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Abstract

We have calculated the inclusive single production of hadrons in neutral and charged current

deep-inelastic scattering at next-to-leading order using perturbative QCD to first and second order

in αs. Virtual and real corrections were calculated, and a Monte Carlo program was implemented

to obtain cross sections at NLO in the M̄S scheme using the dipole subtraction method. Our re-

sults to first order in αs were compared to charged hadron production data from the H1 and ZEUS

collaborations. A comparison was also made to second order in αs with π0 and D∗± production

data from the H1 collaboration. We have also studied the effect of the Z boson contribution in

these processes and calculated the cross sections for charged-current single hadron production in

deep inelastic scattering.

Zusammenfassung

Die inklusive Einfachproduktion von Hadronen in Tiefinelastischer Streuung bei Austausch neu-

traler und geladener Bosonen wurde zur nächstführenden Ordnung mittels perturbativer QCD in

erster und zweiter Ordnung in αs berechnet. Es wurden virtuelle und reelle Korrekturen bestimmt

und ein Monte Carlo-Programm implementiert, um Wirkungsquerschnitte zu nächstführender

Ordnung im M̄S-Schema mit der Dipolsubtraktionsmethode zu erhalten. Die Resultate wurden

verglichen mit Messungen der H1 und ZEUS Kollaborationen von der Produktion von gelade-

nen Hadronen im Fall der Berechnungen zur ersten Ordnung in αs, sowie mit π0- und D∗±-

Produktionsmessungen der H1 Kollaboration für die Berechnungen zur zweiten Ordnung in αs.

Dazu wurden Effekte des Z-Boson-Beitrags in diesen Prozessen studiert und für den Austausch

geladener Bosonen der Wirkungsquerschnitt für Einfachproduktion von Hadronen in Tiefinelastis-

cher Streuung berechnet.
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Chapter 1

Introduction

The standard model of elementary particles [1, 2] provides the most accurate description of the

interactions that occur between particles and it is the best tested theory we currently have. The

model consists of two main parts: the spontaneously broken SU(2)×U(1) electroweak sector and

the unbroken SU(3) colour gauge sector, which is known as Quantum Chromodynamics (QCD).

Although the standard model has some problems, and there are still missing pieces such as the

Higgs boson, which has not yet been found experimentally, QCD has been extremely succesfull in

describing strong interactions.

One of its major achievements is the description of asymptotic freedom [3,4] and confinement. We

know that all particles which are subject to the strong force, hadrons, consist at an elementary level

of quarks and gluons. The gluons are the propagators of the strong interaction, with no charge

but having colour. However, quarks have never been found in isolation. Any effort to produce

single quarks in scattering experiments leads only to the production of mesons and baryons [5]. On

the other hand, the parton model [6, 7], describes successfully certain high energy cross sections.

Asymptotic freedom refers to the weakness of the short-distance interaction, while the confinement

of quarks follows from its strength at long distances. The former is a perturbative prediction but

the latter is not. This makes QCD a theory with no single approximation method applicable

to all length scales. However, the justification for the use of perturbative QCD lies largely with

experiment. Over time, it has become clear that perturbative QCD describes a large set of high

energy, large momentum-transfer cross sections. It is in this area that its formalism has been

developed, and in which it has proved an invaluable tool in the study of the strong interaction.
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Chapter 1 1.1. The electroweak standard model

1.1 The electroweak standard model

This sector of the model is constructed by choosing the gauge group SU(2)L ⊗ U(1)Y , and intro-

ducing a gauge boson for each generator of the group:

SU(2)L −→ W 1
µ ,W

2
µ ,W

3
µ ,

U(1)Y −→ Bµ. (1.1)

This allows us to write the free Lagrangian for the gauge fields as

Lgauge = −1

4
W i

µνW
iµν − 1

4
BµνB

µν , (1.2)

where

W i
µν = ∂νW

i
µ − ∂µW

i
ν + gǫijkW

j
µW

k
ν , (1.3)

Bµν = ∂νBµ − ∂µBν . (1.4)

To introduce fermions in the model, we write first the free massless Lagrangian. For leptons we

have

Ll = R̄i 6 ∂R+ L̄i 6 ∂L

= l̄i 6 ∂l + ν̄i 6 ∂ν, (1.5)

and for quarks

Lq = L̄U i 6 ∂LU + L̄Ci 6 ∂LC + R̄U i 6 ∂RU + R̄Di 6 ∂RD + R̄Ci 6 ∂RC + R̄Si 6 ∂RS , (1.6)

where L denotes left doublets and R right singlets. If we want the theory to be locally invariant,

we must introduce a covariant derivative:

DL : ∂µ + igτ iW i
µ + i

g′

2
Y Bµ,

DR : ∂µ + i
g′

2
Y Bµ, (1.7)

that will lead to the interactions between the gauge fields and the fermions. We see that using

this, the Lagrangians for leptons and quarks can be written as

L±
l = − g

2
√

2
(ν̄γµ(1 − γ5)lW

+
µ + l̄γµ(1 − γ5)νW

−
µ ), (1.8)

L0
l = −g sin θW (l̄γµl)Aµ − g

2 cos θW

∑

i=l,ν

Ψ̄iγµ(gi
V − gi

Aγ5)ΨiZµ, (1.9)

L±
q = − g

2
√

2
(ūγµ(1 − γ5)d

′ + c̄γµ(1 − γ5)s
′)W+

µ + h.c, (1.10)

2



1.1. The electroweak standard model Chapter 1

γ

igeγ
µ

f

f

Z0

−igZ

2 γµ
(

gf
V − gf

Aγ
5
)

νl

l−

W−

−igW

2
√

2
γµ
(

1 − γ5
)

qi

qj

W−

−igW

2
√

2
γµ
(

1 − γ5
)

Uij

Figure 1.1: Feynman rules for the electroweak sector of the Standard Model.

L0
q = g sin θW



−2

3

∑

Ψq=u,c

Ψ̄qγµΨq +
1

3

∑

Ψq=d′,s′

Ψ̄qγµΨq



Aµ

− g

2 cos θW





∑

Ψq=u,...,c

Ψ̄qγµ(gq
V − gq

Aγ5)Ψq



Zµ, (1.11)

where we have separated them into charged and neutral components. Here we see the vector nature

of the QED couplings and the vector-axial nature of the weak currents. From this Lagrangian we

can obtain the feynman rules for the electroweak sector of the standard model as shown in figure

1.1, where we have the coupling constants:

ge =
√

4πα, (1.12)

gW =
ge

sin θW
, (1.13)

gZ =
ge

sin θW cos θW
, (1.14)

gf
V = T 3

f − 2ef sin2 θW , (1.15)

gf
A = T 3

f , (1.16)

with T 3
ν,u = 1

2 , T 3
e,d = − 1

2 . On the other hand, the propagators for fermions and bosons are

Spin
1

2
:

i(6 q +m)

q2 −m2
, (1.17)

Spin 1 :
−i(gµν − qµqν/m

2)

q2 −m2
. (1.18)

At this point in the model it is not possible to introduce a term with the masses of the parti-

cles, since such a term would break the gauge symmetry. It is for this reason that the standard

model resorts to the mechanism of spontaneous symmetry breaking to give mass to the particles,

introducing a new particle in the model: the Higgs boson. We will not go into the details of that,

3



Chapter 1 1.2. Quantum Chromodynamics

since it is not necessary for the purposes of this work, and will now concentrate on the structure

of QCD.

1.2 Quantum Chromodynamics

The Lagrangian of QCD can be written as [8, 9]

LQCD
eff = Linvariant + Lgauge + Lghost, (1.19)

which is a function of the fermion fields, gluon fields and the ghosts fields. The invariant Lagrangian

is the classical density, invariant under local SU(Nc) gauge transformations, with Nc = 3 for QCD.

It is of the form that was originally written down by Yang and Mills [10],

Linvariant =
∑

f

Ψ̄f (i 6 D[A] −mf )Ψf − 1

4
F 2[A]

=

nf
∑

f=1

4
∑

α,β=1

Nc
∑

i,j=1

Ψ̄f,β,j

(

iγµ
αβDmu,ij [A] −mfδβαδij

)

Ψf,α,i

−1

4

3
∑

µ,ν=0

N2
c −1
∑

a=1

Fµν,a[A]Fµν
a [A], (1.20)

where

Dµ,ij [A] = ∂µδij + igAµa

(

T (F )
a

)

ij
, (1.21)

is the covariant derivative in the Nc-dimensional representation of SU(Nc), which acts on the

spinor quark fields with colour indices i = 1, ..., Nc. There are nf independent quark fields (nf = 6

in the standard model), labelled by flavour f = u, d, c, s, t, b. In the QCD Lagrangian they are only

distinguished by their masses. We also have

Fµν,a[A] = ∂µAνa − ∂νAµa − gsCabcAµbAνc, (1.22)

which is the non-abelian field strength defined in terms of the gluon vector field Aµ
b , with N2

c − 1

group components b. The QCD (strong) coupling is given by gs and the Cabc with a, b, c = 1...N2
c −1

are real numbers called the structure constants of SU(Nc), which define its Lie algebra. As

mentioned before, for QCD [11, 12], Nc = 3. The Lie algebra is determined by the commutation

relations of the N2
c − 1, Nc ×Nc matrices

(

T
(F )
a

)

ij
that appear in the definition of the covariant

derivative,

[T (F )
a , T

(F )
b ] = iCabcT

(F )
c . (1.23)

It can be shown that Linvariant is gauge invariant, which actually makes it difficult to quantize.

This problem is solved by adding gauge fixing and ghost densities [13–16], Lgauge + Lghost. In the
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µ, bν, a

i δab

k2 (−gµν)

β, j

α, i

µ, c

−igs[T
(F )
c ]ij [γµ]βα

ν2, a2

ν3, a3

ν1, a1

−gsCa1a2a3
[gν1ν2(p1 − p2)

ν3 + gν2ν3(p2 − p3)
ν1 ] + gν3ν1(p3 − p1)

ν2

ν2, a2 ν1, a1

ν3, a3 ν4, a4

−ig2
s [Cea1a2

Cea3a4
(gν1ν3gν2ν4 − gν1ν4gν2ν3)

+Cea1a3
Cea4a2

(gν1ν4gν3ν2 − gν1ν2gν3ν4)

+Cea1a4
Cea2a3

(gν1ν2gν4ν3 − gν1ν3gν4ν2)]

Figure 1.2: Feynman rules for QCD.

covariant gauges, their form is given by

Lgauge = −λ
2

N2
c −1
∑

a=1

(∂µA
µ
a)

2
1 < λ <∞, (1.24)

Lghost = (∂µc̄a)(∂µδad − gsCabdA
µ
b )cd, (1.25)

where ca(x) and c̄a(x) are scalar ghost and anti-ghost fields. In the quantization procedure, ghost

fields anticommute, despite their spin. In an SU(Nc) theory, the ghost fields ensure that the gauge

fixing does not spoil the unitarity of the physical S-matrix that governs the scattering of quarks

and gluons in perturbation theory. The ghost fields are of course not physical, and contribution of

all unphysical polarizations to the sum of squared matrix element over polarizations equals zero.

As a result [17]
∑

i∈Sphys

AiA
∗
i =

∑

i∈Sall

σ(i)AiA
∗
i , (1.26)

where i is a multi-index for polarization states, Ai is an amplitude of the process, Sphys is a set

of physical polarization states, Sall is a full set of polarizations including unphysical ones and

σ(i) = ±1 depending on a signature of the Hilbert space norm of the polarization state i.

Finally, we present in figure 1.2, the feynman rules for QCD.

5



Chapter 2

Perturbative QCD and ep

scattering

2.1 The parton model

The perturbative QCD approach for computing hadronic cross sections is based on the parton

model picture, in which the cross section for any hard scattering process can be written as a

convolution of structure (fa(x,Q2)) and fragmentation (Da(x,Q2)) functions of partons (quarks

and gluons) and a hard cross-section factor [18]. The structure and fragmentation functions are

non-perturbative, universal quantities, that is, they do not depend on the process used to obtain

them. On the other hand, the hard-cross section can be calculated within perturbative QCD to

the lowest order in the running coupling αs(Q) as long as Q≫ Λ, where Λ is the QCD scale.

This näıve parton model corresponds to the leading order (LO) approximation. However, due to

the perturbative nature of αs, the running of the coupling constant could be hidden in higher

order corrections and therefore the LO calculation can only predict the order of magnitude of a

given cross section. The accuracy of the perturbative QCD expansion is then controlled by the size

of the higher-order contributions. Any perturbative QCD prediction needs then, next-to-leading

(NLO) corrections and NLO definitions of the running coupling constant, and the structure and

fragmentation functions.

We are interested in deep inelastic scattering (DIS) processes, of the form

l(k) + p(P ) → l′(k′) +X, (2.1)

6



2.1. The parton model Chapter 2

l(k)

l′(k′)

V

p(P )

X

Figure 2.1: Deep inelastic scattering.

mediated by a vector boson, where l(k) and l′(k) represent an incoming and outgoing lepton of

momentum kµ and k′µ respectively, p(P ) a hadron of momentum Pµ and X an arbitrary hadronic

state. The process is illustrated in figure 2.1.

We define the momentum transfer in DIS as

qµ = kµ − k′µ,

−q2 = Q2, (2.2)

and introduce the Bjorken scaling variable x,

x =
Q2

2P · q . (2.3)

Furthermore, we will need the dimensionless variable y,

y =
P · q
P · k , (2.4)

that measures the ratio of energy transferred to the hadronic system and the total leptonic energy

available in the target rest frame [5].

At lowest order in electroweak interactions, the cross section may be split into leptonic and hadronic

parts,
dσ

dxdy
=

2πyα2

Q4

∑

n

λnl
µν
n Wn

µν . (2.5)

In the case of neutral current exchange, the index n runs over n = γ, Z and γZ, and represents

pure photon, Z exchange and the interference between them, respectively. For charged current

interactions there is only W exchange, n = W . lµν is the lepton tensor associated with the

coupling of the exchange boson to the leptons:

lµν
γ = 2 (kµk′ν + kνk′µ − k · k′gµν) , (2.6)

lµν
γZ = 2ge

V (kµk′ν + kνk′µ − k · k′gµν) − 2ige
Aǫ

µναβkαk
′
β , (2.7)

lµν
Z = 2

(

ge
V

2 + ge
A

2
)

(kµk′ν + kνk′µ − k · k′gµν) − 4ige
V g

e
Aǫ

µναβkαk
′
β , (2.8)

lµν
W = 4

(

kµk′ν + kνk′µ − k · k′gµν − iǫµναβkαk
′
β

)

, (2.9)

7



Chapter 2 2.1. The parton model

where ge
V = − 1

2 + 2 sin2 θW , ge
A = − 1

2 , and we have introduced the total antisymmetric tensor ε:

Tr(γ5γαγβγγγδ) = 4iεαβγδ. (2.10)

The factors λn denote the ratios of the corresponding propagators and couplings to the photon

propagator and coupling squared [19]:

λγ = 1 ; λγZ =

(

GFM
2
Z

2
√

2πα

)(

Q2

Q2 +M2
Z

)

; (2.11)

λZ = λ2
γZ ; λW =

1

2

(

GFM
2
W

4πα

Q2

Q2 +M2
W

)2

. (2.12)

On the other hand, the hadron tensor is defined to all orders in the strong interaction in terms of

the matrix elements

W p
µν(P, q) =

1

8π

∑

spin

∫

d4xeiqx < P |J+
µ (x)Jν (0)|P > . (2.13)

Symmetry properties impose restrictions on the form the hadron tensor can take, which can be

summarized by expanding the tensor in terms of scalar structure functions Fi:

W p
µν(P, q) =

(

−gµν +
qµqν
q2

)

F p
1 (x,Q2) +

(

Pµ − P · q
q2

qµ

)(

Pν − P · q
q2

qν

)

1

P · qF
p
2 (x,Q2)

− i

2
εµναβ

Pαqβ

P · q F
p
3 (x,Q2). (2.14)

The cross sections for neutral current (NC) and charged current (CC) deep inelastic scattering can

be written in terms of the structure functions in the generic form,

dσi

dxdy
=

4πα2

xyQ2
λi

(

y2xF i
1 + (1 − y)F i

2 ∓
(

y − y2

2

)

xF i
3

)

, (2.15)

where i = NC,CC. The CC structure functions are

FCC
1 = FW

1 , FCC
2 = FW

2 , xFCC
3 = xFW

3 . (2.16)

For NC, they are given by [20]:

FNC
2 = F γ

2 − ge
V λγZF

γZ
2 +

(

ge
V

2 + ge
A

2
)

λZF
Z
2 , (2.17)

and similarly for FNC
1 . We also get

xFNC
3 = −ge

AλγZxF
γZ
3 + 2ge

V g
e
AλZxF

Z
3 . (2.18)

In the quark parton model, the proton is assumed to be composed of point-like free objects called

partons. In this way inelastic electron-proton scattering can be described in terms of the elastic

scattering of the electron with a parton q = u, d, ... and the probability q(x,Q2) of finding this

8



2.1. The parton model Chapter 2

parton with momentum x inside the proton, known as Parton Distribution Function (PDF). Con-

tributions to the structure functions can be expressed in terms of the parton distribution functions.

