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Abstract

In this thesis the magnetization dynamics, driven by spin-polarized currents or magnetic fields,
in nanostructured thin films is investigated by means of analytical and numerical calculations.
These calculations are based on the micromagnetic model. The dynamics is given by an extended
version of the Landau-Lifshitz-Gilbert equation that takes the action of spin-polarized currents
into account. The investigations focus on a magnetic vortex or a magnetic antivortex in a thin-film
element and on a magnetic domain wall in a thin nanowire. From a collective coordinate approach
analytical models are derived which are then compared with numerical simulations to test the
applicability of the models. The analytical models are especially valuable since they can be used
to explain how a change of the material parameters, the geometry of the sample, or the temporal
shape of the excitation may alter the behavior of the magnetization.

For a harmonic confining potential analytical expressions for the current- and field-driven tra-
jectories of a vortex or antivortex are derived. For harmonic excitations the analytically predicted
trajectories are compared with the results of the numerical simulations. Here special attention is
put on the amplitude of the gyration and its phase with respect to the excitation. The comparison
yields good accordance between the analytical and numerical results.

The current can excite the magnetization via the adiabatic and the non-adiabatic spin-transfer
torque. The strength of the latter is still under debate. A scheme is derived that enables the
numerical calculation of the Oersted field for arbitrary current densities. It is found that for an
inhomogeneous current flow the Oersted field is also able to excite the vortex or antivortex. The
analytical model allows for the development of a precise measurement scheme of the excitations
due to the non-adiabatic spin-transfer torque, the adiabatic spin-transfer torque, and the Oersted
field.

It is shown that the analytical model can be used to design new magnetic memory devices.
In a vortex or antivortex random access memory a bit is stored using a thin-film element that
contains a vortex or antivortex whose orientation can be switched back and forth using excitations
with magnetic fields or electric currents. When the vortex or antivortex is excited by a collinear or
perpendicular alignment of current and field, respectively, their combined action on the vortex or
antivortex depends strongly on the momentary state. For one state the system exhibits a strong
excitation while for the other state the actions are opposing each other and the excitation may be
completely quenched. This can be used for a state-dependent switching of the orientation of the
vortex or antivortex core. No reading operation would be needed before writing. This combined
excitation can also be used to read out the current state of the memory.

From the analytical model for a transverse domain wall one finds an expression that connects
the properties of the domain-wall quasiparticle, that are the mass and the damping time of the wall,
with the microscopic parameters that enter the micromagnetic model. It is shown that the equation
of motion can be conveniently extended to Bloch and Néel walls. The equation of motion is also
valid for vortex walls using effective parameters. Numerical simulations yield that this equation
delivers a good description of the field- and current-driven dynamics of the wall.

A comparison of the analytically calculated domain-wall dynamics with experiments showed
that the equation of motion also precisely describes oscillations of the wall in a restoring potential.
From the analytical calculations a strong reduction of the critical current density, that is needed
to depin the domain wall from a pinning center, is predicted for currents with risetimes that are
smaller than the characteristic damping time of the wall. This is of special importance as it should
allow for efficient displacements of domain walls by fast varying currents. A comparison with
experiments revealed that the predicted reduction is indeed observed.

When the domain walls are close together their interaction becomes important. Their interac-
tion energy is calculated making use of a multipole expansion of the interaction energy up to third
order. The interaction energy of two domain walls in parallel wires is compared with micromagnetic
simulations and shows a good agreement.



Kurzfassung

In dieser Arbeit wird die Magnetisierungsdynamik, getrieben durch spinpolarisierte Ströme oder
Magnetfelder, in nanostrukturierten Filmen mittels analytischer und numerischer Rechnungen un-
tersucht. Diese Rechnungen basieren auf dem mikromagnetischen Modell. Die Dynamik ist dabei
gegeben durch eine erweiterte Version der Landau-Lifshitz-Gilbert-Gleichung, die die Auswirkung
spinpolarisierter Ströme berücksichtigt. Die Untersuchung konzentriert sich auf einen magneti-
schen Vortex oder Antivortex in einem dünnen Filmelement und auf magnetische Domänenwände
in dünnen Nanodrähten. Basierend auf einem Ansatz mit kollektiven Koordinaten werden analy-
tische Modelle hergeleitet, welche anschließend mit numerischen Simulationen verglichen werden,
um die Anwendbarkeit der Modelle zu testen. Die analytischen Modelle sind besonders nützlich,
da sie es erlauben, zu verstehen, wie sich eine Änderung der Materialparameter, der Geometrie der
Probe oder der zeitlichen Form der Anregungen auf die Dynamik der Magnetisierung auswirken.

Für ein harmonisches einschließendes Potential wird ein analytischer Ausdruck für die strom-
und feldgetriebene Bahn des Vortex oder Antivortex hergeleitet. Für harmonische Anregungen
werden die analytisch berechneten Bahnen mit den Resultaten numerischer Simulationen verglichen.
Dabei werden speziell die Amplitude und die Phase bezüglich der Anregung berücksichtigt. Der
Vergleich zeigt eine gute Übereinstimmung zwischen den analytischen und numerischen Resultaten.

Der Strom kann die Magnetisierung über das adiabatische oder nichtadiabatische Spintransfer-
drehmoment anregen. Die Stärke des letzteren wird zur Zeit noch kontrovers diskutiert. Es wird ein
Schema hergeleitet, das die numerische Berechnung des Oerstedfeldes für eine beliebige Stromdich-
teverteilung ermöglicht. Es wurde festgestellt, dass für einen inhomogenen Stromfluss der Vortex
oder Antivortex auch durch das Oerstedfeld angeregt werden kann. Das analytische Modell gibt
Hinweise für eine präzise Messung der Anregungen durch das nichtadiabatische Spintransferdreh-
moment, das adiabatische Spintransferdrehmoment und das Oerstedfeld.

Es wird gezeigt, dass das analytische Modell auch die Konstruktion neuer Speicherzellen
ermöglicht. In einem Vortex- oder Antivortexspeicher wird ein Bit durch die Orientierung eines
Vortex oder Antivortex repräsentiert. Diese Orientierung kann durch Anregungen mit Magnetfel-
dern oder elektrischen Strömen hin- und hergeschaltet werden. Wenn der Vortex durch kollinear
oder der Antivortex durch senkrecht zueinander ausgerichtete Ströme und Felder angeregt wird,
hängt deren kombinierter Einfluss stark von dem momentanen Zustand ab. Für den einen Zustand
zeigt das System eine starke Reaktion, während sich für den anderen Zustand die Einflüsse gegen-
seitig aufheben. So ist kein Leseprozess vor dem Schalten nötig. Die Anregung mit kollinearen oder
senkrechten Strömen und Feldern kann auch für das Auslesen des Speichers benutzt werden.

Über das analytische Modell für eine transverse Domänenwand findet man einen Ausdruck, der
die Eigenschaften des Domänenwandquasiteilchens, also seine Masse und seine Dämpfungszeit, mit
den mikroskopischen Parametern, die in das mikromagnetische Modell eingehen, in Verbindung
setzt. Es wird gezeigt, dass die Bewegungsgleichung auch auf Bloch- und Néelwände erweitert
werden kann. Unter der Benutzung effektiver Parameter ist diese Gleichung auch für Vortexwände
gültig. Ein Vergleich mit numerischen Simulationen zeigt, dass die Bewegungsgleichung eine gute
Beschreibung der feld- und stromgetriebenen Dynamik liefert.

Ein Vergleich der analytisch berechneten Domänenwanddynamik mit Experimenten zeigt, dass
die Bewegungsgleichung auch die Oszillationen der Wand in einem einschließenden Potenzial präzise
beschreibt. Die analytischen Rechnungen sagen vorher, dass die kritische Stromdichte, welche zum
Ablösen der Wand von einem Haftzentrum benötigt wird, stark verringert wird, wenn die An-
stiegszeit des Stromes kürzer ist als die Dämpfungszeit der Wand. Dieses ist besonders interessant,
da es ein effizientes Verschieben von Domänenwänden mit Hilfe von schnell variierenden Strömen
erlauben sollte. In Experimenten wird die Reduzierung tatsächlich beobachtet.

Die Wechselwirkungsenergie benachbarter Domänenwände wird durch eine Multipolentwicklung
berechnet. Die Wechselwirkungsenergie von zwei Wänden in parallelen Drähten wird mit mikro-
magnetischen Simulationen verglichen und zeigt gute Übereinstimmung.
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Introduction

In today’s computer applications we are faced with a strong boost in memory requirements. This
is especially caused by the storage of photos, music, and videos. But, this increase can also be
seen in the size of computer programs. Twenty years ago a commonly known operating system was
delivered on a small number of discs with a capacity of 1.44 MB each while its current version is
shipped on a DVD with a capacity of 4.7 GB. This leads to the necessity of memory devices with
large capacity.

Magnetization has a long history in data storage. For more than seven decades the orientation
of the magnetization in a magnetic sample is used to represent a single bit in computer memories.
Prime examples for such magnetic memories are the core memory and the hard disk drive.

A core memory,1, 2 that was invented in the early fifties of the last century, is depicted in fig-
ure I.1(a). It consists of a grid of wires with magnetic rings that are placed around the intersections
of the wires. The orientation of the magnetization of these magnetic rings is changed by the Oer-
sted field that is generated by the wires. The bit of a certain ring is written by the Oersted field
generated by the wires in the so-called cross point architecture. One horizontal and one vertical
wire are traversed by a current that generates an Oersted field of 71% of the field that is needed
to change the magnetization in the ring. The rings that are situated around one of these wires
do not switch their magnetization since the field is not strong enough. For the ring that is placed
at the intersection of both wires the fields of both wires add up to the field that is needed for
the switching of the magnetization. For the read process the ring is set to a logical zero and a
switching occurs in dependence of the initial state of the ring. This switching induces a current
pulse in the wire that is detected by the memory controller. The presence or absence of this pulse
allows for a determination of the value of the stored bit. This type of memory is nowadays replaced
by semiconductor memories.

In contrast the hard disk drive,1, 2 that was also invented in the early fifties of the last century,
is still used to store large amounts of data. There was a strong development from the first hard disk
drive, which had a capacity of 5 megabytes, to modern drives with a capacity of several terabytes.
A hard disk drive consists of a disc that is coated with a magnetic material and a read and write
head which floats over the disc. While the disc rotates the read and write head is able to move in
radial direction. The head is thus able to reach every position on the disc. In former times the
head consisted of a coil that magnetized the magnetic coating, situated below the head, parallel to
the disc’s surface. The orientation of the magnetization then depends on the value of the according
bit. A change of the orientation of the magnetization leads to a stray field that induces a voltage in
the coil of the read head. This voltage allows for a read out of the stored bit. For a long time the
capacity of hard disk drives was increased only by reducing of the size of the components and the
magnetic bits. This reduction met some constraints that made the introduction of new technologies
necessary. Some of these technologies are described in the following.

When the size of the magnetic bits is decreased their accompanying magnetic field reduces. At
a certain size the field becomes so small that it cannot be detected by the coil in the read head. The
discovery of the giant magneto resistance (GMR) effect3, 4 and tunnel magneto resistance (TMR)
effect5 allows one to overcome this problem. When two magnetic layers with a non-magnetic
spacer in between are traversed by a current, their resistance depends on the relative alignment of
the magnetization in the two magnetic layers. The resistance has a maximum for an antiparallel
alignment and a minimum for a parallel alignment. In the first samples the change of the resistivity
was rather small, but it has been found that with magnesium oxide tunnel barriers the difference
between the low and the high resistance states can be more than a factor of seven.6–8 This effect
is called giant magneto resistance effect or tunnel magneto resistance effect for a spacer that is a
conductor or an insulator, respectively. The read head can now be constructed of such a layered
system. One layer, called free layer, is designed so that it changes its magnetization depending on
the field that is produced by the magnetic bits. The second layer, called fixed layer, retains its
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(a) (b)

(c)

Figure I.1: (a) Scheme of a magnetic core memory. The memory consists of a grid of electric wires
(red and blue). The magnetization of the ferromagnetic rings at the crosspoints of the wires can
be switched by the magnetic field that is generated by a current that flows through the wires. (b)
Like for the core memory the magnetic random access memory consists of a grid of electric wires
(red and blue). The memory cells in between these wires consist of a free ferromagnetic layer (light
gray), a fixed ferromagnetic layer (dark gray), and a spacer (black). The orientation of the free
layer can be changed by a magnetic field generated by the wires. The orientation can be read out
by sending a current through the cell (see text). (c) Scheme of a planar racetrack memory. The
magnetization in the direction of the wire is given by the color gradient (red to blue). A current
that flows along the wire allows for a shift of the magnetic bits to the reading and writing devices.
The reading device can for example be a GMR or TMR stack (see text). A possible writing device
is a strip line. Both devices are depicted in gray.
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magnetization. The measurement of the resistance allows for a determination of the bit’s magnetic
orientation even for very small bit sizes.

The size of a bit in a state-of-the-art hard disk drive is so small that one approaches the regime
of the super-paramagnetic effect where the energy barrier between the two orientations of the bit
shrinks to the order of the thermal energy. Then thermal excitations are able to overcome the
energy barrier and the orientation of one magnetic bit switches randomly under the influence of
temperature. This led to the development of hard disk drives using perpendicular recording. In
such drives the magnetic bits are not aligned parallel to the disc’s surface but perpendicular. This
allows for a reduction of the areal storage density while keeping the bit’s size constant. However,
this method can be applied only once and is not suitable for a further increase of the areal storage
density.

A possibility to beard the super-paramagnetic limes for a while is heat-assisted magnetic record-
ing. Here the magnetic material is heated at the position where the bit should be written. The
heating reduces the coercivity of the material temporally and locally. In systems with heat-assisted
magnetic recording it is possible to use magnetic materials with a higher coercivity which show the
super-paramagnetic effect at smaller bit sizes. Due to the heating these materials can be written
with magnetic fields that are small enough to have no influence on the neighboring bits.

Another possibility is the utilization of discrete track recording or bit patterned media. In
discrete track recording the spacing between two tracks is equipped with groovings that minimize
the interaction between the bits in neighboring tracks. The bit patterned media is a further step in
this direction.9–13 Here, sequent bits on the same track are also separated. Furthermore the shape
of each bit is chosen to get further advantages like a higher stability of the magnetization. In bit
patterned media one is faced with problems that do not occur in recording on a homogeneous disc.
These problems are for example keeping the head on the track and the synchronization between
the field pulses of the write head and the bit pattern on the disc.14, 15

It has also been discussed to use composite materials that are especially adapted for perpen-
dicular recording16 or heat-assisted magnetic recording.17 However, all these technologies will not
allow for an indefinite increase of the areal storage density of a hard disk drive. Thus, to keep pace
with the increasing memory requirements new types of memories have to be developed.

While the hard disk is able to store large amounts of data, it cannot keep up with the speed
of the processor. Thus in a computer the data that is currently processed is stored in the random
access memory (RAM) and cache memory. This memory is much faster than the hard disk but its
capacity is limited. Furthermore the information that is stored in many types of RAMs is volatile
in the manner that it is lost when the computer is switched off. In any case the information has
to be copied between the hard disk and the faster memory. Thus, one would prefer a memory that
combines the capacity and non-volatility of a hard disk with the speed of a RAM.

One possible candidate for such a universal memory is the magnetic random access memory
(MRAM).18 A scheme of an MRAM is depicted in figure I.1(b). Each MRAM cell consists of a
free and a fixed ferromagnetic layer and combines two principles that are described above. The
information is written by a magnetic field in the cross point architecture that was mentioned for the
core memory. This field switches the free layer. The information is read out by passing a current
through a distinct MRAM cell making use of the GMR or TMR effect. For high storage densities
the long range magnetic field may also affect neighboring cells.

The observation that a current that is traversing a magnetic sample may alter the magnetic
configuration19–24 paves the road for new types of memory devices like the spin-transfer torque
random access memory (STTRAM). This type of memory cell works similar to the MRAM but the
orientation of the free ferromagnetic layer is changed by passing a current trough the cell.25–27 For
this changing the current has to be larger than a distinct threshold which is system dependent. A
small current is used to read out the state of the memory while a larger current is used for writing.
The current flows only through a distinct memory cell and does not influence neighboring cells as
it may be the case for the writing fields of MRAMs.

3



In MRAMs or STTRAMs the magnetization in the magnetic layers is homogeneous with a cur-
rent flowing perpendicular to the plane. In addition to a magnetic field or an out-of-plane current,
an inhomogeneous magnetization can be excited by an in-plane current. Inhomogeneous magneti-
zation patterns in thin-film elements and their excitations have been intensively studied.28–76 There
are also possible applications to memory devices. Examples are a vortex random access memory77

(VRAM) or an antivortex random access memory78 (AVRAM). These types of memory as well as
their theoretical foundation are discussed in this work.

Finally, there is an approach that is more comparable with a hard disk. In the racetrack
memory79 the magnetic bits are beaded along a nanowire. The bits are shifted through the wire by
a current that flows in the wire. During this motion the bits pass a reading and a writing device. In
contrast to a hard disc, this memory has no moving parts. Figure I.1(c) shows a planar racetrack
memory, but it should also be possible to introduce curvatures in the wire. This would extend the
memory into the third dimension and thus drastically increase the storage density compared to a
hard disk where only the surface is used to store informations. It has also been proposed to use
the magnetization that is shifted along a nanowire for logic devices.80, 81

Due to its possible applications there is currently a large effort in the investigation on the mag-
netization in nanowires.82–126 This work deals with analytical and numerical investigations on this
topic. In this work the dynamics of the magnetic moments is described within the micromagnetic
model. The theory of micromagnetism is based upon a semiclassical description of the dynam-
ics of the magnetization of ferromagnetic bodies. It is used to describe the magnetization on a
length-scale which extends from hundreds of nanometers up to several micrometers and is too large
for a quantum mechanical description. The magnetization is supposed to be a continuous vector
field which changes under the influence of external as well as effective magnetic fields. The latter
have their origin in internal interactions. The time evolution of the magnetization is described by
an equation that was introduced by L. D. Landau and E. M. Lifshitz.127, 128 Its area of applicability
lies between tens of nanometers and hundreds of micrometers. The lower boundary is due to the
non-continuity of real materials and the quantum nature of elementary spins. The upper boundary
is a result of the calculation time and memory requirements.

A spin-polarized current flowing through a ferromagnetic sample interacts with the magneti-
zation and exerts a torque on the local magnetic moments. For conduction electron spins that
follow the local magnetization adiabatically it has been shown that the interaction via spin transfer
can be described by adding a current-dependent term to the Landau-Lifshitz-Gilbert equation.23

This equation has been extended by an additional term that takes the non-adiabatic influence of
the itinerant spins into account.24 In most cases the resulting equations are too complex for an
exact analytical solution. However, it is possible to perform analytical calculations using some
approximations or numerical calculations.

There are several programs that can be used for micromagnetic simulations including the action
of a spin-polarized current.129–138 The numerical simulations that are presented in this work where
performed using the Object Oriented MicroMagnetic Framework (OOMMF).139 This program has
been extended by the author of this work to include the action of a spin-polarized current.129

This work is organized as follows. The first part introduces the fundamentals that are needed in
the subsequent sections. This includes the micromagnetic model, the influence of a spin-polarized
current on the magnetization, magnetic vortices, magnetic antivortices, and magnetic domain walls.
In the second part analytical and numerical calculations that describe the dynamics of magnetic
vortices and antivortices are presented. The dynamics can be due to an external magnetic field, a
spin-polarized current traversing the sample, and the Oersted field generated by this current. This
part ends with a section that describes memory devices that base on vortices and antivortices like
the aforementioned VRAM and AVRAM. The dynamics of domain walls is discussed in the third
part. First the free domain wall is investigated by analytical and numerical calculations. This
investigation is then extended to the interaction of a domain wall with pinning centers and other
walls. A conclusion and an outlook is given in the fourth part. The appendices contain calculations
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that base on standard techniques like solving of differential equations and evaluation of integrals
and derivatives.
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Part I

Fundamentals

In this part we introduce the fundamentals that are needed for the calculations in the subsequent
parts. In the first section the Landau-Lifshitz equation is derived from quantum mechanics by the
aid of a semiclassical continuum limit. Then the different energies that influences the magnetization
dynamics are introduced. With this knowledge we will discuss how magnetic vortices, antivortices,
and domain walls emerge. The third section describes the extension of the Landau-Lifshitz equa-
tion to include the spin-transfer torque. Finally the constraints of the micromagnetic model are
discussed.

1 Landau-Lifshitz Equation

L. D. Landau and E. M. Lifshitz proposed an equation that describes the dynamics of the mag-
netization in a ferromagnetic body.127, 128 In this section we will discuss a quantum mechanical
derivation of this equation.

We start with the quantum mechanical Heisenberg equation of a single spin ~S. The dynamic
behavior of ~S is written as

dSj
dt

=
i

h̄
[Ĥ, Sj] =

i

h̄

(
∑

k

∂Ĥ

∂Sk
[Sk, Sj ] +O(h̄2)

)

(1.1)

with the Hamiltonian Ĥ of the system. O(h̄2) denotes a function that is at least of quadratic
order in h̄. The commutation relation for two components of the spin yields [Sk, Sj ] = −ih̄∑

l

ǫjklSl.

Inserting this in equation (1.1) we get

dSj
dt

=
∑

k,l

∂Ĥ

∂Sk
ǫjklSl +O(h̄) (1.2)

for the j-th component of ~S. In vector notation this is

d~S

dt
= −~S × ∂Ĥ

∂~S
+O(h̄) (1.3)

with ∂/∂~S defined as ∂/∂~S = (∂/∂Sx, ∂/∂Sy , ∂/∂Sz).

In a semi-classical approximation we replace the spins ~S that are discrete in space and ori-
entation by the continuous vector field of the magnetization ~M and use the limit h̄ → 0. This
approximation is valid when the characteristic length scale on which the magnetization changes its
direction is large compared to the distance of the spins. The time derivative of the magnetization
is thus given by

d ~M

dt
= −γ ~M × ~Heff (1.4)

with the gyromagnetic ratio γ = gµ0µB/h̄ and an effective field

~Heff =
1

γ

〈

∂Ĥ

∂~S

〉

= − 1

µ0

dE

d~ms
(1.5)

that depends on the current state of the system with energy E. ~ms = −gµB ~S/h̄ denotes the
magnetic moment of the spin at the point of the magnetic field. In the continuum limit the
effective field is

~Heff = − 1

µ0

δE

δ ~M
(1.6)
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where δ denotes the variational derivative defined as

δE[ ~M (~r)]

δ ~M (~r0)
= lim

ǫ→0

1

ǫ






E[ ~M (~r) + ǫ~exδ
3(~r − ~r0)]− E[ ~M (~r)]

E[ ~M (~r) + ǫ~eyδ
3(~r − ~r0)]− E[ ~M(~r)]

E[ ~M (~r) + ǫ~ezδ
3(~r − ~r0)]− E[ ~M(~r)]




 . (1.7)

Equation (1.4) describes the precession of the magnetization around the effective field. This
precession keeps the energy constant since

dE

dt
=

∫

dV
δE

δ ~M

d ~M

dt
=

∫

dV
(

−µ0 ~Heff

)(

−γ ~M × ~Heff

)

= 0. (1.8)

To account for some dissipative force, which is present at a macroscopic level, a phenomenological
damping term can be added to equation (1.4). L. D. Landau and E. M. Lifshitz introduced the
term −(λLL/M

2
S)
~M × ( ~M × ~Heff) with λLL ≪ γMs. For λLL = 1 this is the part of the magnetic

field that is perpendicular to the magnetization.127 The new term thus rotates the magnetization
towards the direction of the field. The time derivative of the magnetization is then given by

d ~M

dt
= −γ ~M × ~Heff − λLL

M2
S

~M ×
(

~M × ~Heff

)

. (1.9)

T. L. Gilbert proposed the term (α/Ms) ~M × d ~M/dt with α≪ 1. This yields140

d ~M

dt
= −γ ~M × ~Heff +

α

Ms

~M × d ~M

dt
. (1.10)

We will see that both terms lead to similar results. Both equations do not change the saturation
magnetization Ms = | ~M | as the time derivatives

d

dt
M2

s =
d

dt

(

~M
)2

= 2 ~M
d ~M

dt
= 2 ~M

[

−γ ~M × ~Heff −
λLL
M2

S

~M ×
(

~M × ~Heff

)]

= 0 (1.11)

and
d

dt
M2

s =
d

dt

(

~M
)2

= 2 ~M
d ~M

dt
= 2 ~M

[

−γ ~M × ~Heff +
α

Ms

~M × d ~M

dt

]

= 0 (1.12)

vanish.
Equation (1.10) is implicit in the time derivative of the magnetization. To get an explicit

differential equation we take the vector product with ~M on both sides and get

~M × d ~M

dt
= −γ ~M ×

(

~M × ~Heff

)

+
α

Ms










(

~M
d ~M

dt

)

︸ ︷︷ ︸

= 1

2

d
dt
M2

s=0

~M −
(

~M ~M
)

︸ ︷︷ ︸

=M2
s

d ~M

dt










(1.13)

where the Grassmann identity
~a× (~b× ~c) = (~a~c)~b− (~a~b)~c (1.14)

has been used to simplify the second term on the right-hand side. Inserting equation (1.13) into
equation (1.10) we get

d ~M

dt
= −γ ~M × ~Heff +

α

Ms

(

−γ ~M ×
(

~M × ~Heff

)

− αMs
d ~M

dt

)

. (1.15)
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Moving the last term on the right-hand side to the left-hand side and dividing by (1 + α2) yields

d ~M

dt
= − γ

1 + α2
~M × ~Heff −

γ

1 + α2

α

MS

~M ×
(

~M × ~Heff

)

. (1.16)

The motion of the magnetization consists of a non-dissipative precession around the effective mag-
netic field and a damping that changes the direction of the magnetization in the direction of the
field. Introducing the effective gyromagnetic ration γ′ = γ/(1 + α2) this equation becomes

d ~M

dt
= −γ′ ~M × ~Heff − γ′α

MS

~M ×
(

~M × ~Heff

)

. (1.17)

With λLL = γαMS equations (1.17) and (1.9) differ only by a factor of 1 + α2 that leads to a
renormalization of the gyromagnetic ratio γ for the case of Gilbert damping. This renormalization
does not affect a static magnetization pattern. It is important for the dynamics only. Experimental
investigations at permalloy samples found that α is about 0.01.141–143 Since α2 ≪ 1 in many
materials, it is hard to experimentally distinguish between both damping terms. In this work the
damping term of T. L. Gilbert will be used.

To calculate the rate at which energy is dissipated we take the cross product of equation (1.10)
with the magnetization and apply the vector expression in equation (1.14) on both terms on the
right-hand side. This yields

~M × d ~M

dt
= −γ

[(

~M ~Heff

)

~M −M2
s
~Heff

]

− αMs
d ~M

dt
(1.18)

which can be written as

~Heff =
1

γM2
s

~M × d ~M

dt
+

1

M2
s

(

~M ~Heff

)

~M +
α

γMs

d ~M

dt
. (1.19)

This expression allows for a calculation of the rate of energy dissipation similar as in equation (1.8).
We find the time derivative of the energy as144

dE

dt
=

∫

dV
δE

δ ~M

d ~M

dt
= −µ0

∫

dV ~Heff
d ~M

dt

= −µ0
∫

dV

(

1

γM2
s

~M × d ~M

dt
+

1

M2
s

(

~M ~Heff

)

~M +
α

γMs

d ~M

dt

)

d ~M

dt

= − µ0α

γMs

∫

dV

(

d ~M

dt

)2

.

(1.20)

This expression vanishes for a static magnetization and is negative for a dynamic system. Thus in
a dynamic system the energy is dissipated.

2 Effective Fields

Equation (1.17) allows for a calculation of the evolution of the magnetization in time. For this
calculation the knowledge of the effective magnetic field is needed. This field is calculated from
the energy of the system that can have several contributions like the Zeeman energy, the exchange
energy, the demagnetization energy, and the anisotropy energy. In this section we will discuss these
energy contributions and calculate the respective effective fields.
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2.1 Zeeman Energy

The Zeeman energy is the energy of the magnetization in an external magnetic field. This energy
is given as

EZ = −
∫

dV µ0 ~H ~M. (2.1)

Its effective magnetic field is given by
~HZ = ~H. (2.2)

2.2 Exchange Energy

The exchange energy is of quantum origin. For the calculation of the exchange energy we restrict
ourselves to the interaction between neighboring spins. Then the exchange energy is given by a
Heisenberg type interaction between neighboring spins in the crystal lattice

EE = −J
∑

〈i,j〉

~Si~Sj (2.3)

where the sum is taken over all neighboring spins and J is the exchange integral. This expression
can be rewritten as

EE = −J
∑

i

∑

nn

~Si~Snn = −JS2
∑

i

∑

nn

cos(φi,nn) (2.4)

where nn denotes the nearest neighbors of the i-th spin and φi,nn is the angle between the i-th spin
and the accordant next neighbor.

With the aid of the magnetization and the law of cosines we can write
(

~M(~ri + ~rnn)− ~M(~ri)
)2

= 2M2
s − 2M2

s cos(φi,nn) (2.5)

where ~rnn is the distance between a spin and its next neighbors. This expression yields an energy
of

EE =
JS2

2M2
s

∑

i

∑

nn

(

~M(~ri + ~rnn)− ~M(~ri)
)2

(2.6)

where the term that is constant in the magnetization is neglected. As discussed in section 1
the continuum limit is valid only if the characteristic length scale on which the orientation of
the magnetization changes is large compared to the distance between two spins. Thus the angles
between two neighboring spins have to be small and the magnetization can be expanded in a Taylor
series up to the first order. The energy is thus given by

EE =
JS2

2M2
s

∑

i

∑

nn

(

(~rnn~∇) ~M(~ri)
)2
. (2.7)

For a cubic lattice with lattice constant a each spin has six next neighbors with the dis-
tances ~rc,1 = (a, 0, 0), ~rc,2 = (−a, 0, 0), ~rc,3 = (0, a, 0), ~rc,4 = (0,−a, 0), ~rc,5 = (0, 0, a), and
~rc,6 = (0, 0,−a). For a body-centered cubic lattice each spin has eight next neighbors with the
distances ~rbcc,1 = (a/2, a/2, a/2), ~rbcc,2 = (−a/2, a/2, a/2), ~rbcc,3 = (a/2,−a/2, a/2), ~rbcc,4 =
(−a/2,−a/2, a/2), ~rbcc,5 = (a/2, a/2,−a/2), ~rbcc,6 = (−a/2, a/2,−a/2), ~rbcc,7 = (a/2,−a/2,−a/2),
and ~rbcc,8 = (−a/2,−a/2,−a/2). For a face-centered cubic lattice each spin has twelve next neigh-
bors with the distances ~rfcc,1 = (0, a/2, a/2), ~rfcc,2 = (0,−a/2, a/2), ~rfcc,3 = (0, a/2,−a/2),
~rfcc,4 = (0,−a/2,−a/2), ~rfcc,5 = (a/2, 0, a/2), ~rfcc,6 = (−a/2, 0, a/2), ~rfcc,7 = (a/2, 0,−a/2),
~rfcc,8 = (−a/2, 0,−a/2), ~rfcc,9 = (a/2, a/2, 0), ~rfcc,10 = (−a/2, a/2, 0), ~rfcc,11 = (a/2,−a/2, 0),
and ~rfcc,12 = (−a/2,−a/2, 0). For all three lattice types we get the energy

EE =
JS2

2M2
s

∑

i



2a2

(

∂ ~M

∂x

)2

+ 2a2

(

∂ ~M

∂y

)2

+ 2a2

(

∂ ~M

∂z

)2


 . (2.8)
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Using the density cs/a
3 of the spins where cs is then number of spins per unit cell we get

EE =
Ja2S2

M2
s

∫

dV
cs
a3





(

∂ ~M

∂x

)2

+

(

∂ ~M

∂y

)2

+

(

∂ ~M

∂z

)2


 (2.9)

with cs = 1 for a cubic lattice, cs = 2 for a body centered cubic lattice and cs = 4 for a face
centered cubic lattice. This is usually written as

EE =
A

M2
s

∫

dV





(

∂ ~M

∂x

)2

+

(

∂ ~M

∂y

)2

+

(

∂ ~M

∂z

)2


 (2.10)

where A = JcsS
2/a is the so called exchange constant.

From this the effective exchange field evolves as

~HE(~r) = − 1

µ0

δEE

δ ~M (~r)

= − 2A

µ0M2
s

∫

dV ′
(

∂ ~M (~r′)
∂x′

∂δ3(r′ − r)

∂x′
+
∂ ~M (~r′)
∂y′

∂δ3(r′ − r)

∂y′
+
∂ ~M(~r′)
∂z′

∂δ3(r′ − r)

∂z′

)

(2.11)

Integration by parts leads to

~HE(~r) =
2A

µ0M2
s

∫

dV ′
(

∂2 ~M(~r′)
∂x′2

δ3(r′ − r) +
∂2 ~M(~r′)
∂y′2

δ3(r′ − r) +
∂2 ~M(~r′)
∂z′2

δ3(r′ − r)

)

=
2A

µ0M2
s

(

∂2 ~M

∂x2
+
∂2 ~M

∂y2
+
∂2 ~M

∂z2

)

=
2A

µ0M2
s

∇2 ~M.

(2.12)

In the integration by parts the boundary terms vanish because of the delta function that is localized
at ~r.

2.3 Demagnetization Energy

The magnetization at two different points of the sample interacts via the long range dipolar inter-
action. In the absence of currents and electric fields Ampère’s law

~∇× ~H = 0 (2.13)

yields that the magnetic field ~H is conservative. Thus the magnetic field can be written as the
gradient of a potential ΦM . The magnetic field is then given by

~H = −~∇ΦM . (2.14)

From Gauss’s law for magnetism
~∇ · ~B = 0 (2.15)

we find that the magnetic flux density ~B is solenoidal. The relation

~B = µ0( ~H + ~M) (2.16)
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between the magnetic flux density, the magnetic field, and the magnetization yields that the di-
vergence of the magnetic field is given by the negative divergence of the magnetization. Then, the
potential ΦM fulfills the Poisson equation

~∇2ΦM = −~∇ ~H = ~∇ ~M. (2.17)

The magnetic potential can thus be written as145

ΦM (~r) =
1

4π

∫

dV ′ 1

|~r − ~r′|
(

−~∇′ ~M(~r′)
)

+
1

4π

∫

d ~A′ 1

|~r − ~r′|
~M(~r′) (2.18)

where ~A′ = A′~n(~r′). V ′ is the volume and A′ is the surface of the sample. ~n(~r′) is the normal
component of the surface at position ~r′. The first term in equation (2.18) is the solution of the
Poisson equation and the second term accounts for the boundary conditions. From the potential
the magnetic field can be calculated as

~H(~r) = −~∇ 1

4π

(∫

dV ′ 1

|~r − ~r′|
(

−~∇′ ~M(~r′)
)

+

∫

d ~A′ 1

|~r − ~r′|
~M(~r′)

)

. (2.19)

The magnetostatic energy can be derived from the product of the magnetization and the magnetic
field. It yields

ED = −µ0
2

∫

dV ~M(~r)H(~r)

=
µ0
8π

∫

dV ~M (~r)~∇
(∫

dV ′ 1

|~r − ~r′|
(

−~∇′ ~M(~r′)
)

+

∫

d ~A′ 1

|~r − ~r′|
~M (~r′)

)

.

(2.20)

The factor 1/2 stems from the fact that we integrate over the volume twice. Exchanging the order
of integrals, the energy can also be written as

ED =
µ0
8π

∫ (

dV ′
(

−~∇′ ~M (~r′)
)

+ d ~A′ ~M (~r′)
) ∫

dV ~M(~r)~∇ 1

|~r − ~r′| . (2.21)

Using the divergence theorem we find

∫

d ~A
1

|~r − ~r′|
~M (~r) =

∫

dV ~∇
(

1

|~r − ~r′|
~M(~r)

)

=

∫

dV
1

|~r − ~r′|
~∇ ~M(~r) +

∫

dV ~M(~r)~∇ 1

|~r − ~r′| .
(2.22)

Rewriting the last integral in equation (2.21) by means of equation (2.22) yields

ED =
µ0
8π

∫ (

dV
(

−~∇ ~M(~r)
)

+ d ~A ~M (~r)
) ∫ (

dV ′
(

−~∇′ ~M(~r′)
)

+ d ~A′ ~M(~r′)
) 1

|~r − ~r′| . (2.23)

This can be brought in the usual form

ED =
µ0
8π

∫

(dV ρv(~r) + dA σs(~r))

∫

dV ′ (dV ′ ρv(~r
′) + dA′ σs(~r

′)
) 1

|~r − ~r′| (2.24)

with the so called volume charges
ρv(~r) = −~∇ ~M(~r) (2.25)

and surface charges
σs(~r) = ~M(~r)~n(~r). (2.26)

One can see that these charges are minimized by a flux-closure magnetization pattern where the
flux of the magnetization has no source or drain.146, 147
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With the aid of equation (2.22) it is also possible to rewrite equation (2.20) as

ED =
µ0
8π

∫

dV

∫

dV ′ ~M (~r)~∇
(

~M(~r′)~∇′ 1
√

(~r − ~r′)2

)

=
µ0
8π

∫

dV

∫

dV ′ ~M (~r)~∇
~M(~r′)(~r − ~r′)
√

(~r − ~r′)2
3

=
µ0
8π

∫

dV

∫

dV ′
(
~M(~r) ~M(~r′)
√

(~r − ~r′)2
3 − 3

( ~M(~r)(~r − ~r′))( ~M (~r′)(~r − ~r′))
√

(~r − ~r′)2
5

)

.

(2.27)

This is the energy of a field of dipoles with the dipole density ~M(~r) at position ~r.

2.4 Anisotropy Energy

Some materials exhibit an intrinsic anisotropy that is also present in bulk materials. The most
common examples are the uniaxial anisotropy and the cubic anisotropy. Both are described in the
following.

