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Abstract

The scattering of highly virtual photons offers a reliable environment to investigate the
BFKL Pomeron in perturbative quantum chromodynamics. Correlators of conserved
R-currents in N = 4 supersymmetric Yang-Mills theory are close analogs of electro-
magnetic current correlation functions. In the leading logarithmic approximation, the
BFKL Pomeron of R-current scattering in N = 4 supersymmetric Yang-Mills theory
is the same as in perturbative quantum chromodynamics.

The AdS/CFT-correspondence provides one opportunity to study the strong cou-
pling limit of R-current correlation functions. The correspondence connects N = 4
supersymmetric Yang-Mills theory and type IIB string theory on a five-dimensional
Anti-de Sitter background. The strong coupling regime of the conformal field theory
is related to the weakly coupled string theory and vice versa. In particular, the strong
coupling limit of N = 4 supersymmetric Yang-Mills theory in the large Nc-limit is
equivalent to classical type IIB supergravity.

We consider the scattering of R-currents in the Regge limit at weak and strong
coupling using the AdS/CFT-correspondence. First, we compute the four and six
point function of R-currents in N = 4 supersymmetric Yang-Mills theory at weak
coupling in the leading logarithmic approximation. We study the influence of the
supersymmetry, especially of the new scalar degrees of freedom, on the scattering
process. The main results for the four point function of R-currents are the Regge
factorization of the amplitude and the explicit computations of the R-current impact
factors. Subsequently, we investigate the six point function of R-currents at weak
coupling for arbitrary Nc and in the large Nc-limit. We observe a new direct coupling
of t-channel gluons to the R-current impact factor, which is not known from quantum
chromodynamics.

In the second part of our work, we study the strong coupling limit of the four and
six point R-current correlator in the corresponding classical supergravity theory. The
leading contribution in the center-of-mass energy of the four point function in the
Regge limit is given by a Witten diagram with one graviton exchange. We observe a
factorization of the amplitude similar to the factorization of the four point amplitude
at weak coupling. The six point function of R-currents leads to Witten diagrams with
a triple graviton vertex and with two graviton exchange, respectively. We analyze the
high energy behavior of the triple graviton vertex diagram and find a suppression of
the diagram in the triple Regge limit.

The investigation of the reggeization of the graviton on the string theory side is an
interesting task for future work. As a first step, we have computed tree diagrams,
which are lowest order diagrams, on the string theory side. In order to study the
reggeization of the graviton, further computations beyond the classical supergravity
limit are necessary.



Zusammenfassung

Die Streuung hoch virtueller Photonen ist ein bewährter Prozess, um das BFKL-
Pomeron in perturbativer Quantenchromodynamik zu studieren. Die Korrelatoren er-
haltener R-Ströme in der N = 4 supersymmetrischen Yang-Mills-Theorie sind ähnlich
zu Korrelationsfunktionen elektromagnetischer Ströme. In der Näherung führender
Logarithmen ist das BFKL-Pomeron der R-Ströme-Streuung in der N = 4 super-
symmetrischen Yang-Mills-Theorie das gleiche wie in perturbativer Quantenchromo-
dynamik.

Die AdS/CFT-Korrespondenz bietet eine Möglichkeit, den starken Kopplungslimes
der R-Ströme-Korrelationsfunktionen zu untersuchen. Die Korrespondenz stellt eine
Verbindung her zwischen der N = 4 supersymmetrischen Yang-Mills-Theorie und der
Typ-IIB-Stringtheorie auf einem fünfdimensionalen Anti-de-Sitter-Hintergrund. Der
Bereich starker Kopplung der konformen Feldtheorie steht in Beziehung zur schwach
gekoppelten Stringtheorie und umgekehrt. Insbesondere ist der starke Kopplungslimes
der N = 4 supersymmetrischen Yang-Mills-Theorie im Limes des großen Nc äquivalent
zur klassischen Typ-IIB-Supergravitation.

Wir nutzen die AdS/CFT-Korrespondenz und betrachten die R-Ströme-Streuung
im Regge-Limes bei schwacher und starker Kopplung. Zuerst berechnen wir die Vier-
und Sechspunktfunktion der R-Ströme in der N = 4 supersymmetrischen Yang-Mills-
Theorie bei schwacher Kopplung in der Näherung führender Logarithmen. Zu unter-
suchen ist der Einfluss der Supersymmetrie, insbesondere der neuen skalaren Freiheits-
grade, auf den Streuprozess. Die Hauptresultate für die R-Ströme-Vierpunktfunktion
sind die Regge-Faktorisierung der Amplitude und die explizite Berechnung der R-
Ströme-Impaktfaktoren. Anschließend studieren wir die Sechspunktfunktion der R-
Ströme bei schwacher Kopplung für beliebiges Nc sowie im Limes des großen Nc.
Beobachten können wir eine neue direkte Kopplung der t-Kanalgluonen an die R-
Ströme-Impaktfaktoren, die nicht aus der Quantenchromodynamik bekannt ist.

Im zweiten Teil dieser Arbeit wird der starke Kopplungslimes des Vier- und Sechs-
punktkorrelators der R-Ströme in der schwach gekoppelten Supergravitationstheorie
analysiert. Der führende Beitrag in der Schwerpunktenergie der Vierpunktfunktion
im Regge-Limes ist durch ein Witten-Diagramm gegeben, in dem ein Graviton aus-
getauscht wird. Wir erkennen eine Faktorisierung der Amplitude ähnlich zur Fak-
torisierung der Vierpunktfunktion bei schwacher Kopplung. Die Sechspunktfunktion
der R-Ströme führt zu Witten-Diagrammen mit einem Dreifachgravitonvertex bzw.
mit Zweigravitonenaustausch. Wir analysieren das Hochenergieverhalten des Dia-
gramms mit Dreifachgravitonvertex und stellen eine Unterdrückung des Diagramms
im dreifachen Regge-Limes fest.

Die Untersuchung der Reggesierung des Gravitons auf der Stringtheorieseite ist eine
interessante Aufgabe für die Zukunft. Als einen ersten Schritt haben wir Baumdia-
gramme, das heißt Diagramme niedrigster Ordnung, auf der Stringtheorieseite berech-
net. Um die Reggesierung des Gravitons zu studieren, sind weitere Rechnungen jen-
seits des klassischen Supergravitationslimes notwendig.
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Introduction

Quantum chromodynamics (QCD) is the fundamental theory describing the strong
interactions of the standard model particles. Its basic degrees of freedom are quarks
and gluons. QCD is a non-Abelian gauge theory with the gauge group SU(Nc);
Nc is the number of colors in the theory. The strong interaction of the particles is
characterized by the strong coupling constant αs. Due to the asymptotic freedom of
QCD [1, 2], the coupling constant αs is small at large momentum transfers. In this
case, a perturbative investigation of QCD is reasonable, and an expansion in Feynman
diagrams is applicable. On the other hand, if αs is large, a perturbative treatment of
the theory is not justified. One possibility to explore the strong coupling regime of
QCD is given by lattice computations.

Before the introduction of QCD, Regge theory [3] has been used to describe the
strong interactions of particles at high center-of-mass energies. The basic ideas of
Regge theory are the following: The partial wave amplitude of a scattering process
analytically continued to complex values of the angular momentum contains singular-
ities in the complex angular momentum plane. In the Regge limit, when the center-
of-mass energy s is much larger than the momentum transfer t and all other mass
scales, the leading Regge pole α(t) in the t-channel, the one with the largest real part,
determines the asymptotic behavior of the amplitude in the s-channel. Consequently,
a scattering process in the s-channel is described by the exchange of an object with
angular momentum equal to α(t). This object can be understood as a superposition
of amplitudes for the exchange of all possible particles in the t-channel. It is called a
Regge trajectory or a Reggeon. Furthermore, to explain the slow rise of total cross-
sections with the energy s, a Reggeon with vacuum quantum numbers, that means
isospin zero and even under charge conjugation, has been introduced: the Pomeron.
Besides Regge poles the partial wave amplitude contains further singularities in the
complex angular momentum plane, namely Regge cuts. They represent the exchange
of two or more Reggeons in the t-channel.

Another line of interest has been the connection between Regge theory and string
theory. For real and positive t, Regge poles correspond to resonances and bound
states of increasing spin. In the 1960s, the remarkable relation between the mass m
and the spin J = α(t) of particles exchanged in the t-channel has been observed [4]:
J = α0+α′t with the so-called Regge slope α′ and the intercept α0. The particles with
square mass m2 are said to lie on the leading Regge trajectory. This trajectory holds
for a wide range of t and is true for mesonic and baryonic trajectories. String theory
has seemed to provide an interesting explanation for this relation. Scattering of open
strings in flat space leads to crossing-symmetric scattering amplitudes proposed by
Veneziano [5]. The Veneziano amplitude expanded for small energies s indeed includes
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the desired Regge trajectory of resonances.
The amplitude can be examined not only for small s, but also for large values of

s. In the Regge region, the region of large energy s and small scattering angles, the
Veneziano amplitude for a linear Regge trajectory is proportional to sα(t) and in quite
good agreement with the actual high energy behavior. Unfortunately, in the region of
high energy scattering at fixed angles the Veneziano amplitude falls off exponentially
with s while experiments show that scattering amplitudes only fall off according to a
power law. Therefore, the early attempts of string theory to describe the high energy
behavior of strong interactions failed.

After the establishment of QCD as the theory of strong interactions, there has been
the need to clarify, in particular the meaning of the Pomeron in QCD. In perturbative
QCD, a possibility to investigate the Pomeron is given by the scattering of two highly
virtual photons [6, 7]. The high virtualities of the photons provide hard scales, that is
the strong coupling constant αs is small, and a perturbative treatment of the process
is possible. However, in some cases the smallness of the coupling constant is compen-
sated by large logarithms of the energy s, so that αslns ∼ 1. Then a resummation
of diagrams, which lead to large logarithms, becomes necessary. This resummation
is called leading logarithmic approximation (LLA) and collects all terms of the form
(αslns)n to all orders in the strong coupling constant αs.

In leading order, the scattering of two virtual photons corresponds to the exchange
of two gluons in the t-channel. Generalizing to all orders of the strong coupling
constant the gluons are replaced by the Green’s function of the BFKL (Balitsky-Fadin-
Kuraev-Lipatov) equation [8, 9, 10]. The BFKL equation describes the evolution of
a gluon ladder in the LLA. In a gluon ladder, the vertical lines are reggeized gluons,
and the couplings to the horizontal lines are given by effective vertices. In a color
singlet state, the BFKL equation determines the behavior of the BFKL Pomeron in
perturbative QCD. The BFKL Pomeron is a state of two interacting reggeized gluons
that is related to a cut instead to a pole in the complex angular momentum plane.
The BFKL equation is also known in the next-to-leading logarithmic approximation
(NLLA) [11, 12].

The BFKL Pomeron in the LLA predicts a power-like rise of the total cross section
with s that would violate unitarity at very high energies. Higher order corrections,
so-called unitarity corrections, are believed to restore unitarity. The BFKL equation
describes the evolution of two reggeized gluons in the t-channel. First higher order
corrections are given by the BKP (Bartels-Kwieciński-Prasza lowicz) equations [13, 14];
they describe the evolution of n reggeized gluons in the t-channel. The gluons interact
pairwise mediated by the BFKL equation. Further elements that emerge in the context
of generalizing the BFKL equation are a transition vertex from two to four reggeized
gluons, the triple Pomeron vertex, [15, 16, 17] and a transition vertex from two to
six reggeized gluons [18]. The BKP equations and the triple Pomeron vertex appear
in 3 → 3 scattering processes the first time, an example is the scattering of highly
virtual photons again.

The BFKL and BKP equations as well as the transition vertices have remarkable
properties: In the LLA, they are integrable in the large Nc-limit [19, 20, 21] and
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conformal invariant in the two-dimensional transverse coordinate space [22, 23].
All elements describing the exchange of reggeized gluons have been introduced in

perturbative QCD. Their connection to the strong coupling regime of QCD is not
clear.

A new connection between gauge theories and string theories is the AdS/CFT-
correspondence [24, 25]. The correspondence offers a promising possibility to study
gauge theories at strong coupling. It relates conformal field theories (CFT) to string
theories in an Anti-de Sitter (AdS) background. The AdS/CFT-correspondence is a
weak-strong coupling duality since it relates the strong coupling limit of a conformal
field theory to the weak coupling limit of string theory and vice versa. Thus, the
duality suggests to study strong coupling effects of the gauge theory on the string
theory side. One of the best understood examples of the AdS/CFT-correspondence
is the connection between N = 4 supersymmetric Yang-Mills theory (SYM) and type
IIB string theory on an AdS5 × S5 background.
N = 4 SYM is a maximal supersymmetric version of QCD. Certainly, QCD and

N = 4 SYM differ in several points, nevertheless the AdS/CFT-correspondence offers
an excellent opportunity to study the Pomeron at strong coupling: The Regge asymp-
totics in the LLA are the same in N = 4 SYM and in QCD since the gluons involved
in the scattering process are not influenced by the supersymmetry. Therefore, it is
interesting to investigate the Regge limit of the supersymmetric theory; the chance is
given to analyze the Regge behavior of N = 4 SYM at weak and strong coupling.
N = 4 SYM is conformal invariant and believed to be integrable [26]-[31]. It exhibits

similar remarkable features as the BFKL Pomeron in QCD. The correspondence con-
nects the BFKL Pomeron in N = 4 SYM and graviton exchange on the string side.
Such as in N = 4 SYM the two gluon exchange is replaced by the BFKL Green’s
function in the LLA, the graviton on the string side is believed to reggeize [32, 29, 33].

The strong coupling regime of N = 4 SYM is addressed on the string side, but since
string theory on a curved manifold as AdS5 × S5 has not been solved completely yet,
computations on the string side are performed in the classical supergravity limit. In
this limit, the type IIB string theory is well approximated by classical supergravity
and provides the environment for efficient calculations. Witten proposed [34] a precise
matching between the observables of classical supergravity and a CFT. This matching
allows the computation of correlation functions of observables on both sides of the
correspondence. We are interested in the correlation functions of virtual photons in
the Regge limit since the scattering of electromagnetic currents enables the analysis of
the Pomeron in a perturbative regime. However, in N = 4 SYM we need a substitute
for the virtual photons. In Ref. [35] it has been suggested to use R-currents instead
of electromagnetic currents. R-currents belong to a global SU(4)R group of N = 4
SYM, and we pick up one of the U(1) subgroups.

Beyond Witten’s proposal, other approaches exist that address the high energy
behavior of amplitudes at strong coupling within the framework of the AdS/CFT-
correspondence. In Ref. [33], the BFKL regime and the classical Regge regime are
described simultaneously within string theory on a curved background and corrections
to the graviton trajectory are derived. Deep inelastic scattering in N = 4 SYM at
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strong coupling is analyzed in Refs. [36] and [37]. A description of scalar correlators
that could allow to interpolate between weak and strong coupling results has been
introduced in Refs. [38] and [39].

Two and three point correlators of R-currents have already been studied on the
gauge theory side as well as on the string theory side [40], whereas higher correlation
functions have not been considered yet. In this work, we compute four and six point
functions of R-currents on the gauge theory side as well as on the string theory side.
That is, we obtain analytic expressions for R-current correlation functions in N = 4
SYM at weak and strong coupling.

First, we investigate the elastic scattering of two R-currents in the Regge limit
in N = 4 SYM and analyze the influence of the supersymmetry on the scattering
amplitude. We verify that the fermionic and scalar one-loop diagrams are finite and
subleading compared to diagrams with two gluon exchange in the t-channel. Since
these requirements are fulfilled, the factorization of the amplitude in the LLA stays
the same as in QCD. The leading diagrams factorize into two impact factors and
two exchanged gluons in the t-channel. In N = 4 SYM, the impact factors in the
amplitude consist of a sum of fermion and, in addition to QCD, scalar loops. The
fermions and scalars are in the adjoint representation of the gauge group SU(Nc). We
compute the impact factors and compare them with the QCD impact factors [41].