For the neutral current processes ep→ eX ,

F γ
2 = x

∑

q

e2q (q + q̄) , (2.19)

F γZ
2 = x

∑

q

2eqg
q
V (q + q̄) , (2.20)

FZ
2 = x

∑

q

(

gq
V

2
+ gq

A
2
)

(q + q̄) , (2.21)

F γ
3 = 0, (2.22)

F γZ
3 =

∑

q

2eqg
q
A (q − q̄) , (2.23)

FZ
3 =

∑

q

2gq
V g

q
A (q − q̄) , (2.24)

where gq
V = ± 1

2 − 2eq sin2 θW and gq
A = ± 1

2 , with ± according to whether q is a u or d type quark

respectively. For the charged current processes e−p→ νX and ν̄p→ e+X , the structure functions

are:

FW−

2 = 2x
(

u+ d̄+ c+ s̄+ ...
)

, (2.25)

FW−

3 = 2
(

u− d̄+ c− +̄...
)

, (2.26)

(2.27)

where only the active flavours are to be kept and where CKM mixing has been neglected. In the

case of FW+

2 and FW+

3 , the result is obtained by interchanging d↔ u type quarks.

One of the features of structure functions in the quark parton model is that they scale, that is,

Fi(x,Q
2) → Fi(x) in the limit that Q2 → ∞ and with x fixed [21]. This prediction is known as

Bjorken scaling and was verified experimentally at SLAC [22] confirming the presence of charged

constituents in the proton. This property is related to the assumption that the transverse mo-

mentum of the partons in the infinite-momentum frame of the proton is small. However, if the

proton were only composed of charged particles, the sum of their momenta should equal the proton

momentum, i.e. the sum of their fractional momenta would be unity:

∑

∫ 1

0

dxq(x)x = 1. (2.28)

This is not what is observed experimentally, where it was found that quarks constitute only ∼ 50%

of the proton’s momentum [23], suggesting that neutral particles also existed in the proton. These

were identified as gluons and direct evidence of their existence was observed in e+e− collisions in

the form of 3-jet events [24]. The modification of the quark parton model to include gluons formed

what became QCD.
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Chapter 2 2.2. Evolution of parton densities

In QCD, the proton can be described as a dynamical system of quarks and gluons. Gluons can be

emitted and absorbed by the quarks and can split to produce pairs of quarks or gluons. In this way

it is possible for a parton to gain transverse momentum relative to the proton direction leading to

logarithmic scaling violations, which are particularly large at small x [19]. The radiation of gluons

produces the evolution of the structure functions. As Q2 increases, more and more gluons are

radiated, which then split into qq̄ pairs. This leads to the softening of the initial quark momentum

distributions and to the growth of the gluon density and the qq̄ sea as x decreases. In QCD, this

process is described in terms of scale dependent parton distributions fa(x, µ2), where a is now

either a quark or a gluon.

Because of this gluon radiation, the structure function F2 has a dependence on Q2 as well as on x

as shown in Fig. 2.2. In low Q2 events the photon can resolve the valence quark substructure of the

proton whereas in high Q2 events more and more partons can be resolved. As Q2 increases there is

a decreased probability of finding a quark at large x values because high-momentum quarks would

lose momentum by radiating gluons. So for large values of x the value of F2 decreases as a function

of Q2. Consequently there is an increased probability of finding a quark at low x and so here F2

rises as a function of Q2. This behaviour of the structure function is known as scaling violation

and can be clearly seen in figure 2.2 [25, 26].

2.2 Evolution of parton densities

Although the precise mathematical form of PDFs cannot be calculated from first principles, a

functional form can be postulated and then used to fit experimental data. A functional form of

the dependence of the structure functions on logQ2 can be found by incorporating a term due to

gluon emission into equation 2.19:

F2(Q
2, x)

x
=
∑

i

e2i



qi(x) +
αs

2π
log

Q2

µ2

1
∫

x

dy

y
qi(y)Pqq

(

x

y

)



, (2.29)

where qi = fi, the quark structure function and µ is an appropriate scale, typically chosen to avoid

singularities when transverse momentum squared tends to zero. Pqq

(

x
y

)

is known as the splitting

function which is the probability of a quark with momentum y emitting a gluon and emerging with

momentum x. Predictions of the structure function which have been measured at one experiment

can be used at another, as long as it is evolved to the correct scale. Given some reference value of

the quark density, the evolution of qi with logQ2 can be calculated as:

dqi(x,Q
2)

d logQ2
=
αs

2π

1
∫

x

dy

y
qi(y,Q

2)Pqq

(

x

y

)

. (2.30)
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HERA I e+p Neutral Current Scattering - H1 and ZEUS
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Figure 2.2: The reduced cross section σr(x,Q
2) as a function of Q2 for fixed values of x. Results

from fixed target experiments and the combined ZEUS-H1 HERA I measurements are compared

to an NLO QCD fit from each of the experiments, H12000PDF and ZEUS-JETS.
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q(y)

q(x)

Pqq(x/y)

g(y)

q(x)

Pqg(x/y)

q(y)

g(x)

Pgq(x/y)

g(y)

g(x)

Pgg(x/y)

Figure 2.3: The first order splitting functions Pij used in the DGLAP equations.

In addition, there can be a contribution to the quark density from quarks produced in a pair

originating from a gluon, modifying equation 2.30 to give:

dqi(x,Q
2)

d logQ2
=
αs

2π

1
∫

x

dy

y

[

qi(y,Q
2)Pqq

(

x

y

)

+ g(y,Q2)Pqg

(

x

y

)]

, (2.31)

where g(y,Q2) is the gluon density function. Similarly, the gluon density evolution equations can

be found using the same procedure:

dg(x,Q2)

d logQ2
=
αs

2π

1
∫

x

dy

y

[

∑

i

qi(y,Q
2)Pgq

(

x

y

)

+ g(y,Q2)Pgg

(

x

y

)

]

. (2.32)

Equations 2.31 and 2.32 are called the DGLAP equations [27–30] and are used to describe the

evolution of the parton densities. The terms Pij are the splitting functions for the processes shown

in Fig. 2.3 and can be interpreted as the probability of a parton j with momentum fraction y

emitting a parton and emerging with momentum fraction x. To one loop, they are given by

P (1)
qq (x) = Cf

[

(1 + x2)

(

1

1 − x

)

+

+
3

2
δ(1 − x)

]

, (2.33)

P (1)
qg (x) =

1

2

[

(1 − x)2 + x2
]

, (2.34)

P (1)
gq (x) = Cf

(1 − x)2 + 1

x
, (2.35)

P (1)
gg (x) = 2Nc

[

x

(1 − x)+
+

1 − x

x
+ x(1 − x)

]

+

(

11

6
Nc −

1

3
nf

)

δ(1 − x). (2.36)

The DGLAP equations are valid at high Q2 and high x but not at low x where log
(

1
x

)

terms

become important.
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2.3 Factorization theorem

The main goal of perturbative QCD is to find a justification for the parton model in field theory,

and to improve the parton model’s description of experimental data. The field theory realization

of the parton model is the theorem of factorization of long-distance from short-distance depen-

dence for deep inelastic scattering [31]. This theorem states that the sum of all the diagrammatic

contributions to the structure functions is a direct generalization of the parton model results given

by,

Fh
n (x,Q2) =

∑

i

∫ 1

0

dξCi
n

(

x

ξ
,
Q2

µ2
,
µ2

f

µ2
, αs(µ

2)

)

fh
i (ξ, µf , µ

2), (2.37)

where i denotes all partons: quarks, antiquarks and gluons, h is the initial hadron and n = 1, 2, 3.

Here we see the dependence of two scales, µ and µf . The first one is the renormalization scale,

needed in any perturbative calculation. The second however, is specific to factorization calcula-

tions, and is called the factorization scale [5]. Its job is to separate short-distance from long-distance

effects. In other words, any propagator that is off-shell by µ2
f or more will contribute to Ci

n, while

below this scale, it will be grouped into fp
i . The precise definition of the factorization scale is made

when we give a formal definition of the parton distributions.

Each function Ci
n is infrared safe, calculable in perturbation theory. It depends on the parton i, the

exchanged vector boson and on the renormalization and factorization scales but it is independent

of long-distance effects. In particular, it is independent of the initial hadron. On the other hand,

the parton distribution, fh
i , contains all the infrared sensitivity of the original cross section. It is

specific to the hadron h and depends on the factorization scale. However, it is universal, that is,

it is independent of the particular process been studied.

The way in which the factorization theorem is used in practice becomes clear now. The coefficients,

Ci
n, are to be computed in perturbation theory, and fh

i are to be measured by comparing the struc-

ture functions in equation 2.37 with experiment, given a set of expressions for the Ci’s. Once the

parton distributions have been determined, they can be used in any other process to calculate a

different cross section. Thanks to the evolution theorem, PDFs can be obtained for different scales

through the DGLAP evolution quations. We will use here PDF sets from the CTEQ [32] and

MSTW [33] collaborations.

In practice, to calculate the Ci
n, we use the fact that they are independent of the external hadron,

so we can calculate them in perturbation theory, replacing the hadron with a parton.

It is also possible that partons in the final state could combine to form a final state hadron. This

fragmentation process is described by non-perturbative fragmentation functions Dh
i , that have the

same properties as the parton distribution functions. They are obtained from experimental data

and since they are universal, it is possible to use them in any other process. In the same way as

with the parton distribution functions, fragmentation functions can be evolved and obtained for
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different scales. We will use in this work several sets of fragmentation functions [34–36], depending

on the comparison we want to make, i.e., the hadron we consider in the final state.

It is thanks to the factorization and evolution theorems that we are able to calculate using pertur-

bative QCD to then compare our results with experimental data. In this thesis we will compare

our results with data from the H1 and ZEUS collaborations at HERA. In the next section we will

explain briefly the features of these experiments.

2.4 HERA

The Hadron-Elektron Ring Anlage (HERA), was a particle accelerator which collided electrons or

positrons and protons. It was located 10-20 m underground beneath the Deutsches Elektronen-

Synchrotron (DESY) site and the Hamburg Volkspark. During its history, HERA operated at four

different proton beam energies. After an initial electron beam energy of 26.7 GeV, HERA ran at

27.5 GeV from 1995 until the end of running. Until the end of 1997, it collided the electron beam

with a 820 GeV proton beam, yielding a centre-of-mass energy
√
s = 300 GeV. In 1997, the proton

beam energy was increased to 920 GeV increasing the centre-of-mass energy to
√
s = 318 GeV.

The final two running periods took place in 2007 are known as low-energy and high-energy running

(LER and MER) when the proton beam energy was decreased to 460 GeV and 575 GeV respectively.

The final collision in HERA took place on 30th June 2007.

The HERA tunnel was 6.3 km long and contained separate storage rings for the electrons and

protons which were not circular but had four straight sections, each 360 m in length. The beams

were brought to zero crossing-angle collisions in two of these straight sections. These interaction

points (IPs) were in the north and south halls where the two multi-purpose detectors, H1 and

ZEUS, were located. The other two experiments used fixed target collisions. HERMES, in the east

hall, studied collisions of the electron beam with polarised gas to measure nucleon spin. HERA-B,

in the west hall, was designed to study the interaction of the proton beam with fixed wire targets

in order to investigate CP violation.

In 2000-2001, HERA was shut down in order to upgrade the machine with the aim of reaching

a target integrated luminosity of 1 fb−1 by 2007. The hope was that with a higher luminosity

being delivered to the experiments, new interesting measurements would be possible [37] such as

an investigation into high-x, high-Q2 events which had been observed by ZEUS and H1 during the

HERA I running period. The increase in luminosity was achieved by installing superconducting

magnets close to the interaction points in order to make the beam cross section smaller. The

upgraded machine was known as HERA II. In this thesis we will compare results with measurements

from both periods, HERA I and II, and from both the main experiments H1 and ZEUS.
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Inclusive production of hadrons in

DIS at first order in αs

3.1 Single production of hadrons in DIS

We will now show the basic formalism for single production of hadrons, which is the main focus of

this work. The process is of the form

l(k) + p(P ) → l(k′) + h(ph) +X, (3.1)

where the lepton is either an electron, muon or a (anti)neutrino, and the exchanged vector boson

a photon, W± or Z (see figure 3.1). Using the factorization theorem, the cross section can be

written as a convolution of the partonic cross section with the parton distribution functions and

the fragmentation functions:

dσh

dxdydzdφ
=

∫ 1

x

dx̄

x̄

∫ 1

z

dz̄

z̄

∑

ab

fp
a

(x

x̄
, µ2
) dσab

dx̄dydz̄dφ
Dh

b

(z

z̄
, µ2
)

, (3.2)

where we have used the kinematic variables

x =
Q2

2P · q , y =
P · q
P · k , z =

P · ph

P · q ,

x̄ =
Q2

2pa · q , ȳ = y, z̄ =
pa · pb

pa · q . (3.3)

The partonic cross section may be split into leptonic and hadronic parts,

dabσ

dxdydz
=

2πyα2

Q4

∑

n

λnL
µν
n Hn

µν . (3.4)
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k

k′

q

pa

P

pb

ph

Figure 3.1: Single hadron production in DIS. Parallel trios of lines signify unobserved final states.

where

Lµν =

∫

dφ

(2π)3
lµν , (3.5)

is the integrated lepton tensor and lµν are the lepton tensors as in equation 2.6. We can write a

general ansatz for the integrated lepton tensor as [38]:

Lµν = a1g
µν + a2p

µ
ap

ν
a + a3q

µqν + a4(p
µ
aq

ν + pν
aq

µ) + a5(p
µ
aq

ν − pν
aq

µ) + a6ǫ
µναβpaαqβ . (3.6)

The contraction of both sides of equation 3.6 with each of the six basis tensors on the right hand

side yields to six equations for the determination of the unknown coefficients ai. Our lepton tensor

then reads

Lµν =
Q2

2y

(

2 − 2y + y2

y

)

(−gµν) +
2Q4

s2h

(

y2 − 6y + 6

y4

)

pµ
ap

ν
a ± i

Q2

sh

(

y − 2

y2

)

εµναβpaαqβ (3.7)

with sh = Q2

x̄y . The last term is positive if the lepton interacting with the vector boson is an

electron, and negative if it is a positron. This way, the hadronic tensor can be split into metric,

longitudinal and axial components:

Hab
M = −gµνHab

µν , (3.8)

Hab
L = pµ

ap
ν
aH

ab
µν , (3.9)

Hab
A = ±iεµναβpaαqβH

ab
µν , (3.10)

(3.11)

where

Hab
µν =

∑

spins

M†
µMν (3.12)
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3.2. Treatment of γ5 Chapter 3

is the squared amplitude that we calculate analytically. In the same way, the coefficients λ can be

written as

λM,L
NC = e2q − 2eqv

Z
q v

Z
e χZ(Q2) +

(

aZ
q

2
+ vZ

q

2
)(

aZ
e

2
+ vZ

e

2
)

χ2
Z(Q2), (3.13)

λA
NC = −2eqa

Z
q a

Z
e χZ(Q2) + 4aZ

q a
Z
e v

Z
q v

Z
e χ

2
Z(Q2), (3.14)

where

aZ
e,q = T 3

e,q, (3.15)

vZ
e,q = T 3

e,q − 2ee,q sin2 θW , (3.16)

χZ(Q2) =
1

4 sin2 θW cos2 θW

Q2

Q2 +M2
Z

, (3.17)

and T 3
ν,u = 1

2 , T 3
e,d = − 1

2 , for neutral-current exchange. For charged-current exchange we have

λM,L
CC =

(

aW
q

2
+ vW

q

2
)(

aW
e

2
+ vW

e

2
)

χ2
W (Q2), (3.18)

λA
CC = 4aW

q aW
e vW

q vW
e χ2

W (Q2), (3.19)

with

aW
e = vW

e =
1

2
√

2
, (3.20)

aW
q = vW

q =
CKM[q, q′]

2
√

2
, (3.21)

χW (Q2) =
1

sin2 θW

1

Q2 +M2
W

, (3.22)

where CKM[q, q′] denotes the CKM matrix element corresponding to the coupling of the respective

quarks.