Uniaxial Anisotropy Energy

In the case of materials with hexagonal lattices like cobalt, gadolinium, or dysprosium, there is a
principal axis that points out of the hexagonal plane. This leads to an uniaxial anisotropy. This
type of anisotropy can be also caused by a layered structure of the sample where the principal axis
is perpendicular to the layers. Here we assume for simplicity the principal axis to be parallel to the
z-axis. The uniaxial anisotropy energy should be even inMz to show the same mirroring symmetry
as the lattice or layer. This can lead to148

EU = −
∫

dV

(

Ku1
M2

z

M2
s

+Ku2
M4

z

M4
s

)

(2.28)

where higher orders in Mz have been neglected. The corresponding anisotropy field is given by

~HU = − 1

µ0

δEU

δ ~M
=

2Ku1

µ0M2
s





0
0
Mz



+
4Ku2

µ0M4
s





0
0
M3

z



 . (2.29)

Cubic Anisotropy Energy

Some ferromagnetic materials like iron (body-centered cubic) or nickel (face-centered cubic) have
lattices with cubic symmetry. Because the rotational symmetry of such materials is broken it is
likely that some kind of anisotropy occurs. The energy of the cubic anisotropy is determined by
the following phenomenological ansatz. The energy is a function of the three components of the
magnetization Mx, My and Mz. We use a series expansion of powers of all three components up
to sixth order. The function has to be even in all three components because mirroring should not
change the anisotropy energy. Due to the symmetry of rotation by 90 degrees we find that all terms
have to be invariant under the exchange of two components, for example M2

x is replaced by M2
y

and vice versa. Utilizing these criteria we are left with six linearly independent terms, namely M2
s ,

M4
s , M

6
s , M

2
xM

2
yM

2
z , M

2
xM

2
y +M2

xM
2
z +M2

yM
2
z , and (M2

xM
2
y +M2

xM
2
z +M2

yM
2
z )M

2
s . Since Ms is

constant, the first three terms do not depend on the magnetization and can be neglected. The last
two terms differ by a constant factor. Thus we need to take into account M2

xM
2
y +M

2
xM

2
z +M

2
yM

2
z

and M2
xM

2
yM

2
z only. The energy for the cubic anisotropy then yields148

EC =

∫

dV

(

Kc1

M2
xM

2
y +M2

xM
2
z +M2

yM
2
z

M4
s

+Kc2

M2
xM

2
yM

2
z

M6
s

)

(2.30)
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and the corresponding anisotropy field is

~HC = − 1

µ0

δEC

δ ~M
= − 2Kc1

µ0M4
s





MxM
2
y +MxM

2
z

M2
xMy +MyM

2
z

M2
xMz +M2

yMz



− 2Kc2

µ0M6
s





MxM
2
yM

2
z

M2
xMyM

2
z

M2
xM

2
yMz



 . (2.31)

3 Current-Induced Spin-Torque

Beside a magnetic field there is another possibility to excite or influence a ferromagnetic system.
This is the spin-transfer torque. The spin-transfer torque can be explained by means of the sd-model
that is usually used for the description of 3d transition metals like iron, cobalt, and nickel.19–23

In this model the magnetization is mainly contributed by the 3d electrons. Because of their high
effective mass these electrons can be seen as localized. The current flow is due to itinerant 4s
electrons. Due to the exchange interaction between the 3d and the 4s electrons, called sd-interaction,
the spins of the 4s electrons align in the same direction as the spins of the local 3d electrons.

The adiabatic spin-transfer torque can now be explained as follows. In a part of the sample
where the magnetization varies in space the spins of the 3d electrons have to vary as well. When
a 4s electron passes this part its spin is assumed to follow the local spins adiabatically. Due to the
conservation of angular momentum the spin from the itinerant electron has to be transfered to one
or more local electrons. This leads to a change in the magnetization. Y. B. Bazaliy et al. showed
that the influence of this adiabatic spin-transfer torque on the magnetization can be described by
an additional term in equation (1.10). They found23

d ~M

dt
= −γ ~M × ~Heff +

α

Ms

~M × d ~M

dt
− bj
M2

s

~M × ( ~M × (~j ~∇) ~M) (3.1)

with the current density ~j and the coupling constant bj = µBP/(eMs) between the current and the
magnetization. Here µB is the Bohr magneton and e is the elementary charge. P is the polarization
of the current.

In this picture the dynamics of the localized electrons experiences an energy dissipation that
is described by the second term on the right-hand side of equation (3.1). In contrast the spin of
the itinerant electrons is fully transferred to the localized electrons, that is, the itinerant electrons
do not experience any damping. S. Zhang and Z. Li calculated the dynamics of the magnetiza-
tion for a system in which the electrons do not follow the magnetization adiabatically.24 Their
calculations base upon the spin continuity equation of the itinerant electrons. For more informa-
tions see appendix A. In this equation they introduce a phenomenological damping term within
a relaxation-time approximation. The strength of the damping is described by the parameter
ξ = τex/τsf. Here τex and τsf are the relaxation times of the itinerant spins due to the sd-interaction
and spin flips, respectively. Currently there is a large endeavor to describe the source of this
damping theoretically.24, 149–152

The result of S. Zhang and Z. Li is a second current dependent term that describes effects which
occur due to the non-adiabatic spin torque. Equation (1.10) then yields

d ~M

dt
= −γ ~M × ~Heff +

α

Ms

~M × d ~M

dt
− bj
M2

s

~M × ( ~M × (~j ~∇) ~M)

︸ ︷︷ ︸

adiabatic spin torque

− ξbj
Ms

~M × (~j ~∇) ~M
︸ ︷︷ ︸

non-adiabatic
spin torque

. (3.2)

The non-adiabatic spin torque also affects the coupling constant between the current and the
magnetization. This constant now yields bj = µBP/[eMs(1 + ξ2)].

A. Thiaville et al. found the same expression but without the additional factor 1 + ξ2 in bj .
In their theory bj remains the same as for the adiabatic case.153 Since ξ is assumed to be smaller
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than one this difference is comparable with the factor 1+α2 that is the difference between the two
theories in section 1.

Equation (3.2) can be brought to an explicit equation in a similar way as equation (1.10). The
result is

d ~M

dt
=− γ′ ~M × ~Heff − γ′α

MS

~M ×
(

~M × ~Heff

)

−(1 + ξα)
b′j
M2

s

~M ×
(

~M × (~j ~∇) ~M
)

︸ ︷︷ ︸

motion term

−(ξ − α)
b′j
Ms

~M × (~j ~∇) ~M
︸ ︷︷ ︸

distortion term

(3.3)

where b′j = bj/(1 + α2). The two current-dependent terms in equation (3.3) that are labeled as
motion term and distortion term both consist of adiabatic and non-adiabatic spin-torque contribu-
tions. The labeling is due to the following considerations. In a homogeneous material the saturation
magnetization is constant and thus independent of the position. Then the spatial derivative of the
magnetization is perpendicular to the magnetization since

~M(~∇ ~M) = ~∇( ~M)2/2 = ~∇M2
s /2 = 0. (3.4)

In this case we can use equation (1.14) to rewrite the motion term. For ξ = α the distortion term
vanishes. This leads to the equation

d ~M

dt
= −γ′ ~M × ~Heff −

γ′α
MS

~M ×
(

~M × ~Heff

)

− (~u~∇) ~M (3.5)

with the speed ~u = −bj~j of the magnetization pattern. It becomes obvious that for ξ = α the
current leads to a motion of the magnetization pattern in the direction of the electron flow. For
ξ 6= α the distortion term becomes non-zero and the pattern is not only shifted but also distorted.

Equations (3.2) and (3.3) are the central equations which we will exploit in the rest of this work.

4 Magnetic Vortices and Antivortices

Vortices and antivortices are formed in nanostructured thin-film elements due to the interplay of the
exchange and the demagnetization energy. The demagnetization energy forces the magnetization
in the film plane to reduce the surface charges. For a range of lateral sizes of the element the
in-plane magnetization curls around a center region39, 146, 154, 155 as shown in figures 4.1(a) and (b).
For a magnetization that is fully in-plane the exchange energy in the center would become infinite
as two regions with opposite magnetization are close together. To lower the exchange energy31 the
magnetization is thus forced to turn out-of-plane in a few-nanometer-large center region34 as shown
in figure 4.1(c). This region is called the vortex or antivortex core. The actual shape of the core
is given by the minimization of the total energy. An increasing exchange energy would broaden
the core while an increasing demagnetization energy would shrink it. In general thin-film elements
it is possible to obtain magnetization pattern with several vortices and antivortices.146 Figure 4.1
shows four examples of structures where a single vortex or antivortex can be stable.

The out-of-plane magnetization in the core can have two possible orientations that are labeled
by the polarization p which can assume the values p = +1 and p = −1 depending on whether
the magnetization in the core points parallel or antiparallel to the out-of-plane axis, that is the z
axis in figure 4.1(c). A parallel alignment is denoted by p = +1 while an antiparallel alignment is
denoted by p = −1.

The in-plane magnetization of a vortex or an antivortex is described by the parameterization

φ = nβ +
πc

2
, (4.1)
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Figure 4.1: Scheme of the in-plane magnetization of (a) a vortex (n = 1) with chirality c = 1
and (b) an antivortex (n = −1) with chirality c = 0 determined from Eq. (4.1). (c) Numerically
calculated magnetization in a permalloy square thin-film element with 200 nm edge length and
20 nm thickness. The vortex has chirality c = 1 and polarization p = 1. The height describes
the value of the out-of-plane magnetization and the color denotes the angle φ of the in-plane
magnetization. (d)-(g) Scheme of possible samples in which (d) and (e) a single vortex or (f) and
(g) a single antivortex can be realized. The grey area depicts the magnetic material. The direction
of the magnetization is denoted by the arrows. The vortex or antivortex core is denoted by the
circle. (Subfigures (a) and (b) are reprints from reference [156].)
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where φ is the angle of the magnetization and β is the angle that describes the position with
respect to the core as shown in figure 4.1(a). While the winding number n can theoretically
assume every integer value we will focus on the special cases of a vortex (n = 1) and an antivortex
(n = −1). The difference between a vortex and an antivortex is the sense of rotation of the in-plane
magnetization that occurs when moving around the core. The offset between the two angles φ and
β is parameterized by the chirality c. For a vortex a chirality of c = 1 denotes a counterclockwise
curling of the in-plane magnetization while c = −1 denotes a clockwise curling. Since a rotation of
the sample affects both angles, that are φ and β, in the same manner the chirality c = 2(φ− β)/π
does not change. For an antivortex the expression c = 2(φ + β)/π depends on the orientation of
the sample. Thus the chirality is not an intrinsic property of the antivortex and one has to choose
a distinct axis from which the angles are measured. To meet these concerns, for an antivortex c
is sometimes called the c value instead of chirality.157 Here we will use the term chirality for both
vortex and antivortex. It is worth noting that in some publications about magnetic vortices the
term chirality is used to describe the relation between in-plane and out-of-plane magnetization that
is given by pc. Here the product pc will be called handedness.

For thin films where the magnetization is forced in the film plane A. A. Belavin and A. M.
Polyakov introduced a topological charge

q =
1

8πM3
s

∫

d2r
∑

k,l,m,p,q

ǫpqzǫklmMk
∂Ml

∂rp

∂Mm

∂rq
=

1

4πM3
s

∫

d2r ~M

(

∂ ~M

∂x
× ∂ ~M

∂y

)

(4.2)

where the z direction is the out-of-plane direction. This charge is called the skyrmion charge.158

For vortices and antivortices this quantity is a half integer that is given by q = np/2.159, 160 For a
continuously varying magnetization, as assumed in the micromagnetic model, the skyrmion charge
is conserved as long as no vortices or antivortices enter or leave the system at the boundaries.

It is known that vortices are displaced from their equilibrium position when excited by
spin-polarized electric currents that flow in the film plane.50 For excitations with magnetic field
pulses or alternating fields vortices and antivortices precess around their equilibrium position40, 47

and it was shown that spin-polarized electric currents can cause the same precession.50, 161

For an excitation with large magnetic fields or currents the vortex or antivortex core eventually
switches its polarization, that is after the switching process a vortex or antivortex with the opposite
orientation of the out-of-plane magnetization remains.47 The switching of a vortex core by an
alternating in-plane field or current proceeds as follows. When the excitation increases a dip is
formed on the inside of the core’s orbit close to the core. In this dip the magnetization points
out-of-plane but in a different direction compared to the vortex core. When this dip reaches
a critical size it decouples to a vortex core and an antivortex core. The antivortex core moves
towards the original vortex core and both annihilate. The new vortex core, which has opposite
polarization compared to the original one, remains. For an antivortex the switching proceeds the
same way but with vortex core and antivortex core exchanged. In micromagnetic calculations this
switching of a vortex or antivortex is not allowed as it changes the skyrmion charge. However, it
can be simulated on a lattice of discrete spins. This is discussed in section 6.

As we will see in this work, due to its high symmetry and spatial confinement a vortex or
an antivortex in a micro- or nanostructured magnetic thin-film element are promising systems
for the investigation of the spin-torque effect. The high symmetry of the magnetization leads to
an analytically feasible system while the spatial confinement of the vortex core within the film
element and its periodic motion around its ground state yields an especially accessible system for
measurements with scanning probe techniques, such as soft x-ray microscopy, x-ray photoemission
electron microscopy, or scanning electron microscopy with polarization analysis.40, 47, 49, 74, 162–164

Furthermore a vortex or an antivortex is an ideal candidate for the development of new memory
devices.
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5 Magnetic Domain Walls

In ferromagnetic materials the short range exchange energy tries to align the magnetic moments
in the same direction while the long range demagnetization energy is lower for a flux-closure mag-
netization pattern. The sum of both energies is minimized by forming local regions with uniform
magnetization to favor the exchange energy. The angle between the magnetization in neighboring
regions can be arbitrary. This allows for a minimization of the demagnetization energy. These local
regions are called domains and the boundaries between them are called domain walls.

There are many possible types of domain walls. The simplest domain walls are the 180◦ Néel
and Bloch walls. When moving through the wall the magnetization rotates from one direction to
the other. The difference between a Néel wall and Bloch wall is that the magnetization in a Bloch
wall rotates in the plane that is given by the domain wall while the magnetization in a Néel can be
oriented perpendicular to the wall plane. Both wall types are depicted in figure 5.1.

The energy of a Néel or Bloch wall is given by

ENB =

∫

dV

(

A

(
∂θ

∂x

)2

+A sin2(θ)

(
∂φ

∂x

)2

+K sin2(θ) +K⊥ sin2(θ) sin2(φ)

)

(5.1)

where A (∂θ/∂x)2 + A sin2(θ) (∂φ/∂x)2 is the energy density of the exchange coupling and
K sin2(θ) + K⊥ sin2(θ) sin2(φ) describes the anisotropy of the system. This anisotropy can be
due to a crystalline anisotropy, a layered sample, or due to the shape of the sample. θ is the angle
between the magnetization and the easy axis, φ is the angle around the easy axis, and x is the
position perpendicular to the wall. The second term is minimized by a constant value of φ and the
fourth term is minimized if this constant value of φ is zero. The magnetization configuration with
the minimal energy is derived from the variation

δENB

δθ
= −2A

∂2θ

∂x2
+ 2K sin(θ) cos(θ) = 0 (5.2)

of the energy and the solution is given by the angle

θ = 2 atan
(

e±
x−X

λ

)

. (5.3)

Here X is the position of the wall and λ =
√

A/K is the width of the wall. For further calculations
it is helpful to derive expressions for M‖/Ms = cos(θ) and M⊥/Ms = sin(θ) which denotes the
fraction of the magnetization that is parallel and perpendicular to the easy axis, respectively. From
equation (5.3) we derive

e±
x−X

λ = tan

(
θ

2

)

=

√

1− cos(θ)

1 + cos(θ)
(5.4)

which leads to the expression for the cosine

cos(θ) =
1− e±2x−X

λ

1 + e±2x−X
λ

= ∓ tanh

(
x−X

λ

)

. (5.5)

Now we can easily calculate

sin(θ) =
√

1− cos2(θ) =

√

cosh2
(
x−X
λ

)
− sinh2

(
x−X
λ

)

cosh2
(
x−X
λ

) = ± 1

cosh
(
x−X
λ

) . (5.6)

We thus get |M‖| = Ms

∣
∣tanh

(
x−X
λ

)∣
∣ and |M⊥| = Ms/ cosh

(
x−X
λ

)
as shown in figure 5.1. These

results for M‖ and M⊥ only determine the absolute value of the parallel and the perpendicular
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(a)

(b)

Figure 5.1: Scheme of the magnetization in (a) a 180◦ Néel wall and (b) a 180◦ Bloch wall. The
in-plane magnetization is given by the color of the magnetization arrows. A black arrow indicates a
magnetization that points out-of-plane. The semi transparent box denotes the plane of the domain
wall.
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magnetization. Thus both the Néel and the Bloch domain wall are fourfold degenerate according
to the different signs of the parallel and the perpendicular magnetization.

While the magnetization in the Néel and Bloch domain walls does not depend on the position
along the wall there are types of domain walls in which the magnetization also depends on this
position. These more complex composite wall types can also contain vortices and antivortices that
determine the dynamics of the domain wall. This underlines the importance of the dynamics of
vortices and antivortices.

One system that allows for a study of the increasing complexity of domain walls is a small
magnetic nanowire. In magnetic nanowires the minimization of the surface charges leads to a
magnetization which is nearly everywhere parallel to the wire. Two domains with opposite magne-
tization direction are separated by a domain wall. These walls are called head-to-head walls if the
magnetization in the neighboring domains point towards each other. For the opposite orientation
of the magnetization they are called tail-to-tail walls.

The type of this domain wall strongly depends on the width w and thickness d of the wire
and on the initial magnetization.90, 165, 166 With increasing cross section of the wire one finds an
increasing complexity of the domain wall that constitutes the groundstate. Figure 5.2 shows the
numerically calculated groundstates of four different types of domain walls in a permalloy nanowire.

The most simple wall is the transverse wall that exists for small cross sections S = wd. Similar
to a Néel and a Bloch wall the magnetization performs a continuous rotation from one orientation
to the other. The transverse wall is commonly described by a one dimensional model where the
magnetization depends only on the position along the wire axis. The energy is approximated by

ET =

∫

dV

(

A

(
∂θ

∂x

)2

+A sin2(θ)

(
∂φ

∂x

)2

+K sin2(θ) +K⊥ sin2(θ) sin2(φ)

)

(5.7)

where θ is the angle between the magnetization and the wire axis while φ describes a rotation of
the magnetization around the wire. The first two terms in equation (5.7) represent the exchange
energy. The demagnetization energy is accounted for by the approximation with a so called shape
anisotropy. The third term in equation (5.7), that is an easy axis anisotropy along the wire,
describes the tendency of the magnetization to align in the wire direction. For wires with an aspect
ratio d/w 6= 1, that is a non-quadratic cross section, the last energy term describes a preferred
orientation of the perpendicular magnetization.

When the cross sections S = wd of the wire exceeds a critical value a vortex wall becomes
the energetic groundstate.165, 166 R. D. McMichael and M. J. Donahue determined a critical cross
section of 64 l2ex and Y. Nakatani et al. found a similar value of 61.3 l2ex. The exchange length lex
is given by

√

2A/(µ0M2
s ). In a vortex wall the alignment of the magnetization changes over the

cross section. The vortex can have the two polarizations p = ±1 and the two chiralities c = ±1.
In analytic calculations this type of domain wall has been approximated by two transverse walls
which point in different directions and a vortex between those two walls.102

Experiments and simulations with permalloy rings of different sizes showed a strong dependence
of the wall type on the initial magnetization.90 In these investigations the initial state of the ring
is a magnetization that is saturated along a certain direction by a magnetic field. After the field
is switched off the rings exhibit two domain walls. Due to the symmetric initial magnetization the
symmetric transverse wall is preferred. For large cross sections the transverse wall switches to a
vortex wall. There is an intermediate regime where the vortex wall is the energetic groundstate but
the transverse wall constitutes a local energy minimum and no switching to a vortex wall occurs.

An asymmetric transverse wall as shown in figure 5.2(b) is similar to the common transverse
wall but it does not exhibit the mirroring symmetry with respect to the center of the wall. In
wires with extremely non-quadratic cross section this type of wall appears in the transition region
between the transverse wall and the vortex wall.115, 166 A double vortex wall contains two vortices
with opposite chirality as shown in figure 5.2(d). A further increase of the wire cross section leads
to a couple of additional wall types that contain more vortices and antivortices.103, 116, 119, 167
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(a)

(b)

(c)

(d)

Figure 5.2: Numerically calculated magnetization of (a) a transverse, (b) an asymmetric transverse,
(c) a vortex, and (d) a double-vortex domain wall in a permalloy nanowire. The width of the wire
is (a) 100 nm and (b) - (d) 200 nm. The thickness is (a), (c), and (d) 10 nm and (b) 8 nm.
Each arrow denotes the average of the in-plane magnetization of a square film element with 10 nm
edge length. The color denotes the out-of-plane magnetization and ranges from a full out-of-plane
magnetization pointing towards the reader (blue) to a full out-of-plane magnetization pointing in
the opposite direction (red). White denotes a magnetization that points in-plane. The vortex cores
and the Néel wall like structures are highlighted by the dashed blue lines. All simulations are
performed with a simulation-cell size of 1 nm in lateral direction and one cell in the thickness.
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Figure 5.3: Scheme of (a)-(d) current and (e)-(f) field-driven motion of domain walls in a nanowire.
For the sake of simplicity we neglect the internal structure of the two domain walls that are denoted
by the dashed lines and assume a full polarization of the conduction electrons. (a) In our initial
state the magnetization (red solid arrows) exhibits two domain walls a head-to-head (left) and a
tail-to-tail domain wall (right). (b) The magnetic moment of the conduction electron (dashed blue
arrow) that enters from the left is aligned parallel to the local magnetization. (c) and (d) When
the conduction electron passes the domain walls it has to flip its spin. Due to the conservation of
angular momentum one localized electron has to flip its spin as well. Thus both walls are shifted
in the direction of the electron flow. (e) A magnetic field (dashed-dotted arrow) that is applied
in the direction of the wire increases the energy of the domain that is pointing left. Consequently
this domain decreases and both walls move in opposite direction. (f) Finally both domain walls
annihilate.

In a magnetic nanowire the domain walls can be moved along the wire by an external magnetic
field or by a spin polarized current that flows in the wire.129, 168–170 This motion can be used in novel
high-density memory devices like the racetrack memory.79 In this kind of memory the information
is stored in the orientation of the magnetization at different positions in the wire. Applying an
external magnetic field or a spin polarized current allows for a shifting of these bits along the wire
passing a writing and a reading device.

For a reliable operation of this device it is essential that all domain walls in the wire move in
the same direction and with the same speed. Otherwise two neighboring domain walls can collide
and annihilate each other yielding an inevitable loss of information.171 A magnetic field in the
direction of the wire is not suitable because it forces head-to-head and tail-to-tail domain walls to
move in opposite directions. A current is more appropriate since all domain walls would move in
the direction of the electron flow. Figure 5.3 shows a scheme of the current and the field-driven
motion of a domain wall.

A drawback is that the motion of a domain wall is highly affected by pinning centers like grain
boundaries or surface roughness. This leads to a highly stochastic motion.172, 173 This problem can
be overcome by introducing artificial pinning sites like notches that are stronger than the randomly
distributed pinning centers. Then the wall can be moved deterministically from one artificial
pinning site to the next. Thus it becomes important to understand the pinning and depinning
processes of current-driven domain walls.

The probability that a domain wall is depinned by a current pulse does not only depend on
the amplitude of the pulse but also on its temporal shape. In experiments, it was shown that a
current with a special temporal shape can reduce the critical current density that is needed to
depin the domain wall.105, 111, 113, 174 These experiments aim at resonant excitations of the wall.
The resonant behavior depends on the pulse length, on a series of properly timed current pulses,
or on a resonantly alternating current that is applied to the wire.

It was found theoretically that domain-wall motion driven by temporally varying spin-polarized
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Figure 6.1: (a) Scheme of a magnetization configuration with a micromagnetic singularity. The two
domains (grey) are separated by two Bloch domain walls (black). The Bloch walls have different
senses of rotation and are divided by two Néel/Bloch lines (blue). Between the two Néel/Bloch lines
with different orientations a micromagnetic singularity (red) is formed. This singularity is called a
Bloch point. A magnification of the red square is shown in (b). It can be seen that in the vicinity
of the singularity the magnetization points in different directions. This leads to a singularity in the
exchange energy. (c) A micromagnetic singularity also exists during the switching of a magnetic
vortex core in a thin film. The singularity moves through the film along the core. Shown is the
magnetization when the singularity (dot) is at the midpoint of the core. (The subfigures (a) and
(b) are adopted from reference [176].)

currents depends not only on the current density but also on its time derivative.129, 175 In this work
we will see that this leads to the fact that the critical current density can be reduced by shortening
the risetime of the current pulse.

6 Constraints of the Micromagnetic Model

In the micromagnetic model the magnetization is described by a continuous vector field with a
constant magnitude. This approximation is valid only if the magnetization changes on a length
scale that is large compared to the distance of two magnetic moments, that is the distance of two
atoms.

For the calculation of the angle between two spins we have a closer look at the three topological
defects that are depicted in figure 6.1(a).

For a Néel or Bloch wall the angle between two neighboring spins can be expressed by

∆θ = θ(x+ da)− θ(x) ≈ ∂θ

∂x
(x)da =

da

cosh
(
x−X
λ

)
λ
≤ da

λ
≪ 1 (6.1)

assuming that the atomic distance da is small compared to the wall width λ. Thus the maximum
angle between two spins is given by da/λ. The minimum value for the domain-wall width is given
by

λmin =

√

A
1
2µ0M

2
s +Ku1

(6.2)
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Figure 6.2: One possible spatial dis-
cretization of the magnetization for nu-
merical calculations. The space is sub-
divided in cuboidic cells. The magne-
tization is stored at the midpoints of
these cells that are denoted by the dots.

where (1/2)µ0M
2
s is the maximum anisotropy due to the shape of the sample and Ku1 is the

intrinsic uniaxial anisotropy. Here we neglected cubic anisotropy and higher orders of the uniaxial
anisotropy. In materials with no intrinsic anisotropy, for example permalloy, the magnetization
changes on a length scale that is given by the exchange length

lex =

√

2A

µ0M2
s

. (6.3)

For permalloy with A = 1.3 · 10−11 J/m and Ms = 8 · 105 A/m this length is about lex = 5.7 nm
which is more than one order of magnitude larger than the atomic distance of da = 0.25 nm that can
be calculated from the lattice constants of aNi = 0.352 nm for nickel and aFe = 0.287 nm for iron,
bearing in mind that nickel has a face-centered cubic lattice and iron has a body-centered cubic
lattice. The maximum angle between two neighboring spins is thus 2.5◦ and the magnetization in
a domain wall changes slowly enough for a micromagnetic description.

Two domain walls with different orientations are separated by a Néel/Bloch line. In this work
such lines occur only in vortices or antivortices where they constitute the vortex or antivortex core
as depicted in figure 6.1(c). Numerical simulations of a vortex in a permalloy film element showed
that the maximum spatial derivative of the magnetization angle, that can be found in films with a
thickness of d = 10 nm, is about 0.17 nm−1 which is close to the value l−1

ex = 0.18 nm−1 that was
found for the domain wall.

Bloch points occur especially during reversal processes of the magnetization.38, 159, 176, 177 In
the vicinity of these points the magnetization points in all three spatial directions as depicted in
figure 6.1(b). Thus a continuous rotation of the magnetization is not possible. Such a discontinuity
leads to a singularity in the exchange energy because two positions with opposite magnetization
direction are infinitely close to each other. A second problem that arises is that in the vicinity of the
Bloch point the magnetization vanishes since the magnetic moments point in all possible directions.
This is not compatible with the micromagnetic assumption that the length of the magnetization
vector is constant. Thus a Bloch point cannot be described by the micromagnetic model.

In numerical micromagnetic calculations the magnetization has to be spatially discretized as
shown in figure 6.2. The derivatives of the magnetization are then expressed by the difference of
the magnetization in neighboring grid points divided by the distance of the points. Since the grid
points have a finite distance the exchange energy is prevented from becoming infinite although it
obtains very large numbers. But the approximation of the derivative by finite differences becomes
certainly incorrect in the vicinity of the Bloch point. This can especially be seen when the energy
of a Bloch point, and thus the results of the simulations, show a strong mesh dependence.177 Thus
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physical values can depend on the non-physical value of the mesh size. This makes numerical
micromagnetic calculations of systems that contain Bloch points unreliable.

During the switching of a vortex or an antivortex core a Bloch point is generated in the sample
as shown in figure 6.1(c).176 Thus the switching process is not suitable for an investigation with
the micromagnetic model even though in numerical calculations a switching can be observed. Due
to these apparent problems the switching of vortices and antivortices will not be investigated in
this work.
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Part II

Dynamics of Vortices and Antivortices

A magnetic vortex or a magnetic antivortex can be excited by applying a magnetic field or a
spin-polarized current. In this part the dynamics of a vortex or an antivortex are discussed.
Firstly, analytical calculations within the micromagnetic framework using some approximations
are presented. Secondly, the results of these calculations are compared with numerical simulations
that base upon the micromagnetic model. The comparison between the analytical and numerical
results allows us to test the applicability of the approximations that are used in the analytical
calculations. In a third section the action of the Oersted field accompanying the current on a vortex
and an antivortex is investigated. The final three sections deal with applications of vortex and
antivortex dynamics. These sections include the distinction between spin-torque and Oersted-field
driven dynamics, measurement of the non-adiabatic spin-torque parameter ξ, and an application
of a vortex or antivortex in memory devices.

7 Analytical Calculations

In this section the dynamics of vortices and antivortices is discussed analytically. The results that
are presented in this section have been published slightly modified in references [156,157,178–180].

7.1 The Thiele Equation

In micromagnetism the LLG equation describes the temporal change of the magnetization at each
position of a magnetization pattern. Since the magnetization is a continuous vector field an ar-
bitrary magnetization pattern is described by an infinite number of parameters. To reduce the
number of parameters one can use the approach of collective coordinates. In this approach the
magnetization at each point within the sample is given by an expression that depends on the
position of this point and a number of parameters, called collective coordinates, that evolve in
time.

A simple approach was found by Thiele in 1973.181–183 He recognized that for a magnetization
pattern that performs a rigid motion without deformations the current state of the whole magneti-
zation can be described by the current position of one characteristic feature of the pattern. In this
case the magnetization at the position ~r = (x, y, z) is given by ~M(~r− ~R(t)) where ~R = (X,Y,Z) is
the position of the characteristic feature. He derived an equation of motion by expressing the time
derivative at each point by the according spatial derivative and the velocity of the whole pattern.
In 2005 Thiaville et al. expanded this equation by the action of a spin-polarized current.153 This
equation is derived in the following.

According to Thiele we write

d ~M (~r − ~R(t))

dt
= Ẋ

∂ ~M(~r − ~R(t))

∂X
+ Ẏ

∂ ~M(~r − ~R(t))

∂Y
+ Ż

∂ ~M(~r − ~R(t))

∂Z

= −Ẋ ∂ ~M(~r − ~R(t))

∂x
− Ẏ

∂ ~M(~r − ~R(t))

∂y
− Ż

∂ ~M (~r − ~R(t))

∂z

= −
(

~v · ~∇
)

~M(~r − ~R(t)),

(7.1)

where ~v = (Ẋ, Ẏ , Ż) is the velocity of the magnetization pattern. With this expression we can
simplify the LLG. The implicit LLG with the spin torque terms

d ~M

dt
= −γ ~M × ~H +

α

Ms

~M × d ~M

dt
− bj
M2

s

~M ×
(

~M ×
(

~j · ~∇
)

~M
)

− ξbj
Ms

~M ×
(

~j · ~∇
)

~M (7.2)
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can be written as

−
(

~v · ~∇
)

~M = −γ ~M × ~H − α

Ms

~M ×
(

~v · ~∇
)

~M − bj
M2

s

~M ×
(

~M ×
(

~j · ~∇
)

~M
)

− ξbj
Ms

~M ×
(

~j · ~∇
)

~M

(7.3)
using the expression in equation (7.1). With equation (3.4) the left hand side of equation (7.3) can
be rewritten as

−
(

~v · ~∇
)

~M =
1

M2
s

~M ·
(

~M ·
(

~v · ~∇
)

~M
)

︸ ︷︷ ︸

=0

− 1

M2
s

(

~M · ~M
)

︸ ︷︷ ︸

=1

·
(

~v · ~∇
)

~M =
1

M2
s

~M×
(

~M ×
(

~v · ~∇
)

~M
)

,

(7.4)
where we applied equation (1.14). Equation (7.4) can now be inserted in equation (7.3). Grouping
terms with similar dependence on ~M we get the expression

0 = −γ ~M × ~H − 1

M2
s

~M ×
(

~M ×
((

~v + bj~j
)

· ~∇
)

~M
)

− 1

Ms

~M ×
((

α~v + ξbj~j
)

· ~∇
)

~M. (7.5)

The equation

0 = ~H +
1

γM2
s

~M ×
((

~v + bj~j
)

· ~∇
)

~M +
1

γMs

((

α~v + ξbj~j
)

· ~∇
)

~M + ρ ~M (7.6)

reproduces equation (7.5) after multiplication with −γ and application of the cross product with
~M from the left. Here ρ ~M is a magnetic field in the direction of the magnetization. This term
is arbitrary since the torque on the magnetization depends only on the cross product between the
field and the magnetization. Thus the field component in the direction of the magnetization has
no effect.

The i-th component of the force on the magnetization pattern can be calculated as

~Fi = − ∂E

∂ ~Ri

= −
∫

dV
∑

k

δE

δ ~Mk(~r)

∂

∂ ~Ri

~Mk(~r)

=

∫

dV
∑

k

[−µ0 ~Hk(~r)]~∇i
~Mk(~r) = −µ0

∫

dV
∑

k

[~∇i
~Mk(~r)] ~Hk(~r).

(7.7)

This yields the force density

~f = −µ0
∑

k

(~∇ ~Mk) ~Hk. (7.8)

Multiplying the field equation (7.6) with −µ0
∑

k

(~∇ ~Mk) yields the i-th component of the force

density

0 =
∑

k

(−1)µ0

(

~∇i
~Mk

)

~Hk

+
∑

k,l,m,n

(−1)
µ0ǫklm
γM2

s

(

~∇i
~Mk

)

~Ml

(

~∇n
~Mm

)(

~v + bj~j
)

n

+
∑

k,n

(−1)
µ0
γMs

(

~∇i
~Mk

)(

~∇n
~Mk

)(

α~v + ξbj~j
)

n

+
∑

k

(−1)µ0

(

~∇i
~Mk

)

ρ ~Mk

︸ ︷︷ ︸

= 0

.

(7.9)
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The last term vanishes due to the relation in equation (3.4). For the calculation of the steady
state motion of the whole magnetization pattern the force density is integrated over the volume to
determine the equation of forces

0 =

∫

dV
∑

k

(−1)µ0

(

~∇i
~Mk

)

~Hk

+

∫

dV
∑

k,l,m,n

(−1)
µ0ǫklm
γM2

s

(

~∇i
~Mk

)

~Ml

(

~∇n
~Mm

)(

~v + bj~j
)

n

+

∫

dV
∑

k,n

(−1)
µ0
γMs

(

~∇i
~Mk

)(

~∇n
~Mk

)(

α~v + ξbj~j
)

n
.

(7.10)

If the velocity of the magnetization is independent of the position, that is the magnetization pattern
does not deform during the motion, the velocity can be taken outside the integration. For a spatially
homogeneous current flow the current density is also independent of the position and can be taken
outside the integral. The equation of forces can then be written as

0 =

∫

dV
∑

k

(−1)µ0

(

~∇i
~Mk

)

~Hk

︸ ︷︷ ︸

force

+
∑

n





∫

dV (−1)
∑

k,l,m

µ0ǫklm
γM2

s

(

~∇i
~Mk

)

~Ml

(

~∇n
~Mm

)





︸ ︷︷ ︸

gyro tensor

(

~v + bj~j
)

n

+
∑

n

(
∫

dV (−1)
∑

k

µ0
γMs

(

~∇i
~Mk

)(

~∇n
~Mk

)
)

︸ ︷︷ ︸

dissipation tensor

(

α~v + ξbj~j
)

n
.

(7.11)

The gyro tensor is an antisymmetric tensor. In three dimensions the product of an antisymmetric
tensor and a vector can always be written as a cross product between two vectors. This is archived
by inserting two additional Levi-Civita symbols and summing over the new variables. With the
cross product equation (7.11) reads

0 =

∫

dV
∑

k

(−1)µ0

(

~∇i
~Mk

)

~Hk

︸ ︷︷ ︸

force

+
∑

n,o

ǫion





∫

dV (−1)
∑

k,l,m,p,q

µ0ǫklmǫpoq
2γM2

s

(

~∇p
~Mk

)

~Ml

(

~∇q
~Mm

)





︸ ︷︷ ︸

gyrovector

(

~v + bj~j
)

n

+
∑

n

(
∫

dV (−1)
∑

k

µ0
γMs

(

~∇i
~Mk

)(

~∇n
~Mk

)
)

︸ ︷︷ ︸

dissipation tensor

(

α~v + ξbj~j
)

n
.

