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Zusammenfassung

Die inelastische Produktion von D**-Mesonen in Elektron-Proton-Streuung bei kleinen
Photonvirtualititen wurde mithilfe von Daten des H1l-Experiments untersucht. Die

Ergebnisse dieser Messung wurden daraufhin verwendet, um mit dem Ereignisgener-

ator CASCADE unintegrierte Gluondichten zu ermitteln.

Der Phasenraum der Messung ist gegeben durch Photonvirtualititen im Bereich
von 2 GeV? < Q% < 5 GeV? und Inelastizititen innerhalb 0.02 < y < 0.7. Der
sichtbare Bereich der D**-Mesonen ist auf Pseudorapidititen von |n”"| < 1.5 und
Transversalimpulse p?” > 1.5 GeV beschrinkt und ergéinzt Messungen von D**-
Mesonprodution bei h6heren Virtualitdten. Die Daten wurden in den Jahren 2004 bis
2007 in der HERA-II-Phase vom H1-Detektor aufgenommen und ergeben eine integri-
erte Luminositit von 348pb~'. Diese gegeniiber H1-Messungen in der HERA-I-Phase
deutlich erhohte Statistik ermdglichte eine differenziertere Messung von einfach- und
doppeltdifferentiellen Wirkungsquerschnitten der D**-Mesonproduktion.

Die einfach differentiellen Wirkungsquerschnitte dieser Messungen wurden anschliefs-
end verwendet, um mittels Parameteranpassung unintegrierte, d.h. vom Transver-
salimpuls abhéngige, Gluondichten zu ermitteln. Dafiir wurden Streuereignisse in
Elektron-Protonkollisionen mit dem Monte Carlo-Programm CASCADE simuliert und
die Abweichung der Simulationsvorhersagen im y2-Verfahren minimiert. Drei veschied-
ene Parametrisierungen der unintegrierten Gluondichte wurden verwendet und die

Ergebnisse verglichen.

Abstract

A study of inclusive D** meson production in deep inelastic electron-proton scat-
tering at the H1 detector is presented for low photon virtualities. The results of
these measurements have been used to determine unitegrated gluon densities with
the Monte Carlo generator CASCADE.

The phase space of the measurement is defined by photon virtualities inside 2 GeV? <
Q% < 5 GeV?, and inelasticities inside 0.02 < y < 0.7. The visible region of the pro-
duction of D** mesons is restricted to pseudo rapidities of |[n”"| < 1.5 and transverse
momenta of p?” > 1.5 GeV and complements D** meson production measurements
at higher photon virtualities. Data taken in the years 2004-2007 during the HERA
II running period have been analyzed yielding an integrated luminosity of 348 pb™.

This significant increase in statistics compared to HERA I was exploited in the single



and double differential cross sections which have been measured more differentiated
than in previous measurements at H1.

The single differential cross sections have been used in parameter fits of uninte-
grated gluon densities. For this purpose scattering events in electron-proton collisions
were simulated with the Monte Carlo generator CASCADE and the deviation of the
prediction of the simulation from the measured data was then minimized with the y?
method. Three different parametrizations of unintegrated gluon distributions have

been used and compared.
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Introduction

Scattering Experiments

Since the days of Ernest Rutherford scattering experiments have been effective tools
for probing the structure of matter at smallest distances. Rutherford shot a-particles
at a gold target foil and found that the gold foil consisted of very small scattering
centers of ~ 10~ m, which today are called atomic nuclei. But Rutherford’s experi-
ment was more than just proof of the existence of atomic cores: it lay the foundation

for modern experiments probing the structure of matter.

The Composite Proton

Today, much more is known about the structure of matter. Atoms are not fundamen-
tal building blocks, they consist of an outer shell made up of electrons, and neutrons
and protons which form atomic nuclei. While electrons are still considered funda-
mental, neutrons and protons are composed of quarks or, more generally, partons.
Partons are not found separately in experiments, they are always part of a larger
compound like a neutron or proton.

At the accelerator HERA (Hadron Ring-Anlage) at the DESY facility at Hamburg,
the partonic structure of protons was studied. Electrons were collided with protons
at very high energies, and in such a collision an electron interacts with a quark in the
proton via the electromagnetic force. At the energy of the HERA collisions hadrons
are formed in the collisions. These hadrons as well as the scattered electron were
detected by the H1 detector.

D* Mesons in Electron-Proton Collisions

The production of one such particle, the D* meson, was studied in this thesis. It

consists of a charm quark, a heavy quark which only manifests itself in highly energetic



Introduction

protons. Charm quarks, and therefore D* mesons, are dynamically created in the
strong interaction which binds the quarks together. D* mesons are thus directly
sensitive to the strong interaction in the proton.

D* meson production has been studied before both in the HERA I and in the
HERA II running periods, but either not with the same statistics (HERA I) or in
a different region of phase space (HERA II, see [1] and [2, 3]). Here, D* meson
production was studied in the low Q? region, which is more sensitive to low parton

momentum fractions.

Unintegrated Gluon Densities

The interaction between quarks in the proton is described by the theory of Quantum
Chromodynamics (QCD). As a quantum field theory it states that the interaction
of quarks is mediated by a boson. This boson is called gluon, because it “glues” the
quarks together. It is also considered a parton, because it too is found only inside
hadron.

In theoretical predictions partons appear in the form of parton distribution func-
tions, or parton densities. These are momentum distribution functions which con-
tribute to proton scattering cross sections. In this thesis unintegrated parton densities
are determined. They introduce a dependence of the parton densities on the parton’s
transverse momentum component, which is missing in the more common framework
of collinear parton densities. This makes unintegrated parton densities more suited
for the use in computer programs simulating high energy scattering events, because
the kinematics in particle collisions can be treated more consistently.

Exploiting the direct sensitivity of D* meson production to the gluon content of
the proton, unintegrated gluon densities are determined by fits to the cross sections

measured in this analysis.

The Structure Of This Thesis

The experimental data used here was collected in the collider experiment H1 at the
particle accelerator HERA. There electrons and protons were collided from 1992 until
2007 to study the partonic structure of the proton. The measurement of the D* meson
production cross section at low photon virtualities is the topic of this thesis. From

these cross sections unintegrated gluon densities are determined.



The first chapter explains the ideas behind modern experiments probing the struc-
ture of protons and the basic models describing the outcomes. After an overview of
the H1 detector in chapter 2, the measurement of D* meson production cross sections
is presented in detail in chapter 3.

Chapters 4 and 5 deal with theoretical aspects of the parton model and how these
are incorporated in computer programs simulating the interaction of electrons and
protons. These chapters also introduce the formalism of unintegrated parton densi-
ties. In chapter 6 I describe how unintegrated gluon densities can be obtained by fits
to exclusive final state measurements. I present first results and discuss the difference

to former methods.
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1 Deep Inelastic Scattering

In this chapter I briefly introduce the ideas behind deep inelastic scattering and the
parton model and its application to current particle collider experiments. Only the
most basic concepts are discussed here. A more detailed presentation on the subject
will be given in chapters 4 and 5.

The first section 1.1 deals with the kinematics of lepton-nucleon scattering. Section
1.2 introduces the notion of gluons as the carriers of the strong nuclear force and
explains shortly how they influence the proton structure. Also the idea of parton
distribution functions (PDFs) or parton densities is presented.

The role of charm quarks in electron-proton scattering is discussed in section 1.3,
before the last section of this chapter gives a short overview of the Monte Carlo

simulations used in this analysis.

1.1 Kinematics of the Parton Model

In order to study the properties of the strong interaction many experiments exist
where a proton target is probed by a lepton, be it electron or positron, muon or

neutrino. One possibility is to use a fixed proton target, e. g. in the form of liquid

Quark

FElectron

Figure 1.1: The basic idea behind deep inelastic scattering: An electron collides with
a proton head on and interacts with a quark inside the proton wvia the
electroweak interaction, which is mediated by a wvirtual photon, Z or W
boson (sketched by the wavy line).



1 Deep Inelastic Scattering

Figure 1.2: Diagram showing the basic kinematic variables in ep-scattering.

hydrogen. This was done by various experiments at the Stanford Linear Accelerator
Center (SLAC), DESY and others.

To reach higher center-of-mass energies it is beneficial not to collide a probe on
a fixed target but to use two accelerated particle beams and collide them head-on.
This is because at high energies the energy in the center-of-mass frame is higher for
head-on collider experiments as for fixed target experiments.

At the HERA accelerator an electron! beam is colliding with a highly energetic
proton beam?. The physical picture of such an electron-proton collision can be viewed
in figure 1.1: the electron interacts via the electroweak interaction, i. e. by exchange
of either a photon, a Z° boson or a W* boson, with a constituent of the proton,
called quark or parton. This assumption, that the proton consists of partons moving
in the same direction, is called the quark parton model (QPM).

The case of W* exchange is called charged current, because the W bosons carry
electric charge, whereas the exchange of neutrally charged Z° and 7 is referred to as
neutral current. In this analysis only neutral current events are examined.

The kinematic variables needed for the description of the system are illustrated in
figure 1.2: an electron with four-momentum p, interacts with a quark of momentum
Z4 - pp in a proton of four momentum p,, where z, is the momentum fraction carried
by the quark. The scattered electron’s four-momentum is denoted p./, while ¢ is the
four-momentum of the virtual photon.

From these variables a set of four Lorentz invariants can be defined that, neglecting

mass terms, over-determine the state of the system [4]:

! Throughout this thesis the term electron refers to electrons as well as positrons, as HERA collided
both lepton types with protons. Whenever the difference is important it is emphasized.
HERA and the H1 experiment are introduced in more detail in chapters 2.1 and 2, respectively.



1.2 Quarks and Gluons in the Proton

s = (ptp) (1)

Q* = —¢=—(p.—pe)’ (1.2)
Q2

Trp; = 1.3

Bj 2pp 3 q ( )
Pp - q

yg; = —L— 1.4

Bj Do - De ( )

These variables are related via
QQIIBj'yBj'S (15)

The Bjorken variable zp; can be identified with the quark’s momentum fraction,
r, = xpj, while in the proton rest frame (prf) the inelasticity yp; can be interpreted
as the virtual photon’s fraction of the electron energy, yp; = EZ;’”f /EP"T. The squared
center-of-mass energy (see eq. (1.5)) of the electron-proton system is given by s.
The virtuality of the photon, Q?, is defined as the squared four-momentum transfer
between the electron and the proton. In deep inelastic scattering it gains a special
status as it can set the energy scale for the hard interaction of the virtual photon and

the scattered parton.

The exchange of Z° bosons dominates at virtualities approaching the Z° mass
peak, m% =~ 8100 GeV?, while photon exchange governs the low Q? region. Later
on the measurement of D* meson cross section will be presented for low virtualities
2 < Q? < 5 GeV?, so that Z° exchange does not contribute. Therefore only photon

exchange is considered in the following considerations.

1.2 Quarks and Gluons in the Proton

The quark parton model as shown in figure 1.2 was invented to explain the first
measurements |5, 6] of the proton structure function. What these first measurements
were hiding, however, was a dependency on the energy scale at which the interaction
with the quarks takes place. This scaling violation were the first evidence that the

QPM alone could not explain the structure of the proton.



1 Deep Inelastic Scattering

1.2.1 The Proton Structure Function

The structure function of the proton enters the scattering cross section in a similar
way as form factors known, for example, from Rutherford scattering. The scattering
cross section of electron-proton reads:
d*o 2ma?
= 14 (1—y)*)FR(z)). 1.6
TR = ot (1= 9))) (1.6)

In addition to the kinematic variables Q? and z as defined in the previous section the

electromagnetic coupling constant ., (also known as the fine structure constant)
also enters the calculation.

The proton structure function can now losely be interpreted as the probability
that the probe scatters off an arbitrary quark carrying the fraction z of the proton

momentum. It is given by

Fy(x) = Z e;xfi(x) ,

i
where the index i runs over all quark flavors in the proton and e; is the charge of quark
¢ in units of the elementary charge. f; is the parton distribution function, meaning
the distribution of the momentum fraction x of a quark of flavor i. Note the subtle
difference to the interpretation of F5: parton distribution function state how probable
it is to find a certain quark flavor, structure functions are a measure for how likely it
is that a scattering off a quark in general occurs.

In the experimental data from the HERA accelerator shown in figure 1.3 where
the structure function F, is shown as a function of Q? for various fixed momentum
fractions z a Q* dependence is visible especially for z < 0.13. This scaling violation
cannot be explained by the naive quark parton model, which approximates the proton
to consist of three independent quarks. One needs to introduce the strong interaction
into this model in order to obtain @Q* dependent parton densities f;(x, Q%) leading to
a Q% dependent structure function Fy(z,Q?). How this is done is outlined in more

detail in chapter 4.

1.2.2 The Strong Interaction

The origin of scaling violations lies in the interaction of the quarks. These are not
independent particles, but rather constantly interacting via the strong force. Like

the electromagnetic interaction, the strong interaction or Quantum Chromodynamics



1.2 Quarks and Gluons in the Proton
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Figure 1.3: The structure function Fy as a function of the four-momentum transfer
Q? as measured by various experiments. The scaling violation, meaning
the dependence on Q? at fized x arising from the contribution of gluons to
the scattering cross section, can be observed.



1 Deep Inelastic Scattering

e’ q

Figure 1.4: One the left: Three jet event at the TASSO experiment at DESY.[7] On
the right: the feynman diagram explaining three jet production production
i electron-positron scattering with gluon radiation.

(QCD) is mediated via an exchange boson called gluon.

The first direct experimental proof of the existence of gluons was obtained by the
four collaborations TASSO, PLUTO, JADE and MARK J in 1979 at the PETRA
facility, an eTe™ storage ring at DESY in Hamburg. Colliding electrons and positrons
annihilated each other, forming two quarks, one of which radiated a gluon (see fig.
1.4). All four collaborations presented their evidence on the same conference in
August 1979. |7]

In contrast to the electromagnetic interaction, the strong interaction gets stronger
the farther apart two interacting particles are and weaker if they are closer together.
This leads to asymptotic freedom, meaning that two quarks that are very close behave

approximately like free particles.

Like the quark, the gluon is a constituent of the proton: a parton. It is therefore
possible that an electron scattering off a proton interacts indirectly with a gluon in
the proton. Such a process is called boson gluon fusion (BGF) and is illustrated in
figure 1.5: an electron interacts via photon exchange with the proton; a gluon g in
the proton splits up into a quark anti-quark pair, one of which couples to the virtual
photon (find a more detailed discussion of the influence of gluons on parton densities
in chapter 4). A boson - the virtual photon - "fuses" with the gluon to form a quark
anti-quark pair.

Quarks created in such a process are called sea quarks. The so called valence quarks
are the quarks that determine if a baryon behaves like, for example, a proton or a
neutron: protons consist of two up quarks and a down quark, neutrons of two down

and one up quark.

10



1.3 D** Meson Production in Electron-Proton Collisions

Figure 1.5: Boson Gluon Fusion in electron-proton scattering.

1.3 D** Meson Production in Electron-Proton

Collisions

The standard model of particle physics classifies particles into two general categories:
bosons and fermions. Bosons are particles with integer spin, fermions with half integer
spin. Exchange particles mediating a certain interaction like the electroweak or the
strong interaction are always bosons, particles composing matter are fermions.?
Fermions can be further categorized into quarks and leptons. The following table
lists all the know fermions, the associated symbol and their electric charge in units

of the elementary charge e (anti-fermions have the same charge with opposite sign).

Fermions 1st family 2nd family 3rd family Charge [e]
Leptons | e neutrino | v, | u neutrino | v, | 7 neutrino | v, 0
electron e muon o tau T —1
Quarks up U charm c top t +2/3
down d | strange s | beauty? b -1/3

The different types of quarks are called flavors. The strong interaction does not
differentiate between the flavors. While the coupling of a photon to a quark depends
on the quarks charge all the quark flavors couple equally strong to gluons. The weak
interaction is flavor sensitive as well, in that processes including a W boson allow
for a change of flavor. That means, for example, that while the process u — Z% is
forbidden the process u — W s is allowed.

Another difference between the quark flavors is their mass. Quark masses span a

range of nearly 5 orders of magnitude, from as few as 2.55 MeV for the up quark up

3This is only a loose concept, since gluons, for example, are also partons and therefore part of the
composite proton.

11



1 Deep Inelastic Scattering

Figure 1.6: Dominant charm quark production mechanism in electron-proton scatter-
mg.

to 171 GeV for the top quark.[8]

The up, down and strange quarks are usually termed light quarks, while heavy
quarks are the charm, beauty and top quark. This is because the masses of the light
quarks are below the typical energy scale of QCD, m, < Agcp =~ 200 MeV. Processes
below this scale are not calculable in perturbation theory. The production of light
sea quarks, for example, can be calculated only if the resulting jets or particles have

a high enough energy.

1.3.1 Charm Quark Production at HERA

Because of the high center-of-mass energy of the HERA accelerator of \/s = 318 GeV,
sea quark pairs with masses of up to /s/2 = 159 GeV can be produced in BGF at
the H1 experiment. The charm quark has a mass of m. ~ 1.3 GeV|[8] so that charm
quarks can be found among the sea quarks created in BGF processes.

Figure 1.6 shows a diagram for the production of charm quarks in electron-proton
scattering. Since the gluon is a parton, one can determine its corresponding parton
distribution function, the gluon density g. It is obvious from the figure that charm
production processes are directly sensitive to the gluon density, because BGF is the
dominant production mechanism for charm quarks in electron-proton collisions. The

charm’s high mass ensures the applicability of perturbation theory in such a process.

1.3.2 D** Mesons as Charm Quark Tags

Together with light quarks charm quarks form mesons called D mesons. The D**
meson studied here is an excited D state consisting of a charm (or anti-charm

quark) and an anti-down (or down quark) with a very short lifetime. Tts decay

12
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products, though, are long lived enough to leave tracks in the H1 detector. Such
tracks were analyzed for measuring D** meson production cross section in electron-
proton collisions, quantities directly sensitive to momentum distributions of gluons
in the proton. In chapter 3 I describe in detail how cross sections were determined

using data recorded by the H1 detector.

1.4 Unintegrated Gluon Densities

The quark and gluon content of the proton is not deducible from first principles.
Rather, as described above (sec. 1.2.1), the momentum distributions of quarks and
gluons are parametrized in parton distribution functions or parton densities. These
contain information on how probable it is to find a parton, quark and gluon alike, in
the proton at a certain energy scale with a certain longitudinal momentum fraction
x of the proton momentum.

