, but also in the weak topologyof D′ for |µ| < m2.We will now have a look at whether the two di�erent possibilities ofintrodu
ing a 
uto� give the expe
ted result on 
ommutative spa
etime �rst.3.2.1 Adiabati
 limit on 
ommutative spa
etimeWe will �rst look at the 
uto� introdu
ed in [2℄ (there for �elds on non
om-mutative spa
etime). As the intera
ting and the free �eld 
oin
ide at zerothorder, we get the expe
ted two-point fun
tion ∆+ at this order. But alreadyat �rst order this fails:Proposition 3.2.2. The 
uto� de�ned by

Φn,g(x) = −
∫

d4z∆R(z)g(z)Φn−1,g(x− z)does not give the 
orre
t adiabati
 limit, i.e., (3.8) at �rst order on 
ommu-tative spa
etime.Proof. At �rst order we have
Φ1,g(x) = −

∫
d4z∆R(z)g(z)Φ0(x− z).
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tion at �rst order gives
〈Φ0(f)Φ1,g(h) + Φ1,g(f)Φ0(h)〉

= −
∫

d4xd4yd4zf(x)h(y)∆R(z)g(z)(∆+(x− y + z) + ∆+(x− y − z))

= − 1

(2π)4

∫
d4k∆̂+(k)f̌(k)ȟ(−k) ((∆R · g)∨(k) + (∆R · g)∨(−k))

= − 1

(2π)5

∫
d3k

2ωk

f̌(k+)ȟ(−k+)Cg(k+).Here Cg(k) = 1
(2π)2

((∆̌×ǧ)(k)+(∆̌×ǧ)(−k)) is, as the sum of two terms whi
hare 
onvolutions of a distribution with a S
hwartz fun
tion, a polynomiallybounded C∞-fun
tion, see [35℄. Now we 
an dedu
e that, if the adiabati
 limitof the above for any sequen
e ga ∈ S is well-de�ned at all, it does not give
∂m2∆̂

(m2)
+ (k): Choose f̌ / ȟ to vanish on the positive/negative mass-shell, butwith derivatives in 0 dire
tion unequal to zero on the shells. Then the abovegives zero for all g ∈ S, but ∂m2∆̂

(m2)
+ (k) in general does not give zero forsu
h an f and h, 
ompare (3.10).Now we look at the 
uto� de�ned by

Φn,g(x) = −
∫

d4z∆R(z)g(x− z)Φn−1,g(x− z).This 
uto� arises naturally if one 
hanges the a
tion to
S[Φ] =

∫
dx

(
∂νΦ(x)∂νΦ(x) +

(
m2

2
+
µ

2
g(x)

)
Φ2(x)

)
.Then the �eld equation be
omes

(
� +m2

)
Φ(x) = −µg(x)Φ(x). (3.11)So with this 
uto� the intera
tion 
an be lo
alized to some bounded regionin spa
etime.Again the zeroth order is trivial. We will do the �rst order 
al
ulationexpli
itly to show that it is important to �rst add all 
ontributions of the
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 limit. At �rst order we get
〈Φ0(f)Φ1,g(h) + Φ1,g(f)Φ0(h)〉

= −
∫

d4x0d
4x1d

4x2 f(x0)h(x2)g(x1)

· (∆R(x0 − x1)∆+(x1 − x2) + ∆+(x0 − x1)∆A(x1 − x2))

= − (2π)2

∫
d4k0d

4k1 f̌(k0)ȟ(−k1)ǧ(k1 − k0)

·
(
∆̂R(k0)∆̂+(k1) + ∆̂+(k0)∆̂A(k1)

)
. (3.12)To simplify this expression, we perform di�erent transformations on ea
hsummand. We integrate out the zero 
omponent of the momentum appearingin ∆̂+ using its δ-fun
tion, and for the remaining zero 
omponent we 
arryout a variable transformation to x = ±(k0

0/1 − ω0/1) and get
1

2π

∫
d3k0

2ω0

d3k1

2ω1

dx ǧ(ω1 − ω0 − x,k1 − k0)

·
[
f̌(ω0 + x,k0)ȟ(−ω1,−k1)

(
1

x+ iǫ
− 1

x+ 2ω0 + iǫ

)

−f̌(ω0,k0)ȟ(−ω1 + x,−k1)

(
1

x+ iǫ
− 1

x− 2ω1 + iǫ

)]
. (3.13)We assume that ǧ has only support in a 
losed subset of R1 = {k ∈ M|k2 <

(2m)2}. Then the singularities x = ∓2ω0/1 are not met, sin
e the sum of twove
tors on the positive mass shell has a square greater or equal to (2m)2.Thus the se
ond and fourth ǫ in the expression 3.13 
an be dropped.Now we make an expansion in x:
f̌(ωk + x,k) = f̌(ωk,k) + x f̃(x,k),

ȟ(−ωk + x,−k) = ȟ(−ωk,−k) + x h̃(x,k),where f̃ and h̃ are again fun
tions in S satisfying f̃(0,k) = ∂0f̌(ωk,k) and
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h̃(0,k) = ∂0ȟ(−ωk,−k). With this (3.13) transforms to

1

2π

∫
d3k0

2ω0

d3k1

2ω1

dx ǧ(ω1 − ω0 − x,k1 − k0)

·
[
− f̌(ω0 + x,k0)ȟ(−ω1,−k1)

1

2ω0 + x

− f̌(ω0,k0)ȟ(−ω1 + x,−k1)
1

2ω1 − x

+ f̌(ω0,k0)ȟ(−ω1,−k1)

(
1

x+ iǫ
− 1

x+ iǫ

)

+
(
f̃(x,k0)ȟ(−ω1,−k1) − f̌(ω0,k0)h̃(x,k1)

)
x

1

x+ iǫ

]The last but one term drops out. This 
an
ellation only o

urs be
ause wehave treated the sum of 〈Φ0(f)Φ1(h)〉 and 〈Φ1(f)Φ0(h)〉. The singularity of
1

x+iǫ
in the last line is 
an
elled by the additional fa
tor of x. Thus, withregard to the presupposed support of ǧ, the remaining terms are smoothfun
tions of x,k0 and k1. Then the adiabati
 limit ǧ → (2π)2δ 
an be 
arriedout, e.g. in the topology of fun
tions with 
ompa
t support. The k1 and xintegration then give k1 = k0 and x = 0. With the properties of f̃ and h̃ wethen get exa
tly (3.10).Remark 3.2.3. Here and in the following we repla
e distributions by a series offun
tions whi
h approximate the distribution in the weak topology of S ′. Anexample would be ∆̂R(p) = limǫց0

1
(2π)2

−1
p2−m2+iǫp0

. It is easy to see that thisis a
tually independent of the 
hoi
e of sequen
e. Indeed, we will sometimes
hange the sequen
e without further noti
e. For produ
ts of distributions indi�erent variables we 
an take the produ
t of the 
orresponding sequen
es,where the ǫ in ea
h fa
tor 
oin
ide.Now we look at arbitrary orders. The rest of this subse
tion is stru
turedin the following way1. We 
al
ulate the two-point fun
tion of arbitrary order n.2. We show that the theorem of Epstein and Glaser is appli
able. With thistheorem we know that an adiabati
 limit is well-de�ned for a 
ertain
lass (�
lass I�)of sequen
es of fun
tions and independent of the 
hoi
ein 
lass I. But we do not know, whether the result for the adiabati
limit is indeed (3.8).3. Therefore, we 
al
ulate the result. For this we 
an take a spe
ial 
hoi
eof sequen
e {ga} of 
lass I. We split the two-point fun
tion into twoparts A(ga) +B(ga).



36 Chapter 3: Yang-Feldman formalism4. We show that B(ga) → 0 for a→ ∞.5. We show that A(ga) yields (3.8) for a → ∞. To do this we state alemma, whi
h is proved at the end of this subse
tion.6. We enhan
e the 
lass of fun
tions giving the 
orre
t limit beyond 
lass Igiven by the Epstein-Glaser theorem. The enhan
ed 
lass will be 
alled
lass II.7. At the end we summarise the result of this se
tion in a theorem.To keep tra
k of this s
hedule we indi
ate the di�erent parts by boldfa
eheadings.Part 1:The �eld at mth order is
Φm,g(y0) = (−1)m

∫ m∏

i=1

dyi∆R(y0 − y1)g(y1) . . .∆R(ym−1 − ym)g(ym)Φ0(ym).For the two-point fun
tion at nth order we get
n∑

m=0

〈Φm,g(f)Φn−m,g(h)〉 (3.14)
=(−1)n

∫ n+1∏

i=0

d4yi f(y0)h(yn+1)
n∏

i=1

g(yi)
n∑

m=0

∆R(y0 − y1) . . .∆R(ym−1 − ym)

· ∆+(ym − ym+1)∆A(ym+1 − ym+2) . . .∆A(yn − yn+1).We de�ne
FR(y0, yn+1; y1, . . . , yn) := (−1)n

n∑

m=0

∆R(y0 − y1) . . .∆R(ym−1 − ym)

· ∆+(ym − ym+1)∆A(ym+1 − ym+2) . . .∆A(yn − yn+1). (3.15)So in momentum spa
e the above is:
∫ n∏

i=1

d4kidp1dp2 f̌(p1)ȟ(p2)
n∏

l=1

ǧ(kl)F̂R(p1, p2; k1, . . . , kn) (3.16)
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FR(k0, kn+1; k1, . . . , kn) =

(−1)n(2π)2δ

(
n+1∑

j=0

kj

)
n∑

m=0

[
∆̂R(k0) . . . ∆̂R

(
m−1∑

j=0

kj

)

·∆̂+

(
m∑

j=0

kj

)
∆̂A

(
m+1∑

j=0

kj

)
. . . ∆̂A

(
n∑

j=0

kj

)]
. (3.17)Similar to FR we de�ne FA just by ex
hanging ∆R and ∆A in (3.15).Part 2:Now we 
laim that these fun
tions FR and FA ful�ll the requirements of theEpstein-Glaser theorem, whi
h is stated in Appendix D. To show that FRhas retarded support , we look at the mth summand. This is only unequal tozero if yj−yj+1 ∈ V̄+ for j = 0, . . . ,m−1 and yj+1−yj ∈ V̄+ for j = m, . . . , n.Sin
e the sum of two elements in V̄+ is again in V̄+, we 
an add these termsand see that the support of ea
h summand is in

{(y0, yn+1; y1, . . . , yn) ∈ M2+n|
y0 − yj ∈ V̄+ for j ≤ m− 1 and yn+1 − yj ∈ V̄+ for j ≥ m}.whi
h is a subset of SR (see (D.1)). So their sum, FR, also has support in SR.The proof for FA works analogously.We still have to show that F̂R − F̂A vanishes on the set Rn (see (D.2)).To do this we repla
e ea
h ∆̂R/A by ∆̂F − i∆̂∓ (
ompare (A.3) and (A.4))in (3.17) and in the 
orresponding expression for F̂A and then multiply out.

∆̂± have their support on the positive respe
tively negative mass shell, so
∆̂−(p)∆̂+(p+k) = 0 if k2 < 4m2. Thus, after the substitutions all terms witha fa
tor ∆̂− vanish on Rn as every summand has a fa
tor of ∆̂+. The remain-ing terms are all of the form (dropping the prefa
tors and the δ-fun
tion)

∆̂F (K0) . . . ∆̂F (Ka−1)∆̂+(Ka)∆̂+/F (Ka+1)

. . . ∆̂+/F (Kb−1)∆̂+(Kb)∆̂F (Kb+1) . . . ∆̂F (Kn)with Kj :=
∑j

i=0 ki and a and b the number of the �rst respe
tively lastfa
tor of ∆̂+ in that term. In F̂R − F̂A there are two terms of this form forgiven a ≤ b. One is 
oming from the summand with m = a in F̂R the otherone from the summand m = b in F̂A. Their prefa
tors are equal, so theseterms 
an
el in F̂R − F̂A. Therefore F̂R − F̂A vanishes on Rn.
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an now dedu
e that the adiabati
limit exists if the sequen
e Ga has the 
orre
t properties. Here, Ga is of theform
Ga(k1, . . . , kn) = ga(k1) · . . . · ga(kn).The 
ondition that Ga tends to (2π)2nδ(4n) in the topology of O′

C(Mn) isguaranteed if ǧa → (2π)2δ(4) in O′
C(M). To ful�ll the 
ondition supp Ǧa ⊂ Rnwe 
ould demand that the support of ǧa lies in some 
onvex subset of 1

n
Rn.An example for su
h a 
onvex subset would be

Vn :=

{
k ∈ M

∣∣|k0| <
2m

n

}
. (3.18)Furthermore, if these two 
onditions are ful�lled the limit is independentfrom the exa
t 
hoi
e of sequen
e in this 
lass. But it remains to be shownthat indeed (3.8) is the adiabati
 limit. So in the following 
al
ulation weassume that ǧ has the desired support, and later we will take a spe
ial 
hoi
eof sequen
e ga, namely one whi
h s
ales with a.Part 3:Now, with a variable transformation and performing one integral to get ridof the δ-fun
tion, (3.16) be
omes

(−1)n(2π)2

∫ n∏

i=0

d4ki f̌(k0)ȟ(−kn)
n∏

l=1

ǧ(kl − kl−1)

×
n∑

m=0

∆̂R(k0) . . . ∆̂R(km−1)∆̂+(km)∆̂A(km+1) . . . ∆̂A(kn). (3.19)We use (A.2)
∆̂R/A(kj) =

1

(2π)2

1

2ωj

(
1

k0,j + ωj ± iǫ
− 1

k0,j − ωj ± iǫ

)

= − 1

(2π)2

1

2ωj

1

k0,j − ωj ± iǫ

2ωj

k0,j + ωj ± iǫ
(3.20)with ωj = ωkj

. In ea
h summand the momentum km is on the mass shelldue to the ∆̂+(km). With the supposed support property of ǧ the integrandvanishes if some kj lie on the negative mass shell. So we 
an a
tually dropthe very last ǫ in (3.20). De�ne
T (k) :=

2ωk

k0 + ωk

.
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1

(2π)2n−1

∫ n∏

i=0

d4ki

2ωi

f̌(k0)ȟ(−kn)
n∏

l=1

ǧ(kl − kl−1)
n∑

m=0

[
δ(k0,m − ωm)

·
m−1∏

j=0

(
1

k0,j − ωj + iǫ
T (kj)

) n∏

j=m+1

(
1

k0,j − ωj − iǫ
T (kj)

)]
. (3.21)Now we make a variable transformation to xj = k0,j − ωj and expand f̌ , ȟand T around xj = 0 to nth order into a Taylor series, i.e.,

f̌(ωk + x,k) =
n∑

k=0

xk

k!
∂k

0 f̌(ωk,k) +
xn+1

(n+ 1)!
f̃(x,k),where f̃ is in S, and similarly for ȟ(−k) and T (k).We insert these expansions into (3.21) and split the whole expression intoa sum of A(g) +B(g), where A(g) 
ontains all terms without f̃ , h̃ or T̃ , thus

A(g) =
1

(2π)2n−1

∫ n∏

i=0

d3ki

2ωi

n∏

j=0

dxj

n∏

l=1

ǧ(ωl − ωl−1 + xl − xl−1,kl − kl−1)

n∑

L0=0

x0
L0

L0!
∂L0

0 f̌(k+,0) ·
(

n∑

m=0

δ(xm)
m−1∏

j=0

1

xj + iǫ

n∑

lj=0

xj
lj

lj!
∂

lj
0 T (k+,j)

n∏

j=m+1

1

xj − iǫ

n∑

lj=0

xj
lj

lj!
∂

lj
0 T (k+,j)

)
·

n∑

Ln=0

xn
Ln

Ln!
(−∂0)

Lnȟ(−k+,n). (3.22)Part 4:First we show that B(ga) vanishes for a spe
ial 
hoi
e of sequen
e ga → 1.We 
hoose a sequen
e whi
h s
ales with a, i.e., ga(x) = g
(

x
a

) for some g ∈ Swith g(0) = 1.2 Then ǧa(k) = a4ǧ(ak). Furthermore we demand that thesupport of ǧ is a subset of B0

(
m
n

)
⊂ Vn (this m being the mass). The termsin B(ga) all 
ontain a fa
tor

δ(xm)
n∏

l=1

ǧa(ωl − ωl−1 + xl − xl−1,kl − kl−1).Thus, for the 
hosen sequen
e the integrand has support in |kl −kl−1| < m
n

1
aand, sin
e xm = 0 and |ωl − ωl−1| ≤ |kl − kl−1|, also in xj < C 1

a
for some

C > 0 and all j.2It is easy to see that for su
h a sequen
e ǧa → (2π)2δ(4) in O′
C(M)



40 Chapter 3: Yang-Feldman formalismWe 
onsider the di�erent terms in B(ga), 
oming from the expansion of
f̌ , ȟ and T and from splitting the sum over m. We integrate out xm (thus,terms with fa
tors xm from the expansion already disappear), renumber theremaining xj, and perform a transformation of variables to k̃j = kj − kj−1for j > 0 (k0 remains). Then the terms have the form
∫ n∏

i=1

d3k̃i

n∏

j=1

dxj

m∏

j=1

1

xj + iǫ
xbj

n∏

j=m+1

1

xj − iǫ
xbjUa(x1, . . . , xn, k̃1, . . . , k̃n),(3.23)where Ua already in
ludes the integration d3k0. This expression is always�nite sin
e f ∈ S. Furthermore the following properties hold:

• At least one bj = n+ 1, sin
e every term in B(g) 
ontains f̃ , h̃ or T̃ .
• Ua is C∞ and its support is 
ontained in

{
(x1, . . . , xn, k̃1, . . . , k̃n)

∣∣|xj| < C/a, |k̃j| < C/a
}for some C > 0.

• The supremum of |Ua| is bounded by C0,0a
4n for some C0,0 > 0. Everyderivative with respe
t to some xj gives an additional fa
tor of a 
omingfrom the derivatives of ǧa. Ea
h multipli
ation with some xj yields afa
tor 1/a, sin
e Ua has bounded support. In other words, for all n-multi-indi
es α, β there exists a 
onstant Cα,β > 0 with

sup
∣∣xαDβ

xUa

∣∣ < Cα,βa
4n+|β|−|α|.We have to prove that all terms vanish for a→ ∞. We show this only forthe terms (3.23), where only one bj = n + 1 and the other b's equal 0. Theremaining 
ases are similar. We use

1

x± iǫ
= ∓iπδ(x) + P 1

x
(3.24)as distributions. Here P denotes the prin
ipal value of the fra
tion, i.e., thedistribution

f →
∫

dxP 1

x
f(x) =

1

2

∫
dx

1

x
(f(x) − f(−x)) .



3.2 Quantum �elds, IR 
uto� and adiabati
 limit 41To make the 
al
ulation more 
omprehensible we demonstrate how we aredealing with the prin
ipal values in one dimension. Let f(x) = 0 for x > X.Then
∫

dxP 1

x
f(x) ≤1

2

∣∣∣∣
∫ X

−X

dx
1

x
(f(x) − f(−x))

∣∣∣∣ =
1

2

∣∣∣∣
∫ X

−X

dx
1

x

∫ x

−x

dy∂f(y)

∣∣∣∣

≤1

2

∫ X

−X

dx
1

x
2x sup

y
|∂f(y)| =2X sup

y
|∂f(y)|.Due to the ǧa's Ua will be of 
ompa
t support. The terms we get using (3.24),omitting fa
tors of ±iπ, are of the following form,3

∫ n∏

i=1

d3k̃i

n∏

j=1

dxj x
n
1

r∏

j=2

P 1

xj

n∏

j=r+1

δ(xj)Ua(x1, . . . , xn, k̃1, . . . , k̃n)for some r after another relabelling of the xj and of the arguments of Ua. Itsabsolut value 
an be estimated by
∣∣∣∣∣

∫ n∏

i=1

d3k̃i

r∏

j=1

dxjx
n
1

r∏

j=2

P 1

xj

Ua(x1, . . . , xr, 0, . . . , 0, k̃1, . . . , k̃n)

∣∣∣∣∣

=

∣∣∣∣∣

(
1

2r−1

r∏

j=2

∫ C
a

−C
a

dxj

)
n∏

i=1

d3k̃idx1

(
r∏

j=2

1

xj

∫ xj

−xj

dyj

)

xn
1D

β
xUa(x1, y2 . . . , yr, 0, . . . , 0, k̃1, . . . , k̃n)

∣∣∣∣∣

≤
(

1

2r−1

r∏

j=2

∫ C
a

−C
a

dxj

)(
C

a

)1+3n

2r−1Cα,βa
4n−|α|+|β|where α = (n, 0, . . . , 0) and β = (0, 1, . . . , 1, 0 . . . , 0) with |β| = r − 1. Thelast integrations introdu
e a fa
tor 2C

a
ea
h. At the end we have

2r−1Cα,β

(
C

a

)1+3n+r−1

a4n−n+r−1 −−−→
a→∞

0.This shows that the limit of B(ga) vanishes for this 
hoi
e of a s
aling se-quen
e {ga}.Part 5:It remains to treat A(g), given by (3.22). We use
∂l

0T (k+) = l!(−2ωk)
−l.3Of 
ourse we have xn+1

x±iǫ = xn as a distribution.



