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Abstract

The �rst part of this thesis analyzes whether a locally 
at background represents a stable vacuum

for the proposed heterotic M-theory. A calculation of the leading order supergravity exchange

diagrams leads to the conclusion that the locally 
at vacuum cannot be stable. Afterwards a

comparison with the corresponding weakly coupled heterotic string amplitudes is made. Next,

we consider compacti�cations of heterotic M-theory on a Calabi-Yau threefold, including a non-

vanishing G-
ux. The ensuing warped-geometry is determined completely and used to show

that the variation of the Calabi-Yau volume along the orbifold direction varies quadratically

with distance instead linearly as suggested by an earlier linearized approximation. In the second

part of this thesis we propose a mechanism for obtaining a small cosmological constant. This

mechanism consists of the separation of two domain-walls, which together constitute our world,

up to a distance 2l ' 1=Me�. The resulting warped-geometry leads to an exponential suppression

of the cosmological constant, which thereby can obtain its observed value without introducing

a large hierarchy. An embedding of this set-up into IIB string-theory entails an SU(6) Grand

Uni�ed Theory with a natural explanation of the Higgs doublet-triplet splitting. Finally, we

examine to what extent the string-theory T-duality can in
uence curvature. To this aim we

derive the full transformation of the curvature-tensor under T-duality.

Zusammenfassung

Der erste Teil der vorliegenden Arbeit untersucht ob die heterotische M-Theorie ein stabiles

lokal 
aches Vakuum besitzt. Dazu werden die f�uhrenden Supergravitations Wechselwirkungs-

Diagramme berechnet, die zu dem Schlu� f�uhren, da� ein solches Vakuum instabil ist. Weiter

werden die Amplituden mit denen des heterotischen Strings veglichen. Anschlie�end werden

Kompakti�zierungen der heterotischen M-Theorie auf Calabi-Yau Mannigfaltigkeiten betrachtet,

die einen nicht-verschwindendenG-Flu� beinhalten. Die resultierendeWarp-Geometrie wird bes-

timmt und dazu verwendet, die Variation des Calabi-Yau Volumens l�angs der Orbifold-Richtung

zu ermitteln. Entgegen einer fr�uheren Approximation mit linearer Abh�angigkeit zeigt sich eine

quadratische in der vollen L�osung. Im zweiten Teil der Arbeit schlagen wir einen Mechanis-

mus zur Erzeugung einer kleinen kosmologischen Konstanten vor. Er basiert auf der Trennung

zweier Dom�anen-W�ande, die zusammen unsere Welt bilden, um eine Distanz 2l ' 1=Me�. Die

resultierende Warp-Geometrie f�uhrt zu einer exponentiellen Unterdr�uckung der kosmologischen

Konstanten, die ihren beobachteten Wert annehmen kann ohne ein neues Hierarchie-Problem zu

generieren. Eine Einbettung dieser Kon�guration in die IIB String-Theorie f�uhrt auf eine SU(6)

GUT mit einer nat�urlichen Erkl�arung der Higgs Dublett-Triplett Spaltung. Schlie�lich wird un-

tersucht inwieweit die T-Dualit�at der String-Theorie die Raum-Zeit Kr�ummung beein
u�t. Zu

diesem Zweck wird die vollst�andige Transformation des Kr�ummungs-Tensors unter T-Dualit�at

bestimmt.
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1 Introduction

High Energy Physics has obtained spectacular successes during this century, culminating

in the establishment of quantum �eld theory and of the SU(3)�SU(2)�U(1) Standard
Model (SM). The SM encompasses virtually everything we can physically measure { except

gravitational phenomena. From the point of view of a particle physicist, gravity is simply

the weakest of the interactions. It is natural to try to understand its quantum properties

using the same strategy that has been so successful for the rest of microphysics. The

search for a conventional quantum �eld theory capable of embracing gravity, however,

su�ers from the disease that the inclusion of gravity leads to a non-renormalizable theory

and therefore looses its predictive power. Since the quantization of all other forces of

nature except for gravity is well understood, the vexing question has been how to quantize

gravity.

But is it really necessary to quantize gravity? Or is it possible keeping gravity clas-

sical together with quantized matter and the quantization of the three other forces? If

some interaction would be fundamentally classical, one could only use this interaction to

measure the position and momentum of a particle to arbitrary precision { thus violating

the Heisenberg uncertainty principle. Therefore, at a fundamental level, if some of the

physical laws are quantized, all of them have to be quantized. In order to estimate an

upper limit for the scale where classical general relativity ceases to make sense, let us try

to measure a spacetime coordinate with accuracy �x. By the uncertainty principle there

will be energy of order 1=�x localized in this region. But if �x is very small then the

energy will be large enough to form a black hole with the consequence that the spacetime

point will be hidden behind a horizon. The scale at which a black hole formation occurs

can be estimated to be the Planck-length lP l [1]. Therefore, classical general relativity

and quantum mechanics become incompatible at least at scales of order lP l.

There are currently two main approaches to a formulation of such a theory of quantum

gravity. The more popular one is string-theory [2],[3],[4],[5],[6], the present only serious

rival being loop quantum gravity [7]. String-theory can be seen as a natural outcome of

the line of research that started with the e�ort to go beyond the SM, and went through

Grand Uni�ed Theories (GUTs), supersymmetry and supergravity. Loop quantum grav-

ity on the other hand can be regarded as an outcome of the research that started with the

quantization of constrained systems, initiated by Dirac, and continued with the canonical

quantization of the Wheeler-DeWitt equation. Though string-theory and loop quantum

gravity are both based on one-dimensional objects, they di�er considerably in philosophy
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and results. String-theory o�ers the remarkable possibility to treat gravity on an equal

footing with the three other forces of nature and naturally uni�es all four forces. Further-

more it leads to phenomenologically interesting low-energy theories with a shift in recent

years from an emphasis on the heterotic string towards type I and heterotic M-theory

vacua. Loop quantum gravity on the other hand provides a solid description of Planck

scale quantum spacetime, but �nds diÆculties in making contact with low-energy physics.

String-theory, which will be the framework of this thesis, presently exists at two levels.

First, there is a well developed set of techniques that de�ne the string perturbation expan-

sion over a given metric background. Second, the understanding of the non-perturbative

aspects of the theory has much increased in recent years and there is a widespread belief,

supported by numerous indications, in the existence of a yet to be de�ned full non-

perturbative formulation, named M-theory. The proposed Matrix-theory [8] aimed at

such a non-perturbative formulation in terms of fundamental partonic D0-brane degrees

of freedom.

The claim that string-theory is actually a theory of quantum gravity is based on two

facts. First, the string perturbation expansion includes the graviton. More precisely, one

of the string modes is a massless spin-2 and helicity�2 particle. Such a particle necessarily
couples to the energy-momentum of the other �elds present [9] and gives general relativity

to a �rst approximation. Second, the perturbation expansion is consistent, i.e. keeps to

be conformally invariant at the quantum level, if the background geometry over which

the theory is de�ned gives rise to vanishing �-functions, which { to lowest order in the

�-model perturbation parameter �0 { reproduced the Einstein �eld equation and moreover

through higher order corrections leads to a (in principle testable) high energy modi�cation

of the Einstein equation. The hope is that such a consistency condition, as the vanishing

of the �-functions for the perturbation expansion, will emerge as a dynamical equation

from the yet to be found non-perturbative theory.

In string-theory, gravity is just one of the excitations of a string living over some metric

space. The existence of such a background metric space, over which the theory is de�ned,

is needed for the formulation of the theory, not just in perturbative string-theory, but

also in attempts of a non-perturbative de�nition of the theory such as Matrix-theory [8],

where a 
at background metric is used to raise and lower indices. To �nd a background

independent formulation of string-theory is one of the long outstanding open problems of

the subject.

Concerning the traditional questions a theory of quantum gravity has to answer, there

5



were obtained two interesting results from string-theory. The �rst one is the derivation of

the Bekenstein-Hawking formula for the entropy of a black hole as a function of the horizon

area [10],[11],[12],[13],[14]. The discovery of D-branes [15] made it possible to construct a

black-hole at weak string coupling by superimposing D5-branes, D1-branes and Kaluza-

Klein momentum. The degeneracy of states of the D-brane system can be evaluated by

conformal �eld theory techniques (Cardy's formula [16]) and can be extrapolated due to

supersymmetry to the strong coupling region, where supergravity applies. It turns out

that the Bekenstein-Hawking entropy S = A=(4GN) obtained from the calculation of the

horizon area A in the supergravity description agrees with the D-brane counting. This

result indicates that there is an internal consistency between string-theory and quantum

�eld theory on curved spacetime.

The second traditional question to a theory of quantum gravity deals with the mi-

crostructure of spacetime. There are indications that in string-theory the spacetime

continuum is meaningless below the Planck-length. What happens is that in order to

probe smaller distance one needs higher energy, but at high energy the string \opens up"

from being a particle to being a true string, which is spread over spacetime. Therefore

there is no way of focusing a string's collision within a small spacetime region. More

recently, in the context of the e�ective �eld theory on a stack of D-branes or in the

Matrix-theory formulation of M-theory, the spacetime coordinates of the string XA are

replaced by matrices (XA)ij. This can be viewed as a new interpretation of the spacetime

structure. The continuous spacetime manifold emerges only in the long distance region,

where these matrices are diagonal and commute, whereas spacetime appears to have a

non-commutative discretized structure in the short distance regime. This is the point,

where non-commutative geometry [17],[18] enters the string-theory scene.

Outline of the Thesis

The work which will be presented in this thesis is based on [19],[20],[21],[22] and the article

[23] which will be published in the near future.

The following chapter gives a brief overview over modern string-theory with an em-

phasis on aspects whose knowledge is important for later chapters. In chapter 3 the

background �eld method is employed to derive the interaction terms for Ho�rava-Witten

supergravity on a 
at background. All amplitudes contributing to the graviton, gravitino

and 3-form exchange between the two boundaries are calculated and it is shown that

their sum does not vanish. An interpretation of this result is given and a comparison

with the corresponding amplitudes of heterotic string theory follows. Chapter 4 starts
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with an introduction to the relation between Newton's Constant and the geometry of

the compacti�ed heterotic M-theory set-up. The full warped geometry in the presence

of internal G-
ux is determined and shown to agree with the weakly coupled heterotic

string relation between warp-factor and torsion. Furthermore, a quadratic variation of

the Calabi-Yau volume with the orbifold direction is derived and the relation between the

distance-modulus and Newton's Constant explored. It is shown in which way the previ-

ously known linear approximation is obtained and in which way an additional M5-brane

source a�ects the volume dependence. Then by using the warped background an e�ective

potential for the distance-modulus is derived and shown to have a destabilizing e�ect.

Finally, the constraints on the compacti�cation-geometry by turning on a general G-
ux,

compatible with supersymmetry, are derived. Chapter 5 is devoted to a low-energy mech-

anism to solve the cosmological constant problem. After providing necessary formulas

to derive the e�ective 4-dimensional action, we start with a two domain-wall set-up in

�ve dimensions and calculate the ensuing warped-geometry. A determination of the ef-

fective 4-dimensional action shows an exponentially small cosmological constant �4. It

is then shown that a lifting of the �netuning of the fundamental parameters still leads

to an exponentially suppressed cosmological constant. To obtain the correct value for �4

requires a distance between both walls which is just the inverse of the GUT-mass scale.

The full consequences of this scale become clear upon embedding the con�guration into

a IIB string-theory framework. Here the open strings describe the relevant gauge- and

matter-�elds. Requiring the low-energy Standard Model gauge group, leads to the conclu-

sion that the SU(3) has to originate from one wall, while the SU(2)�U(1) has to originate
from the other. A natural consequence of the string description is the emergence of an

SU(6) GUT with gauge group spontaneously broken down to the Standard Model gauge

group. A natural explanation of the Higgs-boson triplet-doublet splitting suggests itself

and the replication of fermion-families is treated. Finally in chapter 6 the transformation

of the Riemann curvature tensor under T-duality is derived and used to analyze whether

Anti-de Sitter spacetime can be dualized to 
at spacetime, i.e. whether string-/M-theory

is \blind" towards our notion of a cosmological constant. In chapter 7 we conclude with

a summary of our results.

2 The Modern View of String-Theory

One of the cornerstones of modern string-theory are its dualities, which require the in-

troduction of solitonic objects, D-branes, in string-theory. Even more, they led to the

7



inclusion of all �ve known string-theories into the framework of M-theory and in partic-

ular the geometrization of S-duality culminated in the formulation of F-theory. In this

chapter, we want to give a brief outline of these topics with an emphasis on heterotic

M-theory and warped compacti�cations. They will play a major role in this thesis.

2.1 D-Branes

The derivation of the world-sheet (which is parameterized by �; �) �eld equation for the

string embedding coordinates XA(�; �) ; A = 1; : : : ; 10 is obtained by variation of the

Polyakov-action with respect to XA. In order to have a well-de�ned variational problem,

one has to ensure that boundary terms vanish. In string-theory this can be accomplished

by three di�erent choices of boundary-conditions (BC)

� XA(�; � + 2�) = XA(�; �) ; 8A

� @�X
A(�; �) = @�X

A(�; 0) = 0 (Neumann BC)

� XA(�; �) = const1 ; X
A(�; 0) = const2 (Dirichlet BC)

The �rst choice leads to the closed string (� 2 [0; 2�]), while the second and third choice

give rise to the open string (� 2 [0; �]). Whereas the Neumann BC implies momentum

conservation along � and therefore allows to consider the open string consistently as an

isolated object in ten dimensions, this is not the case for the Dirichlet BC. It implies a

momentum-
ow from the string towards the hypersurface de�ned by the BC. Hence the

hypersurface on which the open string begins/ends, which is called a Dp-brane (with p+1

coordinates obeying Neumann BC and the remaining 9� p coordinates obeying Dirichlet
BC) [42],[15] absorbs momentum and therefore becomes a dynamical object { a physical

entity.

In type II string-theories, we have two spacetime supersymmetries generated by the

Majorana-Weyl spinor-parameters �L; �R. The corresponding supercharges QL; QR are

generated by left- and right-moving world-sheet degrees of freedom. In IIA they have

opposite chirality, �11QL = QL;�
11QR = �QR (with �11 = �1 � � ��10 the 10-dimensional

chirality matrix) while in IIB they are of same chirality �11QL = QL;�
11QR = QR. The

chirality of �L; �R is just the opposite (otherwise �LQL; �RQR would be identically zero).

A D-brane preserves the linear combination �LQL + �RQR of supercharges, where �L; �R
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are subject to the relation1

�L = �D�R ; �D = �1 � � ��p+1 : (2.1)

Since �D squares to the identity its eigenvalues are �1. Furthermore, �D is traceless and

therefore half the eigenvalues are +1 and half are �1. In view of the de�nite chirality of

�L; �R only the 16 solutions with positive eigenvalues or the 16 with negative eigenvalues

are allowed (depending on whether we are in IIA or IIB), which says that a D-brane

breaks half the supersymmetry. At the level of the supersymmetry-algebra augmented by

central-charges an analogous reasoning shows that a D-brane causes a shortening of the

supersymmetry-representation and thus represents a BPS-state. A Dp-brane couples to

gravity and the Ramond-Ramond (RR) (p+1)-form potential. As a BPS-soliton its mass

is proportional to its RR-charge. Since IIA o�ers only odd RR forms, whereas IIB only

even ones, there exist in IIA only Dp-branes with p even and in IIB only with p odd.

The massless 
uctuations of a single Dp-brane consist of a (p+ 1)-dimensional vector

A�; � = 1; : : : ; p + 1 and 9 � p scalars Am; m = p + 2; : : : ; 10 from the bosonic states

A�b
�

� 1

2

jki and Ambm� 1

2

jki of the Neveu-Schwarz (NS) sector. The Am describe the position

coordinates of the Dp-brane in transverse space. Both bosonic states can be obtained

by dimensionally reducing a 10-dimensional vector AA to the (p+ 1)-dimensional world-

volume of the Dp-brane. In addition one gets a world-volume gaugino from the R-sector,

which likewise is the reduction of the 10-dimensional gaugino. In total we obtain the

reduction of a 10-dimensional U(1) Super-Maxwell theory to p + 1 dimensions. This

theory has 16 conserved supercharges, which is in accord with the fact that the D-brane

breaks half of the original supersymmetry.

It is natural to ask what happens when we have more than one parallel Dp-brane.

Consider �rst the case where we have N Dp-branes at the same point in transverse space.

The only di�erence to the previous case is that now we have to include a Chan-Paton

label i = 1; : : : ; N at the end-points of the open string. This then leads to N2 massless

vector states Aij� b
�

� 1

2

jk; i; ji. In the same manner as before we �nd that the massless


uctuations are described by the dimensional reduction of 10-dimensional N = 1 U(N)

Super Yang-Mills (SYM) theory to the world-volume of the Dp-brane (for oriented open

strings). The U(1) factor of

U(N) =
U(1)� SU(N)

ZN
(2.2)

1For an anti D-brane the relation would have an extra minus-sign, �L = ��D�R.
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describes the overall center of mass motion of the system. If we take one of the Dp-branes

and separate it from the rest by a distance l, the former massless modes of the open

strings stretching between it and the N � 1 branes acquire a mass given by

Mopen = lT ; (2.3)

where T = 1=2��0 is the string-tension. The remaining massless vector states transform

under a gauge-group U(1)�U(N � 1). In terms of the e�ective �eld theory on the branes

this can be understood as an ordinary Higgs-e�ect. If all N Dp-branes occupy di�erent

positions, the gauge-group will be broken to U(1)N .

The scalars Am that described the position of the single D-brane, now { in the case

of N D-branes { become U(N) matrices [28]. The potential-term in the e�ective U(N)

SYM (obtained by the mentioned dimensional reduction from 10-dimensional U(N) SYM)

is given by [Am; An]
2. At the minimum of the potential the matrices Am are commut-

ing, which means that they can be diagonalized simultaneously. Their eigenvalues are

interpreted as the coordinates of the N Dp-branes [28].

2.2 String-Dualities

In order to make contact with our observable 4-dimensional world, the traditional way has

been to compactify the 10-dimensional string-theories on compact 6-dimensional mani-

folds2. Matching the 4-dimensional values of the GUT coupling constant �GUT ' 1=25 and

Newton's constant GN requires a tiny radius3 for the compacti�cation manifold (which is

assumed generically to be more or less isotropic) between the GUT- and the Planck-scale,

1=MGUT � 1=MP l. If in addition one imposes N = 1 supersymmetry in four dimensions,

2In [29] it has been shown that a 4-dimensional Newton-law can also originate from a domain-wall

embedded in a 5-dimensional Anti-de Sitter spacetime with in�nite �fth dimension. Thus an adequate

non-compact geometry capable of trapping gravity to a submanifold may be an alternative to the tradi-

tional idea by Kaluza and Klein of having small compact extra dimensions.
3A loophole in this argumentation consists of an extremely anisotropic compact manifold with n very

large internal dimensions [30]. The observed 4-dimensional Planck-scaleMPl is related to the fundamental

10-dimensional string-scale Ms = 1=
p
�0 through M2

Pl =M2+n
s Vn, where Vn is the volume related to the

n large dimensions. Moreover, in order to nullify the strong hierarchy problem it has been suggested to

set Ms equal to the TeV-scale [30]. This leads to an average large radius V
1=n
n ' 1033=n=1TeV, which

for n = 2 is in the range of 1mm. Current gravitational experiments allow for n � 2. However, a serious

backdraw is that the new compacti�cation scale 1TeV� 10�33=n is very much smaller than the proposed

fundamental string scale Ms = 1TeV. Hence this \solution" to the strong hierarchy problem is better be

regarded as a reformulation of the same.

10



then the e�ective supergravity4 Killing-spinor equations with constant dilaton � and van-

ishing Neveu-Schwarz Neveu-Schwarz (NSNS) 3-form HNS require a compact K�ahler-

manifold of SU(3) holonomy which abmits precisely one covariantly constant spinor of

de�nite chirality [31]. Such a manifold is known as a Calabi-Yau threefold K6 and can

alternatively be characterized as a compact K�ahler-manifold with vanishing �rst Chern-

class c1(K6) = 0. The latter property means that K6 admits a Ricci-
at metric.

Let us in the following deal with toroidal compacti�cations, whihc means that the

internal manifold consists of an n-torus T n. Due to the triviality of the holonomy-group

of T n such compacti�cations do not break any supersymmetry at all. They lead to 4-

dimensional vacua (n = 6) with N = 8 resp. N = 4 supersymmetry if we compactify

a type II resp. type I string-theory. This unrealistic feature can however be remedied

by dividing out further discrete subgroups of the T n which leads to the notion of an

orbifold compacti�cation. The great advantage of these orbifold compacti�cations is that

in essence an understanding of string-theory on a 
at background (up to global and

discrete identi�cations plus the addition of twisted sectors) is suÆcient for their analysis.

The simplest toroidal compacti�cation is the compacti�cation of one coordinate X10

on a circle S1 with radius R. The momentum along X10 is then quantized, p = n
R
; n 2 Z.

Furthermore, the closed string can wind around the circle before closing, so there are

di�erent topological sectors labeled by the winding number M . Therefore, in the sector

with winding number m the closed string BC gets generalized to

X10(�; � + 2�) = X10(�; �) + 2�Rm : (2.4)

Adopting the conformal gauge [2] for the world-sheet metric, the equation of motion for

the bosonic embedding �elds XA reduces to a simple free wave equation (@2� �@2�)XA = 0.

As usual the full solution is given by a superposition of left- XA
L and right-movers XA

R .

Imposing the above BC then gives

X10
L (�+) = x10L +

�0

2

�
n

R
+
mR

�0

�
�+ + i

r
�0

2

X
n 6=0

�10
n

n
e�in�

+

(2.5)

X10
R (��) = x10R +

�0

2

�
n

R
� mR

�0

�
�� + i

r
�0

2

X
n6=0

~�10
n

n
e�in�

�

; (2.6)

with �+ = � + �; �� = � � �, the center-of-mass position x10L + x10R and the oscillator

excitations �10
n ; ~�

10
n . Via the mass-shell and level-matching condition on physical states

4It can be shown that the results are valid to all �nite orders in �0 [2].
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one obtains the spectrum

M2 =
1

2

�
n2

R2
+
m2R2

�02

�
+

2

�0

�
N + ~N � 2

�
; (2.7)

where N and ~N represent the number operators for right- and left-moving oscillator

excitations. In the limit of large radius R the winding modes decouple and the Kaluza-

Klein (KK) modes build a continuum of states. This behaviour is reversed in the R! 0

limit, where the winding modes give a continuum and the KK-states with non-vanishing

momenta decouple. Thus in the small circle limit, a closed string will realize the opening

up of a compact dimension due to the winding states. This sharp deviation from the way

a usual quantum �eld would see geometry is due to the presence of the winding modes in

closed string theory. T-Duality describes this symmetry by inverting the compacti�cation

radius

R! ~R =
�0

R
(2.8)

and simultaneously interchanging KK and winding modes n $ m. Under this transfor-

mation the mass spectrum remains invariant M(n;m;R) =M(m;n; ~R).

At the �eld level T-duality amounts to a one-sided parity transformation5

X10
L ! X10

L ; X10
R ! �X10

R : (2.9)

To respect worldsheet supersymmetry, T-duality has to transform the worldsheet fermions

as well

 10
L !  10

L ;  10
R ! � 10

R : (2.10)

In particular, the zero mode of  10
R , which acts as �10 on the right movers, changes its

sign. This means that the relative chirality between the left- and right-movers is 
ipped.

Therefore, T-duality maps the IIA superstring on S1 with radius R to the IIB superstring

on an S1 with radius �0=R.

It is important that T-duality is not restricted to free string-theories but can also be

shown to be a duality of the interacting theories [32]. Such a proof is possible because

5In order to have the spacetime interpretation of T-duality, we also transform

x10L ! x10L ; x10R ! �x10R
�10n ! �10n ; ~�10n ! �~�10n

under T-duality.
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T-duality is a perturbative (with respect to the string coupling but not the sigma-model

coupling) duality, wherefore it can be established at the level of vertex-operators. In

general the non-linear sigma-model which de�nes a string-theory, contains the following

NSNS sector background GAB; BAB; �. If the spacetime background GAB has an isometry,

then a more general T-duality can be de�ned along the isometry-direction. The transfor-

mation is given by the Buscher-rules of which the above radius inversion is just a simple

case with BAB = � = 0 and X10 as the isometry-direction. This will be treated further

in section 6.

For the open string with NN-boundary conditions left and right movers are re
ected

at the ends and form standing waves X10(�; �) = X10
R (��) +X10

L (�+) with

X10
L (�+) =

x10 + c

2
+ �0pA�� + i

r
�0

2

X
n6=0

�10
n

n
e�in�

+

(2.11)

X10
R (��) =

x10 � c

2
+ �0pA�+ + i

r
�0

2

X
n6=0

�10
n

n
e�in�

�

; (2.12)

where c is some constant. For compact X10, we have the Kaluza-Klein modes p10 = n
R

but for open strings there are no winding modes. Therefore the exchange of winding

and KK-modes cannot serve as a de�nition of T-Duality in this case. Instead, T-Duality

is de�ned by the one-sided space-time parity operation (2.9). At the boundaries of the

worldsheet � = 0; � the oscillator terms for the T-dual variable ~X10 � X10
L �X10

R vanish

and we end up with

~X10(�; 0) = c = ~X10(�; �) mod 2� ~R : (2.13)

Hence, by T-Duality the ends of the open string got �xed at the constant value c modulo

the circumference of the dual circle. Due to this �xing it becomes meaningful to consider a

winding of the T-dual open string. Indeed, T-Duality has transformed the KK-modes into

winding modes of the dual geometry. This switch from NN- to DD-boundary conditions

alternatively enforces the introduction of a hypersurface on which the open strings in

the T-dual picture end. These are the above described D-branes, which are required by

T-duality.

Apart from T-duality there is an important non-perturbative strong-weak coupling

duality, called S-duality, whose existence was �rst conjectured for the heterotic string

compacti�ed on T 6 [34]. Later it was realized that also in the IIB superstring the weakly

coupling region gets exchanged with the strongly coupled region under S-duality [35].
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Combining the IIB dilaton � and axion a into one complex scalar � = a + ie�� one

veri�es that the �eld equations of IIB supergravity are invariant under the SL(2;R)

transformation

�! a�+ b

c�+ d
;

 
a b

c d

!
2 SL(2;R) (2.14)

together with a mixing of the IIB 2-forms BAB and A
(2)
AB of the NSNS and RR sector 

BAB

A(2)
AB

!
!
 
a b

c d

! 
BAB

A(2)
AB

!
: (2.15)

The metric (in Einstein-frame) and the self-dual RR 4-form potential D(4)+ are left in-

variant. It has been conjectured [25] that in the full string-theory the classical SL(2;R)

S-duality group is broken down to its maximal discrete subgroup SL(2;Z) due to quantum

e�ects. Setting the axion background to zero and limiting ourselves to the Z2 subgroup

which sends � ! �1=�, we obtain the following S-duality transformation (in string-

frame6)

gs ! 1

gs
; �0 ! �0gs

g�AB !
1

gs
g�AB ; BAB $ A(2)

AB ; (2.16)

where gs = e� is the string coupling. It clearly shows the exchange of weak and strong

coupling and tells us that under (2.16) the fundamental string gets exchanged with a D1-

brane, a NS 5-brane with a D5-brane, while the D3-brane is invariant. The combination

of T- and S-duality yields an even bigger duality group called U-duality.

2.3 Eleven-Dimensional M-Theory

The highest spacetime dimension, in which supersymmetry can exist is eleven [36]. This

is due to the fact that dimensions higher than eleven would imply fermionic �elds with

spin 5/2, of which no fundamental renormalizable action is known. Indeed an N = 1;

D=11 supergravity had been constructed [67] out of the metric GMN ; M;N = 1; : : : ; 11

and the 3-form potential CMNP as the bosonic degrees of freedom and the gravitino 	M

as the fermionic partner. Together, they constitute the supergravity multiplet. This

6The metric g�AB in string-frame and the metric gEAB in Einstein-frame are related by a Weyl-rescaling

gEAB = e��=2g�AB .
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theory is unique and scale-invariant at the classical level, which means, it does not have

any free parameters. Hence it seems that 11-dimensional N = 1 supergravity cannot be

obtained from an even higher-dimensional compacti�ed theory, since the compacti�cation

manifold would presumably break scale-invariance and introduce further parameters into

the theory. The bosonic part of the action is given by

S = � 1

2�2

Z
M11

d11x
p�g�R +

1

4!
GIJKLG

IJKL (2.17)

+

p
2

1728
�I1:::I11CI1I2I3GI4I5I6I7GI8I9I10I11

�
;

and includes the topological Chern-Simons term C ^ G ^ G, whose precise origin is still

enigmatic (technically it shows up if one performs the Noether procedure on the super-

gravity multiplet).

A Kaluza-Klein dimensional reduction of D=11 supergravity down to ten dimensions

is achieved by compactifying the eleventh coordinate on a circle and decomposing the

�elds according to the preserved 10-dimensional Lorentz-group SO(1,9)

GMN !
( G11;11 = e�

G11;A = A
(1)
A

GAB = gAB

; (2.18)

CMNP !
(
CABC = A

(3)
ABC

CAB11 = BAB

: (2.19)

In ten dimensions there are only two supergravities with the right amount of super-

symmetry to which D=11 supergravity can descend, IIA and IIB. As 11-dimensional

supergravity is non-chiral, it must result upon reduction to non-chiral type IIA super-

gravity. Indeed (�; gAB; BAB) and (A
(1)
A ; A

(3)
ABC) give the bosonic �elds of the universal

supergravity-multiplet and the two RR forms of 10-dimensional N = 2 IIA supergravity.

A comparison of the low-energy e�ective action of IIA string-theory in string-frame with

D=11 supergravity reduced on an S1 with radius r11 leads to the relation [26]

r11 = g2=3s : (2.20)

The geometrization of the string coupling constant implies, that the string coupling can

alternatively be thought of as a measure for the size of the eleventh dimension. The

M-theory conjecture states that for r11 ! 0, the full M-theory reduces to weakly-coupled

type IIA string-theory, whereas in the extreme strong coupling limit, r11 !1, M-theory

is an 11-dimensional Lorentz-invariant quantum theory with N = 1; D=11 supergravity
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as its low-energy limit. Hence, by de�nition, M-theory has to incorporate all the non-

perturbative e�ects of IIA string-theory.

Indeed, the concept of M-theory has been subjected to several successful tests, so

far. For example, all the D-branes in Type IIA do emerge from dimensional reduction

and wrapping of M2- and M5-branes of M-theory which can be constructed explicitly

as D=11 supergravity solitons and seem to be the only M-branes7. More precisely, the

IIA D0-branes appear as the Kaluza-Klein states with momenta n=R11 as measured in

the M-theory (Einstein) frame. In the large R11 limit, this evenly spaced tower of states

forms a continuum, which is a characteristic of the appearance of an additional dimension.

The fundamental IIA strings, the F1-branes, are thought of as wrapped M2-branes. The

D2-branes are M2-branes transverse to the eleventh dimension x11, the D4-branes are

M5-branes wrapped on x11, whereas the (symmetric) NS5-branes can be considered as

M5-branes transverse to x11. The D6-branes are Kaluza-Klein monopoles, since they are

the magnetic duals of the D0-branes. The D8-brane origin is still a bit mysterious, since

there is no simple description of an M8- or M9-brane available, from which the D8-brane

could descend. There are however proposals of supergravity M9-brane solutions, which

are de�ned on intervals with di�erent cosmological constants [37]. On the IIA side the

trouble with the D8-brane stems from the fact, that being of codimension one, it causes

the dilaton to diverge within a �nite distance [38].

In the previous section we discussed string-dualities. Via T-duality IIA is related to

IIB and furthermore the heterotic E8 � E8 is related to the heterotic SO(32) string8 In

addition S-duality relates the heterotic SO(32) to the SO(32) type I string and exchanges

the weakly and the strongly coupled region of IIB. If furthermore, we believe that M-

theory on S1 is related to strongly-coupled IIA, while M-theory on S1=Z2 is related to

the strongly-coupled heterotic E8 � E8 string (see the coming section), then we arrive at

a complete network connecting all �ve perturbatively de�ned superstring theories with

each other. Moreover, it includes all strongly-coupled counterparts as well.

7A conjectured M9-brane cannot be de�ned smoothly on 
at R11 . It needs at least one compact

direction with an isometry and can then only be de�ned sectionwise together with a jumping D=11

cosmological constant [37].
8Indeed below ten dimensions the E8�E8 heterotic string is equivalent to the SO(32) heterotic [39],[40]

and IIA is equivalent to type IIB [41],[42].
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2.4 Heterotic M-Theory

Before, we discussed the strong coupling behaviour of type IIA theory in ten dimensions

and argued that, in the long-wavelength regime, it leads to 11-dimensional supergravity

on R1;9 � S1, where the radius of the S1 grows with the string-coupling. An inspection

of the complete action of 11-dimensional supergravity, shows that it is invariant under an

odd number of space-time parity transformations accompanied by a sign change of the

3-form potential C. Therefore it makes sense to wonder about the gauging of this discrete

Z2 symmetry. M-theory on R1;9 � S1 together with a speci�c Z2 operation acting on the

S1 by x11 ! �x11 has been analyzed in [43]. Requiring the metric on R
1;9 � S1 to be Z2

symmetric is equivalent to considering an arbitrary metric on the orbifold R
1;9 � S1=Z2,

where the interval S1=Z2 comprises only half of the original circle. This latter approach

has been termed the downstairs picture, whereas the alternative choice of working on a

smooth manifold goes under the name of the upstairs approach.

The 11-dimensional supersymmetry of M-theory on R1;9 � S1 is generated by an ar-

bitrary constant 32-component real Majorana-spinor �. Demanding Z2 invariance for �

translates into the requirement �11� = �. Noting that in eleven dimensions the chirality-

matrix is given by �1�2 : : :�10 = �11, we recognize that from a 10-dimensional point of

view � has to be chiral, which reduces the number of supercharges from 32 to 16. Thus, if

M-theory on R1;9 � S1=Z2 corresponds to some known string-theory, there are only three

candidates which exhibit N = 1 supersymmetry in ten dimensions. These are the E8�E8

heterotic string, the SO(32) heterotic string and �nally the type I theory with likewise

gauge group SO(32). Initially in [43] three arguments were given in favour of the E8�E8

string, which were based on 10-dimensional spacetime gravitational anomalies, the strong

coupling behaviour and ultimately world-sheet gravitational anomalies.

