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Zusammenfassung:Wir betrahten Quantenfeldtheorie auf nihtkommutativer Raumzeit. Dazuwählen wir einen Ansatz, welher explizit dem nihtkommutativen Minkowski-raum zugeordnet ist, nämlih den Yang-Feldman Formalismus. Hier bestehtder Ansatz darin, versuhen die Feldgleihung der Quantenfelderzu lösen.In diesem Zusammenhang betrahten wir zuerst eine Wehselwirkung inForm eines zusätzlihen Masse-Terms. Dies benutzen wir, um die Frage desInfrarot-Cuto�s und des adiabatishen Limes zu erörtern. Es werden Klassenvon Abshneidefunktionen gefunden, welhe den erwarteten Limes liefert.Des weiteren betrahten wir vershiedene wehselwirkende Modelle, das φ3Modell in vier und sehs Dimensionen, das φ4 Modell und das Wess-ZuminoModell. Zu diesen berehnen wir Dispersionsrelationen und sehen, dass es ex-treme Untershiede in den Gröÿenordnungen im Vergleih von logarithmishund quadratish divergenten Modellen gibt. Integrale, welhe durh Twist-Faktoren endlih gemaht werden, werden rigoros im Sinne der Theorie deroszillierenden Integrale berehnet.
Abstrat:We examine quantum �eld theory on nonommutative spaetime. For this wehoose an approah whih lives expliitly on the nonommutative Minkowskispae, namely the Yang-Feldman formalism. Here the ansatz is to try to solvethe �eld equation of the quantum �elds. In this setting we �rst take a look atan additional mass term, and use this to disuss possible IR uto�s. We �ndlasses of IR uto�s whih indeed yield the expeted limit. Furthermore, welook at interating models, namely the φ3 model in four and six dimensions,the φ4 model and the Wess-Zumino model. For these we alulate dispersionrelations. We see that there exist huge di�erenes in the orders of magnitudebetween logarithmially and quadratially divergent models. Integrals whihare made �nite by twisting fators are alulated rigorously in the sense ofthe theory of osillatory integrals.
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Chapter 1IntrodutionQuantum �eld theory as it is given in standard textbooks today is modeledon Minkowski spae M or on a urved spaetime whih loally looks like M.There is no interplay between the partiles desribed by the quantum �eldsand the underlying lassial spaetime. This is unsatisfatory, sine one knowsfrom general relativity that the metri, whih desribes the geometry of thespaetime, depends on the distribution of matter and on the other hand themotion of the matter depends on the metri. This annot be desribed by thestandard approahes to quantum �eld theory. One expets that the piture ofthe lassial spaetime as a di�erential manifold with lassial metri breaksdown at very small length sales. This was already mentioned in [37℄ in 1934.By the inorporation of gravity one expets that distanes below the orderof magnitude of the Plank length,
λP =

√
~G

c3
≈ 1.62 · 10−35m,beome meaningless. A hope is that the divergenes in quantum �eld theory,whih make renormalization neessary and ome from high momenta, i.e.,small distanes, disappear in the yet unknown new onept of spaetime.A situation where the usual piture of spaetime breaks down is the mea-suring of the oordinates of an event to the order of magnitude of the Planklength. This was investigated in [13℄ semilassially and it was shown thatsuh an extreme preision measurement auses a gravitational ollapse. Thisleads to the derivation of unertainty relations for the position oordinates

qµ. These an be written as
∆q0

(
∆q1 + ∆q2 + ∆q3

)
≥ λ2

P ,

∆q1 · ∆q2 + ∆q2 · ∆q3 + ∆q3 · ∆q1 ≥ λ2
P .7



8 Chapter 1: IntrodutionThese unertainty relations an be realized, if one regards the oordinates aselements of an observable algebra, in whih the di�erent omponents of theposition vetor do not ommute any longer:
[qµ, qν ] = iλ2

PQ
µν .Here, Qµν is an element of the observable algebra unequal to zero. It is hosenin [13℄ to be a entral element and to ful�ll

QµνQµν = 0,
(

1

8
QµνQρτǫµνρτ

)2

= λ8
P1.This setting will be alled nonommutative Minkowski spae and is explainedin more detail in setion 2.1. Closely related to this is to hoose Qµν to bea onstant matrix, most often denoted by σµν . In this thesis we will workmostly in one of these settings and try to formulate interating quantum�eld theory on it. The nonommutative Minkowski spae should not be seenas the �nal onept for spaetime, but rather as an intermediate step towardsit. There is still no diret interplay between the �elds and the spaetime onwhih they live. The only remainder from gravity is the appearing of thegravitational onstant G in the nonommutativity sale λP . The hope is thatunderstanding the nonommutative Minkowski spae and the formulation ofquantum �elds on it, helps to �nd a truly fundamental onept for spaetime.Sometimes we replae λP by λn if we want to emphasize that we also onsiderdi�erent length sales assoiated to the underlying nonommutativity and arenot restrited to the Plank length.Nonommutative spaetime also arises in a ertain limit of string theorywith a onstant bakground B-�eld [36, 39℄. This setting an be desribed bya onstant σµν whih maps a vetor in time diretion to zero, i.e., time andspae still ommute. But this is not ompatible with the unertainty relationsmentioned above. Furthermore, Lorentz invariane is expliitly broken. Wewill not onsider this setting here.Free quantum �elds an be de�ned in a straightforward way on nonom-mutative spaetime, as shown in setion 2.2. But there are several di�erentapproahes to interating quantum �elds. While they are equivalent on om-mutative spaetime, they ease to be, if time does not ommute with spaeany more. Setion 2.3 gives an overview of the di�erent approahes. It is notunlear whih one is the most advantageous to hoose sine eah has someweakness. Espeially, there seems to be no onnetion between quantum �eldtheory on nonommutative Minkowski and nonommutative Eulidean spae.



9Therefore, we hoose a setting whih works expliitly on the Minkowski ver-sion, namely the Yang-Feldman formalism. This is the most promising ap-proah from our point of view. A phenomenon in nonommutative Eulideanspaetime is the mixing of UV and IR divergenes, whih is examined insetion 2.4. Yet it is not lear, how this shows up on the nonommutativeMinkowski spae.In Chapter 3 we introdue the Yang-Feldman formalism and look at pos-sibilities to introdue an IR uto�. This uto� is neessary in order to keepus from manipulating expressions without a well-de�ned sense. We onsidera mass term as interation. This an be seen as a kind of toy model, sine wealready have an expetation of what the result should be. First, we do thisfor ommutative spaetime and then have a loser look at the new situationon the nonommutative one. In Chapter 4 we look at interations, namelythe φ3 model both in four and six dimensions, the φ4 and the Wess-Zuminomodel. Some of these models are logarithmially divergent and the othersquadratially. We look at their dispersion relations and see that the orders ofmagnitude of the modi�ations are rather moderate for the logarithmiallydivergent models but for the quadratially divergent ones onsiderably num-bers of magnitude higher. In fat, for logarithmially divergent models thedistortion of the group veloity is of the order of perentages. If one assumesthat the Higgs model sees a nonommutative struture of spaetime and be-longs to this lass of divergene (possibly a supersymmetri extension of themodel) this might be detetable in forthoming olliders. The last Chapter5 brings a onlusion and an outlook.In the literature alulations for quantum �eld theory on nonommutativespaetime are often presented very vague and without well-de�ned objets.Here, we try to treat everything as rigorous as possible. For example integralswhih are made �nite by twisting fators are alulated using the theory ofosillatory integrals. To our knowledge, this has not been done before. Theonept of osillatory integrals is presented in Appendix B. In the wholesetting we keep λn �nite and do not treat the �elds as a formal power seriesin λn.



10 Chapter 1: Introdution



Chapter 2Quantum �eld theory onnonommutative spaetime
2.1 Nonommutative Minkowski spaeIn this setion we present mainly the setting of nonommutative Minkowskispae from [13℄. However, the presentation given here is slightly simpli�ed.For this setion we set λP = λn = 1.

[qµ, qν ] =: iQµν ,

[qµ, Qνρ] = 0.Furthermore, we require Qµν to ful�ll
QµνQµν = 0,

(
1

8
QµνQρτǫµνρτ

)2

= λ8
P1.These relations together with the ommutation relations imply the uner-tainty relations

∆q0
(
∆q1 + ∆q2 + ∆q3

)
≥ λ2

P ,

∆q1 · ∆q2 + ∆q2 · ∆q3 + ∆q3 · ∆q1 ≥ λ2
P ,

(2.1)but not vie versa. Sine the unertainty relation annot be ful�lled bybounded operators, we will look at the Weyl realisations, i.e., instead ofthe qµ we look at eikµqµ . For these, the ommutation relation beomes
eikµqµ

eilνqν

= e−
i
2
kµQµν lνei(kµ+lµ)qµ

. (2.2)11



12 Chapter 2: QFT on nonommutative spaetimeThe joint spetrum of the Qµν is a subset of
Σ :=

{
σ ∈ T 2

0 (M)
∣∣∣σµνσµν = 0,

(
1

8
σµνσρτǫµνρτ

)2

= 1

}
.

Σ is a nonompat manifold and invariant under Lorentz transformations:
σ ∈ Σ,Λ ∈ L⇒ ΛσΛT ∈ Σ,where L is the set of all Lorentz transformations and

(ΛσΛT )
µν

= Λµ
ρΛ

ν
τσ

ρτ .Furthermore,
∀σ, σ′ ∈ Σ ∃Λ ∈ L with σ′ = ΛσΛT .For σ ∈ Σ we will de�ne the (Eulidean) norm by

||σ||2 :=
1

2

∑

µ<ν

σµν2.This has the property that ||σ|| ≥ 1 ∀σ ∈ Σ. We de�ne
Σ(1) :=

{
σ ∈ Σ

∣∣||σ|| = 1
}
.

Σ(1) is ompat and invariant under rotations.One possibility is to hoose Qµν as the unit operator times a onstant ele-ment σµν ∈ Σ. The orresponding C∗-algebra with the Weyl realizations willbe denoted by Eσ. The representations of Eσ are, by von Neumann unique-ness, all equivalent to the algebra of ompat operators K on the Hilbertspae L2(R2). In fat, if we hoose the standard matrix
σ0 :=




0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0


 ,we an identify Eσ0

with the setting of quantum mehanis on the two di-mensional plane: q0 = X1, q1 = P1, q
2 = X2, q3 = P2, where X i and Pi arethe usual position and momentum operators. σ0 is an element of Σ(1).A dense set of elements of Eσ is the set of symbols

f(q) :=
1

(2π)2

∫
d4kf̂(k)e−ikµqµ

,



2.1 Nonommutative Minkowski spae 13where f̂ is the Fourier transform of f and should be in L1(M). Most timeswe will hoose f ∈ S(M). The above de�nes the Weyl orrespondene: W isa map from S(M) to Eσ with W(f) = f(q). The produt of two symbols is
f(q)g(q) =

1

(2π)4

∫
d4k1d

4k2f̂(k1)ĝ(k2)e
− i

2
k1σk2e−i(k1+k2)·q = (f ⋆σ g)(q).(2.3)This means that the produt on Eσ an be pulled down to the ⋆σ produt1on S(M). In terms of the Weyl orrespondene this relation is W(f)W(g) =

W(f ⋆σ g). The fator e− i
2
k1σk2 is alled twisting fator.The produt of (2.3) is often ompared with the formal Moyal star produt

(
f ⋆M

σ g
)
(x) := e

i
2
∂y1µQµν∂y2νf(y1)g(y2)

∣∣∣
x=y1=y2

.To ensure that f ⋆σ g = f ⋆M
σ g one has to assume that f and g are analyti.But for analyti funtions there exists no well-de�ned onept of loality.2So, one should treat the statement with are, that f ⋆M

σ g and therefore also
f ⋆σ g are loal produts. However, if one takes f ⋆M

λ2nσ g and f ⋆λ2nσ g to beformal power series in λn they are indeed equal.The group of transformations ats on Eσ by τa(f(q)) = f(q − a1) for
a ∈ M. However, Lorentz symmetry is expliitly broken in this setting, sinefor Λ ∈ L the operators q′µ = Λµ

νq
ν ful�ll

[q′µ, q′ν ] = i(ΛσΛT )
µν
.So, there exist distint Lorentz frames, in whih the nonommutativity ma-trix, say, equals σ0.To get rid of this expliit breaking of Lorentz invariane we look at the al-gebra of ontinuous funtions from Σ to L1(R4) vanishing at in�nity, endowedwith the produt

(F ×⋆ G)(σ, k) =

∫
d4lF (σ, k − l)G(σ, l)e−

i
2
kσl,norm ||F || = supσ∈Σ

∫
dk|F (σ, k)| and the involution F ∗(σ, k) = F (σ,−k).The C∗-losure of this algebra will be denoted by E . It is isomorphi to

C0(Σ,K). If we denote the elements of the algebra Eσ by qµ
σ we an see qµ ∈ Eas a diret integral over the qµ

σ . Furthermore, there exists the algebra ofbounded ontinuous funtions from Σ to L1(R4). The ompletion of this1This is a nonloal produt. Hene, one an see this setting as an example of a nonloal�eld theory.2An analyti funtion is �xed globally by its derivatives at a single point.



14 Chapter 2: QFT on nonommutative spaetimealgebra will be denoted Ẽ and an be viewed as a subset of the multiplieralgebraM(E) of E . The algebra of bounded funtions on Σ an be assoiatedwith the entre Z of M(E).The Weyl orrespondene generalizes to ontinuous funtions from Σ to
S(M) (vanishing at in�nity or bounded) by W(f)W(g) = W(f ⋆ g), wherethe star produt is pointwise in Σ:

f̂ ⋆ g(σ, k) =
1

(2π)2

∫
d4lf̂(σ, k − l)ĝ(σ, l)e−

i
2
kσl.Here, all Fourier transforms are at �xed σ. The symbol f(σ, q) = W(f)(σ)an be regarded as an element of Eσ:

f(σ, q) =
1

(2π)2

∫
dkf̂(σ, k)e−ikqσ , (2.4)where qσ denotes the element realized in Eσ. If f does not depend on σ ∈ Σ,we will just write f(q).The Poinaré group ats on symbols in the following way:

τΛ,a(f)(σ, q) = det(Λ)f(Λ−1σΛ−1T ,UΛ,aqU−1
Λ,a), (2.5)where UΛ,aqσU−1

Λ,a = qΛ−1σΛ−1T −Λ−1a1. Loosely saying, one has to transformboth qµ and Qµν . This indues an automorphism on E . No distint frameexists any more.3Derivatives are de�ned as in�nitesimal generators of translations:
∂qµf(σ, q) = ∂aµf(σ, q + a1)

∣∣∣
a=0

. (2.6)We �nd a Z-valued trae on E , denoted by ∫ d4q:
∫

d4qf(σ, q) = (2π)2f̂(σ, 0).This trae is yli, and on the produt of two symbols it ful�lls
∫

d4qf(σ, q)g(σ, q) =

∫
d4xf(σ, x)g(σ, x).3There exists the onept of twisted Poinaré symmetry [9, 42℄. The ommutationrelations of the generators of the Poinaré algebra are deformed in order to make therelation [qµ, qν ] = iσµν with �xed σµν invariant under Poinaré transformations. However,this is essentially equivalent to leaving the Poinaré algebra untouhed but transform σµνlike in (2.5) [20℄.



2.1 Nonommutative Minkowski spae 15Formally, ∫ d4qeikq = (2π)4δ(k). Using the Weyl orrespondene, one ande�ne the pointwise produt for symbols f(q) and g(q),
f(q) ·pw g(q) = W

(
W−1(f(q)) · W−1(g(q))

)
= (f · g)(q). (2.7)However, this produt is rather arti�ial and lies somewhat outside the al-gebra struture of E . Of ourse, the onepts of derivatives, the trae andthe pointwise produt also exist on Eσ. In this ase the trae has values in Cinstead of Z.States on these nonommutative spaes desribe loalizations.4 To everystate on E there exists a measure µ on Σ and a measurable funtion σ → ωσon Σ, where eah ωσ is a state Eσ, suh that

ω(f(Q, q)) =

∫

Σ

dµ(σ)ωσ(f(σ, qσ)). (2.8)The unertainty relations (2.1) are ful�lled if we set
∆qµ = ∆ωq

µ :=
√
ω(qµ2) − ω(qµ)2.A measure of loalization of a state will be the quantity ∑µ (∆ωq

µ)2. How-ever, this measure of loalization is not Lorentz invariant. It was shown in[13℄ that it has the property
3∑

µ=0

(∆qµ)2 ≥
√

2

∫

Σ

dµ(σ)(1 + ||σ||)using the notation of (2.8). The quantity on the right-hand side has its min-imum if the support of the measure µ(σ) is ontained in the set Σ(1). For
σ ∈ Σ(1) and x ∈ M we an �nd a unique optimal loalized state ωσ(x) on
Eσ around x, i.e.,

ωσ(x)(qµ
σ) = xµ and 3∑

µ=0

(
∆ωσ(x)q

µ
σ

)2
= 2. (2.9)Using the above mentioned identi�ation with quantum mehanis on a planethese states an be identi�ed with the ground state of the harmoni osillator,shifted by a vetor x in phase spae. With these we an easily build optimalloalized states on E around x. We just have to hoose a measure µ withits support on Σ(1) and take the optimal loalized states in Eσ around x.4This is in aordane with the onept of nonommutative geometry from [12℄.



16 Chapter 2: QFT on nonommutative spaetimeNote that there does not exist a Lorentz invariant optimal loalized state,but rotational invariant ones.In the ommutative limit E redues to the ommutative algebra of fun-tions on Σ × M. So, we get an additional manifold Σ, whih has not beenobserved in nature yet. It has to be eliminated somehow sine at the end theexpetation values from the theory have to be real numbers and not funtionson Σ. It is still an open question how to handle this problem. A natural ideawould be to take a Lorentz invariant state on E and average over Σ. But sine
Σ is nonompat one annot �nd suh a state. However, there exist rotationalinvariant ones and averaging over Σ(1) would be the most reasonable hoiein this setting.In the following eah of the settings Eσ, E , Ẽ or M(E) will be alled non-ommutative Minkowski spae, abbreviated by Mn. However, most of thetime we will work in Eσ (and hoose σ ∈ Σ(1)) or Ẽ , i.e., look at symbolswhih have no additional dependene on σ ∈ Σ. The nonommutativity salewill be absorbed into σ, i.e., λ−2n σ ∈ Σ atually. The ontinuation of thewhole setting to higher even dimensions, like six, is straightforward.2.2 Quantum �eldsNow we look at quantum �elds on nonommutative spaetime. Let Φ bea Wightman �eld and F the algebra of polynomials of the �eld. (Here weonly onsider hermitian salar �elds. The generalization to other �elds isstraightforward.) One an easily write down

Φ(q) :=
1

(2π)2

∫
d4kΦ̂(k) ⊗ e−ikµqµ

. (2.10)This lives formally on F ⊗ Mn. If Φ = ΦFree is the free �eld, it ful�lls theKlein-Gordon equation:
(�q +m2)ΦFree(q) = 0.We want to give (2.10) a preise meaning. In [4℄ Φ(q) was taken to be afuntional on the subset of (Z-valued) states of Mn whih are in the domainof all polynomials in the qµ's. The funtional takes values in F . Note thatfor elements ω of this subset of states the funtion k → ω

(
eikq
) is in S (afuntion from Σ to S). So, the Fourier transform an be de�ned and

Φ(q)(ω) = ω(Φ(q)) =
1

(2π)2

∫
d4kΦ̂(k)ω(e−ikµqµ

) =

∫
d4kΦ̂(k)f̌ω(k) = Φ(fω)(2.11)



2.2 Quantum �elds 17with f̌ω(k) := 1
(2π)2

ω(e−ikµqµ

). The last term has to be understood in thesense of Wightman �elds as operator-valued distributions on M.Another de�nition is to onsider multiplying by a symbol and taking thetrae:5
∫

d4qf(q)Φ(q) =
1

(2π)4

∫
d4qd4k1d

4k2f̂(k1)Φ̂(k2) ⊗
(
e−

i
2
k1Qk2e−i(k1+k2)·q

)

=

∫
d4k1d

4k2f̂(k1)Φ̂(k2) ⊗
(
e−

i
2
k1Qk2δ(k1 + k2)

)

=

∫
d4kf̂(−k)Φ̂(k) = Φ(f). (2.12)The result is similar to (2.11). Sine more funtions omply with (2.12) weadopt this point of view, but it hardly makes a di�erene in alulationswhih one we take. The tensor sign ⊗ between the F and Mn part will bedropped from now on.However, as on ommutative spaetime, produts of �elds are not well-de�ned:

∫
d4qf(q)Φ(q)Φ(q) =

1

(2π)2

∫
d4k1d

4k2Φ̂(k1)Φ̂(k2)f̌(k1 + k2),but f̌(k1 + k2) is not an element of S(M2), sine it does not derease rapidlyin the diretion k1 = −k2. Thus, the above expression is ill-de�ned. If the�elds are free �elds, Φ0 := ΦFree, this an be ured by taking the so-allednormal-ordered or Wik produt, denoted by : Φn
0 :. This only applies to the�eld part, i.e.,

: Φ0(q)Φ0(q) :=
1

(2π)4

∫
d4k1d

4k2 : Φ̂0(k1)Φ̂0(k2) : e−ik1qe−ik2q. (2.13)The Wik produt an be seen as the restrition of the produt Φ0(x)Φ0(y)−
∆+(x − y) to the diagonal x = y. In a ertain sense the subtrated ∆+ is aloal subtration (on ommutative spaetime).However, for higher produts of �elds a onept of loality is introdued in[4℄whih is more adapted to nonommutative spaetime. Some terms, whihare subtrated using the usual Wik produts, beome nonloal and �nite.Thus, they should not be subtrated any more. This leads to the notion of5Note that the map of the Weyl orrespondene W is not positive. So, if f ∈ S is apositive funtion, the map g(q) →

∫
d4qf(q)g(q) is not neessarily positive, and henedoes not de�ne a state.



18 Chapter 2: QFT on nonommutative spaetimequasiplanar Wik produts, denoted by ... Φn
0

... . The �rst order, where thisdi�ers from the usual Wik produt, is three:... Φ0(q)Φ0(q)Φ0(q)
... =: Φ0(q)Φ0(q)Φ0(q) : +

1

(2π)2

∫
dk∆+(−kσ)Φ̂0(k)e

−ikq.As mostly we enounter the produt of only two free �elds it does not matterwhih produt we take. However, in 4.5 we have a look at the φ4 model. Herewe have a produt of three free �elds and use the quasiplanar Wik produt.The generalizations from ommutative to nonommutative spaetime arenot always unique. For example
∫

d4qf1(q)Φ(q)f2(q)Φ(q) . . . fn(q)Φ(q) (2.14)and ∫
d4qf1(q)f2(q) . . . fn(q)Φn(q)ould both be seen as generalizations of

∫
d4xf1(x)f2(x) . . . fn(x)Φn(x).While the last two expressions are ill-de�ned, it was shown in [45℄ that (2.14)is indeed well-de�ned. Among others we use terms like this to form an IRuto� on nonommutative spaetime in setions 3.2.2 and 4.3.2.3 Approahes to interationsThere exists a zoo of di�erent approahes to interating quantum �eld theoryon nonommutative spaetime. To make lear, where our approah �ts in,we give an overview of what has been done in this �eld of researh. However,we do not laim it to be omplete.A �rst lassi�ation of the di�erent approahes is by the treatment of λn:

• Fields are treated as formal power series in λn.
• λn is not in�nitesimally small but �nite.We take the latter point of view sine we do not see a possibility to builda more fundamental onept of spaetime at small sales in the �rst ap-proah. (Remember that the nonommutative Minkowski spae is regardedas an intermediate model only.) Another lassi�ation is by the metri andommutativity of the time omponent:
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• Eulidean metri
• Minkowski metri� Time still ommutes with spae.� Time and spae do not ommute.As was already mentioned, on nonommutative spaetime there seems to beno onnetion between results on Eulidean and on Minkowski spae, sinethe Osterwalder Shrader theorem [32, 33℄ is not appliable. Already it seemsto be impossible to de�ne the Wik rotation. In the Minkowskian setting, theunertainty relations (2.1) do not hold if time and spae still ommute. Hene,we hoose nonommuting time. However, this makes approahes whih areequivalent on M inequivalent on Mn.The most important approahes are:Modi�ed Feynman Rules: This is the most prominent approah. It was�rst formulated in [18℄. The usual Feynman rules are modi�ed by addingat eah vertex the twisting fator

e−
i
2

∑
a<b kaσkb .Here ka are the inoming momenta at that vertex, numerated in lok-wise diretion. The twisting fator is invariant under yli permutationof the momenta. This modi�ation of the Feynman rules is inspired byhanging the usual ation, e.g., of the φ4 model to

S(φ) =

∫
d4q

1

2
∂µφ(q)∂µφ(q) − m2

2
φ(q)2 − λ

4
φ(q)4

=

∫
d4x

1

2
∂µφ(x)∂µφ(x) − m2

2
φ(x)2 − λ

4
φ ⋆ φ ⋆ φ ⋆ φ(x).It was shown in [19℄ that unitarity is violated in this approah if timedoes not ommute in spae.6 The modi�ed Feynman rules approah isused for both Eulidean and Minkowski metri. For the latter onretealulations seem to be very ompliated if time does not ommutewith spae.6However, in the shown derivation given in [19℄ the Minkowski metri is used. In orderto alulate the ontribution of a Feynman graph, the loop integral is Wik rotated toan imaginary time omponent. To keep the twisting fator from beoming exponentiallyinreasing in the imaginary time diretion and making the integral nononvergent theauthors analytially ontinue the σ0j omponents, too. This is a very questionable step.



