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Abstract

We consider compactified six-dimensional gauged supergravity and find
the general warped solution with four-dimensional maximal symmetry.
Important features of the solution such as the number and position of
singularities are determined by a free holomorphic function. Further-
more, in a particular torus compactification we derive the supergrav-
ity coupling of brane fields by the Noether procedure and investigate
gravity-mediated supersymmetry breaking. The effective Kähler po-
tential is not sequestered, yet tree level gravity mediation is absent as
long as the superpotential is independent of the radius modulus.

Zusammenfassung

Ich bestimme die allgemeine gewarpte Lösung der kompaktifizierten
sechsdimensionalen Supergravitation mit maximaler vierdimensionaler
Symmetrie. Wesentliche Eigenschaften der Lösung wie Anzahl und
Position von Singularitäten werden von einer frei wählbaren holomor-
phen Funktion bestimmt. Weiterhin betrachte ich eine spezielle T 2/

�
2-

Kompaktifizierung, bestimme die lokal supersymmetrische Kopplung
der Branefelder mit Hilfe der Noether-Methode und untersuche die
gravitative Vermittlung von Supersymmetriebrechung. Das effektive
Kählerpotential zerfällt nicht in separate Anteile der verschiedenen
Branes. Supersymmetriebrechung kann damit bereits auf Bornniveau
durch gravitative Effekte übermittelt werden, jedoch nur, wenn das
Superpotential vom Radionmodulus abhängt.
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1. Introduction

Wenn es möglich ist, daß es Ausdehnungen von andern
Abmessungen gebe, so ist es auch sehr wahrscheinlich, daß sie Gott
wirklich irgendwo angebracht hat. Denn seine Werke haben alle die
Größe und Mannigfaltigkeit, die sie nur fassen können. Räume von
dieser Art könnten nun unmöglich mit solchen in Verbindung stehen,
die von ganz anderm Wesen sind; daher würden dergleichen Räume
zu unserer Welt gar nicht gehören, sondern eigene Welten
ausmachen müssen.

(Immanuel Kant, Gedanken von der wahren Schätzung der
lebendigen Kräfte)

High-energy physics is in a peculiar situation today: On the one hand, there are big
problems which imply that we have to extend the standard model. These include the
recent cosmological precision measurements which indicate that the universe as a whole
is dominated by an unknown substance – dubbed dark energy for a lack of better words
– which causes the expansion to accelerate, and that the matter part mainly consists
of unknown matter which is called dark matter. In the standard model, there is no
candidate particle for dark matter, and the problem of dark energy might well require
us to go beyond quantum field theory: Quantum field theory does not describe gravity,
which is phenomenologically well established. On the other hand, the standard model
successfully describes all laboratory experiments conducted so far (strictly speaking,
neutrino masses are already beyond the standard model, but they are easily included
and almost standard by now).

A possible programme to attack these problems is to assume that the standard model
results as a low-energy effective theory from a string theory compactification. This
generically incorporates several popular extensions of the standard model, notably su-
persymmetry and extra dimensions, on the low-energy side while providing a theory of
quantum gravity on the high-energy side.

A complete model along these lines would have various issues: In a string theory
setup, there are branes and fluxes to choose, there might be intermediate field theories
in lower dimensions and an N = 1 supersymmetric theory with a gauge group containing
the standard model group and the correct particle spectrum. In this effective theory,
the remaining supersymmetry is then spontaneously broken and the standard model,
including masses and mixings, emerges. Along the way the moduli have to be fixed, the
cosmological constant must be small and positive, and there must be some suitable dark
matter candidate.

This is a formidable task, and it can be tackled from many angles. In this thesis, we will
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consider two aspects of intermediate field theories: The result of any compactification
is a compactified space, that is, a spacetime that is split in a four-dimensional large,
i.e. noncompact, part for standard model particles and physicists to propagate in, and a
compact internal space, and thus the metric is block-diagonal. For simplicity, one often
considers maximal symmetry for the large dimensions (i.e. “our” world is Minkowski,
de Sitter or anti-de Sitter space), and then this almost fixes the four-dimensional part
of the metric. The only part that is not fixed is a conformal factor that depends on the
internal dimensions, so that the metric becomes

ds2 = W 2(y) ds2
4 + gmn(y) dymdyn .

Such a geometry is known as warped geometry and has important implications for e.g. the
hierarchy between scales in the theory.

The use of extra dimensions in purely field-theoretical settings has also become rather
popular in recent years, in particular the use of singular internal spaces, like orbifolds.
They are smooth manifolds, but for isolated singular points. In the full space, these
points correspond to special hyperplanes, called branes. Fields on such spaces can live
in the full spacetime (the bulk), in which case there can be boundary conditions at
the branes which lead e.g. to a breaking of gauge symmetries or to a reduction of the
spectrum of light states. Alternatively, fields can be confined to branes, so that one can
simply realise e.g. four-dimensional theories which are coupled to higher-dimensional
gravity and gauge fields. Such models go by the name of brane-worlds and realise higher
dimensions in a way Kant did not imagine.

Orbifolds provide a convenient method to construct such singular spaces, by dividing
a smooth manifold by a non-freely acting discrete symmetry. However, the resulting
space is what matters, and one can study such spaces without resorting to the orbifold
procedure.

Considering singularities, six-dimensional compactifications are particularly interest-
ing because four-dimensional branes then have two transverse dimensions. Codimension-
two branes have an important property, namely, their curvature is independent of their
tension, or energy density. The reason is that two-dimensional spaces admit a special
kind of singularity, the conical singularity. As the name suggests, a conical singularity
locally looks like the tip of a cone, and it is completely characterised by the deficit angle
which gives the “pointiness” of the cone. The curvature close to the singularity is of the
type (finite) + δ(x− x0), and there is no 1/r-divergence as e.g. for a Schwarzschild sin-
gularity which is of codimension three. A brane with a certain tension will just generate
a corresponding deficit angle, but the curvature (i.e. the effective cosmological constant)
on the brane vanishes. This is the idea of self-tuning.

We will study this idea in the context of six-dimensional gauged supergravity and a
warped compactification. This supergravity theory comes with a positive definite poten-
tial which allows to circumvent the usual no-go theorems on warped compactifications,
and it has a gauge field whose field strength can have nontrivial flux in the internal
space. We find that, also for warped geometries, Minkowski space is the unique max-
imally symmetric four-dimensional space. Fine-tuning of the cosmological constant is
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thus unnecessary, the reason being that the internal space is compact. For the same
reason, however, the gauge flux is quantised, and this leads to a different fine-tuning
condition, between the brane tensions.

For six-dimensional supergravity, we find the general warped solution. Its most inter-
esting feature is a free holomorphic function which determines the number of singularities
in the internal space via its simple poles and zeroes. Hence, we can find solutions with
any number of branes, and give examples of two- and many-brane solutions.

Many-brane solutions with matter on different branes are frequently employed for
supersymmetry breaking. The spatial separation in the extra dimensions serves to hide
the hidden sector, while the mediation of supersymmetry breaking is effected by bulk
fields. A very generic candidate for the mediation is gravity, since gravitational fields
always propagate in the whole of spacetime. Gravity mediation in this sense does not
mean graviton exchange, but any interaction that is encoded in the Kähler potential,
which generically includes non-universal couplings which imply strong flavour-changing
neutral currents. If, however, the extra-dimensional separation leads to a particular
structure in the Kähler potential, the sequestered form, schematically

Ω = Ωbulk + Ωobservable + Ωhidden ,

such contact terms are absent. In five dimensional supergravity, the Kähler potential
is indeed sequestered. We will study a six-dimensional setup in which this structure is
not realised. This is due to a certain bulk field which has nontrivial couplings to the
branes, and upon integrating out this field, we potentially generate contact terms which
lead to direct mediation of supersymmetry breaking. However, the situation is actually
more subtle: masses in the observable sector depend on the moduli dependence of the
superpotential as well, and hence they are related to the issue of moduli stabilisation.

In the next chapter, we will introduce higher-dimensional supergravity and motivate
why it is worthwhile to analyse such theories by placing it in the context of general
beyond standard model physics. In Chapter 3, we will find the general warped solution
of six-dimensional supergravity. For a particular compactification, we find the locally
supersymmetric coupling of branes to the bulk supergravity in Chapter 4 and analyse
gravity mediated supersymmetry breaking. Finally, we conclude in Chapter 5.
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2. Supergravity in Higher Dimensions

We first present a brief overview of the standard model and give some reason why it
should be extended. In the second and third section we then outline three possible
directions of extension, higher dimensions, supersymmetry and grand unification. All
are justified in two ways: From a top-down perspective, string theory (almost) requires
both extra dimensions and supersymmetry, and it easily provides large gauge groups like
E8, depending on the type of string theory. On the other hand, these concepts are also
quite fruitful in a bottom-up approach, that is, in (effective) field theories which arise
as direct extensions of the standard model with additional ingredients.

This section is not intended to be comprehensive. Rather, its aim is to motivate why
it is ultimately worthwhile to investigate higher-dimensional supergravity in the light of
general beyond the standard model physics.

2.1. The Standard Model

The standard model is a gauge theory based on the gauge group SU(3)C×SU(2)L×U(1)Y .
Associated are the gauge bosons in the adjoint representations of the factors: The gluons
Ga
µ, the SU(2)L gauge bosons W i

µ and the hypercharge gauge field Bµ, where a = 1, . . . , 8
and i = 1, 2, 3 label the SU(3)C and SU(2)L generators, respectively.

The particle content is split into the matter fermions and the Higgs sector:

• The matter sector contains three families, i.e. three copies which follow the same
pattern. All fermions are chiral, and they are divided between different represen-
tations as follows:

– The quarks come in the fundamental or antifundamental of SU(3)C . The left
handed up and down quarks form a SU(2)L-doublet, while their right-handed
counterparts are singlets of weak isospin:

Q =

(
uL

dL

)
∼ (3, 2)1/6 , uc

R
∼
(
3, 1
)
−2/3

, dc
R
∼
(
3, 1
)

1/3
(2.1)

– The leptons are similar, but for one exception: They are colourless. Strictly
speaking, the standard model does not contain a right-handed neutrino (which
is a complete singlet), but neutrino masses, which are by now firmly estab-
lished, strongly suggest their existence:

L =

(
νL

eL

)
∼ (1, 2)−1/2 , ec

R
∼ (1, 1)1 ,

[
νc

R
∼ (1, 1)0

]
(2.2)
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• The Higgs field is a complex scalar doublet:

Φ =

(
φ+

φ0

)
∼ (1, 2)1/2 (2.3)

Since left- and right-handed fermions have different gauge quantum numbers, any
direct mass term is forbidden by gauge invariance, just as for the gauge fields. To obtain
massive particles, one can employ the Higgs mechanism: The Higgs field has a potential

LV = µ2
(
Φ†Φ

)
− λ

4

(
Φ†Φ

)2
, (2.4)

which generates a vacuum expectation value 〈Φ〉 6= 0. The potential fixes the modulus to
be
〈
Φ†
〉
〈Φ〉 = 4µ2/λ = (246 GeV)2, but the phase of 〈Φ〉 is not fixed. Since Φ is charged

under SU(2)L × U(1)Y , this group gets broken to the subgroup U(1)em (whose relation
to the original SU(2)L × U(1)Y is determined by the phase of the vacuum expectation
value). The W i

µ and Bµ fields mix in this process to give the W±
µ , Zµ and Aµ fields. The

first three of these get massive: A mass term comes from the covariant derivative acting
on 〈Φ〉, the required longitudinal components are provided by the Higgs field. Being a
complex doublet, it had four real degrees of freedom to start with, so one remains: The
Higgs boson φ, the only as yet undetected particle of the standard model.

The Higgs not only couples to the gauge field, but also has Yukawa couplings to the
fermions ∼ ΦψLψR. The vacuum expectation value 〈Φ〉 thus turns the Yukawa coupling
into a mass term for the fermions. The three generations can mix in the mass terms
via coupling matrices, and the mass terms need not be (and are not) diagonal in the
same basis as the kinetic terms. This leads into the realm of flavour physics: important
examples are the B meson system and neutrino oscillations. The Yukawa matrices
show a complicated structure, the origin of which is not understood at the moment.
Nevertheless, in the quark sector, the mixings are small, and the absence of flavour-
changing neutral currents (FCNCs) is an important constraint for theories beyond the
standard model.

2.1.1. Problems of the Standard Model

While the standard model is very successful experimentally, there are a number of issues
which suggest that there might be a more fundamental theory beyond it:

1. Neutrino masses and coupling unification: The right-handed neutrino, which is
already present in (2.2), is actually beyond the standard model. It is (almost)
required because we now know that neutrinos have masses. Neutrino masses,
however, are extremely small (their size is unknown, but there are upper bounds
of order 1 eV, and theoretical prejudice would prefer masses around 10−2 eV), and
them being generated by the Higgs mechanism in the same way as for the other
fermions seems highly unnatural. There is a more compelling solution to this
problem which goes by the name of see-saw mechanism[1]. The key observation
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is that right-handed neutrinos are complete standard model singlets, so they can
be Majorana particles. As such they can have two types of mass terms, the usual
Higgs coupling Yν and a Majorana mass term which involves only the right-handed
fields,

L ⊃ Yνεij
〈
Φi
〉
νRL

j +MνT
R
CνR + H.c. (2.5)

Assuming that the Majorana mass M is much larger than the Dirac mass
mD = Yν 〈Φi〉, one can find two mass eigenstates, the heavy one with a mass
∼ M and a light one with mass ∼ m2

D
/M . Assuming a Dirac mass of order of

the other fermion masses, O (1 GeV), the Majorana mass scale would be around
O (1011 GeV). This model nicely fits into e.g. SO(10) GUTs, see Section 2.2.1.

2. The hierarchy problem: The highest scale in the standard model, the vacuum
expectation value of the Higgs field, is 〈φ〉 = 246 GeV. This is 16 orders of mag-
nitude below the Planck mass MP = 2.4 · 1018 GeV, the relevant scale of gravity
(in other words, gravity is extremely weak compared with e.g. electromagnetic
forces). This is regarded as a very unnatural hierarchy between gravity and the
other interactions.

3. The preceding problems were not fundamental but rather aesthetic ones. There
are, however, observational results which directly require physics beyond the stan-
dard model, to wit, dark matter and dark energy.

Observations of the cosmic microwave background[2], the large scale structure of
the universe[3] and of galactic rotation curves show that the matter content of
the universe is split into about 15 % visible, i.e. baryonic (and leptonic) matter
and 85% dark matter. This matter is not really dark, but transparent, that is,
electrically neutral. It is detected by its gravitational effects: It clumps and thus is
important for structure formation in the early universe. No standard model parti-
cle is a suitable dark matter candidate, and while there are some possible solutions
which do not involve new fundamental particles (primordial black hole remnants,
topological defects), these are the most natural. Extensions of the standard model
usually come with plenty of those, but most of them do not have the right proper-
ties: They need to be electrically neutral, stable, and be in the right mass range to
be nonrelativistic now (that is, cold dark matter). Supersymmetry offers a natural
candidate in the form of the lightest neutralino, a mixture of the superpartners of
the weak gauge bosons and the Higgses, or in form of the gravitino which is the
superpartner of the graviton[4]. Alternatively, more complicated supersymmetric
models contain various other particles which are neutral and stable and thus could
constitute dark matter.

Much more mysterious is another, and actually dominant, component of the uni-
verse: dark energy. The distance-redshift relation of type Ia supernovae[5], the age
of globular clusters, and the microwave background data together with the Hubble
parameter measurement[6] tell us that about 70% of the energy of the universe are
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not in matter, but in a smoothly distributed form with negative pressure, which
manifests itself most prominently in an acceleration of the cosmic expansion. The
nature of this energy is totally unclear at the moment. The simplest explanation
would be a cosmological constant as a modification of gravity. Other mechanisms
involve slowly evolving scalar fields or the vacuum energy of a quantum field theory.

4. The issue of dark energy, as well as the hierarchy problem, might well be inac-
cessible in a purely quantum field theoretical setting, since in QFT, gravity is not
included, and it is not obvious how to treat e.g. zero-point energies of quantum
fields.

This is a general problem: It is already very hard to formulate QFT on curved
spacetimes, and a quantum theory of gravity is still lacking. A straightforward
quantisation of general relativity fails because the theory is (perturbatively) non-
renormalisable. The – at the moment – most promising candidate for a theory
unifying quantum theory and gravity is string theory. String theory generically
lives in ten dimensions, but one might hope that the standard model in four di-
mensions emerges as a low-energy limit. More about this in Section 2.2.2.

2.2. Beyond the Standard Model

In the previous section, we have argued that the standard model, despite its phenomeno-
logical success, is not the ultimate theory of nature. When going beyond the standard
model, there are generally two approaches:

• The bottom-up approach, where one starts form the standard model and enriches
it with more ingredients like supersymmetry, unification or higher dimensions, to
name the most popular ones.

• The top-down approach, which assumes a fundamental theory (or model) of ev-
erything, presumably at a very high energy scale, and proceeds to lower energies
to try and find the standard model as a low-energy limit.

Both ways have their virtues and problems, and we will briefly discuss both of them
in this section. The most obvious problem is that we do not know the fundamental
model, and hence it is not clear whether we arrive at a consistent theory (bottom-up)
or end at the standard model (top-down). However, we will for the purpose of this
section restrict the top-down approach to string theory compactifications, and gear the
bottom-up ingredients in accordance, that is, we mention extensions of the standard
model which have some motivation in string theory.

2.2.1. Bottom-Up: Supergravity and Higher Dimensions

The most common addition certainly is supersymmetry in a more or less simple form.
It has been around for about thirty years, and so has grand unification. In recent years,
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extra dimensions have also become very popular. All three have interesting benefits in
their own right, and they are motivated by string theory as well. Thus, one might hope
that there is a model starting from a consistent string theory, which by way of compact-
ification, arrives at the standard model at low energies. En route, there might be stages
where one deals with a higher-dimensional supergravity theory, and it seems advanta-
geous to tackle such a quest from both sides, that is, by compactifying string theories
and by extending the standard model with higher dimensions and supersymmetry.

All such theories are to be regarded as effective theories, that is, they are nonrenormal-
isable and only valid up to some energy cutoff. Beyond that cutoff, one has to assume a
(more) fundamental theory, from which the effective theory arises as a low-energy limit.

