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Abstract

This thesis presents an analysis of precision physics in pair production of scalar leptons
at e+e− and e−e− linear colliders. From the measurement of the production cross-sections
near threshold and in the continuum it is possible to determine the masses and couplings
of the scalar leptons with high precision. This is important for the experimental establish-
ment of supersymmetry and the investigation of the fundamental source of supersymmetry
breaking.

In order to provide reliable theoretical predictions for the excitation curves near thresh-
old, the treatment of non-zero width and Coulomb rescattering effects is studied with spe-
cial emphasis on the preservation of gauge-invariance. The influence of backgrounds both
from Standard Model and supersymmetric sources is investigated, and it is shown how
they can be controlled with suitable cuts and beam polarization. Secondly, the complete
next-to-leading order radiative corrections to the production of right-chiral selectrons and
smuons in the Minimal Supersymmetric Standard Model (MSSM) are presented. This
comprises a first step towards a firm theoretical understanding of the scalar lepton cross-
sections in the continuum. The corrections are found to be sizeable for the expected
experimental accuracy. The third major part discusses the precision of the mass determi-
nation in threshold scans and the information about supersymmetric couplings that can
be obtained from scalar lepton production.

Zusammenfassung

In dieser Arbeit werden Untersuchungen zu Präzisionsphysik bei der Paar-Produktion
von skalaren Leptonen an e+e− und e−e− Linearcollidern vorgestellt. Durch die Messung
der Produktions-Wirkungsquerschnitte an der Schwelle und im Kontinuum können die
Massen und Kopplungen der skalaren Leptonen mit hoher Präzision bestimmt werden.
Dies ist von grundlegender Bedeutung für die experimentelle Identifikation von Supersym-
metrie und die Untersuchung des zugrundeliegenden Mechanismus, der für die Brechung
von Supersymmetrie verantwortlich ist.

Für eine zuverlässige theoretische Vorhersage der Anregungskurve an der Schwelle
wird die Behandlung von Breiten- und Coulomb-Streuungs-Effekten diskutiert, wobei im
besonderen die Erhaltung der Eichinvarianz berücksichtigt wird. Außerdem wird der Ein-
fluß von sowohl Standardmodell- als auch supersymmetrischen Hintergründen untersucht,
und gezeigt, wie diese durch geeignete Schnitte und Strahl-Polarisation kontrolliert wer-
den können. Des weiteren werden die vollständigen Strahlungskorrekturen zur Produktion
von rechts-chiralen Selektronen und Smyonen in nächstführender Ordnung im Minimalen
Supersymmetrischen Standardmodell (MSSM) vorgestellt. Dies stellt einen ersten Schritt
für ein fundiertes theoretisches Verständnis der Wirkungsquerschnitte der skalaren Lep-
tonen im Kontinuum dar. Die Korrekturen ergeben einen wichtigen Effekt, der deutlich
über der erwarteten experimentellen Präzision liegt. Ein dritter Schwerpunkt beschäftigt
sich mit der Präzision der Massenbestimmung in Schwellen-Scans und der Frage, welche
Informationen über supersymmetrische Kopplungen aus der Produktion von skalaren Lep-
tonen erhalten werden können.
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Chapter 1

Introduction

For more than two decades the Standard Model of electroweak interactions [1] in con-
junction with the theory of Quantum Chromodynamics [2] has been widely tested and
established in parts up to the quantum level in various collider and low-energy exper-
iments (see [3] for more information). Nevertheless, despite its enormous success, the
Standard Model cannot be regarded as the ultimate theory of nature because of several
conceptual problems. In particular in the context of Grand Unified Theories, which com-
bine the electroweak and strong forces in one gauge group, and in the attempt to include
gravity, severe difficulties arise within the Standard Model.

The introduction of supersymmetry [4] provides a framework which naturally resolves
the aforementioned problems. Supersymmetry extends the conventional Poincaré sym-
metry of space-time [5] by relating fermionic and bosonic states. As a consequence, in
a supersymmetric extension of the Standard Model all known particles are accompanied
by a partner which differs in the spin quantum number by 1/2. The partners of the
gauge and Higgs bosons would be gauginos and higgsinos with spin 1/2 while the leptons
and quarks are paired with scalar companions called scalar leptons (sleptons) and scalar
quarks (squarks).

If supersymmetry is realized in nature it obviously has to be broken since none of the
superpartner particles have been observed yet in experiment. The construction of a viable
mechanism as source of supersymmetry breaking is a difficult issue. While a variety of
breaking schemes has been proposed they mostly require the introduction of additional
unobserved degrees of freedom. For phenomenological purposes the breaking of supersym-
metry is therefore usually parametrized by the most general explicit breaking terms in
the Lagrangian. The structure of the breaking terms is constrained by the preservation of
gauge symmetry and the requirement of stabilization against quantum corrections from
higher scales. This leads to a set of so-called soft-breaking terms [6]. The stability of
quantum corrections furthermore implies that at least some of the supersymmetric part-
ners are relatively light, with a mass around 1 TeV or less, and thus within reach of this
or the next generation of high-energy colliders.

As a consequence of the soft-breaking, a large number of additional parameters are
introduced, resulting in a complex phenomenology and rich spectroscopy of states. If
supersymmetry is detected at a future collider it will therefore be an enormous task
to investigate the masses, couplings and quantum numbers of the superpartners. Here
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2 1 Introduction

the concept of a high-energy e+e− linear collider [7–9] is of particular interest since it
opens up the possibility of precision measurements of supersymmetric particle properties
[10–12]. The accurate determination of the soft-breaking parameters could then be used to
reconstruct the underlying breaking mechanism [13], which would probably be inaccessible
to direct measurements.

The scalar leptons are particularly suited for precision measurements because of their
clean final state signature consisting of few leptons plus nothing else. Thus, one of the
main challenges in the exploration of the slepton sector will be the accurate determination
of their characteristic properties, in particular their masses and couplings.

With a high luminosity linear collider it is possible to experimentally extract particle
masses from the measurement of the pair production cross-section near the kinematical
threshold [10]. The steep and distinct rise of the excitation curve allows a very precise
determination of the slepton masses in these so-called threshold scans.

In contrast to the masses of the superpartners, their couplings cannot be directly
modified by soft-breaking terms. As a consequence, supersymmetry predicts the Standard
Model gauge couplings and their supersymmetric counterparts to be equal. More precisely,
the usual gauge coupling between a vector boson V and fermionic current f , g(V ff), is
accompanied by the gauge coupling between the vector boson V and the scalar fermion
f̃ , ḡ(V f̃ f̃), as well as the Yukawa coupling between the gaugino partner Ṽ of the vector
boson, the fermion f and the sfermion f̃ , ĝ(Ṽ f f̃). Within supersymmetry all three kinds
of couplings are required to be identical, g = ḡ = ĝ.

To establish supersymmetry experimentally, it is therefore necessary to measure the
couplings of the superpartners precisely so as to test the predicted coupling relations. For
the strongly interacting sector this has been investigated in Ref. [14]. The production
cross-sections for scalar leptons, on the other hand, are sensitive to the supersymmet-
ric gauge and Yukawa couplings of the electroweak sector. A comparison of accurate
cross-section measurements with precise theoretical predictions would thus allow one to
constrain the values of these couplings and test their equivalence with the known Standard
Model couplings.

This thesis focuses on the theoretical requirements to obtain sufficiently accurate
and reliable theoretical predictions for the aforementioned precision measurements in the
scalar lepton sector. It covers three main topics:

The first main part is devoted to a careful analysis of excitation curves for sleptons pair
production near threshold. In this region the cross-sections are significantly modified by
the decay width of the sleptons. It is therefore studied how non-zero slepton widths can be
incorporated in theoretical predictions while preserving gauge-invariance. Additionally,
the most important higher order effects near threshold are taken into account, notably
Coulomb rescattering effects among the produced slepton pairs. The final state signatures
can be contaminated by substantial backgrounds both from Standard Model and super-
symmetric sources. They are taken into account including non-leading and interference
contributions and it is discussed how they can be reduced by appropriate cuts.

Secondly, the production of scalar leptons in the continuum far above threshold is
studied. A precise prediction of the cross-sections in this region is relevant for the mea-
surement of the slepton couplings. For this purpose the complete next-to-leading order
electroweak radiative corrections to the on-shell pair production of right-chiral smuons
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and selectrons are presented, including both virtual loop corrections and real photon
emission contributions. As a prerequisite, the on-shell renormalization of the relevant
supersymmetric contributions is discussed in detail.

In a third part the precision that can be achieved in the determination of slepton
masses and couplings is reexamined. The investigations of previous studies on threshold
mass measurements [15–18] are improved by incorporating the theoretical corrections
discussed in the first part. The determination of supersymmetric couplings has only
scarcely been addressed in the literature so far. The couplings that can be extracted
from the smuon and selectron cross-section are discussed and the achievable precision is
explored.

The thesis is organized as follows: After an introduction into supersymmetric exten-
sions of the Standard Model and defining the notations and conventions in chapter 2, the
phenomenology of sleptons at a linear collider is recapitulated in chapter 3. Chapter 4
deals with the investigation of the threshold behaviour of slepton pair production, while
in chapter 5 the O(α) corrections to these processes in the continuum are presented. The
determination of the slepton masses and couplings is analyzed in chapter 6. Finally the
conclusions are drawn in chapter 7. The appendix lists the input values used for the
numerical studies in this thesis.
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Chapter 2

Supersymmetric extensions of the

Standard Model

2.1 The Standard Model of electroweak interactions

The electroweak Standard Model [1] is a gauge theory with the gauge group SU(2)I ×
U(1)Y. In combination with the SU(3)C symmetry of Quantum Chromodynamics [2]
(QCD) it is compatible with all available experimental observations from collider experi-
ments (see [3] for details). The only deviation is the experimental evidence for neutrino
masses (see below), which however can easily be embedded in the Standard Model by
introducing appropriate mass terms.

The left-handed fermion matter fields form doublets L = (νl, l), Q = (qu, qd) under the
SU(2)I group while the right-handed components are singlets with respect to this group.
Here νl, l, qu, qd denote the fields of neutrino, charged lepton, up-type and down-type
quarks, respectively.

The Lagrangian for the fermionic sector reads

Lf = LLiγµDµLL +QLiγ
µDµQL + lRiγ

µDµlR + qu,Riγ
µDµqu,R + qd,Riγ

µDµqd,R. (2.1)

Each lepton and quark exists in three generations. Right-handed neutrinos are singlets
under all gauge groups and thus do not interact with the other particles of the Standard
Model. However, the existence of right-handed neutrinos has been proven by recent ex-
perimental evidence for mixing between the three neutrino generations [19]. Nevertheless,
since the neutrino masses are restricted to be very small, they will be neglected through-
out this thesis and therefore do not appear in the Lagrangian. The requirement of local
gauge symmetries leads to the introduction of gauge fields W 1,2,3

µ , Bµ in the covariant
derivatives Dµ,

Dµ = ∂µ − igIaW a
µ + ig′

Y

2
Bµ. (2.2)

where Y and Ia are the generators of the U(1) hypercharge and SU(2) isospin groups in
their adjoint representation. The fermions can be classified according to their quantum
numbers with respect to the hypercharge Y and the third component of the weak isospin
I3 as shown in table 2.1.
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6 2 Supersymmetric extensions of the Standard Model

I3 Y Q
(
νe

e−

)

L

(
νµ

µ−

)

L

(
ντ

τ−

)

L
−

1/2

1/2

−
−

1/2

1/2 −
0

1

νeR νµR ντR 0 0 0

eR µR τR 0 −1 −1(
u

d

)

L

(
c

s

)

L

(
t

b

)

L
−

1/2

1/2

1/6

1/6 −
2/3

1/3

uR cR tR 0 2/3 2/3

dR sR bR 0 −1/3 −1/3

Table 2.1: Quantum numbers of the Standard Model fermions.

The kinetic terms for the gauge fields are given by the Yang-Mills Lagrangian

LYM = −1

4

(
W a

µνW
aµν +BµνB

µν
)
, (2.3)

W a
µν = ∂µW

a
ν − ∂νW

a
µ + g εabcW b

µW
c
ν , (2.4)

Bµν = ∂µBν − ∂νBµ, (2.5)

using the symbol εabc for the structure constants of the SU(2)I group.
The particles of the Standard Model receive their masses due to the vacuum expecta-

tion value of a scalar field doublet, the Higgs field. It is described by the Lagrangian

LH = (Dµφ)† (Dµφ) − V (φ), V (φ) = −µ2φ†φ+
λ

4

(
φ†φ
)2
. (2.6)

At the minimum of the potential V the Higgs doublet acquires a non-zero vacuum expec-
tation value

|〈0|φ|0〉|2 =
2µ2

λ
=:

v2

2
, (2.7)

which generates mass terms for the gauge bosons via the covariant derivatives in (2.6).
Expanding the Higgs doublet around its vacuum state it can be written as

φ(x) =

(
G+(x)

1√
2
(v +H(x) + iG0(x))

)
, (2.8)

introducing the physical Higgs boson H with mass MH =
√

2µ and the massless Goldstone
bosons G0, G+ and G− = (G+)∗.

The mass eigenstates of the gauge bosons are mixtures of the fields introduced in (2.2),

W±
µ =

1√
2

(
W 1

µ ∓ iW 2
µ

)
, (2.9)

(
Zµ

Aµ

)
=

(
cW sW

−sW cW

)(
W 3

µ

Bµ

)
, (2.10)
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with the masses MW,MZ of the charged W± boson and the neutral Z boson given by

MW = gv/2, MZ = MW/cW, (2.11)

and the weak mixing angle θW defined as

cW = cos θW =
g√

g2 + g′2
=
MW

MZ

, sW = sin θW =
g′√

g2 + g′2
=

√
1 − MW

MZ

. (2.12)

The massless photon Aµ is the gauge boson of the unbroken electromagnetic subgroup
U(1)em ⊂ SU(2)W × U(1)Y with the electromagnetic coupling e given by

e =
g′g√
g2 + g′2

, g =
e

sW
, g′ =

e

cW
. (2.13)

The charges Q of the fermions with respect to the electromagnetic gauge group are listed
in the last column of table 2.1.

In order to generate masses for the fermions, the Higgs doublet is coupled to the
fermions via Yukawa interactions,

LYuk = clLLlRφ+ cuQLqu,Rφ̃+ cdQLqd,Rφ+ h.c., (2.14)

with the conjugated Higgs doublet φ̃ = εφ∗. Throughout this thesis mixing between the
fermion generation is neglected, i.e. the coupling matrices cf are taken to be diagonal.
In principle, (2.14) could include mass-generating terms for the neutrinos. However,
as already mentioned, in this work the masses and Yukawa couplings of neutrinos are
consistently neglected.

2.2 The minimal supersymmetric extension of the Stan-

dard Model

Supersymmetry is the only non-trivial extension of the well-known Poincaré and gauge
symmetries which may be applied to an S-matrix within quantum field theory [5]. The
generators of the supersymmetry group transform fermionic quantities into bosonic ones
and vice versa. In general, the number N of independent supersymmetry operators may be
larger than one, however for most phenomenological studies—and for this thesis—only the
case N = 1 is considered, since higher numbers of N do not allow chiral interactions [20].

In supersymmetric quantum field theories with N = 1 [4] each bosonic particle with
spin 0 or 1 is accompanied by a fermionic partner of spin 1/2. Apart from the spin, the
partners have identical quantum numbers.

2.2.1 Motivation for supersymmetry

In this section some of the most important theoretical drawbacks of the Standard Model
shall be addressed and it is explained how supersymmetry may help to overcome these
problems.
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Non-supersymmetric theories like the Standard Model suffer from the fact that radia-
tive corrections to scalar masses are quadratically dependent on any other scale present
in theory. In a Grand Unified Theory additional super-heavy gauge bosons with masses
of MGUT ∼ O(1016 GeV) are predicted. Any scalar mass would receive loop corrections
from these bosons which result in a shift of the scalar mass of

δM2
S

M2
S

∼ α
M2

GUT

Λ2
EW

∼ O(1027), (2.15)

where the electroweak scale ΛEW ∼ O(100 GeV) is taken as an rough measure of the
masses of all other particles which do not decouple at the high scale. In order to arrange
for the mass of the Higgs boson to be less than 1 TeV an enormous amount of finetuning
is required. Furthermore at each order of perturbation theory this finetuning has to be
performed independently. Since this possibility seems to be very unnatural one usually
speaks of the naturalness problem of the Higgs boson.

In supersymmetric theories each bosonic particle has a corresponding fermionic part-
ner with equal mass which also yields loop contributions to the scalar mass corrections.
Since the leading fermionic contributions enter with a minus sign relative to the bosonic
corrections, the two contributions cancel and the remaining dependence on the high scale
is merely logarithmic,

δM2
S

M2
S

∼ α log
M2

GUT

Λ2
EW

∼ O(1). (2.16)

In reality, of course, supersymmetry cannot be an exact symmetry of nature since no
supersymmetric partner to any of the Standard Model particles has been observed yet.
Due to some unknown breaking mechanism, the masses of the supersymmetric partners
are shifted to some higher scale above the electroweak scale. However, in order to keep
the quadratic corrections to scalar masses reasonably small, the supersymmetry breaking
scale m̃ is expected to exceed the typical mass scale m of the Standard Model by less
than one order of magnitude, so that the rough bound m̃ <∼ 1 TeV is obtained.

Beside the stability of the low-energy sector against radiative corrections, a realis-
tic picture of a Grand Unified Theory would require that the three gauge couplings of
the Standard Model unify at some high scale. In order to check this assumption, the
measured values of the fine structure constant α, the weak mixing angle sin2 θW and the
strong coupling αs are extrapolated to higher energies using two-loop renormalization
group [21] equations. Within the minimal supersymmetric extension of the Standard
Model (MSSM), the renormalization group running of the couplings is altered due to su-
persymmetric loop contributions [22]. In contrast to the Standard Model, it turns out
that in the MSSM the three running couplings unify with a remarkable agreement at a
scale MGUT ≈ 2× 1016 GeV in the MSSM under the assumption that the supersymmetry
breaking scale is around 1 TeV. Furthermore the numerical agreement does not change
significantly for a variation of the breaking scale by one order of magnitude [23].

It is widely expected that at some very high scale like the Plank scale the electroweak
and strong gauge interaction would ultimately unify with gravity into one fundamental
force. The only non-trivial unification of internal gauge symmetries and the space-time
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Names spin 0 spin 1
2

squarks, quarks Q
(
ũL d̃L

) (
uL dL

)

up-squark, up-quark U ũ∗R u†R

down-squark, down-quark D d̃∗R d†R

sleptons, leptons L
(
ν̃L ẽL

) (
νL eL

)

sneutrino, neutrino N ν̃∗R ν†R

selectron, electron E ẽ∗R e†R

Higgs, higgsinos Hu

(
H+

u H0
u

) (
H̃+

u H̃0
u

)

Hd

(
H0

d H−
d

) (
H̃0

d H̃−
d

)

Table 2.2: Chiral supermultiplets in the MSSM. The leptonic and quark fields exist in
three generation of which the first generation is shown here as an example.

symmetry can be achieved by introducing supersymmetry. On the other hand, the require-
ment of local supersymmetry naturally leads to the construction of General Relativity and
is therefore usually called supergravity [24]. It is known that supergravity models can-
not be considered as a “Theory of Everything”, since they are non-renormalizable (see
e.g. [25]). There is the hope that these problems will eventually be resolved within the
framework of superstrings, whereof supergravity is a low-energy effective theory. Never-
theless, supergravity models are important for the low-energy sector since they provide a
scenario for the breaking of supersymmetry.

In R-parity conserving models (see page 11), the lightest supersymmetric particle
(LSP) cannot decay into any of the Standard Model particles and is thus stable. When
being neutral it might therefore provide an ideal candidate for non-baryonic dark matter
[26], which forms the dominant contribution of all mass in the universe.

2.2.2 The Lagrangian of the MSSM

The Minimal Supersymmetric Standard Model (MSSM) introduces the minimal particle
content which is needed to extend the Standard Model into a supersymmetric theory.
Each of the fermions is embedded into a chiral multiplet which in addition contains a
complex scalar field. It is important to note that the left- and right-handed components
of a Dirac fermion reside in different superfields. Correspondingly each scalar field of
the Standard Model is accompanied by a fermionic partner. The gauge vector fields
together with a fermionic partner compose a vector multiplet. The general form of a
vector multiplet is quite involved, but by exploiting the invariance under supersymmetric
gauge transformations it can be restricted to a special gauge, such as the Wess-Zumino
gauge [4]. In addition to the aforementioned components each super-multiplet contains
an additional auxiliary field in order to close the supersymmetry algebra. However these
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Names spin 1
2

spin 1

bino, Bµ boson V ′ B̃ Bµ

winos, W a
µ bosons V a W̃ a W a

µ

gluinos, gluons V a
s g̃a Ga

µ

Table 2.3: Vector supermultiplets in the MSSM.

auxiliary fields have no dynamical degrees of freedoms and can be directly integrated out.
Since a superfield contains bosonic, commuting and fermionic, anti-commuting degrees

of freedom, it is a function not only of the usual Minkowski coordinates xµ, but also of
anti-commuting, spinor-like Grassmann variables θ, θ̄.

The particle content of the MSSM is listed in Tables 2.2 and 2.3. In contrast to the
Standard Model, two Higgs doublets Hu and Hd are required in the MSSM in order to
give masses to both up- and down-type fermions. The reason for this is that a Yukawa
coupling involving a conjugated Higgs field like φ̃ in (2.14) is forbidden in supersymmetry.
Furthermore, since the corresponding higgsinos contribute to the axial anomaly, two Higgs
doublets are needed to let the anomaly vanish.

The exactly supersymmetric part of the Lagrangian of the electroweak MSSM reads

Lsusy =

∫
d2θ

[
1

16g2
W aαW a

α +
1

16g′2
W ′αW ′

α + h.c.

]

+

∫
d2θ d2θ̄

[
Qeg′Y V ′+2gIaV a

Q+ U eg′Y V ′+2gIaV a

U +D eg′Y V ′+2gIaV a

D

+L eg′Y V ′+2gIaV a

L+ E eg′Y V ′+2gIaV a

E

+Hu e
g′Y V ′+2gIaV a

Hu +Hd e
g′Y V ′+2gIaV a

Hd

]
(2.17)

+

∫
d2θ
[
λuHuQU + λdHdQD + λeHdLE − µHuHd + h.c.

]
.

The first four lines of (2.17) comprise the most general supersymmetric Lagrangian for
the given gauge group SU(2)I× U(1)Y and the chiral superfields in Table 2.2. The
first line contains the kinetic terms for the gauge bosons and gauginos in terms of

the superfield tensor W ′
α = Dα̇D

α̇
e−g′Y V ′

Dα e
g′Y V ′

. Here Dα = ∂/∂θα − iσµ

αβ̇
θ̄β̇∂µ and

Dα̇ = −∂/∂θ̄α̇ + iθβσµ
βα̇∂µ are supersymmetry-covariant derivatives with Weyl-spinor in-

dices α, α̇ and σ denotes the usual Pauli matrices. The following three lines comprise
the kinetic and gauge interaction terms for the quarks, leptons and their scalar partners,
using the common symbols Y and Ia for the U(1) and SU(2) operators, respectively. As
before, the contribution from right-handed neutrinos and their supersymmetric partners,
the R-sneutrinos, is neglected.

The interaction terms in the last line are called the superpotential and contain the
Yukawa couplings which generate masses for the quarks and leptons. As before, Yukawa
couplings for the neutrinos are neglected. The superpotential of the MSSM incorporates
all possible terms which preserve lepton and baryon number. While both are conserved
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quantities in the Standard Model, in supersymmetric theories they could easily be broken
by additional terms in the superpotential. However, in order to avoid very rapid proton
decay, certain combinations of these additional couplings are constrained to be almost
zero. Therefore the baryon and lepton number violating terms are forbidden in the MSSM
by imposing an additional symmetry called R-parity. The eigenvalues of the R-parity are
+1 for Standard Model particles and −1 for their supersymmetric partners (“sparticles”).
As a consequence, within the MSSM, sparticles can only be produced in pairs and the
lightest supersymmetric particle (LSP) is stable.

Since no supersymmetric partner of any of the Standard Model particles has yet been
observed, supersymmetry cannot be realized exactly in the low-energy regime. Unfortu-
nately, the construction of a realistic breaking mechanism cannot be achieved within the
MSSM but requires the introduction of additional fields and interactions at high mass
scales. Since the nature of this “hidden sector” cannot be determined unequivocally, usu-
ally supersymmetry breaking is introduced into the MSSM Lagrangian by adding explicit
breaking terms. The structure of the breaking terms is constrained by non-renormalization
theorems [6] which ensure that no quadratic dependencies on high scales like in (2.15) are
present in the theory. This is called soft breaking of supersymmetry.

The most general form of the soft-breaking Lagrangian is given by

Lsoft = − 1

2

(
M1B̃B̃ +M2W̃

aW̃a +M3g̃
ag̃a + h.c.

)

−m2
Hu
|Hu|2 −m2

Hd
|Hd|2 −

(
bHuHd + h.c.

)

−m2
q̃L
|q̃L|2 −m2

ũR
|ũR|2 −m2

d̃R
|d̃R|2 −m2

l̃L
|l̃L|2 −m2

ẽR
|ẽR|2

−
(
λuAuHuq̃Lũ

∗
R + λdAdHdq̃Ld̃

∗
R + λeAeHd l̃Lẽ

∗
R + h.c.

)
.

