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Abstract

The fundamental structure on which physics is described is the geometric spacetime back-
ground provided by a four dimensional manifold equipped with a Lorentzian metric. Most im-
portantly the spacetime manifold does not only provide the stage for physical field theories but
its geometry encodes causality, observers and their measurements and gravity simultaneously.
This threefold role of the Lorentzian metric geometry of spacetime is one of the key insides of
general relativity.

During this thesis we extend the background geometry for physics from the metric framework
of general relativity to our Finsler spacetime framework and ensure that the threefold role of
the geometry of spacetime in physics is not changed. The geometry of Finsler spacetimes
is determined by a function on the tangent bundle and includes metric geometry. In contrast
to the standard formulation of Finsler geometry our Finsler spacetime framework overcomes
the differentiability and existence problems of the geometric objects in earlier attempts to use
Finsler geometry as an extension of Lorentzian metric geometry. The development of our non-
metric geometric framework which encodes causality is one central achievement of this thesis.
On the basis of our well-defined Finsler spacetime geometry we are able to derive dynamics
for the non-metric Finslerian geometry of spacetime from an action principle, obtained from
the Einstein–Hilbert action, for the first time. We can complete the dynamics to a non-metric
description of gravity by coupling matter fields, also formulated via an action principle, to the
geometry of our Finsler spacetimes. We prove that the combined dynamics of the fields and
the geometry are consistent with general relativity. Furthermore we demonstrate how to define
observers and their measurements solely through the non-metric spacetime geometry. Physi-
cal consequence derived on the basis of our Finsler spacetime are: a possible solution to the
fly-by anomaly in the solar system; the possible dependence of the speed of light on the relative
motion between the observer and the light ray; modified dispersion relation and possible propa-
gation of particle modes faster than light and the propagation of light on Finsler null-geodesics.

Our Finsler spacetime framework is the first extension of the framework of general rela-
tivity based on non-metric Finslerian geometry which provides causality, observers and their
measurements and gravity from a Finsler geometric spacetime structure and yields a viable
background on which action based physical field theories can be defined.
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Zusammenfassung

Eine fundamentale Erkenntniss aus der Einsteinschen allgemeinen Relativitätstheorie ist, dass
die Raumzeit nicht nur die Bühne der Physik ist auf der physikalische Felder wechselwirken,
sondern, dass die Geometrie der Raumzeit zugleich die kausale Struktur, die Beobachter,
deren Messungen sowie die Gravitation beschreibt. Die Raumzeit selbst ist hierbei eine vierdi-
mensionale Mannigfaltigkeit mit Lorentzscher Metrik, welche die Geometrie definiert.

Wir werden in dieser Arbeit einen erweiterten Raumzeitbegriff entwickeln, der statt auf einer
Metrik auf einer Tangentialbündelfunktion basiert, die ein Längenmaß für Kurven definiert. Das
Besondere an unserem neuen Zugang ist, dass sich die Rolle der Raumzeitgeometrie in der
Physik dabei im Vergleich zur allgemeinen Relativitätstheorie nicht ändert. Die Grundlage für
dieses Projekt legen wir mit unserer Erweiterung der Finslerschen Geometrie, die problem-
los metrische Geometrie mit Lorentzsignatur verallgemeinert und insbesondere eine kausale
Struktur vorgibt. Die so konstruierten Finslerraumzeiten ermöglichen uns die Einstein–Hilbert
Wirkung der allgemeinen Relativitätstheorie aus einem völlig neuen Blickwinkel zu betrachten
und diese umzuschreiben und zu verallgemeinern. Die so erhaltene Wirkung definiert nun die
Dynamik der Tangentialbündelfunktion, die die Geometrie der Finslerraumzeiten bestimmt. Um
diese Dynamik mit der Beschreibung der Gravitation in Zusammenhang zu bringen, koppeln
wir Materiefelder über Wirkungsintegrale, die die zugehörigen Feldtheorien definieren an die
nicht-metrische Geometrie. Das Kopplungsprinzip ist so konzipiert, dass die kombinierte Dy-
namik der Materiefelder und der Geometrie konsistent mit den Einsteinschen Feldgleichungen
ist. Die jetzt noch fehlenden Beobachter auf Finslerschen Raumzeiten werden mit Hilfe eines
Vierbeins eingeführt, das einzig und allein durch die Tangentialbündelfunktion bestimmt ist,
welche die Geometrie definiert.

Direkte Konsequenzen der nicht-metrischen Finslerschen Raumzeitgeometrie, die wir be-
sprechen sind: Eine mögliche Erklärung der fly-by Anomalie im Sonnensystem; eine mögliche
Abhängigkeit der Lichtgeschwindigkeit vom Bewegunszustand des Beobachters; modifizierte
Dispersionsrelationen und die prinzipielle Möglichkeit, dass es Teilchen gibt, die sich schneller
als Licht bewegen und die Tatsache, dass sich Licht auf Finslergeodäten bewegt.

Unsere Finslerraumzeiten sind die erste Verallgemeinerung von Lorentzschen metrischen
Mannigfaltigkeiten auf der Basis von Finslergeometrie, die Beobachter, deren Messungen sowie
die Gravitation beinhaltet.

v





Contents

Introduction 1

I. Finsler geometry: Mathematical formulation and application in physics 7

1. A mathematical guide to Finsler geometry 11

1.1. Locally trivial fibre bundles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.1.1. Definition and vertical tangent spaces . . . . . . . . . . . . . . . . . . . . 11

1.1.2. Connections and horizontal tangent spaces . . . . . . . . . . . . . . . . . 13

1.1.3. Curvature and integrability . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.2. Tangent bundle geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.2.1. Manifold induced coordinates and distinguished tensor fields . . . . . . . 16

1.2.2. Tensor field lifts from the manifold to the tangent bundle . . . . . . . . . . 18

1.2.3. Connection induced covariant derivatives and autoparallels . . . . . . . . 20

2. A review of Finsler spaces 23

2.1. Finsler functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.2. Canonical geometric tensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.3. Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.3.1. Cartan non-linear connection . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.3.2. Linear connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.4. Finsler geodesics and geodesic deviation . . . . . . . . . . . . . . . . . . . . . . 31

3. Finsler geometry in physics 33

3.1. Geometry of ray and particle limits . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.2. Spacetime geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.2.1. Anisotropic geometry and electrodynamics . . . . . . . . . . . . . . . . . 35

3.2.2. Phenomenology of quantum gravity, string theory and dark matter . . . . 36

3.2.3. Dynamics for Finsler geometries . . . . . . . . . . . . . . . . . . . . . . . 36

4. From Finsler spaces to Finsler spacetimes 39

4.1. The Einstein–Hilbert action from a Finslerian viewpoint . . . . . . . . . . . . . . . 39

4.2. Reasons to generalise Finsler spaces . . . . . . . . . . . . . . . . . . . . . . . . 42

vii



II. The Finsler spacetimes framework 45

5. Finsler spacetime geometry 49
5.1. Finsler spacetimes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.1.1. Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
5.1.2. Properties of Finsler spacetimes and causality . . . . . . . . . . . . . . . 52
5.1.3. Derivatives of the fundamental geometry function . . . . . . . . . . . . . . 53

5.2. Finsler geodesics, connection and curvature . . . . . . . . . . . . . . . . . . . . 55
5.2.1. Geodesics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
5.2.2. Connections and curvature . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.3. Integration and the unit tangent bundle . . . . . . . . . . . . . . . . . . . . . . . . 62
5.3.1. Tangent bundle integrals and adapted coordinates . . . . . . . . . . . . . 62
5.3.2. Action integrals on the unit tangent bundle . . . . . . . . . . . . . . . . . . 64
5.3.3. Integration by parts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.4. Symmetries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
5.4.1. Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
5.4.2. Spherical symmetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
5.4.3. Cosmological symmetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
5.4.4. Maximal symmetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.5. Illustrative examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
5.5.1. Lorentzian metric spacetimes . . . . . . . . . . . . . . . . . . . . . . . . . 73
5.5.2. Simple bimetric Finsler structures . . . . . . . . . . . . . . . . . . . . . . 74
5.5.3. Anisotropic Finsler spacetimes . . . . . . . . . . . . . . . . . . . . . . . . 76

6. Dynamics of Finsler spacetimes 79
6.1. Action principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
6.2. Field equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
6.3. Diffeomorphism invariance of the action . . . . . . . . . . . . . . . . . . . . . . . 83

7. First order non-metric solution of Finsler spacetime dynamics 85
7.1. Finsler modifications of Lorentzian geometry . . . . . . . . . . . . . . . . . . . . 85
7.2. Refinements of the linearised Schwarzschild solution . . . . . . . . . . . . . . . . 87

8. Physical observers, measurements and the length measure 91
8.1. Interpreting the length measure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
8.2. Physical observers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

8.2.1. Observer frames . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
8.2.2. generalised Lorentz transformations . . . . . . . . . . . . . . . . . . . . . 95

8.3. Measurement example: The speed of light . . . . . . . . . . . . . . . . . . . . . . 98

9. Matter fields on Finsler spacetimes 101
9.1. Requirements on the coupling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
9.2. Minimal coupling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
9.3. Source of the geometric dynamics of spacetime . . . . . . . . . . . . . . . . . . . 106

viii



9.4. The scalar field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
9.4.1. The action and equations of motion . . . . . . . . . . . . . . . . . . . . . 108
9.4.2. On flat bimetric Finsler spacetimes . . . . . . . . . . . . . . . . . . . . . . 109

9.5. Finsler Electrodynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
9.5.1. Action and field equations . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
9.5.2. Propagation of light . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

Conclusion 117

Appendices 123

A. Technical Proofs 125
A.1. Relating the signatures of the L and F metric . . . . . . . . . . . . . . . . . . . . 125
A.2. Sasaki metrics in adapted coordinates . . . . . . . . . . . . . . . . . . . . . . . . 126
A.3. Integration by parts formulae . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
A.4. Lifts of generating vector fields of cosmological symmetry . . . . . . . . . . . . . 129
A.5. Variation of the gravity action . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
A.6. Conservation equation in the metric limit . . . . . . . . . . . . . . . . . . . . . . . 131
A.7. Variation of the matter action . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

ix





Introduction

The notion of time as a fourth dimension existed before Einstein formulated special and general
relativity with the help of Minkowski and Großmann. As Goenner nicely summarises [1] the
appearance of a fourth "time" dimension goes back to the 18th century and appeared from
there on as idea in physics, philosophy and literature.

Nowadays the geometry of spacetime plays a fundamental role in the modern understanding
of physics. It consistently provides the stage on which physics takes place, the causal structure
of events, the description of observers and their measurements and a description of one of
the fundamental interactions, namely gravity. All these attributes of spacetime as unified entity
arise from Einstein’s theory of general relativity where the geometry of spacetime is derived
from a Lorentzian metric, exactly in order to have all the properties just mentioned. One can
say that general relativity simultaneously geometrises causality, observers and gravity.

Spacetime itself provides positions and time labels for all physical events caused by the
interaction of physical systems built from physical fields or particles, mathematically modelled
by a four dimensional manifold. The causal structure on this set is a relation between the
events which determines which event causes another event, i.e., a time ordering. This time
order is the same for all possible observers and physical fields who may observe or interact
with the events. It is realised by equipping the spacetime manifold with a metric of Lorentzian
signature and by modelling observers as timelike curves. Moreover observers are able to
measure distances, lengths and physical fields what is realised by an orthonormal frame of the
metric that represents the observers time and space directions at the position of the observer.
Finally gravitational interaction is described by the curvature of the spacetime defined through
the Lorentzian metric, which itself is determined by the physical fields on spactime through
the Einstein equations. In this way the causal structure, the description of observers and their
measurements and the description of gravity is tied crucially to one single object in general
relativity: the Lorentzian metric of the four dimensional spacetime.

The geometry of spacetime in extensions of general relativity

Since general relativity was developed there exist suggestions how to modify and extend the
theory, driven either by the dream of one unified geometric picture of the fundamental field
theories in physics, beginning with the ideas of Kaluza and Klein [2, 3], or the need to explain
observations which cannot be explained within general relativity such as for example the flat
rotational curves of galaxies [4] and the accelerated expansion of the universe [5, 6].

But for whatever reason one modifies general relativity, and with it the geometry of spacetime,
one has to ensure that in the modified framework the spacetime still provides all the features
just discussed. Moreover, one has to discuss carefully which of the properties, causal structure,
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Introduction

observers, description of gravity is related to which objects in the modified theory. We like to
stress that especially the observer model which is employed is crucial for the viability tests of
a theory since it relates observations and theoretical predictions. These issues are usually
barely discussed. We will now have a brief look at the role of spacetime in some classes of
modifications of general relativity.

A mild modification of general relativity from the viewpoint of the properties of spacetime are
so called f(R) theories [7]. In this framework the only thing changed with respect to general
relativity are the dynamics which determine the metric of spacetime. It is not always clear
whether the new dynamics are well-behaved and determine Lorentzian spacetime geometries
which make sense from physical point of view. However there is still only one single object
which describes the causal structure, observers and gravity and that is still the Lorentzian
metric of spacetime.

The role of spacetime is changed more severely in extensions of general relativity which aim
for the unification of fundamental physical field theories like Kaluza-Klein theories, supergravity
and string theory [8]. In these theories the dimension of spacetime is increased and the higher
dimensional metric spacetime geometry is determined from higher dimensional general relativ-
ity. Here the geometry of the higher dimensional spacetime shall describe all physical fields,
among them a four dimensional metric describing gravity. Here the role of spacetime geometry
goes far further compared to general relativity. It does not only describe gravity but all inter-
actions and matter fields. The causal structure, observers and gravity are still related to one
object, the resulting four dimensional Lorentzian metric obtained from the framework. But the
spacetime is higher dimensional which has to be connected to the four dimensional spacetime
we observe.

Theories adding additional fields to the metric for the description of gravity like a scalar, a
vector, a scalar and a vector, or another two tensor, examples of such theories can be found
in [9, 10], perform a more drastic modification of the role of spacetime compared to general rel-
ativity. In these theories the gravitational field is described not only by a Lorentzian metric, but
in addition by other spacetime fields, whereas the geometry of the spacetime is still determined
only by the Lorentzian metric as are observers and their measurements. Thus the geometry
of spacetime which determines the causal structure is no longer identical to the description of
gravity and, the other way around, the fields which describe gravity do not correspond to the
field which encodes observers and their measurements. Here a disentanglement or decoupling
between the description of gravity and the properties of spacetime took place, while the entan-
glement or coupling of these properties into the spacetime geometry is a key feature in general
relativity.

During the discussion we have just seen that many modifications and extensions of general
relativity violate at least one of its key ingredients: the geometrisation of causality, observers
and gravity at the same time. If gravity is described by more fields than the metric or if space-
time has more than four dimensions why shouldn’t this influence the causal structure or the
measurements of observers? In general relativity this question does not appear since there is
only one object in the theory, the metric of the four dimensional spacetime.

The question we investigate throughout this thesis is: Is it possible to extend the framework of
general relativity such that the simultaneous geometrisation of causality, observers and gravity
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is maintained, the dimension of spacetime stays four and one may use more fields than just the
metric or no metric at all to describe gravity? The answer to this question is positive and we will
present an extended spacetime geometry framework throughout this thesis.

Aim and structure of this thesis

In this thesis we will construct and present an extension of the geometry of spacetime and
general relativity which keeps the causal structure, observers and their measurements and
the description of gravity consistently encoded into the geometry. It will be possible to use
more fields than just a metric or no metric and just other tensor fields to describe gravity,
but still all the fields which describe gravity determine the geometry of spacetime and vice
versa. Moreover also observers and their measurements are based on all of the geometry of
spacetime. Furthermore it will be possible to apply our new framework to unify the dynamics
of several fields without going to spacetimes of higher dimension. We will develop a spacetime
geometry based on Finsler geometry. The one single object which determines the geometry of
spacetime will be a function on the tangent bundle instead of a metric on the manifold.

Certainly we are not the first ones who address extensions of the framework of general
relativity with Finsler geometry. This is why we need to discuss the previous approaches,
their ideas and their shortcomings, and our arguments which lead us to our new ideas how to
overcome these shortcomings in the first part of this thesis. It contains in the chapters 1 to 4 the
necessary mathematical preliminaries, the standard textbook formulation of Finsler geometry,
its application in physics and our preliminary work on Finsler geometry based gravity theories.
All this then lays the foundation for our development of our new Finsler spacetime framework in
part II.

The mathematical foundation of Finsler geometry is laid in chapter 1 where we discuss fibre
bundles and the tangent bundle as special instance of a fibre bundle. We summarise these
well known mathematical frameworks and point out how the geometry of the tangent bundle is
related to Lorentzian metric geometry used in general relativity. In chapter 2 we discuss Finsler
geometry as it can be found in the literature. It is a well known generalisation of Riemannian
geometry. It is studied and developed since it was created by Finsler in his thesis 1918 [11].
Instead of on a metric the geometry of a manifold is based on a more general length measure
for curves on the manifold. During our review of Finsler geometry we will work out in detail why
it is a suitable generalization only for Riemannian geometry and not for geometries based on a
metric with indefinite signature. This issue is a major drawback when one wants to apply Finsler
geometry in physics and one of our motivations to extend the formulation of Finsler geometry
to our Finsler spacetime framework. In chapter 3 we collect applications of Finsler geometry
in physics which inflict on an extension of Finsler geometry to a framework which generalises
Lorentzian metric geometry. It has been realised that Finsler geometry is the appropriate tool to
study the propagation of waves in all sorts of media, or more generally the ray approximation of
solutions of partial differential equations. Moreover there are attempts to use Finsler geometry
as a phenomenological tool to explain astronomical observations and as the fundamental ge-
ometry of spacetime. In our survey through the applications of Finsler geometry in physics we
stress the mathematical problems which arise from the use of the standard Finsler geometry
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framework. Thus the need to put the applications of Finsler geometry in physics on a more
solid mathematical footing is one more motivation for the development of the Finsler spacetime
framework. First preliminary steps into that direction are summarised in chapter 4. It contains
the results of the diploma theses [12] and [13] and concludes part I with the open questions left
after these specific attempts to use Finsler geometry as an extended description of gravity.

In part II of this thesis we present our complete Finsler spacetime framework in all details.
Mathematically speaking it is an extension of Finsler geometry such that it is a suitable gener-
alisation of Lorentzian metric geometry and not only a generalisation of Riemannian geometry.
From the physics point of view it provides a non-metric Finslerian spacetime geometry which is
capable to encode the causal structure, observers and their measurements and the description
of gravity in one fundamental object at the same time. It extends the framework of general rela-
tivity preserving the role of spacetime in the sense that it still geometrises causality, observers
and gravity simultaneously. Since a Finsler geometric extension of Lorentzian spacetimes is
also interesting from the purely mathematical point of view we begin part II of this thesis with
our precise mathematical definition of Finsler spacetimes and derive their geometric proper-
ties in chapter 5. We will explain how our Finsler spacetimes overcome the problems of the
standard formulation of Finsler geometry and discuss that they indeed are the suitable Finsle-
rian extension of Lorentzian metric spacetimes. Most importantly for physics we explain how
our Finsler spacetime geometry encodes causality. Moreover we present explicit examples of
Finsler spacetime where the geometry is based on two metrics or a vector field and a metric. To
be an extension of general relativity Finsler spacetimes must admit dynamics which determine
their geometry. In chapter 6 we will derive such dynamics from our Finsler spacetime version
of the Einstein–Hilbert action. The derived dynamics can be used from two viewpoints: they
can be seen as generalised Einstein equations determining gravitational dynamics or they can
potentially be seen as unified dynamics a la Kaluza and Klein for all the fields encoded into
the Finslerian spacetime geometry. During this thesis we focus on the interpretation of Finsler
spacetimes and their dynamics as extension of general relativity and comment on the latter op-
tion in the outlook. In chapter 7 we present a physically interesting Finsler spacetime which is
a perturbative solution of the dynamics beyond metric geometry.It can be interpreted as Finsler
refinement of the linearised Schwarzschild solution of general relativity and addresses the fly-by
anomaly in the solar system. Afterwards in chapter 8 we complete the threefold geometrisa-
tion role of spacetime by the introduction of observers and their measurements on our Finsler
spacetimes. They are completely defined through the geometry. As an example we discuss
how the non-metric geometry changes the observers measurement of the velocity of another
object compared to the same measurement on Lorentzian metric spacetimes. We especially
compare the measurement of the speed of light in the two situations. In chapter 9 we equip
Finsler spacetimes with action based physical field theories. We develop a coupling principle
such that the field theories source the dynamics of the geometry and that in case Finsler space-
times are identical to Lorentzian metric spacetimes all dynamics, the ones for the geometry an
the ones for the other physical fields, are identical to those of general relativity. On the example
of a scalar field theory and a theory of electrodynamics we present features of field theories on
Finsler spacetime such as the propagation of modes faster than a specific speed of light and
the propagation of light along null geodesics. This chapter concludes the demonstration that
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Finsler spacetimes are viable non-metric geometric backgrounds for physics.
The technical details for the proofs of theorems as well as the explicit coordinate expressions

of certain vector fields can be found in the appendices A of this thesis.
Our results on the Finsler spacetime framework presented in part II of this thesis have been

published in several journal articles. A preliminary definition of Finsler spacetimes and the
theory of electrodynamics on Finsler spacetime can be found in [14]. The scalar field theory
and a first definition of observers is published in [15], and the dynamics of Finsler spacetime,
the refined linearised Schwarzschild solution and the transformations between observers on
Finsler spacetimes are presented in [16].
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Part I.

Finsler geometry: Mathematical
formulation and application in physics





This first part of the thesis contains the necessary preliminaries and the ideas that lead
to the development of the Finsler spacetime formalism presented in part II. The mathemati-
cal language of fibre bundles and the standard formulation of Finsler geometry is introduced,
applications of Finsler geometry in physics are presented and the Einstein–Hilbert action is
reinterpreted in the context of general non-metric Finsler geometry. During every step of the
discussion we will point out why an extension of the standard Finsler geometry framework is
needed in order to apply Finsler geometry to describe geometric backgrounds for physics.

In chapter 1 the mathematical tools on which Finsler geometry, and so Finsler spacetimes,
are built will be introduced. The main goal of this mathematical guide is to introduce the concept
and the consequences of connections on the tangent bundle of a manifold. To achieve this goal
in an efficient way some facts about locally trivial fibre bundles in general are recalled and then
applied to the tangent bundle.

Finsler geometry, as it can be found in the literature, is reviewed in chapter 2. It relies on the
mathematical objects introduced in the foregoing chapter. Moreover limitations of the frame-
work are discussed. It will become clear that Finsler geometry works without any problems
as long as it is considered as generalization of Riemannian geometry based on a metric with
definite signature, but that it runs into problems when considered as generalization of geometry
based on an indefinite metric. The latter issue is examined with a focus on the applications of
Finsler geometry in physics.

In chapter 3 different applications of Finsler geometry in physics are collected. This includes
the emergence of Finsler geometry as particle limit of field theories or ray approximation of wave
equations, attempts to use Finsler geometry as fundamental geometry of spacetime including
dynamics and in phenomenological approaches which use the freedom of Finsler geometry to
fit observational data

A new perspective on dynamics of Finsler spaces and a discussion of open questions which
arise in the application of Finsler geometry as spacetime geometry is presented in chapter 4.
The Einstein–Hilbert action is carefully investigated from the viewpoint of Finsler geometry. It is
straightforward to see that it is just a special metric geometric version of an action determining
dynamics for for Finsler spaces. This part is then concluded by a discussion of questions arising
when one studies the application of Finsler geometry in physics. It is explained why the existing
framework needs to be extended to be used as fundamental spacetime geometry and what the
extension has to provide an order to be used as non-metric spacetime geometry. The study of
these questions then will directly lead to our development of Finsler spacetimes in the second
part of this thesis.
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1. A mathematical guide to Finsler geometry

Finsler geometry describes the geometry of a manifold M through tensor fields which live on
the tangent bundle TM of the manifold and not on the manifold itself. Rather then considering
only the points of M , the tangent bundle consists of the points and all directions of M . In this
chapter we will make this statement mathematical precise and set up the mathematical stage
used throughout this thesis. The mathematical structure offered by the tangent bundle will be
crucial for the review of standard Finsler spaces in the following chapter, and especially for
our extension of this framework to physical Finsler spacetimes and the analysis of physics on
Finsler spacetimes in part II of this thesis.

Here we first introduce all necessary facts about general fibre bundles in section 1.1 in order
to give a most systematic description of the tangent bundle and its properties in section 1.2.
Already here we will get a first idea how Riemannian, and in general, Finsler geometry is related
to connections on the tangent bundle; the details how the tangent bundle is the natural stage
for Finsler geometry are presented in the next chapter.

1.1. Locally trivial fibre bundles

The tangent bundle itself is, as suggested by the name, a special instant of the mathematical
structure called fibre bundle. Here we introduce the important features of fibre bundles which,
when studied on the tangent bundle, provide the framework for Finsler geometry.

We begin with the definition, introduce a special set of coordinates to describe locally trivial
smooth fibre bundles, its tensor spaces and their natural split in subsection 1.1.1, before we
introduce the notion of a connection in subsection 1.1.2 and the corresponding curvature in
subsection 1.1.3. The basic facts of locally trivial smooth fibre bundles can be found for example
in the books [17, 18, 19] or the compendium [20].

1.1.1. Definition and vertical tangent spaces

Before we can study tensors on the tangent bundle we need to introduce the canonical vertical
tangent space which exists naturally on every locally trivial smooth fibre bundle. We begin with
the definition of locally trivial smooth fibre bundles:

Definition 1.1. Locally trivial smooth fibre bundles
The object (P

π−→M,F ), consisting of smooth manifolds P , called the total space, M , called the
base space, F , called the fibre, and a projection map π such that π−1(p) = F,∀ p ∈M , is called
a locally trivial smooth fibre bundle, if, and only if, there exists an open cover {Ui}i∈I of M such
that for every Ui ⊂ M exists a diffeomorphism Ψi : π−1(Ui) → Ui × F , called trivialization,
satisfying π ◦ ψ−1

i = pr1, where pr1 is the projection onto the first factor of ψi.

11



1. A mathematical guide to Finsler geometry

This definition can be made more general by considering P,M and F to be topological spaces
instead of smooth manifolds, but the latter case suffices for this thesis. In the following we will
suppress the terms smooth and locally trivial in locally trivial smooth fibre bundle for the sake
of readability. The definition above is summarised in the commutative diagram in figure 1.1(a),
and leads to the picture of a fibre bundle as a base space M with a fibre F attached to each
point p in M , displayed in figure 1.1(b).

M � Ui

Ui ⇥ F ⇢ M ⇥ F
 i

pr1

⇡

P � ⇡�1(Ui)

(a) Defining structures of a fibre bundle.

M

F
F

F

F

(b) Visualization of a fibre bundle.

Figure 1.1. Fibre bundles.

The manifolds M and F admit local coordinates; for open sets U ⊂M and V ⊂ F we have

Ξ : U → Rdim(M); Ξ = (x1, . . . , xdim(M)) ξ : V → Rdim(F ); ξ = (y1, . . . , ydim(F )) . (1.1)

These coordinates induce local coordinates of P via the trivialization in the following way. Con-
sider u ∈ P , then there exists an open set U ⊂ M such that u ∈ π−1(U) and ψU (u) =

(ψ1(u), ψ2(u)) = (π(u), ψ2(u)). Now let ΞU be a coordinate map on U and ξV be a coordi-
nate map on V ⊂ F containing ψ2(u). Therefore induced coordinates in a neighbourhood of
u ∈ P are given by

Φ = (ΞU , ξV ) ◦ ψU (1.2)

We may write Φ(u) = (ΞU (π(u)), ξV (ψ2(u))) = (x1, . . . , xdim(M), y1, . . . , ydim(F )). The coordi-
nates just obtained turn out to be very suitable to study tensors and tensor fields on P . For the
rest of this section we will use the index convention that Latin indices a, b, c, . . . run from 1 to
dim(M), while Greek indices α, β, γ, . . . run from 1 to dim(F ).

The induced coordinates give rise to a coordinate basis of the tangent- and cotangent spaces
TuP and T ∗uP around a point u ∈ P , respectively given by{ ∂

∂xa
= ∂a

}
∪
{ ∂

∂yα
= ∂̄α

}
and {dxa} ∪ {dyα} . (1.3)

Hence a vector field X on P evaluated at u ∈ P can be expressed as

X|u = Xa(u)∂a|u + X̄α(u)∂̄α|u . (1.4)

A similar decomposition into base space basis and fibre basis can be done for every tensor
field on P .

From the definition of the projection π of a fibre bundle it is clear that it induces a map from
the tangent spaces of the total space to the tangent spaces of the base space which acts in the
following way

dπ|u : TuP → Tπ(u)M ; dπ|u(Xu) = Xa(u)∂a|π(u) . (1.5)
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1.1. Locally trivial fibre bundles

The kernel ker(dπ|u) is exactly that part of the tangent space TuP spanned by the induced
basis elements {∂̄α} which come from the fibre F , while the image of dπ|u is a vector tangent
to the base space at π(u) expressed in the coordinate basis from the base space. Observe the
difference between ∂a|u ∈ TuP while ∂a|π(u) ∈ Tπ(u)M . We see that by its kernel, the projection
map π singles out the part of the tangent space TuP which is tangent to the fibre, and since dπ
has constant rank all over P the following definition singles out a subspace of TuP of dimension
dim(F ) for all u ∈ P :

Definition 1.2. Vertical tangent spaces
Let (P

π−→ M,F ) be a fibre bundle. The vertical tangent space VuP ⊂ TuP at u is defined
as VuP = ker(dπu). It is spanned by the induced coordinate basis elements {∂̄α} which are
induced by the fibre coordinates.

Having identified the vertical space as the subspace of TuP which is tangent to the fibre F in a
natural way, it remains to fix a complement which can be interpreted to be tangent to the base
space M . This will be done next by introducing a so called connection on P and it will turn out
that there is some freedom in the choice.

1.1.2. Connections and horizontal tangent spaces

Establishing the notion of a connection, or connection one-form, on P will allow us to decom-
pose the tangent spaces TuP into two subspaces: the canonical vertical space VuP tangent
to the fibre F presented in the previous subsection, and the horizontal space HuP tangent to
the base space M defined by the connection. The connection will be the central object which
defines the geometry of a manifold in chapter 2 and in part II.

Definition 1.3. Connection one-forms
Let (P

π−→ M,F ) be a fibre bundle. A connection map is a projection map ωu : TuP → VuP

which projects TuP onto the vertical tangent space VuP for all u ∈ P , so that ωu ◦ ωu = ωu. We
call ω(·) : P → V(·)P ;u 7→ ωu, or short ω, the connection one-form.

In an induced coordinate basis, see equation (1.3), ω can be expressed as [12]

ωu =
(
dyα|u +Nα

b(u)dxb|u
)
⊗ ∂̄α|u , (1.6)

where the Nα
a(u) are called connection coefficients and define the connection one-form of

choice. Since ω is a projection onto the vertical tangent spaces it is possible to write the
tangent space at u ∈ P as TuP = VuP ⊕ker(ωu). Alternatively to a connection one-form on can
define a connection:

Definition 1.4. Connection
Let (P

π−→M,F ) be a fibre bundle. A connection is a map H which associates to each u ∈ P a
subspace H(u) = HuP ⊂ TuP such that TuP = HuP ⊕ VuP , where VuP is the vertical tangent
space.

In other words a connection is a distribution, a smooth map which associates to each pint of
a manifold a subspace of the tangent bundle. Starting from a connection one-form or from a
connection is equivalent by setting HuP = ker(ωu). In both cases we obtain the complement of
VuP we were looking for either as ker(ωu) or as H(u). Therefore we define:

13



1. A mathematical guide to Finsler geometry

Definition 1.5. The horizontal tangent space
Let (P

π−→ M,F ) be a fibre bundle with connection one-form ω. The horizontal tangent space
HuP ⊂ TuP at u is defined as HuP = ker(ωu).

Observe that the horizontal spaces depend on the choice of the connection coefficientsNα
a(u).

In contrast to the vertical spaces VuP which are already determined by the definition of the fibre
bundle, further input is needed to define the horizontal spaces HuP . A short calculation reveals
that, expressed in induced coordinate basis, the following horizontal basis spans HuP

kerωu = span
(
δa|u); δa|u = ∂a|u −Nα

a(u)∂̄α|u . (1.7)

A sketch of this horizontal and vertical split of the tangent space to a fibre bundle is depicted
in figure 1.2. From the definition of the horizontal tangent space one immediately realises that
dim(HuP ) = dim(Tπ(u)M) and we recall that dπ is an isomorphism between HuP and Tπ(u)M .
It allows to identify the vectors in the horizontal spaces with vectors tangent to the base space.
A closer look reveals that in case of non-vanishing connection coefficients the horizontal space
is not really embedded tangent to the base space manifold into the bundle tangent space, but
tilted. This tilt, which may vary from point to point in the bundle and depends on the choice of
coordinates, is caused by the mixing between manifold induced and fibre induced coordinate
basis. It is governed by the connection coefficients. The deeper meaning of this mixture and the
coordinate independent consequences will become clear in the next section when we discuss
the curvature of a connection.

M

HuP

u

VuP

F

Figure 1.2. Dotted: The horizontal and the vertical tangent space at a point u in P

The split of the tangent space of the fibre bundle into horizontal and vertical tangent space
induces a split of the cotangent space of the fibre bundle in a similar fashion. The dual to the
horizontal and vertical tangent spaces, expressed in induced coordinates are given by

H∗uP = span(dxa|u) and V ∗u P = span(δyα|u); δya|u = dyα|u +Nα
adx

a
|u . (1.8)

As a remark see that the vertical dual annihilates the horizontal tangent space

δyα(δb) = (dyα +Nα
qdx

q)(∂b −Nβ
b∂̄β) = −Nβ

bδ
α
β +Nα

q δ
q
b = 0 . (1.9)
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1.2. Tangent bundle geometry

1.1.3. Curvature and integrability

The split of the tangent spaces of P into the horizontal and vertical subspaces gives rise to the
question whether these subspaces belong to integral manifolds which are submanifolds of P .
The answer to this question is given by the definition of the curvature of a connection with the
help of the Frobenius theorem which we cite here without proof; for a proof see for example [21].

Theorem 1.1. Frobenius Theorem
Let M be a smooth manifold and D be a distribution; hence a mapping which associates to

each p ∈ M a subspace Dp ⊂ TpM . Let dim(Dp) < dim(M) and let Xi, i = 1, . . . ,dim(Dp)

be vector fields such that {Xi(p)} form a basis of Dp. The subspaces Dp of TpM are tangent
spaces to a dim(Dp) dimensional submanifold N of M if and only if the commutator of the Xi

satisfies [Xi, Xj ](p) ∈ Dp, ∀ i, j and for all p ∈M . In case N exists we call D integrable.

The vertical tangent spaces define a distribution V which maps each u ∈ P to VuP . They are
spanned by {∂̄α|u} which are evaluations of the vector fields {∂̄α} which commute obviously.
Hence [∂̄α, ∂̄β](u) = 0 ∈ TuP ∀ α, β. By the Frobenius theorem we conclude that there exists a
submanifold of P to which the VuP are the tangent spaces; this submanifold is the fibre F .

For the horizontal tangent spaces the situation is more complicated. They also define a
distribution by virtue of definition 1.4 which is spanned by the vector fields δa at each u ∈ P . In
order to analyse whether this distribution is integrable we calculate the commutator of the basis
vector fields

[δa, δb] = (δbN
α
a − δaNα

b)∂̄α . (1.10)

Hence in general we cannot conclude that the distribution defined by the horizontal tangent
spaces is integrable. This failure of integrability is measured by a tensor, displayed above and
leads to the definition of the curvature of a connection.

Definition 1.6. Curvature
Let (P

π−→ M,F ) be a fibre bundle and ω a connection one-form on P with connection co-
efficients Nα

a(u). The curvature tensor R of the connection one-form ω is defined by the
components

Rαab = [δa, δb]
α . (1.11)

It is obvious that a horizontal distribution is integrable, if, and only if, Rαab = 0. When we discuss
the tangent bundle in the next section we will see that this rather abstractly defined curvature
tensor is straightforwardly connected with the curvature tensor for a covariant derivative on the
base manifold M .

1.2. Tangent bundle geometry

The tangent bundle of a manifold is a special fibre bundle which is naturally constructed for
every smooth n-dimensional manifold M , which then, in bundle language, is the base space.
Despite the structures described for general fibre bundles the tangent bundle admits further
important features due to its emergence from the base space manifold. Here we recall the most
important ones: in subsection 1.2.1 the existence of purely base space induced coordinates
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1. A mathematical guide to Finsler geometry

and the existence of distinguished tensor fields on the bundle which behave like tensor fields
on the base space are presented; in subsection 1.2.2 special lifts from the base space to the
bundle are described and in subsection 1.2.3 a suitable covariant derivative for such tensor
fields which yields a covariant expression for the autoparallels of a connection is discussed.

The framework of Finsler geometry naturally leads to a description of the geometry of the
manifold in terms of a connection on the tangent bundle. We will see here that one can under-
stand Riemannian geometry from the same point of view, namely that the geometric objects
are special tensors on the tangent bundle derived from a unique connection on the tangent
bundle. Moreover in this section we get an idea how Finsler geometry generalises the notion of
geometry with respect to Riemannian geometry, before we review the details in the next chapter
2. The key differences are the properties of the unique connection one-form.

1.2.1. Manifold induced coordinates and distinguished tensor fields

We recall the definition of the tangent bundle, express it in so called manifold induced coordi-
nates and introduce distinguished tensor fields.

Definition 1.7. The tangent bundle
Let M be a n-dimensional differentiable manifold. The tangent bundle TM is the union of all
tangent spaces TpM of M

TM =
⋃
p∈M

TpM . (1.12)

An element u ∈ TM is a vector X|p on M located in some tangent space TpM . The bundle
structure is as follows: The total space is the set TM with natural projection π : TM →M which
acts as π(u) = π(Xp) = p; the fibres F = π−1(p) are given by the tangent spaces TpM ≈ Rn

and so the tangent bundle is the fibre bundle (TM
π−→M,Rn). Note that the fibres of the tangent

bundle have the same dimension as the base space and so the indices of the fibre coordinates
have the same range as the indices labelling the coordinates of the manifold.

On an open subset U ⊂ M we consider coordinates Ξ = (x1, . . . , xn); at a point p ∈ M

they induce the standard coordinate basis {∂a} of TpM , hence every vector Zp ∈ TpM can
be written as Z = ya∂a|p. We can identify TpM with Rn when we identify the coordinate basis
∂a with the canonical basis ea = (e1

a, . . . , e
n
a) with eja = 0 for j 6= a and eaa = 1 of Rn. In

this way we introduced manifold induced coordinates {ya} on TpM . The coordinates from
the manifold and the induced coordinates on the tangent spaces together induce coordinates
on TM . The coordinate representation of a vector u = Xp = Xa∂a|p is then given by u =

(Ξ(p), y1, . . . , yn) = (x, y). Hence solely from coordinates of the manifold M , which is the base
space of the bundle, we introduced coordinates on the whole tangent bundle. From now on we
will consider TM in the manifold induced coordinates, and refer to the y coordinates as tangent
space or fibre coordinates. A feature of these coordinates is that a coordinate change on the
manifold x→ x̃(x) induces a coordinate change on the bundle

(xa, yb)→ (x̃a(x), ỹb(x, y)); ỹb(x, y) = ∂qx̃
b(x)yq . (1.13)

From the general discussion of fibre bundles we can easily deduce the change of the bases
of the bundle tangent spaces TuTM under manifold induced coordinate transformations. This
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1.2. Tangent bundle geometry

will lead to the discovery of tensor fields on TM which behave under such transformations like
tensor fields on M . It turns out that the induced coordinate basis, equation (1.3), of the tangent
spaces of TM transforms as

(∂a, ∂̄b)→ (∂̃a,
˜̄∂b) = (∂̃ax

q∂q + ∂̃ay
p∂̄p, ∂̃bx

p∂̄p) (1.14)

(dxa, dyb)→ (dx̃a, dỹb) = (∂qx̃
adxq, ∂qỹ

bdxq + ∂px̃
bdyp) . (1.15)

The ∂̄a and dxa transform as if they where tensor fields on the base manifold, the ∂a and δya do
not. However it is possible to find a complete basis of the TuTM which has the transformation
behaviour of tensors on the manifold under manifold induced coordinate transformations. To
find this basis we consider a connection one-form on TM , definition 1.3, defined through its
connection coefficients Na

b. It is a (1, 1)-tensor on TM and takes the form

ω = (dya +Na
bdx

b)⊗ ∂̄a , (1.16)

in the induced coordinates. From this expression one deduces the transformation behaviour of
the connection coefficients to be, see also [12, 22],

Na
b(x, y)→ Ña

b(x̃, ỹ) = Np
q∂px̃

a∂̃bx
q + ∂̃by

m∂mx̃
a . (1.17)

Studying now the transformation behaviour of the horizontal and vertical basis of TuTM and
T ∗uTM , introduced in the previous section, under manifold induced coordinate transformations
we find

(δa, ∂̄b) → (δ̃a,
˜̄∂b) = (∂̃ax

qδq, ∂̃bx
p∂̄p) (1.18)

(dxa, δyb) → (dx̃a, δỹb) = (∂qx̃
adxq, ∂px̃

bδyp) . (1.19)

Indeed this horizontal-vertical basis is the basis we were looking for. Under manifold induced
coordinate transformations it behaves like basis vector-, respectively covector fields on the base
manifold. As a remark we point out that the transformations respect the horizontal-vertical split
of the tangent bundle, they cause no mixing. Tensor fields on TM which have the property to
transform under manifold induced coordinate transformations as if they were tensor fields on
the manifold, and which define tensor fields on M in case their components are not dependent
on the tangent space coordinates y, are called distinguished or short d-tensors.