These PDFs only depend on the longitudinal momentum fraction, but there are
theoretical models where the PDFs also incorporate the transverse momentum of
the partons. These PDFs are called unintegrated PDFs (uPDFs). In this thesis the
experimental data of D* meson production with the H1 detector is compared to
predictions from the CCFM|9]| formalism incorporating the concept of unintegrated
gluon densities. Section 4.2.2 gives a more detailed presentation on the theoretical

background of unintegrated gluon densities.

1.5 Monte Carlo Event Generators

For the estimation of systematic uncertainties, detector effects and physics phenom-
ena that cannot be measured by the H1 detector (see sec. 3.7), it is vital to use
simulations of the physics happening in ep-collisions. These are based on the the-
ory of strong interactions, or Quantum Chromodynamics (QCD). Perturbative QCD
(pQCD) calculations can be evaluated in such simulations to obtain statistical predic-
tions for the outcome of a desired measurement, for example D* meson production.
Because these simulations generate collision events, and because this is implemented
with Monte Carlo methods, they are often referred to as Monte Carlo event genera-

tors.?

5For a detailed presentation on how pQCD is implemented in event generators see chapter 5.
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1.56.1 The Three Stages Of Simulation

For comparison to experimental data one classifies simulated events into three differ-

ent stages of simulation:

e generator or hadron level events: at this stage simulated events are not di-
rectly comparable to experimental data because the simulations generate event
topologies, i.e. four-momenta of particles produced in a collision, before the

produced particles interact with the detector.

e detector level events: after generator level information has been subjected to a
detector simulation the resulting event information is similar to real measure-

ments: hits in drift chambers, energy deposits in calorimeters etc.

e reconstruction level events: measurements can be reproduced from detector
level events by applying the complete reconstruction cycle of the experimental
data: forming tracks out of hits in tracking chambers, energy clusters out of
energy deposits in calorimeter cells, particle candidates out of tracks and energy

clusters, jets out of particles.

The information of these different stages of simulation can be used, for example, to
estimate detector effects by comparison of the reconstruction level events with the
generator level events (section 3.6), or to find the contribution of physics which the

detector alone cannot distinguish (section 3.7).

1.5.2 Event Generators In Use

In this analysis the event generators PYTHIA[10], RAPGAP[1]1] and CASCADE [12]
have been used.

PyTHIA is a Monte Carlo Generator simulating electron-proton and proton-proton
collisions. It used the Lund string model to implement hadronisation effects (see sec.
5.1.4).

RAPGAP is an event generator based on the DGLAP formalism (see section 4.2.1).
It is widely used for estimations of detector effects in DIS and has been used here for
detector efficiency determination.

CASCADE is a Monte Carlo generator based on the CCFM formalism (see section
4.2.2) which is specialized for sea quark production in BGF events and a correct

treatment of the gluon kinematics.
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1.5 Monte Carlo Event Generators

For an easy comparison of experimental data to predictions from event generators
the software package HZTOOL[13] was very helpful. It has been used here to compare
unintegrated gluon densities to the data as well as to extract new unintegrated gluon
densities (see chapter 6).

HzTooL provides the user with a set of function to access certain information
generated by a Monte Carlo program on run time, e.g. four momenta of particles or
event kinematics. With these functions the user can write a subroutine which analyses
generated events according to certain selection criteria and writes out histograms. For
this analysis a subroutine has been written which writes out histograms according to
the event and D* meson selection used in the measurement (see table 3.3).

Both RAPGAP and CASCADE access the hadronisation functions of PYTHIA.
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2 The H1 Experiment

For measuring the outcome of electron proton collisions at the HERA collider, the H1
Collaboration build a multi-purpose detector consisting of calorimetry and tracking
systems designed for precise measurements of the inclusive proton structure function
as well as detailed final state measurements, for example jet cross sections, charged
particle multiplicities or cross section measurements of charm meson production.
The chapter starts with an introduction of the HERA accelerator and the basic
concepts and ideas behind the experiment in sections 2.1 and 2.2. An overview of the
calorimetry in both the central and backward region of the detector is given in section
2.3. The tracking system as explained in section 2.4 forms the foundation of this
analysis as it allows for a precise measurement of the decay particles of D* mesons.
Section 3.2.1 addresses the reconstruction of kinematic variables, followed by the
calibration check of the electron energy measurement with the backward calorimeter
in section 3.2.3. This is especially important here because the measurement takes
place at the lowest possible Q% region at H1 during the HERA II phase. The H1
trigger system is outlined in section 2.5. The chapter closes with a description of the

detector simulation and the reconstruction software in section 2.6.

2.1 The Particle Accelerator HERA

The particle accelerator HERA was the only electron-proton collider of its time.
Before HERA, the proton structure was studied only in fixed target collisions. With
its larger center-of-mass energy of /s = 318 GeV high precision measurements of the
proton structure function F;, as well as various other analyses were possible. Therefore
the experimental data of the HERA experiments H1 and ZEUS are essential in the
determination of parton densities.

In figure 2.1 the storage ring is shown, along with all four experiments and the
pre-accelerators DESY and PETRA. These accelerated either electrons or positrons

up to an injection energy of 12 GeV, while the protons where injected into HERA at
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Halle NERD (H1)
; Hall NORTH (1)

Halle OET (HERMES} §
Haif EAST [HERMES)

Hale WEST (HERA-B)
=T ? —— Eizkiranen  Posironon
HADWEST. [FERA-H) Electrons £ Pesitons

a— Frofonen
Frafens

Syncheoironsirzhiung
Symctrotan Radiaton

-y

Halle 200 {ZELS) :
Hel B0UTH (ZELS)

Figure 2.1: The HERA storage ring and its experiments. The pre-accelerators PE-
TRA and DESY can also be seen.

40 GeV.

HERA was a storage ring located in Hamburg with a circumference of 6.3 km. After
the luminosity upgrade in the years 2000 - 2003 the HERA II phase began. In this
time, from 2004 - 2007, protons were accelerated to energies of 920 GeV and electrons

25~ Four

to energies of 27.5 GeV, designed to reach luminosities of £ = 7.4-10%' cm™
experiments were using the electron and proton beams for their studies: the HERMES
collaboration collided polarized electrons accelerated by HERA with fixed gas targets,
thereby studying the spin structure of the proton; the HERA-B collaboration studied
CP-violations in the production of heavy mesons by colliding the proton beam with
wire targets of different densities; at the experiments H1 and ZEUS the electron and

proton beams collided head-on to study the structure of the proton.

The colliding particles were accelerated in bunches. The electrons bunches consisted
of ~ 10! particles and moved clockwise around HERA, the proton bunches of ~ 10'2
particles moved counterclockwise. The bunches collided at a frequency of ~ 10 MHz

leaving a time span of 96 ns in between collisions.

During the whole operation time of HERA from 1992 to 2007, the H1 experiment
was able to gather an integrated luminosity of 500 pb™'.
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Figure 2.2: Integrated Luminosity taken by the H1 detector over time. The luminosi-
ties gathered before the upgrade (HERA-1) and after the upgrade (HERA-
2) are shown separately. The periods when HERA was operated with elec-
trons are highlighted in blue, the red curves show the peritods with positrons.
The green curve at the end of HERA operation shows the luminosity gath-
ered during the low proton energy runs.

Luminosity Upgrade

In 2000 HERA was upgraded with new focusing magnets to reach higher luminosities.
The focussing magnets were installed inside the H1 detector, so that part of the
calorimeter measuring the energy of the scattered electron or positron had to be
removed (see sec. 2.3.2 for more details).

Figure 2.2 shows the integrated luminosity gathered by the H1 detector during the
entire time of operations. A comparison of the curves labeled HERA-1 and HERA-2
shows that the HERA upgrade successfully increased the luminosity.

Run Periods

HERA was operating with both electrons and positrons. For purposes of trigger
efficiencies and calibration testing the HERA II phase is divided in this analysis into
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2 The H1 Experiment

four running periods depending on the accelerated particles:

e 2004 e*: during most of the year 2004 positrons where accelerated
e 2004/05 e : in the end of 2004 HERA switched to electrons
e 2006 e™: until the middle of 2006 HERA was operated with positron

e 2006/07 e™: from mid 2006 to 2007 positrons where used

From march 2007 to its shutdown in July 2007 HERA was operated with lower proton
energies of 460 GeV and 575 GeV.

2.2 The Detector

The detector is introduced in much detail in [14]. For the purpose of measuring
momenta a right-handed coordinate system is defined. The origin is defined by the
nominal interaction point, with the z-axis pointing in the proton direction and the
y-axis pointing upwards. Cylindrical coordinates are used with the azimuthal and
polar angles ¢ and 6, respectively.

Figure 2.3 shows a schematic side view of the H1 detector showing its most basic
ingredients. The inner part consists of the tracking system, which is enclosed by the
backward calorimeter SpaCal at the back and the liquid Argon calorimeter in the
central region and in the front.

A superconducting coil surrounds the calorimeters and creates a homogeneous mag-
netic field of 1.15 T so that momenta can be measured. The central muon detector
CMD surrounds the whole detector and also serves as a return yoke for the magnetic
field. Outside this the forward muon detector FMD detects muon with small polar

angles, 0,,.

2.3 Calorimetry at H1

The H1 detector had two dedicated systems for energy measurements: the Liquid
Argon calorimeter (LAr) [15] for the forward and central region and the Spaghetti
Calorimeter (SpaCal) [16] for the backward region. Because of the asymmetric ener-
gies of the colliding particles jets were found in the central and forward region with
energy deposits in the liquid argon calorimeter, while for Q* < 100 GeV? the electron
scattered under a large polar angle 6., and could be detected in the SpaCal.
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Muon Dakector

Figure 2.3: Side view of the H1 detector and its main components: the Central Muon
Detector (CMD), the superconducting coil creating the uniform magnetic
field, the Liquid Argon calorimeter (LAr), the tracking chambers around
the interaction point and the Spaghetti Calorimeter (SpaCal) used for mea-
suring the scattered electron properties at low Q. Protons move in the
positive (coming in from the right in the picture), electrons in the negative
z-direction.

2.3.1 The Liquid Argon Calorimeter

The LAr consists of an inner part for measuring energies of electromagnetically inter-
acting particle and an outer part for measuring energies of hadrons. It is a sampling
calorimeter which utilizes two different materials for creating the particle shower (ab-
sorber material) and measuring the energy (active material). In both parts liquid
argon is used as active material. Absorber materials are lead in the electromagnetic
and steel in the hadronic section. The liquid argon is cooled by a helium driven
cryostat in which the calorimeter is embedded. The circulating helium gas is cooled

by an external liquid nitrogen heat exchanger.

Plates of the absorber materials are oriented in a way that the inclination angle
of particles originating at the interaction point is always larger than 45°. The space
between the plates is filled with liquid argon, giving the calorimeter the alternating
structure of active and absorber material common to all sampling calorimeters. The
material in the calorimeter amounts to 20 - 30 radiation lengths in the electromagnetic

section and 5 - 8 interaction lengths in the hadronic section.

Test beam measurements have shown that the energy resolution of the LAr is
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2 The H1 Experiment

Oem(E)/E =~ 12%/+\/E/GeV & 1% in the electromagnetic part and op.q(F)/E =~
50%/+/ E/GeV & 2% .
In this analysis the LAr calorimeter was used for the measurement of the inelasticity

Yes, Which was reconstructed with the eX-method as described in section 3.2.1.

2.3.2 The Backward Calorimeter SpaCal

The Spaghetti Calorimeter was mainly used for measuring the energy of the scat-
tered electron. At scattering angles where there is no information from the tracking
chambers on the scattered electron, the SpaCal also allowed for a reconstruction of
O

The energy of the scattered electron was measured in the electromagnetic section
of the backward spaghetti calorimeter SpaCal. Using lead as absorber material and
scintillating fibers as active material it provided an energy resolution of op/FE =~
7%\/m @ 1% and an angular resolution of ~ 2 mrad for the scattered electron.

The SpaCal was located in the backward region of the detector at z = —160cm,
originally covering the angular region 153° < § < 177.5°. After the luminosity upgrade
of HERA parts of the inner cells of the calorimeter had to be removed to make space
for a new focusing magnet. This rebuilding led to a reduced angular coverage of
153° < 0 < 174.5°.

To measure energies of both leptons and photons on one side and hadrons on
the other the SpaCal also featured a hadronic section which was located behind the
electromagnetic one. Both sections consisted of cells of scintillating fibers embedded
in lead sheets. The scintillation light was transported along the fibers and read-out
by photo multipliers positioned at the end of each section.

Since electromagnetic and hadronic showers behave very differently the design of
the cells of each section differs. The following table lists some of the design param-
eters for the hadronic and the electromagnetic sections which take into account the

differences in the shower behavior:

Electromagnetic section | Hadronic section
Fiber diameter 0.5 mm 1 mm
Lead-to-fiber ratio 23:1 34:1
Cell size 40.5 x 40.5 mm? 119.3 x 119.0 mm 2
Depth 27.5 %o 1.02 A\js
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Figure 2.4: Changes to the inner part of the SpaCal after the luminosity upgrade.

The SpaCal replaced the Backward Electron Magnetic Calorimeter (BEMC) which
was operated as the backward calorimeter of H1 until 1995.[17] Its size was therefore
constrained by the already existing detector. For the electromagnetic section this
is not a severe constraint, since a depth of ~ 28 radiation lengths (xo) is mostly
enough to fully contain the electromagnetic shower. On the other hand the hadronic
section is only ~ 1 interaction length (\;,;) deep, so that hadronic showers can partly
escape detection. In this thesis the hadronic part was only used for identification of
the electron by demanding that the energy deposited there was less than 15% of the

energy of the scattered electron.

The Inner Part of SpaCal

Figure 2.4 shows the changes applied to the inner part of the SpaCal after HERA’s
luminosity upgrade. The most inner cells, numbers 0 through 4, have been removed
and the surrounding cells cut. Note that with respect to the beam axis (the cross in

fig. 2.4) the cut was asymmetric.

2.4 The Central Tracking Devices

Figure 2.5 shows a cross section of the Central Tracking Devices (CTD) of the H1
detector in the r¢-plane. The CTD covered an angular range of approximately 15° <
Oirack < 165°. Starting with the devices closest to the beam pipe moving, the CTD
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2 The H1 Experiment

Figure 2.5: Cross Section of the central tracking chambers in the z-y-plane.

consisted of

e the central, forward and backward silicon trackers (CST, FST and BST) sur-
rounded the interaction point at z = 0 and were installed close to the beam

pipe to improve tracking and determination of the interaction vertex,

e the Central Inner Proportional Chamber (CIP) surrounded the silicon trackers

and was used mainly for triggering purposes,

e the first of two chambers to measure the z-component of track momenta, the
Central Inner Z-Chamber (CIZ) sat at the outside of the CIP,

e the Central Jet Chamber 1 (CJC1) was the inner of two drift chambers mea-

suring the transverse momentum of tracks,
e the Central Outer Proportional Chamber (COP),
e the Central Outer Z-Chamber (COZ)

e and the CJC2.
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track
hits /)\ . .
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wires

Figure 2.6: Tracks are aligned by varying the ionization time to. The hits on opposile
stdes of the wires do not align when a wrong toy 1s used.

2.4.1 The Jet Chambers

The Central Jet Chambers were drift chambers composed of 30 radial cells for the
CJC1 and 60 radial cells for the CJC2, which had a larger radius. The cells were
tilted against the chamber radius by 30° so that tracks from the interaction vertex
have a high probability of crossing at least one cell boundary. In each cell in the
CJC1 24 signal wires were installed parallel to the z-axis, whereas the cells in the
CJC2 consist of 36 wires each.

The cells were filled with a gas. The gas was ionized when charged particles moved
through the chambers. A mainly uniform electric field between the anode signal wires
and the cathode wires caused the ionization electrons to move towards the signal wires
perpendicular to the wire plane. The collisions of the ionization electrons with the
gas molecules caused secondary ionization, so that a whole ionization avalanche was
created. Upon reaching the signal wires this caused a charge excess in a wire, which
could be measured at both of its ends.

The charge excess at the ends of a wire differ depending on where the wire was
struck. In principle it was possible to measure the z-component of the track momen-
tum with the jet chambers by exploiting this charge difference, but the resolution of
0, = 22 mm was not good enough for the precision needed for most measurements
carried out with the H1 detector. The z-chambers offered a much higher precision
for the task.

Drift time Measurement

Measuring the exact position of a hit (the position where the ionization occurred and,
thus, where the particle passed through the detector) is done by measuring the drift

time of the electrons. The drift time is the difference between the ionization time
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Figure 2.7: Schematic illustration of mirror hits causing mirror tracks (left). Mirror
tracks in two cells do not line up (right).

when the charged particle ionized the gas and the arrival time when the ionization
avalanche reached the wire.

The ionization time %, is in general given by the bunch crossing time. But this is
not exactly known because the scattering can occur anywhere in the bunches, which
are a few meters long. Thus the ionization time is determined by varying the time
of the bunch crossing so that hits on opposite sides of the wires in a cell are aligned
(see fig. 2.6).

The arrival time is given by the signal in the wire. For a given gas or gas mixture
the velocity of the ionization electrons is known, so that the precise distance of the

hit from the wire can be determined.

Mirror Tracks in the Jet Chambers

This does not yet give the exact position of the hit, because it is still not known on
which side of a wire the gas was ionized. The hit on the wrong side of the wire is
called mirror hit, a series of mirror hits producing mirror tracks. This is illustrated
on the left of figure 2.7. In order to find the correct position of the hit, the cells of
the jet chambers were tilted by 30° against the chamber radius. Thus most tracks
cross two cells, and mirror hits from two cells are easily identified because they don’t

connect to a single line, as can be seen from the right illustration of figure 2.7.

Track Momentum Measurement

In the H1 detectors particles were moving in a uniform magnetic field parallel to the
z-axis of field strength B, = 1.15 T. Inside that field tracks of particles are curved
in the r¢ plane with a curvature s, which can be easily measured. The transverse

momentum of the tracks pi"* is proportional to the inverse of x:
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0.3+ B.[T]

k[m™1]

i [GeV] = -Q (2.1)

The spatial resolution of the hit position measurement in the r¢-plane was o,y =
170m and resulted in a resolution of the transverse momentum of o,, /p? = 0.005 GeV '@
0.015 [18].