(2.18)

It consists of mass terms for the gauginos (bino, wino and gluino), bilinear interactions
for the Higgs scalar doublets Hu and Hd, mass terms for the scalar fermions and trilinear
scalar interactions. In principle, there also exist soft-breaking terms for right-chiral sneu-
trinos ν̃R. However, since the mixing between left- and right-chiral components of the
neutrinos and sneutrinos is neglected throughout this thesis, the soft-breaking term for
R-sneutrinos is of no importance here and has been dropped in (2.18). The sfermion pa-
rameters m2

q̃L,ũR,d̃R ,̃lL,ẽR
and Au,d,e are 3×3 matrices in generation space. In general these

parameters can lead to large flavour-changing neutral currents (FCNC) and CP-violating
effects, which can be evaded by taking the matrices diagonal [27], as in mSUGRA or
GMSB, see section 2.3.

2.2.3 The mass spectrum of the MSSM

Nearly all of the mass eigenstates of the new MSSM particles are mixtures of the inter-
action eigenstates given in Tables 2.2, 2.3.

The Higgs sector of the MSSM (for a review see [28]) consists of two Higgs doublets
Hu and Hd which both acquire non-zero vacuum expectation values (vev) vu and vd in
the minimum of the scalar potential. The ratio of the two vev’s is written as

tan β ≡ vu/vd. (2.19)
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Three of the eight scalar degrees of freedom form the Goldstone bosons G0, G±. The
remaining five physical mass eigenstates can be divided into two CP-even neutral scalars
h0 and H0, one CP-odd neutral scalar A0 and a charged scalar with its conjugate H±. In
terms of the gauge eigenstates they are given by

(
G0

A0

)
=

√
2

(
sin β − cos β
cos β sin β

)(
=mH0

u

=mH0
d

)
, (2.20)

(
G+

H+

)
=

(
sin β − cos β
cos β sin β

)(
H+

u

H−∗
d

)
, (2.21)

(
h0

H0

)
=

√
2

(
cosα − sinα
sinα cosα

)(
<eH0

u − vu

<eH0
d − vd

)
. (2.22)

By taking the mass of the CP-odd scalar A0 as input parameter, the other masses can be
expressed in the form

M2
H± = M2

A0 +M2
W, (2.23)

M2
h0,H0 =

1

2

[
M2

A0 +M2
Z ∓

√(
M2

A0 +M2
Z

)2 − 4M2
A0M2

Z cos2 2β

]
. (2.24)

In this way, the Lagrangian parameters m2
Hu
, m2

Hd
and b are rephrased in terms of

tanβ,MA0 and MZ. The mixing angle α is given by

tan 2α = tan 2β
M2

A0 +M2
Z

M2
A0 −M2

Z

. (2.25)

It should be noted that these tree level relations are substantially modified by radiative
corrections [29–31]. In particular, the bound M 2

h0 < | cos 2β|MZ, which follows from
(2.24), gets weakened, yielding an upper bound of ∼135 GeV including dominant two-
loop corrections.

In the sfermion sector, mixing occurs between the scalar partners of left- and right-
handed fermions, in addition to the well-known CKM mixing1. The mass term for a given
flavour species f reads

Lm
f̃
= −

(
f̃ ∗

L, f̃
∗
R

)
M2

f̃

(
f̃L

f̃R

)
(2.26)

with

M2
f̃

=

(
m2

f +m2
F̃L

+M2
Z cos 2β (I3

f −Qfs
2
W) mf

(
Af − µ(cotβ)2I3

f

)

mf

(
Af − µ(cotβ)2I3

f

)
m2

f +m2
f̃R

+M2
Z cos 2β Qfs

2
W

)
, (2.27)

where I3
f and Qf denote the third component of the weak isospin and the electric charge

of the fermion f. Thus (cot β)2I3
f is cot β for up-type fermions and tan β for down-type

1For sneutrinos in the MSSM, only the partners of the left-chiral neutrinos are considered, so that the
mass is simply given by m2

ν̃ = m2

l̃L
+ M2

Z
/2 cos 2β.
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fermions. The quantities mF̃L
∈ {mq̃L

, ml̃L
} and mf̃R

∈ {mũR
, md̃R

, mẽR} are the corre-
sponding sfermion soft-breaking masses in (2.18).

Considering that the soft-breaking parameters Af are of the same order as the soft-
breaking masses of the MSSM and thus should not exceed a value of a few TeV, the
off-diagonal entries in (2.27) are very small for first and second generation sfermions.
This assertion is supported by the requirement that the global minimum of the scalar
potential, i.e. the vacuum state, does not break colour and charge invariance. For the
trilinear couplings Al of the sleptons this leads to the necessary upper bound [32]

Al < 3(m2
l̃L

+m2
l̃R

+m2
Hd

+ µ2). (2.28)

In principle, this condition does not place any stringent bound on Al for large m2
Hd

, which
can be the case for large values of tanβ but would require an undesirable amount of
finetuning. After all, if Al

<∼ O(1 TeV), mixing effects for the smuons are of order 10−5 or

less, for selectrons even below 10−9. Therefore in this thesis mixing is generally neglected
for the first two generations of sfermions. Mixing effects may be important in the stop
sector and, in the case of large tanβ, also for sbottoms and staus.

The higgsinos and electroweak gauginos mix with each other because of the effects of
electroweak symmetry breaking. The mixed states of the charged higgsinos H̃±

u,d and winos

W̃± = (W̃ 1 ± iW̃ 2)/
√

2 are called charginos χ̃±
i (i = 1, 2), while the neutral higgsinos

H̃0
u,d and gauginos B̃, W̃ 0 form four mass eigenstates called neutralinos χ̃0

i (i = 1, 2, 3, 4).
The mass eigenstates are conventionally ordered in ascending order, m2

χ̃±

1

< m2
χ̃±

2

and

m2
χ̃0

1

< m2
χ̃0

2

< m2
χ̃0

3

< m2
χ̃0

4

.

For the charginos the mass term reads

Lm
χ̃±

= −
(
W̃−, H̃−

d

)
X

(
W̃+

H̃+
u

)
+ h.c. (2.29)

where W̃±, H̃±
u,d are the Weyl spinors of the charged winos and higgsinos. The mass matrix

X =

(
M2

√
2MW sin β√

2MW cos β µ

)
(2.30)

can be diagonalized by two unitary matrices U and V according to

U∗XV −1 =

(
mχ̃±

1
0

0 mχ̃±

2

)
,

(
χ−

1

χ−
2

)
= U

(
W̃−

H̃−
d

)
,

(
χ+

1

χ+
2

)
= V

(
W̃+

H̃+
u

)
, (2.31)

yielding the mass eigenstates χ±
i . In the chiral representation, the Dirac spinors χ̃±

i of
the charginos are constructed from the Weyl spinors as follows,

χ̃−
i =

(
χ−

i

χ+
i

)
, χ̃+

i =

(
χ+

i

χ−
i

)
. (2.32)
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The neutralino mass term in the gauge eigenbasis is given by

Lm
χ̃0

= −1

2
ψ0> Y ψ0 + h.c., ψ0 =

(
B̃, W̃ 0, H̃0

d, H̃
0
u

)>
, (2.33)

with the symmetric mass matrix

Y =




M1 0 −MZ sW cβ MZ sW sβ

0 M2 MZ cW cβ −MZ cW sβ

−MZ sW cβ MZ cW cβ 0 −µ
MZ sW sβ −MZ cW sβ −µ 0


 , (2.34)

where the abbreviations sβ = sin β and cβ = cos β have been introduced. The transition
to the mass eigenbasis is performed by the unitary mixing matrix N ,

N∗Y N−1 = diag
(
m2

χ̃0
1
, m2

χ̃0
2
, m2

χ̃0
3
, m2

χ̃0
4

)
, χ0

i = Nijψ
0
j . (2.35)

The Majorana spinors χ̃0
i of the physical neutralinos are composed of the Weyl spinors as

follows,

χ̃0
i =

(
χ0

i

χ0
i

)
. (2.36)

In practice, there are two possibilities to specify the mixing matrix N . By choosing N to
have only real entries, some of the mass parameters in (2.35) may turn out to be negative.
On the other hand, all mass parameters can be made real and positive if N is allowed
to be an complex SU(4) matrix. Both methods have been applied for the calculations in
chapter 4 and it was checked that they agree numerically.

The Feynman rules for the complete MSSM are collected in [33, 34]. For this thesis
the generation of Feynman diagram amplitudes is performed with the computer algebra
package FeynArts [35]. Since the neutralinos are Majorana fermions, fermion-number-
violating interactions are possible within the MSSM. In FeynArts they are handled using
the Dirac spinor techniques of Ref. [36]. Recently the Feynman rules for the MSSM have
been implemented in a comprehensive model file for FeynArts [37].

2.3 Supersymmetry breaking schemes

As mentioned in the previous section it is obvious that supersymmetry cannot be an exact
symmetry of nature, however it is far from obvious what can be accounted for as the source
of supersymmetry breaking. Furthermore, it is impossible to construct a realistic breaking
scenario within the phenomenologically accessible particle content of the MSSM, because
of the existence of mass sum rules [38]. Therefore, the origin of supersymmetry breaking
is usually transferred to a “hidden sector” of particles which have no direct coupling to the
MSSM particles. While this opens up a variety of possibilities to construct viable breaking
mechanisms, more important from a phenomenological point of view is the question, how
the supersymmetry breaking is mediated from the hidden to the visible sector. There are
three main proposals for the mediating interactions.
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2.3.1 Gravity-mediated supersymmetry breaking

Within the framework of supersymmetry, gravity can be introduced in a very elegant
way by requiring that the Lagrangian is not only invariant under global supersymmetry
but also under the local variation of supersymmetry. In analogy to gauge theories this
requires the existence of an additional degree of freedom, which in this case is a fermion
with spin 3/2 and odd R-parity. It can be identified as the supersymmetric partner of the
spin-2 graviton. Thus the resulting locally supersymmetric theory unifies the space-time
symmetries of general relativity with supersymmetry transformations and is therefore
called supergravity [24, 39].

In models of gravity-mediated supersymmetry breaking the hidden sector of the theory
communicates with the MSSM particles through gravitational interactions [25]. Since
gravity is flavour-blind, the breaking terms can be realized in a minimal version [40],
introducing a common scalar mass parameter m0 and trilinear coupling A0, a universal
gaugino mass parameter M1/2 and the bilinear Higgs parameter b. This reduced set of
breaking parameters is called minimal supergravity (mSUGRA) and can be accounted for
by a global U(N) symmetry. The framework of mSUGRA has the virtue of being highly
predictive, since the soft-breaking parameters of the MSSM in (2.18) can be expressed in
terms of just four parameters,

m2
q̃L

= m2
ũR

= m2
d̃R

= m2
l̃L

= m2
ẽR

= m2
Hu

= m2
Hd

= m2
0, (2.37)

Au = Ad = Ae = A0, (2.38)

M1 = M2 = M3 = M1/2, (2.39)

and the bilinear parameter b. Furthermore, also the superpotential parameter µ—up to
its sign—can be constrained by the requirement of electroweak symmetry breaking. b is
usually re-expressed in terms of tan β. While eqs. (2.37)–(2.39) can be assumed to hold
at an energy scale around the Planck scale or GUT scale, the breaking parameters receive
important radiative corrections at other scales, thereby leading to a more complicated
spectrum at the weak scale. This scale dependence of the soft breaking parameters can
be determined with renormalization group studies [41], so that the low-energy spectrum
can be predicted in terms of the four universal mSUGRA parameters.

An important characteristic of the weak scale mSUGRA spectrum is a neutralino LSP,
χ̃0

1, which is an almost pure bino and has only small admixtures of wino and higgsino com-
ponents. The second lightest neutralino, χ̃0

2, typically has a dominant wino component.
Furthermore, the scalar leptons are generally considerably lighter than the scalar squarks.

2.3.2 Gauge-mediated supersymmetry breaking

In the concept of gauge-mediated supersymmetry breaking (GMSB) [42] the breaking of
supersymmetry is transmitted to the visible sector by the ordinary gauge interactions
of the MSSM. For this purpose, additional chiral supermultiplets, called messengers, are
introduced which are subject to the gauge interaction and also couple to the hidden source
of symmetry breaking. The messengers impose masses on the MSSM gauginos and scalars
through radiative corrections.
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Since the gauge interactions are significantly stronger than gravitational forces, the
typical scale for supersymmetry breaking and the messenger particles in GMSB will be
significantly lower than in mSUGRA, around 100 TeV. However, as a consequence, the
messengers then would affect the renormalization group running of the gauge couplings
and might threaten their apparent unification at the GUT scale. To avoid this problem,
the messengers are often considered to exist in multiplets of the SU(5) global symme-
try that contains the Standard Model gauge group. In this case the sparticle spectrum
depends on just five parameters,

√
〈F 〉, Mmess, Nmess, Λ, tanβ, (2.40)

where 〈F 〉 denotes the vev of a hidden auxiliary field that breaks supersymmetry, Mmess

is the messenger mass scale, Nmess is an index that depends on the number of messenger
fields and their gauge representation, and Λ is a universal soft breaking scale. As in
mSUGRA, the bilinear Higgs term is absorbed in favour of tan β and the absolute value
of µ is fixed by the requirement of electroweak symmetry breaking (the sign of µ still
needs to be specified). The soft-breaking masses of the gauginos and scalars are then
given by

Mi = Nmess
αi

4π
g

Λ2

Mmess

, (i = 1, 2, 3), (2.41)

m2
φ = 2Nmessf

Λ3

Mmess

∑

i

( αi

4π

)2

Cφ
i , (2.42)

with Cφ
i being the quadratic Casimir invariant for the gauge group i of the scalar φ. g and

f are loop functions of the diagrams which contribute to the radiative mass generation [43].
The trilinear couplings Aj are almost zero at the messenger scale since they are suppressed
by one loop order. However, they acquire non-vanishing values from the evolution down
to the weak scale.

Since the masses of the sfermions only depend on their gauge quantum number, this
automatically leads to degeneracy between the three generations, thereby naturally sup-
pressing FCNC effects. Another important consequence of GMSB is the rôle of the
gravitino—which does not have phenomenological consequences in mSUGRA—as the
LSP. Sleptons are typically considerably lighter than squarks, and it may easily be that
the next-to-lightest supersymmetric particle is a stau instead of a neutralino.

2.3.3 Anomaly-mediated supersymmetry breaking

In general, soft supersymmetry breaking terms receive contributions from the super-Weyl
anomaly via loop effects. If the effects of gravity and gauge meditation are somehow
suppressed, the anomaly mediated supersymmetry breaking (AMSB) can be the dominant
mechanism for the generation of soft breaking terms. This idea was invented and is mostly
discussed in the context of brane models [44]. The super-Weyl anomaly is connected
with the violation of scale invariance. Therefore the anomaly-mediated contributions to
supersymmetry breaking can be written in a form that does not depend on the energy
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scale and need not be extrapolated with renormalization group equations,

Mi =
βi

gi

m3/2, (2.43)

m2
φ = m2

0 −
1

4
m3/2

(
∑

i

∂γφ

∂gi
βi +

∂γφ

∂λ
βλ

)
, (2.44)

Aλ = −βλ

λ
m3/2. (2.45)

Here gi, i = 1, 2, 3 are the gauge couplings and λ refers to one of the Yukawa couplings
in the last line of (2.17). βi,λ denotes the relevant β-function and γφ is the anomalous
dimension of the chiral superfield φ. All anomaly-mediated soft breaking terms only
depend on the single parameter, the m3/2 gravitino mass. However, in order to avoid
negative (tachyonic) squared scalar masses, an additional contribution m0 to the scalar
masses has to be introduced, which must originate from some other mediation mechanism.
In the minimal form, as in (2.44), this scalar parameter is assumed to be universal. As
for mSUGRA and GMSB, tanβ and the sign of µ also have to be specified as input
parameters.

A direct consequence of (2.43) is the prediction of the ratios of the gaugino mass
parameters |M1| : |M2| : |M3| ≈ 2.8 : 1 : 7.1. Accordingly, the LSP is the lightest
neutralino χ̃0

1 with a dominant wino component, in contrast to GMSB and mSUGRA
where χ̃0

1 is bino-like. The next-to-lightest supersymmetric particle is the lightest chargino
χ̃±

1 which is a almost pure wino and very close in mass to the LSP. While in most scenarios
the sleptons are lighter than the squarks, this is not a necessary feature of AMSB.

2.3.4 Reconstruction of supersymmetric theories

Even after detection of supersymmetric particles, it will be a difficult task to disentangle
the mechanism that governs the spectrum of supersymmetry breaking. Although the
models presented in the last sections differ by some distinct features, it is not possible to
identify a particular observable that could be interpreted as an unambiguous signal of a
specific breaking scheme.

Since in most models the breaking source is related to physics at some high energy
scale, one could try to reconstruct the parameter spectrum at this scale by renormalization
group evolution [13]. This bottom-up approach has the advantage that no assumption
about the high-scale structure has to be made2.

However, since this direct reconstruction depends on all parameters of the MSSM
independently, it is in practice much more involved. In particular, the soft-breaking
parameters at the weak scale have to be measured very precisely. One can see from
Fig. 2.1 that in the process of renormalization group evolution to the high scale the error
bands are significantly widened. For a stable extrapolation it is therefore essential to have
precision data available.

2In so-called top-down approaches, a given model is assumed at the high scale and, after evolution
down to the weak scale, its consistency with the data has to be checked.
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(a) (b)

Figure 2.1: Evolution of gaugino (a) and sfermion (b) parameters in the bottom-up ap-
proach for a exemplary mSUGRA point (m0 = 200 GeV, M1/2 = 190 GeV, A0 = 550
GeV, tanβ = 30, µ < 0). The widths of the bands indicate 95% confidence level. Figure
taken from [13].

The ideal tool for this purpose is a high-energy e+e− linear collider3. Several proposals
for such a machine have been developed by different institutions in the world [7–9]. Con-
cerning their physics prospects [10–12], the high luminosity of such a linear collider would
allow one to measure the masses and couplings of Standard Model and supersymmet-
ric particles with unparallelled precision. On the other hand, the expected experimental
performance would require some effort from the theoretical side in order to match the
experimental accuracy.

3For certain purposes also the e−e−, e−γ and γγ options are considered.



Chapter 3

Phenomenology of sleptons at linear

colliders

In supersymmetric theories with R-parity conservation, such as the MSSM, scalar leptons
can be produced in pairs. The focus of this thesis is on the scalar partners of the first
two generation leptons, i.e. smuons and selectrons. Since mixing amongst smuons and
selectrons is neglected (see section 2.2.3), the partners of the left- and right-chiral leptons,
l̃L and l̃R, are also the mass eigenstates of the sleptons. Many authors have studied the
production of smuons [45, 46], selectrons [45, 47–49] and their decay [48, 50] at the Born
level.

Scalar muons are produced via s-channel photon and Z-boson exchange in e+e− an-
nihilation, see Fig. 3.1 (a),

e+ e− → µ̃+
i µ̃

−
i (i = L/R). (3.1)

Due to conservation of angular momentum, the smuons are produced in an S-wave, so
that near threshold, the cross-section rises ∼ β3, where

β =

√

1 −
4m2

µ̃i

s
(3.2)

denotes the smuon velocity. The Born cross-section for the production of on-shell smuons
reads

σ[e+ e− → µ̃+
i µ̃

−
i ] =

πα2

3s
β3

[
1 − gi

1 − 4s2
W

2sWcW

s

s−M2
Z

+ g2
i

1 + (1 − 4s2
W)2

16s2
Wc

2
W

(
s

s−M2
Z

)2 ]
.

(3.3)

Here

gL =
−1 + 2s2

W

2sWcW
, gR =

sW

cW
(3.4)

denote the couplings of the Z-boson to left- and right-handed muons, respectively. One
can incorporate some of the leading QED corrections by evaluating the fine structure

19
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e−

e+

µ−

µ+

γ, Z

e−

e+

e−

e+

γ, Z

e−

e+

e−

e+

χ0
j

(a) (b) (c)

Figure 3.1: Leading order diagrams for the pair production of smuons and selectrons at
in e+e− or e−e− scattering.
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Figure 3.2: Born cross-sections for right- and left-chiral smuon pair production in e+e−

annihilation. Values for SPS1 scenario.

constant α at the scale
√
s. In the continuum, the cross-sections typically take on values

of 20 − 50 fb for smuon masses around 200 GeV, see Fig. 3.2.
In the following chapters, the use of polarized initial beams will be frequently discussed.

Therefore the polarized cross-sections for smuon pair production are also given here,

σ[e+R e
−
L → µ̃+

i µ̃
−
i ] =

2πα2

3s
β3

[
1 + gi gL

s

s−M2
Z

]2

, (3.5)

σ[e+L e
−
R → µ̃+

i µ̃
−
i ] =

2πα2

3s
β3

[
1 + gi gR

s

s−M2
Z

]2

. (3.6)

The other polarization combinations vanish.

Scalar electrons, in addition to the s-channel γ, Z exchange, Fig. 3.1 (b), are also
produced via exchange of neutralinos χ̃0

j in the t-channel, Fig. 3.1 (c). As a consequence,
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Process exchange particles orbital wave threshold excitation

e+L e
−
R → ẽ+

R ẽ
−
R γ, Z, χ̃0 P-wave ∝ β3

e+Re
−
L → ẽ+

R ẽ
−
R γ, Z P-wave ∝ β3

e+L e
−
L → ẽ+

R ẽ
−
L χ̃0 S-wave ∝ β

e+Re
−
R → ẽ+

L ẽ
−
R χ̃0 S-wave ∝ β

e+L e
−
R → ẽ+

L ẽ
−
L γ, Z P-wave ∝ β3

e+Re
−
L → ẽ+

L ẽ
−
L γ, Z, χ̃0 P-wave ∝ β3

e−Re
−
R → ẽ−R ẽ

−
R χ̃0 S-wave ∝ β

e−L e
−
R → ẽ−L ẽ

−
R χ̃0 P-wave ∝ β3

e−L e
−
L → ẽ−L ẽ

−
L χ̃0 S-wave ∝ β

Table 3.1: Classification of selectron production modes in terms of the exchanged particles,
the orbital angular momentum of the final state wave function and the rise of the excitation
curve near threshold. The dependence on the beam polarization is also given.

in contrast to the smuon case, selectrons can also be generated in mixed pairs ẽRẽL.
Furthermore they can be produced in e−e− scattering, where only the neutralino exchange
contributes. The different production modes can be classified according to Tab. 3.1.

The formulae for the corresponding polarized Born cross-sections read:

σ[e+−i e
−
i → ẽ+

i ẽ
−
i ] =

2πα2

3s
β3

[
1 + g2

i

s

s−M2
Z

]2

+
16πα2

s

4∑

j=1

4∑

k=1

|Xij|2 |Xik|2 hjk (3.7)

+
8πα2

s

4∑

j=1

|Xij|2
[
1 + gi

s

s−M2
Z

]
f j (i = L/R,−i = R/L),

σ[e+i e
−
−i → ẽ+

i ẽ
−
i ] =

2πα2

3s
β3

[
1 + gi g−i

s

s−M2
Z

]2

(i = L/R,−i = R/L), (3.8)

σ[e+L e
−
L → ẽ+

R ẽ
−
L ] =

16πα2

s

4∑

j=1

4∑

k=1

XLj X
∗
Rj XRk X

∗
Lk H

jk, (3.9)

σ[e+R e
−
R → ẽ+

L ẽ
−
R] = σ[e+L e

−
L → ẽ+

R ẽ
−
L ],

σ[e−i e
−
i → ẽ−i ẽ

−
i ] =

16πα2

s

4∑

j=1

4∑

k=1

X2
ij X

∗2
ik

[
Gjk

+ +Hjk
]

(i = L/R), (3.10)

σ[e−L e
−
R → ẽ−L ẽ

−
R] =

16πα2

s

4∑

j=1

4∑

k=1

X∗
Lj X

∗
Rj XLk XRk h

jk, (3.11)
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with

f j = ∆jβ −
∆2

j − β2

2
ln

∆j + β

∆j − β
, (3.12)

hjk =





−2β + ∆j ln
∆j + β

∆j − β
j = k

fk − f j

∆j − ∆k
j 6= k

, (3.13)

Gjk
± =

2

s

mχ̃0
j
mχ̃0

k

∆j ± ∆k

[
ln

∆k + β

∆k − β
± ln

∆j + β

∆j − β

]
, (3.14)

Hjk =





4β

s

m2
χ̃0

j

∆2
j − β2

j = k

Gij
− j 6= k

, (3.15)

where for the case of diagonal selectron pairs, ẽRẽR and ẽLẽL,

∆j =
2

s
(m2

ẽi
−m2

χ̃0
j
) − 1 and β =

√
1 − 4m2

ẽi
/s, (3.16)

while for mixed pairs

∆j =
1

s
(m2

ẽL
+m2

ẽR
− 2m2

χ̃0
j
) − 1 and β =

1

s

√
(s−m2

ẽL
−m2

ẽR
)2 − 4m2

ẽL
m2

ẽR
)2. (3.17)

The symbol Xij =
(
(cW + gisW)Nj1 + (sW − gicW)Nj2

)
/
√

2 accounts for the neutralino
mixing.

As a result of the additional t-channel contribution, the cross-section for selectron
production is about one order of magnitude larger than for smuons. The Born cross-
sections for the different collider modes and selectron chiralities are shown in Fig. 3.3 and
Fig. 3.4.

The e−e− mode is of particular interest for selectron production. On one hand, diago-
nal selectrons pairs, ẽRẽR and ẽLẽL, are produced in an S-wave, which is only possible for
mixed pairs in e+e− collisions. This is especially favourable for precision measurements
in threshold scans due to the steep rise ∝ β. Furthermore, in the e−e− mode there is only
very little background from Standard Model and supersymmetric processes.