Definition 1.8. d-tensors
Let Xi; i = 1, . . . , s be vector fields on TM , Ωj ; j = 1, . . . , r be covector fields on TM ,
qj be projectors on the horizontal or vertical cotangent bundle and pi be projectors on the
horizontal or vertical tangent bundle of TM . An (r, s)-tensor field T on TM is called d-tensor
field (distinguished tensor field), if, and only if,

T (Ω1, . . . ,Ωr, X1, . . . , Xs) = T (q1(Ω1), . . . , qr(Ω
r), p1(X1), . . . , ps(X

s)) . (1.20)

They can always be expressed in the horizontal-vertical basis as

T = T a1a2...ar
b1b2...bs δa1 ⊗ ..⊗ δai ⊗ ∂̄ai+1⊗ ..⊗ ∂̄aj ⊗dxb1 ⊗ ..⊗dxbk ⊗ δybk+1⊗ ..⊗ δybl . (1.21)

How many horizontal or vertical basis elements appear depends on the type of tensor and
on the number of horizontal or vertical projectors. When we describe field theories on Finsler
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1. A mathematical guide to Finsler geometry

spacetimes in chapter 9 it will turn out that physical fields are in general d-tensors on TM . A
mathematical example for a d-tensor is the curvature of a connection, equation (1.11),

R = Rabcdx
b ∧ dxc ⊗ ∂̄a . (1.22)

This example is also suitable to demonstrate how, under certain circumstances, d-tensors de-
fine tensors on the base manifold and moreover how the curvature of a connection on the
tangent bundle is related to the Riemann curvature tensor. Consider a connection one-form
ω on TM with connection coefficients of the form Na

b(x, y) = Γabc(x)yc, it follows by direct
calculation

Rabc = [δb, δc]
a = −(∂bΓ

a
pc − ∂cΓapb + ΓabsΓ

s
pc − ΓacsΓ

s
pb)y

p = −Rapbc(x)yp . (1.23)

Therefore the d-tensor field R with components Rabc(x, y) on TM defines a tensor field RM

with components ∂̄pRabc(x) on M . In this way the curvature of a general connection on TM is
nothing but a generalization of the Riemann curvature tensor.

Here we recalled a point of view on the Riemann curvature tensor which is not so common:
it measures the integrability of the horizontal distribution defined by a connection one-form on
the tangent bundle with connection coefficients Γabc(x)yc, linear in y. The Γabc may come from
the definition of a covariant derivative, or a notion of parallel transport, on M , so that the path
dependence of parallel transport between points on M is equivalent to the non-integrability of a
linear connection on TM . We realise here that the choice of the connection is the key point to
connect the curvature of a connection on the manifold to Riemannian geometry, and we will see
in chapter 2 that in this choice lies the difference to Finsler geometry. Riemannian geometry
is connected to a unique connection one-form with connection coefficients linear in y, while
Finsler geometry leads to unique connection coefficients not linear, but only homogeneous in
the tangent space coordinates, and so more general than Riemann geometry.

While it is clear for the linear connection case how to construct a covariant derivative, this is
not so well known for the general case. Before we discuss a covariant derivative for d-tensors
based on a general connection on TM , we need to introduce the lifts of vector and general
tensor fields from the manifold to the tangent bundle. These will also be important when we
study symmetries of Finsler spacetimes in section 5.4.

1.2.2. Tensor field lifts from the manifold to the tangent bundle

With the definition of d-tensors we found tensors on the tangent bundle which behave like
tensors on the manifold, with the only difference that their components depended on the full
tangent bundle coordinates (x, y) and not only on the manifold coordinates (x). The other
way around it is possible to obtain tensors on the tangent bundle from tensors on the base
manifold. We will introduce three type of lifts, the vertical and the horizontal lift of tensor fields,
depending on the connection on the tangent bundle, and the complete lift for vector fields which
is independent of the connection. The first two lifts are needed to define how the covariant
derivative induced by a general connection acts on tensor fields which live on the manifold in
subsection 1.2.3. The third lift generates diffeomorphisms on the tangent bundle induced by
diffeomorphisms on the manifold generated by the original vector fields. This fact will play a
major role when we study symmetries of Finsler spacetimes in section 5.4.
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1.2. Tangent bundle geometry

Definition 1.9. Vertical lifts
Let ω be a connection on TM , T be an (r, s)-tensor field on a smooth manifold M and let
Xi; i = 1, . . . , s be vector fields on TM , Ωj ; j = 1, . . . , r be covector fields on TM . Moreover
let P and Q be the projectors on the vertical tangent respectively cotangent spaces combined
with their identification with the tangent space to the manifold

P (Xj(u)) = P (Xja(u)δa|u + X̄jb(u)∂̄b|u) = X̄jb(u)∂b|π(u) (1.24)

Q(Ωj(u)) = Q(Ωj
a(u)dxa|u + Ω̄j

b(u)δyb|u) = Ω̄j
b(u)dxb|π(u) (1.25)

The vertical lift of T to a tensor field T v on TM is defined as

T v(u) = T (π(u)) , (1.26)

so that

T v(u)(Ω1, . . . ,Ωr, X1, . . . , Xs) = T (π(u))(Q(Ω1(u)), . . . , Q(Ωr(u)), P (X1(u)), . . . , P (Xs(u))) .

(1.27)

In the horizontal-vertical basis induced by manifold induced coordinates of TM , and with
T a1...ar

b1...bs(p) being the components of the manifold tensor field T in the canonical coordi-
nate basis, this reads

T v(u) = T a1...ar
b1...bs(π(u))∂̄a1 ⊗ · · · ⊗ ∂̄ar ⊗ δyb1 ⊗ · · · ⊗ δybs . (1.28)

The horizontal lift of a tensor field on the manifold to a tensor field on the tangent bundle is
defined in the same way, just replacing the vertical projectors with horizontal projectors.

Definition 1.10. Horizontal lifts
Let ω be a connection on TM , T be an (r, s)-tensor field on a smooth manifold M and let
Xi; i = 1, . . . , s be vector fields on TM , Ωj ; j = 1, . . . , r be covector fields on TM . Moreover let
P and Q be the projectors on the horizontal tangent respectively cotangent spaces.

P (Xj(u)) = P (Xja(u)δa|u + X̄ja(u)∂̄a|u) = Xjb(u)∂b|π(u) (1.29)

Q(Ωj(u)) = Q(Ωj
a(u)dxa|u + Ω̄j

b(u)δyb|u) = Ωj
a(u)dxa|π(u) (1.30)

The horizontal lift of T a tensor field TH on TM is defined as

TH(u) = T (π(u)) , (1.31)

so that

TH(u)(Ω1, . . . ,Ωr, X1, . . . , Xs) = T (π(u))(Q(Ω1(u)), . . . , Q(Ωr(u)), P (X1(u)), . . . , P (Xs(u))) .

(1.32)

In the horizontal-vertical basis the horizontal lift can be expressed as

T h(u) = T a1...ar
b1...bs(π(u))δa1 ⊗ · · · ⊗ δar ⊗ dxb1 ⊗ · · · ⊗ dxbs . (1.33)

Finally we define the complete lift of a vector field on M to a vector field on TM .
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1. A mathematical guide to Finsler geometry

Definition 1.11. Complete lift
LetX be a vector field onM , expression in local coordinates byX|x = Xa(x)∂a|x. The complete
lift of X to a vector field XC on the tangent bundle is defined as

XC
|(x,y) = Xa(x)∂a|(x,y) + (yp∂pX

a(x))∂̄a|(x,y) . (1.34)

Next we introduce a covariant derivative which is defined by a connection on the tangent
bundle. The horizontal and vertical lifts introduced in this section make it possible that this
covariant derivative on TM defines a covariant derivative on M .

1.2.3. Connection induced covariant derivatives and autoparallels

Based on the connection coefficients of a connection one-form ω on the tangent bundle it is
possible to define a covariant derivative for (r, s)-d-tensor fields. It is a tensor derivative, obeys
the Leibniz rule and defines parallel transport along horizontal curves in TM . The latter is
important since autoparallels of the connection on TM fall in that class of curves, as we will
see during this subsection. In chapter 2 it will turn out that in the framework of Finsler geometry
there exists a unique connection such that its autoparallels are the geodesics of Finsler spaces.
In part II we will see that those facts also hold for our Finsler spacetimes and that the dynamical
covariant derivative allows a precise control on writing equations of motion for physical fields
covariantly. Here we shortly review the basic facts about this so called dynamical covariant
derivative and about autoparallels of a connection, further details can be found in [12, 22].

Definition 1.12. Dynamical covariant derivative
Let Na

b(x, y) be the connection coefficients of a connection one-form ω on the tangent bundle
TM of a n-dimensional differentiable manifold M in manifold induced coordinates. Moreover
let T a1a2...ar

b1b2...bs(x, y) be the components of a (r, s)-d-tensor field T . The dynamical covariant
derivative ∇ maps the (r, s)-d-tensor field T on the (r, s)-d-tensor fields ∇T with components

∇T a1a2...ar
b1b2...bs(x, y) (1.35)

= yqδqT
a1a2...ar

b1b2...bs(x, y)

+ Na1
m(x, y)Tma2...ar

b1b2...bs(x, y) + · · ·+Nar
m(x, y)T a1a2...m

b1b2...bs(x, y)

− Nm
b1(x, y)T a1a2...ar

mb2...bs(x, y)− · · · −Nm
bs(x, y)T a1a2...ar

b1b2...m(x, y) .

Introducing the abbreviation S = yaδa the action of the dynamical covariant derivative on func-
tions can be written as ∇f(x, y) = S(f)(x, y) = yqδqf(x, y). Observe that this covariant deriva-
tive in general has no special properties with respect to the y coordinates; it will have in Finsler
geometry where we choose a specific unique connection. As aside we remark that for (r, s)-
tensor fields K on M , their vertical respectively horizontal lifts together with the dynamical co-
variant derivative define a covariant derivative with respect to a vector field X on the manifold
by setting

∇MXKa1a2...ar
b1b2...bs(x) = ∇Kha1a2...ar

b1b2...bs(x,X) = ∇Kva1a2...ar
b1b2...bs(x,X) . (1.36)

In general this covariant derivative is not linear with respect to the direction of differentiation X.
But similar as in the case for the curvature of a general connection on TM , equation (1.11), we
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1.2. Tangent bundle geometry

recover the standard linear covariant derivative on the manifold ∇̃MX when the connection has
coefficients Γabc(x)yc linear in the fibre coordinates, and when the (r, s)-d-tensor field compo-
nents are independent of the y. Then,

∇T a1a2...ar
b1b2...bs(x, y) = yq

(
∂qT

a1a2...ar
b1b2...bs(x) (1.37)

+ Γa1
mq(x)Tma2...ar

b1b2...bs(x) + · · ·+ Γarmq(x)T a1a2...m
b1b2...bs(x)

− Γmb1q(x)T a1a2...ar
mb2...bs(x)− · · · − Γmbsq(x)T a1a2...ar

b1b2...m(x) .

= ∇̃My T a1a2...ar
b1b2...bs(x) .

When we study Finsler geometry it will turn out that we deal with a unique homogeneous
connection, i.e., Na

b(x, λy) = λNa
b(x, y), for which the linear case is also only a special case,

as it is here in the discussion of general connections.
Autoparallels of a connection on the tangent bundle are special curves on the base mani-

fold. On Finsler spaces and Finsler spacetimes we will find a unique connection such that its
autoparallels are identical to the geodesics of the manifold.

Definition 1.13. Autoparallels of a connection
Let γ : R → M be a smooth curve on M . Consider its natural lift to the tangent bundle
γ̃ = (γ, γ̇), expressed in manifold induced coordinates. The curve γ is an autoparallel of the
connection ω, if, and only if, there exists a parametrisation of γ such that its natural lift is a
horizontal curve, i.e., if the tangent of ˙̃γ ∈ Tγ̃TM is a horizontal vector field. In coordinates, this
yields the autoparallel equation

γ̈a +Na
b(γ, γ̇)γ̇b = 0 . (1.38)

Using the horizontal lift, see equation (1.33), γ̇H = γ̇aδa ∈ Hγ̃TM of the tangent γ̇ of a curve
γ on M , the autoparallel equation (1.38) can be written with help of the dynamical covariant
derivative

∇γ̇H(γ, γ̇) = 0 . (1.39)

The dynamical covariant derivative of a connection generalises the usual covariant derivative
on the manifold when one considers the geometry of a manifold described by a general con-
nection on the tangent bundle. It reduces to the standard covariant derivative on the manifold
in case of a linear connection and features a special class of curves, its autoparallels, which
characterize the geometry. In the next chapter we will see how one finds a unique connection
such that its autoparallels are the geodesics of a general length measure for curves.

With the mathematical structure discussed during this chapter we are now in the position
to describe Finsler spaces; manifolds equipped with a not necessarily metric length measure
which determines the geometry.
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2. A review of Finsler spaces

Finsler geometry is a well known subject in mathematics for nearly a century. It goes back to
the thesis "Über Kurven und Flächen in allgemeinen Räumen" by P. Finsler from 1918 [11] in
which he analysis the geometry of embedded curves and surfaces based on a general length
measure on the background manifold.

During this chapter we will review the basic facts about the standard approach to Finsler
geometry where all details can be found in textbooks like [22, 23]. Finsler geometry works
similar to metric geometry with the main difference that the geometry of the manifold M is
determined by a general length measure, the so called Finsler function F , and and not by a
metric g. We will define Finsler spaces in section 2.1 which generalise Riemannian manifolds.
Next we introduce the canonical tensors given on a Finsler space in section 2.2 before we
introduce the unique connection and corresponding curvature of a Finsler space as well as
the associated linear covariant derivatives in section 2.3. In section 2.4 it will turn out that
the unique non-linear connection is such that its autoparallels are identical to the geodesics of
the Finsler length measure and that its curvature governs the geodesic deviation on a Finsler
space.

At the different stages of our review we will point out where the difficulties appear, which
arise when one tries to use Finsler geometry to generalise semi-Riemannian geometry. It
will become clear that one either excludes a huge class of interesting examples of Finsler
geometries or that one immediately runs into ill-definedness of the geometry of the manifold
along the appearing null-directions of the geometry. For the application of Finsler geometry in
physics this is a serious issue since one is interested in a generalization of Lorentzian geometry,
geometry based on a metric with signature (−,+,+,+), such that causality is encoded into the
background geometry and the null-directions are interpreted as the directions along which light
respectively massless particles propagate. We will present how to overcome this limitation of
the standard Finsler geometry framework by introducing our Finsler spacetimes in part II of
this thesis. Finsler spacetimes turn out to be very general well-defined extension of Lorentzian
metric manifolds and are able to serve as viable non-metric geometric background for physics.

In the next chapter 3 we will collect applications of Finsler geometry in physics in general and
we discuss previous attempts to use Finsler geometry as geometry of spacetime.

2.1. Finsler functions

We give the definition of Finsler spaces which is the starting point of our extension of the
framework in part II. Since from here on homogeneity properties of functions will play a special
role in all derivations a short reminder of the Euler Theorem on homogeneous functions is
presented.
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2. A review of Finsler spaces

In Finsler geometry one equips a smooth manifold with a general length measure instead of
a metric. This length measure is defined through a tangent bundle function F , called Finsler
function, such that the length of a curve γ : τ 7→ γ(τ) on the manifold in consideration can be
represented by the parametrization invariant integral

S[γ] =

∫
dτ F (γ, γ̇) . (2.1)

The requirement to be parametrization invariant leads to the conclusion that F has to be ho-
mogeneous of degree one with respect to its second argument. Based on this length integral
it is possible to describe the geometry of a manifold purely by tensors derived from the Finsler
function.

Definition 2.1. Finsler function
Let M be an n-dimensional manifold and TM its tangent bundle. A continuous real function
F : TM → R is called Finsler function if it satisfies:

• F is smooth on the tangent bundle without the zero section T̃M = TM \ {0};

• F is homogeneous of degree one with respect to the fibre coordinates of TM

F (x, λy) = λF (x, y) ; (2.2)

• the Hessian gFab of F 2 with respect to the tangent space coordinates has constant rank
and is non-degenerate on T̃M

gFab =
1

2
∂̄a∂̄bF

2 . (2.3)

A Finsler function then leads immediately to the definition of Finsler spaces:

Definition 2.2. Finsler space
An n-dimensional manifold M equipped with a Finsler function F is called a Finsler space
(M,F ).

The definition of the Finsler function ensures the well-definedness of the geometric objects
introduced in the next subsection 2.2. An obvious example for a Finsler spacetime is a Finsler
function induced by a symmetric (0, n)-tensor G on the manifold M

F (x, y) =
(
|Gaa...an(x)ya1 . . . yan |

) 1
n . (2.4)

For n = 2 we obtain a Finsler space (M,F ) which is identical to a metric manifold (M, g).
The Hessian of F 2 with respect to the fibre coordinates, which is of major importance in what
follows, then is equal to the metric g.

Already here we see that the example above does not yield a well-defined Finsler space for
n > 2, if the null structure

N = {(x, y) ∈ TM |F (x, y) = 0} , (2.5)

is non-triviel i.e., N 6= {(x, 0) ∈ TM}. Then F 2 is no longer smooth on T̃M but only on
T̃M \N . But exactly such Finsler spaces one would consider as non metric generalizations of
semi-Riemannian geometry because of the existence of a non trivial null structure. Now there
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2.2. Canonical geometric tensors

are basically two options: Either one has to introduce further restrictions in the definition of
the Finsler function (definition 2.1) to include these cases or one excludes them. Both is done
in the literature [24, 25]. In the next section we will see that the non-differentiability of Finsler
functions of this type with non trivial null structure leads to the non-existence of the geometric
objects of the space along the null structure. Excluding a huge class of interesting examples
or not being able to describe the geometry of a manifold everywhere, especially along its null
structure, both is not satisfactory. The way out of this problem and to use Finsler geometry also
as generalization of semi-Riemannian geometry is at the heart of our construction of Finsler
spacetimes in part II.

Since the objects we will derive from the Finsler function in the next section inherit homo-
geneity properties, Euler’s Theorem on homogeneous function will play an important role in
future calculations.

Theorem 2.1. Euler’s theorem on homogeneous functions
Let f : V → R be a homogeneous differentiable function of degree r, i.e., f(λx) = λrf(x), from
some vector space V into the real numbers. The following holds

xa∂af(x) = rf(x) . (2.6)

A proof can be found for example in [23]. For a function H : TM → R which is homogeneous
of degree r with respect to the tangent space coordinate y this implies ya∂̄aH(x, y) = rH(x, y).
The tensor components which we introduce next to describe the geometry of a manifolds will
all satisfies such homogeneity properties.

2.2. Canonical geometric tensors

Here we introduce the geometric tensors which are derived from the Finsler function. Objects
derived solely from the definition of Finsler spaces without further assumptions are the so
called Finsler one-form, the Finsler metric, the Cartan tensor and the canonical Cartan one-
and two-forms. They define d-tensor fields (definition 1.8) on T̃M . At the end of this section we
comment on their connection to metric Finsler spaces on which F =

√
|gab(x)yayb|.

We list the objects directly determined by the definition of Finsler spaces according to the
number of derivatives of F 2 with respect to the tangent space coordinates y.

Definition 2.3. Finsler one-form
Let (M,F ) be a Finsler space. The first derivative of F 2 with respect to the tangent space
coordinates y defines the components pa of a one-homogeneous d-one-form field

pa(x, y) =
1

2
∂̄aF

2(x, y) . (2.7)

Observe that due to Euler’s theorem on homogeneous function, equation (2.1), yapa = F 2.
From the viewpoint of physics the pa are similar to canonical momenta.

Definition 2.4. Finsler metric
Let (M,F ) be a Finsler space. The Hessian of F 2 with respect to the tangent space coordinates
y defines the components gFab of a zero-homogeneous symmetric (0, 2)-d-tensor field

gFab(x, y) =
1

2
∂̄a∂̄bF

2(x, y) . (2.8)
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Again by Euler’s theorem we have yaybgFab = yapa = F 2. Observe that the Finsler metric is not
a metric on the base manifold neither a metric on the tangent bundle. It can be seen as inner
product between only horizontal, only vertical or between both types of vector fields, depending
on which kind of (0, 2)-d-tensor field is constructed from the coefficients in equation (2.8)

gF1 = gFab(x, y)dxa ⊗ dxb, gF2 = gFab(x, y)δya ⊗ δyb, gF3 = gFab(x, y)δya ⊗ dxb . (2.9)

In what follows we omit the index labelling the d-tensor type of gF , it should always be clear
from the context what is meant.

Definition 2.5. Cartan tensor
Let (M,F ) be a Finsler space. The third derivative of F 2 with respect to the tangent space
coordinates y defines the components Cabc of a minus one-homogeneous symmetric (0, 3)-d-
tensor field

Cabc(x, y) =
1

4
∂̄a∂̄b∂̄cF

2(x, y) . (2.10)

For the Cartan tensor the Euler theorem yields by direct calculation yaCabc = 0. The Cartan
tensor measures the deviation from metric geometry on a Finsler space in the sense that if
Cabc(x, y) = 0 everywhere on T̃M the Finsler space is a metric manifold with metric compo-
nents in a coordinate basis gab(x) = gFab(x), [22]. From the Finsler one-form components one
defines:

Definition 2.6. Cartan one-form
Let (M,F ) be a Finsler space. The Finsler one-form components define the following one-form
called Cartan one-form Θ

Θ = pa(x, y)dxa . (2.11)

The Cartan two-form is derived from the Cartan one-form in the obvious way:

Definition 2.7. Cartan two-form
Let (M,F ) be a Finsler space. From the Cartan one-form one defines the Cartan two-form Ω,
which we express in the horizontal-vertical basis (see equation (1.8))

Ω = dΘ =
1

2
δa∂̄bF

2dxa ∧ dxb + gFabδy
a ∧ dxb . (2.12)

The Cartan two-form will play a crucial role in finding a unique non-linear connection on a
Finsler space determined by the Finsler function.

In the case of a Finsler function F =
√
|gab(x)yayb|, which is induced by a metric the geomet-

ric objects introduced reduce to known tensor fields from Riemannian geometry: the Finsler
one-form becomes the standard covector p associated to a vector y by the metric g; the Finsler
metric gF (x, y) is identical to the metric g(x) on the manifold which induces the Finsler function
and the Cartan tensor Cabc vanishes.

We emphasize that all objects defined here depend on the fact that F 2 is differentiable. Since
this is not guaranteed for Finsler functions with non trivial null structure precisely along the null
structure, see the example in equation (2.4), the d-tensors cease to exist there. In the next
subsection we will see that the non-linear connection which defines the geometry of a Finsler
space is built from the tensors introduced here, which consequently also would not be defined
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where F 2 is not differentiable. As a consequence it would in particular not be possible to study
null geodesics, see section 2.4. On our Finsler spacetimes in part II this problem does not
occur.

2.3. Connections

The basic object which defines the geometry of a manifold, like the curvature and parallel
transport, is a connection. In metric geometry we know that there is a unique distinguished
covariant derivative: the Levi-Civita covariant derivative solely defined by a metric g on the
manifold through the Christoffel symbols

Γ̂abc(x) =
1

2
gaq(∂bgqc + ∂cgqb − ∂qgbc) . (2.13)

In virtue of equation (1.37) they induce a linear connection on the tangent bundle with coeffi-
cients Na

b(x, y) = Γ̂abcy
c, called Levi-Civita connection. In Finsler geometry there is a unique

distinguished non-linear connection (definition 1.4) with coefficients Na
b(x, y) which are only

homogeneous and not linear in their y dependence, called Cartan non-linear connection. It
defines parallel transport on the manifold due to the induced covariant derivative (see definition
1.12 and the discussion below) and the curvature of the manifold. Despite this unique non-
linear connection there exist several linear covariant derivatives on the tangent bundle, seen as
manifold itself, derived from the Finsler function. These linear covariant derivatives respect the
horizontal-vertical structure induced by the non-linear connection in the sense that the covariant
derivative of a horizontal, respectively vertical, (co-)vector field is again horizontal, respectively
vertical. We will discuss the Cartan and Berwald linear covariant derivative in detail, since
they will appear naturally in several calculations. The others appearing in the literature will
be mentioned briefly for completeness. Having introduced the unique non-linear connection
and the linear covariant derivatives we will investigate their relation to the Levi-Civita covariant
derivative in metric geometry.

2.3.1. Cartan non-linear connection

We introduce the fundamental object which defines the geometry of Finsler spaces, the unique
Cartan non-linear connection.

Definition 2.8. Cartan non-linear connection one-form
Let (M,F ) be a Finsler space. The Cartan non-linear connection one-form on the tangent
bundle is defined by the connection coefficients

Na
b(x, y) = Γabc(x, y)yc − gFaq(x, y)Cqbc(x, y)Γcpq(x, y)ypyq . (2.14)

where gFab is the inverse of the Finsler metric and Γabc(x, y) = gFaq(∂bg
F
qc + ∂cg

F
qb − ∂qgFbc).

Important properties of the connection, which can be proven by a direct calculation, are the
one-homogeneity with respect to the tangent space coordinates Na

b(x, λy) = λNa
b(x, y) and

the fact that the Finsler function F is horizontally constant δaF = 0, where δa denotes the
horizontal derivative respectively the horizontal basis introduced in equation (1.7).
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2. A review of Finsler spaces

Theorem 2.2. Uniqueness of the Cartan non-linear connection
Let Na

b(x, y) be the connection coefficients of the Cartan non-linear connection, ∇ be the
corresponding dynamical covariant derivative (definition 1.12) and let p be the projector onto
the horizontal bundle, the union of all horizontal tangent spaces (definition 1.5) defined by the
connection and let Ω be the Cartan two-form. The Cartan non-linear connection is the unique
connection satisfying

∇gFab(x, y) = 0, Ω(p(X), p(Y )) = 0∀ X,Y ∈ TTM . (2.15)

A proof of this theorem can be found in [22]. The basic idea is that the first condition deter-
mines the symmetric part Nab +Nba and the second the anti symmetric part Nab −Nba, where
the first index of Na

b was raised and lowered with the Finsler metric. The conditions in equa-
tion (2.15) which uniquely determine the Na

b given in equation (2.14) are generalizations of the
metric compatibility and torsion freeness conditions which uniquely define the Levi-Civita co-
variant derivative in case of metric geometry. A more compact form of the non-linear connection
coefficients is given by

Na
b =

1

2
∂̄b
(
Γaijy

iyj
)
. (2.16)

The non-linear curvature of the Cartan non-linear connection is by definition (1.6),

Rabc = δcN
a
b − δbNa

c . (2.17)

As discussed in chapter 1, a connection splits the tangent bundle of the tangent bundle into
horizontal and vertical part; so does the Cartan non-linear connection. We now introduce the
different linear covariant derivatives on the tangent bundle which respect this split.

2.3.2. Linear connections

Regarding the tangent bundle as a manifold in its own right, one can associate linear covariant
derivatives to this manifold. In Finsler geometry there exist special covariant derivatives on TM
which are compatible with the structure induced by the Cartan non-linear connection. This can
be understood in the following way. Consider the tangent bundle in induced coordinates (x, y)

with corresponding horizontal-vertical basis of its tangent bundle TTM : {EA} = {δa, ∂̄b} with
A = 1, . . . , 2n, the first n basis elements denote the horizontal basis, the indices from n + 1 to
2n the vertical basis, small indices only run from 1 to n. A general linear covariant derivative
on the tangent bundle ∇TM is defined by its coefficients Ξ, which can be expressed in the
horizontal-vertical basis

∇TMEA EB = ΞCABEC = Ξ̂cABδc + Ξ̄cAB ∂̄c . (2.18)

As for every linear covariant derivative one obtains the associated linear curvature (1, 3)-tensor
of the tangent bundle by

RTM (EA, EB)EC = ∇TMEA ∇
TM
EB

EC −∇TMEB ∇
TM
EA

EC −∇TM[EA,EB ]EC . (2.19)
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We say the covariant derivative respects the horizontal-vertical split in case

Ξ̂cAB =


V c

ab for A,B = 0, . . . , n both horizontal

W c
ab for A = n+ 1, . . . , 2n vertical and B = 0, . . . , n horizontal

0 else

(2.20)

Ξ̄cAB =


V c

ab for A = 0, . . . , n horizontal and B = n, . . . , 2n vertical

W c
ab for A,B = n+ 1, . . . , 2n both vertical

0 else .

(2.21)

Only then is the covariant derivative of a vertical basis element again vertical, and the covariant
derivative of a horizontal basis element again horizontal. Moreover, the covariant derivative
with respect to a horizontal respectively vertical direction then comes always with the same
coefficient V respectively W . Accordingly the components of the curvature of the covariant
derivatives respecting the horizontal-vertical split decay into three sets in the following way

RTM (δa, δb)δc = Rqcabδq, RTM (δa, δb)∂̄c = Rqcab∂̄c,

RTM (∂̄a, δb)δc = P qcabδc, RTM (∂̄a, δb)∂̄c = P qcab∂̄c,

RTM (∂̄a, ∂̄b)δc = Sqcabδc, RTM (∂̄a, ∂̄b)∂̄c = Sqcab∂̄c . (2.22)

The difference between the linear covariant derivatives appearing in the literature for Finsler ge-
ometry lies in the choice of the coefficients V and W . For us the two most interesting covariant
derivatives are the Cartan and the Berwald linear covariant derivatives.

Definition 2.9. Cartan linear covariant derivative
The Cartan linear covariant derivative ∇CL is a covariant derivative on the tangent bundle of a
Finsler space which respects the horizontal and vertical split induced by the Cartan non-linear
connection (definition 2.8) in the sense of equations (2.20) and (2.21). It is defined by the
coefficients

V c
ab = Γδcab =

1

2
gFcq

(
δag

F
bq + δbg

F
aq − δqgFab

)
, W c

ab = gFcqCabq , (2.23)

where Cabq is the Cartan tensor (see definition 2.5) and we call Γδ the δ-Christoffel symbols.

The Cartan linear covariant derivative has the property that it leaves the Finsler metric horizon-
tally as well as vertically covariant constant, i.e.

∇CLδa gFab = 0, ∇CL∂̄a g
F
ab = 0 , (2.24)

no matter which kind of d-tensor (see equation (2.9)) the components gFab define. The horizontal
part of the curvature R(δa, δb)(·) of the Cartan linear covariant derivative is given by

RCLqcab = δaΓ
δq
cb − δbΓδqca + ΓδqmaΓ

δm
cb − ΓδqmbΓ

δm
ca − CqcmRmab . (2.25)

It is linked to the non-linear curvature Rabc of the Cartan non-linear connection, see [22],
through

Rqab = −RCLqcabyc . (2.26)

The other covariant derivative of interest is defined as follows:
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2. A review of Finsler spaces

Definition 2.10. Berwald linear covariant derivative
The Berwald linear covariant derivative ∇B is a covariant derivative on the tangent bundle of a
Finsler space which respects the horizontal and vertical split induced by the Cartan non-linear
connection (definition 2.8) in the sense of equations (2.20) and (2.21). It is defined by the
coefficients

V c
ab = ∂̄aN

c
b, W c

ab = 0 , (2.27)

It does not leave the metric covariant constant and its horizontal part of the curvatureR(δa, δb)(·)
can be expressed with the help of the non-linear connection coefficients

RBqcab = δa(∂̄bN
q
c)− δb(∂̄aN q

c) + (∂̄aN
q
m)(∂̄bN

m
c)− (∂̄bN

q
m)(∂̄aN

m
c) . (2.28)

It can be derived from the curvature of the Cartan non-linear connection by

∂̄cR
q
ab = −RBqcab . (2.29)

During upcoming calculations these two linear covariant derivatives and their horizontal curva-
tures will naturally appear and will be used as abbreviations. For completeness we list the other
linear covariant derivatives discussed in the literature in the context of Finsler spaces by giving
their coefficients V and W :

Name V a
bc W a

bc

Chern-Rund covariant derivative ∇CR Γδabc 0
Hashiguchi covariant derivative ∇H ∂aN

b
c gFcqCabq

(2.30)

In case the Finsler space is induced by a metric F =
√
gab(x)yayb the different covariant deriva-

tives and the non-linear connection contain the same information. For the non-linear connec-
tion the conditions in equation (2.15) become the usual metric compatibility and torsion free-
ness conditions of a covariant derivative on the manifold, the connection coefficients become
Na

b(x, y) = Γ̂abcy
c constructed from the usual Christoffel symbols Γ̂abc, and the dynamical co-

variant derivative defines the standard Levi-Civita covariant derivative on the manifold in the
sense of equation (1.37). As presented in equation (1.23) the curvature for a non-linear con-
nection with coefficients Na

b(x, y) = Γ̂abcy
c becomes the standard Riemann curvature tensor.

The different linear covariant derivatives all become equal since their coefficients V all become
V a

bc = Γ̂abc and the coefficients W all vanish, since the Cartan tensor vanishes. The only non-
vanishing component of their curvature is Rabcd which becomes identical to the usual Riemann
curvature tensor of the base manifold. Hence in the metric Finsler space case all geometric
information is encoded in the usual Christoffel symbols, while in the general Finsler case one
has the Cartan non-linear connection as fundamental object and additional linear covariant
derivatives on the tangent bundle containing further information.

The non-linear connection as well as the linear covariant derivatives discussed here are well-
defined as long as F 2 is differentiable. But the non-linear connection coefficients Na

b as well
as the coefficients V a

bc and W a
bc are no longer well-defined when F 2 fails to be differentiable.

This is the same problem as discussed for the other geometric objects previously. Again it
becomes clear that Finsler geometry in the Finsler space formulation is not a suitable non
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metric extension for semi-Riemannian geometry. Our Finsler spacetimes presented in part II of
this thesis as extension of Finsler spaces are.

In the next section we will demonstrate explicitly that it would be impossible to study null-
geodesics on Finsler geometries built from Finsler functions with non trivial null structure based
on the definition of Finsler spaces. We stress again that from the viewpoint of physics this is
a severe problem, since null geodesics are interpreted as trajectories along which light propa-
gates.

2.4. Finsler geodesics and geodesic deviation

The geometry of an n-dimensional manifold influences the behaviour of embedded lower di-
mensional objects; the most prominent ones being embedded curves. Here we will discuss
curves which extremise the distance between two points of a Finsler space, leading to the no-
tion of Finsler geodesics and how the curvature of the Finsler space influences the distance of
nearby geodesics. The latter leads to the Finsler space geodesic deviation equation. Moreover
we will see explicitly why the Finsler geometry framework in the literature is not sufficient to
study Finsler functions with non trivial null structure as one would like to do in physics. In part II
we will discuss that Finsler geodesic model the trajectories of test bodies and that the geodesic
deviation is interpreted as relative gravitational acceleration between them. Here we discuss
these concepts mathematically in the context of Finsler spaces.

The heart of Finsler geometry is the Finsler length measure for curves γ : τ 7→ γ(τ) on the
manifold displayed in equation (2.1). There exist, as in metric geometry, distinguished curves
which extremise this integral. By the virtue of variational calculus these curves are the solutions
of the Euler-Lagrange equations

d

dτ
∂̄aF (γ, γ̇)− ∂aF (γ, γ̇) = 0 . (2.31)

Definition 2.11. Finsler geodesics
Let (M,F ) be a Finsler space. A curve γ on M is called Finsler geodesic in case it extremises
the Finsler length integral defined in equation (2.1), i.e., it solves equation (2.31).

Consequently, to be a Finsler geodesic, a curve γ on M has to satisfy equation (2.31) which
can be written nicely with the help of the Cartan non-linear connection coefficients, respectively
with the dynamical covariant derivative, as

gFab(γ̈
b +N b

q(γ, γ̇)γ̇q) = gFab∇γ̇H(γ, γ̇) = ∂aF (γ, γ̇)
d

dτ
F (γ, γ̇) , (2.32)

where γ̇H denotes the horizontal lift (definition 1.10) of γ̇. A proof can be found in [12, 22]. The
factor on the right hand side of the geodesic equation (2.32) is due to the fact that we did not fix
the parametrization of the curve so far. Since the Finsler length integral is reparametrization-
invariant we may consider γ in any parametrization we like. The most common one is the so
called arclength parametrization fixed by the fact that F (γ, γ̇) = 1 ∀ τ . In arclength parametriza-
tion the geodesic equation becomes

gFab(γ̈
b +N b

q(γ, γ̇)γ̇q) = gFab(∇γ̇H)b(γ, γ̇) = 0 , (2.33)
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and by comparison with definition 1.13 we see that arclength parametrized Finsler geodesics
are autoparallels of the Cartan non-linear connection. In consequence, Finsler geodesics are
curves whose natural lift to the tangent bundle γ̃ = (γ, γ̇) has a purely horizontal tangent
˙̃γ = γ̇aδa. From the discussions about the metric limit and the problems arising for Finsler
geometries based on a Finsler function with non trivial-null structure the following two remarks
arise: first it is easy to see that in case of a metric Finsler space the Finsler geodesics become
the geodesics of metric geometry and the geodesic equation is the metric geodesic equation
expressed in terms of the Levi-Civita covariant derivative; second it also becomes clear that
for a Finsler function with non trivial null structure of the form in equation (2.4) the geodesic
equation cannot be studied for curves γ for which F (γ, γ̇) vanishes. The Finsler metric as
well as the non-linear connection coefficients are not well-defined. For physics this is a severe
problem, since we want to interpret such curves as trajectories of light.

Considering nearby geodesics or, equivalently autoparallels, being described by a smooth
variation Γ, i.e., a smooth surface

Γ : R× R→M, (2.34)

allows us to discuss their deviation induced by the geometry of the manifold. Let Γ(τ, s) for fixed
s be an arclength parametrized geodesic with tangent ∂τΓ(τ, s). The derivative of Γ with respect
to s is called deviation vector field V = ∂sΓ(τ, s). The length of its integral curves measure the
distance between the geodesic Γ(τ, s0) and Γ(τ, s1) for given τ , the change of this distance to
first order in the parameter s is given by V . Studying the condition that the curves Γ(τ, s0) and
Γ(τ, s1) shall be nearby geodesics, hence considering a small difference s0 − s1 = ε, one finds
that V must satisfy, see again [12, 22] for a detailed derivation,

∇∇V a(τ, s0) +Rabcẋ
bV c(τ, s0) = 0 . (2.35)

The tensor Rabc is the curvature tensor of the Cartan non-linear connection and we used ẋb =

∂τΓ(τ, s0)b as abbreviation of the tangent along the geodesic Γ(τ, s0). Equation (2.35) is called
geodesic deviation equation. Physically the geodesic deviation is interpreted as the relative
gravitational acceleration of nearby test particles in a given gravitational field.

This concludes our description of the Finsler geometry framework how it commonly can be
found in the literature. In the next section we give a broad overview where Finsler geometry
appears in physics.
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3. Finsler geometry in physics

The applications of Finsler geometry in physics fall basically into two subjects. On the one hand
it appears as an effective geometric description of point particle mechanics, point particle limits
of field theories, like ray theory in media, and as a geometric description of fluid mechanics.
Examples of this kind are collected in section 3.1. On the other hand there are attempts to use
Finsler geometry as the geometry of spacetime which describes gravity, as we will see in sec-
tion 3.2. We will mention the two most prominent Finsler length measures in this context, which
include not only a metric, but also a vector field as building ingredients; we will encounter some
work where Finsler geometry is used as a phenomenological tool to describe dark matter, dark
energy, as well as quantum gravity effects and we discuss approaches to find field equations
determining Finsler geometries dynamically.

The applications of Finsler geometry as spacetime geometry give rise to a number of ques-
tions concerning the equations used to determine the geometry of spacetime, the existence of
the geometric objects appearing, the description of observers and the coupling of matter fields.
We will summarise these questions in section 4.2 of the next chapter. In part II of this thesis
the Finsler spacetime framework is developed as an answer to these issues.

3.1. Geometry of ray and particle limits

From the physics point of view the Finsler length measure in equation (2.1) is nothing but an
action for a point particle and the Finsler geodesic equations (2.31) are the corresponding
equations of motion. One simply uses the Lagrange function of the system in consideration as
Finsler function F . For the free particle metric geometry usually suffice, but when one considers
the point particle limits of general field theories or the analysis of the ray limit of the propagation
of waves in media, one naturally encounters Hamiltonians and respectively Lagrangians which
lead to a Finsler geometric description of these particle, or ray, limits. Here we present some
concrete examples.

