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Abstract

The discovery of graphene and other two-dimensional crystals opens up new per-

spectives for the performance of future nanoelectronics. Graphene-based nanosys-

tems of atomic thickness reveal unknown physical phenomena and hold out the

prospect for a multitude of applications. Recently, research focus has been ex-

tended towards other two-dimensional crystals and their combinations into atom-

ically thin heterostructures.

This thesis is devoted to a theoretical investigation of realistic nanoelectronic sys-

tems based on two-dimensional crystals. To this end, density functional theory

and related techniques are applied to take into account correlation effects such as

van der Waals interactions or local Coulomb repulsions. Complemented by effec-

tive tight-binding models and continuum mechanics, the electronic and structural

properties of graphene/boron nitride heterostructures are in this way comprehen-

sively studied. It turns out that interactions and potentials on multiple length

scales coexist in such compounds. Due to lattice mismatch, moiré superstructures

are formed, which reduce the spectral band gap. In graphene/molybdenum disul-

fide hybrids, doping mechanisms can be exploited for photovoltaic applications.

By considering realistic disorder effects from impurities to structural distortions, a

multifaceted picture of the physics of heterostructures is obtained.

The impact of graphene on the properties of metallic substrates is a further inte-

gral part of this thesis. Graphene drastically modifies the surface states of weakly

and strongly bound metal substrates. It is demonstrated that metal substrates

reduce the visibility of graphene states in scanning tunneling microscopy experi-

ments. In the case of nickel substrates, a spin contrast inversion is induced in the

vacuum. Magnetic impurities, such as nickel clusters on graphene, exhibit a char-

acteristic multipeak structure in x-ray absorption spectra, which explains why the

magnetization and correlation effects within the clusters are tunable in a controlled

manner.

Finally, the feasibility of two-dimensional magnetic materials will be discussed. A

material (K2CuF4) is proposed which fulfills all criteria for the first-time fabrication

and investigation of a truly two-dimensional ferromagnetic crystal. This would

not only yield fundamental insights into the physics of magnetic two-dimensional

systems, but also facilitate numerous applications, such as spin-polarized electrodes

in heterostructures.



Zusammenfassung

Die Entdeckung Graphens und anderer zweidimensionaler Kristalle eröffnet neue

Perspektiven für die Leistungsfähigkeit zukünftiger Nanoelektronik. Graphen-

basierte Nanosysteme atomarer Dicke bringen unbekannte physikalische Phänomene

zu Tage und stellen dank Graphens einzigartigen elektronischen und mechanisch-

en Eigenschaften eine Vielzahl an Anwendungen in Aussicht. In jüngster Zeit

sind auch andere zweidimensionale Kristalle und deren Kombinationen in atomar

dünnen Heterostrukturen ins Forschungsinteresse gerückt.

Diese Arbeit widmet sich einer theoretischen Untersuchung realistischer nanoelek-

tronischer Systeme, welche auf zweidimensionalen Kristallen basieren. Zu diesem

Zweck werden neben Dichtefunktionaltheorie verschiedene (verwandte) Techniken

angewandt, um Korrelationseffekte wie van-der-Waals-Wechselwirkungen oder lo-

kale Coulomb-Abstoßungen zu berücksichtigen. Ergänzt durch effektive Tight-

Binding-Modelle und Kontinuumsmechanik werden so die strukturellen und elek-

tronischen Eigenschaften von Graphen-Bornitrid-Heterostrukturen umfassend un-

tersucht. Dabei zeigt sich eine Koexistenz an Wechselwirkungen und Potentialen

auf unterschiedlichsten Längenskalen. Aufgrund von Gitterfehlanpassung werden

Superstrukturen ausgebildet, die die spektrale Bandlücke reduzieren. In Graphen-

Molybdändisulfid-Hybriden ermöglichen verschiedene Dotiereffekte eine Photovol-

taikanwendung. Durch die Berücksichtung realistischer Unordnungseffekte von

Störstellen bis Gitterverzerrungen ergibt sich ein facettenreiches Bild der Physik

in Heterostrukturen.

Der Einfluss von Graphen auf die Eigenschaften metallischer Substrate ist ein wei-

terer Bestandteil dieser Untersuchung. Graphen modifiziert sowohl auf schwach als

auch auf stark bindenden Metallsubstraten deren Oberflächenzustände drastisch.

Außerdem wird gezeigt, dass Metallsubstrate die Sichtbarkeit von Graphen-Zustän-

den in Rastertunnelmikroskopie-Experimenten reduzieren. Im Falle von Nickel-

Substraten wird eine Spinkontrastumkehr im Vakuum erzeugt. Magnetische Stör-

stellen, wie z.B. Nickel-Cluster auf Graphen, weisen charakteristische Spitzen in

Röntgenabsorptionsspektren auf, die erklären, warum magnetische Momente und

Korrelationseffekte in den Clustern kontrolliert manipuliert werden können.

Abschließend wird die Möglichkeit zur Realisierung von magnetischen zweidimen-

sionalen Materialien diskutiert. Es wird ein Material (K2CuF4) vorgeschlagen, das

alle Eigenschaften aufweist, um zum ersten Mal einen wirklich zweidimensionalen

ferromagnetischen Kristall herzustellen und zu untersuchen. Dadurch ergäben sich

nicht nur fundamentale Einsichten in die Physik magnetischer zweidimensionaler

Systeme, sondern auch zahlreiche Anwendungen, beispielsweise als spin-polarisierte

Elektroden in Heterostrukturen.
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1

Introduction

The continuous miniaturization of electronic devices within the past five decades

has great impact on everyday life. To date, the industrial fabrication of even

smaller, yet faster devices has been advancing on the basis of silicon transistors.

The limits, however, of silicon devices, technologically and fundamentally [1], will

inevitably be reached in the foreseeable future, which calls for essential changes

in the development of next-generation electronics. Progress in this field can be

achieved in unimaginably many ways, from the integration of new materials into

existing electrical devices up to the design of entirely novel architectures on the

nanoscale.

As a consequence of electric device miniaturization below the millimeter scale,

nanomaterials1 have gained in importance. Therefore, it is not surprising that

the 2004 discovery of graphene [2], the thinnest possible material with excep-

tional properties, gave rise to a new “gold rush” in condensed matter research.

Graphene, an atomically thin carbon layer, and many other two-dimensional

atomic crystals [3], which were reported shortly after, might herald a new era

for nanoelectronics. Huge efforts were taken by experimentalists and theorists

to explore graphene’s intrinsic properties in the past decade, and, according to

graphene discoverer A. Geim, “most of the low-hanging graphene fruits have

already been harvested” [4]. Indeed, to exploit the technological potential of

graphene and other two-dimensional materials, the next big step is to create the

conditions suitable for the fabrication of novel electronic devices, such as transis-

tors or photovoltaic cells, and to develop nanostructures with the goal to push the

1Materials between 10−6 and 10−9m in size
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1. INTRODUCTION

current performance limits. The development of nanodevices with novel 2D ma-

terials makes high demands on theoretical physicists: material-specific studies on

multiple length scales, unusual quantum phenomena to deal with, and predictions

of useful material combinations.

In fact, research focus has already started to go beyond graphene as a conse-

quence of tremendous experimental progress in sample preparation. Besides the

nowadays possible growth of graphene on an industrial scale [5, 6], a turning point

came in 2011 with the first reports on heterostructures constituted solely by 2D

crystals [4]. This initiated wide research interest in 2D crystals beyond graphene

and in 2D-based heterostructures, with some seminal achievements within just

few years, such as graphene-based tunneling transistors [7] and photovoltaic de-

vices [8]. Importantly, the experimental progress led to a drastic improvement of

the quality of graphene samples. As a result of ultra-high quality, some intrinsic

properties of graphene arising from many-body effects can now be observed in

experiments, which led to renewed efforts to study the complex many-body be-

havior of graphene electrons. Therefore, the recent development gives 2D crystals

and their combinations remarkable prospects for novel applications, and, simul-

taneously, turns these materials into exciting playgrounds to discover unknown

phenomena and to study fundamental properties of 2D electron systems.

The goal of this thesis is a theoretical investigation of realistic nanoelectronic

systems based on two-dimensional crystals, with an emphasis on the word “real-

istic”. This does not only comprise calculations of intrinsic material properties.

Moreover, realistic nanostructures are subject to environmental effects, such as

substrates, defects and strains, for which different techniques will be connected

with first-principles density functional theory. In this way, phenomena on various

length and energy scales can be captured, from classical continuum theory on the

mesoscale, over van der Waals interactions up to strong local correlations in im-

purities. The considered nanosystems range from graphene/metal interfaces and

impurity-contaminated graphene over 2D-based heterostructures to a prediction

of a magnetic 2D crystal.

The thesis is organized as follows: In chapter 2, a brief methodical overview

will be given, with an emphasis on density functional theory and extensions, such

as van der Waals methods and techniques for the treatment of strong Coulomb

interactions. Chapter 3 will be a short review on 2D crystal properties with a

special focus on graphene, which is the most frequently investigated material in

2



this thesis.

In the main part, beginning with chapter 4, two different graphene heterostruc-

tures will be discussed in detail: graphene/boron nitride and graphene/MoS2 hy-

brids. For the first system, the intricate consequences of moiré superstructures

for graphene’s electrons will be discussed. In order to judge stability properties

of these systems, an accurate treatment of van der Waals interactions is required,

which will be the basis of elasticity calculations. At the same time, physics on

scales above 10 nm require usage of tight-binding models, which will be employed

as well. Based on this setup, in addition defects in graphene/boron nitride inter-

faces will be investigated.

The same chapter will furthermore address applications and properties of gra-

phene/MoS2 interfaces in a joint experimental and theoretical investigation. The

impact of MoS2 edges on graphene’s electrons will be illuminated as well as im-

purity effects. Importantly, the investigated device has an application as a pho-

todetector.

Interfaces between graphene and metal surfaces will be studied in chapter

5. For graphene on magnetic Ni(111) and non-magnetic Ir(111), considerable

modifications of the surface properties upon graphene adsorption will be revealed.

A detailed study of graphene states in local probe scanning tunneling microscopy

(STM) experiments will be presented as well. It turns out that STM spectra of

graphene on metals require a careful interpretation due to invisibility of graphene

states in the vacuum. Local probe experiments are also the topic of chapter 6,

where Ni adatoms and clusters on graphene will be investigated. Simulations

of x-ray absorption spectra (XAS) will be carried out to analyze the magnetic

and electronic configurations of Ni clusters on graphene. It will be demonstrated

that magnetism and correlations are tunable in these clusters and depend on the

cluster size.

Finally, a prediction will be made about magnetism in 2D crystals (chapter

7). Ferromagnetism in 2D crystals has not been achieved so far. The motivation

of this chapter is to demonstrate the feasibility of 2D magnetic crystals with the

example of the perovskite material K2CuF4. It will be reasoned why 2D K2CuF4

fulfills all criteria to produce a 2D magnetic crystal: the bulk material exhibits

sufficiently low cleavage energies, which enables exfoliation down to the mono-

layer. Also, the chemical stability of 2D K2CuF4 will be shown to be sufficient.

The ferromagnetic coupling is high within the layer, with the consequence of a

3



1. INTRODUCTION

ferromagnetic ordering below 8 K. This seems to be in contrast to the Mermin-

Wagner theorem; however, the magnetic transition observable in 2D K2CuF4 is

not a second order transition, but a quasi-long range ordering effect due to the

so-called Kosterlitz-Thouless transition. Therefore, the material offers, besides

many possible applications in heterostructures, a promising way to study for the

first time a truly 2D magnetic system in experiments. The exciting prospects of

magnetic 2D crystals and the consequences of the Kosterlitz-Thouless transition

will be discussed as well.

List of publications

Some of the results in chapters 4 - 7 have previously been published as articles

in scientific journals. In many cases, figures shown in these chapters have been

copied from the original publications listed below. However, all chapters have

been rewritten and elaborate in detail the results, computational details, and

their interpretation. Therefore, all chapters can be understood without further

reading the papers of the following list.

• B. Sachs, L. Britnell, T. O. Wehling, A. Eckmann, R. Jalil, B. D. Belle, A. I. Lichtenstein, M. I.

Katsnelson, and K. S. Novoselov. Doping mechanisms in graphene-MoS2 hybrids, Appl. Phys.

Lett. 103, 251607 (2013)

• B. Sachs, T. O. Wehling, K. S. Novoselov, A. I. Lichtenstein, and M. I. Katsnelson. Ferromag-

netic two-dimensional crystals: Single layers of K2CuF4, Phys. Rev. B (Rapid Comm.) 88,

201402(R) (2013)

• T. Eelbo, M. Wasniowska, P. Thakur, M. Gyamfi, B. Sachs, T. O. Wehling, S. Forti, U. Starke,

C. Tieg, A. I. Lichtenstein, and R. Wiesendanger. Adatoms and Clusters of 3d Transition Metals

on Graphene: Electronic and Magnetic Configurations, Phys. Rev. Lett. 110, 136804 (2013)

• S. J. Altenburg, J. Kröger, T. O. Wehling, B. Sachs, A. I. Lichtenstein, and R. Berndt. Local

Gating of an Ir(111) Surface Resonance by Graphene Islands, Phys. Rev. Lett. 108, 206805

(2012)

• L. V. Dzemiantsova, M. Karolak, F. Lofink, A. Kubetzka, B. Sachs, K. von Bergmann, S.

Hankemeier, T. O. Wehling, R. Frömter, H. P. Oepen, A. I. Lichtenstein, and R. Wiesendanger.

Multiscale magnetic study of Ni(111) and graphene on Ni(111), Phys. Rev. B 84, 205431 (2011)

• B. Sachs, T. O. Wehling, M. I. Katsnelson, and A. I. Lichtenstein. Adhesion and electronic

structure of graphene on hexagonal boron nitride substrates, Phys. Rev. B 84, 195414 (2011)

• B. Sachs, T. O. Wehling, A. I. Lichtenstein, and M. I. Katsnelson. Chapter in Physics and

Applications of Graphene - Theory (InTech, 2011)
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2

Electronic structure for real

materials

2.1 Fundamentals

Before we dwell on different concepts for electronic structure calculations, we

briefly revise the underlying basic formulation of the quantum many-body prob-

lem in solid state physics. The derivations given throughout this chapter follow

(if not marked otherwise) the books of Fulde [9], Martin [10], Parr & Yang [11],

Pavarini et al. [12] and the review article by Jones and Gunnarsson [13]. The

fundamental equation of quantum systems in the non-relativistic limit is the

Schrödinger equation [14]

i~
∂

∂t
Ψ = HΨ, (2.1)

where ~ is the Planck constant, H the Hamiltonian and Ψ = Ψ(~r1, ~r2, ..., ~rNtot
, t)

the full many-body quantum wave function of Ntot particles as a function of all

particle positions ~ri and the time t (the spin is included in the index i). Our

theoretical understanding of electronic states in matter, thus, atoms, molecules,

and solids is commonly based upon solutions of this equation, and the particles

involved in these problems comprise nuclei (protons and neutrons) and electrons.

The kinetic part T of the Hamiltonian

H = T + V (2.2)

is defined as

T = −1

2

∑

i

~∇2
i −

1

2

∑

i

~∇2
I

MI

, (2.3)

5



2. ELECTRONIC STRUCTURE FOR REAL MATERIALS

which is the sum of the kinetic energy terms of electrons i at positions ~ri and nuclei

I at positions ~RI (we will use in the following Hartree atomic units ~ = me = e =

4π/ǫ0 = 1). MI ≈ 1836 is the nuclei mass. The second part of the Hamiltonian,

the total potential acting on all particles, is composed of three parts, namely the

nucleus-nucleus repulsion Vnuc−nuc, the electron-nuclei interaction Vnuc−e and the

electron-electron repulsion Ve−e:

V = Vnuc−nuc + Vnuc−e + Ve−e =
1

2

∑

I 6=J

ZIZJ

|~RI − ~RJ |
−
∑

I,j

ZI

|~RI − ~rj|
+

1

2

∑

i 6=j

1

|~ri − ~rj|
.

(2.4)

Thus, in contrast to high-energy physics, for any system the fundamental Hamil-

tonian is well-known; the remaining challenge for realistic systems is however the

solution of the resulting many-body problem. In the Hamiltonian, it is the poten-

tial term of Eq. 2.4 that in general renders invalid a wave function representation

in terms of Slater determinants. Despite the simplicity of the Hamiltonian, the

resulting many-body problem is impossible to solve exactly for the overwhelming

majority of realistic solids, molecules and even atoms, since the Hilbert space

dimension grows exponentially. Only systems with a few particles are possible

to compute exactly using “brute force” methods. In order to achieve a satisfying

description of materials, further approximations have to be applied in the solu-

tion of Eq. 2.1, and we present in the following some suitable techniques for the

efficient computation of material properties.

First, the many-body problem can be simplified by restricting to ground state

properties in the calculations. For the Hamiltonian 2.2, the eigenstates of Eq.

2.1 can be rewritten in terms of stationary solutions as Ψ(~r1, ~r2, ..., ~rNtot
, t) =

Ψ(~r1, ~r2, ..., ~rNtot
) exp−i(E/~)t, and the ground state of the system is the lowest-

energy solution of the time-independent Schrödinger equation [10]:

H |Ψ〉 = E |Ψ〉 , (2.5)

with |Ψ〉 the wavevector in Hilbert space (in bra-ket notation) and E the energy

eigenvalues of the Hamiltonian. This equation is frequently the starting point for

material simulations referred to as “electronic structure” calculations.

The tremendous efforts needed to solve Eq. 2.5 can be reduced by assessing

the role of individual terms in the Hamiltonian 2.2. One can see easily that

the second term of the kinetic part 2.3, which describes the kinetic energy of

nuclei, is small compared to the electronic term due to the factor 1/MI . In the

6



2.2 Density functional theory

Hamiltonian, this allows for a perturbation expansion around the small nuclear

kinetic term, and, based on this, effects such as electron-phonon coupling can

be effectively taken into account. For instance, electron-phonon interactions can

be of particular importance for the understanding of superconductivity in BCS

theory, or electron transport in metals [10]. For many systems, however, electron-

phonon coupling is small and we can apply the Born-Oppenheimer approximation

[15], which assumes that electrons rearrange quasi-instantaneously around the

ions, or, in other words, cores are considered as frozen. Technically, the kinetic

energy of nuclei is set to zero (MI → ∞) in the Hamiltonian and the full wave

function can be rewritten as a product of the electron and core wave function. In

the end, one considers a Hamiltonian restricted to electrons in an environment of

frozen ions,

H = −1

2

∑

i

~∇2
i −

∑

I,j

ZI

|~RI − ~rj |
+

1

2

∑

i 6=j

1

|~ri − ~rj|
, (2.6)

with eigenenergies E dependent on the positions of the nuclei. The Hamiltonian

2.6 usually defines the central problem to solve in electronic structure theory.

Note that the Born-Oppenheimer approximation still allows taking interaction

between nuclei into account: in a second step, one can finally compute the total

energy of the system as Etot = E + EI , with EI the classical interaction of ions.

Despite the alleviation through the Born-Oppenheimer approximation, the

Hamiltonian 2.6 is still by far too difficult to diagonalize exactly for any real

material of interest.

2.2 Density functional theory

An efficient scheme for the solution of the electron problem is the density func-

tional theory (DFT), which has become the work horse of computational con-

densed matter theory. In the following, some foundations and basics of DFT

will be presented. Before discussing commonly used implementations of density

functional theory, it is instructive to review the historical development of this

method, beginning with the pioneering work of Thomas [16] and Fermi [17] from

the 1920’s. In their independent works, Thomas and Fermi developed a con-

cept for calculations of ground state properties of atoms without incorporating

the full many-body wave function of the Hamiltonian 2.6. Typical ground state

7



2. ELECTRONIC STRUCTURE FOR REAL MATERIALS

properties of atoms, molecules and solids comprise equilibrium positions of atoms,

magnetic moments, and total energies, for instance. Instead of calculating the

wave function, Thomas-Fermi theory is a variational method for calculating the

ground state electron density ρ(~r). It is based on the minimization of an energy,

which is written as a functional of ρ(~r) as

ETF[ρ] = CF

∫

ρ5/3(~r)d3r +

∫

d3rVext(~r)ρ(~r)

+
1

2

∫

d3rρ(~r)VH + Cx

∫

d3rρ(~r)4/3.

(2.7)

The first term with CF = 3
10
(3π2)2/3 denotes the kinetic energy part and can be

derived from the kinetic energy of a classical homogeneous electron gas, where

the space-dependent Fermi momentum is given by

kF(ρ) = (3π2ρ)1/3, (2.8)

and, as a consequence, the local kinetic energy follows

T ∼ k5F. (2.9)

Hence, the kinetic energy of the actually inhomogeneous atom is approximated by

a quasi-classical expression for a uniform system of particles. This is one major

drawback of the Thomas-Fermi method compared to DFT, where the kinetic en-

ergy of an auxiliary system is treated exactly. Obviously, this local approximation

works well only in case of a smooth spatial variation of ρ(~r). The idea behind,

however, that an electronic quantity is expressed by a density functional with

local relations of the homogeneous particle system, constitutes the fundament of

modern DFT and will be discussed again in this chapter.

The second term in Eq. 2.7 incorporates the nuclei-electron interaction clas-

sically via Vext =
∑

I −ZI

r
(without any other external perturbation), and the

third term is an approximative expression for the electron-electron repulsion, the

classical Hartree energy, which determines the density ρ in the potential of all

other electrons. The Hartree potential reads as

VH(~r) =

∫

d3r′
ρ(~r ′)

|~r − ~r ′| (2.10)

and can be directly derived from the solution of the Poisson equation ∇2VH(~r) =

−4πρ(~r). The fourth term in Eq. 2.7 was not present in the original Thomas-

Fermi theory, but later complemented by Dirac [18] and captures an additional

local exchange interaction in the atom in the unpolarized case (Cx = −3
4
( 3
π
)1/3).

8



2.3 Ground states from density functionals

The ground state density ρ0(~r) is now obtained via variation of the functional

2.7,

δ

{

ETF[ρ]− µTF

(
∫

d3rρ(~r)−N

)}

= 0, (2.11)

whereby the Fermi energy µTF plays the role of a Lagrange multiplier, and N

originates from the constraint that the particle number remains fixed:

∫

d3rρ(~r) = N. (2.12)

Finally, introducing the total potential V (~r) = Vext(~r) + VH(~r) + Cxρ(~r)
4/3, we

end up with an Euler-Lagrange equation

1

2
(3π2)(2/3)ρ(~r)2/3 + V (~r)− µTF = 0. (2.13)

Two major shortcomings are responsible for the failure of Thomas-Fermi theory

in calculations of real materials: First, as mentioned above, the approximative

treatment of the kinetic energy, which breaks down in inhomogeneous atoms and

molecules, and furthermore, the insufficient inclusion of correlation effects despite

the local exchange correction of Dirac, which is still in use today in modern DFT.

However, conceptually, Thomas-Fermi theory comes close to DFT: The prob-

lem of calculating the ground-state wave function is avoided by reformulating the

problem in terms of the electron density, and a local approximation is used for

the unknown kinetic energy functional. In this fashion, the problem of computing

a wave function with 3N degrees of freedom is now, remarkably, reduced to the

calculation of the density ρ(~r), which depends on only 3 spatial coordinates.

2.3 Ground states from density functionals

Thomas-Fermi theory, the predecessor of DFT, is an approximative method to

compute the ground state density. Modern DFT is established by the seminal

work of Hohenberg and Kohn [19], who proved that the many-body problem can

be reformulated in an exact theory in terms of density functionals. Later, Levy

and Lieb found a general search formulation for the ground state density [20, 21].

Hohenberg and Kohn derived two theorems that establish a one-to-one corre-

spondence between the ground-state density and the ground-state wave function

and argued that all ground state properties may be considered as functionals of

9



2. ELECTRONIC STRUCTURE FOR REAL MATERIALS

the basic variable, the density. Their theorems apply for any system of interacting

particles in an external potential v(~r) which includes nuclei-electron interaction,

but is generally unknown:

H = T + V + Ve−e = −1

2

∑

i

∇2
i +

∑

i

v(~ri) +
1

2

∑

i 6=j

1

|~ri − ~rj|
. (2.14)

In short, the first Hohenberg-Kohn theorem states that the external potential

v in the Hamiltonian is uniquely determined by the ground state density ρ0(~r).

This allows rewriting the ground state energy, which is a functional of ρ and v,

as

Ev [ρ] = 〈Ψ|H|Ψ〉 =
∫

ρ(~r)v(~r)d3r + F [ρ] , (2.15)

where

F [ρ] = T [ρ] + Ve−e (2.16)

is a universal functional of ρ and independent of the external potential. It contains

the density functionals of the kinetic energy T [ρ], and the electron interaction

Ve−e of a so far unknown form. A definition of this term will be given later.

The second Hohenberg-Kohn theorem ensures the energy variation principle,

meaning that the minimum of Ev [ρ] is given by the ground state density ρ0(~r):

Ev [ρ] ≥ Ev [ρ0] . (2.17)

Both theorems can easily be proven (see, e.g., [10, 11]). Practically, however,

one gets into difficulties with the implementation of the variation principle. The

energy functional Ev [ρ], and in particular the universal functional F [ρ], are only

defined in terms of particle densities associated with the wave function of Hamilto-

nian 2.14, including some external potential v of any form. In this case, ρ is named

v-representable and the validity of the Hohenberg-Kohn theorem is restricted to

v-representable densities. This means, in practice, that only v-representable trial

densities are applicable, but the conditions for v-representability are unknown.

Even examples of single-particle densities were found [22] that cannot be associ-

ated with states of Hamiltonian 2.14.

This problem was solved by the aforementioned Levy and Lieb [20, 21], who

proved both theorems without restriction to a v-representable density and devel-

oped a method to calculate the ground state wave function from a given density.

While the density is easily calculated as the square of the wave function, the

10



2.3 Ground states from density functionals

inverse search for Ψ is less simple. This problem is solved by reformulating the

density functional theory such that the theorems are also valid in terms of N-

representability, which is a weaker condition. N-representable densities are all

densities obtained from anti-symmetric wave functions, fulfilling the mathemati-

cal conditions [11]

ρ(~r) ≥ 0,

∫

ρ(~r)d3r = N,

∫

|~∇ρ(~r)1/2|2d3r <∞. (2.18)

Now, it is necessary to distinguish the true ground state wave function Ψ0 from

all other wave functions Ψρ0 , which reproduce the same density as Ψ0, but do not

represent the ground state of the system. This is achieved by making use of the

minimum-energy principle

〈Ψρ0 |H|Ψρ0〉 ≥ 〈Ψ0|H|Ψ0〉 = E0, (2.19)

which can be rewritten as

〈Ψρ0|T + Ve−e|Ψρ0〉+
∫

v(~r)ρ0(~r)d
3r ≥ 〈Ψ0|T + Ve−e|Ψ0〉+

∫

v(~r)ρ0(~r)d
3r.

(2.20)

It follows directly that

〈Ψρ0|T + Ve−e|Ψρ0〉 ≥ 〈Ψ0|T + Ve−e|Ψ0〉 . (2.21)

Thus, the ground state wave function minimizes the energy, which also proves the

Hohenberg-Kohn theorem for N-representable densities, since the right term of

the above equation can be identified with the functional F [ρ] (Eq. 2.15). Stated

differently, this reveals a constrained-search definition,

F [ρ0] = 〈Ψ0|T + Ve−e|Ψ0〉 = min
Ψ→ρ0

〈Ψ|T + Ve−e|Ψ〉 , (2.22)

meaning that the minimum of the functional F [ρ] is found by varying over all

wave functions associated with the N-representable input density ρ0. Practically,

the ground state energy is then determined in a second step as a variation over

all trial densities:

E0 = min
ρ

{

min
Ψ→ρ0

[

〈Ψ|T + Ve−e|Ψ〉+
∫

v(~r)ρ(~r)d3r

]}

. (2.23)

This constrained-search formulation can be generalized in a way that allows deter-

mining equilibrium states in statistical ensembles considering finite temperatures.

11
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2.4 Kohn-Sham formalism

So far, we have shown that the many-electron problem can be dramatically re-

duced by introducing a universal energy functional of the density (Eq. 2.15),

which becomes minimal for the ground state density ρ0. Then, Thomas-Fermi

theory might be applied to calculate the ground state by varying this functional

with respect to the density. However, this incorporates the deficiencies of strong

approximations on the kinetic energy, which eventually lead to a failure of the

method for molecules and solids. In contrast, the constrained-search formulation

of the last section justifies the viability of density functional theory and offers in

principle a way to find the ground state by variation of all wave functions that

reproduce the same density. However, practically, how should one choose the

kinetic energy term T [ρ] and the interaction Ve−e? This question was ingeniously

answered by Kohn and Sham [23], who introduced an auxiliary system of non-

interacting particles to the problem, which allows in principle for an exact theory

of the ground state.

The Kohn-Sham (KS) auxiliary system is a reference system of independent

particles in a so far undefined external potential. In this system, electrons do not

interact with each other, which allows for an easy evaluation of the kinetic energy

as

Ts [ρ] =

N
∑

i

〈ψi| −
1

2
∇2|ψi〉 , (2.24)

with ψi the orbital of the i-th particle in the auxiliary system. In this special case

of non-interacting particles, the ground-state wave function has determinantal

character and the density can be calculated as

ρs(~r) =

N
∑

i

|ψi(~r)|2. (2.25)

Thus, the system consists of N orbitals with a filling of one electron in each

orbital. The wave function determinant reads as

Ψs =
1√
N !

det [ψ1ψ2 . . . ψN ] . (2.26)

Having introduced the auxiliary system, it must still be connected with the energy

functional F [ρ] (2.16), as it is defined by the Hohenberg-Kohn theorem. The

exactly evaluable kinetic energy of the auxiliary system 2.24 is not equal to the

12



2.4 Kohn-Sham formalism

kinetic energy of the interacting system. Therefore, we introduce an exchange-

correlation potential

Exc [ρ] = T [ρ]− Ts [ρ] + Ve−e [ρ]− VH [ρ] , (2.27)

with the first two terms being the kinetic energy difference between the auxil-

iary and the “true” system, and the last two terms the general electron-electron

interaction reduced by the classical electron repulsion, the Hartree energy

VH [ρ] =
1

2

∫

d3rd3r′
ρ(~r)ρ(~r ′)

|~r − ~r ′| , (2.28)

which is equivalent to the third term in the Thomas-Fermi energy 2.7. In this

fashion, the functional applied to Levy’s constrained-search formalism (Eq. 2.15)

can be rewritten as

F [ρ] = Ts [ρ] + VH [ρ] + Exc [ρ] . (2.29)

Only the exchange-correlation functional Exc is undetermined here and must be,

as will be shown later, suitably approximated. Applying the variational principle

to the total energy

E [ρ] = Vext [ρ] + F [ρ] =

∫

ρ(~r)vext(~r)d
3r + F [ρ] (2.30)

leads to
δE [ρ]

δρ(~r)
= vext +

δTs [ρ]

δρ(~r)
+
δVH [ρ]

δρ(~r)
+
δExc [ρ]

δρ(~r)
= µ, (2.31)

with the Lagrange multiplier µ originating from the constraint of a fixed particle

number (
∫

ρ(~r)d3r = N). We introduce the exchange correlation potential and

the Hartree potential,

vxc =
δExc [ρ]

δρ(~r)
, vH =

δVH [ρ]

δρ(~r)
=

∫

ρ(~r ′)

|~r − ~r ′|d
3r′, (2.32)

and finally merge the potential terms into an effective potential

vKS(~r) = vext(~r) + vH(~r) + vxc(~r). (2.33)

Thus, we obtain in the end N Schrödinger equations for N non-interacting par-

ticles
[

−1

2
∇2 + veff(~r)

]

ψi = ǫiψi, (2.34)

13
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Kohn-Sham cycle

Trial density: ρ(~r)

vKS(~r) = vext(~r) + vH(~r) + vxc(~r)

HKS = −1
2
∇2 + vKSρ(~r) =

∑N
i |ψi(~r)|2

HKSψi = ǫiψi

E[ρ] =
∫

ρ(~r)v(~r)d3r + T [ρ] + Vee[ρ] = min

Converged ground state properties

Figure 2.1: Scheme of the Kohn-Sham cycle. A trial density ρ(~r) is used to calculate

the effective Kohn-Sham potential vKS, and the calculation procedure is repeated (blue

arrows) until the density, which minimizes the total energy, is found (red arrows).

which are exact, although now in a Hartree form. This allows for a very efficient

numerical treatment of the problem. After solution of Eq. 2.34, one can recalcu-

late the density of the auxiliary system according to Eq. 2.25, which is equal to

the density of the interacting system, as long as all potential terms in Eq. 2.33 are

well-known. To determine the effective potential vKS, again a density is required,

and therefore, the problem is treated self-consistently by repeated solution of Eqs.

2.33, 2.34 and 2.25. This is illustrated in Fig. 2.1. The only quantity that has

to be approximated is the exchange-correlation potential, whose contribution to

the total energy is rather small. If it is approximated in a local form, the entire

effective potential becomes local, and the numerical efforts required to solve Eq.

