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Zusammenfassung

Die inelastische Produktion vonD∗±-Mesonen in Elektron-Proton-Streuung bei kleinen

Photonvirtualitäten wurde mithilfe von Daten des H1-Experiments untersucht. Die

Ergebnisse dieser Messung wurden daraufhin verwendet, um mit dem Ereignisgener-

ator Cascade unintegrierte Gluondichten zu ermitteln.

Der Phasenraum der Messung ist gegeben durch Photonvirtualitäten im Bereich

von 2 GeV2 < Q2 < 5 GeV2 und Inelastizitäten innerhalb 0.02 < y < 0.7. Der

sichtbare Bereich der D∗±-Mesonen ist auf Pseudorapiditäten von |ηD∗| < 1.5 und

Transversalimpulse pD
∗

t > 1.5 GeV beschränkt und ergänzt Messungen von D∗±-

Mesonprodution bei höheren Virtualitäten. Die Daten wurden in den Jahren 2004 bis

2007 in der HERA-II-Phase vom H1-Detektor aufgenommen und ergeben eine integri-

erte Luminosität von 348pb−1. Diese gegenüber H1-Messungen in der HERA-I-Phase

deutlich erhöhte Statistik ermöglichte eine di�erenziertere Messung von einfach- und

doppeltdi�erentiellen Wirkungsquerschnitten der D∗±-Mesonproduktion.

Die einfach di�erentiellenWirkungsquerschnitte dieser Messungen wurden anschlieÿ-

end verwendet, um mittels Parameteranpassung unintegrierte, d.h. vom Transver-

salimpuls abhängige, Gluondichten zu ermitteln. Dafür wurden Streuereignisse in

Elektron-Protonkollisionen mit dem Monte Carlo-Programm Cascade simuliert und

die Abweichung der Simulationsvorhersagen im χ2-Verfahren minimiert. Drei veschied-

ene Parametrisierungen der unintegrierten Gluondichte wurden verwendet und die

Ergebnisse verglichen.

Abstract

A study of inclusive D∗± meson production in deep inelastic electron-proton scat-

tering at the H1 detector is presented for low photon virtualities. The results of

these measurements have been used to determine unitegrated gluon densities with

the Monte Carlo generator Cascade.

The phase space of the measurement is de�ned by photon virtualities inside 2 GeV2 <

Q2 < 5 GeV2, and inelasticities inside 0.02 < y < 0.7. The visible region of the pro-

duction of D∗± mesons is restricted to pseudo rapidities of |ηD∗| < 1.5 and transverse

momenta of pD
∗

t > 1.5 GeV and complements D∗± meson production measurements

at higher photon virtualities. Data taken in the years 2004-2007 during the HERA

II running period have been analyzed yielding an integrated luminosity of 348 pb−1.

This signi�cant increase in statistics compared to HERA I was exploited in the single
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and double di�erential cross sections which have been measured more di�erentiated

than in previous measurements at H1.

The single di�erential cross sections have been used in parameter �ts of uninte-

grated gluon densities. For this purpose scattering events in electron-proton collisions

were simulated with the Monte Carlo generator Cascade and the deviation of the

prediction of the simulation from the measured data was then minimized with the χ2

method. Three di�erent parametrizations of unintegrated gluon distributions have

been used and compared.
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Introduction

Scattering Experiments

Since the days of Ernest Rutherford scattering experiments have been e�ective tools

for probing the structure of matter at smallest distances. Rutherford shot α-particles

at a gold target foil and found that the gold foil consisted of very small scattering

centers of ∼ 10−14 m, which today are called atomic nuclei. But Rutherford's experi-

ment was more than just proof of the existence of atomic cores: it lay the foundation

for modern experiments probing the structure of matter.

The Composite Proton

Today, much more is known about the structure of matter. Atoms are not fundamen-

tal building blocks, they consist of an outer shell made up of electrons, and neutrons

and protons which form atomic nuclei. While electrons are still considered funda-

mental, neutrons and protons are composed of quarks or, more generally, partons.

Partons are not found separately in experiments, they are always part of a larger

compound like a neutron or proton.

At the accelerator HERA (Hadron Ring-Anlage) at the DESY facility at Hamburg,

the partonic structure of protons was studied. Electrons were collided with protons

at very high energies, and in such a collision an electron interacts with a quark in the

proton via the electromagnetic force. At the energy of the HERA collisions hadrons

are formed in the collisions. These hadrons as well as the scattered electron were

detected by the H1 detector.

D∗ Mesons in Electron-Proton Collisions

The production of one such particle, the D∗ meson, was studied in this thesis. It

consists of a charm quark, a heavy quark which only manifests itself in highly energetic
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Introduction

protons. Charm quarks, and therefore D∗ mesons, are dynamically created in the

strong interaction which binds the quarks together. D∗ mesons are thus directly

sensitive to the strong interaction in the proton.

D∗ meson production has been studied before both in the HERA I and in the

HERA II running periods, but either not with the same statistics (HERA I) or in

a di�erent region of phase space (HERA II, see [1] and [2, 3]). Here, D∗ meson

production was studied in the low Q2 region, which is more sensitive to low parton

momentum fractions.

Unintegrated Gluon Densities

The interaction between quarks in the proton is described by the theory of Quantum

Chromodynamics (QCD). As a quantum �eld theory it states that the interaction

of quarks is mediated by a boson. This boson is called gluon, because it �glues� the

quarks together. It is also considered a parton, because it too is found only inside

hadron.

In theoretical predictions partons appear in the form of parton distribution func-

tions, or parton densities. These are momentum distribution functions which con-

tribute to proton scattering cross sections. In this thesis unintegrated parton densities

are determined. They introduce a dependence of the parton densities on the parton's

transverse momentum component, which is missing in the more common framework

of collinear parton densities. This makes unintegrated parton densities more suited

for the use in computer programs simulating high energy scattering events, because

the kinematics in particle collisions can be treated more consistently.

Exploiting the direct sensitivity of D∗ meson production to the gluon content of

the proton, unintegrated gluon densities are determined by �ts to the cross sections

measured in this analysis.

The Structure Of This Thesis

The experimental data used here was collected in the collider experiment H1 at the

particle accelerator HERA. There electrons and protons were collided from 1992 until

2007 to study the partonic structure of the proton. The measurement of theD∗ meson

production cross section at low photon virtualities is the topic of this thesis. From

these cross sections unintegrated gluon densities are determined.

2



The �rst chapter explains the ideas behind modern experiments probing the struc-

ture of protons and the basic models describing the outcomes. After an overview of

the H1 detector in chapter 2, the measurement of D∗ meson production cross sections

is presented in detail in chapter 3.

Chapters 4 and 5 deal with theoretical aspects of the parton model and how these

are incorporated in computer programs simulating the interaction of electrons and

protons. These chapters also introduce the formalism of unintegrated parton densi-

ties. In chapter 6 I describe how unintegrated gluon densities can be obtained by �ts

to exclusive �nal state measurements. I present �rst results and discuss the di�erence

to former methods.

3
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1 Deep Inelastic Scattering

In this chapter I brie�y introduce the ideas behind deep inelastic scattering and the

parton model and its application to current particle collider experiments. Only the

most basic concepts are discussed here. A more detailed presentation on the subject

will be given in chapters 4 and 5.

The �rst section 1.1 deals with the kinematics of lepton-nucleon scattering. Section

1.2 introduces the notion of gluons as the carriers of the strong nuclear force and

explains shortly how they in�uence the proton structure. Also the idea of parton

distribution functions (PDFs) or parton densities is presented.

The role of charm quarks in electron-proton scattering is discussed in section 1.3,

before the last section of this chapter gives a short overview of the Monte Carlo

simulations used in this analysis.

1.1 Kinematics of the Parton Model

In order to study the properties of the strong interaction many experiments exist

where a proton target is probed by a lepton, be it electron or positron, muon or

neutrino. One possibility is to use a �xed proton target, e. g. in the form of liquid

Proton

Electron

Quark

Figure 1.1: The basic idea behind deep inelastic scattering: An electron collides with
a proton head on and interacts with a quark inside the proton via the
electroweak interaction, which is mediated by a virtual photon, Z or W
boson (sketched by the wavy line).

5



1 Deep Inelastic Scattering

s

q, y, Q2

pe

pe′

pp

x · pp

Figure 1.2: Diagram showing the basic kinematic variables in ep-scattering.

hydrogen. This was done by various experiments at the Stanford Linear Accelerator

Center (SLAC), DESY and others.

To reach higher center-of-mass energies it is bene�cial not to collide a probe on

a �xed target but to use two accelerated particle beams and collide them head-on.

This is because at high energies the energy in the center-of-mass frame is higher for

head-on collider experiments as for �xed target experiments.

At the HERA accelerator an electron1 beam is colliding with a highly energetic

proton beam2. The physical picture of such an electron-proton collision can be viewed

in �gure 1.1: the electron interacts via the electroweak interaction, i. e. by exchange

of either a photon, a Z0 boson or a W± boson, with a constituent of the proton,

called quark or parton. This assumption, that the proton consists of partons moving

in the same direction, is called the quark parton model (QPM).

The case of W± exchange is called charged current, because the W bosons carry

electric charge, whereas the exchange of neutrally charged Z0 and γ is referred to as

neutral current. In this analysis only neutral current events are examined.

The kinematic variables needed for the description of the system are illustrated in

�gure 1.2: an electron with four-momentum pe interacts with a quark of momentum

xq · pp in a proton of four momentum pp, where xq is the momentum fraction carried

by the quark. The scattered electron's four-momentum is denoted pe′ , while q is the

four-momentum of the virtual photon.

From these variables a set of four Lorentz invariants can be de�ned that, neglecting

mass terms, over-determine the state of the system [4]:

1Throughout this thesis the term electron refers to electrons as well as positrons, as HERA collided
both lepton types with protons. Whenever the di�erence is important it is emphasized.

2HERA and the H1 experiment are introduced in more detail in chapters 2.1 and 2, respectively.
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1.2 Quarks and Gluons in the Proton

s = (pe + pp)
2 (1.1)

Q2 = −q2 = −(pe − pe′)2 (1.2)

xBj =
Q2

2pp · q
(1.3)

yBj =
pp · q
pp · pe

(1.4)

These variables are related via

Q2 = xBj · yBj · s (1.5)

The Bjorken variable xBj can be identi�ed with the quark's momentum fraction,

xq ≡ xBj, while in the proton rest frame (prf ) the inelasticity yBj can be interpreted

as the virtual photon's fraction of the electron energy, yBj = Eprf
γ /Eprf

e . The squared

center-of-mass energy (see eq. (1.5)) of the electron-proton system is given by s.

The virtuality of the photon, Q2, is de�ned as the squared four-momentum transfer

between the electron and the proton. In deep inelastic scattering it gains a special

status as it can set the energy scale for the hard interaction of the virtual photon and

the scattered parton.

The exchange of Z0 bosons dominates at virtualities approaching the Z0 mass

peak, m2
Z ' 8100 GeV2, while photon exchange governs the low Q2 region. Later

on the measurement of D∗ meson cross section will be presented for low virtualities

2 < Q2 < 5 GeV2, so that Z0 exchange does not contribute. Therefore only photon

exchange is considered in the following considerations.

1.2 Quarks and Gluons in the Proton

The quark parton model as shown in �gure 1.2 was invented to explain the �rst

measurements [5, 6] of the proton structure function. What these �rst measurements

were hiding, however, was a dependency on the energy scale at which the interaction

with the quarks takes place. This scaling violation were the �rst evidence that the

QPM alone could not explain the structure of the proton.

7



1 Deep Inelastic Scattering

1.2.1 The Proton Structure Function

The structure function of the proton enters the scattering cross section in a similar

way as form factors known, for example, from Rutherford scattering. The scattering

cross section of electron-proton reads:

d2σ

dxdQ2
=

2πα2
em

xQ4
(1 + (1− y)2)F2(x)) . (1.6)

In addition to the kinematic variables Q2 and x as de�ned in the previous section the

electromagnetic coupling constant αem (also known as the �ne structure constant)

also enters the calculation.

The proton structure function can now losely be interpreted as the probability

that the probe scatters o� an arbitrary quark carrying the fraction x of the proton

momentum. It is given by

F2(x) =
∑
i

eixfi(x) ,

where the index i runs over all quark �avors in the proton and ei is the charge of quark

i in units of the elementary charge. fi is the parton distribution function, meaning

the distribution of the momentum fraction x of a quark of �avor i. Note the subtle

di�erence to the interpretation of F2: parton distribution function state how probable

it is to �nd a certain quark �avor, structure functions are a measure for how likely it

is that a scattering o� a quark in general occurs.

In the experimental data from the HERA accelerator shown in �gure 1.3 where

the structure function F2 is shown as a function of Q2 for various �xed momentum

fractions x a Q2 dependence is visible especially for x . 0.13. This scaling violation

cannot be explained by the naive quark parton model, which approximates the proton

to consist of three independent quarks. One needs to introduce the strong interaction

into this model in order to obtain Q2 dependent parton densities fi(x,Q
2) leading to

a Q2 dependent structure function F2(x,Q2). How this is done is outlined in more

detail in chapter 4.

1.2.2 The Strong Interaction

The origin of scaling violations lies in the interaction of the quarks. These are not

independent particles, but rather constantly interacting via the strong force. Like

the electromagnetic interaction, the strong interaction or Quantum Chromodynamics

8



1.2 Quarks and Gluons in the Proton
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the dependence on Q2 at �xed x arising from the contribution of gluons to
the scattering cross section, can be observed.

9



1 Deep Inelastic Scattering

e−

e+ q̄

q

g

Figure 1.4: One the left: Three jet event at the TASSO experiment at DESY.[7] On
the right: the feynman diagram explaining three jet production production
in electron-positron scattering with gluon radiation.

(QCD) is mediated via an exchange boson called gluon.

The �rst direct experimental proof of the existence of gluons was obtained by the

four collaborations TASSO, PLUTO, JADE and MARK J in 1979 at the PETRA

facility, an e+e− storage ring at DESY in Hamburg. Colliding electrons and positrons

annihilated each other, forming two quarks, one of which radiated a gluon (see �g.

1.4). All four collaborations presented their evidence on the same conference in

August 1979. [7]

In contrast to the electromagnetic interaction, the strong interaction gets stronger

the farther apart two interacting particles are and weaker if they are closer together.

This leads to asymptotic freedom, meaning that two quarks that are very close behave

approximately like free particles.

Like the quark, the gluon is a constituent of the proton: a parton. It is therefore

possible that an electron scattering o� a proton interacts indirectly with a gluon in

the proton. Such a process is called boson gluon fusion (BGF) and is illustrated in

�gure 1.5: an electron interacts via photon exchange with the proton; a gluon g in

the proton splits up into a quark anti-quark pair, one of which couples to the virtual

photon (�nd a more detailed discussion of the in�uence of gluons on parton densities

in chapter 4). A boson - the virtual photon - "fuses" with the gluon to form a quark

anti-quark pair.

Quarks created in such a process are called sea quarks. The so called valence quarks

are the quarks that determine if a baryon behaves like, for example, a proton or a

neutron: protons consist of two up quarks and a down quark, neutrons of two down

and one up quark.
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Figure 1.5: Boson Gluon Fusion in electron-proton scattering.

1.3 D∗± Meson Production in Electron-Proton

Collisions

The standard model of particle physics classi�es particles into two general categories:

bosons and fermions. Bosons are particles with integer spin, fermions with half integer

spin. Exchange particles mediating a certain interaction like the electroweak or the

strong interaction are always bosons, particles composing matter are fermions.3

Fermions can be further categorized into quarks and leptons. The following table

lists all the know fermions, the associated symbol and their electric charge in units

of the elementary charge e (anti-fermions have the same charge with opposite sign).

Fermions 1st family 2nd family 3rd family Charge [e]

Leptons e neutrino νe µ neutrino νµ τ neutrino ντ 0

electron e muon µ tau τ −1

Quarks up u charm c top t +2/3

down d strange s beauty4 b −1/3

The di�erent types of quarks are called �avors. The strong interaction does not

di�erentiate between the �avors. While the coupling of a photon to a quark depends

on the quarks charge all the quark �avors couple equally strong to gluons. The weak

interaction is �avor sensitive as well, in that processes including a W boson allow

for a change of �avor. That means, for example, that while the process u → Z0c is

forbidden the process u→ W+s is allowed.

Another di�erence between the quark �avors is their mass. Quark masses span a

range of nearly 5 orders of magnitude, from as few as 2.55 MeV for the up quark up

3This is only a loose concept, since gluons, for example, are also partons and therefore part of the
composite proton.
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Figure 1.6: Dominant charm quark production mechanism in electron-proton scatter-
ing.

to 171 GeV for the top quark.[8]

The up, down and strange quarks are usually termed light quarks, while heavy

quarks are the charm, beauty and top quark. This is because the masses of the light

quarks are below the typical energy scale of QCD, mq < ΛQCD ≈ 200MeV. Processes

below this scale are not calculable in perturbation theory. The production of light

sea quarks, for example, can be calculated only if the resulting jets or particles have

a high enough energy.

1.3.1 Charm Quark Production at HERA

Because of the high center-of-mass energy of the HERA accelerator of
√
s = 318 GeV,

sea quark pairs with masses of up to
√
s/2 = 159 GeV can be produced in BGF at

the H1 experiment. The charm quark has a mass of mc ≈ 1.3 GeV[8] so that charm

quarks can be found among the sea quarks created in BGF processes.

Figure 1.6 shows a diagram for the production of charm quarks in electron-proton

scattering. Since the gluon is a parton, one can determine its corresponding parton

distribution function, the gluon density g. It is obvious from the �gure that charm

production processes are directly sensitive to the gluon density, because BGF is the

dominant production mechanism for charm quarks in electron-proton collisions. The

charm's high mass ensures the applicability of perturbation theory in such a process.

1.3.2 D∗± Mesons as Charm Quark Tags

Together with light quarks charm quarks form mesons called D mesons. The D∗±

meson studied here is an excited D± state consisting of a charm (or anti-charm

quark) and an anti-down (or down quark) with a very short lifetime. Its decay

12
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products, though, are long lived enough to leave tracks in the H1 detector. Such

tracks were analyzed for measuring D∗± meson production cross section in electron-

proton collisions, quantities directly sensitive to momentum distributions of gluons

in the proton. In chapter 3 I describe in detail how cross sections were determined

using data recorded by the H1 detector.

1.4 Unintegrated Gluon Densities

The quark and gluon content of the proton is not deducible from �rst principles.

Rather, as described above (sec. 1.2.1), the momentum distributions of quarks and

gluons are parametrized in parton distribution functions or parton densities. These

contain information on how probable it is to �nd a parton, quark and gluon alike, in

the proton at a certain energy scale with a certain longitudinal momentum fraction

x of the proton momentum.