The most prominent example of a field theory leading to light ray propagation along Finsler
geodesics are the equations of motion of linear electrodynamics in media. In its most general
form it is described by so called area metric electrodynamics, see [26] and references therein
for all details. There the relation between the electromagnetic field strength tensor F and the
induction H is given by a general (4, 0) tensor field χ[ab][cd], anti-symmetric in each pairs of
indices but symmetric in the pairs, called area metric:

Hab = χabcdFcd , (3.1)

The area metric encodes the inductive properties of the medium in consideration. The field
equations for H and F are given by dF = 0 and dH = 0, where the principal symbol of the
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latter equation, which describes the ray approximation of the field propagation, yields the so
called Fresnel polynomial P [χ](k) which is of degree four in k and is interpreted as Hamiltonian
describing the propagation of light rays [27]. After a Legendre transformation one obtains the
corresponding non-metric Lagrangian, and it turns out that the light ray approximation of area
metric electrodynamics yields propagation of light along Finsler geodesics. This is just one
example where a non-metric field theory yields propagation of its ray or point particle approxi-
mation along Finsler geodesics. This principle can be extended to a wide class of causally well
behaved field theories as discussed in [28]. In these frameworks, the Finsler geometry emerg-
ing through the point particle limit is not necessarily considered to be the geometry of space-
time, so the problem of non-existing geometric objects caused by possible non-differentiability
of the Finsler function does not appear.

In a similar spirit but a complete different topic Finsler geometry appears in the description
of seismic rays, respectively in the geometric optics approximation of waves in media, see for
example [29]. There the starting point is to consider the Cauchy equation which describes the
displacement u(t, x) of a continuum

ρ(x)
d2uj(t, x)

dt2
= ∂iσ

ij(x) . (3.2)

The indices i, j run only from 1 to 3 since one describes the propagation of waves through
a spatial medium in absolute non-relativistic time. The quantity ρ(x) is the mass density and
σij denotes the stress tensor of the medium. As in the case of general field theories de-
scribed above, on studies the solvability condition of this equation and obtains a Hamiltonian
H(p) which may be a higher then second order polynomial in the momenta, depending on the
properties of the stress tensor. Via Legendre transformation this Hamiltonian leads to a La-
grangian which describes the propagation of rays through the medium along Finsler geodesics.
In [30] the objects appearing in such Finsler geometries are related directly to slowness and
ray-velocity surfaces coming from the properties of the medium. More concretely in [31] sound
waves in media are studied with the help of different techniques among which one finds the
Finsler geometric description. This analysis of the Cauchy equation works in a fixed 3+1 split of
spacetime with a positive definite spatial Finsler structure, therefore usually no problems with
the differentiability of the Finsler function appear.

Since for the description of rays from general Hamiltonians Finsler geometry has been found
to be a useful tool, Fermats principle has been in discussed in this context, i.e., that the path
along which particles, respectively, rays, travel are geodesics of the Finsler length measure.
For the propagation of light on Finsler geometries this analysis was done by Perlick in [32] and
for the propagation of rays in anisotropic inhomogeneous media by Cerveny in [33].

3.2. Spacetime geometry

In contrast to the appearance of Finsler geometry in the study of Hamiltonians and Lagrangians
derived from partial differential equations describing physical systems, there exist several at-
tempts to consider Finsler geometry as the geometry of spacetime, on a fundamental and on a
phenomenological level.
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3.2.1. Anisotropic geometry and electrodynamics

The two best known Finsler length measures applied in this context are the so called Randers
and Bogoslovsky length elements. They contain a one-form A, respectively a vector field V in
addition to a metric g.

The Randers length element is given by

FR =
√
|gab(x)yayb|+Aa(x)ya . (3.3)

It was introduced in 1941 by G. Randers [34] on a four dimensional spacetime in order to study
the inclusion of a preferred time direction into the geometry of spacetime. Finsler spaces with
a Randers length element are called Randers spaces nowadays. The geodesics of Randers
spaces are solutions to the Lorentz Force equations, hence can be seen as paths of charged
particles in an external electromagnetic field described by the vector potential A. Therefore
one can view Randers spaces as an approach to understand both electromagnetism and grav-
ity, as being described by an anisotropic geometry, where the vector potential A induces the
anisotropy. Randers suggests dynamics for such a length element by mapping it to a five di-
mensional metric spacetime and employing five dimensional Einstein equations. The Randers
length measure is often considered as a simple example of a Finsler length measure which is
not metric.

Another famous anisotropic spacetime model was introduced by Bogoslovsky 1977 in [35].
Studying the most general transformations which do not change the massless wave equation he
deduces deformed Lorentz transformations which leave the following length measure invariant

FB = (|Vaya|)r(
√
|ηabyayb|)1−r, ηabV

aV b = V aVa = 0 . (3.4)

It contains a null-vector V of the Minkowski metric η which introduces an anisotropy into the
geometry. To obtain dynamics for such a length measure Bogoslowsky suggested to replace η
by a general Lorentzian metric g determined by the Einstein equations and to treat the vector
field as additional matter field [36]. The term very special relativity was introduced by Cohen
and Glashow [37] where they study field theories which are invariant under the subgroup of the
Poincare group formed by similarly deformed Lorentz transformations. This group theoretical
approach was then connected to the Finsler length element of Bogoslovsky by Gibbons, Gomis
and Pope in [38]. As a continuation of this idea there exist attempts to construct a general very
special relativity and apply it to cosmology for example by changing the Minkowski metric η in
Bogoslovskys length element to a Friedmann-Robertson Walker metric by Stavrinos, Kouretsis
and Stathakopoulos [39].

Here we like to point out that in these two examples, the Randers and the Bogoslovsky length
measure, the geometric tensors of Finsler geometry, introduced in section 2.2, do not exist for
all y ∈ TM \ {0}. As mentioned many times before during the review of Finsler spaces in the
previous section the problem is the failure of differentiability of the length measures on certain
subsets of TM \ {0}. For FB this subset includes the null structure.

We will revisit these anisotropic length measures when we discuss examples of Finsler
spacetimes in section 5.5. It will turn out that we can lift the Bogoslovsky length measure
to an equivalent much smoother one. Anyway this lifted length measure as well as the Randers
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length measure will still not have the desired smoothness properties. Nevertheless these length
measures will inspire us to built an anisotropic length measure from a metric and a one-form,
respectively a vector field, which posses all properties to be viable for physics.

3.2.2. Phenomenology of quantum gravity, string theory and dark matter

The possible violation of Lorentz invariance on a spacetime geometry level, not emergent as
particle limit of field theories or from physics inside media, is one field in theoretical physics
where Finsler geometry is used in certain different topics. Lorentz invariance violations mani-
festing themselves by modifications of the usual metric dispersion relation are assumed to be
generic feature of phenomenological quantum gravity models. In [40] Girelli and co-authors
connect these modified dispersion relations to Finsler functions which describe the trajectories
of particles whose momentum obeys the modified dispersion relation. This is mathematically
similar to the application from the analysis about rays or particles limits from field theories, but
differently motivated. In connection to String Theory and Leptogenesis Finsler geometry ap-
pears in [41] by Mavromatos and Sarkar where the geometry derived from a string background
leads to different non-metric dispersion relations for fermions and antifermions. Moreover in
Lorentz invariance violating extensions of the Standard model Finsler length measures appear
again as particle Lagrangians as discussed for example by Kostelecky in [42].

Not from Lorentz invariance violation but motivated from mismatch of observational data with
predictions of general relativity, like the observations of dark matter and dark energy, the free-
dom of Finsler geometry is used to fit these data. In [43] Chang and Li develop a Finsler length
measure and dynamical equations such that the result coincides with the so called MOdifed
Newton Dynamics. This work is then modified and further developed to explain the dark matter
observations of the bullet cluster [44].

These phenomenological models do not do not discuss the issue of non-differentiability in
detail neither give a precise definition of observers and their measurements, which is important
for the comparison with experimental observations.

3.2.3. Dynamics for Finsler geometries

For a proper application of Finsler geometry to be the geometry of spacetime field equations
are required which determine the geometry dynamically. In the literature different equations are
discussed.

The method used in the application of Bogoslovskys length measure to cosmology [39] is to
apply the osculating formalism of Asanov [24] to derive the field equations. In the osculating
formalism one replaces the independent tangent bundle coordinates (x, y) on which the geo-
metrical objects of a Finsler space depends by (x, y(x)), where y(x) is a vector field on the base
manifold which has to be determined or to be given a priori. The fairly complicated gravitational
equations derived from the osculating curvature scalar by Asanov, based on the curvature of
the Cartan linear connection Rqcab(x, y) (see equation 2.25),

R(x) = R(x, y(x)) = gFcb(x, y(x))Rqcqb(x, y(x)) (3.5)
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reduces in the framework of [39] after some approximations to equations formally identical
to the Einstein equations where instead of the Lorentzian metric gab(x) the osculating Finsler
metric gFab(x, y(x)) is used.

Another way to arrive at equations formally similar to the Einstein equations, but living on
the tangent bundle, see [22], is to use the Cartan linear connection introduced in equation
(2.24). One proceeds by constructing the tangent bundle curvature tensor of the Cartan linear
connection and the corresponding Ricci tensor and Ricci scalar of the manifold TM . These are
then combined to the Einstein Tensor and equated with an energy momentum tensor on the
tangent bundle to yield Einstein equations on TM . Using the notation from equation (2.22) for
the different curvature components the equations decay into

Rqiqj −
1

2
(gFabRqaqb + gFabSqaqb)gij = kTij (3.6)

Sqiqj −
1

2
(gFabRqaqb + gFabSqaqb)gij = kTīj̄ , and P qiqj = kTij̄ , (3.7)

where k is some gravitational constant, Tij are the horizontal-horizontal, Tij̄ are the horizontal-
vertical and Tīj̄ are the vertical-vertical components of some energy momentum tensor T on
TM .

A third, yet different, dynamical equation for Finsler geometries is derived from the geodesic
deviation equation (2.35) by Rutz [45]. Here the reasoning follows Piranis argument comparing
the deviation of neighbouring trajectories in Newtonian gravity and in general relativity outside
of matter. Doing the same on the level of general relativity and Finsler geometry, namely
comparing the geodesic deviation equation of both frameworks, it is concluded that outside
matter the dynamical equation in terms of the non-linear curvature Rabc is

Raaby
b = 0 . (3.8)

So there is a variety of suggestions of dynamical equations determining a Finslerian geome-
try. All of the different dynamical equations presented here make use of the geometric objects
derived from a Finsler function. The Cartan non-linear connection and the curvature of the Car-
tan non-linear or linear connections appear explicitly. In the spirit of the discussion during the
previous chapter this means that one has to be very careful for which Finsler length measures
and on which subset of TM \ {0} the equations are valid. Moreover, in all these approaches
a discussion of a suitable matter coupling is missing. For the first two equations it is not dis-
cussed what the energy momentum tensor means in the Finslerian geometry context and the
last equation is anyway considered to be valid only in the vacuum case.

We have seen that Finsler geometry is a useful tool in the analysis of the behaviour of solu-
tions of partial differential equations on the one hand, and that it is a hopeful candidate to refine
our understanding of the geometry of spacetime, hence gravity, on the other hand. What is
missing, especially for the application as spacetime geometry, is a rigorous general framework
circumventing the mathematical difficulties of indefinite Finsler length measures, rigorously de-
rived dynamics which determine the Finsler geometry of spacetime from its matter content,
and therefore a discussion of matter fields on a Finsler geometric background as well as the
description of observers. Our Finsler spacetime framework in part II of this thesis is provides
these missing ingredients.
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Before we present the Finsler spacetime framework, we study the Einstein–Hilbert action
from the viewpoint of Finsler geometry. The insight of this study in the next chapter is that the
Einstein–Hilbert action SEH [g], determining the dynamics a metric g is just a special case of
a more general action SFS [F ] determining the dynamics for a, in general non-metric Finsler,
function F . This result triggered the systematic analysis of questions, among them the open
issues mentioned above, which lead to the development of Finsler spacetimes.
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In chapter 2 we have seen that the geometry of a manifold can be described much more gen-
erally by Finsler geometry then by metric geometry. This works without any problems as long
as one works in the Finsler spaces framework as generalization of Riemannian geometry, but
is not straightforward when one wants to generalise semi-Riemannian or, especially for the
application in physics, Lorentzian geometry. In physics Finsler geometry is used for different
purposes mentioned in the previous chapter 3. But, for its applications as spacetime geometry
it is unsatisfactory that so far no framework has been developed which treats the mathematical
issues in indefinite Finsler geometry on the one hand and on the other hand provides a com-
plete treatment of the use of Finsler geometry as description of gravity. This should include
dynamics, matter coupling and the description of observers. As a preliminary step towards
this goal a toy model has been developed in the diploma theses [12] and [13]. Dynamics for
Finsler spaces were found directly from the Einstein Hilbert–action, which from the Finsler ge-
ometric point of view is just a special case of an action which determines dynamics for general
non-metric Finslerian geometries.

In section 4.1 we will illustrate the reinterpretation of the Einstein–Hilbert action as an action
for a metric Finsler function. The associated dynamics turn out to be equivalent to the Einstein
equations which determine a metric of a Riemannian manifold. Moreover we show that the
Einstein Hilbert–action in its Finsler space interpretation is just a special case of more gen-
eral action determining dynamics of general non-metric Finsler spaces. In section 4.2 we will
summarise the questions concerning the application of Finsler geometry as the geometry of
spacetime.

These will motivate the detailed study of the questions and issues which arise when one
wants to use Finsler geometry as geometry of spacetime which lead to the development of our
Finsler spacetime formalism presented in part II.

4.1. The Einstein–Hilbert action from a Finslerian viewpoint

Before we will rewrite the Einstein–Hilbert action for Finsler spaces we briefly review its origin
and its importance in physics.

The most successful understanding of gravity for over a hundred years now is provided by
Einstein’s theory of general relativity [46]. It tells us that gravity is described by the curvature of
a four dimensional Lorentzian spacetime sourced by the energy-momentum content existing on
this geometrical background where physics takes place. The dynamical equations determining
this interplay between matter and geometry are the Einstein equations

Rab −
1

2
Rgab =

8πG

c4
Tab , (4.1)
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where Rab and R are the Ricci tensor respectively the Ricci scalar, gab is the spacetime metric
and Tab is the energy-momentum tensor. These equations are most effectively derived from an
action composed of the Einstein–Hilbert action containing the Ricci-Scalar as Lagrangian and
a matter action containing the matter Lagrangian LM of choice

S[g, φi] =

∫
M

d4x
√
|det g|

(
c4

16πG
R+ LM [g, φi]

)
. (4.2)

Variation with respect to the spacetime metric yields the Einstein equations, as it is long known
and can be found in textbooks like [21]. Recall that the form of the action and the Einstein
equations is independent of the signature of the metric. In physics one considers a metric with
Lorentzian signature (−,+,+,+) but one would produce the same equations for a metric with
any signature, if one would consider the action in equation (4.2) on any metric manifold.

This is important, since due to the difficulties of indefinite Finsler geometry, we want to con-
sider the Einstein–Hilbert action during this section as an action on a four dimensional Rieman-
nian manifold (M, g), i.e. on a manifold with metric of definite signature (+,+,+,+). Equiva-
lently, in the language of Finsler spaces, one can say we consider the Einstein–Hilbert action
on a Finsler space (M,F =

√
gabyayb). For the proofs of the results presented during this

section and further details we refer to [12].
The insight we demonstrate now is that the Einstein–Hilbert action on a metric Finsler space

can be understood as an action for the Finsler function F on the tangent bundle TM , not merely
as an action for the metric g on the manifold M . At each point of M we consider the sphere Sp
in the tangent space TpM defined by

Sp =
{
y ∈ TpM |

√
g|p(y, y) = 1

}
. (4.3)

It is now just a short calculation to rewrite the Einstein–Hilbert action as an action on the
Sphere-Bundle Σ, which is the subset of the tangent bundle obtained by the union over all points
of the manifold over the Spheres Sp ⊂ TpM . By introducing suitable spherical coordinates
(xa, θα); a = 0, . . . , 3;α = 1, . . . 3 on the seven dimensional manifold Σ, derived from the induced
coordinates (xa, yb) of the tangent bundle one equates

SEH [g] =

∫
M

d4x
√

det gR =

∫
Σ

d4xd3θ
√

det g
√

deth
4

Vol(Sp)
Raby

a(θ)yb(θ) , (4.4)

where h is the pull-back of the scalar product, induced by the metric g, from TpM to Sp. Observe
that the quantity Rabyayb is, up to a sign, nothing but the metric geometry version of the con-
tracted non-linear curvature tensor of the Cartan non-linear connection Raaby

b, see equation
(2.17). This insight leads to the following reinterpretation of the Einstein–Hilbert action as an
action for metric Finsler spaces SFS , where the Finsler function F is considered as fundamental
geometric field instead of the metric and we omitted the volume pre-factor

SFS [F ] =

∫
Σ

d4xd3θ(
√

det g
√

deth Raby
ayb)|Σ . (4.5)

Adding the matter field actions, lifted trivially to the sphere bundle to this action yields the Finsler
space formulation of general relativity

S[F, φi] =

∫
Σ

d4xd3θ
(√

det g
√

deth
( c4

4πG
Raby

ayb + LM [g, φi]
))
|Σ
. (4.6)
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Every metric appearing in the actions is considered as second derivative of F 2 with respect
to the tangent space coordinates y. The matter field action is added trivially since it does not
depend on the y coordinates and one could perform the integral to recover the standard action
for the matter fields on the metric manifold. One of the central results of [12] is that the variation
of the action S in equation (4.6) with respect to F yields a scalar field equation to determine F ,
which is equivalent the Einstein equations (4.1).

Next we seek to construct an action integral which generalises the action SFS from the metric
Finsler spaces to general Finsler spaces. Therefore a general notion of the sphere bundle Σ,
integration on Σ with a suitable measure and a suitable Lagrangian must be found. The latter
is the easiest task since there is a canonical candidate, the curvature scalar built from the
contracted non-linear curvature of the Cartan non-linear connection

RF = Raab(x, y)yb . (4.7)

It does not add further derivatives of F to the action and reduces, up to a sign, to the case
discussed so far in this section in the metric limit. Moreover this curvature tensor causes the
geodesic deviation on Finsler spaces, as shown in equation (2.35). It is the same term which
was considered by Rutz as vacuum equation for her Finsler theory of gravity, as discussed
in section 3.2.3. We now sketch the extension of the action SFS . All mathematical details
will be discussed when we improve and extend this procedure to obtain dynamics for Finsler
spacetimes in part II.

The general Finsler space sphere bundle is the set Σ = {(x, y) ∈ TM |F (x, y) = 1}. A vol-
ume form on this set is obtained by introducing the so called Sasaki type metric G on TM

which respect the horizontal-vertical split of the Cartan non-linear connection in the sense that
horizontal and vertical vectors are orthogonal to each other. Moreover this metric is covariantly
constant with respect to the Cartan linear and the dynamical covariant derivative. This immedi-
ately leads to the fact that G must be built from the Finsler metric gF of the Finsler space in the
following way

G = gFabdx
a ⊗ dxb + gFabδy

a ⊗ δyb . (4.8)

Its pull-back G∗ to Σ yields the desired volume element. The extended action SFSE from which
dynamics for Finsler spaces can be derived by variation with respect to F is

SFSE [F ] =

∫
Σ

d4xd3θ(
√

detG∗ RF )|Σ . (4.9)

Observe that in contrast to the action for metric Finsler space here all building blocks of the
action depend on all coordinates (x, y) respectively after their restriction to Σ only on (x, θ). A
first variation of this action without reaching finally covariant equations of motion was attempted
in [12] and a further reinterpretation as an action for the Finsler metric gF was investigated in
[13]. These were the first mathematically rigorous attempts to derive dynamical vacuum field
equations for a Finsler geometry from an action principle.

Having arrived at this stage we see that the Einstein–Hilbert action is just a special case
of a much more general framework. We will now conclude the first part of this thesis with a
summary of questions concerning the application of Finsler geometry as spacetime geometry.
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4.2. Reasons to generalise Finsler spaces

The construction of an action principle for dynamics of Finsler spaces and the insight about the
connection to general relativity lead to questions which need to be answered in order to use
Finsler geometry as spacetime geometry. In previous such attempts collected in section 3.2,
these questions have not been answered satisfactorily. The urge to clarify these questions will
lead us to the development of Finsler spacetimes.

Perhaps the most important question for the application of Finsler geometry in physics is:

• How do we implement the concept of causality into a Finslerian spacetime geometry?

In other words can we extend the Finsler geometry framework such that it extends Lorentzian
metric geometry, without excluding a huge class of examples or not being able to describe
null geodesics, respectively the geometry of the Finsler space along its null directions? As
mentioned before, the importance for physics lies in the interpretation of null geodesics as the
curves along which massless particles propagate.

The extended dynamics from the toy model Finsler spaces from the previous section give a
hint on how it becomes possible to find a non-metric extension of general relativity. In order to
understand if this is really the case and what the consequences are we need to address:

• What is the form of the extended Einstein–Hilbert action on proper non-metric extensions
of Lorentzian metric spacetimes?

• What is the dynamical equation derived from the extended Einstein–Hilbert action?

• What do the solutions teach us about gravity?

The next open issue is the description of observers and their measurements. In the context of
Lorentzian geometry and general relativity the description of observers and their measurements
is tied to orthogonal frames of the Lorentzian spacetime metric. A frame is interpreted as the
normalized space and time directions of a specific observer who is linked to other observers by
Lorentz transformations. But if there is no spacetime metric but only a Finsler length measure:

• How are physical observers defined in a Finsler geometry setting?

• What kind of symmetry transformation relates different observers?

• What are the generic observational consequences of a non-metric spacetime geometry?

The answers to these observer and observation-related questions are the key to make predic-
tions which can be compared with experimental data and be confirmed or falsified. Without a
precise observer model predictions are hardly possible.

In order to perform a measurement there must be something for an observer to measure,
like matter fields. We discussed an action as candidate for a theory of gravity which generates
dynamics for Finsler spaces in the previous section; what is missing are matter fields and their
dynamics.

• How can matter field theories be lifted to a Finsler spacetime geometry framework?

42



4.2. Reasons to generalise Finsler spaces

• How do the fields couple to the non-metric spacetime geometry?

This lifting and coupling of matter field theories to non-metric geometry has to be done in such
a way that in case the Finsler geometry is a metric geometry one recovers general relativity
and the usual matter field theories on Lorentzian spacetimes.

As we have seen on Finsler spaces the geometric tensors depend not only on the coordinates
of the spacetime manifold but also on its tangent directions. To get a real understanding of this
dependences it is necessary to explain:

• What is the interpretation of the fibre coordinate dependence of the geometrical tensors?

We will see during the development of the Finsler spacetime formalism that the answer to this
question is closely related to the issue about observers and their measurements.

The questions collected here prepare the logical next steps in the program to obtain a math-
ematical framework for Finsler geometry to extend Lorentzian metric geometry and to apply it
as the geometry of spacetime.

Answers to these questions are given by the Finsler spacetime formalism which we will now
present in the second part of this thesis. Finsler spacetimes provide a clear notion of causality
which is encoded into the geometry, a precise definition of observers and their measurements,
field theories coupled to the geometry and gravitational dynamics which determine the geom-
etry of spacetime from its matter field content. The latter is constructed in such a way that, in
case the Finsler geometry is identical to metric geometry, one recovers all the standard field
theories known from general relativity. In this sense Finsler spacetimes become viable non-
metric geometric backgrounds for physics.
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Part II.

The Finsler spacetimes framework





This second part is the heart of this thesis. It contains the construction of our newly devel-
oped Finsler spacetime framework. We will demonstrate in every detail that Finsler spacetimes
provide a geometric background for physics which encodes causality, observers and their mea-
surements and gravity simultaneously based on Finsler geometry, i.e., based on a general
length measure instead of on a metric. It will become clear that Finsler spacetimes are capable
to address unexplained gravitational phenomena, for example the fly-by anomaly in the solar
system, and we discuss how the non-metric geometry influences the behaviour of fields theo-
ries living on this background. Moreover our Finsler spacetime framework gives the answers to
the open questions discussed in section 4.2.

The foundation of our Finsler spacetime framework makes the precise definition of Finsler
spacetimes in chapter 5. They are manifolds equipped with a smooth homogeneous function
on the tangent bundle from which the whole geometry of the manifold is derived. We discuss
the physical necessity of the requirements in our definition, we will see that they guarantee
the existence of a causal structure and we will derive the important geometric objects. The
similarities and crucial differences between our and the existing Finsler space framework we
reviewed in chapter 2 will be worked out. Finsler spacetimes extend the existing framework
similarly as indefinite metric geometry extends Riemannian geometry. To get a feeling for our
new framework we present non trivial examples of Finsler spacetimes at the end of the chapter.

In order to encode gravity into the geometry of Finsler spacetime dynamics are needed which
determine the geometry. Extending the ideas from section 4.1 to Finsler spacetimes, where we
had a look at the Einstein–Hilbert action from the viewpoint of Finsler geometry, yield such
dynamics in chapter 6. They are derived from the Finsler spacetime version of the Einstein–
Hilbert action which can be seen as an action for a homogeneous smooth function on the
tangent bundle. Moreover we prove that the dynamics obtained from the extended Einstein–
Hilbert action are consistent with the Einstein equations.

In chapter 7 we then derive a first order non-metric solution of the Finsler spacetime dy-
namics. We linearise the previously derived equation which governs the dynamics of Finsler
spacetimes around metric geometry and find a spherical symmetric solution close to Minkowski
spacetime. This solution can be interpreted as refinement of the linearised Schwarzschild so-
lution known from general relativity. We discuss how this solution addresses the fly-by anomaly
in the solar system and thus is an interesting non-metric geometry for physics.

Having obtained dynamics for Finsler spacetimes we present how observers and their mea-
surements are modelled by the geometry in chapter 8, without using a metric on spacetime.
Observers will be timelike worldlines equipped with a special orthonormal frame. It is deter-
mined by the geometry-defining tangent bundle function of Finsler spacetimes and interpreted
as the observers unit time and unit space directions. Measurements of observers are values of
physical fields at the observers tangent bundle position evaluated with respect to the observers
frame.

In chapter 9 we show how Finsler spacetimes can be equipped with matter fields observers
can measure and we discuss a general coupling principle for physical fields described by dif-
ferential forms. The coupling causes that the fields source the dynamics of Finsler spacetime.
We then use the coupling principle to study the scalar field and electrodynamics on Finsler
spacetimes.
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We remark that most of the results presented in this second part of the thesis have been
published in the articles [14], [15] and [16].
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5. Finsler spacetime geometry

Finsler spacetime geometry is a version of Finslerian geometry which we will especially develop
for the application as spacetime geometry in physics. It will become clear that it is capable to
encode causality, observers and their measurements and gravity consistently as the Lorentzian
metric spacetime geometry in general relativity. Introducing Finsler spacetimes during this
chapter we discuss here how causality is encoded into the geometry.

The mathematical foundations on which Finsler spacetime geometry will be formulated are
given by the geometry of the tangent bundle summarised in chapter 1. Finsler spacetime ge-
ometry extends Finsler spaces, i.e., geometries with Finsler metrics of definite signature, to
Finsler spacetimes, i.e., geometries with associated metrics of indefinite signature. The frame-
work is a very general non-metric Finslerian generalization of Lorentzian metric geometry, just
like Finsler space geometry is the non-metric Finslerian generalization of Riemannian geometry
which we reviewed in chapter 2.

We will begin this chapter by presenting the definition of Finsler spacetimes in section 5.1.
We will comment on the motivation for the definition from physics, especially on the existence
of a causal structure obtained from the geometry. Moreover we discuss the relation of Finsler
spacetimes to Finsler spaces. In section 5.2 we discuss the geodesic equation, the Cartan
non-linear connection, its curvature and the Berwald and Cartan linear covariant derivative on
Finsler spacetimes as well as their relation to their counterparts on Finsler spaces. The Cartan
non-linear connection is the central object which defines the geometry of Finsler spacetimes.
Later we will equip Finsler spacetimes with internal dynamics and physical field theories which
evolve according to certain well-defined field equations. These are defined and derived from
action integrals, as it is most common in physics. The necessary techniques are developed
in section 5.3 where we will see how Finsler spacetimes can be equipped with action inte-
grals so that it becomes possible to derive field equations through variation. Afterwards we will
implement the notion of symmetries of the spacetime geometry in section 5.4. Certain symme-
tries are associated to different physical situations and heavily simplify the task of solving field
equations. At the end of this chapter in section 5.5 we will demonstrate that Lorentzian metric
spacetimes are indeed Finsler spacetimes, we will present a bimetric example, with a more
complex causal structure, in detail and return to the Randers and Bogoslovsky length measure
which were introduced earlier as examples of the application of Finsler geometry in physics.

Our formulation of Finsler spacetime geometry here lays the foundation for the development
of a complete framework which enables us to use Finsler geometry as the dynamical geom-
etry of spacetime. In the next chapter we will make a first attempt to interpret Finsler space-
times from the viewpoint of physics and equip them with canonical dynamics derived from the
Einstein–Hilbert action.
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5. Finsler spacetime geometry

5.1. Finsler spacetimes

The foundation on which the Finsler spacetime framework is based is the definition of Finsler
spacetimes. This definition is designed so that it meets several requirements from physics. For
example it guarantees a precise notion of timelike directions and the existence of the geom-
etry of the manifold along null directions. Finsler spacetimes can be seen as a very general
non-metric generalization of Lorentzian metric manifolds. In this section we will present our
definition of Finsler spacetimes and comment on the necessity of the different requirements
in the definition. As our most important result we will present theorem 5.1 on the existence
of a convex cone of timelike vectors in the tangent spaces of Finsler spacetimes. Moreover,
we will discuss the relationship between the different geometric objects on Finsler spacetimes
to the corresponding geometric objects known from Finsler spaces. It will become clear that
Finsler spacetimes are a mathematical construction which include manifolds with length mea-
sure F (x, y) = (Ga1...an(x)ya1 . . . yan)1/n with non trivial null structure. The description of such
length measures was not possible in the language of Finsler spaces, see chapter 2.

5.1.1. Definition

The definition of Finsler spacetimes yields a manifold whose geometry is solely determined
by a smooth homogeneous function on the tangent bundle. In contrast to Finsler spaces this
function must not be one-homogeneous with respect to the tangent space coordinates y. The
one-homogeneous length measure for curves, which is the defining object on Finsler spaces,
is then derived from the fundamental geometry-defining function.

Definition 5.1. Finsler spacetime
A Finsler spacetime, denoted by the tripel (M,L, F ), is a four dimensional, connected, Haus-
dorff, paracompact, smooth manifold M equipped with a continuous fundamental geometry
function L : TM → R on the tangent bundle which has the following properties:

(i) L is smooth on the tangent bundle without the zero section TM \ {0};

(ii) L is positively homogeneous of degree r ≥ 2 with respect to the fibre coordinates of TM ,

L(x, λy) = λrL(x, y) ∀ λ > 0 ; (5.1)

(iii) L is reversible in the sense

|L(x,−y)| = |L(x, y)| ; (5.2)

(iv) the Hessian gLab of L with respect to the fibre coordinates, the L metric, is non-degenerate
nearly everywhere on TM and especially nearly everywhere along the null structure of the
spacetime NL = {(x, y) ∈ TM |L(x, y) = 0}

gLab(x, y) =
1

2
∂̄a∂̄bL . (5.3)

I.e., gLab is non-degenerate on TM \ A with A for a measure zero subset A so that B =

N ∩NL is a lower dimensional subset of NL.
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5.1. Finsler spacetimes

(v) the unit timelike condition holds, i.e., for all x ∈M the set

Ωx =
{
y ∈ TxM

∣∣∣ |L(x, y)| = 1 , gLab(x, y) has signature (ε,−ε,−ε,−ε) , ε =
|L(x, y)|
L(x, y)

}
(5.4)

contains a non-empty closed connected component Sx ⊂ Ωx ⊂ TxM .

The function F , defining the length measure S for curves γ on M

S[γ] =

∫
dτF (γ, γ̇) , (5.5)

and its corresponding Hessian gF associated to L are derived objects given by

F (x, y) = |L(x, y)|1/r, gFab =
1

2
∂̄a∂̄bF

2 . (5.6)

This function F nearly defines a Finsler function according to definition 2.1 except that F may
not be smooth on all of TM \{0} and that the Finsler metric gF may be degenerate on TM \A,
where A is the set on which the Hessian gL degenerates. This becomes clear from the relations
between gF and gL displayed in (equation 5.15) below. For L = gab(x)yayb, Finsler spacetimes
become Lorentzian metric spacetimes; the details are derived section 5.5.

Already here we see how the Finsler spacetime formulation of Finsler geometry extends
the Finsler space formulation. Examples which have differentiability issues along a non trivial
null structure, and thus can not be discussed on the basis of the Finsler space definition from
chapter 2, can now be studied on the basis of the fundamental geometry function L:

L(x, y) = Ga1...an(x)ya1 . . . yan ⇒ F (x, y) =
(
|Gaa...an(x)ya1 . . . yan |

) 1
n . (5.7)

Since L is smooth on TM \ {0}, so especially on NL, no differentiability problems appear,
in contrast to the discussion in section 2.1. The geometry of our Finsler spacetimes will be
formulated in terms of derivatives acting on L as we will see throughout the remaining part
of this chapter. With this it is now possible to study Finsler geometries with non trivial null
structure.

A much more restrictive definition of indefinite Finsler spaces was given by Beem in [25],
where he uses a two-homogeneous fundamental geometry function L and demands more-
over that the Hessian gLab is non-degenerate everywhere on TM \ {0}. We will see in section
5.5 that the definition of Beem excludes already simple bimetric geometries like the one with
L = (gab(x)yayb)(hmn(x)yayb), where g and h are Lorentzian metrics, while they are included in
our definition. The concept of deriving a Finsler function from another function has been used
in the context of Lagrange spaces which define certain differential equations, so called sprays,
by Antonelli in [47]. But this concept has so far never been brought into contact with indefinite
Finsler geometry; neither has it been used to construct a spacetime geometry in physics.

We will now discuss properties of Finsler spacetimes emerging directly from the definition
and comment on their importance for physics. Special attention is given to requirement (v),
since it yields a theorem that ensures the existence of a convex cone of timelike vectors, just
like the cone present in Lorentzian metric geometry.
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5. Finsler spacetime geometry

5.1.2. Properties of Finsler spacetimes and causality

The various requirements on the fundamental geometry function L in the definition 5.1 of Finsler
spacetimes are motivated from physics in the following way.

Requirement (i) and (iv), the smoothness of L and the regularity conditions on gL ensure the
existence of the geometric objects on TM \ A especially along nearly the whole null structure
NL \ B of spacetime. This guarantees the existence of null-geodesics in nearly all directions
which can be interpreted as trajectories of massless particles. We allow for a subset B ⊂ NL

along which the L metric may degenerate to include bimetric examples with intersecting light
cones. Such causal structures appear in the description of electrodynamics in general non-
disspative linear optical media [26]. Observe that even though on Finsler spacetimes there still
may appear directions in the null structure of spacetime along which geodesics and curvature
are not well-defined we still achieved a huge advantage compared to earlier approaches based
on the definition of Finsler spaces. On the latter the geometric objects and geodesics were not
well-defined on the complete null structure, here this is only the case for the measure zero set
B. In section 5.5 we discuss Finsler spacetimes with B being the empty set and with B being
non-empty. Neither of them could be discussed on the basis of Finsler spaces.

Requirement (ii) and (iii) together with the derived Finsler function in equation (5.6) ensures
that the length integral for curves (5.5) is independent of the parametrization and orientation
of the curve, hence indeed a geometric quantity. Later we interpret the length of an observers
worldline as the observers measurement of time, hence it is ensured that time is a geometric
quantity.

Requirements (iv) and (v) ensure the existence of a set of unit timelike vectors Sx which
rescale to a convex cone of timelike vectors. This property of Finsler spacetimes is of major
importance since we interpret the timelike vectors as tangents to observer worldlines. We
formulate the following theorem:

Theorem 5.1. Cone of timelike vectors
Each tangent space TxM of a Finsler spacetime (M,L, F ) contains an open convex cone

Cx =
⋃
λ>0

λSx =
⋃
λ>0

{λu |u ∈ Sx} . (5.8)

Proof of Theorem 5.1.
The techniques for this proof are adapted from Beem [25]. To begin note that the shell of unit
timelike vectors Sx is a three dimensional closed submanifold of TxM ∼= R4. We now proceed in
three steps. First we will determine the normal curvatures of Sx at some point y0 ∈ Sx. These
are defined [48] as κn(z) =

∑
a γ̈

a(0)na for curves τ 7→ γ(τ) in Sx with normalized tangent
vectors

∑
a γ̇

aγ̇a = 1 and initial conditions γa(0) = ya0 and γ̇a(0) = za. The initial tangent z is
tangent to Sx in y0, i.e., it satisfies

0 = ∂̄a|L|(x, y0)za =
2|L(x, y0)|

(r − 1)L(x, y0)
gLab(x, y0)zayb0 . (5.9)

The unit normal is given by

na =
1

N(x, y0)
∂̄a|L|(x, y0) =

|L(x, y0)|gLab(x, y0)yb0

L(x, y0)
(∑

c g
L
cp(x, y0)gLcq(x, y0)yp0y

q
0

)1/2 , (5.10)
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with N(x, y0) = 2(r − 1)−1(
∑

c g
L
cp(x, y0)gLcq(x, y0)yp0y

q
0)1/2 being the norm of ∂̄a|L|(x, y0). Since

the curves γ(τ) lie in Sx where |L| = 1, we may obtain a useful relation for γ̈(0) by differentiating
|L(x, γ(τ))| = 1; we find that gLab(x, y0)yb0γ̈

a(0) = −(r−1)gLab(x, y0)zazb. Combining these results
we find the normal curvatures

κn(z) = − (r − 1)|L(x, y0)|
N(x, y0)L(x, y0)

gLab(x, y0)zazb = −ε (r − 1)

N(x, y0)
gLab(x, y0)zazb , with ε =

L

|L| . (5.11)

Second we will show that all these normal curvatures are positive. Note that the homo-
geneity of L implies gLab(x, y0)ya0y

b
0 = 1

2r(r − 1)L(x, y0) so that y0 is gL(x, y0)-timelike, i.e.
sign(gLab(x, y0)ya0y

b
0) = ε. Due to (5.9) we know that z and y0 are gL(x, y0)-orthogonal, hence

z must be gL(x, y0)-spacelike, i.e., sign(gLab(x, y0)zazb) = −ε. This immediately confirms the
result κn(z) > 0.

Finally we will show the convexity of the set Cx defined in the theorem. Positivity of the normal
curvatures implies positivity of the principal curvatures of Sx and so the convexity of Sx itself as
embedded surface. Therefore the interior of Sx together with Sx seen as the set C̃1

x =
⋃
λ≥1 λSx

is closed, connected and convex with boundary Sx. Because of the homogeneity of L, we then
conclude that for all µ > 0 the sets C̃µx =

⋃
λ≥µ λSx are closed, connected and convex. Hence,⋃

µ>0

C̃µx = Cx (5.12)

is an open convex cone, which concludes the proof. �

The boundary of Cx must be made of y ∈ TxM such that L(x, y) = 0 or that gL(x, y) degener-
ates since Cx can be written as the set

Cx = {y ∈ TxM |∃λ > 0 : |L(x, y)| = λr, sign(gLab) = (ε,−ε,−ε,−ε), ε =
L

|L|} . (5.13)

The existence of a convex cone of timelike vectors on Finsler spacetimes generalises the
known cone of timelike vectors from Lorentzian metric geometry and gives rise to a causal
structure encoded into the spacetime geometry. Moreover we will see in section 9 when we
discuss field theories on Finsler spacetimes that the Lorentzian signature of gL is connected to
the principal symbol of the field equations on the tangent bundle. In this way local causality is
encoded into the non-metric geometry of Finsler spacetimes.

Having clarified the need for the various requirements in the definition 5.1 we will next com-
pare the geometric objects derived as derivatives with respect to the y coordinate from the
fundamental geometry function L with those derived from the Finsler function F known from
Finsler spaces.

5.1.3. Derivatives of the fundamental geometry function

As on Finsler spaces one obtains canonical geometric objects on Finsler spacetimes from dif-
ferentiation of the geometry-defining function L with respect to the tangent space coordinates y.
These can then be expressed in terms of derivatives acting on the derived Finsler function and
so be related to the objects known from Finsler spaces. The following formulae are directly
derived from the definition F = |L|1/r and sorted by the number of derivatives acting. For the
sake of readability we use both functions F and L where they appear.

53



5. Finsler spacetime geometry

Proposition 5.1. The canonical on form components
Let pa be the Finsler one-form (see definition 2.3) derived from the Finsler function of Finsler
spacetimes. The following holds:

pLa =
1

2
∂̄aL =

rL

2F 2
pa (5.14)

Moreover by Euler’s Theorem on homogeneous functions (theorem 2.1) yapLa = r
2L.

The relation between the Finsler metric gF and the L metric gL is straightforwardly derived.

Proposition 5.2. The Finsler and the L metric
Let gF and gL be the Hessians of the functions F respectively L with respect to the fibre
coordinates y from definition 5.1. Everywhere where F is differentiable we have

gFab =
2F 2

rL

(
gLab +

(2− r)
2rL

∂̄aL∂̄bL
)
, gFab =

rL

2F 2

(
gLab − 2(2− r)

r(r − 1)L
yayb

)
, (5.15)

det gF =
16F (8−4r)

r4(r − 1)
det gL . (5.16)

Since it will be lead to important simplifications during calculations throughout the next sec-
tions and chapters we display the consequences from the homogeneity properties of L on the
contracted L metric.

Proposition 5.3. Homogeneity properties of the L metric

yaybgLab = (r − 1)pLa y
a =

r(r − 1)

2
L . (5.17)

From the precise relation between the L and F metrics we can derive the signature of one
from the other. This will be of importance when we discuss observers on Finsler spacetime in
section 8.2.