2.34 are the same as for a Hartree system. The theory can be generalized to

account for spin-polarized systems w.l.o.g.

2.5 Local approximations to the exchange-correlation po-

tential

The lack of an exact exchange-correlation functional triggered huge research ef-

forts in the past decades. In their original work, Kohn and Sham [23] casually

delivered an approximation to the exchange correlation functional, which is today
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2.5 Local approximations to the exchange-correlation potential

widely used and, albeit simple, surprisingly well-performing. It basically follows

the concept of employing properties of the homogeneous electron gas to the en-

ergy functional, which we presented for Thomas-Fermi theory (Sec. 2.2). Here,

however, it will be applied to the exchange-correlation potential instead of the

kinetic energy, now expressed as

Exc [ρ] =

∫

ρ(~r)ǫxc [ρ] d
3r, (2.35)

with ǫxc the exchange-correlation energy per particle in a homogeneous gas of

particles with density ρ(~r). This functional is not uniquely defined, but its physi-

cal motivation can be deduced from the concept of the exchange-correlation hole

and the adiabatic connection, which we discuss in Sec. 2.7.1. In the case of an

uncorrelated system (independent-particle approximation), only exchange energy

enters in ǫxc, which can be approximated in a local, analytical form:

ǫx(ρ) = −3

4

(

3

π

)1/3

ρ(~r)1/3. (2.36)

Applied in this non-interacting limit, the method equals (up to a constant factor

of α = 2/3 in 2.36) the so-called Xα method, which is a method for determining

Hartree-Fock eigenstates in inhomogeneous electron systems [24] by a local ap-

proximation to the exchange energy. For further processing, Eq. 2.36 is used to

calculate the exchange-correlation potential

vLDA
xc (~r) =

δELDA
xc

δρ(~r)
= ǫxc [ρ] + ρ(~r)

δǫLDA
xc

δρ
, (2.37)

which in the non-interacting system becomes

vLDA
x (~r) = −

(

3

π
ρ(~r)

)1/3

. (2.38)

The more convenient form

ǫxc [ρ] = ǫx [ρ] + ǫc [ρ] (2.39)

takes correlation of particles into account. The correlation part in the local

density approximation (LDA) cannot be analytically evaluated, but is has been

precisely determined using quantum Monte Carlo (QMC) techniques [25] and in-

terpolation [26]. The approximation to the exchange-correlation energy by means
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of the homogeneous electron gas completes the Kohn-Sham cycle from a technical

point of view. It is clear how all terms in the Kohn-Sham equation have to be

evaluated, and the only approximation required for determination of the ground

state is absorbed in the exchange-correlation part of the total energy.

The LDA offers a high-quality description of solids, but naturally runs into

difficulties with strongly correlated systems. Typical examples are, for instance,

transition metal oxides and a long list of perovskite materials. Another defi-

ciency of the LDA is the low performance in chemical applications. Mostly, LDA

overestimates bonding energies dramatically (on the order of 1 eV), which makes

it difficult to obtain energetics of molecule formation in chemistry. Ionization

potentials are also not reproduced in LDA. Due to all these deficiencies, many

exchange-correlation functionals have been developed to this date. Some of them

rely on the original LDA, such as the local spin density approximation (LSDA),

which includes spin-polarization and is superior to LDA. An instructive overview

over all functionals is the “Jacob’s ladder” [27], which depicts the development of

the “zoo” of density functionals, including different flavors and parametrizations.

A first step upwards in Jacob’s ladder and a natural extension of the LDA is a

less local form of the exchange-correlation functional. A today widely used semi-

local approximation is the generalized gradient approximation (GGA), which

widened the range of applications drastically, in particular in chemistry. The

GGA is a concrete form of the gradient expansion approximation (GEA) [23].

First implementations of the GEA tried to take higher order terms of a Taylor

series in density gradients into account [28]. This ansatz, however, was shown to

yield unreliable results. The reason can be found from a comparison between the

fully interacting and the non-interacting auxiliary system. From the fully inter-

acting Hamiltonian as defined in Eq. 2.14, we easily derive that the exchange-

correlation potential vxc(~r) is given by the difference between the full interaction

potential vint(~r) and the classical electron-electron repulsion, the Hartree poten-

tial vH(~r). In analogy to vH (Eq. 2.10), we can define the potential energy vint(~r)

(per electron) via Eint =
∫

vint(~r)ρ(~r)d
3r. It seems intuitive to grasp vint again

as a density-dependent quantity [29] since it describes the interaction between

an electron and the surrounding charge cloud. Here, however, one should bear

in mind that the electron itself strongly interferes with the electron distributions

around it due to quantum effects. Thus, there is a conditional density for an
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2.5 Local approximations to the exchange-correlation potential

electron at position ~r, ρ(~r ′|~r) [29], that defines the interaction potential

vint(~r) =
1

2

∫

d3r′
ρ(~r ′|~r)
|~r − ~r ′| . (2.40)

The conditional probability is defined as

ρ(~r ′|~r) = N(N − 1)
∫

d3r3...
∫

d3rNΨ
∗(~r, ~r ′, ~r3, ...~rN )Ψ(~r, ~r ′, ~r3, ...~rN )

N
∫

d3r2
∫

d3r3...
∫

d3rNΨ∗(~r, ~r2, ~r3, ...~rN)Ψ(~r, ~r2, ~r3, ...~rN )
=
ρ(~r, ~r ′)

ρ(~r)
,

(2.41)

where the electron pair density constitutes the enumerator and the electron den-

sity the denominator. Then, we can write the exchange-correlation potential as

vxc(~r) = vint(~r)− vH(~r) =
1

2

∫

d3r′
ρ(~r ′|~r)− ρ(~r ′)

|~r − ~r ′| , (2.42)

and define the exchange-correlation hole

ρxc(~r, ~r
′) = ρ(~r ′|~r)− ρ(~r) (2.43)

to obtain an integral form for vxc(~r) similar as for vint and vH. Physically, the

exchange-correlation hole takes into account the simple fact that a classical pic-

ture is not valid any more for electrons. For example, due to the Pauli exclusion

principle, an electron at position ~r does not allow for a second electron located

at the same position (with the same spin) and affects electrons at ~r ′. In other

words, each electron creates a depletion (hole) around it. Integration over the

exchange-correlation hole yields a relation, which is referred to as sum rule,
∫

ρxc(~r, ~r
′)d3r′ = −1. (2.44)

From a further coupling constant integration, the exchange-correlation hole can

be directly related with the Kohn-Sham exchange-correlation functional (see Sec.

2.4). This has important implications on the performance of the proposed GEA

functionals. It turns out that the original realization of the GEA violates the

sum rule for the exchange-correlation hole [30], while the LDA and Hartree-Fock

fulfill these by definition.

This drawback could later be overcome by introducing a cutoff for higher

order gradient contributions [31], which established the nowadays widely used

generalized gradient approximation (GGA). For all flavors of GGA functionals,

their general form is assumed as

EGGA
xc [ρ] =

∫

f(ρ(~r),∇ρ(~r))d3r, (2.45)
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with f(ρ(~r,∇ρ(~r)) to be defined suitably. The today most commonly used GGA

implementation is the one developed by Perdew, Burke, and Ernzerhof (PBE-

GGA) [32], which will be utilized for some calculations in this thesis. Another

approach employed later will be the one by Perdew and Wang (PW91) [33], and

many more GGA flavors might be listed here (e.g., B88 [34], rPBE [35]). The

main difference between the schemes lies in the slightly different calculation of

the exchange energy. For chemical purposes, such as calculations of atomization

energies, all GGA flavors are superior to the LDA. This is because the GGA

exchange-correlation energy per electron decays proportionally to the inverse dis-

tance at large distances, while it falls off exponentially in the LDA [12]. Hence,

GGA cures LDA’s affinity to overbind atoms in molecules, and is better suitable

to reproduce binding energies in chemistry.

Higher-order derivative GEA methods, such as the meta-GGA [36], contain

the second derivative of the density as well. There exist furthermore so-called

hybrid functionals, which combine the exact exchange from Hartree-Fock theory

with an exchange and correlation functional as GGA/LDA (e.g., B3LYP [37, 38]).

The relative weight of terms is then determined by fits to the experiments. Going

further upwards in Jacob’s ladder leads finally to computationally demanding

techniques, which are not based at all on homogeneous electron gas properties.

2.6 DFT in practice

The Kohn-Sham formalism, together with a suitable approximation to the ex-

change-correlation functional, such as the LDA or GGA, eventually enables cal-

culating the ground state density of a real material. In practice, there are some

more factors to bear in mind. First of all, an appropriate choice of the basis set

has to be made. The basis set in a solid should meet various demands at once

[12, 39]: near the core of an ion, the core potential is large and varies rapidly,

and consequently, the wave function oscillates as well. The sensitivity to the

chemical environment is weak in the core region, and the oscillations are due to

large kinetic energies. In solids, bonds are formed between ions, and the nature of

the bond formations determines the structure, stability and electronic properties.

In the interstitial regions, thus, between ions and far away from the cores, the

wave function is rather smooth and very responsive to the environment. Thus,

large basis sets are required in the core region, while a small number of, e.g.,

18



2.6 DFT in practice

plane waves, is sufficient between the ions. Some basis set implementations will

be discussed in this section1.

Local basis sets are widely used in quantum chemistry. A classic example is

the linear combinations of atomic orbitals (LCAO) method [40], which provides

an intuitive access to the wave function. The opposite ansatz is to choose a

plane wave basis set, which is completely delocalized in space. Due to Bloch’s

theorem [41], it is ensured that the Kohn-Sham orbitals in reciprocal space can

be expanded in plane waves

ψ~k(~r) =
∑

~G

c~k+ ~Ge
i(~k+ ~G)~r, (2.46)

with ~G the reciprocal lattice vector and the Fourier coefficients c~k+ ~G. In practice,

the infinite sum over ~G must be truncated in order to keep the basis set finite,

thus, a kinetic energy cutoff is introduced,

~
2

2m
|~k + ~G|2 < Ecut, (2.47)

which is justified by the fact that the coefficients c~k+ ~G decrease in weight for

large ~G. Furthermore, for numerical implementation, the wave function 2.46

is computed for a discrete set of ~k points. The finite number of plane waves

and ~k points requires a careful convergence with respect to both in calculations.

Especially in proximity to the nuclei, a large number of plane waves is needed

due to the rapid oscillation of the core potential. A plane wave basis allows for

the evaluation of the KS equation 2.34 in reciprocal space, leading eventually to

a matrix equation

∑

G′

[

1

2
|~k + ~G|2δ ~G~G′ + v( ~G− ~G′) + vH( ~G− ~G′) + vxc( ~G− ~G′)

]

cn,~k+ ~G′ = ǫncn,~k+ ~G

(2.48)

being solvable via diagonalization.

2.6.1 Augmented Waves

Plane waves as such are not the ideal choice to capture the core wave function,

and already in 1937 Slater proposed a method to overcome this issue, known as

1In this section and included subsections, derivations follow the books by Pavarini et al. [12] and

Martin [10].
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the augmented plane-wave method (APW) [42]. It is based on the idea of a space

decomposition into the interstitial and the core region and the distinct definition

of the wave function in both regions. Thereby, the core region around each atom

is constituted by a sphere with a given radius, and a model potential is chosen,

mostly a spherical muffin-tin potential, which is constant in the interstitial region.

The partial waves within the sphere are energy-dependent in the original formu-

lation by Slater, but this obstacle was later overcome by Andersen [43] through a

linearization of the waves with respect to the energy. With this progress, APW

schemes become computationally reachable for realistic materials. In the original

formulation of the APW, the wave function was defined as [44]

Φ~G(~r) =







∑

L a
α~G
L uαl (r

′, ǫ)YL(~r
′), r′ < Rα

Ω−1/2 exp
(

i(~k + ~G)~r
)

, r ∈ I
, (2.49)

thus, as a plane-wave in the interstitial regions I, while within the sphere con-

sisting of two factors: the radial-symmetric function uαl (r
′, ǫ), which is a solution

of the radial Schrödinger equation at a given energy ǫ, and an angular-dependent

part, simply constituted by spherical harmonics (r and r′ are spherical coor-

dinates). Ω denotes the unit cell volume, and L includes the angular (l) and

magnetic (m) quantum numbers; the vector ~r ′ = ~r−~rα gives the position within

a sphere α of radius Rα. The coefficients aα
~G

L ensure the matching of the aug-

mented and the plane wave part at the sphere boundary. Inside the sphere, the

above-mentioned problem of energy-dependent wave functions impedes straight-

forward computation of the solution. This is because the energy ǫ must equal the

eigenvalue of the Kohn-Sham orbital, leading eventually to a non-linear eigenvalue

problem.

The resulting computational efforts can be massively reduced by the following

linearization,

Φ~G(~r) =







∑

L

[

aα
~G

L uαl (r
′) + bα

~G
L u̇αl (r

′)
]

YL(~r
′), r′ < Rα

Ω−1/2 exp
(

i(~k + ~G)~r
)

, r ∈ I
, (2.50)

thus, a linear combination of the radial function and its derivative u̇αl = ∂uαl /∂ǫ

evaluated at a fixed energy ǫi. The linear coefficients are adjusted such that the

basis function values and their derivatives are matched. In this way, the lin-

earized augmented plane waves (LAPW) method offers evaluation of the eigen-

states within one diagonalization. It is nowadays widely used in the solid-state
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community and provides several remarkable benefits [45], among them the pos-

sibility to go behind the muffin-tin approximation to a full-potential treatment.

A widely used LAPW code is the WIEN2k package [46], which will be utilized

for simulations presented in Sec. 6.1. It should be noted that the lineariza-

tion procedure facilitates another method, the linear muffin-tin orbital (LMTO)

method, by employment of a basis of Hankel and Neumann functions [43]. An-

other “byproduct” of the original APW method is a Green’s function technique

based on scattering-theory, today known as KKR method [47, 48].

2.6.2 Pseudopotentials

An entirely different ansatz to the basis set problem of wave functions is a rather

restricted treatment of the core potential. Due to the potential’s rapidly oscil-

lating nature around the nuclei, usually a large or complex basis set is needed.

However, the chemistry of solids is, in many cases, only marginally affected by

the core potential. The idea of the pseudopotential method is to replace the com-

plicated core potential, which encompasses large Coulomb interactions between

nuclei and electrons, by an effective, smoother ion potential. In this way, not

only large basis sets are avoided, but also the number of electrons to be treated

is reduced effectively. The potential is designed such that it accounts for the

reduced electrostatic attraction by the protons through Pauli repulsion. In its

most general form, the spherical pseudopotential reads as [49]

VPP =
∑

lm

|lm〉 Vl(r) 〈lm| , (2.51)

with 〈lm| denoting spherical harmonics and Vl the l-dependent pseudopotential.

The operator is called semi-local, as it is non-local in l and m but local in r. Yet

there exist local pseudopotentials that only depend on r.

The first ab initio construction of pseudopotentials based on atomic all-electron

wave function calculations was proposed in the late 70’s [50]. The so-called “norm-

conserving pseudopotentials” provide nodeless eigenfunctions in the core region

and reproduce scattering properties of isolated atoms to first order in energy.

Furthermore, the norm-conservation ensures that the charge within the atomic

sphere equals the charge of the corresponding atomic all-electron wave function.

The sphere boundary is determined by a cutoff radius, and the pseudo wave

function is constructed such that the augmented part and the interstitial part co-

incide at the cutoff radius. Thereby, the smooth pseudopotential makes a plane
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wave expansion appropriate and a much lower plane-wave energy cutoff is needed,

which reduces computational efforts drastically. More details on the construction

of pseudopotentials can be found in, e.g., Ref. [10].

In many cases, pseudopotentials provide an adequate description of molecules

and solids at reduced computational costs. This rendered possible the combina-

tion of molecular dynamics with electronic structure methods: ab initio molecular

dynamics [51] allow for simulations of dynamics and temperature effects beyond

the usual pair-potential approximation and offer ground state property calcula-

tions of large, disordered systems. This is achieved by an implementation of a

combined electronic and ionic Lagrange formalism, where electron dynamics are

included in a fictitious form.

Unfortunately, severe problems are faced with pseudopotentials for a large

number of systems, related to issues with the underlying construction scheme.

This is due to the problematic transferability of potentials of reference atoms

to a system of bound atoms in a solid or molecule. Energy transferability is

only viable in a finite energy window, in which the scattering properties of the

reference atom are reproduced by the potential. This issue can be improved

by a nonlinear core correction [52]. Another serious problem is about charge

transferability, meaning that the potential of an isolated atom can be a bad choice

to calculate the ground state wave function of atoms embedded in a molcecule or

crystal. For instance, systems with first-row elements or 3d transition metals have

strong pseudopotentials and require large basis sets, and it is hard to find balance

between computational costs and accuracy for these materials. A progress was

made by Vanderbilt [53], who released the norm-conservation constraint in his

pseudopotential construction scheme for an improved convergence with respect

to the basis set. This so-called “ultrasoft pseudopotential” method has some

relations with the PAW method [54], that is discussed in the next section.

2.6.3 Projector augmented waves

So far, we have introduced two distinct methods to implement core-electron in-

teraction: the augmented waves method, which aims to find a suitable basis set

for an unmodified Hamiltonian, and the pseudopotentials method, which is based

on reliable adaptions of the operators in the Hamiltonian. Blöchl showed that

one can unify the “best of both worlds” into the method of projector augmented

waves (PAW) [55]. Similar as Vanderbilts’s ultrasoft pseudopotential method, it
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is based on a combination of projectors and localized smooth auxiliary functions.

The main idea is a linear transformation between the true wave function and a

pseudo wave function1,

|ψ〉 = T |ψ̃〉 . (2.52)

The pseudo wave functions ψ̃ must thereby reproduce the true wave function

everywhere except in the core region that is represented by an augmentation

sphere around the nucleus (with index R):

T = 1 +
∑

R

TR. (2.53)

The local transformation operators TR motivate an expansion of the wave function

in all-electron (AE) partial waves |φi〉 within each augmentation sphere, which

we define in terms of pseudo (PS) partial waves |φ̃i〉 as

|φi〉 = (1 + TR) |φ̃i〉 . (2.54)

Then, the true wave function can be rewritten as

|ψ〉 = T |ψ̃〉 =
∑

i∈R

ci |φi〉 , (2.55)

with ci the expansion coefficients and the index i representing the atomic site R

and angular momentum quantum number (l, m). The pseudo partial waves |φ̃i〉
are claimed to coincide with the AE partial waves |φi〉 beyond a core radius rc

and ought to be complete within the augmentation area, thus,

|ψ̃〉 =
∑

i∈R

ci |φ̃i〉 , (2.56)

with the same coefficients ci as given for the full wave function 2.55. They can

be calculated using projection operators p̃i and the scalar product with the PS

wave function:

ci = 〈p̃i|ψ̃〉 . (2.57)

The projector functions can be deduced from the condition
∑

i |φ̃i〉 〈p̃i| = 1 since

a one-center expansion of the PS wave function must equal the full pseudo wave

function |ψ̃〉 within the augmentation sphere. This leads to the orthonormal

relation

〈p̃i|φ̃j〉 = δij . (2.58)

1We closely follow Blöchl’s original work [55] throughout this subsection.

23



2. ELECTRONIC STRUCTURE FOR REAL MATERIALS

Finally, we can rewrite the AE wave function in terms of the PS wave function

by joining Eqs. 2.55, 2.56 and 2.57 to

|ψ〉 = |ψ̃〉+
∑

i

(

|φi〉 − |φ̃i〉
)

〈p̃i|ψ̃〉 = |ψ̃〉+
∑

R

(

|ψ̃1
R〉 − |ψ1

R〉
)

, (2.59)

with a summation only over augmentation spheres in the last step, made possible

through the one-center wave function on site R,

|ψ1
R〉 =

∑

i∈R

|φi〉 〈p̃i|ψ̃i〉 , (2.60)

|ψ̃1
R〉 =

∑

i∈R

|φ̃i〉 〈p̃i|ψ̃i〉 . (2.61)

This is the central result of the PAW formalism with the transformation operator

correspondingly reading as

T = 1 +
∑

i

(

|φi〉 − |φ̃i〉
)

〈p̃i| . (2.62)

The three important components of the transformation operator are (1) a set of

AE partial waves |ψ〉, which can be obtained from the radial Schrödinger equation

of the free atom, the corresponding partial pseudo wave functions |ψ̃〉 (2), and

the projectors given above (3). These and the partial waves are computed as the

product of real functions and spherical harmonics. A convenient expansion of the

partial wave is done in plane waves.

Operators need to be transformed as well when it comes to practical applica-

tion of the PAW method, since, then, the PS wave functions are the variational

parameters and not the AE wave functions. An expectation value of an operator

〈A〉 =
∑

n fn 〈ψn|A|ψn〉 (n is the band index and fn the occupation) is thus given

in terms of a “pseudo” operator

〈A〉 =
∑

n

fn 〈ψ̃n|T†AT|ψ̃n〉 , (2.63)

which can be simplified for sufficiently local operators, such as the kinetic energy

operator, as

Ã = T
†AT = A+

∑

i,j

|p̃i〉
(

〈φi|A|φj〉 − 〈φ̃i|A|φ̃j〉
)

〈p̃j| . (2.64)
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This leads to a simplified expectation value (neglecting any contributions from

core states),

〈A〉 =
∑

n

fn 〈ψ̃n|A|ψ̃n〉+
∑

ij

Dij

(

〈φj|A|φi〉 − 〈φ̃j|A|φ̃i〉
)

, (2.65)

with the one-center density matrix

Dij =
∑

n

fn 〈ψ̃n|p̃j〉 〈p̃i|ψ̃n〉 . (2.66)

In order to apply the PAW method to DFT, the Kohn-Sham equations must be

transformed accordingly. To this end, one has to vary the DFT energy functional

with respect to the auxiliary wave functions. Since T is independent of the density,

one obtains a PAW Schrödinger equation with the transformed Hamilton operator

T
†HKST |ψ̃n〉 = ǫnTT

† |ψ̃n〉 (2.67)

with HKS the Kohn-Sham Hamiltonian as given in Fig. 2.1.

The electron density as the central quantity in DFT can accordingly be de-

composed into three terms, similar to the wave function (Eq. 2.59),

ρ(~r) = ρ̃(~r) +
∑

R

(

ρ1R(~r)− ρ̃1R(~r)
)

, (2.68)

as a sum over one-center densities inside augmentation regions R, with

ρ̃(~r) =
∑

n

fn 〈ψ̃n|ψ̃n〉 , (2.69)

ρ1R(~r) =
∑

ij∈R

Dij 〈φj|φi〉 , (2.70)

ρ̃1R(~r) =
∑

i,j∈R

Dij 〈φ̃j|φ̃i〉 . (2.71)

The total energy is equally decomposed of three summands, and its precise form

can be found in the original work by Blöchl [55]. Thus, in a nutshell, the PAW

method is an all-electron method with a computational efficiency close to the

pseudopotential method, and there is no need to construct the full wave function.

The method allows for a relatively simple implementation in existing pseudopo-

tential codes (as it is done in the VASP code). The PAW approach offers an

accuracy close to the full-potential all-electron LAPW method [54]; also, PAW

is superior to pseudopotentials for calculations of magnetic energies. For this

reason, it is nowadays widely used in DFT packages, such as VASP (see below).
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2.6.4 DFT packages

Most of the first-principles calculations presented in this thesis were performed

with the Vienna ab initio simulation package (VASP). It features both the PAW

and Vanderbilts’ ultrasoft pseudopotential method, and the wave function is ex-

panded using a plane-wave basis set. The plane waves allow for easy control of

convergence with respect to the basis set. Moreover, atomic forces and stresses

can be easily evaluated, which facilitates ab initio molecular dynamics calcula-

tions [56].

The Kohn-Sham problem is solved by means of an iterative minimization of

a residual vector

|Rn〉 = (H −E) |Ψ̃n〉 (2.72)

with the energy

E =
〈Ψ̃n|H|Ψ̃n〉
〈Ψ̃n|Ψ̃n〉

, (2.73)

where Ψ̃n is a trial wave function, that gets refined by adding a small amount of

the residual vector in each iteration:

|Ψ̃n〉 → |Ψ̃n〉+ λ |Rn〉 . (2.74)

The minimzation of a residual vector instead of the eigenvalues is computationally

efficient and does not involve orthogonality constraints. The trial wave vectors

span a subspace, in which the Kohn-Sham Hamiltonian is diagonalized. For this

purpose, the blocked Davidson (DAV) algorithm, the direct inversion in the iter-

ative subspace (DIIS) algorithm, and the conjugate gradient (CG) algorithm are

employed. The Davidson algorithm is, although slower than the DIIS algorithm,

mostly a good choice due to stable convergence. For ionic optimization, VASP

features different techniques to relax ion positions, namely, a DIIS, a CG, and

damped molecular dynamics algorithm. Detailed information on the algorithms,

the code implementation and the rich functionality of the VASP package can be

found elsewhere [54, 56, 57].

Another widely used DFT package1 is the full potential all-electron code

WIEN2k [46], which is based on the LAPW method. It is implemented in the

computationally efficient flavor “LAPW+local orbitals” (LAPW+lo) [58] with

1In this thesis, the WIEN2k package was used for XAS simulations of Ni adatoms on graphene, see

Sec. 6.1
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augmentations similar to the original LAPW scheme, but with a fixed lineariza-

tion energy in order to prevent non-linearity of the eigenvalue problem. Recom-

mendable reviews on the WIEN2k package are given in Refs. [44, 59].

2.7 van der Waals interaction in density functional theory

A major deficiency of the exchange-correlation functionals presented in Sec. 2.5

is their failure in the description of van der Waals interaction, an ubiquitous

phenomenon of long-range correlation in matter. The random phase approxima-

tion (RPA) to the correlation energy provides a natural inclusion of long-range

correlation [60] and can be seen as a many-body perturbation theory “on top”

of DFT. Evaluated in the framework of the “adiabatic connection-fluctuation

dissipation theorem” (ACFDT), the correlation energies offer a computationally

efficient description of structural properties of solids, including lattice constants

and atomization energies [61]. The ACFDT-RPA method “handles ionic, metal-

lic, and van der Waals bonded systems equally well” [60] and yields an excellent

description of (weak) molecular binding on metallic surfaces [62] and binding

energies in weakly bound layered systems, such as bulk graphite [63] and h-BN

[64]. Other methods will be briefly discussed in this section, too, such as van

der Waals-corrected functionals and (semi-)empirical van der Waals correction

techniques.

2.7.1 ACFDT-RPA total energies

We shortly reflect the idea behind the ACFDT and the computational imple-

mentation. The derivations follow Refs. [65] and [66]. Our starting point is the

following Hamiltonian, which looks similar to the Hamiltonian used in standard

KS-DFT, but exhibits some important coupling parameter 0 ≤ λ ≤ 1:

H (λ) = T + V (λ) + λVee, (2.75)

with Vee =
∑

i<j e
2/|~ri−~rj | the electron-electron interaction and V (λ) =

∑

i vλ (~ri)

a sum of local potential terms. For λ = 0 (non-interacting), we set V (0) =

v0 (~ri) = vKS (~ri), and the (non-interacting) KS-Hamiltonian is restored since

the electron-electron term Vee vanishes. Remember that, provided the exchange-

correlation energy is precisely known, the ground state of the KS-Hamiltonian

can be determined exactly. However, the exact form of the exchange-correlation
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energy for most realistic systems is unknown and must be approximated, e.g.,

by local approximations (such as LDA/GGA) which imply systematic errors in-

cluding self-interaction errors and a wrong description of long-range dispersions

[61]. The framework of ACFDT provides an alternative, yet exact, access to the

exchange-correlation energy. By switching the electron-electron interaction on

(λ > 0), we reformulate the Hamiltonian in a way that assures the density of the

interacting system to be the same as for the KS system (λ = 0). Therefore, we

require that V (λ) be conveniently chosen. Obviously, for the fully interacting

case (λ = 1), V (1) =
∑

i vext (~ri) (cf. Eq. 2.30).

For structural properties, we want to evaluate the total energy of the system,

which is the expectation value of the Hamiltonian:

E = 〈Ψ (λ) |H (λ) |Ψ (λ)〉 , (2.76)

with Ψ (λ) being the eigenstate of H (λ). For λ = 0, we end up with the KS total

energy,

E = Ts + EH + Eext + Exc (2.77)

while λ = 1 yields

E = 〈Ψ (1) |T + Vee|Ψ (1)〉+ Eext. (2.78)

The combination of Eq. 2.78 and 2.77 together with the Hellmann-Feynman

theorem yields (after some algebra) the Hartree exchange correlation energy [66]

EHxc =

∫ 1

0

dλ 〈Ψ (λ) |Vee|Ψ (λ)〉 , (2.79)

for which we can evaluate the total energy of the system (without the need to

explicitly construct the entire density matrix):

E = TKS + Eion−el + EHxc. (2.80)

Here, TKS denotes the Kohn-Sham kinetic energy and Eion−el the core-electron

interaction. After the adiabatic connection, we apply the fluctuation-dissipation

theorem [67], which we use to reformulate the Hartree exchange-correlation energy

by expressing the correlation part as a function of the density-density response

function

EHxc = EH [n] + Ex

[{

ψKS
i

}]

− Ec (2.81)

with

Ec =

∫ 1

0

dλ

∫ ∞

0

dω

2π
Tr
{

ν
[

χλ (iω)− χKS (iω)
]}

, (2.82)
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whereby χKS and χλ are the response functions of the non-interacting Kohn-

Sham system and of the interacting system, respectively. ν(~r − ~r ′) = e2

|~r−~r ′|
is

the Coulomb interaction. Both response functions can be related by a Dyson-like

equation, which reads in reciprocal space

[

χλ (~q, iω)
]−1

=
[

χKS (~q, iω)
]−1 −

[

λν(~q) + fλ
xc (~q, iω)

]

, (2.83)

with fλ
xc being the exchange-correlation kernel. This leads to an exact expression

for the correlation energy and therefore, the total ACFDT energy can then, at

least in principle, be evaluated exactly. Practically, however, we apply the random

phase approximation (RPA) by setting fλ
xc = 0. After this approximation, the

integration over λ can be performed analytically, leading after some algebra to

ERPA
c =

∫ ∞

0

dω

2π
Tr{ln

[

1− νχKS(iω)
]

+ νχKS(iω)}. (2.84)

In practice, the total energy calculation is now divided into two parts: First, the

KS/Hartree-Fock total energy is calculated according to the energy definitions

of Eqs. 2.80 and 2.81, with all terms included except for the correlation energy.

Finally, the total energy results from adding Ec (Eq. 2.84), which is calculated

using the response functions constructed from KS orbitals (for a definition of the

response function and more details, cf. again [65] and [66]).

2.7.2 Other methods for van der Waals interaction

The van der Waals density functional method (vdW-DF) [68] provides an inclu-

sion of non-local interactions directly in the exchange-correlation functional, in

contrast to the ACFDT-RPA method. The vdW-DF is based on a redefinition of

Exc in three terms [69],

Exc = EGGA/EXX
x + ELDA/GGA

c + Enl
c , (2.85)

where the first term is the exchange part either from GGA or in the “exact” form,

the second part the correlation treated locally within LDA or GGA, and, most im-

portantly, the last term, which includes non-local interactions in an approximate

form [70]:

Enl
c [ρ] =

∫

d3r

∫

d3r′ρ(~r)φ(~r, ~r ′)ρ(~r ′). (2.86)

It can be derived from a local approximation to the response function in the

framework of the adiabatic connection (Eq. 2.82, see [68]). The kernel φ is a
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general function of the density and its gradient. Different flavors of vdW-DF

have been proposed and proven to be a substantial improvement over LDA/GGA

for van der Waals dispersion in solids [70, 71] at low computational cost.

An alternative are interatomic vdW methods that have empirical character

to a certain degree. Typically, such methods are implemented in DFT codes for

simple, effective post-processing usage. An empirical method widely used is the

DFT-D method [72], which simply adds to the total Kohn-Sham energy a damped

potential term of interatomic long-range interactions:

Etotal = EKS + EvdW. (2.87)

The potential term in the formulation of Grimme [73] reads as

EvdW = −s6
Nat−1
∑

i=1

Nat
∑

j=i+1

C ij
6

R6
ij

fdmp(Rij), (2.88)

which is referred to as the DFT-D2 method. The DFT-D2 method will be used

for calculations of Sec. 5.3 and is implemented in the VASP code together with

the vdW-DF method. The double sum over Nat atoms contains two empirical

parameters for each atomic pair with the distance Rij . The first one is the

dispersion coefficient C ij
6 . The damping function, which avoids near-singularities

for small Rij ,

fdmp(Rij) =
1

1 + e−d(Rij/Rr−1)
, (2.89)

contains the other empirical parameter Rr, which is the sum of the atomic van

der Waals radii. Grimme [73] determined empirical parameters from experiments

and Hartree-Fock binding energies, but parameters can also be obtained from

different ground state theories to reduce the degree of empiricism [74, 75, 76].