Gravitational anomalies require chiral representations of the Lorentz-group SO(1; D�
1) and show up only in spacetimes of dimension D = 4n + 2 ; n 2 N [44]. Consequently

they are absent on a smooth 11-dimensional manifold, but may exist on codimension one

�xed points of an orbifold. On the particular R1;9 � S1=Z2 orbifold the 10-dimensional

massless chiral gravitino is responsible for the gravitational spacetime anomaly, upon

integrating it out to obtain the e�ective action. Such an anomaly signals the break-down

of di�eomorphism invariance of the e�ective action. By the symmetry of the set-up,

the anomaly-expressions for the two 10-dimensional �xed-planes must have the same

functional behaviour on the induced metric. Together, they must reproduce the standard

anomaly of ten-dimensional supergravity. It is essential for �nally singling out the E8�E8

17



heterotic string among the three string-theories to which M-theory on R1;9 � S1=Z2 may

correspond to, that the anomaly-polynomial can be described by a 12-form which is

composed out of a reducible part containing (trR2)3; trR2 � trR4 plus an irreducible part

consisting merely of trR6. The reducible part allows for a cancellation through a Green-

Schwarz mechanism [45], where the Green-Schwarz term is provided by the following

M-theoretic one-loop interaction9 [53],[55],[56]Z
M11

C ^X8(R) ; X8(R) = �1

8
trR4 +

1

32
(trR2)2 : (2.21)

The irreducible part, however, cannot be cancelled by such a mechanism, since this pre-

supposes a factorization of the anomaly-polynomial. In order to cancel the trR6 term, one

has to place 496 vector-supermultiplets at the boundaries (the �xed-points in the upstairs

picture) and use the resulting gauge anomaly due to the chiral gauginos for compensa-

tion. On account of the symmetry of the set-up the 496 gauge multiplets must be equally

divided between both boundaries. Since 248 gauge-�elds in the adjoint representation

constitute a single E8 Super Yang-Mills (SYM) theory, we end up with a total E8 � E8

gauge-symmetry. Thus M-theory on R1;9 � S1=Z2 describes the strongly coupled version

of the hitherto only perturbatively known heterotic E8 � E8 string and is therefore often

termed heterotic M-theory.

Similar to the IIA { M-theory case, a comparison of the string-frame e�ective E8 �
E8 heterotic string action with that of bulk heterotic M-theory (which is simply 11-

dimensional supergravity, since the boundary action is immaterial for this purpose) yields

d = �g2=3s ; (2.22)

where d denotes the distance between both boundary �xed-planes.

To construct the supergravity action [46], which is supposed to cover the long-wave-

length regime of heterotic M-theory, one has to couple 11-dimensionalN = 1 supergravity

to N = 1 E8 SYM on a 10-dimensional boundary in a way preserving 10-dimensional

9If one starts in IIA, an interaction
R
M10 B ^X8(R) can be computed as a 1-loop e�ect [53]. It can

have no higher order corrections as
R
M10 F (�)B ^ X8(R) is invariant under the gauge-transformation

B ! B + d� if and only if F (�) = const, where � is the IIA dilaton. To make this argument, one has

to remember that dX8(R) = 0. This is true as X8(R) can be expressed as a linear combination of the

�rst two Pontryagin classes p1(R); p2(R) which are closed due to a theorem of Chern-Weil [54] and the

fact that p1(R); p2(R) are de�ned by means of invariant polynomials. As the 1-loop interaction has no

dependence on the dilaton, one can go to in�nite coupling, i.e. to M11 and infer the M-theory interaction
R
M11 C ^X8(R).
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N = 1 supersymmetry. Performing the Noether-procedure as has been done in [46], one

sees that the coupling of the SYM multiplet to the supergravity multiplet is uniquely

determined by the requirement of local supersymmetry. Much as in the analogous case

of the coupling of SYM to pure supergravity in ten dimensions [57],[58] it turns out that

the 3-form C has to transform non-trivially under the gauge-transformations10

ÆGC11AB = � �2

6
p
2�2

Æ(x11)tr[�FAB] : (2.23)

Here, � is the gauge-coupling, the trace is over the Lie-Algebra index a = 1; : : : ; 248 of

the adjoint representation of E8 and � is an in�nitesimal gauge-parameter. Furthermore,

the Bianchi-identity of the 4-form �eld-strength G becomes modi�ed by the presence of

the SYM on the boundary, which acts as a magnetic source

dG11ABCD = �3
p
2
�2

�2
Æ(x11)

�
trF[ABFCD] � 1

2
trR[ABRCD]

�
: (2.24)

Consequently, the 4-form G must be discontinuous at x11 = 0

GABCD = � 3p
2

�2

�2
sign(x11)

�
trF[ABFCD] � 1

2
trR[ABRCD]

�
: (2.25)

The important point is that (2.23) together with (2.25) allow for an implementation of

the Green-Schwarz mechanism to cancel the occuring gauge-anomalies. The appropriate

Green-Schwarz term is in this case delivered by the supergravity Chern-Simons interaction

SCS =
R
M11 C ^G^G. Using (2.23) and (2.25) its variation under gauge-transformations

of C becomes

ÆGSCS / ��
4

�6

Z
M10

tr[�F ] ^ trF 2 ^ trF 2 : (2.26)

Since this term cannot be cancelled by any known term at the classical level, heterotic

M-theory cannot be gauge-invariant at the classical level. However, at quantum level the

10-dimensional Majorana-Weyl gauginos on the boundary render the e�ective action �

anomalous

ÆG� /
Z
M10

tr[�F ^ F 4] : (2.27)

It is now the unique feature of E8 to exhibit the factorization tr[�F ^F 4] / tr[�F ]^trF 2^
trF 2, which enables a cancellation of the gauge anomaly at the quantum level. The

10Subsequently, we will concentrate on the behaviour of the boundary at x11 = 0. The relations for

the second boundary at x11 = d can be obtained simply by substituting Æ(x11)! Æ(x11 � d).
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intriguing consequence of requiring (2.26) and (2.27) to add up to zero, is a relationship11

between the gauge-coupling � and the gravitational coupling �

�2 = 4�(4��2)2=3 : (2.28)

We want to conclude this overview of heterotic M-theory with two remarks. First, we

have seen a decisive di�erence concerning the gauge-anomaly cancellation as compared

to the case of perturbative string-theory. Since in perturbative string-theory both the

anomaly and the Green-Schwarz terms are generated at the quantum 1-loop level, the the-

ory is either calssically gauge-invariant (anomaly plus Green-Schwarz terms do not show

up) or quantum mechanically gauge-invariant (both sorts of terms arise and cancel each

other). Compared with that, heterotic M-theory only possesses full gauge-invariance at

the quantum level since the Green-Schwarz terms are already classically present, whereas

the anomaly arises only quantummechanically. Second, the actual construction of the low-

energy supergravity action (often termed Ho�rava-Witten supergravity) [46] is arranged in

terms of powers of �2=3. At the �rst non-trivial order the bulk-boundary interaction can

be determined smoothly invoking a lengthy Noether-procedure. However, at the �4=3 sec-

ond order level formal Æ(0) in�nities appear in the Lagrangean. Their origin can be traced

back to the zero thickness of the �xed-planes in the orbifold direction. Because the only

length-scale of the theory is given by �2=9, it has been speculated [46] that actually the

�xed-planes should be smoothed out with a thickness of order �2=9. The precise incorpo-

ration of this smearing out, though, presents a formidable theoretical problem. Namely,

one would have to regard the former 10-dimensional boundary gauge-theories as actually

11-dimensional. However, in eleven dimensions there is no supersymmetric gauge-theory.

There is only one unique supersymmetric theory, which is the N = 1 supergravity. But

without the concept of supersymmetry we would loose the guiding symmetry which en-

abled via the Noether-procedure the coupling of SYM to supergravity.

2.5 Twelve-Dimensional F-Theory

Even though the notion of M-theory has led to many insights into string dualities, the

SL(2;Z) invariance of type IIB in ten dimensions does not arise in a natural way. One �rst

has to compactify down to nine dimensions and compare with the T 2 compacti�cation

11Originally, the relation appeared as �2 = 2�(4��2)2=3 in [46]. We employ a further factor of 2, which

was found in [68].
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of M-theory to arrive at the interpretation of the IIB SL(2;Z) symmetry as a torus-

symmetry. It is in the limit where the area of the torus shrinks to zero, that we attain

IIB in ten dimensions. However, the zero area limit is singular and therefore in this limit

the e�ective description of M-theory breaks down.

Twelve-dimensional F-theory [47] addresses this question and represents a dual for-

mulation of IIB in the same spirit as M-theory is dual to type IIA. F-theory describes

compacti�cations of type IIB string-theory, in which the expectation values of the dilaton

and axion �elds are allowed to vary non-trivially over the compacti�cation manifold. Com-

pacti�cations of F-theory down to four dimensions are speci�ed by means of a Calabi-Yau

four-fold K8 that admits an elliptic �bration with a section. An elliptic �bration simply

means that there is a holomorphic projection � : K8 ! B, whose �bre is an elliptic curve.

Here, the base-manifold B is a complex three-fold, which generically has positive �rst

Chern-class c1 [51] and therefore cannot be a Ricci-
at Calabi-Yau manifold again. In

other words, the 8-dimensional compact manifold K8 locally looks like a product of B

times a two-torus T 2. The two-torus will be taken to shrink to zero size, which means that

its K�ahler class modulus gets frozen. However, its complex structure { represented by

the modulus � { or in other words its shape will change by moving along the base B. To

conclude, F-theory is the postulate of a 12-dimensional theory, which when compacti�ed

on an elliptically-�bred manifold with base B, is equivalent to type IIB compacti�ed on

B. The SL(2;Z) symmetry of IIB is then geometrized as the symmetry of the extra torus

residing in the eleventh and twelve dimension. Due to the special geometric properties

of the Calabi-Yau four-fold K8, namely the vanishing of its �rst Chern class and SU(4)

holonomy, the associated IIB background by construction will preserve 4-dimensional

N = 1 supersymmetry, at least at the classical and perturbative level.

Though, at �rst sight to invoke twelve dimensions seems auxiliary, there is another

hint at why one should take twelve dimensions more serious. Strong-weak duality of IIB

implies that the dual of the fundamental IIB string which couples to the NSNS B-�eld

is a D1-brane which couples to the 2-form RR-potential A(2). On the D1-worldsheet

there exists a U(1) gauge �eld, which requires the quantization of N = 1 worldsheet

supergravity together with N = 1 super-Maxwell theory. The important observation is,

that due to the U(1) �eld one has to introduce additional ghosts which shift the central

charge by -2 [48]. This shifts the critical dimension of the theory to 10+2=12. Moreover,

the introduction of further ghosts entails that the signature of spacetime changes to (10,2).

The modulus � of the elliptic �bration describes in the type IIB theory the variation
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of the dilaton � and axion �eld a along the 6-dimensional base B via the identi�cation

� = a + ie�� : (2.29)

A key feature of F-theory is that this modulus in general has non-trivial monodromies

around 4-dimensional submanifolds inside B. These submanifolds are associated with

the locations of D7-branes, which span in addition the uncompacti�ed four spacetime

directions. Moving around one of the D7-branes, the modulus �eld � picks up an SL(2;Z)

monodromy

� ! a� + b

c� + d
; (2.30)

which leaves the shape of the two-torus �bre invariant, but through (2.29) leads to a non-

trivial duality-transformation of the IIB string-theory. Hence, the dilaton and axion �eld

cannot be smooth single-valued functions, but instead are multi-valued with branch-cut

singularities at the locations of the D7-branes. The full non-perturbative string-theory,

however, is supposed to get rid of such singularities and be well-behaved everywhere. The

string coupling constant of IIB is determined by the dilaton. The fact that � undergoes

monodromies in F-theory compacti�cations means that these compacti�cations also cover

the strongly coupled IIB and therefore are intrinsically non-perturbative.

The aforementioned 4-dimensional submanifolds which the D7-branes wrap around,

are actually singular loci, since here the elliptic �bre degenerates, i.e. one of its 1-cycles

shrinks to zero size. This can be seen from the behaviour of the modulus in the vicinity

of such a locus (situated at z = zi 2 B, where i labels the di�erent loci)

� ' 1

2�i
ln(z � zi) : (2.31)

Clearly � becomes singular if z ! zi. These singular loci have in general di�erent ge-

ometric features than those arising from a traditional compacti�cation on a Calabi-Yau

manifold. For example, enhanced gauge symmetry is obtained when several D7-branes

coincide. Exactly what gauge group occurs is determined by the type of singularity [49].

The relation between F- and M-theory can be understood by compactifying F-theory

on a further circle S1. As pointed above, F-theory on K8�S1 gives IIB on B�S1, which

itself is equivalent to M-theory on B � T 2. This gives a one-to-one map between the

elliptic �bre inside K8 and the T 2 of the M-theory compacti�cation, which can be used to

identify B � T 2 with K8. Hence, F-theory on K8 � S1 is equivalent to M-theory on K8.
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2.6 Warped Compacti�cations of M- and F-Theory

Vacua with four supercharges in four, three and two dimensions can be constructed by

compactifying F-theory, M-theory and type IIA string-theory on a Calabi-Yau four-fold

K8. It is possible to connect these vacua to each other by circle compacti�cations from

four to three to two dimensions. In addition they depend on further data speci�ed by the

4-form 
ux and membrane charge in the case of M-theory. Among the novel features of

these vacua is the need to cancel a tadpole anomaly, which is given by �=24, with � the

Euler-characteristic of the four-fold. If �=24 is integral, the anomaly can be cancelled by

placing a suÆcient number of spacetime-�lling branes on points of the compacti�cation

manifold [51]. For type IIA the spacetime-�lling branes must be strings, in M-theory they

must be membranes, while in F-theory they have to be D3-branes.

Alternatively, there is another way to cancel the �=24 tadpole. In type IIA or M-

theory it consists of introducing a background 
ux for the 4-form �eld strength G [60].

The G-
ux contributes to the membrane tadpole in M-theory through the Chern-Simons

interaction
R
d11xC ^ G ^ G. If �=24 is not integral, the G-
ux is indeed required to

obtain a consistent vacuum. In general, the anomaly can be cancelled by a combination

of background 
ux and a number n of branes. The ensuing tadpole cancellation condition,

which must be satis�ed in type IIA or M-theory reads [50]

�

24
= n +

1

8�2

Z
K8

G ^G : (2.32)

If the four-fold admits an elliptic �bration with base B, we can consider the limit in

which the area of the elliptic �bre shrinks to zero. In this limit, M-theory on the four-fold

goes over to type IIB compacti�ed on B with a varying coupling constant � , the mod-

ulus of the elliptic �bre. Such a 4-dimensional type IIB vacuum represents an N = 1

F-theory compacti�cation. The F-theory vacua have two sorts of background 
uxes [61].

The �rst kind involves non-zero NS and RR 3-form �eld-strengths, HNS and HR. Their

contribution to the D3-brane tadpole follows from the type IIB supergravity interactionR
d10xD+ ^HNS ^HR, where D+ is the RR 4-form potential. The second sort of back-

ground 
ux requires some of the D7-brane gauge-�elds to have non-zero instanton number

[52]. These instantons give rise to a D3-brane tadpole through their coupling to the D7-

brane world-volume via
R
D7
d8xD+ ^ F ^ F , with F the �eld strength of the D7-brane

gauge-�eld. Subsequently, we will regard the e�ect of turning on �eld-strength 
uxes

on the geometry for the M- and IIB-/F-theory case. The heterotic string and heterotic

M-theory case will be dealt with in section 4.

23



2.6.1 M-Theory Backgrounds with G-Flux

Consider M-theory compacti�ed down to three dimensions on an 8-dimensional Calabi-

Yau manifold K8 [60]. At leading order in a momentum/derivative-expansion, the M-

theory e�ective action is given by 11-dimensional supergravity. With zero G-
ux the

supergravity equations of motion admit a product metric on R3�K8 as a solution because

K8 is Ricci-
at.

At next order in the derivative expansion, terms with eight derivatives show up, which

are suppressed by six powers of the 11-dimensional Planck-scale. We have already men-

tioned the couplingZ
d11xC ^X8(R) ; X8 =

1

8� 4!

�
trR4 � 1

4
(trR2)2

�
; (2.33)

which contributes at this order12. It leads to a tadpole for C, which can be cancelled by

means of another tadpole arising either from the Chern-Simons coupling C ^ G ^ G, by
turning on a non-trivial G-
ux or by including M2-brane sources [50]. The M2-branes

are located at points yi on K8, such that their world-volume �lls the whole external

spacetime. If one wants to maintain supersymmetry, one has to require the vanishing of

the gravitino-variation, Æ	 = 0 (the Killing-spinor equation), in the e�ective supergravity

description of M-theory. Having turned on G-
ux or included M2-brane sources, this can

only be ful�lled, if the simple product metric gets modi�ed to a warped metric

ds2 = e��(y)���dx�dx� + 2e�(y)=2ga�b(y)dy
ady

�b ; �; � = 1; 2; 3 (2.34)

with e��(y) the warp-factor and ga�b the Calabi-Yau metric. The warped internal space

becomes deformed from the initial Calabi-Yau four-fold to a space which is only confor-

mal to a Calabi-Yau manifold. In particular, the deformed space is in general no longer

a K�ahler-space. The only non-vanishing components of the G-
ux, allowed by supersym-

metry, are given by the (2,2)-form Ga�bc �d and the external component G���a. The former

has to satisfy the constraint

gc
�dGa�bc �d = 0 ; (2.35)

which can be restated as a self-duality condition G = ?
K8
G on the initial Calabi-Yau,

with the Hodge star operation taken with respect to ga�b. Therefore, we see that this kind

12Notice however, that the full supersymmetric completion of this higher order interaction is still

unknown [59]
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of M-theory background requires an abelian C-�eld \instanton". Yet another equivalent

formulation of the above constraint uses the K�ahler-form ! = �iga�bdza ^ dz
�b of the

initial Calabi-Yau and states that the internal G has to be primitive with respect to !,

i.e. G ^ ! = 0. On the other hand the supersymmetry-restriction on G���a is such, that

it is purely determined by the warp-factor13

G���a = ����@ae
�3�=2 ; (2.36)

and can be solved by C��� = ����e
�3�=2. Finally, the warp-factor itself is determined by

the �eld equation for C, which can be rewritten as

4(e3�=2) = ?
K8
4�2
�
X8 � 1

8�2
G ^G�

nX
i=1

Æ8(y � yi)

�
: (2.37)

The requirement for an absence of tadpoles posed on the �eld equation14 for C, is re
ected

by the requirement that the integral over the Calabi-Yau manifold of the right-hand side

of (2.37) has to vanish. Since the Euler-characteristic can be obtained from �(K8) =

24
R
K8
X8(R), we realize that (2.32) indeed represents the tadpole cancellation condition.

Given that n must be positive, it implies the inequality

�(K8)

12
�
Z
K8

G

2�
^ G

2�
: (2.38)

Together with the self-duality condition this says that there are only �nitely many choices

for Ga�bc �d that are compatible with unbroken supersymmetry. For negative �(K8) there

are none at all.

13In general we will take ���� as a tensor with respect to the unwarped metric. Therefore, in contrast

to the Levi-Civita tensor-density, it involves an additional factor
pj det g�� j. In the special case of a 
at

metric both notions coincide.
14Cancellation of tadpoles is necessary for obtaining stable vacua. Physically, nonzero tadpoles imply

that the equations of motion of some massless �elds are not satis�ed. For example take the equation of

motion and Bianchi-identity for a (p+ 1)-form �eld Ap+1 with corresponding �eld-strength Hp+2 in ten

dimensions

d ?Hp+2 =
?Jp+1 ; dHp+2 =

?J7�p :

Jp+1 and J7�p are the \electric" and \magnetic" sources. A tadpole would be present if the charge

detected by
R
�k

?J10�k (k = 9� p; 3 + p in our case) would be non-vanishing for some compact surface

�k without boundary. This would clearly be inconsistent with the �eld equation and/or Bianchi-identity

in view of Stokes theorem. Or in more common terms of electrodynamics: in a compact space the �eld

lines have nowhere to go to and hence must end on an equal and opposite charge.
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2.6.2 The Lift to F-Theory

If the Calabi-Yau four-fold K8 is elliptically �bred, we can shrink the volume of the �bre

T 2 to zero and thereby lift the 3-dimensionalM-theory compacti�cation to a 4-dimensional

IIB compacti�cation on M 4 � B (F-theory compacti�cation on K8), where B is the base

of K8 [61]. M-theory on the �bre T 2 (in the following we will choose y10; y11 for the

�bre-coordinates) with area A =
R
dy10dy11

p
g is related to IIB, whose tenth coordinate

z10 is compacti�ed on a circle with radius15 1=A. This means that the warp-factor e�(y)=2

in the internal part of the M-theory warp-metric (2.34) causes a rescaling16 A! e�(y)=2A.

Hence the S1 metric of the tenth coordinate z10 of the IIB compacti�cation undergoes a

rescaling 1=A2 ! e��(y)=A2. Since in the small A limit z10 becomes decompacti�ed, we

see that it receives just the correct power of the warp-factor to combine with the three

other external coordinates of (2.34) into a 4-dimensional Lorentz-invariant metric. The

full warped metric (in the Einstein-frame) becomes

ds2 = e��(y)���dx
�dx� + 2e�(y)=2ga�b(y)dy

ady
�b ; �; � = 1; 2; 3; 4 : (2.39)

Next, we have to ask which kind of G-
ux can be lifted to F-theory [61],[62]. We have

seen above that in the M-theory case a non-vanishing C��� appears. It simply lifts to the

type IIB RR 4-form component17 D+
����, which respects 4-dimensional Lorentz-invariance

if set proportional to �����. Concerning the self-dual internal part of G, remember that

K8 is assumed elliptically �bred. Let dz = dx + �dy; d�z = dx + ��dy be a 1-form basis

on the �bre with � = �1 + i�2 the �bre-modulus, and 
(2) be the 2-form generating the

2-dimensional cohomology of the �bre. Then the internal G-
ux decomposes as

G = � + � ^ 
(2) +
�

i�2
(H ^ d�z � �H ^ dz) ; (2.40)

where �; �;H are respectively forms of degree 4,2,3 on the base B. The self-duality

condition now excludes � and � and the left-over H and �H are identi�ed with the usual

NSNS and RR 3-forms of IIB, HNS and HR, via [62]

H = HR � �HNS ; �H = HR � ��HNS : (2.41)

15In this discussion we neglect numerical factors and set � = 1; �0 = 1.
16Note, that in the limit where the �bre T 2 shrinks to zero, � depends only on y 6= y10; y11.
17Notice that self-duality is not enough to draw from the presence of D+

���� the conclusion that the

component D+
a�bc �d

must also be present. The point is that it is not dD+ which has to be self-dual but

rather the combination F+ = dD+ � 1
2A

(2) ^HNS + 1
2B ^HR.
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Finally, the tadpole cancellation condition becomes

�

24
= n+

Z
B

H ^ �H

2i�2
= n�

Z
B

HNS ^HR ; (2.42)

while the warp-factor is still determined by (2.37) with G now understood as

G =
�

i�2
(H ^ d�z � �H ^ dz) : (2.43)
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3 Dynamics and the Stability of Heterotic M-Theory

With the discovery of M-theory on an S1=Z2-orbifold [43] and its concrete low-energy

realization as Ho�rava-Witten supergravity [46], i.e. D=11 supergravity coupled to two

SYM theories with E8 gauge group, living on two separate boundaries of spacetime, the

vexing problem of predicting the correct magnitude for the D=4 Newton-constant GN

could be addressed anew. While the heterotic string theory predicts a value for GN which

is generically too large by a factor of 400, M-theory on S1=Z2 could account for the correct

value by adjusting an additional parameter, the distance d between the two boundaries,

roughly at the inverse of the GUT-scale 1016 GeV [63]. Since in the limit d ! 0 of

coinciding boundaries the string coupling turns out to be weak, it is believed that here

we should recover the usual heterotic string theory with gauge group E8�E8. Since even

more phenomenological virtues of heterotic M-theory were discovered, e.g. it avoids the

problem of small gaugino masses [64], it is an interesting question to ask for the stability

of its set-up.

Since the boundaries of the theory maintain an E8 SYM theory, respectively, a non-

vanishing energy-momentum tensor gets induced on each of them. Gravity couples to any

energy-momentum tensor { therefore an interaction between the boundaries mediated

by gravitons in the bulk is inevitable. This interaction should be attractive, as can be

expected from classical gravity. Furthermore the D=11 supergravity bulk theory allows

for gravitino and 3-form exchanges, which couple to the boundary �elds as well, due to the

underlying supersymmetry. Therefore we have to analyze for heterotic M-theory on the

proposed [43, 46] R1;9�S1=Z2 space-time, whether all these contributions can cancel each

other, leading to a stable con�guration or not. Since it is not known how to quantizeD=11

supergravity consistently, we have to restrict ourselves to a classical tree-level analysis of

the stability problem. Remembering the well-known derivation of the complete Coulomb

or Newton potential from tree-level photon or graviton exchange diagrams, perturbation

theory can be expected to be suÆcient. If one could consistently (note that supergravity

is non-renormalizable) work out the Casimir-energy at 1-loop level, then it is expected to

vanish on account of the presence of supersymmetry in the bulk. Second it would anyway

constitute only a small quantum correction of order ~ compared to the leading order tree-

level result. Therefore, we should obtain the dominant contribution by a perturbative

tree-level calculation.

Noting that the construction of Ho�rava-Witten supergravity has been achieved as an

expansion in powers of small �2=3, where � is the D=11 gravitational coupling constant,
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we are furthermore advised to examine the interactions between the two boundaries to

leading order in � and discard higher order contributions as subleading corrections.

One may be inclined to argue that the situation should be similar to the analogous

case of an interaction between two D-branes of type II string theory (see [66] for a review).

There the repulsion of the RR-�eld compensates exactly the attraction originating from

graviton and dilaton exchange. However, in order to reach that conclusion we have to

avail ourselves of the duality between the closed-string tree-level cylinder amplitude and

the open-string 1-loop annulus diagram. Only through the latter is it possible to see the

cancellation by appealing to Jacobi's aequatio identica satis abstrusa. This is in accord

with the common lore that supersymmetry leads to cancellations between fermionic and

bosonic loop-contributions (most prominently applied to the solution of the weak hierarchy

problem). In contrast to the type II case, heterotic M-theory has been formulated only

as a classical �eld theory, so far. Therefore, we have to deal with genuine tree diagrams

(without any duality to some possibly vanishing loop counterpart), for which, even in a

supersymmetric theory, there is a priori no reason that they add up to zero.

It is interesting to consult the supersymmetry variations for the bulk �elds. In het-

erotic M-theory, the incorporation of E8 SYM theories on the two orbifold �xed-planes,

simultaneously requires the augmentation of the susy-variations of the bulk-�elds [46].

The additional contributions have support on the �xed-planes only and are solely built

out of the boundary-�elds. For the particular locally 
at Minkowski background with

vanishing G-
ux, which we will examine later on, the bulk contributions completely van-

ish, since 
at space does not break any supersymmetry at all. The only non-vanishing

susy-variations for constant Majorana-spinor � derive from the boundary �elds

ÆC11BC = � 1

24
p
2�

� �
4�

�2=3
Æ
�
x11i � di

�
��Aa[B�C]�

a
i (3.1)

Æ	A = � 1

576�

� �
4�

�2=3
Æ
�
x11i � di

�
(��ai�BCD�

a
i )
�
� BCD
A � 6ÆBA�

CD
�
� (3.2)

Æ	11 =
1

576�

� �
4�

�2=3
Æ
�
x11i � di

� �
��ai�

ABC�ai
�
�ABC� : (3.3)

In momentum-space these contributions will vanish in the case of equal momenta of the

boundary �elds. Contracting ÆC11BC with the momentum pC2 of the gauge-�eld AaB, we

get an expression proportional to

��
�
AaB(p2)6p2 � p2 � Aa(p2)�B

�
�a(p3) : (3.4)

Choosing the Lorentz-gauge, the second term disappears, whereas the �rst term gives

zero, when we choose p2 = p3 = p on account of the massless Dirac-equation 6p�a(p) = 0.
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For the last two gravitino-variations, we note that

��a(p)�ABC�a(p0) = ���a(p0)�ABC�a(p) ; (3.5)

from which we easily recognize, that the gaugino bilinear ��a�ABC�a also vanishes in the

limit of coinciding momenta for ��a and �a. In kinematical language, coinciding momenta

mean a vanishing center-of-mass energy squared s = 0. Hence, in this limit we expect to

�nd no interaction between the boundaries, for a locally 
at background.

The interaction amplitudes will depend on the parameter d, representing the distance

between the two boundaries in the eleventh direction. In case that we can still trust

Ho�rava-Witten supergravity not only for large values of d but also for small values, then

according to the conjecture, the d ! 0 limit of the above amplitudes should correspond

to the low-energy limit of heterotic string amplitudes. Consequently we will derive the

adequate string amplitudes in the limit �0s; �0t; �0u� 1 and compare them with our M-

theory amplitudes evaluated at d = 0. Naively, one could not expect complete agreement

of the two sets of amplitudes, since a large d compared to the eleven-dimensional Planck-

scale is a necessary condition for the validity of the e�ective Ho�rava-Witten supergravity.

3.1 Expansion of Ho�rava-Witten Supergravity around R
1;9
� S

1

Background

As advocated in [43],[46] we choose R1;9 � S1 as our D=11 spacetime manifold, where

the eleventh coordinate x11 is curled up to a circle which we parameterize by [�d; d] with
d � �d to be identi�ed. Furthermore we have to impose the constraint, that the �elds be
invariant under the re
ection x11 ! �x11. This so-called \upstairs" formulation, which

we shall employ here, has the advantage that one can work with a smooth manifold,

whereas in the equivalent alternative \downstairs" formulation one would have to deal

with a bounded manifold R
1;9 � S1=Z2 = R

1;9 � [0; d] and prescribe suitable boundary

conditions. In the latter approach the boundary is given by the two codimension one �xed

planes of the re
ection map, situated at x11 = 0 and d.

The construction of Ho�rava-Witten supergravity proceeds by a power series in the

expansion parameter �2=3. To lowest order, one starts with the action of N=1, D=11
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supergravity [67]

Sbulk =

Z
R1;9�S1

d11x

p�g
�2

�
� R

2
� 1

2
�	I�

IJKDJ	K � 1

2� 4!
GIJKLG

IJKL

�
p
2

192

�
�	I�

IJKLMN	N + 12�	J�KL	M
�
GJKLM (3.6)

�
p
2

3456
�I1:::I11CI1I2I3GI4:::I7GI8:::I11

�
+O �	4

�
for the bulk multiplet, consisting of elfbein e

�I
I
, gravitino 	I and 3-form CIJK. We use

I; : : : ; N=A; : : : ; F to represent D=11/D=10 space-time indices and �I; : : : ; �N= �A; : : : ; �F

for their tangent space analogues. Moreover we de�ne �	� = C��	
�, where the real,

antisymmetric charge conjugation matrix C�� obeys C��C�
 = Æ�
 (see appendix A for

further conventions). The covariant derivative of the gravitino, the spin connection 
J �L �M

and the 4-form �eld strength GIJKL are de�ned as

DJ	K = @J	K +
1

4

J �L �M�

�L �M	K


J �L �M =
1

2

�
e L
�L
~
JL �M � e L

�M
~
JL�L � e L

�L e M
�M e

�J
J
~
LM �J

�
; ~
JL �M = @Je �ML � @Le �MJ

GIJKL = 4! @[ICJKL] :

To determine which bulk �elds can appear in the boundary action, one has to consult

their Z2 transformation properties

gAB(�x11) = gAB(x
11) ; gA;11(�x11) = �gA;11(x11) ; g11;11(�x11) = g11;11(x

11) ;

GABCD(�x11) = �GABCD(x
11) ; GABC11(�x11) = GABC11(x

11) ;

�11	A = 	A ; �11	11 = �	11 :

Only the Z2 invariant components will be allowed. The chirality property of the gravitino

implies �	A�
11 = ��	A, �	11�

11 = �	11, which leads to the vanishing of the following

fermion-bilinears (n 2 N)

�	A�B1:::B2n
	C = 0 (3.7)

�	A�B1:::B2n+1
	11 = 0 (3.8)

�	11�B1:::B2n
	11 = 0 : (3.9)

Therefore in the boundary action only

�	A�B1:::B2n+1
	C ; �	A�B1:::B2n

	11 (3.10)
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can appear.

The full D=10 boundary action for the E8 vector supermultiplet18, comprising the

gauge �eld Aa and the gaugino �a, coupled to the bulk supergravity in a locally super-

symmetric fashion, reads [46] (i = 1; 2)

Si;bound(x
11 = di) =

Z
R1;9

d10xi
1

(4�)5=3�4=3
p�g

�
� 1

4
F a
iABF

aAB
i � 1

2
��ai�

ADA�
a
i

� 1

4
�	A�

BC�AF a
iBC�

a
i + ��ai�

ABC�ai

hp2
48
GABC11 +

1

32
�	A�BC	11 +

1

32
�	D�DABC	11

+
1

128

�
3�	A�B	C � �	A�BCD	

D � 1

2
�	D�ABC	

D � 13

6
�	D�DABCE	

E
�i�

; (3.11)

where d1 = 0; d2 = d describe the two �xed plane positions. The non-abelian �eld strength

F a
iAB and the covariant derivative for the gaugino are de�ned as usual as

F a
iAB = @AA

a
iB � @BA

a
iA + fabcA

b
iAA

c
iB

DA�
a
i = @A�

a
i + fabcA

b
iA�

c
i +

1

4

A �B �C�

�B �C�ai :

Furthermore the gauginos possess positive chirality �11�a = �a. The gauge coupling con-

stant � has already been eliminated from (3.11) by means of the relation �2 = 4�(4��2)2=3.

The �xed-plane gauge action (3.11) is the second order term in the power series expansion

in �2=3 pure bulk supergravity comprises the �rst order). Unfortunately, in the next higher

order in�nities arise in the form of Æ(0) terms occuring in the Lagrangean. Formally, these

in�nities cancel in verifying supersymmetry. Nevertheless, to arrive at reliable results, one

is forced to truncate the action at this order consistently.

From the perturbative point of view, we have to look for small 
uctuations of the bulk

�elds in order to mediate interactions between the boundary �elds. This will be achieved

by using the background �eld method [69], according to which we split the bulk �elds

e
�M
M
;	M ; CMNP into a �xed classical background ~e

�M
M
; ~ M ; ~cMNP and the quantum �elds

f
�M
M
;  M ; cMNP , which propagate on this background

e
�M
M = ~e

�M
M + �f

�M
M �! gMN = ~gMN + �hMN

	M = ~ M + � M

CMNP = ~cMNP + �cMNP :

The action is then expanded around the background �elds into a power series of the

quantum �elds. The further multiplication with theD=11 gravitational coupling constant

18For E8 the Lie-Algebra index a runs from 1 to 248.
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� has been chosen to give the 
uctuations ordinary kinetic terms in the action. Hence

the expansion in quantum �elds is also one in powers of �. In the following every index

will be raised or lowered by means of the background elfbein or metric.

With the chosen parameterization of the circle of radius R = d=�, our background

R
1;9 � S1 is described locally by a 
at elfbein19

~e
�M
M = Æ

�M
M :

In order not to break spontaneously D=10 Lorentz symmetry, the background gravitino

�eld ~ M as well as the background 3-form ~cMNP must vanish

~ M = ~cMNP = 0 :

As we will point out in the following, it is advantageous (though not necessary) if the

background �elds ful�ll the equations of motion.