The decays of the right-chiral sleptons µ̃R and ẽR predominantly proceed into neutrali-
nos if the bino mass M1 is lighter than the R-slepton masses1. For the left-chiral sleptons
µ̃L and ẽL, also additional chargino decays play a rôle. The tree-level decay widths are

1If this is not the case, there can be sizeable branching fractions of three-particle decays into staus.
Since in this case the width of the R-sleptons is generally very small, such scenarios are not considered
in the following.
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Figure 3.3: Born cross-sections for selectron pair production in e+e− annihilation. Values
for SPS1 scenario.
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given by

Γ[l̃−i → l− χ̃0
j ] = α |Xij|2 ml̃i

(
1 −

m2
χ̃0

j

m2
l̃i

)2

(i = L/R), (3.18)

Γ[l̃−i → νl χ̃
−
k ] =

α

4
|Uk1|2ml̃L

(
1 −

m2
χ̃±

j

m2
l̃L

)2

. (3.19)

For slepton masses in the range of about 200 GeV, the widths are roughly of the order
300 − 1000 MeV.

In many scenarios, the decay of right-chiral sleptons into a lepton and a neutralino LSP
is one of the dominant decay channels. In this case the pair production of sleptons yields a
very simple detector signature consisting of just two charged leptons plus missing energy.
Therefore this is one of the most outstanding processes for detection of supersymmetry
at a linear collider and allows precision measurements at the per-cent or even per-mille
level. The decay modes into heavier neutralinos or charginos result in additional leptons
or light-quark jets in the final state, which can also be easily handled in experiment.

Detailed studies [49, 51] indicate that it is also possible to obtain information about
scalar leptons below the kinematical threshold for pair production, however, in this case
the reachable precision is much reduced.



Chapter 4

Predictions for off-shell slepton pair

production

4.1 Finite width effects and gauge invariance

One of the specific capabilities of a linear collider with high luminosity is the precise
measurement of sparticle masses in threshold scans. As will be discussed in section 6.1,
the masses of right-chiral selectrons and smuon could be determined with an accuracy
of O(100 MeV) or even below. This experimental error is significantly smaller than the
widths of the sleptons, which in mSUGRA and GMSB scenarios is typically of the order
of O(1 GeV). Thus the investigation of width effects is mandatory for this purpose.

Several problems arising in this context are quite similar to the case of W boson
pair production in e+e− annihilation in the Standard Model [53–55]. In this section the
production of right-chiral smuons will be studied as an example. Since smuons are unstable
particles they can be produced off-shell. The dominant decay mode of right-chiral smuons
in the MSSM is the decay into the lightest neutralino χ̃0

1,

µ̃−
R → µ−χ̃0

1. (4.1)

Thus the pair production of smuons in this channel is described by the diagram in
Fig. 4.1 (a). However from this doubly resonant diagram alone one would obtain a gauge-
dependent amplitude. This can be made explicit by considering an axial gauge fixing for
the s-channel bosons1 [53]. The introduction of the gauge fixing term Lgf = −1

2
(nµ

γAµ)2

for the photon field Aµ yields an additional contribution to the matrix element,

Mdblres|axial gauge − Mdblres|cov. gauge = e2v̄e6nue
Mdec

s(n · (k+ + k−))

[
1

k2
− −m2

µ̃

− 1

k2
+ −m2

µ̃

]
,

(4.2)
where Mdec is the matrix element for the decay amplitude, k± and mµ̃ are the momenta
and masses of the smuons, respectively, and v̄e, ue denote the spinors of the initial e+e−

system.

1The gauge parameter dependence in a covariant Rξ gauge is cancelled by the conserved incoming
current.

25
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It can be seen that the additional term in (4.2) depends on the axial gauge vector
n and can therefore be made arbitrarily large. The reason for the gauge dependence
originates from the fact that by just considering the diagram in Fig. 4.1 (a), a subset of
the full gauge-independent process e+e− → µ+µ− χ̃0

1 χ̃
0
1 is singled out. This can be cured

by adding the singly resonant diagrams contributing to the same final state in Fig. 4.1 (b),
which exactly cancel the singly resonant gauge-dependent terms in (4.2).

The diagrams in Fig. 4.1 together form a gauge-invariant subset of the full process
e+e− → µ+µ− χ̃0

1 χ̃
0
1. Nevertheless, this does not solve the gauge-invariance problem

completely. The introduction of finite widths in the resonant propagators of unstable
particles follows from a Dyson resummation of self-energy graphs. However, this procedure
selects a very limited part of the higher order diagrams, so that in general gauge invariance
is not preserved. With the techniques available today, it is not feasible to perform a
complete higher order calculation to the full process. Therefore a consistent and practical
scheme for the calculation of gauge-invariant cross-sections is needed.

One possibility is the pole scheme [56], which systematically decomposes the com-
plete amplitude, consisting of doubly resonant diagrams Rdblres, singly-resonant diagrams
Rsglres,± and non-resonant diagrams Rnonres, according to its analytical pole structure:

M =
Rdblres(k

2
+, k

2
−)

(k2
− −m2

i )(k
2
+ −m2

i )
+
Rsglres,−(k2

+, k
2
−)

k2
− −m2

i

+
Rsglres,+(k2

+, k
2
−)

k2
+ −m2

i

+Rnonres(k
2
+, k

2
−)

=
Rdblres(m

2
i , m

2
i )

(k2
− −m2

i )(k
2
+ −m2

i )

+
1

k2
− −m2

i

[
Rdblres(k

2
+, m

2
i ) − Rdblres(m

2
i , m

2
i )

k2
+ −m2

i

+Rsglres,−(k2
+, m

2
i )

]

+
1

k2
+ −m2

i

[
Rdblres(m

2
i , k

2
−) − Rdblres(m

2
i , m

2
i )

k2
− −m2

i

+Rsglres,+(m2
i , k

2
−)

]
(4.3)

+

[
Rdblres(k

2
+, k

2
−) − Rdblres(k

2
+, m

2
i ) − Rdblres(m

2
i , k

2
−) +Rdblres(m

2
i , m

2
i )

(k2
− −m2

i )(k
2
+ −m2

i )

+
Rsglres,−(k2

+, k
2
−) − Rsglres,−(k2

+, m
2
i )

k2
− −m2

i

+
Rsglres,+(k2

+, k
2
−) − Rsglres,+(m2

i , k
2
−)

k2
+ −m2

i

+Rnonres(k
2
+, k

2
−)

]
.

Thus the matrix element is decomposed as a Laurent series into gauge-invariant double-
pole terms, single-pole terms and non-resonant terms. Introducing now a finite width
in the pole factors only but not in the residues does not destroy gauge invariance. The
double-pole term in the second line of (4.3) provides a good approximation of the full
result in the continuum region, as has been successfully used for calculating radiative
corrections to W pair production [57]. Near threshold, it is necessary to include also the
other terms in order to get a realistic result, which is technically very involved.

A technically more convenient approach to introduce finite widths is sometimes called
the complex-mass scheme. Here, the mass m2

i of a possibly resonant particle is systemati-
cally replaced by a complex mass m2

i − imi Γi [55]. This replacement has to be performed
not only in the resonant propagators but for all mixing matrices and other quantities
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(a) Double resonance diagram

e−

e+

µ−

µ+

χ0
1

χ0
1

µ−

µ+

γ, Z

(b) Single resonance diagrams

e−

e+

µ−

µ+

χ0
1

χ0
1

µ−

µ

γ, Z

e−

e+

µ−

µ+

χ0
1

χ0
1

µ−

χ0
1

Z

Figure 4.1: The doubly and singly resonant contributions to the process
e+e− → µ+µ−χ̃0

1χ̃
0
1.

which depend on the particular mass. Since this is a pure parameter transformation the
gauge-invariance is not touched. Furthermore it provides a realistic description of the
cross-section near threshold.

The main drawback of this scheme is that the hermicity of the Lagrangian is destroyed
by the introduction of complex parameters, thereby violating unitarity. This fact illus-
trates that the complex quantities do not have any physical motivation but rather serve
as a technical parametrization of the finite width effects. Up to now, no systematic study
has been undertaken as to quantitatively estimate the magnitude of the unitarity vio-
lation effects. However it is believed that they are of minor significance in comparison
with the gauge violation effects, so that the complex mass scheme is expected to provide
a reliable approximation of the threshold cross-section. Therefore this scheme is used in
the following.

4.2 Leading radiative corrections

4.2.1 Initial-state radiation

The virtual and real corrections to a process in e+e− annihilation reveal the presence of
large logarithmic QED effects proportional to

α

π
L =

α

π
log

Q2

m2
e

, (4.4)
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where Q2 � m2
e is a typical scale of the hard scattering process. They originate from the

emission of photons in the direction of the incoming particles when the momentum of the
latter is kept fixed, i.e. it is treated exclusively [58]. This can be seen by considering the
propagator D of the incoming fermion after photon emission, e±(p) → γ(k) + e±(p− k),

D =
1

(p− k)2 −m2
e

p0�me≈ 1

−2p0k0[1 − (1 − 1
2
m2

e/p
2
0) cos θ]

, (4.5)

where θ is the angle of the photon momentum k with respect to the incoming momentum
p. In a massless theory this would give rise to collinear divergences, since in the limit
me → 0 the propagator D exhibits a pole at cos θ = 1. For electroweak processes, the
masses of the electron or positron provide a natural cutoff, yielding logarithmic terms of
the form log(p2

0/m
2
e), which can be large due to the difference between the involved scales

p0 and me.
In the case that some of the final state charged particles are light they also give rise

to large collinear logarithms. However, in realistic experimental situations, the collinear
photon emission from a final state charged lepton cannot be resolved in the detector.
Therefore it is sufficient for leading order predictions to only take into account initial-
state radiation and the hard scattering amplitude, while final-state photon radiation does
not produce any large observable effects.

Since the large initial-state QED logarithms are universal and process-independent
they can be resummed to higher orders. A widely used technique for the calculation of
the collinear logarithms is the structure-function method [59]. In addition, it also allows
the inclusion of soft-photon effects by means of exponentiation.

According to the mass-factorization theorem, the complete cross-section σe+e−→X+nγ is
linked to the hard scattering cross-section σ̂ij→X , which is free of large collinear logarithms,
as follows,

dσe+e−→X+nγ

dθk
(s) =

∫ 1

0

dx+

∫ 1

0

dx− Γie+(x+, Q
2) Γje−(x−, Q

2)
dσ̂ij→X

dθk
(ŝ, Q2), (4.6)

where ŝ = x+x−s and θk denotes an arbitrary set of dimensionless invariant kinematical
variables. The structure functions (or splitting functions) Γik(x,Q

2) are equivalent to the
probability of finding a particle i with momentum fraction x in the initial particle k at
the scale Q2. Both the structure functions and the hard scattering cross-section depend
on the factorization scale Q2.

In general, the structure functions contain also non-diagonal entries. For example,
Γγe describes the emission of a hard photon, which triggers the hard scattering process,
from the incoming electron, with the latter then escaping undetected in the beam pipe.
Nevertheless, the most important contributions to the QED initial-state radiation arise
from pure photon radiation. This is in particular the case when soft contributions are
dominant, as for the production of particles near threshold. Therefore, in this work only
the diagonal structure function Γee is considered.

In the leading-log (LL) approximation only terms proportional to (αL/π)n are taken
into account. Since all large collinear logarithms are contained in the structure functions,
this automatically means that the hard scattering cross-section σ̂ coincides with the Born
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cross-section. In addition it can be supplemented by leading corrections which are not of
LL order, as e.g. the Coulomb correction (see next section).

The relevant structure function has been calculated up to order O(α3L3). Including
soft photon exponentiation, it reads [60, 61]

ΓLL,exp
ee (α, x,Q2) =

ζα (1 − x)ζα−1

Γ(1 + ζα)
e−γEζα+3αL/4π − α

2π
L (1 + x)

− 1

2

( α
2π

)2

L2

[
1 + 3x2

1 − x
log(x) + 4(1 + x) log(1 − x) + 5 + x

]

− 1

6

( α
2π

)3

L3

{
(1 + x)

[
6 Li2(x) + 12 log2(1 − x) − 3π2

]
(4.7)

+
1

1 − x

[
3

2
(1 + 8x+ 3x2) log(x) + 6(x+ 5)(1 − x) log(1 − x)

+ 12(1 + x2) log(x) log(1 − x) − 1

2
(1 + 7x2) log2(x) +

1

4
(39 − 24x− 15x2)

]}
,

with
ζα =

α

π
(L− 1). (4.8)

Here Li2 represents the dilogarithm, Γ(y) is the Gamma function and γE the Euler con-
stant. In (4.7) some non-leading terms are taken into account by considering that the
residue of the soft-photon pole is proportional to L−1 rather than L.The total scattering
cross-section can then be written as

σLL,exp(s,Q
2) =

∫ 1

E2
thrs

/s

dz ΓLL,exp
ee (2α, z, Q2) σ̂0(zs), (4.9)

where σ̂0(zs) denotes the Born cross-section, possibly including some leading radiative
corrections, at the reduced centre-of-mass energy

√
zs. Ethrs is the minimal energy nec-

essary for the production of the final state particles.
In the prediction of the total cross-section in terms of (4.9), the scale Q2 remains a

free parameter. Order by order in perturbation theory, the cross-sections are independent
of Q2. However, since the introduction of collinear logarithms in (4.9) is not matched by
including the remaining non-logarithmic QED corrections of the same order, the result
depends on the choice of the scale Q2 (for a discussion, see Ref. [53]). One possible choice
Q2 = s(1 − β)/(1 + β) is motivated by the high-energy behaviour of the soft and virtual
O(α) QED contributions. Near threshold, the limited phase space implies that Q2 = s is
a reasonable choice. Therefore, in the following, the second choice has been employed.

Besides corrections from soft and collinear photon radiation, the beamstrahlung needs
to be taken into account in the initial state. It arises due to electromagnetic interactions
between the two overlapping incoming electron/positron beams and results in a spread of
the beam energy spectra. Beamstrahlung effects grow especially important for colliders
with high luminosity, as envisaged for future linear collider projects [7–9].

Measurements of the cross-section near threshold are strongly influenced by beam-
strahlung effects since they depend on the energy of the colliding particles. Therefore a
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precise prediction of the beamstrahlung spectra is of utmost importance. In this thesis
the program Kιρκη (Circe) [62] is used, which incorporates simple parametrizations of de-
tailed simulations performed with the program Guinea-Pig [63]. For the given examples,
Tesla accelerator design parameters are taken.

The change of the observable cross-section due to beamstrahlung effects can be de-
scribed by a convolution similar to (4.6),

dσbeamstr

dΩ
(s) =

∫ 1

0

dξ+

∫ 1

0

dξ−De+e−(ξ+, ξ−; s) J(Ω,Ω′)
dσe+e−→X+nγ

dΩ′ (ξ+ξ−s). (4.10)

The function D gives the energy distribution of the particles inside the beams at the
interaction point in terms of the fractions ξ± of the design centre-of-mass energy

√
s.

Here σe+e−→X+nγ is the cross-section for a single colliding e+e− pair (i.e. disregarding the
surrounding beam) including initial-state radiation as discussed above.

4.2.2 Coulomb rescattering effects

Another source of large corrections to the cross section for pair production processes near
threshold is the Coulomb interaction due to photon exchange between slowly moving final-
state charged particles. When the produced particles are stable, the Coulomb rescattering
effects are described by the well-known universal factor [64]

σon−shell
Coul = σBorn

απ

2β
, (4.11)

with β denoting the velocity of the produced particles. This result is independent of the
spin and angular momentum of the involved particles. Since the relative factor in (4.11)
grows infinitely large for β → 0, it is often also considered as the Coulomb singularity.

For production of unstable particles the Coulomb singularity is partially screened by
off-shellness and finite width effects. This has been studied for the case of W pairs [65–67],
which are produced in an S-wave. In general, however, one has to consider higher orbital
angular momenta. For the case of smuon production, conservation of angular momentum
requires the smuons to be produced in a P-wave.

In the following the Coulomb correction shall be examined for the general case of
production of particles X± with arbitrary integer spin jX via the s-channel exchange of
an intermediate state Y with spin jY, cf. Fig. 4.2 (a). A t-channel contribution in the limit
of vanishing velocity near threshold can be re-expressed as a scalar s-channel diagram.

In order to determine the leading Coulomb rescattering effects it is only necessary to
consider the first term of an expansion in β. Since the production amplitude rises pro-
portional to β l near threshold, the leading contribution is generated by the configuration
of minimal orbital angular momentum l. For 2jX < jY, l is given by l = jY − 2jX, and
0/1 for even/odd jY otherwise.

If the bosons X, Y are assumed to be scalar or gauge particles, their polarizations can
be constrained by requiring transversality and tracelessness. Furthermore by exploiting
Bose symmetry, the leading contribution in β to the Born production vertex is determined



4.2 Leading radiative corrections 31

(a)
X−

X+

Y
λ1λ2...λn

µ1µ2...µm

ν1ν2...νm

p−

p+

(b)
X−

X+

Y
λ1λ2...λn

µ1µ2...µm

ν1ν2...νm

p−

p+

γ
q

Figure 4.2: Born contribution (a) and electromagnetic loop correction (b) to the process
(e+e− →)Y → X+X− with arbitrary integer spins.

to be of the form

MBorn = ie C

jY∏

i=2m+1

(p− − p+)λi

m∏

j=1

gλjµj
gλm+jνj

jX∏

k=m+1

gµkνk
. (4.12)

The symbol m = mX denotes the quantum number of the component of jX in direction
of jY, given by m = 1

2
(jY − l), while p± are the momenta of the produced particles.

The Coulomb interaction can be obtained from the photon exchange diagram
Fig. 4.2 (b). By exploiting the fact that the photonic vertices in the diagram are re-
stricted by electromagnetic gauge invariance, the amplitude for the leading order in β is
then given by

MBorn = e3Q2
X

∫
d4q

(2π)4

(q − 2p−) · (q + 2p+)

q2[(q + p+)2 −M2
X][(q − p−)2 −M2

X]

×
jY∏

i=2m+1

(p− − p+ − 2q)λi

m∏

j=1

gλjµj
gλm+jνj

jX∏

k=m+1

gµkνk
.

(4.13)

After some algebra one obtains

σoff−shell
Coul = −σBorn

αs

2π
Q2

X C0 <e
(

2p+p− − 2M2
X

2p+p− − p2
+ − p2

−

)l

, (4.14)

where the Coulomb part of the scalar triangle function C0 can be evaluated according
to [67, 68]. The final result then reads

σoff−shell
Coul = σBorn

απ

2β
Q2

X

[
1 − 2

π
arctan

|βM|2 − β2

2β =mβM

]
<e Cl, (4.15)

Cl =

(
β2 + β2

M

2β2

)l

. (4.16)

Here the generalized velocities

β =
1

s
λ1/2(s, p2

+, p
2
−) ≡ 1

s

√
(s− p2

+ − p2
−)2 − 4p2

+p
2
−, (4.17)

βM =
√

1 − 4M2
X/s (4.18)
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Figure 4.3: Correction factor ∆corr due to Coulomb rescattering relative to the Born
cross-section for on-shell and off-shell S- and P-wave production.

have been introduced, where M 2
X = m2

X − imXΓX denotes the complex pole mass of the
produced particles. The well-known damping of the Coulomb singularity for S-waves is
given by the term in square brackets in (4.15). It is even enhanced for waves of higher
orbital angular momentum l, due to the additional coefficient Cl, as can be seen in Fig. 4.3.

Finally, in order to also cover the possibility of selectron production in mixed pairs,
ẽ±R ẽ

∓
L , the Coulomb correction has to be evaluated for the case that the two produced

particles have different masses. The result for this situation is given by (4.15) with the
replacement

βM =
1

s
λ1/2(s,M2

+,M
2
−). (4.19)

Here M2
± = m2

± − im±Γ± are the complex pole masses of the two produced particles.

4.3 The Monte Carlo program

The findings of the previous sections have been implemented into a Monte Carlo program
in order to facilitate reliable predictions of threshold excitation curves.

As explained in section 4.1, for a consistent and gauge-invariant treatment of finite
widths in the pair production of scalar leptons, it is necessary to consider the full 2 → 4
process including production and decay of the sleptons. Taking into account all contri-
butions with the same final state, i.e. including backgrounds, this can easily amount to
several hundred diagrams at tree-level. Therefore it is virtually impossible to perform the
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calculation in the traditional way by taking the square of the amplitude and summing over
the polarization states of the external particles. In particular, an amplitude consisting
of n diagrams would result in a squared matrix element which is the sum of n(n + 1)/2
terms.

This problem can be circumvented by calculating the amplitudes for specific polariza-
tion states (for example in the helicity basis). Each helicity amplitude can be calculated
numerically and results in a complex number, then the square of the amplitudes and the
summation over all helicities can easily be performed.

For this thesis, the helicity amplitudes have been calculated by using the Dirac spinor
formalism of Ref. [69]. This method allows one to express the complete Dirac algebra and
the polarization vectors of external gauge bosons in terms of two basic spinor products,

s(p1, p2) ≡ ū+(p1) u−(p2) = −s(p2, p1), (4.20)

t(p1, p2) ≡ ū−(p1) u+(p2) =
(
s(p2, p1)

)∗
, (4.21)

where u± denote massless Dirac spinors with positive/negative helicity and s(p1, p2) can
be determined according to

pµ
i = (p0

i , p
x
i , p

y
i , p

z
i), (4.22)

s(p1, p2) = (py
1 + ipz

1)

√
p0

2 − px
2

p0
1 − px

1

− (py
2 + ipz

2)

√
p0

1 − px
1

p0
2 − px

2

. (4.23)

If the denominators in (4.23) become singular, x and y can be interchanged.

In this work, the diagrams and amplitudes are generated with the package FeynArts
[35]. Appropriate Mathematica routines have been written which, after simplification of
the Dirac and Lorentz algebra, transform the FeynArts output into helicity amplitudes
in terms of the spinor products s and t. These expression are then exported into a C++
program which performs the numerical evaluation and the phase space integration.

The integration over the phase space of a n-particle final state can be written as

I =

∫
dσ =

∫
d3n−4y ρ

(
ki(~y)

)
f
(
ki(~y)

)
, (4.24)

f(ki) =
(2π)3n−4

2s

∣∣M(pe+, pe−, ki)
∣∣2, (4.25)

where a suitable set of variables ~y = (yi) has been chosen as a parametrization of the
final state momenta k1, . . . , kn. Usually invariants and angles are taken for the yi, see e.
g. Ref. [70]. An easily implementable parametrization is obtained by decomposition of
the n-particle final state into a 2 → 2 scattering process with subsequent 1 → 2 decays.
The variables yi then consist of the invariant virtualities of the intermediate particle
propagators and the polar and azimuthal angles of the 2-particle sub-phase-spaces. In
order to increase the numerical stability, it is useful to render resonant propagators flat by
an appropriate mapping of the integration variables to new variables ~x = (xi), ~y = ~Ψ(~x),
yielding

I =

∫
d3n−4x

f
(
ki(~Ψ(~x))

)

g
(
ki(~Ψ(~x))

) . (4.26)
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The corresponding density function (integration Jacobian) g is given by

1

g
(
ki(~Ψ(~x))

) = ρ
(
ki(~Ψ(~x))

)
∣∣∣∣∣
∂~Ψ(~x)

∂~x

∣∣∣∣∣ . (4.27)

Now the mapping function ~Ψ(~x) is chosen so that the resulting density function g mimics
the behaviour of f , and thus large peak values in the integrand of (4.26) are cancelled.
More precisely, a resonant Breit-Wigner propagator 1/((yi −M2

X)2 +M2
XΓ2

X) in the inte-
grand f can be rendered flat by the variable mapping

yi = M2
X +MXΓX tanxi, (4.28)

arctan

(
yi,min −M2

X

MXΓX

)
< xi < arctan

(
yi,max −M2

X

MXΓX

)
. (4.29)

In general, also massless propagators in the t- or u-channel may become resonant in the
collinear limit and therefore would require a suitable variable mapping. However, for the
processes studied in this thesis, such contributions do not occur or are excluded by simple
cuts.

Since the full matrix element exhibits a complicated resonance structure, it is impos-
sible to describe the peaks in the integrand f(~y) by a single density g(~y). Each peaking
topology would require a suitable set of integration variables ~yk and a specific mapping
of integration variables ~yk = ~Ψk(~x), so that resonant propagators are rendered flat by
the resulting density gk. Therefore the integration over the phase space of the final state
particles is performed by a multi-channel Monte Carlo method [71]. In this approach all
densities gk are joined into a combined density gtot which renders the integrand sufficiently
smooth over the whole phase-space region. The phase-space integral of (4.26) then reads

I =
K∑

k=1

∫
d3n−4x

f
(
ki(~Ψk(~x))

)

gtot

(
ki(~Ψk(~x))

) , (4.30)

with

gtot(ki) =
K∑

l=1

gl(ki),
1

gl

(
ki(~Ψl(~x))

) = ρl

(
ki(~Ψl(~x))

)
∣∣∣∣∣
∂~Ψl(~x)

∂~x

∣∣∣∣∣ . (4.31)

The different mappings ~Ψk(~x) are called channels, with K being the number of all chan-
nels.