3.2 Treatment of γ5

When calculating the squared amplitude at next-to-leading order, we have to include virtual and

real corrections to the born level diagrams. Singularities will then appear and they have to be

regularised and renormalized in the standard way. However, here we find a problem. In dimensional

regularisation, amplitudes are calculated in n dimensions, which requires the definition of the γ

matrices involved in n dimensions. In our case, when we want to include electroweak currents in

the DIS process, parity violating γ5 matrices appear that are not defined in n dimensions. This

problem is well known and has been discussed in several papers [39–42]. To illustrate the situation,

let us show that an anticommuting γ5,

{γµ, γ5} = 0, (3.23)
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Chapter 3 3.2. Treatment of γ5

is not compatible with an n-dimensional Dirac algebra [43],

γµγ
µ = gµ

µ = n. (3.24)

If we consider the trace Tr(γ5γαγµ1
γµ2

γµ3
γµ4

γµ5
) and anticommute γα once around the trace, we

can see that this leads to

εµ1µ2µ3µ4
gµ5α + cycl.(µ1...µ5) = 0, (3.25)

where the antisymmetric tensor ε is the one defined in equation 2.10. Contracting this last expres-

sion with gαµ5 gives

(n− 4)εµ1µ2µ3µ4
, (3.26)

which shows that equations 3.23 and 3.24 prevent one from analytically continuing Tr(γ5γαγβγγγδ)

or εαβγδ from 4 to n 6= 4 [43]. In the past, several approaches have been used to avoid this problem.

In reference [41], the authors worked with an anticommuting γ5 matrix but dropped equation 3.24.

However, this prescription can not be applied in general, for higher-order infra-red calculations with

multiple γ contractions inside parity-odd traces. The author in [40], chose also to anticommute

γ5 but to keep the Dirac algebra in four dimensons. It can be shown that this is not a consistent

procedure [43]. The third possibility is the one proposed by ’tHooft and Veltman [42], and later

systematized by Breitenlohner and Maison (BM) [39]. We will use the third scheme in this work

for our calculations. In the BM scheme, a n-dimensional aµ can be split up into its 4-dimensional

component ˆ̂aµ and the remaining component âµ. Therefore, we can write γµ = ˆ̂γµ + γ̂µ and a

consistent γ5 scheme is obtained by postulating

ˆ̂γµγ5 + γ5
ˆ̂γµ = 0, (3.27)

γ̂µγ5 − γ5γ̂µ = 0. (3.28)

The correct version of equation 3.25 can now be obtained by considering the trace Tr(γ5
ˆ̂γαγµ1

γµ2
γµ3

γµ4
γµ5

):

εµ1µ2µ3µ4
ˆ̂gµ5α + cycl.(µ1...µ5) = 0, (3.29)

where we have used ˆ̂γµγν + γν
ˆ̂γµ = 2ˆ̂gµν and ˆ̂gµν is the 4-dimensional metric tensor. A suitable

representation for γ5 is [39, 42, 44–46]

γ5 =
1

4!
εαβγδγαγβγγγδ. (3.30)

Using the identity

εµ1µ2µ3µ4
εν1ν2ν3ν4

= −det(ˆ̂gαβ), (3.31)

where α = µ1...µ4 and β = ν1...ν4, it can be shown that

εαβγδĝ
δρ = 0, (3.32)
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and that

gβ
α
ˆ̂gβγ = ˆ̂gαγ . (3.33)

Equation 3.32 shows that the ε-tensor projects out the 4-dimensional components of any n-

dimensional tensor it acts on. From equation 3.32 it is clear that the identity in equation 3.29

must involve the 4-dimensional metric tensor when comparing the different tensor components in

equation 3.29.

In practice, the BM scheme can be implemented by observing two simple rules [44]: 1) Do not

commute by γ5, 2) The trace −i/4Tr(γ5γαγβγγγδ) equals the conventional antisymmetric tensor

εαβγδ in four dimensions if the tensor indices α, β, γ, δ are 4-dimensional and equals zero other-

wise. Furthermore, the renormalization of the 1-loop axial vector current contribution must include

appropriate counter terms to cancel spurious ultraviolet anomalies such that

〈

JV
µ (Born)JA∗

ν (1-loop)
〉

+
〈

JA
µ (1-loop)JV ∗

ν (Born)
〉

= (3.34)

〈

JA
µ (Born)JV ∗

ν (1-loop)
〉

+
〈

JV
µ (1-loop)JV A∗

ν (Born)
〉

.

The calculation of these counter terms can be found in [45,46], where γ5 was taken as in equation

3.30. Equivalently, the axial current can be defined as

Aµ = ψ̄γµγ5ψ =
1

6
εµαβγψ̄γαγβγγψ. (3.35)

However, both definitions violate the Ward identity. To restore it, a finite renormalization of the

axial current must be performed, where a finite axial charge Z5(αs) is introduced:

Aµ → Z5Aµ. (3.36)

This charge Z5 that we will use in our calculations was found to be [45, 46]

Z5 = 1 − αs

π
CF +

(αs

π

)2
(

11

8
C2

F − 107

144
CFCA +

1

72
CFnf

)

+O(α3). (3.37)

In all our calculations of virtual corrections where this approach was needed, we always checked

that introducing this counter term leads to expressions that respect equation 3.34.

3.3 Calculations to O(αs)

To zeroth order in αs, the process V + q → q is the only contribution to single hadron production.

In order to obtain the NLO prediction, we need to include virtual and real corrections to this

process to first order in αs. Figures 3.2 and 3.3 show the relevant feynman diagrams. At the Born

level, the hadron tensor is simply

HPC
µν,Born = 4

(

paµpbν + pbµpaν − q2

2
gµν

)

(3.38)

HPV
µν,Born = 4iεµνqpa

, (3.39)
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q

pa

pb

Figure 3.2: Born process and virtual corrections to first order in αs.

Figure 3.3: Real corrections to first order in αs.

where εµναβ is the Levi-Civita tensor and the momenta are as indicated on the diagrams. The

notation PC and PV stands for parity-conserving part and parity-violating part respectively.

3.4 Virtual and real corrections

As we mentioned before, our cross section is given by equation 3.2, and we need to calculate the

partonic cross section to first order in αs using equation 3.4. To calculate the virtual corrections

we use standard regularization and renormalization techniques to express all singularities in terms

of ǫ terms, where ǫ = (4−D)/2. These singularities will then cancel against collinear and infrared

singularities coming from the real corrections. The result is well known [44,47]:

HPC,PV
µν,virt =

αs

2π
CF

(

4πµ2

Q2

)ǫ
Γ(1 + ǫ)Γ2(1 − ǫ)

Γ(1 − 2ǫ)

(

− 2

ǫ2
− 3

ǫ
− 8 + O(ǫ)

)

HPC,PV
µν,Born. (3.40)
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The real corrections can be calculated from the diagrams shown in figure 3.3. In terms of our

kinematic variables, defined in 3.3, we get:

Hqq
M,real = 16αsCF

1 + (1 − x− z)2

(1 − x)(1 − z)
,

Hqq
L,real = 8αsCFQ

2 z

x
,

Hqq
A,real = 8αsCF

Q2

x

(

(1 − 2z)x2 − 2(1 − z)2x+ (2 − z)z

(1 − x)(1 − z)

)

,

Hqg
M,real = 16αsCF

1 + (x− z)2

(1 − x)z
,

Hqg
L,real = 8αsCFQ

2 1 − z

x
,

Hqg
A,real = 8αsCF

Q2

x

(

2zx2 − x2 − (2x− 1)z2 − 1

(1 − x)z

)

,

Hgq
M,real =

16αsNcCF

N2
c − 1

1 − 2x(1 − x) − 2z(1 − z)

z(1 − z)
,

Hgq
L,real =

16αsNcCFQ
2

N2
c − 1

1 − x

x
,

Hgq
A,real =

8αsNcCFQ
2

N2
c − 1

(1 − 2z)(2(x− 1)x+ 1)

xz(1 − z)
,

(3.41)

which is in agreement with the literature [44,48,49]. Using these results we can now calculate cross

sections and compare with different sets of data.
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Inclusive production of hadrons in

DIS to second order in αs

To second order in αs, the LO contribution comes from the diagrams in figure 3.3 and in the same

way as before, we need to calculate virtual and real corrections for these diagrams.

In this case however, the cancellation of singularities is not straightforward and we make use of

the subtraction method [18], to cancel all divergences at NLO.

4.1 The subtraction method

Our NLO cross section could be written as

σ = σLO + σNLO, (4.1)

where the LO cross section is obtained by integrating the Born cross section over the corresponding

phase space:

σLO =

∫

m

dσB . (4.2)

Here m is the number of partons in the final state and all quantities are calculated in d = 4 − 2ǫ

dimensions. However, at this level the phase space integration in equation 4.2 is finite and the

calculation can be carried out in four dimensions.

On the other hand, in the NLO cross section we have to consider real and virtual contributions

with m+ 1 and m partons in the final state respectively:

σNLO =

∫

m+1

dσR +

∫

m

dσV . (4.3)
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Both integrals on the right hand side are divergent for d = 4, but their sum should of course be

finite. For this reason, before any numerical calculation can be carried out, the separate pieces

have to be regularized. Using dimensional regularization, the divergences are replaced by double

(soft and collinear) and single (soft, collinear and ultraviolet) poles. After carrying out the renor-

malization procedure for the virtual corrections, all the ultraviolet singularities should cancel and

we have only soft and collinear divergences left.

The idea of the subtraction method is to use the identity

dσNLO = dσR − dσA + dσA + dσV , (4.4)

where the approximated cross section dσA is such that is has the same singular behaviour in d

dimensions as dσR. In this way, dσA acts effectively as a counter term for dσR and introducing

the phase space integration,

σNLO =

∫

m+1

(dσR − dσA) +

∫

m+1

dσA +

∫

m

dσV , (4.5)

we can safely perform the limit ǫ → 0 under the integral sign in the first term on the right-hand

side of equation 4.5 and therefore, perform the integral in four dimensions. All the remaining

singularities are at this point associated with the last two terms in equation 4.5. If we could

integrate dσA analytically over the one parton subspace leading to the ǫ poles, we could combine

these poles with the ones coming from the virtual corrections and in this way, cancel all the

singularities. Then we could perform the limit ǫ → 0 and integrate numerically the rest over the

m-parton phase space. The final structure of the calculation would be

σNLO =

∫

m+1

[(

dσR
)

ǫ=0
−
(

dσA
)

ǫ=0

]

+

∫

m

[

dσV +

∫

1

dσA

]

ǫ=0

, (4.6)

and could be easily implemented in a Monte Carlo program, which generates appropriately weighted

partonic events with m+ 1 final state partons and events with m partons. This is then, the main

idea behind the subtraction method and as can be seen from the equations mentioned above, the

calculation of dσA is the key ingredient to this method. Here we will use the formalism developed

in [18], in which dσA is calculated independently of the process in which one is interested.

In the case of single hadron production in DIS, one has to deal with identified hadrons in the initial

and final states, which introduces a few complications in the calculation of dσA. In the case of no

identified hadrons, the real cross section is singular whenever a pair of the m+1 final state partons

become collinear. In the case we are interested in, this remains true but additionally, the cross

section will be singular in the region where one of the partons becomes collinear to an identified

parton. The approximate cross section dσA should then, act as a local counter term also in these

new regions and its integral
∫

1 dσ
A should still be computable analytically. With this in mind, the

approximated cross section is written as

dσA =
∑

dipoles

dσB ×
(

dVdipole + dV ′
dipole

)

, (4.7)
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where dσB denotes the Born level cross section and the dipole factors dVdipole that match the

singular behaviour of dσR, are universal. The dipoles dV ′ match the singularities of dσR coming

from the region collinear to the momenta of the identified partons.

There are many dipole terms on the right-hand side of equation 4.7. Each of them corresponds

to a different kinematic configuration of m + 1 partons. Each configuration can be thought as

obtained by an effective two-step process: an m parton configuration is first produced and then

one of these partons decays into two partons [18]. It is this two-step pseudo-process that leads to

the factorized structure on the right-hand side of equation 4.7. Furthermore, the product structure

in dσA allows a factorizable mapping from the m+ 1-parton phase space to an m-parton subspace

times a single-parton phase-space, the one identified by the dipole partonic variables in dVdipole.

This mapping makes dVdipole fully integrable analytically. We have then:

∫

m+1

dσA =
∑

dipoles

∫

m

dσB ×
∫

1

dVdipole =

∫

m

dσB × I, (4.8)

where the universal factor I is defined by

I =
∑

dipole

∫

1

dVdipole, (4.9)

and contains all the ǫ poles that are necessary to cancel the poles in dσV . Additionally, we obtain

terms coming from the integration of dV ′
dipole. The singularities coming from this are reabsorbed

into the non-perturbative distribution functions and we are left with finite terms proportional to

dσB , similar to the factor I but finite for ǫ→ 0. In this way, our NLO cross section takes the form

σNLO =

∫

m+1





(

dσR
)

ǫ=0
−





∑

dipoles

dσB ×
(

dVdipole + dV ′
dipole

)

ǫ=0









+

∫

m

[

dσV + dσB × I
]

ǫ=0
+

∫ 1

0

dx

∫

m

[

dσB(xp) × (P + K + H)(x)
]

ǫ=0
, (4.10)

where p denotes the functional dependence on the momenta of the identified partons. The last

term on the right-hand side of equation 4.10 is the finite remainder left after the factorization of

the initial- and final-state collinear singularities into parton densities and fragmentation functions.

This term involvesm-parton kinematics and an additional one-dimensional integration with respect

to the longitudinal momentum fraction x. This integral arises from the convolution of the Born-

type cross section with x dependent functions P,K and H, that are similar to the factor I but finite

for ǫ = 0. These functions are universal, and only depend on the number of identified partons. The

functions P depend on the factorization scale for initial- and final-state partons, while the initial-

state insertion operator K and the final-state insertion operator H,depend on the factorization

scheme. They will be discussed in detail in a later section of this chapter.
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Figure 4.1: Virtual corrections to second order in αs.

4.2 Virtual Corrections

Using the formalism described in the previous section, we can now proceed with the calculation.

First, we calculate the virtual corrections from the diagrams showed in figure 4.1. Here we will

encounter one loop integrals that have to be integrated in D dimensions to be regularized (dimen-

sional regularization). The handling of these integrals was done following the formalism described

in [50].

One loop integrals in D dimension are classified according to N , the number of propagators in the

denominator and P , the number of integration momenta in the numerator. For P +D − 2N ≥ 0

these integrals are UV-divergent. After dimensional regularization has been carried out, the UV-
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divergences drop out in renormalized quantities.