Theorem 5.2. Signature of the metrics
On the set TM \(A∪{L = 0}) the metric gL is nondegenerate of signature (−1m, 1p) for natural
numbers m, p with m + p = 4. Then the Finsler metric has the same signature (−1m, 1p) on
the connected components of TM where L(x, y) > 0, and reversed signature (−1p, 1m) where
L(x, y) < 0.

Proof of Theorem 5.2.
We proof the relation between the signature of a matrix Aab and a matrix Cab that differs from
Aab by a one-form Ba that is spacelike with respect to A

Cab = Aab −BaBb , with Aab =
2F 2

rL
gLab, Ba =

√
(r − 2)F 2

r2L2
∂̄aL . (5.18)

Analysing the signature of Cab in an orthonormal basis of Aab and using the SO(m, p) freedom
in the choice of this basis proves the theorem. The details are worked out in appendix A.1. �

For unit timelike vectors y ∈ Sx which are contained in TM \(A∪{L = 0}) we have by definition
that the metric gL(x,y) has signature (1,−1,−1,−1) for L(x, y) > 0 and (−1, 1, 1, 1) for L(x, y) < 0.
Hence we conclude about the signature of gF on Sx from the theorem above:
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Corollary 5.1.
The Finsler metric gF(x,y) evaluated on the unit timelike shell Sx, and hence on the cone of
timelike vectors Cx, has always Lorentzian signature: sign(gF|Cx) = sign(gF|Sx) = (1,−1,−1,−1).

Having collected the important relations between the second fibre coordinate derivatives of L
and F , we now display the relation of the third derivative of L to the Cartan tensor from definition
2.5.

Proposition 5.4. The Cartan tensor
Let Cabc be the Cartan tensor derived from the Finsler function of Finsler spacetimes. The
following holds:

CLabc =
1

2
∂cg

L
ab =

rL

2F 2

(
Cabc −

r − 2

2F 4
papbpc +

3(r − 2)

F 2
gF(abpc)

)
. (5.19)

The Cartan one-form ΘL is, equivalent as on Finsler spaces (definition 2.6), the one-form with
coefficients pLa

ΘL = pLadxa =
1

2
∂̄aL dxa , (5.20)

and the Cartan two-form ΩL is its differential

ΩL = dΘL =
1

2
δa∂̄bLdxa ∧ dxb + gLabδy

a ∧ dxb . (5.21)

Observe that all the geometric objects defined through derivatives acting on L are well-
defined on the null structure NL of the spacetime. We stress again that even for the simple
examples L = Ga1...any

a1 . . . yan this is not the case for the geometric objects derived through
F . The same will be true for the geometry-defining connection of Finsler spacetimes.

5.2. Finsler geodesics, connection and curvature

As for Finsler spaces the geometry of Finsler spacetimes is based on a non-linear homoge-
neous connection on the tangent bundle, the concept discussed in chapter 1.2. This distin-
guished non-linear connection should be such that the geodesics of the spacetime are autopar-
allels. In order to achieve this goal we will first derive the geodesic equation of Finsler space-
times expressed through the fundamental geometry function L and present how null geodesics
can be derived and studied on Finsler spacetimes. We can then compare the geodesic equa-
tion to the autoparallel equation of non-linear connections to get a hint for the coefficients of
the connection we are searching for. We will then define an appropriate non-linear connection
and discuss its properties. The most important property is highlighted in theorem 5.4, where
we prove that the non-linear connection coefficients can equally be expressed through our fun-
damental geometry function L and the derived Finsler function F . Afterwards we introduce
the associated Berwald- and Cartan-linear covariant derivatives, their difference tensor, their
curvatures and their relation to the non-linear curvature of the non-linear connection.
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5. Finsler spacetime geometry

5.2.1. Geodesics

Geodesics are curves on Finsler spacetimes which extremise the length integral for curves γ
displayed in equation (5.5). The Euler-Lagrange equations take the usual form

d

dτ
∂̄aF (γ, γ̇)− ∂aF (γ, γ̇) = 0 , (5.22)

but since F is not the fundamental object of our formalism we rewrite these equations in terms
of the fundamental geometry function L

d

dτ

(F
r

∂̄aL

L

)
− F

r

∂aL

L
= 0⇔ rL

F

d

dτ

( F
rL

)
∂̄aL+

( d
dτ
∂̄aL− ∂aL

)
= 0 . (5.23)

Expanding the derivative of ∂̄aL with respect to the curve parameter τ and introducing the L

metric yields

gLab
L

F

d

dτ

(F
L

)
∂̄aL+ γ̈b +

1

2
gLab

(
γ̇c∂c∂̄aL− ∂aL

)
= 0 . (5.24)

Hence in arclength parametrization F (γ, γ̇) = 1⇔ L = ±1 the geodesic equation is

γ̈b +
1

2
gLab

(
γ̇c∂c∂̄aL− ∂aL

)
= 0 . (5.25)

Observe that equation (5.25) could be used for null curves on Finsler spacetimes, since all
objects appearing are well-defined along null directions, but it was not derived for this case.
Therefore, in order to discuss null geodesics, we have to employ a different method. Instead of
using the length measure for curves as an action we may now study the constraint action

S̃[γ, λ] =

∫
dτ
(
L(γ, γ̇) + λ(τ)[L(γ, γ̇)− κ]

)
. (5.26)

Variation with respect to the Lagrange multiplier λ yields the constraint L(γ, γ̇) = κ with constant
κ, variation with respect to the curve γ yields

d

dτ
((1 + λ)∂̄aL)− (1 + λ)∂aL = 0⇔ λ̇

1 + λ
∂̄aL+

( d
dτ
∂̄aL− ∂aL

)
= 0 . (5.27)

For any κ we now conclude from the constraint L(γ, γ̇) = κ

d

dτ
L = γ̈a∂̄aL+ γ̇a∂aL = 0 , . (5.28)

Combining this equation with contraction of the the second equation in (5.27) with γ̇a and using
the r-homogeneity of the fundamental geometry function L yields

γ̇a
( λ̇

1 + λ
∂̄aL+

( d
dτ
∂̄aL− ∂aL

))
=

λ̇

1 + λ
rL+

d

dt
(rL)− γ̈a∂̄a − γ̇a∂aL =

rλ̇

1 + λ
κ = 0 . (5.29)

For non-null curves, κ 6= 0, we now have to conclude that λ̇ = 0, so equation (5.27) becomes
identical to the geodesic equation (5.23) in arclength parametrization. For null curves, κ = 0,
we cannot conclude from (5.29) that λ̇ = 0. Nevertheless equation (5.27) is equivalent to the
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5.2. Finsler geodesics, connection and curvature

geodesic equation (5.23) also for null curves since we can change the parametrization τ 7→ s(τ)

of the curve without altering the constraint L(γ, γ̇) = κ = 0. Choosing s(τ) such that it solves

s̈

ṡ
(r − 1) +

λ̇(s(τ))

1 + λ(s(τ))
= 0 , (5.30)

transforms equation (5.27) in the geodesic equation (5.23) with respect to the parameter s.

After this discussion we conclude that curves satisfying equation (5.23), or equivalently
(5.25), are geodesics of the Finsler spacetime. We like to point out one more time that only
due to the differentiability of L along the null structure of the spacetime is it possible to discuss
null geodesics. In terms of F , like on Finsler spaces, it is in general not possible to study the
geodesic equation along the null structure since F usually fails to be differentiable precisely
along the null structure.

In order to find the non-linear connection whose autoparallel equation (1.38) coincides with
the geodesic equation (5.25) we compare the two and realise that the non-linear connection
coefficients Na

b must satisfy

Na
b(x, y)yb =

1

2
gLab(x, y)

(
yc∂c∂̄aL(x, y)− ∂aL(x, y)

)
. (5.31)

As an immediate consequence we realise that Na
b has to be homogeneous of degree one with

respect to y. Next we will define a non-linear connection which satisfies the above equation,
and this connection will even turn out to be unique.

5.2.2. Connections and curvature

We will show that on Finsler spacetimes (M,L, F ) there exists a distinguished non-linear con-
nection whose autoparallels are geodesics of the manifold. It turns out that this connection is
the analogue to the Cartan non-linear connection on Finsler spaces , but with the important
advantage that it is derived from the fundamental geometry function L and so well-defined on
NL \B. Recall that B is the subset of the null structure NL of spacetime where gL may degen-
erate. We will discuss in detail the relation between the derivation of the connection from L and
the derivation from F , and on the consequences for the associated linear covariant derivatives
and the non-linear curvature.

Definition 5.2. Cartan non-linear connection on Finsler spacetimes
Let (M,L, F ) be a Finsler spacetime. The homogeneous non-linear connection on the tangent
bundle defined through the connection coefficients

Na
b =

1

4
∂̄b

[
gLaq

(
yp∂p∂̄qL− ∂qL

)]
, (5.32)

is called Cartan non-linear connection.

Observe that everywhere where gL is non-degenerate these connection coefficients are well-
defined, especially nearly everywhere on the null structure of spacetime.
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Theorem 5.3. Uniqueness of the Cartan non-linear connection on Finsler spacetimes
Let (M,L, F ) be a Finsler spacetime and Na

b be the connection coefficients of the Cartan
non-linear connection of Finsler spacetimes. The connection is the unique one-homogeneous
connection which satisfies

∇gLab = 0 and ΩL(p(X), p(Y )) = 0 ∀ X,Y ∈ TTM, (5.33)

where p denotes the projector onto the horizontal bundle defined by the non-linear connection,
Ω denotes the Cartan two-form (see equation 5.21) and ∇ the dynamical covariant derivative
from definition 1.12.

In other words: The Na
b in equation (5.32) define the unique connection which leaves the L

metric covariantly constant and fulfil the symmetry condition ∂̄[aN
q
b] = 0.

Proof of Theorem 5.3.
We derive the explicit form of Na

b from the conditions in the theorem. The ideas are similar to
the ones which prove the analogue result on Finsler spaces formulated in theorem 2.2. The
metric compatibility condition ∇gLab determines the symmetric part while the Cartan two-form
condition determines the anti-symmetric part of Nab, where the index of Na

b is lowered with the
L metric. The result is

Nab +Nba = ycδcg
L
ab = yc∂cg

L
ab − ycN q

c∂̄qg
L
ab (5.34)

Nab −Nba =
1

2
∂̄a∂bL−

1

2
∂̄b∂aL . (5.35)

The combination of these equations, raising the first index with the L metric yields

Na
b =

1

2
gLap

(
yc∂cg

L
ap − ycN q

c∂̄qg
L
bp +

1

2
∂̄p∂bL−

1

2
∂̄b∂pL

)
(5.36)

=
1

4

(
gLap∂̄b(y

c∂c∂̄pL− ∂pL)− 2gLabycN q
c∂̄qg

L
bp

)
(5.37)

⇒ ybNa
b =

1

2
gLaq(yc∂c∂̄pL− ∂pL) . (5.38)

The last conclusion is due to the homogeneity properties of L. Inserting equation (5.38) into
equation (5.37) yields the desired result. �

As a remark we like to point out that, by direct calculation, one finds that the fundamental
geometry function L, as well as the corresponding Finsler function F (L), is horizontally con-
stant. Moreover using this and the relation between the gL and gF we find that gF is covariantly
constant

δaL = ∂aL−N q
a∂̄qL = 0; ∇gFab = 0 . (5.39)

Now after we collected the properties of the Cartan non-linear connection we consider its
autoparallels. Recall from definition 1.13 that these are curves γ on the manifold which satisfy

γ̈a +Na
b(γ, γ̇)γ̇b = 0. (5.40)

For the connection coefficients of Cartan non-linear connection (5.32) this equation becomes

γ̈a +
1

2
gLaq

(
yp∂p∂̄qL− ∂qL

)
= 0 , (5.41)
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which is identical to the geodesic equation (5.25). The derivation only requires the Euler Theo-
rem 2.1 due to the homogeneity properties of the terms appearing in the non-linear connection
coefficients.

To name the connection identical to its counterpart on Finsler spaces is justified by the fol-
lowing important result:

Theorem 5.4. Connection coefficient identity
Let (M,L, F ) be a Finsler spacetime and Na

b be the connection coefficients of the Cartan non-
linear connection of Finsler spacetimes (equation 5.32). Then wherever F is differentiable and
gF is non-degenerate

Na
b =

1

4
∂̄b

[
gFaq

(
yp∂p∂̄qF

2 − ∂qF 2
)]

= Γabcy
c − gFaq(x, y)CqbcΓ

c
pqy

pyq , (5.42)

where Γabc(x, y) = gFaq(∂bg
F
qc + ∂cg

F
qb − ∂qgFbc) and Cabc is the Cartan tensor.

Proof of Theorem 5.4.
The first equality is obtained by expanding the connection coefficients in equation (5.32) by
use of the relation F = |L|1/r and the propositions on the geometric objects obtained from
y derivatives of L from section 5.1.3. Collecting all terms yields the desired result. For the
second equality one simply performs the derivative and uses the definition of the Finsler metric
in equation (5.6) and the Cartan tensor Cabc in equation (2.10). �

A similar statement has been proven in [47] in the context of Lagrange spaces. The last ex-
pression in equation (5.42) precisely equals the connection coefficients of the Cartan non-linear
connection on Finsler spaces introduced in equation (2.14). This proves that the non-linear con-
nection on Finsler spacetimes is nothing but the generalisation of the Cartan non-linear con-
nection on Finsler spaces. On Finsler spacetimes the coefficients can equally be expressed
by derivatives acting on L respectively on the corresponding Finsler function F . In the first
case the domain of definition is TM \ A where gL is non degenerate, while in the second one
has to examine carefully where F is differentiable. Hence the Cartan non-linear connection
coefficients on Finsler spacetimes expressed through L are the smooth continuation of the
Cartan non-linear connection coefficients introduced in terms of F on Finsler spaces to the set
where F is not differentiable. This nicely demonstrates the advantages of formulating Finsle-
rian geometry in terms of our Finsler spacetimes: the differentiability problems of F are nicely
removed.

Associated to the Cartan non-linear connection there are linear covariant derivatives respect-
ing the horizontal-vertical structure induced by the connection, similar as in the situation on
Finsler spaces discussed in section 2.3. The important ones for us are the Berwald- and
the Cartan-linear covariant derivative. Their definition is nearly identical to the one on Finsler
spaces except that they are defined through the fundamental geometry function L instead of
the Finsler function F . It turns out that this only makes a difference in the Cartan linear deriva-
tive with respect to a vertical direction; for this case we can define two different derivatives.
Only the second will be of relevance when we study observer transformations in section 8.2.2,
but for completeness we present both. The first version of the Cartan linear covariant derivative
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∇CL is defined through the following rules

∇CLδa δb = Γδqabδq; ∇CL∂̄a δb = gLqpCLpabδq (5.43)

∇CLδa ∂̄b = Γδqab∂̄q; ∇CL∂̄a ∂̄b = gLqpCLpab∂̄q . (5.44)

where the δ-Christoffel symbols Γδ are defined by

Γδ abc =
1

2
gF aq

(
δbg

F
qc + δcg

F
qb − δqgFbc

)
=

1

2
gLaq

(
δbg

L
qc + δcg

L
qb − δqgLbc

)
. (5.45)

They are related to the non-linear connection coefficients by Γδabcy
c = Na

b and can be ex-
pressed through L or F . The proof uses the relation between L and the relations from section
5.1.3. The horizontal curvature component of the covariant derivative is given by

RCLqcab = δbΓ
δq
ac − δaΓδqcb + ΓδqpbΓ

δp
ac − ΓδqpaΓ

δp
cb − gLpqCLpmcRmab . (5.46)

The second version ∇CL2 differs in the derivative with respect to the vertical direction where it
is defined through F (L) instead of L and can only be used wherever F is differentiable.

∇CL2
∂̄a

δb = gFqpCpabδq; ∇CL2
∂̄a

∂̄b = gFqpCpab∂̄q , (5.47)

which changes the horizontal components of the curvature to

RCL2q
cab = δbΓ

δq
ac − δaΓδqcb + ΓδqpbΓ

δp
ac − ΓδqpaΓ

δp
cb − gFpqCpmcRmab . (5.48)

The Berwald linear covariant derivative ∇B is defined through the following rules

∇Bδaδb = ∂̄aN
q
bδq; ∇Bδa ∂̄b = ∂̄aN

q
b∂̄q; ∇B∂̄aδb = 0; ∇B∂̄a ∂̄b = 0 , (5.49)

and its horizontal curvature components are

RBqcab = δb(∂̄aN
q
c)− δa(∂̄cN q

b) + (∂̄pN
q
b)(∂̄aN

p
c)− (∂̄pN

q
a)(∂̄cN

p
b) . (5.50)

All three linear covariant derivatives turn out to be useful tools during upcoming calculations
in the next sections and chapters, as well as the tensor which characterises their non trivial
difference.

Theorem 5.5. The S Tensor
Let (M,L, F ) be a Finsler spacetime. Wherever the L metric gL is non-degenerate,

Sabc = Γδ abc − ∂̄cNa
b (5.51)

defines a d-tensor field (see definition 1.8). The components Sabc can be written with the help
of the Finsler function F as

Sabc = −gFaq∇Cqbc = −∇Cabc (5.52)

The tensor S measures the difference between the Cartan- and the Berwald linear covariant
derivative and vanishes in case the Finsler spacetime is metric, L = gab(x)yayb.
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Proof of Theorem 5.5.
That S is indeed a tensor is obvious from the fact that it is the difference between coefficients
which define a covariant derivative. The non tensorial behaviour of Γδ abc and ∂̄cN

a
b under

induced coordinate transformations cancels in their difference. To prove equation (5.52) we
use the relation Na

b = Γδ abcy
c to equate

Sabc = −yq∂̄cΓδ abq . (5.53)

Expanding this equation with help of the definition of Γδ (equation (5.45)) in terms of F and
using that gF is covariantly constant (equation (5.39)) yields equation 5.52. From this repre-
sentation of S it is clear that it vanishes in the metric limit L = gab(x)yayb and F 2 = |gab(x)yayb|,
since the Cartan tensor does so. �

As a final remark on covariant derivatives observe that the linear covariant derivatives are
related to the dynamical covariant derivative by

ya∇CL/CL2/B
δa

= ∇ , (5.54)

and that the non-linear curvature of the Cartan non-linear connection can be expressed through
the coefficients of the linear covariant derivatives as

Rabc = [δb, δc]
a (5.55)

= −yq
(
δbΓ

δa
qc − δcΓδaqb + ΓδapbΓ

δp
qc − ΓδapcΓ

δp
qb

)
(5.56)

= −yq
(
δb(∂̄qN

a
c)− δc(∂̄qNa

b) + (∂̄pN
a
b)(∂̄qN

p
c)− (∂̄pN

a
c)(∂̄qN

p
b)
)
. (5.57)

We succeeded in finding a distinguished non-linear connection whose autoparallels are arc-
length parametrized geodesics of the Finsler spacetime. Moreover we could show that, due
to the existence of the fundamental geometry function L, the non-linear connection, its curva-
ture and its associated linear covariant derivatives are well-defined objects along all directions
of spacetime except on the set A where the L metric degenerates. This is a huge advan-
tage over the formulation of the geometry of a manifold in terms of the Finsler function F in
case the length measure admits a non trivial null structure. Observe that the connections and
the curvature tensors introduced here have the same metric limits for L = gab(x)yayb as the
ones we discussed in context of Finsler spaces. The non-linear connection coefficients be-
come Na

b(x, y) = Γabcy
c, the coefficients of the covariant derivatives become Γδabc = Γabc(x),

Cabc = 0 and the non-linear curvature becomes Rabc(x, y) = −Radbc(x)yd, where the x depen-
dent objects are the standard Christoffel symbols respectively the Riemann curvature tensor
from metric geometry.

A distinguished connection, its curvature and associated covariant derivatives are the toolbox
which describe the well-defined geometry of Finsler spacetimes. This geometric structure lays
the foundation for the use of manifolds equipped with an in general non-metric fundamental
geometry function L as geometric backgrounds for physics. But a geometric background for
physics is only interesting if we can define physical theories which live on and determine this
background. The most common way to do so is to introduce action integrals which define
the dynamics of field theories. Therefore we will now discuss integration over homogeneous
tangent bundle functions on Finsler spacetimes.
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5.3. Integration and the unit tangent bundle

Classical physics is described by field theories on Lorentzian metric spacetimes. Since Finsler
spacetimes present a natural generalization of metric spacetimes, we should be able to formu-
late field theories. We saw during the previous sections that all geometric objects on Finsler
spacetimes are homogeneous tensor fields on the tangent bundle; the same will be true for
physical fields in our construction. In this section we will develop the technology needed to
write down well-defined action integrals, and to derive the corresponding equations of motion.
As a first attempt we will consider integrals with homogeneous integrands over the whole tan-
gent bundle. Studied in so called adapted coordinates, it will turn out that they cannot be
well-defined. This observation leads us to the development of the unit tangent bundle where
integrals over homogeneous tangent bundle functions can be defined. These integrals over the
unit tangent bundle also resemble the situation on Finsler spaces in section 4.1 where integrals
over the sphere bundle were discussed in connection to the Einstein–Hilbert action.

5.3.1. Tangent bundle integrals and adapted coordinates

The most obvious Ansatz for action integrals defining dynamics of tensors living on the tangent
bundle of a Finsler spacetime (M,L, F ) would be integrals of the form∫

TM
d4xd4y f(x, y) , (5.58)

where f is some Lagrangian density of choice. All geometric objects on Finsler spacetimes
and, as it will turn out, all physical fields which may appear in a Lagrangian density will have
homogeneity properties with respect to the fibre coordinates y; and so will the Lagrangian
density itself. Analysing integrals over the tangent bundle with homogeneous integrands f in
adapted coordinates then reveals that the integral cannot be well-defined.

Instead of manifold induced coordinates ZA = (xa, yb); a, b = 0, . . . , 3; A = 0, . . . , 7 on TM
we consider now coordinates in which the homogeneity of functions is absorbed into one radial
coordinate ẐB = (x̂a, uα, R); a = 0, . . . , 3;α = 1, 2, 3; B = 0, . . . , 7:

Ẑ(Z) = (x̂a(x, y), uα(x, y), R(x, y)) = (xa, uα(x, y/F (x, y)), F (x, y)) . (5.59)

This is a well-defined coordinate transformation on TM \ NL where L 6= 0. The coordinate
transformation matrices are given by

∂ẐA

∂ZB
=

 δab 0

∂bu
α

∂b|L|1/r
∂̄bu

α

∂̄b|L|1/r

 , ∂ZA

∂ẐB
=

[
δab 0 0

∂̂by
a ∂uβy

a ya

R

]
. (5.60)

and satisfy the invertibility properties

∂ẐA

∂ZC
∂ZC

∂ẐB
=

 δab 0

∂bu
α + ∂̄cu

α∂̂by
c

∂b|L|1/r + ∂̄c|L|1/r∂̂byc
∂̄cu

α∂uβy
c ∂̄cu

α yc

R

∂̄c|L|1/r∂uβyc 1

 =

 δab 0

0

0

δαβ 0

0 1

 ,
(5.61)
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∂ZA

∂ẐC
∂ẐC

∂ZB
=

[
δab 0

∂̂by
a + ∂bu

γ∂uγy
a + ya

R ∂b|L|1/r ∂uγy
a∂̄bu

γ + ya

R ∂̄b|L|1/r

]
=

[
δab 0

0 δab

]
.

(5.62)
To see the problem with integrals like the one in equation (5.58) we look at the homogeneity
property of f in the new coordinates. Let f(x, y) be homogeneous of degree n with respect to y
and let ∂̂a, ∂α and ∂R denote the derivatives with respect to x̂a, uα respectively R, then, by the
homogeneity properties of the Ẑ coordinates and Euler’s theorem 2.1,

ya∂̄af(x, y) = nf(x, y) (5.63)

ya∂̄af(x̂(x, y), u(x, y/F (x, y)), R(x, y)) = ya(∂̄ax̂
q∂̂qf + ∂̄aû

α∂αf + ∂̄aR∂Rf) (5.64)

⇒ R∂Rf = nf . (5.65)

Hence the homogeneity properties of a function f with respect to y are absorbed into homo-
geneity properties with respect to R, so f(x, λy) = f(x̂, u, λR) = λnf(x, u,R). Since R is just
one coordinate we can rewrite the integral (5.58) to

f(x̂, uα, R) = Rnf(x, uα, 1) (5.66)

⇒
∫
TM\NL

d4xd4y f(x, y) =

∫
TM\NL

d4x̂d3udR det
[∂ZA
∂ẐB

]
Rnf(x̂, u, 1) , (5.67)

where NL denotes the null structure of the Finsler spacetimes where L vanishes. No matter
what properties f(x̂, u, 1) has, there always exist functions of homogeneity n for which the R

integration of the above integral diverges. Even if for a special n the R integration may not be
problematic since there may appear cancellations with the Jacobian from the coordinate trans-
formation, we have to conclude that the integral is not well-defined for general homogeneous
functions.

When it comes to the variation of an action integral constructed as an integral over TM like
the one discussed here, the homogeneity divergence forbids us to derive and read off the field
equations for the homogeneous object of interest. In general, a field φ on Finsler spacetimes
is a tensor field with fixed homogeneity on the tangent bundle, as we will describe in detail
in chapter 9. Therefore, the components of the field φA...B...(x, y) are homogeneous of some
degree n with respect to y, and the variation of an action integral S[φ] built on the basis of (5.58)
gives

δS[φ] =

∫
TM

d4xd4y δL̃[φ](x, y) =

∫
TM

d4xd4y
( δS[φ]

δφA...B...
δφA...B...

)
(x, y)

=

∫
TM\NL

d4x̂d3udR det
[∂ZA
∂ẐB

]
Rn
( δS[φ]

δφA...B...
δφA...B...

)
(x̂, u, 1) (5.68)

The integral over R is sensitive to the n-homogeneity of the integrand and diverges. Con-
sequently we cannot require δS[φ] = 0 in order to read off equations of motion. Note that this
problem cannot be cured by considering compactly supported δφA...B...; these simply do not ex-
ist because their homogeneity always leads to non-compact support along the fibre directions.

Anyway we are interested in integrals over general homogeneous functions and their variation
with respect to homogeneous fields, in order to be as free as possible in the construction of field
theory actions. The solution to this problem is to consider only the d4x̂d3u part of the integral
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(5.68) and to omit the dR part. Technically clean this will be achieved by the introduction of the
unit tangent bundle, on which the homogeneity of homogeneous tangent bundle functions is
removed without the loss of information.

5.3.2. Action integrals on the unit tangent bundle

Since integrals over the tangent bundle over homogeneous functions diverge generically, we
must consider an alternative formulation of action integrals. We construct them on the unit
tangent bundle and show that they lead to well-defined field equations through variation.

In the adapted coordinates defined in equation (5.59) it is clear that every function f(x, y)

homogeneous of degree n with respect to y can be expressed through

Rnf(x̂, u, 1) = Rnf|R=1(x, u). (5.69)

Hence knowing a homogeneous function on the tangent bundle is equivalent to know the func-
tion on the set R = 1 and its homogeneity. We call the set where R = 1 the unit tangent bundle.
It generalises the sphere bundle of equation (4.3) from Finsler spaces to Finsler spacetimes

Definition 5.3. The unit tangent bundle
Let (M,L, F ) be a Finsler spacetime. The unit tangent bundle Σ is the set in TM on which the
induced Finsler function F is unity

Σ = {(x, y) ∈ TM |F (x, y) = 1} . (5.70)

The restriction of a n-homogeneous function f on the tangent bundle to the unit tangent bundle
is

f(x, y)|Σ = f(x̂, u, 1) =
1

Rn
f(x̂, u,R) =

1

F (x, y)n
f(x, y) . (5.71)

The other way around one can extend any function h(x̂, u) on Σ to an n-homogeneous function
h(x, y) on the tangent bundle

h(x, y) = R(x, y)nh(x̂(x, y), u(x, y/F (x, y))) . (5.72)

For us the following procedure is important. Starting from homogeneous objects on the tangent
bundle, we will restrict them to the unit tangent bundle, where we write down an action which
yields field equations on the unit tangent bundle for the restricted object. This equation can
then be extended to the whole tangent bundle by suitable multiplication with F (x, y) = R and
determines the unrestricted object. Observe that zero-homogeneous objects on the tangent
bundle are identical to their restriction. With this in mind we consider the following integrals for
homogeneous f ∫

Σ
d4x̂d3u (f(x, y))|Σ =

∫
Σ

d4x̂d3u f(x̂, u, 1) . (5.73)

To formulate action integrals in terms of Lagrange functions instead of densities we now intro-
duce a metric G on TM . Its pull-back G∗ of G to Σ induces a canonical volume form. The
requirements for the metric are that it shall be compatible with the geometric structure of the
Finsler spacetime, i.e., respect the horizontal-vertical structure induced by the Cartan non-
linear connection. Horizontal and vertical vectors shall be orthogonal and be treated equiva-
lently, the metric shall be covariant constant with respect to the dynamical covariant derivative
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and it shall be homogeneous as tensor. This directly leads to two Finsler spacetime versions of
the Sasaki-type metric which we already encountered during the generalisation of the Einstein–
Hilbert action on Finsler spaces in equation (4.8):

Definition 5.4. Sasaki metric on Finsler spacetimes
Let (M,L, F ) be a Finsler spacetime and dxa and δya be the local horizontal and vertical cotan-
gent bundle basis on the tangent bundle. The following metrics on the tangent bundle are called
F Sasaki metric GF and L Sasaki metric GL

GF = −gFabdxa ⊗ dxb − 1

F 2
gFabδy

a ⊗ δyb (5.74)

GL = gLabdx
a ⊗ dxb +

gLab
F 2

δya ⊗ δyb . (5.75)

They are 0 respectively r − 2-homogeneous as tensor and identical in the metric limit L =

gab(x)yayb for timelike (gab(x)yayb < 0) directions.

When we discuss the coupling of fields to the geometry in chapter 9 we will work with the
metric GF . It will turn out that after deriving equations of motion on Σ and lifting them to TM
the equations obtained from a coupling to GF are preferable to the ones obtained with respect
to GL. The homogeneity of the metrics is counted tensorially by including the homogeneity of
the basis elements. On the set NL where L vanishes this leads to a degeneracy of GL and
GF . This issue does not bother us, since we are interested in the pull-back of the two metrics
to Σ. To calculate this pull-back we perform a coordinate transformation from manifold induced
coordinates to adapted coordinates and restrict ourselves afterwards to the set R = 1.

Theorem 5.6. Sasaki metrics in adapted coordinates
The metrics GF and GL from definition 5.4 can be expressed in the adapted coordinates
(x̂, u,R) (see equation (5.59)) as

GF = −gFab dx̂a ⊗ dx̂b − 1

R2
hFαβ δu

α ⊗ δuβ − 1

R2
dR⊗ dR (5.76)

GL = gLabdx̂
a ⊗ dx̂b +

hLαβ
R2

δuα ⊗ δuβ +
r(r − 1)L

2R4
dR⊗ dR . (5.77)

where hF\L = g
F\L
ab ∂αy

a∂βy
b and δuα = duα + (∂̄bu

αN b
a − ∂auα)dx̂a = duα + Nα

adx̂
a. Recall

that r is the degree of homogeneity of L.

Proof of Theorem 5.6.
The formulae are proven by expressing the horizontal-vertical cotangent basis from the induced
coordinates with the help of the coordinate transformation matrices (5.60) in the new coordi-
nates. For simplifications the invertibility properties from equations (5.61) and (5.62) are used.
The detailed calculation is postponed to the appendix A.2 due to its length. �

Observe that the signature of hF\Lab can be determined by knowing the signature of gF\Lab and
the sign of L, since the signature of GF\L is always (sign(gF\L), sign(gF\L)). The pull-back to
Σ can now easily be calculated by setting dR = 0 and restricting the components

GF∗ = −gFab|Σ dx̂a ⊗ dx̂b − hFαβ |Σ δuα ⊗ δuβ (5.78)

GL∗ = gLab|Σdx̂a ⊗ dx̂b + hLαβ |Σδu
α ⊗ δuβ . (5.79)
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The volume element induced by these metrics is expressed with the help of their determinants

detGF∗ = det gF|Σ dethF|Σ, detGL∗ = det gL|Σ dethL|Σ . (5.80)

Their difference lies only in a factor due to the relation between the L and F metric (equations
(5.15) and (5.16)) and the invertibility properties (5.61) and (5.62):

det gF|Σ = (det gF )|Σ = (
16F (8−4r)

r4(r − 1)
det gL)|Σ =

16

r4(r − 1)
det gL|Σ, (5.81)

hFαβ |Σ = (gFab∂αy
a∂βy

b)|Σ =
2

r
hLαβ |Σ ⇒ dethF|Σ =

8

r3
dethL|Σ, (5.82)

⇒ detGF∗ =
128

r7(r − 1)
detGL∗ . (5.83)

Note that for r = 2 the determinants coincide. Using the shorthand notation gF\L = |det g
F\L
ab |

and hF\L = |deth
F\L
αβ |, a well-defined integral over Σ of a homogeneous tangent bundle func-

tion f now reads ∫
Σ

d4x̂d3u

√
gF\LhF\L|Σ f(x, y)|Σ . (5.84)

It is invariant under manifold induced diffeomorphisms, respectively coordinate changes, by
construction. The d4x and

√
gF\L terms form an invariant scalar, the d3u and

√
hF\L are

separately invariant and f is a scalar function. Such integrals can now be used as action
integrals for fields φ on TM replacing the divergent equation (5.68) by

δS[φ] =

∫
Σ

d4x̂d3u δ(L̃[φ](x, y))|Σ =

∫
Σ

d4x̂d3u,
( δS[φ]

δφA...B...
δφA...B...

)
|Σ

(x̂, u) . (5.85)

One obtains the same equations from δS[φ] = 0 no matter whether the volume element we use
is based on the metric GF∗ or GL∗, thanks to the relation (5.83).

By restricting the domain of integration from the tangent bundle TM to the unit tangent bundle
Σ we achieved the construction of integrals which may serve as field theory actions with well-
defined variation. That means it is possible to read off equations of motion by considering
variations with compact support. The solutions of the equations of motions are extremal points
of the action.

We complete this section by deriving important integration by parts formulae which are used
extensively to derive field equations in the chapters 6 and 9.

5.3.3. Integration by parts

For tangent bundle functionsAa(x, y) that are homogeneous of degreem the following formulae
for integration by parts, expressed in terms of the L and F metric as well as the connection
coefficients of the Cartan linear covariant derivative (equation (5.45)) and the S tensor (equation
(5.51)), hold∫

Σ
d4x̂d3u

√
gFhF |Σ

(
δaA

a
)
|Σ = −

∫
Σ

d4x̂d3u
√
gFhF |Σ

[(
Γδ ppa + Sppa

)
Aa
]
|Σ
, (5.86)∫

Σ
d4x̂d3u

√
gLhL|Σ

(
δaA

a
)
|Σ = −

∫
Σ

d4x̂d3u
√
gLhL|Σ

[(
Γδ ppa + Sppa

)
Aa
]
|Σ
,∫

Σ
d4x̂d3u

√
gFhF |Σ

(
∂̄aA

a
)
|Σ = −

∫
Σ

d4x̂d3u
√
gFhF |Σ

[(
gF pq∂̄ag

F
pq − (m+ 3)ypgFpa

)
Aa
]
|Σ
,∫

Σ
d4x̂d3u

√
gLhL|Σ

(
∂̄aA

a
)
|Σ = −

∫
Σ

d4x̂d3u
√
gLhL|Σ

[(
gLpq∂̄ag

L
pq −

2(4r +m− 5)

r(r − 1)L
ypgLpa

)
Aa
]
|Σ
,
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We omitted boundary terms since, in the context where we apply these formulae, during the
variation of action integrals, the boundary terms always vanish. For covariant derivatives the
following formulae arise

∫
Σ

d4x̂d3u
√
gFhF |Σ

(
∇CLδa Aa

)
|Σ = −

∫
Σ

d4x̂d3u
√
gFhF |Σ

[
SppaA

a
]
|Σ
, (5.87)∫

Σ
d4x̂d3u

√
gFhF |Σ

(
∇BδaAa

)
|Σ = −

∫
Σ

d4x̂d3u
√
gFhF |Σ

[
2SppaA

a
]
|Σ
, (5.88)∫

Σ
d4x̂d3u

√
gFhF |Σ

(
∇A

)
|Σ = 0 . (5.89)

The relations for the covariant derivatives are straightforwardly derived from the relations for
the horizontal and vertical derivatives above. They in turn can be proven with the help of the
coordinate transformation relations (5.60) and the invertibility relations (equations (5.61) and
(5.62)). Explicit calculations can be found in the appendix A.3.

With the ability to define physical fields theories from action integrals that we gained during
this section, we are one step further in using Finsler spacetimes as non-metric geometrical
background in physics. As a further mathematical feature we now introduce symmetries of
Finsler spacetimes.

5.4. Symmetries

Symmetries of the background geometry of spacetime are associated to different physical sit-
uations. Spherical symmetry is used in the description of the solar system, homogeneous and
isotropic symmetry for cosmology and flat maximal symmetry in the absence of gravity. In
these symmetric situations the task to solve the dynamical equations describing the evolution
of a physical system simplify enormously. Here we introduce the concept of symmetries on
Finsler spacetimes and discuss the consequences of spherical, homogeneous and isotropic
and maximal symmetry on the fundamental geometry function.

5.4.1. Definition

On a symmetric Lorentzian manifold (M, g), the metric is invariant under certain diffeomor-
phisms; similarly we wish to define symmetries of a Finsler spacetime (M,L, F ) as an in-
variance of the fundamental geometry function L. Consider a diffeomorphism generated by
the vector field X = ξa(x)∂a; this acts as a coordinate change on local coordinates on M

as (xa) → (xa + ξa), and on the induced coordinates on the tangent bundle TM defined in
section 1.2 as (xa, ya) → (xa + ξa, ya + yq∂qξ

a). Hence the diffeomorphism on M induces
a diffeomorphism on TM that is generated by the complete lift XC = ξa∂a + yq∂qξ

a∂̄a of X
(see definition 1.11). The idea of implementing symmetries via complete lifts in a Finsler ge-
ometry setting appears already in [49]; here we want to make this concept precise for Finsler
spacetimes and next apply it concretely to maximal, cosmological and spherical symmetry:
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5. Finsler spacetime geometry

Definition 5.5. Symmetries of Finsler spacetimes
A symmetry of a Finsler spacetime (M,L, F ) is a diffeomorphism generated by a vector field Y
over the tangent bundle TM so that Y (L) = 0 and Y is the complete lift XC of a vector field X
over M . A Finsler spacetime is called symmetric if it possesses at least one symmetry.

The following theorem summarises important properties of Finsler spacetime symmetries.
The symmetry generators form a Lie algebra with the commutator of vector fields on TM , and
they are isomorphic to a Lie algebra of vector fields on M which becomes the usual symmetry
algebra of Lorentzian manifolds in the metric geometry limit. This not only shows that Defini-
tion 5.5 of symmetry is consistent with that of Lorentzian spacetimes, but also that the usual
Killing vectors, e.g., those for spherical symmetry, can be used to study symmetries of Finsler
spacetimes.

Theorem 5.7. The symmetry algebra
Let S be the set of symmetry-generating vector fields of a Finsler spacetime as defined in
definition 5.5 above.

(i) (S, [·, ·]) is a Lie subalgebra of the set of vector fields over TM ;

(ii) (S, [·, ·]) is isomorphic to the Lie subalgebra (π∗(S), [·, ·]) of the set of vector fields over M ;

(iii) in the metric geometry limit, (π∗(S), [·, ·]) becomes the symmetry algebra of the emerging
Lorentzian spacetime.

Proof of Theorem 5.7.
We prove each statement of the theorem separately:

(i) Let Y ∈ S; then Y (L) = 0 and (π∗Y )C − Y = 0. Both properties are linear, so that S is a
vector subspace of the Lie algebra of all vector fields on TM . It remains to be proven that
the commutator of two elements Y1, Y2 ∈ S closes in S. It is clear that [Y1, Y2](L) = 0; to
show that (π∗[Y1, Y2])C = [Y1, Y2], one uses that Yi = XC

i for some vector fields Xi on M
and that [XC

1 , X
C
2 ] = [X1, X2]C . The latter is shown by expanding both sides and use of

the definition of complete lifts of vector fields.

(ii) The inverse for π∗ on π∗(S) is given by the complete lift, hence S and π∗(S) are isomorphic
as vector spaces. The Lie algebra structure is preserved in both directions because of
[XC

1 , X
C
2 ] = [X1, X2]C , and hence also π∗[Y1, Y2] = [π∗Y1, π∗Y2].