20 Chapter 2: QFT on nonommutative spaetimeHamiltonian approah: This approah was �rst onsidered in [13℄. A on-ept of integral at �xed time t is used to de�ne an Hamiltonian H(t).This is entered into the Dyson series, and time ordering with respetto the variable t an be applied. However, in the graph expansion thepropagators are not the usual Feynman propagators. It was shown in[5℄ that this approah ful�lls unitarity also for nonommuting time.In [6, 3℄ a UV-�nite theory was developed. [29℄ investigates dispersionrelations for this approah. However, the interation part of the Hamil-tonian is treated in a very di�erent way than the free part, whih iskind of unsatisfatory, and already at tree level the �elds do not ful�llthe equation of motion, see [2℄. Furthermore, problems of the asymp-toti behaviour at t→ ∞ appear, similar to those in nonloal theories[24℄.Yang-Feldman formalism: The ansatz is to solve the �eld equation of thequantum �elds on nonommutative spaetime. This approah was al-ready used on Mn in [5, 2℄ and it was shown that no problem withunitarity appears. We will analyse this approah in detail in the follow-ing hapters.Adding a Grosse Wulkenhaar term: It was shown in [22℄ that addinga harmoni potential to the free salar �eld ation renders the φ4model renormalizable. This approahes works expliitly in the Eu-lidean setting. It seems unlikely that this result an be transferredto the Minkowski ase.There exist further di�erenes on how gauge theory an be implemented.It seems that only U(N) gauge groups an be de�ned in nonexpanded ap-proahes. These gauge theories have severe IR divergenes. More gauge groupsan be de�ned if the Seiberg-Witten map [39℄ is used. This ats on formalpower series in λn and maps ommutative gauge �elds to nonommutativeones. The map is however not unique. We do not onsider gauge theorieshere. For supersymmetri models approahes exist in whih the fermionivariables θ do not antiommute any more [30℄. This will not be onsidered,either.Often one meets very formal alulations und loosely de�ned objets inthe literature. This is kind of typial for this �eld. However, we try to treateverything as rigorous as possible.
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Figure 2.1: Nonplanar Feynman graph in the φ3 model.2.4 UV-IR mixing of divergenesWe investigate the modi�ed Feynman rules approah on Eulidean spae. Itwas disovered that the ontributions of some nonplanar graphs, whih di-verge on ommutative spae, beome �nite on nonommutative spae if theinoming momentum is unequal to zero. An example for suh a nonplanargraph in the φ3 model is shown in �gure 2.1. The internal loop integral ren-ders �nite due to the osillating behaviour of the additional twisting fator.However, if the inoming momentum is zero, the internal loop integral wouldbe UV divergent again. One ould argue that an inoming momentum of zerois unphysial. But if the nonplanar graph is a subgraph of another one, likein �gure 2.2, it is integrated over all inoming momenta of the internal non-planar graph, even over zero. So, the integral over small momenta an givea UV divergene. This phenomenon is alled UV-IR mixing of divergenes.Suh divergenes an not be treated in the usual renormalization sheme. Itwas disovered in [31, 10, 11℄ that this is not a problem if the model is onlylogarithmially divergent. Here, we will show the reason at an example in the
φ3

4 model. This is ompared with similar examples in the φ3
6 and φ4 model.Our alulation is di�erent from the ones given in the above mentioned litera-ture. The ontributions of the nonplanar graphs will be alulated rigorouslyusing the onept of osillatory integrals, whih is given in Appendix B. Ifthe reader is not familiar with this onept it would be advisable to have alook at this appendix �rst. In partiular, the generalized theorem of Fubini,theorem B.4.2, will play an important role.We emphasize, that the following alulations are only valid in the Eu-
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Figure 2.2: Feynman graph for the φ3 model, possible andidate for showingUV-IR mixing.lidean setting, sine an analyti ontinuation would not be possible for theMinkowskian ase due to the twisting fator. We will �rst have a look at the
φ3

4 model. For the nonplanar graph 2.1 the phases of the twisting fator ofboth verties add and we get the (amputated) ontribution:
F (k) =

∫
d4l

eikσl

((k − l)2 +m2) (l2 +m2)
. (2.15)This integral is not absolutely onvergent but an be seen as an osillatoryintegral.7 It is easy to see, that indeed a(k, l) = 1

((k−l)2+m2)(l2+m2)
is a symbolof order −4 and φ(k, l) = kσl a phase funtion. So, the above de�nes adistribution in k. The singular support is ontained in the set ∇lφ(k, l) =

kσ = 0. Sine (kσ)2 = λ4nk2 this is only the point k = 0. We will alulatethe above integral for k 6= 0. This alulation will be very detailed, sine theusual tehniques for transforming absolutely onvergent integrals are a priorinot appliable. We know that the integral is a C∞-funtion outside 0 and wean use the result from setion B.3 and see k as a �xed parameter.We take a sequene of symbols {gn} like in proposition B.2.1 with g as in(B.6). So, the integral (2.15) is the limit of
∫

d4l
eikσl

((k − l)2 +m2) (l2 +m2)
gn(l).This integral is now absolutely onvergent and we an perform the usualtransformations. We introdue Feynman parameters and write the integral7It is not a simple Fourier transform sine the variable k does not exlusively appearin the phase funtion but in the symbol as well.
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0

dα

∫
d4l

eikσl

((1 − α) ((k − l)2 +m2) + α(l2 +m2))2 gn(l).If we drop the gn we an see the inner integral again as an osillatory integral,now depending on an additional parameter α. We will introdue a di�erentsequene of symbols, namely gn(l − (1 − α)k). It is easy to see that this hasagain the limit 1, as it only sales around a di�erent point. (Remember that
k and α an be seen as �xed for the inner integral.) Using this, we get forthe osillatory intergral (omitting the α integral for now):

∫
d4l

eikσl

((1 − α) ((k − l)2 +m2) + α(l2 +m2))2 gn(l − (1 − α)k).Now, we make a variable transformation to l′ = l−(1−α)k and get (droppingthe prime again):
∫

d4l
eikσl

(m2 + α(1 − α)k2 + l2)2 gn(l).We de�ne b(k, α) := m2+α(1−α)k2. For α ∈ [0, 1] we have b(k, α) ≥ m2 andfor bounded k it is bounded to above, too. We make a rotation in l suh thatthe last omponent points in the diretion of kσ. The rotational invariant
gn will be dropped. We use the oordinates l = (l, x) and get the osillatoryintegral ∫

d4l
eisx

(b+ l2 + x2)2with s := |kσ| = λ2n|k|. As sx is a phase funtion in the x oordinatealone, we an use the generalized theorem of Fubini B.4.2 and perform the xintegration �rst, whih is an absolutely onvergent integral. The result is
π

2

∫
d3le−s

√
b+l2

(
s

b+ l2
+

1

(b+ l2)3/2

)
. (2.16)This integrand is now a Shwartz funtion in l, as it should be aording to thegeneralized theorem of Fubini. So, the integral is now absolutely onvergent.Now, we examine the behaviour of the integral at |k| → 0. Sine b(k, α)is bounded and greater or equal to m2 we do not have to worry about thisquantity. The integral over α, whih is yet to be done, is over a ompat setand does not hange the divergent behaviour, either. Thus, we look at theabove integral for small s. The �rst part of (2.16) stays �nite, sine after theangular integration we get (dropping prefators from now on):

∫ ∞

0

dle−s
√

b+l2 sl2

b+ l2
=

∫ ∞

0

dle−
√

bs2+l2 l2

bs2 + l2
−−→
s→0

∫ ∞

0

dle−l = 1.



24 Chapter 2: QFT on nonommutative spaetimeAfter a similar variable transformation the seond part gives
∫ ∞

0

dle−
√

bs2+l2 l2

(bs2 + l2)3/2
.For s = 0, this is now divergent at small l. Sine the fator e−√

bs2+l2 is�nite for small l and s, we an examine the divergent behaviour of the aboveintegral by looking at
∫ 1

0

dl
l2

(bs2 + l2)3/2
= − 1√

1 + bs2
+ ArCsh(s

√
b).The �rst part stays �nite. y = ArCsh(x) is the inverse funtion of x =

1
sinh(y)

. The latter behaves for large y, hene small x, like 2e−y. Thus, ArCsh(s
√
b)behaves like log(2) − 1

2
log(b) − log(s). This shows that F (k) behaves like

log(|k|) for small k.If the onsidered graph appears n times as a subgraph of another one,like in �gure 2.2, we would have to alulate
∫

d4kF (k)n 1

(k2 +m2)n+1((p− k)2 +m2)
,where p is the outer momentum. This is �nite for large k due to the n + 2propagators. The ontribution of small k an be estimated by

C ·
∫ K

0

dkk3 log(k)n,whih is a �nite integral. So, no IR divergene appears.The situation is di�erent for the φ3
6 model, whih is quadratially diver-gent. The alulation is the same until (2.16), exept that the remainingintegral is over �ve dimensions. The �rst part gives

∫ ∞

0

dle−s
√

b+l2 sl4

b+ l2
=

1

s2

∫ ∞

0

dle−
√

bs2+l2 l4

bs2 + l2
,and the seond

∫ ∞

0

dle−
√

b+l2 l4

(b+ l2)3/2
=

1

s2

∫ ∞

0

dle−
√

bs2+l2 l4

(bs2 + l2)3/2
.Both ontributions diverge like 1

s2 , sine the remaining integrals are �nite for
s = 0. So, in six dimensions the ontribution for small k of the graph in �gure2.2 behaves like ∫ K

0

dkk3 1

k2n
.
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Figure 2.3: Nonplanar Feynman graph in the φ4 model.This is divergent for n ≥ 2. Sine the divergene is at small k, it is alled anIR divergene. This is the so alled UV-IR mixing.Another model, where this an be seen, is the φ4 model in four dimensions.Figure 2.3 shows a nonplanar tadpole graph, whih is �nite and gives theosillatory integral8
∫

d4l
1

l2 +m2
e−ikσl =

∫
d4l

1

x2 + l2 +m2
e−isx.The transformation to the seond integral is similar as before. Again, we usethe generalized Theorem of Fubini to perform the x integration �rst. We get

π

∫
d3l

1

l2 +m2
e−s

√
l2+m2

= 4π2

∫ ∞

0

dl
l2√

l2 +m2
e−s

√
l2+m2

= 4π2 1

s2

∫ ∞

0

dl
l2√

l2 +m2s2
e−

√
l2+m2s2

.So, for small s this behaves like 1
s2 . If the graph appears as subgraphs inanother one, like the one shown in �gure 2.4, we an get an IR divergene.Thus, this quadratially divergent model shows UV-IR mixing, too.Remark 2.4.1. Atually, F (k) from (2.15) is a distribution in k. So, we haveshown that its saling degree at k = 0 is 0 for the φ3

4 model and 2 for the
φ3

6 and the φ4 model. We an use the onept of saling degree, introduedby Steinmann [41℄, f. Appendix A, to �nd a ontinuation of F (k)n to the8This an also be seen as a simple Fourier transform.
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Figure 2.4: Feynman graph for the φ4 model, showing UV-IR mixing.origin. In the ase of the φ3
4 model there exists a unique ontinuation. Forthe other models the ambiguity an be desribed by 2n− 4 free parameters.As all powers of F (k) appear in the Feynman graph alulus, this leads to anin�nite number of free parameters in these quadratially divergent models.



Chapter 3Yang-Feldman formalismWe introdue the Yang-Feldman formalism to solve perturbatively the �eldequation for a quantum �eld. The Yang-Feldman approah was mainly de-veloped in [44, 27, 28℄. Closely related to this approah are the retardedproduts. Steinmann [41℄ showed formally, i.e., without IR uto�, how somedivergenes anel and and the remaining an be put into free onstantsthrough ontinuation of distributions to the origin. The latter is equiva-lent to renormalization in the Feynman graph formalism. Due to the su-ess of the Feynman graph formalism not muh work was done in the Yang-Feldman formalism. Reent developments for retarded produts an be foundin [16℄. The Yang-Feldman formalism was already used on the nonommu-tative Minkowski spae in [5, 2, 4℄ and it was shown that no problems withunitarity appear. However, this approah is still underdeveloped both onommutative and nonommutative spaetime.In setion 3.1 we introdue the Yang-Feldman formalism for lassial�elds. We extend it to quantum �elds in setion 3.2. This makes an IR uto�neessary. To take a loser look at this problem we investigate the two-pointfuntion for a mass term as interation. We use this as a benhmark of theIR uto� sine we already have an antiipation of what the result should be,namely the same as for a free �eld of the shifted mass. A similar result is alsomissing for the ommutative ase, so we �rst have a look at this in setion3.2.1. Then we use this result to show how the orret limit is obtained onnonommutative spaetime in setion 3.2.2.We use a well known result of Epstein Glaser [17℄, whih is for onvenienestated in Appendix D. Epstein and Glaser used the theorem to alulate timeordered funtion. These are related to the n-point funtion on ommutativespaetime. As time ordering is not well-de�ned on nonommutative spae-time, we have a look at the latter and in partiular alulate the two-pointfuntion of the interating �eld. The theorem from Epstein and Glaser lies27



28 Chapter 3: Yang-Feldman formalismrestritions on the support of the uto� funtions in momentum spae. How-ever, we will show that the lass of uto� funtions an be extended. A largepart of what we present in this Chapter has already been published in [14℄.Some minor mistakes have been orreted.3.1 Classial �eldsThe main approah in this formalism is to solve the �eld equation, whih fora polynomial interation −λ
a
φa is

(� +m2)φ = −λφa−1. (3.1)For the time being, we assume that φ is some lassial �eld on the ommu-tative Minkowski spae. We try to solve (3.1) perturbatively. The solutionwill be denoted by φInt. Let φFree be a �eld solving the free equation, i.e.,
(� + m2)φFree = 0. Now φInt is treated as a formal power series in the ou-pling λ:

φInt =
∞∑

n=0

λnφn, (3.2)and for early times t→ −∞ the interating �eld should be approximated bythe free �eld. Inserted into (3.1) and sorted by powers of λ we get
(� +m2)φ0 = 0,

(� +m2)φn = −
∑

k1+...+ka−1=n−1

φk1
. . . φka−1

for n > 0.where a is the same as in (3.1). With the initial ondition mentioned before,this is solved by
φ0 = φFree,
φn = −∆R ×

∑

k1+...+ka−1=n−1

φk1
. . . φka−1

for n > 0. (3.3)where × denotes the onvolution.1 The onvolution with ∆R is a priori onlywell-de�ned if the φk are elements of some test funtion spae, e.g., S.We now want to generalize this formalism in two ways:1. The �elds should live on the nonommutative Minkowski spae.1If we had required the free and interating �elds to oinide at t → +∞ we wouldhave had to take ∆A instead of ∆R.



3.2 Quantum �elds, IR uto� and adiabati limit 292. They should be quantum �elds.The �rst point is straightforward. Using (2.6), the �eld equation beomes
(�q +m2)φ(q) = (�x +m2)φ(q + x)|x=0 = −λφa−1(q). (3.4)The boundary ondition on φInt an be stated by requiring

lim
x0→−∞

ωx(φInt(q) − φFree(q)) = 0,where ωx is the optimal-loalized state given in (2.9). The solution is similaras before:
φ0(q) = φFree(q),
φn(q) = −


∆R ×

∑

k1+...+ka−1=n−1

φk1
. . . φka−1


 (q) for n > 0

= −
∫

dx ∆R(x)
∑

k1+...+ka−1=n−1

φk1
(q − x) . . . φka−1

(q − x).

(3.5)
A proof that this ful�lls the boundary ondition and that onvolution with
∆R is a well-de�ned proess for symbols an be found in [45, 21℄.The generalization to quantum �elds gives rise to further problems, bothin ommutative and nonommutative spaetime. We will have a loser lookat these in the following setion.3.2 Quantum �elds, IR uto� and adiabati limitWe now want to generalize the solutions (3.3) or (3.5) to a quantum �eld
Φ(x), i.e., an operator-valued distribution, or Φ(q), de�ned in the sense of(2.12). Now we fae two problems:a) The onvolution of a distribution with the retarded propagator ∆R isin general not well-de�ned.b) The produt of multiple Φki

is a priori not well-de�ned, either.The solution to the �rst problem will be to introdue a uto� funtion. Thereare several possibilities to do this, and we will examine these in this setion.The seond one is more ompliated and leads to the neessity of renormal-ization. We will have a loser look on these problems in Chapter 4, where



30 Chapter 3: Yang-Feldman formalismseveral ases of interating theories both on ommutative and nonommuta-tive spaetime are examined.We will �rst have a look at problem a) on ommutative spaetime. Let Abe an operator-valued distribution. The onvolution B := ∆R × A is not awell-de�ned distribution sine we have for some test funtion f ,
∫

dyf(y)

∫
dx∆R(x)A(y− x) =

∫
dxdy∆R(x)A(y)f(x+ y) = (∆R ⊗A)(f̃)(3.6)with f̃(x, y) = f(x + y). This funtion does not fall o� fast in the diretion

x = −y, so it is not in S(M2). We will ure this now by introduing anadditional uto� funtion g ∈ S (this is alled the infrared uto�, or IRuto�) and later let g approah 1 in some sense to be spei�ed (this is alledthe adiabati limit).Looking at (3.6) there are two obvious ways to handle this: To multiply
f(x + y) by g(x) or by g(y), whih is equivalent to multiplying ∆R or A by
g. A third possibility would be to take g ∈ S(M2) and (∆R ⊗ A)(f̃ · g), butthis is not onsidered here.Multiplying by g(y) an in our ase be interpreted as a loalization of theinteration:

(� +m2)φ(x) = −λg(x)φa(x).There is no similar interpretation for taking ∆R · g. Nevertheless, this uto�was taken in [2℄ for �elds on Mn, as the multipliation of A by g is moreompliated when A is not an operator-valued distribution on M but on Mn.The adiabati limit will be taken in the following steps:1. Introdue the uto� g. The �elds, whih we get, will depend on thehoie of g, e.g., using the seond uto� we would get
Φn,g(f) := −

∫
dxdy∆R(x)

∑

k1+...+ka−1=n−1

Φk1,g . . .Φka−1,g(y)f(x+y)g(y)with Φ0,g = Φ0.2. Calulate the expetation values of ΦInt,g, whih then also depend on
g. Here we only have a look at the two-point funtion, i.e.,

〈ΦInt,g(f)ΦInt,g(h)〉 .3. The expetation values are a formal power series in the oupling on-stant. Insert a sequene of test funtions with ga → 1 (whih is equiv-alent to ǧa → (2π)2δ) in an appropriate topology, and then alulatethe limit of the expetation values in eah order.



3.2 Quantum �elds, IR uto� and adiabati limit 31It turns out that it will be important to sum up all ontributions to theexpetation value of the same order before performing the adiabati limit,beause there will be no well-de�ned adiabati limit for separate terms, asalready seen by Epstein and Glaser [17℄.The �rst two possibilities for an IR uto� will be analysed and it turns outthat only the seond one gives a reasonable adiabati limit. We test them bytaking a mass term as interation. The equation of motion for an additionalmass term is (
� +m2

)
Φ = −µΦ.The advantage of taking a mass term is that �rst we do not fae the problemof multiplying several distributions (problem b) on page 29). Seond, wealready have a preise expetation of what the outome should be: The two-point funtion of the interating �eld should be the same as the free �eld ofmass square m2 + µ, namely

〈
Φ

(m2+µ)Free (f)Φ
(m2+µ)Free (h)

〉
= (2π)2

∫
d4k∆̂

(m2+µ)
+ (k)f̌(k)ȟ(−k)

=2π

∫
d3k

1

2ω
(m2+µ)
k

f̌(ω
(m2+µ)
k ,k)ȟ(−ω(m2+µ)

k ,−k).
(3.7)To ontemplate Haag's theorem [23℄ is appropriate at this point. Haag's the-orem says that representations of the CCR algebra for di�erent masses areinequivalent. But sine we are dealing only with expetation values and notwith representations this theorem does not apply here.Sine we are working in perturbation theory, we have to treat everythingas a formal power series in the oupling µ. Thus, we get at nth order for theright-hand side of (3.7):

2π

n!

∫
d3k∂n

µ

(
1

2
√
m2 + µ+ k2

f̌(
√
m2 + µ+ k2,k)ȟ(−

√
m2 + µ+ k2,−k)

)∣∣∣∣∣
µ=0

. (3.8)If we regard µ → ∆
(m2+µ)
+ as a map into S ′, whih is C∞ around µ = 0, thisequals

1

n!

∫
dxdyf(x)h(y)∂n

m2∆
(m2)
+ (x− y) =

(2π)2

n!

∫
d4kf̌(k)ȟ(−k)∂n

m2∆̂
(m2)
+ (k).(3.9)



32 Chapter 3: Yang-Feldman formalismWe alulate this to �rst order and with (3.8) we get :
(2π)2

∫
d4kf̌(k)ȟ(−k)∂m2∆̂

(m2)
+ (k)

= 2π

∫
d3k

(
− 1

4ω3
k

f̌(ωk,k)ȟ(−ωk,−k) +
1

4ω2
k

∂0f̌(ωk,k)ȟ(−ωk,−k)

− 1

4ω2
k

f̌(ωk,k)∂0ȟ(−ωk,−k)

)
. (3.10)Remark 3.2.1. For s ∈ C the Taylor series of (1 + x)s onverges absolutelyaround x = 0 with radius of onvergene 1. Furthermore, if f and h haveompat support, then f̌ and ȟ will be analyti. So, we see that

∆
(m2+µ)
+ =

∞∑

n=0

µn

n!
∂n

m2∆
(m2)
+does not only hold in the sense of power series, but also in the weak topologyof D′ for |µ| < m2.We will now have a look at whether the two di�erent possibilities ofintroduing a uto� give the expeted result on ommutative spaetime �rst.3.2.1 Adiabati limit on ommutative spaetimeWe will �rst look at the uto� introdued in [2℄ (there for �elds on nonom-mutative spaetime). As the interating and the free �eld oinide at zerothorder, we get the expeted two-point funtion ∆+ at this order. But alreadyat �rst order this fails:Proposition 3.2.2. The uto� de�ned by

Φn,g(x) = −
∫

d4z∆R(z)g(z)Φn−1,g(x− z)does not give the orret adiabati limit, i.e., (3.8) at �rst order on ommu-tative spaetime.Proof. At �rst order we have
Φ1,g(x) = −

∫
d4z∆R(z)g(z)Φ0(x− z).



3.2 Quantum �elds, IR uto� and adiabati limit 33Thus, the two-point funtion at �rst order gives
〈Φ0(f)Φ1,g(h) + Φ1,g(f)Φ0(h)〉

= −
∫

d4xd4yd4zf(x)h(y)∆R(z)g(z)(∆+(x− y + z) + ∆+(x− y − z))

= − 1

(2π)4

∫
d4k∆̂+(k)f̌(k)ȟ(−k) ((∆R · g)∨(k) + (∆R · g)∨(−k))

= − 1

(2π)5

∫
d3k

2ωk

f̌(k+)ȟ(−k+)Cg(k+).Here Cg(k) = 1
(2π)2

((∆̌×ǧ)(k)+(∆̌×ǧ)(−k)) is, as the sum of two terms whihare onvolutions of a distribution with a Shwartz funtion, a polynomiallybounded C∞-funtion, see [35℄. Now we an dedue that, if the adiabati limitof the above for any sequene ga ∈ S is well-de�ned at all, it does not give
∂m2∆̂

(m2)
+ (k): Choose f̌ / ȟ to vanish on the positive/negative mass-shell, butwith derivatives in 0 diretion unequal to zero on the shells. Then the abovegives zero for all g ∈ S, but ∂m2∆̂

(m2)
+ (k) in general does not give zero forsuh an f and h, ompare (3.10).Now we look at the uto� de�ned by

Φn,g(x) = −
∫

d4z∆R(z)g(x− z)Φn−1,g(x− z).This uto� arises naturally if one hanges the ation to
S[Φ] =

∫
dx

(
∂νΦ(x)∂νΦ(x) +

(
m2

2
+
µ

2
g(x)

)
Φ2(x)

)
.Then the �eld equation beomes

(
� +m2

)
Φ(x) = −µg(x)Φ(x). (3.11)So with this uto� the interation an be loalized to some bounded regionin spaetime.Again the zeroth order is trivial. We will do the �rst order alulationexpliitly to show that it is important to �rst add all ontributions of the



34 Chapter 3: Yang-Feldman formalismsame order before performing the adiabati limit. At �rst order we get
〈Φ0(f)Φ1,g(h) + Φ1,g(f)Φ0(h)〉

= −
∫

d4x0d
4x1d

4x2 f(x0)h(x2)g(x1)

· (∆R(x0 − x1)∆+(x1 − x2) + ∆+(x0 − x1)∆A(x1 − x2))

= − (2π)2

∫
d4k0d

4k1 f̌(k0)ȟ(−k1)ǧ(k1 − k0)

·
(
∆̂R(k0)∆̂+(k1) + ∆̂+(k0)∆̂A(k1)

)
. (3.12)To simplify this expression, we perform di�erent transformations on eahsummand. We integrate out the zero omponent of the momentum appearingin ∆̂+ using its δ-funtion, and for the remaining zero omponent we arryout a variable transformation to x = ±(k0

0/1 − ω0/1) and get
1

2π

∫
d3k0

2ω0

d3k1

2ω1

dx ǧ(ω1 − ω0 − x,k1 − k0)

·
[
f̌(ω0 + x,k0)ȟ(−ω1,−k1)

(
1

x+ iǫ
− 1

x+ 2ω0 + iǫ

)

−f̌(ω0,k0)ȟ(−ω1 + x,−k1)

(
1

x+ iǫ
− 1

x− 2ω1 + iǫ

)]
. (3.13)We assume that ǧ has only support in a losed subset of R1 = {k ∈ M|k2 <

(2m)2}. Then the singularities x = ∓2ω0/1 are not met, sine the sum of twovetors on the positive mass shell has a square greater or equal to (2m)2.Thus the seond and fourth ǫ in the expression 3.13 an be dropped.Now we make an expansion in x:
f̌(ωk + x,k) = f̌(ωk,k) + x f̃(x,k),

ȟ(−ωk + x,−k) = ȟ(−ωk,−k) + x h̃(x,k),where f̃ and h̃ are again funtions in S satisfying f̃(0,k) = ∂0f̌(ωk,k) and
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h̃(0,k) = ∂0ȟ(−ωk,−k). With this (3.13) transforms to

1

2π

∫
d3k0

2ω0

d3k1

2ω1

dx ǧ(ω1 − ω0 − x,k1 − k0)

·
[
− f̌(ω0 + x,k0)ȟ(−ω1,−k1)

1

2ω0 + x

− f̌(ω0,k0)ȟ(−ω1 + x,−k1)
1

2ω1 − x

+ f̌(ω0,k0)ȟ(−ω1,−k1)

(
1

x+ iǫ
− 1

x+ iǫ

)

+
(
f̃(x,k0)ȟ(−ω1,−k1) − f̌(ω0,k0)h̃(x,k1)

)
x

1

x+ iǫ

]The last but one term drops out. This anellation only ours beause wehave treated the sum of 〈Φ0(f)Φ1(h)〉 and 〈Φ1(f)Φ0(h)〉. The singularity of
1

x+iǫ
in the last line is anelled by the additional fator of x. Thus, withregard to the presupposed support of ǧ, the remaining terms are smoothfuntions of x,k0 and k1. Then the adiabati limit ǧ → (2π)2δ an be arriedout, e.g. in the topology of funtions with ompat support. The k1 and xintegration then give k1 = k0 and x = 0. With the properties of f̃ and h̃ wethen get exatly (3.10).Remark 3.2.3. Here and in the following we replae distributions by a series offuntions whih approximate the distribution in the weak topology of S ′. Anexample would be ∆̂R(p) = limǫց0

1
(2π)2

−1
p2−m2+iǫp0

. It is easy to see that thisis atually independent of the hoie of sequene. Indeed, we will sometimeshange the sequene without further notie. For produts of distributions indi�erent variables we an take the produt of the orresponding sequenes,where the ǫ in eah fator oinide.Now we look at arbitrary orders. The rest of this subsetion is struturedin the following way1. We alulate the two-point funtion of arbitrary order n.2. We show that the theorem of Epstein and Glaser is appliable. With thistheorem we know that an adiabati limit is well-de�ned for a ertainlass (�lass I�)of sequenes of funtions and independent of the hoiein lass I. But we do not know, whether the result for the adiabatilimit is indeed (3.8).3. Therefore, we alulate the result. For this we an take a speial hoieof sequene {ga} of lass I. We split the two-point funtion into twoparts A(ga) +B(ga).