2.4.2 The Central Silicon Tracker

Of the silicon trackers only the central one was used in this analysis. The CST directly
surrounded the elliptical beam pipe at the nominal interaction point and was used
as a vertex detector. Its two layers consisted of silicon strips arranged in ladders. It
covered polar angles of 30° < 6 < 150°, achieving a resolution of 0,4, = 12 yum in the
r¢-plane and o, = 25 ym in z. With the CST the distance of closest approach (dca)
of a track was measured with an accuracy of o4, ~ (33 pum @ 90 um)/p[GeV],
with uncertainties arising from the intrinsic resolution (first term) and from multiple

scatterings in both beam pipe and CST (second term).

2.4.3 The Central Proportional Chambers

The CIP and COP were multi-wire proportional chambers (MWPCs) with wires
strung parallel to the beam axis. The inner chamber was located between the silicon

trackers and the CJC1, the outer between the two jet chambers.
Replaced by a new five layer MWPC during the detector upgrade the CIP had

a fast response time and was therefore used for online event selection. It covered a

polar angular range of 11° < 6 < 169°.

2.4.4 The Z-Chambers

The exact z-components of particle momenta was determined in the inner and outer
z-chambers CIZ and COZ. These were drift chambers with wires not parallel to the
z-axis, but tilted by 45° in case of the inner and 90° in case of the outer chamber.

With these a resolution in z of o, ~ 350 um was achieved.
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Figure 2.8: The H1 trigger scheme and its multiple levels.

2.5 Triggering Physics Events at H1

In collider experiments such as HERA not all occurring particle collisions contain
information about interesting physical processes. For this reason the collision rate at
HERA was much higher than the storage capabilities and the readout rates of the
detectors in order to guarantee statistically significant yields of interesting physics
events. These are then preselected by sophisticated trigger schemes.

The H1 multi-level trigger scheme - outlined in figure 2.8 - reduced HERA’s bunch
crossing frequency of 10.4 MHz by roughly six orders of magnitude to a final readout

frequency of the order of 5 to 10 Hz.

Level 1

The first trigger level .1 analyzed bunch crossing information stored in a pipeline.
Since the L1 decision took 2.3us the pipelines stored the information of 22 bunch
crossings so that the L1 decision was dead time free. The decision was made by
about 200 trigger elements combined into 128 sub-triggers named SO to S127. If at
least one of the subtriggers fired the readout into the pipelines was stopped and the
dead time began. The signal then send to the central trigger logic (CTL) was called
L1Keep.

Level 2

Once an event had passed the first trigger level the information in the current pipeline
was analyzed by either a topological trigger system (L2TT) or by a neural network
(L2NN). The topological triggers selected interesting events based on a grid in 6

and ¢, while the neural network was trained to select events based on sub-detector
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information. The L2 decision took about 22us. If L2 rejected an event the pipeline
was erased and the dead time ended. An event that passed L2 was fully being read

out for a more detailed analysis by the higher trigger levels.

Level 3

The third trigger level L3 was running while the information from the pipeline was
being read out and stopped the readout if the event was rejected. The readout
continued if the event was kept to be further analyzed by the fourth and fifth trigger
levels. L3 was part of the Fast Track Trigger (FTT) installed in 2006. In addition
to track information it relied on the calorimeters and the muon system to decide if
an event was kept. This decision took place in about 100us and reduced the readout

frequency to about 50 Hz.

Level 4

The last trigger level for the online data selection, 1.4, has access to the full event
information from the event builder. It rejects background events from interaction
of the beams with gas remnants in the beam pipe or with the wall of the beam
pipe. At this stage the physics finders sort the selected events into the different
physics categories. Events passing the L4 conditions are written to tape with a rate
of approximately 10 Hz.

L4 is further used to fill certain histograms online for quality monitoring by the

shift crews.

2.6 Detector Simulation and Reconstruction

For the simulation of effects of the H1 detector on particles passing through the col-
laboration has developed the software package h1sim based on the detector simulation
tool GEANT [19]. It simulates the behavior of the H1 detector by creating tracks
and energy deposits from four-momenta of particles generated by MC event genera-
tors. The GEANT package takes account of electromagnetic and nuclear interactions
during the particles’ passage through matter.

The event information created by hisim is then run through the whole reconstruc-
tion cycle. In this step specific run dependent information is taken into account to

match the reconstruction of the data. The output can then be used for a compari-
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son of hadron and detector level information to correct for detector inefficiencies and

migration effects (see section 3.6).
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3 D* Meson Cross Sections

The charmed meson D** has been used in previous HERA studies to measure charm
quark production in electron-proton scattering. It consists of a charm or anti-charm
and a anti-down or down quark. The decay channel D** — D7F — K*g¥rElis

reviewed in this chapter after a short introduction to charm production.

3.1 Heavy Quark Physics at H1

Heavy quark production at HERA offers a direct sensitivity to the gluon density
because its dominant production mechanism in electron-proton scattering is boson
gluon fusion, as depicted in figure 3.1. The large masses of charm and bottom quarks
serve as hard scales in the hard scattering and ensure the applicability of perturbative

QCD.

Since in neutral current processes heavy quarks and anti-quarks are always pro-
duced in pairs, in the HERA phase space the top quark cannot be produced because
the mass of a top quark pair, 2 - m; =~ 350 GeV, is larger than the center-of-mass

energy of the electron-proton system, /s = 318 GeV.
At HERA heavy quark production is studied by searching for decay products of

charm or beauty mesons, or by studying jets associated with the heavy quarks. The
latter can be done by selecting leptons or mesons with certain properties implying
the heavy quark origin of the jets. In the following charm production measurements
are presented which used D* mesons as tags of charm quarks. An overview of D* pro-
duction measurements at both H1 and ZEUS is given, followed by a short discussion

of beauty production measurements.

I7s indicates the “slow pion”, i. e. the low momentum pion from the D* decay.
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Figure 3.1: Dominant charm quark production mechanism in electron-proton scatter-
mg.

3.1.1 Charm Production Measurements

Charmed mesons like D* or D** predominantly decay into kaons and pions, which
leave tracks in the detector. But even with particle identification methods like deter-
mination of the energy loss dE/dz it is impossible to know with certainty which kind
of particle causes which track. That is why the basic method is to look for all possible
combinations of tracks and for each combination make an arbitrary assumption which
track belongs to which particle. Under this assumption masses are assigned to tracks,
so that energies and momenta can be calculated. With the resulting kinematics it
is then possible to calculate the invariant mass of the originator meson, e.g. a D*.
In the end, fits to mass resonances determine the number of produced mesons. This

method is applied here and explained in more detail in section 3.5.

D* Production at H1 with HERA Il Data

There have been various D* production measurements in DIS at H1 and ZEUS using
the data from the HERA I period [20, 21, 22, 23, 24, 25, 26|]. The HERA II data
collected by the H1 detector offers much larger statistics due to both higher luminosity
as well as the more efficient Fast Track Trigger (FTT) system introduced in 2005 [27]
(see section 3.3).

In DIS this fact has been exploited to study the production of D* mesons in

electron-proton collisions in three different Q? ranges:
o low Q%2 GeV? < Q% < 5 GeV? (this analysis)
e medium Q?:5 GeV? < Q% < 100 GeV?(Andreas Jung [1])

e high ©%:100 GeV? < Q% < 1000 GeV? (Martin Brinkmann [3],[2])
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3.1 Heavy Quark Physics at H1

These three measurements cover the Q2 range 2 GeV? < Q% < 1000 GeV? of nearly
three orders of magnitude. The integrated luminosity in these analyses is much higher
than in a comparable study of the ZEUS collaboration using HERA I data [26]. There
an integrated luminosity of roughly 82 pb~! was analyzed, compared to about 340
pb~! (see section 3.10) in the HERA II studies at HI.

2

Although in [25] the phase space extended to a minimum Q?,;, = 1 GeV*compared

to Q2. = 2GeV? used here, this analysis offers a finer binning in Q% and a dedicated

measurement of the transverse momentum spectrum at low Q2.

D* Production with Jets

It is also possible to study jet events with D* mesons. Especially interesting are dijet
events, because if a D* meson is found in a dijet event and associated with one of
the jets, it is possible that the second jet also stems from a charm quark. This makes
it possible to directly study the two charm quarks produced in boson gluon fusion.
Even if the second jet originates from a gluon or another quark, which happens espe-
cially at large pseudorapidities 1’¢', such events offer interesting possibilities to study
underlying phenomena like different models of gluon density evolution. Examples of

such a study are found in 28] for DIS and in [29] for photoproduction.

In order to study both charm quarks produced in boson gluon fusion, the double
tagging method can be applied. In addition to the selection of a D* meson to tag
at least one charm quark, the second charm quark can also be associated with a
fragmentation or decay product of heavy quarks or mesons, for example a muon. For

photoproduction this has been done in |30].

3.1.2 Beauty Production Measurements

Beauty mesons are harder to tag. One example is the search for events with two jets
and a lepton that can be associated with a jet. Because the background from light
and charm quark production cannot be neglected, in reference [31] the beauty fraction
samples is enhanced by requiring that the transverse momentum component of the
lepton relative to the jet momentum, pfel, has to exceed a certain minimum, making

use of the fact that in beauty production events ptrel features a harder spectrum.
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3.2 The Electron Energy Measurement

In deep inelastic scattering experiments event kinematics are mostly determined by a
precise measurement of the energy of the scattered electron. This section first intro-
duces the methods for the reconstruction of these event kinematics in section 3.2.1.
A test of the calibration of the electron energy measurement and a determination of
the related uncertainty is presented in section 3.2.3. This test results in a systematic

uncertainty on the measurement of the scattered electron E./.

3.2.1 Reconstruction of Kinematic Variables

A precise measurement of DIS processes requires high precision measurements of the
event kinematics: the four-momentum transfer (Q%, the inelasticity y and the quark
momentum fraction x. Because these variables are related by equation (1.5) and
the center of mass energy s is known it is sufficient to reconstruct only two of those
variables. There are various methods to achieve a good resolution in these variables
depending on the process and the region of phase space one wants to study. This
section introduces the methods used in this analysis: the electron method, the sigma

method and the electron sigma (eX) method.?

The electron method uses only the measurement of the scattered electron’s energy
E. and its scattering angle 6. to reconstruct the event kinematics in the following

way (the lower index e indicates the electron method):

Ee’ Ee’ . 06
Ye=1— 2Ee(l —cosf,) =1-— o sin? 0} (3.1)
E. sin#,
Q2 = 2E.E. (1 + cosf,) = % (3.2)
— Ye

It provides a good resolution of Q? and y at high inelasticities and is independent
from any measurement of the hadronic final state. But at low inelasticities it becomes

sensitive to initial state QED radiation of the electron.

Less sensitive to initial state QED radiation the > method makes use of energy

balance between initial and final state:

2For a more detailed presentation of reconstruction of kinematics in DIS see [32].
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3.2 The Electron Energy Measurement

Z EZ - sz’i = EP + Ee - (pz,p +pz,e) (33)

= 2F, (3.4)

The index ¢ runs over all final state particles including the scattered electron. The
sum over all final state particles is defined as ¥ = > .(E; — p..).

Substituting 2F, with ¥ and E.(1 — cosf.) with Eo — p, o = ¥ — X5, where
Yhps = Zishfs(Ei — p..i), equation (3.1) allows for a redefinition of y which is less
sensitive to initial state radiation and in terms of which the photon virtuality Q? and

the momentum fraction x can also be redefined:

Ehs
ys = Tf (3.5)
Eel SiIl2 96
Oz = T (3.6)
Q@5

(3.7)

Iy =
QEEpyE thfsEp

At low inelasticities the X-method offers a better resolution, but especially at higher
y the electron method remains superior. Especially the resulting resolution of Q% is
worse than the resolution of Q%. A combination of these two methods, the eX-method
takes the photon virtuality from the electron method, the momentum fraction from

the >-method and redefines the inelasticity accordingly:

e 2,
Yex: = - 2 (38)
Ty -5 (X + Eo(l —cosb.))
o o= O (3.9)
Teyy — Ty (310)

This method, while retaining the excellent QQ? resolution of the electron method
and the x resolution of the »-method, achieves a good inelasticity resolution at low
y similar to the X-method and also a better resolution at high y, although not quite

as high as the resolution of ..

As in another D* meson analysis of the HERA II period|1] the eX-method is used

for both single and double differential cross section determinations.
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A fourth method for reconstructing event kinematics, the double angle method,
relies purely on measured angles of the hadronic final state and the electron, making
it independent from energy measurements in the SpaCal. This method is used here
to test the calibration of the energy measurement of the scattered electron and is

presented in the next section.

3.2.2 The Electron Selection

Electrons are reconstructed in the SpaCal. Energy clusters are selected with a ra-
dius 7uster < 4 cm in the electromagnetic part of the calorimeter because leptons
create narrower showers than hadrons. Furthermore the fraction fr,g = Fhaa/FEe of
the energy F}.s measured in cells of the hadronic part directly behind the selected
electromagnetic cluster is restricted to frag < 3%. This is done mostly to suppress
background from photoproduction events where the scattered electron escapes the

detector and a signal in the SpaCal could be falsely identified as an electron.

In addition inefficient and deficient regions in the SpaCal, termed dead cells, are
rejected by fiducial cuts in the electron selection. Two circular cuts of 10 cm radii
have been applied on the radial distances 7gpqc and rpeqm of the selected energy cluster
from the center of the SpaCal and the beam axis, respectively, to avoid energy leaking
effects at the edge of the detector. These two cuts were motivated by the asymmetry
of the distribution where one cut alone would not have avoided cluster reconstruction
at the edge of the SpaCal. While in the medium Q? analysis a more conservative
radius cut of 12 cm was used, here it was necessary to lower the cut in order to reach

the low Q2 values which were the aim of this analysis.

The basic electron selection cuts are summarized in table 3.1. Dead cell cuts are

not given.
Criterion Purpose
Teluster < 4 €M Select leptonic cluster
fraa < 3% Suppress photoproduction background

T'Spac, Theam > 10 cm Avoid energy leaking at the edge of SpaCal

Table 3.1: Criteria for the selection of the scattered electron and their purposes.
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3.2 The Electron Energy Measurement

Excluded Regions in the SpaCal

Figure 3.2 shows the distribution of reconstructed electron clusters in the SpaCal for
all four run periods defined in section 2.1 after all selection cuts (see tables 3.3, 3.4
and 3.5). Excluded regions are shown as blue boxes and circles. Only the central part
of SpaCal with |z, |y| < 30cm is shown. All distances are given in the H1 coordinate
system.

In the years 2004 and 2005 a certain amount of cells in the SpaCal where deficient
and therefore excluded from the data selection (blue boxes in fig. 3.2). In 2006 these
cell were replaced, so that less cells had to excluded.

Cells around y = 0 cm were hit by synchrotron radiation from the electron beam
and therefore taken out of the trigger. Clusters reconstructed in these cells were

excluded by applying a box cut of ~ 8.4cm x 18 cm.

Asymmetry of the ¢, Spectrum

At 2GeV? < Q2 < 5 GeV? most electron clusters were positioned close to the beam
axis. The asymmetric shape of the SpaCal with respect to the beam axis® then
resulted in an asymmetric cluster distribution in the SpaCal. In figure 3.2 this asym-
metry is visible in the fact that the clusters form a crescent around the beam axis
instead of a ring.

This leads to a ¢ spectrum which is falling from ¢., = 0° to both positive and
negative ¢. (see fig. 3.5). In addition the box cut around ysyaca = 0 cm leads to a
dip the distribution of ¢. around ¢, = 0°.

3In the H1 coordinate system the center of the SpaCal lay at = 2.5 cm and y = 0.5 cm.
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Figure 3.2: Two dimensional distribution of x and y, i.e. the distances of selected
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electron clusters to the beam axis, in the central part of the detector in
bins of 1 cm x 1 em. Shown are the distributions for the four run periods
defined in section 2.1 after all selection cuts (see tables 3.3, 3.4 and 3.5).
Blue bozxes and circles indicate areas excluded from the data selection. The

color palettes on the right indicate how many clusters are reconstructed in
the inclusive sample.



3.2 The Electron Energy Measurement

3.2.3 Testing the Calibration of the Electron Energy

Measurement

The calibration of the measurement of the energy F. of the scattered electron is
done using the double angle (DA) method[32]. 1t is used in this thesis as a test of the
calibration. This method offers a better resolution in the determination of the energy
of the scattered electron in a certain constrained phase space and is independent from
energy measurements in the SpaCal.

The kinematics of the final state are over-constrained and one can therefore deter-
mine the energy of the scattered electron purely by measuring its polar angle 6., and
the effective scattering angle of the hadronic final state, v,*:

tan 2t = E Pl (3.11)
2 DPt,nfs
With this the inelasticity can be calculated,

tan(y,/2)
= 3.12
ypA tan(y,/2) + tan(fe /2) (8.12)
and the energy of the scattered electron evaluates to
Epa = E,——YpA_ (3.13)
sin?(0 /2)

This method is called the double angle method, because E./ is determined from the
measurement, of the angles v, and 6.. It has the advantage of being independent
from energy measurements in the SpaCal. Instead the electron energy is calibrated
against the energy F. of the incoming electron, which is known with high precision.
The sensitivity of =, on the calibration of the energy measurement of the hadronic
final state is small.

When comparing E. with Eps one has to ensure that the hadronic final state
is well reconstructed. This is done by constraining the effective hadronic angle to
the range 15° < =, < 80° and requiring |ypa — ¥e| /(ypa + ye) < 0.2, i. e. the
inelasticities determined with the different methods should yield similar results. The
constraint on ~y, mainly selects events in the region of the kinematic peak®. Therefore

an additional requirement is 20 GeV < E. < 32GeV, also rejecting events with a

4In the naive parton model ~;, represents the polar angle of the struck quark.
°In electron-proton scattering the majority of the events features scattered electrons with an energy
close to the energy of the incoming electron, F., ~ E.. This region is called the kinematic peak.