Higher Dimensions

In the simplest higher-dimensional setup, spacetime is modelled as a d-dimensional man-
ifold, where d > 4. Spacetime has a product structure where four of these dimensions are
large, e.g. Minkowski space, while the additional d− 4 dimensions form a small compact
manifold.

The compact internal space imposes periodicity or boundary conditions on the fields,
so that the dependence on the extra-dimensional coordinates can be expanded in a set
of basis functions. For one extra dimension, a circle parametrised by y ∈ [0, 2πR), a
scalar field φ(x, y) can be Fourier expanded as

φ(x, y) =
1√
2πR

∞∑

n=−∞
einy/Rφn(x) . (2.6)

The kinetic term in the Lagrangean then leads to mass terms for all modes (after inte-
grating over the fifth dimension),

∫
dy ∂5φ ∂

5φ = −
∞∑

n=−∞

( n
R

)2

φnφ
†
n . (2.7)

In this way we have traded the dependence of fields on the extra dimension for an
infinite tower of massive fields, the Kaluza-Klein tower. If the circle is very small, the
Kaluza-Klein masses are large, and for the effective low-energy theory, we can keep only
the massless mode, the zero mode.

For fermionic fields, there is a subtlety: In five dimensions, there are only Dirac
spinors, so there can be no chiral fermions. The dimension of spinors grows quickly with
spacetime dimension, so that e.g. the smallest five-dimensional spinor corresponds to a
four-dimensional Dirac spinor, i.e. two chiral ones. This also implies that the simplest
supersymmetry in five or six dimensions actually is N = 2 extended supersymmetry in
four dimensions. Details about spinors in six dimensions can be found in Appendix A.

Branes and Orbifolds
The simple higher-dimensional setup discussed in the previous section can be extended
in an important way by the introduction of branes, that is, four-dimensional subspaces to
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which fields can be confined. Branes arise if the internal space is not a smooth manifold,
but has singular points.

πRy−πRy

πRz

−πRz

y

z

⇒

(a) The torus as a rectangle in R2 with
opposite sides identified. The Z2 action
is indicated by the red arrows. The lower
picture shows the torus as embedded in R3.

πRy−πRy

πRz

−πRz

y

z

(b) The orbifold. The fundamental domain
is halved, the green dots mark the fixed
points of the Z2 action. The vertical edges
are identified, with a fold in the middle.

Figure 2.1: The Z2 action takes the torus to the orbifold T 2/Z2 by identifying opposing points. The
orbifold has four conical singularities, each with a deficit angle of π.

A convenient way to construct such singular internal spaces is orbifolding. In this
case, one starts with a regular manifold and mods out by a non-freely acting discrete
symmetry. The fixed points of this action correspond to singular points on the resulting
orbifold, and to branes in the full setup.

As an example, consider the two-dimensional torus T 2, with the fundamental domain
(y, z) ∈ (−πRy, πRy]× (−πRz, πRz] (see Fig. 2.1(a)). Let the group Z2 act on the torus
by

r : (y, z) 7→ − (y, z) (2.8)

and identify points which are mapped onto each other under this reflection. This action
has four fixed points,

P1 = (0, 0) P2 = (πRy, 0) P3 = (0, πRz) P4 = (πRy, πRz) , (2.9)

and the fundamental domain is halved. One can choose the fundamental domain to
be the “right”, i.e. y ≥ 0 part of the original one as in Fig. 2.1(b). Then the left and
right edges are identified with themselves, such that the resulting object embedded in
three-dimensional space looks like a pillow with four corners, corresponding to the fixed
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points of the group action. However, the orbifold is flat everywhere (except for the fixed
points), so the pillow picture might be misleading.

In orbifold field theories, the discrete group acts on the fields as well. In the case of
a Z2 symmetry, the action is quite simple: Collecting all fields of the theory in a vector
Φ, the reflection acts by a matrix R,

r : Φ (x, y, z) 7→ RΦ (x,−y,−z) , R2 = � . (2.10)

The dependence on the four-dimensional coordinates xµ is unaffected. We can diago-
nalise the matrix R to obtain a set of even and odd fields, that is, in the diagonal basis,
the reflection acts as

r : Φi (x, y, z) 7→ ±Φi (x,−y,−z) . (2.11)

To study the consequences of the Z2 action on the fields, we can start from the Kaluza-
Klein decomposition of a field Φ similar to Eq. (2.6). Consider a scalar field for simplicity,
extension to other spins is straightforward. It is convenient to rewrite the exponentials
in terms of sines and cosines to display the symmetry properties:

φ (x, y, z) =
1√

4π2RyRz

∞∑

m,n=−∞
φ(m,n)

[
cos

(
m

y

Ry
+ n

z

Rz

)

+i sin

(
m

y

Ry
+ n

z

Rz

)] (2.12)

After integrating over the extra dimensions, the mode φ(m,n) acquires a Kaluza-Klein

mass m2
(m,n) = (m/Ry)

2 + (n/Rz)
2. This means that the only massless mode is the

(m,n) = (0, 0) cosine mode.
Imposing the Z2 action, we immediately see that for even fields, the sine modes are

forbidden, while odd fields lose their cosine modes. In particular, only the even fields
retain a zero mode, while the lightest mode of odd fields already has a mass of the order
of the inverse compactification radius. This is the main feature of orbifold theories: By
choosing appropriate boundary conditions, one can eliminate unwanted fields from the
low-energy theory. This includes gauge fields, so that gauge symmetries can be broken
at orbifold fixed points, and a huge number of models of this type exists.

The construction of orbifolds in the way just described is quite intuitive. However, we
end up with a theory defined on a manifold with singularities, and its origin as a smooth
space with a discrete symmetry is not relevant. We could just as well have started with
the fundamental domain of the orbifold and imposed the right boundary condition to
end up with the same theory. Indeed, there are many two-dimensional manifolds with
singularities that cannot be obtained as a manifold modded out by a discrete symmetry.

While much of the orbifold construction can be carried over to other dimensions, the
severity of the resulting singularities depends on the dimension. In one-dimensional
orbifolds, the singularities are simply end-of-the-world points on a closed interval. This
is a reflection of the fact that, in one dimension, there is no curvature. In two dimensions,
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there is a special kind of singularity, the conical one. It can be thought of as a tip of
cone obtained from a plane by cutting out a wedge of deficit angle δ and gluing the edges
(see Fig. 2.2). The metric close to such a singularity can be brought into the following
form (in polar coordinates (ρ, θ), where the singularity is at ρ = 0, and θ ∈ [0, 2π)):

ds2 = dρ2 + β2ρ2dθ2 (2.13)

A circle of radius r around the singularity has circumference 2πrβ, which means the
deficit angle is given by δ = 2π (1− β).

=̂

δ

Brane position

Figure 2.2: A conical brane is obtained by
cutting a wedge from a circle. The curva-
ture does not diverge on approaching the
tip.

Conical branes have two important properties:
The curvature close to the singularity does not
diverge, but is smooth up to a δ-function at
the position of the singularity. This is in con-
trast to singularities in higher dimensions, like the
Schwarzschild black hole, where curvature invari-
ants diverge as powers of 1/r. Thus, singularities
of two-dimensional manifolds are weaker. The sec-
ond feature concerns the use of a two-dimensional
manifold as internal space of a higher-dimensional
spacetime: The curvature of a four-dimensional
brane located at a conical singularity is indepen-
dent of the brane tension (i.e. the energy density):
The bulk develops a conical singularity with deficit
angle of the same value as the localised brane en-
ergy density. This effect is known as self-tuning.

Warped Geometries
Now we turn to the metric of higher-dimensional theories. A product spacetime
S4+d = S4 × Sd suggests a split metric, GMN = gµν(x) ⊕ gmn(y), where the four-
dimensional metric has certain symmetries (e.g. Minkowski). An interesting general-
isation of this, however, is a so-called warped geometry, where the line element is

ds2
d = W 2(y) ds2

4 + gmn(y) dymdyn , (2.14)

that is, the 4d metric gets multiplied by a warp factor depending on the extra coordi-
nates. Its main significance is that the warp factor can generate large hierarchies between
scales. In particular, if there is a brane at position y0, with a mass parameter m, this
corresponds to a physical mass W (y0) ·m [7]. Thus, a large variation of the warp factor
can generate a large hierarchy between initially comparable mass scales.

Supersymmetry and Supergravity

Certainly supersymmetry is the most popular route beyond the standard model. The
idea of unifying particles with different spins was first pursued in the early 60’s, but in
1967 Coleman and Mandula[8] proved that there was no way to have a symmetry between
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fermions and bosons in QFT. In the beginning of the 70’s, Golfand and Likhtman[9] and
Volkov and Akulov[10] proposed a way to circumvent this theorem, and in 1975, Haag,�

opuszanski and Sohnius[11] were able to show that this way is unique: The extension
of the usual symmetry algebra by fermionic generators, that is, generators in the spinor
representation of the Lorentz group which obey anticommutation relations. The first
field theory model exhibiting supersymmetry was found in 1974 by Wess and Zumino[12],
and before the end of the decade, starting from Refs. [13, 14], gauged supersymmetry –
supergravity – was widely studied. By now, supersymmetry is included in the majority
of models beyond the standard model, from MSSM parameter scans to KKLT flux
compactifications. There is a large number of excellent books and reviews available,
some of which are collected in Reference [15]. Here I will just collect a few tidbits of
information to argue why supersymmetry is an interesting approach and what issues are
particularly relevant for the later discussion.

Supersymmetry has several attractive features:

• From the theoretical point of view, it is the only possible extension of the Poincaré
group as a symmetry group of a quantum field theory. The extensions proceed
via a graded symmetry algebra to avoid the Coleman-Mandula no-go theorem,
and it is essentially fixed. The generators of supersymmetry transformations Qi,
i = 1, . . . ,N carry spin 1/2 and fulfill anticommutation relations among themselves,
in particular,

{
Qi, Qj

}
= 2δijγ

µPµ . (2.15)

For notations and conventions, see Appendix A. If N = 1, one speaks of simple,
otherwise of N -extended supersymmetry. The more generators, the larger the
multiplets, and for N = 4 all multiplets contain a vector field, that is, all fields
are gauge fields. For N = 8, there always is a spin-2 particle, so one is lead to
supergravity. N > 8 would imply spins greater than 2, and there is common
belief that such a theory cannot be consistently formulated (unless it is free).
Here the aforementioned spinor growth in higher dimensions comes in: Simple
supersymmetry in five or six dimensions corresponds to N = 2 supersymmetry in
four dimensions, simple supersymmetry in seven to ten dimensions to N = 4. In
eleven dimensions, we find N = 8 and for more than eleven dimensions, N > 8.

• Since fermions and bosons come in pairs and contribute with opposite signs to
loop diagrams, many divergences cancel. In particular, there are no quadratic
divergences, including the notorious Higgs self-energy, of which only a logarithmic
divergence remains. In general, supersymmetry protects against large radiative
corrections. There are powerful non-renormalisation theorems which state that
the superpotential, i.e. the part of the Lagrangean containing masses and Yukawa
couplings, does not get renormalised at all (in perturbation theory). This even
holds for spontaneously broken supersymmetry.



20 Chapter 2: Supergravity in Higher Dimensions

• Supersymmetry suggests a new global symmetry, called R-symmetry, which en-
sures that some particles can only be produced in pairs, which in turn means that
the lightest of these particles is stable and might be a candidate for dark mat-
ter. R-symmetries are symmetries that do not commute with supersymmetry, so
particles in a supersymmetry multiplet have different R-charges. This also means
that extended supersymmetry can have larger R-symmetry groups, while simple
supersymmetry at most has a U(1)R-symmetry.

• When supersymmetry is gauged, the theory contains gravity as well, hence the
name supergravity. The gauge field is now a spin-3/2 fermion, the gravitino.

Supersymmetry, relating bosons with fermions, requires superpartners of all fields in
a theory, that is, fields with different spin, but the same quantum numbers otherwise –
up to the charge under the aforementioned R-symmetry. These superpartners are not
part of the standard model, so we need to introduce more fields to make the standard
model supersymmetric:

• Spin-0 partners for all fermions, with the same quantum numbers: Squarks and
sleptons (“scalar fermions”). They are grouped in so-called chiral multiplets, which
contain a chiral fermion and a complex scalar.

• Spin-1/2 partners for the gauge bosons (the gauginos). Vector fields come in a
vector multiplet together with a fermion with non-chiral interactions.

• Supersymmetry requires two Higgs fields, to give masses to the up-type quarks and
neutrinos and separately to the down-type quarks and charged leptons. Both Higgs
fields are SU(2) doublets and come with fermionic superpartners, the Higgsinos.
After electroweak symmetry breaking, there will be five physical Higgs scalars
(two of which are charged), and the Higgsinos mix with the electroweak gauginos
to form electrically neutral neutralinos and charged charginos.

So altogether, supersymmetry requires more than doubling the degrees of freedom.
For exact supersymmetry, however, there are no new parameters, since masses and
couplings of superpartners are fixed. A host of new parameters is introduced by broken
supersymmetry.

From the experimental side, however, evidence for supersymmetry is rather slim. In
particular, scalar superpartners of the standard model fermions with equal masses are
not observed. That means that supersymmetry cannot be exactly realised, but at best
in a broken way. Mechanisms for supersymmetry breaking are discussed in the next
section.

Supergravity
From the supersymmetry algebra we know that the anticommutator of the supersym-
metry generator with itself is the generator of translations, Pµ. From this one can guess
that the commutator of local supersymmetry transformations will be a local translation,
i.e. a coordinate transformation, and thus that local supersymmetry “implies gravity”.
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Multiplet D = 4 D = 6

Gravity gµν ψµ GMN B+
MN ΨM

d.o.f. 2 2 9 3 12

Tensor B−MN Φ χ
d.o.f. 3 1 4

Matter φ ψ φi , i = 1, 2 Ψ
d.o.f. 2 2 4 4

Vector Am λ AM Λ
d.o.f. 2 2 4 4

There also is a tensor multiplet in four dimen-
sions which we will not consider. The super-
scripts ± on the two-forms denote (anti-)self-
duality of the field strengths.
The matter multiplet is a chiral multiplet in four
and a hypermultiplet in six dimensions. The
smallest spinor in D = 4 is a Weyl or Majorana
spinor with two degrees of freedom, in D = 6 the
smallest spinor is a Weyl spinor which has four
degrees of freedom.
In each multiplet, the number of (on-shell)
bosonic and fermionic degrees of freedom is
equal.

Table 2.1: The fields of the relevant multiplets and their degrees of freedom in four and six dimensions.

Indeed this is the case, and this is why local supersymmetry goes by the name of su-
pergravity. As any local symmetry, supergravity involves a gauge field, but since the
transformation parameter is a fermion, the gauge field is a spin-3/2 field, the gravitino,
the superpartner of the graviton. In four dimensions, the graviton and the gravitino
together form a complete supersymmetry multiplet. In higher dimensions, however, the
gravitational multiplet will contain additional bosonic (p-form) fields. In six dimensions,
for example, there is the 2-form field BMN . The reason for the additional fields is that
a multiplet needs to contain the same number of bosonic and fermionic degrees of free-
dom. With increasing spacetime dimension, the spinors grow exponentially, and so new
bosonic fields have to be added. The same applies to chiral multiplets1 (vector fields
accidentally double their degrees of freedom from four to six dimensions, so the multiplet
still contains one vector and one spinor). The field content in four and six dimensions
is given in Table 2.1.

The two-form field B+
MN in the six-dimensional gravity multiplet poses a problem: Its

field strength H+
MNP = 3∂[MB

+
NP ] is self-dual, and thus there is no Lorentz-invariant

kinetic term to build an action[16]2. This problem can be solved by adding the tensor
multiplet

(
B−MN , χ,Φ

)
to the theory: it contains a two-form field with anti-self-dual field

strength. The form fields can be combined into a single two-form BMN = B+
MN +B−MN

without duality conditions. In this process, the theory acquires two more new fields, the
dilaton Φ and the dilatino χ.

The pure supergravity Lagrangean is fixed by supersymmetry. The coupling of su-
pergravity to matter is also constrained, this time by a geometrical symmetry: The
complex scalar fields of the theory (which come in chiral or hypermultiplets) can be
regarded as forming a sigma model, and there are strong restrictions on the geometry of
the sigma model target space (or in other words, not every matter model can be made

1As previously mentioned, six-dimensional simple supersymmetry corresponds to four-dimensional
N = 2 supersymmetry, which was once introduced as hypersymmetry. The only part of this use
that stuck was the name hypermultiplet for the N = 2 counterpart of the chiral multiplet

2The obvious term H+
MNPH

+MNP vanishes due to the self-duality relation, as in two or ten dimen-
sions.
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locally supersymmetric). These restrictions depend on the dimension and whether one
deals with extended or simple supergravity. In the simplest case of four-dimensional
simple supergravity, the target space must be a Kähler manifold. A Kähler manifold
is a complex manifold with a Riemannian metric and symplectic form, both of which
are compatible with the complex structure. For practical purposes, this means that the
Kähler metric (i.e. the metric of the sigma model) is given by the derivative of a real
scalar function, the Kähler potential (denoting the fields by φi and the conjugate fields
by φı̄):

Lσ, kin = Kı̄j ∂
µφı̄∂µφ

j , Kı̄j =
∂

∂φı̄
∂

∂φj
K
(
φ, φ

)
≡ ∂ı̄∂jK

(
φ, φ

)
. (2.16)

The simplest choice K
(
φ, φ

)
= φı̄φi is called the canonical Kähler potential because it

leads to canonical kinetic terms, hence to a renormalisable matter sector. If K
(
φ, φ

)

is of higher than second order, the matter sector is nonrenormalisable. Gravity, how-
ever, is not renormalisable anyway, so there is no strict justification for a canonical
Kähler potential. We can, however, demand that the non canonical terms are sup-
pressed by the Planck scale, such that in the limit MP → ∞, where gravity decouples,
the resulting theory is again renormalisable. We will later see that gravity-induced
higher order terms are important for supersymmetry breaking. This discussion holds
in the Einstein frame where the gravitational Lagrangean is just given by the Ricci
scalar, LEH = 1

2

√−g R. We will later sometimes use a different function also called
Kähler potential, Ω = exp{−K/3}. This is the analogue of K in the supergravity con-
formal frame where LEH = 1

2

√−gΩR. A canonical Kähler potential corresponds to

Ω
(
φ, φ

)
= exp

{
φı̄φi

}
.