36 Chapter 3: Yang-Feldman formalism4. We show that B(ga) → 0 for a→ ∞.5. We show that A(ga) yields (3.8) for a → ∞. To do this we state alemma, whih is proved at the end of this subsetion.6. We enhane the lass of funtions giving the orret limit beyond lass Igiven by the Epstein-Glaser theorem. The enhaned lass will be alledlass II.7. At the end we summarise the result of this setion in a theorem.To keep trak of this shedule we indiate the di�erent parts by boldfaeheadings.Part 1:The �eld at mth order is
Φm,g(y0) = (−1)m

∫ m∏

i=1

dyi∆R(y0 − y1)g(y1) . . .∆R(ym−1 − ym)g(ym)Φ0(ym).For the two-point funtion at nth order we get
n∑

m=0

〈Φm,g(f)Φn−m,g(h)〉 (3.14)
=(−1)n

∫ n+1∏

i=0

d4yi f(y0)h(yn+1)
n∏

i=1

g(yi)
n∑

m=0

∆R(y0 − y1) . . .∆R(ym−1 − ym)

· ∆+(ym − ym+1)∆A(ym+1 − ym+2) . . .∆A(yn − yn+1).We de�ne
FR(y0, yn+1; y1, . . . , yn) := (−1)n

n∑

m=0

∆R(y0 − y1) . . .∆R(ym−1 − ym)

· ∆+(ym − ym+1)∆A(ym+1 − ym+2) . . .∆A(yn − yn+1). (3.15)So in momentum spae the above is:
∫ n∏

i=1

d4kidp1dp2 f̌(p1)ȟ(p2)
n∏

l=1

ǧ(kl)F̂R(p1, p2; k1, . . . , kn) (3.16)



3.2 Quantum �elds, IR uto� and adiabati limit 37witĥ
FR(k0, kn+1; k1, . . . , kn) =

(−1)n(2π)2δ

(
n+1∑

j=0

kj

)
n∑

m=0

[
∆̂R(k0) . . . ∆̂R

(
m−1∑

j=0

kj

)

·∆̂+

(
m∑

j=0

kj

)
∆̂A

(
m+1∑

j=0

kj

)
. . . ∆̂A

(
n∑

j=0

kj

)]
. (3.17)Similar to FR we de�ne FA just by exhanging ∆R and ∆A in (3.15).Part 2:Now we laim that these funtions FR and FA ful�ll the requirements of theEpstein-Glaser theorem, whih is stated in Appendix D. To show that FRhas retarded support , we look at the mth summand. This is only unequal tozero if yj−yj+1 ∈ V̄+ for j = 0, . . . ,m−1 and yj+1−yj ∈ V̄+ for j = m, . . . , n.Sine the sum of two elements in V̄+ is again in V̄+, we an add these termsand see that the support of eah summand is in

{(y0, yn+1; y1, . . . , yn) ∈ M2+n|
y0 − yj ∈ V̄+ for j ≤ m− 1 and yn+1 − yj ∈ V̄+ for j ≥ m}.whih is a subset of SR (see (D.1)). So their sum, FR, also has support in SR.The proof for FA works analogously.We still have to show that F̂R − F̂A vanishes on the set Rn (see (D.2)).To do this we replae eah ∆̂R/A by ∆̂F − i∆̂∓ (ompare (A.3) and (A.4))in (3.17) and in the orresponding expression for F̂A and then multiply out.

∆̂± have their support on the positive respetively negative mass shell, so
∆̂−(p)∆̂+(p+k) = 0 if k2 < 4m2. Thus, after the substitutions all terms witha fator ∆̂− vanish on Rn as every summand has a fator of ∆̂+. The remain-ing terms are all of the form (dropping the prefators and the δ-funtion)

∆̂F (K0) . . . ∆̂F (Ka−1)∆̂+(Ka)∆̂+/F (Ka+1)

. . . ∆̂+/F (Kb−1)∆̂+(Kb)∆̂F (Kb+1) . . . ∆̂F (Kn)with Kj :=
∑j

i=0 ki and a and b the number of the �rst respetively lastfator of ∆̂+ in that term. In F̂R − F̂A there are two terms of this form forgiven a ≤ b. One is oming from the summand with m = a in F̂R the otherone from the summand m = b in F̂A. Their prefators are equal, so theseterms anel in F̂R − F̂A. Therefore F̂R − F̂A vanishes on Rn.



38 Chapter 3: Yang-Feldman formalismFrom the Epstein-Glaser theorem we an now dedue that the adiabatilimit exists if the sequene Ga has the orret properties. Here, Ga is of theform
Ga(k1, . . . , kn) = ga(k1) · . . . · ga(kn).The ondition that Ga tends to (2π)2nδ(4n) in the topology of O′

C(Mn) isguaranteed if ǧa → (2π)2δ(4) in O′
C(M). To ful�ll the ondition supp Ǧa ⊂ Rnwe ould demand that the support of ǧa lies in some onvex subset of 1

n
Rn.An example for suh a onvex subset would be

Vn :=

{
k ∈ M

∣∣|k0| <
2m

n

}
. (3.18)Furthermore, if these two onditions are ful�lled the limit is independentfrom the exat hoie of sequene in this lass. But it remains to be shownthat indeed (3.8) is the adiabati limit. So in the following alulation weassume that ǧ has the desired support, and later we will take a speial hoieof sequene ga, namely one whih sales with a.Part 3:Now, with a variable transformation and performing one integral to get ridof the δ-funtion, (3.16) beomes

(−1)n(2π)2

∫ n∏

i=0

d4ki f̌(k0)ȟ(−kn)
n∏

l=1

ǧ(kl − kl−1)

×
n∑

m=0

∆̂R(k0) . . . ∆̂R(km−1)∆̂+(km)∆̂A(km+1) . . . ∆̂A(kn). (3.19)We use (A.2)
∆̂R/A(kj) =

1

(2π)2

1

2ωj

(
1

k0,j + ωj ± iǫ
− 1

k0,j − ωj ± iǫ

)

= − 1

(2π)2

1

2ωj

1

k0,j − ωj ± iǫ

2ωj

k0,j + ωj ± iǫ
(3.20)with ωj = ωkj

. In eah summand the momentum km is on the mass shelldue to the ∆̂+(km). With the supposed support property of ǧ the integrandvanishes if some kj lie on the negative mass shell. So we an atually dropthe very last ǫ in (3.20). De�ne
T (k) :=

2ωk

k0 + ωk

.



3.2 Quantum �elds, IR uto� and adiabati limit 39Putting this together, (3.19) equals
1

(2π)2n−1

∫ n∏

i=0

d4ki

2ωi

f̌(k0)ȟ(−kn)
n∏

l=1

ǧ(kl − kl−1)
n∑

m=0

[
δ(k0,m − ωm)

·
m−1∏

j=0

(
1

k0,j − ωj + iǫ
T (kj)

) n∏

j=m+1

(
1

k0,j − ωj − iǫ
T (kj)

)]
. (3.21)Now we make a variable transformation to xj = k0,j − ωj and expand f̌ , ȟand T around xj = 0 to nth order into a Taylor series, i.e.,

f̌(ωk + x,k) =
n∑

k=0

xk

k!
∂k

0 f̌(ωk,k) +
xn+1

(n+ 1)!
f̃(x,k),where f̃ is in S, and similarly for ȟ(−k) and T (k).We insert these expansions into (3.21) and split the whole expression intoa sum of A(g) +B(g), where A(g) ontains all terms without f̃ , h̃ or T̃ , thus

A(g) =
1

(2π)2n−1

∫ n∏

i=0

d3ki

2ωi

n∏

j=0

dxj

n∏

l=1

ǧ(ωl − ωl−1 + xl − xl−1,kl − kl−1)

n∑

L0=0

x0
L0

L0!
∂L0

0 f̌(k+,0) ·
(

n∑

m=0

δ(xm)
m−1∏

j=0

1

xj + iǫ

n∑

lj=0

xj
lj

lj!
∂

lj
0 T (k+,j)

n∏

j=m+1

1

xj − iǫ

n∑

lj=0

xj
lj

lj!
∂

lj
0 T (k+,j)

)
·

n∑

Ln=0

xn
Ln

Ln!
(−∂0)

Lnȟ(−k+,n). (3.22)Part 4:First we show that B(ga) vanishes for a speial hoie of sequene ga → 1.We hoose a sequene whih sales with a, i.e., ga(x) = g
(

x
a

) for some g ∈ Swith g(0) = 1.2 Then ǧa(k) = a4ǧ(ak). Furthermore we demand that thesupport of ǧ is a subset of B0

(
m
n

)
⊂ Vn (this m being the mass). The termsin B(ga) all ontain a fator

δ(xm)
n∏

l=1

ǧa(ωl − ωl−1 + xl − xl−1,kl − kl−1).Thus, for the hosen sequene the integrand has support in |kl −kl−1| < m
n

1
aand, sine xm = 0 and |ωl − ωl−1| ≤ |kl − kl−1|, also in xj < C 1

a
for some

C > 0 and all j.2It is easy to see that for suh a sequene ǧa → (2π)2δ(4) in O′
C(M)



40 Chapter 3: Yang-Feldman formalismWe onsider the di�erent terms in B(ga), oming from the expansion of
f̌ , ȟ and T and from splitting the sum over m. We integrate out xm (thus,terms with fators xm from the expansion already disappear), renumber theremaining xj, and perform a transformation of variables to k̃j = kj − kj−1for j > 0 (k0 remains). Then the terms have the form
∫ n∏

i=1

d3k̃i

n∏

j=1

dxj

m∏

j=1

1

xj + iǫ
xbj

n∏

j=m+1

1

xj − iǫ
xbjUa(x1, . . . , xn, k̃1, . . . , k̃n),(3.23)where Ua already inludes the integration d3k0. This expression is always�nite sine f ∈ S. Furthermore the following properties hold:

• At least one bj = n+ 1, sine every term in B(g) ontains f̃ , h̃ or T̃ .
• Ua is C∞ and its support is ontained in

{
(x1, . . . , xn, k̃1, . . . , k̃n)

∣∣|xj| < C/a, |k̃j| < C/a
}for some C > 0.

• The supremum of |Ua| is bounded by C0,0a
4n for some C0,0 > 0. Everyderivative with respet to some xj gives an additional fator of a omingfrom the derivatives of ǧa. Eah multipliation with some xj yields afator 1/a, sine Ua has bounded support. In other words, for all n-multi-indies α, β there exists a onstant Cα,β > 0 with

sup
∣∣xαDβ

xUa

∣∣ < Cα,βa
4n+|β|−|α|.We have to prove that all terms vanish for a→ ∞. We show this only forthe terms (3.23), where only one bj = n + 1 and the other b's equal 0. Theremaining ases are similar. We use

1

x± iǫ
= ∓iπδ(x) + P 1

x
(3.24)as distributions. Here P denotes the prinipal value of the fration, i.e., thedistribution

f →
∫

dxP 1

x
f(x) =

1

2

∫
dx

1

x
(f(x) − f(−x)) .



3.2 Quantum �elds, IR uto� and adiabati limit 41To make the alulation more omprehensible we demonstrate how we aredealing with the prinipal values in one dimension. Let f(x) = 0 for x > X.Then
∫

dxP 1

x
f(x) ≤1

2

∣∣∣∣
∫ X

−X

dx
1

x
(f(x) − f(−x))

∣∣∣∣ =
1

2

∣∣∣∣
∫ X

−X

dx
1

x

∫ x

−x

dy∂f(y)

∣∣∣∣

≤1

2

∫ X

−X

dx
1

x
2x sup

y
|∂f(y)| =2X sup

y
|∂f(y)|.Due to the ǧa's Ua will be of ompat support. The terms we get using (3.24),omitting fators of ±iπ, are of the following form,3

∫ n∏

i=1

d3k̃i

n∏

j=1

dxj x
n
1

r∏

j=2

P 1

xj

n∏

j=r+1

δ(xj)Ua(x1, . . . , xn, k̃1, . . . , k̃n)for some r after another relabelling of the xj and of the arguments of Ua. Itsabsolut value an be estimated by
∣∣∣∣∣

∫ n∏

i=1

d3k̃i

r∏

j=1

dxjx
n
1

r∏

j=2

P 1

xj

Ua(x1, . . . , xr, 0, . . . , 0, k̃1, . . . , k̃n)

∣∣∣∣∣

=

∣∣∣∣∣

(
1

2r−1

r∏

j=2

∫ C
a

−C
a

dxj

)
n∏

i=1

d3k̃idx1

(
r∏

j=2

1

xj

∫ xj

−xj

dyj

)

xn
1D

β
xUa(x1, y2 . . . , yr, 0, . . . , 0, k̃1, . . . , k̃n)

∣∣∣∣∣

≤
(

1

2r−1

r∏

j=2

∫ C
a

−C
a

dxj

)(
C

a

)1+3n

2r−1Cα,βa
4n−|α|+|β|where α = (n, 0, . . . , 0) and β = (0, 1, . . . , 1, 0 . . . , 0) with |β| = r − 1. Thelast integrations introdue a fator 2C

a
eah. At the end we have

2r−1Cα,β

(
C

a

)1+3n+r−1

a4n−n+r−1 −−−→
a→∞

0.This shows that the limit of B(ga) vanishes for this hoie of a saling se-quene {ga}.Part 5:It remains to treat A(g), given by (3.22). We use
∂l

0T (k+) = l!(−2ωk)
−l.3Of ourse we have xn+1

x±iǫ = xn as a distribution.



42 Chapter 3: Yang-Feldman formalismWe get xm = 0 from the δ-funtion, and for the remaining variables xj weperform variable transformation depending on m to oordinates yj with
y1 = x0 − x1; . . . ym−1 = xm−2 − xm−1; ym = xm−1;

ym+1 = −xm+1; ym+2 = xm+1 − xm+2; . . . yn = xn−1 − xn.Thus we have
xj =

{∑m
t=j+1 yt for j < m,

−∑j
t=m+1 yt for j > m,and get

A(g) =
1

(2π)2n−1

∫ n∏

i=0

d3ki

2ωi

n∏

j=1

dyj

n∏

l=1

ǧ(ωl − ωl−1 − yl,kl − kl−1)

·
n∑

m=0

[
(−1)n−m

m−1∏

r=0

1∑m
t=r+1 yt + iǫ

n∏

r=m+1

1∑r
t=m+1 yt + iǫ

·
(

n∑

L0=0

(−∑m
t=1 yt)

L0

L0!
(−∂0)

L0 f̌(k+,0)

)(
m−1∏

r=0

n∑

lr=0

(
−∑m

t=r+1 yt

)lr

(2ωr−1)
lr

)

·
(

n∏

r=m+1

n∑

lr=0

(∑r
t=m+1 yt

)lr

(2ωr)
lr

)(
n∑

Ln=0

(∑n
t=m+1 yt

)Ln

Ln!
∂Ln

0 ȟ(−k+,n)

)]
. (3.25)To show that this gives the wanted result we need the following lemma:Lemma 3.2.4. For n ∈ N and lr ∈ N0, r = 0, . . . , n,

n∑

m=0

(−1)m

m−1∏

r=0

(−∑m
t=r+1 yt)

lr

∑m
t=r+1 yt + iǫ

·δlm
0 ·

n∏

r=m+1

(
∑r

t=m+1 yt)
lr

∑r
t=m+1 yt + iǫ

= Pl0,...,ln(y1, . . . , yn),(3.26)where we have with a :=
∑n

t=0 lt:I : If a < n, then Pl0,...,ln = 0.II : If a = n, then Pl0,...,ln = 1.III : If a > n, then Pl0,...,ln(y1, . . . , yn) is a homogeneous polynomial of degree
a− n.We will give a proof of this lemma at the end of this setion. In (3.25) wewill pull all sums over L0, Ln, l0, l1, . . . , ln to the front of the sum overm. Sinethere atually is no sum over lm, we will have to introdue a fator δlm

0 . Now



3.2 Quantum �elds, IR uto� and adiabati limit 43we use Lemma 3.2.4 and get a polynomial PL0+l0,l1,...,ln−1,Ln+ln(y1, . . . , yn).What we arrive at is a C∞-funtion of the variables ki and yj. We hoose asequene ǧa → (2π)2δ with ompat support. All integrations over yj and kibut one an be arried out. Beause of the properties of P given in Lemma3.2.4 only terms survive where
L0 +

n∑

t=0

lt + Ln = n.Thus, we get as the limit of A(ga):
2π

∑

L0+
∑n

t=0
lt+Ln=n

∫
d3k

(−1)n

(2ωk)2n+1−L0−Ln

1

L0!

1

Ln!
(−∂0)

L0 f̌(k+)∂Ln

0 ȟ(−k+).where the sum extends over all nonnegative integers Li and lj with givensum. The sums over the lj's give a ombinatorial fator and we an write
2π

∑

a+b≤n

∫
d3k

(−1)n

(2ωk)2n+1−a−b · a! · b!

(
2n− a− b

n− a− b

)
(−∂0)

af̌(k+)∂b
0ȟ(−k+).(3.27)This quantity will be alled Aadlim(n).We show that Aadlim(n) equals (3.8) by indution.4 The ase n = 1 iseasily heked. Now we alulate 1/(n+ 1)∂m2Aadlim(n) , whih should yield

Aadlim(n + 1). We sort the terms of 1/(n + 1)∂m2Aadlim(n) by (−∂0)
cf̌∂d

0 ȟ.There are three ontributions, namely from (a = c, b = d), (a = c− 1, b = d)and (a = c, b = d− 1).5 Their sum is
2π

∫
d3k(−1)n(−∂0)

cf̌(k+)∂d
0 ȟ(−k+)

1

n+ 1

·
(

1

c!

1

d!

2(−2n+ 1 − c− d)

(2ωk)2n+1−c−d+2

(
2n− c− d

n− c− d

)

− 1

(c− 1)!

1

d!

1

(2ωk)2n+2−c−d

(
2n+ 1 − c− d

n+ 1 − c− d

)
1

2ωk

− 1

c!

1

(d− 1)!

1

(2ωk)2n+2−c−d

(
2n+ 1 − c− d

n+ 1 − c− d

)
1

2ωk

)
.4The orresponding part in [14℄ ontains some errors.5Atually, this is only true if neither c nor d equals 0 or n + 1. These ases an easilybe heked separately.



44 Chapter 3: Yang-Feldman formalismNow we use
(

2n− c− d

n− c− d

)
2(2n+ 1 − c− d)

n+ 1
+

(
2n+ 1 − c− d

n+ 1 − c− d

)
c+ d

n+ 1

=

(
2(n+ 1) − c− d

n+ 1 − c− d

)and get
2π

∫
d3k(−1)n+1 1

n+ 1

· 1

c!

1

d!

1

(2ωk)2(n+1)+1−c−d

(
2(n+ 1) − c− d

n+ 1 − c− d

)

· (−∂0)
cf̌(k+)∂d

0 ȟ(−k+).The sum of these terms is equal to Aadlim(n+ 1), what had to be shown.Part 6:So far, we have shown that the orret adiabati limit in nth order is obtained,if the sequene of funtions {ga} ful�lls the two properties1. ǧa −−−→
a→∞

(2π)2δ in O′
C(M),2. suppǧa ⊂ Vn.Sequenes with these two properties will be alled sequenes of lass I,n. (The

n will be omitted in most ases.) The seond property is rather restritive,as ǧa annot be analyti, and therefore ga annot have ompat support inposition spae.6 Funtions of ompat support are needed if one wants tointerpret (3.11) as the restrition of the interation to a �nite region.We will now enlarge the lass of sequenes, whih give the orret adia-bati limit. These will be alled of lass II,n. Suppose that a given sequene
ga of funtions in S(M) an be deomposed into

ga = g0
a + g1

a, (3.28)where {g0
a} is of lass I,n and {g1

a} has the property that
r∏

t=1

ǧ1
a(kt) ·

n∏

t=r+1

ǧ0
a(kt) −−−→

a→∞
0 as a funtion in S(Mn) for 1 ≤ r ≤ n. (3.29)6Instead of Vn we ould have restrited the support of ĝa to any other onvex subsetof 1

nRn, but the nonompatness of the support of ga remains the same.



3.2 Quantum �elds, IR uto� and adiabati limit 45We observe that F̂R(p1, p2; k1, . . . , kn) is a distribution in S ′(Mn+2). This willbe needed in order to show that the orret adiabati limit is obtained. Weompute
∫

d4p1d
4p2

r∏

t=1

d4ktF̂R(p1, p2, k1, . . . , kn)f̌(p1)ȟ(p2)
n∏

r=1

(ǧ0
a(kr) + ǧ1

a(kr))

=

∫
d4p1d

4p2

r∏

t=1

d4ktF̂R(p1, p2, k1, . . . , kn)f̌(p1)ȟ(p2)
n∏

r=1

ǧ0
a(kr) (3.30)

+

∫
d4p1d

4p2

r∏

t=1

d4ktF̂R(p1, p2, k1, . . . , kn)f̌(p1)ȟ(p2)Γa(k1, . . . , kn),where Γa is a sum of 2n − 1 terms of produts of ǧ0
a's and ǧ1

a's, where eahhas at least one fator of ǧ1
a. From (3.29) we dedue that Γa approahes 0 in

S, so the last line in (3.30) vanishes in the adiabati limit and the remainingterm gives the desired result as {g0
a} is of lass I.An example for a sequene of lass II is easily onstruted if we take anarbitrary funtion g ∈ S with g(0) = 1 and sale it, i. e. ga(x) := g(x/a).Then ǧ is normalized (∫ d4kǧ(k) = g(0) = 1) and we have ǧa(k) = a4ǧ(ak).To prove that {ga} is of lass II, we take a uto� funtion b ∈ S with

b(k) =

{
0 if |k|2 > 4m2/n2,

1 if |k|2 < m2/n2,and de�ne
ǧ0

a(k) = b(k) · ǧa(k),

ǧ1
a(k) = (1 − b(k)) · ǧa(k).The sequene {g0

a} is learly of lass I. It remains to show that (3.29) holds.For this we �rst show that the growth of supk |kαDβ ǧ0
a(k)| is polynomiallybounded in a (for all multi-indies α, β):

sup
k

|kαDβb(k)a4ǧ(ak)| ≤ a4|β|!
∑

|β1,2|≤|β|
sup

k
|kαDβ1b(k)||Dβ2 ǧ(ak)|

≤ a4+|β||β|!
∑

|β1,2|≤|β|
sup

k
|kαDβ1b(k)| sup

k′

|Dβ2 ǧ(k′)|.The summmands in the last line are �nite sine b, ǧ ∈ S. On the other hand
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supk |kαDβ ǧ1

a(k)| falls o� faster than any polynomial in a:
az sup

k
|kαDβ(1 − b(k))a4ǧ(ak)|

≤az+4|β|!
∑

|β1,2|≤|β|
sup

|k|≥m/n

|Dβ1(1 − b(k))||kαDβ2 ǧ(ak)|

≤az+4+|β|−|α||β|!
∑

|β1,2|≤|β|
sup
k′

|Dβ1(1 − b(k′))| sup
|k|≥m/n

|(ak)α(Dβ2 ǧ)(ak)|

≤az+4+|β|−|α||β|!


 ∑

|β1|≤|β|
sup
k′

|Dβ1b(k′)| + 1


 ·

∑

|β2|≤|β|
sup

|k|≥am/n

|sα,β2
(k)|,where we have used that 1−b(k) = 0 for |k| < m/n and sα,β2

(k) := kαDβ2 ǧ(k)is a funtion in S. As the supremum of this funtion is taken outside a ball ofradius proportional to a, this falls o� faster than 1/az+4+|β|−|α| so the aboveapproahes 0 with a→ ∞. To show that (3.29) is indeed ful�lled we have toestablish that
sup

k1,...,kn

|
r∏

t=1

kαt

t D
βt

t ǧ
1
a(kt) ·

n∏

t=r+1

kαt

t D
βt

t ǧ
0
a(kt)| −−−→

a→∞
0for all multi-indies αj, βj. This is now obvious, sine the growth of the lastprodut is polynomially bounded and the �rst produt falls o� faster thanany polynomial (and we have r ≥ 1). So saling funtions in S yields indeeda sequene of lass II, and among these there are also some with ompatsupport in position spae.Part 7:To put everything together we have shown in this setion:Theorem 3.2.5. The IR uto�

(
� +m2

)
Φ(x) = −µg(x)Φ(x).gives for the two-point funtion of order n,

n∑

m=0

〈Φm,g(f)Φn−m,g(h),the orret adiabati limit, i.e.,
(2π)2

n!