(7.12)

Expressed in vector notation this yields

0 = ~F + ~G×
(

~v + bj~j
)

+D
(

α~v + ξbj~j
)

. (7.13)
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For calculating the densities of the force ~F , the gyrovector ~G, and the dissipation tensor D at
a distinct position ~r0 we introduce a coordinate system given by the unit vectors

~er =





sin(θ(~r0)) cos(φ(~r0))
sin(θ(~r0)) sin(φ(~r0))

cos(θ(~r0))



 , ~eθ =





cos(θ(~r0)) cos(φ(~r0))
cos(θ(~r0)) sin(φ(~r0))

− sin(θ(~r0))



 , and ~eφ =





− sin(φ(~r0))
cos(φ(~r0))

0



 ,

(7.14)
where θ and φ are the polar and the azimuthal angle of the magnetization, respectively. It is worth
noting that this coordinate system is not equal to spherical coordinates. This coordinate system
is independent of the position ~r since its unit vectors depend on the magnetization at position
~r0 only. This selection of the coordinate system allows us to calculate the spacial derivatives at
position ~r0 without the difficulties that one would be faced with in a rotating coordinate system.
From equation (7.14) we find that at position ~r0 the magnetization is given by

~M(~r0) =Ms~er(~r0). (7.15)

For small deviations d~r from this position the magnetization is given by

~M (~r0 + d~r) =Ms~er(~r0) +
(

d~r (~∇θ)(~r0)
)

Ms~eθ(~r0) +
(

d~r (~∇φ)(~r0)
)

Ms sin(θ)~eφ(~r0). (7.16)

Moving from position ~r to ~r+ d~r the angles θ and φ of the magnetization change since the magne-
tization rotates. In contrast the vectors ~er(~r0), ~eθ(~r0), and ~eφ(~r0) remain constant. The gradient
of the magnetization can be expressed by θ and φ as

~∇ ~M = (~∇θ)∂
~M

∂θ
+ (~∇φ)∂

~M

∂φ
. (7.17)

With these definitions the force in equation (7.12) can be written as

~F =

∫

dV
∑

k

(−1)µ0

(

~∇ ~Mk

)

~Hk = −µ0
∫

dV

[

(~∇θ) ∂
∂θ

+ (~∇φ) ∂
∂φ

]

( ~H · ~M). (7.18)

From equation (7.12) we get the o-th component of the gyrovector

Go = −
∫

dV
∑

k,l,m,p,q

µ0ǫklmǫpoq
2γM2

s

(

~∇p
~Mk

)

~Ml

(

~∇q
~Mm

)

. (7.19)

For a magnetization that does not change in z direction it becomes obvious that the z component
of the gyrovector is proportional to the topological skyrmion charge defined in equation (4.2).
From equation (7.15) we can see that Ml = 0 if l 6= r, where Mr denotes the component of the
magnetization that points in the direction of the unit vector defined in equation (7.14). This yields

Go = −
∫

dV
∑

k,m,p,q

µ0ǫrkmǫopq
2γM2

s

(

~∇p
~Mk

)

Ms

(

~∇q
~Mm

)

= −
∫

dV
∑

p,q

µ0ǫopq
2γMs

((

~∇p
~Mθ

)(

~∇q
~Mφ

)

−
(

~∇p
~Mφ

)(

~∇q
~Mθ

))

= −
∫

dV
∑

p,q

Msµ0ǫopq
2γ

((

~∇pθ
)(

sin(θ)~∇qφ
)

−
(

sin(θ)~∇pφ
)(

~∇qθ
))

.

(7.20)

Renaming the indices p and q in the second term leads to

Go = −
∫

dV
∑

p,q

Msµ0ǫopq
2γ

((

~∇pθ
)(

sin(θ)~∇qφ
)

+
(

sin(θ)~∇qφ
)(

~∇pθ
))

= −
∫

dV
∑

p,q

Msµ0ǫopq
γ

sin(θ)
(

~∇pθ
)(

~∇qφ
)

.

(7.21)
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In vector notation the gyrovector reads

~G = −Msµ0
γ

∫

dV sin(θ)(~∇θ × ~∇φ). (7.22)

In component notation the dissipation tensor in equation (7.12) reads

Di,n = −
∫

dV
∑

k

µ0
γMs

(

~∇i
~Mk

)(

~∇n
~Mk

)

= −
∫

dV
µ0
γMs

((

~∇i
~Mθ

)(

~∇n
~Mθ

)

+
(

~∇i
~Mφ

)(

~∇n
~Mφ

))

= −
∫

dV
Msµ0
γ

((

~∇iθ
)(

~∇nθ
)

+
(

sin(θ)~∇iφ
)(

sin(θ)~∇nφ
))

(7.23)

which can be translated to the vector notation

D = −Msµ0
γ

∫

dV (~∇θ~∇θ + sin2(θ)~∇φ~∇φ). (7.24)

The force in equation (7.18), the gyrovector in equation (7.22), and the dissipation tensor in
equation (7.24) can now be inserted into the Thiele equation (7.13) to get an equation of motion
of the magnetization pattern. Like the LLG equation the Thiele equation is a differential equation
of first order in time. As a consequence the magnetization pattern has no inertia but reacts
instantaneously to fields and currents. Since the velocity occurs in a cross product given by ~G×~v,
the velocity of the magnetization pattern points not only in the direction of the force but also
perpendicular to it.

7.2 The Gyrovector

We will now calculate the gyrovector for a vortex or an antivortex. For this calculation we will
use cylindrical coordinates where ρ is the distance from the center of the core. The angle β is the
angle that is introduced in section 4. The expression of the gyrovector in equation (7.22) contains
gradients of the in-plane angle φ and of the out-of-plane angle θ. Due to the rotational symmetry
of the vortex or antivortex the angle θ changes in ρ direction only. The angle φ depends only on
the angle β. Thus we can write

~G = −Msµ0
γ

d∫

0

dz

∞∫

0

dρ ρ

2π∫

0

dβ sin(θ)
∂θ

∂ρ
(~eρ × ~eβ)

1

ρ

∂φ

∂β
= −Msµ0

γ

d∫

0

dz

θ(ρ=∞)∫

θ(ρ=0)

dθ sin(θ)

2π∫

0

dβ
∂φ

∂β
~ez

(7.25)
where d is the thickness of the film. The gyrovector depends on the out-of-plane angles at the vortex
core and far away from the core that are given by θ(ρ = 0) = (1 − p)π/2 and θ(ρ = ∞) = π/2,
respectively. From the expression of the in-plane magnetization in equation (4.1) we can calculate
∂φ/∂β = n and obtain

~G = −Msµ0
γ

d∫

0

dz

π/2∫

(1−p)π/2

dθ sin(θ)

2π∫

0

dβ n~ez = −Msµ0d

γ
p2πn~ez = −2πMsµ0dpn

γ
~ez = G0~ez. (7.26)

The gyrovector is parallel or antiparallel to the z-axis.
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7.3 The Dissipation Tensor

While the gyrovector of a vortex or an antivortex turns out to be a topological charge that depends
only on the out-of-plane magnetization at the center of the core and far away from the core, the
calculation of the dissipation tensor requires the exact knowledge of the magnetization in the core.
N. A. Usov and S. E. Peschany calculated the magnetization using a variational approach. They
first calculated the expression184

sin θ =

{
2R0ρ
R2

0
+ρ2

, ρ ≤ R0

1, ρ > R0

(7.27)

for the out-of-plane angle θ of the magnetization, taking only the exchange energy into account.
The variational parameter R0, that represents the radius of the core, is then varied to minimize the
total energy of the system. In this minimization also the demagnetization energy is included. This
expression is valid for thick systems. However, for thin films that this work focuses on we adopt
this model insofar as the out-of-plane magnetization vanishes outside the small core.

As for the gyrovector cylindrical coordinates are used for the integration. The integral then
reads

D = −Msµ0
γ

d∫

0

dz

Rmax∫

0

dρ ρ

2π∫

0

dβ (~∇θ~∇θ + sin2(θ)~∇φ~∇φ) (7.28)

where Rmax is the size of the sample. This can be split up in two integrals

D =− Msµ0
γ

d∫

0

dz

R0∫

0

dρ ρ

2π∫

0

dβ (~∇θ~∇θ + sin2(θ)~∇φ~∇φ)

− Msµ0
γ

d∫

0

dz

Rmax∫

R0

dρ ρ

2π∫

0

dβ (~∇θ~∇θ + sin2(θ)~∇φ~∇φ).

(7.29)

The first term is integrated over the vortex core while the second integral covers the region outside
the core. According to the aforementioned model the out-of-plane magnetization is zero outside the
core. Then sin2(θ) is equal to one and ~∇θ~∇θ vanishes. Since we deal with thin films, we assume
that the magnetization is independent of the z coordinate and get

D = −Msµ0d

γ

R0∫

0

dρ ρ

2π∫

0

dβ (~∇θ~∇θ + sin2(θ)~∇φ~∇φ)− Msµ0d

γ

Rmax∫

R0

dρ ρ

2π∫

0

dβ ~∇φ~∇φ, (7.30)

The gradients of the angles θ and φ have been derived in section 7.2. With these results one gets

D =− Msµ0d

γ

R0∫

0

dρ ρ

2π∫

0

dβ

((
∂θ

∂ρ

)2

~eρ ⊗ ~eρ + sin2(θ)
1

ρ2

(
∂φ

∂β

)2

~eβ ⊗ ~eβ

)

− Msµ0d

γ

Rmax∫

R0

dρ ρ

2π∫

0

dβ
1

ρ2

(
∂φ

∂β

)2

~eβ ⊗ ~eβ .

(7.31)

The unit vectors of the cylindrical coordinates can be expressed by the unit vectors of the Cartesian
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coordinates. This yields

D =− Msµ0d

γ

R0∫

0

dρ ρ

(
∂θ

∂ρ

)2
2π∫

0

dβ (cos(β)~ex + sin(β)~ey)⊗ (cos(β)~ex + sin(β)~ey)

− Msµ0d

γ

R0∫

0

dρ
1

ρ
sin2(θ)

2π∫

0

dβ n2 (cos(β)~ey − sin(β)~ex)⊗ (cos(β)~ey − sin(β)~ex)

− Msµ0d

γ

Rmax∫

R0

dρ
1

ρ

2π∫

0

dβ n2 (cos(β)~ey − sin(β)~ex)⊗ (cos(β)~ey − sin(β)~ex) .

(7.32)

After the integration over β this reduces to

D =− πMsµ0d

γ

R0∫

0

dρ

(

ρ

(
∂θ

∂ρ

)2

+ n2
1

ρ
sin2(θ)

)

(~ex ⊗ ~ex + ~ey ⊗ ~ey)

− πMsµ0dn
2

γ

Rmax∫

R0

dρ
1

ρ
(~ex ⊗ ~ex + ~ey ⊗ ~ey) .

(7.33)

The dissipation tensor has the same value for a vortex (n = 1) or an antivortex (n = −1). It is

D = −πMsµ0d

γ
ln

(
Rmax

R0e−CD

)

(~ex ⊗ ~ex + ~ey ⊗ ~ey) = −|G0|
2

ln

(
Rmax

R0e−CD

)

(~ex ⊗ ~ex + ~ey ⊗ ~ey)

(7.34)
with the parameter

CD =

R0∫

0

dρ

(

ρ

(
∂θ

∂ρ

)2

+
1

ρ
sin2(θ)

)

(7.35)

that depends on the magnetization in the core.
Since the integrand in equation (7.35) is a positive function CD is always positive and thus

e−CD < 1. From the model of N. A. Usov and S. E. Peschany one obtains CD = 2 irrespective
of the size of the vortex core. The value of R0e

−CD depends on the thickness of the film. It
can be determined from numerical calculations (see section 8.2). Equation (7.34) shows that the
dissipation tensor is diagonal with Dxx = Dyy = D0 and Dzz = 0. From R0 < Rmax and e−CD < 1
we find that D0 < 0. Equation (7.34) also shows that the dissipation tensor depends logarithmically
on the sample size.

7.4 Energy

For the calculation of the force on the vortex core we will now calculate the different energies that
contribute to the total energy of the core.

Confining Energy

For the confining energy we restrict ourselves to a potential that is symmetric under rotations by
π/2 and mirroring with respect to the coordinate axes, for example the confining potential in a
disc or square film element. The core of the vortex or antivortex is confined by the potential of the
stray-field energy Es and the exchange energy Ee. For small displacements of the vortex core from
its equilibrium position this potential can be expanded up to second order in the coordinates X and
Y that denote the displacement in x and y direction, respectively. Since the confining potential has
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(a)

Rmax
b

R
β0

β

x

y

(b)

l

X

Figure 7.1: Scheme of a skyrmion core (circle) situated in (a) a disc with radius Rmax or (b) a
square with edge length l. The core is displaced from its equilibrium position (square) by a distance
R =

√
X2 + Y 2. In both figures the in-plane magnetization for a vortex with chirality c = 1 is

depicted by the arrows. For the square the domain walls are depicted by the dashed and solid lines
for a vortex core that is at its equilibrium position or displaced from this position, respectively.
(The subfigures (a) and (b) are reprints from referenceces [156] and [178], respectively.)

mirroring symmetry all terms that are linear in X or Y vanish. The rotational symmetry ensures
that the prefactors of X2 and Y 2 are the same. The confining energy reads

Ec =
1

2
mω2

r(X
2 + Y 2), (7.36)

where the term mω2
r parameterizes the strength of the potential.

Zeeman Energy of a Skyrmion in a Disc

Using cylindrical coordinates the position of the skyrmion is given by X = R cos(β0) in x-direction
and Y = R sin(β0) in y-direction as shown in figure 7.1. The magnetization is given by equa-
tion (4.1). For the integration we use cylindrical coordinates with the origin at the skyrmion core.
From figure 7.1 the relation R2

max = R2 + b2 − 2bR cos(180◦ − β + β0) can be obtained using the
law of cosines. Thus the Zeeman energy for a magnetic field in y direction is given by

Ez = −µ0MsHd

∫ 2π

0
dβ sin(φ)

∫ b

0
dr′r′ = −µ0MsHd

∫ 2π

0
dβ sin(φ)

b2

2
(7.37)

with b = −R cos(β − β0) +
√

R2 cos2(β − β0)−R2 +R2
max. For small displacements R, that is

R2 ≪ R2
max, one finds b2 ≈ R2

max − 2RmaxR cos(β − β0) and the Zeeman energy can be written as

Ez =µ0MsHRRmaxd

∫ 2π

0
dβ sin

(

nβ +
πc

2

)

cos(β − β0)

=µ0MsHRRmaxd

∫ 2π

0
dβ

[

sin (nβ) cos
(πc

2

)

+ cos (nβ) sin
(πc

2

)]

[cos(β) cos(β0) + sin(β) sin(β0)] .

(7.38)

Here we neglected the term proportional to R2
max which does not depend on the position of the

skyrmion.

Due to the orthogonality of the sin(nx) and cos(nx) functions the integral is non-zero only if
|n| = 1. Thus in first order only skyrmions with winding numbers n = ±1 move in an external
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Zeeman field. Therefore, in the following we focus on the winding numbers n = 1 and n = −1
which denote a vortex and an antivortex, respectively. The Zeeman energy is then given by

Ez = µ0MsHRmaxπd
[

sin
(πc

2

)

X + n cos
(πc

2

)

Y
]

. (7.39)

In this model it is assumed that the magnetization pattern moves with the vortex or antivortex
core but undergoes no deformation. Guslienko et al. calculated the Zeeman energy using a surface
charge free model where the magnetization at the boundaries of the disk is always parallel to the
surface. Thus except inside the small vortex core no surface charges emerge. Their Result differ
by a factor of 2/3 compared to the result that is presented here.48, 65

Zeeman Energy of a Skyrmion in a Square

In squared magnetic thin-film element as depicted in figure 7.1 the Zeeman energy of a magnetic
field in y-direction can be calculated from the Zeeman energy of the four triangular domains.
Depending on the chirality and the winding number the domains contribute with different signs.
For n = ±1 the Zeeman energy is

Ez = µ0MsHd
l

2









(
l

2
+X

)

sin
(πc

2

)

︸ ︷︷ ︸

left domain

−
(
l

2
−X

)

sin
(πc

2

)

︸ ︷︷ ︸

right domain

−
(
l

2
− Y

)

n cos
(πc

2

)

︸ ︷︷ ︸

top domain

+

(
l

2
+ Y

)

n cos
(πc

2

)

︸ ︷︷ ︸

bottom domain









= µ0MsHld
[

sin
(πc

2

)

X + n cos
(πc

2

)

Y
]

.

(7.40)

The expressions for the disc and for the square have the same form. Thus we can write

Ez = µ0MsHld
[

sin
(πc

2

)

X + n cos
(πc

2

)

Y
]

, (7.41)

with the characteristic length l, where l = Rmaxπ for the circular sample and l is the edge length
for the quadratic sample.

7.5 Modified Thiele Equation

For an analytical investigation the motion of the vortex is commonly described employing the
Thiele equation (7.13) that is derived in the last sections. This equation is exact for the steady
state motion of a non-deformable magnetization pattern. However, this assumption holds true only
for the small vortex core. Due to the spacial restriction the vortex has to deform while the core
is moving. This yields a small modification of the Thiele equation that is especially important for
current-driven vortex motion in view of the non-adiabatic spin torque.

Here we derive a modified Thiele equation that takes a deformation of the outer part of the
vortex into account.

With the magnetization ~M and the magnetic field ~H a generalized version of the Thiele equation
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reads181

0 =− µ0

∫

dV

[

(~∇θ) ∂
∂θ

+ (~∇φ) ∂
∂φ

]

( ~H · ~M)

− Msµ0
γ

∫

dV sin(θ)(~∇θ × ~∇φ)× (~v + bj~j)

− Msµ0
γ

∫

dV (~∇θ~∇θ + sin2(θ)~∇φ~∇φ)(α~v + ξbj~j)

(7.42)

with the saturation magnetization MS , the gyromagnetic ratio γ, the current density ~j, the Gilbert
damping α, the non-adiabaticity parameter ξ, and the coupling constant bj between current and
magnetization. θ and φ are the out-of-plane and in-plane angle of the magnetization, respectively.
The velocity ~v = ~v(r) of the magnetization pattern may depend on the position in the pattern. As-
suming that the magnetization pattern does not deform the velocity is independent of the position.
Then equation (7.42) can be written in the form

~F + ~G× (~vc + bj~j) +D(α~vc + ξbj~j) = 0 (7.43)

with the velocity ~vc of the vortex core.
The integrand in the gyrovector is non-zero only in the small vortex core where the out-of-plane

angle θ varies while the integrand in the dissipation tensor is also non-zero outside the core. By
comparing the distances between the domain walls in figure 7.1, it can be seen that close to the
boundaries of the sample the magnetization pattern moves slower compared to the center. Thus
the velocity in the third term of equation (7.42) depends on position. Aiming at a similar form as
in equation (7.43) we replace the spatially dependent velocity ~v in the third term of equation (7.42)
by an effective value ~ve which is independent of position. This effective velocity occurs only in the
third term as the second term is located at the vortex core. For a homogeneous current flow bj~j is
constant over the sample. Thus we do not replace the current by an effective value. The equation
then reads

~F + ~G× (~vc + bj~j) +D0α~ve +D0ξbj~j = 0. (7.44)

The effective velocity ~ve depends on the core position ~R = (X,Y ) and the core velocity ~vc. For
small deflections of the vortex core, that is small deformations of the vortex, ~ve can be expanded
in ~R and ~vc. For ~vc = 0 the magnetization is static and ~ve = 0. Thus the first non-vanishing term
in the expansion is proportional to ~vc. Here and hereafter we write

~ve =
DΓ

D0
~vc. (7.45)

Since the effective velocity ~ve is always smaller than the velocity ~vc of the vortex core DΓ/D0 < 1.
Inserting equation (7.45) in equation (7.44) yields a modified Thiele equation

~F + ~G× (~vc + bj~j) +DΓα~vc +D0ξbj~j = 0. (7.46)

7.6 Equation of Motion

Equation (7.46) contains the velocity ~vc of the vortex core in a cross product and a scalar product.
We can transform this equation to an equation of motion that is explicit in ~vc. By multiplying
equation (7.46) with −DΓα we get

−DΓα~F −DΓα~G× ~vc −DΓα~G × bj~j −D2
Γα

2~vc −DΓαD0ξbj~j = 0. (7.47)

Taking the cross product of equation (7.46) with ~G leads to

~G× ~F −G2
0~vc −G2

0bj~j + ~G×DΓα~vc + ~G×D0ξbj~j = 0. (7.48)
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Here we used equation (1.14) and the orthogonality of ~G and ~vc. The sum of equation (7.47) and
equation (7.48)

(G2
0 +D2

Γα
2)~vc = −DΓα~F + ~G× ~F −DΓαbj ~G×~j +D0ξbj ~G×~j −DΓαD0ξbj~j −G2

0bj~j (7.49)

leads to the sought equation

~vc =
−DΓα~F +G0~ez × ~F −DΓαbjG0~ez ×~j +D0ξbjG0~ez ×~j −DΓαD0ξbj~j −G2

0bj~j

G2
0 +D2

Γα
2

(7.50)

for the velocity ~vc of the vortex core. The force

~F = −d(Es + Ez)

d~R
= −µ0MsHld

[

sin
(πc

2

)

~ex + n cos
(πc

2

)

~ey

]

−mω2
rX~ex −mω2

rY ~ey (7.51)

can be calculated from the energies in equations (7.36) and (7.41). With this we can also calculate
the expression

~ez × ~F = −µ0MsHld
[

sin
(πc

2

)

~ey − n cos
(πc

2

)

~ex

]

−mω2
rX~ey +mω2

rY ~ex. (7.52)

We restrict ourselves to a current in x direction that is given by

~j = j~ex (7.53)

and its cross product with the z direction is given by

~ez ×~j = j~ey. (7.54)

Inserting the force and the current in equation (7.50) we get
(
Ẋ

Ẏ

)

=− mω2
r

G2
0 +D2

Γα
2

(
−DΓαX −G0Y
−DΓαY +G0X

)

− µ0MsHld

G2
0 +D2

Γα
2

(
−DΓα sin

(
πc
2

)
−G0n cos

(
πc
2

)

−DΓαn cos
(
πc
2

)
+G0 sin

(
πc
2

)

)

− G0bjj

G2
0 +D2

Γα
2

(
G0

DΓα

)

− D0ξbjj

G2
0 +D2

Γα
2

(
DΓα
−G0

)

.

(7.55)

Here and hereafter we discard the z component since the core does not move in this direction.
In the absence of current and field the equation becomes homogeneous. The excited core

performs an exponentially damped spiral rotation around its equilibrium position. This rotation is
given by

(
X
Y

)

= C1

(
i
np

)

e−Γt+iωt + C2

(
−i
np

)

e−Γt−iωt (7.56)

with the free frequency

ω = − npG0mω
2
r

G2
0 +D2

Γα
2

(7.57)

and the damping constant

Γ = − DΓαmω
2
r

G2
0 +D2

Γα
2
. (7.58)

C1 and C2 are constants that have to be chosen so that the displacement for t = 0 fulfills the
starting conditions.

With the aid of the free frequency and the damping constant the equation of motion can be
written as

(
Ẋ

Ẏ

)

=

(
−Γ −npω
npω −Γ

)(
X
Y

)

− µ0MsHldnpωG
−1
0

ω2 + Γ2

(
−Γ sin

(
πc
2

)
− pω cos

(
πc
2

)

−Γn cos
(
πc
2

)
+ npω sin

(
πc
2

)

)

− npωbjj

ω2 + Γ2

(
npω
Γ

)

− D0npωG
−1
0 ξbjj

ω2 + Γ2

(
Γ

−npω

)

.

(7.59)
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Figure 7.2: Free trajectory of the core of a vortex
or an antivortex, as described by equation (7.56),
with the free frequency ω = 1.03 GHz and the
damping constant Γ = 20 MHz. The core starts at
X(0) = Y (0) = 10 nm and performs an exponen-
tially damped free gyration around its equilibrium
position in the center of the sample. The sense of
the gyration depends on the product of the wind-
ing number n and the polarization p. Shown are
the trajectories for np = +1 (solid red line) and
np = −1 (dashed blue line).

By rearranging the terms we get

(
Ẋ

Ẏ

)

=

(
−Γ −npω
npω −Γ

)(
X
Y

)

+
µ0MsHldpωG

−1
0 cos

(
πc
2

)

ω2 + Γ2

(
npω
Γ

)

− npωbjj

ω2 + Γ2

(
npω
Γ

)

+
µ0MsHldnpωG

−1
0 sin

(
πc
2

)

ω2 + Γ2

(
Γ

−npω

)

− D0npωG
−1
0 ξbjj

ω2 + Γ2

(
Γ

−npω

)

.

(7.60)

Inserting the value of the gyrovector that is given in equation (7.26) yields

(
Ẋ

Ẏ

)

=

(
−Γ −npω
npω −Γ

)(
X
Y

)

−
(

bjj +
γHlp

2π
cos
(πc

2

))
(

ω2

ω2+Γ2

npΓω
ω2+Γ2

)

−
(∣
∣
∣
∣

D0

G0

∣
∣
∣
∣
ξbjjnp+

γHlnp

2π
sin
(πc

2

))
(

npΓω
ω2+Γ2

− ω2

ω2+Γ2

)

.

(7.61)

Harmonic Excitations

In the following we will focus on harmonic excitations, that are j = j0e
iΩt and H = H0e

iΩt. The
current and the magnetic field are assumed to be in phase. We introduce two abbreviations. In
the following we express the current as

j̃x = bjj0 (7.62)

and the field as

H̃y =
γH0l

2π
. (7.63)
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Both values have the dimension of a velocity and allow us to compare the field and the current.
The equation of motion is then given by

(
Ẋ

Ẏ

)

=

(
−Γ −npω
npω −Γ

)(
X
Y

)

−




j̃x + H̃yp cos

(
πc
2

)
∣
∣
∣
D0

G0

∣
∣
∣ ξj̃xnp+ H̃ynp sin

(
πc
2

)

−
∣
∣
∣
D0

G0

∣
∣
∣ ξj̃xnp− H̃ynp sin

(
πc
2

)
j̃x + H̃yp cos

(
πc
2

)





(
ω2

ω2+Γ2

npΓω
ω2+Γ2

)

eiΩt.

(7.64)

In this equation both matrices commute. In the trivial case where j̃x + H̃yp cos (πc/2) = 0 and
|D0/G0| ξj̃xnp+ H̃ynp sin (πc/2) = 0 there is no dynamics of the vortex or antivortex. In all other
cases the matrix




j̃x + H̃yp cos

(
πc
2

)
∣
∣
∣
D0

G0

∣
∣
∣ ξj̃xnp+ H̃ynp sin

(
πc
2

)

−
∣
∣
∣
D0

G0

∣
∣
∣ ξj̃xnp− H̃ynp sin

(
πc
2

)
j̃x + H̃yp cos

(
πc
2

)



 (7.65)

is invertible. For these cases we can introduce a new coordinate system (X̃, Ỹ ) that is given by

(
X
Y

)

=




j̃x + H̃yp cos

(
πc
2

) ∣
∣
∣
D0

G0

∣
∣
∣ ξj̃xnp+ H̃ynp sin

(
πc
2

)

−
∣
∣
∣
D0

G0

∣
∣
∣ ξj̃xnp− H̃ynp sin

(
πc
2

)
j̃x + H̃yp cos

(
πc
2

)





(
X̃

Ỹ

)

. (7.66)

Both coordinate systems can be transformed into each other by a rotation and a subsequent scaling.
By inserting equation (7.66) in equation (7.64) and a multiplication with the inverse matrix of
equation (7.65) one finds that in the new coordinate system the equation of motion is given by

(
˙̃X
˙̃Y

)

=

(
−Γ −npω
npω −Γ

)(
X̃

Ỹ

)

−
(

ω2

ω2+Γ2

npΓω
ω2+Γ2

)

eiΩt. (7.67)

This equation can also be written as

(
˙̃X
˙̃Y

)

=

(
−Γ −npω
npω −Γ

)(
X̃

Ỹ + npω
ω2+Γ2 e

iΩt

)

. (7.68)

Thus in the new coordinate system the equilibrium position of the vortex or antivortex is shifted
along the Ỹ axis.

Equation (7.67) is of the form

(
˙̃X
˙̃Y

)

=

(
−Γ −npω
npω −Γ

)(
X̃

Ỹ

)

+

(
A
B

)

eiΩt. (7.69)

The solution of this equation is calculated in appendix B and is given by

(
X̃

Ỹ

)

=
eiΩt

ω2 + (iΩ+ Γ)2

(
A(iΩ + Γ)−Bnpω
Anpω +B(iΩ+ Γ)

)

. (7.70)

This yields the solution

(
X̃

Ỹ

)

= − eiΩt

ω2 + (iΩ + Γ)2

(
ω2(iΩ+Γ)
ω2+Γ2 − Γω2

ω2+Γ2

ω3np
ω2+Γ2 + npΓω(iΩ+Γ)

ω2+Γ2

)

= − eiΩt

ω2 + (iΩ+ Γ)2

(
ω2iΩ
ω2+Γ2

ωnp+ npΓωiΩ
ω2+Γ2

)

(7.71)
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Figure 7.3: Trajectory of the core of a vortex
or an antivortex that is excited by an alternat-
ing spin-polarized current in x direction at res-
onance. The dynamics is described by equa-
tion (7.72) with j̃ = 1.8 m/s, the free fre-
quency ω = 1.03 GHz, the damping constant
Γ = 20 MHz, the non-adiabaticity parameter
ξ = 0.01, and |D0/G0| = 2.26. The sense of
the gyration depends on the product of the wind-
ing number n and the polarization p. Shown are
the trajectories for np = +1 (solid red line) and
np = −1 (dashed blue line).
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Figure 7.4: Trajectory of the core of a vortex or
an antivortex that is excited by an alternating
magnetic field in y direction at resonance. The
chirality is c = 1. The dynamics is described
by equation (7.72) with H̃ = 1.8 m/s, the free
frequency ω = 1.03 GHz, and the damping con-
stant Γ = 20 MHz. The sense of the gyration
depends on the product of the winding number n
and the polarization p. Shown are the trajectories
for np = +1 (solid red line) and np = −1 (dashed
blue line)
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that can be transformed back to the original coordinate system to get the sought solution

(
X
Y

)

=− eiΩt

ω2 + (iΩ + Γ)2



j̃x + H̃yp cos

(
πc
2

)
∣
∣
∣
D0

G0

∣
∣
∣ ξj̃xnp+ H̃ynp sin

(
πc
2

)

−
∣
∣
∣
D0

G0

∣
∣
∣ ξj̃xnp− H̃ynp sin

(
πc
2

)
j̃x + H̃yp cos

(
πc
2

)





(
ω2iΩ
ω2+Γ2

ωnp+ npΓωiΩ
ω2+Γ2

)

.

(7.72)

Examples for the dynamics of a harmonically-excited vortex or antivortex are shown in figures 7.3
(current) and 7.4 (field). The solution for a current in y direction and a magnetic field in x direction
can be found from a rotation of the coordinate system by −π/2, that is a rotation of the above
solution by π/2, and the replacements of j̃x → j̃y and H̃y → −H̃x. For the case of the antivortex
it is important to keep in mind that the rotation also affects the chirality. The chirality can be
derived from equation (4.1) that yields c = (φ− nβ)2/π. A rotation by −π/2 increases the angles
φ and β by π/2. This leads to

c′ = (φ′ − nβ′)
2

π
=
(

φ+
π

2
− nβ − n

π

2

) 2

π
= (φ− nβ)

2

π
+ (1− n). (7.73)

In general the rotation by −π/2 increases the chirality by 1 − n. This leads to the additional
replacement c→ c− 1 + n so that after the rotation the system assumes the desired chirality. The
result then reads

(
X
Y

)

=− eiΩt

ω2 + (iΩ+ Γ)2




∣
∣
∣
D0

G0

∣
∣
∣ ξj̃ynp− H̃xp sin

(
πc
2

)
−j̃y + H̃xnp cos

(
πc
2

)

j̃y − H̃xnp cos
(
πc
2

)
∣
∣
∣
D0

G0

∣
∣
∣ ξj̃ynp− H̃xp sin

(
πc
2

)





(
ω2iΩ
ω2+Γ2

ωnp+ npΓωiΩ
ω2+Γ2

)

.

(7.74)

With equations (7.56), (7.72), and (7.74) we have an analytical description of the dynamics of
magnetic vortices and antivortices under harmonic excitations with currents and fields. After the
transient states have been damped out the core of the vortex or antivortex gyrates on an elliptical
trajectory around its equilibrium position. The sense of gyration depends only on the product of
the core polarization p and the winding number n. For pn = 1 the core gyrates counter clockwise
and for pn = −1 the core gyrates clockwise. The field-driven dynamics depend on the chirality
while for the current-driven dynamics the trajectory is independent of the chirality.

Pulsed Excitations

In the following we will discuss the excitation of a vortex or an antivortex with a current or field
pulse of the form ~j(t) = Θ(t− t0)~j0 or ~H(t) = Θ(t− t0) ~H0, respectively. Here Θ(t) is the Heaviside
step function that is given by

Θ(t) =

{
0, t ≤ 0
1, t > 0.

(7.75)

Thus there is no field or current prior to time t = t0. After this time the current and field have a
constant value. A long time after the current or field has been changed, that is all transient states
are damped out, the position of the core can be determined from equations (7.72) and (7.74) by
setting Ω = 0. This position is given by

(
X∞
Y∞

)

= − ω

ω2 + Γ2





∣
∣
∣
D0

G0

∣
∣
∣ ξj̃x − j̃ynp+ H̃x cos

(
πc
2

)
+ H̃y sin

(
πc
2

)

j̃xnp+
∣
∣
∣
D0

G0

∣
∣
∣ ξj̃y − H̃xn sin

(
πc
2

)
+ H̃yn cos

(
πc
2

)



 . (7.76)
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Figure 7.5: Trajectory of the core of a vortex or an
antivortex that is excited by spin-polarized cur-
rent in x direction. For t < 0 the current is zero
and the core is at its equilibrium position at the
middle of the sample. For t > 0 a constant cur-
rent of j̃ = 18 m/s is applied and the core starts
to gyrate around a new equilibrium position. The
dynamics is described by equation (7.79) with the
free frequency ω = 1.03 GHz, the damping con-
stant Γ = 20 MHz, the non-adiabaticity parame-
ter ξ = 0.01, and |D0/G0| = 2.26. The new equi-
librium position depends on the product of the
winding number n and the polarization p. Shown
are the trajectories for np = +1 (solid red line)
and np = −1 (dashed blue line).
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Figure 7.6: Trajectory of the core of a vortex
or an antivortex that is excited with the same
spin-polarized current as in figure 7.5 but the cur-
rent is switched off after t = 10 ns. Shown is the
trajectory before (solid red line) and after (dashed
blue line) the current is switched off. During the
current pulse the core gyrates around an equilib-
rium position that is shifted from the center of the
sample. After the current is switched off the core
moves back to the center on a spiral trajectory.
Here, only the case np = +1 is shown.

With the aid of equation (7.56) the position including the transient states is written as

(
X
Y

)

= C1

(
i
np

)

e−Γ(t−t0)+iω(t−t0) + C2

(
−i
np

)

e−Γ(t−t0)−iω(t−t0) +

(
X∞
Y∞

)

(7.77)

where C1 and C2 are given by

(
X0

Y0

)

= C1

(
i
np

)

+ C2

(
−i
np

)

+

(
X∞
Y∞

)

. (7.78)

Here (X0, Y0) is the core position at time t = t0. The solution is given by

(
X
Y

)

=
np(Y0 − Y∞)− i(X0 −X∞)

2

(
i
np

)

e−Γ(t−t0)+iω(t−t0)

+
np(Y0 − Y∞) + i(X0 −X∞)

2

(
−i
np

)

e−Γ(t−t0)−iω(t−t0) +

(
X∞
Y∞

)

.

(7.79)

For a current-driven excitation an example for a trajectory can be found in figure 7.5. Pulses
of finite length can be expressed by a successive application of equation (7.79) where the initial
positions for each step are the final positions from the preceding step. An example is shown in
figure 7.6.

8 Numerical Calculations

The applicability of the approximations leading to the analytical result in equations (7.56), (7.72),
(7.74), and (7.79) are tested by micromagnetic simulations. In this section we will discuss the
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results of micromagnetic simulations for magnetic thin-film elements of different sizes containing
vortices and antivortices with different polarizations and chiralities.

The results are compared with the analytical predictions. The analytical calculations yield
the position of the vortex core. In the numerical simulations the position of the vortex is defined
by the maximum amplitude of the out-of-plane magnetization. To determine this maximum, the
simulation cell with maximum out-of-plane magnetization and its next neighbors are interpolated
with a polynomial of second order (see appendix C for details). For the simulations the material
parameters of permalloy are used, that are an exchange constant of A = 13 · 10−12 J/m and a
saturation magnetization of Ms = 8 · 105 A/m. Numerical calculations are performed for vortices
in square film elements with edge lengths l from 200 nm to 1000 nm and film thicknesses d from
10 nm to 30 nm. The magnetization dynamics is investigated mainly for square shaped magnetic
film elements with length l = 200 nm and thickness d = 20 nm and with length l = 500 nm and
thickness d = 10 nm. This system sizes allow for reasonable computing time. The results that are
presented in this section have been published in references [157,178,179].

8.1 Calculation of the Groundstate

For the simulations the magnetization configuration of a vortex in the groundstate for all lateral sizes
l and thicknesses d is needed. As one can see from equation (7.2) the Gilbert damping parameter
α occurs only in a term that is proportional to the time derivative of the magnetization. When
the simulation reaches its groundstate this time derivative becomes zero. Thus the groundstate is
not affected by the choice of the parameter α. For calculations of the groundstate it is convenient
to use a high Gilbert damping that speeds up the calculation since there is a faster dissipation of
energy. Here a value of α = 0.5 is used. Since the LLG equation provides only the time derivative of
the magnetization it is inevitable to supply an initial magnetization for the simulations. The final
state depends strongly on this initial magnetization. For instance the polarization and chirality
of the final state are affected by the initial magnetization. There are even initial magnetizations
that do not relax to a vortex state. In the calculations that are presented here the groundstate for
l = 200 nm and d = 20 nm is calculated using the initial magnetization that is given by the pattern

~M

Ms
=







(0, 0, p), x2 + y2 ≤ 100 nm2

(0, c, 0), x2 + y2 > 100 nm2, y ≤ x, and y > −x
(c, 0, 0), x2 + y2 > 100 nm2, y ≤ x, and y ≤ −x
(0,−c, 0), x2 + y2 > 100 nm2, y > x, and y ≤ −x
(−c, 0, 0), x2 + y2 > 100 nm2, y > x, and y > −x

(8.1)

that is depicted in figure 8.1 for polarization p = 1 and chirality c = 1. Subsequently, the ground-
state obtained for l = 200 nm and d = 20 nm is scaled and serves as an initial state for the
remaining samples.