Next, we consider the six point function of R-currents in N = 4 SYM in the LLA in
the triple Regge limit, first for arbitrary Nc [42]. Six point functions provide the first
unitarity corrections to the BFKL Pomeron. The impact factors of the amplitude
again consist of fermion and scalar loops. We show that the scalar impact factors
can be written as a superposition of two gluon impact factors in the same way as
the fermion impact factors. Since more than two gluons are exchanged in the t-
channel during the scattering process, the BKP equations and the triple Pomeron
vertex appear in the scattering amplitude. These pieces are the same as in QCD
because they are independent of the coupling to the external particles. In contrast,
a new coupling of the gluons to the impact factor, called direct coupling, appears in
the supersymmetric theory. The exchanged gluons in the t-channel couple directly to
the impact factor without any transition by a triple gluon vertex. This coupling does
not exist in QCD. The direct coupling of two noninteracting BFKL Pomerons to the
upper R-currents is given by the unintegrated impact factor. We compute this impact
factor for fermions and scalars.

We study the large Nc-limit of the six point function in a topological approach,
that is the color structure of the diagrams is projected onto surfaces, for example onto
pairs-of-pants. In the large Nc-limit, the direct coupling of the gluons is preserved,
but the BKP states with more than two gluons are suppressed [43].

Then we compute the four and six point functions of R-currents in the Regge limit
on the string theory side in the classical supergravity limit. These computations are
meant as a first step in analyzing the reggeization of the graviton on the string theory
side. We study a sort of Feynman diagrams in an AdS5 background, the so-called
Witten diagrams. In the classical supergravity limit, we only have to consider tree
Witten diagrams.
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In case of the four point function of R-currents, we find one diagram with a gravi-
ton exchange in the t-channel and one diagram with a gauge boson exchange in the
t-channel. The leading contribution in the Regge limit is given by the Witten dia-
gram with one graviton exchange. The graviton exchange amplitude exhibits similar
properties as the four point amplitude with gluon exchange at weak coupling. It fac-
torizes into two impact factors and an exchange propagator, which are convoluted by
a two-dimensional integration [44].

The six point function of R-currents in the Regge limit in classical supergravity also
leads to two different types of Witten diagrams: one diagram with a triple graviton
vertex exchange and two diagrams with two graviton exchange. We start with the
computation of the triple graviton vertex diagram. For that purpose we derive the
triple graviton vertex in an AdS5 background and determine the high energy behavior
of the triple graviton vertex diagram in the triple Regge limit. The diagram decouples
in the high energy limit, and the two graviton exchange diagrams give the leading
contribution [45].

My thesis has the following structure: A short survey of the AdS/CFT-correspon-
dence and its mapping between N = 4 SYM and type IIB superstring theory is given
in chapter 1. Furthermore, we overview scattering of virtual photons in QCD and R-
current scattering in N = 4 SYM. In the following four chapters, we discuss the four
and six point function of R-currents in the Regge limit on the gauge theory side as well
as on the string theory side. The gauge theory side of the AdS/CFT-correspondence
is considered in chapters 2 and 3: The four point correlator of R-currents in the Regge
limit is computed in chapter 2. The six point correlator of R-currents is discussed in
chapter 3. The next two chapters, chapters 4 and 5, deal with correlation functions
of R-currents on the supergravity side of the correspondence. We compute Witten
diagrams with graviton and gauge boson exchange in the t-channel in the Regge limit
in chapter 4. In chapter 5, we start with the investigation of the six point correlation
function of R-currents in classical supergravity. In particular, we study the Witten
diagram with the triple graviton vertex. Finally, we conclude with a summary in
chapter 6.
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1 Theoretical Background

1.1 The AdS/CFT-Correspondence

The AdS/CFT-correspondence conjectures a duality between conformal field theories
in d dimensions and string theory on a d + 1-dimensional Anti-de Sitter background
[24, 25]. If the dimension d is 4, the conformal field theory is N = 4 supersymmetric
Yang-Mills theory with the gauge group SU(Nc) and the Yang-Mills coupling gY M ,
and the dual string theory is type IIB string theory on an AdS5×S5 background with
the string coupling gs. The metric of AdS5 × S5 is

ds2 =
R2

z2
0

(dz2
0 + d~x2) + R2dΩ2

5 (1.1)

with z0 > 0 and ~x = (x1, . . . x4). That is the Euclidean continuation of a five-
dimensional Anti-de Sitter space in Poincaré coordinates times a five-sphere both
with the same radius R. Sometimes the radius R is expressed in units of the string
length ls.

The AdS/CFT-correspondence states the duality of the two theories if

gs = g2
Y M and R4 = l4sgsNc. (1.2)

This is the strongest version of the correspondence, it is to hold at any value of Nc and
for all values of the coupling gs = g2

Y M . The string theory lives in AdS5 ×S5, and the
gauge theory lives at z0 → 0, that is on the four-dimensional boundary S4 of the AdS5

space. String theory on a general curved background is hardly tractable, but certain
limits of the strongest version of the correspondence exist in which computations are
much simpler.

The first limit is the t’Hooft limit: The t’Hooft coupling λ ≡ g2
Y MNc is kept fixed

while Nc → ∞. λ is the effective coupling in an SU(Nc) gauge theory at large Nc.
If λ ≪ 1, a perturbative treatment of N = 4 SYM is possible, and the theory can
be expanded in Feynman diagrams. On the other hand, the t’Hooft limit leads to a
weakly coupled string theory since gs = λ

Nc
. The type IIB string theory reduces to

classical string theory on AdS5×S5, and string loops can be neglected. In the t’Hooft
limit, the AdS/CFT-correspondence is a duality between classical string theory and
the large Nc-limit of gauge theories.

An even weaker version of the correspondence is achieved by the second limit,
sending the radius R expressed in units of the string length ls to infinity, R/ls → ∞,
after taking the t’Hooft limit. This is the strong coupling limit on the SYM side, since
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(R/ls)
4 = λ = g2

Y MNc ≫ 1, but the curvature of the string background is small, and
the massive string excitations decouple from the low energy ones. Consequently, the
classical string theory can be approximated by classical type IIB supergravity in ten
dimensions. After performing a Kaluza-Klein compactification on S5, one ends with
a classical theory in five dimensions that is N = 8, D = 5 supergravity with SO(6)
Yang-Mills gauge group. Summarizing, the strong coupling limit of N = 4 SYM in
the large Nc-limit is equivalent to classical type IIB supergravity.

The AdS/CFT-correspondence is a weak-strong coupling duality. It relates the
strong coupling limit of one side with the weak coupling limit on the other side.
This fact can be used to study aspects of the gauge theory at strong coupling. The
duality comes with a precise matching of symmetries, fields and operators as well
as correlations functions of both theories. We explain these mappings in the next
sections.

1.1.1 Mapping Symmetries

A strong indication for the correctness of the AdS/CFT-correspondence is the match-
ing of the global unbroken symmetries of the two theories.
N = 4 SYM is invariant under N = 4 Poincaré supersymmetry and under spe-

cial conformal transformations. Moreover, the theory is classically scale invariant.
In a relativistic field theory, Poincaré invariance, scale invariance and special con-
formal transformations combine to a larger conformal symmetry group, the group
SU(2, 2) ∼ SO(2, 4). In addition, SYM is invariant under R-symmetry forming the
group SU(4)R ∼ SO(6)R. An R-symmetry is by definition a symmetry that does not
commute with the supersymmetries. Thus, the maximal bosonic subgroup of SYM is
SU(2, 2) × SU(4)R ∼ SO(2, 4) × SO(6)R. Furthermore, N = 4 Poincaré supersym-
metry and conformal invariance produce the even larger superconformal symmetry,
the supergroup SU(2, 2|4), which is the global continuous symmetry group of N = 4
SYM.

The bosonic subgroup SO(2, 4)×SO(6)R can be identified on the AdS side with the
isometry group of AdS5 that is SO(2, 4) and the isometry group of S5 that is SO(6).
The matching of the full supergroup arises on the AdS side because type IIB string
theory has 32 supersymmetries just as N = 4 SYM. The supercharges combine with
the isometries to the group SU(2, 2|4), and the global symmetry group matches on
both sides of the correspondence.

1.1.2 Mapping Type IIB Fields and CFT Operators

The duality includes a precise matching between states and fields on the string theory
side and local gauge invariant operators on the SYM side. The gauge invariant oper-
ators O are characterized by a conformal dimension ∆ and a representation index In

for the SO(6)R ∼ SU(4)R symmetry. All type IIB massless supergravity and massive
string degrees of freedom are described by fields φ living in AdS5×S5. S5 is a compact
space, and thus the Kaluza-Klein procedure of compactification can be applied. The
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fields φ are expanded in spherical harmonics on the sphere S5, for example for scalars
fields:

φ(x, y) =
∑

n

∑

In

φIn

(n)(x)Y In

(n)(y). (1.3)

xµ is a coordinate for AdS5 with µ = 0, 1, · · · 4 and yν with ν = 1, · · · 5 for S5. Y In

(n)

is a basis of spherical harmonics on S5. Here, n is the level, and In is an index in a
representation of the symmetry group. The fields φIn

(n)(x) compactified on S5 receive
a contribution to the mass m, and fields of mass m living in AdS5 correspond to
operators OIn

(n) with conformal dimension ∆ in N = 4 SYM. The relation between
mass m and conformal dimension ∆ is for example for scalar fields

∆ =
d

2
+

√

d2

4
+ m2R2. (1.4)

1.1.3 Mapping Correlation Functions

In a conformal field theory, the only physical observables are correlation functions of
gauge invariant operators. If we want to apply the AdS/CFT-correspondence, we need
a prescription how to compute these correlation functions in the classical supergravity
theory. Ref. [34] provides such an instruction. As explained in the last section, an
operator O with conformal dimension ∆ in N = 4 SYM corresponds to a field φ
with mass m living on AdS5 in the supergravity theory. The field φ has a value at
the boundary of AdS5, that is at z0 = 0, where the N = 4 SYM theory lives. The
boundary value is denoted φ0. The meaning of φ0 in the gauge theory is the following:
It couples to the operator O via

∫

S4
Oφ0. S4 is the boundary of AdS5 and can be

interpreted as a source for the operator O. Then the partition function of the gauge
theory is defined as

ZO[φ0] =

∫

D[SYM fields] exp

(

−SN=4SYM +

∫

S4

d4xO(x)φ0(x)

)

. (1.5)

SN=4SYM is the action of N = 4 SYM. The partition function is a generating functional
for n-point correlation functions of operators O at distinct points x1, . . . , xn, and the
correlation functions are computed by

〈O(x1)O(x2) . . .O(xn)〉 =
δn

δφ0(x1) . . . δφ0(xn)
ZO[φ0]|φ0=0. (1.6)

Now, the partition function ZO[φ0] has to be related to a quantity on the string side.
It should be a partition function of string theory for the field φ with a boundary value
φ0. In the classical supergravity limit, the classical supergravity partition function is
a good approximation. It is given by

Z[φ0]sugra = exp(−Ssugra[φ[φ0]]) (1.7)
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with the classical supergravity action Ssugra. The AdS/CFT-correspondence states
that

ZO[φ0]CFT = Z[φ0]sugra. (1.8)

Consequently, n-point correlation functions are computed on both sides of the corre-
spondence by

δn

δφ0(x1) . . . δφ0(xn)
ZO[φ0]CFT|φ0=0 = 〈O(x1), . . . ,O(xn)〉

=
δn

δφ0(x1) . . . δφ0(xn)
Z[φ0]sugra|φ0=0. (1.9)

This prescription enables to evaluate correlation functions of N = 4 SYM at weak
and at strong coupling perturbatively. First, the correlators can be studied at weak
coupling on the SYM side, and then, using the correspondence, the strong coupling
behavior can be addressed on the supergravity side where it corresponds to the weak
coupling regime. We use this possibility to investigate a certain class of correlation
functions that we present in the next section.

1.2 The Process

1.2.1 γ∗γ∗-Scattering in QCD

The scattering of two highly virtual photons offers the most convenient way of studying
Regge dynamics in perturbative QCD [6, 7]. The scattering provides an IR-finite
and gauge invariant amplitude. Processes that are mediated by the exchange of a
virtual photon are for example e+e−-annihilation and deep inelastic scattering. If the
momentum transfer Q in the scattering process is large, the strong coupling constant
αs(Q

2) is reasonably small, and the use of perturbation theory is allowed. The decay
of the photon is mediated by the electromagnetic current jµ associated with the U(1)
gauge symmetry of QED. Thus, the γ∗γ∗-scattering process is described by the four
point function of electromagnetic currents in momentum space

i(2π)4δ(4)(pA + pB − pA′ − pB′)AµAµBµA′µB′ (s, t)

=

∫

∏

i

d4xi e
−ipA·xA−ipB ·xB+ipA′ ·xA′+ipB′ ·xB′ 〈jµA(xA)jµB(xB)jµA′ (xA′)jµB′ (xB′)〉.

(1.10)

The amplitude A depends on the usual Mandelstam variables s and t. pA and pB are
the incoming momenta whereas pA′ and pB′ are the outgoing momenta of the photons.
We only consider the lowest order in the electric charge α, but the order of the strong
coupling constant αs can be arbitrary high. An example of a lowest order diagram is
shown in Fig. 1.1. In the high energy limit, these boxdiagrams behave as log2s [46].
In higher order αs, radiative gluonic corrections to the boxdiagrams do not modify
the power of the energy dependence.
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Figure 1.1: A lowest order diagram for γ∗γ∗-scattering

Figure 1.2: A three-loop diagram for γ∗γ∗-scattering in QCD

New diagrams with two exchanged t-channel gluons, Fig. 1.2, become available at
three-loop level. The photons split into the quark-antiquark pairs, and the two t-
channel gluons couple to the two loops. The three-loop diagrams behave as α2

ss at
high energies [47] and dominate with respect to the boxdiagrams. In general, the
high energy behavior of scattering amplitudes in the Regge limit is determined by the
exchange of highest spin particles, which are gluons with spin one in QCD.

In arbitrary high orders of the strong coupling constant, the smallness of αs is
potentially compensated by a large logarithm of the energy s, and a resummation of
terms enhanced by a large logarithm becomes necessary. In the LLA, we collect all
these terms proportional to (αsln s)m and sum them up to all orders in αs. Then
the four point amplitude of electromagnetic currents in Eq. (1.10) factorizes into two
fermion impact factors D of the virtual photons [47] and the BFKL Green’s function
G(s),

A(s, t) = is DA ⊗ G(s) ⊗ DB. (1.11)

The symbol ⊗ denotes the convolution of transverse gluon momenta and contraction
of color indices.

The BFKL Pomeron predicts a rise of the total cross section with some power of
s. At very high energies this rise would violate unitarity. Higher order corrections to
the BFKL equation, so-called unitarity corrections, are believed to restore unitarity
at high energies. Such corrections are for example the BKP equations, which describe
the evolution of n gluons in the t-channel, and the triple Pomeron vertex. They appear
in 3 → 3 scattering processes the first time. These processes naturally arise in the
context of deep inelastic scattering on a weakly bound nucleus, Fig. 1.3. An example
is deep inelastic scattering on a nucleus consisting of two weakly bound nucleons. To
obtain a completely perturbative process, we replace the nucleons by virtual photons.
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Figure 1.3: Scattering of a virtual photon on a weakly bound nucleus in QCD

We arrive at a six point correlator of electromagnetic currents jµ, the generalization of
Eq. (1.10). The leading diagrams are those with the exchange of highest spin particles
in the t-channel, that means diagrams with four t-channel gluons. The coupling
between the external photons and the exchanged gluons is mediated by three fermion
impact factors. In higher order αs in the LLA, the structure of the diagrams is more
complex than those of a four point function. We explain the structure in chapter 3,
there is still a factorization of the amplitude into impact factors and exchanged gluon
structures.

1.2.2 An Analog Process in N = 4 SYM

The AdS/CFT-correspondence offers a comfortable possibility to study scattering am-
plitudes at strong coupling. It relates the weak coupling limit of correlation functions
on the string theory side to the strong coupling limit of correlation functions on the
gauge theory side. Eq. (1.9) gives a concrete connection between correlators on both
sides of the correspondence.

In QCD, the scattering process of interest is γ∗γ∗-scattering. Since the duality
connects classical supergravity with conformal field theories and not with QCD, we
have to look for an analog process to γ∗γ∗-scattering in N = 4 SYM. In particular, we
need a substitute for the electromagnetic current jµ in the correlation function (1.10).
N = 4 SYM has a global SU(4)R R-symmetry. This symmetry allows to introduce

an analog of the electromagnetic current. Namely, we choose as a replacement the
conserved R-current JR [35], see the next chapter for a detailed description. Therefore,
we compute the correlation function of R-currents according to

δn

δφ0(x1) . . . δφ0(xn)
ZJR

[φ0]CFT|φ0=0 = 〈JR(x1), . . . , JR(xn)〉

=
δn

δφ0(x1) . . . δφ0(xn)
Z[φ0]sugra|φ0=0.