(iii) For Y = XC ∈ S, we have ξa∂aL + yq∂qξ
a∂̄aL = 0. In the metric geometry limit L(x, y) =

gab(x)yayb, and hence ypyq(ξa∂agpq + gap∂qξ
a + gaq∂pξ

a) = ypyqLXgpq(x) = 0. Since the
Lie-derivative of the metric g does not depend on the fibre coordinates of the tangent
bundle we conclude LXgpq(x) = 0. This is the condition that defines X as the symmetry
generator of a metric spacetime. �

The consequences of what is called spherical, cosmological and maximal symmetry will be
investigated now.
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5.4.2. Spherical symmetry

Consider a Finsler spacetime (M,L, F ) and coordinates (t, r, θ, φ, yt, yr, yθ, yφ) on its tangent
bundle. Spherical symmetry is defined by the following three vector fields, that generate spatial
rotations and form the algebra so(3),

X4 = sinφ∂θ + cot θ cosφ∂φ , X5 = − cosφ∂θ + cot θ sinφ∂φ , X6 = ∂φ . (5.90)

Their complete lifts are obtained by utilising definition 1.11: For X = ξa∂a its complete lift is
XC = ξa∂a + yq∂qξ

a∂̄a. Hence

XC
4 = sinφ∂θ + cot θ cosφ∂φ + yφ cosφ∂̄θ −

(
yθ

cosφ

sin2 θ
+ yφ cot θ sinφ

)
∂̄φ , (5.91)

XC
5 = − cosφ∂θ + cot θ sinφ∂φ + yφ sinφ∂̄θ −

(
yθ

sinφ

sin2 θ
− yφ cot θ cosφ

)
∂̄φ , (5.92)

XC
6 = ∂φ . (5.93)

Applying the symmetry condition XC
6 (L) = 0 implies ∂φL = 0, while using XC

4 (L) = 0 and
XC

5 (L) = 0 to deduce (sinφXC
4 − cosφXC

5 )(L) = 0 and (cosφXC
4 + sinφXC

5 )(L) = 0 yields

∂θL = yφ cot θ∂̄φL , yφ sin2 θ∂̄θL = yθ∂̄φL . (5.94)

In order to analyse the implications of these equations on L we introduce new coordinates

u(θ) = θ , v(yθ) = yθ , w(θ, yθ, yφ)2 = (yθ)2 + sin2 θ(yφ)2 , (5.95)

while keeping (t, yt, r, yr, φ). The associated transformation of the derivatives

∂t = ∂t , ∂r = ∂r , ∂θ =
w2 − v2

w
cotu∂w + ∂u , ∂φ = ∂φ , (5.96)

∂̄t = ∂̄t , ∂̄r = ∂̄r , ∂̄θ =
v

w
∂w + ∂v , ∂̄φ = sinu

√
(w2 − v2)

w
∂w , (5.97)

makes the equations (5.94) equivalent to the simple constraints ∂uL = 0 and ∂vL = 0.
Hence we conclude from the analysis of the symmetry conditions XC

i (L) = 0 that the most
general spherically symmetric Finsler spacetime is described by a fundamental function which
is r-homogeneous in (yt, yr, w) and of the form

L(t, r, θ, φ, yt, yr, yθ, yφ) = L(t, r, yt, yr, w(θ, yθ, yφ)) , (5.98)

where w(θ, yθ, yφ) is defined in (5.95).

5.4.3. Cosmological symmetry

After our discussion of the spherically symmetric case in full detail above, we will now present
the results of a similar analysis for cosmologically Finsler spacetimes before we discuss maxi-
mal symmetry.

Cosmological symmetry describes an isotropic and homogeneous spacetime. This is a much
more symmetric situation than in the spherically symmetric scenario, and is implemented by
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requiring the following six vector fields to be symmetry generators, see for example [50],

X1 = χ sin θ cosφ∂r +
χ

r
cos θ cosφ∂θ −

χ

r

sinφ

sin θ
∂φ , (5.99)

X2 = χ sin θ sinφ∂r +
χ

r
cos θ sinφ∂θ +

χ

r

cosφ

sin θ
∂φ , (5.100)

X3 = χ cos θ∂r −
χ

r
sin θ∂θ , (5.101)

X4 = sinφ∂θ + cot θ cosφ∂φ , X5 = − cosφ∂θ + cot θ sinφ∂φ , X6 = ∂φ , (5.102)

where we write χ =
√

1− kr2 and k is constant. The complete lifts of these vector fields
are listed in appendix A.4. Applying the symmetry conditions XC

i (L) = 0 to the fundamental
function L and introducing the new coordinates

q(r) = r , s(yr) = yr , u(θ) = θ , v(yθ) = yθ , (5.103)

wC(r, θ, yr, yθ, yφ)2 =
(yr)2

1− kr2
+ r2

(
(yθ)2 + sin2 θ(yφ)2

)
, (5.104)

while keeping (t, yt) yields the following result: the homogeneous and isotropic fundamental
function L is r-homogeneous in (yt, wC) and has the form

L(t, r, θ, φ, yt, yr, yθ, yφ) = L(t, yt, wC(r, θ, yr, yθ, yφ)) . (5.105)

The constant k only appears in the expression for the coordinate wC . The value of wC can be
understood as the metric length measure on a three dimensional manifold of constant curva-
ture k. The same metric appears in the spatial part of the standard Robertson–Walker metric.

5.4.4. Maximal symmetry

A Finsler spacetime is called maximally symmetric if it admits the maximal number of symmetry
vectors possible. At this point this statement is vague since it is not clear that there exist a max-
imal number of symmetry vectors, as is the case on metric manifolds, see for example [51]. To
see that this really is the case consider the following argument. First we prove that the second
derivative of a symmetry vector field at a point is completely determined by its first derivative
and itself at that point; hence by applying derivatives to the second derivative the same holds
for all higher derivatives. Second we conclude from the Taylor expansion of the symmetry vec-
tor field around a given point that there can maximally be be n(n+ 1)/2 independent symmetry
vector fields in n dimensions, hence 10 for n = 4.

Having proven that there exists a maximal number of symmetry vector fields on Finsler space-
times we analyse them and find that they have to be equal to the maximal symmetric Lorentzian
manifolds.

Theorem 5.8. Second derivative of a symmetry vector field
Let (M,L, F ) be a Finsler spacetime and X = ξa(x)∂a be a symmetry vector field as defined in
definition 5.5. The second derivative of the horizontal lift XH = ξaδa of a symmetry vector field,
∇Bδa∇Bδbξ

c, expressed through the Berwald linear covariant derivative ∇B, can be expressed
through the first derivative ∇Bδaξc and the vector field ξa itself.
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Proof of Theorem 5.8.
Since the fundamental geometry functions is horizontally constant, δaL = 0, the symmetry
condition XC(L) = 0 can written as

∇(ξm∂̄mL) = 0 . (5.106)

Performing two derivatives with respect to the y coordinates, introducing the Berwald linear
covariant derivative (equation (5.49)) and the S-tensor defined in (5.51) we obtain from (5.106)

∇Bδpξq +∇Bδqξp + ∂̄mg
L
pq∇ξm − 2ξaSrapg

L
rq = 0 . (5.107)

The curvature of the Berwald connection RBqcab satisfies the following cyclic summation identity

RBqcab +RBqabc +RBqbca = 0 , (5.108)

and the commutator of the Berwald linear covariant derivative can be written as

∇Bδa∇Bδbξc −∇
B
δb
∇Bδaξc = RBqcabξq +Rqab∂̄qg

L
cdξ

d . (5.109)

A cyclic summation of (5.109) together with (5.108) yields

∇Bδa∇Bδbξc −∇
B
δb
∇Bδaξc +∇Bδb∇

B
δcξa −∇Bδc∇Bδbξa +∇Bδc∇Bδaξb −∇Bδa∇Bδcξb

= Rqab∂̄qg
L
cpξ

p +Rqbc∂̄qg
L
apξ

p +Rqca∂̄qg
L
bpξ

p . (5.110)

Using (5.107) on ∇Bδb∇
B
δc
ξa, ∇Bδc∇Bδaξb and ∇Bδa∇Bδcξb to interchange the index on the second co-

variant derivative with the index on the vector field, and using (5.109) to recombine ∇Bδa∇Bδbξc −
∇Bδb∇

B
δa
ξc to curvature tensors yields for the second derivative of the symmetry vector field

2∇Bδc∇Bδbξa = 2RBqcabξq + ξi(Rqab∂̄qg
L
ci −Rqbc∂̄qgLai −Rqca∂̄qgLbi)

+ ∇Bδa(∂̄mg
L
bc∇ξm − 2ξdSqbdg

L
cq)

− ∇Bδb(∂̄mg
L
ac∇ξm − 2ξdSqadg

L
cq)

− ∇Bδc(∂̄mgLab∇ξm − 2ξdSqadg
L
bq) . (5.111)

On the right hand side of the equations are still contracted second derivatives acting on the
symmetry vector field of the form ∇δa∇ξb. To get rid of these terms we contract the above
equation with yb and yc and obtain with the help of equation (5.107) and the facts that Sqabyb = 0

as well as SqabgLqiy
i = 0

ybyc∇Bδc∇Bδbξa = ∇∇ξa = Rqaby
bξq . (5.112)

Contracting (5.111) with yb we obtain an expression for ∇Bδa∇ξm in terms of lower order deriva-
tives of ξ

2yb∇Bδc∇Bδbξa = 2∇Bδc∇ξa
= 2RBqcabξqy

b + ybξi(Rqab∂̄qg
L
ci −Rqbc∂̄qgLai −Rqca∂̄qgLbi)

+∇Bδa((r − 2)∇ξc)−∇(∂̄mg
L
ac∇ξm − 2ξdSqadg

L
cq)−∇Bδc((r − 2)∇ξa)

= 2RBqcabξqy
b + ybξi(Rqab∂̄qg

L
ci −Rqbc∂̄qgLai −Rqca∂̄qgLbi) + (r − 2)(∇Bδa∇ξc −∇Bδc∇ξa)

−∇(∂̄mg
L
ac)∇ξm − ∂̄mgLac∇∇ξm + 2∇(ξdSqadg

L
cq) . (5.113)

71



5. Finsler spacetime geometry

In the last line of this equation the second derivative ∇∇ξm can be reduced to the symmetry
vector field itself by use of the equation (5.112) and the remaining second derivative term
∇Bδa∇ξc − ∇Bδc∇ξa combines again into a curvature expression. Contracting (5.107) with yp

yields (r − 1)∇ξq = ∇Bq (ξcy
c). Acting with another ∇Bp on this expression, anti-symmetrising

the free indices and using (5.109) yields

∇Bδa∇ξc −∇Bδc∇ξa = −Rqacξq . (5.114)

Thus we can replace all second derivative of ξ appearing on the right hand side of equation
(5.111) with first and zeroth derivatives wit the help equations (5.112) and (5.113). �

Theorem 5.8 guarantees that wherever a second or higher derivative of the symmetry vector
field appears, as for example in a Taylor expansion, they can be rewritten in terms of first
derivatives and the original ξa. Hence symmetry vector fields around a point p are completely
determined by the expressions ξa and ∇Bδaξb at p of which there are n+n2 in n dimensions. But
due to the symmetry equation XC(L) = 0 these are not all independent, equation (5.107) can
be rewritten as

Lpq(ab)∇Bp ξq = (δqaδ
p
b + δqbδ

p
q + ypgLqm∂̄mg

L
ab)∇Bp ξq = 2ξpSqpag

L
qb , (5.115)

which are n(n + 1)/2 constraint equations on the n2 components ∇Bp ξq. Thus there are only
n + n2 − n(n + 1)/2 = n(n + 1)/2 independent ξa and ∇Bδaξb which determine the symmetry
vector fields completely. In four dimensions this makes exactly ten, as claimed above.

Using the notations from [51] to analyse the situation on Finsler spacetimes the ten symmetry
vectors in four dimensions generating maximal symmetry are given by

Xα = C(x)αc∂c , XΩ = Ωa
bx
b∂a , (5.116)

with C(x) =
√

1−KCpqxpxq, constant K, and constant 4 × 4 matrices Cab and Ωa
b satisfying

Ωq
bCqa = −Ωq

aCqb. The four Xα are called quasi translations and the six XΩ are called quasi
rotations; their complete lifts are

XC
α = C(x)αc∂c − yb

KCbmx
m

C(x)
αc∂̄c , XC

Ω = Ωa
bx
b∂a + ybΩa

b∂̄a . (5.117)

Evaluating the symmetry conditions XC
α (L) = 0 and XC

Ω (L) = 0 on the fundamental function,
and introducing new coordinates

ua(x) = xa , vγ(y) = yγ , wM (x, y)2 = Caby
ayb +

K

C(x)2
Capx

pyaCbqx
qyb = gab(x)yayb ,

(5.118)
where γ runs over any three indices in {0, 1, 2, 3}, yields the following result: the maximally
symmetric fundamental function L is r-homogeneous in wM , and of the form

L(x, y) = L(wM (x, y)) = A wM (x, y)n . (5.119)

The final equality is obtained from Euler’s theorem for homogeneous functions. Observe that
the maximally symmetric fundamental geometry function is always a metric one. Hence all
maximally symmetric Finsler spacetimes are the well known maximally symmetric Lorentzian
spacetimes characterised by the curvature constant K.
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The symmetries introduced here will play an important role when we study the dynamics of
Finsler spacetimes in the next chapter. Spherical symmetry will give rise to a Finsler spacetime
which can be interpreted as a non-metric Finslerian refinement of the Schwarzschild solution
known from general relativity.

We conclude this chapter in which we presented the geometry of Finsler spacetimes by
showing explicitly how Lorentzian metric spacetimes are Finsler spacetimes and examining
non-metric examples.

5.5. Illustrative examples

After we introduced the mathematical details of the geometry of Finsler spacetimes (M,L, F )

we are now in the position to discuss in detail some explicit examples. These illustrate the
strength of our definition and the general theorems derived above. First we show explicitly that
Lorentzian metric spacetimes are a special case of Finsler spacetimes. In particular we will
exhibit how connection and curvature, and the causal structure of a Lorentzian metric fit into
the more general scheme discussed above. The second example shows a more complicated
causal structure with two different lightcones at each point. This Finsler spacetime goes beyond
metric manifolds, but nevertheless has well-defined timelike cones and allows a full description
of geometric objects and propagation along null directions. Afterwards we discuss anisotropic
spacetimes, which contain a Lorentzian metric and in addition a vector or a one-form field.
There will revisit the Randers and Bogoslowsky length measures and discuss them from the
Finsler spacetime point of view.

5.5.1. Lorentzian metric spacetimes

Lorentzian manifolds (M, g̃) with metric g̃ of signature (−,+,+,+) are a special type of Finsler
spacetimes (M,L, F ). They are described by the metric-induced function

L(x, y) = g̃ab(x)yayb (5.120)

which is homogeneous of degree r = 2. Recalling the definition, L(x, y) leads to the Finsler
function F (x, y) = |g̃ab(x)yayb|1/2 that is easily recognized as the Lorentzian metric spacetime
length measure for curves.

Clearly L is smooth on TM and obeys the reversibility property. The metric gLab(x, y) = g̃ab(x),
and hence is non-degenerate on TM ; so the measure zero set A = ∅ and so also is B ⊂ NL.
The signature of gL is globally (−,+,+,+), so the unit timelike condition tells us to consider
the set

Ωx =
{
y ∈ TxM

∣∣∣ ε(x, y) =
|L(x, y)|
L(x, y)

= −1
}
. (5.121)

This set has precisely two connected components, both of which are closed. We may call one
of these Sx, as displayed in figure 5.1(a). From theorem 5.1 we learn that the shell of unit
timelike vectors Sx can be rescaled to form an open convex cone Cx that contains all the usual
timelike vectors of g̃ at a point x ∈M , see figure 5.1(b).

The Finsler function F is non-differentiable on the null structure NL; there the Finsler metric
is not defined. Calculating the Finsler metric yields the results that gFab(x, y) = −g̃ab(x) on the
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sign L = 1sign L = 1

sign L = �1

sign L = �1

Sx

(a) Null structure and unit timelike vectors
on Lorentzian metric spacetimes.

Sx

(b) Rescaling the unit shell to form the
cone of timelike vectors.

Figure 5.1. Causal structure on Lorentzian spacetimes.

g̃-timelike vectors and gFab(x, y) = +g̃ab(x) on the g̃-spacelike vectors, hence the Finsler metric
changes its signature. From the behaviour of the L and the F metric we see that the Sasaki
type metrics GL and GF coincide on the timelike vectors.

The geometric objects derived from the fundamental geometry function take the familiar form
for Lorentzian manifolds. The Cartan tensor Cabc and the tensor Sabc that measure the depar-
ture from metricity vanish, because the Finsler metric does not depend on the fibre coordinates.
Moreover, the coefficients of the linear covariant derivative simply become the δ-Christoffel sym-
bols of the metric g̃, i.e., Γδ abc(x, y) = Γabc(x). The non-linear connection reduces to a linear
connection with coefficients

Na
b(x, y) = Γabc(x)yc , (5.122)

and according to (5.55) its curvature is given by the Riemann tensor of g̃ as Rcab(x, y) =

−ydRadbc(x). For Finsler spacetimes induced by Lorentzian metrics it is easy to see that
connection and curvature are expressible in terms of gLab(x, y) = g̃ab(x) and hence defined
everywhere on TM .

5.5.2. Simple bimetric Finsler structures

A simple example of a Finsler spacetime (M,L, F ) that goes beyond Lorentzian metric mani-
folds can be defined through two Lorentzian metrics h and k of signature (−,+,+,+) for which
the cone of h-timelike vectors is contained and centred in the cone of k-timelike vectors. We
discuss this simple example here in detail and comment on the case when the two null cones
of the metrics are tilted against each other and intersect. Such null structures are relevant as
covariant descriptions for certain aspects of crystal optics [26] and can now be investigated with
the help of our Finsler spacetime framework. It is worth noting that it was thought impossible to
realise two signal cones consistently in Finsler geometry [52], but we will see that this is not a
problem at all. Our example is based on the function

L = hab(x)yaybkab(x)yayb . (5.123)
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It is clear that L is homogeneous of degree r = 4, smooth on TM and obeys the reversibility
condition. The corresponding Finsler function is defined as F (x, y) = |hab(x)yaybkcd(x)ycyd|1/4.

The null structure NL is the union of the null cones of the metrics h and k, and the metric
gLab(x, y) turns out to be degenerate on a measure zero subset A 6= ∅ that forms an additional
structure between the null surfaces without intersecting them; hence in this example B = ∅.
The situation is displayed in figure 5.2.

A

L = 0

L = 0

Figure 5.2. Null structure of the bimetric Finsler spacetime (solid) and degeneracy set A of gL

(dashed dotted).

Across A, the metric gL changes its signature from (+,−,−,−) to (−,+,+,+). This change
of signature would exclude this kind of length measures from Beem’s indefinite Finsler spaces
[25] as mentioned earlier. In order to analyse the unit timelike condition, we need to compare
the signature of gL with the sign of L. One finds four connected components of the set Ωx. Two
of these are closed, two are not; one of each is displayed in figure 5.3(a). Choosing one of the
closed components to be the set Sx we can rescale it to form the complete convex cone Cx of
timelike vectors at x ∈ M according to theorem 5.1. The non-closed components will not give
rise to a convex cone when rescaled in the same way, as can be seen in figure 5.3(b).

Sx (+
,�

,�
,�

)

L
<

0

L = �1

L > 0

(�, +, +, +)

L <
0(�,+

,+
,+

)

L > 0

(+,�,�,�)L = 1

(a) Cut through two connected compo-
nents of Ωx; the inner set Sx is closed,
the outer set is not.

Cx

(b) Rescaling Sx leads to a convex cone
Cx; rescaling the outer set does not.

Figure 5.3. Causal structure on bimetric Finsler spacetimes.

As in the Lorentzian metric case the Finsler function F of this Finsler spacetime is not differ-
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5. Finsler spacetime geometry

entiable where L = 0. There the Finsler metric is not defined; it changes its signature across
the null structure and is degenerate on A. But since on Finsler spacetimes all geometric objects
are defined through the fundamental geometry function L they are well-defined on TM \ A, in
particular on NL. Hence this bimetric Finsler spacetime has a well-defined causal structure
which is more general than that of Lorentzian metric manifolds but still admits all the necessary
properties to be applicable in physics. So this bimetric Finsler spacetime is indeed a geometric
background which generalises Lorentzian metric manifolds in a well-defined way.

We remark that an example where the set B is non-empty is given by a more complicated
bimetric structure where the light cones of the two metrics hab and kab are tilted against each
other and intersect. Along the intersection of the cones the L metric degenerates clearly, since
both habyayb and kabyayb vanish

gLab = habkcdy
cyd + kabhcdy

cyd + 2hacy
ckbdy

d + 2hbcy
ckady

d . (5.124)

As long as the intersection of the cones is lower dimensional than the null structure itself, one
has control over the geometric objects nearly everywhere on the null structure; so we included
these examples into our definition of Finsler spacetimes.

5.5.3. Anisotropic Finsler spacetimes

We call a Finsler spacetimes (M,L, F ) anisotropic when the fundamental geometry function L
is not only built from a Lorentzian metric g̃(x) but also from a vector field V (x) or a one-form
A(x) on the manifold. These special Finsler spacetimes we introduce here for the first time,
they have not been considered in our journal articles. We show that special bimetric Finsler
spacetimes can be obtained in this way, but first we discuss the length measures introduced by
Randers and Bogoslovsky which we encountered when we discussed the application of Finsler
geometry in physics in chapter 3. Recall the form of length measures

FR(x, y) =
√
|g̃ab(x)yayb|+Aa(x)ya, FB(y) = (|Vaya|)q(

√
|ηabyayb|)1−q . (5.125)

The Randers length measure FR cannot be a Finsler spacetime since there does not exist
an r-homogeneous smooth function LR on TM \ {0} such that FR = |LR|1/r; the problem is
caused by the term

√
g̃abyayb. But since the non-differentiability of FR is also not on the null

structure of FR but on the set set where g̃aby
ayb = 0 one might try to refine the definition of

Finsler spacetimes by relaxing the smoothness condition on L perhaps to include the Randers
space into the framework. Anyway it is possible to study the geometry of a manifold equipped
with the Randers length measure (M,FR) with the tools from Finsler spacetimes everywhere
where g̃abyayb 6= 0.

Bogoslovsky’s length measure was considered as a generalization of flat Minkowski space-
time. Consider the following generalization which is Bogoslovsky’s length measure for g̃ab = ηab

F̃B(x, y) = (|Vc(x)yc|)r(
√
|g̃ab(x)yayb|)1−r, g̃abV

aV b = VbV
b = 0 . (5.126)

For this length measure there exists a smooth function LB on TM \{0} so that F̃B = |LB|(1−r)/2

LB = (Vcy
c)ng̃aby

ayb, g̃abV
aV b = VbV

b = 0, n ∈ N, n ≥ 0 . (5.127)
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We introduced the parameter n = 2r/(1−r) to give precise conditions which ensure the smooth-
ness of L. They translate into conditions on the original parameter r = n/(n + 2), i.e., for a
non-metric geometry r has to take a value between 1 and 1/3. Despite having this nice proper-
ties LB does not define a Finsler spacetime. Its corresponding L metric is too degenerate

gLBab = |ycVc|n
(
g̃ab +

n(n− 1)

2(ycVc)2
g̃pqy

pyqVaVb +
n

ycVc
[yaVb + ybVa]

)
. (5.128)

It degenerates along the three dimensional hyperplane A = {(x, y) ∈ TM)|g̃abyaV b = 0}
tangent to the light cone of g̃. Thus the set B = A∩NL = A where the geometry of (M,LB, FB)

is not guaranteed to exist is not a lower dimensional subset of the null structure. It is possible to
study the geometry of that manifold with the tools of Finsler spacetimes everywhere except on
the rather large set B; remarkably on the complete null cone of g̃ except the one dimensional
subspace spanned by the null vector V a. On the basis of Finsler spaces, starting from FB, not
even this would be possible.

Positive examples of anisotropic Finsler spacetime are special bimetric Length measures.
Consider a bimetric fundamental geometry function L = (g̃aby

ayb)(kcdy
cyd) with

kcd = g̃cd +Q
VaVb

g̃mnV mV n
. (5.129)

Depending on the parameter Q and the causal properties of the vector field V with respect
to the metric g̃ the metric k is a Lorentzian or Riemannian metric, or degenerate. Let V for
example be timelike with respect to the metric g̃, then k is degenerate for Q = 1; is Riemannian
for Q > 1 and Lorentzian for Q < 1.

Choosing V indeed g̃ timelike and Q < 1 but Q 6= 0 the anisotropic length measure we just
constructed realises the bimetric Finsler spacetime example with non-intersecting null cones
discussed in the previous subsection.

Keeping V timelike but Q > 2 leads to an interesting anisotropic Finsler spacetime which
is composed from a Lorentzian metric g̃ and a Riemannian metric k. The null structure of
this spacetime is given only by the cone of the Lorentzian metric. The shell of unit timelike
vectors Sx can identified by checking the signature condition on the L metric from the definition
of Finsler spacetime. It lies in the interior of the null cone of the Lorentzian metric g̃ and is
flattened compared to the shell of unit timelike vectors in the metric situation. The shell of unit
spacelike vectors here is distorted compared to the corresponding shell in Lorentzian metric
geometry. The rescaling of Sx yields the cone of timelike vectors Cx on this bimetric Finsler
spacetime which is identical to the cone of timelike vectors on Lorentzian metric spacetimes.
The requirement Q > 2 guarantees that the degeneracy set of the L metric A lies outside the
cone of timelike vectors and does not intersect the null structure, i.e., B = ∅. We depicted the
situation in figure 5.4.

The examples presented during this section demonstrate the existence of non trivial Finsler
spacetimes which can be discussed as non-metric geometric backgrounds for physics in the
Finsler spacetime framework. They admit a well-defined geometry on TM \A, especially nearly
on all of their null structureNL; there may only be a lower dimensional subsetB ⊂ NL where the
geometry is not defined. The physical significance of the set A, where the Lmetric degenerates
has to be discussed case by case. We like to point out that, due to the degeneracy of the L
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Sx

A

L < 0

(�, +, +, +)L = �1

L = 1

Figure 5.4. Null structure (solid), degeneracy set A of gL (dashed dotted), one unit timelike shell
Sx and one unit spacelike shell (dashed).

metric and the non differentiability of F 2 along the null structure, neither of the non-metric
Finsler spacetime examples could be discussed as Finsler spaces nor as indefinite Finsler
space based on the definition of Beem.

This finishes our presentation and discussion of Finsler spacetime geometry. We saw that
Finsler spacetimes nicely generalise Lorentzian metric manifolds and admit a well-defined ge-
ometry. In the following we will focus on the application of Finsler spacetimes as geometric
backgrounds for physics.
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There exists a huge variety of Finsler spacetimes as interesting geometric backgrounds, some
of them were just discussed as examples in the previous section. The question is what is their
interpretation from a physical point of view?

The applications of Finsler geometry in physics discussed in chapter 3 suggest the following
interpretations. The geometry of Finsler spacetimes can be used to describe characteristics
of media, by encoding their properties into the fundamental geometry function, or it can be
interpreted as the non-metric geometry of spacetime. We will focus on the latter during this
thesis.

With our construction of Finsler spacetimes we have provided so far the solid mathematical
geometric framework which can be used as the fundamental geometry of spacetime encoding
causality. What is still missing are dynamics determining the geometry. During this chapter we
derive such dynamics. In section 6.1 we first recall our results from our Finsler geometric view
on the Einstein–Hilbert action from chapter 4 and then extend it to Finsler spacetimes. After-
wards, in section 6.2, we derive the dynamical equation which shall determine the geometry
of a Finsler spacetime in the absence of additional non-geometric fields. It turns out that in
the metric limit it is equivalent to the Einstein vacuum equations. At the end of this chapter in
section 6.3 we discuss the consequence of the invariance of the generalised Einstein–Hilbert
action under manifold induced diffeomorphisms.

Our construction of Finsler spacetimes and their dynamics aim for an extension of general
relativity and will be further discussed in the following chapters. We will present first order
solutions to the dynamics of Finsler spacetimes beyond metric geometry which can be inter-
preted as refinement of the linearised Schwarzschild solution and which is capable to address
the fly-by anomaly in the solar system in chapter 7; we will introduce observers and their mea-
surements modelled through the geometry of Finsler spacetimes in chapter 8 and we will equip
Finsler spacetimes with action based physical field theories in chapter 9 and show how they
source the dynamics of the geometry derived in this chapter.

Moreover the dynamics we derive here lay the foundation for yet another interpretation of
Finsler spacetime geometry we like to mention here; namely to encode different physical fields,
via a fundamental geometry function L constructed from the different fields, into one geometric
picture. The spirit is similar to the ideas of Kaluza and Klein, supergravity and string theorie
[8] or Randers [34], with the difference that four dimensional Finsler spacetime geometry is
employed instead of higher dimensional metric geometry that must be dimensionally reduced.
We will comment on this option further in the outlook of this thesis
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6.1. Action principle

The key observation to find an action for the fundamental geometry function L of Finsler space-
times is the fact that the Einstein–Hilbert action we usually use in general relativity can be seen
as a very special case of a more general action which determines a general Finslerian geome-
try instead of a metric geometry. We briefly repeat the facts from chapter 4: On manifolds with
definite metric ĝ the Einstein Hilbert action can be written as an integral over all unit spheres
Sp of the metric

SEH [ĝ] =

∫
M

d4x
√

det ĝR =

∫
M

d4x
4

Vol(Sp)

∫
Sp

d3θ
√

det ĝ
√

det ĥ Raby
a(θ)yb(θ) . (6.1)

Realising that the integrand in the last expression is, up to a sign, nothing but the metric limit of a
contraction of the non-linear curvature tensor RF = Raaby

b we generalised the Einstein–Hilbert
action to an action for a general Finsler function

SFSE [F ] =

∫
{F=1}

d4xd3θ(
√

detG∗ RF )|{F=1} . (6.2)

This action was derived for Finsler functions with trivial null structure in section 4.1.

In the last chapter we have developed the notion of Finsler spacetimes which enable us to
discuss Finsler geometries with non trivial null structure. As part of the discussion we obtained
well-defined integrals of the unit tangent bundle in section 5.3 which enable us to formulate
action integrals. Now in principle one could look at the Einstein–Hilbert action on Lorentzian
spacetimes with metric g̃ and try to rewrite it in the same manner as we did for the Rieman-
nian case; as integral over the set Σ = {g̃ab(x)yayb = ±1} ⊂ TM . When we introduced the
integration on Finsler spacetimes we called Σ the unit tangent bundle and we equipped it with
coordinates (x̂a, uα); a = 0, . . . , 3;α = 1, . . . , 3. The obvious problem here is that for fixed x the
set Σx = {g̃ab(x)yayb = ±1} is non compact and so the integration we used in case of a positive
definite metric to derive equation (6.1) is in general not well-defined. Hence we cannot derive
the action for the dynamics of Finsler spacetimes from Lorentzian metric geometry in the strict
sense as we did for Finsler spaces. Nevertheless, as explained in section 5.3, the variation of
an action defined as an integral over Σ is well-defined and enables us to obtain field equations.
Furthermore, it was proven in [12] that the variation of the action (6.2) with respect to F for the
case F =

√
|g̃ab(x)yayb | yields equations equivalent to the Einstein equations, independent of

the signature of g̃.

Moreover, the Finsler curvature scalar on Finsler spacetimesR = Raaby
b = RF , see equation

(5.55), is the unique curvature scalar built solely from the non-linear curvature tensor and no
different tensors depending on L; the only geometric structure that enters is the unique Cartan
non-linear connection. No further derivatives on L are needed and none of the different linear
covariant derivatives.

The derivation on positive definite Finsler spaces, the result that in the metric case the equa-
tions of motion obtained by variation are independent of the signature of the metric and the
uniqueness argument just stated lead us to the following definition.
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Definition 6.1. Finsler spacetime dynamics
The canonical action which defines the dynamics of Finsler spacetimes is given by

SL[L] =

∫
Σ

d4x̂d3u
√
gFhF |ΣR|Σ . (6.3)

The Lagrangian is given by the canonical curvature scalar R = Raaby
b built form the curvature

d-tensor Rabc of the Cartan non-linear connection.

It is an integral over the unit tangent bundle in the form of equation (5.84) and so possesses a
well-defined variation with respect to the dynamical variable L. For the volume element, which
comes from the Sasaki metric introduced in definition 5.4, we choose gF and hF because of
their convenient homogeneity properties. As discussed earlier, for the resulting field equations
the choice between gL and hL, or gF and hF , makes no difference. We consider this action as
the canonical generalisation of the Einstein–Hilbert action to Finsler spacetimes due to the line
of argument above.

6.2. Field equation

We will now derive the equations of motion determining the fundamental geometry function L
from our canonical generalisation of the Einstein–Hilbert to Finsler spacetimes. On the basis
of the interpretations mentioned previously the field equation can be seen as a gravitational
vacuum equation, extending the Einstein vacuum equations, or as an equation containing the
dynamics of several fields, including the gravitational field, on a Lorentzian metric background.

The integrand of the action (6.3) is a homogeneous tangent bundle function restricted to
the unit tangent bundle Σ. To perform the variation with respect to L for an m-homogeneous
function f(x, y) on TM restricted to Σ it is useful to realise that

δ(f|Σ) = (δf)|Σ −
m

r
f|Σ

δL

L
, (6.4)

where r is the homogeneity of L. With the help of this formula and our results for integrations
by parts in (5.86) we can derive the vacuum field equations in three steps. The first uses the
variation formula above with f(x, y) =

√
gFhF Raaby

b and m = 5, which yields

δSL[L] =

∫
d4x̂d3u

[
δ
(√

gFhF R
)
− 5

r

√
gFhF RδL

L

]
|Σ
. (6.5)

The second step is the variation of the volume element which leads to

δSL[L] =

∫
d4x̂d3u

√
gFhF |Σ

[(
gF pqδgFpq −

6

r

δL

L

)
R+ ybδRaab

]
|Σ
, (6.6)

while in the third step we use the linear covariant derivatives (equations (5.43) and(5.49)) to
gain the following identities∫

d4x̂d3u
[√

gFhF gF pqδgFpqR
]
|Σ

=

∫
d4x̂d3u

[√
gFhF gF ab∂̄a∂̄bR

δL

rL

]
|Σ
, (6.7)
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∫
d4x̂d3u

[√
gFhF ybδRaab

]
|Σ

=

∫
d4x̂d3u

[√
gFhF 2gF ab

(
∇CLa Sb + SaSb + ∂̄a∇Sb

)δL
rL

]
|Σ
.

(6.8)
We finally arrive at the following form of the variation of the general non-metric, Finslerian
version of the Einstein–Hilbert action (6.3):

δSL[L] =

∫
d4x̂d3u

√
gFhF |Σ

[
gF ab∂̄a∂̄bR− 6R+ 2gF ab

(
∇Ba Sb + ∂̄a∇Sb

)]
|Σ
δL

rL
. (6.9)

For further details of this variation we refer the reader to appendix A.5.
Now we can read off the dynamical equation on Σ which determines L in the absence of

other fields [
gF ab∂̄a∂̄bR− 6R+ 2gF ab

(
∇Ba Sb + ∂̄a∇Sb

)]
|Σ

= 0 . (6.10)

Observe that all terms in the bracket are zero-homogeneous on TM , except the second termR
that is homogeneous of degree two. Since (R)|Σ = (R/F 2)|Σ we can replace the second term
by R/F 2 which is now also zero-homogeneous. Hence the equation can be lifted to TM in the
form

gF ab∂̄a∂̄bR−
6

F 2
R+ 2gF ab

(
∇Ba Sb + ∂̄a∇Sb

)
= 0 . (6.11)

It seems that this equation could be invalid on {L = 0} = {F = 0} where F is not differentiable
so that the Finsler metric gF would not exist. However, this is not the case: the equation is valid
also on nearly all the null structure. To see this, one expresses gF through gL with the help of
formula (5.15) and multiplies by F 2

rL

2
gLab∂̄a∂̄bR−

2(2r − 1)

(r − 1)
R+ rLgLab

(
∇Ba Sb + ∂̄a∇Sb

)
= 0 . (6.12)

The resulting equation is well-defined wherever gL is nondegenerate, and in particular on nearly
all of the null structure. Note that equation (6.11) is invariant under the transformation L 7→
Lk. For sure L and Lk lead to the same Finsler function F thus gF is invariant under this
transformation. The same is true for the curvature scalarR and the S tensor since they derived
from the non-linear connection coefficients and the δ-Christoffel symbols, which are invariant
according to equations (5.42) and (5.45).

In the metric limit L = g̃ab(x)yayb the tensors in the field equation for L reduce to R =

−yaybRab and Sa = 0, where Rab are the components of the Ricci tensor of the metric g̃.
Accordingly, the field equation becomes

−2
L

|L|R+
6

|L|Raby
ayb = 0 (6.13)

which is equivalent to the Einstein vacuum equations Rab = 0 by differentiating twice with
respect to y. We conclude that a family of solutions of the Finsler spacetime dynamics (6.11)
is induced by solutions g̃ab(x) of the vacuum Einstein equations via the fundamental functions
Lk = (g̃ab(x)yayb)k.

Our action based approach to derive dynamical equations for Finsler spacetimes is a huge
improvement compared to the previous attempts discussed in section 3.2.3. We do not need
an a priory vector field from the manifold, as in the osculating formalism, the equation is a
scalar equation on the tangent bundle for a scalar field on the tangent bundle and not simply
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form equivalent to some known filed equations and the action based derivation enables us to
couple matter fields to the geometry also via the an action principle, what guarantees that the
geometry side of the equation obeys the same conservation equation as the matter source
term automatically. The latter is for example not guaranteed by the approach of Rutz.

The field equation (6.11) for L we derived here from the non-metric Finsler spacetime version
of the Einstein–Hilbert action is the first dynamical equation for a Finsler geometry derived from
a well-defined action.

In chapter 9 we will couple further fields to the geometry of Finsler spacetimes via well-
defined field theory actions. These additional fields will produce a source term of the field
equation for L which we will derive in section 9.3.

6.3. Diffeomorphism invariance of the action

Invariances of an action yield conserved quantities. In metric geometry the invariance of the
Einstein–Hilbert action under diffeomorphisms of the manifold guarantees the divergence free-
ness of the Einstein tensor and so ensures consistency with energy conservation, i.e., the diver-
gence freeness of the energy momentum tensor. From the invariance of the Finsler spacetime
Einstein–Hilbert action SL (6.3) under manifold induced diffeomorphisms we obtain a gener-
alised conservation equation which is satisfied by the scalar on the left hand side of the field
equation (6.11).

As discussed for the symmetries of Finsler spacetimes in section 5.4 a diffeomorphism on
M , induced by a vector field X = ξa(x)∂a, induces a diffeomorphism on TM by its complete lift
Xc = ξa∂a + yq∂qξ

a∂̄a. Here we do not assume X to be a symmetry vector field of the Finsler
spacetime. The variation of the action SL under this diffeomorphism is

δXSL[L] =

∫
Σ

d4x̂d3u
(δL
δL
δXL

)
|Σ

(6.14)

with L = Raaby
b and δXL = Xc(L) = ∂̄aL∇ξa. Now integration by parts and the fact that ∂̄aL is

constant with respect to the dynamical covariant derivative ∇ yields

δXSL[L] =

∫
Σ

d4x̂d3u
√
gF gF |Σ

[
∇
( 1√

gFhF

δL
δL
∂̄aL

)]
|Σ
ξa|Σ . (6.15)

The components ξa only depend on x and SL is diffeomorphism invariant, i.e., δXSL = 0 for all
X. Hence we obtain the integral conservation equation

δXSL[L] = 0⇒
∫

Σx

d3u
√
gF gF |Σx

[
∇
( 1√

gFhF

δL
δL
∂̄aL

)]
|Σx

= 0 . (6.16)

Using equation (6.9) this can be rewritten as∫
Σx

d3u
√
gFhF |Σx

[
∇
( [
gF ab∂̄a∂̄bR− 6R+ 2gF ab

(
∇Ba Sb + ∂̄a∇Sb

)] ∂̄aL
rL

)]
|Σx

= 0 . (6.17)

To conclude from here that the integrand has to vanish is certainly to strong. To get an inside
about the connection of the above conservation equation and the divergence freeness of the
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Einstein tensor we are used to in general relativity, we study the metric limit∫
Σx

d3u

√
g̃h̃|Σx

[ybycyd
|L|

(
− 2g̃bdg̃

mn∇cRmn + 6∇cRbd
) g̃aiyi

L

]
|Σx

=
(
− 2g̃bdg̃

mn∇cRmn + 6∇cRbd
)
g̃ai

∫
Σx

d3u
√
gh|Σx

[
ybycydyi

]
|Σx

= 0 . (6.18)

The action of the dynamical covariant derivative here becomes equal to the action of the Levi-
Civita covariant derivative∇a. If g̃ would be a Riemannian metric, and so Σx would be compact,
we could perform the integral above and would find in terms of the volume of the unit three
sphere S3

p , see appendix A.6 for the calculation,∫
Σx

d3u

√
g̃h̃|Σx

[
ybycydyi

]
|Σx

=
√
g̃

2

Vol(S3
p)
g̃(bcg̃di) . (6.19)

Together with equation (6.18) this would then yield the conservation of the Einstein tensor(
−2g̃bdg̃

mn∇cRmn+6∇cRbd
)
g̃ai

2

Vol(S3
p)
g̃(bcg̃di) =

8g̃as
Vol(S3

p)

(
∇mRms−

1

2
∇mg̃msR

)
= 0 . (6.20)

But in the metric limit of Finsler spacetimes the metric g has Lorentzian signature and so Σx

is non-compact and the evaluation of the above integral cannot be done so easily. A way to
understand the integral in the Lorentzian and in the general Finsler spacetime case may be
consider it as renormalised integral [53], but this requires further investigation.
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spacetime dynamics

To work as extension of general relativity the Finsler spacetime dynamics should have solutions
L which are non-metric and they should be interesting from the point of view of physics. As a
matter of fact the field equation (6.11) is in general hard to solve. Therefore in this chapter we
will study Finsler spacetimes that describe mild deviations from Lorentzian geometry. In this
situation, the complicated Finsler gravity field equation allows a simplified perturbative treat-
ment. After a general discussion of the linearised field equation in section 7.1, we will employ
what we learned about spacetime symmetries to present a spherically symmetric solution in
section 7.2. This particular model turns out to be a refinement of the linearised Schwarzschild
solution of general relativity, and we will show that it is capable of modelling unexplained effects
in the solar system like the fly-by anomaly. With this solution we get a glimpse of what kind of
non-metric geometries can be derived from the dynamics of Finsler spacetimes, and we see
that these have interesting features from the physics point of view.