39



3 D* Meson Cross Sections

X

1y

o
w

1200

1000 —— Electron method

Double angle method
800

600

entries

400

200

JJ:lH‘ PP IR IR

0.9 1 1.1 1.2 13 1.4
meas =9en
E0***/E,,

b;\\\‘\\\‘\\\‘\\\‘\\\‘\

of
N
oL
©

Figure 3.3: Comparison of the resolution of the double angle method and the electron
method in the determination of the energy of the scattered electron.

badly reconstructed hadronic final state.

If all of these requirements are fulfilled the double angle method offers a better
resolution for the electron energy determination than the electron method. Figure
3.3 shows the distribution of the ratio E7°**/E%" of the measured energy of the
scattered electron EZ'“* to the generated scattered electron energy E%™". In the
figure E77°% is either determined by the electron method (black histogram) or by the
double angle method (red histogram). The double angle method shows a narrower
peak around E7*/E%"™ = 1 and is therefore on average closer to the generated
scattered electron energy than the electron method.

The calibration is now tested by studying the ratio E. /Ep4 of the electron energy
measured with the electron method, E./, and measured with the double angle method,
Epy, as a function of the radial position of the scattered electron in the SpaCal,
TSpacal- This is shown in figure 3.4 for the four running periods. Data is shown in
black, Monte Carlo predictions in blue. The double ratio of the two distributions,
(Edeta)pieta) [ (ENC/EYS), is shown as yellow triangles.

The double ratio is a measure of how well the detector is understood. If the
ratio would be unity at all radii, all uncertainties due to the energy measurement
would be corrected for in the determination of efficiencies. However, as can be seen
from the figure, at low radii rgp,car < 15 cm the energy measurement is not perfectly
understood, and even at large radii the Monte Carlo predictions deviate from the data.

Therefore the resulting systematic uncertainty is studied by applying a systematic
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as a reference. Displayed are the ratios of the electron energy measured
with the two methods, E./Epa , as a function of the radial position in
the SpaCal. The data in black is compared to the Monte Carlo predictions
in blue. The triangles mark the double ratio data/MC and the red lines
indicate the systematic shift applied for determination of the resulting sys-

tematic uncertainty.

shift to the energy scale in the Monte Carlo predictions and taking the difference to

the unshifted cross section.

From figure 3.4 a shift d.,, follows which is larger for rgp,ca < 15cm:

3%
0.5%

6em. =

In the figure this is indicated by the red line.

for TSpaCal < 15cm

for T'SpaCal > 15cm

The treatment of the systematic uncertainty due to the energy measurement un-

certainty and how systematic energy scale shifts are applied is presented in section

3.9.

41



3 D* Meson Cross Sections

—HERA Il data a) 4000 — b)
600~ _Rapgap 3.1

L 3000 |-
2 2
‘S 400 €

e > 2000
2 2
© ©

200 1000 |-

+rd L +
—+ £ ! !
30 172 174 176 178
0, [°]
Q r d)
250
" w2000
b = I
S S 150l
o ) 3
S T & 100
501
G i 1 1 1
o 20 0 20 20
z.. [cm]

Vix

Figure 3.5: Control distributions for the scattered electron observables Eo, 0., ¢ and
the interaction verter Zyertes-

3.2.4 Control Distributions

A comparison of the MC calculations and the experimental data for the energy FE.,
the polar angle 6., and the azimuth ¢, of the scattered electron and the z-component
of the interaction vertex, Zyertes, 18 shown in figure 3.5. The dip around ¢. = 0° is

due to the box cut around ysp.car = 0 cm shown in figure 3.2.

Figure 3.6 compares MC calculations and data for the observables Q?, y.x, p” and

nP" for which differential cross sections have been determined.

These figures show that the measured spectra of the scattered electron energy E.s
and the inelasticity y.x cannot be described by the MC calculations (fig. 3.5 a) and
3.6 b), respectively). The effect of this discrepancy on the detector efficiency and the

resulting systematic uncertainty is studied in section 3.9.3.

Except for these all other distributions are described rather well. RAPGAP nicely
describes the turnover in the pP” spectrum in figure 3.6, which is due to the low

detector efficiencies at low transverse momenta shown in section 3.6.
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Figure 3.6: Control distributions for the photon virtuality Q?, the inelasticity yes, the
transverse momentum pP” and the pseudo rapidity n®" of the D* meson.

3.3 Triggering D* mesons in DIS

As will be explained in section 3.5, D* mesons are reconstructed by studying their
decay products which leave tracks in the detector. These tracks provide input for the

trigger system to select events in which a D*meson was produced.

In the H1 trigger system there are 128 subtriggers labeled SO - S127 which are
combinations of individual trigger elements like track conditions or energy thresholds.
The sub trigger S61 which was used in this analysis for selecting the decay products

of D* mesons in DIS is a combination of track and electron triggers elements, both
of which have to be fulfilled:

S61 = Spacal Condition A Track Condition.

In this section the individual trigger elements are introduced (sec. 3.3.1) and trigger

efficiencies are presented (sec. 3.3.2).
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trigger element ‘ explanation ‘
SpaCal Condition
SPCLe_IET>2 E, >~ 9GeV

SPCLe_IET_Cen_3 | triggered in inner part of SpaCal with E. >~ 9 GeV
Track Condition

DCRPh_THig >1 track with pi"e® > 800 MeV
FTT_mul_Td>0 >1 track with pi"e® > 900 MeV

Table 3.2: Trigger elements of sub trigger S61

3.3.1 Trigger Elements

In 2004 the track condition of S61 was realized by the trigger element DCr¢ . It
required at least one track with p; > 800 MeV. The track condition changed in 2005
when the Fast Track Trigger (FTT)[27] was installed which triggered on at least one
track of p; > 900 MeV.

The selection of DIS events was implemented in S61 by requiring an electron in
the SpaCal triggered by at least one out of two Inclusive Electron Trigger (IET) ele-
ments. This combination of two trigger elements translates into an energy threshold
of about 9 GeV for the scattered electron. Table 3.2 lists the trigger elements and

their explanation.

3.3.2 Trigger Efficiencies

The efficiency of individual trigger elements is determined with independent more
inclusive monitor triggers or trigger elements which are expected to select events in
the same kinematic region. Events that are registered by the monitor triggers and at
the same time pass the event selection from tables 3.5 and 3.3 serve as a reference
sample. The efficiency of the trigger element of interest, €44, is then the ratio of
events from the reference sample selected by the trigger element (N*9"™°") and the

total number of events in the reference sample (N™"):

Ntm'g/\mon
Nmon
For the SpaCal condition of S61, (SPCLe_IET>2 || SPCLe_IET_Cen_3), a large

selection of track triggers independent from any SpaCal condition is used for the ref-

(3.14)

Eirig —

erence sample. Figure 3.7 shows the efficiency of those trigger elements as a function

of the energy of the scattered electron, E./, for all HERA II run periods. This figure
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Figure 3.7: Efficiency of the SpaCal trigger elements of S61 for all four HERA II run
periods.

shows that scattered electrons with an energy lower than ~ 10 GeV are not triggered
efficiently. Therefore only scattered electrons with E. > 10 GeV are accepted.

The efficiency of the track condition in S61 is shown in figure 3.8 as a function of the
number of tracks Ny...x, again separately for each run period. In the 2004 positron
runs when the DCr¢ was active a slight inefficiency for a low track multiplicities is
visible. The implementation of the FTT improved the efficiency of the track trigger
so that even at low track multiplicities the trigger efficiency is close to 100% within
the statistical uncertainties.

The total efficiency of the combination of trigger elements in sub trigger S61 is
shown in figure 3.9. The data are corrected with these efficiencies in order to derive

differential cross sections in the respective observables.
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3.4 Event and D* Meson Selection Criteria

In this thesis D* meson production is analyzed in the Q? range 2 < Q% < 5 GeVZ.
The selection criteria for the visible phase space in this range is given in table 3.3.
Total and single differential cross sections for the process ep — eD* X are measured,

with X being an arbitrary final state configuration.

2 < Q%<5 GeV?
0.02<y<0.7
pP" > 1.5 GeV

P <15

Table 3.3: Selection criteria for the visible phase space.

Further selection criteria for ensurance of good event reconstruction quality are
given in table 3.4. Events with a measured interaction vertex ze,¢e, outside of £35c¢m
are very rare and badly reconstructed. As known from section 3.2) . (E; — p,;) sums
the energy balance E£—p, of all particles 7 in the final state and peaks at ) (E;—p.;) =
2FE, = 55 GeV2. Events with values of the energy balance outside of the range
35 < > . (E; — p.;) < 70 GeV also are badly reconstructed and are excluded here.
Figure 3.10 shows the distribution of > .(E; — p.;) after the event selection. The red
line indicates the nominal value at 2 - £, = 55 GeV.

The cut on the energy F. of the scattered electron ensures a high trigger efficiency

(see section 2.5).
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The reconstruction of D* mesons needs further requirements on the tracks of its

decay particles, as explained in the next section.

3.5 The D*'s Golden Decay Channel

In this study charm production processes have been tagged with D* mesons. Since
D* mesons decay via the strong interaction its lifetime is too short for it to leave a
track in the detector. Its decay products have to be used to find and reconstruct D*
mesons and their four momenta in ep scattering events.

The D** meson is an excited charmed meson state which always decays into
charmed meson ground states, either the neutral D° or the charged D*. The de-
cay channel D** — D%7F dominates over the other two channels D** — D*7% and
D** — D*~y with its branching fraction of 67.7%|8]. What is more, the charged slow
pion® can leave a track in the detector, unlike the neutral pion and the photon from
the alternative decays. This makes it an ideal candidate for the reconstruction of the
D*+,

For the D° meson the most prominent decay channel|8| (except for semi-leptonic
modes including neutrinos which can’t be reconstructed in the detector) is D —
K-7% and D° — K*7~ for and its anti-particle. The decay chain D** — Dr* —
KFrtrE is therefore the most probable decay to occur in which all decay products
leave tracks in the detector — hence the name "golden channel".

Note that the charge of the kaon and the slow pion are opposite. This is due to
the fact that a D** meson decays into a 77 and a D° containing a positively charged

charm quark. This charm quark then decays into a negatively charged strange quark,

6Since the DO takes the bulk of the D* momentum, the pion’s momentum is small and it is labeled

"slow pion".
Criterion Purpose
| Zpertex| < 35 cm Reject badly reconstructed events

35 < > (B —p.i) <70 GeV Reject badly reconstructed events
E. > 10 GeV Ensure high trigger efficiency

Table 3.4: Quality Ensurance Criteria. Zyertew S the measured position of the inter-

action vertex, the sum of the energy balance E — p, runs over all particles
1 in the final state, and E. is the energy of the scattered electron.
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K* T pe > 300 MeV

track
lradial > 15 cm

Nhits > 10
pE +pr > 2 GeV
m(K7) —m(D°) < 80 MeV

T pe > 120 MeV

slow

Table 3.5: Track requirements for D* candidates.

which together with an anti-up quark constitutes a negatively charged kaon.

3.5.1 Reconstructing D* Mesons from Tracks

The complete final state of the golden decay channel can be reconstructed from tracks
in CJC1 and CJC2. In each event three central tracks are required to fulfill the
kinematic cuts listed in table 3.5. The D*-finder algorithm first searches for two
tracks that fulfill the conditions for the kaon and the pion (tab. 3.5). One of the two
found tracks is then assigned the kaon mass, the other the pion mass. If the mass of
the kaon-pion-system, m(Kr), lies inside a 400 MeV window around the nominal D°
mass|33| a third track is searched for that passes the requirements for the slow pion
from table 3.5. The kaon-pion-pion system is then considered a candidate for a D*
meson.

From all these candidates only those inside a mass window of 80 MeV around the
nominal D® mass is used for the determination of the number of D* mesons in the
golden channel. Losses due to this narrow mass window are studied using the wide
mass window of 400 MeV (see section 3.9.2). Figure 3.11 shows the distribution of
the mass of the kaon-pion-system as determined after all selection cuts (tables 3.3,
3.4 and 3.5) except for the narrow D° mass window.

The difference of the mass of the D* candidate and the mass of the D candidate,
Am = |m(Knmy) — m(Kn)|, is well suited to extract the number of D*s by a fit (see
section 3.5.2) because by taking the mass difference many measuring uncertainties
cancel out. The resolution of Am is then mostly determined by the uncertainties

arising from the track measurement of the slow pion.
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Figure 3.11: Distribution of m(Kr) after event and D* meson selection, but without
the restriction |m(Km) —mig™| < 80 MeV for the kinematic region. A
Gaussian distribution fitted to data points is shown in blue. Its normal-
wzation N, width o and offset p after the fit are displayed together with
the x? value for the respective numbers of degrees of freedom (ndf). The
red line indicates the nominal value of the D° mass at 1.865 GeV [8.

3.5.2 Signal Extraction

The number of D*s is determined by fitting the sum of a signal and a background dis-
tribution to the measured Am distribution in the range 135 MeV < Am < 170 MeV.
For the signal function the Crystal Ball probability density function|34] is chosen,

defined as follows:

exp (—%(%)) for % > —o

fC’B(Am) =N- (ﬁ)nexp(*%a% for Am—p

Am— n
(g Ie=2%72) ’

(3.15)

This functions resembles a Gaussian distribution with an additional exponential tail
which allows for a very flexible adjustment to the peak region. The parameters p and
o represent the peak position and the width of the peak, respectively, while n and «
determine the shape of the exponential tail.

For the background a function by P. Granet et. al.[35] is used:

f(Am) = (Am — m;)P* - exp(—py - Am — p3(Am)?), (3.16)

where p; are the fit parameters while the pion mass m, is the threshold of the function.
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Figure 3.12: Distribution of Am for the kinematic region 2 Gev® < Q7% < 5 Ged’.
Black triangles are data points. The solid blue line represents the sum
of signal and background function, the dashed blue line represents the
background and the dashed red line the signal function.

The fit is performed by the Root based fitting package RooFit 36| using a binned
X2 fit.

In the method used here the normalization N of the signal function is of no impor-
tance, because only the fraction f,c.i of the events in the signal peak are of interest.
This is determined by the ratio of the integral of the signal function fy;, to the integral

of the sum of signal and background function (fp,):

e f(fsig + fbg)

The number of D*mesons in the Am peak is then given by

ND* - fpeak : Nhist 5

where Ny is the total number of entries in the fitted histogram.

In figure 3.12 the final result of the fit for the kinematic region 2 GeV? < Q? <
5 GeV? is shown. The complete event selection as presented in section 3.4 has been
applied to the data points presented here.

Shown is the number of D* candidates per 0.07 MeV. Data points are presented
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3 D* Meson Cross Sections

as black dots with statistical uncertainties, the signal function as a dashed red line,
the background function as a dashed blue line and the sum of signal and background
functions as a solid blue line. The asymmetry of the signal function is clearly visible
and described the data very well. Also the fitted background function is in excellent
agreement with data points.

The resulting number of D* mesons from this fit amounts to

Np- = 6505 £ 189 .

It is used in the determination of the total visible cross in section 3.10.

3.5.3 Choice of Fit Function

The Crystal Ball function is not the only function with which a good description of
the D* signal can be achieved, nor is the Granet function the only function suited
for describing the background. In order to determine a systematic uncertainty for
the ambiguity of the fit function the Novosibirsk function|37| is used to determine
the total number of D* mesons for the complete HERA II period. The Novosibirsk
function is defined by:

fna(Am) = Ny, - exp (—=1/2 - In*(1 + p1pa(Am — 1))/ p2 + p3) (3.17)

The fit parameters are the normalization factor Ny, and the parameters p; and ps.

For the background a polynomial of the form

Footy (AM) = Ny - (Am — m )P - (1 — pa(Am)?), (3.18)

with the normalization factor N, and the fit parameters p; and p, is used for the
uncertainty determination.

Figure 3.13 shows the results of fits with all four combinations of the two signal and
the two background functions. In order to estimate the quality of the the description
of the background by the Granet function and the polynomial the so-called wrong
charge distributions are shown to the right of the Am distributions. The wrong
charge sample is obtained by looking for a track combination of candidates for kaon,
pion and slow pion so that the charge of the kaon has the same sign as the charge
of the slow pion. Such a track combination cannot stem from the golden channel,

since there the charges of kaon and slow pion are opposite. For statistical reasons the
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3.5 The D*’s Golden Decay Channel

distribution of the wrong charge combinations in Am, however, is the same as the
distribution of the background in the D* sample. Therefore such a distribution can be
used to estimate how well the background function describes the actual background.
The value extracted with the Crystal Ball function for the signal and the Granet
function for the background is taken as a reference for determining the systematic
uncertainty due to the selection of the fit function. For this the maximum relative
difference between combinations of signal and background functions is calculated:

N; — Nep g or (3.19)

d it = max( Neweor

where Nopgar is the number of D* mesons extracted with the Crystal Ball function
for the signal and the Granet function for the background parametrization, and N;
represent all other signal and background function combinations from table 3.6.

The systematic uncertainty then evaluates to ds; = 0.5%.

3.5.4 Control Distributions for Track Quantities

In figures 3.14 to 3.19 the control distributions for track quantities are displayed.
The uncorrected number of reconstructed D* mesons obtained from fits to the mass
difference spectrum is shown in bins of various observables of the D* mesons and their
decay particles. The MC calculations from RAPGAP are normalized to the data in
order to compare the shapes. This comparison provides a crucial test of the detector
simulation needed for efficiency determination and bin migration studies (see section
3.6).

Figure 3.14 shows the distribution of the transverse momentum pP”, the pseudo
rapidity n°°7 and the azimuthal angle ¢”~ of the reconstructed D* meson. All three
distributions show very good agreement between MC predictions and experimental
data. The apparent deviations in ¢ seem to be due to statistical fluctuations, so
that the overall shape of the ¢”  distribution in the RAPGAP is in agreement with
the data. The turnover in the pP” spectrum mentioned in section 3.2.4 is also present
here.

Figures 3.15, 3.16 and 3.17 show the distributions in transverse momentum p;,
polar angle # and azimuthal angle ¢ of the decay particles kaon, pion and slow pions

used to reconstruct the D* meson in the golden decay channel. All distributions are

"The pseudo rapidity is a measure for the longitudinal Lorentz boost of the D* meson. It is
determined by the polar angle 67": nP" = —In (tan(9”" /2)).
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Figure 3.13: Fit results of different combinations of signal and background functions:

o4

a) Crystal Ball signal with Granet background; c¢) Crystal Ball signal with
polynomial background; e) Novosibirsk signal with Granet background;
and g) Novosibirsk signal with polynomial background. The quality of the
background function is estimated using wrong charge combinations (see
text) shown with the Granet function in b) and f) and for the background
polynomial in d) and h).