The global scaling parameter s6 is optimized for the individual approximation

on the exchange-correlation functional (mostly LDA or GGA). Typically, the

correction is applied after convergence of the Kohn-Sham cycle (Fig. 2.1); from

the corrected total energy, interatomic forces are then calculated, such that the

geometry of the system can be optimized at very low computational costs and

accuracy similar to vdW-DF methods. However, compared to RPA, DFT-D2 is

inferior in performance due to the highly empirical character and the simplicity

of the method.
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2.8 Coulomb interactions in DFT

Another well-known failure of standard density functional theory occurs for strong-

ly correlated systems, thus, any type of electron interactions behind the Hartree-

Fock level. For real materials, this concerns usually open d and f shell systems,

i.e., transition metals, rare earth and actinide elements. In a correlated mate-

rial, electrons normally behave very differently than one-particle methods predict

(see, e.g., [77]). Some electrons, usually those from the s and p shells, exhibit

a wave-like character and are well-described in an independent-particle picture.

Such weakly correlated particles are rather delocalized over the solid and accu-

rately described within the flavors of density functional theory presented above.

In contrast, states from the d and f shell tend to localize around atoms and are

strongly affected by each other, e.g., through Coulomb repulsion. In this case,

electrons behave rather like particles, and methods such as LDA fail to describe

the effect of such strong correlations. In band structure theory, the small kinetic

energy of the states leads to narrow bands, and for open shell systems, these

states are present near the Fermi level. Thus, electronic correlations have impor-

tant implications on fundamental material properties, such as electrical and heat

transport or optical properties. A classic example for the collapse of LDA/GGA

is the emergence of the famous Mott insulating phase for transition metal oxides

such as NiO [78]. LDA/GGA and simpler band theories predict a purely metallic

phase of NiO in disagreement with the experiment. In the following, we briefly

discuss some methods suitable to take correlations in a real material simulation

into account, as far as this is possible.

2.8.1 DFT+U

The problems of DFT with strong correlations are not related with the gen-

eral scheme, but rather a consequence of an inadequate approximation to the

exchange-correlation energy, such as is done in the LDA or the GGA. A com-

putationally efficient correction to the energy functional is given by the DFT+U

method [79, 80, 81]. Thereby, the total Kohn-Sham energy is complemented by

two additional terms. Let us consider a system with localized d or f orbitals with

occupancy ni. Then, the Coulomb interaction can be approximated in a simple

31



2. ELECTRONIC STRUCTURE FOR REAL MATERIALS

Hubbard-like form1,

EDFT+U = EDFT + EU − EDC = EDFT +
1

2
U
∑

i 6=j

ninj −
UN(N − 1)

2
, (2.90)

where the second term describes the electron-electron interaction in a static mean-

field (at first, we neglect the exchange coupling). The last term subtracts the so-

called double counting energy, because the LDA already incorporates correlation

to some unknown extent. Therefore, the definition of the double counting term

is not unique; though, the term given here is reasonable under the assumption

that the total Coulomb energy, which depends on the total number of electrons

N =
∑

i ni in the correlated d or f shell, is well-approximated by the LDA. The

corresponding orbital energies are then given by

ǫi =
∂E

∂ni
= ǫDFT + U(

1

2
− ni). (2.91)

This is the basic idea behind DFT+U , and in the following, we briefly discuss

some connections with other methods presented so far. Interestingly, DFT+U is

indirectly related with the RPA method discussed in Sec. 2.7.1. This is because

DFT+U can be seen as an approximate form of the so-called “GW” method

[82], which is diagramatically equivalent to the RPA [83]. The GW method is a

Green’s function technique used to approximate the self-energy of the (reformu-

lated) many-body problem

H0Ψ(~r) +

∫

d~r1Σ(~r, ~r1, E)Ψ(~r1) = EΨ(~r), (2.92)

with H0 the Hamiltonian on a Hartree level, and Σ the energy-dependent self-

energy2. The precise form of the self-energy is of course unknown, but it may be

written in the GW approximation as

Σ(~r, ~r ′;ω) =
i

2π

∫ ∞

−∞

dω′G(~r, ~r ′;ω + ω′)W (~r, ~r ′;ω)eiδω
′

, (2.93)

with the screened Coulomb interaction

W (~r, ~r ′;ω) = v(~r − ~r ′) +

∫

d3r1d
3r2v(~r

′ − ~r1)P (~r1, ~r2;ω)v(~r2 − ~r ′). (2.94)

1The derivations and explanations given in this subsection follow closely the review by Anisimov

et al. [81]
2The energy-dependence is in the following expressed by the frequency ω
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P (~r1, ~r2;ω) denotes the full response function and v(~r) is the bare Coulomb in-

teraction. Given the spectral function A(~r, ~r ′;ω), which we express by means of

KS orbitals as

A(~r, ~r ′;ω) = −1

π
ImG(~r, ~r ′;ω)sgn(ω − µ) =

∑

kn

ψkn(r̃)ψ
∗
kn(r̃

′)δ(ω − ǫkn), (2.95)

we obtain the time-ordered Green’s function

G(~r, ~r ′;ω) =

∫ µ

−∞

dω′ A(~r, ~r
′;ω)

ω − ω′ − iδ
+

∫ ∞

µ

dω′ A(~r, ~r
′;ω)

ω − ω′ + iδ
. (2.96)

This allows for a separation of the self-energy in an exchange and a correlation

part,

Σ(~r, ~r ′;ω) = Σx(~r, ~r
′) + Σc(~r, ~r

′;ω), (2.97)

where the exchange part is evaluated with the help of the bare interaction

Σx(~r, ~r
′) = −

occ
∑

kn

ψkn(~r)ψ
∗
kn(~r

′)v(~r − ~r ′), (2.98)

and the correlated part consists of two separated summations, one over occupied,

and another over unoccupied states,

Σc(~r, ~r
′;ω) =

occ
∑

kn

ψkn(~r)ψ
∗
kn(~r

′)W−
c (~r, ~r ′;ω − ǫkn)

+
unocc
∑

kn

ψkn(~r)ψ
∗
kn(~r

′)W+
c (~r, ~r ′;ω − ǫkn).

(2.99)

The screening W±
c is defined as

W±
c (~r, ~r ′;ω) =

i

2π

∫ ∞

−∞

dω′

∫

d3r1d
3r2v(~r

′ − ~r1)P (~r1, ~r2;ω)v(~r2 − ~r ′)

ω + ω′ ± iδ
. (2.100)

In this form, the self-energy is reminiscent of the Hartree-Fock self-energy, but

with an energy dependence and unoccupied orbitals included. From this point of

view, GW is a generalization of Hartree-Fock theory. The following further ap-

proximations to the GW method yield the DFT+U scheme. The aim of DFT+U

is to give a self-energy correction to the localized states around the correlated

atom. These localized states must be at first separated from the delocalized
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states, so we consider the correlated self-energy of occupied localized states ψd

only,

〈ψd|Σc(ǫd)|ψd〉 = 〈ψdψd|W−
c (0)|ψdψd〉

+

occ
∑

kn 6=d

〈ψdψkn|W−
c (ǫd − ǫ)|ψknψd〉+

unocc
∑

kn

〈ψdψkn|W+
c (ǫd − ǫ)|ψknψd〉 ,

(2.101)

by cancelling the (small) terms of the second line and considering W−
c (0) only,

which can be shown to yield

〈ψd|Σc(ǫd)|ψd〉 ≈ 〈ψdψd|W−
c (0)|ψdψd〉 = −1

2
〈ψdψd|Wc(0)|ψdψd〉 . (2.102)

The same result follows for unoccupied states, but with a negative sign in Eq.

2.102. Then, their energy separation is

∆ = ǫHF
2 − ǫHF

1 + 〈ψdψd|Wc(0)|ψdψd〉 = 〈ψdψd|W (0)|ψdψd〉 , (2.103)

in agreement with the naive expectation ∆ = U ≈ W (0). Then, we can write the

self-energy correction to the DFT exchange-correlation energy as

∆Σ(~r, ~r ′; ǫd) = Σ(~r, ~r ′; ǫd)−EDFT
xc (~r)δ(~r − ~r ′). (2.104)

This correction is, as can be shown by further derivations, equivalent to the U

term in the DFT+U formula of the very beginning (see again Ref. [81]). Thus,

the DFT+U method is, for localized orbitals, an approximation applied to the

GW approximation itself, and, by definition, of Hartree-Fock-type. The general

total energy functional in the DFT+U method includes an exchange parameter J

and spin-polarized states and can be rewritten as a function of the density matrix

nσ
mm′ (in localized representation, with orbital index m and spin σ):

EDFT [ρσ(~r), {nσ
mm′}] = EDFT [ρσ] + EU [nσ]−EDC [nσ] . (2.105)

The interaction term is given by

EU [nσ] =
1

2

∑

mm′m′′m′′′,σ

[

〈mm′′|Vel−el|m′m′′′〉nσ
mm′n−σ

m′′m′′′−

(〈mm′′|Vel−el|m′m′′′〉 − 〈mm′′|Vel−el|m′′′m′〉)nσ
mm′nσ

m′′m′′′ ] ,

(2.106)

where Vel−el is approximated in terms of Slater integrals [84] in the spirit of the

LSDA.1

1To learn more about Slater integrals, see, e.g., Ref. [85].

34



2.8 Coulomb interactions in DFT

The double counting term, now more precisely defined than in Eq. 2.90, is

written in the “fully localized limit” [86],

EDC [nσ] =
1

2
UN(N − 1)− 1

2
J
[

N↑(N↑ − 1) +N↓(N↓ − 1)
]

, (2.107)

and yields the Coulomb energy of an isolated atomic shell (Nσ = Tr(nσ
mm′) and

N = N↑ +N↓). Another type of double counting is known as the “around mean-

field” (AMF) version [79]. It is based on the assumption of an average orbital

occupancy, thus, a diagonal density matrix, which turns out to be problematic for

many strongly correlated systems. Therefore, the FLL type of double counting

is widely used today and also in our calculations presented in Sec. 7 and 6.2.

2.8.2 DFT++

The DFT+U method, albeit highly successful in reproducing electronic and struc-

tural properties of correlated systems, is naturally restricted in its performance

when effects beyond static mean-field theory emerge in experiments. A classic

example is the Kondo effect [87], which is, as a dynamical effect, inaccessible

in DFT+U . A general scheme, called “DFT++” in the following, provides an

interface for the computationally feasible combination of the DFT and model

Hamiltonians.

Model Hamiltonians for strongly correlated electrons can be divided into two

main classes: quantum lattice models and quantum impurity models. For elec-

tron interactions in lattices, a simple looking, yet challenging example model

Hamiltonian is the Hubbard model [88, 89, 90] that can be heuristically derived

[12] by rewriting Hamiltonian 2.6 in second quantization,

Hint =
∑

ijσ

tijc
†
iσcjσ +

1

2

∑

ijkl
σ 6=σ′

Uijklc
†
iσc

†
jσ′ckσ′clσ, (2.108)

where Uijkl = 〈ij|Ve−e|lk〉, ci (c†i) annihilates (creates) a fermion, i, j, k, l rep-

resents the site and orbital index and σ the spin. In the most simple form, the

Hubbard interaction Uijkl and the hopping tij are assumed to be uniform, the hop-

ping integral only taken for nearest-neighbor sites. Furthermore, the Coulomb

interaction is adopted in its most local form, for two electrons on the same site

with opposite spin (due to Pauli’s principle) and only one orbital per site assumed.
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This can be condensed in a single-band Hubbard model

Hint = −t
∑

〈ij〉σ

c†iσcjσ + U
∑

i

ni↑ni↓, (2.109)

with niσ = c†iσciσ the particle number operator. Remarkably, the simplicity of

the model is sufficient to cover a broad range of properties in phase diagrams of

correlated systems, including metal-insulator transitions, and superconductivity

[12]. It can be analytically solved only in the one-dimensional case, and requires

huge efforts in computational handling. In infinite dimensions, the Hubbard

model 2.109 can be solved with numerical exactness by means of the “Dynami-

cal mean-field theory” (DMFT) [91], and this method is also widely used as an

approximation to the Hubbard model in two or three dimensions. Details about

DMFT can be found, for instance, in Refs. [12, 91, 92], it should merely be re-

marked that the DMFT is based on a mapping of the lattice problem onto an

Anderson impurity model.

The Anderson impurity model (AIM) [93] was designed to explain the behavior

of magnetic impurities in metallic hosts, and it is the prototype impurity model

to investigate the interplay of electron itinerancy and localized impurity states.

The competition of delocalized states and strongly correlated impurity states is

formulated in the AIM as

HAIM =
∑

kσ

ǫkc
†
kσckσ +

∑

kmσ

(

Vkmc
†
kσdmσ + V ∗

kmd
†
mσckσ

)

+Hlocal, (2.110)

whereby the first term describes the sea of conduction electrons with a k-dependent

dispersion and fermionic creation (annihilation) operators c†kσ (ckσ). The second

term denotes their hybridization Vkm with the impurity states, represented by

a Fermi operator dmσ with orbital index m and spin index σ (the site index is

no longer needed). The local part of the Hamiltonian encompasses states only

related with the impurity and is given by

Hlocal =
∑

mσ

ǫdmd
†
mσdmσ +

1

2

∑

mm′m′′m′′′

σσ′

Umm′m′′m′′′d†mσd
†
m′σ′dm′′σ′dm′′′σ, (2.111)

with the local impurity on-site energy ǫdm and the local Coulomb interaction

tensor Umm′m′′m′′′ . The model allows for investigations of Kondo physics, mag-

netic moment formation, and temperature effects on impurities, and it is widely

discussed in the literature (see, e.g., Ref. [12, 87]).
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The solution of an AIM, i.e., the computation of the local propagator, the

Green’s function of correlated systems, Gmm′(τ, τ ′) = −〈Tτdm(τ)d
†
m′(τ ′)〉, is chal-

lenging, as can be seen from the diversity of available impurity solvers. Besides

perturbative treatments, today frequently used are numerical methods, such as

the renormalization group [94] or exact diagonalization techniques [95]. Further-

more, there exist a number of quantum Monte Carlo techniques (QMC), such as

continuous-time quantum Monte Carlo (CT-QMC) [96], or Hirsch-Fye QMC [97].

After setting up a Hubbard model or an AIM, the decisive step in DFT++ is

the interfacing of the model Hamiltonian with the DFT one-particle Hamiltonian.

The literature on practical implementations of DFT++ is rich (cf., e.g., Refs.

[12, 98, 99, 100] and references therein), but in general, the characteristic DFT++

Hamiltonian reads, in analogy to Eq. 2.105,

HDFT++ = HDFT +HU −HDC, (2.112)

where the pure DFT Hamiltonian HDFT = ǫkc
†
kσckσ is complemented by an inter-

action and a double counting term. For an impurity, HU can be identified with

the interaction part of the local Hamiltonian Eq. 2.111, and the double count-

ing correction is due to some correlation included already in the DFT energy

functional:

HDC = µDC

∑

m,σ

c†mσcmσ (2.113)

In fact, the double counting correction is nothing but a shift of the chemical po-

tential of the interacting states, and it cancels the Coulomb energy contributions

from the pure DFT results. In analogy to Sec. 2.8.1, first the correlated subspace

is defined. Then, the double counting correction, which controls the filling of the

correlated orbitals, needs to be chosen properly.
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3

Two-dimensional crystals: an

overview

Isolated nanosheets with the thickness of an atom or a molecule are commonly

referred to as two-dimensional (2D) crystals. In experiments, these materials are

mostly exfoliated from their three-dimensional counterparts, i.e., from a van der

Waals solid, which can be considered as a large stack of weakly (van der Waals)

bound 2D layers. In fact, 2D crystals are much more than just the building blocks

of van der Waals solids. The past years of research in this young area proved the

outstanding prospects of 2D crystals for novel applications as well as the rich

diversity of unknown fundamental phenomena related with these materials. At

first glance, this development seems rather surprising with decades of precedent

research on materials such as bulk graphite, MoS2, and so on, which are nowadays

heavily investigated in their (isolated) 2D form. However, a brief look at the

widely varying properties of carbon allotropes, from diamond (3D) over carbon

nanotubes (1D) to fullerenes (0D) should be proof enough of the importance of

dimensionality for nanomaterials in general.

Research on 2D materials has rapidly developed into a vast field over the

past few years. Therefore, and due to the diversity of materials investigated in

this thesis, a brief overview of the most important members of the “family” of

2D crystals will be given in this chapter, with a special focus on their electronic

properties.
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3.1 Graphene

The research on two-dimensional crystals was initiated ten years ago with the

first isolation of carbon monolayers (“graphene”) from graphite crystals [2]. The

simple, yet ingenious idea to produce atomically thin carbon films by the mean-

while famous “scotch tape” method evoked an explosion of research effort in this

area, producing thousands of publications and patents each year. Graphene at-

tracts researchers and engineers of sundry backgrounds, and it unites a number

of unique properties. Albeit having a simple 2D lattice structure, graphene gen-

erates fundamental new questions in condensed matter physics and unpredicted

phenomena. Its quasi-relativistic behavior even attracts research interest in the

high energy physics community (“CERN on one’s desk” [101]). Besides all that,

possibly the most intriguing aspects of graphene research are about already re-

alized and future applications of this material, in various industry fields, from

flexible nanoelectronics over photovoltaics to composite materials (for a review

on the prospects of graphene, see Ref. [102]). These prospects are based on the

peculiar properties of this material. Some examples are its extraordinary stiffness

(interatomic bonds are harder than in diamond), a thermal conductivity at room

temperature exceeding 5000 W/m/K and a high visible light adsorption despite

its only atomic thickness. In the following, we will discuss some of the electronic

properties of graphene in detail.

3.1.1 Electronic properties

Carbon allotropes exhibit a large diversity of electronic properties, owing exclu-

sively to differences in their atomic structure. To understand graphene’s peculiar

electronic properties, it is instructive to begin this chapter with the lattice struc-

ture of graphene. The equations and annotations given in this section closely

follow the textbook of M. I. Katsnelson [101] and the review by A. H. Castro

Neto et al. [103].

The lattice geometry of graphene is depicted and discussed in Fig. 3.1. In

short, the graphene crystal is formed by a hexagonal honeycomb lattice, where the

C atoms are located in two equivalent sublattices. The ground state configuration

of the carbon atom is 1s22s22p2. Arranged in a honeycomb lattice, this leads

to formation of extremely robust σ (sp2) bonds in the plane, which give rise

to graphene’s high stiffness. The fourth electron is located in the pz orbital
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3.1 Graphene

Figure 3.1: Structure of Graphene. - Visualization of the graphene honeycomb lattice

from a top view in the left panel. Blue and yellow dots represent C atoms from the

A and B sublattice, respectively. The lattice is spanned by two vectors a1 = a
2
(3,

√
3),

a2 = a
2
(3,−

√
3) (a ≈ 1.42 Å is the nearest-neighbor distance). Each C atom is connected to

three nearest neighbors by the vectors δ1,2 = a
2
(1,±

√
3), δ3 = −a(1, 0). The corresponding

Brillouin zone (black solid line), including high symmetry points K = (2π
3a
, 2π

3
√
3a
), K ′ =

(2π
3a
,− 2π

3
√
3a
), and M = (2π

3a
, 0) together with reciprocal lattice vectors b1,2 = 2π

3a
(1,±

√
3),

is depicted on the right side. From [103].

perpendicular to the plane, and is entirely delocalized in the system. These π

states are the only states available near the Fermi level, and therefore responsible

for the electron transport. The peculiar shape of the π low-energy states can be

derived from a simple tight-binding model.

A low-energy tight-binding model for graphene was already formulated in 1947

by Wallace [104]. A simple (spin-degenerate) Hamiltonian considers only the

hopping of π electrons between neighboring sites, and between the next-nearest

neighbors, that are located within the same sublattice:

H = −t
∑

〈i,j〉

(

a†ibj + h.c.
)

− t′
∑

〈〈i,j〉〉

(

a†iaj + b†ibj + h.c.
)

(3.1)

with t (t′) the (second) nearest neighbor hopping, and ai (bi) the annihiliation

operator for an electron in the A (B) sublattice. (Double) braces in the sum index

denote summation over (second) nearest neighbors.

We first discuss the simplest case by allowing nearest-neighbor hopping only

41
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Figure 3.2: Band structure of graphene. - The plot shows the low-energy states of

graphene of the tight-binding model with second-nearest neighbor hopping included. A

close-up (inset) depicts the linear dispersion behavior around the K/K ′ point. From [103].

(t′ = 0). The Hamiltonian in reciprocal space then reads as

H(~k) =

(

0 tS(~k)

tS∗(~k) 0

)

, (3.2)

with ~k the reciprocal vector and

S(~k) =
∑

~δ

ei
~k~δ = 2 exp

(

ikxa

a

)

cos

(

kya
√
3

2

)

+ exp (−ikxa) . (3.3)

The Hamiltonian can be easily diagonalized, yielding an eigenvalue spectrum

E(~k) = ±t|S(~k)|, (3.4)

very similar to the one shown in the inset of Fig. 3.2. The most striking feature

of the graphene band structure is the linear dispersion behavior at the K and

K ′ points. In undoped graphene, the Fermi level is exactly positioned at the

crossing point, such that the valence band is fully occupied while the conduction

band is entirely empty. Thus, π and π∗ states touch in these single points only,

and in this sense the system can be seen as a semiconductor with a vanishing

band gap. In Fig. 3.2, the spectrum of the Hamiltonian 3.1 with non-zero t′ is
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shown. Switching on t′ induces breaking of electron-hole symmetry, hence, an

asymmetry between π and π∗ states. This does not modify the shape of states

close to the conical points but shifts the touching point away from E = 0 to

E = −3t′. The parameters t and t′ can be obtained from fits to first-principles

calculations or from experiments. LDA calculations yield roughly t ≈ −3 eV and

t′ ≈ 0.01 − 0.2t, depending on the concrete choice of the tight-binding model

[105].

The linear dispersion of low-energy states implies a chiral nature of graphene

states. To understand why, we expand the nearest-neighbor Hamiltonian 3.2 near

the K or K ′ point, to end up finally with a Dirac Hamiltonian,

HK = −i~νF~σ∇, (3.5)

for low-energy states at theK point andHK ′ = HT
K atK ′. ~σ = (σx, σy) is a vector

of Pauli matrices. If both sublattices and valleys are considered, the Hamiltonian

is composed of 4x4 matrices. We choose an appropriate basis

Ψ =











ΨKA

ΨKB

ΨK ′B

−ΨK ′A











, (3.6)

where the component contains two indices, the valley index K, and the sublattice

index. This basis set choice allows rewriting the Hamiltonian in a more symmetric

form as

H = −i~νFτ0 ⊗ ~σ∇, (3.7)

with τ0 the unit matrix acting on valley indices. The Hamiltonian of Eq. 3.5

can be identified with the Hamiltonian present in the massless Dirac equation of

fermions. An important difference is the parameter νF, which replaces the speed

of light c by a much smaller velocity: νF ≈ c/300. Thus, low-energy electrons

in graphene mimic the behavior of quasi-relativistic massless Dirac fermions and

phenomena of relativistic quantum mechanics can be observed in graphene, such

as the Klein tunneling. The term “massless” should not be mistaken for massless

electrons in band structure theory: For graphene, a linear dispersion relation

yields an effective mass of m∗ = 1
~2
(∂

2ǫk
∂k2

)−1 = ∞.

The Hamiltonian 3.2 times a plane wave reads in momentum space as H =
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~νF~σ~k, with eigenfunctions around the K point given by

ψ
(K)
e,h (~k) =

1√
2

(

exp
(

−iφ~k/2
)

± exp
(

iφ~k/2
)

)

, (3.8)

where φ~k = arctan
(

kx−Kx

ky−Ky

)

denotes the polar angle of k vectors around the

K point. The positive and negative signs correspond to π∗ and π states, thus,

states with positive and negative energy (electrons and holes): E = ±~νFk.

Analogously, around the K ′ point,

ψ
(K ′)
e,h (~k) =

1√
2

(

exp
(

iφ~k/2
)

± exp
(

−iφ~k/2
)

)

, (3.9)

for the Hamiltonian H = ~νF ~σ∗~k. States atK and K ′ are related by time-reserval

symmetry, as can be seen from the Brillouin zone in Fig. 3.1. Let the origin of

the reciprocal coordinate system be in the M point, then a reflection along the

kx axis is nothing else but a time reversal: (kx, ky) → (kx,−ky). The states given
in Eq. 3.8 and 3.9 also include a Berry’s phase, which means a negative sign for

a rotation of φ~k by 2π.

Now, we consider the projection of the momentum vector k on the spin in the

same direction, which is here the pseudospin. From the definition of the helicity

operator in quantum mechanics,

h =
1

2
~σ
~k

k
, (3.10)

we can immediately see that ψ
(K ′)
e,h and ψ

(K)
e,h are eigenstates of h:

hψ
(K)
e,h = ±1

2
ψ

(K)
e,h . (3.11)

Hence, for both, electrons and holes, a definite pseudospin orientation can be

found, which is positive (electrons) and negative (holes). Thus, Dirac states of

graphene exhibit a well-defined chirality, which is not defined with respect to

real spin of the electrons, but with respect to the pseudospin, and for low ener-

gies, where electrons and hole behave Dirac-like, the helicity is a good quantum

number.

The quasi-relativistic and chiral nature of graphene’s low-energy states mani-

fests in numerous exotic phenomena. Some of them will be mentioned in the next

subsection.

44



3.1 Graphene

3.1.2 Dirac electrons: experiments and applications

Some remarkable consequences of graphene’s quasi-relativistic electron behavior

were discovered in transport experiments. The chiral nature of Dirac states leads

to peculiar quantum Hall effects [106]. Fig. 3.3a shows the Hall conductivity

σxy and Hall resistivity measurements as a function of carrier concentration. As

in usual quantum Hall systems, electrons exposed to a magnetic field lead to

equidistant plateaus in the conductivity with a distance of 4e2

h
. However, a closer

look shows the presence of a “half-integer” quantum Hall effect [3, 107, 108],

namely, a finite conductivity at zero Landau level, and hence a shift of the series

of Hall plateaus by one half: σxy = ±4e2

h
(N + 1/2).

Figure 3.3: Anomalous Quantum Hall effect in graphene. - (a) Hall resistivity

(blue) and conductivity (red) of monolayer graphene at 4K and 14 T magnetic field. (b)

Scheme of Landau levels in usual Quantum Hall system with equidistant Landau levels

(left) and graphene with square-root behavior (right). Adapted from Ref. [106] and [109].

The anomalous QHE can be understood from the Landau levels of graphene

in a magnetic field. In usual quantum Hall devices, Landau levels are equidistant

and do not exhibit a zero level (Fig. 3.3b (left)). In graphene, however, theory

and experiment revealed a square root behavior of Landau levels [110, 111] and

a level at zero energy:

EN = sgn(N)
√

2~ν2FeB|N |/c, (3.12)

which is a consequence of the linear spectrum and the chiral nature of the Dirac

states. The positive and negative sign in Eq. 3.12 denote electrons and holes,

respectively. As a result, the density of states under a magnetic field is modified
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according to Fig. 3.3b (right). Obviously, the zeroth Landau level is equally

shared by electrons and holes, thus, contains only half as many states as the

other levels. This half-degeneracy of the zeroth Landau level shifts the Hall

plateaus in the conductivity. The anomalous QHE can be observed even in room

temperature due to well-separated Landau levels at typical magnetic fields [112].

Figure 3.4: Klein tunneling in graphene. - (a) Example of transmission probability in

monolayer (a) and bilayer (b) graphene as a function of the incident angle and for different

barrier heights (blue and red curves). From [113].

A key phenomenon in transport experiments on graphene and graphene de-

vices is the Klein tunneling [101]: This effect allows for high electron mobility

[114] even in the presence of considerable disorder in graphene and suppresses

Anderson localization. Briefly, the seemingly “paradox” Klein tunneling evokes a

penetration of graphene’s electrons through a potential barrier of arbitrary width

and length with a probability of one for normal incidence [113]. Katsnelson et

al. furthermore predicted “magic angles”, again with total transmission [113], in

monolayers as well as bilayers (Fig. 3.4). Later, Klein tunneling in graphene was

confirmed experimentally [115, 116].

The Klein paradox is an obstacle for the development of graphene-based tran-

sistors [117]: typical field-effect transistor architectures are based on p-n-p or n-p-

46



3.2 Hexagonal boron nitride

n junctions. Electrons penetrating through this barrier (nearly) unhamperedly do

not permit to switch the transistor efficiently to the off state (zero current). This

is a main motivation for scientists to open a band gap in graphene. Band gaps in

graphene can be generated in numerous ways, e.g., through strains, adatoms, or

confinement in nanoribbons (cf. [101]). However, such modifications on graphene

drastically degrade the electron mobility, or are impracticable to build stable

transistors. Substantial advances have been made with heterostructures based

on the combination of different 2D crystals, which will be discussed in Sec. 4.

Figure 3.5: 2D h-BN. - (a) Structure of h-BN from a top view. Red atoms denote boron,

green atoms nitrogen. (b) Band diagram of 2D h-BN calculated by the GW method (from

[118]).

3.2 Hexagonal boron nitride

Hexagonal boron nitride (h-BN) is an isomorph of graphite. It consists of weakly

bound layers of atoms in a hexagonal honeycomb lattice with strong sp2 bonds

and a lattice constant being only 1.8% higher than in graphene [119]. How-

ever, the sublattices in h-BN are chemically not equivalent due to an alternate

occupation of lattice sites by B and N atoms. This results in an electronic struc-

ture completely opposite to graphene: Fig. 3.5b shows the GW quasiparticle
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band structure of h-BN [118], which exhibits a large band gap of about 6 eV,

in agreement with experiments [120]. The strong ionic bonds suppress forma-

tion of dangling bonds, and make the system relatively inert. As an atomically

flat substrate, it is well-suitable for high-quality graphene devices [121]. In par-

ticular, its dielectric properties compare well with the standard substrate SiO2

and even exceed its thermal conductivity by a factor of 600 [122]. First reports

of graphene on h-BN substrates [121, 122, 123] initiated experimental progress

in transfer techniques, that are nowadays used to create novel van der Waals

heterostructures of materials such as graphene, h-BN, and many others.

3.3 Transition metal dichalcogenides: MoS2 and others

The class of 2D transition metal dichalcogenides (TMDC) represents a number

of different 2D materials with a rich diversity of electronic properties (see, e.g.,

reviews in Ref. [4, 124, 125]). These materials can be represented by the chemical

formula MX2, where M denotes a transition metal atom from element groups

IV-VI (e.g., Ti, Mo, W) and X is a chalcogen (S, Se or Te) [124]. The structural

similarity of many 2D TMDCs with graphene can be discerned in Fig. 3.6 (top

view). However, in contrast to graphene and h-BN, the TMDC layer is consti-

tuted by vertically directed molecules (side view), yielding three planes per MX2

layer: the transition metal atom resides in the middle plane and is surrounded

by chalcogenide atoms below and above.

2D MoS2 has been heavily investigated in the past few years, much more than

its analogues WS2, MoSe2, WSe2 [4]. These four systems exhibit very similar

electronic properties, in particular, a direct band gap at the K point of the

hexagonal Brillouin zone of 1-2 eV [126]. Although the layers in the bulk system

are only weakly bound through van der Waals interactions, there are fundamental

differences between the monolayer, the mulitlayer, and the bulk system. MoS2,

for instance, exhibits a band gap in the bulk of ∼1.2 - 1.3 eV, as can be observed

in experiments [127] and density functional theory [128]. Upon going to the

few-layer system, the band gap increases and reaches its largest value of ∼1.8

- 1.9 eV in monolayer MoS2, where it becomes direct [127, 128]. Despite being

successfully isolated already in 2005, together with a proof of the electric field

effect [129], it attracted high attention only three years ago, when researchers

presented a transistor made of a single-layer MoS2 [130] with extraordinarily
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high on-off ratios and room-temperature mobility.

Figure 3.6: Structure of 2D TMDC. - Top view and side view. Blue atoms denote a

transition metal M , yellow atoms a chalcogenide atom X . The unit cell is highlighted by

green lines.

Recently, attention into isolated 2D TMDCs has been renewed due to the

peculiar spin-orbit interaction in MoS2, MoSe2, WS2 and WSe2 [126]. These

materials exhibit giant Rashba-like splitting of the conduction and valence states

of up to ∼ 450 meV. This effect is again exclusively present in the 2D systems

due to the absence of inversion symmetry. In contrast to the monolayer, inversion

symmetry is present in the bulk and even in the bilayer system, leading to a

suppression of the spin-orbit induced Rashba splitting in the multilayer case.

Remarkably, two experiments have been recently reported, where this effect has

been exploited [131, 132, 133]. With nanodevices based on MoS2 monolayers,

it is possible to store information not by means of the charge (“electronics”) or

the spin (“spintronics”), but through the wave number of the electron: by optical

pumping, the electron number in energetically equivalent band structure “valleys”

can be controlled, and a valley polarization of about 30% can be achieved [131].