∫
d4kf̌(k)ȟ(−k)∂n

m2∆̂
(m2)
+ (k),if the sequene of the uto� funtions {ga} is of lass II,n.



3.2 Quantum �elds, IR uto� and adiabati limit 47It was important to onsider the sum of all ontributions to the two-point funtion of the same order when arrying out the adiabati limit, aswe already saw expliitly for the �rst order.Now, we give the postponed proof for Lemma 3.2.4. It is the same proofalready given in [14℄. As we want to work by indution we slightly enhanethe lemma to:Lemma 3.2.6. For n ∈ N and lr ∈ N0, r = 0, . . . , n

n∑

m=0

(−1)m

m−1∏

r=0

(−∑m
t=r+1 yt)

lr

∑m
t=r+1 yt + iǫ

·δlm
0 ·

n∏

r=m+1

(
∑r

t=m+1 yt)
lr

∑r
t=m+1 yt + iǫ

= Pl0,...,ln(y1, . . . , yn),(3.31)where we have with a :=
∑n

t=0 lt:I : If a < n, then Pl0,...,ln = 0.II : If a = n, then Pl0,...,ln = 1.III : If a > n, then Pl0,...,ln(y1, . . . , yn) is a homogeneous polynomial of degree
a− n and further:IIIa : If ln = 0, the term with highest power in yn is (−yn)a−n.IIIb : If n = 2 and l0 = 0, the term with highest power in y1 is ya−n

1 .Proof. The ase n = 1 is almost trivial, where we have of ourse x1

x1+iǫ
= 1 asa distribution. For n = 2 the ases where (l0, l1, l2) is equal to (a permutationof) (1, 0, 0), (1, 1, 0), (≥ 2,≥ 1, 0) or (≥ 1,≥ 1,≥ 1) are easily heked. Forthe ase (l0, l1, l2) = (0, 0, 0) we ompute

1

y1 + iǫ

1

y1 + y2 + iǫ
− 1

y2 + iǫ

1

y1 + iǫ
+

1

y1 + y2 + iǫ

1

y2 + iǫ

=
1

y1 + y2 + iǫ

y1 + y2

y1y2 + i(y1 + y2)ǫ
− 1

y1y2 + i(y1 + y2)ǫ
= 0.The remaining ases are permutations of (b, 0, 0) with b ≥ 2. We show it herefor l1 = b:

(y1)
b−1

y1 + y2 + iǫ
− (−y2)

b−1

y1 + y2 + iǫ
=

1

y1 + y2 + iǫ
(y1 + y2)

b−2∑

k=0

yk
1(−y2)

b−2−k

=
b−2∑

k=0

yk
1(−y2)

b−2−k.

(3.32)



48 Chapter 3: Yang-Feldman formalismFor the ases l0 or l2 = b this an also be done and the parts IIIa and IIIb ofthe lemma are easily heked expliitly.Now we want to work by indution. For this, we assume n ≥ 3 and thatthe lemma has been proven for all lower orders. From the sum (3.31) we splito� the terms with m = n,
(−1)nδln

0

n∏

r=1

(−∑n
t=r+1 yt)

lr

∑n
t=r+1 yt + iǫ

=: A,and with m = n− 1,
(−1)n−1δ

ln−1

0

n−1∏

r=1

(−∑n−1
t=r+1 yt)

lr

∑n−1
t=r+1 yt + iǫ

· yln
n

yn + iǫ
=: B.The remaining summands eah have a fator

(
∑n−1

t=m+1 yt)
ln−1

∑n−1
t=m+1 yt + iǫ

(
∑n

t=m+1 yt)
ln

∑n
t=m+1 yt + iǫ

= δ
ln−1

0

1∑n−1
t=m+1 yt

yln
n

yn + iǫ
−δln

0

1∑n
t=m+1 yt

(−yn)ln−1

yn + iǫ
+P0,ln−1,ln(

n−1∑

t=m+1

yt, yn),(3.33)where we used the indution hypothesis for n = 2. If we reinsert these termsinto the remaining sum, we an split this into three parts, whih we labelaording to the order in (3.33) by C,D and E. Now we an ombine A+Dto
− δln

0

(−yn)ln−1

yn + iǫ

n−1∑

m=0

(−1)m

m−1∏

r=0

(−∑m
t=r+1 y

′
t)

l′r

∑m
t=r+1 y

′
t + iǫ

· δl′m
0 ·

n−1∏

r=m+1

(
∑r

t=m+1 y
′
t)

l′r

∑r
t=m+1 y

′
t + iǫ

= −δln
0

(−yn)ln−1

yn + iǫ
Pl0,...,ln−2,0(y1, . . . , yn−1 + yn) (3.34)with l′i = li and y′i = yi for i ≤ n − 2 and l′n−1 = 0 and x′n−1 = xn−1 + xn.The terms B + C give

δ
ln−1

0

yln
n

yn + iǫ

n−1∑

m=0

(−1)m

m−1∏

r=0

(−∑m
t=r+1 yt)

lr

∑m
t=r+1 yt + iǫ

· δlm
0 ·

n−1∏

r=m+1

(
∑r

t=m+1 yt)
lr

∑r
t=m+1 yt + iǫ

= δ
ln−1

0

yln
n

yn + iǫ
Pl0,...,ln−2,0(y1, . . . , yn−1). (3.35)



3.2 Quantum �elds, IR uto� and adiabati limit 49Now we have a loser look at
E =

n−2∑

m=0

(−1)m

m−1∏

r=0

(−∑m
t=r+1 yt)

lr

∑m
t=r+1 yt + iǫ

· δlm
0 ·

n−2∏

r=m+1

(
∑r

t=m+1 yt)
lr

∑r
t=m+1 yt + iǫ

· P0,ln−1,ln(
n−1∑

t=m+1

yt, yn).The last polynomial gives 0 if ln−1 + ln < 2. Otherwise, by IIIb, the termwith highest power in ∑n−1
t=m+1 yt from P0,ln−1,ln is (

∑n−1
t=m+1 yt)

ln−1+ln−2, andwe an write it as
P0,ln−1,ln(

n−1∑

t=m+1

yt, yn) =

ln−1+ln−2∑

α=0

(
n−2∑

t=m+1

yt)
ln−1+ln−2−αP̃α(yn−1, yn),where P̃α(yn−1, yn) is a homogeneous polynomial of degree α and P̃0 = 1.If ln = 0, we an dedue from the expliit formula (3.32) that in eah

P̃α(yn−1, yn) we have a term (−yn)α. Now in E we pull the sum over α to thefront and for eah summand use the indution hypothesis for n− 2 to get
E =

ln−1+ln−2∑

α=0

Pl0,...,ln−3,ln−2+ln−1+ln−2−α(y1, . . . , yn−2) · P̃α(yn−1, yn). (3.36)So E is a homogeneous polynomial of degree
n∑

r=0

lr − 2 − (n− 2) − α+ α =
n∑

r=0

lr − n.We have to hek the following ases:
• ln−1 = ln = 0: E = 0 and

A+D +B + C =

1

yn + iǫ

[
Pl0,...,ln−2,0(y1, . . . , yn−1) − Pl0,...,ln−2,0(y1, . . . , yn−1 + yn)

]
.These polynomials are of degree ∑n

r=0 lr − (n− 1), if this is greater orequal to 0. If we expand the powers of yn−1 + yn of the seond polyno-mial, we see that terms with no fator yn vanish and from the remainingterms one fator is anelled by the prefator. So the remaining expres-sion is of degree ∑n
r=0 lr − n and I to IIIa are easily heked.
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• ln−1 = 1, ln = 0: E = B + C = 0 and

A+D =
yn

yn + iǫ
Pl0,...,ln−2,0(y1, . . . , yn−1 + yn).This is of degree ∑n

r=0 lr − (n − 1) =
∑n

r=0 lr − n. Again I to IIIa areeasily heked.
• ln−1 = 0, ln = 1: similar.
• ln−1 ≥ 2, ln = 0: B+C = 0. A+D and E both vanish if∑n

r=0 lr−n < 0,so I is heked. Set a′ :=
∑n−2

r=0 lr. To show II we assume a′ + ln−1−n =
0 from whih a′ − n ≤ −2 follows. So from (3.34) we see that thepolynomial in A +D vanishes. In E only the term with α = 0 gives aontribution, whih is 1.Now we want to show III and IIIa: We have a′ + ln−1 − n > 0 andsee that both A+D and E are homogeneous polynomials of the rightdegree. We still have to show that not both are zero and they do notanel eah other. This is done by establishing IIIa. For that, we haveto look at the ases:1. a′ − n < −2: A + D = 0. The sum over α in E only goes to

α = a′+ln−1−n as for higher α the �rst polynomial in E vanishes.The term with highest degree in yn omes from α = a′ + ln−1 − nand is (−yn)a′+ln−1−n.2. a′−n = −2: A+D = 0 and in E the term with highest α = ln−1−2gives just (−yn)a′+ln−1−n. All other terms are of lower order in yn.3. a′ − n > −2: The highest degree of yn in E is ln−1 − 2 < a′ +
ln−1 −n whereas A+D gives a term (−yn)ln−1−1 · (−yn)a′−(n−1) =
(−yn)a′+ln−1−n.

• ln−1 = 0, ln ≥ 2: similar.
• ln−1 ≥ 1, ln ≥ 1: A+D = B +C = 0, only E gives a ontribution. I toIII are again easily heked.This ompletes the proof.3.2.2 Adiabati limit on nonommutative spaetimeNow we look at the nonommutative ase. Sine the IR uto� made by multi-plying∆R by a funtion g already failed in the adiabati limit on ommutativespaetime, we do not onsider this uto� again.



3.2 Quantum �elds, IR uto� and adiabati limit 51The uto� (3.11) an be viewed as oming from an interation term
SInt(Φ) =

µ

2

∫
dx
(
g(x)Φ2(x)

)
, (3.37)If we take �elds on Mn, there is no unique generalization. A straightforwardway would be to simply take

SInt(Φ) =

∫
dq µ2Tr (g(q)Φ(q)Φ(q)) .The limit ga(q) → 1 again orresponds to ǧa(k) → (2π)2δ(k). Another pos-sibility would be to take two g(q) in the form of (2.14):

SInt(Φ) =

∫
dq µ2Tr (g(q)Φ(q)g(q)Φ(q)) .This kind of uto� is proposed in [45℄. In the ommutative limit this wouldorrespond to taking g2 in (3.37) instead of g. This would just be a relabellingand the adiabati limit remains unhanged. These two possibilities take theuto� as a multipliation of an element in Mn. A third one would be to takeinstead the pointwise produt with a funtion g ∈ S, ompare (2.7).First take the uto�s by the algebra produt. We look at both at one byonsidering a more generalized uto�

SInt(Φ) =
µ

2
Tr
(
g(1)(q)Φ(q)g(2)(q)Φ(q)

)
.The g(1) and g(2) ould be the same or one ould even be 1 right from thebeginning. Using the yliity of the trae we get the �eld equation

(
�q +m2

)
Φ(q) = −µ/2

(
g(1)(q)Φ(q)g(2)(q) + g(2)(q)Φ(q)g(1)(q)

)
. (3.38)The solution at order m is

Φ0,g(q) =Φ0(q) = ΦFree(q),
Φm,g(q) = − 1

2

∫
d4z∆R(z)

(
g(1)(q − z)Φm−1,g(q − z)g(2)(q − z)

+ g(2)(q − z)Φm−1,g(q − z)g(1)(q − z)
)
.



52 Chapter 3: Yang-Feldman formalismUsing the Weyl formula (2.2) this gives
Φm,g(q) =

(−1)m

(2π)2(m+1)

∫
d4p

m∏

j=1

(d4kjd
4lj) Φ̂0(p)e

i(−p+
∑m

t=1
(kt+lt))q

·
m∏

r=1

[
ǧ(1)(kr)ǧ

(2)(lr)∆̂R(p−
r∑

t=1

(kt + lt))

cos

(
1

2

{
(kr − lr)σ

[
−p+

r−1∑

t=1

(kt + lt)
]
+ krσlr

}
)]

.Thus, at nth order, the two-point funtion is
n∑

m=0

〈Φm,g(f)Φn−m,g(h)〉 (3.39)
=

(−1)n

(2π)2(n−1)

∫ n∏

j=1

(d4kjd
4lj)d

4pd4p̃d4p1d
4p2

f̌(p1)ȟ(p2)
n∏

j=1

ǧ(1)(kj)ǧ
(2)(lj)∆̂+(p)δ(p+ p̃)

·
n∑

m=0

[
δ(p1 − p+

m∑

t=1

(kt + lt)) δ(p2 − p̃+
n∑

t=m+1

(kt + lt))

·
m∏

r=1

∆̂R(p−
m∑

t=r

(kt + lt))

· cos

(
1

2

{
(kr − lr)σ

[
− p+

m∑

t=r+1

(kt + lt)
]
+ krσlr

}
)

·
n∏

r=m+1

∆̂R(p̃−
r∑

t=m+1

(kt + lt))

· cos

(
1

2

{
(kr − lr)σ

[
−p̃+

r−1∑

t=m+1

(kt + lt)
]
+ krσlr

}
)]

,where we have relabelled in eah summand the variables kj and lj from 1 tom:
k1 → km, k2 → km−1 . . . and l1 → lm, l2 → lm−1 . . . ,and use the higher indies for the parts oming from ΦInt(h). In order toextend the sum in the argument of the seond cos to r, we have to subtrat
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2krσlr. As cos is even, these fators an now be pulled outside of the sum,and we obtain

1

(2π)2n

∫ n∏

j=1

(d4kjd
4lj)d

4p1d
4p2 f̌(p1)ȟ(p2)

n∏

j=1

ǧ(1)(kj)ǧ
(2)(lj)

·
n∏

r=1

cos

(
1

2

{
(kr − lr)σ

[
p1 +

r∑

t=1

(kt + lt)
]
− krσlr

}
)

· F̂R(p1, p2; k1 + l1, . . . , kn + ln), (3.40)where F̂R is the same as in (3.17). The di�erene is that here the last narguments are sums of variables kj and lj and it is multiplied by a produtof osine terms depending smoothly on the variables pj, kj and lj. So, thelast two lines are again a tempered distribution in the p's and in�nitelydi�erentiable in the k's and l's as long as eah kj + lj lies inside Vn. In orderto ahieve this, we may for example require ǧ1 and ǧ2 to have support in alosed subset of V2n. Obviously, the adiabati limit exists and sine the osinesgive 1 there, it is the same as in the ommutative ase. The generalizationto funtions of lass II (3.28) works similarly as before.There is still the IR uto� via the pointwise produt (2.7) to be onsid-ered. For a mass term this would be
Φn,g(q) =

1

(2π)4

∫
dx∆R(x)

∫
dk0dk1ǧ(k1)Φ̂n−1,g(k0 + k1)e

−ik0(q−x). (3.41)It is easy to see that all formulas are the same as in the ommutative ase,so in partiular it gives the same adiabati limit.Thus, putting everything together, we have proven the followingTheorem 3.2.7. The IR uto�
(
�q +m2

)
Φ(q) = −µ/2

(
g(1)(q)Φ(q)g(2)(q) + g(2)(q)Φ(q)g(1)(q)

)
,gives for the two-point funtion of order n,

n∑

m=0

〈Φm,g(f)Φn−m,g(h),the orret adiabati limit, i.e.,
(2π)2

n!

∫
d4kf̌(k)ȟ(−k)∂n

m2∆̂
(m2)
+ (k),if either
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• the sequenes of the uto� funtions {g(1)

a } and {g(2)
a } are of lass II,2nor

• the sequene of the uto� funtions {g(1)
a } is of lass II,n and g(2) = 1.The IR uto� by taking the pointwise produt (3.41) gives also the orretadiabati limit if the sequene {ga} is of lass II,n.Nevertheless, taking the pointwise produt seems a bit unnatural as itlies outside the algebra struture of Mn. Sine the IR uto� an be seen asan intermediate tehniality, this would not be too muh of a drawbak.We will see in setion (4.3) that in �truly interating� models on nonom-mutative spaetime it is quite di�ult to handle the adiabati limit rigorously.The problem will be that no matter what kind of uto� one takes it is notpossible to pull out a ommon fator from the di�erent ontributions of thesame order as in (3.40).



Chapter 4Dispersion relations forinterating models
Now we will have a look at interating quantum �eld theory. We want to al-ulate dispersion relations for interating models on nonommutative spae-time. Dispersion relations are experimentally aessible. So, the ompari-son of theoretial preditions with experimental results an help to deidewhether nonommutative spaetime is realized in the real world or not. Inpartiular, we are going to ompare the theoretial preditions of logarith-mially and quadratially divergent models.Setion 4.1 gives the main de�nitions and onepts for alulating disper-sion relations. If we regard interating theories we have to onsider a produtof multiple Φk in the quantum version of (3.3). This brings problem b) onpage 29 into play. To see more learly, what additional features the nonom-mutativity of the spaetime brings in, we �rst have a look at the situation onommutative spaetime in setion 4.2. We will see in setion 4.3 that, despiteof the suessful treatment of a mass term in setion 3.2.2, the adiabati limitfor truly interating models on nonommutative spaetime is quite di�ultto handle. In Setion 4.4 we will have a look at the φ3 model, both in four andsix dimensions. The reason for looking at these di�erent dimensions is thatthe φ3

4 model is logarithmially divergent while φ3
6 is quadratially divergent.Setion 4.5 gives a short treatment of the φ4 model, another quadratiallydivergent model. We will use quasiplanar Wik produts to alulate the�rst order ontribution to the dispersion relation. Finally we will look at theWess-Zumino model in setion 4.6, whih is a supersymmetri model andlogarithmially divergent. Parts of this hapter have already been publishedin [15℄. 55



56 Chapter 4: Dispersion relations4.1 Dispersion relationsWe look at the two-point funtion of an interating model
〈ΦInt(f)ΦInt(h)〉.Let Ta be the translation by the vetor a:

Ta(f)(x) = f(x− a).The two-point funtion should be translationally invariant in the adiabatilimit, i.e.,
〈ΦInt(Ta(f))ΦInt(Ta(h))〉 = 〈ΦInt(f)ΦInt(h)〉.So, it an be written in the form
〈ΦInt(f)ΦInt(h)〉 =

∫
dxdyf(x)h(y)A(x− y)with A a distribution. As we treat ΦInt as a formal power series in the ouplingonstant λ, we have to do the same with A. In zeroth order we get A0 = ∆+.We are interested in the support of Â. From this support we an deduehow the p0 omponent of the momentum depends on the spatial part p.For example, the support of ∆̂+ is the set {p ∈ M|p0 =

√
m2 + p2}. Thisdependene is alled dispersion relation. Usually in interating theories onommutative spaetime one expets it to be of the form

A(x) =

∫ ∞

0

dµρ(µ)∆
(µ)
+ (x),whih is alled the Källén-Lehmann spetral representation. ∆

(µ)
+ is the two-point funtion for mass √µ. ρ is the spetral density and usually onsists of a

δ funtion at the physial mass m2, whih orresponds to one-partile states,some isolated parts in the viinity of (2m)2, orresponding to bound states,and a ontinuous part starting at (2m)2, orresponding to multi-partilestates.It turns out that the two-point funtions of models on nonommuta-tive Minkowski spae show a slightly di�erent behaviour. The reason is thatLorentz symmetry is broken for a �xed nonommutativity matrix σ. We aremainly interested in the part orresponding to the one-partile states. Thus,we want to have a look at that part of the support of Â whih transforms to
{p ∈ M|p0 =

√
m2 + p2} for λ → 0. In analogy to the free ase, we expet



4.1 Dispersion relations 57the part of Â(k) whih orresponds to the one-partile spetrum in the freease to be of the form
1

2π
θ(k0)FZ(k, λ)δ(FM(k, λ)) (4.1)with the property that FM(k, 0) = k2 −m2 and FZ(k, 0) = 1. The support isof ourse the subset of M where FM(k, λ) vanishes.As we are working in perturbation theory everything has to be treated asa formal power series in λ. We will only have a look at the �rst nonvanishingmodi�ation from the free ase. Let this order be n:

FM(k, λ) = k2 −m2 − λnM(k) +O(λn+1),

FZ(k, λ) = 1 + λnZ(k) +O(λn+1).Thus, M(k) is a mass and Z(k) a �eld strength renormalization, both de-pending on the momentum. From now on all quantities will be regarded onlyup to order n in λ and the O(λn+1) will be dropped.We are interested in the support of the two-point funtion of the inter-ating �eld. That is, we have to solve:
k2

0 − k2 −m2 − λnM(k0,k)Sine we are working with formal power series, the equation has to be solvedreursively by orders of λ. This gives1
k0(k) = ωk + λn 1

2ωk

M(ωk,k). (4.2)If we expand (4.1) around this solution as a power series in λ we get
1

2π
(1 + λnZ(k))δ

(
k2 −m2 − λnM(k)

)

=∆̂(m2)(k) + λn
(
Z(k+)∆̂(m2)(k) +M(k)∂m2∆̂(m2)(k)

)

=∆̂(m2)(k) + λn
(
(Z(k+) − ∂m2M(k+))∆̂(m2)(k) +M(k+)∂m2∆̂(m2)(k)

)
.(4.3)If only this expansion was known Z(k+) would not be uniquely determinedsine it ould be absorbed into ∂0M(k+).1The θ funtion in (4.1) anels the negative solution for k0. As usual ωk =

√
k2 +m2.



58 Chapter 4: Dispersion relationsIt will later turn out that the two-point funtion to the order of the �rstnonvanishing modi�ation will be of the following form:
∆̂(m2)(k) + λnΣ

(
k2, (kσ)2

)
∂m2∆̂(m2)(k)

= ∆̂(m2)(k) + λn

(
Σ
(
k2

+, (k+σ)2
)
∂m2∆̂(m2)(k)

− ∂m2Σ
(
m2, (k+σ)2

)
∆̂(m2)(k)

)
. (4.4)If we assume that M(k) and Z(k) are of the form M ((kσ)2) and Z ((kσ)2),we an identify, by omparison with (4.3),

M(s) = −Σ(m2, s) (4.5)
Z(s) = ∂(1,0)Σ(m2, s). (4.6)In the ommutative limit the assumed form of M and Z give a momentumindependent mass and �eld strength renormalization. With this assumption

Z is on the region under onsideration, namely s = (k+σ)2, i.e., k on themass shell, uniquely determined.Remark 4.1.1. Formally, one an see the momentum dependent mass and�eld strength renormalization oming from the nonloal terms
λn 1

(2π)2

∫
dkM

(
(kσ)2

)
Φ̂(k)e−ikqand

λn 1

2(2π)2
(� +m2)

∫
dkZ

(
(kσ)2

)
Φ̂(k)e−ikq.If we drop the initial interation and only use these terms, the equation ofmotion beomes

(� +m2)

(
Φ(q) − λn 1

2(2π)2

∫
dkZ

(
(kσ)2

)
Φ̂(k)e−ikq

)

= −λn 1

(2π)2

∫
dkM

(
(kσ)2

)
Φ̂(k)e−ikq. (4.7)The equation of motion (4.7) is solved to order n by

Φ0(q) =ΦFree(q),
Φn(q) = −

∫
dx∆R(x)

1

(2π)2

∫
dkM

(
(kσ)2

)
Φ̂0(k)e

−ik(q−x)

+
1

2(2π)2

∫
dkZ

(
(kσ)2

)
Φ̂0(k)e

−ikq.



4.1 Dispersion relations 59The terms in between are all zero. So, the two-point funtion at order n gives
〈Φ0(f)Φn(h)〉 + 〈Φn(f)Φ0(h)〉

= −(2π)2

∫
dkf̌(k)ȟ(−k)M

(
(kσ)2

) [
∆̂R(k)∆̂+(k) + ∆̂+(k)∆̂A(k)

]

+

∫
dkf̌(k)ȟ(−k)Z

(
(kσ)2

)
∆̂+(k). (4.8)We saw in setion 3.2.1 that (3.12) gives (2π)2

∫
dkf̌(k)ȟ(−k)∂m2∆

(m2)
+ for

ǧ → (2π)2δ. Sine we are working without uto� here, we set formally
∆̂R(k)∆̂+(k) + ∆̂+(k)∆̂A(k) = − 1

(2π)2∂m2∆̂
(m2)
+ (k). (4.9)Then (4.8) an be transformed to

∫
dkf̌(k)ȟ(−k)

(
M
(
(kσ)2

)
∂m2∆̂

(m2)
+ (k) + Z

(
(kσ)2

)
∆̂

(m2)
+ (k)

)

=

∫
dkf̌(k)ȟ(−k)

[
M
(
(k+σ)2

)
∂m2∆̂

(m2)
+ (k)

+
(
Z
(
(k+σ)2

)
− ∂m2M

(
(kσ)2

) )
∆̂

(m2)
+ (k)

]
.This is exatly (4.3).To alulate the dispersion relation we have to solve

0 = k2 −m2 − λnM
(
(kσ)2

)
, (4.10)and take that part whih orresponds to k0 > 0 in the free ase. Note, thatthe solution of (4.10) is invariant under simultaneous Lorentz transformationof k and σ. Sine we are working with formal power series, the equation hasto be solved reursively by orders of λ.2 This gives

k0(k) = ωk + λn 1

2ωk

M
(
(k+σ)2

)
. (4.11)The group veloity is de�ned as the gradient with respet to k of the solution

k0. This is
∇k0 =

k

ωk

+ λn

[
k

2ω3
k

M
(
(k+σ)2

)
− 1

2ωk

(
∇(k+σ)2

)
M ′ ((k+σ)2

)
]

=
k

k0

− λn 1

2k0

(
∇(k+σ)2

)
M ′ ((k+σ)2

)
.2If λ is not in�nitesimal small and M large, (4.10) might not have a solution of theform k0(k). There might even be tahyoni solutions, i.e., with k2 < 0.



