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Abstract

Complexity created by periodic arrangement of well-understood building blocks plays an
important role in biochemistry, photonics, engineering and nanoelectrics. The periodic
arrangement of atoms or molecules as basis determines the physical properties of crys-
tals. With the flexibility of nanometer precise electron-beam lithography here magnetic
interactions are engineered yielding two-dimensional magnonic crystals that benefit from
the magnetic vortex core as crystal basis. Using scanning transmission X-ray microscopy
at the MAXYMUS beamline at BESSY II in Berlin, Germany the magnonic crystal dy-
namics are imaged with time resolution in the sub-nanosecond regime and simultaneous
spatial resolution on the nanometer scale. Self-organized vortex core state formation
by adiabatic reduction of a high frequency magnetic field excitation is observed. The
emerging polarization states are shown to depend on the frequency of excitation and the
strength of the dipolar interaction between the elements. In spite of the complexity of the
investigated system, global order caused by local interactions creates polarization states
with a high degree of symmetry. An analytical dipole model and numerically solved cou-
pled equations of motion are adopted to analytically describe the experimental results.
The emerging states can be predicted by a fundamental stability criterion based on the
excitability of eigenmodes in the crystal. Further experiments with ferromagnetic absorp-
tion spectroscopy are carried out that give insight into the characteristic frequencies of
the vortex dynamics that are crucially influenced by the self-organized state formation.
This is emphasized with experiments on benzene-like magnetic vortex molecules whose
motions show strong similarities to the vibrational modes of the actual benzene molecule
(C6H6). The symmetry of both systems determines the motions of the oscillators, i.e.,
the carbon atoms or the magnetic vortices. This allows to simplify the derivation of the
fundamentally different dispersion relations depending on the previously tuned polariza-
tion state. The experiments confirm the calculations and prove that the magnetic vortex
molecule features a reprogrammable band structure or dispersion relation. Consequently,
this work allows further research studies to tailor the characteristic properties of various
magnetic vortex arrangements by tuning the polarization state.
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Kurzzusammenfassung

Das Zusammenspiel einer Vielzahl gleichartiger, gut verstandener Bausteine spielt eine
entscheidende Rolle in vielen komplexen Systemen verschiedenster wissenschaftlicher Dis-
ziplinen wie Biochemie, Photonik, Ingenieurswissenschaften oder Nanoelektronik. Zum
Beispiel bestimmen periodische Anordnungen von Atomen oder Molekülen die physikal-
ischen Eigenschaften von Kristallen. In dieser Arbeit werden magnetisch wechselwirk-
ende Wirbel, sogenannte magnetische Vortizes, zu magnonischen Kristallen angeordnet.
Die verwendete Elektronenstrahl-Lithographie erlaubt es, die Vortizes mit Nanometer-
Präzision herzustellen und als Basis auf einer regelmäßigen Kristallstruktur zu platzieren.
Mittels zeitaufgelöster Röntgenmikroskopie am MAXYMUS Mikroskop (BESSY II Syn-
chrotron, Helmholtz-Zentrum Berlin) ist es möglich, die dynamischen Prozesse mit einer
Zeitauflösung von unter einer Nanosekunde und gleichzeitiger örtlicher Auflösung auf
der Nanometer-Skala abzubilden. In den Experimenten wird ein hochfrequentes mag-
netisches Anregungsfeld adiabatisch reduziert. Dies führt zu einer selbstorganisierten
Einstellung der Polarisationen der Vortizes im Kristall. Trotz der Komplexität der un-
tersuchten Systeme erzeugen die lokalen Interaktionen eine globale Ordnung in Form von
hochsymmetrischen Polarisationszuständen. Diese hängen von der Anregungsfrequenz
und der Stärke der hauptsächlich dipolaren magnetischen Wechselwirkung der Vortizes
ab. Zur Beschreibung der experimentellen Ergebnisse wird ein analytisches Model en-
twickelt und numerisch gelöste Bewegungsgleichungen werden untersucht. Die selbstor-
ganisiert eingestellten Polarisationszustände können daraufhin mit einem elementaren
Stabilitätskriterium erklärt werden, das auf der Anregbarkeit von Eigenmoden im Kristall
basiert. Weitere Messungen mit ferromagnetischer Absorptionsspektroskopie erlauben es,
die deutlichen Einflüsse der selbstorganisierten Zustandseinstellung auf die charakteris-
tischen Frequenzen der Vortex-Bewegungen zu studieren. Diese Einflüsse werden weiter
in Experimenten an ringartigen Anordnungen von Vortizes, die starke Ähnlichkeit zum
Molekül Benzol (C6H6) haben, untersucht. Bei beiden Systemen bestimmt die Sym-
metrie die Bewegung der Oszillatoren, das heißt der Kohlenstoffatome beziehungsweise
der magnetischen Vortizes. Dies erlaubt es auf vereinfachte Weise in einem analytis-
chen Dipol-Model die Dispersionsrelation des Vortex-Moleküls herzuleiten, die stark vom
vorherrschenden Polarisationszustand abhängt. In den Experimenten wird die Polarisa-
tionsabhängigkeit bestätigt und somit gezeigt, dass das magnetische Vortex-Molekül eine
einstellbare Bandstruktur beziehungsweise Dispersionsrelation aufweist. Infolgedessen
erlaubt es diese Arbeit weiterführenden Studien die charakteristischen Eigenschaften
vielfältiger Anordnungen magnetischer Vortizes gezielt zu manipulieren und maßzuschnei-
dern.
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The career of a young [theoretical] physicist consists of treating the harmonic
oscillator in ever-increasing levels of abstraction.

(Sidney R. Coleman (1937-2007), said in his lectures at Harvard University.)

1. Introduction

The harmonic oscillator is one of the major concepts of modern and classical physics, de-
scribed in many basic textbooks. It is commonly introduced on the example of a spring
pendulum in classical mechanics. In the simplest case, it is a system that, when dis-
placed from its equilibrium position, experiences a restoring force that is proportional to
the displacement. Coupled systems of (quantum) harmonic oscillators feature collective
modes that have analogies in several physical systems, in particular in the lattice vibra-
tions of solids. The concepts of a band-structure or dispersion relation allow to describe
the crystal properties, e.g., the heat capacity, on the basis of such lattice vibrations.
Subject of this work are magnetic vortex structures [Wac02] that are enclosed in thin
ferromagnetic disks. They feature several analogies to classical harmonic oscillators. The
center region of the magnetic vortex can be understood as a rigid magnetic particle that
experiences a restoring force when deflected form its equilibrium position at the center of
the disk. In order to reach its equilibrium position again, the magnetic vortex performs
an approximately circular, damped gyration around the center of the disk; comparable
to the motion of an initially deflected spring-pendulum. During the gyration the vortices
exhibit a magnetic stray field that implies a coupling with neighboring vortices. Con-
sequently, regular arrangements of vortices, so called magnonic vortex crystals, feature
collective vibration modes that can be described using common concepts of solid-state
physics, i.e., group velocity, density of states, and band structure [Kru10a; Len11]. As
other magnonic crystals, i.e., wave transmission media that feature an artificial lattice
created by a periodically modulated magnetic material, magnonic vortex crystals con-
tribute to the research field of Magnonics that emerges at the interfaces between the
study of spin dynamics, on the one hand, and nanoscale science on the other [Kru10a;
Kru10b]. Vortex crystals are candidates for man-made, artificial crystals that feature a
reprogrammable band structure [Kra14]. This is due to the so-called polarization, a binary
state-parameter of the magnetic vortex that strongly influences the coupling. In the same
way the control over the relative polarization of vortex arrangements allows for electronic
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1. Introduction

devices based on magnetic vortices that allow to store or process data – like a random
access memory [Boh08] or the recently demonstrated transistor operations [Kum14].
The main topic of this work is the phenomenon of the self-organized formation of polar-
ization states in arrangements of magnetic vortices (chapter 4). After the introduction of
the field of magnetic vortices and the experimental methods (chapter 2 and chapter 3),
we will see that an adiabatic reduction of a high-frequency magnetic field excitation leads
to a self-organized relaxation of the vortex-system into well-ordered polarization states.
Consequently, this work allows to tailor the characteristic properties of magnonic vortex
crystals by tuning the polarization state. Prior to the outlook on further studies that
closes the thesis (chapter 6), this will be demonstrated exemplary by the manipulation of
the dispersion relation of ring-like magnetic vortex arrangements (chapter 5) that resem-
ble the benzene molecule (C6H6). Especially when comparing the normal modes of the
actual benzene and the vortex-molecule the abovementioned analogies between harmonic
oscillators and magnetic vortices become evident.
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2. The Magnetic Vortex

This work is about the collective behavior of arrangements of magnetic ground-state con-
figurations that are present in magnetic microdisks of suitable geometry – the magnetic
vortices. Basis for the presented findings is the understanding of a single magnetic vortex
which is the building block of the experiments. This chapter serves as an introduction to
the field of magnetic vortices. It starts with a phenomenological description of the proper-
ties of the magnetic vortex that are shortly motivated by the theory of micromagnetism.
A deeper understanding of the fundamentals of magnetism and magneto dynamics on
the nanoscale can be gained from textbooks like Ref. [Stö06] or Ref. [Aha00]. The main
focus of this chapter is the extended Thiele model [Thi73; Krü07] that allows to describe
the dynamics of magnetic vortices in an efficient and sophisticated fashion. The last
part of this chapter deals with the stray-field coupling of magnetic vortices in the Thiele
model. Besides the common rigid-vortex-approach with surface-charge coupling [Gus01b;
Suk13], an analytical approximation that was developed in the context of this work will
be presented. In order to get a basic understanding, a pair of coupled vortices will be
discussed exemplarily. This chapter constitutes the foundation for the interpretation of
the experiments.

Magnetic vortices emerge in ferromagnetic microstructures. As for all magnetic solids,
the magnetic properties of such structures are characterized by the magnetic moment per
volume, i.e., the magnetization ~M . The magnetic induction ~B of Maxwell’s equations
can be calculated from the magnetization and the external magnetic field ~H according
to

~B = µ0( ~H + ~M), (2.1)

where µ0 = 4π · 10−7 V s A−1 m−1 is the magnetic vacuum permeability. Unlike in only
diamagnetic or paramagnetic materials, the magnetic moments of the atoms in a ferro-
magnetic material are not independent, but spontaneously align parallel to each other
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2. The Magnetic Vortex

Figure 2.1.: Magnetic vortex state in a ferromagnetic micro disk. (a) Schematic of the magneti-
zation curling around the vortex core in the center of the disk (red dot). The standard dimensions
of the disks investigated in this work are depicted. (b) Close-up of the magnetization in the mag-
netic vortex core region. The z-component of the magnetization is color-coded in red. The vortex
core has a typical size of a few ten nm.

inside of small regions, the so-called magnetic domains [Stö06]. Ferromagnetic microstruc-
tures enclose a few or only a single domain. The absolute value of the magnetization
inside such a domain MS = | ~M | is a material specific constant called saturation magne-
tization. For the material Permalloy (Ni80Fe20), used in the context of this work, a value
of MS = 8 · 105 A m−1 is reasonable [Krü07]. Magnetic microstructures can be described
with the micromagnetic model [Bro59] that is based on the treatment of the magneti-
zation as a continuous vector field ~M(~r). For the magnetic vortex, the magnetization
curls in the plane around a center region, called the magnetic vortex core, where it turns
out out-of-plane [Wac02]. Magnetic vortex states can be present in various magnetic mi-
crostructures, including disks, flat rectangular structures or wires [Shi00; Gol03; Nak05].
In this work magnetic vortices are investigated that are enclosed in thin microdisks as
depicted in Fig. 2.1. In the micromagnetic model the emergence of the magnetic vortex
as the magnetic ground state can be motivated by the minimization of all micromagnetic
energies. For the investigated Permalloy disks two micromagnetic energies are dominant
in the absence of external magnetic fields. The exchange energy models the parallel
alignment of the magnetic moments in ferromagnetic materials. It is increased by inho-
mogeneities of the magnetization. The demagnetization energy describes the interaction
of the magnetization with the stray-field that is generated by the microstructure itself.
The stray-field ~Hd is a result of Eqn. 2.1 and Maxwell’s second equation. According to

~∇ ~B = µ0~∇ · ( ~Hd + ~M) = 0, (2.2)
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Figure 2.2.: Deflection of the magnetic vortex with a static magnetic field in x-direction. The
deflection depends on the chirality c. (a) A positive chirality c = +1 leads to a deflection in
positive y-direction. (b) A negative chirality c = −1 leads to a deflection in negative y-direction.

sources of the stray-field ~Hd are sinks of the magnetization ~M . They are also called
magnetic charges. The demagnetization energy is reduced when surface charges are
avoided [Kro62]. It follows that the magnetization aligns parallel to the surface of the
microstructure. This effect is known as shape anisotropy and forces the magnetization to
lie in the plane of the thin disk and align parallel to the border. In the core region the
curling magnetization would lead to large angles between neighboring magnetic moments
being unfavorable with regards to the exchange energy. Thus, the magnetization tilts out
of the plane in the core region and the magnetic vortex forms as the magnetic ground
state in the disk.
When an external magnetic field is applied, a third micromagnetic energy comes into
play, the so-called Zeeman energy. It is minimized by a parallel alignment of the mag-
netization to the applied field. For very strong homogenous and static magnetic fields
the Zeeman energy becomes dominant over all other micromagnetic energies. Conse-
quently, the magnetization of the whole disk aligns parallel to the field. The magnetic
vortex state is destroyed. For smaller field strengths the vortex state is still present but
the core region is deflected from the center of the disk in order to enlarge the num-
ber of magnetic moments that are aligned parallel to the field [Gus01a]. As depicted on
Fig. 2.2, the deflection direction depends on the curling direction of the magnetization
in the disk, i.e., the chirality c of the vortex. For a static magnetic field ~H that points
in x-direction a clockwise curling vortex (c = −1) is deflected in negative y-direction,
and a counter-clockwise curling vortex (c = +1) is deflected in positive y-direction. For
increasing magnetic-field strengths the vortex core is deflected further from the center
of the disks until the vortex state is destroyed. Besides the chirality, the second state

5



2. The Magnetic Vortex

Figure 2.3.: Relaxation of a magnetic vortex subsequent to a deflection with a magnetic field in
x-direction. The vortex core performs a damped gyration to its equilibrium position at the center
of the disk. The gyration direction depends on the polarization p. (a) A positive polarization
p = +1 leads to a clockwise gyration. (b) A negative polarization p = −1 leads to a counter-
clockwise gyration.

parameter of the magnetic vortex is the out-of-plane direction of the vortex core in the
center of the disk, i.e., the polarization p. For positive polarization p = +1, the magneti-
zation in the core points in positive z-direction and it points in negative z-direction for
negative polarization p = −1. The polarization comes into play when the magnetic field
that deflects the vortices in Fig. 2.2 is switched off instantaneously. The micromagnetic
energies change so that the energetically most favorable situation for the vortex core
is to be in the center of the disk again. This state is not reached directly but after a
damped gyration of the vortex around the center of the disk [Cho04] that is schematically
depicted in Fig. 2.3. The gyration direction depends on the polarization of the vortex
core. It is clockwise for negative polarization and counter-clockwise for positive polar-
ization. The reason of this gyration is the so-called gyrotropic mode that is inherent to
magnetic vortices. The frequency of the gyration depends on material parameters and
the geometry of the disk [Gus02]. For the standard structures investigated in this work
(radius R = 1 µm, height h = 60 nm) the average frequency of the gyrotropic mode is
around (235± 10) MHz (depending on the respective preparation batch). The gyrotropic
mode can be excited in various ways using magnetic fields or electric currents [VWa06;
Kam11]. Here, alternating unidirectional magnetic fields that lie in the plane of the disk
are used. After about 100 gyrations the transient states are damped out [Mar14] and
the magnetic vortex core steadily gyrates on approximately circular trajectory around
the center of the disk, when excited in resonance. This dynamic behavior can be un-
derstood in the micromagnetic model using the Landau-Lifshitz-Gilbert equation (LLGE)
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which is a differential equation for the magnetization ~M(~r) [Lan35; Gil56]. The LLGE
is numerically solved in micromagnetic simulations that can be performed for example
with the software MicroMagnum1. Since the differential equation has to be solved for
all position vectors ~r and the demagnetization energy leads to a mutual long-range cou-
pling of all discretization cells, the numerical calculation is very time consuming. Even
with the efficient implementation of MicroMagnum that uses the graphics processing unit
(GPU) to solve the LLGE, a simulation of the first 100 gyrations of a vortex contained
in the standard-geometry disk lasts about 10 days.2 Although the micromagnetic model
with the LLGE is very precise it is in most cases impracticable for the calculations of
steady state motions of large arrangements of coupled magnetic vortices. In this work
another model will mainly be used to describe the magnetic vortex dynamics. The so-
called Thiele equation is a differential equation [Thi73] that describes the vortex core as
a quasiparticle that is confined in a parabolic potential [Krü07]. It can be deduced from
the micromagnetic model and the LLGE with the approximation that the magnetization
is only translated but does not alter its overall form [Gus01b]. Thus, the deflection of the
vortex core is synonymous with the deflection of the whole vortex. The task of calculat-
ing 100 gyrations of the vortex core in the Thiele model lasts less than 50 ms.3 Thus,
the computing time can be reduced by several orders of magnitude with respect to the
micromagnetic simulation.
The Thiele model cannot explain polarization switching processes, because it assumes
constant patterns of magnetization without internal excitation as a first principle. This
is a major downside of the model since in this work the collective polarization switching of
magnetic vortices is investigated. In the experiments the switching is induced, when the
vortex core reaches a velocity higher than 250 m s−1 [Mar13]. This can only be understood
in the micromagnetic model. Nevertheless, the Thiele model will proof to be sufficient to
explain all major findings of this work. In the following section the Thiele model and its
extensions to describe coupling magnetic vortices will be explained in detail.

1Software download and documentation: http://micromagnum.informatik.uni-hamburg.de
2Cell-size: (4× 4× 4) nm, System: NVIDIA Tesla M2090 GPU supported by Intel Xeon 2.67 GHz CPU)
3System: Intel Xeon 2.50 GHz CPU
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2. The Magnetic Vortex

2.1. Thiele Model for Magnetic Vortices

Originally the Thiele model was deduced from the LLGE for the example of rigid magnetic
bubbles in thin films [Thi73] but it can also be adopted for magnetic vortices in thin-
film elements [Krü07]. The minimization of the sum E of the micromagnetic energies
described in the previous section is modeled by a force

~F = −~∇E (2.3)

that acts on the quasiparticle (the vortex) at the position ~x = (x, y, z)T . This approach
leads to the Thiele equation(

G2
0 + α2

GilD
2
0

)
~̇x = ~G× ~F − αGilD0 ~F . (2.4)

Here, ~G=G0 ~ez is the so-called gyrovector, and D0 is the non-vanishing component of the
diagonal dissipation tensor D=diag(D0, D0, 0) [Krü07]. Analytically G0 and D0 are given
by [Krü07; Vog10]:

D0 = −
2παGilµ0MSh ln( R

acore
)

γ
, G0 = −2πµ0MShp

γ
(2.5)

where γ = µ0ge
2me is the gyromagnetic ratio with the Landé factor g ≈ 2 and MS is the

material specific saturation magnetization. The radius of the disk is denoted with R

and the geometry parameter h describes the height of the disk. The model parameter
acore is in the order of magnitude of the diameter of the vortex core. In the Thiele
equation (Eqn. 2.4) two components add to the velocity ~̇x of the vortex core. The first
term describes the nature of the gyrotropic mode that moves the vortex perpendicular
to the driving force ~F . The second term depends on the dimensionless Gilbert damping
parameter αGil and forces the vortex core back to its equilibrium position. For Permalloy
αGil ≈ 0.01 applies [Liu07].

Without loss of generality (w.l.o.g.) the vortex equilibrium position can be chosen to
be at the point of origin. Since the magnetic vortex can only move in the x-y-plane and
only in-plane forces are considered, the z-component of the whole Thiele equation equals
zero and the equation can also be represented in two dimensions:(

G2
0 + α2

GilD
2
0

)
~̇x = G0 r̃90 ~F − αGilD0 ~F . (2.6)
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2.1. Thiele Model for Magnetic Vortices

Figure 2.4.: Calculations for a single magnetic vortex in the Thiele model for two different
magnetic-field excitations. The form of the exciting magnetic field in x-direction Hx is depicted
in the insets. The time t is color coded. For the calculations positive chirality and polarization
are given. (a) Trajectory of the vortex core gyrating back to its equilibrium position with the
eigenfrequency of the gyrotropic mode after it has been deflected with a magnetic field in x-
direction that is then switched off instantaneously. (b) The vortex core is resonantly excited
with an alternating magnetic field near the eigenfrequency of the gyrotropic mode. It performs a
transient motion until it reaches circular trajectories in the stationary case.

Here ~x = (x, y)T is the deflection vector of the vortex core with respect to the center
of the disk, r̃90 is a 90° rotation matrix in two dimensions and F = (Fx, Fy)T is the
two-dimensional driving force.