3.5 The D*’s Golden Decay Channel

’ Signal &  Background PDF \ Results ‘
Crystal Ball & Granet N(D*) = 6570 + 159

X2/ndf = 472/487 = 0.97

X%, /ndf = 489/487 = 1.0

Crystal Ball & polynomial N(D*) = 6636 + 160
X2/ndf = 476 /487 = 0.98

X%, /ndf = 508/487 = 1.04

Novosibirsk & Granet N(D*) = 6606 + 159
% /ndf = 469/486 = 0.96

XB,/ndf = 489/487 = 1.0

Novosibirsk & polynomial N(D*) = 6664 £ 159
2/ndf = 473/486 = 0.97

X3,/ndf = 508/487 = 1.04

Table 3.6: Comparison of fit quality and results for different combinations of signal
and background probability density functions as described in the text.
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Figure 3.14: Control Distribution for the D* meson.
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3.5 The D*’s Golden Decay Channel

described well by the RAPGAP calculations.

The distribution of the number of hits in the tracking devices and the track length
are shown in figures 3.18 and 3.19 for the three decay products. The double peak
signature visible in the hits distributions is due to the fact that not all tracks are
reconstructed in both tracking chambers. Except for the second peak being shifted
towards slightly lower values in Monte Carlo no significant disagreement between
Monte Carlo and data is found in these distributions. As apparent from figure 3.15
these shifts have no significant effect on the reconstruction of the transverse momen-

tum of the tracks.
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Figure 3.15: Control Distribution for the transverse momentum of the decay particles
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3.6 Detection Efficiencies and Migration Effects

In measurements of statistical quantities, there are essentially two sources of ineffi-
ciencies: detection inefficiencies and migration effects. Detection inefficiency means
that not all particles passing through a detector are detected, while migration effects
arise from measurement uncertainties.

Because every measurement comes with an uncertainty particles might be measured
with a different value of a certain observable than they actually have. For example, if
the actual transverse momentum of a D* meson is p,, = 2.4 GeV, the measurement
might well result in p;’,.,, = 2.6 GeV.

In histograms bins are defined by intervals in observables such as pP" and have
well defined boundaries. In the pP”-binning in this analysis one bin is defined as the

*

interval 2.0 < p;” < 2.5 GeV, so that the D* meson in the example above would
belong to that bin: 2.0 < pff;c = 2.4 < 2.5 GeV. The measured value, on the other
hand, would be registered in the neighboring bin with 2.5 < pP" < 3.0 GeV. That
means that the particle migrated to a different bin than it would be found in if one
knew the actual value of, for example, its transverse momentum.

These two phenomena - detection inefficiencies and migration effects - have to be
accounted for by a detailed study of the reconstruction method of the detector.

In general one has to apply a proper unfolding method to correct for migrations.
This would exploit information about the migrations given by MC simulations for the
true value of the measured observable. In addition to the true hadron level® value of
an observable one also needs to apply a detector simulation® to the MC predictions to
obtain a simulated and reconstructed value of the measured observable. One can then
use the correlation matrix — a two dimensional histogram of the true (i. e. generated)
value and the reconstructed value of an observable — to unfold the data.

However, if migrations are small compared to detection inefficiencies (meaning
considerably less particles are detected in a different bin from the one on hadron level
than not being detected at all) it is sufficient to apply a correction factor to each
data bin which accounts only for detection loss in that bin. This is called bin-by-bin
method.

A measure for the magnitude of migrations into a bin is given by the purity P:

8The term hadron level refers to final state particles as simulated by MC generators, parton level
refers to particles before the hadronisation stage, and detector level refers to particles as measured
by the detector.

9See section 2.6.
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Figure 3.20: Purity as a function of a) Q?, b) yes, ¢) pP" and d) P as determined
with RAPGAP.

Nrec/\gen
P = e (3.20)
where N7¢"9¢" ig the number of D* mesons reconstructed and generated in the same
bin and N"* is the number of D* mesons reconstructed in that bin. Their ratio

represents what fraction of D*s measured in certain a bin also originated there.

In figure 3.20 the purity is shown as a function of a) Q?, b) y.x, ¢) pP” and d) nP".
These distributions show that the purity in all observables for which cross sections
are determined are 2 70% with no strong dependence on the respective observables.

This means that migrations between the individual bins of the observables are small.

The correction factor applied in case of small migrations is defined as the inverse

of the detection efficiency 4. in that bin, which is defined as

Nrec
Edet — Noen

(3.21)
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The distribution of €4 is shown in figure 3.21, again as a function of a) Q?, b) y.x,
c) pP” and d) nP". The detection efficiency as a function of pP” is decreasing strongly
towards low values. This leads to a turnover in the pure uncorrected distribution of
pP”" seen in figures 3.6 and 3.14.

That these efficiencies are small while purities are large shows that the largest
part of the particle loss in all bins is due to detector inefficiencies and not from
migrations. In this case it is justified to correct the single differential cross sections

in the respective observables with 1/¢ 4.

3.7 Contributions from Reflections and

Photoproduction

The selection of tracks as candidates for the kaon and the two pions by itself does
not ensure a selection of a D* meson. In addition to the combinatorial background
there are also two important contributions to take into account: background from
photoproduction events where a signal in the SpaCal has been falsely identified as
the scattered electron, and background from other D* meson decay channels apart

from the golden channel, called reflections.

3.7.1 Reflections

A D* meson can only decay in three possible ways: D** — D7% D** — D*70 and
D* — D*~y. The track requirements for the slow pion are already strong enough to
suppress contributions from the two latter processes, so that only alternative decays
of the D° meson might give an additional contribution to the Am-peak.

Table 3.7 lists all D° decay channels with at least two charged particles. Together
with the slow pion these channels, termed reflections, all have at least three charged
particles in the final state.

Because for cross section determination the number of D* mesons is corrected with
the branching ratio of the golden channel, the contribution from these reflections
have to subtracted from the fitted number of D* mesons in the golden channel. This
contribution has been determined by the Monte Carlo generator RAPGAP.

In the search for the golden decay channel of D* mesons the tracks of these decay
products will be assigned either the mass of a kaon or a pion. After that the resulting

kinematics have to fulfill the track requirements mentioned in section 3.5.1 in order
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Decay channel Branching ratio
D’ - K*KT (3.84£0.1)-1073
D° — KFgtqd (14.1+£0.5) - 1072
D — rEnF (1.36 +0.03) - 1073
D — rEpFrin®  (7.3140.27) 1073
D? — pEqF a0 (1.31 £ 0.06) - 102
D° - K7y, (3.5140.11) - 1072
D° s K+, (3.19£0.16) - 102
DY - nEeF ) (2.814+0.19) - 1073
D’ — wi,ﬁ(yjf (2.4+0.4)-1073

Table 3.7: Alternative D° decay channels contribution to the Am peak.

to be identified as a D*. In the rare case when this happens for tracks of decay
products from reflections the mass difference Am = mp+ — mpo — calculated under
the assumption that the golden channel has been found — only shows deviation from
the nominal Am value too small to be measured and therefore also form a peak in
the distribution.

If identified correctly the invariant mass of the two charged daughters of the al-
ternative D° decays of table 3.7 does not peak at the nominal D° mass but at lower
values. In this case the D° mass window rejects these particles. It is only because
of wrong mass assignments that these particles are “reflected” from their actual mass
peak into the D° mass window, which is how these D* candidates have gotten their

name.

The fraction of reflections in the Am peak is given by,

Nrefl

R=
Nrefl + Ngc

Niep being the number of D* meson candidates from reflections (figure 3.22, left)
and N, the number of D* meson candidates from the golden channel (figure 3.22,
right). R is determined from a dedicated RAPGAP sample for D* mesons decaying
in the golden channel and additionally allowing for the reflections of table 3.7. The
full event selection and reconstruction cycle was applied to the RAPGAP sample. The

relative contribution from reflections amounts to

R =(4.6+0.018)%.
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Figure 3.22: Contributions from reflections (left plot) to the golden channel (right
plot) as determined by a fit to RAPGAP predictions (black triangles). The
blue solid line represents the sum of the signal and background functions,

the blue dashed line the background and the red dashed line the signal
function.

3.7.2 Photoproduction Background

In photoproduction (yp) events, where Q* ~ 0, the incoming electron is scattered
under such a large angle 6. that it escapes detection by the backward calorimeter
SpaCal. In such an event it can still occur that a signal in the SpaCal is falsely
identified as the scattered electron. These events then form a background to the

cross section measurement which has to be determined from a MC generator.

For this purpose a D* MC sample was generated with Q? = 0 GeV with the MC
generator RAPGAP. After the detector simulation was applied the sample has been
analyzed with exactly the same procedure as the data. The resulting false vp cross
section'® 03¢ = N°I(D*) /L., has been determined, where £, is the luminosity of the
photoproduction MC sample and Nj;l (D*) is the number of D* mesons determined
from the yp-sample after applying all DIS selection cuts. It represents the probability
that D* mesons in photoproduction events are falsely identified as DIS events in the
analyzed visible phase space.

The contribution from photoproduction events P to be subtracted from the data

104False” because strictly speaking it is only the number of D* mesons per luminosity in events
falsely identified DIS events and not a cross section of a physical process.
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is then determined by :

Usel

P=—>"— (3.22)

Uf,ﬁ,l + Oprs

Here oprg is the total D* meson cross section in the visible phase space determined
from the DIS Monte Carlo sample which is used for the determination of detector
efficiencies and various systematic uncertainties.

With a total D* meson cross section in DIS of oprg = (1.32740.007) nb and a false
vp cross section of o< = (0.01255 4 0.00005) nb the photoproduction contribution

yp
amounts to

P = (0.937 £ 0.002)% .

3.8 Radiative Corrections

The electron can radiate photons both before and after the interaction with the pro-
ton. The Monte Carlo sample used to determine the detector efficiencies includes
this additional QED radiation. In the cross section determination the number of
D* mesons is corrected for this effect by a comparison of two Monte Carlo sam-
ples, one including QED radiation (labeled rad) and one without (labeled non-rad).
The correction factor c,oq = N7 /N7 ig the ratio of the number of D* mesons
determined without QED radiation, N"°" "% and with QED radiation, N"¢.

Figure 3.23 shows the distribution of ¢,qq as a function of Q? (a), y (b), pP" (c) and
nP" (d). Since the distributions in 3.23a), ¢) and d) are flat a single global value for
Crqqa can be applied to correct the respective differential cross sections. A fit of single
parameter p0 has been performed to determine the correction factor. It is nicely
visible that all fits in Q?, pP” and P yield the same result

Crad = 1.033 £ 0.001 (3.23)
The inelasticity y is more sensitive to QED radiation, which can be seen in figure
3.23. This is why the histogram of NP (y.x) is multiplied with histogram of c,q4(y)

shown in figure 3.23 b) to correct for QED radiation in the determination of the

differential cross section do(ep — D*X)/dy.
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Figure 3.23: The correction factor c.qq as a function of a) Q2, b) y, ¢) pP" and d)
nP" as determined by RAPGAP. The blue dashed lines in a), ¢) and d)

show the result of fit of a single parameter pO assuming the distributions
to be flat.
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Source of Uncertainty Variation Uncertainty
Luminosity [1] 3.2%
Branching Ratio [33] 2.3%
Primary Vertex Fit Efficiency [38] 2.5%
Radiative Corrections 0.1%
Signal Extraction 0.5%
Track Finding[38] 6% (2%/track)
Em. Energy Scale!! +£3%/0.5% ey
Had. Energy Scale +4% < 0.1%
DY mass window 1%
Reweighting fg:?;’;
Detector Efficiency 0.1%
Trigger Efficiency 0.4%
Total Uncertainty fg:f;‘z

Table 3.8: Systematic Uncertainties: Listed are the source, the uncertainty on the
source and the resulting uncertainty on the cross section.

3.9 Systematic Uncertainties

Due to the largely increased luminosity during the HERA II period systematic un-
certainties dominate over statistical uncertainties. This chapter gives an overview of
the systematic uncertainties considered in this analysis.

Table 3.8 lists all the sources and values of the applied systematic uncertainties.
In those cases where no reference is given in the table the determination is presented

in detail below.

3.9.1 Uncertainty of Energy Measurements

To determine the effect of the uncertainty of the energy scale on the cross section
the electromagnetic (em.) and hadronic (had.) energy scales have been varied up
or down in the MC simulation by the respective uncertainties, o, and Opqq (for the
values of these uncertainties see below). The relative uncertainty on the number of

reconstructed D* meson candidates has been determined using
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N — NN
—N .

Here, N™ denotes the number of reconstructed D* candidates after the energy scale

é‘7“el =

has been varied up or down by d.,,. or 0544, and N denotes the number of reconstructed
D* candidates without any variation of the energy scale. This uncertainty, d,.;, has
been determined as a function of Q?, y.x, pP" and n”".

As shown in section 3.2.3 the uncertainty of the em. energy scale is larger at low
radii in the SpaCal. Therefore the following relative uncertainties have been used for

the variation of the energy scale:

5 - 3%  for rspaca < 15cm
0.5% for rgpacar > 15 cm
The results are displayed in figure 3.9.1. The number of D* mesons NT (N*V) after
varying the electromagnetic energy scale up (down) is represented by solid red lines
(blue dashed lines).

The relative uncertainty due to the hadronic energy scale has been determined in
the same fashion with systematic variations of 0.,y = 4 %. The two lower plots in
figure 3.9.1 show the results. Again, the solid red lines (blue dashed lines) represents
the number of D* mesons NT (NV) after varying the electromagnetic energy scale up
(down).
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Figure 3.24: Ratio N™/N resulting from variation of the electromagnetic energy scale
as a functions of a) Q* , b) yes, ¢) pP” and d) nP" as determined with
RAPGAP. The number of D* mesons N (N*) after varying the electro-
magnetic energy scale up (down) is represented by solid red lines (blue

dashed lines).
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Figure 3.25: Ratio N™/N resulting from variation of the hadronic energy scale as a
functions of a) Q2 , b) yes, ¢) pP" and d) n®" a determined with RAP-
GAP. The number of D* mesons N (N¥) after varying the hadronic en-
ergy scale up (down) is represented by solid red lines (blue dashed lines).
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NN\\\. Complementary Error Function
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10°
102
10k

107k
102

arb. units

10*E

P I A NS RN R
1.8 1.85 1.9
My, [GeV]

Figure 3.26: An ezample of how the loss due to the narrow D° mass window is calcu-
lated: After a Gaussian distribution (here taken from a fit to the distribu-
tion of m(Kn) from figure 3.11) has been fitted to a m(Kn) distribution
the complementary error function erfc (see text) gives the integral of the
Gaussian distribution outside the D° mass window mie" =80 MeV (red
lines). The nominal D° mass m"a™ = 1.865 GeV [8] is indicated as a
blue dashed line.

3.9.2 Losses From The D°? Mass Window

The Selection of kaon and pion candidates inside a window of 80 MeV around the
nominal D® mass, |m(Km) —m(D°)| < 80 MeV with m(D°) = 1.864 GeV|8], excludes
a certain amount of D* mesons. This loss is estimated by fitting a normal distribution
to the mass peak in the m(K ) spectrum and a line to the background in bins of the
transverse momentum of the D* candidate.

Figure 3.27 shows the resulting values and uncertainties for m(K7) as a function
of pP” (left). The fraction fi,ss; of D* mesons lost to the D° mass cut is estimated

with the complementary of the Gaussian error function:

Meut 2 o 42
floss = erfc ( ) = —= e dt.
\/§0mKﬂ. \/E 'rncut/\/ﬁo"mf(.,r

This function gives the integral of a Gaussian distribution with width o,,, outside
the boundary +m.,, = 80MeV, which amounts to the relative loss f,ss of D* mesons.
An example of the calculation of fj,,s with the complementary error function is shown
in figure 3.26.
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Figure 3.27: On the left: Invariant mass of the decay products kaon and pion as a
function of pP”. Central values and uncertainties are taken from fits
of a mormal distribution to data (black) and MC (red). The D° mass
window is shown as blue dashed lines. On the right: loss due to the DY
mass window as a function of pP”.

Figure 3.27 on the right shows the distribution of f,ss as a function of pf) ". Except
for the largest p”” bin the loss is always lower than 1%, and even in that bin the

data

uncertainty — estimated by comparing the loss in data and MC with 0,5 = (f0 —

MO | fdata g large enough to be compatible with a one percent loss. To account

for this a systematic uncertainty of 1% is assigned to the number of D* mesons.

3.9.3 Reweighting Uncertainty

Due to the discrepancy of MC calculations and experimental data described in section
3.2.4 the MC sample has been reweighted in the energy FE. of the scattered electron
and the inelasticity y.y. The results of the reweighting are shown in figures 3.28 and
3.29. Experimental data is shown as black dots, the unweighted MC sample as red
dashed lines, the MC sample reweighted in E. as blue open diamonds and the MC
sample reweighted in y.s. as red open squares.

The sample reweighted in y,.x still cannot describe the energy spectrum of the scat-
tered electron (fig. 3.28), and the sample reweighted in ./ still shows a discrepancy
in y.x (fig. 3.29).

The effect of these discrepancies on the detector efficiency c4.; has been studied
and is shown in figure 3.30. The strongest difference is seen in the distribution of
Yess- The largest difference between unweighted and reweighted samples is seen at

high 9.5, where the detector efficiency determined by the sample reweighted in E./
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Figure 3.28: Comparison of the MC predictions and experimental data for the the
scattered electron energqy E.. The MC sample is shown after reweight-
ing in Eg (blue) and yes, (red dashed) as well as without weights (black
dotted).

deviates by about 10% from the unweighted one.
From these results a systematic reweighting uncertainty o,.,, is determined. It is
defined by

rew

Orow = 1 — Zdet (3.24)
Edet

where €4+ is the detector efficiency of the unweighted sample and €2 the one of

the reweighted sample with the maximal deviation from the unweighted sample.
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Figure 3.29: Comparison of the MC predictions and experimental data for the photon
virtuality Q?, the inelasticity y.s, the transverse momentum pP” and the
pseudo rapidity nP" of the D* meson. The MC sample is shown after
reweighting in Ee (solid blue line) and yes (dashed red line) as well as
without weights (black dash-dotted).
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Figure 3.30: Comparison of the detector efficiency in Q?, yes, pP" and n°" as deter-
mined with the unweighted sample (black dots), the sample reweighted
in Eo (blue open diamonds) and the sample reweighted in yes, (red open
squares).
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0wt [nb]  total [%] stat. [%] sys. [%]

HERA I data 1.853 5 2.90 e
detector level MC 1.32608 f;:? 0.18 J_rg?
hadron level MC 1.32653 0.20 0.20 -

Table 3.9: Total D* meson production cross section o, tn nb and total, statistical and
systematic uncertainties in the visible phase space at 2 < Q> < 5 GeV>.