A general one-loop tensor integral can be defined as [50]

TN
µ1...µP

(p1, . . . , pN−1,m0, . . . ,mN−1) =
(2πµ)4−D

iπ2

∫

dDq
qµ1

· · · qµP

D0D1 · · ·DN−1
, (4.11)

with the denominator factors,

D0 = q2 −m2
0 + iε, Di = (q + pi)

2 −m2
i + iε, i = 1, . . . , N − 1, (4.12)

originating from the propagators in the feynman diagram.

Usually, TN is denoted by the Nth letter of the alphabet, i.e. T 1 = A, T 2 = B, ..., and the scalar

integrals carry an index 0.

Since the integrals are Lorentz covariant, we can decompose them into tensors constructed from

the external momenta pi, and the metric tensor gµν with totally symmetric coefficient functions

TN
i1...iP

. We introduce an artificial momentum p0 in order to write the terms containing gµν in a

compact way

TN
µ1...µP

(p1, . . . , pN−1,m0, . . . ,mN−1) =

N−1
∑

i1,...,iP =0

TN
i1...iP

pi1µ1
· · · piP µP

. (4.13)

From this expression we can recover the correct gµν terms by omitting all terms containing an

odd number of p0’s and replacing products of even numbers of p0’s by the corresponding totally

symmetric tensor constructed from the gµν . The explicit Lorentz decompositions for the lowest

order integrals read

Bµ = p1µB1, (4.14)

Bµν = gµνB00 + p1µp1νB11, (4.15)

Cµ = p1µC1 + p2µC2 =

2
∑

i=1

piµCi, (4.16)

Cµν = gµνC00 + p1µp1νC11 + p2µp2νC22 + (p1µp2ν + p2µp1ν)C12

= gµνC00 +
2
∑

i,j=1

piµpjνCij , (4.17)

Cµνρ = (gµνp1ρ + gνρp1µ + gµρp1ν)C001 + (gµνp2ρ + gνρp2µ + gµρp2ν)C002

+p1µp1νp1ρC111 + p2µp2νp2ρC222

+(p1µp1νp2ρ + p1µp2νp1ρ + p2µp1νp1ρ)C112

+(p2µp2νp1ρ + p2µp1νp2ρ + p1µp2νp2ρ)C122

=

2
∑

i=1

(gµνpiρ + gνρpiµ + gµρpiν)C00i +

2
∑

i,j,k=1

piµpjνpkρCijk, (4.18)
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Dµ =

3
∑

i=1

piµDi, (4.19)

Dµν = gµνD00 +

3
∑

i,j=1

piµpjνDij , (4.20)

Dµνρ =
3
∑

i=1

(gµνpiρ + gνρpiµ + gµρpiν)D00i +
3
∑

i,j,k=1

piµpjνpkρDijk, (4.21)

Dµνρσ = (gµνgρσ + gµρgνσ + gµσgνρ)D0000

+

3
∑

i,j=1

(gµνpiρpjσ + gνρpiµpjσ + gµρpiνpjσ

+ gµσpiνpjρ + gνσpiµpjρ + gρσpiµpjν)D00ij

+
3
∑

i,j,k,l=1

piµpjνpkρplσDijkl. (4.22)

Using the Lorentz decomposition of the tensor integrals (equation 4.13) the invariant functions

TN
i1...iP

can be iteratively reduced to the scalar integrals TN
0 [51]. The product of the integration

momentum, qµ, with an external momentum can be expressed in terms of the denominators,

qpk =
1

2
[Dk −D0 − fk], fk = p2

k −m2
k +m2

0. (4.23)

Multiplying (4.11) with pk and substituting (4.23) yields

RN,k
µ1...µP−1

= TN
µ1...µP

pµP

k

=
1

2

(2πµ)4−D

iπ2

∫

dDq

[

qµ1
. . . qµP−1

D0 . . .Dk−1Dk+1 . . . DN−1

− qµ1
. . . qµP−1

D1 . . . DN−1
− fk

qµ1
. . . qµP−1

D0 . . . DN−1

]

=
1

2

[

TN−1
µ1...µP−1

(k) − TN−1
µ1...µP−1

(0) − fkT
N
µ1...µP−1

]

, (4.24)

where the argument k of the tensor integrals in the last line denotes that the propagator Dk was

cancelled. Here TN−1
µ1...µP−1

(0) has an external momentum in its first propagator and a shift of the

integration momentum has to be performed in this integral in order to bring it to the form of

equation 4.11. All integrals on the right-hand side of equation 4.24 have one Lorentz index less

than the original tensor integral and in two of them one propagator is also eliminated.

For P ≥ 2 we obtain one more relation by contracting equation 4.11 with the metric tensor and

using

gµνqµqν = q2 = D0 +m2
0. (4.25)
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This gives

RN,00
µ1...µP−2

= TN
µ1...µP

gµP−1µP

=
(2πµ)4−D

iπ2

∫

dDq

[

qµ1
. . . qµP−2

D1 . . .DN
+m2

0

qµ1
. . . qµP−2

D0 . . . DN

]

=
[

TN−1
µ1...µP−2

(0) +m2
0T

N
µ1...µP−2

]

. (4.26)

Inserting the Lorentz decomposition (equation 4.13) for the tensor integrals, T , into equation 4.24

and equation 4.26, we obtain a set of linear equations for the corresponding coefficient functions.

Using this recursive reduction we are able to express all our tensor integrals in terms of the well

known scalar integrals:

B0(p1) =

∫

ddq
1

q2(q − p1)2
, (4.27)

C0(p1, p2) =

∫

ddq
1

q2(q − p1)2(q − p2)2
, (4.28)

D0(p1, p2, p3) =

∫

ddq
1

q2(q − p1)2(q − p2)2(q − p3)2
. (4.29)

In our calculation all partons are considered massless and therefore, we do not need to include the

masses in the integrals. The expressions for the massless scalar integrals can be found in [52, 53],

but here we will use the more convenient form:

B0(0) = 0, (4.30)

B0(p1) =
1

ǫ
+ 2 − ln

(

p2
1

µ2

)

, (4.31)

C0(p1, p2, p
2
1 = 0) =

1

ǫ2
1

2p1p2
+

1

ǫ

(

− 1

2p1p2

)

ln

(

2p1p2

µ2

)

+
1

2p1p2
ζ(2) +

1

4p1p2
ln2

(

2p1p2

µ2

)

, (4.32)

C0(p1, p2, p
1
1 6= 0) =

1

ǫ

(

− 1

2p1p2

)[

ln

(

p2
1

µ2

)

− ln

(

p2
1 − 2p1p2

µ2

)]

+
1

4p1p2

[

ln2

(

p2
1

µ2

)

− ln2

(

p2
1 − 2p1p2

µ2

)]

, (4.33)

D0(p1, p2, p3) =
1

ǫ2
1

2p1 · p2p1 · p3

+
1

ǫ

1

2p1 · p2p1 · p3

[

ln

(

2p1 · p2

µ2

)

+ ln

(

2p1 · p3

µ2

)

− ln

(−q2
µ2

)]

+
1

2p1 · p2p1 · p3

[

R

(

2p1 · p2

q2
,
2p1 · p3

q2

)

+ ζ(2)

+
1

2

(

ln2

(

2p1 · p2

µ2

)

+ ln2

(

2p1 · p3

µ2

)

− ln2

(−q2
µ2

))

]

, (4.34)

where q = p1 + p2 + p3 and the function R is given by

R(x, y) = l(x)l(y) − l(x)l(1 − x) − l(y)l(1 − y) − S(x) − S(y) + ζ(2). (4.35)
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The term l(x) is the natural logarithm with an additional prescription for arguments in the interval

[−∞, 0]

l(x) = lim
η→0

ln(x+ sgn(q2)sgn(1 − x)iη), (4.36)

and S is defined by

S = lim
η→0

Li2(x+ sgn(q2)sgn(1 − x)iη), (4.37)

where Li2 is the complex dilogarithm

Li2 = −
∫ z

0

du
ln(1 − u)

u
. (4.38)

Once the integrals have been reduced using this formalism, we need to include appropriate counter

terms in order to cancel UV singularities (renormalization). Here the counter-term in equation

3.37 must be included so that equation 3.34 holds. Some 1/ǫ2 and 1/ǫ poles remain which are

due to the IR singularities of the loop corrections. These poles will cancel when we include the

insertion operator as shown in equation 4.10. Our analytic expressions for the virtual amplitudes

have been found to agree with the expressions in Ref. [53] and the ones used in Ref. [54] for the

case of virtual photon exchange, and with the amplitudes in Ref. [43] for the axial part in the weak

current exchange. These comparisons were done analytically, by matching terms in the relevant

expressions with the ones obtained here. The manipulation of traces and integral reduction was

done using FORM [55], while the algebraic manipulation was done using Mathematica.

We also need to compute the insertion operator, which has the general form

I({p}; ǫ) = −αs

2π

1

Γ(1 − ǫ)

∑

I

1

T2
I

υI(ǫ)
∑

J 6=I

TI · TJ

(

4πµ2

2pI · pJ

)ǫ

, (4.39)

where we have denoted {p} a set of parton momenta and I and J indices that run over all these

momenta. The matrices, TI, are the generators of the non-abelian Lie algebra in QCD as defined

in equation 1.23. The universal singular function υI(ǫ) depends only on the parton flavour and is

given by

υI(ǫ) = T2
I

(

1

ǫ2
− π2

3

)

+ γI
1

ǫ
+KI +O(ǫ), (4.40)

where

γq = γq̄ =
3

2
CF , γg =

11

6
CA − 2

3
TRNf , (4.41)

Kq = Kq̄ =

(

7

2
− π2

6

)

CF , Kg =

(

67

18
− π2

6

)

CA − 10

9
TRNf . (4.42)
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In our case, the explicit form of the insertion operator is

I =
1

8π2

[ 1

ǫ2
(2Cf +Nc) −

1

6ǫ

(

− 18Cf − 11Nc + 2nf + 6(2Cf −Nc) ln

(

2p0 · ph

µ2

)

+6Nc ln

(

2p0 · px

µ2

)

+ 6Nc ln

(

2ph · px

µ2

)

)

+
1

18

(

9(2Cf −Nc) ln2

(

2p0 · ph

µ2

)

+27(Nc − 2Cf ) ln

(

2p0 · ph

µ2

)

+ 9Nc ln2

(

2p0 · px

µ2

)

+ 9Nc ln2

(

2ph · px

µ2

)

+ 247Cf

+33Nc − 16nf + (3nf − 30Nc) ln

(

2p0 · px

µ2

)

− 30Nc ln

(

2ph · px

µ2

)

+ 3nf

(

2ph · px

µ2

)

−27Cfπ
2 − 9Ncπ

2
)

+ O(ǫ). (4.43)

We have now all the ingredients to calculate σvirt:

σvirt =

∫

m

[

dσV + dσB × I
]

ǫ=0
. (4.44)

Finally, let us show explicitly some analytical results obtained for the axial part. The born terms

are given in equations 3.41, and the insertion operator as it was given previously. We calculated the

virtual amplitude dσV , and checked that equation 3.34 is fulfilled after including the counter-term

in equation 3.37. The divergent parts in these amplitudes are:

dσV,qq
A =

1

ǫ2

(

(2Cf +Nc)Q
2 (2z − 1)x2 + 2(z − 1)2x− (z − 2)z

π2x(1 − x)(1 − z)

)

+
1

ǫ

Q2

6π2x(1 − x)(1 − z)

[

(−4xnf + 2nf + 6Cf (6x− 5) +Nc(22x− 17))z2

+2(−2nf(1 − x)2 + 6Cf ((x− 2)x+ 3) +Nc(5(x− 2)x+ 11))z

−(6Cf + 5Nc − 2nf )(x− 2)x+ 6((2z − 1)x2 + 2(1 − z)2x− (z − 2)z)
(

(Nc − 2Cf ) ln

(

Q2z

µ2x

)

−Nc

(

ln

(

Q2(1 − x)

µ2x

)

+ ln

(

Q2(1 − z)

µ2x

)))

]

,

(4.45)

dσV,qg
A =

1

ǫ2

(

(2Cf +Nc)Q
2 (2z − 1)x2 − 2z2x+ z2 − 1

π2x(x − 1)z

)

+
1

ǫ

Q2

6π2x(1 − x)z

[

(−4xnf + 2nf + 6Cf (6x− 5) +Nc(22x− 17))z2

+2(−2nfx
2 +Nc(x(5x+ 12) − 6))z + 5Nc − 2nf + x(Nc(5x+ 12) − 2nfx)

+6Cf(−2x(x+ 4)z + 4z + x(x+ 4) + 1) + 6((2z − 1)x2 − 2z2x+ z2 − 1)
(

Nc ln

(

Q2(1 − x)

µ2x

)

+ (2Cf −Nc) ln

(

Q2(1 − z)

µ2x

)

+Nc ln

(

Q2z

µ2x

))

]

,

(4.46)
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dσV,gq
A =

1

ǫ2

(

(2Cf +Nc)Q
2 (2(x− 1)x+ 1)(2z − 1)

π2x(z − 1)z

)

+
1

ǫ

Q2(1 − 2z)

6π2x(1 − z)z

[

− 5Nc + 2nf + 2(11Nc − 2nf )(1 − x)x − 6Cf (1 − 2(1 − x)x)

+6(1 − 2(1 − x)x)
(

Nc

(

ln

(

Q2(1 − z)

µ2x

)

+ ln

(

Q2z

µ2x

))

+(2Cf −Nc) ln

(

Q2(1 − x)

µ2x

)

)]

,

(4.47)

where it can be checked that these terms cancel against the terms coming from the product of the

insertion operator and the respective born terms.
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Figure 4.2: Real corrections with two radiated gluons in the final state.

4.3 Real Corrections

Next we have to calculate real corrections to the Born terms. We have 2 types of diagrams, those

ones involving 2 quarks and 2 gluons, and those involving 4 quarks. In figure 4.2 we show the

diagrams that contribute when we have an initial quark and 2 gluons radiated in the final state.

The diagrams shown in figure 4.3 correspond to the case of an initial gluon and one gluon radiated

in the final state. Here we also have to consider diagrams with crossed gluons, leading to 8 dia-

grams in each case. Amplitudes are the same for both types of diagram considering the different

momenta involved. We also need to include the ghost diagrams shown in figure 4.4, which are

included to facilitate the sum over polarizations.

In the diagrams in figure 4.5 we also have to consider the possible permutations corresponding to

diagrams with crossed quarks, and also, the case in which all quarks are the same flavour, as well

as the case when different flavours are allowed. In the case of charged current, we do not have the

case of all quarks with the same flavour.

The calculation of these amplitudes can be carried out in 4-dimensions as was shown in equation

4.10. Our results have been compared analytically with the amplitudes used in [54] in the same

way as we did for the virtual corrections, for the case of virtual photon exchange.

On the other hand, we need to calculate the approximated cross section dσA as in equation 4.7. The

starting point of the method described in [18] for constructing this counter-term is the observation

that the singular behaviour of |Mm+1|2 is universal, it does not depend on the specific structure
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Figure 4.3: Real corrections with one initial gluon and one radiated gluon in the final state.

Figure 4.4: Ghost diagrams contributing to the real corrections in 4.2.

Figure 4.5: Real corrections involving 4 quarks.
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m+1

m+1

1

1

m

k

iV

j
{ij,k}
Σ m




Figure 4.6: Pictorial representation of the dipole factorization procedure. When the partons i and

j become soft and/or collinear, the singularities are factorized into the term Vij,k, which includes

correlations with a single additional parton k.