42 Chapter 3: Yang-Feldman formalismWe get xm = 0 from the δ-fun
tion, and for the remaining variables xj weperform variable transformation depending on m to 
oordinates yj with
y1 = x0 − x1; . . . ym−1 = xm−2 − xm−1; ym = xm−1;

ym+1 = −xm+1; ym+2 = xm+1 − xm+2; . . . yn = xn−1 − xn.Thus we have
xj =

{∑m
t=j+1 yt for j < m,

−∑j
t=m+1 yt for j > m,and get

A(g) =
1

(2π)2n−1

∫ n∏

i=0

d3ki

2ωi

n∏

j=1

dyj

n∏

l=1

ǧ(ωl − ωl−1 − yl,kl − kl−1)

·
n∑

m=0

[
(−1)n−m

m−1∏

r=0

1∑m
t=r+1 yt + iǫ

n∏

r=m+1

1∑r
t=m+1 yt + iǫ

·
(

n∑

L0=0

(−∑m
t=1 yt)

L0

L0!
(−∂0)

L0 f̌(k+,0)

)(
m−1∏

r=0

n∑

lr=0

(
−∑m

t=r+1 yt

)lr

(2ωr−1)
lr

)

·
(

n∏

r=m+1

n∑

lr=0

(∑r
t=m+1 yt

)lr

(2ωr)
lr

)(
n∑

Ln=0

(∑n
t=m+1 yt

)Ln

Ln!
∂Ln

0 ȟ(−k+,n)

)]
. (3.25)To show that this gives the wanted result we need the following lemma:Lemma 3.2.4. For n ∈ N and lr ∈ N0, r = 0, . . . , n,

n∑

m=0

(−1)m

m−1∏

r=0

(−∑m
t=r+1 yt)

lr

∑m
t=r+1 yt + iǫ

·δlm
0 ·

n∏

r=m+1

(
∑r

t=m+1 yt)
lr

∑r
t=m+1 yt + iǫ

= Pl0,...,ln(y1, . . . , yn),(3.26)where we have with a :=
∑n

t=0 lt:I : If a < n, then Pl0,...,ln = 0.II : If a = n, then Pl0,...,ln = 1.III : If a > n, then Pl0,...,ln(y1, . . . , yn) is a homogeneous polynomial of degree
a− n.We will give a proof of this lemma at the end of this se
tion. In (3.25) wewill pull all sums over L0, Ln, l0, l1, . . . , ln to the front of the sum overm. Sin
ethere a
tually is no sum over lm, we will have to introdu
e a fa
tor δlm

0 . Now



3.2 Quantum �elds, IR 
uto� and adiabati
 limit 43we use Lemma 3.2.4 and get a polynomial PL0+l0,l1,...,ln−1,Ln+ln(y1, . . . , yn).What we arrive at is a C∞-fun
tion of the variables ki and yj. We 
hoose asequen
e ǧa → (2π)2δ with 
ompa
t support. All integrations over yj and kibut one 
an be 
arried out. Be
ause of the properties of P given in Lemma3.2.4 only terms survive where
L0 +

n∑

t=0

lt + Ln = n.Thus, we get as the limit of A(ga):
2π

∑

L0+
∑n

t=0
lt+Ln=n

∫
d3k

(−1)n

(2ωk)2n+1−L0−Ln

1

L0!

1

Ln!
(−∂0)

L0 f̌(k+)∂Ln

0 ȟ(−k+).where the sum extends over all nonnegative integers Li and lj with givensum. The sums over the lj's give a 
ombinatorial fa
tor and we 
an write
2π

∑

a+b≤n

∫
d3k

(−1)n

(2ωk)2n+1−a−b · a! · b!

(
2n− a− b

n− a− b

)
(−∂0)

af̌(k+)∂b
0ȟ(−k+).(3.27)This quantity will be 
alled Aadlim(n).We show that Aadlim(n) equals (3.8) by indu
tion.4 The 
ase n = 1 iseasily 
he
ked. Now we 
al
ulate 1/(n+ 1)∂m2Aadlim(n) , whi
h should yield

Aadlim(n + 1). We sort the terms of 1/(n + 1)∂m2Aadlim(n) by (−∂0)
cf̌∂d

0 ȟ.There are three 
ontributions, namely from (a = c, b = d), (a = c− 1, b = d)and (a = c, b = d− 1).5 Their sum is
2π

∫
d3k(−1)n(−∂0)

cf̌(k+)∂d
0 ȟ(−k+)

1

n+ 1

·
(

1

c!

1

d!

2(−2n+ 1 − c− d)

(2ωk)2n+1−c−d+2

(
2n− c− d

n− c− d

)

− 1

(c− 1)!

1

d!

1

(2ωk)2n+2−c−d

(
2n+ 1 − c− d

n+ 1 − c− d

)
1

2ωk

− 1

c!

1

(d− 1)!

1

(2ωk)2n+2−c−d

(
2n+ 1 − c− d

n+ 1 − c− d

)
1

2ωk

)
.4The 
orresponding part in [14℄ 
ontains some errors.5A
tually, this is only true if neither c nor d equals 0 or n + 1. These 
ases 
an easilybe 
he
ked separately.
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(

2n− c− d

n− c− d

)
2(2n+ 1 − c− d)

n+ 1
+

(
2n+ 1 − c− d

n+ 1 − c− d

)
c+ d

n+ 1

=

(
2(n+ 1) − c− d

n+ 1 − c− d

)and get
2π

∫
d3k(−1)n+1 1

n+ 1

· 1

c!

1

d!

1

(2ωk)2(n+1)+1−c−d

(
2(n+ 1) − c− d

n+ 1 − c− d

)

· (−∂0)
cf̌(k+)∂d

0 ȟ(−k+).The sum of these terms is equal to Aadlim(n+ 1), what had to be shown.Part 6:So far, we have shown that the 
orre
t adiabati
 limit in nth order is obtained,if the sequen
e of fun
tions {ga} ful�lls the two properties1. ǧa −−−→
a→∞

(2π)2δ in O′
C(M),2. suppǧa ⊂ Vn.Sequen
es with these two properties will be 
alled sequen
es of 
lass I,n. (The

n will be omitted in most 
ases.) The se
ond property is rather restri
tive,as ǧa 
annot be analyti
, and therefore ga 
annot have 
ompa
t support inposition spa
e.6 Fun
tions of 
ompa
t support are needed if one wants tointerpret (3.11) as the restri
tion of the intera
tion to a �nite region.We will now enlarge the 
lass of sequen
es, whi
h give the 
orre
t adia-bati
 limit. These will be 
alled of 
lass II,n. Suppose that a given sequen
e
ga of fun
tions in S(M) 
an be de
omposed into

ga = g0
a + g1

a, (3.28)where {g0
a} is of 
lass I,n and {g1

a} has the property that
r∏

t=1

ǧ1
a(kt) ·

n∏

t=r+1

ǧ0
a(kt) −−−→

a→∞
0 as a fun
tion in S(Mn) for 1 ≤ r ≤ n. (3.29)6Instead of Vn we 
ould have restri
ted the support of ĝa to any other 
onvex subsetof 1

nRn, but the non
ompa
tness of the support of ga remains the same.



3.2 Quantum �elds, IR 
uto� and adiabati
 limit 45We observe that F̂R(p1, p2; k1, . . . , kn) is a distribution in S ′(Mn+2). This willbe needed in order to show that the 
orre
t adiabati
 limit is obtained. We
ompute
∫

d4p1d
4p2

r∏

t=1

d4ktF̂R(p1, p2, k1, . . . , kn)f̌(p1)ȟ(p2)
n∏

r=1

(ǧ0
a(kr) + ǧ1

a(kr))

=

∫
d4p1d

4p2

r∏

t=1

d4ktF̂R(p1, p2, k1, . . . , kn)f̌(p1)ȟ(p2)
n∏

r=1

ǧ0
a(kr) (3.30)

+

∫
d4p1d

4p2

r∏

t=1

d4ktF̂R(p1, p2, k1, . . . , kn)f̌(p1)ȟ(p2)Γa(k1, . . . , kn),where Γa is a sum of 2n − 1 terms of produ
ts of ǧ0
a's and ǧ1

a's, where ea
hhas at least one fa
tor of ǧ1
a. From (3.29) we dedu
e that Γa approa
hes 0 in

S, so the last line in (3.30) vanishes in the adiabati
 limit and the remainingterm gives the desired result as {g0
a} is of 
lass I.An example for a sequen
e of 
lass II is easily 
onstru
ted if we take anarbitrary fun
tion g ∈ S with g(0) = 1 and s
ale it, i. e. ga(x) := g(x/a).Then ǧ is normalized (∫ d4kǧ(k) = g(0) = 1) and we have ǧa(k) = a4ǧ(ak).To prove that {ga} is of 
lass II, we take a 
uto� fun
tion b ∈ S with

b(k) =

{
0 if |k|2 > 4m2/n2,

1 if |k|2 < m2/n2,and de�ne
ǧ0

a(k) = b(k) · ǧa(k),

ǧ1
a(k) = (1 − b(k)) · ǧa(k).The sequen
e {g0

a} is 
learly of 
lass I. It remains to show that (3.29) holds.For this we �rst show that the growth of supk |kαDβ ǧ0
a(k)| is polynomiallybounded in a (for all multi-indi
es α, β):

sup
k

|kαDβb(k)a4ǧ(ak)| ≤ a4|β|!
∑

|β1,2|≤|β|
sup

k
|kαDβ1b(k)||Dβ2 ǧ(ak)|

≤ a4+|β||β|!
∑

|β1,2|≤|β|
sup

k
|kαDβ1b(k)| sup

k′

|Dβ2 ǧ(k′)|.The summmands in the last line are �nite sin
e b, ǧ ∈ S. On the other hand
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supk |kαDβ ǧ1

a(k)| falls o� faster than any polynomial in a:
az sup

k
|kαDβ(1 − b(k))a4ǧ(ak)|

≤az+4|β|!
∑

|β1,2|≤|β|
sup

|k|≥m/n

|Dβ1(1 − b(k))||kαDβ2 ǧ(ak)|

≤az+4+|β|−|α||β|!
∑

|β1,2|≤|β|
sup
k′

|Dβ1(1 − b(k′))| sup
|k|≥m/n

|(ak)α(Dβ2 ǧ)(ak)|

≤az+4+|β|−|α||β|!


 ∑

|β1|≤|β|
sup
k′

|Dβ1b(k′)| + 1


 ·

∑

|β2|≤|β|
sup

|k|≥am/n

|sα,β2
(k)|,where we have used that 1−b(k) = 0 for |k| < m/n and sα,β2

(k) := kαDβ2 ǧ(k)is a fun
tion in S. As the supremum of this fun
tion is taken outside a ball ofradius proportional to a, this falls o� faster than 1/az+4+|β|−|α| so the aboveapproa
hes 0 with a→ ∞. To show that (3.29) is indeed ful�lled we have toestablish that
sup

k1,...,kn

|
r∏

t=1

kαt

t D
βt

t ǧ
1
a(kt) ·

n∏

t=r+1

kαt

t D
βt

t ǧ
0
a(kt)| −−−→

a→∞
0for all multi-indi
es αj, βj. This is now obvious, sin
e the growth of the lastprodu
t is polynomially bounded and the �rst produ
t falls o� faster thanany polynomial (and we have r ≥ 1). So s
aling fun
tions in S yields indeeda sequen
e of 
lass II, and among these there are also some with 
ompa
tsupport in position spa
e.Part 7:To put everything together we have shown in this se
tion:Theorem 3.2.5. The IR 
uto�

(
� +m2

)
Φ(x) = −µg(x)Φ(x).gives for the two-point fun
tion of order n,

n∑

m=0

〈Φm,g(f)Φn−m,g(h),the 
orre
t adiabati
 limit, i.e.,
(2π)2

n!

∫
d4kf̌(k)ȟ(−k)∂n

m2∆̂
(m2)
+ (k),if the sequen
e of the 
uto� fun
tions {ga} is of 
lass II,n.



3.2 Quantum �elds, IR 
uto� and adiabati
 limit 47It was important to 
onsider the sum of all 
ontributions to the two-point fun
tion of the same order when 
arrying out the adiabati
 limit, aswe already saw expli
itly for the �rst order.Now, we give the postponed proof for Lemma 3.2.4. It is the same proofalready given in [14℄. As we want to work by indu
tion we slightly enhan
ethe lemma to:Lemma 3.2.6. For n ∈ N and lr ∈ N0, r = 0, . . . , n

n∑

m=0

(−1)m

m−1∏

r=0

(−∑m
t=r+1 yt)

lr

∑m
t=r+1 yt + iǫ

·δlm
0 ·

n∏

r=m+1

(
∑r

t=m+1 yt)
lr

∑r
t=m+1 yt + iǫ

= Pl0,...,ln(y1, . . . , yn),(3.31)where we have with a :=
∑n

t=0 lt:I : If a < n, then Pl0,...,ln = 0.II : If a = n, then Pl0,...,ln = 1.III : If a > n, then Pl0,...,ln(y1, . . . , yn) is a homogeneous polynomial of degree
a− n and further:IIIa : If ln = 0, the term with highest power in yn is (−yn)a−n.IIIb : If n = 2 and l0 = 0, the term with highest power in y1 is ya−n

1 .Proof. The 
ase n = 1 is almost trivial, where we have of 
ourse x1

x1+iǫ
= 1 asa distribution. For n = 2 the 
ases where (l0, l1, l2) is equal to (a permutationof) (1, 0, 0), (1, 1, 0), (≥ 2,≥ 1, 0) or (≥ 1,≥ 1,≥ 1) are easily 
he
ked. Forthe 
ase (l0, l1, l2) = (0, 0, 0) we 
ompute

1

y1 + iǫ

1

y1 + y2 + iǫ
− 1

y2 + iǫ

1

y1 + iǫ
+

1

y1 + y2 + iǫ

1

y2 + iǫ

=
1

y1 + y2 + iǫ

y1 + y2

y1y2 + i(y1 + y2)ǫ
− 1

y1y2 + i(y1 + y2)ǫ
= 0.The remaining 
ases are permutations of (b, 0, 0) with b ≥ 2. We show it herefor l1 = b:

(y1)
b−1

y1 + y2 + iǫ
− (−y2)

b−1

y1 + y2 + iǫ
=

1

y1 + y2 + iǫ
(y1 + y2)

b−2∑

k=0

yk
1(−y2)

b−2−k

=
b−2∑

k=0

yk
1(−y2)

b−2−k.

(3.32)



48 Chapter 3: Yang-Feldman formalismFor the 
ases l0 or l2 = b this 
an also be done and the parts IIIa and IIIb ofthe lemma are easily 
he
ked expli
itly.Now we want to work by indu
tion. For this, we assume n ≥ 3 and thatthe lemma has been proven for all lower orders. From the sum (3.31) we splito� the terms with m = n,
(−1)nδln

0

n∏

r=1

(−∑n
t=r+1 yt)

lr

∑n
t=r+1 yt + iǫ

=: A,and with m = n− 1,
(−1)n−1δ

ln−1

0

n−1∏

r=1

(−∑n−1
t=r+1 yt)

lr

∑n−1
t=r+1 yt + iǫ

· yln
n

yn + iǫ
=: B.The remaining summands ea
h have a fa
tor

(
∑n−1

t=m+1 yt)
ln−1

∑n−1
t=m+1 yt + iǫ

(
∑n

t=m+1 yt)
ln

∑n
t=m+1 yt + iǫ

= δ
ln−1

0

1∑n−1
t=m+1 yt

yln
n

yn + iǫ
−δln

0

1∑n
t=m+1 yt

(−yn)ln−1

yn + iǫ
+P0,ln−1,ln(

n−1∑

t=m+1

yt, yn),(3.33)where we used the indu
tion hypothesis for n = 2. If we reinsert these termsinto the remaining sum, we 
an split this into three parts, whi
h we labela

ording to the order in (3.33) by C,D and E. Now we 
an 
ombine A+Dto
− δln

0

(−yn)ln−1

yn + iǫ

n−1∑

m=0

(−1)m

m−1∏

r=0

(−∑m
t=r+1 y

′
t)

l′r

∑m
t=r+1 y

′
t + iǫ

· δl′m
0 ·

n−1∏

r=m+1

(
∑r

t=m+1 y
′
t)

l′r

∑r
t=m+1 y

′
t + iǫ

= −δln
0

(−yn)ln−1

yn + iǫ
Pl0,...,ln−2,0(y1, . . . , yn−1 + yn) (3.34)with l′i = li and y′i = yi for i ≤ n − 2 and l′n−1 = 0 and x′n−1 = xn−1 + xn.The terms B + C give

δ
ln−1

0

yln
n

yn + iǫ

n−1∑

m=0

(−1)m

m−1∏

r=0

(−∑m
t=r+1 yt)

lr

∑m
t=r+1 yt + iǫ

· δlm
0 ·

n−1∏

r=m+1

(
∑r

t=m+1 yt)
lr

∑r
t=m+1 yt + iǫ

= δ
ln−1

0

yln
n

yn + iǫ
Pl0,...,ln−2,0(y1, . . . , yn−1). (3.35)
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 limit 49Now we have a 
loser look at
E =

n−2∑

m=0

(−1)m

m−1∏

r=0

(−∑m
t=r+1 yt)

lr

∑m
t=r+1 yt + iǫ

· δlm
0 ·

n−2∏

r=m+1

(
∑r

t=m+1 yt)
lr

∑r
t=m+1 yt + iǫ

· P0,ln−1,ln(
n−1∑

t=m+1

yt, yn).The last polynomial gives 0 if ln−1 + ln < 2. Otherwise, by IIIb, the termwith highest power in ∑n−1
t=m+1 yt from P0,ln−1,ln is (

∑n−1
t=m+1 yt)

ln−1+ln−2, andwe 
an write it as
P0,ln−1,ln(

n−1∑

t=m+1

yt, yn) =

ln−1+ln−2∑

α=0

(
n−2∑

t=m+1

yt)
ln−1+ln−2−αP̃α(yn−1, yn),where P̃α(yn−1, yn) is a homogeneous polynomial of degree α and P̃0 = 1.If ln = 0, we 
an dedu
e from the expli
it formula (3.32) that in ea
h

P̃α(yn−1, yn) we have a term (−yn)α. Now in E we pull the sum over α to thefront and for ea
h summand use the indu
tion hypothesis for n− 2 to get
E =

ln−1+ln−2∑

α=0

Pl0,...,ln−3,ln−2+ln−1+ln−2−α(y1, . . . , yn−2) · P̃α(yn−1, yn). (3.36)So E is a homogeneous polynomial of degree
n∑

r=0

lr − 2 − (n− 2) − α+ α =
n∑

r=0

lr − n.We have to 
he
k the following 
ases:
• ln−1 = ln = 0: E = 0 and

A+D +B + C =

1

yn + iǫ

[
Pl0,...,ln−2,0(y1, . . . , yn−1) − Pl0,...,ln−2,0(y1, . . . , yn−1 + yn)

]
.These polynomials are of degree ∑n

r=0 lr − (n− 1), if this is greater orequal to 0. If we expand the powers of yn−1 + yn of the se
ond polyno-mial, we see that terms with no fa
tor yn vanish and from the remainingterms one fa
tor is 
an
elled by the prefa
tor. So the remaining expres-sion is of degree ∑n
r=0 lr − n and I to IIIa are easily 
he
ked.
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• ln−1 = 1, ln = 0: E = B + C = 0 and

A+D =
yn

yn + iǫ
Pl0,...,ln−2,0(y1, . . . , yn−1 + yn).This is of degree ∑n

r=0 lr − (n − 1) =
∑n

r=0 lr − n. Again I to IIIa areeasily 
he
ked.
• ln−1 = 0, ln = 1: similar.
• ln−1 ≥ 2, ln = 0: B+C = 0. A+D and E both vanish if∑n

r=0 lr−n < 0,so I is 
he
ked. Set a′ :=
∑n−2

r=0 lr. To show II we assume a′ + ln−1−n =
0 from whi
h a′ − n ≤ −2 follows. So from (3.34) we see that thepolynomial in A +D vanishes. In E only the term with α = 0 gives a
ontribution, whi
h is 1.Now we want to show III and IIIa: We have a′ + ln−1 − n > 0 andsee that both A+D and E are homogeneous polynomials of the rightdegree. We still have to show that not both are zero and they do not
an
el ea
h other. This is done by establishing IIIa. For that, we haveto look at the 
ases:1. a′ − n < −2: A + D = 0. The sum over α in E only goes to

α = a′+ln−1−n as for higher α the �rst polynomial in E vanishes.The term with highest degree in yn 
omes from α = a′ + ln−1 − nand is (−yn)a′+ln−1−n.2. a′−n = −2: A+D = 0 and in E the term with highest α = ln−1−2gives just (−yn)a′+ln−1−n. All other terms are of lower order in yn.3. a′ − n > −2: The highest degree of yn in E is ln−1 − 2 < a′ +
ln−1 −n whereas A+D gives a term (−yn)ln−1−1 · (−yn)a′−(n−1) =
(−yn)a′+ln−1−n.