Encoding information in a system by its valley quantum number forms a new

class of electronic devices: valleytronics is the recently established term for this

technology. Another material relevant for valleytronics is diamond [134], where

electrons reside much longer within a valley (about 300 ns) than in graphene and

even much longer than in MoS2 (1 ns).

MoS2, WS2, MoSe2 and WSe2, which are known to be stable in air, repre-

sent only a small fraction of the vast familiy of 2D chalcogenides. Many more

chalcogenides (such as MoTe2, ZrSe2) with van der Waals interaction between

individual layers exist with not much being known about single-layer stability

and electronic properties [4]. The general tendency seems to be that the most

stable chalcogenides exhibit a band gap, while metallic (or superconducting) 2D
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chalcogenides such as NbSe2 and (Ta,Ti)S2 seem to be unstable under ambient

conditions, although possibly stable in an inert environment [4].

3.4 Other 2D crystals

The current library of available 2D crystals has constantly grown in recent years

since the report of Novoselov et al. on the fabrication of 2D crystals [129]. Apart

from graphene, h-BN and TMDCs, the class of 2D crystals encompasses a con-

siderable number of different materials to this date, that are stable at ambient

condition (at room temperature in air) [4]. This comprises graphene-like mate-

rials such as boron carbon nitride (BCN), and chemical derivatives of graphene,

such as stoichiometric flourographene, with large band gaps. Graphene can be

reversibly hydrogenated (“graphane”), allowing for the tunability of graphene’s

electronic properties from the insulating to the fully recovered semi-metallic be-

havior [135]. Another important category of available 2D crystals is the one of

2D oxides, where micas, a commonly used graphene substrate [136], and BSCCO

have been shown to survive in ambient conditions (see again [4]). Superconduc-

tivity in monolayers of BSCCO and other layered oxides is rarely investigated, as

well. However, maybe even more promising with regard to superconductivity is

the combination of all these 2D materials into novel heterostructures [4].
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Heterostructures based on

two-dimensional crystals

Despite the availability of a whole “zoo” of two-dimensional crystals, the con-

trolled fabrication of layered van der Waals hybrid systems has only recently

become feasible. It is nowadays possible to combine single or multiple sheets

of graphene other two-dimensional materials such as MoS2, WS2, or hexagonal

boron nitride (h-BN). This facilitates the “on demand” design of complex stacks

(see Fig. 4.1), known as van der Waals heterostructures [4]. Van der Waals

heterostructures open a new sub-area in the research on 2D materials and pave

the way for novel electronics. Remarkably, some graphene-based heterostructures

have already been proven to be applicable as multifunctional devices. Apart from

applications, these “materials with tailored properties” [137] exhibit a consider-

able number of interesting physical phenomena.

The foundation for research on 2D heterostructures was laid by the first in-

terfaces of graphene with h-BN substrates, reported only in 2011. Experiments

showed that graphene deposited on a h-BN substrate provides a significantly

higher sample quality than on a standard insulating SiO2 substrate, increasing

the electron mobility comparable to those of free-standing graphene [121]. This

is because the planar surface structure of h-BN suppresses a buckling of the

graphene layer, and, unlike in SiO2, dangling bonds and charge traps are absent

in h-BN. The overall degree of substrate-induced disorder is reduced in graphene

on h-BN, which lowers perturbance of graphene’s electrons from charge puddles

formation [121, 138]. In fact, many-body effects in graphene remained concealed
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in experiments until graphene/h-BN interfaces came up1, due to the inevitable

presence of substrate-related charge inhomogeneities.

Figure 4.1: Example of a van der Waals heterostructure. - The image shows a

hybrid made of graphene, h-BN and MoS2.

A big step forward were the first experiments on graphene layers encapsulated

between h-BN sheets [140, 141, 142], with a quality remaining at high level.

Subsequently, tunneling transistors were reported. The functionality of these

devices is based on vertical transport between two graphene sheets, which are

separated from each other through dielectric tunnel barriers of h-BN, MoS2, or

WS2 [7, 143]. The architecture of these vertical field-effect transistors permits

efficient control of the electron transport in one graphene layer by gating the

second graphene layer. The devices demonstrate the possibility to overcome the

band gap problem of graphene transistors [1, 144] by offering a tunable tunneling

DOS and on-off ratios of 106 at room temperature [7, 143]. Other applications

of interest are photovoltaic devices based on graphene heterostructures (see Ref.

[8, 145, 146] and Sec. 4.2.3).

Double-layer devices were built to explore a phenomenon of strong electron-

electron interactions, the Coulomb drag [147]. To this end, electrically decou-

1An exception is free-standing graphene, where, e.g., reshaping of Dirac cones due to electron

interactions was reported [139].

52



4.1 Graphene/h-BN heterostructures

pled graphene sheets, separated by few dielectric spacers of h-BN, were investi-

gated. The graphene layers in the heterostructure were separated by only about

1 nm, thus, at much smaller distance than typical characteristic distances be-

tween charge carriers in graphene. Indeed, carrier distances in graphene are

known to diverge nominally proportionally to 1/
√
n, where n is the carrier den-

sity. The double layer structures provide high degree of electric isolation between

two graphene sheets despite spatial proximity and disclose unexpected behavior

in the regime of strong Coulomb interaction [147]. Many more collective phe-

nomena are likely to be revealed in the near future in double-layer devices and

similar heterostructures.

Novel phenomena found recently their way into graphene physics due to the

structural complexity of van der Waals heterostructures. For instance, graphene

interfaced with h-BN leads to the formation of moiré superlattices, an issue that

will be discussed in detail in this chapter. The presence of an additional long-

range potential acting on graphene’s Dirac fermions results in a cloning of Dirac

cones at higher energy levels [148]. In combination with a magnetic field, the

superlattice potential induces self-similar recursive spectra, called Hofstadter’s

butterflies [149, 150]. Superlattice potentials, although rather weak, can strongly

affect electron states in graphene, which we show in Sec. 4.1.1.3. From theory

point of view, sustainable progress in this field requires predictions of suitable

heterostructures out of a nearly infinite number of material combinations, but

this is not the only difficulty. Equally important is the careful identification of

the interplay of effects and phenomena on different length scales, from the sub-

Ångstrom to the mesoscale.

On this basis, we discuss in this chapter properties of graphene-based 2D

heterostructures; in particular, the heavily investigated systems graphene/h-BN

and graphene/MoS2. Parts of the results presented here can be found in the

original publications [119] (graphene/h-BN) and [145] (graphene/MoS2), but in

a less detailed form than in this chapter.

4.1 Graphene/h-BN heterostructures

4.1.1 Moiré superlattices in graphene/h-BN heterostructures

Early experiments on graphene deposited on h-BN substrates showed the for-

mation of moiré superlattices [123, 138] and the absence of band gaps [121], in
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contradiction to theoretical predictions [151]. In this section, we will bring in line

experiment and theory and finally discuss our results in view of latest develop-

ments. To this end, we combine different model and first-principles techniques.

For instance, forefront ACDFT-RPA calculations of van der Waals interactions

will be joined with elastic continuum theory, or standard DFT with effective

tight-binding models. In this way, we are able to describe the impact of defects,

moiré superlattices and sublattice symmetry breaking on graphene’s electrons.

Figure 4.2: Moiré superstructures of graphene on h-BN. - (a) Different local

stacking configurations (I-VI) considered from a top view. Yellow atoms indicate graphene

carbon atoms, red and green atoms boron and nitrogen, respectively. (b) Visualization

of the moiré superstructure with a reduced periodicity for clarity. (c) Adhesion energy

landscape within the moiré. (d) The same for the local sublattice symmetry breaking.
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4.1.1.1 Adhesion energy landscape in graphene/h-BN

The cohesive properties of layered materials, such as bulk counterparts of graphene

and h-BN, are strongly anisotropic. The same holds for layered van der Waals

heterostructures. While the building blocks of these materials, the isolated mono-

layers, exhibit mostly a high planar stiffness formed by strong covalent bonds,

interlayer binding is rather weak and mainly of van der Waals-type. This leads to

problems in the description of structural and elastic properties of these materials

using DFT. Formulations for the exchange-correlation energy, such as commonly

used local (LDA) or semi-local approximations (GGA), are well-suited to describe

in-plane cohesion of atoms and molecules. However, interaction between layers,

as being established by long-range correlations, is by definition not included in

LDA/GGA, which calls for more sophisticated methods.

Here, we investigate the adhesive properties of graphene/h-BN hybrids (Fig.

4.2) by means of ACFDT-RPA total energy calculations (see also Sec. 2.7.1). The

RPA energies will be used to evaluate adhesion energies of different stacking con-

figurations (Fig. 4.2a) that occur within the moiré (Fig. 4.2b). The RPA method

provides an accurate description of long-range van der Waals dispersion, but is

also expected to cover electrostatic effects in the system due to polarized B and

N atoms, and to take into account Pauli repulsion. All these effects were shown

to be important for the adhesion in layered systems such as bulk h-BN [152]. For

van der Waals solids, such as graphite and h-BN, the quality of ACFDT-RPA

total energies is remarkably high, yielding excellent agreement between experi-

ment and theory for interlayer distances, binding energies, and elastic constants

[63, 64].

The total energies of the configurations I-VI as a function of the interlayer

separation are plotted in Fig. 4.3 (technical details can be found in App. A.1).

The energy curves exhibit minima for all configurations, thus, binding is preferred

for all stacking arrangements. However, one can see different equilibrium separa-

tions between 3.30 and 3.55 Å. Configuration V is the strongest bound stacking

with an adhesion energy of 83 meV/(2C-atoms) and an equilibrium distance of

about 3.30 Å. In this configuration, one carbon atom sits above a boron atom,

while the other C atom is located above the middle of a BN hexagon.

In contrast, the configuration with the highest energy minimum, thus, the

lowest adhesion energy (62 meV/(2C-atoms)), is the one with both carbon atoms

on top of a boron and a nitrogen atom, respectively, in a layer distance of 3.55 Å
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(config. I). Interesting to note is furthermore that the adhesion of C atoms above

BN bridge sites (above B-N bonds, configurations II and VI) yields higher binding

energies. Configurations IV and VI are closest to the lowest-energy configuration

V with adhesion energies of 71 and 70 meV/(2C-atoms). In configurations I and

III, the negatively polarized N atom is covered by C atoms, thus, proximity of C

atoms to the N atom diminishes the binding energy.

Figure 4.3: Different local stackings of graphene on h-BN - RPA total energies of

the graphene/h-BN heterostructure as a function of the interlayer spacing d. The energy

at infinite separation has been set to zero. (Inset) The RPA correlation energy relative to

d−4 between 2.9 and 4.7 Å.

For larger distances, the configurations become energetically equivalent and

exhibit a power law decay of Ec ∼ d−4 (see inset of Fig. 4.3). This indicates a

bonding dominated by van der Waals interaction, because local effects would lead

to an exponential falloff. The d−4 behavior is not a trivial consequence of the

presence of London dispersion forces between graphene and h-BN. Assume a sim-

ple macroscopic system consisting of two parallel, non-interacting infinite plates

with small thickness, which are sufficiently separated from each other. Then,

“switching on” van der Waals interaction through a simple sum of R−6 terms of

interacting elements leads to a standard d−4 decay of the vdW interaction energy.

This is in agreement with our RPA result and thus seems to be sufficient insight

into the van der Waals bonding mechanism. However, for layered nanostructures,

the interaction is more manifold and R−6 summations can lead to qualitatively
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wrong results for anisotropic nanostructures. In Ref. [153], analytic studies of the

correlation energy in layered nanosystems were performed using the RPA, thus,

without any assumptions on locality or presence of R−6 sums. The authors found

that the simple macroscopic picture is only valid for gapped layered 2D systems

(such as bulk h-BN) while it breaks down for other types of interfaces. Instead,

the correlation energy follows Ec ∼ d−p or has in some cases an even more com-

plicated behavior. For instance, interfaces between 2D metals exhibit p = 5/2,

and adhesion of two π-conjugated layers yields p = 3. The graphene/h-BN sys-

tem represents an interface between a π-conjugated and a wide-gap insulator,

which has not been studied before. The result of the d−4 behavior is important

since many of the currently investigated 2D heterostructures are composed of

(π-conjugated) graphene and gapped 2D crystals.

A comparison of the total energy curves with standard LDA and GGA con-

firms the importance of long-range correlations for the correct equilibrium layer

distance, the binding energy and the asymptotic behavior. In Fig. 4.4 we plot

total energies for LDA and GGA, which we benchmark by means of the high-

quality RPA energies. For large separations, the LDA/GGA energies decay much

faster than the RPA energies, which is expected because the dispersion is a long-

range effect of non-overlapping densities, while correlations between overlapping

states decay exponentially in the vacuum. There are also conspicuous differences

between LDA and GGA. While LDA (see also Ref. [151]) reproduces roughly

the equilibrium distance, GGA entirely fails to give a reasonable layer-layer dis-

tance and yields almost negligible binding energy. Although the GGA mostly

represents an improvement over LDA regarding chemical bonds [32, 154], it ob-

viously worsens the description of non-local van der Waals interaction in layered

materials. The reason why LDA works much better than GGA [155] for weakly

bound layered nanostructures is not obvious at first sight. The quality of LDA

is rather accidental because errors in the exchange and the correlation energies

cancel out spuriously, which is not the case in the GGA where density gradients

are taken into account. It can be seen from Fig. 4.4 that the LDA binding energy

of graphene on h-BN is underestimated by about 30%, which is in agreement with

Ref. [63, 156], where LDA binding energies are shown to be systematically too

low in graphite and in other systems [153], in contrast to the common belief that

LDA effects an overbinding.
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Figure 4.4: Comparison between RPA and (semi-)local functionals. - Total

energies of configuration V as a function of the interlayer distance in the graphene/h-BN

heterostructure as obtained from RPA, LDA, and GGA.

4.1.1.2 Stability of graphene/h-BN moirés

The RPA calculations provide insight into the strength of local interlayer bind-

ing in the graphene/h-BN hybrid, but immediately raise questions on the phe-

nomenon of a moiré superlattice: why do stable moiré systems form when some

stacking configurations are energetically more preferable than others, i.e., why

is the whole heterostructure not in the lowest-energy configuration V? In par-

ticular, this question poses since the lattice mismatch, which has to persist in

order to form a superlattice, is very small. We find it to be only 1.8 (LDA) and

1.9% (GGA). The lattice mismatch leads to large moiré periodicities of up to 13.5

nm, with the upper limit corresponding to the absence of relative layer rotations.

This corresponds to a moiré unit cell covering the area of 55x55 graphene primi-

tive unit cells. To judge the stability and existence of the moiré structure, elastic

properties of the system must be taken into account. We focus on in-plane strains

in the following, since the out-of plane corrugations of graphene and h-BN vary

by about 0.2 Å (see Fig. 4.3), which is much smaller than the wavelength of the

moiré. Elastic energies of the system are then to be compared to the adhesion

energy landscape in the system (Fig. 4.2).

It has to be differentiated between two possible scenarios of adhesion: 1.
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graphene on a h-BN substrate of considerable thickness, and 2. graphene on (free-

standing) few-layer or monolayer h-BN. The first case has been realized in first

experiments on graphene/h-BN, and they consistently confirmed the existence

of moiré superlattices [123, 138, 157]. This is a consequence of the preserved

lattice mismatch between graphene and h-BN. Obviously, the stability of the

moiré arises from the high stiffness of graphene: since the topmost h-BN layers

will most likely keep the lattice constant of the bulk, a compensation of the

lattice mismatch would require a stretching of graphene by about 2% on the h-BN

lattice constant. From the elastic properties of graphene, which are well-known

experimentally [158, 159] and theoretically [160], it can be easily calculated that

this would require 40 meV/(2 C-atoms). In contrast, the adhesion energy gain,

that would be the result of the entire sample in the lowest-energy stacking V, is

much smaller. Averaged over the six considered configurations, we find the gain

to be only 14 meV/(2 C-atoms). Hence, strain energy penalties overcompensate

adhesion energy gains, which preserves the incommensurate lattice configuration.

This estimation is of course highly simplified; more subtle local strain effects

can be found in graphene on h-BN substrate, which is discussed in Sec. 4.1.1.5.

However, here we want to emphasize the differences between scenario 1 and 2.

The situation is different for the second scenario. If graphene sticks on a free-

standing layer of h-BN, it is as well imaginable that the h-BN layer is slightly

compressed towards the graphene lattice constant. To judge the possibility for

this scenario, we investigate elastic properties of a h-BN sheet, which have been

rarely studied in the literature. We start with basic elastic theory and derive

in the following elastic constants based on LDA calculations. The elastic strain

energy of a hexagonal system under uniaxial planar strain in x direction, uxx,

(hence, uyy = uxy = 0) reads as (see, e.g., [161]):

Es/A0 =
1

2
(λ+ 2µ)u2xx, (4.1)

with λ the first Lamé constant and µ being the shear modulus (2nd Lamé con-

stant).

uαβ =
1

2

(

∂uα
∂xβ

+
∂uβ
∂xα

)

(4.2)

is the linearized strain tensor with uα the α-th component of the displacement

vector ~u; A0 denotes the equilibrium unit cell area (for 2D h-BN, A0 ≈ 5.3 Å2).

The in-plane elastic properties are isotropic for hexagonal crystals, which defines
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the 2D Young’s modulus as [162, 163]

Y2D =
4µ(λ+ µ)

2µ+ λ
. (4.3)

For a single-layer of h-BN, we obtain λ = 59 N/m, µ = 125 N/m and YBN,2D = 298

N/m (LDA) and λ = 54 N/m, µ = 123 N/m, Yh−BN,2D = 290 N/m (GGA). YBN,2D

corresponds to a (bulk) 3D Young’s modulus of YBN,3D = YBN,2D/d ≈ 0.9 TPa

(with d ≈ 3.3 Å the interlayer distance). Y2D and µ, as obtained from the full-

potential PAW code VASP [164], are about 10% higher than calculations using

Gaussian basis sets [165]. The in-plane stiffness of h-BN is remarkably high and

only about 10-15% smaller than in graphene, where Ygr,2D ≈ 340 N/m [160].

Despite of the similar ultrahigh stiffness of both materials, the second scenario

of graphene on a free-standing h-BN layer does not confirm the stability of moirés.

Again, we compare elastic and adhesion energies, but here without fixing the h-

BN lattice constant. First, we performed LDA simulations of the heterostructure

entirely in stacking configuration V and varied the common lattice constant. We

found a common lattice constant of 2.467 Å, which is in good agreement with our

considerations of the total strain energy of the system, Es,total = Es,BN + Es,gr,

which exhibits a global minimum close to the LDA-derived lattice parameter.

Importantly, the simultaneous compression of h-BN and tension of graphene leads

to strain energy penalties of only 18 meV/(2C-atoms), which is considerably

smaller than in the first scenario and comparable to the adhesion energy gains of

14 meV/(2C-atoms). Thus, it is possible that the moiré superlattice is not stable

in this system and highly sensitive to the experimental environment. For instance,

transitions of incommensurate to commensurate lattice matching are imaginable

[166]. More experiments have to be done to investigate the delicate interplay

of adhesion energy gains and strain energy penalties, for instance, through a

systematic decoupling of h-BN layers from the bulk substrate or preparations of

suspended h-BN with a graphene layer on top. The realization of a commensurate

lattice in graphene/h-BN heterostructures would be of particular interest since

this would lead to a spectral gap opening (see discussion below).

4.1.1.3 Band structure of graphene on h-BN substrate

In the previous sections, we have shown that graphene is weakly bound to h-

BN through van der Waals forces. Despite this weak interaction, the electronic
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states of graphene can be considerably modified, which is crucial for local spectral

properties as well as mesoscopic transport. We investigate this issue in detail by

a combined DFT and tight-binding study. We start with LDA calculations of

the different local stacking configurations shown in Fig. 4.2 with enforced lattice

matching. This requires only a small unit cell of 4 atoms (2 C, 1 B, 1 N; for

technical details, see App. A.1.1.1). For the configurations I, III, and V, we

find in good agreement with Ref. [151, 167] band gaps of 57, 34 and 47 meV,

respectively. The configurations II, IV, and VI, which have not been studied

elsewhere, yield lower, but still finite band gaps between 7 and 25 meV (see Tab.

4.1). Hence, at first sight, the conclusion of Ref. [151] that graphene on h-BN

is gapped also in the moiré, seems reasonable. In contradiction, STM [121] and

transport [138] experiments performed later could not confirm this conclusion

and found the absence of a spectral gap. The mechanism behind must hence be

more sophisticated.

Figure 4.5: Band structure of graphene/h-BN in stacking configuration I (see

Fig. 4.2) with enforced lattice matching. - The inset shows a zoom to the graphene

pz states at the K point. States close to the valence band maximum and the conduction

band minimum are fully sublattice-polarized and exhibit parabolic dispersion.

To learn more about this, we take a closer look at the band structure of

graphene on h-BN in the stacking order with the largest band gap, which is

configuration I (Fig. 4.5). Around the Fermi level, one can discern graphene
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pz low-energy states with very similar dispersion as in the free-standing case,

while h-BN states are far below -1 eV and above +3 eV. The modification of

the pz states becomes only visible in a close-up (see inset): one can find again

the band gap of 57 meV, which is induced by the breaking of the sublattice

symmetry, and furthermore, in agreement with Ref. [151], a parabolic dispersion

of the states close to the K point. However, there is a detail which had been

overlooked in previous studies, namely, a full sublattice polarization of the states

around the gap. In the depicted configuration I, this means that pz states close

to the conduction band minimum are entirely localized in sublattice A, while

those at the valence band maximum exist only in sublattice B. We will show in

the following that this has important implications on the graphene electrons in a

moiré potential.

In order to investigate moiré potential effects, one might try to perform an

LDA calculation, including the entire superstructure of graphene on h-BN. Due

to the lattice mismatch of 1.8%, this would however require a moiré unit cell

of the size of 55x55 primitive graphene unit cells, thus, a cell containing more

than 10,000 atoms, which would be out reach for standard DFT codes. Instead,

we set up a minimal low-energy tight-binding model, which is not only much

more efficient to solve, but also reproduces quantitatively graphene’s low-energy

states and allows for systematic studies by tunable parameters. For graphene on

h-BN, we modify the simplest, nearest-neighbor tight-binding model of graphene

electrons, as written in Eq. 3.1. Due to the large band gap of h-BN, we neglect

h-BN states at high energies in our low-energy tight-binding model, since these

can be integrated out. All effects of interlayer coupling are accounted for by

effective potential energy terms acting on the carbon sites. These correspond to

additional “mass” terms in the nearest-neighbor tight-binding Hamiltonian:

H = −t
∑

〈i,j〉

(

a†ibj + h.c.
)

+
1

2

∑

i

∆i

(

a†iai − b†ibi

)

, (4.4)

where t denotes the nearest-neighbor hopping of graphene electrons, ai (bi) anni-

hilates an electron in sublattice A (B), and ∆i is the substrate-induced mass term

acting on Dirac fermions. The moiré unit cell (n x n) is chosen as ~an1,2
= n~a1,2,

whereby ~a1 = a (1, 0) and ~a2 = a
(

−1/2,
√
3/2
)

are the lattice vectors of the

primitive graphene unit cell with the corresponding lattice constant a ≈ 2.45 Å.

The mass term ∆i is periodic with the moiré unit cell and i = (l, m) defines the

position in the moiré.
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I II III IV V VI

∆(meV) +57 +7 -34 -25 -47 +14

1− t̃/t 0 0.010 0 -0.002 0 -0.010

Table 4.1: Band gap ∆ and ratio of the two inequivalent nearest-neighbor hopping pa-

rameters t̃/t with t = 2.45 eV in structures with broken trigonal symmetry. The average

band gap is -4 meV.

By means of the different local stacking arrangements simulated in LDA, we

determine constant hopping parameters t = 2.45 eV in regions I, III, and V

through a fitting of the tight-binding energy dispersions to the LDA bands. In

configurations II, IV, and VI, the Dirac cone turns out to be slightly shifted within

the Brillouin zone away to the M point (IV, VI), or in the opposite direction (II).

In this case, a second hopping parameter, t̃ 6= t is required to reproduce the ab

initio low-energy bands (Tab. 4.1). The mass term ∆ corresponds to the local

band gap of graphene in configurations I-VI, and has the values as given in Tab.

4.1. These are extracted from LDA calculations of all six stacking configurations,

and the different signs of the mass term ∆ reflect the sublattice polarization.

This builds up a local gap landscape as shown in Fig. 4.2d. For the sign of ∆, we

use the following convention: states close to the valence band maximum entirely

localized in sublattice B correspond to ∆ > 0, while the highest valence states

localized in sublattice A refer to ∆ < 0.

The Fourier transformation of ∆i to momentum space yields for the 0-th order

Fourier component (for the reciprocal lattice vector ~G = 0 only):

∆ ~G=0 =
1

N

∑

i

∆i, (4.5)

which is simply the average of all local mass terms in the moiré. The LDA

calculations of stackings I-VI result in ∆ ~G=0 = −4 meV, which is one order of

magnitude smaller than the local gaps. As we will show in the following, the role

of the 0-th order term is crucial for the presence of an absolute band gap in a

moiré superlattice, where many more local stackings are realized than just the

considered configuration I-VI. The modulation of the local gap landscape (Fig.

4.2d) can be approximated by a simple sinusoidally varying mass term

∆i = A sin (2πl/n+ Φ1) +B sin (2πm/n+ Φ2) + C, (4.6)
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where A, B, C and Φ1,2 are constants. The constants are used as fitting param-

eters, such that ∆i reproduces the local LDA mass terms ∆ in regions I-VI. In

this way, we obtain a Hamiltonian with all parameters derived from ab initio cal-

culations. The full moiré is formed by a superlattice of 55x55 primitive graphene

unit cells, hence, the Hamiltonian has dimensions (2 · 552, 2 · 552) and can be

diagonalized at low computational cost.

Figure 4.6: Graphene’s energy bands according to Eq. 4.4 with ∆~G=0
= C = 0

(a) near the Fermi level, and (b) below the Fermi level at the Brillouin zone

boundary. - (a) Comparison for different amplitudes of the local gap landscape: ungapped

case with all ∆i = 0, sinusoidally gapped graphene with realistic amplitudes as obtained

from DFT, and artificially increased amplitudes (by a factor of 25 and 100, respectively).

One can see that no absolute gap opens. (b) The same for states at the Brillouin zone

boundary. Minigaps open for finite amplitudes. The Fermi level is set to zero in both

figures and a reduced moiré cell (20x20) has been used.

We first focus on states near the Fermi level in order to verify whether an

absolute band gap in the moiré is opened or not. The states are shown in Fig.

4.6a. Here, the gap landscape as defined in Eq. 4.6 is simulated, with a vanishing

average gap ∆ ~G=0 = C = 0, but different amplitudes. First of all, one can see

that the bands of the free-standing, thus, ungapped graphene (A = B = 0, such

that ∆i = 0 ∀i) coincide with the bands of the modulated system with realistic,

ab initio-derived amplitudes. Hence, in the case of local gaps, which spatially

average out, no absolute band gap opens, not even for much higher (unrealistic)

amplitudes of the modulation. The only effect on states closes to Fermi level that

we can find from the artificially increased amplitudes A, B, is a renormalization

of the Fermi velocity, which is determined by the slope of the bands: vF = 1
~

∂E
∂k
.

For amplitudes increased by a factor of 100, vF drops down by about 50%. For
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the realistic graphene/h-BN system, however, vF remains nearly unaffected and

is renormalized by less than 2% compared to free-standing graphene. This is

very different from twisted graphene bilayers [168]. A difference between the

free-standing graphene and the realistic graphene/h-BN system can be found at

energies below EF: Here, minigaps open at the Brillouin zone boundary (Fig.

4.6b). This effect had been observed for graphene on an Ir(111) surface, where

likewise moiré patterns are observed [169, 170].

Figure 4.7: Graphene’s energy bands according to Eq. 4.4 with ∆~G=0
= C near

the Fermi level. - Comparison for different average gaps C in the local gap landscape:

sinusoidally gapped scenario with realistic amplitudes A, B as obtained from DFT and

different C. Gaps on the order of C open. The Fermi level is set to zero and a reduced

moiré cell (20x20) has been used.

When a non-vanishing average gap ∆ ~G=0 = C 6= 0 is present, the situation

changes. The scenario is then analogue to our findings based on ab initio calcula-

tions as summarized in Tab. 4.1, where we obtain C = −4 meV. Fig. 4.7 shows

the low-energy states of a realistic gap landscape, thus with realistic amplitudes of

the modulation. Besides the ungapped case (C = 0, red bands), states for C = 5

meV (green dashed line) and C = 15 meV (blue dotted line) are plotted. We

find that absolute band gaps on the order of C open which furthermore remain

stable upon adding additional ∆ ~G 6=0 terms. Artificial increase of the amplitudes

A, B by orders of magnitude leads to a reduction of the absolute band gap, but

it is not entirely closed. In summary, a realistic moiré pattern as shown in Fig.
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4.2c exhibits locally varying band gaps with changing sign. In our tight-binding

simulations, such a gap landscape leads to an absolute band gap very close to the

spatial average gap, which we find to be small (-4 meV). Therefore, we expect

the absolute gap to be at least one order of magnitude smaller than maximum

local values |∆|, thus, a band gap below the sensitivity level in experiments.

These results are in good agreement with STM [121] as well as transport [138]

experiments.

4.1.1.4 Real-space shape of low-energy states

Local probe techniques, such as STM, are particularly suitable for the investi-

gation of the moiré superlattice, as they allow for monitoring the behavior of

graphene’s electron states in real space with high resolution in the sub-Ångstrom

regime. Simultaneously, large distances up to the mesoscale can be covered with

an STM tip on a suitable sample. The topological behavior of states very close

to the Fermi level is expected to be non-trivial, and, as will be shown in the

following, highly sensitive to the parameter choice in the local gap landscape of

Eq. 4.6. Fig. 4.8 visualizes the contribution of carbon atoms in a 20x20 moiré

to the density of states in close proximity to the Dirac point, i.e., close below (a)

and above (b) the Fermi level. Here, black dots denote atoms of sublattice A, and

red dots show those of sublattice B, whereby their thickness depicts information

on the distribution of the states in the moiré cell. This is done by choosing the

dot size relative to the contribution of each atom to the state. Due to sublattice

polarization (Fig. 4.5), we expect not only inhomogeneous spatial distributions

of the state, but differences between A and B polarization in the real space shape

of the states as well.

We first check graphene on h-BN with realistic amplitudes of the modulation,

but a vanishing average gap, C = 0 (Fig. 4.8). Then, no sublattice polariza-

tion is present at all and states look equally distributed in space as in isolated

graphene. In the Hamiltonian 4.4, isolated graphene corresponds to ∆ = 0, the

fully ungapped case. Thus, for a vanishing average gap ∆ ~G = C = 0, no differ-

ence between fully ungapped and the realistically gapped graphene on h-BN can

be observed because fluctuations of the probability density are virtually zero in

all regions. The picture changes drastically when the amplitudes are artificially

increased by a factor of 25 (Fig. 4.9). Here, states are localized in regions of

low |∆i|, although no absolute band gap opens. In these so-called “snake states”,
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Figure 4.8: Real-space shape of low-energy states with realistic gap landscape

and zero average gap. - The size of the dots (black: sublattice A, red: sublattice B)

depicts the contributions to low-energy states in close proximity below (a) and above (b)

the Fermi level. Here, the scenario of a gap landscape in a 20x20 moiré with realistic

amplitudes A, B and a vanishing average gap ∆~G=0
= C = 0 is presented. States are

equally localized in sublattices A and B and homogeneously distributed within the moiré,

yielding no differences to isolated (ungapped graphene).

both sublattices equally contribute to the states in any region of the moiré. The

energies required to obtain the snake states are unrealistically high; nevertheless,

snake states are experimentally not out of reach. The formation of snake states

does not solely depend on the absolute value of the amplitudes A, B, but on the

ratio of these compared to the energy, which is related with the periodicity of the

moiré:

En ≈ 2π~vF
na

, (4.7)

with n the size of the moiré (for unrotated moirés, n = 55, but here we consider

n = 20 for visualization purpose). For 20x20 or 55x55 moirés, En ≈ 0.7 and

0.3 eV, respectively, which is smaller than the amplitudes 25xA,25xB and the

reason for snake shape of the wave functions near the Dirac point. On the other

hand, if n is increased, n = 100 − 200, A,B ≈ En are in an intermediate state

being on the same order of magnitude. Moiré periodicities of 100-200a could

be reached by external strain, for instance. The case of Fig. 4.8 however with

realistic amplitudes A,B ≪ En shows a nearly homogeneous distribution of low-

energy states, which is in good agreement with STM experiments, where neither

inhomogeneities in the LDOS nor a band gap were detected [123, 138].

For a non-vanishing average of the local mass terms (C 6= 0), the interplay

of three energies constitutes the wave function behavior: the amplitudes of the

modulation (A, B), the energy established by the moiré periodicity En, and the
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Figure 4.9: Occurrence of snake states - The same as shown in Fig. 4.8, but with a

gap landscape with increased amplitudes 25xA, 25xB and a vanishing average gap ∆~G=0
=

C = 0. Snake states can be observed.

average mass term C. Fig. 4.10 shows the probability density in the moiré with

realistic amplitudes, but a high average of local mass terms on the order of the

amplitudes: C = 50 meV. In this case, states below and above the Fermi level

are almost entirely sublattice polarized, which is not observed in experiments.