8.2 The Free Parameters of the Analytical Calculations

In the analytical calculations we have three free parameters, the strength mω2
r of the confining

potential, the ratio DΓ/G0, and the ration D0/G0. The first two parameters are needed to calculate
the free frequency ω and the damping constant Γ while the third one is important for the strength
of the non-adiabatic spin torque. Here, these free parameters are determined from numerical
calculations for vortices in square film elements with edge lengths l from 200 nm up to 1000 nm
and film thicknesses d from 10 nm up to 30 nm.

For the determination of mω2
r and DΓ/G0 the vortex is excited by a short field pulse. Due to

this field pulse the vortex core is displaced from its equilibrium position. After the field is switched
off the core performs a damped spiral gyration around its equilibrium position, that is the midpoint
of the sample. This gyration can be fitted with the expression in equation (7.56). This yields the
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Figure 8.1: (a) Scheme of the initial magnetization as defined in equation (8.1) for the calculation of
the groundstate in a permalloy thin-film element with l = 200 nm and d = 20 nm. In a simulation
with α = 0.5 this pattern relaxes to the vortex state shown in (b). (b) One of the four energetically
degenerate vortex groundstates in a permalloy thin-film element with l = 200 nm and d = 20 nm.
Shown is the groundstate with polarization p = 1 and chirality c = 1. The grid for the simulation
has one cell in the perpendicular direction and a cell size of 2 nm in lateral direction. In both plots
the color denotes the sign of the out-of-plane magnetization. Blue is a positive and red is a negative
out-of-plane magnetization. A black arrow denotes a vanishing out-of-plane magnetization. One
arrow represents the average magnetization of 4× 4 simulation cells.

values of the free frequency ω and the damping constant Γ. From these values it is possible to
calculate mω2

r and DΓ/G0 with the aid of equations (7.57) and (7.58).
Since the ratio D0/G0 occurs only in the term that describes the non-adiabatic spin torque we

need an excitation with a current to determine its value. One possibility is to excite the sample
with a direct current that displaces the core to a new equilibrium position. From equation (7.72)
one finds that this new equilibrium position is given by

(
Xdc

Ydc

)

= − ω

ω2 + Γ2

(∣
∣
∣
D0

G0

∣
∣
∣ ξj̃x

j̃xnp

)

. (8.2)

The factor ωj̃x/(ω
2 + Γ2) can be eliminated by using the ratio between the x component and the

y component of the position. The value of |D0/G0| is now given by

∣
∣
∣
∣

D0

G0

∣
∣
∣
∣
=
npXdc

ξYdc
. (8.3)

The results of the three parameters for all values of l and d can be found in figure 8.2.

8.3 Amplitude and Phase of a Harmonically Excited Vortex

The analytical result for a harmonically excited vortex in equation (7.72) can be compared with
results obtained from numerical simulations. Since the free parameters of the analytical calculations
have been obtained in section 8.2 from pulsed excitations we can compare the analytical and
numerical data for harmonic excitations without any free parameter. The numerical simulations
are performed with a Gilbert damping parameter of α = 0.01 that is in the regime that has been
found experimentally for permalloy.141–143 The value of the non-adiabatic spin-torque parameter
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Figure 8.2: Values of the free parameters mω2
r , DΓ/G0, and D0/G0 of the analytical calculations

for a vortex in a permalloy square with edge length l and thickness d. (a) The strength mω2
r of the

confining potential with respect to the length l for different thicknesses d divided by the length |G0|
of the gyrovector. For small aspect ratios d/l the strength is well described by a 1/l power law.36

The lines denote fits with (41.7d+98 nm) GHz/l. Since |G0| is proportional to d, this fit describes
a quadratic dependence of the energy on the thickness. (b) Values of the geometric prefactors for
the damping DΓ/G0 (open symbols) and for the non-adiabatic spin torque D0/G0 (closed symbols)
in dependence of l for different values of d. It can be clearly seen that both ratios are not the same
as discussed in the analytical calculations in section 7.5. The dotted lines denote the logarithmic
dependences on the sample size as found in equation (7.34). (Subfigure (b) is a reprint from the
supporting material of reference [179].)

ξ is under strong debate.105, 121, 170, 172, 185 Here a value of ξ = α = 0.01 is used.170, 172 The model
system is a square shaped thin-film element with l = 200 nm edge length and d = 20 nm thickness.
This system size allows for a reasonable computation time.

The simulations start with the vortex in its groundstate. An alternating current with a
spin-polarized current density jP = 2.5 · 1010 A/m2 is applied in x-direction or an alternating
field of H = 250 A/m is applied in y-direction. In a first step the system is simulated for at
least 100 ns. In this time the transient states are damped out to about 0.15 % of their original
amplitude. In a subsequent simulation the system is simulated for one period of the exciting force.
During this simulation the magnetization is stored spatially resolved and the position of the core
is extracted. From the trajectory one can obtain the maximum displacement from the center in
x and y direction. The phase is given by the phase of the current or field at the time when the
maximum displacement in x direction or y direction is reached.

Figures 8.3 and 8.4 show the numerically and analytically obtained amplitudes and the phases
of the oscillation. In the current-driven oscillation an excellent accordance between analytical
calculations and numerical simulations is found. In the field-driven case the amplitudes of the
analytical solution are smaller than the amplitudes obtained from the micromagnetic simulations.
These deviations are caused by the differences between the approximate magnetization depicted in
figure 7.1 and the exact state. The phases between the maximum of the exciting magnetic field
and the maximum deflection in x- and y-direction agree very well.

9 Oersted Field

In addition to the spin-torque effect the current acts on the magnetization via its Oersted field.
In this section the Oersted field in a cube that is traversed by a current will be derived and its
influence on the magnetization will be discussed.
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Figure 8.3: Amplitude of the current-driven vortex oscillation in x-direction (solid red line, squares)
and y-direction (dashed blue line, discs) for a spin-polarized current density of jP = 2.5 ·1010 A/m2

in x direction. The plots are for a vortex with (a) c = 1 and p = 1, (b) c = −1 and p = 1, (c) c = 1
and p = −1, and (d) c = −1 and p = −1. The insets show the phases between the maximum of the
applied current and the core displacement in x-direction (solid red line, squares) and y-direction
(dashed blue line, discs). The symbols denote numerical results while the lines are derived from
the analytical expression in equation (7.72). (Subfigure (a) is a reprint from reference [178])
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Figure 8.4: Amplitude of the field-driven vortex oscillation in x-direction (solid red line, squares)
and y-direction (dashed blue line, discs) for a magnetic field of H = 250 A/m in y direction. The
plots are for a vortex with (a) c = 1 and p = 1, (b) c = −1 and p = 1, (c) c = 1 and p = −1,
and (d) c = −1 and p = −1. The insets show the phases between the maximum of the applied
field and the core displacement in x-direction (solid red line, squares) and y-direction (dashed blue
line, discs). The symbols denote numerical results while the lines are derived from the analytical
expression in equation (7.72). (Subfigure (a) is a reprint from reference [178])
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9.1 Oersted Field of a Homogeneous Current

The Oersted field at the position ~r depends on the current density j at each position ~r′ within the
sample volume V . It is given by the Biot-Savart law

~H(~r) =
1

4π

∫

dV ′ j(~r′)× ~r − ~r′

|~r − ~r′|3 (9.1)

which reads explicitly

~H(~r) =
1

4π

∫

dV ′ (jz~ey − jy~ez)(x− x′) + (jx~ez − jz~ex)(y − y′) + (jy~ex − jx~ey)(z − z′)
|~r − ~r′|3 (9.2)

in the case of a homogeneous current density ~j = jx~ex+ jy~ey + jz~ez . For a cuboid with lateral edge
lengths lx, ly, and lz in x, y, and z direction the integral becomes

~H(~r) =
1

4π

lx
2∫

− lx
2

dx′

ly

2∫

− ly

2

dy′

lz
2∫

− lz
2

dz′
(jz~ey − jy~ez)(x− x′) + (jx~ez − jz~ex)(y − y′) + (jy~ex − jx~ey)(z − z′)

√

(x− x′)2 + (y − y′)2 + (z − z′)2
3

(9.3)
where the origin of the coordinate system is the midpoint of the cuboid. The components of the
Oersted field

Hx(~r) =
jz
4π
I(z, x, y, lz , lx, ly)−

jy
4π
I(y, x, z, ly , lx, lz), (9.4a)

Hy(~r) =
jx
4π
I(x, y, z, lx, ly, lz)−

jz
4π
I(z, y, x, lz , ly, lx), and (9.4b)

Hz(~r) =
jy
4π
I(y, z, x, ly , lz, lx)−

jx
4π
I(x, z, y, lx, lz, ly). (9.4c)

are expressed with the aid of the integral

I(x, y, z, lx, ly, lz) =

lx
2∫

− lx
2

dx′

ly

2∫

− ly

2

dy′

lz
2∫

− lz
2

dz′
−(z − z′)

√

(x− x′)2 + (y − y′)2 + (z − z′)2
3 (9.5)

that is derived in equation (D.10) in appendix D.

Writing equations (9.4a), (9.4b), and (9.4c) in vector notation one finds

~H(~r) =
1

4π





0 I(y, x,−z, ly , lx, lz) I(z, x, y, lz , lx, ly)
I(x, y, z, lx, ly, lz) 0 I(z, y,−x, lz , ly, lx)
I(x, z,−y, lx, lz, ly) I(y, z, x, ly , lz, lx) 0



~j. (9.6)

The tensor connecting the Oersted field and the current density is antisymmetric.

9.2 In-Plane Field

For a homogeneous current in x direction the in-plane field is shown in figure 9.1. Except for small
parts at the boundaries of the sample the in-plane Oersted field is homogeneous with respect to the
x and y position. The field is antisymmetric with respect to the z coordinate, that is it is positive
at the bottom surface, negative at the top surface, and zero in between. Taking the average over
the thickness the field vanishes and there will be no contribution of the Oersted field to the core
displacement.

49



(a)

-200 -100  0  100  200

x (nm)

-200

-100

 0

 100

 200

y 
(n

m
)

-15

-10

-5

 0

 5

 10

 15

H
z 

(k
A

/m
)

(d)

-200 -100  0  100  200

x (nm)

-200

-100

 0

 100

 200

y 
(n

m
)

-8
-6
-4
-2
 0
 2
 4
 6
 8

H
y 

(k
A

/m
)

(b)

-200 -100  0  100  200

x (nm)

-200

-100

 0

 100

 200

y 
(n

m
)

-15

-10

-5

 0

 5

 10

 15

H
z 

(k
A

/m
)

(e)

-200 -100  0  100  200

x (nm)

-200

-100

 0

 100

 200
y 

(n
m

)

-8
-6
-4
-2
 0
 2
 4
 6
 8

H
y 

(k
A

/m
)

(c)

-200 -100  0  100  200

x (nm)

-200

-100

 0

 100

 200

y 
(n

m
)

-15

-10

-5

 0

 5

 10

 15

H
z 

(k
A

/m
)

(f)

-200 -100  0  100  200

x (nm)

-200

-100

 0

 100

 200

y 
(n

m
)

-8
-6
-4
-2
 0
 2
 4
 6
 8

H
y 

(k
A

/m
)

Figure 9.1: Oersted field of a homogeneous current in a sample with l = 500 nm and d = 10 nm.
The current density is j = 1.5 · 1012 A/m2 in x direction. Shown is (a)-(c) the out-of-plane field
and (d)-(f) the in-plane field for (a) and (d) the upper boundary, (b) and (e) the center layer, and
(c) and (f) the lower boundary of the film. The in-plane field is nearly independent of the x and y
position. It has a maximum value of Hy(x = 0, y = 0, z = ±5 nm) = ∓7365 A/m which is slightly
smaller than the value of jd/2 = 7500 A/m for an infinitely large film.
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Figure 9.2: Scheme of the calculation of the in-plane Oersted field for an infinitely large film.
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contour contributes −(d/2 + z)j/2 to the Oersted field.
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Figure 9.3: Positions of the vortex core in a square with l = 500 nm and d = 10 nm in the presence
of a field of the form Hy(z) = −zj as derived from Ampère’s law. We get a maximum field at
both surfaces. This field is given by Hmax = dj/2. (a) Positions of the vortex core in each slice
of simulation cells in z direction. The lines are fits with the expression X = zHmax/(1800 kA/m),
that is a linear dependence between X and z as well as between X and Hmax. (b) Difference ∆X
between the core position at the topmost slice and the lowermost slice. The line is a linear fit.
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However, it is possible that the Oersted field deforms the vortex core. For the approximation of
an infinitely large film we can estimate the in-plane Oersted field inside the sample from Ampère’s
law ~∇× ~H = ~j which yields Hy(z) = −zj with the aid of Stokes’ theorem (see figure 9.2). This is
exactly the result that can be found from equation (9.4b) with the aid of the limiting case that is
given in equation (D.20). At the surfaces of the film the field assumes its maximum of Hmax = dj/2

Simulations of a thin-film element with l = 500 nm and d = 10 nm using 1.25 nm cellsize in
z direction including only the above in-plane field with j up to 2 · 1013 A/m2 showed that it is a
reasonable approximation that the magnetization is independent of the z coordinate. Figure 9.3
shows the positions of the vortex core in each slice of simulation cells and the difference between the
core position at the upper surface and the lower surface. Even for extremely large current densities
there is only a small tilting of the vortex core.

For a current density that is not constant but z dependent the in-plane field is not exactly
antisymmetric with respect to the z coordinate. Thus after averaging over the thickness we are
left with an unbalanced in-plane field. As for the homogeneous current this field is not capable
to distort the vortex core. Thus this field can be replaced by a homogeneous field in y direction
that equals the average of the Oersted field over the thickness. This allows us to include the action
of the in-plane Oersted field in the analytical calculations where a homogeneous in-plane field has
been taken into account.

As a model system we use a current density that depends linearly on the z position in the
sample. We write

jx(z) = j0 +∆j
z

d
(9.7)

where j0 is the average current density and ∆j is the difference between the current densities at
the upper and lower surfaces. The strength of the spin torque is calculated by averaging over the
thickness. This yields

jav =
1

d

d/2∫

−d/2

dz j(z) =
1

d

d/2∫

−d/2

dz
(

j0 +∆j
z

d

)

= j0. (9.8)

For the calculation of the unbalanced Oersted field we use the approximation for the infinitely large
film. The strength of the unbalanced field is then given by

Hub =
1

d

d/2∫

−d/2

dz





1

2

d/2∫

z

dz′
(

j0 +∆j
z′

d

)

− 1

2

z∫

−d/2

dz′
(

j0 +∆j
z′

d

)






=
1

d

d/2∫

−d/2

dz
1

2

(

j0

(
d

2
− z

)

+∆j
d2 − 4z2

8d
− j0

(
d

2
+ z

)

−∆j
4z2 − d2

8d

)

=
1

d

d/2∫

−d/2

dz

(

−j0z +∆j
d2 − 4z2

8d

)

=
1

d
∆j

3d3 − d3

24d
=

∆j d

12
.

(9.9)

The ratio between the unbalanced Oersted field and the current

Hub

jav
=

d

12

∆j

j0
(9.10)

depends on the ratio between ∆j and j0.

9.3 Inhomogeneous Current

In real samples we have to consider several mechanisms that lead to an inhomogeneous current flow
and concomitantly to an unbalanced Oersted field. Here we will discuss four examples.
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Contact Geometry

A first mechanism that leads to an inhomogeneous current flow is that to ensure a sufficient electric
contact the sample and the contacts have to overlap each other so that there is an area where
the contacts are on top of the sample. If the specific resistivity of the sample is large compared
to the specific resistivity of the contacts the current tends to flow into the sample from its top
surface.186, 187 Thus the way through the high-ohmic sample is shortest for a current flowing along
the top surface. This leads to an inhomogeneous current flow with a higher current density in the
upper part of the sample.

Temperature of the Sample

For high current densities Joule heating has to be taken into account. In experiments the magnetic
sample has to be placed on a substrate. Theoretical considerations188 as well as experimental re-
sults114, 189 show that a major part of the heat is dissipated through this substrate. Consequently
there is a temperature gradient in the sample where the top surface is hotter than the bottom sur-
face. Thus the specific resistivity varies. This results in an inhomogeneous current flow depending
on the temperature coefficient of the specific resistivity of the sample material.

Reflection at the Surfaces

In thin films finite-size effects may become important. For thin-film elements with a thickness
that is comparable with the mean free path of the conduction electrons, scattering at the surfaces
becomes important. In the Fuchs-Sondheimer theory the surfaces of the film are described by a
parameter ps that denotes the probability that an electron is reflected specularly at the surface.190

This theory was expanded by Mayadas and Shatzkes for polycrystalline films.191 For a value of
ps = 1 the current is the same as for a bulk material. For ps < 1 the current becomes smaller at the
surfaces. If the value ps is the same for both surfaces the suppression is symmetric and thus it does
not lead to an unbalanced Oersted field. For experimental samples the bottom surface is a border
between two solids, that are the sample and the substrate, while the upper surface is normally
a boundary to a gas or vacuum. Thus the probability of specularly reflection is expected to be
different for both surfaces leading to an asymmetric current flow and therefore to an unbalanced
Oersted field.

Inhomogeneous Growth of the Sample

Finally the current flow can also be influenced by an inhomogeneous growth of the sample material
and a concomitant inhomogeneity in the resistance.

9.4 Out-of-Plane Field

In contrast to the in-plane Oersted field that couples to the large domains of the magnetization
pattern, the out-of-plane field couples only to the small vortex core where the magnetization points
out-of-plane. In this section the interaction between the vortex core and the out-of-plane field will
be derived. The energy of the vortex core in the out-of-plane field is given by

Eo(~r) = −µ0MspVcHz(~r) (9.11)

where

Vc =

∣
∣
∣
∣

∫

dV
Mz(~r)

Ms

∣
∣
∣
∣

(9.12)

is the effective volume of the vortex core and

Hz(~r) = − jx
4π
I(x, z, y, lx, lz, ly) (9.13)
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Figure 9.4: Derivative of the out-of-plane Oersted field in a sample with l = 500 nm and d = 10 nm.
The plots show a section of the sample with the derivative in (a) x direction and (b) y direction.
The current density is j = 1.5 · 1012 A/m2 in x direction.

is the out-of-plane field. Here we restricted ourselves to a current in x direction. The force is then
given by the spatial derivative of the energy

~Fo(~r) = µ0MspVc~∇Hz(~r). (9.14)

The displacement of the vortex core with a static gradient field can be evaluated by setting the
force on the core to zero. This yields

µ0MspVc~∇Hz(~r)−mω2
r

(
X
Y

)

= 0. (9.15)

Here the second term is the confining potential of the vortex. From this one can calculate the
displacement as

(
X
Y

)

=
µ0MspVc
mω2

r

~∇Hz(~r). (9.16)

For the following quantitative considerations we assume that the magnetic field can be expressed
by the gradient field H(~r) = gy~ez . For the center of a film the gradient

g =

√
2djx
πl

(9.17)

of the field has been calculated in equation (D.28). For the center layer of a square with l = 500 nm
and d = 10 nm the derivatives of the field are depicted in figure 9.4. For the center one gets
g = 13.5 · 109 A/m2 in good agreement with equation (9.17). It becomes clear that the gradient
changes only slightly in the vicinity of the center of the sample. Thus the out-of-plane field can be
well described by a gradient field.

For our permalloy square with l = 500 nm and d = 10 nm the numerical simulations yield
Vc = 2600 nm3 and mω2

r = 2.93 · 10−4 kg/s2. Simulations including a magnetic field of the form
H(~r) = gy~ez with g = 4 · 1010 A/m2 and g = 4 · 1011 A/m2 yield displacements of the core of
Y = 0.37 nm and Y = 3.55 nm, respectively. This is in perfect agreement with the Y = 0.36 nm
and Y = 3.57 nm that can be calculated from equation (9.16).
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Figure 9.5: (a) Effective volume of the vortex core as defined in equation (9.12) determined from
the numerically calculated groundstates in samples of different sizes. The volume is plotted in
dependence of the thickness and the lateral extension (inset) of the sample. The different symbols
in the inset denote data for different thicknesses and are the same as in (b). The blue line is the
linear fit 260 nm2 d. (b) Displacement of the vortex core due to the out-of-plane Oersted field in
the vicinity of the center of the sample, that is (x, y) = (0, 0), calculated from equation (9.18). The
displacement is shown for jx = 1.5 ·1012 A/m2 in dependence of the lateral extension of the square.
The symbols denote data for different thicknesses.

In the vicinity of the center of the sample, that is (x, y) = (0, 0), we can calculate the dis-
placement of the core for different sizes of the sample and arbitrary current densities. From equa-
tions (7.26), (9.17), and (9.16) one finds

|Y | = γ√
2π2l

|G0|
mω2

r

Vc|jx|. (9.18)

Values for |G0|/(mω2
r ) and Vc can be found from numerical calculations and are plotted in fig-

ure 8.2(a) and figure 9.5(a), respectively. The resultant core displacement for jx = 1.5 · 1012 A/m2

is shown in figure 9.5(b). This large current density has recently been reached in permalloy on a
diamond substrate.189 Even for this large current density the displacement is negligibly small.

In the region of the sample shown in figure 9.4 the maximum gradient is 5 · 1010 A/m2. For
this value equation (9.16) yields a displacement of 0.45 nm. This is below available experimental
resolutions40, 74, 162, 164, 192 and can thus be neglected. Outside this section, that is closer to the
boundary of the sample, the gradient becomes larger. However, if the vortex core approaches this
region there is a strong interaction between the core and the boundary of the sample that revokes
the applicability of the model of the rigid vortex core. Thus, the out-of-plane field can be neglected
because there is only a small interaction with the vortex core. Only the displacement of the vortex
core due to the in-plane component of the Oersted field has to be taken into account.

10 Distinction between Spin Torque and Oersted Field

There are several mechanisms that lead to an inhomogeneous current flow and concomitantly to
an unbalanced in-plane Oersted field, as discussed in section 9.3. Equation (7.72) shows that the
current and field induced forces on the vortex are of the same form. For experiments it is important
to separate the Oersted-field and the spin-torque driven case. The results of this section have been
published in references [178,186].

There are two possibilities to determine the ratio of the Oersted field and the spin torque.
On the one hand for non-resonant excitations the trajectory of the vortex core is elliptical as
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Figure 10.1: (a) Analytically calculated phase Φ between the maximum current or magnetic field
and the x-deflection of the vortex core with p = +1 in a 200 nm × 200 nm × 20 nm permalloy
square. The phases Φ+ and Φ− are the phases of vortices with chiralities c = +1 and c = −1,
respectively. The dotted line denotes the phase difference ∆Φ = Φ+−Φ−. The excitation frequency
of Ω = 4.8 GHz is above the resonance frequency of ω = 4.4 GHz. (b) Section of the sample, with a
vortex with c = +1, showing the simulated trajectories of the vortex core excited with i) (solid red
line) a spin-polarized current density with an amplitude of jP = 1.2 · 1011 A/m2 and ii) (dashed
blue line) a magnetic field with an amplitude of H = 1000 A/m. Points denote the position of the
vortex at maximum current (i) and magnetic field (ii), respectively. (Subfigure (b) is a reprint from
reference [178].)

illustrated in figure 10.1(b). According to equation (7.72) the direction of the major axis of the
ellipse is determined by the ratio of the Oersted field and the spin torque. The amplitude of the
vortex motion decreases very fast when the excitation frequency deviates from resonance, that is
for experimental observation very high current densities with frequencies close to resonance are
needed for a reliable determination of the ratio. On the other hand the excitation mechanisms can
be distinguished using the phase of the vortex deflection. As indicated by the dots in figure 10.1(b)
the position of the vortex at maximum current depends on the ratio of the Oersted field and the
spin torque, which can be determined from equation (7.72). The latter method is also applicable
with excitations at resonance frequency.

In most experiments the measurement of the absolute phase is a challenging task. This problem
can be overcome by a measurement of the phase difference between two vortices with different
chiralities. As shown in figure 10.1(a) this phase difference vanishes for the fully spin-torque driven
case. If the vortex is exclusively driven by the Oersted field the phase difference is 180◦. In between
we get a bijective function that allows for an unambiguous calculation of the ratio of the Oersted
field and the spin torque from the phase difference.

Possible experimental realizations for the spin-torque driven and Oersted-field driven vortex
dynamics are shown in figure 10.2. The vortex can either be placed between two contacts so that
the current flows directly through the sample or the vortex can be placed on a strip line. In the
former case the vortex is excited by spin torque and possibly by an Oersted field that is due to an
inhomogeneous current flow. In the latter case the vortex is driven by an Oersted field only as long
as the specific resistance of the strip line is small compared to the specific resistance of the sample.
In this case only a very small percentage of the current flows through the sample.

Experimental results for both cases have been published in reference [186] and are shown in fig-
ure 10.3. In these experiments the position of the vortex core has been measured for different times
by X-ray microscopy. From these positions it is possible to extract the phase and the amplitude of
the gyration of the core. For the field-driven vortices the phases have an unknown offset. Thus the
phases have been shifted by a constant value. This value is a fit parameter that is the same for both
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Figure 10.2: Two possible experimental realizations for the spin-torque driven and Oersted-field
driven vortex dynamics. The vortex can be placed (a) between two contacts so that the current
flows directly through the sample or (b) on a strip line so that the major part of the current flows
through the strip line.
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Figure 10.3: Experimentally obtained phases
(points) of vortices with different chiralities that
are excited by current or field. The lines are
the analytical results. For the field-driven case
a phase difference of 180 degrees between vortices
of different chiralities can be seen. Between the
two spin-torque driven vortices with different chi-
ralities there is only a small phase splitting. The
asymmetric error bars for the frequencies of the
current-driven vortices include the case that both
vortices have different free frequencies. (This fig-
ure is a reprint from reference [186].)

chiralities. Additional fit parameters are the free frequencies of the two vortices. For all vortices,
that are the current and field driven, the value of |DΓ/G0| is determined by extrapolation of the
logarithmic curve in figure 8.2. α is assumed to be 0.01. As theoretically predicted the phases of
the two field-driven vortices differ by 180 degrees.

The free frequency of the current-driven vortices can be derived from the phase of the gyration.
The points are obtained by the assumption that the free frequency of both vortices is the same.
The error bars for the frequency include an error of 30 % for Γ/ω = α|DΓ/G0|, the uncertainty of
the phase, and the case that the free frequencies of both vortices are different. We find a phase
difference of about 45 degrees. This difference can be due to an unbalanced Oersted field. For the
experimental sample with l = 2 µm and d = 20 nm one finds that the force due to this field has to
be about 40 % of the force due to the spin torque. This means that the Oersted field constitutes
about 30 % of the total force. From equation (7.72) one finds that the unbalanced Oersted field is
about Hub ≈ 30 A/m for a current density of jav = 1.2·1011 A/m2 with a spin polarization P = 0.7.
With the model system that is used in equation (9.9) the difference between the current density
at the upper and lower surface of the sample is approximated to be in the order of magnitude of
∆j ≈ 1010 A/m2.
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11 Determination of the Non-Adiabatic Spin-Torque Parameter

Theoretically, several mechanisms have been proposed as the origin of the non-adiabatic spin
torque, leading to different orders of magnitude for ξ.24, 149–152 Thus a precise measurement of
the non-adiabatic spin torque is necessary to give insight into its microscopic origin. The determi-
nation of ξ is further important for a reliable prediction of the current-driven domain-wall velocity24

which is important for applications as discussed in section 5. Currently measured values of ξ for
permalloy differ by one order of magnitude,105, 121, 170, 172 thus the value of ξ is under strong debate.
In these experiments the observed motion of a domain wall was compared with micromagnetic sim-
ulations to determine ξ. However, this analysis is highly susceptible to experimental uncertainties
such as surface roughness and Oersted fields.

Due to its high symmetry and spatial confinement a vortex in a micro- or nanostructured
magnetic thin-film element is a promising system for the investigation of the spin-torque effect. We
have seen that vortices are displaced from their equilibrium position when excited by spin-polarized
electric currents. From the last section we know that the spatial confinement of the vortex core
within the film element yields an especially accessible system for measurements with scanning
probe techniques. The experimental data that is shown in the last section was obtained using
x-ray microscopy but it is also possible to use other techniques like x-ray photo emission electron
microscopy or scanning electron microscopy with polarization analysis.

Here we will discuss a scheme which allows us to measure the contributions due to the adia-
batic spin torque, the non-adiabatic spin torque, and the Oersted field separately. It bases upon
the analytical calculations in section 7 and overcomes the two main difficulties that occur in an
experiment. The first problem arises from an additional vortex displacement due to the Oersted
field accompanying the current flow (see section 9).186 This displacement is comparable in size to
the displacement due to the non-adiabatic spin torque and both displacements point in the same
direction.178 Thus, the unknown contribution of the Oersted field has to be separated from the
measured signal. The second problem is the exact determination of the displacement angle. Since
the displacement due to the adiabatic spin torque is about one order of magnitude larger than the
displacement due to the non-adiabatic spin torque, a small uncertainty in the direction of the cur-
rent through the sample would cause large errors in the determination of ξ as shown in figure 11.1.
To test the applicability of our analytical findings they are applied to vortex displacements obtained
from three-dimensional micromagnetic simulations. The results that are shown in this section have
been published in reference [179].

For the analytical calculations we start from the modified Thiele equation (7.46). We will
investigate a square thin-film element with a current flowing in x direction as shown in figure 11.2(a).
This current is laterally homogeneous. The Oersted field accompanying the current consists of an
in-plane component and an out-of-plane component. In section 9.4 we have discussed that the
out-of-plane component can be neglected as it causes a displacement of the vortex core that is
below the experimental resolution. The in-plane field is negative at the top surface and positive
at the bottom surface. As shown in section 9.2, for a realistic strength this field is not capable of
significantly distorting the vortex. For a homogeneous current the average Oersted field vanishes
and there will be no contribution of the Oersted field to the core displacement. However, such
a contribution has been identified in experiment (see section 10) and it is attributed to vertical
inhomogeneities of the current density leading to an unbalanced in-plane Oersted field after taking
the average over the thickness (see equation (9.9)). We will approximate this unbalanced Oersted
field by a homogeneous field H in y direction while its precise shape and strength turned out to be
of minor importance for the vortex dynamics. However, the force due to the Oersted field depends
on the vortex chirality.

A measurement of the nonadiabatic spin torque with a resonant excitation using an alternating
current is not suitable, as small deviations of the exciting frequency from the resonance frequency
cause strong deviations in the trajectory of the vortex. An excitation with a direct current causes
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Figure 11.1: Scheme of the displacement of the vortex core from its equi-
librium position (circle) due to the adiabatic and the smaller non-adiabatic
spin torque for a polarization of p = +1. The solid red arrows denote the
displacements for a homogeneous current that flows in exact x direction.
In experiments the real direction of the current may be different. This
can for example be due to rotations of the sample or imperfections in the
alignment of the contacts. The dashed blue arrows denote the displace-
ments due to a current that flows in the direction of the solid black arrow,
that is rotated by 10 degrees. The black dashed-dotted arrows represents
a projection of the displacements due to the rotated current on the coor-
dinate axes as measured in experiments. By comparing the black arrows
to the red arrows it becomes obvious that a small deviation in the direc-
tion of the current flow may cause a large error in the measurement of the
non-adiabatic spin torque.

a displacement of the vortex core to a new steady-state position. An additional benefit is that a
direct current allows for a measurement with a non-time-resolving technique. From equation (7.72)
we get the new equilibrium position

~Rp
c(j) = − ω

ω2 + Γ2

(∣
∣
∣
D0

G0

∣
∣
∣ ξj̃x + H̃yc

j̃xp

)

= − |G0|
mω2

r

(∣
∣
∣
D0

G0

∣
∣
∣ ξj̃x + H̃yc

j̃xp

)

(11.1)

by setting Ω = 0 and restricting ourselves to chiralities of c = ±1. For simplicity we neglect any
dependence of bj on ξ, that is bj = µBP/(eMs), in the remaining part of this section. This will not
affect the final result that is independent of bj .

From equation (11.1) it is obvious that an Oersted field has the same influence on the vortex as
the non-adiabatic spin torque. Thus the presence of an Oersted field can disturb the measurement
of ξ. In experiments we are faced with a small uncertainty of the direction of the current flow, for
example due to a rotation or imperfections of the sample. As shown in figure 11.1 this yields a
mixing of the displacement components, resulting from the adiabatic spin torque and the smaller
non-adiabatic spin torque. This mixing causes a large error in the measurement of the displacement
originating from the non-adiabatic spin torque.

From equation (11.1) we find that the sign of the displacement induced by the Oersted field
depends on the chirality of the vortex, while the displacement due to the adiabatic spin torque
is determined by the polarization.50 The non-adiabatic spin torque causes a displacement that
is independent of the vortex properties p and c. Vortices with different p and c values can be
achieved by remagnetizing the sample. Comparing the displacement of three vortices with different
polarizations and chiralities it is therefore possible to separate the contributions of all three forces
to the displacement of the vortex. From equation (11.1) we find

2Rnon-ad = 2

∣
∣
∣
∣

G0ξj̃

mω2
r

D0

G0

∣
∣
∣
∣
=
∣
∣
∣~Rp

c(j)− ~R−p
−c(−j)

∣
∣
∣ (11.2a)
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∣
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c (j)

∣
∣
∣ (11.2b)

2ROe = 2

∣
∣
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∣

G0H̃

mω2
r

∣
∣
∣
∣
∣
=
∣
∣
∣~R−p

c (j) − ~R−p
−c(j)

∣
∣
∣ . (11.2c)

These equations are schematically illustrated in figure 11.2. From equations (11.2a) and (11.2b)
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Figure 11.2: (a) Sketch of the sample, including current contacts, for the proposed experiment
for the determination of ξ. (b)-(d) Scheme for the determination of the three different contribu-
tions to the vortex displacement according to equation (11.2). By measuring the distance between
the positions of two different vortices it is possible to separate the displacements (b) due to the
non-adiabatic spin torque, (c) the adiabatic spin torque, and (d) the Oersted field. Points and
crosses denote cores with positive and negative polarization, respectively. The in-plane magnetiza-
tion is denoted by the solid arrows. The dashed arrows denote the current direction. For the sake
of illustration the displacements are exaggerated. (e) and (f) Numerically calculated displacement
of the vortex core due to a direct spin-polarized current of density jP in the absence of an Oer-
sted field. (e) The displacement parallel to the current is proportional to ξ. (f) The displacement
perpendicular to the current is independent of ξ. The lines are fits with the linear model in equa-
tion (11.1). For large current densities small non-linear effects can be seen. (This figure is a reprint
from reference [179].)
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Figure 11.3: (a) Position of the vortex core displaced by a spin-polarized direct current of density
jP = 3 · 1011 A/m with ξ = 0.1. The overlapping open symbols denote the positions for a current
in exact x direction without Oersted field. The closed symbols denote the positions with an applied
Oersted field and a rotation of the sample by 5 degrees around its midpoint (plus). For the latter
case the direction of the current is denoted by the arrow. (b) Results for ξout derived from the
positions of the vortex with applied Oersted field, exemplarily shown in (a), using equation (11.3)
for different current densities. ξin is the value of the non-adiabaticity parameter that was used for
the simulations. (This figure is a reprint from reference [179].)

it is possible to determine ξ as
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Since this equation is independent of the strength of the Oersted field, the angle of the sample,
and the parameter DΓ, it yields the sought measurement scheme. With this scheme a direct
determination of ξ is accessible. Only one micromagnetic simulation for the determination of
|D0/G0| is necessary since |D0/G0| is independent of ξ and j.

Micromagnetic simulations of the experimental setup allow us to determine the positions of
the vortex core with a precise knowledge of the micromagnetic parameters of the system. The
simulations therefore allow us to test the analytical results in equations (11.1) and (11.3). For the
simulations the material parameters of permalloy, that are a saturation magnetization of Ms =
8 · 105 A/m and an exchange constant of A = 1.3 · 10−11 J/m, are used. Since we are interested
only in the steady final position of the vortex we used a Gilbert damping of α = 0.5 to ensure a fast
damping of the transient states to reduce computation time. As a sample system we considered a
square thin-film element of length l = 500 nm and thickness d = 10 nm with a cell size of 2 nm in
the lateral directions and 10 nm perpendicular to the film.

Figures 11.2 (e) and (f) show the displacement of the vortex core in simulations without Oersted
field. As predicted by equation (11.1) the displacement in the direction of the current flow is
proportional to ξ and the displacement perpendicular to the current flow is independent of ξ. From
these simulations the value |D0/G0| = 2.26 is determined.

In experimental samples we are faced with an unbalanced Oersted field and possibly some
uncertainty of the direction of the current flow. To mimic the unbalanced Oersted field in the
simulations we applied an in-plane field perpendicular to the current. The strength of the field is
proportional to the current density. We assume that a spin-polarized current density of 1·109 A/m2

generates an unbalanced in-plane field of 1 A/m. For this field the ratio between the deflections
due to the field and due to the current are in the regime found by experiments (see section 10). The
uncertainty of the direction of the current flow was taken into account by rotating the sample by
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5 degrees. Figure 11.3(a) shows the positions of the vortex core for both simulations. It becomes
visible that the unbalanced Oersted field and the rotation of the sample strongly shift the core
positions, complicating the determination of ξ.

To test the analytical model we compared the non-adiabatic spin-torque parameter ξin that was
inserted into the simulations with the value ξout that was calculated from equation (11.3) using
the core positions. Here it is worth noting that the value of the Oersted field and the angle of the
sample are not needed for the calculation of ξout. The results are shown in figure 11.3(b). It can
be seen that all the perturbations that are inserted in the simulations can be effectively excluded
by the analytical calculations.

