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Abstract

In this thesis we study N = 2 vacua in gauged N = 4 supergravity theories in four-

dimensional spacetime. Using the embedding tensor formalism that describes general

consistent magnetic gaugings of an ungauged N = 4 matter-coupled supergravity theory

in a symplectic frame with SO(1, 1)×SO(6, n) off-shell symmetry we formulate necessary

conditions for partial supersymmetry breaking and find that the Killing spinor equations

can be solved for the embedding tensor components. Subsequently, we show that the

classification of theories that allow for vacua with partial supersymmetry amounts to

solving a system of purely algebraic quadratic equations. Then, we restrict ourselves to

the class of purely electric gaugings and explicitly construct a class of consistent super-

Higgs mechanisms and study its properties. In particular, we find that the spectrum

fills complete N = 2 supermultiplets that are either massless or BPS. Furthermore, we

demonstrate that (modulo an abelian Lie algebra) arbitrary unbroken gauge Lie algebras

can be realized provided that the number of N = 4 vector multiplets is sufficiently large.

Finally, we compute the relevant terms of the effective action below the scale of partial

supersymmetry breaking and argue that the special Kähler manifold for the scalars of

the N = 2 vector multiplets has to be in the unique series of special Kähler product

manifolds.





Zusammenfassung

Gegenstand der vorliegenden Arbeit sind N = 4 Supergravitationstheorien in vierdi-

mensionaler Raumzeit mit N = 2 Vakua. Um solche Theorien zu konstruieren, verwen-

den wir den Einbettungstensorformalismus, welcher allgemeine konsistente magnetische

Eichungen einer a priori ungeeichten N = 4 Supergravitationstheorie mit Materiekop-

plungen in einem symplektischen Rahmen mit SO(1, 1) × SO(6, n) off-shell Symmetrie

beschreibt. Zunächst formulieren wir die notwendigen Bedingungen für die partielle Su-

persymmetriebrechung und stellen fest, dass die Killingspinorgleichungen nach den Ein-

bettungstensorkomponenten aufgelöst werden können. Als nächstes zeigen wir, dass die

Klassifikation der Theorien mit einem Vakuum, welches nur einen Teil der Supersym-

metrie respektiert, durch die Lösungen eines Systems rein algebraischer, quadratischer

Gleichungen gegeben ist. Dann beschränken wir uns auf rein elektrische Eichungen und

konstruieren eine Klasse konsistenter sogenannter Superhiggsmechanismen und studieren

deren Eigenschaften. Wir finden heraus, dass in solchen Theorien das Spektrum durch

vollständige N = 2 Supermultipletts gegeben ist, welche entweder masselos oder BPS

sind. Ferner legen wir dar, dass abgesehen von einer abelschen Lie-Algebra beliebige

ungebrochene Eich-Lie-Algebren realisiert werden können, so denn die Anzahl der N = 4

Vektormultipletts genügend groß ist. Schlussendlich rechnen wir die relevanten Terme

der effektiven Theorie unterhalb der Supersymmetriebrechungsskala aus und argumen-

tieren, dass die spezielle Kählermannigfaltigkeit für die skalaren Felder aus den N = 2

Vektormultipletts in der einzigen Serie von Produktmannigfaltigkeiten, die gleichzeitig

speziell-Kähler sind, liegen muss.
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Chapter 1

Introduction

1.1 Supersymmetry

Supersymmetry has been a key concept in particle physics since its theoretical discovery

in the early eighties [1–4]. Since then it has almost always been omnipresent as a tool in

model building of nature even though, as of this writing, there are still no indications for

supersymmetric realizations in nature at higher energies [5]. On the other hand, owing

to the fact that even the most powerful collision experiments such as the Large Hadron

Collider can only probe a rather limited energy range — up to a few terra electronvolts

— it has also not been possible to exclude supersymmetry at a higher energy scale.

While in physics the final word on whether or not supersymmetry exists in nature can

only be given by future experiments, it is worth mentioning that supersymmetry has

become a subject of its own in mathematics owing to its rich mathematical structure.

In what follows we will introduce the main idea of supersymmetry and its extension as

well as outline its appealing features.

While supersymmetry can also be present in non-relativistic quantum systems [6], it

is usually thought of as an additional symmetry of relativistic classical or quantum field

theory. In the context of a local quantum field theory in a four-dimensional spacetime it

has been shown in [7] that supersymmetry is the only possible symmetry extension (on

top of spacetime and gauge symmetry). More precisely, the extended supersymmetry

algebra with or without central charges is the only graded Lie algebra that generates

symmetries of the S-matrix — the central object of interest in phenomenology — in a

relativistically consistent way. The evasion of the Coleman-Mandula theorem [8] was

possible by relaxing the symmetry Lie group to what is called a super Lie group whose

super Lie algebra also includes fermionic generators. In fact, the N -extended super Lie

algebra of Minkowski spacetime is an extension of the Lie algebras of the Poincaré group

and the gauge symmetry that contains N additional generators QA (A = 1, . . . , N) each

of which is a Majorana or Weyl spinor with respect to the Poincaré group [9]. Following

1



Chapter 1. Introduction

the paradigm of quantum field theory a particle in a supersymmetric theory is associated

to a field transforming under an irreducible representation of the supersymmetry alge-

bra.1 Such a representation is usually called supermultiplet in allusion to the fact that

it can be decomposed in terms of irreducible representations of the Poincaré symmetry

into fields both with integer spin and half-integer spin. These fields are then referred to

as supersymmetry partners which all have the same mass owing to the fact that PµP
µ

(where Pµ generate translations in Minkowski spacetime) is a Casimir operator of the

supersymmetry algebra.

From a phenomenological point of view supersymmetry is a prominent means (of

many others) to generalize the standard model of particle physics which is an SU(3)×
SU(2)×U(1) gauge theory with a chiral spectrum in Minkowski spacetime [10–15]. While

the standard model, being a renormalizable quantum field theory [16], is in accordance

with collider experiments to an extraordinary accuracy [5], it is not a theory of gravity

and therefore cannot be considered as a fundamental theory of nature. Instead, it

is rather thought of as an effective theory that can be used to make predictions for

experiments below a certain energy scale where gravity is negligible and no new physics

is present, but has to be augmented at a higher scale. In fact, at the latest at the

reduced Planck scale MP = (8πGNewton)
−1/2 = 2.4 × 1018 GeV gravity is expected to

play a significant role and should enter the theory. However, in an effective theory the

momentum cutoff that can be introduced to regularize a priori ill-defined, divergent

loop integrals in correlation functions of the quantum fields has to be taken seriously in

that it no longer just appears in an intermediate step of a renormalization scheme but

rather is a physical scale. In the standard model this leads to the “hierarchy problem”

(references [1] in the review [17]): The quantum correction to the Higgs self-energy and,

thus, the Higgs squared mass is quadratic in the cutoff. In the absence of new physics

the natural cutoff would be MP and, as a result, the quadratic correction would be

some 30 orders of magnitude higher than the experimental Higgs mass at around 125

GeV [18, 19] which is considered unnatural as it requires fine tuning of the bare mass.

Furthermore, it is not only the Higgs mass that is highly sensitive to high-scale physics

because even though the self-energies for the fermions and massive gauge bosons do not

obtain quadratic corrections (due to the chiral gauge symmetry), their masses depend

via the Higgs mechanism on the Higgs mass and therefore also inherit the ultraviolet

sensitivity. Supersymmetry provides an elegant solution to the hierarchy problem in that

it consistently eliminates the quadratic corrections of scalar squared masses. In fact, in

an N = 1 supersymmetric standard model the couplings among the superpartners are

such that the loop contributions to the quadratic divergence cancel at all orders of

perturbation theory. This is a consequence of the mass degeneracy of superpartners in

a supersymmetric theory and the absence of quadratically divergent corrections to the

1Strictly speaking, one usually requires irreducibility with respect to a (super)symmetry that is ex-

tended by the discrete CPT symmetry.
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1.1. Supersymmetry

self-energy of the fermions.

On the other hand, superpartners of degenerate mass have not been found in nature

and, hence, the challenging question in any supersymmetric model that aims to describe

the real world is how to break supersymmetry while maintaining a solution to the hierar-

chy problem. In the (next-to) minimal supersymmetric standard model the Lagrangian

of the supersymmetrized standard model is augmented by terms that explicitly break

supersymmetry without reintroducing quadratic divergencies [20]. In particular, these

so-called soft-breaking terms contain mass terms for the scalars and for the gaugini the

latter of which are the supersymmetry partners of the vector bosons. Being renormal-

izable quantum field theories satisfying the criterion of naturalness these models are of

phenomenological interest, in particular, as far as the search of supersymmetric partners

is concerned. However, they do not explain how supersymmetry is broken. The most

prominent approaches to this question rely on spontaneous supersymmetry breaking in

a so-called hidden sector that only couples weakly to the ordinary sector by means of

gravity or gauge interactions.

In theories with spontaneously broken supersymmetry (or hidden supersymmetry)

the vacuum respects only a part of the supersymmetry of the Lagrangian. However,

for global supersymmetry (i.e. one whose parameters are independent of Minkowski

spacetime) the fermionic analogue [4, 21] of the Goldstone theorem [22] gives rise to

massless fermionic fields — the Goldstini — which in the absence of a hidden sector are in

conflict with experimental data. In contrast, breaking supersymmetry spontaneously can

be realized in theories with local supersymmetry, where the supersymmetry parameters

may depend on the spacetime. In fact, in analogy with the Higgs mechanism in which

massless Goldstone modes give rise to the longitudinal polarization of massive vector

bosons, the massless Goldstini provide the missing degrees of freedom of massive gravitini

that formerly were part of a supermultiplet including the graviton [23–25]. Such a super-

Higgs mechanism will be the central part of this thesis albeit in a less phenomenological,

less realistic way given that we will be dealing with extended N > 1 supergravity theories

that do not allow for a chiral spectrum.

Finally, before discussing locally-supersymmetric theories we mention another phe-

nomenological motivation for global supersymmetry given in the realm of grand unified

theories in which the standard model gauge group is embedded into a higher-dimensional

gauge group. Here, supersymmetry plays an important role in constructing models with

gauge coupling unification below the Planck scale. In fact, the most prominent example

is the SU(5) extension [26] of the (next-to) minimal supersymmetric standard model in

which the three fundamental gauge couplings of SU(3)×SU(2)×U(1), when normalized

in terms of the SU(5) coupling and evolved according to the renormalization group flow,

tend to unify at the one-loop level into the one of SU(5) [27, 28].

3



Chapter 1. Introduction

1.2 Supergravity

A locally-supersymmetric theory, which was first constructed by [29, 30], necessarily

includes gravity and is thus referred to as supergravity. On a conceptual level this

can be best understood in terms of the superspace formalism ([9, 31] for N = 1 in

four spacetime dimensions) where locally-supersymmetric Lagrangians are constructed

in terms of superfields (subject to certain constraints) that depend on a supermanifold

the construction of which is based on an extension of the spacetime coordinates by

spinorial coordinates. Then local supersymmetry amounts to invariance under general

such coordinate transformations and thus naturally includes general relativity. In a less

rigorous way, the necessity to include gravity also follows from the fact that the super

Lie algebra of local supersymmetry involves the spacetime-dependent derivative operator

∂µ. In fact, the anticommutation relation

{QA, Q̄B} ∼ δAB Γµ∂µ , (1.1)

where the Γµ furnish a matrix representation of the Clifford algebra, implies that the

commutator of two supersymmetry transformations after being bosonized through local

spinorial parameters ε1(x), ε2(x) closes into a diffeomorphism of the spacetime manifold

defined by the vector field ε̄1(x)Γ
µε2(x)∂µ. As a consequence, in locally-supersymmetric

theories general coordinate transformations necessarily are part of the bosonic symmetry

group.

Of course, the inclusion of gravity is an exciting feature in view of potential theories

that might unify all fundamental interactions of nature. However, a gravity theory has

a dynamical metric (vielbein) and, hence, the background spacetime can no longer be

chosen at will as it must be part of a solution of the equations of motion of all fields.

This seems to be one of the difficulties why, as of this writing, a consistent quantum

field theory of gravity in which fluctuations around the background field configuration

are quantized has not been found. Furthermore, even when quantizing a weak gravi-

tational field around a Minkowski background, it seems that the quantum field theory

is not renormalizable. In fact, for fluctuations of mass dimension one, infinitely many

interaction terms of negative mass dimensions arise in the Lagrangian and therefore the

theory is not power-counting renormalizable. Moreover, it has been shown that diver-

gencies in scattering amplitudes of four-dimensional pure gravity start to emerge at the

two-loop level [32]. The question whether or not finitely many counterterms suffice to

eliminate all divergencies at any loop level is hard to answer given that an analogous

computation at the three loop level has not yet been carried out due to its complexity.

However, in adding supersymmetry to a theory including gravity the ultraviolet behavior

is ameliorated in that divergencies start to emerge at a higher loop level. In fact, in the

case of maximal2 supergravity, i.e. N = 8, in four dimensions there are even promising

2The attribute “maximal” refers to a theory with maximal supersymmetry but without massless fields

4



1.2. Supergravity

indications of perturbative finiteness [33–35] but a proof thereof is still lacking.

In quest of an ultraviolet complete quantum theory that consistently describes all

fundamental interactions of nature, string theory emerged more than 40 years ago and is

still considered as a promising approach that deserves to be studied in more depth. At

the classical level it generalizes the notion of a point particle to one of a one-dimensional

extended object to be referred to as (open or closed) string. Upon quantization of the

classical oscillation modes of the string one finds an infinite tower of particles owing to

the fact that in a higher-dimensional Minkowski spacetime background they transform

in representations of the Lorentz symmetry. Their masses are proportional to the only

dimensionful parameter — the string length ls — of the theory. While all particles of

positive mass squared decouple in the low energy theory at a scale � l−1
s there are

finitely many massless degrees of freedom which in the case of the closed string in par-

ticular include the quantum excitations of a higher-dimensional graviton field. Being a

quantum theory with a well-defined notion of an S-matrix, this sparked the hope that

string theory might be the fundamental theory of nature. At the same time, it is a rather

generic feature of string theory to include a tachyonic mode — a particle of negative mass

squared — in the spectrum indicating that the background is unstable. However, stable

string theories (type I, type IIa, type IIb, heterotic) have been constructed with higher-

dimensional spacetime (as opposed to worldsheet) supersymmetry. In their construction

GSO projections are used that project out degrees of freedom in such a way that the

resulting spectra furnish complete irreducible representations of the supersymmetry al-

gebra. In particular, all tachyons are eliminated while the graviton excitations remain

in the spectra. In fact, owing to the fact that tachyonic representations of the respective

supersymmetry algebras, in particular (1.1), do not exist, the tachyon can consistently

be eliminated from the spectrum in that it no longer appears as virtual particles in string

loops of scattering amplitudes. Another obvious virtue of such a superstring theory is

the inclusion of spacetime fermions which are needed in order to eventually incorporate

the standard model of particle physics. In superstring theories the critical dimension

of the spacetime for which the Hilbert space does not have negative norm states is ten

rather than 26 in the case of the bosonic string.

In the S-matrix approach [36, 37] an effective low energy field theory describing only

the massless modes of a given superstring theory in ten dimensions can be constructed

that reproduces the string scattering amplitude in the limit p2l2s � 1 for external mo-

menta p. The resulting action is a ten-dimensional supergravity theory with 32 (type

IIa, type IIb) or 16 (type I, heterotic) real supercharges.3 A vast landscape of vacua ex-

ists. The ones of particular phenomenological interest are those with a four-dimensional

of helicity 5/2 or higher.
3The number of real supercharges is the real dimension of the spinorial representation of the Lorentz

symmetry of (higher-dimensional) Minkowski spacetime under which the supersymmetry generators

transform.
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Chapter 1. Introduction

spacetime and six compactified extra spatial dimensions. These are called string com-

pactifications and an effective gravity field theory in four-dimensional spacetime can be

obtained upon integrating out the extra dimensions. The construction of phenomeno-

logically realistic vacua with an embedding of the standard model of particle physics

is the subject of string phenomenology (e.g. in the heterotic string). However, here we

will only comment on the supersymmetry of the effective four-dimensional theory. For

(fluxless) backgrounds built from a product manifold of a four-dimensional maximally-

symmetric spacetime and a six-dimensional compact manifold, it was found that the

amount of four-dimensional supersymmetry depends on the geometry (here: holonomy)

of the internal manifold [38]. In fact, in choosing appropriate internal manifolds one

finds four-dimensional supergravity theories with N = 8, N = 4, N = 2, N = 1 or no

supersymmetry at all.

While not surprising, it is worthwile to point out that N -extended supersymmetric

theories are increasingly constrained the higher N is. For maximal supersymmetry

N = 8 in four dimensions the smallest massless supermultiplet is already the supergravity

multiplet with the graviton as its highest helicity component. Given that only one

graviton field shall be present in the spectrum of the theory, the (70-dimensional) target

manifold E7,7/(SU(8)/Z2) of the non-linear sigma model for the scalars is completely

fixed [39, 40]. In contrast, in half-maximal supersymmetry N = 4, massless matter

supermultiplets without a graviton exist. Hence, while the helicity-3/2 supermultiplet is

of no “phenomenological” interest, the spectrum of an N = 4 supergravity may comprise

in addition to the gravity multiplet a certain number n ∈ N of vector multiplets. For

a given n, the scalar manifold is also completely determined by N = 4 supersymmetry

[41–46]: It is the symmetric space

SL(2)/SO(2) × SO(6,n)/SO(6)×SO(n) , (1.2)

where the first factor is the two-dimensional target manifold of the scalars in the gravity

multiplet (the dilaton and axion) and the second factor refers to the one of the 6n

scalars of the vector multiplets. On the other hand, N = 2 and N = 1 supergravity

theories are less constrained in that the scalar manifolds are not completely fixed and not

necessarily a homogeneous space while supersymmetry still constraints their geometry:

For N = 2 supergravity, the scalar manifold of the vector multiplets has to be projective

special-Kähler while the one of the hypermultiplets with highest helicity component

1/2 is required to be a quaternionic-Kähler manifold [47]. In theories with minimal

supersymmetry N = 1, scalars only reside in chiral multiplets and their target manifold

must be a Kähler manifold [9, 48].

While for N < 4 there are various ways to deform the supergravity theory, the

only known deformations for N = 4 and N = 8 supergravity theories with a given

spectrum are gaugings of a subgroup of the a priori global symmetry. In fact, as the

spacetime is four-dimensional and thus the Hodge dual of a field strength two-form is

6



1.3. Partial supersymmetry breaking

again a two-form, even a subgroup of the electromagnetic duality4 group embedded

into a symplectic group can be consistently gauged. General such magnetic gaugings

have been described by means of the embedding tensor formalism [51]. It is based on

the principle of introducing a gauge-covariant derivative that involves a certain gauge

connection. Schematically, one has

∂µ → ∂µ +ΘelectricAµ +ΘmagneticA
dual
µ , (1.3)

where Θelectric and Θmagnetic are the embedding tensors that select a subset of the vector

bosons and their dual magnetic gauge fields and, in doing so, define an embedding of

the gauge group into the global on-shell symmetry group. Since compatibility with

supersymmetry of the action requires that non-trivial gaugings in particular contribute

to the supersymmetry transformations of the fermionic fields and also generate a scalar

potential, the vacuum structure of the otherwise ungauged theory can be significantly

changed. In particular, new vacua may arise that respect only some of the original

supersymmetries. Hence, in gauging extended supergravity theories it may be possible

to spontaneously break N -extended supersymmetry to N ′ < N supersymmetry. Such

breakings are referred to as partial supersymmetry breakings. It is the topic of this

thesis to analyze the vacuum structure of gauged N = 4 supergravities [41–45, 52–

54] with respect to the preserved supersymmetry. In particular, we will embark on a

classification of consistent electrically-gauged N = 4 theories with N = 2 vacua. From

now on we will always think of the supergravity theory as a classical field theory of its

own, regardless of a possible ultraviolet quantum completion.

1.3 Partial supersymmetry breaking

Partial supersymmetry has been investigated since the early nineties [55–57]. In the

first place, for phenomenological reasons, the possibility of an N = 2 supersymmetric

theory that is spontaneously broken to N = 1 was studied and in the original theories

it was found to be impossible [55, 56]. However, some ten years later deformations of

the theories to circumvent the no-go theorem were found for both globally and locally

supersymmetric N = 2 theories. In fact, in global N = 2 theories partial breaking

turned out to be possible in the presence of electric and magnetic Fayet-Iliopoulos terms

that are not aligned [58, 59]. Not much later, in supergravity, simple examples with

partial breaking have been constructed by formulating the problem in a symplectic

frame in which no prepotential exists for the special geometry associated to the vector

multiplets [60–62]. After many more examples were found, a systematic analysis in

N = 2 supergravity with general matter content was carried out recently [63–65] using

the embedding tensor formalism [51].

4The electromagnetic dualities [47, 49, 50] are so-called on-shell symmetries in that they are symme-

tries of the combined set of equations of motion and Bianchi identities for the field strengths.
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Chapter 1. Introduction

As to N = 4, it was not long after the construction of the electrically gauged su-

pergravity theory coupled to a given number of vector multiplets [43, 44] that partial

supersymmetry breaking was investigated [66, 67]. There it was found that the sim-

plest class of backgrounds of electrically gauged supergravity theories must necessarily

be Minkowski (cosmological constant Λ = 0) provided that at least one supersymme-

try is preserved. Furthermore, they constructed examples of electrically gauged N = 4

supergravities that are spontaneously broken to N = 2 and N = 1, and showed that

N = 3 vacua do not exist in this class of gaugings. In order to also allow for anti-de

Sitter backgrounds, more general deformations were introduced via a set of SU(1, 1)5

phases — the so-called de Roo-Wagemans angles between the semi-simple factors of

the gauge group [45, 68]. In the embedding tensor language, non-trivial such de Roo-

Wagemans angles correspond to particular non-vanishing embedding tensor components

that define proper (i.e. non-electric) magnetic gaugings [53, 54]. Using these additional

deformations it was found that vacua with negative cosmological constant Λ < 0 and

any supersymmetry 1 < N < 4 exist. Many years later, more examples of partial super-

symmetry breaking in N = 4 were discussed some of which are based on more general

magnetically gauged N = 4 supergravities [69, 70]. Furthermore, their relation to string

theory compactifications has been studied in some detail (see, for example, [71–75] and

references therein).

Similarly to the analogous problem for partial breaking of N = 2 in [63], it was the

original aim of this thesis to classify all the gaugings of the N = 4 supergravity with

N = 2 vacua using the embedding tensor formalism [51]. However, while implicitly the

crucial terms of the general magnetically-gauged Lagrangian of N = 4 supergravity are

known in terms of the embedding tensors, supersymmetry and the closure of the gauge

Lie algebra demand that the embedding tensors satisfy a set of algebraic linear and

quadratic constraints the latter of which unfortunately turn out to be hard to be solved

in full generality. We therefore mainly concentrate on the class of purely electric gaugings

and solve the constraint equations as much as possible. While we are not able to fully

solve them, we demonstrate that many consistent solutions exist. This enables us to

explicitly check the super-Higgs mechanism. This thesis is based on the publication [76].

After this introduction we will review N = 4 supergravity theory in section 2.

Therein, we will give the matter-coupled ungauged N = 4 supergravity in a symplectic

frame with SO(1, 1) × SO(6, n) off-shell symmetry. Within this frame we will discuss

the electromagnetic duality and will give the precise embedding of the isometry group

SL(2)×SO(6, n) of the scalar manifold (1.2) into the symplectic group Sp(2(6+n),R).

Then we discuss the embedding tensor formalism which yields consistent magnetically

gauged supergravity theories. Apart from the bosonic Lagrangian (up to topological

terms), we also review the supersymmetry variations of the fermions and fermion bilin-

5The scalar manifold associated to the scalars of the gravity multiplet is SL(2)/SO(2) ∼=
SU(1, 1)/U(1) the two of which are isomorphic to each other, see appendix B.1.
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ear terms in the Lagrangian that are needed in order to discuss partial supersymmetry

breaking. While eventually we restrict ourselves to purely electric gaugings, we close

section 2 after elucidating the importance of magnetically gauged theories. In section 3,

we will discuss a simple but important class of background solutions of N = 4 gauged su-

pergravity. Subsequently, in order to construct a super-Higgs mechanism that describes

the spontaneous partial breaking of supersymmetry, we study the supersymmetry trans-

formations of the background and analyze the resulting Killing spinor equations. We

find that the analysis can drastically be simplified by exploiting the symmetry of the

theory: In fact, we argue that, first, it is without loss of generality that we can choose

the vacuum to be at the origin of (1.2) and, secondly, that one can always bring the

gravitini mass matrix to diagonal shape. Partial supersymmetry requires solutions of

a linear system of equations in terms of the embedding tensor components, while in

order for the gaugings to be consistent quadratic constraints on the embedding tensor

components have to be satisfied. For simplicity, we therefore restrict ourselves to purely

electric gaugings. In passing we will first demonstrate that non-trivial N = 4 vacua can

be constructed. Then we focus on the construction of N = 2 vacua. To this end, we

prepare ourselves by discussing the representation theory of N = 2 global supersymme-

try and try to solve the quadratic constraints as much as possible. Some more technical

details are given in appendix D. While being unable to fully solve all constraints we give

all solutions for n ≤ 6 and special solutions where n ∈ N is arbitrary. Eventually, in

section 4 we will discuss some aspects of the N = 2 low-energy effective theory. For the

solutions found in section 3, we compute all mass terms in an N = 2 vacuum and find

that all fields fill complete N = 2 supermultiplets some of which turn out to be massive.