However, our DFT calculations suggest a much smaller average gap of some meV

(∆ ~G=0 ≪ A,B). Then, realistically ∆ ~G=0 ≪ A,B ≪ En and it depends on the

energy range chosen in experiments, whether or not sublattice-polarized states can

be detected. For example, STM measurements of the LDOS should be performed

in an energy range E < ∆ ~G=0, thus very close to the Dirac point. If E >

∆ ~G=0, which is most probably the case for small ∆ ~G=0, again homogeneous state

distribution without any sublattice polarization would be measured as shown in

Fig. 4.8, which is again in agreement with reported STM experiments. Finally,

for ∆ ~G=0 ≪ En ≪ A,B no sublattice polarization would be measured, but snake

states as shown in Fig. 4.9.

We thus conclude the most important facts of our electronic structure calcu-

lations: the moiré pattern evokes a small or even vanishing absolute (spectral)

gap in experiments, and this leads to the homogeneous distributions of states in

the moiré, which can be measured by STM. Phenomena such as snake states or

Anderson localization depend on the interplay of average and spatially modu-

lated mass terms and play a very important role when graphene is close to the

charge neutrality point. Indeed, today’s ultrahigh quality of graphene on h-BN

substrates enables experiments close to the neutrality point. This allowed for

the observation of Anderson localization in graphene/h-BN heterostructures, see

68



4.1 Graphene/h-BN heterostructures

Figure 4.10: Non-zero spatially averaged gap: sublattice polarization. - The

same as shown in Fig. 4.8, but with a gap landscape with realistic amplitudes A, B and

finite average gap of ∆~G=0
= C = 50 meV.

[141]. In the work of Ref. [141], experimentalists revealed an intrinsic metal-

insulator transition in the heterostructure, which is hidden in usual conductors

by the presence of electron-hole puddles. Screening out these charge inhomo-

geneities enabled a decrease in disorder which (non-intuitively) led to Anderson

localization. Gaps with spatially changing sign have been reported in (Hg,Cd)Te

quantum well structures [171]. The transport properties of these systems are

controlled by the gap modulation and enable tuning into a topological insula-

tor. We propose the same for the graphene/h-BN heterostructures: while we

find that the heterostructure itself (as experimentally realized in different forms

[7, 121, 123, 141, 142, 147, 150, 157, 172]) does rather not permit observation of

snake states, suitable strains could be applied to manipulate the moiré periodic-

ities to approach these.

During the time of writing up this thesis, it was discovered experimentally

that many-body effects can play a significant role in rotated graphene layers on

h-BN, which permits to tune the band gap over orders of magnitude by means of

the rotation angle [150]. A corresponding many-body theory has been recently

proposed [173]. The origin of the large band gaps is speculative but can be

associated with moiré instabilities.

4.1.1.5 Elastic properties of graphene on h-BN

In Sec. 4.1.1.2, we estimated the stability of the moiré superlattice occurring in

graphene/h-BN hybrid structures. The elastic constants of h-BN and graphene

were shown to be comparable. In this simple picture, this should favor, in
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the case of a fixed h-BN lattice, the formation of a moiré over a commensu-

rate stacking. However, there are more interesting aspects regarding the elastic

properties of moirés. Latest experiments reveal the existence of incommensurate-

commensurate transitions, thus, regions where the graphene and the h-BN lattice

are aligned [166]. This phenomenon might be the reason for discrepancies between

experiments, where recently band gap formation was observed [150] in contrast

to previous studies [121, 123, 138]. Also, due to the small lattice mismatch, sub-

tleties such as local defects might play an important role in the heterostructures

since they can locally modify the interaction between graphene and h-BN (see

Sec. 4.1.1.6).

In the following, we reconsider the impact of the adhesion energy landscape

in the moiré, now accounting for local modulations of elasticity and strain, which

we neglected so far in Sec. 4.1.1.2. Local strains might possibly promote, in

the case of relatively pristine samples, the recently observed commensurate-

incommensurate phase transition of moirés despite the extraordinary stiffness

of graphene [158, 160, 174, 175] and h-BN [119, 165]. Here, we focus on graphene

sheets deposited on a h-BN substrate, with the topmost h-BN layer assumed in

a fixed geometry and lattice constant.

The local modulation of interlayer binding within the moiré should have two

effects: 1. It should lead to local variations of the elastic constants in c-direction,

or, in other words, the rigidity of graphene sheets against decohesion from h-BN

should vary within the moiré. For instance, in regions in the moiré of differ-

ent binding, applying a constant stress in z-direction should be responded with

different local strain.

Using the data from Fig. 4.3, we replot the total energy curves (Fig. 4.11) as

strain energies as a function of the strain in c direction,

ǫ =
h− dlocal
dlocal

, (4.8)

whereby dlocal is the local graphene/h-BN equilibrium distance and h the graphene/

h-BN distance under strain of graphene along the c axis. By pulling up or push-

ing down the graphene layer, the local Young’s modulus can be measured by

standard contact-mode atomic force microscopy (AFM). In AFM experiments

on graphene/h-BN heterostructures, it was shown that a local variation of the

Young’s modulus arises in the moiré, but no quantitative values of the Young’s

modulus or its relative modulation were given [166]. The local Young’s modulus
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Figure 4.11: Strain energetics in different local stackings. - Strain energy Elocal

as a function of strain ǫ in different regions (I-VI) of the moiré.

can be defined as

Ylocal =
1

A0

1

dlocal

∂2Elocal

∂ǫ2

∣

∣

∣

ǫ=0
(4.9)

with Elocal the strain energy (per primitive graphene unit cell), ǫ the uniax-

ial strain, A0 = 5.3 Å2 the h-BN primitive unit cell area, and dlocal the local

graphene/h-BN equilibrium distance (between 3.3 and 3.55 Å). The Young’s

modulus is obtained according to Eq. 4.9 by a polynomial fit. There is strong

compression-tension asymmetry visible in Fig. 4.11, which requires taking an-

harmonic terms into account. We find the highest Young’s modulus in region

V to be about Ylocal ≈ 31.5 GPa, while the lowest value is about Ylocal ≈ 26.0

GPa. These values are slightly lower than in graphite, where the Young’s mod-

ulus in z-direction is about 37 GPa [176]. However, the variation of Y in the

graphene/h-BN heterostructure is noticeably high (on the order of 10%). This

leads to a modulation of the Young’s modulus according to Fig. 4.12. The mod-

ulation is in qualitative agreement with the sinusoidal Y modulation observed

in contact-mode AFM experiments [166], but slightly deviated due to the large

modulus in region V.

2. The second effect of a modulated adhesion energy landscape is a generation

of in-plane displacements of graphene atoms. These can be easily estimated to be

small, but might be important for the observed incommensurate-commensurate
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Figure 4.12: Local modulation of the Young’s modulus in graphene on h-BN.

- Upper panel: visualization of the Young’s modulus according to Eq. 4.9. Lower panel:

linescan of Ylocal along the green dashed line.

transition in the system. Interestingly, experimental methods are well-developed

to potentially scan for displacement fields in solids on the sub-pm scale [177].

Small displacement fields in the equilibrium state of the heterostructure can oc-

cur for two reasons: First, the corrugation of graphene on h-BN is 0.25 Å, as

we have found from our RPA analysis of the interlayer spacings between 3.3 and

3.55 Å. The corrugation is distributed over large length scales of the moiré peri-

odicity, about 13.5 nm for the unrotated system, and therefore, resulting planar

deformations are negligible. Assuming a corrugation of 0.25 Å within, say, 1/4 of

the moiré periodicity, we end up with planar displacements in graphene of much

less than 0.01 pm per graphene primitive unit cell.

Another source of in-plane displacement fields originates from the presence

of lateral forces. As shown in Fig. 4.2c, the potential landscape induced by the

substrate with periodicity of the moiré is modulated on an energy scale of 20

meV. In Sec. 4.1.1.2, we have shown that this potential is not sufficient to favor

graphene stretching on the h-BN lattice constant. However, external forces in

a thin 2D material must be compensated by local structural deformations. In

the following, we will calculate the deformations of graphene from elastic theory.
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Following the book of Katsnelson [101], the condition of local equilibrium under

external forces (using Einstein summation) reads as

∂σαβ
∂xβ

+ f (ν)
α = 0, (4.10)

with f
(ν)
α being the volume density of external forces and σαβ the (symmetric)

stress tensor. In hexagonal 2D crystals, elastic properties are isotropic [161] and

we can make use of the stress tensor of isotropic media, which has the form [101]

σαβ = λδαβuγγ + 2µuαβ, (4.11)

and is determined by the Lamé constants λ and µ (see also Sec. 4.1.1.2). uαβ is

the strain tensor given in Eq. 4.2 and uγγ the trace. For the system to consider

here, we obtain two coupled linear partial differential equations (PDEs):

(λ+ 2µ)
∂2ux
∂x2

+ (λ+ µ)
∂2uy
∂x∂y

+ µ
∂2ux
∂y2

= −f (ν)
x , (4.12)

and

(λ+ 2µ)
∂2uy
∂y2

+ (λ+ µ)
∂2ux
∂x∂y

+ µ
∂2uy
∂x2

= −f (ν)
y . (4.13)

f
(ν)
x,y is the derivative of the binding energy landscape as shown in Fig. 4.2c. Both

equations can be easily decoupled. However, we have to treat the PDEs numer-

ically using discretized variables, and we want to avoid higher order derivatives.

Using the spectral method, we find the discplacement field ~u = (ux, uy) which

solves Eq. 4.12 and 4.13. The spectral method is well-suited here, since we have

to deal with periodic boundary conditions, which naturally favors a Fourier se-

ries representation of the solution. The solutions are obtained using the finite

difference method, with iterative updates of Eq. 4.12 and 4.13. We find very

small displacements of maximally 0.1 pm, with the maximum values reached in

moiré regions of large potential gradients (Fig. 4.13). The largest potential gradi-

ents are between the lowest-energy configuration V and configuration I, therefore,

largest displacement fields are located in region IV. The displacements correspond

to maximum values of (local) strains of uαβ ≈ 10−3 − 10−4.

The strain tensor has four components, namely the normal strains uxx, uyy,

and the shear strains uxy = uyx. Under suitable transformation, we can find a

strain tensor with vanishing shear components, and two components that deter-

mine the “principal strain”. The maximum principal strain (corresponding to the
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Figure 4.13: Displacement fields of graphene on h-BN. - Red arrows visualize the

displacement field ~u as given by the potential landscape shown in Fig. 4.2 (full moiré).

The background color denotes the magnitude of the displacement. Black color corresponds

to ~u = 0, white color denotes the maximum displacement of |~u| = 0.1 pm.

maximum eigenvalue of the tensor)

umax =
uxx + uyy

2
+

√

(uxx − uyy)
2

4
+ u2xy (4.14)

is visualized in Fig. 4.14.

Both, the displacement field (Fig. 4.13) and the Cauchy maximum principal

strain exhibit a similar pattern owing to the hexagonal symmetry of the adhe-

sion energy landscape. The planar strains in graphene on h-BN are very small,

although possibly accessible experimentally. As a consequence, the local dis-

placements will not noticeably affect graphene’s pz electrons. However, it can

be speculated that the regions of maximum strain, despite being small, might

play a role. The transition of the moiré lattice to a commensurate state, as ob-

served in AFM experiments, means that graphene and h-BN adapt their lattice

constants to the same value in large regions, while very narrow regions, domain

walls, accumulate compensating strains. One can speculate that, in this scenario,

the formation of domain walls is affected by the strain modulation shown in Fig.

4.13 and Fig. 4.14. The emergence of the commensurate-incommensurate tran-

sition [166] calls for additional theoretical efforts in this direction, especially by
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Figure 4.14: Cauchy maximum principal strain in the moiré. - Bright colored

areas denote regions of high principal strain. The maximum values are less than 10−4.

means of first-principles methods. The main challenge to overcome, however, is

the problem of phenomena interacting on multiple length scales.

4.1.1.6 Graphene on defective h-BN

As has been discussed in Sec. 3.2 and throughout this chapter, the h-BN sub-

strate provides excellent surface quality, atomic flatness and low contamination.

Nevertheless, impurities are inevitably present in h-BN crystals, and, despite

possibly low concentrations in the graphene/h-BN heterostructure, it is worth-

while to investigate their impact for numerous reasons. At this early stage of

studies on graphene-based heterostructures, not much is known about impurity

effects from experiments (some speculations about field-effect transistors can be

found below). On the theory side, impurity studies were mostly concentrated on

isolated graphene sheets, see, e.g., Refs. [178, 179, 180, 181, 182] for ab initio

studies of various adsorbates. Impurities in graphene heterostructures have been

rarely studied so far, with some exceptions [183, 184]. Also, their appearance is

manifold, since the fabrication of hybrid structures comprises different possibly

defective crystals. Above all, typical fabrication methods, such as the dry transfer

technique [140, 141], might cause increased defect concentrations. Besides various

impurity types being imaginable, such as antisite defects or oxygen atoms, it was
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recently supposed that significant concentrations of carbon atoms are present in

h-BN [185].

Figure 4.15: Graphene on defective h-BN. - The figure shows the simulated system

with carbon impurities in the topmost h-BN layer.

To explore the impact of defective h-BN on graphene electrons, we set up

a minimal tight-binding model of graphene’s low-energy states in the spirit of

Eq. 3.1. Here, we take all states associated with h-BN and defects therein into

account using the following effective Hamiltonian:

H = H0 + V
(

a†i′o+ h.c.
)

+ (ǫimp + µ) o†o, (4.15)

where an impurity orbital o with onsite energy ǫimp couples (w.l.o.g.) to a

sublattice-A graphene atom at site ~Ri′ via a hybridization V . H0 is the nearest-

neighbor tight-binding Hamiltonian of pz electrons,

H0 = −t
∑

{i,j}

(

a†ibj + h.c.
)

+ µ
∑

i

(

a†iai + b†ibi

)

, (4.16)

with a†i (b†i ) the creation operator of a pz electron acting on site ~Ri in sublat-

tice A (B), and a hopping parameter t. The second term in both equations

includes a chemical potential which is a constant term on the diagonal acting on

all atoms, thus, a Fermi level shift. The parameters V, ǫimp, µ and t are a priori

unknown. We will determine these in the following by connecting our effective

tight-binding model with ab initio calculations. The tight-binding Hamiltonian

provides a model-based insight into the defective heterostructure; moreover, de-

termination of the model parameters from first-principles offers a quantitative

picture of charge redistributions and allows for further processing in transport

theory.
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Figure 4.16: Band structure of graphene on defective h-BN. - The figure shows the

case of a carbon impurity substituting a boron atom (a) and carbon replacing a nitrogen

atom (b). Due to the 3x3 supercell, the Dirac cone is folded to the Γ point. The pz

character of the impurity state is visualized by blue fat bands.

Ab initio calculations were performed of the geometry as shown in Fig. 4.15.

The supercell comprised a 3x3 layer of graphene on top of two h-BN layers, with

one carbon substitutional atom in the topmost h-BN layer. A graphene/h-BN

stacking arrangement according to configuration I was employed (Fig. 4.2). We

simulated two scenarios, C substituting a B atom and C replacing a N atom

(for computational details, see App. A.1.1.2). The supercell band structure

reveals interesting features associated with the impurity (Fig. 4.16). First of all,

the Dirac cone, which can be discerned at the Γ point (due to supercell-related

Brillouin zone folding), is modified and shifted downwards for carbon impurities

substituting boron atoms (a), while it is shifted upwards for carbon replacing

nitrogen (b). With the carbon impurity, the h-BN layer contains either one

additional electron or a hole, and due to Fermi level pinning, the graphene sheet

is likewise n-doped (a) or p-doped (b).

However, the interlayer coupling does not only evoke a charge transfer. A

modification of pz states at the Dirac point can be observed as well that originates

from the impurity states. The defect-pz character of bands is visualized in Fig.

4.16 through the thickness of the blue fat bands [186]. Similar as many realistic

adsorbates on graphene [180], the carbon impurity forms a pronounced midgap

state as a consequence of the hybridization between the impurity and the graphene

atom above. This effect is remarkable since the impurity is located within the

neighboring h-BN sheet at a distance of about 3.35 Å, although it acts effectively

as an impurity bound exclusively to graphene. The bands in Fig. 4.16 reveal
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that the hybridization with graphene is stronger for a carbon defect substituting a

boron atom and much stronger than for inert impurities (such as water molecules)

adsorbing directly on graphene [179, 187]. However, compared to adsorbates

being covalently bound to isolated graphene, hybridization is naturally weaker

[180], which is supported by the nearly unmodified graphene/h-BN interlayer

distance. The graphene atom above the impurity is only slightly shifted towards

the h-BN layer by less than 0.01 Å for both defect sites.

Figure 4.17: Comparison of band structures as extracted from TB model cal-

culations and DFT simulations. - (a) A carbon impurity replaces a boron atom. (b)

A carbon atom substitutes a nitrogen atom. Blue bands show the tight-binding bands as

established by Eq. 4.15 with fitted parameters in Tab. 4.2.

Fig. 4.17 shows that mapping out an effective tight-binding model as defined

in Eq. 4.15 yields energy bands in good accordance with the DFT-derived low-

energy states. The fitted values of the used model parameters are summarized

in Tab. 4.2. For comparison, V ≈ 0.9 eV is about 20% of the hybridization of

a methyl group with strong covalent bonding to graphene [180], and therefore

considerably high. The parameters confirm that the carbon defect located in an

empty boron site induces a stronger hybridization and Fermi level shift than in

the nitrogen site.

Considerable deviations between tight-binding and DFT bands can only be

found at higher energies far from the Dirac point due to the highly simplified

model Hamiltonian. At the Dirac point, a small gap appears in the DFT bands,

which is not reproduced by the tight-binding states. This is due to the enforced

lattice matching of graphene and h-BN, which leads to gap opening. One might

easily add a mass term in the spirit of Hamiltonian 4.4 to reproduce the small
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t (eV) µ (eV) V (eV) ǫimp (eV)

C subst. B +2.40 –0.63 0.91 +0.70

C subst. N +2.40 +0.38 0.55 –0.28

Table 4.2: Parameters used for the tight-binding model (Eq. 4.15) as obtained by a fit to

DFT bands. The boundary conditions employed were the same as in the DFT simulations

(a 3x3 unit cell of graphene interacting with one defect per unit cell). No sign for V is

given, because the resulting energy bands only depend on |V |.

gap opening. However, here we are interested in short-range scattering processes

due to impurities, while the long-range moiré potential will decrease the gap to

an even smaller value, as we have found in Sec. 4.1.1.3. It should merely be

noted that the gap is slightly increased by some dozens of meV due to the defect

midgap state.

But is the role of carbon defects indeed peculiar in a realistic graphene/h-

BN hybrid with multiple impurities being present? We checked the effect of

oxygen and antisite defects in h-BN. An oxygen defect substituting a nitrogen

atom dopes graphene as well, but does not induce formation of a midgap state.

Antisite defects significantly hybridize with graphene but are less likely to occur

as indicated from cohesive energy calculations (App. A.1.2). Cohesive energies

yield the highest stability for a carbon defect in a boron site, while the carbon

atom substituting a nitrogen atom is as favorable as an oxygen atom in the same

site. Least favorable are the antisite defects and the oxygen atom in a boron site.

Only carbon defects in h-BN enable midgap state formation with a comparably

high cohesive energy.

Formation of midgap states is potentially responsible for peculiarities of ver-

tical transport in graphene/h-BN heterostructures. Experiments on field-effect

transistors based on these heterostructures exhibit transport through vertical

quantum tunneling [7]. In agreement with theory [188], carrier tunneling un-

der an applied gate voltage is preserved even if the h-BN spacer has the thick-

ness of multiple layers. However, experiments also show the presence of a small

non-vanishing tunneling DOS in the absence of any gate voltages. This behav-

ior was traced back to disorder-induced states close to the Dirac point [7], and

midgap states represent a scenario consistent with the observed behavior. Hence,

electron tunneling in vertical heterostructures might be mediated through “hot

spots” such as carbon impurities in h-BN. The results call for future work in this
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direction, proving the necessity of atomistic simulations in transport theory of

graphene-based heterostructures.

4.2 Graphene/MoS2 heterostructures

In this section, we investigate a hybrid system made of graphene covered with

layers of the semiconducting material MoS2. MoS2 belongs to the class of transi-

tion metal dichalcogenides (TMDC, see Sec. 3.3). Heterostructures of graphene

and TMDCs have attracted particular research interest since they facilitate the

construction of novel, multifunctional nanodevices, such as memory devices [189,

190], or field-effect transistors (graphene/MoS2 [7], graphene/WS2 [143]). How-

ever, a microscopic understanding of the interface effects in graphene/TMDC

heterostructures has been lacking so far, especially in the context of photovoltaic

devices being recently reported [8, 146]. In particular, doping effects play a cru-

cial role for the functionality of these devices. In collaboration with L. Britnell

and K. Novoselov (U Manchester), we investigated doping mechanisms in the

graphene/MoS2 interface by a combination of first-principles calculations and

photovoltaic measurements, which prove the applicability of the heterostructure

for photodetection (see Ref. [145]). The results will be discussed in the following.

4.2.1 Interface properties and impurity doping

The properties of graphene and MoS2 can be compared in Sec. 3.1 and 3.3.

In contrast to h-BN, MoS2 exhibits a lattice constant which exceeds those of

graphene significantly. From DFT calculations, we find the lattice constant in

isolated MoS2 to be 23% larger than in graphene (for computational details, see

A.2.1). Therefore, it is unlikely for MoS2 and graphene to adhere in a commen-

surate stacking. In our simulations of the graphene/MoS2 hybrid, we incorporate

the lattice mismatch by setting up a supercell of a 4x4 MoS2 layer on top of a

5x5 graphene sheet. In this way, graphene has to be strained by only few per-

cent to conform with the MoS2 lattice. Similar as for graphene/h-BN, we find a

graphene-MoS2 interlayer spacing of 3.35 Å, indicating a weak bonding of van der

Waals-type, in agreement with Ref. [191]. The LDA to the exchange-correlation

functional is sufficient for the following calculations, since it produces a reasonable

equilibrium distance and we are interested in band structure effects.
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Figure 4.18: Simulated graphene/MoS2 heterostructure. - (a) Side view of the

graphene/MoS2 heterostructure. (b) Band structure of graphene fully covered with pristine

MoS2. The unit cell used in the simulations is depicted in the upper panel. Green fat bands

show the graphene pz contributions to the bands. (c) The same for graphene fully covered

with MoS2, but one rhenium substituent in the MoS2 (black atom). Red fat bands depict

the Re d-orbital character of bands.

The considered system in our simulations is visualized in Fig. 4.18 (top panel).

Here, we seek for possible doping mechanisms in the graphene/MoS2 hybrid,

or, to be concrete, in a graphene layer covered with a flake of MoS2. To this

end, we first investigate the pristine interface and the impact of defects, labelled

“impurity effect” in Fig. 4.18 (top panel). In analogy to Sec. 4.1.1.6, where

we discussed impurities in graphene/h-BN hybrids, we focus on defects in the

insulating material, which is here MoS2. To judge impurity effects on the system

systematically, we compare in the following the band diagrams of the pristine and

the impurity-contaminated graphene/MoS2 hybrid.
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The supercell employed in the DFT simulations, which comprises the 5x5

graphene layer below a 4x4 MoS2 sheet, is shown in Fig. 4.18b. Due to the weak

interlayer binding, structural modifications within the graphene and the MoS2

layer are virtually not present. The electronic band structure (Fig. 4.18b) con-

firms the weak interaction between the layers: the graphene Dirac cone, which can

be discerned at the K point, is obviously preserved under MoS2. Furthermore,

the Dirac point is perfectly aligned with the Fermi level, thus meaning no doping

of graphene by pristine MoS2. This is in contrast to graphene on substrates such

as SiC, where an intrinsic doping is observable [192, 193]. Compared to isolated

graphene, a MoS2 effect on graphene’s low-energy electrons is barely visible. A

small band gap of some meV is opened, which is negligible and does not limit

electron mobility significantly. We attribute the gap to a local sublattice sym-

metry breaking, similar as for graphene/h-BN moiré superlattices (see 4.1.1.3).

Also the Fermi velocity of Dirac states remains unaffected.

In recent years, endeavours were made to induce large spin-orbit coupling in

graphene. Crucial here is the large Rashba-type splitting of the MoS2 valence and

conduction bands (see Sec. 3.3), which might induce a spin-splitting of graphene’s

energy bands. In isolated 2D MoS2, theory predicts a spin-splitting of 150 meV

[126]. In similar transition metal dichalcogenides, even values of up to 450 meV

have been reported (Sec. 3.3). We tested the effect of the 2D TMDC with the

largest spin-splitting, WSe2, on the band structure of graphene. For the Dirac

states, we found the spin-splitting at the Dirac point to be not more than 2 meV,

due to the low hybridization of graphene and WSe2. In interfaces of graphene

and MoS2, spin-splitting in graphene is even lower.1 A reduced interlayer distance

would be required to achieve a larger splitting for applications, such as spintronic

devices.

As a first result, graphene fully covered by pristine MoS2 is unmodified in its

atomic and electronic structure. However, the situation can change if impurities

are present in the system. X-ray photoelectron spectroscopy (XPS) measure-

ments of our experimental colleagues yielded a significant amount of oxygen in

the heterostructure. Their impact on graphene electrons is not significant, which

is shown in App. A.2.2. The same holds for sulfur vacancies. However, various

kinds of impurities exist in molybdenite crystals, certainly below the XPS sensi-

1Since we are interested in impurity effects on graphene bands, spin-orbit interactions were therefore

neglected in the band structure calculations depicted in Fig. 4.18.
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tivity level. It is known that rhenium (Re) defects are naturally present within

MoS2 [194, 195]. These occur as substituents by replacing a Mo atom. In our

simulations, this is incorporated in the unit cell as shown in Fig. 4.18c. The

setup with one defect per supercell corresponds to a high impurity concentration

of 7.6 · 1013cm−2.

The Re impurity affects only marginally the atomic structure of its environ-

ment. We find virtually no distortions of neighboring atoms in the MoS2 layer

(< 0.02 Å). Moreover, the interlayer binding between graphene and MoS2 turns

out to be unchanged, with the same binding energy and interlayer distance as in

the pristine system, indicating a preserved low hybridization between graphene

atoms and MoS2 molecules. However, in contrast to the geometry, the electronic

structure of the system is widely modified under the presence of Re impurities.

This is depicted in Fig. 4.18c. First of all, one can see that the Dirac cone is

now located below the Fermi level. The Fermi level is shifted upwards by 0.29

eV, corresponding to an n-type doping of graphene by 0.8 · 1013 cm−2. While the

Dirac bands otherwise look unaffected, one can clearly see interesting effects near

and above the Fermi level: Here, states associated with the Re impurity occur

(red-colored fat bands).

To test for the effect of high impurity concentration, we simulated a four

times larger supercell, thus, an impurity concentration of 1.9 · 1013 cm−2. Here,

we found the Fermi level shift to be 0.27 eV, hence, an only slightly lower n-

type doping. This indicates the saturation of doping for Re concentrations of

1013 cm−2. At first view, such a Fermi level pinning does not seem unique for

the heterostructure, since a similar doping mechanism was found for graphene

on h-BN in the previous section with equally weak interlayer binding. However,

in the graphene/MoS2 hybrid, the distance between the Re impurity and the

graphene is much (about 4.9 Å) higher due to the trilayer structure built by MoS2

molecules. Atoms closest to graphene are the sulfur atoms, but these hybridize

only weakly with graphene pz orbitals, as can be seen from the sulfur vacancy

calculations (App. A.2.2). Therefore, the conclusion that Re-contaminated MoS2

dopes graphene despite of the far impurity-graphene distance and a weak van der

Waals bonding, is rather surprising.
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Figure 4.19: Edge effect in a graphene/MoS2 hybrid. - (Top panel) Sketch of the

setup from a side view. (a) Visualization of pz on-site energies of graphene atoms (black

dots) from top view. The on-site energies are defined with respect to the lowest values,

which can be found in uncovered graphene far away from the edge. Details of the on-site

energy calculations can be found in App. A.2.4. (b) Occupation nx along the light green

line depicted in a) for pristine (red) and defective (blue) MoS2. nx > 1 corresponds to n-

type doping, nx < 1 to p-type doping. The maximum value, about nx = 1.004, corresponds

to an electron-doping of 1.5 · 1013 cm−2.

4.2.2 MoS2 edge states acting on Dirac fermions

Besides “vertical” graphene doping through defects, we furthermore investigate

effects related with a partial coverage of graphene by MoS2, see Fig. 4.18 (top

panel). Lateral effects, such as potential gradients and planar charge redistribu-

tions near edges, can potentially improve the applicability of hybrid compounds.

In Sec. 4.2.3, we will present an application of the graphene/MoS2 heterostructure

as a photovoltaic device, which is based on edge effects. Graphene sheets partly

covered with MoS2 flakes will obviously lead to a built-in potential landscape in

the sample. To simulate edge effects and the resulting potential landscape within

DFT, we constructed a large graphene supercell with half MoS2-coverage. In

order to avoid confinement effects, the supercell encompassed a large stripe with

the length of nearly 100 Å, in total 600 atoms, and different edge configurations

(see App. A.2.4 for computational details). In total, three realistic edge con-
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figurations of MoS2 [196, 197] were simulated, namely the S-terminated (1̄010)

edge and the Mo-terminated (101̄0) edge saturated with either S dimers or S

monomers. A sketch of graphene under a (10̄10) edge is given in the top panel of

Fig. 4.19.

A crucial question is to what extent lateral transport in graphene is hampered

by the potential under a MoS2 edge; particularly, since there is only a weak van

der Waals bonding between graphene and MoS2. To analyze this, we plot in

Fig. 4.19a graphene pz on-site energies in the hybrid below a (10̄10) edge. A

potential step building up in the edge region (dark green line) on the order of

400 meV can be discerned. The potential gradient is induced by a work function

difference between the uncovered and the covered part, similar as for pristine

graphene contacted with a metallic electrode [198]. The presence of a built-in

electric field leads to a charge reordering effect, which is shown in Fig. 4.19b (red

dots). Here, the pz occupation number is plotted along the green line in panel a.

The uncovered part of graphene is slightly n-doped in the contact region due to

lower on-site energies. In contrast, the MoS2-covered graphene is locally p-doped.

We emphasize again the locality of the reordering effect: At far distance, both

sides are undoped under the assumption of no further disorder. Close to the edge

(at 32 Å in Fig. 4.19b), a depletion zone is formed. This is in close analogy to

the graphene/metal scenario, where an electric field leads to a charge reordering

effect, which builds up a p-n junction.

It should be noted that the results are qualitatively the same for other edge

configurations (see App. A.2.4). Although the shape of the potential barrier

varies, it is always on the order of some hundred meV, and the resulting electric

field is directed such that charge separation leads to a similar junction as depicted

in Fig. 4.19. Another remarkable feature in the occupation number plot are kinks

in the MoS2-covered part. These are not of technical origin, but a consequence

of the moiré superlattice: for most graphene atoms, nx < 1, but some atoms in

the unit cell (Fig. 4.18b) are located below the middle of a MoS2 hexagon, which

suppresses discharging and even leads to nx > 1.

The picture becomes more manifold if Re impurities are taken into account.

In this case, bulk doping by Re and charge redistributions at the edge are two

superimposing effects. This can be seen in Fig. 4.19b (blue dots): Here, both

sides below the edge become n-doped, giving in the end an n-p-n junction with

a very narrow p-doped region. In this setup, a high impurity concentration as in
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Fig. 4.18b was simulated and the minimum distance of the Re impurities from

the edge was 10 Å. The interplay of different edge types, impurity types and

concentrations yields a multifaceted picture of electrostatic effects below MoS2

edges. However, we find considerable potential steps and charge redistributions

for all configurations. One application of this inhomogeneous potential landscape

is discussed in the next section.

Figure 4.20: Photodetector based on a graphene/MoS2 heterostructure. - (a)

Illustration of the sample. Graphene (brown stripes) is contacted with gold (yellow bars)

and covered with a MoS2 flake (red stripe) in perpendicular orientation. The sample is

irradiated by a laser beam of 633 nm wavelength. (b) Lateral cut through the sample.

(c) Photocurrent measurements of the geometry shown in the optical image (top right

panel). The top left (bottom right) image shows the photocurrent maps for the system

with terminals connected to the top (bottom) electrode. (d) Response of the photocurrent

to the gate voltage for static point measurements and averages of photocurrent maps.
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4.2.3 A photovoltaic application of the graphene/MoS2 hybrid

Graphene/MoS2 hybrids have been examined by experimental colleagues at the

University of Manchester. To this end, photocurrent measurements of graphene

covered with MoS2 flakes were performed (see Fig. 4.20). After placing the

graphene/MoS2 sample on a piezoelectric stage, it was illuminated with a 1.96

eV (633 nm) laser1. This setup allowed measuring of (spatially resolved) pho-

tocurrent maps by varying the stage position. Fig. 4.20c (top left and bottom

right panel) shows such measurements of a setup as depicted in the optical image

(top right panel). While in most regions, including the gold contacts, only a weak

signal is detected, the measurements exhibit a strong signal in the heterostructure

region, where graphene is covered by a MoS2 flake.