• ln−1 = 0, ln ≥ 2: similar.
• ln−1 ≥ 1, ln ≥ 1: A+D = B +C = 0, only E gives a 
ontribution. I toIII are again easily 
he
ked.This 
ompletes the proof.3.2.2 Adiabati
 limit on non
ommutative spa
etimeNow we look at the non
ommutative 
ase. Sin
e the IR 
uto� made by multi-plying∆R by a fun
tion g already failed in the adiabati
 limit on 
ommutativespa
etime, we do not 
onsider this 
uto� again.
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 limit 51The 
uto� (3.11) 
an be viewed as 
oming from an intera
tion term
SInt(Φ) =

µ

2

∫
dx
(
g(x)Φ2(x)

)
, (3.37)If we take �elds on Mn
, there is no unique generalization. A straightforwardway would be to simply take

SInt(Φ) =

∫
dq µ2Tr (g(q)Φ(q)Φ(q)) .The limit ga(q) → 1 again 
orresponds to ǧa(k) → (2π)2δ(k). Another pos-sibility would be to take two g(q) in the form of (2.14):

SInt(Φ) =

∫
dq µ2Tr (g(q)Φ(q)g(q)Φ(q)) .This kind of 
uto� is proposed in [45℄. In the 
ommutative limit this would
orrespond to taking g2 in (3.37) instead of g. This would just be a relabellingand the adiabati
 limit remains un
hanged. These two possibilities take the
uto� as a multipli
ation of an element in Mn
. A third one would be to takeinstead the pointwise produ
t with a fun
tion g ∈ S, 
ompare (2.7).First take the 
uto�s by the algebra produ
t. We look at both at on
e by
onsidering a more generalized 
uto�

SInt(Φ) =
µ

2
Tr
(
g(1)(q)Φ(q)g(2)(q)Φ(q)

)
.The g(1) and g(2) 
ould be the same or one 
ould even be 1 right from thebeginning. Using the 
y
li
ity of the tra
e we get the �eld equation

(
�q +m2

)
Φ(q) = −µ/2

(
g(1)(q)Φ(q)g(2)(q) + g(2)(q)Φ(q)g(1)(q)

)
. (3.38)The solution at order m is

Φ0,g(q) =Φ0(q) = ΦFree(q),
Φm,g(q) = − 1

2

∫
d4z∆R(z)

(
g(1)(q − z)Φm−1,g(q − z)g(2)(q − z)

+ g(2)(q − z)Φm−1,g(q − z)g(1)(q − z)
)
.



52 Chapter 3: Yang-Feldman formalismUsing the Weyl formula (2.2) this gives
Φm,g(q) =

(−1)m

(2π)2(m+1)

∫
d4p

m∏

j=1

(d4kjd
4lj) Φ̂0(p)e

i(−p+
∑m

t=1
(kt+lt))q

·
m∏

r=1

[
ǧ(1)(kr)ǧ

(2)(lr)∆̂R(p−
r∑

t=1

(kt + lt))

cos

(
1

2

{
(kr − lr)σ

[
−p+

r−1∑

t=1

(kt + lt)
]
+ krσlr

}
)]

.Thus, at nth order, the two-point fun
tion is
n∑

m=0

〈Φm,g(f)Φn−m,g(h)〉 (3.39)
=

(−1)n

(2π)2(n−1)

∫ n∏

j=1

(d4kjd
4lj)d

4pd4p̃d4p1d
4p2

f̌(p1)ȟ(p2)
n∏

j=1

ǧ(1)(kj)ǧ
(2)(lj)∆̂+(p)δ(p+ p̃)

·
n∑

m=0

[
δ(p1 − p+

m∑

t=1

(kt + lt)) δ(p2 − p̃+
n∑

t=m+1

(kt + lt))

·
m∏

r=1

∆̂R(p−
m∑

t=r

(kt + lt))

· cos

(
1

2

{
(kr − lr)σ

[
− p+

m∑

t=r+1

(kt + lt)
]
+ krσlr

}
)

·
n∏

r=m+1

∆̂R(p̃−
r∑

t=m+1

(kt + lt))

· cos

(
1

2

{
(kr − lr)σ

[
−p̃+

r−1∑

t=m+1

(kt + lt)
]
+ krσlr

}
)]

,where we have relabelled in ea
h summand the variables kj and lj from 1 tom:
k1 → km, k2 → km−1 . . . and l1 → lm, l2 → lm−1 . . . ,and use the higher indi
es for the parts 
oming from ΦInt(h). In order toextend the sum in the argument of the se
ond cos to r, we have to subtra
t
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2krσlr. As cos is even, these fa
tors 
an now be pulled outside of the sum,and we obtain

1

(2π)2n

∫ n∏

j=1

(d4kjd
4lj)d

4p1d
4p2 f̌(p1)ȟ(p2)

n∏

j=1

ǧ(1)(kj)ǧ
(2)(lj)

·
n∏

r=1

cos

(
1

2

{
(kr − lr)σ

[
p1 +

r∑

t=1

(kt + lt)
]
− krσlr

}
)

· F̂R(p1, p2; k1 + l1, . . . , kn + ln), (3.40)where F̂R is the same as in (3.17). The di�eren
e is that here the last narguments are sums of variables kj and lj and it is multiplied by a produ
tof 
osine terms depending smoothly on the variables pj, kj and lj. So, thelast two lines are again a tempered distribution in the p's and in�nitelydi�erentiable in the k's and l's as long as ea
h kj + lj lies inside Vn. In orderto a
hieve this, we may for example require ǧ1 and ǧ2 to have support in a
losed subset of V2n. Obviously, the adiabati
 limit exists and sin
e the 
osinesgive 1 there, it is the same as in the 
ommutative 
ase. The generalizationto fun
tions of 
lass II (3.28) works similarly as before.There is still the IR 
uto� via the pointwise produ
t (2.7) to be 
onsid-ered. For a mass term this would be
Φn,g(q) =

1

(2π)4

∫
dx∆R(x)

∫
dk0dk1ǧ(k1)Φ̂n−1,g(k0 + k1)e

−ik0(q−x). (3.41)It is easy to see that all formulas are the same as in the 
ommutative 
ase,so in parti
ular it gives the same adiabati
 limit.Thus, putting everything together, we have proven the followingTheorem 3.2.7. The IR 
uto�
(
�q +m2

)
Φ(q) = −µ/2

(
g(1)(q)Φ(q)g(2)(q) + g(2)(q)Φ(q)g(1)(q)

)
,gives for the two-point fun
tion of order n,

n∑

m=0

〈Φm,g(f)Φn−m,g(h),the 
orre
t adiabati
 limit, i.e.,
(2π)2

n!

∫
d4kf̌(k)ȟ(−k)∂n

m2∆̂
(m2)
+ (k),if either
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• the sequen
es of the 
uto� fun
tions {g(1)

a } and {g(2)
a } are of 
lass II,2nor

• the sequen
e of the 
uto� fun
tions {g(1)
a } is of 
lass II,n and g(2) = 1.The IR 
uto� by taking the pointwise produ
t (3.41) gives also the 
orre
tadiabati
 limit if the sequen
e {ga} is of 
lass II,n.Nevertheless, taking the pointwise produ
t seems a bit unnatural as itlies outside the algebra stru
ture of Mn
. Sin
e the IR 
uto� 
an be seen asan intermediate te
hni
ality, this would not be too mu
h of a drawba
k.We will see in se
tion (4.3) that in �truly intera
ting� models on non
om-mutative spa
etime it is quite di�
ult to handle the adiabati
 limit rigorously.The problem will be that no matter what kind of 
uto� one takes it is notpossible to pull out a 
ommon fa
tor from the di�erent 
ontributions of thesame order as in (3.40).



Chapter 4Dispersion relations forintera
ting models
Now we will have a look at intera
ting quantum �eld theory. We want to 
al-
ulate dispersion relations for intera
ting models on non
ommutative spa
e-time. Dispersion relations are experimentally a

essible. So, the 
ompari-son of theoreti
al predi
tions with experimental results 
an help to de
idewhether non
ommutative spa
etime is realized in the real world or not. Inparti
ular, we are going to 
ompare the theoreti
al predi
tions of logarith-mi
ally and quadrati
ally divergent models.Se
tion 4.1 gives the main de�nitions and 
on
epts for 
al
ulating disper-sion relations. If we regard intera
ting theories we have to 
onsider a produ
tof multiple Φk in the quantum version of (3.3). This brings problem b) onpage 29 into play. To see more 
learly, what additional features the non
om-mutativity of the spa
etime brings in, we �rst have a look at the situation on
ommutative spa
etime in se
tion 4.2. We will see in se
tion 4.3 that, despiteof the su

essful treatment of a mass term in se
tion 3.2.2, the adiabati
 limitfor truly intera
ting models on non
ommutative spa
etime is quite di�
ultto handle. In Se
tion 4.4 we will have a look at the φ3 model, both in four andsix dimensions. The reason for looking at these di�erent dimensions is thatthe φ3

4 model is logarithmi
ally divergent while φ3
6 is quadrati
ally divergent.Se
tion 4.5 gives a short treatment of the φ4 model, another quadrati
allydivergent model. We will use quasiplanar Wi
k produ
ts to 
al
ulate the�rst order 
ontribution to the dispersion relation. Finally we will look at theWess-Zumino model in se
tion 4.6, whi
h is a supersymmetri
 model andlogarithmi
ally divergent. Parts of this 
hapter have already been publishedin [15℄. 55



56 Chapter 4: Dispersion relations4.1 Dispersion relationsWe look at the two-point fun
tion of an intera
ting model
〈ΦInt(f)ΦInt(h)〉.Let Ta be the translation by the ve
tor a:

Ta(f)(x) = f(x− a).The two-point fun
tion should be translationally invariant in the adiabati
limit, i.e.,
〈ΦInt(Ta(f))ΦInt(Ta(h))〉 = 〈ΦInt(f)ΦInt(h)〉.So, it 
an be written in the form
〈ΦInt(f)ΦInt(h)〉 =

∫
dxdyf(x)h(y)A(x− y)with A a distribution. As we treat ΦInt as a formal power series in the 
oupling
onstant λ, we have to do the same with A. In zeroth order we get A0 = ∆+.We are interested in the support of Â. From this support we 
an dedu
ehow the p0 
omponent of the momentum depends on the spatial part p.For example, the support of ∆̂+ is the set {p ∈ M|p0 =

√
m2 + p2}. Thisdependen
e is 
alled dispersion relation. Usually in intera
ting theories on
ommutative spa
etime one expe
ts it to be of the form

A(x) =

∫ ∞

0

dµρ(µ)∆
(µ)
+ (x),whi
h is 
alled the Källén-Lehmann spe
tral representation. ∆

(µ)
+ is the two-point fun
tion for mass √µ. ρ is the spe
tral density and usually 
onsists of a

δ fun
tion at the physi
al mass m2, whi
h 
orresponds to one-parti
le states,some isolated parts in the vi
inity of (2m)2, 
orresponding to bound states,and a 
ontinuous part starting at (2m)2, 
orresponding to multi-parti
lestates.It turns out that the two-point fun
tions of models on non
ommuta-tive Minkowski spa
e show a slightly di�erent behaviour. The reason is thatLorentz symmetry is broken for a �xed non
ommutativity matrix σ. We aremainly interested in the part 
orresponding to the one-parti
le states. Thus,we want to have a look at that part of the support of Â whi
h transforms to
{p ∈ M|p0 =

√
m2 + p2} for λ → 0. In analogy to the free 
ase, we expe
t
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h 
orresponds to the one-parti
le spe
trum in the free
ase to be of the form
1

2π
θ(k0)FZ(k, λ)δ(FM(k, λ)) (4.1)with the property that FM(k, 0) = k2 −m2 and FZ(k, 0) = 1. The support isof 
ourse the subset of M where FM(k, λ) vanishes.As we are working in perturbation theory everything has to be treated asa formal power series in λ. We will only have a look at the �rst nonvanishingmodi�
ation from the free 
ase. Let this order be n:

FM(k, λ) = k2 −m2 − λnM(k) +O(λn+1),

FZ(k, λ) = 1 + λnZ(k) +O(λn+1).Thus, M(k) is a mass and Z(k) a �eld strength renormalization, both de-pending on the momentum. From now on all quantities will be regarded onlyup to order n in λ and the O(λn+1) will be dropped.We are interested in the support of the two-point fun
tion of the inter-a
ting �eld. That is, we have to solve:
k2

0 − k2 −m2 − λnM(k0,k)Sin
e we are working with formal power series, the equation has to be solvedre
ursively by orders of λ. This gives1
k0(k) = ωk + λn 1

2ωk

M(ωk,k). (4.2)If we expand (4.1) around this solution as a power series in λ we get
1

2π
(1 + λnZ(k))δ

(
k2 −m2 − λnM(k)

)

=∆̂(m2)(k) + λn
(
Z(k+)∆̂(m2)(k) +M(k)∂m2∆̂(m2)(k)

)

=∆̂(m2)(k) + λn
(
(Z(k+) − ∂m2M(k+))∆̂(m2)(k) +M(k+)∂m2∆̂(m2)(k)

)
.(4.3)If only this expansion was known Z(k+) would not be uniquely determinedsin
e it 
ould be absorbed into ∂0M(k+).1The θ fun
tion in (4.1) 
an
els the negative solution for k0. As usual ωk =

√
k2 +m2.



58 Chapter 4: Dispersion relationsIt will later turn out that the two-point fun
tion to the order of the �rstnonvanishing modi�
ation will be of the following form:
∆̂(m2)(k) + λnΣ

(
k2, (kσ)2

)
∂m2∆̂(m2)(k)

= ∆̂(m2)(k) + λn

(
Σ
(
k2

+, (k+σ)2
)
∂m2∆̂(m2)(k)

− ∂m2Σ
(
m2, (k+σ)2

)
∆̂(m2)(k)

)
. (4.4)If we assume that M(k) and Z(k) are of the form M ((kσ)2) and Z ((kσ)2),we 
an identify, by 
omparison with (4.3),

M(s) = −Σ(m2, s) (4.5)
Z(s) = ∂(1,0)Σ(m2, s). (4.6)In the 
ommutative limit the assumed form of M and Z give a momentumindependent mass and �eld strength renormalization. With this assumption

Z is on the region under 
onsideration, namely s = (k+σ)2, i.e., k on themass shell, uniquely determined.Remark 4.1.1. Formally, one 
an see the momentum dependent mass and�eld strength renormalization 
oming from the nonlo
al terms
λn 1

(2π)2

∫
dkM

(
(kσ)2

)
Φ̂(k)e−ikqand

λn 1

2(2π)2
(� +m2)

∫
dkZ

(
(kσ)2

)
Φ̂(k)e−ikq.If we drop the initial intera
tion and only use these terms, the equation ofmotion be
omes

(� +m2)

(
Φ(q) − λn 1

2(2π)2

∫
dkZ

(
(kσ)2

)
Φ̂(k)e−ikq

)

= −λn 1

(2π)2

∫
dkM

(
(kσ)2

)
Φ̂(k)e−ikq. (4.7)The equation of motion (4.7) is solved to order n by

Φ0(q) =ΦFree(q),
Φn(q) = −

∫
dx∆R(x)

1

(2π)2

∫
dkM

(
(kσ)2

)
Φ̂0(k)e

−ik(q−x)

+
1

2(2π)2

∫
dkZ

(
(kσ)2

)
Φ̂0(k)e

−ikq.



4.1 Dispersion relations 59The terms in between are all zero. So, the two-point fun
tion at order n gives
〈Φ0(f)Φn(h)〉 + 〈Φn(f)Φ0(h)〉

= −(2π)2

∫
dkf̌(k)ȟ(−k)M

(
(kσ)2

) [
∆̂R(k)∆̂+(k) + ∆̂+(k)∆̂A(k)

]

+

∫
dkf̌(k)ȟ(−k)Z

(
(kσ)2

)
∆̂+(k). (4.8)We saw in se
tion 3.2.1 that (3.12) gives (2π)2

∫
dkf̌(k)ȟ(−k)∂m2∆

(m2)
+ for

ǧ → (2π)2δ. Sin
e we are working without 
uto� here, we set formally
∆̂R(k)∆̂+(k) + ∆̂+(k)∆̂A(k) = − 1

(2π)2∂m2∆̂
(m2)
+ (k). (4.9)Then (4.8) 
an be transformed to

∫
dkf̌(k)ȟ(−k)

(
M
(
(kσ)2

)
∂m2∆̂

(m2)
+ (k) + Z

(
(kσ)2

)
∆̂

(m2)
+ (k)

)

=

∫
dkf̌(k)ȟ(−k)

[
M
(
(k+σ)2

)
∂m2∆̂

(m2)
+ (k)

+
(
Z
(
(k+σ)2

)
− ∂m2M

(
(kσ)2

) )
∆̂

(m2)
+ (k)

]
.This is exa
tly (4.3).To 
al
ulate the dispersion relation we have to solve

0 = k2 −m2 − λnM
(
(kσ)2

)
, (4.10)and take that part whi
h 
orresponds to k0 > 0 in the free 
ase. Note, thatthe solution of (4.10) is invariant under simultaneous Lorentz transformationof k and σ. Sin
e we are working with formal power series, the equation hasto be solved re
ursively by orders of λ.2 This gives

k0(k) = ωk + λn 1

2ωk

M
(
(k+σ)2

)
. (4.11)The group velo
ity is de�ned as the gradient with respe
t to k of the solution

k0. This is
∇k0 =

k

ωk

+ λn

[
k

2ω3
k

M
(
(k+σ)2

)
− 1

2ωk

(
∇(k+σ)2

)
M ′ ((k+σ)2

)
]

=
k

k0

− λn 1

2k0

(
∇(k+σ)2

)
M ′ ((k+σ)2

)
.2If λ is not in�nitesimal small and M large, (4.10) might not have a solution of theform k0(k). There might even be ta
hyoni
 solutions, i.e., with k2 < 0.



60 Chapter 4: Dispersion relationsIn the last line we inserted the solution (4.11). From now on we take σ to bethe standard non
ommutativity matrix,
σ = σ0 = λ2n
 0 1 0 0

−1 0 0 0
0 0 0 1
0 0 −1 0


 ,and de�ne for this k⊥ := (0, k2, k3) and k|| := (k1, 0, 0). Then

(kσ)2 = −λ4n
(k2 + 2k2
⊥) and ∇(k+σ0)

2 = −4λ4n
k⊥. (4.12)With (4.5) the group velo
ity is
∇k0 =

k||
k0

+
k⊥
k0

[
1 + 2λ4n
λn∂(0,1)Σ

(
m2, (k+σ)2

)]
. (4.13)We de�ne the distortion of the group velo
ity in perpendi
ular dire
tion tobe

∆vrel⊥ := 2λ4n
λn∂(0,1)Σ
(
m2, (k+σ)2

)
. (4.14)So,

∣∣∆vrel⊥
∣∣ =

|∇k0,⊥ − k⊥/k0|
|k⊥/k0|

.We will later 
al
ulate this quantity for di�erent models on non
ommutativespa
etime. We want to emphasize that to 
al
ulate the dispersion relation(4.13) or the mass and �eld strength renormalization in �rst nontrivial orderwe only have to know Σ (k2, (kσ)2) for k in the vi
inity of the positive massshell.4.2 Intera
ting models on 
ommutative spa
e-timeWe want to use the Yang-Feldman formalism to 
al
ulate two-point fun
tionsof quantum �elds of 
ertain models. Before we will investigate quantum �eldson non
ommutative spa
etime we �rst have a look at the situation on 
om-mutative spa
etime. This gives the possibility to distinguish between features
oming from the quantum stru
ture of the �elds and those 
oming from thenon
ommutativity of spa
etime.Mainly, we will 
al
ulate in this se
tion the two point fun
tion of the φ3
4model. This is done in subse
tion 4.2.1. In subse
tion 4.2.2 we will have ashort look at the φ4 model. We will use the IR 
uto� whi
h already gave
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ting models on 
ommutative spa
etime 61the 
orre
t adiabati
 limit 3.2.1 and again make use of the Epstein-Glasertheorem.To apply this theorem, again we have to add all 
ontributions ofthe same order before 
al
ulating the adiabati
 limit. We will see that mostdivergen
es 
an
el. One remains, whi
h 
an be handled by the 
ontinuation ofa distribution to the origin using the 
on
ept of s
aling degree of Steinmann[41℄. This gives a free parameter. We will see that this 
orresponds to a massrenormalization.4.2.1 φ3 model on 
ommutative spa
etimeWe investigate the φ3
4 model. For the φ3 intera
tion it is not possible to �nd apositive-de�nite energy. However, the perturbation series is well-de�ned. One
an imagine that there exists an additional φ4, whi
h would make the energyindeed positive-de�nite, but is of su�
ient higher order in the 
oupling λ,su
h that e�e
ts of this term are not visible at the 
al
ulated orders.The �eld equation for the intera
ting �eld reads

(� +m2)Φ(x) = −λΦ2(x).The naive solution (3.3) has to be modi�ed sin
e it involves produ
ts of �eldsat the same point. Additionally, we have to introdu
e an IR 
uto�. We 
hoosethat 
uto� whi
h was already su

essfully applied in se
tion 3.2.1.We will look at the solution for the intera
ting �eld up to se
ond order.The �rst orders are
Φ0(x) =ΦFree(x),
Φ1(x) = −

∫
dy∆R(x− y)g(y) : Φ2

0(y) : .Here we have taken the Wi
k-ordered produ
t of two free �elds at the samepoint. In the se
ond order we get from (3.3):
Φ2(x) = −

∫
dy∆R(x− y)g(y) (Φ0(y)Φ1(y) + Φ1(y)Φ0(y)) .These �elds 
an be represented by the graphs shown in �gure 4.1. The two
ontributions to Φ2 are represented by a sum of graphs. We will later seethat, although the graphs represent the di�erent summands in Φ2 on theirone, it will be more appropriate to always look at their sum. Taking theWi
k ordered produ
t in Φ1 is graphi
ally equivalent to subtra
t tadpolesright from the start, 
f. �gure 4.2. Graphs for the Yang-Feldman formalismare explained in more detail in Appendix C.