The expansion of the bulk action then proceeds asZ
d11x

�
1

�2
[classical Sugra action] +

1

�
[linear in quantum �elds h;  ; c]

+ [quadratic terms for h;  ; c] +O(�)
�
:

For the 
at zero-curvature background the leading term vanishes. Since the coeÆcients of

h;  ; c in the 1=�-term are precisely the variational derivatives of the action with respect

to the classical �elds, they will vanish also when the background satis�es the equations

of motion { as happens to be the case. In order to extract the propagators from the

quadratic part, we have, according to the usual Faddeev-Popov procedure, to �x all the

gauge symmetries of the quantum �elds and introduce corresponding ghosts. However,

since our analysis is intended to be classical, i.e. at tree-level, we can neglect the ghost

�elds. N=1, D=11 supergravity possesses four di�erent gauge symmetries, which are

�xed as follows

� D=11 general coordinate invariance �! de Donder (harmonic) gauge20

�LGC = � ~e

2

�
h N
M ;N �

1

2
hNN ;M

�2
19For 
at space the curved space-time indices M;N; ::: and the tangent space indices �M; �N; ::: coincide

and need not to be distinguished subsequently.
20As usual we de�ne ~e =

p�~g.
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� SO(1; 10) local Lorentz invariance �! symmetric gauge

�LLL = � ~e

2�4=(D�2)
�
fMN � fNM

�2 ! � ~e

2�4=9
�
fMN � fNM

�2
� local abelian gauge transformations of CMNP �! Lorentz-like gauge

�LAb = �3

2

�
3!@McMNP

�2
= �3

2
(3!)2@Ic

IJK@LcLJK

� local N = 1 supersymmetry �! �M M = 0 �xing21 [70]

�LSS = ��
2
� M�

M�N@N�
L L

Note that �LLL is a purely algebraic term and thus does not contribute to the propagator.

From e
�M
Me

�N
N� �M �N = gMN together with ~e

�M
M ~e

�N
N� �M �N = ~gMN and e

�M
M = ~e

�M
M + �f

�M
M

plus the above gauge �xing of the Lorentz-symmetry, which gauges the antisymmetric

part of fMN away, we conclude that hMN = 2fMN + O(�). Therefore we can express

the elfbein 
uctuations in terms of the metric 
uctuations. The quadratic terms of the

bulk action then lead to the following propagators in momentum space, valid for 
at un-

bounded D=11 Minkowski-space (the compacti�cation of the eleventh coordinate on the

circle will manifest itself, later on, in a replacement of p11 by discrete values p11m ; m 2 Z):

Graviton hMN :

�M1M2;N1N2
(P ) = �2

�
�M1N1

�M2N2
+ �M1N2

�M2N1
� 2

9
�M1M2

�N1N2

�
1

P 2
; (3.12)

Gravitino22  M :

�MN
��(P ) � i

�
~�MN

��


(P )

��C
�
�

(3.13)

=
i

9

�
7�MN6P � �N6P�M +

�
4 +

9

�

�
PM6PPN
P 2

��



��C
�
� 1

P 2

�=� 9

4�! i

9
[7�MN6P � �N6P�M ]�


��C
�
� 1

P 2
; (3.14)

3-Form cMNP :

�M1M2M3;N1N2N3
(P ) =

1

(3!)2
�M1[N1

�jM2jN2
�jM3jN3]

P 2
; (3.15)

21� is a free gauge parameter which we will set to � 9
4 for simplicity.

22�; �; ::: denote SO(1; 10) spinor indices.
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where P = (pA; p11) denotes the 11-dimensional momentum.

The expansion of the boundary action reads schematicallyZ
d10xi

�
1

�4=3
[pure SYM] +

1

�1=3
[bulk-boundary interaction terms, linear in h;  ; c]

+O(�2=3)
�
:

Since the leading 1=�4=3 contribution does not contain any bulk quantum �eld, it cannot

contribute to the boundary-boundary interaction and is therefore of no interest to us.

The 1=�1=3 terms comprise the relevant interaction terms, whereas higher order �2=3 ex-

pressions have to be skipped for two reasons. First, �2=3 terms would introduce couplings

quadratic in h;  ; c. Either these would �nally lead to loop diagrams of order �4=3, which

have to be neglected, since we restrict ourselves to a tree-level analysis. Or in combina-

tion with the couplings linear in h;  ; c, they would give rise to order �0 tree diagrams.

These are suppressed by a factor of �2=3 against the leading diagrams of order 1=�2=3

and therefore have to be neglected, too. Second, the boundary action (3.11) has been

constructed only up to order 1=�4=3. The next higher order in the power series expansion

in �2=3 would involve 1=�2=3 terms. However, it has been argued in [46], that at this order

expressions containing Æ(0) show up, which means that in a consistent truncation of the

theory, we have to skip these higher contributions altogether. In the expansion around the

classical background, the bulk �eld 
uctuations h;  ; c come equipped with an additional

power of �. Therefore a consistent truncation implies throwing away all bulk-boundary

interactions of order �1=3 or higher. In particular, the above �2=3 contributions have to be

omitted. The remaining 1=�1=3 interaction terms are explicitly given by23

S
(1)
i;bound(x

11 = di) =
1

(4�)5=3�1=3

Z
d10xi

�
� 1

8
F aCD
i F a

iCDh
A
A +

1

2
F a
iACF

a C
iB hAB

+
1

8
��ai�

A�BC�ai @[AhB]C �
1

16
��ai�

A�BC�ai @[BhC]A

� 1

4
� A�

BC�A�aiF
a
iBC +

1p
2
��ai�

ABC�ai @[AcBC11]

�
:

It can be read o� that we obtain a 5-point vertex AAAAh, two 4-point-vertices AA� ,

AAAh and four 3-point vertices ��c, A� , ��h, AAh. The 5-vertex has a group-theoretic

factor which consists of a sum of terms like
P248

e=1(feacfebd + feadfebc), where fabc are the

E8 structure constants. The 4-vertices are simply proportional to fabc. Since �nally

23By x1; x2 we denote the D=10 
at coordinates of the two boundaries, respectively.
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in our amplitudes we will sum over all group indices of the external boundary �elds

(since the boundary-boundary interaction results from the sum over all possible exchange

amplitudes between the two boundaries), the 5- and 4-vertices give no contribution due to

the antisymmetry of the structure constants. If, therefore, we keep merely the 3-vertices,

the relevant couplings are

S
(1)
i;bound(x

11 = di) =
1

(4�)5=3�1=3

Z
d10xi

�
1

2

�
� @CAa;Di @[CA

a
iD]�AB + @AA

a
iC@BA

a;C
i

+ @CA
a
iA@

CAaiB � 2@CA
a
iA@BA

a;C
i

�
hAB +

1

8
hAC@B

�
��ai�

A�BC�ai
�

� 1

2
� A�

BC�A�ai @BA
a
iC +

1p
2
��ai�

ABC�ai @[AcBC11]

�
:

Since every term comprises exactly two boundary �elds, it is convenient for the later

comparison with the string amplitudes to rescale the SYM �elds AaA; �
a which bear mass

dimensions [A] = 1; [�] = 3
2
to

Ba
A :=

1

(4�)5=6 �2=3
AaA ; �a :=

1

(4�)5=6 �2=3
�a :

The �elds Ba
A and �a have D-dimensional mass dimensions [Ba

A] = (D � 2)=2 and [�a] =

(D� 1)=2, i.e. 4 and 9=2 for D=10. This rescaling gives a \canonical" factor of � for the

interaction terms, which eventually read

S
(1)
i;bound(x

11 = di) = �

Z
R1;9

d10xi

�
Li;BBh + Li;��h + Li;B� + Li;��c

�
; (3.16)

with

Li;BBh = @AB
a
iB(xi)@CB

a
iD(xi)hEF (xi; di)F

ABCDEF ; (3.17)

Li;��h = �1

8
hAC(xi; di)@B

�
�a�i (xi)C��

�
�C�AB � �B�AC

��


�a
i (xi)

�
; (3.18)

Li;B� =
1

2
 �A(xi; di)C��

�
�BC�A

��


�a
i (xi)@BB

a
iC(xi) ; (3.19)

Li;��c = � 1p
2
�a�i (xi)C��

�
�ABC

��


�a
i (xi)@[AcBC11](xi; di) ; (3.20)

and

FABCDEF =
1

2
�A[D�C]B�EF + �A[C�D]F�EB + �A[E�D]B�CF :

36



3.2 Derivation of the Boundary-Boundary Interaction Ampli-

tudes

In order to incorporate the Z2 �xed point constraints and to circumvent ambiguities

arising from Feynman diagrams involving Majorana fermions (which allow for twice as

many Wick-contractions as Dirac fermions do), we choose not to work with Feynman rules

in momentum space directly but to start with a spacetime formulation of the S-matrix

on R
1;9 � S1. For a tree-level boundary-boundary interaction the S-matrix reads

S = �1

2
�2
Z
R1;9

d10x1

I
dx111

Z
R1;9

d10x2

I
dx112


f
��T� : L1;bound(x1; x

11
1 )Æ(x

11
1 ) :: L2;bound(x2; x

11
2 )Æ(x

11
2 � d) :

���i� (3.21)

= �1

2
�2
Z
d10x1

Z
d10x2



f
��T� : L1;bound(x1; 0) :: L2;bound(x2; d) :

���i� ;
where Li;bound represents one of the four couplings Li;BBh;Li;��h;Li;B� ;Li;��c given in

(3.17)-(3.20). From the 11-dimensional perspective the �xed point constraints enter via

delta-function sources which generate 
at p11-spectra in momentum space. Momentum is

conserved only along the ten 
at directions parallel to the boundaries, whereas there is

no such conservation in the eleventh compacti�ed direction transverse to the boundaries.

This fact is also well-known from studies of radiation o� D-branes [72], [71] and is a

consequence of broken translation invariance orthogonal to the boundary. Therefore the

kinematic variables s; t; u of the scattering process are de�ned exclusively through the

10-dimensional momenta p1; p2 of the incoming states and p3; p4 of the outgoing states as

follows

s = �(p1 + p2)
2 ; t = �(p1 � p3)

2 ; u = �(p1 � p4)
2 :

As usual D=10 energy-momentum conservation implies for massless states s+ t+ u = 0.

The four 3-vertices (3.17)-(3.20) can be combined into �ve di�erent tree-diagrams which

we will now consider in detail.

3.3 Graviton Exchange

The �rst diagram is depicted in �g.1 and describes the pure graviton exchange between

the boundary gauge �elds. Upon substituting (3.17) into (3.21) it yields the following

S-matrix contribution
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Bc
1C (p3)

Bd
1D (p4)

Ba
2A (p1)

Bb
2B (p2)

x11=0 x11=d

Figure 1: Graviton exchange

Sh = �1

2
�2

248X
a;b;c;d=1

8X
�1;�2;�3;�4=1

Z
d10x1

I
dx111

Z
d10x2

I
dx112



0
��bd1�4 (p4) bc1�3 (p3)T� : @A1

Ba1
1B1

(x1) @C1B
a1
1D1

(x1)hE1F1 (x1; 0) Æ(x
11
1 ) :

: @A2
Ba2
2B2

(x2) @C2B
a2
2D2

(x2) hE2F2 (x2; d) Æ(x
11
2 � d) :

�
bb;y2�2 (p2) b

a;y
2�1

(p1)
��0�

FA1B1C1D1E1F1FA2B2C2D2E2F2 :

Here we sum over all \colours" a; b; c; d and physical polarizations �1; �2; �3; �4 of the

in- and out-states, since all of them add to the interaction of the two boundaries. For

our conventions concerning annihilation and creation operators see appendix A. When in

the next step we Wick-contract creation and annihilation operators ba;y2� and ba1� with the

boundary �eld operators Ba
iA, we have to take into account that creation and annihilation

operators from the left-hand side of the diagram can only be contracted with left-hand

sided Ba
1A(x1) operators and equally creation and annihilation operators from the right-

hand side of the diagram can only be contracted with right-hand sided Ba
2A(x2) operators.

If we would allow for \mixed" contractions, t- and u-channel diagrams would also be

present in the boundary-boundary amplitudes. But these have to be excluded as they

cannot arise when both hyperplanes do not coincide. After a further integration over the
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circle coordinates, we are led to

Sh = �1

2
�2
X
a;b;c;d

X
�1;�2;�3;�4

Z
d10x1

Z
d10x2�

bd1�4 (p4) @A1
Ba1
1B1

(x1) b
c
1�3 (p3) @C1B

a1
1D1

(x1) +
�
bd1�4 (p4)$ bc1�3 (p3)

��
FA1B1C1D1E1F1i�E1F1;E2F2 (x1 � x2;�d)FA2B2C2D2E2F2�
@A2

Ba2
2B2

(x2) b
b;y
2�2

(p2) @C2B
a2
2D2

(x2) b
a;y
2�1

(p1) +
�
bb;y2�2 (p2)$ ba;y2�1 (p1)

��
;

where we have expressed the graviton 2-point-function h0jT (hE1F1(x1; 0)hE2F2(x2; d)) j0i
through i times its propagator �M1M2;N1N2

(x1 � x2;�d). Using the expressions (A.21)

and (A.22) for the Wick-contractions gives the E8 group factor
P248

a;b;c;d=1 Æ
abÆcd = (248)2,

and we arrive at the expression

Sh = �i�
2

2
(248)2

X
�1;�2;�3;�4

Z
d10x1

Z
d10x2 e

i(p1+p2)x2e�i(p3+p4)x1

�
�B1

(p4; �4) p4;A1
�D1

(p3; �3) p3;C1 + �B1
(p3; �3) p3;A1

�D1
(p4; �4) p4;C1

�
FA1B1C1D1E1F1�E1F1;E2F2 (x1 � x2;�d)FA2B2C2D2E2F2�
�B2

(p2; �2) p2;A2
�D2

(p1; �1) p1;C2 + �B2
(p1; �1) p1;A2

�D2
(p2; �2) p2;C2

�
:

To utilize the previously derived 
at-space propagator (3.12), we have to notice that the

momentum in the compacti�ed eleventh direction p11m = m=R;m 2 Z is quantized. The

radius R of the circle is related viaR = d=� to the distance d between the two hyperplanes.

Ensuring that we do not change the dimensions of the propagator as compared to the 
at

case, we have to take

f
�
x11
�
=

1

2�

Z 1

�1
dp11eip

11x11f
�
p11
�X
m2Z

Æ
�
p11d�m�

�
=

1

2�d

X
m2Z

eip
11
mx

11

f
�
p11m
�

as the Fourier transform in the eleventh direction. Therefore the Fourier-transformed

graviton propagator reads

�E1F1;E2F2

�
x1 � x2; x

11
�
=

1

d (2�)11

Z
d10peip(x1�x2)

X
m2Z

eip
11
mx

11

�E1F1;E2F2

�
p; p11m

�
;
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where �E1F1;E2F2 (p; p
11
m ) is functionally the same as in the 
at, non-compact case. Plug-

ging

�E1F1;E2F2 (x1 � x2;�d) = 1

d (2�)11

Z
d10peip(x1�x2)

X
m2Z

(�1)m�E1F1;E2F2

�
p; p11m

�
:

(3.22)

into the expression for Sh and integrating over x1; x2, results in

Sh = �i�
2

2d
(248)2 (2�)9

X
�1;�2;�3;�4

Z
d10p Æ10 (p1 + p2 � p) Æ10 (�p+ p3 + p4)�

p4;A1
�B1

(p4; �4) p3;C1�D1
(p3; �3) + p3;A1

�B1
(p3; �3) p4;C1�D1

(p4; �4)

�
FA1B1C1D1E1F1

X
m2Z

(�1)m�E1F1;E2F2

�
p; p11m

�
FA2B2C2D2E2F2

�
p2;A2

�B2
(p2; �2) p1;C2�D2

(p1; �1) + p1;A2
�B2

(p1; �1) p2;C2�D2
(p2; �2)

�
:

The integration over p can now trivially be performed, resulting in an overallD=10 energy-

momentum conserving delta-function. The interaction-amplitude or T-matrix element is

de�ned by equating Sh = i (2�)10 Æ10 (p1 + p2 � p3 � p4)Th. Going in between to the

center-of-mass (CMS) frame with respect to the 10-dimensional momenta parallel to the

boundary, employing (3.12) plus various kinematical relations gathered in appendix A,

we �nally arrive at the amplitude

Th =
2�2

�d
(248)2

�
25s2 � 32tu

�X
m2Z

(�1)m
�s+ (p11m )

2 :

Here s; t; u are the Mandelstam-variables composed out of the 10-dimensional components

of the momenta along the boundarie, as pointed out above. To perform the sum we use

1X
m=1

(�1)m
z2 �m2�2

=
1

2z

�
1

sin z
� 1

z

�
; z 2 C ;

which one obtains as an application of the Mittag-Le�er theorem from Complex Analysis

and get X
m2Z

(�1)m
�s + (p11m )

2 = � dp
s sin (

p
sd)

: (3.23)

This yields for the matrix-element

Th(s; #) = �2�2

�
(248)2

(25s2 � 32tu)p
s sin (

p
sd)

: (3.24)
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Figure 2: Gravitino exchange, I

It is easy to verify that 25s2 � 32tu > 0. Concerning our stability analysis, we should

further integrate over the scattering angle # of the CMS-system from 0 to �=2 (due to

the fact that we have identical �elds in the out state, the integration is only over half the

full range). This gives

Th(s) = �21 (248)2 �2 s3=2

sin (
p
sd)

: (3.25)

3.4 Gravitino Exchange

There exist two diagrams describing amplitudes resulting from gravitino exchange. The

�rst one is depicted in �g.2. Using (3.19) we obtain for its S-matrix

S ;I = �1

2
�2

248X
a;b;c;d=1

8X
�2;�4=1

8X
s1;s3=1

Z
d10x1

Z
d10x2



0
��bd1�4 (p4) dc1s3 (p3)T� : 12 �1A1

(x1; 0)C�1�1
�
�B1C1�A1

��1

1
�a1
11 (x1)@B1

Ba1
1C1

(x1) :

:
1

2
 �2A2

(x2; d)C�2�2
�
�B2C2�A2

��2

2
�a2
22 (x2)@B2

Ba2
2C2

(x2) :
�
bb;y2�2(p2)d

a;y
2s1(p1)

��0� :
Again we sum over \colours" a; b; c; d, physical polarizations �2; �4 of the gauge �elds and

spin polarizations s1; s3 of the gauginos. da;y2s and da1s are the creation and annihilation

operators of the gauginos. Performing the Wick-contractions with the help of (A.21)-

(A.24) and using the momentum representation (3.22) for the gravitino propagator (3.13)
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leads us to

S ;I =�
�
1

2

�2
�2

2d

(248)2

(2�)11

8X
�2;�4=1

8X
s1;s3=1

Z
d10p

X
m2Z

(�1)m
Z
d10x1

Z
d10x2e

�i(�p+p3+p4)x1

ei(p1+p2�p)x2p4;B1
�C1(p4; �4)�us3;
2(p3)

�
�A1�B1C1

�
2
�1

�
~�A1A2

��1
�2
(p; p11m )�

�B2C2�A2
��2


2
u
2s1 (p1)p2;B2

�C2(p2; �2) :

As before the factor of (248)2 represents the E8 group factor. Performing the x1; x2

integrations result in two Dirac delta functions describing the ten-dimensional energy-

momentum conservation at each vertex separately. Upon integration over the momentum

p, carried by the gravitino, we arrive at the following T-matrix element

T ;I = i
�2

4�d

�
1

2

�2

(248)2
8X

�2;�4=1

8X
s1;s3=1

X
m2Z

(�1)m

p4;B1
�C1(p4; �4)�us3;
2(p3)

�
�A1�B1C1

�
2
�1

�
~�A1A2

��1
�2
(p1 + p2; p

11
m )�

�B2C2�A2
��2


2
u
2s1(p1)p2;B2

�C2(p2; �2) :

In order to facilitate this expression further, we note that the Weyl condition �10us(p) =

us(p); �us(p)�
10 = ��us(p) for the gaugino spinor enforces �us(p)�A1 :::�A2nus0(p

0) = 0. Using

this observation, the Weyl condition itself, the Dirac equation 6pus(p) = �us(p)6p = 0 as well

as the expression (3.14) for ~�A1A2
, we receive in the 10-dimensional boundary CMS-frame

T ;I = i
�2

4�d

�
1

2

�2

(248)2
8X

�2;�4=1

8X
s1;s3=1

X
m2Z

(�1)m
�s + (p11m )

2

�us3(p3)

�
E2
�
4 cos#+ 28

�6p4 + 2E sin#6p46�(p2; �2)6p2 � 2E3 sin#6�(p4; �4)

+
2E2

3
6�(p4; �4)6p46�(p2; �2) + E2

�
cos#� 1

3

�6�(p4; �4)6�(p2; �2)6p2�us1(p1) :
E =

p
s and # denote the ten-dimensional CMS-energy and the scattering angle in the

CMS-frame (see appendix A). Employing the explicit expressions for �us3(p3); us1(p1) and

for the �-matrices from the appendix, we get

T ;I = �i �
2

4�d

�
1

2

�2

(248)2
X
m2Z

(�1)m128(s� u)

r
�u
s

s

�s+ (p11m )
2 :

In addition to the diagram of �g.2, we also have to add the diagram of �g.3 which merely
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amounts to the exchange of p1 $ p2 or t$ u in the preceding diagram. Adding up both

contributions results in

T = �i �
2

4�d

�
1

2

�2

(248)2
X
m2Z

(�1)m128
�
(s� u)

r�u
s

+ (s� t)

r
�t
s

�
s

�s + (p11m )
2 :

Utilizing again (3.23), we conclude that

T (s; #) = i
8�2

�
(248)2

�
(s� u)

p�u+ (s� t)
p�t�

sin (
p
sd)

: (3.26)

For the stability analysis we perform a further integration over the scattering angle #

from 0 to � (as appropriate for distinguishable �elds in the out state), which �nally gives

T (s) = i
160�2

3�
(248)2

s3=2

sin (
p
sd)

:

3.5 3-Form Exchange

The 3-form exchange diagram of �g.4 yields the following expression for the S-matrix

element

Sc = �1

2
�2

248X
a;b;c;d=1

8X
s1;s2;s3;s4=1

Z
d10x1

Z
d10x2



0
��dd1s4(p4)dc1s3(p3)T� : 1p

2
�a1�11 (x1)C�1�1

�
�A1B1C1

��1

1
�a1
11 (x1)@[A1

cB1C111](x1; 0) :

:
1p
2
�a2�22 (x2)C�2�2

�
�A2B2C2

��2

2
�a2
22 (x2)@[A2

cB2C211](x2; d) :
�
db;y2s2(p2)d

a;y
2s1
(p1)

��0� :
We make use of (A.23),(A.24) to perform the Wick-contractions and gain the E8 gauge

group factor (248)2 as previously. We then combine the four resulting terms together by
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Figure 3: Gravitino exchange, II
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Figure 4: 3-Form exchange

employing the relation u�s (p)C��
�
�ABC

��


u
s0(p

0) = �u�s0(p0)C��
�
�ABC

��


u
s(p). More-

over, expressing the 2-point-function h0jT (cM1M2M3
(x1; 0)cN1N2N3

(x2; d)) j0i as i times the
3-form propagator �M1M2;N1N2

(x1 � x2;�d) gives

Sc = �i�2(248)2
8X

s1;s2;s3;s4=1

Z
d10x1

Z
d10x2e

�i(p3+p4)x1ei(p1+p2)x2

u�1s4 (p4)C�1�1
�
�A1B1C1

��1

1
u
1s3(p3)@[A1

@[A2�
B2C211]

B1C111]
(x1 � x2;�d)

u�2s2 (p2)C�2�2
�
�A2B2C2

��2

2
u
2s1(p1) :

Fourier-transforming the propagator with the help of (3.15) and (3.22)

@[A1
@[A2�

B2C211]
B1C111]

(x1 � x2;�d)

= � 1

d(3!)2(2�)11

Z
d10peip(x1�x2)

X
m2Z

(�1)m
�
3!

4!

�2 �
3p[A1

p[A2ÆB2

B1
Æ
C2]
C1]
� (p11m )

2Æ
[A2

[A1
ÆB2

B1
Æ
C2]
C1]

�
� 1

p2 + (p11m )
2

brings us to

Sc = i
�2

d

(248)2

(4!)2(2�)11

8X
s1;s2;s3;s4=1

Z
d10p

X
m2Z

(�1)m
Z
d10x1

Z
d10x2e

�i(�p+p3+p4)x1ei(p1+p2�p)x2

�
3u�1s4 (p4)C�1�1

�
�A1BC

��1

1
u
1s3 (p3)u

�2
s2 (p2)C�2�2 (�A2BC)

�2

2
u
2s1 (p1)pA1

pA2

� u�1s4 (p4)C�1�1
�
�ABC

��1

1
u
1s3 (p3)u

�2
s2
(p2)C�2�2 (�ABC)

�2

2
u
2s1(p1)(p

11
m )

2

�
1

p2 + (p11m )
2
:
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Performing the integration over x1; x2 and afterwards over p, we gain the following T-

matrix element

Tc =
�2

�d

(248)2

(3!)3

8X
s1;s2;s3;s4=1

X
m2Z

(�1)m
�
3�us4(p4)�

A1BCus3(p3)�us2(p2)�A2BCus1(p1)(p3 + p4)A1
(p1 + p2)

A2

� �us4(p4)�
ABCus3(p3)�us2(p2)�ABCus1(p1)(p

11
m )

2

�
1

�s + (p11m )
2
:

Subsequently, we are dealing separately with the �rst and the second term of this ampli-

tude in order to boil them down to some more succinct expressions.

Let us start with the �rst term and the observation that the Dirac equation 6pus(p) =
�u(p)6p = 0 yields the relations

pA�
ABCus(p) = 2p[B�C]us(p) ; �us(p)�

ABCpA = �2�us(p)p[B�C] :

If we apply them to the �rst term, we obtain

8X
s1;s2;s3;s4=1

3�us4(p4)�
A1BCus3(p3)�us2(p2)�A2BCus1(p1)(p3 + p4)A1

(p1 + p2)
A2

= 12
8X

s1;s2;s3;s4=1

�us4(p4)(p3 � p4)
[B�C]us3(p3)�us2(p2)(p1 � p2)[B�C]us1(p1) :

By noticing that in the CMS-frame p1 � p2 = (0; :::; 0; E) and p3 � p4 = (0; :::; 0; E sin#;

E cos#), we eventually reduce this expression to

4!E2
8X

s1;s2;s3;s4=1

�
cos#�us4(p4)�

9us3(p3)�us2(p2)�9us1(p1)

+ sin#�us4(p4)�
9us3(p3)�us2(p2)�8us1(p1)� cos#�us4(p4)�

Aus3(p3)�us2(p2)�Aus1(p1)
�

= �4!� 64s2 :

Concerning the second part of the amplitude, we decompose

�ABC =

 
a b

c d

!


 
A B

C D

!
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into 2�2 and 16�16 matrices. With the explicit expression for the gaugino-spinor (A.10),

we �nd

�us4(p4)�
ABCus3(p3) = Ec

�sin#
2

A+ cos2
#

2
B � sin2

#

2
C � sin#

2
D
�
s4s3

�us2(p2)�
ABCus1(p1) = EcBs2s1 :

In particular, we have for our chosen representation (described in A.4) of SO(1; 10) �-

matrices the following description in terms of 8� 8 submatrices 
a

�1ab : c = 1; B = 0 �1a10 : c = 1; B = 
a

�abc : c = 1; B = 
a
b;T
c �ab10 : c = 1; B = 0 :

Since after summation over the spin-polarizations, an antisymmetric matrix B gives a

vanishing contribution, the only non-vanishing terms for our scattering process stem from

�1;9;10 and �ijk; i; j; k = 2; :::; 8. Hence we are able to reduce the second term to

8X
s1;s2;s3;s4=1

�us4(p4)�
ABCus3(p3)�us2(p2)�ABCus1(p1)

= 3!� E2

 
� 64 +

X
i<j<k

�X
s2;s1

�

ijk
�
s2s1

�2
| {z }

(�8)2

!

=(3!� 8E)2 :

Putting the results for the two terms together, we arrive at the following expression for

the 3-form exchange amplitude

Tc = � �
2

�d

128(248)2

(3!)2
s
X
m2Z

(�1)m 2s+ 3(p11m )
2

�s+ (p11m )
2
: (3.27)

Using again (3.23) for the summation, we �nd

X
m2Z

(�1)m 2s+ 3(p11m )
2

�s+ (p11m )
2
= 3

X
m2Z

(�1)m � 5

p
sd

sin (
p
sd)

:

The �rst term describes an alternating sum, which does not converge and requires some

kind of regularization. In order to understand this contribution, we will explore in a

moment the d ! 1 limit. Therefore it proves useful to express the above obtained

amplitude in terms of theD=10 gravitational coupling constant �(10) which is independent

of the compacti�cation radius R or d. Compacti�cation of M-theory on an S1 of radius R
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and a subsequent comparison of its Einstein-Hilbert term with the Einstein-Hilbert term

coming from the e�ective action of the D=10 heterotic string (in Einstein frame) leads

to the following relationship between the D=11 and the D=10 gravitational coupling

constants

�2 = 2d�2(10) : (3.28)

Hence Tc can be expressed as

Tc = ��2(10)
256(248)2

(3!)2�
s

 
3
X
m2Z

(�1)m � 5

p
sd

sin (
p
sd)

!
:

Since the �rst part of the amplitude, consisting of the alternating sum and some d-

independent prefactors, is independent of d, we can equally well evaluate it at any d,

in particular at d ! 1. Now, if we consider a large radius, the di�erence between two

adjacent values of p11m becomes in�nitesimally small and we are allowed to replace the sum

by an integral

lim
d!1

X
m2Z

f(p11m =
m

R
= m

�

d
) = lim

d!1
d

�

Z 1

�1
dp11f(p11) :

Writing (�1)m = eip
11
m d, we now encounter the following expression for the alternating

sum X
m2Z

(�1)m =
X
m2Z

eip
11
md = lim

d!1
d

�

Z 1

�1
dp11eip

11d = lim
d!1

2dÆ(d) = 0 :

Thus �nally the amplitude can be completely determined to be

Tc(s) =
�2

�

160(248)2

9

s3=2

sin (
p
sd)

: (3.29)

The integration over the scattering angle from 0 to �=2 is trivial and results in

Tc(s) = �2
80(248)2

9

s3=2

sin (
p
sd)

: (3.30)

3.6 Two Further Graviton Exchange Diagrams

To complete our discussion of all relevant tree diagrams, which contribute to a boundary-

boundary interaction, we also have to consider two further graviton exchange diagrams,

depicted in �g.5. Both are, after performing the Wick-contractions, proportional to
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Figure 5: Vanishing Graviton exchange diagrams

��us2(p2)
�
�C�AB � �B�AC

�
us1(p1) + �us1(p1)

�
�C�AB � �B�AC

�
us2(p2) ;

which gives zero, if we do avail ourselves of (A.11). Physically the vanishing of the

diagrams is clear, since interchanging the two gauginos of the �nal state gives a minus-

sign, which cannot be compensated for by the coupling to a graviton. In the previously

analysed case of the coupling between two gauginos and the 3-form potential, the coupling

delivers an extra minus-sign under exchange of the two fermions, so that the amplitude

did not vanish in that case.

3.7 Analysis of the Amplitudes

Gathering all the obtained amplitudes, integrated over the scattering angle, we have

Th(s) = �21(248)2�2 s3=2

sin(
p
sd)

(3.31)

T (s) = i
160

3�
(248)2�2

s3=2

sin(
p
sd)

(3.32)

Tc(s) = 80

9
(248)2�2

s3=2

sin(
p
sd)

: (3.33)

First of all, we have to determine the range of validity of (3.31)-(3.33). From the denom-

inator we recognize that singularities occur at the excitations of the Kaluza-Klein states

at
p
s = m�=d = p11m ; m 2 Z. Our analysis did not cover contributions to the interaction

amplitudes coming from these highly massive states and only included the exchange of the

massless supergravity multiplet. Therefore, the range of validity of our results is subjected

to the following constraint, given by the threshold of the �rst Kaluza-Klein excitation

0 � ps < �

d
:
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In the special case of vanishing CMS-energy
p
s = 0, each amplitude vanishes separately.

This corresponds to the situation where the boundary �elds on each �xed-plane run in

parallel directions. In this case we have trivially no interaction between the two bound-

aries, as expected from the vanishing of the susy-variations for this kinematics. In this

special situation the 
at background with vanishing G-
ux corresponds to a stable ground

state of the heterotic M-theory set-up. However, if there are excitations on the boundary,

by which we mean a kinematical situation showing
p
s > 0 for the boundary-�elds, we see

that pure gravity leads to an attraction (since for our range of validity, we have to stay

below the �rst Kaluza-Klein excitation energy), whereas { similar to the behaviour of the

RR-forms in the analogous D-brane case of type II string theory { the 3-form exchange

leads to a repulsion. If we choose the same CMS-energy for all three contributions, then

the attractive gravity dominates the weaker 3-form repulsion. Hence the real part of the

amplitudes indicates an instability which is caused by an attractive force trying to bring

the two boundaries closer together. This is in the direction towards the weakly coupled

E8 � E8 heterotic string.

Thus the 
at background with vanishing G-
ux does not represent a stable vacuum

in the presence of arbitrary momenta of the boundary-�elds. An obvious guess as to the

nature of a stable vacuum comes from the treatment of heterotic M-theory compacti�ed

on a Calabi-Yau threefold [63]. There it has been shown, that with a non-vanishing

G-
ux on the Calabi-Yau and in the orbifold-direction, compacti�ed heterotic M-theory

exhibits a warped-geometry. In view of the failure of the 
at vacuum to represent a stable

con�guration, one would naively think, that the warping of the geometry should survive in

the decompacti�cation limit. Ten-dimensional Poincar�e-invariance only allows for a non-

trivial dependence of the metric background on x11 and hence only a warped-geometry

would be possible. However, the very Poincar�e-invariance also requires GKLMN to vanish

and therefore other sources for a warping of space-time must be taken into account.

The behaviour of the above calculated amplitudes is similar to the weakly-coupled

string-theory case in which an excited D-brane can decay into a massless closed string

state and the non-excited D-brane [72]. Such a decay is also possible whenever the two

massless waves on the D-brane run in di�erent directions and accordingly possess
p
s > 0.

Only if the massless waves run in the same direction, i.e. have
p
s = 0, one is dealing with

a BPS state which does not decay.

Curiously the gravitino exchange gives rise to an imaginary part. By inspection of

(3.26) we �nd that the forward scattering amplitude T (s; # = 0) is non-vanishing. Via
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the optical theorem this would signal the opening of some inelastic channels for a decay

of an excited boundary and therefore an instability in a more drastic sense.

It is interesting that later on the instability of heterotic M-theory causing a shrinking

of the orbifold interval has also been discovered in a completely di�erent approach. In

[73] heterotic M-theory compacti�ed on a Calabi-Yau threefold CY3 { which will be the

subject of the next chapter { has been analyzed in the presence of a time-dependent G-
ux

Gt11AB 6= 0. If GABCD = 0 as in our case, they �nd that
R
CY3

d6xGt11AB!
AB > 0, where

!AB is the K�ahler-form of the CY3. Therefore, it seems necessary in the compacti�ed

case to turn on Gt11AB . This, however, leads to a metric whose orbifold interval shrinks

with time. If this feature survives in the decompacti�cation limit, we would see the same

attraction of both boundaries as our perturbative analysis shows.

A last remark concerns unitarity. If we would evaluate total cross-sections with the

above amplitudes, then by integrating over the appropriate phase space, we would get at

high energies a total boundary-boundary interaction cross-section

� � jT (s)j2s2 � �4s5 :

However, unitarity of the S-matrix leads for spinless states to the following restriction on

partial wave amplitudes

�J � PJ
s4

;

where PJ is some polynomial in the angular-momentum J independent of s. Neglecting

#-dependent factors which arise for states with higher spin, we conclude, that the total

cross-section � which is the sum of all �J , should decrease with increasing energy in order

to obey unitarity. Since our cross-sections increase with energy, they violate unitarity.