Obviously, laser-induced electron-hole pairs can be more efficiently separated

in the heterostructure region than near the gold contacts. A comparison with the

optical image clearly allows for identification of the gold contacts (white stripes)

and the MoS2 flake (light blue stripe). When the laser illuminates uncovered

graphene, the photocurrent is virtually zero. Here, small finite currents can be

attributed to fluctuations of local doping. In contrast to usual graphene-based

photodetectors (see, e.g., Refs. [199, 200, 201, 202]), a large photocurrent is not

generated near metal contacts, but in the heterostructure region. The charge

separation can be traced back to the interplay of the simulated impurity doping

and the edge-induced electric field. The symmetry of the strong signal in the pho-

tocurrent maps demonstrates that the current is generated at the interface region

of bare and MoS2-covered graphene. Graphene covered with Re-contaminated

MoS2 is doped with electrons, while bare graphene is undoped. Due to work

function differences, an electric field builds up as discussed in Fig. 4.19, which

efficiently separates electrons and holes induced by the laser. Thereby, the de-

vice is not sensitive to the origin of electron-hole pairs. These are generated

in graphene, but might also be photoexcited in MoS2 and drift to graphene, or

result from a thermoelectric effect (hot carriers have been reported in both 2D

materials [203, 204, 205]). Since the photocurrent in the active regions is pro-

portional to the local potential gradients, the photocurrent maps can be used to

monitor the built-in potential landscape with spatial resolution. Moreover, local

variations of the doping, respectively the Fermi level position, can be resolved

1The laser had a power of 80 µW and a 0.5 µm spot radius. More details on the experiment and

sample preparation can be found in the original publication [145].
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spatially, making this device a powerful tool for analysis and characterization of

novel heterostructures.

Interestingly, the potential barrier can be tuned by applying an electric field.

In the experimental setup, this is realized by an external gate voltage. The re-

sponse of the photocurrent with respect to the gate voltage is depicted in Fig.

4.20d. The measurements were performed in two ways (static point measure-

ments and photocurrent map averages, see also Ref. [145]) and give qualitatively

the same trend: For positive gate voltages, the photocurrent drops down and

saturates towards a small value at ∼ 30 V, corresponding to an electron con-

centration of 2 · 1012cm−2. At this high voltage, the heterostructure region can

hardly be distinguished in the photocurrent map, indicating an equalizing of the

doping levels in bare graphene and MoS2-covered graphene. On the other hand,

for negative gate voltages (hole doping), the photocurrent increases. The mea-

surements confirm our theoretical results: Obviously, MoS2-covered graphene is

electron-doped in agreement with our proposed scenario of Re impurities. N-type

doping of graphene was recently confirmed in Ref. [146].

The origin of the potential barrier sensitivity to electric fields can be found

again in the peculiar electronic structure of graphene and the impurity states

in the conduction band. Fig. 4.21 gives a sketch of the local Fermi evolution

in uncovered and MoS2-covered graphene for different gate voltages. Without a

gate voltage applied (Vg = 0), bare graphene is undoped, while the Fermi level

in the MoS2-covered part is pinned due to impurity states, yielding an n-type

doping. Switching on a gate voltage then leads to different response in both

sides. While in uncovered graphene, all charge density ρ is collected in graphene

bands, the situation is different in the covered region: In the graphene/MoS2

heterostructure, MoS2 and impurity states can be present at the Fermi level.

Due to graphene’s low density of states, large parts of ρ are taken up by MoS2

and the impurity band, which becomes slowly filled. Since the Fermi level in

the uncovered part increases much faster, both Fermi levels become equal around

Vg = 30 V, and the potential barrier vanishes together with the photocurrent.

At negative voltages, the partially filled impurity band empties slowly and the

potential barrier increases. The Fermi level pinning plays the crucial role here for

the existence of an electric field. In other words, the MoS2 on top of graphene

effectively screens out the electric field between graphene and the back gate, which

is related to the high quantum capacitance of graphene [206].
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Figure 4.21: Gate-dependent Fermi level evolution. - Illustration of the local

Fermi level in graphene for different gate voltages in the device as a function of the lateral

position. While the impurity band is only slowly filled with the positive gate voltage in

MoS2-covered graphene (left), the Fermi level in the uncovered region (right) increases fast

due to graphene’s low density of states.

Altogether, the studies of this chapter prove the importance of first-principles

simulations on the atomic scale for a fundamental understanding of novel van

der Waals heterostructures. In particular, the interplay of moiré potentials, edge

effects, and local defects calls for electronic theories valid up to the mesoscale.

This, and the combination of these methods with many-body methods will be

required to gain a complete understanding of the electronic properties of 2D-

based heterostructures and, in particular, the behavior of Dirac fermions in van

der Waals hybrids.
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5

Graphene on metals as seen by

scanning tunneling microscopy

This chapter is devoted to the properties of graphene-metal substrate interfaces

with a special focus on local probe experiments (STM). Realistic graphene de-

vices obey mostly interactions with an underlying substrate. The physics of

graphene-substrate interfaces are manifold and depend significantly on the sub-

strate material. We have been approaching an understanding of metal substrate

interaction with graphene in recent years in collaborations with the experimen-

talist groups of R. Wiesendanger (U Hamburg, Ref. [207]) and R. Berndt (U

Kiel, Ref. [208]). In particular, we aim for an analysis of metal substrate effects

in local probe experiments and the electronic properties of metal substrates upon

graphene adsorption.

In our joint experimental and theoretical investigations of graphene on the

magnetic Ni(111) surface and graphene on non-magnetic Ir(111), we find large

influence of graphene on the substrate properties; not only in the strongly bound

case of graphene/Ni(111), but also in the system of graphene/Ir(111), where the

interaction is dominated by van der Waals forces. The effects comprise surface

state quenching, spin-polarization inversion in the vacuum and surface resonance

shifts. We furthermore show that the underlying band structure effects are crucial

for the visibility of graphene states in STM/STS, which must be considered in

interpretations of local probe experiments.

91



5. GRAPHENE ON METALS AS SEEN BY SCANNING TUNNELING
MICROSCOPY

5.1 Graphene, metals and STM: general remarks

Metal surfaces are an appropriate choice to grow clean graphene flakes of large

size, such are, for instance, Ni [209], Cu [210], Pt [211], Ru [212], Rh [213] and

Ir [214]. Mostly, metal growth techniques rely on surface segregation of car-

bon atoms or on chemical vapor deposition (CVD) by means of hydrocarbon

decomposition on the metallic surface (cf., e.g., reviews in Refs. [215, 216] and

many others). The adsorption of graphene on metallic substrates strongly varies

with the substrate material, from strong chemical bonds and lattice matching, to

physisorption and the formation of moiré superlattices due to lattice mismatch

[215, 216, 217, 218]. STM studies prove a high structural quality of graphene

on the metal surface and high continuity, even over steps between flat terraces

[216]. To exploit graphene’s unique electronic properties, however, graphene is

frequently transferred or separated from the substrate. This is because metallic

states around the Fermi level dominate in transport, and often the metal-graphene

interaction diminishes the Dirac-like behavior of low-energy carriers.

Moiré superlattices of graphene on metals indicate a weak bonding of graphene

and usually preserve the Dirac bands. However, mostly a charge transfer due to

work function differences between the metal and the graphene layer is observed

[217]. This effect can be utilized to build p-n junctions in graphene by employing

metal contacts, which is relevant for, e.g., photocurrent generation. In analogy,

the graphene/MoS2 hybrid presented in Sec. 4.2 exploits an inhomogeneous dop-

ing induced by (lateral) work function differences, making the system suitable for

efficient electron-hole separation.

Scanning tunneling microscopy (STM) is a powerful tool to investigate local

structural and electronic properties of graphene on metals, for both weakly and

strongly bound systems. Remarkably, its atomic resolution allows for identifica-

tion of single graphene atoms up to large moiré patterns (Fig. 5.1b). In short,

STM relies on the tunneling of a current between a thin metallic tip and the

investigated surface. The tip is as sharp as possible (at best, one atom sharp at

the apex), and placed in the vacuum at a typical distance of about 3-10 Å above

the surface. From Bardeen’s formalism, a formula for the tunneling current I can

be derived, which depends on the local density of states (LDOS), the tempera-

ture (via the Fermi-Dirac distribution f(ǫ)), and a tunneling voltage V , which is
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applied between the tip and the sample [219]:

I ∼
∫ +∞

−∞

[f(EF − eV + ǫ)− f(EF + ǫ)] ρS(EF−eV + ǫ)ρT (EF+ ǫ)|M |2dǫ, (5.1)

whereby M is the z-dependent tunneling matrix from Fermi’s golden rule, and ρS
and ρT denote the density of states of the sample and the tip, respectively. Note

that the temperature dependence of the integrand requires low temperatures for

a high resolution in energy. One can show that the current decays exponentially

with the height z (see Sec. 5.2). Topography maps can be recorded by keeping

the bias voltage constant and moving the tip laterally. Vice versa, at a fixed

position of the tip, one can sweep bias voltage to record differential conductance

spectra (dI/dV maps). Such scanning tunneling spectra (STS) are, according to

Tersoff-Hamann theory, directly proportional to the vacuum LDOS [220, 221]

dI/dV ∼ ρs(EF − eV ). (5.2)

Structural and electronic properties with atomic resolution as probed in exper-

iments may then be directly compared to ab initio density functional theory

simulations, which we perform to obtain theoretical STM images and STS spec-

tra.

5.2 Graphene on Ir(111)

Scanning tunneling spectroscopy (STS) experiments of graphene islands on the

Ir(111) surface were performed by the group of R. Berndt, S. Altenburg, and

co-workers at the University of Kiel. Fig. 5.1a (inset) shows two dI/dV curves -

one on the bare Ir(111) surface and one of graphene on Ir(111). Over the bare

Ir surface (blue curve), a step-like drop of the signal can be discerned around a

sample voltage V ≈ −350 meV, and a similar drop of the signal is found over

graphene (red curve), but shifted upwards to V ≈ −150 meV. This is confirmed

by the spatially resolved STS spectra in the main plot (see figure caption for

details).

In order to understand the spectra in detail, ab initio calculations were per-

formed. An Ir(111) surface of a thickness of 18 layers was modelled in order to

simulate surface states and to avoid spurious interaction between the periodic

surface unit cells. Spin-orbit interaction was included to account for the Rashba-

type splitting of Ir surface states [222]. For calculation details, see App. A.3.1.

93



5. GRAPHENE ON METALS AS SEEN BY SCANNING TUNNELING
MICROSCOPY

Figure 5.1: Experiments: STS of graphene islands on Ir(111). - Main figure:

STS (dI/dV ) measured (by the Berndt group) as a function of the sample voltage along

a path from bare Ir to a graphene island as depicted by the white dots in inset (b). The

crossover is indicated by a horizontal blue line and spectra of the beginning (blue) and the

end point (red) of the path is shown in inset (a). The data clearly shows a shift of the

surface resonance onset. For more details, see the original publication [208].

The band structure of the Ir slab is shown in Fig. 5.2a (gray lines). Many bands

are present due to the large number of electrons in the unit cell. The states

around EF are of a mixed p and d orbital character, and can be partly identified

as bulk bands. For instance, around the K̄ point, the large Ir bulk gap is repro-

duced. In addition, surface states emerge around this point, and a pronounced

hole-like surface resonance at the Γ̄ point. In the energy interval -1 eV < E < 0

eV, the resonance, which is mainly derived from Ir pz orbitals, is approximately

parabolic. In Fig. 5.2a, the resonance is marked by a thin green line. We find

an effective mass of m∗ ≈ −0.17me, which is in excellent agreement with the

experimentally derived value of −0.18me.

For a better comparability of the band structure simulations to the experi-

ments, tunneling current contributions were calculated, which is again visualized

in Fig. 5.2a by blue “fat bands”. The tunneling current contributions were cal-

culated based on Tersoff-Hamann theory. The tip was modeled as an empty s

orbital |L〉 placed in the vacuum in a typical height (0.48 nm) above the surface.

The width of the blue bands in Fig. 5.2a depicts the overlap | 〈Ψn,k|L〉 |2 of the

Bloch wave function |Ψn,k〉 at wave vector k and band n. The resulting blue “fat

bands” prove that the tunneling current is mediated by the surface resonance in

the entire energy (voltage) interval investigated in STM (Fig. 5.1).
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Figure 5.2: Energy bands of Ir(111) and of graphene islands on Ir(111). - (a)

Simulated band structure of the bare Ir(111) surface (gray lines). Coloured “fat bands”

visualize states contributing to the tunneling current above the Ir(111) surface (a) and

above the graphene/Ir(111) system (b). Green parabolas, fitted by an effective mass m∗ ≈
−0.17me, show a shift of the resonance when the Ir surface is covered with graphene. For

both systems, the Ir surface resonance predominates in the STM signal, while graphene

states play a minor role.

When graphene is placed on top of the Ir(111) surface, it binds only weakly

to the substrate and gives rise to a moiré pattern (see, e.g., Refs. [169, 214, 218,

223, 224, 225, 226]), that covers an area of 10x10 primitive graphene cells (or 9x9

primitive Ir(111) unit cells). Similar as for graphene on insulating h-BN (Sec.

4.1.1.1), the interlayer distance within the moiré is not constant. As has been

shown by non-local van der Waals density functionals [225], the height variation

in graphene/Ir(111) is between 3.27 and 3.62 Å. The interlayer binding heights are

thus very similar to those of graphene on h-BN or TMDCs, although the under-

lying binding mechanism is different for graphene on metallic Ir(111): graphene

adhesion on h-BN is mostly van der Waals-dominated, whereby, amongst others,

slight electrostatic contributions due to partially charged B and N atoms play a

role [227]. The graphene/Ir(111) interface is in fact equally constituted by van

der Waals forces. However, there is additional chemical modulation within the
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moiré: despite of an average antibonding chemical interaction, in some regions

weak covalent bonds are formed due to accumulated charge in the interface [225],

leading to adsorption heights deviating from the mean value of 3.41 Å.

In the simulations, we had to enforce a lattice matching of graphene and

Ir(111) due to the large number of Ir layers in the unit cell, but we tested carefully

different stacking configurations and adsorption heights. Thereby, we verified in

particular not only the modification of graphene electrons upon adsorption of

graphene on the Ir(111) surface, but the modification of the substrate properties

as well. Surprisingly, experimental as well as theoretical literature about graphene

impact on substrates is rare, although metal surface electrons are generally well-

known to be sensitive to adsorbents.

Looking at Fig. 5.2b, one can find a huge graphene effect on Ir states: The

surface resonance is shifted upwards between 100 and 200 meV, dependent on

the graphene-Ir distance between 3.27 and 3.62 Å in the respective stacking con-

figuration. Moreover, we can see from the simulated tunneling current contribu-

tions that the main contributions are still due to the Ir surface resonance, while

graphene pz states only marginally contribute to the signal. This is counter-

intuitive because the graphene layer is located much closer to the STM tip. An

explanation for this observation is found in the location of the graphene Dirac

point in k space: low-energy electrons in graphene around the K point have par-

allel momenta k‖, while the surface resonance is located at the Γ point. Starting

at sufficient height z & 1.5 Å above the surface, probability densities of wave

functions decay as |Ψ(z)|2 ∼ e−λ−1z in the vacuum. The decay constant λ can be

obtained from the one-particle Schrödinger equation [221, 228] as

λ−1 = 2
√

k2‖ + 2mφ/~2, (5.3)

where the work function φ is the potential barrier that has to be overcome by

electrons in order to leave the surface and to contribute to the tunneling current.

As a rough estimate, inserting the graphene pz momentum k‖ =1.7 Å and the work

function of graphene on Ir(111), φ =4.4 eV, in the formula, one finds λ−1 = 4.0

Å−1, while at the Γ point λ−1 = 2.2 Å−1. Hence, graphene states at the K point

decay much faster in the vacuum than states related to the surface resonance,

where k‖ = 0. In principle, scattering of states from the K point to the Γ point

might occur due to the periodic moiré potential. However, this is unlikely due to

the large moiré wavelength, which corresponds to small momenta, thus, multiple
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scattering processes would be required.

The theoretical results shed light on the measured scanning tunneling spectra.

First of all, the experimental shift of the STS signal of about 190 meV is in good

agreement with the calculations. Second, STM signals originate almost entirely

from the Ir surface resonance, that becomes shifted upwards in energy upon

graphene adsorption. Importantly, the graphene states are nearly invisible in

the signal, which is confirmed by the absence of electron-hole symmetry in the

experimental spectra. This important issue had been overlooked so far in STM

studies of graphene on Ir(111), where spectral properties were interpreted on

the assumption of electron tunneling from graphene to the STM tip [229, 230].

In the experiment, our colleagues further demonstrated confinement of STM-

measured states due to the nanometer-sized graphene islands. These results are

in contrast to Ref. [231], where graphene states were erroneously assumed to

be decisive for confinement at certain island sizes. Our results on the resonance

shift were confirmed at the same time independently in Ref. [232], where the

Ir(111) surface resonance, including the large Rashba splitting, was shown to

persist under ambient atmosphere.

Finally, we seek for a better understanding of the origin of the upwards shift of

the surface resonance under graphene. Coulomb interactions arising from charge

redistribution [225] as well as Pauli repulsion may potentially affect the Ir sur-

face resonance. To learn more about this, we performed again calculations of an

Ir(111) surface, but this time covered with a layer of neon (Ne) atoms instead

of graphene. With the layer of chemically fully inert Ne atoms, adsorbate states

are unavailable around the Fermi level such that no charge from the Ir substrate

can be accepted or donated. For the same adsorption heights as for graphene, we

observe virtually the same upwards shift of the surface resonance. This indicates

that the resonance shift in graphene/Ir(111) is owing to Pauli repulsion. However,

Coulomb potential effects certainly play a role as well and may not be neglected.

This becomes obvious from a look at the graphene Dirac point, which is down-

shifted in energy, when graphene is artificially pushed towards the substrate.

Thus, charge rearrangements and resulting Coulomb interactions are decisive for

the position of the Dirac cone on the Ir(111) surface. Altogether, the results

prove the importance of careful interpretation of STM/STS spectra of graphene

on metals, which will be confirmed by the next section about graphene/Ni(111).
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5.3 Graphene on Ni(111)

Long time before the isolation of graphene in 2004 [2], the Ni(111) surface was

used for the growth of carbon monolayers (see, e.g., [233, 234]). Since the rise

of graphene, metal growth techniques such as chemical vapour deposition (CVD)

[235] were continuously improved, leading to the ability of large-scale growth of

graphene on Ni(111) [236, 237]. In a joint theoretical and experimental study

with experimentalists from the groups of R. Wiesendanger and H. P. Oepen (U

Hamburg), we investigated the bare Ni(111) and the graphene-covered Ni(111)

surface on length scales from the sub-nanometer up to the millimeter scale. De-

tails about physics on the millimeter scale, such as magnetic domain patterns,

can be found in the paper [207]. Here, we continue the aim of this chapter to

investigate graphene/metal interaction on an atomic scale and gain insight into

STM experiments (performed by the Wiesendanger group) from theory.

Figure 5.3: STM experiments of graphene on Ni(111). - (a), (b) Constant current

image (topography) image (Wiesendagner group, for details, see [207]). The green diamond

shows the unit cell used for simulations (d). (c) Height profile along the white line in (b).

(d) Top and side view on the simulated geometry. Red dots visualize positions of the empty

spheres in the calculations.

Experimental STM images and a sketch of the adsorption geometry of graphene

on Ni(111) are shown in Fig. 5.3. In contrast to graphene on Ir(111), it is known
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that graphene is chemically adsorbed on the Ni surface [233]. The lattice constant

of Ni is very close to those of 2D h-BN. However, due to the strong bonding of

graphene on Ni(111), a commensurate lattice instead of a moiré pattern is formed

[238]. Fig. 5.3a,b, and c show STM measurements performed on the system. It

turns out that the corrugation on top of the surface (about 10-15 pm in a unit

cell) is enhanced compared to the bare Ni surface by a factor of 3.

To verify the origin of the corrugation and for further interpretation of STM

images, DFT simulations were performed of the geometry depicted in Fig. 5.3d,

which is the so-called top-fcc arrangement (for technical details, see App. A.3.2).

Here, one carbon atom (named atom A) is sitting above a Ni atom of the first Ni

layer, and the second graphene atom (atom B) is on top of an atom of the third

Ni layer. This was shown to be the most favorable configuration in experiment

[239] and theory [240]. It was argued that another configuration, the bridge-top

configuration, is energetically close to the top-fcc configuration [240, 241], but

the coexistence is supposed to depend on the presence of impurities [242].

Our calculations yield an adsorption height of graphene of ∼ 2.10 Å, which is

in good agreement with the literature [217, 239, 240, 241, 242]. The corrugation

we found in the unit cell, thus the height difference between carbon atom A and

B, was only 0.5 pm and therefore much smaller than those obtained by STM

(10-15 pm). The reason for this discrepancy can be understood from the fact

that the STM topography mode records modulation of electronic states, which

is not necessarily coincident with the atomic corrugation. Indeed, the enhanced

corrugation over the graphene/Ni(111) surface is an electronic effect. Indications

for this can be found in the simulated STM images for a tip height of 3.6 Å.

For the bare Ni(111) surface (Fig. 5.4a), one observes a triangular pattern of

protrusions (bright spots) in good agreement with the experiment (for experimen-

tal results on the bare Ni(111) surface, cf. [207]). Hence, states probed in STM

are related with atoms of the topmost Ni layer, where the atoms are arranged

in a triangular lattice and supply a high LDOS in the vacuum. For graphene on

Ni(111), the situation is different (Fig. 5.4b): Only one of two carbon atoms per

unit cell (green box) causes a bright spot in the STM image, which forms again a

triangular pattern in agreement with the experiment (Fig. 5.3b). Following the

notation of Fig. 5.3d, we find that only carbon atoms in sublattice B induce the

bright spots. The effect is stable under variation of the bias voltage or the tip

height and originates from a sublattice symmetry breaking. The Ni atoms of the
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topmost layer hybridize with graphene A’s pz states in contrast to B sublattice

atoms, meaning that carbon atoms in the A and B sublattice are not any more

electronically equivalent. The high corrugation as observed by STM is thus an

electronic effect. The origin of the electronic interface effects will be discussed in

the following.

(a) (b)

Figure 5.4: Simulated STM of graphene on Ni(111). - The spectra were simulated

in a height of 3.6 Å above the bare Ni(111) surface (a) and above graphene on Ni(111).

Unit cells are highlighted by green boxes.

More insight into this mechanism can be gained from simulated STS (dI/dV )

spectra. To calculate dI/dV spectra, we simulate the LDOS in the vacuum and

employ the Tersoff-Hamann approximation [220, 221], where influence of the STM

tip on the sample is neglected and the differential conductance is assumed to be

proportional to the LDOS according to Eq. 5.2. The vacuum LDOS is calculated

inside empty atomic spheres in the vacuum (see below).

In this way, local vacuum states can be directly compared to spectra obtained

from scanning tunneling spectroscopy (STS) for different lateral positions of the

STM tip. Simulated vacuum spectra of the bare Ni(111) surface are shown in

Fig. 5.5a. There is good qualitative agreement between the spin-averaged spec-

trum and the experimental STS spectra (experimental spectra can be found in

the original publication [207]). The spectra exhibit two signficant maxima, one

around -1 eV below the Fermi level and one broad maximum around +1eV above

the Fermi level. The peaks remain invariant under variation of the lateral posi-

tion in the unit cell. Important to note is the difference of spectral distribution

in majority and minority spin channels. The peak at -1 eV can be derived from

minority spin states, while the majority states carry more weight at positive en-

ergies. Therefore, spin splitting of states can be detected in the vacuum using

spin-polarized scanning tunneling microscopy (SP-STM) above the bare Ni(111)
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surface.

The energy-dependent spin contrast, which can be defined by the spin-polarized

DOS ρ↑,↓ as ∆ρ = (ρ↑ − ρ↓) / (ρ↑ + ρ↓), is depicted in Fig. 5.5b (blue dashed line).

It is negative below the Fermi level and changes sign at E = 0. Surprisingly, when

Ni is coated with nonmagnetic graphene, the spin contrast curve exhibits a dif-

ferent progression (red line). The spin contrast (averaged over four lateral tip

positions as shown in Fig. 5.3d) shows sign reversal for energies at -0.23 eV and

above EF. This allows for the following important conclusions: 1. The graphene

overlayer does not suppress spin polarization of states in the vacuum. This is

confirmed by ferromagnetic domains observed in SP-STM 2. The graphene layer

induces a spin contrast reversal in the vacuum.
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Figure 5.5: Simulated STS of Ni(111) and spin contrast of graphene/Ni(111). -

(a) Vacuum spectra of the bare Ni(111) surface for the majority and the minority channel.

The spectra were simulated in a height of 3.6 Å and weighted by a height-dependent factor

as given by Eq. A.4. (b) Spin contrast ∆ρ in the vacuum above the graphene/Ni(111)

surface. The Fermi level has been set to zero in both figures.

To learn more about the origin of the spin contrast reversal and the STS

spectra, we verify the orbital character of states contributing to the tunneling

current. Therefore, band structure calculations were performed together with a

“fat bands” analysis. Similar as in Sec. 5.2, we make use of empty spheres placed

in the vacuum in different lateral positions. The wave function |Ψn,k〉 can be

projected onto an empty s orbital |L〉 in a typical height of 3.6 Å above the bare

Ni surface or above graphene/Ni(111). The overlap | 〈Ψn,k|L〉 |2 is then depicted

in Fig. 5.6 as an additional information by a colored thickening of the bands.

The band diagram of the pure Ni(111) surface is shown in Fig. 5.6 for the

majority (a) and the minority (b) spin channel. Since the Ni surface was simulated
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by a 15-layer-thick slab of Ni atoms, a considerable number of bands is present

in the diagrams. The energy bands of bulk Ni [243, 244, 245, 246] and the Ni

surface [245, 247, 248] have been well-studied, but here we focus on vacuum

states contributing to the tunneling current. Above EF (set to zero in the figure),

in both channels upward dispersing bands with a minimum at the Γ point at

energies of 10 meV (majority) and 140 meV (minority) can be discerned, which

dominantly contribute to the tunneling current at low positive voltages. The

energy bands can be identified as surface states and surface resonances. The

state in the majority channel was identified as a Shockley state and has a mixed

orbital character [247, 248] formed by Ni pz and d3z2−r2 states at the Γ point and,

for k 6= 0, admixtures of dxz,yz orbitals. The corresponding feature in the minority

spin case is a mixture of pz and dxz,yz states [247, 248].

Below the Fermi level, there is again one dominating feature in both channels.

In the majority channel, it starts at -0.6 eV and disperses downwards away from

the Γ point. The feature can be attributed to a surface resonance [245], while

it exhibits a mixed Ni pz and dxz,yz orbital character. A very similar surface

resonance can be found in the minority channel [245, 248], but shifted upwards

above EF with identical orbital decomposition as the Shockley state. Compared to

the majority channel, there is much higher contribution to the tunneling current

due to this surface resonance in energy regions between ∼ −1 eV and ∼ 0.1 eV,

which explains the spin-polarization of the STS spectra in this region. Therefore,

the maximum at -1 eV in Fig. 5.5a can be attributed to the surface resonance,

while at positive energies majority states dominate due to the Shockley state.

The spectra demonstrate the importance of surface-related features to states the

vacuum.

The image changes drastically upon adsorption of the graphene layer on the

Ni surface. In particular, graphene has implications on states in the vacuum.

The energy bands for the same Ni slab, now coated on one side with graphene,

are shown in Fig. 5.6c and d. Conspicuously, graphene pz states occur at the

K point, but these do not resemble the well-known Dirac cones of free-standing

graphene. Due to the effect of interfacial chemisorption, and due to sublattice

symmetry breaking, a gap is opened between graphene π and π∗ states. However,

in both spin channels, the graphene states provide only small contribution to the

tunneling current compared to the Ni-derived features around the Γ point. This

is in analogy to graphene on Ir(111), where we found that graphene states are less
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visible in STS than expected (see Sec. 5.2). A closer look at the energy bands

reveals modifications of Ni states: One band, which is related to the Shockley

surface state, (Fig. 5.6c) vanishes, such that only one band remains, which be-

longs to the pristine side of the Ni slab. Thus, the graphene overlayer quenches

the Shockley surface state. Similarly, the downward dispersing surface resonance

below the Fermi level is quenched as well. This explains the sign reversal of the

spin contrast in Fig. 5.5b. We emphasize here that this reversal in the vacuum is

not connected with an inversion of the magnetization in Ni surface atoms. The

magnetic moments in the topmost Ni layer (0.51 µB) are merely reduced by about

20% compared to the bulk (0.65 µB). In agreement with the literature [238, 249],

we furthermore find small induced magnetic moments in the graphene layer (-0.02

µB for CA and 0.03 µB for CB).

Figure 5.6: Band structure of Ni(111) and graphene/Ni(111). - Energy bands of

a pristine Ni slab consisting of 15 layers in the majority (a) and minority (b) spin channels.

Blue “fat bands” indicate vacuum states that contribute to the tunneling current for a

simulated tip height of 3.6 Å and an s-like STM tip. (c), (d) The same for the graphene-

covered surface (the slab is covered on one side with a graphene layer). Vacuum states are

marked red. (d), (e) Visualization of states contributing to the corrugation measured in

STM above the bare Ni surface and the graphene-covered side of the slab in the same color

code. The corrugation above clean Ni is small and therefore enhanced by a factor of 4.

Finally, we make again use of the “fat band” technique to analyse the origin of

corrugations as measured in STM. Since we place the empty spheres in different
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lateral positions within the unit cell, we can compare the wave function ampli-

tudes and identify from amplitude differences the electronic states responsible for

the corrugation. The thickness of the bands in Fig. 5.6e and f is now used to

depict the strength of corrugation. We define the thickness d of the colored bands

as the standard deviation of vacuum projections as

d ∼
√

∑

r

(

| 〈Ψn,k|Lr〉 |2 − | 〈Ψn,k|Lr〉 |2
)2

/ρ↑↓(E), (5.4)

for each band and k point with r indexing the four different lateral positions in

the unit cell (red dots in Fig. 5.3d). The denominator normalizes the thickness

of the bands with respect to the LDOS integrated over the Brillouin zone. The

corrugation over graphene is much higher than over clean Ni(111), as can be

seen in Figs. 5.6e and f. Responsible for the enhanced corruagtion in both spin

channels are the graphene pz states. Due to the sublattice symmetry breaking,

graphene atoms CA and CB are not equivalent anymore, and STM measures only

the LDOS of the CB atom, while the CA atom is strongly hybridized with the Ni

atom located below. This in close analogy to STM of graphite, where an ABAB

(Bernal) stacking evokes occurrence of a triangular lattice [250].

For STM measurements at very low bias voltages, close to the Fermi level,

the corrugations are of a strong carbon pz character in the majority spin channel,

originating from the Fermi level crossing of the upper graphene band at the

M point. In contrast, the minority spin channel exhibits additionally small Ni

d contributions close to EF and strong contributions from the lower graphene

band. Over pristine Ni, corrugations are low and originate mainly from slight

lateral wave function amplitude differences of Ni d states. This confirms again

the purely electronic character of high corrugations measured in STM.

The graphene/Ni(111) system conveniently demonstrates the importance of

careful interpretation of STM spectra. While the presence of graphene atoms is

responsible for a strong increase of STM-measured corrugation, overall, graphene

states are barely visible in the STM signal. This is in agreement with the weakly

bound system graphene/Ir(111), although the underlying mechanisms are distinct

from each other. Altogether, the studies of graphene/metal interfaces prove that

the evolution of the wave function in the vacuum has to be carefully considered

in simulations of STM/STS spectra; a comparison of experimental STS spectra

with the simple graphene atom-centered LDOS is misleading for graphene/metal

systems.
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Nickel adatoms on graphene

6.1 Magnetic and electronic configurations

The electronic, magnetic and structural properties of individual Ni adatoms and

Ni clusters on the graphene surface have only rarely been studied in theory (cf.

[181, 251]). Experimentally, one paper of our and the Wiesendanger group (U

Hamburg) [252] reported the adsorption site of single Ni adatoms by STM and

revealed an orbital-selective coupling of the adatom on graphene from DFT. The

effect was proven to be mediated by the unique properties of the graphene sub-

strate. For Ni clusters on graphene, detailed knowledge about their properties

is lacking, including electronic configurations and magnetic moment formation.

Systems consisting of individual magnetic adatoms are not only important with

regard to the downsizing of magnetic nanostructures. Also, there is a funda-

mental interest in magnetic moment formation in graphene, and an efficient way

to generate spins in graphene would be a big leap forward in spintronics. Alto-

gether, this calls for a deeper understanding of the interactions between magnetic

impurities and the graphene substrate.