Figure 4.7: Effective diagrams for the different dipole formulae that we will need. The blobs

represent the m−parton matrix element. Incoming and outgoing lines represent initial-state and

final-state partons respectively.

of the amplitude itself. The origin of this is the fact that for its singular terms with respect to the

momentum pj , the tree amplitude |Mm+1|2 can always be considered as being obtained by the

insertion of the parton j over all the possible external legs of a tree-level amplitude |Mm|2 with

m QCD partons. Therefore, the singular behaviour of |Mm+1|2 is essentially factorizable with

respect to |Mm|2 and the singular factor only depends on the momenta and quantum numbers of

the QCD partons in |Mm|2. The factorization formulae have the symbolic structure

|Mm+1|2 → |Mm|2 ⊗ Vij,k, (4.48)

where Vij,k is the singular factor, which depends on the momenta and quantum numbers of the

three partons i, j, k. Two of these partons (i and j) will play the role of emitter and the third

parton k the role of spectator. Because of this structure the factorization formulae we use are called

dipole factorization formulae. A pictorial representation of the factorization formulae is shown in

figure 4.6.
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The dipole factorization formulae have the property of avoiding double counting of overlapping soft

and collinear singularities, which is possible because the dipole formulae fulfill exact momentum

conservation. In [18], several versions of the factorization formulae are presented, that differ from

one another in the implementation of momentum conservation away from the soft and collinear

limits. Here we will only present the relevant formulae for our case. We will need 6 dipole

contributions D. In figure 4.7 we show the effective diagrams of the dipoles that we will need.

In the presence of initial state partons a, ..., the m+ 1-parton matrix element has both final-state

(pi · pj → 0) and initial-state (pa · pj → 0) singularities. Let us consider first the case of final-

state singularities. In this case, the final-state parton ĩj is the emitter and the spectators are the

initial-state partons ã, .... This contribution is given by

D1a
ij = − 1

2pi · pj

1

xij,a

Ta ·Tij

T2
ij

Va
ij , (4.49)

where the momenta of the spectator ã and the emitter ĩj are defined as

p̃µ
a = xij,ap

µ
a , p̃µ

ij = pµ
i + pµ

j − (1 − xij,a)pµ
a , (4.50)

xij,a =
pipa + pjpa − pipj

(pi + pj)pa
. (4.51)

The corresponding singular factors are:

Va
qigj

= 8παsCf

[

2

1 − z̃i + (1 − xij,a)
− (1 − z̃i) − ǫ(1 − z̃i)

]

, (4.52)

Va
gigj

= 16παsNc

[

− gµν

(

1

1 − z̃i + (1 − xij,a)
+

1

1 − z̃j + (1 − xij,a)
− 2

)

+(1 − ǫ)
1

pipj
(z̃ip

µ
i − z̃jp

µ
j )(z̃ip

ν
i − z̃jp

ν
j )
]

, (4.53)

Va
qi q̄j

= 8παs
1

2

[

−gµν − 2

pipj
(z̃ip

µ
i − z̃jp

µ
j )(z̃ip

ν
i − z̃jp

ν
j )

]

, (4.54)

where

z̃i =
papi

papi + papj
, z̃j =

papj

papj + papi
= 1 − z̃i. (4.55)

In the case of initial-state singularities (pa · pi → 0), the emitter is the initial-state parton ãi and

the spectator is the final-state parton k. These dipoles are given by

D2ai
k = − 1

2pa · pi

1

xik,a

Tk · Tai

T2
ai

Vai
k . (4.56)

The momenta of the spectator and the emitter are:

p̃µ
ai = xik,ap

µ
a , p̃µ

k = pµ
k + pµ

i − (1 − xik,a)pµ
a , (4.57)

xik,a =
pkpa + pipa − pipk

(pk + pi)pa
. (4.58)
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The corresponding singular factors are:

V
qagi

k = 8παsCf

[

2

1 − xik,a + ui)
− (1 + xik,a) − ǫ(1 − xik,a)

]

, (4.59)

V
gagi

k = 16παsNc

[

− gµν

(

1

1 − xik,a + ui
− 1 + xik,a(1 − xik,a)

)

+(1 − ǫ)
1 − xik,a

xik,a

ui(1 − ui)

pipk

(

pµ
i

ui
− pµ

k

1 − ui

)(

pν
i

ui
− pν

k

1 − ui

)

]

, (4.60)

V
qa q̄i

k = 8παs
1

2
[1 − ǫ− 2xik,a(1 − xik,a)] , (4.61)

V
qaqi

k = 8παsCf

[

− gµνxik,a +
1 − xik,a

xik,a

2ui(1 − ui)

pipk

(

pµ
i

ui
− pµ

k

1 − ui

)(

pν
i

ui
− pν

k

1 − ui

)

]

,

(4.62)

where

ui =
papi

papi + papk
. (4.63)

Next, let us consider the case with identified partons in the final state. In the same way as before,

we denote with a the parton with momentum pa which is identified in the final state. In this case

we can get singularities from the regions where pi · pj → 0 or pi · pa → 0. In the first region we

have the dipoles:

D3ij,a = − 1

2pi · pj

Ta ·Tij

T2
ij

Vij,a. (4.64)

The dipole momenta are:

p̃µ
a =

1

zij,a
pµ

a , p̃µ
ij = pµ

i + pµ
j − 1 − zij,a

zij,a
pµ

a , (4.65)

zij,a =
(pi + pj)pa

pipa + pjpa + pipj
. (4.66)

The singular factors are in this case:

Vqigj ,a = 8παsCf

[

2

1 − z̃izij,a
− (1 + z̃i) − ǫ(1 − z̃i)

]

, (4.67)

Vgigj ,a = 16παsNc

[

− gµν

(

1

1 − z̃izij,a
+

1

1 − z̃jzij,a
− 2

)

+(1 − ǫ)
1

pipj
(z̃ip

µ
i − z̃jp

µ
j )(z̃ip

ν
i − z̃jp

ν
j )
]

, (4.68)

Vqi q̄j ,a = 8παs
1

2

[

−gµν − 2

pipj
(z̃ip

µ
i − z̃jp

µ
j )(z̃ip

ν
i − z̃jp

ν
j )

]

, (4.69)

and z̃i is given by equation 4.55. In the region where pi · pa → 0 we have

D4ai,k = − 1

2pa · pi

Tk · Tai

T2
ai

Vai,k. (4.70)

The parton momenta in the dipole are:

p̃µ
ai =

1

zik,a
pµ

a , p̃µ
k = pµ

i + pµ
k − 1 − zik,a

zik,a
pµ

a , (4.71)

zik,a =
(pk + pi)pa

pkpa + pipa + pipk
. (4.72)
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The singular factors are given by:

Vqagi,k = 8παsCf

[

2

1 − zik,a(1 − ui)
− (1 + zik,a) − ǫ(1 − zik,a)

]

, (4.73)

Vgagi,k = 16παsNc

[

− gµν

(

1

1 − zik,a(1 − ui)
− 2 +

1

zik,a

)

+(1 − ǫ)(1 − zik,a)zik,a
ui(1 − ui)

pipk

(

pµ
i

ui
− pµ

k

1 − ui

)(

pν
i

ui
− pν

k

1 − ui

)

]

, (4.74)

Vqa q̄i,k = 8παs
1

2

[

−gµν − 2zik,a(1 − zik,a)
ui(1 − ui)

pipk

(

pµ
i

ui
− pµ

k

1 − ui

)(

pν
i

ui
− pν

k

1 − ui

)]

,

(4.75)

Vga q̄i,k = 8παsCf

[

1 + (1 − zik,a)2

zik,a
− ǫzik,a

]

, (4.76)

where ui is the same as in equation 4.63.

Finally, we consider the case of identified partons in both the initial and the final states. In this

case, it is convenient to introduce new dipoles D(n)ai
b and D(n)

ai,b in which the momentum of the

spectator is left unchanged. These objects are pseudo-dipoles rather than dipoles, in the sense that

they depend on the momentum p̃ai of the emitter, on the momentum pb of the spectator and on

an additional momentum n:

nµ = pµ
in −

∑

b∈final-state

pµ
b , (4.77)

where pµ
in is the total incoming momentum and the second term on the right hand side is the sum of

all momenta of the identified partons in the final state. Let us consider first the case of pi · pa → 0

when a is an initial-state parton. The dipole terms are in this case

D5
(n)ai
b = − 1

2pa · pi

1

xain

Tb ·Tai

T2
ai

V
(n)ai
b , (4.78)

with

p̃µ
ai = xainp

µ
a , (4.79)

xain =
(pa − pi) · n

pa · n , (4.80)

which corresponds to equation 5.159 in Ref. [18]. Here the singular factors are:

V
(n)qagi

b = 8παsCf [2vi,ab − (1 + xain) − ǫ(1 − xain)] , (4.81)

V
(n)gagi
b = 16παsNc

[

− gµν (vi,ab − 1 + xain(1 − xain))

+(1 − ǫ)
1 − xain

xain

2pi · pa

2(pa · n)(pi · n) − n2pi · pa

(

npa

pipa
pµ

i − nµ

)(

npa

pipa
pν

i − nν

)

]

,

(4.82)

V
ga q̄i

b = 8παs
1

2
[1 − ǫ− 2xain(1 − xain)] , (4.83)

V
(n)qaqi
b = 8παsCf

[

− gµνxain

+
1 − xain

xain

4pi · pa

2(pa · n)(pi · n) − n2pi · pa

(

npa

pipa
pµ

i − nµ

)(

npa

pipa
pν

i − nν

)

]

, (4.84)
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with

vi,ab =
papb

pi(pa + pb)
. (4.85)

Finally, when a is an identified parton in the final state, we have

D6
(n)
ai,b = − 1

2pa · pi

Tb · Tai

T2
ai

V
(n)
ai,b, (4.86)

with

p̃µ
ai =

1

zain
pµ

a , (4.87)

zain =
pa · n

(pa + pi) · n
. (4.88)

This last dipole corresponds to equation 5.180 in Ref. [18]. Furthermore,

V
(n)
qagi,b

= 8παsCf

[

2
vi,ab

zain
− (1 + zain) − ǫ(1 − zain)

]

, (4.89)

V
(n)
gagi,b

= 16παsNc

[

− gµν

(

vi,ab

zain
− 1 +

1 − zain

zain

)

+2(1 − ǫ)zain(1 − zain)
pi · pa

2(pa · n)(pi · n) − n2pi · pa

(

npa

pipa
pµ

i − nµ

)(

npa

pipa
pν

i − nν

)

]

,

(4.90)

V
(n)
ga q̄i,b

= 8παsCf

[

1 + (1 − zain)2

zain
− ǫzain

]

, (4.91)

V
(n)
qa q̄i,b

= 8παs
1

2

[

− gµν

−4zain(1 − zain)
pi · pa

2(pa · n)(pi · n) − n2pi · pa

(

npa

pipa
pµ

i − nµ

)(

npa

pipa
pν

i − nν

)

]

. (4.92)

In total, we have 18 processes that contribute to the real correction for neutral current DIS, coming

from the different possibilities allowed by the diagrams in figures 4.2, 4.3 and 4.5. In the same way,

we have 9 processes for the case of charged current DIS. In tables 4.1 and 4.2 we present a list of

all these processes, together with their respective dipole contributions. There we denote up-type

quarks by u and down-type quarks by d, and we present the relevant processes for the case where

W+ is the exchanged vector boson in the charged current table.
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Diagram Hadronization Dipole Contributions

q → qgg 1. q → q D1q
gg + D2qg

g + D3gg,q + D4qg,q + D5qg
q + D6qg,q

2. q → g D1q
qg + D2qg

q + D3qg,g + D4gq,g + D4gg,q + D5qg
g + D6gq,q + D6gg,q

g → qgq̄ 3. g → q D1g
qg + D2gq

g + D2gg
q + D3qg,q + D4qg,q + D5gq

q + D5gg
q + D6qg,g

4. g → g D2gq
q + D4gq,q + D5gq

g + D6gq,g

q → qqq̄ 5. q → q D1q
qq + D2qq

q + D3qq,q + D4qq,q + D5qq
q + D6qq,q

6. q → q̄ D2qq
q + D4qq,q + D5qq

q + D6qq,q

7. u→ uu′ū′

q → qq′q̄′ 8. u→ ud′d̄′ D1q
qq + D3qq,q

9. d→ du′ū′

10. d→ dd′d̄′

11. u→ d̄′ud′

q → q̄′qq′ 12. d→ ū′du′ D2qq
q + D4qq,q + D5qq

q + D6qq,q

13. u→ ū′uu′

14. d→ d̄′dd′

15. u→ d′ud̄′

q → q′qq̄′ 16. d→ u′dū′ D2qq
q + D4qq,q + D5qq

q + D6qq,q

17. u→ u′uū′

18. d→ d′dd̄′

Table 4.1: List of processes that contribute to the real corrections for neutral current DIS at O(α2).

Diagram Hadronization Dipole Contributions

d→ ugg 1. d→ u D1q
gg + D2qg

g + D3gg,q + D4qg,q + D5qg
q + D6qg,q

2. d→ g D1q
qg + D2qg

q + D3qg,g + D4gq,g + D4gg,q + D5qg
g + D6gq,q + D6gg,q

g → qgq̄ 3. g → q D1g
qg + D2gq

g + D2gg
q + D3qg,q + D4qg,q + D5gq

q + D5gg
q + D6qg,g

4. g → g D2gq
q + D4gq,q + D5gq

g + D6gq,g

d→ uuū 5. d→ u D3qq,q + D4qq,q

6. d→ ū D1q
qq + D2qq

q + D5qq
q + D6qq,q

7. d→ u D3qq,q + D4qq,q

d→ udd̄ 8. d→ d̄ D1q
qq + D2qq

q + D5qq
q + D6qq,q

9. d→ d D1q
qq + D2qq

q + D5qq
q + D6qq,q

Table 4.2: List of processes that contribute to the real corrections for charged current DIS at

O(α2).
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4.4 Splitting Functions

The last element of the calculation is to compute the splitting functions P,K,H. As mentioned

in section 4.1, they are universal and only depend on the number of identified partons. For initial

state partons we have:

Pa,b({p};xpa, x;µ
2
F ) =

αs

2π
P ab(x)

1

T2
b

∑

I 6=b

TI · Tb ln
µF

2xpa · pI
, (4.93)

and for final state partons:

Pb,a({p}; pa/z, z;µ
2
F ) =

αs

2π
Pba(z)

1

T2
b

∑

I 6=b

TI · Tb ln
zµF

2pa · pI
. (4.94)

Here P ab = Pab are the Altarelli-Parisi splitting functions in equations 2.33. Furthermore, we have

the functions K and H. In the general case of multi-parton interactions, they are given by

Ka,a′

(x) =
αs

2π

{

K̄aa′

(x) −Kaa′

F.S.(x)

+ δaa′
∑

i

Ti ·Ta
γi

T2
i

[

(

1

1 − x

)

+

+ δ(1 − x)

]

− 1

T2
a′

(

n
∑

l=1

Tal
· Ta′ + Tb · Ta′

)

K̃aa′

(x)

− 1

T2
a′

[

n
∑

l=1

Tal
· Ta′La,a′

(x; p, ql, n) + Tb ·Ta′La,a′

(x; p, p̄, n)

]

}

, (4.95)

Ha′
l
,al

(z) =
αs

2π

{

K̄a′
lal(z) + 3Pa′

l
al

ln z −HF.S.
a′

l
al

(z) + δa′
l
al

∑

i

Ti ·Ta′
l

γi

T2
i

[

(

1

1 − z

)

+

+ δ(1 − z) − 1

]

+
1

T2
a′

l





n
∑

r=1,r 6=l

Tar
· Ta′

l
+ Ta ·Ta′

l
+ Tb ·Ta′

l





[

Pa′
l
al

(z) ln z − K̃a′
lal(z)

]

− 1

T2
a′

l

[

n
∑

r=1,r 6=l

Tar
·Ta′

l
,al

La′
l,al(z; ql, qr, n) + Ta · Ta′

l
La′

l,al(z; ql, p, n)

+ Tb ·Ta′
l
La′

l,al(z; ql, p̄, n)
]}

, (4.96)

where

K̄ab = P ′
ab(x) + P ab(x) ln

1 − x

x
+ δab

[

T2
a

[

2

1 − x
ln

1 − x

x

]

+

− δ(1 − x)

(

γa +Ka − 5

6
π2T2

a

)

]

.