62 Chapter 4: Dispersion relations

Φ0 Φ1

: :

Φ2

+

: :: :

Figure 4.1: The �rst orders of the intera
ting �eld in the φ3 model.

= −
: :

Figure 4.2: Subtra
tion of tadpoles.
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Figure 4.3: Se
ond order 
ontributions to two-point fun
tion of the φ3 model,
〈Φ2Φ0〉.

Figure 4.4: Se
ond order 
ontributions to two-point fun
tion of the φ3 model,
〈Φ1Φ1〉.
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Figure 4.5: Se
ond order 
ontributions to two-point fun
tion of the φ3 model,
〈Φ0Φ2〉.
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ting models on 
ommutative spa
etime 65We 
al
ulate the two-point fun
tion up to se
ond order. The zeroth orderist that of the free 
ase:
〈Φ0(f)Φ0(h)〉 = (2π)2

∫
dkf̌(k)ȟ(−k)∆̂+(k).The two-point fun
tion of �rst order, 〈Φ1(f)Φ0(h) + Φ0(f)Φ1(h)〉, vanishessin
e an odd number of �elds is involved.At se
ond order we have

〈Φ2(f)Φ0(h)〉 + 〈Φ1(f)Φ1(h)〉 + 〈Φ0(f)Φ2(h)〉. (4.15)The 
ontribution from 〈Φ2(f)Φ0(h)〉, graphi
ally represented by the sum ofthe graphs shown in �gure 4.3, is
2

∫ 3∏

j=0

dyjf(y0)g(y1)g(y2)h(y3)

∆R(y0 − y1)∆R(y1 − y2) [∆+(y1 − y2) + ∆−(y1 − y2)] ∆+(y2 − y3).The 〈Φ0(f)Φ2(h)〉 
ontribution is
2

∫ 3∏

j=0

dyjf(y0)g(y1)g(y2)h(y3)

∆+(y0 − y1) [∆+(y1 − y2) + ∆−(y1 − y2)] ∆A(y1 − y2)∆A(y2 − y3),represented by the sum of graphs of �gure 4.5, and the one from 〈Φ0(f)Φ2(h)〉is
2

∫ 3∏

j=0

dyjf(y0)g(y1)g(y2)h(y3)

∆R(y0 − y1)∆+(y1 − y2)∆+(y1 − y2)∆A(y2 − y3),represented by the sum of graphs of �gure 4.4. Here, the planar and non-planar graphs give the same 
ontribution, whi
h gives rise to the fa
torsof 2 appearing in front of ea
h integral. On non
ommutative spa
etime the
ontributions will be di�erent.Now, if we would treat the terms 
oming from the di�erent graphs sep-arately, we would, for example, in the lower left graph of �gure 4.3 fa
e theproblem that
∆R(x) · ∆+(x) with x = y1 − y2



66 Chapter 4: Dispersion relationsis a priori not well-de�ned. If we look at the set W̃F(∆R,∆+) (
ompareAppendix A), we see that it 
ontains elements of the form (x, 0) if x lies onthe forward light
one. However, we 
an use3
∆R(x) [∆+(x) + ∆−(x)] = iθ(x0) [∆+(x) − ∆−(x)] [∆+(x) + ∆−(x)]

= iθ(x0)
[
∆2

+(x) − ∆2
−(x)

]
. (4.16)

∆n
± are well-de�ned distributions for n ∈ N. But for n > 1 there appearsa problem due to the multipli
ation with θ(x0) in x = 0, i.e., (0, 0) ∈W̃F(θ0,∆+). So, the problem of multipli
ation has been redu
ed to the ori-gin, where the expression (4.16) is not well-de�ned. But we 
an use 
on
eptof s
aling degreeto extend this distribution to the origin. Sin
e sd(∆2

±) = 4two su
h 
ontinuations di�er by the multiple of a δ fun
tion. We will latershow that this 
an be regarded as a mass renormalization.Remark 4.2.1. We 
annot use the 
on
ept of s
aling degree at submanifolds[7℄ to uniquely extend ∆R · ∆+ onto the forward light
one. If x lies on theforward light
one and v is a unit ve
tor perpendi
ular to the light
one at
x pointing inwards, then ∆R(x + λv) is essentially 
onstant for small λ >
0 and ∆+(x + λv) behaves essentially like 1

λ
. So ∆R · ∆+ has the s
alingdegree 1 at the light
one and sin
e the 
odimension of the light
one is 1 the
ontinuation to x would be unique only up to a δ-term. Thus, the overallambiguity 
orresponds to a fun
tion on the forward light
one.Let TR(x) be a 
ontinuation of iθ(x0)

[
∆2

+(x) − ∆2
−(x)

] to the point x = 0and de�ne 
orrespondingly TF (x) := TR(x) − i∆2
−(x) and TA(x) := TF (x) −

i∆2
+(x). Then TA(x) is a 
ontinuation of iθ(−x0)

[
∆2

−(x) − ∆2
+(x)

] and TA(x) =
TR(−x). Outside the origin TF (x) = ∆2

F (x). It is easy to see that all TR/F/Aare Lorentz invariant and their Fourier transform T̂R/F/A are C∞ in the vi
in-ity of the mass shell. Let
µ := 2(2π)2T̂F (m, 0, 0, 0). (4.17)Sin
e a di�erent 
ontinuation di�ers by a δ-fun
tion in position spa
e, itdi�ers by a 
onstant in momentum spa
e. So, the parameter µ 
an be usedto label the di�erent 
ontinuations.Now, we 
laim that the theorem of Epstein and Glaser (D.1.3) is appli-
able for the sum (4.15), whi
h is

∫ 3∏

j=0

dyjf(y0)g(y1)g(y2)h(y3)FR(y0, y3; y1, y2)3This was already dis
overed in [2℄.
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etime 67with
FR(y0, y3; y1, y2) = 2

[
∆R(y0 − y1)TR(y1 − y2)∆+(y2 − y3)

+ ∆R(y0 − y1)∆
2
+(y1 − y2)∆A(y2 − y3)

+ ∆+(y0 − y1)TA(y1 − y2)∆A(y2 − y3)
]
.The distribution FA will be de�ned by ex
hanging ∆R with ∆A and TRwith TA respe
tively. Sin
e TR has retarded and TA has advan
ed supportthe proof, that FR/A ful�lls (D.1), is similar to the 
ase for a mass term atse
ond order, shown on page 37.Fourier transformation gives

F̂R/A(k0, k3; k1, k2) =

8π2δ

(
3∑

j=0

kj

)[
∆̂R/A(k0)T̂R/A(k0 + k1)∆̂+(k0 + k1 + k2)

+∆̂R/A(k0)∆̂2
+(k0 + k1)∆̂A/R(k0 + k1 + k2)

+∆̂+(k0)T̂A/R(k0 + k1)∆̂A/R(k0 + k1 + k2)
]
.

(4.18)
To show that F̂R − F̂A vanishes on R2, we repla
e ∆̂R/A by ∆̂F − i∆̂∓ and
T̂R/A by T̂F − i∆̂2

∓. The support of ∆̂2
+ lies above the positive 2m-mass shell,the one of ∆̂− lies on the negative m-mass shell and the one of ∆̂2

− is be-low the negative 2m-mass shell. Ea
h term 
ontaining one of these last twodistributions 
an be dropped as all terms also 
ontain ∆̂+ or ∆̂2
+, so the mul-tipli
ation with this gives zero on R2, be
ause a ve
tor k from on or abovethe positive m-mass shell to somewhere on or below the negative m-massshell has k2 ≥ 4m2. Although the 
ommon support of ∆̂+ and ∆̂2

+ is empty,their regions of support 
an be linked by an arbitraryíly small ve
tor if onegoes to high momenta, see �gure 4.6. So, the terms with ∆̂+ and ∆̂2
+ 
annotbe dropped a priori. We 
al
ulate F̂R − F̂A on R2 with the simpli�
ations
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Figure 4.6: Small spa
elike ve
tor, 
onne
ting the support of ∆̂+ with thesupport of ∆̂2
+ at high momenta.mentioned before and get

F̂R(k0, k3; k1, k2) − F̂A(k0, k3; k1, k2) = 8π2δ (K3)

·
[

∆̂F (K0) T̂F (K1) ∆̂+(K2)

+ ∆̂F (K0) ∆̂2
+(K1)

(
∆̂F − i∆̂+

)
(K2)

+ ∆̂+(K0)
(
T̂F − i∆̂2

+

)
(K1)

(
∆̂F − i∆̂+

)
(K2)

−
(
∆̂F − i∆̂+

)
(K0)

(
T̂F − i∆̂2

+

)
(K1) ∆̂+(K2)

−
(
∆̂F − i∆̂+

)
(K0) ∆̂2

+(K1) ∆̂F (K2)

− ∆̂+(K0) T̂F (K1) ∆̂F (K2)
]with Kj =

∑j
i=0 ki. This gives 0, sin
e, after multiplying out, ea
h termhas exa
tly one 
ounter term with opposite sign. Hen
e all preliminaries forthe Epstein-Glaser theorem are ful�lled. So, the adiabati
 limit exists and isindependent of the 
hoi
e of sequen
e {ga}. As for the mass term this 
an beof 
lass II,2.Note that it was important to 
onsider all terms of order n = 2, in
luding

〈Φ1(f)Φ1(h)〉. We will later ignore its 
ontribution to the dispersion relationssin
e, due to the ∆̂2
+ fa
tor, the support of its adiabati
 limit lies in momen-tum spa
e above the 2m-mass shell. But here we needed it, to be able touse the theorem of Epstein and Glaser and to show that the adiabati
 limitexists and that it is independent of the sequen
e {ga}.To have a 
loser look on how the resulting two-point fun
tion of the
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etime 69adiabati
 limit looks in the vi
inity of the mass shell,4 we 
hoose a fun
tion
f̌ whi
h has support, say, in the set

{
k ∈ M

∣∣∣
(m

2

)2

< k2 <

(
3m

2

)2 and k0 > 0

}
. (4.19)To be able to simplify the expressions in F̂R(k0, k3; k1, k2) we further assumethat f̌ has support in a 
ompa
t subset of (4.19) and the sequen
e of fun
tions

{ga} has the property
suppǧa ⊂ Bǫ/a(0)for some �xed ǫ > 0 and ǧa → (2π)4δ(4) in O′

C(M). Then, for a large enough(depending on the 
ompa
t support of f̌), the ve
tors k0, k0 + k1 and k0 +
k1 + k2 
an neither rea
h the 2m-mass shell nor the region above, if k0 liesin the 
ompa
t support of f̌ and k1 and k2 in the one of ǧa . Thus, allexpressions 
ontaining some fa
tor ∆̂2

+ in F̂R(k0, k3; k1, k2) 
an be droppedlike the ones 
ontaining ∆̂− or ∆̂2
−. Note that, �rst, the adiabati
 limit isindependent of the spe
ial 
hoi
e of {ga} in a 
ertain 
lass and, se
ond, every

f̌ ∈ S with support (4.19) 
an be approximated by fun
tions, whi
h have assupport a 
ompa
t subset of (4.19) in the topology of S. Thus, the Epstein-Glaser theorem assures that no information is lost by making the additionalassumptions 
on
erning the support of f̌ and ǧa.With these assumptions we get for the two-point fun
tion at se
ond order
8π2

∫ 3∏

j=0

d4kj f̌(k0)ǧ(k1)ǧ(k2)ȟ(k3)δ

(
3∑

j=0

kj

)

·
[
∆̂R(k0)T̂F (k0 + k1)∆̂+(k0 + k1 + k2)

+∆̂+(k0)T̂F (k0 + k1)∆̂A(k0 + k1 + k2)
]
.

(4.20)
Now, after integrating out the δ-fun
tion and performing a variable transfor-mation, this is

8π2

∫ 2∏

j=0

d4kj f̌(k0)ǧ(k1 − k0)ǧ(k2 − k1)ȟ(−k2)

·
[
∆̂R(k0)T̂F (k1)∆̂+(k2) + ∆̂+(k0)T̂F (k1)∆̂A(k2)

]
.4In se
tion 4.1 we showed that to 
al
ulate dispersion relations it is only important toknow the two-point fun
tion in the vi
inity of the mass shell.



70 Chapter 4: Dispersion relationsWe insert the expressions for ∆̂R/A/+ from Appendix A and make anothertransformation of variables (di�erent for ea
h summand) to get
1

π

∫
d3k0

2ω0

d4k1
d3k2

2ω2

dxǧ(k0,1 − x− ω0,k1 − k0)ǧ(ω2 − k0,1,k2 − k1)ȟ(k3)

·
[
f̌(ω0 + x,k0)T̂F (k1)ȟ(−k+,2)

(
1

x+ iǫ
− 1

x+ 2ω0 + iǫ

)

− f̌(k+,0)T̂F (k0,1 + x,k1)ȟ(−ω2 + x,−k2)

(
1

x+ iǫ
− 1

x− 2ω2 + iǫ

)]
.Similar to the 
al
ulation following (3.13), we expand f̌(ω0 +x,k0), ȟ(−ω2 +

x,−k2) and T̂F (k0,1 + x,k1) around x = 0 (T̂F is C∞ around the mass shell)and get, after passing to the adiabati
 limit,
2(2π)3

∫
d3k

(
T̂F (k+)

[
− 1

4ω3
k

f̌(k+)ȟ(−k+) +
1

4ω2
k

∂0f̌(k+)ȟ(−k+)

− 1

4ω2
k

f̌(k+)∂0ȟ(−k+)
]
− 1

4ω2
k

∂0T̂F (k+)f̌(k+)ȟ(−k+)

)
.

TF is Lorentz invariant and T̂F (k+) = µ
2(2π)2

, 
f. (4.17). If we 
ompare thiswith (3.10) and (4.3), we see that the �rst terms gives a (
onstant) massrenormalization. Its value is
λ2M = λ2µand depends on the 
hoi
e of 
ontinuation we made during the 
al
ulation.The last term gives a (
onstant) �eld strength renormalization. It is

λ2Z = λ2 (2π)2

ωk

∂0T̂F (k+) = λ2 2
√

3π − 9

72π2m2
(4.21)and independent of the 
hosen 
ontinuation. The method of 
ontinuation ofdistributions in position spa
e 
orresponds to the introdu
tion of 
ounterterms in momentum spa
e in the standard Feynman graph formalism.4.2.2 φ4 model on 
ommutative spa
etimeHere, we take a qui
k look at the φ4 model. The 
al
ulation will be similarto the one of the last subse
tion. There, a 
an
ellation took pla
e su
h thatmultipli
ations like ∆R with ∆+, whi
h are ill de�ned on the forward light-
one, dropped out. The main purpose of this subse
tion is to show, that asimilar 
an
elation takes pla
e for the φ4 model.



4.2 Intera
ting models on 
ommutative spa
etime 71The �eld equation is
(� +m2)Φ(x) = −λΦ3(x),and the intera
ting �eld is to �rst orders:

Φ0(x) =ΦFree(x),
Φ1(x) = −

∫
dy∆R(y)g(x− y) : Φ3

0(x− y) :,

Φ2(x) = −
∫

dy∆R(x− y)g(y)
(
: Φ2

0(y) : Φ1(y)+ : Φ0(y)Φ1(y)Φ0(y) : +Φ1(y) : Φ2
0(y) :

)
,where the term : Φ0(y)Φ1(y)Φ0(y) : is the 
ontinuation of Φ0(x)Φ1(y)Φ0(z)−

∆(x − z)Φ1(y) to the diagonal x = y = z. So, again all tadpoles are sub-tra
ted.The two-point fun
tion at zero order is trivial. At �rst order it vanishesdue to the Wi
k produ
t in Φ1. The 
ontributions to the se
ond order are
〈Φ2(f)Φ0(h)〉 = 6

∫ 3∏

j=0

dyjf(y0)g(y1)g(y2)h(y3)∆R(y0 − y1)∆R(y1 − y2)

[
∆2

+(y1 − y2) + ∆+(y1 − y2)∆−(y1 − y2) + ∆2
−(y1 − y2)

]
∆+(y2 − y3),

〈Φ1(f)Φ1(h)〉 = 6

∫ 3∏

j=0

dyjf(y0)g(y1)g(y2)h(y3)

∆R(y0 − y1)∆
3
+(y1 − y2)∆A(y2 − y3),and

〈Φ0(f)Φ2(h)〉 = 6

∫ 3∏

j=0

dyjf(y0)g(y1)g(y2)h(y3)∆+(y0 − y1)

·
[
∆2

+(y1 − y2) + ∆+(y1 − y2)∆−(y1 − y2) + ∆2
−(y1 − y2)

]

· ∆A(y1 − y2)∆A(y2 − y3).Figure 4.7 shows graphs for some planar 
ontributions.Again ∆R(x)∆2
+(x) would be ill de�ned on the light
one. However, asbefore, a 
an
ellation takes pla
e. For the 〈Φ2(f)Φ0(h)〉 terms it is

∆R(x)
[
∆2

+(x) + ∆+(x)∆−(x) + ∆2
−(x)

]

= iθ(x0) [∆+(x) − ∆−(x)]
[
∆2

+(x) + ∆+(x)∆−(x) + ∆2
−(x)

]

= iθ(x0)
[
∆3

+(x) − ∆3
−(x)

]
.
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Figure 4.7: Se
ond order 
ontributions to the φ4 two-point fun
tion, planargraphs to 〈Φ2Φ0〉 and 〈Φ1Φ1〉.



4.3 Remarks on adiabati
 limit 73The produ
t θ(x0)∆
3
+(x) is ill de�ned only at the origin. As the s
aling degreeof ∆3

+ is 6 we get three arbitrary 
onstants. One 
an be dropped, using a sym-metry 
ondition. Now, we 
an 
hoose a 
ontinuation of iθ(x0)
[
∆3

+(x) − ∆3
−(x)

]and show 
orrespondingly to 
ase of the φ3 model that the preliminaries forthe Epstein-Glaser theorem are ful�lled.4.3 Remarks on the adiabati
 limit for inter-a
ting models on Mn
In Chapter 3 we su

eeded in �nding suitable IR 
uto�s for quantum �eldtheory on Mn
 for an additional mass term. Unfortunately, the situation fortruly intera
ting models is mu
h more 
ompli
ated and we have not been ableto �nd a suitable 
uto� yet. The problem is, that there appear additionaltwisting fa
tors (even for planar graphs, see below), whi
h depend on themomenta in the 
uto� fun
tions and are di�erent for ea
h graph. However, wehave seen at several steps (adiabati
 limit, 
an
ellation of ∆R ·∆+ divergen
eson the light
one) that only the sum of all graphs of the same order showsgood behaviour. But the di�erent graphs have di�erent twisting fa
tors, andthese 
annot be pulled out as a 
ommon fa
tor like in the 
ase of a massterm in se
tion 3.2.2. So, the 
an
elation of divergen
es might not take pla
ein the adiabati
 limit.5 The adiabati
 limit will probably very mu
h dependon the spe
ial 
hoi
e of sequen
e ga → (2π)2δ. At least we have not beenable to �nd a suitable large 
lass of sequen
es whi
h give the same limit. Butthe reason might not be, that su
h a 
lass does not exist, but only that the
al
ulations are too 
ompli
ated to �nd it.We give examples of possible IR 
uto�s in the φ3 model on Mn
 and givetheir 
ontribution for verti
es, 
f. Appendix C. The momenta of the vertexare labelled as in �gure 4.8:
• For the 
uto� by

g1(q)Φa(q)g2(q)Φb(q)g3(q), (4.22)
f. (2.14), ea
h vertex gives
(2π)−4

∫
dp1dp2ǧ1(p1)ǧ2(p2)ǧ3(k1 + k2 − p1 − p2 − k0)

e−
i
2
Q(−p1,k1,−p2,k2,k1+k2−k0−p1−p2),with Q(k1, k2, . . . , kn) :=

∑
i<j kiσkj. One or two of the three gj's 
ouldbe equal to (2π)2δ. These 
uto�s 
an be 
ombined to give, for example,5Derivatives of the twisting fa
tors in the momenta of the 
uto� fun
tions spoil this.
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k0

k1 k2

Figure 4.8: Typi
al vertex in the φ3 model.� 1
3
(g(q)Φa(q)Φb(q) + Φa(q)g(q)Φb(q) + Φa(q)Φb(q)g(q)) or� g(q)Φa(q)g(q)Φb(q)g(q).