This is also plausible from the fact, that Ho�rava-Witten supergravity is not gauge invariant

at the classical level and therefore no Ward-identities guarantee unitarity. However, we

have to keep in mind the restriction to the energy regime
p
s < �=d of our analysis.

Should it happen, that a violation of unitarity occurs at an energy much higher than �=d,

we would have to include the e�ects of the Kaluza-Klein excitations to decide, whether

unitarity is violated or obeyed.

3.8 Comparison with the Weakly Coupled Heterotic String

According to the conjecture made in [43], we should recover the D=10 weakly coupled

heterotic E8 � E8 string theory in the limit of small R resp. d. Since the amplitudes
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which we have derived so far, describe the low-energy regime, we should also compare

to the analogous low-energy string amplitudes. Here we have to use the expressions

(3.24),(3.26),(3.29) which contain the full angular information. In order to derive the

zero radius limit, we express all the derived amplitudes via (3.28) through the radius-

independent �(10) and then perform the limit
p
sd! 0

Th(s; #) = �
4�2(10)
�

(248)2
(25s2 � 32tu)dp
s sin (

p
sd)

p
sd!0�! ��2(10)

4(248)2

�

�
25s� 32

tu

s

�
(3.34)

T (s; #) = i
16�2(10)
�

(248)2
�
(s� t)

p�t + (s� u)
p�u� d

sin (
p
sd)

p
sd!0�! i

16�2(10)
�

(248)2

 
(s� t)

r
� t
s
+ (s� u)

r
�u
s

!
(3.35)

Tc(s) =
320�2(10)

9�
(248)2

s3=2d

sin (
p
sd)

p
sd!0�! �2(10)

320(248)2

9�
s : (3.36)

So far for the M-theory amplitudes.

Closed string amplitudes involve a factor �M�2+2L
(10) , where M is the number of external

particles and L the number of loops. Hence with four external particles it is clear, that

a factor �2(10) corresponds to string tree-amplitudes as well. Those heterotic string tree-

amplitudes can be found in [2]24. The terms, which originate there from taking traces

of four E8 � E8 group generators Ti, must be discarded from our comparison, since they

correspond to processes where SYM �elds are exchanged between the initial and �nal

states. What we want instead to compare with are the amplitudes which are generated

by the exchange of states of the supergravity multiplet. Since they comprise singlet-

representations under the E8 � E8 gauge group, we merely encounter terms with traces

of two generators. The string-theoretic tree-amplitudes adapted to our conventions read

A = �210K
�
�1;

p1
2
; �2;

p2
2
; �3;

p3
2
; �4;

p4
2

�
C (s; t; u)G (p1; p2; p3; p4; T1; T2; T3; T4) ;

24The translation between the momenta kGSWi and Mandelstam-variables used by [2] and the pi used

in this paper is given by

kGSW1 = p1 ; kGSW2 = p2 ; kGSW3 = �p3 ; kGSW4 = �p4 ;
sGSW = �(kGSW1 + kGSW2 )2 = �(p1 + p2)

2 = s

tGSW = �(kGSW1 + kGSW4 )2 = �(p1 � p4)
2 = u

uGSW = �(kGSW1 + kGSW3 )2 = �(p1 � p3)
2 = t :
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where

C (s; t; u) = �� �
�� s

8

�
�
�� t

8

�
�
��u

8

�
�
�
1 + s

8

�
�
�
1 + t

8

�
�
�
1 + u

8

�
G (p1; p2; p3; p4; T1; T2; T3; T4) =

1

32

�
tu

1 + s
8

tr [T1T2] tr [T3T4]

�
:

The factor G of [2] also contains terms describing a t- and a u-channel exchange. Since

in the heterotic M-theory calculation for �nite d, we get only s-channel contributions for

interactions of the boundary �elds via bulk �elds, our expressions for d! 0 should only

be compared to this very s-channel part of the string calculation. For this reason we have

omitted the t- and u-contributions to the G-factor. The generator Ti corresponds to the

ith external particle and tr is de�ned as the trace in the adjoint representation of E8�E8

divided by 30. The various �i stand for the polarization of the ith particle. If it is a

gaugino, we have to substitute the spinor �i = usi(pi), whereas for a gauge boson we have

to take its polarization �i = �i(pi; �i).

The K-factor describes the kinematics of the interaction and is given for the various

cases25 by

K
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2

�
=

1

23

�u
2
�u26�1 (6p3+6p4)6�4u3 + s (�u26�4u3p4��1 + �u26�1u3p1��4 � �u26p4u3�1��4)

�
;

25There is no factor K(u1; u2; �3; �4), since as in the heterotic M-theory calculation the BB ! ��

contribution vanishes.
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K
�
u1;

p1
2
; u2;

p2
2
; u3;

p3
2
; u4;

p4
2

�
=

1

22

�
�s
2
�u2�

Au3�u1�Au4 +
u

2
�u1�

Au2�u4�Au3

�
:

Summing over every occuring vectorial or spinorial polarization index, we can simplify

the kinematical factors further toX
�1;�2;�3;�4

K
�
�1;

p1
2
; �2;

p2
2
; �3;

p3
2
; �4;

p4
2

�
= �1

8
(st+ tu+ us) +

7

16

�
s2 + t2 + u2

�
X

s1;�2;s3;�4

K
�
u1;

p1
2
; �2;

p2
2
; u3;

p3
2
; �4;

p4
2

�
= 4s(s� u)

r
�u
s

X
�1;s2;s3;�4

K
�
�1;

p1
2
; u2;

p2
2
; u3;

p3
2
; �4;

p4
2

�
= 4s(s� t)

r
� t
sX

s1;s2;s3;s4

K
�
u1;

p1
2
; u2;

p2
2
; u3;

p3
2
; u4;

p4
2

�
= �4 �3s2 + (t� u)2

�
:

In the low-energy limit �0s; �0t; �0u! 0 we have

C (s; t; u)! 29�

stu

such that �nally we arrive at the following expressions for the low-energy limit of the

heterotic string amplitudes

A
BB

s!BB
= ��21016 (tr [T1T2])

2

�
s� tu

s

�
(3.37)

A
�B

s!�B
+ A

�B
s!B�

= ��2104� 16 (tr [T1T2])
2

 
(s� t)

r
� t
s
+ (s� u)

r
�u
s

!
(3.38)

A
��

s!��
= ���210(16)2 (tr [T1T2])2

�
s� tu

s

�
: (3.39)

If we compare these with (3.34),(3.35),(3.36), we recognize some di�erences. Whereas

(3.34) and (3.37) deviate mildly in their functional dependence on s; t; u, the discrepancy

between (3.36) and (3.39) is manifest. The string amplitude shows an angular dependence

but the heterotic M-theory amplitude is isotropic. The gravitino exchange amplitudes re-

markably completely agree in their angular dependence. Nevertheless the string amplitude

is real, whereas its M-theoretic counterpart is purely imaginary.

To a certain degree a disagreement could have been expected. Generally, a low-energy

description in terms of e�ective supergravity is only valid at large distances resp. small

curvatures. Furthermore, Ho�rava-Witten supergravity is organized as a long wavelength

expansion in the parameter �2=3, assumed to be small as compared to the eleventh-

dimensional Planck-scale. However, in the limit d ! 0 of coinciding boundaries, the
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long-wavelength supergravity approximation breaks down and one cannot trust the order

�2=3 expansion any longer. Therefore the e�ective description may lead to false results.

Recently, Green et al. [74] included an additional interaction term beyond those given

in [46] which were the basis for the above calculation. It was then shown that reconciliation

between the purely bosonic gauge-�eld boundary-boundary interaction amplitudes with

their heterotic string counterparts can be achieved by adding to the boundary-bulk �2=3-

interaction terms the interaction

SAAC =

p
2

(4�)5=3�4=3

Z
R1;9�S1

d11x
�
Æ(x11) + Æ(x11 � d)

�
@[M ĈNP11]Tr(A

M@[NAP ]) : (3.40)

This additional interaction has its origin from the kinetic part of the 4-form �eld strength

G and owes its existence to the fact, that in heterotic M-theory the requirement of local

supersymmetry leads to the following �2=3-correction to G

GMNP11 = 4!@[M ĈNP11] +
�2=3p
2(4�)5=3

�
Æ(x11) + Æ(x11 � d)

�
!MNP ; (3.41)

with ! being the gauge-�eld Chern-Simons correction given by

!MNP = 2tr
�
AM@[NAP ] +

1

3
AM [AN ; AP ] + cyclic perms:

�
: (3.42)

In view of this successful match of the bosonic amplitudes, let us assume for the

moment that also ultimately the fermionic amplitudes could be arranged to match their

low-energy heterotic string counterparts. Then for coinciding boundaries the heterotic

M-theory amplitudes would be given by integrating (3.37),(3.39) over the scattering angle

from 0 to �=2 and (3.38) from 0 to �

A
BB

s!BB
= �2�2107 (tr [T1T2])

2 s (3.43)

A
�B

s!�B
+A

�B
s!B�

= ��210
1280

3
(tr [T1T2])

2 s (3.44)

A
��

s!��
= ��2�210112 (tr [T1T2])2 s : (3.45)

One observes that their sum
PA(d = 0) does not add up to zero. If for non-coinciding

boundaries the set-up would be stable, we need to have
PA(d > 0) = 0. Thus stability of

heterotic M-theory on a locally 
at background would require a jump in
PA(d) at d = 0.

This however does not seem to occur as the smooth limit of the pure bosonic subsector

shows [74]. Hence, the very duality to the weakly coupled string already seems to imply

an instability of the Ho�rava-Witten set-up { at least on a locally 
at metric background.
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4 Torsion and Warped Heterotic M-Theory Com-

pacti�cations

After considering the uncompacti�ed heterotic M-theory in eleven dimensions in the pre-

vious chapter, we now come to the case where heterotic M-theory is compacti�ed on a

Calabi-Yau threefold CY3 to four dimensions times the orbifold interval. An important

ingredient will be the possibility to turn on internal (i.e. with support on the CY3 and

the interval) G-
ux without spoiling supersymmetry which will lead to non-trivial warped

geometry backgrounds.

4.1 Heterotic M-Theory and Newton's Constant

For heterotic M-theory compacti�ed on a CY3 the 4-form �eld-strength G does not vanish

if higher order corrections in �2=3 are taken into account. The reason is that the bound-

ary super Yang-Mills (SYM) theories represent magnetic sources which show up in the

Bianchi-identity for G and require a G of order �2=3. Hence we expect warped geometries

to arise at this order, which is indeed the case [63]. Besides an interesting interplay be-

tween the physics of G-
uxes and geometry there arises an important phenomenological

issue related to the value of Newton's Constant GN . From a simple dimensional reduction

of heterotic M-theory on a CY3 with volume V (x11) (in the 11-dimensional metric), one

can infer [63]

GN =
�2

16�hV id ; �i =
(4��2)2=3

2Vi
; (4.1)

where �i is the gauge-coupling of the two (i = 1; 2) boundary E8 SYM theories and

V1 = V (0); V2 = V (d). Because GN is related to gravity in the bulk, we have to use for its

determination an average volume hV i = 1
d

R d
0
dx11V (x11). A determination of the warped

geometry allows to calculate V (x11) and thereby �i and GN . This had been undertaken

in [63] to linearized order (�rst order in �2=3) with the result that V (x11) = �ax11 + V1,

where the slope a = 1
4
p
2

R
CY3

d6x
p
g !lm!npGlmnp > 0 is controlled by the G-
ux. Here

!lm denotes the K�ahler-form on CY3. The surprising observation [63] has been that when

the linear function V (x11) becomes zero, the corresponding distance for d just gives rise to

the correct value for GN , whereas generically in heterotic string compacti�cations GN is

predicted too large by a factor of 400. Placing the second boundary at that distance means

�2 ! 1. Hence, the SYM there becomes strongly coupled and instanton contributions
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become relevant, which is the reason why this second boundary corresponds to a \hidden"

world rather than our \observable" world. The �rst boundary at x11 = 0 instead allows for

a perturbative SYM on it if V1 is chosen huge enough such that �1 � 1 and consequently

can be regarded as the \observable" world.

In this context two questions arise

a) How is the linear behaviour of V (x11), which leads to an unphysical negative volume

beyond a certain distance, changed in the full theory, i.e. beyond the leading �2=3 order?

b) Does V (x11) still keeps its attractive feature of becoming zero just at a phenomenolog-

ically highly relevant distance?

The trouble with the linear behaviour is the following. One expects that eventually

quantum corrections will shift the actual value of V (x11) slightly. However, small dis-

tortions of a linear function can never lift a zero { they can only shift its x11 position

slightly, but the zero remains. Therefore it is important to determine the warp-factors

and thereby V (x11) beyond the leading order in �2=3, which we will undertake in the next

section.

It may sound surprising how a result beyond order �2=3 can be achieved within the

framework of heterotic M-theory whose e�ective action is only known to order �2=3. Let us

therefore brie
y indicate where and in which way features of heterotic M-theory will enter

our analysis. By imposing supersymmetry, we are going to solve the gravitino Killing-

spinor equation of M-theory. The heterotic M-theory characteristics enter on the one

hand through speci�c G-
uxes originating from boundary or M5-brane sources and on

the other hand through the chirality condition �11� = � on the susy-variation Majorana-

parameter �. The important point is that the information which is restricted to order �2=3

becomes only relevant if knowledge about the actual source strengths is required. However,

to obtain the functional behaviour of V (x11) this knowledge is not needed. It suÆces to

assume that in the full heterotic M-theory the relevant sources can still be localized in

the x11 direction, i.e. they appear as dG = Æ(x11� z)S(xm)^ dx11 in the Bianchi-identity.
Thus, we will be able to answer the �rst question posed above. The actual value (and

thereby the complete knowledge about heterotic M-theory beyond �2=3 order) for the 4-

form source strength S only becomes indispensable if e.g. questions about the precise

value of a zero or a minimum of V (x11) should be answered. This is necessary to answer

the second question.
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4.2 The Full Relation between Warped Geometry and G-Flux

Let us consider heterotic M-theory compacti�ed on CY3 � S1=Z2 with four external co-

ordinates x� ; �; �; �; : : : = 1; 2; 3; 4 and seven internal coordinates xu ; u; v; w; x; y; z =

5; : : : ; 11. In the absence of any G-
ux (for heterotic M-theory this amounts to considering

only the leading order which is M-theory itself without boundary or M5-brane sources)

the metric solution to the Killing-spinor equation, which describes a supersymmetry-

preserving vacuum, is given by

ds2 = ���dx
�dx� + guv(x

w)dxudxv ; (4.2)

where guv decomposes into a direct product of the Calabi-Yau metric ga�b and the metric

g11;11 of the eleventh dimension. Without loss of generality one can set g11;11 = 1. We

will denote the six real Calabi-Yau indices l; m; n; p; q; : : : while �l; �m; �n; �p; �q; : : : are the

respective 
at tangent space indices. The alternative choice of holomorphic and anti-

holomorphic indices will be denoted a; b; c : : : and �a;�b; �c : : :. Genuinely we have to take

the boundary sources into account which require turning on a G-
ux in the internal

directions. This necessitates a more general metric, for which we choose the warp-factor

Ansatz

ds2 = ĝMNdx
MdxN ; M;N = 1; : : : ; 11

= eb(x
W; x11)���dx

�dx� + ef(x
W; x11)glm(x

n)dxldxm + ek(x
W; x11)dx11dx11 : (4.3)

It will turn out that the appropriate G-
ux of the relevant sources can be accomodated

with this Ansatz. The most general Ansatz which allows for arbitrary G-
ux compatible

with supersymmetry will be considered in the last section.

The initial Calabi-Yau manifold possesses a closed K�ahler-form !a�b. However, a non-

zero G-
ux entails a non-trivial internal warp-factor ef , thereby rendering the \deformed"

K�ahler-form !̂a�b = ef!a�b non-closed. In this respect, the warp-factor ef serves as a

measure for the deviation from K�ahlerness of the internal complex threefold.

To preserve 4-dimensional Poincar�e-invariance, we set G1234 and all other components

of G with at least one external index to zero26. An important point is that in order

26An external G1234 = �1234�(x
m; x11) would be compatible with Poincar�e-symmetry but the known

sources (boundaries, M5-branes) do not give rise to such a 
ux. Moreover, compatibility with the Bianchi-

identity allows only a constant G1234. Though such a sourceless constant �eld-strength is allowed by the

non-compact external spacetime, we will set it to zero subsequently.
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to preserve supersymmetry the magnetic sources on the right-hand-side of the Bianchi-

identity must be (2,2,1) forms [63]. I.e. they are forms with two holomorphic, two anti-

holomorphic indices and one x11-index. This is clear for the boundary sources and amounts

for the M5-brane sources to an orientation parallel to the boundaries. Solving the Bianchi-

identity, we see from the fact that the sources are (2,2,1) forms, that only the components

Ga�bc �d, Gab�c11, Ga�b�c11 can become non-zero.

4.2.1 The Killing-Spinor Equation

The supersymmetry-variation of the gravitino in low-energy M-theory is given in the full

metric (4.3) by

Æ	I = D̂I ~� +

p
2

288

�
�̂IJKLM � 8ĝIJ �̂KLM

�
GJKLM ~� ; (4.4)

where ~� = e� (x
U ;x11)�. Here, � is the original covariantly constant spinor and the

exponential-factor accounts for the correction if G-
ux is turned on. We will assume

 to be real and see later on that this is indeed compatible with supersymmetry in the

warped background. Subsequently, indices are raised and lowered with the full metric

ĝMN , which is also how contractions are performed in (4.4). Setting the variation to

zero in order to obtain a supersymmetry preserving solution, we obtain the Killing-spinor

equation.

Covariant Derivative Contribution

Let us �rst deal with the part containing the covariant derivative of the Majorana-spinor

~�. Using the de�nition of the spin-connection for the warped-metric27


I �J �K(ê) =
1

2

�
ê J
�J
~
IJ �K(ê)� ê K

�K
~
IK �J(ê)� ê J

�J ê K
�K ê

�I
I
~
JK �I(ê)

�
; (4.5)

~
IJ �K(ê) = @I ê �KJ � @J ê �KI ; (4.6)

allows to express the warped spin-connection through the initial one


����l(ê) =
1

2
ê m�l ê���@mb ; 
��� �11(ê) =

1

2
ê���ê

11
�11 @11b


l �m�n(ê) = �ê p
[ �m ê�n]l@pf + 
l �m�n(e) ; 
l �m �11(ê) =

1

2
ê �mlê

11
�11 @11f


11�l �11(ê) = �
1

2
ê m�l ê �11;11@mk ; (4.7)

27Here �J; �K; : : : denote 
at 11-dimensional indices.
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and all other terms are zero. This is done to employ the covariant constancy DI� =

(@I +
1
4

I �J �K(e)�

�J �K)� = 0 of the initial spinor-parameter, which brings us to

dxID̂I ~� =

�
� dxu@u +

1

4
dx�
�
�̂ l
� @lb + �̂ 11

� @11b

�
+
1

4
dxl
�
�̂ m
l @mf + �̂ 11

l @11f

�

+
1

4
dx11�̂ l

11 @lk

�
~� : (4.8)

Let us now specify, that our internal space actually consists of a Calabi-Yau and a sepa-

rate eleventh dimension. The positive chirality condition �11� = � on the original space

translates into �̂11~� = e�k=2~� on the warped space. The condition that we have a co-

variantly constant spinor (and its complex conjugate) on the Calabi-Yau gives �a� = 0,

��a� = 0 and translates into �̂a~� = 0, �̂�a~� = 0. Using these relations plus the Dirac-algebra

f�̂a; �̂�bg = 2ĝa
�b, we end up with

dxID̂I ~� =

��
� @a( +

f

4
)dxa + @�a(� +

f

4
)dx�a � @11 dx

11

�

+

�
1

4
e�k=2@11b dx�

�
�̂� +

�
1

4
e�k=2@11fdx�a � 1

4
e�k=2@�akdx11

�
�̂�a

+

�
1

4
@�ab dx�

�
�̂��a +

�
1

4
@�bfdx�a

�
�̂�a�b

�
~� : (4.9)

G-Flux Contributions

Next, let us deal with the second term in the Killing equation, containing the G-
ux.

To obtain condense expressions, it proves convenient to parameterize the three sorts of

allowed 
uxes by de�ning

� = !lm!npGlmnp (4.10)

�l = !mnGlmn11 (4.11)

�lm = Glmnp!
np : (4.12)

where !a�b = �iga�b, !a�b = iga
�b denotes the K�ahler-form of the initial Calabi-Yau manifold.

The warped metric is related to the K�ahler-form by ĝa
�b = �ie�f!a�b. Subsequently, we

will make use of

ĝa
�bĝc

�dGa�bc �d = �1

4
e�2f� (4.13)

ĝb�cGlb�c11 = � i
2
e�f�l (4.14)

ĝc
�dGlmc �d = � i

2
e�f�lm (4.15)
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to express the occuring contractions through the above de�ned parameters. In order to

handle the various contractions of �̂-matrices with the G-
ux, it is convenient to evaluate

the expressions by �rst letting the matrices act on ~� and employ ĝa11 = 0, �̂11~� = e�k=2~�,

�̂a~� = 0. Taking ~� as the ground state, �̂a and �̂�a can be regarded as annihilation and

creation operators, respectively. This leads to some useful identities (B.1) collected in the

appendix. With their help, we establish the various contractions (B.2) of the �ve-index

�̂-matrices with the G-
ux and also the contractions (B.3) of the three-index �̂-matrices

with G. These can be found in the appendix, as well. Putting all this together, we arrive

at the following expression for the second part of the Killing equation

dxI
�
�̂IJKLM � 8ĝIJ�̂KLM

�
GJKLM ~� =

�
3e�k=2�f

�
4i��adx

�a + 12i�adx
a � e�f� dx11

�
�3e�2f� dx��̂� + 3e�f

h
�e�f� dx�a + 12i�

�b
�adx�b � 8i��adx

11
i
�̂�a � 12ie�k=2�f��adx��̂

��a

+3e�k=2
�
4ie�f��adx�b � 12G�c

�a�b11dx�c
�
�̂�a�b

�
: (4.16)

Complete Killing-Spinor Equation

Now, the complete Killing-spinor equation can be composed out of the two pieces (4.9)

and (4.16) and is given by

dxID̂I ~� +

p
2

288
dxI

�
�̂IJKLM � 8ĝIJ�̂KLM

�
GJKLM ~�

=

 ��� @a � 1

4
@af + i

p
2

8
e�k=2�f�a

�
dxa +

�� @�a +
1

4
@�af + i

p
2

24
e�k=2�f��a

�
dx�a

� �p2
96
ek=2�2f� + @11 

�
dx11

�
+
1

4

�
e�k=2@11b�

p
2

24
e�2f�

�
dx��̂

� +
1

4

�
e�k=2@11fdx�a

�
p
2

24
e�2f�dx�a + i

1p
2
e�f�

�b
�adx�b �

�
e�k=2@�ak + i

p
2

3
e�f�k��a

�
dx11

�
�̂�a +

1

4

�
@�ab

� i

p
2

6
e�k=2�f��a

�
dx��̂

��a +
1

4

�
@�bfdx�a + i

p
2

6
e�k=2�f��adx�b

� 1p
2
e�k=2G�c

�a�b11dx�c

�
�̂�a�b

!
~�

= 0 : (4.17)
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4.2.2 The Warp-Factor { Flux Relations

Setting the coeÆcients of the various �̂-matrices to zero, we have to distinguish carefully

between the imaginary and the real part of the equations. For arbitrary vectors AU ; BU ,

the sum AaBa + A�aB�a is real, whereas the di�erence A
aBa � A�aB�a is purely imaginary.

Furthermore � is a real parameter.

The I, �̂� and �̂��a-Terms

From the terms proportional to the unit-matrix, �̂� and �̂��a we �nally receive the relations

8@a = @af = �2@ab = i

p
2

3
e�k=2�f�a (4.18)

4@11 = �@11b = �
p
2

24
ek=2�2f� : (4.19)

The �̂�a-Terms

The terms proportional to �̂�a lead to

@ak = i

p
2

3
e�k=2�f�a ; (4.20)

which shows that the warp-factors f and k are equal up to an additive function F de-

pending merely on x11

f(xW ; x11) = k(xW ; x11) + F (x11) : (4.21)

In the following we will set F (x11) to zero since it can be eliminated by a simple repa-

rameterization of x11. Furthermore the �̂�a terms yield the relation

@11f =

p
2

24
ek=2�2f�� i

1p
2
ek=2�f��a

�a ; no sum over �a (4.22)

together with

�
�b
�a = 0 ; �b 6= �a : (4.23)

Note that in (4.22) there is no summation over the antiholomorphic indices �a. Hence the

relation (4.22) implies the following isotropy-condition

�
�1
�1 = : : : = ��n

�n ; (4.24)
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with n the complex dimension of the Calabi-Yau manifold. Using the identity
P�n

�a=�1�
�a
�a =

� i
2
e�f�, it then follows that (4.22) simpli�es to

@11f =

p
2

4

�
1

6
� 1

n

�
ek=2�2f� : (4.25)

The �̂�a�b-Terms

Finally the �̂�a�b terms lead to an equation, which can be simpli�ed, using the relation for

@af from (4.18), to

ie�f�[�adx�b] = G�c
�a�b11dx�c : (4.26)

The component of this equation with �c 6= �a;�b leads to the following G-
ux constraint

G�c
�a�b11 = 0 ; �c 6= �a;�b ; (4.27)

whereas the �c = �a and �c = �b components simply reproduce the de�ning relation (4.11) for

��a.

To summarize, the Killing-spinor equation leads to the set of equations (4.18), (4.19),

(4.21), (4.25) together with the G-
ux constraints (4.23), (4.24), (4.27).

We are now in a position to brie
y check that our assumption of choosing  real does

not lead to inconsistencies. For this purpose it is enough to show that Im is constant,

which in particular means that a zero value can be maintained. Following [63], we use

the above equation for @a and obtain

ĝa
�b@a@�bIm = ĝa

�b@a@�b

�
 � � 

2i

�
=

p
2

48
ĝa

�b
�
@�b
�
e�3f=2�a

�
+ @a

�
e�3f=2��b

��
=

p
2

48
e�3f=2Dm�m : (4.28)

Employing Dm�m = 0, which can be obtained from the �eld equation for G, one es-

tablishes that Im is a harmonic function on a compact space and therefore has to be

constant.

4.3 Implications of the Warped Geometry

Let us now analyze the above equations in more detail. Notice, that up to now we were

not forced to specify whether we compactify on a CY2 or a CY3 { the complex dimension

n of the CYn entered as a free parameter.
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Arbitrary G-
ux parameters �; � are only compatible with a pure warp-factor descrip-

tion of the internal deformed Calabi-Yau in the 6-dimensional case with n = 2, as we will

now see. For n = 2 we obtain

@11f = �
p
2

12
ek=2�2f� ; (4.29)

which says, together with (4.18),(4.19) that

8@a = @af = �2@ab (4.30)

8@11 = @11f = �2@11b (4.31)

and implies 8 = f = k = �2b. Here the warp-factors depend on both xm and x11. For

n 6= 2 the @11f part receives a di�erent prefactor and does not allow for this conclusion.

Instead { as we will see explicitly for the case of n = 3 below { one has to set either (4.30)

or (4.31) to zero to obtain a consistent solution.

If we choose n = 3, we have

@11f = �
p
2

24
ek=2�2f� : (4.32)

Taking mixed derivatives of f and b this implies that @a@11f = 0. A non-trivial solution

is either obtained from @11f = 0 or @af = 0. The implications of these two cases will be

analyzed in more detail in the following two sections.

4.4 Transition from Strong to Weak Coupling

In this section, we will present the connection to the heterotic string with torsion. The

choice, @11f = 0, requires � = 0; �a 6= 0 and leads to

8 (xm) = f(xm) = k(xm) = �2b(xm) (4.33)

without any dependence on x11. The required sort of 
uxes is obtained by solving the

Bianchi-identity dG =
Pm

i=1 Æ(x
11� zi)Si(xm)^dx11 with m sources by G =

Pm
i=1 Æ(x

11�
zi)Pi(x

m) ^ dx11 with dPi = Si. This type of geometry seems tailor-made for a smooth

transition to the weakly coupled heterotic string, since any x11 dependence is lost. Indeed,

we will now show that the heterotic M-theory relation between warp-factor and G-
ux

reproduces the corresponding relation (B.15) for the heterotic string with torsion.

The warp-factor belonging to the 4-dimensional external part multiplies the Minkowski-

metric { both in the string and the M-theory case { and is therefore �xed in the sense
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that one does not have to take into account further coordinate-reparameterizations for

a comparison. Let us therefore start with the relation between external warp-factor and

G-
ux by using (4.18) for @ab plus f = k = �2b and employing the de�nition of �a to

obtain

@a(e
�b) = �

p
2

3
Gab

b
11 : (4.34)

The contraction on the right-hand-side is with respect to ĝb�c. To compare M-theory

with string-theory [26] one has to perform an overall Weyl-rescaling involving the dilaton,

g�MN = e2�=3ĝMN , which brings us to the string-frame. Here we have

@a(e
�b) = �

p
2

3
e
2�
3 Gab

b
11 ;

ds2 = eb+
2�
3 ���dx

�dx� + : : : :

Finally, let us go over to the 10-dimensional Einstein-frame via gEAB = e��=2g�AB in which

we obtained the heterotic string relation between warp-factor and torsion. We thus arrive

at

@a(e
�b) = �

p
2

3
e
�
6Gab

b
11 ; (4.35)

ds2 = eb+
�
6 ���dx

�dx� + : : : ;

where again the contraction is performed with the metric of the actual frame, (gE)b�c. A

comparison of the above metric with the heterotic string metric (B.6) shows that we have

to identify 2� with b + �=6, which gives

b =
11

6
� : (4.36)

If we use this in (4.35), we receive

@a(e
�2�) = �4

p
2

11
Gab

b
11 : (4.37)

Setting Gab
b
11 equal to Hab

b up to some constant normalization factor, we see that indeed

the relation between warp-factor and torsion of the heterotic string (see appendix B.2 for

relevant facts about the heterotic string with torsion and a derivation of the following

formula in that context)

@a(e
�2�) = �1

2
Hab

b : (4.38)
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can be reproduced from heterotic M-theory includingG-
ux. This represents a non-trivial

check on the duality between the strongly and the weakly coupled heterotic regions in the

presence of torsion.

The choice of 
uxes treated in this subsection leads to a Calabi-Yau volume which

does not depend on x11. Moreover due to the deformation with the warp-factor ef the

K�ahler-form is no longer closed. In addition the Ricci-tensor for the internal six-manifold

becomes

Ra�b(e
fgmn) = Ra�b(gmn) + ga�bg

c �d (2@cf@ �df + @c@ �df)� @af@�bf + 2@a@�bf ; (4.39)

where the derivatives of f are determined through theG-
ux by (4.18). ThoughRa�b(gmn) =

0 due to the Ricci-
atness of the initial Calabi-Yau space, we recognize that in the presence

of G-
ux the internal six-manifold also looses its property of being Ricci-
at.

4.5 The Internal Volume Dependence on the Orbifold Direction

The second choice, @af = 0, requires � 6= 0; �a = 0 and implies

4 (x11) = f(x11) = k(x11) = �b(x11) (4.40)

without any xm dependence. The necessary non-vanishing Ga�bc �d and vanishing Gab�c11 are

obtained by solving the Bianchi-identity dG =
Pm

i=1 Æ(x
11 � zi)Si(x

m) ^ dx11 through28
G =

Pm
i=1�(x

11 � zi)Si(x
m). Again Si(x

m) is a closed 4-form representing the strength

of the ith magnetic source.

The volume of the Calabi-Yau, as measured by the warped metric, is given by V (x11) =R
CY3

d6x
p
ĝ = e3f

R
CY3

d6x
p
g. The decisive part, which is responsible for the variation

of the volume with x11, is the factor e3f . For its determination, we use f = k and the

equation for @11f

@11(e
3f=2) = � 1

8
p
2
� (4.41)

which is solved by

e3f(x
11)=2 = e3f(0)=2 � 1

8
p
2

Z x11

0

dz �(z) : (4.42)

28The Heaviside step-function �(x) is de�ned by �(x < 0) = 0 and �(x > 0) = 1.
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Notice that � does not depend on the Calabi-Yau coordinates, which can be easily seen

by acting with @a on (4.41) and taking into account that @af = 0. Hence the variation of

the Calabi-Yau volume with x11 is given by

V (x11) =
�
1� 1

2
p
2
!a

�b!c
�d

Z x11

0

dz Ga�bc �d(x
m; z)

�2
V0 ; (4.43)

where V0 =
R
CY3

d6x
p
g is the Calabi-Yau volume in the initial metric. The integration

constant e3f(0)=2 has been set to 1 to obtain a smooth transition from V (x11) to V0 in case

that we turn o� any G-
ux. The only assumption about the full heterotic M-theory that

we will have to make is that the sources can still be localized at x11 = zi in the eleventh

direction, i.e. that the Bianchi-identity possesses the form dG =
Pm

i=1 Æ(x
11� zi)Si(xm)^

dx11. Its solution G =
Pm

i=1�(x
11 � zi)Si(x

m) then leads to the following behaviour of

the Calabi-Yau volume

V (x11) =
�
1�

mX
i=1

(x11 � zi)�(x
11 � zi)Si

�2
V0 ; (4.44)

where Si = 1
2
p
2
!a

�b!c
�d(Si)a�bc �d(x

m). Thus we get the remarkably simple result that in the

full treatment the linear behaviour of the �rst order approximation gets replaced by a

quadratic behaviour.

For the simplest case with only the two boundary sources at z1 = 0; z2 = d, we obtain

� = 8
p
2�(x11)S1 with S1 representing the magnetic source of the \visible" boundary.

This gives the warp-factor

e3f(x
11)=2 = 1� S1x11 ; (4.45)

which leads to the following volume dependence (see �g.6)

V (x11) =
�
1� S1x11

�2
V0 : (4.46)

Here and in the following the right boundary will not be depicted { it would cut o� the

solution at some �nite distance d. For phenomenological reasons one should place the

right boundary at such a distance d that hV i = 1
d

R d
0
dx11V (x11) amounts to the correct

value for Newton's Constant via (4.1). To determine the actual value of S1 (and thereby

the Newton Constant related to this length) however would require the knowledge of

heterotic M-theory to all orders in �2=3. It is only here where the complete information is

needed. In the phenomenological relevant case where S1 > 0, a zero volume develops (in

accordance with the leading order result) at x110 = 1=S1. One can now exploit (4.1) the
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V0

0 x11lin
x11

x110

V (x11)

Figure 6: The quadratic dependence of the Calabi-Yau volume on the orbifold direction in

the full geometry and its linear approximation to order �2=3. If higher order contributions

are negligible then the linear approximation is valid for small x11. The left boundary

corresponds to the \visible" world.

other way round to derive the distance d between both boundaries which would amount

to the correct value for Newton's Constant

d = x110

"
1�

�
1� 3�2

16�GN

S1
V0

�1=3
#
: (4.47)

Note the di�erence between d and the zero position x110 . More graphically, if
R d
0
dx11V (x11) >

V0x
11
0 =3 then d > x110 while for

R d
0
dx11V (x11) � V0x

11
0 =3 one obtains d � x110 .