(4.97)

The functions P ′
ab denote the part of the splitting functions proportional to ǫ and the functions

Ka and γa are the same as in equations 4.41 and 4.42. Furthermore, the expressions above depend

on the scheme dependent flavour functions Kab
F.S.(x) and HF.S.

ba (x), that are zero in the M̄S scheme

that we are using. Finally, the functions K̃ and Lab are given by

K̃ab(x) = P ab(x) ln(1 − x) + δabT2
a

[

[

2

1 − x
ln(1 − x)

]

+

− π2

3
δ(1 − x)

]

, (4.98)
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Lab(x; pa, pb, n) = δabδ(1 − x)2T2
a

[

Li2

[

1 − (1 + v)

2

(pa + pb) · n
pa · n

]

+Li2

[

1 − (1 − v)

2

(pa + pb) · n
pa · n

]

]

− P ab(x) ln
n2(pa · pb)

2(pa · n)2
, (4.99)

with

v =

√

1 − n2(pa + pb)2

[(pa + pb) · n]2
, (4.100)

nµ = pµ
in −

∑

a∈final-state

pµ
a , (4.101)

where pin is the total incoming momentum in the scattering process and the second term on the

right hand side is the sum of all momenta of the identified partons in the final state.

Using these expressions we can now build our own splitting operators for the processes in which

we are interested. In our case we have 6 possible processes for initial- and final-state partons:

q0 → qh + gx, Pqq, (4.102)

q0 → qh + gx, Pgq, (4.103)

q0 → qx + gh, Pqq, (4.104)

q0 → qx + gh, Pqg, (4.105)

g0 → qh + q̄x, Pgg, (4.106)

g0 → qh + q̄x, Pqg, (4.107)

where the low index 0 denotes the initial-state parton, h is the final-state parton, and x the

remaining parton. The Pab denote the splitting function considered in each case.

We will build our splitting operators Sab for the six cases and for initial and final state partons.

Their explicit form is given by

S
gq
initial({ph(q), px(g)}, p0(g), xD)

= Pgq({ph(q), px(g)}, p0(g), xD) + Kgq({ph(q), px(g)}, p0(g), xD)

= αs

{ Nc

Cf8π

(

− ln(1 − xD) + 2xD ln(1 − xD) − 2x2
D ln(1 − xD) + ln

(

2z

1 − z

)

−2xD ln

(

2z

1 − z

)

+ 2x2
D ln

(

2z

1 − z

)

− ln

(

xµ2

Q2xD(1 − z)

)

+2xD ln

(

xµ2

Q2xD(1 − z)

)

− 2x2
D ln

(

xµ2

Q2xD(1 − z)

)

+ ln

(

xµ2

Q2xDz

)

−2xD ln

(

xµ2

Q2xDz

)

+ 2x2
D ln

(

xµ2

Q2xDz

)

)

+
1

4π

(

2(1 − xD)xD + 2(1 − xD)xD ln

(

xµ2

Q2xDz

)

+(1 − 2xD(1 − xD)) ln

(

1 − xD

xD

)

− ln

(

xµ2

Q2xDz

)

+(1 − 2xD(1 − xD)) ln(1 − xD) − (1 − 2xD(1 − xD)) ln

(

2z

1 − z

)

)}

, (4.108)
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S
gq
initial({px(q), ph(g)}, p0(g), xD)

= Pgq({px(q), ph(g)}, p0(g), xD) + Kgq({px(q), ph(g)}, p0(g), xD)

= αs

{ Nc

Cf8π

(

ln(1 − xD) − 2xD ln(1 − xD) + 2x2
D ln(1 − xD) − ln

(

2z

1 − z

)

+2xD ln

(

2z

1 − z

)

− 2x2
D ln

(

2z

1 − z

)

+ ln

(

xµ2

Q2xD(1 − z)

)

−2xD ln

(

xµ2

Q2xD(1 − z)

)

+ 2x2
D ln

(

xµ2

Q2xD(1 − z)

)

− ln

(

xµ2

Q2xDz

)

+2xD ln

(

xµ2

Q2xDz

)

− 2x2
D ln

(

xµ2

Q2xDz

)

)

+
1

4π

(

2(1 − xD)xD

+(1 − 2xD(1 − xD)) ln

(

1 − xD

xD

)

+(2xD(1 − xD) − 1) ln

(

xµ2

Q2xD(1 − z)

)

)}

, (4.109)

S
qq
initial({ph(q), px(g)}, p0(q), xD)

= Pqq({ph(q), px(g)}, p0(q), xD) + Kqq({ph(q), px(g)}, p0(q), xD)

= αs

{ nf

12π

(

δ(1 − xD) +

[

1

1 − xD

]

+

)

+
Cf

24π

(

δ(1 − xD)
[

− 60 + 8π2

+24Li2

[

2 − 3z − x+
√

x2 + 2(−4 + x)z + 9z2

2(1 − z)

]

+24Li2

[

2 − x− 3z −
√

x2 + 2(−4 + x)z + 9z2

2(1 − z)

]

]

+6
(

2 − 2xD − 2 ln

(

1 − xD

xD

)

− 2xD ln

(

1 − xD

xD

)

− 2 ln(1 − xD) − 2xD ln(1 − xD)

+2 ln

(

2

1 − z

)

+ 2xD ln

(

2

1 − z

)

+ 2 ln(z) + 2xD ln(z)
)

− 12 ln

(

xµ2

Q2xDz

)[

1 + x2
D

1 − xD

]

+

+12





2 ln
(

−1 + 1
xD

)

1 − xD





+

+ 12

[

2 ln(1 − xD)

1 − xD

]

+

)

+
Nc

24π

(

δ(1 − xD)
[

− 11 + 2π2

−12Li2

[

2 − 3z − x+
√

x2 + 2(−4 + x)z + 9z2

2(1 − z)

]

−12Li2

[

2 − x− 3z −
√

x2 + 2(−4 + x)z + 9z2

2(1 − z)

]

]

+6

(

ln(1 − xD) + xD ln(1 − xD) − ln

(

2

1 − z

)

− xD ln

(

2

1 − z

)

− ln(z) − xD ln(z)

)

−11

[

1

1 − xD

]

+

− 6 ln

(

xµ2

Q2xD(1 − z)

)[

1 + x2
D

1 − xD

]

+

+ 6 ln

(

xµ2

Q2xDz

)[

1 + x2
D

1 − xD

]

+

−6

[

2 ln(1 − xD)

1 − xD

]

+

)}

, (4.110)
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S
qq
initial({px(q), ph(g)}, p0(q), xD)

= Pqq({px(q), ph(g)}, p0(q), xD) + Kqq({px(q), ph(g)}, p0(q), xD)

= αs

{ Cf

24π

(

δ(1 − xD)
(

−78 + 12π2
)

+ 6

(

2(1 − xD) − 2(1 + xD) ln

(

1 − xD

xD

))

−6

[

1

1 − xD

]

+

− 4 ln

(

xµ2

Q2xD(1 − z)

)[

1 + x2
D

1 − xD

]

+

+ 4





2 ln
(

1−xD

xD

)

1 − xD





+

)

+
Nc

24π

(

δ(1 − xD)
[

9 − 2π2

+12Li2

[

2 − 3z − x+
√

x2 + 2(−4 + x)z + 9z2

2(1 − z)

]

+12Li2

[

2 − x− 3z −
√

x2 + 2(−4 + x)z + 9z2

2(1 − z)

]

]

+6(1 + xD)

(

− ln[1 − xD] + ln

[

2z

1 − z

])

+ 9

[

1

1 − xD

]

+

+6 ln

[

xµ2

Q2xD(1 − z)

] [

1 + x2
D

1 − xD

]

+

− 6 ln

[

xµ2

Q2xDz

] [

1 + x2
D

1 − xD

]

+

+ 6

[

−2 ln[1 − xD]

−1 + xD

]

+

)

},

(4.111)

S
qg
initial({ph(q), px(q)}, p0(q), xD)

= Pqg({ph(q), px(q)}, p0(q), xD) + Kqg({ph(q), px(q)}, p0(q), xD)

= αs

{ Nc

72π

(

δ(1 − xD)
[

− 227 + 30π2 − 33 ln

(

xµ2

Q2(1 − z)

)

− 33 ln

(

xµ2

Q2z

)

+36Li2

[

2 − 3z − x+
√

x2 + 2(−4 + x)z + 9z2

2(1 − z)

]

+36Li2

[

2 − x− 3z −
√

x2 + 2(−4 + x)z + 9z2

2(1 − z)

]

]

+
36

xD

(

(−1 + xD(2 − (1 − xD)xD))
(

− 3 ln(1 − xD) − 2 ln

(

1

xD

)

+ ln

(

2

1 − z

)

+ ln(z) + ln

(

− xµ2

Q2xD(−1 + z)

)

+ ln

(

xµ2

Q2xDz

)

))

− 9
((

3 + 4 ln

(

− xµ2

Q2xD(−1 + z)

)

+4 ln

(

xµ2

Q2xDz

)

)

[

1

1 − xD

]

+

− 2



4



−
ln
(

−1 + 1
xD

)

−1 + xD





+

+

[

−2 ln(1 − xD)

−1 + xD

]

+





))

+
nf

36π
δ(1 − xD)

(

3 ln

(

xµ2

Q2(1 − z)

)

+ 3 ln

(

xµ2

Q2z

)

+ 16

)

}

, (4.112)
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S
gg
initial({ph(q), px(g)}, p0(g), xD)

= Pgg({ph(q), px(g)}, p0(g), xD) + Kgg({ph(q), px(g)}, p0(g), xD)

= αs
Cf

4πxD

(

2x2
D + 2(2 − xD)2 ln

(

1 − xD

xD

)

+ (2 − xD)2 ln(1 − xD)

−(2 − xD)2 ln

(

2z

1 − z

)

− (2 − xD)2
(

ln

(

xµ2

Q2xD(1 − z)

)

+ ln

(

xµ2

Q2xDz

))

)

, (4.113)

S
qq
final({p0(q), px(g)}, ph(q), zD)

= Pqq({p0(q), px(g)}, ph(q), zD) + Hqq({p0(q), px(g)}, ph(q), zD)

= αs

{ nf

12π

(

−1 + δ(1 − zD) +

[

1

1 − zD

]

+

)

+
Nc

24π

(

δ(1 − zD)
[

− 11 + 2π2

−12Li2

[

z(1 − x+ z) − 1 −
√

1 + 2z(1 − x) + z2(x2 + 2x− 5) + 2z3(1 − x) + z4

2(1 − x)z

]

−12Li2

[

z(1 − x+ z) − 1 +
√

1 + 2z(1 − x) + z2(x2 + 2x− 5) + 2z3(1 − x) + z4

2(1 − x)z

]

]

+11 − 6 ln

(

1 − z

1 − x

)

− 6zD ln

(

1 − z

1 − x

)

+ 6 ln(1 − zD) + 6zD ln(1 − zD)

−11

[

1

1 − zD

]

+

+ 6 ln(zD)

[

1 + z2
D

1 − zD

]

+

− 6 ln

(

xzDµ
2

Q2(1 − x)

)[

1 + z2
D

1 − zD

]

+

+6 ln

(

xzDµ
2

Q2z

)[

1 + z2
D

1 − zD

]

+

− 6

[

2 ln(1 − zD)

1 − zD

]

+

)

+
Cf

24π

(

δ(1 − zD)
[

− 60 + 8π2

+24Li2

[

z(1 − x+ z) − 1 −
√

1 + 2z(1 − x) + z2(x2 + 2x− 5) + 2z3(1 − x) + z4

2(1 − x)z

]

+24Li2

[

z(1 − x+ z) − 1 +
√

1 + 2z(1 − x) + z2(x2 + 2x− 5) + 2z3(1 − x) + z4

2(1 − x)z

]

]

+12 − 12zD + 12 ln

(

1 − z

1 − x

)

+ 12zD ln

(

1 − z

1 − x

)

− 24 ln(1 − zD) − 24zD ln(1 − zD)

−12 ln

(

1

zD

)

− 12zD ln

(

1

zD

)

+ 24 ln(zD)

[

1 + z2
D

1 − zD

]

+

− 12 ln

(

xzDµ
2

Q2z

)[

1 + z2
D

1 − zD

]

+

+12





2 ln
(

1−zD

zD

)

1 − zD





+

+ 12

[

2 ln(1 − zD)

1 − zD

]

+

)}

, (4.114)

S
qg
final({p0(g), px(q)}, ph(q), zD)

= Pqg({p0(g), px(q)}, ph(q), zD) + Hqg({p0(g), px(q)}, ph(q), zD)

= αs{−
Nc

4πzD
(2 − zD)2

(

ln

(

1 − z

1 − x

)

− ln(1 − zD) + ln(zD)

)

+
Cf

2πzD

(

z2
D + (2 − zD)2 ln

(

1 − zD

zD

)

+ 3(2 − zD)2 ln(zD)

)

. (4.115)
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S
gq
final({p0(q), px(q)}, ph(g), zD)

= Pgq({p0(q), px(q)}, ph(g), zD) + Hgq({p0(q), px(q)}, ph(g), zD)

= αs

{Nc

8π

(1

9
δ(1 − zD)

[

− 227 + 30π2 − 33 ln

(

xµ2

Q2(1 − x)

)

− 33 ln

(

xµ2

Q2z

)

+36Li2

[

z(1 − x+ z) − 1 −
√

1 + 2z(1 − x) + z2(x2 + 2x− 5) + 2z3(1 − x) + z4

2(1 − x)z

]

+36Li2

[

z(1 − x+ z) − 1 +
√

1 + 2z(1 − x) + z2(x2 + 2x− 5) + 2z3(1 − x) + z4

2(1 − x)z

]

]

+
1

zD

[

3zD + 12 ln(1 − zD) + 8 ln

(

1

zD

)

+ 20 ln(zD) − 4 ln

(

xzDµ
2

Q2(1 − x)

)

+4
(

(−1 + zD(2 + (−1 + zD)zD)) ln

(

1 − z

1 − x

)

− zD(2 + (−1 + zD)zD)
(

3 ln(1 − zD)

+2 ln

(

1

zD

)

+ 5 ln(zD) − ln

(

xzDµ
2

Q2(1 − x)

)

− ln

(

xzDµ
2

Q2z

)

))

− 4 ln

(

xzDµ
2

Q2z

)

]

+

(

−3 + 20 ln(zD) − 4 ln

(

xzDµ
2

Q2(1 − x)

)

− 4 ln

(

xzDµ
2

Q2z

))[

1

1 − zD

]

+

+2



4
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S
qq
final({p0(g), px(q)}, ph(q), zD)

= Pqq({p0(g), px(q)}, ph(q), zD) + Hqq({p0(g), px(q)}, ph(q), zD)

= αs{
Cf

8π

(1

3
δ(1 − zD)

[

−78 + 12π2
]

+ 10 − 4zD − 4 ln

(

1 − zD

zD

)

− 4zD ln

(

1 − zD

zD

)

−6

[

1

1 − zD

]

+

+ 12 ln(zD)

[

1 + z2
D

1 − zD

]

+

+ 4





2 ln
(

−1 + 1
zD

)

1 − zD





+

)

+
Nc

8π

(1

3
δ(1 − zD)

[

9 − 2π2

+12Li2

[

z(1 − x+ z) − 1 −
√

1 + 2z(1 − x) + z2(x2 + 2x− 5) + 2z3(1 − x) + z4

2(1 − x)z

]

+12Li2

[

z(1 − x+ z) − 1 +
√

1 + 2z(1 − x) + z2(x2 + 2x− 5) + 2z3(1 − x) + z4

2(1 − x)z

]

]

−3 + 2 ln

(

1 − z

1 − x

)

+ 2zD ln

(

1 − z

1 − x

)

− 2 ln(1 − zD) − 2zD ln(1 − zD) + 3

[

1

1 − zD

]

+

−2 ln(zD)

[

1 + z2
D

1 − zD

]

+

+ 2

[

2 ln(1 − zD)

1 − zD

]

+

)

}, (4.119)

46



Chapter 5

Results to first order in αs

In this chapter we present our numerical results for the single-hadron inclusive production of

charged particles, measured by the H1 and ZEUS collaborations. Cross sections are normalized to

the total cross section and will be presented in distributions in Q2 and the scaled momentum of

the detected hadron xp defined as xp = 2ph · q/q2. In fragmentation function fits, uncertainties at

small xp, such as higher-twist effects, quark and hadron mass effects and unresummed soft-gluon

logarithms in the evolution of the FFs, render the theoretical calculations for hadron production

data from e+e− interactions unreliable when the scaled momentum falls below 0.1. Because of

the resulting uncertainties in the FFs at small xp, and because ep interaction data suffer from

similar uncertainties at small xp, we only study ep interaction data for which xp > 0.1. Cross

sections are calculated to NLO in the MS scheme as described in chapter 3. We set the number

of active quark flavours, nf = 5. To account for the initial-state proton, we use the CTEQ6.6M

PDF set of Ref. [32] and to account for the final state hadron we use the AKK set of fragmentation

functions [34], unless otherwise stated. The charged particles are obtained as a sum of the light

charged hadrons (π±, K±, and p/p):

Dh±

a (x, µf ) = Dπ±

a (x, µf ) +DK±

a (x, µf ) +Dp/p
a (x, µf ). (5.1)

We use CTEQ6.6M NLO value Λ
(5)
QCD = 226 MeV. The factorization / renormalization scale is

chosen as µ = Q unless stated otherwise.