In order to construct a complete extension of general relativity it is necessary to define ob-
servers and to discuss how they perform measurements on Finsler spacetimes, what we will
do in chapter 8. It is also necessary to introduce physical matter fields and their coupling to
the Finsler spacetime geometry as well as to derive the resulting gravitational field equation
including the matter fields as source, which will be done in chapter 9.

7.1. Finsler modifications of Lorentzian geometry

Recall that the fundamental functions L = L0 and L = (L0)k define the same geometry, and
that this is respected by the field equation for L. Hence the following class of fundamental
functions gives us good control over deviations from Lorentzian metric geometry,

L =
(
g̃ab(x)yayb

)k
+H(x, y) = G(x, y) +H(x, y) . (7.1)

Here, H(x, y) is a 2k-homogeneous function with respect to y that causes the Finsler modifica-
tions of the Lorentzian metric spacetime (M, g̃). The abbreviationsG(x, y) = g̃k = (gab(x)yayb)k

should not be confused with the Sasaki-type metric on TM .
The field equation for L, here interpreted as Finsler gravity vacuum equation, can be ex-

pressed in terms of L and gLab, as derived in equation (6.12):

rL

2
gLab∂̄a∂̄bR−

2(2r − 1)

(r − 1)
R+ rLgLab

(
∇Ba Sb + ∂̄a∇Sb

)
= 0 . (7.2)

We now expand this equation to linear order in the modification H(x, y), where g̃abyayb 6= 0. In
the following calculations we suppress all higher order terms. To simplify calculations later we
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7. First order non-metric solution of Finsler spacetime dynamics

expand G and derivatives acting on G in terms of g̃ab. From the above equation we see that we
need to expand the L metric, the curvature scalarR and the S-tensor; the latter two require the
knowledge of the non-linear connection coefficients and the δ-Christoffel symbols. We display
here the results of the expansion of the required objects to first order in H. We begin with the
L metric and its inverse

gLab =
1

2
∂̄a∂̄bL = Gab +Hab = kg̃k−1

(
g̃ab −

2(k − 1)

g̃
yayb

)
+Hab (7.3)

gLab ≈ Gab −HijG
iaGjb =

1

kg̃k−1

(
g̃ab − 2(k − 1)

(2k − 1)g̃
yayb

)
−HijG

iaGjb , (7.4)

where Gab and Hab denote the Hessians of G respectively H. Using these expansions the
linearisation of the non-linear connection coefficients are

Na
b =

1

4
∂̄b

(
gLaq(ym∂m∂̄qL− ∂qL)

)
≈ N0a

b +N1a
b

= Γabcy
c +

1

4
∂̄b

[ 1

kg̃k−1
gaq(ymδ0m∂̄qH − ∂qH)− 2(k − 1)

kg̃k
yaymδ0mH

]
, (7.5)

where the Γabc are the usual Christoffel symbols of the metric g̃ab(x) and δ0m = ∂m−Γimcy
c∂̄i is

the horizontal derivative induced by the zeroth order of the non-linear connection coefficients.
The extra upper index 0 or 1 on objects indicates their order in H. To express the curvature
scalar R = Raaby

b we define

T a =
1

2
Na

by
b ≈ T 0a + T 1a

=
1

2
Γabcy

cyb +
1

4

[ 1

kg̃k−1
gaq(ymδ0m∂̄qH − ∂qH)− 2(k − 1)

kg̃k
yaymδ0mH

]
.(7.6)

With help of T and the components of the Ricci tensor Rab of the metric g̃ab(x) we can express
the curvature scalar to first order in H in a compact form

R = ybδbN
a
a − ybδaNa

b = yb∂b∂̄aT
a − 2∂aT

a + ∂̄aT
b∂̄bT

a − 2T a∂̄a∂̄bT
b

≈ R0 +R1 (7.7)

= −Rabyayb + yb∂b∂̄aT
1a − 2∂aT

1a

+ 2∂̄aT
0m∂̄mT

1a − 2T 0m∂̄m∂̄aT
1a − 2T 1m∂̄m∂̄aT

0a . (7.8)

The only S-tensor components appearing in equation (7.2) are Sa = Sqqa; from its definition in
equation (5.51) we calculate that it has no zeroth order term

Sa = −1

2
ym∂̄aΓ

δq
qm = −1

4
ym∂̄a(g

Lcdδmg
L
cd) (7.9)

≈ S1
a

= −1

2
ym∂̄a

[ 1

kg̃k−1
δ0m(g̃abHab)−

2(k − 1)(k + 2)

kg̃k
δ0mH

]
. (7.10)

We now collect all terms to write equation (7.2) to first order in H

0 ≈ g̃g̃ab∂̄a∂̄bR
0 − 6R0

+
[
g̃g̃ab∂̄a∂̄bR

1 − 6R1 − kg̃kGaiGbjHij ∂̄a∂̄bR
0 + kHGab∂̄a∂̄bR

0

+ 2g̃g̃ab(2δ0aS
1
b − 2ΓqabS

1
q + ymδ0m∂̄aS

1
b − ymΓqma∂̄qS

1
b − ymΓqmb∂̄aS

1
q )
]
. (7.11)
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The zeroth order contribution in the first line is equivalent to the Einstein vacuum equations, as
discussed in section 6.2. The first order terms in square brackets determine the Finsler mod-
ification of the metric background solution. We will now solve the linearised Finsler spacetime
dynamics for a perturbation of Minkowski spacetime.

7.2. Refinements of the linearised Schwarzschild solution

We will now use our results on symmetries and on the linearisation of vacuum Finsler gravity
around metric spacetimes to derive a particular model that refines the linearised Schwarzschild
solution and can be used to study solar system physics.

Recall from section 5.4.2 that the dependence of the general spherically symmetric funda-
mental function in tangent bundle coordinates induced by (t, r, θ, φ) is restricted to the form
L(t, r, yt, yr, w(θ, yθ, yφ)) where w2 = (yθ)2 + sin2 θ(yφ)2. We wish to study such a spherically
symmetric fundamental function that describes a Finsler modification of Lorentzian geometry.
For simplicity, we consider a bimetric four-homogeneous Finsler spacetime that perturbs the
maximally symmetric vacuum solution of the dynamics (6.11). This background solution is
given by Minkowski spacetime since for maximal symmetry we are back to metric geometry, as
discussed in section 5.4.4. The model we like to discuss assumes the following form of L

L =
(
ηaby

ayb
)2

+ ηaby
aybhcdy

cyd = (ηaby
ayb)(ηcd + hcd)y

cyd (7.12)

with hab = diag(a(r), b(r), c(r)r2, c(r)r2 sin2 θ). This Ansatz has the explicit form

L(r, yt, yr, w) =
(
− yt2 + yr

2
+ r2w2

)(
[−1 + a(r)]yt

2
+ [1 + b(r)]yr

2
+ [1 + c(r)]r2w2

)
. (7.13)

Observe that the function c(r) cannot be transformed away by defining a new radial coordinate.
Although this could remove c(r) from the metric in the right hand bracket, such a coordinate
change would generate extra terms in the metric appearing in the left hand bracket. Therefore,
the existence of the function c(r) as a physical degree of freedom is a Finsler geometric effect
that appears as a consequence of the bimetric spacetime structure assumed here.

We will now solve the linearised Finsler gravity equation (7.11) for a(r), b(r) and c(r) with the
Ansatz (7.13). Sorting the equation with respect to powers in yt, yr and w gives rise to three
equations that have to be satisfied:

−2a′ − ra′′ = 0 , ra′′ + 2b′ − 4c′ − 2rc′′ = 0 , ra′ + 2b+ rb′ − 2c− 4rc′ − r2c′′ = 0 . (7.14)

The solution of these equations is

a(r) = −A1

r
+A2, b(r) = −A1

r
+
A3

r2
, c(r) =

A4

r
− A3

r2
. (7.15)

To compare this non-metric spacetime to the linearised Schwarzschild solution of general
relativity we study its geodesics. With help of the linearised expression for the non-linear con-
nection coefficients in (7.5), the geodesic equation (5.40) ẍa + Na

b(x, ẋ)ẋb = 0 can be calcu-
lated to first order in H. As usual in spherical symmetry, setting θ = π

2 solves one of the four
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component equations immediately; the remaining equations are

0 = ẗ− 1

2

A1

r2
ṫ ṙ (7.16)

0 = r̈ − 1

4

A1

r2
ṫ2 +

1

4

(A1

r2
− 2

A3

r3

)
ṙ2 +

(
− r − A1

2
− A4

4
+

1

2

A3

r

)
φ̇2 (7.17)

0 = φ̈+
2

r

(
1− 1

4

A4

r
+

1

2

A3

r2

)
φ̇ ṙ . (7.18)

From these equations we find two constants of motion

E = ṫ
(

1 +
1

2

A1

r

)
, ` = r2

(
1 +

1

2

A4

r
− 1

2

A3

r2

)
φ̇ . (7.19)

These can be used to deduce the orbit equation from the affine normalisation condition that
F (x, ẋ) = 1 along the Finsler geodesic; we write σ for the sign of the background length mea-
sure ηabẋaẋb = −ṫ2 + ṙ2 + r2φ̇2 to obtain

1

2
ṙ2 =

E2

2

(
1− A2

2

)
+

1

2
σ
(

1 +
A1

2r

)
− `2

2r2

(
1 +

A1

2r
− A4

2r

)
+
A3

4r2

(
σ − E2

)
. (7.20)

The geodesic equations, the constants of motion and the orbit equation are well suited to
compare the bimetric linearised Finsler solution with the linearised Schwarzschild solution. To
see the differences to this solution of Einstein gravity we first note that A2 can be absorbed into
a redefinition of E, hence can be assumed to be zero. Second we introduce the Schwarzschild
radius r0 to redefine A1 = −2r0(1 + a1), A3 = 2`2a3/(E

2 − σ) and A4 = 2r0a4 in terms of
dimensionless small constants a1, a3 and a4. Then the orbit equation becomes

1

2
ṙ2 =

E2

2
+
σ

2
− σr0

2r
(1 + a1)− `2

2r2
(1 + a3) +

r0`
2

2r3
(1 + a1 + a4) . (7.21)

In the special case a1 = a3 = a4 = 0 this is precisely the orbit equation in the linearised
Schwarzschild geometry, see [54]; the same limit also applies to the geodesic equations and
the constants of motion.

The Finsler geometric refinements of the metric Schwarzschild geometry are encoded in the
constants a1, a3 and a4. These can in principle be fitted to data from solar system experiments.
Indeed, there are certain observations that cannot be fully explained by the Schwarzschild
solution [55], for instance, the fly-by anomaly [56]: for several spacecrafts it has been reported
that swing-by manoeuvres lead to a small unexplained velocity increase. This corresponds to a
change in the shape of the orbit of the spacecraft. Such a change can in principle be modelled
by Finsler refinements; the perturbations a1, a3 and a4 certainly provide possibilities to alter the
wideness of the swing-by orbit as compared to that expected from Einstein gravity. This can be
confirmed by simple numerical calculations, see figure 7.1.

We have seen that Finsler geometries exist that are extremely close to metric geometries.
Our specific example of a spherically symmetric bimetric perturbation around Minkowski space-
time could be reinterpreted as a geometry close to the linearised Schwarzschild solution of Ein-
stein gravity. The more complex causal structure, however, leads to additional constants that
modify the geodesic equations and in particular the shape of test particle orbits. This could be a
means to explain the fly-by anomaly in the solar system. We emphasize that this consequence
already at first order perturbation theory gives a glimpse on the potential of Finsler gravity.
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Figure 7.1. Numerical fly-by solutions of the geodesic equations for linearised Schwarzschild
geometry (dashed line) and the bimetric Finsler refinement (solid line) with a1 = 0,
a3 ' 0.156 and a4 = 0.1. The mass is centred at the origin an has Schwarzschild
radius r0 = 0.1. The initial conditions are r(0) = 0.5, ṙ(0) = 0.02, φ(0) = 0, φ̇(0) =

1.1 and t(0) = 0 for both curves, and ṫ(0) is calculated from the respective unit
normalization condition F (x, ẋ) = 1.

Further understanding of the dynamics and non-perturbative solutions are needed to study
the full potential of Finsler spacetimes and their dynamics as extension of Lorentzian metric
spacetimes and general relativity.
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8. Physical observers, measurements and the
length measure

In general relativity, the description of a physical observer and measurement procedures are
tied to the metric geometry of spacetime. Thus, in order to interpret Finsler spacetimes as
dynamical non-metric geometric backgrounds for physics extending Lorentzian spacetimes,
and to make observable predictions, it is necessary to define a mathematical model of physical
observers in terms of the available non-metric geometry. A precise description how observers
measure time, spatial distances and physical fields has to be implemented.

We begin this chapter in section 8.1 with an investigation of the Finsler length measure. It
turns out to be the action for point-like test particles as well as the geometric clock which de-
termines the time an observer measures. After this discussion of the length measure we will
describe observers and their measurements by the definition of a reference frame of the L,
respectively the F metric, in section 8.2. We will interpret the frame vectors as the observers
unit time and unit space directions. The components of physical fields are then measured and
interpreted by an observer with respect to this local observer frame. A model of observers
immediately poses the question of the relation between different observers and their observa-
tions. On Lorentzian metric spacetimes different observers are related by Lorentz transforma-
tions. On Finsler spacetimes it will turn out that these transformations still play a central role as
the building block of a composite observer transformation with the structure of a groupoid. In
section 8.3 we study as an example measurement an observer’s measurement of the speed of
light.

After our construction of an observer model here we will equip Finsler spacetimes with phys-
ical field theories, in addition to the geometry, in the next chapter, to complete our Finsler
spacetime framework.

8.1. Interpreting the length measure

Our two guiding principles for the interpretation of the geometric length measure are the weak
equivalence principle and the clock postulate.

The weak equivalence principle states that the trajectories of small test bodies, neither af-
fected by gravitational tidal forces nor by forces other than gravity, are independent of their
internal structure and composition [57]. Experimentally, this principle is confirmed with ex-
tremely high precision [58]; in gravity theory it has been implemented already by Newton who
postulated that gravitational mass should equal inertial mass, and then by Einstein who formu-
lated the motion of test bodies in terms of geodesics on Lorentzian spacetime where all test
bodies couple to the geometry of spacetime in the same way. We will implement the weak
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equivalence principle on Finsler spacetimes by interpreting the induced Finsler length measure
as the action for point particles. This will hold in particular for test particles that do not influence
the structure of spacetime by their presence.

Point particles are idealized small objects propagating through spacetime along a curve γ.
Here we consider point particles affected only by the Finslerian geometry of spacetime and not
by any other fields. Their dynamics are defined through the action S[γ] given by the length
functional

S[γ] =

∫
dτF (γ, γ̇) . (8.1)

The resulting equation of motion from the variation of the action with respect to γ, is the
geodesic equation on Finsler spacetimes derived in section 5.2. Expressed with the help of
the Cartan non-linear connection coefficients Na

b defined in definition 5.2

γ̈a +Na
b(γ, γ̇)γ̇b + γ̇a

2

r − 1

L

F

d

dτ

F

L
= 0 . (8.2)

We conclude that test particles propagate along the geodesics of the spacetime and so they
can be used as probes of the geometry. There exist situations in which we can treat objects
as test particles, to good approximation, and compare their trajectories with geodesics from
different spacetime geometries. From this we can draw conclusions about how well certain
spacetime geometry models describe a physical situation. One prominent situation of this
type is the comparison of the trajectory of mercury in the solar system with the geodesics
in metric Schwarzschild spacetime, or its post Newtonian approximation, as it can be found
in textbooks like [54], respectively in the living reviews [57]. When we applied the Finsler
spacetime framework to the solar system in chapter 7, we saw how the geodesics in a special
spherically symmetric Finsler spacetime model address the fly-by anomaly appearing when
spacecrafts gain velocity in swing-by manoeuvres around planets.

The second interpretation of the Finsler length measure comes from the clock postulate.
It identifies the mathematical length of observer worldlines with the proper time an observer
measures. Thus the length measure for timelike curves is a geometric definition of a clock.
Observers propagate through spacetime along their worldlines. In order to ensure a fixed
causal order of events for all observers, the wordlines have to be timelike curves, i.e., curves γ
with tangents γ̇ lying in the cone of timelike vectors defined in theorem 5.1. The proper time an
observer measures between two events P and Q along the observer’s path is then connected
to the length of the wordline segment in the following way:

Postulate 8.1. Clock Postulate
The proper time TPQ an observer on a Finsler spacetime (M,L, F ) measures along its timelike
worldline γ, between two events P = γ(τ0) and Q = γ(τ1) along the wordline, is given by the
length of the wordline segment between them

TPQ =

∫ τ1

τ0

dτ F (γ, γ̇) . (8.3)

Freely falling observers, observers only subject to forces encoded in the geometry of space-
time, move on worldlines that extremise their proper time. They are propagating along Finsler
geodesics and so are special instants of test particles.

From this definition of a finite time measure of observers we now continue to describe ob-
servers by the introduction of a local observer frame.

92



8.2. Physical observers

8.2. Physical observers

Physical observers, or objects performing measurements, measure more than just time inter-
vals; they also measure spatial length and various physical fields. To achieve this, a model
of observers requires four tangent vectors that build an orthonormal frame {eµ}3µ=0, their time
and space directions. Then measurable quantities are the components of physical fields with
respect to this frame, evaluated at the observers tangent bundle position (γ, γ̇). To compare
measurements of different observers it is necessary to communicate the results obtained by
one observer to another. This communication is realised by a certain class of transformations
between different observers; we will show that these transformations have the algebraic struc-
ture of a groupoid that generalises the usual Lorentz group in metric geometry. In the next
section we will explicitly calculate the illustrative example of an observer’s measurement of the
speed of light.

8.2.1. Observer frames

To construct an observer frame eµ at the observer’s tangent bundle position (γ, γ̇) we first iden-
tify the time direction e0 before we introduce three further spatial directions eα which complete
it into a frame. The frame will be constructed such that it lives in the horizontal tangent space of
the tangent bundle H(γ,γ̇)TM since this space is isomorphic to the tangent space of the space-
time manifold TγM and thus can be identified with directions tangent to spacetime. Recall that
the isomorphism is given by the differential of the projection map of the tangent bundle dπ|(γ,γ̇),
as discussed below equation (1.7). We will now discuss how to construct the frame and then
summarise the procedure in a precise definition below.

As explained in the previous section observers move along spacetime curves γ : τ 7→ γ(τ)

in M with timelike tangents. The parametrization can be chosen so that γ̇ ∈ Sγ is unit timelike.
According to the definition of Finsler spacetimes we now have |L(γ, γ̇)| = 1 and the signature
of gLab(γ, γ̇) is Lorentzian sign(gL) = (ε,−ε,−ε,−ε) with ε = L/|L|. Then the clock postulate
expressed through equation (8.3) tells us that γ̇ must be interpreted as the local unit time
direction and so be identified with e0 of the observers frame. We may write the normalization
condition |L(γ, γ̇)| = 1 in the form gF(γ,γ̇)(e0, e0) = 1 using the horizontal lift e0 = γ̇H of γ̇
as defined in definition 1.10. This technical identification places the observer frame in the
horizontal tangent bundle H(γ,γ̇)TM .

To identify the spatial three-space seen by an observer, we will complete e0 to a four dimen-
sional basis eµ of H(γ,γ̇)TM . We determine the three horizontal vectors eα with help of the
Cartan one-form ΘL (see equation (5.20)), respectively Θ (see equation (2.11)), of the Finsler
spacetime by the condition

0 = ΘL
(γ,γ̇)(eα) =

1

2
∂̄aL(γ,γ̇)dx

a(eα) =
r

4

L(γ, γ̇)

F (γ, γ̇)2
∂̄aF

2
(γ,γ̇)dx

a(eα)⇔ 0 = Θ(γ,γ̇)(eα). (8.4)

As long as L 6= 0 the above conditions, the one expressed in terms of L and the one ex-
pressed in terms of F , are equivalent. In terms of the metrics the conditions simply becomes
an orthogoinality condition

gL(γ,γ̇)(e0, eα) = 0 and gF(γ,γ̇)(e0, eα) = 0. (8.5)
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This construction is justified by the observation that a horizontal three-space is defined by a
conormal horizontal one-form. The only linearly independent one-form available in terms of
geometric data is the vertical form dL = ∂̄aLδy

a. This can be mapped globally to the horizontal
one-form d̃L = ∂̄aLdxa, which is proportional to the Cartan one-form. We remark that the eα
may depend less trivially on γ̇ = π∗e0 than in Lorentzian geometry because in their defining
equation gF(γ,γ̇)(e0, eα) = 0 the time direction e0 = γ̇H appears not only as a vector argument
but also in the argument of the components of the gF .

So far we identified the three dimensional orthogonal, and therefore spatial, complement
subspace span〈eα〉 to the time direction e0. But the basis of this subspace is not yet normalised.
To define a normalised frame we have the choice between the L respectively the F metric to
normalise the vectors eα. Due to the relation between both and the orthogonality condition of
the vectors e0 and eα it turns out that the difference lies in a constant factor depending only on
the homogeneity of L. Since observers’ tangents lie in the shell Sγ , we know by theorem 5.2
that the signature of the gF is (1,−1,−1,−1). It is clear from the normalization gF(γ,γ̇)(e0, e0) = 1

of the unit time direction e0 that it corresponds to the +1 direction. Hence the other three frame
vectors eα can be normalized to gFab(γ, γ̇)eaαe

b
α = −δαβ. This fixes an observer frame on Finsler

spacetimes. Observe that the normalization with respect to gF is related to the normalization
with respect to gL by

gFab(γ, γ̇)eaαe
b
β =

2

r

L

|L|g
L
ab(γ, γ̇)eaαe

b
β , (8.6)

due to the orthogonality condition equation (8.4) and the normalization of the observers tangent.
Observer frames lead to a simultaneous diagonalisation of gL and gF . We prefer the metric gF

for orthonormalisation over gL, since gF is invariant under L → Lk just like the Cartan non-
linear connection. We now summarise our construction of observers’ frames into a precise
definition.

Definition 8.1. Observer frames
Let (M,L, F ) be a Finsler spacetime. Physical observers along worldlines τ 7→ γ(τ) in M are
described by a frame basis {eµ}3µ=0 of H(γ,γ̇)TM which

(i) has a timelike vector e0 in the sense π∗e0 = γ̇ ∈ Sγ ; and

(ii) is gF -orthogonal, gF(γ,γ̇)(eµ, eν) = −ηµν = diag(1,−1,−1,−1).

They measure the components of horizontal tensor fields over TM with respect to their frame
at their tangent bundle position {eµ(γ, γ̇)}3µ=0.

By equation (8.6) one can express the second condition in the definition in terms of the L metric

gF(γ,γ̇)(eµ, eν) = −ηµν ⇔ gL(γ,γ̇)(e0, e0) =
r

2

L

|L|(r − 1), gL(γ,γ̇)(eα, eβ) = −r
2

L

|L|δµν . (8.7)

We emphasize again that the frame {eµ}3µ=0 in H(γ,γ̇)TM can be identified one to one with a
frame {π∗eµ}3µ=0 in TγM , or reversely by the horizontal lift. We will now demonstrate which kind
of transformations relate two observers and so extend Lorentz transformations.
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8.2. Physical observers

8.2.2. generalised Lorentz transformations

We already stressed the importance that observers should be able to communicate their mea-
surements. Consider two observers whose worldlines meet at a point x ∈M . Since observers
by definition 8.1 measure the components of horizontal tensor fields in their frame and at their
tangent bundle position, we need to determine which transformation uniquely maps an ob-
server frame {eµ}3µ=0 in H(x,y)TM to a second observer frame {fµ}3µ=0 in H(x,z)TM . Their
respective four-velocities, or time directions, y = π∗e0 and z = π∗f0 generically are different,
so that the two observer frames are objects in tangent spaces to TM at different points. As a
consequence, we will now demonstrate that the transformations between observers consist of
two parts: the first is a transport of the frame {eµ}3µ=0 from (x, y) to (x, z), the second will turn
out to be a Lorentz transformation. From here on we suppress the label {}3µ=0.

Theorem 8.1. Observer transformations
Consider two observer frames {eµ} in H(x,y)TM and {fµ} in H(x,z)TM on a Finsler spacetime
(M,L, F ). If z is in a sufficiently small neighbourhood around y ∈ TxM , then the following
procedure defines a unique map {eµ} 7→ {fµ}:

(i) Let t 7→ v(t) be a vertical autoparallel of the the Cartan linear covariant derivative ∇CL2

(see equation (5.47)) that connects v(0) = (x, y) to v(1) = (x, z); this satisfies π∗v̇ = 0 and
∇CL2
v̇ v̇ = 0. Determine a frame {êµ(v(t))} along v(t) by parallel transport ∇CL2

v̇ êµ = 0 with
the initial condition êµ(v(0)) = eµ.

(ii) Find the unique Lorentz transformation Λ so that fµ = Λνµêν(v(1)).

We use the second version of the Cartan linear covariant derivative in the theorem to ensure
invariance of the procedure under L→ Lk, since these define the same geometry. In the proof
it will become clear that the use of the Cartan linear covariant derivative based on F is suitable
in this case since F (v) 6= 0 and so F 2 is differentiable along v.

Proof of Theorem 8.1.
We first show that the curve v required in (i) exists. A general curve γ : τ 7→ γ(τ) = (x(τ), y(τ))

on TM has a tangent γ̇ = ẋaδa + (ẏa + Na
qẋ
q)∂̄a; it is vertical, if, and only if, ẋ = 0. Hence

the verticality condition π∗v̇ = 0 in the theorem implies v̇ = V̇ a∂̄a. The definition of the Cartan
linear covariant derivative (5.47) then tells us that ∇CL2

v̇ v̇ = 0 is equivalent to solving

V̈ a +
1

2
gF ap∂̄pg

F
bc(v)V̇ bV̇ c = 0 . (8.8)

This has a unique solution connecting (x, y) to any point (x, z) for z in a sufficiently small
neighbourhood around y in TxM . Now let {êµ(v(t))} be the parallely transported vector fields
∇CL2
v̇ êµ = 0 with êµ(v(0)) = eµ. The properties of the Cartan linear covariant derivative ensure

that the êµ are horizontal fields. Observe also that ∇CL2
v̇

(
gFv (êµ, êν)

)
= 0 along v since gF is

covariantly constant under ∇CL2. It follows that

gFv(t)(êµ(v(t)), êν(v(t))) = −ηµν (8.9)

is independent of t, and holds in particular at the final point of the transport v(1) = (x, z). We
realise that {êµ(v(1))} is an orthonormal frame with respect to gF in H(x,z)TM as well as {fµ};
hence they are related by a unique Lorentz transformation as stated in point (ii). �
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8. Physical observers, measurements and the length measure

The procedure described in theorem 8.1 provides a map between the frames of two ob-
servers at the same point of the manifold x ∈ M , but with different four-velocities y, z ∈ Sx ⊂
TxM ; we display the two parts of this procedure as Λ ◦ Py→z, i.e., as parallel transport followed
by Lorentz transformation, which is illustrated in figure 8.1. The combined maps transform
observers uniquely into one another as long as the autoparallel v connecting the vertically
different points in TM exists and is unique. This is certainly the case if (x, y) and (x, z) are suf-
ficiently close to each other. Whether the geometric structure of a specific, or maybe all, Finsler
spacetimes is such that unique transformations between all observers exist requires still further
investigation. For specific Finsler spacetime types one can for example explicitly analyse the
vertical geodesic deviation equation

∇CL2
v̇ ∇CL2

v̇ za + zmV̇ bV̇ c(CaicCimb − CaimCicb) = 0 (8.10)

where v is a vertical geodesic and z is the deviation vector to another nearby vertical geodesic.
From the analysis one obtains information about the uniqueness of the vertical geodesic con-
necting two such observers we are looking for. It is clear that in the metric limit (Cabc = 0) the
distance between vertical geodesics emerging from one observer grows linearly since, z̈ = 0,
and do not shrink again. Hence there exists only one vertical geodesic which connects two
points.

In the observer transformations on generic Finsler spacetimes there appears an additional
ingredient that is not present on metric spacetimes. Before applying the Lorentz transformation
to the frame, one has to perform a parallel transport in the vertical tangent space. In the metric
limit the vertical covariant derivative becomes trivial (the Cartan tensor vanishes) so that the
parallely transported frame does not change at all along the curve v. In this special case the
transformation of an observer thus reduces to Λ ◦ idy→z which is fully determined by a Lorentz
transformation.

x

(x, y)

(x, z)

M

TxM

H(x,z)TM

H(x,y)TM

v(t)

ê
f

e

Figure 8.1. Transformation between two observer frames: the frame {eµ} in H(x,y)TM is first
parallely transported to {êµ} in H(x,z)TM , second Lorentz transformed into the final
frame {fµ}.

The observer transformations on Finsler spacetimes essentially have the algebraic structure
of a groupoid that reduces to the Lorentz group in the metric limit. We first review the general
definition of a groupoid and then show how this applies to our case.
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8.2. Physical observers

Definition 8.2. Groupoid
A groupoid G consists of a set of objects G0 and a set of arrows G1. Every arrow A is assigned
a source e = s(A) and a target f = t(A) by the maps s : G1 → G0 and t : G1 → G0; one writes
this as A : e → f . For arrows A and B whose source and target match as t(A) = s(B) there
exists an associative multiplication G1 ×G1 → G1, (A,B) 7→ BA with

s(BA) = s(A) , t(BA) = t(B) , C(BA) = (CB)A . (8.11)

A unit map G0 → G1, e 7→ 1e where 1e : e→ e exists so that

1t(A)A = A = A1s(A) . (8.12)

For every arrow A exists an inverse arrow A−1 that satisfies

s(A−1) = t(A) , t(A−1) = s(A) , A−1A = 1s(A) , AA−1 = 1t(A) . (8.13)

Groupoids are generalizations of groups. These can be expressed as groupoids with a single
object in G0; then the arrows correspond to group elements all of which can be multiplied since
sources and targets always match. The multiplication is associative, the identity element and
inverse elements exist.

Consider G0 = Sx ⊂ TxM as the set of unit timelike vectors which contains the different four-
velocities of observers at the point x ∈M . Let the arrows in G1 be the set of all maps between
two observer frames at x which are defined by the procedure stated in theorem 8.1. In case the
involved vertical autoparallels connect the four-velocities uniquely, the sets G0 and G1 define
a groupoid: source and target of a map A = Λ ◦ Py→z between two frames {eµ ∈ H(x,y)TM}
and {fµ ∈ H(x,z)TM} are simply given by s(A) = y ∈ Sx and t(A) = z ∈ Sx; the multiplication
BA is defined by applying the procedure of theorem 8.1 to construct the map between s(A)

and t(B), which gives the properties (8.11); we choose the unit map 1y that provides (8.12) as
1y = 1 ◦ idy→y, i.e., as trivial parallel transport of the frame {eµ ∈ H(x,y)TM} with respect to
the Cartan linear connection along the vertical autoparallel that stays at (x, y) followed by the
identity Lorentz transformation. Finally, we define the inverse A−1 = Λ−1 ◦ Pz→y, where Pz→y
denotes parallel transport backwards along the unique vertical autoparallel connecting (x, y)

and (x, z) which is also used for Py→z; to check the properties (8.13), one simply shows that
parallel transport of the frames and Lorentz transformation commute. Thus we have shown the
following result:

Theorem 8.2. Observer transformations as groupoid
On Finsler spacetimes (M,L, F ) the transformations between observer frames at x ∈ M ,
{eµ ∈ H(x,y)TM}, that are attached to points (x, y) ∈ Ux ⊂ Sx define a groupoid G under
the condition that any pair of points in Ux can be connected by a unique vertical autoparallel of
the Cartan linear connection.

We already discussed that the transformations of observer frames reduce to the form A =

Λ ◦ idy→z in the limit of metric geometry. Hence the only information contained in the reduced
groupoid G̃ with G̃0 = Sx and G̃1 = {Λ ◦ idy→z} is given by the Lorentz transformations. In
mathematically precise language this can be expressed as the equivalence of G̃ to the Lorentz
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8. Physical observers, measurements and the length measure

group seen as a groupoid H with a single object H0 = {x} and arrows H1 = {Λ}. The functor
ϕ : G̃ → H establishing the equivalence can be defined by the projection ϕ0 = π : G̃0 → H0

and by ϕ1 : G̃1 → H1,Λ ◦ idy→z 7→ Λ. Indeed, ϕ can be checked to be injective, full and
essentially surjective, and so it makes G̃ and H equivalent. See [59] for details on the required
mathematical definitions.

By constructing observer transformations we have now obtained a complete description of
observers and their measurements on Finsler spacetimes which enables us to make observable
predictions. As an example we now consider the speed of light measured by an observer on
Finsler spacetimes.

8.3. Measurement example: The speed of light

Definition 8.1 of the observer frame includes the statement that a physical observable is given
by the components of a horizontal tensor field with respect to the observer’s frame, evaluated
at her position on the tangent bundle, i.e., at her position on the manifold and her four-velocity.
The motivation for this is as follows. The geometry of Finsler spacetimes is formulated on the
tangent bundle TM , and hence matter tensor fields coupling to this gravitational background
must also be defined over TM . Not all such tensor fields can be interpreted as tensor fields
from the perspective of the spacetime manifold M , only those which are purely horizontal since
H(x,y)TM ' Tπ(x,y)M = TxM . This interpretation requires that the tensor fields be horizontal;
then they are multilinear maps built on the horizontal space H(x,y)TM and its dual. This inter-
pretation will have major influence in the construction of field dynamics on Finsler spacetimes
in chapter 9. Consider the example of a 2-form field Φ over TM . In horizontal-vertical basis it
can be expanded as

Φ = Φ1 ab(x, y) dxa ∧ dxb + 2 Φ2 ab(x, y) dxa ∧ δyb + Φ3 ab(x, y) δya ∧ δyb . (8.14)

Only the purely horizontal part Φ1 ab(x, y) dxa ∧ dxb has a clear interpretation as a field along
the manifold due to the isomorphism dπ. Note that such horizontal tensor fields are automati-
cally d-tensor fields (see definition 1.8) and have the same number of components as a tensor
field of the same rank on M . The difference is that the components depend on the tangent
bundle position. The measurement of a horizontal tensor field by an observer at the tangent
bundle position (γ, γ̇) clearly requires an observer frame of H(γ,γ̇)TM in order to read out the
components.

We emphasize that the dependence of observables on the four-velocity of the observer is not
surprising. Neither is it problematic, as long as observers can communicate their results. In
general relativity, observables are the components of tensor fields over M with respect to the
observer’s frame in TγM ; they clearly depend on γ̇ which induces the splitting of TγM into time
and space directions. On Finsler spacetimes the dependence of observables on the observer’s
four-velocity is not only present in the time/space split of H(γ,γ̇)TM , but also in the argument of
the tensor field components. The difference between the situation on a metric manifold and a
Finsler spacetime is depicted in figure 8.2. We will continue the discussion of the dependence
of the components of fields on tangent space directions in chapter 9 when we discuss field
theories on Finsler spacetimes.
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y

T 0z
0z(x)

x
T 0y

0y(x)

y

T 0z
0z(x, z)T 0y

0y(x, y)

x

z z

(M, g) (M, L, F )

Figure 8.2. The measurement process on metric and Finsler spacetimes. The observers with
tangents y and z measure their respective (0, 0) component T 0y

0y
and T 0z

0z
of the

(1, 1)-tensor T .

As a simple example we discuss the measurement of the spatial velocity of a point particle
that moves on a worldline ρ with tangent ρ̇. At the position of the observer, where ρ = γ,
one can use the horizontal lift to map ρ̇ from TγM to ρ̇ ∈ H(γ,γ̇)TM . This lift, also denoted
by ρ̇ from here on and can now be expanded in the orthonormal frame of an observer as
ρ̇ = ρ̇0e0 + ~̇ρ = ρ̇0e0 + ρ̇αeα, where we recall that e0 = γ̇ is the observer’s four velocity. The
time ρ̇0 passes while the particle moves in spatial direction ρ̇α, so the spatial velocity ~v and its
square v2 are

~v =
~̇ρ

ρ̇0
, v2 =

δαβ ρ̇
αρ̇α

(ρ̇0)2
= −

gF(γ,γ̇)(~̇ρ, ~̇ρ)

gF(γ,γ̇)(ρ̇, γ̇)2
. (8.15)

From this formula we may derive the speed of light seen by a given observer. For now
we assume that light propagates on null worldlines ρ with L(ρ, ρ̇) = 0. When we introduce a
theory of electrodynamics on Finsler spacetimes in section 9.5, this will be confirmed. The null
condition can equivalently be written as L(ρ, ρ̇0e0 + ~̇ρ) = 0, which we use to replace the Finsler
metric in the formula for the velocity above by Taylor expanding around ~̇ρ = 0

0 = (ρ̇0)rL(ρ, γ̇) + (ρ̇0)r−1∂̄aL(ρ, γ̇)~̇ρ a + (ρ̇0)r−2gL(ρ,γ̇)(~̇ρ, ~̇ρ) (8.16)

+
∞∑
k=3

(ρ̇0)r−k

k!
∂̄c1 ...∂̄ckL(ρ, γ̇)~̇ρ c1 ...~̇ρ ck . (8.17)

Multiplying by (ρ̇0)−r+2, using the orthogonality of ~̇ρ and γ̇ and inserting the relation between
gL and gF from equation (5.15) yields

0 = (ρ̇0)2L(γ, γ̇) +
rL(γ, γ̇)

2F 2(γ, γ̇)
gF(γ,γ̇)(~̇ρ, ~̇ρ) +

∞∑
k=3

(ρ̇0)2−k

k!
∂̄c1 ...∂̄ckL(γ, γ̇)~̇ρ c1 ...~̇ρ ck . (8.18)

We immediately obtain an expression for the speed of light c2
(γ,γ̇)(~̇ρ), i.e., the speed of light

travelling in spatial direction ~̇ρ and measured by the observer (γ, γ̇) by rearranging the above
equation:

c2
(γ,γ̇)(~̇ρ) = −

gF(γ,γ̇)(~̇ρ, ~̇ρ)

gF(γ,γ̇)(ρ̇, γ̇)2
=

2

r
+

2

r

1

L(γ, γ̇)

∞∑
k=3

(ρ̇0)−k

k!
∂̄c1 ...∂̄ckL(γ, γ̇)~̇ρ c1 ...~̇ρ ck . (8.19)

Observe that the infinite sum in the formulae above becomes a finite sum for polynomial L, as
for example in our bimetric example defined in equation (5.123). The ρ̇0 are determined by solv-
ing the null condition L(γ, ρ̇0γ̇ + ~̇ρ) = 0; on a generic Finsler spacetime there can be more than
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8. Physical observers, measurements and the length measure

one solution since the null structure can be very complicated. The formulae (8.15) and (8.19)
enable us to compare experimental results on particle and light velocities with predictions on
specific Finsler spacetime models. Take for example the maximal anisotropy of the speed of
light an observer could detect. It is given by

∆c2
(γ,γ̇) = max

~̇ρ
c2

(γ,γ̇)(~̇ρ)−min
~̇ρ
c2

(γ,γ̇)(~̇ρ) (8.20)

This quantity can be calculated and compared to the bounds on from anisotropy measurements.
From equation (8.19) we see that the anisotropy depends on the higher than second order
derivatives of the fundamental geometry function function; these do vanish on special Finsler
spacetimes where the higher order derivative terms in the sum cancel each other and in the
metric limit L = gaby

ayb, r = 2 where we recover ∆c2
(γ,γ̇) = 0 and thus c2

(γ,γ̇)(~̇ρ) = 1 independent
of the observer and the spatial direction of the light ray.

This example of the measurement of the speed of light demonstrates how important it is to
define observers and their measurements before one can compare predictions with experimen-
tal data. Measurements of our observers depend stronger on their motion relative to the system
on which they perform measurements, but this does not cause an problems in the theoretical
description of physics if there is a transformation which relates the measurements of different
observers. Here these transformations are provided by the generalised Lorentz transformations
introduced previously.
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Physical phenomena are events on spacetime caused by the interaction of fields, which in
principle can be measured by an observer. These fields are on the one hand the fundamental
geometry function L we already encountered in chapter 5, which describes the geometry of
spacetime itself, on the other hand there are additional non-geometric matter fields. When the
geometric field L describes the gravitational interaction, additional matter fields are needed to
describe all other interactions and matter. We briefly mentioned how such fields may look like
when we discussed measurements of observers in section 8.3. The interpretation of Finsler
spacetimes as generalisation of Lorentzian metric spacetimes which provide a geometrisation
of causality, observers and gravity at the same time, requires that we introduce a scheme how
such matter fields couple to the non-metric geometry and how they source the dynamics of the
geometry.