(1.12)

We introduce the explicit expression for the field φ0, which is the source of the operator
JR, in chapter 4.
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The resulting diagrams for four and six point functions of R-currents in N = 4 SYM
are similar to the QCD diagrams with the external photons replaced by R-currents.
Of course, N = 4 SYM has differences compared with QCD. For example, the N = 4
SYM diagrams contain besides fermion loops also scalar loops. Additionally, in N = 4
SYM all particles, fermions and scalars, are in the adjoint representation of the gauge
group SU(Nc), see section 2.2.1, whereas in QCD, the fermions are in the fundamental
representation of the gauge group. This difference leads to different color factors for
the diagrams in QCD and N = 4 SYM.

Nevertheless, the factorization of the four point amplitudes stays the same in N = 4
SYM in the LLA. The reason is the following: First, a requirement is that the one-loop
diagrams in N = 4 SYM, including scalar contributions, are finite and subleading. We
verify this in the next chapter. Then we can turn to the three-loop diagrams. We have
two parts in the factorized amplitude (1.11), the impact factors and the BFKL Green’s
function. In N = 4 SYM, the impact factors include fermions and scalars and change
compared to the QCD impact factors. But the impact factors do not influence the
BFKL Green’s function. It stays the same in both theories since the BFKL Green’s
function contains only gluonic contributions in the LLA. Fermionic corrections, which
could change in N = 4 SYM, and new scalar corrections first appear in the NLLA.
Consequently, in the LLA the factorization is the same in both theories. The new
scalar degrees of freedom are only apparent in the impact factors and in the one-loop
diagrams. A similar argument holds in the case of a six point function, see chapter
3. Since Regge factorization works the same for R-current scattering in N = 4 SYM
and virtual photon scattering in QCD a promising opportunity is provided to study
Regge behavior at strong coupling using the AdS/CFT-correspondence.
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2 The Four Point Function in N = 4

SYM

In this chapter, we compute correlation functions of R-currents in N = 4 SYM at
weak coupling in the Regge limit, that is on the CFT side of the correspondence, see
our publication [41]. Before we begin with the concrete computation of correlation
functions, we present some facts about supersymmetry and N = 4 SYM theory.

2.1 Supersymmetry

Supersymmetry is a symmetry that relates fermions and bosons. A supersymme-
try transformation turns a fermionic into a bosonic state and a bosonic one into a
fermionic. The corresponding operator is a complex anticommuting spinor Qa

α,

Qa
α|boson〉 = |fermion〉, Qa

α|fermion〉 = |boson〉. (2.1)

Since Qa
α is complex, also (Qa

α)† is a symmetry generator. Qa
α with α = 1, 2 is a

left-handed Weyl spinor and (Qa
α)† =: Q̄α̇a with α̇ = 1, 2 a right-handed Weyl spinor.

a runs from 1 to N ; N is the number of independent supersymmetries of the algebra.
Qa

α and Q̄α̇a commute with translations Pµ,

[Qa
α, Pµ] = [Q̄a

α̇, Pµ] = 0, (2.2)

transform as Weyl spinors under SO(1, 3),

[Qa
α,Mµν ] = (σµν)α

βQa
β,

[Q̄α̇
a ,Mµν ] = (σ̄µν)α̇

β̇Qβ̇
a , (2.3)

and satisfy the supersymmetry algebra,

{Qa
α, Q̄β̇b} = 2σµ

αβ̇
Pµδ

a
b ,

{Qa
α, Qb

β} = 2ǫαβZab,

{Q̄a
α̇, Q̄b

β̇
} = 2ǫα̇β̇(Zab)∗. (2.4)

Zab are central charges that are antisymmetric in the indices a and b and commute with
all generators of the supersymmetry algebra. In the case N = 1, the antisymmetry
implies that there are no central charges. This is called unextended supersymmetry.
For N > 1 we have an extended supersymmetry.
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The Weyl spinors are connected to the four-component Dirac spinors by

Qa =

(

Qa
α

Q̄α̇
a

)

(2.5)

and the four-dimensional gamma matrix is

γµ =

(

0 σµ

σ̄µ 0

)

. (2.6)

Furthermore, we have

PLQa =

(

Qa
α

0

)

and PRQa =

(

0
Q̄α̇

a

)

(2.7)

with

PL = (1 − γ5)/2, PR = (1 + γ5)/2, and γ5 =

(

−1 0
0 1

)

. (2.8)

The particles of supersymmetric theories fall into irreducible representations of the
supersymmetry algebra, which are called supermultiplets. Each multiplet contains an
equal number of degrees of freedom of fermions and bosons. All particles belonging to
one supermultiplet have got the same mass. The simplest multiplets are the N = 1
massless supermultiplets, that are a chiral supermultiplet with one Weyl fermion and
a complex scalar, a gauge supermultiplet with one gauge boson and one Weyl fermion,
the gravitino supermultiplet with one gravitino and a gauge boson, and the graviton
supermultiplet with one graviton and one gravitino.

2.2 N = 4 Supersymmmetric Yang-Mills Theory

2.2.1 The Lagrangian of N = 4 SYM

The gauge multiplet of N = 4 SYM consists of one vector field Aµ, four chiral spinors
λI , and six real scalars XM . The gauge multiplet transforms under the adjoint rep-
resentation of the gauge group SU(Nc). The Lagrangian for N = 4 SYM in d = 4
dimensions can be obtained by dimensional reduction of the d = 10 supersymmetric
Yang-Mills theory [48]. It is

LSYM = Tr

(

−1

4
FµνF

µν +
1

2
DµXMDµXM + iλIσ

µDµλ̄
I

− igλI [λJ , XIJ ] − igλ̄I [λ̄J , XIJ ] +
1

4
g2[XM , XN ][XM , XN ]

)

. (2.9)

The covariant derivative and the gauge field strength tensor are defined as usual

DµΦ = ∂µΦ − ig[Aµ, Φ], (2.10)

Fµν = ∂µAν − ∂νAµ − ig[Aµ, Aν ]. (2.11)
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Φ stands for the fields X or λ. XM and XIJ are related by the SU(4)R ∼ SO(6)R

sigma symbols,

XIJ = −1

2
(ΣM)IJXM , XIJ =

1

2
(Σ−1

M )IJXM (2.12)

with
Tr(ΣMΣ−1

N ) = 4δMN and XMXM = XIJXIJ . (2.13)

Then we get

LSYM = −1

4
(∂µA

a
ν − ∂νA

a
µ)2 +

1

2
∂µX

a
M∂µXa

M + iλa
Iσ

µ∂µλ̄
Ia

−gfabc∂µA
a
νA

µbAνc − 1

4
g2fabefcdeA

a
µA

b
νA

µcAνd

+gfabcA
µaXb

M∂µX
c
M +

1

2
g2fabefcdeA

a
µX

b
MAµcXd

M

−igfabcA
a
µλ

b
Iσ

µλ̄cI − 1

4
g2fabefcdeX

a
MXb

NXc
MXd

N

+gfabcX
aIJλb

Iλ
c
J + gfabcX

a
IJ λ̄bI λ̄cJ . (2.14)

Small indices a, b, c, · · · = 1, . . . , N2
c − 1 are adjoint representation indices for the

gauge group SU(Nc). We can write Φ = Φab = Φc(T c)ab with (T c)ab = −ifabc. fabc

are the SU(Nc) structure constants with [T a, T b] = ifabcT c. The normalization of the
generators T a is Tr(T aT b) = Ncδ

ab.
The Lagrangian LSYM is invariant under global SU(4)R transformations, see section

1.1.1. Capital indices in the Lagrangian transform under this R-symmetry group.
In particular, I, J, · · · = 1, . . . , 4 transform under the fundamental and M,N, · · · =
1, . . . , 6 under the vector representation of SU(4)R. Aµ is a scalar of SU(4)R, the
chiral spinors λI are in the fundamental representation and the scalars XM in the
vector representation of SU(4)R. The SU(4)R transformations are given by

δλaαI = iεAλaαJ(TA)JI ,

δλ̄aα̇I = −iεA(TA)IJ λ̄aα̇J ,

δXa
M = iεA(TA)MNXa

N . (2.15)

εA are small parameters, and TA are the SU(4)R generators in the appropriate repre-
sentation.

We introduce the R-current here, which we use as a substitute of the electro-
magnetic current in our computations of correlation functions within the AdS/CFT-
correspondence. The SU(4)R symmetry provides a conserved Noether current, named
JµA

R , our R-current,

JAµ
R = i

∂L
∂(∂µΦ)

∆AΦ = Tr(−λσµTAλ̄ − iXTADµX). (2.16)

∆AΦ is defined by δΦ = iεA∆AΦ for an infinitesimal transformation.
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One subtlety concerning R-currents are their associated Ward identities. JAµ
R is

a conserved current. The time-ordered product of a conserved current Jµ and some
operators Oi gives rise to Ward identities. It is given by

∂µTJµ(x)O1(x1) . . .On(xn) =
n
∑

i=1

δ(x0 − x0
i )TO1(x1) . . . [j0(x),Oi(xi)] . . .On(xn).

(2.17)
On the right-hand side of Eq. (2.17), the equal-time commutator of the zero-component
of the current and the operator is

[j0(~x, t),O(~y, t)] = δ(3)(~x − ~y)qOO(~x, t). (2.18)

qO is the charge of the operator O in units of the electric charge e. Inserting (2.18)
in (2.17) gives an explicit expression for the so-called contact terms on the right-hand
side of (2.17),

∂µTJµ(x)O1(x1) . . .On(xn) =
n
∑

i=1

δ(4)(x − xi)qOi
TO1(x1) . . .On(xn). (2.19)

In an Abelian theory, the conserved currents are neutral, and the contact terms vanish,

∂µTJµ(x)O1(x1) . . .On(xn) = 0. (2.20)

We get the well-known Ward identities. Going to momentum space and taking the
vacuum expectation value we arrive at

pµ〈jµ(p)jµ1(p1) . . . jµn(pn)〉 = 0. (2.21)

Since N = 4 SYM is a non-Abelian theory, the conserved currents are charged and
the contact terms do not vanish. The equal-time commutator (2.18) with the operator
O replaced by an R-current is now

[JA0
R (~x, t), JBµ

R (~y, t)] = δ(3)(~x − ~y)(TA)B
CJCµ

R (~x, t), (2.22)

and the time-ordered product of R-currents respects

∂µTJAµ
R (x)JA1µ1

R (x1)...J
Anµn

R (xn)

=
n
∑

i=1

δ(4)(x − xi)TJA1µ1

R (x1)...(T
A)Ai

C JCµi

R (x)...JAnµn

R (xn). (2.23)

The non-vanishing of the contact terms introduces some complications in the fol-
lowing computations. Nevertheless, there is a possibility to get back to the simple
Ward identities (2.20) of Abelian theories. The full R-symmetry group is SU(4)R. If
we restrict ourselves to a subgroup U(1), we reach a situation with vanishing contact
terms. The restriction means to pick up one of the 15 R-currents of the global SU(4)R

group. To go to a U(1) subgroup, we choose a particular linear combination of the
three diagonal SU(4)R generators [35]. Since the diagonal generators commute, all
(TA)Ai

C = −ifAAiC vanish, and we get, omitting the SU(4)R labels Ai for the U(1)
current,

∂µTJµ
R(x)Jµ1

R (x1)...J
µn

R (xn) = 0. (2.24)

At some point, we will use this restriction in the next chapters.
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2.2.2 Feynman Rules

From the Lagrangian (2.9) we derive the Feynman rules of N = 4 SYM. The propa-
gators of the theory have the following form:
the gluon propagator is given by

b, νa, µ

k

i

k2 + iǫ

(

−gµν + (1 − ξ)
kµkν

k2

)

, (2.25)

the fermion propagator looks like

a, α k b, α̇
ikµ(σµ)αα̇δab

k2 + iε
, (2.26)

and the scalar propagator is

M2, bM1, a
k

i

k2 + iε
δM1M2δab. (2.27)

The vertices of N = 4 SYM are
the three gluon vertex

a3, µ3

a1, µ1

k2
k1

k3

a2, µ2

gfa1a2a3 [g
µ2µ3(k2 − k3)

µ1 + gµ3µ1(k3 − k1)
µ2 + gµ1µ2(k1 − k2)

µ3 ],

(2.28)

the four gluon vertex

a4, µ4

k4

a1, µ1a2, µ2

a3, µ3

k3

k1

k2

−ig2 [fa1a2bfa3a4b(g
µ1µ3gµ2µ4 − gµ1µ4gµ2µ3)

+ fa1a3bfa2a1b(g
µ1µ2gµ3µ4 − gµ1µ4gµ2µ3)

+ fa1a4bfa2a3b(g
µ1µ2gµ3µ4 − gµ1µ3gµ2µ4)] ,

(2.29)

the one gluon-two scalar vertex

a, µ

b2, M2 b1, M1

p1p2

k

gfab1b2(p2 − p1)
µδM1M2 , (2.30)
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the two gluon-two scalar vertex

p2

b2, M2

a2, µ2

k1

b1, M1

a1, µ1

k2

p1

ig2gµ1µ2δM1M2(f
a1b1cfa2b2c + fa1b2cfa2b1c), (2.31)

the one gluon-two fermion vertex

b, α, i c, α̇, j

p1 p2

k

a, µ

− gfabc(σ̄
µ)α̇αδij, (2.32)

the one scalar-two fermion vertices

b1, α1, i1

k

b2, α2, i2

p2 p1

a, M

− igfab1b2ε
α1α2(Σ−1

M )i1i2 , (2.33)

a, M

b1, α̇1, i1

k

b2, α̇2, i2

p1p2

igfab1b2ε
α̇1α̇2(ΣM)i1i2 , (2.34)

and the four scalar vertex

k2

a2, M2

a4, M4a3, M3

a1, M1

k3

k4

k1 −ig2 [fa1a2bfa3a4b(δM1M3δM2M4 − δM2M3δM1M4)

+ fa1a3bfa2a4b(δM1M2δM3M4 − δM2M3δM1M4)

+ fa1a4bfa2a3b(δM1M3δM2M4 − δM1M2δM3M4)] .

(2.35)
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We deduce further Feynman rules from the R-current (2.16): the coupling of an
external R-current, symbolized by the cross,
to fermions

a, α̇, J

b, α, I

µ, A (σ̄µ)α̇α(TA) I
J δab, (2.36)

to scalars

p2

µ, A

p1

a1, M1

a2, M2

(p1 + p2)
µ(TA)M1M2δ

ab, (2.37)

and to two scalars and one gluon

M1, b1

a, µ1

p2
p1

M2, b2

k

µ, A
2iggµµ1fab1b2(T

A)M1M2 . (2.38)

2.3 Setup of the Computation

We start with the definition of a four point amplitude of R-currents in momentum
space:

i(2π)4δ(pA + pB − pA′ − pB′)AR(s, t)µAµBµA′µB′

=

∫

∏

i

d4xi e
−ipA·xA−ipB ·xB−ipA′ ·xA′−ipB′ ·xB′

×〈JAµA

R (xA)JBµB

R (xB)J
A′µA′

R (xA′)J
B′µB′

R (xB′)〉. (2.39)

pA and pB denote the momenta of the incoming R-currents, pA′ and pB′ the momenta
of the outgoing. AR depends on the Mandelstam variables s = (pA+pB)2 and t = q2 =
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(pA−pA′)2 ≃ −q2 < 0 and on the virtualities of the R-current momenta Q2
i = −p2

i > 0.
We study the amplitude in the Regge limit defined as

s ≫ |t|, Q2
i . (2.40)

In the Regge limit, the high energy behavior of the four point function (2.39) is
expected to be fixed by the so-called spin argument. This argument states that the
exchange of two particles of spin s in the t-channel leads to a high energy behavior
of the amplitude ∼ s2s−1. Therefore, we anticipate that the R-current scattering
amplitude is dominated by gluon exchange since gluons are the particles with highest
spin in N = 4 SYM. A necessary condition is the finiteness of the one-loop diagrams
in N = 4 SYM, the analogs of the QCD diagrams in Fig. 1.1. If this condition is
fulfilled, three-loop diagrams give the leading contribution in the Regge limit. Since
the factorization of the three-loop amplitude works the same as in QCD, see section
1.2.2, we only have to determine the influence of the scalar particles on the impact
factors.