In particular, we will analyze the Gravity/Goldstini sector in which the two gravitini

associated to the broken supersymmetry directions as well as their superpartners become

massive. Then we will show that at the N = 2 vacuum all massive fields have to fill

out N = 2 BPS multiplets. Furthermore, we demonstrate that many different gauge Lie

algebras can be realized that preserve the vacuum. Finally, we compute the terms of the

N = 2 supersymmetric effective action that may potentially be used to verify that the

geometry of the scalar field space is consistent with N = 2 supersymmetry.
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Chapter 2

Gauged N = 4 supergravity in

D = 4

In this chapter we will review N = 4 gauged supergravity in a four-dimensional space-

time. To a large extent it is based on [52–54]. Starting with the ungauged theory, we

will discuss the electromagnetic duality [47, 49, 50] and present the crucial aspects of the

embedding tensor formalism [51] which describes a general class of magnetic gaugings of

the supergravity theory. Apart from the discrete parameter n that labels the number of

N = 4 vector multiplets in the ungauged theory, these are the only known deformations

of N = 4 supergravity. Finally, we focus on purely electric gaugings.

2.1 Ungauged theory

The simplest version of an N = 4 supersymmetric theory in four-dimensional spacetime

that couples an N = 4 gravity multiplet to a number n ∈ N of N = 4 vector multiplets

all of which are generically massless1 is the so-called ungauged N = 4 supergravity. Ac-

cording to the representation theory of the supersymmetry algebra, the physical degrees

of freedom of the gravity multiplet are the spacetime metric gµν of signature (−,+,+,+)

also known as the graviton, four helicity-3/2 fermions ψi
µ to be referred to as gravitini,

(i = 1, . . . , 4), six vector bosons Am
µ , (m = 1, . . . , 6), four helicity-1/2 fermions χi and

two real scalars. Labeling the vector multiplets by a = 1, . . . , n, the particle content of

n vector multiplets consists of n vector bosons Aa
µ, (4n) helicity-1/2 fermions λai and

(6n) real scalars. Note that N = 4 helicity-3/2 multiplets are not part of the spectrum

as the presence of helicity-3/2 fermions other than the superpartners of the graviton is

1Strictly speaking, the notion of mass depends on the background. In the ungauged theory, however,

the absence of a scalar potential implies that for a large class of backgrounds all the fields are massless.

In general, this will change upon gauging the theory, see section 2.4.
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Chapter 2. Gauged N = 4 supergravity in D = 4

phenomenologically undesirable. While the theory is locally supersymmetric, it is un-

gauged in that the vector bosons AM
µ = (Am

µ , A
a
µ) are abelian and all fields are uncharged

with respect to the gauge group U(1)6+n. This is tantamount to having a Lagrangian in

which vector potentials AM
µ only appear in terms of their gauge-invariant field strengths.

These are defined by

Hµν
M = 2 ∂[µAν]

M . (2.1)

For future use the spinor conventions for the fermions are summarized in appendix C.1.

The bosonic part of the Lagrangian of the ungauged theory is given by [54]

e−1Lbos. = 1
2R− 1

4 Im(τ)MMNHµν
MHµνN + 1

8 Re(τ) ηMN εµνρσHµν
MHρσ

N

+ 1
16(∂µMMN )(∂µMMN )− 1

4 Im(τ)2
(∂µτ)(∂

µτ∗) ,
(2.2)

where R is the Ricci-scalar of the spacetime metric gµν , e =
√

|det g| and εµνρσ is totally

antisymmetric with ε0123 = e−1. Furthermore, ηMN is the SO(6, n)-invariant metric

η = (ηMN ) = (ηMN ) = diag(−1, . . . ,−1︸ ︷︷ ︸
6 times

, 1, . . . , 1︸ ︷︷ ︸
n times

) . (2.3)

The two real degrees of freedom of the scalars associated to the gravity multiplet are

described by τ ∈ C with Im τ > 0 and their kinetic term is given in terms of a non-linear

sigma model on the homogeneous space

SU(1, 1)/U(1) ∼= SL(2)/SO(2) ∼= {τ ∈ C | Im τ > 0} , (2.4)

see appendix B.1 for details. The target manifold of the scalars of the vector multiplets

is the homogeneous space

SO(6, n)/[SO(6)× SO(n)] , (2.5)

which is a (6n)-dimensional manifold. Its (left) cosets defined by identifications with

respect to the right action of SO(6)×SO(n) on SO(6, n) can be represented byM(x) =

(MMN )(x) = V(x)VT (x) where V(x) ∈ SO(6, n). The index calculus for the coset spaces

(2.4) and (2.5) is discussed in appendix B.2.

The full Lagrangian is gauge-invariant with respect to the gauge group U(1)6+n,

which infinitesimally acts on the vector bosons as

δΛA
M
µ = ∂µΛ

M (2.6)

where the ΛM (x) are the local gauge parameters. All other fields transform trivially

under this symmetry (due to the absence of charges). Furthermore, the full Lagrangian

has a global SO(6, n) symmetry which acts from the left on (2.5), i.e. on the scalars of

the vector multiplets as

V(x) → g V(x) , (2.7)
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2.1. Ungauged theory

and on the vector bosons as

AM
µ (x) → gMN AN

µ (x) , (2.8)

for g−1 = (gMN ) ∈ SO(6, n). All other fields transform trivially under this global

symmetry. It is in this sense that capital indices M,N, . . . are referred to as SO(6, n)-

indices. They can be raised/lowered using the SO(6, n)-invariant metric given in (2.3).

Furthermore, the full Lagrangian has a local

H = U(1)× SU(4)× SO(n) (2.9)

invariance that acts non-trivially both on the fermions and the scalars while the remain-

ing fields are left invariant. The first two factors amount to the U(4) R-symmetry of the

supersymmetry algebra. As SU(4) is the double cover of SO(6), an element of SU(4)

unambiguously defines an element in SO(6) and, hence, together with SO(n) amounts

to redefining the coset representative V(x) ∈ SO(6, n) (by means of right multiplica-

tion). Similarly, U(1) ∼= SO(2) is the maximal, compact subgroup of SU(1, 1) ∼= SL(2)

and reparametrizes the cosets therein by right multiplication. The representations of

the fields with respect to this symmetry are given in table 2.1. By virtue of this

symmetry, indices i, j, . . . ∈ {1, . . . , 4} are fundamental SU(4) indices, while the ones

a, b, . . . ∈ {1, . . . , n} refer to the fundamental representation of SO(n). Note that this

local symmetry is not a gauge symmetry since the gauge connection is composite and

not a physical degree of freedom.

field SO(6, n) SU(4)× SO(n) U(1) charges

gµν 1 (1,1) 0

ψi
µ 1 (4,1) −1/2

AM
µ (1,1) 0

χi 1 (4,1) 3/2

λai 1 (4,n) 1/2

V = VSO(6,n) V → g V V → V h(x) 0

Vα 1 (1,1) 1

Table 2.1: Representations of the fields with respect to the global symmetry SO(6, n)

and the local symmetry U(1)×SU(4)×SO(n). Here g ∈ SO(6, n) and h(x) ∈ SO(6)×
SO(n), i.e. in particular, matter scalar representatives V are charged with respect to

SO(6) ∼ SU(4). The components Vα for α = 1, 2 form an SL(2) “vielbein” which is

explained in appendix B.2.

Note that in the ungauged theory a scalar potential is absent. Furthermore, the

supersymmetry transformations on the fermionic fields for a maximally symmetric back-

ground are given by

δεψ
i
µ = 2Dµε

i, δεχ
i = 0, δελa

i = 0 , (2.10)
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Chapter 2. Gauged N = 4 supergravity in D = 4

for all free indices and supersymmetry parameters εi that are Weyl spinors each of which

forms the right-handed spinor part of a Dirac spinor. The differential operator Dµ con-

tains the spin connection and in a maximally symmetric background simplifies to (C.12).

As a consequence, as we will discuss in great detail in section 3.1, maximally symmetric

backgrounds of the ungauged theory with pointlike scalar background configurations are

necessarily N = 4 Minkowski vacua. Moreover, in the absence of a scalar potential all

the scalars are moduli fields and the target manifolds (2.4) and (2.5) are therefore also

referred to as moduli space of the ungauged N = 4 supergravity theory. At each such

vacum the N = 4 spectrum consists of the massless N = 4 gravity multiplet and n

massless N = 4 vector multiplets.

In addition to the symmetries already discussed, ungauged N = 4 supergravity also

has a global SO(1, 1) symmetry. Parametrizing an orthochronous (a non-orthochronous)

SO(1, 1) element2 (
± cosh θ sinh θ

sinh θ ± cosh θ

)
∈ SO(1, 1) ⊂ SL(2) (2.11)

in terms of the rapidity θ ∈ R, its action on the scalars τ and the field strengths HM
µν is

given by

τ 7→ τ ′ = (exp(±θ))−2 τ ,

HM
µν 7→ H ′M

µν = (± exp(±θ))HM
µν , (2.12)

while all other fields transform trivially. These actions are obviously representations of

SO(1, 1) and the Lagrangian, in particular its bosonic part in (2.2), is invariant. As

we will see in the next subsection the global symmetries associated to SO(1, 1) and

SO(6, n), respectively, are particular cases of the electromagnetic duality.

2.2 Electromagnetic duality

Being a four-dimensional theory including (6 + n) vector bosons, ungauged N = 4 has

an electromagnetic duality group which is the isometry group

G = SL(2)× SO(6, n) (2.13)

of the scalar manifold given as a product of the coset spaces (2.4) and (2.5). While

in general such duality transformations are not symmetries of the Lagrangian, they

leave the combined set of equations of motion and Bianchi identities invariant, i.e. the

duality transformation of a solution gives another solution of the same set of equations.

Sometimes such duality transformations are referred to as on-shell symmetries.

2Orthochronous/non-orthochronous elements of the Lorentzgroup SO(1, 1) in two dimensions pre-

serve/flip the first component (the “time component”) of the SO(1, 1) vector, respectively, see (2.12).
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2.2. Electromagnetic duality

In passing we mention that the existence of the SL(2) symmetry in the ungauged

N = 4 supergravity theory that is only realized on-shell was found in toroidal reduction

of ungauged N = (1, 0) supergravity (16 real supercharges) in ten dimensions with a

given number m ∈ N of N = (1, 0) vector multiplets [41, 54, 77]. There, the gravity

multiplet contains the Kalb-Ramond field which is a two form and gives rise to another

two form in four dimensions. The latter can be dualized at the level of the equations of

motion and Bianchi identities to a scalar. Note, however, that this reduction necessarily

gives rise to n = (6 +m) N = 4 vector multiplets.

The terms that involve the field strengths in the bosonic Lagrangian (2.2) are

− 1
4 Re(NMN )HMµνHN

µν +
1
8 Im(NMN )εµνρσHM

µν H
N
ρσ , (2.14)

where

N = (NMN ) = Im τ M + iRe τ η ∈ Mat(C, (6 + n)× (6 + n)) (2.15)

depends on the scalar fields. The magnetically dual field strengths Gµν
M are defined in

terms of functional derivatives of the full action S:

Gµν
M = e−1εµνρσ

δS

HMρσ
. (2.16)

Using the decomposition of the two-forms HM
µν (and their magnetic duals) into their

self-dual (anti-self-dual) components, e.g.

HM(±)
µν = 1

2(H
M
µν ± H̃M

µν),
(
HM(±)

µν

)∗
= HM(∓)

µν (2.17)

where H̃Mµν = −1
2 iε

µνρσHM
ρσ is the Hodge dual of HM

µν , the Bianchi identities for the

field strengths read3

∂µ ImHM(±)
µν = 0 , (2.18)

and the equations of motion for the field strengths are

∂µ ImG
(±)
Mµν = 0 . (2.19)

An electromagnetic duality is a real transformation4(
H

M(±)
µν

G
(±)
Mµν

)
7→

(
H

′M(±)
µν

G′(±)
Mµν

)
= S

(
H

M(±)
µν

G
(±)
Mµν

)
, (2.20)

for a symplectic matrix

S =

(
A B

C D

)
∈ Sp(2(n+ 6),R) , STΩS = Ω , with Ω =

(
0 1

−1 0

)
, (2.21)

3These are the integrability conditions dHM = 0 needed in order to locally express the field strengths

two-forms HM = dAM in terms of vector potential one-forms AM .
4In a slight abuse of notation column vectors are just denoted by their components with respect to

the index M .
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Chapter 2. Gauged N = 4 supergravity in D = 4

provided that at the same time an isometry acts on the scalars in precisely such a way

that N transforms as5

N 7→ N ′ = −i(C + iDN)(A+ iBN)−1 . (2.22)

In fact, the new field strengths and dual field strengths still satisfy the Bianchi identities

(2.18) and the equations of motion (2.19) and the relation (2.16) is preserved. Further-

more, it is owing to the isometry that the equations of motion for the scalar fields are

also satisfied by the new field strengths and transformed scalars. On the other hand,

the Lagrangian is in general not invariant under the duality.

The embedding of the isometries (2.13) of the scalar manifold into

Sp(2(6 + n),R) ∼= USp(6 + n, 6 + n)

= Sp(2(6 + n),C) ∩ U(6 + n, 6 + n) (2.23)

maps the maximal compact subgroup of (2.13) into the maximal compact subgroup

U(6 + n) of USp(6 + n, 6 + n) [78]. For SO(6, n) we find the explicit maps

SO(6, n) ↪→ Sp(2(6 + n),R)
∼→ USp(6 + n, 6 + n)

g 7→

(
g−1 0

0 gT

)
7→ 1

2

(
g−1 + gT g−1 − gT

g−1 − gT g−1 + gT

)
, (2.24)

while for SL(2) the embedding turns out to be

SL(2) ↪→ Sp(2(6 + n),R)
∼→ USp(6 + n, 6 + n)(

a b

c d

)
7→

(
sa sb η

sc η sd

)
7→ 1

2

(
a+ d+ i(b− c)η b+ c− i(d− a)η

b+ c+ i(d− a)η a+ d− i(b− c)η

)
,(2.25)

where η is the SO(6, n)-invariant tensor defined in (2.3) and
sa
sb
sc
sd

 = 1
2


1 1 1 1

1 −1 1 −1

1 1 −1 −1

1 −1 −1 1



a

b

c

d

 . (2.26)

In fact, upon restricting to the maximal compact subgroups the embedded matrices

(2.24) and (2.25) are block-diagonal and can be identified with unitary matrices. Fur-

thermore, note that the two embeddings commute as required by the direct product

(2.13). For the sake of completeness we state the isomorphism between Sp(2N,R) and

USp(N,N):

Sp(2N,R) = C−1 USp(N,N)C, C = 1√
2

(
1 i1

1 −i1

)
∈ Mat(C, (2N)× (2N)) .

(2.27)

5In the fermionic part also terms exist that are linear in the field strength. These couplings must also

have a similiar transformation induced by the isometries of the scalar manifold [51].
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The embedding of SO(6, n) gives rise to the global SO(6, n) symmetry discussed in

subsection 2.1, see (2.8). In fact, from (2.7) it is clear that isometries of (2.5) precisely

generate the transformed N ′ as in (2.22). As to SL(2) one finds that SL(2) acts as

Möbius transformations on τ . In fact, for an SL(2) element as in (2.25) one finds

another SL(2) element (
sd −sc
−sb sa

)
∈ SL(2) (2.28)

which parametrizes the transformation of τ as

τ 7→ τ ′ =
sd τ − sc
−sb τ + sa

. (2.29)

This is a (non-linear) representation of SL(2) that precisely generates the transformation

of N given in (2.22). Note that embedding an element (2.11) of SO(1, 1) ⊂ SL(2) yields

(2.12).

Raising the SO(6, n) index of GMµν with η the transformation (2.24) is covariant,(
H

M(±)
µν

G
M(±)
µν

)
7→

(
H ′M(±)

µν

G′M(±)
µν

)
=

(
g−1 0

0 g−1

)(
H

M(±)
µν

G
M(±)
µν

)
. (2.30)

Similarly, in terms of SO(6, n) covariant field strengths HM
µν and their magnetic duals

GM
µν an SL(2) transformation given by (2.20) and (2.25) reads(

H
M(±)
µν

G
M(±)
µν

)
7→

(
H ′M(±)

µν

G′M(±)
µν

)
=

(
sa sb
sc sd

)(
H

M(±)
µν

G
M(±)
µν

)
, (2.31)

and, hence, they also constitute a vector in the fundamental representation of SL(2),

HMα
µν =

(
HM+

µν

HM−
µν

)
=

(
HM

µν

GM
µν

)
=

(
H

M(+)
µν +H

M(−)
µν

G
M(+)
µν +G

M(−)
µν

)
, (2.32)

where α = (+,−) is an SL(2) index — not to be confused with the (±) that label self-

dual (anti-self-dual) combinations of the two forms, see (2.17). As a result, the two-form

HMα transforms in the bifundamental representation (2, ) with respect to the global

on-shell symmetry (2.13).

In view of the electromagnetic duality the HM+ are referred to as electric field

strengths whereasHM− are the magnetic dual field strengths. In giving the (bosonic part

of the) Lagrangian, (2.2), which only contains the electric field strengths, a symplectic

frame has implicitly been chosen. This is the SO(1, 1) × SO(6, n) covariant electric

frame in which SO(1, 1)×SO(6, n) is a global symmetry of the Lagrangian, whereas the

entire global SL(2) symmetry is only realized on-shell. All other symplectic frames are

obtained by symplectic rotations to be explained at the end of section 2.5. In general,

their off-shell symmetries — the symmetries of the Lagrangian — may differ. However,
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Chapter 2. Gauged N = 4 supergravity in D = 4

in any symplectic frame the equations of motion for the electric field strengths (2.19) are

at the same time the Bianchi identities for the magnetic fields strengths and, hence, the

integrability conditions required to locally introduce magnetic vector potentials AM−
µ by

means of

HM−
µν = 2 ∂[µA

M−
ν] . (2.33)

Of course, (2.1) locally defines the electric vector potentials AM
µ = AM+

µ . Also, AMα
µ

transforms in the bifundamental representation (2, ) of (2.13).

2.3 Embedding tensor formalism

The only known deformations of the ungaugedN = 4 matter coupled supergravity theory

consist in consistently gauging a subgroup of the on-shell global symmetry (2.13), i.e.

in promoting it to a local/gauge symmetry of the Lagrangian. These are deformations

in that the deformed action shall still be invariant with respect to deformed N = 4

supersymmetry transformations. On the other hand, the global on-shell symmetry of

the ungauged theory in general no longer persists in the gauged version (but may still

be partly realized). The gauging relies on the idea of minimally coupling a selection of

the scalar fields to the vector potentials, in general, both to electric and magnetic vector

potentials. Consistency of such general gaugings requires sophisticated amendments of

couplings in order not to upset the counting of degrees of freedom and furthermore puts

constraints on the possible gaugings (closure of the gauge Lie algebra, mutual locality).

In the embedding tensor formalism such general gaugings can be described in terms of the

covariant embedding tensor (with respect to the original on-shell symmetry) [51, 79]. The

following discussion summarizes the relevant aspects of the embedding tensor formalism

applied to N = 4 matter coupled supergravity [52–54].

The gauging is parametrized in terms of infinitesimal gauge transformations. One

therefore considers the Lie algebra of the isometry Lie group (2.13). In the fundamental

representations6 of the real Lie algebras sl(2) and so(6, n), respectively, the components

of generators (the basis) can be written as

(tαβ)γ
δ = δδ(α εβ)γ , (tMN )P

Q = δQ[M ηN ]P , (2.34)

where εαβ is the SL(2)-invariant antisymmetric tensor with ε−+ = 1. As before, lower

case Greek letters α, β, . . . denote fundamental SL(2) indices, while M,N, . . . are vector

indices associated to SO(6, n). In view of electric and magnetic vector potentials AMα
µ

that after the gauging are to transform in the adjoint representation of the gauge Lie

6This is the one of importance since the action of (2.13) on the fields can be entirely expressed

using only fundamental representations. To this end, the SL(2)/SO(2) vielbein is used (rather than the

coordinate τ), see appendix B.2 for details.
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algebra, one parametrizes the most general generators XMα of the gauge Lie algebra as

XMα = ΘMα
λσ (tλσ ⊗ 1) + ΘMα

RS (1⊗ tRS) (2.35)

in terms of the real embedding tensor components ΘMα
λσ,ΘMα

RS ∈ R. In fact, the

embedding tensor defines an embedding of the gauge Lie algebra into the Lie algebra of

the isometry Lie group. In components (2.35) reads

XMαNβ
Pγ = ΘMα

λσ δγ(λ εσ)β δ
P
N +ΘMα

RS δP[R ηS]N δγβ . (2.36)

According to the gauging prescription the partial derivative acting on scalar vielbeins is

replaced by a gauge covariant derivative given by

Dµ =∂µ − g AMα
µ XMα

∂µ − g AMα
µ ΘMα

λσ (tλσ ⊗ 1)− g AMα
µ ΘMα

RS(1⊗ tRS) , (2.37)

where g ∈ R is a redundant but useful overall gauge coupling constant.

The embedding tensor components can be decomposed as

ΘMα
βγ = ξ̃Mδ ε

δ(βδγ)α + Θ̂
(βγ)
Mα ,

ΘMα
NP = fα[MRS] η

RNηSP + δ
[N
M ξP ]

α + ηMQ

(
Θ̂Q[NP ]

α + Θ̂[N |Q|P ]
α

)
, (2.38)

with the following tracelessness conditions,

Θ̂
(βα)
Mα = 0 ,

ηMQ

(
Θ̂Q[NM ]

α + Θ̂[N |Q|M ]
α

)
= 0 . (2.39)

In fact, these are the tensor product decompositions

(2, )⊗ (3, ·) = (2, )⊕ (4, ) ,

(2, )⊗
(
1,

)
=
(
2,

)
⊕ (2, )⊕

(
2,

)
, (2.40)

in terms of irreducible representations of the Lie algebra sl(2) ⊕ so(6, n). Here, (2, )

denotes the bifundamental representation, while (3, ·) ≡ (3,1) and
(
1,

)
denote the

adjoint representation of sl(2) and so(6, n), respectively.

A consistent gauging requires that the embedding tensor components satisfy linear

and quadratic constraints. The linear conditions read

X({Mα}{Nβ}
Qδ Ω

(c)
{Pγ})Qδ = 0 , (2.41)

where

Ω(c) = ΛΩΛ , Λ =

(
1 0

0 η

)
, (2.42)
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defines the symplectic bilinear form in the SO(6, n)-covariant formulation.7 As a result,

the only potentially non-zero components of the embedding tensor are fα[MNP ] and

ξMα = ξ̃Mα, and thus (2.38) simplifies to

ΘMα
NP = fαM

NP + 1
2 δ

[N
M ξP ]

α ΘMα
βγ = 1

2 ξδM εδ(βδγ)α . (2.43)

While in the general embedding tensor formalism the linear constraints (2.41) are not

derived from first principles but rather postulated ad hoc, it is known to be a necessary

condition for a supersymmetric action inN = 4 supergravity (andN = 8 which originally

motivated this postulate).

On the other hand, the quadratic constraints

[XMα, XNβ ] = −XMαNβ
PγXPγ , (2.44)

encode the closure of the gauge Lie algebra where the X[{Mα}{Nβ}]
Pγ are the structure

constants of the gauge Lie algebra. Note, however, that in general the X({Mα}{Nβ})
Pγ

only vanish upon contracting them with XPγ , cf. (2.36). In terms of the embedding

tensor components, (2.44) yields

ξMα ξβM = 0 ,

ξP(α fβ)PMN = 0 ,

3fαR[MN fβPQ]
R + 2ξ(α[M fβ)NPQ] = 0 ,

εαβ
(
ξPα fβPMN + ξαM ξβN

)
= 0 ,

εαβ
(
fαMNR fβPQ

R − ξRα fβR[M [P ηQ]N ] − ξα[M fN ]PQβ + ξα[P fQ]MNβ

)
= 0 . (2.45)

It is important to note that in N = 4 gauged supergravity it is due to both the linear

and the quadratic constraints, (2.41) and (2.44), respectively, that mutual locality is

guaranteed. We will come back to discuss this shortly.

All constraint equations are tensor equations with respect to the on-shell symmetry.