• Multiplying Φa(q)Φb(q) by g, using the pointwise produ
t (2.7) gives
ǧ(k1 + k2 − k0)e

− i
2
k1σk2at ea
h vertex.For these (and many others that we tried) the twisting fa
tors of di�erentgraphs 
annot be pulled outside the sum of all graphs of the same order. It isstill an open problem, how to handle this problem. Note that, with the 
uto�(4.22), the 
ontribution from ea
h graph is well-de�ned on its own, but thisdoes not have to be the 
ase if the adiabati
 limit is regarded.Therefore, we omit the 
uto� in the next se
tions and perform formal
al
ulations. That is, we set from the beginning ǧ = (2π)2δ. In this 
ase thetwisting fa
tors simplify, and the overall twisting fa
tors 
an for ea
h graphbe 
al
ulated by looking at the 
rossing of 
ontra
tions. Ea
h 
rossing of linesof the kind shown in �gure 4.9 gives the twisting fa
tor

eik0σk1 .This 
an be derived similarly as in the 
ase for Feynman graphs, shown in[31℄. So, without IR 
uto�, no planar graphs have a twisting fa
tor.4.4 φ3 model on Mn
We want to look again at the φ3 model, now on non
ommutative spa
etime,both in four and six dimensions. The reason to investigate these di�erent di-mensions is that, in four dimensions the φ3 model is logarithmi
ally divergent
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k0

k1Figure 4.9: Crossing of lines.but in six it is quadrati
ally divergent. We want to 
ompare their dispersionrelations on non
ommutative spa
etime.Sin
e it turned out, that the IR 
uto�s were quite di�
ult to handle rigor-ously (
f. se
tion 4.3), we will make the 
al
ulation to some extent formal, i.e.,without an IR 
uto�. However, the fa
tor 
oming from the nonplanar graphswill be 
al
ulated rigorously, using the te
hnique of os
illatory integrals.We want to 
al
ulate dispersion relations for the model in four dimensions�rst. The equation of motion for the φ3 model is
(
�q +m2

)
Φ(q) = −λΦ(q)2.This gives for the intera
ting �eld

Φ0(q) =ΦFree(q),
Φ1(q) = −

∫
dx∆R(x) : Φ2

0(q − x) :,

Φ2(q) = −
∫

dx∆R(x) (Φ0(q − x)Φ1(q − x) + Φ1(q − x)Φ0(q − x)) .The Wi
k ordering, used in Φ1(q), a
ts only on the �eld part, see (2.13).Thus, we get
Φ2(q) =

1

(2π)2

∫
dk0dk1dk2e

−ik0q∆̂R(k0)∆̂R(k0 + k1)

(
Φ̂(−k1) : Φ̂(k0 + k1 + k2)Φ̂(−k2) : e

i
2
k1σk0

+ : Φ̂(k0 + k1 + k2)Φ̂(−k2) : Φ̂(−k1)e
i
2
k0σk1

)
e

i
2
(k0+k1)σk2 .The two-point fun
tion at �rst order vanishes again. At the se
ond orderwe get three terms

〈Φ2(f)Φ0(h)〉 + 〈Φ1(f)Φ1(h)〉 + 〈Φ0(f)Φ2(h)〉.
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ontribution
(2π)4

∫
dkf̌(k)ȟ(−k)∆̂R(k)∆̂A(k)

∫
dl∆̂+(k− l)∆̂+(l)

(
1 + e−ikσl

)
. (4.23)These 
orrespond to the graphs shown in �gure 4.4. Due to the fa
tor ∆̂+(k−

l)∆̂+(l) they are only unequal to zero for l and k− l on the positive m-massshell, hen
e k has to be on or above the 2m-mass shell. This is also the reasonwhy this 
ontribution is well-de�ned, sin
e the singularities of ∆̂R/A(k) arenot met. Hen
e, the term (4.23) is interpreted as 
oming from the two-parti
lespe
trum. It does not 
ontribute to the dispersion relations that we want to
al
ulate and will therefore not be dis
ussed further.The sum of the �rst and third term gives
(2π)4

∫
dkf̌(k)ȟ(−k)∆̂+(k)

(
∆̂R(k)

[
∆̂+ × ∆̂R(k) + ∆̂R × ∆̂−(k) + ∆̂+ ⋆2σ ∆̂R(k) + ∆̂R ⋆2σ ∆̂−(k)

]

+ ∆̂A(k)
[
∆̂− × ∆̂A(k) + ∆̂A × ∆̂+(k) + ∆̂− ⋆2σ ∆̂A(k) + ∆̂A ⋆2σ ∆̂+(k)

])
.The terms 
ontaining the 
onvolution stem from the planar graphs, the ones
ontaining the twisting from the nonplanar graphs. The planar graphs giveup to a fa
tor of 1

2
the same as the se
ond order 
ontributions of the modelin 
ommutative spa
etime, see (4.20), where the 
uto� fun
tions ǧ(k) haveto be repla
ed by (2π)2δ(k). Though in parti
ular, the planar graphs have tobe renormalized, i.e., from the 
ontinuation of a distribution to the origin afree mass renormalization, 1

2
λ2µ, enters.The nonplanar 
ontributions 
an be transformed to

(2π)4

∫
dkf̌(k)ȟ(−k)

(
∆̂R(k)∆̂+(k)S1(k) + ∆̂+(k)∆̂A(k)S2(k)

)
, (4.24)where

S1(k) =

∫
dl∆̂+(l)

(
∆̂R(k − l) + ∆̂R(k + l)

)
eikσl,

S2(k) =

∫
dl∆̂+(l)

(
∆̂A(k − l) + ∆̂A(k + l)

)
e−ikσl.

(4.25)We want to 
al
ulate these integrals and show that S1(k) = S2(k) in thevi
inity of the positive m-mass shell using the theory of os
illatory integrals.
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2
<

√
k2 < 3m

2
}. Due to the ∆̂+(l) the

l integral will only be over the positive mass shell. There, (k + l)2 > m2 and
(k − l)2 < m2. So the singularities of ∆̂R or ∆̂A are not met in the aboveintegrals and we 
an savely set

∆̂R/A(p) = − 1

(2π)2

1

p2 −m2
.We 
al
ulate

S1(k) = − 1

(2π)3

∫
d3l

1

2ωl

(
1

(k − l+)2 −m2
+

1

(k + l+)2 −m2

)
eikσl+ ,(4.26)using the theory of os
illatory integrals given in appendix B. With the notiongiven there, we have t = 3,

φ(k, l) = kµσ
µν(|l|, l)ν (4.27)and

a(k, l) = − 1

(2π)3

1

2ωl

(
1

(k − l+)2 −m2
+

1

(k + l+)2 −m2

)
ei(kσ)0(

√
l2+m2−|l|).

a is an asymptoti
 symbol6 on Ω×R3 of order -3. With this S1(k) = Tφ(a)(k).From Theorem B.1.4 we 
an see that Tφ(a)(k) is a C∞-fun
tion of k on
Ω sin
e ∇lφ(k, l) is only zero for kµσ

µν lightlike and this is not possible on
Ω. So, we 
an assume k to be �xed and 
onsider φ as a phase fun
tion on
{k} × R3 and a as a symbol on {k} × R3 and use (B.7).For k ∈ Ω let Λk be a boost whi
h takes the ve
tor k to Λkk = (

√
k2,0).Let g ∈ D(R) have the property

g(x) =

{
1 if |x| ≤ 1,

0 if |x| ≥ 2,and de�ne
Gk,n(l) := g

(
(
−→
Λ kl+)2

n2

)
,where −→

Λ k is only the ve
tor part of the transformation, i.e., a 3 × 4 matrixand the square is the Eu
lidean square of a 3-ve
tor. Gk,n is a C∞-fun
tionof l and for given k, n it has 
ompa
t support in l and is in Sym({k}, 3, 0)for all n.6It is only asymptoti
, sin
e |l| is not di�erentiable at l = 0, and one has to use√
l2 +m2 − |l| ≤ C(1 + |l|)−1, 
f. [35℄.



78 Chapter 4: Dispersion relationsLemma 4.4.1. Gk,n → 1 in Sym({k}, 3, 1) for n→ ∞.Proof. We have to show that for all multi-indi
es β
sup

l

(1 + |l|)|β|−1

∣∣∣∣∣D
β
l

(
g

(
(
−→
Λ kl+)2

n2

)
− 1

)∣∣∣∣∣ −−−→n→∞
0. (4.28)It is easy to see that one 
an �nd positive 
onstants dβ su
h that ∀β

‖Dβ
l l+‖Eu
lid ≤ dβ(1 + |l|)1−|β|.With these one 
an 
onstru
t positive 
onstants Cβ

k , su
h that
∣∣∣Dβ

l (
−→
Λ kl+)2

∣∣∣ ≤ Cβ
k (1 + |l|)2−|β|. (4.29)First, we show (4.28) for |β| = 0: ∣∣∣g ( (

−→
Λ kl+)2

n2

)
− 1
∣∣∣ is only unequal to zero if

(
−→
Λ kl+

n
)2 ≥ 1. We then get, with (4.29),

1 + |l| ≥ n
1√
C0

k

,and with this
sup

l

(1 + |l|)−1

∣∣∣∣∣g
(

(
−→
Λ kl+)2

n2

)
− 1

∣∣∣∣∣ ≤ sup
x

|g(x) − 1|
√
C0

k

1

n
−−−→
n→∞

0.Now let β be unequal to zero: With (4.29) one 
an easily see that
∣∣∣∣∣D

β
l g

(
(
−→
Λ kl+)2

n2

)∣∣∣∣∣ ≤
|β|∑

γ=1

∣∣∣∣∣(∂
γg)

(
(
−→
Λ kl+)2

n2

)∣∣∣∣∣
1

n2γ
C̃γ

k,β(1 + |l|)2γ−|β|,where C̃γ
k,β are again positive 
onstants. For ea
h γ ≥ 1 the fun
tion ∂γg(x)is only unequal to 0 if |x| < 2. Now, we need the following estimate, whi
his also not hard to prove,

(
−→
Λ kl+)2 ≥ ak · (1 + |l|)2 − bk,where ak and bk are again positive 
onstants. So, if the argument of ∂γg,namely (

−→
Λ kl+)2

n2 , has to be smaller than 2 we 
on
lude
1 + |l|
n

≤

√
2 + bk

n2

ak

.
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e
sup

l

(1 + |l|)|β|−1

∣∣∣∣∣D
β
l

(
g

(
(
−→
Λ kl+)2

n2

)
− 1

)∣∣∣∣∣

≤ sup
l

|β|∑

γ=1

∣∣∣∣∣∂
γg

(
(
−→
Λ kl+)2

n2

)∣∣∣∣∣ C̃
γ
k,β

(1 + |l|)2γ−1

n2γ

≤
|β|∑

γ=1

sup
x

|∂γg(x)|C̃γ
k,β

(
2 + bk

n2

ak

)γ− 1

2

1

n
−−−→
n→∞

0.This 
ompletes the proof.With the above result, we 
on
lude that Gk,n(l) ·a(k, l) has 
ompa
t sup-port in l for the �xed k and approa
hes a in the topology of Sym({k}, 3,−2).Now we want to 
al
ulate the integral (4.26). With the result from lemma4.4.1 we see that it is the n→ ∞ limit of
− 1

(2π)3

∫
d3l

1

2ωl

g

(
(
−→
Λ kl+)2

n2

)(
1

(k − l+)2 −m2
+

1

(k + l+)2 −m2

)
eikσl+ .(4.30)This integral is absolutely 
onvergent, so the usual te
hniques for manipu-lating integrals are available. We perform a (k-dependent) nonlinear trans-formation on l: l′ =

−→
Λ kl+. The integration measure does not 
hange. Thistransformation is 
hosen, su
h that l+ = Λ−1

k l′+. The prime will be droppedagain and we get:
− 1

(2π)3

∫
d3l

1

2ωl

g

(
l2

n2

)(
1

(k − Λ−1
k l+)2 −m2

+
1

(k + Λ−1
k l+)2 −m2

)

· eikσΛ−1

k
l+ .Now we 
al
ulate

(k ± Λ−1
k l+)2 = (Λ−1

k ((
√
k2,0) ± l+))2 = k2 +m2 ± 2ωl

√
k2.The two fra
tions 
an be put together to give 2

k2−4ω2
l

. De�ne σ′ := Λ−1
k

T
σΛ−1

k .
σ′ is again antisymmetri
, so (

√
k2,0)µσ

′µν has vanishing time 
omponent.Let −−−−−−−→(
√
k2,0)σ′ be its spatial part. Its length is√−((

√
k2,0)σ′)2 =

√
−(kσ)2.The expression in the exponent now be
omes

kσΛ−1
k l+ = (

√
k2,0)σ′l+ = −

−−−−−−−→
(
√
k2,0)σ′ · l.
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al 
oordinates for l where the z-axis is along −−−−−−−→
(
√
k2,0)σ′. Thenthe exponent equals √−(kσ)2l cos(θ), and after performing the integrationover φ and θ we get

− (2π)−2

∫ ∞

0

dl

∫ π

0

dθ g

(
l2

n2

)
l2 sin(θ)

ωl(k2 − 4ω2
l )
el
√

−(kσ)2 cos(θ)

= − 2(2π)−2

∫ ∞

0

dl g

(
l2

n2

)
l2

ωl(k2 − 4ω2
l )

sin(l
√

−(kσ)2)

l
√

−(kσ)2
.For n→ ∞ this gives the value of Tφ(a)(k) = S1(k), whi
h is the absolutely
onvergent integral

S(k) := −2(2π)−2

∫ ∞

0

dl
l

ωl(k2 − 4ω2
l )

sin(l
√

−(kσ)2)√
−(kσ)2

. (4.31)It is straightforward to see that S2(k) gives the same result, sin
e the onlydi�eren
e for k ∈ Ω is to repla
e kσ by −kσ.So, we have S1(k) = S2(k) = S(k) for k ∈ Ω. Then, we get for (4.24)
(2π)4

∫
dkf̌(k)ȟ(−k)

(
∆̂R(k)∆̂+(k) + ∆̂+(k)∆̂A(k)

)
S(k).Now we 
an use equation (4.9) and 
ompare with (4.4) to get

Σ
(
k2, (kσ)2

)
= S(k).A
tually, this is only the part 
oming from the nonplanar graphs. The 
on-tribution of the planar graphs is up to a fa
tor of 1

2
the same as in se
tion4.2.1 and gives momentum independent renormalizations.We get, after a variable transformation, the following results:

λ2M
(
(kσ)2

)
= −λ2 2

(2π)2

∫ ∞

0

dl
l√

−(kσ)2m2 + l2(4l2 − 3(kσ)2m2)
sin(l),

λ2Z
(
(kσ)2

)
= λ2 2

(2π)2

∫ ∞

0

dl
(kσ)2l√

−(kσ)2m2 + l2(4l2 − 3(kσ)2m2)2
sin(l),

∆vrel⊥ ((kσ)2) = λ4n
λ2 4

(2π)2

∫ ∞

0

dl

(
3m2l√

−(kσ)2m2 + l2(4l2 − 3(kσ)2m2)2

− m2l

2(−(kσ)2m2 + l2)
3

2 (4l2 − 3(kσ)2m2)2

)
sin(l).
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al
ulate these depending on the perpendi
ular momentum k⊥,using (4.12) with k2 = m2. We use the parameters λn
 = λP = 1 (i.e. we use
c = ~ = G = 1 and use the Plan
k length for the s
ale of non
ommutativity),
σ = σ0, m = 10−17 and λ = m. The 
oupling λ is of mass dimension 1 in fourspa
etime dimensions. The orders of magnitude of the last two parametersare 
hosen, su
h that the identi�
ation of the s
alar φ with the Higgs �eldis possible, see [34℄. A mass of m = 10−17 
orresponds to approximately
m = 122 GeV in 
ommon units. A
tually, the value for the 
oupling would be
λ = 0.72 ·m for this mass (using the standard Higgs model and experimentalresults like the mass of the W-Boson). As we are only interested in the ordersof magnitude we 
an savely set λ = m.We use Mathemati
a to 
al
ulate the remaining absolutly 
onvergentintegrals numeri
ally.M ((kσ)2) is shown in �gure 4.10. Z ((kσ)2) is 
onstantin the plotted region within ma
hine pre
ision. It gives

λ2Z
(
(kσ)2

)
≈ 1.32477 · 10−3.The same 
ontribution stems from the planar graphs and together they havethe same value as the �eld strength renormalization in the 
ommutative
ase (4.21). The distortion of the group velo
ity is shown in �gure 4.11. Allquantities have the behaviour, that their absolute values are largest for k⊥ =

0 and they tend to zero for k⊥ → ∞. We see that the distortion of the groupvelo
ity is of the order of magnitude of per
entages for small perpendi
ularmomenta. This might be dete
table if the Higgs boson is dis
overed in thenext generation of 
olliders (LHC or ILC). The relative mass renormalizationis almost −1 at k⊥ = 0. If we use the 
orre
t value of λ = 0.72 · m thiswould 
orrespond to√m2 + λ2M(k⊥ = 0) ≈ 85 GeV . This is not 
ompatiblewith the experiment. However, we still have a mass renormalization from theplanar part. With this, the mass at k⊥ = 0 
an be set ba
k to 122 GeV , butat higher perpendi
ular momenta we would have an in
reasing of the massby almost a fa
tor of √2.We emphasize again that, in order to 
al
ulate the dispersion relation atthe one-loop level, it is su�
ient to know
S1/2(k) =

∫
d4l ∆̂+(l)e±ikσl

(
∆̂R/A(k − l) + ∆̂R/A(k + l)

)
, (4.32)for k in the vi
inity of the mass shell. However, when we want to 
al
ulatehigher orders, the nonplanar �sh-graphs shown in �gures 4.3 and 4.5, whi
hgave the 
ontributions (4.24), may appear as subgraphs and have to be inte-grated over arbitrary k. Thus, there appears the problem that ∆̂R/A(k ± l+)
an be
ome singular. The singularities of ∆̂R/A lie on the m-mass shell. So:
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Figure 4.10: The relative mass 
orre
tion m−2λ2M((kσ)2) as a fun
tion ofthe perpendi
ular momentum k⊥ for the φ3 model in four dimensions.
• The situation is smooth for 0 < k2 < (2m)2 sin
e neither k + l+ nor
k − l+ 
an meet the mass shell.

• For k2 ≥ (2m)2 and k0 > 0 the ve
tor k − l+ 
an lie on the mass shell,for k0 < 0 the other one.
• For k spa
elike, both k+ l+ and k− l+ 
an meet the mass shell. Se
ond,one expe
ts singularities for kσ lightlike, sin
e there ∇lφ(k, l) = 0, 
f.(4.27) and (B.3). For k this is the tilted light
one around k⊥. Thus,these overlap with the singularities from ∆̂R/A.Thus, it is yet un
lear, how to handle the integrals in S1/2(k) outside the set

0 < k2 < (2m)2, as the preliminaries for os
illatory integrals are not ful�lled.
∆̂R/A(k± l+) 
annot be treated as an asymptoti
 symbol, sin
e the set whereit may be
ome singular is not 
ompa
t in k. Thus, one has to extend thetheory of os
illatory integrals to handle graphs of higher orders. Some ideas
an be found at the end of Appendix B.The 
al
ulation above was for four dimensions. The 
al
ulation in sixdimensions is quite similar. We get a di�erent prefa
tor and the l integrationis two dimensions higher. So, instead of (4.26) we have
S1/2(k) = − 1

(2π)5

∫
d5l

1

2ωl

(
1

(k − l+)2 −m2
+

1

(k + l+)2 −m2

)
e±ikσl+ .
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Figure 4.11: The distortion of the group velo
ity in perpendi
ular dire
tion
∆vrel⊥ ((kσ)2) as a fun
tion of the perpendi
ular momentum k⊥ for the φ3model in four dimensions.The te
hnique to 
al
ulate this os
illatory integral is analogously to the onebefore: Multiply the integrand by g ((−→Λ kl+

n
)2
) (where Λk is 
orrespondinglyde�ned for six dimensions), make a variable transformation in l and usespheri
al 
oordinates in �ve dimensions, to get

− 1

2(2π)3

∫ ∞

0

dl

∫ π

0

dθ3 g

(
l2

n2

)
l4 sin3(θ3)

ωl(k2 − 4ω2
l )
el
√

−(kσ)2 cos(θ3)

=
−2

(2π)3

∫ ∞

0

dl g

(
l2

n2

)
l4

ωl(k2 − 4ω2
l )




sin(l
√
−(kσ)2)

(
l
√

−(kσ)2
)3 − cos(l

√
−(kσ)2)

(
l
√

−(kσ)2
)2


 .The fa
tor of sin3(θ3) stems from the spheri
al volume element in �ve dimen-sion. Thus, with n → ∞, we get in six dimensions the improper Riemannintegral

S(k) :=
−2

(2π)3

∫ ∞

0

dl
l2

−(kσ)2ωl(k2 − 4ω2
l )[

sin(l
√
−(kσ)2)

l
√

−(kσ)2
− cos(l

√
−(kσ)2)

]
.
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λ2M

(
(kσ)2

)
= −λ2 2

(2π)3

∫ ∞

0

dl
l

−(kσ)2
√
−(kσ)2m2 + l2(4l2 − 3(kσ)2m2)

·
(

sin(l)

l
− cos(l)

)
,

λ2Z
(
(kσ)2

)
= λ2 2

(2π)3

∫ ∞

0

dl
l

−
√
−(kσ)2m2 + l2(4l2 − 3(kσ)2m2)2

·
(

sin(l)

l
− cos(l)

)
,

∆vrel⊥ ((kσ)2) =
4λ4n
λ2

(2π)3

∫ ∞

0

dl

(
3m2l

−(kσ)2
√
−(kσ)2m2 + l2(4l2 − 3(kσ)2m2)2

− m2l

−2(kσ)2(−(kσ)2m2 + l2)
3

2 (4l2 − 3(kσ)2m2)2

+
l

(kσ)4
√

−(kσ)2m2 + l2(4l2 − 3(kσ)2m2)2

)

·
(

sin(l)

l
− cos(l)

)
.Again we plot M ((kσ)2) and Z ((kσ)2) and ∆vrel⊥ ((kσ)2) depending onthe perpendi
ular momentum k⊥. We use the same parameters as in fourdimensions ex
ept that we 
hoose λ = 1 instead of λ = m, sin
e the 
ouplinghas no mass dimension in six dimensions. M ((kσ)2) is shown in �gure 4.12,