According to Eqn. 2.3, the driving force ~F follows from the total energy E that is
deduced from the micromagnetic energies. The exchange and demagnetization energy
are commonly modeled by a two-dimensional harmonic potential Eharm [Krü07] and a
Zeeman term EZee takes external magnetic fields into account [Krü08]. The energy terms
are given by

Eharm = 1
2κharm(x2 + y2)

EZee = µ0MsπRhc(Hyx−Hxy).
(2.7)

The total energy E is the sum of those two energies. The confining potential can also
be described more precisely using anharmonicities [Dre12; Lan12; Suk13]. This approach
gains importance for large deflections of the vortex core within the disk. Although the
vortices reach relatively large deflections right before the switching process it is possible
to obtain a good understanding of the self-organized state formation by only using the
harmonic potential. Figure 2.4 depicts sample calculations in the Thiele model that show
the two cases of vortex dynamics that were discussed in the last section. In Fig. 2.4(a)
the vortex is deflected with a static magnetic field and then freely gyrates back to its

9



2. The Magnetic Vortex

equilibrium position in the center of the disk after the magnetic field is switched off.
Figure 2.4(b) shows how the vortex reaches its stationary gyrotropic motion, when it is
excited with a unidirectional alternating field near the frequency of the gyrotropic mode.
In order to describe the model parameters the abbreviations

ω0 = − pG0κharm
G2

0 +D2
0α

2
Gil

Γ = −D0αGilκharm
G2

0 +D2
0αGil

(2.8)

are used. Those parameters can directly be deduced from experiments similar to the
calculations presented in Fig. 2.4. For negligible damping, the angular frequency of the
gyrotropic motion equals the model parameter ω0. The parameter Γ describes the damp-
ing of the motions. All simulations in this chapter are performed using the parameter
set (ω0/2π, Γ) = (227.6 MHz, 29 · 106 s−1). It corresponds to a typical ratio Γ

ω0
≈ 2αGil

found in other experiments [Mar13]. A complete listing of all parameter sets used in this
work can be found in appendix A.2.

2.2. Coupled Thiele Equations

Since arrangements consisting of multiple interacting vortices are analyzed, the particle
model has to consider magneto-statical interaction of separated vortex structures. A
system of N magnetic vortices can be described by a 2N -dimensional Thiele equation.
Each two-dimensional component of this equation reads(

G0
2 + α2

GilD
2
0

)
~̇xi = G0 r̃90 ~Fi − αGilD0 ~Fi, i ∈ {0, 1 . . . , N − 1} (2.9)

analogous to Eqn. 2.6, where ~xi denotes the deflection of the vortex i with respect to
the center of its containing disk and ~Fi describes the overall force that acts on vortex i.
Besides the forces ~Fharm and ~FZee following from Eqn. 2.3 and 2.7, additional forces ~Fint,ij

act on each vortex i that take into account the coupling with a vortex j 6= i. According to
the Maxwell superposition principle the interaction energy of multiple interacting vortices
is calculated by the sum of all pair interaction terms. Thus, in this model a single vortex
is subjected to the force ~Fi of the form:

~Fi = −~∇Eharm,i − ~∇Ezee,i − ~∇
∑
j 6=i

Eint,ij . (2.10)

In the following sections two basic approaches for modeling the interaction energy Eint,ij

will be presented.
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2.2. Coupled Thiele Equations

Figure 2.5.: Rigid vortex deflected from the center position. (a) The deflected magnetization
pattern introduces non-parallel components at the edges of the disk. (b) The emerging surface
charges are proportional to the normal component of the magnetization relative to the edge of
the disk. They are indicated in red and blue. (c) The emerging stray-field is of mainly dipolar
nature [Suk13].

2.2.1. Stray-Field Coupling via Surface Charges

Commonly the rigid vortex approach suggested by Guslienko et al., Ref. [Gus01b], is
used to describe the stray-field interaction of magnetic vortices. Here, the coupling is
considered by interacting so-called magnetic surface charges

σ = ~M · ~n (2.11)

that arise from deflected vortices at the sides of the disks. Where ~n is the normal
vector of the surface. The magnetization pattern of the deflected vortex itself remains
constant. Volume charges ρV = −~∇ ~M are absent and top and bottom surface charges
are neglected. Figure 2.5 depicts a geometrical construction of the surface charges. An
analytical expression for the surface charge σi of vortex i is given by [Shi03]

σi(~xi, ϕ) = −ciMs

R

xi sinϕ− yi cosϕ√
1 + |~xi|2

R2 − 2
R (xi cosϕ+ yi sinϕ)

, (2.12)

with the radius R of the disk, the deflection ~x = (xi, yi)T of the vortex core from its
equilibrium position, the chirality ci, the saturation magnetization Ms and the angle ϕ
in cylindrical coordinates. The energy of interacting surface charges σ1 and σ2 can be
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2. The Magnetic Vortex

written in the manner of Coulomb’s law [Gus02]:

Eint (~x1, ~x2) = µ0
8π

∫
dS1

∫
dS2

σ1 (~x1, ~r2)σ2 (~x2, ~r2)
| ~r1 − ~r2 |

. (2.13)

The integrals are taken over the side surfaces of the disks. For small deflections |~xi| � R

Eqn 2.13 can be simplified into a Taylor series of first order in ~xi. This yields

Eint,ij = CiCj (sη̂ij · ~xj) · ~xi with η̂ =
(
ηxx ηxy

ηyx ηyy

)
. (2.14)

for the interaction energy of a vortex pair. Equation 2.15 lists the numerical integrals for
the calculation of η̂,

ηxx = µ0
8π

Ms,iMs,j

RiRj

∫
dSi

∫
dSj

sinϕi sinϕj
|~ri − ~rj |

ηxy = µ0
8π

Ms,iMs,j

RiRj

∫
dSi

∫
dSj
− sinϕi cosϕj
|~ri − ~rj |

ηyx = µ0
8π

Ms,iMs,j

RiRj

∫
dSi

∫
dSj
− cosϕi sinϕj
|~ri − ~rj |

ηyy = µ0
8π

Ms,iMs,j

RiRj

∫
dSi

∫
dSj

cosϕi cosϕj
|~ri − ~rj |

(2.15)

which depend on the geometry, the magnetic properties, and the relative positions of the
coupled vortices. The scaling factor s < 1 takes into account the theoretically predicted
and experimentally observed fact that the coupling strength is overestimated by the
rigid-vortex approach [Sug11; Vog12; Suk13]. The stray-field is mainly dipolar [Vog10].
Nevertheless, higher order terms (mainly octupolar [Suk13]) are regarded with this model
as well. The coupled Thiele equation (Eqn. 2.9) is solved numerically using the Runge-
Kutta-Fehlberg 45 method with variable step size control [Gal07]. Figure 2.6 shows an
example calculation performed for a single disk and a pair of interacting disks. Fig-
ure 2.6(a) shows the resonance of the vortex velocity ~̇x2

i of the stationary motion when
the vortex is excited with a unidirectional alternating field. The frequency of the res-
onance peak of an isolated disk will be denoted with ωiso in the following. Due to the
damping it is not exactly identical to the model parameter ω0. For the shown calculation
the difference accounts for ωiso − ω0 = 0.2 MHz. The average squared velocity of the
vortices versus the frequency of the magnetic-field excitation will be called frequency re-
sponse in the following. It is comparable to the experimental results of the ferromagnetic
absorption spectroscopy described in the next chapter. Figure 2.6(b) takes into account

12



2.2. Coupled Thiele Equations

Figure 2.6.: Frequency response of a single disk and a pair of coupled disk. The frequency of
an alternating magnetic-field excitation in x-direction is varied. The mean squared velocities of
the stationary vortex gyrations are determined. (a) Single magnetic vortex. The gyrotropic mode
is excited resonantly at the frequency of ωiso ≈ ω0 = 227.6 MHz. (b) Pair of magnetic vortices.
The center-to-center distance of the vortices is 2.05 µm. Only one vortex of the pair is subjected
to the alternating excitation-field. The frequency response depends on the relative polarization
configuration, i.e., identical (solid blue) and alternating (dashed green) polarizations.

the coupling with another disk located near the first disk but not subjected to the exciting
field. This can be realized experimentally when a stripline is placed only over the first
disk and a current is applied that generates an Oersted field. The frequency response,
i.e., the average squared velocities of the vortices 1

N

∑
i ~̇xi, depends on the relative core

polarizations, i.e., identical or opposite polarizations. For both cases two peaks of efficient
excitation occur, that are more separated for the case of opposite polarizations. This can
be understood in analogy to the spring pendulum [Vog11; Hän14]. Two coupled spring
pendulums have two eigenmodes, i.e., an in-phase and an antiphase motion of the oscilla-
tors. The eigenfrequencies of those motions differ whereas their separation is determined
by the strength of the spring. In the same way the two peaks in Fig. 2.6 correspond to an
in-phase and an anti-phase motion of the vortices that are excited efficiently at different
frequencies. The coupling strength is higher for the case of opposite polarizations [Vog11].
The theoretical description of eigenmodes in coupled vortex arrangements is discussed in
detail in the publication [Hän13; Hän14] and will not be further elaborated here4. The
ansatz is to transform the Thiele equation to

~̇u = M̃~u. (2.16)

4Further results have been published in Ref. [Hän14] – ”Tunable eigenmodes of coupled magnetic vortex
oscillators” by Max Hänze, Christian F. Adolff, Markus Weigand, and Guido Meier.
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2. The Magnetic Vortex

where the components of the vector ~u are the relative coordinates ~xi of the vortex cores
and M̃ is a 2N -dimensional constant quadratic matrix. Solutions of this first order differ-
ential equation are of the form ~u = ~ν exp(λt). Hereby, the system of Thiele equations has
been reduced to an eigenvalue problem. This is possible when the damping is neglected
(αGil = 0). The eigenmotions of the vortices and the corresponding eigenfrequencies in
general cannot be determined analytically but have to follow from numerical calculations.
However, for the case of two identical vortices placed along the x-axis, the eigenmotions
can be analytically determined [Hän13; Hän14]. They read

~x1,in = |bin|

 c1 cos(ωin(t− t0,in)
c1p1

√
κs+ηxx

κs+p1p2ηyy
sin(ωin(t− t0,in))


~x2,in = |bin|

 c2 cos(ωin(t− t0,in))
c2p2

√
κs+ηxx

κs+p1p2ηyy
sin(ωint(t− t0,in))

 (2.17)

for the in-phase motion and

~x1,an = |ban|

 c1 cos(ωan(t− t0,an))
c1p1

√
κs−ηxx

κs−p1p2ηyy
sin(ωan(t− t0,an))


~x2,an = |ban|

 −c2 cos(ωan(t− t0,an))
−c2p2

√
κs−ηxx

κs−p1p2ηyy
sin(ωan(t− t0,an))

 (2.18)

for the anti-phase motion. The times t0,in, t0,an, and the amplitude factors |bin|, |ban|
define the initial deflection of the system. The coupling coefficient ηxx is positive and
ηyy is negative. The sense of gyration is determined by the polarization of each vortex,
whereas the chirality affects the phase correlation. It can be seen that the eigenmotions
are elliptical. The ellipticity depends on the coupling coefficients ηxx and ηyy. Even for
the case of maximal coupling D

2R = 1 the relation

ηxx
κs

< −ηyy
κs

<
1
10 (2.19)

applies for the standard geometry. Thus, the trajectories can be considered approximately
circular. Note that the frequency response depicted in Fig. 2.6 does not depend on the
relative chiralities of the vortices since the inversion of the sign of the surface charges by
changing the chirality of a vortex is canceled out by a phase shift of 180° of the excited
vortex gyration.
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2.2. Coupled Thiele Equations

The presented dipolar stray-field coupling via surface charges allows to determine the
motions of large arrangements of vortices in a sophisticated fashion. Therefore, it is
used to substantiate many experimental results presented in this work. A way to get a
qualitative understanding of the vortex trajectories is to determine the eigenmotions and
eigenfrequencies. This can be done numerically for arbitrary arrangements of vortices
when the damping is neglected. The motions of the damped system can then be under-
stood as a superposition of undamped eigenmodes. In the following section the idea of
eigenmodes is further simplified in order to allow easier, pure analytical calculations. For
that, exactly circular trajectories are assumed and the stray-field coupling is modeled via
magnetic point-dipoles that are located at the centers of the disks. At the end of the
upcoming section the frequency response of a pair of disks when both disks are subjected
to an alternating field will be discussed exemplarily. The results will be compared to
numerical calculations performed with the model presented above.

2.2.2. Circular-Trajectory Dipole-Approximation5

The most fundamental approach to include stray-field coupling is to consider only the
average magnetization of a disk when the magnetic vortex is deflected. In a first ap-
proximation the stray-field resembles the field of a magnetic point-dipole that is located
in the center of the disk and points into the direction of the net magnetization [Vog10].
Figure 2.7 illustrates the dipole model exemplarily for a negative vortex chirality c = −1.
The direction of the average magnetization and thus the direction of the point dipole is
rotated by −90° with respect to the deflection direction of the vortex within the disk.
The sign of the rotation depends on the chirality c = ±1 of the vortex. Thus, the point
dipole ~µi that represents vortex i is given by

~µi = x̃iCi r̃90
~xi
|~xi|

(2.20)

The strength of the dipole |~µi| = x̃i is denoted with x̃i since it is approximately propor-
tional to the deflection amplitude xi = |~xi| of the vortex core. The interaction energy
Eint,ij follows to be the interaction energy of two magnetic point dipoles

Eint,ij = Edipole,i,j = µ0
4πD3

ij

(
~µi~µj −

3
D2
ij

(~µi ~Dij)(~µj ~Dij)
)

(2.21)

5Parts of this section have contributed to the publication ”Gyrational modes of benzenelike magnetic
vortex molecules” by Christian F. Adolff, Max Hänze, Matthias Pues, Markus Weigand, and Guido
Meier. Copyright 2015 by the American Physical Society.
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2. The Magnetic Vortex

Figure 2.7.: Point-dipole approximation for the stray-field of a deflected magnetic vortex. (a)
The deflection of the vortex (c = −1) induces a net magnetization of the disk. The direction of
the average magnetization depends on the chirality c (see also Fig. 2.2). (b) Relative directions
of the deflection of the vortex, the average magnetization, and the direction of the dipole. The
latter two are shifted by ±90° with respect to the deflection direction depending on the chirality
c = ±1 (c) Stray-field of the resulting magnetic point dipole that is located at the center of the
disk.

The anchor points of the dipoles are assumed to be fixed at the centers of the disks.
Thus, the vector ~Dij that connects the dipoles is constant.6 In the following we want to
use this model to analytically investigate the influence of the coupling on the frequency
response of a system of coupled vortices. As already described in the last section a system
of N coupled vortices has N eigenfrequencies ωe (e ∈ {1, 2 . . . N}) that all correspond to
a specific eigenmode of the system. We assume, that such eigenmode will correspond to
an approximate circular motion of all the vortices

~xe,i = r̃ξ ae,iCi

(
pi sin(ωet+ ϕe,i)
− cos(ωet+ ϕe,i)

)

= ae,iCi

(
pi sin(ωet+ ϕe,i + piξ)
− cos(ωet+ ϕe,i + piξ)

)
.

(2.22)

For negligible damping Eqn. 2.22 is the stationary solution of the Thiele equation for
an isolated vortex that is excited near resonance with a unidirectional alternating field
[Krü07; Mar12]. The angle between the direction of the field and the x-axis is denoted
with ξ and r̃ξ is the corresponding rotation matrix. In general Eqn. 2.22 is no solution

6By comparison of Eqn. 2.21 and Eqn. 2.14 one can see that the simplified model is identical to the
numerical model, when ηxx ∝ ( 1

D3 −
3D2

y

D5 ), ηyy ∝ ( 1
D3 −

3D2
x

D5 ), ηxy = ηyx ∝ 3DxDy

D5 is assumed.
( ~D = (Dx, Dy)T .)
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2.2. Coupled Thiele Equations

for coupled or damped case. Nevertheless this is a promising ansatz since approximately
circular motions are observed in all experiments. Under this assumption an eigenmode
of an arbitrary vortex arrangement with given chiralities ci and polarizations pi is fully
determined by the N gyration amplitudes ae,i and phases ϕe,i. The eigenmode can be
inserted into the Thiele equation (2.9) and then yields(

G′0
2 + α2

GilD
2
0

)
ωepi r̃90 ~xe,i = −piG′0 r̃90 ~Fi − αGilD0 (2.23)

since for circular motions the time derivative is proportional to a rotation of 90°. The
constant G0 depends on the polarization of vortex i. To emphasize this, the substitution
G′0 := −G0/pi is used so that G′0 is a positive constant. When the damping is neglected
(αGil = 0), Eqn. 2.23 simplifies to

ω~xe,i = − 1
G′0

~Fi. (2.24)

This equation is one two-dimensional component of the N -dimensional differential equa-
tion. All vortex trajectories ~xe,i are described by the 2N -dimensional vector
~ue := (~xe,0, ~xe,1, . . . ~xe,N−1)T . Thus the full equation reads

ωe ~ue = − 1
G′0

(~F0, ~F1, . . . , ~FN−1)T . (2.25)

~Fi describes the sum of all driving forces of vortex i. Equation 2.25 is a simplified version
of the undamped Thiele equation for circular trajectories. In principle it could be solved
numerically in analogy to Eqn. 2.6. In the following another approach will be presented
that considers the eigenfrequencies of the vortex gyrations. For that we further elaborate
on Eqn. 2.25. Multiplying both sides of the equation with ~ue yields

ωe = − 1
G′0

∑N−1
i=0 ~xe,i · ~Fi∑N−1
i=0 ~x2

e,i

. (2.26)

To simplify the calculation we separate the influence of the forces that work on the
isolated disks (i.e. ~Fiso,i) from the influence of the force ~Fint,i that only exists for coupled
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2. The Magnetic Vortex

disks. With the substitution ZN,e = ∑N−1
i=0 ~x2

e,i this yields

ωe = − 1
G′0ZN,e

[
N−1∑
i=0

~xe,i · ~Fiso,i +
N−1∑
i=0

~xe,i · ~Fint,i

]

=: ωiso + 1
G′0ZN,e

N−1∑
i=0

∑
j 6=i

~xe,i · ~∇i ~Eint,ij

(2.27)

The frequency of the gyrotropic mode of the isolated vortex following from the force ~Fiso,i

is denoted with ωiso. The gradient operator ~∇ only acts on the deflection coordinates ~xi.
Regarding Eqn. 2.21 this yields the relation

~xi · ~∇iEdipole,ij = Edipole,ij . (2.28)

Using this and the superposition principle yields

ωe − ωiso = 1
G′0ZN,e

N−1∑
i=0

∑
j 6=i

Edipole,ij . (2.29)

Due to the several approximations performed the right side of this equation can still
depend on the time t. To eliminate the time dependency both sides of the equation are
integrated over one period of gyration. Commuting the summations with the integration
yields

ωe − ωiso = 1
2π

1
G′0ZN,e

N−1∑
i=0

∑
j 6=i

∫ ωt=2π

ωt=0
Edipole,ij d(ωt). (2.30)

Thus, the frequency shift that is due to the coupling of the disks is shown to approxi-
mately be proportional to the average interaction energy during one period of gyration
of the vortices. Figure 2.8 illustrates the dipolar interaction for two example deflections
of a pair of magnetic vortices. One can see that the interaction energy strongly depends
on the relative positions of the vortices. Accordingly, for such calculations the phases
and amplitudes of the eigenmodes have to be known. In general those can be determined
numerically as described in the previous section. For some special cases the eigenmodes
can be enforced by external constraints, e.g. the symmetry of the system. This case
is discussed in chapter 5 for ring-shaped arrangements of magnetic vortices. In the fol-
lowing we will discuss the boundary case of almost negligible coupling. When two disks

7The field-line plots have been performed with the free software VectorFieldPlot (url:
http://commons.wikimedia.org/wiki/User:Geek3/VectorFieldPlot)
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2.2. Coupled Thiele Equations

Figure 2.8.: Schematic7of the dipole approximation for the stray-field interaction of vortices.
Two different relative deflections of the vortex cores are depicted. (a) Parallel alignment. Typical
for vortices of the same polarization when the coupling can be considered weak. (b) Anti-parallel
alignment. Characteristic for the case of opposite polarizations.

are far away from one another, the external magnetic field dominates the vortex motion.
Thus, all amplitudes ai and phases ϕi are identical since the external magnetic field af-
fects all vortices in the same way. In this boundary case, the two eigenmodes merge into
one absorption peak. The coupling due to the stray-field can be regarded as a small
perturbation. The relation

ae,i = a ϕe,i = ϕ ∀i ∈ {0, 1, . . . , N − 1} (2.31)

applies. Under this assumption Fig. 2.8 shows snapshots for the gyration of two vortices
of identical (a) or opposite (b) polarizations when an alternating field in x-direction is
applied. Figure 2.9(a) depicts an arrangement of two vortices where those boundary
conditions can be assumed. The center-to-center distance of the disks is 4 µm so that
the coupling can be considered weak [Mej06]. Thus, the motions are mainly given by the
magnetic field that excites both disks equally. The variation of the frequency response is
depicted when the pair is rotated with respect to the external magnetic field. As can be
seen in Fig. 2.9(b) and (c), the frequency response has a single peak for each of the two
relative polarization configurations and for each rotation angle θ. The angular frequency
of this peak is assumed to correspond to the motion following from the negligible damping
assumption (Eqn. 2.31) and the assumption of circular trajectories (Eq 2.22). It will
be denoted with ωp in the following equations. For the case of different polarizations
(p1p2 = −1) the frequency peaks depend on the rotation angle ϑ. In contrast, the peaks
are independent of the rotation angle for the case of identical polarizations (p1p2 = 1).
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2. The Magnetic Vortex

Figure 2.9.: Pair of weakly coupled disks rotated with respect to the external magnetic field.
The alternating field points in y-direction. The center-to-center distance of the disks is 4 µm.
Blue color depicts the case of identical polarizations, green the case of different polarizations.
(a) Schematic. (b) Waterfall plot of the frequency response for the case of identical polarizations.
Each line corresponds to another rotation angle. (c) Waterfall plot for different polarizations.
(d) Analytical results of Eqn. 2.32 for the variation ωp − ωiso of the peak frequency ωp (colored
solid lines) along with the position of the peaks (open circles) gained from the calculation depicted
in (b) and (c). The solid black line depicts the difference ω0 − ωiso.