For a further reduction of the Monte Carlo error, the method of weight optimization
according to Ref. [72] is employed. Here, each channel k is furnished with a weight αk,
k ∈ {1, . . . , K}. For the generation of a Monte Carlo event, one of the channels is picked
randomly according to the weights αk, which determine the probability of picking the
channel k. The integral is then given by

I =

K∑

k=1

αk

∫
d3n−4x

f
(
ki(~Ψk(~x))

)

gtot

(
ki(~Ψk(~x))

) , (4.32)
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with

gtot(ki) =

K∑

l=1

αl gl(ki), (4.33)

and
∑K

l=1 αl = 1.
After the generation of N Monte Carlo points ~xj one obtains the following estimate

IN of the phase-space integral,

IN =
1

N

N∑

j=1

w(~xj), (4.34)

where w = f/gtot is the weight of a Monte Carlo point ~xj. The expected Monte Carlo
error is given by

δIN =

√
WN − I2

N

N
, WN =

1

N

N∑

j=1

w2(~xj). (4.35)

The idea of the weight optimization method is now to minimize the expected Monte Carlo
error by choosing on optimal set of weights αk. This can be achieved by an adaptive
procedure [72], starting with evenly distributed weights αk. After a certain number N of
Monte Carlo points a new set of weights is calculated according to

αnew
k ∝ αk

√√√√ 1

N

N∑

j=1

gk

(
ki(~Ψk(~xj))

)
w2(~xj)

gtot

(
ki(~Ψk(~xj))

) , (4.36)

with the normalization
∑K

k=1 α
new
k = 1.

For some purposes in the following the narrow-width approximation is used. This
consists in taking a zero width in resonant propagators, i.e. the corresponding intermediate
particle is considered on-shell. The corresponding Breit-Wigner propagator then reduces
to a Delta function,

MΓ

(k2 −M2)2 +M2Γ2

Γ→0
−−→ π δ(k2 −M2). (4.37)

When studying the production cross-section of some particle α near the kinematical
threshold, it is in most cases safe to apply the narrow-width approximation for all other
particles which appear in the full 2 → 4 process. The relative effect of the finite width of

the particle α is of order O
(

Γα√
s/2−Mα

)
, which is sizeable near the threshold

√
s ≈ 2Mα.

If the mass Mβ of any background particle β does not accidentally coincide with Mα, the

effect due to its width Γβ is of minor importance, O
(

Γβ√
s/2−Mβ

)
. In addition, it is further

reduced by cuts that are applied to decrease the β background.
The effect of Γβ in interference contributions between production diagrams for α and β

or in cascade decays is of order O
(

ΓαΓβ

(Mβ−Mα)2

)
if Mα and Mβ are sufficiently far separated

and therefore clearly suppressed in this case. As a consequence, if |Mα −Mβ| � Γα,β,
one may safely neglect the finite width of the particle β when focusing on the threshold
of particle α.
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condition variable accepted range

reject lepton in
forward/backward region

lepton polar angle θl | cos θl| < 0.95

require minimal lepton energy lepton energy El El > 5 GeV

reject missing momentum pmiss

in forward/backward region
missing momentum polar
angle θ~pmiss

| cos θ~pmiss
| < 0.90

angular separation of two
leptons

angle φl+l− between leptons |1 − cosφl+l−| > 0.002

angular separation of two quark
or tau jets

angle φjj between jets |1 − cosφjj| > 0.015

Table 4.1: General cuts to account for the detector geometry and resolution and to reduce
photonic background. The first two cuts also apply for jets.

4.4 Signatures and backgrounds

This section discusses how the aspired slepton signal can be extracted from potential
backgrounds. Throughout, some general cuts given in Tab. 4.1 are applied to account
for the basic detector geometry. However, some of the cuts are far more conservative
than required by the hardware layout. The reason is that they also effectively reduce
background from soft and collinear photon emission, which is typically one of the major
backgrounds.

4.4.1 Production of right-chiral sleptons

For most scenarios (in particular those considered in App. A), the partners of the right-
handed leptons predominantly decay into the corresponding leptons and the lightest neu-
tralino, which in many cases is the LSP,

l̃±R → l± χ̃0
1. (4.38)

In mSUGRA and GMSB scenarios this assertion follows from the fact that in these models
the χ̃0

1 has a dominant bino component and the R-sleptons only couple via the U(1)
gauge coupling (and their supersymmetric equivalent Yukawa coupling). If kinematically
allowed, in AMSB scenarios R-sleptons can have a dominant decay branching fraction into
the second-lightest neutralino χ̃0

2, since this carries a dominant bino component. Here this
case will not be considered further.

With the above-mentioned decay, the pair production of R-sleptons at an e+e− col-
lider results in the simple final state of two leptons plus missing energy, l+l− + 6E. The
most important Standard Model background arises from contributions with the final state
l+l−νν̄. This includes dominant contributions from WW and ZZ pair production as well
as two-photon contributions. The Standard Model backgrounds are large and need to be
reduced by appropriate cuts [73].
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condition variable accepted range

cut on Z decaying into
lepton pair

di-lepton invariant mass ml+l− |ml+l− −MZ| > 10 GeV

cut on invisibly
decaying Z

invariant recoil mass mrecoil |mrecoil −MZ| > 15 GeV

reject back-to-back
leptons from W pairs

angle φl+l− between leptons | cosφl+l−| < 0.7

Table 4.2: Cuts for the reduction of large resonant ZZ and WW contributions to the
signature l+l− + 6E.

resonant production followed by

e+e− → χ̃0
k χ̃

0
1 χ̃0

k → l+ l− χ̃0
1

e+e− → χ̃0
k χ̃

0
1 χ̃0

k → τ+ τ− χ̃0
1 τ± → l± ν̄l ντ

e+e− → χ̃0
2 χ̃

0
2 χ̃0

2 → l+ l− χ̃0
1 χ̃0

2 → ν ν̄ χ̃0
1

e+e− → χ̃+
1 χ̃

−
1 χ̃±

1 → l± νl χ̃
0
1

e+e− → Z Z Z → l+ l− Z → χ̃0
1 χ̃

0
1

e+e− → Z h0/H0 Z → l+ l− h0/H0 → χ̃0
1 χ̃

0
1

Table 4.3: Significant doubly resonant supersymmetric background processes to
e+e− → l+ l− + 6E.

The reduction of photonic background was already discussed at the beginning of this
section. The background from resonant Z production can be easily reduced by applying
an cut on the invariant lepton pair mass ml+l− =

√
(k+ + k−)2 and on the invariant

mass mrecoil =
√
s−√

s(E+ + E−) + (k+ + k−)2 of the invisible recoil momentum, see
Tab. 4.2. Here k± and E± are the momenta and energies of the leptons l±, respectively.
Contributions from WW pair production have a characteristic angular distribution of the
final state leptons. Because of the spin correlations and the boost factor, the leptons tend
to be aligned back to back and along the beam direction. Therefore this background can
be effectively reduced by rejecting signatures with back-to-back leptons (Tab. 4.2).

In addition, a large number of supersymmetric backgrounds are involved (see e.g. [74]).
The most important doubly resonant contributions are listed in Tab. 4.3. Their treatment
strongly depends on the scenario.

The background from χ̃0
2χ̃

0
1 production can be reduced by requiring the missing energy

6E below the cut

6E <∼ 6Ecut =
√
s

[
1 −

(m2
χ̃0

2

−m2
χ̃0

1

)
(
s−m2

χ̃0
1

+m2
χ̃0

2

+ λ1/2(s,m2
χ̃0

1

, m2
χ̃0

2

)
)

4m2
χ̃0

2

s

]
, (4.39)

with λ(a, b, c) defined in (4.17). Here one may exploit the tendency for the neutralino
background to have a larger fraction of missing energy than the signal since one of the
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Figure 4.4: Distribution in the missing energy 6E of the signal contributions, from diagrams
Fig. 4.1, and the supersymmetric backgrounds to e+e− → e+ e− + 6E. A possible cut
according to (4.39) is shown as vertical line. Numerical values for RR2 scenario.

two produced neutralinos remains completely invisible. The effect of this cut can be
seen from Fig. 4.4. The same argument applies even more strongly to χ̃0

2χ̃
0
2 and χ+

1 χ
−
1

production since the processes result in additional invisible neutrinos in the final state.
For large tanβ, the bulk of the neutralinos and charginos decays into staus. These taus
could then decay into the lepton l and thereby imitate the signal of l+l−. However, again
this decay chain leads to additional neutrinos in the final state and is easily accounted for
by the missing-energy cut.

In addition to the pair production of resonant particles as in Tab. 4.3, for the analysis
in the next section background contributions with one or no resonant particles are also
taken into account by considering the full matrix element for e+e− → e+e− χ̃0

1 χ̃
0
1
2. While

the total amount of these background contributions is definitely smaller than the signal
cross-section, they can still have a non-negligible effect on high precision measurements.
In particular after application of cuts these sub-dominant contributions are only sightly
reduced and may be of the same order as the remaining, originally doubly-resonant and
dominant, background.

The signal-to-background ratio can further be enhanced by applying appropriate po-
larizations. In the following it is assumed that the electron beam can be polarized with
a degree of 80%, while for the positron beam 50% polarization is taken. For the pair
production of sleptons in e+e− annihilation, the optimal combination is a right-polarized
electron beam and a left-polarized positron beam, Pe− = +80%, Pe+ = −50%.

2The full matrix element is needed also for gauge-invariance reasons, cf. sec. 4.1
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The production of scalar electrons is also possible in the e−e− mode. The final state
signature consists of two like-sign electrons plus missing energy, e−e− + 6E. One virtue of
this options is the very low background contamination. The Standard Model backgrounds
e−e− → e−e− νν̄ involve dominant contributions from the resonant production of single
W - and Z-bosons. The Z background can easily be reduced [75] by observing that for a
Z decaying into two neutrinos, the missing energy is always below

6E <
s+M2

Z

2
√
s

≈
√
s

2
for s�M2

Z. (4.40)

Since the selectrons decay into massive neutralinos they typically lead to larger fractions
of missing energy. Accordingly, with the condition 6E >

√
s/2, the Z background can be

almost completely eliminated. Background from single W production can be effectively
reduced by using right-polarized electron beams, Pe− = +80% [75]. In addition, this
would lead to a significant enhancement of the signal cross-section.

Supersymmetric backgrounds in the e−e− mode are low and do not require any special
treatment, since they do not involve any resonant pair production sub-processes.

4.4.2 Production of left-chiral sleptons

In all typical breaking scenarios, left-chiral sleptons of the first two generations are heav-
ier than their right-chiral companions. Accordingly, L-sleptons are produced over a huge
background from R-sleptons. Thus, in order to disentangle the two states, one should
consider other decay modes of the L-sleptons than l̃±L → l± χ̃0

1. A unique property of
left-chiral sleptons is the decay into a chargino and a neutrino, cf. (3.19). This is however
unfavourable for slepton production in e+e− annihilation, since the neutrino escapes unde-
tected and no identification of the flavour of the produced sleptons is possible3. Therefore,
here the decay into a heavier neutralino is considered,

l̃±L → l± χ̃0
2

b→ τ+ τ− χ̃0
1,

(4.41)

with a subsequent decay of the neutralino χ̃0
2 into a pair of taus τ+τ− and the lightest

neutralino. For scenarios with tan β >∼ 10 the tau final state is favourable since it is

strongly enhanced with respect to the first two generation leptons. The mixed selectron
pair production, e+e− → ẽ±R ẽ

∓
L , for instance, is then characterized by the final state

signature e+e− τ+τ− + 6E, where a reasonable tau detection performance is presumed.
The decay of a R-slepton into a heavier neutralino, l̃±R → l± χ̃0

2 is strongly suppressed if
the lightest neutralino χ̃0

1 is bino-like. Furthermore, this channel is also disfavoured due
to kinematical reasons because of the mass difference between l̃L and l̃R. The appearance
of additional tau jets can therefore be interpreted as a clear signal of L-sleptons.

In the e+e− mode, the production of mixed selectron pairs, ẽ±R ẽ
∓
L , is best suited for

the examination of the left-chiral selectron. In contrast to the production of L-selectron
pairs, the cross-section rises faster at threshold due to the S-wave excitation. In addition,

3Thanks to H. U. Martyn for stressing this point.
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as explained before, using same-sign polarization for the e− and e+ beams reduces super-
symmetric backgrounds. The cross-section for left-chiral smuon production is too small
to perform any measurements at the threshold.

The main Standard Model backgrounds arise from triple gauge boson production
W+W−Z and W+W−γ∗ with a leptonic decay of the W -bosons and the Z-boson or pho-
ton. The total cross-section of these processes is well below 1 fb [76] and can be further
reduced by applying cuts on the invariant di-lepton masses. Therefore, Standard Model
background will be neglected here.

Supersymmetric backgrounds to ẽ±R ẽ
∓
L are included by computing the complete matrix

element for e+e− → e+e− χ̃0
1 χ̃

0
2. In the scenarios of App. A, the width of χ̃0

2 is small so
that it can safely be treated as an on-shell final-state particle. Accordingly, the decay of
the χ̃0

2 factorizes; nevertheless, spin correlations have to be taken into account.
The full process e+e− → e+e− χ̃0

1 χ̃
0
2 includes a possibly large background from χ̃0

2χ̃
0
2

production. Another potential background source could stem from the production of
scalar taus, e+e− → τ̃+τ̃− → τ+τ− χ̃0

1 neu2 → τ+τ− e+e− χ̃0
1 χ̃

0
1. Both contributions

are suppressed due to the small branching fraction of the neutralino χ̃0
2 into electrons

(see App. A). Furthermore the signal-to-background ratio can be improved by a suit-
able application of beam polarization. For the pair production of mixed selectron pairs,
ẽ±R ẽ

∓
L , the polarization for both electron and positron beams with the same helicity,

Pe− = −80%, Pe+ = −50% or Pe− = +80%, Pe+ = +50%, leads to an enhancement of
the signal cross-section while the background from stau pair production is suppressed.

In e−e− scattering left-chiral selectrons can best be studied when they are produced
in pairs, ẽ−L ẽ

−
L . Compared the production of mixed pairs, this production of diagonal

L-selectron pairs has a larger cross-section and rises more rapidly in an S-wave excitation
near threshold. The production via

e− e− → (ẽ−L ẽ
−
L ) → e− e− χ̃0

2 χ̃
0
2 → e− e− ττττ χ̃0

1 χ̃
0
1 (4.42)

is practically background-free. Nevertheless, for consistency reasons, the full matrix ele-
ment e−e− → ẽ−L ẽ

−
L χ̃

0
2 χ̃

0
2 is computed as before. By using left-polarized electron beams,

Pe− = −80%, the signal can be further enhanced.

4.4.3 Specialized cuts near threshold

Near threshold the scalar leptons are produced almost at rest (with a typical energy spread
of the order of the width). If one now considers a two-body decay of the sleptons, for
example l̃±R → l± χ̃0

1, the energy of the decay products is sharply defined. For instance,
the final state lepton energy in the above-mentioned decay is given by

El ≈
m2

l̃
−m2

χ̃0
1

2ml̃

. (4.43)

When the masses of the slepton and the neutralino are roughly known, for example from
end-points kinematics, this can be used to construct a specialized selection criterion. By
cutting on the lepton energy, the total background can be reduced very effectively since
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Figure 4.5: Distribution in the lepton energy difference ∆El = |E+ − E−| of the signal
contributions and the backgrounds to e+e− → e+ e−+ 6E near the threshold for R-selectron
production,

√
s = 290 GeV (the nominal threshold is at 2mẽR

= 286 GeV). A possible cut
according to (4.44) is indicated by the vertical lines. Numerical values for SPS1 scenario.

it is extremely unlikely that any background contribution could mimic the characteristic,
sharply constrained energy distribution.

Even without any information about the neutralino mass, (4.43) can help to extract
the signal for l̃+R l̃

−
R production near threshold. In this case one would like to study the

production of two charge-conjugated particles, which naturally have the same mass. As a
consequence, final state leptons originating from two-body decays of these particles have
roughly the same energy near threshold. Therefore the cut condition

|E+ − E−| < El,cut (4.44)

reduces most of the background while only slightly affecting the signal near threshold, see
Fig. 4.5. Reasonable values for the cut energy are El,cut ≈ 10 GeV.

4.5 Analysis of smuon and selectron pair production near

threshold

Since it is the purpose of this study to examine the effect of the finite widths in the
pair production of scalar leptons, the decay of the sleptons cannot be separated from
the production process. Thus, in order to preserve gauge-invariance, the computation
always encompasses the full 2 → 4 matrix elements with the two-particle decay products
of the sleptons in the final state. The potential subsequent decay of the second-lightest
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neutralino χ̃0
2 is then treated in the narrow-width approximation, i.e. the neutralino χ̃0

2 is
taken on-shell.

Results for smuon production in e+e− annihilation and selectron production in e−e−

scattering including supersymmetric backgrounds have been published in Ref. [74, 77].
Here the background from Standard Model processes is added and in addition the pro-
duction of selectrons in e+e− annihilation is discussed and compared with the e−e− mode.

In Fig. 4.6 the threshold excitation curve for right-chiral smuon µ̃R production is
shown, including initial-state radiation and beamstrahlung. The Standard Model and
supersymmetric backgrounds with the same visible final state µ+µ−+ 6E are reduced using
the cut on the muon energy difference, eq. (4.44). As evident from the figure, the remaining
background is smooth and almost flat so that it can be subtracted experimentally in a
model-independent way.

In order to illustrate the effect of the finite smuon widths and the Coulomb rescatter-
ing corrections, also the threshold excitation curve for zero width and without radiative
corrections is shown.

The production of right-chiral selectrons ẽR in e+e− and e−e− scattering is shown in
Fig. 4.7. As before the curves include ISR and beamstrahlung effects and the influence
of the non-zero widths and the Coulomb correction is demonstrated. In e+e− annihila-
tion large background contributions arise both from Standard Model and supersymmetric
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processes and are reduced with the electron energy cut (4.44). In the e−e− mode the
backgrounds are relatively small and can be controlled with the cut (4.40).

From the figure the distinct features of the two different collider modes become ap-
parent. Due to the S-wave excitation, the cross-section in the e−e− mode rises sharply
at the kinematical threshold and exceeds the e+e− cross-section by almost two orders of
magnitude in the threshold region. As a consequence, in the e−e− mode the effects of the
finite selectron width and the Coulomb correction become more pronounced. This could
open up the possibility to measure both the mass and the width of the selectron from a
threshold scan.

For the measurement of the left-chiral selectron ẽL mass, the most favourable processes
are the production of mixed selectron pairs, ẽ±R ẽ

∓
L in the e+e− mode and the production

of L-selectron pairs, ẽ−L ẽ
−
L in the e−e− mode, respectively. In both processes the selec-

tron pairs are produced in S-waves, thus suggesting promising prospects for precision
measurements. The threshold cross-sections are depicted in Fig. 4.8.

The production of mixed pairs ẽ±R ẽ
∓
L is characterized by the final state signature

e+e− τ+τ− + 6E, where the decay channel (4.41) of the L-selectron has been considered.
The backgrounds from Standard Model and supersymmetric contributions are small and
well under control.

The signal for L-selectron production in e−e− scattering with the decay chain (4.42)
has a very distinctive pattern of two electrons, four tau jets and missing energy. There-
fore, despite the relatively low signal cross-section, measurements in this channel seem
promising because of the absence of relevant backgrounds.
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Figure 4.7: The excitation curves for ẽR pair production over Standard Model and su-
persymmetric backgrounds for e+e− annihilation (left) and e−e− scattering (right). The
signal contribution with non-zero widths and Coulomb rescattering is compared with the
case of zero width and no higher order corrections. The signal is enhanced with beam
polarization as indicated. Values for RR2 scenario.
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Chapter 5

Radiative corrections to on-shell slepton

pair production

One of the most fundamental predictions of supersymmetry is the equivalence between
gauge couplings of fermions and sfermions, and supersymmetric Yukawa couplings of
fermions, sfermions and gauginos. Therefore, it will be one of the most interesting tasks
to test this relation with high precision. At a linear collider, the couplings of scalar leptons
can be extracted with an accuracy at the per-cent level or even below (see section 6.2)
from the measurement of slepton pair-production cross-sections in the continuum.

Clearly, in order to match this precision, it is necessary to include radiative corrections
in the theoretical predictions. In the continuum, i.e. sufficiently far above the production
threshold, the effect of the finite slepton widths is less important than near threshold.
Therefore, as a first step, radiative corrections are studied for the production of on-shell
sleptons. As one important building block, the complete electroweak one-loop corrections
to the decay of sfermions into charginos and neutralinos have been published recently [78].

Here, electroweak O(α) corrections to the pair production of scalar leptons are studied.
In particular, complete one-loop results are presented for the production of the first two
generation right-chiral sleptons, i.e. the processes e+e− → µ̃+

Rµ̃
−
R, e+e− → ẽ+

R ẽ
−
R and

e−e− → ẽ−R ẽ
−
R. The virtual contributions are supplemented by the corresponding real

photon bremsstrahlung corrections, so that a physically sound result is obtained.
In principle, these calculations could easily be extended to the production of left-chiral

sleptons. However, for brevity, the complete analysis has not been performed for this case.
Since there is no standard convention for the renormalization of the superpartners of

the MSSM (i.e. particles that are not present in the Standard Model), the renormalization
procedure will be described in detail in the next section. The following sections will then
address the other relevant issues for the calculation and discuss the results.

5.1 Renormalization of the MSSM

5.1.1 Regularization

Within non-supersymmetric gauge theories, dimensional regularization (DREG) [79] is
the most widely used method of regularization. In DREG all objects which are represen-

45



46 5 Radiative corrections to on-shell slepton pair production

tations of the Lorentz group (i.e. Dirac algebra, vector fields, momenta, metric tensor)
are extended from 4 to D = 4− ε dimensions. All loop and soft bremsstrahlung integrals
are thus rendered finite. Since this procedure preserves gauge invariance, it is for most
purposes1 a very convenient prescription.

For supersymmetric theories, however, it is less suited, since there is a mismatch
between bosonic and fermionic degrees of freedom causing a violation of supersymmetry.
In particular, in DREG a vector boson carries D − 2 instead of 2 transverse degrees of
freedom, while the fermionic degrees of freedom remain unaffected.

In general it is not necessary to employ a regularization prescription which preserves
all symmetries of the theory. However, the procedure would then be as follows: After
performing the regularization with an arbitrary method and cancelling the UV divergences
with appropriate counterterms, additional finite counterterms have to be added in order to
restore the Slavnov-Taylor identity of the theory. The general application of this concept
to supersymmetric theories is described in detail in [80, 81].

While generally this approach is very cumbersome from a technical point of view,
for practical calculations of physical one-loop amplitudes there exists a convenient pro-
cedure. Since DREG does not violate gauge invariance, no symmetry-restoring coun-
terterms are needed for the renormalization of gauge couplings, also in supersymmetric
theories. The on-shell masses are unambiguously fixed by the propagator pole position.
Therefore the only possibly dangerous type of couplings in physical amplitudes are scalar-
fermion-fermion and fermion-sfermion-gaugino Yukawa couplings as well as quartic scalar
couplings. The finite supersymmetry-restoring counterterms that have to be added to
these couplings when using DREG have been worked out at the one-loop level in [82].

A promising alternative is the method of dimensional reduction (DRED) [83, 84]. In
contrast to DREG, within DRED the dimensions of the momentum integrals are com-
pactified to D < 4 dimensions while the number of field components remains unchanged.
As an effect, the regularized Lagrangian can be divided into a D-dimensional and an
ε-dimensional part. The contributions from the latter are often referred to as “evanescent
couplings” [85]. In non-supersymmetric theories this bears the problem that the evanes-
cent couplings require a different renormalization as the couplings in the D-dimensional
part [86]. Fortunately this is not the case for supersymmetric theories, where the evanes-
cent couplings are linked to the normal couplings in order to preserve supersymmetry.

As a consequence, within DRED, no extra counterterms are needed besides those
which cancel the UV divergences. This assertion is valid at least up to 1-loop order which
is reflected by the fact that the supersymmetric Ward identity is satisfied within DRED
at this order [84]2. Therefore in this work, DRED is employed for the regularization of
the loop integrals.

It should be noted, however, that in higher orders DRED may also cause symmetry
violations in supersymmetric theories [87]. This is due to intrinsic ambiguities in the
treatment of the antisymmetric Levi-Civita tensor [88].

1An exception are problems in connection with the axial anomaly.
2Strictly speaking, in Ref. [84] this has only been investigated for the Yang-Mills part and not for

the complete MSSM. Nevertheless, up to the present day, no situation is known where DRED violates
symmetries of the MSSM at 1-loop.
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5.1.2 Renormalization of the gauge sector

In comparison to the Standard Model, the introduction of (unbroken) supersymmetry
does not induce any new independent couplings. Consequently, the gauge sector of the
MSSM can be renormalized in the same way as the Standard Model gauge sector. Here
the conventions of Ref. [89] are adopted.