As a consequence, while the embedding tensor components have been introduced as real

numbers subject to (2.41) and (2.44), transforming them according to their index struc-

ture with respect to the on-shell symmetry gives another solution of the constraints. In

fact, the full power of the embedding tensor formalism comes into effect after promoting

the embedding tensor components to components of a tensor/spurion that transforms

under the on-shell symmetry (2.13) of the ungauged theory. In doing so, (2.13) remains

an on-shell symmetry in the gauged supergravity. However, fixing the embedding tensor

explicitly breaks the original on-shell symmetry.

The gauge transformations act non-trivially on the scalars and the vector bosons, as

well as on auxiliary8 two-forms BMN
µν = B

[MN ]
µν and Bαβ

µν = B
(αβ)
µν that are needed for

7A symplectic transformation S as defined in (2.20) is equivalently described by S(c) = Λ−1SΛ acting

on SO(6, n)-covariant column vectors (HM , GM )T and satisfying S(c)TΩ(c)S(c) = Ω(c).
8They do not have kinetic terms.
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consistency, see [51]. On the other hand, all the fermions are inert since they transform

trivially with respect to the on-shell symmetry. The infinitesimal gauge transformations

on scalars are defined in terms of their action on the scalar vielbeins

V = (VSL(2),VSO(6,n))(x) ∈ SL(2)× SO(6, n) , (2.46)

as

δV = gΛMαXMαV , (2.47)

where ΛMα(x) are the local gauge parameters. As to the vector bosons, gauge transfor-

mations are defined as

δAMα
µ = ∂µΛ

Mα + g ANβ
µ XNβPγ

MαΛPγ + . . . (2.48)

where the . . . denote further terms given in terms of the local gauge parameters Ξ
[MN ]
µ (x)

and Ξ
(αβ)
µ (x) associated to the auxiliary two-forms. In the course of this thesis these are

not relevant (see [52–54] for details). Note that up to inhomogeneities the vectors AMα
µ

transform in the adjoint representation of the gauge Lie algebra spanned by the (2.35).

In fact, using (2.44) one has[
gΛPγXPγ , A

Nβ
µ XNβ

]
= g ANβ

µ XNβPγ
MαΛPγ XMα . (2.49)

Upon exponentiation of the gauge Lie algebra spanned by non-vanishing XMα a con-

nected, simply connected component of the identity element of the non-abelian gauge

Lie group can be constructed. This is a Lie subgroup of the isometry group (2.13). It is

remarkable that the Lagrangian of the gauged theory is gauge-invariant even if a part of

the on-shell symmetry has been gauged that had not been a symmetry of the ungauged

Lagrangian. In general, as in the case of the ungauged theory, there may furthermore

be an abelian gauge symmetry U(1)p to some power p ∈ N.

Finally, note that the quadratic constraints (2.44) are equivalent to saying that the

embedding tensor is gauge-invariant as required for objets to be interpreted as charges.

2.4 Gauged theory

We will now summarize the relevant terms of the gauged Lagrangian as given in [52–54].

Apart from topological terms for the vector and the auxiliary two-form fields the bosonic

Lagrangian reads

e−1Lbos. =
1
2R+ 1

16(DµMMN )(DµMMN ) + 1
8(DµMαβ)(D

µMαβ)

− 1
4 Im(τ)MMNHµν

M+HµνN+ + 1
8 Re(τ)ηMN ε

µνρσHµν
M+Hρσ

N+

− V , (2.50)
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where the scalar potential is given by

V = g2

16

(
fαMNP fβQRSM

αβ
[
1
3M

MQMNRMPS + (23 η
MQ −MMQ) ηNR ηPS

]
− 4

9fαMNP fβQRS ε
αβMMNPQRS + 3 ξMα ξNβ M

αβMMN

)
. (2.51)

Instead of using the coordinate τ the kinetic terms for the scalars on SL(2)/SO(2) are

expressed in terms of (Mαβ) = VSL(2)VT
SL(2), see appendix B.2. Then, the covariant

derivatives in (2.50) are explicitly given by

DµMαβ = ∂µMαβ + g AMγ
µ ξ(αM Mβ)γ − g AMδ

µ ξεM εδ(αε
εγMβ)γ ,

DµMMN = ∂µMMN + 2g APα
µ ΘPα(M

QMN)Q . (2.52)

The deformed electric field strengths are

Hµν
M+ = 2 ∂[µA

M+
ν] − g

(
fαNP

M − ξα[N ηM ]
P − 3

2ξαP δ
M
N

)
ANα

[µ AP+
ν]

+ g
2 Θ

M
−NP B

NP
µν + g

2 ξ
M
+ B++

µν + g
2 ξ

M
− B+−

µν . (2.53)

Moreover,

MMNPQRS = εmnpqrsVM
m VN

n VP
p VQ

q VR
r VS

s , (2.54)

is given in terms of the totally antisymmetric tensor εmnpqrs.

In view of discussing the supersymmetry of the vacuum we list the fermion bilinear

terms that include the gravitini and give the deformed supersymmetry transformations

of the fermionic fields. One has9

e−1L3/2 = 2
3 A

ij
1 (ψi

µ)
∗σ̄µνε (ψj

ν)
∗ + h.c.

+1
3 A

ij
2 (ψ

i
µ)

∗σµε (χj)∗ −A2 ai
j ψi

µ ε σ̄
µε (λaj)∗ + h.c. , (2.55)

where the so-called fermion shift-matrices are given in terms of the scalar vielbeins and

the embedding tensor components,

Aij
1 = εαβ(Vα)

∗ VM
[kl] VN

[ik] VP
[jl] fβM

NP ,

Aij
2 = εαβVα VM

[kl] VN
[ik] VP

[jl] fβM
NP + 3

2 ε
αβVα VM

[ij]ξMβ ,

A2ai
j = εαβVα VM

a VN
[ik] VP

[jk] fβMN
P − 1

4 δ
j
i ε

αβVα VM
a ξβM , (2.56)

which are tensors with respect to the local composite symmetry U(1)×SU(4)×SO(n),

discussed in section 2.1, which is still a symmetry of the gauged theory. In a consistent

gauging, the shift-matrices are related to the scalar potential (2.51) by what is sometimes

called the generalized Ward identity,

1
3 A

ik
1 (Ajk

1 )∗ − 1
9 A

ik
2 (Ajk

2 )∗ − 1
2 A2aj

k (A2ai
k)∗ = − 1

4 δ
i
j V . (2.57)

9In Appendix C.1 we will give our spinor conventions and relate the Weyl spinors used here to Dirac

spinors which are used frequently in the literature. Also note that in (2.55) we removed factors of i in

the mixed terms of gravitini and spin-1/2 fermions given in [54].
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The deformed supersymmetry transformations of the fermionic fields are also given

in terms of the fermion shift-matrices,

δεψ
i
µ = 2Dµε

i + 2
3 A

ij
1 σ̄µε (ε

j)∗ + . . . ,

δεχ
i = 4

3 i A
ji
2 ε (ε

j)∗ + . . . ,

δελa
i = 2i Ai

2aj ε
j + . . . .

(2.58)

Here, the supersymmetry parameter εi is a Weyl spinor that forms the right-handed

spinor part of a Dirac spinor. Moreover, the . . . denote terms that vanish in a maximally-

symmetric background. In such a background the only relevant connection term in the

covariant derivative Dµε
i acting on εi is the torsion-free spin connection given explicitly

in (C.12).

2.5 Electric gaugings

In the general case both electric and magnetic vector bosons AMα
µ are minimally coupled

to scalars, cf. (2.52). Similarly, also the deformed field strengths, e.g. in (2.53), contain

couplings to all the AMα
µ . In the chosen symplectic frame it is, however, possible to only

consider purely electric gaugings where the magnetic vector bosons AM−
µ never appear

in the Lagrangian. These are given by the restrictions

XM− = 0 , (2.59)

which is equivalent to

fMNP ≡ f+MNP ∈ R , f−MNP = 0 , ξαM = 0 . (2.60)

For such gaugings the quadratic constraints simplify drastically to

f+R[MN f+PQ]
R = 0 . (2.61)

The scalar potential then reads

V = 1
16

1
Im τ fMNP fQRS

[
1
3M

MQMNRMPS +
(
2
3η

MQ −MMQ
)
ηNRηPS

]
. (2.62)

The covariant derivatives acting on coset parametrizations are

DµMαβ = ∂µMαβ ,

DµMMN = ∂µMMN + 2g AP
µ fP (M

QMN)Q , (2.63)

while the field strengths are as usual,

HM+
µν ≡ HM

µν = 2 ∂[µA
M
ν] − g fNP

MAN
[µA

P
ν] . (2.64)

23
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Moreover, the gauge transformations (2.48) simplify to

δAM
µ = ∂µΛ

M − fPQ
MAP

µ ΛQ . (2.65)

As a consequence, the fMN
P are the structure constants of the gauge Lie algebra and

the quadratic constraint in (2.61) is but the Jacobi identity. Note, however, that not all

gauge Lie algebras can occur since the fMNP = fMN
LηLP have to be completely anti-

symmetric. Here, the occurrence of the SO(6, n) invariant metric ηMN puts constraints

on the possible Lie algebras that can be gauged [43, 54].10 In the course of this thesis

we will not initially specify the gauge group, as partial supersymmetry breaking will put

additional constraints on the deformation parameters fMNP .

Note that (2.60) also eliminates the auxiliary two-forms from the Lagrangian. For

future use we also give the fermion bilinear terms that upon evaluating at the background

will give rise to masses of the spin-1/2 fermions. They read [43]

e−1L1/2 = −A2ai
jχi(λaj)∗ + h.c.

+1
3 A

ij
2 (λ

ai)∗ε (λa
j)∗ +Aab

ij(λai)∗ε (λbj)∗ + h.c. , (2.66)

and are given in terms of the shift-matrices and another set of SU(4)× SO(n) tensors

Aab
ij = V− fMN

P VM
a VN

b VP
[ij] . (2.67)

While in this thesis we will be mainly dealing with purely electric gaugings, it is

important to note that even in the general case of magnetic gaugings no additional

degrees of freedom are introduced. In fact, the field strengths of the magnetic vector

bosons and of the auxiliary two-forms BMN and Bαβ are determined by their equations

of motion. As a result one finds only (n + 6) physical (i.e. propagating) vector bosons

out of the 2(n + 6) vector bosons AMα
µ [51], as in the case of purely electric gaugings.

On the other hand, the reason to consider magnetically gauged theories in general is

due to the existence of many different ungauged theories each of which can be gauged

individually and, in general, give different gauged theories. In fact, the ungauged N = 4

supergravity theory discussed in section 2.1 has been given in a symplectic frame in

which SO(1, 1) × SO(6, n) is a global symmetry of the Lagrangian. However, upon a

general symplectic rotation S ∈ Sp(2(n + 6),R) — not necessarily an embedded isom-

etry given by (2.24) or (2.25) — that rotates H
M(±)
µν as in (2.20) and acts on N as in

(2.22) (as well as on unspecified couplings in the fermionic sector of the theory) another

Lagrangian of the ungauged N = 4 supergravity is obtained with a possibly different

global off-shell symmetry (e.g. SL(2) × GL(6) ⊂ SL(2) × SO(6, 6 + n′) for n = 6 + n′

[79]). While the on-shell symmetry is always SL(2) × SO(6, n), theories related by a

10In contrast, for a semisimple Lie algebras with structure constants fab
c the Killing form κab is non-

degenerate and can therefore be used to raise/lower indices. Then fabc = fab
dκcd would be automatically

completely antisymmetric.
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ungauged N = 4 (n vector bosons),

symplectic frame with off-shell sym-

metry SO(1, 1)× SO(6, n)

another ungauged N = 4 (n vectors),

symplectic frame in general with an-

other off-shell symmetry-�

symplectic

rotation

magnetically gauged theory

theory with (n + 6) physical gauge

bosons

theory with (n + 6) physical gauge

bosons-�

isometry

duality

?

magnetic

gauging

?

e.o.m.

BMN , Bαβ , AM−
?

electric

gauging

Figure 2.1: Embedding tensor formalism: Given a symplectic frame with a magnet-

ically gauged N = 4 supergravity theory, there exists another symplectic frame with

an equivalent N = 4 supergravity that is purely electrically gauged. Also, electrically

gauged N = 4 theories in any symplectic frame can always equivalently be described

by magnetically gauged N = 4 supergravity in a particular chosen symplectic frame.

symplectic rotation are in general not equivalent to each other. Note that the choice of

a symplectic frame corresponds to choosing an embedding of the on-shell symmetry into

the symplectic duality group. It is now by means of the embedding tensor formalism

that electric gaugings in all possible symplectic frames can equivalently be described by

consistent general magnetic gaugings in just one symplectic frame. In fact, after solving

the equations of motion of the auxiliary two-forms and the magnetic vector potentials

in the magnetically gauged theory, the equivalence is given in terms of isometry duality

transformations [51, 52]. This is graphically depicted in figure 2.1. In order for this to

work so-called mutual locality conditions are required. These are additional quadratic

constraints on the embedding tensor which however in the case of N = 4 supergravity

follow from the constraints on the embedding tensor given in (2.41) and (2.44) [51].
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Chapter 3

N = 2 vacua in gauged N = 4

supergravities

In this chapter we construct gauged N = 4 supergravities in four dimensions with

N = 2 vacua. In the standard particle physics terminology such theories are said to

spontaneously break N = 4 supergravity to N = 2 and therefore give rise to what is

called a super-Higgs mechanism. The construction of such theories consists of two steps:

First we solve the system of Killing spinor equations/inequalities which give necessary

conditions on the embedding tensor components. Being essentially a linear problem it

can be solved for the general class of magnetic gaugings. In contrast, in a second step,

consistency of the gauging requires solving the quadratic constraints in (2.45). The

classification of all such theories with N = 2 vacua would require a complete solution

of this system of algebraic quadratic equations. However, as its complexity scales badly

in terms of the free parameter n ∈ N (the number of N = 4 vector multiplets) it seems

hard to solve it in full generality. We therefore mainly concentrate on the case of purely

electric gaugings. While even in this restricted class of gaugings we cannot solve all

the consistency equations, we simplify the problem as much as possible and give some

explicit solutions. To a large extent the following discussion has also been published in

[76].

3.1 Killing spinor equations

A vacuum of an N = 4 supergravity theory — viewed as a classical field theory — is a

background field configuration that satisfies the equations of motion/Bianchi identities

and a stability condition1. The simplest class of such vacua — the one of interest in

1For instance, in Minkowski or AdS spacetime one demands that the background configuration min-

imizes the energy functional.
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our construction — has a metric gµν of signature (−+++) on a maximally symmetric

spacetime and a constant (i.e. spacetime-independent) scalar field configuration

(VSL(2),VSO(6,n)) ∈ SL(2)× SO(6, n) , (3.1)

while fermionic and vector background fields as well as the two-form background field

strengths vanish. In fact, one only requires the bosonic Lagrangian — up to topological

terms given in (2.50) — to check that the only non-trivial equations of motion evaluated

at this background field configuration are the ones arising from varying the metric and

the scalars. The former are but the Einstein field equations

Rµν − 1
2gµν R+ V |bg gµν = 0 , (3.2)

with cosmological constant V |bg given by the scalar potential in (2.51) evaluated at the

background. As an immediate consequence, in such a background the spacetime has to

be Einstein with

Rµν = V |bg gµν , R = 4V |bg . (3.3)

While there also exists non-maximally symmetric solutions to (3.2) such as for instance

the (AdS-)Schwarzschild solution [47], we will restrict ourselves to the maximally sym-

metric ones: de Sitter (dS) (V |bg > 0), Minkowski (V |bg = 0) and Anti-de Sitter (AdS)

(V |bg < 0). On the other hand, the equation of motions of the scalar fields written in

terms of fluctuations2 ~φ around the point (3.1), when evaluated at the background, yield

the criticality condition

∂V

∂~φ

∣∣∣∣∣
bg

= 0 (3.4)

for the scalar potential. Furthermore, in a maximally symmetric spacetime the stability

conditions require that the mass squared parameters of all the fields satisfy certain

bounds [80]: For V |bg ≤ 0 scalar mass parameters have to obey the Breitenlohner-

Freedman bound m2 ≥ 3V |bg/4 [81, 82] whereas the ones for the gravitino necessarily

satisfy

m2 ≥ −1
3V |bg . (3.5)

In contrast, the bound for both scalar and gravitino mass parameters in dS background

is m2 ≥ 0.

Supersymmetry acts on the background field configuration as in (2.58) and, being

a symmetry of the action, maps it to another equivalent background field configuration

of the theory. However, some supersymmetry generators may leave the vacuum invari-

ant. In fact, the number of linearly independent supersymmetry generators that respect

2More precisely, the components of ~φ are coordinates of a chart that maps ~φ = 0 to the point (3.1)

of the scalar manifold.
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the vacuum define the amount of unbroken supersymmetry. Schematically, for bosonic

background fields B and fermionic ones F = 0 one has

δεB ∼ εF = 0 ,

δεF ∼

{
Dε + εB for F = gravitino

εB for F 6= gravitino
(3.6)

for a supersymmetry transformation associated to a right-handed spinor ε and a (bosonic)

covariant derivative D including the spin connection. For maximally symmetric back-

grounds it is therefore only the variations of the fermions that can be non-trivial. Hence,

in N = 4 supergravity, unbroken supersymmetries labeled by ε = (εi) require

δεψ
i = 0 , δεχ

i = 0 , δελ
ai = 0 (3.7)

for all i = 1, . . . , 4 and a = 1, . . . , n, while for the broken ones at least one of the

equations in (3.7) must be violated. Evaluating (2.58) at the background we can rewrite

(3.7) as

δεψ
i
µ = 2Dµε

i − 2
3A

ij
1 Γµεj = 0 , (3.8a)

δεχ
i = −4

3 iA
ji
2 εj = 0 , (3.8b)

δελ
ai = 2iA2aj

iεj = 0 . (3.8c)

As before, (Aij
1 ),(A

ij
2 ) and (A2aj

i) for all a are the shift-matrices defined in (2.56), all of

which are evaluated at the background (3.1). It is important to note that it is due to

the presence of the covariant derivative that setting the variation of the gravitini to zero

gives rise to an integrability condition [38, 47],

[Dµ, Dν ]ε
i = 2

9A
ij
1 (A

jk
1 )∗Γνµε

k , (3.9)

which constrains the geometry of the spacetime. In fact, the existence of at least one

unbroken supersymmetry excludes the possibility of having a dS background. While we

give the detailed calculation in appendix C.2, here we only state the result:(
Rδik +

16
3 A

ij
1 (A

jk
1 )∗

)
εk = 0 . (3.10)

As A1 = (Aij
1 ) is symmetric, one finds that

R = −16
3 |ai|

2 ≤ 0 , (3.11)

where |ai|2 are the eigenvalues of A1A
†
1 associated to unbroken supersymmetry direc-

tions i. Obviously, all such eigenvalues |ai|2 ≡ |a|2 = −3
4V |bg are degenerate. In

mathematics, the equations (3.8a) are referred to as Killing spinor equations — usually,

written as an eigenspinor equation of the Dirac operator (using Majorana spinors) —
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and any (εi(x)) satisfying (3.8a) is called a Killing spinor of the spacetime3. On the other

hand, in the physics literature [54, 83] it has become customary to name all the equations

(3.8a) - (3.8c) Killing spinor equations. We will stick to the latter nomenclature.

We will construct gauged supergravity theories with a vacuum that shall be preserved

by at least one supersymmetry, i.e. we want at least one right-handed spinor ε that

satisfies the Killing spinor equations4. It then follows from the representation theory of

the preserved supersymmetry that stability of the vacuum is guaranteed. In particular,

for a Minkowski background this means that the scalar background configuration (3.1)

must be a minimum (potentially with flat directions) of the scalar potential which is

why (3.4) will indeed be satisfied. In what follows we will argue that for any given

but non-vanishing number of preserved supersymmetry the system of Killing spinor

equations (3.8a) - (3.8c) and the corresponding inequalities evaluated at an arbitrary

scalar background (3.1) can be solved for the embedding tensor components by using the

on-shell symmetry to go, without loss of generality, to the origin of the scalar manifold,

c.f. [80], and, secondly, by using the residual symmetry to diagonalize the gravitini mass

matrix at the origin. Note that owing to the fact that we want to construct a theory

with certain vacuum structure our approach is different from the “analytic” one where

you start with a given supergravity theory, i.e. pick a specific gauging, and then analyze

the vacuum structure by e.g. looking for solutions of the Killing spinor equations. In

contrast, our “synthetic” approach follows [63, 64] (albeit in a rather different language):

we first specify the vacuum structure in choosing the amount of preserved supersymmetry

(at least N = 1) and then use the Killing spinor equations to solve for the embedding

tensor components.

3.1.1 Going to the origin of the scalar manifold

As already mentioned in section 2.3,

SL(2)× SO(6, n) (3.12)

is an on-shell symmetry of any gauged N = 4 supergravity theory provided that the

embedding tensor components fαMNP and ξαM transform as in (2.40) under (3.12)

as opposed to being kept constant. In particular, this means that had we been able

to construct a gauged supergravity theory with an arbitrary background configuration

(3.1), we would always find a group element in (3.12) that, using (2.7) and the analogous

transformation for the SL(2) vielbein, maps (3.1) to the origin

(12,16+n) ∈ SL(2)× SO(6, n) , (3.13)

where 1k ∈ Matk,k denotes the k-dimensional unit matrix. While this comes at the cost

of redefining the vector bosons, the scalar fields and the embedding tensor components,

3Killing vectors of the spacetime can then be constructed from the Killing spinors.
4In Minkowski and AdS space such Killing spinors exist [47].
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we would end up with an equivalent description of the gauged N = 4 supergravity

theory we started with. It is therefore without loss of generality that we may choose

the origin (3.13) as the scalar vacuum configuration. As we will see, this is of help

because the shift-matrices in (2.56) evaluated at (3.13) end up being disentangled with

respect to certain components of the embedding tensor components. The residual on-

shell symmetry in a theory with vacuum (3.13), also called the isotropy symmetry, is

a combination of SO(2)× SO(6)× SO(n) ⊂ G and global (i.e. spacetime-independent)

U(1) × SU(4) × SO(n) ⊂ H composite gauge symmetries such that their compositions

leave the origin (3.13) invariant, c.f. [79].

3.1.1.1 A-matrices at the origin of SO(6, n)

We now evaluate the fermion shift matrices in (2.56) as well as — for future use — the

A-matrices (Aab
ij) given in (2.67) at the origin of SO(6, n). In a rather compact form,

one finds

Aij
1 = 1

8(V−)
∗ ([Gm]ik)

∗[Gn]kl([Gp]lj)
∗(f+mnp + if−mnp) ,

Aij
2 = 1

8V− ([Gm]ik)
∗[Gn]kl([Gp]lj)

∗(f+mnp + if−mnp)

−3
4V− ([Gm]ij)

∗(ξ+m − iξ−m) ,

A2ai
j = −1

4V−
[
[Gm]ik([Gn]kj)

∗(f+amn − if−amn) + δi
j(ξ+a − iξ−a)

]
,

Aab
ij = −1

2V− [Gm]ijf+abm + . . . , (3.14)

where Gm are the ’t Hooft matrices, which we review in appendix B.2. The . . . in (3.14)

denote possible further terms that may appear in general magnetically gauged theories

but are not explicitly given in [54]. At the critical point (3.13) one has V− = 1 but later,

when discussing purely electric gaugings we allow for non-trivial V− > 0.

It is convenient to express the result for Aij
1 and Aij

2 as in [80] in terms of

f (±)
αmnp := fαmnp ± 1

3!εαβεmnpqrsfβqrs (3.15)

where εmnpqrs and εαβ are completely antisymmetric with ε123456 = 1 and ε−+ = 1. The
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Chapter 3. N = 2 vacua in gauged N = 4 supergravities

components of the symmetric matrix (Aij
1 ) depend on 20 real parameters f

(+)
αmnp:

A11
1 = 3

4

[
(−f (+)

−123 + f
(+)
−156 − f

(+)
−246 + f

(+)
−345) + i(f

(+)
+123 − f

(+)
+156 + f

(+)
+246 − f

(+)
+345)

]
A22

1 = 3
4

[
(−f (+)

−123 + f
(+)
−156 + f

(+)
−246 − f

(+)
−345) + i(f

(+)
+123 − f

(+)
+156 − f

(+)
+246 + f

(+)
+345)

]
A33

1 = 3
4

[
(−f (+)

−123 − f
(+)
−156 − f

(+)
−246 − f

(+)
−345) + i(f

(+)
+123 + f

(+)
+156 + f

(+)
+246 + f

(+)
+345)

]
A44

1 = 3
4

[
(−f (+)

−123 − f
(+)
−156 + f

(+)
−246 + f

(+)
−345) + i(f

(+)
+123 + f

(+)
+156 − f

(+)
+246 − f

(+)
+345)

]
A12

1 = 3
4

[
(−f (+)

+125 − f
(+)
+136) + i(−f (+)

−125 − f
(+)
−136)

]
A34

1 = 3
4

[
(f

(+)
+125 − f

(+)
+136) + i(f

(+)
−125 − f

(+)
−136)

]
A13

1 = 3
4

[
(f

(+)
+124 − f

(+)
+236) + i(f

(+)
−124 − f

(+)
−236)

]
A24

1 = 3
4

[
(f

(+)
+124 + f

(+)
+236) + i(f

(+)
−124 + f

(+)
−236)

]
A14

1 = 3
4

[
(f

(+)
+134 + f

(+)
+235) + i(f

(+)
−134 + f

(+)
−235)

]
A23

1 = 3
4

[
(−f (+)

+134 + f
(+)
+235) + i(−f (+)

−134 + f
(+)
−235)

]
(3.16)

It is apparent that any symmetric complex 4 × 4 matrix can be written in this form.