This can be understood with the relation 2.30 presented above. When inserting the
assumptions Eqn 2.31, Eqn. 2.31 and the correct field angle for excitation in y-direction
(ξ = π/2) this yields8

ωp − ωiso = − x̃
2

a2
µ0

16πD3G′0
[(1 + p1p2) + 3(p1p2 − 1) cos (2θ)]

=:

−
B2
6 if p1p2 = +1

B2
2 cos (2ϑ) if p1p2 = −1

.

(2.32)

The prefactor B2 = 3x̃2

a2G′
0

µ0
4πD3 can be understood as the bandwidth of the frequency

variation. Lower center-to-center distances D increase the bandwidth B2. Figure 2.9(d)
depicts this analytical prediction along with the frequencies that are determined from
the numerical simulations presented in Fig 2.9(b) and (c). The calculation depicted in
Fig. 2.6(a) yields the resonance frequency ωiso of the isolated vortex. The bandwidth Bp
has been fitted to the numerical calculations (Bp,fit/2π = (3.70± 0.20) MHz). One can
see that the form of the fitted analytical predictions (solid lines) is in good agreement with
the numeric calculations (open circles). Analytically the dependence of the bandwidth
B2 on the geometry parameters R,D, and h is of interest. For that, the strength |~µi| = x̃i

8The simplification is straight forward. For the mathematical proof see appendix A.3
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2.2. Coupled Thiele Equations

has to be determined. The magnetic moment is given by the net magnetization in the
disk. In our case it can be estimated by

~µi =
∫

~M(~r) dV, withM = MSci ~eβ (2.33)

in cylindrical coordinates (polar angle denoted with β). The origin of the coordinate
system is chosen to be at the vortex core. Due to the rigid-vortex approach the magne-
tization is rotationally symmetric. When small deflections of the vortex with respect to
the disk radius are assumed, this yields

x̃2 = |~µi|2 ∝ (MSπRha)2 (2.34)

in analogy to the derivation of the Zeeman energy presented in Ref. [Krü08]. This yields

B2 ∝MSγ
h

R

(2R
D

)3
. (2.35)

The resonance of an isolated disk is known to depend approximately linearly on the ratio
h
R of the height h and the radius R of the disk [Gus02]. Thus, the bandwidth is scaled by
the same factor. It can be seen in the cubic term that the bandwidth is strongly increased
by a low center-to-center distance D

2R with respect to the disk radius [Mej06].

In conclusion, we have seen in this chapter, that magnetic vortices build the ground
state in microdisks of suitable geometry consisting of the ferromagnetic alloy Permalloy.
They are described by two binary state parameters, i.e., chirality c and polarization p.
The latter strongly influences the stray-field coupling between vortices in neighboring
disks. Besides micromagnetic simulations, the motions of coupled vortices can be calcu-
lated in a particle model, the so-called extended Thiele model. Further analysis of the
differential equation of motion for the undamped case allows to make use of the concept
of eigenmodes. We have seen that there are similarities to the eigenmotions of coupled
spring pendulums, whereas the coupling strength can be adjusted by the relative polar-
ization configuration of the vortices. The frequency response of a weakly coupled pair of
disks has been shown to depend on the average interaction energy during one period of
gyration. For that, analytical calculations using a strongly simplified model have been
performed. The model requires the vortices to gyrate on approximately circular trajec-
tories. In addition, it has to be possible to estimate the relative phases and amplitudes
of the mainly excited eigenmodes. For that, symmetry considerations can be used. This
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2. The Magnetic Vortex

will be presented in chapter 5 about ring-shaped arrangements of vortices. In the case of
negligible damping the stray-field coupling can be considered as a small perturbation to
the vortex dynamics. This boundary case has been evaluated numerically and analyti-
cally for a weakly coupled pair of disks. Pair interactions are the building block for larger
coupled systems. According to Eqn. 2.30 the influences of the pair interactions simply
add up to the overall shift (ωe − ωiso) of the frequency of a weakly coupled multi-vortex
system. Thus, the results for the pair of disks can easily be extended to larger vortex
arrangements.
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Prior to the presentation and discussion of the results in chapter 4 and 5 the under-
lying methods that enable the experiments will be introduced. The measurements are
performed at room-temperature using two complementary measurement methods, i.e.,
scanning transmission X-ray microscopy (STXM) and ferromagnetic absorption spec-
troscopy (FMR). The former allows to directly observe the trajectories of the magnetic
vortices whereas the latter gives insight into the frequency response of the system. The
two methods are used to investigate several arrangements of magnetic vortices in or-
der to gain insight into the phenomenon of self-organized state formation. The samples
are prepared using electron-beam lithography, thermal evaporation (PVD), and lift-off-
processing on silicon-based substrates.

3.1. Sample Preparation

Inside the class 100/1000 cleanroom of the Microstructure Research Center of the Univer-
sity of Hamburg, the ferromagnetic thin-film microstructures are prepared. The prepara-
tion process is depicted schematically in Fig. 3.1. The fabrication of the striplines and the
microdisks containing the vortices corresponds to two separate iterations following the
same preparation principle. Bulk silicon substrates with 300 nm silicon-oxide coating are
used for the absorption measurements and 100-nm-thick silicon nitride-membranes, trans-
parent for soft X-rays, for the transmission X-ray microscopy. Primarily the substrate is
coated with a positive e-beam resist based on polymethyl methacrylate (PMMA). Areas
exposed to a sufficiently high dose of electron-beam radiation are altered structurally so
that these areas can be removed by a chemical solvent, the developer. Consequently,
a resist mask for the vapor deposition of the target material remains on the substrate.
Subsequent to the exposure with a scanning electron microscope (Zeiss Supra 55) and the
development of the mask, the target material can be deposited. For the microdisks a re-
sist bi-layer is used in order to improve the results of the wet-chemical lift-off of the mask
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Figure 3.1.: Schematics of the preparation steps for the fabrication of a microstructure. (a) Sub-
strate (bulk silicon with silicon-oxide coating or silicon-nitride membranes) with a resist bi-layer
(positive PMMA resists) (b) Exposure of the resist layer via electron beam patterning (SEM: Zeiss
Supra 55). (c) Wet-chemical development of resist chemically altered by the electron radiation.
(d) Resulting resist mask for the deposition of the target material. (e) Wet-chemical removal
(Lift-off) of the resist mask and the surplus material. (f) Final product: Thin-film element. The
striplines are deposited onto the microstructure in a second, analogous preparation process.

and the excess material. For the bottom layer a resist with a higher sensitivity [All14] is
used1. Due to back scattering from the substrate and creation of secondary electrons in
the substrate [Kys75] the resist mask undercuts at the edges (see Fig. 3.1(c)). This effect
is enhanced by the bottom layer with a lower sensitivity and inhibits a direct contact
between the deposited microstructure and the resist mask during the vapor deposition
(see Fig. 3.1(e)). For the stripline a resist mono-layer with a medium sensitivity2 is used
that allows for a sufficiently high resist mask. After the development resist residues can
occur. Figure 3.2(a) depicts an atomic force micrograph of a resist mask prepared in the
context of this work. One can clearly see the residues that have a diameter of a few ten
nm and a height of up to 30 nm. The mask has to be cleaned prior to the deposition of the
microdisks since otherwise the 30 nm residues would result in pinning centers perturbing
the vortex dynamics [Kam12] in the 60 nm thick disks. The issue of resist residues is
known for several years, and yet no reason for the occurrence of the residues has been
found with clarity [Kam12; Mar14; Pue15]. For the cleaning of the mask an O2-plasma
etching process is used. The process has been developed in the context of the doctoral
studies of Matthias F.A. Pues, Ref [Pue15], who also installed the plasma etcher (Plasma
1top layer: Allresist AR-600-56-P 950K, bottom layer Allresist AR-600-56-P 50K
2Allresist AR-600-56-P 600K
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Figure 3.2.: Atomic force micrographs of a PMMA resist mask. (a) Before plasma etching.
Resist residues appear in blue. (b) After plasma etching for 60 s at 70 W and an O2 pressure
of 3.3 · 10−1 mbar. The residues are reduced and the mask is enlarged leading to an undesirable
fusion of the disks.

Prep III from Structure Probe, Inc.). As can be seen in the atomic force micrograph
in Fig. 3.2(b), the resist residues can effectively be reduced. During the isotropic etch-
ing process the mask is also enlarged in all directions since not only the residues but
also the resist mask is etched away. This effect has to be considered during the design
of the microstructures. As already discussed in the last chapter it can be desirable to
reduce the disk interdistance to a minimum in order to increase the coupling strength.
When the e-beam exposure is not adequately adapted to the etching process, the disks
unwantedly merge into one structure. This effect can be seen in Fig. 3.2(b). The smallest
interdistance that could be realized between two disks (R = 1 µm) in this work is 50 nm
(Dmin

2R = 1.025).
The deposition is performed at a vacuum of < 5 · 10−7 mbar using a resistively heated
boat evaporator for the ferromagnetic alloy Permalloy (Ni80Fe20) and the stripline mate-
rial copper. An electron beam evaporator with a rotatable crucible revolver is used for
a gold passivation layer. After the deposition of Permalloy the sample is exposed to the
room atmosphere and is thereby passivated by a 1.5 µm oxide layer [Fit06]. The striplines
(height: 120 nm to 150 nm) consist of copper since it shows a much higher transitivity for
the used X-ray radiation than gold. A gold capping layer (height: 5 nm) is used to reduce
the oxidization of the stripline. The deposition rates are monitored by a quartz crystal
microbalance sensor that allows for a thickness accuracy of below 1 nm. The actually de-
posited film-thickness depends on many details of the PVD-system, especially the position
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3. Experimental Methods

Figure 3.3.: Scanning electron micrographs of a selection of samples prepared in the context of
this work. All disks show the standard geometry of R = (1000± 20) nm and h = (60± 3) nm
for the different preparation batches. Within one sample the geometry variation is much smaller.
(a) Rectangular arrangement of 3× 3 disks covered by a stripline. The center-to-center distance
is D = 3 µm. (Experiments described in chapter 4.) (b) Triple of disks with the minimal achieved
ratio D

2R = 1.025 (D = 2.05 µm). (Experiments: section 4.3.) (c) and (d) Rings-like arrangement
of six and eight disks prepared in the same way as the triple (see chapter 5 and section 3.2).
(e) Arrangement of pairs of vortices with a small disk interdistance D = 2.065 µm that build a
hexagonal kagome lattice. The center-to-center distance of the disks that belong to different pairs
is larger and amounts ro D = 2.125 µm (section 4.2.2).

of the sample-holder. Nevertheless a sub-nanometer precision can be achieved [Pue15].
The actual thicknesses and radii are determined via atomic-force and scanning-electron
microscopy after the lift-off. Within one preparation process a nanometer-precision of
the geometry can be achieved. Nevertheless experiments show that isolated disks on the
same sample exhibit a variation of the resonance frequency of about ±15 MHz due to
sample impurities and edge-roughness. All parameters of the preparation are listed in
Appendix A.7.
Figure 3.3 shows a selection of the arrangements of magnetic vortices that will be dis-
cussed in this work. Samples depicted in Fig. 3.3(a) and (c) constitute the focus of the
result chapters 4 and 5, respectively. The rectangular arrangement of vortices depicted
in Fig. 3.3(a) has been prepared in collaboration with Max Hänze in the context of the
supervision of his master’s thesis. Analogous samples with a smaller center-to-center
distance of D = 2.25 µm have been prepared in the same batch. In contrast to the other
samples presented in Fig. 3.3 the micrograph has been captured after the deposition of
the stripline. The samples for the collaborations presented in section 4.1 and 4.2.1 are
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3.2. Scanning Transmission X-ray Microscopy

not depicted in Fig. 3.3 and have been prepared by the first authors of the corresponding
publications [Beh15; Hän15], Carolin Behncke and Max Hänze. All disks in Fig. 3.3 show
the standard geometry, i.e., R = 1000 nm for the radius and h = 60 nm for the height of
the microdiscs. This standard geometry has been chosen for mainly two reasons:

strong coupling is desirable. Since effects that arise from the stray-field coupling are
in the focus of this work, strong coupling is generally desirable. According to
Eqn. 2.34, large and high disks improve the coupling strengths. In addition, a low
ratio D

2R increases the coupling and leads to a stronger frequency splitting that can
be observed more easily in the experiments (see Eqn.2.35). Since the minimum
disks-interspace is limited to 50 nm due to the preparation technique, low ratios D

2R
can be achieved with relatively large radii.

adaption to the measurement techniques. Thicker films reduce the transitivity of the
sample for the X-ray microscopy, practically resulting in increased exposure times.
For the standard-height of h = 60 nm, capture times of about 1 minute for a
400 nm×400 nm area are a reasonable trade-off between coupling strength and cap-
ture time. In addition, the ferromagnetic-absorption spectroscopy-setup features an
optimal sensitivity in the frequency range between 200 MHz and 400 MHz [Kam12].
The resonance frequency of an isolated disk and thus the frequency band of effi-
cient excitation of an arrangement of vortices depends on the ratio h

R [Gus02]. The
samples presented in Fig. 3.3 shows resonance frequencies of isolated disks in the
range of (225± 20) MHz. Thus, the disks with standard geometry can efficiently
be investigated with both experimental setups.

In the following the two experimental setups will be discussed in more detail.

3.2. Scanning Transmission X-ray Microscopy

Figure 3.4 shows a schematic of the MAXYMUS microscope [MPI14] of the Max Planck
Institute for Intelligent Systems (Stuttgart, Germany) located at the BESSY II syn-
chrotron in Berlin, Germany that is used for the scanning transmission X-ray microscopy
(STXM). The electrons filled into the ring accelerator emit synchrotron radiation in the
range of soft X-rays that is used at the beamline (UE46-PGM2) built tangential to the
ring. An undulator allows to adjust the polarization direction and the energy of the cir-
cularly polarized synchrotron radiation to the desired energy of the L3 absorption edges
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3. Experimental Methods

Figure 3.4.: Schematic of the scanning transmission X-ray microscope MAXYMUS at the
Helmholtz-Zentrum Berlin, Germany. An undulator emits monochromatic photons of the re-
quired energy and polarization. The photons are focused onto the sample by a zone plate and the
order selection aperture (OSA) that stops light of the 0th order. The sample is raster scanned
through the fixed beam and the transmission is measured by an avalanche photo diode (APD).
Figure reprinted with permission from Ref. [Mar14].

of nickel (853 eV) or iron (707 eV) that can be used to investigate the samples consist-
ing of the ferromagnetic alloy permalloy (Ni80Fe20). Due to the exposure, 2p3/2 core
electrons are excited into unoccupied states of the 3d valence band. This band plays
a crucial role for the origin of the ferromagnetism [Sto38] in the investigated materials.
The exchange interaction leads to an energy shift between the sub-bands of the two spin
configurations and the different electron populations result in the net magnetic moment.
The minority spins (w.l.o.g. spin-down in the following) always point in the direction of
the magnetization ~M considering the opposite directions of the spin and the magnetic
moment in the quantum mechanical expression. Due to the so-called X-ray magnetic cir-
cular dichroism (XMCD) the excitation of the 2p3/2 electrons into the 3d valence band
has a different cross-sections depending on the polarization of the incident photons and
the direction of the magnetization [Sch87; Che95]. An excellent summary of the exact
quantum-mechanical description is given in Ref. [Stö06]. The absorption of X-rays in mat-
ter is mainly given by an exponential decay that depends on the atomic number of the
absorbing material and the photon energy [Tho09]. Concerning the investigation of thin
magnetic films, the excitation of the electronic states described above (XMCD) results in
an additional magnetization dependent absorption that provides magnetic contrast that
is proportional to the projection of the photon propagation vector ~k on the magnetiza-
tion vector ~M . As depicted in Fig. 3.4, a zone plate diffracts the synchrotron radiation
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3.2. Scanning Transmission X-ray Microscopy

into several orders and the orders selection aperture (OSA) selects the light of higher
order diffraction that is focused on one single spot of the sample. As common for scan-
ning microscopy techniques the sample is moved relative to the focus point in order to
pixel wise obtain the micrograph. The transmission is measured with an avalanche photo
diode (APD). The scanning is realized by a movement of the sample that is mounted on
a sample stage equipped with an interferometric feedback loop for the stepper motors
and piezoelectric actuators for nanometer precise positioning. In Fig. 3.4 the sample is
mounted perpendicular to the beam axis. This setup is used to image the vortex cores
with out-of-plane contrast. The chiralities can be imaged when tilting the sample with
respect to the beam-axis in order to obtain in-plane magnetic contrast.
The setup does not only provide a spatial resolution of about 25 nm limited by the
currently installed zone-plate3, but for periodic magnetodynamics it also provides a tem-
poral resolution that is mainly limited by the width of the synchrotron flashes of about
70 ps [MPI14]. This is a much higher temporal resolution than following from the rep-
etition rate of the synchrotron (500 MHz) that results in light flashes every 2 ns. For
that, a technique very similar to the stroboscopic effect of periodic motion, also known
as the ”wagon-wheel effect”, is used. The acquisition principle for the time-resolved mea-
surements is schematically depicted in Fig. 3.5. Exemplarily the stationary motion of
a magnetic vortex excited at Texc = 200 MHz is regarded. Although the synchrotron
provides a sampling interval of Tflash = 2 ns, the example presented in Fig. 3.5 features a
time resolution of ∆t = 1 ns between two subsequent frames of the captured movie. This
can be realized since the vortex gyration is periodically repeated every 5 ns and thus the
time-frames do not necessarily have to be captured in one gyration period but can be
composed from several identical excitations. This, in principle, allows for an infinitely
small ∆t when the sampling interval Tflash and the periodicity of the gyration Texc have
no common multiple. In this hypothetical case, every time state of the gyration would
be imaged exactly once assuming an infinite acquisition time. In reality the period of
excitation Texc and the flash interval Tflash must have a least common multiple with:

np · Texc = nc · Tflash, np, nc ∈ N (3.1)