For the massive gauge bosons, counterterms are introduced according to

M2
W →M2

W + δM2
W, M2

Z →M2
Z + δM2

Z (5.1)

They are fixed by the condition that the gauge boson masses coincide with the poles of the
propagators, i.e. the zeros of the transverse part of renormalized one-particle-irreducible
two-point functions3 Γ̂ab

T (k2) = −i
(
(k2 −M2

a )δab + Σ̂ab
T (k2)

)
,

<e Γ̂aa
T (M2

a ) = 0, a = W,Z. (5.2)

At one-loop order this leads to the following equations for the mass counterterms,

δM2
W = <e ΣWW

T (M2
W), δM2

Z = <e ΣZZ
T (M2

Z). (5.3)

Here Σ(k2) and Σ̂(k2) denote the unrenormalized and renormalized self-energies, respec-
tively. As apparent from (2.13), the gauge couplings g and g ′ can be expressed in terms
of the electromagnetic coupling and the weak mixing angle. Consequently, their renor-
malization can be determined by the renormalization of the electromagnetic charge and
the gauge boson masses as follows,

e→ (1 + δZe)e δZe =
1

2

∂Σγγ
T (k2)

∂k2

∣∣∣∣
k2=0

− sW

cW

ΣγZ
T (0)

M2
Z

, (5.4)

sW → sW + δsW ,
δsW

sW
=

c2W
2s2

W

[
δM2

Z

M2
Z

− δM2
W

M2
W

]
. (5.5)

Furthermore, for the calculation of radiative corrections to e±e− scattering processes, the
field renormalizations of the incoming electrons and positron are needed,

eL → (1 + 1
2
δZeL) eL, eR → (1 + 1

2
δZeR) eR. (5.6)

They are given by the condition that the residues of the renormalized propagators are
normalized to unity,

∂

∂6p <e
{
Γ̂e(p)

}
ui(p),

∣∣∣∣
p2=m2

e

= i ui(p),
∂

∂6p ūi(p) <e
{
Γ̂e(p)

}∣∣∣∣
p2=m2

e

= i ūi(p), (5.7)

with the electron two-point function given by Γ̂e(p) = i
(
(6p − me) + Σ̂e(p)

)
. Using the

decomposition
Σe(p) = 6p ωLΣeL(p2) + 6p ωRΣeR(p2) + ΣeS(p2) (5.8)

3In the following the hat indicates renormalized quantities.
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the field renormalization constants are given by

δZeL = −<e
{

ΣeL(m2
e) +m2

e

∂

∂p2

[
ΣeL(p2) + ΣeR(p2) + 2/me ΣeS(p2)

]
p2=m2

e

}
, (5.9)

δZeR = −<e
{

ΣeR(m2
e) +m2

e

∂

∂p2

[
ΣeL(p2) + ΣeR(p2) + 2/me ΣeS(p2)

]
p2=m2

e

}
. (5.10)

Apart from the QED corrections, the electron mass may be safely neglected, which con-
siderably simplifies (5.9) and (5.10).

5.1.3 Renormalization of the sfermion sector

In this work only scalar leptons of the first two generations are considered as external par-
ticles, for which mixing can be neglected, as explained in section 2.2.3. As a consequence,
the partners of the left- and right-handed leptons (L-/R-sleptons) can be renormalized
independently. However, for completeness, in this section also the general case including
mixing between L- and R-sfermions is discussed [90–92].

The tree-level Lagrangian for the bilinear sfermion terms reads

Lf̃ =
(
f̃ ∗

L, f̃
∗
R

)
k2

(
f̃L

f̃R

)
−
(
f̃ ∗

L, f̃
∗
R

)
M2

f̃

(
f̃L

f̃R

)
, (5.11)

with k denoting the momentum of the sfermions and Mf̃ given in (2.27). The mass matrix
and the fields are renormalized according to

M2
f̃
→M2

f̃
+ δM2

f̃
, (5.12)

(
f̃L

f̃R

)
→
(
1 + 1

2
δZ f̃
)(

f̃L

f̃R

)
, (5.13)

where the mass counterterm δMf̃ is defined in terms of the fundamental parameters of
the mass matrix,

δM2
f̃

=

(
δm2

f + δm2
F̃L

+ δ
(
M2

Z cos 2β (I3
f −Qfs

2
W)
)

δ
[
mf

(
Af − µ(cotβ)2I3

f

)]

δ
[
mf

(
Af − µ(cotβ)2I3

f

)]
δm2

f + δm2
f̃R

+ δ
(
M2

Z cos 2β Qfs
2
W

)
)
,

(5.14)
and field renormalization constants are diagonal,

δZ f̃ =

(
δZ f̃

L 0

0 δZ f̃
R

)
. (5.15)

This choice is sufficient for the cancellation of UV-divergences [80] and compatible with the
most general ansatz when in addition a renormalized mixing matrix is properly defined.
To start with, the interaction eigenstates f̃L, f̃R are related to the mass eigenstates f̃1, f̃2

by an arbitrary complex mixing matrix Rf̃ ,

(
f̃1

f̃2

)
= Rf̃

(
f̃L

f̃R

)
. (5.16)
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Following [92], it can be written as

Rf̃ =
(
1 + 1

2
δZU

f̃

)
Uf̃ , (5.17)

where the tree-level mixing matrix Uf̃ can be taken unitary. Note that the correction term
δZU

f̃ is finite since all divergences are already absorbed by the counterterms in (5.12),
(5.13).

Since the constants δZ f̃, δZU
f̃ only appear in a specific combination in the transfor-

mations of the fields, they can be combined into one renormalization constant δZ̃ f̃ :

(
f̃L

f̃R

)
→
(
1 + 1

2
δZ f̃
)
R−1

f̃

(
f̃1

f̃2

)
= U †

f̃

[
1 + 1

2
Uf̃

(
δZ f̃U †

f̃
− U †

f̃
δZU

f̃

)](
f̃1

f̃2

)

≡ U †
f̃

[
1 + 1

2
δZ̃ f̃
](

f̃1

f̃2

) (5.18)

with
δZ̃ f̃ = Uf̃δZ

f̃U †
f̃
− δZU

f̃ . (5.19)

With these definitions the renormalized Lagrangian reads

Lf̃ → Lf̃ + δLf̃,

Lf̃ =
(
f̃ ∗

1 , f̃
∗
2

) [
k2 − Uf̃M

2
f̃
U †

f̃

](f̃1

f̃2

)
, (5.20)

δLf̃ =
(
f̃ ∗

1 , f̃
∗
2

) [k2

2

(
δZ̃ f̃

†
+ δZ̃ f̃

)
− 1

2

(
δZ̃ f̃

†
Uf̃M

2
f̃
U †

f̃
+ Uf̃M

2
f̃
U †

f̃
δZ̃ f̃
)
− Uf̃ δM

2
f̃
U †

f̃

](
f̃1

f̃2

)
.

By exploiting the tree-level relation for the mass matrix diagonalization

Uf̃M
2
f̃
U †

f̃
= MD

f̃
≡
(
mf̃

2
1 0

0 mf̃
2
2

)
(5.21)

the renormalized self-energy for the sfermions f̃i and f̃j takes on the form

Σ̂f̃
ij(k

2) = Σf̃
ij(k

2) +
k2

2

(
δZ̃ f̃

ji

∗
+ δZ̃ f̃

ij

)
− 1

2

(
mf̃

2
j δZ̃

f̃
ji

∗
+mf̃

2
i δZ̃

f̃
ij

)
− (Uf̃ δM

2
f̃
U †

f̃
)ij. (5.22)

Now, on-shell renormalization conditions are imposed for the sfermions. They define the
mass eigenvalues as the poles of the propagators. In addition, it can be demanded that the
matrix of the renormalized two-point vertex functions Γ̂f̃

ij(k
2) = i

(
(k2−mf̃

2
i )δij +Σ̂f̃

ij(k
2)
)

is diagonal for on-shell external momenta. This leads to the following conditions,

<e Γ̂f̃
ij(mf̃

2
i ) = 0, <e Γ̂f̃

ij(mf̃
2
j) = 0, (i, j = 1, 2). (5.23)

Furthermore, the normalization of the physical fields is fixed by the condition that the
residues of the renormalized propagators are unity,

∂

∂k2
<e Γ̂f̃

ii(k
2)

∣∣∣∣
k2=m

f̃
2
i

= i, (i = 1, 2). (5.24)
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From the requirement that the Lagrangian is hermitian and invariant under the CPT
transformation, one obtains the relation

Γ̂f̃
ij(k

2) = − Γ̂f̃
ji

∗
(k2), (5.25)

so that the two conditions in (5.23) are equivalent. It may be illustrative to note that the
tree-level mass matrix diagonalization (5.21) and the unitarity of the tree-level mixing
matrix Uf̃ can also be derived from the above renormalization conditions.

At one-loop level the renormalization conditions yield

(Uf̃ δM
2
f̃
U †

f̃
)ii = <eΣf̃

ii(mf̃
2
i ), (5.26)

δZ̃ f̃
ii = −<e ∂Σ

f̃
ii(k

2)

∂k2

∣∣∣∣
k2=m

f̃
2
i

, (5.27)

δZ̃ f̃
ij =

2

mf̃
2
i −mf̃

2
j

[
<eΣf̃

ij(mf̃
2
j) − (Uf̃ δM

2
f̃
U †

f̃
)ij

]
for i 6= j. (5.28)

Here it has been assumed that the sfermion mass matrix is free of CP-violating phases,
so that the counterterms (Uf̃ δM

2
f̃
U †

f̃
) and δZ̃ f̃ are real. In the case of CP-violation, the

renormalization conditions (5.23), (5.24) only fix the real part of the field renormalization

constants δZ̃ f̃
ij.

Using (5.26), two parameter counterterms of the sfermion mass matrix (5.14), for
example δm2

F̃L
and δm2

f̃R
, can be determined in terms of the two mass eigenvalues mf̃ 1, mf̃ 2.

The remaining counterterms in (5.14), e.g. the counterterms to the trilinear couplings
Af , cannot be fixed with the conditions (5.23), (5.24). They have to be defined via
additional observable processes, such as decays of heavy Higgs bosons into sfermions or
gauge coupling asymmetries of sfermions. Considering the renormalization of a whole
squark generation, there are four independent mass eigenvalues, which can be used to
determine the counterterms to m2

q̃L
, m2

ũR
, m2

d̃R

and one of the trilinear couplings. For the

case of the sleptons, the situation is somewhat similar, but upon neglect of R-sneutrinos
in the MSSM, there are only three mass eigenvalues within one mass generation, which
can be used to fix the counterterms for m2

l̃L
, m2

ẽR
and the trilinear coupling Ae.

In this connection it is understood that the renormalization of the remaining param-
eters in the mass counterterm (5.14) is performed in other sectors. The Z-boson mass
MZ and the weak mixing angle sW are specified within the gauge boson sector. The
renormalization of tan β and µ is conveniently achieved in the Higgs and higgsino sector,
respectively, and will be described in the following sections.

Now the special case of vanishing mixing within one slepton generation shall be dis-
cussed. In this case the off-diagonal entries of the field renormalization constants δZ̃ f̃

ij

in (5.28) trivially become zero. The combination in (5.19) then simplifies to δZ̃ f̃ = δZ f̃ .
From (5.26), (5.27), one obtains for i = L,R:

(δM2
f̃
)ii = <eΣf̃

ii(mf̃
2
i ), (5.29)

δZ f̃
ii = −<e ∂Σ

f̃
ii(k

2)

∂k2

∣∣∣∣
k2=m

f̃
2
i

. (5.30)
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With the condition (5.29), it is possible to determine the counterterms to the parameters
m2

l̃L
, m2

ẽR
in terms of the mass eigenvalues ml̃1, ml̃2. Since both the mass of the L-slepton

and the sneutrino within one generation depend on the supersymmetry breaking param-
eter m2

l̃L
, one can only use one of the two masses, say the L-slepton mass, as independent

input. The mass of the sneutrino can then be calculated as a function of the L-slepton
mass, including the corresponding one-loop corrections. However, this is not an issue
for this thesis, since sneutrinos only appear inside the loops for slepton pair production
processes.

5.1.4 Renormalization of the charginos and neutralinos

The mass spectrum of the two chargino and four neutralino eigenstates depends on only
two supersymmetry breaking parameters M1,M2 and on the superpotential parameter µ.
Here it is assumed that tan β is already defined in the Higgs sector, as will be described in
the next section. As a consequence, when taking three of the six mass eigenvalues as given
input parameters, the other three masses are determined as a function of the first three
masses. This relation between the masses receives corrections from higher orders [93–95].
Because of this close connection between charginos and neutralinos, in this section the
renormalization for both is discussed, although only the renormalization of the neutralinos
is required for the loop corrections to selectron production.

The different renormalization prescriptions for charginos and neutralinos in [93–95] are
in accordance with each other in predictions for relations between physical quantities at
the one-loop level. For Refs. [93] and [95] this can easily be checked by direct computation.
While in principle the renormalization scheme proposed in Ref. [94] is equivalent to [93,95],
it leads to substantial differences in practical calculations. Following the formalism of
Ref. [96], the mass matrix counterterms in [94] are required to be diagonal in the mass
eigenstate basis. This additional condition results in finite shifts between the radiatively
corrected values for the fundamental parameters M1,M2 and µ in [94] and [93, 95], thus
making a direct comparison difficult. For technical reasons, here the formalism of [95] is
adopted.

Starting from the chargino Lagrangian

Lch = i
[
ψ−>

σµ∂µ ψ− + ψ+
>
σ̄µ∂µ ψ

+
]
−
[
ψ−>

X ψ+ + ψ+
>
X† ψ−

]
, (5.31)

where

ψ+ ≡
(
ψ+

1

ψ+
2

)
=

(
W̃+

H̃+
u

)
, ψ− ≡

(
ψ−

1

ψ−
2

)
=

(
W̃−

H̃−
d

)
(5.32)

are the chargino interaction eigenstates and X is given in (2.30), the following renormal-
ization constants are introduced,

X → X + δX, (5.33)

ψ+ →
(
1 + 1

2
δZL

)
ψ+,

ψ− →
(
1 + 1

2
δZR

)
ψ−. (5.34)
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As before, the mass matrix counterterm δX is constructed from the counterterms of the
parameters in X,

δX =

(
δM2

√
2 δ (MW sin β)√

2 δ (MW cos β) δµ

)
, (5.35)

and the field renormalization constants δZL, δZR are diagonal. In addition, finite correc-
tion terms to the mixing matrices are introduced,

χ+ = RL ψ
+, RL =

(
1 + 1

2
δZV

)
V,

χ− = RR ψ
−, RR =

(
1 + 1

2
δZU

)
U,

(5.36)

with χ± denoting the mass eigenstates and U, V the unitary tree-level matrices from
(2.31). δZU , δZV are arbitrary 2 × 2 matrices. The transformation of the fields can then
be written as

ψ+ →
(
1 + 1

2
δZL

)
V † (1 − 1

2
δZV

)
χ+ ≡ V †

(
1 + 1

2
δZ̃L

)
χ+,

ψ− →
(
1 + 1

2
δZR

)
U † (1 − 1

2
δZU

)
χ− ≡ U †

(
1 + 1

2
δZ̃R

)
χ−,

(5.37)

where

δZ̃L = V δZLV † − δZV , δZ̃R = UδZRU † − δZU (5.38)

have been introduced as shorthand notation. These transformations yield for the La-
grangian, after a Fourier transformation,

Lch → Lch + δLch,

Lch =
(
χ̃+

1 , χ̃
+
2

) [
6p− U∗XV † ωL − V X†U>ωR

](χ̃+
1

χ̃+
2

)
, (5.39)

δLch =
(
χ̃+

1 , χ̃
+
2

) [ 6p
2

(
δZ̃L†

+ δZ̃L
)
ωL +

6p
2

(
δZ̃R∗

+ δZ̃R>)
ωR

−
(

1
2
δZ̃R>

U∗XV † + 1
2
U∗XV †δZ̃L + U∗δXV †)ωL (5.40)

−
(

1
2
δZ̃L†

V X†U> + 1
2
V X†U>δZ̃R∗

+ V δX†U>)ωR

](
χ̃+

1

χ̃+
2

)
,

where the 4-component Dirac spinors specified in (2.32) and the projectors ωL,R = 1
2
(1∓γ5)

have been used. With the help of the tree-level relation (2.31), the renormalized self-

energies with respect to the fields χ̃+
i and χ̃+

j can be cast into the form

Σ̂±
ij(p) = 6pωLΣ̂±L

ij (p2) + 6p ωRΣ̂±R
ij (p2) + ωLΣ̂±SL

ij (p2) + ωRΣ̂±SR
ij (p2), (5.41)

Σ̂±L
ij (p2) = Σ±L

ij (p2) + 1
2

(
δZ̃L

ij + δZ̃L
ji

∗)
, (5.42)

Σ̂±R
ij (p2) = Σ±R

ij (p2) + 1
2

(
δZ̃R

ij

∗
+ δZ̃R

ji

)
, (5.43)

Σ̂±SL
ij (p2) = Σ±SL

ij (p2) − 1
2

(
mχ̃±

i
δZ̃L

ij +mχ̃±

j
δZ̃R

ji

)
− (U∗δXV †)ij, (5.44)

Σ̂±SR
ij (p2) = Σ±SR

ij (p2) − 1
2

(
mχ̃±

i
δZ̃R

ij

∗
+mχ̃±

j
δZ̃L

ji

∗)− (V δX†U>)ij. (5.45)



5.1 Renormalization of the MSSM 53

The bilinear part of the neutralino Lagrangian reads

Ln =
i

2

[
ψ0>σµ∂µ ψ0 + ψ0

>
σ̄µ∂µ ψ

0
]
− 1

2

[
ψ0>Y ψ0 + ψ0

>
Y † ψ0

]
, (5.46)

with ψ0 and Y given in (2.33) and (2.34), respectively. In analogy to the chargino case,
the mass matrix Y and the fields are renormalized according to

Y → Y + δY, (5.47)

ψ0 →
(
1 + 1

2
δZ0

)
ψ0, (5.48)

Furthermore, a finite one-loop correction to the mixing is introduced,

χ0 = R0 ψ
0, R0 =

(
1 + 1

2
δZN

)
N, (5.49)

where χ0 denotes the mass eigenstates and N is the unitary tree-level matrix from (2.35),
whereas δZN is an arbitrary 4 × 4 matrix. The renormalization and redefinition of the
fields then results in

ψ0 → N †
(
1 + 1

2
δZ̃0

)
χ0, with δZ̃0 = NδZ0N † − δZN . (5.50)

Using the renormalization transformation and the 4-component Majorana spinors from
(2.36), the Lagrangian reads

Ln → Ln + δLn,

Ln =
1

2

(
χ̃0

1, χ̃
0
2

) [
6p−N∗Y N † ωL −NY †N>ωR

](χ̃0
1

χ̃0
2

)
, (5.51)

δLn =
1

2

(
χ̃0

1, χ̃
0
2

) [ 6p
2

(
δZ̃0† + δZ̃0

)
ωL +

6p
2

(
δZ̃0∗ + δZ̃0>)ωR

−
(

1
2
δZ̃0>N∗Y N † + 1

2
N∗Y N †δZ̃0 +N∗δY N †)ωL (5.52)

−
(

1
2
δZ̃0†NY †N> + 1

2
NY †N>δZ̃0∗ +NδY †N>)ωR

](
χ̃0

1

χ̃0
2

)
.

From this one obtains the following expressions for the Lorentz decomposition of the
renormalized self-energies, where the tree-level relation (2.35) has been used:

Σ̂0
ij(p) = 6pωLΣ̂0L

ij (p2) + 6p ωRΣ̂0R
ij (p2) + ωLΣ̂0SL

ij (p2) + ωRΣ̂0SR
ij (p2), (5.53)

Σ̂0L
ij (p2) = Σ0L

ij (p2) + 1
2

(
δZ̃0

ij + δZ̃0
ji

∗)
, (5.54)

Σ̂0R
ij (p2) = Σ0R

ij (p2) + 1
2

(
δZ̃0

ij

∗
+ δZ̃0

ji

)
, (5.55)

Σ̂0SL
ij (p2) = Σ0SL

ij (p2) − 1
2

(
mχ̃0

i
δZ̃0

ij +mχ̃0
j
δZ̃0

ji

)
− (N∗δY N †)ij, (5.56)

Σ̂0SR
ij (p2) = Σ0SR

ij (p2) − 1
2

(
mχ̃0

i
δZ̃0

ij

∗
+mχ̃0

j
δZ̃0

ji

∗)− (NδY †N>)ij. (5.57)

The above expressions for the chargino and neutralino self-energies can be simplified by
considering the CPT invariance and hermiticity of the Lagrangian and the Majorana
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nature of the neutralinos, yielding the relations

Σ̂±L
ij (p2) = Σ̂±L

ji

∗
(p2), Σ̂±R

ij (p2) = Σ̂±R
ji

∗
(p2), Σ̂±SL

ij (p2) = Σ̂±SR
ji

∗
(p2), (5.58)

Σ̂0L
ij (p2) = Σ̂0L

ji

∗
(p2), Σ̂0R

ij (p2) = Σ̂0R
ji

∗
(p2), Σ̂0SL

ij (p2) = Σ̂0SR
ji

∗
(p2), (5.59)

Σ̂0L
ij (p2) = Σ̂0R

ji (p2), Σ̂0SL
ij (p2) = Σ̂0SL

ji (p2), Σ̂0SR
ij (p2) = Σ̂0SR

ji (p2). (5.60)

In order to fix the renormalization constants for the charginos and neutralinos, the fol-
lowing on-shell renormalization conditions are imposed, which are similar to the sfermion
case. The mass eigenvalues are defined as the poles of the propagators, while in ad-
dition it is required that the matrix of the renormalized two-point vertex functions
Γ̂t

ij(p) = i
(
(6p −mχ̃t

i
)δij + Σ̂t

ij(p)
)

becomes diagonal for on-shell external momenta. The
residues of the on-shell propagators are normalized to unity. The corresponding conditions
read (t = 0,± for neutralinos and charginos, respectively)

<e
{
Γ̂t

ij(p)
}
uj(p)

∣∣∣
p2=m2

χ̃t
j

= 0, ūi(p) <e
{
Γ̂t

ij(p)
}∣∣∣

p2=m2

χ̃t
i

= 0, (5.61)

∂

∂6p <e
{
Γ̂t

ii(p)
}
ui(p)

∣∣∣∣
p2=m2

χ̃t
i

= i ui(p),
∂

∂6p ūi(p) <e
{
Γ̂t

ii(p)
}∣∣∣∣

p2=m2

χ̃t
i

= i ūi(p). (5.62)

From these renormalization conditions one can derive explicit expressions for the coun-
terterms to the MSSM parameters M1,M2 and µ [95]. They can be fixed by the on-shell
renormalization of three chargino or neutralino masses, for which here the two charginos
and the lightest neutralino have been chosen. The following formulae are valid for the
special case of CP conservation, i.e. when all parameters can be taken real:

δM2 =
1

µ2 −M2
2

[
(mχ̃±

2
µ−mχ̃±

1
M2) δmχ̃±

1
+ (mχ̃±

1
µ−mχ̃±

2
M2) δmχ̃±

2

+ M2 δM
2
W + µ δ

(
M2

W sin 2β
)]
,

(5.63)

δµ =
1

M2
2 − µ2

[
(mχ̃±

2
M2 −mχ̃±

1
µ) δmχ̃±

1
+ (mχ̃±

1
M2 −mχ̃±

2
µ) δmχ̃±

2

+ µ δM2
W +M2 δ

(
M2

W sin 2β
)]
,

(5.64)

with δmχ̃±

k
=

1

2
<e
{
mχ̃±

k
Σ±L

kk (m2
χ̃±

k

) +mχ̃±

k
Σ±R

kk (m2
χ̃±

k

) + 2 Σ±SL
kk (m2

χ̃±

k

)
}
,

δM1 =
1

N2
11

[
<e
{
mχ̃0

1
Σ0L

11 (m2
χ̃0

1
) + Σ0SL

11 (m2
χ̃0

1
)
}
−N2

12 δM2 + 2N13N14 δµ

+ 2N11

[
N13 δ

(
MZsW cos β

)
−N14 δ

(
MZsW sin β

)]

+ 2N12

[
N13 δ

(
MZcW cos β

)
−N14 δ

(
MZcW sin β

)]]
.

(5.65)

Accordingly, this choice for the renormalization of the parameters M1,M2 and µ cor-
responds to the extension of the tree-level relation between these parameters and the
on-shell masses of the two charginos and one neutralino to the one-loop level. The other
three neutralino mass eigenvalues then receive non-zero corrections at the one-loop level.
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Eqs. (5.63) – (5.65) still depend on the counterterms for the gauge boson masses and
the weak mixing angle, which can be obtained from the gauge sector, and the counterterm
for tan β, which is a parameter of the Higgs sector. The renormalization of tan β will be
discussed in the next section.

For completeness also the expressions for the field renormalization matrices of the
neutralinos are given, while they are not needed in loop calculations without external
neutralinos:

δZ̃0
ii = −<e

{
Σ0L

ii (m2
χ̃0

i
) + 2m2

χ̃0
i
Σ0L

ii

′
(m2

χ̃0
i
) + 2mχ̃0

i
Σ0SL

ii

′
(m2

χ̃0
i
)
}
, (5.66)

δZ̃0
ij =

2

mχ̃0
i
−mχ̃0

j

[
mχ̃0

j
<eΣ0L

ij (m2
χ̃0

1
) + <eΣ0SL

ij (m2
χ̃0

1
) − (NδY N>)ij

]
, (5.67)

where the prime in Σ′ denotes the derivate of the corresponding self-energy.

5.1.5 Renormalization of the Higgs sector

In contrast to the renormalization of masses and gauge couplings, there is no standard
on-shell prescription for the renormalization of tan β. This is related to the fact that tan β
is not directly connected with any observable. In the following, three requirements are
put up that are desirable for a renormalization scheme:

• Since tanβ originates from the Higgs sector, see (2.19), its renormalization should
not involve quantities from other sectors.

• The renormalization condition should lead to a gauge-independent numerical value
for tanβ.

• A good convergence behaviour of the perturbation series is required, i.e. quantum
correction to tanβ should not grow too large.