3.10 The Total D* Meson Cross Section at low Q2

The total cross section for D* meson production is given by

vis — Nt?t* . (1 - R — P) " Crad (3 25)
L BR(D* — K7Ts) - €det * Etrig '
where £ is the luminosity of the data sample, which amounts to
£ = (348+11) pb ™" (3.26)

From the total number of D*s determined at low Q% N (D*), the fraction of
reflections R = (4.6 £0.018)% (see section 3.7.1) and the fraction of photoproduction
background P = (0.937 £ 0.002)% (see section 3.7.2) are subtracted. The factor
Crad = 1.033 £ 0.001 (see section 3.8) corrects for higher order QED radiation. The
branching ratio BR(D* — Kn,) is needed because only D* mesons decaying in the
golden channel are counted. Finally, the cross section also has to be corrected by the
detection and trigger efficiencies €4, and €g4e, which amount to (see sections 2.5 and

3.6, respectively):

et = (40.6 +£0.1)%
emig = (93.7£0.4)%

The total visible cross section at 2 < Q? < 5 GeV? and its total, statistical and
systematic uncertainties for the complete HERA II data sample, the Monte Carlo
sample after detector simulation and reconstruction procedure (detector level MC)

and the hadron level Monte Carlo sample (hadron level MC) is shown in table 3.9.
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3.11 Differential Cross Sections

For each observable O the single differential cross section do/dO is determined for

each bin ¢ of the observable by

dUViS
dO

_ 1LANP(0) (1—R—="P) " Crad
N L AOz BR(D* — Kﬂ'ﬂ's) * Edet * Etrig ’

(3.27)

bin i
where the number of D*s in bin i with width AQO; is given by ANP"(O). Double

differential cross sections are determined in a similar fashion:

do?

VS

1ANP(0,0,) (1-R—=P) craa
dO1dOy

- L AOLZ‘AOQJL . BR(D* — K7T7Ts) * Edet " Etrig ’

(3.28)

bin i
These cross section are not bin center corrected and therefore give only the (double)
differential cross sections in the respective bin but is shown at the center of the bin
in the following figures.

Figure 3.31 shows the single differential cross section in Q?, y.x, pP" and n”". Inner
error bars represent the statistical uncertainties o, outer error bars represent the

total uncertainties o,,;. For each bin they are determined by

Otot = 4/ O'gtat + U?ys 3 (329)

where o0y, is the systematic uncertainty in that bin as described in 3.9. Below each

cross section the ratio

[ dO%E do™MC /dO

 [dO%ZE docr [dO

(3.30)

bin i
is presented as a measure to compare the shapes of Monte Carlo prediction and exper-
imental data. The latter is presented as black dots, the solid red lines represent the
predictions from RAPGAP and the dashed blue lines the prediction from CASCADE.

It can be seen that the prediction from both Monte Carlo generators, RAPGAP and
CASCADE, undershoot the data. The shapes of all distribution are described well by
both event generators, as the ratio plots below the cross section show.

The differential cross section as a function of Q? (fig. 3.31 a)) complements the
measurements at higher virtualities. The three bins presented here lie in a region
which, in the D** production analysis of the HERA I period published by the H1

collaboration|25|, was covered only by three broader bins. As shown in 3.32, the
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Figure 3.31: The differential D* meson production cross section do(ep — D*X) in
the range 2 < Q* < 5 GeV? as a function of a) Q?, b) yes, c¢) pP" and d)

D*

n~ . Inner and outer error bars show the statistic and total uncertain-
ties, respectively. The data are presented as black dots, predictions from
RAPGAP as a solid red line and predictions from CASCADE as a dashed
blue line. Below each differential cross section a ratio plot is shown com-
paring the shapes of the Monte Carlo predictions to the data. There only
total uncertainties are shown.
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Figure 3.32: The differential D* meson production cross section do(ep — D*X)/dQ?
as measured by the H1 collaboration using HERA I data (cyan) in the
range 1 < Q* < 10 GeV? compared to the HERA II measurement pre-
sented here (black). Only statistical uncertainties are shown.

HERA 1T data (black) offer a finer binning in Q? than was possible with the HERA
I data (cyan).

The differential cross section as functions of the inelasticity y (fig. 3.31 b)) and
the pseudo rapidity n?” (fig. 3.31 d)) are similar to the same cross sections measured
at higher photon virtualities|1], although that analysis featured more bins along n”".
The pP”-distribution (fig. 3.31 ¢)), on the other hand, is much steeper, as is expected
at low Q2.

In figures 3.33 and 3.34 double differential cross sections are presented as functions
of yx; in bins of Q? and as functions of " in bins of pP".

do?/dQ*dy is in general well described by both Monte Carlo generators. Also the
normalization is not as far off as in the single differential distributions. Shapes are
equally well described by CASCADE and RAPGAP 3.1.

In the first y bin of the second Q? interval a notable deviation from the shapes of
the other Q% intervals can be seen in the experimental data. Checks of efficiencies,
correction factors and mass peak fits could not reveal the source of this deviation.

Also visible is that CASCADE undershoots the experimental cross section do? /dndp;
more significantly than visible in the the other distributions. The description of the

shapes is only slightly worse than from RAPGAP 3.1. This is seen in the distribution
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of the ratio R in figure 3.34.
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Figure 3.33:
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4 Parton Distribution Functions

In chapter 1 the concept of parton densities has already been mentioned, as well
as the basics of electron-proton scattering. This chapter offers deeper theoretical
insight into the subject of parton distribution functions, starting with an introduction
to factorization theorems in section 4.1 before the concept of parton evolution is
explored in section 4.2. The theoretical approach behind unintegrated PDFs | called

k;-factorisation , is also explained in that section.

4.1 Factorization and the Hard Interaction

As Collins, Soper and Sterman stated in [39], “[factorization| allows us to derive
predictions for [lepton-hadron and hadron-hadron large momentum transfer| cross
sections, by separating (factorizing) long-distance from short-distance be-
havior in a systematic fashion”. The need for this comes from the fact that in
QCD the coupling constant grows with the distance of interacting particles, making
perturbative calculations possible only for short-distance processes. The long-distance
parts which cannot be calculated perturbatively are accounted for by functions de-
scribing the probability to find partons in hadrons or, for hadronisation, hadrons to
arise from partons.

In electron-proton scattering one makes use of the asymptotic freedom of QCD,
which states that at high energy scales — i. e. short distances — the strong coupling
constant is small and therefore the interaction between the quarks can be neglected
compared to the photon-quark scattering process. This process can then treated as
an interaction between free particles so that perturbative methods can be applied.

While the radiation of the virtual photon by the electron can be approximated
using the Weizsécker-Williams formalism[40, 41], the low momentum component on
the proton side, i. e. the interactions between the partons, is hidden in the parton
densities — functions describing the momentum distribution of partons in the proton.

In lowest order perturbation theory a PDF f; () can be interpreted as the prob-
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(],) b)

Figure 4.1: Illustration of factorisation of the ep cross section: An electron e interacts
with a quark q in a proton by exchange of a virtual photon v* (a)). The
cross section can be factorized (b)) into the photon flux (red), the hard
interaction (red) and the parton density (blue).

g v e

Figure 4.2: The naive parton model v*q — q and its lowest order virtual pQQCD cor-
rections: the quark line (a and b) and the vertex corrections (c).

ability of finding a parton of flavor ¢ inside a hadron A with a momentum fraction x.

The scattering cross section ¢ can then be factorized as follows:

o~ oY) @5(Yq— )R fim(x), (4.1)

where ¢(y) is the photon flux as a function of the inelasticity y', 6(v*q — ¢) is the
cross section for the hard scattering of virtual photon and quark, and ® represents
mathematical convolution. Figure 4.1 illustrates the separation of the photon flux
(black), the hard scattering (red) and the parton density (blue). That this approxi-

mation holds is the subject of various factorisation theorems.

This picture does not yet include the strong interaction. The first step in incor-

!'Remember that in the proton rest frame the inelasticity y is the fraction of the electron energy
carried by the virtual photon
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porating perturbative QCD in this model is to consider the lowest order virtual and
real corrections to v*q — ¢. This is depicted in figures 4.2 and 4.3: for the virtual
corrections the gauge boson of the strong interaction, the gluon, is introduced as a
self interaction term of the quark line; the real corrections include initial and final
state gluon radiation in QCD Compton (QCDC) processes v*q — ¢gq and in addition
boson gluon fusion (BGF) processes v*g — ¢ where a boson, in this case a photon,

interacts with a gluon via a quark propagator.

4.2 Parton Evolution

Factorisation theorems offer the possibility to calculate the hard scattering separately
from the softer long distance processes. The momentum of a parton — quark and
gluon alike — entering the hard scattering is not fixed but determined from parton
distribution functions.

The concept of parton evolution answers the question of what soft processes can
happen to a quark before the hard scattering occurs. It allows to account for mostly
soft parton emission happening before the hard interaction without having to include
these processes in the matrix element. This is done by evolution equations: per-
turbatively calculated equations bearing information of the influence of soft parton
emissions on parton densities.

In the following two sections two approaches to this concept are introduced. The
collinear factorisation approach (section 4.2.1) assumes that the influence of the trans-
verse momentum of the parton entering the hard scattering is negligible. In the
framework of k;-factorisation (section 4.2.2), on the other hand, the transverse mo-
mentum is explicitly taken into account and plays an important role especially at low

momentum fractions xp;.

4.2.1 Collinear Factorisation

At leading order (LO) perturbation theory the electron-quark scattering cross section

can be written as:?

d? 2’
dxd(éz - Zgim(1+<1—y>2>l’z(x)), (4.2)

2The Callan-Gross relationship F; = F» — 22F; = 0 is used here.
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a) b) 9

Figure 4.3: The lowest order real corrections to v*q — q: QCD Compton in a) and
b), Boson Gluon Fusion in c).

where a, is the electromagnetic coupling constant and F; is the structure function
for electron-proton scattering.
Considering only photon-quark scattering the structure function depends on the

momentum distribution of quarks of flavor ¢ in the proton:

Fy(x) = Z elrqi(x), (4.3)
where e; is the charge of a quark of flavor ¢ in units of the elementary charge e =
1.602 - 1071 C. Note that at this stage the structure function as well as the quark
density ¢(x) only depend on the momentum fraction z, not on the energy scale Q2.

The momentum distribution of the quark is changed if the quark radiates a gluon
before coupling to the virtual photon. Therefore the PDF ¢;(x) will change if the
processes from figure 4.3 a) and c¢) are to be taken into account. Including the
process v*q¢ — qg from figure 4.3 a) introduces a scale dependence into the parton

densities:

X

§

(67

s ()n()] o

Here ¢ represents the proton momentum fraction carried by the incoming quark,

FeQ) =306 [ dcatens) 309+

while x is the proton momentum fraction of the quark line which coupling to the
virtual photon. The factorisation scale uy serves the purpose of absorbing collinear
divergences into the PDFs. The splitting function Py, (x /) is derived from the matrix
element of the process v*¢ — qg and represents the probability that a quark emitted
a soft gluon. It depends only on the ratio =/, which is the fraction of the incoming

quark’s momentum carried by the quark which couples to the virtual photon.
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4.2 Parton Evolution

When the process v*¢g — ¢q (fig. 4.3 ¢) is incorporated the splitting function P,
for the gluon splitting ¢ — ¢g and the gluon density g(z, @*) are introduced, resulting

in the following contribution to the structure function:

1
Faesnply =i [ deat&n Py (5) (45

The scale dependence of the parton densities ¢; and ¢ is an important feature which

can be further exploited by examining their derivatives with respect to In ji;:

9qi(x, Qe ! T T
—%gnlif) = g/z dg [qi(x,uf)qu <5> + g(z, 115) Py (E)] (4.6)

0 ) em !
g(li//j;) _ O;W /1 dg§ {%(%N)”)qu (%) + g(z, pur) Py (%)] (4.7)

These equations are known as the DGLAP (after Dokshitzer, Gribov, Lipatov,

Altarelli and Parisi) equations. More generally equations which describes the change

of a parton distribution function with the energy scale are called parton evolution
equations. They treat the evolution of both quark (eq. (4.6)) and gluon (eq. (4.7))
densities under the influence of soft QCD radiation. The splitting functions P;;(x/€)
represent the probability that a parton ¢ with momentum fraction z originates from
a parton j with a momentum fraction ¢ by undergoing soft QCD radiation. For
example, P,, represents the probability that a quark g originates from a gluon g, i. e.
that a gluon splits into a quark anti-quark pair. Note that these splitting functions

do not, however, contain any kind of information about the emitted soft parton.

Factorisation Schemes

How the structure function F, can be factorized into long and short distance con-
tributions depends on how finite O(c;) corrections are applied. Above no such cor-
rections where introduced in the definition of the structure function: Fy(z,Q?%) =
> eirgi(x,Q?). This treatment is called DIS scheme. It means that all QCD cor-

rections are absorbed into the parton densities.

If only minimal contributions of finite O(«;) corrections are absorbed into the
parton densities one ends up with a different form of the structure function with

additional coefficient functions:
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4 Parton Distribution Functions

a) b)

Figure 4.4: Ezamples of parton cascades for a) the photon-quark scattering v*q — ¢
and b) boson gluon fusion v*g — qq.

o, @) =Y ¢ /: dx—ai/qi(m',QQ) {5(1 - %) + ;—;CM—S (f) +.. } . (48)

This scheme is called M S (modified minimal subtraction) scheme and is a modifica-
tion of the MS scheme introduced by t’Hooft and Weinberg. In practice it is more
common than the DIS scheme.

The choice of scheme is, in principle, arbitrary. Once chosen, it has to be used
consistently throughout all cross section calculations in order to obtain reliable pre-

dictions.

Parton Cascades

Parton evolution equations can be interpreted to account for the effect of parton
showers not calculated in the matrix element on parton densities. As figure 4.4 a)
illustrates the evolution of the quark density takes into account gluons emitted by
the quark line before the hard process v*q — ¢ takes place. Figure 4.4 b) depicts the
gluon density evolution (eq. (4.7)) before the hard BGF process.

It is important to understand that by solving the evolution equations (4.6) and (4.7)

one does not obtain any information on the emitted soft partons. What is obtained
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4.2 Parton Evolution

Figure 4.5: Transverse momentum ordering for a gluon cascade in boson gluon fusion.

is information about the influence of possible parton radiation on the parton density
at the scale of the hard interaction. The larger the scale, the larger the phase space
available for parton radiation.

If one considers, for example, the process v*q¢ — ¢ (fig. 4.4 a)), the distribution of
the scattered quark ¢’ is affected by the parton evolution, but no information is gained
about the gluons radiated in the parton cascade. When Studying BGF processes the
parton evolution affects the momentum distribution of the outgoing quark and anti-
quark, but again no information is gained about the gluons radiated in a parton

cascade as shown in figure 4.4 b).

Strong Transverse Momentum Ordering

In order to derive equations (4.6) and (4.7) an important approximation has to be
made:

b <kl < o <KV <E < (4.9)

where k! is the transverse momentum of parton 7 in the parton cascade, as illustrated
in figure 4.5. This ordering is a consequence of the infrared divergence in the quark
propagators of the partonic cross sections of QCDC and BGF in the derivation of the

splitting functions.

93



4 Parton Distribution Functions
4.2.2 k.-factorisation

In k;-factorisation approaches parton densities explicitly depend on the transverse

momentum of the partons, k;, and enter the cross section ¢ in the following way:

dx’ T
o~ /Y/dkfa(y,kt)g(xﬂkt).

The cross section of the hard scattering, &, is convoluted with the unitegrated parton
density G(2/, k;). Both depend explicitly on the longitudinal momentum fraction z’
as well as the transverse momentum k;. The k;-dependence is also present in the

matrix element of the hard scattering, which the partons enter off mass shell.

The unintegrated gluon density G(z, k;) can be related to the collinear gluon by

2 < dr?
xg(:v,Q):/ w2 (x, k) (4.10)

t
The transverse momentum of the partons becomes important particularly at low
x. Here the strong ordering in transverse momenta is broken and the transverse

momenta of all partons involved in a parton cascade can take on any kinematically

allowed value.

Two approaches are presented in the following sections: the BFKIL approach by
Balitsky, Fadin, Kuraev and Lipatov, which is expected to become important at
small momentum fractions z, and the CCFM approach by Catani, Ciafaloni, Fiorani

and Marchesini, which is valid at both large and small x.

The BFKL approach

Balitsky, Fadin, Kuraev and Lipatov addressed the problem of the scattering of two
perturbative hadrons where, on one hand, the squared center-of-mass energy, s, is
large compared to the transverse scales ¢; and t, of these objects, t; < s. On the
other hand the transverse scales are demanded to be large compared to the QCD scale,
ti > Agcp, so that perturbation theory is applicable. In deep inelastic scattering
one expects phenomena related to the BFKL approach to arise at small momentum

fractions x, since z ~ t/s < 1.

At these small momentum fractions it is clear from the splitting functions that
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4.2 Parton Evolution

Figure 4.6: Illustration of angular ordering in ete™ — eTe 7.

gluons drive the evolution:

Py, Py =~ const.,
41
I
1
Pyl <1) ~ 6; > Py,

The limit z < 1 implies that in this kinematic regime gluon cascades dominate the
cross section, and since z = z;41/z; it also implies a strong ordering in longitudinal

momenta;:

To>> ... > x> ... > Tp; (4.11)

In the collinear scenario we also have a strong ordering in the transverse scales, e.
g. t1 > to. BFKL studied a case where this no longer needs to hold. Rather the case
where transverse scales are of the same order, ¢; ~ t9, has to be considered. Since
the transverse momentum k; of a parton is essentially given by the transverse scale
of the hadron, k? ~ ¢, we have a situation where the strong ordering in transverse
momenta (eq. 4.9) is not valid anymore. Instead the transverse momenta of all
partons taking part in the evolution can have any kinematically allowed value, which
is often referred to as a random walk in k,. The parton densities themselves, then,
also explicitly depend on the transverse momentum of the partons, as described in

the introductory note above.