since typically only one photon per flash is transmitted through the sample and thus the
measurement has to be repeated many times for every unique dynamical state in order
to obtain a sufficient signal-to-noise ratio. The number of unique dynamical states that
3The spatial resolution of the microscope depends on the zone plate in use. A resolution of 10 nm has
been demonstrated for a similar setup with another zone plate. [Cha12]
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Figure 3.5.: Schematic of the capturing process of the MAXYMUS microscope. (a) Synchrotron
flashes with a width of about 70 ps arrive every 2 ns. (b) The stationary motion of the vortex
gyration is excited by a homogenous alternating magnetic field applied to the disk containing the
vortex. The frequency of the excitation and the resulting gyration is chosen to be 200 MHz. The
vortex core is schematically depicted as a large black dot in a gray circle (disk). The gyration
repeats every 5 ns. (c) Pixel wise scanning of a micrograph with 2× 2 pixels. Uncaptured pixels
are depicted in green. The currently captured pixel is bold-framed in blue. The X-ray beam
is depicted as a blue dot in the center of the disk. The photon count detected by the APD
accounts for the transmission in an area of the size of the X-ray spot. For each photon flash
the transmission through the currently captured pixel is measured. This process is repeated for
several milliseconds until the scanning proceeds to the next pixel. The recorded absorptions are
attributed to the unique dynamical states by realtime binning performed with a FPGA circuit.
(d) The nc = 5 channels of the FPGA are reordered in order to obtain a movie of one excitation
period.
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are distinguished from each other (called channels in the following) is labeled nc, and np
denotes the number of excitations periods per cycle and per channel. Consequently after
np excitation periods or nc X-ray flashes the same dynamical state is captured again.
In the example depicted in Fig. 3.5 this yields np = 2 and nc = 5. The transmission is
measured via the APD for every photon flash and has to be assigned to the corresponding
time-step (channel). This is realized with the electronics developed by Van Waeyenberge
et al. based on a so-called field-programmable gate array (FPGA) [VWa06]. In order
to obtain a sufficient time-resolution for the stationary motions typically a pixel-size of
10 nm×10 nm and an exposure time of 15 ms to 50 ms is used for the samples in standard-
geometry. The sampling process is performed pixel wise. This is depicted in Fig. 3.5(c)
for the simplified case of four image pixels. Each pixel is exposed to the synchrotron light
individually, yielding the information for the whole movie of this pixel. During the expo-
sure millions of gyrations are performed. Subsequently the next pixel is acquired. This
is contrary to movies captured with a common video camera or time-resolved measure-
ments at so-called full-field microscopes where the acquisition is performed frame-wise
instead of pixel wise. The resulting video frames correspond to FPGA channels. After
the acquisition the channels are reordered in order to obtain a movie of one single ex-
citation period (see Fig. 3.5(d)). The resulting time resolution ∆t is improved with a
higher number of channels. In this work the limiting factor for the time resolution has
never been the maximal number of channels of the FPGA but always a sufficiently large
exposure time per pixel. Typically between 20 and 60 channels have been used to image
the stationary motion. It is also possible to detect the relaxation of vortices after a pulsed
excitation. For that the excitation is periodically repeated and the movement is captured
for several gyration periods. For such measurements a larger number of channels has to
be used in order to sufficiently sample the gyration. The photon count detected by the
APD accounts for the transmission in an area of the size of the X-ray spot (blue dot in
Fig. 3.5(c)). For the measurements presented in this work the spot-size is about 30 nm
according to the acquisition software and thus larger than the pixel-size. Consequently,
the vortex core is enlarged in the captured data.
Figure 3.6 exemplarily depicts single time-frames of a movie recorded with the MAXY-
MUS microscope. As can be seen from the micrograph in Fig. 3.6(a), the absorption is
mainly given by the different materials. The eight permalloy disks that are arranged in
a ring can be seen in black since the absorption is high with respect to the membrane
(Si) and the stripline (Cu) that is placed above the bottom most disk (disk 0). The mag-
netic contrast is superimposed and can be emphasized by a more sophisticated color-scale
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Figure 3.6.: Scanning transmission X-ray micrographs with different levels of image processing.
All images correspond to one time-frame of the captured movie. (a) Raw image. Left micrograph:
Linear color-scale with numbering of the disks. Right image: Detail of disks 0, 6, and 7 with
complex color scale. Graph: Average photon count of the avalanche photo diode for all 41 frames
of the captured movie. (b) Micrographs: Two normalized image frames. Graph: average values
of the normalized movie for different intensity levels of the raw movie. According to the inset,
the purple curve corresponds to the background level and the red curve depicts the disk areas.
The disk areas show a higher variation leading to a blinking of the different areas in the movie.
(c) Micrograph: Masked image with compensated blinking. Graph: The normalized values do
not differ in intensity any more. (d) Micrographs: 250 nm×250 nm details of a vortex core region
for different time frames. The vortex core appears as a white dot that rotates clockwise. Graph:
All 53 frames of the movie reveal the vortex trajectory.
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used in the right micrograph of Fig. 3.6(a). The disks now have bluish colors and the
stripline-absorption levels are depicted in orange. The top disk in this detail (disk 6)
features white contrast for a vortex core and the middle disk (disk 7) shows an opposite
core polarization (black spot). Gaussian filtering (in time and space) has been applied to
the micrograph to improve the visibility of the cores but nevertheless they can hardly be
seen. This is due to the superimposed material contrast. A black impurity disguises the
vortex core in disk 6. Likewise, it is almost impossible to see the white vortex core under
the stripline in disk 0. The latter is due to carbon residues that stem from a previous scan
in the center region of the disk. Those can be seen as a darker area at the center of the
disk. There are two major approaches to improve the visibility of the core polarizations.
For single (static) images it is an common approach to acquire a second image with op-
posite X-ray polarization and subtract the two images. Consequently, only the magnetic
contrast remains. This is a very time-consuming process since two images have to be
recorded and the undulator has to be moved in order to change the polarization of the
light. For movies it is reasonable to use another approach, since the dynamic magnetic
contrast can be isolated from the static material contrast with the following technique,
the so-called normalization. Such image-processing can be done subsequent to the beam
time and thus is not time-critical. The normalization is commonly done by first dividing
each frame by its average (flattening) and then dividing each pixel by its time average.
Ideally the resulting images only feature the changes in magnetic contrast within the disk.
Figure. 3.6(b) depicts the normalized micrograph for two movie frames (FPGA channels).
The stripline and the carbon residues over disk 0 cannot be seen any more revealing white
contrast for the core polarization. Disk 7 still shows a black vortex core but the core of
disk 6 cannot be seen anymore. This is due to the impurity (see Fig. 3.6(a)) that pins
the magnetic vortex core. In the experiments the surface roughness of the disk affects the
excitability so that a threshold amplitude of the excitation has to be overcome in order
to activate the gyration. Consequently, the vortex in disk 6 does not move and does not
contribute to the dynamics depicted in the normalized image. Thus, vortices that do not
move can only be seen in the direct image and not in the normalized one. Additionally
note that the disks can still be seen in the normalized images. For an ideal normalization
this would not be the case since, despite a negligible drift of the sample, the disks do not
move and thus do not yield dynamic contrast. The two micrographs in Fig. 3.6(b) reveal
that the color of the disks with respect to the color of the membrane background depends
on the frame number. In frame 10 the disks are brighter than the background and vice
versa for frame 31. This effect can be understood as beneficial for the comprehension
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of the images presented here but strongly hinders the evaluation of other measurements,
especially for a pulsed excitation. It can be understood when regarding the overall image
intensity (average APD count) of the movie frames. As can be seen in the graph in
Fig. 3.6(a) the intensity alternates in a sinusoidal fashion. This is due to a crosstalk of
the signal sent through the stripline and the avalanche photo diode (APD). For pulsed
excitations the pulse and its reflections can clearly be seen in the average APD count. For
a sinusoidal excitation the intensity alternates in the way shown in Fig. 3.6(a). In order
to prevent a flickering of the normalized movie the flattening, i.e., dividing the frame
by its average, is performed prior to the actual normalization of the dynamic contrast,
i.e., dividing every pixel by its time average. The flatting leads to the contrast change
depicted in Fig. 3.6(b). Due to a small nonlinearity of the APD diode, the crosstalk has
a different influence on the signal of the disks than on the signal of the membrane. This
can be seen in the graph in Fig. 3.6(b). The intensity variation of the normalized image
contrast is different for the disks (red line) than for the membrane background (purple
line). The disks ”blink” in the movie. When the different effects of the crosstalk on areas
with different APD-count levels are taken into account prior to the flattening process,
the blinking can be subtracted out. Such process has been developed in the context of
this work and is called compensation in the following. The graph in Fig. 3.6(c) shows the
normalized APD count for the disk areas and the membrane area after the compensation.
One can see that the blinking has been subtracted out and only a noise-like fluctuation of
the intensity remains. For that, the nonlinearity of the APD is first characterized by the
graph presented in Fig. 3.6(b), depicting the averave photon count for areas with different
intensity levels, i.e., for the disks and the membrane areas. From this, a correction factor
for the APD-count can be calculated for each time step by linear interpolation between
the purple and the red line. After the correction is applied to every pixel of the movie, the
process is repeated iteratively until an adequate reduction of the blinking is achieved (see
Fig.3.6(c)). The compensation is exceptionally beneficial for measurements with pulsed
excitations that are not in the focus of this thesis. The compensation routine has been
acknowledged in the work of Falk Stein et al. in Ref. [Ste14] on the direct observation
of internal vortex domain-wall dynamics. Since pulsed excitations are used, the crosstalk
had strongly disguised the magnetodynamics before the compensation was performed
(see appendix A.4). For the measurements presented here, it is more comprehensive to
see the disks in the movies. A compensation is not crucially important. To make the
image even more comprehensive, the disk structure is superimposed as a mask to the
normalized and compensated image depicted in Fig. 3.6(c). One can now guess from the
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images depicted in Fig. 3.6(c) that the vortices show alternating polarizations from disk
to disk. One has to keep in mind that the vortex core in disk 6 cannot be seen in the
normalized image and has been accounted white in Fig. 3.6(a). Additionally note that
for the determination of the core polarization not only single frames are used but the
whole movie showing a gyration of the vortex core around the center of the disk. A detail
of a core region for different time-steps is shown in Fig. 3.6(d). The vortex core appears
as a white spot that rotates clockwise. Thus, the polarization of the core is p = −1. In
this way it can be clearly determined from the movie that the ring shows an alternating
polarization pattern. This has been tuned via indirect self-organized state-formation that
will be presented in the next chapter.

In summary, rather complex image processing techniques allow to accentuate the vor-
tex cores in large overview images of the sample. Moving vortices show strong contrast in
normalized images. Static vortices can only be seen in the direct image that is superim-
posed with material contrast. Especially impurities of the sample and carbon depositions
due to previous scans impair the quality of the direct image. In order to improve the
quality of the STXM movies a routine to compensate the nonlinearity of the APD that
results in a blinking of areas with different contrast levels has been developed. This
routine was exceptionally beneficial for measurements with pulsed excitations, like pre-
sented by Falk Stein et al. in Ref. [Ste14] (see appendix A.4). From the static images
presented in Fig 3.6(a) to (c) one can already presume that the vortices show alternating
polarizations along the ring. When using the gyration direction in the full movie, this
is substantiated. The polarization clearly follows from the gyration direction regardless
of the actual color scale or possible relics of the image processing techniques. Actually,
large overview scans as presented in Fig 3.6(a) to (c) are the exceptional case due to the
long acquisition times. For most measurements only the center regions of the disks are
scanned as depicted in Fig 3.6(d). The graph on the right shows the vortex trajectory
obtained by manually evaluating the vortex core positions for all 53 frames of the movie
(channels). Such evaluations yield the polarization of the core (main topic of chapter 4)
and a precise measurement of the stationary motion (main topic of chapter 5). The sta-
tionary motion can also be investigated with the ferromagnetic absorption spectroscopy
setup that is presented in the following section.
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Figure 3.7.: Schematic of the setup for ferromagnetic absorption measurements. A high-
frequency (a few 100 MHz) alternating current is generated and sent through the stripline placed
above the microstructures on the sample. The transmitted power is measured. Two measure-
ments are performed for each point of the absorption. In the reference measurement a strong
magnetic field is applied via the pole shoes that annihilate the magnetic vortices. In the second
measurement vortices are nucleated and the measurement is repeated. The difference of the two
measurements yields the absorption depicted in Fig. 3.8(b).

3.3. Ferromagnetic Absorption Spectroscopy

The experimental setup for the ferromagnetic absorption spectroscopy (FMR) is situated
at room atmosphere and is much simpler than the STXM setup. It consists of only a few
components depicted in Fig. 3.7. The sample is mounted on a printed circuit board (PCB)
that is connected via coaxial cables to a signal generator, on the one side, and a power
sensor on the other. Thereby a signal can be sent through the stripline that is prepared
above an ensemble of microstructures. When the stationary vortex gyration is excited by
the Oersted field that is generated by the alternating current sent through the stripline,
the transmission through the stripline is reduced since a small part ∆P of the input power
is used to maintain the damped dynamics. The absorbed power ∆P is proportional to the
sum of the velocities of the vortices ∑i ~̇xi [Dre09; Kam11]. The average squared velocity
1
N

∑
i ~̇xi has already been discussed as the frequency response of the system in the last

chapter. In the following the two words ”absorption” and ”frequency response” will be
used interchangeably. The prefactor 1

N is of no interest since the absorption will always
be discussed in arbitrary units in this work. To extract the absorption ∆P a reference
measurement is used where the sample is magnetically saturated by a strong external
magnetic field (µ0Hext > 60 mT) generated by magnetic coils with pole-shoes depicted in
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Figure 3.8.: (a) Equivalent circuit diagram of the ferromagnetic-absorption measurement-setup.
The internal resistance of the power generator Rgen and the measurement resistance of the average
power sensor are 50 W. The sample resistance is only approximately adjusted to the wave resistance
50 W. For the widest striplines of several µm the resistance of the sample accounts for Rsample ≈
10 W and Rsample ≈ 100 W for the most narrow striplines of 800 nm in width. Such variation in
the resistance is not critical due to the relatively low measurement frequencies of 200 MHz to
400 MHz.

Fig. 3.7. In this state no dynamics are expected, except for spin waves at high frequencies
above 1 GHz. The reference power varies with the frequency and also because of variations
of the temperature. Thus reference measurements are repeated after every change of the
excitation frequency or after a time of several minutes. In Fig. 3.8 the equivalent circuit
diagram of the setup and a sample absorption measurement are depicted. The resonance
frequency of the shown absorption lies at about 220 MHz. The absorption is calculated
with the described proceeding by the difference of two power measurements. The scale
is given in arbitrary units.
The amplitude H̃ of the Oersted field generated by the current Ĩ sent through the stripline
can be estimated by

H̃ ≈ Ĩ

2w (3.2)

according to Ref. [Sil99]. Whereas the microstructures lie directly beneath the stripline
with width w. The efficiency of excitation strongly depends on the excitation frequency.
In resonance 45 A m−1 can be enough to switch vortex polarizations. Lower field strengths
are used to non-invasively measure the absorption of the vortices. For high powers the
vortices reach high velocities and undesirably switch their polarizations during the ab-
sorption measurement.
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4. Self-Organized State Formation in
Magnonic Vortex Crystals1

As introduced in Chapter 2, the coupling in arrangements of magnetic vortices strongly
depends on the relative polarizations of the vortex cores. In this chapter we present a
mechanism, called self-organized state formation (SOSF) that allows to tune the polariza-
tion configuration in various kinds of vortex arrangements by the temporary application
of magnetic fields. This allows for the manipulation of the properties of (large) regular
arrangements of magnetic vortices that will be addressed as magnonic vortex crystals in
the following. In this chapter we will first introduce the phenomenon of self-organized
state formation for rectangular crystals consisting of 3× 3 vortices. Parts of those find-
ing are also presented in the publications [Ado13; Sto15]. Subsequently, different aspects
of the self-organized state formation are examined on various types of magnetic vortex
arrangements including larger magnonic crystals with more than 100 vortices. The self-
organized state formation builds the basis for the manipulation of the crystal properties,
e.g., band-structure engineering, and for the experiments presented in chapter 5.

Figure 4.1 illustrates the setup of the first experiment. The vortices are excited by a
harmonic field generated by a high frequency current applied to a stripline in coplanar
waveguide geometry above the 3×3 disk-array. The disks have a diameter of 2 µm and a
height of 60 nm (standard geometry). The center-to-center distance amounts to 2.25 µm
and 3 µm, respectively for two different sample types. Measurements are performed at
the MAXYMUS beamline at BESSY II in Berlin, Germany. At first the whole crystal is

1Parts of this chapter have been published in Ref. [Ado13] – ”Self-organized state formation in magnonic
vortex crystals” by Christian F. Adolff, Max Hänze, Andreas Vogel, Markus Weigand, Michael Martens,
and Guido Meier. Copyright 2013 by the American Physical Society. – as well as in the review article
Ref. [Sto15] – ”Imaging Spin Dynamics on the Nanoscale using X-Ray Microscopy” by Hermann Stoll,
Matthias Noske, Markus Weigand, Kornel Richter, Benjamin Krüger, Robert M. Reeve, Max Hänze,
Christian F. Adolff, Falk-Ulrich Stein, Guido Meier, Mathias Kläui, Gisela Schütz.
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Figure 4.1.: Experimental setup. (a) Vortex arrays investigated with transmission soft X-ray
microscopy. The magnetic field ~H is applied via an alternating current sent through a coplanar
waveguide. (b) X-ray micrograph with in-plane contrast of three vortex arrays that comprise
nine nanodisks each. The magnetization curls in plane around the center of each disk (thickness
h=60 nm, diameter 2R=2 µm, distance D=2.25 µm). The inset shows a line scan of an atomic
force micrograph and reveals the topography of the disks. (c) Form of the magnetic field excitation
used to tune the polarization states. The amplitude of the unidirectional harmonic excitation is
reduced adiabatically until vortex core switching ceases.

strongly excited by an alternating unidirectional magnetic field that causes all the vor-
tices to permanently switch their polarizations. The field amplitude is then reduced quasi
statically (millisecond time scale) with respect to the periodicity of the vortex gyration
(nanosecond time scale). As depicted in Fig. 4.1(c), starting from above the switching
threshold, the amplitude of the harmonic excitation is reduced until switching dies out.
In a second step, the polarizations of the vortices are determined by evaluating the sense
of gyration. For this, a harmonic field of decreased amplitude is applied to non-invasively
detect the created polarization state. For the determination of the polarization states,
e.g. for 245 MHz a time period of 4.08 ns is detected in steps of 80 ps. We find the
vortices organized in preferred polarization states depending on the frequency of the pri-
mary excitation.

Since the process of switching itself cannot be investigated in the experiment, additional
micromagnetic simulations have been performed (see Appendix A.5). Those reveal that
the vortex polarizations in an array of disks switch rather randomly at high amplitudes
of a harmonic field that is applied to all magnetic vortices in the array. At intermediate
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field amplitudes the switching stops when certain stable polarization configurations are
reached eventually. The stability of such polarization states can be understood with the
theory presented in chapter 2. As described there, magnetic vortices couple in the manner
of harmonic oscillators, whereas the coupling strength depends on the distance between
the magnetic nanodisks containing the vortex cores [Vog11; Shi03; Jun11; Sug11]. When
the center-to-center distance between the disks exceeds twice the diameter ( D2R > 2), the
coupling can be neglected [Mej06; Vog10]. Random polarization states should emerge,
independent of the excitation amplitude. Maximal coupling can be obtained by reducing
the center-to-center distance between the disks until it equals the disk radius and the disks
merge into a single structure ( D2R = 1). Smaller distances lead to exchange interaction
at the intersection of the disks and will not be regarded here [Jai12]. We experimentally
investigate two types of samples of spatially separated disks with different center-to-center
distances. The disk-arrays of type 1 have a center-to-center distance of 3 µm ( D2R = 1.5).
For samples of type 2 the center-to-center distance of the disks is reduced to 2.25 µm
( D2R = 1.125) so as to obtain a stronger dipolar coupling [Vog11; Vog10].
At first the results on samples of type 1 are discussed since they comprise the more
simple interaction due to their lower coupling strengths. Figure 4.2(a) summarizes the
resulting polarizations states that occur after the adiabatic field reduction with different
frequencies. For a frequency of f1 = 225 MHz the polarization is constant along the field
direction and alternates in the perpendicular direction. Columns of constant polarization
occur. In contrast, rows of constant polarization occur at two higher frequencies, i.e.,
f2 = 245 MHz and f3 = 255 MHz. When excited at f4 = 235 MHz no state could
reproducibly be tuned for repeated measurements on the same crystal. This can be
understood with the simplified dipolar stray-field coupling presented in section 2.2.2. A
3 × 3 vortex crystal may be formed from pairs of horizontally and vertically coupled
vortices as building blocks. In the experiments all disks in the crystal and thus all
interacting pairs are excited with the unidirectional field in y-direction, regardless of
the orientation of the pair. In addition the crystals show a large disk interdistance of
3 µm so that the coupling can be considered relatively weak. Thus, the motions tend
to be dominated by the external field. This idealized model system is described with
Eqn. 2.32. It reveals that for a pair of vortices with alternating polarizations (p1p2 = −1)
the variation of the absorption peak ωp,alt, where the pair can be excited most efficiently,
is proportional to the cosine of twice the angle ϑ between the x-axis and the connecting
line of the two disks. Thus, in the alternating case, a pair that is placed perpendicular to
the field direction (ϑ = 0) can be excited most efficiently at a higher frequency than an
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4. Self-Organized State Formation in Magnonic Vortex Crystals

Figure 4.2.: SOSF in 3 × 3 crystals of type 1 ( D2R = 1.5). (a) Experiment. A variation of the
frequency of the adiabatically reduced field excitation tunes differently ordered polarization states.
For f1 = 225 MHz columns of constant polarization occur, and rows of constant polarization
emerge at f2 = 245 MHz and f3 = 255 MHz. No pattern could reproducibly be tuned at f4 =
235 MHz. (b) Numerical calculations. Absorption profiles of all 29 = 512 possible polarization
states numerically calculated in the extended Thiele model (ω0 = 238 MHz, Γ = 26 · 106 s−1,
s = 0.6875). The states of rows (blue) and columns (red) of constant polarization are highlighted.
The bottom color scale depicts the most stable state, i.e., the state with the lowest absorption
at a particular frequency. Those states are predicted to be tuned via SOSF. The inset in the
upper-left corner schematically depicts Eqn. 4.1. The interaction energy (absorption frequency)
in a pair of disks varies for different alignments of the pair and the core polarizations.

identical pair that is aligned parallel (ϑ = π/2). In the case of homogeneous polarizations
(p1p2 = 1), the frequency of the most efficient excitation ωp,hom does not depend on the
rotation angle ϑ and lies in between the above two frequencies (see also Fig. 2.9(d)). This
leads to the relation

ωp,alt(ϑ = 0) > ωp,hom > ωp,alt(ϑ = π

2 ) (4.1)

that is schematically depicted in the inset of Fig. 4.2(b). Such eigenmodes with iden-
tical phases do also exist in the 3 × 3 crystal with the two regarded polarization pat-
terns [Hän14]. Hence, the pairwise interaction energies in Eqn. 2.30 simply add up to
the total peak offset ωp−ωiso. Note that all pairs of second-next neighbors (ϑ = π/4)
have alternating polarizations. Accordingly, they have no influence on the peak offset
(cos(2 π

4 ) = 0). Consequently, the state with columns of equal polarization has a higher
frequency ωp,col of most efficient excitation than the state with rows of constant polariza-
tions (ωp,row), since the column state exhibits the alternating pairs perpendicular to the
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field excitation (ϑ = 0). Thus
ωp,row < ωp,col (4.2)

applies. This can also be seen in the numerical calculations presented in Fig. 4.2(b).
There, the absorptions for all 29 = 512 polarization states have been calculated numeri-
cally using the extended Thiele model presented in section 2.2.1. The emerging states are
highlighted in red (column state) and blue (row state). As predicted from the analytical
approach, the state with rows of constant polarization can be excited more efficiently at
lower frequencies than the state with columns of constant polarization. When a state is
excited efficiently, the vortices in the crystal reach high velocities. At a critical velocity
of about 250 m s−1 [Mar13] the vortices switch their polarizations and thereby lead to
another polarization state in the crystal. Thus, efficiently excitable states are less stable
than states that cannot be excited efficiently at a particular frequency. One can see in
Fig. 4.2(b) that the emerging states indeed are the least efficiently excitable states at
the corresponding frequencies f1, f2, and f3 of the adiabatically reduced field excita-
tion. This can easily be motivated using the relations presented above. The adiabatic
field reduction passes a critical field amplitude where only one polarization state will not
switch. This least excitable state is eventually adjusted after several switching processes
between instable polarization states. The two states of rows and columns of constant
polarizations take turns in being the most stable states for frequencies below or above
a transition frequency ftrans ≈ 235 MHz where they are equally excitable. This explains
why no state could reproducibly be tuned at the frequency f4 = 235 MHz that is close to
the transition frequency.
In conclusion, we have shown that the polarization states that emerge after a self-
organized state formation with adiabatic field reduction can be predicted from the com-
parison of all possible absorptions in the crystal. Those have been numerically calculated
for all 512 polarization states2.
Using the simplified analytical approach one can estimate the transition frequency ωtrans,
where the states with rows or columns of constant polarizations are equally excitable.
For that it is the most simple approach to assume identical Lorentzian peak functions
that are shifted by ωp to model the absorption. This can be done since the 3× 3 crystals
show an eigenmode that resembles the enforced phase relation of the exciting magnetic