In Ref. [97] a variety of different renormalization schemes has been studied with respect
to these requirements. The findings are briefly sketched here. With the following decom-
position of the Higgs doublets,

Hu =

(
φ+

u

vu + 1√
2
(φu + iρu)

)
, Hd =

(
vd + 1√

2
(φd + iρd)

−φ−
d

)
, (5.68)

the linear and quadratic terms of the Higgs potential of the MSSM can quite generally be
written as

Vbilin = tuφu + tdφd +m2
1

(
1
2
φ2

d + 1
2
ρ2

d + |φ−
d |2
)

+m2
2

(
1
2
φ2

u + 1
2
ρ2

u + |φ+
u |2
)

+m2
3

(
φuφd + ρuρd + φ+

u φ
−
d + φ+

u
∗
φ−

d
∗)
.

(5.69)

with m2
1 = µ2 +m2

Hd
, m2

2 = µ2 +m2
Hu

and m2
3 = −b. The tadpole parameters tu,d vanish at

tree-level. The soft-breaking parameters m1,2,3 can be re-expressed in terms of vu, vd,MA0 ,
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leading to the relations

tu
vu

+
td
vd

=
√

2(m2
1 +m2

2) +
√

2m2
3

(
tβ +

1

tβ

)
, (5.70)

M2
A0 = −m2

3

(
tβ +

1

tβ

)
+ c2β

tu√
2vu

+ s2
β

td√
2vd

, (5.71)

where the abbreviations tβ = tan β, sβ = sin β and cβ = cos β have been introduced.
These formulae will be of use later.

The renormalization of the parameters in (5.68) and (5.69) is given by

m2
1,2,3 → m2

1,2,3 + δm2
1,2,3, vu,d → vu,d

(
1 + 1

2
δZu,d

)
− δvu,d, (5.72)

tu,d → tu,d + δtu,d. (5.73)

Here δZu,d denote the field renormalization constants of the Higgs doublets Hu,d. Their
specific form is of no importance here. Now the counterterm for tanβ = vu/vd follows as

δtβ =
vu

vd

[
1
2
δZu − 1

2
δZd −

δvu

vu
+
δvd

vd

]
. (5.74)

The tadpoles are renormalized so that they also vanish in higher orders, tu,d + δtu,d = 0.

In the literature, the renormalization scheme introduced by Dabelstein [98] and by
Chankowski et al. [99] has frequently been used. It is defined by the conditions

δvu

vu

!
=
δvd

vd
, <eΓA0Z(M2

A0)
!
= 0. (5.75)

At one-loop level this leads to

DCPR:
δtβ
tβ

= − 1

MZ sin 2β
=mΣA0Z(M2

A0) (5.76)

with the A0–Z mixing self-energy ΣA0Z. While at the first glance the unmixing of the A0

and Z looks like an on-shell condition, this is in fact not the case since the longitudinal
part of the Z boson is associated with the unphysical Goldstone boson G0. An alternative
method [100], using the condition that the charged Higgs boson H± does not mix with
the W boson, is similar to the DCPR scheme.

Another renormalization prescription for tβ that has been used in practice [101] is
the DR scheme. It is defined by only taking the divergent part, i.e. the term of order
∆ = 2

4−D
− γE + log 4π in dimensional reduction, of the counterterm δtβ.

It turns out that both the DCPR scheme and the DR scheme are gauge-dependent in
the sense that the value for tanβ in predictions for physical observables depends on the
gauge parameters. The gauge-dependence can generally be shown [97] using the tool of
extended Slavnov-Taylor identities [102]. By accident, the DR renormalization of tan β
is independent of a covariant Rξ gauge at the one-loop level. However, gauge-dependent
terms are obtained from two-loop order on in the Rξ gauge [103] and even at the one-loop
level in a more general gauge [97].
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tanβ = 3 tanβ = 50

Mmax
h0 large µ no mixing Mmax

h0 large µ no mixing

DR −0.06 −0.06 −0.06 −0.17 −0.17 −0.17

GI1 0.81 −0.46 −0.04 285.29 127.11 4.92

GI2 4.50 −0.21 1.24 370.73 140.11 34.53

Table 5.1: Dependence ∂tβ/∂ log µ̄ on the renormalization scale µ̄ for the DR, GI1 and
GI2 schemes, for three typical scenarios from [105] and MA0 = 500 GeV.

One can construct gauge-independent renormalization schemes for tan β by observing
that the symmetric soft-breaking parameters m1,2,3 are gauge-independent to all orders
[104]. In practice, this can be realized by using a DR renormalization for the counterterms
δm1,2,3. From eqs. (5.70), (5.71) the following two alternative relations for the finite part
of δtβ can then be deduced,

GI1: δtfin
β

!
=

1

m2
3(1 − cot2 β)

[
−(δM2

A0)fin + c2β
δtfin

u√
2vu

+ s2
β

δtfin
d√
2vd

]
(5.77)

or

GI2: δtfin
β

!
=

1√
2m2

3(1 − cot2 β)

[
δtfin

u

vu

+
δtfin

d

vd

]
. (5.78)

The superscript “fin” denotes the purely finite part of the counterterms. The divergent
part of δtβ of order ∆ can be obtained from the DCPR scheme, for example.

A third gauge-independent scheme can be obtained by extending the Higgs mass re-
lation

GI3: cos2 2β
!
=

M2
h0M2

H0

M2
A0(M2

H0 +M2
h0 −M2

A0)
, (5.79)

which follows from (2.24), to one-loop order.
While all the three schemes GI1, GI2, and GI3 are manifestly gauge-invariant, they

turn out to lead to serious numerical problems. Two indications for the magnitude of the
higher-order corrections are the scale-dependence (for the DR, GI1 and GI2 schemes) and
the size of the finite part of the δtβ counterterm.

It can be seen from Tab. 5.1 and 5.2 that the DR and the DCPR scheme are well-
behaved in the sense that the magnitude of the higher order corrections is suppressed
with respect to the tree-level parameter. However, for the three gauge-invariant schemes
GI1–3 very large scale dependences and finite shifts to tanβ can be obtained, signalling
the breakdown of the validity of perturbation theory. As a consequence, the schemes
GI1–3 cannot be employed for practical calculations. In fact, it can be proven that it is
impossible to construct any renormalization scheme for tan β from quantities of the Higgs
sector that is both gauge-invariant and numerically stable in higher orders [97].

In order to circumvent these problems one could try to define the renormalization of
tanβ by relating it to a specific physical process. This method has been adopted in [106],
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tan β = 3 tan β = 50

Mmax
h0 large µ no mixing Mmax

h0 large µ no mixing

DR 0 0 0 0 0 0

DCPR −0.10 −0.06 −0.08 3.56 14.47 0.46

GI1 0.56 −0.08 −0.04 490.45 −67.14 −4.85

GI2 2.64 −0.46 0.33 624.70 −76.46 0.92

GI3 −2.44 −1.83 −1.33 −426.54 −1995.93 −413.50

Table 5.2: Finite contribution of the counterterm δtfin
β in various renormalization schemes,

for three typical scenarios from [105] and MA0 = 500 GeV.

where it was suggested to use the decay H+ → τ+ντ . The one-loop corrected decay width
to this process reads

Γ[H+ → τ+ντ ] =
αm2

τ M
2
H± t2β

8M2
Ws

2
W

[
1 + 2 δZe + 2

δmτ

mτ

+ 2
δtβ
tβ

− δM2
W

M2
W

− 2
δsW

sW

+ δZνL + δZτR + δZH± − 1

tβ
δZG±H±

+ Fτ

]
,

(5.80)

where Fτ is the form factor describing the vertex corrections to the amplitude H+ → τ+ντ .
The field renormalization constants of the neutrino, δZνL, and the tau, δZτR, are defined
in (5.9), (5.10), while the charged Higgs and the Higgs-Goldstone mixing field renormal-
izations are given by [100]

δZH±

= −<e ∂

∂k2
ΣH±

(k2)

∣∣∣∣
k2=M2

H±

, δZG±H±

= − 2

MW

<eΣW±H±

(M2
H±). (5.81)

By requiring that the radiatively corrected decay width retains the same form as the tree-
level formula, eq. (5.80) can be understood as a definition of the counterterm δtβ. As a
consequence of the relation to a physical observable, this definition of tan β is manifestly
gauge-invariant.

However, this scheme also has several drawbacks. At first, for the computation of the
counterterm to tanβ, it is necessary to compute loop corrections to the three-particle
vertex in Fτ , which can be difficult beyond one-loop order4. Furthermore, by defining
tanβ in a specific process, it becomes a non-universal, flavour-dependent quantity, in
contrast to the conception that tan β is a parameter of the Higgs sector.

Finally, the decay vertex H+ → τ+ντ also receives QED corrections, which necessarily
include contributions with real photon emission so as to cancel the IR divergences. It is not
possible to separate the QED contributions from the rest of the electroweak corrections
since they are not individually UV-finite. At first glance this fact may seem surprising
and in contradiction to the situation for gauge boson decays, where it is known that

4For the purposes of this thesis, only one-loop corrections are needed. Nevertheless, a renormalization
scheme should be general enough to be extendible to potential future two-loop calculations.
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the QED corrections form a gauge-invariant and UV-finite subset. The reason is that in
the case of gauge bosons the finiteness of the QED corrections is guaranteed by gauge
invariance whereas no such symmetry argument applies to the decays of Higgs bosons. As
a consequence, there is no a-priori argument that would require the QED corrections to
H+ → τ+ντ to be separately finite, and indeed it turns out from an explicit calculation
that this is not the case. For practical calculations, however, it is unacceptable to include
real bremsstrahlung corrections into the definition of a counterterm.

The problem posed by the QED corrections can be avoided by choosing the process
A0 → τ+τ− instead of the decay H+ → τ+ντ . The QED corrections to this process form
a UV-finite subset of the full one-loop corrections. This can be explained by imagining
the QED corrections as being generated by an effective theory consisting of the local QED
gauge group and the A0ττ vertex and are therefore naturally finite. Nevertheless, any
process-dependent scheme is afflicted with the disadvantages of being flavour-dependent
and requiring the computation of vertex loop corrections.

To conclude, it seems impossible to find any renormalization prescription for tan β
which satisfies all three requirements that were put up at the beginning of this sec-
tion. For this thesis, the DR scheme has been used for δtβ, since it is technically most
convenient. However, it should be borne in mind that this definition is in general gauge-
dependent. Nevertheless, since tanβ is not a physical quantity but can only be interpreted
as an auxiliary parameter, practical reasons are the decisive factor for the choice of its
renormalization.

5.2 Outline of the calculation

5.2.1 Virtual and soft-photonic O(α) corrections

The generation of the diagrams and amplitudes for the virtual loop contributions and real
photonic corrections was performed with the package FeynArts [35]. A general covariant
Rξ gauge has been used in order to facilitate an additional check of the result.

For the treatment of the Lorentz and Dirac algebra and the tensor loop integrals,
the program FeynCalc 2.2 [107] was employed. For the purpose of this thesis it was
supplemented with an appropriate treatment of dimensional reduction (DRED). The re-
sults obtained with DRED have been checked against the package FormCalc [108, 109]
which uses a different regularization prescription called constrained differential renormal-
ization [110], that has been shown to be equivalent to DRED at the one-loop level [108].

The results for the virtual loop contributions have been reduced to a set of fundamental
scalar functions by the well-known Passarino-Veltman method [111], so that an explicit
check of the gauge-parameter independence of the result can be performed.

After addition of the on-shell counterterms (see previous section), the result for the
virtual contributions is UV-finite. However, they contain another type of singularity
which arises from virtual photon exchange between charged external particles in the limit
of vanishing photon momentum. These IR-divergences are cancelled by the corresponding
real contributions where a photon is emitted from one of the external particles. For very
small photon energies the photon radiation process cannot be distinguished experimentally
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from the non-radiative slepton pair production process. Therefore only the sum of the
virtual and real corrections form a physically sound quantity.

Usually the real corrections are divided into a soft and a hard regime. In order to
obtain a IR-finite result, it is sufficient to include the real contributions in the soft-
photon limit where the photon energy Eγ is small compared to all other relevant scales
of the process, Eγ < ∆E � √

s,MZ, . . . . Here ∆E is a suitable soft-photon cut-off
energy. The corresponding real bremsstrahlung integrals in the soft-photon limit are
known analytically [112]. For the calculations in this thesis, it was explicitly verified that
the total result including virtual and soft-photonic real corrections is UV- and IR-finite.

The hard contributions with Eγ > ∆E are free of singularities and are treated without
any approximation, as described in the following section.

Although in the described approach it is possible to extract the gauge-dependent and
UV-/IR-divergent expressions algebraically, it may sometimes be difficult to see that they
actually vanish. In these cases numerical values for different MSSM scenarios have been
inserted and it was checked that the gauge-dependent and divergent terms yield zero
within the numerical accuracy.

Finally the renormalized result has been exported into a C++ program for the numer-
ical evaluation of the matrix element and the scalar one-loop functions and the final state
phase-space integration. Analytical formulae for the fundamental one-loop integrals are
available in the literature [112] and were implemented in the package LoopTools [113].

5.2.2 Bremsstrahlung of hard photons

For a complete next-to-leading calculation, the virtual and soft-photonic O(α) corrections
have to be supplemented by the contributions which take into account the emission of
hard photons with energies Eγ above the cut-off ∆E. The total inclusive result including
soft and hard photon radiation should then be independent of the value of ∆E.

It is convenient to perform the integration over the phase space of the process
e+e− → l̃+ l̃−γ using Monte-Carlo techniques. This allows one to incorporate appropriate
experimental cuts if necessary. It should be noted that the squared matrix elements can
grow large when the photon energy Eγ approaches the soft-photon cut-off ∆E (which is
generally small compared to other scales in the process) and in the collinear regime. The
latter originates from the emission of a photon in the direction of an incoming electron or
positron, yielding large QED corrections ∝ (α/π) log(s/m2

e) (see also section 4.2.1).
In both the soft-photon and the collinear regime, the Monte-Carlo error can be sig-

nificantly reduced by applying an appropriate mapping of the integration variables so
that the integrand is rendered sufficiently flat. From the matrix element Mγ the total
hard-photon cross-section is obtained as

σhard =
1

2s

1

2(2π)2

∫
dΓ+−

∫ 1

−1

d cos θγ

∫ 1

2

√
s(1−4m2

l̃
/s)

∆E

dEγ Eγ
1

4

∑

pol

|Mγ|2 , (5.82)

where dΓ+− denotes the sub-phase-space of the two charged sleptons and θγ is the polar
angle of the photon with respect to the incoming positron, see Fig. 5.1.

∑
pol stands for

the summation over the initial- and final-state polarizations. In the soft-photon regime,
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Figure 5.1: Kinematics for photon radiation contributions.

the matrix element exhibits the behaviour Mγ,soft ∼ 1/Eγ. Thus the integrand can be
flattened by transforming Eγ to the new integration variable r according to

r = ln
Eγ√
s
. (5.83)

Note that the Jacobian |∂r/∂Eγ | exactly mimics the behaviour of the integrand in the
soft-photon limit.

In the collinear region, the matrix element is dominated by the propagator of the
electron or positron from which the photon is radiated, see (4.5). For photon emission
in the direction of the electron momentum p+, the leading term of the squared matrix
element is given by |Mγ,coll| ∼ 1/(p+kγ). A smooth integrand in this region is obtained
by using the following transformation from cos θγ to the new variable t,

t = ln
p+kγ√
s
, p+kγ =

√
sEγ

2

[
1 −

√
1 − 4m2

e

s
cos θγ

]
. (5.84)

Another technique for the numerical treatment of the collinear regime involves a sub-
traction procedure (for a discussion in the context ofW pair production, see e.g. Ref. [53]).
In this method, the large collinear terms are subtracted from the full matrix element. For
these terms the integration over the photon phase-space is performed analytically, while
the subtracted matrix element can be integrated with standard Monte-Carlo techniques
without difficulties. In the limit of collinear hard-photon radiation in the direction of the
incoming positron momentum p+, for instance, |Mγ|2 can be approximated by

|Mγ,coll(p+, p−, k+, k−, kγ)|2 = e2 f+
coll(p+, kγ) |MBorn(x+p+, p−, k+, k−)|2 , (5.85)

with x+ = 1 − 2Eγ/
√
s. In the unpolarized case, i.e. after summation over the photon

and positron helicities, the collinear factor f+
coll reads

∑

pol

f+
coll(p+, kγ) =

1 + x2
+

x+(1 − x+)

1

(p+kγ)
− m2

e

(p+kγ)2
+ O(m0

e). (5.86)
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(Note that (p+kγ) = O(m2
e) in the collinear limit). After integration over the photon

angle, the result for the collinear factor contains the typical large QED logarithms,
∫ 1

−1

d cos θγ

∑

pol

f+
coll(p+, kγ) =

4

sx+

[
1 + x2

+

(1 − x+)2

(
ln

s

m2
e

− 1
)

+ 1

]
. (5.87)

For this thesis both the variable mapping method and the subtraction method have
been applied to the Monte-Carlo integration of the hard-photon phase-space and it was
checked that they agree numerically. In comparison, the subtraction method proves to be
more efficient and results in a faster convergence of the Monte-Carlo error.

5.3 Results for smuon pair production

This section gives a brief summary of the numerical results for the O(α) calculation to
e+e− → µ̃+

Rµ̃
−
R. More information can be found in Ref. [114].

Since this process only involves gauge couplings and no Yukawa couplings at tree-
level, it can be computed both with dimensional regularization and dimensional reduction
without the requirement of introducing symmetry-restoring counterterms (for discussion,
see section 5.1.1). The computation has been performed for the two regularization schemes
and it was checked that the results agree algebraically.

In the following numerical results are given for the input values of the SPS1 scenario,
see App. A. In Fig. 5.2 the effect of the one-loop corrections is shown. For demonstration
of the loop effects, the relative correction

∆α =
σα − σBorn

σBorn
(5.88)

is depicted, where σα is the full next-to-leading order cross-section. Here the Born cross-
section σBorn already includes the universal shift ∆α to the fine-structure constant α,
which is induced by light-fermion loops in the photon self-energy. In other words, the
on-shell α is replaced by the QED-running effective fine-structure constant α(s) at the
scale

√
s.

Furthermore, the virtual and real QED corrections contain universal large logarithmic
contributions from emission of soft and collinear photons. These generic terms can be
taken into account by a convolution of the Born cross-section with a radiator structure
function, see (4.7) and (4.9). Therefore, here these universal terms are subtracted from
the O(α) result, so that ∆α only depends on the non-universal, i.e. process-dependent
QED corrections.

After exclusion of these dominant effects, the remaining QED and weak loop contri-
butions both amount to about 5%, which underlines the importance of the full one-loop
calculation for envisaged future precision measurements.

5.4 Results for selectron pair production

In comparison to smuon pair production, the one-loop calculation to selectron pair produc-
tion entails additional complexities. For instance, one has to deal with an extra technical



5.4 Results for selectron pair production 63

500 600 700 800 900 1000
0

2

4

6

8

PSfrag replacements

σ
α
−

σ
B

o
r
n

σ
B

o
r
n

[%
]

√
s [GeV]

O(α) without QED

non-universal QED

complete O(α)

Figure 5.2: Electroweak corrections to the cross-section for e+e− → µ̃+
Rµ̃

−
R, relative to the

Born cross-section. Separately shown are the QED corrections, including soft and hard
real bremsstrahlung contributions but no universal ISR terms, the genuine weak (non-
QED) corrections and the full effect of the O(α) contributions. Input parameters taken
from SPS1 scenario.

challenge, since the number of diagrams is almost doubled compared to smuon produc-
tion due to the additional t- and u-channel neutralino exchange, but also with conceptual
issues like the renormalization of the neutralino sector.

The calculation of the virtual loop diagrams has been performed using dimensional
reduction to regulate the divergences.

As before, the numerical results are presented in terms of the relative correction
∆α = (σα − σBorn)/σBorn. If not stated otherwise, the SPS1 scenario (see App. A) is
chosen for the MSSM input parameters.

Fig. 5.3 and Fig. 5.4 show the effect of the O(α) corrections on the total cross-section
for e+e− → ẽ+

R ẽ
−
R and e−e− → ẽ−R ẽ

−
R, respectively. The total effect of the next-to-leading

order contributions amounts to about 5–10%. For illustration also the contributions from
various subsets of diagrams are shown. For instance, the set of diagrams with closed
lepton and slepton loops forms a gauge invariant subset since these loop contributions are
proportional to the lepton number. A similar argument holds for diagrams with closed
loops involving quarks and squarks. Both the lepton/slepton loops and the quark/squark
loops yield an effect of a few per-cent on the total cross-section each.

The diagrams involving massive gauge bosons, Higgs bosons, gauginos and higgsinos in
the loops cannot be separated in a gauge-invariant manner from the QED contributions.
The reason for this is that the set of diagrams with virtual photons in the loops alone is
not UV-finite. In particular, in the loop corrections to the electron-selectron-neutralino
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vertex in the t-channel contributions, the diagram with a virtual photon exchange has be
to supplemented by the corresponding diagram with a photino exchange in order to obtain
a finite quantity. However, since the photino is not a mass eigenstate, this contribution
is necessarily linked to the weak loop corrections. Therefore, in the figures the remaining
O(α) corrections without closed lepton/slepton and quark/squark loops but including
QED corrections are shown in one curve.

In the following the dependence of the one-loop result on genuine supersymmetric
corrections shall be studied in more detail. Since in the processes under consideration,
supersymmetric particles are also present in the final state, it is not possible to distinguish
formally between Standard Model and supersymmetric loop corrections. However, besides
the obvious dependence of the cross-section on selectron parameters, important effects
can also arise from other sectors of the MSSM which only enter via the loop corrections.
In principle, the one-loop result is a function of almost all parameters of the MSSM.
Depending on how well these parameters can be extracted from other processes, their
limited knowledge may significantly influence the measurement of the selectron parameters
from selectron pair production.

The influence on parameters of the Higgs sector, MA0 and tanβ, is rather mild, since
the couplings of the Higgs bosons to the electron and selectron are negligible. The nominal
effect of Higgs bosons in the self-energies of the s-channel Z-boson and the t-channel
neutralinos may be expected to be somewhat larger. However the leading self-energy
contributions that depend on the Higgs sector are proportional to the logarithm of the
mass ratio of two Higgs bosons, such as logMH0/MA0. As a consequence, these terms are
naturally suppressed.

A significant influence on the one-loop corrections arises from the gaugino sector,
which depends on the parameters M1, M2 and µ. As an example, in Fig. 5.5 and Fig. 5.6
the dependence of the one-loop corrections on the parameters M2 and µ is shown. For
the values given in the figures, the variation of these parameters has an effect of about
half a per-cent on the cross-section, which is clearly above the experimental accuracy of
about two per-mille (see section 6.2). It can be seen that the dependence is strongest for
low values of µ. This is due to the influence of higgsino loops in the Z and W boson
self-energies which affect the renormalization of the weak mixing angle. The deviations
along the line M2 = µ originate from the level crossing between the χ̃0

2 and χ̃0
3,4 states,

which occurs for this parameter configuration. Near level crossings the relative radiative
corrections can grow unusually large since here the relation between the mass eigenstates
and the gaugino parameters becomes singular.

It is also important to consider the dependence on the sfermion masses (besides the
selectron masses which of course enter at tree-level already). This will be discussed in the
next section.

5.5 Superoblique corrections

In general, the effect of quantum corrections decreases with increasing mass scale of
the virtual particles inside the quantum loops. This behaviour is the statement of the
decoupling theorem [115]. However, this theorem does not apply in the case of broken
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symmetries. As a consequence, in such theories it is possible to obtain radiative effects
that grow with increasing violation of the broken symmetry, in contrast to the usual
decoupling behaviour. Therefore these non-decoupling corrections may be expected to
yield possibly large effects in predictions of physical observables.

In the case of the MSSM, supersymmetry is required to be broken so that non-
decoupling corrections may arise from the supersymmetry-breaking masses, for example
gaugino and sfermion masses. In the case that all superpartner masses are very heavy
they are known to decouple from the Standard Model sector. Nevertheless, non-decoupling
corrections are possible in scenarios with large hierarchies between different superpartner
masses.

A particular class of non-decoupling supersymmetric effects has been studied in
Ref. [116, 117]. It was found that large sfermion masses result in corrections propor-
tional to lnMf̃ in the renormalization of the gauge boson and gaugino propagators, where
Mf̃ is the characteristic heavy sfermion mass. In analogy to the so-called oblique correc-
tions [118] of the Standard Model, which arise from the mass splittings inside the fermion
SU(2) doublets, the authors of Ref. [117] called them “superoblique corrections.”

For the present purposes, let us consider scenarios where the masses of the gluino
and all squarks are relatively heavy while the masses of the sleptons reside near the
weak scale, Mq̃ � ml̃. In this case the slepton production cross-section could receive
significant corrections due to the logarithmic non-decoupling effects ∝ lnMq̃ which arise
from squark loops. Accordingly, in Ref. [119] it was argued that this may serve as probe
of supersymmetric particles at the multi-TeV scale which will escape direct detection.

In [116,117], the effect of the logarithmic terms ∝ lnMq̃ were studied in the language
of DR running couplings. In particular, the gauge couplings gDR and the corresponding
supersymmetric gaugino-fermion-sfermion Yukawa couplings ĝDR evolve differently below
the scale of the heavy superpartners, Mq̃, thereby leading to a modification of the fun-
damental relation gDR = ĝDR at the weak scale. On the other hand, for the calculations
presented in the previous sections, the on-shell renormalization scheme has been employed
where all couplings are manifestly scale-invariant. Therefore, within the on-shell scheme,
the relation gos = ĝos remains valid to all orders of perturbation theory. However, in this
case, the non-decoupling logarithmic corrections are present in loop corrections to the
gauge bosons in gauge coupling vertices and the gauginos in gaugino-fermion-sfermion
vertices.