60 Chapter 4: Dispersion relationsIn the last line we inserted the solution (4.11). From now on we take σ to bethe standard nonommutativity matrix,
σ = σ0 = λ2n 0 1 0 0

−1 0 0 0
0 0 0 1
0 0 −1 0


 ,and de�ne for this k⊥ := (0, k2, k3) and k|| := (k1, 0, 0). Then

(kσ)2 = −λ4n(k2 + 2k2
⊥) and ∇(k+σ0)

2 = −4λ4nk⊥. (4.12)With (4.5) the group veloity is
∇k0 =

k||
k0

+
k⊥
k0

[
1 + 2λ4nλn∂(0,1)Σ

(
m2, (k+σ)2

)]
. (4.13)We de�ne the distortion of the group veloity in perpendiular diretion tobe

∆vrel⊥ := 2λ4nλn∂(0,1)Σ
(
m2, (k+σ)2

)
. (4.14)So,

∣∣∆vrel⊥
∣∣ =

|∇k0,⊥ − k⊥/k0|
|k⊥/k0|

.We will later alulate this quantity for di�erent models on nonommutativespaetime. We want to emphasize that to alulate the dispersion relation(4.13) or the mass and �eld strength renormalization in �rst nontrivial orderwe only have to know Σ (k2, (kσ)2) for k in the viinity of the positive massshell.4.2 Interating models on ommutative spae-timeWe want to use the Yang-Feldman formalism to alulate two-point funtionsof quantum �elds of ertain models. Before we will investigate quantum �eldson nonommutative spaetime we �rst have a look at the situation on om-mutative spaetime. This gives the possibility to distinguish between featuresoming from the quantum struture of the �elds and those oming from thenonommutativity of spaetime.Mainly, we will alulate in this setion the two point funtion of the φ3
4model. This is done in subsetion 4.2.1. In subsetion 4.2.2 we will have ashort look at the φ4 model. We will use the IR uto� whih already gave



4.2 Interating models on ommutative spaetime 61the orret adiabati limit 3.2.1 and again make use of the Epstein-Glasertheorem.To apply this theorem, again we have to add all ontributions ofthe same order before alulating the adiabati limit. We will see that mostdivergenes anel. One remains, whih an be handled by the ontinuation ofa distribution to the origin using the onept of saling degree of Steinmann[41℄. This gives a free parameter. We will see that this orresponds to a massrenormalization.4.2.1 φ3 model on ommutative spaetimeWe investigate the φ3
4 model. For the φ3 interation it is not possible to �nd apositive-de�nite energy. However, the perturbation series is well-de�ned. Onean imagine that there exists an additional φ4, whih would make the energyindeed positive-de�nite, but is of su�ient higher order in the oupling λ,suh that e�ets of this term are not visible at the alulated orders.The �eld equation for the interating �eld reads

(� +m2)Φ(x) = −λΦ2(x).The naive solution (3.3) has to be modi�ed sine it involves produts of �eldsat the same point. Additionally, we have to introdue an IR uto�. We hoosethat uto� whih was already suessfully applied in setion 3.2.1.We will look at the solution for the interating �eld up to seond order.The �rst orders are
Φ0(x) =ΦFree(x),
Φ1(x) = −

∫
dy∆R(x− y)g(y) : Φ2

0(y) : .Here we have taken the Wik-ordered produt of two free �elds at the samepoint. In the seond order we get from (3.3):
Φ2(x) = −

∫
dy∆R(x− y)g(y) (Φ0(y)Φ1(y) + Φ1(y)Φ0(y)) .These �elds an be represented by the graphs shown in �gure 4.1. The twoontributions to Φ2 are represented by a sum of graphs. We will later seethat, although the graphs represent the di�erent summands in Φ2 on theirone, it will be more appropriate to always look at their sum. Taking theWik ordered produt in Φ1 is graphially equivalent to subtrat tadpolesright from the start, f. �gure 4.2. Graphs for the Yang-Feldman formalismare explained in more detail in Appendix C.
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Φ0 Φ1

: :

Φ2

+

: :: :

Figure 4.1: The �rst orders of the interating �eld in the φ3 model.

= −
: :

Figure 4.2: Subtration of tadpoles.
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Figure 4.3: Seond order ontributions to two-point funtion of the φ3 model,
〈Φ2Φ0〉.

Figure 4.4: Seond order ontributions to two-point funtion of the φ3 model,
〈Φ1Φ1〉.
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Figure 4.5: Seond order ontributions to two-point funtion of the φ3 model,
〈Φ0Φ2〉.



4.2 Interating models on ommutative spaetime 65We alulate the two-point funtion up to seond order. The zeroth orderist that of the free ase:
〈Φ0(f)Φ0(h)〉 = (2π)2

∫
dkf̌(k)ȟ(−k)∆̂+(k).The two-point funtion of �rst order, 〈Φ1(f)Φ0(h) + Φ0(f)Φ1(h)〉, vanishessine an odd number of �elds is involved.At seond order we have

〈Φ2(f)Φ0(h)〉 + 〈Φ1(f)Φ1(h)〉 + 〈Φ0(f)Φ2(h)〉. (4.15)The ontribution from 〈Φ2(f)Φ0(h)〉, graphially represented by the sum ofthe graphs shown in �gure 4.3, is
2

∫ 3∏

j=0

dyjf(y0)g(y1)g(y2)h(y3)

∆R(y0 − y1)∆R(y1 − y2) [∆+(y1 − y2) + ∆−(y1 − y2)] ∆+(y2 − y3).The 〈Φ0(f)Φ2(h)〉 ontribution is
2

∫ 3∏

j=0

dyjf(y0)g(y1)g(y2)h(y3)

∆+(y0 − y1) [∆+(y1 − y2) + ∆−(y1 − y2)] ∆A(y1 − y2)∆A(y2 − y3),represented by the sum of graphs of �gure 4.5, and the one from 〈Φ0(f)Φ2(h)〉is
2

∫ 3∏

j=0

dyjf(y0)g(y1)g(y2)h(y3)

∆R(y0 − y1)∆+(y1 − y2)∆+(y1 − y2)∆A(y2 − y3),represented by the sum of graphs of �gure 4.4. Here, the planar and non-planar graphs give the same ontribution, whih gives rise to the fatorsof 2 appearing in front of eah integral. On nonommutative spaetime theontributions will be di�erent.Now, if we would treat the terms oming from the di�erent graphs sep-arately, we would, for example, in the lower left graph of �gure 4.3 fae theproblem that
∆R(x) · ∆+(x) with x = y1 − y2



66 Chapter 4: Dispersion relationsis a priori not well-de�ned. If we look at the set W̃F(∆R,∆+) (ompareAppendix A), we see that it ontains elements of the form (x, 0) if x lies onthe forward lightone. However, we an use3
∆R(x) [∆+(x) + ∆−(x)] = iθ(x0) [∆+(x) − ∆−(x)] [∆+(x) + ∆−(x)]

= iθ(x0)
[
∆2

+(x) − ∆2
−(x)

]
. (4.16)

∆n
± are well-de�ned distributions for n ∈ N. But for n > 1 there appearsa problem due to the multipliation with θ(x0) in x = 0, i.e., (0, 0) ∈W̃F(θ0,∆+). So, the problem of multipliation has been redued to the ori-gin, where the expression (4.16) is not well-de�ned. But we an use oneptof saling degreeto extend this distribution to the origin. Sine sd(∆2

±) = 4two suh ontinuations di�er by the multiple of a δ funtion. We will latershow that this an be regarded as a mass renormalization.Remark 4.2.1. We annot use the onept of saling degree at submanifolds[7℄ to uniquely extend ∆R · ∆+ onto the forward lightone. If x lies on theforward lightone and v is a unit vetor perpendiular to the lightone at
x pointing inwards, then ∆R(x + λv) is essentially onstant for small λ >
0 and ∆+(x + λv) behaves essentially like 1

λ
. So ∆R · ∆+ has the salingdegree 1 at the lightone and sine the odimension of the lightone is 1 theontinuation to x would be unique only up to a δ-term. Thus, the overallambiguity orresponds to a funtion on the forward lightone.Let TR(x) be a ontinuation of iθ(x0)

[
∆2

+(x) − ∆2
−(x)

] to the point x = 0and de�ne orrespondingly TF (x) := TR(x) − i∆2
−(x) and TA(x) := TF (x) −

i∆2
+(x). Then TA(x) is a ontinuation of iθ(−x0)

[
∆2

−(x) − ∆2
+(x)

] and TA(x) =
TR(−x). Outside the origin TF (x) = ∆2

F (x). It is easy to see that all TR/F/Aare Lorentz invariant and their Fourier transform T̂R/F/A are C∞ in the viin-ity of the mass shell. Let
µ := 2(2π)2T̂F (m, 0, 0, 0). (4.17)Sine a di�erent ontinuation di�ers by a δ-funtion in position spae, itdi�ers by a onstant in momentum spae. So, the parameter µ an be usedto label the di�erent ontinuations.Now, we laim that the theorem of Epstein and Glaser (D.1.3) is appli-able for the sum (4.15), whih is

∫ 3∏

j=0

dyjf(y0)g(y1)g(y2)h(y3)FR(y0, y3; y1, y2)3This was already disovered in [2℄.
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FR(y0, y3; y1, y2) = 2

[
∆R(y0 − y1)TR(y1 − y2)∆+(y2 − y3)

+ ∆R(y0 − y1)∆
2
+(y1 − y2)∆A(y2 − y3)

+ ∆+(y0 − y1)TA(y1 − y2)∆A(y2 − y3)
]
.The distribution FA will be de�ned by exhanging ∆R with ∆A and TRwith TA respetively. Sine TR has retarded and TA has advaned supportthe proof, that FR/A ful�lls (D.1), is similar to the ase for a mass term atseond order, shown on page 37.Fourier transformation gives

F̂R/A(k0, k3; k1, k2) =

8π2δ

(
3∑

j=0

kj

)[
∆̂R/A(k0)T̂R/A(k0 + k1)∆̂+(k0 + k1 + k2)

+∆̂R/A(k0)∆̂2
+(k0 + k1)∆̂A/R(k0 + k1 + k2)

+∆̂+(k0)T̂A/R(k0 + k1)∆̂A/R(k0 + k1 + k2)
]
.

(4.18)
To show that F̂R − F̂A vanishes on R2, we replae ∆̂R/A by ∆̂F − i∆̂∓ and
T̂R/A by T̂F − i∆̂2

∓. The support of ∆̂2
+ lies above the positive 2m-mass shell,the one of ∆̂− lies on the negative m-mass shell and the one of ∆̂2

− is be-low the negative 2m-mass shell. Eah term ontaining one of these last twodistributions an be dropped as all terms also ontain ∆̂+ or ∆̂2
+, so the mul-tipliation with this gives zero on R2, beause a vetor k from on or abovethe positive m-mass shell to somewhere on or below the negative m-massshell has k2 ≥ 4m2. Although the ommon support of ∆̂+ and ∆̂2

+ is empty,their regions of support an be linked by an arbitraryíly small vetor if onegoes to high momenta, see �gure 4.6. So, the terms with ∆̂+ and ∆̂2
+ annotbe dropped a priori. We alulate F̂R − F̂A on R2 with the simpli�ations
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Figure 4.6: Small spaelike vetor, onneting the support of ∆̂+ with thesupport of ∆̂2
+ at high momenta.mentioned before and get

F̂R(k0, k3; k1, k2) − F̂A(k0, k3; k1, k2) = 8π2δ (K3)

·
[

∆̂F (K0) T̂F (K1) ∆̂+(K2)

+ ∆̂F (K0) ∆̂2
+(K1)

(
∆̂F − i∆̂+

)
(K2)

+ ∆̂+(K0)
(
T̂F − i∆̂2

+

)
(K1)

(
∆̂F − i∆̂+

)
(K2)

−
(
∆̂F − i∆̂+

)
(K0)

(
T̂F − i∆̂2

+

)
(K1) ∆̂+(K2)

−
(
∆̂F − i∆̂+

)
(K0) ∆̂2

+(K1) ∆̂F (K2)

− ∆̂+(K0) T̂F (K1) ∆̂F (K2)
]with Kj =

∑j
i=0 ki. This gives 0, sine, after multiplying out, eah termhas exatly one ounter term with opposite sign. Hene all preliminaries forthe Epstein-Glaser theorem are ful�lled. So, the adiabati limit exists and isindependent of the hoie of sequene {ga}. As for the mass term this an beof lass II,2.Note that it was important to onsider all terms of order n = 2, inluding

〈Φ1(f)Φ1(h)〉. We will later ignore its ontribution to the dispersion relationssine, due to the ∆̂2
+ fator, the support of its adiabati limit lies in momen-tum spae above the 2m-mass shell. But here we needed it, to be able touse the theorem of Epstein and Glaser and to show that the adiabati limitexists and that it is independent of the sequene {ga}.To have a loser look on how the resulting two-point funtion of the



4.2 Interating models on ommutative spaetime 69adiabati limit looks in the viinity of the mass shell,4 we hoose a funtion
f̌ whih has support, say, in the set

{
k ∈ M

∣∣∣
(m

2

)2

< k2 <

(
3m

2

)2 and k0 > 0

}
. (4.19)To be able to simplify the expressions in F̂R(k0, k3; k1, k2) we further assumethat f̌ has support in a ompat subset of (4.19) and the sequene of funtions

{ga} has the property
suppǧa ⊂ Bǫ/a(0)for some �xed ǫ > 0 and ǧa → (2π)4δ(4) in O′

C(M). Then, for a large enough(depending on the ompat support of f̌), the vetors k0, k0 + k1 and k0 +
k1 + k2 an neither reah the 2m-mass shell nor the region above, if k0 liesin the ompat support of f̌ and k1 and k2 in the one of ǧa . Thus, allexpressions ontaining some fator ∆̂2

+ in F̂R(k0, k3; k1, k2) an be droppedlike the ones ontaining ∆̂− or ∆̂2
−. Note that, �rst, the adiabati limit isindependent of the speial hoie of {ga} in a ertain lass and, seond, every

f̌ ∈ S with support (4.19) an be approximated by funtions, whih have assupport a ompat subset of (4.19) in the topology of S. Thus, the Epstein-Glaser theorem assures that no information is lost by making the additionalassumptions onerning the support of f̌ and ǧa.With these assumptions we get for the two-point funtion at seond order
8π2

∫ 3∏

j=0

d4kj f̌(k0)ǧ(k1)ǧ(k2)ȟ(k3)δ

(
3∑

j=0

kj

)

·
[
∆̂R(k0)T̂F (k0 + k1)∆̂+(k0 + k1 + k2)

+∆̂+(k0)T̂F (k0 + k1)∆̂A(k0 + k1 + k2)
]
.

(4.20)
Now, after integrating out the δ-funtion and performing a variable transfor-mation, this is

8π2

∫ 2∏

j=0

d4kj f̌(k0)ǧ(k1 − k0)ǧ(k2 − k1)ȟ(−k2)

·
[
∆̂R(k0)T̂F (k1)∆̂+(k2) + ∆̂+(k0)T̂F (k1)∆̂A(k2)

]
.4In setion 4.1 we showed that to alulate dispersion relations it is only important toknow the two-point funtion in the viinity of the mass shell.



70 Chapter 4: Dispersion relationsWe insert the expressions for ∆̂R/A/+ from Appendix A and make anothertransformation of variables (di�erent for eah summand) to get
1

π

∫
d3k0

2ω0

d4k1
d3k2

2ω2

dxǧ(k0,1 − x− ω0,k1 − k0)ǧ(ω2 − k0,1,k2 − k1)ȟ(k3)

·
[
f̌(ω0 + x,k0)T̂F (k1)ȟ(−k+,2)

(
1

x+ iǫ
− 1

x+ 2ω0 + iǫ

)

− f̌(k+,0)T̂F (k0,1 + x,k1)ȟ(−ω2 + x,−k2)

(
1

x+ iǫ
− 1

x− 2ω2 + iǫ

)]
.Similar to the alulation following (3.13), we expand f̌(ω0 +x,k0), ȟ(−ω2 +

x,−k2) and T̂F (k0,1 + x,k1) around x = 0 (T̂F is C∞ around the mass shell)and get, after passing to the adiabati limit,
2(2π)3

∫
d3k

(
T̂F (k+)

[
− 1

4ω3
k

f̌(k+)ȟ(−k+) +
1

4ω2
k

∂0f̌(k+)ȟ(−k+)

− 1

4ω2
k

f̌(k+)∂0ȟ(−k+)
]
− 1

4ω2
k

∂0T̂F (k+)f̌(k+)ȟ(−k+)

)
.

TF is Lorentz invariant and T̂F (k+) = µ
2(2π)2

, f. (4.17). If we ompare thiswith (3.10) and (4.3), we see that the �rst terms gives a (onstant) massrenormalization. Its value is
λ2M = λ2µand depends on the hoie of ontinuation we made during the alulation.The last term gives a (onstant) �eld strength renormalization. It is

λ2Z = λ2 (2π)2

ωk

∂0T̂F (k+) = λ2 2
√

3π − 9

72π2m2
(4.21)and independent of the hosen ontinuation. The method of ontinuation ofdistributions in position spae orresponds to the introdution of ounterterms in momentum spae in the standard Feynman graph formalism.4.2.2 φ4 model on ommutative spaetimeHere, we take a quik look at the φ4 model. The alulation will be similarto the one of the last subsetion. There, a anellation took plae suh thatmultipliations like ∆R with ∆+, whih are ill de�ned on the forward light-one, dropped out. The main purpose of this subsetion is to show, that asimilar anelation takes plae for the φ4 model.



4.2 Interating models on ommutative spaetime 71The �eld equation is
(� +m2)Φ(x) = −λΦ3(x),and the interating �eld is to �rst orders:

Φ0(x) =ΦFree(x),
Φ1(x) = −

∫
dy∆R(y)g(x− y) : Φ3

0(x− y) :,

Φ2(x) = −
∫

dy∆R(x− y)g(y)
(
: Φ2

0(y) : Φ1(y)+ : Φ0(y)Φ1(y)Φ0(y) : +Φ1(y) : Φ2
0(y) :

)
,where the term : Φ0(y)Φ1(y)Φ0(y) : is the ontinuation of Φ0(x)Φ1(y)Φ0(z)−

∆(x − z)Φ1(y) to the diagonal x = y = z. So, again all tadpoles are sub-trated.The two-point funtion at zero order is trivial. At �rst order it vanishesdue to the Wik produt in Φ1. The ontributions to the seond order are
〈Φ2(f)Φ0(h)〉 = 6

∫ 3∏

j=0

dyjf(y0)g(y1)g(y2)h(y3)∆R(y0 − y1)∆R(y1 − y2)

[
∆2

+(y1 − y2) + ∆+(y1 − y2)∆−(y1 − y2) + ∆2
−(y1 − y2)

]
∆+(y2 − y3),

〈Φ1(f)Φ1(h)〉 = 6

∫ 3∏

j=0

dyjf(y0)g(y1)g(y2)h(y3)

∆R(y0 − y1)∆
3
+(y1 − y2)∆A(y2 − y3),and

〈Φ0(f)Φ2(h)〉 = 6

∫ 3∏

j=0

dyjf(y0)g(y1)g(y2)h(y3)∆+(y0 − y1)

·
[
∆2

+(y1 − y2) + ∆+(y1 − y2)∆−(y1 − y2) + ∆2
−(y1 − y2)

]

· ∆A(y1 − y2)∆A(y2 − y3).Figure 4.7 shows graphs for some planar ontributions.Again ∆R(x)∆2
+(x) would be ill de�ned on the lightone. However, asbefore, a anellation takes plae. For the 〈Φ2(f)Φ0(h)〉 terms it is

∆R(x)
[
∆2

+(x) + ∆+(x)∆−(x) + ∆2
−(x)

]

= iθ(x0) [∆+(x) − ∆−(x)]
[
∆2

+(x) + ∆+(x)∆−(x) + ∆2
−(x)

]

= iθ(x0)
[
∆3

+(x) − ∆3
−(x)

]
.
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Figure 4.7: Seond order ontributions to the φ4 two-point funtion, planargraphs to 〈Φ2Φ0〉 and 〈Φ1Φ1〉.



4.3 Remarks on adiabati limit 73The produt θ(x0)∆
3
+(x) is ill de�ned only at the origin. As the saling degreeof ∆3

+ is 6 we get three arbitrary onstants. One an be dropped, using a sym-metry ondition. Now, we an hoose a ontinuation of iθ(x0)
[
∆3

+(x) − ∆3
−(x)

]and show orrespondingly to ase of the φ3 model that the preliminaries forthe Epstein-Glaser theorem are ful�lled.4.3 Remarks on the adiabati limit for inter-ating models on MnIn Chapter 3 we sueeded in �nding suitable IR uto�s for quantum �eldtheory on Mn for an additional mass term. Unfortunately, the situation fortruly interating models is muh more ompliated and we have not been ableto �nd a suitable uto� yet. The problem is, that there appear additionaltwisting fators (even for planar graphs, see below), whih depend on themomenta in the uto� funtions and are di�erent for eah graph. However, wehave seen at several steps (adiabati limit, anellation of ∆R ·∆+ divergeneson the lightone) that only the sum of all graphs of the same order showsgood behaviour. But the di�erent graphs have di�erent twisting fators, andthese annot be pulled out as a ommon fator like in the ase of a massterm in setion 3.2.2. So, the anelation of divergenes might not take plaein the adiabati limit.5 The adiabati limit will probably very muh dependon the speial hoie of sequene ga → (2π)2δ. At least we have not beenable to �nd a suitable large lass of sequenes whih give the same limit. Butthe reason might not be, that suh a lass does not exist, but only that thealulations are too ompliated to �nd it.We give examples of possible IR uto�s in the φ3 model on Mn and givetheir ontribution for verties, f. Appendix C. The momenta of the vertexare labelled as in �gure 4.8:
• For the uto� by

g1(q)Φa(q)g2(q)Φb(q)g3(q), (4.22)f. (2.14), eah vertex gives
(2π)−4

∫
dp1dp2ǧ1(p1)ǧ2(p2)ǧ3(k1 + k2 − p1 − p2 − k0)

e−
i
2
Q(−p1,k1,−p2,k2,k1+k2−k0−p1−p2),with Q(k1, k2, . . . , kn) :=

∑
i<j kiσkj. One or two of the three gj's ouldbe equal to (2π)2δ. These uto�s an be ombined to give, for example,5Derivatives of the twisting fators in the momenta of the uto� funtions spoil this.
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k0

k1 k2

Figure 4.8: Typial vertex in the φ3 model.� 1
3
(g(q)Φa(q)Φb(q) + Φa(q)g(q)Φb(q) + Φa(q)Φb(q)g(q)) or� g(q)Φa(q)g(q)Φb(q)g(q).

• Multiplying Φa(q)Φb(q) by g, using the pointwise produt (2.7) gives
ǧ(k1 + k2 − k0)e

− i
2
k1σk2at eah vertex.For these (and many others that we tried) the twisting fators of di�erentgraphs annot be pulled outside the sum of all graphs of the same order. It isstill an open problem, how to handle this problem. Note that, with the uto�(4.22), the ontribution from eah graph is well-de�ned on its own, but thisdoes not have to be the ase if the adiabati limit is regarded.Therefore, we omit the uto� in the next setions and perform formalalulations. That is, we set from the beginning ǧ = (2π)2δ. In this ase thetwisting fators simplify, and the overall twisting fators an for eah graphbe alulated by looking at the rossing of ontrations. Eah rossing of linesof the kind shown in �gure 4.9 gives the twisting fator

eik0σk1 .This an be derived similarly as in the ase for Feynman graphs, shown in[31℄. So, without IR uto�, no planar graphs have a twisting fator.4.4 φ3 model on MnWe want to look again at the φ3 model, now on nonommutative spaetime,both in four and six dimensions. The reason to investigate these di�erent di-mensions is that, in four dimensions the φ3 model is logarithmially divergent



4.4 φ3 model on Mn 75
k0

k1Figure 4.9: Crossing of lines.but in six it is quadratially divergent. We want to ompare their dispersionrelations on nonommutative spaetime.Sine it turned out, that the IR uto�s were quite di�ult to handle rigor-ously (f. setion 4.3), we will make the alulation to some extent formal, i.e.,without an IR uto�. However, the fator oming from the nonplanar graphswill be alulated rigorously, using the tehnique of osillatory integrals.We want to alulate dispersion relations for the model in four dimensions�rst. The equation of motion for the φ3 model is
(
�q +m2

)
Φ(q) = −λΦ(q)2.This gives for the interating �eld

Φ0(q) =ΦFree(q),
Φ1(q) = −

∫
dx∆R(x) : Φ2

0(q − x) :,

Φ2(q) = −
∫

dx∆R(x) (Φ0(q − x)Φ1(q − x) + Φ1(q − x)Φ0(q − x)) .The Wik ordering, used in Φ1(q), ats only on the �eld part, see (2.13).Thus, we get
Φ2(q) =

1

(2π)2

∫
dk0dk1dk2e

−ik0q∆̂R(k0)∆̂R(k0 + k1)

(
Φ̂(−k1) : Φ̂(k0 + k1 + k2)Φ̂(−k2) : e

i
2
k1σk0

+ : Φ̂(k0 + k1 + k2)Φ̂(−k2) : Φ̂(−k1)e
i
2
k0σk1

)
e

i
2
(k0+k1)σk2 .The two-point funtion at �rst order vanishes again. At the seond orderwe get three terms

〈Φ2(f)Φ0(h)〉 + 〈Φ1(f)Φ1(h)〉 + 〈Φ0(f)Φ2(h)〉.