2Note that only 136 polarization states are non-degenerate with respect to the frequency response (ab-
sorption) due to symmetry reasons.
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field for the pattern of rows or columns of constant polarization [Hän14]. It follows

ωtrans − ωiso = 1
2(ωp,col + ωp,row) = ωiso −

ωp,col − ωp,row
6 . (4.3)

Thus, the transition frequency ωtrans is slightly below the frequency of the isolated disk.
This is in good accordance with the experiments since ωiso is determined to be approxi-
mately 238 MHz for the investigated sample (see appendix A.2). The results presented in
Fig. 4.2 are based on the more complex numerical simulations, since the analytical model
does not include deviations of the resonances from Lorentzian peak functions. Those de-
viations occur when several eigenmotions of the crystal are excited at the same frequency.
Due to damping this can occur even when the eigenfrequencies are non-degenerate. In
the weak coupling case with rows or columns of constant polarizations this effect can be
neglected since the external field only excites the eigenmode with equal phases ϕi = ϕ.
Stronger coupling allows for the vortex motions to diverge from this enforced relation.
The motion can be understood as a superposition of several eigenmodes. Consequently,
the absorption curves are distort. This can be seen in the calculations for the experi-
ments on the crystals of type 2 that exhibit a smaller center-to-center distance of the disks
( D2R = 1.125). Figure 4.3 (a) shows the numerically calculated absorption profiles for the
experiments performed in the strong-coupling regime. One can clearly see that the peaks
do not have a Lorentzian form. The numerical calculations leads to seven non-degenerate
polarization states that are most stable, i.e., least efficiently excitable, at least at one
frequency. The profiles of those states are colored in Fig. 4.3 (a). Experiments have
been performed in the range between 225 MHz and 265 MHz. The calculations for this
frequency range are depicted in detail in Fig. 4.3 (b) together with the experimentally
tuned polarization states. One can see that the measured states are predicted correctly.
Note that the measured behavior is very reproducible3. The measurement at 225 MHz
has been performed for five additional crystals of the same geometry, always yielding the
same polarization state of columns of constant polarization. The state that emerges at
245 MHz could be confirmed for three of four further crystals. Only one crystal showed
the state where all disks have the same polarization, which is the second most stable
state near this frequency. At a frequency of 235 MHz two additional crystals yield the
states neighboring the predicted states (colored green and cyan in Fig. 4.3 (b)). These
slight deviations from the theory might be due to imperfections in the preparation pro-
cess. Measurements of several isolated vortices of the same preparation process revealed

3For a complete listing of all measured polarization states see appendix A.6
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Figure 4.3.: SOSF in 3 × 3 crystals of type 2 ( D2R = 1.125). (a) Numeric calculation of the
absorption profiles of all 29 = 512 possible polarization states. Due to the strong coupling the
absorption profiles are not Lorentzian peak functions. This allows for 7 different states to be
tuned via SOSF. Those stable states are highlighted with colored solid lines. The bottom color
scale depicts the most stable state, i.e., the state with the lowest absorption at a particular
frequency. Those states are predicted to be tuned via SOSF. (b) Experimental results (bottom)
in comparison with the numerical calculation (top graph). The dashed vertical lines depict the
measurement frequencies. The three not degenerated polarization patterns (color of frames/lines)
are correctly predicted for the five measurement frequencies.

that the resonance frequency of the vortices deviates about ±15 MHz from disk to disk.
Thus, the adjusted states can slightly vary depending on the investigated crystal on the
sample. Nevertheless all crystals behave approximately identical. This can also be seen
in the high-frequency absorption measurements presented in Fig. 4.4. For that addi-
tional samples with up to 60 identical 3 × 3 vortex arrays are prepared on silicon oxide
wafers. Ensembles of both array types ( D2R = 1.5, D

2R = 1.125) are prepared in this way.
The high-frequency absorption measurements allow to perform more measurements in a
shorter time and give insight into the reproducibility of the state formation in the ensem-
ble of crystals. The y-axes represent the state formation frequency fstate used to tune the
polarization states as described above, and the x-axes account for the frequency of the
absorption spectrum fabs of the emerging polarization patterns. The absorption is repre-
sented by the given color code. One can see that the absorption profiles vary for different
state-formation frequencies. It is straight forward to expect that the absorption signal
measured after a specific state formation stems from crystals that are settled to the most
stable polarization state. Thus, the absorption profile of the state that is least efficiently
excitable at the state-formation frequency fstate is expected. Consequently, the expected
absorptions can be calculated in the Thiele model and are depicted below the absorption
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4. Self-Organized State Formation in Magnonic Vortex Crystals

Figure 4.4.: High-frequency absorption (FMR) measurements and absorptions predicted via nu-
merical calculations. (a) weakly coupled samples ( D2R = 1.5, type 1). Top graph: experiment.
Bottom graph: numerical calculation. The solid horizontal lines highlight the position of the
absorption profiles depicted in (c). The dashed green line depicts the transition frequency de-
termined from (c). (b) strongly coupled samples ( D2R = 1.125, type 2). Top graph: experiment.
Bottom graph: calculation. (c) Absorption profiles of the two tunable polarization states (rows,
columns of constant polarization) that intersect at the transition frequency ftrans = 226 MHz.

measurements in Fig 4.4(a) and (b), for the two sample types respectively. Due to small
variations in the preparation process, especially the change of substrate, the physical
properties of the samples slightly differ from those determined for the samples used for
the X-ray microscopy. Parameters of the theoretical predictions are fitted with variations
of about 10 % compared to previously determined parameters. They can be found in
appendix A.2. The theoretical prediction is calculated under the assumption that the en-
semble completely settles in the state that is most stable at the state-formation frequency.
By comparing theoretically and experimentally obtained absorptions one can see that this
approximation is valid, although the absorption profiles are broadened with respect to the
calculations due to the variations in the ensemble mentioned above. Figure 4.4(c) depicts
two example absorptions for the ensemble of the weakly coupled crystals that substantiate
the presented stability criterion. The two absorption profiles are assumed to correspond
to the only two states, i.e., rows and columns of constant polarizations, that can be tuned
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for the weakly coupled sample type. The absorption intersect at around 226 MHz. At
this frequency the most stable state should change according to the presented stability
criterion, yielding the transition frequency ftrans = 226 MHz. When compared with the
absorption measurement in Fig. 4.4(a), indeed the form of the absorption changes at
this frequency. Additionally note that in Fig. 4.4(b) the experiments and the calculation
match in detail, i.e., even the slight changes of the absorption around fstate = 235 MHz
and fstate = 195 MHz can be seen in both, the calculation and the measurement. This
is a strong indication that the above model can also be used for the overall behavior of
ensembles of vortices that exhibit small variations in the resonance frequency.
We have demonstrated that self-organization in magnonic vortex crystals is a reproducible
process, valid for ensembles of vortices. The absorption of the ensemble approximates the
absorption of the least-excitable polarization state at the corresponding state-formation
frequency. This work allows further research studies to tailor the characteristic properties
of magnonic vortex crystals by tuning the polarization state. It is predicted that the al-
lowed energy bands in such a crystal can be adjusted via manipulation of the polarization
pattern [Shi04]4. Also, the predominant direction of signal transfer through the vortex
crystal can be tailored by tuning the dispersion relation5. In the following parts of this
chapter further aspects of the self-organized state formation are examined. The main
focus of the next section is the time-scale that is typically needed to adjust a polarization
state.

4This could already be demonstrated for larger magnonic vortex arrangements in the publication
Ref. [Beh15] – ”Band structure engineering of two-dimensional magnonic vortex crystals” by Carolin
Behncke, Max Hänze, Christian F. Adolff, Markus Weigand and Guido Meier

5This is exemplarily shown in the publication Ref. [Ado15] – ”Gyrational modes of benzene-like magnetic
vortex molecules” by Christian F. Adolff, Max Hänze, Matthias Pues, Markus Weigand, and Guido
Meier (see chapter 5)
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4. Self-Organized State Formation in Magnonic Vortex Crystals

Figure 4.5.: Experimental setup. (a) Scanning transmission micrographs of the sample. A
waveguide in ground-signal-ground geometry is fabricated above an ensemble of 4 × 4 vortex
crystals (inset) in standard geometry. The coupling is adjusted to be relatively strong ( D2R =
1.125). (b) Profile of the current sent through the stripline used to tune polarization states via a
burst-like magnetic field excitation.

4.1. Time-Scale of the State Formation6

As demonstrated in the last section, polarization states can be tuned using an adia-
batically decreasing harmonic excitation. This mechanism could also be exploited for
strongly coupled 4 × 4 crystals ( D2R = 1.125) shown in Fig. 4.5(a). Here, another signal
form is used to tune polarization states via self-organized state formation. As depicted
in Fig. 4.5(b), a continuous radio-frequent excitation with a defined duration is used to
tune polarization states. The polarization states that emerge after the excitation with
such magnetic-field bursts are identified by absorption spectra obtained from FMR mea-
surements. In order to obtain sufficient magnetic contrast the waveguide covers 30 vortex
arrays that are addressed as ensemble of vortex crystals in the following. This method
gives insight into the time dependence of the state-formation process and yields a drastic
increase in the number of state-formation cycles for a given time period. In a first step we
observe the formation of polarization states for a proper choice of the frequency and the
amplitude of the applied magnetic field burst (see Fig. 4.5(b)). In a second step the burst
width is varied to identify the time-scale of the state-formation process. It is shown that
states can be tuned within a small number of periods of the applied harmonic signal. The
presented method is then used to achieve a memory-like writing process between polar-
ization states on the sub-microsecond time-scale. A more comprehensive study, including
numerical calculations can be found in the publication Ref. [Hän15].

6The results presented in this section are also published in Ref. [Hän15] – ”Burst-mode manipulation
of magnonic vortex crystals” by Max Hänze, Christian F. Adolff, Markus Weigand, and Guido Meier.
Copyright 2015 by the American Physical Society.

48



4.1. Time-Scale of the State Formation

fr
e
q
u
e
n
c
y
 (

M
H

z
)

Figure 4.6.: Absorption spectra of the ensemble of arrays of 4 × 4 magnetic vortices after the
application of a sinusoidal magnetic field burst with a width of 5 µs. The frequency of the sinu-
soidal field burst is (a) 190 MHz and (b) 260 MHz. The burst amplitude is varied. The insets
depict states that mainly contribute to the absorption around the critical amplitudes depicted as
dashed vertical lines.

Figure 4.6 shows FMR absorption spectra after a sinusoidal magnetic field burst with
frequencies of (a) 190 MHz and (b) 260 MHz and a width of 5 µs. The burst amplitude
is varied from 100 A m−1 to 2900 A m−1. For low and high amplitudes the measured ab-
sorption spectra are identical. They correspond to the absorption of random polarization
states within the ensemble of 4 × 4 vortex crystals. At intermediate burst amplitudes
the absorption peak shifts away from the frequency of the field burst. This shift of the
resonance frequency is attributed to the formation of polarization states, since efficiently
excitable states, that yield strong absorption at the excitation frequency, are less stable.
With increasing amplitude the number of stable states, i.e., states that are not switching
during the excitation, decreases. The absorption spectra stem from the superposition
of all stable states that are present in the ensemble [Hän15]. The maximum amplitude
leading to state formation depends on the burst frequency and amounts to 550 A m−1

(Fig. 4.6(a)) or 1300 A m−1 (Fig. 4.6(b))). At those critical excitation amplitudes only
one or at least only very few states are stable. Thus, the absorption spectra are only given
by those states. For even higher amplitudes all crystals in the ensemble randomly switch
between the polarization states. The most stable states according to X-ray measure-
ments with adiabatically reduced field excitation (not shown) are a pattern of columns
of constant polarization for the lower frequency fcol = 190 MHz and homogeneous polar-
izations at the higher frequency fhom = 260 MHz. Thus, the absorption spectra at the
critical amplitudes depicted in Fig. 4.6 can mainly be attributed to those two patterns,
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Figure 4.7.: Absorption spectra of the ensemble of arrays of 4×4 magnetic vortices for a constant
burst amplitude of (a) 500 A m−1 and (b) 1200 A m−1 in dependence on the burst width. The
frequency of the sinusoidal field burst is (a) 190 MHz and (b) 260 MHz. The insets depict states
that mainly contribute to the absorption for burst widths above 100 ns. The red line indicates a
smoothed fit to the maximum of the absorption to guide the eye. The time-scale of the polarization
state-formation is about 100 ns.

respectively. To understand the time dependence of the state-formation, we performed
additional measurements where the duration of the sinusoidal field burst is varied. Fig-
ure 4.7 depicts absorption spectra for the two different burst frequencies fcol and fhom

in dependence on the sinusoidal burst duration (width). The field amplitude has been
adjusted so that only very few states are stable for both frequencies, respectively. We ob-
serve that for a burst width above 100 ns the absorption spectra remain on the same level,
i.e., the polarization state is reliably tuned. The state-formation can be interpreted as
a path through a potential landscape of polarization patterns. The oscillating magnetic
field excites the vortices until they switch from an unstable into a random state. This
process ceases when a certain stable state is reached. The time-scale to reach a stable
state can be identified to be about 100 ns for the present material and geometry. This
knowledge about the time-scale of the state-formation process allows to demonstrate a
writing process on the sub-microsecond time-scale. Figure 4.8(a) depicts the absorption
spectra of the ensemble of vortex crystals along the consecutive application of different
magnetic field bursts. The peaks of the absorption spectra change depending on the
characteristics of the two write bursts. We use the burst frequencies fcol and fhom with
burst amplitudes of Hcrit,col = 500 A m−1 and Hcrit,hom = 1250 A m−1, respectively. The
write bursts have a length of 200 ns. In Fig. 4.8(b) the two different writing intervals
are indicated by light blue and red regions. We observe that the polarization states are
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Figure 4.8.: (a) Absorption spectra of the writing process between two polarization states over
time. (b) Absorptions at the highlighted frequencies of the absorption spectra (red and blue lines
in (a)). The writing bursts are indicated by light blue and light red regions. They have frequencies
of 180 MHz (260 MHz) and a length of 200 ns. The burst amplitude is 500 A m−1 (1250 A m−1).
The writing process is independent of the prior polarization state.

tuned independently of the previous polarization state. Thus, by using different write
burst characteristics different absorption spectra can be generated. This allows to store
and read the polarization states in a vortex crystal by the application of high-frequency
currents through a single stripline.

4.2. Larger Crystals

In the last sections the formation of polarization states in crystals of up to N = 16
vortices has been presented. In the model described in the beginning of this chapter, the
absorptions for the 2N possible polarization patterns have to be calculated in order to
predict the emerging state. This leads to tens of thousands of absorption curves already
for 16 magnetic vortices. Due to such adverse time-complexity of the numerical model,
it is not possible to calculate all absorption profiles for significantly larger crystals (with
the current computing power). One way to handle that problem is to calculate only
a representative subset of absorption profiles. Such Monte-Carlo-like calculations (not
shown) are still being performed for the samples presented in this chapter. The focus
of this section is to answer the question in how far the result of the self-organized state
formation can be extrapolated from the predictions for smaller systems.
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Figure 4.9.: Experiments on 50× 50 rectangular crystals. (a) Scanning electron micrograph of
a part of the sample. Three striplines are place above the crystal. Two small striplines cover a
row of disks each. A broad stripline covers 12 rows of disks. (b) Polarization states in a 12× 12
area tuned with an adiabatic field reduction using the broad stripline (red: fstate = 270 MHz,
blue: fstate = 330 MHz). The relative polarization is color-coded with black and white dots. The
size of the dots depicts the gyration amplitude of the stationary motion determined via scanning
transmission X-ray microscopy. (c) Absorption of the ensemble of five 50×50 crystals for different
state-formation frequencies. (d) Absorption profiles for the two state-formation frequencies that
led to the states depicted in (b).

4.2.1. Rectangular Crystals7

Figure 4.9(a) depicts a subarea of a 50×50 rectangular crystal with hundreds of vortices.
In order to increase the number of vortices in the field of view of the X-ray microscope,
the sample presented in Fig. 4.9(a) deviates from the standard geometry. The disks have
a smaller radius of R = 0.5 µm, which is half of the standard radius. In order to keep the
frequency band of efficient excitation in the experimentally favorable range of 200 MHz
to 400 MHz (see chapter 3) the height of the disks has been reduced to h = 40 nm.
Three striplines are fabricated on top of the crystal. The two small striplines can be
used to transmit gyration waves of tunable wavelengths into the crystal. In the publica-
tion Ref. [Beh15] this has been used to determine the dispersion relation of the crystal.
The broad stripline is used for the self-organized state formation with adiabatically re-
duced field excitations and will be of interest in the following. Fig. 4.9(b) shows the
polarizations states that are tuned at the state-formation frequencies of 330 MHz (blue)
and 270 MHz (red). In addition to the polarization information (white/black) the size

7Parts of this section have been published in Phys. Rev. B. (Ref. [Beh15] – ”Band structure engineering
of two-dimensional magnonic vortex crystals” by Carolin Behncke, Max Hänze, Christian F. Adolff,
Markus Weigand and Guido Meier. Copyright 2015 by the American Physical Society)
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of the dots depicts the gyration amplitude of the stationary motion. Especially in the
bottom graph (red) one can see, that standing waves are present in the crystal when
all vortices are excited with the alternating field sent through the broad stripline. Such
wave modes [Han13] and the dispersion relation of the crystal are discussed in the pub-
lication Ref. [Beh15]. Here, we will focus on the state-formation process. Figure 4.9(c)
shows the absorption spectra after self-organized state formations with different state-
formation frequencies fstate in the range from 238 MHz to 380 MHz. One can see that
mainly two absorption peaks are present at fabs = 265 MHz and fabs = 312 MHz. Two
state-formation frequencies, highlighted with the horizontal solid red and dashed blue
lines, are further investigated. Figure 4.9(d) shows the corresponding absorption profiles
that resemble the profiles of the weakly coupled 3 × 3 crystal presented in Fig. 4.2(b).
In the 3× 3 crystals rows and columns of constant polarizations occur for both coupling
regimes, respectively for high and low state-formation frequencies. Figure 4.9(b) shows
the polarization states that emerged after self-organized state formation in the larger
crystal. For the low state-formation frequency indeed columns of constant polarization
occur, in analogy to the smaller crystal. In contrast, for the higher frequency, a state
with large vertically alternating domains of constant polarizations emerges instead of
the state with rows of constant polarizations. From the theory presented in the last
sections one would expect that this emerging state has the lowest possible absorption
at the state-formation frequency. Interestingly, numerical simulations show that several
states have a lower absorption than the emerging state, especially the state with homo-
geneous polarizations and the state with rows of constant polarizations. The latter of
the two states is less efficiently excitable. Consequently, one would expect rows of con-
stant polarizations rather than the emerging state that can be considered a mixture of
the expected state and the homogeneous state. A straight forward explanation of such
behavior can be obtained when regarding the maximal amplitude of the state formation
signal. When the amplitude is not sufficiently high, several states do not switch during
the formation. Consequently, the system can settle in each of those states and not only
in the state that is least efficiently excitable. Thus, in the experiments the amplitude of
the state-formation signal might not have been high enough to isolate the state with rows
of constant polarization. Besides such interpretation, the experimental results could also
stem from the nature of the state-formation process itself, which can be understood as
a path through a potential landscape. This vivid metaphor has already been introduced
in the previous sections but it remains unclear whether the path is a random walk that
eventually reaches a stable state, or a targeted path, that constantly reduces the energy
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(absorption) of the system. The latter can be motivated by the assumption that unstable
states with a lower absorption have a higher lifetime during the state-formation than
unstable states with a higher absorption. In the experiment, rather row-like and rather
homogeneous polarization states compete with regard to the stability. This might pro-
hibit a targeted path through the potential landscape of the polarization states. During
the process of state-formation, the polarization pattern constantly approaches to, and
simultaneously diverges from, the most stable state of rows of constant polarization. Due
to that, the convergence into the row-state might be unlikely or at least very slow.
In conclusion, we have seen that the major aspects of the findings for small rectangular
crystals can be extrapolated to larger arrangements of disks. Column-like polarization
states are stable at low frequencies and row-like states at high frequencies with respect to
the eigenfrequency of an isolated disk. According to that, a perfect state with columns
of constant polarization occurs in the experiment at the relatively low state-formation
frequency of 270 MHz. The experiments reveal that a mixture of rows of constant po-
larization and homogeneous polarizations is tuned by the self-organized state formation
at the relatively high frequency of 330 MHz. A state with rows of constant polarizations
does not emerge although it has a lower absorption at this frequency, according to nu-
merical calculations. This could be due to imperfections of the sample or an insufficient
amplitude of the state-formation signal. However, it might also be understood within
the presented model when regarding the state-formation as a targeted path through a
potential landscape of possible polarization states.
Although a further investigation of the competing states certainly is an interesting topic8

we want to move on to a second example of larger magnonic vortex crystal. The next
system shows strongly coupled pairs of disks with the standard disk geometry (R = 2 µm,
h = 60 nm) and a center-to-center distance of only 2.065 µm ( D2R = 1.0325). According
to Eqn. 2.35, those pairs show a high bandwidth B2 . Thus, they have clearly separated
peak frequencies so that they promise to be best-suited for self-organized state formation.
For all upcoming experiments – in the present and the next chapter – this geometry and
center-to-center distance is used.