In our computations, we use a Sudakov decomposition of the momenta. We intro-
duce two lightlike vectors p1 and p2 with p2

1 = p2
2 = 0 and p1 · p2 = s/2. An arbitrary

four vector can be decomposed in longitudinal and transverse parts as

k = αp1 + βp2 + k⊥ (2.41)

with α = 2p2 · k/s, β = 2p1 · k/s, and k2
⊥ = −k2. The bold vector denotes the

transverse components of k. The Jacobian is

d4k = s/2 dα dβ d2k. (2.42)

Then the incoming current momenta can be written as

pA = p1 −
Q2

A

s
p2 = p1 + γAp2,

pB = p2 −
Q2

B

s
p1 = p2 + γBp1. (2.43)

Here we define

−Q2
A,B

s
=: γA,B. (2.44)

The outgoing current momenta are

pA′ = p1 −
Q2

A′ + q2
⊥

s
p2 − q⊥,

pB′ = p2 −
Q2

B′ + q2
⊥

s
p1 + q⊥. (2.45)

The conditions p2
A′ = (pA − q)2 and p2

B′ = (pB + q)2 for the outgoing momenta fix the
longitudinal components of the transferred momentum q,

αq = −Q2
B′ − Q2

B + q2
⊥

s
and βq =

Q2
A′ − Q2

A + q2
⊥

s
. (2.46)
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For convenience we will contract the amplitude (2.39) with polarization vectors of
the R-currents later. There are three polarization vectors ǫL,±(p), one with longitu-
dinal polarization, denoted by L, and two with transverse polarization denoted by
h = ±. A second longitudinal polarization is absent if the simpler Ward identities
(2.24) are fulfilled. The polarization vectors are orthonormal

ǫ(i)
µ (p)ǫ(j)µ(p)∗ = δij (2.47)

and satisfy the completeness relation

gµν − pµpν

p2
=
∑

i=L,±

ǫ(i)µ(p)ǫ(i)ν(p)∗. (2.48)

We choose ǫL
µ(p) in such a way that the three-dimensional part is proportional to ~p.

ǫ
(±)
µ (p) is chosen to be transverse. The leading order terms in s for each component

are

ǫ(L)(p) =
i

Q

[(

α +
2Q2

s(α + β)2
β
)

p1 +
(

β +
2Q2

s(α + β)2
α
)

p2 +
(

1 − 2Q2

s(α + β)2

)

p⊥

]

,

ǫ(h)(p) = ǫ
(h)
⊥ +

2ǫ
(h)
⊥ · p

s(α − β)

(

p1 − p2 +
p⊥

α − β

)

(2.49)

with

ǫ
(±)
⊥ =

1√
2

(0, 1,±i, 0). (2.50)

With Eqs. (2.43) and (2.45) the polarization vectors for p = pA, pB, pA′ , pB′ have the
following explicit form

ǫ(L)(pA) =
i

QA

(

p1 +
Q2

A

s
p2

)

, (2.51)

ǫ(L)(pB) =
i

QB

(Q2
B

s
p1 + p2

)

, (2.52)

ǫ(L)(pA′) =
i

QA′

(

p1 +
Q2

A′ − q2
⊥

s
p2 − q⊥

)

, (2.53)

ǫ(L)(pB′) =
i

QB′

(Q2
B′ − q2

⊥

s
p1 + p2 + q⊥

)

, (2.54)

ǫ(h)(pA,B) = ǫ
(h)
⊥ , (2.55)

ǫ(h)(pA′,B′) = ǫ
(h)
⊥ − 2ǫ

(h)
⊥ · q
s

(p1 − p2 − q⊥). (2.56)

To simplify the expressions, we shift the polarization vectors by a four vector propor-
tional to p. This shift is allowed if the Ward identities (2.24) are fulfilled. We arrive
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at

ǫ(L)(pA,A′) =
2QA,A′

s
p2, (2.57)

ǫ(L)(pB,B′) =
2QB,B′

s
p1, (2.58)

ǫ(h)(pA,B) = ǫ
(h)
⊥ , (2.59)

ǫ(h)(pA′) = ǫ
(h)
⊥ +

2ǫ
(h)
⊥ · q
s

p2, (2.60)

ǫ(h)(pB′) = ǫ
(h)
⊥ − 2ǫ

(h)
⊥ · q
s

p1. (2.61)

2.4 One-Loop Diagrams

Now we start with the explicit computation of the correlation function of four R-
currents defined in (2.39). Since we are in N = 4 SYM, the required Feynman
diagrams include in addition to fermions also scalars, and all particles are in the
adjoint representation of the gauge group SU(Nc). The lowest order diagrams, which
are one-loop diagrams, are shown in Figs. 2.1 and 2.2.

We have fermionic boxes as in QCD and the new scalar boxes. The gray dots
symbolize the attached R-currents, which are not shown. Additionally, we have scalar
triangles and bubbles. The crosses denote counterterm vertices; the triangle and
bubble diagrams are counterterm diagrams. In the next sections, we investigate the
UV poles and the high energy behavior of the one-loop diagrams.

2.4.1 UV Poles

In this section, we show that the lowest order diagrams are UV finite. The one-loop
fermionic diagrams, which are depicted in Fig. 2.1, are the same boxes as in QCD.
Their IR region is regularized by giving the fermions a small mass m. Since we are
only interested in the UV behavior, we are allowed to set the external momenta to
zero, and the UV singularities can be computed easily. We use the Feynman rules
given in section 2.2.2. In d dimensions, the amplitude of the first diagram BF1 is

A A
′

B B
′

(a) BF1

A A
′

B B
′

(b) BF2

A A
′

B B
′

(c) BF3

Figure 2.1: One-loop diagrams with fermions
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A A
′

B B
′

(a) BS1

A A
′

B B
′

(b) BS2

A A
′

B B
′

(c) BS3

AA
′

B
′

B

(d) BS4

B

A
′
B

′

A

(e) BS5

A

BB
′

A
′

(f) BS6

A
′

B
′

AB

(g) BS7

B

AB
′

A
′

(h) BS8

A
′
B B

′

A

(i) BS9

AA
′

BB
′

(j) BS10

A
′
B

′
AB

(k) BS11

BA
′

AB
′

(l) BS12

Figure 2.2: One-loop diagrams with scalars

given by

BF1µAµBµB′µA′ = −
∫

ddk

(2π)4
TA

M2M1
TB

M3M2
TB′

M4M3
TA′

M1M4

×Tr[i(k + m)µσ
µσ̄µAi(k + m)νσ

ν σ̄µB i(k + m)µ′σµ′

σ̄µB′ i(k + m)ν′σν′

σ̄µA′ ]

(k2 − m2)(k2 − m2)(k2 − m2)(k2 − m2)
.

(2.62)

The UV divergent part of the amplitude BF1 in d = 4 − 2ε dimensions reads

BF1
µAµBµB′µA′

UV =
2

3

iπ2−ǫm−2ǫ

(2π)4
Γ(ǫ)Tr

(

TATA′

TB′

TB
)

×
(

gµAµA′
gµBµB′

+ gµAµB
gµA′µB′

− 2gµAµB′
gµA′µB

)

. (2.63)

The UV poles of the diagrams BF2 and BF3 can be obtained by permuting indices
in Eq. (2.63). The sum of all three UV singularities does not vanish unless we restrict
ourselves to the U(1) subgroup of SU(4)R. Then all traces over SU(4)R generators
are the same, and the cancellation of the UV poles precisely works as in QCD.

There are 12 scalar diagrams, see Fig. 2.2. The amplitude of the first scalar boxdi-
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agram BS1 is given by

BS1 =

∫

ddk

(2π)4
TA

M2M1
TB

M3M2
TB′

M4M3
TA′

M1M4

× 2ikµA2ikµB2ikµB′2ikµA′

(k2 − m2)(k2 − m2)(k2 − m2)(k2 − m2)
. (2.64)

The UV divergent part in d = 4 − 2ε dimensions looks like

BS1
µAµBµB′µA′

UV =
2

3

iπ2−ǫm−2ǫ

(2π)4
Γ(ǫ)Tr

(

TATA′

TB′

TB
)

×
(

gµAµA′
gµBµB′

+ gµAµB
gµA′µB′

+ gµAµB′
gµA′µB

)

. (2.65)

The UV divergent parts of diagrams BS2 and BS3 are obtained by permutation of
the indices in Eq. (2.65). The UV divergent contributions of the triangle diagram
BS4 and of the bubble diagram BS10 in Fig. 2.2 read

BS4UV = −2
iπ2−ǫm−2ǫ

(2π)4
Γ(ǫ)Tr

(TATA′

+ TA′

TA

2
TB′

TB
)

gµAµA′
gµBµB′

(2.66)

and

BS10UV = 2
iπ2−ǫm−2ǫ

(2π)4
Γ(ǫ)Tr

(TATA′

+ TA′

TA

2

TBTB′

+ TB′

TB

2

)

gµAµA′
gµBµB′

.

(2.67)

The UV poles of all other triangle and bubble diagrams are obtained by permuting the
indices in Eqs. (2.66) and (2.67). If we restrict ourselves to the U(1) subgroup, once
again all traces are the same, and the sum of all scalar UV contributions vanishes.

In the case of the full SU(4)R group, the UV poles do not cancel separately in the
fermionic and scalar sector. Nevertheless, a computation shows that the sum of the
fermionic divergencies BF1UV −BF3UV and the scalar divergencies BS1UV −BS12UV

is zero. We have kept in mind that the scalars are in the vector representation and the
fermions are in the fundamental representation of the SU(4)R group. This fact leads
to different results for the traces, see also Eqs. (2.86) and (2.87). The UV finiteness
of the amplitude is due to the supersymmetry of the theory.

2.4.2 High Energy Behavior

Since the one-loop diagrams are UV finite, as shown in the last section, we are allowed
to apply the spin argument to the scattering amplitude. Therefore, the R-current
scattering amplitude is dominated by gluon exchange in the t-channel.

The leading terms of the one-loop diagrams in the Regge limit are doubly loga-
rithmic terms of the form ln2s [49]. Resummation of the doubly logarithmic terms
provides the correct asymptotic behavior of the amplitude. The one-loop diagrams
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provide subleading corrections compared to the diagrams with t-channel gluon ex-
change. Also dressed one-loop diagrams, for example with gluon rungs, are included
in this argument [46].

From now on, we restrict the R-currents to a U(1) subgroup of the SU(4)R group,
and we drop the trace over the SU(4)R generators. The computation of the high
energy behavior of the fermion box is the same as in QCD. We briefly recall the
computation [46, 49] and start with diagram BF1 in Fig. 2.1. In the high energy
limit, the fermion numerator is proportional to sk2 + (k2)2, and the leading term of
the amplitude with Sudakov decomposition of the momenta (2.41) is

BF1L = −s

2

1

(2π)4

∫

dα

∫

dβ

∫

d2k

× sk2

(sαβ − k2 + iε)(s(α − αq)(β − βq) − (k − q)2 + iε)

× 1

(s(α − 1)(β + xA) − k2 + iε)(s(α − xB)(β + 1) − k2 + iε)
. (2.68)

The subscript L means that we are keeping only the leading term in the energy. The
region of integration, in which a double logarithm arises, is Q2

i ,q
2 ≪ k2 ≪ αs, βs and

xi ≪ α, β ≪ 1 with xi = Q2
i /s. We close the β-contour below, pick up the pole in the

second propagator, and get

BF1L = −1

2

2πi

(2π)4

∫ 1

x

dα

α

∫ 1

x

dβ

β

∫

d2k δ(sαβ − (k − q)2) (2.69)

with x = Q2/s ∼ xi. After a shift in the momentum, k → k + q, we perform the
angular integration. Then the k2 integral is carried out via the delta function. We
arrive at

BF1L =
1

2

i

2(2π)2

∫ 1

x

dα

α

∫ 1

x
α

dβ

β
= −1

8

i

(2π)2
log2 s

Q2
. (2.70)

In the high energy limit, a double logarithm emerges for the fermion box.
Now, we consider the first scalar box BS1 in Fig. 2.2. The amplitude is

BS1 =
s

2

1

(2π)4

∫

dα

∫

dβ

∫

d2k

× (2k − pA)µA(2k + pB)µB(2k + pB − q)µB′ (2k − pA − q)µA′

(k − pA)2k2(k + pB)2(k − q)2
. (2.71)

First, we contract with longitudinal polarization vectors, (2.57) and (2.58), and keep
only the leading terms in the numerator in region of integration xi ≪ α, β ≪ 1. We
get

BS1LLLL
L = QAQA′QBQB′

∫

d4k

(2π)4

1

k2(k − q)2(k − pA)2(k + pB)2
. (2.72)
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The superscript LLLL denotes the longitudinal polarization of the R-currents. This
integral corresponds to a standard integral in a massless φ3 theory. Here, a double
logarithm arises in the infrared region k ≃ 0 due to the vanishing mass of the fields.
Therefore, we consider the region of integration k2 ≪ Q2

i ,q
2, and (2.72) turns into

BS1LLLL
L =

sQAQA′QBQB′

2(2π)4

∫

dα

∫

dβ

∫

d2k
1

(sαβ − k2 + iǫ)(−q2)(−sβ + iǫ)(sα)
.

(2.73)
We close the β-contour below and pick up the pole from the first propagator

BS1LLLL
L = −iQAQA′QBQB′

2(2π)3sq2

∫ 1

x

dα

α

∫ 1

x

dβ

β

∫

k2≪Q2

d2k δ(sαβ − k2). (2.74)

Performing the integral over k leads to

BS1LLLL = −iQAQA′QBQB′

4(2π)2sq2

∫ 1

x

dα

α

∫ x/α

x

dβ

β
(2.75)

and over α and β to the expected double logarithm

BS1LLLL ≃ i

8(2π)2

Q2

s
log2 s

Q2
. (2.76)

Now, we contract the amplitude with transverse polarization vectors, (2.59)-(2.61),
and only keep the leading terms in the energy. h and h′ denote the possible transverse
polarizations of the incoming and outgoing R-currents, respectively, and we arrive at

BS1hhh′h′

L =
16

(2π)4

∫

d4k
k · ǫhAk · ǫhA′k · ǫhBk · ǫhB′

k2(k − q)2(k − pA)2(k + pB)2

= (δhAhA′δhBhB′ + δhAhBδhA′hB′ + δhAhB′δhA′hB)

× s

3(2π)4

∫

dα

∫

dβ

∫

d2k
sαβ − k2

(sαβ − (k − q)2 + iǫ)(−sβ + iǫ)(sα)
.

(2.77)

We close the contour below and pick up the pole from the first propagator. After a
shift in k we obtain

BS1hhh′h′

L = (δhAhA′δhBhB′ + δhAhBδhA′hB′ + δhAhB′δhA′hB)

× 2πi

3(2π)4s

∫ 1

x

dα

α

∫ 1

x

dβ

β

∫

d2k (sαβ − (k − q)2)δ(sαβ − k2).

(2.78)

The scalar product vanishes after angular integration, and sαβ − k2 is set to zero by
the delta function. We get

BS1hhh′h′

L = (δhAhA′δhBhB′ + δhAhBδhA′hB′ + δhAhB′δhA′hB)

× i

6(2π)2s

∫ 1

x

dα

α

∫ x/α

x

dβ

β
(−q2). (2.79)
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J
BµB

R (pB)

J
AµA

R (pA)

J
B′µB′

R (pB′)

J
A′µA′

R (pA′)

l1 − pA

l1

k q − k

l2

l2 − pB

l2 + ql2 + k

l1 − q
l1 − k

Figure 2.3: One of the lowest order diagrams contributing to the two gluon exchange
in N = 4 SYM

The only term left gives

BS1hhh′h′

L ≃ −(δhAhA′δhBhB′ + δhAhBδhA′hB′ + δhAhB′δhA′hB)

× i

12(2π)2

Q2

s
log2 s

Q2
, (2.80)

which is once again a double logarithm. Similar computations can be performed for
all other diagrams in Fig. 2.2 and give results analog to the ones just presented.

In the above computations, we have considered the region Q2
i ,q

2 ≪ k2 ≪ αs, βs
and k2 ≪ Q2

i ,q
2, respectively. For k2 ∼ s the numerators in (2.68) and (2.73) seem

to lead to an even stronger behavior. But the limit of large k2 corresponds to the UV
region, which we have computed in the previous section. These terms cancel when we
sum over all diagrams.

In this section, we have computed the high energy behavior of fermionic and scalar
one-loop diagrams in N = 4 SYM in the Regge limit. All one-loop diagrams are
proportional to a double logarithm.