Z ((kσ)2) in �gure 4.12 and ∆vrel⊥ ((kσ)2) in �gure 4.14. The main di�eren
e
ompared to four dimensions is, that the order of magnitude is totally di�er-ent. Instead of per
entages ∆vrel⊥ ((kσ)2) is of the order of 1065 and similarlyfor M ((kσ)2). The reason for these di�eren
es in the order of magnitudestems to a great part from a fa
tor (kσ)2 in the denominator and the 
hangein λ. The �eld strength renormalization is 
omparatively small be
ause itsintegral is absolutely 
onvergent and the fa
tor sin(l)
l

− cos(l) is almost zerowhere the fra
tion in front under the integral sign is unequal to zero and vi
eversa.However, the mass 
orre
tion 
an again be brought to zero using themass renormalization from the planar graph.7 But it is questionable if the
al
ulated result is reasonable sin
e the use of perturbation methods seemsnot to be justi�able if the result di�ers that mu
h from the unperturbedsetting. (If we look as the mass renormalization it has to di�er somewhere by7In six dimensions there appears also a �eld strength renormalization in the φ3 model.
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Figure 4.12: The relative mass 
orre
tion m−2λ2M((kσ)2) as a fun
tion ofthe perpendi
ular momentum k⊥ for the φ3 model in six dimensions.a fa
tor of 10(65) from the free 
ase, either at small or at large k⊥, no matterhow the planar mass renormalization is 
hosen.)4.5 φ4 model on Mn
 using quasiplanar Wi
kprodu
tsNow, we investigate the φ4 model on Mn
. Here, we use quasiplanar Wi
kprodu
ts as de�ned in [4℄. Quasiplanar Wi
k produ
ts are de�ned for freequantum �elds on non
ommutative spa
etime. They are similar to the well-known Wi
k produ
ts for 
ommutative spa
etime. A produ
t of multiple�elds is de�ned in the limit of 
oin
iding points by subtra
ting 
ontra
tions.The subtra
ted 
ontra
tions have to be lo
al in a 
ertain sense. The non-
ommutativity of spa
etime leads to a di�erent 
on
ept of lo
ality. Thereby,some 
ontra
tions, whi
h are subtra
ted in the 
ommutative spa
etime, be-
ome nonlo
al and remain �nite in the limit of 
oin
iding points, and aretherefore not subtra
ted.The �eld equation is
(
�q +m2

)
Φ(q) = −λΦ(q)3.
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Figure 4.13: The �eld strength renormalization λ2Z((kσ)2) as a fun
tion ofthe perpendi
ular momentum k⊥ for the φ3 model in six dimensions.
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Figure 4.14: The distortion of the group velo
ity in perpendi
ular dire
tion
∆vrel⊥ ((kσ)2) as a fun
tion of the perpendi
ular momentum k⊥ for the φ3model in six dimensions.
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Figure 4.15: First order nonplanar 
ontributions to the two-point fun
tion ofthe φ4 model, 〈Φ1Φ0〉 and 〈Φ0Φ1〉.This gives for the intera
ting �eld to �rst orders
Φ0(q) =ΦFree(q),
Φ1(q) = −

∫
dx∆R(x)

... Φ3
0(q − x)

...
= −

(∫
dx∆R(x) : Φ3

0(q − x) :

+
1

(2π)2

∫
dx∆R(x)

∫
dk∆+(−kσ)Φ̂0(k)e

−ik(q−x)

)
. (4.33)In this 
ase, the �rst order 
ontribution does not vanish anymore. The part(4.33) of Φ1(q) gives

〈Φ1(f)Φ0(h)〉 + 〈Φ0(f)Φ1(h)〉

= −(2π)2

∫
dkf̌(k)ȟ(−k)∆+(kσ)

(
∆̂R(k)∆̂+(k) + ∆̂+(k)∆̂A(k)

)
.Here, we have used that, due to the ∆̂+(k), the whole integral is only eval-uated for k on the mass shell. Then kσ is spa
elike and thus ∆+(−kσ) =

∆+(kσ). We use equation (4.9) to transform the above to
∫

dkf̌(k)ȟ(−k)∆+(kσ)∂m2∆̂
(m2)
+ (k).If we 
ompare this with (4.4), we get in this 
ase

Σ(k2, (kσ)2) = − 1

(2π)2 ∆+(kσ).



88 Chapter 4: Dispersion relationsIt is well known8 that for spa
elike argument x
∆+(x) =

1

(2π)2

m√
−x2

BesselK1

(
m
√
−x2

)
.BesselKn is the modi�ed Bessel fun
tion of the se
ond kind to order n. Thus,we get

λM
(
(kσ)2

)
= λ

1

(2π)4

m√
−(kσ)2

BesselK1

(
m
√
−(kσ)2

)
,

∆vrel⊥ ((kσ)2) = −2λ4n
λ 1

(2π)4

(
m

2(−(kσ)2)
3

2

BesselK1

(
m
√
−(kσ)2

)

+
m2

4
√
−(kσ)2

[BesselK0

(
m
√
−(kσ)2

)

+ BesselK2

(
m
√
−(kσ)2

)])
.Sin
e in this 
ase Σ is independent from its �rst argument, Z ((kσ)2) is zero.We 
al
ulate these for a set of parameters similar to the 
ase in φ3 theory,i.e. λn
 = λP = 1, σ = σ0, m = 10−17 and λ = 1. M ((kσ)2) is shown in�gure 4.16 and The distortion of the group velo
ity is shown in �gure 4.17.Comparing with the φ3

6 model, we see that the order of magnitude for the
al
ulated quantities are equal. The sign is di�erent. This latter is 
onne
tedto the fa
t that here, the 
al
ulated quantities are of �rst order in λ and notin se
ond order.The setting used here di�ers slightly from the one given in [4, 2℄. Thereason is, that we have treated all quantities as a formal power series in the
oupling λ. This was not done rigorously in the before mentioned publi
ation.However, at the end we insert a �nite λ. So higher orders 
an 
an
el ea
hother and a �netuning pro
ess might still be possible. But as we mentionedbefore, the use of perturbation methods are questionable if the �rst order
orre
tions are of this order of magnitude.4.6 Wess-Zumino modelNow, we have a look at a supersymmetri
 model, namely the Wess-Zuminomodel, whi
h is one of the simplest of this kind. Supersymmetri
 modelshave a better behaviour with respe
t to divergen
es be
ause some divergent8This 
ould easily be 
al
ulated using the framework of os
illatory integrals, too.
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Figure 4.16: The relative mass 
orre
tion m−2M((kσ)2) as a fun
tion of theperpendi
ular momentum k⊥ for the φ4 model using quasiplanar Wi
k prod-u
ts.
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Figure 4.17: The distortion of the group velo
ity in perpendi
ular dire
tion
∆vrel⊥ ((kσ)2) as a fun
tion of the perpendi
ular momentum k⊥ for the φ4model using quasiplanar Wi
k produ
ts.



90 Chapter 4: Dispersion relationsgraphs, 
oming from di�erent parti
le intera
tions, 
an
el ea
h other. Super-symmetry takes 
are that the parameters have the right values, e.g., thatfermions and bosons have the same mass parameter and that the 
oupling
onstants of the di�erent intera
tions have a parti
ular dependen
e in orderto make the 
an
ellation possible.9 The 
al
ulation shown here is very 
loseto the one given by Zahn in [15℄.When working with supersymmetri
 models notation is a rather involvedtask. We use the 
onventions of [43℄ ex
ept for the metri
. We keep our met-ri
 of signature (+,−,−,−). Further 
hanges have to be made to keep thezero 
omponent of the generator of translations, P0, positive in representa-tions of the supersymmetry algebra. We have to multiply σ0 by −1.10 Thesame happens to γ0 and γ5. The usual (anti-)
ommutation relations of thesequantities do not 
hange, ex
ept where the metri
 appears. In parti
ular, wehave {γµ, γν} = 2ηµν .The 
hiral super�eld is11
Φ(q) = φ(q) +

√
2θαχα(q) + θ2F (q)

+ iθασµ

αβ̇
θ̄β̇∂µφ(q) − i√

2
θ2∂µχ

α(q)σµ

αβ̇
θ̄β̇ − 1

4
θ2θ̄2

�φ(q),

where θ is a 
omplex, χ a Weyl spinor and F an auxiliary �eld.When dealing with 
omplex quantum �elds on non
ommutative spa
e-time we have to mind that di�erent orders of terms 
an give di�erent twistingfa
tors. E.g., the term φ∗φφ∗φ has only planar 
ontra
tions, whereas φ∗φ∗φφhas also a nonplanar one.12 To keep tra
k of the orders in the �eld equationswe derive them from a Lagrangian. We use the formalism introdu
ed in [45℄for 
lassi
al �elds on non
ommutative spa
etime.9This follows from the nonrenormalization theorem, see for example [8℄.10This follows from the fa
t that Tr(σ0 · P0) = Tr{Q, Q̄} is a positive operator. Withthe 
onventions and signature of [43℄ only P 0 would be positive.11The anti
ommutation relations among the fermioni
 variables θ and θ̄ are un
hanged.Approa
hes, where even these are deformed, 
an be found, e.g., in [30℄.12This was already noted in [1℄.



4.6 Wess-Zumino model 91The a
tion is
∫

dq4L(q) =

∫
dq4

(
Φ̄Φ
∣∣∣
θ2θ̄2

−
[1
2
mΦΦ +

1

3
λΦΦΦ + h.
.]∣∣∣

θ2

)

=

∫
dq4

(
i∂µχ̄σ̄

µχ− φ∗
�φ+ F ∗F

−
[(
m

(
φF − 1

2
χχ

)
+ λ (φφF − χχφ)

)
+ h.
.]

+ total derivatives ).As we have seen in se
tion 2.1 ∫ dq4 is 
y
li
. So it does not matter whetherwe would have taken ΦΦ̄ in the Lagrangian instead. The equations of motionare derived via the variation prin
iple:variation δφ∗ : �φ+mF ∗ + λ(φ∗F ∗ + F ∗φ∗) − λχ̄α̇χ̄
α̇ = 0 (4.34)variation δχ̄α̇ : iσ̄µα̇β∂µχβ −mχ̄α̇ − λ(φ∗χ̄α̇ + χ̄α̇φ∗) = 0 (4.35)variation δF ∗ : F −mφ∗ − λφ∗φ∗ = 0. (4.36)To simplify the forth
oming 
al
ulation, we introdu
e Majorana spinors :

ψ :=

(
χα

χ̄α̇

)
, ψ̄ := ψ†γ0 = (χα, χ̄α̇),and the proje
tors

P+ :=

(12 0
0 0

) and P− :=

(
0 0
0 12

)
.Thus, we have

P± =
1

2

(14 ∓ iγ5
)
, χαχα = ψ̄P+ψ and χ̄α̇χ̄

α̇ = ψ̄P−ψ.With this notation, (4.35) and its hermitian 
onjugate be
ome
(i/∂ −m14)ψ = λ (P+(ψφ+ φψ) + P−(ψφ∗ + φ∗ψ)) ,

∂µψ̄(−iγµ −m14) = λ
(
(ψ̄φ+ φψ̄)P+ + (ψ̄φ∗ + φ∗ψ̄)P−

)
,

(4.37)where we have introdu
ed the notation /∂ := ∂µγ
µ (and likewise for momenta

kµ). The 
ontra
tion of the free fermion �eld is
〈 ˆ̄ψa(k1)ψ̂b(k2)〉 = (2π)2(−/k1 +m14)ba∆̂+(k1)δ(k1 + k2).



92 Chapter 4: Dispersion relationsNow, we insert the equation of motion of the auxiliary �eld F , (4.36),into (4.34) and get
(� +m2)φ = λψ̄P−ψ −mλ(φφ+ φ∗φ+ φφ∗) − λ2(φ∗φφ+ φφφ∗). (4.38)Note that the last part is of order λ2 and therefore does not appear in the
al
ulation of φ1.So far, we have dealt with 
lassi
al (bosoni
 or fermioni
) �elds on non-
ommutative spa
etime. Now we repla
e them by quantum �elds (here de-noted by the same symbols). We have a 
loser look at the s
alar �eld φ andwant to 
al
ulate the two-point fun
tion 〈φ∗(f)φ(h)〉. From (4.38) we get
φ̂1(k1) = ∆̂R(k1)

∫
dk2e

− i
2
k2σk1

[
ˆ̄ψ0(k2)P−ψ̂0(k1 − k2)

−m
(
φ̂0(k2)φ̂0(k1 − k2) + φ̂∗

0(k2)φ̂0(k1 − k2) + φ̂0(k2)φ̂
∗
0(k1 − k2)

) ]
. (4.39)As we are now dealing with quantum �elds, we have to ask whether theprodu
ts of �elds on the right hand side of (4.38) are well-de�ned as they arisefrom multiplying distributions at the same point like, e.g., φ∗

0(q)φ0(q). We donot normal order these. Although the summands alone have divergen
es, theirsum is well-de�ned. In fa
t, the va
uum expe
tation value of φ1 vanishes:
〈φ1(f)〉 =

∫
dk1dk2f̌(k1)∆̂R(k1)

[
(2π)2Tr

(
P−(−/k2 +m1)

)
∆̂+(k2)δ(k1)

− 2m(2π)2∆̂+(k2)δ(k1)
]

= 0,sin
e Tr
(
P−(−/k2 +m1)

)
= 2m. This 
al
ulation seems rather formal but
an be made rigorous, and the expression (4.39) equals the one where theright-hand side is normal ordered. In other words, the additional term neededfor normal ordering the fermion �elds 
an
els the ones for normal orderingthe s
alar �elds. This is one example for how divergen
es 
an
el ea
h otherin supersymmetri
 �eld models.As it is easy to see, the two-point fun
tion of the s
alar �eld at �rst ordervanishes:

〈φ∗
0(f)φ1(h)〉 = 〈φ∗

1(f)φ0(h)〉 = 0.Thus, we have to look at se
ond order. φ2 
an be divided into three parts:
φ2 = ∆R ×

[
ψ̄0P−ψ1 + ψ̄1P−ψ0 (Yukawa part)
−m (φ0φ1 + φ1φ0 + φ∗

0φ1 + φ∗
1φ0 + φ0φ

∗
1 + φ1φ

∗
0) (φ3 part)

− (φ∗
0φ0φ0 + φ0φ0φ

∗
0)
]
. (φ4 part)



4.6 Wess-Zumino model 93Note that the φ4 part 
omes dire
tly from the λ2 part of (4.38). We do notnormal order this part sin
e the quadrati
al divergen
e 
oming from it 
an
els(partly) divergen
es 
oming from other parts as we will see later.First, we 
al
ulate the fermion �elds at �rst order. These appear in theYukawa part. For this we de�ne the Green's fun
tions SR(x) := (−i/∂ −
m1)∆R(x) and S̄R(x) := (i/∂ −m1)∆R(x). These ful�ll

(i/∂x −m14)SR(x− y) = (−i/∂x −m14)S̄R(x− y)γ = δ(4)(x− y)14,

ŜR(k) = (−/k −m1)∆̂R(k) and ˆ̄SR(k) = (/k −m1)∆̂R(k).The fermion �eld (4.37) gives at �rst order
ψ̂1(k1) = ŜR(k1)

∫
dk2e

− i
2
k2σk1

[
P+

(
ψ̂0(k2)φ̂0(k1 − k2) + φ̂0(k2)ψ̂0(k1 − k2)

)

+ P−

(
ψ̂0(k2)φ̂

∗
0(k1 − k2) + φ̂∗

0(k2)ψ̂0(k1 − k2)
) ]and̄̂

ψ1(k1) =

∫
dk2e

− i
2
k2σk1

[ (
ˆ̄ψ0(k2)φ̂0(k1 − k2) + φ̂0(k2)

ˆ̄ψ0(k1 − k2)
)
P+

+
(

ˆ̄ψ0(k2)φ̂
∗
0(k1 − k2) + φ̂∗

0(k2)
ˆ̄ψ0(k1 − k2)

)
P−

]
ˆ̄SR(k1).There is no need to normal order the produ
ts of �elds on the right-handsides, sin
e only produ
ts of 
ommuting �elds appear.13We are only interested in the modi�
ation of the dispersion relations. So,we do not look at 〈φ∗

1(f)φ1(h)〉 sin
e all terms 
oming from these 
ontain ∆2
+or ∆+ ⋆2σ ∆+ and thus vanish in the vi
inity of the m-mass shell.It remains to examine the sum 〈φ∗

0(f)φ2(h)〉 + 〈φ∗
2(f)φ0(h)〉, from whi
h13The produ
ts of di�erent �elds like the terms appearing in the expressions for ψ̂1 or

ˆ̄ψ1 do not make problems (at �rst order), sin
e the �eld algebra parts of the fa
tors liveon a tensor produ
t of Fo
k spa
es. Thus, ψ0(x)φ0(x) is rather ψ0(x) ⊗ 1 · 1 ⊗ φ0(x) =
ψ0(x) ⊗ φ0(x) and this is a well-de�ned operator-valued distribution on S. The situationfor ψ0(q)φ0(q) is 
orresponding.



94 Chapter 4: Dispersion relationswe will 
al
ulate the �rst summand now. The Yukawa part of φ2 gives
(2π)4

∫
dkf̌(k)ȟ(−k)∆̂+(k)∆̂R(−k)

∫
dl
(
1 + e−ikσl

) [
∆̂+(l)∆̂R(−k − l)Tr

(
P−(/k + /l −m1)P+(−/l +m1)

)

+ ∆̂+(l)∆̂R(l − k)Tr
(
P+(/l − /k −m1)P−(−/l +m1)

) ]
.We use P+P− = P−P+ = 0, so the terms whi
h have fa
tors of m drop out.After a short 
al
ulation we see that Tr (P−γ

µP+γ
ν) = 2ηµν . The remainingterms transform to

− 2(2π)4

∫
dkdlf̌(k)ȟ(−k)∆̂+(k)∆̂A(k)∆̂+(l)

[
∆̂A(k + l)(l + k) · l + ∆̂A(k − l)(l − k) · l

] (
1 + e−ikσl

)
. (4.40)The 
ontribution 
oming from the φ3 part,

3m2(2π)4

∫
dkf̌(k)ȟ(−k)∆̂+(k)∆̂A(k)

·
∫

dl∆̂+(l)
(
∆̂A(k − l) + ∆̂A(k + l)

) (
1 + e−ikσl

)
, (4.41)
an be visualized by the graphs 4.5 given for the φ3 
al
ulation in se
tion4.4. The 
ontribution we get here, has an additional fa
tor of m2 due to the
oupling and a fa
tor of 3 as ea
h summand of the φ3 part gives the same
ontribution. Remember that the �elds in φ1 
an be seen as being normalordered, so we get no tadpoles here.Now, we take a look at the 
ontribution 
oming from the φ4 terms. The
al
ulation is quite similar to the one given in se
tion 4.5. The result is

−(2π)2

∫
dkf̌(k)ȟ(−k)∆̂+(k)∆̂A(k)

∫
dl∆̂+(l)2

(
1 + e−ikσl

)
. (4.42)The term without the twisting fa
tor is quadrati
ally divergent. In se
tion4.5 it was 
an
elled by using quasiplanar Wi
k ordering. Here it is 
an
elledby divergen
es appearing in other 
ontributions, as we will see now.The sum of (4.41), (4.40) and (4.42) gives

(2π)4

∫
dkf̌(k)ȟ(−k)∆̂+(k)∆̂A(k)

∫
dl
(
1 + e−ikσl

)

·∆̂+(l)
[
∆̂A(k+ l)(3m2−2(l+k) · l)+∆̂A(k− l)(3m2−2(l−k) · l)−2(2π)2

]
.



4.6 Wess-Zumino model 95The se
ond line 
an be transformed, using ∆̂+(l)(m2 − l2) = 0 and −(2π)2 =
∆̂A(k ± l) ((k ± l)2 −m2), to

∆̂+(l)
[
∆̂A(k + l) + ∆̂A(k − l)

] (
k2 +m2

)
.The 
al
ulation of 〈φ∗

2(f)φ0(h)〉 works quite similar and altogether wehave
〈φ∗

0(f)φ2(h)〉 + 〈φ∗
2(f)φ0(h)〉 =

(2π)4

∫
dkf̌(k)ȟ(−k)

(
k2 +m2

) (
∆̂R(k)∆̂+(k)S1(k) + ∆̂+(k)∆̂A(k)S2(k)

)
,with

S1(k) =

∫
dl∆̂+(l)

(
∆̂R(k − l) + ∆̂R(k + l)

) (
1 + eikσl

)
,

S2(k) =

∫
dl∆̂+(l)

(
∆̂A(k − l) + ∆̂A(k + l)

) (
1 + e−ikσl

)
.Comparing with (4.24) we see that we almost get the same as in the
ase for the φ3

4 model ex
ept for an additional fa
tor of (k2 +m2). (Here wealso 
onsider the planar 
ontribution.) In the vi
inity of the mass shell the
ontribution from the nonplanar graphs is
ΣWZ,np (k2, (kσ)2

)
= (k2 +m2)Σφ3,np (k2, (kσ)2

)
,where Σφ3,np is the result from se
tion 4.4 and equals (4.31). Thus, from thenonplanar 
ontributions we get

M((kσ)2) = −2m2Σφ3,np (m2, (kσ)2
)
,

Z((kσ)2) = 2m2∂(1,0)Σφ3,np (m2, (kσ)2
)

+ Σφ3,np (m2, (kσ)2
)
,

∆vrel⊥ ((kσ)2) = 2λ4n
λ2m2∂(0,1)Σφ3,np (m2, (kσ)2
)
.As before, we 
al
ulate these for the parameters λn
 = λP = 1, σ = σ0,

m = 10−17 and λ = 1. Apart from a fa
tor of 2 the values for ∆vrel⊥ and Mare the same as in the φ3
4 model.14 The �eld strength renormalization Z isthe sum of the quantity of the φ3

4 model and twi
e the the negative of itsmass renormalization. Sin
e the absolute value of the former is mu
h smallerthan the latter in the plotted region, Z looks almost like −2 times the plotshown in �gure 4.10.14Note that in the φ3
4 model the 
oupling has a mass dimension and we 
hose λ = m.In the Wess-Zumino model the 
oupling has no mass dimension but a fa
tor of m2 entersthrough the prefa
tors of the 
al
ulated quantities.