The pair production of smuons, e+e− → µ̃+µ̃− is free of any superoblique corrections
since it only involves gauge couplings and no gauginos at tree-level. In fact, all non-
decoupling logarithms exactly cancel between the renormalization of the gauge couplings
and the renormalization of the s-channel gauge bosons. This is a consequence of gauge
invariance which is not violated by the supersymmetry-breaking terms. The decoupling
behaviour is illustrated by Fig. 5.7, where the dependence of the one-loop radiative cor-
rections to µ̃+

Rµ̃
−
R production on the squark masses is shown. Here the soft-breaking scalar

quark masses MQ̃ = mq̃L
= mũR

= md̃R
are taken to be equal for all generations and for

left/right chiralities. It can be seen that for increasing squark masses, MQ̃, the size of the
radiative corrections quickly reaches an asymptotic behaviour, which is an indication for
the decoupling of the squarks.

In the case of selectron production, superoblique effects enter via the t-channel neu-
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tralino exchange contributions. The neutralino propagators receive corrections from
quark-squark loops which are sensitive to a tentative high-scale squark mass. It is pos-
sible to extract the leading-logarithmic terms ∝ lnMQ̃ from the complete MSSM loop
corrections by performing an expansion in the heavy squark mass MQ̃ and only keeping
the logarithmic coefficients.

When considering a pure bino state, see Fig. 5.9 (a), one obtains the following non-
decoupling contributions to the self-energy from heavy squarks,

Σ0
B̃,log

(p) = −6p g′2

16π2

11

2
lnM2

Q̃
. (5.89)

One can interpret this result as a shift of the effective Yukawa couplings. This means that
the superoblique corrections to the neutralino propagator are regarded as contributions to
the bino-electron-selectron Yukawa couplings ĝ ′ which are connected by this propagator.
As a consequence, the effective Yukawa coupling ĝ ′eff is shifted by the leading-logarithmic
correction term,

ĝ′2eff,log

ĝ′2
= 1 +

g′2

16π2

11

2
lnM2

Q̃
. (5.90)

In the one-loop correction, the distinction between the gauge coupling g ′ and the Yukawa
coupling ĝ′ is consistently dropped. The corresponding leading-logarithmic term in the
gauge coupling renormalization reads

g′2eff,log

g′2
= 1 − δZB = 1 +

g′2

16π2

11

6
lnM2

Q̃
, (5.91)

where δZB is the field renormalization constant of the B-boson field. Since the scale
invariant couplings g′ and ĝ′ are equal by definition, (5.90) and (5.91) result in a splitting
between the effective gauge and Yukawa coupling,

ĝ′2eff,log

g′2eff,log

= 1 +
g′2

16π2

11

3
lnM2

Q̃
, (5.92)

in agreement with [117]5.

5Note that in [117] the hypercharge U(1) group is multiplied by the GUT factor 5/3. Accordingly, the
correction term in (5.92) has to be multiplied by 3/5 in order to reproduce their numbers.
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Similarly, the superoblique corrections to the SU(2) gauge and Yukawa couplings can
be extracted. From the neutral wino self-energy correction, see Fig. 5.9 (b), one obtains
for the effective SU(2) Yukawa coupling

ĝ2
eff,log

ĝ2
= 1 +

g2

16π2

9

2
lnM2

Q̃
, (5.93)

whereas the gauge coupling renormalization yields

g2
eff,log

g2
= 1 − δZW3

= 1 +
g2

16π2

3

2
lnM2

Q̃
. (5.94)

Here δZW3

denotes the field renormalization constant of the neutral SU(2) gauge boson.
Thus, the ratio of the two effective couplings is given by

ĝ2
eff,log

g2
eff,log

= 1 +
g2

16π2
3 lnM2

Q̃
, (5.95)

which is consistent with [117].
The situation gets more involved when considering the complete neutralino mixing.

In particular, when expressing the neutralino masses in terms of the soft-breaking param-
eters, not all neutralinos masses can be taken as free parameters but they are linked by
non-trivial relations. At higher orders, these relations receive radiative corrections which
contain also non-decoupling logarithmic corrections from quark-squark loops. This fact
has not been considered in Ref. [119] and would severely complicate any effort to extract
information about possibly heavy squarks at the multi-TeV scale from the superoblique
coupling corrections to selectron production. In particular, since the superoblique cor-
rections do not only enter in the relation between gauge and Yukawa couplings, but also
in the neutralino masses, they depend on the process under consideration and cannot be
regarded as universal.

In contrast to smuon production, the presence of non-decoupling supersymmetric cor-
rections in ẽ−R ẽ

−
R production can be seen from Fig. 5.8. For increasing values of the squark

soft-breaking parameter, MQ̃, the size of the radiative corrections grows unboundedly.
For very large values of MQ̃ ∼ O(100 TeV) the effect of the superoblique correction on
the cross-section for R-selectron pair production can amount up to a few percent. While
this contribution is clearly non-negligible, it yet is of the same order as the remaining
one-loop corrections.



Chapter 6

Determination of supersymmetric

masses and couplings

In order to establish supersymmetry experimentally at future colliders, two categories
of properties of the newly detected particles have to be determined. First, all quantum
numbers with the exception of spin are required to be equal between partners of a su-
permultiplet. Thus it is important to test the equivalence of Standard Model and MSSM
couplings with high accuracy. Secondly, their masses have to be measured with high pre-
cision, which would allow one to construct the spectrum of the soft-breaking parameters.
This is a crucial prerequisite to discriminate between different tentative breaking mech-
anisms with the help of renormalization group extrapolation to higher scales, see section
2.3.

6.1 Measurement of masses in threshold scans

In supersymmetric theories with R-parity conservation, the masses of supersymmetric
particles cannot be directly reconstructed from their decay products since the lightest
supersymmetric particle is stable and escapes detection. Nevertheless, it is possible to
determine the superpartner masses by measuring the endpoints of the kinematical distri-
butions of the visible decay products [10, 15, 52, 120].

On the other hand, at a linear collider with high luminosity the masses of scalar
leptons can be determined in threshold scans with unparallelled precision. Several studies
have been performed as to explore the potential of this method [15–18]. For the case of
selectrons it was investigated which advantages one can gain from the e−e− collider mode
[17] and how beam polarization can help to single out the desired signal contributions [18].

Since all these studies are based upon specific idealizations, a more realistic and theo-
retically sound analysis of threshold measurements is desirable. Here, the previous stud-
ies are improved in the context of the calculations of chapter 4. In order to match
the experimental accuracy, it is required to incorporate several non-leading effects. Fi-
nite widths, which considerably affect the cross-section near threshold, are included in a
gauge-invariant manner. As a consequence, the full 2 → 4 matrix elements including the
decay of the sleptons as well as potential MSSM backgrounds and interference contribu-

71
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tions are computed. The Standard Model backgrounds with the same final state signature
are added. Beamstrahlung and leading photon emission corrections in the initial state
and the Coulomb correction in the final state are taken into account.

Threshold scan measurements are performed by measuring the cross-section of a given
process at different centre-of-mass energies near threshold and fitting the theoretical pre-
diction to the experimental values. This procedure can then be used to constrain the
parameters which enter into the theoretical prediction. Because of the distinct slope of
the excitation curve near the kinematical threshold, measurements in this region are par-
ticularly sensitive on the mass of the produced particle. For the present analysis both
the “measurement” and the theoretical predictions are simulated with the Monte-Carlo
techniques explained in section 4.3.

The optimization of the scan strategy is a non-trivial question [17,121] and will not be
further addressed here. For simplicity, for each threshold measurement five equidistant
scan points in a centre-of-mass energy range of 10 GeV are considered and the expended
luminosity is equally distributed among these points. The precision on the mass mea-
surements that are obtained by this method can therefore not be interpreted as the final
answer but may be improved by dedicated scan strategies.

For the fit of the theoretical prediction and the extraction of statistical bounds on the
masses, the binned likelihood method is employed, see e.g. [122]. The likelihood function
L for a histogram of N scan points is given by

lnL =

N∑

i=1

(
ni − yi + ni ln

yi

ni

)
, (6.1)

where ni is the measured number of events at the scan point i and yi is the number of
events predicted by the model. The model prediction {yi} is a function of the unknown
slepton mass ml̃ which is to be determined from the fitting procedure. In the ansatz
of (6.1) it is assumed that the individual cross-section measurements at each scan point
comply with Poisson statistics.

The best-fit value for ml̃ is obtained by maximizing lnL, while the squared standard
deviation is defined as

χ2 = 2(lnLmax − lnL). (6.2)

Technically the fitting procedure is performed as follows. A reference “measurement”
is generated by calculating the observable cross-section for a given fixed slepton mass.
Now, the tentative mass parameter ml̃ is varied in a certain region and for each value of
ml̃ a prediction for the cross-section is computed. The number of events obtained from
these computations is then used to evaluate lnL for each parameter point. Finally, the
parameter value ml̃ ,opt which corresponds to the maximum value of lnL is considered
as the best-fit value. The 1σ bounds are obained by searching parameter points which
satisfy lnLmax − lnL = 1/2.

In the second column of Tab. 6.1 the resulting one-standard deviation errors in the
determination of smuon and selectron masses are given for the example of the SPS1
scenario. For the e+e− mode a total luminosity of 50 fb−1 for each threshold scan is
assumed, corresponding to 10 fb−1 per scan point. In the e−e− the anti-pinch effect leads
to a somewhat reduced machine luminosity. Therefore it is presumed that a total amount
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process one-parameter fit four-parameter fit

e+e− → (ẽ+
R ẽ

−
R) → e+e− + 6E mẽR

= 143.0+0.21
−0.19 GeV mẽR

= 143.0+0.21
−0.19 GeV

ΓẽR
= 150+300

−250 MeV

e−e− → (ẽ−R ẽ
−
R) → e−e− + 6E mẽR

= 142.95+0.032
−0.032 GeV mẽR

= 142.95+0.048
−0.053 GeV

ΓẽR
= 200+50

−40 MeV

e+e− → (ẽ±R ẽ
∓
L ) → e+e− τ+τ− + 6E mẽL

= 202.2+0.32
−0.29 GeV mẽL

= 202.2+0.37
−0.33 GeV

ΓẽL
= 240+20

−20 MeV

e−e− → (ẽ−L ẽ
−
L ) → e−e− ττττ + 6E mẽL

= 202.1+0.54
−0.36 GeV mẽL

= 202.1+0.62
−0.44 GeV

ΓẽL
= 240+500

−240 MeV

e+e− → (µ̃+
Rµ̃

−
R) → µ+µ− + 6E mµ̃R

= 143.0+0.39
−0.34 GeV mµ̃R

= 143.0+0.42
−0.38 GeV

Γµ̃R
= 350+400

−400 MeV

Table 6.1: Expected precision for the determination of slepton masses from threshold scans
in e+e− and e−e− scattering. The values in the second column are based on the assumption
that all other model parameters are known, while the third column is independent on the
structure of the neutralino sector. Values for SPS1 scenario.

of 5 fb−1 is avaible for each scan measurement, corresponding to 1 fb−1 per scan point.
The signal-to-background ratio is enhanced by using suitable cuts and beam polarization
as explained in section 4.4.

As far as the measurement of the right-chiral selectron mass mẽR
is concerned the e−e−

mode is clearly superior to the e+e− mode, with almost one order of magnitude difference
in the precision. This can be explained by the lower cross-section in the threshold region
and the substantial background contamination for e+e− annihilation. For illustration, in
Fig. 6.1 the threshold cross-sections for right-chiral selectron production in the two cases
are shown with the 1σ error bars of the cross-section measurements at each individual scan
point. Nevertheless, it should be noted that the impressive accuracy of δmẽR

= 33 MeV,
that can be obtained in e−e− scattering, would definitly require to be checked by some
further studies on sytematics.

For the determination of the left-chiral selectron mass mẽL
the differences of the two

collider modes are less pronounced. In the e+e− mode, one can capitalize on the possibility
to measure the L-selectron mass at the threshold for the production of mixed pairs,
ẽ±R ẽ

∓
L , which—similar to ẽ−L ẽ

−
L production—profits from S-wave excitation. On the other

hand, the measurement of the ẽ−L ẽ
−
L threshold suffers from limited statistics due to the

reduced luminosity and the low cross-section in the chosen decay channel. Therefore,
measurements in both e+e− and e−e− scattering result in roughly comparable errors for
mẽL

.

For illustration, it is also interesting to discuss the measurement ofmẽL
at the threshold

for mixed pairs in the e−e− mode, e−e− → (ẽ−R ẽ
−
L ) → e−e− τ+τ− + 6E. This case may be

of particular importance if the threshold for ẽ−L ẽ
−
L production is beyond the kinematical

reach of the collider. However, the small cross-section and the smooth P-wave threshold
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−
R) → e+e− + 6E e−e− → (ẽ−R ẽ
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Figure 6.1: Threshold behaviour of R-selectron pair production for e+e− and e−e− scat-
tering. The error bars indicate the statistical error of the cross-section measurements at
each scan point for L = 10 fb−1 in e+e− and L = 1 fb−1 in e−e−, respectively. Values for
SPS1 scenario.

excitation of this channel result in a rather large statistical error of δmẽL
= 1.5 GeV.

For the same reasons the measurement of the right-chiral smuon mass from a threshold
scan is afflicted with a rather large error of δmµ̃R

= 360 MeV. This error can be consid-
erably reduced by increasing the statistics. With a total luminosity of 100 fb−1 equally
distributed over ten scan points, a precision of δmµ̃R

= 175 MeV is obtained. This result
can be compared with Ref. [16] where an error on the determination of the smuon mass of
90 MeV was derived. While both results agree in the order of magnitude, in the present
work a slightly lower precision is obtained as compared to Ref. [16]. This can be explained
by differences in the considered scenarios and by the effect of background contributions.

Due to the low cross-section, a measurement of the left-chrial smuon mass from a
threshold scan is not profitable. Here the precision obtained from endpoint kinematics in
the continuum will clearly be superior.

Up to now it was assumed that the remaining MSSM model parameters besides the
slepton masses are precisely known. This supposition, however, is not very realistic for
the case of selectron production which depends on the neutralinos in the t-channel ex-
change contributions. Deviations in the neutralino parameters mainly affect the slope
of the threshold excitation curve [17, 18]. In addition, they may change the size of the
supersymmetric backgrounds. This opens up the possibility to disentangle these effects
from the determination of the slepton masses, which is characterized by the starting point
of the excitation curve.

The general concept can be demonstated by a formal expansion of the total cross-
section σ in terms of the slepton velocity β,

σ = A+Bβ + O(β3). (6.3)

The quantities A and B parametrize the background contributions and the overall slope of
the threshold excitation curve. They include the complete dependence on the neutralino
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parameters. If higher orders in β are sufficiently suppressed near threshold, the linear
coefficient in β is then uniquely related to the slepton mass. It should be noted that (6.3)
applies to the case of S-wave production. For particles that are produced in a P-wave,
the leading coefficient would be ∝ β3 while the higher orders are of O(β5).

Since the sleptons are unstable particles, the generalized velocities defined in (4.17)
and (4.18) depend on the non-zero widths of the sleptons. Within a given scenario it is
possible to obtain predictions for the widths from theoretical calculations. However, in an
unbiased analysis the slepton width should also be regarded as an independent parameter.

A model-independent determination of the slepton masses could therefore be achieved
with a four-parameter fit, where besides the mass ml̃ a constant offset A, an overall scale
factor B and the width Γl̃ are kept as free parameters. In order to explore the potential
of this method, a number of “measurements” were performed using simulated threshold
curves for different scenarios. While the underlying slepton mass values were always
kept unchanged in all test scenarios, the neutralino parameters M1, M2 and µ have been
varied within a factor two. In order to allow a direct comparison between the different
test scenarios, the threshold cross-sections and slepton widths have been normalized to
the case of the SPS1 scenario.

The resulting errors on the model-independent determination of the slepton masses are
summarized in the third column of Tab. 6.1. The given error intervals always correspond
to the worst case of the test scenarios. In all cases the achieved precision is only slightly
reduced compared to the values that are obtained when all neutralino parameters are
precisely known. Also shown in Tab. 6.1 are the resulting bounds on the slepton widths
from the four-parameter fit. For the case of P-wave production processes, such as the pair
production of R-selectrons or R-smuons in e+e− annihilation, one can obtain only rather
weak constraints on the value of the slepton widths. On the other hand, it is possible
to extract the widths of the sleptons with an error of 10–20% from the measurement
of the ẽ−R ẽ

−
R or ẽ±R ẽ

∓
L thresholds. It should be noted that the accuracy of the mass and

width measurements crucially depends on the scan strategy. While for the extraction of
the width it is advantageous to spend a large amount of the luminosity at or below the
nominal threshold, the precision of the mass measurement can be increased by including
scan points at higher centre-of-mass energies where the cross-section is larger.

It is interesting to study the influence of the finite widths and the Coulomb correction
on the mass determination. Both effects enter non-linearly in the cross-section and can
therefore not be incorporated into the parameters A and B in (6.3). An estimate of
their impact is obtained by redoing the fit to the threshold excitation curve without finite
width and Coulomb rescattering effects. In this case the R-selectron mass mẽR

extracted
from the measurement of the ẽ−R ẽ

−
R threshold in e−e− scattering deviates from the true

underlying value by 150 MeV. This underlines the necessity to take into account these
corrections. It should be noted that additional radiative corrections besides the dominant
Coulomb corrections may be needed in order to match the experimental accuracy.
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Figure 6.2: Types of couplings in supersymmetric gauge theories. The arrow on the
fermion and sfermion lines indicates lepton or baryon number flow.

6.2 Testing the equivalence of SM gauge and MSSM

Yukawa couplings

As well as precisely measuring the supersymmetry-breaking parameters—in particular
sfermion and gaugino masses—it is essential to test that all other quantum numbers of
the supersymmetric partners are identical to their Standard Model counterparts. For
instance, supersymmetry requires the following couplings to be equal:

• The Standard Model gauge coupling g between a gauge boson V and a chiral fermion
current f , Fig. 6.2 (a).

• The gauge coupling ḡ between a gauge boson V and a scalar fermion current f̃ ,
Fig. 6.2 (b).

• The Yukawa coupling ĝ between gaugino Ṽ , fermion f and sfermion f̃ , Fig. 6.2 (c).

Therefore, the exploration of supersymmetry at colliders requires the experimental veri-
fication of the relation g = ḡ = ĝ for all gauge groups of the Standard Model. For the
case of the SU(3) QCD sector, the relevant reference processes have been discussed else-
where [14]. Here the focus is on the electroweak sector which comprises the hypercharge
U(1) coupling g′ and the SU(2) coupling g.

The Standard Model couplings g and g′ are very accurately determined from low-
energy and Z-peak observables. In the following, it will be discussed how precise values
for the supersymmetry equivalents ḡ(′) and ĝ(′) can be obtained from the measurement of
slepton pair production cross-sections in the continuum.

The pair production of smuons is particularly suited for the extraction of the gauge
couplings ḡ(′), since this process is only mediated by the exchange of s-channel gauge
bosons. By rephrasing the Born cross-section (3.3) for µ̃R production according to

σ[e+ e− → µ̃+
R µ̃

−
R] =

α

12s
β3 ḡ′2

[
c2W −

(
1
2
− 2s2

W

) s

s−M2
Z

+
1 + (1 − 4s2

W)2

16c2W

(
s

s−M2
Z

)2 ]
,

(6.4)

it is apparent that it is directly proportional to the square of the U(1) coupling ḡ ′. In
this parametrization it is understood that the produced smuons are chiral eigenstates.
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Alternatively, one could express the cross-section in terms of the photon- and Z-couplings.
If in this case the electromagnetic charge of the smuons was assumed to be known, the
cross-section would be sensitive to the weak isospin component of the smuons.

For the case of L-smuon production the situation is slightly more complicated because
of the different photon- and Z-couplings,

σ[e+ e− → µ̃+
L µ̃

−
L ] =

α

48s
β3

[
λ̄2

+ − λ̄+λ̄−
1 − 4s2

W

2sWcW

s

s−M2
Z

+ λ̄2
−

1 + (1 − 4s2
W)2

16s2
Wc

2
W

(
s

s−M2
Z

)2 ]
,

(6.5)

λ̄+ = cWḡ
′ + sWḡ, λ̄− = sWḡ

′ − cWḡ. (6.6)

In the high-energy limit, the cross-sections for smuon production (6.4) and (6.5) get a
particularly simple form,

σ[e+ e− → µ̃+
R µ̃

−
R]

s→∞
−−→ 5α

96s

ḡ′

c2W
, (6.7)

σ[e+ e− → µ̃+
L µ̃

−
L ]

s→∞
−−→ α

384s

[
5ḡ′

c2W
+

2ḡḡ′

sWcW
+

ḡ

s2
W

]
, (6.8)

which has the virtue of being independent of any masses. However, also at realistic linear
collider energies, the couplings ḡ(′) can be extracted without serious problems since the
Z-boson mass MZ and the weak mixing angles sW are well-known quantities with almost
negligible experimental errors.

In order to obtain a realistic picture of the attainable precision of the coupling deter-
mination, a detailed analysis has been performed using the methods of chapter 4. For
instance, for the extraction of ḡ′ from µ̃+

R µ̃
−
R production, the relevant experimental signa-

ture is e+e− → µ+µ− + 6E. Standard Model and supersymmetric backgrounds have been
taken into account and treated according to section 4.4. For this study the SPS1 scenario
(see App. A) has been employed. No simulations of the detector acceptance are included.

It is assumed that 500 fb−1 of luminosity in the e+e− mode are spent at a centre-of-
mass energy of

√
s = 500 GeV. By using an 80% right-polarized electron beam and a

50% left-polarized positron beam the cross-section is enhanced by a factor of 1.5. Af-
ter application of appropriate cuts for background reduction this would result in about
N = 30000 events with the given experimental signature. The statistical error 1/

√
N on

the cross-section is very low, ∼ 0.6%.
There are also several sources for systematic errors. At first, the cross-section for

smuon production depends crucially on the value of the smuon mass. Therefore, for the
accurate determination of the smuon couplings, it is an important prerequisite to have
precise measurements of the masses of the smuons. Taking the result of section 6.1,
an error of δmµ̃R

= 360 MeV has been assumed here. Furthermore the polarization
uncertainty has to be taken into account. Here one can assume that the polarization
degree may be determined to roughly 1%, using Compton scattering as a reference process.

Adding up both statistical and systematic errors, it turns out that the gauge coupling
ḡ′ can be extracted from µ̃+

R µ̃
−
R production with a total error of

δḡ′

ḡ′
≈ 1%. (6.9)
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One could try to include detector effects by a simple global acceptance factor εdet = 0.5.
In fact this would only lead to a slight reduction of the expected accuracy down to
δḡ′/ḡ′ ≈ 1.2%. This can be explained by the fact that the statistics are actually not
the major limiting factor for the obtainable precision. The most important source for
uncertainties is the error in the determination of the smuon mass mµ̃R

.

The supersymmetric Yukawa couplings ĝ(′) can be determined from selectron pro-
duction, since the t-/u-channel contributions, see Fig. 3.1 (b,c), directly depend on the
Yukawa couplings. This has been considered for the e+e− mode in Ref. [116]. The e−e−

mode has some advantages due to reduced background, larger cross-section, higher polar-
izability and no interfering s-channel contributions [119]; on the other hand, the expected
luminosity in this case is substantially lower. Here both cases shall be studied carefully,
taking into account the relevant backgrounds as mentioned before.

In comparison to the smuon case, additional complexity arises due to the dependence
on the neutralino sector. In principle this difficulty could be avoided by going to high
energies

√
s� mχ̃0

i
. From the general formula for e+e− → ẽ+

i ẽ
−
i , eq. (3.7), one obtains a

universal leading logarithmic contribution

σ[e+ e− → ẽ+
R ẽ

−
R]

s→∞
−−→ ĝ′4

16π

log s

s
+ O

(
1

s

)
, (6.10)

σ[e+ e− → ẽ+
L ẽ

−
L ]

s→∞
−−→ (ĝ2 + ĝ′2)2

16π

log s

s
+ O

(
1

s

)
. (6.11)

In (6.10) and (6.11) all terms which depend on parameters of the neutralino sector have
dropped out, as a consequence of the unitarity of the neutralino mixing matrix. However
one can see from Fig. 6.3 that rather large values of

√
s are needed to realize this model-

independent procedure for determining the Yukawa couplings in practice. The figure
shows the cross-section σ(s) multiplied by s over a logarithmic scale for

√
s, so that a linear

slope is obtained for the leading logarithmic term ∼ log(s)/s. In Fig. 6.3 (b) a constant
offset term is subtracted [corresponding to the term of O(1/s) in σ(s)], so that the two
curves overlap in the high-energy limit. A reasonable agreement between the asymptotic
logarithmic contribution and the full cross-section is given only for

√
s >∼ 2 TeV.

For a realistic analysis of the determination of the Yukawa couplings from selectron
production it is therefore necessary to use information about the neutralino sector. In
the following it is assumed that the neutralino sector has the form of the MSSM. The
neutralino mass matrix, see (2.34), essentially depends on three parameters, M1, M2

and µ. The dependence on tanβ is relatively mild and can be neglected if the value of
tanβ can be extracted with moderate accuracy from some other measurement like Higgs
decay branching ratios. All Standard Model parameters in (2.34) are known with high
accuracy so that no uncertainties for these parameters need to be taken into account. The
three parameters M1, M2 and µ can be inferred from three reference measurements, for
example the masses of the two charginos χ̃±

1 , χ̃±
2 and the mass of the lightest neutralino χ̃0

1.
Simulations show [10, 15] that these three masses can be determined with high accuracy.
Since the experimental accuracy can significantly depend on the chosen scenario, here
slightly more conservative error estimates are taken,

δmχ̃±

1
= 100 GeV, δmχ̃±

2
= 400 GeV, δmχ̃0

1
= 100 GeV. (6.12)
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√
s in com-

parison with the asymptotic leading logarithmic contributions ∼ log(s)/s (a), after sub-
traction of a constant offset term (b). Values for SPS1 scenario.