Moreover { as becomes clear from �g.6 { with the quadratic volume behaviour tiny

quantum e�ects are now able to resolve the zero volume as opposed to the linearized case

(cf. in this respect also [75],[76]). The full warp-metric reads in terms of the volume

ds2 =

�
V

V0

��1=3
���dx

�dx� +

�
V

V0

�1=3

glm(x
n)dxldxm +

�
V

V0

�1=3

dx11dx11 : (4.48)

Finally, one would like to see the transition of the full expression for V (x11) to the

linearized expression which was derived in [63]. For this purpose one has to expand the

sources into a power-expansion in �2=3. If we are only interested in sources coming from

the boundary, then we know that they start at the order �2=3

S1 = S(1)
1 �2=3 + S(2)

1 �4=3 + : : : : (4.49)

For the �rst order approximation, we have to truncate this series after the �rst term,

which indeed gives rise to a linear volume dependence

V (x11) =
�
1� 2S(1)

1 �2=3x11
�
V0 +O(�4=3) (4.50)
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a)

V0

0
x11

x110

V (x11)

zM5

b)

V0

0
x11

V (x11)

zM5 ~x110

Figure 7: The �gure shows the volume dependence in the presence of an additional M5-

brane at zM5. In a) the situation for x110 < ~x110 < zM5 is depicted while b) shows the

behaviour for x110 > ~x110 > zM5.

as found in [63]. If we now read o� the zero of V (x11), we get x11lin = 1=(2S(1)
1 �2=3) in the

linearized case, while the full solution gives a di�erent �rst oder zero

x110 = 1=(S(1)
1 �2=3) +O(�4=3) : (4.51)

This little puzzle is resolved by noticing that the linear approximation (4.50) holds true

only as long as S(1)
1 �2=3x11 � 1 (plus similar conditions for the higher S(i)

1 ; i � 2 contri-

butions). Because at the position of the zero, we face S(1)
1 �2=3x11lin � S(1)

1 �2=3x110 = 1, the

linear approximation (4.50) breaks down and cannot be used to determine reliably the

zero of V (x11). Therefore, in contrast to the �rst order analysis, the actual zero at the

�rst order level becomes larger by a factor 2

x110 = 2x11lin : (4.52)

Let us brie
y consider the case with three sources { the two from the boundaries

S1;S2 plus a further one SM5 from an M5-brane placed in between at zM5. With � =

8
p
2[�(x11)S1 +�(x11 � zM5)SM5] we get a warp-factor

e3f(x
11)=2 = 1� x11S1 � (x11 � zM5)�(x

11 � zM5)SM5 (4.53)

and the following volume dependence (see �g.7)

V (x11) =

(
(1� S1x11)2 V0 ; x11 < zM5�

1� (S1 + SM5)x
11 + SM5zM5

�2
V0 ; x11 � zM5

(4.54)

The zero of the parabola for x11 � zM5 lies at ~x
11
0 = (1+SM5zM5)=(S1+SM5). Depending

on whether x110 < ~x110 < zM5 or x110 > ~x110 > zM5 we obtain a di�erent behaviour for
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V (x11). In the M5-brane case we have two additional parameters, SM5 and zM5, which

have an in
uence on hV i and therefore via (4.1) on Newton's Constant.

Another interesting point is that for � 6= 0; �a = 0 the internal six-manifold remains

K�ahler. This is due to the fact that the warp-factor f does not depend on xm. Further-

more, we see from the general formula (4.39) for the Ricci-tensor that in this case the

six-manifold also keeps its property of being Ricci-
at. In other words the six-manifold is

still a Calabi-Yau space with volume depending on the \parameter" x11.

4.6 The E�ective Distance-Modulus Potential

In this section we are going to derive the e�ective potential for the modulus d, which

describes the distance between the two boundaries of heterotic M-theory. We saw previ-

ously that for the case with 
uxes � 6= 0; �a = 0 we gain a quadratic behaviour in x11

for the Calabi-Yau threefold volume. The value of its zero is closely linked to the value

of the 4-dimensional Newton Constant. Hence, one has to ask whether such value for d

could be stabilized by means of an e�ective potential, which results from integrating the

eleventh dimension out of the heterotic M-theory action. For the relevant background we

have to use the above derived warped geometry.

Let us start with the bosonic action of 11-dimensional heterotic M-theory [46], which

under the condition that only the G-
ux component Ga�bc �d does not vanish reads (i = 1; 2)

S = S11 + Si10 ;

S11 =

Z
d11x

p
ĝ

�2

�
�R(ĝMN )

2
� 1

48
Ga�bc �dG

a�bc �d

�
; (4.55)

Si10 =
1

(4�)5=3�4=3

Z
d10x

q
ĝ(10)i

�
�1

4
trFa�bF

a�b

�
:

The Measure-Factors

For the case with varying volume we found in the last section for the warp-factors the

relation f(x11) = k(x11) = �b(x11). This allows to express pĝ = e�3b=2
p
gCY3, where gCY3

denotes the determinant of the original Calabi-Yau threefold without warp-factors. The

condition to preserve supersymmetry gave

@11(e
�3b=2) = �

p
2

16
� ; (4.56)
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which together with � = 8
p
2�(x11)S1 (note that for the case under consideration, we

have @a� = 0 which means S1 is a constant) leads to

e�3b(x
11)=2 = 1� S1x11 ; (4.57)

thus determining the measure-factor asp
ĝ = (1� S1x11)pgCY3 : (4.58)

Analogously the boundary measures are given by

q
ĝ(10)i = e�b(x

11=0;d)pgCY3 which leads

to q
ĝ
(10)
1 =

p
gCY3 ;

q
ĝ
(10)
2 = (1� S1d)2=3pgCY3 : (4.59)

The Curvature-Scalar

Next let us express the curvature-scalar of the warp-geometry

R(ĝMN) = ĝKL@M@M ĝKL � @K@LĝKL + �̂PKL�̂
Q
MN ĝPQ

�
ĝKLĝMN � ĝKM ĝLN

�
(4.60)

through the three warp-factors b; f; k and the initial Calabi-Yau curvature scalar. This

gives

R(ĝMN) = e�k
�
D @211b+

D(D + 1)

4
(@11b)

2 + 2n @211f +
2n(2n+ 1)

4
(@11f)

2

�
+ e�fR(gmn) ; (4.61)

where D represents the real dimension of the non-compact external spacetime, whereas

again n denotes the complex dimension of the internal Calabi-Yau n-fold. For our concrete

case with D = 4; n = 3 and f = k = �b plus a Ricci-
at Calabi-Yau manifold, we arrive

at

R(ĝMN) = eb
�
�2@211b+

31

2
(@11b)

2

�
: (4.62)

Using b = �2
3
ln j1� S1x11j, we �nally obtain

R(ĝMN) =
50

9

(S1)2
(1� S1x11)8=3 : (4.63)
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The Field-Strengths

For the �eld-strength contractions one has to extract the x11 dependence out of the index-

contractions

Ga�bc �dG
a�bc �d = e�4f ( ~S1)a�bc �d( ~S1)

a�bc �d =
1

(1� S1x11)8=3 (
~S1)a�bc �d( ~S1)

a�bc �d (4.64)

for x11 � 0, where the tilde on top of the S1's indicates that now the contractions on S1

are performed with the initial metric without warp-factors. Similarly

Fa�bF
a�b = e�2f(x

11=0;d)Fa�bg
a�cg

�bdF�cd =
1

(1� S1x11)4=3
~Fa�b ~F

a�b ; (4.65)

where again the tilde signals that the contractions on the indices are carried out with the

initial metric.

The E�ective Potential

Putting everything together, we can integrate out the eleventh dimension29 and obtain

S11 = � 3

S1

�
1

(1� S1d)2=3 � 1

�
1

�2

Z
d10x

p
gCY3

�
25

9
(S1)2 + 1

48
( ~S1)a�bc �d( ~S1)

a�bc �d

�
;

while the higher order boundary action results in the additional contributions

S1
10 = � 1

(4�)5=3�4=3

Z
d10x

p
gCY3

�
1

4
tr ~Fa�b ~F

a�b

�
(4.66)

S2
10 = � 1

(1� S1d)2=3 �
1

(4�)5=3�4=3

Z
d10x

p
gCY3

�
1

4
tr ~Fa�b ~F

a�b

�
(4.67)

Thus the e�ective potential for the distance-modulus d is given by

Ve�(d) = 1

(1� S1d)2=3 �
Z
d10x

p
gCY3

�
1

�2

�25
3
S1 + 1

16S1 (
~S1)a�bc �d( ~S1)

a�bc �d
�

+
1

�4=3

� 1

4(4�)5=3
tr ~Fa�b ~F

a�b
�
+O

�
1

�2=3

��
(4.68)

up to some d-independent constant. First of all there are two interesting features. All

contributions give the same d-dependence irrespective of whether they stem from the

bulk or the boundary. And furthermore the \coeÆcient" in square brackets only receives

positive contributions (with S1 > 0 motivated by the leading order analysis) { again

without di�erence between bulk or boundary terms. Since these features seem to be

29We work in the downstairs picture and employ
R d
�d

dx11 ! 2
R d
0
dx11.
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generic, we would suspect that the unknown higher order terms also enjoy these properties.

This is the reason why we have taken the full geometry in the above derivation and not

its leading order truncation right away. Thus the full e�ective potential will be expected

to read

Ve�(d) = 1

(1� S1d)2=3 � some positive number : (4.69)

It exhibits a large positive peak in the vicinity of the zero-position d � x110 . The in�nity

of the peak might be cured by quantum e�ects, which resolve the pole. Nevertheless, such

a potential indicates a destabilization of the two-boundary set-up. Namely a \hidden"

world to the left of x110 would be driven towards the weakly coupled heterotic string region,

while a \hidden" world beyond x110 would lead to a steady increase of d.

4.7 The Case with General Flux: Beyond Warped Geometries

If one wants to relax the constraint that either � or �a is zero (which we adopted up to

now), then one has to generalize the previous pure warped geometry to a geometry which

exhibits a deviation from the Calabi-Yau metric and is not describable by a warp-factor

alone. Such a generalization is e.g. needed if one wants to include e�ects like gaugino-

condensation. With such a generalized Ansatz

ds2 = ĝMNdx
MdxN (4.70)

= eb(x
W; x11)���dx

�dx� +
�
glm(x

n) + hlm(x
n; x11)

�
dxldxm + ek(x

W; x11)dx11dx11 ;

we will see that the inconsistency which arose for the warp-factor f if both � and �a were

present, disappears and instead leads to constraints on the internal spin-connection.

The CY3 metric split entails a corresponding split for the internal Vielbein ê
�l
m =

e
�l
m(x

n)+ f
�l
m(x

n; x11). Again, we will express the spin-connection through the one belong-

ing to the initial metric


����l(ê) =
1

2
ê m�l ê���@mb ; 
��� �11(ê) =

1

2
ê���ê

11
�11 @11b


l �m�n(ê) = 
l �m�n(e) + 

(d)
l �m�n(e; f) ; 
l �m �11(ê) =

1

2
ê 11
�11 (@11f �ml + ê m

�m ê
�l
l@11f�lm) (4.71)


11�l �m(ê) = ê
l

[�l
@j11jf �m]l ; 
11�l �11(ê) = �

1

2
ê l�l ê �11;11@lk ; (4.72)

with all remaining terms vanishing. Now the deviation from the initial CY-geometry

is characterised by f
�l
m and 


(d)
l �m�n(e; f). Both go to zero if we turn o� the G-
uxes.

72



Employing again the covariant constancy DI� = (@I +
1
4

I �J �K(e)�

�J �K)� = 0 of the original

spinor-parameter, leads to

dxID̂I ~� =

�
� dxu@u +

1

4
dx�
�
�̂ l
� @lb+ �̂ 11

� @11b

�
+
1

4
dxl
�


(d)
lmn�̂

mn

+ 2
lm11(ê)�̂
m�̂11

�
+
1

4
dx11

�
�̂ l
11 @lk + 
11lm(ê)�̂

lm

��
~� : (4.73)

Again, specifying that our internal space consists of a Calabi-Yau times an interval, we

employ �̂11~� = e�k=2~� and �̂a~� = 0, �̂�a~� = 0 plus the Dirac-algebra f�̂a; �̂�bg = 2ĝa
�b to

obtain

dxID̂I ~� =

���
1

4


(d) a
la � 1

4


(d) �a
l�a � @l 

�
dxl +

�
1

4

 a
11a (ê)�

1

4

 �a
11�a (ê)� @11 

�
dx11

�

+

�
1

4
e�k=2@11b dx�

�
�̂� +

�
1

2
e�k=2
l�a11(ê)dxl � 1

4
e�k=2@�akdx11

�
�̂�a

+

�
1

4
@�ab dx�

�
�̂��a +

�
1

4

(d)

l�a�b
dxl +

1

4

11�a�b(ê)dx

11

�
�̂�a�b

�
~� : (4.74)

For the second part of the Killing-equation which consists of the contractions of �̂-matrices

with the G-
ux, it will be convenient to use the following abbreviations

G = ĝa
�bĝc

�dGa�bc �d (4.75)

Gm = ĝb�cGmb�c11 (4.76)

Gmn = ĝc
�dGmnc �d : (4.77)

In order to eventually extract the real and imaginary parts of the Killing-spinor equation,

we have to know their behaviour under complex conjugation, which is given by

G = G ; Ga = �G�a ; Ga
b = �G�a

�b : (4.78)

Analogously, to the treatment in the previous section, we then arrive at

dxI
�
�̂IJKLM � 8ĝIJ�̂KLM

�
GJKLM ~� =

�
3e�k=2 [�24G�adx

�a � 8Gadx
a + 4Gdx11]

+12Gdx��̂
� + 12

h
Gdx�a � 6G

�b
�adx�b + 4G�adx

11
i
�̂�a + 24e�k=2G�adx��̂

��a

+12e�k=2
�
2G�bdx�a � 3G�c

�a�b11dx�c
�
�̂�a�b

�
: (4.79)

With (4.74) and (4.79) we are then able to decompose the complete Killing-equation

(4.4) into its external, CY- and 11-components. Thus unbroken supersymmetry �nally
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translates into the following constraints on the spin-connection


(d) b
ab � 
(d)�b

a�b
=

2
p
2

3
e�k=2Ga (4.80)



(d) a

�b�c
= 0 (4.81)



(d) c

ab =

p
2

6
e�k=2

�
GdÆ

cd
ab + 3Gc

ab11

�
(4.82)


 a
11a (ê) = 
 �a

11�a (ê) (4.83)


b�a11(ê) = 
11ab(ê) = 0 (4.84)


ba11(ê) =

p
2

12
ek=2

�
GÆba � 6Gb

a

�
; (4.85)

where Æcdab = ÆcaÆ
d
b � ÆcbÆ

d
a. Additionaly, the solution to the Killing-spinor equation pro-

vides us with further equations, which determine the warp-factors and covariant-spinor

deviation in terms of the G-
ux parameters

@ab =

p
2

3
e�k=2Ga (4.86)

@11b = �
p
2

6
ek=2G (4.87)

@ak = �2
p
2

3
e�k=2Ga (4.88)

@a = �
p
2

12
e�k=2Ga (4.89)

@11 =

p
2

24
ek=2G : (4.90)

Similarly to the last section we obtain

8 (xm; x11) = k(xm; x11) = �2b(xm; x11) ; (4.91)

but this time a dependence on both xm and x11 is allowed. Note that this relation is in

accordance with the result of the �rst order approximation derived in [63].

The relation �uuv(ĝ) =
1p
ĝ
@v
p
ĝ between the Christo�el-symbols and the metric de-

terminant enables us to to �nd

@11
p
ĝCY3 =

p
ĝCY3

�
�uu11(ĝCY3�I)�

1

2
@11k

�
: (4.92)

Via the relation between the Christo�el-symbols and the spin-connection, ê�ux�
x
vw =

@v ê
�u
w + 
 �u

v �xê
�x
w, we get �

u
u11(ĝCY3�I)� 1

2
@11k = 
uu11(êCY3�I) and thereby

@11
p
ĝCY3 =

p
ĝCY3


l
l11(ê) ; (4.93)
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where we have used that 
11
1111(ê) = 0. Together with the constraint on 
ba11(ê), which

gives 
aa11(ê) = 
�a
�a11(ê) =

p
2
�
6+n
12

�
ek=2G (n = dimCCYn), we obtain ultimately

@11 ln
p
ĝCY3 =

p
2

�
6 + n

6

�
ek=2G : (4.94)

Employing the equation for @11b, we can integrate this equation to obtain the following

expression for the Calabi-Yau dependence on x11 (with n = 3)

V (x11) =

Z
CY3

d6x
p
ĝCY3 =

Z
CY3

d6xe�9b(x
11;xm)C(xm) ; (4.95)

where C(xm) arose as an integration constant by integrating (4.94) over x11. We see that

now the speci�cation of the sources simply by means of their location in the eleventh

direction is not enough to determine V (x11). This stems from the fact that G, which

determines the warp-factor b contains contractions with ĝa
�b which itself is x11 dependent.

Therefore the speci�cation Ga�bc �d / �(x11�zi) does not fully determine the x11 behaviour
of G. However, it is de�nitely true that a non-trivial V (x11) requires G 6= 0 and therefore

in view of (4.87) Ga�bc �d 6= 0.

Another interesting aspect of turning on both Ga�bc �d and Gab�c11 derives from the fact,

that we saw above how the 
uxes determine the internal spin-connection 
(ê). Now it

is well-known that the spin-connection determines the holonomy-group H of a manifold

through the path-ordered exponential of 
(ê) around a closed curve 


Pe
R



m(ê)dxm 2 H : (4.96)

This is an interesting further link between the physics of G-
uxes and the geometry

of the compacti�cation space. A complex 3-dimensional K�ahler-manifold exhibits U(3)

holonomy. But we already saw above that turning on a G-
ux in general ruins the

closedness property of the K�ahler-form { therefore the new deformed manifolds are no

longer K�ahler. This means that we do expect a more general holonomy than U(3).
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5 A Small Cosmological Constant and Warped Ge-

ometry

After having explored warped compacti�cations in the framework of heterotic M-theory

in the previous chapter, we will now deal with warped geometries �rst in �ve dimensions

and then use an embedding into 10-dimensional IIB-/F-theory. The main focus in this

chapter lies on a low-energy mechanism { exploiting a warped geometry { to obtain a

small realistic value for the cosmological constant.

The enormous smallness of the four-dimensional cosmological constant as constrained

from cosmological and astronomical measurements by [82]

j�4j . 10�47GeV4 � (1:8meV)4 ; (5.1)

is still not understood in a satisfactory way from a theoretical point of view. The energy-

regime of the upper bound of some meV is rather unnatural in particle physics and a more

common characteristic of condensed matter phenomena. However, it has to be noticed

that the upper bound on the electron neutrino mass can be as low as 1meV [83], which

comes strikingly close to this value. If experiment will eventually show that both numbers

are indeed of the same order, this would be an intriguing hint to some deeper relation

between the Standard Model and Gravity.

The hope that eventually a consistent theory of quantum gravity might be able to

explain the vexing smallness has not been ful�lled yet, as the only consistent candidate,

string- or M-theory, relies so heavily on exact supersymmetry. Since the tininess of the

cosmological constant is measured at energies where Bose-Fermi degeneracy is seen to

be violated, a supersymmetry-breaking mechanism would be needed which nonetheless

should not give rise to a large �4. An interesting M-theory inspired proposal has been

made in [84]. The idea is that in three dimensions, supersymmetry enforces a zero cosmo-

logical constant but can exist without matching bosonic and fermionic degrees of freedom.

If such a three-dimensional theory contains a modulus similar to the dilaton of string-

theory, one could expect that at strong coupling a new dimension will open up. The hope

would be that during the transition from weak to strong coupling the properties of a zero

cosmological constant and in addition Bose-Fermi non-degeneracy are conserved.

Whereas in the very early universe a non-vanishing cosmological constant is welcome

during the phase of in
ation, we face the problem to understand the smallness of the cos-

mological constant in our low-energy world, nowadays. Therefore, we shall take the point
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of view in this paper, that there should also exist a rationale to understand the adjustment

of the cosmological constant to tiny values not only by taking refuge to a Quantum Grav-

ity description valid at Planck-energies but also by employing merely degrees of freedom

which are available at low energies.

Furthermore, we shall adopt the view that our four-dimensional world consists of a

thick wall, embedded in some higher-dimensional partially compacti�ed space. Conceiving

our world as being located on a type IIB string-theory D3-brane in a ten-dimensional

ambient space allowed to attack such fundamental problems as gauge and gravitational

coupling uni�cation or the Standard Model hierarchy problem from completely di�erent

point of views (see [102] and references therein) than the traditional technicolor or low-

energy supersymmetry approaches. In a T-dualized type I string scenario, where two to

six internal compact dimensions orthogonal to the 3-brane are chosen much larger than the

remaining compact dimensions, one is able to lower the fundamental higher-dimensional

Planck scale down to the TeV-scale [30]. This necessitates the large internal dimensions

to be as large as 1mm resp. 1 fermi for two resp. six large internal dimensions. Most

pronounced in the case of two large dimensions, this leads to another hierarchy between

the new fundamental TeV-scale and the compacti�cation scale � � ~c=1mm � 10�4eV.

This drawback could be overcome by considering not a direct product structure for the

background space-time but a warped metric instead. In particular, the warped metric of

a slice of an AdS-space suspended between two four-dimensional domain walls o�ers a

solution to the strong part of the hierarchy problem [103].

In [104] it has been shown how to stabilize the modulus, which describes the distance

between the two walls, at a value of 10-50 Planck lengths. This is just the value which

is compatible with the mentioned solution of the hierarchy problem. It remains to relax

the �ne-tuning condition between the bulk cosmological constant and the brane-tensions.

Attempts in this direction have been undertaken recently [90],[91],[92]. However, the so-

lution to the hierarchy problem cannot be maintained in these approaches as the solutions

exhibit metrics that do have polynomial instead of exponential behaviour. The metrics

vanish at two �nite points in the extra dimension, thereby cutting o� the in�nite range

through singularities. However, the nature of these singularities remains obscure.

A general review of the cosmological constant problem can be found in [85]. See

[86],[87] for more recent reviews on the topic. [88] provides a recent discussion of the

cosmological constant problem from the point of view of String-Theory). Apparently,

lately there has been a noticeable increase in the e�orts to solve the cosmological constant
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problem [89],[90],[91],[92],[93],[94][95],[96],[97],[98],[99],[100],[101].

5.1 The E�ective Cosmological Constant

Let us start by recapitulating how the vanishing of the e�ective four-dimensional cosmo-

logical constant comes about in the Randall-Sundrum (RS) scenario [103]. Whenever we

are given a four-dimensional Poincar�e-invariant 
at metric ds24 = ���dx
�dx� , we deduce

from the D=4 Einstein �eld equation

R�� � 1

2
Rg�� = 8�G�4g�� ; (5.2)

that this implies �4 = 0. Since upon integrating out the �fth dimension in the RS set-up,

we are left precisely with a Poincar�e-invariant 
at metric, we conclude that the e�ective

�4 in this scenario has to vanish. Subsequently, we will analyze in more detail how this

is achieved precisely.

The RS-model [103] consists of two walls located at the �xed points of an S1=Z2

orbifold in the �fth direction and a bulk gravitational plus cosmological constant part

in between. The Planck-brane, on which the four-dimensional graviton is localized, sits

at the �rst �xed-point, x5 = 0 of the Z2-action, whereas our four-dimensional world is

supposed to be placed on the SM-wall at x5 = �r, the second �xed-point. It is only this

latter wall on which the hierarchy problem can be solved by means of the exponential

warp-factor in the Anti-de Sitter bulk geometry. Concerning the interaction between the

walls and bulk gravity, the dominant contribution comes from the wall tension term in

the e�ective �eld theory on the wall [105]. Hence, if one is interested in a situation where

the walls are close to their ground states, it is reasonable to neglect gauge-�elds, fermions

and scalars on them. Taking this into account the RS-Lagrangean30 reads [103]

SRS = �
Z
d4x

Z �r

0

dx5
�p

G
�
M3R + �

�
+

q
g
(4)
P l TP lÆ(x

5) +

q
g
(4)
SMTSMÆ(x

5 � �r)

�
: (5.3)

As we will see in the later computation, it is important to just integrate the bulk piece

over the interval31 [0; �r] (or rather from �� to �r + � with � in�nitesimal to incorporate

the delta-function sources on the boundaries properly) in order to �nd a vanishing �4.

30Subsequently, we will adopt General Relativity conventions as, e.g. used in [106].
31This is analogous to the downstairs approach in heterotic M-theory [46], in which there is an analogous
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The four-dimensional metrics g
(4)
SM ; g

(4)
P l are the pullbacks of the bulk metric to the two

domain-wall world-volumes. Adopting the Ansatz

ds2 = e�A(x
5)���dx

�dx� + (dx5)2 ; (5.4)

the Einstein equation results in

(A0)2 = � 1

3M3
� ; A00 =

1

3M3

�
TP lÆ(x

5) + TSMÆ(x
5 � �r)

�
: (5.5)

The solution to the �rst equation of (5.5) is given by

A(x5) = �kx5 ; k �
r
��
3M3

; (5.6)

where the integration constant has been set to zero for it can be absorbed into a rescaling

of the x� coordinates. To respect the imposed Z2 symmetry, we have to take

A(x5) = �kjx5j : (5.7)

In the following, we will choose the plus-sign which allows for a solution of the hierarchy

problem on the SM-wall. Noting that jx5j00 = 2Æ(x5), we rewrite the solution in an

expanded form as

A(x5) =
1

2
k
�jx5j � jx5 � �rj�+ 1

2
k�r ; 0 � x5 � �r (5.8)

in order to satisfy the second equation of (5.5) with

TP l = �TSM = 3M3k : (5.9)

Let us now determine the four-dimensional e�ective action by integration over the �fth

dimension and start with the Einstein-Hilbert term of the bulk action. For this purpose,

consider �rst the general D-dimensional case with metric

ds2 = GMNdx
MdxN

= g(D�1)�� dx�dx� + (dxD)2 = f(xD)g��(x
�) dx�dx� + (dxD)2 ; (5.10)

orbifold-procedure for the eleventh direction. In the alternative upstairs approach, one would integrate

the Lagrangean density over the full circle but in addition has to place a factor of 1=2 in front of the

integral due to the Z2 symmetry of the action.

79



where �; � run over 1; : : : ; D � 1 and M;N over 1; : : : ; D � 1; D. The D-dimensional

curvature scalar can then be decomposed in the following way into the (D�1)-dimensional
curvature scalar plus additional terms32 depending exclusively on xD

R(G) =
1

f
R(g) +

1

4
(D � 1)

�
(D � 2)

�
(ln f)0

�2
+ 2(ln f)00 + 2

f 00

f

�
: (5.11)

In addition, we have to take into account a factor
p
G = f (D�1)=2

p
g in the measure of

the action integral. Specializing now to the RS case with D = 5 we take the metric

ds2 = GMNdx
MdxN = e�A(x

5)g��(x
�)dx�dx� + (dx5)2 ; (5.12)

with g�� = ��� + h�� , where h�� describes the four-dimensional graviton propagating on

the 
at background. This has to be plugged into the RS-action and integrated over the

�fth dimension. Using (5.11) with f(x5) = e�A(x
5), we get

SEH = �
Z
d4x

Z �r

0

dx5
p
GM3R(G)

= �
Z
d4x

Z �r

0

dx5f 2
p
gM3

�
R(g)

f
+ 3 [(ln f)0]2 + 2(ln f)00 + 2

f 00

f

�
= �

Z
d4x

p
gM3

Z �r

0

dx5
�
e�AR(g) + e�2A

�
5(A0)2 � 4A00�	 : (5.13)

Since we will come back to this formula afterwards, we note that up to this point it is

valid for any metric which is of the form (5.12). Choosing the RS-metric we receive

SEH = �
Z
d4x

p
gM3

�
R(g)

Z �r

0

dx5e�kx
5

+

Z �r

0

dx5e�2kx
5�
5k2

� 4k
�
Æ(x5)� Æ(x5 � �r)

� ��
: (5.14)

Concerning the delta-function integration, we imagine performing the integration actually

over the interval [��; �r + �] with � in�nitesimal. This full consideration of all the �xed-

point sources will be important to arrive at �4 = 0, �nally. Thus the Einstein-Hilbert

part gives

SEH = �
Z
d4x

p
g

�
M2

P lR(g)�
3

2
M3k

�
1� e�2k�r

��
; (5.15)

where M2
P l = 2M3

�
1� e�k�r

�
=k denotes the e�ective four-dimensional Planck-scale

squared. The second part of the reduction comprises the wall sources and the bulk

32By f 0 we mean df=dxD.
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cosmological constant term

SP l + SSM + S� = �
Z
d4xe�2A(�r)

p
gTSM �

Z
d4xe�2A(0)

p
gTP l

�
Z
d4x

Z �r

0

dx5e�2A(x
5)pg�

= �
Z
d4x

p
g

�
e�2k�rTSM + TP l + �

Z �r

0

dx5e�2kx
5

�

= �
Z
d4x

p
g

8><
>:e�2k�rTSM + TP l| {z }

3M3k(1�e�2k�r)

�3

2
M3k

�
1� e�2k�r

�9>=>;
= �3

2

Z
d4x

p
gM3k

�
1� e�2k�r

�
:

In conclusion, we see that due to the �ne-tuned values of the Planck- and SM-wall tensions

in terms of the bulk cosmological constant, both contributions to �4 add up to zero as

expected.

Suppose that the brane-tensions had not been �ne-tuned to their RS-values but were

merely chosen to be equal up to a minus sign. In other words suppose, that the bulk cos-

mological constant takes any non-positive value. Then, according to the above calculation

we expect a residual four-dimensional cosmological constant of the order of

�4 � (
p�3M3�� TP l)(1� e�2k�r) : (5.16)

Such an e�ective �4 constitutes a potential for the hitherto unconstrained modulus r. Its

minimum lies at r = 0 if we assume that
p�3M3� > TP l and would indeed drive �4 to

zero33 (If
p�3M3� < TP l, the minimum would lie at r = 1 which implies a runaway

behaviour). However, an estimation how close r has to come to zero to actually solve the

cosmological constant problem is rather disenchanting. If we take
p�3M3��TP l ' M4

P l,

k 'MP l and demand that �4 ' (1meV)4, we �nd an incredibly small r ' 10�125lP l, with

lP l = M�1
P l and the Planck-mass MP l = 1:2� 1019GeV. This, however, is a region, where

we surely cannot trust classical gravity as a reliable description.

Basically, the problem lies in the contribution of the 1 in the expression (5.16) for

�4. Without it, we could solve the cosmological constant problem in a way analogous

to the RS-mechanism of solving the hierarchy-problem, namely through the suppression

by an exponential factor. Removing the Planck-brane does not help, since with a single

33Note that in this limit the hierarchy-problem cannot be solved any longer.
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wall only the disfavoured r-independent contribution survives. Because it has its origin

in the integration of the RS-action over the region around x5 � 0, where the warp-factor

becomes 1, we have to �nd a con�guration of at least two walls, where the warp-factor can

never become 1 but instead keeps exponentially small throughout the whole x5 integration

region.

In general, �4 will be expressed by a product of a function containing � and the

wall-tensions times a geometrical factor re
ecting the geometry, in which the walls are

embedded. Thence we perceive that a small �4 can either be obtained by using an

appropriate ambient space geometry or alternatively by �nding some mechanism which

guarantees a small higher-dimensional � plus wall tensions. In this paper we will address

the �rst approach and leave the second to [107].

5.2 Our World as a Two Wall System with Small �4

We have seen in the last subsection that one should avoid placing a wall at the origin, the

one �xed point of the Z2 symmetry (since this gives rise to a Planck-scale �4). Instead, we

will place two walls at the Z2 mirror-points x
5 = �l; l. As we will see soon, the warp-factor,

which in essence determines the degree of suppression of �4, decreases exponentially with

l only if the two walls are located at Z2 mirror-points
34. It is remarkable that already a

length of l = 284 lP l can yield, in combination with an exponential suppression factor, the

observed value (upper bound) for �4 given in (5.1)

e�MPllM4
P l = 10�47GeV4 : (5.17)

The intriguing observation is, that the double of this length, 2l = 568 lP l, which will play

later on the role of the distance between the two walls, corresponds to the GUT-uni�cation

scale

2l = 568lP l $MGUT = 2� 1016GeV : (5.18)

34Note that in [99] time-dependent models with two walls were considered. However, due to the location

of one of the walls at the �xed-point x5 = 0, one has to distinguish between a visible and a hidden world

much as in the original RS-model. On the visible world the authors of [99] �nd an exponentially small

cosmological constant in �ve dimensions. However, upon deriving the e�ective four-dimensional �4 of the

whole set-up by integrating out the �fth dimension the huge cosmological constant of the hidden world

reappears and spoils the smallness of �4. It is the very property of gravity to penetrate the whole bulk,

which requires a small warp-factor throughout spacetime to obtain a small e�ective �4. This stands in

contrast to the discussion of the hierarchy problem along the lines of [103], which only relies on the local

warp-factor at the position of the wall.
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Figure 1: Our World as a Two Wall System with Thickness 2l = 1=MGUT.

This already indicates some deeper relationship between GUT-theories and the cosmolog-

ical constant or in other words gravity than traditionally assumed. The connection with

GUT-theories will be made more precise in subsection 5 and 6. Let us now visualize our

world as possessing a thickness 2l in the x5 direction, which when zoomed in consists of

two walls located at l and �l respectively (see �g.1). Both walls can only communicate

via gravity to each other. In order to save our world from precarious instabilities, we will

choose both wall-tensions as positive. Because the inter-wall distance is larger than the

Planck-length and even the string-length ls =
p
�0 � 10 lP l, it is justi�ed to describe the

whole set-up by the low-energy action

S = �
Z
d4x

Z
dx5

p
G
�
M3R(G) + �

�
�
Z
d4x

Z
dx5

�q
g
(4)
1 T1Æ

�
x5 + l

�
+

q
g
(4)
2 T2Æ

�
x5 � l

��
: (5.19)

Again g
(4)
1;�� and g

(4)
2;�� are the induced metrics arising from the pullback of GMN to the two

wall world-volumes. Choosing again the Ansatz (5.4), the Einstein �eld equations reduce

to (5.5) with the tension on the right-hand-side of the A00 equation given this time by

T (x5) = T1Æ
�
x5 + l

�
+ T2Æ

�
x5 � l

�
: (5.20)

In order to concentrate on the essential aspects of the suppression mechanism, we will

keep things as simple as possible in the following by choosing equal tensions T1 = T2 = T

for the walls. The case with unequal tensions will be treated in appendix C.
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The solution35 to the Einstein equation is given by

A(x5) =
k

2

��x5 + l
�� + k

2

��x5 � l
�� =

8><
>:

x5 � �l : �kx5
�l � x5 � l : kl

x5 � l : kx5
; (5.21)

together with the bulk cosmological constant

�(x5) =

8><
>:

�e ; jx5j > l

�e=4 ; jx5j = l

�i ; jx5j < l

=

8><
>:

�3M3k2 ; jx5j > l

�3M3k2=4 ; jx5j = l

0 ; jx5j < l

(5.22)

and the wall-tension

T = 3M3k : (5.23)

Note that the two terms of (5.21) are dictated by the choice of sources in (5.20) and

the symmetry of the set-up. Any further integration constant which could be added to

(5.21) is immaterial, since it can be absorbed into a rede�nition of the x� coordinates

describing the four-dimensional section of the �ve-dimensional con�guration. Again, the


at four-dimensional metric in the above Ansatz implies, as usual, a �ne-tuning between

the parameters � and T

�e = �1

3

T 2

M3
; �i = 0 : (5.24)

The function A(x5), which determines the warp-factor is displayed in �g.2. The corre-

sponding warp-factor e�A(x
5) is upper-bounded by e�kl throughout the whole �fth dimen-

sion. This is the basic reason why, in view of (5.17), the warp-factor will be capable of

suppressing any (induced from the higher-dimensional Riemann curvature scalar or ac-

tually bulk) Planck-size cosmological constant down to the observed value of 10�47GeV4,

if k takes its natural value at MP l. From a low-energy (energy far below MGUT) point

of view, we would regard the distance 2l between both walls as too small to recognize

them as two separate walls. Such a low-energy observer would realize one wall with tiny

thickness and a geometry which consists of two slices of Anti-de Sitter spacetime directly

glued together. For her/him the graviton would appear localized on a single thick wall as

described in [29].