There are two more functions that determine a supergravity theory: The gauge kinetic
function f(φi) and the superpotential W (φi), both of which are functions of the fields
φi and not of their conjugates. The gauge kinetic function determines the gauge kinetic
terms via

Lgaugekin = −1

4
Re fFµνF

µν +
i

4
Im fFµνF̃

µν , (2.17)

so that the standard gauge kinetic terms are reproduced by f = 1. There can be
different gauge kinetic functions if the gauge group is composed of several factors. The
superpotential contains mass and coupling terms.

We have omitted factors of MP in the formulae above. They can be restored by con-
sidering the mass dimensions of the supergravity functions: Ω and f are dimensionless,
K has mass dimension 2 and the superpotential is of mass dimension 3.

Supersymmetry Breaking
We now turn to the issue of supersymmetry breaking, which, phenomenologically, cer-
tainly is the most important issue in supersymmetric model building since it determines
the masses of the superpartners.

As a preliminary remark, let us check signs of supersymmetry breaking: From the
supersymmetry algebra, one can infer immediately that for a supersymmetric theory,
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the vacuum energy cannot be negative, and vanishes if the vacuum state |0〉 is super-
symmetric:

E0 = 〈0 |P0| 0〉 =
1

4

(
‖Q1|0〉‖2 + ‖Q2|0〉‖2 +

∥∥Q1|0〉
∥∥2

+
∥∥Q2|0〉

∥∥2
)
≥ 0 (2.18)

In supergravity, however, this result is no longer true, and the value of the vacuum
energy is not directly related to the question whether supersymmetry is broken or not.
The potential of supergravity is not positive semidefinite, and it is given by an expression
involving both the Kähler and the superpotential,

V = eK
(
DjWK ̄kDkW − 3 |W |2

)
+

1

2 Re f
D2 . (2.19)

Here DiW = ∂iW + KiW is the Kähler covariant derivative3 and K ̄k is the matrix
inverse of the Kähler metric. The D-terms are related to the gauge fields and can be
expressed in terms of the scalar fields and the generators of the gauge group, but we will
ignore them for now. The sign of supersymmetry breaking in supergravity is a vacuum
expectation value of a DiW , or in other words,

〈
F i
〉

=
〈
−eK/2Ki̄DjW

〉
6= 0 . (2.20)

A vacuum expectation value 〈D〉 6= 0 is also a sign of supersymmetry breaking. Both
F and D terms show up in the supersymmetry transformations of fermions, so their
vacuum expectation value implies that the vacuum is not invariant. As the potential
is not positive semidefinite, one can usually fine-tune the vacuum energy to zero with
broken supersymmetry.

A special form of Kähler and superpotential that ensures a vanishing vacuum energy
is the so-called no-scale model[17]: For n fields, the Kähler potential is

K = −
∑

i

αi ln

(
φi + φı̄

2

)
,
∑

i

αi = 3 , (2.21)

and the superpotential is constant. For this setup, the scalar potential vanishes identi-
cally, since the condition on the αi enforces the cancellation of the −3 |W |2 term.

Now for the breaking mechanism. Within a supersymmetric theory, the breaking
should be spontaneous rather than explicit, and indeed the O’Raifeartaigh model pro-
vides a simple setup for a spontaneous breaking of supersymmetry with only chiral mul-
tiplets and renormalisable couplings. However, we run into a phenomenological problem:
There is a mass sum rule which says that in such a situation, the supertrace of the mass
matrix vanishes. In other words, if the theory has a set of scalars φi and fermionic
partners χi,

StrM2 ≡
∑

scalars

(mφi)
2 − 2

∑

fermions

(mχi)
2 = 0 . (2.22)

3It is covariant under the Kähler transformations K
(
φı̄, φi

)
→ K

(
φı̄, φi

)
+ F (φi) + F

(
φı̄
)

and
W → exp{F (φi)}W .
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This rule holds in the presence of spontaneous supersymmetry breaking, and it holds
separately within each quantum number sector, e.g. for the down-type quarks. This
clearly is not viable phenomenologically, as it would require the sum masses of the scalar
partners to be below (10GeV)2, so they certainly would have been seen in experiment
already.

The supertrace theorem, fortunately, tells us how to avoid it: It is valid for renormal-
isable couplings and at tree level. So the way around employs either nonrenormalisable
couplings or radiative corrections, and in both cases, the hidden sector. The hidden sec-
tor comprises a set of fields which break supersymmetry, e.g. an O’Raifeartaigh model,
but which is hidden, i.e. has no renormalisable couplings to the MSSM at tree level. The
breakdown of supersymmetry is instead mediated to the observable fields by some other
mechanism. There are several popular such mechanisms:

• Gravity mediation[18]: This is in the first category, nonrenormalisable couplings.
Gravity mediation does not refer to graviton exchange, but to all couplings sup-
pressed by the Planck scale. The hidden sector fields are assumed to have Planck-
suppressed gravitational couplings to the observable sector, which give rise to su-
perpartner masses. Such couplings might be enforced by the UV completion of the
effective theory, and, in particular, are not restricted by the equivalence principle,
i.e. need not be flavour-blind. Generically, indeed they are not, and that is one of
the major problems of this approach. Here extra dimensions might help.

• Gauge mediation[19]: From the category of radiative corrections, gauge mediation
scenarios involve a third sector, the messenger sector, which couples to the hidden
sector and is itself coupled to the standard model (or GUT) gauge group, so it
induces superpartner masses via loops. These, in contrast to the previous case,
are automatically flavour-blind, so in gauge mediated scenarios flavour-changing
neutral currents are naturally suppressed.

• Higher-dimensional mechanisms[20]: In higher-dimensional theories, the hidden
sector can be hidden by the extra dimension: The observable and hidden sector
fields are localised on different branes, with no direct couplings between them.
In simple supergravity setups this leads to a special kind of Kähler potential in
the low-energy effective theory, the sequestered form (ignoring bulk fields for the
moment). Expressed in terms of Ω = exp{−K/3} the sequestered form is defined
by

Ω
(
φhid, φobs, φhid, φobs

)
= Ωhid

(
φhid, φhid

)
+ Ωobs

(
φobs, φobs

)
. (2.23)

The Kähler potential at tree level splits into separate potentials for the hidden and
observable sector, as might be expected from higher-dimensional locality. Loop
corrections do induce couplings between the sectors and hence mediate supersym-
metry breaking. In Chapter 4 we will consider a specific scenario: The mediators
will be moduli fields, that is, fields in the higher-dimensional metric and gravity
multiplet which are related to the size and shape of the internal orbifold.
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We will also see, however, that the sequestered form shown above is not a generic
outcome of higher dimensional theories. This is actually no surprise: When going
to the low-energy effective theory, one explicitly breaks higher-dimensional locality
and generically generates a non-local effective Lagrangean. If some fields have non-
trivial couplings to the branes, integrating them out will generate direct couplings
between the sectors.

If the mediation effects reside in the Kähler potential, it is a variant of gravity
mediation. There are other mechanisms in higher dimensions which do not rely
on supergravity, but rather employ e.g. gaugino fields living in the bulk to transfer
supersymmetry breaking [21].

• Anomaly mediation[22]: The dimensionless couplings of the visible sector are scale
invariant on the classical level. In the quantised theory, however, scale invari-
ance is broken by the conformal anomaly. If there is a hidden sector breaking
supersymmetry, the anomaly will generate masses in the visible sector which are
proportional (but suppressed with respect) to the gravitino mass. These masses
depend on the β functions and anomalous dimensions of the fields4 and are always
present. In most models, anomaly mediation is not the dominant mechanism. If
there is no other mediation present, however, anomaly mediation effects can be
crucial.

As a remark, let us briefly mention the approach usually entertained in the minimal
supersymmetric standard model. The key point is that there are certain supersymmetry
breaking terms which preserve most of the nice features of supersymmetry, in particular,
the absence of quadratic divergences. These are called soft terms and are generated
by spontaneously broken supersymmetry. They are mass terms for the gauginos and
sfermions as well as bi- and trilinear scalar interaction terms. Since most of these
parameters are complex matrices in flavour space, there are 105 new parameters in
the MSSM not present in the standard model5. This is too much to perform generic
parameter space scans, so one usually imposes some restrictions on the parameters, such
as universality of sfermion and gaugino masses at the GUT scale. The resulting model
goes by the name of CMSSM and has five parameters, and there have been a large
number of studies of this or related models.

Grand Unification

The standard model gauge group GSM and representation assignments do not seem as
natural as they could be, and there have been attempts to embed them in a simpler
framework. The general idea is that GSM actually is the unbroken subgroup of a larger
gauge group Ggrand, which gets broken in some way at a high energy scale. This idea is

4The β function dependence of the scalar masses leads to an immediate problem: Sleptons acquire
negative squared masses in simplest setups.

5This is the final parameter count, since some matrices are Hermitean and some phases can be absorbed
in the fields.
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known as grand unification, and the resulting theories are called grand unified theories
(GUTs). The pattern of standard model representations could follow from the split of
representations of Ggrand into representations of the subgroup GSM.

The idea has been supported by the observation that the three gauge couplings of the
standard model evolve with energy scale and (almost) meet at a scale of ∼ 1016 GeV,
which defines the GUT scale MGUT. The running of the couplings of course depends on
the particle content, and including only standard model particles, the couplings do not
meet exactly. If one, however, assumes supersymmetric partners with masses around
a TeV, the couplings meet. This is usually considered an argument in favour of low-
energy supersymmetry.

What groups are possible GUT groups? They have to meet some requirements:

• The rank of GSM is four, so Ggrand must have at least rank four to admit GSM as
a subgroup. On the other hand, Ggrand should not be too large.

• Ggrand should have complex representations to accommodate the standard model
representations without additional mirror fermions. The corresponding represen-
tations must combine to anomaly free generations.

• Taking gauge coupling unification serious, Ggrand should have only one gauge cou-
pling. This is satisfied if Ggrand is a simple group, or if it is a product of identical
groups which are related by discrete symmetries.

Popular GUT groups include SU(5), SO(10) and E6, among others. From the point of
view of neutrinos, SO(10) seems to be the most natural GUT group because it unifies
all standard model fermions of one generation, including the right-handed neutrino, in
one 16-dimensional spinor representation6. Furthermore, it is of rank five, so there is
an additional U(1) which can be combined with hypercharge to a U(1)(B−L). If this is
broken at MGUT, a Majorana mass term of this order for the right-handed neutrino is
presumably generated, leading to the see-saw mechanism of Eq. (2.5).

Concrete model of GUTs do have their problems, most notably proton decay. Since
quarks and leptons are unified in representations of Ggrand, there are gauge interactions
that turn quarks into leptons and hence, protons can decay, e.g. via p → πe+. Since
experimental limits on the proton lifetime are of the order of 1033 years (depending on
the mode, see [23]), this places strong bounds on MGUT and the details of the model.

There are other problems which are related to the breaking of the GUT symmetry.
First of all, Ggrand needs to be broken down to GSM. If this is done by the Higgs
mechanism, the Higgs field usually needs to be inside a very large representation of GSM.
Similarly, the standard model Higgs field is paired in a representation of Ggrand together
with coloured partners. In both cases, the symmetry breaking needs to be adjusted not
to break e.g. SU(3)C . Furthermore, the coloured Higgses also mediate proton decay, and
hence must be very heavy. This means that inside a single Ggrand representation we have
the usual Higgs fields with electroweak scale masses, and the coloured triplet with GUT
scale mass. This is called the problem of doublet-triplet splitting.

6This is the spinor of SO(10), not a spacetime spinor.
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The two latter problems can be solved in higher-dimensional theories, orbifold
GUTs[24], where boundary conditions render some of the GUT gauge fields very heavy,
thereby eliminating the need for a GUT Higgs boson. Furthermore, boundary condi-
tions can also forbid zero modes for some components of a GUT multiplet, solving the
doublet-triplet splitting problem. Actually, two extra dimensions seem to be preferred
from the point of view of orbifold breaking of an SO(10) GUT [25] because the breaking
cannot be achieved in five dimensions due to group-theoretical reasons[26].

2.2.2. Top-Down: String Theory Compactifications

Superstring theories[27] live in ten dimensions, and there are five of them: Type I,
type IIA, type IIB, heterotic SO(32) and heterotic E8 × E8. They are distinguished by
the amount of supersymmetry (N = 2 for type II, N = 1 for the rest) and whether
they contain open strings (in type I) and gauge fields (type I, type IIA and heterotic).
They contain a number of massless bosonic fields: The metric, a scalar called dilaton,
and an antisymmetric two-form are generic. There will also be gauge fields (excluding
type IIB) and further forms for type II theories (one- and three-form for IIA, zero-, two-
and four-form for IIB).

There are various connections between these theories which relate e.g. the strong
coupling limit of one theory to the weak coupling limit of another one.

Calabi-Yaus and Orbifolds

The simplest compactification is on a six-dimensional torus. This, however, brings about
phenomenological problems, one of them being that the resulting effective theory retains
all the supersymmetry of the original string theory. This implies N = 4 supersymmetry
in four-dimensional language. This has been a quite popular theory, mainly because
it is so symmetric. The theory is finite to all orders and conformal, for example. Un-
fortunately, the standard model is completely different, so one has to look for more
involved compactification schemes. Generally, one is interested in compactifications pre-
serving simple four-dimensional supersymmetry to have some control over perturbative
corrections.

A simple alternative to tori are orbifold compactifications[28]: The geometry is al-
most as simple as a torus, and the orbifold projection breaks some supersymmetries.
Furthermore, the orbifold fixed points give rise to localised states (the twisted sectors,
strings that “wind around” the fixed points), which can be interpreted as brane-localised
matter in higher-dimensional field theories.

In a more general approach, one is led to a certain class of compactification manifolds:
If the compactification of the ten-dimensional string theory on a product spaceM4×S6,
withM4 Minkowski space and an internal manifold S6 is to preserve one quarter of the
original supersymmetry in four dimensions, as seems more sensible from the phenomeno-
logical point of view, one is led to a certain class of internal spaces called Calabi-Yau
spaces[29], which are characterised by two properties: They are Ricci-flat complex man-
ifolds with SU(3) holonomy. These conditions follow from the transformation law of the
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gravitino: The ten-dimensional gravitino ΨM splits into four four-dimensional gravitini
ψiµ, each with a supersymmetry transformation that starts with δψiµ = Dµε

i+ · · · , where
the εi are four spinorial transformation parameters. Unbroken simple supersymmetry
means that there should be one εi that is covariantly constant, Dµε

i = 0, which in turn
means that the holonomy should not be the whole SO(6) = SU(4), but smaller. For
type II superstrings, this still yields N = 2 supersymmetry in four dimensions. Calabi-
Yau compactifications of the heterotic string, on the other hand, were already widely
studied in the 80’s.

A given Calabi-Yau manifold usually admits a number of continuous deformations
which preserve the Calabi-Yau property. These deformations appear as scalar fields in
the theory on this space, and they come in two classes: Kähler moduli and complex
structure moduli. Their respective numbers are given by two Hodge numbers h(1,1) and
h(1,2) which encode topological information about the manifold. Roughly speaking, the
complex structure moduli contain information about the shape of the manifold, while
the Kähler moduli are related to its size. After compactification, these moduli fields
have no potential, so their value in the ground state is undetermined and needs some
stabilisation mechanism.

Orbifolds actually are related to Calabi-Yau spaces: They arise as particular limits,
that is, they form special points in the moduli space of a given Calabi-Yau.

Fluxes

One of the problems of string theory compactifications is moduli stabilisation: The
moduli demand a potential to fix their values at some minimum. For some of the
moduli – the complex structure moduli – a potential is generated by fluxes. Fluxes
are vacuum expectation values of p-form field strengths (of which there are several,
depending on the type of string theory considered) in the internal directions (so as to
preserve 4d Lorentz invariance). As they are field strengths of form fields, they are
subject to Bianchi identities as well as equations of motion, and they can be expanded
in terms of harmonic functions of the Calabi-Yau, which in turn depend on the complex
structure moduli. Thus, integrating over the internal space generates a potential for the
complex structure moduli[30]. The Kähler moduli, on the other hand, are not fixed in
this way. Furthermore, the fluxes are quantised: the integral of the field strength over a
compact submanifold of appropriate dimension must be an integer.

Fluxes also allow warped compactifications with non-Calabi-Yau internal manifolds:
The transformation law of the gravitino contains a term involving fluxes, so if they are
non-zero, a covariantly constant spinor is no longer required. For an overview of flux
compactification, see Ref. [31].

Branes

Important objects in string theory are branes. They can arise in two ways: Open strings
have ends, and these ends need boundary conditions, which can be of Dirichlet or von-
Neumann type. Imposing Dirichlet boundary conditions in p spatial directions fixes
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the ends of open strings on p+ 1-dimensional hypersurfaces called Dp-branes. Actually,
these branes are more than just boundary conditions: they act as sources for fluxes of the
p+ 1-form fields that are present in type I and II. By adding branes to a type II theory,
half of the supersymmetry is broken, and open strings are included in the spectrum.

Gauge Groups

A priori, only heterotic and type I strings contain non-Abelian gauge groups (for type I, it
is SO(32)), so model building concentrates on these theories, where the heterotic E8 × E8

theory has been especially popular[32]. In this theory, one E8 gauge group factor (or
its E6 subgroup) is used as a GUT group in four dimensions, while the other factor is
hidden, i.e. visible matter is a singlet with respect to the second E8. This can lead to
models with three families of standard model-like matter[33]. The discovery of D-branes
as dynamical objects has recently led to a lot of activity in type II model building, since
stacks of N coincident Dp-branes support a SU(N) gauge theory. For p = 3, the branes
can be extended along the noncompact spacetime, and hence one obtains a non-Abelian
gauge theory in four dimensions.