2.5 Impact Factors

The following sections confirm that the high energy behavior of the four point function
of R-currents is indeed dominated by two gluon exchange. Due to the spin argument,
we expect a dominating gluon exchange amplitude with a high energy behavior ∼ s.
Gluon exchange in the t-channel starts at three-loop level. In Fig. 2.3, we show one
possible lowest order diagram with our choice of momenta. In the other three-loop
diagrams, which are not shown, the gluons couple to the upper and lower loop in all
possible ways. The loops consist of a fermion or a scalar particle. The momenta are
decomposed as in Eq. (2.41).
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F1 F2 F3 F4

Figure 2.4: The fermion diagrams for the impact factor

In our computation, we consider the imaginary part of the amplitude that is the
discontinuity in s symbolized by the dashed line in Fig. 2.3. Taking the discontinuity
sets the four intermediate particles on-shell. Two of the resulting delta functions are
used to fix the integrations over the longitudinal components, α and β, of loop mo-
mentum k. The other two fix one longitudinal integration of each loop momentum l1
and l2, that is β1 and α2. In the Regge limit, the leading logarithmic (LL) contribution
arises when α ≪ α1 and β ≪ β2. In this regime, the upper loop is independent of α
and the lower loop independent of β. The amplitude of the three-loop diagram, A(0),
factorizes into two impact factors and two transverse gluon propagators

A(0)(s, t) = is

∫

d2k

(2π)2k2(q − k)2
D

a1a2
A (k,q − k)Da1a2

B (k,q − k). (2.81)

DA,B are the impact factors in N = 4 SYM that represent the coupling of the R-
currents to the two t-channel gluons. The definition of the impact factor DA is

D
λAλA′aa′

A (k,k′) =
1

s2
ǫλA
µA

(pA)∗ǫλA′

µA′
(pA′)p2ρp2′ρ

∫

ds1

2π
ImAµAµA′ρρ′(s1, t). (2.82)

A similar definition is given for DB. The amplitude AµAµA′ρρ′(s1, t) describes the
scattering of an R-current with polarization λA and a gluon with momentum −k,
Lorentz index ρ and color label a into an R-current with polarization λA′ and a gluon
with momentum k, Lorentz index ρ′ and color label a′. s1 is the energy squared of
the R-current-gluon system, s1 = (pA − k)2 ≃ −Q2

A − k2 − sβ ≈ −sβ. ǫλA
µA

(pA)∗ and

ǫ
λA′

µA′
(pA′) are the polarization vectors of the incoming and outgoing R-currents defined

in Eqs. (2.57)-(2.61).
Due to the factorization of the amplitude (2.81) the subdiagrams belonging to

the upper impact factor are independent from the lower subdiagrams. Furthermore,
fermion and scalar impact factors can be computed separately. The fermion diagrams
are shown in Fig. 2.4 and the scalar diagrams in Fig. 2.5. Here, the gluons couple
to the fermion and scalar loops in all possible ways. We introduce the convenient
notation for the impact factors

D
λλ′aa′

= Ncαsδ
aa′

∫ 1

0

dαl

∫

d2l

(2π)2

∑

i

φλλ′

i (αl, l,q). (2.83)

φλλ′

i is the analytic expression of the ith diagram in Figs. 2.4 and 2.5. The sum
runs over i = F1, . . . , F4 for fermions and over i = S1, . . . , S9 for scalars. αl is
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S1 S2 S3 S4

S5 S6 S7 S8

S9

Figure 2.5: The scalar diagrams for the impact factor

the longitudinal component of the loop momentum. Scalars and fermions are in the
adjoint representation of the gauge group and provide a factor

fac1c2f bc2c1 = −Ncδ
ab. (2.84)

An overall factor of 1/2 arises from the cutting rule

2iIm(A) =
∑

A/ . (2.85)

A/ symbolizes the discontinuity of the amplitude. The computation of the fermion
and scalar diagrams is alike, nevertheless there are some differences. The trace over
two generators of the SU(4)R group is for fermions, which are in the fundamental
representation,

Tr4(T
ATA) =

1

2
, (2.86)

and for scalars in the vector representation

Tr4(T
ATA) = 1. (2.87)

Furthermore, there is a symmetry factor of 1/2 for scalar diagrams since the particles
crossing the cut are identical. An important difference appears concerning the t-
channel gluon propagator. Written in Sudakov decomposition, it is

gµν =
2

s
(p2µp1ν + p1µp2ν) + g⊥µν . (2.88)
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In the fermionic case as well as for the scalar diagrams S1-S4, it is the first term of the
gluon propagator, p2µp1ν , which contributes to the leading power in s in the Regge
limit. But the situation is different for diagrams S6-S9. For example, in diagram S5 the
gluon polarization tensor is contracted with the polarization vector of the incoming
current, which is proportional to pµ

2 . But the contraction pµ
2g⊥µν does not give a

leading contribution and p2
2 = 0. Thus, only the second part of the propagator p1µp2ν

contributes. This contraction provides one power of s less than the leading terms of
diagrams S1-S4. A similar argument applies for the contraction of the polarization
vector proportional to pν

1 with the lower loop. The argument also holds for diagrams
S6-S8. For diagram S9 the suppression is even stronger because the effect takes place
at both vertices. Altogether, in the Regge limit, the leading behavior of the scalar
impact factors is only given by diagrams S1-S4, which look the same as the fermionic
ones.

2.5.1 Explicit Computation of the Impact Factors

Now we give a sample computation of a leading three-loop diagram with a scalar loop
above and a fermion loop below as depicted in Fig. 2.3. Considering a scalar and a
fermion loop in one diagram allows us to show results for both impact factors in one
computation. Since the amplitude factorizes, the two parts of the diagram do not
influence one another. The amplitude is given by

A(0)µAµA′µBµB′ = −
∫

d4l1
(2π)4

∫

d4l2
(2π)4

∫

d4k

(2π)4
g4(−2πi)4

×fa1b1b2fa2b2b1(T
A)M1M2(T

A′

)M2M1fa1c1c2fa2c2c1(T
B)J

I
(TB′

)I
J

×(2l1 − pA)µA(2l1 − k)µ1(2l1 − k − q)µ2(2l1 − pA − q)µA′

l21(l1 − q)2

×Tr[σ̄µB il2µσ
µσ̄ν1(l2 + k)σσ

σσ̄ν2(−i)(l2 + q)ρσ
ρσ̄µB′ (l2 − pB)νσ

ν ]

l22(l2 + q)2

×gµ1ν1

k2

gµ2ν2

(k − q)2
δ((l1 − pA)2)δ((l1 − k)2)δ((l2 + k)2)δ((l2 − pB)2).

(2.89)

We use a Sudakov decomposition (2.41) for the momenta and the relation

Tr[σ̄µ1σµ2 . . . σµ2n ] = Tr[PRγµ1γµ2 . . . γµ2n ] with PR = 1+γ5

2
. We get

A(0)µAµA′µBµB′ = −g4
(s

2

)3 1

(2π)8

∫

dα

∫

dβ

∫

dα1

∫

dβ1

∫

dα2

∫

dβ2

×
∫

d2k

∫

d2l1

∫

d2l2

×fa1b1b2fa2b2b1fa1c1c2fa2c2c1Tr(TATA′

)Tr(TBTB′

)
gµ1ν1

k2

gµ2ν2

(k − q)2
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×(2l1 − pA)µA(2l1 − k)µ1(2l1 − k − q)µ2(2l1 − pA − q)µA′

(sα1β1 − l21)(s(α1 − αq)(β1 − βq) − (l1 − q)2)

×Tr[PRγµB l/2γ
ν1(l/2 + /k)γµ2(l/2 + q/)γµ′

B(l/2 − p/B)]

(sα2β2 − l22)(s(α2 + α)(β2 + β) − (l2 + q)2)

×δ(s(α1 − 1)(β1 − γA) − l21)δ(s(α1 − α)(β1 − β) − (l1 − k)2)

×δ(s(α2 + α)(β2 + β) − (l2 + k)2)δ(s(α2 − γB)(β2 − 1) − l22).

(2.90)

In the Regge limit, we have k2 ≈ k2 and (k − q)2 ≈ (k − q)2. We perform four
integrations with the help of the delta functions. The integrations over α and β fix
the longitudinal components of k, the integrations over β1 and α2 fix one longitudinal
component of each loop momentum l1 and l2. From the first delta function we get

β1 = γA − l21

s(1 − α1)
≈ O

(

1

s

)

, (2.91)

from the second

β ≈ −(l1 − k)2

sα1

+ β1 ≈ O
(

1

s

)

, (2.92)

from the third

α ≈ −α2 +
(l2 + k)2

sβ2

≈ O
(

1

s

)

, (2.93)

and from the last

α2 = γB − l22

s(1 − β2)
≈ O

(

1

s

)

. (2.94)

Inserting the results into the amplitude gives

A(0)µAµA′µBµB′ = −g4
(s

2

)3 1

(2π)8

∫

dα1

∫

dβ2

∫

d2k

∫

d2l1

∫

d2l2

×N2
c δa1a2δa1a2Tr(TATA′

)Tr(TBTB′

)
gµ1ν1

k2

gµ2ν2

(k − q)2

× 1

s|1 − α1|
1

s|α1 − α|
1

s|β2 + β|
1

s|1 − β2|
(1 − α1)

2(1 − β2)
2

× (2l1 − pA)µA(2l1 − k)µ1(2l1 − k − q)µ2(2l1 − pA − q)µA′

((1 − α1)sα1γA − l21)((1 − α1)sα1γA − α1l
2
1 − sα1βq(1 − α1) − (1 − α1)(l1 − q)2)

× Tr[PRγµB l/2γ
ν1(l/2 + /k)γν2(l/2 + q/)γµ′

B(l/2 − p/B)]

((1 − β2)sβ2γB − l22)((1 − β2)sβ2γB − β2l
2
2 + sβ2αq(1 − β2) − (1 − β2)(l2 + q)2)

.

(2.95)

Next, we contract the gluon propagators gµ1ν1 and gµ2ν2 with the upper and lower
loop using the expression in Eq. (2.88). We keep only the leading terms in s, which
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are proportional to α1. Additionally, we use α ≪ α1 and β ≪ β1 in the Regge limit,

A(0)µAµA′µBµB′ = −g4
(s

2

)3 1

(2π)8

∫

dα1

∫

dβ2

∫

d2k

∫

d2l1

∫

d2l2

×N2
c δa1a2δa1a2Tr(TATA′

)Tr(TBTB′

)
1

k2

1

(k − q)2

×(2α1)
2 1

s4

1 − α1

α1

1 − β2

β2

× (2l1 − pA)µA(2l1 − pA − q)µA′

((1 − α1)sα1γA − l21)((1 − α1)sα1γA − α1l
2
1 − sα1βq(1 − α1) − (1 − α1)(l1 − q)2)

× Tr[PRγµB l/2p/1(l/2 + /k)p/1(l/2 + q/)γµ′

B(l/2 − p/B)]

((1 − β2)sβ2γB − l22)((1 − β2)sβ2γB − β2l
2
2 + sβ2αq(1 − β2) − (1 − β2)(l2 + q)2)

.

(2.96)

In the last step, we contract the amplitude with the polarization vectors introduced
in Eqs. (2.57)-(2.61). First, we choose longitudinal polarization vectors, (2.57) and
(2.58), for all R-currents. We will make use of transverse polarization vectors later.
The contraction gives

A(0) = −
(

2

s

)4

QAQA′QBQB′g4
(s

2

)3 1

(2π)8

∫

dα1

∫

dβ2

∫

d2k

∫

d2l1

∫

d2l2

×N2
c δa1a2δa1a2Tr(TATA′

)Tr(TBTB′

)
1

k2

1

(k − q)2

×(2α1)
2 1

s4

1 − α1

α1

1 − β2

β2

× (2α1 − 1) s
2
(2α1 − 1) s

2

((1 − α1)sα1γA − l21)((1 − α1)sα1γA − α1l
2
1 − sα1βq(1 − α1) − (1 − α1)(l1 − q)2)

× Tr[PRp/1l/2p/1(l/2 + /k)p/1(l/2 + q/)p/1(l/2 − p/B)]

((1 − β2)sβ2γB − l22)((1 − β2)sβ2γB − β2l
2
2 + sβ2αq(1 − β2) − (1 − β2)(l2 + q)2)

.

(2.97)

The result of the trace is s4β3
2(β2 − 1), and it follows

A(0) = −2 s QAQA′QBQB′g4 1

(2π)8

∫

dα1

∫

β2

∫

d2k

∫

d2l1

∫

d2l2

×N2
c δa1a2δa1a2Tr(TATA′

)Tr(TBTB′

)
1

k2

1

(k − q)2

×(2α1)
2(1 − α1)(1 − β2)

α1β2

× (2α1 − 1)1
2
(2α1 − 1)1

2

((1 − α1)sα1γA − l21)((1 − α1)sα1γA − α1l
2
1 − sα1βq(1 − α1) − (1 − α1)(l1 − q)2)

× β3
2(β2 − 1)

((1 − β2)sβ2γB − l22)((1 − β2)sβ2γB − β2l
2
2 + sβ2αq(1 − β2) − (1 − β2)(l2 + q)2)

.

(2.98)
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With the relations sγA,B = −Q2
A,B and sγA′,B′ = −Q2

A′,B′ , see Eq. (2.44), as well as

with αq = q2

s
− Q2

B′
−Q2

B

s
and βq = −q2

s
+

Q2
A′

−Q2
A

s
, see Eq. (2.46), we get

A(0) = 8 s QAQA′QBQB′ g4 N2
c δa1a2δa1a2Tr(TATA′

)Tr(TBTB′

)

× 1

(2π)8

∫

dα1

∫

dβ2

∫

d2k

∫

d2l1

∫

d2l2 α1β
2
2(α1 − 1/2)2(1 − β2)

2(1 − α1)

× 1

k2

1

(k − q)2

× 1

(l21 + α1(1 − α1)Q2
A)((l1 − (1 − α1)q)2 + α1(1 − α1)Q2

A′)

× 1

(l22 + β2(1 − β2)Q2
B)((l2 + (1 − β2)q)2 + β2(1 − β2)Q2

B′)
. (2.99)

The traces over the SU(4)R generators is given in Eqs. (2.86) and (2.87). We use

αs = g2

4π
and introduce the scalar symmetry factor 1/2:

A(0) = 8 s α2
s QAQA′QBQB′ N2

c δa1a2δa1a2

×
∫

dα1

∫

dβ2

∫

d2k

(2π)2

∫

d2l1

(2π)2

∫

d2l2

(2π)2
α1β

2
2(α1 − 1/2)2(1 − β2)

2(1 − α1)

× 1

k2

1

(k − q)2

× 1

(l21 + α1(1 − α1)Q2
A)((l1 − (1 − α1)q)2 + α1(1 − α1)Q2

A′)

× 1

(l22 + β2(1 − β2)Q2
B)((l2 + (1 − β2)q)2 + β2(1 − β2)Q2

B′)
. (2.100)

Eq. (2.100) is the result for the whole amplitude A(0). The impact factors can be
read off easily with the help of Eq. (2.81). The scalar impact factor D

LL
S1 for diagram

S1 is

D
LL
S1 = 2 QAQA′αsNc δa1a2

∫ 1

0

dα1

∫

d2l1

(2π)2
α1(α1 − 1/2)2(1 − α1)

× 1

(l21 + α1(1 − α1)Q2
A)((l1 − (1 − α1)q)2 + α1(1 − α1)Q2

A′)
, (2.101)

the fermion impact factor D
LL
F1 for diagram F1 is

D
LL
F1 = 2 QBQB′αsNc δa1a2

∫ 1

0

dβ2

∫

d2l2

(2π)2
β2

2(1 − β2)
2

× 1

(l22 + β2(1 − β2)Q2
B)((l2 + (1 − β2)q)2 + β2(1 − β2)Q2

B′)
. (2.102)

We have considered a scalar impact factor in the upper part of the diagram in Fig. 2.3
and a fermion impact factor in the lower part. To get an impact factor, which can be
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inserted in the upper part of the diagram, from the one computed in the lower part
of the diagram, we perform the following substitutions in (2.102),

l2 → l1, k → −k, q → −q,

β2 → α1, QB,B′ → QA,A′ (2.103)

and vice versa. The upper impact factor for F1 is

D
LL
F1 = 2 QAQA′αsNc δa1a2

∫ 1

0

dα1

∫

d2l1

(2π)2
α2

1(1 − α1)
2

× 1

(l21 + α1(1 − α1)Q2
A)((l1 − (1 − α1)q)2 + α1(1 − α1)Q2

A′)
. (2.104)

From now on, we only examine impact factors from an upper loop. For convenience
we change the notation to

l1 = l and α1 = α. (2.105)

The impact factors for diagrams S2-S4 and F2-F4 in Figs. 2.5 and 2.4 are computed
in a similar way as S1 and F1. The coupling of the gluons to the loop is the only
difference. The loop momenta are changed, but the computation itself stays the same.
We give the results for the impact factors here. We define

N 1 = l,

N ′
1 = l − (1 − α)q,

D1 = N 2
1 + α(1 − α)Q2

A,

D′
1 = N ′2

1 + α(1 − α)Q2
A′ ,

N 2 = l − k,

N ′
2 = l − k + αq,

D2 = N 2
2 + α(1 − α)Q2

A,

D′
2 = N ′2

2 + α(1 − α)Q2
A′ . (2.106)

With these definitions the fermion and scalar impact factors φλλ′

i in Eq. (2.83),
shown in Fig. 2.4 and Fig. 2.5 respectively, are

φLL
F1 = 2QAQA′

α2(1 − α)2

D1D′
1

,

φLL
F2 = −2QAQA′

α2(1 − α)2

D1D′
2

,

φLL
F3 = −2QAQA′

α2(1 − α)2

D2D′
1

,

φLL
F4 = 2QAQA′

α2(1 − α)2

D2D′
2

,

(2.107)

φLL
S1 = 2QAQA′

α(1 − α)(1/2 − α)2

D1D′
1

,

φLL
S2 = −2QAQA′

α(1 − α)(1/2 − α)2

D1D′
2

,

φLL
S3 = −2QAQA′

α(1 − α)(1/2 − α)2

D2D′
1

,

φLL
S4 = 2QAQA′

α(1 − α)(1/2 − α)2

D2D′
2

.