35In case that we work on a circle and identify �l � l, the solution will only be given by the restriction

to �l � x5 � l.
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Figure 2: The function A(x5) determining the warp-factor.

The next task is again the determination of the e�ective four-dimensional action by

integrating out the x5 coordinate for the metric background

ds2 = e�A(x
5)g��(x

�)dx�dx� + (dx5)2 : (5.25)

Along the same lines as above for the RS-case and by employing (5.13), we get

SEH = �
Z
d4x

p
gM3

�
R(g)

Z 1

�1
dx5e�A +

Z 1

�1
dx5e�2A

�
5(A0)2 � 4A00��

= �e�kl
Z
d4x

p
gM3

(
2R(g)

h1
k
+ l
i
� 3e�klk

)
: (5.26)

For the other terms we arrive at

SSM1
+ SSM2

+ S� = �e�2kl
Z
d4x

p
g

�
2T +

�e
k

�
: (5.27)

Pulling out an overall factor of e�kl in front, the �nal e�ective action reads

SEH + SSM1
+ SSM2

+ S�

= �e�kl
Z
d4x

p
g

(
2M3R(g)

h1
k
+ l
i
+ e�kl

h
� 3M3k + 2T +

�e
k

i)
: (5.28)

At the classical level an overall constant multiplying the whole action is irrelevant { it

drops out of the classical equations. If we regard the cosmological constant problem as a

low-energy one (since it is here where experiments contradicting theoretical expectations

are carried out), quantum gravitational e�ects should not play a role and a classical

description of gravity suÆces. Unlike quantum gravitational e�ects, quantum e�ects of
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the strongly, weakly or electromagnetically interacting �elds located on the walls may

become important already at low-energies. They can be included and merely result in a

renormalization of the wall-tension T . With this in mind, let us drop the overall scale-

factor and �nally arrive at the e�ective action

SD=4 = �
Z
d4x

p
g
�
M2

e�R(g) + �4

	
; (5.29)

with the e�ective four-dimensional Planck-scale Me� and the four-dimensional cosmolog-

ical constant �4 given by36

M2
e� = 2M3

h1
k
+ l
i

(5.31)

�4 = e�kl
h
� 3M3k + 2T +

�e
k

i
: (5.32)

Note the huge suppression-factor e�kl multiplying the whole e�ective cosmological con-

stant, which is essential for our proposition of achieving the observed value for �4. One

can now show easily, that when the above obtained values (5.22),(5.23) for T;�e, which

correspond to the special 
at solution g��(x
�) = ��� for the four-dimensional metric, are

substituted in the derived e�ective action, we arrive at a zero �4. This serves as a check on

the derivation, since a 
at four-dimensional metric, caused by the �ne-tuned parameters,

must necessarily entail a vanishing four-dimensional cosmological constant.

Let us now restrain from the restriction of �ne-tuning the parameters and allow for

generic values of the wall-tension and the cosmological constant, i.e. we want to suspend

the �ne-tuning constraints given by (5.24). Let us assume for the moment that the

backreaction of the non-�netuned parameters will leave the warp-factor intact (the full

backreaction is included in the next section). Lifting the �ne-tuning then corresponds to

a non-trivial four-dimensional metric g�� 6= ��� in the Ansatz

ds2 = e�A(x
5)g��dx

�dx� + (dx5)2 : (5.33)

Generically we want to choose k ' MP l, T ' M4
P l, �e ' �M5

P l and furthermore the

fundamental �ve dimensional Planck-scaleM 'MP l. Furthermore, we have to remember

to reintroduce �i. Since �i has been absent in the above solution, we have to take refuge

to the more general case with unequal tensions, where a non-vanishing �i shows up. The

36If we worked on a circle x5 2 [�l; l] with �l � l, we would obtain

M2
e� = 2M3l ; �4 = e�kl(2T + 2l�i) (5.30)

with likewise exponentially suppressed �4.
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corresponding expression for the four-dimensional e�ective cosmological constant (C.9)

can be found in appendix C. If we take of it the limit of coinciding tensions (or equivalently

k12 = k1 � k2 = 0) but leave �i free, we obtain

�4 = e�kl
h
� 3M3k + 2T +

�e
k

+ 2l�i

i
: (5.34)

To guarantee that 2lj�ij � M4
P l, we have to choose j�ij � (3 � 1018GeV)5, which still

seems to be quite generic. We then recognize from (5.34), that the suppression through the

exponential factor is suÆcient to bring the various contributions to the four-dimensional

cosmological constant down to its observed value (5.1) by means of (5.17).

The e�ective four-dimensional Planck-scale Me� ' 24MP l comes out slightly too high.

It can however be easily brought down, e.g. to Me� ' MP l, if we choose the fundamental

scale as M ' 1:5 � 1018GeV, which is close to the traditional string-scale Ms = 1=
p
�0 and

may be considered as a hint to a stringy origin of the set-up.

5.3 Including the Backreaction of Non-Finetuned Parameters

In this section we want to include the full backreaction on the warped geometry arising

through the lifting of the �netuning. To this aim, we have to determine the resulting

5-dimensional geometry for general non-positive �e � 0 and positive T > 0. Let us start

with a D-dimensional warped geometry

ds2 = GMNdx
MdxN = f(xD)g��(x

�)dx�dx� + (dxD)2 ; (5.35)

with �; �; � = 1; : : : ; D � 1 and the warp-factor f(xD). The induced metric on a (D �
1)-dimensional section de�ned by xD = const, will be denoted by g

(D�1)
�� (x�; xD) =

f(xD)g��(x
�). Eventually, we want to solve the Einstein equation to determine the lower-

dimensional �4 for the case D = 5. Therefore, we decompose the D-dimensional Ricci-

tensor RMN into its � and D components

R��(G) = R��(g) +
1

4
g��

�
2f 00 + (D � 3)f [(ln f)0]2

�
R�D(G) = 0 (5.36)

RDD(G) =
1

4
(D � 1)

�
2
f 00

f
� [(ln f)0]2

�
:
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This allows to decompose theD-dimensional Einstein-tensorEMN (G) = RMN�1
2
R(G)GMN

as

E��(G) = E��(g) + g��
(D � 2)

2

��
1� (D � 1)

4

�
f [(ln f)0]2 � f 00

�
E�D(G) = 0 (5.37)

EDD(G) = � 1

2f
R(g)� (D � 1)(D � 2)

8
[(ln f)0]2 :

Let us now restrict to D = 5, where the expressions simplify to

E��(G) = E��(g)� 3

2
g��f

00

E�5(G) = 0 (5.38)

E55(G) = � 1

2f
R(g)� 3

2
[(ln f)0]2 :

For the action (5.19) specifying the set-up, the gravitational sources consist of a non-

positive bulk cosmological constant �(x5) � 0 and walls with tension T placed at x5 = l

and x5 = �l, such that the energy-momentum tensor reads

TMN = ��(x5)GMN � T
�
Æ(x5 + l) + Æ(x5 � l)

�
g(4)�� Æ

�
MÆ

�
N : (5.39)

Decomposing the 5-dimensional Einstein-equation, EMN(G) = �TMN=(2M
3), with the

help of (5.38) into its � and 5 components, we receive from the �� part the 4-dimensional

Einstein-equation

E��(g) =

�
3

2
f 00 +

f

2M3

�
�(x5) + TÆ(x5 + l) + TÆ(x5 � l)

��
g�� : (5.40)

From the 55 part follows an expression for the 4-dimensional curvature scalar

R(g) = �f
�
3 [(ln f)0]2 +

�(x5)

M3

�
; (5.41)

whereas the �5 part is satis�ed trivially. Contraction of E��(g) with g
�� gives E�

�(g) =
3�D
2
R(g)! �R(g) and therefore leads to the following consistency equation among (5.40)

and (5.41)

2
f 00

f
� [(ln f)0]2 = � 1

3M3

�
�(x5) + 2TÆ(x5 + l) + 2TÆ(x5 � l)

�
: (5.42)

It is evident that the right-hand-sides of (5.40) and (5.41) must be piecewise constant

with respect to x5, since both left-hand-sides are at least piecewise independent of x5. This
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means that the 4-dimensional sections �4, de�ned by x5 = const, must be spacetimes of

constant curvature. For R(g) < 0 we have de Sitter (dS4) and for R(g) > 0 Anti-de Sitter

(AdS4) spacetime. Since this already determines the solution to the Einstein equation

up to a scalar quantity, the equations (5.40),(5.41),(5.42) become linear dependent and it

suÆces to solve only two of them.

When we foliate the 5-dimensional spacetime into sections �4, we see that the Einstein-

equations (5.40),(5.41) derive from the following 4-dimensional action on �4

SD=4(x
5) = �

Z
�4

d4x
p
g
�
M2

e�R(g) + �4(x
5)
�

(5.43)

if we make the following identi�cations37

3

2
f 00 +

f

2M3

�
�(x5) + TÆ(x5 + l) + TÆ(x5 � l)

�
=

�4(x
5)

2M2
e�

(5.44)

�f
�
3 [(ln f)0]2 +

�(x5)

M3

�
= �2�4(x

5)

M2
e�

: (5.45)

HereMe� is de�ned as the e�ective Planck-scale, obtained by integrating the 5-dimensional

action (5.19) over x5

M2
e� =M3

Z
dx5f(x5) : (5.46)

The Einstein equations (5.40),(5.41) now become replaced by (5.44),(5.45).

To recognize the relation between the cosmological constant �4(x
5) on sections �4 and

the �nal e�ective �4 obtained by integrating out the �fth direction of (5.19), we note that

�4 is given by

�4 =

Z
dx5f 2

�
M3
�
[(ln f)0]2 + 4

f 00

f

�
+
�
�(x5) + TÆ(x5 + l) + TÆ(x5 � l)

��
: (5.47)

Using (5.44) for the second term in square brackets, we obtain the relationship

�4 = f 0f jx5R
x5L

+ h�4(x
5)i ; (5.48)

37The 4-dimensional sections obey

E��(g) =
�4(x

5)

2M2
e�

g�� ; R(g) = �2�4(x
5)

M2
e�

;

with dS4 : R(g) < 0;�4(x
5) > 0 and AdS4 : R(g) > 0;�4(x

5) < 0.
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where x5R; x
5
L denote the right and left boundary of the x

5 integration region and the mean

is de�ned by

h�4(x
5)i �

R
dx5f�4(x

5)R
dx5f

: (5.49)

Since we will see that the total derivative contribution f 0f jx5R
x5L

will vanish in our case of

interest, we learn that the 4-dimensional e�ective action SD=4 is related to the sectionwise

action by taking the mean, SD=4 = hSD=4(x
5)i.

Since only two of the equations (5.42),(5.44),(5.45) are independent, it is most conve-

nient to choose (5.42) to determine the warp-factor in terms of the fundamental \input"

parameters �(x5);M and T . In a further step, we will then obtain �4(x
5) from (5.45).

Adopting the warp-factor Ansatz f = e�A(x
5) and denoting Y (x5) = A0(x5), we can write

(5.42) as

�2Y 0 + Y 2 +
�(x5)

3M3
= � 2T

3M3

�
Æ(x5 + l) + Æ(x5 � l)

�
; (5.50)

With the signature-function de�ned by sign(x) = �1 if x � 0 and sign(x) = 1 if x > 0,

the solution to this di�erential equation is given by

Y (x5) = �k
2

�
sign(x5 + l) + sign(x5 � l)

�
coth

�
k

4

�jx5 + lj+ jx5 � lj � 2a
��

(5.51)

together with the constraint on �(x5) with arbitrary but non-positive �e � 0

�(x5) =

8><
>:

�e ; jx5j > l

�e=4 � 0 ; jx5j = l

0 ; jx5j < l

(5.52)

and the wall-tension

T

3M3
= k coth

�
k

2
(a� l)

�
: (5.53)

Here, k =
p��e=3M3 and a is an integration constant. The last relation which de-

termines a through the bulk cosmological constant �e and the wall-tension T has been

gained by satisfying the boundary conditions at the wall-locations, which are encoded in

the Æ-function terms in (5.50). A matching of the Æ-function terms arising from Y 0 with

those proportional to T leads to (5.53). The symmetry of the set-up { caused by the

equality of both wall-tensions { forces the bulk cosmological constant between them to be
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zero. A non-vanishing value can only be obtained if we introduce an asymmetry of the

set-up through unequal wall-tensions. A further integration of Y yields the warp-function

A(x5) = �2 ln
����sinh

�
k

4

�jx5 + lj+ jx5 � lj � 2a
������+ b ; (5.54)

where b is a further integration constant. Note, that the above solution is valid for the

parameter-range T � 3M3k as can be easily recognized from (5.53). If T < 3M3k, we

have to substitute a \tanh" for the \coth" appearing in (5.51) and (5.53), while (5.52)

remains the same. This amounts to a change from \sinh" to \cosh" in (5.54) Since we

assume a positive wall-tension T > 0, the distance-parameter l is constrained through

(5.53) over the whole parameter-region T > 0, �e � 0 by the upper bound l < a.

An important point is that the warp-factor f = e�A(x
5) vanishes at x5 = �a. This

leads to a singular 5-dimensional curvature at these points only if Q < 0 (which later will

turn out to be the AdS4 case, whereas the physically more realistic dS4 case is free of

singularities)

lim
x5!�a

R(G)! 24�(�Q)
(jx5j � a)2

; Q =
T � 3M3k

T + 3M3k
; (5.55)

where the Heaviside step-function is de�ned by �(x) = 0; x < 0 and �(x) = 1; x > 0.

Due to the vanishing of the warp-factor at these points we expect a tremendous red-shift

in signals originating there. Indeed, let us conceive an electromagnetic wave emitted

with frequency �e at x
5 = �a. Then that wave will be observed in the interior region

x5 2 (�a; a) with frequency �o given by

�o
�e

=

s
G11(x5 = �a)
G11(jx5j < a)

= 0 ; (5.56)

due to the vanishing of the warp-factor at x5 = �a. Hence, an in�nite redshift makes it

impossible for the region jx5j � a to communicate to our world (at least via electromag-

netic radiation). Therefore, we should restrict the x5 integration region to the causally

connected interval x5 2 (�a; a).
Since recently there has been a discussion in the literature [118],[92],[100] about which

singularities are permissible and which have better to be avoided, it is interesting to

see the verdict on our singularities in the case of Q < 0. Recently, a zero 4-dimensional

cosmological constant has been claimed to be attained in a domain-wall scenario by relying

in an essential way on the presence of a further 5-dimensional bulk scalar �eld [90],[91].

Exploiting e.g. the freedom to adjust free integration constants in the solution for the
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scalar �eld, allowed to obtain a 
at 4-dimensional vacuum. Afterwards in [118] it has been

argued that in a gravitational system exhibiting a 4-dimensional 
at solution together with

bulk scalars only such singularities are allowed, which leave the scalar potential bounded

from above. The solutions of [91] fail to obey this criterion. In our case, where we do

not have any scalars, the role of the scalar potential is played by the bulk cosmological

constant �e (together with the tension T at the wall-positions), which is clearly bounded

from above. If the criterion of [118] generalizes to the case where the 4-dimensional

metric deviates slightly (since in the end �4 turns out to be very small { of the order of

the observed value) from the 
at case, we would conclude that the above singularities are

of the permissible type.

Furthermore in [92] it has been pointed out, that without specifying additional sources

at the singularities, the actual �4 of [91] does not vanish. We will determine �4 for our pure

geometrical mechanism explicitly below and will see that it leads indeed to a vanishing

�4 in the �netuned situation. Moreover, the general case with non-�netuned parameters

will be smoothly connected to the �netuned case and will exhibit the desired exponential

suppression.

Finally, in [100] a consistency condition has been derived which the action of [91]

also fails to satisfy. We will now demonstrate that this consistency condition is a simple

consequence of (5.44),(5.45) and the expression (5.47), which de�nes �4. Starting with

(5.47) and employing (5.44),(5.45) to eliminate the derivatives [(ln f)0]2 and f 00, (5.47)

becomes

�4 = 2h�4i � 1

3

Z a

�a
dx5f 2

�
2�(x5) + TÆ(x5 + l) + TÆ(x5 � l)

�
: (5.57)

Noticing that f 0f(x5 = �a) = 0, we use (5.48) to obtain

�4 =
1

3

Z a

�a
dx5f 2

�
2�(x5) + TÆ(x5 + l) + TÆ(x5 � l)

�
= �1

3

Z a

�a
dx5f 2

�
T 1
1 + T 5

5

�
; (5.58)

which is nothing but the consistency condition of [100]. Since we derived our solution

with the help of (5.42),(5.45) which is equivalent to (5.44),(5.45) and will furthermore use

(5.48) to obtain �4, we conclude that the consistency condition (5.58) of [100] is satis�ed

for our solution.

Inverting (5.53), we can express a explicitly through the input values T and �e by

a = �1

k
ln jQj+ l ; (5.59)
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which is valid for both T � 3M3k and T < 3M3k. This shows how the parameters

T;M;�e in
uence the width of the x5 domain.

Furthermore, we have to ful�ll (5.45), which is used to eventually �nd the following

expressions for �4(x
5)

�4(x
5) = �3

2
e�bM2

e�

8><
>:

k2 ; jx5j > l

k2=4 ; x5 = �l
0 ; jx5j < l

(5.60)

Here, the plus-sign applies to the case T � 3M3k, whereas the minus-sign applies to the

complementary case in which T < 3M3k.

Since we do not want to use �4(x
5) as an input to determine b, but rather focus on

the opposite, we have to �nd an additional constraint, which allows for a determination

of the constant b. This extra constraint comes from considering the transition to the 
at

solution (5.21) with �4 = 0. As can be seen from (5.22), we reach the 
at limit by sending

T ! 3M3k. Via (5.59) this limit corresponds to sending the constant a ! 1. Thus we

see, that the integration region x5 2 (�a; a) extends to the whole real line in this limit

and the warp-function (5.54) is sent to

A(x5)! k

2

�jx5 + lj+ jx5 � lj�+ 2 ln 2� ka+ b : (5.61)

To guarantee a smooth transition to the 
at solution (5.21), we have to identify the

integration constants a and b as follows

b = �2 ln 2 + ka : (5.62)

This, together with (5.59) and (5.60) yields the following expression for �4(x
5)

�4(x
5) = 6e�klQM2

e�

8><
>:

k2 ; jx5j > l

k2=4 ; x5 = �l
0 ; jx5j < l

(5.63)

Notice, that this formula is valid for both parameter-regions T � 3M3k and T < 3M3k.

Ultimately, we have to take the mean of �4(x
5) to obtain �4. Again using that

f 0f(x5 = �a) = 0, we employ (5.48) to gain �4. Thus, performing the mean on (5.63),

93



we end up with

�4 =

R a
�a dx

5e�A(x
5)�4(x

5)R a
�a dx

5e�A(x5)

= 24e�k(l+a)M3k2Q

�
sinh(k(a� l))

k
� (a� l)

�
= 12e�2klM3kQF (jQj) ; (5.64)

where F (jQj) = 1 � jQj2 + 2jQj ln jQj. In addition we obtain the following e�ective

Planck-scale

M2
e� =M3

Z a

�a
dx5e�A(x

5)

= 4M3e�ka
�
2l sinh2

�k
2
(a� l)

�
+
sinh(k(a� l))

k
� (a� l)

�

= 2M3e�kl
�
l(1� jQj)2 + F (jQj)

k

�
: (5.65)

There is an exponential-factor occuring in �4 which is the square of the one occuring in

M2
e�. However, at the classical level (with respect to bulk gravity) an overall constant

multiplying the e�ective 4-dimensional action SD=4 = � R d4xpg(M2
e�R(g)+�4) is imma-

terial { it simply drops out of the �eld equation38. Therefore, we can neglect a common

factor e�kl in both �4 and M
2
e� at the classical level and �nally receive

�4 = 12e�klM3kQF (jQj) (5.67)

M2
e� = 2M3

�
l(1� jQj)2 + F (jQj)

k

�
: (5.68)

The physical range of Q lies between 0 � jQj � 1, where the upper bound presupposes

a non-negative wall-tension T > 0. The lower bound corresponds to the �netuned 
at

�4 = 0 limit, while the upper bound is reached for vanishing bulk cosmological constant

�e = 0. Over that domain we have 1 � F (jQj < 1) > 0; F (1) = 0. Hence, we recognize

that starting with arbitrary \fundamental" values for �e � 0;M; T > 0 we obtain a

positive or negative �4 depending on the sign of Q. For T >
p�3M3�e the 4-dimensional

38Another way to see this is to consult the 4-dimensional Einstein equation

R�� � 1

2
g�� = � �4

2M2
e�

g�� ; (5.66)

which contains only one physically relevant constant, namely �4

2M2

eff

.
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spacetime will be dS4, whereas for T <
p�3M3�e it will be AdS4. Furthermore, we see

a smooth connection to the 
at M 4 case with �netuned parameters Q = 0 , T =p�3M3�e. Most importantly there is no need for a �netuning of the \fundamental"

parameters to receive a small �4. By increasing the distance 2l between both walls, we

arrive soon at a huge enough suppression through the exponential factor such that we can

match the observed value �4 ' 10�47GeV4. Thanks to the exponential suppression this

does not amount to a large hierarchy between the fundamental scale M and 1=l.

5.4 The E�ective Potential due to Bulk Scalars

The embedding of our �ve-dimensional set-up into IIB string-theory or F-theory along the

lines of [109] gives a host of bulk-�elds in addition. They arise from the usual dimensional

reduction procedure from ten to �ve dimensions. It is important to check that these further

�elds do not reintroduce huge contributions to the e�ective four-dimensional cosmological

constant upon further reduction from �ve to four dimensions. Otherwise the embedding of

our set-up together with the above mechanism to exponentially suppress the cosmological

constant would be immediately spoiled.

To this aim, we will examine in this subsection the four-dimensional e�ective potential

which is engendered by a generic �ve-dimensional bulk scalar �. Let us assume a bulk

scalar � with quartic couplings to the two walls as in the Goldberger-Wise mechanism

[104] which stabilizes the RS-scenario. For the action of the scalar with mass m, let us

take

S� =�
Z
d4x

Z 1

�1
dx5

p
G

�
1

2
GMN@M�@N� +

1

2
m2�2

�

�
Z
d4x

Z 1

�1
dx5
�q

g
(4)
1 �1(�

2 � v21)
2Æ(x5 + l) (5.69)

+

q
g
(4)
2 �2(�

2 � v22)
2Æ(x5 � l)

�
:

Assuming that � does only depend on x5 and employing the �ve-dimensional metric

GMN = e�A(x
5)���dx

�dx� + (dx5)2 (5.70)

together with (5.21) as the gravitational background, we arrive at the following �eld

equation

(e�2A�0)0 � e�2Am2� = 4
�
e�2A(�l)�1(�2 � v21)�Æ(x

5 + l)

+e�2A(l)�2(�
2 � v22)�Æ(x

5 � l)
�
: (5.71)
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Away from the walls it has the solution

�(x5) =

8><
>:

ae(1+�)A + be(1��)A ; x5 < �l
cemx

5

+ de�mx
5

; jx5j � l

ee(1+�)A + fe(1��)A ; x5 > l

; (5.72)

with

� =
p
1 +m2=k2 (5.73)

and arbitrary coeÆcients a; b; c; d; e; f . In order to obtain a normalizable solution for �,

we are forced to set a = e = 0. Furthermore, demanding continuity of � at the walls

determines b and f in terms of c; d

b = e(��1)kl~b ; ~b = ce�ml + deml (5.74)

f = e(��1)kl ~f ; ~f = ceml + de�ml : (5.75)

To �x the remaining coeÆcients c and d one would have to plug the above bulk solution in

the �eld equation and integrate over the �fth dimension to incorporate the wall boundary

conditions. However, this leads to a complicated cubic equation in the unknowns c; d. An

easier way [104] to arrive at a determination of the coeÆcients c; d is to put the above

bulk solution into the scalar action and integrate over x5 to arrive at an e�ective potential

for the distance-parameter l. From the couplings of � to the walls the e�ective potential

receives the contributionsZ
d4x

�q
g
(4)
1 �1

�
�2(�l)� v21

�2
+

q
g
(4)
2 �2

�
�2(l)� v22

�2�
: (5.76)

Hence, to minimize the potential for positive couplings �1; �2, we must set �(�l) = v1

and �(l) = v2. These two further conditions then allow for a determination of c; d in

terms of the parameters v1; v2

c =
�v1e�ml + v2e

ml

2 sinh(2ml)
; d =

v1e
ml � v2e

�ml

2 sinh(2ml)
: (5.77)

Finally, the e�ective four-dimensional potential V�, de�ned by S� = � R d4xpgV�(l),
becomes

V�(l) =
e�2kl

2

�
(v21 + v22) [(�� 1)k +m coth(2ml)]� 2v1v2

m

sinh(2ml)

�
; (5.78)

where the identity (1� �)2k2 +m2 = 2�(�� 1)k2 has been utilized. For the special case

of a massless, m = 0, bulk scalar �, the e�ective potential simply reads

V�(l) =
e�2kl

4l
(v1 � v2)

2 : (5.79)
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The �rst conclusion is, that regardless of the mass m chosen, the important exponential

suppression-factor shows up again, thus guaranteeing that for generical values of v1; v2; m

these e�ective potentials cannot generate a cosmological constant larger than its experi-

mental value (5.1).

The second observation pertains to the possibility of achieving in addition stability

with these tiny potentials. From (5.79) it is immediately recognizable, that no minimum

at �nite l exists. For the case with m 6= 0, setting @V�=@l equal to zero, amounts to

solving the equation

(w2 + 1)

��
�� 1

r
+ cosh(2ml)

�
sinh(2ml) + r

�
= 2w [r cosh(2ml) + sinh(2ml)] ;

(5.80)

where we have used the dimensionless variables

w =
v1
v2
; r =

m

k
; (5.81)

in terms of which we �nd � =
p
1 + r2. It is now easy to analyze the last equation

numerically with the result that there are no real and positive solutions for the distance-

parameter l for generic values of v1; v2; m. Therefore we conclude that in the general case

with m 6= 0, the e�ective potential exhibits no minimum either.

The general case with di�erent tensions T1 6= T2 will be covered in appendix C. We

thus learn that a generic bulk scalar, with couplings to the walls, leads to an e�ective

potential, which is likewise exponentially suppressed. The addition of further bulk scalar

�elds therefore seems to present no obstruction to obtain the right value for �4. This is

an essential ingredient for an embedding of the suppression mechanism into IIB string-

or F-theory, where one faces a host of extra bulk scalar �elds from dimensional reduction

to �ve dimensions.

We have seen that roughly the complete e�ective potential (= �4) goes like e
�MPld

with the inter-wall distance d. For d = l = 284lP l nowadays this potential is very tiny,

namely of the order of (1meV)4. Likewise the repelling force driving the walls apart is

exceedingly small such that we can regard this scenario as quasi-static. In the very early

universe, however, during the period of in
ation, actually a nonvanishing four-dimensional

cosmological constant �4 = V (�) is needed. Here V (�) denotes the potential or vacuum

energy density of the in
aton �. For example in the scenario of chaotic in
ation [115] one

imposes the initial condition V (�) �M4
P l, which implies �4 �M4

P l. Thus in the very early

universe, we face a situation, where the two walls have to be much closer together. At the
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same time this means that the repelling forces which drive the walls apart are signi�cantly

larger since the supression-factor e�MPld becomes larger. Therefore, this period witnessed

(if there are no other stabilizing contributions to the potential at those early times) a

rapid expansion in the x5 direction.

5.5 IIB-String Embedding of the Set-Up

To better understand the appearance of the GUT-scale in the above low-energy set-up, we

will now indicate how it can be embedded into IIB string-theory resp. F-theory. Moreover,

we will point out a natural connection to an SU(6) SUSY Grand Uni�cation (GUT), whose

gauge symmetry has to be broken if we want to obtain a realistically small �4. To this aim

we are going to describe in this and the next subsection some rather generic features of

such an embedding, which may serve as a guideline for the actual model building, e.g. in

terms of an orbifold construction [113].

Since the low-energy �ve-dimensional geometry consists of two half in�nite AdS5

patches divided by two four-dimensional positive tension walls with an interpolating x5-

�nite 
at spacetime interval in between, one may think of two stacks of D3-branes at

opposite values of X5 in the IIB-string setting39. For the low-energy situation with two

walls of equal tension, we should place the same amount of D3-branes in either stack. If

we furthermore want to embrace the minimal supersymmetric extension of the Standard

Model (MSSM), we have to group the branes in such a way, that the low-energy gauge-

group SU(3)c � SU(2)L � U(1)Y arises. Together, this requires 3 D3-branes in one stack

and another 3 making up the other stack. To accomodate for the SU(2)L � U(1)Y part,

we imagine a tiny split between the 3 branes of the second stack into 2 giving rise to

SU(2)L and a single one responsible for U(1)Y (see �g.3). Actually, the D3-brane gauge-

group will be U(1) � U(1) � U(1)Y with two further local U(1) symmetries. However,

usually we have to project out some massless states (e.g. the unphysical four-dimensional

gauge-�eld Aij� in the last subsection), which is conveniently done through an orbifold

procedure. Then typically only one of the three abelian gauge groups stays anomaly-free

[113],[114], while the others become anomalous. Since we will arrive at the correct hy-

percharge assignments for the light MSSM matter in the next subsection, U(1)Y will be

the anomaly-free factor. The anomalies of the two further abelian factors are cancelled in

string-theory by a Green-Schwarz mechanism, which renders them massive. They remain

39X5 is that coordinate which describes a variation in the IIB string-frame if we vary x5 in the low-

energy-frame.
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SU(3) U(1) SU(2)

X5

�l� 0 l�

Figure 3: The two walls resolved as stacks of D3-branes in a microscopic IIB string

description.

as global symmetries with mass of the U(1) gauge-bosons at the string-scale.

For a Z2 symmetric (Z2 : X
5 ! �X5) D3-brane con�guration as depicted in �g.3, it

has been argued in [109], that in the low-energy �ve-dimensional description the D3-brane

sources lead to half-in�nite throats which describe exactly two AdS5 half-slices. Suppose

there are no other gravitational sources located in between the two D3-brane stacks.

Then due to the Z2 re
ection symmetry, the low-energy warp-factor in the intermediate

interval cannot develop a kink but has to be constant. Thus it seems indeed possible to

arrive at the above low-energy geometry, given by (5.12),(5.21), through a simple set-up

of oppositely placed D3-brane stacks in the context of IIB- or F-theory.

Because the D3-branes are localized in the internal six- (for IIB) or eight-dimensional

(for F-theory) space, they are not sensitive to the global properties of the compacti�cation

space. However, there is a link between both which comes from tadpole cancellation

[51],[62], or conservation of the RR 5-form 
ux, and states in our case with 6 D3-branes

that the Euler-characteristic � and the background 
uxes have to obey

6 =
�(K8)

24
�
Z
K6

1

2i�2
H ^ �H =

�(K8)

24
+

Z
K6

HNS ^HR : (5.82)

Here, K6 denotes the base of the underlying F-theory compacti�cation on an elliptically

�bered Calabi-Yau fourfold K8. Furthermore, the 3-forms H; �H are given by

H = HR � �HNS ; �H = HR � ��HNS ; (5.83)
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with � = �1 + i�2 = a + ie�� the modulus of the elliptic �bration composed out of the

axion a and the dilaton �.

The connection between the IIB string-frame metric G�
AB ; A;B = 1; : : : ; 10 and the

low-energy metric GAB, which is used to measure length in the above �ve-dimensional

set-up is as follows [109]. String-frame and Einstein-frame metric are related by

GE
AB = e�

�
2G�

AB ; (5.84)

whereas the low-energy metric

ds2 = GABdx
AdxB

= e�A(x
5)g��(x

�)dx�dx� + (dx5)2 + hmn(x
5; yk)dymdyn ; m; n = 6; : : : ; 10 (5.85)

is related to GE
AB by a further Weyl-rescaling

GAB = V
1=4
5 GE

AB ; V5 =

R
K5
d5y
p
h

L5
P l

: (5.86)

Here, LP l = g
1=4
s

p
�0(2�)7=8 denotes the ten-dimensional (reduced) Planck-length and

gs = eh�i. K5 stands for those �ve-dimensional sections of the base-manifold K6, for

which x5 is constant. The e�ect of these rescalings is a simple determination of M in

terms of LP l, which can be read o� from the Einstein-Hilbert term

� 1

(2�)7(�0)4

Z
d10X

p
G�R� = � 1

L8
P l

Z
d10x

p
GERE = � 1

L8
P l

Z
d10x

p
GR

V5
; (5.87)

and upon dimensional reduction to �ve dimensions leads to the identi�cation

M =
1

LP l
: (5.88)

Utilizing (5.31), we end up with the following restriction on the ten-dimensional Planck-

length

L3
P l =

2(1 + kl)

kM2
e�

' 1

MGUTM2
red

=
1

(4� 1017GeV)3
; (5.89)

if we choose generically 10 . kl and identify Me� with the four-dimensional reduced

Planck-scaleMred =MP l=
p
16� = 1:7�1018GeV. In terms of the string-scaleMs = 1=

p
�0

and the string-coupling gs, we are led to the restriction

Ms = g1=4s (2�)7=84� 1017GeV : (5.90)
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The inter-wall distance 2l in the e�ective description and the length 2l� in the stringy

description are related by

2l = V
1=8
5 e�

�
4 2l� : (5.91)

Usually, in Calabi-Yau compacti�cations the compacti�cation radius is chosen at the

GUT-length 1=MGUT. Let us now see, what this assumption together with the information

that 2l = 1=MGUT, amounts to for the ground state masses of the open strings. To this

aim consider a U(6) oriented open string with its end points carrying the representations

6 and �6. Compacti�cation of the X5 coordinate on a circle with radius R ' 1=MGUT

allows for a Wilson-line around this circle generated by the gauge-�eld background

A5 = diag(�3; �3; �3; �1; �2; �2)=(2�R) : (5.92)

It breaks the U(6) symmetry down to U(3) � U(2) � U(1). In the T-dual picture this

translates into D-branes placed at

�3R
0 ; �1R

0 ; �2R
0 ; (5.93)

with the T-dual radius given by R0 = �0=R. To cope with the cosmological constant

problem, we have learned before that it is necessary to place the D-branes at two stacks

(see �g.3)

�3R
0 = �l� ; �1R

0 ' �2R
0 = l� : (5.94)

In the next subsection, we will face the problem of incorporating the massless MSSM

�elds into this D-brane set-up. One natural way to do this (see below) is to set the length

of the interval [�l�; l�] equal to the circumference 2�R0 by identifying �l� � l�. Hence,

the brane positions lie at

�3 = �� ; �1 ' �2 = � : (5.95)

After this spadework, let us now come to the lowest level string masses. An open string

stretching from one brane-stack to the other gives rise to a ground state vector-multiplet

with mass 2l�T , where T = 1=(2��0) is the string-tension (and we have assumed that

the two brane-stacks coincide in all other internal position coordinates except for X5).