2.2.3. Intermediate Field Theories

The reduction from a full string theory down to the low-energy four-dimensional theory
might involve intermediate steps. For a simple example, consider an anisotropic com-
pactification on a six-dimensional torus where di radii are of the order Ri, much larger
than the remaining 6−di which are ∼ Rs[34]. In an energy range between R−1

i and R−1
s ,

the theory will be described by a (4 + di)-dimensional (supergravity) field theory. This
also allows orbifold GUTs in any dimensions, where the orbifolding is only applied to
the di intermediate dimensions. Successful gauge coupling unification, however, prefers
one or, in particular, two extra dimensions

In the rest of this thesis, we will – motivated by the preceding discussion – consider
in detail six-dimensional supergravity theories. A particularly attractive feature of two
extra dimensions is the possibility of conical branes when compactifying to four dimen-
sions, and in the next chapter we will find the general solution of gauged supergravity
with any number of conical branes and four-dimensional maximal symmetry. In Chap-
ter 4, we will look to the specific case of a torus orbifold with matter on fixed points
and investigate gravity mediated supersymmetry breaking.
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3. The General Warped Solution in 6d
Supergravity

We now turn to six-dimensional supergravity. The special rôle of six-dimensional models
is that the internal space is two-dimensional (since we desire four large dimensions). Two-
dimensional spaces admit conical singularities, and branes located in a two-dimensional
internal space generate such a singularity, and there is no effective cosmological constant
on the brane[35]. This is the idea of self tuning[36], which has been used in various at-
tempts to address the cosmological constant problem. Such a compactification employs a
six-dimensional cosmological constant and flux of an Abelian gauge field. First attempts
were made in non-supersymmetric theories[37], which find four-dimensional Minkowski
vacua if gauge flux and cosmological constant are tuned against each other.

Six-dimensional gauged supergravity[38], on the other hand, includes an Abelian gauge
field for the U(1)R symmetry, and a positive definite potential. Furthermore, tuning
of the gauge flux is automatically enforced by the dilaton equation of motion. Six-
dimensional gauged supergravity was compactified (without branes) already in Ref. [39].
It was found in Ref. [40] that four-dimensional Minkowski space is not only possible, but
inevitable if one requires maximal symmetry in four dimensions (and the internal space is
compact). This analysis was generalised to warped solutions with axial symmetry[41, 42]
and to unwarped solutions with many branes[43].

Four-dimensional Minkowski space follows from the compactness of the internal space.
For the same reason, however, the gauge flux is quantised, which translates into a
fine-tuning condition between the brane tensions of the model[44]. Hence, stable four-
dimensional Minkowski vacua require specially chosen brane tensions, which spoils the
self-tuning effect[45, 46]. This problem can be avoided by coupling six-dimensional
sigma-models to gravity[47]. For anomaly cancellation, further bulk fields are necessary
in any case[48].

In this chapter, we will present the general warped solution in six-dimensional super-
gravity, following Ref. [49]. In the next section, we will introduce the setup and find
the solution. In Section 3.2, we will show examples with two and many branes, and we
finish the chapter with comments and conclusions.

3.1. The Setup

We consider six-dimensional gauged supergravity with a number of four-dimensional
branes. In this chapter the branes only have a brane tension which can arise from a
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ground state energy of fields living on the branes. Neither do we consider the brane
fields themselves, nor do the branes couple other than gravitationally.

The bulk theory contains a combined gravity and tensor multiplet (introduced be-
cause of the self-duality condition on the two-form in the gravitational multiplet, see
Section 2.2.1) and an Abelian vector multiplet which gauges the U(1)R symmetry under
which the fermions and the two-form are charged. The component fields of the combined
gravity and tensor multiplet are the metric GMN , the antisymmetric tensor BMN , the
dilaton Φ, the dilatino χ and the gravitino ΨM . The vector multiplet contains a vector
AM and the gaugino Λ. The complete action and transformation laws are given in Ap-
pendix B. Here we only give part of the action relevant for our discussion, i.e. omitting
fermions and the tensor field strength,

Sbulk =

∫
d6X
√
−G

[
1

2
R − 1

2
∂MΦ∂MΦ− 1

4
e−ΦFMNF

MN − 2g2eΦ

]
. (3.1)

We set the six-dimensional Planck scale M6 = 1. The last term in the action is of crucial
importance: It is a positive definite potential which acts as a vacuum energy for any
finite Φ, and thus as a source for curvature to provide a compact internal manifold. The
potential allows us to circumvent the usual no-go theorem for warped compactifications
with finite Planck mass. In the limit g → 0, our solution disappears.

The vector field gauges the U(1)R symmetry under which all the fermions and the
tensor are charged. Its field strength is FMN = ∂MAN − ∂NAM . Its coupling constant is
denoted by g.

The branes are characterised by their brane tensions Λi, i = 1, . . . , nb. The branes
are located on hypersurfaces X(xµi ), and their action is

Sbrane = −
∑

i

∫
d4xi
√−gi Λi (3.2)

with gi,µν the metric pulled back to the brane.
The Einstein and field equations following from this action are

RMN = ∂MΦ∂NΦ + g2eΦGMN + e−Φ

(
FMPF

P
N − 1

8
GMNFPQF

PQ

)

+ T brane
MN ,

(3.3)

DM

(
e−ΦFMN

)
=

1√
−G ∂M

(√
−Ge−ΦFMN

)
= 0 , (3.4)

DMD
MΦ =

1√
−G ∂M

(√
−G∂MΦ

)
= −1

4
e−ΦFMNF

MN + 2g2eΦ . (3.5)

T brane
MN is the brane contribution to the energy-momentum tensor.

3.1.1. The Ansatz

We now specify the ansatz for the solution: We require a (4 + 2) split metric with
maximal symmetry among the four large dimensions xµ and a warp factor depending
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on the extra coordinates ym. Nothing should depend on the xµ and the field strength
vacuum expectation values should respect four-dimensional Lorentz invariance (this is
why we omitted the tensor field strength in the above action). All fermions vanish.

ds2 = W 2(y) g̃µνdx
µdxν + ĝmndymdyn , (3.6)

Fmn =
√
ĝ εmnF (y) , (3.7)

Φ = Φ(y) , (3.8)

GMNP = 0 , fermions = 0 . (3.9)

The requirement of maximal symmetry means that Rµν(g̃) = 3λg̃µν, and the slices
y = const. are de Sitter, Minkowski or anti-de Sitter for λ > 0, λ = 0 or λ < 0,
respectively.

The Ricci tensor for this metric is

Rµν(G) =

(
3λ− 1

4
W−2DmD

mW 4

)
g̃µν , (3.10)

Rmn(G) = Rmn(ĝ)− 4W−1DmDnW , (3.11)

where Dm is the covariant derivative with respect to the extradimensional metric ĝmn.
The brane energy momentum tensor is

T brane
µν = 0 , (3.12)

T brane
mn =

∑

i

1√
ĝ

Λiĝmnδ
2(y − yi) (3.13)

at the brane positions yi. With this ansatz, the Einstein and field equations (3.3)-(3.5)
become

3λ− 1

4
W−2DmD

mW 4 = −
(

1

4
F 2e−Φ − g2eΦ

)
W 2 , (3.14)

Rmn(ĝ)− 4W−1DmDnW = ∂mΦ∂nΦ +

(
3

4
F 2e−Φ + g2eΦ

)
ĝmn

+
∑

i

1√
ĝ

Λiĝmnδ
2(y − yi) ,

(3.15)

∂m
(
W 4e−ΦF (y)

)
= 0 , (3.16)

W−4Dm

(
W 4DmΦ

)
= −

(
1

2
F 2e−Φ− 2g2eΦ

)
. (3.17)

3.1.2. The Solution

We first solve for the dilaton and gauge flux. Combining Eqs. (3.14) and (3.17), we get

6W 2λ = Dm

[
W 4Dm (Φ + 2 lnW )

]
. (3.18)



34 Chapter 3: The General Warped Solution in 6d Supergravity

Integrating over the compact manifold, we find λ = 0, that is, Minkowski space is the
unique maximally symmetric solution (for regular warp factor and dilaton). This is
completely independent of the brane tensions Λi. Inserting λ = 0 in Eq. (3.18), we find
a solution for the dilaton in terms of the warp factor and an integration constant Φ0:

Φ = Φ0 − 2 lnW (3.19)

The gauge flux equation (3.16) is also easily solved:

F (y) = feΦW−4 = feΦ0W−6 (3.20)

Here f is another integration constant.
For the Einstein equations, it is convenient to express the metric of the internal space

in conformally flat form and introduce a new complex variable z = y5 + iy6. We also
temporarily write the warp factor as W = expB, so the metric is

ds2 = e2B(z̄,z)
(
ηµνdx

µdxν + e2A(z̄,z)dzdz̄
)
. (3.21)

With this choice, the Einstein equations (3.14) and (3.15) become (for Rµν , Rz̄z̄ and
Rzz̄):

−4e−2A
(
4∂B∂B + ∂∂B

)
= eΦ0

(
g2 − 1

4
f 2e−8B

)
, (3.22)

−4∂2B + 4
(
∂B
)2

+ 8∂B∂A = 4
(
∂B
)2
, (3.23)

−6∂∂B − 4∂B∂B − 2∂∂A = 4∂B∂B +
1

2
e2AeΦ0

(
g2 +

3

4
f 2e−8B

)

+
∑

i

Λiδ
2(z − zi) .

(3.24)

Here ∂ = ∂
∂z

and ∂ = ∂
∂z̄

. We can rewrite Eq. (3.23) as

e2A∂
(
e−2A∂B

)
= 0 . (3.25)

This implies that the combination

V (z) = e−2A∂B (3.26)

is a holomorphic function1. This function vanishes for a non-warped solution, i.e. for
constant B which can be rescaled to B = 0. In this case, Eq. (3.22) implies f 2 = 4g2,
and the internal geometry can be obtained from Eq. (3.24):

∂∂A = −1

4
f 2eΦ0e2A − 1

2

∑

i

Λiδ
2(z − zi) (3.27)

1Strictly speaking, it is meromorphic: Isolated singularities are actually required to reproduce the
δ-function terms at the brane positions in Eq. (3.24).
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This solution reproduces the known unwarped scenarios of Refs. [42, 43].
We are looking for a warped solution, that is, V 6= 0. In this case, we can multiply

Eq. (3.22) by V to obtain (reinstating W = eB)

∂
(
V ∂W 4

)
= −1

4
eΦ0g2 ∂

(
W 4 +

f 2

4g2
W−4

)
, (3.28)

which implies that the two sides differ by at most a holomorphic function v(z),

V ∂W 4 = −1

4
eΦ0g2

(
W 4 +

f 2

4g2
W−4 − 2v(z)

)
. (3.29)

To simplify this equation, we introduce a new holomorphic variable[50]

ξ =

∫ z dz′

V (z′)
⇒ ∂ ≡ ∂

∂z
=

1

V

∂

∂ξ
(3.30)

which eliminates the V from the left hand side of Eq. (3.29). We can now exploit the
reality of the warp factor by differentiating Eq. (3.29) and its complex conjugate:

−1

4
eΦ0g2 ∂

∂ξ

(
W 4 +

f 2

4g2
W−4

)
=

∂

∂ξ

∂

∂ξ
W 4 = −1

4
eΦ0g2 ∂

∂ξ

(
W 4 +

f 2

4g2
W−4

)
(3.31)

which implies

∂

∂ξ
W =

∂

∂ξ
W and hence v = v = const. (3.32)

Since W only depends on the real part of ξ, we define a new variable

ζ = Re ξ =
1

2

(
ξ + ξ

)
, (3.33)

in terms of which Eq. (3.29) can be written as an ordinary differential equation,

dW

dζ
=

1

2
γ2−W 4 − u2W−4 + 2v

W 3
≡ P (W )

W 3
, (3.34)

where

γ2 =
1

4
eΦ0g2 , u2 =

f 2

4g2
. (3.35)

The function P (W ) on the right hand side of this equation has two real positive roots
at

W 4
± = v ±

√
v2 − u2 , (3.36)
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and the warp factor is bounded in this interval W 4
− ≤ W 4 ≤ W 4

+ for spacelike extra
dimensions. This implies the conditions v > 0 and v2 > u2 for the integration constants.
The solution to the equation can be given in implicit form as

(
W 4(ζ)−W 4

−
)W 4
−

(W 4
+ −W 4(ζ))

W 4
+

= exp
{

2γ2
(
W 4

+ −W 4
−
)

(ζ − ζ0)
}
. (3.37)

In the limit g → 0, one of the roots of P (W ) disappears, the warp factor becomes
unbounded and the internal space is noncompact. To keep the warp factor finite, one
has to cut off the internal space with a one-dimensional boundary. This corresponds to
a four-brane as in Romans supergravity[51], which differs from our model by g2 → −g2.

This solution does also satisfy the third equation, Eq. (3.24), up to the δ-function part
which will be matched by the deficit angles of conical branes.

To find the internal metric, we look at the definition of V , Eq. (3.26), and the new
coordinate ζ and find with Eq. (3.34):

e2A =
1

V

∂W

W
=

1

W

1

|V |2
∂W

∂ξ︸︷︷︸
1
2

dW
dζ

=
1

2 |V |2
P (W )

W 4
. (3.38)

Hence, the internal metric is

ds2
2 = W 2e2A dzdz̄ =

1

2 |V (z)|2
P (W )

W 2
dzdz̄ . (3.39)

Effects of V
We will now analyse the effects of the function V (z). From Eq. (3.37), we can see that the
warp factor approaches W± for ζ → ±∞, values which are attained for zeroes of V (z).
On the other hand, Eq. (3.39) indicates that for poles of V (z), the extra-dimensional
metric vanishes. So zeroes and poles determine singularities in the internal space. More
explicitly:

1. Assume (z) ≈ c (z − z0)α around z0. Since V (z) is holomorphic, α must be an
integer, and it is restricted to be ±1: For α > 1, the new variable ζ and hence the
warp factor are discontinuous around z0, while for α < −1, there are curvature
singularities worse than delta functions. Thus, V (z) should have only simple zeroes
or poles.

2. Now let us look at the two cases. Consider first a simple zero,

V (z) ≈ c (z − z0) y ζ ≈ 1

2c
ln |z − z0|2 . (3.40)

c must be real. On approaching z0, ζ → ±∞ and the warp factor W → W± for
c ≶ 0.
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The internal geometry exhibits a conical singularity at z0. The metric around z0

becomes

ds2
2 = |z − z0|2(β±−1) dzdz̄ , with β± = γ2 |c|W

4
+ −W 4

−
W 4
±

. (3.41)

On a change of coordinates to ρ = |z − z0|β± /β± and θ = Arg(z − z0), the metric
changes to ds2

2 = dρ2 +β2
±ρ

2dθ2, which is precisely the form of a conical singularity
with deficit angle 2π (1− β±) (see Eq. (2.13)).

This is where the singular terms in the Einstein equations come into play. From
Eq. (3.15) or (3.24), we can match the deficit angle to the brane tension. In two
dimensions, we have ∂∂ ln |z|2 = 2πδ2(z) and Rmn(ĝ) = (1− β±) ∂∂ ln |z − z0|2.
Thus, we find that the brane tension is equal to the deficit angle:

Λ = 2π

(
1− γ2 |c|W

4
+ −W 4

−
W 4
±

)
. (3.42)

3. At a simple pole V (z) ≈ c (z − z0)−1, nothing special happens to ζ and the warp
factor. The presence of |V |−2 in the internal metric (3.39), however, implies that
the metric around z0 behaves like

dsss ≈
P (W (z0))

2 |c|2 W 2(z0)︸ ︷︷ ︸
=:k2

|z − z0|2 dzdz̄ = k2r2
(
dr2 + r2dθ2

)
, z − z0 = reiθ . (3.43)

The overall factor k2 could be scaled away. Now, changing the radial coordinate to
ρ = r2/2, the metric takes the form ds2

2 ∝ dρ2 + 4ρ2dθ2, i.e. β = 2 and the deficit
angle is fixed to −2π.

4. Finally, we have to consider the behaviour at infinity. If, for large z, V (z) ∝ zN ,
with N > 2, there will be another brane at z =∞ with fixed deficit angle

Λ∞ = 2π (2−N) . (3.44)

For N = 1, ζ → ±∞ logarithmically as z →∞, and there will be a conical brane
with deficit angle 2π (1− β±), depending on the sign of ζ.

This extra brane with negative tension can be understood as a consequence of the
Gauss–Bonnet theorem which states that the sum of brane tensions cannot exceed
4π, but is limited by the integral over the Ricci curvature over the internal space
(for a genus-0 surface),

∑

i

Λi + Λ∞ = 4π − 1

2

∫ √
ĝR d2y . (3.45)
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For N conical branes, the sum over the deficit angles (3.42) contains a term 2πN ,
and hence there must be some brane tension contribution −2πN to cancel this.
Explicitly, we have

4π − 2πγ2
∑

branes

|c|
W 4
±

= 4π − 1

2

∫ √
ĝ R d2y . (3.46)

In the sum it is W 4
+ for c < 0 W 4

− for c > 0.

3.2. Examples

Now we will discuss specific examples of the solution, that is, we choose special forms for
the function V (z). First we recover known warped solutions with two branes and discuss
flux quantisation and the unwarped limit. In the next section, we find new solutions
with more than two branes.

3.2.1. Two-Brane Solutions, Axial Symmetry

The Solution
For the simplest solution, we choose V (z) to be

V (z) = −z
c
. (3.47)

This will lead to conical branes at z = 0 and at z =∞, with warp factors W+ and W−,
respectively2.

We can perform a global change of coordinates to ζ and θ, provided c is real. In the
following, we assume c > 0. The new coordinates are

ζ = − c
2

ln |z|2 , θ = − c

2i
ln
z

z̄
, (3.48)

and the metric takes the form

ds2
2 =

P (W )

2W 2

(
dζ2 + dθ2

)
. (3.49)

To find the warp factor, we have to solve Eq. (3.34). To find the explicit solution, it
is actually convenient to rescale the coordinates ζ and θ to

dη =
1

c
W−4dζ , dψ = −1

c
dθ . (3.50)

2The point z = ∞ is at a finite proper distance from z = 0 and corresponds to the other pole of the
compact space.
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As W did not depend on θ, neither does it depend on ψ, and the equation becomes

dη = − d (W 4)

2γ2 (W 8 − 2vW 4 + u2)
, (3.51)

which can easily be integrated over d (W 4) to yield

η − η0 =
1

2γ2

1√
v2 − u2

Artanh

(
W 4 − v√
v2 − u2

)
. (3.52)

Inverting this and expressing v and u2 in terms of W 4
±, we can get the warp factor as

a function of η. This can be inserted into the overall factor in Eq. (3.49), where the
tanh-behaviour of W 4 leads to a cosh−2-dependence. The constant η0 can be set to zero
by demanding that W 4(η = ±∞) = W 4

±.
So finally, the full metric is

ds2 = W 2ηµνdx
µdxν + a2

(
W 8dη2 + dψ2

)
, (3.53)

where

W 4 =
1

2

(
W 4

+ +W 4
−
)

+
1

2

(
W 4

+ −W 4
−
)

tanh
[
cγ2
(
W 4

+ −W 4
−
)
η
]
, (3.54)

a2 =
c2

2

P (W )

W 2
=
c2γ2

16

(
W 4

+ −W 4
−
)2

cosh2[cγ2 (W 4
+ −W 4

−) η]
. (3.55)

Nothing depends on ψ, the axial symmetry is manifest.