These PDFs only depend on the longitudinal momentum fraction, but there are

theoretical models where the PDFs also incorporate the transverse momentum of

the partons. These PDFs are called unintegrated PDFs (uPDFs). In this thesis the

experimental data of D∗ meson production with the H1 detector is compared to

predictions from the CCFM[9] formalism incorporating the concept of unintegrated

gluon densities. Section 4.2.2 gives a more detailed presentation on the theoretical

background of unintegrated gluon densities.

1.5 Monte Carlo Event Generators

For the estimation of systematic uncertainties, detector e�ects and physics phenom-

ena that cannot be measured by the H1 detector (see sec. 3.7), it is vital to use

simulations of the physics happening in ep-collisions. These are based on the the-

ory of strong interactions, or Quantum Chromodynamics (QCD). Perturbative QCD

(pQCD) calculations can be evaluated in such simulations to obtain statistical predic-

tions for the outcome of a desired measurement, for example D∗ meson production.

Because these simulations generate collision events, and because this is implemented

with Monte Carlo methods, they are often referred to as Monte Carlo event genera-

tors.5

5For a detailed presentation on how pQCD is implemented in event generators see chapter 5.
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1.5.1 The Three Stages Of Simulation

For comparison to experimental data one classi�es simulated events into three di�er-

ent stages of simulation:

� generator or hadron level events: at this stage simulated events are not di-

rectly comparable to experimental data because the simulations generate event

topologies, i.e. four-momenta of particles produced in a collision, before the

produced particles interact with the detector.

� detector level events: after generator level information has been subjected to a

detector simulation the resulting event information is similar to real measure-

ments: hits in drift chambers, energy deposits in calorimeters etc.

� reconstruction level events: measurements can be reproduced from detector

level events by applying the complete reconstruction cycle of the experimental

data: forming tracks out of hits in tracking chambers, energy clusters out of

energy deposits in calorimeter cells, particle candidates out of tracks and energy

clusters, jets out of particles.

The information of these di�erent stages of simulation can be used, for example, to

estimate detector e�ects by comparison of the reconstruction level events with the

generator level events (section 3.6), or to �nd the contribution of physics which the

detector alone cannot distinguish (section 3.7).

1.5.2 Event Generators In Use

In this analysis the event generators Pythia[10], Rapgap[11] and Cascade [12]

have been used.

Pythia is a Monte Carlo Generator simulating electron-proton and proton-proton

collisions. It used the Lund string model to implement hadronisation e�ects (see sec.

5.1.4).

Rapgap is an event generator based on the DGLAP formalism (see section 4.2.1).

It is widely used for estimations of detector e�ects in DIS and has been used here for

detector e�ciency determination.

Cascade is a Monte Carlo generator based on the CCFM formalism (see section

4.2.2) which is specialized for sea quark production in BGF events and a correct

treatment of the gluon kinematics.
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For an easy comparison of experimental data to predictions from event generators

the software package HzTool[13] was very helpful. It has been used here to compare

unintegrated gluon densities to the data as well as to extract new unintegrated gluon

densities (see chapter 6).

HzTool provides the user with a set of function to access certain information

generated by a Monte Carlo program on run time, e.g. four momenta of particles or

event kinematics. With these functions the user can write a subroutine which analyses

generated events according to certain selection criteria and writes out histograms. For

this analysis a subroutine has been written which writes out histograms according to

the event and D∗ meson selection used in the measurement (see table 3.3).

Both Rapgap and Cascade access the hadronisation functions of Pythia.
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2 The H1 Experiment

For measuring the outcome of electron proton collisions at the HERA collider, the H1

Collaboration build a multi-purpose detector consisting of calorimetry and tracking

systems designed for precise measurements of the inclusive proton structure function

as well as detailed �nal state measurements, for example jet cross sections, charged

particle multiplicities or cross section measurements of charm meson production.

The chapter starts with an introduction of the HERA accelerator and the basic

concepts and ideas behind the experiment in sections 2.1 and 2.2. An overview of the

calorimetry in both the central and backward region of the detector is given in section

2.3. The tracking system as explained in section 2.4 forms the foundation of this

analysis as it allows for a precise measurement of the decay particles of D∗ mesons.

Section 3.2.1 addresses the reconstruction of kinematic variables, followed by the

calibration check of the electron energy measurement with the backward calorimeter

in section 3.2.3. This is especially important here because the measurement takes

place at the lowest possible Q2 region at H1 during the HERA II phase. The H1

trigger system is outlined in section 2.5. The chapter closes with a description of the

detector simulation and the reconstruction software in section 2.6.

2.1 The Particle Accelerator HERA

The particle accelerator HERA was the only electron-proton collider of its time.

Before HERA, the proton structure was studied only in �xed target collisions. With

its larger center-of-mass energy of
√
s = 318 GeV high precision measurements of the

proton structure function F2 as well as various other analyses were possible. Therefore

the experimental data of the HERA experiments H1 and ZEUS are essential in the

determination of parton densities.

In �gure 2.1 the storage ring is shown, along with all four experiments and the

pre-accelerators DESY and PETRA. These accelerated either electrons or positrons

up to an injection energy of 12 GeV, while the protons where injected into HERA at
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2 The H1 Experiment

Figure 2.1: The HERA storage ring and its experiments. The pre-accelerators PE-
TRA and DESY can also be seen.

40 GeV.

HERA was a storage ring located in Hamburg with a circumference of 6.3 km. After

the luminosity upgrade in the years 2000 - 2003 the HERA II phase began. In this

time, from 2004 - 2007, protons were accelerated to energies of 920 GeV and electrons

to energies of 27.5 GeV, designed to reach luminosities of L = 7.4 ·1031 cm−2s−1. Four

experiments were using the electron and proton beams for their studies: the HERMES

collaboration collided polarized electrons accelerated by HERA with �xed gas targets,

thereby studying the spin structure of the proton; the HERA-B collaboration studied

CP-violations in the production of heavy mesons by colliding the proton beam with

wire targets of di�erent densities; at the experiments H1 and ZEUS the electron and

proton beams collided head-on to study the structure of the proton.

The colliding particles were accelerated in bunches. The electrons bunches consisted

of ∼ 1011 particles and moved clockwise around HERA, the proton bunches of ∼ 1012

particles moved counterclockwise. The bunches collided at a frequency of ∼ 10 MHz

leaving a time span of 96 ns in between collisions.

During the whole operation time of HERA from 1992 to 2007, the H1 experiment

was able to gather an integrated luminosity of 500 pb−1.
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Figure 2.2: Integrated Luminosity taken by the H1 detector over time. The luminosi-
ties gathered before the upgrade (HERA-1) and after the upgrade (HERA-
2) are shown separately. The periods when HERA was operated with elec-
trons are highlighted in blue, the red curves show the periods with positrons.
The green curve at the end of HERA operation shows the luminosity gath-
ered during the low proton energy runs.

Luminosity Upgrade

In 2000 HERA was upgraded with new focusing magnets to reach higher luminosities.

The focussing magnets were installed inside the H1 detector, so that part of the

calorimeter measuring the energy of the scattered electron or positron had to be

removed (see sec. 2.3.2 for more details).

Figure 2.2 shows the integrated luminosity gathered by the H1 detector during the

entire time of operations. A comparison of the curves labeled HERA-1 and HERA-2

shows that the HERA upgrade successfully increased the luminosity.

Run Periods

HERA was operating with both electrons and positrons. For purposes of trigger

e�ciencies and calibration testing the HERA II phase is divided in this analysis into
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2 The H1 Experiment

four running periods depending on the accelerated particles:

� 2004 e+: during most of the year 2004 positrons where accelerated

� 2004/05 e−: in the end of 2004 HERA switched to electrons

� 2006 e−: until the middle of 2006 HERA was operated with positron

� 2006/07 e+: from mid 2006 to 2007 positrons where used

From march 2007 to its shutdown in July 2007 HERA was operated with lower proton

energies of 460 GeV and 575 GeV.

2.2 The Detector

The detector is introduced in much detail in [14]. For the purpose of measuring

momenta a right-handed coordinate system is de�ned. The origin is de�ned by the

nominal interaction point, with the z-axis pointing in the proton direction and the

y-axis pointing upwards. Cylindrical coordinates are used with the azimuthal and

polar angles φ and θ, respectively.

Figure 2.3 shows a schematic side view of the H1 detector showing its most basic

ingredients. The inner part consists of the tracking system, which is enclosed by the

backward calorimeter SpaCal at the back and the liquid Argon calorimeter in the

central region and in the front.

A superconducting coil surrounds the calorimeters and creates a homogeneous mag-

netic �eld of 1.15 T so that momenta can be measured. The central muon detector

CMD surrounds the whole detector and also serves as a return yoke for the magnetic

�eld. Outside this the forward muon detector FMD detects muon with small polar

angles, θµ.

2.3 Calorimetry at H1

The H1 detector had two dedicated systems for energy measurements: the Liquid

Argon calorimeter (LAr) [15] for the forward and central region and the Spaghetti

Calorimeter (SpaCal) [16] for the backward region. Because of the asymmetric ener-

gies of the colliding particles jets were found in the central and forward region with

energy deposits in the liquid argon calorimeter, while for Q2 < 100 GeV2 the electron

scattered under a large polar angle θe′ and could be detected in the SpaCal.
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Figure 2.3: Side view of the H1 detector and its main components: the Central Muon
Detector (CMD), the superconducting coil creating the uniform magnetic
�eld, the Liquid Argon calorimeter (LAr), the tracking chambers around
the interaction point and the Spaghetti Calorimeter (SpaCal) used for mea-
suring the scattered electron properties at low Q2. Protons move in the
positive (coming in from the right in the picture), electrons in the negative
z-direction.

2.3.1 The Liquid Argon Calorimeter

The LAr consists of an inner part for measuring energies of electromagnetically inter-

acting particle and an outer part for measuring energies of hadrons. It is a sampling

calorimeter which utilizes two di�erent materials for creating the particle shower (ab-

sorber material) and measuring the energy (active material). In both parts liquid

argon is used as active material. Absorber materials are lead in the electromagnetic

and steel in the hadronic section. The liquid argon is cooled by a helium driven

cryostat in which the calorimeter is embedded. The circulating helium gas is cooled

by an external liquid nitrogen heat exchanger.

Plates of the absorber materials are oriented in a way that the inclination angle

of particles originating at the interaction point is always larger than 45◦. The space

between the plates is �lled with liquid argon, giving the calorimeter the alternating

structure of active and absorber material common to all sampling calorimeters. The

material in the calorimeter amounts to 20 - 30 radiation lengths in the electromagnetic

section and 5 - 8 interaction lengths in the hadronic section.

Test beam measurements have shown that the energy resolution of the LAr is
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2 The H1 Experiment

σem(E)/E ≈ 12%/
√
E/GeV ⊕ 1% in the electromagnetic part and σhad(E)/E ≈

50%/
√
E/GeV ⊕ 2% .

In this analysis the LAr calorimeter was used for the measurement of the inelasticity

yeΣ, which was reconstructed with the eΣ-method as described in section 3.2.1.

2.3.2 The Backward Calorimeter SpaCal

The Spaghetti Calorimeter was mainly used for measuring the energy of the scat-

tered electron. At scattering angles where there is no information from the tracking

chambers on the scattered electron, the SpaCal also allowed for a reconstruction of

θe′ .

The energy of the scattered electron was measured in the electromagnetic section

of the backward spaghetti calorimeter SpaCal. Using lead as absorber material and

scintillating �bers as active material it provided an energy resolution of σE/E ≈
7%
√
E/GeV ⊕ 1% and an angular resolution of ∼ 2 mrad for the scattered electron.

The SpaCal was located in the backward region of the detector at z = −160 cm,

originally covering the angular region 153° < θ < 177.5°. After the luminosity upgrade

of HERA parts of the inner cells of the calorimeter had to be removed to make space

for a new focusing magnet. This rebuilding led to a reduced angular coverage of

153° < θ < 174.5°.

To measure energies of both leptons and photons on one side and hadrons on

the other the SpaCal also featured a hadronic section which was located behind the

electromagnetic one. Both sections consisted of cells of scintillating �bers embedded

in lead sheets. The scintillation light was transported along the �bers and read-out

by photo multipliers positioned at the end of each section.

Since electromagnetic and hadronic showers behave very di�erently the design of

the cells of each section di�ers. The following table lists some of the design param-

eters for the hadronic and the electromagnetic sections which take into account the

di�erences in the shower behavior:

Electromagnetic section Hadronic section

Fiber diameter 0.5 mm 1 mm

Lead-to-�ber ratio 2.3 : 1 3.4 : 1

Cell size 40.5× 40.5mm2 119.3× 119.0mm 2

Depth 27.5χ0 1.02λint
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Figure 2.4: Changes to the inner part of the SpaCal after the luminosity upgrade.

The SpaCal replaced the Backward Electron Magnetic Calorimeter (BEMC) which

was operated as the backward calorimeter of H1 until 1995.[17] Its size was therefore

constrained by the already existing detector. For the electromagnetic section this

is not a severe constraint, since a depth of ∼ 28 radiation lengths (χ0) is mostly

enough to fully contain the electromagnetic shower. On the other hand the hadronic

section is only ∼ 1 interaction length (λint) deep, so that hadronic showers can partly

escape detection. In this thesis the hadronic part was only used for identi�cation of

the electron by demanding that the energy deposited there was less than 15% of the

energy of the scattered electron.

The Inner Part of SpaCal

Figure 2.4 shows the changes applied to the inner part of the SpaCal after HERA's

luminosity upgrade. The most inner cells, numbers 0 through 4, have been removed

and the surrounding cells cut. Note that with respect to the beam axis (the cross in

�g. 2.4) the cut was asymmetric.

2.4 The Central Tracking Devices

Figure 2.5 shows a cross section of the Central Tracking Devices (CTD) of the H1

detector in the rφ-plane. The CTD covered an angular range of approximately 15◦ <

θtrack < 165◦. Starting with the devices closest to the beam pipe moving, the CTD
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2 The H1 Experiment

Figure 2.5: Cross Section of the central tracking chambers in the x-y-plane.

consisted of

� the central, forward and backward silicon trackers (CST, FST and BST) sur-

rounded the interaction point at z = 0 and were installed close to the beam

pipe to improve tracking and determination of the interaction vertex,

� the Central Inner Proportional Chamber (CIP) surrounded the silicon trackers

and was used mainly for triggering purposes,

� the �rst of two chambers to measure the z-component of track momenta, the

Central Inner Z-Chamber (CIZ) sat at the outside of the CIP,

� the Central Jet Chamber 1 (CJC1) was the inner of two drift chambers mea-

suring the transverse momentum of tracks,

� the Central Outer Proportional Chamber (COP),

� the Central Outer Z-Chamber (COZ)

� and the CJC2.
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Figure 2.6: Tracks are aligned by varying the ionization time t0. The hits on opposite
sides of the wires do not align when a wrong t0 is used.

2.4.1 The Jet Chambers

The Central Jet Chambers were drift chambers composed of 30 radial cells for the

CJC1 and 60 radial cells for the CJC2, which had a larger radius. The cells were

tilted against the chamber radius by 30◦ so that tracks from the interaction vertex

have a high probability of crossing at least one cell boundary. In each cell in the

CJC1 24 signal wires were installed parallel to the z-axis, whereas the cells in the

CJC2 consist of 36 wires each.

The cells were �lled with a gas. The gas was ionized when charged particles moved

through the chambers. A mainly uniform electric �eld between the anode signal wires

and the cathode wires caused the ionization electrons to move towards the signal wires

perpendicular to the wire plane. The collisions of the ionization electrons with the

gas molecules caused secondary ionization, so that a whole ionization avalanche was

created. Upon reaching the signal wires this caused a charge excess in a wire, which

could be measured at both of its ends.

The charge excess at the ends of a wire di�er depending on where the wire was

struck. In principle it was possible to measure the z-component of the track momen-

tum with the jet chambers by exploiting this charge di�erence, but the resolution of

σz = 22 mm was not good enough for the precision needed for most measurements

carried out with the H1 detector. The z-chambers o�ered a much higher precision

for the task.

Drift time Measurement

Measuring the exact position of a hit (the position where the ionization occurred and,

thus, where the particle passed through the detector) is done by measuring the drift

time of the electrons. The drift time is the di�erence between the ionization time
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Figure 2.7: Schematic illustration of mirror hits causing mirror tracks (left). Mirror
tracks in two cells do not line up (right).

when the charged particle ionized the gas and the arrival time when the ionization

avalanche reached the wire.

The ionization time t0 is in general given by the bunch crossing time. But this is

not exactly known because the scattering can occur anywhere in the bunches, which

are a few meters long. Thus the ionization time is determined by varying the time

of the bunch crossing so that hits on opposite sides of the wires in a cell are aligned

(see �g. 2.6).

The arrival time is given by the signal in the wire. For a given gas or gas mixture

the velocity of the ionization electrons is known, so that the precise distance of the

hit from the wire can be determined.

Mirror Tracks in the Jet Chambers

This does not yet give the exact position of the hit, because it is still not known on

which side of a wire the gas was ionized. The hit on the wrong side of the wire is

called mirror hit, a series of mirror hits producing mirror tracks. This is illustrated

on the left of �gure 2.7. In order to �nd the correct position of the hit, the cells of

the jet chambers were tilted by 30◦ against the chamber radius. Thus most tracks

cross two cells, and mirror hits from two cells are easily identi�ed because they don't

connect to a single line, as can be seen from the right illustration of �gure 2.7.

Track Momentum Measurement

In the H1 detectors particles were moving in a uniform magnetic �eld parallel to the

z-axis of �eld strength Bz = 1.15 T. Inside that �eld tracks of particles are curved

in the rφ plane with a curvature κ, which can be easily measured. The transverse

momentum of the tracks ptrackt is proportional to the inverse of κ:
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ptrackt [GeV ] = −Q0.3 ·Bz[T ]

κ[m−1]
. (2.1)

The spatial resolution of the hit position measurement in the rφ-plane was σrφ =

170µm and resulted in a resolution of the transverse momentum of σpt/p
2
t = 0.005 GeV−1⊕

0.015 [18].

2.4.2 The Central Silicon Tracker

Of the silicon trackers only the central one was used in this analysis. The CST directly

surrounded the elliptical beam pipe at the nominal interaction point and was used

as a vertex detector. Its two layers consisted of silicon strips arranged in ladders. It

covered polar angles of 30◦ < θ < 150◦, achieving a resolution of σrφ = 12 µm in the

rφ-plane and σz = 25 µm in z. With the CST the distance of closest approach (dca)

of a track was measured with an accuracy of σdca ≈ (33 µm ⊕ 90 µm)/pt[GeV ],

with uncertainties arising from the intrinsic resolution (�rst term) and from multiple

scatterings in both beam pipe and CST (second term).

2.4.3 The Central Proportional Chambers

The CIP and COP were multi-wire proportional chambers (MWPCs) with wires

strung parallel to the beam axis. The inner chamber was located between the silicon

trackers and the CJC1, the outer between the two jet chambers.