In experimental samples we are also faced with the anisotropic magneto resistance (AMR)
effect that leads to inhomogeneous current paths, that is a higher current density in the vortex
core. Simulations including these inhomogeneous current paths yield a small shift to lower values
of ξout. This shift is up to 2 % for an AMR ratio of 10 %.179

Now we will discuss the experimental accuracy in the determination of ξ that can be achieved
with the presented scheme. In experiments direct currents of densities up to 1.5 · 1012 A/m2 have
been realized in permalloy on a diamond substrate.189 Assuming a spin polarization of 0.5 we get a
spin-polarized current density of 0.75 · 1012 A/m2, that is the maximum shown in figure 11.2. This
yields values of up to j̃ = 55 m/s.

The displacements of the vortex in the numerically investigated samples are small compared
to the experimental resolutions available. A larger displacement of the vortex can be achieved
by increasing the lateral size of the structure. For example simulations of a square thin-film
element of length l = 5000 nm and thickness d = 10 nm yielded values of |D0/G0| = 3.82 and
|G0|/(mω2

r ) = 1 · 10−8 s. With these values equation (11.2b) yields 2Rad =1100 nm. We assume
that the core position can be measured with a resolution of δ(2Rnon-ad) = 20 nm. Equation (11.3)
then yields that δξ = 0.005 can be realized. This resolution ranges from 5 % to 50 % depending on
the value of ξ.105, 121, 170, 172, 185 The resolution can be further increased by using thin-film elements
with still larger lateral sizes.

In conclusion this is a robust and direct measurement scheme for the non-adiabatic spin torque
using the displacement of magnetic vortices. This scheme allows us to distinguish between the
displacements of the vortex core due to the non-adiabatic spin torque, the adiabatic spin torque,
and the Oersted field, independently of the exact direction of the current flow. We also found that
an inhomogeneous current due to the AMR effect can be neglected. The scheme thus allows a
precise measurement of the non-adiabatic spin-torque parameter ξ.

12 Application in Memory Devices

The high degeneracy of the groundstates of a vortex or an antivortex opens the possibility to
use these magnetic structures as memory devices. Both vortex and antivortex have two possible
out-of-plane orientations of their cores. These orientations, that are up or down, can be used to
store a single bit.193 Both states are separated by an energy barrier that is of the order of ten
electron volt.159 Thus the core orientation is stable against thermal fluctuations and can serve as
a non-volatile memory device.

The polarization can be switched by a current or field that is applied in the film plane. This
switching takes place independently of the initial state of the vortex core. Thus before a writing
process a reading operation is needed to determine whether the core has to be switched or not.

It has been proposed to switch the core by a rotating current or field.193, 194 This kind of
excitation excites only vortices or antivortices with one distinct polarization62, 64, 65 and a preceding
reading operation is not necessary. For a rotating current or field one needs two currents that are
flowing directly through the sample or through a strip line. These currents need a phase difference
of π/2 which is technically demanding for alternating currents with the high resonance frequencies
of the vortex or the antivortex.
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In this section it will be discussed how information can be stored using a magnetic vortex or
antivortex. In this discussion we will put special attention on how the information can be stored
and read out using one current only. As we will see the main advantage of these memory cells is
that no reading operation is needed before the writing. The results that are presented here have
been published slightly modified in references [77] and [78].

12.1 Vortex Random Access Memory

Here, a possible realization of a Vortex Random Access Memory (VRAM) is presented that stores
the information in the handedness cp of the vortex. Since the chirality c is not affected by a
switching of the polarization p of the vortex core, a switching of the core’s orientation always
changes the handedness. The values of cp = +1 and cp = −1 can be interpreted as the ”zero” and
the ”one”, respectively. One cell of the VRAM is depicted in figure 12.1(a). The injected current
splits up in two parts. One part flows in x direction directly through the vortex. The other part
flows through the strip line that is situated under the vortex. This allows for a collinear alignment
of a current and a magnetic field that can be used for a handedness selective switching of the vortex
core.

In the following analytical calculations we restrict ourselves to a vortex (n = 1) with chirality
c = ±1. From equations (7.72) and (7.74) one can determine that the position of a harmonically
excited core is given by
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ω2iΩ
ω2+Γ2

ωp+ pΓωiΩ
ω2+Γ2

)

. (12.1)

For a weakly damped system (Γ ≪ ω) that is excited at resonance (Ω = ω) the radius

R(j̃x, H̃x,Γ, cp) =
√

(ℜX)2 + (ℜY )2 =
1

2Γ

√
(

j̃x − H̃xcp
)2

+
D2

0

G2
0

ξ2j̃2x (12.2)

of the trajectory of the vortex core becomes time independent. Obviously the radius depends on
the handedness cp of the vortex but not on the chirality c or the polarization p alone. For the case
that the absolute values |H̃x| and |j̃x| are equal the difference between the radii for cp = +1 and
cp = −1 has a maximum. The velocity of the vortex core is then given by

v±(cp) =
ω|j̃|
2Γ

√

(1∓ cp)2 +
D2

0

G2
0

ξ2 =

∣
∣
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G0j̃

2αDΓ

∣
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∣
∣

√

(1∓ cp)2 +
D2

0

G2
0

ξ2 (12.3)

where v+(cp) is the velocity for a parallel alignment of current and field and v−(cp) is the velocity
for an antiparallel alignment. It depends on the handedness of the vortex and on the relative
alignment of current and field whether the exciting forces amplify or attenuate each other. In the
VRAM cell that is depicted in figure 12.1(a) a parallel alignment is achieved when both currents
flow in the directions that are denoted by the dashed arrows. For an antiparallel alignment only
one current direction has to be reversed.

Recent investigations found that the question whether the vortex core switches or not depends
only on the velocity of the vortex core but does not depend on the source of the driving force, that
is adiabatic spin torque, non-adiabatic spin torque, or magnetic field. There exist theories about
the value of the critical velocities. For permalloy Guslienko et al.63 found vcrit = 320 m/s while
Yamada et al.54 found vcrit = 250 m/s. For permalloy equation (12.3) yields that a spin-polarized
current density in the order of jP = 1011 A/m2 is needed to reach this velocity when both forces
amplify each other. For this approximation we used α = 0.01 and |DΓ/G0| ≈ 2 (see figure 8.2).
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(a) (b)

(c)
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z
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~jOe

Figure 12.1: Scheme of a Vortex Random Access Memory. The ferromagnetic material is shown in
grey. The strip line and the contacts (gold) are separated by an electrical insulator (green). (a) The
vortex in the center can be excited via spin torque or Oersted field. A current that is injected along
the red arrows flows directly through the vortex and excites it via spin torque. A current that is
injected along the blue arrows generates an Oersted field that also excites the vortex. The current
and the Oersted field are aligned parallel. They point in x direction. An antiparallel alignment
can be achieved by reversing one current. (b) With an insulating and a magnetic layer placed on
top of the magnetic film a spin valve is created. The resistivity of the spin valve depends on the
magnetization in the part of the magnetic film that is below the second magnetic layer. This allows
for a detection of the vortex dynamics. (c) An additional possibility to detect the vortex dynamics
is an induction loop on the magnetic film. The voltage between both ends of the loop depends
on the temporal variation of the magnetic flux through the loop, that is, on the magnetization
dynamics in the film.

64



It is possible to choose the current density in such a way that

ω|j̃|
2Γ

√

4 +
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0

G2
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ξ2 > vcrit and
ω|j̃|
2Γ

∣
∣
∣
∣

D0ξ

G0

∣
∣
∣
∣
< vcrit. (12.4)

Then the critical velocity for switching can be reached only if the forces due to the current and due
to the field amplify each other. This is the case if the current and field are aligned parallel and
the initial handedness is cp = −1 or if the current and field are aligned antiparallel and the initial
handedness is cp = +1. After the vortex core is switched we get an attenuation of the driving
forces and the core cannot switch again because the critical velocity is not reached. Thus, for a
parallel alignment the vortex always ends up in the cp = +1 state independently of the starting
configuration. To get cp = −1 as the final state the current and field have to be aligned antiparallel.
From these observations we get our sought writing procedure that allows us to write binary data
to the vortex without the knowledge of its initial state.

For the read out of the stored information the currents generating the spin torque and the
magnetic field have to be chosen so that the critical velocity cannot be reached regardless of the
vortex state, that is the relation

ω|j̃|
2Γ

√

4 +
D2

0

G2
0

ξ2 < vcrit (12.5)

has to be fulfilled. Then the currents have no influence on the polarization nor on the chirality.
For a current and field that are aligned parallel to each other the binary values ”zero” and ”one”
correspond to a weak or strong gyration, respectively. There are several mechanisms to detect this
gyration. Here we will discuss a spin valve or a coil on top of the sample.

The VRAM cell in figure 12.1 is a two dimensional system. Thus it is possible to place two
additional layers on top of the system to get a spin valve as depicted in figure 12.1(b). A spin valve
consists of two magnetic layers with one non-magnetic spacer in between. Here, the lowest layer
is the film that contains the vortex. The resistance of a spin valve depends on the angle between
the magnetization in both magnetic layers. It is lowest for a parallel alignment and highest for an
antiparallel alignment. If the vortex core is displaced from its equilibrium position the resistance
of the spin valve changes.66, 73 This allows for a detection of the vortex dynamics.

A second possibility is to detect the time dependent magnetic flux that is created by the
vortex. The flux can be detected by placing an induction loop on top of the sample as depicted
in figure 12.1(c). The voltage between both ends of the loop are proportional to the temporal
derivative of the flux through the loop. Simulations show that the voltage lies in the range of some
µV.78

Recent numerical investigations showed that switching with short current and field pulse may
be faster than switching with alternating currents and fields.58, 59 The VRAM can be also operated
with current and field pulses j̃px and H̃p

x. As for the harmonic excitation we choose a collinear
alignment of current and field. With a small damping (Γ ≪ ω) we get

(
Ẋ

Ẏ
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∣
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∣ ξj̃

p
xp

)

. (12.6)

In the last term, that is the driving force, the actions of the short current and field pulses amplify
or attenuate each other depending on the handedness of the vortex.

12.2 Antivortex Random Access Memory

In the case of the VRAM we need one current that is split up into two branches. One branch
flows directly through the sample and couples to the vortex via the spin-torque effect and the
other branch generates the magnetic field. With an antivortex it is possible to build a memory
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Figure 12.2: Scheme of two possible realizations of an Antivortex Random Access Memory. The
nanostructured magnetic film is depicted in light gray while the darker gray denotes the electrical
contacts that are placed on the top of the sample. The arrows denote the magnetization for a
chirality of c = 0 and the dashed lines illustrate the domain walls. The rings ensure that the
structure that is present in the center of the samples is an antivortex. Without these rings also a
vortex state would be possible.

device where the current has not to be split up. The current flows directly through the sample
and interacts with the magnetization via the spin torque. As the source for the field excitation
serves the unbalanced Oersted field that accompanies the current. Two possible realizations of an
Antivortex Random Access Memory are depicted in figure 12.2. The antivortex is located in the
center of the structures and can be traversed by a current that is injected via the left and right or
via the lower and upper contacts.

For an antivortex (n = −1) with chirality c = 0 or c = 2 equations (7.72) and (7.74) yield the
displacements
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for a current between the left and right contacts and
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(12.8)

for a current between the lower and upper contacts.
The unbalanced Oersted field is proportional to the applied current density. It is possible to

tailor the unbalanced Oersted field by adding a non-magnetic conducting layer on the top or the
bottom of the sample. This layer has the same effect as a strip line. As for the VRAM we assume
that |H̃| = |j̃|. In the following we express H̃y by COej̃x and H̃x by −COej̃y where COe = +1
denotes that the current density at the top surface is larger than the current at the lower surface.
A value of COe = −1 describes the case where the current density at the lower surface is larger.
We can use the displacements in equations (12.7) and (12.8) to derive the velocities
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where v−
(
COep cos

(
πc
2

))
is the velocity for a current in x direction and v+

(
COep cos

(
πc
2

))
is the

velocity for a current in y direction. As for the VRAM we used the case of a weakly damped system
(Γ ≪ ω) that is excited at resonance (Ω = ω). The core velocities are the same as the velocities
that have been calculated for the VRAM in equation (12.3) with the handedness cp replaced by
COep cos

(
πc
2

)
. Similar to the handedness for the vortex the quantity COep cos

(
πc
2

)
of the antivortex

changes its sign when the core switches.
Thus, it is possible to operate the AVRAM in the same manner as the VRAM. We define

COep cos
(
πc
2

)
= −1 and COep cos

(
πc
2

)
= +1 as the ”zero” and the ”one”, respectively. For the

writing process we need a current density that is chosen in accordance to equation (12.4). To write
a ”zero” the current has to be injected along the x direction and to write a ”one” the current has
to be injected along the y direction.

For the reading process we use a lower current density that fulfills equation (12.5) and is not
able to switch the antivortex core. If the reading current is injected along the x direction the binary
values ”zero” and ”one” correspond to a weak or strong gyration, respectively. This gyration can
now be detected by a spin valve or by an induction loop as it has been discussed in the last section.
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Part III

Dynamics of Domain Walls

Similar to magnetic vortices and antivortices, domain walls in magnetic nanowires can be excited
by a magnetic field or a spin-polarized current. The resulting dynamics is discussed in this part.
The discussion starts with analytical calculations describing the dynamics of transverse, Néel, and
Bloch walls within the micromagnetic framework using some approximations. It is shown that the
results for these walls can also be effectively used for a vortex wall. In a second and a third section
these analytical results are applied to the dynamics of domain walls in pinning potentials. The
second section deals with the dynamics of a wall that stays pinned. While the third section discusses
when does the wall leave the potential due to the injection of a current pulse in the sample. In
these investigations special attention is put on the influence of the pulse risetime. The last section
discusses the mutual interaction of transverse domain walls.

13 Analytical Calculations

13.1 Generalization of the Thiele Equation

In 2008 Tretiakov et al. showed that in the absence of a current the Thiele equation can be
generalized by the use of collective coordinates, which can also be non-spatial coordinates.118, 195

In the following a generalization of the Thiele equation including the spin-transfer torque will be
derived. Here, the i-th collective coordinate will be denoted by Ci while ~C denotes a vector with
all collective coordinates. In the generalized case the number of collective coordinates is not always
three as in the special case of the Thiele equation (7.13). Thus the product with the gyro tensor
in equation (7.11) cannot always be written as a crossproduct with a vector.

For the calculation of the generalized Thiele equation we express the temporal derivative of the
magnetization

d ~M (~r, ~C)

dt
=
∑

i

Ċi
∂ ~M(~r, ~C)

∂Ci
=
(
~̇C · ~∇C

)

~M(~r, ~C) (13.1)

by the derivatives with respect to the collective coordinates. Here the i-th component of the vector
~∇C is the derivative ∂/∂Ci. As for the derivation of the Thiele equation we start with the implicit
version of the Landau-Lifshitz-Gilbert equation
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that is derived in equation (3.2). We insert the time derivative that is calculated in equation (13.1)
to get

(
~̇C · ~∇C

)

~M = −γ ~M× ~H+
α

Ms

~M×
(
~̇C · ~∇C

)

~M− bj
M2

s

~M×
(

~M ×
(

~j · ~∇
)

~M
)

− ξbj
Ms

~M×
(

~j · ~∇
)

~M.

(13.3)
On the right hand side of equation (13.3) all terms contain a cross product with the magnetization
and are thus perpendicular to the magnetization. Thus, the term on the left-hand side is also
perpendicular to the magnetization and can be rewritten by the use of equation (1.14). We get

(
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With this expression equation (13.3) becomes
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(13.5)

As for the Thiele equation the field equation
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reproduces equation (13.5) after multiplication with −γ and application of the cross product with
~M from the left. Again ρ ~M is a magnetic field in the direction of the magnetization that is arbitrary
since the torque on the magnetization depends only on the cross product between the field an the
magnetization. We will see that this field will vanish in the following considerations. The force on
the magnetization pattern is given by
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From inserting equation (13.6) in equation (13.7) we find the i-th component of the force that is
given by
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(13.8)

In vector notation this yields the generalized equation

0 = ~F +G~̇C +Abj~j +Dα ~̇C +Nξbj~j, (13.9)

with the force
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the gyro tensor
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the dissipation tensor
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Figure 13.1: Parameterization of a tail-to-tail transverse wall in a wire with a rectangular cross
section. The position of the maximum of the perpendicular magnetization, that is the center of the
wall, is denoted by X. The value φ is the angle by which the magnetization is rotated around the
wire axis. In this geometry the magnetic field H, that is used to move the domain wall, points in
x direction. The anisotropy field Ha that forces the magnetization back in the xy plane points in
−z direction.

the tensor for the adiabatic spin torque

Ain = − µ0
γM2

s
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, (13.13)

and the tensor for the non-adiabatic spin torque
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γMs

∫
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∂ ~M

∂Ci
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. (13.14)

For a vanishing current this is exactly the result that has been found by Tretiakov et al.118, 195

It is worth noting that equations (13.10), (13.12), and (13.14) contain scalar products only while
equations (13.11) and (13.13) contain parallelepipedial products only. Both types of products are
invariant under a rotation of the involved vectors. Thus a rotation of the magnetization and the
magnetic field in the whole sample would not change equation (13.9).

13.2 Equation of Motion of the Transverse Wall

For the calculation of the equation of motion we restrict ourselves to a tail-to-tail transverse wall
in which the magnetization is given by

~M =
Ms
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)

cos(φ)
sin(φ)



 (13.15)

as derived in equations (5.5) and (5.6). Later on we will see that the results for the tail-to-tail
transverse wall can easily be generalized to a head-to-head wall and even to other types of domain
walls like Néel walls or Bloch walls. It has been shown that for a current and a magnetic field
which are applied perpendicular to the wall the dynamics of the domain wall can be expressed by
two collective coordinates that are parameters in equation (13.15).105, 129 These coordinates are
the position of the wall X and the out-of-plane angle φ that is uniform in the system as depicted
in figure 13.1.

The tensors in the generalized Thiele equation can be calculated by using the derivatives of the
magnetization with respect to the collective coordinates. These derivatives are given by
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 (13.16)
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and
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For the current dependent part we also need
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Using these results we calculate the mixed products

~M ·
(

∂ ~M

∂X
× ∂ ~M

∂φ

)

=
M3

s

λ cosh4
(
x−X
λ

)





sinh
(
x−X
λ

)

cos(φ)
sin(φ)



 ·





sinh
(
x−X
λ

)

cos(φ)
sin(φ)



 =
M3

s

λ cosh2
(
x−X
λ

) (13.19)

and
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We also calculate the dot products
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The dot product between two different derivatives, that is one derivative with respect to X and
one derivative with respect to φ, vanishes. For the current dependent part the product
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is also needed.
We assume that the energy of the system depends on X and on φ only. This leads to the

expression
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( ∂E
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∂E
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)

(13.24)

for the force. Using the mixed products calculated above we can derive the gyro tensor
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and the tensor for the adiabatic spin-torque
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where S is the cross section of the wire. The dot products lead to the damping tensor
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and the tensor for the non-adiabatic spin-torque
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Inserting these results in the equation of motion for the collective coordinates we get
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which can be transformed to
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This form of the equation of motion is the same as found by Thomas et al..105 Both components
contain time derivatives ofX and φ. We can get two explicit equations with only one time derivative
by a multiplication with
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that yields
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with γ′ = γ/(1 + α2) and b′j = bj/(1 + α2). In component notation this is129, 196
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To calculate the derivatives of the energy we use the expression in equation (5.7) plus the Zeeman
energy for an external field in the direction of the easy axis and a pinning potential. Since the
collective coordinate φ is assumed to be constant in space we neglect the energy that depends on
the spatial derivative of φ. The energy then reads

E =

∫

dV

(

A

(
∂θ

∂x

)2

+K sin2(θ) +K⊥ sin2(θ) sin2(φ)− µ0MsHext cos(θ)

)

+ Epin(X). (13.34)

For the integration we use the expressions for cos(θ) and sin(θ) that have been calculated in
equations (5.5) and (5.6). With the aid of the integrals in appendix F the energy then yields

E = 2S
A

λ
+ 2SKλ+ 2SK⊥λ sin

2(φ) + 2Sµ0MsHextX + Epin(X). (13.35)

The derivatives are
∂E

∂X
= 2Sµ0MsHext +

dEpin

dX
(13.36)

and
∂E

∂φ
= 2SK⊥λ sin(2φ). (13.37)

For small rotations the derivative in equation (13.37) can be linearized in φ. The equations of
motion then read

Ẋ = − γ′αλ
2Sµ0Ms

(

2Sµ0MsHext +
dEpin

dX

)

− 2K⊥λγ′

µ0Ms
φ− (1 + αξ)b′jj and (13.38a)

φ̇ =
γ′

2Sµ0Ms

(

2Sµ0MsHext +
dEpin

dX

)

− 2K⊥γ′α
µ0Ms

φ+
ξ − α

λ
b′jj. (13.38b)
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Taking the time derivative of equation (13.38a) and replacing φ̇ by equation (13.38b) we get

Ẍ =− γ′αλ
2Sµ0Ms

d

dt

(

2Sµ0MsHext +
dEpin

dX

)

− 2K⊥λγ′

µ0Ms

(
γ′

2Sµ0Ms

(

2Sµ0MsHext +
dEpin

dX

)

− 2K⊥γ′α
µ0Ms

φ+
ξ − α

λ
b′jj

)

− (1 + αξ)b′j j̇

(13.39)

From equation (13.38a) one can derive

−2K⊥γ′α
µ0Ms

φ =
αẊ

λ
+

γ′α2

2Sµ0Ms

(

2Sµ0MsHext +
dEpin

dX

)

+
α(1 + αξ)

λ
b′jj (13.40)

leading to

Ẍ =− 2K⊥γ′α
µ0Ms

Ẋ − γ′αλ
2Sµ0Ms

d

dt

dEpin

dX
− K⊥λγ′γ

Sµ20M
2
s

dEpin

dX

− 2K⊥λγ′γ
µ0Ms

Hext − γ′αλḢext −
2K⊥γ′α
µ0Ms

ξ

α
bjj − (1 + αξ)b′j j̇.

(13.41)

The freely moving domain wall (Epin ≡ 0, Hext = 0, and j = 0) needs the damping time

τd =
µ0Ms

2γ′K⊥α
(13.42)

to slow down to 1/e of its initial velocity.

Equation (13.41) describes the motion of the domain wall as a composite particle. Since it has a
non-vanishing kinetic energy a mass can be assigned to the particle. According to equation (13.35)
the kinetic energy of the wall is given by the anisotropy energy 2SK⊥λ sin

2(φ) ≈ 2SK⊥λφ2. From

1

2
mẊ2 = 2K⊥Sλφ

2 = 2K⊥Sλ

(
µ0Ms

2γ′K⊥λ

)2

Ẋ2 =
1

2

Sµ20M
2
s

γ′2K⊥λ
Ẋ2 (13.43)

one can derive the mass

m =
Sµ20M

2
s

γ′2K⊥λ
(13.44)

of the domain wall. Here we used

φ = − µ0Ms

2γ′K⊥λ
Ẋ (13.45)

that can be derived for the free domain wall using equation (13.38a).

We express the derivative
d

dt

dEpin

dX
= Ẋ

d2Epin

dX2
(13.46)

in equation (13.41) with the aid of the velocity and find

Ẍ = −
(

1 +
α2τ2d
m

d2Epin

dX2

)
Ẋ

τd
− 1

m′
dEpin

dX
− λγ

α

Hext

τd
− γ′αλḢext −

ξ

α

bjj

τd
− (1 + αξ)b′j j̇ (13.47)

using the mass m′ = m/(1 + α2) and the damping time τd of the domain wall. It is worth noting
that the mass m that is derived from the kinetic energy is not the same as the mass m′ that is
given by the inertia in equation (13.47). A second interesting observation is that in a potential
with non-vanishing curvature the damping, that is the first term in equation (13.47), is position
dependent. However, the position dependent term is small for most systems.
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The difference between m and m′ are due to the fact that there are two different mechanisms
involved in the motion of the domain wall. For the following consideration we focus on the tail-to-tail
domain wall that is shown in figure 13.1 and assume that the influence of the pinning potential
Epin on the domain wall is mediated by a magnetic field, that is aligned parallel to the wire.
According to the LLG equation (1.16) this field has two different effects on the magnetization in
the wall. There is the damping, that is proportional to α and rotates the magnetization in the
direction of the wire, and the gyration, that is a rotation of the magnetization around the wire
axis. The first effect leads directly to a shift of the domain wall and will be called direct motion
in the following. The second effect leads to a rotation of the wall, that is a change of φ. This
rotation counteracts the anisotropy that forces the wall in the xy plane. Thus an anisotropy field
emerges. This field points perpendicular to the wire as shown in figure 13.1. We now get a rotation
of the magnetization around this anisotropy field, leading to an additional motion. This motion
employing the anisotropy field is accompanied by the kinetic energy 2SK⊥λφ2. In contrast the
aforementioned direct motion has no kinetic energy since φ is left unchanged. This leads to the
effect that for the pinned wall the kinetic energy is no longer proportional to Ẋ .

13.3 Generalization to Other Wall Types

Since the parallelepipedial products and the scalar products are invariant under rotation, equa-
tion (13.47) is valid for every type of domain wall that can be obtained by a rotation of the
magnetization in equation (13.15). Here we will not discuss a mirroring of the magnetization since
these magnetization patterns can be accessed by replacing φ by −φ before the rotation. The rota-
tion of the magnetization can be described by three rotations, described by the Euler angles. First
we rotate the magnetization around the x axis. The second rotation is around the y axis while the
final rotation is again around the x axis. The rotated magnetization ~M ′ is given by

~M ′

Ms
=





1 0 0
0 cosψ3 − sinψ3

0 sinψ3 cosψ3









cosψ2 0 sinψ2

0 1 0
− sinψ2 0 cosψ2









1 0 0
0 cosψ1 − sinψ1

0 sinψ1 cosψ1











tanh
(
x−X
λ

)

cos(φ)

cosh(x−X
λ )

sin(φ)

cosh(x−X
λ )







=





cosψ2 0 sinψ2

sinψ2 sinψ3 cosψ3 − cosψ2 sinψ3

− sinψ2 cosψ3 sinψ3 cosψ2 cosψ3









1 0 0
0 cosψ1 − sinψ1

0 sinψ1 cosψ1











tanh
(
x−X
λ

)

cos(φ)

cosh(x−X
λ )

sin(φ)

cosh(x−X
λ )







=





cosψ2

sinψ2 sinψ3

− sinψ2 cosψ3



 tanh

(
x−X

λ

)

+





sinψ1 sinψ2

cosψ1 cosψ3 − sinψ1 cosψ2 sinψ3

cosψ1 sinψ3 + sinψ1 cosψ2 cosψ3




cos(φ)

cosh
(
x−X
λ

)

+





cosψ1 sinψ2

− sinψ1 cosψ3 − cosψ1 cosψ2 sinψ3

− sinψ1 sinψ3 + cosψ1 cosψ2 cosψ3




sin(φ)

cosh
(
x−X
λ

)

(13.48)

with the rotation angles ψ1, ψ2, and ψ3 for the first, second, and third rotation, respectively. It is
important that the external magnetic field and the easy and hard axes have to be rotated in the
same way. As one can see, replacing ψ1 by ψ1 + π, ψ2 by 2π − ψ2, and ψ3 by ψ3 + π does not
change equation (13.48) and ~M ′ does not change. Thus, the rotation angles are not unambiguously
defined. For the special cases ψ2 = 0 and ψ2 = π the matrix is only a function of ψ1 + ψ3 and
ψ1 − ψ3, respectively.

In the following discussion we will restrict ourselves to the cases where all three rotation angles
are integer multiples of π/2. Then for the groundstate of the wall, that is, for φ = 0, the magneti-
zation in the domains and at the center of the wall are aligned parallel or antiparallel to the axes
of the coordinate system.
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(f)
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Figure 13.2: Examples of different types of domain walls that can be described by the equation
of motion that is derived above. The color of the arrows denote the direction of the in-plane
magnetization. A black arrow denotes a magnetization that points out-of-plane. The directions of
the easy axis ~eeasy and the hard axis ~ehard are denoted by the two arrows in the lower part of the
figures. For a field-driven motion of the domain wall in −x direction the external field has to point
in the direction of the easy axis ~eeasy. The shown domain walls are (a) a tail-to-tail transverse wall
with ψ1 = 0, ψ2 = 0, and ψ3 = 0, (b) a head-to-head transverse wall with ψ1 = 0, ψ2 = π, and
ψ3 = 0, (c) and (d) two Néel walls with (c) ψ1 = π/2, ψ2 = π/2, and ψ3 = π/2 and (d) ψ1 = π/2,
ψ2 = π/2, and ψ3 = −π/2, and (e) and (f) two Bloch walls with (e) ψ1 = 0, ψ2 = π/2, and
ψ3 = π/2 and (f) ψ1 = 0, ψ2 = π/2, and ψ3 = −π/2.
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Depending on the angles ψ1 and ψ2, equation (13.48) describes different types of domain walls.
The magnetization in the right domain is given by

~M ′(x→ ∞) =Ms





cosψ2

sinψ2 sinψ3

− sinψ2 cosψ3



 . (13.49)

Thus ψ2 = 0 describes a tail-to-tail and ψ2 = π describes a head-to-head transverse wall. For a
Néel wall and a Bloch wall the magnetization in the domains has to be parallel to the wall, that
is, the magnetization of the domains have to be in the yz plane, which corresponds to ψ2 = π/2.
In the groundstate, the magnetization

~M ′(x = X,φ = 0) =Ms





sinψ1 sinψ2

cosψ1 cosψ3 − sinψ1 cosψ2 sinψ3

cosψ1 sinψ3 + sinψ1 cosψ2 cosψ3



 (13.50)

at the center of the wall allows us to distinguish between a Néel wall with ψ1 = ±π/2 where
the magnetization is perpendicular to the wall and a Bloch wall with ψ1 = 0 or ψ1 = π where
the magnetization stays in the wall plane. Figure 13.2 shows some examples of magnetization
configurations that can be obtained by the above rotation.

For a further generalization of the equation of motion we neglect the spatially dependent term
of the damping, that is,

α2τ2d
m

d2Epin

dX2
≪ 1 (13.51)

and write equation (13.47) in the form

Ẍ = −Ẋ
τd

− 1

m′
dEpin

dX
+
C1

τd
Hext + C2Ḣext +

C3

τd
j + C4j̇ (13.52)

with the coefficients

C1 = −λγ/α, C2 = −γ′αλ, C3 = −bjξ/α, and C4 = −(1 + αξ)b′j (13.53)

for the wall types given above. In the absence of a pinning potential (Epin ≡ 0) the domain-wall
velocity in equation (13.52) is given by

Ẋ(t) =

t∫

−∞

dt′ e
− t−t′

τd

(
C1

τd
Hext(t

′) + C2Ḣext(t
′) +

C3

τd
j(t′) + C4j̇(t

′)

)

(13.54)

as derived in appendix E. This equation describes a linear response of the velocity to the field Hext

and the current j as well as their time derivatives Ḣext and j̇. We now assume that the velocity of
other domain-wall types like vortex walls is given by the same linear response but with coefficients
that differ from those given in equations (13.42), (13.44), and (13.53).

For a field of the form Hext(t) = H0Θ(t) and a current of the form j(t) = j0Θ(t) with the
Heaviside step function Θ(t) the velocity for t > 0 is given by

Ẋ(t) =

t∫

−∞

dt′ e
− t−t′

τd

(
C1

τd
H0Θ(t′) + C2H0δ(t

′) +
C3

τd
j0Θ(t′) + C4j0δ(t

′)

)

=

(
C1

τd
H0 +

C3

τd
j0

) t∫

0

dt′ e
− t−t′

τd + (C2H0 + C4j0) e
− t

τd

= (C1H0 + C3j0)
︸ ︷︷ ︸

vf

(

1− e
− t

τd

)

+ (C2H0 + C4j0)
︸ ︷︷ ︸

vi

e
− t

τd .

(13.55)
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Figure 13.3: Simulated domain-wall positions of (a) a transverse wall in a wire with w = 120 nm
width and d = 10 nm thickness and (b) two vortex walls in a wire with w = 120 nm width and d =
20 nm thickness. The symbols denote (a) the current-driven positions (discs) and the field-driven
positions (squares) of the wall (b) the current-driven positions (discs) and the field-driven positions
of the right-handed (cp = +1) (squares) and left-handed (cp = −1) (triangles) wall. The lines are
analytical fits. The simulations start with the wall in its groundstate. Then the current or field is
applied instantaneously at time t = 0. The position of the transverse wall is defined as the center
of the wall. The positions of the vortex walls are defined as the positions of the vortex cores (see
appendix C).

Here we can identify an initial velocity vi = C2H0 + C4j0 when the field and current are switched
on and a final velocity vf = C1H0 + C3j0 that is reached an infinitely long time later. From the
velocity it is possible to derive the position

X(t) =

t∫

0

dt′
(

vf

(

1− e
− t′

τd

)

+ vie
− t′

τd

)

= vf t+ (vf − vi)τd

(

e
− t

τd − 1
)

(13.56)

of the wall for t > 0.
Finally, this analytical expression is compared with numerical data. The simulated positions

of a tail-to-tail transverse wall and tail-to-tail vortex walls with different handedness are shown
in figure 13.3. The simulated wire has a width of w = 120 nm. The thickness is d = 10 nm
for the transverse wall and d = 20 nm for the vortex walls. It can be seen that the expression
in equation (13.56) fits the numerical data very well for all wall types. In the simulations the
spin-polarized current density was jP = −4 · 1011 A/m2. The applied fields were H = −50 A/m
and H = −500 A/m for the transverse and the vortex walls, respectively. The non-adiabaticity
parameter and the Gilbert damping are chosen as ξ = α = 0.01.

The parameters for the field-driven walls are determined from the fits. For the transverse wall
the fit yields the damping time τd = 0.8 ns and the final velocity vf = 30 m/s. For the vortex
wall one finds τd = 8.2 ns, vf = 135 m/s, and vi = −5 m/s for the right-handed (cp = +1) and
τd = 8.1 ns, vf = 134 m/s, and vi = 4.8 m/s for the left-handed (cp = −1) wall. Within the
uncertainties of the fit both types of vortex walls have the same damping time. In the field-driven
case their final velocities are the same and their initial velocities have the same absolute values but
different signs. The wall with a right-handed vortex initially moves to the left while the left-handed
vortex wall moves to the right. The final motion of both walls is to the right. This difference
becomes clear in view of section 12 where it is found that the initial deflection of a field-driven
vortex depends on the product cp.

In the current-driven case all initial and final velocities are vi = vf = −bjj = 29 m/s as derived
in section 3. Since the velocities are the same it is not possible to derive a damping time from this
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fit because τd vanishes in equation (13.56).

14 Pinned Domain Walls

In section 13 we derived an equation of motion that describes the dynamics of a domain wall in
the presence a confining potential Ep. In this section we will use equation (13.47) to describe the
experimentally observed dynamics of a pinned domain wall. The results of this section have been
published in references [187] and [197].

The experimental data for the dynamics of the pinned domain wall was obtained at an ”infinity”
shaped permalloy micostructure that is shown in figure 14.1. This structure is the same as the
structure that has been discussed for an Antivortex Random Access Memory in section 12. Whether
this structure contains an antivortex or a domain wall was found to depend on the lateral dimensions
and on the thickness of the sample.78, 187, 197 While large and thin samples contain a domain wall
antivortices are present in smaller and thicker samples. The sample that is discussed here is
made of a 20 nm-thick permalloy film and contacted by 20 nm-thick gold contacts. More details
on the preparation of the sample can be found in reference [187]. At remanence two magnetic
configurations of the sample can be observed. In one configuration, that is shown in figure 14.1(a),
the magnetization in both rings curls in the same direction. In the second configuration the curling
direction is different as shown in figure 14.1(c). The former configuration contains a domain wall
in the center of the structure while the latter configuration has no domain wall. Here we focus on
the configuration with a domain wall.

The domain wall is displaced by a current pulse that is injected via the two gold contacts. This
current pulse interacts with the magnetization via the spin torque and via the unbalanced Oersted
field. After the current is switched off there is no spin torque and Oersted present and the domain
wall relaxes to its equilibrium position by a free damped oscillation. The equation of motion in the
absence of a current can be derived from equation (13.47). It yields

Ÿ = −
(

1 +
τ2dα

2

m

∂2Ep

∂Y 2

)
Ẏ

τd
− 1

m′
∂Ep

∂Y
. (14.1)

For the small displacements during the free oscillation of the wall we use the harmonic pinning
potential

Ep =
m′

2
ω2
rY

2. (14.2)

where ωr is the resonance frequency of the potential. With this potential the equation of motion
becomes

Ÿ = −2ΓẎ − ω2
rY (14.3)

with the damping constant

Γ =
1 +

τ2
d
α2ω2

r

1+α2

2τd
. (14.4)

The solution of the equation of motion is

Y = Ae−Γ(t−t0) cos(ω(t− t0)) (14.5)

with the free frequency ω =
√

ω2
r − Γ2. We use this solution to fit the experimentally-obtained

domain-wall positions that are shown in figure 14.1(e). The fit parameters are A = 125 nm,
t0 = 1.85 ns, Γ = 554 MHz, and ω = 3.6 GHz. From the damping constant and the free frequency
the resonance frequency ωr = 3.64 GHz can be derived. The damping time τd can be calculated
with the aid of equation (14.4). It is given by

τd =
Γ(1 + α2)

α2ω2
r

−

√
(
Γ(1 + α2)

α2ω2
r

)2

− 1 + α2

α2ω2
r

≈ 1

2Γ
= 0.9 ns (14.6)
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since the Gilbert damping α is smaller than about 0.01 for permalloy.