Brane Asymptotics
We can explicitly check Eq. (3.41) in our case to see that the deficit angle does not
depend on the coordinates. Consider the limit η → ∞ (the case η → −∞ can be
obtained by switching W+ ↔ W− in the following discussion). The warp factor and a2

go to

W 4 −→ W 4
+ −

(
W 4

+ −W 4
−
)

exp
{
−γ2c

(
W 4

+ −W 4
−
)
η
}
, (3.56)

a2 −→ 1

16
γ2c2

(
W 4

+ −W 4
−
)2

W 6
+

exp
{
−γ2c

(
W 4

+ −W 4
−
)
η
}
. (3.57)

To show the conicality, we change the radial coordinate to

dρ+ = −aW 4dη = −1

2
γcW+

(
W 4

+ −W 4
−
)

exp
{
−γ2c

(
W 4

+ −W 4
−
)
η
}

dη (3.58)

and the metric becomes

ds2
2 −→ dρ2

+ +

[
γ2c

W 4
+ −W 4

−
W 4

+

]2

︸ ︷︷ ︸
β2

+

ρ2
+dψ2 . (3.59)
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Hence, the brane tensions at η = ±∞ are indeed

Λ± = 2π

(
1− γ2c

W 4
+ −W 4

−
W 4
±

)
. (3.60)

The brane conditions can be exploited to fix some parameters of the solution in terms
of the brane tensions Λ± and the gauge coupling g, which are input parameters in the
Lagrangean. There will be two conditions, which can be obtained by solving for W 4

+/W
4
−

and eliminating it:

eΦ0c =
8π

g2 (Λ+ − Λ−)

(
1− Λ+

2π

)(
1− Λ−

2π

)
, (3.61)

f

v
= ±4g

√
κ

(1 + κ)
, with κ =

W 4
+

W 4
−

=
2π − Λ−
2π − Λ+

. (3.62)

Flux Quantisation and Planck Mass
Unfortunately, we will see that flux quantisation does not give further conditions on the
free parameters. The general flux quantisation condition for a compact two-dimensional
space is

∫

M2

F2 =
2πn

g
, (3.63)

with an integer n. For this discussion, it is convenient to use the warp factor itself as
the radial coordinate, by inserting

W 4dη =
1

c

W 3

P (W )
dW (3.64)

into Eq. (3.53) (via ζ and Eq. (3.34)) to obtain the internal metric

ds2
2 =

W 4

2P (W )
dW 2 +

P (W )

2W 2
dψ2 . (3.65)

Then, the flux is

FWψ =
√
ĝ εWψfe

Φ0W−6 =
1

2
εWψfe

Φ0W−5 , (3.66)

which can easily be integrated to give the quantisation condition

1

8
feΦ0

(
W 4

+ −W 4
−

W 4
+W

4
−

)∫
dθ

︸ ︷︷ ︸
2πc

=
2πn

g
. (3.67)
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This, however, does not give a new relation between the parameters, but only a fine-
tuning condition of the brane tensions,

(
1− Λ+

2π

)(
1− Λ−

2π

)
= n2 . (3.68)

Finally we can consider the Planck mass in this solution by dimensionally reducing the
Einstein-Hilbert term in the Lagrangean. Integrating over the internal space in (W,ψ)
coordinates, we obtain

MP =
1

2
M4

6

W+∫

W−

W 3dW ·
∫

dψ =
π

4
M4

6 c
(
W 4

+ −W 4
−
)
. (3.69)

So in the end we have only fixed two out of the four parameters c, f , v and Φ0 by
Eqs. (3.61) and (3.62). The parameter c, however, can be absorbed in a rescaling of η
and ψ, so only one unfixed modulus remains.

The Unwarped Limit

ψ

η

Figure 3.1: The unwarped rugby
ball. η runs from −∞ at the lower
end to +∞ at the top.

Although we could scale c away, it is sensible to keep it
explicit when performing the unwarped limit. The reason
is that, in the limit of constant warp factor, the function
V should vanish, and c provides a handle for that, by
taking c→∞.

We need to be careful, however, when taking this limit:
Several quantities explicitly depend on the parameter c.
On the other hand, obviously W+ → W− for the un-
warped case, or in other words,

(
W 4

+ −W 4
−
)
−→ 0 ⇔ f 2

v2
−→ 4g2 . (3.70)

Hence, a consistent limit is obtained by taking c → ∞
and W+ →W− at the same time, while keeping

k = c
(
W 4

+ −W 4
−
)

(3.71)

finite. It this way, V → 0, and quantities like the Planck mass and metric coefficients
stay finite. It is also consistent with the parameter fixing conditions (3.61) and (3.62),
since Λ+ − Λ− ∝ 1

(
W 4

+ −W 4
−
)
k and κ→ 1. The metric (3.53) becomes

ds2 −→ W 2
+ηµνdx

µdxν +
γ2

16
k2W 2

+

dη2 +W−8
+ dψ2

cosh2(γ2kη)
. (3.72)

This is a metric with two conical singularities of equal deficit angle, as can be seen by a
change of coordinate to dρ = kγ2 cosh−1(kγ2η) dη, which converts the metric to

ds2 −→W 2
+ηµνdx

µdxν +
1

16γ2
W 2

+

(
dρ2 +

(
kγ2

W 4
+

)2

︸ ︷︷ ︸
β2

sinρ dψ2

)
. (3.73)
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This describes a rugby ball shaped internal space (see Fig. (3.1) with two branes of equal
tension Λ, where

Λ = 2π (1− β) . (3.74)

Here the internal curvature is constant, R = 32γ2W−2
+ . This is consistent with the

Gauss–Bonnet theorem (3.46), where the volume of the internal space is πk/
(
4W 2

+

)
.

3.2.2. Multi-brane Solution

We can generalise the solution of the preceding section to more than two branes. To this
end we require a function V with several zeroes. However, we encounter some restrictions
on the positions of the branes and a fixed-tension brane at z =∞.

The Solution
We take an obvious generalisation of the simple ansatz (3.47),

V (z) =
1

c

N∏

i=1

(z − zi) (3.75)

with N complex numbers (brane positions) zi.
The new coordinate ζ becomes

ζ =

z∫
dz′

V (z′)
+ c.c. = c

z∫
dz′

N∏

i=1

1

(z − zi)
+ c.c. (3.76)

This can be integrated using

N∏

i=1

1

(z − zi)
=

N∑

i=1

(
N∏

j 6=i

1

zi − zj

)
1

z − zi
, (3.77)

so

ζ =
1

2

N∑

i=1

{
c

(
N∏

j 6=i

1

zi − zj

)

︸ ︷︷ ︸
ai

ln(z − zi) + c̄

(
N∏

j 6=i

1

z̄i − z̄j

)

︸ ︷︷ ︸
āi

ln(z̄ − z̄i)
}
. (3.78)

If this is to be single-valued, the coefficients ai have to be real, ai = āi for all i. This
implies that the brane positions have to be aligned along a straight line, zi = |zi| eiφ,
where φ is the same for all i. To compensate this, c = |c| e−i(N−1)φ. By a change of
coordinates, we can choose the phase φ = 0, that is, the branes are aligned along the
real axis, and c is real. Thus ζ is

ζ =
1

2

N∑

i=1

ai ln|z − zi|2 . (3.79)
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Note that
∑N

i=1 ai = 0.
For the explicit warp factor, consider Eq. (3.37) (with ζ0 = 0) and define a new

“coordinate” χ by

eW
4
+χ =

(
W 4 −W 4

−
)
e2γ2ζ , (3.80a)

eW
4
−χ =

(
W 4

+ −W 4
)
e2γ2ζ . (3.80b)

χ is subject to the constraint

eW
4
+χ + eW

4
−χ =

(
W 4

+ −W 4
−
)
e2γ2ζ . (3.80c)

The warp factor can be written in terms of χ in a form reminiscent of (3.54),

W 4 =
1

2

(
W 4

+ +W 4
−
)

+
1

2

(
W 4

+ −W 4
−
)

tanh

[
1

2

(
W 4

+ −W 4
−
)
χ

]
. (3.81)

Brane Asymptotics
The brane tensions can be found from the general discussion at the end of Section 3.1.2,
or by expanding the warp factor around each brane. Here we follow the general approach.

From Eq. (3.79), we can see that ζ → ±∞ at zi. The sign of ζ and hence the warp
factor at the brane, that is, W+ or W−, is determined by the sign of ai: For ai < 0,
ζ → +∞ and W → W+, and opposite for positive ai. Each brane tension is given by
Eq. (3.42), so writing Λ± for branes with warp factor W±, we have

Λi
± = 2π

(
1− γ2 |ai|

W 4
+ −W 4

−
W 4
±

)
. (3.82)

This is completely analogous to the two-brane case.
In contrast to the two-brane case, however, for N branes there also is a brane at

z = ∞. This is mapped to ζ = 0 because
∑

i ai = 0, and the brane tension is fixed by
the number of branes (see Eq. (3.44)):

Λ∞ = 2π (2−N) . (3.83)

We will now use Eq. (3.82) to fix some of the parameters of the model. Assume the
first k ai’s are negative and the rest is positive, so that there are k branes with tensions
Λi

+ and N−k with tensions Λj
−. We can get a set of relations similar to (3.61) and (3.62):

eΦ0 |ai| =
4

g2

(
1− 1

2π
Λi

+

) (
N − k − 1

2π

∑N
j=k+1 Λj

−

)

N − 2k + 1
2π

(∑k
j=1 Λj

+ −
∑N

l=k+1 Λl
−

) i = 1, . . . , k , (3.84)

eΦ0 |ai| =
4

g2

(
1− 1

2π

∑k
j=1 Λj

+

) (
k − 1

2π
Λi
−

)

N − 2k + 1
2π

(∑k
j=1 Λj

+ −
∑N

l=k+1 Λl
−

) i = k + 1, . . . , N , (3.85)

f

v
= ±4g

√
κ̃

1 + κ̃
, where κ̃ =

2π (N − k)−∑N
i=k+1 Λi

−

2πk −∑k
i=1 Λi

+

. (3.86)
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We find N + 1 relations. Furthermore, two brane positions can be chosen at z0 = 0
and z1 = 1. The overall factor c cannot be absorbed into V , so one parameter remains
unfixed, as in the unwarped case.

Flux Quantisation and Planck Mass
We again consider flux quantisation. This time, we will employ a more general procedure
than in the two-brane case, since we cannot use the warp factor as a coordinate. We
will stick to the original complex coordinate z and metric (3.21). The flux is

Fzz̄ = εzz̄
√
ĝfeΦ0W−6 =

1

2
εzz̄fe

Φ0W−4e2A = −1

8
εzz̄fe

Φ0
∂W−4

V
, (3.87)

and we can insert this in the flux quantisation condition (3.63) to obtain the condition

−1

8
feΦ0

∫
dzdz̄

∂W−4

V
=

2πn

V
. (3.88)

To evaluate this integral, we use the divergence theorem for a complex function J and
a domain of integration R ⊂ � ,

∫

R

dzdz̄
(
∂J + ∂J

)
= i

∮

∂R

(
Jdz̄ − Jdz

)
. (3.89)

To apply this to the flux quantisation integral, we have to split the internal space into
several patches and find that the only contributions come from the singularities where
W = W±, and there is an additional factor of 2πi from the residue. Hence, the condi-
tion (3.88) gives

feΦ
0

(
k∑

i=1

|ai|
)
(
W 4

+ −W 4
−
)

=
8n

g
(3.90)

since
∑k

i=1 |ai| =
∑N

i=k+1 |ai|. The ai’s are given in Eq. (3.84), and we find a weakened
fine-tuning condition between the brane tensions:

(
1− 1

2π

k∑

j=1

Λj
+

)(
N − k − 1

2π

N∑

j=k+1

Λj
−

)
= n2 . (3.91)

A similar integral has to be performed for the Planck mass: In the same coordinates
as before, the Planck mass is given by

MP =
1

8
M4

6

∫
dzdz̄

∂W 4

V
=
π

4
M4

6

(
k∑

i=1

|ai|
)
(
W 4

+ −W 4
−
)
. (3.92)

The Unwarped Limit
For the unwarped limit, we again have to balance two limits: we take

(
W 4

+ −W 4
−
)
→ 0

and c→∞, i.e. |ai| → ∞, while keeping

βi = γ2ai
W 4

+ −W 4
−

W 4
+

(3.93)
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finite (no distinction between i = 1, . . . , k and i = k+1, . . . , N is necessary in this limit).
This keeps the Planck mass and brane tensions (3.82) finite,

MP −→
π

4γ2
M4

6

(
k∑

i=1

|βi|
)
, (3.94)

Λi −→ 2π (1− |βi|) . (3.95)

The brane tension at z =∞ is not affected. As c→∞, indeed V → 0 as required.

For the metric, we can use the warp factor of Eq. (3.81) to rewrite the function P (W ),

P (W ) =
1

2
γ2W−4

(
W 4

+ −W 4
) (
W 4 −W 4

−
)

(3.96)

=
1

8
γ2

(
W 4

+ −W 4
−
)2

W 4

1

cosh2
[

1
2

(W 4
+ −W 4

−)χ
] . (3.97)

Hence, in the unwarped limit, the metric goes to

ds2 −→W 2
+ηµνdx

µdxν +
γ2

16

(
W 4

+ −W 4
−
)2

|V (z)|2
cosh−2

[
γ2W

4
+ −W 4

−
W 4

+

η

]
dzdz̄ . (3.98)

In each patch of coordinates, we can change this into a more convenient form using a
holomorphic function

ω = exp

{
γ2W

4
+ −W 4

−
W 4

+

ξ

}
, (3.99)

so that the internal metric becomes

ds2
2 =

1

4γ2
W 2

+

|∂ω|2(
1 + |ω|2

)dzdz̄ . (3.100)

For our case, ξ can be inferred from ζ, Eq. (3.79), and ω is

ω =
N∏

i=1

(z − zi)βi , with βi = γ2ai
W 4

+ −W 4
−

W 4
+

, (3.101)

so the brane tensions are given by the exponents,

Λi −→ 2π (1− |βi|) ,Λ∞ −→ 2π (1−N) . (3.102)

Note that this is again consistent with the expression from the Gauss–Bonnet theorem,
Eq. (3.46), since the scalar curvature of the internal space goes to R = 32γ2W−2

+ .
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3.3. Possible Generalisations

We have found the general warped solution in six-dimensional gauged supergravity with
four-dimensional maximal symmetry. The four-dimensional geometry is fixed to be flat.
Essential properties of the internal geometry, such as the number of conical branes, are
determined by a holomorphic function.

We can reproduce the known warped solution[40, 41] with two branes. Unfortunately,
brane tension fine tuning from flux quantisation is not removed. For a more general
function, we can also incorporate many branes in a warped geometry. In this case,
there is still one fine-tuning condition involving all brane tensions. There also appears a
negative tension brane, as required by the Gauss-Bonnet theorem. For both situations,
we can safely take the unwarped limit so that the internal volume and Planck mass stay
finite.

Interesting generalisations would involve more general functions, in particular, peri-
odic functions to generate other topologies like toric orbifolds. Another route would
be to consider couplings of bulk fields to the brane tensions, as suggested by the next
chapter’s results.



4. Gravity Mediated Supersymmetry
Breaking in 6d

In this chapter we will analyse gravity mediated supersymmetry breaking in a six-
dimensional supergravity theory: Ungauged supergravity on a T 2/Z2 orbifold, with
matter located at fixed points.

One motivation for considering brane world supersymmetry breaking is the problem
of flavour-changing neutral currents (FCNCs) which generically are present and strong
in gravity mediated models. The reason is that the Kähler potential Ω = exp{−K/3},
which encodes the soft masses, introduces mixings via the coefficient of Q†iQj, where Qi

are visible sector scalars:

ΩQ†Q = − 1

3M2
P

Q†iQj (δij + Cij) , (4.1)

where the contact terms Cij depend on the hidden sector fields which break supersym-
metry. Generally, this will lead to unacceptably large FCNCs, which can be avoided
only if we assume a special structure of the contact terms, diagonal or aligned with the
fermion Yukawa couplings. This is a strong assumption and needs to be justified.

A possible justification is the so-called sequestering[20], where the Kähler potential is
simply the sum of hidden and observable sector contributions, so Cij = 0. Sequestered
Kähler potentials can arise in higher-dimensional models where the hidden and observ-
able sectors are located on different branes. The separation in the extra dimension can
guarantee the absence of contact terms. However, sequestering is not a generic result
of higher-dimensional theories, for two reasons. First, the bulk contains the gravity
multiplet, which couples to the branes. Integrating out the higher Kaluza-Klein modes
can generate contact terms, which are benign in the sense that they are calculable and
flavour-blind since gravitational fields couple universally. Second, the bulk might contain
other fields with nontrivial brane couplings, and these fields may spoil sequestering and
introduce dangerous contact terms. Such contact terms seem non-local, but of course
integrating out the higher Kaluza-Klein states generates a non-local effective theory, and
the branes are not “far apart” in any sense[52, 53]. The contact terms so generated are
suppressed by the volume of the internal space, but so is the gravitino mass which is
the scale of supersymmetry breaking. Hence, generically one might expect non-universal
contact terms of the order of the gravitino mass.

Specific models of brane-world supersymmetry breaking have been widely studied in
five dimensions[54], where the tree-level result indeed is sequestered,

Ω5d =
1

2

(
T + T

)
− 1

3
Ωobs −

1

3
Ωhid , (4.2)



48 Chapter 4: Gravity Mediated Supersymmetry Breaking in 6d

with the radion modulus T which does not couple to the branes. Hence, at tree-level there
is no mediation of supersymmetry breaking, and one-loop corrections[55] are important.
Unfortunately, they turn out to produce negative (masses)2 unless large brane-localised
gravity kinetic terms are introduced[56].