Replaced by a new �ve layer MWPC during the detector upgrade the CIP had

a fast response time and was therefore used for online event selection. It covered a

polar angular range of 11◦ < θ < 169◦.

2.4.4 The Z-Chambers

The exact z-components of particle momenta was determined in the inner and outer

z-chambers CIZ and COZ. These were drift chambers with wires not parallel to the

z-axis, but tilted by 45◦ in case of the inner and 90◦ in case of the outer chamber.

With these a resolution in z of σz ≈ 350 µm was achieved.
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Figure 2.8: The H1 trigger scheme and its multiple levels.

2.5 Triggering Physics Events at H1

In collider experiments such as HERA not all occurring particle collisions contain

information about interesting physical processes. For this reason the collision rate at

HERA was much higher than the storage capabilities and the readout rates of the

detectors in order to guarantee statistically signi�cant yields of interesting physics

events. These are then preselected by sophisticated trigger schemes.

The H1 multi-level trigger scheme - outlined in �gure 2.8 - reduced HERA's bunch

crossing frequency of 10.4 MHz by roughly six orders of magnitude to a �nal readout

frequency of the order of 5 to 10 Hz.

Level 1

The �rst trigger level L1 analyzed bunch crossing information stored in a pipeline.

Since the L1 decision took 2.3µs the pipelines stored the information of 22 bunch

crossings so that the L1 decision was dead time free. The decision was made by

about 200 trigger elements combined into 128 sub-triggers named S0 to S127. If at

least one of the subtriggers �red the readout into the pipelines was stopped and the

dead time began. The signal then send to the central trigger logic (CTL) was called

L1Keep.

Level 2

Once an event had passed the �rst trigger level the information in the current pipeline

was analyzed by either a topological trigger system (L2TT) or by a neural network

(L2NN). The topological triggers selected interesting events based on a grid in θ

and φ, while the neural network was trained to select events based on sub-detector
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information. The L2 decision took about 22µs. If L2 rejected an event the pipeline

was erased and the dead time ended. An event that passed L2 was fully being read

out for a more detailed analysis by the higher trigger levels.

Level 3

The third trigger level L3 was running while the information from the pipeline was

being read out and stopped the readout if the event was rejected. The readout

continued if the event was kept to be further analyzed by the fourth and �fth trigger

levels. L3 was part of the Fast Track Trigger (FTT) installed in 2006. In addition

to track information it relied on the calorimeters and the muon system to decide if

an event was kept. This decision took place in about 100µs and reduced the readout

frequency to about 50 Hz.

Level 4

The last trigger level for the online data selection, L4, has access to the full event

information from the event builder. It rejects background events from interaction

of the beams with gas remnants in the beam pipe or with the wall of the beam

pipe. At this stage the physics �nders sort the selected events into the di�erent

physics categories. Events passing the L4 conditions are written to tape with a rate

of approximately 10 Hz.

L4 is further used to �ll certain histograms online for quality monitoring by the

shift crews.

2.6 Detector Simulation and Reconstruction

For the simulation of e�ects of the H1 detector on particles passing through the col-

laboration has developed the software package h1sim based on the detector simulation

tool GEANT [19]. It simulates the behavior of the H1 detector by creating tracks

and energy deposits from four-momenta of particles generated by MC event genera-

tors. The GEANT package takes account of electromagnetic and nuclear interactions

during the particles' passage through matter.

The event information created by h1sim is then run through the whole reconstruc-

tion cycle. In this step speci�c run dependent information is taken into account to

match the reconstruction of the data. The output can then be used for a compari-
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son of hadron and detector level information to correct for detector ine�ciencies and

migration e�ects (see section 3.6).
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The charmed meson D∗± has been used in previous HERA studies to measure charm

quark production in electron-proton scattering. It consists of a charm or anti-charm

and a anti-down or down quark. The decay channel D∗± → D0π±s → K±π∓π±s
1 is

reviewed in this chapter after a short introduction to charm production.

3.1 Heavy Quark Physics at H1

Heavy quark production at HERA o�ers a direct sensitivity to the gluon density

because its dominant production mechanism in electron-proton scattering is boson

gluon fusion, as depicted in �gure 3.1. The large masses of charm and bottom quarks

serve as hard scales in the hard scattering and ensure the applicability of perturbative

QCD.

Since in neutral current processes heavy quarks and anti-quarks are always pro-

duced in pairs, in the HERA phase space the top quark cannot be produced because

the mass of a top quark pair, 2 · mt ≈ 350 GeV, is larger than the center-of-mass

energy of the electron-proton system,
√
s = 318 GeV.

At HERA heavy quark production is studied by searching for decay products of

charm or beauty mesons, or by studying jets associated with the heavy quarks. The

latter can be done by selecting leptons or mesons with certain properties implying

the heavy quark origin of the jets. In the following charm production measurements

are presented which used D∗ mesons as tags of charm quarks. An overview of D∗ pro-

duction measurements at both H1 and ZEUS is given, followed by a short discussion

of beauty production measurements.

1πs indicates the �slow pion�, i. e. the low momentum pion from the D∗ decay.
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Figure 3.1: Dominant charm quark production mechanism in electron-proton scatter-
ing.

3.1.1 Charm Production Measurements

Charmed mesons like D± or D∗± predominantly decay into kaons and pions, which

leave tracks in the detector. But even with particle identi�cation methods like deter-

mination of the energy loss dE/dx it is impossible to know with certainty which kind

of particle causes which track. That is why the basic method is to look for all possible

combinations of tracks and for each combination make an arbitrary assumption which

track belongs to which particle. Under this assumption masses are assigned to tracks,

so that energies and momenta can be calculated. With the resulting kinematics it

is then possible to calculate the invariant mass of the originator meson, e.g. a D∗.

In the end, �ts to mass resonances determine the number of produced mesons. This

method is applied here and explained in more detail in section 3.5.

D∗ Production at H1 with HERA II Data

There have been various D∗ production measurements in DIS at H1 and ZEUS using

the data from the HERA I period [20, 21, 22, 23, 24, 25, 26]. The HERA II data

collected by the H1 detector o�ers much larger statistics due to both higher luminosity

as well as the more e�cient Fast Track Trigger (FTT) system introduced in 2005 [27]

(see section 3.3).

In DIS this fact has been exploited to study the production of D∗ mesons in

electron-proton collisions in three di�erent Q2 ranges:

� low Q2:2 GeV2 < Q2 < 5 GeV2 (this analysis)

� medium Q2:5 GeV2 < Q2 < 100 GeV2(Andreas Jung [1])

� high Q2:100 GeV2 < Q2 < 1000 GeV2 (Martin Brinkmann [3],[2])
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3.1 Heavy Quark Physics at H1

These three measurements cover the Q2 range 2 GeV2 < Q2 < 1000 GeV2 of nearly

three orders of magnitude. The integrated luminosity in these analyses is much higher

than in a comparable study of the ZEUS collaboration using HERA I data [26]. There

an integrated luminosity of roughly 82 pb−1 was analyzed, compared to about 340

pb−1 (see section 3.10) in the HERA II studies at H1.

Although in [25] the phase space extended to a minimum Q2
min = 1GeV2compared

to Q2
min = 2GeV2 used here, this analysis o�ers a �ner binning in Q2 and a dedicated

measurement of the transverse momentum spectrum at low Q2.

D∗ Production with Jets

It is also possible to study jet events with D∗ mesons. Especially interesting are dijet

events, because if a D∗ meson is found in a dijet event and associated with one of

the jets, it is possible that the second jet also stems from a charm quark. This makes

it possible to directly study the two charm quarks produced in boson gluon fusion.

Even if the second jet originates from a gluon or another quark, which happens espe-

cially at large pseudorapidities ηjet, such events o�er interesting possibilities to study

underlying phenomena like di�erent models of gluon density evolution. Examples of

such a study are found in [28] for DIS and in [29] for photoproduction.

In order to study both charm quarks produced in boson gluon fusion, the double

tagging method can be applied. In addition to the selection of a D∗ meson to tag

at least one charm quark, the second charm quark can also be associated with a

fragmentation or decay product of heavy quarks or mesons, for example a muon. For

photoproduction this has been done in [30].

3.1.2 Beauty Production Measurements

Beauty mesons are harder to tag. One example is the search for events with two jets

and a lepton that can be associated with a jet. Because the background from light

and charm quark production cannot be neglected, in reference [31] the beauty fraction

samples is enhanced by requiring that the transverse momentum component of the

lepton relative to the jet momentum, prelt , has to exceed a certain minimum, making

use of the fact that in beauty production events prelt features a harder spectrum.
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3.2 The Electron Energy Measurement

In deep inelastic scattering experiments event kinematics are mostly determined by a

precise measurement of the energy of the scattered electron. This section �rst intro-

duces the methods for the reconstruction of these event kinematics in section 3.2.1.

A test of the calibration of the electron energy measurement and a determination of

the related uncertainty is presented in section 3.2.3. This test results in a systematic

uncertainty on the measurement of the scattered electron Ee′ .

3.2.1 Reconstruction of Kinematic Variables

A precise measurement of DIS processes requires high precision measurements of the

event kinematics: the four-momentum transfer Q2, the inelasticity y and the quark

momentum fraction x. Because these variables are related by equation (1.5) and

the center of mass energy s is known it is su�cient to reconstruct only two of those

variables. There are various methods to achieve a good resolution in these variables

depending on the process and the region of phase space one wants to study. This

section introduces the methods used in this analysis: the electron method, the sigma

method and the electron sigma (eΣ) method.2

The electron method uses only the measurement of the scattered electron's energy

Ee′ and its scattering angle θe to reconstruct the event kinematics in the following

way (the lower index e indicates the electron method):

ye = 1− Ee′

2Ee
(1− cos θe) = 1− Ee′

Ee
sin2 θe

2
(3.1)

Q2
e = 2EeEe′(1 + cos θe) =

Ee′ sin
2 θe

1− ye
(3.2)

It provides a good resolution of Q2 and y at high inelasticities and is independent

from any measurement of the hadronic �nal state. But at low inelasticities it becomes

sensitive to initial state QED radiation of the electron.

Less sensitive to initial state QED radiation the Σ method makes use of energy

balance between initial and �nal state:

2For a more detailed presentation of reconstruction of kinematics in DIS see [32].
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3.2 The Electron Energy Measurement

∑
i

Ei −
∑
i

pz,i = Ep + Ee − (pz,p + pz,e) (3.3)

= 2Ee (3.4)

The index i runs over all �nal state particles including the scattered electron. The

sum over all �nal state particles is de�ned as Σ =
∑

i(Ei − pz,i).
Substituting 2Ee with Σ and Ee′(1 − cos θe) with Ee′ − pz,e′ = Σ − Σhfs, where

Σhfs =
∑

i ε hfs(Ei − pz,i), equation (3.1) allows for a rede�nition of y which is less

sensitive to initial state radiation and in terms of which the photon virtuality Q2 and

the momentum fraction x can also be rede�ned:

yΣ =
Σhfs

Σ
(3.5)

Q2
Σ =

Ee′ sin
2 θe

1− yΣ

(3.6)

xΣ =
Q2

Σ

2ΣEpyΣ

=
Q2

Σ

2ΣhfsEp
(3.7)

At low inelasticities the Σ-method o�ers a better resolution, but especially at higher

y the electron method remains superior. Especially the resulting resolution of Q2
Σ is

worse than the resolution of Q2
e. A combination of these two methods, the eΣ-method

takes the photon virtuality from the electron method, the momentum fraction from

the Σ-method and rede�nes the inelasticity accordingly:

yeΣ =
Q2
e

xΣ · s
=

2EeΣ

(Σ + Ee′(1− cos θe))
2 (3.8)

Q2
eΣ = Q2

e (3.9)

xeΣ = xΣ (3.10)

This method, while retaining the excellent Q2 resolution of the electron method

and the x resolution of the Σ-method, achieves a good inelasticity resolution at low

y similar to the Σ-method and also a better resolution at high y, although not quite

as high as the resolution of ye.

As in another D∗ meson analysis of the HERA II period[1] the eΣ-method is used

for both single and double di�erential cross section determinations.
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A fourth method for reconstructing event kinematics, the double angle method,

relies purely on measured angles of the hadronic �nal state and the electron, making

it independent from energy measurements in the SpaCal. This method is used here

to test the calibration of the energy measurement of the scattered electron and is

presented in the next section.

3.2.2 The Electron Selection

Electrons are reconstructed in the SpaCal. Energy clusters are selected with a ra-

dius rcluster < 4 cm in the electromagnetic part of the calorimeter because leptons

create narrower showers than hadrons. Furthermore the fraction fhad = Ehad/Ee′ of

the energy Ehad measured in cells of the hadronic part directly behind the selected

electromagnetic cluster is restricted to fhad < 3%. This is done mostly to suppress

background from photoproduction events where the scattered electron escapes the

detector and a signal in the SpaCal could be falsely identi�ed as an electron.

In addition ine�cient and de�cient regions in the SpaCal, termed dead cells, are

rejected by �ducial cuts in the electron selection. Two circular cuts of 10 cm radii

have been applied on the radial distances rSpac and rbeam of the selected energy cluster

from the center of the SpaCal and the beam axis, respectively, to avoid energy leaking

e�ects at the edge of the detector. These two cuts were motivated by the asymmetry

of the distribution where one cut alone would not have avoided cluster reconstruction

at the edge of the SpaCal. While in the medium Q2 analysis a more conservative

radius cut of 12 cm was used, here it was necessary to lower the cut in order to reach

the low Q2 values which were the aim of this analysis.

The basic electron selection cuts are summarized in table 3.1. Dead cell cuts are

not given.

Criterion Purpose

rcluster < 4 cm Select leptonic cluster

fhad < 3% Suppress photoproduction background

rSpac, rbeam > 10 cm Avoid energy leaking at the edge of SpaCal

Table 3.1: Criteria for the selection of the scattered electron and their purposes.
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3.2 The Electron Energy Measurement

Excluded Regions in the SpaCal

Figure 3.2 shows the distribution of reconstructed electron clusters in the SpaCal for

all four run periods de�ned in section 2.1 after all selection cuts (see tables 3.3, 3.4

and 3.5). Excluded regions are shown as blue boxes and circles. Only the central part

of SpaCal with |x|, |y| < 30 cm is shown. All distances are given in the H1 coordinate

system.

In the years 2004 and 2005 a certain amount of cells in the SpaCal where de�cient

and therefore excluded from the data selection (blue boxes in �g. 3.2). In 2006 these

cell were replaced, so that less cells had to excluded.

Cells around y = 0 cm were hit by synchrotron radiation from the electron beam

and therefore taken out of the trigger. Clusters reconstructed in these cells were

excluded by applying a box cut of ∼ 8.4 cm× 18 cm.

Asymmetry of the φe′ Spectrum

At 2 GeV2 < Q2 < 5 GeV2 most electron clusters were positioned close to the beam

axis. The asymmetric shape of the SpaCal with respect to the beam axis3 then

resulted in an asymmetric cluster distribution in the SpaCal. In �gure 3.2 this asym-

metry is visible in the fact that the clusters form a crescent around the beam axis

instead of a ring.

This leads to a φe′ spectrum which is falling from φe′ = 0◦ to both positive and

negative φe′ (see �g. 3.5). In addition the box cut around ySpaCal = 0 cm leads to a

dip the distribution of φe′ around φe′ = 0◦.

3In the H1 coordinate system the center of the SpaCal lay at x = 2.5 cm and y = 0.5 cm.
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Figure 3.2: Two dimensional distribution of x and y, i.e. the distances of selected
electron clusters to the beam axis, in the central part of the detector in
bins of 1 cm× 1 cm. Shown are the distributions for the four run periods
de�ned in section 2.1 after all selection cuts (see tables 3.3, 3.4 and 3.5).
Blue boxes and circles indicate areas excluded from the data selection. The
color palettes on the right indicate how many clusters are reconstructed in
the inclusive sample.
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3.2.3 Testing the Calibration of the Electron Energy

Measurement

The calibration of the measurement of the energy Ee′ of the scattered electron is

done using the double angle (DA) method[32]. It is used in this thesis as a test of the

calibration. This method o�ers a better resolution in the determination of the energy

of the scattered electron in a certain constrained phase space and is independent from

energy measurements in the SpaCal.

The kinematics of the �nal state are over-constrained and one can therefore deter-

mine the energy of the scattered electron purely by measuring its polar angle θe′ and

the e�ective scattering angle of the hadronic �nal state, γh
4:

tan
γh
2

=
(E − pz)hfs

pt,hfs
(3.11)

With this the inelasticity can be calculated,

yDA =
tan(γh/2)

tan(γh/2) + tan(θe′/2)
, (3.12)

and the energy of the scattered electron evaluates to

EDA = Ee
1− yDA

sin2(θe′/2)
. (3.13)

This method is called the double angle method, because Ee′ is determined from the

measurement of the angles γh and θe′ . It has the advantage of being independent

from energy measurements in the SpaCal. Instead the electron energy is calibrated

against the energy Ee of the incoming electron, which is known with high precision.

The sensitivity of γh on the calibration of the energy measurement of the hadronic

�nal state is small.

When comparing Ee′ with EDA one has to ensure that the hadronic �nal state

is well reconstructed. This is done by constraining the e�ective hadronic angle to

the range 15° < γh < 80° and requiring |yDA − ye| /(yDA + ye) < 0.2, i. e. the

inelasticities determined with the di�erent methods should yield similar results. The

constraint on γh mainly selects events in the region of the kinematic peak5. Therefore

an additional requirement is 20GeV < Ee′ < 32GeV, also rejecting events with a

4In the naive parton model γh represents the polar angle of the struck quark.
5In electron-proton scattering the majority of the events features scattered electrons with an energy
close to the energy of the incoming electron, Ee′ ≈ Ee. This region is called the kinematic peak.
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Figure 3.3: Comparison of the resolution of the double angle method and the electron
method in the determination of the energy of the scattered electron.

badly reconstructed hadronic �nal state.

If all of these requirements are ful�lled the double angle method o�ers a better

resolution for the electron energy determination than the electron method. Figure

3.3 shows the distribution of the ratio Emeas
e′ /Egen

e of the measured energy of the

scattered electron Emeas
e′ to the generated scattered electron energy Egen

e′ . In the

�gure Emeas
e′ is either determined by the electron method (black histogram) or by the

double angle method (red histogram). The double angle method shows a narrower

peak around Emeas
e′ /Egen

e′ = 1 and is therefore on average closer to the generated

scattered electron energy than the electron method.

The calibration is now tested by studying the ratio Ee′/EDA of the electron energy

measured with the electron method, Ee′ , and measured with the double angle method,

EDA, as a function of the radial position of the scattered electron in the SpaCal,

rSpaCal. This is shown in �gure 3.4 for the four running periods. Data is shown in

black, Monte Carlo predictions in blue. The double ratio of the two distributions,(
Edata
e′ /Edata

DA

)
/
(
EMC
e′ /EMC

DA

)
, is shown as yellow triangles.