Writing

Aij
2 = (Aij

2 )|ξ=0 + (Aij
2 )|f=0 , (3.17)

the result for (Aij
2 )|ξ=0 for ξαM = 0 is obtained from (Aij

1 ) after substituting

f
(±)
−mnp → −f (∓)

−mnp

f
(±)
+mnp → f

(∓)
+mnp. (3.18)

Thus, for ξ = 0, A2 depends on another 20 real parameters f
(−)
αmnp. For nonvanishing ξ

the additional antisymmetric contribution reads

(Aij
2 )|f=0 = −3

4


0 −iξ1 − ξ4 −iξ2 − ξ5 −iξ3 − ξ6

∗ 0 iξ3 − ξ6 −iξ2 + ξ5

∗ ∗ 0 iξ1 − ξ4

∗ ∗ ∗ 0

 (3.19)

where ξm := ξm+ − iξm− . As to (A2ai
j) for all a = 1, . . . , n, we write

A2ai
j = A2ai

j |ξ=0 +A2ai
j |f=0 , (3.20)
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3.1. Killing spinor equations

and the components of (A2ai
j)|ξ=0 read

A2a1
1|ξ=0 = −1

2 i(fa14 + fa25 + fa36)

A2a2
2|ξ=0 = −1

2 i(fa14 − fa25 − fa36)

A2a3
3|ξ=0 = −1

2 i(−fa14 + fa25 − fa36)

A2a4
4|ξ=0 = −1

2 i(−fa14 − fa25 + fa36)

A2a1
2|ξ=0 = −1

2 [(fa23 − fa56) + i(fa26 − fa35)]

A2a3
4|ξ=0 = −1

2 [(−fa23 − fa56) + i(−fa26 − fa35)]

A2a1
3|ξ=0 = −1

2 [(−fa13 + fa46) + i(−fa16 + fa34)]

A2a2
4|ξ=0 = −1

2 [(−fa13 − fa46) + i(fa16 + fa34)]

A2a1
4|ξ=0 = −1

2 [(fa12 − fa45) + i(fa15 − fa24)]

A2a2
3|ξ=0 = −1

2 [(−fa12 − fa45) + i(fa15 + fa24)] (3.21)

where famn := f+amn − if−amn. Moreover,

A2a2
1|ξ=0 = −1

2 [−(fa23 − fa56) + i(fa26 − fa35)] (3.22)

etc. where the first of the two summands always gets an extra minus sign. For non-

vanishing ξ there is a diagonal contribution

A2ai
j |f=0 = −1

4 δi
j(ξ+a − iξ−a). (3.23)

We conclude that A1 depends only on f
(+)
αmnp while A2 is given in terms of both f

(−)
αmnp

and ξαm; A2a is built from fαamn and ξαa. Note that at the origin embedding tensor

components fαabm and fαabc do not appear in the fermion shift matrices (and therefore

also not in the Killing spinor equations).

Finally, we give the explicit result for the antisymmetric A-matrices (Aab
ij) for all

a, b at the origin of the scalar manifold whose electric part is entirely given in terms of

the components f+abm,

(Aab
ij) = 1

2


0 if+ab1 + f+ab4 if+ab2 + f+ab5 if+ab3 + f+ab6

−∗ 0 −if+ab3 + f+ab6 if+ab2 − f+ab5

−∗ −∗ 0 −if+ab1 + f+ab4

−∗ −∗ −∗ 0

+ . . . (3.24)

for all a, b.

3.1.2 Diagonalizing the gravitino mass matrix

As in all supergravities, c.f. [57], the fermion shift matrix A1 evaluated at the background

configuration in the supersymmetry transformation of the gravitini is also the gravitino

mass matrix:

e−1Lm3/2
= 2

3 A
ij
1 (ψi

µ)
∗σ̄µνε (ψj

ν)
∗ + h.c. . (3.25)
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Chapter 3. N = 2 vacua in gauged N = 4 supergravities

As a consequence of what is called the Autonne decomposition [84], an arbitrary sym-

metric complex matrix (Aij
1 ) can be “diagonalized” by means of an SU(4) transformation

in that one can always find an S ∈ SU(4) such that

S(Aij
1 )S

T = diag(|a1|eiφ, |a2|, |a3|, |a4|) , (3.26)

with |a1| ≤ . . . ≤ |a4|. Note, however, that diagonalizing a non-diagonal matrix (Aij
1 )

at the origin transforms also the matrices (Aij
2 ) and (A2aj

i), and affects the vacuum

by an SO(6) ⊂ H rotation moving it away from the critical point (3.28). Of course,

the scalar vacuum always remains in the same coset of G/H. We now think of such

an H transformation as acting globally and apply its inverse as a G transformation on

the vacuum, the embedding tensors, and the vector bosons. In doing so, one returns

to the origin of SO(6, n) and at the same time has a diagonal gravitino mass matrix.

Moreover, one now knows the A-matrices in terms of the transformed fαMNP and ξαM .

We therefore may assume that, without loss of generality, (Aij
1 ) is of the form (3.26) and

the A-matrices are explicitly given as in (3.16) - (3.23). Inspecting (3.25) and the kinetic

terms in (2.50) we see that the gravitini mass parameters are given by 2/3 · |a1|, . . . , 2/3 ·
|a4|.

We want to stress that diagonalizing the gravitino mass matrix also defines the

notion of unbroken or broken supersymmetry directions labeled by i = 1, . . . , 4. In fact,

according to the Killing spinor equations, more precisely due to (3.11), one requires

|ai| =
√

−3
4V |bg (3.27)

for any unbroken supersymmetry direction labeled by i. Note that the phase φ in (3.26)

can be absorbed into a redefinition of the first preserved spinor ε. As a result, for

each unbroken supersymmetry there is a gravitino with mass parameter m =
√

−1
3V |bg

saturating the stability bound (3.5) of the maximally-symmetric spacetime. In contrast,

for broken directions i it is necessary that diagonal entries |ai| differ from the ones given

in (3.27). Furthermore, for each unbroken i one needs a zero row in matrices (Aij
2 ) and

(A2ai
j) for all a. These conditions give rise to a set of equations and inequalities that

we wish to solve for the embedding tensor components. While the latter only appear

linearly in the shift matrices, the scalar potential V , given in (2.51), is quadratic in the

fαMNP and ξαM . We will solve this problem in the following way: First we solve the

linear problem for a given background value V ≤ 0 of the scalar potential. In fact,

it is apparent from the explicit form of the shift matrices given in (3.16) - (3.23) that

the embedding tensor components can be chosen in such a way that the Killing spinor

equations (and their inequalities) are fulfilled at the critical point (3.28) for any number

of preserved supersymmetries and a given background value V ≤ 0. In a second step, we

(try to) solve the quadratic constraints (2.45) required by the consistency of the gauged

supergravity (closure of gauge Lie algebra, super-Higgs mechanism, stability. . . ). Having

done so, the generalized Ward identity (2.57) holds [54] which implies that our V ≤ 0
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3.1. Killing spinor equations

is in fact the background value of (2.51). It is in this spirit that the solution of the

Killing spinor equations/inequalities is a necessary step that as soon as the quadratic

constraints have been solved becomes sufficient. Note that it is by means of (2.57) that

the Killing spinor equations (3.8a) already imply the ones for the spin-1/2 fermions

(3.8b) and (3.8c)5 which means that in principle we need not demand zero rows in (Aij
2 )

and (A2ai
j) since this will follow from a solution of the quadratic constraints. However,

solving the constraints turns out to be difficult and introducing zero rows into these shift

matrices is a useful measure to simplify computations.

3.1.3 Electric gaugings

While within the general class of magnetic gaugings the procedure of going to the origin is

always convenient, there is one inconvenience concerning the restriction to only electric

gaugings. If we were to start with a purely electrically gauged N = 4 supergravity

with an arbitrary scalar vacuum (3.1), we would in general require a non-trivial SL(2)

transformation in order to go to the origin (3.13) of the scalar manifold. However, such

an SL(2) transformation is a proper electric-magnetic duality and, thus, in going to the

origin (3.13) we would leave the class of electric gaugings. This can be seen from the

embedding tensors: We start in a symplectic frame in which purely electric gaugings

are the ones with non-trivial f+MNP ∈ R but with f−MNP = 0 and ξαM = 0. Upon

a non-trivial SL(2) transformation the f+MNP would be rotated also into the f−MNP

which therefore would give rise to magnetic gaugings in the given symplectic frame. This

is not a problem because the consistency constraints (2.45), being in particular SL(2)

tensor equations, are no harder to solve. On the other hand, we do not gain much

in terms of simplicity in also going to the origin of SL(2). In fact, it is the origin of

SO(6, n) that disentangles the embedding tensor components. Hence, when discussing

purely electric gaugings we only apply an SO(6, n) transformation to transform without

loss of generality the scalar vacuum (3.1) to

(VSL(2),16+n) ∈ SL(2)× SO(6, n) , (3.28)

and, in doing so, we preserve the class of electric gaugings. Using the additional local

symmetry U(1) ∼ SO(2) of the Lagrangian which acts as in table 2.1 both on gravity

scalar representatives Vα and on fermions, we can always bring the scalar vielbein to a

form such that V− = 1/
√
Im τ > 0 (see appendix B.2 for details). This comes at the

cost of redefining the fermion fields but simplifies the A-matrices in (2.56) and (2.67),

in that V− > 0 becomes an overall scaling factor (to be added in equations (3.16),

(3.19),(3.21),(3.22), and (3.23)) while V+ ∈ C never appears. Note that at a critical

point (12,16+n) one would have V− = 1.

5This is always true for extended supergravity theories, see [57].
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Chapter 3. N = 2 vacua in gauged N = 4 supergravities

In theories with purely electric gaugings and using the gauge V− > 0, the symmetric

shift-matrices (Aij
1 ) and (Aij

2 ) are identical. As a result, the Killing spinor equations

(3.8a) and (3.8b) immediately imply V = 0, i.e. any vacuum of an electrically gauged

N = 4 supergravity theory that contains at least one preserved supersymmetry is nec-

essarily Minkowski as opposed to AdS. This result is in accordance with [67] in which

equal SU(1, 1) phases are equivalent to having only electric gaugings [54]. Moreover, the

Killing spinor equations (3.8a) - (3.8c) evaluated at the background do not depend on

V−, i.e. the analysis of partial supersymmetry breaking does not depend on the critical

point VSL(2) ∈ SL(2) in the gravity scalar manifold. Furthermore, as can be seen from

the generalized Ward identity (2.57) or the explicit form of the scalar potential given

in (2.62), the scalar potential only depends on VSL(2) by means of an overall scaling

factor (V−)
2 and, hence, the complex coordinate τ parametrizing SL(2)/SO(2) is a flat

complex direction of the scalar potential. Upon inspecting mass terms, it turns out

that a generic VSL(2) leads to an overall scaling of all mass terms. This is, of course, a

requirement of any preserved supersymmetry in Minkowski background. Note that it is

only upon canonically normalizing the gauge kinetic terms that the mass terms for the

vector bosons also scale appropriately.

In electrically gauged theories the Killing spinor equation (3.8a) for a preserved

supersymmetry direction i simplifies to

∂µε
i = 0 , (3.29)

in a Minkowski background. Thus, the vacuum only preserves global supersymmetry.

In other words, in the super-Higgs mechanism based on electric gaugings, N = 4 super-

gravity will be broken to global N ′ < N supersymmetry.

Still restricting ourselves to the class of electric gaugings we will briefly consider

vacua with N = 4 supersymmetry. Subsequently, we will focus on vacua with N = 2

supersymmetry. In studying them it will become apparent that N = 3 vacua in purely

electric gaugings do not exist. In principle, one could also study N = 1 vacua.

3.1.3.1 N = 4 vacua

In order for the vacuum to respect N = 4 supersymmetry, i.e. there shall be four linearly

independent Killing spinors εi satisfying (3.8a) - (3.8c), the shift-matrices A1 = A2 and

(A2ai
j) for all a must all vanish. Using the explicit result of section 3.1.1.1 at the

origin (3.28) this is only possible for f+mnp = 0 and f+amn = 0 for all indices. On

the other hand, there are potentially non-trivial components f+mab and f+abc. While

being unconstrained by the Killing spinor equations they have to satisfy the quadratic
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3.1. Killing spinor equations

constraints (2.61), which in this case read

fabm facn − fabn facm = 0 , (3.30a)

fabc fadm + fabm facd − fabd facm = 0 , (3.30b)

fabc fdea + fabe fcda − fabd face = fmbc fdem + fmbe fcdm − fmbd fmce , (3.30c)

for all free indices and where fMNP ≡ f+MNP . As a matter of fact, these equations are

non-trivial and can be hard to solve for arbitrary n ∈ N. In order to demonstrate that

solutions exist, we will give a class of solutions as well as a special solution for n = 3:

First, we set fmab = 0 which implies that all bosons and fermions are massless. In

fact, the mass terms for all the bosons and fermions evaluated at the background (3.28)

vanish. For the fermions this follows from (2.66). The vector bosons are massless because

in this case the covariant derivative (2.63) evaluated at the vacuum reads

DµMMN = ∂µMMN , (3.31)

and, hence, does not give rise to mass terms for the vector bosons. As to the scalars, one

finds that the background is a critical point and that the curvature of the scalar potential

(2.62) evaluated at the background vanishes. This is, of course, required by an N = 4

supersymmetric vacuum. Here, we will not give the computation as it is an special case

of the computation for N = 2 vacua which we discuss in section 4.1. In fact, if fabc ∈ R

are the only potentially non-trivial components, then the scalar potential in (4.6) is zero

up to cubic order in terms of the fluctuations (here: ea = fa = ga = 0 and Oab = 0). As

a result, in this class of gaugings the N = 4 spectrum consists of one gravity multiplet

and n vector multiplets. The potentially non-trivial quadratic constraints are

fabc fdea + fabe fcda − fabd face = 0 , (3.32)

which tally with the Jacobi identity in the adjoint representation of the compact form of

a reductive6 Lie algebra of rank n when expressed in an appropriate basis. Based on the

classification of simple Lie algebras, many solutions to this equation are therefore well-

understood. As can be seen from the gauge transformations of the vector bosons given

in (2.65), the fabc are the structure constants of the Lie algebra associated to the gauge

group. It is apparent that (modulo U(1) factors) any compact, reductive Lie group can

be gauged for sufficiently large n.

Secondly, we set n = 3 because then (3.30c), being antisymmetric in [bcde], is always

satisfied. A very simple but physically non-trivial solution of (3.30a) - (3.30c) is then

given by f1ab 6= 0 while all other components vanish. It is an interesting solution in

that it gives rise to two massive vector fields and their superpartners. Hence, in terms

of representation theory of N = 4 the spectrum consists of seven massless N = 4 vector

6A Lie algebra is reductive if and only if it is the direct sum of a semisimple Lie algebra and an

abelian Lie algebra.
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Chapter 3. N = 2 vacua in gauged N = 4 supergravities

multiplets and two N = 4 BPS vector multiplets. Note that this is the only possibility

because a long massive N = 4 multiplet would already require a massive graviton. The

unbroken gauge group that leaves the vacuum invariant turns out to be U(1)7.

3.1.3.2 N = 2 vacua

Let us now turn to our main problem, which is to study spontaneous breaking of N = 4

to N = 2 supersymmetry. For unbroken N = 2 supersymmetry, one requires

(Aij
1 ) = (Aij

2 ) = diag(0, 0, µ1, µ2) , A2a1
i = A2a2

i = 0 , ∀i, a . (3.33)

since the vacuum is necessarily Minkowski. Before we solve (3.33) it is useful to study the

decomposition of N = 4 multiplets in terms of N = 2 multiplets. This is of interest as

partial supersymmetry breaking requires massive gravitini to be embedded into massive

supermultiplets of the preserved supersymmetry [85].

3.1.3.3 Representation theory of Minkowski N = 2 supersymmetry

In view of N = 4 gauged supergravities with N = 2 Minkowski vacua it is instructive

to analyze how the degrees of freedom of the original N = 4 supermultiplets transform

in terms of the N = 2 (sub)supersymmetry. In the following discussion we assume

that the background is Minkowski which is guaranteed for purely electric gaugings.

For an AdS background the discussion would have to be generalized owing to the fact

that the supersymmetry algebra in AdS background differs from the one in Minkowski

space [86]. Let us denote a multiplet of N -extended supersymmetry with mass m and

highest spin/helicity s in Minkowski space byMN,s,m. Using this terminology the N = 4

gravitational multiplet and the massless vector multiplet together with their component

spectrum read [9]

N = 4 gravitational multiplet: M4,2,0 =
(
[2], 4[32 ], 6[1], 4[

1
2 ], 2[0]

)
,

N = 4 vector multiplet: M4,1,0 =
(
[1], 4[12 ], 6[0]

)
,

(3.34)

where [s] denotes the spin/helicity of the component and the number in front is its

multiplicity. Furthermore, the massless N = 2 multiplets are

N = 2 gravitational multiplet: M2,2,0 =
(
[2], 2[32 ], [1]

)
,

N = 2 gravitino multiplet: M2,3/2,0 =
(
[32 ], 2[1], [

1
2 ]
)
,

N = 2 vector multiplet: M2,1,0 =
(
[1], 2[12 ], 2[0]

)
,

N = 2 hypermultiplet: M2,1/2,0 =
(
2[12 ], 4[0]

)
,

(3.35)
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while the massive N = 2 multiplets read

N = 2 massive gravitino multiplet: M2,3/2,m6=0 =
(
[32 ], 4[1], 6[

1
2 ], 4[0]

)
,

N = 2 BPS gravitino multiplet: M2,3/2,BPS =
(
2[32 ], 4[1], 2[

1
2 ]
)
,

N = 2 massive vector multiplet: M2,1,m6=0 =
(
[1], 4[12 ], 5[0]

)
,

N = 2 BPS vector multiplet: M2,1,BPS =
(
[1], 2[12 ], 1[0]

)
,

N = 2 BPS hypermultiplet: M2,1/2,BPS =
(
2[12 ], 4[0]

)
.

(3.36)

Note that there are two distinct N = 2 massive gravitino multiplets, the BPS gravitino

multiplet M2,3/2,BPS and the long massive gravitino multiplet M2,3/2,m 6=0. They differ in

that only the BPS gravitino multiplet transforms under a central charge of the super-

symmetry algebra in precisely the way that leads to multiplet shortening. BPS gravitini

can only occur in pairs as each of them carries a non-vanishing BPS charge which by

itself would not be CPT-invariant. This implies that N = 4 cannot be broken to N = 3

with a BPS gravitino multiplet.

The branching rules of the two N = 4 multiplets in terms of massless N = 2 multi-

plets are as follows

M4,2,0 =M2,2,0 + 2M2,3/2,0 +M2,1,0 , M4,1,0 =M2,1,0 +M2,1/2,0 , (3.37)

from which we see that in breaking N = 4 → N = 2 the gravity multiplet gives rise to

a vector multiplet containing the dilaton and axion in the N = 2 spectrum.

As all degrees of freedom must be embedded into complete N = 2 multiplets, the

two heavy gravitini must lie in massive N = 2 supermultiplets. As far as representation

theory is concerned there are two options regarding the type of the gravitino multiplet(s).

For the situation where the heavy N = 2 gravitini are in non-BPS multiplets one has

M4,2,0 + nM4,1,0 →M2,2,0 + 2M2,3/2,m6=0 + n′vM2,1,m 6=0 + nvM2,1,· + nhM2,1/2,· , (3.38)

where n′v counts long massive vector multiplets, nv counts BPS vector multiplets and

massless vector multiplets (as they have the same field content) and nh counts BPS or

massless hypermultiplets (as they also have the same field content). We use · to denote

either massless or BPS multiplets. Inserting the spectrum (3.34)–(3.36) one finds the

consistency conditions

nv = n− 3− n′v , nh = n− 2− n′v . (3.39)

Thus in this case there have to be at least three N = 4 vector multiplets in the spectrum,

i.e. n ≥ 3. In this minimal case with also n′v = 0 there are, apart from the N = 2

gravitational multiplet and the two heavy gravitino multiplets, one massive or massless

hypermultiplet after the symmetry breaking.
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In case that the heavy N = 2 gravitini are contained in a BPS multiplet one has

M4,2,0 + nM4,1,0 →M2,2,0 +M2,3/2,BPS + n′vM2,1,m6=0 + nvM2,1,· + nhM2,1/2,· , (3.40)

with the consistency conditions

nv = n+ 1− n′v , nh = n− 1− n′v , (3.41)

and thus there has to be at least one N = 4 vector multiplet in the spectrum, i.e.

n ≥ 1. In this minimal case with n′v = 0, one finds after the symmetry breaking the

N = 2 gravitational multiplet, the BPS gravitino multiplet, and two massless/BPS

vector multiplets. Note that according to equations (3.39) and (3.41) the case with two

long massive gravitino multiplets M2,3/2,m6=0, relative to the BPS case, yields one fewer

hypermultiplet and four fewer vector multiplets in the spectrum.

3.1.3.4 The linear conditions

In this section we first solve the linear N = 2 conditions (3.33) and then embark on

solving the quadratic constraints (2.61). While the linear equations can easily be solved,

it seems hard to find the general solution for the quadratic constraints.

Let us first focus on the zero entries in A1(= A2). Using the explicit form given

in section 3.1.1.1 one easily finds that only four of the fmnp can be non-zero and they

depend on only two parameters which we denote by c and d. More precisely one finds

f234 = f456 =: c , f126 = f135 =: d , (3.42)

while all other fmnp vanish. Moreover, A33
1 and A44

1 which are related to the gravitini

mass parameters µ1 and µ2 introduced in (3.33) also depend on c and d via

A33
1 = −3

2 V−(c+ d) = µ1 > 0 , A44
1 = −3

2 V−(c− d) = µ2 ≥ µ1 , (3.43)

where as pointed out before µ2 ≥ µ1 is chosen without loss of generality. Let us now

turn to the last set of equations in (3.33) and solve the system of linear equations for the

shift matrices (A2ai
j). Using (3.21) and (3.22) the potentially non-trivial components of

famn turn out to be

fa25 = −fa36 =: ea , fa23 = fa56 =: fa , fa26 = fa35 =: ga , (3.44)

while fa1n = fa4n = 0 for all a and n. Thus, for any a, the matrix A2ai
j is non-trivial

only in its lower right block and given by

(A2ai
j) =

(
0 0

0 Za

)
, Za = fa

(
0 1

−1 0

)
+ i

(
−ea ga
ga ea

)
. (3.45)

This concludes our analysis of the linear equations arising from the Killing spinor equa-

tions (3.33). Let us now turn to the quadratic constraints.
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3.2 Solutions of the quadratic conditions

In order for the gauging to be consistent with respect to supersymmetry and gauge

invariance, we need to impose the quadratic constraints (2.61). However, in practice it

is difficult to solve these equations in general. In order to solve them as much as possible

we will make much use of their symmetry properties. In fact, (2.61) are SO(6, n) tensor

equations and it will prove crucial to exploit all the symmetries.

Let us first look at the equation (M,N,P,Q) = (m,n, p, q) = (1, 2, 4, 5) of the

quadratic constraints (2.61) which, using (3.42), reads

c · d = 0 . (3.46)

Since c = 0 is inconsistent with the gauge choice of (3.43), we need to have d = 0 and

c < 0. This in turn implies a first result, namely that the two heavy gravitini have to be

degenerate in mass

m3/2 :=
2
3 A

33
1 = 2

3 A
44
1 = −cV− , (3.47)

as one expects when some fraction of supersymmetry is preserved in a Minkowski back-

ground. Let us also note that (3.46) immediately implies that in electrically gauged the-

ories one can never break N = 4 to N = 3 since A33
1 = 0, A44

1 6= 0 requires c = −d 6= 0,

as was first shown in [67].

In order to proceed, it is necessary to make some simplifying assumptions. By

inspection, one finds that for ga = 0 the equations simplify considerably and therefore

some of them can be solved. On the other hand, the ga 6= 0 case is much more involved

and solutions — should they exist — would have to be more sophisticated, as we point

out in appendix D.1.2. In fact, there we show that ga 6= 0 solutions do not exist

for n ≤ 6. In what follows we will therefore assume that ga = 0, which also implies

ea = 0 due to the quadratic constraint for (M,N,P,Q) = (b, n, p, q) = (b, 2, 4, 6). This

choice corresponds to turning-off certain components of the A-matrices and minimizes

the coupling between gravitini and gaugini in the Lagrangian (2.55). Indeed, we shall see

later that with this choice it is only the “first” N = 4 vector multiplet that contributes

to the gravity/Goldstini sector. The fact that it is the components ga = fa26 = fa35 = 0

and ea = fa25 = −fa36 = 0 that allow for this simplification is due to our particular

SU(4) gauge choice for which gravitini remain massless (3.33), suitably translated into

SO(6) indices using the ’t Hooft matrices (see (B.2)).