In collaboration with T. Eelbo et al. (Wiesendanger group, U Hamburg) x-ray

magnetic circular dichroism, x-ray absorption and STM experiments as well as

ab initio simulations were performed of 3d transition metal adatoms on graphene

(cf. also Ref. [253]). In this section, we focus on individual Ni adatoms and

clusters.

In agreement with previous works [181, 252], STM images show adsorption

of the Ni adatom in the so-called “hollow” position, above the center of the

graphene hexagon. In this adsorption position, the electronic configuration was
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6. NICKEL ADATOMS ON GRAPHENE

suggested to be 3d104s0, meaning the suppression of magnetic moment formation

[252]. Indeed, we find the same hollow site adsorption and absence of magnetic

moments from DFT calculations, see Fig. 6.1 for a plot of the Ni d LDOS. The

LDOS in Fig. 6.1a is shown for both spin channels, and the curves exactly match

each other. Thus, there is no spin-splitting observable, meaning the absence of

a magnetic moment, which seems to confirm the scenario of an entirely filled d

shell.

Figure 6.1: Absence of magnetic moment of Ni monomers on graphene - (a)

Spin-polarized Ni d-LDOS. The Fermi level has been set to zero. The coincidence of the

up- and down-LDOS shows the nonmagnetic nature of the Ni adatom. (b) Hollow-site

adsorption of Ni monomer on graphene (yellow: C, blue: Ni) .

In the following, we verify whether this picture is oversimplified. To gain

a more fundamental understanding of electronic and magnetic configurations of

Ni adatoms, x-ray absorption experiments were performed by our experimental

colleagues. X-ray absorption spectroscopy (XAS) is a powerful tool to investigate

the local structure and unoccupied density of states of materials, and it is both

element- and site-specific (for an introduction, see, e.g., Ref. [254]). Moreover,

shining with circularly polarized light facilitates measurements of so-called x-ray

magnetic circular dichroism (XMCD) spectra, which are simply the difference

between XAS signals at positive and negative light polarization. In this fashion,

magnetic moment formation can be detected. Fig. 6.2 shows experimental results

on XAS and XMCD for graphene with low (a) and high (b) Ni coverages at the

L3 edge (for more details on experiments, c.f. Ref. [253]). At low coverage, most
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Ni atoms occur as individual monomers and do not form clusters. The orange

line in Fig. 6.2a shows the absence of an XMCD signal at normal (0 ◦ incident

angle), and the same holds for grazing (70 ◦) incident angle (green line). This

demonstrates the absence of a spin or orbital moment and suggests again a 3d104s0

configuration. However, a pronounced multipeak structure in the XAS spectra

(black/red and blue/green curves, respectively) can be found, which exhibits two

main peaks, named A and B. This behavior is in disagreement with the scenario

of a fully occupied d shell. Since 2p→ 3d transitions would be excluded in a d10

configuration, 2p → 4s excitations should be detected in XAS due to selection

rules, but these transitions were shown to result in step-like XAS features due

to broad 4s bands [255]. A multipeak structure, as observed here, is however

indicator for a nonfully filled d shell and has been measured for gaseous Ni [256],

which is known to be in a 3d8 configuration.

Figure 6.2: XAS and XMCD of Ni on graphene. - Measurements (by the Wiesen-

danger group) are shown for low coverage (a) and high coverage (b). (Upper panel) XAS

measurements at 0 ◦ incident angle parallel (µ+, red curve) and antiparallel (µ−, black

curve) alignment between the helicity of the incident beam and a magnetic field of B = 5

T. The XMCD difference spectra (µ+ −µ−, orange) are shown as well. (Lower panel) The

same for a grazing angle of 70 ◦. The inset in (b) compares the XMCD signal for both

incident angles by dividing the XMCD signal by the average XAS intensity.

In order to resolve this discrepancy, we simulated XAS spectra using the

WIEN2K package (for computational details, see App. A.4.1). Using the dipole
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approximation within Fermi’s golden rule, XAS spectra are calculated as the

product of the unoccupied LDOS and the transition matrix elements. We tested

explicitly the effect of core holes and found only slight modifications of XAS

spectra. Therefore, core hole effects were neglected in the calculations. Fig. 6.3a

shows the XAS spectra of Ni monomers (black line). The relaxed adsorption

height of the Ni monomer was found to be 1.55 Å. In agreement with the experi-

ment, we identify two pronounced peaks at 0.7 eV (A’) and at 1.6 eV (B’) close to

the L3 edge. We associate these with the A and B peaks which can be discerned

in the experimental spectra at 854.8 and 856.1 eV, respectively. The separation

of the A and B peak in energy is 1.3 eV, while we obtain 0.9 eV in our calcula-

tions. This deviation might originate from neglecting of many-body effects, which

renormalize the spectra. The orbitals responsible for the two-peak structure can

be found from the Ni s and d LDOS, Fig. 6.3a. Apparently, the spectra mainly

follow the d LDOS while the Ni s orbitals exhibit the largest weight at the A’

peak. However, this large peak is not significant in the XAS spectra due to small

transition matrix elements for 2p → 4s excitations compared to 2p → 3d transi-

tions. This was attributed to the high localization of 3d orbitals and the nodal

structure of 4s states [257]. Therefore, the XAS double-peak structure is almost

entirely mediated by unoccupied d orbitals.

Figure 6.3: Simulated XAS of Ni on graphene. - Spin-averaged XAS and LDOS of

Ni s and d states for Ni monomers (a) and Ni dimers (b).

The results prove that the Ni d shell is not entirely filled. But what is the

electronic configuration then? An electronic configuration close to the free atom

(d8) or the bulk (d9) can be excluded since no magnetic moments are formed,

as can be seen from the absence of an XMCD signal. Moreover, we observe
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6.1 Magnetic and electronic configurations

no magnetic moment in our DFT calculations at all in agreement with previous

theoretical works [181, 252]. This allows for the following conclusion: The Ni d

shell is not completely filled, but the amount of holes is very small (. 0.1, see Fig.

6.1). The reason for the absence of magnetic moments despite a fractional d shell

occupation can be understood from an Anderson impurity model in a static mean

field (Hartree Fock) solution (see, e.g., Ref. [87]). Here, the necessary condition

is that Coulomb energy gains have to overcome kinetic energy penalties when

magnetic moments are formed. The gain of Coulomb energy upon formation of

magnetic moments is U(〈n↑〉− 〈n↓〉) with U being the on-site Coulomb repulsion

and 〈n↑,↓〉 expectation values of the spin up/down occupation. Hence, to obtain a

magnetic impurity, less kinetic energy must be paid than Coulomb energy gained:

U(〈n↑〉 − 〈n↓〉) > π∆. In the system at hand, the hybridization function exceeds

the Coulomb energy gain upon moment formation. Thus, no magnetic moments

are formed.

The small amount of Ni d hole states can be traced back to a hybridization of

the Ni d orbitals with graphene pz states. The multipeak structure of the XAS

spectra is caused by the anisotropy of this hybridization. From our calculations,

we obtain a hybridization of Ni dz2 and Ni s states, which forms the A’ peak,

while the B’ peak is due to hybridization of Ni E2 symmetry states (dxy and

dx2−y2) and graphene pz states, which form a van Hove singularity at this energy.

States with E2 symmetry were shown in Ref. [258] to couple exclusively to this

van Hove singularity due to the symmetry of graphene states in the conduction

band.

In the next step, we investigated the evolution of electronic and magnetic con-

figurations under formation of Ni clusters. In the experiments, clusterization can

simply be achieved by increasing the Ni coverage of graphene, which increases the

probability for aggregation. XAS and XMCD measurements of Ni on graphene

with high coverage are shown in Fig. 6.2b. Similar as in the low-coverage case, a

multipeak structure can be observed with two pronounced peaks, named C (854.4

eV) and D (855.6 eV), which are located at different energies and exhibit modi-

fied relative intensities compared to peaks A and B. However, the most striking

difference here is the occurrence of a clear XMCD signal near the L3 edge (see

also inset), which indicates magnetic moment formation.

We performed again electronic structure simulations of Ni on graphene, but

this time for Ni molecules of different sizes. The XAS spectrum at the L3 edge for
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a Ni dimer (adsorption height: 1.60 Å) is depicted in Fig. 6.3b. The main peaks

C’ and D’ reproduce well the experimental XAS curves: the C’ peak exhibits a

higher intensity than the D’ peak, and the distance between both peaks is about

1.2 eV, in excellent agreement with the experimental C and D peaks at 854.4 and

855.6 eV. Compared to the Ni monomer spectra, the C’ peak (at 0.2 eV), which

corresponds to the A’ peak at 0.7 eV, is shifted downwards by about 0.5 eV.

Taking a look at the LDOS, we find again that the absorption spectrum follows

the Ni d LDOS due to small transition matrix elements for 2p→ 4s excitations.

The LDOS also reveals that the shift of the C’ peak is due to increased spectral

weight of d states above the Fermi level. This is caused by a hybridization of 4s

orbitals of neighbored Ni atoms in the dimer, which depopulates the d shells and

therefore leads to enhanced spectral weight above the Fermi level.

For the Ni dimer, it turns out that the depopulation of the d shell is not suffi-

cient for the formation of finite magnetic moments. Hence, the Coulomb energy

gain is not sufficient similar to the monomer case. However, with increasing clus-

ter size, we find that sizeable magnetic moments can be formed, depending on

the precise number of atoms in the Ni cluster. Our calculations show that clus-

ters with more than four Ni atoms are sufficient to induce magnetic moments1.

Most importantly, magnetic moments can be tuned by increasing the number of

Ni atoms, yielding moments of about 0.85 µB per Ni atom in the limit of full

graphene coverage. In this limit, Ni atoms are close to a d9 configuration sim-

ilar as in the bulk due to the amplified amount of electron transfer to the 4s

shell. Thus, theory calculations provide insight into the nature of experimental

XAS and XMCD. The modification of the two main peaks in the XAS spectra

is due to the hybridization between neighboring Ni atoms in the cluster. The

non-vanishing XMCD signal, which demonstrates the presence of finite magnetic

moments, must originate from Ni clusters containing more than four atoms. As

a result, the magnetic moment depends crucially on the number of atoms and

the cluster shape. This allows for investigations of Ni-covered graphene with a

tunable magnetism, simply by varying the Ni coverage in experiments.

1The magnetic moment formation is of course dependent on the cluster shape. For a four-atom

cluster, we assume the Ni atoms to form a 2x2 block.
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6.2 Evolution of correlations with the Ni cluster size

6.2 Evolution of correlations with the Ni cluster size

Transition metal systems are well-known to exhibit various phenomena related

with the presence of strong electron-electron interactions. The many-body physics

of various transition metal impurities on graphene have been extensively studied,

mostly in theory (cf. Ref. [181] and references therein). The Ni adatom is

a special case in this series, since the monomer is close to the d10 electronic

configuration; the almost fully occupied 3d shell is expected to diminish the effects

of electron correlations. However, it has been shown in this chapter that the

electronic configuration in Ni clusters is tunable with the cluster size. Therefore,

it is reasonable to assume that correlation effects evolve in Ni clusters when the

d shell is emptied towards a d9 configuration with increasing number of atoms in

the cluster.

We consider again the Ni monomer, which is close to a d10 configuration, and

verify whether correlation effects are reflected in the spectra. To this end, the

Ni d LDOS has been calculated within GGA+U with Hubbard corrections and

parameters U = 4 eV and J = 1 eV (technical details can be found in Ref. A.4.1).

The results can be found in Fig. 6.4. Deviations between GGA and GGA+U

are hard to discern, which is expectable for a nearly filled d shell. Due to the

Hubbard U correction, the tiny double peak structure of the first main peak at

-1.4 eV is washed out, and both main peaks are slightly shifted towards the Fermi

level by about 80-100 meV.

More pronounced correlation effects on spectra are expected to occur in the

opposite case of infinitely large Ni clusters, thus, a fully occupied graphene sheet.

This is because the Ni atoms go towards the bulk d9 configuration, which has

been shown above to facilitate magnetic moment formation. In order to obtain

an accurate picture of electron correlations in this open 3d shell system, DFT++

calculations were performed (cf. Sec. 2.8.2 for a brief overview). DFT++ can

take dynamical correlations into account and is therefore superior to (static)

DFT+U . For the DFT++ calculations, a correlated subspace of 3d electrons

was extracted from the DFT Hamiltonian and further processed by means of a

home-built interface between the “DFT” and the “++” part (developed by M.

Karolak and O. Peil [259, 260]). Since the Ni atoms in the limit of full coverage

form a regular 2D lattice, a dynamical mean-field theory (DMFT) treatment of

the resulting lattice problem was employed. For simplicity, the interaction was
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Figure 6.4: Simulated Ni monomer d LDOS. - The LDOS has been calculated using

GGA (red line) and GGA+U (green line).

reduced to a density-density type only, and the calculations were performed in

the paramagnetic phase. The effective Anderson model was solved by means of

a continuous time quantum Monte Carlo (CT-QMC) solver in a segment picture

(for technical details, see App. A.4.1).

The resulting spectra of Ni d states are plotted in Fig. 6.5. There are some

noticeable deviations between the GGA (red curve) and the GGA+DFMT (green

curve) spectra. First, one notices the presence of a 6 eV satellite in GGA+DMFT,

which is well-known from bulk Ni [262]. Furthermore, one main peak, located

at ∼ −1.5 eV in GGA, is shifted downwards by about 0.8 eV and broadened in

GGA+DMFT, leading to a nearly opposite distribution of spectral weight below

the Fermi level. The main peak at the Fermi level, which controls the filling

of the d shell, is slightly sharpened, while other peaks are shifted. Altogether,

there are significant differences between GGA and GGA+DMFT away from the

Fermi level. Interestingly, the 6 eV satellite is not the only property known from

the bulk. Indeed, the Ni atoms exhibit a similar electronic configuration as the

isolated bulk system, which has a d9 filling. This is partly owing to the hollow site
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Figure 6.5: Simulated Ni d LDOS at full Ni coverage of graphene (infinitely

large Ni clusters). - The LDOS has been calculated using GGA (red line) and

GGA+DMFT (green line). In the QMC calculations, the temperature has been set to

β = 20 eV−1. The QMC spectra were obtained by employing the maximum entropy

method [261] for analytical continuation of the Green’s function.

position of the Ni atoms, which avoids distortions of the Ni atoms on graphene,

and the fact that graphene and Ni exhibit similar lattice constants. Due to the

strong orbital-selective coupling of Ni d states to graphene and the 2D nature of

the Ni layer, there are, naturally, differences between spectra of bulk Ni (cf. Ref.

[262]) and Ni monolayer on graphene. However, the fact that many features of

bulk Ni are preserved in a Ni monolayer adsorbed on graphene is rather surprising:

the previous chapter on the graphene/Ni(111) interface (5.3) led to the conclusion

of surface state quenching and strong modifications of Ni(111) surface states due

to graphene.

The correlation effects in the Ni monolayer on graphene are so pronounced that

these should be easily observable in, e.g., photoemission experiments. The tuning

of correlations, from almost zero in the case of single Ni adatoms (monomers)

to the strongly correlated system at large Ni clusters (monolayers), might be

achieved simply by varying the Ni coverage on graphene in experiments. To
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conclude this chapter, we have not only demonstrated the tunable magnetism in

Ni clusters on graphene (Sec. 6.1). Moreover, we predict from GGA+DMFT

simulations the emergence of strong correlations in large clusters with increasing

number of atoms. The underlying mechanism is the hybridization of neighboring

Ni atoms, which fills the 4s shell and empties the 3d orbital, leading eventually

to an open d shell system with large influence of electron-electron interactions on

spectra.
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7

K2CuF4, a two-dimensional

ferromagnet

7.1 The lack of ferromagnetic 2D crystals

The 2D materials available today (see discussion in chapter 3) cover a number

of electronic properties, from wide-gap insulators such as h-BN, over semicon-

ducting MoS2 and semimetallic graphene to superconducting BSCCO. This rich

diversity of electronic properties is the precursor for novel van-der-Waals het-

erostructures with tailored properties and a tremendous potential for nanoelec-

tronic applications. Two examples of these heterostructures (graphene/MoS2 and

graphene/h-BN hybrids) are discussed in Sec. 4, where also a brief overview of

their nanoelectronic applications and novel phenomena is given.

The large variety of properties of these novel materials however does not fea-

ture any aspects of magnetism. Free-standing individual magnetic 2D crystals

could not be produced so far, and their existence would not only be of fundamental

interest on its own, but furthermore pioneer magnetic 2D-based heterostructures.

In this chapter, we propose a way to realize free-standing 2D ferromagnetic crys-

tals by exfoliating atomically thin films of the magnetic bulk material K2CuF4.

Furthermore, a discussion will be given about the promising prospects that would

result from the first realization of isolated 2D ferromagnets. It should be em-

phasized that quasi-2D ferromagnets have been realized decades ago, but these

materials required the presence of a substrate to ensure their chemical stability.

In contrast, the system proposed here will be predicted to form a free-standing

magnetic 2D membrane without the need of a substrate. Importantly, the truly
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2D nature would turn K2CuF4 into the first truly 2D magnetic spin model sys-

tem in experiments, which would allow for systematic studies of the nature of the

Kosterlitz-Thouless transition. This chapter is based on the results published in

the article in Ref. [263].

7.2 Cleavage, structure and stability of 2D K2CuF4

The bulk material K2CuF4 was intensively investigated long ago, and it took over

a decade to find a consensus about its actual crystal structure [264, 265, 266].

The 3D crystal is formed by layers, with each layer consisting of three planes,

one Cu-F2 plane and two K-F planes below and above (Fig. 7.1). The Cu atoms

have in total six F neighbors, four in the Cu-F plane, and one in each K-F plane

respectively, located on top or below the Cu atom. Importantly, the F atoms

of the Cu-F plane are Jahn-Teller distorted, which lowers the symmetry of the

otherwise tetragonal system to an orthorhombic lattice symmetry. K2CuF4 is a

member of the K2MF4 perovskite class, withM =Mn, Fe, Co, Ni, Cu symbolizing

a 3d transition metal [267].

Figure 7.1: Bulk and 2D K2CuF4. - (a) Side view on the crystal structure of bulk

K2CuF4. (b) Crystal structure of the exfoliated 2D layer from a top and a side view. Small

black arrows denote Jahn-Teller distortions (see text) and the green lines symbolize the

square unit cell of the 2D layer. To ensure lucidity, only Cu-F bonds are shown by gray

lines.

A precondition for the exfoliation of monolayers is a weak interlayer binding

in the bulk. A reasonable quantity to judge the feasibility of an exfoliation is the

cleavage decohesion energy. We simulated the energetics of a cleavage procedure

by introducing a fracture in the bulk crystal and varied the width of the fissure d
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(for calculation details, see App. A.5). The cleavage energy Ecl(d) is depicted in

Fig. 7.2. From the asymptotic limit, the ideal cleavage decohesion energy [268]

can be extracted. The cleavage energies were obtained from LDA calculations

with and without van der Waals (vdW) corrections in the scheme of Grimme [73]

in order to estimate upper and lower boundaries. Local Hubbard U corrections,

which play an important role for electronic and magnetic properties of the system

(see below), turned out to be irrelevant for the interaction between layers and

were therefore neglected (App. A.5.3). The obtained ideal cleavage decohesion

energies are 0.78 J/m2 with vdW corrections and 0.53 J/m2 without. These

values are comparable to other van der Waals solids: experimental estimations of

the cleavage energy in graphite are about 1.5-2 times higher than our results for

K2CuF4. For the cleavage procedure, the cleavage strength [268] is another useful

quantity, given by the maximum value of the derivative of Ecl(d). We obtain 5.7

GPa and 4.4 GPa with and without vdW corrections, respectively.
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Figure 7.2: Energetics of the cleavage procedure in K2CuF4. - The cleavage

energy Ecl, which has to be overcome in an exfoliation procedure, calculated with and

without van der Waals corrections. The width of the fracture d is defined with respect to

the equilibrium interlayer spacing of 2.6 Å.

A comparison between the bulk cleavage energies and the binding energies of

the isolated bilayer shows that both energies are virtually identical. This can

be attributed to the weak interaction between single layers and the far distance

between next-nearest layers (∼ 9 Å). This ensures not only the feasibility of

exfoliation down to the monolayer, but also indicates that possible interactions

between few-layer K2CuF4 and substrates are independent of the layer number.
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The bilayer binding energies of other 2D crystals turn out to be only slightly

larger. For instance, the calculated bilayer energy of K2CuF4 is only 2-3 times

larger than theoretical values for bilayer graphene [63, 269] and 1.5-2 times higher

than for Bi2Se3 [270]. Therefore, it is safe to state that the interlayer binding in

bulk K2CuF4 is low enough to produce single-layers of this material, as has been

done for many others [4, 5]. One possible technique mighty simply be the Scotch

tape method.

Although the interlayer binding in bulk K2CuF4 is weak, possible structural

changes under an exfoliation must be verified. A cleavage procedure might es-

pecially affect the Jahn-Teller distortions, which are crucial for the magnetism

in the material. We carefully checked for structural modifications in our simu-

lations by relaxing the atom positions in the 2D layer. Beforehand, we tested

the performance of our simulations (see App. A.5.2) and reproduced the exper-

imentally known structure. In particular, the positions of the Jahn-Teller atoms

in the bulk agreed perfectly with the literature. Afterwards, we checked the 2D

layer and found only slight modifications of the distortions. Overall, the struc-

tural properties of K2CuF4 turned out to be not sensitive to layer cleavage. As a

consequence, the 2D layer as shown in Fig. 7.1b contains two formula units (14

atoms in total) in a quasi-2D square unit cell.

Figure 7.3: Energetics of uniaxial deformation. - Strain energy Es as a function

uniaxial strain ε. The unit cell shown in the inset sketches the simulated tension (ε > 0)

and compression (ε < 0) direction.
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For feasibility of future experiments on 2D K2CuF4, it is important to judge

aspects of the chemical stability of such compounds, in particular with regard

to the necessity of a substrate. If the in-plane stiffness of the material is high

enough, substrates will not be required and experiments on the free-standing ma-

terial might be performed. To judge the applicability of K2CuF4 in experiments,

some elastic properties of the materials must be considered. From first-principles

calculations, one can easily derive elastic constants such as the 2D Young’s mod-

ulus, which can be formulated for the 2D square lattice as

Y2D =
1

A0

∂2Es

∂ε2

∣

∣

∣

ε=0
, (7.1)

with Es the strain energy, ε the uniaxial strain and A0 the unit cell area in the

equilibrium. The strain energy as a function of the strain is plotted in Fig. 7.3,

from which we extract Y2D = 44.8 N/m. This value is about 13% of the 2D

Young’s modulus in graphene, as has been reported in Ref. [271]. In the same

paper, the authors fabricated free-standing graphene beams that were supported

only from one side, which the authors attribute to the low bending of graphene due

to the high in-plane stiffness of graphene. In analogy, we estimate the bending of

K2CuF4 flakes of similar length l and width w. An estimation of the out-of-plane

deformation h is then given by an anharmonic expression: h/l ≈ (ρgl/Y2D)
1/3

[271]. Inserting the simulated value of Y2D = 44.8 N/m and the density ρ =

2.1 × 10−6kg/m2 of K2CuF4, we obtain h/l ≈ 10−3 − 10−4 for a flake of length

l ≈ 100 µm. This is not more than one magnitude larger than in the ultrastrong

material graphene, where h/l ≈ 10−4. Hence, even large flakes will not collapse

under their own weight, which ensures stability of samples under vibrations or

significantly large extra loads. Importantly, we find in our simulations that the

Jahn-Teller distortions are stable under in-plane deformations. This ensures the

stability of the magnetism, which is discussed in the next section.

7.3 Magnetism of 2D K2CuF4

The downsizing of magnetic materials up to atomically small nanomagnets is the

ultimate goal of current research on magnetism. Magnetism in atomically thin

films could so far only be realized by means of supporting substrates [272, 273,

274]. 2D K2CuF4, in contrast, fulfills the criteria to form a free-standing mem-

brane, and offers the possibility to produce a truly 2D magnetic crystal. At first
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sight, the truly 2D nature of K2CuF4 raises the question of the stability of the

magnetism, since long-range magnetic order in a 2D system is excluded by the

Mermin-Wagner theorem [275]. However, a quasi-long range ordering effect in

the 2D XY model, the Kosterlitz-Thouless transition, might pave the way to a

ferromagnetic phase for K2CuF4. In the bulk, indeed two critical temperatures

were identified, the Curie temperature TC and the Kosterlitz-Thouless temper-

ature TKT. In order to predict the feasibility of experiments on magnetic 2D

K2CuF4, several criteria need to be fulfilled: 1. Although the layer-layer binding

is weak, 3D interaction can be very relevant for the Kosterlitz-Thouless mag-

netism. Hence, the magnetism of the bulk [266, 267] must be preserved in the

exfoliated monolayer at zero temperature. 2. In practice, strains and deforma-

tions will occur in real samples, and the magnetism should be robust against

these perturbations. 3. In the 2D layer, TKT must be high enough to allow for

experiments.

The robustness of the Jahn-Teller distortions in the system plays a decisive role

for the first two conditions. We found that the fully relaxed 2D layer conserves the

Jahn-Teller distortions, yielding a magnetic moment of 1 µB per Cu atom. The

magnetic moments turned out to be stable under applying strains as well. This

stability is remarkable, since ferromagnetism in isolated 2D crystals has only been

predicted theoretically for artificially strained layers of NbSe2 and NbS2 [276]. To

shed light on the mechanism behind the stability of the magnetic moments in 2D

K2CuF4, we consider the DOS of the system (Fig. 7.4, blue lines). The DOS was

calculated using the LDA+U method [80] with a realistic value of U ≈ 8 eV (for

details cf. again App. A.5.4). The system exhibits a large band gap of more than

3 eV, which is sensitive to the choice of U . For U = 0, the gap is only as small as

0.3 eV. The gap separates the occupied states from a pronounced hole state in the

spin-down channel, which we identify to be responsible for the ferromagnetism.

It is mostly of dz2−r2 orbital type (Fig. 7.4, red line) and, importantly, robust

under deformations. For uniaxial strains, we find that the hole state is shifted

in energy by not more than some hundred meV. Hence, deformations of realistic

amplitudes will not quench the hole state and therefore prevent the magnetism,

which is accompanied by the presence of Jahn-Teller distortions.

To gain a better understanding of the magnetic moment formation, we look

at the band structure of the system (see Fig. 7.5a,b). First of all, a direct band

gap can be observed. Since the primitive unit cell consists of 2 formula units (14

120



7.3 Magnetism of 2D K2CuF4

Figure 7.4: DOS of 2D K2CuF4. - Spin-polarized total DOS (blue lines). The projected

DOS reveals the dz2−r2 character of the hole resonance above 3 eV (red lines).

atoms), a considerable number of bands is visible below the Fermi level. Using

the “fat bands” technique, we emphasize bands of Cu dz2−r2 character by red

color. Here, we find remarkable differences in the spectral weight distribution

between both spin channels. In the spin-up channel, large spectral weight is

located around -6 eV, while no states exist in this energy window at all in the

spin-down channel. Instead, a similar state is now located above the Fermi level,

which we identify as the hole state at ∼ 3.2 eV.

Figure 7.5: Band structure of 2D K2CuF4. - Energy bands in the spin-up (a) and

the spin-down channel (b). Red “fat bands” visualize the Cu dz2−r2 character of the bands.
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7. K2CUF4, A TWO-DIMENSIONAL FERROMAGNET

The magnetism is generated by means of the following effect: the Jahn-Teller

distortions, i.e., alternate Cu-F bond lengths, induce a peculiar orbital ordering

at Cu sites that can be traced back to an alternate occupation of dz2−x2 and

dz2−y2 orbitals (Fig. 7.6). This is in conjunction with the dz2−r2 hole state,

which is a linear combination of dz2−x2 and dz2−y2 orbitals. We also tested the

effect explicitly for a geometry without Jahn-Teller distortions by enforcing equal

Cu-F bond lengths. In this case, we find an ordering of antiferromagnetic type,

which confirms that only the interplay of Jahn-Teller distortions and the alternate

dz2−x2/dz2−y2 occupation allow for feromagnetism. This mechanism is already

known from the bulk [266] and the fact that it is conserved in the monolayer is

of critical importance for experiments on the isolated 2D system.

Thus, the first two conditions for a magnetic 2D layer are fulfilled: magnetic

moment formation survives in the monolayer and the moments are robust against

strains. In practice, however, the third condition of a sufficiently high Kosterlitz-

Thouless temperature is crucial for experiments. The transition temperature is

closely related with the magnetic anisotropy. In the bulk, the in-plane anisotropy

was found to be weak [277]. We performed ab initio calculations (App. A.5.4)

of the magneto-crystalline anisotropy (MCAE) in the 2D system. We found that

the easy axis of the bulk is preserved: it lies in-plane but is undirected within the

plane. It is not obvious that the bulk easy plane is preserved in the monolayer:

there is a finite chemical interaction between two K2CuF4 layers, although the

magnetic interlayer coupling, which is only about 0.1% of the intralayer magnetic

coupling, is small.

Figure 7.6: Orbital ordering in 2D K2CuF4. - Density of the hole state at ∼3.5 eV

(0.35 – 0.55e/unit cell) in black/white colors. Red dots illustrate Cu atoms.
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The monolayer thus constitutes, from a model point of view, a model system

consisting of a square lattice of spin-1/2 sites, with the spin direction lying in-

plane. This allows for experimental studies on an effective 2D Heisenberg model.

Similar as for the bulk, the Heisenberg Hamiltonian can be written as [278]

H = −1

2

∑

〈i,j〉

J
[

Sx
i S

x
j + Sy

i S
y
j + ηSz

i S
z
j

]

, (7.2)

whereby J > 0 constitutes the ferromagnetic nearest-neighbor coupling, and

1 − η ≪ 1 the small in-plane anisotropy. We can connect our first-principles

calculations with the model Hamiltonian by evaluating DFT total energy calcu-

lations to estimate model parameters J and η: J = Efm − Eafm, whereby Efm is

the total energy of the ferromagnetic system and Eafm the total energy of the sys-

tem with enforced antiferromagnetic ordering. The parameter η can be directly

extracted from the MCAE calculations. Our simulations yield J/kB = 25.3 K and

η = 0.90. According to Ref. [278], this allows calculating the Kosterlitz-Thouless

temperature (TKT) by means of the renormalization group method as

TKT =
2πJS2

ln
(
√

TKT/JS
1−η

)

+ 2 ln
(

2
TKT/2πJS2

)

+ C
, (7.3)

where C = −0.5 is a constant used for the bulk system. In this fashion, we

end up with TKT = 7.9 K, which is close to the Curie temperature of the bulk

system (TC,bulk ∼ 6.3 K). Experimentally, the transition temperature TKT can be

easily reached by Helium cooling. Thus, all properties of 2D K2CuF4 indicate the

feasibility of experiments on a free-standing, exactly 2D ferromagnetic crystal.

7.4 Magnetic 2D crystals - Prospects

K2CuF4 is only one of many possible materials suitable for the fabrication of truly

2D magnetic crystals. Our results indicate that K2CuF4 fulfills all properties

required for a stable ferromagnetic 2D membrane. The possibilities for future

experiments as well as novel applications are numerous.

Besides a fundamental interest in ferromagnetic atomically thin films, 2D

K2CuF4 offers a large number of possibilities for new experiments on heterostruc-

tures of atomically thin materials. For instance, it might be used in graphene-

based heterostructures as a spin-polarized electrode or in order to induce magnetic
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7. K2CUF4, A TWO-DIMENSIONAL FERROMAGNET

moments that could be tuned via external fields. Another interesting possibility

is to use 2D K2CuF4 as a magnetic overlayer on surfaces of topological insulators.

In this way, band gaps in the (topologically protected) surface states [279] may

be opened.

Beyond various applications in heterostructures, there is a broad research in-

terest in the nature of the Kosterlitz-Thouless transition. In bulk K2CuF4 (and

all other bulk materials with a Kosterlitz-Thouless transition), two phase transi-

tions occur with two characteristic temperatures: the Curie temperature and the

Kosterlitz-Thouless temperature. However, the Kosterlitz-Thouless transition in

the bulk is interfered by 3D interactions [280]. This is in analogy to the differences

between graphene and bulk graphite: Dirac states are not absent in graphite (they

exist at the Brilluoin zone boundary), but they are “hidden” by parabolic disper-

sion quasiparticles due to layer-layer interaction. Only the isolation of graphene

monolayers facilitated experimental access to Dirac states. In analogy, with 2D

K2CuF4, we demonstrate a way to perform experiments on a Kosterlitz-Thouless

system without perturbations through 3D interactions. K2CuF4 would allow for

systematic studies of the Kosterlitz-Thouless transition in the future. For in-

stance, efforts could be made to increase the Kosterlitz-Thouless temperature by

doping through substituent atoms (such as Sr). Also, the physics of magnetic vor-

tices may be studied, which would be present in a 2D Kosterlitz-Thouless system.