The double ratio is a measure of how well the detector is understood. If the

ratio would be unity at all radii, all uncertainties due to the energy measurement

would be corrected for in the determination of e�ciencies. However, as can be seen

from the �gure, at low radii rSpaCal < 15 cm the energy measurement is not perfectly

understood, and even at large radii the Monte Carlo predictions deviate from the data.

Therefore the resulting systematic uncertainty is studied by applying a systematic
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Figure 3.4: Test of the calibration of the electron method using the double angle method
as a reference. Displayed are the ratios of the electron energy measured
with the two methods, Ee/EDA , as a function of the radial position in
the SpaCal. The data in black is compared to the Monte Carlo predictions
in blue. The triangles mark the double ratio data/MC and the red lines
indicate the systematic shift applied for determination of the resulting sys-
tematic uncertainty.

shift to the energy scale in the Monte Carlo predictions and taking the di�erence to

the unshifted cross section.

From �gure 3.4 a shift δem. follows which is larger for rSpaCal < 15 cm:

δem. =

3% for rSpaCal < 15 cm

0.5% for rSpaCal > 15 cm

In the �gure this is indicated by the red line.

The treatment of the systematic uncertainty due to the energy measurement un-

certainty and how systematic energy scale shifts are applied is presented in section

3.9.
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Figure 3.5: Control distributions for the scattered electron observables Ee′, θe′, φe′ and
the interaction vertex zvertex.

3.2.4 Control Distributions

A comparison of the MC calculations and the experimental data for the energy Ee′ ,

the polar angle θe′ and the azimuth φe′ of the scattered electron and the z-component

of the interaction vertex, zvertex, is shown in �gure 3.5. The dip around φe′ = 0◦ is

due to the box cut around ySpaCal = 0 cm shown in �gure 3.2.

Figure 3.6 compares MC calculations and data for the observables Q2
e, yeΣ, p

D∗
t and

ηD
∗
for which di�erential cross sections have been determined.

These �gures show that the measured spectra of the scattered electron energy Ee′

and the inelasticity yeΣ cannot be described by the MC calculations (�g. 3.5 a) and

3.6 b), respectively). The e�ect of this discrepancy on the detector e�ciency and the

resulting systematic uncertainty is studied in section 3.9.3.

Except for these all other distributions are described rather well. Rapgap nicely

describes the turnover in the pD
∗

t spectrum in �gure 3.6, which is due to the low

detector e�ciencies at low transverse momenta shown in section 3.6.
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Figure 3.6: Control distributions for the photon virtuality Q2
e, the inelasticity yeΣ, the

transverse momentum pD
∗

t and the pseudo rapidity ηD
∗
of the D∗ meson.

3.3 Triggering D∗ mesons in DIS

As will be explained in section 3.5, D∗ mesons are reconstructed by studying their

decay products which leave tracks in the detector. These tracks provide input for the

trigger system to select events in which a D∗meson was produced.

In the H1 trigger system there are 128 subtriggers labeled S0 - S127 which are

combinations of individual trigger elements like track conditions or energy thresholds.

The sub trigger S61 which was used in this analysis for selecting the decay products

of D∗ mesons in DIS is a combination of track and electron triggers elements, both

of which have to be ful�lled:

S61
.
= Spacal Condition ∧ Track Condition.

In this section the individual trigger elements are introduced (sec. 3.3.1) and trigger

e�ciencies are presented (sec. 3.3.2).
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trigger element explanation

SpaCal Condition
SPCLe_IET>2 Ee′ >∼ 9GeV

SPCLe_IET_Cen_3 triggered in inner part of SpaCal with Ee′ >∼ 9GeV
Track Condition

DCRPh_THig ≥1 track with ptrackt ≥ 800MeV
FTT_mul_Td>0 ≥1 track with ptrackt ≥ 900MeV

Table 3.2: Trigger elements of sub trigger S61

3.3.1 Trigger Elements

In 2004 the track condition of S61 was realized by the trigger element DCrφ . It

required at least one track with pt > 800 MeV. The track condition changed in 2005

when the Fast Track Trigger (FTT)[27] was installed which triggered on at least one

track of pt > 900 MeV.

The selection of DIS events was implemented in S61 by requiring an electron in

the SpaCal triggered by at least one out of two Inclusive Electron Trigger (IET) ele-

ments. This combination of two trigger elements translates into an energy threshold

of about 9 GeV for the scattered electron. Table 3.2 lists the trigger elements and

their explanation.

3.3.2 Trigger E�ciencies

The e�ciency of individual trigger elements is determined with independent more

inclusive monitor triggers or trigger elements which are expected to select events in

the same kinematic region. Events that are registered by the monitor triggers and at

the same time pass the event selection from tables 3.5 and 3.3 serve as a reference

sample. The e�ciency of the trigger element of interest, εtrig, is then the ratio of

events from the reference sample selected by the trigger element (N trig ∧mon) and the

total number of events in the reference sample (Nmon):

εtrig =
N trig ∧mon

Nmon
(3.14)

For the SpaCal condition of S61, (SPCLe_IET>2 || SPCLe_IET_Cen_3), a large

selection of track triggers independent from any SpaCal condition is used for the ref-

erence sample. Figure 3.7 shows the e�ciency of those trigger elements as a function

of the energy of the scattered electron, Ee′ , for all HERA II run periods. This �gure
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Figure 3.7: E�ciency of the SpaCal trigger elements of S61 for all four HERA II run
periods.

shows that scattered electrons with an energy lower than ∼ 10 GeV are not triggered

e�ciently. Therefore only scattered electrons with Ee′ > 10 GeV are accepted.

The e�ciency of the track condition in S61 is shown in �gure 3.8 as a function of the

number of tracks Ntrack, again separately for each run period. In the 2004 positron

runs when the DCrφ was active a slight ine�ciency for a low track multiplicities is

visible. The implementation of the FTT improved the e�ciency of the track trigger

so that even at low track multiplicities the trigger e�ciency is close to 100% within

the statistical uncertainties.

The total e�ciency of the combination of trigger elements in sub trigger S61 is

shown in �gure 3.9. The data are corrected with these e�ciencies in order to derive

di�erential cross sections in the respective observables.
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Figure 3.8: E�ciency of the FTT elements of S61 for all four HERA II run periods.
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Figure 3.10: Distribution of the sum of the energy balance,
∑

i(Ei−pz,i). The red line
indicates the nominal value of 2 · Ee.

3.4 Event and D∗ Meson Selection Criteria

In this thesis D∗ meson production is analyzed in the Q2 range 2 < Q2 < 5 GeV2.

The selection criteria for the visible phase space in this range is given in table 3.3.

Total and single di�erential cross sections for the process ep→ eD∗X are measured,

with X being an arbitrary �nal state con�guration.

2 < Q2 < 5 GeV2

0.02 < y < 0.7

pD
∗

t > 1.5 GeV

|ηD∗| < 1.5

Table 3.3: Selection criteria for the visible phase space.

Further selection criteria for ensurance of good event reconstruction quality are

given in table 3.4. Events with a measured interaction vertex zvertex outside of ±35cm

are very rare and badly reconstructed. As known from section 3.2
∑

i(Ei− pz,i) sums

the energy balance E−pz of all particles i in the �nal state and peaks at
∑

i(Ei−pz,i) =

2Ee = 55 GeV2. Events with values of the energy balance outside of the range

35 <
∑

i(Ei − pz,i) < 70 GeV also are badly reconstructed and are excluded here.

Figure 3.10 shows the distribution of
∑

i(Ei− pz,i) after the event selection. The red
line indicates the nominal value at 2 · Ee = 55 GeV.

The cut on the energy Ee′ of the scattered electron ensures a high trigger e�ciency

(see section 2.5).
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3 D∗ Meson Cross Sections

The reconstruction of D∗ mesons needs further requirements on the tracks of its

decay particles, as explained in the next section.

3.5 The D∗'s Golden Decay Channel

In this study charm production processes have been tagged with D∗ mesons. Since

D∗ mesons decay via the strong interaction its lifetime is too short for it to leave a

track in the detector. Its decay products have to be used to �nd and reconstruct D∗

mesons and their four momenta in ep scattering events.

The D∗± meson is an excited charmed meson state which always decays into

charmed meson ground states, either the neutral D0 or the charged D±. The de-

cay channel D∗± → D0π±s dominates over the other two channels D∗± → D±π0 and

D∗± → D±γ with its branching fraction of 67.7%[8]. What is more, the charged slow

pion6 can leave a track in the detector, unlike the neutral pion and the photon from

the alternative decays. This makes it an ideal candidate for the reconstruction of the

D∗±.

For the D0 meson the most prominent decay channel[8] (except for semi-leptonic

modes including neutrinos which can't be reconstructed in the detector) is D0 →
K−π+ and D̄0 → K+π− for and its anti-particle. The decay chain D∗± → D0π±s →
K∓π±π±s is therefore the most probable decay to occur in which all decay products

leave tracks in the detector � hence the name "golden channel".

Note that the charge of the kaon and the slow pion are opposite. This is due to

the fact that a D∗+ meson decays into a π+
s and a D0 containing a positively charged

charm quark. This charm quark then decays into a negatively charged strange quark,

6Since the D0 takes the bulk of the D∗ momentum, the pion's momentum is small and it is labeled
"slow pion".

Criterion Purpose

|zvertex| < 35 cm Reject badly reconstructed events

35 <
∑

i(Ei − pz,i) < 70 GeV Reject badly reconstructed events

Ee′ > 10 GeV Ensure high trigger e�ciency

Table 3.4: Quality Ensurance Criteria. zvertex is the measured position of the inter-
action vertex, the sum of the energy balance E − pz runs over all particles
i in the �nal state, and Ee′ is the energy of the scattered electron.
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3.5 The D∗'s Golden Decay Channel

K±,π∓ pt > 300 MeV

ltrackradial > 15 cm

nhits > 10

pKt + pπt > 2 GeV

m(Kπ)−m(D0) < 80 MeV

π±slow pt > 120 MeV

Table 3.5: Track requirements for D∗ candidates.

which together with an anti-up quark constitutes a negatively charged kaon.

3.5.1 Reconstructing D∗ Mesons from Tracks

The complete �nal state of the golden decay channel can be reconstructed from tracks

in CJC1 and CJC2. In each event three central tracks are required to ful�ll the

kinematic cuts listed in table 3.5. The D∗-�nder algorithm �rst searches for two

tracks that ful�ll the conditions for the kaon and the pion (tab. 3.5). One of the two

found tracks is then assigned the kaon mass, the other the pion mass. If the mass of

the kaon-pion-system, m(Kπ), lies inside a 400 MeV window around the nominal D0

mass[33] a third track is searched for that passes the requirements for the slow pion

from table 3.5. The kaon-pion-pion system is then considered a candidate for a D∗

meson.

From all these candidates only those inside a mass window of 80 MeV around the

nominal D0 mass is used for the determination of the number of D∗ mesons in the

golden channel. Losses due to this narrow mass window are studied using the wide

mass window of 400 MeV (see section 3.9.2). Figure 3.11 shows the distribution of

the mass of the kaon-pion-system as determined after all selection cuts (tables 3.3,

3.4 and 3.5) except for the narrow D0 mass window.

The di�erence of the mass of the D∗ candidate and the mass of the D0 candidate,

∆m = |m(Kππs)−m(Kπ)|, is well suited to extract the number of D∗s by a �t (see

section 3.5.2) because by taking the mass di�erence many measuring uncertainties

cancel out. The resolution of ∆m is then mostly determined by the uncertainties

arising from the track measurement of the slow pion.
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Figure 3.11: Distribution of m(Kπ) after event and D∗ meson selection, but without
the restriction |m(Kπ) −mnom

D0 | < 80 MeV for the kinematic region. A
Gaussian distribution �tted to data points is shown in blue. Its normal-
ization N , width σ and o�set µ after the �t are displayed together with
the χ2 value for the respective numbers of degrees of freedom (ndf). The
red line indicates the nominal value of the D0 mass at 1.865 GeV [8].

3.5.2 Signal Extraction

The number of D∗s is determined by �tting the sum of a signal and a background dis-

tribution to the measured ∆m distribution in the range 135 MeV < ∆m < 170 MeV.

For the signal function the Crystal Ball probability density function[34] is chosen,

de�ned as follows:

fCB(∆m) = N ·


exp

(
−1

2
(∆m−µ

σ
)
)

for ∆m−µ
σ
≥ −α

( n
|α|)

n
exp(− 1

2
α2)

( n
|α|−|α|−

∆m−µ
σ )

n for ∆m−µ
σ

< −α
(3.15)

This functions resembles a Gaussian distribution with an additional exponential tail

which allows for a very �exible adjustment to the peak region. The parameters µ and

σ represent the peak position and the width of the peak, respectively, while n and α

determine the shape of the exponential tail.

For the background a function by P. Granet et. al.[35] is used:

f(∆m) = (∆m−mπ)p1 · exp(−p2 ·∆m− p3(∆m)2), (3.16)

where pi are the �t parameters while the pion massmπ is the threshold of the function.
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Figure 3.12: Distribution of ∆m for the kinematic region 2 Gev2 < Q² < 5 Gev2.
Black triangles are data points. The solid blue line represents the sum
of signal and background function, the dashed blue line represents the
background and the dashed red line the signal function.

The �t is performed by the Root based �tting package RooFit [36] using a binned

χ2 �t.

In the method used here the normalization N of the signal function is of no impor-

tance, because only the fraction fpeak of the events in the signal peak are of interest.

This is determined by the ratio of the integral of the signal function fsig to the integral

of the sum of signal and background function (fbg):

fpeak =

∫
fsig∫

(fsig + fbg)
.

The number of D∗mesons in the ∆m peak is then given by

ND∗ = fpeak ·Nhist ,

where Nhist is the total number of entries in the �tted histogram.

In �gure 3.12 the �nal result of the �t for the kinematic region 2 GeV2 < Q² <

5 GeV2 is shown. The complete event selection as presented in section 3.4 has been

applied to the data points presented here.

Shown is the number of D∗ candidates per 0.07 MeV. Data points are presented
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3 D∗ Meson Cross Sections

as black dots with statistical uncertainties, the signal function as a dashed red line,

the background function as a dashed blue line and the sum of signal and background

functions as a solid blue line. The asymmetry of the signal function is clearly visible

and described the data very well. Also the �tted background function is in excellent

agreement with data points.

The resulting number of D∗ mesons from this �t amounts to

ND∗ = 6505± 189 .

It is used in the determination of the total visible cross in section 3.10.

3.5.3 Choice of Fit Function

The Crystal Ball function is not the only function with which a good description of

the D∗ signal can be achieved, nor is the Granet function the only function suited

for describing the background. In order to determine a systematic uncertainty for

the ambiguity of the �t function the Novosibirsk function[37] is used to determine

the total number of D∗ mesons for the complete HERA II period. The Novosibirsk

function is de�ned by:

fNov(∆m) = NNov · exp
(
−1/2 · ln2(1 + ρ1ρ2(∆m− µ))/ρ2 + ρ2

2

)
(3.17)

The �t parameters are the normalization factor NNov and the parameters ρ1 and ρ2.

For the background a polynomial of the form

fpoly(∆m) = Npoly · (∆m−mπ)p1 · (1− p2(∆m)2), (3.18)

with the normalization factor Npoly and the �t parameters p1 and p2 is used for the

uncertainty determination.

Figure 3.13 shows the results of �ts with all four combinations of the two signal and

the two background functions. In order to estimate the quality of the the description

of the background by the Granet function and the polynomial the so-called wrong

charge distributions are shown to the right of the ∆m distributions. The wrong

charge sample is obtained by looking for a track combination of candidates for kaon,

pion and slow pion so that the charge of the kaon has the same sign as the charge

of the slow pion. Such a track combination cannot stem from the golden channel,

since there the charges of kaon and slow pion are opposite. For statistical reasons the
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3.5 The D∗'s Golden Decay Channel

distribution of the wrong charge combinations in ∆m, however, is the same as the

distribution of the background in the D∗ sample. Therefore such a distribution can be

used to estimate how well the background function describes the actual background.

The value extracted with the Crystal Ball function for the signal and the Granet

function for the background is taken as a reference for determining the systematic

uncertainty due to the selection of the �t function. For this the maximum relative

di�erence between combinations of signal and background functions is calculated:

δfit = max(
Ni −NCB&Gr

NCB&Gr

), (3.19)

where NCB&Gr is the number of D
∗ mesons extracted with the Crystal Ball function

for the signal and the Granet function for the background parametrization, and Ni

represent all other signal and background function combinations from table 3.6.

The systematic uncertainty then evaluates to δfit = 0.5%.

3.5.4 Control Distributions for Track Quantities

In �gures 3.14 to 3.19 the control distributions for track quantities are displayed.

The uncorrected number of reconstructed D∗ mesons obtained from �ts to the mass

di�erence spectrum is shown in bins of various observables of the D∗ mesons and their

decay particles. The MC calculations from Rapgap are normalized to the data in

order to compare the shapes. This comparison provides a crucial test of the detector

simulation needed for e�ciency determination and bin migration studies (see section

3.6).

Figure 3.14 shows the distribution of the transverse momentum pD
∗

t , the pseudo

rapidity ηD
∗
7 and the azimuthal angle φD

∗
of the reconstructed D∗ meson. All three

distributions show very good agreement between MC predictions and experimental

data. The apparent deviations in φD
∗
seem to be due to statistical �uctuations, so

that the overall shape of the φD
∗
distribution in the Rapgap is in agreement with

the data. The turnover in the pD
∗

t spectrum mentioned in section 3.2.4 is also present

here.

Figures 3.15, 3.16 and 3.17 show the distributions in transverse momentum pt,

polar angle θ and azimuthal angle φ of the decay particles kaon, pion and slow pions

used to reconstruct the D∗ meson in the golden decay channel. All distributions are

7The pseudo rapidity is a measure for the longitudinal Lorentz boost of the D∗ meson. It is
determined by the polar angle θD

∗
: ηD

∗
= − ln

(
tan(θD

∗
/2)
)
.
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Figure 3.13: Fit results of di�erent combinations of signal and background functions:
a) Crystal Ball signal with Granet background; c) Crystal Ball signal with
polynomial background; e) Novosibirsk signal with Granet background;
and g) Novosibirsk signal with polynomial background. The quality of the
background function is estimated using wrong charge combinations (see
text) shown with the Granet function in b) and f) and for the background
polynomial in d) and h).
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3.5 The D∗'s Golden Decay Channel

Signal & Background PDF Results

Crystal Ball & Granet N(D∗) = 6570± 159

χ2/ndf = 472/487 = 0.97

χ2
Bg/ndf = 489/487 = 1.0

Crystal Ball & polynomial N(D∗) = 6636± 160

χ2/ndf = 476/487 = 0.98

χ2
Bg/ndf = 508/487 = 1.04

Novosibirsk & Granet N(D∗) = 6606± 159

χ2/ndf = 469/486 = 0.96

χ2
Bg/ndf = 489/487 = 1.0

Novosibirsk & polynomial N(D∗) = 6664± 159

χ2/ndf = 473/486 = 0.97

χ2
Bg/ndf = 508/487 = 1.04

Table 3.6: Comparison of �t quality and results for di�erent combinations of signal
and background probability density functions as described in the text.
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Figure 3.14: Control Distribution for the D∗ meson.
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described well by the Rapgap calculations.