Let us now consider the quadratic constraint (M,N,P,Q) = (m,n, p, q) = (2, 3, 5, 6).

Inserting (3.42) and (3.44) we find ∑
a

f2a = c2 > 0 , (3.48)

i.e. at least one fa must be different from zero. This implies, via (3.45), that (A2ai
j) has

non-zero entries and from (2.55) and (2.66) we see that additional fermionic couplings
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have to be non-zero and related to the gravitino mass. As we will see in section 4.1,

(3.48) is necessary for the super-Higgs mechanism and the appropriate couplings of the

Goldstone fermions to the gravitinos. In order to simplify the analysis we use an SO(n)

transformation that leaves the origin invariant and choose fa = c δa7 which obviously

solves (3.48). The quadratic constraints (M,N,P,Q) = (b, n, p, q) then imply

f7bm = 0 , ∀ b,m . (3.49)

In appendix D.2 we list the remaining non-trivial quadratic constraints. A subset of

them, (D.67a) - (D.67u), can be written in terms of the antisymmetric real (n−1)×(n−1)

matrices

Gm = (fb̃c̃m) and G7 = (fb̃c̃7) with b̃, c̃ = 8, . . . , 6 + n . (3.50)

which satisfy

[G2,H+] = −2cG3 , [G3,H+] = +2cG2 , [G2, G3] = cH− ,

[G5,H+] = −2cG6 , [G6,H+] = +2cG5 , [G5, G6] = cH− ,
(3.51)

where H± = G4 ±G7, while the remaining matrix commutators all vanish. As a conse-

quence, (3.51) defines a Lie bracket on the 7-dimensional real vector space spanned by

abstract elements {G1, G2, G3, G5, G6, H+,H−} and it can be checked that the Jacobi

identities are satisfied.

Note that G1 commutes with all other elements and thus we have a real 7-dimensional

Lie algebra g which decomposes into a sum of two ideals,

g ∼= R⊕ s, (3.52)

spanned by G1 and {G2, G3, G5, G6,H+,H−}, respectively. It can be further checked

that s is a solvable Lie algebra of dimension 6.7 The problem of finding solutions to

the quadratic constraints (D.67a) - (D.67u) is now equivalent to finding antisymmetric

finite-dimensional representations of g. One obvious class of solutions is given by

G2 = G3 = G5 = G6 = H− = 0 (3.53)

and an arbitrary, antisymmetric H+ that commutes with G1. In this case one has

G4 = G7. In appendix D.2.1 we will prove that no other solution exists. Our proof

is based on Lie’s theorem concerning complex representations of complex solvable Lie

algebras.

7Recall that a Lie algebra g is solvable if and only if the (upper) derived series of Lie algebras

(g, [g, g], [[g, g], [g, g]] . . .) terminates after finitely many steps.
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The remaining equations (D.67a) to (D.68c) to be solved now simplify to

fãb̃4 fãc̃1 − fãb̃1 fãc̃4 = 0 (3.54a)

fãb̃c̃ fãd̃1 + fãb̃1 fãc̃d̃ − fãb̃d̃ fãc̃1 = 0 (3.54b)

fãb̃c̃ fãd̃4 + fãb̃4 fãc̃d̃ − fãb̃d̃ fãc̃4 = 0 (3.54c)

fãb̃c̃ fd̃ẽã + fãb̃ẽ fc̃d̃ã − fãb̃d̃ fãc̃ẽ = f1b̃c̃ fd̃ẽ1 + f1b̃ẽ fc̃d̃1 − f1b̃d̃ f1c̃ẽ . (3.54d)

Note that the gravitino mass parameter c has disappeared from the equations. Unfor-

tunately, it is still hard to solve these equations in generality for any given integer n.

Obviously, the minimal case of an N = 2 vacuum can be realized by either choosing

n = 1 in which case embedding tensor components with indices ã, b̃, . . . do not exist or

setting the latter all to zero.

Let us first consider G1 = G4 = 0. In this case the only remaining non-trivial

equation is

fãb̃c̃ fd̃ẽã + fãb̃ẽ fc̃d̃ã − fãb̃d̃ fãc̃ẽ = 0 , (3.55)

which tallies with the Jacobi identity in the adjoint representation of the compact form

of a reductive Lie algebra of rank (n − 1) when expressed in an appropriate basis. As

already mentioned in section 3.1.3.1, based on the classification of simple Lie algebras,

solutions to (3.55) are well-understood. As we will see in section 4.2, the components

fãb̃c̃ turn out to be the structure components of the Lie algebra that leaves invariant the

vacuum of the theory and, hence, determine the unbroken gauge group up to abelian

extensions.

Now we turn to the case of non-trivial G1 and G4. In appendix D.2.2 we will solve

(3.54a), which in matrix notation reads

[G1, G4] = 0 . (3.56)

Here we will only explain the result. The solution of this SO(n−1) tensor equation could

be given in terms of SO(n− 1) representatives of an orbit of solutions. However, as it is

also an O(n − 1) tensor equation, it is more convenient to give its solution in terms of

O(n−1) representatives, up to an additional simple reflection, so as to obtain this gauge

by a SO(n−1) rotation. Regardless of this subtlety our gauge choice proves useful in the

following analysis. One finds that the most general solution consists of simultaneously

block-diagonalG1 andG4 with blocks that square to a matrix proportional to the identity

of the block. The explicit form of G1 and G4 in our gauge is given as follows: First of

all, we have

G1 = (D ⊗ ε)⊕ 0 =

(
D ⊗ ε 0

0 0

)
, (3.57)

where D = diag(x1, . . . , x1, x2, . . . , x2, . . .) is a diagonal matrix with ordered positive

eigenvalues x1 > x2 > . . . > 0 and ε is the antisymmetric 2× 2 matrix with ε12 = 1; the
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zeros in (3.57) denote zero matrices of appropriate dimensions. Then, we have

G4 =

(
A 0

0 (D′ ⊗ ε)⊕ 0

)
, (3.58)

where A is an antisymmetric matrix (of the same matrix dimensions as D⊗ε) satisfying

[D ⊗ ε,A] = 0 , (3.59)

and D′ is another invertible diagonal matrix. Furthermore, we show in appendix D.2.2

that both D⊗ ε and A are block-diagonal. As a result, the four different types of blocks

that can appear are listed in table 3.1.

G1 block G4 block

xi 1⊗ ε 0 · 1⊗ 12

xi

(
1 0

0 1
′

)
⊗ ε |yij |

(
1 0

0 −1′

)
⊗ ε

xi 1⊗ (12 ⊗ ε) |yij | 1⊗
(
cosφijk

(
1 0

0 −1

)
⊗ ε+ sinφijk

(
0 1

−1 0

)
⊗ 12

)
xi 1⊗ (12 ⊗ ε) D(ij0) ⊗ (ε⊗ 12)

Table 3.1: The four different types of blocks appearing in the solution of [D⊗ε,A] = 0.

The label i refers to blocks in G1 with eigenvalues −x2i 6= 0 of (G1)
2. Similarly, the

label j is associated to subblocks in G4 with eigenvalues −y2ij 6= 0 of (G4)
2. Moreover,

D(ij0) is a diagonal matrix with eigenvalues ±yij and φijk ∈ (0, π/2). Finally, k labels

different possible angles φijk.

We will now solve the tensor equation given in (3.54b). For a given G1, these equa-

tions are linear in fãb̃c̃ and can easily be solved for the latter in the gauge (D.72). Before

we state the result, we introduce some index notation in that we distinguish SO(n− 1)

indices ã, b̃, . . . depending on whether or not they correspond to non-zero or zero blocks

in G1: Components of non-zero 2 × 2 blocks shall have subindices, e.g. ã1 = 1, 2, indi-

cating the block they belong to. On the other hand, components associated to the zero

block in G1 shall be denoted by ã0. Furthermore, we introduce matrices

G
(x1)
ã0

= (Gã0 b̃1c̃2
) = fã0b̃1c̃2 , (3.60)

where b̃1, c̃2 run over all indices associated to blocks with x1 in G1. The solution of

(3.54b) is given in terms of three classes of potentially non-trivial components fãb̃c̃.

First,

fã0b̃0c̃0 ∈ R , (3.61)

can be arbitrary; then one finds

G
(x1)
ã0

= S(x1) ⊗ ε+A(x1) ⊗ 12 , (3.62)
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for a symmetric matrix S(x1) and an antisymmetric A(x1); finally components fã1b̃2b̃3 are

given in terms of two real numbers,

f211223 = f111213 ,

f112223 = −f111213 ,
f212213 = f111213 ,

f211213 = −f212223 ,
f112213 = f212223 ,

f1112213 = f212223 (3.63)

for x1 = x2 + x3 (x1 ≥ x2 ≥ x3) while they vanish for x1 6= x2 + x3.

Similarly, for a given G4 the equations in (3.54c), being again linear in the fãb̃c̃,

can in principle be solved. On the other hand, owing to the aforementioned arbitrarily

complicated block structure of G4 it would be cumbersome to give the general solution.

In contrast, (3.54d) are quadratic equations that we cannot solve in full generality. We

will therefore proceed by discussing certain special solutions of them (still in the case

ga = 0).

3.2.1 Special solutions

We will discuss two special classes of solutions to the equations given in (3.54a) to

(3.54d). First we will give all solutions in the case of n ≤ 6, and secondly we construct

special but physically non-trivial solutions that work for any n ∈ N.

3.2.1.1 Solutions for n ≤ 6

In appendix D.1.2 we show that for n ≤ 6 consistency requires ga = 0. As a consequence,

the equations to be solved are precisely the ones in (3.54a) to (3.54d). As in (3.57), we

will bring G1 to the following gauge

G1 =

[(
m1 0

0 m2

)
⊗ ε

]
⊕ 0 ∈ Mat5,5 (3.64)

for n = 6 with m1,m2 ∈ R, or to obvious truncations of (3.64) to matrices in Matn−1,n−1

for n ≤ 5. As discussed in appendix D.2.2, we distinguish between the following two

cases: Given that matrices (G1)
2 and (G4)

2 have four nonzero degenerate eigenvalues

each (which can only happen for n ≥ 5), G4 can be written as

G4 = ±n1

[
cosφ

(
1 0

0 −1

)
⊗ ε+ sinφ

(
0 1

−1 0

)
⊗ 12

]
⊕ 0 (3.65)
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for n = 6 or its obvious truncation in the case of n = 5, while otherwise we can write

G4 =

[(
n1 0

0 n2

)
⊗ ε

]
⊕ 0 (3.66)

for n = 6 or truncations thereof for n ≤ 5. Here, we introduced n1, n2 ∈ R and φ ∈
[0, π/2]. Note that the dimension of the matrices G1 and G4 being smaller than 6 does

not allow for non-trivial deformation components of the kind given in (3.63). However,

in general we will find components as in (3.61) that, as we will see, correspond to the

structure constants of the unbroken gauge Lie algebra, as well as components as in (3.62)

that in some cases for n = 6 are required to be non-trivial.

We state the result for n ≤ 5 in terms of representatives of SO(n − 1) orbits in

table 3.2. In anticipation of phenomenological aspects to be discussed in section 4, we also

list some physical properties for the consistent solutions. Note that for n ≤ 4 consistency

is trivially given. Furthermore, in the case of n = 5 one cannot have m1,m2 6= 0 which

excludes solutions of the type (3.65).

n non-trivial components N = 2 multiplets unbroken gauge group

1 no G1, G4 2×M2,1,0 U(1)3

2 G1 = G4 = 0 3×M2,1,0, U(1)3+1

1×M2,1/2,BPS of mass |c|
3 G1 = G4 = 0 4×M2,1,0, U(1)3+2

2×M2,1/2,BPS of mass |c|
m1 6= 0 ∨ n1 6= 0 2×M2,1,0, U(1)3

2×M2,1,BPS of mass2 (m2
1 + n21),

1×M2,1/2,. of mass2 m2
1 + (|c| − n1)

2,

1×M2,1/2,BPS of mass2 m2
1 + (|c|+ n1)

2

4 G1 = G4 = 0, g1̃2̃3̃ 6= 0 . . . U(1)3 × SU(2)

G1 = G4 = 0, g1̃2̃3̃ = 0 . . . U(1)3+3

m1 ∈ R, n1 6= 0, g1̃2̃3̃ ∈ R . . . U(1)3+1

5 G1 = G4 = 0, g1̃2̃3̃ 6= 0 . . . U(1)3+1 × SU(2)

G1 = G4 = 0, g1̃2̃3̃ = 0 . . . U(1)3+4

G1 = 0, n1, n2 6= 0 . . . U(1)3

m1 6= 0 ∨ n1 6= 0,m2, n2 = 0 . . . U(1)3+2

and g1̃2̃3̃ ∈ R

m1 6= 0,m2 = 0, n2 6= 0 . . . U(1)3

Table 3.2: Consistent electric gaugings with N = 2 vacuum for n ≤ 5. Explanations

are given in section 3.2.1.1. We also always have the N = 2 gravity multiplet M2,2,0

and the N = 2 BPS gravitino multiplet M2,3/2,BPS of mass |c|. For brevity for n ≥ 4

we do not list the N = 2 spectrum (the . . .). Note that here for convenience we set

V− = 1.
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The result for n = 6 is given in terms of SO(5) gauge representatives in table 3.3.8

We observe that consistent solutions may still have non-trivial deformation spaces.

G1 G4 solutions: non-trivial fãb̃c̃ , etc. unbr. g. group

m1,m2 = 0 n1, n2 = 0 f1̃2̃3̃ = 0 U(1)3+5

f1̃2̃3̃ 6= 0 U(1)3+2 × SU(2)

m1,m2 = 0 n1 6= 0, n2 = 0 f1̃2̃3̃ ∈ R U(1)3+3

f3̃4̃5̃ 6= 0 U(1)3 × SU(2)

m1,m2 = 0 0 6= n21 6= n22 6= 0 f1̃2̃5̃ ∈ R U(1)3+1

m1,m2 = 0 0 6= n21 = n22 6= 0 G5̃ =

(
f2
2̃4̃5̃

f3̃4̃5̃
0

0 f3̃4̃5̃

)
⊗ ε+

(
0 f2̃4̃5̃

−f2̃4̃5̃ 0

)
⊗ 12 U(1)3+1

f1̃2̃5̃ ∈ R U(1)3+1

m1 6= 0,m2 = 0 n1 ∈ R, n2 = 0 f1̃2̃3̃ ∈ R U(1)3+3

f3̃4̃5̃ 6= 0 U(1)3 × SU(2)

m1 6= 0,m2 = 0 n1 ∈ R, n2 6= 0 f1̃2̃5̃ ∈ R U(1)3+1

0 6= m2
1 6= m2

2 6= 0 n1, n2 ∈ R G5̃ =

(
m1m2

f3̃4̃5̃
0

0 f3̃4̃5̃

)
⊗ ε U(1)3+1

m1 = m2 6= 0 n1, n2 = 0 G5̃ =

(
f1̃2̃5̃ 0

0 f3̃4̃5̃

)
⊗ ε+

(
0 f2̃4̃5̃

−f2̃4̃5̃ 0

)
⊗ 12 U(1)3+1

with m2
1 = f1̃2̃5̃ f3̃4̃5̃ − f2

2̃4̃5̃

m1 = m2 6= 0 n1 6= 0, n2 = 0 G5̃ =

(
f1̃2̃5̃ 0

0 f3̃4̃5̃

)
⊗ ε U(1)3+1

with m2
1 = f1̃2̃5̃ f3̃4̃5̃

m1 = m2 6= 0 0 6= n21 6= n22 6= 0 G5̃ =

(
f1̃2̃5̃ 0

0 f3̃4̃5̃

)
⊗ ε U(1)3+1

with m2
1 = f1̃2̃5̃ f3̃4̃5̃

m1 = m2 6= 0 0 6= n21 = n22 6= 0 G5̃ =

(
f1̃2̃5̃ 0

0 f3̃4̃5̃

)
⊗ ε U(1)3+1

with sinφ = 0 with m2
1 = f1̃2̃5̃ f3̃4̃5̃

m1 = m2 6= 0 0 6= n21 = n22 6= 0 G5̃ =

(
f3̃4̃5̃ 0

0 f3̃4̃5̃

)
⊗ ε+

(
0 f2̃4̃5̃

−f2̃4̃5̃ 0

)
⊗ 12 U(1)3+1

with cosφ = 0 with m2
1 = f2

3̃4̃5̃
− f2

2̃4̃5̃

m1 = m2 6= 0 0 6= n21 = n22 6= 0 G5̃ = U(1)3+1

sinφ, cosφ 6= 0

(
2 cotφf2̃4̃5̃ + f3̃4̃5̃ 0

0 f3̃4̃5̃

)
⊗ ε+

(
0 f2̃4̃5̃

−f2̃4̃5̃ 0

)
⊗ 12

with m2
1 = f2

3̃4̃5̃
− f2

2̃4̃5̃
+ 2 cotφf2̃4̃5̃ f3̃4̃5̃

Table 3.3: Consistent electric gaugings with N = 2 vacuum for n = 6. Explanations

are given in section 3.2.1.1.

8There exist also solutions that are obtained from the ones given in table 3.3 by a reflection

T =

(
0 1

1 0

)
⊕ 13 ∈ O(5).
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3.2.1.2 Special solutions with ga = 0 and G1 = 0 for arbitrary n ∈ N

A class of special solutions with ga = 0 for arbitrary n is obtained by setting G1 = 0

which drastically simplifies the equations (3.54a) to (3.54d). Similarly to the discussion

for general G1 in section 3.2, we can write G4 as

G4 = (D ⊗ ε)⊕ 0 =

(
D ⊗ ε 0

0 0

)
, (3.67)

where D = diag(y1, . . . , y1, y2, . . . , y2, . . .) is a diagonal matrix with ordered positive

eigenvalues y1 > y2 > . . . > 0. In doing so, the full solution to equation (3.54c) is

analogous to the one given in terms of the (a priori) non-trivial components in (3.61),

(3.62), and (3.63). For general such components, it is still hard to solve the last equations

(3.54d). However, an interesting class of solutions is obtained after setting all but fã0b̃0c̃0
to zero since then (3.54d) is just the Jacobi identity (3.55) for the gauge Lie algebra

with structure constants fã0b̃0c̃0 ∈ R. As stated above many non-trivial solutions to

these equations are known, each of which corresponds to a compact reductive group

Gvac. As we will see in section 4.2 in those cases the unbroken gauge group that leaves

the vacuum invariant is

U(1)3 ×Gvac . (3.68)

Finally, anticipating the discussion of mass terms, we list the N = 2 spectrum for such

solutions in table 3.4.

block in G4 mass N = 2 multiplets

0k 0 k ×M2,1,0

|c| k ×M2,1/2,BPS

yi ⊗ ε yi 2×M2,1,BPS∣∣|c| − yi
∣∣ 1×M2,1/2,.

|c|+ yi 1×M2,1/2,BPS

Table 3.4: N = 2 multiplets in the matter sector for the solutions in section 3.2.1.2. In

the gravity sector one has the N = 2 gravity multipletM2,2,0, the N = 2 BPS gravitino

multiplet M2,3/2,BPS of mass |c|, and two more N = 2 vector multiplets M2,1,0. The

consistency condition given in (3.41) is fulfilled with n′v = 0, i.e. no non-BPS massive

vector multiplets. Furthermore, note that for blocks with yi = |c| one obtains massless

hypermultiplets. This is of interest because together with massless vector multiplets

these give rise to a non-trivial geometry of the scalar manifold in the effective N = 2

theory.
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Chapter 4

Aspects of the N = 2 low-energy

effective theory

The low-energy effective theory of an N = 2 vacuum of N = 4 supergravity should be

consistent with N = 2 supersymmetry. In the case of the ga = 0 solutions in purely

electrically gauged supergravities we will therefore show that the various fields can be

consistently embedded into complete N = 2 multiplets that are either massless or BPS.

We will then discuss the unbroken gauge group that preserves the vacuum and, finally,

we will comment on the effective Lagrangian below the scale of partial supersymmetry

breaking. Bearing in mind that we have not yet fully solved the quadratic constraint

equations, we will start generally but then restrict ourselves to the solutions with ga = 0.

The following discussion has also been published in [76].

4.1 Mass terms in the gauged theory

The fermionic mass terms of the theory emerge from the fermion bilinears given in

equations (2.55) and (2.66) after evaluating the A-matrices at the critical point (3.28).

By construction, the gravitini mass matrix is diagonal and its two non-zero eigenvalues

are given by (3.47). Masses for vector bosons arise from the gauge-covariant derivative

acting on the scalar fields. At the same time, the mixed couplings of vector bosons

and scalar fields single out the pseudo-Goldstone fields that provide the longitudinal

polarization of massive vector bosons. In the case of electric gaugings the scalars in the

gravity multiplet are neutral (DµMαβ = ∂µMαβ) and thus the pseudo-Goldstone fields

can only arise from the scalars of the vector multiplets. Using (2.52) together with all

the information about the fMNP obtained in the previous section, the gauged kinetic
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term of those scalars yields

1

16
(DµMMN ) (DµMMN ) =

1

16
(∂µMMN ) (∂µMMN )

−g
2

2

n∑
a=1

(e2a + f2a + g2a)
∑

m∈{2,3,5,6}

Am
µ A

µm

−g
2

2

n∑
b,c=1

ObcA
b
µA

µc + . . . , (4.1)

where we introduced a symmetric and positive semi-definite matrix (Oab) ∈ Matn,n with

components

Obc ≡
n∑

a=1

6∑
m=1

fabm facm. (4.2)

The . . . in (4.1) denote couplings of vectors and Goldstone bosons. Note that in (4.1)

the terms mixing Aµm and Aµb are absent due to the quadratic constraints (b,m, n, p)

for m,n, p ∈ {2, 3, 5, 6}.

Before reading off the masses of the vector bosons one has to canonically normalize

their kinetic terms in (2.2). To this end, we redefine A′µM =
√
Im τAµM , for a given

background value τ , which amounts to scaling all mass terms in (4.1) by a factor of

1/ Im τ as required by supersymmetry, cf. section 3.1.3. It is then apparent that only

four gauge bosons (Aµ2, Aµ3, Aµ5, Aµ6) of the gravity multiplet become heavy and, due

to (3.48), (D.11), their masses are degenerate and equal to the gravitino mass (3.47):

m2
A2,A3,A5,A6 = V2

−

n∑
a=1

(e2a + f2a + g2a) = c2 V2
− = (m3/2)

2 . (4.3)

Thus, an N = 2 vacuum with two non-BPS gravitino multiplets would require at least

four vector multiplets (i.e. n ≥ 4), as in this case eight massive vector bosons are

contained in the two gravitino multiplets (3.36). Eventually, the symmetric mass matrix

(Oab) will be diagonalized by means of an SO(n) transformation and being positive semi-

definite it will give rise to well-defined mass terms. Note that for the solutions discussed

in section 3.2.1 we always have ga = ea = 0 and G2 = G3 = G5 = G6 = 0 and the above

expressions are much simpler.

In order to analyze the potential (2.62) in a neighborhood of the origin of the scalar

manifold, we employ the following chart

R
6n ⊃ U → W ⊂ SO(6,n)/SO(6)×SO(n),

φma 7→ exp

(∑
m,a

φma[tma]

)
≡ V(φma) ≡ V , (4.4)
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4.1. Mass terms in the gauged theory

where [tma]M
N = δ[m

Nηa]M are the non-compact generators of the coset space associated

to the vector multiplets. We can then express the scalar kinetic term as

1

16
(∂µMMN )

(
∂µMMN

)
= −1

2
(∂µφ

ma) (∂µφma) +O((∂φ)2φ2) . (4.5)

As this kinetic term is canonically normalized, we can identify the coordinates φma with

the scalar degrees of freedom. Geometrically, these can be interpreted as fluctuations

in SO(6, n)/[SO(6) × SO(n)] around the critical point (3.28). Computing the scalar

potential (2.62) it turns out that in the case of electric gaugings the two scalars of the

gravity multiplet remain massless. Therefore, in an infinitesimal neighborhood of the

origin where higher-order interactions are negligible, the scalar manifold of the gravity

multiplet remains unaffected and thus can be ignored in what follows. Up to cubic terms,

one finds:

Lpot = −V2
−
2

[∑
c

(e2c + f2c + g2c )
∑
a

∑
m∈{2,3,5,6}

(φma)2 +
∑
b,c

Obc

6∑
m=1

φmbφmc

+
∑
a,b

6∑
l,k=1

(∑
c

fabcflkc +
6∑

m=1

fabmflkm

+
∑
c

fakcflbc +

6∑
m=1

fakmflbm

)
φlaφkb

]
+O(φ3) . (4.6)

Note that the absence of linear terms in (4.6) is a necessary condition for metastability.