5.1 Scaled momentum distributions

In this section we compare theoretical predictions with single hadron inclusive production xp dis-

tributions measured by H1 [56] (see Fig. 5.1 for the kinematic constraints) and ZEUS [57] (see Fig.
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Chapter 5 5.1. Scaled momentum distributions

5.2). The predictions generally agree well with the ZEUS data (Fig. 5.3). The predictions using

the Kretzer FF set [36] are similar to those in Ref. [58], where the CTEQ5M1 PDF set was used.

A similar comparison was performed in Ref. [59] using the BKK FF set [60], and the agreements

were good when the CTEQ3M and MRSA′ PDF sets were used. We also show our results using the

KKP set of fragmentation functions [35] that also agree with the data. In figure 5.4, we show our

results obtained with a variation in µ2 of a factor of 2, which gives us an estimate of the theoretical

uncertainty of our calculation. In figure 5.5 we can also see the variation introduced by choosing

a different PDF set, in this case the MSTW set [33], and in figure 5.6, we can see the K-factor

obtained for this prediction.

The results for the H1 data are divided into two groups, one for low Q2 (12GeV2 < Q2 < 100GeV2)

and another for high Q2 (100GeV2 < Q2 < 8000GeV2). In figures 5.7 to 5.13 we show our results

and the same variations as before.

For both the H1 and ZEUS data, the predictions using the KKP FF set are the most gradual in

xp, while the Kretzer predictions are the steepest. The predictions from the AKK and Kretzer

sets are quite similar, particularly at large xp and for all xp values of the high Q H1 data. The

uncertainty due to the choice of FF set is largest at large xp, since the data from e+e− interactions

are most inaccurate and most scarce at large xp. The predictions for the low Q2 H1 data show

an undershoot at large xp. This behaviour may result from unresummed logarithms at large xp in

the partonic cross section, since resummation tends to enhance the cross section. The overshoot

from the low Q2 H1 data at small xp may be due to the theoretical errors in ep interaction data

discussed above. Indeed, better agreement is found at small xp with the high Q2 H1 data where

resummation is less necessary and where higher-twist and mass effects are significantly reduced.

The error due to the choice of PDF set is rather small for all values of xp while the uncertainty

due to the scale variation is largest at the large values of scaled momentum. In general, increasing

the scale steepens the drop in the cross section with increasing xp.
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Figure 5.1: Cuts in the (x,Q2) plane used in the H1 analysis of Ref. [56].
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Figure 5.2: Cuts in the (x,Q2) plane used in the ZEUS analysis of Ref. [57].
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Figure 5.3: Comparisons of theoretical predictions using the AKK, Kretzer and KKP FF sets with

the xp distribution from ZEUS [57].
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Figure 5.4: As in figure 5.3 but showing the theoretical uncertainty introduced by a change in the

scale chosen.
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Figure 5.5: As in figure 5.3 but showing the theoretical uncertainty introduced by choosing a

different PDF set.
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Figure 5.6: K-factor corresponding to our predictions in figure 5.3 with AKK and CTEQ6.6M.
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Figure 5.7: Comparisons of theoretical predictions using the AKK, Kretzer and KKP FF sets with

the xp distribution from H1 [56] at low Q2.
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Figure 5.8: As in figure 5.7 but showing the theoretical uncertainty introduced by a change in the

scale chosen.
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Figure 5.9: As in figure 5.7 but showing the theoretical uncertainty introduced by choosing a

different PDF set.
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Figure 5.10: K-factor corresponding to our predictions in figure 5.7 with AKK and CTEQ6.6M.
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Figure 5.11: Comparisons of theoretical predictions using the AKK, Kretzer and KKP FF sets

with the xp distribution from H1 [56] at high Q2.
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Figure 5.12: As in figure 5.11 but showing the theoretical uncertainty introduced by a change in
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Figure 5.13: As in figure 5.11 but showing the theoretical uncertainty introduced by choosing a

different PDF set.

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

K
 fa

ct
or

xp

Figure 5.14: K-factor corresponding to our predictions in figure 5.11 with AKK and CTEQ6.6M

55



Chapter 5 5.2. Distributions in Q2

10-3 10-2

x

10

102

103

Q
2
HG

eV
2
L

y=0.04

y=0.95

E’=10 GeV

x=5´10-2x=1´10-2

x=2.4́ 10-3x=1.2́ 10-3x=6´10-4

Q2
=10 GeV2

Q2
=20 GeV2

Q2
=40 GeV2

Q2
=80 GeV2

Q2
=160 GeV2

Q2
=320 GeV2

Q2
=640 GeV2

Q2
=1280 GeV2

ZEUS ZEUS

ZEUS

ZEUS

ZEUS

ZEUS

ZEUS

ZEUS
ZEUS

ZEUS

ZEUS

Figure 5.15: Cuts in the (x,Q2) plane used in the ZEUS analysis of Ref. [61].

5.2 Distributions in Q2

Next we compare theoretical predictions with the single hadron inclusive production measurements

at various Q2 values from ZEUS [61] (see Fig. 5.15). Our predictions are presented in figures ??-

5.18, where we have separated the points for different ranges in xB by a factor ∆. The predictions

agree well with the ZEUS data (Fig. 5.16), except for, at low Q2, they overshoot at small xp

and the undershoot at large xp. Note that the theoretical predictions are rather constant over the

whole Q2 range, as foreseen in our theoretical description. Except at the lower Q2 and smaller

xp region, the AKK predictions tend to be closer to the Kretzer predictions than to the KKP

ones. The uncertainty due to the choice of PDF set for the proton (Fig. 5.18) is everywhere

insignificant. At smaller xp values, the uncertainty with respect to the arbitrary scale choice (Fig.

5.17) become less relevant with increasing Q2, and is unimportant for all Q2 at the other xp values.

The large deviation of the prediction for µ = Q/2 (dotted line) from the one for µ = Q is caused

by the vanishing of the c quark FF below threshold. This behaviour is not physical since we have

neglected charm mass effects. The procedure for incorporating these effects is given in Ref. [62],

which amounts to retaining the heavy quark mass dependence in the heavy quark flavour creation

from photon-gluon fusion, and using the same scaling variable that results in the latter process

for the heavy quark flavour excitation. Furthermore, the matching conditions of Ref. [63] must be

imposed on the FFs at the quark flavour thresholds. In any case, our results at low Q2 suffer other
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theoretical errors mentioned earlier, such as higher twist.

New, more precise data were released by the H1 collaboration in 2007 [64]. Our comparisons are

shown in figures 5.19, 5.20 and 5.21. In this case the obtained distributions do not match the data

very well, especially in the lowest and highest bins in xp. The results for AKK and Kretzer remain

quite close, while the KKP set shows the largest deviation from these two. The uncertainty due to

the choice of PDF is negligible again here and the uncertainty in the scale variation remains more

or less constant. Similar data has been analyzed by the ZEUS collaboration [65], our comparison

with these data is shown in figures 5.22, 5.23 and 5.24, with similar conclusions to the comparison

with the H1 data.

We also compared these data to our predictions including the Z boson contribution, expecting

to see some effect at high Q2. However, since all the cross sections are normalized to the total

cross section, where the effect is also present, it is impossible to distinguish between curves with

and without the Z boson contribution. We can nevertheless, plot the cross sections without nor-

malization to see the effect of considering the complete neutral current cross section (Fig. 5.25).

The effect is found to be as large as 30% for the highest Q2 bin and, as can be seen from the plot,

the effect is similar for all bins in xp.

Unfortunately, there are no data available for single particle inclusive production in charged-current

deep inelastic scattering, but since we have all the formalism and code in place, we will show here

a cross section obtained as in 5.25, without normalization and for production of charged particles

in charged current DIS. The kinematic region was chosen to be the same as in the H1 analysis.

The results are shown in figure 5.26.
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Figure 5.16: Comparisons of theoretical predictions using the AKK, Kretzer and KKP FF sets

with the Q2 distribution from ZEUS [61]. The factor ∆ is a shift in the actual values separating

the results for different ranges in xB according to the kinematic cuts shown in figure 5.15.
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Figure 5.17: As in figure 5.16 but showing the theoretical uncertainty introduced by a change in

the scale chosen.
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Figure 5.18: As in figure 5.16 but showing the theoretical uncertainty introduced by choosing a

different PDF set.
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Figure 5.19: Comparisons of theoretical predictions using the AKK, Kretzer and KKP FF sets

with the Q2 distribution from H1 [64].
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Figure 5.20: As in figure 5.19 but showing the theoretical uncertainty introduced by a change in

the scale chosen.
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Figure 5.21: As in figure 5.19 but showing the theoretical uncertainty introduced by choosing a

different PDF set.
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Figure 5.22: Comparisons of theoretical predictions using the AKK, Kretzer and KKP FF sets

with the Q2 distribution from ZEUS [65].
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Figure 5.23: As in figure 5.22 but showing the theoretical uncertainty introduced by a change in

the scale chosen.
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Figure 5.24: As in figure 5.22 but showing the theoretical uncertainty introduced by choosing a

different PDF set.
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Figure 5.25: Cross section differential in xp showing the contribution due to the Z boson.
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Figure 5.26: Cross section differential in xp for charged-current DIS.
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Chapter 6

Results to second order in αs

6.1 Inclusive production of π0 in neutral current DIS

As in the previous case, we work in the MS renormalization and factorization scheme with nf = 5

massless quark flavours. We use CTEQ6.6M NLO set [32] for the proton PDFs and the NLO set

of AKK FFs [34] for light charged hadrons (π±, K±, and p/p). Furthermore, we take the two-loop

formula for α
(nf )
s (µr) with asymptotic scale parameter Λ

(5)
QCD = 226 MeV. We approximate the π0

FFs as

Dπ0

a (x, µf ) =
1

2
Dπ±

a (x, µf ), (6.1)

where Dπ±

a refers to the sum of the π+ and π− mesons which is supported by LEPI data of

hadronic Z0-boson decays [54]. Furthermore, we assume the charged hadrons to be exhausted by

the charged pions, charged kaons, protons, and antiprotons, via

Dh±

a (x, µf ) = Dπ±

a (x, µf ) +DK±

a (x, µf ) +Dp/p
a (x, µf ). (6.2)

For simplicity, we identify the renormalization scale µr and the initial- and final-state factorization

scales, µi and µf , respectively, and relate them to the characteristic variables Q2 and p∗T by setting

µ2
r = µ2

i = µ2
f = Q2 + (p∗T )2. As in the previous chapter, we will consider variations on this to

estimate the theoretical uncertainty in our calculation.

We now compare our theoretical predictions with HERA data on π0 mesons in the forward re-

gion from the H1 Collaboration [66, 67]. These data were taken in DIS of positrons with en-

ergy Ee = 27.6 GeV on protons with energy Ep = 820 GeV in the laboratory frame, so that
√
S = 2

√

EeEp = 301 GeV, during the running periods 1996 and 1996/1997, and correspond to
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integrated luminosities of 5.8 and 21.2 pb−1, respectively. In Refs. [66, 67], the π0 mesons were

described by their transverse momentum, p∗T , in the γ∗p centre-of-mass (c.m.) frame and by their

angle θ with respect to the proton flight direction, their pseudorapidity η = − ln[tan(θ/2)], and

their energy E = xEEp in the laboratory frame. They were detected within the acceptance cuts

p∗T > 2.5 GeV or 3.5 GeV, 5◦ < θ < 25◦, and xE > 0.01. The DIS phase space was restricted to

the kinematic regime defined by 0.1 < y < 0.6 and 2 < Q2 < 70 GeV2.

We will discuss our comparisons with the cross sections measured differentially in p∗T , xB [67]

for various Q2 intervals, and differentially in Q2 [66]. We present our predictions at NLO and LO

compared to these data in figures 6.1-6.8, using the AKK and KKP sets of fragmentation functions.

In figures 6.3, 6.4, 6.5 and 6.6, the upper three frames refer to the Q2 intervals 2 < Q2 < 4.5 GeV2,

4.5 < Q2 < 15 GeV2, and 15 < Q2 < 70 GeV2. In figures 6.7 and 6.8, the upper three frames refer

to the Q2 intervals 2 < Q2 < 8 GeV2, 8 < Q2 < 20 GeV2, and 20 < Q2 < 70 GeV2. In all figures,

the minimum-p∗T cut is p∗T > 2.5 GeV, except for figures 6.7 and 6.8, where it is p∗T > 3.5 GeV.

In all figures the dotted lines show the theoretical uncertainty due to the scale variation and the

dashed line the LO prediction. Here, in figure 6.1 only, we have shown the prediction with the

MSTW set of PDFs, since as we found before, its effect is negligible. The K factors, defined as

the NLO to LO ratios of our default predictions, are shown in the lower frames of all figures.

In general all our NLO predictions agree with the data within errors, while they significantly

overshoot our default LO predictions. Indeed, the K factors always exceed unity and even reach

one order of magnitude at low values of p∗T , Q2, or xB. Not only do the LO predictions disagree

with the H1 data in their normalizations, but they also exhibit deviating shapes. On the other

hand, under the effect of asymptotic freedom, the K factors approach unity for increasing values

of µr, i.e. for increasing values of p∗T and/or Q2.

There is an obvious explanation for the sizableK factors at low values of µr in terms of the different

kinematic constraints at LO and NLO. The LO processes are 2 → 2, and their cross sections are

only sensitive to collinear singularities as p∗T → 0. On the other hand, processes contributing to

the real NLO correction are 2 → 3, so that collinear configurations can also arise for finite values

of p∗T . After mass factorization of the corresponding collinear singularities, the finite remainders

can be sizable, leading to large NLO corrections.

The theoretical uncertainties in our NLO predictions due to scale variation are not small, es-

pecially at low values of p∗T , Q2, or xB, where the K factors themselves are large, which is partly

related to the opening of new partonic production channels at NLO, which are still absent at LO. A

reduction in the dependence of the scale variation can only be expected to occur at next-to-next-to-
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leading order (NNLO). Besides the freedom in the choice of the renormalization and factorization

scales, there are other sources of theoretical uncertainty, including the variations of the PDF and

FF sets. The effect of these can be seen in the different figures by comparing the results for AKK

and KKP sets of FFs and the results when the MSTW set was used for the PDFs.

A similar calculation was done in Ref [54], where we were able to compare the analytical ex-

pressions involved in the virtual and real corrections and found agreement, as it was mention in

the previous chapter. An independent calculation was done in Ref. [68] using a method different

from the subtraction method. For this reason we can only perform a numerical comparison with

their results. In figures 6.9-6.10 we present our cross sections compared to those in [68] for the

same data discussed previously using CTEQ6.6M and KKP and nf = 4. For low Q2 and low xB,

our cross sections are lower but both still describe the data within the experimental uncertainty.