(2.108)
Eqs. (2.107) and (2.108) represent the impact factors with longitudinal polarization

vectors of the R-currents. Now, we use transverse polarization vectors (2.59)-(2.61)
for the incoming and outgoing R-currents. The resulting impact factors are
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φhh′

F1 =
1

2D1D′
1

[

(1 − hiα) ǫ(h) · ǫ(h′)∗ N 1 · N ′
1

+
(

− 4α(1 − α) + i(h − h′)(1 − α)
)

ǫ(h) · N 1 N ′
1 · ǫ(h′)∗

−(1 − hiα)
(

ǫ(h) · l (1 − α)q · ǫ(h′)∗ − ǫ(h) · (1 − α)q l · ǫ(h′)∗
)]

,

φhh′

F2 = − 1

2D1D′
2

[

ǫ(h) · ǫ(h′)∗ N 1 · N ′
2

+
(

− 4α(1 − α) + i(h − h′)(1 − 2α)
)

ǫ(h) · N 1 N ′
2 · ǫ(h′)∗

−ǫ(h) · l (k − αq) · ǫ(h′)∗ + ǫ(h) · (k − αq) l · ǫ(h′)∗
]

,

φhh′

F3 = − 1

2D2D′
1

[

ǫ(h) · ǫ(h′)∗ N 2 · N ′
1

+
(

− 4α(1 − α) + i(h − h′)(1 − 2α)
)

ǫ(h) · N 2 N ′
1 · ǫ(h′)∗

+ǫ(h) · (l − k) (k − (1 − α)q) · ǫ(h′)∗ − ǫ(h) · (k − (1 − α)q) (l − k) · ǫ(h′)∗
]

,

φhh′

F4 =
1

2D2D′
2

[

(1 + hi(1 − α)) ǫ(h) · ǫ(h′)∗ N 2 · N ′
2

+
(

− 4α(1 − α) − i(h − h′)α
)

ǫ(h) · N 2 N ′
2 · ǫ(h′)∗

+(1 + hi(1 − α))
(

ǫ(h) · (l − k) αq · ǫ(h′)∗ − ǫ(h) · αq (l − k) · ǫ(h′)∗
)]

,

(2.109)

φhh′

S1 = 2
α(1 − α)

D1D′
1

ǫ(h) · N 1 N ′
1 · ǫ(h′)∗,

φhh′

S2 = −2
α(1 − α)

D1D′
2

ǫ(h) · N 1 N ′
2 · ǫ(h′)∗,

φhh′

S3 = −2
α(1 − α)

D2D′
1

ǫ(h) · N 2 N ′
1 · ǫ(h′)∗,

φhh′

S4 = 2
α(1 − α)

D2D′
2

ǫ(h) · N 2 N ′
2 · ǫ(h′)∗. (2.110)

A closer look at the impact factors φhh′

F identifies some cancellations. The last two
terms of each φhh′

F cancel each other due to the angular integration in the transverse
momentum l, see Eq. (2.83). If we combine the two denominators, introducing a
Feynman parameter and perform a shift in the l integration in the integrand of (2.83),
the shift cancels in the numerator and the remaining terms in the numerator depend
upon the angle only through the cos θ in the scalar product of the polarization vectors.
Therefore, the result of the θ integration vanishes.
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The terms proportional to h and h′ also cancel because N2 → −N1 and N ′
2 → −N ′

1

after a change of variables, l → −l + k and α → 1 − α. The cancellation takes place
between φhh′

F1 and φhh′

F4 as well as between φhh′

F2 and φhh′

F3 .
After considering purely transverse or longitudinal polarization for all R-currents,

we now choose different polarizations for incoming and outgoing R-currents. The
impact factors φLh for incoming longitudinally and outgoing transversely polarized
R-currents are

φLh
F1 = QA

α(1 − α)(1 − 2α − hi)

D1D′
1

N ′
1 · ǫ(h)∗,

φLh
F2 = −QA

α(1 − α)(1 − 2α − hi)

D1D′
2

N ′
2 · ǫ(h)∗,

φLh
F3 = −QA

α(1 − α)(1 − 2α − hi)

D2D′
1

N ′
1 · ǫ(h)∗,

φLh
F4 = QA

α(1 − α)(1 − 2α − hi)

D2D′
2

N ′
2 · ǫ(h)∗, (2.111)

φLh
S1 = −QA

α(1 − α)(1 − 2α)

D1D′
1

N ′
1 · ǫ(h)∗,

φLh
S2 = QA

α(1 − α)(1 − 2α)

D1D′
2

N ′
2 · ǫ(h)∗,

φLh
S3 = QA

α(1 − α)(1 − 2α)

D2D′
1

N ′
1 · ǫ(h)∗,

φLh
S4 = −QA

α(1 − α)(1 − 2α)

D2D′
2

N ′
2 · ǫ(h)∗. (2.112)

For transverse-longitudinal polarization we get

φhL
F1 = QA′

α(1 − α)(1 − 2α − hi)

D1D′
1

ǫ(h) · N 1,

φhL
F2 = −QA′

α(1 − α)(1 − 2α − hi)

D1D′
2

ǫ(h) · N 1,

φhL
F3 = −QA′

α(1 − α)(1 − 2α − hi)

D2D′
1

ǫ(h) · N 2,

φhL
F4 = QA′

α(1 − α)(1 − 2α − hi)

D2D′
2

ǫ(h) · N 2, (2.113)

φhL
S1 = −QA′

α(1 − α)(1 − 2α)

D1D′
1

ǫ(h) · N 1,

φhL
S2 = QA′

α(1 − α)(1 − 2α)

D1D′
2

ǫ(h) · N 1,
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φhL
S3 = QA′

α(1 − α)(1 − 2α)

D2D′
1

ǫ(h) · N 2,

φhL
S4 = −QA′

α(1 − α)(1 − 2α)

D2D′
2

ǫ(h) · N 2. (2.114)

The terms proportional to the helicity h again cancel between φF1 and φF4 as well
as between φF2 and φF3 after a change of variables, l → −l + k and α → 1 − α.

2.5.2 Full Impact Factors

Summarizing the results we have the full impact factors D
λλ′aa′

given by the sum of
all scalar and all fermion impact factors. The final result for longitudinal-longitudinal
polarization is

D
LLaa′

= δaa′ Ncαs

2
QAQA′

∫ 1

0

dα

∫

d2l

(2π)2
α(1 − α)

(

1

D1

− 1

D2

)(

1

D′
1

− 1

D′
2

)

.

(2.115)

A simplification occurs in the sum of fermion and scalar impact factors with transverse-
transverse helicity. The terms from the scalar sector cancel exactly with the pieces
from the fermion sector, which have remained after the simplification described after
Eq. (2.110). Finally, only one term proportional to ǫ(h) · ǫ(h′)∗ = δhh′

is left for each
diagram, and the result is

D
hh′aa′

= δaa′

δhh′ Ncαs

2
QAQA′

∫ 1

0

dα

∫

d2l

(2π)2

(

N 1

D1

− N 2

D2

)(

N ′
1

D′
1

− N ′
2

D′
2

)

.

(2.116)

In the case of different polarizations for incoming and outgoing R-currents, the fermio-
nic pieces, that have remained after simplification, cancel completely with the corre-
sponding scalar impact factors,

D
Lh′aa′

= 0. (2.117)

These results highlight a striking difference compared with the QCD results [47]. In
QCD, helicity conservation only holds in the forward case, t = 0. In N = 4 SYM,
all off-diagonal terms in the polarization indices vanish for arbitrary t = −q2 due to
the cancellation between the scalar and the fermionic part. Helicity conservation is a
consequence of the supersymmetry of the theory.
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3 The Six Point Function in N = 4

SYM

In the last chapter, we have computed the four point function of R-currents in N = 4
SYM in the Regge limit. The next step is to investigate the elastic scattering of
more than two R-currents. Higher order correlation functions provide first unitarity
corrections to the BFKL Pomeron. Unitarity corrections are believed to restore uni-
tarity, which is violated at high energies by the BFKL Pomeron, see section 1.2.1.
Accordingly, we analyze the six point function of R-currents in this chapter.

As we have seen, the four point function of R-currents in N = 4 SYM in the
Regge limit is dominated by the BFKL Pomeron. The supersymmetry only affects
the impact factors in the amplitude, the reggeization of the amplitude stays the same.
In a six point correlation function, the effect of the supersymmetry is expected to be
more distinct since the structure of the diagrams is more complex, for example the
BKP equations and the triple Pomeron vertex are included.

In the following, we study the six point function of R-currents in N = 4 SYM in the
triple Regge limit in the LLA. First, we [42] perform the computations for arbitrary
Nc. In the last part of this chapter, we take the large Nc-limit of the six point
function, see our publication in Ref. [43]. In the large Nc-limit, the strong coupling
regime of N = 4 SYM is related to the weakly coupled type IIB string theory via the
AdS/CFT-correspondence. We will make use of this fact in the following chapters.

3.1 Setup of the Computation

In analogy to the four point function in Eq. (2.39) we define the six point amplitude
of R-currents in N = 4 SYM in momentum space as

i(2π)4δ(pA + pB + pC − pA′ − pB′ − pC′)AR(s, t, . . . )µAµBµCµA′µB′µC′

=

∫

∏

i

d4xi e
−ipA·xA−ipB ·xB−ipC ·xC−ipA′ ·xA′−ipB′ ·xB′−ipC′ ·xC′

×〈JAµA

R (xA)JBµB

R (xB)JCµC

R (xC)J
A′µA′

R (xA′)J
B′µB′

R (xB′)J
C′µC′

R (xC′)〉. (3.1)

The correlator is the analog of a six point function of virtual photons in QCD, see
section 1.2.1. We are interested in the high energy limit of the six point amplitude
(3.1). Its kinematics are shown in Fig. 3.1. The amplitude depends on three energy
variables, s1 = (q+p1)

2, s2 = (q′+p′2)
2, and M2 = (q+p1−p′1)

2 and on the momentum
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M2

t

t2

q′q

p1

t1

s1 s2

p′2
p′1 p2

Figure 3.1: Kinematics of a six point amplitude of R-currents

transfer variables t = (q − q′), t1 = (p1 − p′1)
2, and t2 = (p2 − p′2)

2. Hence, the triple
Regge limit is given by

s1, s2 ≫ M2 ≫ t, t1, t2. (3.2)

The total energy of the scattering process is S = (q + p1 + p2)
2.

We again use a Sudakov decomposition of the momenta and choose the lightlike
reference vectors q′ and p. Internal momenta are then written as

k = αq′ + βp + k⊥ with k2
⊥ = −k2, (3.3)

and it is

s = 2p · q, S = 4p · q = 2s,

q = q′ − xp with x = 2p · q/Q2, and M2 = xP s with xp ≪ 1. (3.4)

Furthermore, we choose two incoming momenta two be equal,

p1 = p2 = p. (3.5)

In deep inelastic scattering on two weakly bound nucleons in QCD, the momenta
belong to the two incoming nucleons. The outgoing momenta are

p′1 = p(1 − xP ) + p1⊥ and p′2 = p(1 + xP ) + p2⊥, (3.6)

that is the outgoing R-currents are allowed to have small losses of longitudinal and
transverse momenta. In the triple Regge limit, Eq. (3.2), a multi-particle amplitude
has an analytic expression [50],

T3→3(s1, s2,M
2; t1, t2, t) =

s1s2

M2

∫

dω1dω2dω

(2πi)3
sω1
1 sω2

2 (M2)ω−ω1ω2ξ(ω1)ξ(ω2)

×ξ(ω, ω1, ω2) · F (ω, ω1, ω2; t, t1, t2) + · · · . (3.7)

The partial wave F (ω, ω1, ω2; t, t1, t2) is related via a triple Mellin transform to the
amplitude T3→3. The variables ω, ω1, and ω2 are connected to the angular momenta
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j, j1 and j2 by ω = j − 1, ω1 = j1 − 1, and ω2 = j2 − 1. The dots represent three
further terms that appear in the triple Regge limit. Since they do not contribute to
the M2-discontinuity, we are interested in in the following computations, we do not
show them here. The signature factors are given by

ξ(ω) = −π
e−iπω − 1

sin(πω)
and ξ(ω, ω1, ω2) = −π

e−iπ(ω−ω1−ω2) − 1

sin(π(ω − ω1 − ω2))
. (3.8)

To compute the amplitude T3→3 in the high energy limit, we take the triple energy
discontinuity in s1, s2, and M2. That is the reason why we are only interested in
terms with a M2-discontinuity in the analytic expression (3.7). The triple energy
discontinuity reads

discs1discs2discM2T3→3

= π3 s1s2

M2

∫

dω1dω2dω

(2πi)3
sω1
1 s2

ω2(M2)ω−ω1−ω2 · F (ω, ω1, ω2; t1, t2, t). (3.9)

In Fig. 3.2, two examples of a six point function are shown. The dashed lines illustrate
the discontinuities in s1, M2, and s2. These diagrams represent the LLA for the six
point amplitude in the triple Regge limit. That means, for each gluon we have a large
logarithm of an energy variable.

The general structure of the six point amplitude diagrams is the following: There
are three different t-channel states: t, t1, and t2, each with its own angular momentum
j, j1, and j2. In order to have, in the LLA, color singlet t-channel states, which couple
to one R-current at the top and to two R-currents at the bottom of the diagram, the
diagrams must contain four t-channel gluons at the lower end and two, three, or four
t-channel gluons at the upper end. Wavy t-channel lines in the diagrams symbolize
reggeized gluons. Interactions between different t-channel gluons are described by
kernels. The impact factors describe the coupling of the t-channel gluons to the
incoming and outgoing R-currents. An important part of each diagram is the lowest
interaction between the gluons, the so called branching vertex, below which the upper
t-channel breaks up into the channels t1 and t2. Above the branching vertex the
gluons evolve according to the BKP equation, below the branching vertex the gluons
interact only pairwise according to the BFKL equation and form two disconnected
BFKL Pomerons.

3.2 Impact Factors

The impact factors consist, as in the case of a four point function in N = 4 SYM,
of fermions and scalars in the adjoint representation of the gauge group, and the
complete impact factors are given by the sum over all possible ways in which the
gluons can couple to the fermions and scalars. We present results for fermion and
scalar impact factors with three and four gluons. These impact factors and the two
gluon impact factors, which have already been given in section 2.5.2, appear in the
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t j

t1 j1 t2 j2

t j

t1 j1 t2 j2

Figure 3.2: Some contributions to the triple energy discontinuity of the six point func-
tion of R-currents in the LLA

six point function diagrams. The impact factors with Weyl fermions for N = 4 SYM
can be related to the impact factors in QCD with Dirac fermions. The scalar impact
factors have no counterpart in QCD and are completely new results [42].