Furthermore, the fact that the cosmological constant vanishes is due to the quadratic

constraint (D.11), as we have seen earlier. Recall that V− = 1/
√
Im τ where τ is a

coordinate on SL(2)/SO(2) and, in fact, a modulus field.

Now that we know all mass terms we can check the super-Higgs mechanism that is re-

quired by partial supersymmetry breaking. First, we will consider the gravity/Goldstini

sector, and secondly, we will discuss the matter sector. As a result, we will also show

that the vacuum solutions are metastable, as required by the preserved N = 2 supersym-

metry. We will restrict ourselves to the case ga = 0, which as we have seen in section 3.2

implies ea = 0 and G2 = G3 = G5 = G6 = 0. For such solutions the potential simplifies

to

Lpot = −V2
−
2

[
c2

∑
m∈{2,3,5,6}

φmãφmã +
∑

m∈{2,3,5,6}

Oãb̃φ
mãφmb̃ + 4c fãb̃4 (φ

2ãφ3b̃ + φ5ãφ6b̃)

+ fc̃ã4 fc̃b̃4 φ
1ãφ1b̃ + fc̃ã1 fc̃b̃1 φ

4ãφ4b̃ − 2f1ãc̃ f4b̃c̃ φ
4ãφ1b̃

]
+O(φ3), (4.7)
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Chapter 4. Aspects of the N = 2 low-energy effective theory

where as before we denote the potentially non-trivial embedding tensor components by

fãb̃m for SO(n− 1) indices ã, b̃, etc.

4.1.1 Gravity/Goldstini sector

In the gauge where fa = c δa7 it is only the “first”N = 4 vector multiplet that contributes

to the gravity/Goldstini sector. After canonically normalizing the kinetic terms of the

fermions by means of the field redefinition χ′i = 1√
2
χi we find that the fermionic mass

terms in this sector read1

c
[
ψ3
µ ε σ

µνψ3
ν +

1
2

√
2 η̄(3) σµ ψ3

µ

+ ψ4
µ ε σ

µνψ4
ν +

1
2

√
2 η̄(4) σµ ψ4

µ

−
√
2χ′3(λ74)∗ − 1

2(λ
74)∗ε (λ74)∗

+
√
2χ′4(λ73)∗ − 1

2(λ
74)∗ε (λ74)∗

]
+ h.c. , (4.8)

where the would-be Goldstino combinations eaten by the massive gravitini are

η̄(3) = η̄(3)Ȧ = εȦḂχ′3
Ḃ
+

√
2(λ74A)∗, Ȧ, Ḃ = 1, 2

η̄(4) = η̄(4)Ȧ = εȦḂχ′4
Ḃ
−

√
2(λ73A)∗ . (4.9)

The mass terms for the spin-1/2 fermions χ′
1, χ

′
2, λ

7
1, λ

7
2 are absent in (4.8) and thus these

fermions are massless. As in [9], mixed terms involving both a gravitino and a spin-1/2

fermion can be removed by means of the following gravitino shifts

ψ̃3
µ = ψ̃3A

µ = ψ3A
µ +

√
2
6 σ̄

AḂ
µ η̄

(3)

Ḃ
+O(∂η(3)),

ψ̃4
µ = ψ̃4A

µ = ψ4A
µ +

√
2
6 σ̄

AḂ
µ η̄

(4)

Ḃ
+O(∂η(4)) , (4.10)

yielding additional contributions to the mass matrix of the spin-1/2 fermions. As a

result, their mass terms read

c
2

[(
(λ74A)∗, εȦḂχ′3

Ḃ

)
εȦĊ M

(−)

(
(λ74C)∗

εĊḊχ′3
Ḋ

)

+
(
(λ73A)∗, εȦḂχ′4

Ḃ

)
εȦĊ M

(+)

(
(λ73C)∗

εĊḊχ′4
Ḋ

)]
+ h.c. , (4.11)

where the mass matrices M (±) are given by

M (±) = 1
3

(
1 ±

√
2

±
√
2 2

)
, (4.12)

1From now on we will drop the overall scaling factor of V2
−.
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4.1. Mass terms in the gauged theory

and both have eigenvalues 0 and 1. In fact, the two zero eigenvalues give rise to two

massless helicity-1/2 fermions to be identified as the would-be Goldstini associated to the

broken supersymmetry. On the other hand, one finds two spin-1/2 fermions of mass |c|
that together with the two massive gravitini fit into the N = 2 BPS gravitino multiplet.

As to the bosons in this sector, (4.1) shows that the only massive vectors are A2
µ,

A3
µ, A

5
µ,A

6
µ while the massless ones are A1

µ, A
4
µ, A

7
µ. The four massive vectors belong to

the N = 2 BPS gravitino multiplet as we shall show in 4.1.3. Finally, all eight scalars of

this sector are massless, as can be seen from (4.7), four of which are to be interpreted

as the would-be Goldstone bosons. In an infinitesimal neighborhood around the critical

point these fluctuations are described by φ27, φ37, φ57, φ67.

To conclude, we have shown that the fields in the massive BPS gravitino multiplet

all have the same mass, consistent with N = 2 supersymmetry. Furthermore, in the

gravity/Goldstini sector the N = 2 gravity multiplet and the massive N = 2 BPS

gravitino multiplet are accompanied by two massless N = 2 vector multiplets, which

are the remnants of the minimal N = 4 multiplets required for spontaneous partial

supersymmetry breaking to N = 2.

N = 2 multiplets mass squared

M2,2,0 gravity 0

M2,3/2,BPS BPS gravitino c2

2×M2,1,0 vector 0

Table 4.1: Gravity/Goldstini sector of the N = 2 spectrum.

4.1.2 Matter sector

The mass squared matrix for vector bosons Aµã defined in (4.2) now reads

O = −G2
1 −G2

4 , (4.13)

which according to the discussion in section 3.2 is already diagonal. For each block in

G1 and G4 with degenerate eigenvalues

(G
(ij)
1 )2 = −x2 1l, (G

(ij)
4 )2 = −y2 1l , (4.14)

where x, y ∈ R, one finds l vectors of mass squared x2 + y2.

Using the explicit expression given for the A-matrices in (3.24) the mass terms (2.66)

for the fermions λ1ã, λ2ã are given by

1
2

(
(λã1)∗, (λã2)∗

)
ε U

(
(λb̃1)∗

λb̃2)∗

)
+ h.c. , (4.15)
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with

U =

(
0 iG1 +G4

−iG1 −G4 0

)
. (4.16)

Thus, their mass squared matrix

UU † =

(
O 0

0 O

)
=

(
−G2

1 −G2
4 0

0 −G2
1 −G2

4

)
, (4.17)

is also diagonal by virtue of the quadratic constraints (D.71). Similarly, the mass terms

for λ3ã, λ4ã in (2.66) are given by

1
2

(
(λã3)∗, (λã4)∗

)
ε V

(
(λb̃3)∗

λb̃4)∗

)
+ h.c. , (4.18)

where

V =

(
−c −iG1 +G4

iG1 −G4 −c

)
. (4.19)

The corresponding mass squared matrix reads

V V † =

(
c2 −G2

1 −G2
4 −2cG4

2cG4 c2 −G2
1 −G2

4

)
. (4.20)

As in (4.14), it can be shown that for each block in G1 and G4 the eigenvalues are

x2 + (|c| ± |y|)2 , (4.21)

with degeneracy l each.

We can read off the mass terms for the scalar fields φ1ã, φ4ã directly from (4.7),

− 1
2

(
φ1ã, φ4ã

)
Z

(
φ1b̃

φ4b̃

)
, (4.22)

where

Z =

(
−G2

4 G4G1

G1G4 −G2
1

)
. (4.23)

Obviously, for the trivial block in G1 and G4 with x, y = 0 one obtains (2l) massless

scalars. On the other hand, for each block with x 6= 0 or y 6= 0, l = 2l′ has to be even

and the eigenvalues of Z turn out to have (2l′)-fold degenerate eigenvalues

0 , (x2 + y2). (4.24)

The zero eigenvalue set precisely corresponds to the would-be Goldstone modes eaten by

the (2l′) vector bosons that become massive. Finally, the mass terms for the remaining

54



4.1. Mass terms in the gauged theory

scalars φ2ã, φ3ã, φ5ã, φ6ã turn out to be

− 1
2

(
φ3ã, φ2ã

)(c2 −G2
1 −G2

4 −2cG4

2cG4 c2 −G2
1 −G2

4

)(
φ3b̃

φ2b̃

)
,

− 1
2

(
φ6ã, φ5ã

)(c2 −G2
1 −G2

4 −2cG4

2cG4 c2 −G2
1 −G2

4

)(
φ6b̃

φ5b̃

)
, (4.25)

where the mass squared matrices are precisely V V †. As a result, one has (2l) scalars for

each mass in (4.21). It is then clear that all masses-squared are positive and therefore

metastability is guaranteed, as required for a supersymmetric theory with Minkowski

background. Furthermore, one finds that all degrees of freedom in the matter sector fit

into complete N = 2 supermultiplets. The resulting N = 2 spectrum is summarized in

table 4.2. Note that blocks in G1 and G4 with x = 0 and |y| = |c| give rise to massless

N = 2 hypermultiplets.

block N = 2 multiplets mass squared

G
(ij)
1 = G

(ij)
4 = 0 · 1l (l)×M2,1,0 massless vector 0

(l)×M2,1/2,BPS BPS hyper c2

(G
(ij)
1 )2 = −x2 12l′ , (2l′)×M2,1,BPS BPS vector (x2 + y2)

(G
(ij)
4 )2 = −y2 12l′ (l′)×M2,1/2,BPS BPS hyper x2 + (|c|+ |y|)2

with x 6= 0 or y 6= 0 (l′)×M2,1/2,. (BPS) hyper x2 + (|c| − |y|)2

Table 4.2: Matter sector of the N = 2 spectrum. The matrices G1, G4 ∈ Matn−1,n−1

are simultaneously block-diagonal with non-trivial blocks of the type given in table 3.1

or zero blocks.

4.1.3 BPS multiplets

So far in the discussion of mass terms we have only shown that all fields fit into complete

N = 2 multiplets. In particular, according to our assignments in tables 4.1 and 4.2 all

massive fields lie in BPS representations. In the generic case where the masses of the

various N = 2 superfields are all different, the above assignments are obviously correct.

However, in the case of mass degeneracies between various short N = 2 superfields one

should exclude the case where short multiplets combine in order to form long multiplets.

In fact, in what follows we will show that in the case of ga = 0 all massive fields have

to be in BPS representations and that no long N = 2 multiplet can occur in this super-

Higgs mechanism. To this end we will study the crucial parts of the supersymmetry

transformations of the bosonic fields that we take from [43].2 It suffices to analyze the

supersymmetry transformations of the massive bosons.

2While our proof is somewhat indirect, it does not require the supersymmetry transformations of the

fermions which are not fully given in [43].
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Chapter 4. Aspects of the N = 2 low-energy effective theory

We first consider the massive vectors A2
µ, A

3
µ, A

5
µ, A

6
µ in the gravity/Goldstini sector.

Evaluating their supersymmetry transformations at the origin (3.28) of SO(6, n) one

finds

δεA
m
µ ∼ [Gm]ij(ε

iε ψj
µ + εiεσ̄µχ

j) + h.c. (4.26)

form = 2, 3, 5, 6. Moreover, as in (2.58), εi = qiη contains the SU(4) vector qi and [Gm]ij
denote the ’t Hooft matrices given in (B.37). In our gauge, cf. (3.33), the unbroken

supersymmetry directions are given by linear combinations of q1 and q2 (or ε1 and

ε2). As a result, for m = 2, 3, 5, 6 the massive vectors Am
µ transform into the fermions

ψ3
µ, ψ

4
µ, χ

3, χ4. While massive scalars are not present in the gravity/Goldstini sector,

we will now inspect the transformations of the four Goldstone bosons that provide the

longitudinal polarization of the massive vector bosons. In an infinitesimal neighborhood

of the origin these fluctuations are described by the scalars φ27, φ37, φ57, φ67. Using the

explicit chart (4.4) of SO(6, n) one finds

δεVm
a = δεφ

ma +O(φ δφ) , (4.27)

which when evaluated at the origin can again be expressed in terms of the ’t Hooft

matrices as

δεφ
ma ∼ [Gm]ij ε

iε λaj + h.c. . (4.28)

In particular, we find that the Goldstone bosons φ27, φ37, φ57, φ67 transform under N = 2

into fermions λ73, λ74. As a result, the massive bosons of the gravity/Goldstini sector

transform into the massive fermions of the same sector. Note that the gravitino shifts

in (4.10) also only involves the aforementioned fermions.

Next, we will analyze the supersymmetry transformations of the bosonic fields in the

matter sector. The supersymmetry transformations of the massive vectors Aâ
µ evaluated

at the origin are given by3

δεA
â
µ ∼ εiεσ̄µε (λ

âi)∗ + h.c. . (4.29)

As a consequence, restricting the transformations to N = 2 one finds that each massive

vector boson Aâ
µ rotates into the gaugini λâ1 and λâ2 but not into λâ3 and λâ4. Further-

more, as we discussed below (4.22), the associated Goldstone bosons are accompanied

by massive scalars. Infinitesimally, all of them are described by linear combinations of

the scalar fields φ1â and φ4â. Their transformations can be read off from (4.28). Owing

to the fact that [Gm]ij for m = 1 or m = 4 is block-diagonal, one finds that under

N = 2 supersymmetry transformations the scalars φ1â and φ4â only rotate into fermions

λâ1 and λâ2. In particular, this also shows that neither the would-be Goldstone com-

binations nor the massive scalars in (4.22) transform into λâ3 and λâ4. Furthermore,

it is worth mentioning that neither Aâ
µ nor the massive scalars in (4.22) transform into

3As in section 4.2 indices â, b̂, . . . denote SO(n−1) indices ã, b̃, . . . associated to massive vector bosons,

i.e. to non-trivial blocks in either G1 or G4.
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the spin-1/2 fermions in the gravity/Goldstini sector given in (4.11), let alone into the

massive gravitini. Finally, the only remaining potentially massive bosons are the scalars

φ2â, φ3â, φ5â, φ6â in (4.25). As can again be seen from (4.28), they only transform into

fermions λâ3, λâ4 and never into λâ1, λâ2, let alone into fermions of the gravity/Goldstini

sector.

We can now conclude that all massive N = 2 supermultiplets have to be BPS mul-

tiplets. The argument goes as follows: We found that the massive fields in the grav-

ity/Goldstini sector and the massive fields in the matter sector are not related by super-

symmetry transformations acting on the bosonic fields. This implies that the massive

fields in the gravity/Goldstini sector have to lie in a BPS gravitino multiplet as massive

long gravitino multiplets can never be decomposed into two non-trivial sets of bosons

and fermions such that within each set the bosons only mix into the fermions, respec-

tively. This follows from the construction of supermultiplets as representations of the

Clifford algebra. Furthermore, by the same token, the remaining massive vector bosons

have to be in N = 2 BPS vector multiplets.

4.2 Unbroken gauge group

We shall now investigate the unbroken gauge group at the N = 2 critical point, i.e.

the group (or rather its Lie algebra) that leaves the scalar vacuum configuration for

consistent electric gaugings with ga = 0 invariant. First, we note that the critical point

in SL(2)/SO(2) is not affected by gauge transformations. However, on the scalar matter

fields a generic gauge transformations parametrized by a local gauge parameter ΛP (x)

acts as

MMN →MMN + 2ΛP fP (M
QMN)Q , (4.30)

and, in particular, the coset representative of the origin of SO(6, n)/[SO(6) × SO(n)]

transforms as

1MN → 1MN + 2ΛP (fPM
N + fPN

M ) . (4.31)

In demanding invariance of the origin under (4.31), the gauge parameters are restricted

to the ones with Λm = 0 for m = 2, 3, 5, 6, and Λã = 0 for each massive vector boson Aã
µ,

the latter of which requires a non-zero block in G1 or G4. The gauge transformations

of vector fields are given in (2.65) Using our knowledge of certain embedding tensor

components in the case of ga = 0 one can compute the gauge transformation for the

massless vector bosons, which in this section we will denote as Aµā so as to distinguish

them from massive vectors Aµâ. While we dropped the ˜ above indices, ā and â are still
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understood as SO(n− 1) indices. One finds

δA1
µ = ∂µΛ

1 ,

δA4
µ = ∂µΛ

4 ,

δA7
µ = ∂µΛ

7 ,

δAā
µ = ∂µΛ

ā − fāb̄c̄A
b̄
µ Λ

c̄ . (4.32)

Note that in the last line of (4.32) we made use of fāb̄ĉ = 0, which we learned from the

quadratic constraints (b̃, c̄, d̄, 1) and (b̃, c̄, d̄, 4). The transformations (4.32) imply that

we can interpret the three fields A1
µ, A

4
µ, A

7
µ as the vector bosons of a gauge group U(1)3.

On the other hand, the embedding tensor components fāb̄c̄ amount to the structure

constants of the gauge Lie algebra associated to the massless vector bosons Aµā. In

fact, as already pointed out in the simple case of (3.55), the quadratic constraints for

(b̄, c̄, d̄, ē) are simply the Jacobi identity

fāb̄c̄ fd̄ēā + fāb̄ē fc̄d̄ā − fāb̄d̄ fāc̄ē = 0 , (4.33)

that gives rise to a gauge Lie group Gvac. Its dimension equals the number of massless

vector bosons (≤ n− 1). If n is sufficiently large, any compact reductive Lie group can

be chosen in order to satisfy (4.33). As a result, the full unbroken gauge symmetry is

U(1)3 ×Gvac. (4.34)

On the other hand, it is important to note that there is an additional set of constraints

on the components fāb̄c̄ coming from the quadratic equations for (b̄, c̄, d̂, ê):

fāb̄c̄fād̂ê + fâb̄êfc̄d̂â − fâb̄d̂fâc̄ê = 0 . (4.35)

As we have seen in section 3.2.1, it is not always possible to set all fāb̂ĉ (i.e. the com-

ponents given in (3.62)) to zero such that (4.35) is trivially satisfied. However, we have

already shown in section 3.2.1.2 that consistent examples exist for any given compact

reductive Lie group Gvac.

4.3 Scalar manifold in the effective theory

Below the scale of supersymmetry breaking m3/2 we may integrate out heavy particles

and, in doing so, arrive at an N = 2 supersymmetric effective action. We are particularly

interested in the geometry of the scalar manifold of this effective action. As before, we

will consider the case of electric gaugings with ga = 0. In the limit where momenta

p � m3/2 can be neglected, the equations of motion for the massive vectors are purely

algebraic and can be solved for the massive vector bosons since their mass terms are
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automatically diagonal, as we discussed in section 4.1.2. One finds

An
µ = − 1

2c2

∑
m∈{2,3,5,6}

(∂µMm7) f7nm ,

Ab̂
µ = − 1

2m2

(b̂)

∑
m∈{1,4}

(∂µMmã) fãb̂m (4.36)

for each n ∈ {2, 3, 5, 6} and massive vectors with index b̂. When inserted back into the

Lagrangian and using our knowledge about certain embedding tensor components, the

scalar kinetic term yields4

Leff = 1
16

[
2

∑
m∈{2,3,5,6}

(∂µMmã)
(
∂µMmã

)
+ 2

∑
m∈{1,4}

(∂µMm7)
(
∂µMm7

)
+ 2

∑
m∈{1,4}

(∂µMmã)
(
∂µMmã

)
+
∑
b̂

(m(b̂))
−2

∑
m,n∈{1,4}

(∂µMmâ)(∂
µMnĉ) fâb̂mfĉb̂n

+ (∂µMmn) (∂
µMmn) + (∂µMab)

(
∂µMab

)]
. (4.37)

Using the chart (4.4) one finds

− 1
2

∑
m∈{2,3,5,6}

(
∂µφ

mã
) (
∂µφmã

)
− 1

2

∑
m∈{1,4}

(
∂µφ

m7
) (
∂µφm7

)
− 1

2

∑
m∈{1,4}

(
∂µφ

mā
) (
∂µφmā

)
− 1

2

(
∂µφ

1â, ∂µφ
4â
)(

(O(massive))−2Z(massive)
)
âb̂

(
∂µφ1b̂

∂µφ4b̂

)
+O

(
(∂φ)2φ2

)
, (4.38)

where O(massive) is the truncation of (4.13) to an invertible matrix obtained after deleting

all its zero rows and columns, and similarly, Z(massive) is the analogous truncation of the

mass matrix Z defined in (4.23). Note that kinetic terms for the Goldstone modes φm7

for m = 2, 3, 5, 6 are absent in (4.38) as these scalars have been eaten by the massive

vector bosons Aµm for m = 2, 3, 5, 6. Moreover, the same diagonalization scheme of

section 4.1.2 also diagonalizes the kinetic terms of the scalars φ1â and φ4â associated

to massive vectors with indices â. As before, the zero eigenvalues of Z(massive) ensure

that the kinetic terms of the Goldstone modes in the matter sector vanish (again the

Goldstone modes are eaten by the vector bosons Aµâ that acquire mass). On the other

hand, its nonzero eigenvalues are such that the remaining kinetic terms are canonically

normalized, which justifies the mass assignment in section 4.1.2.

Let us now summarize the dynamical degrees of freedom in an infinitesimal neigh-

borhood of the origin. The scalars φmã for m = 2, 3, 5, 6 are part of N = 2 (BPS)

4Repeated indices are summed over their full index range unless otherwise specified by explicit sum-

mation symbols.
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hypermultiplets, while φ17 and φ47 and the two scalars of SL(2)/SO(2) lie in the two

massless N = 2 multiplets that descend from the gravity/Goldstini sector. The scalars

φ1ā, φ4ā form N = 2 massless vector multiplets, while the non-Goldstone modes of the

φ1â, φ4â belong to N = 2 BPS vector multiplets. Note, however, that in the effective

theory below the scale of partial supersymmetry breaking m3/2, all scalars (and their

supersymmetry partners) with masses larger than m3/2 should also be integrated out.

As the scalars of SL(2)/SO(2), described by τ , are moduli that lie in a massless

N = 2 vector multiplet, the SL(2)/SO(2) factor of the N = 4 scalar manifold descends

without change to the scalar field space of the massless N = 2 vector multiplets in the

low-energy theory. If the number of these vector multiplets is (k+1), we conjecture that

the vector multiplet field space of the N = 2 low-energy theory is the following product

of coset spaces,
SL(2)/SO(2) × SO(2,k)/SO(2)×SO(k) , (4.39)

which is known to be the only series of special Kähler product manifolds including a

factor of SL(2)/SO(2) [87]. Moreover, since we only analyze the potential to quadratic

order, we can only infer that the moduli space is a submanifold of (4.39). To see this

explicitly, one should reconstruct the metric of the scalar manifold order by order (due

to the power expansion of the exponential map in (4.4)). As we saw in section 3.2.1.2, it

is also possible to have light or massless hypermultiplets, in which case N = 2 supersym-

metry requires the field space to be quaternionic Kähler. It may be that the coordinates

(4.4) on SO(6, n)/[SO(6)×SO(n)] that we are using here are not well suited to checking

the expected geometry explicitly.
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Chapter 5

Conclusions and Outlook

In this thesis we studied N = 2 vacua in gauged N = 4 supergravity theories in four-

dimensional spacetime. Having reviewed ungauged, matter-coupled N = 4 supergravity

in a symplectic frame with SO(1, 1) × SO(6, n) symmetry, we considered general mag-

netic gaugings to be described by the embedding tensor formalism. In such theories we

first specified a class of maximally-symmetric backgrounds where the only non-vanishing

fields are the metric and a spacetime-independent point configuration in the scalar man-

ifold. In view of spontaneous partial supersymmetry breaking we studied the supersym-

metry transformations of such a background and analyzed the resulting Killing spinor

equations. In doing so, we first discussed the integrability conditions for Killing spinors

and rederived the well-known result that supersymmetric vacua of the aforementioned

kind are either Minkowski or anti-de Sitter vacua (as opposed to being de Sitter). Then

we formulated necessary conditions for partial supersymmetry breaking that — being

essentially a system of linear equations — could be solved for the embedding tensor com-

ponents. On the other hand, the sufficient conditions on the deformation parameters

are the quadratic constraints that ensure the consistency of the gauging. These equa-

tions are algebraic, quadratic tensor equations with respect to the isometry Lie group

SL(2)×SO(6, n) of the scalar manifold and therefore scale badly with the free parameter

n that counts the number of N = 4 vector multiplets in the spectrum of the ungauged

N = 4 supergravity theory. For simplicity, we therefore restricted ourselves to the case of

purely electric gaugings and solved the quadratic constraints as much as possible. While

it was not difficult to solve all the constraints for n ≤ 6, it was only after setting certain

embedding tensor components to zero (ga ≡ fa26 = 0) that a large set of physically

interesting solutions with arbitrary n ∈ N could be constructed. Intuitively, setting the

aformentioned components to zero amounts to a simplification of the gravity/Goldstini

sector in that only one N = 4 vector multiplet suffices to provide the degrees of freedom

in order for the two massive gravitini and their superpartners to become massive as is

required by an N = 2 vacuum. It is noteworthy that in an intermediate step of the
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construction of such consistent solutions a subsystem of the quadratic equations, which

probably cannot be solved by elementary means, could completely be solved using a

corollary of Lie’s theorem after recognizing it as a representation theoretical problem of

a solvable Lie algebra. On the other hand, even in the case of purely electric gaugings it

has not been possible to fully classify all deformations that allow for an N = 2 vacuum.