76 Chapter 4: Dispersion relationsThe term in the middle gives the ontribution
(2π)4

∫
dkf̌(k)ȟ(−k)∆̂R(k)∆̂A(k)

∫
dl∆̂+(k− l)∆̂+(l)

(
1 + e−ikσl

)
. (4.23)These orrespond to the graphs shown in �gure 4.4. Due to the fator ∆̂+(k−

l)∆̂+(l) they are only unequal to zero for l and k− l on the positive m-massshell, hene k has to be on or above the 2m-mass shell. This is also the reasonwhy this ontribution is well-de�ned, sine the singularities of ∆̂R/A(k) arenot met. Hene, the term (4.23) is interpreted as oming from the two-partilespetrum. It does not ontribute to the dispersion relations that we want toalulate and will therefore not be disussed further.The sum of the �rst and third term gives
(2π)4

∫
dkf̌(k)ȟ(−k)∆̂+(k)

(
∆̂R(k)

[
∆̂+ × ∆̂R(k) + ∆̂R × ∆̂−(k) + ∆̂+ ⋆2σ ∆̂R(k) + ∆̂R ⋆2σ ∆̂−(k)

]

+ ∆̂A(k)
[
∆̂− × ∆̂A(k) + ∆̂A × ∆̂+(k) + ∆̂− ⋆2σ ∆̂A(k) + ∆̂A ⋆2σ ∆̂+(k)

])
.The terms ontaining the onvolution stem from the planar graphs, the onesontaining the twisting from the nonplanar graphs. The planar graphs giveup to a fator of 1

2
the same as the seond order ontributions of the modelin ommutative spaetime, see (4.20), where the uto� funtions ǧ(k) haveto be replaed by (2π)2δ(k). Though in partiular, the planar graphs have tobe renormalized, i.e., from the ontinuation of a distribution to the origin afree mass renormalization, 1

2
λ2µ, enters.The nonplanar ontributions an be transformed to

(2π)4

∫
dkf̌(k)ȟ(−k)

(
∆̂R(k)∆̂+(k)S1(k) + ∆̂+(k)∆̂A(k)S2(k)

)
, (4.24)where

S1(k) =

∫
dl∆̂+(l)

(
∆̂R(k − l) + ∆̂R(k + l)

)
eikσl,

S2(k) =

∫
dl∆̂+(l)

(
∆̂A(k − l) + ∆̂A(k + l)

)
e−ikσl.

(4.25)We want to alulate these integrals and show that S1(k) = S2(k) in theviinity of the positive m-mass shell using the theory of osillatory integrals.



4.4 φ3 model on Mn 77So, we set Ω := {k ∈ M|k0 > 0 and m
2
<

√
k2 < 3m

2
}. Due to the ∆̂+(l) the

l integral will only be over the positive mass shell. There, (k + l)2 > m2 and
(k − l)2 < m2. So the singularities of ∆̂R or ∆̂A are not met in the aboveintegrals and we an savely set

∆̂R/A(p) = − 1

(2π)2

1

p2 −m2
.We alulate

S1(k) = − 1

(2π)3

∫
d3l

1

2ωl

(
1

(k − l+)2 −m2
+

1

(k + l+)2 −m2

)
eikσl+ ,(4.26)using the theory of osillatory integrals given in appendix B. With the notiongiven there, we have t = 3,

φ(k, l) = kµσ
µν(|l|, l)ν (4.27)and

a(k, l) = − 1

(2π)3

1

2ωl

(
1

(k − l+)2 −m2
+

1

(k + l+)2 −m2

)
ei(kσ)0(

√
l2+m2−|l|).

a is an asymptoti symbol6 on Ω×R3 of order -3. With this S1(k) = Tφ(a)(k).From Theorem B.1.4 we an see that Tφ(a)(k) is a C∞-funtion of k on
Ω sine ∇lφ(k, l) is only zero for kµσ

µν lightlike and this is not possible on
Ω. So, we an assume k to be �xed and onsider φ as a phase funtion on
{k} × R3 and a as a symbol on {k} × R3 and use (B.7).For k ∈ Ω let Λk be a boost whih takes the vetor k to Λkk = (

√
k2,0).Let g ∈ D(R) have the property

g(x) =

{
1 if |x| ≤ 1,

0 if |x| ≥ 2,and de�ne
Gk,n(l) := g

(
(
−→
Λ kl+)2

n2

)
,where −→

Λ k is only the vetor part of the transformation, i.e., a 3 × 4 matrixand the square is the Eulidean square of a 3-vetor. Gk,n is a C∞-funtionof l and for given k, n it has ompat support in l and is in Sym({k}, 3, 0)for all n.6It is only asymptoti, sine |l| is not di�erentiable at l = 0, and one has to use√
l2 +m2 − |l| ≤ C(1 + |l|)−1, f. [35℄.



78 Chapter 4: Dispersion relationsLemma 4.4.1. Gk,n → 1 in Sym({k}, 3, 1) for n→ ∞.Proof. We have to show that for all multi-indies β
sup

l

(1 + |l|)|β|−1

∣∣∣∣∣D
β
l

(
g

(
(
−→
Λ kl+)2

n2

)
− 1

)∣∣∣∣∣ −−−→n→∞
0. (4.28)It is easy to see that one an �nd positive onstants dβ suh that ∀β

‖Dβ
l l+‖Eulid ≤ dβ(1 + |l|)1−|β|.With these one an onstrut positive onstants Cβ

k , suh that
∣∣∣Dβ

l (
−→
Λ kl+)2

∣∣∣ ≤ Cβ
k (1 + |l|)2−|β|. (4.29)First, we show (4.28) for |β| = 0: ∣∣∣g ( (

−→
Λ kl+)2

n2

)
− 1
∣∣∣ is only unequal to zero if

(
−→
Λ kl+

n
)2 ≥ 1. We then get, with (4.29),

1 + |l| ≥ n
1√
C0

k

,and with this
sup

l

(1 + |l|)−1

∣∣∣∣∣g
(

(
−→
Λ kl+)2

n2

)
− 1

∣∣∣∣∣ ≤ sup
x

|g(x) − 1|
√
C0

k

1

n
−−−→
n→∞

0.Now let β be unequal to zero: With (4.29) one an easily see that
∣∣∣∣∣D

β
l g

(
(
−→
Λ kl+)2

n2

)∣∣∣∣∣ ≤
|β|∑

γ=1

∣∣∣∣∣(∂
γg)

(
(
−→
Λ kl+)2

n2

)∣∣∣∣∣
1

n2γ
C̃γ

k,β(1 + |l|)2γ−|β|,where C̃γ
k,β are again positive onstants. For eah γ ≥ 1 the funtion ∂γg(x)is only unequal to 0 if |x| < 2. Now, we need the following estimate, whihis also not hard to prove,

(
−→
Λ kl+)2 ≥ ak · (1 + |l|)2 − bk,where ak and bk are again positive onstants. So, if the argument of ∂γg,namely (

−→
Λ kl+)2

n2 , has to be smaller than 2 we onlude
1 + |l|
n

≤

√
2 + bk

n2

ak

.
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sup

l

(1 + |l|)|β|−1

∣∣∣∣∣D
β
l

(
g

(
(
−→
Λ kl+)2

n2

)
− 1

)∣∣∣∣∣

≤ sup
l

|β|∑

γ=1

∣∣∣∣∣∂
γg

(
(
−→
Λ kl+)2

n2

)∣∣∣∣∣ C̃
γ
k,β

(1 + |l|)2γ−1

n2γ

≤
|β|∑

γ=1

sup
x

|∂γg(x)|C̃γ
k,β

(
2 + bk

n2

ak

)γ− 1

2

1

n
−−−→
n→∞

0.This ompletes the proof.With the above result, we onlude that Gk,n(l) ·a(k, l) has ompat sup-port in l for the �xed k and approahes a in the topology of Sym({k}, 3,−2).Now we want to alulate the integral (4.26). With the result from lemma4.4.1 we see that it is the n→ ∞ limit of
− 1

(2π)3

∫
d3l

1

2ωl

g

(
(
−→
Λ kl+)2

n2

)(
1

(k − l+)2 −m2
+

1

(k + l+)2 −m2

)
eikσl+ .(4.30)This integral is absolutely onvergent, so the usual tehniques for manipu-lating integrals are available. We perform a (k-dependent) nonlinear trans-formation on l: l′ =

−→
Λ kl+. The integration measure does not hange. Thistransformation is hosen, suh that l+ = Λ−1

k l′+. The prime will be droppedagain and we get:
− 1

(2π)3

∫
d3l

1

2ωl

g

(
l2

n2

)(
1

(k − Λ−1
k l+)2 −m2

+
1

(k + Λ−1
k l+)2 −m2

)

· eikσΛ−1

k
l+ .Now we alulate

(k ± Λ−1
k l+)2 = (Λ−1

k ((
√
k2,0) ± l+))2 = k2 +m2 ± 2ωl

√
k2.The two frations an be put together to give 2

k2−4ω2
l

. De�ne σ′ := Λ−1
k

T
σΛ−1

k .
σ′ is again antisymmetri, so (

√
k2,0)µσ

′µν has vanishing time omponent.Let −−−−−−−→(
√
k2,0)σ′ be its spatial part. Its length is√−((

√
k2,0)σ′)2 =

√
−(kσ)2.The expression in the exponent now beomes

kσΛ−1
k l+ = (

√
k2,0)σ′l+ = −

−−−−−−−→
(
√
k2,0)σ′ · l.



80 Chapter 4: Dispersion relationsWe use spherial oordinates for l where the z-axis is along −−−−−−−→
(
√
k2,0)σ′. Thenthe exponent equals √−(kσ)2l cos(θ), and after performing the integrationover φ and θ we get

− (2π)−2

∫ ∞

0

dl

∫ π

0

dθ g

(
l2

n2

)
l2 sin(θ)

ωl(k2 − 4ω2
l )
el
√

−(kσ)2 cos(θ)

= − 2(2π)−2

∫ ∞

0

dl g

(
l2

n2

)
l2

ωl(k2 − 4ω2
l )

sin(l
√

−(kσ)2)

l
√

−(kσ)2
.For n→ ∞ this gives the value of Tφ(a)(k) = S1(k), whih is the absolutelyonvergent integral

S(k) := −2(2π)−2

∫ ∞

0

dl
l

ωl(k2 − 4ω2
l )

sin(l
√

−(kσ)2)√
−(kσ)2

. (4.31)It is straightforward to see that S2(k) gives the same result, sine the onlydi�erene for k ∈ Ω is to replae kσ by −kσ.So, we have S1(k) = S2(k) = S(k) for k ∈ Ω. Then, we get for (4.24)
(2π)4

∫
dkf̌(k)ȟ(−k)

(
∆̂R(k)∆̂+(k) + ∆̂+(k)∆̂A(k)

)
S(k).Now we an use equation (4.9) and ompare with (4.4) to get

Σ
(
k2, (kσ)2

)
= S(k).Atually, this is only the part oming from the nonplanar graphs. The on-tribution of the planar graphs is up to a fator of 1

2
the same as in setion4.2.1 and gives momentum independent renormalizations.We get, after a variable transformation, the following results:

λ2M
(
(kσ)2

)
= −λ2 2

(2π)2

∫ ∞

0

dl
l√

−(kσ)2m2 + l2(4l2 − 3(kσ)2m2)
sin(l),

λ2Z
(
(kσ)2

)
= λ2 2

(2π)2

∫ ∞

0

dl
(kσ)2l√

−(kσ)2m2 + l2(4l2 − 3(kσ)2m2)2
sin(l),

∆vrel⊥ ((kσ)2) = λ4nλ2 4

(2π)2

∫ ∞

0

dl

(
3m2l√

−(kσ)2m2 + l2(4l2 − 3(kσ)2m2)2

− m2l

2(−(kσ)2m2 + l2)
3

2 (4l2 − 3(kσ)2m2)2

)
sin(l).



4.4 φ3 model on Mn 81We want to alulate these depending on the perpendiular momentum k⊥,using (4.12) with k2 = m2. We use the parameters λn = λP = 1 (i.e. we use
c = ~ = G = 1 and use the Plank length for the sale of nonommutativity),
σ = σ0, m = 10−17 and λ = m. The oupling λ is of mass dimension 1 in fourspaetime dimensions. The orders of magnitude of the last two parametersare hosen, suh that the identi�ation of the salar φ with the Higgs �eldis possible, see [34℄. A mass of m = 10−17 orresponds to approximately
m = 122 GeV in ommon units. Atually, the value for the oupling would be
λ = 0.72 ·m for this mass (using the standard Higgs model and experimentalresults like the mass of the W-Boson). As we are only interested in the ordersof magnitude we an savely set λ = m.We use Mathematia to alulate the remaining absolutly onvergentintegrals numerially.M ((kσ)2) is shown in �gure 4.10. Z ((kσ)2) is onstantin the plotted region within mahine preision. It gives

λ2Z
(
(kσ)2

)
≈ 1.32477 · 10−3.The same ontribution stems from the planar graphs and together they havethe same value as the �eld strength renormalization in the ommutativease (4.21). The distortion of the group veloity is shown in �gure 4.11. Allquantities have the behaviour, that their absolute values are largest for k⊥ =

0 and they tend to zero for k⊥ → ∞. We see that the distortion of the groupveloity is of the order of magnitude of perentages for small perpendiularmomenta. This might be detetable if the Higgs boson is disovered in thenext generation of olliders (LHC or ILC). The relative mass renormalizationis almost −1 at k⊥ = 0. If we use the orret value of λ = 0.72 · m thiswould orrespond to√m2 + λ2M(k⊥ = 0) ≈ 85 GeV . This is not ompatiblewith the experiment. However, we still have a mass renormalization from theplanar part. With this, the mass at k⊥ = 0 an be set bak to 122 GeV , butat higher perpendiular momenta we would have an inreasing of the massby almost a fator of √2.We emphasize again that, in order to alulate the dispersion relation atthe one-loop level, it is su�ient to know
S1/2(k) =

∫
d4l ∆̂+(l)e±ikσl

(
∆̂R/A(k − l) + ∆̂R/A(k + l)

)
, (4.32)for k in the viinity of the mass shell. However, when we want to alulatehigher orders, the nonplanar �sh-graphs shown in �gures 4.3 and 4.5, whihgave the ontributions (4.24), may appear as subgraphs and have to be inte-grated over arbitrary k. Thus, there appears the problem that ∆̂R/A(k ± l+)an beome singular. The singularities of ∆̂R/A lie on the m-mass shell. So:
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Figure 4.10: The relative mass orretion m−2λ2M((kσ)2) as a funtion ofthe perpendiular momentum k⊥ for the φ3 model in four dimensions.
• The situation is smooth for 0 < k2 < (2m)2 sine neither k + l+ nor
k − l+ an meet the mass shell.

• For k2 ≥ (2m)2 and k0 > 0 the vetor k − l+ an lie on the mass shell,for k0 < 0 the other one.
• For k spaelike, both k+ l+ and k− l+ an meet the mass shell. Seond,one expets singularities for kσ lightlike, sine there ∇lφ(k, l) = 0, f.(4.27) and (B.3). For k this is the tilted lightone around k⊥. Thus,these overlap with the singularities from ∆̂R/A.Thus, it is yet unlear, how to handle the integrals in S1/2(k) outside the set

0 < k2 < (2m)2, as the preliminaries for osillatory integrals are not ful�lled.
∆̂R/A(k± l+) annot be treated as an asymptoti symbol, sine the set whereit may beome singular is not ompat in k. Thus, one has to extend thetheory of osillatory integrals to handle graphs of higher orders. Some ideasan be found at the end of Appendix B.The alulation above was for four dimensions. The alulation in sixdimensions is quite similar. We get a di�erent prefator and the l integrationis two dimensions higher. So, instead of (4.26) we have
S1/2(k) = − 1

(2π)5

∫
d5l

1

2ωl

(
1

(k − l+)2 −m2
+

1

(k + l+)2 −m2

)
e±ikσl+ .
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Figure 4.11: The distortion of the group veloity in perpendiular diretion
∆vrel⊥ ((kσ)2) as a funtion of the perpendiular momentum k⊥ for the φ3model in four dimensions.The tehnique to alulate this osillatory integral is analogously to the onebefore: Multiply the integrand by g ((−→Λ kl+

n
)2
) (where Λk is orrespondinglyde�ned for six dimensions), make a variable transformation in l and usespherial oordinates in �ve dimensions, to get

− 1

2(2π)3

∫ ∞

0

dl

∫ π

0

dθ3 g

(
l2

n2

)
l4 sin3(θ3)

ωl(k2 − 4ω2
l )
el
√

−(kσ)2 cos(θ3)

=
−2

(2π)3

∫ ∞

0

dl g

(
l2

n2

)
l4

ωl(k2 − 4ω2
l )




sin(l
√
−(kσ)2)

(
l
√

−(kσ)2
)3 − cos(l

√
−(kσ)2)

(
l
√

−(kσ)2
)2


 .The fator of sin3(θ3) stems from the spherial volume element in �ve dimen-sion. Thus, with n → ∞, we get in six dimensions the improper Riemannintegral

S(k) :=
−2

(2π)3

∫ ∞

0

dl
l2

−(kσ)2ωl(k2 − 4ω2
l )[

sin(l
√
−(kσ)2)

l
√

−(kσ)2
− cos(l

√
−(kσ)2)

]
.
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λ2M

(
(kσ)2

)
= −λ2 2

(2π)3

∫ ∞

0

dl
l

−(kσ)2
√
−(kσ)2m2 + l2(4l2 − 3(kσ)2m2)

·
(

sin(l)

l
− cos(l)

)
,

λ2Z
(
(kσ)2

)
= λ2 2

(2π)3

∫ ∞

0

dl
l

−
√
−(kσ)2m2 + l2(4l2 − 3(kσ)2m2)2

·
(

sin(l)

l
− cos(l)

)
,

∆vrel⊥ ((kσ)2) =
4λ4nλ2

(2π)3

∫ ∞

0

dl

(
3m2l

−(kσ)2
√
−(kσ)2m2 + l2(4l2 − 3(kσ)2m2)2

− m2l

−2(kσ)2(−(kσ)2m2 + l2)
3

2 (4l2 − 3(kσ)2m2)2

+
l

(kσ)4
√

−(kσ)2m2 + l2(4l2 − 3(kσ)2m2)2

)

·
(

sin(l)

l
− cos(l)

)
.Again we plot M ((kσ)2) and Z ((kσ)2) and ∆vrel⊥ ((kσ)2) depending onthe perpendiular momentum k⊥. We use the same parameters as in fourdimensions exept that we hoose λ = 1 instead of λ = m, sine the ouplinghas no mass dimension in six dimensions. M ((kσ)2) is shown in �gure 4.12,

Z ((kσ)2) in �gure 4.12 and ∆vrel⊥ ((kσ)2) in �gure 4.14. The main di�ereneompared to four dimensions is, that the order of magnitude is totally di�er-ent. Instead of perentages ∆vrel⊥ ((kσ)2) is of the order of 1065 and similarlyfor M ((kσ)2). The reason for these di�erenes in the order of magnitudestems to a great part from a fator (kσ)2 in the denominator and the hangein λ. The �eld strength renormalization is omparatively small beause itsintegral is absolutely onvergent and the fator sin(l)
l

− cos(l) is almost zerowhere the fration in front under the integral sign is unequal to zero and vieversa.However, the mass orretion an again be brought to zero using themass renormalization from the planar graph.7 But it is questionable if thealulated result is reasonable sine the use of perturbation methods seemsnot to be justi�able if the result di�ers that muh from the unperturbedsetting. (If we look as the mass renormalization it has to di�er somewhere by7In six dimensions there appears also a �eld strength renormalization in the φ3 model.
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Figure 4.12: The relative mass orretion m−2λ2M((kσ)2) as a funtion ofthe perpendiular momentum k⊥ for the φ3 model in six dimensions.a fator of 10(65) from the free ase, either at small or at large k⊥, no matterhow the planar mass renormalization is hosen.)4.5 φ4 model on Mn using quasiplanar WikprodutsNow, we investigate the φ4 model on Mn. Here, we use quasiplanar Wikproduts as de�ned in [4℄. Quasiplanar Wik produts are de�ned for freequantum �elds on nonommutative spaetime. They are similar to the well-known Wik produts for ommutative spaetime. A produt of multiple�elds is de�ned in the limit of oiniding points by subtrating ontrations.The subtrated ontrations have to be loal in a ertain sense. The non-ommutativity of spaetime leads to a di�erent onept of loality. Thereby,some ontrations, whih are subtrated in the ommutative spaetime, be-ome nonloal and remain �nite in the limit of oiniding points, and aretherefore not subtrated.The �eld equation is
(
�q +m2

)
Φ(q) = −λΦ(q)3.
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Figure 4.13: The �eld strength renormalization λ2Z((kσ)2) as a funtion ofthe perpendiular momentum k⊥ for the φ3 model in six dimensions.
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Figure 4.14: The distortion of the group veloity in perpendiular diretion
∆vrel⊥ ((kσ)2) as a funtion of the perpendiular momentum k⊥ for the φ3model in six dimensions.
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Figure 4.15: First order nonplanar ontributions to the two-point funtion ofthe φ4 model, 〈Φ1Φ0〉 and 〈Φ0Φ1〉.This gives for the interating �eld to �rst orders
Φ0(q) =ΦFree(q),
Φ1(q) = −

∫
dx∆R(x)

... Φ3
0(q − x)

...
= −

(∫
dx∆R(x) : Φ3

0(q − x) :

+
1

(2π)2

∫
dx∆R(x)

∫
dk∆+(−kσ)Φ̂0(k)e

−ik(q−x)

)
. (4.33)In this ase, the �rst order ontribution does not vanish anymore. The part(4.33) of Φ1(q) gives

〈Φ1(f)Φ0(h)〉 + 〈Φ0(f)Φ1(h)〉

= −(2π)2

∫
dkf̌(k)ȟ(−k)∆+(kσ)

(
∆̂R(k)∆̂+(k) + ∆̂+(k)∆̂A(k)

)
.Here, we have used that, due to the ∆̂+(k), the whole integral is only eval-uated for k on the mass shell. Then kσ is spaelike and thus ∆+(−kσ) =

∆+(kσ). We use equation (4.9) to transform the above to
∫

dkf̌(k)ȟ(−k)∆+(kσ)∂m2∆̂
(m2)
+ (k).If we ompare this with (4.4), we get in this ase

Σ(k2, (kσ)2) = − 1

(2π)2 ∆+(kσ).



88 Chapter 4: Dispersion relationsIt is well known8 that for spaelike argument x
∆+(x) =

1

(2π)2

m√
−x2

BesselK1

(
m
√
−x2

)
.BesselKn is the modi�ed Bessel funtion of the seond kind to order n. Thus,we get

λM
(
(kσ)2

)
= λ

1

(2π)4

m√
−(kσ)2

BesselK1

(
m
√
−(kσ)2

)
,

∆vrel⊥ ((kσ)2) = −2λ4nλ 1

(2π)4

(
m

2(−(kσ)2)
3

2

BesselK1

(
m
√
−(kσ)2

)

+
m2

4
√
−(kσ)2

[BesselK0

(
m
√
−(kσ)2

)

+ BesselK2

(
m
√
−(kσ)2

)])
.Sine in this ase Σ is independent from its �rst argument, Z ((kσ)2) is zero.We alulate these for a set of parameters similar to the ase in φ3 theory,i.e. λn = λP = 1, σ = σ0, m = 10−17 and λ = 1. M ((kσ)2) is shown in�gure 4.16 and The distortion of the group veloity is shown in �gure 4.17.Comparing with the φ3

6 model, we see that the order of magnitude for thealulated quantities are equal. The sign is di�erent. This latter is onnetedto the fat that here, the alulated quantities are of �rst order in λ and notin seond order.The setting used here di�ers slightly from the one given in [4, 2℄. Thereason is, that we have treated all quantities as a formal power series in theoupling λ. This was not done rigorously in the before mentioned publiation.However, at the end we insert a �nite λ. So higher orders an anel eahother and a �netuning proess might still be possible. But as we mentionedbefore, the use of perturbation methods are questionable if the �rst orderorretions are of this order of magnitude.4.6 Wess-Zumino modelNow, we have a look at a supersymmetri model, namely the Wess-Zuminomodel, whih is one of the simplest of this kind. Supersymmetri modelshave a better behaviour with respet to divergenes beause some divergent8This ould easily be alulated using the framework of osillatory integrals, too.
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Figure 4.16: The relative mass orretion m−2M((kσ)2) as a funtion of theperpendiular momentum k⊥ for the φ4 model using quasiplanar Wik prod-uts.
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Figure 4.17: The distortion of the group veloity in perpendiular diretion
∆vrel⊥ ((kσ)2) as a funtion of the perpendiular momentum k⊥ for the φ4model using quasiplanar Wik produts.



90 Chapter 4: Dispersion relationsgraphs, oming from di�erent partile interations, anel eah other. Super-symmetry takes are that the parameters have the right values, e.g., thatfermions and bosons have the same mass parameter and that the ouplingonstants of the di�erent interations have a partiular dependene in orderto make the anellation possible.9 The alulation shown here is very loseto the one given by Zahn in [15℄.When working with supersymmetri models notation is a rather involvedtask. We use the onventions of [43℄ exept for the metri. We keep our met-ri of signature (+,−,−,−). Further hanges have to be made to keep thezero omponent of the generator of translations, P0, positive in representa-tions of the supersymmetry algebra. We have to multiply σ0 by −1.10 Thesame happens to γ0 and γ5. The usual (anti-)ommutation relations of thesequantities do not hange, exept where the metri appears. In partiular, wehave {γµ, γν} = 2ηµν .The hiral super�eld is11
Φ(q) = φ(q) +

√
2θαχα(q) + θ2F (q)

+ iθασµ

αβ̇
θ̄β̇∂µφ(q) − i√

2
θ2∂µχ

α(q)σµ

αβ̇
θ̄β̇ − 1

4
θ2θ̄2

�φ(q),

where θ is a omplex, χ a Weyl spinor and F an auxiliary �eld.When dealing with omplex quantum �elds on nonommutative spae-time we have to mind that di�erent orders of terms an give di�erent twistingfators. E.g., the term φ∗φφ∗φ has only planar ontrations, whereas φ∗φ∗φφhas also a nonplanar one.12 To keep trak of the orders in the �eld equationswe derive them from a Lagrangian. We use the formalism introdued in [45℄for lassial �elds on nonommutative spaetime.9This follows from the nonrenormalization theorem, see for example [8℄.10This follows from the fat that Tr(σ0 · P0) = Tr{Q, Q̄} is a positive operator. Withthe onventions and signature of [43℄ only P 0 would be positive.11The antiommutation relations among the fermioni variables θ and θ̄ are unhanged.Approahes, where even these are deformed, an be found, e.g., in [30℄.12This was already noted in [1℄.