The behaviour of the fields shall be described by field equations which determine their evolu-
tion and interaction and thus the events on spacetime. A fundamental ingredient is the coupling
of the non-geometric fields to the geometry-defining one. On Lorentzian metric spacetimes
this coupling is realised through the appearance of the spacetime metric in the matter field
equations and the appearance of the matter fields through the energy-momentum tensor in
the Einstein equations. On general Finsler spacetimes there is no spacetime metric and no
energy momentum tensor in the sense of general relativity available. In this chapter we will
construct such a coupling with the help of the geometric structure available and obtain classical
field theories on Finsler spacetimes. Their quantisation has to be investigated but this remains
an open question here and we comment on it in the outlook. We begin with a general discus-
sion about viability conditions on the coupling of the matter fields to the geometry in section
9.1. Afterwards we present a specific coupling scheme in section 9.2 which meets all require-
ments discussed previously and we derive how the coupled fields appear as source term in the
Finsler spacetime dynamics in section 9.3. Afterwards we study properties of the field theories
obtained via the coupling principle. We consider the scalar field in section 9.4 where we derive
and discuss the dispersion relation for momentum modes of the field. In section 9.5 we present
a theory of electrodynamics on Finsler spacetimes which yields the propagation of light along
Finsler null-geodesics.

9.1. Requirements on the coupling

The Finsler spacetime framework is a generalisation of the Lorentzian metric geometric back-
ground for physics. The non-geometric matter fields which can be used to describe physics on
this background shall be modified as minimalistically as possible. We present now the argu-
ments that lead to certain requirements on the coupling between matter fields and the geometry
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which should hold for any coupling one comes up with. In the next section we then present a
specific coupling principle which meets all requirements discussed here.

The geometry of Finsler spacetimes is described completely by homogeneous d-tensor fields
on the tangent bundle TM of the spacetime manifold M , as discussed in every detail in chap-
ter 5. Recall from definition 1.8: a (r, s)-d-tensor field on TM differs from an (r, s)-tensor field
on M mainly by the fact that its components depend in general not only on the points of the
manifold but on the points of the tangent bundle; especially they do not differ in the amount of
components.

In order to couple to a geometry described by tensors on TM , generic matter fields have
also to be tensor fields on TM . To change them as minimalistically as necessary we want
to keep the number of components identical to the fields known from field theories on metric
spacetimes and we have to ensure tensorial transformation behaviour under manifold induced
coordinate changes. This suggests to use d-tensors as physical fields on the tangent bundle.
As a special case these would include tensor fields whose components only depend on the
coordinates of the base manifold. Moreover horizontal d-tensors can always be expressed in
the horizontal basis of the tangent bundle of the tangent bundle {δa}3a=0 and its dual {dxa}3a=0.
Since the map dπ(x,y) of the tangent bundle is an isomorphism between H(x,y)TM and TxM

these purely horizontal d-tensors can be mapped to the tensor spaces of the manifold. Because
of these arguments we require that the measurable part of a physical field shall be described
by purely horizontal (r, s)-d-tensors on TM .

The geometry of Finsler spacetimes coincides with Lorentzian metric geometry in case the
fundamental geometry function can be expressed through powers of Lorentzian metric length
element Ln = (gab(x)yayb)n. In this case all geometric tensors can be identified with the ge-
ometric tensor of Lorentzian geometry and the same should hold for the matter fields. A re-
quirement on the coupled field theory therefore is that in case the Finsler spacetime geometry
is nothing but metric geometry the matter fields shall be identifiable with tensor fields on the
manifold and that their field equations shall reduce to the ones known from the field theory on
Lorentzian spacetimes.

The coupling of the fields to the geometry will involve the fundamental geometry function L
and the field theory shall give a source term to the dynamical equation of the geometry derived
in section 6.2. Similarly as stated above for the matter field dynamics, in the case of a metric
Finsler spacetime this coupled equation shall be equivalent to the Einstein equations including
the matter source term.

We derived the dynamics for the geometry of Finsler spacetimes from an action which we
derived from the Einstein–Hilbert action. The most simple way to realise all requirements dis-
cussed is, to define matter field theories on Finsler spacetimes from an action integral on the
unit tangent bundle, similar to what is usually done to define field theories on Lorentzian metric
spacetimes.

To sum this discussion up we conclude that matter fields on Finsler spacetimes should be
homogeneous horizontal (r, s)-d-tensor fields. In case the Finsler spacetime is a Lorentzian
metric spacetime they should be identifiable with their counterparts on Lorentzian metric mani-
fold and their dynamics, as well as the dynamics determining the geometry including the source
term induced by the matter fields, should be equivalent to field equations known from general
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relativity.
We like to remark here again and in more detail that the dependence of physical fields on the

direction of the manifold is nothing special, as we did when we discussed the measurements
of observers in section 8.3. This dependence does especially not mean, that the field depends
on the observer, only the measurement does. Every tensorial field on a Lorentzian metric
spacetime yields a measurable physical number only when evaluated with respect to some
observer frame at the position of the observer. On Finsler spacetimes exactly the same is the
case, only that the measurable quantities may depend stronger on the on the observer’s frame
since the physical fields will be d-tensors on the tangent bundle. Nonetheless the physical field
itself is for sure independent of any observer and evolves according to its field equation. For
example every n-form Λ on M can be seen as (n− 1)-form Λ̂ on TM , with components linear
in the tangent space coordinates via the identification

Λ = Λa1...an(x)dxa1 ∧ · · · ∧ dxan 7→ Λ̂ = Λqa1...an−1(x)yqdxa1 ∧ · · · ∧ dxan−1

= Λ̂a1...an−1(x, y)dxa1 ∧ · · · ∧ dxan−1 . (9.1)

Finsler spacetime fields now could be not linear but only homogeneous with respect to the
tangent space coordinates. Such a lifting of fields would be analogous to what happens to
the non-linear curvature tensor when one passes from linear connections on TM , respectively
metric geometry to a one-homogeneous connection on TM respectively Finsler spacetime
geometry, see the discussion below equation (5.55).

Having argued for requirements on a coupling principle and that it is nothing special to con-
sider fields which depend on the coordinates of the tangent bundle we present a procedure that
realises all the requirements and can be seen as a minimal coupling.

9.2. Minimal coupling

Matter field theories on a Lorentzian metric manifold are usually derived from an action integral.
Here we will present a lifting procedure how one obtains consistent counterpart matter field
theory actions on Finsler spacetimes. In the discussion we restrict our attention to p-form fields;
for spinor fields further studies are required. After the discussion of the general procedure we
derive the influence on the dynamics of Finsler spacetimes in the next section.

Consider an action Sm[g̃, φ] for a physical p-form field φ on a Lorentzian spacetime (M, g̃),

S̃m[g̃, φ] =

∫
M

d4x
√
g̃ L(g̃, φ,dφ) . (9.2)

The corresponding matter action on Finsler spacetime is obtained by lifting S̃m to the tangent
bundle equipped with the Sasaki-type metric (TM,GF ), defined in definition 5.4, according to
the following procedure:

(i) consider the Lagrangian density L(. . . ) of the standard theory on M as a contraction
prescription that forms a scalar function from various tensorial objects;

(ii) replace the Lorentzian metric g̃(x) in L(. . . ) by the Sasaki-type metric GF (x, y);
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9. Matter fields on Finsler spacetimes

(iii) replace the p-form field φ(x) on M by a zero-homogeneous p-form field Φ(x, y) on TM ;

(iv) introduce Lagrange multipliers λ for all not purely horizontal components of Φ;

(v) finally integrate over the unit tangent bundle Σ with the volume form given by the pull-
back GF∗ of the Sasaki-type metric.

We call this procedure a minimal coupling since we only exchanged the spacetime metric by
the Sasaki-type metric on the tangent bundle, lifted fields on M to fields on TM , and kept
the number of field components fixed. Especially no further dependence on the geometry of
spacetime, except through the metric, is introduced. The result of this procedure is the Finsler
spacetime field theory action

Sm[L,Φ, λ] =

∫
Σ

d4x̂d3u
[√

gFhF
(
L(GF ,Φ,dΦ) + λ(1− PH)Φ

)]
|Σ
. (9.3)

In the example of the general two-form on TM

Φ = Φ1 ab(x, y) dxa ∧ dxb + 2 Φ2 ab(x, y) dxa ∧ δyb + Φ3 ab(x, y) δya ∧ δyb , (9.4)

the two-form Φ is zero-homogeneous as tensor if its component Φ1 ab(x, y),Φ2 ab(x, y) and
Φ3 ab(x, y) are 0,−1 respectively −2-homogeneous. The projection PH projects to the purely
horizontal part of the 2-form

PHΦ = Φ1 ab dxa ∧ dxb . (9.5)

The Lagrange multiplier guarantees that the physical on-shell degrees of freedom of Φ are pre-
cisely those. They have a clear physical interpretation as tensor fields from the base manifold
perspective, as discussed in section 8.3 in context of the measurement of an observer and in
the previous section from the field theory point of view.

The matter field equations obtained by extremising the action with respect to the p-form
field Φ and the Lagrange multiplier λ can be studied most easily if expressed in components
with respect to the horizontal/vertical basis. The calculation is performed in detail in ap-
pendix A.7. We display the results with the convention that barred indices ā, b̄, . . . denote
vertical components, unbarred indices a, b, . . . now denote horizontal components, and cap-
ital indices A,B, . . . both horizontal and vertical components. Variation with respect to the
Lagrange multiplier yields the constraints

Φā1...āiai+1...ap = 0 , ∀ i = 1 . . . p . (9.6)

Variation for the purely horizontal components of Φ gives

∂L
∂Φa1...ap

− (p+ 1)(∇CLq +Sq)
∂L

∂(dΦqa1...ap)
− (∂̄q̄ + gF mn∂̄q̄g

F
mn− 4gFq̄qy

q)
∂L

∂(dΦq̄a1...ap)
= 0 (9.7)

which determines the evolution of the physical field components, while variation with respect to
the remaining components produces

λā1A2...Ap

= − ∂L
∂Φā1A2...Ap

+ (p+ 1)(∇CLq + Sq)
∂L

∂(dΦqā1A2...Ap)
+
p(p+ 1)

2

∂L
∂(dΦPQA2...Ap)

γā1
PQ

+(∂̄q̄ + gF mn∂̄q̄g
F
mn − 4gFq̄qy

q)
∂L

∂(dΦq̄ā1A2...Ap)
(9.8)
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which fixes the components of the Lagrange multiplier. The γāPQ are the commutator coeffi-
cients of the horizontal/vertical basis.

Our coupling principle is consistent with the metric limit, i.e., the equations of motion obtained
from the Finsler spacetime action reduce to the equations of motion on Lorentzian spacetime in
the case L = g̃ab(x)yayb and ΦA1...Ap(x, y) = φA1...Ap(x). Then we have the geometric identity
Sa = 0; moreover

dΦa1...ap+1 = (p+ 1)∂[a1
φa2...ap+1] (9.9)

by using the constraints (9.6) and the fact that the horizontal derivative acts as a partial deriva-
tive on the y-independent p-form components. Finally,

∂L
∂(dΦq̄a1...ap)

= 0 (9.10)

because, as a consequence of our coupling principle where the Sasaki-type metric is block-
diagonal in the horizontal/vertical basis, the vertical index of dΦq̄a1...ap must appear in the La-
grangian L(G,Φ,dΦ) contracted via gF into either a vertical derivative or into components of
Φ with at least one vertical index. In the metric limit, vertical derivatives give zero, while the
constraints (9.6) guarantee that all components of Φ with at least one vertical index vanish.
Combining these observations shows that equation (9.7) reduces to

∂L
∂Φa1...ap

− (p+ 1)∇CLq
∂L

∂(dΦqa1...ap)
= 0 , (9.11)

where ∇CL now operates in the same way as the Levi-Civita connection of the metric g. Again,
as a consequence of our minimal coupling principle with the block-diagonal form of the Sasaki-
type metric in the horizontal/vertical basis, we can conclude in the metric limit that

∂L(G,Φ,dΦ)

∂Φa1...ap

=
∂L(g̃, φ, dφ)

∂φa1...ap

,
∂L(G,Φ,dΦ)

∂(dΦqa1...ap)
=
∂L(g̃, φ,dφ)

∂(dφqa1...ap)
(9.12)

so that (9.11) becomes equivalent to the standard p-form field equation of motion on metric
spacetime.

Note that the coupling can be easily extended to the case of interacting form fields of any
degree with metric spacetime action

S̃m[g̃, φ1, φ2, ...] =

∫
M

d4x
√
g̃ L(g̃, φ1, dφ1, φ2,dφ2, ...) . (9.13)

The minimal coupling procedure then leads to the action

Sm[L,Φ1, λ1,Φ2, λ2, ...]

=

∫
Σ

d4x̂d3u
[√

gFhF
(
L(GF ,Φ1,dΦ1,Φ2,dΦ2, ...) +

∑
I

λI(1− PH)ΦI

)]
|Σ
. (9.14)

The equations of motion for each field φI have the same form as in the single field case, and
the metric limit leads to the standard field equations by arguments that proceed in a completely
analogous way as before.

Varying the matter field action with respect to the fundamental geometry function L yields a
scalar source term of the Finsler spacetime dynamics (6.11), we call energy-momentum scalar
T , since it formally replaces the energy-nomentum tensor from general relativity.
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9. Matter fields on Finsler spacetimes

During the next section we demonstrate further features resulting from the coupling principle.
We demonstrate that the Finsler spacetime dynamics including this source term are consistent
with the Einstein-equations and we discuss the resulting scalar field theory and electrodynam-
ics; in these explicit examples we derive observable consequences.

With the coupling principle presented here we so demonstrate that it is very well possible to
obtain field theories on non-metric geometric backgrounds.

Nevertheless we like to remark that this does for sure not mean that there are no other ways
to couple fields consistently to Finsler spacetimes. One may for example construct a coupling
principle directly for extended p-form fields on M as homogeneous (p − 1)-form fields on TM
as outlined in equation (9.1). The advantage of these fields would be that they are immediately
horizontal, the disadvantage that it is not clear which Lagrangians one should use to define the
field theory. A rewriting of the known field theories on Lorentzian metric spacetimes into this
language would give first insights how such field theories could look like.

9.3. Source of the geometric dynamics of spacetime

We are now in the position to study the interplay between the matter actions Sm introduced
in (9.3) and the pure Finsler geometry action SL in (6.3). Their sum provides a complete
description of gravitational dynamics and classical matter fields on Finsler spacetimes:

S[L,Φ, λ] (9.15)

= κ−1SL[L] + Sm[L,Φ, λ]

= κ−1

∫
d4x̂d3u

[√
gFhF R

]
|Σ

+

∫
d4x̂d3u

[√
gFhF (L(G,Φ, dΦ) + λ(1− PH)Φ)

]
|Σ
.

As usual, the matter field equations following from this are the same as for the pure matter ac-
tion. The gravitational field equations are obtained by variation with respect to the fundamental
geometry function L. The variation of Sm with respect to L is

δSm =

∫
d4x̂d3u

(δSm
δL

δL
)
|Σ

=

∫
d4x̂d3u

(√
gFhF

rL√
gFhF

δSm
δL

)
|Σ

δL

rL
, (9.16)

and leads us to the definition of the energy momentum scalar T|Σ on the unit tangent bundle as

T|Σ =

(
rL√
gFhF

δSm
δL

)
|Σ
. (9.17)

With this definition the complete gravitational field equations on Finsler spacetime including
energy-momentum sources becomes[

gF ab∂̄a∂̄bR− 6
R
F 2

+ 2gF ab
(
∇Ba Sb + ∂̄a∇Sb

)]
|Σ

= −κT|Σ . (9.18)

As in the vacuum case with T|Σ = 0, these equations can be lifted to TM . The terms in the
bracket on the left hand side are all zero-homogeneous and can be lifted trivially. The terms in
T without the restriction, on the right hand side of the equation, can in principle have different
homogeneities; to lift these one simply multiplies each term by the appropriate power of F in
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9.4. The scalar field

order to make them zero-homogeneous. This is the same procedure applied in section 6.2 to
the gravity side.

The gravitational constant κ will now be determined so that the gravitational field equation
on Finsler spacetimes becomes equivalent to the Einstein equations in the metric limit. Vari-
ation with respect to L of the concrete form of the matter action in (9.15) and performing the
metric limit, i.e., gF ab(x, y) = −g̃ab(x) for observers and ΦA1...Ap(x, y) = φA1...Ap(x), the gravity
equation (9.18) becomes

2g̃abRab + 6
Raby

ayb

|g̃pqypyq|
= −κ

(
4L − 4g̃ab

∂L
∂g̃ab

− 24
yayb
|g̃pqypyq|

∂L
∂g̃ab

)
. (9.19)

The detailed calculation of this result is involved and can be found again in appendix A.7. Intro-
ducing the standard energy momentum tensor of p-form fields on Lorentzian metric spacetimes
T̃ ab = g̃abL+ 2 ∂L

∂̃gab
and its trace T̃ = T̃ abg̃ab = 4L+ 2g̃ab

∂L
∂g̃ab

we can rewrite the equation above
as

2R− 6
Raby

ayb

g̃pqypyq
= −κ

(
− 2T̃ + 12

T̃ abyayb
g̃pqypyq

)
, (9.20)

if evaluated at g̃-timelike observer four-velocities y. Now we take a second derivative with
respect to y, contract with g̃−1, reinsert the result, and conclude(

Rab −
1

2
g̃abR

)
yayb = 2κ T̃aby

ayb . (9.21)

Since there is no y-dependence beyond the explicit one, a second derivative with respect to y
yields the Einstein equations, if we choose the gravitational constant κ = 4πG

c4
.

The gravity equation on Finsler spacetime including the coupling to matter therefore is[
gF ab∂̄a∂̄bR− 6R+ 2gF ab

(
∇Ba Sb + ∂̄a∇Sb

)]
|Σ

=
4πG
c4

T|Σ . (9.22)

Observe that this field equation including the matter part is invariant under L → Lk by con-
struction of the coupling principle, as the vacuum equation is. This leads to the interesting
conclusion that every solution g̃ab(x) of the Einstein equations induces a family Lk of solutions
of the Finsler gravity solution with Lk = (g̃ab(x)yayb)k.

With the presentation of the matter coupled equation which determines the geometry of
Finsler spacetimes as the Einstein equations determine the geometry of Lorentzian metric
spacetimes we provide a complete framework which is capable to extend general relativity
consistently. Even though a lot of questions still remain to be answered in the future, like for
example the initial value problem of the above equation (9.22), we demonstrated that it is very
well possible to study spacetime geometries beyond metric geometry and to equip them with
consistent dynamics.

We proceed now to demonstrate explicitly how our coupling principle works. We construct the
matter field theories for the scalar field and the electromagnetic potential on Finsler spacetimes.

9.4. The scalar field

The minimal coupling procedure for matter fields to Finsler spacetime we introduced can be
applied immediately, for instance to the scalar field. We derive the equations of motion on a
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general Finsler spacetime and demonstrate their consistency with the Klein-Gordon equation
in the metric limit. Then we specialise to a bimetric flat Finsler spacetime which is close to
Minkowski spacetime to derive the dispersion relations of modes of the field with momentum
P . It will turn out that, depending on the energy of the mode, its velocity may be larger than
the velocity of light. We will see that the dispersion relation we derive in the end approaches
modified dispersion relations discussed in the physics literature [60] from a purely geometric
point of view. The modification is caused by the non-metric geometry of Finsler spacetimes.

9.4.1. The action and equations of motion

The Finsler spacetime action for massive scalar field φ(x, y) according to the minimal coupling
principle discussed above is

S[L, φ] =

∫
Σ

d4x̂d3u
√
GF∗ L[GF , φ,dφ]|Σ (9.23)

= −1

2

∫
Σ

d4x̂d3u
√
GF∗

[
GFAB∂Aφ∂Bφ+m2φ2

]
|Σ
,

where the capital indices A,B label the eight induced coordinates (xa, yb) on TM and GF∗ is
the pull back of the Sasaki-metric GF to Σ. The equations of motion for φ are obtained by
variation. We first expand the action in the horizontal/vertical basis {δa, ∂̄a} of TTM and obtain

S[L, φ] =
1

2

∫
Σ

d4x̂d3u
√
GF∗

[
gF abδaφδbφ+ gF ab∂̄aφ∂̄bφ−m2φ2

]
|Σ
. (9.24)

To find δS[φ] we use the integration by parts formulae (5.86) and we find the equations of motion[
− gF ab

(
δaδb − Γδ pabδp + ∂̄a∂̄b + Sppaδb

)
φ−m2φ

]
|Σ

= 0 , (9.25)

which can be expressed in terms of the coordinates (x̂a, uα) of Σ, see section 5.3.2 for the
definitions, as

0 = −gF ab
[
δ̂aδ̂b + ∂̄au

α∂̄bu
β∂α∂β − Γδpabδ̂p + Sppaδ̂b + ∂̄au

β∂β ∂̄bu
α∂α

]
|Σ
φ−m2φ

= GF∗ M̂N̂∂M̂∂N̂φ− gF ab
[
− Γδpabδ̂p + Sppaδ̂b + ∂̄a∂̄bu

α∂α

]
|Σ
φ−m2φ . (9.26)

The upper case hatted indices denote the coordinates of Σ. In metric geometry L = g̃ab(x)yayb

and φ(x, y) = φ̃(x) the field equation reduces to the standard Klein-Gordon equation expressed
with help of the Levi-Civita covariant derivative ∇a

(g̃ab∇b∇a −m2)φ̃ = 0 . (9.27)

We remark that the principal symbol of the equation of motion (9.26) is governed by the pull-
back of the Sasaki metric to the unit tangent bundle. In case the Sasaki metric has Lorentzian
signature everywhere on TM the standard theorems on hyperbolic partial differential equations
can be applied and ensure a well posed initial value problem [61].

We know that the Sasaki-Metric has Lorentzian signature on the set of all timelike vectors on
TM ; the union over all cones Cx of timelike vectors. This can easily be seen from the explicit
form of the Sasaki metric on TM in adapted coordinates (equations (5.76) and (5.77)), and
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from the fact that, by definition 5.1, gL\F has Lorentzian signature on this set. So in general
our definition of Finsler spacetimes does not guarantee that the Sasaki-Metric has Lorentzian
signature everywhere. How this effects the propagation of solutions of the equations of motion
obtained from our minimal coupling principle is so far not clear and has to be investigated
carefully in the future.

We now study the scalar field on a special flat Finsler spacetime close to Minkowski space-
time.

9.4.2. On flat bimetric Finsler spacetimes

Our aim is to analyse the dispersion relation fulfilled by momentum modes of the scalar field on
a a flat bimetric Finsler spacetime close to Minkowski spacetime. We will compare the velocity
of a mode of the scalar field with momentum P with the velocity of light and we will comment
on the relation of our result with modified dispersion relations discussed in the literature.

We already encountered bimetric geometries as prototype examples for Finsler spacetimes
in section 5.5.2 and when we discussed the refined linearised Schwarzschild geometry in sec-
tion 7.2. For a flat bimetric geometry close to Minkowski spacetime we use global Cartesian
coordinates in which the fundamental geometry function takes the form

L(y) = ηaby
aybkcdy

cyd = ηaby
ayb(ηcd + hcd)y

cyd = η(y, y)2 + η(y, y)h(y, y), (9.28)

where hab are components of a symmetric (0, 2) tensor such that kab = ηab+hab is a Lorentzian
metric. To simplify the discussion we furthermore assume that the null-cone of the metric η+ h

is the outer light cone and so the light cone of η is the inner cone representing the boundary
velocity of observers. The cone of timelike vectors Cx is given by the cone of timelike vectors
of η. The situation for a general bimetric Finsler spacetime is depicted in the figures 5.3a and
5.3b.

In the global Cartesian coordinate system we consider, the non-linear connection coefficients
Na

b and the δ-Christoffel symbols vanish and so does the S-tensor. We expand the scalar
field φ into modes of momentum P = Padx̂

a + Pαδu
α = ((Pa + N̂α

aPα)dx̂a + Pαdu
α), where

Pa denote the horizontal and Pα the vertical components of the momentum covector. The
derivative operators δ̂a and ∂α act as multiplication operators with iPa respectively iPα and
hence the equation of motion (9.26) becomes the dispersion relation

0 = −gF ab
[
− PaPb − ∂̄auα∂̄buβPαPβ + i∂̄a∂̄bu

αPα

]
|Σ
−m2 . (9.29)

The corresponding direction of propagation X of the field mode with momentum P is given by
the map

X =
1

m
GF∗ −1(P, ·) . (9.30)

As discussed in section 8.2, observers measure the horizontal modes; so we interpret the pure
horizontal modes, Pα = 0, as particle excitations of the field. The resulting dispersion relation
for any observer on worldline γ with timelike tangent γ̇ ∈ Cγ is

−gFab(γ, γ̇)PaPb = −m2 . (9.31)
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In each observers frame {e0 = γ̇, eα}, introduced in definition 8.1, the dispersion relation takes
the standard form

ηµνPµPν = −m2 . (9.32)

Thus for each observer the dispersion relation of the scalar field in Minkowski spacetime is
realised and we identify the components of the momentum P in the frame of an observer
with the energy P0 = E and with the spatial momentum (P1, P2, P3) of the mode seen by an
observer. Since the pull-back of the Sasaki-metric GF∗ is block-diagonal in the horizontal-
vertical basis the corresponding direction of propagation is now given by

Xµ =
1

m
ηµνPν . (9.33)

We now compare the velocity of the particle with momentum P moving in spatial direction ~̇ρ
with the velocity of light which is the boundary velocity of observers measured by an observer.
Recall from equations (8.15) and (8.19) that the velocity of a general particle moving in spatial
direction ~̇ρ = ~̇ραeα measured by an observer on a worldline γ is given by

v2
(γ,γ̇)(~̇ρ) =

δαβ ρ̇
αρ̇α

(ρ̇0)2
= −

gF(γ,γ̇)(~̇ρ, ~̇ρ)

gF(γ,γ̇)(ρ̇, γ̇)2
, (9.34)

and that the speed of light measured by the observer is

c2
(γ,γ̇)(~̇ρ) =

2

r
+

2

r

1

L(γ, γ̇)

∞∑
k=3

(ρ̇0)−k

k!
∂̄c1 ...∂̄ckL(γ, γ̇)~̇ρ c1 ...~̇ρ ck . (9.35)

We will calculate their difference to first order in h on the Finsler spacetime in consideration
(9.28) and comment on the relation of the result to modified dispersion relation in the literature.
On the Finsler spacetime we are studying the infinite sum terminates at k = 4

c2
(γ,γ̇)(~̇ρ) =

2

r

(
1+2(ρ̇0)−3[2η(~̇ρ, γ̇)η(~̇ρ, ~̇ρ)+h(~̇ρ, γ̇)η(~̇ρ, ~̇ρ)+η(~̇ρ, γ̇)h(~̇ρ, ~̇ρ)]+(ρ̇0)−4L(γ, ~̇ρ)

)
. (9.36)

To proceed we have to find ρ̇0 from the condition L(ρ, ρ̇) = 0; since we are interested in the
boundary velocity of observers this reduces to study η(ρ̇, ρ̇) = 0. In an observer’s frame we
have

(ρ̇0)2η(γ̇, γ̇) + 2ρ̇0η(γ̇, ~̇ρ) + η(~̇ρ, ~̇ρ) = 0 . (9.37)

In order to find a solution for ρ̇0, and to further analyse the expression for the speed of light, we
expand the normalization of the observers worldline L(γ, γ̇) = 1 and the orthogonality of γ̇ and
~̇ρ at the observers position gL(γ,γ̇)(γ̇, ~̇ρ) = 0 to first order in h:

L(γ, γ̇) = 1

⇔ η(γ̇, γ̇) =
1

2

(
− h(γ̇, γ̇)−

√
4 + h(γ̇, γ̇)2

)
= −1− 1

2
h(γ̇, γ̇) +O(h2) (9.38)

gL(γ,γ̇)(γ̇, ~̇ρ) = 0

⇔ η(γ̇, ~̇ρ) = − η(γ̇, γ̇)

2η(γ̇, γ̇) + h(γ̇, γ̇)
h(γ̇, ~̇ρ) = −1

2
h(γ̇, ~̇ρ) +O(h2) . (9.39)

In equation 9.38 we choose the negative root since γ̇ is supposed to be timelike, hence it has
to be timelike with respect to η. Using these relations in the equation for the speed of light,
equation (9.35) yields

c2
(γ,γ̇)(~̇ρ) =

1

2

(
1 + (ρ̇0)−4

[
η(~̇ρ, ~̇ρ)2 + η(~̇ρ, ~̇ρ)h(~̇ρ, ~̇ρ)

])
+O(h2) . (9.40)
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The solutions for ρ̇0 up to first order in h is obtained from equation (9.37)

ρ̇0 =

√
η(~̇ρ, ~̇ρ)

(
± 1− h(~̇ρ, γ̇)

2

√
η(~̇ρ, ~̇ρ)

∓ 1

4
h(γ̇, γ̇)

)
+O(h2) . (9.41)

Considering light propagating into the future, hence having a positive ρ̇0 component, the ex-
pression for the speed of light finally becomes

c2
(γ,γ̇)(~̇ρ) = 1 +

1

2

1

η(~̇ρ, ~̇ρ)

(
h(~̇ρ, ~̇ρ) + η(~̇ρ, ~̇ρ)h(γ̇, γ̇) + 2

√
η(~̇ρ, ~̇ρ) h(γ̇, ~̇ρ)

)
+O(h2)

= 1 +
1

2

1

η(~̇ρ, ~̇ρ)
h(ρ̇, ρ̇) +O(h2) = 1− 1

2

1

η(~̇ρ, ~̇ρ)
|h(ρ̇, ρ̇)|+O(h2) , (9.42)

where we used the expansion ρ̇ = ρ̇0γ̇ + ~̇ρ of the null vector to derive the second equality.
Observe that h(ρ̇, ρ̇) is negative, since we assumed that the null vectors of the metric η+h form
the outer null-cone and ρ̇ is a null vector on the inner null-cone, the one of η. The argument
goes as follows: Assume X is a null-vector of η, then, since the null cone of η is the inner
null cone, X is a timelike vector of the metric η + h. Hence η(X,X) + h(X,X) < 0, but since
η(X,X) = 0 this implies h(X,X) < 0. Moreover it can be seen from equation (9.37) that η(~̇ρ, ~̇ρ)

is positive to zeroth order on h since η(γ̇, γ̇) is negative and η(~̇ρ, γ̇) does not contribute. Thus
the Finslerian correction term to the speed of light is always negative under the assumptions
we made during this section.

Employing the dispersion relation (9.32) and the identification with the corresponding tangent
directions the velocity of a particle mode with momentum P can be written as

v2
(γ,γ̇)(~̇ρ) =

PαP βδαβ
E2

= 1− m2

E2
(9.43)

and so the difference to the speed of light, depending on the energy and the mass of the particle
mode measured by an observer on a worldline γ, is

v2
(γ,γ̇)(~̇ρ)− c2

(γ,γ̇)(~̇ρ) = −m
2

E2
+

1

2

|h(ρ̇, ρ̇)|
η(~̇ρ, ~̇ρ)

+O(h2) , (9.44)

We see that particle modes with large mass and low energy will always be slower than the
’slow’ speed of light, but we also see that as soon as the mass is sufficiently small and the
energy sufficiently high, they can be superluminal. The exact ratio of the particles mass and
energy necessary to become superluminal here depends on the spatial motion of the particle
~̇ρ relative to an observer on a worldline γ and corresponding time direction γ̇.

Velocity dispersion relations that deviate from the one on Lorentzian metric spacetime have
been studied in physics in the context of quantum spacetimes [62] and in Lorentz symmetry vi-
olating extensions of the Standard Model, for example the one by Coleman and Glashow [63].
Here superluminal particle modes occur due to the non-metric geometry of the spacetime back-
ground. Thus our analysis of the scalar field on Finsler spacetime provides a geometric origin
of modified dispersion relations. This may indicate that the field theories which led to modified
dispersion relations in the literature may be more suitable described as field theories living on a
Finsler spacetime background instead of as field theories on a Lorentzian metric background.

During the discussion of the scalar field, we did not need to use Lagrange multipliers to
constrain the field to have only horizontal components. This feature of our coupling principle
will now become visible when we discuss electrodynamics on Finsler spacetimes.
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9. Matter fields on Finsler spacetimes

9.5. Finsler Electrodynamics

Our key objective in this section is to proof that the propagation of light on Finsler spacetimes
indeed takes place on Finsler null geodesics when we apply our minimal coupling principle to
the theory of electrodynamics.

Before we are able to analyse the propagation of light we have to lift the theory and to derive
the equation of motion. The difficulty here is to ensure that the one-form potential A and the
field strength tensor F are purely horizontal on shell. Having solved this problem we analyse
the equations of motion and find that the singularities of the solutions propagate along Finsler
null geodesics, a fact which we interpret as propagation of light.

9.5.1. Action and field equations

In the standard formulation of electrodynamics, the action is a functional S̃m[g,A] of a one-form
potential A, but the classical physical field is F = dA, which is not encoded in the action. Equiv-
alently one can use an interacting action of the form S̃m[g,A, F ] which provides the complete
set of Maxwell equations F = dA and d ?g F = 0 by variation. Our minimal coupling principle
tells us to introduce Lagrange multiplier to restrict all fields to be purely horizontal; using the
first action then only kills the vertical components of the lift of A, but does not guarantee that the
lift of F is purely horizontal, the second action ensures horizontal of both fields A and F = dA.

Explicitly the action for classical electrodynamics on a Lorentzian metric spacetime (M, g̃)

involving a one-form Ã and a field strength two-form F̃ separately is

S̃m[g,A, F ] = −1

2

∫
M

d4x
√
g̃ g̃abg̃cdF̃ac

(
(dM Ã)bd −

1

2
F̃bd

)
. (9.45)

The equations of motion are obtained from this action by variation with respect to Ã and F̃ :

∇g̃b F̃ ba = 0 , F̃ab = ∂aÃb − ∂bÃa , (9.46)

where ∇g̃ denotes the Levi-Civita connection of the spacetime metric. The advantage of this
formulation over the standard action−1

4

∫
d4x
√
g̃ F̃ abF̃ab lies in the fact that the relation F̃ = dÃ,

that Ã is a gauge potential, does not need to be imposed by hand.
We now apply the minimal coupling principle to the action (9.45). Using the horizontal/vertical

basis, the fields Ã and F̃ are lifted to

A = Aa(x, y)dxa+Aā(x, y)δya , F =
1

2
Fab(x, y)dxa∧dxb+Fābδy

a∧dxb+
1

2
Fāb̄(x, y)δya∧δyb .

(9.47)
The forms A and F are required to be zero-homogeneous in the fibre coordinates; this implies
the homogeneities zero for Aa, Fab, minus one for Aā, Fāb and minus two for Fāb̄ with respect to
the y coordinates. The corresponding action on Finsler spacetimes now becomes

S[L,A, F ] =

∫
d4xd3u

√
GF∗

[
− 1

2
GF ABGF CDFAC

(
(dTMA)BD −

1

2
FBD

)
(9.48)

+λāAā + λābFāb + λāb̄Fāb̄

]
|Σ
,

where the induced coordinates (ZA) = (xa, ya) and the corresponding partial derivatives are
used before restricting to Σ. One may not be confused by the multiple meanings of F here. It
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should be clear from the context where F labels the field strength tensor, the Finsler function
or is used as label for the objects derived from the Finsler function. Observe the appearance of
the Lagrange multipliers λā, λāb and λāb̄ that kill the non-horizontal parts of A and F on-shell.

The variation of the generalised action with respect to A, F and the Lagrange multipliers is
technically straightforward; the calculation uses the Berwald bases and requires the integration
by parts identities (5.86). Using the immediate constraints

Aā = 0 , Fāb = 0 , Fāb̄ = 0 , (9.49)

we thus find the field equations, expressed in terms of the horizontal Cartan linear covariant
derivative,

Fab = δaAb − δbAa = ∇CLa Ab −∇CLb Aa , (9.50)

0 = gF abgF cd
(
∇CLa Fbd − SppaFbd

)
, (9.51)

λāb = −gFapgFbq∂̄pAq , λā =
1

2
F pqRapq , λāb̄ = 0 . (9.52)

The field strength F whose components are interpreted as electric and magnetic fields is
gauge-invariant under the transformations

Aa 7→ Aa +Ba , δ[aBb] = 0 . (9.53)

In general these may change the solution for the Lagrange multiplier λāb, but this has no phys-
ical relevance. Observe that the transformation Bb = δbφ(x) = ∂bφ(x), which is the gauge
freedom of the original theory on metric spacetimes, still is a gauge transformation of the lifted
theory and also leaves the Lagrange multiplier λāb invariant.

As it should be from our general considerations about the minimal coupling principle the field
equations reduce to the standard Maxwell equations (9.46) in case the Finsler spacetime is
induced by a Lorentzian metric and the fields only depend on the coordinates of the manifold
M but not on the fibre coordinates of TM .

Having the equations of motion of electrodynamics on Finsler spacetimes at hand we are in
the position to study the propagation of light.

9.5.2. Propagation of light

Any theory of electrodynamics determines the motion of light through the corresponding system
of partial differential equations. Light trajectories are obtained in the geometric optical limit by
studying the propagation of singularities of the electromagnetic fields. Since our field equations
on Finsler spacetime are formulated over the tangent bundle, also the resulting singularity
propagation will follow curves τ 7→ (x(τ), y(τ)) on the tangent bundle TM . Of these only the
natural lifts τ 7→ (x(τ), ẋ(τ)) that arise from curves τ 7→ x(τ) on the manifold M have an
immediate interpretation as light trajectories. We will demonstrate the strong result that in the
proposed extended electrodynamics (9.48) all light trajectories are Finsler null geodesics.

In the following analysis we regard the components of the one-form A as the fundamental
variables. We insert (9.50) into (9.51) to obtain the following system of linear second order
partial differential equations

0 = gF a[bgF d]c
(
∇CLa ∇CLb Ad − Sppa∇CLb Ad

)
. (9.54)
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A solution of this system for Aa determines solutions for Fab and λāb according to our field
equations (9.50)–(9.52). Following standard methods for partial differential equations we now
extract the principal symbol from the equations above. For this purpose we use the gauge
condition gF ab∇CLa Ab = 0 which generalises the usual Lorentz gauge. Then the terms of
highest derivative order can be written in the form

0 = gF ab
(
∂a∂b − 2Np

a∂b∂̄p +Np
aN

q
b∂̄p∂̄q

)
Ac + . . .

= δpcP
AB∂A∂BAp + . . . (9.55)

where the dots represent terms with less than two derivatives acting on the Aa. Following
Dencker [64] we need to check if the principal symbol

P pc (x, y, k, k̄) = δpc
1

2
PABkAkB = δpc

1

2
gF abkHa k

H
b , kHa = ka −Np

ak̄p , (9.56)

is of real principal type. This is indeed the case since there exists P̃ cq = δcq such that P̃ cqP
p
c = Qδpq

with Q = 1
2g
F abkHa k

H
b . Moreover Q is real and has a Hamiltonian vector field XQ which is non-

vanishing and not radial in case Q = 0, as can be seen form the explicit form XQ below. Thus
the singularities of the field A propagate along the projection to TM of the integral curves of
the Hamiltonian vector field XQ that lie in the surface Q = 0

XQ = ∂kaQ∂a + ∂k̄aQ∂̄a − ∂aQ∂ka − ∂̄aQ∂k̄a . (9.57)

The integral curves γ : τ 7→ (x(τ), y(τ), k(τ), k̄(τ)) in T ∗TM of the Hamiltonian vector field
XQ are determined by the corresponding Hamiltonian equations

ẋa = gFabkHb , (9.58)

ẏa = −gFpbkHb Na
p , (9.59)

k̇a = −1

2
∂ag

FpqkHp k
H
q + gFpqkHq ∂aN

b
pk̄b , (9.60)

˙̄ka = −1

2
∂̄ag

FpqkHp k
H
q + gFpqkHq ∂̄aN

b
pk̄b . (9.61)

and satisfy the constraint

Q =
1

2
gFab(x, y)kHa k

H
b = 0 . (9.62)

The constraint together with equation (9.58) immediately yield that ẋ is null with respect to the
Finsler metric gF (x, y). This means for solution curves which are natural lifts of curves from
the manifold, i.e. y(τ) = ẋ(τ), that they are Finsler null curves gFab(x, ẋ)ẋaẋb = F 2(x, ẋ) = 0, or
equivalently L(x, ẋ) = 0. These are the curves we identify as light trajectories. There may be
more general solutions for the above equations for more general curves on the tangent bundle;
those have not the direct interpretation as light propagating along the manifold.

Combining (9.58) and (9.59) yields the fact that the projected curve c(τ) = (x(τ), y(τ)) ∈ TM
is horizontal

ẏa +Na
p(x, y)ẋp = 0 . (9.63)

We proved in theorem 5.4 the non-linear connection coefficients smoothly extend to the null
structure of TM and so the above equations holds for our light trajectories and yields
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ẍa +Na
b(x, ẋ)ẋb = 0 . (9.64)

This now proves that light trajectories are Finsler geodesics, compare with equation (5.40).
Thus the null structure of Finsler spacetimes is indeed related to the propagation of light in-
duced by the theory of electrodynamics we constructed here.