In the case of the p∗T distributions there is a difference in the cross sections that increases with

p∗T increases. We can investigate this further by removing from both sets of code the kinematic

cuts and setting αs = 1, and looking at the distributions in various ranges of the variables in

which we are interested. In figur‘es 6.12 and 6.13, we show our comparison with the output of

the code used in [68], for 2 < Q2 < 4.5 GeV2, 4.5 < Q2 < 15 GeV2, and 15 < Q2 < 70 GeV2,

3.7×10−5 ≤ xB ≤ 4.98×10−4, 8.31×10−5 ≤ xB ≤ 1.66×10−3 and 2.7×10−4 ≤ xB ≤ 7.76×10−3

respectively, and |η| ≤ 1.25 for different bins in p∗T . At LO, the difference between cross sections is

as low as less than 1%, while we find a bigger disagreement for the NLO results. The results from

Ref. [68] become lower as pT ∗ increases, reaching a negative value for p∗T > 13 GeV. This is the

case for 2 < Q2 < 4.5 GeV2 and 4.5 < Q2 < 15 GeV2. Whereas for the remaining bin in Q2, their

cross sections never reach negative values. In figures 6.14 and 6.15 we see the same behaviour, this

time for |η| ≤ 1 and |η| ≤ 10 respectively. This obvously tells us of a problem in Ref. [68], since it

is unphysical to have negative cross sections. Finally, in figures 6.16 and 6.17, we present similar

plots to the ones discussed previously but separating some channels that seem to be responsible for

the negative values observed before. The channels q → g+ q̄ → g (where we have only written the

parton tagged in the PDF and the parton tagged in the FF), seem to have the effect of decreasing

the cross section yielding a negative value for large p∗T . We found good agreement in the channel

g → g where the difference between the two was less than 5%.

In figures 6.18-6.19 we present one last comparison with the results in Ref. [54], using KKP and

CTEQ6.6 for the fragmentation functions and parton distributions respectively. The two predic-

tions agree much better than in the comparison with Ref. [68], which is expected since the matrix

elements were compared analytically in this case as it was mentioned in chapter 4.
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dQ2 with the AKK set of FFs compared to the experimental data from H1 [66].
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dQ2 with the KKP set of FFs compared to the experimental data from H1 [66].
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with the AKK set of FFs compared to the experimental data from H1 [67].
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dxB
with the KKP set of FFs compared to the experimental data from H1 [67].
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with the AKK set of FFs compared to the experimental data from H1 [67].
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dxB
with the KKP set of FFs compared to the experimental data from H1 [67].
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dxB
comparing our results and the ones obtained using the code by Daleo et al. [68],

for the same kinematic region as in the H1 data discussed using KKP, CTEQ6.6 and nf = 4.
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Figure 6.13: Comparison with the paper by Daleo et al. at NLO

84



6.1. Inclusive production of π0 in neutral current DIS Chapter 6

 0.0001

 0.001

 0.01

 0.1

 1

 4  6  8  10  12  14

dσ
/d

p T
*

pT
*

2<Q2<4.5
-1.0<η<1.0

Daleo NLO
Mine NLO

 0.0001

 0.001

 0.01

 0.1

 1

 10

 4  6  8  10  12  14

dσ
/d

p T
*

pT
*

2<Q2<4.5
-10<η<10

Daleo NLO
Mine NLO

Figure 6.14: Comparison with the paper by Daleo et al. at NLO for different ranges of η.

85



Chapter 6 6.1. Inclusive production of π0 in neutral current DIS

 0.0001

 0.001

 0.01

 0.1

 1

 4  6  8  10  12  14

dσ
/d

p T
*

pT
*

15<Q2<70
-1.0<η<1.0

Daleo NLO
Mine NLO

 0.0001

 0.001

 0.01

 0.1

 1

 10

 4  6  8  10  12  14

dσ
/d

p T
*

pT
*

15<Q2<70
-10<η<10

Daleo NLO
Mine NLO
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comparing our results and the ones in Ref. [54], for the same kinematic region

as in the H1 data discussed.
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comparing our results and the ones in Ref. [54], for the same kinematic region

as in the H1 data discussed.
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6.2 Inclusive production of D∗± in neutral current DIS

In the same fashion as before, we can also make a comparison with data from D∗± production by

the H1 collaboration. Although in this work we have made a massless calculation, it is possible

to use a set of fragmentation functions describing the final state D∗± and use the same code to

produce cross sections and compare those to the data. For this purpose we have used two sets of

FFs, the KKKS08 [69] and the KKS05 [70] sets.

First, we will compare our predictions to the data in [71], where the DIS region covered was

2 ≤ Q2 ≤ 100 GeV2 and 0.05 ≤ y ≤ 0.7. As usual, we take CTEQ6.6M NLO as our default

PDF set, and the scale µ2
r = µ2

i = µ2
f = Q2 + (p∗T )2. These data have some other kinematic cuts

such as pT ≥ 1.5 GeV, |η| ≤ 1.5, and most importantly in our calculation, p∗T ≥ 2 GeV, since our

calculation is only valid for finite values of p∗T i.e. the value of p∗T can not go all the way down to

zero, it must have a cut.

Our results are presented in figures 6.20, 6.22 and 6.24 for the results with KKKS08 and in figures

6.21, 6.23 and 6.25 for the results with KKKS05. The cross sections were calculated differentially in

Q2, pT and xB , considering the kinematic cuts mentioned in the previous paragraph and as usual,

we display the theoretical uncertainty by a variation in the scale used. Here our NLO results

describe the data quite well for both sets of FFs, except for high xB and Q2 where our predictions

overshoot the data. The LO predictions do not describe the data and the K factor is found to be

around 2 for all cross sections. Furthermore, the results for both sets of FFs are rather similar,

with small deviations between them at high pT .

More recent precise data was analyzed recently by the H1 collaboration for a wider range in

Q2 and pT . At low Q2, the kinematic region in Ref. [72] was 5 ≤ Q2 ≤ 100 GeV2, 0.02 ≤ y ≤ 0.7,

pT ≥ 0.8 GeV, |η| ≤ 1.9 and p∗T ≥ 2 GeV. Our results for this comparison are shown in figures

6.26-6.31, where we have calculated the differential cross section in Q2, pT and p∗T for the two

available sets of fragmentation functions as we did for the other set of data. Our results here also

agree with the data within the error for all cross sections except at low values of pT , where our

calculation is not reliable.

The last set of data we can use for comparison is for high Q2, and can be found in Ref. [73].

The kinematic range here is 100 ≤ Q2 ≤ 1000 GeV2, 0.02 ≤ y ≤ 0.7, pT ≥ 1.5 GeV, |η| ≤ 1.5

and p∗T ≥ 2 GeV. In this case our predictions do not describe the data very well. Although they

all present the behaviour shown by the data, our values are larger than the data for all four cross

sections shown, as functions of Q2, pT , xB and p∗T (figures 6.32-6.35). We have carried out this
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calculation for two different sets of scales, one with µ2 = Q2+p∗2T and the other with µ2 = Q2+m2
c,

obtaining similar results in both. The reason for this disagreement might be connected with the

fact that the measurements are made in the HERA laboratory system and to compare with our

calculations a transformation of the data to the γ∗p c.m. system was necessary.

6.3 Charged and neutral current contributions

Unfortunately, there are no data available for single hadron production at high enough Q2 for

us to see any effect caused by the Z boson in this comparisons. However, we can extrapolate

the kinematic region to high Q2. In figure 6.36 we can see the cross section with and without a

contribution from the Z boson, and the ratio between these cross sections. At very high Q2 the

difference between the two could reach about 15 %.

We have the same for the charged current case, where there is no available data to compare

with, but again, we can define a kinematic region with large Q2 and make the calculation of these

cross sections. Our results are shown in figure 6.37, where we can see the cross section as a function

of Q2 for values of up to 40000 GeV2. We also show the scale variation and the K-factor for this

case. We can see from both results, W and Z boson contributions, how at very large Q2, the cross

sections in figures 6.36 and 6.37 approach each other.
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dQ2 with the KKKS08 set of FFs compared to the experimental data from H1 [71].
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Figure 6.21: dσD∗±

dQ2 with the KKS05 set of FFs compared to the experimental data from H1 [71].
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with the KKKS08 set of FFs compared to the experimental data from H1 [71].
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Figure 6.23: dσD∗±
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with the KKS05 set of FFs compared to the experimental data from H1 [71].
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with the KKKS08 set of FFs compared to the experimental data from H1 [71].
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with the KKS05 set of FFs compared to the experimental data from H1 [71].
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Figure 6.26: dσD∗±

dQ2 with the KKKS08 set of FFs compared to the experimental data from H1 [72].
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Figure 6.27: dσD∗±

dQ2 with the KKS05 set of FFs compared to the experimental data from H1 [72].
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Figure 6.28: dσD∗±

dpT
with the KKKS08 set of FFs compared to the experimental data from H1 [72].
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Figure 6.29: dσD∗±

dpT
with the KKS05 set of FFs compared to the experimental data from H1 [72].
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Figure 6.30: dσD∗±

dp∗
T

with the KKKS08 set of FFs compared to the experimental data from H1 [72].
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Figure 6.31: dσD∗±
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T

with the KKS05 set of FFs compared to the experimental data from H1 [72].
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Figure 6.32: dσD∗±

dQ2 with the KKKS08 set of FFs compared to the experimental data from H1 [73]

for high Q2. The dashed band represents our predictions and the solid band is the prediction

obtained with the program HVQDIS. The plot was provided by the H1 collaboration.

Figure 6.33: dσD∗±

dpT
with the KKKS08 set of FFs compared to the experimental data from H1 [73]

for high Q2. The dashed band represents our predictions and the solid band is the prediction

obtained with the program HVQDIS. The plot was provided by the H1 collaboration.
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Figure 6.34: dσD∗±

dxB
with the KKKS08 set of FFs compared to the experimental data from H1 [73]

for high Q2. The dashed band represents our predictions and the solid band is the prediction

obtained with the program HVQDIS. The plot was provided by the H1 collaboration.

Figure 6.35: dσD∗±

dp∗
T

with the KKKS08 set of FFs compared to the experimental data from H1 [73]

for high Q2. The dashed band represents our predictions and the solid band is the prediction

obtained with the program HVQDIS. The plot was provided by the H1 collaboration.
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result without the Z boson.
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dQ2 with the AKK set of FFs for the case of W exchange.
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Conclusions

We have calculated the inclusive single production of hadrons in neutral and charged current deep-

inelastic scattering at next-to-leading order using perturbative QCD to first and second order in αs.

To first order in αs, virtual and real corrections were calculated and checked against the results

in Refs. [44, 47–49]. A Monte Carlo program was implemented to obtain cross sections at NLO in

the M̄S scheme and compared to charged hadron production data from the H1 and ZEUS collabo-

rations [56,57,61,64,65]. Cross sections were normalized to the total cross section and our results

were presented in distributions of Q2 and the scaled momentum of the detected hadron xp. We

set the number of active quark flavours nf = 5, and used the CTEQ6.6M PDF set of Ref. [32] and

the AKK set of fragmentation functions [34] as our default to describe the initial proton and the

final hadron respectively. We used the CTEQ6.6M value Λ
(5)
QCD = 226 MeV, and the factorization

/ renormalization scale was chosen to be µ = Q.

Our predictions describe the data nicely in the scaled momentum distributions, where we have

also obtained agreement using the KKP [35] and Kretzer [36] sets of fragmentation functions. The

uncertainty due to the choice of FF set is largest at large xp, since the data from e+e− interactions

is most inaccurate and most scarce at large xp. We have also estimated the uncertainty introduced

by the choice of PDF set and scale by calculating our predictions using the MSTW set of PDFs [33]

and by varying the scale by a factor of two. The error due to the choice of PDF set is rather small

for all values of xp while the uncertainty from the choice of the scale is largest at the large values

of the scaled momentum. In general, increasing the scale steepens the drop in the cross section

with increasing xp.

The distributions in Q2 agree well with the ZEUS data in Ref. [61], except for at low Q2 they

overshoot at small xp and they undershoot at large xp. Except at the lower Q2 and smaller xp
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region, the AKK predictions tend to be closer to the Kretzer predictions than to the KKP ones.

The uncertainty due to the choice of PDF set for the proton is negligible. At smaller xp values, the

uncertainty with respect to the arbitrary scale choice become less relevant with increasing Q2, and

are unimportant for all Q2 at the other xp values. However, when comparing our predictions with

new data from both H1 [64] and ZEUS [65], our predictions fail to describe the data accurately,

especially in the lowest and highest bins in xp. The results for AKK and Kretzer remain quite

close, while the KKP set shows the largest deviation from these two. The uncertainty in the choice

of PDF is again negligible here and the uncertainty in the scale variation remains more or less

constant.

We also compared to these data our predictions including the Z boson contribution, expecting to

see some effect at high Q2, however, since all the cross sections are normalized to the total cross

section, where the effect is also present, it was impossible to distinguish between curves with and

without the Z boson contribution. Instead, we compared our cross sections without normalization

to see the effect of considering the complete neutral current cross section. The effect is found to

be as large as 30% for the highest Q2 bin and rather similar for all the bins in xp considered. We

also obtained cross sections for charged current DIS but unfortunately, there are no data available

to compare with.

To second order in αs, we have used the subtraction method described in [18] to calculate NLO

cross sections in the M̄S scheme and compare our predictions to data available from HERA. We

have calculated virtual corrections to neutral and charged current DIS processes and checked them

against published results in Refs. [43, 53, 54]. We also calculated the relevant real corrections and

in the case of virtual photon exchange, we were able to make an analytical comparison with the

amplitudes used in Ref. [54]. In the framework of the subtraction method, we calculated the inser-

tion operator I and the functions P,K,H for our particular case and implemented a Monte Carlo

program to obtain the NLO cross sections.

We compared our predictions with H1 data for π0 [66, 67] and D∗± production [71–73] , always

with the requirement of a lower cut in p∗T , essential in our calculation. As in the case of first order

in αs, we have chosen CTEQ6.6M and AKK as our default sets of PDFs and FFs respectively,

and nf = 5, Λ
(5)
QCD = 226 MeV, and the factorization / renormalization scale was chosen here as

µ2 = [Q2 + (p∗T )2]/2. In addition, in the case of D∗± production, we have used the KKKS08 set of

fragmentation functions [69], to describe the final state meson.

In the case of pion production, our NLO predictions agree with the data within errors, while they

significantly overshoot our default LO predictions. Indeed, the K factors always exceed unity and

even reach one order of magnitude at low values of p∗T , Q2, or xB. The theoretical uncertainties

in our NLO predictions due to scale variation are quite large, especially at low values of p∗T , Q2,
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or xB , where the K factors themselves are large, which is partly related to the opening of new

partonic production channels at NLO, which are absent at LO. The uncertainty in the choice of

PDF set was always negligible and predictions using the KKP set of FFs returned lower values

but always within the experimental errors. We were also able to compare with the calculation of

Ref. [68], where we found agreement for the main channel g → g, but we found disagreement in

the q → q and q → g channels, that seem to have a problem in the code used in Ref. [68] since

they yield negative cross sections for large values of p∗T .

Our predictions seem to describe the data well for low Q2 in D∗± production, where we also studied

the effect of different sets of PDFs and FFs that, as before, do not contribute to the theoretical

uncertainty. We also showed the effect of a scale variation, to have an idea of the theoretical error

in our predictions. At high Q2, the predictions seem to describe the shapes of the data distribu-

tions but not their values. Our predictions seem to overshoot the data in most cases. Finally, we

presented our cross sections for neutral current (including the Z boson contribution) and charged

current DIS in the hypothetical case of pion production. However, there are no data available at

the appropriate ranges in Q2 to be able to see any effect due to these contributions.
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