96 Chapter 4: Dispersion relationsRemark 4.6.1. In standard literature about supersymmetry, e.g., [40℄, one of-ten �nds the statement, that the Wess-Zumino model has only a �eld strengthrenormalization. Note that this is not a 
ontradi
tion to our result sin
e a dif-ferent de�nition is used. With the de�nition invoked by [40℄ the �eld strengthrenormalization of the s
alar �eld would be of the form
(1 + Z ′)�φ+m2φ,while our de�nition 
orresponds to

(1 + Z)
(
�φ+ (m2 +M)φ

)
.These are 
onne
ted by setting Z = Z ′ and M = −Z ′m2/(1 + Z ′).The distortion of the group velo
ity of this logarithmi
ally divergentmodel is again quite moderate. If one identi�es the �eld φ with the Higgsboson, the distortion might be dete
table in future 
olliders, if the Higgs willbe dete
ted at all.



Chapter 5Summary and outlookWe have seen that the distortion of the group velo
ity ∆vrel⊥ is of drasti
allydi�erent order of magnitude in logarithmi
ally divergent models (φ3
4 andWess-Zumino model) 
ompared to quadrati
ally divergent models (φ3

6 and φ4model). It is of the order of per
entages in the �rst kind and of order of 1065for the latter kind. With these huge values for the quadrati
ally divergentmodels, perturbation theory in λ might be inappropriate for investigatingthese ex
ept for very tiny 
oupling λ. The order of magnitude of the relativemass renormalization M(kσ2)/m2 is of order 1 in logarithmi
ally divergentmodels. The mass renormalization 
an be used to �x the mass at vanishingperpendi
ular momentum k⊥, but for higher values of k⊥ the mass 
hanges,and this 
hange should be dete
table. If we 
onsider the non
ommutativeMinkowski spa
e to 
orrespond to E , we still have to integrate over di�erent
σ ∈ Σ. Thus, there will be no distin
t dire
tion for k⊥, but the mass will stilldepend on the momentum.It is quite remarkable that the di�eren
e of orders of magnitude betweenmodels of di�erent divergen
e 
lass is so large while for models of the same
lass it is of order 1. There is no 
lear 
onne
tion, for example, between the
φ3 model in six and the φ4 model in four dimensions despite their quadrati
aldivergen
e. It is worth while to further investigation, if there is some deeperreason behind this or if it is just by a

ident.So far, no distortion of the group velo
ity has been dete
ted on parti
les.Of 
ourse, the result depends on the 
on
rete 
hoi
e of the 
onstants λ, mand λn
. We have 
hosen these to be 
ompatible with the interpretation ofthe �eld with the Higgs boson. Although, the investigated models are not apossibility for the Higgs model, one 
ould assume that the dispersion relationof the latter might also fall into this 
lassi�
ation. If the Higgs is des
ribed bya logarithmi
ally divergent (maybe supersymmetri
) model, the distortion ofthe dispersion relation is quite mild but might be dete
table in the LHC or97



98 Chapter 5: Summary and outlookILC (if the Higgs is dete
ted at all).That e�e
ts from non
ommutativity are not observed on known parti
lesmight have its reason in that not all parti
les see this non
ommutativity ofspa
etime. Remember, that this 
on
ept of spa
etime was only thought tobe an intermediate step. The un
ertainty relations were derived in [13℄ bytaking gravity into a

ount in a dete
tion pro
ess. So, it is not too naive toassume that the Higgs, whi
h generates masses of other parti
les, 
ouplesdi�erently to gravity and might see a non
ommutative stru
ture while otherparti
les do not.But there are still a lot of open 
on
eptual problems to solve. An IR 
ut-o� with a well-de�ned adiabati
 limit for a reasonable 
lass of sequen
es forintera
ting models on Mn
 would be desirable. Furthermore, if we do not seethe 
oupling λ as in�nitesimally small, 
ontributions from di�erent ordersmight 
an
el ea
h other by a �netuning pro
ess. So, higher order 
ontribu-tions should be 
al
ulated. For this the 
on
ept of os
illatory integrals hasto be extended. It would be interesting to see if some kind of UV-IR mixingappears also on Mn
 and whether it is harmless on logarithmi
ally divergentmodels, too. Also, the treatment of massless �elds or lo
al gauge transforma-tions are still problemati
, see for example [46℄. Results for non
ommutativeele
trodynami
s would be interesting sin
e ele
trodynami
s is experimentallytested to very high pre
ision. The distortion of dispersion relations gives riseto further 
on
eptional problems. Sin
e the asymptoti
 behaviour is not thatof a free �eld the LSZ formalism is not appli
able. So it is not 
lear how tode�ne the S-Matrix for intera
ting �elds.All in all there are a lot of open problems. If the 
olliders show the pre-s
ribed dispersion relations for the Higgs they are surely worth investigating.Another possibility would be to look at a 
hange of the 
on
ept of the non-
ommutative spa
etime. E.g., the 
ommutator Qµν might not be a 
entralelement and be involved in the intera
tion. But these 
hanges would makerigorous 
al
ulations probably very di�
ult. The best thing would be not toblindly test 
ertain assumptions, but derive the setting from deeper 
on
epts.However, this might be even harder.
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Appendix AConventions and useful formulaeIn four-dimensional Minkowski spa
e M we use the metri

ηµν = diag(+,−,−,−)µνand indi
es running from 0 to 3 and analogously for higher dimensions.Mostly, we use upper indi
es for ve
tors in position spa
e, like xµ, and lowerindi
es for ve
tors in momentum spa
e, like pµ. Tensors of type (r, s) onMinkowski spa
e will be denoted by T r

s (M). For z ∈ C, z̄ will denote the
omplex 
onjugate.
S denotes the S
hwartz spa
e, D is the spa
e of smooth fun
tions with
ompa
t support and O′

C are the distributions of rapid de
rease. Dual spa
esare generally denoted by a prime, e.g., S ′. The Fourier transform and itsinverse in d dimensions are de�ned by
f̂(k) :=

1

(2π)
d
2

∫
ddxf(x)eikx,

f̌(k) := f̂(−k).For f ∈ S and T ∈ S ′ we have
ˇ̂
f = ˆ̌f = f,

T̂ (f) := T (f̌),

T (f) = T̂ (f̌) = Ť (f̂).The 
onvolution for f, g ∈ S is
f × g(x) :=

∫
ddyf(x− y)g(y).101



Hen
e,
f̂ · g(k) =

1

(2π)
d
2

f̂ × ĝ(k),

f̂ × g(k) =
√

2π
d
f̂(k) · ĝ(k).Free �eld of mass m:

Φ(x) :=
1

(2π)
d−1

2

∫
d3p

2ωp

(
a(p)e−ip+x + a†(p)eip+x

)
,with ωp :=

√
p2 +m2,

p+ := (ωp,p).The va
uum expe
tation value of Φ(f)Φ(h) is denoted by 〈Φ(f)Φ(h)〉.Delta-fun
tions:
δ̌(d) =

1

(2π)
d
2

1,
∆+(x− y) := 〈Φ(x)Φ(y)〉, (A.1)

∆̂+(p) =
1

(2π)
d
2
−1
θ(p0)δ(p

2 −m2) =
1

(2π)
d
2
−1

δ(p0 − ωp)

2ωp

,

∆−(x) := ∆+(−x) = ∆̄+(x),

∆R(x) := iθ(x0)(∆+(x) − ∆−(x)),

∆̂R(p) = lim
ǫց0

1

(2π)
d
2

−1

p2 −m2 + iǫp0

,

= lim
ǫց0

1

(2π)
d
2

1

2ωp

(
1

p0 + ωp + iǫ
− 1

p0 − ωp + iǫ

)
. (A.2)The de�nition of ∆R is 
hosen su
h that

(�x +m2)∆R(x− y) = δ(d)(x− y).

∆A(x) := ∆R(−x),
∆F (x) := i (θ(x0)∆+(x) + θ(−x0)∆−(x)) ,

∆R(x) = ∆F (x) − i∆−(x), (A.3)
∆A(x) = ∆F (x) − i∆+(x). (A.4)

Bx(r) denotes the open ball of radius r around x. V± is the full for-ward/ba
kward light
one. Is
+ is the set of nonnegative multi-indi
es of orderlength s. 102



On Mn
 we have the 
ommutation relation:
[qµ, qν ] = iQµν .In Weyl form this is

eikµqµ

eilνqν

= e−
i
2
kµQµν lνei(kµ+lµ)qµ

. (
opy of 2.2)Furthermore, ∫
d4qeikq = (2π)4δ(k).The starprodu
t or twisted 
onvolution for f, g ∈ S(Md), σ ∈ T 2

0 (Md) isde�ned by its Fourier transform in the following way:
f̂ ⋆σ g(k) :=

1

(2π)2

∫
dlf̂(k − l)ĝ(l)e−

i
2
kµσµν lν .The index σ at the star will mostly be omitted.The wave front set of a distribution T ∈ S ′(M) will be denoted WF(T ).It is a subset of M× (M′ \{0}). De�ne WFx(T ) := ({x}×M′)∩WF(T ). Theset WFx(T ) 
an be seen as the set of singular dire
tions of the distribution

T at x. It is the set of all dire
tions in whi
h the Fourier transform of gTmay not fall o� faster than any polynomial for some fun
tion g with 
ompa
tsupport and g(x) 6= 0. For an exa
t de�nition of the wave front set see, e.g.,[35, 26℄. The following properties hold:
∀λ > 0 : λ ·WFx(T ) = WFx(T ),WF(T + S) ⊂ WF(T ) ∪WF(S).If WFx(T ) = ∅ then T is C∞ around x. If W̃F(T, S) :=

⋃
x∈M

(WFx(T ) +WFx(S)) does not 
ontain an element of the form (x, 0), then the produ
t
T · S is a well-de�ned distribution and WF(T · S) ⊂ W̃F(T, S).WF(∆+) = {(xµ, kν)|x 6= 0, xµxµ = 0 and ∃λ > 0 : kµ = −λxµ}

∪ {(0, kν)|kνk
ν = 0 and k0 < 0} ,WF(∆2

+) = {(xµ, kν)|x 6= 0, xµxµ = 0 and ∃λ > 0 : kµ = −λxµ}
∪ {(0, kν)|kνk

ν ≥ 0 and k0 < 0} ,WF(∆−) = −WF(∆+),WF(θ0) =
{
(xµ, kν)|x0 = 0, k0 6= 0 and k = 0

}
,WF(∆R) =

{
(xµ, kν)|x0 > 0, xµxµ = 0 and ∃λ 6= 0 : kµ = −λxµ

}

∪ {(0, kν)|kνk
ν ≥ 0 and k0 6= 0} ,103



where θ0(x) = θ(x0).For a distribution T ∈ S ′(Rd \ {0}) or T ∈ S ′(Rd) the s
aling degreesd(T ) is de�ned assd(T ) := inf{δ ∈ R

∣∣∣λδT (λx) −−→
λց0

0

}
.Then we 
an dedu
e:

• If sd(T ) < d, then there exists a unique extension T̃ ∈ S ′(Rd) of T su
hthat sd(T̃ ) = sd(T ) and T̃ = T outside the origin.
• If d ≤ sd(T ) < ∞, then there exist extensions T̃ ∈ S ′(Rd) of T , su
hthat sd(T̃ ) = sd(T ) and T̃ = T outside the origin. For two su
h exten-sions T̃ , T̃ ′, there exists a polynomial P of degree sd(T )− d or smaller,su
h that T̃ − T̃ ′ = P (∂)δ.For ∆± in d dimensions we get sd(∆n

±) = n(d − 2) for n ∈ N More on the
on
ept of s
aling degree 
an be found in [41, 7℄.
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Appendix BOs
illatory integralsWhen 
al
ulating nonplanar graphs in quantum �eld theory on non
om-mutative spa
etime, we en
ounter many integrals whi
h are not absolutely
onvergent1 but made �nite by an os
illating fa
tor. An example for su
h anintegral in one dimension is
∫

R

dk
1√

1 + k2
exp ik = lim

a→−∞
lim
b→∞

∫ b

a

dk
1√

1 + k2
exp ik,where both limits exist and the result is independent of their order. However,this notion of an improper Riemann integral makes a priori only sense in onedimension. If one looks at higher dimensions a more sophisti
ated mathe-mati
al framework is needed, whi
h is the theory of os
illatory integrals. Themain de�nitions and results of this 
on
ept are given in this appendix.We deal with not absolutely 
onvergent integrals, so the usual rules of ma-nipulating integrals are a priori not appli
able. An example of a fun
tion notabsolutely integrable for whi
h the theorem of Fubini fails, is the following:

f(x, y) =





1
4n if ∃n ∈ N with 2n − 1 < x < 2n+1 − 1and 2n−1 − 1 < y < 2n − 1,

− 1
2·4n if ∃n ∈ N with 2n − 1 < x < 2n+1 − 1and 2n+1 − 1 < y < 2n+2 − 1,whi
h is kind of os
illating and de
reasing at in�nity. As easy to see, we1We use the following terminology: An integral ∫ dxf(x) is said to be absolutely 
onver-gent if ∫ dx|f(x)| <∞ in the sense of Lebesgue integrals. In this 
ase f is 
alled absolutelyintegrable or measurable. 105
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tion fhave
a(x) :=

∫
dyf(x, y) = 0,

b(y) :=

∫
dxf(x, y) =

{
1 if 0 < y < 1,

0 else.So, ∫
dx a(x) = 0 6= 1 =

∫
dy b(y).This is similar to the 
ase of an alternating series like ∑n(−1)n 1

n
. One 
anget an arbitrary value if one sums the terms in a di�erent order. One 
anexpe
t that a

ordingly in more than one dimensions one 
an �nd for a notintegrable fun
tion, whi
h is kind of os
illating, for ea
h number a variabletransformation, with whi
h the integral of this fun
tion gives this number.22In one dimension the situation is di�erent be
ause there is essentially one way to go106



However, os
illatory integrals, as de�ned below, have a well-de�ned sense. Wegive some important properties of these integrals whi
h are useful to a
tually
al
ulate one. Furthermore, a version of Fubini's theorem holds, shown inse
tion B.4. The 
onne
tion to the improper Riemann integral is given inproposition B.5.1.B.1 Basi
 de�nitions and resultsThe theory of os
illatory integrals was to a great part developed by Hörman-der [25℄. However, to keep things from be
oming unne
essary 
ompli
ated,we use the theory as given in [35℄.Let Ω be an open set in Rs.De�nition B.1.1. A phase fun
tion on Ω × Rt is a 
ontinuous fun
tion
φ : Ω × Rt → R with1. ∀λ ≥ 0, (k, l) ∈ Ω × Rt: φ(k, λl) = λφ(k, l),2. φ is C∞ on Ω × (Rt\{0}),3. (∇kφ,∇lφ) 6= (0, 0) on Ω × (Rt\{0}).An example of a phase fun
tion is kµlµ, whi
h is used in Fourier trans-formation.De�nition B.1.2. A C∞-fun
tion a : Ω × Rt → C is 
alled symbol of order
r ∈ R on Ω × Rt if ∀K ⊂ Ω 
ompa
t and ∀α ∈ Is

+, β ∈ I t
+ the seminorms

‖a‖K,α,β = sup
k∈K,l∈Rt

(1 + |l|)|β|−r|Dα
kD

β
l a(k, l)| (B.1)are �nite. The set of all su
h symbols equipped with the topology given bythe seminorms will be denoted by Sym(Ω, t, r).A fun
tion a : Ω × Rt → C is 
alled asymptoti
 symbol, if it 
an bewritten as a = a1 +a2 with a1 ∈ Sym(Ω, t, r) and a2 having 
ompa
t supportin l and the map k → a2(k, ·) is C∞ as a map from Ω to L∞(Rt).Loosely saying, derivatives in l have to lower the asymptoti
 polynomialbehaviour of a and derivatives in k must not in
rease it. Hörmander [25℄ gavea generalized notion of symbols of type ρ, δ with 1 ≥ ρ > 0 and 1 > δ ≥ 0and, 
ompared to (B.1), the exponent of 1 + |l| is ρ|β| − δ|α| − r. So, thederivatives in k are allowed to in
rease the order of the asymptoti
 polynomialbehaviour. We do not need this generalized form.to in�nity. That is why the 
on
ept of improper Riemann integrals exists.107



Remark B.1.3. If r < r′ then Sym(Ω, t, r) ⊂ Sym(Ω, t, r′) and the C∞-fun
tions of 
ompa
t support are dense in Sym(Ω, t, r) in the topology ofSym(Ω, t, r′). For a1 ∈ Sym(Ω, t, r1) and a2 ∈ Sym(Ω, t, r2) the produ
t a1 ·a2is in Sym(Ω, t, r1 + r2) and a

ordingly for asymptoti
 symbols. Dα
kD

β
l a1 isin Sym(Ω, t, r1 − |β|).Now we want to give a natural extension to expressions like

∫
dl a(k, l)eiφ(k,l), (B.2)if the integral is not absolutely 
onvergent:Theorem B.1.4. Let φ be a phase fun
tion. We 
an asso
iate with φ alinear map from the asymptoti
 symbols to D′(Ω), denoted by Tφ(a), whi
h isuniquely determined by:1. If a has 
ompa
t support in l then Tφ(a)(k) =

∫
dl a(k, l)eiφ(k,l) and isa C∞-fun
tion of k.2. The restri
tion of Tφ to Sym(Ω, t, r) is a 
ontinuous fun
tion fromSym(Ω, t, r) to D′(Ω).Furthermore, the wave front set WF(Tφ(a)) is 
ontained in

{
(k,∇kφ(k, l))|(k, l) ∈ Ω × Rt\{0} with ∇lφ(k, l) = 0

}
. (B.3)We use the notion of ∫ dl a(k, l)eiφ(k,l) for the distribution Tφ(a)(k) evenif the integral is not absolutely 
onvergent. The 
ase s = 0, where Ω = R0equals a single point, is allowed. In this 
ase the fun
tions only depend on land Tφ(a) ∈ C.Remark B.1.5. It is easy to see that the notion of asymptoti
 symbols 
anbe generalized further. The fun
tion a 
ould be split into more parts: a =

a1+a2+a3+ . . .. For the additional terms, k → ai(k, ·) should again be a C∞-map into some �integrable spa
e� having 
ompa
t support in l. An examplefor su
h an �integrable spa
e� would be L∞(Rt), whi
h was already usedfor the original de�nition of asymptoti
 symbols in de�nition B.1.2, or theelements of E ′(Rt) whi
h are C∞ around l = 0.3 The important point is thatthe integrals ∫ dkf(k)ai(k, l)e
iφ(k,l) should ea
h be well-de�ned for f ∈ D(Ω),one in the sense of os
illatory integrals, and their sum independent of thesplitting. So one 
ould even allow for some k → ai(k, ·) to be distributionsinstead of C∞-maps. This 
ould, of 
ourse, in
rease the wave front set beyond(B.3).3As the phase fun
tion does not have to be 
ontinuous in l = 0, ai(k.·) should, e.g., not
ontain derivatives of δ-fun
tions at that point.108



A
tually, in the following we are only going to treat symbols instead ofasymptoti
 symbols. The extension to asymptoti
 symbols will be obvious.B.2 Cal
ulating os
illatory integralsTo a
tually 
al
ulate an os
illatory integral for a given phase fun
tion φ andsome symbol a of order r, a

ording to theorem B.1.4, a possibility is to �nda sequen
e of symbols an with 
ompa
t support in l whi
h have as their limit
a in the topology of symbols r′ with r′ ≥ r.4 Here, the following propositionis useful:Proposition B.2.1. Let g be a fun
tion in S(Rt) with g(0) = 1. Then ∀ǫ > 0the sequen
e gn(l) := g(l/n) has the limit 1 for n → ∞ in the topology ofSym(Ω, t, ǫ).Proof. Let 0 < ǫ < 1. The 
ases with ǫ ≥ 1 follow easily. We have to provethat

sup
l

(1 + |l|)|β|−ǫ

∣∣∣∣D
β
l

[
g

(
l

n

)
− 1

]∣∣∣∣ −−−→n→∞
0. (B.4)For |β| = 0 we write g(l) = 1 + lg̃(l) with g̃ ∈ S. We make a variabletransformation to l′ = l

n
and use that (B.4) is smaller or equal to the sum ofthe suprema over the sets |l′| > 1 and |l′| ≤ 1. The �rst gives

sup
|l′|>1

1

nǫ

(
1

n
+ |l′|

)−ǫ

|l′g̃ (l′)| ≤ 1

nǫ
2−ǫ sup

l′
|l′g̃ (l′)| −−−→

n→∞
0.The supremum in the last expression is �nite sin
e g̃ ∈ S. The other termgives

sup
|l′|≤1

1

nǫ

(
1

n
+ |l′|

)−ǫ

|l′g̃ (l′)|

≤ 1

nǫ

(
sup

l′
|g̃ (l′)|

)(
sup
|l′|≤1

|l′|
(

1

n
+ |l′|

)−ǫ
)