4.6 Wess-Zumino model 91The ation is
∫

dq4L(q) =

∫
dq4

(
Φ̄Φ
∣∣∣
θ2θ̄2

−
[1
2
mΦΦ +

1

3
λΦΦΦ + h..]∣∣∣

θ2

)

=

∫
dq4

(
i∂µχ̄σ̄

µχ− φ∗
�φ+ F ∗F

−
[(
m

(
φF − 1

2
χχ

)
+ λ (φφF − χχφ)

)
+ h..]

+ total derivatives ).As we have seen in setion 2.1 ∫ dq4 is yli. So it does not matter whetherwe would have taken ΦΦ̄ in the Lagrangian instead. The equations of motionare derived via the variation priniple:variation δφ∗ : �φ+mF ∗ + λ(φ∗F ∗ + F ∗φ∗) − λχ̄α̇χ̄
α̇ = 0 (4.34)variation δχ̄α̇ : iσ̄µα̇β∂µχβ −mχ̄α̇ − λ(φ∗χ̄α̇ + χ̄α̇φ∗) = 0 (4.35)variation δF ∗ : F −mφ∗ − λφ∗φ∗ = 0. (4.36)To simplify the forthoming alulation, we introdue Majorana spinors :

ψ :=

(
χα

χ̄α̇

)
, ψ̄ := ψ†γ0 = (χα, χ̄α̇),and the projetors

P+ :=

(12 0
0 0

) and P− :=

(
0 0
0 12

)
.Thus, we have

P± =
1

2

(14 ∓ iγ5
)
, χαχα = ψ̄P+ψ and χ̄α̇χ̄

α̇ = ψ̄P−ψ.With this notation, (4.35) and its hermitian onjugate beome
(i/∂ −m14)ψ = λ (P+(ψφ+ φψ) + P−(ψφ∗ + φ∗ψ)) ,

∂µψ̄(−iγµ −m14) = λ
(
(ψ̄φ+ φψ̄)P+ + (ψ̄φ∗ + φ∗ψ̄)P−

)
,

(4.37)where we have introdued the notation /∂ := ∂µγ
µ (and likewise for momenta

kµ). The ontration of the free fermion �eld is
〈 ˆ̄ψa(k1)ψ̂b(k2)〉 = (2π)2(−/k1 +m14)ba∆̂+(k1)δ(k1 + k2).



92 Chapter 4: Dispersion relationsNow, we insert the equation of motion of the auxiliary �eld F , (4.36),into (4.34) and get
(� +m2)φ = λψ̄P−ψ −mλ(φφ+ φ∗φ+ φφ∗) − λ2(φ∗φφ+ φφφ∗). (4.38)Note that the last part is of order λ2 and therefore does not appear in thealulation of φ1.So far, we have dealt with lassial (bosoni or fermioni) �elds on non-ommutative spaetime. Now we replae them by quantum �elds (here de-noted by the same symbols). We have a loser look at the salar �eld φ andwant to alulate the two-point funtion 〈φ∗(f)φ(h)〉. From (4.38) we get
φ̂1(k1) = ∆̂R(k1)

∫
dk2e

− i
2
k2σk1

[
ˆ̄ψ0(k2)P−ψ̂0(k1 − k2)

−m
(
φ̂0(k2)φ̂0(k1 − k2) + φ̂∗

0(k2)φ̂0(k1 − k2) + φ̂0(k2)φ̂
∗
0(k1 − k2)

) ]
. (4.39)As we are now dealing with quantum �elds, we have to ask whether theproduts of �elds on the right hand side of (4.38) are well-de�ned as they arisefrom multiplying distributions at the same point like, e.g., φ∗

0(q)φ0(q). We donot normal order these. Although the summands alone have divergenes, theirsum is well-de�ned. In fat, the vauum expetation value of φ1 vanishes:
〈φ1(f)〉 =

∫
dk1dk2f̌(k1)∆̂R(k1)

[
(2π)2Tr

(
P−(−/k2 +m1)

)
∆̂+(k2)δ(k1)

− 2m(2π)2∆̂+(k2)δ(k1)
]

= 0,sine Tr
(
P−(−/k2 +m1)

)
= 2m. This alulation seems rather formal butan be made rigorous, and the expression (4.39) equals the one where theright-hand side is normal ordered. In other words, the additional term neededfor normal ordering the fermion �elds anels the ones for normal orderingthe salar �elds. This is one example for how divergenes anel eah otherin supersymmetri �eld models.As it is easy to see, the two-point funtion of the salar �eld at �rst ordervanishes:

〈φ∗
0(f)φ1(h)〉 = 〈φ∗

1(f)φ0(h)〉 = 0.Thus, we have to look at seond order. φ2 an be divided into three parts:
φ2 = ∆R ×

[
ψ̄0P−ψ1 + ψ̄1P−ψ0 (Yukawa part)
−m (φ0φ1 + φ1φ0 + φ∗

0φ1 + φ∗
1φ0 + φ0φ

∗
1 + φ1φ

∗
0) (φ3 part)

− (φ∗
0φ0φ0 + φ0φ0φ

∗
0)
]
. (φ4 part)



4.6 Wess-Zumino model 93Note that the φ4 part omes diretly from the λ2 part of (4.38). We do notnormal order this part sine the quadratial divergene oming from it anels(partly) divergenes oming from other parts as we will see later.First, we alulate the fermion �elds at �rst order. These appear in theYukawa part. For this we de�ne the Green's funtions SR(x) := (−i/∂ −
m1)∆R(x) and S̄R(x) := (i/∂ −m1)∆R(x). These ful�ll

(i/∂x −m14)SR(x− y) = (−i/∂x −m14)S̄R(x− y)γ = δ(4)(x− y)14,

ŜR(k) = (−/k −m1)∆̂R(k) and ˆ̄SR(k) = (/k −m1)∆̂R(k).The fermion �eld (4.37) gives at �rst order
ψ̂1(k1) = ŜR(k1)

∫
dk2e

− i
2
k2σk1

[
P+

(
ψ̂0(k2)φ̂0(k1 − k2) + φ̂0(k2)ψ̂0(k1 − k2)

)

+ P−

(
ψ̂0(k2)φ̂

∗
0(k1 − k2) + φ̂∗

0(k2)ψ̂0(k1 − k2)
) ]and̄̂

ψ1(k1) =

∫
dk2e

− i
2
k2σk1

[ (
ˆ̄ψ0(k2)φ̂0(k1 − k2) + φ̂0(k2)

ˆ̄ψ0(k1 − k2)
)
P+

+
(

ˆ̄ψ0(k2)φ̂
∗
0(k1 − k2) + φ̂∗

0(k2)
ˆ̄ψ0(k1 − k2)

)
P−

]
ˆ̄SR(k1).There is no need to normal order the produts of �elds on the right-handsides, sine only produts of ommuting �elds appear.13We are only interested in the modi�ation of the dispersion relations. So,we do not look at 〈φ∗

1(f)φ1(h)〉 sine all terms oming from these ontain ∆2
+or ∆+ ⋆2σ ∆+ and thus vanish in the viinity of the m-mass shell.It remains to examine the sum 〈φ∗

0(f)φ2(h)〉 + 〈φ∗
2(f)φ0(h)〉, from whih13The produts of di�erent �elds like the terms appearing in the expressions for ψ̂1 or

ˆ̄ψ1 do not make problems (at �rst order), sine the �eld algebra parts of the fators liveon a tensor produt of Fok spaes. Thus, ψ0(x)φ0(x) is rather ψ0(x) ⊗ 1 · 1 ⊗ φ0(x) =
ψ0(x) ⊗ φ0(x) and this is a well-de�ned operator-valued distribution on S. The situationfor ψ0(q)φ0(q) is orresponding.



94 Chapter 4: Dispersion relationswe will alulate the �rst summand now. The Yukawa part of φ2 gives
(2π)4

∫
dkf̌(k)ȟ(−k)∆̂+(k)∆̂R(−k)

∫
dl
(
1 + e−ikσl

) [
∆̂+(l)∆̂R(−k − l)Tr

(
P−(/k + /l −m1)P+(−/l +m1)

)

+ ∆̂+(l)∆̂R(l − k)Tr
(
P+(/l − /k −m1)P−(−/l +m1)

) ]
.We use P+P− = P−P+ = 0, so the terms whih have fators of m drop out.After a short alulation we see that Tr (P−γ

µP+γ
ν) = 2ηµν . The remainingterms transform to

− 2(2π)4

∫
dkdlf̌(k)ȟ(−k)∆̂+(k)∆̂A(k)∆̂+(l)

[
∆̂A(k + l)(l + k) · l + ∆̂A(k − l)(l − k) · l

] (
1 + e−ikσl

)
. (4.40)The ontribution oming from the φ3 part,

3m2(2π)4

∫
dkf̌(k)ȟ(−k)∆̂+(k)∆̂A(k)

·
∫

dl∆̂+(l)
(
∆̂A(k − l) + ∆̂A(k + l)

) (
1 + e−ikσl

)
, (4.41)an be visualized by the graphs 4.5 given for the φ3 alulation in setion4.4. The ontribution we get here, has an additional fator of m2 due to theoupling and a fator of 3 as eah summand of the φ3 part gives the sameontribution. Remember that the �elds in φ1 an be seen as being normalordered, so we get no tadpoles here.Now, we take a look at the ontribution oming from the φ4 terms. Thealulation is quite similar to the one given in setion 4.5. The result is

−(2π)2

∫
dkf̌(k)ȟ(−k)∆̂+(k)∆̂A(k)

∫
dl∆̂+(l)2

(
1 + e−ikσl

)
. (4.42)The term without the twisting fator is quadratially divergent. In setion4.5 it was anelled by using quasiplanar Wik ordering. Here it is anelledby divergenes appearing in other ontributions, as we will see now.The sum of (4.41), (4.40) and (4.42) gives

(2π)4

∫
dkf̌(k)ȟ(−k)∆̂+(k)∆̂A(k)

∫
dl
(
1 + e−ikσl

)

·∆̂+(l)
[
∆̂A(k+ l)(3m2−2(l+k) · l)+∆̂A(k− l)(3m2−2(l−k) · l)−2(2π)2

]
.



4.6 Wess-Zumino model 95The seond line an be transformed, using ∆̂+(l)(m2 − l2) = 0 and −(2π)2 =
∆̂A(k ± l) ((k ± l)2 −m2), to

∆̂+(l)
[
∆̂A(k + l) + ∆̂A(k − l)

] (
k2 +m2

)
.The alulation of 〈φ∗

2(f)φ0(h)〉 works quite similar and altogether wehave
〈φ∗

0(f)φ2(h)〉 + 〈φ∗
2(f)φ0(h)〉 =

(2π)4

∫
dkf̌(k)ȟ(−k)

(
k2 +m2

) (
∆̂R(k)∆̂+(k)S1(k) + ∆̂+(k)∆̂A(k)S2(k)

)
,with

S1(k) =

∫
dl∆̂+(l)

(
∆̂R(k − l) + ∆̂R(k + l)

) (
1 + eikσl

)
,

S2(k) =

∫
dl∆̂+(l)

(
∆̂A(k − l) + ∆̂A(k + l)

) (
1 + e−ikσl

)
.Comparing with (4.24) we see that we almost get the same as in thease for the φ3

4 model exept for an additional fator of (k2 +m2). (Here wealso onsider the planar ontribution.) In the viinity of the mass shell theontribution from the nonplanar graphs is
ΣWZ,np (k2, (kσ)2

)
= (k2 +m2)Σφ3,np (k2, (kσ)2

)
,where Σφ3,np is the result from setion 4.4 and equals (4.31). Thus, from thenonplanar ontributions we get

M((kσ)2) = −2m2Σφ3,np (m2, (kσ)2
)
,

Z((kσ)2) = 2m2∂(1,0)Σφ3,np (m2, (kσ)2
)

+ Σφ3,np (m2, (kσ)2
)
,

∆vrel⊥ ((kσ)2) = 2λ4nλ2m2∂(0,1)Σφ3,np (m2, (kσ)2
)
.As before, we alulate these for the parameters λn = λP = 1, σ = σ0,

m = 10−17 and λ = 1. Apart from a fator of 2 the values for ∆vrel⊥ and Mare the same as in the φ3
4 model.14 The �eld strength renormalization Z isthe sum of the quantity of the φ3

4 model and twie the the negative of itsmass renormalization. Sine the absolute value of the former is muh smallerthan the latter in the plotted region, Z looks almost like −2 times the plotshown in �gure 4.10.14Note that in the φ3
4 model the oupling has a mass dimension and we hose λ = m.In the Wess-Zumino model the oupling has no mass dimension but a fator of m2 entersthrough the prefators of the alulated quantities.



96 Chapter 4: Dispersion relationsRemark 4.6.1. In standard literature about supersymmetry, e.g., [40℄, one of-ten �nds the statement, that the Wess-Zumino model has only a �eld strengthrenormalization. Note that this is not a ontradition to our result sine a dif-ferent de�nition is used. With the de�nition invoked by [40℄ the �eld strengthrenormalization of the salar �eld would be of the form
(1 + Z ′)�φ+m2φ,while our de�nition orresponds to

(1 + Z)
(
�φ+ (m2 +M)φ

)
.These are onneted by setting Z = Z ′ and M = −Z ′m2/(1 + Z ′).The distortion of the group veloity of this logarithmially divergentmodel is again quite moderate. If one identi�es the �eld φ with the Higgsboson, the distortion might be detetable in future olliders, if the Higgs willbe deteted at all.



Chapter 5Summary and outlookWe have seen that the distortion of the group veloity ∆vrel⊥ is of drastiallydi�erent order of magnitude in logarithmially divergent models (φ3
4 andWess-Zumino model) ompared to quadratially divergent models (φ3

6 and φ4model). It is of the order of perentages in the �rst kind and of order of 1065for the latter kind. With these huge values for the quadratially divergentmodels, perturbation theory in λ might be inappropriate for investigatingthese exept for very tiny oupling λ. The order of magnitude of the relativemass renormalization M(kσ2)/m2 is of order 1 in logarithmially divergentmodels. The mass renormalization an be used to �x the mass at vanishingperpendiular momentum k⊥, but for higher values of k⊥ the mass hanges,and this hange should be detetable. If we onsider the nonommutativeMinkowski spae to orrespond to E , we still have to integrate over di�erent
σ ∈ Σ. Thus, there will be no distint diretion for k⊥, but the mass will stilldepend on the momentum.It is quite remarkable that the di�erene of orders of magnitude betweenmodels of di�erent divergene lass is so large while for models of the samelass it is of order 1. There is no lear onnetion, for example, between the
φ3 model in six and the φ4 model in four dimensions despite their quadratialdivergene. It is worth while to further investigation, if there is some deeperreason behind this or if it is just by aident.So far, no distortion of the group veloity has been deteted on partiles.Of ourse, the result depends on the onrete hoie of the onstants λ, mand λn. We have hosen these to be ompatible with the interpretation ofthe �eld with the Higgs boson. Although, the investigated models are not apossibility for the Higgs model, one ould assume that the dispersion relationof the latter might also fall into this lassi�ation. If the Higgs is desribed bya logarithmially divergent (maybe supersymmetri) model, the distortion ofthe dispersion relation is quite mild but might be detetable in the LHC or97



98 Chapter 5: Summary and outlookILC (if the Higgs is deteted at all).That e�ets from nonommutativity are not observed on known partilesmight have its reason in that not all partiles see this nonommutativity ofspaetime. Remember, that this onept of spaetime was only thought tobe an intermediate step. The unertainty relations were derived in [13℄ bytaking gravity into aount in a detetion proess. So, it is not too naive toassume that the Higgs, whih generates masses of other partiles, ouplesdi�erently to gravity and might see a nonommutative struture while otherpartiles do not.But there are still a lot of open oneptual problems to solve. An IR ut-o� with a well-de�ned adiabati limit for a reasonable lass of sequenes forinterating models on Mn would be desirable. Furthermore, if we do not seethe oupling λ as in�nitesimally small, ontributions from di�erent ordersmight anel eah other by a �netuning proess. So, higher order ontribu-tions should be alulated. For this the onept of osillatory integrals hasto be extended. It would be interesting to see if some kind of UV-IR mixingappears also on Mn and whether it is harmless on logarithmially divergentmodels, too. Also, the treatment of massless �elds or loal gauge transforma-tions are still problemati, see for example [46℄. Results for nonommutativeeletrodynamis would be interesting sine eletrodynamis is experimentallytested to very high preision. The distortion of dispersion relations gives riseto further oneptional problems. Sine the asymptoti behaviour is not thatof a free �eld the LSZ formalism is not appliable. So it is not lear how tode�ne the S-Matrix for interating �elds.All in all there are a lot of open problems. If the olliders show the pre-sribed dispersion relations for the Higgs they are surely worth investigating.Another possibility would be to look at a hange of the onept of the non-ommutative spaetime. E.g., the ommutator Qµν might not be a entralelement and be involved in the interation. But these hanges would makerigorous alulations probably very di�ult. The best thing would be not toblindly test ertain assumptions, but derive the setting from deeper onepts.However, this might be even harder.
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Appendix AConventions and useful formulaeIn four-dimensional Minkowski spae M we use the metri
ηµν = diag(+,−,−,−)µνand indies running from 0 to 3 and analogously for higher dimensions.Mostly, we use upper indies for vetors in position spae, like xµ, and lowerindies for vetors in momentum spae, like pµ. Tensors of type (r, s) onMinkowski spae will be denoted by T r

s (M). For z ∈ C, z̄ will denote theomplex onjugate.
S denotes the Shwartz spae, D is the spae of smooth funtions withompat support and O′

C are the distributions of rapid derease. Dual spaesare generally denoted by a prime, e.g., S ′. The Fourier transform and itsinverse in d dimensions are de�ned by
f̂(k) :=

1

(2π)
d
2

∫
ddxf(x)eikx,

f̌(k) := f̂(−k).For f ∈ S and T ∈ S ′ we have
ˇ̂
f = ˆ̌f = f,

T̂ (f) := T (f̌),

T (f) = T̂ (f̌) = Ť (f̂).The onvolution for f, g ∈ S is
f × g(x) :=

∫
ddyf(x− y)g(y).101



Hene,
f̂ · g(k) =

1

(2π)
d
2

f̂ × ĝ(k),

f̂ × g(k) =
√

2π
d
f̂(k) · ĝ(k).Free �eld of mass m:

Φ(x) :=
1

(2π)
d−1

2

∫
d3p

2ωp

(
a(p)e−ip+x + a†(p)eip+x

)
,with ωp :=

√
p2 +m2,

p+ := (ωp,p).The vauum expetation value of Φ(f)Φ(h) is denoted by 〈Φ(f)Φ(h)〉.Delta-funtions:
δ̌(d) =

1

(2π)
d
2

1,
∆+(x− y) := 〈Φ(x)Φ(y)〉, (A.1)

∆̂+(p) =
1

(2π)
d
2
−1
θ(p0)δ(p

2 −m2) =
1

(2π)
d
2
−1

δ(p0 − ωp)

2ωp

,

∆−(x) := ∆+(−x) = ∆̄+(x),

∆R(x) := iθ(x0)(∆+(x) − ∆−(x)),

∆̂R(p) = lim
ǫց0

1

(2π)
d
2

−1

p2 −m2 + iǫp0

,

= lim
ǫց0

1

(2π)
d
2

1

2ωp

(
1

p0 + ωp + iǫ
− 1

p0 − ωp + iǫ

)
. (A.2)The de�nition of ∆R is hosen suh that

(�x +m2)∆R(x− y) = δ(d)(x− y).

∆A(x) := ∆R(−x),
∆F (x) := i (θ(x0)∆+(x) + θ(−x0)∆−(x)) ,

∆R(x) = ∆F (x) − i∆−(x), (A.3)
∆A(x) = ∆F (x) − i∆+(x). (A.4)

Bx(r) denotes the open ball of radius r around x. V± is the full for-ward/bakward lightone. Is
+ is the set of nonnegative multi-indies of orderlength s. 102



On Mn we have the ommutation relation:
[qµ, qν ] = iQµν .In Weyl form this is

eikµqµ

eilνqν

= e−
i
2
kµQµν lνei(kµ+lµ)qµ

. (opy of 2.2)Furthermore, ∫
d4qeikq = (2π)4δ(k).The starprodut or twisted onvolution for f, g ∈ S(Md), σ ∈ T 2

0 (Md) isde�ned by its Fourier transform in the following way:
f̂ ⋆σ g(k) :=

1

(2π)2

∫
dlf̂(k − l)ĝ(l)e−

i
2
kµσµν lν .The index σ at the star will mostly be omitted.The wave front set of a distribution T ∈ S ′(M) will be denoted WF(T ).It is a subset of M× (M′ \{0}). De�ne WFx(T ) := ({x}×M′)∩WF(T ). Theset WFx(T ) an be seen as the set of singular diretions of the distribution

T at x. It is the set of all diretions in whih the Fourier transform of gTmay not fall o� faster than any polynomial for some funtion g with ompatsupport and g(x) 6= 0. For an exat de�nition of the wave front set see, e.g.,[35, 26℄. The following properties hold:
∀λ > 0 : λ ·WFx(T ) = WFx(T ),WF(T + S) ⊂ WF(T ) ∪WF(S).If WFx(T ) = ∅ then T is C∞ around x. If W̃F(T, S) :=

⋃
x∈M

(WFx(T ) +WFx(S)) does not ontain an element of the form (x, 0), then the produt
T · S is a well-de�ned distribution and WF(T · S) ⊂ W̃F(T, S).WF(∆+) = {(xµ, kν)|x 6= 0, xµxµ = 0 and ∃λ > 0 : kµ = −λxµ}

∪ {(0, kν)|kνk
ν = 0 and k0 < 0} ,WF(∆2

+) = {(xµ, kν)|x 6= 0, xµxµ = 0 and ∃λ > 0 : kµ = −λxµ}
∪ {(0, kν)|kνk

ν ≥ 0 and k0 < 0} ,WF(∆−) = −WF(∆+),WF(θ0) =
{
(xµ, kν)|x0 = 0, k0 6= 0 and k = 0

}
,WF(∆R) =

{
(xµ, kν)|x0 > 0, xµxµ = 0 and ∃λ 6= 0 : kµ = −λxµ

}

∪ {(0, kν)|kνk
ν ≥ 0 and k0 6= 0} ,103



where θ0(x) = θ(x0).For a distribution T ∈ S ′(Rd \ {0}) or T ∈ S ′(Rd) the saling degreesd(T ) is de�ned assd(T ) := inf{δ ∈ R

∣∣∣λδT (λx) −−→
λց0

0

}
.Then we an dedue:

• If sd(T ) < d, then there exists a unique extension T̃ ∈ S ′(Rd) of T suhthat sd(T̃ ) = sd(T ) and T̃ = T outside the origin.
• If d ≤ sd(T ) < ∞, then there exist extensions T̃ ∈ S ′(Rd) of T , suhthat sd(T̃ ) = sd(T ) and T̃ = T outside the origin. For two suh exten-sions T̃ , T̃ ′, there exists a polynomial P of degree sd(T )− d or smaller,suh that T̃ − T̃ ′ = P (∂)δ.For ∆± in d dimensions we get sd(∆n

±) = n(d − 2) for n ∈ N More on theonept of saling degree an be found in [41, 7℄.
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Appendix BOsillatory integralsWhen alulating nonplanar graphs in quantum �eld theory on nonom-mutative spaetime, we enounter many integrals whih are not absolutelyonvergent1 but made �nite by an osillating fator. An example for suh anintegral in one dimension is
∫

R

dk
1√

1 + k2
exp ik = lim

a→−∞
lim
b→∞

∫ b

a

dk
1√

1 + k2
exp ik,where both limits exist and the result is independent of their order. However,this notion of an improper Riemann integral makes a priori only sense in onedimension. If one looks at higher dimensions a more sophistiated mathe-matial framework is needed, whih is the theory of osillatory integrals. Themain de�nitions and results of this onept are given in this appendix.We deal with not absolutely onvergent integrals, so the usual rules of ma-nipulating integrals are a priori not appliable. An example of a funtion notabsolutely integrable for whih the theorem of Fubini fails, is the following:

f(x, y) =





1
4n if ∃n ∈ N with 2n − 1 < x < 2n+1 − 1and 2n−1 − 1 < y < 2n − 1,

− 1
2·4n if ∃n ∈ N with 2n − 1 < x < 2n+1 − 1and 2n+1 − 1 < y < 2n+2 − 1,whih is kind of osillating and dereasing at in�nity. As easy to see, we1We use the following terminology: An integral ∫ dxf(x) is said to be absolutely onver-gent if ∫ dx|f(x)| <∞ in the sense of Lebesgue integrals. In this ase f is alled absolutelyintegrable or measurable. 105
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a(x) :=

∫
dyf(x, y) = 0,

b(y) :=

∫
dxf(x, y) =

{
1 if 0 < y < 1,

0 else.So, ∫
dx a(x) = 0 6= 1 =

∫
dy b(y).This is similar to the ase of an alternating series like ∑n(−1)n 1

n
. One anget an arbitrary value if one sums the terms in a di�erent order. One anexpet that aordingly in more than one dimensions one an �nd for a notintegrable funtion, whih is kind of osillating, for eah number a variabletransformation, with whih the integral of this funtion gives this number.22In one dimension the situation is di�erent beause there is essentially one way to go106



However, osillatory integrals, as de�ned below, have a well-de�ned sense. Wegive some important properties of these integrals whih are useful to atuallyalulate one. Furthermore, a version of Fubini's theorem holds, shown insetion B.4. The onnetion to the improper Riemann integral is given inproposition B.5.1.B.1 Basi de�nitions and resultsThe theory of osillatory integrals was to a great part developed by Hörman-der [25℄. However, to keep things from beoming unneessary ompliated,we use the theory as given in [35℄.Let Ω be an open set in Rs.De�nition B.1.1. A phase funtion on Ω × Rt is a ontinuous funtion
φ : Ω × Rt → R with1. ∀λ ≥ 0, (k, l) ∈ Ω × Rt: φ(k, λl) = λφ(k, l),2. φ is C∞ on Ω × (Rt\{0}),3. (∇kφ,∇lφ) 6= (0, 0) on Ω × (Rt\{0}).An example of a phase funtion is kµlµ, whih is used in Fourier trans-formation.De�nition B.1.2. A C∞-funtion a : Ω × Rt → C is alled symbol of order
r ∈ R on Ω × Rt if ∀K ⊂ Ω ompat and ∀α ∈ Is