This analysis goes through easily on all Finsler spacetimes on which the L metric does not
degenerate along the null structure. In the definition 5.1, we in general allowed for a lower di-
mensional subset along the null structure on which the L metric may degenerate to include for
example bimetric geometries with intersecting cones. On such Finsler spacetimes the propa-
gation analysis has to be performed more carefully on the set where the L metric degenerates.
It may turn out that there exist no propagation of light along these directions.
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Conclusion

With the development of our Finsler spacetime framework throughout this thesis we clearly
demonstrated that a spacetime geometry based on a smooth homogeneous function on the
tangent bundle provides a consistent simultaneous geometrisation of causality, observers and
their measurements and gravity. Moreover our framework yields consistent geometric back-
grounds for physical field theories. It contains and extends the known framework from general
relativity, where the geometry of spacetime is derived from a Lorentzian metric, most impor-
tantly without changing the role of spacetime in physics or its dimension. Furthermore our
Finsler spacetimes overcome the mathematically issue of a not defined geometry along the
null structure of spacetime in earlier applications of Finsler geometry in physics, especially
when it was used as the background geometry of spacetime.

We derived explicit physical consequences from our Finsler spacetime framework such as:
a possible explanation of the fly-by anomaly in the solar system, which is unexplained on basis
of general relativity; a geometric origin of modified dispersion relations, as they appear from
quantum gravity phenomenology or non Lorentz invariant field theories; the propagation of
momentum modes faster than the slow speed of light, as it can be found in dielectric media and
the propagation of light along Finsler geodesics in general.

In the future we hope we will be able to solve the dynamical equation which determines
the geometry of Finsler spacetimes in symmetric situations without using perturbation theory.
Especially in cosmology and spherical symmetry as solution of the dynamics of the non-metric
geometry is highly interesting to answer the question if non-metric spacetime geometry can
shed light on the dark (matter and energy) part of the universe. A possible further application of
the Finsler spacetime dynamics is the unification of the dynamics of several fields a la Kaluza
and Klein.

Summary and discussion

The first part of this thesis contained our review of the mathematical formulation of Finsler
geometry as it can be found in the literature and the applications of Finsler geometry in physics.
Our newly developed Finsler spacetime framework was presented in full detail in the second
part. We especially emphasized during our presentation how our Finsler spacetime geometry
provides causality, observers and their measurements and a description of gravity.

In chapter 5 we began with the precise definition of Finsler spacetimes. Already from the
definition it became clear how causality is encoded into the non-metric geometry. Moreover we
presented in detail how we could circumvent the problems with the non-differentiability of the
Finsler function along its null structure and the resulting non-existence of the tensors describing
the geometry of the manifold. Our solution was the introduction of a smooth homogeneous fun-
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damental geometry function on the tangent bundle of the spacetime manifold, from which the
Finsler function, and all geometric objects on Finsler spacetimes are derived. One most impor-
tant feature of our construction is that the connection and the curvature of the Finsler spacetime
derived from our smooth fundamental geometry function is identical to the connection and the
curvature derived from its associated Finsler function, wherever the latter is differentiable. With
this fact we demonstrated that our framework is an extension of the standard Finsler geometry
framework similar as semi-Riemannian geometry extends Riemannian geometry. This con-
struction of Finsler spacetimes is one of the central results of this thesis. That we overcame
the mathematical problems which appear in indefinite Finsler geometry is fundamental for its
application as generalisation of Lorentzian metric geometry from the mathematical point of view
and especially for its application as the fundamental geometry of spacetime in physics.

To encode gravity into the geometry of spacetime, dynamics for the geometry are required
which are sourced by the matter field content on spacetime. In chapter 6 we further developed
our preliminary work on the understanding of the Einstein–Hilbert action from a Finsler geomet-
ric point of view which was reviewed in section 4.1. We obtained an extended Finsler spacetime
version of the Einstein–Hilbert action by realizing that the original Einstein–Hilbert action can
be understood as integral over the unit tangent bundle and that the curvature tensor appearing
in this rewriting is nothing but the metric spacetime version of the canonical Finsler non-linear
curvature scalar. From this action we derived the dynamical equation which determine the ge-
ometry of Finsler spacetimes. They were interpreted as gravitational vacuum dynamics, which
are equivalent to the Einstein vacuum equations in the metric limit.

In general the dynamics for Finsler spacetime are hard to solve. To get a feeling what features
one may expect from non-metric solution of the Finsler spacetime dynamics we solved the field
equation for a non-metric perturbation of Minkowski spacetime in chapter 7. We derived the
linearised Finsler spacetime dynamics for general non-metric Finsler spacetime perturbations
around metric geometry, before we specialised to a perturbation of Minkowski spacetime which
can be seen as a bimetric Finsler spacetime. We then derived this bimetric Finsler spacetime
in the case of spherical symmetry from the dynamics. We could interpret our result as non-
metric refinement of the linearised Schwarzschild solution of general relativity which is able
to address the fly-by anomaly in the solar system. By the correct choice of the additional free
parameters compared to the linearised Schwarzschild solution, the geodesics of the non-metric
spacetime are closer to the central mass than in the metric solution, which exactly meets the
observations that spacecrafts gained more velocity than expected during swing by manoeuvres
around planets in the solar system. With this example we demonstrated the capability of Finsler
spacetimes to address unexplained astronomical observations.

In chapter 8 we introduced how observers and their measurements on Finsler spacetimes
are described. We gave an interpretation of the Finsler length measure as the action for point
particles and as the geometric clock of an observer. Taking this as starting point we argued
that an observer’s time direction is given by the tangent to its worldline. We identified the three
spatial directions of the observer as the directions conormal to the differential of our funda-
mental geometry function. To determine the observers unit time and unit space directions we
normalised the frame with respect to the metric induced by the fundamental geometry function.
We obtained a geometric description of an observer by an orthonormal frame such that the
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measurements an observer performs are the components of physical fields in the observers
frame at the observers tangent bundle position. Transformations between different observers
constructed according to our model are not longer Lorentz transformations, but a combina-
tion between a parallel transport between the tangent bundle positions of the observers and
Lorentz transformations. As immediate consequence from our observer model we calculated
the velocity of a particle an observer measures in general and applied this formula to light tra-
jectories,i.e., null curves. We found that in general the velocity of light depends on the relative
orientation between the observer worldline tangent and the tangent vector of the light trajec-
tory. Such phenomenon is known from dielectric media, the bounds on such effects in vacuum
spacetime put bounds on the parameters of concrete Finsler spacetime models. For specific
non-metric Finsler spacetime geometries this dependence of the speed of light on its motion
relative to the observer who measures it may even disappear due to cancellations in the sum of
derivatives of the fundamental geometry function. Thus the possible observer dependence of
the speed of light is not a problem in Finsler spacetimes, it is a possibility the framework offers.

The final step to complete the framework was to equip Finsler spacetimes with matter fields
which determine the geometry in chapter 9. We discussed that physical fields coupling to
Finsler spacetime geometry have to be fields on the tangent bundle with the same number of
components as the corresponding field in metric spacetime geometry and tensorial transfor-
mation behaviour under manifold induced coordinate transformations. On the basis of these
requirements on the fields we constructed a minimal coupling principle. It is a recipe how to ob-
tain the field theory action on Finsler spacetimes from a given field theory action on Lorentzian
metric spacetimes. Combining the matter field action with the Finsler spacetime extension of
the Einstein–Hilbert action we obtained the dynamics of the geometry determined by the matter
content of spacetime. With this coupling principle we completed our description of gravity by
the geometry of Finsler spacetimes. It is such that in the metric limit the dynamics of the ge-
ometry become equivalent to the Einstein equations. Despite the effects of the matter fields on
the geometry we also discussed effects from the non-metric geometry on the matter fields. On
the example of the scalar field we demonstrated that on bimetric spacetimes there may exist
field modes which propagate faster then the speed of light. To discuss this effect we derived
the velocity dispersion relation which is influenced by the non-metric geometry. It is similar to
dispersion relations discussed in context with Lorentz invariance violating field theories; in our
spacetime framework the modification has its origin in the non-metric geometry of spacetime.
From the theory of electrodynamics on Finsler spacetimes obtained from our coupling principle
we derived that light propagates along Finsler null geodesics by analysing the propagation of
singularities of the Finslerian version of the Maxwell equations.

Thus we demonstrated throughout this thesis that our Finsler spacetime framework provides
a consistent non-metric Finslerian geometry which consistently extends Lorentzian metric ge-
ometry and has all features required from a spacetime framework by physics. Especially it
provides a causal structure, observers and their measurements and a description of gravity.
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Outlook

Our new Finsler spacetime framework which extends the framework of metric spacetime ge-
ometry answered nicely and elegant the questions discussed in section 4.2, which were open
from previous work. But as usual a new framework does not only answer questions it always
raises new ones. Here we discuss possible further applications important and open questions
of our framework, hopefully to be answered and studied in the future.

One of the most important tasks is to compare our new framework with further observations
to survey its viability as the fundamental geometry of spacetime. It is based on the fundamen-
tal geometry function which can be any kind of smooth homogeneous function on the tangent
bundle; further restrictions on this function from observations and physical arguments are desir-
able. Therefore one future task is to develop a machinery which parametrises the fundamental
geometry function directly such that the parameters a related to experimental observations. For
metric geometry there exists the PPN formalism which gives such a parametrisation [9]. The
extension of this formalism to general Finsler spacetimes and their dynamics is an important
project for a deeper understanding of our framework.

Concerning the dynamics of Finsler spacetimes it is not clarified yet if there exist an initial
value formulation and if it is well posed. A three plus one split formalism has to be developed,
the propagating degrees of freedom in terms of the fundamental geometry function have to
be identified and their initial value problem has to be studied. A first step in this direction is
to reformulate the initial value problem of general relativity in the Finsler spacetime framework
language and to extend such a reformulation to the general non-metric case.

The full potential of the Finsler spacetime framework will only be revealed if we achieve to
obtain non perturbative solutions of the dynamical equations, at least for spherical symmetry
or homogeneous and isotropic symmetry. From these solutions it is then possible to study if an
extended Finslerian geometric understanding of the geometry of spacetime, i.e., a modification
of the left hand side of the Einstein equations, is capable to address the dark matter and dark
energy paradigms. We have mentioned several times that the phenomenology of field theories
on Finsler spacetimes is consistent with observations of electrodynamics in media. Especially
in the very early universe it is believed that spacetime was filled with a dense hot plasma. It
may very well be that a Finsler geometric description of spacetime for that epoch is, at least
effectively, much more adequate than the description through metric cosmology.

By now it has bee realized that the Finsler spacetime framework is closely related to the
formulation of gravitational dynamics on observer space [65]. The latter is motivated from Loop
quantum gravity but only works for the vacuum dynamics so far. The matter field theories
obtained by our coupling principle can be translated into the observer space language and fill
the gap there to a complete reformulation of the gravitational dynamics.

An open mathematical question is the understanding of the integrals over the unit tangent
bundle on Finsler spacetimes. Since the unit tangent bundle here is not compact a renor-
malisation has to be applied to evaluate these integrals. The answer to the question if there
is a unique way to evaluate these integrals such that we get an integral representation of a
Lorentzian metric on Lorentzian metric spacetimes, similar as there is for Riemannian metrics,
would further improve the mathematical formulation of our framework.

120



Another interpretation of our Finsler spacetime dynamics, apart from being the dynamics de-
termining the fundamental geometry of spacetime, is that they describe the behaviour of several
fields on the manifold. The idea follows the spirit of Kaluza and Klein [2, 3] but without the need
of higher dimensional spacetimes. It is possible to consider fundamental geometry function
built from several fields on spacetime, as for example our anisotropic Finsler spacetimes are
built from a Lorentzian metric and a vector field. Our extended Einstein–Hilbert action for such
a fundamental geometry function can be see as the action which determines the dynamics of
all of the building block tensor fields on the manifold. Their dynamics can be obtained in two
ways: either by variation of the action with respect to the different building block fields yields
their equations of motion or variation with respect to the fundamental geometry function yields
its field equation which has to be decomposed into equations for the several building block
fields via derivatives with respect to the coordinates of the tangent spaces. The advantage
of these approaches to a unified geometric picture of the dynamics of several physical fields
is that no higher dimensional spacetime geometry has to be employed, but only non-metric
Finsler spacetime geometry. As a first step into this direction we already found that for a fun-
damental geometry function built from a metric and a one-form, the non-linear curvature scalar
contains the sum of the Ricci scalar of the metric, the canonical quadratic scalar built from the
field strength tensor of the one-form and further terms which have to be investigated in detail.
The ongoing study of this approach will reveal how the Finsler spacetime Einstein–Hilbert ac-
tion obtained in this case is related to the standard Einstein–Hilbert action and the standard
action for Maxwell electrodynamics, as well as if it is possible to obtain the Einstein-Maxwell
equations from the field equation of the fundamental geometry function.

Despite the application of our Finsler spacetime framework in the description of gravity or
the geometric unification of field theories on spacetime it opens the door to study field theo-
ries where the components of the fields depend on the directions of spacetime, in a stronger
way than the usual tensorial fields. This possibility leads for example new class of theories
of electrodynamics where the components of the field strength tensor still only depend on the
coordinates of the spacetime manifold but the components of the induction tensor are related to
the ones of the field strength tensor via objects that depend also on the directions of spacetime.
An application of such electrodynamics may be dispersive or inhomogeneous media where for
example the velocity of electromagnetic waves depend on their direction of propagation.

Studying field theories on Finsler spacetimes raises the question about their quantisation.
The quantisation procedure of field theories on metric manifolds is closely connected to the
hyperbolic partial differential equations which govern the behaviour of the fields. On Finsler
spacetimes one has to study the field equations on the tangent bundle carefully to develop a
compatible quantisation procedure. If one develops such a procedure, maybe one can also
apply it to the fundamental geometry function itself and in this way quantise gravity described
by a scalar on the tangent bundle instead of a metric on the spacetime manifold.

With the development of our Finsler spacetime framework throughout this thesis we pro-
vide an extension of the framework of general relativity including the description of causality,
observers and their measurements and gravity with present and future applications in physics.
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Appendices





A. Technical Proofs

Throughout this thesis we left out some details in the proofs of several theorems. Due to their
technicality they would have decreased the readability of the chapters, what is why they were
postponed into this appendix. Here we wish to add the missing parts of the proofs.

A.1. Relating the signatures of the L and F metric

In this section we work out the details for the proof of theorem 5.2 in section 5.1.3 which relates
the signature of the F metric to the signature of the L metric. Recall the theorem

Theorem Signature of the metrics
On the set TM \(A∪{L = 0}) the metric gL is nondegenerate of signature (−1m, 1p) for natural
numbers m, p with m + p = 4. Then the Finsler metric gF has the same signature (−1m, 1p)

where L(x, y) > 0, and reversed signature (−1p, 1m) where L(x, y) < 0.

Proof
By the definition of Finsler spacetimes the metric gL is non-degenerate on TM \ A, hence
also on the smaller set excluding the null structure on which gF is defined. Now observe from
equation (5.15) gF can be written as a matrix Cab

Cab = Aab −BaBb , with Aab =
2F 2

rL
gLab, Ba =

√
(r − 2)F 2

r2L2
∂̄aL, A

abBaBb =
r − 2

r − 1
. (A.1)

Hence B is always spacelike or null with respect to A depending on the value of r since from
the definition of Finsler spacetimes we know r ≥ 2. For r = 2 we have that B = 0 and already
from the relation between gL and gF it is clear that they have the same signature up to the
sign of L. To investigate the signature of gF for r > 2 we change to an orthonormal basis
ΨA = {EM , FN̄};M = 1, . . . ,m;N = 1, . . . , p;A = 1, . . . ,m + p for Aab and the corresponding
dual basis ΨA = {EM , F N̄}

AAB = AabΨ
a
AΨb

B = diag(−1, . . . ,−1︸ ︷︷ ︸
m

, 1, . . . , 1︸ ︷︷ ︸
p

) = η̃AB (A.2)

and hence
CAB = η̃AB −BABB (A.3)

where BA are the components of B in the orthonormal basis of Aab

B = BAΨA = BME
M +BN̄F

N̄ . (A.4)

Since B is spacelike with respect to A there exists a transformation ΛN̄0
∈ SO(m, p) to align B

with a fixed spacelike basis element F̂N̄0
= ΛN̄

N̄0
FN̄ of the ΛN̄0

transformed basis, i.e. B = k̄F̂N̄
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for k̄2 = η̃ABBABB. Applying this transformation to C yields

CAB = η̃AB − k̄2δAN̄0
δBN̄0

. (A.5)

The only change in the signature can happen for A = N̄ and B = N̄ and there we have
CN̄N̄ = 1 − k̄2. Hence a change in the signature appears only for k̄2 ≥ 1 or η̃ABBABB ≥ 1.
Going back to the original basis we started in, this condition reads AabBaBa ≥ 1. But for any
finite r > 2 we know from equation (A.1) that 1 > AabBaBa > 0 and so we conclude that Cab
has the same signature as Aab. For gL this means that it has the same signature as gL up to
the sign of L. �

A.2. Sasaki metrics in adapted coordinates

In theorem 5.6 in section 5.3.2 we transformed the Sasaki type metrics GF and GL from the
manifold induced coordinates (x, y) of TM

GF = −gFabdxa ⊗ dxb − 1

F 2
gFabδy

a ⊗ δyb (A.6)

GL = gLabdx
a ⊗ dxb +

gLab
F 2

δya ⊗ δyb , (A.7)

to the coordinates (x̂, u,R) adapted to the unit tangent bundle Σ

GF = −gFab dx̂a ⊗ dx̂b − 1

R2
hFαβ δu

α ⊗ δuβ − 1

R2
dR⊗ dR (A.8)

GL = gLabdx̂
a ⊗ dx̂b +

hLαβ
R2

δuα ⊗ δuβ +
r(r − 1)L

2R4
dR⊗ dR , (A.9)

and postponed the details of the proof to this appendix. We use the transformation relations
(5.61) and (5.62) and employ the notations hF\L = g

F\L
ab ∂αy

a∂βy
b and δuα = duα + (∂̄bu

αN b
a−

∂au
α)dx̂a. The first step is to expand dxa and δya into the new coordinates

dxa = ∂̂qx
adx̂q + ∂αx

aduα + ∂Rx
adR = dx̂a (A.10)

δya = dya +Na
bdx

b = ∂̂qy
adx̂q + ∂αy

aduα + ∂Ry
adR+Na

bdx̂
b . (A.11)

Plugging the dxa relation into the expression of the Sasaki type metric in (x, y) coordinates
proves the gF\Lab dxa ⊗ dxb = g

F\L
ab dx̂a ⊗ dx̂b part of the formulae. It remains to calculate

gFab(∂αy
aduα +

ya

R
dR+ (∂̂qy

a +Na
q)dx̂

q)⊗ (∂βy
bduβ +

yb

R
dR+ (∂̂py

b +N b
p)dx̂

p) (A.12)

gLab(∂αy
aduα +

ya

R
dR+ (∂̂qy

a +Na
q)dx̂

q)⊗ (∂βy
bduβ +

yb

R
dR+ (∂̂py

b +N b
p)dx̂

p) . (A.13)

Both calculations work analogously. The first will be displayed now

gFab(∂αy
aduα +

ya

R
dR+ (∂̂qy

a +Na
q)dx̂

q)⊗ (∂βy
bduβ +

yb

R
dR+ (∂̂py

b +N b
p)dx̂

p)

= gFab
yayb

R2
dR⊗ dR+ 2gFab

yb

R
(∂αy

aduα + (∂̂qy
a +Na

q)dx̂
q)⊗ dR

+gFab(∂αy
aduα + (∂̂qy

a +Na
q)dx̂

q)⊗ (∂βy
bduβ + (∂̂py

b +N b
p)dx̂

p)

= dR⊗ dR+ gFab(∂αy
aduα + (∂̂qy

a +Na
q)dx̂

q)⊗ (∂βy
bduβ + (∂̂py

b +N b
p)dx̂

p) . (A.14)
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The last equality is due to the fact that ∂̄c|L|1/r∂uβyc = 0 and ∂̂bya + ∂bu
γ∂uγy

a + ya

R ∂b|L|1/r = 0

and δaF = δa|L|1/r = 0. With this we obtained the desired dR ⊗ dR part. To prove the
appearance of the missing term hFαβ δu

α ⊗ δuβ we expand it into

hFαβ δu
α ⊗ δuβ (A.15)

= gFab∂αy
a∂βy

b(duα + (∂̄qu
αN q

p − ∂puα)dx̂p)⊗ (duβ + (∂̄cu
βN c

d − ∂duβ)dx̂d)

= gFab(∂αy
aduα + ∂αy

a(∂̄qu
αN q

p − ∂puα)dx̂p)⊗ (∂βy
bduβ + ∂βy

b(∂̄cu
βN c

d − ∂duβ)dx̂d) .

Comparing this expression with equation (A.14) the last thing we need to check is

∂αy
a(∂̄qu

αN q
p − ∂puα))

!
= (∂̂py

a +Na
p) (A.16)

That this equality is true can be verified using ∂αya∂̄quα = δaq − yayqR−2 and the formulae used
above equation (A.14). This completes the proof involving gF , the calculation for gL works
completely analogously. The difference lies only in the homogeneity factors one obtains.

A.3. Integration by parts formulae

Here we provide the proof of the integration by parts formulae introduced in equation (5.86).
We show the calculations for the formulae with volume form based on

√
gLhL; the ones with

volume form based on
√
gFhF follow the same line of calculation with a two-homogeneous

function F 2 instead of the r-homogeneous function L. Explicitly we go step by step through the
integration by parts for the ∂̄a derivative and argue afterwards how the integration by parts of the
δa derivative works. During the calculation latin indices run from 0, . . . , 3, greek indices run from
1, . . . , 3 and (x̂, u) denote the co-ordinates of the unit tangent bundle. Before the proof of the
vertical and horizontal integration by parts formulae we display several identities derived from
the coordinate transformations (5.61) and (5.62) and the definition of hLβγ = gLmn∂βy

m∂γy
m:

I) The x̂ derivative of the volume measure

hLβγ ∂̂ah
L
βγ = hLβγ ∂̂a(g

L
cd)∂βy

c∂γy
d + 2hLβγgLcd(∂̂a∂βy

c)∂γy
d

= (∂̂a(g
L
cd)∂βy

c + 2gLcd(∂̂a∂βy
c))hLβγ∂γy

d

= (∂̂a(g
L
cd)∂βy

c + 2gLcd(∂̂a∂βy
c))gLdq∂̄qu

β

= (gLcd − 2

r(r − 1)L
ycyd)∂̂a(g

L
cd) + 2∂̄cu

β(∂̂a∂βy
c)

⇒ ∂̂a(
√
gLhL) =

√
gLhL

[
gLcd∂̂ag

L
cd + ∂̄cu

β(∂̂a∂βy
c)− 2ycyd

r(r − 1)L
∂̂ag

L
cd

]
. (A.17)

II) The u derivative of the volume measure

hLβγ∂αh
L
βγ = hLβγ∂α(gLcd)∂βy

c∂γy
d + 2hLβγgLcd(∂α∂βy

c)∂γy
d

= (∂α(gLcd)∂βy
c + 2gLcd(∂α∂βy

c))hLβγ∂γy
d

= (∂α(gLcd)∂βy
c + 2gLcd(∂α∂βy

c))gLdq∂̄qu
β

= (gLcd − 2

r(r − 1)L
ycyd)∂α(gLcd) + 2∂̄cu

β(∂α∂βy
c)

= gLcd∂α(gLcd) + 2∂̄cu
β(∂α∂βy

c) (A.18)

⇒ ∂α(
√
gLhL) =

√
gLhL

[
gLab∂αg

L
ab + ∂̄cu

β(∂α∂βy
c)
]
. (A.19)
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III) Rewriting terms to standard induced coordinates (x, y) of TM :

∂̄au
αgLcd∂αg

L
cd = gLcd∂̄ag

L
cd −

8(r − 2)

r(r − 1)L
yLqgLaq , (A.20)

∂̄cu
β(∂α∂βy

c)∂̄au
α + ∂α∂̄au

α = − 6

r(r − 1)L
gLaby

b , (A.21)

ycyd∂̂ag
L
cd = yayd(∂a + ∂̂ay

m∂̄m)gLcd = ∂aL(r − 1) . (A.22)

The important ingredient in the proof of equation (A.21) is to apply ∂̄quα∂α to ∂̄auβ∂βya = 3.
Now we proof the vertical integration by parts formula for a d-vector field A with components

Aa(x, y) which are m-homogeneous with respect to y∫
Σ

d4x̂d3u
√
gLhL|Σ

(
∂̄aA

a
)
|Σ

= −
∫

Σ
d4x̂d3u

√
gLhL|Σ

[(
gLpq∂̄ag

L
pq −

2(4r +m− 5)

r(r − 1)L
ypgLpa

)
Aa
]
|Σ
. (A.23)

To perform an integration by parts on Σ we need to expand ∂̄a into the adapted coordinate
derivative operators

∂̄aA
a = ∂̄au

α∂αA
a + ∂̄aR∂RA

a = ∂̄au
α∂αA

a + 2m
gLaby

b

r(r − 1)

Aa

L
. (A.24)

The last equality is based on the facts that R(x, y) = F (x, y) = |L(x, y)|1/r by the definition of
the adapted coordinates, that the homogeneity of tangent bundle functions with respect to y

becomes homogeneity with respect to R as shown in equation (5.63). Thus∫
Σ

d4x̂d3u
√
gLhL|Σ

(
∂̄aA

a
)
|Σ =

∫
Σ

d4x̂d3u
√
gLhL|Σ

[
∂̄au

α∂αA
a +

2mgLaby
b

r(r − 1)L
Aa
]
|Σ

=

∫
Σ

d4x̂d3u
√
gLhL|Σ

[
∂α(∂̄au

αAa)− ∂α∂̄auαAa +
2mgLaby

b

r(r − 1)L
Aa
]
|Σ

=

∫
Σ

d4x̂d3u
[
∂α(
√
gLhL∂̄au

αAa)− ∂α(
√
gLhL)∂̄au

αAa − ∂α∂̄auαAa +
2mgLaby

b

r(r − 1)L
Aa
]
|Σ

= −
∫

Σ
d4x̂d3u

[
∂̄au

αgLcd∂αg
L
cd + ∂̄cu

β(∂α∂βy
c)∂̄au

α + ∂α∂̄au
α − 2mgLaby

b

r(r − 1)L

]
|Σ
Aa|Σ

= −
∫

Σ
d4x̂d3u

[
gLcd∂ag

L
cd −

2(4(r − 2) + 3 +m)

r(r − 1)L
gLaby

b
]
|Σ
Aa|Σ , (A.25)

where we used the validity of the last two equalities is ensured by the equations (A.19), (A.20)
and (A.21). We omitted the boundary term coming from the divergence along the tangent space
directions ∂α(

√
gLhL∂̄au

αAa) as discussed in section 5.3.3.
The horizontal integration by parts formula∫

Σ
d4x̂d3u

√
gFhF |Σ

(
δaA

a
)
|Σ = −

∫
Σ

d4x̂d3u
√
gFhF |Σ

[(
Γδ ppa + Sppa

)
Aa
]
|Σ

(A.26)

can now be proven as follows. Observe that the horizontal derivative can be written as

δaA
a = ∂aA

a −N q
a∂̄qA

a = (∂̂a + ∂au
α∂α + ∂aR∂R)Aa −N q

a(∂qu
α∂αA

a + (∂̄qR)∂RA
a)

= ∂̂aA
a − (N q

a∂qu
α − ∂auα)∂αA

a = ∂̂aA
a −Nα

a∂αA
a , (A.27)
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since δaR = δaF = 0, as derived in equation (5.39).∫
Σ

d4x̂d3u
√
gFhF |Σ

(
δaA

a
)
|Σ =

∫
Σ

d4x̂d3u
√
gFhF |Σ

[
∂̂aA

a −Nα
a∂αA

a
]
|Σ

=

∫
Σ

d4x̂d3u
√
gFhF |Σ

[
− (∂̂a

√
gFhF )Aa + (∂αN

α
a)A

a − ∂α(Nα
aA

a)
]
|Σ

(A.28)

To continue from here to the desired expression we extract the ∂α integration by parts from
equation (A.25) and use the relations (A.17), (A.21) and (A.22) to expand the terms. Adding
everything up one arrives at∫

Σ
d4x̂d3u

√
gFhF |Σ

(
δaA

a
)
|Σ = −

∫
Σ

d4x̂d3u
√
gFhF |Σ

[
(gLcdδag

L
cd + ∂̄cN

c
a)A

a
]
|Σ
, (A.29)

what with help of the definition of the S-tensor (equation (5.51)) and and of the δ-Christoffel
symbols (equation (5.45)) proofs the horizontal integration by parts formula.

The derivations of this section proof the integration by parts formulas which are essential in
the derivation of the dynamics of Finsler spacetimes.

A.4. Lifts of generating vector fields of cosmological symmetry

We deduce the most general fundamental geometry function L for Finsler spacetimes with
cosmological symmetries in section 5.4.3. The derivation requires the complete lifts of the
symmetry-generating vector fields (5.99) which we display here explicitly:

XC
1 = χ

(
sin θ cosφ∂r +

χ

r
cos θ cosφ∂θ −

χ

r

sinφ

sin θ
∂φ

)
+
(
yrχ′ sin θ cosφ+ yθχ cos θ cosφ− yφχ sin θ sinφ

)
∂̄r

+
(
yr
(χ
r

)′
cos θ cosφ− yθχ

r
sin θ cosφ− yφχ

r
cos θ sinφ

)
∂̄θ (A.30)

+
(
− yr

(χ
r

)′ sinφ
sin θ

+ yθ
χ

r

sinφ

sin2 θ
cos θ − yφχ

r

cosφ

sin θ

)
∂̄φ ,

XC
2 = χ sin θ sinφ∂r +

χ

r
cos θ sinφ∂θ +

χ

r

cosφ

sin θ
∂φ

+
(
yrχ′ sin θ sinφ+ yθξ cos θ sinφ+ yφξ sin θ cosφ

)
∂̄r

+
(
yr
(χ
r

)′
cos θ cosφ− yθχ

r
sin θ sinφ+ yφ

χ

r
cos θ cosφ

)
∂̄θ (A.31)

+
(
yr
(χ
r

)′ cosφ

sin θ
− yθχ

r

cosφ

sin2 θ
cos θ − yφχ

r

sinφ

sin θ

)
∂̄φ ,

XC
3 = χ cos θ∂r −

χ

r
sin θ∂θ +

(
yrχ′ cos θ − yθχ sin θ

)
∂̄r −

(
yr
(χ
r

)′
sin θ + yθ

χ

r
cos θ

)
∂̄θ . (A.32)

The complete lifts XC
4 , XC

5 and XC
6 are stated in equations (5.91). In the formulae above

we use the abbreviation χ =
√

1− kr2 and primes denote differentiation with respect to the
coordinate r.
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A.5. Variation of the gravity action

The dynamical equation determining the geometry of Finsler spacetimes presented in sec-
tion 6.2 can be deduced from our generalised Einstein–Hilbert action as follows. Recall the
action (6.3):

SLG[L] =

∫
Σ

d4x̂d3u
√
gFhF |ΣR|Σ =

∫
Σ

d4x̂d3u
[√

gFhF Raaby
b
]
|Σ
. (A.33)

The integrand is homogeneous of degree five; to obtain the first intermediate step (6.5) of the
variation we use the facts that for f(x, y) homogeneous of degree m holds f(x, y)|Σ = f(x,y)

F (x,y)m

and that δL(f(x, y)|Σ) = (δLf(x, y))|Σ − m
r f(x, y)|Σ

δL
L .

The second step (6.6) is obtained by using the coordinate transformation formulae (5.60) and
the fact that δ(∂αya) = −ya∂α( δLrL) to calculate

hFαβδhF αβ = (gFab∂̄au
α∂̄bu

β)(∂αy
c∂βy

dδgF cd + 2∂αδy
c∂βy

dgFcd) = gFabδgFab −
2

r

δL

L
, (A.34)

which in turn is used to deduce

δ(
√
gFhF Raaby

b) =
√
gFhF

([
gFabδgF ab −

1

r

δL

L

]
Raaby

b + δRaab y
b
)
. (A.35)

The formulae (6.7) and (6.8) used in the third step of the variation are basically obtained by
means of integration by parts (5.86). For a function f(x, y) that is m-homogeneous in y the
following holds∫

d4x̂d3u
(√

gFhF gFabδgFabf
)
|Σ

=

∫
d4x̂d3u

(√
gFhF

(
f(m+ 4)(2−m) +F 2gFab∂̄a∂̄bf

)δL
rL

)
|Σ

;

(A.36)
choosing f = Raaby

b which has m = 2 proves formula (6.7). To show equation (6.8) we first
write Sabc = −yq∂̄bΓδaqc and use

δRabc = −2yd∇CL[b δΓδac]d + 2ypSaq[bΓ
δq
c]p (A.37)

to equate

δRaab y
b = −2ybyq

(
∇CL[a δΓδab]q −

1

2
ScδΓ

δc
bq

)
= −∇CLa (ybyqδΓδabq) + yb∇CLb (yqδΓδaaq) + ScδΓ

δc
bqy

byq . (A.38)

The integration by parts formulae (5.86) and

ybyqδΓδabq =
1

2
gLap(yb∇CLb ∂̄pδL−∇CLp δL)

=
|L|2/r
rL

gFap(yb∇CLb ∂̄pδL−∇CLp δL) +
(2− r)
rL

yayb∇CLb δL (A.39)

then yield the desired equation∫
d4x̂d3u

(√
gFhF δRaaby

b
)
|Σ

=

∫
d4x̂d3u

(√
gFhF 2 ScδΓ

δc
bqy

byq
)
|Σ

=

∫
d4x̂d3u

(√
gFhF 2 F 2gFab

(
∇CLa Sb + SaSb + ∂̄a∇Sb

)δL
rL

)
|Σ
. (A.40)

Combining these three steps as we did in section 6.2 finally produces the Finsler gravity vacuum
field equation (6.11).
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A.6. Conservation equation in the metric limit

In section 6.3 we derived the conservation equation which is satisfied by action based field
theories on Finsler spacetimes. We explicitly discussed the resulting conservation equations
from the generalised Einstein–Hilbert action. A missing step in the discussion is the following
integral on Riemannian manifolds∫

Σx

d3u
√
gh|Σx

[
yaybycyd

]
|Σx

=
√
g

2

Vol(S3
p)
g(abgcd) , (A.41)

For a Riemannian spacetime Σx is the metric sphere S3
p = {y ∈ TpM |gp(y, y) = 1}. To perform

the integration we introduce an orthonormal frame of the metric gab so that gx(y, y) = δµνy
µyν

and spherical coordinates (r, θ1, θ2, θ3); r ∈ (0,∞); θ1 ∈ (0, 2π); θ2, θ3 ∈ (0, π) on TxM

y0 = r sin θ3 sin θ2 cos θ1, y2 = r sin θ3 cos θ2, (A.42)

y1 = r sin θ3 sin θ2 sin θ1, y3 = r cos θ3 . (A.43)

Setting r = 1 yields coordinates on Σx. The volume element
√
h of Σx is given by

√
h = | sin θ2 sin θ2

3|, (A.44)

while
√
g can be ignored in the integrations, since gab does not depend on the angles θi. Plug-

ging these expressions into equation (A.41) and performing the integral for all index combina-
tions yields its validity.

A.7. Variation of the matter action

In section 9.2 we presented a coupling principle of matter fields to Finsler gravity. The crucial
steps of the derivation of the constraints (9.6), equations of motion (9.7) and (9.8), and of the
metric limit of the complete gravity equation (9.18) including the matter source terms shall be
presented here. Recall the matter action for a p-form field Φ(x, y) on Finsler spacetime arises
from a lift of the standard p-form action on Lorentzian spacetime as

Sm[L,Φ, λ] =

∫
Σ

d4x̂d3u
[√

gFhF
(
L(GF ,Φ,dΦ) + λ(1− PH)Φ

)]
|Σ
. (A.45)

In order to perform the variation we consider all objects in the horizontal/vertical basis of TTM
where G is diagonal, see definition 5.4. In the following the M,N, .. label both horizontal and
vertical indices, ā, b̄, ... label vertical indices, and a, b... label horizontal indices. Then

L(GF ,Φ,dΦ) + λ(1− PH)Φ = L(GFMN ,ΦM1...Mp ,dΦAM1...Mp) + λā1M2...MpΦā1M2..Mp , (A.46)

and the variation of this Lagrangian can now be written as follows

δ(L+ λ(1− PH)Φ) =
∂L

∂GFMN

δGFMN +
∂L

∂ΦM1...Mp

δΦM1Mp +
∂L

∂(dΦNM1...Mp)
δ(dΦNM1Mp)

+ λā1M2...MpδΦā1M2..Mp + δλā1M2...MpΦā1M2..Mp . (A.47)
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We can immediately read off the variation with respect to the Lagrange multiplier components
which produces (9.6). Hence the Lagrange multiplier λ sets to zero all components of Φ with at
least one vertical index, so that only purely horizontal components remain on-shell.

The expansion of dΦ in components with respect to the horizontal/vertical basis yields

dΦNM1...Mp = (p+ 1)D[NΦM1...Mp] −
p(p+ 1)

2
γQ[NM1

Φ|Q|M2...Mp] , (A.48)

where we write DM = δaMδa + δāM ∂̄a, and γQMN denote the commutator coefficients of the
horizontal/vertical basis. Their only non-vanishing components are given by γābc = [δb, δc]

ā =

Rābc and γāb̄c = [∂̄b, δc]
ā = ∂̄bN

ā
c. One now uses the integration by parts formulae (5.86) and

rewrites all formulae in terms of the Cartan linear covariant derivative to obtain the variation of
the matter action with respect to Φ; this produces the equations of motion (9.7) and (9.8).

Finally the source term for the gravity field equation is obtained by variation of the matter
action Sm in (A.45) with respect to the fundamental geometry function L. This not only includes
the variation (A.47) but also that of the volume element which can be read off from (A.35). We
will now show that the metric limit of Finsler gravity plus matter is consistent; this can be done
on-shell where we may use the Lagrange multiplier constraints to set all explicitly appearing
Φā1M2..Mk

to zero. Then the variation of Sm with respect to L becomes

δSm[L,Φ] (A.49)

=

∫
Σ

d4x̂d3u
√
gFhF |Σ

[(
gFab∂̄a∂̄bL+ 4L

)δL
rL

+
∂L

∂GFMN

δGFMN +
∂L

∂(dΦNM1...Mk
)
δ(dΦNM1Mk

)
]
|Σ

=

∫
Σ

d4x̂d3u
√
gFhF |Σ

[(
gFab∂̄a∂̄bL+ 4L

) δL
nL

(A.50)

+
∂L
∂gFab

δgFab +
∂L
∂gF

āb̄

δ
(gF

āb̄

F 2

)
+

∂L
∂(dΦba1...ak)

δ(δ[bΦa1..ak])
]
|Σ
.

In order to determine the energy momentum scalar T|Σ defined in (9.17) on a generic Finsler
spacetime one has to calculate all terms in the expression above carefully. However, in the
metric geometry limit the last two terms vanish. Indeed, ∂L

∂gF
āb̄

is always composed from terms

with vertical indices that must be either of the type ∂̄Φ or contain components of Φ with at least
one vertical index; the last term is proportional to δN∂̄Φ; in the metric limit ∂̄Φ vanishes and
the vertical index components of Φ are zero on-shell. Therefore the remaining terms that are
relevant in the metric limit are

δSm[L,Φ]→
∫

Σ
d4xd3u

√
gFhF |Σ

[(
gFab∂̄a∂̄bL+ 4L

)δL
rL

+
∂L
∂gFab

δgFab

]
|Σ
. (A.51)

The rewriting δgFab = 1
2 ∂̄a∂̄bδF

2 and subsequent integration by parts yields∫
Σ

d4x̂d3u
√
gFhF |Σ

[ ∂L
∂gFab

δgFab

]
|Σ

(A.52)

=

∫
Σ

d4x̂d3u
√
gFhF |Σ

[
− ∂̄cKc +

(
− gFij ∂̄cgFij + 4gFicy

i
)
Kc
]
|Σ
δL

rL
,

with
Kc =

(
− gFij ∂̄dgFij +

4

F 2
gFidy

i
) ∂L
∂gFcd

− ∂̄d
∂L
∂gFcd

. (A.53)
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A.7. Variation of the matter action

Applying the metric limit now means to consider L(x, y) = gab(x)yayb with the consequence
that gFab(x, y) = −gab(x) for timelike y. The expression for Kc reduces to Kc → 4

F 2 gidy
i ∂L
∂gcd

and
∂̄cK

c → ( 8
F 4 gidy

igjcy
j + 4

F 2 gcd)
∂L
∂gcd

. Collecting all terms in the variation of the matter action in
the metric geometry limit finally yields

δSm[L,Φ]→
∫

Σ
d4x̂d3u

√
gFhF |Σ

[
4L − 4gcd

∂L
∂gcd

− 24ycyd
∂L
∂gcd

]
|Σ
δL

rL
, (A.54)

from which we can read off the expression for the source term T|Σ,

T|Σ →
(

4L − 4gcd
∂L
∂gcd

− 24ycyd
∂L
∂gcd

)
|Σ
. (A.55)

The lift of this expression to TM requires making all terms zero-homogeneous by multiplication
with the appropriate powers of F (x, y), which here means multiplication of the third term by
F (x, y)−2. The result confirms equation (9.19) that was used to prove the consistency of Finsler
gravity with Einstein gravity in the metric geometry limit.
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