Evaluated in the low-energy frame this amounts to a mass of

Mopen = V
1=8
5 e�

�
4 2l�T = 2lT =

T

MGUT
: (5.96)
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Using the identi�cation 2l� = 2�R0, this lowest-level mass becomes

Mopen =
V

1=8
5 e�

�
4

R
' V

1=8
5 e�

�
4MGUT : (5.97)

If we set e� = gs constant, (5.96) together with (5.97) impose a relation, which determines

the string-scale in terms of gs and the compacti�cation parameter V5

Ms =

s
2�V

1=8
5

g
1=4
s

MGUT : (5.98)

If we furthermore assume that naturally
R
K5
d5y
p
h = 1=M5

GUT, we obtain one further

relation from (5.86)

V
1=5
5 =

1

g
1=4
s (2�)7=8

� Ms

MGUT

: (5.99)

Altogether (5.90),(5.98),(5.99) constitute three equations in the three unknownsMs; gs; V
1=5
5

with the solution

Ms = 3� 1017GeV ; gs = 7� 10�4 ; V
1=5
5 = 20 : (5.100)

We therefore conlude that a description in terms of perturbative string-theory is adequate.

Moreover in the low-energy frame the lowest level open string excitations are given by

Mopen = 40MGUT : (5.101)

Though our estimate relied on the assumption that 1=R = MGUT and
R
K5
d5y
p
h =

1=M5
GUT, it appears to be quite generic. For example directly identifying Mopen with

MGUT would imply via (5.90) a gs = 4 � 10�7, which seems less natural than the above

obtained value. In the string-frame the open string masses are of course situated precisely

at the GUT-scale, since there we have M�
open = 1=R = MGUT. Subsequently, when we

speak of GUT-masses, we have (5.101) in mind.

Above the GUT-scale, one may expect the full restoration of the SU(6) gauge symme-

try by moving all six branes on top of each other. However, it has to be noticed that this

goes hand in hand with the creation of a huge Planck-scale cosmological constant. But,

as already pointed out, for cosmological purposes this may be just �ne, though usually a

de Sitter in
ationary expansion is considered below GUT-energies in order to dilute the

density of topological defects which are relics from the spontaneous breaking of the GUT

gauge-group. The precise connection between string states and massive GUT-states will

be made explicit in the coming subsection.
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SU(3) U(1) SU(2)

(3; 1)�x

(�3; 1)x

(1; 2)�y

(1; 2)y

Figure 4: The \basic" open strings of the D3-brane set-up. The state (n;m)z transforms

as n under SU(3), as m under SU(2) and bears U(1)-charge z.

5.6 Brane-Description and Broken SU(6) SUSY Grand Uni�ca-

tion

5.6.1 String-Theory Perspective

From the above brane set-up, we immediately get the open string-states which are depicted

in �g.4 together with their transformation properties under SU(3) and SU(2). Since we will

identify later on the single U(1) with the U(1)Y hypercharge, every open string describing

a hypercharged state of the corresponding �eld theory has to connect the U(1)-brane. This

is the reason why we consider in the sequel just the two types of \basic" open strings40

(plus their orientation-reversed partners) and not those which directly connect the SU(3)

branes with the SU(2) branes41. Fixing the sign of the U(1)-charge normalization, we can

assume that x; y > 0.

Let us now have a closer look at the orientation of the open strings starting or ending

on the single U(1)-brane. Our convention is made clear in �g.5. In physical terms this

orientation convention can be thought of as indicating the direction of the U(1)-
ux

originating from the U(1)-charge placed at one end of the open string. Let us regard the

40Note that for SU(2) the fundamental 2 is pseudoreal.
41It is however also possible to extract the U(1)Y as a linear combination of the three U(1)-factors of

the D-branes [113],[114]. Indeed this is the only choice if one assigns only �1 values to the open strings

beginning or ending on the single U(1)-brane. In contrast to this, we will not impose in this paper this

restriction and allow a priori for arbitrary values.
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U(1)-charge positive �n of SU(n)

U(1)-charge negative n of SU(n)

Figure 5: Fixing the orientation of the open strings.

a)

(3; 1)�x (1; 2)�y

(�3; 1)x (1; 2)y

b)

(3; 1)�x (1; 2)y

(�3; 1)x (1; 2)�y

Figure 6: Four possible encounters a) with opposite orientation and b) with same orien-

tation.

situation in which two of the strings of �g.4 meet at a common point on the U(1)-brane

(see �g.6). The question arises, whether such a situation could lead to a further string

state, composed out of the two \basic" ones. Let us therefore conceive a situation where

an open string with weighted U(1)-charge u and another with weighted U(1)-charge v

meet. By weighted we mean that the individual open string U(1)-charges are multiplied

by the multiplicity originating from the Chan-Paton label of the other string end. If

we assume that the charges do not cancel, u + v 6= 0, then the junction bears a net

U(1)-charge. If it is positive, then the orientation (U(1)-
ux) of the two individual strings

must point away from the contact point. If the net charge is negative, then the orientation

(U(1)-
ux) of both strings must be such that they point towards the junction. Hence,

under the condition that the weighted sum of their U(1)-charges does not cancel, two

\basic" strings can compose a longer string only if the orientation of the two individual

strings is opposite. This happens to be the case for the junctions of �g.6a, where two long

strings with quantum numbers

(3; 1)�x 
 (1; 2)�y ! (3; 2)�(x+y) (�3; 1)x 
 (1; 2)y ! (�3; 2)x+y (5.102)
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are composed. On the other hand the orientations of the strings in �g.6b are not com-

patible with a non-zero total weighted U(1)-charge at the meeting point. Therefore, to

avoid an inconsistency, when the states of �g.6b are composed, we have to demand that

the total weighted U(1)-charge of such a junction has to vanish. From either of the two

situations of �g.6b, we then get the requirement

3(�x) + 2y = 0 : (5.103)

If we choose a normalization of the U(1)-generator such that x = 2, we obtain y = 3.

Thus, it is the number of D3-branes present in each stack (except for the U(1)-brane

itself), which causes the value of the U(1)-charges. Together with the composition rule,

this will eventually determine all the U(1)-charges (which will be identi�ed with the SM-

hypercharge below) of open string states, which correspond to SM �elds.

SU(3) U(1) SU(2)

(8; 1)0
(1; 1)0

(1; 3)0
(3; 1)�2

(�3; 1)2

(1; 2)�3

(1; 2)3

Figure 7: Massless and heavy gauge-bosons which arise from \basic" strings.

The NS-sector of the open DD-strings contains the bosonic four-dimensional gauge-

�elds Aij� b
�
�1=2jk4; i; ji and scalars Aijmb

m
�1=2jk4; i; ji ; m = 5; : : : ; 10 (i and j represent the

Chan-Paton labels), whose momenta k4 are restricted along the four longitudinal D3-

brane directions due to the DD boundary-conditions. Those open strings, which start

and end on the same brane-stack (see �g.7), lead to three massless gauge-boson states

(8; 1)0 ; (1; 3)0 ; (1; 1)0 ; (5.104)

while the \basic" open strings, which directly connect one brane with another, give rise
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to two states with mass at the GUT scale

(3; 1)�2 ; (�3; 1)2 (5.105)

plus two further states with mass at the TeV scale

(1; 2)3 ; (1; 2)�3 : (5.106)

Note the natural occurrence of the mass split between the GUT and the TeV scale between

triplet and doublet states. The composition of the \basic" strings (see �g.8) adds another

four \composed" states with mass at the GUT scale

SU(3) U(1) SU(2)

(3; 1)�2 (1; 2)3

(3; 1)�2 (1; 2)�3

(�3; 1)2 (1; 2)3

(�3; 1)2 (1; 2)�3

Figure 8: States which arise through the composition of the two sorts of \basic" string

states.

(3; 1)�2 
 (1; 2)3 ! (3; 2)1 ; (3; 1)�2 
 (1; 2)�3 ! (3; 2)�5 ; (5.107)

(�3; 1)2 
 (1; 2)3 ! (�3; 2)5 ; (�3; 1)2 
 (1; 2)�3 ! (�3; 2)�1 : (5.108)

It remains to incorporate in a natural way a sector of nearly massless matter states,

which can account for the MSSM �elds with mass at the TeV scale. The most immediate

way to introduce light matter would be to have some kind of tensionless string stretching

between the brane stacks or some kind of \bridge" enabling open strings stretching along

it to stay massless. However, for lack of those gadgets, we will simply assume X5 to

be compacti�ed on a circle in such a way that the locations of the two brane-stacks are

identi�ed as (nearly) equivalent points �l� � l� (see �g.9). The heavy GUT excitations
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X5

0

l� � �l�

X; Y

�D

L

Figure 9: Light MSSM and heavy GUT �elds as open string excitations which arise from

a con�guration with compact X5.

found above now originate from open strings stretching once around the whole circle. In

addition, the light MSSM matter-supermultiplets stem from open strings, which connect

the brane-stacks over the small separating distance. Likewise as before, we will now build

the massless �elds out of two sorts of \basic" strings, as depicted in �g.10. The Q; �U; �E

chiral super�elds, which are later on identi�ed with the respective MSSM matter-�elds,

are composed as follows

Q = (3; 2)1 = (3; 1)�2 
 (1; 2)3 (5.109)

�U = (�3; 1)�4 � (3; 1)�2 
 (3; 1)�2 (5.110)

�E = (1; 1)6 � (1; 2)3 
 (1; 2)3 ; (5.111)

where we used 3
 3 = �3+ 6 and 2
 2 = 1+ 3 in the last two cases and picked out the

antisymmetric part while dismissing the symmetric one. Note, that the only composition

of open strings, which could lead to an inconsistency in orientation with respect to the

combined weighted U(1)-charge, is the one for Q. However, to avoid this, required the

particular assignment of U(1)-charges for the \basic" strings as we discussed before.

Since we have now found the �elds which will be identi�ed with the MSSM matter,

let us now discuss the number of generations by concentrating on the fermions in the

chiral super�elds. The fermions originate from the R-sector of the open DD-strings and

in ten dimensions would be given by the Majorana-Weyl spinor uij� (k4)j�; k4; i; ji. Here,
� = 1; : : : ; 8 is a spinor-index running over the physical (on-shell) degrees of freedom and

again i; j are the Chan-Paton labels. By a dimensional reduction to four dimensions, u�
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U(1) SU(2) SU(3)

L = (1; 2)�3

�D = (�3; 1)2

Q = (3; 1)�2 
 (1; 2)3

�U � (3; 1)�2 
 (3; 1)�2

�E � (1; 2)3 
 (1; 2)3

Figure 10: Light MSSM matter �elds as \basic" open string states (L; �D) and composites

thereof (Q; �U; �E).

turns into 4 two-component Weyl-spinors �ijA ; A = 1; : : : ; 4. In an N = 1 description

in four dimensions �ij4 gets combined with the NS-sector gauge-�eld Aij� into a vector-

super�eld, while the remaining 3 spinors �ij1 ; �
ij
2 ; �

ij
3 are each paired with two NS-sector

scalars (Aij5 ; A
ij
8 ); (A

ij
6 ; A

ij
9 ); (A

ij
7 ; A

ij
10) to build 3 chiral super�elds. Hence it is generic

to arrive at a multiplicity of 3 for the chiral matter fermions or in other words at a 3

generation model. The basic reason being that we happen to live in a world with 6 internal

dimensions. The important task, however, is to lift the mass degeneracy between them or

equivalently reducing the D = 4;N = 4 extended supersymmetry of the above D3-brane

con�guration in type IIB string-theory to a minimal D = 4;N = 1 supersymmetry.

For example, consider a complex description of the internal coordinates in terms of

Z58; Z69; Z710, where Zij = Xi + iXj. They transform under an SU(3) subgroup of the

SO(6) internal tangent space group. Since the Lie-algebra of SO(6) is isomorphic to that

of SU(4), the (say) positive-chirality spinor of SO(6) transforms as the fundamental 4 of

SU(4). Its decomposition under the above SU(3) is 4 = 3+ 1, which corresponds to the

split 0
BBB@

�ij1
�ij2
�ij3
�ij4

1
CCCA =

0
BBB@

�ij1
�ij2
�ij3
0

1
CCCA+

0
BBB@

0

0

0

�ij4

1
CCCA : (5.112)
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In order to break the degeneracy between the 3 chiral matter fermions one could e.g. intro-

duce 3 further D7-branes along the directions 12345689, 123457810, 123467910. Together,

they preserve 1=8 of the initial 32 supercharges, which amounts to an N = 1 supersym-

metric theory in four dimensions. The conditions which are imposed by the presence of the

D7-branes on the supersymmetry parameters �L; �R (which are 16-component Majorana-

Weyl spinors of the same chirality for IIB) are

�L = �D3�R1
�R ; �R1

= �5�6�8�9 ; �D3 = �1�2�3�4 (5.113)

�L = �D3�R2
�R ; �R2

= �5�7�8�10 (5.114)

�L = �D3�R3
�R ; �R3

= �6�7�9�10 : (5.115)

Taken together, they imply

�L = �D3�R : (5.116)

Therefore, we can place D3-branes at the common four-dimensional intersection of the

three D7-branes without breaking further supersymmetry. Moreover, the introduction of

the D7-branes entails a further reduction of the SO(6) tangent space group to

SO(6) � SU(3) � SO(2)� SO(2)� SO(2) = U(1)� U(1)� U(1) : (5.117)

The fermion triplet, which we had under SU(3), now gets split into0
BBB@

�ij1
0

0

0

1
CCCA ;

0
BBB@

0

�ij2
0

0

1
CCCA ;

0
BBB@

0

0

�ij3
0

1
CCCA ; (5.118)

since each one transforms with a phase-factor under a di�erent U(1). Thus the degeneracy

between them can be naturally lifted and di�erent N = 1 masses attributed to them. The

light vector of the vector-super�eld (�ij4 ; A
ij
� ) however, does not appear at low-energies in

a realistic theory. Hence, ultimately it should be projected out on the basis of a further

discrete symmetry of the model.

5.6.2 Field-Theory Perspective

Let us determine to what SUSY GUT the string states found above belong to. Since in

the limit of vanishing D3-brane separations, we would recover an SU(6) gauge theory, it is
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natural to compare with the spectrum of an SU(6) SUSY GUT [111], whose gauge-group

is spontaneously broken down to the SM SU(3) � SU(2) � U(1)Y . Besides a gauge-�eld

transforming in the 35 adjoint representation of SU(6), its matter content comprises the

following chiral supermultiplets [111]

� Higgs-�elds: � = 35, H = 6, �H = �6, Y = 1

� Fermionic Matter:  f1 = 15, ��f1 = �6, ��f2 = �6,  2 = 15, � = �15, � = 20 ,

where f = 1; 2; 3 is a family index. For a comparison to the afore obtained string spectrum

it is necessary to decompose the �elds �rst under SU(5) and afterwards under SU(3) �
SU(2)� U(1)Y . Under SU(5) we have

35 = 1+ 5+ �5 + 24

20 = 10+ �10

15 = 10+ 5

6 = 5+ 1 :

The fundamental 5, the antisymmetric tensor rep. 10 and adjoint 24 of SU(5) themselves

decompose under SU(3)� SU(2)� U(1)Y as follows

24 = (1; 1)0 + (1; 3)0 + (3; 2)�5 + (�3; 2)5 + (8; 1)0

10 = (1; 1)6 + (�3; 1)�4 + (3; 2)1

5 = (1; 2)3 + (3; 1)�2 :

In the string description we found for the external � components of the NS-sector the

massless (8; 1)0; (1; 3)0; (1; 1)0 states, which represent the familiar Standard Model glu-

ons and the four electroweak gauge-bosons W1; W2; W3; B, which become upon spon-

taneous symmetry breaking the physical W+; W�; Z0 and the photon A. The heavy

(3; 2)�5 and (�3; 2)5 describe the twelve X- and Y-leptoquark gauge-bosons of broken

SU(5) and were constructed as stringy \composites". Together with the \basic" string

states (3; 1)�2; (�3; 1)2; (1; 2)3; (1; 2)�3 these states furnish the broken 35 of the SU(6)

gauge-�elds. Similarly, the internal m components of the NS-sector deliver the Higgs-

adjoint �. We already noted above that the Higgs-triplets naturally take masses at the

GUT-scale due to the geometry of the brane set-up, whereas the two Higgs-doublets of

the MSSM, which belong to the chiral super�elds

Higgs-Bosons + Higgsinos: Ĥ1 = (1; 2)�3 Ĥ2 = (1; 2)3
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acquire a small mass. This mass, which should be at the TeV scale, is caused by the

little split between the U(1)- and the SU(2)-branes in the second brane-stack. Therefore,

the brane con�guration, which resulted from the requirement of a small four-dimensional

cosmological constant �4, also allows for a natural understanding of the doublet-triplet

splitting in spontaneously broken GUT-theories.

In the same vein the Higgs-fundamentals H; �H and the fermionic SU(6) matter ��f1 ; ��
f
2

can be built solely out of the two \basic" open strings. The matter fermions  f1 ;  2; � ; �

contain the 5; �5; 10; �10. Whereas the 5; �5 are built out of the \basic" strings, the 10; �10

are exclusively \composite" string states. The chiral super�elds representing the matter-

content of the MSSM

Squarks + Quarks: Q = (3; 2)1 �U = (�3; 1)�4 �D = (�3; 1)2

Sleptons + Leptons: L = (1; 2)�3 �E = (1; 1)6

�ll up the the �5 and 10 of SU(5). Their SU(6) origin is from ��11;
��21;

��31;  
1
1;  

2
1; � [111].

We now discern, that the abelian charge which arose from coupling of open strings to the

single U(1)-brane, indeed has to be identi�ed with the SM hypercharge Y .

In general, to build bosonic or fermionic matter with GUT-mass, we have to use

in the string description the heavy \basic" (3; 1)�2; (�3; 1)2 states which wind from the

SU(3)-brane stack to the U(1)-brane around the circle. For light states instead, we use

the \basic" (3; 1)�2; (�3; 1)2 states which connect the same brane-stacks but this time via

the small gap in �g.9. In order to secure a small cosmological constant �4, the stringy

description generically predicts light mass for all doublets (1; 2)3 or composites thereof

like (1; 1)6. However, in some cases (e.g.  2; � ) these states also have to become heavy to

decouple from the light spectrum. This can be achieved by coupling these states in the

superpotential to other generically heavy states.

We want to conclude with two remarks. First, it is of interest to explore the low-energy

value for sin2�W . On a stack of N D3-branes the e�ective gauge coupling is given by

g2e� = gsN [112]. Therefore, if we plug g22 = 2gs; g
2
Y = gs into

sin2�W (Ms) =
g2Y

g22 + g2Y
=

1

3
; (5.119)

we arrive at a value, which is close to the traditional GUT value 3
8
. Using the represen-

tation 1
�
= 1

�Y
+ 1

�2
for the electromagnetic �ne-structure \constant" plus sin2�W = �

�2
,

we can evaluate the di�erence 1
�(MZ)

� 3
�2(MZ)

as (1�3 sin2�W (MZ))
1

�(MZ)
. Alternatively,
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using the 1-loop running of the gauge-couplings

1

�i(E)
=

1

�i(MZ)
� bi
2�

ln

�
E

MZ

�
; (5.120)

plus the condition that 1
�Y

= 2
�2

at the string-scale Ms, the di�erence can be evaluated

as 1
2�
(bY � 2b2) ln(

Ms

MZ
). Combining both expressions, we obtain the 1-loop running of the

Weinberg-angle

sin2�W (MZ) =
1

3
+
�(MZ)

6�
(2b2 � bY ) ln

�
Ms

MZ

�
: (5.121)

Moreover, let us assume that the MSSM is valid from the weak scaleMZ up to the string-

scale Ms ' 40MGUT. This assumption selects the �-function one-loop coeÆcients of the

MSSM

bY = 11 ; b2 = 1 (5.122)

for the whole energy-region. Together with the experimental value 1
�(MZ)

= 127:9 this

leads to a value of sin2�W (MZ) = 0:196, which is too low compared with the measured

value sin2�W (MZ) = 0:231. Hopefully, this result could be corrected towards the right

direction, if we abandon the idea of a universal validity of the MSSM up to the string-scale.

Instead, it would be natural to allow for some intermediate scale MI '
p
1TeV�Ms '

3 � 1010GeV, since we saw above that some light doublets should couple to Ms-massive

states and thereby acquire mass of order MI .

Second, in order to embrace an N = 1 supersymmetric four-dimensional theory at

low-energies, we did not aim at breaking all supersymmetry already at the string-scale.

This will probably be only reasonable if one lowers the string-scale to the TeV-scale,

which we did not intend. Therefore, we left open the precise mechanism for low-energy

supersymmetry breaking. Usually the question of obtaining a realistic mechanism for

supersymmetry breaking struggles with the fact that all known mechanisms produce a

large cosmological constant. In this respect, we hope that the above described scenario will

likewise suppress these contributions, such that it will be eventually possible to apply one

of the various mechanisms to actually determine the soft-breaking terms of the complete

MSSM.
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6 T-Duality and its Impact on Curvature

In this �nal chapter we want to ask to which degree is string-theory \blind" towards a

cosmological constant. It is well known from compacti�cation to three dimensions [116]

that T-duality is able to transform spaces which are asymptotically 
at into spaces which

are asymptotically AdS3. Since T-duality is one of the assumed symmetries of M-theory,

it seems that M-theory does not care much about our notion of a cosmological constant.

Concretely, we will explore whether an Anti-de Sitter space can be transformed via T-

duality into 
at space. Another important motivation to study this problem comes from

the AdS-CFT duality as will be made clearer in the following.

By now the AdS-CFT conjecture [117, 118, 119] has passed an enormous amount of

tests (see [120] for a review). Most of them explored the large N duality between the

boundary-CFT and the supergravity on AdS5. The common radius of the S5 and the

length-scale of the AdS5, R, is given by R4 = (�0)2�; with � = g2YMN representing the

't Hooft coupling. In general, supergravity as the low-energy limit of string-theory is

trustworthy only at large scales, i.e. small curvatures. Thus tests of the duality probing

the supergravity regime explore the � ! 1 parameter region. This predicts how the

CFT at large N behaves in the extreme non-perturbative regime.

The interesting parameter regime, interpolating between the perturbative �! 0 and

the extreme non-perturbative � ! 1 regime, demands that we keep � �nite. Since the

closed string coupling constant gs and the Yang-Mills coupling constant are related via

g2YM = 4�gs, the large N limit with � �nite, requires gs ! 0. Thus via the AdS-CFT

conjecture, we are able to extract the full quantum information about the CFT in the large

N limit by calculating simply IIB string tree-diagrams. Unfortunately, this wonderful

perspective is obstructed by the fact, that IIB string-theory in the RNS-formulation on

an AdS5�S5 background withN units of RR 5-form 
ux through the S5 is still obscure (see

[121] for an approach). On the other hand there are proposals for a GS-formulation [122]

which is non-linear and therefore its quantization and computation of string scattering

amplitudes seems to be diÆcult.

Since string-theory on an AdS5 � S5 background is not readily available, one may

seek resort to a dual description of IIB string-theory on a, hopefully, easier background.

This is another motivation to explore, whether pure AdSd space can be dualized to 
at

Minkowski space. In [123] the observation has been made, that the only way to \
atten"

negative curvature under T-duality is by introducing an appropriate torsion, generated
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by B�� , in the initial space-time. This can be seen from the following formula42, relating

the dual curvature scalar ~R to the initial curvature scalar [123]

~R = R + 44 lnk +
1

k2
H���H

��� � k2

4
F��F

�� : (6.1)

Here A� = k�=k
2, k� = g�� with the associated �eld-strength F�� = @�A� � @�A�.

Furthermore, 4 ln k = 1p�g@�
�p�gg��@� ln k� denotes the d'Alembertian with respect to

the initial metric. As usual, the torsion 3-form is the �eld strength43 H = dB of the NSNS

2-form B�� . The Killing vector, corresponding to the assumed translational isometry

exhibited by the initial space-time, is given by k� and its norm de�ned by k =
p
g��k�k�.

One could now try to solve (6.1) for R = �� and ~R = 0, with � a positive constant. But

this would include any solution of the vacuum Einstein equations. To decide whether we

arrive at 
at space after T-dualization, we have to regard the Riemann curvature tensor.

6.1 T-Duality on Non-Trivial Spacetimes

Let us start quite generally by assuming some coordinate representation of a d-dimensional

manifold, given by44 x� = (x0; x1; : : : ; xd�2; xd�1) = (x�; x�) ; � = 0; : : : ; d� 2. Further-

more, the initial metric is supposed to be of the form

ds2 = g��dx
�dx� + g��dx

�dx� : (6.2)

T-duality on non-trivial spacetimes presupposes at least one spacelike isometry, whose

direction we denote by x�. Then the T-duality transformation on the �-model background

with g�� = 0 is given by the Buscher rules [125]

~g�� =
1

g��
; ~g�� =

B��

g��
; ~g�� = g�� � (g��g�� � B��B��)

g��
(6.3)

~B�� = 0 ; ~B�� = B�� (6.4)

~� = �� 1

2
ln g�� : (6.5)

42The index � represents the isometry direction, whereas �; �; : : : label the remaining directions.
43Our conventions are:

B =
1

2!
B��dx

� ^ dx� ; H =
1

3
H���dx

� ^ dx� ^ dx� :

44Indices �; �; �; � run from 0; : : : ; d� 1, whereas indices �; �; 
; Æ; � run over 0; : : : ; d� 2.
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Note that the shift in the dilaton is a quantum mechanical e�ect [?]. The reason why we

set g�� = 0, from the outset, is the following. According to (6.1), a non-vanishing g�� = k�

tends to make the curvature scalar of the dual metric more negative and moreover by a

suitable coordinate transformation we can always eliminate mixed components of the

symmetric metric tensor.

We assume that the metric g��(x
�) and the NSNS 2-form B��(x

�) do not depend on

x�. These conditions are exactly those, which are required in order to leave the �-model

action

S =
1

2�

Z
d2z (g�� +B��) @X

� �@X�

invariant under in�nitesimal shifts x� ! x�+ �k�. The Killing vector associated with the

resulting abelian translational isometry is k�@� = @=@x�, where k� = (k�; k�) = (0; : : : ; 1).

With the resulting norm k =
p
g�� of the Killing vector, a more convenient expression

for the metric (6.2) in view of our later application, is given in terms of an anholonomic

vielbein co-base by

ds2 = �abe
aeb + eiei = �mne

men ; (6.6)

where the chosen anholonomic vielbein el = (ea; ei) reads

ea = ea�(x
�)dx� ; ei = ei�dx

� = Æi�k(x
�)dx� ; (6.7)

such that its components el� are

ea� = ea�(x
�) ; ei� = 0 (6.8)

ea� = 0 ; ei� = Æi�k : (6.9)

Later, we will also need the inverted vielbein of the isometry direction e �i = Æ�i=k.

The above mentioned �-model action is invariant [126] to �rst order in � under the

translational isometry Æ�x
� = �k�, if k� satis�es the Killing equation (Lkg)�� = k�g��;� +

k�;�g��+k
�
;�g�� = @g��=@x

� = 0 and the torsion obeys LkH = 0. This implies LkB = dw

for some 1-form w. Here Lk and d denote the space-time Lie- and exterior derivative.

Locally, this is solved by w = ikB � v with dv = �ikH for some 1-form v. Under ik we

understand the interior product. From now on, we will choose the gauge w = 0, which

leads us, together with the identity (ikB)� = k�B�� = B��, to

v� = B�� :
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The T-dual metric ~g�� can now be neatly written as (with k� = 0)

~g�� =
1

k2
; ~g�� =

v�
k2

; ~g�� = g�� +
v�v�
k2

:

Thus the dual line-element reads

d~s2 = ~g��dx
�dx� + 2~g��dx

�dx� + ~g��dx
�dx� = �ab~e

a~eb + ~ei~ei = �mn~e
m~en :

Here the T-dual anholonomic vielbein co-base ~el = (~ea; ~ei) is given by

~ea = ea = ea�dx
� ; ~ei = ~ei�dx

� =
Æi�
k
dx� +

v�
k
dx�

from which we can read o� the dual vielbein components ~el�

~ea� = ea� ; ~ei� =
v�
k

(6.10)

~ea� = 0 ; ~ei� =
Æi�
k
: (6.11)

and their inverses ~e �l

~e �
a = e �

a ; ~e �i = 0 (6.12)

~e �
a = �e �

a v� ; ~e �i = Æ�ik : (6.13)

A useful formula consists of the inverted relation Æi�dx
� = k~ei � e �

a v�e
a. From ~g�� =

~e �
m ~e �

n �
mn we derive the inverse metric to be

~g�� = g�� ; ~g�� = �g��v� ; ~g�� = g��v�v� + k2 :

6.2 The T-dual Riemann-Tensor

The strategy of the calculation of the dual Riemann-tensor will now be as follows. With

the aid of Cartan's structure equations, we determine the curvature tensor and its T-dual

in the el = fea; eig, resp. T-dual ~el = f~ea; ~eig co-base. In order to compare both of them,

it is further necessary to switch to the equivalent expressions in the common holonomic

co-base dx� = (dx�; dx�) with the help of the aforementioned vielbeins.

Therefore, let us begin with (6.6) and avail ourselves of Cartan's �rst structure equa-

tion for the torsion-less case, dem + !mn ^ en = 0, to determine the connection 1-form

!

!ab = �@[
ea�]e 

[c e

�
b] e

c ; !ia = e �
a @� ln k � ei ; !ii = 0 ;
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Cartan's second structure equation, d!mn+!
m
l^!ln = Rm

n, together with the expression

for the curvature 2-form in the initial anholonomic co-base, Rl
m = 1

2
Rl

mnpe
n ^ ep =

1
2
Rl

mabe
a ^ eb + Rl

miae
i ^ ea, allow us to extract after some algebra the initial curvature

tensor45 as

Rabcd = e



[c e
Æ

d]

�
e �
b @�@
eaÆ � @[Æejaj�] � @
e �

b

�
+ e �

b e



[c @j�je
�

d] � @[
ejaj�]
Riabc = Rabic = 0

Riaib = �e �
(a @j�je

�
b) � @� ln k � e �

a e
�
b (@�@� ln k + @� ln k � @� ln k) ;

whereas all other components are zero. By multiplying with the vielbein R���� = el�e
m
�

en�e
p
�Rlmnp, we subsequently arrive at the coordinate base expressions

R��
Æ = Æ"[
e
b
Æ]

�
ea�@�e

�
b � @["ea�] +

1

2
e �
a @�eb� � @"ea�

�
+ ea�@�@[
ejajÆ] +

1

2
@[
e

a
j�j � @Æ]ea�

R���
 = R���
 = 0

R���� = �k2
�
ea(�@�)e

"
a � @" ln k + @�@� ln k + @� lnk � @� ln k

�
;

and all other components zero.

Analogously, application of d~el + ~!lm ^ ~em yields

~!ab = !ab ; ~!ia = �e �
b e

�
a

dv��
k

eb � e �
a @� ln k ~ei ; ~!ii = 0 ;

where dv�� � @[�v�] denotes the exterior derivative of v. From the relation dv = �ikH,

it is possible to substitute dv�� in the subsequent formulae by the torsion 3-form through

dv�� = �H���. Again, from Cartan's second structure equation, d~!mn+ ~!ml^ ~!ln =
~Rm

n,

and the dual curvature 2-form ~Rl
m = 1

2
~Rl
mnp~e

n ^ ~ep = 1
2
~Rl
mabe

a ^ eb+ ~Rl
mia~e

i ^ ea, we get
the following non-coordinate frame expressions

~Rabcd = Rabcd � 2

k2
e �
a e

�
b e



[c e

Æ
d] dv�
dv�Æ

~Riabc = ~Rbcia = �2

k
e �
a e

�
[b e



c] dv�� � @
 ln k

~Riaib = e
�

(a @j�je
�

b) � @� ln k + e �
a e

�
b (@�@� ln k � @� lnk � @� ln k) :

45We use the following anti- and symmetrization convention:

A(ab) =
1

2
(Aab +Aba) A[ab] =

1

2
(Aab �Aba)
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Switching to the coordinate base with the help of ~R���� = ~el�~e
m
�~e
n
�~e
p
�
~Rlmnp, one �nally

arrives, after some tedious algebra, at the desired expressions, which relate the T-dual

curvature tensor to its counterpart for the initial metric

~R��
Æ = R��
Æ +
2

k2

�
dv�[Ædvj�j
] � dv�
 � v[�@Æ] ln k + dv�
 � v[�@Æ] ln k + dv�Æ � v[�@
] lnk

� dv�Æ � v[�@
] ln k + v[�e
b
�]v[
@Æ]e

"
b � @" ln k + v[
e

b
Æ]v[�@�]e

"
b � @" ln k

+ v
v[�@�]@Æ ln k � vÆv[�@�]@
 ln k � 2v[�@�] ln k � v[
@Æ] ln k
�

(6.14)

~R���
 =
2

k2

�
dv�[� � @
] ln k + 1

2

�
ea�v[�@
]e

Æ
a + v[�e

a

]@�e

Æ
a

� � @Æ ln k + v[�@
]@� ln k

� v[�@
] ln k � @� ln k
�

(6.15)

~R���� = � 1

k2

�
R����

k2
+ 2@� ln k � @� lnk

�
: (6.16)

6.3 Connecting AdS to a Flat Background ?

As an application of these general formulas { describing the behaviour of the curvature

tensor under T-duality { we now want to examine, whether d-dimensional AdSd space

allows a T-dualization to 
at space under the inclusion of some suitably chosen B�� . Both

spaces, regarded as string backgrounds, leave all supersymmetries intact. We choose the

following coordinate representation for AdSd

ds2 =
r2

L2

�
� dt2 +

d�2X
j=1

dyjdyj
�
+ L2dr

2

r2
; (6.17)

with L being the AdS-radius. It exhibits a negative, constant curvature scalar R = �d(d�
1)=L2. For the isometry direction we choose one of the yj coordinates, e.g. yd�2. In our

above convention, the adapted coordinates are x0 = t; x1 = y1; : : : ; xd�3 = yd�3; xd�2 =

r; xd�1 � x� = yd�2. The curvature tensor of the negatively curved, maximally symmetric

AdSd is given by R���� = � 1
L2
(g��g�� � g��g��), which reduces in our coordinates to46

R���� = � r4

L6
������ ; R�r�r = � 1

L2
��� ; �; � 6= r

and all other components vanishing. In particular, this gives R���� = � r4

L6
��� +

�
r4

L6
�

1
L2

�
Ær�Æ

r
�. It is important that there is a single equation, (6.16), for the dual curvature-

tensor, which is independent of v, resp. B�� and hence allows answering the above

46We choose the Minkowski metric � = (�;+; : : : ;+).
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posed question. Plugging in the actual norm of the Killing vector k = r=L for the

above AdSd metric, we obtain for the right-hand side of (6.16) the expression 1
L2
��� ��

1
L2

+ L2

r4

�
Ær�Æ

r
�. Obviously, this does not ful�ll the requirement ~R���� = 0 for 
at space

and is not even asymptotically 
at. The tensor transformation property ~R0
�0�0�0�0(x

0) =

(A��0)
2A��0A

�
�0
~R����(x), with non-singular A�� = @x�=@x0�, then guarantees that this term

is also non-vanishing for any other than the above chosen coordinate parameterization of

AdSd. In particular for any further isometry direction this dual component is non-zero,

whereas for 
at space it keeps being zero for any parameterization. Thus, we conclude

that 
at space cannot be reached from pure AdSd via T-duality plus the inclusion of some

appropriately chosen B�� . The general formulae (6.14)-(6.16) however serve as a starting

point for more involved T-dualities, including a non-trivial B��, which relate AdSd or the

more important AdS5 � S5 to spaces with di�erent asymptotics.