As shown in figure 14.1(a) the current pulse is injected in the sample so that the electrons
move from the upper to the lower contact. For a spin-torque driven domain wall motion we would
expect that the domain wall moves initially in the direction of the electron flow, that is downwards.
As one can see from figure 14.1(e) the initial motion is upwards. Thus we can conclude that
the domain-wall dynamics is mainly driven by the unbalanced Oersted field that accompanies the
current. An additional indication that the wall is driven by a magnetic field is that a reversion of
the magnetization in the sample reverses the displacement of the domain wall. This is not expected
for a spin-torque driven displacement. The equation of motion is thus given by

Ÿ = − Ẏ
τd

− 1

m′
∂Ep

∂Y
− γλ

α

Hext

τd
− γ′λαḢext (14.7)

using the fact that
τ2dα

2

m

∂2Ep

∂Y 2
= τ2dα

2ω2
r ≪ 1. (14.8)

In the absence of a temporally varying external magnetic field equation (14.7) describes a damped
harmonic oscillation of the domain wall.

With the knowledge of the pinning potential Ep(Y ) the full time evolution of the domain
wall position is given by equation (14.7) and the position of the wall can be calculated by a
time integration of this equation. The time integration is done numerically using the explicit
Euler method and a Gilbert damping of α = 0.01. Figure 14.2 shows a comparison between
the numerically calculated wall positions and the experimental results for three different pulse
lengths. As one can see numerical calculations using the harmonic potential in equation (14.2) and
µ0Hextλ = −6.0 · 10−11 Tm does not describe the dynamics very well. For a better agreement the
pinning potential has to be extended by non-harmonic terms. Since the sample is symmetric the
confining potential has to be symmetric as well. Thus the term that is of third order in Y vanishes.
The pinning potential expanded up to fourth order in Y thus reads

Ep =
m′

2
ω2
rY

2 +
m′

4
kY 4. (14.9)

Numerical calculations using this potential, µ0Hextλ = −7.5 · 10−11 Tm, and k = 4.5 · 1032 s−2m−2

fit the measurements very well.

The width λ of the domain wall is directly connected to the exchange constant A and the
anisotropy K in y direction. The anisotropy can be calculated as

K =
A

λ2
. (14.10)

If the anisotropy is given by the dipolar interaction alone, that is no crystalline anisotropy is present,
as it is the case for permalloy, the sum of the three anisotropy constants is given by

Kx +Ky +Kz = 2K +K⊥ =
1

2
µ0M

2
s . (14.11)

From equations (14.10) and (14.11) we find the perpendicular anisotropy

K⊥ =
1

2
µ0M

2
s − 2

A

λ2
. (14.12)

Inserting this result in the definition of the damping time

τd =
µ0Ms(1 + α2)

2γK⊥α
(14.13)
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(e)

Figure 14.1: [(a) and (c)] Scheme of the experimental sample. The arrows show the magnetization in
the infinity structure (gray). The gold areas depict the gold contacts. [(b) and (d)] Corresponding
differential X-ray images. (e) Time evolution of the displacement of the domain wall from its
equilibrium position. The black line is a guide to the eye while the dotted red curve is a fit using
equation (14.5). The gray curve illustrates the current pulse. The insets show the differential X-ray
images at different times. Shown is the area that is enclosed by the yellow rectangle in (b). (This
figure is a reprint from reference [187].)

we end up with

α =
γτd(µ0M

2
s − 4A/λ2)

2µ0Ms
−

√
(
γτd(µ0M2

s − 4A/λ2)

2µ0Ms

)2

− 1. (14.14)

In addition to the material parameters this equation contains the damping time and the width of
the domain wall. While the damping time has been determined from the domain-wall dynamics this
is not possible for the domain-wall width. In equation (14.7) the domain-wall width λ occurs only
in a product with the magnetic field that is generated by the current. Thus it is only possible to
determine this product but it is not possible to determine the Oersted field or the domain-wall width
from the dynamics that is driven by a current pulse. However, the wall width can be determined
from the static magnetization. A fit of the magnetic contrast shown in figure 14.2(d) with the
expression

Mx =Ms cos(θ) =Ms tanh

(
y − Y

λ

)

(14.15)

for the magnetization in x direction yields λ = 24 nm. With this result equation (14.14) yields a
Gilbert damping of α = 0.007.

With the knowledge of the Gilbert damping it is possible to calculate the mass of the domain
wall. With the aid of equations (13.44) and (13.42) we derive the expression

m′ =
Sµ20M

2
s

γγ′K⊥λ
=

2Sµ0Msατd
γλ

(14.16)

for the domain wall mass. With the crossection S = 2 · 10−14 m2 and the damping time τd = 0.9 ns
from equation (14.6) one finds m′ = 4.8 · 10−23 kg. Now all parameters of the non-harmonic
potential in equation (14.9) are known. The resulting potential is shown in figure 14.2(e).

15 Depinning of Domain Walls

We have seen that in thin nanowires domain walls at low energies behave like quasi particles. These
particles can be moved along the wire by an electrical current j or by an external magnetic field
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Figure 14.2: [(a)-(c)] Time evolution of the wall displacement for (a) a 1.1 ns (b) a 2.2 ns, and
(c) a 3.3 ns current pulse. The black lines are guides to the eye and the gray lines illustrate the
current pulse. The dotted red and dashed blue lines are the displacements that are calculated
using equation (14.7) with a harmonic and an anharmonic potential, respectively. The inset in (c)
illustrates how the unbalanced Oersted field (red) is generated from an inhomogeneous current flow
(black arrows) in the sample (gray) due to an overlap of the contacts (gold). (d) The magnetic
contrast (black line), that is proportional to the x component of the magnetization, is fitted with
the analytic expression in equation (14.15) (red line) to determine the domain wall width. The
magnetic contrast is averaged over the area that is depicted in the inset. (e) Harmonic (dashed line)
and an anharmonic (solid line) potential of the domain wall that is derived from equation (14.9).
(Subfigures (a)-(c) are reprints from reference [187]. Subfigure (d) is a reprint from reference [197].)
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Figure 15.1: (a) Shape of the current pulse that is used for the analytic calculations. During
the risetime τr the current density increases linearly from zero to the maximum current density
jmax. After the current density reaches jmax it remains constant. (b) For the investigation of the
depinning of the domain wall the parabolic potential is assumed to have a finite length L.

H. In experiments it has been found that due to pinning of the domain wall at random pinning
sites in the wire the motion of the wall is stochastic.172, 173 Thus, after the current pulse has been
injected into the wire the wall displacement is non-deterministic. This effect can be overcome by
periodically adding pinning potentials to the wire, for example notches or constrictions, so that the
wall jumps deterministically from pinning center to pinning center. Thus, it is important to inves-
tigate the depinning process of a domain wall. Recently it has been shown that the displacement of
a domain wall can be supported by special temporal shapes of the current.105, 111, 113, 174, 198 These
investigations aim at a resonant excitation of the domain wall. Usually the resonance peak of a
domain wall is narrow. Thus, to get a reasonable impact of the resonant excitations it is important
to excite the wall close to the resonance frequency. Due to the preparation process this resonance
frequency may vary from pinning center to pinning center leading to a complication of simultaneous
depinning of walls at different pinning centers.

It has been theoretically found that a fast varying current density exerts a higher force on a
domain wall than a constant current density.129, 175 This leads to the assumption that a current
pulse with a fast rising edge can also support the depinning of the domain wall, without the
knowledge of the resonance frequency. In this section the depinning process of a domain wall is
discussed in detail. The results of this section have been published in part in references [199] and
[200].

15.1 Analytical Considerations

For primary analytical discussions the pinning potential is approximated by a harmonic potential

Ep =
1

2
m′ω2

rX
2 (15.1)

with its resonance frequency ωr. The applied current pulse needs a rise time τr to get to its
maximum current density jmax. During this risetime the current density is assumed to increase
linearly as depicted in figure 15.1(a). During the current pulse the domain wall should move away
from the pinning center. Thus, we do not consider the trailing edge of the pulse for the depinning.
Instead we shall assume that the current pulse has an infinite length.

Without an applied field the equation of motion of the domain wall becomes

Ẍ(t) = −Ẋ(t)

τd
− ω2

rX(t) +
C3

τd
j(t) + C4j̇(t) = −Ẋ(t)

τd
− ω2

rX(t) + Ẍsp(t). (15.2)

83



with the acceleration

Ẍsp(t) =

{
C3

τd
t
τr
jmax +

C4

τr
jmax 0 < t ≤ τr

C3

τd
jmax + 0 t > τr

(15.3)

due to the spin torque. The first term is due to the current while the second term is due to the
time derivative of the current. Both terms are comparable in size when the risetime τr is in the
order of magnitude of the damping time τd.

The solution of equation (15.2) is a linear response to the applied current. For the underdamped
case where 2τdωr > 1 the solution is calculated in equation (E.13) and given by

X(t) =

t∫

−∞

dt′ e
− t−t′

2τd
sin(ω(t− t′))

ω
Ẍsp(t) (15.4)

with the frequency

ω =

√

ω2
r −

1

4τ2d
(15.5)

of the free oscillation of the wall. From equation (15.4) it becomes obvious that, beside the de-
pendence on the maximum current density jmax, the maximum displacement of the domain wall
depends on the ratios of three different timescales, that are the risetime τr of the current pulse,
the damping time τd of the domain wall, and the period 2π/ω of free oscillation in the pinning
potential.

For an infinitely long risetime the displacement of the domain wall inside the potential well is
proportional to the current density. The expression

X∞(t) =
4τdC3

1 + 4τ2dω
2
j(t) (15.6)

is calculated in appendix E. When the risetime is reduced the domain wall performs an oscillatory
motion as shown in figure 15.2. Details of the calculation of the domain wall positions can be found
in appendix E. Due to this oscillation the maximum of the domain-wall displacement increases.
Here it is worth noting that the final position

X(∞) =
4τdC3

1 + 4τ2dω
2
jmax (15.7)

is always independent of the risetime.
There are two reasons for the oscillation of the wall position. First there is an overshooting due

to the rapid changes of the force due to temporal changes of the current density. This overshooting
occurs when the time in which the current density changes, that is the risetime, is in the order of
magnitude of the damping time. It is illustrated by the solid lines in figure 15.2. The second and
more important reason is the non-vanishing force due to the time derivative of the current density.
This force is present during the risetime of the current only and does not affect the final position
of the wall. However, it can lead to strong displacements in the transient region as depicted by the
dashed lines in figure 15.2.

To allow the domain wall to leave the potential we introduce a finite range L of the potential
as depicted in figure 15.1(b). An analytical expression of this potential is given by

Ep =

{
1
2mω

2
rX

2 |X| ≤ L
1
2mω

2
rL

2 |X| > L.
(15.8)

For the infinitely long risetime the domain wall is depinned if its maximum displacement

X∞
max =

4τdC3jmax

1 + 4τ2dω
2

(15.9)
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Figure 15.2: Domain wall position versus time. (a)-(d) The oscillation period of the potential is
twice the damping time, that is ωτd = π. Shown are the positions for risetimes τr of (a) 0, (b)
τd, (c) 2.06τd, and (d) 2.77τd. (e) and (f) The risetime is equal to the damping time while the
oscillation period of the potential is (e) five times the damping time and (f) twenty times the
damping time, that are ωτd = 0.4π and ωτd = 0.1π, respectively. In all subfigures the solid red line
shows the position of the wall that is calculated by neglecting the force due to the time derivative
of the current density (C4 = 0). The dashed blue line represents the position for C4 = C3 as it is
the case for ξ = α. For this case the time dependent equilibrium position is given by the dotted
black line. The dashed-dotted grey line illustrates the shape of the current pulse. In all cases the
final position X(∞) is the same as for an infinite risetime but it becomes visible that the maximum
displacement can be strongly increased by using a shorter risetime of the current pulse.
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exceeds the range of the potential. Beyond this point the potential exerts no force on the wall and
the force due to the constant part of the current is able to move the wall away from the pinning
center. The critical current density for the depinning of the domain wall is thus calculated by
setting |X∞

max| = L, which yields the critical current density

|j∞crit| =
1 + 4τ2dω

2

4τd|C3|
L. (15.10)

For a finite risetime the oscillation holds the possibility that the wall leaves and reenters the
potential during the oscillatory motion. In such a case equation (15.4) and its solutions, as calcu-
lated in appendix E, are not valid since they are calculated for a potential with an infinite range.
Then the position of the wall has to be calculated by a numerical integration of equation (15.2).

Due to the large oscillations one would expect a noticeable reduction of the critical current
density for small risetimes. For C4 = C3 this reduction is depicted in figure 15.3. In this figure we
are able to identify three different regimes:

1. For shallow potentials at about ωτd < 0.8 the oscillation period 2π/ω is large compared to the
damping time τd of the wall. Thus we are close to the critically damped system. In this case
most of the transient states are damped out before the wall reaches its first reversal point.
An according wall motion is depicted in figure 15.2(f).

2. For steeper potentials and short risetimes at about τr < 1.2τd there is a strong force due to
the time derivative of the current density that leads to a high acceleration of the wall and thus
facilitates the depinning. This additional force is supported by the overshooting that occurs
due to the rapid change in the force. According wall motions are depicted in figures 15.2(a)
and (b).

3. In the remaining part we find a resonant behavior in which the maximum displacement of
the wall depends on the ratio between the risetime of the pulse and the oscillation period of
the potential. According wall motions are depicted in figures 15.2(c) and (d).

15.2 Comparison with Experimental Results

There is some experimental work that investigates the influence of the risetime on the domain
wall dynamics.124, 199, 200 In references [199] and [200] the depinning probability of a domain wall
from a notch in a magnetic nanowire is measured for different risetimes, yielding a reduction of the
current density that is needed to depin the wall. When the wall is driven by a current pulse with an
extremely short risetime of about 100 ps, as in reference [124] a more effective domain-wall motion,
compared to domain walls driven by a current pulse with a longer risetime, is observed.98, 103, 124

Here, we shall put our attention on the data of reference [199]. In these experiments the length of
the current pulse is not infinite as assumed in the theoretical investigations. Thus the trailing edge
of the pulse has to be taken into account. The shape of the experimental current pulse is shown in
figure 15.4(a).

For the experiments in reference [199] a curved wire with two electrodes was used. This wire
is depicted in figure 15.5. The curvature of the wire is needed to create a domain wall. First a
strong field is applied under an angle of ϕ = 80◦. When this field is switched off the remanent
state of the wire contains a wall in the curvature. The configuration of the wall, that is either
head-to-head or tail-to-tail, depends on the sign of the field. This wall is then moved to the notch
by a small field that is applied along the x direction. After the domain wall gets pinned a constant
external field Hx is applied in x direction and a voltage pulse of V0 = −1 V is injected into the wire.
This voltage corresponds to a maximum current density of |j| = 8.5 · 1011 A/m2 between the two
leads. In the experiment the values of pulse risetime, pulse length, and external magnetic field were
varied. Repetitive measurements were performed for each set of parameters to get the depinning
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Figure 15.3: Reduction of the critical current density that is needed to depin the domain wall due
to a pulse with a short risetime. Shown is the critical current density in units of the critical current
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the risetime and the damping time and ωτd that is 2π times the ratio between the damping time
and the oscillation period. The dashed black lines denote the positions where the risetime assumes
an integer multiple of the oscillation period. The dots represent the parameters that are used in
figure 15.2.

87



j

t

(a)

0

jmax

τr

tp

τr

(b)

X

-L 0 L

E

m’ωr
2L2/4

0

Figure 15.4: (a) Scheme of the current pulse that is used in the experiments. During the risetime
τr the current density increases linearly from zero to the maximum current density jmax. After the
current density reaches jmax it remains constant until the length tp of the pulse has been reached.
Then the current density decreases linearly to zero during the time τr. (b) For the numerical
solution the pinning potential is modeled by a piecewise sequence of quadratic functions as given
in equation (15.11). The potential has a finite range L.

500 nm

xy
ϕ
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L2

Figure 15.5: Scanning-electron micrograph of the permalloy wire that is used in reference [199].
The wire contains a notch to pin the domain wall. This notch is situated between two leads, that
are labeled L1 and L2 and are used to inject a current pulse into the wire. The curvature allows
for the creation of a domain wall in the wire. (This figure is a reprint from reference [199].)

probability of the wall. The results are depicted in figure 15.6. More details on the preparation
process and the measurement setup can be found in the aforesaid reference.

In the above theoretical investigations the confining potential is modeled by a harmonic poten-
tial with a finite range which facilitates the according considerations. However, this potential is
not continuously differentiable and thus the pinning force has a discontinuity. To overcome this
deficiency we use the potential

Ep =







1
2m

′ω2
rX

2 |X| ≤ L
2

1
4m

′ω2
rL

2 − 1
2mω

2
r(L− |X|)2 L

2 < |X| ≤ L
1
4m

′ω2
rL

2 |X| > L

(15.11)

to compare the theoretical and experimental results. The new potential is depicted in figure 15.4(b).
The action of this potential on the domain wall is described by the range L and the resonance
frequency ωr of the potential. Here, it is worth noting that the shape of the potential is an
assumption that is used since the exact shape of the experimental potential is not known. However,
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we will see that it is possible to get a good agreement between theory and experiment by using this
potential.

The constant magnetic field deforms the pinning potential and thus facilitates the depinning of
the wall. Analytically the wall motion is described by the equation

Ẍ(t) = −Ẋ(t)

τd
− 1

m′
dE(X(t))

dX
+
C1

τd
Hx +

C3

τd
j(t) + C4j̇(t), (15.12)

where the term C2Ḣx vanishes since the magnetic field is constant.

When the field is larger than a critical field the wall is depinned even without the injection of a
current pulse. This critical field Hc can be found by setting j ≡ 0 and Ẋ ≡ 0 in equation (15.12).
One derives a critical field of

Hc =
τdω

2
rL

2C1
. (15.13)

For fields Hx that are smaller than this critical value, that is given by |µ0Hc| = 9 mT in the
considered experiments,199 the initial position of the domain wall is given by

X(0) =
1

ω2
r

C1

τd
Hx =

L

2

Hx

Hc
, (15.14)

which is chosen to be inside the pinning potential. When the current is injected the wall starts
moving. Its momentary position can be derived by a numerical integration of equation (15.12) with
the potential that is given in equation (15.11).

In addition to the uncertainty of the form of the potential we get six parameters that influence
the motion of the domain wall. These parameters are the range L and the resonance frequency ωr

of the potential, the damping time τd of the wall, and the three remaining prefactors C1, C3, and
C4 in equation (15.12). Equation (15.13) allows us to derive C1 from the experimentally measured
value of Hc.

For the remaining parameters we are able to find some estimates. By measuring the depinning
probability of a domain wall that is subjected to current pulses of different length Thomas et al.
found a period of the domain-wall oscillation of about 4 ns which yields a resonance frequency
of ω = 1.6 GHz.105 Even though these experiments are performed with a different geometry we
shall assume that our resonance frequency is of the same order of magnitude. The damping time
of a vortex domain wall can be estimated from figure 13.3 which yields about 8 ns. For the case
ξ = α170, 172 the free domain wall does not deform but moves with the velocity Ẋ(t) = bjj(t) (see
section 3). This is a solution of equation (15.12) for E ≡ 0, that is the free wall, and C3 = C4 = bj .

Starting from these estimates we are able to find values that deliver a good agreement between
theory and experiment. The lines in figure 15.6 are calculated using L = 2 µm, ωr = 0.5 GHz,
τd = 8 ns, C1 = ±0.28 m2/C and C3 = C4 = −3.62 · 1011 m3/C. Here, the positive value of C1 is
used for the head-to-head and the negative value is for the tail-to-tail wall.

16 Interaction of Domain Walls

For a reliable description of the dynamics of a domain wall in an extended wire it is important
to take the interaction with other walls into account. These walls can be situated in the same
wire or in neighboring wires. If the two interacting domain walls have a sizable distance there
is no exchange interaction and the interaction via the demagnetization energy can be expanded
in a series of multipoles. For the interaction of two vortex walls it has been shown that the
interaction can be well described by an interaction between two monopoles.201, 202 In this section
we investigate the interaction of two transverse domain walls. For this investigation we also include
the dipole-monopole, dipole-dipole, and quadrupole-monopole interaction.
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Figure 15.6: Experimentally measured depinning probability of the domain wall (color gradient)
compared to the theoretically determined boundary of the depinning (black line). Shown are results
for (a) to (c) and (e) a head-to-head domain wall (HH DW) and (d) a tail-to-tail domain wall (TT
DW). In (a) to (d) the risetime of the pulse is varied while the pulse length is kept fixed at (b)
5 ns, (a) and (d) 10 ns, and (c) 15 ns. (e) shows results for a fixed risetime of 2 ns. Here the pulse
length is changed. (The experimental data is taken from reference [199].)
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The demagnetization energy of the whole sample is

ED =
µ0
8π

∫

(dV ρv(~r) + dA σs(~r))

∫

dV ′ (dV ′ ρv(~r
′) + dA′ σs(~r

′)
) 1

|~r − ~r′| (16.1)

with the volume charges

ρv(~r) = −~∇ ~M(~r) (16.2)

and surface charges

σs(~r) = ~M(~r)~n(~r) (16.3)

where ~n(~r) is the normal vector at the surface. These charges are depicted in figure 16.1. In
the following we neglect all terms that are independent of the distance between the walls. The
interaction energy of two walls then yields

E =
µ0
4π

∫

(dV1 ρv1(~r1) + dA1 σs1(~r1))

∫

(dV2 ρv2(~r2) + dA2 σs2(~r2))
1

|~R+ ~r2 − ~r1|
(16.4)

where ~r1 and ~r2 are the position with respect to the center of the first and second domain wall,
respectively. The distance vector ~R points from the center of the first wall to the center of the
second wall. V1 and V2 are the volumes of the first and second domain wall, respectively. A1 and
A2 represent the respective surfaces. In the following we assume that both walls are situated in
nanowires that are aligned along the x direction. Then equation (16.4) can be written as

E =
µ0
4π

∫

dV ρ1(~r1)

∫

dV ′ ρ2(~r2)
1

|~R+ ~r2 − ~r1|
(16.5)

with the charge density

ρi(~r) =
aiMs

λi cosh
2
(

x
λi

)Θ
(wi

2
− |y|

)

Θ

(
di
2

− |z|
)

+ cos(χi)Ms
δ
(
y − wi

2

)
− δ

(
y + wi

2

)

cosh
(

x
λi

) Θ

(
di
2

− |z|
)

+ sin(χi)Ms

δ
(

z − di
2

)

− δ
(

z + di
2

)

cosh
(

x
λi

) Θ
(wi

2
− |y|

)

(16.6)

that includes volume and surface charges. Here we used the analytical expressions for the magne-
tization that are given in equations (5.5) and (5.6). The surface integrals are translated to volume
integrals with the aid of a δ-function. Θ(x) is the Heaviside step function. wi and di denote the
width and thickness of the wire in which the i-th domain wall is situated, respectively. The con-
stant ai and the angle χi = −aiφi describe the magnetization in the i-th domain wall as depicted in
figure 16.2. The term that depends on ai denotes the volume charges and the terms that depend on
χi denote the surface charges. For a head-to-head wall the volume charges are positive and ai = +1.
For a tail-to-tail wall the volume charges are negative and ai = −1. The angle χi describes the
location of the surface charges. This location changes when the magnetization in the domain wall
rotates around the wire axis.

For |~r1| ≪ |~R| and |~r2| ≪ |~R| we are able to expand the interaction in equation (16.5) in a
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(a)

(b)

Figure 16.1: Scheme of (a) the volume and (b) the surface charges of a transverse wall in a wire with
a rectangular crossection. The charges are given by a color gradient from red (negative charges) to
blue (positive charges). The arrows denote the magnetization.
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Figure 16.2: Scheme of the magnetization (arrows) of two transverse walls in a nanowire with width
w and thickness d. The parameter a, that is the sign of the volume charges of the wall, distinguishes
between (a) a tail-to-tail (a = −1) and (b) a head-to-head (a = +1) domain wall. The orientation
of the perpendicular magnetization, that is important for the surface charges of the wall, is given
by the angle χ.

series of multipoles. A Taylor series up to second order in ~r1 and ~r2 at ~r1 = 0 and ~r2 = 0 yields

E ≈ µ0

4π|~R|

∫

dV ρ1(~r1)

︸ ︷︷ ︸

=q1

∫

dV ′ ρ2(~r2)
︸ ︷︷ ︸

=q2

+
µ0

4π|~R|3

∫

dV ~r1ρ1(~r1)

︸ ︷︷ ︸

=p1

∫

dV ′ ρ2(~r2)
︸ ︷︷ ︸

=q2

~R− µ0

4π|~R|3

∫

dV ρ1(~r1)

︸ ︷︷ ︸

=q1

∫

dV ′ ~r2ρ2(~r2)
︸ ︷︷ ︸

=p2

~R

+
µ0

4π|~R|5
~R













∫

dV ~r1ρ1(~r1)
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∫

dV ′ ~r2ρ2(~r2)
︸ ︷︷ ︸

=p2
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∫

dV ′ ~r2ρ2(~r2)
︸ ︷︷ ︸
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~R

+
µ0

8π|~R|5
~R

∫

dV (3~r1 ⊗ ~r1 − (~r1~r1)1) ρ1(~r1)

︸ ︷︷ ︸

=Q1

∫

dV ′ ρ2(~r2)
︸ ︷︷ ︸

=q2

~R

+
µ0

8π|~R|5
~R

∫

dV ρ1(~r1)

︸ ︷︷ ︸

=q1

∫

dV ′ (3~r2 ⊗ ~r2 − (~r2~r2)1) ρ2(~r2)

︸ ︷︷ ︸

=Q2

~R,

(16.7)

where qi, pi, andQi are the monopole, dipole, and quadrupole moments of the i-th wall, respectively.

All terms in equation (16.6) are symmetric in x direction. The first and third terms are sym-
metric in y direction while the second term is antisymmetric. The third term is antisymmetric in
z. In this direction the first and second terms are symmetric. Due to this symmetry some of the
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terms in the multipole moments vanish. The monopole of the i-th wall is

qi =

∫

d3~r ρi(~r) = 2MsaiSi. (16.8)

Here, Si = widi is the crossection of the wire. The dipole and quadrupole moments are given by

~pi =

∫

d3~r





x
y
z



 ρi(~r) =MsSiπλi





0
cos(χi)
sin(χi)



 (16.9)

and

Qi =

∫

d3~r





2x2 − y2 − z2 3xy 3xz
3xy 2y2 − x2 − z2 3yz
3xz 3yz 2z2 − x2 − y2



 ρi(~r)

=Ms
aiSi
6





2π2λ2i − w2
i − d2i 0 0

0 2w2
i − π2λ2i − d2i 0

0 0 2d2i − π2λ2i − w2
i



 .

(16.10)

For details on the evaluation of the integrals see appendix F.
With these multipole moments we are able to expand the interaction energy in terms of 1/R,

with R = |~R|, according to the Taylor series in equation (16.7). The first order is given by the
interaction between the two monopole terms. The according energy is

Eqq =
µ0
4πR

q1q2 =
µ0M

2
s

πR
a1a2S1S2. (16.11)

The second order is the interaction between the monopole of the first wall with the dipole of the
second wall and vice versa. This reads

Epq =
µ0

4πR3
~R (~p1q2 − ~p2q1)

=
µ0M

2
s

2R3
S1S2 (λ1a2(Ry cos(χ1) +Rz sin(χ1))− λ2a1(Ry cos(χ2) +Rz sin(χ2))) .

(16.12)

The next order consists of two terms, that are the dipole-dipole and quadrupole-monopole interac-
tions. The dipole-dipole term is

Epp =
µ0

4πR5

(

~p1~p2R
2 − 3(~p1 ~R)(~p2 ~R)

)

=
µ0M

2
s

4R5
πλ1λ2S1S2R

2(cos(χ1) cos(χ2) + sin(χ1) sin(χ2))

− 3
µ0M

2
s

4R5
πλ1λ2S1S2(Ry cos(χ1) +Rz sin(χ1))(Ry cos(χ2) +Rz sin(χ2))

=
µ0M

2
s

4R5
πλ1λ2S1S2(R

2 − 3R2
y) cos(χ1) cos(χ2)

+
µ0M

2
s

4R5
πλ1λ2S1S2(R

2 − 3R2
z) sin(χ1) sin(χ2)

− 3
µ0M

2
s

4R5
πλ1λ2S1S2RyRz(cos(χ1) sin(χ2) + sin(χ1) cos(χ2)).

(16.13)

The energy of the quadrupole-monopole interaction can be calculated as

EQq =
µ0

8πR5

(

~RQ1
~Rq2 + ~RQ2

~Rq1

)

=
µ0M

2
s

24πR5
a1a2S1S2

((
2π2λ21 − w2

1 − d21
)
R2

x +
(
2w2

1 − π2λ21 − d21
)
R2

y +
(
2d21 − π2λ21 − w2

1

)
R2

z

)

+
µ0M

2
s

24πR5
a1a2S1S2

((
2π2λ22 − w2

2 − d22
)
R2

x +
(
2w2

2 − π2λ22 − d22
)
R2

y +
(
2d22 − π2λ22 −w2

2

)
R2

z

)
.

(16.14)
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In the following we assume for simplicity that both domain walls are in wires that have the
same width w and thickness d. Since the width of the wall depends only on material parameters
and the crossection of the wire, the width of both walls is the same. Then the energies reduce to

Eqq =
µ0M

2
s S

2

πR
a1a2 (16.15)

for the monopole-monopole interaction,

Epq =
µ0M

2
sS

2

2R3
λa1a2 (Ry (a1 cos(χ1)− a2 cos(χ2)) +Rz (a1 sin(χ1)− a2 sin(χ2))) (16.16)

for the dipole-monopole interaction,

Epp =
µ0M

2
sS

2

4R5
πλ2(R2 − 3R2

y) cos(χ1) cos(χ2)

+
µ0M

2
sS

2

4R5
πλ2(R2 − 3R2

z) sin(χ1) sin(χ2)

− 3
µ0M

2
s S

2

4R5
πλ2RyRz(cos(χ1) sin(χ2) + sin(χ1) cos(χ2))

(16.17)

for the dipole-dipole interaction, and

EQq =
µ0M

2
s S

2

12πR5

((
2π2λ2 −w2 − d2

)
R2

x +
(
2w2 − π2λ2 − d2

)
R2

y +
(
2d2 − π2λ2 − w2

)
R2

z

)
a1a2

(16.18)
for the quadrupole-monopole interaction. The energies in equations (16.15) to (16.18) have to be
added to the energy of the wall given in equation (13.35). Thus the interaction has an influence on
the domain-wall dynamics given by equations (13.33a) and (13.33b).

The interaction energy should be invariant under a rotation of the sample by 180 degrees
around the x axis with a renumbering of the walls and under an inversion of the magnetization.
The rotation is equivalent to the substitutions

a1 → a2, a2 → a1, χ1 → χ2 + π, χ2 → χ1 + π, and Rx → −Rx

here Ry and Rz remain the same because both the rotation and the renumbering changes their
sign. The inversion of the magnetization is equivalent to the substitutions

a1 → −a1, a2 → −a2, χ1 → χ1 + π, and χ2 → χ2 + π.

Obviously, equations (16.15) to (16.18) are invariant under the above substitutions.

16.1 Domain Walls in the Same Wire

If both domain walls are in the same wire Ry = Rz = 0. Thus the dipole-monopole interaction
vanishes. The remaining contributions to the interaction energy become

Eqq =
µ0M

2
s S

2

πR
a1a2 (16.19)

for the monopole-monopole interaction,

Epp =
µ0M

2
sS

2

4R3
πλ2 cos(χ1 − χ2) (16.20)

for the dipole-dipole interaction, and

EQq =
µ0M

2
s S

2

12πR3

(
2π2λ2 − w2 − d2

)
a1a2. (16.21)

for the quadrupole-monopole interaction. Thus the interaction energy is

EWW =
µ0M

2
s S

2a1a2
πR

(

1 +
π2λ2(2 + 3a1a2 cos(χ1 − χ2))− w2 − d2

12R2

)

(16.22)

where the term in brackets describes the deviation from the pure monopole model.
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(a) (b)

(c) (d)

x

y

z

Figure 16.3: Schemes of the four different magnetic configurations of a domain wall with a magne-
tization that lies in the xy plane. The figure shows domain walls with (a) a = +1 and cos(χ) = +1,
(b) a = +1 and cos(χ) = −1, (c) a = −1 and cos(χ) = +1, and (d) a = −1 and cos(χ) = −1.

16.2 Domain Walls in Neighboring Wires

For two domain walls that are located in neighboring wires with distance D in y direction the
dipole-monopole interaction is finite. The maximum contribution of the dipole-monopole energy is
obtained if | cos(χ1)| = | cos(χ2)| = 1. In this case the magnetization of both walls lies in the xy
plane as depicted in figure 16.3. The interaction energy of two walls that have the smallest possible
distance is calculated by setting Rx = Rz = 0 and Ry = D in equations (16.15) to (16.18). With
these assumptions for the angles and the distance the energies reduce to

Eqq =
µ0M

2
s S

2

πD
a1a2 (16.23)

for the monopole-monopole interaction,

Epq =
µ0M

2
sS

2

2D2
λa1a2 (a1c1 − a2c2) (16.24)

for the dipole-monopole interaction,

Epp = −µ0M
2
s S

2

2D3
πλ2c1c2 = −µ0M

2
s S

2

2D3
πλ2a1a2

(

1− (a1c1 − a2c2)
2

2

)

(16.25)

for the dipole-dipole interaction, and

EQq =
µ0M

2
sS

2

12πD3

(
2w2 − π2λ2 − d2

)
a1a2 (16.26)

for the quadrupole-monopole interaction. Here we used the abbreviations c1 = cos(χ1) and c2 =
cos(χ2). The interaction energy is given by

EWW =
µ0M

2
sS

2a1a2
πD

(

1 +
πλ(a1c1 − a2c2)

2D
+

2w2 − π2λ2
(
7− 3(a1c1 − a2c2)

2
)
− d2

12D2

)

. (16.27)

The term in brackets describes the deviation from the monopole model. A maximum attractive
interaction is found for a1a2 = −1 and a1c1 − a2c2 = +2. For a1a2 = −1 and different values of
a1c1 − a2c2 the interactions are depicted in figure 16.4.

For a comparison of the analytical expression in equation (16.27) with numerical calculations
a system that consist of two parallel wires of length l and distance D is simulated. For these
simulations wires with rectangular cross section with w = 100 nm and d = 10 nm are used. A
sketch of the interactions in this system is shown in figure 16.5. The magnetization at the four wire
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Figure 16.4: Interaction energy of two domain
walls with a1a2 = −1 in two parallel wires with
w = 100 nm and d = 10 nm calculated from
equation (16.27) including different orders in 1/D.
The width of the domain walls is chosen as λ =
22.9 nm which is the same as for the numerical re-
sults in figure 16.6. The values for a1c1−a2c2 are
(a) +2, (b) 0, and (c) -2. One magnetic configu-
ration yielding the respective values of a1a2 and
a1c1−a2c2 is shown in the inset of each subfigure.

(a)

EWW

-EW1

EW2

(b)

-EEE

EE1

-EE2

Figure 16.5: Scheme of the different interactions in the two wires. The color denotes positive
magnetic charges (blue) and negative magnetic charges (red). The arrows denote the magnetization
in the domains. (a) Interactions between the two domain walls and between the domain walls and
the ends of the wire. (b) Interactions between the ends of the wires.
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ends is kept constant in the direction of the wire. This ensures that no end domains are formed
and the energy of the ends of the wire can be calculated analytically.

From the expression calculated in equation (5.5) one finds

m⊥ =MsSπλ (16.28)

for the magnetic moment m⊥ perpendicular to the wire. In turn this allows for a calculation of λ
from the numerically obtained value m⊥ = 5.75 · 10−17 Am2. This leads to a width of the domain
walls of λ = 22.9 nm.

The energy of this system is

E(l,D) = 2EW + EWW(a1, a2, c1, c2,D)− 4EW1(l) + 4EW2(a1a2, l,D)

+ 4EWE − 2EEE(a1a2,D) + 2EE1(l)− 2EE2(a1a2, l,D)
(16.29)

here EW is the self energy of one domain wall,

EWE =
µ0M

2
s

8π

w/2∫

−w/2

dy

d/2∫

−d/2

dz

w/2∫

−w/2

dy′
d/2∫

−d/2

dz′
1

√

(y − y′)2 + (z − z′)2
(16.30)

is the self energy of one of the four wire ends,

EEE =
µ0M

2
s

4π

w/2∫

−w/2

dy

d/2∫

−d/2

dz

w/2∫

−w/2

dy′
d/2∫

−d/2

dz′
1

√

(D + y − y′)2 + (z − z′)2
(16.31)

is the interaction energy of adjacent ends of different wires, and EWW is the interaction energy
between the two domain walls. The remaining terms are the interaction energies as depicted in
figure 16.5. The expressions in equations (16.30) and (16.31) can be derived from equation (16.1)
bearing in mind that the magnetization at the ends of the wires is kept constant as mentioned
above. The integrals have been calculated by A. J. Newell et al.203 Their result yields

FN(D) =

w/2∫

−w/2

dy

d/2∫

−d/2

dz

w/2∫

−w/2

dy′
d/2∫

−d/2

dz′
1

√

(D + y − y′)2 + (z − z′)2

= (D + w)d2arcsinh

(
D + w

d

)

+ (D − w)d2arcsinh

(
D − w

d

)

− 2Dd2arcsinh

(
D

d

)

+ d(D +w)2arcsinh

(
d

|D + w|

)

+ d(D − w)2arcsinh

(
d

|D − w|

)

− 2dD2arcsinh

(
d

|D|

)

−
√

(D + w)2 + d2
3
+
√

(D − w)2 + d2
3 − 2

√
D2 + d2

3

3
+

|D + w|3 + |D − w|3 − 2|D|3
3

.