The distribution of the number of hits in the tracking devices and the track length

are shown in �gures 3.18 and 3.19 for the three decay products. The double peak

signature visible in the hits distributions is due to the fact that not all tracks are

reconstructed in both tracking chambers. Except for the second peak being shifted

towards slightly lower values in Monte Carlo no signi�cant disagreement between

Monte Carlo and data is found in these distributions. As apparent from �gure 3.15

these shifts have no signi�cant e�ect on the reconstruction of the transverse momen-

tum of the tracks.
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Figure 3.15: Control Distribution for the transverse momentum of the decay particles
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Figure 3.16: Control Distribution for θ of the decay particles kaon, pion and slow
pion.
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Figure 3.17: Control Distribution for φ of the decay particles kaon, pion and slow
pion.
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Figure 3.18: Control Distribution for the number of hits of tracks from the decay par-
ticles kaon, pion and slow pion.
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Figure 3.19: Control Distribution for the length of tracks from the decay particles
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3.6 Detection E�ciencies and Migration E�ects

In measurements of statistical quantities, there are essentially two sources of ine�-

ciencies: detection ine�ciencies and migration e�ects. Detection ine�ciency means

that not all particles passing through a detector are detected, while migration e�ects

arise from measurement uncertainties.

Because every measurement comes with an uncertainty particles might be measured

with a di�erent value of a certain observable than they actually have. For example, if

the actual transverse momentum of a D∗ meson is pD
∗

t, ac = 2.4 GeV, the measurement

might well result in pD
∗

t,meas = 2.6 GeV.

In histograms bins are de�ned by intervals in observables such as pD
∗

t and have

well de�ned boundaries. In the pD
∗

t -binning in this analysis one bin is de�ned as the

interval 2.0 < pD
∗

t < 2.5 GeV, so that the D∗ meson in the example above would

belong to that bin: 2.0 < pD
∗

t, ac = 2.4 < 2.5 GeV. The measured value, on the other

hand, would be registered in the neighboring bin with 2.5 < pD
∗

t < 3.0 GeV. That

means that the particle migrated to a di�erent bin than it would be found in if one

knew the actual value of, for example, its transverse momentum.

These two phenomena - detection ine�ciencies and migration e�ects - have to be

accounted for by a detailed study of the reconstruction method of the detector.

In general one has to apply a proper unfolding method to correct for migrations.

This would exploit information about the migrations given by MC simulations for the

true value of the measured observable. In addition to the true hadron level8 value of

an observable one also needs to apply a detector simulation9 to the MC predictions to

obtain a simulated and reconstructed value of the measured observable. One can then

use the correlation matrix � a two dimensional histogram of the true (i. e. generated)

value and the reconstructed value of an observable � to unfold the data.

However, if migrations are small compared to detection ine�ciencies (meaning

considerably less particles are detected in a di�erent bin from the one on hadron level

than not being detected at all) it is su�cient to apply a correction factor to each

data bin which accounts only for detection loss in that bin. This is called bin-by-bin

method.

A measure for the magnitude of migrations into a bin is given by the purity P :

8The term hadron level refers to �nal state particles as simulated by MC generators, parton level

refers to particles before the hadronisation stage, and detector level refers to particles as measured
by the detector.

9See section 2.6.
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Figure 3.20: Purity as a function of a) Q2
e, b) yeΣ, c) p

D∗
t and d) ηD

∗
as determined

with Rapgap.

P =
N rec∧gen

N rec
, (3.20)

where N rec∧gen is the number of D∗ mesons reconstructed and generated in the same

bin and N rec is the number of D∗ mesons reconstructed in that bin. Their ratio

represents what fraction of D∗s measured in certain a bin also originated there.

In �gure 3.20 the purity is shown as a function of a) Q2
e, b) yeΣ, c) p

D∗
t and d) ηD

∗
.

These distributions show that the purity in all observables for which cross sections

are determined are ∼> 70% with no strong dependence on the respective observables.

This means that migrations between the individual bins of the observables are small.

The correction factor applied in case of small migrations is de�ned as the inverse

of the detection e�ciency εdet in that bin, which is de�ned as

εdet =
N rec

N gen
. (3.21)
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The distribution of εdet is shown in �gure 3.21, again as a function of a) Q2
e, b) yeΣ,

c) pD
∗

t and d) ηD
∗
. The detection e�ciency as a function of pD

∗
t is decreasing strongly

towards low values. This leads to a turnover in the pure uncorrected distribution of

pD
∗

t seen in �gures 3.6 and 3.14.

That these e�ciencies are small while purities are large shows that the largest

part of the particle loss in all bins is due to detector ine�ciencies and not from

migrations. In this case it is justi�ed to correct the single di�erential cross sections

in the respective observables with 1/εdet.

3.7 Contributions from Re�ections and

Photoproduction

The selection of tracks as candidates for the kaon and the two pions by itself does

not ensure a selection of a D∗ meson. In addition to the combinatorial background

there are also two important contributions to take into account: background from

photoproduction events where a signal in the SpaCal has been falsely identi�ed as

the scattered electron, and background from other D∗ meson decay channels apart

from the golden channel, called re�ections.

3.7.1 Re�ections

A D∗ meson can only decay in three possible ways: D∗± → D0π±s , D
∗± → D±π0 and

D∗ → D±γ. The track requirements for the slow pion are already strong enough to

suppress contributions from the two latter processes, so that only alternative decays

of the D0 meson might give an additional contribution to the ∆m-peak.

Table 3.7 lists all D0 decay channels with at least two charged particles. Together

with the slow pion these channels, termed re�ections, all have at least three charged

particles in the �nal state.

Because for cross section determination the number of D∗ mesons is corrected with

the branching ratio of the golden channel, the contribution from these re�ections

have to subtracted from the �tted number of D∗ mesons in the golden channel. This

contribution has been determined by the Monte Carlo generator Rapgap.

In the search for the golden decay channel of D∗ mesons the tracks of these decay

products will be assigned either the mass of a kaon or a pion. After that the resulting

kinematics have to ful�ll the track requirements mentioned in section 3.5.1 in order
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3.7 Contributions from Re�ections and Photoproduction

Decay channel Branching ratio

D0 → K±K∓ (3.84± 0.1) · 10−3

D0 → K∓π±π0 (14.1± 0.5) · 10−2

D0 → π±π∓ (1.36± 0.03) · 10−3

D0 → π±π∓π±π∓ (7.31± 0.27) · 10−3

D0 → π±π∓π0 (1.31± 0.06) · 10−2

D0 → K±e∓
(−)
νe (3.51± 0.11) · 10−2

D0 → K±µ∓
(−)
νµ (3.19± 0.16) · 10−2

D0 → π±e∓
(−)
νe (2.81± 0.19) · 10−3

D0 → π±µ∓
(−)
νµ (2.4± 0.4) · 10−3

Table 3.7: Alternative D0 decay channels contribution to the ∆m peak.

to be identi�ed as a D∗. In the rare case when this happens for tracks of decay

products from re�ections the mass di�erence ∆m = mD∗ −mD0 � calculated under

the assumption that the golden channel has been found � only shows deviation from

the nominal ∆m value too small to be measured and therefore also form a peak in

the distribution.

If identi�ed correctly the invariant mass of the two charged daughters of the al-

ternative D0 decays of table 3.7 does not peak at the nominal D0 mass but at lower

values. In this case the D0 mass window rejects these particles. It is only because

of wrong mass assignments that these particles are �re�ected� from their actual mass

peak into the D0 mass window, which is how these D∗ candidates have gotten their

name.

The fraction of re�ections in the ∆m peak is given by,

R =
Nrefl

Nrefl +Ngc

,

Nrefl being the number of D∗ meson candidates from re�ections (�gure 3.22, left)

and Ngc the number of D∗ meson candidates from the golden channel (�gure 3.22,

right). R is determined from a dedicated Rapgap sample for D∗ mesons decaying

in the golden channel and additionally allowing for the re�ections of table 3.7. The

full event selection and reconstruction cycle was applied to the Rapgap sample. The

relative contribution from re�ections amounts to

R = (4.6± 0.018)% .
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Figure 3.22: Contributions from re�ections (left plot) to the golden channel (right
plot) as determined by a �t to Rapgap predictions (black triangles). The
blue solid line represents the sum of the signal and background functions,
the blue dashed line the background and the red dashed line the signal
function.

3.7.2 Photoproduction Background

In photoproduction (γp) events, where Q2 ∼ 0, the incoming electron is scattered

under such a large angle θe′ that it escapes detection by the backward calorimeter

SpaCal. In such an event it can still occur that a signal in the SpaCal is falsely

identi�ed as the scattered electron. These events then form a background to the

cross section measurement which has to be determined from a MC generator.

For this purpose a D∗ MC sample was generated with Q2 = 0 GeV with the MC

generator Rapgap. After the detector simulation was applied the sample has been

analyzed with exactly the same procedure as the data. The resulting false γp cross

section10 σselγp = N sel
γp (D∗)/Lγp has been determined, where Lγp is the luminosity of the

photoproduction MC sample and N sel
γp (D∗) is the number of D∗ mesons determined

from the γp-sample after applying all DIS selection cuts. It represents the probability

that D∗ mesons in photoproduction events are falsely identi�ed as DIS events in the

analyzed visible phase space.

The contribution from photoproduction events P to be subtracted from the data

10�False� because strictly speaking it is only the number of D∗ mesons per luminosity in events
falsely identi�ed DIS events and not a cross section of a physical process.
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is then determined by :

P =
σselγp

σselγp + σDIS
. (3.22)

Here σDIS is the total D∗ meson cross section in the visible phase space determined

from the DIS Monte Carlo sample which is used for the determination of detector

e�ciencies and various systematic uncertainties.

With a total D∗ meson cross section in DIS of σDIS = (1.327±0.007)nb and a false

γp cross section of σselγp = (0.01255 ± 0.00005) nb the photoproduction contribution

amounts to

P = (0.937± 0.002)% .

3.8 Radiative Corrections

The electron can radiate photons both before and after the interaction with the pro-

ton. The Monte Carlo sample used to determine the detector e�ciencies includes

this additional QED radiation. In the cross section determination the number of

D∗ mesons is corrected for this e�ect by a comparison of two Monte Carlo sam-

ples, one including QED radiation (labeled rad) and one without (labeled non-rad).

The correction factor crad = Nnon-rad/N rad is the ratio of the number of D∗ mesons

determined without QED radiation, Nnon-rad, and with QED radiation, N rad.

Figure 3.23 shows the distribution of crad as a function of Q2 (a), y (b), pD
∗

t (c) and

ηD
∗
(d). Since the distributions in 3.23a), c) and d) are �at a single global value for

crad can be applied to correct the respective di�erential cross sections. A �t of single

parameter p0 has been performed to determine the correction factor. It is nicely

visible that all �ts in Q2, pD
∗

t and ηD
∗
yield the same result

crad = 1.033± 0.001 (3.23)

.

The inelasticity y is more sensitive to QED radiation, which can be seen in �gure

3.23. This is why the histogram of ND∗(yeΣ) is multiplied with histogram of crad(y)

shown in �gure 3.23 b) to correct for QED radiation in the determination of the

di�erential cross section dσ(ep→ D∗X)/dy.
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3.9 Systematic Uncertainties

Source of Uncertainty Variation Uncertainty

Luminosity [1] 3.2%

Branching Ratio [33] 2.3%

Primary Vertex Fit E�ciency [38] 2.5%

Radiative Corrections 0.1%

Signal Extraction 0.5%

Track Finding[38] 6% (2%/track)

Em. Energy Scale11 ±3%/0.5% +1.1%
−0.8%

Had. Energy Scale ±4% < 0.1%

D0 mass window 1%

Reweighting +0.4%
−4.7%

Detector E�ciency 0.1%

Trigger E�ciency 0.4%

Total Uncertainty +7.8%
−9.1%

Table 3.8: Systematic Uncertainties: Listed are the source, the uncertainty on the
source and the resulting uncertainty on the cross section.

3.9 Systematic Uncertainties

Due to the largely increased luminosity during the HERA II period systematic un-

certainties dominate over statistical uncertainties. This chapter gives an overview of

the systematic uncertainties considered in this analysis.

Table 3.8 lists all the sources and values of the applied systematic uncertainties.

In those cases where no reference is given in the table the determination is presented

in detail below.

3.9.1 Uncertainty of Energy Measurements

To determine the e�ect of the uncertainty of the energy scale on the cross section

the electromagnetic (em.) and hadronic (had.) energy scales have been varied up

or down in the MC simulation by the respective uncertainties, δem. and δhad (for the

values of these uncertainties see below). The relative uncertainty on the number of

reconstructed D∗ meson candidates has been determined using
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δrel =
N −N↑↓

N
.

Here, N↑↓ denotes the number of reconstructed D∗ candidates after the energy scale

has been varied up or down by δem. or δhad, andN denotes the number of reconstructed

D∗ candidates without any variation of the energy scale. This uncertainty, δrel, has

been determined as a function of Q2
e, yeΣ, p

D∗
t and ηD

∗
.

As shown in section 3.2.3 the uncertainty of the em. energy scale is larger at low

radii in the SpaCal. Therefore the following relative uncertainties have been used for

the variation of the energy scale:

δem. =

3% for rSpaCal < 15 cm

0.5% for rSpaCal > 15 cm

The results are displayed in �gure 3.9.1. The number of D∗ mesons N↑ (N↓) after

varying the electromagnetic energy scale up (down) is represented by solid red lines

(blue dashed lines).

The relative uncertainty due to the hadronic energy scale has been determined in

the same fashion with systematic variations of δhad = 4 %. The two lower plots in

�gure 3.9.1 show the results. Again, the solid red lines (blue dashed lines) represents

the number of D∗ mesons N↑ (N↓) after varying the electromagnetic energy scale up

(down).
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Figure 3.24: Ratio N↑↓/N resulting from variation of the electromagnetic energy scale
as a functions of a) Q2

e , b) yeΣ, c) p
D∗
t and d) ηD

∗
as determined with

Rapgap. The number of D∗ mesons N↑ (N↓) after varying the electro-
magnetic energy scale up (down) is represented by solid red lines (blue
dashed lines).
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Figure 3.26: An example of how the loss due to the narrow D0 mass window is calcu-
lated: After a Gaussian distribution (here taken from a �t to the distribu-
tion of m(Kπ) from �gure 3.11) has been �tted to a m(Kπ) distribution
the complementary error function erfc (see text) gives the integral of the
Gaussian distribution outside the D0 mass window mnom

D0 ± 80MeV (red
lines). The nominal D0 mass mnom

D0 = 1.865 GeV [8] is indicated as a
blue dashed line.

3.9.2 Losses From The D0 Mass Window

The Selection of kaon and pion candidates inside a window of 80 MeV around the

nominal D0 mass, |m(Kπ)−m(D0)| < 80MeV with m(D0) = 1.864GeV[8], excludes

a certain amount of D∗ mesons. This loss is estimated by �tting a normal distribution

to the mass peak in the m(Kπ) spectrum and a line to the background in bins of the

transverse momentum of the D∗ candidate.

Figure 3.27 shows the resulting values and uncertainties for m(Kπ) as a function

of pD
∗

t (left). The fraction floss of D
∗ mesons lost to the D0 mass cut is estimated

with the complementary of the Gaussian error function:

floss = erfc

(
mcut√
2σmKπ

)
=

2√
π

∫ ∞
mcut/

√
2σmKπ

e−t
2

dt .

This function gives the integral of a Gaussian distribution with width σmKπ outside

the boundary ±mcut = 80MeV, which amounts to the relative loss floss of D
∗ mesons.

An example of the calculation of floss with the complementary error function is shown

in �gure 3.26.
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Figure 3.27: On the left: Invariant mass of the decay products kaon and pion as a
function of pD

∗
t . Central values and uncertainties are taken from �ts

of a normal distribution to data (black) and MC (red). The D0 mass
window is shown as blue dashed lines. On the right: loss due to the D0

mass window as a function of pD
∗

t .

Figure 3.27 on the right shows the distribution of floss as a function of pD
∗

t . Except

for the largest pD
∗

t bin the loss is always lower than 1%, and even in that bin the

uncertainty � estimated by comparing the loss in data and MC with σloss = (fdataloss −
fMC
loss )/fdataloss � is large enough to be compatible with a one percent loss. To account

for this a systematic uncertainty of 1% is assigned to the number of D∗ mesons.

3.9.3 Reweighting Uncertainty

Due to the discrepancy of MC calculations and experimental data described in section

3.2.4 the MC sample has been reweighted in the energy Ee′ of the scattered electron

and the inelasticity yeΣ. The results of the reweighting are shown in �gures 3.28 and

3.29. Experimental data is shown as black dots, the unweighted MC sample as red

dashed lines, the MC sample reweighted in Ee′ as blue open diamonds and the MC

sample reweighted in yeΣ as red open squares.

The sample reweighted in yeΣ still cannot describe the energy spectrum of the scat-

tered electron (�g. 3.28), and the sample reweighted in Ee′ still shows a discrepancy

in yeΣ (�g. 3.29).

The e�ect of these discrepancies on the detector e�ciency εdet has been studied

and is shown in �gure 3.30. The strongest di�erence is seen in the distribution of

yeΣ. The largest di�erence between unweighted and reweighted samples is seen at

high yeΣ, where the detector e�ciency determined by the sample reweighted in Ee′
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Figure 3.28: Comparison of the MC predictions and experimental data for the the
scattered electron energy Ee′. The MC sample is shown after reweight-
ing in Ee′ (blue) and yeΣ (red dashed) as well as without weights (black
dotted).

deviates by about 10% from the unweighted one.

From these results a systematic reweighting uncertainty σrew is determined. It is

de�ned by

σrew = 1− εrewdet
εdet

, (3.24)

where εdet is the detector e�ciency of the unweighted sample and εrewdet the one of

the reweighted sample with the maximal deviation from the unweighted sample.
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in Ee′(blue open diamonds) and the sample reweighted in yeΣ (red open
squares).
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σtot [nb] total [%] stat. [%] sys. [%]

HERA II data 1.853 +8.3
−9.5

2.90 +7.8
−9.1

detector level MC 1.32608 +7.8
−9.1

0.18 +7.8
−9.1

hadron level MC 1.32653 0.20 0.20 �

Table 3.9: Total D∗ meson production cross section σtot in nb and total, statistical and
systematic uncertainties in the visible phase space at 2 < Q2 < 5 GeV2.