Eventually, we turn brie
y to the important AdS5 � S5 extension of AdS. Here it

seems possible to relate the IIB D9-brane geometry, which describes D=10 space itself,

to the AdS5 � S5 geometry. In order to do so, one has to start with a six-fold T-duality,

transforming the D9-brane to the D3-brane. Then, dualizing a IIB D3-brane to its own

near-horizon geometry, one reaches AdS5 � S5. This can be done following the work of

[127]. Having T-dualized the D9-brane, the D3-brane geometry in string-frame reads

ds2 =
1p
H6

�� dt2 +
3X
i=1

(dxi)2
�
+
p
H6

9X
j=4

(dxj)2 ;

e� = 1 ; C0123 =
1

H6
� 1 ;

H6 = 1 +
QD3

(r6)4
; QD3 = 4�gsNl

4
s :

Performing a further T-duality over x3; x2 brings us to the IIB D1-brane. An S-duality

transformation then yields the fundamental IIB string solution

ds2 =
1

H8

�� dt2 + (dx1)2
�
+

9X
j=2

(dxj)2 ; (6.18)

e� =
1p
H8

; B01 =
1

H8
� 1 ; (6.19)

H8 = 1 +
QF1

(r8)6
; QF1 = d1g

2
sNl

6
s ; (6.20)
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which is then T-dualized over x1 to obtain the IIA gravitational wave solution

ds2 = (H8 � 2) dt2 + 2 (H8 � 1) dtdx1 +H8dx
1dx1 +

9X
j=2

(dxj)2 ; (6.21)

e� = 1 ; B�� = 0 : (6.22)

The crucial step to get rid of the constant in the harmonicH8 function, consists of perform-

ing �rst an SL(2;R) coordinate transformation on the coordinates t; x1 and subsequently

a T-duality transformation in the new x01 direction. Provided that we choose the special

SL(2;R) coordinate transformation

t0 =
1

2

�
t + x1

�
; x01 = 2x1 ; (6.23)

we are guaranteed that the transformation is globally well-de�ned on (t; x1) space, which

has the toplogy of a cylinder due to the compacti�cation of x1. After T-duality in x01

direction the result is a modi�ed fundamental string without constant part in the harmonic

function

ds2 =
1

H8

�� (dt0)2 + (dx01)2
�
+

9X
j=2

(dxj)2 ; (6.24)

e� =
1pH8

; B01 =
1

H8

� 2 ; (6.25)

H8 =
QF1

(r8)6
(6.26)

It is important to note that the last T-duality has again been along a space-like direc-

tion. Therefore we are secured to stay in the Type II string-theory framework instead of

changing to Type II* [128].

Now, proceeding in the inverse manner, a second S-duality promotes us to a modi�ed

D1-brane. Ultimately, with two T-dualities in the x2; x3 directions we end up with a

modi�ed D3-brane solution without a constant part in its harmonic function. As is well-

known, this gives the AdS5�S5 geometry. Notice, however, that the D3-brane solution is

only locally dual to the AdS5 � S5 solution. In order to perform the various T-dualities,

the brane has to be wrapped on a torus with all worldvolume coordinates taken to be

periodic. Therefore the coordinates of the �nal AdS5 � S5 geometry in addition have

to be identi�ed globally. As mentioned in [127] this has the e�ect that only half the

Killing spinors of AdS5 remain. Thus, only locally we have a maximally supersymmetric

AdS5 � S5 solution. Globally, the D3-brane as well as the dual solution break half the

supersymmetry.
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A word of caution is in order. The spacetime-�lling D9-brane is supposed to describe


at ten-dimensional Minkowski spacetime [129]. However, the D9-brane breaks half the

supersymmetry, whereas 
at space does not. The resolution to this puzzle comes from the

well-known fact, that the open-string sector of N D9-branes is only consistent, if we have

N = 32 of them and perform an orientifolding by the world-sheet parity 
 : � ! � � �.

This breaks half the supersymmetry and the resulting Type I SO(32) theory gives us in

addition to the 
at ten-dimensional Minkowski solution a spacetime-�lling O9 orientifold

�xed plane.
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7 Summary and Conclusions

The main focus of the �rst part of this work has been on heterotic M-theory { its dynamics

in eleven dimensions and its warped geometries which arise upon compacti�cation to four

dimensions. The second part focused on a two domain-wall con�guration whose warped

geometry could be exploited for a low-energy mechanism to obtain a small cosmological

constant within a 5-dimensional context which then was embedded into type IIB-/F-

theory.

We started with an exploration of the stability of a 
at heterotic M-theory background.

Not to rely on duality conjectures to other string-theories, which would involve an ide-

ally still unde�ned quantum heterotic M-theory, we had to rely on the Ho�rava-Witten

supergravity action, which describes the leading part of heterotic M-theory in a long-

wavelength expansion to �rst order in �2=3. Using that action, we calculated all relevant

amplitudes with external gauge-bosons and gauginos { mediated by the graviton, the

gravitino and the M-theory 3-form C { which are responsible for an interaction between

the two boundaries. The result was, that the sum of all these contributions did not add

up to zero, thereby rendering the examined 
at background with vanishing G-
ux, un-

stable. Recently Green et al. [74] expanded our result by adding a further bulk-boundary

interaction term. Thereby they achieved agreement in the limit of coinciding bound-

aries between heterotic string theory and heterotic M-theory concerning the low-energy

s-channel amplitudes with internal bulk supergravity �elds. This motivated us to assume

that by the addition of further interaction terms the full conjectured duality might be

veri�able, such that the M-theory amplitudes will reproduce the amplitudes of heterotic

string-theory if the distance d between both boundaries goes to zero. We then checked

that the sum of the heterotic amplitudes, which by taking the limit d ! 0 have to orig-

inate from the M-theory s-channel diagrams, does not add up to zero. Therefore, if the

conjectured duality holds true, heterotic M-theory can only be stable, i.e. its amplitudes

sum up to zero, if the limit d! 0 is not smooth. However, this is not likely since at least

for the amplitudes with external gauge-bosons only, the work of [74] has shown that there

is a smooth transition. Therefore, we concluded that by assuming the duality to be true

a 
at vacuum with vanishing G-
ux will not be stable but tends to shrink the eleventh

dimension. A way out would be to consider a warped background, which is the only non-

trivial metric background allowed by maintenance of 10-dimensional Poincar�e-invariance.

However, it is unclear what generates the warping since a non-vanishing G-
ux would

violate Poincar�e-invariance.
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Next, we considered the case of heterotic M-theory compacti�ed on a Calabi-Yau

threefold CY3. Since, now we have a vacuum with 4-dimensional Poincar�e-invariance

only, we are allowed to turn on internal G-
ux. Demanding N = 1 supersymmetry in

four dimensions indeed enforces turning on a non-vanishing G-
ux and leads to a unique

determination of the resulting warped-geometry in terms of the 
ux. In [63] Witten

had analyzed the resulting geometry for a CY3 compacti�cation to �rst order in �2=3

with the amazing result that the volume of the CY3 depends linearly on the orbifold

direction and its zero leads just to the right value for the 4-dimensional Newton constant

GN . Because of the crucial importance of this zero for phenomenology we determined

the full dependence of the warped geometry on the G-
ux, i.e. without making a linear

approximation. It turned out that the full functional behaviour of the volume, which

requires the knowledge of the Calabi-Yau warp-factor, can be inferred if one makes the

assumption that the magnetic boundary and M5-brane sources of the full heterotic M-

theory can still be localized in the orbifold direction. The outcome has been a quadratic

dependence with a coeÆcient containing in principle the full heterotic M-theory to all

orders. An expansion of this coeÆcient to �rst order reproduced the linear result of [63].

Generically, we still got a zero (whose precise value however requires knowledge about

heterotic M-theory to all orders in �2=3) but this zero coincides with the minimum of a

parabola. The nice fact about this is that now the zero volume location can be neatly

resolved by quantum corrections to some �nite value, whereas in the linear approximation

quantum corrections would only shift the position of the zero volume location. As a non-

trivial check on our warp-factor { 
ux relations we reproduced the analogous relation for

the weakly coupled heterotic string with torsion. Then, we analyzed the relation between

Newton's Constant and the distance d between both boundaries and showed how a further

bulk M5-brane source changes the Calabi-Yau volume behaviour. With the knowledge of

the full warped background geometry we derived an e�ective potential for the distance-

modulus d. Its shape indicated again a destabilization of the set-up. Next we considered

the most general case with all G-
ux components, allowed by supersymmetry, turned

on. This is a prerequisite, e.g. if one wants to consider e�ects like gaugino condenstaion.

A similar formula for the Calabi-Yau volume dependence on the orbifold-direction was

derived. Furthermore, we found a relation between the internal spin-connection and the

G-
ux. This determined the internal holonomy group of the deformed compacti�cation

manifold by the G-
ux and once more showed an intriguing relationship between geometry

and physics.

The next chapter was devoted to a low-energy mechanism (without the need for super-
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symmetry) which exploited a warped geometry to arrive at a realistically small value for

the cosmological constant �4. Separating two positive-tension domain-walls in �ve dimen-

sions by a distance 2l showed an exponential warp-factor in the resulting geometry. Upon

determining the e�ective 4-dimensional action we saw that this warp-factor translates into

an exponential suppression of an initially Planck-valued cosmological constant. By lifting

the �netuning of parameters and deriving yhe corresponding backreaction on the warped

geometry we could show that this feature persisted and thus required no �netuning. To

obtain the observed value for �4 needed a length 2l ' 1=MGUT. An embedding of the

5-dimensional con�guration into a 10-dimensional IIB-/F-theory framework interpreted

the domain-walls as stacks of D3-branes with attached open strings. The requirement to

reproduce the Standard Model gauge group led to the conclusion that the SU(3) had to

originate from one stack, whereas the SU(2)�U(1) had to be located on the second stack.

An examination of the open string spectrum showed that it described an SU(6) GUT with

gauge-group spontaneously broken down to the Standard Model gauge group through the

separation of the two D3-brane stacks. Composing all open string states out of two sorts

of \basic" open strings together with a consistency condition concerning the orientation

of the open strings leads to a very simple origin of the U(1)-hypercharge { it is a conse-

quence of the number of D3-branes in the SU(3) resp. SU(2) stack. In this picture the

triplet Higgs-bosons naturally acquire mass at the GUT-scale { since they stem from open

strings stretching from one brane stack to the other { whereas the doublet Higgs-bosons

are naturally light because their origin is from open strings starting and ending on the

same brane-stack. It was then pointed out that the extra six internal dimensions natu-

rally lead to three (degenerate) generations of fermions. By the inclusion of three further

D7-branes it is possible to lift this degeneracy and to obtain a three-generation model

already at the level of dimensional reduction without the need to invoke a complicated

internal manifold with a special value for its Euler-characteristic.

The �nal chapter explored the impact which T-duality has on curvature resp. the cos-

mological constant. We derived expressions for the behaviour of the Riemann curvature

tensor under T-duality and applied these to see whether an AdS-spacetime (with nega-

tive cosmological constant) can be T-dualized to a 
at spacetime without cosmological

constant. The answer was negative. However with the derived formulae a more general

research involving also spacetimes which are only asymptotically AdS could be explored.
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A Amplitudes of Heterotic M-Theory

A.1 Notation

Tensors:

A(M1:::Mn) =
1

n!
(AM1:::Mn � (n!� 1) symmetric permutations)

A[M1:::Mn] =
1

n!
(AM1:::Mn � (n!� 1) antisymmetric permutations)

A.2 Mandelstam-Variables and Kinematic for the CMS

Center-of-Mass variables:

scattering angle: 0 � # � � CMS-Energy: E (A.1)

Without loss of generality we can arrange the scattering such that the two incoming

�elds with momenta p1; p2 collide head-on in the CMS-system in the direction of the 9th

coordinate axis and the outgoing �elds move on the plane spanned by the 8th and 9th

coordinate axes. We choose # to be the angle between p1 and p3. Concretely we take for

the D=10 momenta

p1 =

�
E

2
; 0; :::; 0;

E

2

�
; p2 =

�
E

2
; 0; :::; 0;�E

2

�
;

p3 =

�
E

2
; 0; :::; 0;

E

2
sin#;

E

2
cos#

�
; p4 =

�
E

2
; 0; :::; 0;�E

2
sin#;�E

2
cos#

�
:

Mandelstam-Variables:

s = � (p1 + p2)
2 = � (p3 + p4)

2 = E2

t = � (p1 � p3)
2 = � (p2 � p4)

2 = �s
2
[1� cos#] = �s sin2 #

2
� 0

u = � (p1 � p4)
2 = � (p2 � p3)

2 = �s
2
[1 + cos #] = �s cos2 #

2
� 0

s+ t+ u = 0
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A.3 D=10 Polarization Vectors

CMS-Polarization Vectors: Let the D=10 momentum in the CMS be

p =
E

2
(1; :::; sin#; cos #) : (A.2)

Then we have 8 transverse polarizations, which are given in the CMS by the following

real vectors

�(p; 1) = (0; 1; 0; :::; 0) (A.3)

�(p; 2) = (0; 0; 1; :::; 0) (A.4)

... (A.5)

�(p; 7) = (0; 0; 0; :::; 1; 0; 0) (A.6)

�(p; 8) = (0; 0; 0; :::; 0; cos#;� sin#) (A.7)

Useful Contractions: If we sum over all polarizations, we get

8X
�=1

p1;A�
A(p2; �) =

E

2
sin (#1 � #2) : (A.8)

Contractions of two polarization vectors are given by

8X
�;~�=1

�A(p; �) �
A
�
~p; ~�
�
= 7 + cos

�
#� ~#

�
: (A.9)
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A.4 D=11 Gamma-Matrices and D=10 Dirac-Spinors

We take the D=11 SO(1; 10) spin 32�32 matrices to be in a real Majorana-representation

�1 = �i�2 
 I16 =

 
0 �1
1 0

!


 
I8 0

0 I8

!

�a = �1 
 
a16 =

 
0 1

1 0

!


 

0 
a8

a;T8 0

!
; a = 1; :::; 8

�10 = ��1 
 
916 =

 
0 �1
�1 0

!


 
I8 0

0 �I8

!

�11 � �1�2:::�9�10

= �3 
 I16 =

 
1 0

0 �1

!


 
I8 0

0 I8

!
=

 
I16 0

0 �I16

!

where we use �1:::10 = 1 = ��1:::10. The Dirac-matrices satisfy�
�M ;�N

	
= 2�MN = 2(�;+; :::;+) ;

while the real 16� 16 
a16 submatrices obey the relations�

a16; 


b
16

	
= 2Æab ; 
a;T16 = 
a16 ;

�

a16
�2

= I16


916 � 
116:::

8
16 =

 
I8 0

0 �I8

!
; 
9;T16 = 
916 ;

�

916
�2

= I16 :

Finally the 8� 8 submatrices 
a are de�ned as


1 = i�2 
 i�2 
 i�2 ; 
2 = I2 
 �1 
 i�2


3 = I2 
 �3 
 i�2 ; 
4 = �1 
 i�2 
 I2


5 = �3 
 i�2 
 I2 ; 
6 = i�2 
 I2 
 �1


7 = i�2 
 I2 
 �3 ; 
8 = I2 
 I2 
 I2 = I8

and satisfy


a
b;T + 
b
a;T = 2Æab ; 
i;T = �
i ; i = 1; :::; 7 ; 
8;T = �
8 :

D=10 Weyl-spinor: We have to deal with ten-dimensional Majorana-Weyl spinors for

the gauginos with positive chirality only. For the special ten-dimensional momentum
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p1 =
E
2
(1; 0; :::; 0; 1), we �nd from the Dirac-equation �A@A�(x) = 0, the following spinor

expression in momentum space

us(p1) =
p
N

0
BBB@

0

es

0

0

1
CCCA ;

where es; s = 1; :::; 8 denotes the sth unit vector. In our calculation we actually need

the slightly more general spinor corresponding to the ten-dimensional momentum p =
E
2
(1; 0; :::; 0; sin#; cos #). We can generate p from p1 by a rotation in the 8-9 plane

pA = R#p
A
1 =

0
B@

. . . 0 0

0 cos# sin#

0 � sin# cos#

1
CA
0
BBBB@

p01
...

p81
p91

1
CCCCA :

The corresponding action on the spinor us(p1) is given by

us(p) = e
#
2
�8�9us(p1) =

�
cos

�
#

2

�
I32 + sin

�
#

2

�
�8�9

�
us(p1)

=
p
N

0
BBB@

sin
�
#
2

�
es

cos
�
#
2

�
es

0

0

1
CCCA : (A.10)

As a convenient normalization choice we choose

N � E :

The charge conjugation matrix C�� will be taken as

C�� =
�
�1
��
�
; C�� =

�
�1;�1��

�
=
�
�1;T

��
�
= � ��1

��
�
:

Symmetry properties of Bilinears:

For arbitrary momenta p and p0 one obtains

�us(p)�
Aus0(p

0) = �us0(p
0)�Aus(p) (A.11)

�us(p)�
ABCus0(p

0) = ��us0(p0)�ABCus(p) (A.12)

�us(p)�
ABCDEus0(p

0) = �us0(p
0)�ABCDEus(p) : (A.13)
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A.5 Hyperplane Gauge Field Operators

Fourier-Decomposition of the Field Operators:

Ba
A(x) =

Z
d9k

(2�)9 2k0

X
�=1;:::;8

�A(k; �)
h
ba� (k) e

ikx + ba;y� (k) e�ikx
i

(A.14)

�a(x) =

Z
d9k

(2�)9 2k0

X
s=1;:::;8

us(k)
�
das(k)e

ikx + da;ys (k)e�ikx
�

(A.15)

(A.16)

Anti-/Commutators:

�
ba�(k); b

b;y
�0 (k

0)
�
= Æ9(k � k0)Æ��0Æ

ab(2�)92k0 (A.17)�
ba�(k); b

b
�0(k

0)
�
=
�
ba;y� (k); bb;y�0 (k

0)
�
= 0 (A.18)�

das(k); d
b;y
s0 (k

0)
	
= Æ9(k � k0)Æss0Æab(2�)92k0 (A.19)�

das(k); d
b
s0(k

0)
	
=
�
da;ys (k); bb;ys0 (k

0)
	
= 0 (A.20)

Wick-Contractions:

ba�(p)B
b
A (x) = Æab�A(p; �) e

�ipx (A.21)

Ba
A(x) b

b;y
� (p) = Æab�A(p; �) e

ipx (A.22)

das(p)�
b�(x) = Æabu�s (p) e

�ipx (A.23)

�a�(x)db;ys (p) = Æabu�s (p) e
ipx (A.24)
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B Warp-Factors and Torsion

B.1 G-Flux Contractions

First, we present those identities, which are used in the main text for the evaluation of

the Killing-spinor equation

�̂ea
�bc �d~� = 0

�̂�ea�bc �d~� =
�
�̂�e(ĝa

�bĝc
�d � ĝa

�dĝc
�b) + �̂

�b(ĝa
�dĝc�e � ĝa�eĝc

�d) + �̂
�d(ĝa�eĝc

�b � ĝa
�bĝc�e)

�
~�

�̂abc
�d~� = 0

�̂a
�bc �d~� =

�
ĝa

�bĝc
�d � ĝa

�dĝc
�b
�
~�

�̂�a�bc �d~� =
�
�̂�a�̂

�bĝc
�d � �̂�a�̂

�dĝc
�b + �̂

�b�̂
�dĝc�a
�
~�

�̂ab�c11~� = 0

�̂�ab�c11~� = e�h=2
�
�̂�aĝb�c � �̂�cĝb�a

�
~�

�̂ab�c~� = 0

�̂a
�b�c~� =

�
ĝa

�b�̂�c � ĝa�c�̂
�b
�
~�

�̂a
�b~� = ĝa

�b~� : (B.1)

With their help and the de�nitions (4.10),(4.11),(4.12), we arrive at the contractions

�̂�uvwxGuvwx~� = �3
�
e�2f��̂� + 4ie�k=2�f��a�̂��̂�a

�
~�

�̂euvwxGuvwx~� = �12ie�k=2�f�e~�
�̂�euvwxGuvwx~� = �3

�
e�2f��̂�e � 4ie�f��e

�a�̂
�a � 4ie�k=2�f��e

+ 4ie�k=2�f��a�̂�e�̂�a + 4e�k=2�̂�a�̂
�bG�e

�a�b11

�
~�

�̂11uvwxGuvwx~� = �3e�k=2�2f�~� (B.2)

and

ĝ�u�̂vwxGuvwx~� = 0

ĝau�̂vwxGuvwx~� = �3ie�k=2�f�a~�
ĝ�au�̂vwxGuvwx~� = �3�ie�k=2�f��a + ie�f��a

�e�̂
�e � e�k=2�̂

�b�cG�a
�b�c11

�
~�

ĝ11u�̂vwxGuvwx~� = 3ie�f��c�̂�cĝ11;11~� ; (B.3)

which are used in the main text.
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B.2 The Heterotic String with Torsion

The Ansatz traditionally used [31] in compacti�cations of the 10-dimensional heterotic

E8 � E8 string on CY3 to four dimensions with N = 1 supersymmetry is to make the

susy-variations of the gravitino  M , the dilatino � and the gluino �a (i; j = 5; : : : ; 10)

Æ i =
1

�
Di� +

�

32g2�
(�i

jkl � 9Æji�
kl)�Hjkl

Æ� = � 1p
2�

(� � @�)� + �

8
p
2g2�

�ijk�Hijk

Æ� = � 1

4g
p
�
�ijFij� (B.4)

vanish by assuming that H = d� = 0. Here � is the dilaton and H the gauge-invariant

�eld strength of the NSNS 2-form B, which in addition has to ful�l the Bianchi identity

dH = trR ^R� 1

30
trF ^ F : (B.5)

This leads to the consequence that CY3 is a K�ahler manifold with c1(CY3) = 0 and

SU(3) holonomy (and the gauge �eld A being a holomorphic connection on a holomorphic

vector bundle V over the Calabi-Yau threefold CY3 obeying the Donaldson-Uhlenbeck-Yau

equation).

This Ansatz was generalized in [77] to include a non-vanishing torsion H 6= 0 where

solutions leading again to N = 1 supersymmetry in D=4 were obtained by allowing for a

warp-factor e2D(y) in the metric (in Einstein-frame)

gEAB(x; y) = e2D(y)gAB(x; y) = e2D(y)

 
���(x) 0

0 gmn(y)

!
; (B.6)

where we denote 10-dimensional indices by A;B;C; : : :. It turns out that D has to be the

dilaton �. The torsion and the dilaton are determined by

H =
i

2
(�@ � @)J (B.7)

e8� = e8�0 jj
jj ; (B.8)

where the fundamental (1,1) form J is built out of the complex structure Jm
n as J =

1
2
Jm

ngnpdy
m ^ dyp = iga�bdz

a ^ d�z�b (in our conventions J equals up to a minus-sign the

K�ahler-form !) and 
 is the (determined up to an overall constant) holomorphic 3-form

with norm jj
jj = (
a1a2a3 �
�b1�b2�b3g
a1�b1ga2

�b2ga3
�b3)1=2. To recognize the relation between H
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(commonly called torsion) and the original torsion, we note that the metric torsion of a

complex manifold is speci�ed by the expression

T abc = �2g �dag �d[b;c] (B.9)

and its complex conjugate. Hence, the above expression forH can be explicitely expressed

through the metric torsion via

H =
1

4

�
Ta�b�cdz

a ^ dz�b ^ dz�c + T�cabdz
a ^ dzb ^ dz�c

�
: (B.10)

Finally, the link between H and the warp-factor is given implicitly by the dilatino equation

Æ� = 0, which manifests itself in the following relationship

dyJ = i(@ � �@) ln jj
jj : (B.11)

From the left-hand side of this equation it can be easily discerned, that the right-hand side

serves as a measure for the non-K�ahlerness of the compacti�cation manifold. Therefore,

by turning on H-torsion, the compacti�cation manifold becomes deformed to a manifold

which is no longer K�ahler.

To gain a more explicit relation between the H-torsion and the resulting warp-factor,

we note that the dilatino equation Æ� = 0 can be alternatively written as [77]

8@m� = Jm
nrpJn

p : (B.12)

Here, the covariant derivative is constructed out of the initial metric gMN without warp-

factor. The H-covariant constancy of the complex structure [77]

rmJn
p �Hqm

pJn
q �Hq

mnJq
p = 0 (B.13)

plus its property to square to minus the identity, Jm
nJn

p = �Æpm, serve together with

Ja�b = iga�b to derive

8@a� = Hab
b �Ha�b

�b : (B.14)

The contraction is with respect to the initial metric in whose frame the relation holds.

Equation (B.7), which relates H-torsion with metric torsion, reads in components Hab�c =

�g�c[a;b] and leads to Ha�b
�b = �Hab

b. Finally, to obtain the relation between the warp-factor

� and H-torsion in the Einstein-frame, we have to transform the contractions according

to the rescaling gAB = e�2�gEAB from the initial frame to the Einstein-frame and gain

@a(e
�2�) = �1

2
Hab

b : (B.15)
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The contraction on the right-hand-side is now understood to be carried out with gEAB.

Furthermore warp-geometries appear in heterotic �ve-brane solutions preserving su-

persymmetry. They were obtained ([78],[79],[80]; cf. also the axionic instantons in [81])

with the Ansatz (k; l;m; n = 7; : : : ; 10)

gmn = e2�Æmn

Hmnl = �� k
mnl @k�

showing again that turning on torsion leads to a warp factor.

C Unequal Wall Tensions

C.1 E�ective D=4 Action

In this appendix, we will deal with the case of unequal wall tensions T1 6= T2. The Ansatz

(5.4) then yields the solution

A(x5) =
k1
2

��x5 + l
��+ k2

2

��x5 � l
�� =

8><
>:

x5 � l : 1
2
K12x

5 + 1
2
k12l

�l � x5 � l : 1
2
k12x

5 + 1
2
K12l

x5 � �l : �1
2
K12x

5 � 1
2
k12l

; (C.1)

where K12 = k1 + k2 and k12 = k1 � k2. Without loss of generality, we will assume that

k1 � k2 subsequently. The function A(x
5), which determines the warp-factor is displayed

in �g.11. The corresponding warp-factor e�A(x
5) is upper-bounded by e�k2l throughout

the whole �fth dimension. From the Einstein equation (5.5) we receive the expressions

for � and the wall tensions

�(x5) =

(
�e ; jx5j � l

�i ; jx5j < l
= �3M3

4

(
K2

12 ; jx5j � l

k212 ; jx5j < l
(C.2)

T1 = 3M3k1 ; T2 = 3M3k2 : (C.3)
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A(x5)

x5�l 0 l

k1l
k2l

Figure 11: The function A(x5), which determines the warp-factor.

The next task is again the determination of the e�ective four-dimensional action. Along

the same lines as above by employing (5.13), we get for the Einstein-Hilbert term

SEH = �
Z
d4x

p
gM3

�
R(g)

Z 1

�1
dx5e�A +

Z 1

�1
dx5e�2A

�
5(A0)2 � 4A00��

= �e�K12l=2

Z
d4x

p
gM3

(
4R(g)

h 1

K12
cosh

�
k12l

2

�
+

1

k12
sinh

�
k12l

2

�i
+
5

4
e�K12l=2

h
2K12 cosh (k12l) + 2k12 sinh (k12l)

i
� 4e�K12l=2

h
k1e

k12l + k2e
�k12l

i)
: (C.4)

For the remaining wall- and bulk cosmological constant terms we obtain

SSM1
+ SSM2

+ S� =� e�K12l

Z
d4x

p
g

�
ek12lT1 + e�k12lT2

+ 2
�e
K12

cosh(k12l) + 2
�i
k12

sinh(k12l)

�
: (C.5)

Pulling out an overall factor of e�K12l=2 in front, the �nal e�ective action reads

SEH + SSM1
+ SSM2

+ S�

= �e�K12l=2

Z
d4x

p
g

(
4M3R(g)

h 1

K12

cosh

�
k12l

2

�
+

1

k12
sinh

�
k12l

2

�i
+
5

2
M3e�K12l=2

h
K12 cosh (k12l) + k12 sinh (k12l)

i
+ e�K12l=2

h
ek12l(T1 � 4k1M

3)

+ e�k12l(T2 � 4k2M
3) + 2

�e
K12

cosh(k12l) + 2
�i
k12

sinh(k12l)
i)

: (C.6)
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At the classical level the normalization of the action is irrelevant. Let us therefore by the

same reasoning as in the main text drop the overall scale-factor and arrive at the e�ective

action

SD=4 = �
Z
d4x

p
g
�
M2

e�R(g) + �4

	
; (C.7)

with the e�ective four-dimensional Planck-scale Me� and the four-dimensional cosmolog-

ical constant �4 now given by

M2
e� = 4M3

h 1

K12

cosh
�k12l

2

�
+

1

k12
sinh

�k12l
2

�i
(C.8)

�4 = e�K12l=2

�
5

2
M3
h
K12 cosh (k12l) + k12 sinh (k12l)

i
+
h
ek12l(T1 � 4k1M

3)

+ e�k12l(T2 � 4k2M
3) + 2

�e
K12

cosh(k12l) + 2
�i
k12

sinh(k12l)
i�

: (C.9)

Again, there exists a huge suppression-factor e�K12l=2 multiplying the whole cosmological

constant, which serves to bring �4 down to its observed upper bound if generically k1; k2 '
MP l. When the above obtained values (C.2),(C.3) for T1; T2;�e;�i are substituted in the

obtained action, we arrive at a vanishing �4, which checks the derivation of the action,

since in that special case the �ne-tuning of the parameters requires a 
at four-dimensional

metric g�� = ��� . For the particular case of coinciding wall-tensions, T1 = T2 = T (which

entails k1 = k2 = k), we arrive at the e�ective action given by (5.29),(5.31),(5.34), which

was discussed in the main text.

Again, let us now lift the �ne-tuning of the parameters imposed by

�(x5) =

(
�e ; jx5j � l

�i ; jx5j < l
= � 1

12M3

(
(T1 + T2)

2 ; jx5j � l

(T1 � T2)
2 ; jx5j < l

; (C.10)

which corresponds to a non-trivial four-dimensional metric g�� 6= ��� in the Ansatz

ds2 = e�A(x
5)g��dx

�dx� + (dx5)2 : (C.11)

From (C.9) it is evident, that in order to arrive at a small �4, we require

k1 � k2 � k12 .
1

l
= 2MGUT : (C.12)

Generically, we choose k1; k2 ' MP l, T1; T2 ' M4
P l, �e ' �M5

P l and the fundamental

�ve dimensional Planck-scale M ' MP l. Again, as explained in the main text, �i has

to be chosen with an upper bound of (3 � 1018GeV)5, which roughly corresponds to the
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traditional string-scale. Then, we recognize from (C.9), that the suppression through

the exponential factor is suÆcient to bring the contributions to the four-dimensional

cosmological constant down to its observed value. The e�ective four-dimensional Planck-

scale Me� ' 24MP l again comes out slightly too high. It can however be brought down,

e.g. to M ' MP l, if we choose M ' 1:5 � 1018GeV, which is close to the traditional

string-scale.

C.2 E�ective Potential for Bulk Scalars

Here, we want to extend the analysis of a bulk scalar contribution to the e�ective potential

(= �4) to the case of unequal wall tensions. For the action of the scalar � with mass m,

let us take

S� =�
Z
d4x

Z 1

�1
dx5

p
G

�
1

2
GMN@M�@N� +

1

2
m2�2

�

�
Z
d4x

Z 1

�1
dx5
�q

g
(4)
1 �1(�

2 � v21)
2Æ(x5 + l) +

q
g
(4)
2 �2(�

2 � v22)
2Æ(x5 � l)

�
:

(C.13)

Assuming only an x5 dependence of �, we arrive at the �eld equation

(e�2A�0)0 � e�2Am2� = 4
�
e�2A(�l)�1(�2 � v21)�Æ(x

5 + l)

+e�2A(l)�2(�2 � v22)�Æ(x
5 � l)

�
; (C.14)

which, away from the walls, has the solution

�(x5) =

8><
>:

ae(1+�)A + be(1��)A ; x5 < �l
ce(1+
)A + de(1�
)A ; jx5j � l

ee(1+�)A + fe(1��)A ; x5 > l

; (C.15)

with

� =
q
1 + 4m2=K2

12 ; 
 =
q
1 + 4m2=k212 : (C.16)

In order to obtain a normalizable solution for �, we set the coeÆcients a = e = 0.

Moreover, imposing continuity of � at the walls determines b and f in terms of c; d

b = e�k2l~b ; ~b = ce
k2l + de�
k2l (C.17)

f = e�k1l ~f ; ~f = ce
k1l + de�
k1l : (C.18)
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To �x the remaining coeÆcients c and d one would have to plug the above bulk solution in

the �eld equation and integrate out the �fth dimension to incorporate the wall boundary

conditions. Since this leads to a complicated cubic equation in the unknowns c; d, it

is easier to determine them by inserting the bulk solution into the scalar action and

integrating over x5 to arrive at an e�ective potential for the wall-distance l. For positive

couplings �1; �2 this e�ective potential will be positive de�nite. Hence, to minimize the

potential, we must have �(�l) = v1 and �(l) = v2. This allows for a determination of

c; d in terms of the parameters v1; v2

c =
v2e

�(1�
)k1l � v1e
�(1�
)k2l

e2
k1l � e2
k2l
; d =

v2e
�(1+
)k1l � v1e

�(1+
)k2l

e�2
k1l � e�2
k2l
: (C.19)

The e�ective potential47 eventually becomes

V�(l) =
k12
2

sinh(
k12l)

�
c2(
 + 1)e
K12l + d2(
 � 1)e�
K12l

�

+
(�� 1)K12

4

�
~b2 + ~f 2

�
: (C.20)

A numerical analysis of this potential shows, that also in the case with di�ering tensions a

bulk scalar, with couplings to the walls, leads generically to an e�ective potential, which

is likewise suÆciently suppressed. Therefore, it does not generate a huge four-dimensional

cosmological constant, which could have been spoiled the embedding of the mechanism

into string-theory.

47Here we use the relations (1� 
)2
k2
12

4 +m2 = 
(
 � 1)
k2
12

2 and (1� 
2)
k2
12

4 +m2 = 0.
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