Color Coherence, Angular Ordering and the CCFM approach

In order to get a consistent description of the kinematics of all final state partons
one also has to account for the transverse momentum of partons emitted in a parton

cascade. This is done in the CCFM approach, which bases its study of parton cascades
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4 Parton Distribution Functions

i g
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Figure 4.7: Definitions of the variables for gluon splitting in the CCFM approach.

on color coherence effects. Instead of the strong k;-ordering of the collinear approach
(eq. (4.9)) or the strongly ordered momentum fractions in BFKL (eq. (4.11)), color
coherence yields an ordering in emission angles. This angular ordering is a general
feature of gauge theories and not only of QCD. It can also be found, for example,
in the process ete™ — eTe 7, in the which emission angle of the photon can never
exceed the opening angle of the electron positron pair: 6,. < 0., (see fig. 4.6).

3

The angular ordering of gluon® emissions, 6° < 01 leads to the following state-

ment:
2iqt < ¢t (4.12)

Here ¢' = p!/(1 — z%) is the rescaled transverse momentum of the emitted gluon, and

2* the momentum fraction carried by the incoming gluon, as shown in figure 4.7.

A few features of this ordering are worth mentioning. Instead of the strong order-
ing in transverse momenta of the propagating partons in the DGLAP approach we
now have an ordering for the rescaled transverse momenta of the emitted gluons. At
large momentum fractions 2 this translates into a weak ordering for the transverse
momentum of the propagating gluons, k! < k/™'. At small 2%, however, the trans-
verse momenta can obtain nearly any value, since then the smallness of 2* fulfills the

ordering for nearly any value of ¢'.

Thus we see that at relatively large © a DGLAP-like ordering, although not as
strong, is obtained, while at small x a feature of the BFKL evolution, the random
walk in k;, is reproduced. This, among other features, makes the CCFM approach
a promising candidate for a unified description of parton showers both at large and

small momentum fractions z.

The integral form of the CCFM equation reads|9, 42, 43, 44, 45]:

3 As stated before, at small = the gluon density dominates over the quark densities, which is why
in the following only gluons are considered.
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Figure 4.8: The unintegrated gluon density from set A0 as a function of logx, in bins
of the transverse momentum k; (a - ¢) and as a function of log k; in bins

of x4 (d - f).

Az, ke, @) = Ao(x, ki, q) /dZ/ (7 — 29)As(q, 2q) Py (2, kt,q)A(g,kg,q)
(4.13)
Here q = 5 + Q? is the upper scale of the parton evolution, so that for n emissions
2nqn < ¢. The Sudakov form factor A,(q, zq) describes the probability of parton
emission between the energy scales ¢ and zq, while the theta-function (g — zq)
ensures the ordering in of equation (4.12). The splitting function Py, now depends

on k;, as does the unintegrated parton density A(x, k¢, ).

Unintegrated Parton Densities

The unintegrated parton densities A(x, k;, ) are obtained by fits to deep inelastic
scattering data such as structure functions and non-inclusive final state measure-
ments like jet or heavy flavor production. For the use in the Monte Carlo generator

CASCADE various sets are available. They differ in details such as the renormalization
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)
Qi

a)

Figure 4.9: Two examples for heavy quark production: a) LO and b) NLO contribu-
tion. For heavy quark production with three jets in the final state, the
diagram in b) would the LO contribution. What is more, the collinear
approach means that in a) the gluon producing the QQ pair carries no
transverse momentum while in b) ky # 0.

scale, the splitting functions or the cut-off for the transverse momentum k;.
For comparison to data the set A0 has been used, which is described in reference
[46]. Figure 4.8 shows the unintegrated gluon distribution of set A0 as function of

log z, in bins of k; (a - ¢) and as a function of log k; in bins of z, (d - f).

4.3 Next-To-Leading Order Corrections

In the previous sections all QCD calculations were given in first order of the strong
coupling a,. In processes such as heavy quark production, v¢ — QQ, this is the
leading order (see fig. 4.9 a)). Other processes such as heavy quark production with
three jets in the final state cannot be accounted for by a matrix element calculation
of first order in «g, because all the first order calculations only have two particles
in the final states (e.g. v¢ — qg). An example for a leading order contribution for
heavy quark production with three jets is v¢ — QQg, as depicted in figure 4.9 b).
Note that for heavy quark production without any additional requirement figure 4.9
b) is already next-to-leading order (NLO).

Every perturbative calculation includes approximations, and higher order contri-
butions represent corrections to these. An example is the transverse momentum k;
of a gluon splitting into a heavy quark pair (fig. 4.9 a)). In the collinear approach
k; = 0 in the LO diagram. In the NLO contribution, however, k; # 0 for this gluon,
because the collinear approach requires the incoming gluon to be on-shell. In figure
4.9 b) this is not the gluon that produces the heavy quarks. There the heavy quarks

origin from a gluon propagator which may obtain any k.
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4.3 Next-To-Leading Order Corrections

As described in the previous section, the k;-factorisation approach already accounts
for a finite transverse momentum of the gluon producing the heavy quark pair. A
correct and thorough treatment of kinematics already at leading order means that

NLO corrections potentially become smaller than in the collinear approach.
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5 Event Generators and Parton

Distributions

For collider experiments it is of crucial importance to model the final state of collisions
in order to correct for detector effects in the cross section determinations and to com-
pare measurements to theoretical predictions. One possibility is to simulate collisions
by using random numbers to choose a hard process from a wide array of available
matrix elements according to the kinematics of the event. In such a simulation var-
ious effects like QED radiation, parton evolution, fragmentation and hadronisation
are taken into account. Such simulations are referred to as Monte Carlo (MC) simu-
lations, Monte Carlo event generators or simply Monte Carlos.

Section 5.1 provides a general overview of how these physics phenomena are ac-
counted for in event generators. The treatment of parton evolution is of particular

interest here and will be described in more detail in section 5.2.2.

5.1 Simulation of scattering events

Quantum physics can only make probabilistic statements about underlying processes
of observable phenomena. This means that initial conditions of colliding particles do
not determine the outcome of a single collision, no matter how accurately they are
known. Particle collisions are therefore simulated by using random numbers to choose
one process for every single event. Figure 5.1 gives an overview of what is needed for
such an event simulation.

By generating a large number of simulated events one can then obtain statistical

predictions such as scattering cross sections for a wide array of measurable quantities.

5.1.1 Matrix Element Calculation

The first step is the calculation of the matrix element (ME) at a fixed order of the

strong coupling a,. The event generators used in this analysis perform this calculation
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Figure 5.1: Overview of the various stages of event generation in Monte Carlo gener-
ators.

to first order in as. This does include the quark parton model (QPM) process as well
as the BGF and QCD-Compton processes which in figure 4.3 were considered as real
corrections to the QPM.

In the event generator CASCADE only the BGF process is included, because CAs-
CADE is dedicated to study gluon evolution at small momentum fractions x where

the BGF process dominates the cross section.

5.1.2 Process Selection

For electron-proton collisions the matrix element is calculated at a certain photon
virtuality Q? and inelasticity y using Monte Carlo techniques for integration. Because
the cross section is calculated in this step for each process contributing to the matrix
element, the relative contribution of every process to the total cross section at that
particular Q? and y can be determined. Figure 5.2 illustrates schematically how a

process is then selected:
e the relative cross sections o; /0y, of the processes i are calculated
e the interval [0, 1] is divided according to the relative cross sections

e a random number 7 between 0 and 1 is generated
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OQPM gQCDC OBGF Otot

0 oQPM/Ttor 00D/ tot oBGF/ Trot 1

Random number r selecting the BGF process

Figure 5.2: Schematic example of process selection in MC simulations. The upper la-
bels represent the cross sections o; of the QPM, QCDC and BGF processes
at the generated Q* and y and span values between 0 and the total cross
section o at the generated Q* and y. The lower labels are the relative
contributions o; /o0 of the individual processes and span values from 0 to
1. A process is selected by generating a random number between 0 and 1
and examining afterwards in which interval it is found, indicated by the
arrow.

e the interval in which r lies is determined and the corresponding process ¢ is

selected for the event

5.1.3 Parton Showers

After the process selection higher order effects not accounted for in the matrix ele-
ments are approximated by parton showers (see fig. 5.1). In each event this is done
by integration of the evolution equation for the selected process, as described in more
detail in section 5.2.1.

One has to separate initial state and final state parton showers. Although intu-
itively IS parton showers take place before the hard scattering they are applied only
after the calculation of the matrix element because this allows a more efficient event
generation. This is called backward evolution because one starts at the highest pos-
sible energy scale and evolves the parton density backwards towards a lowest cut-off
energy scale. As explained in more detail below (section 5.2.1) initial state parton
radiation affects the four momentum of the hard parton which, in the matrix element,
is considered the incoming particle.

Final state parton showers are also calculated with evolution equations. Since the
phase space for this is not as limited they can be applied straight forward from the

outgoing partons of the matrix element until some condition has been reached.
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a)

Figure 5.3: Fxample of a breaking string in the Lund string model. Quarks are rep-
resented by the endpoints of strings while kinks represent gluons, as illus-
trated in b).

5.1.4 Fragmentation and Hadronisation

In order to produce hadrons out of the quarks one has to apply a mechanism mod-
eling hadronisation and fragmentation. In the non-perturbative phase space region
where parton showers cannot be applied anymore one has to rely on phenomenologi-
cal models for hadron production. The two most widely spread models are the Lund

string model[47] and the cluster fragmentation model[48, 49].

The Lund String Model

The Lund string model considers color connections between quarks as strings. In this
picture gluons carrying two color charges are represented by kinks on a string, and
the splitting of a gluon into two quarks means that a string breaks at a kink. This is
illustrated in figure 5.3 for the process v — qqqq, where the blue lines represent color
strings between two quarks. When created from the splitting of the photon the two
quarks are connected by a string (fig. 5.3 a)). When one of the quarks emits a gluon,
the string gets kinked (fig. 5.3 b)), and the breaking of the string at the kink means
the creation of a quark anti-quark pair from the splitting of the gluon (fig. 5.3 c)).

The Cluster Fragmentation Model

Another one also widely used in high energy physics is the cluster fragmentation
model. In this model clusters are formed out of color singlet quark anti-quark or
quark diquark pairs remaining after final state parton showers. If any gluons are left
they are forced to split into quark anti-quark pairs before clustering.

Clusters themselves cannot yet be considered hadrons but decay into two hadrons
each. Only on the low and high end of the cluster mass spectrum cluster decay has
to be treated differently.
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5.1 Simulation of scattering events

A cluster with too low a mass for decaying into two hadrons forms only one hadron
and the excess momentum is distributed equally onto neighboring clusters.

On the other hand a heavy cluster can have such a large mass that the two daughter
hadrons would have unnaturally high momenta. In this case it decays into daughter
clusters with additional light quark anti-quark pairs whose momenta are aligned with
the mother cluster’s. The mechanism of cluster-to-cluster decay is similar to the Lund
string fragmentation.

This model is used for example in the Monte Carlo generator HERWIG (Hadron

Emission Reaction With Interfering Gluons).

Fragmentation Functions

The mechanism with which hadronisation and fragmentation models are applied in
MC simulations is similar to parton density evolution, only that instead of parton
densities so called fragmentation functions Dj,/,(2) are evolved. These represent the
probability of a hadron h being produced from a quark ¢ with a fraction z of the
quark’s momentum. A parametrization that is widely used for heavy quarks is the

Peterson fragmentation function

N
z2-(1—-1/z—¢,(1— z))2

Dhyq(2) = : (5.1)
where N normalizes the function to 1 and ¢, represents the hardness of the fragmen-
tation process. In figure 5.4 the Peterson function is shown for the fragmentation of
a charm quark into a D* meson with €. = 0.05. This value has been used here in all

Monte Carlo generators.

5.1.5 Decays Of Unstable Particle

The results of the fragmentation and hadronisation phase are four momenta of hadrons
and leptons. Because some of the hadrons have lifetimes too short for the particle
to be detected decays of unstable hadrons have to be simulated as well. An example
are D* mesons, which are measured in this analysis by selecting a particular decay
channel!, D* — K.

IFor more details see chapter 3.
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Figure 5.4: Peterson fragmentation function for the production of D* mesons out of
charm quarks with €. = 0.05.

5.2 Parton Evolution in Event Generators

The two different approaches to parton evolution introduced in section 4.2 each have
their advantages and disadvantages when it comes to implementing them in event
generators. In section 5.2.1 I describe how the collinear approach is handled in MC
generators. A short review of a proposal how the general concept of parton densities
can be redefined for event generators is given in section 5.2.2, followed by a comment
on why unintegrated parton densities are more suited for the implementation in MCs

in section 5.2.3.

5.2.1 The Collinear Approach in Event Generators

In order to correctly account for parton showers one has to implement evolution
equations such as equations (4.6) and (4.7). This is usually done by rewriting these

equations in an integral form:

Dy
w AS(U)

f@m:ﬂ@mmwwm+/%/‘ . (5.2)

m| 8
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where the parton density f is to be evaluated at the scale u. The Sudakov form
factor A, is present again, giving probabilities of emission between the scales 1 and
1o. Especially this last feature is very useful for the implementation into a computer
program, because in combination with random numbers it offers a simple method to
decide — event by event, parton by parton — if a parton is emitted at a certain scale
or not.

As explained in section 4.2 the DGLAP equations do not give any information on
emitted partons. Since in a computer simulation the whole final state is of interest one
has to introduce such information by hand. This can lead to inconsistent treatment
of parton emissions and parton evolution. Note that the two are not necessarily the
same: parton evolution refers to the influence of parton emissions on parton distri-
bution functions under certain assumptions, e. g. collinearity, transverse momentum
ordering or on-shell partons.

An example for inconsistent treatment of parton evolution and parton emission in
event generators is the strong transverse momentum ordering of the collinear approach
(eq. (4.9)). Technically it is only possible to implement a weak ordering k! < k',
so that the strict approximation of the DGLAP formalism is never fully satisfied in

any Monte Carlo program based on it.

5.2.2 PDF4AMC

The inconsistencies mentioned above do not mean that leading order Monte Carlo
generators are inappropriate for comparing theoretical predictions to data. MC gen-
erators are valuable tools needed by experimentalists to account for, e.g., detector
effects.

It has thus been proposed|50] that rather than using PDFs which are numerically
determined from theory calculations based on completely different approaches, dedi-
cated parton densities should be determined for each individual MC generator. Event
generators do not strictly implement factorisation theorems like the DIS or the MS
scheme and therefore need a dedicated definition of MC PDFs as well as a dedicated
MC factorisation theorem.

The project PDF4MC in the Helmholtz Analysis Center at DESY is working on
implementations of parameter estimation tools for the determination of PDFs for the
Monte Carlo generators RAPGAP and PYTHIA. The general method is explained in
chapter 6.
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5.2.3 Unintegrated Parton Distributions in Monte Carlo

Generators

The evolution equation (4.13) is used for gluons in the MC generator CASCADE in its
integral form to calculate the probability of parton emission as described in section
5.2.1. In contrast to MCs based on the DGLAP formalism the CCFM equation allows
MC generators based on it to keep track of the longitudinal and transverse momenta
of both emitted and propagating gluons. MC generators based on DGLAP have to
add information about the transverse momentum each time a parton is emitted, while
this information is already present in the CCFM equation.

That the CCFM approach offers information on both the influence of parton emis-
sion on uPDFs and on the emitted partons themselves makes it more suited for an
implementation in MC event generators than the DGLAP approach. This is also the
reason why the CCFM approach does not necessitate parton densities dedicated to
MC generators. Since the full information of the uPDFs is used in the evolution and
no information is added, as is the case for collinear MCs, uPDFs are universal.

Unfortunately the calculation of matrix elements — especially at NLO — is far more
complicated than in the DGLAP approach, which is why there is only a limited
number of processes yet for which a matrix element has been derived. What is more
in the MC generator CASCADE only gluon evolution is implemented so far, neglecting
effects of valence and sea quark distributions. Especially at low momentum fractions
x this does not pose a problem, because the strongly gluon dominates this phase

space region.
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Densities

The basic formalism of parton density extraction and a description of the choice of
the parametrization of the initial parton densities is outlined in section 6.3.There
are, in principle, two methods to obtain parton densities from experimental data.
The analytic method described in section 6.1 is based on numerical solutions of ana-
lytic expressions, while the Monte Carlo method described in section 6.2 uses event
generators to obtain PDFs. First Results are presented in section 6.4.

The results are only a rough sketch of what is possible inside this framework. The
treatment of systematic errors, correlated and uncorrelated errors is not covered, nor
are uncertainties on the extracted parameters determined here.

The presentation here is based on the book “Deep Inelastic Scattering” by Devenish
and Cooper-Sarkar |[51], where a thorough description of the subject can be found in

chapter 6.

6.1 The Analytic Method

The more common method is to start with a set of initial parton densities f(z)
which is evolved by numerically solving the evolution equations (4.6) and (4.7). Cross
sections are then calculated which can be compared to measurements. The difference
between measurement and theoretical prediction is then minimized by iteratively
adjusting the parameters of the initial parton densities and in each step comparing
theory prediction and experimental data.

Collaborations like CTEQ[52] and MSTW|53] use this method with data from a
large set of experiments' in order to extract parton densities. The collaborations
H1 and ZEUS both determined sets of PDFs with this method using their own data

of the proton structure function Fy. Their results are widely used in predictions for

'In [51] pp. 146,147 a complete list of experiments contributing to global PDF fits is given.
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6 Determination of Parton Densities

proton collision experiments such as H1 and ZEUS, the CDF and DO collaborations at
Tevatron or the LHC collaborations CMS, ATLAS, ALICE and LHCb. Since analytic

expressions are solved by numerical expressions I use the term analytic method.

6.2 The Monte Carlo Method

The method which was used for this thesis follows a different path. The calcula-
tion of cross sections is not done by numerically solving analytical expressions, but
instead with Monte Carlo event generators. In this method a set of initial parton
densities is used in order to generate a certain number N.,; of events. After an event
selection is applied cross sections of certain processes are calculated and compared
to experimental data. Similar to the analytic method, the difference between theory
prediction and data is then minimized by iteratively adjusting the parameters of the
initial parton density and in each step generating N.,; events.