Similar to the smuon case, the cross-section for selectron production sensitively depends
on the selectron mass. Here the errors in the second column of Tab. 6.1 obtained from
threshold scan fits are taken.

The total selectron cross-section and signal-to-background ratio can be enhanced by
polarizing the incoming beams accordingly. The favourable polarization combinations for
the production of right- and left-chiral selectron in e+e− and e−e− scattering have been
discussed in section 4.4. It is assumed that the polarization degree can be controlled up
to 1%.

Backgrounds both from Standard Model and supersymmetric processes are taken into
account and can be reduced by the methods discussed in section 4.4. The various possible
cross-sections and experimental signatures that could be used for measuring the Yukawa
couplings in the selectron sector are listed in Tab. 6.2. For the discrimination between

process polarization L

e+e− → (ẽ+
R ẽ

−
R) → e+e− χ̃0

1 χ̃
0
1 Pe− = +80%, Pe+ = −50%

e+e− → (ẽ±R ẽ
∓
L ) → e+e− χ̃0

1 χ̃
0
2

→ e+e− τ+τ− χ̃0
1 χ̃

0
1

Pe− = −80%, Pe+ = −50% 500 fb−1

e−e− → (ẽ−R ẽ
−
R) → e−e− χ̃0

1 χ̃
0
1 Pe− = +80%

e−e− → (ẽ−L ẽ
−
L ) → e−e− χ̃0

2 χ̃
0
2

→ e−e− ττττ χ̃0
1 χ̃

0
1

Pe− = −80% 50 fb−1

Table 6.2: Selectron production processes for different chirality combination used for
extracting the supersymmetric Yukawa couplings. The optimal polarization combinations
and the expected luminosity are also given.
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(a) e+e−,
√
s = 500 GeV, L = 500 fb−1 (b) e−e−,

√
s = 500 GeV, L = 50 fb−1
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ĝ
/g

−
1
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left- and right-chiral states, beam polarization [18] and the decay of L-selectrons into taus,
ẽ±L → e± χ̃0

2 → e± τ+τ− χ̃0
1, is employed. Because of the anti-pinch effect in the e−e− mode

only one tenth of the designated e+e− luminosity is assumed for this case.
With this information and taking into account the aforementioned statistical and sys-

tematic errors, the resulting constraints on the Yukawa couplings ĝ and ĝ ′ from selectron
cross-section measurements are shown in Fig. 6.4 for the case of the SPS1 scenario. From
the overlap regions of the 1σ contours the following resulting accuracies can be read off,

e+e− :
δĝ′

ĝ′
≈ 0.18%,

δĝ

ĝ
≈ 0.7%, (6.13)

e−e− :
δĝ′

ĝ′
≈ 0.21%,

δĝ

ĝ
≈ 0.5%. (6.14)

The precisions obtained from measurements in the e+e− and e−e− mode are roughly
comparable. The larger cross-sections and low background contamination in the e−e−

mode are compensated by the higher luminosity in the e+e− mode. Nevertheless, the
error for the determination of ĝ in e−e− scattering is slightly lower than the error for e+e−

annihilation. This can be understood by considering the different production processes.
In the e−e− mode, the coupling ĝ is extracted from the cross-section for ẽ−L ẽ

−
L production.

Since both produced selectrons are left-chiral, their couplings to neutralinos are both
sensitive on ĝ. On the other hand, in the e+e− mode, ĝ is determined from the cross-
section for ẽ±R ẽ

∓
L production, which involves only one Yukawa-coupling depending on ĝ.



6.2 Testing the equivalence of SM gauge and MSSM Yukawa couplings 81

Alternatively, it is possible to extract the Yukawa couplings from the measurement
of the cross-sections for neutralino pair production [123]. While the precision for the
SU(2)-related Yukawa coupling g is comparable in both methods, the U(1)-related Yukawa
coupling g′ can be determined far more accurately in selectron pair production. In addi-
tion, the accuracy obtained from neutralino production will be somewhat reduced when
including the decays of the neutralinos, which has not been done in [123].

As before, no simulation of the detector performance is included in this study. In
order to roughly estimate the effect of the detector acceptance it is assumed that a final
tau pair can be identified with an efficiency of ετ = 80%. In addition a global acceptance
factor εdet = 0.5 for the tagging of the electrons is included. With these refinements the
resulting precision of the Yukawa coupling extraction is reduced to

e+e− :
δĝ′

ĝ′
≈ 0.18%,

δĝ

ĝ
≈ 0.8%, (6.15)

e−e− :
δĝ′

ĝ′
≈ 0.23%,

δĝ

ĝ
≈ 0.8%. (6.16)

The errors on the determination of ĝ′ and ĝ are only slightly increased since the statistics
are actually of minor importance for the overall errors. The obtainable precision is mainly
limited by the uncertainty of the selectron masses mẽR

, mẽL
and the beam polarization.

Since the dependence on the statistical effects is rather weak, one may assume that the
picture will not change substantially when replacing the crude estimate for the detector
acceptance by a more detailed simulation.

The above studies on coupling determinations have been performed by using tree-level
approximations for the matrix elements. For the impressive precision that can be achieved,
see (6.9), (6.15) and (6.16), it is clearly necessary to include radiative corrections in the
analysis. As a first step in this respect, complete next-to-leading order calculations for the
pair production of right-chiral smuons and selectrons have been presented in chapter 5.

However the inclusion of radiative corrections in the analysis brings about additional
subtleties. Since the virtual loop contributions involve almost the complete particle con-
tent of the MSSM, the one-loop prediction of the slepton cross-section depends on basically
all parameters of the model. Accordingly the precise determination of supersymmetric
couplings would require some knowledge on all these parameters. A consistent treatment
would involve a simultaneous fit of the model to all available observables. Radiative cor-
rections can then be included by an iterative procedure. Such a global analysis is however
beyond the scope of this work. Nevertheless, in order to obtain a first estimate of the
expected precision for the coupling determination, a tree-level analysis is sufficient.
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Chapter 7

Conclusions

This thesis has presented a theoretical and phenomenological analysis of precision physics
with the supersymmetric partners of the muons and electrons, scalar muons and scalar
electrons, at future e+e− and e−e− linear colliders.

On one hand, a major task in the exploration of supersymmetry will be the determi-
nation of the supersymmetry-breaking parameters, in particular the masses of the super-
partners. While it is obvious that supersymmetry needs to be broken if it is realized in
nature, since none of the superpartners has been observed yet, the source of supersymme-
try breaking is still unknown. Thus a large number of additional parameters is involved
in the most general parametrization of soft supersymmetry breaking, posing an enormous
experimental effort for their investigation. Furthermore, it is of particular importance to
determine the soft-breaking parameters with high accuracy in order to be able to recon-
struct the underlying breaking mechanism, which eventually involves extrapolations of
the soft-breaking parameters to high energy scales.

For this purpose a clean experimental environment with high luminosity is required,
which is provided by the concept of a high-energy e+e− linear collider. With such a
machine it is possible to determine the masses of the scalar leptons with unparallelled
precision from scans of the threshold excitation curves. Moreover, the measurement of
cross-sections in the continuum provides accurate information about couplings and mix-
ings of the sleptons.

As a consequence, accurate theoretical predictions of the pair production cross-sections
are required. As two key points for a reliable computation near threshold, the inclusion
of finite width effects and Coulomb corrections was discussed. Special attention was
paid to the preservation of gauge invariance in the matrix elements. Backgrounds both
from Standard Model and supersymmetric sources were computed including dominant
contributions from pair production processes as well as sub-dominant contributions and
interference effects. They can be controlled with suitable cuts and beam polarization.
Nevertheless, a detailed simulation is necessary for estimating the remaining contributions.

Using these theoretical tools, an improved analysis of the measurement of slepton
masses near threshold was performed. The excitations curves are characterized by their
distinct rise proportional to the velocity or the third power of the velocity of the sleptons.
The inclusion of sub-dominant backgrounds reduces the precision expected in previous
studies. Nevertheless the measurement of the threshold cross-section proves to be the
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favourable method for the precise determination of slepton masses. The resulting preci-
sion that can be expected is about a few 100 MeV for slepton masses around 200 GeV,
corresponding to an accuracy at the per-mille level. In the particular case of the R-
selectron mass a precision of even 2× 10−4 can be obtained from the measurement in the
e−e− mode, which benefits from the sharp rise of the excitation curve proportional to the
selectron velocity.

Furthermore, a phenomenological method was developed which allows one to extract
the masses without knowledge on other sectors of the MSSM, in particular the neutralino
parameters. For the case of the selectrons, it is also possible to determine their decay
widths with an error of 10–20%.

On the other hand, it was pointed out that one of the most important building blocks
for establishing supersymmetry experimentally is the test of the equivalence between the
Standard Model gauge couplings and their supersymmetric counterparts. Irrespective
of the source of supersymmetry breaking, supersymmetric theories generally make the
non-trivial prediction that the gauge coupling between a vector boson and a fermion
or sfermion current is equal to the Yukawa coupling between the corresponding gaugino,
fermion and sfermion. In order to test this relation, these couplings need to be determined
with high precision, which can be achieved by measuring the production cross-sections
for scalar leptons.

The pair production of scalar muons is particularly suited for extracting the gauge
couplings of the smuons, since this process is mediated by s-channel gauge boson exchange.
In contrast, the Yukawa couplings between electrons, selectrons and gauginos can be
probed stringently in selectron pair production due to the t-channel gaugino exchange.
In the analysis of the statistical and systematic uncertainties it was shown that from
a measurement of the production cross-section these couplings can be extracted with a
precision better than the per-cent level. In particular the accuracy that can be achieved
in the determination of the U(1) gauge coupling and its Yukawa counterpart is superior
to other methods.

On the theoretical side this requires the computation of precise predictions for the
cross-sections. To this end, the complete next-to-leading order electroweak radiative cor-
rections to the production of right-chiral smuons and selectrons in the MSSM have been
calculated. Since in the continuum far above threshold, finite width effects are of minor
importance, the final state sleptons have been treated on-shell. The size of the corrections
were found to be sizeable, of the order of 5–10%. In a detailed analysis the dependence of
the results on the soft-breaking parameters was discussed, notably non-decoupling contri-
butions from virtual loops. While their effect was found to be non-negligible, it yet seems
difficult to use them for inferring information on hypothetical heavy superpartners from
the measurement of slepton cross-sections.

For the various investigations in this thesis, the production of scalar electrons in e+e−

annihilation was compared to the corresponding processes in e−e− scattering. The e−e−

mode turns out to be particularly favourable for the measurement of the selectron masses
in threshold scans. Nevertheless, it also can provide complementary information on the
selectron Yukawa couplings.

This thesis provides a first step towards the establishment of a firm theoretical basis
for precision analyses in the scalar lepton sector at future linear colliders. It was shown
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that important information about the masses and couplings of the sleptons can be ob-
tained with high precision. More detailed studies, in particular in the field of radiative
corrections, have to follow in order to match the experimental accuracy that is expected
for the determination of the masses and couplings of the selectrons and smuons. Clearly
they have to be supplemented with dedicated experimental simulations in order to obtain
realistic results and to fully explore the phenomenology of the scalar leptons.

The precise determination of superpartner properties provides the basis for system-
atic extrapolations to higher scales in order to disentangle the physics that govern the
breaking of supersymmetry. Since the breaking mechanism may eventually be related to
gravitational interactions, one could thus obtain a window to the sector of gravity from
collider particle physics.
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Appendix A

Reference scenarios

Since the MSSM contains a large number of unknown soft-breaking parameters, it is
impossible to perform a complete scan over the parameter space. Therefore, reference
scenarios are used as typical examples of expected particle spectra. For the numerical
results in this thesis, two reference scenarios were chosen.

The scenario 1 from the “Snowmass Points and Slopes” (SPS1) is part of a list of
supersymmetric benchmark scenarios that was selected at the 2001 Snowmass workshop
“Summer Study on the Future of Particle Physics” [124]. The SPS1 scenario is a typical
mSUGRA scenario with relatively light sparticle masses. For the evolution of the breaking
parameters down to weak scale the program ISAJET 7.58 [125] was specified. The low-scale
parameters can be found in [126].

In order to emphasize the effect of finite slepton widths, the RR2 reference point of
the Tesla study was chosen [10,127]. This scenario is an example of the fact that slepton
widths can be relatively large, i.e. of the order O(1 GeV) for slepton masses around 200
GeV. For the low-scale parameters, see [127].

The tree-level Higgs masses receive large radiative corrections (see also section 2.2.3).
For the computation of the corrected masses, the program FeynHiggs [128] was employed,
which encorporates full one-loop and leading two-loop corrections.

For the calculation of processes with multi-particle final states, the finite widths of
the intermediate resonant particles is needed, see section 4.3. The Higgs decay widths
including QCD corrections were computed with the program HDECAY [129]. In some cases,
the lighter neutralinos and charginos can only decay into a three-particle final state1. The
three-particle partial decay widths have been evaluated using the formulae of Ref. [130].
The remaining two-particle decay contributions can be calculated from simple tree-level
formulae.

In the following the relevant particle masses, decay widths and branching ratios for
this work are listed.

1Even if some two-particle decay channels are kinematically accessible, the effect of the three-particle
decay modes may be non-negligible.
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SPS 1 – mSUGRA scenario

Standard Model parameters:

MZ = 91.1875 GeV, sin2 θW = 0.2309,

mt = 175 GeV, α(MZ) = 1/127.70,

mτ = 1.777 GeV.

(A.1)

Fundamental unification scale parameters:

m0 = 100 GeV, M1/2 = 250 GeV, A0 = −100 GeV, tan β = 10, µ > 0. (A.2)

Weak scale soft-breaking parameters of (2.18), generated with ISAJET 7.58 [126]:

M1 = 99.13 GeV, mẽL = mµ̃L
= 196.64 GeV, mτ̃L = 195.75 GeV,

M2 = 192.74 GeV, mẽR = mµ̃R
= 136.23 GeV, mτ̃R = 133.55 GeV,

µ = 352.39 GeV, mũL,d̃L
= mc̃L ,̃sL = 539.86 GeV, mt̃L,b̃L

= 495.91 GeV,

MA0 = 393.63 GeV, mũR
= mc̃R = 521.66 GeV, mt̃R = 424.83 GeV,

tan β = 10, md̃R
= ms̃R = 519.53 GeV, mb̃R

= 516.86 GeV,

(A.3)

Aτ = −254.20 GeV, At = −510.01 GeV, Ab = −772.66 GeV.

Particle spectrum. Only the relevant data for this work are given:

Sfermions mass m [GeV]

particle width Γ [GeV] decay modes

l̃R = ẽR/µ̃R m = 142.97 l̃−R → l− χ̃0
1 100%

Γ = 0.21

l̃L = ẽL/µ̃L m = 202.14 l̃−L → l− χ̃0
1 48%

Γ = 0.25 → l− χ̃0
2 19%

→ νl χ̃
−
1 33%

ν̃l = ν̃e/ν̃µ m = 198.99 ν̃l → νl χ̃
0
1 88%

Γ = 0.16 → νl χ̃
0
2 3%

→ l−χ̃+
1 9%

τ̃1 m = 133.20

τ̃2 m = 206.14

ν̃τ m = 195.05

ũR m = 520.46

ũL m = 537.24

d̃R m = 520.13

d̃L m = 543.04

t̃1 m = 375.72

t̃2 m = 585.16

b̃1 m = 488.00

b̃2 m = 528.24
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Neutralinos/Charginos mass m [GeV]

particle width Γ [GeV] decay modes

χ̃0
1 m = 96.07 —

χ̃0
2 m = 176.81 χ̃0

2 → ẽ±R e
∓ 6%

Γ = 0.020 → µ̃±
R µ

∓ 6%

→ τ̃±1 τ∓ 88%

→ q q̄ χ̃0
1 0.1%

χ̃0
3 m = 358.81 χ̃0

3 → χ̃±
1 W

∓ 59%

Γ = 2.02 → χ̃0
1 Z 11%

→ χ̃0
2 Z 21%

χ̃0
4 m = 377.80 χ̃0

4 → χ̃±
1 W

∓ 52%

Γ = 2.80 → χ̃0
1 h0 7%

→ χ̃0
2 h0 14%

→ ν̃ ν̄, ν̃∗ ν 15%

χ̃±
1 m = 176.22 χ̃+

1 → τ̃+
1 ντ 100%

Γ = 0.014

χ̃±
2 m = 378.24 χ̃+

2 → χ̃0
1W

+ 6%

Γ = 2.65 → χ̃0
2W

+ 29%

→ χ̃+
1 Z 24%

→ χ̃+
1 h0 18%

→ ẽ+
L νe 5%

→ µ̃+
L νµ 5%

→ τ̃+
2 ντ 6%

Higgs tree-level mass mass from FeynHiggs width Γ from HDECAY

particle [GeV] [GeV] [GeV]

h0 89.28 122.61 0.0038

H0 394.07 393.56 0.97

A0 393.63 393.63 1.43
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RR2 – mSUGRA scenario

Standard Model parameters:

MZ = 91.187 GeV, sin2 θW = 0.2315,

mt = 175 GeV, α(MZ) = 1/128.87,

mτ = 1.777 GeV.

(A.4)

Fundamental unification scale parameters:

m0 = 160 GeV, M1/2 = 200 GeV, A0 = 600 GeV, tan β = 30, µ > 0. (A.5)

Weak scale soft-breaking parameters of (2.18), from [127]:

M1 = 78.0 GeV, mẽL = mµ̃L
= 212 GeV, mτ̃L = 189 GeV,

M2 = 150 GeV, mẽR = mµ̃R
= 179 GeV, mτ̃R = 115 GeV,

µ = 263 GeV, mũL,d̃L
= mc̃L ,̃sL = 462 GeV, mt̃L,b̃L

= 409 GeV,

MA0 = 257 GeV, mũR
= mc̃R = 447 GeV, mt̃R = 358 GeV,

tanβ = 30, md̃R
= ms̃R = 445 GeV, mb̃R

= 421 GeV,

(A.6)

Aτ = 384 GeV, At = −258 GeV, Ab = −178 GeV.

Particle spectrum. Only the relevant data for this work are given:

Sfermions mass m [GeV]

particle width Γ [GeV] decay modes

l̃R = ẽR/µ̃R m = 184.39 l̃−R → l− χ̃0
1 99%

Γ = 0.62 → l− χ̃0
2 0.8%

l̃L = ẽL/µ̃L m = 217.19 l̃−L → l− χ̃0
1 14%

Γ = 1.03 → l− χ̃0
2 34%

→ νl χ̃
−
1 52%

ν̃l = ν̃e/ν̃µ m = 201.98 ν̃l → νl χ̃
0
1 25%

Γ = 0.87 → νl χ̃
0
2 20%

→ l−χ̃+
1 55%

τ̃1 m = 94.89

τ̃2 m = 209.99

ν̃τ m = 177.69

ũR m = 445.57

ũL m = 458.89

d̃R m = 445.72

d̃L m = 465.78

t̃1 m = 354.91

t̃2 m = 476.01

b̃1 m = 367.08

b̃2 m = 462.57
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Neutralinos/Charginos mass m [GeV]

particle width Γ [GeV] decay modes

χ̃0
1 m = 74.81 —

χ̃0
2 m = 133.04 χ̃0

2 → τ̃±1 τ∓ 100%

Γ = 0.052

χ̃0
3 m = 272.81 χ̃0

3 → χ̃±
1 W

∓ 53%

Γ = 1.26 → χ̃0
1 Z 11%

→ χ̃0
2 Z 14%

→ τ̃±1 τ∓ 11%

→ τ̃±2 τ∓ 4%

χ̃0
4 m = 292.96 χ̃0

4 → χ̃±
1 W

∓ 52%

Γ = 1.81 → χ̃0
1 h0 6%

→ χ̃0
2 h0 10%

→ ν̃ ν̄, ν̃∗ ν 14%

χ̃±
1 m = 132.36 χ̃+

1 → τ̃+
1 ντ 100%

Γ = 0.044

χ̃±
2 m = 294.84 χ̃+

2 → χ̃0
1W

+ 6%

Γ = 1.64 → χ̃0
2W

+ 30%

→ χ̃+
1 Z 22%

→ χ̃+
1 h0 15%

→ τ̃+
2 ντ 7%

→ ν̃τ τ
+ 7%

Higgs tree-level mass mass from FeynHiggs width Γ from HDECAY

particle [GeV] [GeV] [GeV]

h0 90.96 123.38 0.0088

H0 257.08 256.40 5.84

A0 257.00 257.00 5.26
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L. E. Ibáñez, C. López and C. Muñoz, Nucl. Phys. B 256 (1985) 218;
M. B. Einhorn and D. R. Jones, Nucl. Phys. B 196 (1982) 475;
V. D. Barger, M. S. Berger and P. Ohmann, Phys. Rev. D 47 (1993) 1093
[hep-ph/9209232].

[23] U. Amaldi, W. de Boer and H. Fürstenau, Phys. Lett. B 260 (1991) 447;
W. de Boer, Prog. Part. Nucl. Phys. 33 (1994) 201 [hep-ph/9402266].

[24] D. Z. Freedman, P. van Nieuwenhuizen and S. Ferrara, Phys. Rev. D 13 (1976)
3214;
S. Deser and B. Zumino, Phys. Lett. B 62 (1976) 335;
P. van Nieuwenhuizen, Phys. Rept. 68 (1981) 189.

[25] H. P. Nilles, Phys. Rept. 110 (1984) 1.

[26] J. R. Ellis, J. S. Hagelin, D. V. Nanopoulos, K. A. Olive and M. Srednicki, Nucl.
Phys. B 238 (1984) 453.

[27] F. Gabbiani and A. Masiero, Nucl. Phys. B 322 (1989) 235.

[28] M. Spira and P. M. Zerwas, lectures given at 36. Internationale
Universitätswochen für Kernphysik und Teilchenphysik: Computing Particle
Properties, Schladming, Austria (1997) [hep-ph/9803257].



Bibliography 95

[29] H. E. Haber and R. Hempfling, Phys. Rev. Lett. 66 (1991) 1815;
Y. Okada, M. Yamaguchi and T. Yanagida, Prog. Theor. Phys. 85 (1991) 1;
J. R. Ellis, G. Ridolfi and F. Zwirner, Phys. Lett. B 257 (1991) 83;
J. R. Ellis, G. Ridolfi and F. Zwirner, Phys. Lett. B 262 (1991) 477;
A. Yamada, Phys. Lett. B 263 (1991) 233;
A. Brignole, J. R. Ellis, G. Ridolfi and F. Zwirner, Phys. Lett. B 271 (1991) 123;
P. Chankowski, S. Pokorski and J. Rosiek, Phys. Lett. B 274 (1992) 191;
P. Chankowski, S. Pokorski and J. Rosiek, Nucl. Phys. B 423 (1994) 437
[hep-ph/9303309].

[30] J. R. Espinosa and M. Quiros, Phys. Lett. B 266 (1991) 389;
R. Hempfling and A. H. Hoang, Phys. Lett. B 331 (1994) 99 [hep-ph/9401219];
J. A. Casas, J. R. Espinosa, M. Quiros and A. Riotto, Nucl. Phys. B 436 (1995) 3
[Erratum-ibid. B 439 (1995) 466] [hep-ph/9407389];
M. Carena, M. Quiros and C. E. Wagner, Nucl. Phys. B 461 (1996) 407
[hep-ph/9508343];
J. R. Espinosa and R. J. Zhang, Nucl. Phys. B 586 (2000) 3 [hep-ph/0003246];
G. Degrassi, P. Slavich and F. Zwirner, Nucl. Phys. B 611 (2001) 403
[hep-ph/0105096];
A. Brignole, G. Degrassi, P. Slavich and F. Zwirner, hep-ph/0112177.

[31] S. Heinemeyer, W. Hollik and G. Weiglein, Phys. Rev. D 58 (1998) 091701
[hep-ph/9803277];
S. Heinemeyer, W. Hollik and G. Weiglein, Phys. Lett. B 440 (1998) 296
[hep-ph/9807423];
S. Heinemeyer, W. Hollik and G. Weiglein, Eur. Phys. J. C 9 (1999) 343
[hep-ph/9812472].

[32] J. M. Frère, D. R. Jones and S. Raby, Nucl. Phys. B 222 (1983) 11;
M. Claudson, L. J. Hall and I. Hinchliffe, Nucl. Phys. B 228 (1983) 501;
C. Kounnas, A. B. Lahanas, D. V. Nanopoulos and M. Quiros, Nucl. Phys. B 236
(1984) 438;
J. F. Gunion, H. E. Haber and M. Sher, Nucl. Phys. B 306 (1988) 1.

[33] H. E. Haber and G. L. Kane, Phys. Rept. 117 (1985) 75.

[34] J. F. Gunion and H. E. Haber, Nucl. Phys. B 272 (1986) 1 [Erratum-ibid. B 402
(1993) 567];
J. F. Gunion and H. E. Haber, Nucl. Phys. B 278 (1986) 449;
J. F. Gunion and H. E. Haber, Nucl. Phys. B 307 (1988) 445 [Erratum-ibid. B
402 (1993) 569].
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