3.10 The Total D∗ Meson Cross Section at low Q2

The total cross section for D∗ meson production is given by

σvis =
ND∗
tot

L · (1−R−P) · crad
BR(D∗ → Kππs) · εdet · εtrig

, (3.25)

where L is the luminosity of the data sample, which amounts to

L = (348±11) pb−1 (3.26)

From the total number of D∗s determined at low Q2, Ntot(D
∗), the fraction of

re�ections R = (4.6±0.018)% (see section 3.7.1) and the fraction of photoproduction

background P = (0.937 ± 0.002)% (see section 3.7.2) are subtracted. The factor

crad = 1.033 ± 0.001 (see section 3.8) corrects for higher order QED radiation. The

branching ratio BR(D∗ → Kππs) is needed because only D∗ mesons decaying in the

golden channel are counted. Finally, the cross section also has to be corrected by the

detection and trigger e�ciencies εtrig and εdet, which amount to (see sections 2.5 and

3.6, respectively):

εdet = (40.6± 0.1)%

εtrig = (93.7± 0.4)%

The total visible cross section at 2 < Q2 < 5 GeV2 and its total, statistical and

systematic uncertainties for the complete HERA II data sample, the Monte Carlo

sample after detector simulation and reconstruction procedure (detector level MC)

and the hadron level Monte Carlo sample (hadron level MC) is shown in table 3.9.
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3.11 Di�erential Cross Sections

3.11 Di�erential Cross Sections

For each observable O the single di�erential cross section dσ/dO is determined for

each bin i of the observable by

dσvis

dO

∣∣∣∣∣
bin i

=
1

L
∆ND∗

i (O)

∆Oi
· (1−R−P) · crad
BR(D∗ → Kππs) · εdet · εtrig

, (3.27)

where the number of D∗s in bin i with width ∆Oi is given by ∆ND∗
i (O). Double

di�erential cross sections are determined in a similar fashion:

dσ2
vis

dO1dO2

∣∣∣∣
bin i

=
1

L
∆ND∗

i (O1O2)

∆O1,i∆O2,i

· (1−R−P) · crad
BR(D∗ → Kππs) · εdet · εtrig

, (3.28)

These cross section are not bin center corrected and therefore give only the (double)

di�erential cross sections in the respective bin but is shown at the center of the bin

in the following �gures.

Figure 3.31 shows the single di�erential cross section in Q2
e, yeΣ, p

D∗
t and ηD

∗
. Inner

error bars represent the statistical uncertainties σstat, outer error bars represent the

total uncertainties σtot. For each bin they are determined by

σtot =
√
σ2
stat + σ2

sys , (3.29)

where σsys is the systematic uncertainty in that bin as described in 3.9. Below each

cross section the ratio

R =

∫
dO dσexp.

dO∫
dO dσMC

dO

dσMC/dO
dσexp./dO

∣∣∣∣
bin i

(3.30)

is presented as a measure to compare the shapes of Monte Carlo prediction and exper-

imental data. The latter is presented as black dots, the solid red lines represent the

predictions from Rapgap and the dashed blue lines the prediction from Cascade.

It can be seen that the prediction from both Monte Carlo generators, Rapgap and

Cascade, undershoot the data. The shapes of all distribution are described well by

both event generators, as the ratio plots below the cross section show.

The di�erential cross section as a function of Q2 (�g. 3.31 a)) complements the

measurements at higher virtualities. The three bins presented here lie in a region

which, in the D∗± production analysis of the HERA I period published by the H1

collaboration[25], was covered only by three broader bins. As shown in 3.32, the
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Figure 3.31: The di�erential D∗ meson production cross section dσ(ep → D∗X) in
the range 2 < Q2 < 5GeV2 as a function of a) Q2

e, b) yeΣ, c) p
D∗
t and d)

ηD
∗
. Inner and outer error bars show the statistic and total uncertain-

ties, respectively. The data are presented as black dots, predictions from
Rapgap as a solid red line and predictions from Cascade as a dashed
blue line. Below each di�erential cross section a ratio plot is shown com-
paring the shapes of the Monte Carlo predictions to the data. There only
total uncertainties are shown.
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Figure 3.32: The di�erential D∗ meson production cross section dσ(ep→ D∗X)/dQ2

as measured by the H1 collaboration using HERA I data (cyan) in the
range 1 < Q2 < 10 GeV2 compared to the HERA II measurement pre-
sented here (black). Only statistical uncertainties are shown.

HERA II data (black) o�er a �ner binning in Q2 than was possible with the HERA

I data (cyan).

The di�erential cross section as functions of the inelasticity y (�g. 3.31 b)) and

the pseudo rapidity ηD
∗
(�g. 3.31 d)) are similar to the same cross sections measured

at higher photon virtualities[1], although that analysis featured more bins along ηD
∗
.

The pD
∗

t -distribution (�g. 3.31 c)), on the other hand, is much steeper, as is expected

at low Q2.

In �gures 3.33 and 3.34 double di�erential cross sections are presented as functions

of yeΣ in bins of Q2
e and as functions of ηD

∗
in bins of pD

∗
t .

dσ2/dQ2dy is in general well described by both Monte Carlo generators. Also the

normalization is not as far o� as in the single di�erential distributions. Shapes are

equally well described by Cascade and Rapgap 3.1.

In the �rst y bin of the second Q2 interval a notable deviation from the shapes of

the other Q2 intervals can be seen in the experimental data. Checks of e�ciencies,

correction factors and mass peak �ts could not reveal the source of this deviation.

Also visible is that Cascade undershoots the experimental cross section dσ2/dηdpt

more signi�cantly than visible in the the other distributions. The description of the

shapes is only slightly worse than from Rapgap 3.1. This is seen in the distribution
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of the ratio R in �gure 3.34.
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Figure 3.33: Double di�erential D∗ meson production cross section dσ(ep→ D∗X) in
the range 2 < Q2 < 5GeV2 as a function of yeΣ in bins of Q2

e. Inner and
outer error bars show the statistical and total uncertainties, respectively.
The data are presented as black dots, predictions from Rapgap as a solid
red line and predictions from Cascade as a dashed blue line. Below
each double di�erential cross section a ratio plot is shown comparing
the shapes of the Monte Carlo predictions to the data. There only total
uncertainties are shown.
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Figure 3.34: Double di�erential D∗ meson production cross section dσ(ep→ D∗X) in
the range 2 < Q2 < 5GeV2 as a function of ηD

∗
in bins of pD

∗
t . Inner and

outer error bars show the statistic and total uncertainties, respectively.
The data are presented as black dots, predictions form Rapgap as a solid
red line and predictions from Cascade as a dashed blue line. Below
each double di�erential cross section a ratio plot is shown comparing
the shapes of the Monte Carlo predictions to the data. There only total
uncertainties are shown.
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In chapter 1 the concept of parton densities has already been mentioned, as well

as the basics of electron-proton scattering. This chapter o�ers deeper theoretical

insight into the subject of parton distribution functions, starting with an introduction

to factorization theorems in section 4.1 before the concept of parton evolution is

explored in section 4.2. The theoretical approach behind unintegrated PDFs , called

kt-factorisation , is also explained in that section.

4.1 Factorization and the Hard Interaction

As Collins, Soper and Sterman stated in [39], �[factorization] allows us to derive

predictions for [lepton-hadron and hadron-hadron large momentum transfer] cross

sections, by separating (factorizing) long-distance from short-distance be-

havior in a systematic fashion�. The need for this comes from the fact that in

QCD the coupling constant grows with the distance of interacting particles, making

perturbative calculations possible only for short-distance processes. The long-distance

parts which cannot be calculated perturbatively are accounted for by functions de-

scribing the probability to �nd partons in hadrons or, for hadronisation, hadrons to

arise from partons.

In electron-proton scattering one makes use of the asymptotic freedom of QCD,

which states that at high energy scales � i. e. short distances � the strong coupling

constant is small and therefore the interaction between the quarks can be neglected

compared to the photon-quark scattering process. This process can then treated as

an interaction between free particles so that perturbative methods can be applied.

While the radiation of the virtual photon by the electron can be approximated

using the Weizsäcker-Williams formalism[40, 41], the low momentum component on

the proton side, i. e. the interactions between the partons, is hidden in the parton

densities � functions describing the momentum distribution of partons in the proton.

In lowest order perturbation theory a PDF fi/h(x) can be interpreted as the prob-
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Figure 4.1: Illustration of factorisation of the ep cross section: An electron e interacts
with a quark q in a proton by exchange of a virtual photon γ∗ (a)). The
cross section can be factorized (b)) into the photon �ux (red), the hard
interaction (red) and the parton density (blue).

a) b) c)

Figure 4.2: The naive parton model γ∗q → q and its lowest order virtual pQCD cor-
rections: the quark line ( a and b) and the vertex corrections ( c).

ability of �nding a parton of �avor i inside a hadron h with a momentum fraction x.

The scattering cross section σ can then be factorized as follows:

σ ∼ φ(y)⊗ σ̂(γ∗q → q′)⊗ fi/h(x) , (4.1)

where φ(y) is the photon �ux as a function of the inelasticity y1, σ̂(γ∗q → q′) is the

cross section for the hard scattering of virtual photon and quark, and ⊗ represents

mathematical convolution. Figure 4.1 illustrates the separation of the photon �ux

(black), the hard scattering (red) and the parton density (blue). That this approxi-

mation holds is the subject of various factorisation theorems.

This picture does not yet include the strong interaction. The �rst step in incor-

1Remember that in the proton rest frame the inelasticity y is the fraction of the electron energy
carried by the virtual photon
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porating perturbative QCD in this model is to consider the lowest order virtual and

real corrections to γ∗q → q. This is depicted in �gures 4.2 and 4.3: for the virtual

corrections the gauge boson of the strong interaction, the gluon, is introduced as a

self interaction term of the quark line; the real corrections include initial and �nal

state gluon radiation in QCD Compton (QCDC) processes γ∗q → gq and in addition

boson gluon fusion (BGF) processes γ∗g → qq̄ where a boson, in this case a photon,

interacts with a gluon via a quark propagator.

4.2 Parton Evolution

Factorisation theorems o�er the possibility to calculate the hard scattering separately

from the softer long distance processes. The momentum of a parton � quark and

gluon alike � entering the hard scattering is not �xed but determined from parton

distribution functions.

The concept of parton evolution answers the question of what soft processes can

happen to a quark before the hard scattering occurs. It allows to account for mostly

soft parton emission happening before the hard interaction without having to include

these processes in the matrix element. This is done by evolution equations : per-

turbatively calculated equations bearing information of the in�uence of soft parton

emissions on parton densities.

In the following two sections two approaches to this concept are introduced. The

collinear factorisation approach (section 4.2.1) assumes that the in�uence of the trans-

verse momentum of the parton entering the hard scattering is negligible. In the

framework of kt-factorisation (section 4.2.2), on the other hand, the transverse mo-

mentum is explicitly taken into account and plays an important role especially at low

momentum fractions xBj.

4.2.1 Collinear Factorisation

At leading order (LO) perturbation theory the electron-quark scattering cross section

can be written as:2

d2σ

dxdQ2
=

2πα2
em

xQ4
(1 + (1− y)2)F2(x)) , (4.2)

2The Callan-Gross relationship FL = F2 − 2xF1 = 0 is used here.
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a) b) c)

Figure 4.3: The lowest order real corrections to γ∗q → q: QCD Compton in a) and
b), Boson Gluon Fusion in c).

where αem is the electromagnetic coupling constant and F2 is the structure function

for electron-proton scattering.

Considering only photon-quark scattering the structure function depends on the

momentum distribution of quarks of �avor i in the proton:

F2(x) =
∑
i

e2
ixqi(x) , (4.3)

where ei is the charge of a quark of �avor i in units of the elementary charge e =

1.602 · 10−19 C. Note that at this stage the structure function as well as the quark

density q(x) only depend on the momentum fraction x, not on the energy scale Q2.

The momentum distribution of the quark is changed if the quark radiates a gluon

before coupling to the virtual photon. Therefore the PDF qi(x) will change if the

processes from �gure 4.3 a) and c) are to be taken into account. Including the

process γ∗q → qg from �gure 4.3 a) introduces a scale dependence into the parton

densities:

F2(x,Q2) =
∑
i

e2
i

∫ 1

x

dξ qi(ξ, µf )

[
δ(1− x

ξ
) +

αs
2π
Pqq

(
x

ξ

)
ln

(
Q2

µf

)]
. (4.4)

Here ξ represents the proton momentum fraction carried by the incoming quark,

while x is the proton momentum fraction of the quark line which coupling to the

virtual photon. The factorisation scale µf serves the purpose of absorbing collinear

divergences into the PDFs. The splitting function Pqq(x/ξ) is derived from the matrix

element of the process γ∗q → qg and represents the probability that a quark emitted

a soft gluon. It depends only on the ratio x/ξ, which is the fraction of the incoming

quark's momentum carried by the quark which couples to the virtual photon.
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When the process γ∗g → qq̄ (�g. 4.3 c) is incorporated the splitting function Pqg

for the gluon splitting g → qq̄ and the gluon density g(x,Q2) are introduced, resulting

in the following contribution to the structure function:

F2(x, µf )
∣∣
γ∗g→qq̄ = e2

ix

∫ 1

x

dξ g(ξ, µf )Pqg

(
x

ξ

)
(4.5)

The scale dependence of the parton densities qi and g is an important feature which

can be further exploited by examining their derivatives with respect to lnµf :

∂qi(x, µf )

∂ lnµf
=

αem
2π

∫ 1

x

dξ

[
qi(x, µf )Pqq

(
x

ξ

)
+ g(x, µf )Pqg

(
x

ξ

)]
(4.6)

∂g(x, µf )

∂ lnµf
=

αem
2π

∫ 1

x

dξ

[
qi(x, µf )Pgq

(
x

ξ

)
+ g(x, µf )Pgg

(
x

ξ

)]
(4.7)

These equations are known as the DGLAP (after Dokshitzer, Gribov, Lipatov,

Altarelli and Parisi) equations. More generally equations which describes the change

of a parton distribution function with the energy scale are called parton evolution

equations. They treat the evolution of both quark (eq. (4.6)) and gluon (eq. (4.7))

densities under the in�uence of soft QCD radiation. The splitting functions Pij(x/ξ)

represent the probability that a parton i with momentum fraction x originates from

a parton j with a momentum fraction ξ by undergoing soft QCD radiation. For

example, Pqg represents the probability that a quark q originates from a gluon g, i. e.

that a gluon splits into a quark anti-quark pair. Note that these splitting functions

do not, however, contain any kind of information about the emitted soft parton.

Factorisation Schemes

How the structure function F2 can be factorized into long and short distance con-

tributions depends on how �nite O(αs) corrections are applied. Above no such cor-

rections where introduced in the de�nition of the structure function: F2(x,Q2) =∑
i e

2
ixqi(x,Q

2). This treatment is called DIS scheme. It means that all QCD cor-

rections are absorbed into the parton densities.

If only minimal contributions of �nite O(αs) corrections are absorbed into the

parton densities one ends up with a di�erent form of the structure function with

additional coe�cient functions:
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Figure 4.4: Examples of parton cascades for a) the photon-quark scattering γ∗q → q′

and b) boson gluon fusion γ∗g → qq̄.

F2(x,Q2) =
∑
i

e2
i

∫ 1

x

dx′

x′
qi(x

′, Q2)
{
δ(1− x

x′
) +

αs
2π
CMS

( x
x′

)
+ ...

}
. (4.8)

This scheme is called MS (modi�ed minimal subtraction) scheme and is a modi�ca-

tion of the MS scheme introduced by t'Hooft and Weinberg. In practice it is more

common than the DIS scheme.

The choice of scheme is, in principle, arbitrary. Once chosen, it has to be used

consistently throughout all cross section calculations in order to obtain reliable pre-

dictions.

Parton Cascades

Parton evolution equations can be interpreted to account for the e�ect of parton

showers not calculated in the matrix element on parton densities. As �gure 4.4 a)

illustrates the evolution of the quark density takes into account gluons emitted by

the quark line before the hard process γ∗q → q takes place. Figure 4.4 b) depicts the

gluon density evolution (eq. (4.7)) before the hard BGF process.

It is important to understand that by solving the evolution equations (4.6) and (4.7)

one does not obtain any information on the emitted soft partons. What is obtained
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Figure 4.5: Transverse momentum ordering for a gluon cascade in boson gluon fusion.

is information about the in�uence of possible parton radiation on the parton density

at the scale of the hard interaction. The larger the scale, the larger the phase space

available for parton radiation.

If one considers, for example, the process γ∗q → q′ (�g. 4.4 a)), the distribution of

the scattered quark q′ is a�ected by the parton evolution, but no information is gained

about the gluons radiated in the parton cascade. When Studying BGF processes the

parton evolution a�ects the momentum distribution of the outgoing quark and anti-

quark, but again no information is gained about the gluons radiated in a parton

cascade as shown in �gure 4.4 b).

Strong Transverse Momentum Ordering

In order to derive equations (4.6) and (4.7) an important approximation has to be

made:

k1
t � k2

t � ... � kn−1
t � knt � µ , (4.9)

where kit is the transverse momentum of parton i in the parton cascade, as illustrated

in �gure 4.5. This ordering is a consequence of the infrared divergence in the quark

propagators of the partonic cross sections of QCDC and BGF in the derivation of the

splitting functions.
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4.2.2 kt-factorisation

In kt-factorisation approaches parton densities explicitly depend on the transverse

momentum of the partons, kt, and enter the cross section σ in the following way:

σ ∼
∫
dx′

x′

∫
dk2

t σ̂(
x

x′
, kt)G(x′, kt) .

The cross section of the hard scattering, σ̂, is convoluted with the unitegrated parton

density G(x′, kt). Both depend explicitly on the longitudinal momentum fraction x′

as well as the transverse momentum kt. The kt-dependence is also present in the

matrix element of the hard scattering, which the partons enter o� mass shell.

The unintegrated gluon density G(x, kt) can be related to the collinear gluon by

xg(x,Q2) '
∫ Q2

dk2
t

k2
t

G(x, kt) (4.10)

The transverse momentum of the partons becomes important particularly at low

x. Here the strong ordering in transverse momenta is broken and the transverse

momenta of all partons involved in a parton cascade can take on any kinematically

allowed value.

Two approaches are presented in the following sections: the BFKL approach by

Balitsky, Fadin, Kuraev and Lipatov, which is expected to become important at

small momentum fractions x, and the CCFM approach by Catani, Ciafaloni, Fiorani

and Marchesini, which is valid at both large and small x.

The BFKL approach

Balitsky, Fadin, Kuraev and Lipatov addressed the problem of the scattering of two

perturbative hadrons where, on one hand, the squared center-of-mass energy, s, is

large compared to the transverse scales t1 and t2 of these objects, ti � s. On the

other hand the transverse scales are demanded to be large compared to the QCD scale,

ti � ΛQCD, so that perturbation theory is applicable. In deep inelastic scattering

one expects phenomena related to the BFKL approach to arise at small momentum

fractions x, since x ∼ t/s� 1.