8Note that there are indications from additional measurements on this crystal (not shown) that the size
of the domains depends on the state-formation frequency.
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Figure 4.10.: (a) Experiments on a kagome lattice consisting of 19 pairs of disks in standard
geometry. The disks within the pair show a stronger coupling D

2R = 1.0325 than neighboring
vortices of different pairs D

2R = 1.125. The black and white dots in the insets of the scanning
electron micrograph depict the polarizations measured via scanning X-ray microscopy after an
adiabatic state formation with fstate = 232.5 MHz. For that a stripline (not shown) is placed over
the whole lattice. All polarizations alternate within the pairs. The arrows in the insets illustrate
the direction of the polarization alternation. (b) Numerical calculation for the most stable state
for a pair of disks for different angles between the field excitation (y-direction) and the connecting
line of the two disks. The schematic explains the rotation angle ϑ. Black contrast indicates that
homogeneous polarizations are most stable. Analogously, gray contrast predicts that alternating
polarizations will occur after a state formation at the corresponding state-formation frequency
and rotation angle.

4.2.2. Kagome Lattice with Pairs of Vortices

Here we investigate an arrangement of strongly-coupled pairs of vortices. In those pairs
only two non-degenerate polarization states can occur, i.e., alternating and homogeneous
polarizations. Due to the strong coupling that is realized by a center-to-center distance
of only 2.065 µm those two states are clearly addressable via self-organized state forma-
tion ( D2R = 1.0325). Fig. 4.10(a) shows an arrangements of such pairs of vortices that
will be discussed in the following. The strongly coupled pairs are arranged in a kagome
lattice. The minimal center-to-center distance of the vortices of different pairs is 250 nm
( D2R = 1.125) and thus the coupling can be regarded much weaker than within the pairs.
The insets in Fig. 4.10(a) show the emerging polarizations after a state-formation with
232.5 MHz. The state-formation frequency is chosen so that all pairs exhibit alternating
polarizations. This can be understood with the numerical calculations on a single pair
of disks presented in Figure 4.10(b). They reveal that there is a frequency band where
the state-formation leads to alternating polarizations regardless of the rotation angle θ of
the pair with respect to the excitation field. This is possible due to the strong coupling.
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The simplified dipole-model for a weakly coupled pair of disks described in Fig. 2.9 and
Eqn. 2.32 cannot be used to explain such behavior9. Further numerical calculations show,
that the frequency band where alternating polarizations are stable regardless of the rota-
tion angle θ, widens for stronger coupling and vanishes when the criterion D

2R = 2 [Mej06]
is exceeded. According to the predictions deduced from a single pair, the experiments
presented in Fig. 4.10(a) prove, that indeed a state where all pairs of the large crystal
show alternating polarizations can be reliably tuned. Consequently, the crystal can be
understood as an arrangement of pairs of vortices with alternating polarizations. Such
pairs can be represented by arrows pointing from the disk with one polarization (white
dot) to the disk with the other polarization (black dot). The kagome lattice can be
constructed by junctions of three such pairs that are rotated by 60° with respect to each
other. The experiment shows that in all five junctions J1 to J5 two arrows point into
the center and one points out of it, or vice versa. All three arrows never point into or
out of the center of the junction. This behavior is known as the ice-rule in so-called
artificial spin-ice that can be realized in analogous arrangements of nanomagnets instead
of the vortex pairs [Lam10; Lad10; Li10; Men08]. In such artificial spin-ice systems the
phenomenon of geometrical frustration can be observed. Further studies on such vortex
crystals could investigate whether geometrical frustration also develops in such magnonic
vortex-crystals. The fact that there is a state-formation frequency where pairs of disks
always favor alternating polarizations motivates such a hypothesis. Nevertheless the pro-
cess of state-formation is fundamentally different from the alignment of nanomagnets and
further studies should be performed to proof the hypothesis. For the detailed investigation
of geometrical frustration typically statistics about the violation of the ice-rules and the
occurrences of different junction types are performed. Thus, the investigation of geomet-
rical frustration in vortex systems requires a larger number of junctions. Unfortunately,
it is not reasonably practicable to investigate larger kagome lattices than presented in
Fig. 4.10 with scanning transmission X-Ray microscopy. Since the determination of the
polarization of a single vortex lasts about one minute, detailed studies would exceed the
availability of beamtime at a synchrotron. A promising measurement technique is the
magnetic force microscopy. Although the capture time for one vortex core is in the same
order of magnitude, a higher availability and the possibility of automated scanning of the
crystal could allow to perform consecutive studies.
In conclusion, it has been motivated that the above vortex crystal shows similarities to
9The time-resolved scanning transition microscopy measurements show that the phases of the two vortices
in the pair are not equal and vary depending on the rotation angle and the position of the pair in the
crystal.
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Figure 4.11.: (a) Absorption measurements for different state formation frequencies fstate on
an ensemble of triples of disks in standard geometry with D

2R ≈ 1.025. (b) Detailed absorption
profiles at the three frequencies highlighted with horizontal blue or green lines in (a). Black line
with marker: measurement. Dashed lines: numerical calculations. (c) Polarization configurations
that yield the absorptions depicted in (b).

artificial spin-ice. The pairs of disks with alternating polarizations can be compared to
nanomagnets, whereas the magnetization direction of the nanomagnet is analogous to
the direction of the polarization alternation in the vortex pair. The frustration in such
vortex-systems might particularly be interesting, since it presumably can be adjusted in-
situ by the state-formation frequency. For example, the frustration might not occur for
the same crystal when a state-formation frequency is chosen that tunes a homogeneous
polarization pattern.

4.3. Indirect Self-Organized State Formation

One last aspect of the self-organized state formation will be discussed in the following.
In the previous experiments all vortices have been equally excited by the alternating
magnetic state-formation field. Nevertheless a formation of polarization states can also
be realized when not all of the disks are directly excited. As an example for that, a triple
of disks is investigated where the stripline is only placed over one of the three disks.
Figure 4.11 shows the absorption of the triple for different state-formation frequencies.
Since the center-to-center distance of the disks is only D ≈ 2.05 µm the strong coupling
causes a complex state-formation behavior. Three different types of absorptions that
alternate for varying state-formation frequencies can be identified in Fig. 4.11(a). Those
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4. Self-Organized State Formation in Magnonic Vortex Crystals

are exemplarily indicated by the horizontal blue and green lines at three different state-
formation frequencies. For each type a high-resolution measurement has been performed
that is depicted in Fig. 4.11(b) (solid black lines with markers). Calculations in the Thiele
model reveal that those three absorption types correspond to the three non-degenerate
polarization states that can be tuned in the triple. The experiment is simulated by apply-
ing an alternating unidirectional field to one disk. The resulting calculated absorptions
are plotted as dashed lines in Fig. 4.11. One can see that the calculated absorptions
feature the same characteristic peaks as the experiments. In addition a small middle-
peak can be seen at fstate = 205 MHz that cannot be identified in the experiments. This
is most probably due to ensemble broadening of the absorption spectra and a higher
signal-to-noise ratio in the experiments. This comparison proves that the self-organized
state formation also works when only parts of the disks of the crystal are excited by the
state-formation field. For the triple of disks the indirect state formation allows to tune all
three polarization states that are non-degenerate with respect to the frequency response.

Until now we have only focused on the state-formation result and did not discuss the
stationary motions of the vortices during the absorption measurements. We will focus on
this topic in the next chapter, where we will discuss the dispersion relation in benzene-like
ring-molecules. As an introduction to the topic of the stationary motions we will discuss
the eigenmotions of the triple in the remaining part of this section. This will allow to
understand the form of the absorption spectra presented in Fig. 4.11(b).
As stated in section 2.2.1, the eigenmodes of an arbitrary arrangement of disk can be
numerically calculated when damping is neglected [Hän14]. Figure 4.12 shows such modes
for the triple of disks for the only two possible relative polarization states10. One pat-
tern shows identical polarizations in all disks (homogeneous state) and the other pattern
features two polarizations of the same sign and one polarization with a different sign
(alternating state). Since there are three coupled vortex oscillators, the system shows
three eigenmotions for each relative polarization state. The eigenmotions are depicted
in Fig. 4.12 together with the corresponding eigenfrequencies. They feature a slightly
elliptical form and different relative phases of the vortices. Note that the gyration di-
rection depends on the polarization of the vortices. Thus, the dots in the sketches in
Fig. 4.12 are only snapshots for the relative positions of the vortices for a certain point in

10Further results on the eigenmodes of a different sample, i.e., a rectangular arrangements of 3×3 vortices
have been published in Ref. [Hän14] – ”Tunable eigenmodes of coupled magnetic vortex oscillators” by
Max Hänze, Christian F. Adolff, Markus Weigand, and Guido Meier. Copyright 2014 by the American
Institute of Physics
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4.3. Indirect Self-Organized State Formation

Figure 4.12.: Trajectories of the eigenmodes and corresponding eigenfrequencies calculated with
the approach presented in Ref. [Hän14]. Phase relations of the depicted snapshot are indicated by
black or white dots. The polarization is color-coded (white and black for positive and negative
polarization) to indicate the sense of gyration.

time. Two of the three eigenfrequencies of the homogeneous state are only separated by
2 MHz (fhom1 = 216 MHz, fhom2 = 214 MHz). Consequently, they merge into one joint
absorption peak in the calculations and measurements at fstate = 245 MHz presented in
Fig 4.11. For the alternating polarization pattern all three eigenfrequencies are clearly
separated. It can be seen in the measurements at fstate = 190 MHz that all three eigen-
modes can separately be excited near the corresponding frequencies. In contrast, only
two absorption peaks can be seen in the measurement at fstate = 205 MHz although the
polarization pattern is identical, and thus features the same eigenmotions. This is due
to the broken symmetry caused by the field excitation. At fstate = 205 MHz, the vortex
that has the minority polarization (black) is excited by the magnetic field, whereas at
fstate = 190 MHz one of the two vortices with the majority polarization (white) is excited.
When regarding the middle eigenmode of the alternating state in Fig. 4.12(b) one can
see that the size of the trajectory of the vortex with the minority polarization is small
with respect to the trajectories of the other two vortices. It is vividly plausible that
such motion cannot efficiently be excited when the field is applied to the vortex with the
relatively small motion. Thus, this eigenmode is suppressed in the absorption depicted
in the middle graph of Fig. 4.11(b).
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4. Self-Organized State Formation in Magnonic Vortex Crystals

In conclusion, self-organized state formation can also be realized when not all vortices of
the crystal are excited directly. Regarding the stationary motions, the emerging states
show crucially different dynamics that can be understood via a superposition of eigen-
modes. In the following we will make use of the remote self-organized state formation
in order to further investigate the stationary motions of the vortices in ring-shaped ar-
rangements.
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5. Ring-Shaped Magnetic Vortex
Molecules

In the last chapter the phenomenon of self-organized formation of polarization states
in coupled magnetic vortex arrangements (crystals) was presented. In the publica-
tion Ref. [Hän14] this has been used to experimentally show that the dynamics in
magnonic vortex crystals can be understood as a superposition of eigenmodes. The
eigenmodes strongly depend on the relative polarizations whereas the superposition de-
pends on the way the crystal is excited. The experiments substantiate the prediction that
such vortex arrangements feature a reprogrammable band structure depending on their
polarization configuration [Kru10b; Kra14; Han13]. In the publication Ref. [Beh15], it is
experimentally proven that band structure engineering in two-dimensional magnonic vor-
tex crystals is indeed possible. Here we will focus on the manipulation of the dispersion
relation of ring-shaped arrangements of magnetic vortices. Especially the arrangement of
six vortices brings the molecule benzene (C6H6) to mind that is a ring of six carbon atoms
that each binds a hydrogen atom. When excited, for example with infrared light, small
vibrations of the atoms with respect to the interatomic distances emerge. Historically, the
comprehension of so-called normal-modes and the relation to their excitation frequencies
was crucial for understanding the infrared and Raman spectra. Following the ideas of
Wigner, Wilson showed in 1934 that the normal-modes could be deduced by using sym-
metry considerations regardless of the actual complex interactions of the atoms [Wil34].
Following this idea, one can derive that the normal-modes in vortex molecules largely
depend on the symmetry of the system as well. This allows to deduce the form of the
normal-modes only by symmetry considerations. The dispersion relation can then be
deduced from the simplified Thiele model elaborated in chapter 2. Vortex-molecules with
an arbitrary number of vortices can be fabricated. Experimentally rings with six and
eight vortices are investigated. The theory allows for the transition to the model-system
of an infinite chain with periodic boundary conditions, commonly discussed in textbooks
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5. Ring-Shaped Magnetic Vortex Molecules

Figure 5.1.: Different representations for wave modes in chains with eight harmonic oscillators
and periodic boundary conditions. The sinusoidal waves represent snapshots of the deflections
xi of the oscillators i. The waves propagate in negative x-direction for positive wave numbers k
and in positive x-direction for negative values. The chain of colored dots describes the relative
amplitudes and characteristic phases φchar,i = ika. Both, the white lines and the colors, depict
the characteristic phase. The radii of the circles correspond to the relative amplitudes ai and are
equal for all oscillators in this case.

about solid state physics like in Ref. [Kit76].

Figure 5.1 illustrates the eigenmodes for a chain of eight one-dimensional harmonic os-
cillators with periodic boundary conditions. Waves can only exist in the chain, when the
wavelength λ is a fraction of the chain length L. Thus a mode is characterized in space
by a phase difference between neighboring vortices of ∆φchar = ka, where k = 2π

λ is the
so-called wave number and a denotes the lattice constant, i.e., the distance between two
oscillators. The number of different wave numbers k is identical to the number of har-
monic oscillators N . When none of the modes is degenerate, all vortices gyrate with the
same frequency and amplitude while showing the characteristic phases of φchar,i = ika.
The waves characterized by the wave number k propagate along the crystal during time
whereas the sign of k determines the propagation direction. For negative wave numbers
the wave propagates in positive x-direction and vice versa1. For k = 0 all oscillations are
in unison and the wave with λ = ∞ does not propagate. In Fig. 5.1 below the waves,

1The propagation direction is inverted with respect to the common description of plane waves, i.e. sin(kx−
ωt). This is due to the different sign of the time dependency commonly used to describe gyrations of
magnetic vortices. Consequently, sin(ωt− kx) describes the standing wave in this work.
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the characteristic phases φchar,i = ika are depicted as colored dots. Such characteristic-
phase diagrams will be used to discuss the experiments in the following. Without loss of
generality the initial time t0 is chosen that φchar,0 = 0 for the vortex with index i = 0 in
the diagrams.
Figure 5.2 shows an analog schematic for the gyration of vortices arranged in a ring.
Although the gyrations are performed in two dimensions the approximately circular tra-
jectories of the vortices can be described with the same two parameters as the linear
chain, i.e., amplitude and phase of the oscillation (gyration). This yields

~xκ,i = r̃ξaκ

(
sin(ωκ(t− t0) + iκα+ ipiα+ piciπ)
cos(ωκ(t− t0) + iκα+ ipiα+ ciπ)

)
(5.1)

in analogy to the linear chain and according to the stationary trajectory of an isolated vor-
tex without damping excited by an alternating magnetic field (see Eqn. 2.22). The angle
between the direction of the field and the x-axis is denoted as ξ. r̃ξ is the correspond-
ing rotation matrix. Again for the normal modes the oscillators gyrate with the same
frequency and amplitude while showing a characteristic phase difference ∆φchar = κa.
Here α = 2π

N denotes the angle between two neighboring vortices in the ring and κ can
be regarded as a dimensionless wave number. Since the vortices are arranged in a ring,
an additional phase ipiα is added that corresponds to a rotation of each vortex by iα.
The latter phase causes the symmetry of the eigenmodes to be analogous to the lin-
ear chain. For each point in time the vortex cores are located on geometric roulettes,
i.e., epitrochoids and hypotrochoids. For wave numbers κ with |κ| > 0 the form of the
roulettes stays constant over time and they rotate around the center of the ring, whilst
the vortex cores are always located on the curve. Such trajectories are depicted for the
case of identical polarizations and chiralities ci = pi = 1 in Fig. 5.2. For positive wave
numbers κ > 0 the roulettes rotate clockwise and anti-clockwise for κ < 0. Thus, the
sign of κ denotes the propagation direction of the gyration waves. For κ = 0 the normal
mode is called the breathing mode since the vortices lie on a circle that changes its size
over time. The type of the roulette depends on the polarization pi. For positive polar-
izations pi = 1 the vortices gyrate on epitrochoids for positive wave numbers κ and on
hypotrochoids for negative wave numbers. In contrast, epitrochoids are present for nega-
tive wave numbers and hypotrochoids for positive wave numbers for the case of negative
polarizations pi = −1. Thus, the form of roulettes on the right and the left columns of
Fig. 5.2 can be interchanged when switching the polarization of all vortices. The rotation
direction does not change since it only depends on the wave number κ. Also the diagrams
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5. Ring-Shaped Magnetic Vortex Molecules

Figure 5.2.: Schematic of the proposed gyrational normal-modes in a ring of eight magnetic
vortices. In analogy to Fig. 5.1 the characteristic phases φchar,i = iκα are depicted by colored
dots. Both, the white lines and the colors, depict the characteristic phase. The radii of the
circles correspond to the relative amplitudes ai and are equal for all oscillators. The colored lines
correspond to the gyrations of the vortices when equal polarizations and chiralities pi = ci = 1 are
assumed for all vortices. The vortices are located on epitrochoids or hypotrochoids for positive or
negative dimensionless wave numbers κ, respectively. The roulettes rotate clockwise for positive
wave numbers and counter-clockwise for negative wave numbers. The depicted modes only occur
in such way, when the damping is negligible and none of the modes is degenerated with respect
to the corresponding gyration frequency ωκ.
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of the characteristic phases are invariant under the change of the polarization or chiral-
ity. The influence of the polarizations pi and the chiralities ci is described by additional
phases piciπ and ciπ in Eqn. 5.1. Note, that in general each vortex rotates on another
roulette according to its polarization pi and chirality ci. For opposite chiralities ci the
vortices are positioned on identical roulettes that are rotated differently. Therefore, only
the characteristic phases φchar,i = iκα and especially the corresponding dimensionless
wave number κ, that are independent of the polarizations and chiralities, are used to
describe the motions in the vortex-molecules in the following. In the following section,
experiments are compared with the presented normal modes. The measured or simulated
vortex-trajectories of the form

~xmeas,i = r̃ξ ameas,iCi

(
pi sin(ωt+ ϕmeas,i)
− cos(ωt+ ϕmeas,i)

)
(5.2)

can be compared with Eqn. 5.1 yielding the measured characteristic phases

φchar,i = iκα = ϕmeas,i + ωt0 − ipiα. (5.3)

Again the initial time t0 is chosen that φchar,0 = 0 for the vortex with index i = 0.
This allows to compare the measurements presented in the following section with the
characteristic phase diagrams depicted in Fig. 5.2.

5.1. Molecule With Eight Vortices

The idealized characteristic phases of the gyration modes presented in Fig. 5.2 correspond
to presumed normal modes of a vortex-molecule. In an experiment such modes never oc-
cur isolatedly but are always superimposed due to damping. To receive an impression
whether the normal modes are in fact inherent in magnonic vortex crystals numerical
calculations with reduced damping (ω = 226 MHz, Γ = 2.5 · 106 s−1) are performed. The
results are presented in Fig. 5.3 for two polarization patterns of identical (homogeneous)
polarizations (a) and a polarization pattern that alternates along the ring (b). For the top
graphs one of the vortices is initially deflected and the Fourier transform of the trajectories
of all vortices during the relaxation is calculated. The damping is reduced by a factor of
ten with respect to the experimental damping, so that the peaks in the Fourier transform
are clearly separated. It can be seen that seven peaks occur for the homogeneous polar-
ization configuration and only five peaks for the alternating polarization configuration.