(16.32)

Beside the sought interaction energy of the two domain walls the simulations also yield some
additional energies that are due to a finite distance between the walls and the ends of the wires,
a finite distance between two different ends, and the self energy of the ends. The self energy of
the four wire ends and the interaction energy of adjacent ends of different wires can be calculated
analytically since the magnetization at the ends of the wires is fixed. The remaining energies due
to interactions with the ends of the wires decrease for longer wires. For an infinite length these
interactions would vanish.
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Figure 16.6: (a)-(d) Total energies of the systems shown in (f) as determined from micromagnetic
simulations (dots) in dependence of the length L of the wires and their distance D. The lines are
fits using equation (16.33). (e) Interaction energy of the two domain walls calculated from the
fits of (a)-(d) using equation (16.34). The values found in (b) and (c) (both configurations have
a1c1 − a2c2 = 0) are the same within the numerical accuracy. The solid (dashed) lines are the
analytical results from equation (16.27) up to third (second) order in 1/D. Here w = 100 nm, d =
10 nm, and λ = 22.9 nm has been used. The roman numbers denote the according magnetization
configuration in (f). (f) Scheme of the magnetization of four different domain-wall configurations
with attractive interaction.
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It is not possible to simulate wires of infinite length. However, we are able to vary the length
l while the distance D is kept constant. In the limit of long wires the l dependent energies can be
expressed by a monopole-monopole interaction. For a1 = +1, a2 = −1 equation (16.29) becomes

E(l,D) = 2EW + EWW(c1, c2,D)− 4
µ0M

2
sS

2

πl
︸ ︷︷ ︸

EW1

+ 4
µ0M

2
sS

2

π
√
l2 + 4D2

︸ ︷︷ ︸

EW2

+ 4
µ0M

2
s

8π
FN (0)

︸ ︷︷ ︸

EWE

− 2
µ0M

2
s

4π
FN (D)

︸ ︷︷ ︸

EEE

+ 2
µ0M

2
sS

2

4πl
︸ ︷︷ ︸

EE1

− 2
µ0M

2
sS

2

4π
√
l2 +D2

︸ ︷︷ ︸

EE2

.

(16.33)

Here, we took into account that the monopoles of the ends of the i-th wire are given by −MsSai.
Numerically calculated energies for a1 = +1 and a2 = −1, and different values of c1, c2, D,

and l are depicted in figure 16.6. The energies are plotted versus the inverse wire length and fitted
using equation (16.33) that is valid for long wires. From this fit we get one fit parameter that
is given by the energy Efit(c1, c2,D) = 2EW + EWW(c1, c2,D). For an infinite distance D of the
wires the interaction energy EWW certainly vanishes. This yields Efit(c1, c2,∞) = 2EW. Thus the
interaction energy of the domain walls is given by

EWW(c1, c2,D) = Efit(c1, c2,D)− Efit(c1, c2,∞). (16.34)

In figure 16.6(e) these energies are compared with the analytical result in equation (16.27) up
to different orders in 1/D. It can be clearly seen that the second order in 1/D, that is the
monopole-dipole interaction is important to reproduce the behavior of the numerical data. The
third order in 1/D is also found to be not negligible. For the configurations (ii) and (iii) the
monopole-dipole interaction vanishes (see equation (16.27)). Thus the respective dashed line in
figure 16.6(e) correspond to the value of the monopole-monopole interaction only. The maximum
interaction energy is found for a1c1−a2c2 = +2 as predicted in equation (16.27). The contributions
of the three different orders in 1/D to the interaction energies are plotted in figure 16.4. The
interaction energies shown in figure 16.6(e) are of the same order of magnitude as the pinning
potential in figure 14.2(e). This reveals that their interaction may have a sizable impact on the
dynamics of the domain walls.
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Part IV

Further Investigations and Conclusion

17 Further Investigations

In the subject area of the present work there are several topics that may be appealing for further
investigations. Some of them are mentioned below.

Oersted Field

In section 9 it has been shown that the Oersted field that accompanies the current may have a
strong impact on the dynamics of the magnetization. Thus it is important to take this field into
account. In appendix D it is derived how the Oersted field can be calculated numerically for
an arbitrary current density. The resulting convolution has the same runtime complexity as the
calculation of the demagnetization field. Here, the next step would be to include the action of the
inhomogeneous current that is mediated by the Oersted field.

Current Paths

For the calculation of the magnetization dynamics using equation (3.3) one needs the spatially re-
solved current density ~j. In addition the current paths have a large influence on the aforementioned
calculation of the Oersted field. In most parts of this work the current density was assumed to
be homogeneous but in experiments there are several reasons that can lead to an inhomogeneous
current density. Some of these reasons are discussed in section 9.3. Here, we will sketch how
the current density can be calculated from the sample’s geometry and its magnetization. Similar
considerations can be found in references [144,204].

For the calculation of the current density one starts from the continuity equation

∂ρ

∂t
= −~∇~j (17.1)

of the charge density. Following Ohm’s law one can express the current density

~j = −σ~∇Φ (17.2)

by the electric potential Φ using the conductivity tensor σ, that may depend on the magnetization
due to the anisotropic magnetoresistance (AMR). We now assume that the relaxation of the current
paths happens on a short time scale compared to the dynamics of the magnetization. Then the
charge Q in each simulation cell can be assumed to be constant. By inserting equation (17.2) in
equation (17.1) and integrating over the volume V of a simulation cell one gets

∫

dV ~∇σ~∇Φ =

∫

dV
∂ρ

∂t
=
∂Q

∂t
= 0 (17.3)

for the stationary current. With the aid of the divergence theorem one finds

∫

dS ~nσ~∇Φ = 0, (17.4)

where S is the surface of the cell and ~n is its normal vector.
For the above calculations the conductivity tensor σ is needed. This tensor can be found by

inverting the resistivity tensor ρ. Here, it shall be assumed that the resistivity consist of a material
dependent isotropic part and an anisotropic part that is given by the AMR. The AMR effect leads to
different resistivities for current that flow perpendicular (ρ⊥) or parallel (ρ‖) to the magnetization.
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Figure 17.1: (a) Permalloy square and
two gold contacts that have a finite
overlap with the square. (b) Top view of
the system shown in (a). The color de-
note the current density when a current
I flows through the sample. The cur-
rent density is averaged over the thick-
ness. The inset shows a side view of the
region encircled by the dashed blue line.
(c) x component of the current density
shown in (b).

One finds a resistivity of ρ⊥ + (ρ‖ − ρ⊥) cos2(6 ~j ~M) that scales with the square of the cosine of the
angle between the current and the magnetization. In vector notation this reads

ρ = ρ⊥1+ (ρ‖ − ρ⊥)PM (17.5)

with the projection operator PM = ~m ⊗ ~m. Here, ~m is a unit vector that points in the direction
of the magnetization. Taking into account that PM is idempotent it can easily be verified that the
inverse matrix reads

σ =
1

ρ⊥
1+

(
1

ρ‖
− 1

ρ⊥

)

PM = σ01+

(
1

ρ‖
− 1

ρ⊥

)




m2
x − 1

3 mxmy mxmz

mymx m2
y − 1

3 mymz

mzmx mzmy m2
z − 1

3



 (17.6)

with σ0 = (1/ρ‖ + 2/ρ⊥)/3.
From a discrete version of equation (17.4) where ∇Φ is calculated using the potentials Φ at

discrete grid points one gets a system of linear equations that allows for the calculation of the
potential in each cell. From these potentials it is possible to calculate the current density using
equation (17.2). When the system is discretized using a regular grid of cubic cells, as depicted in
figure 6.2, there may also be non-conductive cells (see figure 17.1). For these cells equation (17.4)
leads to arbitrary potentials. However, these potentials have no influence for the calculation of
the current density using equation (17.2). Thus, non-conducting cells can be excluded from the
resulting system of linear equations. It is also possible to exclude cells where the potential is given
by the Dirichlet boundary conditions.

Figure 17.1 depicts the current density in a permalloy square with edge length l = 500 nm and
thickness d = 10 nm between two gold contacts. The overlap between the contacts and the square
is 30 nm. The AMR ratio of permalloy is assumed to be 2(ρ‖ − ρ⊥)/(ρ‖ + ρ⊥) = 5% and the ratio
between the specific conductivity of gold and permalloy is set to 8.8:1. The calculated volume of
1600 nm × 1000 nm × 20 nm is divided in 4 million cubic cells with an edge length of 2 nm leading
to a system of 1.615 million linear equations for the calculation of the potential. Outside this
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volume the current is assumed to be homogeneous. The linear system is solved using the iterative
αGMRES algorithm, that bases on the generalized minimization of residuals (GMRES), and an
SSOR preconditioner.205–207

The current density is now inserted in equation (3.3) to calculate the dynamics of the magnetiza-
tion leading to a self consistent calculation. First self consistent calculations of the magnetization
and current for the dynamics of magnetic vortices can be found in references [144, 204]. They
showed that there is a sizable influence of the AMR on the current-driven displacement of a mag-
netic vortex. In these calculations the linear system is solved directly. Iterative methods like the
aforementioned GMRES have two advantages. First the iterative solution makes use of the sparsity
of the discretized version of equation (17.4). In addition it is possible to start the iteration with
the potentials from the last time step. This leads to a drastic speed up of the calculations. This is
due to the fact that σ has only a small variation in time and thus the potential for the last timestep
yields a good approximation for the current timestep.

Finite Temperatures

The micromagnetic model used in the present work describes the magnetization dynamics at zero
temperature. In contrast experimental data is obtained at finite temperatures. In many cases it is
needed to take thermal effects into account to allow for a comparison of theoretical and experimental
results. A prime example for a thermal effect is the diffuse transition between the two regimes, that
are the domain wall is depinned or not depinned, in figure 15.6. From the analytical calculations
one finds a sharp transition.

The temperature leads to fluctuations of the magnetic moments. For a sample that has a
homogeneous temperature these fluctuations enter the equations of motion of the quasiparticles in
two ways. On one hand there is a change of the saturation magnetization that influences parameters
like the mass or damping time. On the other hand the quasiparticles perform a Brownian like
stochastic motion. This motion is especially important for systems with a positive Lyapunov
exponent where a small deviation in the initial conditions can lead to a strong difference in the
dynamics. This is for example the case during the depinning of domain walls. Here, the fluctuations
can facilitate or impede the depinning of the wall. For systems with a negative Lyapunov exponent,
like a vortex that is excited by an alternating field or current, the fluctuations are rapidly damped
out and the system returns to its stable trajectory in phase space. Here, the fluctuations are of
minor importance compared to the change of the saturation magnetization.

For time dependent currents, like current pulses, the sample is not in thermal equilibrium due to
the joule heating. Also for direct currents a temperature gradient may appear in the sample leading
to an inhomogeneous resistivity as discussed in section 9.3. To take all three effects into account
one needs to calculate the temperature at all positions inside the sample. For this calculation we
start from the continuity equation

cρ
∂T

∂t
= −~∇~jQ + S (17.7)

for the heat. Here, c is the specific heat and ρ is the density of the sample. This equation is similar
to equation (17.1) but it contains a source term

S = −~j ~∇Φ = −~∇(~jΦ) + Φ~∇~j (17.8)

that describes the Joule heating. The last term in equation (17.8) is zero since the divergence of
the current vanishes. With the heat transfer

~jQ = −λ~∇T, (17.9)

with the thermal conductivity λ, equation (17.7) reads

cρ
∂T

∂t
= ~∇λ~∇T − ~∇(~jΦ). (17.10)
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For the static case ∂T/∂t = 0 equation (17.10) has the same form as equation (17.4) and can be
solved likewise. In the dynamic case the differential equation can be numerically integrated in time.

In the following we will examine the influence of the changing saturation magnetization on
the magnetization dynamics. For this purpose we introduce the temperature dependent pa-
rameter η(T ) = Ms(T )/Ms(0) ≤ 1 that describes the decreasing saturation magnetization with
increasing temperature. A good approximation for η is given by the solution of the equation
η = tanh(ηTc/T ).

208 Here Tc is the Curie temperature of the magnet. We will now investigate
how the different quantities entering equation (3.3) scale with η. For this purpose equation (3.3)
is written as

d(η ~M )

d(t/η)
=− γ′η ~M × η ~Heff − γ′α

ηMs
η ~M ×

(

η ~M × η ~Heff

)

− (1 + ξα)µB
e(1 + α2)(1 + ξ2)(ηMs)3

η ~M ×
(

η ~M × (η2P~j ~∇)η ~M
)

− (ξ − α)µB
e(1 + α2)(1 + ξ2)(ηMs)2

η ~M × (η2P~j~∇)η ~M.

(17.11)

Using the definition of η we replace η ~M by ~M(T ) and ηMs by Ms(T ).
In section 2 it has been found that the demagnetization field depends linearly on the magne-

tization. For the exchange field one finds a linear dependence on the ratio between the exchange
constant A and the saturation magnetization. The temperature dependence of A is commonly
described by A(T ) ∝ M2

s (T ) which yields the same decrease for the exchange field as for the de-
magnetization field. For this reason the fields in equation (17.11) are replaced in the same way as
the magnetization, that is η ~Heff becomes ~Heff(T ).

From these considerations one finds that in the absence of a current the right hand side of
equation (17.11) becomes independent of η. To get rid of η on the left hand side one needs to
replace t/η by t(T ). Thus the magnetization needs a longer time to perform the same dynamics.
This leads for example to a decrease of the resonance frequency of a magnetic vortex.

With the replacement of the spin-polarized current η2P~j by P (T )~j(T ) and under the as-
sumption that the temperature dependence of the Gilbert damping parameter and the degree
of non-adiabaticity are negligible equation (17.11) becomes independent of η. It then reads

d ~M (T )

dt(T )
=− γ′ ~M (T )× ~Heff(T )−

γ′α
Ms(T )

~M(T )×
(

~M(T )× ~Heff(T )
)

− (1 + ξα)µB
e(1 + α2)(1 + ξ2)M3

s (T )
~M(T )×

(

~M(T )× (P (T )~j(T )~∇) ~M (T )
)

− (ξ − α)µB
e(1 + α2)(1 + ξ2)M2

s (T )
~M(T )× (P (T )~j(T )~∇) ~M (T )

(17.12)

with the resulting scalings Ms(T ) = ηMs(0), ~Heff(T ) = η ~Heff(0), t(T ) = t(0)/η, and P (T )~j(T ) =
η2P (0)~j(0).

In reference [209] experimental measurements of vortices excited by alternating magnetic fields
are compared with the analytical predictions from section 7. It is found that the experimental data
is well described when the above scalings are applied. However, for a description of the depinning
of domain walls, that is discussed in section 15, at finite temperatures it is inevitable to include the
stochastic motion of the wall. This should for example be possible by describing the domain wall
motion using a Fokker-Planck equation.

Non-Linearities

In equation (7.36) it has been assumed that the force due to the confining potential depends linearly
on the displacement of the vortex or antivortex core. In equations (13.38a) and (13.38b) the force
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Figure 17.2: Ratio Ωmax/ω for which
the steady state displacement of
the vortex core reaches a maxi-
mum. The displacement is calculated
by a numerical integration of equa-
tion (17.15) with Γ/ω = 0.02 and dif-
ferent values of u2a/ω2 and u2b/ω2.
The solid black line illustrate the val-
ues of a and b where the resonance
is not shifted, that is Ωmax = ω. A
straight line with b = 6a is denoted
by the dashed line.

has been linearized with respect to the angle φ that describes the rotation of the wall around
the wire axis. Both linearizations have been introduced to allow for an analytical solution of the
equations of motion. Here the non-linear dynamics of a magnetic vortex will be shortly discussed.

For larger excitations the confining potential for the vortex and for the antivortex can be
expanded up to fourth order. It then reads

E(X,Y ) = mω2
r(X

2 + Y 2 + a(X2 + Y 2)2 − bX2Y 2)/2, (17.13)

where a and b describe the strength of the non-linear terms of the force. As the potential changes,
the non-linearities influence the displacement of the vortex core in two ways. First the resonant
displacement is changed due to a changing slope of the potential. A second and more important
influence is the shift of the resonance frequency to lower or higher frequencies compared to the
linear case. To calculate this shift one can derive the non-linear equation of motion210

(
Ẋ

Ẏ

)

= −Γ

(
X + 2aX(X2 + Y 2)− bXY 2

Y + 2aY (X2 + Y 2)− bX2Y

)

+npω

(
−Y − 2aY (X2 + Y 2) + bX2Y
X + 2aX(X2 + Y 2)− bXY 2

)

+

(
u cos(Ωt)

0

)

(17.14)
from the non-linear energy using equation (7.50). For simplicity we shall assume that there is only
an excitation in x direction with a strength that is given by the velocity u. Equation (17.14) can
be written in the form

(
˙̂
X
˙̂
Y

)

= −Γ̂

(
X̂ + 2âX̂(X̂2 + Ŷ 2)− b̂X̂Ŷ 2

Ŷ + 2âŶ (X̂2 + Ŷ 2)− b̂X̂2Ŷ

)

+ np

(
−Ŷ − 2âŶ (X̂2 + Ŷ 2) + bX̂2Ŷ

X̂ + 2âX̂(X̂2 + Ŷ 2)− b̂X̂Ŷ 2

)

+

(

cos(Ω̂t̂)
0

)

(17.15)
where the dimensionless positions X̂ = ωX/u and Ŷ = ωY/u and the dimensionless time t̂ = ωt
describe the position in phase space. The trajectory of the vortex core is determined by the four
dimensionless parameters â = u2a/ω2, b̂ = u2b/ω2, Γ̂ = Γ/ω, and Ω̂ = Ω/ω. Equation (17.15) can
be integrated numerically. The according shift of the resonance frequency is depicted in figure 17.2
for Γ̂ = 0.02. This shift is in the order of the width of the resonance peak that is about 2

√
3Γ̂ ≈ 0.07.

Thus, to obtain a large displacement of the vortex core the shift of the resonance frequency has to
be taken into account.210

For constant fields and currents the velocity of a domain wall exhibiting a large angle φ has
been calculated by Hayashi et al.170 The limiting case for large excitations has also been derived
by Mougin et al.211 For time dependent excitations the equations of motion have to be solved
numerically.
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In view of the importance of vortex switching, which happens at large excitations, and fast
domain-wall velocities, that coincide with a large angle, for possible future memory devices it is
important to investigate the non-linear regimes of vortex and domain-wall dynamics in detail.

Dynamics of Interacting Domain Walls

In section 16 the interaction of domain walls is discussed. The analytical results are compared
with static micromagnetic calculations. It has been found that for transverse domain walls the
interaction is not negligible since the involved energy scales can have the same order of magnitude
as pinning potentials. Transverse walls are present in small wires (see section 5), that are important
for memory devices. Thus, a further investigation is needed. Here, the next step is the comparison
of the analytical results with micromagnetic simulations of domain-wall dynamics.
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18 Conclusion

In the present work the dynamics of the magnetization in micro and nanostructured materials ex-
cited by spin-polarized currents or magnetic fields is investigated. These investigations base on the
micromagnetic model and include numerical simulations and analytical calculations. The latter
base on models where the magnetization is described by a collective coordinates approach. As
model systems skyrmions in thin-film elements and domain walls in nanowires are discussed.

The analytical calculations for the skyrmions in thin-film elements base on the Thiele equation
that describes the motion of a magnetization pattern. The Thiele equation is valid for a magne-
tization that is shifted but undergoes no deformation. This equation is expanded to account for
the deformation of the magnetization at the boundaries of the sample. From the calculation of
the Zeeman energy it is found that in first order only skyrmions with a skyrmion number n = ±1,
that are vortices (n = 1) and antivortices (n = −1), are excited by an external magnetic field.
The spin-polarized current excites all kinds of skyrmion with non-vanishing n via the spin-transfer
torque. For a harmonic confining potential an analytical expression for the current- and field-driven
trajectory of a vortex or antivortex is derived. For harmonic excitations the vortex or antivortex
moves on an elliptical orbit. The ratio between the semiaxes depends on the ratio between the
exciting frequency and the resonance frequency of the vortex or antivortex. At resonance the
trajectory becomes circular.

The free parameters of the analytical calculations, that are the resonance frequency, the damping
constant, and a coupling constant for the non-adiabatic spin-transfer torque, are determined from
numerical simulations. The geometry dependence of these parameters meets analytical predictions,
that are the resonance frequency scales with the inverse of the lateral extension l of the film and
the ratio between damping constant and resonance frequency scales logarithmically with l.

With these parameters it is possible to compare the analytically predicted trajectories with the
results of the numerical simulations. Here special attention is put on the amplitude of the gyration
and its phase with respect to the excitation. The comparison yields good accordance between the
analytical and numerical results.

It is discussed how an inhomogeneous current flow is able to create an unbalanced Oersted
field that is also able to excite the vortex or antivortex. A scheme is derived that allows for the
numerical calculation of the Oersted field of arbitrary current densities.

For the analytical calculations it is argued that the unbalanced Oersted field has the same
effect as a spatially homogeneous external field that lays in the film plane. Thus the analytical
expression allows for a determination of the ratio between spin torque and Oersted field driven
motion by spotting the phase of the gyration. For a field-driven vortex the phase changes by 180
degrees when the chirality of the vortex is changed. For a current-driven vortex no phase change is
predicted. A comparison with measurements on field driven vortex gyrations shows the predicted
phase shift. For vortices that are directly traversed by the current the experimental phase shift of
45 degrees reveals that in the experimentally investigated geometry about 30 percent of the force
are due to the Oersted field while the remainder is due to the spin-transfer torque.

Basing on the aforementioned results a robust and direct measurement scheme for the
non-adiabatic spin torque using the displacement of magnetic vortices is derived. This scheme
allows us to distinguish between the displacements of the vortex core due to the non-adiabatic spin
torque, the adiabatic spin torque, and the Oersted field, independently of the exact direction of
the current flow. The scheme allows for a precise measurement of the non-adiabatic spin-torque
parameter ξ that is currently under strong debate.

Beside providing the possibility to experimentally distinguish between the adiabatic spin torque,
the non-adiabatic spin torque, and the Oersted field, the presented results allow for the construction
of new magnetic memories.

In a vortex random access memory (VRAM) a bit is stored using the handedness of a vortex
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in a thin-film element. The vortex is excited by a current that traverses the vortex and by a field
that is created by a strip line that is situated below the film. The analytical calculations show
that if the current and the field have a collinear alignment and are in phase their combined action
on the vortex depends strongly on the handedness of the vortex. For one handedness the vortex
exhibits a strong excitation while for the other handedness the actions are opposing each other and
the gyration may be completely quenched. This can be used for a handedness dependent switching
of the orientation of the vortex core, called polarization. Since the change of the polarization also
changes the handedness, this effect allows for writing a single bit. The excitation by collinear
currents and magnetic fields can also be used to read out the current state of the memory.

In contrast to the VRAM the antivortex random access memory (AVRAM) contains an an-
tivortex. The utilization of an antivortex allows for a perpendicular alignment of the current and
the field. Thus it is possible to use the Oersted field of the current eliminating the need of the strip
line.

Both memories have the advantage that they need no reading operation before writing, as it
would be the case for vortices that are switched by a current or a magnetic field alone. They also
do not require a preceding slow erasing procedure of the present memory state as flash memories.

For the analytical description of the domain wall the Thiele equation is extended in a way
that the collective coordinates describing the actual state of the magnetization can be non-spatial
coordinates. This equation is then used to derive an equation of motion for a transverse domain
wall. From this derivation one finds an analytical expression that connects the properties of the
domain-wall quasiparticle, that are the mass and the damping time of the wall, with the microscopic
parameters that enter the micromagnetic model.

A comparison with numerical simulations yields that this equation delivers a good description of
the field and current-driven dynamics of the wall. Subsequently the equation of motion is extended
to Bloch and Néel walls. For vortex walls the equation of motion can be used with effective
coefficients that are obtained by fitting results of numerical simulations.

A comparison of the analytically calculated domain-wall dynamics with experiments shows that
the equation of motion precisely describes oscillations of the wall in a restoring potential. From the
experiment the potential of the confined DW is extracted. For the given experimental geometry,
the results allow one to identify the current’s Oersted field as the main source of excitation of
the magnetization although the current flows directly through the sample. Using the analytical
equation it is possible to derive the domain wall mass and the Gilbert damping parameter α from
the experiment.

From the analytical calculations it is found that the force on a domain wall depends not only on
the current and the magnetic field but also on their time derivatives. This is of special importance
for the critical current density that is used to depin a domain wall as these dependencies are
independent of the origin of pinning at material defects or artificial pinning sites. This result
should allow for efficient displacements of domain walls by fast varying currents. For currents with
risetimes that are smaller than the damping time of the wall a strong reduction of the critical
current density is predicted. A comparison with experiments reveal that this reduction can indeed
be observed.

When the domain walls are close together their interaction becomes important. The dynamics of
interacting transverse domain walls can be calculated analytically by adding the interaction energy
to the energy that is used in the aforementioned equation of motion of the wall. This interaction
energy is calculated making use of a multipole expansion of the interaction energy up to third
order. For domain walls that are situated in neighboring wires it is found that the main deficiency
of the monopole model is the interaction of the monopole of the wall in the first wire with the
dipole of the wall in the second wire and vice versa. The next order are the dipole-dipole and the
quadrupole-monopole interactions. These interactions are found to be also of considerable size and
non-negligible. If both walls are in the same wire the dipole-monopole interaction vanishes and the
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first corrections are the dipole-dipole and the quadrupole-monopole interactions. The interaction
energy of two domain walls in parallel wires is compared with micromagnetic simulations and shows
a good agreement.

For the vortex or antivortex dynamics and for the domain-wall dynamics the analytical models,
that where presented here, have proven to be valuable not only in the interpretation of available
experimental or numerical results but also in predictions for new experiments and simulations.
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Appendix

A Non-Adiabatic Spin Torque

In this section a microscopic description for the non-adiabatic spin torque will be derived following
the calculations of Zhang and Li.24 This section is taken from reference [196].

For our description we assume that the localized d-electrons and the itinerant s-electrons are
coupled via the Heisenberg Hamiltonian

Hsd = −Jex~s~S (A.1)

where Jex is the coupling constant. ~s and ~S denote the itinerant and localized electrons, respectively.
The continuity equation for itinerant spins is

∂~s

∂t
+ ~∇Ĵ =

i

h̄
[Hsd, ~s] +

i

h̄
[Hscat, ~s] (A.2)

with the divergence of the spin current ~∇Ĵ , the torque due to the sd-interaction i
h̄ [Hsd, ~s], and the

torque due to electron scattering of the itinerant electrons i
h̄ [Hscat, ~s]. In a semiclassical approxi-

mation we replace the operators with their expectation values. In the limit h̄ → 0 the continuity
equation becomes

∂〈~s〉
∂t

+ 〈~∇Ĵ〉 = −Jex〈~S〉 × 〈~s〉 − Γ(~s) (A.3)

where Γ(~s) expresses the damping of the non-adiabatic electrons. We express the localized spins
with their magnetization ~M = −Ms〈~S〉/S and the itinerant spins with their induced magnetization.
The induced magnetization from the moving electrons

~m =
m0

~M

Ms
+ ~δm (A.4)

is divided into the equilibrium magnetization m0 which is parallel to ~M and the non-equilibrium
magnetization ~δm perpendicular to ~M . The damping Γ is assumed to be proportional to
the non-equilibrium magnetization. The inverse coefficient τsf is the average time before a
non-equilibrium spin flips. With these expressions the continuity equation becomes

∂ ~m

∂t
+ ~∇J = −SJex

Ms
~m× ~M −

~δm

τsf
. (A.5)

We assume a linear response of ~δm to a change of the magnetization ~M . The derivatives of ~δm
are of second order in the changes of ~M and will be neglected (see reference [24]). Then equation
(A.5) leads to

m0

Ms

∂ ~M

∂t
− µBP

eMs
(~j ~∇) ~M = −SJex

Ms

~δm× ~M −
~δm

τsf
(A.6)

expressing the magnetic current J with the density of the electric current ~j. Introducing the
exchange relaxation time τex = 1/(JexS) leads to

m0

Ms

∂ ~M

∂t
− µBP

eMs
(~j ~∇) ~M = − 1

τexMs

~δm× ~M −
~δm

τsf
. (A.7)

On the left-hand side we recognize two source terms while the right-hand side contains two dis-
sipative terms with different relaxation times. Expressing the spin-flip relaxation time with the
exchange relaxation time by introducing the ratio ξ = τex/τsf we write

−τex
m0

ξMs

∂ ~M

∂t
+ τex

µBP

ξeMs
(~j ~∇) ~M − 1

ξMs

~δm× ~M = ~δm. (A.8)
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This is an implicit equation in ~δm. We now use the scheme that has been used to get the explicit
equation (1.16). Multiplying both sides in a cross product with 1

ξMs

~M from the left leads to

τex
m0

ξ2M2
s

∂ ~M

∂t
× ~M − τex

µBP

ξ2eM2
s

((~j ~∇) ~M )× ~M − 1

ξ2
~δm = − 1

ξMs

~δm× ~M (A.9)

because ~δm has been defined to be perpendicular to ~M . Inserting equation (A.9) in equation (A.8)
yields

−τex
m0

ξMs

∂ ~M

∂t
+τex

µBP

ξeMs
(~j ~∇) ~M+τex

m0

ξ2M2
s

∂ ~M

∂t
× ~M−τex

µBP

ξ2eM2
s

((~j ~∇) ~M )× ~M− 1

ξ2
~δm = ~δm (A.10)

where the last term on the left-hand side can be brought to the right-hand side. Dividing by
(1 + ξ2)/ξ2 the equation becomes

~δm =
τex

1 + ξ2

(

−ξm0

Ms

∂ ~M

∂t
+
ξµBP

eMs
(~j ~∇) ~M − m0

M2
s

~M × ∂ ~M

∂t
+
µBP

eM2
s

~M × (~j ~∇) ~M

)

(A.11)

which is an explicit equation in ~δm. From the Hamiltonian in equation (A.1) we derive the addi-
tional torque on the magnetization. It is given by

T = − 1

τexMS

~M × ~δm. (A.12)

Inserting the result from equation (A.11) the torque reads

T =
1

1 + ξ2

(

ξm0

M2
s

~M × ∂ ~M

∂t
− ξµBP

eM2
s

~M × (~j ~∇) ~M − m0

Ms

∂ ~M

∂t
− µBP

eM3
s

~M × ( ~M × (~j ~∇) ~M)

)

.

(A.13)
Because m0 is small compared to Ms (m0/Ms ≈ 0.01 see reference [24]) we will neglect terms
proportional to m0/Ms. The extended LLG equation then is

d ~M

dt
= −γ ~M ×

(

~Heff − α

γMs

d ~M

dt

)

− ξbj
Ms

~M × (~j ~∇) ~M − bj
M2

s

~M × ( ~M × (~j ~∇) ~M) (A.14)

with bj =
µBP

eMs(1+ξ2)
.
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B Solving the Equation of Motion of the Vortex

B.1 Variation of Constants Ansatz

In this section we calculate the solution for the differential equation

(
Ẋ

Ẏ

)

=

(
−Γ −npω
npω −Γ

)(
X
Y

)

+

(
AeiΩt

BeiΩt

)

. (B.1)

To get this solution we follow the variation of constants ansatz. A fundamental system F (t) is a
matrix that is chosen so that the homogeneous part of equation (B.1) is solved by

(
X
Y

)

= F (t) ~C (B.2)

with a constant vector ~C which depends on the starting conditions. Thus the equation

Ḟ (t) ~C =

(
−Γ −npω
npω −Γ

)

F (t) ~C (B.3)

holds.
To solve the inhomogeneous equation (B.1) the vector ~C is replaced by a vector ~C(t) that

depends on time. Inserting this ansatz in equation (B.1) we get

Ḟ (t) ~C(t) + F (t) ~̇C(t) =

(
−Γ −npω
npω −Γ

)

F (t) ~C(t) +

(
AeiΩt

BeiΩt

)

. (B.4)

With the aid of equation (B.3) we get

F (t) ~̇C(t) =

(
AeiΩt

BeiΩt

)

(B.5)

which can also be written as

~̇C(t) = F−1(t)

(
AeiΩt

BeiΩt

)

. (B.6)

This equation can be integrated with respect to time to get the expression

~C(t) =

t∫

−∞

dt′ F−1(t′)

(
AeiΩt′

BeiΩt′

)

(B.7)

for ~C(t). This expression is inserted in equation (B.2) to find

(
X
Y

)

= F (t) ~C(t) = F (t)

t∫

−∞

dt′ F−1(t′)

(
AeiΩt′

BeiΩt′

)

(B.8)

which solves the inhomogeneous equation (B.1).

B.2 Integration of the Inhomogeneities

A fundamental system of equation (B.1) is

F (t) = e−Γt

(
inpeiωt −inpe−iωt

eiωt e−iωt

)

(B.9)
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with the inverse system

F−1(t) =
eΓt

2

(
−inpe−iωt e−iωt

inpeiωt eiωt

)

. (B.10)

With this fundamental system one can calculate the solution of the inhomogeneous equation using
equation (B.8). One gets

(
X
Y

)

= F (t)

t∫

−∞

dt′ F−1(t′)

(
AeiΩt′

BeiΩt′

)

= e−Γt

(
inpeiωt −inpe−iωt

eiωt e−iωt

) t∫

−∞

dt′
eΓt

′

2

(
−inpe−iωt′ e−iωt′

inpeiωt
′

eiωt
′

)(
AeiΩt′

BeiΩt′

)

=
e−Γt

2

(
inpeiωt −inpe−iωt

eiωt e−iωt

) t∫

−∞

dt′
(
−inpeΓt′−iωt′ eΓt

′−iωt′

inpeΓt
′+iωt′ eΓt

′+iωt′

)(
AeiΩt′

BeiΩt′

)

=
e−Γt

2

(
inpeiωt −inpe−iωt

eiωt e−iωt

) t∫

−∞

dt′
(
−AinpeΓt′+iΩt′−iωt′ +BeΓt

′+iΩt′−iωt′

AinpeΓt
′+iΩt′+iωt′ +BeΓt

′+iΩt′+iωt′

)

.

(B.11)

Carrying out the integration this leads to

(
X
Y

)

=
e−Γt

2

(
inpeiωt −inpe−iωt

eiωt e−iωt

)(−AinpeΓt+iΩt−iωt+BeΓt+iΩt−iωt

Γ+iΩ−iω
AinpeΓt+iΩt+iωt+BeΓt+iΩt+iωt

Γ+iΩ+iω

)

. (B.12)

After evaluating the matrix product this yields

(
X
Y

)

=
e−Γt

2

(

inpeiωt−AinpeΓt+iΩt−iωt+BeΓt+iΩt−iωt

Γ+iΩ−iω − inpe−iωt AinpeΓt+iΩt+iωt+BeΓt+iΩt+iωt

Γ+iΩ+iω

eiωt−AinpeΓt+iΩt−iωt+BeΓt+iΩt−iωt

Γ+iΩ−iω + e−iωt AinpeΓt+iΩt+iωt+BeΓt+iΩt+iωt

Γ+iΩ+iω

)

(B.13)

which can be simplified to

(
X
Y

)

=
eiΩt

2

(
A

Γ+iΩ−iω + A
Γ+iΩ+iω + inpB

Γ+iΩ−iω + −inpB
Γ+iΩ+iω

−inpA
Γ+iΩ−iω + inpA

Γ+iΩ+iω + B
Γ+iΩ−iω + B

Γ+iΩ+iω

)

. (B.14)

Writing the common denominator in front of the vector yields the form

(
X
Y

)

=
eiΩt

ω2 + (iΩ+ Γ)2

(
A(iΩ + Γ)−Bnpω
Anpω +B(iΩ+ Γ)

)

(B.15)

of the solution of equation (B.1).
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C Determination of the Position of the Vortex Core

In the micromagnetic simulations of the vortex dynamics the position of the vortex core is defined
as the position of the maximum out-of-plane magnetization. In these simulations a grid with a finite
cell size is used. For the raw data the resolution for the maximum out-of-plane magnetization is
given by the cell size of the simulation. This cell size is normally in the order of magnitude of some
nanometer. The resolution for the position of the vortex core can be enhanced by interpolating the
out-of-plane magnetization in the vortex core. There are different analytical approximations for the
shape of the vortex core. Each of these approximations has its assets and its drawbacks.70, 184, 212

Most of these functions do not fit the vortex well enough for our purpose. Their benefit is that
they may give insight into the dependences of the shape of the vortex core on the geometry and the
micromagnetic parameters of the sample. Here, we do not aim an analytical understanding. Thus,
we use two functions that fit the center of the vortex core well but are not physically motivated.
Since the vortex core is rotational symmetric we need a function of the form f(r) where r is the
distance from the center of the vortex core. In the following it will be discussed how to find the x
position of the maximum out-of-plane magnetization. The y position can be found likewise. For
the fit we will use the magnetization at the cell with the maximum value and its next neighbors. In
the following calculations we define the center of the coordinate system to be at the cell with the
maximum out-of-plane magnetization. Their next neighbors are at the positions (±∆x, 0) where
∆x is the cell size in x direction. Here the absolute values of the out-of-plane magnetizations are
denoted by ml, m0, and mr for the left neighbor, center, and right neighbor, respectively. With
the center of the vortex core at (x0, y0) the magnetization at the three cells has to be fitted with
the function f((x−x0)2+ y20). Having a closer look at the out-of-plane magnetization in figure C.1
one finds that there are at least two promising functions for the interpolation. One function is a
polynomial of second order, that is 1 − pr2, and the other is a Gaussian function, that is e−gr2 .
Both functions deviate by terms that are of fourth and higher orders in r. The parameters p and
g are determined from the fit.

C.1 Polynomial of Second Order

The polynomial of second order can be written as

1− p
(
(x− x0)

2 + y20
)
= (−p)x2 + (2px0)x+ (1− px20 − py20). (C.1)

It is given by the Lagrange polynomial

x(x−∆x)

2∆x2
ml −

(x+∆x)(x−∆x)

∆x2
m0 +

x(x+∆x)

2∆x2
mr =

ml − 2m0 +mr

2∆x2
︸ ︷︷ ︸

=−p

x2 +
mr −ml

2∆x
︸ ︷︷ ︸

=2px0

x+m0.