At these small momentum fractions it is clear from the splitting functions that
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Figure 4.6: Illustration of angular ordering in e+e− → e+e−γ.

gluons drive the evolution:

Pqq, Pgq ' const.,

Pqg '
4

3

1

z

Pgg(z � 1) ' 6
1

z
> Pqg

The limit z � 1 implies that in this kinematic regime gluon cascades dominate the

cross section, and since z = xi+1/xi it also implies a strong ordering in longitudinal

momenta:

x0 � ...� xi � ...� xBj (4.11)

In the collinear scenario we also have a strong ordering in the transverse scales, e.

g. t1 � t2. BFKL studied a case where this no longer needs to hold. Rather the case

where transverse scales are of the same order, t1 ∼ t2, has to be considered. Since

the transverse momentum kt of a parton is essentially given by the transverse scale

of the hadron, k2
t ∼ t, we have a situation where the strong ordering in transverse

momenta (eq. 4.9) is not valid anymore. Instead the transverse momenta of all

partons taking part in the evolution can have any kinematically allowed value, which

is often referred to as a random walk in kt. The parton densities themselves, then,

also explicitly depend on the transverse momentum of the partons, as described in

the introductory note above.

Color Coherence, Angular Ordering and the CCFM approach

In order to get a consistent description of the kinematics of all �nal state partons

one also has to account for the transverse momentum of partons emitted in a parton

cascade. This is done in the CCFM approach, which bases its study of parton cascades
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Figure 4.7: De�nitions of the variables for gluon splitting in the CCFM approach.

on color coherence e�ects. Instead of the strong kt-ordering of the collinear approach

(eq. (4.9)) or the strongly ordered momentum fractions in BFKL (eq. (4.11)), color

coherence yields an ordering in emission angles. This angular ordering is a general

feature of gauge theories and not only of QCD. It can also be found, for example,

in the process e+e− → e+e−γ, in the which emission angle of the photon can never

exceed the opening angle of the electron positron pair: θγe < θee (see �g. 4.6).

The angular ordering of gluon3 emissions, θi < θi+1, leads to the following state-

ment:

ziqi < qi+1 . (4.12)

Here qi = pit/(1− zi) is the rescaled transverse momentum of the emitted gluon, and

zi the momentum fraction carried by the incoming gluon, as shown in �gure 4.7.

A few features of this ordering are worth mentioning. Instead of the strong order-

ing in transverse momenta of the propagating partons in the DGLAP approach we

now have an ordering for the rescaled transverse momenta of the emitted gluons. At

large momentum fractions zi this translates into a weak ordering for the transverse

momentum of the propagating gluons, kit < ki+1
t . At small zi, however, the trans-

verse momenta can obtain nearly any value, since then the smallness of zi ful�lls the

ordering for nearly any value of qi.

Thus we see that at relatively large x a DGLAP-like ordering, although not as

strong, is obtained, while at small x a feature of the BFKL evolution, the random

walk in kt, is reproduced. This, among other features, makes the CCFM approach

a promising candidate for a uni�ed description of parton showers both at large and

small momentum fractions x.

The integral form of the CCFM equation reads[9, 42, 43, 44, 45]:

3As stated before, at small x the gluon density dominates over the quark densities, which is why
in the following only gluons are considered.
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Figure 4.8: The unintegrated gluon density from set A0 as a function of log xg in bins
of the transverse momentum kt (a - c) and as a function of log kt in bins
of xg (d - f).

A(x, kt, q̄) = Ao(x, kt, q̄) +

∫
dz

z

∫
dq2

πq
θ(q̄ − zq)∆s(q̄, zq)Pgg(z, kt, q)A(

x

z
, k′t, q)

(4.13)

Here q̄ = ŝ + Q2 is the upper scale of the parton evolution, so that for n emissions

znqn < q̄. The Sudakov form factor ∆s(q̄, zq) describes the probability of parton

emission between the energy scales q̄ and zq, while the theta-function θ(q̄ − zq)

ensures the ordering in of equation (4.12). The splitting function Pgg now depends

on kt, as does the unintegrated parton density A(x, kt, q̄).

Unintegrated Parton Densities

The unintegrated parton densities A(x, kt, q̄) are obtained by �ts to deep inelastic

scattering data such as structure functions and non-inclusive �nal state measure-

ments like jet or heavy �avor production. For the use in the Monte Carlo generator

Cascade various sets are available. They di�er in details such as the renormalization
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Figure 4.9: Two examples for heavy quark production: a) LO and b) NLO contribu-
tion. For heavy quark production with three jets in the �nal state, the
diagram in b) would the LO contribution. What is more, the collinear
approach means that in a) the gluon producing the QQ̄ pair carries no
transverse momentum while in b) kt 6= 0.

scale, the splitting functions or the cut-o� for the transverse momentum kt.

For comparison to data the set A0 has been used, which is described in reference

[46]. Figure 4.8 shows the unintegrated gluon distribution of set A0 as function of

log xg in bins of kt (a - c) and as a function of log kt in bins of xg (d - f).

4.3 Next-To-Leading Order Corrections

In the previous sections all QCD calculations were given in �rst order of the strong

coupling αs. In processes such as heavy quark production, γq → QQ̄, this is the

leading order (see �g. 4.9 a)). Other processes such as heavy quark production with

three jets in the �nal state cannot be accounted for by a matrix element calculation

of �rst order in αs, because all the �rst order calculations only have two particles

in the �nal states (e.g. γq → qg). An example for a leading order contribution for

heavy quark production with three jets is γq → QQ̄g, as depicted in �gure 4.9 b).

Note that for heavy quark production without any additional requirement �gure 4.9

b) is already next-to-leading order (NLO).

Every perturbative calculation includes approximations, and higher order contri-

butions represent corrections to these. An example is the transverse momentum kt

of a gluon splitting into a heavy quark pair (�g. 4.9 a)). In the collinear approach

kt = 0 in the LO diagram. In the NLO contribution, however, kt 6= 0 for this gluon,

because the collinear approach requires the incoming gluon to be on-shell. In �gure

4.9 b) this is not the gluon that produces the heavy quarks. There the heavy quarks

origin from a gluon propagator which may obtain any kt.
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4.3 Next-To-Leading Order Corrections

As described in the previous section, the kt-factorisation approach already accounts

for a �nite transverse momentum of the gluon producing the heavy quark pair. A

correct and thorough treatment of kinematics already at leading order means that

NLO corrections potentially become smaller than in the collinear approach.
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5 Event Generators and Parton

Distributions

For collider experiments it is of crucial importance to model the �nal state of collisions

in order to correct for detector e�ects in the cross section determinations and to com-

pare measurements to theoretical predictions. One possibility is to simulate collisions

by using random numbers to choose a hard process from a wide array of available

matrix elements according to the kinematics of the event. In such a simulation var-

ious e�ects like QED radiation, parton evolution, fragmentation and hadronisation

are taken into account. Such simulations are referred to as Monte Carlo (MC) simu-

lations, Monte Carlo event generators or simply Monte Carlos.

Section 5.1 provides a general overview of how these physics phenomena are ac-

counted for in event generators. The treatment of parton evolution is of particular

interest here and will be described in more detail in section 5.2.2.

5.1 Simulation of scattering events

Quantum physics can only make probabilistic statements about underlying processes

of observable phenomena. This means that initial conditions of colliding particles do

not determine the outcome of a single collision, no matter how accurately they are

known. Particle collisions are therefore simulated by using random numbers to choose

one process for every single event. Figure 5.1 gives an overview of what is needed for

such an event simulation.

By generating a large number of simulated events one can then obtain statistical

predictions such as scattering cross sections for a wide array of measurable quantities.

5.1.1 Matrix Element Calculation

The �rst step is the calculation of the matrix element (ME) at a �xed order of the

strong coupling αs. The event generators used in this analysis perform this calculation
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Figure 5.1: Overview of the various stages of event generation in Monte Carlo gener-
ators.

to �rst order in αs. This does include the quark parton model (QPM) process as well

as the BGF and QCD-Compton processes which in �gure 4.3 were considered as real

corrections to the QPM.

In the event generator Cascade only the BGF process is included, because Cas-

cade is dedicated to study gluon evolution at small momentum fractions x where

the BGF process dominates the cross section.

5.1.2 Process Selection

For electron-proton collisions the matrix element is calculated at a certain photon

virtuality Q2 and inelasticity y using Monte Carlo techniques for integration. Because

the cross section is calculated in this step for each process contributing to the matrix

element, the relative contribution of every process to the total cross section at that

particular Q2 and y can be determined. Figure 5.2 illustrates schematically how a

process is then selected:

� the relative cross sections σi/σtot of the processes i are calculated

� the interval [0, 1] is divided according to the relative cross sections

� a random number r between 0 and 1 is generated
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0 σQPM/σtot σQCDC/σtot σBGF/σtot 1

0 σtotσQPM σQCDC σBGF

Random number r selecting the BGF process

Figure 5.2: Schematic example of process selection in MC simulations. The upper la-
bels represent the cross sections σi of the QPM, QCDC and BGF processes
at the generated Q2 and y and span values between 0 and the total cross
section σtot at the generated Q2 and y. The lower labels are the relative
contributions σi/σtot of the individual processes and span values from 0 to
1. A process is selected by generating a random number between 0 and 1
and examining afterwards in which interval it is found, indicated by the
arrow.

� the interval in which r lies is determined and the corresponding process i is

selected for the event

5.1.3 Parton Showers

After the process selection higher order e�ects not accounted for in the matrix ele-

ments are approximated by parton showers (see �g. 5.1). In each event this is done

by integration of the evolution equation for the selected process, as described in more

detail in section 5.2.1.

One has to separate initial state and �nal state parton showers. Although intu-

itively IS parton showers take place before the hard scattering they are applied only

after the calculation of the matrix element because this allows a more e�cient event

generation. This is called backward evolution because one starts at the highest pos-

sible energy scale and evolves the parton density backwards towards a lowest cut-o�

energy scale. As explained in more detail below (section 5.2.1) initial state parton

radiation a�ects the four momentum of the hard parton which, in the matrix element,

is considered the incoming particle.

Final state parton showers are also calculated with evolution equations. Since the

phase space for this is not as limited they can be applied straight forward from the

outgoing partons of the matrix element until some condition has been reached.
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c)b)a)

Figure 5.3: Example of a breaking string in the Lund string model. Quarks are rep-
resented by the endpoints of strings while kinks represent gluons, as illus-
trated in b).

5.1.4 Fragmentation and Hadronisation

In order to produce hadrons out of the quarks one has to apply a mechanism mod-

eling hadronisation and fragmentation. In the non-perturbative phase space region

where parton showers cannot be applied anymore one has to rely on phenomenologi-

cal models for hadron production. The two most widely spread models are the Lund

string model[47] and the cluster fragmentation model[48, 49].

The Lund String Model

The Lund string model considers color connections between quarks as strings. In this

picture gluons carrying two color charges are represented by kinks on a string, and

the splitting of a gluon into two quarks means that a string breaks at a kink. This is

illustrated in �gure 5.3 for the process γ → qq̄qq̄, where the blue lines represent color

strings between two quarks. When created from the splitting of the photon the two

quarks are connected by a string (�g. 5.3 a)). When one of the quarks emits a gluon,

the string gets kinked (�g. 5.3 b)), and the breaking of the string at the kink means

the creation of a quark anti-quark pair from the splitting of the gluon (�g. 5.3 c)).

The Cluster Fragmentation Model

Another one also widely used in high energy physics is the cluster fragmentation

model. In this model clusters are formed out of color singlet quark anti-quark or

quark diquark pairs remaining after �nal state parton showers. If any gluons are left

they are forced to split into quark anti-quark pairs before clustering.

Clusters themselves cannot yet be considered hadrons but decay into two hadrons

each. Only on the low and high end of the cluster mass spectrum cluster decay has

to be treated di�erently.
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5.1 Simulation of scattering events

A cluster with too low a mass for decaying into two hadrons forms only one hadron

and the excess momentum is distributed equally onto neighboring clusters.

On the other hand a heavy cluster can have such a large mass that the two daughter

hadrons would have unnaturally high momenta. In this case it decays into daughter

clusters with additional light quark anti-quark pairs whose momenta are aligned with

the mother cluster's. The mechanism of cluster-to-cluster decay is similar to the Lund

string fragmentation.

This model is used for example in the Monte Carlo generator HERWIG (Hadron

Emission Reaction With Interfering Gluons).

Fragmentation Functions

The mechanism with which hadronisation and fragmentation models are applied in

MC simulations is similar to parton density evolution, only that instead of parton

densities so called fragmentation functions Dh/q(z) are evolved. These represent the

probability of a hadron h being produced from a quark q with a fraction z of the

quark's momentum. A parametrization that is widely used for heavy quarks is the

Peterson fragmentation function

Dh/q(z) =
N

z · (1− 1/z − εq(1− z))2 , (5.1)

where N normalizes the function to 1 and εq represents the hardness of the fragmen-

tation process. In �gure 5.4 the Peterson function is shown for the fragmentation of

a charm quark into a D∗ meson with εc = 0.05. This value has been used here in all

Monte Carlo generators.

5.1.5 Decays Of Unstable Particle

The results of the fragmentation and hadronisation phase are four momenta of hadrons

and leptons. Because some of the hadrons have lifetimes too short for the particle

to be detected decays of unstable hadrons have to be simulated as well. An example

are D∗ mesons, which are measured in this analysis by selecting a particular decay

channel1, D∗ → Kππ.

1For more details see chapter 3.
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Figure 5.4: Peterson fragmentation function for the production of D∗ mesons out of
charm quarks with εc = 0.05.

5.2 Parton Evolution in Event Generators

The two di�erent approaches to parton evolution introduced in section 4.2 each have

their advantages and disadvantages when it comes to implementing them in event

generators. In section 5.2.1 I describe how the collinear approach is handled in MC

generators. A short review of a proposal how the general concept of parton densities

can be rede�ned for event generators is given in section 5.2.2, followed by a comment

on why unintegrated parton densities are more suited for the implementation in MCs

in section 5.2.3.

5.2.1 The Collinear Approach in Event Generators

In order to correctly account for parton showers one has to implement evolution

equations such as equations (4.6) and (4.7). This is usually done by rewriting these

equations in an integral form:

f(x, µ) = f(x, µ0)∆s(µ, µ0) +

∫
dξ

ξ

∫
dµ′

µ′
∆s(µ

′)

∆s(µ)
P (ξ)f(

x

ξ
, µ′) , (5.2)

106



5.2 Parton Evolution in Event Generators

where the parton density f is to be evaluated at the scale µ. The Sudakov form

factor ∆s is present again, giving probabilities of emission between the scales µ and

µ0. Especially this last feature is very useful for the implementation into a computer

program, because in combination with random numbers it o�ers a simple method to

decide � event by event, parton by parton � if a parton is emitted at a certain scale

or not.

As explained in section 4.2 the DGLAP equations do not give any information on

emitted partons. Since in a computer simulation the whole �nal state is of interest one

has to introduce such information by hand. This can lead to inconsistent treatment

of parton emissions and parton evolution. Note that the two are not necessarily the

same: parton evolution refers to the in�uence of parton emissions on parton distri-

bution functions under certain assumptions, e. g. collinearity, transverse momentum

ordering or on-shell partons.

An example for inconsistent treatment of parton evolution and parton emission in

event generators is the strong transverse momentum ordering of the collinear approach

(eq. (4.9)). Technically it is only possible to implement a weak ordering kit < ki+1
t ,

so that the strict approximation of the DGLAP formalism is never fully satis�ed in

any Monte Carlo program based on it.

5.2.2 PDF4MC

The inconsistencies mentioned above do not mean that leading order Monte Carlo

generators are inappropriate for comparing theoretical predictions to data. MC gen-

erators are valuable tools needed by experimentalists to account for, e.g., detector

e�ects.

It has thus been proposed[50] that rather than using PDFs which are numerically

determined from theory calculations based on completely di�erent approaches, dedi-

cated parton densities should be determined for each individual MC generator. Event

generators do not strictly implement factorisation theorems like the DIS or the MS

scheme and therefore need a dedicated de�nition of MC PDFs as well as a dedicated

MC factorisation theorem.

The project PDF4MC in the Helmholtz Analysis Center at DESY is working on

implementations of parameter estimation tools for the determination of PDFs for the

Monte Carlo generators Rapgap and Pythia. The general method is explained in

chapter 6.
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5.2.3 Unintegrated Parton Distributions in Monte Carlo

Generators

The evolution equation (4.13) is used for gluons in the MC generator Cascade in its

integral form to calculate the probability of parton emission as described in section

5.2.1. In contrast to MCs based on the DGLAP formalism the CCFM equation allows

MC generators based on it to keep track of the longitudinal and transverse momenta

of both emitted and propagating gluons. MC generators based on DGLAP have to

add information about the transverse momentum each time a parton is emitted, while

this information is already present in the CCFM equation.

That the CCFM approach o�ers information on both the in�uence of parton emis-

sion on uPDFs and on the emitted partons themselves makes it more suited for an

implementation in MC event generators than the DGLAP approach. This is also the

reason why the CCFM approach does not necessitate parton densities dedicated to

MC generators. Since the full information of the uPDFs is used in the evolution and

no information is added, as is the case for collinear MCs, uPDFs are universal.

Unfortunately the calculation of matrix elements � especially at NLO � is far more

complicated than in the DGLAP approach, which is why there is only a limited

number of processes yet for which a matrix element has been derived. What is more

in the MC generator Cascade only gluon evolution is implemented so far, neglecting

e�ects of valence and sea quark distributions. Especially at low momentum fractions

x this does not pose a problem, because the strongly gluon dominates this phase

space region.
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Densities

The basic formalism of parton density extraction and a description of the choice of

the parametrization of the initial parton densities is outlined in section 6.3.There

are, in principle, two methods to obtain parton densities from experimental data.

The analytic method described in section 6.1 is based on numerical solutions of ana-

lytic expressions, while the Monte Carlo method described in section 6.2 uses event

generators to obtain PDFs. First Results are presented in section 6.4.

The results are only a rough sketch of what is possible inside this framework. The

treatment of systematic errors, correlated and uncorrelated errors is not covered, nor

are uncertainties on the extracted parameters determined here.

The presentation here is based on the book �Deep Inelastic Scattering� by Devenish

and Cooper-Sarkar [51], where a thorough description of the subject can be found in

chapter 6.

6.1 The Analytic Method

The more common method is to start with a set of initial parton densities f 0
i (x)

which is evolved by numerically solving the evolution equations (4.6) and (4.7). Cross

sections are then calculated which can be compared to measurements. The di�erence

between measurement and theoretical prediction is then minimized by iteratively

adjusting the parameters of the initial parton densities and in each step comparing

theory prediction and experimental data.

Collaborations like CTEQ[52] and MSTW[53] use this method with data from a

large set of experiments1 in order to extract parton densities. The collaborations

H1 and ZEUS both determined sets of PDFs with this method using their own data

of the proton structure function F2. Their results are widely used in predictions for

1In [51] pp. 146,147 a complete list of experiments contributing to global PDF �ts is given.