3.2.1 Fermion Impact Factors

In this section, we explain the relation between fermion impact factors in N = 4
SYM and QCD. We start with the simplest example: the two gluon impact factors.
In N = 4 SYM, the Weyl fermions are in the adjoint representation of the gauge
group. Instead of Nc fundamental fermions in QCD we now have N2

c − 1 adjoint
fermions, that is the color trace Tr(tatb) = δab/2 is replaced by Tr(T aT b) = Ncδ

ab

with (T a)bc = −ifabc, see section 2.2.1. Moreover, we identify the left- and righthanded
parts of a massless Dirac fermion with a Weyl fermion in the standard way. Thus,
the impact factor with a massless Dirac fermion is twice the impact factor with a
Weyl fermion. Next, we consider the U(1) charges eF of the global SU(4)R symmetry,
which are the analogs of the electric charges eq. We get a factor, see also Eq. (2.86),

RF =

∑

e2
F

∑

e2
q

=
Tr(TATA)
∑

e2
q

=
1

2
∑

e2
q

. (3.10)

For scalars the factor RS resulting from the trace over SU(4)R generators is, Eq. (2.87),

RS = Tr(TATA) = 1. (3.11)

We need this relation in the next section. Altogether, we have a relative factor F
between two gluon impact factors with Weyl and Dirac fermions, which is

F = 2NcR with R =
1

2
RF . (3.12)
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Next we consider three gluon impact factors. In QCD, it is known, that the three
gluon impact factors can be decomposed in terms of the two gluon impact factor
[16, 17]:

Da1a2a3

F,(3;0) (k1,k2,k3) =
1

2
gfa1a2a3 [DF,(2;0)(12, 3)−DF,(2;0)(13, 2) + DF,(2;0)(1, 23)]. (3.13)

We have introduced the notation Da1a2a3

F,(3;0) (k1,k2,k3) for a three gluon impact factor
in QCD. The arguments ki are the momenta of the gluons and ai their color labels.
Furthermore, we have used the following shorthand notation for the two gluon impact
factor,

D(2;0)(12, 3) = D(2;0)(k1 + k2,k3), (3.14)

and similar expressions for the other two gluon impact factors in Eq. (3.13). With
Eq. (3.13) and the factor F in Eq. (3.12), the relation of a fermion impact factor with
three gluons in N = 4 SYM to a three gluon impact factor in QCD is given by

D
a1a2a3

F,(3;0)(k1,k2,k3) = 2NcRDa1a2a3

F,(3;0) (k1,k2,k3)

=
1

2
gfa1a2a3 [DF,(2;0)(12, 3) − DF,(2;0)(13, 2) + DF,(2;0)(1, 23)].

(3.15)

The symbol D(i;0) denotes impact factors in N = 4 SYM as before in section 2.5.
We have introduced the index (i; 0) to distinguish the impact factors from the gluon
amplitudes Di in section 3.3 later. We observe the reggeization of the gluons in the
impact factor: In any two gluon impact factor in Eq. (3.15), two gluons combine and
act as a single gluon. This is the same reggeization as known from QCD [17, 18].

For impact factors with four gluons the situation is more complicated because the
color structure of the diagrams is different. We have for a pair of diagrams [42]

Tr(T aT bT cT d) + Tr(T dT cT bT a) = 2Ncd
abcd + δabδcd + δacδbd + δadδbc (3.16)

with
dabcd = Tr(T aT bT cT d) + Tr(T dT cT bT a). (3.17)

The relation of the impact factor D
a1a2a3a4

F,(4;0) (k1,k2,k3,k4) to the QCD one is

D
a1a2a3a4

F,(4;0) (k1,k2,k3,k4)

= 2NcRDa1a2a3a4

(4;0) (k1,k2,k3,k4) + D
a1a2a3a4

F,(4;0)Dir(k1,k2,k3,k4). (3.18)

The additional piece D
a1a2a3a4

F,(4;0)Dir is a consequence of the delta tensors in Eq. (3.16) and
cannot be related to QCD impact factors. The meaning of the subscript Dir will
become clear in the next sections. The impact factor D

a1a2a3a4

F,(4;0) expressed in terms of
the two gluon impact factors in N = SYM is

D
a1a2a3a4

F,(4;0) (k1,k2,k3,k4)

= −g2da1a2a3a4 [DF,(2;0)(123, 4) + DF,(2;0)(1, 234) − DF,(2;0)(14, 23)]

−g2da1a2a3a4 [DF,(2;0)(134, 2) + DF,(2;0)(124, 3) − DF,(2;0)(12, 34) − DF,(2;0)(13, 24)]

+D
a1a2a3a4

F,(4;0)Dir(k1,k2,k3,k4). (3.19)
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Figure 3.3: A scalar six point function

Figure 3.4: Two of the additional scalar diagrams in which gluons couple directly to
an R-current

Furthermore, the additional part expressed in terms of the two gluon impact factor
reads

D
a1a2a3a4

F,(4;0)Dir(k1,k2,k3,k4)

= −g2 1

2Nc

(δa1a2δa3a4 + δa1a3δa2a4 + δa1a4δa2a3)

×[DF,(2;0)(123, 4) + DF,(2;0)(124, 3) + DF,(2;0)(134, 2) + DF,(2;0)(1, 234)

−DF,(2;0)(12, 34) − DF,(2;0)(13, 24) − DF,(2;0)(14, 23)]. (3.20)

Due to the symmetry of DF,(2;0), the additional term is completely symmetric in its
color and momentum arguments.

3.2.2 Scalar Impact Factors

We now come to the scalar impact factors. One scalar six point function is pictured in
Fig. 3.3. We show that it is possible to relate the three and four gluon scalar impact
factors DS,(3;0) and DS,(4;0) to the two gluon scalar impact factor DS,(2;0) in the same
way as for fermions.

We first consider the so-called additional diagrams, see Fig. 3.4. They are analogs
of the diagrams S5-S9 in Fig. 2.5 for the two gluon impact factor. Fortunately, the
additional diagrams are suppressed due to the same reason as in the case of two t-
channel gluons. Every contraction of the gluon polarization tensor, Eq. (2.88), with
the polarization vector of the R-current provides one power of s less then the leading
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Figure 3.5: A scalar diagram, which does not contribute to the discontinuity

l1 − k1l1

k1

Figure 3.6: A scalar-gluon vertex

diagrams. Therefore, only diagrams with gluons coupled directly to the scalar lines
contribute at high energies to the scalar impact factor.

Furthermore, diagrams as in Fig. 3.5 do not contribute to the discontinuity, which
we are considering.

Because of the suppression of the additional diagrams, the scalar impact factors
with more than two gluons can be expressed in terms of the two gluon impact factor
DS,(2;0). The reduction mechanism is similar to the one with fermion loops. We explain
the mechanism in the following.

A scalar-gluon vertex, Fig. 3.6, contracted with the leading longitudinal part
(2pµq

′
ν)/s of the gluon propagator, Eq.(2.88), is proportional to sα. α is the Su-

dakov component of the scalar loop momentum l1. Let us now consider two adjacent
gluons, which couple to the scalar loop. Each scalar-gluon vertex is contracted with
the longitudinal momentum p from the polarization tensor of the t-channel gluons.
Furthermore, the scalar propagator between the two vertices is on-shell because we
are taking the discontinuity, resulting in a delta function. We obtain

l1 − k1 − k2l1

k1 k2

∼ 2πiδ((l − k1)
2)(2l1 − k1) · p (l − k1 + l − k1 − k2) · p. (3.21)

Making use of the Sudakov decomposition, we find

δ((l − k1)
2)(2l1 − k1) · p (l − k1 + l − k1 − k2) · p

∼ sαδ((β − βk1) − (l − k1)
2/(sα)) ∼

l1 l1 − k1 − k2

k2k1 ,

(3.22)

which is the same as the one gluon-scalar vertex, but with the transverse gluon momen-
tum given by the sum of both t-channel gluons. This means we observe reggeization
of the gluons in the scalar part of the impact factors as well.
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The scalar impact factors come in pairs. There are two diagrams each with the same
momentum structure but the color trace in different order. The relative sign between
these diagrams is (−1)n; n is the number of gluons. Altogether, the decomposition of
the three and four gluon impact factors into a sum of two gluon impact factors DS,(2;0)

works the same as for fermion impact factors. The results are

D
a1a2a3

S,(3;0) (k1,k2,k3) =
1

2
gfa1a2a3 [DS,(2;0)(12, 3) − DS,(2;0)(13, 2) + DS,(2;0)(1, 23)] (3.23)

and

D
a1a2a3a4

S,(4;0) (k1,k2,k3,k4)

= −g2da1a2a3a4 [DS,(2;0)(123, 4) + DS,(2;0)(1, 234) − DS,(2;0)(14, 23)]

−g2da1a2a3a4 [DS,(2;0)(134, 2) + DS,(2;0)(124, 2) − DS,(2;0)(12, 34) − DS,(2;0)(13, 24)]

+D
a1a2a3a4

S,(4;0)Dir(k1,k2,k3,k4) (3.24)

with D
a1a2a3a4

S,(2;0)Dir(k1,k2,k3,k4) given by Eq. (3.20) with F replaced by S.
Since both the scalar and fermion impact factors show reggeization, the full impact

factors D(3;0) and D(4;0) are given by the sum of fermion and scalar impact factors:

D(3;0) = DF,(3;0) + DS,(3;0),

D(4;0) = DF,(4;0) + DS,(4;0) (3.25)

with arbitrary polarization of the R-currents.

3.3 The Six Point Amplitude

After computation of the impact factors, we now study the six point amplitude. The
amplitude is related to the partial wave F (ω, ω1, ω2; t, t1, t2), Eq. (3.7). The partial
wave is obtained as the convolution of n-gluon amplitudes Dn [42]:

F (ω1, ω2, ω; t1, t2, t) = 4 D
a1a2
2 (ω1) ⊗12 D

a3a4
2 (ω2)⊗34

[

D̄
a1a2a3a4

(4;0) (ω) + K
{b}→{a}
2→4 ⊗ D

b1b2
2 (ω) +

∑

K
{b}→{a}
2→3 ⊗ D

b1b2b3
3 (ω)

+
∑′

K
{b}→{a}
2→2 ⊗ D

b1b2b3b4
4 (ω)

]

. (3.26)

The relevant n-gluon amplitudes Dn are obtained from the scattering amplitude ap-
plying suitable discontinuities. We refer to Ref. [17].

The amplitudes D2(ω1) and D2(ω2) combine the two lower impact factors D(2;0) with
their adjacent BFKL Green’s functions and describe the evolution of two reggeized
gluons below the branching vertex, respectively. To recapitulate, the branching vertex
is the lowest interacting between the gluons after which the amplitude breaks up into
two separate t-channels. The symbol ⊗12 (⊗34) denotes the convolution of the gluon
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l2, b2l1, b1

. . .
k1, a1 km, am

Figure 3.7: A diagrammatic representation of a 2 → m kernel

amplitude D2(ω1) (D2(ω2)) with the t-channel gluons 1 and 2 (3 and 4) and is defined
as

⊗12 =

∫

d2k1

(2π)3k1k2

. (3.27)

k1 and k2 are the transverse gluon momenta.
The transitions between the gluons above the branching vertex are described by

the kernels K
{b}→{a}
2→4 , K

{b}→{a}
2→3 , and K

{b}→{a}
2→2 [52], which act on the amplitudes D

b1b2
2 ,

D
b1b2b3
3 , and D

b1b2b3b4
4 , respectively. The convolution symbol is defined as:

⊗ =

∫

d2l1

(2π)3l1l2
. (3.28)

The kernels denote the interaction of two gluons resulting in m gluons while the other
gluons of the amplitude keep their momenta and colors, see Fig. 3.7. The sums of the
kernels extend over all possible interactions of the gluons under the condition that
the gluons do not cross each other. The branching vertex itself is one of the 2 → 4,
2 → 3, or 2 → 2 kernels. One characteristic concerns the sum over 2 → 2 transitions.
The branching vertex can be an interaction inside the gluon pairs (23), (13), (24), or
(14), but not inside (12) or (34). The prime on the sum indicates that the interactions
inside the gluon pairs (12) and (34) are not included.

D̄(4;0) is the unintegrated four gluon impact factor and describes the direct coupling
of D2(ω1) and D2(ω2) to the upper impact factor. As long as we have one or more
s-channel gluons that contribute to the M2-discontinuity, in addition to the particles
in the loop, the invariant mass of the particles in the loop is integrated over. The
integration is included in the usual impact factor D(4;0). Without such s-channel
gluons the mass of the particles in the loop coincides with the diffractive mass M ,
which is a fixed external parameter. Then the coupling of the four gluons to the loop
is given by the triple discontinuity of the loop without integration over the diffractive
mass and defines an unintegrated four gluon impact factor D̄(4;0)(k1,k2,k3,k4; M

2).
Following Refs. [15, 16, 17, 42], the partial wave can be decomposed into three parts:

F = F (R) + F (I) + F (Dir). (3.29)

The reggeizing part F (R) and the irreducible part F (I) with λ̄ = λ/2 are given by

F (R)(ω1, ω2, ω; t1, t2, t) = 4 D
a1a2
2 (ω1) ⊗12 D

a3a4
2 (ω2) ⊗34

[

D̄
a1a2a3a4

(4;0) (ω) + (ω − ω1 − ω2)
λ̄

Nc

VR ⊗ D
a1a2a3a4
2 (ω)

]

(3.30)
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321 4

D(2;0) D(2;0)
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(a) F (R)
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(b) F (I)

1 4
2 3

D(2;0) D(2;0)

D(4;0)

(c) F (Dir)

Figure 3.8: The three different parts of the six point partial wave F (ω, ω1, ω2) for
arbitrary Nc

and

F (I)(ω1, ω2, ω; t1, t2.t) = 4 D
a1a2
2 (ω1) ⊗12 D

a3a4
2 (ω2) ⊗34

[

VTPV ⊗ D
a1a2a3a4
2 (ω) +

∑′
K

{b}→{a}
2→2 ⊗ D

b1b2b3b4
4 (ω)

]

.

(3.31)

F (R) and F (I) have a similar structure, they are shown in Figs. 3.8(a) and 3.8(b).
They contain the amplitudes D2(ω1), D2(ω2), and D2(ω), which combine the impact
factors appearing at three different ends of the diagram, their connected BFKL Green’s
functions, and a triple vertex in the center. The explicit form of the vertices can be
found in Ref. [52].

The term F (R) is a direct consequence of the reggeization of the gauge bosons, it is
a superposition of two gluon amplitudes D2. The gluons couple to the upper impact
factor, interact according to the BFKL equation and then undergo a transition to
four gluons via the triple vertex VR. After the triple vertex the gluons 1 and 2 as well
as the gluons 3 and 4 only interact pairwise according to the BFKL equation, that
is we have two noninteracting BFKL Pomerons. In the special case in which we do
not have s-channel gluons contributing to the M2-discontinuity, the direct coupling of
the two Pomerons to the upper R-currents is given by the unintegrated impact factor
D̄

a1a2a3a4

(4;0) (ω).

In the second term, F (I), two gluons again couple to the upper impact factor and
interact according to the BFKL equation. Then the triple Pomeron vertex VTPV

transforms the two gluons to four, and they interact pairwise according to the BKP
equations. The two disconnected Pomerons appear after the branching vertex. F (R)
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and F (I) are well kown from QCD [17].

The last piece in Eq. (3.29), F (Dir), pictured in Fig. 3.8(c), provides a new structure
in N = 4 SYM. It reads

F (Dir)(ω, ω1, ω2; t1, t2.t) = 4 D
a1a2
2 (ω1) ⊗12 D

a3a4
2 (ω2) ⊗34

[

D̄
a1a2a3a4

(4;0) (ω) +
∑′

K
{b}→{a}
2→2 ⊗ D

b1b2b3b4
4 (ω)

]

.(3.32)

Here, the four gluon BKP state couples directly to the upper impact factor. The
partial wave F (Dir) contains no triple vertex. After the branching vertex we once
again obtain the two noninteracting Pomerons. The partial wave F (Dir) also includes
the unintegrated impact factor D̄

a1a2a3a4

(4;0) (ω).