(C.2)
From this we can calculate the position of the maximum out-of-plane magnetization

xmax = x0 = −1

2

2px0
−p =

∆x

2

ml −mr

ml − 2m0 +mr
. (C.3)

C.2 Gaussian

The Gaussian function can be written as

e−g[(x−x0)2+y2
0
] = e−gy2

0e−g(x−x0)2 . (C.4)
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Figure C.1: Simulated out-of-plane magnetization
in a permalloy square with a lateral edge length
of l = 100.5 nm for the thicknesses (a) d = 10 nm,
(b) d = 20 nm, and (c) d = 30 nm in its ground-
state. Shown is the magnetization in the vicinity
of the center of the vortex core in dependence of
the distance r from the center of the vortex core,
that is the center of the sample. The lines denote
the two fits described in the text.

To calculate the parameter x0 we evaluate the Gaussian at the three given points, that are the
three cells, and get

e−gy20e−gx2
0 = m0 (C.5a)

e−gy20e−g(∆x+x0)2 = ml (C.5b)

e−gy2
0e−g(∆x−x0)2 = mr. (C.5c)

This can be transformed to

−gx20 = ln(m0) + gy20 (C.6a)

−g(∆x+ x0)
2 = ln(ml) + gy20 (C.6b)

−g(∆x− x0)
2 = ln(mr) + gy20 . (C.6c)

The parameter y0 is eliminated by subtracting equation (C.6a) from equations (C.6b) and (C.6c).
This yields

−g∆x2 − 2g∆xx0 = ln

(
ml

m0

)

(C.7a)

−g∆x2 + 2g∆xx0 = ln

(
mr

m0

)

. (C.7b)

From the sum and difference of both equations we get

−2g∆x2 = ln

(
mlmr

m2
0

)

(C.8a)

−4g∆xx0 = ln

(
ml

mr

)

. (C.8b)
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By dividing equation (C.8b) by equation (C.8a) we get

xmax = x0 =
∆x

2

ln(ml)− ln(mr)

ln(ml)− 2 ln(m0) + ln(mr)
. (C.9)

Equation (C.9) and equation (C.3) differ only by the logarithmic functions. In the center of the
vortex core the out-of-plane magnetization is close to one. Equation (C.9) can thus be rewritten as

xmax =
∆x

2

ln[1 + (ml − 1)]− ln[1 + (mr − 1)]

ln[1 + (ml − 1)] − 2 ln[1 + (m0 − 1)] + ln[1 + (mr − 1)]
≈ ∆x

2

ml −mr

ml − 2m0 +mr
(C.10)

since ln(1 + x) ≈ x for |x| ≪ 1. The resulting expression is identical to equation (C.3).

C.3 Accuracy

The above expressions for the position of the vortex core are exact if the out-of-plane magnetiza-
tion follows exactly f(r). As one can see from figure C.1 for larger r there are small deviations
between the magnetization and the fit leading to uncertainties in the position of the core. An esti-
mate for these uncertainties can be found by comparing the positions given in equation (C.3) and
equation (C.9). Tests with material parameters of permalloy showed that the difference between
the core positions determined from the Polynomial and the Gaussian fit depend on the size of the
simulation cells. For 2 nm cell size, that is the size that is mostly used in the present work, the
difference is about one hundredth of a nanometer. This value increases to about one tenth of a
nanometer for 4 nm cell size.
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D Integral of the Oersted Field

In section 9 we calculate the influence of an Oersted field. For these calculations we need to calculate
the integral

I(x, y, z, lx, ly, lz) =

lx/2−x∫

−lx/2−x

dx′
ly/2−y∫

−ly/2−y

dy′
lz/2−z∫

−lz/2−z

dz′
z′

√

x′2 + y′2 + z′2
3 . (D.1)

During the calculation of this integral we are faced with the problem that the integral of
1/
√

x2 + y2 + z2 with respect to x has the two different branches ln(
√

x2 + y2 + z2 + x) and
− ln(

√

x2 + y2 + z2 − x) for x > 0 and x < 0, respectively.203 To avoid any problems we en-
sure that all integrands are positive when the field is calculated inside the sample. The integral
can be written as a sum of eight integrals of the form

a∫

0

dx′
b∫

0

dy′
c∫

0

dz′
z′

√

x′2 + y′2 + z′2
3 . (D.2)

Splitting the integral in equation (D.1) in one integral for each octant one finds

I(x, y, z, lx, ly, lz)

=
lx/2−x∫

0

dx′
ly/2−y∫

0

dy′
lz/2−z∫

0

dz′ z′√
x′2+y′2+z′2

3 +
lx/2−x∫

0

dx′
ly/2−y∫

0

dy′
0∫

−lz/2−z

dz′ z′√
x′2+y′2+z′2

3

+
lx/2−x∫

0

dx′
0∫

−ly/2−y

dy′
lz/2−z∫

0

dz′ z′√
x′2+y′2+z′2

3 +
lx/2−x∫

0

dx′
0∫

−ly/2−y

dy′
0∫

−lz/2−z

dz′ z′√
x′2+y′2+z′2

3

+
0∫

−lx/2−x

dx′
ly/2−y∫

0

dy′
lz/2−z∫

0

dz′ z′√
x′2+y′2+z′2

3 +
0∫

−lx/2−x

dx′
ly/2−y∫

0

dy′
0∫

−lz/2−z

dz′ z′√
x′2+y′2+z′2

3

+
0∫

−lx/2−x

dx′
0∫

−ly/2−y

dy′
lz/2−z∫

0

dz′ z′√
x′2+y′2+z′2

3 +
0∫

−lx/2−x

dx′
0∫

−ly/2−y

dy′
0∫

−lz/2−z

dz′ z′√
x′2+y′2+z′2

3 .

(D.3)

This can be rewritten to match the form in equation (D.2). The integrals then read

I(x, y, z, lx, ly, lz)

=
lx/2−x∫

0

dx′
ly/2−y∫

0

dy′
lz/2−z∫

0

dz′ z′√
x′2+y′2+z′2

3 −
lx/2−x∫

0

dx′
ly/2−y∫

0

dy′
lz/2+z∫

0

dz′ z′√
x′2+y′2+z′2

3

+
lx/2−x∫

0

dx′
ly/2+y∫

0

dy′
lz/2−z∫

0

dz′ z′√
x′2+y′2+z′2

3 −
lx/2−x∫

0

dx′
ly/2+y∫

0

dy′
lz/2+z∫

0

dz′ z′√
x′2+y′2+z′2

3

+
lx/2+x∫

0

dx′
ly/2−y∫

0

dy′
lz/2−z∫

0

dz′ z′√
x′2+y′2+z′2

3 −
lx/2+x∫

0

dx′
ly/2−y∫

0

dy′
lz/2+z∫

0

dz′ z′√
x′2+y′2+z′2

3

+
lx/2+x∫

0

dx′
ly/2+y∫

0

dy′
lz/2−z∫

0

dz′ z′√
x′2+y′2+z′2

3 −
lx/2+x∫

0

dx′
ly/2+y∫

0

dy′
lz/2+z∫

0

dz′ z′√
x′2+y′2+z′2

3 .

(D.4)
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This can be written as

I(x, y, z, lx, ly, lz) = F1

(
lx
2
− x,

ly
2
− y,

lz
2
− z

)

− F1

(
lx
2
− x,

ly
2
− y,

lz
2
+ z

)

+ F1

(
lx
2
− x,

ly
2
+ y,

lz
2
− z

)

− F1

(
lx
2
− x,

ly
2
+ y,

lz
2
+ z

)

+ F1

(
lx
2
+ x,

ly
2
− y,

lz
2
− z

)

− F1

(
lx
2
+ x,

ly
2
− y,

lz
2
+ z

)

+ F1

(
lx
2
+ x,

ly
2
+ y,

lz
2
− z

)

− F1

(
lx
2
+ x,

ly
2
+ y,

lz
2
+ z

)

.

(D.5)

Here F1 is the function

F1(a, b, c) =

a∫

0

dx′
b∫

0

dy′
c∫

0

dz′
z′

√

x′2 + y′2 + z′2
3 (D.6a)

= [F (a, b, c) − F (0, b, c)] − [F (a, 0, c) − F (0, 0, c)]

− [F (a, b, 0) − F (0, b, 0)] + [F (a, 0, 0) − F (0, 0, 0)]
(D.6b)

with213

F (x′, y′, z′) =
∫

dx′
∫

dy′
∫

dz′
z′

√

x′2 + y′2 + z′2
3

= −
∫

dx′
∫

dy′
1

√

x′2 + y′2 + z′2

= −
∫

dx′
(

ln
(

y′ +
√

x′2 + y′2 + z′2
)

+
x′2

x′2 + z′2

)

= z′ arctan

(

x′y′

z′
√

x′2 + y′2 + z′2

)

− y′ ln
(

x′ +
√

x′2 + y′2 + z′2
)

− x′ ln
(

y′ +
√

x′2 + y′2 + z′2
)

.

(D.7)

The constant of the y integration is chosen as to simplify the x integration. F1 can now be calculated
as

F1(a, b, c) =c arctan

(
ab

c
√
a2 + b2 + c2

)

+b
(

ln
(√

b2 + c2
)

− ln
(

a+
√

a2 + b2 + c2
)

+ ln
(

a+
√

a2 + b2
)

− ln (|b|)
)

+a
(

ln
(√

a2 + c2
)

− ln
(

b+
√

a2 + b2 + c2
)

+ ln
(

b+
√

a2 + b2
)

− ln (|a|)
)

=c arctan

(
ab

c
√
a2 + b2 + c2

)

+ b arctanh

(
a√

a2 + b2

)

+ a arctanh

(
b√

a2 + b2

)

−b arctanh
(

a√
a2 + b2 + c2

)

− a arctanh

(
b√

a2 + b2 + c2

)

(D.8)

For x′ = 0, y′ = 0, or z′ = 0 the value of F (x′, y′, z′) has been replaced by the according limit. This
ensures that F1(a, b, c) goes to zero for a → 0, b → 0, or c → 0. From equation (D.5) it becomes
obvious that the integral is symmetric in x and y and antisymmetric in z.

For the calculation of the Oersted field outside the sample some of the boundaries of the
integrations in equation (D.4) become negative. In such cases we have to change the sign of the
boundary to ensure that all boundaries have the same sign. For the x and y integrations such a sign
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change changes the sign of the integral. A change of the sign of the boundary for the z integration
leaves the value of the integral unchanged. By comparing equations (D.4) and (D.6a) one finds
that the function F1(a, b, c) should have the same symmetry as the integral to be valid outside the
sample. Equation (D.8) reveals that the symmetry is indeed the same. Thus equation (D.5) is also
valid outside the sample.

Since F1(a, b, c) is symmetric in c and antisymmetric in a and b equation (D.5) can be written
as

I(x, y, z, lx, ly, lz) = F1

(

x− lx
2
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2
, z − lz

2

)
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2
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(D.9a)

= F1
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(D.9b)

independently of the values of x, y, z, lx, ly, and lz. A closer look at equations (D.9a), (D.9b),
and (D.5) reveals that the summation cancels out all terms in F1 that are independent of a, b or c.
This allows for a simplification of the expression in equation (D.5) that reads
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(D.10)

Here it is worth noting that F (a, b, c) does not show the symmetry of F1(a, b, c) with respect to a
and b.
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D.1 Spatial Derivatives

For the calculation of the spacial derivatives of I(x, y, z, lx, ly, lz) we need to calculate the derivatives
of F (a, b, c) with respect to the three parameters. The derivative with respect to a yields

dF

da
(a, b, c) =

c
(

− a2b

c
√
a2+b2+c2

3 + b
c
√
a2+b2+c2

)

1 + a2b2

c2(a2+b2+c2)

−
b
(

1 + a√
a2+b2+c2

)

a+
√
a2 + b2 + c2

− ln
(

b+
√

a2 + b2 + c2
)

− a2

b
√
a2 + b2 + c2 + a2 + b2 + c2

=− ln
(

b+
√

a2 + b2 + c2
)

− a2

a2 + c2

(D.11)

and the derivative with respect to c reads

dF

dc
(a, b, c) = arctan
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√
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For the remaining derivative we find

dF

db
(a, b, c) =

dF

db
(b, a, c) (D.13)

using the expression F (a, b, c) = F (b, a, c).

The spatial derivatives of the integral then read
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2

)

− Fa

(

y − ly
2
, x− lx

2
, z +

lz
2

)

+ Fa

(

y +
ly
2
, x− lx

2
, z +

lz
2

)

− Fa

(

y +
ly
2
, x+

lx
2
, z +

lz
2

)

+ Fa

(

y − ly
2
, x+

lx
2
, z +

lz
2

)

,
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and

dI

dz
(x, y, z, lx, ly, lz) = Fc

(

x− lx
2
, y − ly

2
, z − lz

2

)

− Fc

(

x+
lx
2
, y − ly

2
, z − lz

2

)

+ Fc

(

x+
lx
2
, y +

ly
2
, z − lz

2

)

− Fc

(

x− lx
2
, y +

ly
2
, z − lz

2

)

− Fc

(

x− lx
2
, y − ly

2
, z +

lz
2

)

+ Fc

(

x+
lx
2
, y − ly

2
, z +

lz
2

)

− Fc

(

x+
lx
2
, y +

ly
2
, z +

lz
2

)

+ Fc

(

x− lx
2
, y +

ly
2
, z +

lz
2

)

(D.16)

with

Fa(a, b, c) = − ln
(

b+
√

a2 + b2 + c2
)

(D.17)

and

Fc(a, b, c) = arctan

(
ab

c
√
a2 + b2 + c2

)

. (D.18)

As for the integral the summation cancels out all terms that do not depend on all three parameters.

D.2 Limiting Cases

Now we will calculate some approximations for special systems. These approximations are useful
for an analytical consideration of the current’s Oersted field. They also allow for a comparison of
the field that is calculated here with known solutions.

For the limiting case of an infinitely large film, that is lx = ly = ∞, the expression for the
in-plane field can be simplified. The integral can be calculated using equation (D.10). Due to the
translational invariance of the infinitely large film the integral does not depend on x and y. This
yields

lim
l→∞

I(x, y, z, l, l, lz) = lim
l→∞

I(0, 0, z, l, l, lz)

= lim
l→∞

[

F

(

− l

2
,− l

2
, z − lz

2

)

− F

(

− l

2
,− l

2
, z +

lz
2

)]

− lim
l→∞

[

F

(

− l

2
,
l

2
, z − lz

2

)

− F

(

− l

2
,
l

2
, z +

lz
2

)]

− lim
l→∞

[

F

(
l

2
,− l

2
, z − lz

2

)

− F

(
l

2
,− l

2
, z +

lz
2

)]

+ lim
l→∞

[

F

(
l

2
,
l

2
, z − lz

2

)

− F

(
l

2
,
l

2
, z +

lz
2

)]

.
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For large l the logarithms in each bracket in equation (D.19) cancel out and the integral becomes

lim
l→∞

I(x, y, z, l, l, lz) = 2π

(∣
∣
∣
∣
z − lz

2

∣
∣
∣
∣
−
∣
∣
∣
∣
z +

lz
2

∣
∣
∣
∣

)

. (D.20)

This allows for a calculation of the in-plane field

~H(x, y, z) =
jx~ey − jy~ex

2

(∣
∣
∣
∣
z − lz

2

∣
∣
∣
∣
−
∣
∣
∣
∣
z +

lz
2

∣
∣
∣
∣

)

(D.21)

using equations (9.4a) and (9.4b). This is the known solution for an infinite film.
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For an infinitely long wire (lx = ∞) with a rectangular crossection ly × lz one finds

lim
l→∞

I(x, y, z, l, ly , lz) = lim
l→∞

I(0, y, z, l, ly , lz)

= lim
l→∞

[

F

(

− l

2
, y − ly

2
, z − lz

2

)

− F

(

− l

2
, y − ly

2
, z +

lz
2

)]

− lim
l→∞

[

F

(

− l

2
, y +

ly
2
, z − lz

2

)

− F

(

− l

2
, y +

ly
2
, z +

lz
2

)]

− lim
l→∞

[

F

(
l

2
, y − ly

2
, z − lz

2

)

− F

(
l

2
, y − ly

2
, z +

lz
2

)]

+ lim
l→∞

[

F

(
l

2
, y +

ly
2
, z − lz

2

)

− F

(
l

2
, y +

ly
2
, z +

lz
2

)]

.
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The limit can be expressed as

lim
l→∞

I(x, y, z, l, ly , lz) =(2z + lz)

[

arctan

(
2y − ly
2z + lz

)

− arctan

(
2y + ly
2z + lz

)]

−(2z − lz)

[

arctan

(
2y − ly
2z − lz

)

− arctan

(
2y + ly
2z − lz

)]

−1

2
(2y + ly) ln

(
(2y + ly)

2 + (2z + lz)
2

(2y + ly)2 + (2z − lz)2

)

+
1

2
(2y − ly) ln

(
(2y − ly)

2 + (2z + lz)
2

(2y − ly)2 + (2z − lz)2

)

.

(D.23)

At a large distance from the wire, that is ly ≪
√

y2 + z2 and lz ≪
√

y2 + z2, we can expand

equation (D.23) in ly/
√

y2 + z2 and lz/
√

y2 + z2. Equation (D.23) is antisymmetric in ly and lz
thus the first non-vanishing term is linear in lx and ly. A series up to second order reads

lim
l→∞

I(x, y, z, l, ly , lz) ≈ − 2zlylz
y2 + z2

. (D.24)

With the wire’s crossection S = lylz and with aid of equations (9.4b) and (9.4c) the Oersted field
can be calculated as

~H(x, y, z) ≈ (y~ez − z~ey)Sjx
2π(y2 + z2)

(D.25)

as one would expect for an infinitely large wire with circular crossection. Since we calculated the
field far away from the wire the shape of the crossection of the wire becomes unimportant.

In the vicinity of the center of the sample ((x, y) = (0, 0)) the integral I(x, z, y, lx, lz, ly) can be
approximated by a Taylor series up to second order in x/lx and y/ly. Due to the aforementioned
symmetry conditions of I the only non-vanishing term is linear in y. The approximation then reads

I(x, z, y, lx, lz , ly) ≈
dI

dy
(0, z, 0, lx, lz, ly)y

= 4



arctan




lx(2z − lz)

ly
√

l2x + l2y + (2z − lz)2



− arctan




lx(2z + lz)

ly
√

l2x + l2y + (2z + lz)2







 y.

(D.26)

In thin squares, that is lx = ly = l and |2z| ≤ lz = d≪ l, one gets

I(x, z, y, lx, lz , ly) ≈ 4

(
2z − d√

2l
− 2z + d√

2l

)

y = − 8d√
2l
y. (D.27)
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lx

ly

lz

l′x
l′y

l′z

(X,Y,Z)

Figure D.1: Scheme of two cells that are involved in the calculation of the Oersted field. The first
cell (dashed red lines) is traversed by a homogeneous current with density ~j. This current generates
an Oersted field ~H in the second cell (solid blue lines). The arrow denotes a vector that points
from the center of the first cell to the center of the second cell.

Wit equation (9.4c) this allows us to approximate the out-of-plane field

Hz(x, y, z) ≈
√
2d(yjx − xjy)

πl
. (D.28)

It can be seen that in a sizeable distance from the boundaries of the square the out-of-plane field
is given by a gradient field. Its gradient depend only on the current density and the aspect ratio
of the sample.

D.3 Numerical Calculations for Arbitrary Samples and Currents

In numerical calculations samples of arbitrary shape with inhomogeneous current densities can be
divided in cubic cells as depicted in figure 6.2. In each cell the current and magnetization is assumed
to be homogeneous. The Oersted field in a distinct cell can then be calculated by the summation
of the fields that are generated by the currents in each cell. To determined the influence of the field
on the magnetization we need to average over the volume of the cell. To calculate the average field
in a cell with size l′x × l′y × l′z that is generated by a cell with size lx × ly × lz (see figure D.1) we
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replace the integral I in equation (9.6) by

I2(X,Y,Z, lx, ly, lz , l
′
x, l

′
y, l

′
z) =

1

l′xl′yl′z

X+l′x/2∫

X−l′x/2

dx

Y+l′y/2∫

Y−l′y/2

dy

Z+l′z/2∫

Z−l′z/2

dz I(x, y, z, lx, ly, lz)

=
1

l′xl′yl′z

X+l′x/2∫

X−l′x/2

dx

Y+l′y/2∫

Y−l′y/2

dy

Z+l′z/2∫

Z−l′z/2

dz

lx/2−x∫

−lx/2−x

dx′
ly/2−y∫

−ly/2−y

dy′
lz/2−z∫

−lz/2−z

dz′
z′

√

x′2 + y′2 + z′2
3

= − 1

l′xl′yl′z

X+l′x/2∫

X−l′x/2

dx

Y+l′y/2∫

Y−l′y/2

dy

Z+l′z/2∫

Z−l′z/2

dz

x+lx/2∫

x−lx/2

dx′
y+ly/2∫
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z+lz/2∫
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dz′
z′

√

x′2 + y′2 + z′2
3

= −
∑

i,j,k

∑

o,p,q

ijkopq

l′xl′yl′z
G1

(

X + i
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2
+ o

l′x
2
, Y + j

ly
2
+ p

l′y
2
, Z + k

lz
2
+ q

l′z
2

)

(D.29)

where i, j, k, o, p, and q assume values of -1 and 1. G1 is given by the integral

G1(X,Y,Z) =

Z∫

0

dz

Y∫

0

dy

X∫

0

dx

x∫

0

dx′
y∫

0

dy′
z∫

0

dz′
z′

√

x′2 + y′2 + z′2
3 =

Z∫

0

dz

Y∫

0

dy

X∫

0

dx F1(x, y, z)

= G(X,Y,Z) −G(0, Y, Z) −G(X, 0, Z) +G(0, 0, Z).

(D.30)

G is the function213

G(x, y, z) =

∫

dz

∫

dy

∫

dx F1(x, y, z)

=

∫
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∫
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′
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=
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R
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6
+
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( x
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+
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2
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( y
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)
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=
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R

24
+
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2
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)

+
xy3

6
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)
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x3y

6
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xR

)

+
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24
arctanh

( z

R

)

− 3xy2z − xz3

6
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with R =
√

x2 + y2 + z2 and R′ =
√

x2 + y2. Here, we took into account that G(x, y, 0) = 0.

G is symmetric in x and y and antisymmetric in z. Making use of this symmetry equation (D.29)
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can be written as

I2(X,Y,Z, lx, ly, lz, l
′
x, l

′
y, l

′
z) = −

∑

i,j,k

∑

o,p,q

kopq

l′xl′yl′z
G1

(

iX +
lx
2
+ o

l′x
2
, jY +

ly
2
+ p

l′y
2
, kZ +

lz
2
+ q

l′z
2

)

.

(D.32)
From this equation one finds a symmetry of I2 in X and Y as well as an antisymmetry in Z.

For numerical calculations equation (D.29) can be optimized. We find that all terms in G1 that
are constant or linear in x, y, or z cancel out in the summation leading to I2. G1 can thus be
replaced by

G′
1(x, y, z) =

(3x2 + 3y2 − 2z2)zR

24
+
πz

4
|xyz|+ x4 − 6x2y2 + y4

24
ln(z +R)

+
xy

6

(

(y2 − 3z2) arctan

(
xz

yR

)

+ (x2 − 3z2) arctan
( yz

xR

))

+
z

6

(
x(z2 − 3y2) ln(x+R) + y(z2 − 3x2) ln(y +R)

)
.
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Here the equality

π

2
|xyz| − xyz arctan

( xy

zR

)

= xyz arctan

(
zR

xy

)

= xyz

(

arctan

(
xz

yR

)

+ arctan
( yz

xR

))
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has been used. If all cells have the same size, that is l′x = lx, l
′
y = ly, and l

′
z = l′z, the integral can

be written as

I2(X,Y,Z, lx, ly, lz) =
∑

η,µ,ν

(2− 3|η|)(2 − 3|µ|)(2 − 3|ν|)
lxlylz

G′
1 (X + ηlx, Y + µly, Z + νlz) (D.35)

where η, µ, and ν assume values of -1, 0, and 1. This expression depends only on the distance
between the cells. Thus, the field can be written as the convolution

~H(~rχ) =
∑

ζ

K(~rχ − ~rζ)~j(~rζ) (D.36)

with

Kyx(~r) = −Kxy(~r) =
I2(x, y, z, lx, ly, lz)

4π
(D.37a)

Kzy(~r) = −Kyz(~r) =
I2(y, z, x, ly , lz , lx)

4π
(D.37b)

Kxz(~r) = −Kzx(~r) =
I2(z, x, y, lz , lx, ly)

4π
(D.37c)

Kxx(~r) = Kyy(~r) = Kzz(~r) = 0. (D.37d)

Here the sum over ζ is over all cells and ~rχ and ~rζ denote the position of the cells.
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E Solving the Equation of Motion of the Domain Wall

In this section the solution of equation (13.52) is derived for two special cases. The first case is the
absence of a potential and the second case is the presence of a harmonic confining potential.

E.1 Without a Potential

In the absence of a potential equation (13.52) becomes

Ẍ(t) = −Ẋ(t)

τd
+
C1

τd
Hext(t) + C2Ḣext(t) +

C3

τd
j(t) + C4j̇(t). (E.1)

Its solution can be derived using the variation of constants ansatz which is introduced in section B.
The homogeneous equation

Ẍ(t) = −Ẋ(t)

τd
(E.2)

has the solution
Ẋ(t) = Ce

− t
τd (E.3)

with a constant C that depends on the starting condition. For the solution of the inhomogeneous
equation we replace C by a variable C(t) that depends on time. Equation (E.1) then reads

Ċ(t)e
− t

τd =
C1

τd
Hext(t) + C2Ḣext(t) +

C3

τd
j(t) + C4j̇(t). (E.4)

The exponential function on the left-hand side can be brought to the right-hand side. After an
integration the equation reads

C(t) =

t∫

−∞

dt′ e
t′

τd

(
C1

τd
Hext(t

′) + C2Ḣext(t
′) +

C3

τd
j(t′) + C4j̇(t

′)

)

. (E.5)

By inserting this result in equation (E.3) we get the expression

Ẋ(t) =

t∫

−∞

dt′ e
− t−t′

τd

(
C1

τd
Hext(t

′) + C2Ḣext(t
′) +

C3

τd
j(t′) + C4j̇(t

′)

)

(E.6)

for the velocity of the domain wall.

E.2 With a Harmonic Confining Potential

For a harmonic confining potential

Epin =
m′

2
ω2
rX

2 (E.7)

with the resonance frequency ωr equation (13.52) becomes

Ẍ(t) = −Ẋ(t)

τd
− ω2

rX(t) +
C1

τd
Hext(t) + C2Ḣext(t) +

C3

τd
j(t) + C4j̇(t). (E.8)

This is a differential equation of second order in time. Introducing v = Ẋ this equation can be
written as the system

(
v̇(t)

Ẋ(t)

)

=

(− 1
τd

−ω2
r

1 0

)(
v(t)
X(t)

)

+

(C1

τd
Hext(t) + C2Ḣext(t) +

C3

τd
j(t) + C4j̇(t)

0

)

(E.9)
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of two differential equations of first order. This equation is solved using the variation of constants
ansatz which is introduced in section B. For the underdamped system, that is ω2

r > 1/(2τd)
2, one

finds the fundamental system

e
− t

2τd

(
(− 1

2τd
+ iω)eiωt (− 1

2τd
− iω)e−iωt

eiωt e−iωt

)

(E.10)

and its inverse

e
t

2τd

2iω

(

e−iωt −(− 1
2τd

− iω)e−iωt

−eiωt (− 1
2τd

+ iω)eiωt

)

, (E.11)

with the free frequency

ω =

√

ω2
r −

1

(2τd)2
. (E.12)

From this system we are able to calculate the solution

X(t) =

t∫

−∞

dt′ e
− t−t′

2τd
sin(ω(t− t′))

ω

(
C1

τd
Hext(t

′) + C2Ḣext(t
′) +

C3

τd
j(t′) + C4j̇(t

′)

)

. (E.13)

In the following we restrict ourselves to a current-driven excitation, that is H ≡ 0. The current
starts at t = 0. During the risetime τr the current density increases linearly to jmax. Subsequently
the current density remains constant. The position of the wall is calculated from equation (E.13).
Before the current density reaches its maximum the position of the wall is given by

X(t) =

t∫

0

dt′ e
− t−t′

2τd
sin(ω(t− t′))

ω

(
C3jmaxt

′

τdτr
+
C4jmax

τr

)

= (Fr(t, t)− Fr(t, 0)) jmax (E.14)

with

Fr(t, t
′) =

sin(ω(t− t′)) + 2τdω cos(ω(t− t′))

1 + 4τ2dω
2

2(t′C3 + τdC4)

τrω
e
− t−t′

2τd

− 2
(
1− 4τ2dω

2
)
sin(ω(t− t′)) + 8τdω cos(ω(t− t′))
(
1 + 4τ2dω

2
)2

2τdC3

τrω
e
− t−t′

2τd .

(E.15)

During the constant part of the current density the position of the wall is given by

X(t) =

τr∫

0

dt′ e
− t−t′

2τd
sin(ω(t− t′))

ω

(
C3jmaxt

′

τdτr
+
C4jmax

τr

)

+

t∫

τr

dt′ e
− t−t′

2τd
sin(ω(t− t′))

ω

C3jmax

τd

= (Fr(t, τr)− Fr(t, 0) + Fc(t, t)− Fc(t, τr)) jmax

(E.16)

where

Fc(t, t
′) =

sin(ω(t− t′)) + 2τdω cos(ω(t− t′))

1 + 4τ2dω
2

2C3

ω
e
− t−t′

2τd . (E.17)

In the remaining part we discuss the two limiting cases of large risetime (τr ≫ τd) and vanishing
risetime (τr = 0). For τr ≫ τd we use a series expression up to zeroth order in τd/τr. From this
expansion one finds

Fr(t, t
′) =

sin(ω(t− t′)) + 2τdω cos(ω(t− t′))

1 + 4τ2dω
2

2C3

ω
e
− t−t′

2τd
t′

τr
(E.18)
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and

Fc(t, t
′) =

sin(ω(t− t′)) + 2τdω cos(ω(t− t′))

1 + 4τ2dω
2

2C3

ω
e
− t−t′

2τd . (E.19)

This yields the wall position

X(t) =







4τdC3jmax
1+4τ2

d
ω2

t
τr

t ≤ τr
4τdC3jmax
1+4τ2

d
ω2 t > τr.

(E.20)

It can be easily seen that the maximum displacement is given by

X∞
max =

4τdC3jmax

1 + 4τ2dω
2
. (E.21)

For an intermediate region of τr a closer look at equation (E.16) reveals that the displacement
during the constant part of the current can be written as the sum

X(t) = (Fr(t, τr)− Fr(t, 0) − Fc(t, τr)) jmax
︸ ︷︷ ︸

oscillating

+X∞
max (E.22)

of an oscillating part of the form

A sin(ωt+ φ0)e
− t

2τd (E.23)

and a new equilibrium position. Due to its exponential decrease the oscillating part assumes its
maximum during the first period of its oscillation. Thus the global maximum of the displacement
is reached for tmax ≤ τr + 2π/ω.

For a risetime of τr = 0 it is important to take into account that lim
τr→0

(Fr(t, τr)− Fr(t, 0)) 6= 0.

From l’Hopital’s rule we find

lim
τr→0

(Fr(t, τr)− Fr(t, 0)) =
sin(ωt)C4

ω
e
− t

2τd (E.24)

which yields

X(t) =

(
sin(ωt)C4

ω
e
− t

2τd +
4τdC3

1 + 4τ2dω
2
− sin(ωt) + 2τdω cos(ωt)

1 + 4τ2dω
2

2C3

ω
e
− t

2τd

)

jmax

=

(

1 +

(
C4 + 4τ2dω

2C4 − 2C3

)
sin(ωt)− 4τdωC3 cos(ωt)

4τdωC3
e
− t

2τd

)

X∞
max.

(E.25)

The new equilibrium position of the wall is the same as for very large risetimes but due to the
additional damped oscillation the maximum displacement of the wall is larger than in the case
where τr ≫ τd.
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F Integrals of the Domain Wall Dynamics

In the analytical description of the domain wall dynamics one is faced with a number of integrals
that are calculated in the following. Here we use the abbreviation x′ = x/λ and X ′ = X/λ. The
integrals

∫ ∞

−∞
dx

1

cosh
(
x−X
λ

) = λ

∫ ∞

−∞
dx′

1

cosh(x′ −X ′)
= πλ (F.1)

and ∫ ∞

−∞
dx

1

cosh2
(
x−X
λ

) = λ

∫ ∞

−∞
dx′

1

cosh2(x′ −X ′)
= 2λ (F.2)

are needed for the calculation of the multipole moments in section 16. The latter one is also needed
to calculate the anisotropy energy in equation (13.35). For the calculation of this energy we also
need the value of the integral

∫ ∞

−∞
dx tanh

(
x−X

λ

)

= λ lim
a→∞

∫ a

−a
dx′ tanh(x′ −X ′)

= λ lim
a→∞

(
ln(cosh(a−X ′))− ln(cosh(−a−X ′))

)

= λ lim
a→∞

ln

(

ea−X′

+ e−a+X′

ea+X′

+ e−a−X′

)

= λ lim
a→∞

(

ln
(

e−2X′

)

+ ln

(

1 + e−2a+2X′

1 + e−2a−2X′

))

= −λ lim
a→∞

(
2X ′ +O

(
e−2a

))
= −2X

(F.3)

that is interpreted in the manner of Cauchy’s principal value. Here O
(
e−2a

)
is a function that is

at least of linear order in e−2a. By applying the same method we are also able to calculate213

∫ ∞

−∞
dx

x2

cosh2
(
x
λ

) = λ3 lim
a→∞

∫ a

−a
dx′

x′2

cosh2(x′)

=λ3 lim
a→∞

(
Li2
(
−e−2a

)
− Li2

(
−e2a

)
− 2a ln

(
e2a + 1

)
− 2a ln

(
e−2a + 1

)
+ 2a2 tanh(a)

)
(F.4)

with the second polylogarithm function Li2(x) defined by

∂

∂x
Li2(x) = − ln(1− x)

x
and Li2(0) = 0. (F.5)

For the calculation of the limit, equation (F.4) can be expressed as a series in e−2a. Using equa-
tion (F.5) one finds

Li2
(
−e−2a

)
= O

(
e−2a

)
. (F.6)

There is also a series expansion for the other polylogarithm function in equation (F.4). This
expression reads213

Li2
(
−e2a

)
= −1

2
ln2
(
−e−2a

)
+ iπ ln

(
−e−2a

)
+
π2

3
+O

(
e−2a

)
. (F.7)

For the logarithms we find

ln
(
e−2a + 1

)
= O

(
e−2a

)
(F.8)

and

ln
(
e2a + 1

)
= 2a+ ln

(
e−2a + 1

)
= 2a+O

(
e−2a

)
. (F.9)
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Finally the hyperbolic tangent is expressed by

tanh(a) = 1 +O
(
e−2a

)
. (F.10)

Using these expressions and
ln
(
−e−2a

)
= −2a+ iπ (F.11)

equation (F.4) can be written as

∫ ∞

−∞
dx

x2

cosh2
(
x
λ

) =λ3 lim
a→∞

(
1

2
(−2a+ iπ)2 − iπ (−2a+ iπ)− π2

3
− 4a2 + 2a2

)

=λ3 lim
a→∞

(

2a2 − 2aiπ − π2

2
+ 2aiπ + π2 − π2

3
− 2a2

)

=
π2λ3

6
.

(F.12)
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[86] J. Grollier, P. Boulenc, V. Cros, A. Hamzić, A. Vaurès, A. Fert, and G. Faini, Switching a
spin valve back and forth by current-induced domain wall motion. Appl. Phys. Lett. 83, 509
(2003).

[87] Y. Nakatani, A. Thiaville, and J. Miltat, Faster magnetic walls in rough wires. Nature Mater.
2, 521 (2003).

[88] A. Yamaguchi, T. Ono, S. Nasu, K. Miyake, K. Mibu, and T. Shinjo, Real-Space Observation
of Current-Driven Domain Wall Motion in Submicron Magnetic Wires. Phys. Rev. Lett. 92,
077205 (2004).

[89] A. Yamaguchi, T. Ono, S. Nasu, K. Miyake, K. Mibu, and T. Shinjo, Erratum: Real-Space
Observation of Current-Driven Domain Wall Motion in Submicron Magnetic Wires [Phys.
Rev. Lett. 92, 077205 (2004)]. Phys. Rev. Lett. 96, 179904 (2006).
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[116] E.-M. Hempe, M. Kläui, T. Kasama, D. Backes, F. Junginger, S. Krzyk, L. J. Heyderman, R.
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Heyderman, J.-U. Thiele, G. Woltersdorf, C. H. Back, A. Fraile Rodŕıguez, F. Nolting, T. O.
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problem for micromagnetic simulations including spin-transfer torque. J. Appl. Phys. 105,
113914 (2009).

[181] A. A. Thiele, Steady-State Motion of Magnetic Domains. Phys. Rev. Lett. 30, 230 (1973).

145



[182] A. A. Thiele, Applications of the gyrocoupling vector and dissipation dyadic in the dynamics
of magnetic domains. J. Appl. Phys. 45, 377 (1974).

[183] D. L. Huber, Dynamics of spin vortices in two-dimensional planar magnets. Phys. Rev. B
26, 3758 (1982).

[184] N. A. Usov and S. E. Peschany, Magnetization curling in a fine cylindrical particle. J. Magn.
Magn. Mat. 118, L290 (1993).

[185] L. Heyne, J. Rhensius, D. Ilgaz, A. Bisig, U. Rüdiger, M. Kläui, L. Joly, F. Nolting, L. J.
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