First results of a recently started project together with R. Nair (U Manchester)

on another 2D material, hexagonal CrCl3, look promising.
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Summary and Outlook

The different 2D crystals studied in this thesis cover a large parameter space and

reveal a diversity of phenomena. Simultaneously, the number of possible combi-

nations into van der Waals heterostructures is practically infinite. One goal of

this thesis was to investigate the electronic properties of the most frequently stud-

ied 2D-based heterostructures at this time, graphene/h-BN and graphene/MoS2

interfaces. For graphene/h-BN, there is on-going discourse about the formation

of moiré superlattices and the presence of a spectral gap. Our work showed that

moiré superstructures reduce absolute band gaps due to the spatial cancellation

of mass terms acting on Dirac fermions. For an accurate judgement of elastic

properties and mechanical strength, a consideration of van der Waals interac-

tions beyond simplest DFT is crucial. Future efforts should be made in order

to merge model calculations from the sub-Å to the moiré periodicity of more

than 10 nm, with the ultimate goal to understand the conditions responsible for

inconsistent experimental results on moiré formation and electronic properties.

The rather applied project on graphene/MoS2 hybrids is a good example for

the interplay of multiple doping mechanisms in realistic nanosystems, which even-

tually facilitate an application as a photodetector. In analogy to graphene/h-BN

hybrids, the role of defects in these systems turns out to be counter-intuitive.

While in graphene/h-BN midgap states are induced by carbon impurities located

in the neighboring boron nitride layer, common defects in MoS2, such as sulfur

vacancies, do not affect graphene. Instead, substitutional rhenium impurities in

the inner molybdenum plane dope graphene with electrons, which, in combination

with a MoS2 edge, allows for efficient separation of photo-induced electron-hole

pairs in graphene. The role of inhomogeneities in graphene heterostructures is
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8. SUMMARY AND OUTLOOK

far from being understood; for instance, defects in h-BN are suspected to medi-

ate vertical carrier transport even at zero field. This calls for a comprehensive

transport theory.

Apart from heterostructures, the influence of graphene sheets on metallic sub-

strate properties was studied in this thesis. Graphene on a magnetic Ni(111)

surface quenches the Ni surface state, which reverses spin polarization in the vac-

uum. Due to strong binding and sublattice symmetry breaking, the Dirac cone

vanishes, and only one graphene sublattice is visible in STM topography images.

In STS spectra, the contributions of graphene atoms to the tunneling current are

much lower than from the Ni atoms, which is unexpected above a graphene sur-

face. Interestingly, a similar invisibility of graphene states is observed on Ir(111),

although graphene is only weakly bound to the Ir substrate. Graphene also affects

Ir properties by shifting the Ir surface resonance. The results corroborate that

STM/STS spectra of graphene/metal interfaces have to be interpreted carefully.

Another local probe technique, XAS, was topic of our study on Ni adsorbates on

graphene. XAS simulations revealed the magnetic and electronic configurations

of Ni monomers and clusters. Most importantly, graphene can be used as a scaf-

fold to manipulate the size of Ni clusters for the purpose of tunable magnetic

moment generation. Furthermore, GGA+DMFT calculations demonstrated the

emergence of electronic correlations in the case of large clusters, an effect related

to the depopulation of the d shell.

Finally, the motivation of the study of 2D K2CuF4 is a proposal to fabri-

cate Kosterlitz-Thouless magnetic materials in experiments. Although a second-

order ferromagnetic phase transition does not exist in a strictly 2D crystal, the

Kosterlitz-Thouless transition does provide a ferromagnetic phase in 2D K2CuF4

below about 8 K. Crucially, it turns out that the chemical stability of the crystal

is sufficient to either form a free-standing magnetic membrane, or to interface

K2CuF4 with graphene or topological insulators. Imaginable applications are

countless, while at the same time the system would be the first realization of a

truly 2D magnetic crystal. Further studies of 2D magnetic materials have al-

ready started that raise hope for the feasibility of magnetic 2D crystals in the

near future.
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Appendix A

Appendix

A.1 Graphene/h-BN

A.1.1 Computational method

A.1.1.1 Graphene on pristine h-BN

Simulations of the graphene/h-BN system were performed with the Vienna ab ini-

tio simulation package (VASP) [164]. The (unrotated) moiré consisting of a 56x56

graphene layer on top of a 55x55 layer of h-BN would contain more than 12000

atoms, which is out of reach for DFT-PAW methods even in a supercomputer.

Therefore, we restrict to small unit cells of 4 atoms with the graphene lattice

being enforced to match the h-BN lattice. A vacuum of 25 Å was employed. We

constructed the unit cells with six different local stacking configurations as shown

in Fig. 4.2a. The order of configurations can be viewed as a sequence of snapshots

being realized when the graphene sheet is translated downwards by half a B-N

bond length for each configuration. The enforced lattice constant was chosen as

2.49 Å, thus, graphene was stretched onto the LDA-optimized lattice constant of

h-BN. In the computationally extremely demanding ACFDT-RPA calculations,

the response function χKS, the RPA correlation energy ERPA
c , and the exact ex-

change energy EEXX were evaluated with LDA KS orbitals. We chose a kinetic

energy cutoff of 347 eV for the response function and a plane wave cutoff of 520

eV together with a mesh of 7× 7× 1 k-points. Although ERPA
c and EEXX require

a higher cutoff to converge, it can be shown that the sum, which we calculate to

obtain total energies, converges much faster [61], and the cutoff of 347 eV ensured

satisfying convergence. To assess the quality of our RPA calculations, comple-
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mentary LDA/GGA calculations were performed using a 24 × 24 × 1 k-points

grid and a kinetic energy cutoff of 500 eV. Furthermore, LDA/GGA calculations

of a single h-BN sheet were performed using 15× 15× 1 k-meshes and a 500 eV

kinetic energy cutoff to calculate the elastic properties of a single h-BN sheet.

A.1.1.2 Graphene on defective h-BN

DFT calculations of carbon, oxygen, and antisite defects (Sec. 4.1.1.6) with 3x3

graphene supercells on top of two h-BN layers were performed with enforced lat-

tice matching. The lattice matching effect is negligible here due to the significant

resonances related with the C defects around the Fermi level. The stacking order

was chosen to be according to configuration I (Fig. 4.2a), and the two h-BN

sheets were stacked in A-A’ order (eclipsed with B over N) analogous to the

stacking in bulk h-BN [281]. The geometries were fully relaxed. The LDA func-

tional was employed and a k-mesh of 12x12x1 points was employed for Brillouin

zone sampling. Cohesive energy calculations indicate the highest stability of C

defects, while antisite defects are less stable, although interesting candidates for

short-range scattering of graphene electrons, as well.

A.1.2 Cohesive energies

The stability of the defective heterostructure can be estimated from its cohesive

energy. The cohesive energy can be calculated as

Ecoh =
nBEB + nNEN + nCEC + nOEO − Etot

Ntot

, (A.1)

with nB, nN, nC, nO the number of B, N, C, and O atoms in the unit cell,

EB, EN, EC, EO the respective total energies of the isolated atom, Etot the total

energy of the defective (fully relaxed) heterostructure, and Ntot the total number

of atoms in the unit cell (54 in our simulations). Defects with the lowest cohesive

energies (antisites, O substituting B) lead to strong distortions of the surrounding

B and N atoms with considerable corrugations of partly more than 1 Å, which

slightly buckles the graphene sheet above.
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prist. C subs. B C subs. N O subs. B O subs. N B antis. N antis.

Ecoh (eV) 9.648 9.627 9.578 9.468 9.578 9.485 9.564

Table A.1: Cohesive energies of the pristine graphene/h-BN heterostructure, and with

C, O, and antisite defects included.

A.2 Graphene/MoS2

A.2.1 Computational method

The theoretical results obtained in this work were based on DFT calculations,

which we performed using the Vienna ab initio simulations package (VASP) [164].

In Sec. 4.1.1.1 and in Ref. [119, 156, 282] it was shown that the local den-

sity approximation (LDA) to the exchange-correlation potential is better suited

to describe van der Waals forces in weakly bound layered systems than gener-

alized gradient (GGA) functionals. The simulations comprised large supercells

of 50 C atoms, 32 S and 16 Mo atoms, and for simulations of impurities in the

heterostructure, the atoms were replaced by a substituent or removed. In these

simulations a k-mesh of 12x12x1 points and a plane-wave cutoff of 500 eV was

employed.

For simulations of edge effects, computationally demanding calculations were

performed of a graphene semi-plane, with one half of the graphene sheet covered

by MoS2. In this manner, a supercell of 8x1 unit cells as shown in Fig. 4.18 was

constructed. In total, the unit cell contained 600 atoms, and we realized different

edge configurations in the simulations. Furthermore, we considered the interplay

of rhenium impurities and edge effects by including the same Re concentration as

in Fig. 4.18, such that the impurities had a minimum distance to the MoS2 edge

of ∼ 10 Å. For these calculations, we employed a 3x1x1 k-mesh and a plane-wave

cutoff of 400 eV.

A.2.2 Sulfur vacancies and oxygen impurities in MoS2

In Sec. 4.2, we proposed Re impurities in MoS2 as a possible explanation for

the electron-doping of graphene below MoS2. To substantiate this, we exclude

in the following other realistic impurities as a source of the doping. A natural

candidate for a doping of graphene by MoS2 could be sulfur vacancies in MoS2.

We checked the effect of S vacancies with the same setup as in the Re impurity
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Figure A.1: Further defects in graphene/MoS2. - (a) (top) Graphene-MoS2 with

sulfur defect from a side view. (yellow atoms: graphene, blue atoms: sulfur, red atoms

molybdenum). The S defect is introduced by removing one S atom in the unit cell. (bottom)

Band diagram (blue curves). p state contributions of S atoms next to the sulfur vacancy

are depicted as orange fat bands. (b) The same for oxygen impurities. Red “fat bands”

show p state contributions of the oxygen impurity.

simulations (see Fig. 4.18c). We simulated the vacancy by removing one of the

32 sulfur atoms between graphene and MoS2, and relaxed the structure. The

corresponding band structure can be found in Fig. A.1a. Obviously, there is

no Fermi level shift, since the Dirac point lies on the Fermi level. Hence, there

is no doping of graphene by S vacancies in MoS2, even in this high impurity

concentration. There are p states emerging above the Fermi level (orange “fat

bands”), but these hole states do not significantly hybridize with graphene states,

as can be seen from the intact Dirac cone.

XPS measurements performed by the group of K. Novoselov (U Manchester)

exhibited a significant amount of oxygen in the samples. This indicates the

presence of oxygen impurities, which substitute S atoms to form MoOxS2−x in the

heterostructure. To exclude doping effects here, we did the same calculations as
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Figure A.2: Bilayer MoS2 in graphene/MoS2. - (a) (top) Side view on the system

with two MoS2 layers used (yellow atoms: graphene carbon, blue atoms: sulfur, red atoms:

molybdenum). (bottom) Band structure (blue curves). The red “fat bands” visualize

contributions of the Re d orbitals.

done for Re impurities and S vacancies, but this time with one S atom replaced

by an oxygen atom, such that x = 0.0625 (Fig. A.1b). Compared to the pristine

graphene/MoS2 system, there are no crucial differences in the band diagram. This

can be understood simply from the fact that sulfur and oxygen are both members

of the chalcogen group in the periodic table. Hence, similar covalent bonds of S

and O atoms with neighboring Mo atoms are formed. Overall, the band structure

shows that oxygen p states (red colored “fat bands”) in the system do not affect

the electronic structure significantly.

A.2.3 MoS2 thickness and temperature dependence of the doping

For measurements of the gate voltage response of the photocurrent, several layers

of MoS2 were deposited on graphene, which we neglected in our simulations of

the system, where only one MoS2 layer was considered. We tested explicitly the

importance of multilayers in the calculations presented in Fig. 4.18. To do so,

we added another MoS2 layer to the system and recalculated the band structure.
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The results are shown in Fig. A.2. There is only small difference in the Fermi

level shift of approximately -15 meV and no qualitative differences to the band

structure of the monolayer system shown in Fig. 4.18. Hence impurity doping

in the interface is not sensitive to the thickness of the MoS2 flake used in the

experiment, and the modelled system can be directly compared to measurements

on a heterostructure with a MoS2 thickness of several layers.

Comparison to the experiment requires an understanding of the role of tem-

perature effects. We checked the temperature effect on the Fermi level shift by

weighting the calculated carrier density with the Fermi-Dirac distribution. The

carrier density was exctracted from integrated projected densities of states. We

find that measurements performed at room temperature (as in the photocur-

rent measurements) induce Fermi level shifts on the order of 10 meV, which is

negligible. Thus, temperature-induced broadening does not play a role in the

comparison between experiment and theory.

A.2.4 Charge reordering in graphene under different MoS2 edge types

The charge redistribution effect in graphene below MoS2 edges is discussed in

Fig. 4.19, but restricted to the scenario of a (1̄010) edge. To secure our state-

ments, we additionally investigated Mo-terminated (101̄0) edges with additional S

monomers and dimers adsorbed. Here the shape of the potential step in graphene

below MoS2 was found to deviate from the (1̄010) edge, which can be expected

from the literature on isolated MoS2 edges [196, 197]. However, for graphene be-

low all considered edges, we find important similarities in the potential landscape.

The shape of the potential barrier varies strongly, but its amplitude is always on

the order of some hundred meV. Crucially here, the resulting electric field below

any MoS2 edge is directed such that redistributions move electrons to the uncov-

ered side while holes reside in the MoS2-covered part of graphene. Finally, we

simulated an artificial edge structure, where we cut the MoS2 flake laterally in

both the zigzag and the armchair direction. This kind of edge is unlikely to occur

in reality because of high formation energies. Furthermore, we did not saturate

bonds or relax the geometry. An image of the simulated structure is given in Fig.

A.3. The electronic states at armchair and zigzag states in MoS2 nanoribbons

are known to differ strongly [283], but the color map of the graphene pz on-site

energies in Fig. A.3 shows again a potential barrier similar to the realistic con-

figurations discussed here and in Sec. 4.2.2. The on-site energies were calculated
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by

E =

∫ EF

−∞
ǫρ (ǫ) dǫ
∫ EF

−∞
dǫ

, (A.2)

with ρ (ǫ) the carbon pz-DOS.

Figure A.3: Potential step of arbitrary shape. - Top view on the MoS2-graphene

heterostructure (yellow atoms indicate the graphene carbon atoms, blue atoms sulfur and

red atoms molybdenum). The contour plot shows the on-site energy differences of graphene

pz orbitals.

To conclude this edge study, the potential landscape present below MoS2

edges is manifold due to various different edge configurations that might occur in

experiments. From transport experiments, we do not know the local subtleties of

the potential landscape, but for our analysis of the photocurrent experiments, it

is enough to know the rough amplitude of the barrier and the sign of the potential

step, which is always the same for all investigated configurations. This allows for

the conclusion that the photocurrent in the experiment is induced at the edge,

where electron-hole pairs are sufficiently separated. This is supported by the

symmetry in the photocurrent maps.
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A.3 Graphene on metals

A.3.1 Graphene on Ir(111) - computational details

DFT calculations were carried out using VASP [164] and the PBE-GGA [32] to

the exchange-correlation functional. To model the bare Ir (111) surface, a slab

comprising 18 Ir layers was constructed with a lattice constant of 3.888 Å, and a

large vacuum of 5.5 nm was employed. 15x15x1 k points were used for Brillouin

zone sampling together with a kinetic energy cutoff of 400 eV.

For the graphene/Ir(111) system, the same unit cell was used with one side of

the Ir slab coated by a graphene layer. Here, graphene was slightly stretched to

match the Ir lattice constant. For band structure calculations, spin-orbit coupling

was taken into account to ensure the Rashba splitting of Ir(111) surface states.

A.3.2 Graphene on Ni(111) - computational details

The VASP [164] package was utilized for DFT calculations and the PBE-GGA [32]

functional was employed. Van der Waals interactions were considered by means

of the DFT-D2 method [73]. Here, we used the experimental lattice constant of

the bare Ni (111) surface, 2.49 Å, and the surface was constructed by a 15-layer Ni

slab. Periodic images were separated by a vacuum of about 18 Å. For graphene

on Ni(111), the surface was coated on one side of the Ni slab. The graphene

lattice is known to conform to the Ni surface structure, thus, no moiré is formed.

The geometries were optimized until forces were lower than 0.01 eV Å−1 and a k

mesh of 36x36x1 points was employed for calculations of the LDOS.

STM images were simulated by calculating the spatially resolved LDOS, inte-

grated in an energy window between -100 meV and 100 meV. For spin-polarized

STS, empty spheres were placed in the vacuum at four different lateral positions

and at a height of 3.6 Å over the bare Ni(111) surface or the graphene/Ni(111)

surface. Thereby, the STM tip was assumed to be s-wave symmetric at the apex.

A problem of STS simulations is the presence of a tunneling barrier between

the tip and the sample. The precise shape of the tunneling barrier is unknown

and modified by an electric field between the tip and the surface [284]. A suitable

approximation to the tunneling barrier shape is a trapezoidal form, leading to a

modification of dI/dU spectra according to Ref. [285] as

dI

dU
∼ exp

(

−
∫ s

0

dz
[

Φ + eU
z

s
− eU

]− 1

2

)

. (A.3)
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Thus, there is an additional dependence of the energy and the tip-height z (Φ

is the work function and s the distance between the sample and the STM tip).

This can be, expanded to first order in U , expressed as

dI

dU
∼ c0 exp

(

−eU
E0

)

, (A.4)

with c0 and E0 being material-specific constants, whereby E0 depends on the

distance between the sample and the tip. For comparison of simulated STS

with experiments, we can therefore simply scale the vacuum LDOS by a factor

exp (−E/E0), whereby we optimize E0 according to the experimental spectra.

For the spectra plotted in Sec. 5.3, we find E0 = 2 eV.

A.4 Ni adatoms and clusters on graphene - computational

details

A.4.1 Ni on graphene

We performed a series of DFT calculations using two DFT codes, the VASP pack-

age [164] and WIEN2k [46]. We used the PBE-GGA exchange-correlation func-

tional [32] and converged the spectra carefully with respect to the k mesh. The

unit cell in the simulation was modeled by an impurity placed on a 3x3 graphene

supercell comprising 18 carbon atoms. We employed 8 Å and 22 Å of vacuum

between periodic images and relaxed the geometry within VASP. For XAS simu-

lations, we employed the dipole correction and Fermi’s golden rule. Tests of core

hole effects showed little modification of the spectra. The tests were done by a

forced ionization, i.e., by removing one electron from the core.

For Ni cluster calculations, monomers, dimers, and 4-atom oligomers were

tested (all geometries were relaxed). We also considered the full coverage limit,

for which a primitive graphene unit cell was employed.

DFT++ calculations were performed by means of an interface designed by M.

Karolak and O. Peil, which is a general tool to connect the VASP code with impu-

rity solvers for the purpose of DFT++ calculations. In this way, first-principles

based Anderson impurity models can be carried out as well as quantum lattice

models, which can be solved via DMFT.

The effective Anderson impurity model from the DMFT problem was solved by

a CT-QMC (HYB) code in a segment picture. We used 2000 Matsubara frequen-

135



A. APPENDIX

cies and Coulomb matrix parameters U = 4 eV with J = 1 eV (density-density

interaction). The inverse temperature was chosen as β = 20 eV−1 (correspond-

ing to 580 K). Ten DMFT self-consistency loops were performed for converged

results. The double counting correction was included in the fully localized limit.

A.5 K2CuF4

A.5.1 Computational details

To simulate 2D and bulk K2CuF4 from first-principles, we performed DFT cal-

culations with the VASP package [164].

A.5.2 Atomic structure

The LDA method was used to simulate the atomic structure of the system [23].

In test calculations for the bulk we found that the LDA perfectly reproduces

Jahn-Teller distortions of the system, even in slightly better agreement with ex-

periments than LDA+U [80]. We speculate that the reason for the performance

of simple LDA lies in the cancellation of errors in the exchange and the correla-

tion potential. We employed 8x8x1 (5x5x5) k points for the 2D layer (the bulk

system) K2CuF4 together with a kinetic energy cutoff of 700 eV (single layer) and

500 eV (bulk). The lattice parameters were taken from the experiment (lattice

constants a = b = 5.8655 Å [264]). To optimize the structure and to find the

Jahn-Teller distortions, we relaxed atom positions in the unit cell until all forces

on atoms were less than 0.02 eV/Å.

A.5.3 Cleavage energies

As we have discussed in Sec. 7.2, van der Waals interactions play an important

role for the binding between K2CuF4 layers. GGA fails to estimate van der Waals

interaction accurately. To obtain upper and lower boundaries for the interlayer

binding energies, we performed calculations using LDA with and without van der

Waals corrections within the DFT-D2 method of Grimme [73]. Furthermore, we

found from LDA+U calculations that local Coulomb interactions are unimportant

for the binding of K2CuF4 layers.

Binding energies of the bilayer and cleavage energies can differ in general

from each other, due to the presence of many layers in the bulk near the cleavage
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Figure A.4: Fracture in K2CuF4. - To simulate the cleavage fracture, a unit cell

containing a bilayer with variable vacuum was constructed. Gray lines visualize the unit

cell.

fracture. A bilayer system was simulated, for which we relaxed the atom positions

in order to obtain the optimized bilayer binding energy. Subsequently, one of the

layers was lifted far to the vacuum. The difference in total energies was then

evaluated, which can be considered as the bilayer binding energy.

Afterwards, this energy was compared to the cleavage decohesion energy. To

calculate the latter, a bulk unit cell as shown in Fig. A.4 was constructed. The

layer number of only three per unit cell is justified because the distance between

two fractures in such a geometry is more than 10 Å. To obtain the cleavage energy

curves in Fig. 7.2, the fracture was varied by changing the c parameter of the

cell.

Finally, we calculated the energetics of deformation, where we employed the

LDA+U method. Here, an optimized lattice constant a = b = 5.561 Å was used,

which differs by about 5% from the experimental value. This deviation had no

important impact on the electronic structure and also reproduced the Jahn-Teller

distortions and magnetic moments.
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A.5.4 Magnetism and electronic structure

For band structure and DOS calculations, we employed the LDA+U method,

which turned out to be well-suited to reproduce magnetic and electronic proper-

ties of the bulk. We employed the rotationally invariant formulation of LDA+U

developed by Dudarev [286], where Hund’s rule exchange JH and the Hubbard

Coulomb repulsion U enter into an effective Hubbard parameter Ueff = U − JH.

This avoids the problem of magnetic anisotropy dependence on the choice of JH
in LDA+U calculations [287]. For the spectra and band structures shown in the

main text, we selected Ueff = 7.03 eV, which had been used to simulate KCuF3

[80]. For magneto-crystalline anisotropy (MCAE) calculations, a fine k-mesh

(18x18x1) was employed and spin-orbit coupling was included. The MCAE pa-

rameter η was sensitive to the choice of the functional and structural properties.

However, it enters only logarithmically in Eq. 7.3. We estimated explicitly that

the MCAE (∼ 10−4 eV) is clearly dominant over shape anisotropy contributions

(∼ 10−6 eV), therefore shape anisotropy effects are not relevant for the discussion.
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[13] R. O. Jones and O. Gunnarsson. The density functional for-

malism, its applications and prospects. Reviews of Modern Physics,

61(3):689, 1989.

[14] E. Schrödinger. Quantisierung als eigenwertproblem. Annalen der

Physik, 385(13):437–490, 1926.

[15] M. Born and R. Oppenheimer. Zur quantentheorie der molekeln.

Annalen der Physik, 389(20):457–484, 1927.

[16] L. H. Thomas. The calculation of atomic fields. In Mathematical

Proceedings of the Cambridge Philosophical Society, 23, pages 542–548.

Cambridge Univ Press, 1927.

[17] E. Fermi. Eine statistische Methode zur Bestimmung einiger

Eigenschaften des Atoms und ihre Anwendung auf die Theorie

des periodischen Systems der Elemente. Zeitschrift für Physik, 48(1-

2):73–79, 1928.

[18] P. A. M. Dirac. Note on exchange phenomena in the Thomas

atom. InMathematical Proceedings of the Cambridge Philosophical Society,

26, pages 376–385. Cambridge Univ Press, 1930.

140



REFERENCES

[19] P. Hohenberg and W. Kohn. Inhomogeneous electron gas. Physical

Review, 136(3B):B864, 1964.

[20] M. Levy. Universal variational functionals of electron densities,

first-order density matrices, and natural spin-orbitals and solution

of the v-representability problem. Proceedings of the National Academy

of Sciences, 76(12):6062–6065, 1979.

[21] E. H. Lieb. Density functionals for coulomb systems. International

Journal of Quantum Chemistry, 24:243–277, 1983.

[22] H. Englisch and R. Englisch. Hohenberg-Kohn theorem and

non-V-representable densities. Physica A: Statistical Mechanics and

its Applications, 121(1):253–268, 1983.

[23] W. Kohn and L. J. Sham. Self-consistent equations including ex-

change and correlation effects. Physical Review, 140(4A):A1133, 1965.

[24] J. C. Slater. A simplification of the Hartree-Fock method. Physical

Review, 81(3):385, 1951.

[25] D. M. Ceperley and B. J. Alder. Ground State of the Electron

Gas by a Stochastic Method. Physical Review Letters, 45(7):566, 1980.

[26] S. H. Vosko, L. Wilk, and M. Nusair. Accurate spin-dependent

electron liquid correlation energies for local spin density calcula-

tions: a critical analysis. Canadian Journal of Physics, 58(8):1200–1211,

1980.

[27] J. P. Perdew, A. Ruzsinszky, J. Tao, V. N. Staroverov, G. E.

Scuseria, and G. I. Csonka. Prescription for the design and selec-

tion of density functional approximations: More constraint satis-

faction with fewer fits. The Journal of Chemical Physics, 123:062201,

2005.

[28] F. Herman, J. P. van Dyke, and I. B. Ortenburger. Im-

proved statistical exchange approximation for inhomogeneous

many-electron systems. Physical Review Letters, 22(16):807–811, 1969.

[29] M. C. Gibson. Implementation and Application of Advanced Density

Functionals. PhD thesis, University of Durham, 2006.

141



REFERENCES

[30] J. P. Perdew. Accurate density functional for the energy: Real-

space cutoff of the gradient expansion for the exchange hole. Phys-

ical Review Letters, 55(16):1665, 1985.

[31] D. C. Langreth and M. J. Mehl. Beyond the local-density ap-

proximation in calculations of ground-state electronic properties.

Physical Review B, 28(4):1809, 1983.

[32] J. P. Perdew, K. Burke, and M. Ernzerhof. Generalized gradi-

ent approximation made simple. Physical Review Letters, 77(18):3865–

3868, 1996.

[33] J. P. Perdew and Y. Wang. Accurate and simple analytic repre-

sentation of the electron-gas correlation energy. Physical Review B,

45(23):13244, 1992.

[34] A. D. Becke. Density-functional exchange-energy approximation

with correct asymptotic behavior. Physical Review A, 38(6):3098,

1988.

[35] B. H. Hammer, L. B. Hansen, and J. K. Nørskov. Improved ad-

sorption energetics within density-functional theory using revised

Perdew-Burke-Ernzerhof functionals. Physical Review B, 59(11):7413,

1999.

[36] E. I. Proynov, E. Ruiz, A. Vela, and D. R. Salahub. Determining

and extending the domain of exchange and correlation functionals.

International Journal of Quantum Chemistry, 56(S29):61–78, 1995.

[37] A. D. Becke. A new mixing of Hartree–Fock and local density-

functional theories. The Journal of Chemical Physics, 98:1372, 1993.

[38] C. Lee, W. Yang, and R. G. Parr. Development of the Colle-

Salvetti correlation-energy formula into a functional of the elec-

tron density. Physical Review B, 37(2):785, 1988.
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Cooper, M. Dion, P. Hyldgaard, A. Kelkkanen, J. Kleis,

L. Kong, S. Li, et al. A density functional for sparse matter.

Journal of Physics: Condensed Matter, 21(8):084203, 2009.

145



REFERENCES

[72] C. Douketis, G. Scoles, S. Marchetti, M. Zen, and A. J.

Thakkar. Intermolecular forces via hybrid Hartree–Fock–SCF

plus damped dispersion (HFD) energy calculations. An improved

spherical model. The Journal of Chemical Physics, 76(6):3057–3063,

1982.

[73] S. Grimme. Semiempirical GGA-type density functional con-

structed with a long-range dispersion correction. Journal of compu-

tational chemistry, 27(15):1787–1799, 2006.

[74] A. D. Becke and E. R. Johnson. Exchange-hole dipole moment

and the dispersion interaction. The Journal of Chemical Physics,

122(15):154104, 2005.

[75] A. D. Becke and E. R. Johnson. A density-functional model

of the dispersion interaction. The Journal of Chemical Physics,

123(15):154101, 2005.

[76] A. Tkatchenko and M. Scheffler. Accurate molecular van der

Waals interactions from ground-state electron density and free-

atom reference data. Physical Review Letters, 102(7):073005, 2009.

[77] A. Georges. Strongly Correlated Electron Materials: Dynam-

ical Mean-Field Theory and Electronic Structure. In LECTURES

ON THE PHYSICS OF HIGHLY CORRELATED ELECTRON SYSTEMS

VIII: Eighth Training Course in the Physics of Correlated Electron Systems

and High-Tc Superconductors, 715, pages 3–74. AIP Publishing, 2004.

[78] G. A. Sawatzky and J. W. Allen. Magnitude and origin of the

band gap in NiO. Physical Review Letters, 53(24):2339, 1984.

[79] V. I. Anisimov, J. Zaanen, and O. K. Andersen. Band theory and

Mott insulators: Hubbard U instead of Stoner I. Physical Review

B, 44(3):943, 1991.

[80] A. I. Liechtenstein, V. I. Anisimov, and J. Zaanen. Density-

functional theory and strong interactions: Orbital ordering in

Mott-Hubbard insulators. Physical Review B, 52(8):R5467–R5470,

1995.

146



REFERENCES

[81] V. I. Anisimov, F. Aryasetiawan, and A. I. Lichtenstein. First-

principles calculations of the electronic structure and spectra

of strongly correlated systems: the LDA+U method. Journal of

Physics: Condensed Matter, 9(4):767, 1997.

[82] L. Hedin. New method for calculating the one-particle Green’s

function with application to the electron-gas problem. Physical

Review, 139(3A):A796, 1965.

[83] F. Caruso, D. R. Rohr, M. Hellgren, X. Ren, P. Rinke, A. Ru-

bio, and M. Scheffler. Bond breaking and bond formation:

how electron correlation is captured in many-body perturba-

tion theory and density-functional theory. Physical Review Letters,

110(14):146403, 2013.

[84] O. Gunnarsson, O. K. Andersen, O. Jepsen, and J. Zaanen.

Density-functional calculation of the parameters in the Anderson

model: Application to Mn in CdTe. Physical Review B, 39(3):1708,

1989.

[85] M. Karolak. Electronic Correlation Effects in Transition Metal Systems:

From Bulk Crystals to Nanostructures. PhD thesis, Universität Hamburg,

2013.
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[171] B. Büttner, C. X. Liu, G. Tkachov, E. G. Novik, C. Brüne,
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Glossary

ACFDT Adiabatic connection fluctuation-

dissipation theorem

AIM Anderson impurity model

APW Augmented plane wave method

B3LYP 3-parameter hybrid functional by

Becke, Lee, Yang, Parr

B88 GGA functional version by Becke

(1988)

BCS theory Bardeen-Cooper-Schrieffer theory

CT-QMC Continuous-time quantum Monte

Carlo

DF Density functional

DFT Density functional theory

DFT+U Density functional theory with Hub-

bard U correction

DFT++ Density functional theory combined

with methods for correlation treat-

ment

DFT-D Density functional theory with semi-

empirical van der Waals correction

DMFT Dynamical mean-field theory

DOS Density of states

ED Exact diagonalization

Eq. Equation

Fig. Figure

GEA Generalized expansion approxima-

tion

GGA Generalized gradient approximation

GW A Green’s function method

h-BN Hexagonal boron nitride

KKR Korringa-Krohn-Rostoker method

KS Kohn-Sham

LAPW Linearized augmented plane wave

method

LCAO Linear combination of atomic or-

bitals

LDA Local density approximation

LDOS Local density of states

LMTO Linear muffin-tin orbital method

LSDA Local spin density approximation

PAW Projector augmented wave method

PBE-GGA GGA functional version by Perdew,

Burke, Ernzerhof

PDE Partial differential equation

PW91-GGA GGA functional version by

Perdew and Wang (1991)

QMC Quantum Monte Carlo

Ref. Reference

RPA Random phase approximation

rPBE-GGA GGA functional version revised by

Perdew, Burke, Ernzerhof

STM Scanning tunneling microscopy

STS Scanning tunneling spectroscopy

TMDC Transition metal dichalcogenide

VASP Vienna ab initio Simulation Package

vdW Van der Waals

XAS X-ray absorption spectroscopy

XMCD X-ray magnetic circular dichroism

XPS X-ray photoelectron spectroscopy
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