109



6 Determination of Parton Densities

proton collision experiments such as H1 and ZEUS, the CDF and D0 collaborations at

Tevatron or the LHC collaborations CMS, ATLAS, ALICE and LHCb. Since analytic

expressions are solved by numerical expressions I use the term analytic method.

6.2 The Monte Carlo Method

The method which was used for this thesis follows a di�erent path. The calcula-

tion of cross sections is not done by numerically solving analytical expressions, but

instead with Monte Carlo event generators. In this method a set of initial parton

densities is used in order to generate a certain number Nevt of events. After an event

selection is applied cross sections of certain processes are calculated and compared

to experimental data. Similar to the analytic method, the di�erence between theory

prediction and data is then minimized by iteratively adjusting the parameters of the

initial parton density and in each step generating Nevt events.

This method has the advantage of giving parton densities dedicated to a certain

MC generator. Instead of treating parton densities as universal quantities applicable

by every kind of theoretical prediction and event generator, this method incorporates

the PDF4MC concept mentioned in section 5.2.2.

In this analysis, however, unintegrated parton densities were obtained by the event

generator Cascade. As mentioned in section 5.2.3 uPDFs are universal in the sense

that event generators based on the CCFM approach have no need for dedicated uPDFs

and vice versa: uPDFs determined by the Monte Carlo method using Cascade are

universally applicable in numerical methods based on CCFM.

6.3 Outline of the Fitting Formalism

The �tting formalism is based on the χ2 method, where the value

χ2 =
22∑
i=n

(σmeasi − σtheoi )2

u2
i

(6.1)

is calculated from the single di�erential cross sections determined in this analysis

(sec. 3.11). The index i runs over all 22 bins of the cross sections dσ/dQ2, dσ/dy,

dσ/dpD
∗

t and dσ/dηD
∗
presented in section 3.11. The value χ2is the sum of the squared

di�erences of each measured value σmeasi and the corresponding theoretical prediction
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σtheoi in units of the statistical measurement uncertainties ui.
2 In order to calculate

χ2 the software package HzTool[13] (see section 1.5.2) is interface with Cascade .

Since for a large number of data points χ2 as de�ned in equation (6.1) can become

large it is common to use the quantity χ2/ndf to estimate the quality of a theoretical

description of experimental data, where ndf is short for number of degrees of freedom.

These are given by the number of data points less the number of free parameters.

Values of a good theoretical description lie around χ2/ndf ≈ 1. This is because

χ2/ndf = 1 means that on average the theoretical prediction is one standard deviation

away from the data.

When determining parton densities with the Monte Carlo method from the single

di�erential D∗ meson production cross sections measured in this thesis, χ2 is cal-

culated from events generated by the Monte Carlo generator Cascade which have

passed the event selection in table 3.3. As described above it is minimized by changing

the initial parton density in order to �nd a minimum χ2 value.

6.4 Unintegrated Gluon Densities Extracted from

D∗Meson Production at low Q2

Collaborations working on PDF extraction use the general form

fi(x) = Ni

(
1

x

)Ai
(1− x)BiPi(x) (6.2)

as parametrization of initial PDF s of �avor i. Here Ni is a normalization factor which

is varied together with the exponents Ai and Bi to �t the data. The exponent Ai of

the 1
x
-term is responsible for the low x behavior of the parton density while Bi handles

the large x behavior by means of the (1−x)-term. Some groups like CTEQ or MSTW

(formerly MRST) use an additional polynomial Pi(x), usually a polynomial in x or
√
x, for example:

Pi(x) =
(
1 + Cix

Di
)

(6.3)

Pi(x) =
(
1 + Ci

√
x+Dix

)
. (6.4)

2Systematic uncertainties have to be treated di�erently are not included in the �ts here.
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Cascade only treats gluon evolution, so that only the unintegrated gluon density

is determined here. The initial gluon density used here is given by

A0(x, kt) = Ng

(
1

x

)Ag
(1− x)Bg(1 + Cgx) e

− k
2
t
k2
0 . (6.5)

The parameters Ng and Ag are determined by generating Nevt = 1 000 000 events with

Cascade, calculating χ², changing the parameters and repeating the procedure until

a minimum χ2 is found. The minimization is carried out with the software package

Minuit using the simplex method. Both are explained in the Minuit manual[54].

The parameter k0 = 1 GeV parametrizes the width of the initial kt distribution and

is not varied in the �t. The kt distribution is therefore assumed to have a Gaussian

shape with a maximum at 0 GeV and a width of 1 GeV.

In reference [55] �ts of unintegrated gluon densities to inclusive structure function

data were presented. The results of those �ts were to serve as starting values for the

gluon density parameters here. That the results of reference [55] give sensible values

is tested in parameter scans, i.e. one parameter was changed while all other ones were

�xed. This gives a distribution of χ2 values as a function of the scanned parameter.

The parameter Bg is responsible for the high x behavior and is not very sensitive

to the data used here. As �gure 6.1 illustrates a minimum χ2 is achieved with a value

Bg ≈ 4, which corresponds nicely to the value used in reference [55]. Around this

value the χ2 distribution is more or less �at, which is why it has been �xed to Bg = 4

in the extraction of the gluon density parameters.

A scan of the parameter Cg showed a minimum at around Cg ≈ 1.3 (see �g. 6.1,

lower right plot). This contradicts the value found in [55], which was Cg = −9.2. First

�t results in this analysis, however, showed that Cg < 0 could not yield a minimum

χ2. Therefore Cg = 1.3 was used as starting parameter for the uPDF �ts here.

Two points in the distribution of χ2 as a function of Cg (lower right plot, �g.

6.1) strongly deviate from their surrounding values. These �uctuations stem from

integration problems in Cascade which have been �xed in newer versions of the

generator.

For Ng and Ag the results from [55] correspond nicely to the minima shown in

�gure 6.1 and were used as starting values in the �ts of uPDFs here.

Table 6.1 lists all the starting and �nal values as well as the χ2 values for the

respective number of degrees of freedom (n.d.f.). The resulting uPDF is referred to

as �t A. The achieved χ2/n.d.f. = 1.27 points to a good description of the data by
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Figure 6.1: Scans of the parameters Ng, Ag, Bg and Cg of the initial unintegrated
gluon density A0(xg, kt), giving distributions of χ2 values as functions of
the four parameters.

the cross section predictions from Cascade using �t A.

The initial gluon density of �t A is presented in �gure 6.2 as a function of log xg

(upper plot) and log k2
t (lower plot). Shown are gluon densities evolved according to

the CCFM equation at di�erent constant k2
t and xg, respectively.

Bacchetta et al. found that �the addition of [the parameter Cg] substantially

improves the description of the data we consider.� ([55], p. 5) Since their result

Cg = −9.2 could not be brought in good agreement with the measurement presented

here, a third �t (�t B) was done where the parameter Cg has been �xed to zero. The

Parameter starting value �nal value
Ng 0.417 0.418
Ag 0.125 0.121
Bg 4.0 4.0
Cg 1.3 1.24

χ2/n.d.f. 51.1/19 24.1/19

Table 6.1: Starting and �nal parameter values of the unintegrated gluon density �t A
as determined with Cascade.
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6 Determination of Parton Densities

uPDF Ng Ag Bg Cg χ2/n.d.f.
�t A 0.418 0.121 4.0 1.24 1.21
�t B 0.454 0.089 4.0 0. 1.69

setA0 norm �t 0.61 0. 4.0 0. 2.06

Table 6.2: Comparison of �nal parameter values of three �tted sets of uPDF as de-
termined with Cascade.

purpose of this was to estimate the signi�cance of the Cg · x term in equation 6.5. It

was found that a good description of the data is possible with Cg = 0 resulting in

χ2/n.d.f. = 1.69, but at the same time giving a signi�cantly di�erent value for Ag of

about 0.089. This seems to point to a strong correlation between the parameters Ag

and Cg.

Table 6.2 summarizes these results. The parameters Ng, Ag, Bg and Cg for all three

uPDF �ts are shown together with the corresponding χ2/n.d.f.. Errors given in the

tables are rough estimates by the simplex method used for the �ts here.

In addition to the results of �t A and B a third �t has been performed which is

referred to as setA0 norm �t in table 6.2 and in the following. Set A0 is de�ned by

AsetA0(xg) = Ng(1− xg)4 .

In order to compare the resulting gluon density from �t A to the formerly used set

A0 only the normalization factor Ng has been varied. The result was χ2/n.d.f. =

43.3/21, which is considerably larger than for �t A and �t B.

Figure 6.3 shows a comparison of the di�erential cross sections from this measure-

ment (black dots) as presented in section 3.11, Cascade using the uPDF from �t A

(solid red line) and Cascade using set A0 norm �t. (dashed blue line). Although the

overall χ2 is better for �t A, these cross section predictions indicate that the inclusion

of the parameters Ag and Cg do not signi�cantly improve the data presented in this

analysis. Also the shapes are not improved much, as can be seen from the ratio plots

below each cross section (see eq. 3.30). This is mainly due to the large systematic

uncertainties, which haven't been included in the �ts.

Figure 6.4 shows a comparison of the three uPDFs from the three �ts (�t A: solid

line, �t B: coarsely dashed line and setA0 norm �t: �nely dashed line). Shown is

the energy weighted gluon density xA(xg, kt, q̄) as a function of log xg for di�erent

�xed values of the squared transverse momentum k2
t of the gluon, with k

2
t = 1 GeV2

presented in black, k2
t = 50 GeV2 in blue and k2

t = 100 GeV2 in light blue. The
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6.4 Unintegrated Gluon Densities from D∗ Mesons at low Q2

evolution variable q̄ = ŝ+Q2 sets the upper scale of parton emission in the evolution.

The evolution with the transverse momentum is nicely visible.

What can also be seen is the di�erence in shape of the three uPDFs. The normal-

ization �tted set A0 (�nely dashed line) does not include the 1/x term, and at lowest

k2
t this visible in the fact that at low xg the uPDF is �at in log xg. Towards larger k

2
t

its shapes more and more resembles that of the other uPDFs.

Fit B (coarsely dashed line) is more similar to �t A in shape, but with Cg = 0 its

shape is less steep. It can be seen here that the parameter Cg strongly in�uences the

low xg behavior of the uPDFs and seems to be correlated to the parameter Ag, as

noted above.
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Summary and Conclusion

For the �rst time unintegrated gluon densities have been determined by measurements

of single di�erentialD∗± meson production cross sections at H1 using the Monte Carlo

event generator Cascade.

The total, single di�erential and double di�erential cross sections have been mea-

sured for the production of D∗± mesons at low photon virtualities with the H1 de-

tector. The full HERA II data sample with an integrated luminosity of 348 pb−1 was

exploited to measure cross sections more di�erentiated than previous D∗± meson pro-

duction measurements at H1. This measurement complements the analyses of Jung

[1]and Brinkmann[2, 3], who measured the production of D∗± mesons in the virtuality

regions 5 GeV2 < Q2 < 100 GeV2 and 100 GeV2 < Q2 < 1000 GeV2, respectively.

The phase space of this measurement is restricted to a photon virtuality range of

2GeV2 < Q2 < 5GeV2, an inelasticity range of 0.02 < y < 0.7, a pseudo rapidity range

of −1.5 < ηD
∗
< 1.5 and transverse momenta pD

∗
t above 1.5 GeV. Single di�erential

cross sections as functions of these four variables have been measured in these ranges,

except for dσ(e±p → e±D∗±X)/dpD
∗

t . In addition, double di�erential cross section

dσ2/dQ2dy and dσ2/dpD
∗

t dηD
∗
have been determined and compared to Monte Carlo

predictions.

All cross sections have been compared to predictions from the Monte Carlo event

generators Rapgap and Cascade. Both Monte Carlo predictions undershoot the

data but describe the shapes of all distributions rather well.

Unintegrated gluon densities have been �tted to the measured single di�erential

cross sections of D∗± production with the Monte Carlo method for PDF extraction.

This method uses Monte Carlo event generators to �t initial parton densities. It has

been applied here to �t unitegrated gluon densities to D∗± production cross sections

for the �rst time.

Three di�erent parametrization have been used, all of which led to results which

showed a good agreement to the measured data. The individual initial gluon distri-

butions di�er quite strongly, but the cross section prediction only slightly di�er in
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Summary and Conclusion

shape. This insigni�cance of the presented measurement to the initial gluon density

parametrization stems from the restricted phase space of this measurement as well as

from the large systematic uncertainties of the data.

This analysis has been the �rst determination of unintegrated gluon densities from

charm production in electron-proton collisions. Further �ts of unintegrated gluon

densities to the whole D∗± production phase space at H1 can enhance the sensitivity

and lead to more restricted set of unintegrated gluon densities. The inclusion of more

HERA data sets like the proton structure functions F2 and F
cc̄
2 can be used to further

restrict the parameters of the unintegrated gluon densities.
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A Cross Section Tables

Q2 range dσ(e±p→ e±D∗±X)/dQ2 σstat. [%] σsys. [%] σtot. [%]

[GeV2] [nb/GeV2]

2 - 3 0.829 ±5.3 ±16.2 ±17.1

3 - 4 0.603 ±5.1 ±10.7 ±11.9

4 - 5 0.448 ±4.7 ±16.0 ±16.7

Table A.1: Single di�erential cross section as a function of Q2
e with statistical (σstat.),

systematic (σsys.) and total (σtot.) uncertainties.

y range dσ(e±p→ e±D∗±X)/dy σstat. [%] σsys. [%] σtot. [%]

[nb]

0.02 - 0.05 3.93 ±12.7 +25.2
−18.4

+28.2
−22.4

0.05 - 0.12 5.58 ±5.0 ±9.3 ±10.5

0.12 - 0.22 4.31 ±4.4 ±8.4 ±9.5

0.22 - 0.35 2.73 ±6.1 ±11.2 ±12.7

0.35 - 0.5 1.27 ±7.2 +19.1
−18.1

+20.4
−19.5

0.5 - 0.7 0.86 ±13.2 +9.5
−10.8

+16.3
−17.1

Table A.2: Single di�erential cross section as a function of yeΣ with statistical (σstat.),
systematic (σsys.) and total (σtot.) uncertainties.
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A Cross Section Tables

pD
∗

t range [GeV] dσ(e±p→ e±D∗±X)/dpD
∗

t σstat. [%] σsys. [%] σtot. [%]

[nb/GeV]

1.5 - 2.0 1.312 ±9.6 ±7.9 ±12.5

2.0 - 2.5 0.839 ±5.8 ±7.8 ±9.7

2.5 - 3.0 0.580 ±6.2 ±8.0 ±10.1

3.0 - 3.5 0.354 ±6.2 ±8.3 ±10.4

3.5 - 4.5 0.199 ±5.0 ±8.4 ±9.8

4.5 - 6.0 0.062 ±6.4 +9.2
−8.9

+11.3
−11.0

6.0 - 10 0.011 ±9.2 ±9.5 ±13.3

Table A.3: Single di�erential cross section as a function of pD
∗

t with statistical (σstat.),
systematic (σsys.) and total (σtot.) uncertainties.

ηD
∗
range dσ(e±p→ e±D∗±X)/dηD

∗
σstat. [%] σsys. [%] σtot. [%]

[nb]

−1.5 - − 0.9 0.499 ±6.0 ±9.3 ±11.1

−0.9 - − 0.4 0.628 ±5.5 ±8.3 ±10.0

−0.4 - 0 0.664 ±6.4 ±7.8 ±10.0

0 - 0.4 0.634 ±6.9 ±7.9 ±10.5

0.4 - 0.9 0.656 ±6.7 ±8.4 ±10.7

0.9 - 1.5 0.629 ±10.1 ±10.8 ±14.8

Table A.4: Single di�erential cross section as a function of ηD
∗
with statistical (σstat.),

systematic (σsys.) and total (σtot.) uncertainties.

122



Q2 range y range dσ2(e±p→ e±D∗±X)/dQ2dy σstat. [%] σsys. [%] σtot. [%]

[GeV2] [nb/GeV2]

2 - 3 0.02 - 0.09 1.861 ±10.3 ±18.1 ±20.8

0.09 - 0.16 1.606 ±5.4 +9.1
−8.7

+10.6
−10.2

0.16 - 0.32 1.359 ±7.6 +15.4
−15.1

+17.1
−16.8

0.32 - 0.7 0.582 ±9.8 ±29.3 ±30.9

3 - 4 0.02 - 0.09 1.281 ±10.2 +11.6
−11.2

+15.4
−15.1

0.09 - 0.16 1.739 ±7.4 ±7.8 ±10.8

0.16 - 0.32 1.028 ±7.5 +9.5
−10.0

+12.1
−12.5

0.32 - 0.7 0.480 ±16.1 +8.8
−10.8

+18.4
−19.4

4 - 5 0.02 - 0.09 1.291 ±8.5 +17.6
−13.5

+19.6
−15.9

0.09 - 0.16 1.226 ±7.9 +8.6
−8.1

+11.6
−11.3

0.16 - 0.32 0.792 ±8.0 +8.5
−7.8

+11.6
−11.2

0.32 - 0.7 0.342 ±12.9 +8.9
−8.7

+15.7
−15.6

Table A.5: Double di�erential cross section as a function of Q2
e and yeΣ with statistical

(σstat.), systematic (σsys.) and total (σtot.) uncertainties.
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A Cross Section Tables

pD
∗

t range ηD
∗
range dσ2(e±p→ e±D∗±X)/dpD

∗
t dηD

∗
σstat. σsys. σtot.

[GeV] [nb/GeV] [%] [%] [%]

1.5 - 2.5 −1.5 - − 0.75 0.263 ±8.3 +21.1
−18.1

+22.7
−19.9

−0.75 - 0 0.316 ±10.4 ±7.9 ±13.1

0 - 0.75 0.334 ±9.3 +8.7
−8.2

+12.8
−12.4

0.75 - 1.5 0.440 ±15.4 ±8.5 ±17.6

2.5 - 4.5 −1.5 - − 0.75 0.160 ±6.8 ±9.8 ±11.9

−0.75 - 0 0.262 ±5.2 ±7.9 ±9.4

0 - 0.75 0.209 ±6.6 ±8.0 ±10.4

0.75 - 1.5 0.222 ±10.2 +8.7
−9.5

+13.4
13.9

4.5 - 10 −1.5 - − 0.75 0.027 ±12.2 +14.8
−25.3

+19.1
−28.1

−0.75 - 0 0.050 ±8.9 +11.4
−9.6

+14.4
−13.0

0 - 0.75 0.054 ±9.8 +7.8
−7.9

+12.5
−12.6

0.75 - 1.5 0.042 ±13.8 +11.9
−12.6

+18.2
−18.7

Table A.6: Double di�erential cross section as a function of pD
∗

t and ηD
∗
with statis-

tical (σstat.), systematic (σsys.) and total (σtot.) uncertainties.
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