+, β ∈ I t
+ the seminorms

‖a‖K,α,β = sup
k∈K,l∈Rt

(1 + |l|)|β|−r|Dα
kD

β
l a(k, l)| (B.1)are �nite. The set of all suh symbols equipped with the topology given bythe seminorms will be denoted by Sym(Ω, t, r).A funtion a : Ω × Rt → C is alled asymptoti symbol, if it an bewritten as a = a1 +a2 with a1 ∈ Sym(Ω, t, r) and a2 having ompat supportin l and the map k → a2(k, ·) is C∞ as a map from Ω to L∞(Rt).Loosely saying, derivatives in l have to lower the asymptoti polynomialbehaviour of a and derivatives in k must not inrease it. Hörmander [25℄ gavea generalized notion of symbols of type ρ, δ with 1 ≥ ρ > 0 and 1 > δ ≥ 0and, ompared to (B.1), the exponent of 1 + |l| is ρ|β| − δ|α| − r. So, thederivatives in k are allowed to inrease the order of the asymptoti polynomialbehaviour. We do not need this generalized form.to in�nity. That is why the onept of improper Riemann integrals exists.107



Remark B.1.3. If r < r′ then Sym(Ω, t, r) ⊂ Sym(Ω, t, r′) and the C∞-funtions of ompat support are dense in Sym(Ω, t, r) in the topology ofSym(Ω, t, r′). For a1 ∈ Sym(Ω, t, r1) and a2 ∈ Sym(Ω, t, r2) the produt a1 ·a2is in Sym(Ω, t, r1 + r2) and aordingly for asymptoti symbols. Dα
kD

β
l a1 isin Sym(Ω, t, r1 − |β|).Now we want to give a natural extension to expressions like

∫
dl a(k, l)eiφ(k,l), (B.2)if the integral is not absolutely onvergent:Theorem B.1.4. Let φ be a phase funtion. We an assoiate with φ alinear map from the asymptoti symbols to D′(Ω), denoted by Tφ(a), whih isuniquely determined by:1. If a has ompat support in l then Tφ(a)(k) =

∫
dl a(k, l)eiφ(k,l) and isa C∞-funtion of k.2. The restrition of Tφ to Sym(Ω, t, r) is a ontinuous funtion fromSym(Ω, t, r) to D′(Ω).Furthermore, the wave front set WF(Tφ(a)) is ontained in

{
(k,∇kφ(k, l))|(k, l) ∈ Ω × Rt\{0} with ∇lφ(k, l) = 0

}
. (B.3)We use the notion of ∫ dl a(k, l)eiφ(k,l) for the distribution Tφ(a)(k) evenif the integral is not absolutely onvergent. The ase s = 0, where Ω = R0equals a single point, is allowed. In this ase the funtions only depend on land Tφ(a) ∈ C.Remark B.1.5. It is easy to see that the notion of asymptoti symbols anbe generalized further. The funtion a ould be split into more parts: a =

a1+a2+a3+ . . .. For the additional terms, k → ai(k, ·) should again be a C∞-map into some �integrable spae� having ompat support in l. An examplefor suh an �integrable spae� would be L∞(Rt), whih was already usedfor the original de�nition of asymptoti symbols in de�nition B.1.2, or theelements of E ′(Rt) whih are C∞ around l = 0.3 The important point is thatthe integrals ∫ dkf(k)ai(k, l)e
iφ(k,l) should eah be well-de�ned for f ∈ D(Ω),one in the sense of osillatory integrals, and their sum independent of thesplitting. So one ould even allow for some k → ai(k, ·) to be distributionsinstead of C∞-maps. This ould, of ourse, inrease the wave front set beyond(B.3).3As the phase funtion does not have to be ontinuous in l = 0, ai(k.·) should, e.g., notontain derivatives of δ-funtions at that point.108



Atually, in the following we are only going to treat symbols instead ofasymptoti symbols. The extension to asymptoti symbols will be obvious.B.2 Calulating osillatory integralsTo atually alulate an osillatory integral for a given phase funtion φ andsome symbol a of order r, aording to theorem B.1.4, a possibility is to �nda sequene of symbols an with ompat support in l whih have as their limit
a in the topology of symbols r′ with r′ ≥ r.4 Here, the following propositionis useful:Proposition B.2.1. Let g be a funtion in S(Rt) with g(0) = 1. Then ∀ǫ > 0the sequene gn(l) := g(l/n) has the limit 1 for n → ∞ in the topology ofSym(Ω, t, ǫ).Proof. Let 0 < ǫ < 1. The ases with ǫ ≥ 1 follow easily. We have to provethat

sup
l

(1 + |l|)|β|−ǫ

∣∣∣∣D
β
l

[
g

(
l

n

)
− 1

]∣∣∣∣ −−−→n→∞
0. (B.4)For |β| = 0 we write g(l) = 1 + lg̃(l) with g̃ ∈ S. We make a variabletransformation to l′ = l

n
and use that (B.4) is smaller or equal to the sum ofthe suprema over the sets |l′| > 1 and |l′| ≤ 1. The �rst gives

sup
|l′|>1

1

nǫ

(
1

n
+ |l′|

)−ǫ

|l′g̃ (l′)| ≤ 1

nǫ
2−ǫ sup

l′
|l′g̃ (l′)| −−−→

n→∞
0.The supremum in the last expression is �nite sine g̃ ∈ S. The other termgives

sup
|l′|≤1

1

nǫ

(
1

n
+ |l′|

)−ǫ

|l′g̃ (l′)|

≤ 1

nǫ

(
sup

l′
|g̃ (l′)|

)(
sup
|l′|≤1

|l′|
(

1

n
+ |l′|

)−ǫ
)

−−−→
n→∞

0.Here, the latter supremum in the last expression is smaller than 1 for all nsine l( 1
n

+ l)−ǫ has its maximum on [0, 1] at the point l = 1.4Of ourse, the value of the osillatory integral does not depend on whether we see itas a symbol of order r or r′. The only di�erene is, that suh a sequene an might notexist in the topology of symbols of order r, ompare with remark B.1.3.109



Now we assume |β| ≥ 1. Then |β| − ǫ > 0. Furthermore
Dβ

l g

(
l

n

)
=

1

n|β|
(
Dβg

)( l
n

)and Dβg ∈ S. The strategy will be similar to the above: Transform to l′ andsplit the supremum. The �rst term gives
sup
|l′|>1

1

n|β| (1 + |l′|n)|β|−ǫ
∣∣(Dβg

)
(l′)
∣∣ ≤ sup

|l′|>1

1

nǫ

(
1

n
+ |l′|

)|β|−ǫ ∣∣(Dβg
)
(l′)
∣∣

≤2|β|
1

nǫ
sup
|l′|>1

|l′||β|
∣∣(Dβg

)
(l′)
∣∣ −−−→

n→∞
0.For the other one we have

sup
|l′|≤1

1

n|β| (1 + |l′|n)|β|−ǫ
∣∣(Dβg

)
(l′)
∣∣

≤ 1

nǫ
sup
|l′|≤1

(
1

n
+ |l′|

)|β|−ǫ

sup
|l′|

∣∣(Dβg
)
(l′)
∣∣

≤ 1

nǫ
2|β|−ǫ sup

|l′|

∣∣(Dβg
)
(l′)
∣∣ −−−→

n→∞
0.Remark B.2.2. With suh a funtion g one an easily see that gn · a has thelimit a in the topology Sym(Ω, t, r + ǫ). So, we have for f ∈ D(Ω)

Tφ(a)(f) = lim
n→∞

∫
dkdl f(k)g

(
l

n

)
a(k, l)eiφ(k,l).From the proof of proposition B.2.1 we see, thatDβgn → 0 in the topologyof Sym(Ω, t, ǫ). Hene,

∫
dl Dβgn(l)a(k, l)eiφ(k,l) −−−→

n→∞
0 (B.5)as a distribution. Most of the time we will take g to be a funtion in C∞

0 (Rt)with
g(l) =

{
1 if |l| < 1

0 if |l| > 2.
(B.6)The restrition on the sequene gn to be saling an be loosened, butit is important, loosely saying, that the funtions fall o� more slowly when110



the region, where they almost equal 1, inreases. An example of a sequene,where the derivatives do not fall o� more slowly would be
γn(l) :=

{
1 if |l| < n− 1,

g(|l| + 1 − n) if |l| ≥ n+ 1,with g as in (B.6) (with t = 1). The sequene γn does not approah 1 in thetopology of some Sym(Ω, t, r).A di�erent method, to alulate the integrals, than multiplying with sal-ing funtions stems from the following lemma and an be seen as the gener-alization of integration by parts:Lemma B.2.3. For every phase funtion φ on Ω × Rt there exist Aµ ∈Sym(Ω, t, 0) and Bν , C ∈ Sym(Ω, t,−1) suh that
V eiφ = eiφ with V = Aµ∂

µ
l +Bν∂

ν
k + C.Proof. See [35℄.With this di�erential operator V , one an alulate

Tφ(a)(f) = lim
n→∞

∫
dkdl f(k)g

(
l

n

)
a(k, l)V eiφ(k,l)

= lim
n→∞

∫
dkdl

(
V Tf(k)g

(
l

n

)
a(k, l)

)
eiφ(k,l)

= lim
n→∞

∫
dkdl

(
V Tf(k)a(k, l)

)
g

(
l

n

)
eiφ(k,l)

=

∫
dkdl

(
V T⌈r+t+1⌉

f(k)a(k, l)
)
eiφ(k,l),where g is like in (B.6). The last integral is absolutely onvergent, so the gwas dropped. V T denotes the transposed di�erential operator, i.e.,

V T = −Aµ∂
µ
l −Bν∂

ν
k + C − (∂µ

l Aµ) − (∂ν
kBν) .The passage from V to V T in the �rst step was possible sine the integrandhas ompat support and so the boundary terms vanish. In the seond stepwe used (B.5) so the terms with derivatives of g vanish.B.3 Further resultsIf the phase funtion φ and the symbol a are ontinuous funtions of anadditional parameter z with values in C∞(Ω × (Rt \ {0})) and Sym(Ω, t, r),111



then Tφ(a)(f) will also depend ontinuously on z. Thus, we an pass to limitsunder the integral sign. In partiular, we an di�erentiate with respet to zunder the integral sign, if this is possible for φ and a.From the restrition on the wave front set of Tφ(a) given in TheoremB.1.4 we see that Tφ(a)(k) is a C∞-funtion of k in the set
Ω(C∞) :=

{
k|k ∈ Ω,∀l ∈ Rt\{0} : ∇lφ(k, l) 6= 0

}
.For given k ∈ Ω(C∞) the funtion φ(k, ·) is a phase funtion on Rt and a(k, ·)is a symbol of the same order r on Rt. (We have s = 0 here.) So we anregard k as an additional parameter. The integral over l for this k is de�nedand we have:

Tφ(a)(k) = Tφ(k,·)(a(k, ·)) =

∫
dl a(k, l)eiφ(k,l). (B.7)Furthermore, di�erentiation with respet to k an be performed under theintegral sign:

∂ν
kTφ(a)(k) =

∫
dl (ia(k, l)∂ν

kφ(k, l) + ∂ν
ka(k, l)) e

iφ(k,l).Now a(k, l)∂ν
kφ(k, l) is an asymptoti symbol of order r+ 1 and the above isagain de�ned as an osillatory integral. Proofs an be found in [26℄ or [25℄.B.4 Theorem of Fubini for osillatory integralsAs we have seen above, in not absolutely onvergent integrals the order ofintegration an in general not be interhanged. That this is nevertheless pos-sible for osillatory integrals show the following two generalizations of thetheorem of Fubini.Theorem B.4.1 (Theorem of Fubini for the �distributional variable� k). If

Ω is of the form Ω = Ω1 × Ω2 and the phase funtion φ has the property
(∇k1

φ,∇lφ) 6= (0, 0) we an perform the k2-integration at the end:
∫

dkdl f(k)a(k, l)eiφ(k,l) =

∫
dk2

(∫
dk1dl f(k1, k2)a(k1, k2, l)e

iφ(k1,k2,l)

)
,where f ∈ D(Ω) and on the left hand side the osillatory integral is de�nedwith a symbol and phase funtion depending on k2 as an additional parameter.Proof. See [25℄, (1.2.4). 112



A new result, to our knowledge, is the following theorem of Fubini wherewe split the variable l ∈ Rt into two omponents:Theorem B.4.2 (Theorem of Fubini for the �osillatory variable� l). Let
l = (u, v) ∈ Rt1 × Rt2, t := t1 + t2. and the phase funtion have the propertythat φ(k, u, v) = φ1(k, u)+φ2(v), where φ1 is a phase funtion in the variables
k and u. (φ2 does not have to be a phase funtion and ould even be zero.)Then, for a ∈ Sym(Ω, t, r) and f ∈ D(Ω), the funtion

H(v) :=

∫
dkdu f(k)a(k, u, v)eiφ1(k,u)is in S(Rt2) and furthermore

∫
dvH(v)eiφ2(v) =

∫
dkdl f(k)a(k, l)eiφ(k,l). (B.8)Proof. First, we show that H ∈ S(Rt2), what is equivalent to

sup
v

|vαDβ
vH(v)| <∞ (B.9)for all multi-indies α, β. We have

vαDβ
vH(v) =

∫
dkdu f(k)vαDβ

v a(k, u, v)e
iφ1(k,v),using the fat that the di�erentiation an be performed under the integralsign (see setion B.3). In the following onsiderations it is important that weare dealing with symbols on Ω×Rt. This means that derivatives with respetto u redue the asymptoti polynomial behaviour for large v and vie versa.We note that:

• vα is in Sym(Ω, t, |α|).
• If a ∈ Sym(Ω, t, r) then Dβ

v a ∈ Sym(Ω, t, r − |β|).So vαDβ
v a is a symbol of order r + |α| − |β| and (B.9) is proved if we anshow that

sup
v

∣∣∣∣
∫

dkdu f(k)a(k, u, v)eiφ1(k,v)

∣∣∣∣ <∞for an arbitrary symbol a. We use that φ1 is also a phase funtion on Ω×Rt,so aording to Lemma B.2.3 there exist symbols A1
µ, A

2
ρ of order 0 and Bν , Cof order -1, all on Ω × Rt, with

V eiφ1(k,u) =
(
A1

µ∂
µ
u + A2

ρ∂
ρ
v +Bν∂

ν
k + C

)
eiφ1(k,u) = eiφ1(k,u).113



As φ1 does not depend on v the symbols A2
ρ an be set to zero. With this wehave

sup
v

∣∣∣∣
∫

dkdu f(k)a(k, u, v)eiφ1(k,u)

∣∣∣∣

= sup
v

lim
n→∞

∣∣∣∣
∫

dkdu f(k)a(k, u, v)g
(u
n

)
V eiφ1(k,u)

∣∣∣∣

= sup
v

lim
n→∞

∣∣∣∣
∫

dkdu
(
V Tf(k)a(k, u, v)

)
g
(u
n

)
eiφ1(k,u)

∣∣∣∣

= sup
v

∣∣∣∣
∫

dkdu
(
V T⌈r+t+1⌉

f(k)a(k, u, v)
)
eiφ1(k,u)

∣∣∣∣ .From the seond to third line it was important that A2
ρ vanishes sine weare not integrating over v. The last integral is absolutly integrable in k, uand v and the integrand is a ontinuous funtion of these variables, so thesupremum of the integral over k and v has to be �nite. Thus, H ∈ S(Rt2)has been shown now.To prove B.8 we use the same V as before and make use of Fubini'stheorem for absolutely integrable funtions:

∫
dvH(v)eiφ2(v) =

∫
dv

(∫
dkdu

(
V T⌈r+t+1⌉

f(k)a(k, u, v)
)
eiφ1(k,u)

)
eiφ2(v)

=

∫
dkdudv

(
V T⌈r+t+1⌉

f(k)a(k, u, v)
)
eiφ1(k,u)eiφ2(v)

=

∫
dkdl f(k)a(k, l)eiφ(k,l).

B.5 Connetion to other de�nitionsFor one dimension there already exists a desription on how to alulateexpressions like (B.2), namely the improper Riemann integral. For this, ahas to be dereasing, i.e., of order smaller than 0.5 Osillatory integrals arewell-de�ned even if the value of the symbols a inreases with l. The followingproposition states that, if the improper Riemann is appliable too, the resultequals the osillatory integral. As we ould not �nd a similar statement in[25℄ or [35℄, we give a proof.5Funtions whih behave like 1
log l for large |l|, whih are of order 0, are also allowed.The following proposition an easily be generalized to this ase.114



Proposition B.5.1. Let g be as in (B.6), a ∈ Sym(Ω, 1, r) with r < 0 and
φ(k, l) = φ(k)·l a phase funtion6 with φ(k) 6= 0. Then the osillatory integralequals the improper Riemann integral:

lim
n→∞

∫ ∞

0

dl g

(
l

n

)
a(k, l)eiφ(k)l = lim

n→∞

∫ n

0

dl a(k, l)eiφ(k)l.Proof. This is lear if r < −1 sine then both integrals are absolutely on-vergent. In the other ase the integral on the left-hand side equals
∫ n

0

dla(k, l)eiφ(k)l +

∫ 2n

n

dlg

(
l

n

)
a(k, l)eiφ(k)l.The �rst term already has the orret limit, so the proposition is proved ifthe other one approahes 0. To see this we make a variable transformationand integrate by parts:

∫ 2n

n

dlg

(
l

n

)
a(k, l)eiφ(k)l

=n

∫ 2

1

dlg(l)a(k, nl)eiφ(k)nl

= − i

φ(k)

[
g(l)a(k, nl)eiφ(k)nl

]2
l=1

+
i

φ(k)

∫ 2

1

dl (∂g(l)a(k, nl) + g(l)n(∂la)(k, nl)) e
iφ(k)nl.The boundary terms vanish in the limit n→ ∞ sine a is a symbol of order

r < 0 and hene dereasing at in�nity. For the remaining integrals we have
∣∣∣∣
∫ 2

1

dl∂g(l)a(k, nl)eiφ(k)nl

∣∣∣∣ ≤ sup
l

|∂g(l)| sup
l∈[n,2n]

|a(k, l)| −−→
n→0

0and
∣∣∣∣
∫ 2

1

dlg(l)n(∂la)(k, nl)e
iφ(k)nl

∣∣∣∣

≤
∫ ∞

n

dl

∣∣∣∣g
(
l

n

)
(∂la)(k, l)e

iφ(k)l

∣∣∣∣

≤
∫ ∞

n

dl sup
l′

|g(l′)|dk(1 + l)r−1 −−→
n→0

0,where the last integral is absolutely onvergent.6The most general form of a phase funtion in one dimension is θ(−l)φ+(k)·l+θ(l)φ−(k)·
l. This ase an easily be derived from the one given here.115



To show how the last theorem and the theorem of Fubini an be used toalulate osillatory integrals numerially, we give an example for s = 0, t1 =
t2 = 1:
∫

dudv
v17u

1 + u2 + v2
eiu =

∫
dv

(∫
du

v17u

1 + u2 + v2
eiu

)

= iπ

∫
dv v17e−

√
1+v2

.The absolute value of the �rst integrand inreases in v-diretion but the lastintegral is absolutely onvergent and an be treated by the usual numerialmethods.Another presription of how to interpret expressions like (B.2) is to multi-ply it with a funtion f(k) and then perform �rst the k-integration and thenthe l-integration. This works, for example, for ∫ dl leikl, sine the remain-ing funtion of l is absolutely onvergent. But this does not have to be thease, a and φ ould for example not dependent on k at all. If it is absolutelyonvergent, then the result gives, of ourse, the same as the alulation withosillatory integrals:Proposition B.5.2. Let a be a symbol, φ a phase funtion and f ∈ D(Ω)with
F (l) :=

∫
dkf(k)a(k, l)eiφ(k,l)absolutely integrable. Then

∫
dl F (l) = Tφ(a)(f).Proof.

Tφ(a)(f) = lim
n→∞

∫
dkdl f(k)g

(
l

n

)
a(k, l)eiφ(k,l)

= lim
n→∞

∫
dl g

(
l

n

)
F (l) =

∫
dl F (l).If the phase funtion is of the kind kµlµ then the osillatory integral isrelated to the Fourier transform. If a does not depend on k it an be seenas an element of S ′. Then the osillatory integral gives exatly the Fouriertransform of a ∈ S ′. 116



As we see in setion 4.4 an extension of the theory of osillatory integralsto the ase where a(k, l) is needed, if we want to alulate higher orderdiagrams in the Yang-Feldman formalism on Mn. There are two naturalapproahes for suh an extension:1. The distributions a ould be approximated by a sequene of symbols
(an)n∈N, suh that for eah an the osillatory integral is well-de�ned.The osillatory integral for a an then be ahieved from the limit
n → ∞ after integrating, if this is well-de�ned and to a large extendindependent of the hoie of the sequene.2. One ould regard the relation
∫

dkdlf(k)a(k, l)eiφ(k,l) = lim
n→∞

∫
dkdlf(k)gn(l)a(k, l)eiφ(k,l) (B.10)for a sequene gn of symbols with ompat support and approahing

1, as a de�nition. The right-hand side of (B.10), with �nite n, is evende�ned for a a distribution. If the limit exists and is independent ofthe hoie of the sequene gn out of some large lass of sequenes, thiswould be a reasonable extension, too.
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Appendix CGraphs for Yang-FeldmanformalismHere, we show how to alulate the ontributions to n-point funtions withgraphs like those shown in �gures 4.3, 4.4 or 4.5.The graphs for the Yang-Feldman formalism we present here are similarto those used in [2℄. We analyse the r-point funtions of the φa model. The�eld equation is
(� +m2)Φ = −λΦa−1.The naive solution is given in (3.3). The �elds are built up reursively as in�gure 4.1.The rules to alulate the ontributions of graphs to the r point funtionsof the φa model in momentum spae are as follows:1. Draw r tree graphs of retarded propagators. The diretions are up-wards. At eah vertex there should be at most a − 1 branhing outsonsisting of other retarded propagators. (The empty tree is allowed.)2. Add leaves suh that eah vertex has exatly a−1 branhing outs. (Theempty tree has one leaf.)3. Connet eah leaf by another one. The lines (�ontrations�) are di-reted from left to right. (Maybe there are additional rules, e.g., notadpoles are allowed if Wik ordering is involved.) If this is not possi-ble (e.g. the number of leaves ould be odd) the ontribution of thisgraph is zero.4. Otherwise alulate the ontribution of this graph to the r-point fun-tion in the following way: 119



(a) Numerate eah retarded propagator and ontration by a di�erentnumber. Eah gets a momentum k �owing in the diretion of theline.(b) For the retarded propagator with number j write ∆̂R(kj), for aontration (2π)2∆̂+(kj).() For eah root l with outgoing momentum kjl
write f̌l(kjl

). (Inom-ing momenta are ounted as the negative is outgoing.)(d) The ontribution oming from eah vertex depends on the atualuto�. If it is a formal alulation, i.e., without uto�, eah vertexwith outgoing momenta {kjl
} gives

(2π)−2(a−3)δ(
∑

l

kjl
).If the uto� is de�ned by multiplying the �eld monomial with auto� funtion g like in setion 4.2 it is

(2π)−2(a−2)ǧ(
∑

l

kjl
).On nonommutative spaetime further twisting fators might arise.Some examples are given in setion 4.3.(e) Integrate over all momenta. The order of this ontribution is thenumber of verties.A graphial example is given in �gure C.1. Things an beome more om-pliated, if �elds of higher spins or multiple interations are involved, see,e.g., the Wess-Zumino model in setion 4.6. The topology of the graphs aresimilar to the graphs from Feynman rules. Note, that in the Yang-Feldmanformalism eah graph might not give a well-de�ned ontribution on its own.It is neessary to sum over all graphs of the same order.
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1.

2.

3.

Figure C.1: Example of building up a ontribution to the three-point funtionin the φ3 model.
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Appendix DTheorem of Epstein and GlaserEpstein and Glaser examine in [17℄ vauum expetation values (l-point fun-tions) of time-ordered produts de�ned by retarded or advaned solutions.These, denoted by FR/A(p, q), p ∈ R4l; q ∈ R4n, shall ful�ll
suppFR/A ⊂

{
(x; y) ∈ Ml+n|∀i ≤ n∃j ≤ l with xj − yi ∈ V̄±

}
=: SR/A.(D.1)

V̄± denotes the full losed forward/bakward light one. Furthermore, theirFourier transforms F̂R/A(p; k) should be equal on the set
Rn :=



k ∈ Mn

∣∣∣
(∑

i∈I

ki

)2

< 4m2 ∀I ⊂ {1, . . . , n}



 (D.2)for some m ∈ R.Then the following theorem holds:Theorem D.1.3. If a pair of tempered distributions FR/A ∈ S ′(Ml+n) has thesupport (D.1) and their Fourier transforms oinide for k ∈ Rn, then theirFourier transforms are tempered distributions in p and in�nitely di�erentiablein k for all k ∈ Rn.Hene, we an hoose an arbitrary sequene of test funtions Ǧa ∈ S(Mn)whih have support in a losed subset of Rn and onverge to (2π)4nδ(4n) inthe topology of O′

C(Mn)1 and the adiabati limit,
lim
a→∞

∫
dkdpf̌(p)Ǧa(k)F̂R(p, k),1O′

C are the distributions of rapid derease, see [38℄ for a rigorous de�nition. These aton smooth funtions whih are polynomially bounded. F̂R/A is on Rn smooth and alsopolynomially bounded sine it is a tempered distribution.123



exists for all f ∈ S(Ml) and is independent of the hoie of the sequene Ǧa.As the Fourier transforms of FR and FA oinide in Rn, the adiabati limitfor suh a Ga is the same for both.
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