This method has the advantage of giving parton densities dedicated to a certain
MC generator. Instead of treating parton densities as universal quantities applicable
by every kind of theoretical prediction and event generator, this method incorporates
the PDF4MC concept mentioned in section 5.2.2.

In this analysis, however, unintegrated parton densities were obtained by the event
generator CASCADE. As mentioned in section 5.2.3 uPDFs are universal in the sense
that event generators based on the CCFM approach have no need for dedicated uPDFs
and vice versa: uPDFs determined by the Monte Carlo method using CASCADE are

universally applicable in numerical methods based on CCFM.

6.3 Outline of the Fitting Formalism

The fitting formalism is based on the y? method, where the value

22
(O.Zmeas _ O.fheo)Q
=) (6.1)

is calculated from the single differential cross sections determined in this analysis
(sec. 3.11). The index 7 runs over all 22 bins of the cross sections do/dQ?, do/dy,
do /dpP” and do/dnP" presented in section 3.11. The value x?is the sum of the squared

meas
3

differences of each measured value o and the corresponding theoretical prediction
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6.4 Unintegrated Gluon Densities from D* Mesons at low Q*

theo
i

x? the software package HZTOOL[13] (see section 1.5.2) is interface with CASCADE .

o in units of the statistical measurement uncertainties u;.2 In order to calculate

Since for a large number of data points y? as defined in equation (6.1) can become
large it is common to use the quantity x?/ndf to estimate the quality of a theoretical
description of experimental data, where ndf is short for number of degrees of freedom.
These are given by the number of data points less the number of free parameters.
Values of a good theoretical description lie around x?/ndf ~ 1. This is because
x?/ndf = 1 means that on average the theoretical prediction is one standard deviation
away from the data.

When determining parton densities with the Monte Carlo method from the single
differential D* meson production cross sections measured in this thesis, x? is cal-
culated from events generated by the Monte Carlo generator CASCADE which have
passed the event selection in table 3.3. As described above it is minimized by changing

the initial parton density in order to find a minimum x? value.

6.4 Unintegrated Gluon Densities Extracted from

D*Meson Production at low Q?

Collaborations working on PDF' extraction use the general form

s =5 () 0 ap (©2)

as parametrization of initial PDF's of flavor 7. Here NN, is a normalization factor which
is varied together with the exponents A; and B; to fit the data. The exponent A; of
the %—term is responsible for the low x behavior of the parton density while B; handles
the large = behavior by means of the (1 —z)-term. Some groups like CTEQ or MSTW
(formerly MRST) use an additional polynomial P;(z), usually a polynomial in = or

Vx, for example:

P(z) = (14 Ciz"™) (6.3)
P(z) = (14 Civx+ Dix). (6.4)

2Systematic uncertainties have to be treated differently are not included in the fits here.
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6 Determination of Parton Densities

CASCADE only treats gluon evolution, so that only the unintegrated gluon density

is determined here. The initial gluon density used here is given by

1 _k

Aol k) = N, (-) P B oy e s (6.5)

X

The parameters N, and A, are determined by generating N, = 1000000 events with
CASCADE, calculating x2, changing the parameters and repeating the procedure until
a minimum y? is found. The minimization is carried out with the software package
MINUIT using the simplex method. Both are explained in the MINUIT manual[54].
The parameter ky = 1 GeV parametrizes the width of the initial k; distribution and
is not varied in the fit. The k; distribution is therefore assumed to have a Gaussian
shape with a maximum at 0 GeV and a width of 1 GeV.

In reference [55] fits of unintegrated gluon densities to inclusive structure function
data were presented. The results of those fits were to serve as starting values for the
gluon density parameters here. That the results of reference [55| give sensible values
is tested in parameter scans, i.e. one parameter was changed while all other ones were

fixed. This gives a distribution of x? values as a function of the scanned parameter.

The parameter B, is responsible for the high x behavior and is not very sensitive
to the data used here. As figure 6.1 illustrates a minimum x? is achieved with a value
B, ~ 4, which corresponds nicely to the value used in reference |55]. Around this
value the x? distribution is more or less flat, which is why it has been fixed to B, = 4

in the extraction of the gluon density parameters.

A scan of the parameter C; showed a minimum at around C, ~ 1.3 (see fig. 6.1,
lower right plot). This contradicts the value found in [55], which was Cy = —9.2. First
fit results in this analysis, however, showed that C; < 0 could not yield a minimum
x> Therefore C, = 1.3 was used as starting parameter for the uPDF fits here.

Two points in the distribution of x* as a function of C, (lower right plot, fig.
6.1) strongly deviate from their surrounding values. These fluctuations stem from
integration problems in CASCADE which have been fixed in newer versions of the

generator.

For N, and A, the results from [55] correspond nicely to the minima shown in
figure 6.1 and were used as starting values in the fits of uPDFs here.

Table 6.1 lists all the starting and final values as well as the x? values for the
respective number of degrees of freedom (n.d.f.). The resulting uPDF is referred to
as fit A. The achieved x?/n.d.f. = 1.27 points to a good description of the data by

112



6.4 Unintegrated Gluon Densities from D* Mesons at low Q*

Ly .
4000 soof
- |
3000 . .
€, L . §, 400 .
2000 ° o’ L o®
L]
i * o 200} * ¢
1000~ N .
. .® - . e
) o ® ®® .00
i) ! LIPS ! ! 1 0 Il 1 Il 1
(] 0.2 0.4 0.6 0.8 1 0 0.05 0.1 0.15 0.2
N, Ag
300 120} .
100}~
200 .
L °
R . w80 . .
L] ° °
L] [ ]
100~ ° 6o ° .
. o
° L[] °® [} . L]
*,0e°%° 40 ".- e o
1 1 1 1 1 1 1 1 1 1
0 2 4 6 8 10 0 1 2 3 4 5
B C

Figure 6.1: Scans of the parameters Ny, Ay, B, and C, of the initial unintegrated
gluon density Ao(z4, ki), giving distributions of x* values as functions of
the four parameters.

the cross section predictions from CASCADE using fit A.

The initial gluon density of fit A is presented in figure 6.2 as a function of log z,
(upper plot) and log k7 (lower plot). Shown are gluon densities evolved according to
the CCFM equation at different constant &7 and z,, respectively.

Bacchetta et al. found that “the addition of [the parameter C,| substantially
improves the description of the data we consider.” ([55], p. 5) Since their result
Cy = —9.2 could not be brought in good agreement with the measurement presented
here, a third fit (fit B) was done where the parameter C, has been fixed to zero. The

Parameter | starting value | final value
N, 0.417 0.418
A, 0.125 0.121
B, 4.0 4.0
Cy 1.3 1.24

| XP/nd.f. | 51119 | 24.1/19 |

Table 6.1: Starting and final parameter values of the unintegrated gluon density fit A
as determined with CASCADE.
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uPDF N, A, | By | C, | x*/n.d.f.

fit A 0.418 | 0.121 | 4.0 | 1.24 1.21

fit B 0.454 | 0.089 | 4.0 | 0. 1.69
setAQ norm fit | 0.61 0. 4.0 0. 2.06

Table 6.2: Comparison of final parameter values of three fitted sets of uPDF as de-
termined with CASCADE.

purpose of this was to estimate the significance of the Cj - x term in equation 6.5. Tt
was found that a good description of the data is possible with C; = 0 resulting in
X2 /n.d.f. = 1.69, but at the same time giving a significantly different value for A, of
about 0.089. This seems to point to a strong correlation between the parameters A,
and C,.

Table 6.2 summarizes these results. The parameters N, A, B, and C, for all three
uPDF fits are shown together with the corresponding x?/n.d.f.. Errors given in the
tables are rough estimates by the simplex method used for the fits here.

In addition to the results of fit A and B a third fit has been performed which is
referred to as setA0 norm fit in table 6.2 and in the following. Set A0 is defined by

AsetAO(xg) = Ny(1 —zy)*.

In order to compare the resulting gluon density from fit A to the formerly used set
A0 only the normalization factor N, has been varied. The result was x?/n.d.f. =
43.3/21, which is considerably larger than for fit A and fit B.

Figure 6.3 shows a comparison of the differential cross sections from this measure-
ment (black dots) as presented in section 3.11, CASCADE using the uPDF from fit A
(solid red line) and CASCADE using set A0 norm fit. (dashed blue line). Although the
overall x? is better for fit A, these cross section predictions indicate that the inclusion
of the parameters A, and C, do not significantly improve the data presented in this
analysis. Also the shapes are not improved much, as can be seen from the ratio plots
below each cross section (see eq. 3.30). This is mainly due to the large systematic
uncertainties, which haven’t been included in the fits.

Figure 6.4 shows a comparison of the three uPDFs from the three fits (fit A: solid
line, fit B: coarsely dashed line and setA0 norm fit: finely dashed line). Shown is
the energy weighted gluon density xz.A(z,, ki, q) as a function of log x, for different
fixed values of the squared transverse momentum k? of the gluon, with k? = 1 GeV?
presented in black, k> = 50 GeV? in blue and k? = 100 GeV? in light blue. The
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6.4 Unintegrated Gluon Densities from D* Mesons at low Q*

evolution variable ¢ = 5+ Q? sets the upper scale of parton emission in the evolution.
The evolution with the transverse momentum is nicely visible.

What can also be seen is the difference in shape of the three uPDFs. The normal-
ization fitted set A0 (finely dashed line) does not include the 1/x term, and at lowest
k? this visible in the fact that at low x, the uPDF is flat in logz;,. Towards larger &}
its shapes more and more resembles that of the other uPDFs.

Fit B (coarsely dashed line) is more similar to fit A in shape, but with C, = 0 its
shape is less steep. It can be seen here that the parameter C; strongly influences the
low z, behavior of the uPDIs and seems to be correlated to the parameter A,, as

noted above.
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Figure 6.2: Unintegrated gluon densities as a function of logx, (upper plot) and log k?
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(lower plot) for different constant k? and x,, respectively. In the upper
(lower) plot the unintegrated gluon densities are presented at different k?

116 (logx,), with black representing the lowest k} (logx,) and the lightest
blue (red) representing the highest k? (logz,). The evolution variable
q = 5+ Q? sets the upper scale of parton emission in the evolution.
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Figure 6.3: Comparison of single Differential D* meson cross sections as measured in
this thesis and predictions from CASCADE using the extracted parameters
for the initial unintegrated gluon density. Shown are the cross sections

in Q2

s Yex, p?* and 77D*'

Data is shown as black dots, the solid red line

represents the prediction of CASCADE using the uPDF of fit A, and the
dashed blue line represents the prediction of CASCADE using the uPDF of
setAO norm fit. Statical uncertainties of the data are presented as inner
error bars, while the outer error bars represent the total uncertainties.
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Figure 6.4: Unintegrated gluon densities as a function of logx,. The solid lines are
results from fit A, the coarsely dashed lines results from fit B and the
finely dashed lines results from the setAO norm fit. Black lines represent
the respective unintegrated gluon densities at k? = 1 GeV?, blue lines at
k2 = 50GeV? and light blue lines at k? = 100GeV?. The evolution variable
q = 5+ Q? sets the upper scale of parton emission in the evolution.
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Summary and Conclusion

For the first time unintegrated gluon densities have been determined by measurements
of single differential D** meson production cross sections at H1 using the Monte Carlo
event generator CASCADE.

The total, single differential and double differential cross sections have been mea-
sured for the production of D** mesons at low photon virtualities with the H1 de-
tector. The full HERA II data sample with an integrated luminosity of 348 pb™! was
exploited to measure cross sections more differentiated than previous D** meson pro-
duction measurements at H1. This measurement complements the analyses of Jung
[1]and Brinkmann|2, 3|, who measured the production of D** mesons in the virtuality
regions 5 GeV? < Q? < 100 GeV? and 100 GeV? < Q% < 1000 GeV?, respectively.

The phase space of this measurement is restricted to a photon virtuality range of
2GeV? < Q2 < 5GeV?, an inelasticity range of 0.02 < y < 0.7, a pseudo rapidity range
of —1.5 < nP" < 1.5 and transverse momenta p”  above 1.5 GeV. Single differential
cross sections as functions of these four variables have been measured in these ranges,
except for do(etp — e*D**X)/dpP". In addition, double differential cross section
do?/dQ?*dy and do?/dpP” dnP” have been determined and compared to Monte Carlo
predictions.

All cross sections have been compared to predictions from the Monte Carlo event
generators RAPGAP and CASCADE. Both Monte Carlo predictions undershoot the
data but describe the shapes of all distributions rather well.

Unintegrated gluon densities have been fitted to the measured single differential
cross sections of D** production with the Monte Carlo method for PDF extraction.
This method uses Monte Carlo event generators to fit initial parton densities. It has
been applied here to fit unitegrated gluon densities to D** production cross sections
for the first time.

Three different parametrization have been used, all of which led to results which
showed a good agreement to the measured data. The individual initial gluon distri-

butions differ quite strongly, but the cross section prediction only slightly differ in
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shape. This insignificance of the presented measurement to the initial gluon density
parametrization stems from the restricted phase space of this measurement as well as
from the large systematic uncertainties of the data.

This analysis has been the first determination of unintegrated gluon densities from
charm production in electron-proton collisions. Further fits of unintegrated gluon
densities to the whole D** production phase space at H1 can enhance the sensitivity
and lead to more restricted set of unintegrated gluon densities. The inclusion of more
HERA data sets like the proton structure functions F, and F§° can be used to further

restrict the parameters of the unintegrated gluon densities.
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A Cross Section Tables

Q% range do(e*p — eED**X)/dQ*  ogar [H] Osys. |%]  Tror. |H)]
[GeV?] [nb/GeV?|

2-3 0.829 £5.3 +16.2 +17.1
3-4 0.603 +5.1 +10.7 +11.9
4-5 0.448 +4.7 +16.0 +16.7

Table A.1: Single differential cross section as a function of Q? with statistical (04t ),
systematic (04,5 ) and total (o4, ) uncertainties.

y range do(e*p — e D EX)/dy  ogar |%]  Osys. |%]  Tror. |%]

[ub]

25.2 28.2
0.02 - 0.05 3.93 +12.7 MY s
0.05 - 0.12 5.58 +5.0 +9.3  £105
0.12 - 0.22 4.31 +4.4 +8.4 +9.5
0.22 - 0.35 2.73 +6.1 +11.2  £12.7

19.1 20.4
0.35 - 0.5 1.27 +7.2 el o

9.5 16.3
0.5-0.7 0.86 +13.2 e o

Table A.2: Single differential cross section as a function of yes with statistical (0sar. ),
systematic (04,5 ) and total (o4, ) uncertainties.
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pP” range [GeV]| do(e*p — eED*EX)/dpP” g |%]  Osys. %] Oror. | %)
[nb/GeV]|
1.5-2.0 1.312 +9.6 +7.9 +12.5
2.0-25 0.839 +5.8 +7.8 +9.7
2.5-3.0 0.580 +6.2 +8.0 +10.1
3.0-3.5 0.354 +6.2 +8.3 +10.4
3.5-4.5 0.199 +5.0 +8.4 +9.8
4.5-6.0 0.062 +6.4 M o
6.0 - 10 0.011 +9.2 9.5 +13.3

Table A.3: Single differential cross section as a function of pP~ with statistical (0gay.),

systematic (04,5 ) and total (o4, ) uncertainties.

nP” range do(e*p — eED**X)/dnP" 0w %] osys. %] otor. | %]
[nb]
—-1.5- —0.9 0.499 +6.0 +9.3 +11.1
—-09- —-04 0.628 +5.5 +8.3 +10.0
—04-0 0.664 +6.4 +7.8 +10.0
0-04 0.634 +6.9 +7.9 +10.5
0.4-0.9 0.656 +6.7 +8.4 +10.7
09-1.5 0.629 +10.1 +10.8 +14.8

Table A.4: Single differential cross section as a function of nP" with statistical (0sas.),

systematic (04,5 ) and total (04, ) uncertainties.

122



Q? range y range do?(etp = eED**X)/dQ*dy g ||  Tsys. |%]  Otor. |%)]
[GeV?] [nb/GeV?]

2-3 0.02 - 0.09 1.861 +10.3  +18.1  +20.8
9.1 +10.6

0.09 - 0.16 1.606 +5.4 e 102

15.4 17.1

0.16 - 0.32 1.359 +7.6 t15.1 ir16.8

0.32-0.7 0.582 49.8 +29.3  +30.9

+11.6 +15.4

3-4 0.02 - 0.09 1.281 +10.2 LS i
0.09 - 0.16 1.739 +7.4 +78  +108

—+9.5 +12.1

0.16 - 0.32 1.028 +7.5 100 125

8.8 +18.4

0.32-0.7 0.480 +16.1 s o4

+17.6 +19.6

4-5 0.02 - 0.09 1.291 +8.5 C135 —15.9
8.6 +11.6

0.09 - 0.16 1.226 +7.9 el T1s

8.5 +11.6

0.16 - 0.32 0.792 +8.0 B 1o

+8.9 +15.7

0.32-0.7 0.342 +12.9 = (156

Table A.5: Double differential cross section as a function of Q* and y.x with statistical
(Ostat.), systematic (0gy,s.) and total (o4 ) uncertainties.

123
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pP” range

n?" range do?(etp — e D*:X) /dpP dn®"  Ogar.  Osys.  Otor.
|GeV] [nb/GeV] R v v
15-25 —15- —0.75 0.263 +8.3 2L BT
~0.75- 0 0.316 +10.4 +7.9 +13.1
0-0.75 0.334 +9.3 T 8
0.75 - 1.5 0.440 +15.4 +85 +17.6
25-45 —15- —0.75 0.160 +6.8  +9.8 +11.9
—0.75- 0 0.262 +5.2  £7.9 £9.4
0-0.75 0.209 +6.6 +8.0 +10.4
0.75 - 1.5 0.222 +10.2 5T LM
45-10  —15- —0.75 0.027 +122 8 00
~0.75- 0 0.050 £8.9 U T
0-0.75 0.054 +9.8 I8 Ao
0.75- 1.5 0.042 +138 oo a2

Table A.6: Double differential cross section as a function of pP" and n”" with statis-
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