Here we will generalise these studies to six dimensional supergravity on the orbifold
T 2/Z2, presenting the results of Ref. [57]. For the bulk-brane coupling we start from
globally supersymmetric brane theories and iteratively make them locally supersymmet-
ric by the Noether method[58]. This will involve coupling to bulk fields. We will follow
this procedure to two-fermion terms. For the combined bulk-brane action we will find
the low-energy effective action at tree level and include one-loop corrections. In this
setup, we will analyse the effects of gravity mediated supersymmetry breaking.

4.1. Bulk-Brane Coupling

4.1.1. Bulk Action

The action of ungauged supergravity follows from the general action in Appendix B by
setting g → 0 and omitting the gauge fields AM and Λ. The remaining field content is
the metric GMN which we trade for the sechsbein1 e A

M , the gravitino ΨM , the two-form
BMN , with field strength HMNP = 3∂[MBNP ], the dilaton Φ and its fermionic partner,
the dilatino χ. The fermions are chiral in the six-dimensional sense. The Lagrangean is

Lbulk = e6

{
1

2
R6 − iΨMΓMNPDNΨP +

e−Φ

12
HMNPH

MNP + iχΓMDMχ

+
1

2
∂MΦ∂MΦ− ie−Φ

12
√

2
ΨMΓMNPQRψNHPQR

+
ie−Φ

2
√

2
ΨMΓNΨPHMNP +

e−Φ

12
√

2
ΨMΓMNPQχHNPQ + H.c.

− e−Φ

4
√

2
ΨMΓNPχHMNP + H.c. +

ie−Φ

12
√

2
χΓMNPχHMNP

−1

2
χΓMΓNΨM∂NΦ + H.c. + (four-fermion terms)

}
.

(4.3)

It is invariant under local supersymmetry transformations with chiral parameter ε (up
to three-fermion terms):

δe A
M =

i

2
ΨMΓAε+ H.c. , (4.4a)

δΨM = DMε+
e−Φ

24
√

2
(ΓMNPQ − 3GMNΓPQ) εHNPQ , (4.4b)

1M = (µ,m) etc. are Einstein indices while A = (α, a) etc. are Lorentz indices. Both range over
0, . . . , 3, 5, 6, and numerical Einstein indices are indicated by 5̇ etc. Details can be found in the
appendix.
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Field even odd

e A
M e α

µ e a
m e α

m e a
µ

ΨM ψ+
µ ψ+

m ψ−µ ψ−m
BMN Bmn Bµν Bµm

χ χ+ χ−

ε ε+ ε−

Φ Φ

Table 4.1: Decomposition of bulk fields into even and odd
components. ΨM and χ have opposite six-dimensional
chirality, ψ+

µ , ψ−m and χ− are four-dimensionally right-
handed. Details about Γ-matrices and the spinor decom-
position are given in Appendix A.

δBMN =
ieΦ

√
2

Ψ[MΓN ]ε−
eΦ

2
√

2
χΓMNε+ H.c. , (4.4c)

δχ = − i
2

ΓMε∂MΦ +
ie−Φ

12
√

2
ΓMNP εH

MNP , (4.4d)

δΦ =
1

2
χε+ H.c. (4.4e)

We compactify the theory on the torus orbifold T 2/Z2. We take a symmetric orbifold
(y5, y6) ∈ (−πR, πR]× (−πR, πR], and the Z2 acts by (y5, y6) 7→ − (y5, y6). The fields
– and the transformation parameter – are decomposed into even and odd fields as given
in Table 4.1.

The extradimensional metric is parametrised as follows,

gmn =
A

τ2

(
1 τ1

τ1 τ 2
1 + τ 2

2

)
, (4.5)

so that the volume of the orbifold is VT 2/Z2
= 2 (πR)2 A. The other two moduli can be

combined into τ = τ2 + iτ1 which describes the shape of the torus (the ratio of lengths
via |τ |2, the angle by τ1/τ2). This parametrisation is actually redundant, i.e. under a
SL(2,Z) transformation τ → (aτ − ib) / (icτ + d) the torus goes over to itself.

4.1.2. Brane Action and the Noether Method

In this section we will couple the branes to the bulk via the Noether method. This
method has e.g. been used to couple chiral multiplets to supergravity in four dimensions
and branes to a supergravity bulk in five and eleven dimensions[58, 55], but the six-
dimensional bulk-brane coupling has not been derived before. Off-shell methods might
be more powerful when applicable, but the Noether method is a simple and efficient pro-
cedure to derive the coupling even when there is no off-shell formulation of supergravity
at hand, like in six dimensions. Furthermore, we will find that it is sufficient to compute
zero- and two-fermion terms to uniquely fix the low-energy effective theory.

The procedure involves several steps, and we will explicitly find the coupling of a chiral
multiplet on the brane to the bulk supergravity. This section will be rather technical,
and the result is Eq. (4.29). For the case of a charged chiral multiplet plus vector
multiplet we just give the result.
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Brane Chiral Multiplet

We put a chiral multiplet with complex scalar Q and chiral fermion η on the fixed point
(y5, y6) = (0, 0). We take the starting action to be globally supersymmetric:

L0 = e4δ56f

(
∂µQ

†∂µQ +

(
i

2
ηγµ∂µη + H.c.

))
. (4.6)

Here we abbreviated δ56 = δ(y5) δ(y6) and included a factor f , which is a function
of the bulk bosonic fields to be specified later. This is invariant under these global
transformations:

δQ† =
1√
2
ηε̃ (4.7a)

δη = − i√
2
γµ (∂µQ) ε̃ (4.7b)

The parameter ε is a four-dimensional chiral spinor which we identify with the positive
parity component of the six-dimensional supersymmetry variation parameter, ε̃ = ε+.

Now for the Noether procedure. The idea is to vary the action (4.6) with a local
variation parameter. The action will not be invariant, and we will add further terms in-
volving couplings to brane fields and augment some bulk quantities with brane-localised
terms until the action is invariant. We will pursue this method to two-fermion terms,
i.e. there will be uncancelled four-fermion variations left. The rationale for that is that
the zero- and two-fermion terms are all we need to infer the Kähler potential and gauge
kinetic function of the low-energy effective theory. Since we know the effective theory
is N = 1 supersymmetric, knowledge of these two functions completely determines the
theory. Hence, it should be possible to find the complete action, including four-fermion
term, so that it is locally supersymmetric.

But now to the brane! The variation of the action (4.6) under a local transformation,
where ε̃ = ε+ = ε+(x) depends on the four-dimensional coordinates, splits into several
distinct pieces:

δL0 =
e4δ56√

2

(
f

∝ Jµsuper︷ ︸︸ ︷
ηγµγν∂νQ ∂µε

+ +
1

2
∂µfη (γµν − gµν) ∂νQε

)

︸ ︷︷ ︸
δη,QL0

+ e4δ56∂µQ
†∂µQδf︸ ︷︷ ︸

δfL0

+
ie4δ56f

2
∂µQ

†∂νQψ
+
ρ (γρgµν − γνgρµ − γµgνρ) ε+

︸ ︷︷ ︸
δeL0

+H.c.

(4.8)

The last part stems from the variation of the vierbein determinant, and we only keep
the scalar kinetic term since we only consider two-fermion variations. The second part
contains the yet unknown variation of f , while the first contribution comes from the
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variation of Q and η by Eq. (4.7a). The term ∝ ∂µf comes from an integration by
parts, while the first term is the supercurrent times the derivative of the transformation
parameter. Such a term always comes about when one varies a globally symmetric
Lagrangean with a local parameter, and is cancelled by a coupling of the associated
gauge field which is the gravitino for supergravity. For the parameter ε+(x), the correct
component actually is the right-handed positive parity component ψ+

µ , and the coupling
is the Noether term

LN = −e4δ56f√
2

ηγµγν∂νQψ
+
µ + H.c. (4.9)

This term, however, again, has further variations (again, we only consider the variations
of the fermions in LN, since the variations of e4 and f are four-fermion terms):

δLN = −e4δ56√
2
ηγµγν∂νQ∂µε

+

− e4δ56fe
−Φ

48
∂λη

(
Hνρσ

(
iγµγλεµνρσ − 3γνγ

λγρσ
)

+6ie2H
ν5̇6̇
(
γµγλγµν − γνγλ

))
ε+

+
ie4δ56f

2
∂µQ

†∂νQψ
+
ρ (−γµνρ − γρgµν + γνgρµ + γµgνρ) ε+ + H.c.

(4.10)

Here the last line is δηLN, the variation of the Noether term from the variation of η. The
second and third line follow from the HMNP variation of the gravitino. The determinant
of the zweibein follows from the contractions of the form HMNPΓMNP , e.g.

HMNPΓMNP = HµνρΓµνρ + 3HµνrΓµνr + 3HµnrΓµnr

= HµνρΓµνρ + 3HµνrΓµνr +Hµ5̇6̇εnre a
n e

b
r ΓµεabΓ56 ,

(4.11)

where the Einstein and Lorentz indices are connected via zweibeins. The Γµνr-term is
off-diagonal and hence vanishes on ε+.

The last line of (4.10) is of the same form as δeL0 in Eq. (4.8). They combine to

δeL0 + δηLN = − ie4δ56f

2
∂µQ

†∂νQψ
+
ρ γ

µνρε+ + H.c. (4.12)

We will not cancel this by further terms, but modify the bulk fields. To be precise,
the variation of the gravitino kinetic term in the bulk action (4.3) contains a piece that
vanishes due to the Bianchi identity,

δ1Lbulk =
ie6e

−Φ

12
√

2
ΨMΓMNPQRε∂NHPQR + H.c.

= −e4e
−Φ

2
√

2
ψ+
µ γ

µνρε+∂νHρ5̇6̇ +
ie2e

−Φ

12
√

2
εµνρσ∂µHνρσψ

+ε+ + H.c.

(4.13)
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where ψ+ = −
(
ψ+

5 + iψ+
6

)
is a linear combination of the higher-dimensional gravitino

components, and there are additional terms in the second line that vanish on the brane.
We exploit the above variation by replacing HMNP → ĤMNP , where ĤMNP does not
satisfy the Bianchi identity, but rather

∂[µĤν]5̇6̇ = −
√

2 iδ56fe
Φ∂[µQ

†∂ν]Q + (2-fermion-terms) , (4.14)

while ∂[µĤµνρ] = 0 + (2-fermion-terms). To find a Ĥ which will do that, we first set
f = e−Φ. This implies

δQ,ηL0

∣∣∣
∂f

= −e4δ56e
−Φ

2
√

2
∂µΦ∂νQη (γµν − gµν) ε+ + H.c. (4.15)

δfL0 = −e4δ56e
−Φ

2
∂µQ

†∂µQχ+ε+ + H.c. (4.16)

The condition (4.14) for the modified Bianchi identity is satisfied by

Ĥµ5̇6̇ = Hµ5̇6̇ −
iδ56√

2

(
Q†∂µQ− ∂µQ†Q

)
+ (2-fermion-terms) . (4.17)

The modified Bianchi identity cancels the variations δeL0 + δηLN. However, there
is a price to pay: δLbulk contains another term which relies on the Bianchi identity to
vanish,

δ2Lbulk = −e6e
−Φ

12
√

2
χΓMNPQε∂MHNPQ + H.c.

= − ie4e
−Φ

2
√

2
χ+
µ γ

µνε+∂µHν5̇6̇ + H.c.

= −1

2
e4δ56e

−Φ∂µQ
†∂νQχ

+γµνε+ + H.c.

(4.18)

To cancel this, we have to include another coupling, which is to the dilatino. This comes
as no surprise, since the dilaton couples to the brane, and so should its superpartner.
The term is

Ldino =
ie4δ56e

−Φ

√
2

χγµη ∂µQ
† + H.c. (4.19)

It has variations from δη ∼ ∂Q and δχ ∼ ∂Φ which cancel δ2Lbulk, δfL0 and the ∂µf -
part of δQ,ηL0. On the other hand, there is another variation from δχ ∼ HMNP which
is not cancelled.

So by now, the brane Lagrangean is

Lbrane = L0 + LN + Ldino , (4.20)
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which, together with the modified Bianchi identity, has a remaining variation

δLbrane =
e4δ56e

−2Φ

4

(
i

e2
∂µQHν5̇6̇η (γµν + 3gµν) ε+ (4.21)

+
1

6
Hµνρ∂σQηγ

µνργσε+

)
+ H.c. (4.22)

This can be cancelled by a further modification of the three-form field strength which
changes its supersymmetry transformation law. The variation of the bulk field strength
kinetic term is

δH2Lbulk =
e6e
−2Φ

6

(
HµνρδH

µνρ + 3HµνmδH
µνm + 6Hµ5̇6̇δH

µ5̇6̇
)
. (4.23)

So we can cancel δLbrane if we find a further two-fermion modification of Ĥ which has
the additional variations

δextraĤ
µ

5̇6̇
= − iδ56

4
∂νQη (γνµ + 3gνµ) ε+ + H.c. (4.24)

δextraĤ
µνρ =

δ56

4e2
∂λQηγ

µνργλε+ + H.c. (4.25)

Such a modification is provided by the following terms:

Ĥµ5̇6̇

∣∣∣
2−fermion

= − δ56

2
√

2
ηγµη (4.26)

Ĥµνρ

∣∣∣
2−fermion

= − iδ56

2
√

2
ηγµνρη (4.27)

together with a modified transformation law of the two-form field,

δextraB5̇6̇ = − iδ56

2
ηε+Q+ H.c. (4.28)

This was the final step. To summarise, the brane Lagrangean up to four-fermion terms
is

Lbrane = L0 + LN + Ldino

= e4δ56e
−Φ

[
∂µQ

†∂µQ +

(
i

2
ηγµ∂µη

− 1√
2
ηγµγν∂νQψ

+
µ +

i√
2
χγµη ∂µQ

† + H.c.

)]
.

(4.29)

In the bulk Lagrangean, we have replaced H → Ĥ, where

Ĥµνρ = Hµνρ −
iδ56

2
√

2
ηγµνρη , (4.30)

Ĥµ5̇6̇ = Hµ5̇6̇ −
iδ56√

2

(
Q†∂µQ− ∂Q†Q−

i

2
ηγµη

)
, (4.31)

and modified the transformation law to (4.28).
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Brane Vector Multiplet and Charged Matter

A similar, but more complicated procedure can be carried out for the case of a brane
Lagrangean involving a U(1) vector multiplet and a charged chiral multiplet. Here we
only quote the result.

The initial Lagrangean contains kinetic terms for vector field Aµ, gaugino λ, scalar
Q and chiral fermion η, couplings of matter to the vector via covariant derivatives, a
Yukawa-like term ∼ Qηλ and a quartic scalar term. There are two pieces to be added,
a Noether term which now involves Λ and the field strength Fµν and a dilatino coupling

to η and λ. We again change the three-form H → Ĥ which does not satisfy the Bianchi
identity and has a modified transformation law. The complete Lagrangean is

Lbrane = e4δ56 {L ′
0 + L ′

N + L ′
dino} , (4.32)

where

L ′
0 = −1

4
FµνF

µν +

(
i

2
λ̄γµDµλ+ H.c.

)

+ e−Φ

[
DµQ

†DµQ+

(
i

2
e−ΦηγµDµη + H.c.

)]

+ e−Φ
(√

2 ige−ΦQ†λ̄η + H.c.
)
− 1

2
g2e−2Φ |Q|4 ,

(4.33a)

L ′
N = −1

2
Λγµ

(
i

2
Fρσγ

ρσ − ge−Φ |Q|2 γµ
)
ψ+
µ

+
1√
2
e−ΦηγµγνDνQψ

+
µ + H.c. ,

(4.33b)

L ′
dino = −ige−Φ |Q|2 λ̄χ− i√

2
e−ΦDµQηγ

µχ+ H.c. (4.33c)

The modified field strength is

Ĥµνρ = Hµνρ −
iδ56

2
√

2 e2

(
eΦλ̄γµνρλ+ ηγµνρη

)
, (4.34a)

Ĥµ5̇6̇ = Hµ5̇6̇ +
δ56

2
√

2

[
−2i

(
Q†DµQ−DµQ

†Q
)
− ηγµη + eΦλ̄γµλ

]
, (4.34b)

δextraB5̇6̇ = − iδ56

2
Qηε+ + H.c. (4.34c)

Brane Superpotential

We can also include a brane superpotential. Here we give the simplest case, a constant
superpotential, i.e. a gravitino mass term W0. The starting point is the brane action

LW,0 = −1

2
e4δ56fW0ψµγ

µνCψTν + H.c. (4.35)
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The procedure is similar to the previous one, but this time it involves couplings of the
extra-dimensional components of the gravitino to the brane. We also have to take the
spin connection into account, which results in a coupling of the shape modulus. The
final brane action is

LW =
1

2
e4δ56

√
A

τ2

W0

(
−ψµγµνCψTν + iψ5−6γ

µCψTµ + H.c.
)
. (4.36)

Here ψ5±6 = −
(
ψ+

5 ± iψ+
6

)
. The transformation laws of these gravitino components also

get an additional brane-localised term,

δextraψ5±6 = ±δ56
1√
Aτ2

W0Cε
T . (4.37)

From this result we can infer how a field-dependent bulk superpotential couples to the
bulk moduli. In particular, if the brane theory develops a vacuum expectation value of
F - or D-terms, the coupling is

LF,D = −1

2
e4δ56

(
e−2Φg2D2 +

2AeΦ

τ2

|F |2
)
. (4.38)

4.2. The 4d Effective Theory

We now find the low-energy effective action for the theory. The light degrees of freedom
are the zero modes of the even fields: The bosonic ones are the four-dimensional metric,
the volume and shape moduli, the dilaton, the two-form components Bµν and B5̇6̇,
while the fermionic zero modes comprise the four-dimensional gravitino, the even extra-
dimensional gravitino components and the dilatino.