While obviously this is due to the lack of a universal algorithm to solve a system of

algebraic equations, it can already be seen from the special solutions we found that solu-

tions may potentially be increasingly sophisticated. In accordance with the literature we

found that electric gaugings in the specified symplectic frame only allow for Minkowski

vacua and can never spontaneously break N = 4 to N = 3. Furthermore note that

N = 4 supergravity is broken to global N = 2 supersymmetry.

For the explicit consistent solutions with ga = 0 we studied the super-Higgs mecha-

nisms and found that its consistency heavily relies on the consistency of the gauging. To

this end, we computed the mass terms of all the fields and checked that the latter can be

embedded into complete N = 2 supermultiplets as required by N = 2 supersymmetry.

We found that massive supermultiplets necessarily have to be BPS, i.e. such fields are

charged with respect to a central charge of the supersymmetry algebra in precisely the

way that gives rise to multiplet shortening. Here one may wonder whether this is yet

another consequence of setting ga = 0. In particular, we found that stability is guaran-

teed. Next, we defined the notion of the unbroken gauge Lie algebra and demonstrated

that up to an abelian Lie algebra many different sensible gauge Lie algebras that pre-

serve the vacuum can be realized as long as the number n of N = 4 vector multiplets is

sufficiently large. Finally, we computed the relevant terms of the effective N = 2 super-

symmetric action below the scale of partial supersymmetry breaking. Using a theorem

of special-Kählerity we inferred that the target manifold of the scalars of the N = 2

vector multiplets lies in the unique series of special-Kähler product manifolds. On the

other hand, in the coordinates we were using to describe an open neighborhood of the

origin this claim could not explicitly be verified.

As stressed at the end of section 2 in principle it would be important to also consider

magnetic gaugings as these equivalently describe electric gaugings of many different a pri-

ori ungauged N = 4 supergravity theories. Unfortunately, then the system of quadratic

constraints becomes even more complicated. Furthermore, it could also be interesting

to study N = 1 vacua (or N = 3 vacua using magnetic gaugings). Finally, we would like

to mention that the procedure that led to the construction of vacua with partial super-

symmetry breaking may in principle be transferred to an analogous analysis in maximal

N = 8 supergravity. There the scalar field space is fixed to be 70-dimensional homo-

geneous space E7,7/(SU(8)/Z2) and, hence, in the absence of an arbitrary parameter

n ∈ N, the quadratic constraints cannot become arbitarily complicated. On the other

hand, the very nature of exceptional simple Lie algebras will still sufficiently complicate

the search for consistent gaugings.
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Appendix A

Conventions

The spacetime metric gµν used in this paper has signature (−,+,+,+) and the totally

antisymmetric tensor εµνρλ is defined with ε0123 = e−1, ε0123 = −e = −
√

|det g|.

We use the following indices:

indices group

α, β, γ, . . . ∈ {−,+} SL(2)

M,N,P, . . . ∈ {1, . . . , 6 + n} SO(6, n)

m,n, p, . . . ∈ {1, . . . , 6} SO(6)

i, j, k, . . . ∈ {1, . . . , 4} SU(4)

a, b, c, . . . ∈ {1, . . . , n} SO(n)

ã, b̃, c̃, . . . ∈ {1, . . . , n− 1} SO(n− 1) ⊂ SO(n)

All indices other than the ones of SU(4) transform under the fundamental representation

of the given groups. In the case of SU(4) upper/lower indices transform under the 4 (4̄),

respectively. Upon complex conjugation such upper and lower indices are interchanged,

e.g. (Xi
j)∗ = Xi

j .

In addition, for the ga = 0 solutions discussed in sections 4.2 and 4.3 it is sometimes

convenient to use SO(n − 1) ⊂ SO(n) indices, ā . . . and â . . . which are associated to

massless vectors Aµā and massive vectors Aµâ, respectively.
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Appendix B

Non-linear sigma model

B.1 SU(1, 1)/U(1) ∼= SL(2)/SO(2)

Here we review different formulations of the non-linear sigma model on

SU(1, 1)/U(1) ∼= SL(2)/SO(2) . (B.1)

In doing so, it will also become apparent that the manifold (B.1) is diffeomorphic to the

upper half of the complex plane. It is sometimes called the Poincaré plane [47]. The

following discussion is close to the one in [78].

In the lifted formulation of non-linear sigma models on homogeneous spaces G/H

[88] (which is used in order to couple scalars to fermions as required by supersymmetry)

a coset field V ′ on four-dimensional Minkowski space M1,3 that encodes the scalar fields,

V ′ : M1,3 → G/H , (B.2)

is lifted by a section in the H-principal bundle G→ G/H to a function

V : M1,3 → G . (B.3)

This amounts to choosing coset representatives for each spacetime point x. For matrix

representations of the group G the pull-back of the Maurer-Cartan form with respect to

V is

V−1(x) ∂µV(x) ∈ g = h⊕ h⊥ (B.4)

for all x ∈ M1,3. Here, g and h are the Lie algebras of the Lie groups G and H,

respectively. Moreover, h⊥ h⊥ with respect to a given inner product κ on g. Let P

denote the projection

P : g → h⊥ (B.5)

with P2 = P. The scalar kinetic term can then be written as

e−1Lscalar kinetic ∝ κ(PV−1∂µV, PV−1∂µV) . (B.6)
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An arbitrary matrix V ∈ SU(1, 1) can be written as

V =

(
φ ψ∗

ψ φ∗

)
, (B.7)

with complex number φ, ψ ∈ C satisfying

|φ|2 − |ψ|2 = 1 . (B.8)

Its real Lie algebra su(1, 1) can be decomposed as

su(1, 1) = u(1)⊕ u(1)⊥ , (B.9)

where in the fundamental representation1

u(1) = Riσ3 ,

u(1)⊥ = Rσ1 + Rσ2 (B.10)

are given in terms of the ordinary Pauli matrices σ1, σ2, σ3. Let P be the projection

P : su(1, 1) → u(1)⊥ (B.11)

with P
2 = P. The basis vectors σ1, σ2, iσ3 are orthogonal with respect to the inner

product

su(1, 1)× su(1, 1) → R

(X,Y ) 7→ Tr(XY ) (B.12)

on su(1, 1). Then the scalar kinetic term of the non-linear sigma model on SU(1, 1)/U(1)

is given by

−1
2Tr

(
PV−1(∂µV)V−1(∂µV)

)
=φ∗ψ ∂µψ

∗∂µφ+ ψ∗φ∂µφ
∗∂µψ

− |φ|2∂µψ∗∂µψ − |ψ|2∂µφ∗∂µφ . (B.13)

Without loss of generality (by means of a U(1) transformation) we can choose coordinates

for representatives of SU(1, 1)/U(1),

φ =
1√

1− r2
, ψ =

reiχ√
1− r2

, (B.14)

with r ∈ [0, 1), χ ∈ [0, 2π) and thus (B.13) can be written as

− 1

(1− r2)2
(
∂µr∂

µr + r2∂µχ∂
µχ
)
. (B.15)

1Here Rv denotes the R-vector space generated by a vector v, i.e. the R-span of v.
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Furthermore, writing

z = re−iχ, τ = i
1− z

1 + z
(B.16)

one can express (B.15) in terms of a complex variable τ ∈ C with Im τ > 0 as

− 1
4

∂µτ∂
µτ∗

(Im τ)2
. (B.17)

This shows that SU(1, 1)/U(1) is diffeomorphic to the upper half plane and furthermore

is a complex manifold. Moreover, the metric is hermitian and its associated Kähler

form is closed. As a matter of fact, SU(1, 1)/U(1) is a Kähler manifold and the Kähler

potential can be chosen to be

K = 1
2 log Im τ . (B.18)

After yet another change of coordinates,

τ = σ + ie−φ , (B.19)

the scalar kinetic term (B.17) reads

− 1
4

(
∂µφ∂

µφ+ e2φ∂µσ ∂
µσ
)
, (B.20)

for σ, φ ∈ R. This is precisely the SL(2)/SO(2) description given as follows: The Lie

algebra of SL(2,R) = SL(2) decomposes as

sl(2,R) = so(2,R)⊕ so(2,R)⊥ (B.21)

where in the fundamental representation

so(2,R) = −Riσ2 ,
so(2,R)⊥ = Rσ3 + Rσ1 . (B.22)

Again, let P denote the projection

P : sl(2,R) → so(2,R)⊥ (B.23)

with P2 = P and the inner product on sl(2,R) is

sl(2,R)× sl(2,R) → R

(X,Y ) 7→ Tr(XY ) . (B.24)

Then, for spacetime-dependent SL(2)/SO(2) representatives (in the triangular gauge)

V = exp

(
σ

(
0 1

0 0

))
exp

(
φ

(
−1/2 0

0 1/2

))
=

(
e−φ/2 σeφ/2

0 eφ/2

)
∈ SL(2) (B.25)
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the scalar kinetic term is given by

− 1
2Tr

(
PV−1(∂µV)V−1(∂µV)

)
(B.26)

which indeed coincides with (B.20).

The natural SL(2) action on SL(2)/SO(2) is an isometry that leaves the metric

invariant. In fact, in the description using the upper half plane SL(2) acts as Möbius

transformations

τ → aτ + b

cτ + d
, (B.27)

where a, b, c, d ∈ R such that (
a b

c d

)
∈ SL(2,R) , (B.28)

under which the scalar kinetic term in (B.17) is left invariant. In another description

that makes this SL(2)-invariance manifest, one introduces a spacetime-dependent matrix

M = VVT with V given in (B.25). The scalar kinetic terms (B.20) can then be written

as
1
8Tr

(
(∂µM)(∂µM−1)

)
. (B.29)

We will return to this in section B.2.

For the sake of completeness we state that the isomorphism between SL(2) and

SU(1, 1) is given by the following similarity transformation,

D−1 SL(2,R)D = SU(1, 1), D = 1√
2

(
1 i

i 1

)
, (B.30)

which also maps the maximal compact subgroups SO(2) ⊂ SL(2) and U(1) ⊂ SU(1, 1)

onto each other.

B.2 Coset space representatives

The coset space SO(6,n)/SO(6)×SO(n) is represented by a matrix V = (VM
N ) ∈ SO(6, n).

Raising/lowering SO(6, n) indices is defined via the SO(6, n) invariant metric

η = (ηMN ) = (ηMN ) = diag(− . . .−︸ ︷︷ ︸
6 times

,+ . . .+︸ ︷︷ ︸
n times

) ,

and V−1T = (VM
N ). V transforms as

V → g V h(x) , (B.31)

which in terms of indices reads

VM
N → gM

P VP
Q h(x)Q

N ,

VM
N → gMP VP

Q h(x)
Q
N , (B.32)
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where g = (gM
P ) ∈ SO(6, n) and a spacetime dependent h(x) = (h(x)Q

N ) ∈ SO(6) ×
SO(n) and gMP and h(x)QN are obtained from the former via lowering/raising indices.

It is apparent that global SO(6, n) acts only on the first index of VM
N and VM

N while

local SO(6) × SO(n) acts only on the second. The bosonic part of the Lagrangian can

be conveniently expressed in terms of a symmetric positive definite matrix

M = (MMN ) := VVT , (B.33)

which transforms as a tensor of SO(6, n), i.e.

MMN → gM
QgN

RMQR , (B.34)

and is manifestly invariant under local SO(6) × SO(n) transformations. One also has

M−1 = (MMN ) transforming as

MMN → gMQg
N

RM
QR. (B.35)

In describing the supergravity theory index calculus seems to be indispensable be-

cause SO(6, n) indices associated to SO(6)×SO(n) need to be decomposed into those of

SO(6) and SO(n), of which the SO(6) indices are to be transferred to indices of the uni-

versal cover SU(4) in order to describe the coupling of scalar representatives to fermions.

The relation between these indices is due to the fact that in terms of representations of

their common complex Lie algebra one has (4⊗ 4)antisymmetric
∼= 6. As in the appendix

of [80], we therefore associate to every vector index m of SO(6) a pair of anti-symmetric

SU(4) indices [ij] in the following way

φij =
1
2

6∑
m=1

φm [Gm]ij , φij = −1
2

6∑
m=1

φm [Gm]ij , (B.36)

where φm shall be a generic SO(6) vector and the G’s are the ’t Hooft matrices

[G1]ij =


0 i 0 0

−i 0 0 0

0 0 0 −i
0 0 i 0

 , [G2]ij =


0 0 i 0

0 0 0 i

−i 0 0 0

0 −i 0 0

 ,

[G3]ij =


0 0 0 i

0 0 −i 0

0 i 0 0

−i 0 0 0

 , [G4]ij =


0 −1 0 0

1 0 0 0

0 0 0 −1

0 0 1 0

 ,

[G5]ij =


0 0 −1 0

0 0 0 1

1 0 0 0

0 −1 0 0

 , [G6]ij =


0 0 0 −1

0 0 −1 0

0 1 0 0

1 0 0 0

 . (B.37)
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Furthermore, for every m = 1, . . . , 6 one defines

[Gm]ij = −1
2ε

ijkl [Gm]kl = −([Gm]ij)
∗ , (B.38)

so as to obtain (φij)
∗ = φij .

At the origin of SO(6, n), cf. (3.28), one finds V = V−1T = 1 which in components

reads

Vm
n = Vn

m = δnm, Vm
a = Vm

a = 0,

Va
b = Vb

a = δba, Va
m = Vm

a = 0. (B.39)

In terms of SU(4) indices one now has

VM
ij =

{
1
2 [Gm]ij , if M = m

0, if M = a
, VM

ij =

{
1
2 [Gm]ij , if M = m

0, if M = a
. (B.40)

As to SL(2)/SO(2), a generic representative would be V = VSL(2) = (Vα
β) ∈ SL(2).

Raising/lowering indices is defined via the antisymmetric matrix ε = (εαβ) = (εαβ) with

ε21 = ε−+ = 12 in such a way that

(Vα
β) = (εαγVγ

δεδβ) = εVε = −V−1T . (B.41)

As before, transformations in terms of indices are

V = (Vα
β) → gVh(x) = (gα

γVγ
δh(x)δ

β) ,

−V−1T = (Vα
β) → (gαγVγ

δh(x)
δ
β) , (B.42)

and the bosonic Lagrangian can be written in terms of the symmetric positive definite

matrix

M := VVT = (Mαβ) , (B.43)

that can be expressed in terms of τ ∈ C with Im τ > 0 as

(Mαβ) =
1

Im(τ)

(
|τ |2 Re(τ)

Re(τ) 1

)
. (B.44)

This follows from (B.25) and (B.19). Its inverse is

M−1 = (Mαβ) =
1

Im(τ)

(
1 −Re(τ)

−Re(τ) |τ |2

)
, (B.45)

and transforms accordingly. The fermionic sector of the supergravity theory requires a

different representation of cosets, namely, in terms of (Vα) ∈ C
2 such that

Mαβ = Re(Vα(Vβ)
∗) . (B.46)

2The identification of indices 1 ≡ +, 2 ≡ − is due to (2.32).
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For (B.44) one can always find appropriate Vα. Letting them transform as vectors under

global SL(2) = SL(2,R) gives the right transformation for Mαβ . For a given τ as above,

Vα is unique up to local U(1) transformations

Vα → eiφ(x)Vα (B.47)

for arbitrary φ(x) ∈ R (and up to a sign ambiguity3). As fermions also transform under

this U(1), they couple to coset representatives Vα. At the origin V = 1 and thus in an

appropriate gauge one finds (Vα) = (i, 1)T , i.e. V− = 1.

3Fixing the gauge such that R 3 V− > 0, one finds a sign ambiguity in the imaginary part of V+ as

is apparent from Mαβ = (ReVα)(ReVβ) + (ImVα)(ImVβ).

72



Appendix C

Spinors

C.1 Weyl & Dirac spinor conventions

While we find it more convenient to work with Weyl spinors, the fermionic terms in the

literature [43, 54] are given in terms of Dirac spinors. Based on the conventions given

in [54] we express Dirac spinors in terms of Weyl spinors. In what follows we will first

summarize their conventions and then express fermionic terms using Weyl spinors.

The metric (ηµν) has signature (−,+,+,+). The γ-matrices Γµ satisfying

{Γµ,Γν} = 2ηµν (C.1)

are (chirally) represented by

Γµ =

(
0 σµ

σµ 0

)
=

(
0 σ̄µ
σµ 0

)
. (C.2)

where

σµ = (1, ~σ) = σ̄µ, σµ = ηµνσν = (−1, ~σ) = σ̄µ ,

and ~σ = (σ1, σ2, σ3) is built from the usual σ-matrices. One then has

Γ5 = iΓ0Γ1Γ2Γ3 =

(
1 0

0 −1

)
(C.3)

and

(Γµ)
† = ηµνΓν = Γ0ΓµΓ0, (Γµ)† = (ηµνΓν)

† = Γ0Γ
µΓ0,

Γ†
0 = −Γ0, (Γµν)† = 1

2 [Γ
µ,Γν ]† = −Γ0Γ

νµΓ0. (C.4)

In particular,

Γµν = 2

(
σµν 0

0 σ̄µν

)
, (C.5)
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where

σµν = 1
4(σ̄

µσν − σ̄νσµ), σ̄µν = 1
4(σ

µσ̄ν − σν σ̄µ). (C.6)

Using the charge conjugation matrix

B = iΓ5Γ2 =

(
0 ε

−ε 0

)
with ε =

(
0 1

−1 0

)
, (C.7)

one defines for a generic Dirac spinor φi transforming in the 4 of SU(4)

φi = B(φi)∗ , (C.8)

which transforms again as Dirac spinor, but now in the complex conjugate representation

4̄ of SU(4). For a chiral spinor with Γ5φ
i = ±φi, one finds Γ5φi = ∓φi, i.e. charge

conjugation also flips the chirality of chiral spinors. Furthermore, one defines

φ̄i = (φi)†Γ0, φ̄i = (φ̄i)
∗B. (C.9)

The fermionic spectrum of N = 4 supergravity in D = 4 with a gravity multiplet and

n vector multiplets consists of Dirac spinors ψi
µ, λ

ai, χi that have the following chirality:

ψi
µ =

(
(ψi

µ)
A

0

)
Γ5ψ

i
µ = ψi

µ,

λai =

(
(λai)A

0

)
Γ5λ

ai = λai,

χi =

(
0

(χi)Ȧ

)
Γ5χ

i = −χi. (C.10)

Note that we have not introduced new symbols for Weyl spinors but the latter are

recognized in the van der Waerden notation by undotted (A, . . .) and dotted indices

(Ȧ, . . .) transforming with respect to the two different SU(2) groups of the Lorentz

group. We can now express all the fermionic mass terms in terms of Weyl spinors

ψ̄µiΓ
µνψνj + h.c. = 2(ψi

µ)
∗σ̄µνε (ψj

ν)
∗ − 2(ψj

ν) ε σ
νµ(ψi

µ),

ψ̄µiΓ
µχj + h.c. = −(ψi

µ)
∗σµε (χj)∗ + (χj) ε σµ(ψi

µ),

ψ̄i
µΓ

µλaj + h.c. = −(ψi
µ) ε σ̄

µε (λaj)∗ − (λaj) ε σ̄µε (ψi
µ)

∗,

λ̄ai λ
b
j + h.c. = (λai)∗ε (λbj)∗ − (λbj) ε (λai),

χ̄iλaj + h.c. = (χi)(λaj)∗ + (λaj)(χi)∗, (C.11)

where on the right hand side we suppressed all dotted/undotted spinor indices. Note

that bilinear terms made from χ̄iχj are absent in gauged N = 4 supergravity, as no

such term exists that is invariant under U(1) ⊂ H and linear in the embedding tensor

components. In our conventions all ε-tensors with upper/lower, dotted/undotted indices

are numerically identical and given by the one in (C.7).
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C.2 Integrability condition of the Killing spinor equations

Here we compute the integrability condition (3.9) of a Killing spinor satisfying (3.8a). In

the background chosen in section 3.1 the covariant derivative acting on a right-handed

spinor εi reads

Dµε
i = ∂µε

i + 1
4ωµabΓ

ab εi , (C.12)

where ωµab is the torsion-free (Levi-Civita) spin connection. The indices a, b, . . . are

local Lorentz indices while the ones µ, ν, . . . denote coordinate indices of the spacetime.

Moreover, the index i = 1, . . . , 4 labels the supersymmetries of N = 4 supersymmetry.

Using the γ-matrix identity

[Γcd,Γab] = −2(ηcaΓdb − ηdaΓcb − ηcbΓda + ηdbΓca) , (C.13)

one finds

[Dµ, Dν ]ε
i = 1

4 (∂µ ωνab + ωµac ων
c
b − (µ↔ ν)) Γabεi

= 1
4Rµνab Γ

abεi , (C.14)

where Rµνab is the Riemann curvature tensor of the spacetime. On the other hand,

assuming εi was a Killing spinor satisfying (3.8a) one finds

[Dµ, Dν ]ε
i = 2

9A
ij
1 (A

jk
1 )∗Γνµε

k , (C.15)

where we made use of

Γ[νBΓµ]B = Γνµ . (C.16)

As a result, due to the interchange symmetry Rcdab = Rabcd one finds

1
16Rcdab {Γcd,Γab}εi = −1

9A
ij
1 (A

jk
1 )∗ ΓµνΓµνε

k (C.17)

which can be simplified using

{Γcd,Γab} = 2Γcdab − 2(ηcaηdb − ηdaηcb), ΓµνΓµν = −12 . (C.18)

In fact, the contribution from Γcdab cancels in the contraction with the Riemann tensor

by means of the (first) Bianchi identity Rc[dab] = 0. Finally, the result is(
Rδik +

16
3 A

ij
1 (A

jk
1 )∗

)
εk = 0 , (C.19)

with Ricci tensor Rab = Rc
acb and Ricci scalar R = Rab η

ab.
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Appendix D

Partial solution of the quadratic

constraints

D.1 Discussing constraint equations for ga 6= 0

The quadratic constraints for electric gaugings in the case of ga 6= 0 are hard to solve.

In fact, so far we have not found any example of a consistent solution with ga 6= 0. Here

we will discuss the following two aspects: First, we will show that an electrically gauged

N = 4 theory with N = 2 vacuum requires fa 6= 0; secondly, we will give some details

on a lengthy but elementary calculation that shows that ga 6= 0 solutions, if at all, exist

only in n > 6. These two aspects illustrate that ga 6= 0 consistent solutions would have

to be rather sophisticated. As in section 3.2 we label the quadratic constraints given in

(2.61) by the quadruple (M,N,P,Q) of SO(6, n)-indices.

D.1.1 N = 2 vacua require fa 6= 0

We will prove this claim by contradiction; we therefore assume fa = 0. The constraint

equations to be used in this proof are

(2, 3, 5, 6) ~e2 + ~g2 = c2 6= 0 , (D.1)

(b, 2, 4, 5) F4 ~e = 2c~g , (D.2)

(b, 2, 4, 6) F4 ~g = −2c~e , (D.3)

(b, 2, 3, 5) F2 ~g = F3 ~e , (D.4)

(b, 2, 3, 6) F3 ~g = −F2 ~e , (D.5)

(b, c, 2, 3) ([G2, G3])bc = c(F4)bc + 2(ec gb − eb gc) , (D.6)

where for better legibility we use a matrix notation with SO(n) vectors ~e,~g and matrices

(Fm)ab = fmab. It is obvious from (D.1), (D.2), (D.3) that both ~e and ~g must be nonzero
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because an N = 2 vacuum requires c 6= 0. Thus, without loss of generality, using first

an SO(n) transformation and subsequently a transformation of the residual SO(n− 1)

symmetry1, one can write

~e =

e0
~0

 , ~g =

g′g
~0

 , (D.7)

with e 6= 0, g, g′ ∈ R. Then equations (D.2), (D.3) show that g′ = 0, g = σe with σ = ±1

and

F4 =

 0 −2cσ

2cσ 0
0

0 F̃4

 , (D.8)

where F̃4 ∈ Matn−2,n−2. Furthermore, (D.4) and (D.5) imply

F2 =

0 0 ∗
0 0 ∗
~v ~w F̃2

 , F3 =

 0 0 ∗
0 0 ∗
σ ~w −σ~v F̃3

 , (D.9)

with ~v, ~w ∈ Matn−2,1 and antisymmetric matrices F̃2, F̃3 ∈ Matn−2,n−2. As a conse-

quence, (D.1) and (D.6) yield

σ[F2, F3]78 = −3c2 = ~v2 + ~w2 ≥ 0 , (D.10)

which contradicts c 6= 0. Hence, ~f cannot vanish in consistent solutions with N = 2

vacuum. This ends the proof.