−−−→
n→∞

0.Here, the latter supremum in the last expression is smaller than 1 for all nsin
e l( 1
n

+ l)−ǫ has its maximum on [0, 1] at the point l = 1.4Of 
ourse, the value of the os
illatory integral does not depend on whether we see itas a symbol of order r or r′. The only di�eren
e is, that su
h a sequen
e an might notexist in the topology of symbols of order r, 
ompare with remark B.1.3.109



Now we assume |β| ≥ 1. Then |β| − ǫ > 0. Furthermore
Dβ

l g

(
l

n

)
=

1

n|β|
(
Dβg

)( l
n

)and Dβg ∈ S. The strategy will be similar to the above: Transform to l′ andsplit the supremum. The �rst term gives
sup
|l′|>1

1

n|β| (1 + |l′|n)|β|−ǫ
∣∣(Dβg

)
(l′)
∣∣ ≤ sup

|l′|>1

1

nǫ

(
1

n
+ |l′|

)|β|−ǫ ∣∣(Dβg
)
(l′)
∣∣

≤2|β|
1

nǫ
sup
|l′|>1

|l′||β|
∣∣(Dβg

)
(l′)
∣∣ −−−→

n→∞
0.For the other one we have

sup
|l′|≤1

1

n|β| (1 + |l′|n)|β|−ǫ
∣∣(Dβg

)
(l′)
∣∣

≤ 1

nǫ
sup
|l′|≤1

(
1

n
+ |l′|

)|β|−ǫ

sup
|l′|

∣∣(Dβg
)
(l′)
∣∣

≤ 1

nǫ
2|β|−ǫ sup

|l′|

∣∣(Dβg
)
(l′)
∣∣ −−−→

n→∞
0.Remark B.2.2. With su
h a fun
tion g one 
an easily see that gn · a has thelimit a in the topology Sym(Ω, t, r + ǫ). So, we have for f ∈ D(Ω)

Tφ(a)(f) = lim
n→∞

∫
dkdl f(k)g

(
l

n

)
a(k, l)eiφ(k,l).From the proof of proposition B.2.1 we see, thatDβgn → 0 in the topologyof Sym(Ω, t, ǫ). Hen
e,

∫
dl Dβgn(l)a(k, l)eiφ(k,l) −−−→

n→∞
0 (B.5)as a distribution. Most of the time we will take g to be a fun
tion in C∞

0 (Rt)with
g(l) =

{
1 if |l| < 1

0 if |l| > 2.
(B.6)The restri
tion on the sequen
e gn to be s
aling 
an be loosened, butit is important, loosely saying, that the fun
tions fall o� more slowly when110



the region, where they almost equal 1, in
reases. An example of a sequen
e,where the derivatives do not fall o� more slowly would be
γn(l) :=

{
1 if |l| < n− 1,

g(|l| + 1 − n) if |l| ≥ n+ 1,with g as in (B.6) (with t = 1). The sequen
e γn does not approa
h 1 in thetopology of some Sym(Ω, t, r).A di�erent method, to 
al
ulate the integrals, than multiplying with s
al-ing fun
tions stems from the following lemma and 
an be seen as the gener-alization of integration by parts:Lemma B.2.3. For every phase fun
tion φ on Ω × Rt there exist Aµ ∈Sym(Ω, t, 0) and Bν , C ∈ Sym(Ω, t,−1) su
h that
V eiφ = eiφ with V = Aµ∂

µ
l +Bν∂

ν
k + C.Proof. See [35℄.With this di�erential operator V , one 
an 
al
ulate

Tφ(a)(f) = lim
n→∞

∫
dkdl f(k)g

(
l

n

)
a(k, l)V eiφ(k,l)

= lim
n→∞

∫
dkdl

(
V Tf(k)g

(
l

n

)
a(k, l)

)
eiφ(k,l)

= lim
n→∞

∫
dkdl

(
V Tf(k)a(k, l)

)
g

(
l

n

)
eiφ(k,l)

=

∫
dkdl

(
V T⌈r+t+1⌉

f(k)a(k, l)
)
eiφ(k,l),where g is like in (B.6). The last integral is absolutely 
onvergent, so the gwas dropped. V T denotes the transposed di�erential operator, i.e.,

V T = −Aµ∂
µ
l −Bν∂

ν
k + C − (∂µ

l Aµ) − (∂ν
kBν) .The passage from V to V T in the �rst step was possible sin
e the integrandhas 
ompa
t support and so the boundary terms vanish. In the se
ond stepwe used (B.5) so the terms with derivatives of g vanish.B.3 Further resultsIf the phase fun
tion φ and the symbol a are 
ontinuous fun
tions of anadditional parameter z with values in C∞(Ω × (Rt \ {0})) and Sym(Ω, t, r),111



then Tφ(a)(f) will also depend 
ontinuously on z. Thus, we 
an pass to limitsunder the integral sign. In parti
ular, we 
an di�erentiate with respe
t to zunder the integral sign, if this is possible for φ and a.From the restri
tion on the wave front set of Tφ(a) given in TheoremB.1.4 we see that Tφ(a)(k) is a C∞-fun
tion of k in the set
Ω(C∞) :=

{
k|k ∈ Ω,∀l ∈ Rt\{0} : ∇lφ(k, l) 6= 0

}
.For given k ∈ Ω(C∞) the fun
tion φ(k, ·) is a phase fun
tion on Rt and a(k, ·)is a symbol of the same order r on Rt. (We have s = 0 here.) So we 
anregard k as an additional parameter. The integral over l for this k is de�nedand we have:

Tφ(a)(k) = Tφ(k,·)(a(k, ·)) =

∫
dl a(k, l)eiφ(k,l). (B.7)Furthermore, di�erentiation with respe
t to k 
an be performed under theintegral sign:

∂ν
kTφ(a)(k) =

∫
dl (ia(k, l)∂ν

kφ(k, l) + ∂ν
ka(k, l)) e

iφ(k,l).Now a(k, l)∂ν
kφ(k, l) is an asymptoti
 symbol of order r+ 1 and the above isagain de�ned as an os
illatory integral. Proofs 
an be found in [26℄ or [25℄.B.4 Theorem of Fubini for os
illatory integralsAs we have seen above, in not absolutely 
onvergent integrals the order ofintegration 
an in general not be inter
hanged. That this is nevertheless pos-sible for os
illatory integrals show the following two generalizations of thetheorem of Fubini.Theorem B.4.1 (Theorem of Fubini for the �distributional variable� k). If

Ω is of the form Ω = Ω1 × Ω2 and the phase fun
tion φ has the property
(∇k1

φ,∇lφ) 6= (0, 0) we 
an perform the k2-integration at the end:
∫

dkdl f(k)a(k, l)eiφ(k,l) =

∫
dk2

(∫
dk1dl f(k1, k2)a(k1, k2, l)e

iφ(k1,k2,l)

)
,where f ∈ D(Ω) and on the left hand side the os
illatory integral is de�nedwith a symbol and phase fun
tion depending on k2 as an additional parameter.Proof. See [25℄, (1.2.4). 112



A new result, to our knowledge, is the following theorem of Fubini wherewe split the variable l ∈ Rt into two 
omponents:Theorem B.4.2 (Theorem of Fubini for the �os
illatory variable� l). Let
l = (u, v) ∈ Rt1 × Rt2, t := t1 + t2. and the phase fun
tion have the propertythat φ(k, u, v) = φ1(k, u)+φ2(v), where φ1 is a phase fun
tion in the variables
k and u. (φ2 does not have to be a phase fun
tion and 
ould even be zero.)Then, for a ∈ Sym(Ω, t, r) and f ∈ D(Ω), the fun
tion

H(v) :=

∫
dkdu f(k)a(k, u, v)eiφ1(k,u)is in S(Rt2) and furthermore

∫
dvH(v)eiφ2(v) =

∫
dkdl f(k)a(k, l)eiφ(k,l). (B.8)Proof. First, we show that H ∈ S(Rt2), what is equivalent to

sup
v

|vαDβ
vH(v)| <∞ (B.9)for all multi-indi
es α, β. We have

vαDβ
vH(v) =

∫
dkdu f(k)vαDβ

v a(k, u, v)e
iφ1(k,v),using the fa
t that the di�erentiation 
an be performed under the integralsign (see se
tion B.3). In the following 
onsiderations it is important that weare dealing with symbols on Ω×Rt. This means that derivatives with respe
tto u redu
e the asymptoti
 polynomial behaviour for large v and vi
e versa.We note that:

• vα is in Sym(Ω, t, |α|).
• If a ∈ Sym(Ω, t, r) then Dβ

v a ∈ Sym(Ω, t, r − |β|).So vαDβ
v a is a symbol of order r + |α| − |β| and (B.9) is proved if we 
anshow that

sup
v

∣∣∣∣
∫

dkdu f(k)a(k, u, v)eiφ1(k,v)

∣∣∣∣ <∞for an arbitrary symbol a. We use that φ1 is also a phase fun
tion on Ω×Rt,so a

ording to Lemma B.2.3 there exist symbols A1
µ, A

2
ρ of order 0 and Bν , Cof order -1, all on Ω × Rt, with

V eiφ1(k,u) =
(
A1

µ∂
µ
u + A2

ρ∂
ρ
v +Bν∂

ν
k + C

)
eiφ1(k,u) = eiφ1(k,u).113



As φ1 does not depend on v the symbols A2
ρ 
an be set to zero. With this wehave

sup
v

∣∣∣∣
∫

dkdu f(k)a(k, u, v)eiφ1(k,u)

∣∣∣∣

= sup
v

lim
n→∞

∣∣∣∣
∫

dkdu f(k)a(k, u, v)g
(u
n

)
V eiφ1(k,u)

∣∣∣∣

= sup
v

lim
n→∞

∣∣∣∣
∫

dkdu
(
V Tf(k)a(k, u, v)

)
g
(u
n

)
eiφ1(k,u)

∣∣∣∣

= sup
v

∣∣∣∣
∫

dkdu
(
V T⌈r+t+1⌉

f(k)a(k, u, v)
)
eiφ1(k,u)

∣∣∣∣ .From the se
ond to third line it was important that A2
ρ vanishes sin
e weare not integrating over v. The last integral is absolutly integrable in k, uand v and the integrand is a 
ontinuous fun
tion of these variables, so thesupremum of the integral over k and v has to be �nite. Thus, H ∈ S(Rt2)has been shown now.To prove B.8 we use the same V as before and make use of Fubini'stheorem for absolutely integrable fun
tions:

∫
dvH(v)eiφ2(v) =

∫
dv

(∫
dkdu

(
V T⌈r+t+1⌉

f(k)a(k, u, v)
)
eiφ1(k,u)

)
eiφ2(v)

=

∫
dkdudv

(
V T⌈r+t+1⌉

f(k)a(k, u, v)
)
eiφ1(k,u)eiφ2(v)

=

∫
dkdl f(k)a(k, l)eiφ(k,l).

B.5 Conne
tion to other de�nitionsFor one dimension there already exists a des
ription on how to 
al
ulateexpressions like (B.2), namely the improper Riemann integral. For this, ahas to be de
reasing, i.e., of order smaller than 0.5 Os
illatory integrals arewell-de�ned even if the value of the symbols a in
reases with l. The followingproposition states that, if the improper Riemann is appli
able too, the resultequals the os
illatory integral. As we 
ould not �nd a similar statement in[25℄ or [35℄, we give a proof.5Fun
tions whi
h behave like 1
log l for large |l|, whi
h are of order 0, are also allowed.The following proposition 
an easily be generalized to this 
ase.114



Proposition B.5.1. Let g be as in (B.6), a ∈ Sym(Ω, 1, r) with r < 0 and
φ(k, l) = φ(k)·l a phase fun
tion6 with φ(k) 6= 0. Then the os
illatory integralequals the improper Riemann integral:

lim
n→∞

∫ ∞

0

dl g

(
l

n

)
a(k, l)eiφ(k)l = lim

n→∞

∫ n

0

dl a(k, l)eiφ(k)l.Proof. This is 
lear if r < −1 sin
e then both integrals are absolutely 
on-vergent. In the other 
ase the integral on the left-hand side equals
∫ n

0

dla(k, l)eiφ(k)l +

∫ 2n

n

dlg

(
l

n

)
a(k, l)eiφ(k)l.The �rst term already has the 
orre
t limit, so the proposition is proved ifthe other one approa
hes 0. To see this we make a variable transformationand integrate by parts:

∫ 2n

n

dlg

(
l

n

)
a(k, l)eiφ(k)l

=n

∫ 2

1

dlg(l)a(k, nl)eiφ(k)nl

= − i

φ(k)

[
g(l)a(k, nl)eiφ(k)nl

]2
l=1

+
i

φ(k)

∫ 2

1

dl (∂g(l)a(k, nl) + g(l)n(∂la)(k, nl)) e
iφ(k)nl.The boundary terms vanish in the limit n→ ∞ sin
e a is a symbol of order

r < 0 and hen
e de
reasing at in�nity. For the remaining integrals we have
∣∣∣∣
∫ 2

1

dl∂g(l)a(k, nl)eiφ(k)nl

∣∣∣∣ ≤ sup
l

|∂g(l)| sup
l∈[n,2n]

|a(k, l)| −−→
n→0

0and
∣∣∣∣
∫ 2

1

dlg(l)n(∂la)(k, nl)e
iφ(k)nl

∣∣∣∣

≤
∫ ∞

n

dl

∣∣∣∣g
(
l

n

)
(∂la)(k, l)e

iφ(k)l

∣∣∣∣

≤
∫ ∞

n

dl sup
l′

|g(l′)|dk(1 + l)r−1 −−→
n→0

0,where the last integral is absolutely 
onvergent.6The most general form of a phase fun
tion in one dimension is θ(−l)φ+(k)·l+θ(l)φ−(k)·
l. This 
ase 
an easily be derived from the one given here.115



To show how the last theorem and the theorem of Fubini 
an be used to
al
ulate os
illatory integrals numeri
ally, we give an example for s = 0, t1 =
t2 = 1:
∫

dudv
v17u

1 + u2 + v2
eiu =

∫
dv

(∫
du

v17u

1 + u2 + v2
eiu

)

= iπ

∫
dv v17e−

√
1+v2

.The absolute value of the �rst integrand in
reases in v-dire
tion but the lastintegral is absolutely 
onvergent and 
an be treated by the usual numeri
almethods.Another pres
ription of how to interpret expressions like (B.2) is to multi-ply it with a fun
tion f(k) and then perform �rst the k-integration and thenthe l-integration. This works, for example, for ∫ dl leikl, sin
e the remain-ing fun
tion of l is absolutely 
onvergent. But this does not have to be the
ase, a and φ 
ould for example not dependent on k at all. If it is absolutely
onvergent, then the result gives, of 
ourse, the same as the 
al
ulation withos
illatory integrals:Proposition B.5.2. Let a be a symbol, φ a phase fun
tion and f ∈ D(Ω)with
F (l) :=

∫
dkf(k)a(k, l)eiφ(k,l)absolutely integrable. Then

∫
dl F (l) = Tφ(a)(f).Proof.

Tφ(a)(f) = lim
n→∞

∫
dkdl f(k)g

(
l

n

)
a(k, l)eiφ(k,l)

= lim
n→∞

∫
dl g

(
l

n

)
F (l) =

∫
dl F (l).If the phase fun
tion is of the kind kµlµ then the os
illatory integral isrelated to the Fourier transform. If a does not depend on k it 
an be seenas an element of S ′. Then the os
illatory integral gives exa
tly the Fouriertransform of a ∈ S ′. 116



As we see in se
tion 4.4 an extension of the theory of os
illatory integralsto the 
ase where a(k, l) is needed, if we want to 
al
ulate higher orderdiagrams in the Yang-Feldman formalism on Mn
. There are two naturalapproa
hes for su
h an extension:1. The distributions a 
ould be approximated by a sequen
e of symbols
(an)n∈N, su
h that for ea
h an the os
illatory integral is well-de�ned.The os
illatory integral for a 
an then be a
hieved from the limit
n → ∞ after integrating, if this is well-de�ned and to a large extendindependent of the 
hoi
e of the sequen
e.2. One 
ould regard the relation
∫

dkdlf(k)a(k, l)eiφ(k,l) = lim
n→∞

∫
dkdlf(k)gn(l)a(k, l)eiφ(k,l) (B.10)for a sequen
e gn of symbols with 
ompa
t support and approa
hing

1, as a de�nition. The right-hand side of (B.10), with �nite n, is evende�ned for a a distribution. If the limit exists and is independent ofthe 
hoi
e of the sequen
e gn out of some large 
lass of sequen
es, thiswould be a reasonable extension, too.
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Appendix CGraphs for Yang-FeldmanformalismHere, we show how to 
al
ulate the 
ontributions to n-point fun
tions withgraphs like those shown in �gures 4.3, 4.4 or 4.5.The graphs for the Yang-Feldman formalism we present here are similarto those used in [2℄. We analyse the r-point fun
tions of the φa model. The�eld equation is
(� +m2)Φ = −λΦa−1.The naive solution is given in (3.3). The �elds are built up re
ursively as in�gure 4.1.The rules to 
al
ulate the 
ontributions of graphs to the r point fun
tionsof the φa model in momentum spa
e are as follows:1. Draw r tree graphs of retarded propagators. The dire
tions are up-wards. At ea
h vertex there should be at most a − 1 bran
hing outs
onsisting of other retarded propagators. (The empty tree is allowed.)2. Add leaves su
h that ea
h vertex has exa
tly a−1 bran
hing outs. (Theempty tree has one leaf.)3. Conne
t ea
h leaf by another one. The lines (�
ontra
tions�) are di-re
ted from left to right. (Maybe there are additional rules, e.g., notadpoles are allowed if Wi
k ordering is involved.) If this is not possi-ble (e.g. the number of leaves 
ould be odd) the 
ontribution of thisgraph is zero.4. Otherwise 
al
ulate the 
ontribution of this graph to the r-point fun
-tion in the following way: 119



(a) Numerate ea
h retarded propagator and 
ontra
tion by a di�erentnumber. Ea
h gets a momentum k �owing in the dire
tion of theline.(b) For the retarded propagator with number j write ∆̂R(kj), for a
ontra
tion (2π)2∆̂+(kj).(
) For ea
h root l with outgoing momentum kjl
write f̌l(kjl

). (In
om-ing momenta are 
ounted as the negative is outgoing.)(d) The 
ontribution 
oming from ea
h vertex depends on the a
tual
uto�. If it is a formal 
al
ulation, i.e., without 
uto�, ea
h vertexwith outgoing momenta {kjl
} gives

(2π)−2(a−3)δ(
∑

l

kjl
).If the 
uto� is de�ned by multiplying the �eld monomial with a
uto� fun
tion g like in se
tion 4.2 it is

(2π)−2(a−2)ǧ(
∑

l

kjl
).On non
ommutative spa
etime further twisting fa
tors might arise.Some examples are given in se
tion 4.3.(e) Integrate over all momenta. The order of this 
ontribution is thenumber of verti
es.A graphi
al example is given in �gure C.1. Things 
an be
ome more 
om-pli
ated, if �elds of higher spins or multiple intera
tions are involved, see,e.g., the Wess-Zumino model in se
tion 4.6. The topology of the graphs aresimilar to the graphs from Feynman rules. Note, that in the Yang-Feldmanformalism ea
h graph might not give a well-de�ned 
ontribution on its own.It is ne
essary to sum over all graphs of the same order.
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1.

2.

3.

Figure C.1: Example of building up a 
ontribution to the three-point fun
tionin the φ3 model.
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Appendix DTheorem of Epstein and GlaserEpstein and Glaser examine in [17℄ va
uum expe
tation values (l-point fun
-tions) of time-ordered produ
ts de�ned by retarded or advan
ed solutions.These, denoted by FR/A(p, q), p ∈ R4l; q ∈ R4n, shall ful�ll
suppFR/A ⊂

{
(x; y) ∈ Ml+n|∀i ≤ n∃j ≤ l with xj − yi ∈ V̄±

}
=: SR/A.(D.1)

V̄± denotes the full 
losed forward/ba
kward light 
one. Furthermore, theirFourier transforms F̂R/A(p; k) should be equal on the set
Rn :=



k ∈ Mn

∣∣∣
(∑

i∈I

ki

)2

< 4m2 ∀I ⊂ {1, . . . , n}



 (D.2)for some m ∈ R.Then the following theorem holds:Theorem D.1.3. If a pair of tempered distributions FR/A ∈ S ′(Ml+n) has thesupport (D.1) and their Fourier transforms 
oin
ide for k ∈ Rn, then theirFourier transforms are tempered distributions in p and in�nitely di�erentiablein k for all k ∈ Rn.Hen
e, we 
an 
hoose an arbitrary sequen
e of test fun
tions Ǧa ∈ S(Mn)whi
h have support in a 
losed subset of Rn and 
onverge to (2π)4nδ(4n) inthe topology of O′

C(Mn)1 and the adiabati
 limit,
lim
a→∞

∫
dkdpf̌(p)Ǧa(k)F̂R(p, k),1O′

C are the distributions of rapid de
rease, see [38℄ for a rigorous de�nition. These a
ton smooth fun
tions whi
h are polynomially bounded. F̂R/A is on Rn smooth and alsopolynomially bounded sin
e it is a tempered distribution.123



exists for all f ∈ S(Ml) and is independent of the 
hoi
e of the sequen
e Ǧa.As the Fourier transforms of FR and FA 
oin
ide in Rn, the adiabati
 limitfor su
h a Ga is the same for both.
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