4.2.1. Tree Level

Our aim is to find the Kähler potential, superpotential and gauge kinetic function of the
low-energy theory. To this end it is sufficient to check the kinetic terms of the boson
zero modes. We take the background to be

ds2 =
1

A
gµνdx

µdxν − gmndymdyn , (4.39)

and reinsert the Planck scale. The six-dimensional fundamental scale M6 is the cut-
off of the effective six-dimensional theory. The compactification scale, that is, the
mass of the lowest Kaluza-Klein modes, depends on the volume of the internal space,
MKK ∼ V

−1/2

T 2/Z2
∼ A−1/2R−1. For the six-dimensional theory to be sensible, we require

M6/MKK � 1. The coupling of graviton zero modes is gouverned by M 2
6 /MKK, rather

than by M6 itself.
The above scale considerations are valid in the Einstein frame. When compactifying to

four dimensions, the Ricci tensor is multiplied by A coming from the determinant of the
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metric in the integration measure. To get rid of this, one has to perform a Weyl rescaling
to again go to the Einstein frame. This endows all masses with a factor of A−1/2, so that
the compactification scale becomes MKK ∼ (AR)−1, while the four-dimensional Planck
scale is determined from the graviton zero mode coupling and is MP = 2πRM2

6 .
Now for the action. The higher modes of the fields can be integrated out trivially,

with the exception of the odd components of the two-form. They need special treatment
because of the replacement (4.34), which results in the appearance of

e6e
−2Φ

12
ĤMNP Ĥ

MNP =
e4e
−2Φ

2A2
Ĥµ5̇6̇Ĥ

µ

5̇6̇
+ · · ·

=
e4e
−2Φ

2A2

(
∂µB5̇6̇ + ∂6̇Bµ5̇ + ∂5̇Bµ6̇ − δ56

i√
2

(
Q†DµQ−DµQ

†Q
)

︸ ︷︷ ︸
jµ

)2

+ · · · . (4.40)

The ellipses represent the other components of Ĥ and fermionic terms in the brane-
localised additions. Hence, there are couplings ∼ δ56∂5̇Bµ6̇j

µ of the odd components of
the two-form to the brane. Additionally, there appear potentially dangerous δ2

56-terms,
but they will cancel while integrating out the Kaluza-Klein modes of Bµm. The derivative
translates into a mass of the Kaluza-Klein modes, so the coupling is proportional to the
mass, which compensates the mass suppression of the propagator, and the heavy states
do not decouple. In other words, the appearance of the brane coupling modifies the
boundary conditions and thus the Kaluza-Klein expansion. To find a new expansion,

one first has to solve the equation of motion of Bµm

(
y5̇, y6̇

)
, and then reinsert the

solution into the action before integrating out the extra dimensions. In this procedure,
one has to treat the even fields jµ and ∂µB5̇6̇ as constant sources. The relevant equations
for the field strength are

∂5̇Ĥµ5̇6̇ = 0 , ∂ 6̇Ĥµ5̇6̇ = 0 . (4.41)

So the field strength is constant, Ĥµ5̇6̇ = Cµ = const. We can solve this equation if we

assume a function Wµ with Bµ5̇ = −∂6̇Wµ and Bµ6̇ = ∂5̇Wµ, so that Ĥµ5̇6̇ = Cµ becomes

(
∂2

5̇
+ ∂2

6̇

)
Wµ = ∂µB5̇6̇ − Cµ + δ56jµ . (4.42)

The left hand side vanishes when integrated over the internal space. Hence we find the
integration constant (remember B5̇6̇ is a zero mode)

Cµ = ∂µB5̇6̇ +
1

(2πR)2 jµ . (4.43)

Hence, we see that Ĥµ5̇6̇ does not contain a δ56 contribution. The brane-localised part
was cancelled by a contribution of the odd Bµm. We could solve the equation of motion
explicitly, but actually, Cµ is all we need.
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Inserting Cµ in the action and the zero modes for all other fields, we find the low-energy
effective action for the bosonic fields:

Leff,bos = e4M
2
P

{
1

2
R +

1

2A2
∂µA∂

µA+
1

2
∂µΦ∂µΦ +

1

4τ 2
2

∂µτ2∂
µτ2 +

1

4τ 2
2

∂µτ1∂
µτ1

+
e−Φ

M2
PA

DµQ
†DµQ− 1

4M2
P

FµνF
µν +

e−2Φ

12A2
HµνρH

µνρ

+
e−2Φ

2A2

(
∂µB5̇6̇ +

i√
2M2

P

(
Q†DµQ−DµQ

†Q
))2

}
(4.44)

It is actually convenient to redefine some fields: The three-form is dual to a pseu-
doscalar σ via e−2ΦHµνρ = εµνρλ∂

λσ, and the metric determinant and dilaton are com-
bined to new fields t and s by

t = AeΦ s = Ae−Φ (4.45)

to disentangle the coupling to B5̇6̇ and σ. The new Lagrangean reads

Leff,bos = e4M
2
P

{
1

2
R +

1

4t2
∂µt ∂

µt+
1

4s2
∂µs ∂

µs+
1

4τ 2
2

∂µτ2 ∂
µτ2 +

1

4τ 2
2

∂µτ1 ∂
µτ1

+
1

M2
Pt
∂µQ

†∂µQ− 1

4M2
P

FµνF
µν +

1

2s2
∂µσ ∂

µσ

+
1

2t2

(
∂µB5̇6̇ +

i√
2M2

P

(
Q†DµQ−DµQ

†Q
))2

}
.

(4.46)

Since we know that the four-dimensional effective theory has to beN = 1 supergravity,
the kinetic terms must be derivable from a Kähler potential, which is a function of
complex fields and their conjugates, and a gauge kinetic function which exclusively
depends on the complex fields. To obtain complex fields, we can group the scalar and
pseudoscalar fields2 together to form the moduli multiplets

T = t + i
√

2B5̇6̇ +
|Q|2
M2

P

, S = s+ iσ , τ = τ2 + iτ1 . (4.47)

These combinations are actually dictated from the kinetic terms in Eq. (4.46), where
e.g. t appears in the coefficient of the kinetic term of B5̇6̇.

In terms of the Kähler potential K
(
T, T , S, S, τ, τ

)
and the gauge kinetic function

f(T, S, τ) the kinetic terms can be written as

Lbos,kin = e4MP

{
1

2
R +

∑

φ=T,S,τ

∂2K

∂φ∂φ
DµφD

µφ− 1

4
Re f FµνF

µν

}
. (4.48)

2B5̇6̇ can be seen to be a pseudoscalar because CP in the extra dimensions amounts to an orientation
reversal, under which the antisymmetric two-form changes sign.
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Comparison with the Lagrangean (4.46) gives

K = − ln

(
1

2

(
T + T

)
− |Q|

2

M2
P

)
− ln

(
1

2

(
S + S

))
− ln

(
1

2
(τ + τ )

)
, (4.49)

f = 1 . (4.50)

Compactifying the gravitino mass term from the superpotential Lagrangean (4.36),
we get

LW = − e4

2A
√
τ2
W0ψµγ

µνψTν + H.c. (4.51)

This precisely corresponds to a constant superpotential W = W0 in four-dimensional
supergravity.

Later we will study the mediation of supersymmetry breaking from the hidden sector
on one brane to other branes. To do so, we need to find the supergravity functions for
the case where there is matter on more than one brane. Fortunately, the other branes’
matter couples just as the one we considered, so the previous result can be generalised
straightforwardly.

Assume that on brane a (where a = 1, . . . , 4 labels the branes), there is matter consist-
ing of scalars Qa and gauge fields Aµ

a . The brane kinetic terms are fixed by Ωa

(
Qa, Q

†
a

)

for the scalars3 and fa(Qa) for the gauge fields, and the brane superpotential is denoted
by Wa(Qq). The supergravity functions for the low-energy effective theory are

K = − ln

(
1

2

(
T + T

)
−
∑

a

Ωa

(
Qa, Q

†
a

)
)

− ln

(
1

2

(
S + S

)
)
− ln

(
1

2
(τ + τ )

)
,

(4.52a)

f =
∑

a

fa(Qa) , (4.52b)

W =
∑

a

Wa(Qa) . (4.52c)

In Section 4.3, we will use this result to analyse gravity mediated supersymmetry
breaking. Some remarks about general features of this solution are in order.

1. The first observation is that the Kähler potential is not sequestered as in Eq. (2.23).
This means that in principle, there can be tree-level mediation of supersymmetry
breaking. However, we will see in Section 4.3 that the issue is more subtle. The
non-sequestering is not so severe that the effective theory would contain direct
contact terms ∼ |Qa|2 |Qb|2 between different branes. There are, however, vector-
vector terms ∼ (Ω′a∂µQa) (Ω′b∂

µQb) which arise from integrating out the two-form

field in Ĥµ5̇6̇ along the lines of the discussion before Eq. (4.43). Such operators do
not contribute to supersymmetry breaking mediation.

3Ω is the Kähler potential on the brane. For canonical kinetic terms, Ωa

(
Qa, Q

†
a

)
= Q†Q.
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2. The moduli couple flavour-blindly, that is, universally to all brane fields. This is
enforced by six-dimensional supergravity without any freedom.

3. The superpotential only depends on the brane fields and not on the bulk moduli.

4. The Kähler potential is “partially no-scale”: It is no-scale with respect to the bulk
moduli but not to the brane fields. In the scalar potential, hence, the −3 |W |2 part
is cancelled, and the only moduli dependence of the scalar potential comes from
the exp{K} factor:

V =
1

stτ2
Kij̄∂iW∂j̄W (4.53)

Here i, j only range over the brane fields. This result holds as long as W is
independent of the moduli. The full scalar potential is given in Eq. (4.69).

4.2.2. Loop Corrections

As the tree-level system (4.52) is not no-scale, the loop corrections to the Kähler potential
will generically not play a decisive rôle in the mediation of supersymmetry breaking. In
specific situations, on the other hand, the system is effectively sequestered in the sense
that there is no tree-level mediation of supersymmetry breaking, and loop corrections
might be relevant, so we list them for completeness.

The one-loop corrections are most easily expressed in terms of Ω = exp{−K/3}. At
one loop, Ω = Ωtree + ∆Ω, and ∆Ω can be conveniently calculated from[59]

∆Ω =
Nj

3

Γ(1− d/2)

M2
P (4π)d/2

∑
md−2
n . (4.54)

Here mn is the Kaluza-Klein mass spectrum depending on n = (n5, n6) in the so-called
supergravity conformal frame where the Einstein-Hilbert term is

Lconf =
1

2
M2

Pe4ΩR =
1

2
M2

Pe4A
2/3τ

1/3
2 R . (4.55)

The factor Nj depends on the matter present. Each Dirac fermion contributes N1/2 = 1,
while a gauge boson has a negative contribution, N1 = −2. The formula is to be
understood in dimensional regularisation, so d = 4 + ε.

The relation (4.54) can be derived by considering the contribution of a field of mass
m and spin j to the renormalisation of the Einstein-Hilbert term which is

∆LEH =
Nj

3

Γ(1− d/2)md−2

M2
P (4π)d/2

√−gR . (4.56)

This has to be summed over all Kaluza-Klein modes. Now one can see why the supergrav-
ity conformal frame is convenient: The ∆LEH terms can be understood as contributions
to Ω, and so (4.54) follows. For a more explicit derivation, see [59].
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The mass spectrum in this frame can be found from the kinetic term of a scalar for
simplicity. Its equation of motion is

∂M
(
e6G

MN∂Nφ
)

= 0 (4.57)

Inserting the Kaluza-Klein expansion for φ results in the replacements �4φ → −m2
nφ

and ∂mφ → inmφ. After Weyl rescaling to the supergravity conformal frame, the mass
spectrum is

m2
n5,n6

=
1

A4/3τ
2/3
2 R2

|n6 + in5τ |2 . (4.58)

To find ∆Ω, we need to evaluate the sum

Σ(s) =
1

2

∑′

n5,n6∈Z
m2s
n5,n6

(4.59)

at s = d/2− 1. The sum is computed in Appendix C. The result for ∆Ω is

∆Ω = − 32

3 (4π)2

1

(2πRMP)2

×
ζ(3) + π3

360
(τ + τ)3 +

∑

m5,m6∈N

[
1+πm5m6(τ+τ)

m3
6

(e−2πm5m6τ + H.c.)
]

(
T + T − 2Ωbranes/M

2
P

)2/3 (
S + S

)2/3 (
τ + τ

)2/3
.

(4.60)

This contribution is suppressed by a loop factor and the volume, (4π)2 (2πRAMP)2.
There is also a divergent part of the one-loop correction which simply leads to a renor-
malisation of the tree-level parameters which depends on the UV completion of the
theory.

4.3. Gravity Mediated Supersymmetry Breaking

Now we can turn to the issue of gravity mediation. The setup is given by the effective
theory defined by the supergravity functions K, f and W as given in E. (4.52). We
restrict to matter on two branes, denoted by QV and QH for the observable and the
hidden sector. The tree-level Kähler function is

Ω =
1

2

(
T + T − 2Ωobs

(
QV , QV

)
− 2Ωhid

(
QH , QH

))1/3 (
S + S

)1/3 (
τ + τ

)1/3
. (4.61)

As stressed before, it is not sequestered, and the matter fields are not separated from
the T modulus either. The “partially no-scale” structure, visible from the fact that the
exponents add up to one, means that in the scalar potential the −3 |W |2 part will be
cancelled.
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The scalar potential generally is given by Eq. (2.19),

V =
1

M2
P

eK
(
DjWK ̄kDkW − 3 |W |2

)
+

1

2 Re f
D2

=
1

M2
P

F ı̄Kı̄jF
j − 3M2

Pm
2
3/2 +

1

2 Re f
D2 .

Here we have inserted the expression (2.20) for the F -terms and the gravitino mass

m2
3/2 =

1

M4
P

eK |W |2 , (4.62)

since these are the order parameters for supersymmetry breaking. We assume there are
no relevant D-terms. The F -terms and the Kähler metric are listed in Appendix D.

We assume supersymmetry is broken by a nonvanishing vacuum expectation value for
the F -component of the hidden sector fields or any modulus field. Further, we assume
that the breaking leads to a vanishing vacuum energy, 〈V 〉 = 0. This allows us to express
the gravitino mass in terms of the F -terms,

m2
3/2 =

1

3

[ ∣∣F S
∣∣2

(
S + S

)2 +
|F τ |2

(τ + τ )2 +

∣∣F T
∣∣2

(
T + T

)2 + 2

∣∣FH
∣∣2

M2
P

(
T + T

)
]
. (4.63)

We now turn to the soft supersymmetry breaking masses. For the brane theories, we
assume that the Kähler potentials start off canonical,

Ωobs = QVQV +O
((

QVQV
)2
)
, Ωhid = QHQH +O

((
QHQH

)2
)
. (4.64)

To calculate the soft masses, we expand the Kähler function in powers of QVQV ,

Ω = Ω0

(
T, S, τ, QH

)
− 1

3
YV
(
T, S, τ, QH

)
QVQV +O

((
QVQV

)2
)
, (4.65)

and find the visible sector masses by[60]

m2
obs = −F iF ̄∂i∂̄ ln(YV ) . (4.66)

Here the index i ranges over the moduli and the hidden matter, i ∈ {T, S, τ,H}. In our
case,

Y =

(
S + S

)1/3 (
τ + τ

)1/3

(
T + T − 2Ωhid

)2/3
, (4.67)

and hence the soft mass is

m2
obs =

1

3

(
|FS|2(
S + S

)2 +
|Fτ |2(
τ + τ

)2 − 2
|FT |2(
T + T

)2 − 4
|FH |2

M2
P

(
T + T

)
)

(4.68)
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Here we assume that the hidden sector fields have vanishing vacuum expectation values.
First of all, we see that the masses can turn out negative, so the radion and hidden

sector vacuum expectation values cannot be the only contribution but must be com-
pensated by the other moduli. The other important observation concerns the last term:
It corresponds to tree-level mediation of supersymmetry breaking, where the symme-
try breakdown, signalled by |FH |2 6= 0, is immediately transferred to the visible scalars.
This is the effect of the non-sequestered form of the Kähler function. However, one needs
to be careful: The F -terms are not necessarily independent. Indeed, we can explicitly
calculate the scalar potential and obtain

V =
1

M2
P

1

t

[
(Ωobs)V V |FV |2 + (Ωhid)HH |FH |2

]

+
1

M2
P

2

s tτ2

[
t
(
2t |∂TW |2 −

(
W∂TW +W∂TW

))

+ s
(
2s |∂SW |2 −

(
W∂SW +W∂SW

))

+τ2

(
2τ2 |∂τW |2 −

(
W∂τW +W∂τW

))]
.

(4.69)

The mass of the visible scalar must show up in the potential. Yet, if the superpotential is
moduli-independent — which it is on the perturbative level —, only the first line remains
and the hidden sector does not interact with the observable one. Hence, mobs ∼ ∂v∂V V

is independent of
∣∣FH

∣∣2, and there is no tree-level mediation.
Actually, this persists even in the presence of non-perturbative effects as long as the

superpotential is T -independent: The Kähler potential depends on 2t = T +T −2Ωobs−
2Ωhid, but not on T and QV separately. The superpotential will in general depend on
QV , but the masses inside the superpotential are supersymmetric masses. Hence, to
consider soft breaking masses, we can assume ∂QW = 0, and hence T and QV only

appear in the combination 1
2

(
T + T

)
−QVQV . The soft mass is proportional to

∂V ∂V V ∼ ∂TV . (4.70)

Assuming that the potential stabilises T , that is, there is a minimum of V with respect
to T , we have ∂TV = 0, and hence the soft masses vanish. Hence, there is a relation
between moduli stabilisation and mediation of supersymmetry breaking (as was to be
expected, since soft masses really can only be computed in a stable vacuum). It should
be noted that the soft masses are flavour-blind even if we introduce more than one visible
field, since neither the moduli nor the hidden sector fields have any freedom to couple
to the observable sector.

In the remainder of this section we briefly comment on possibilities of moduli stabili-
sation: We can stabilise S and τ by gaugino condensation, if there are two non-Abelian
gauge groups in the bulk. Generically, for bulk gauge groups the low-energy effective
gauge kinetic function is f = S, as can be seen from the kinetic term

L6 = −1

4
e6e
−ΦFMNF

MN compactification−−−−−−−−−→ −1

4
e4 Ae

−Φ
︸ ︷︷ ︸
S

FµνF
µν . (4.71)
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There are loop corrections to this result[61], which give ∆f = b
4π2 ln η(iτ). Here, b is the

beta function coefficient and η is the Dedekind η function. Gaugino condensation results
in an effective S-dependent superpotential, which for two condensing gauge groups is of
the racetrack form,

Weff =
1

η(iτ)2

(
Λ1 exp

{
−8π2

b1

S

}
− Λ2 exp

{
−8π2

b2

S

})
. (4.72)

This fixes both S and τ . To stabilise T , we can invoke the Green-Schwarz anomaly
cancellation mechanism. In six dimensions, this requires additional terms in the
Lagrangean[62], coupling the two-form BMN to the gauge field strength. This leads
to a T -dependent gauge kinetic function in the low-energy effective theory, since B5̇6̇ is
the imaginary part of T . By gaugino condensation, this can generate a T -dependent
superpotential which leads to a stabilisation of the radion. Such models, however, are
rather contrived, since they involve several gaugino condensates and additional hidden
sector D-terms to cancel the effective cosmological constant.