1We assume that n is large enough.
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D.1.2 ga 6= 0 solutions do not exist in n ≤ 6

First we will concentrate on the subset of non-trivial quadratic constraints in (2.61) that

can easily be solved:

(2, 3, 5, 6) ~e2 + ~f2 + ~g2 = c2 6= 0 , (D.11)

(b, 1, 2, 3) F1
~f = 0 , (D.12)

(b, 1, 2, 5) F1 ~e = 0 , (D.13)

(b, 1, 2, 6) F1 ~g = 0 , (D.14)

(b, 2, 3, 4) F4
~f = 0 , (D.15)

(b, 2, 4, 5) F4 ~e = 2c~g , (D.16)

(b, 2, 4, 6) F4 ~g = −2c~e , (D.17)

(b, 2, 3, 5) F3 ~e− F5
~f − F2 ~g = 0 , (D.18)

(b, 2, 3, 6) F2 ~e− F6
~f + F3 ~g = 0 , (D.19)

(b, 2, 5, 6) F6 ~e+ F2
~f − F5 ~g = 0 , (D.20)

(b, 3, 5, 6) F5 ~e+ F3
~f + F6 ~g = 0 . (D.21)

Here we use the same matrix notation as in section D.1.1. Having shown that ~f = 0 is

impossible, without loss of generality we write it as

~f =

(
f
~0

)
, (D.22)

with f 6= 0 and due to (D.12) and (D.15) find

F1 =

(
0 0

0 ∗

)
, F4 =

(
0 0

0 ∗

)
, (D.23)

with certain matrices ∗ ∈ Matn−1,n−1. Unlike in section 3.2 here we consider the case

where ~g 6= 0. Analogously to the discussion in section D.1.1, one can, without loss of

generality and using (D.16) and (D.17), write

~g =


0

σe

0
~0

 , ~e =


0

0

e
~0

 , (D.24)

with e 6= 0 and σ = ±1 to find

F1 = 03,3 ⊕ F̃1, F4 =


0 0 0

0 0 2σc

0 −2σc 0

0

0 F̃4

 , (D.25)
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with matrices F̃1, F̃4 ∈ Matn−3,n−3. Furthermore, equations (D.18) to (D.21) are solved

by

F2 =

(
03,3 ∗

~a ~b −σ~d+ f/e~c′ F̃2

)
, F3 =

(
03,3 ∗

~c ~d σ~b+ f/e~a′ F̃3

)
,

F5 =

(
03,3 ∗

~a′ ~b′ −σ~d′ − f/e~c F̃5

)
, F6 =

(
03,3 ∗

~c′ ~d′ σ~b′ − f/e~a F̃6

)
, (D.26)

with ~a,~b,~c, ~d,~a′,~b′,~c′, ~d′ ∈ Mat1,n−3 and antisymmetric F̃2, F̃3, F̃5, F̃6 ∈ Matn−3,n−3.

There remains a large number of non-trivial quadratic constraints which we do not

know how to fully solve. Here, we list only those that are useful in our argument:

(b, c, 1,m) [F1, Fm] = 0 , (D.27)

(b, c, 2, 4) [F2, F4] = −c F3 , (D.28)

(b, c, 3, 4) [F3, F4] = c F2 , (D.29)

(b, c, 4, 5) [F5, F4] = −c F6 , (D.30)

(b, c, 4, 6) [F6, F4] = c F5 , (D.31)

(b, c, 2, 3) ([F2, F3])bc = c(F4)bc − f(F7)bc + 2(ec gb − eb gc) , (D.32)

(b, c, 5, 6) ([F5, F6])bc = c(F4)bc − f(F7)bc + 2(ec gb − eb gc) , (D.33)

(b, c, 2, 6) ([F2, F6])bc = −g(F8)bc + 2(eb fc − ec fb) , (D.34)

(b, c, 3, 5) ([F3, F5])bc = −g(F8)bc + 2(eb fc − ec fb) , (D.35)

(b, c, 2, 5) ([F2, F5])bc = −e(F9)bc − 2(fc gb − fb gc) , (D.36)

(b, c, 3, 6) ([F3, F6])bc = e(F9)bc + 2(fc gb − fb gc) . (D.37)

Here, (F7)ab = f7ab, etc. for the first three SO(n) indices denoted by 7, 8, 9. Using (D.25)

79



and (D.26), equations (D.28) to (D.31) are equivalent to:

F̃4 ~a = c~c , (D.38)

F̃4
~b = 3c ~d− 2cσ f

e
~c′ , (D.39)

F̃4 ~c = −c~a , (D.40)

F̃4
~d = −3c~b− 2cσ f

e
~a′ , (D.41)

F̃4
~a′ = c ~c′ , (D.42)

F̃4
~b′ = 3c ~d′ + 2cσ f

e ~c , (D.43)

F̃4
~c′ = −c ~a′ , (D.44)

F̃4
~d′ = −3c ~b′ + 2cσ f

e ~a , (D.45)

[F̃2, F̃4] = −c F̃3 , (D.46)

[F̃3, F̃4] = c F̃2 , (D.47)

[F̃5, F̃4] = −c F̃6 , (D.48)

[F̃6, F̃4] = c F̃5 . (D.49)

While tedious, it is possible to find the general solution to equations (D.38) to (D.45).

Rather than discussing this in detail we will content ourselves with showing that consis-

tent solutions require as a necessary condition that ~a,~b, etc. be at least nonzero column

vectors of dimension 4. This then immediately allows us to prove the claim of this sec-

tion (obviously due to (D.26)). To this end, we solve equations (D.32) to (D.37) for

F7, F8, F9, respectively, and invoke the antisymmetry of fabc. This gives rise to another
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set of quadratic constraints. The ones of interest for this argument are

~a · ~d = ~b · ~c , (D.50)

~a′ · ~d′ = ~b′ · ~c′ , (D.51)

~a · ~d′ = ~b · ~c′ , (D.52)

~c · ~b′ = ~d · ~a′ , (D.53)

σ(~a ·~b+ ~c · ~d) = f
e (~c · ~c′ − ~a · ~a′) , (D.54)

σ(~a′ · ~b′ + ~c′ · ~d′) = −f
e (~c · ~c′ − ~a · ~a′) , (D.55)

σ(~b · ~b′ + ~d · ~d′) = f
e (~a ·~b+ ~c′ · ~d′) , (D.56)

σ(~b · ~b′ + ~d · ~d′) = −f
e (
~a′ · ~b′ + ~c · ~d) , (D.57)

σ(~d · ~a′ − ~a · ~d′) = f
e (~a · ~c+ ~a′ · ~c′) , (D.58)

σ(~b · ~c′ − ~c · ~b′) = −f
e (~a · ~c+ ~a′ · ~c′) , (D.59)

σ(~d · ~b′ −~b · ~d′) = f
e (
~b · ~c+ ~b′ · ~c′) , (D.60)

σ(~b · ~d′ − ~d · ~b′) = −f
e (~a · ~d+ ~a′ · ~d′) , (D.61)

~a · ~b′ −~b · ~a′ = ~d · ~c′ − ~c · ~d′ , (D.62)

σ(~b2 + ~d2) + f
e (
~b · ~a′ − ~d · ~c′) = σ(~b′

2
+ ~d′

2
)− f

e (~a · ~b′ − ~c · ~d′) , (D.63)

σ(~a · ~b′ + ~d · ~c′)− f
e (~a

2 + ~c′
2
) = −σ(~b · ~a′ + ~c · ~d′)− f

e (
~a′
2
+ ~c2) , (D.64)

σe(6e2 +~b2 + ~d2) = f
(
−~a · ~b′ −~b · ~a′ + f

eσ(~a
2 + ~c′

2
)
)
, (D.65)

σe(6e2 +~b2 + ~d2) = f(~a · ~b′ + ~d · ~c′ − 2~b · ~a′) , (D.66)

where for the last two equations we also used (D.11) and (D.24). Those two equations

imply that not all ~a,~b, . . . can vanish because by assumption e 6= 0. Furthermore, one

finds that solutions satisfying (D.38) to (D.45) subject to the additional constraints

(D.50) to (D.66) necessarily require nonzero column vectors ~a,~b, etc. of dimension at

least 4. Since ~a,~b, . . . ∈ Mat1,n−3 we conclude that ga 6= 0 solutions do not exist in

n ≤ 6.

D.2 Discussing constraint equations for ga = 0

Here we list the quadratic constraint equations that are not trivially satisfied, c.f. section

3.2. In what follows the quadruple (M,N,P,Q) in the first column refers to the free

indices in (2.61):

(b̃, c̃, 1, 2) fãb̃2 fãc̃1 − fãb̃1 fãc̃2 = 0 , (D.67a)

(b̃, c̃, 1, 3) fãb̃3 fãc̃1 − fãb̃1 fãc̃3 = 0 , (D.67b)

(b̃, c̃, 1, 4) fãb̃4 fãc̃1 − fãb̃1 fãc̃4 = 0 , (D.67c)
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(b̃, c̃, 1, 5) fãb̃5 fãc̃1 − fãb̃1 fãc̃5 = 0 , (D.67d)

(b̃, c̃, 1, 6) fãb̃6 fãc̃1 − fãb̃1 fãc̃6 = 0 , (D.67e)

(b̃, c̃, 2, 5) fãb̃5 fãc̃2 − fãb̃2 fãc̃5 = 0 , (D.67f)

(b̃, c̃, 2, 6) fãb̃6 fãc̃2 − fãb̃2 fãc̃6 = 0 , (D.67g)

(b̃, c̃, 3, 5) fãb̃5 fãc̃3 − fãb̃3 fãc̃5 = 0 , (D.67h)

(b̃, c̃, 3, 6) fãb̃6 fãc̃3 − fãb̃3 fãc̃6 = 0 , (D.67i)

(b̃, c̃, 3, 4) fãb̃4 fãc̃3 − fãb̃3 fãc̃4 = c fb̃c̃2 , (D.67j)

(b̃, c̃, 2, 4) fãb̃4 fãc̃2 − fãb̃2 fãc̃4 = −c fb̃c̃3 , (D.67k)

(b̃, c̃, 4, 5) fãb̃5 fãc̃4 − fãb̃4 fãc̃5 = c fb̃c̃6 , (D.67l)

(b̃, c̃, 4, 6) fãb̃6 fãc̃4 − fãb̃4 fãc̃6 = −c fb̃c̃5 , (D.67m)

(b̃, c̃, 2, 3) fãb̃3 fãc̃2 − fãb̃2 fãc̃3 = c (fb̃c̃4 − f7b̃c̃) , (D.67n)

(b̃, c̃, 5, 6) fãb̃6 fãc̃5 − fãb̃5 fãc̃6 = c (fb̃c̃4 − f7b̃c̃) , (D.67o)

(b̃, c̃, 7, 1) fãb̃1 fãc̃7 − fãb̃7 fãc̃1 = 0 , (D.67p)

(b̃, c̃, 7, 4) fãb̃4 fãc̃7 − fãb̃7 fãc̃4 = 0 , (D.67q)

(b̃, c̃, 7, 2) fãb̃2 fãc̃7 − fãb̃7 fãc̃2 = c fb̃c̃3 , (D.67r)

(b̃, c̃, 7, 3) fãb̃3 fãc̃7 − fãb̃7 fãc̃3 = −c fb̃c̃2 , (D.67s)

(b̃, c̃, 7, 5) fãb̃5 fãc̃7 − fãb̃7 fãc̃5 = c fb̃c̃6 , (D.67t)

(b̃, c̃, 7, 6) fãb̃6 fãc̃7 − fãb̃7 fãc̃6 = −c fb̃c̃5 , (D.67u)

(b̃, c̃, d̃,m) 0 = fãb̃c̃ fãd̃m + fãb̃m fãc̃d̃ − fãb̃d̃ fãc̃m , (D.68a)

(b̃, c̃, d̃, 7) 0 = fãb̃c̃ fd̃7ã + fãb̃7 fc̃d̃ã − fãb̃d̃ fãc̃7 , (D.68b)

(b̃, c̃, d̃, ẽ) fab̃c̃ fd̃ẽa + fab̃ẽ fc̃d̃a − fab̃d̃ fac̃ẽ = frb̃c̃ fd̃ẽr + frb̃ẽ fc̃d̃r − frb̃d̃ frc̃ẽ . (D.68c)

D.2.1 The most general solution to equations (3.51)

Here we will prove the claim that the most general solution of equations (3.51) is given by

(3.53) and an arbitrary, antisymmetric H+ that commutes with G1. In fact, it suffices to

consider the Lie subalgebra s′ ⊂ g spanned by {G2, G3, H+,H−} which is also solvable.

Its non-vanishing Lie brackets are

[G2,H+] = −2cG3, [G2, G3] = cH−,

[G3,H+] = +2cG2 . (D.69)

We shall prove the following theorem:

Theorem: The most general solution to system (D.69) consists of solutions with

G2 = G3 = H− = 0, H+ = −HT
+ arbitrary. (D.70)

82



Our proof requires two elementary lemmata about matrices and a corollary of Lie’s the-

orem concerning finite-dimensional representations of complex, solvable Lie algebras.

Lemma: An antisymmetric matrix A ∈ Mat(R,m×m) is nilpotent if and only if A = 0.

Proof: Being antisymmetric A can be brought to diagonal form PAP−1 = diag(λ1, . . . , λm)

with a P ∈ GL(C,m×m) and λi ∈ iR. As PAnP−1 = (PAP−1)n for all n ∈ N, nilpo-

tency is basis-independent. It is then obvious that,

(PAP−1)n = diag(λn1 , . . . , λ
n
m) ,

is nilpotent iff λi = 0 ∀i which implies A = 0. The converse is trivial.

Lemma: Given matrices A1, . . . , Ak ∈ Mat(C,m × m) for k ∈ N. For simultane-

ously triangularizable matrices A1, . . . , Ak the commutator [Ai, Aj ] is nilpotent for all

i, j = 1, . . . , k.

Proof: The commutator of two upper triangular matrices is strictly upper triangular and,

hence, nilpotent.

Corollary of Lie’s theorem2: Let g be a complex, solvable Lie algebra and (V, ρ)

a finite-dimensional representation of g. Then there exists a basis of V such that all

elements of g are represented as upper triangular matrices.

Proof: Lecture script by W. Soergel [89].

In order to be able to apply this corollary we need to complexify our real Lie algebra

(D.69).

Lemma: Given a real Lie algebra g and a finite-dimensional real representation (V, ρ)

of g. Then one finds a finite-dimensional representation (VC, ρC) of the complexified Lie

algebra gC := g⊗RC (with C-linear extension of the Lie bracket) defined by VC := V ⊗RC

and

ρC(X + iY ) := ρ(X) + iρ(Y ),

for all X,Y ∈ g.

Proof: C-linearity of ρC is obvious and so is the proof of

ρC([X + iY, U + iV ]) = [ρC(X + iY ), ρC(U + iV )]

for all X,Y, U, V ∈ g. As a result, (VC, ρC) is a finite-dimensional representation of the

complex Lie algebra gC.

2Given a complex, solvable Lie algebra, then all its finite-dimensional irreducible representations are

one-dimensional.
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Now we can prove the theorem:

Proof of the theorem: Assume that there exists a solution of (D.69) with an antisym-

metric G2 6= 0 ∈ Mat(R,m ×m). Any such solution would be a finite-dimensional real

representation (Rm, ρ) of our real solvable Lie algebra s′. In this proof such a solu-

tion will be denoted by ρ(G2), ρ(G3), ρ(H−), ρ(H+) with ρ(G2) 6= 0 by assumption, while

G2, G3,H−,H+ ∈ s′ shall refer to the abstract elements of the Lie algebra. We denote

the induced representation of the complexified Lie algebra s′
C

as (Cm, ρC). Since also

s′
C
is solvable, we apply the corollary and find that ρC(G2), ρC(G3), ρC(H−), ρC(H+) ∈

Mat(C,m×m) are simultaneously triangularizable. Then, according to the second lemma

we find that

[ρC(G3), ρC(H+)] = 2c ρC(G2)

is nilpotent. As c 6= 0 one finds ρC(G2) = ρ(G2) is nilpotent. However, being antisym-

metric ρ(G2) must be zero by the first lemma which is in contradiction with ρ(G2) 6= 0.

We therefore conclude that ρ(G2) = 0 which, by means of the Lie algebra (D.69), imme-

diately implies ρ(G3) = ρ(H−) = 0. As a result, solutions (D.70) are already the most

general solutions to (D.69). This ends the proof.

D.2.2 Solving [G1, G4] = 0

We will now solve (3.54a), which in matrix notation reads

[G1, G4] = 0 . (D.71)

It is by means of an O(n − 1) transformation that, without loss of generality, any G1

can be written in block-diagonal form as

G1 = (D ⊗ ε)⊕ 0 =

(
D ⊗ ε 0

0 0

)
, (D.72)

where D = diag(x1, . . . , x1, x2, . . . , x2, . . .) is a diagonal matrix with ordered positive

eigenvalues x1 > x2 > . . . > 0 and ε is the antisymmetric 2× 2 matrix with ε12 = 1; the

zeros in (D.72) denote zero matrices of appropriate dimensions. Note that, in general,

this gauge can only be obtained by also using reflections (in addition to rotations). While

strictly speaking we are only allowed to use SO(n − 1) ⊂ G rotations, the quadratic

constraints (3.54a) - (3.54d) are also O(n− 1) tensor equations. We may therefore also

use reflections to arrive, as an intermediate step, at the gauge (D.72) — which simplifies

the subsequent analysis — as long as, in the end, we return to only using rotations,

in that we apply another reflection that flips two directions but preserves the block

structure (e.g. xi → −xi for one 2 × 2 block). Since D ⊗ ε is invertible, (D.71) implies

(also using another gauge choice for the lower right block)

G4 =

(
A 0

0 (D′ ⊗ ε)⊕ 0

)
, (D.73)
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where A is an antisymmetric matrix (of the same matrix dimensions as D⊗ε) satisfying

[D ⊗ ε, A] = 0 (D.74)

and D′ is another invertible diagonal matrix. In order to solve (D.74) we note that any

even-dimensional antisymmetric A can be written as

A = S ⊗ ε+A1 ⊗ 1+A2 ⊗ σ1 +A3 ⊗ σ3 , (D.75)

where S is symmetric, A1, A2, A3 are antisymmetric, and σ1, σ3 are the usual Pauli

matrices. Now (D.74) implies3

[D,S] = 0, [D,A1] = 0, {D,A2} = 0, {D,A3} = 0 , (D.76)

which in the reflection gauge (D.72) implies A2 = A3 = 0 and Sij = (A1)ij = 0 for all

i, j with xi 6= xj . As a result, we obtain

A = S ⊗ ε+A1 ⊗ 1 , (D.77)

where now S and A1 are block-diagonal with blocks associated to degenerate xi in D. We

will now refine the block-structure in G4. To this end, we will use the residual symmetry

of the blocks in G1 and G4 to bring each G4 block associated to some xi to the form

(ith block in G4) = (diag(yi1, . . . , yi1, yi2, . . . , yi2, . . .)⊗ ε)⊕ 0 , (D.78)

with yi1 > yi2 > . . . > 0. While this, of course, temporarily spoils the gauge (D.72), it is

by means of (D.71) that we find, using the same argument as before, that the ith block

in G1 has a subblock structure with blocks associated to degenerate yij or zero in the

ith G4 block. Now we apply symmetries that respect these subblocks to bring G1 back

to our gauge (D.72) and at the same time maintain the subblock structure in G4. Then,

repeating the argument that lead to (D.77), we know that the subblock associated to xi
in G1 and yij in G4 is given by

((i, j) block in G4) = S(ij) ⊗ ε+A
(ij)
1 ⊗ 1 , (D.79)

where (
S(ij) ⊗ ε+A

(ij)
1 ⊗ 1

)2
= −(yij)

2
1⊗ 1. (D.80)

The (i, j) block in G1 is xi 1⊗ ε and is thus invariant under orthogonal transformations

that only act on the first tensor product factor. Such transformations can be used to

bring S(ij) to diagonal form

D(ij) = diag(dij1, . . . , dij1,−dij1, . . . ,−dij1, . . .)⊕ 0 , (D.81)

3{., .} denotes the anticommutator.
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where dijk > 0 and the dimensions of positive and negative eigenvalues can in general

be different. In doing so, (D.80) gives rise to the following system of equations

(A
(ij)
1 )2 + (yij)

2 = (D(ij))2, {D(ij), A
(ij)
1 } = 0. (D.82)

The second equation gives

(A
(ij)
1 )kl = 0 ∨ (D(ij))kk = −(D(ij))ll (D.83)

and, hence, the D(ij) and A
(ij)
1 have the following block-diagonal form

D(ij) =


dij11 0 · · · 0

0 −dij11′ · · · 0
...

...
. . .

...

0 0 · · · 0

 A
(ij)
1 =


0 F (ij1) · · · 0

−F (ij1)T 0 · · · 0
...

...
. . .

...

0 0 · · · F (ij0)

 ,

(D.84)

where F (ijk) are rectangular matrices and F (ij0) are antisymmetric square matrices sub-

ject to the following conditions (from (D.82)):

d2ijk +

(
F (ijk)F (ijk)T 0

0 F (ijk)TF (ijk)

)
= y2ij , (F (ij0))2 = −y2ij . (D.85)

Without loss of generality we can use the residual symmetry to bring each F (ij0) into

diagonal form

D(ij0) ⊗ ε , (D.86)

where the eigenvalues of D(ij0) must be ±yij in order to satisfy (D.85). In particular,

F (ij0) must have even dimension. As to the F (ijk), (D.85) implies that

F (ijk)F (ijk)T = ξijk 1 , (D.87a)

F (ijk)TF (ijk) = ξijk1
′ (D.87b)

for some non-negative number ξijk. In the case where ξijk = 0 one finds F (ijk) = 0, and

(D.85) implies dijk = yij . On the other hand, for ξijk > 0, (D.87a), (D.87b), respectively,

shows that the rows/columns of 1/
√
ξijkF

(ijk) are orthonormal which, however, is only

possible if F (ijk) is a square matrix. In this case, 1/
√
ξijkF

(ijk) is an orthogonal matrix

that without loss of generality can be orthogonally transformed to the unit element: In

fact, the (i, j, k) block in D(ij) (
dijk1 0

0 −dijk1

)
(D.88)

is invariant under an orthogonal transformation(
T 0

0 S

)
(D.89)
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that at the same time acts on the (i, j, k) block in A(ij) as(
0 F (ijk)

−F (ijk)T 0

)
→

(
T T 0

0 ST

)(
0 F (ijk)

−F (ijk)T 0

)(
T 0

0 S

)

=

(
0 T TF (ijk)S

−(T TF (ijk)S)T 0

)
. (D.90)

Choosing S = 1, T = 1/
√
ξijkF

(ijk) one obtains

F (ijk) =
√
ξijk1 . (D.91)

The condition (D.85) finally reads

d2ijk + ξijk = y2ij (D.92)

and, hence,

dijk = |yij | cosφijk,
√
ξijk = |yij | sinφijk (D.93)

for some angle φijk ∈ (0, π/2). To conclude, we have the following block types,

G
(ijk)
1 = xi

(
1 0

0 1

)
⊗ ε,

G
(ijk)
4 = |yij |

(
cosφijk

(
1 0

0 −1

)
⊗ ε+ sinφijk

(
0 1

−1 0

)
⊗ 12

)
(D.94)

for φijk ∈ (0, π/2), while blocks with F (ijk) = 0 read

G
(ijk)
1 = xi

(
1 0

0 1
′

)
⊗ ε,

G
(ijk)
4 = |yij |

(
1 0

0 −1′

)
⊗ ε. (D.95)

Finally, zero blocks in D(ij) give rise to the following blocks:

G
(ij0)
1 = xi(1⊗ 12)⊗ ε,

G
(ij0)
4 = (D(ij0) ⊗ ε)⊗ 12 . (D.96)

Using appropriate orthogonal transformations it is possible to write (D.94) as

G
(ijk)
1 = xi 1⊗ (12 ⊗ ε),

G
(ijk)
4 = |yij |1⊗

(
cosφijk

(
1 0

0 −1

)
⊗ ε+ sinφijk

(
0 1

−1 0

)
⊗ 12

)
, (D.97)
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and, similarly, we transform (D.96) to4

G
(ij0)
1 = xi 1⊗ (12 ⊗ ε),

G
(ij0)
4 = D(ij0) ⊗ (ε⊗ 12). (D.98)

Note that both (D.97) and (D.98) are block-diagonal matrices with non-trivial 4 × 4

blocks. From these blocks and using (D.73) we can construct the full solution of (D.71)

for the gauge choice outlined above. As mentioned already, in the end one may have to

apply another reflection so that this gauge can be obtained from generic matrices G1

and G4 only by rotations, rather than reflections.

4Note that (D.98) yields (D.97) for φijk = π/2 provided that D(ij0) has only positive eigenvalues.

But the latter need not be the case in general.
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