65



5. Ring-Shaped Magnetic Vortex Molecules

Figure 5.3.: Numerical calculations for a ring of eight vortices with reduced damping (a) Ho-
mogeneous polarizations pi = 1 ∀i. (b) Alternating polarizations. The top graphs depict the
possible resonances of the system. The colored dots represent the characteristic phases observed
at the resonance frequencies. The inset between (a) and (b) illustrates the indexing of the vor-
tices. Vortex 0 is excited with a magnetic field in vertical direction. (c) Dispersion relation for
the homogeneous (blue) and alternating case (green) determined from the calculations presented
in (a) and (b).
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This is attributed to degenerate modes. This assumption can be confirmed when regard-
ing the characteristic phase diagrams. For that, another numerical calculation has been
performed in which the top vortex (index 0) is excited with a unidirectional alternating
field in y-direction. The diagrams depict the characteristic phases when the molecule is
excited near the peaks of the Fourier transform. The size of the circles correspond to
the relative amplitude of the vortex gyrations ai/a0. It can be seen, that especially for
the homogeneous polarization pattern the phase relations strongly resemble the predicted
normal modes. Except for the center mode of 225.4 MHz, the relative amplitudes of the
vortex gyrations are almost equal and the relative phases can be associated with one wave
number each. The central mode can be explained by a superposition of equal weight of
the wave numbers κ = 1 and κ = −3. Thus all eight wave numbers can be associated
with the seven resonances of the system. For the alternating polarization pattern even
more wave numbers have identical frequencies. As depicted in Fig. 5.3(b) three of the
five modes can be explained by a superposition of equal weight of two wave modes. Only
the highest and the lowest resonance are simple modes that can be constructed by use of
only one wave number. With this mapping of frequency and wave number the dispersion
relation ω(κ) can be sketched (see Fig. 5.3(c)). The dispersion relation resembles sinu-
soidal curves as also predicted for linear chains of vortices [Han13] whereas the bandwidth
is higher for alternating polarizations due to the stronger coupling [Vog11]. In the next
section we will focus on the form of the dispersion relation in detail. Here we will firstly
discuss the influence of the higher damping that is present in the experiments.
Figure 5.4 shows the experimental results of a ring with alternating polarizations obtained
via STX microscopy in comparison with a simulation adapted to the experimentally de-
termined properties of the disks (Γ = 28.5 · 106 s−1, ω = 234.2 MHz, s = 0.6875). The
alternating polarization pattern has been tuned by a self-organized state formation with
a frequency of fstate = 207.3 MHz. One can see from the calculated absorption spectrum
depicted in Fig. 5.4(e) that the five resonances superimpose due to the higher damping.
In the experiments the trajectories of the vortices are captured for three frequencies de-
picted as solid horizontal lines in Fig. 5.4(e). The polarizations and the chiralities are
measured. The determined characteristic phases are presented along with the simula-
tions in Fig. 5.4(b)-(d) for the three frequencies, respectively. The simulations and the
experiments are in good accordance. The highest frequency of 280 MHz is close to the
highest resonance of the molecule. According to the simulations with lower damping
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5. Ring-Shaped Magnetic Vortex Molecules

Figure 5.4.: Measurements along with numerical calculations performed on a ring with eight
vortices with alternating polarizations. (a) Schematic. (b)-(d) Results for the characteristic
phases for three different excitation frequencies. Left diagrams: experimental results obtained
via STX microscopy. Right diagrams: Numerical calculations. (e) Calculated absorption. The
horizontal black lines depict the three measurement frequencies.
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5.2. Benzene-Like Vortex Molecule

presented in Fig. 5.3, the breathing mode κ = 0 should occur at this frequency2. In-
cluding damping, the characteristic phases are not identical but bend up the farer the
vortex is away from the excited vortex i = 0. Nevertheless, all vortices have comparable
amplitudes which are predicted for an excitation of a single normal mode. At the medial
frequency of 229.7 MHz, depicted in Fig. 5.4(b), the trajectories alternate in amplitude.
The vortices with even indices have higher amplitudes than the vortices with odd indices.
This is characteristic for a superposition of modes κ1 = 2 and κ2 = −2 that corresponds
to standing waves. For zero damping, the motions of the vortices with odd index can
be neglected whereas in the experiment the amplitudes are only reduced by about 50 %
since further modes are superimposed. In Fig. 5.4(c) a phase difference of approximately
∆φchar(κ = 4) = π is present for all vortices, when the ring is excited with the lowest
experimental frequency of 177.4 MHz. This has also been predicted for the lowest reso-
nance frequency in the low-damping case presented in Fig. 5.3(b). In contrast to such
calculations, the vortices that are far away from the excited vortex 0 have smaller ampli-
tudes, since the molecule is excited below the corresponding resonance (see Fig. 5.4(e)).
In conclusion it can be stated that the X-ray measurements performed on a ring-molecule
of eight Permalloy disks can be understood analogous to the model of normal modes in
a chain of harmonic oscillators with periodic boundary conditions. Up to now the effects
of the relatively strong damping of the vortex core oscillation has only been described
phenomenologically on the basis of a comparison between the experiments and numerical
calculations. The calculation and the simulations are in good agreement but the mode
mixing has not been investigated systematically. In the following section further mea-
surements on a benzene-like vortex molecule consisting of six vortices will give insight
into the mode mixing and the dispersion relation of such ring-molecules.

5.2. Benzene-Like Vortex Molecule3

Figure 5.5 shows the investigated vortex molecule consisting of six Permalloy disks. At
first the homogeneous polarization pattern shown in Fig. 5.5(a) will be discussed. It is
adjusted by applying an offset field during the nucleation of the vortices that is perpen-
dicular to the plane of the disks. As described in the previous section, due to the N -fold

2Note, that in Fig. 5.3 the model parameter are not adapted to the experiment. Thus the absolute values
for the resonance frequencies differ.

3The publication Ref. [Ado15] – ”Gyrational modes of benzene-like magnetic vortex molecules” by Chris-
tian F. Adolff, Max Hänze, Matthias Pues, Markus Weigand, and Guido Meier is based on the findings
presented in this section. Copyright 2015 by the American Physical Society.
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5. Ring-Shaped Magnetic Vortex Molecules

Figure 5.5.: X-ray micrographs of six disks that contain a vortex each. The Permalloy disks
are 60 nm thick and have a 2 µm diameter, the minimal distance between the disks is 60 nm.
(a) Vortex molecule with homogeneous core polarizations in all six disks. The magnetic contrast
can be seen in the raw data of one time frame. The vortex cores appear as black dots. (b)
Vortex molecule with alternating polarizations. The static contrast is subtracted to emphasize
the magnetic contrast even more prominently (see section 3.2). Disks and stripline are colorized.
In the captured movie black vortex cores gyrate clockwise (pi = −1) and white cores counter-
clockwise (pi = 1).

rotational symmetry and the linearity of the system, there has to be a basis of N nor-
mal modes, that fulfill this symmetry. In analogy to the description of a linear chain of
harmonic oscillators with periodic boundary conditions, we determine these modes to be
plane waves with wavelengths that are fractions of the circumference of the ring. For
a ring of an even number of N disks the normal modes are given by Eqn. 5.1. In the
last section the characteristic phases φchar,i = iκα have been determined from the exper-
iments. We have seen that the motions can indeed be understood by a superposition of
such modes. Hence, here we directly fit a linear combination of such normal modes

~xi(ωexc) =
2∑

κ=−3
~xκ,i (5.4)

to the experiments. The weights of the linear combination are given by the amplitudes
aκ(ωexc) of the normal modes (see Eqn. 5.1). Those are called normal modes contributions
in the following. Figure 5.6(a) depicts the form of the normal modes for equal chiralities
and polarizations (ci = 1, pi = −1) of all vortices. Since a homogeneous polarization
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200 220 240 260

(a) (b)
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Figure 5.6.: (a) Pictograms for the form and the propagation direction of the normal modes of
the ring (pi = −1). (b) Experiments with a homogeneous core polarization pattern (pi = −1).
Each graph shows the contribution of a normal mode to the overall motions in the molecule for
different excitation frequencies. The data points are obtained by a fit to the trajectories traced via
scanning transmission X-ray microscopy. The solid gray lines are Lorentzian fit curves (Eqn. 5.7).
The linear [Sil99] influence of different excitation strengths is normalized out. The vertical scale of
each graph ranges from 0 to 34 nm/mT. (c) Numerical calculations equivalent to the experiments
presented in (b). The vertical scale reaches from 0 to 310 nm/mT. The higher excitation efficiency
can be explained by absence of surface roughnesses and impurities.
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5. Ring-Shaped Magnetic Vortex Molecules

pattern with pi = −1 is present in the molecule, some properties invert with respect to
normal modes presented in Fig. 5.2 in the last section (page 64). Epitrochoids are present
for negative wave numbers and hypotrochoids for positive wave numbers. Figure 5.6(b)
shows the experimental results for the investigated vortex-benzene, when the homoge-
neous polarization pattern pi = −1 is present. The steady-state motions of the vortices
are traced for 24 different frequencies around the resonance frequency of an isolated disk.
The gray line in each of the six graphs is a Lorentzian fit through the black data points
that are proportional to the absolute gyration amplitude |aκ| of one normal mode ~xi,κ.
These data points are obtained by applying a curve fit with the linear combination of
normal modes given by Eqns. 5.1 and 5.4 to the vortex trajectories of the six vortices. For
each frequency one global curve fit is performed that comprises the complete motion of the
six vortices and thus yields one data point in each of the six graphs. It is an experimental
necessity to vary the strength of the alternating magnetic field for different frequencies of
excitation in order to ensure threshold gyration amplitudes for all vortices. The approx-
imately linear influence [Lan12; Sil99] of the different excitation strengths is normalized
out in Fig. 5.6(b). The experimental data points show a relatively strong variation.
Therefore, a numerical calculation presented in Fig. 5.6(c) has been performed, and eval-
uated in the same way as the experiment, in order to more clearly see the superposition
of the normal modes. We point out that each eigenmode has its maximal contribution
at different frequencies that lie on a sinusoidal line (dashed blue). This can be under-
stood with the circular-trajectory dipole-approximation presented in section 2.2.2. When
inserting an eigenmode ~xκ,i into Eqn.2.30 and only regarding next-neighbor interaction,
the frequency offset ωhom(κ) = ωiso − ωκ of the maximal mode contribution with respect
to the resonance frequency of an isolated disk ωiso follows to be4

ωhom(κ) = ωiso −
1
2Bhom cos((κ+ p)α). (5.5)

The bandwidth Bhom is a positive constant given by Bhom = 1
G′

0

µ0
2πD3 ( ãκaκ )2. The strength

of the dipole moment is denoted as ãκ since it is proportional to the gyration amplitude aκ.
The relation ωhom(κ) will be called the analytically determined dispersion relation in the
following. Since ωhom(+1) = ωhom(−3) for the case of pi = 1 ∀i and N = 8, this
explains the degeneracy of the corresponding modes in Fig. 5.3. Note that the dispersion
relation is not reflection symmetric. Thus, contrary to the actual benzene molecule,
the propagation of identical waves (same κ) in the two possible directions (sign of κ)
4The simplification is straight forward. Interactions with further neighbors can also be included easily.
For the mathematical proof see appendix A.3
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(a) (b)

Figure 5.7.: (a) Pictograms of the composition of the normal modes to obtain standing waves.
(b) Experiments with alternating polarization pattern. Each graph shows the contribution of a
standing wave to the overall motions in the molecule for different excitation frequencies. The data
points are obtained by a fit to the trajectories traced via scanning transmission X-ray microscopy.
The solid lines correspond to the fit with Eqn. 5.7. The vertical scale is identical to that in
Fig. 5.6(b). (c) Numerical calculations equivalent to the experiments presented in (b). The
vertical scale is identical to that in Fig. 5.6(c).

is not degenerated. The global gyration direction of the vortices in the homogeneous
polarization case has no equivalent in the linear vibrations in benzene. Such kind of global
gyration direction cannot be defined for an alternating polarization pattern since the
vortices gyrate in different directions according to their polarization pi. The alternating
polarization pattern is shown in Fig. 5.5(b) and has been adjusted experimentally using
an adiabatic state formation at fstate = 224 MHz. Although only one vortex is directly
excited, indirect self-organized state formation allows to tune the polarizations in the
whole molecule (see section 4.3). The symmetry of the ring changes due to the alternating
polarization pattern so that two normal modes ~xi,|κ| = ~xi,κ + ~xi,−κ have to be combined
in order to get standing waves. For such superposition of modes Eqn. 2.30 yields

ωalt(κ) = ωiso + 1
2Balt cos(κα), Balt = 3Bhom. (5.6)

for next-neighbor interaction5. One can see that with respect to the homogeneous case
(Eqn. 5.5) the factor p vanishes in the cosine and the prefactor is multiplied by (−3). The
different bandwidths are commonly explained by a weaker coupling between vortices of

5The simplification is straight forward. Interactions with further neighbors can also be included easily.
For the mathematical proof see appendix A.3
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5. Ring-Shaped Magnetic Vortex Molecules

equal polarization than of vortices with different polarizations [Vog11]. Recently, studies
by Oksana et al. confirm such factor for triples and clusters of vortices [Suk15]. For the
borderline case of an infinite linear chain (N →∞) the results of Eqns. 5.5 and 5.5 are in
concordance with previous results [Han13]. Considering the alternating case, Eqn. 5.6 is
reflection symmetric and thus no preferred propagation direction is present. This time,
all modes can be compared to the normal modes of the actual benzene molecule when
only the carbon atoms are regarded. Using the Wilson numbering [Wil34], the normal
mode with |κ| = 1 corresponds to mode ’Y’ of the actual benzene, |κ| = 2 corresponds to
mode ’6a” and |κ| = 3 can be compared to normal mode ’12’. The pictograms for such
modes used by Wilson in the seminal publication Ref.[Wil34] are depicted as arrows in
the center of the normal modes presented in Fig. 5.7(a). The standing waves are fitted
to the trajectories and yield the results presented in Fig. 5.7(b)6. In the following we
discuss the effects of damping on the experimental results. For negligible damping, there
are sharp resonances when the eigenfrequency of a normal mode is met. This case has
been depicted Fig. 5.3. In the experiment the damping allows to excite the system in
between those resonances. The normal modes mix in the way shown in Fig. 5.6 and 5.7 for
the two investigated polarization patterns. The contributions aκ(ωexc) are fitted to the
experimental data with Lorentzian functions that are shifted according to the analytically
derived discrete dispersion relation ω(κ)

aκ(ωexc) = LΓ(ωexc − ω(κ)), κ ∈
[
−N/2, . . . ,

N/2
)

(5.7)

This set of equations can be understood as the continuous dispersion relation of the
damped system, where ωexc is the frequency of the exciting magnetic field and LΓ(ω) the
Lorentzian peak function with damping parameter Γ. According to Eqns. 5.1, 5.4 and 5.7,
the motion of the vortices is then given by

~xi(ωexc) =
∑
κ

LΓ(ωexc − ω(κ)) cir̃ξ
(
pi sin(ωexc(t− t0) + iκα+ ipiα)
cos(ωexc(t− t0) + iκα+ ipiα)

)
(5.8)

whereas for ω(κ) the analytical dispersion relation of the actual polarization pattern
(ωhom or ωalt, Eqns. 5.5 or 5.6) has to be inserted. The global fit of the experimen-
tal data presented in Fig. 5.6(b) and Fig. 5.7(b) with the set of normal mode con-
tributions aκ(ωexc) (Eqn. 5.7) corresponds to the gray Lorentzian curves and yields

6Due to the limited beam time, the chiralities of the vortices have not been measured for the alternating
case. They are determined to fit best with Ci = (−1, 1, 1,−1, 1, 1)T .
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5.2. Benzene-Like Vortex Molecule

the three model parameters ωiso, Bhom, and Γ. The parameters are determined to
be ωiso

2π = (225.5 ± 1.5) MHz and Balt = (96 ± 6) MHz for the alternating case and
ωiso
2π = (227.6 ± 0.8) MHz and Bhom = (31 ± 2) MHz for homogeneous polarization pat-

tern. In both cases the damping parameter has a reasonable value of Γ = (29±3)·106 MHz
(Γ = 2αGilbertωiso ≈ 0.02ωiso [Mar13]). In order to reach the same accuracy in the nu-
merical calculations the coupling strength had to be adjusted to s = 0.483 in the homo-
geneous case. This value deviates from the standard parameter of s = 0.6875 used for the
alternating case and all other experiments shown in the previous chapters. Without the
reduction of s, the bandwidth of the homogeneous case whould be overestimated [Wan14;
Suk15]. For a discussion on the coupling strength parameter s see appendix A.2.

In conclusion we have shown that there are strong similarities between the vibrational
modes of benzene and the gyrational modes of a six-fold magnetic-vortex ring-molecule.
The symmetry of both systems determines the motions of the oscillators, i.e., the carbon
atoms or the vortices. The best accordance in the analogy can be achieved when an al-
ternating polarization pattern is tuned to the vortex molecule. In this case all gyrational
modes can be identified with vibrational modes in the actual benzene. The symmetry
allows to simplify the derivation of the fundamentally different dispersion relations of
the vortex molecule for the homogeneous and alternating core polarization patterns. In
contrast to other models the presented approach includes the effect of damping and is
characterized by only three model parameters, each of them determined in the experi-
ments. Both dispersion relations have been confirmed by X-ray transmission microscopy
proving that the magnetic vortex molecule features a reprogrammable band structure or
dispersion relation.
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Ferromagnetic microdisks for the investigation of magnetic vortex dynamics were fabri-
cated at the Institute of Applied Physics of the University of Hamburg. The magnetic
vortex is the magnetic ground state of such microstructures. It can be described by two
binary state parameters, i.e., polarization and chirality. The dynamics of vortices are
characterized by a gyration of the vortex core around the center of the disk. Theoreti-
cally their dynamics are described in a quasi-particle model. In consequence, the findings
of this work are also applicable for other magnetic particles like magnetic bubbles or
skyrmions [Rom15; Woo15] that can be excited to perform gyrational motions [Dai13;
Mak12; Ono12].
The influence of the stray field coupling on the vortex dynamics has been studied via
scanning transmission X-ray microscopy and ferromagnetic absorption spectroscopy. The
experiments reveal many analogies to the dynamics of coupled harmonic oscillators, which
especially applies to the last chapter where normal modes have been identified in ring-
shaped arrangements of vortices. The experiments illustrated that the dynamic proper-
ties, i.e., the dispersion relation of such molecules strongly depends on the polarization
configuration. For a configuration where the polarizations alternate along the ring, the
dispersion relation shows a higher bandwidth and is shifted in the space of wave num-
bers with respect to the case of identical polarizations. Such behavior of the dispersion
relation could also be analytically determined by using the approximation of circular
trajectories and exploiting the symmetry of the system. Thus, the findings of chapter 5
substantiate that the manipulation of the polarization in such vortex arrangements is of
paramount interest, especially with regard to the in-situ manipulation of magnonic crys-
tals consisting of magnetic vortices. One way for such a manipulation has been presented
in chapter 4 on the ”self-organized state formation in magnonic vortex crystals” – the
main topic of this work. An adiabatic reduction of a strong unidirectional field exciting
the gyrotropic modes of the vortices, allows for a formation of global polarization states
that is mediated by the local, next-neighbor interaction of the vortices. The results of
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such polarization-switching process could be effectively predicted for various types and
sizes of vortex arrangements by use of a fundamental stability criterion considering the
absorption of the polarization patterns. During the adiabatic field-reduction the vortex
arrangements settle in the least efficiently excitable state, which is the state that shows
the lowest absorption at the frequency of the state-formation. With that it was possible
to tune the alternating polarization pattern in the ring-molecules presented in chapter 5
by exciting only one of the vortices. Besides such ”indirect self-organized state formation”
(section 4.3) further aspects of the phenomenon have been investigated, e.g., the time-
scale of the state formation (section 4.1) that is determined to be in the range of 100 ns for
a rectangular 4×4 crystal. Experiments on larger magnonic crystals (section 4.2.1), with
more than 100 vortices substantially show behavior that is expected from the theory elab-
orated for smaller arrangements but also reveals the current limits of the comprehension
of the self-organized state formation. Further studies could gain a deeper understanding
of the state-formation process itself, instead of predicting the outcome. A simple way
to understand the state-formation is the idea of a path through a ”potential landscape”
of polarization patterns. Up to now it remains unclear whether this path is a random
walk that eventually results in the least excitable state or a target-oriented path that
constantly reduces the absorption of the system. Studies on this question could reveal
whether the process of self-organized state formation does always converge in finite time,
regardless of the size or the form of the crystal. Indications for two patterns that compete
and thus prohibit a convergence have been found in the experiments on large rectangular
crystals. A related unanswered question is whether the state formation shows the phe-
nomenon of geometrical frustration. Up to now it has been shown that there are strong
similarities between geometrically frustrated arrangements of nanomagnets and analogous
arrangements of vortices like they are presented in section 4.2.2. Such experiments on
hexagonal arrangements of vortices could be further elaborated. Frustrated systems are
of great general interest since they give insight into the nature of statistically disordered
systems [Lam10]. On the other hand, studies on frustration allow for future spintronic
devices, either for memory applications or to perform logic operations [Men08]. Although
commonly used for data-storage applications, there are relatively few attempts to exploit
magnetic-vortex phenomena for logic functionality [Imr06]. This could be an interesting
field for arrangements of coupled vortices since it has been shown recently that coupled
magnetic vortices can be used to implement transistor functionality [Kum14]. The aspect
of data storage with magnetic vortices has been proposed in Ref. [Boh08] as the vortex
random access memory (VRAM). The memory like writing process demonstrated in sec-
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tion 4.1, adds the aspect of controlling several bits, i.e., vortex polarizations, via only
one stripline. Nevertheless, in order to be able to compete with the access times and the
storage density of current random access memories a lot of more research is necessary.
A straight forward approach is to stack the vortices in order to obtain a third dimen-
sion [Win13; Gus05] which is also desirable in the field of magnonics [Kra14; Kru10b].
For such stacked vortices novel, direct core-core interactions are expected. In addition,
physical aspects like the Dzyaloshinskii-Moriya interaction [Dzy58; Mor60] are promising
candidates to be included into the vortex dynamics. For example, it has recently been
shown that such interaction is able to triple the gyration frequency of vortices [Che15].
The same interaction is known to stabilize skyrmion lattices in ultrathin films due to the
proximity to an asymmetric sample design featuring an adjacent layer with strong spin-
orbit coupling [Sam13]. It has been shown in Ref. [Dai13] that magnetic skyrmions can
also be stable as a ground state without Dzyaloshinskii-Moriya interaction in magnetic
microdisks. When initially deflected, the skyrmions also show gyrotropic motions around
the center of the containing Co/Ru/Co nanodisk. Such similarities to the magnetic vor-
tices presented in this work suggest that the findings are applicable to magnetic skyrmions
as well. Nevertheless, in contrast to skyrmions, vortices are also stable in the absence
of external magnetic fields. Consequently, they feature two statically degenerate ground
states with crucially different dynamics, characterized by the polarization. In order to
apply the findings on self-organized state formation to skyrmion arrangements, it would
be necessary to implement such behavior for skyrmions as well. This would complement
studies that propose magnetic skyrmions as information carriers in ultra-dense memory
and logic devices [Fer13]. Apart from the application-oriented memory aspect, coupled
vortices understood as artificial (frustrated) crystals are certainly interesting from a fun-
damental researcher’s point of view. This work comprehensively examined the aspect of
self-organized state formation that can build a basis for logic and memory applications
based on the polarization of magnetic quasi-particles as information carrier.
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A.2. Model Parameters

Figure A.1.: Identification of resonance frequency and damping for the eigenmode of an isolated
vortex. The data (red dots) is determined by transmission x-ray microscopy and is then compared
to an exponentially damped circular trajectory (black fit-curve).