4.4. Conclusion

Here we have presented gravity mediated supersymmetry breaking in six dimensions.
We first found the locally supersymmetric coupling of brane matter to the bulk by the
Noether method and derived the low-energy effective theory, which is uniquely fixed
by supersymmetry. Hence, the contact terms are fixed and calculable in terms of the
moduli.

The Kähler potential is neither sequestered nor no-scale. It is no-scale for the moduli
in the sense that they appear ∼

(
S + S

)
with exponents adding up to one, but the radion

modulus T acquires an admixture of the brane matter which spoils the no-scale structure.
Since the superpotential is modulus-independent perturbatively, the scalar potential
remembers the higher-dimensional separation and exhibits no tree-level mediation of
supersymmetry breaking. Nonperturbatively, however, the superpotential can pick up
moduli dependence, as is necessary to stabilise the moduli. Gaugino condensates can
stabilise the S and τ moduli, but to generate a T -dependent superpotential, we need
to add higher order operators in the six-dimensional action which couple the two-form
to the gauge fields. In this direction it is possible to stabilise the moduli and generate
acceptable soft masses (where anomaly mediation is present as well to generate gaugino
masses), albeit in a rather complicated way.
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5. Conclusion and Discussion

We have analysed two aspects of six-dimensional supergravity: We have found the gen-
eral warped solution with four-dimensional maximal symmetry, and we have investigated
gravity mediated supersymmetry breaking.

Such six-dimensional models are interesting, for example, in the light of anisotropic
string theory compactifications, where successful gauge coupling unification can be re-
alised if the internal space has two large radii, i.e. of the order of the inverse GUT scale,
while the remaining ones are small, ∼M−1

P . This might help to bridge the gap between
the string and GUT scale. Accordingly, in a recent compactification of the heterotic
string which yields the standard model at low energies[63] (see also [64]), there can be
intermediate supersymmetric orbifold GUTs in any dimension from five to ten. However,
the resulting low-energy theory in such models relies on a discrete choice of orbifold. A
dynamical mechanism to find such an orbifold configuration as a ground state of a theory
might be a desirable generalisation.

The warped solution we find is characterised by a free holomorphic function: Its zeroes
and poles fix the singularities of the internal space, and its functional form determines
the warp factor. We have presented two-brane solutions with axial symmetry and multi-
brane solutions which are not axially symmetric. In both cases, we found a finite Planck
mass. Flux quantisation gives a fine-tuning-condition on the brane tensions. In the
unwarped limit, the multi-brane case reproduces known solutions. The stability of such
solutions has been analysed recently[65]. A promising direction for future work would
be a systematic study of possible functions to choose. In particular, elliptic (i.e. doubly
periodic) functions would allow to incorporate solutions similar to torus orbifolds in this
formalism. Furthermore, we found in the analysis of the Noether coupling that bulk
moduli, in particular the dilaton, might couple to the brane. This would provide an
important generalisation of our approach.

On the more phenomenological side, the issue of supersymmetry breaking is far from
resolved, in particular, the mediation mechanism is unknown. Gravity mediation is a
theoretically favoured way because it is very generic: gravity is out there. However, for
viable models it is important to understand how soft masses are generated and why they
do not induce strong flavour-changing neutral currents. In this respect, extra dimensions
offer the obvious possibility to separate the supersymmetry breaking hidden sector from
the observable fields, and hence to suppress flavour changing contact terms. In five
dimensions, it turned out that a supergravity setup along these lines does not work: the
masses come out negative, unless there are large brane-localised gravity mass terms. In
six dimensions, the situation is different.

To study gravity mediation, we first found the coupling of brane-localised matter to
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the bulk supergravity by the Noether procedure. This involved adding a gravitino and
dilatino coupling term to the Lagrangean, as well as a modification of the bulk two-
form field and its field strength, which acquired a brane-localised piece. This in turn
leads to a non-sequestered low energy effective theory, since the odd components of
the two-form get a mass-dependent coupling which compensates the mass suppression
of the propagator and spoils sequestering, in spite of the spatial separation between
the hidden and observable sector. The supergravity functions — Kähler potential, su-
perpotential and gauge kinetic function — are uniquely fixed. In particular, the moduli
couple flavour-blind to the branes, and the superpotential is simply the sum of the brane
superpotentials; it does not depend on the moduli (in perturbation theory).

Sequestering forbids contact terms and hence tree-level mediation of supersymmetry
breaking. However, even though our model is non-sequestered, tree-level gravity media-
tion does not occur as long as the superpotential is independent of the radion modulus T
and the radius is stabilised. Non-perturbative effects such as gaugino condensation, can
induce a T dependence in the superpotential, which is required in any case to stabilise
the moduli. Hence we need to add more matter or gauge fields in the bulk. Models
of moduli stabilisation based purely on the ungauged supergravity of Chapter 4 require
quite baroque mechanisms (multiple gaugino condensates and higher dimensional oper-
ators). However, we are confident that embedding this scenario in the context of flux
compactifications along the lines of Chapter 3 will lead to more attractive models.



A. Notation and Conventions

A.1. Indices and Metric

Dimension 6 4 2

Einstein M,N, . . . µ, ν, . . . m, n, . . .
Lorentz A,B, . . . α, β, . . . a, b, . . .

Table A.1: Index conventions

We use the “mostly minus” signa-
ture ηAB = diag(+,−,−,−,−,−).
The indices are chosen as given in
Table A.1. When in doubt, we de-
note explicit Einstein indices by a
dot, e.g. B5̇6̇.

The vielbein (sechsbein, vierbein, zweibein) has a lower Einstein index, eAM and satis-
fies GMN = eAMe

B
NηAB. The inverse vielbein eMA is distinguished by index placement and

fulfills eAMe
N
A = δNM and eMA e

B
M = δBA .

The extra-dimensional metric in Chapter 4 is parametrised as

gmn =
A

τ2

(
1 τ1

τ1 τ 2
1 + τ 2

2

)
, ⇒ gmn =

1

Aτ2

(
τ 2

1 + τ 2
2 −τ1

−τ1 1

)
. (A.1)

A.2. Γ-Matrices and Fermion Decomposition

The six-dimensional ΓA matrices are eight-dimensional, while we use four-dimensional
four-dimensional γa-matrices. The algebra is

{
ΓA,ΓB

}
= 2ηAB and

{
γa, γb

}
= 2ηab.

The chirality projectors are

• in six dimensions: P± = 1
2

(1± Γ7) with Γ7 = diag(−1,−1, 1, 1, 1, 1,−1,−1),

• in four dimensions PR/L = 1
2

(1± γ5) with γ5 = iγ0γ1γ2γ3 = diag(−1,−1, 1, 1).

The ΓA are given in terms of the γa as follows:

Γa =

(
γa 0
0 γa

)
Γ5 =

(
0 iγ5

iγ5 0

)
Γ6 =

(
0 γ5

−γ5 0

)
(A.2)

Now we will discuss the decomposition of six-dimensional fermions into four-
dimensional ones. The gravitino ΨA and the gaugino Λ have negative six-dimensional
chirality, P−ΨM = ΨM and P−Λ = Λ, while the dilatino has opposite chirality, P+χ = χ.

Chiral six-dimensional spinors correspond to two chiral ones in four dimensions. In
this case, they can be decomposed as

Ψµ =

(
ψ−µ
ψ+
µ

)
, Λ =

(
Λ−

Λ+

)
, Ψm =

(
ψ+
m

ψ−m

)
, χ =

(
χ−

χ+

)
. (A.3)



68 Appendix A: Notation and Conventions

The lower component of negative chirality spinors, i.e. ψ+
µ , ψ−m and Λ+, are four-

dimensionally right-handed (PRψ = ψ), as well as the upper component of the positive-
chirality spinor, χ−. Conversely, ψ−µ , ψ+

m, Λ− and χ+ are left-handed (PLψ = ψ). The
± superscript refers to Z2 parity.



B. 6d Supergravity: Lagrangean and
Transformations

B.1. Gauged Six-Dimensional Supergravity

The theory contains the following fields: The metric GMN , the gravitino ΨM , the two-
form BMN , the dilaton Φ, the dilatino χ, the vector field AM and the gaugino Λ. The
field strength of the gauge field is

FMN = ∂MAN − ∂NAM , (B.1)

while the two-form has a three-form field strength with a Chern-Simons-like coupling,

GMNP = ∂MBNP +
1√
2
FMNAP + cyclic = 3∂[MBNP ]︸ ︷︷ ︸

HMNP

+
3√
2
F[MNAP ]

︸ ︷︷ ︸
JMNP

. (B.2)

The fermions are chiral, with ΨM and χ being of opposite chirality. The two-form and
the fermions are charged under the U(1), the covariant derivatives of the fermions are

DMΨN =

(
∂M +

1

4
ω AB
M ΓAB + igAM

)
ΨN (B.3)

and the same for χ and Λ. The variation of the two-form is

δBMN = −αFMN for δAM = ∂Mα . (B.4)

Hence, GMNP is gauge invariant due to the Bianchi identity for FMN .
The supersymmetry transformation laws are (up to three-fermion terms in δΨM):

δe A

M
= i

2
ψMΓAε+ H.c. (B.5a)

δψM = DMε+
e−Φ

24
√

2
GNPQ (ΓMNPQ − 3gMNΓPQ) ε (B.5b)

δBMN =
√

2A[MδAN ] +
ieΦ

√
2
ψ[MΓN ]ε−

eΦ

2
√

2
χΓMNε+ H.c. (B.5c)

δχ = − i
2
ΓMε∂MΦ +

ie−Φ

12
√

2
ΓMNPεGMNP (B.5d)

δΦ = 1
2
εχ + H.c. (B.5e)

δAM =
i

2

(
εΓMΛ− ΛΓMε

)
(B.5f)

δΛ =
1

4
FMNΓMNε− igeΦε . (B.5g)
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The bulk Lagrangean invariant under these transformations up to four-fermion terms
is

Lbulk = M4
6 e6

{
1

2
R6 − iψMΓMNPDNψP +

e−2Φ

12
GMNPG

MNP + iχΓMDMχ

+
1

2
∂MΦ∂MΦ− e−Φ

4
FMNF

MN − 2g2eΦ + ie−ΦΛΓMDMΛ

− ie−2Φ

12
√

2
GMNPΛΓMNPΛ− ie−Φ

2
ΛΓMΛ∂MΦ

− ie−Φ

12
√

2
ψMΓMNPQRψNGPQR +

ie−Φ

2
√

2
ψMΓNψPGMNP

+
e−Φ

12
√

2
ψMΓMNPQχGNPQ −

e−Φ

4
√

2
ψMΓNPχGMNP + H.c.

+
ie−Φ

12
√

2
χΓMNPχGMNP −

1

2
χΓMΓNψM∂NΦ + H.c.

− e−Φ

4
FMN

(
iψPΓMNΓPΛ + iΛΓPΓMNψP − χΓMNΛ + ΛΓMNχ

)

+ig
(
iψMΓMΛ + iΛΓMψM + χΛ− Λχ

)}
.

(B.6)

B.2. Brane Supersymmetry Lagrangean

The starting point for the coupling of the bulk supergravity to the gauged chiral multiplet
on the brane is the theory involving a brane chiral multiplet (Q, η) and a vector multiplet
(Aµ, λ) gauging a U(1) symmetry (no R-symmetry) with gauge coupling g. The covariant
derivative acts as

DµQ = (∂µ + igAµ) , Dµη =

(
∂µ + igAµ +

1

4
ωµmnγ

mn

)
η , (B.7)

and the Lagrangean reads

L0 = e4δ56

{
−1

4
FµνF

µν +

(
i

2
λ̄γµDµλ+ H.c.

)

+ e−Φ

[
DµQ

†DµQ +

(
i

2
e−ΦηγµDµη + H.c.

)]

+e−Φ
(√

2 ige−ΦQ†λ̄η + H.c.
)
− 1

2
g2e−2Φ |Q|4

}
.

(B.8)
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The supersymmetry transformations are (with constant parameter ε)

δQ = 1√
2
εη δQ† = 1√

2
ηε (B.9a)

δη = − i√
2
γµDµQε δη = i√

2
εγµDµQ

† (B.9b)

δAµ = − i
2
Λγµε+ H.c. δFµν = −i∂[µ

(
Λγν]ε

)
H.c. (B.9c)

δΛ = 1
4
γµνεFµν + i

2
gf |Q|2ε δΛ = −1

4
εγµνFµν − i

2
gf |Q|2ε . (B.9d)
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C. Derivation of Loop Corrections

We give a brief derivation of the one-loop corrections to the Kähler potential, Eq. (4.60),
using methods analogous to ζ function regularisation[66].

The general formula (4.54) gives the one-loop corrections to the Kähler potential,

∆Ω =
Nj

3

Γ(1− d/2)

M2
P (4π)d/2

∑
md−2
n .

The mass spectrum is given by Eq. (4.58),

⇒ m2
n5,n6

=
1

A4/3τ
2/3
2 R2

|n6 + in5τ |2 .

Here we will compute the sum over the Kaluza-Klein masses:

Σ(s) =
1

2

∑′

n5,n6∈Z
m2
n5,n6

s =
1

2

∑′

n5,n6

1

Γ(−s)

∫
dt′ t′−s−1e−t

′m2
n5,n6

=
1

2

1(
A4/3t

2/3
2 R2

)s
1

Γ(−s)

∫
dt t−s−1

∑′

n5,n6

e−t|n6+iτn5|2

︸ ︷︷ ︸
I(τ)

(C.1)

In the last step we have rescaled t′ = t/
(
A4/3t

2/3
2 R2

)
. We will now split I(τ): The

sum extends over all (n5, n6) ∈ Z except for (0, 0). The sum can be split into one over
(0, n6 6= 0) and one over (n5 6= 0, n6). In the second sum, the exponent can be split
into a term ∼ n2

5 and a piece involving both n5 and n6, in which we perform a Poisson
resummation:

∑

n5 6=0
n6∈Z

e−t|n6+iτn5|2 =
∑

n5 6=0

e−tτ
2
2 n

2
5

∑

n6∈Z
e−t(n6−n5τ1)2

=
∑

n5 6=0

e−tτ
2
2 n

2
5

√
π

t

∑

m6∈Z
e−π

2m2
6/t−2iπτ1n5m6

(C.2)
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Taking all this together, we have

∑′

n5,n6

e−t|n6+iτn5|2 =
∑

n6 6=0

e−tn
2
6 +

√
π

t

∑

n5 6=0

e−tτ
2
2 n

2
5

+

√
π

t

∑

n5 6=0
m6 6=0

exp

{
−tτ 2

2n
2
5 −

π2m2
6

t
− 2iπn5m6τ1

}

= I1(τ) + I2(τ) + I3(τ)

(C.3)

Reinserting the expression back into Eq. (C.1), we get three components of Σ(s),

Σ(s) =
1

A4/3t
2/3
2 R2

(Σ1(s) + Σ2(s) + Σ3(s)) (C.4a)

with

Σ1(s) = ζ(−2s) , (C.4b)

Σ2(s) =
√
π τ 2s+1

2

Γ
(
−s− 1

2

)
ζ(−2s− 1)

Γ(−s) , (C.4c)

Σ3(s) =
2τ

s+1/2
2

π2Γ(−s)

∑

n5,p6∈N

[(
n5

p6

)s+1/2

Ks+1/2(2πτ2n5p6) e−2πiτ1n6p6 + H.c.

]
, (C.4d)

where Ks+1/2 is the modified Bessel function of second kind. This Bessel function arises
from the integral

∫
dt tne−a

2t−b2/t = 2
(a
b

)−1−n
K(−1−n)(2ab) (C.5)

from integrating I3(τ).



D. Kähler Metric and F -Terms

In this appendix we list some explicit expressions for the Kähler metric and its inverse,
and the F -terms of the model of Chapter 4.

The Kähler metric in both forms is

Ω =

[(
T + T

2
− Ωobs − Ωhid

)(
S + S

2

)(
τ + τ

2

)]1/3

, (D.1a)

K = −3 ln Ω = − ln

(
T + T

2
− Ωobs − Ωhid

)
− ln

(
S + S

2

)
− ln

(
τ + τ

2

)
. (D.1b)

For brevity we use the following expressions for the real parts of the moduli multiplets:

t =
T + T

2
− 2Ωobs − 2Ωhid s =

S + S

2
τ2 =

τ + τ

2
(D.2a)

The Kähler metric Ki̄ is given by the second derivatives of K with respect to the
fields (i = V,H, T, S, τ):

Ki̄ =




(Ωobs)V V
t

+
|(Ωobs)V |2

t2
(Ωobs)V (Ωhid)

H

t2
− (Ωobs)V

2t2
0 0

(Ωhid)H(Ωobs)
V

t2
(Ωhid)

HH

t
+
|(Ωhid)H|2

t2
− (Ωhid)H

2t2
0 0

− (Ωobs)V
2t2

− (Ωhid)
H

2t2
1

4t2
0 0

0 0 0 1
4s2

0

0 0 0 0 1
4τ2

2




. (D.3)

The inverse metric is

K ı̄j =




t
(Ωobs)

V V
0

2(Ωobs)V
(Ωobs)V V

t 0 0

0 t
(Ωhid)

HH

2(Ωhid)H
(Ωhid)

HH
t 0 0

2(Ωobs)
V

(Ωobs)V V
t

2(Ωhid)
H

(Ωhid)
HH
t 4t

(
t+
|(Ωobs)V |2
(Ωobs)

V V
+
|(Ωhid)H|2
(Ωhid)

HH

)
0 0

0 0 0 4s2 0

0 0 0 0 4τ 2
2




. (D.4)
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Finally, the F-terms:

F V = −
√

t

sτ2

1

(Ωobs)V V

(
DVW + 2 (Ωobs)V DTW

)
(D.5)

FH = −
√

t

sτ2

1

(Ωhid)HH

(
DHW + 2 (Ωhid)H DTW

)
(D.6)

F T = −4

√
t3

sτ2
DTW + 2

(
(Ωobs)V F

V + (Ωhid)H F
H
)

(D.7)

F S = −4

√
s3

tτ2
DSW (D.8)

F τ = −4

√
τ 3

2

ts
DτW (D.9)
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