A.2. Model Parameters

In order to perform the numerical calculations presented in this thesis, several parame-
ters of the model have to be determined. The thickness h of the disks is measured using
atomic force microscopy. Scanning electron microscopy is used to determine the radii R
of the disks and the disk interdistance D. Other experimentally measured characteristics
are the frequency and the damping of the gyrotropic eigenmode of a vortex in an isolated
disk. Supplementary Figure A.1 shows the x-component and y-component of this eigen-
mode extracted from transmission X-ray measurements of an isolated disk that has been
prepared onto the same sample as the actually investigated vortex arrangement (here:
ring-molecule with eight vortices presented in chapter 5). The vortex is deflected with a
short field pulse of 1.8 ns and then relaxes on a spiral trajectory back to its equilibrium
position. A damped gyration of the form

#»x =
(
x0

y0

)
+
(

cos(2πfisot+ ϕ)
p sin(2πfisot+ ϕ)

)
exp(−Γt) (A.1)

is fitted to the experimentally determined vortex trajectory. As can be seen from Fig. A.1,
the resonance frequency of the isolated vortex and the damping can be determined pre-
cisely for a single disk. Nevertheless further measurements show that the resonance
frequencies of other isolated disks on the same sample vary about ±15 MHz. Thus, the
used model parameter ω0 ≈ 2πfiso is chosen within this accuracy. Besides the saturation
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magnetization, that is chosen to be MS = 800 kA m−1 [Krü07], only the parameter s
remains that modifies the coupling strength. As mentioned in the main text it is pre-
dicted from experiments and theory that the coupling strength is overestimated by the
rigid vortex approach [Sug11; Vog12; Suk13]. It follows that s < 1. Typically a value of
s ≈ 2

3 fits best for the experiments1. Nevertheless, for the last experiment on benzene-like
magnetic vortex molecules, a value of s = 0.483 had to be used to obtain a good accor-
dance with the experiments when a homogeneous polarization pattern is present. Since
the experiments with the same sample but an alternating polarization pattern do not
deviate from the s ≈ 2

3 -rule, a deviation because of preparation inaccuracies is unlikely.
In addition, the experiments show that the bandwidths for the two polarization patterns
vary with a factor of three. Such factor is expected form the analytical calculations
elaborated in this work (section 2.2.2 in chapter 2 leading to Eqn. 5.6 in chapter 5) and
recent studies on triples of disks (similar to those investigated in section 4.3) presented
by Sukhostavets et al. in Ref. [Suk15]. In contrast, this factor would not follow from the
numerical calculation if the parameter s was not reduced for the homogenous case. When
considering the experiment on triples presented in this work (Fig. 4.11) one can see that
the numerical calculation also slightly overestimates the bandwidth for the homogeneous
pattern.2 The deviation between the numerical calculation and the experiments becomes
especially visible in the last experiments on the benzene-like magnetic vortex molecules.
To face this inaccuracy of the model, we modify the s-parameter depending on the po-
larization configuration in order to obtain a better comparability to the experiments.
The reasons for the deviations are yet unclear. Interestingly, the relative bandwidths are
correctly predicted in the analytical calculations (factor 3 in Eqn. 5.6) that assume pure
dipolar coupling and circular trajectories. Possibly, the trajectories in the experiments
show lower ellipticities than expected from the Thiele model. This might be due to a
concentric deformation of the disks that arises from surface tensions in the membrane on
which the microstructures are fabricated [Die08].

A list of the model parameters for all results (figures) presented in this work is depicted
in the following table.

1This is also in accordance with private communications with Prof. Dr. Konstantin Guslienko at a poster
session at the IEEE International Magnetic Conference (INTERMAG) in Dresden, from May 4th to
May 8th 2014.

2Interestingly, the recent studies of Wang et al. in Ref. [Wan14] on triples also show deficiencies in the
theoretical models with regards to experimentally observed behavior for the homogenous polarization
pattern.
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figure f (MHz) Γ (106 s−1) s (1) D (µm) R (µm) h (nm)

2.4 227.6 29.0 0.66 — 1.0 60.0
2.6 227.6 29.0 0.66 2.05 1.0 60.0
2.9 227.6 29.0 0.66 4.0 1.0 60.0
4.2 238.0 26.0 0.6875 3.0 1.0 60.0
4.3 238.0 26.0 0.6875 2.25 1.0 60.0
4.4(a) 223.0 25.0 0.6 3.0 1.0 60.0
4.4(b) 223.0 25.0 0.6 2.25 1.0 60.0
4.9 300.0 37.0 0.7 1.15 0.475 40.0
4.10 245.0 25.0 0.6667 2.063 1.0 60.0
4.11 207.0 23.0 0.6 2.05 1.0 55.0
4.12 207.0 — 0.6 2.05 1.0 55.0
5.3 226.0 25.0 0.6875 2.05 1.0 53.0
5.4 234.2 28.5 0.6875 2.06 0.995 60.0
5.6 227.6 29.0 0.6875 2.06 0.995 60.0
5.7 227.6 29.0 0.4583 2.06 0.995 60.0

Table A.1.: Model parameters used for the numerical calculations.
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A.3. Auxiliary Calculations

The analytical model elaborated in section 2.2.2 has been used to explain several exper-
imental results presented in this thesis. Starting from Eqn.

ωe − ωiso = 1
2π

1
G′0ZN,e

N−1∑
i=0

∑
j 6=i

∫ ωt=2π

ωt=0
Edipole,ij d(ωt). (A.2)

(originally tagged as Eqn. 2.30) Eqns.2.32, 5.5, and 5.6 have directly been deduced with-
out depicting the intermediate steps of calculation. Those are in most cases straight
forward but include several trigonometric identities. Practically the calculations have
been performed using the software Wolfram Mathematica [WolV9] but in order to get a
deeper understanding of the calculation, the auxiliary calculations will be given in detail
in the following.

Pair of disks (proof of Eqn. 2.32)

A pair (1,2) of disks that is located at ~r1 = (0, 0)T , ~r2 = (D cosϑ,D sinϑ)T is regarded.
The unidirectional alternating magnetic field points in y-direction (ξ = π

2 ). Consequently
the trajectory of an isolated un-damped vortex in resonance constituting the approxima-
tion for the coupled motion of the vortices is given by

~xi = aiCi

(
cos(ωet+ ϕi)
pi sin(ωet+ ϕi)

)
(A.3)

according to Eqn. 2.22. The magnetic dipole moments ~µi are rotated by ±90° (see
Eqn. 2.20) and are thus given by

~µi = ãi

(
−pi sin(ωet+ ϕi)

cos(ωet+ ϕi)

)
(A.4)

Due to the approximation of weak coupling ( D2R ≥ 2) it is assumed that the vortices are
affected by the alternating field in an identical fashion so that only an in-phase motion
can be excited resonantly at ωp and relation 2.31 applies. This yields

a1 = a2 = a, ϕ1 = ϕ2 = ϕ, ωe = ωp. (A.5)
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Now all preliminaries to solve Eqn. A.2 are given. For that, we divide the integration of
the dipole energy into two parts. Inserting Eqn. 2.21 yields

2π∫
0

Edipole,12 d(ωpt) = µ0
4πD3

12

 2π∫
0

~µ1~µ2 d(ωpt)−
3
D2

12

2π∫
0

(~µ1 ~D12)(~µ2 ~D12) d(ωpt)


=: µ0

4πD3
12

(
Ia −

3
D2

12
Ib

) (A.6)

It follows that

Ia =
2π∫
0

(
cos2(ωpt+ ϕ) + p1p2 sin2(ωpt+ ϕ)

)
d(ωt) = ã2π(1 + p1p2) (A.7)

for the first integral. With ~D12 := ~r1 − ~r2 = −~r2 and D12 := | ~D12| = D the second
integral can be simplified to

Ib = ã2D2
2π∫
0

(
cos2(ωpt+ ϕ) sin2 ϑ+ p1p2 sin2(ωpt+ ϕ) cos2 ϑ

)
d(ωpt)

= ã2D2π
(
sin2 ϑ+ p1p2 cos2 ϑ

)
= ã2D2π

2 ((1 + p1p2) + (p1p2 − 1) cos(2ϑ))

. (A.8)

Inserting this into Eqn. A.6 yields

2π∫
0

Edipole,12 d(ωt) = −µ0ã
2π

8πD3 ((1 + p1p2) + 3(p1p2 − 1) cos(2ϑ)) (A.9)

for the integrated dipole energy. Inserting this and the abbreviation ZN,e =
2∑
1
~x2
i = 2a2

into Eqn. A.2 yields

ωp − ωiso = 1
2π

1
G′02a2 2

(
−µ0ã

2π

8πD3 ((1 + p1p2) + 3(p1p2 − 1) cos(2ϑ))
)

= − ã
2

a2
µ0

16πD3G′0
[(1 + p1p2) + 3(p1p2 − 1) cos (2ϑ)]

(A.10)

This equals Eqn. 2.32.
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Ring-Molecules

In the following two proofs an even number of N vortices (0,1. . . N-1) that are located at

~ri = rc

(
sin(iα)
− cos(iα)

)
with α = 2π

N
(A.11)

are regarded, whereas the radius of the ring is denoted with rc = D√
2(1−cosα)

. The
unidirectional alternating magnetic field points in y-direction (ξ = π

2 ). Consequently
the approximation for the coupled motions of the vortices is given by Eqn. A.3 and the
gyration of the corresponding dipoles by Eqn. A.4. Due to the symmetry of the system
it is assumed that there are N normal modes that are characterized by the dimensionless
wave number κ. They are given by

ai = aκ ϕi = iκα+ ipiα, ωe = ωκ. (A.12)

Case 1: Homogeneous Polarizations (proof of Eqn. 5.5)

In the case homogeneous polarizations pi = p it can be motivated from the experiments
and numerical calculations presented in Fig. 5.6 that each normal mode can be excited
at a different frequency. Consequently the rotating dipoles are given by

~µi,κ = ãκ

(
−p sin(ωκt+ iκα+ ipα)

cos(ωκt+ iκα+ ipα)

)
(A.13)

In analogy to the previous proof the auxiliary integrals Ia,ij and Ib,ij for two coupled
vortices i and j are given by

Ia,ij :=
2π∫
0

~µi,κ~µj,κ d(ωt),

Ib,ij :=
2π∫
0

(~µi,κ ~Dij)(~µj,κ ~Dij)d(ωt).

(A.14)
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Using the relations

2π∫
0

cos(z + ci) cos(z + cj)dz =
2π∫
0

sin(z + ci) sin(z + cj)dz = π cos(ci − cj)

2π∫
0

cos(z + ci) sin(z + cj)dz = −π sin(ci − cj)

(A.15)

with the substitutions z := ωκt and ci := i(κ+ p)α, the auxiliary integrals Ia,ij and Ib,ij

can be simplified to
Ia,ij = 2πã2

κ cos((i− j)(κ+ p)α),

Ib,ij = πã2
κD

2
ij cos((i− j)(κ+ p)α)

(A.16)

Inserting this into Eqn. A.6 yields

IE,ij :=
2π∫
0

Edipole,ij d(ωκt) = −µ0ã
2
κπ

4πD3
ij

cos((i− j)(κ+ p)α) (A.17)

for the interaction energy IE,ij of two vortices i and j during one period of gyration.
Before this is inserted into Eqn. A.2, we rearrange the summations:

ωe − ωiso = 1
2π

1
G′0ZN,e

N−1∑
i=0

∑
j 6=i

IE,ij

= 1
2π

1
G′0ZN,e

N−1∑
i=0

∑
n

(
IE,i(i+n) + IE,i(i−n)

)
.

(A.18)

Here, n indicates the nth next neighbors. Due to the symmetry of the ring, each vortex has
two nth neighbors that have the same distance Dn. Inserting Eqn. A.17 with IE,i(i+n) =

IE,i(i−n) and the abbreviation ZN,κ =
N−1∑

0
~x2
i = Na2

κ yields

ωκ − ωiso = −1
2

1
G′0

µ0
2π

(
ãκ
aκ

)2∑
n

1
D3
n

cos(n(κ+ p)α). (A.19)

When only regarding next-neighbor interaction (n ∈ {1}) this is identical to Eqn. 5.5.
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Case 2: Alternating Polarizations (proof of Eqn. 5.6)

In the case homogeneous polarizations it follows from the symmetry that the modes
with identical absolute value of κ are always excited simultaneously. Consequently, the
rotating dipoles are given by

~µi,|κ| = ~µi,κ + ~µi,−κ

= ã|κ|

(
−pi sin(ω|κ|t+ iκα+ ipiα)

cos(ω|κ|t+ iκα+ ipiα)

)
+ ãκ

(
−pi sin(ω|κ|t− iκα+ ipiα)

cos(ω|κ|t− iκα+ ipiα)

) (A.20)

for k 6= 0 and k 6= N/2. For the other two cases, the modes with ±κ are identical
and thus the first summand is sufficient. Again we will consider the more general case
of nth-neighbor interaction between two vortices i and (i ± n). Whereas this time the
polarizations are contrary pipi±n = −1. In analogy to the previous proof, the auxiliary
integrals Ia,i(i±n) and Ib,i(i±n) are given by

Ia,i(i±n) :=
2π∫
0

~µi,|κ|~µi±n,|κ| d(ω|κ|t),

Ib,i(i±n) :=
2π∫
0

(~µi,|κ| ~D)(~µi±n,|κ| ~D)d(ω|κ|t).

(A.21)

Using the relations in Eqn. A.15, the auxiliary integrals result in

Ia,i(i±n) = 0,

Ib,i(i±n) = −4πD2
nã

2 cos(iκα) cos((i± n)κα).
(A.22)

for the case κ 6= 0 and κ 6= N/2. For the latter simplification the relations

D2
n,x −D2

n,y = D2
n cos((2i± n)α), Dn,xDn,y = D2

n sin((2i± n)α) (A.23)

have been used, whereas ~Dn = ~ri − ~r(i+n) = (Dn,x, Dn,y)T . For the special case κ = 0 or
κ = N/2 the result has to be divided by two, since the two summands in Eqn. A.20 are
identical and thus only one of them has to be considered. Inserting this into Eqn. A.6
yields

IE,i,(i±n) :=
2π∫
0

Edipole,i(i±n) d(ω|κ|t) = 3µ0ã
2

D3 cos(iκα) cos((i± n)κα) (A.24)
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Consequently Eq. A.18 results in

ωe − ωiso = 1
2π

1
G′0ZN,e

N−1∑
i=0

∑
n

(
IE,i(i+n) + IE,i(i−n)

)

= 3ã2µ0
2π

1
G′0ZN,e

∑
n

1
D3
n

N−1∑
i=0

2 cos2(iκα) cos(nκα)

·
{ 1

2 forκ = 0 or κ = N
2

1 else.

(A.25)

Using ZN,e = 2a2N and the relation

N∑
i=1

cos2(iκα) =
{
N forκ = 0 or κ = N

2
N
2 else

(A.26)

that can be found in mathematic formularies like Ref. [Gra00], the two cases can be
merged into

ω|κ| − ωiso = 3ã2µ0
2πD3

1
G′02Na2

∑
n

cos(nκα)2N
2

= 3
2

1
G′0

µ0
2π

(
ã

a

)2∑
n

1
D3
n

cos(nκα)
(A.27)

When only regarding next-neighbor interaction (n ∈ {1}) this is identical to Eqn. 5.6
(Bhom = 1

G′
0

µ0
2πD3 ( ãκaκ )2).

101



Appendix A. Appendices

A.4. Image Processing on Vortex Domain Walls

Figure A.2.: Motion of a vortex domain-wall through a wire before (a) and after (b) the com-
pensation of crosstalk-effects. The domain-wall can be identified by the black-white-black con-
trast [Ste14]. The data is published in Ref. [Ste14]

As described in the chapter 3, an additional image processing step has been developed
that allows to isolate the magnetic contrast from parasitic contrast that is due to the
crosstalk of the stripline and the avalanche photo diode of the STX microscope. This
so-called compensation is especially helpful for the evaluation of pulsed measurements
where magnetic contrast has to be seen on different transmission levels simultaneously,
i.e., beneath and besides the stripline. Such pulsed measurements are not shown in the
context of this work. Nevertheless the procedure has been used by Falk-Ulrich Stein et
al. in Ref. [Ste14] on the direct observation of internal vortex domain-wall dynamics.
The study presented in Fig. A.2 shows the movement of a vortex domain-wall through a
wire. The vertically aligned wire can be seen as the ”blinking” contrast in flattened and
normalized image in Fig. A.2(a). An additional stripline is placed horizontally at the top
of the images, likewise visible by the blinking contrast. Since pulsed excitations are used,
the crosstalk had strongly disguised the magneto dynamics before the compensation was
performed. After the compensation, the pure magnetic contrast can clearly be seen in
Fig. A.2(b).
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A.5. Micromagnetic Simulations of the SOSF in 3× 3 Crystals

Figure A.3.: Micromagnetic simulation of the emerging polarization states during the self-
organized state formation in a 3×3 magnonic vortex crystal. The polarizations are depicted
as white or black dots. The simulation lasts 100 ns. The polarization states are evaluated every
0.1 ns. Due to the long simulation times and high memory consumption the disks are reduced in
size with respect to the disks that are investigated via scanning transmission x-ray microscopy in
chapter 4. The disks are 504 nm in diameter and have a height of 40 nm. The center-to-center
distance is 600 nm. The resonance frequency of a single vortex of this geometry is 568 MHz. The
frequency of excitation amounts for 570 MHz. The simulation is performed with variable stepsize
and a cellsize of 4×4×10 nm3.

Since the process of polarization switching itself cannot be investigated in the experi-
ment, additional micromagnetic simulations have been performed in order to get a deeper
insight into the self-organized state formation. For that a 3×3 crystal is excited with an
alternating magnetic field with constant amplitude µ0H=3 mT.3 The simulation starts
with a homogeneously polarized array. Due to the phenomenon of self-organized state
formation the homogeneous polarization state is destroyed and a polarization state with
rows of constant polarizations is tuned. During the formation process, several transient
states occur that are depicted in Fig. A.3. The formation eventually reaches the stable
state of rows of constant polarizations after 41.3 ns.

3Note that in contrast to the experiments on the 3×3 crystal, the amplitude of the exciting field is not
adiabatically reduced but stays constant during the whole simulation. Such ”burst-mode” self-organized
state formation is investigated in detail in section 4.1.
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A.6. Further Results of the SOSF in 3× 3 Crystals

Figure A.4.: Summary of all experimentally observed stable patterns of the STXM experiments
on 3 × 3 crystals presented in chapter 4. Two types of samples are investigated that vary in
disk-interdistance D. In the main text one array of each type is presented. Measurements on
arrays with identical geometry reproduce the results discussed in the main text. Eleven samples
have been investigated in total. Six samples for the small interdistance and five samples for the
large interdistance. Note that not all samples have been measured at all frequencies.
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A.7. Process Parameters

substructure process product/machine parameters

microdisks

spin coat PMMA 50K 6000 U/min, 60 s,

accel. 6000
bake hotplate 30 s, 160 ◦C
spin coat PMMA 950K 6000 U/min, 60 s,

accel. 6000
bake hotplate 90 s, 160 ◦C
e-beam exposure Zeiss Supra 55 20 kV,

10 µm aperture,
membranes:
400 µC cm−2

wafer:
200 µC cm−2

develop AR-600-56 120 s, 20 ◦C
stop/clean AR-600-60 20 s → H2O → N2

O2 plasma clean Plasma Prep III 70 W, 0.5 mbar, 60− 80 s
thermal evaporation Balzers-Pfeiffer Py 60 nm (boat)

(PLS500) pstart < 2 · 10−7 mbar
lift-off acetone ≈ 20 min, 56 ◦C

→ isopropanol
→ H2O → N2

striplines

spin coat PMMA 600K 6000 U/min, 60 s,

accel. 6000
bake hotplate 120 s, 160 ◦C
e-beam exposure Zeiss Supra 55 10 kV,

120 µm aperture,
180 µC cm−2

develop AR-600-56 120 s, 20 ◦C
stop/clean AR-600-60 20 s → H2O → N2

thermal evaporation Balzers-Pfeiffer Cu: 120 nm (boat)
(PLS500) Au: 5 nm (crucible)

lift-off acetone ≈ 20 min, 56 ◦C
→ isopropanol
→ H2O → N2
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Personen danken:
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• Sandra Schröder und Max Hänze für die Unterstützung bei der Durchsicht dieser
Arbeit.

• Meinen Eltern Heinz-Volker und Ingrid Adolff für den Rückhalt und die Unter-
stützung während meines gesamten Studiums.

Zuletzt wünsche ich den zukünftigen Doktoranden viel Erfolg im Verlaufe ihrer Promo-
tion.

107


	1 Introduction
	2 The Magnetic Vortex
	2.1 Thiele Model for Magnetic Vortices
	2.2 Coupled Thiele Equations
	2.2.1 Stray-Field Coupling via Surface Charges
	2.2.2 Circular-Trajectory Dipole-Approximation


	3 Experimental Methods
	3.1 Sample Preparation
	3.2 Scanning Transmission X-ray Microscopy
	3.3 Ferromagnetic Absorption Spectroscopy

	4 Self-Organized State Formation in Magnonic Vortex Crystals
	4.1 Time-Scale of the State Formation
	4.2 Larger Crystals
	4.2.1 Rectangular Crystals
	4.2.2 Kagome Lattice with Pairs of Vortices

	4.3 Indirect Self-Organized State Formation

	5 Ring-Shaped Magnetic Vortex Molecules
	5.1 Molecule With Eight Vortices
	5.2 Benzene-Like Vortex Molecule

	6 Conclusion and Outlook
	Bibliography
	A Appendices
	A.1 List of Publications
	A.2 Model Parameters
	A.3 Auxiliary Calculations
	A.4 Image Processing on Vortex Domain Walls
	A.5 Micromagnetic Simulations of the SOSF in 3 3 Crystals
	A.6 Further Results of the SOSF in 3 3 Crystals
	A.7 Process Parameters