Now we compute the unintegrated impact factor D̄
a1a2a3a4

(4;0) . To separate the color
factor from the unintegrated impact factor, we introduce the notation

D̄
a1a2a3a4

(4,0) = [2Ncd
a1a2a3a4 + δa1a2δa3a4 + δa1a3δa2a4 + δa1a4δa2a3 ][D̄S,(4,0) + D̄F,(4,0)].

(3.33)

D̄S,(4,0) and D̄F,(4,0) symbolize the scalar and fermion unintegrated impact factors,
respectively. The structure of the unintegrated four gluon impact factor in QCD for
the forward case t = t1 = t2 = 0 has been given in [17]. We evaluate the unintegrated
impact factor in the forward case in N = 4 SYM. There are 16 diagrams with a
fermion and a scalar impact factor, respectively. To compute them explicitly, we take
the discontinuity in s1, s2, and M2, but do not integrate over M . The results for Weyl
fermions with k1 = −k2 = k and k3 = −k4 = k′ are:

D̄
hh′

F,(4,0)(k,−k,k′,−k′; M2) =
RF

2
g4 1

(2π)3

∫ 1

0

dα

∫

d2lα(α − 1)δ(α(1 − α)M2 − l2)

×
[

−(2α − 1)2ǫ(h) ·
(

l + k

D(l + k)
+

l − k

D(l − k)
− 2

l

D(l)

)

×
(

l + k′

D(l + k′)
+

l − k′

D(l − k′)
− 2

l

D(l)

)

· ǫ(h′)

+ǫ(h′) ·
(

l + k

D(l + k)
+

l − k

D(l − k)
− 2

l

D(l)

)(

l + k′

D(l + k′)
+

l − k′

D(l − k′)
− 2

l

D(l)

)

· ǫ(h)

− ǫ(h) · ǫ(h′)

(

l + k

D(l + k)
+

l − k

D(l − k)
− 2

l

D(l)

)

·
(

l + k′

D(l + k′)
+

l − k′

D(l − k′)
− 2

l

D(l)

)]

.

(3.34)

We have contracted the impact factor with transversely polarized R-currents, given
in Eqs. (2.59)-(2.61). The unintegrated impact factor for longitudinal polarization of
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the R-currents, Eqs. (2.57) and (2.58), is

D̄
LL
F,(4,0)(k,−k,k′,−k′; M2)

= −4
RF

2
g4Q2 1

(2π)3

∫ 1

0

dα

∫

d2lα3(α − 1)3δ(α(1 − α)M2 − l2)

×
(

1

D(l + k)
+

1

D(l − k)
− 2

D(l)

)

·
(

1

D(l + k′)
+

1

D(l − k′)
− 2

D(l)

)

.

(3.35)

The factor RF and a factor 1/2 for Weyl fermions, see section 3.2, are included, but
the color factor is not because we have written the color factor separately in Eq. (3.33).
The denominators are given by

D(k) = α(α − 1)Q2 + k2. (3.36)

Similarly, the scalar contributions to the unintegrated four gluon impact factors are

D̄
hh′

S,(4,0)(k,−k,k′,−k′; M2)

= g4 1

(2π)3

∫ 1

0

dα

∫

d2lα2(α − 1)2δ(α(1 − α)M2 − l2)

×ǫ(h) ·
(

l + k

D(l + k)
+

l − k

D(l − k)
− 2

l

D(l)

)(

l + k′

D(l + k′)
+

l − k′

D(l − k′)
− 2

l

D(l)

)

· ǫ(h′)

(3.37)

and

D̄
LL
S,(4,0)(k,−k,k′,−k′; M2)

= g4 Q2 1

(2π)3

∫ 1

0

dα

∫

d2l (α − 1/2)2α2(α − 1)2δ(α(1 − α)M2 − l2)

×
(

1

D(l + k)
+

1

D(l − k)
− 2

D(l)

)(

1

D(l + k′)
+

1

D(l − k′)
− 2

D(l)

)

.

(3.38)

After integration over the angles of the momenta l, k, and k′, it is possible to combine
the fermion and scalar loops. The results are

D̄
hh′

(4,0)(k,−k,k′,−k′; M2) =
g4

32
δhh′ 1

M2

∫ 1

0

dα Iv(k2, α,M2)Iv(k′2, α,M2) (3.39)

and

D̄
LL
(4,0)(k,−k,k′,−k′; M2) =

g4

32
Q2

∫ 1

0

dα α2(1 − α)2Is(k
2, α,M2)Is(k

′2, α,M2).

(3.40)
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Here, we have defined:

l

l2
Iv(k2, α,M2) =

∫ 2π

0

dϕ

2π

(

l + k

D(l + k)
+

l − k

D(l − k)
− 2

l

D(l)

)

=
l

l2

(

Q2 − M2

Q2 + M2
− k2 + α(1 − α)(Q2 − M2)
√

(k2 + α(1 − α)(Q2 − M2))2 + 4α2(1 − α)2M2Q2

)

(3.41)

and

Is(k
2, α,M2) =

∫ 2π

0

dϕ

2π

(

1

D(l + k)
+

1

D(l − k)
− 2

D(l)

)

= 2

(

1
√

(k2 + α(1 − α)(Q2 − M2))2 + 4α2(1 − α)2M2Q2
− 1

α(1 − α)(Q2 + M2)

)

,

(3.42)

where ϕ denotes the angle of the vector k, and we have used the delta functions to
set l2 = α(1 − α)M2.

3.4 The Large Nc-Limit in a Topological Approach

The computation of the six point correlator in the last sections has been for arbitrary
Nc. Now, we take the large Nc-limit, Nc → ∞, since the AdS/CFT-correspondence
relates the strong coupling regime of N = 4 SYM in the large Nc-limit to supergravity
in an AdS5 background. Additionally, the large Nc-limit provides a different view on
the color structure of diagrams in the high energy limit. In the so-called topological
approach, the color structure can be projected onto surfaces, for example onto planes,
spheres, or pairs-of-pants.

First, we recall the large Nc-limit of QCD with fermions in the fundamental repre-
sentation [51]. The Fierz identity

(ta)i
j(t

a)k
l = δi

lδ
k
j − 1

Nc

δi
jδ

k
l , (3.43)

where (ta)i
j denote the SU(Nc) generators in the fundamental representation (with

the normalization Tr(tatb) = δab), and the identity

fabc =
1

i
√

2

[

Tr(tatbtc) − Tr(tctbta)
]

(3.44)

give rise to color diagrams with the following elements:
(i) for each quark in the fundamental representation a single line with an arrow indi-
cating the flow from the upper to the lower index

δi
j = i j ; (3.45)
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Figure 3.9: Cylinder topology for the 2 → 2 scattering in QCD (left) and the topology
of a stretched sphere in N = 4 SYM (right)

(ii) for each inner gluon a double line

δi
lδ

k
j = i l

j k ; (3.46)

(iii) for each triple gluon vertex

fabc =
1

i
√

2

[

Tr(tatbtc) − Tr(tctbta)
]

. (3.47)

As a result, each QCD diagram turns into a network of double and single lines. The
resulting diagrams only represent the color factors. The momentum part has to be
written separately. A usual Feynman diagram illustrates both the color factors and
the momentum part.

The double line diagrams can be drawn on a two-dimensional surface with Euler
number χ = 2 − 2h − b, where h is the number of handles of the surface and b the
number of boundaries or holes. A closed color loop always delivers a factor Nc, and
a closed quark loop, compared to a corresponding gluon loop, is 1/Nc suppressed and
leads to a boundary. For an arbitrary vacuum graph T one arrives at the following
expansion in Nc

T =
∞
∑

h,b

N2−2h−b
c Th,b(λ), (3.48)

where the ’t Hooft-coupling λ is held fixed while Nc is taken to infinity. In this
expansion, the leading diagrams are those, which have the topology of a sphere with
zero handles and zero boundaries, h = b = 0. With quarks included the leading
diagrams are those, which fit on a plane, that is h = 0, b = 1. Diagrams with two
boundaries and zero handles, b = 2 and h = 0, can be drawn on the surface of a
cylinder: the color diagram of the BFKL Pomeron in QCD lies on the surface of a
cylinder, Fig. 3.9 left. Diagrams with three boundaries and zero handles, b = 3 and
h = 0, fit on the surface of a pair-of-pants, see Fig. 3.10. One example for a diagram
with such a color structure is the triple Pomeron vertex in QCD [52].
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Figure 3.10: Pair-of-pants topology

Figure 3.11: Pair-of-pants topology for the 3 → 3 amplitude in QCD (left) and the
deformed pair-of-pants topology in N = 4 SYM (right)

In N = 4 SYM, fermions and scalars belong to the adjoint representation of the
gauge group, and in the topological description, they are represented by double lines
as the gauge bosons. Then, fermions no longer define boundaries, and the color
diagrams receive some changes. As a simple example, in QCD the BFKL Pomeron
fits onto a cylinder with two boundaries defined by the closed quark loops, Fig. 3.9
left. In N = 4 SYM, the top and the bottom loop obtain double lines and turn
into caps, and the cylinder turns into a stretched sphere with zero handles and zero
boundaries as shown in Fig. 3.9 right. The same happens for six point functions. The
color diagrams for a six point function with fundamental fermions in QCD, Fig. 3.11
left, fit on a pair-of-pants [52]. In N = 4 SYM with fermions and scalars in the
adjoint representation, the loops of the impact factors turn into double lines, and the
boundaries of the pair-of-pants are replaced by caps, Fig. 3.11 right.

If we are interested in a six point correlator of R-currents in N = 4 SYM in the
topological approach, we have to sum diagrams which lie on this surface. It turns
out that there are three different classes of color diagrams, two already present in
QCD and one new class. The separation into three classes of diagrams offers a better
understanding of the structure of six point amplitudes already presented in the last
section. The three classes of color diagrams are related to the three partial waves in
Eq. (3.29). The different building blocks in the partial waves, the triple vertex VR and
the triple Pomeron vertex VTPV as well as the additional partial wave F (Dir) appear
due to the different classes of color graphs.
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Figure 3.12: The four different orderings of color factors in the six point function in lowest
order QCD

3.4.1 Diagrams on a Deformed Pair-of-Pants

We discuss the diagrams of a six point correlator of R-currents, which fit on a deformed
pair-of-pants, shown in Fig. 3.11 right.

To start with a simple example, we first consider the cylinder topology. When we
replace at the top of the cylinder the fermion in the fundamental representation in
QCD, Fig. 3.9 left, by an adjoint fermion, we simply draw above the already existing
color line of the fermion an additional closed color loop, which generates an additional
factor Nc. The double line notation now also includes scalar loops. The two t-channel
gluons are attached to the same color line of the closed loop, either to the lower line or
to the upper one as shown in Fig. 3.9 right. Diagrams where the two t-channel lines
are attached to different lines lose a factor Nc and are suppressed. A result of this
simple observation is, the contribution of the adjoint fermions to the impact factors
is proportional to Nc times that of a fundamental one. The different results for the
traces of generators reflect this observation. In the fundamental representation, we
have Tr(tatb) = δab whereas in the adjoint representation we have Tr(T aT b) = Ncδab.
Note that our normalization of the fundamental generators deviates by a factor two
from the standard normalization Tr(τaτ b) = δab/2 in section 3.2.1.

Let us now turn to the six point function. In lowest order QCD, the four t-channel
gluons couple to the upper loop in all possible ways, altogether there a 16 different
diagrams. A closer look shows that we have inside the 16 diagrams four different
orderings of color matrices. For the lowest order diagrams in the nonsupersymmetric
QCD case, the four different structures are illustrated in Fig. 3.12. Switching to
N = 4 SYM, we simply perform for each of the three impact factors the substitution
we have just described for the BFKL cylinder, and we obtain an additional factor N3

c .
Whereas in QCD the analogous lowest order graphs fit on the surface of a pair-of-
pants in Fig. 3.10, the diagrams now have the shape of a deformed sphere as once
again shown in Fig. 3.13(a). Here both gluon cylinders are coupled to the same line
of the upper loop.

A closer inspection shows another possible configuration in addition to Fig. 3.13(a):
without losing a factor Nc, we can attach one of the cylinders to the outer loop, the
other one to the inner loop, Fig. 3.13(b). This additional piece in the four gluon impact
factor has no counterpart in QCD with fermions in the fundamental representation.
It has first been found in [42]. An alternative way of drawing this graph is shown in
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(a) (b)

Figure 3.13: Pair-of-pants topology for the 3 → 3 amplitude in N = 4 SYM: (a) a
color configuration already present in QCD, and (b) a new one, which
only exists for adjoint particles

Figure 3.14: An alternative way of drawing Fig. 3.13(b)

Fig. 3.14.

Moving on to next-to-leading order (NLO) in the t’Hooft coupling λ, starting with
one-loop corrections, we first note that for the diagram in Fig. 3.13(b), we can only
insert 2 → 2 transitions inside the two cylinders: an example is shown in Fig. 3.15.
In particular, any rung connecting the two cylinders loses a power of Nc. As a result,
corrections to the diagram in Fig. 3.13(b) simply lead to two BFKL Pomerons coupled
to the four gluon impact factor. This class of diagrams will be named direct: the two
BFKL Pomerons couple directly to the impact factor. As discussed in Ref. [52], on
the cylinder, each gluon rung comes in two different ways, one in front of the cylinder,
the other one on the backside. This observation also applies to our N = 4 SYM case.

Looking at the other diagram in Fig. 3.13, which is already present in nonsuper-
symmetric QCD, insertion of one more rung opens two distinct classes of graphs.
Examples for these two classes are given in Fig. 3.16. It is suggestive to name them
planar and nonplanar, respectively. By definition, planar graphs have the property
by contracting closed color loops, they can be reduced to the N = 4 SYM version of
the graphs in Fig. 3.12. Beginning with the graph shown in Fig. 3.16 right, this is not
possible for the nonplanar ones.

Altogether, we have to distinguish, starting at NLO, three different types of dia-
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Figure 3.15: Example of a NLO diagram to Fig. 3.13(b)

Figure 3.16: Two classes of diagrams: planar graphs (left) and nonplanar graphs
(right)

grams: the direct, the planar, and the nonplanar diagrams. In the first case, the direct
diagrams, the lowest interaction between the two cylinders, which defines the value
of the diffractive mass M , is the upper impact factor itself. The four gluons couple
directly to the upper loop via the impact factor D̄(4;0) without interaction between the
two disconnected BFKL Pomerons.

The second type of diagrams are planar diagrams. At the upper loop, they start
with two, three, or four gluons. These gluons undergo transitions by 2 → 2, 2 → 3,
or 2 → 4 kernels. One of these transitions is the branching vertex, below which we
always have four gluons. But any two gluons interact only pairwise after the branching
vertex. They form once again the two noninteracting Pomerons.

Nonplanar diagrams are the last possibility. At the upper loop they can also start
with two, three, or four gluons, and the structure above the branching vertex is
the same as for planar diagrams. But the branching vertex itself now provides a
nonplanar structure. Below this nonplanar vertex the known disconnected BFKL
cylinders appear.
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Figure 3.17: The three different parts of the six point partial wave F (ω, ω1, ω2) in the
large Nc-limit

3.4.2 Analytic Expressions

We turn to the analytic expressions for the amplitude in the large Nc-limit. As in
section 3.3, we split the partial wave F into three parts,

F = F (P) + F (NP) + F (Dir) (3.49)

that are called planar, nonplanar, and direct. They are displayed in Fig. 3.17. We
show that these three parts are related to the partial waves introduced in Eq. (3.29).

For the first two terms we can use the analytic representation in Eq. (3.7), and the
explicit expressions are

F (P)(ω, ω1, ω2) = 4 D
(12)
2 (ω1) ⊗12 D

(34)
2 (ω2)⊗34

[

D̄(4;0)(ω) +
(

ω − ω1 − ω2

) λ̄

Nc

VR ⊗ D2(ω)

]

(3.50)

and

F (NP)(ω, ω1, ω2) = 4 D
(12)
2 (ω1) ⊗12 D

(34)
2 (ω2) ⊗34

λ̄2

Nc

VTPV ⊗ D2(ω). (3.51)

The partial waves F (P) and F (NP) in the large Nc-limit have a similar structure as
F (R) and F (I), Eqs. (3.30) and (3.31), for arbitrary Nc: The amplitudes D

(12)
2 (ω1),

D
(34)
2 (ω2), D2(ω) appear at the three different ends of the diagram, and each partial

wave has a triple vertex in the center. But there is one important difference in the
large Nc-limit: The BKP states are suppressed. That is, the transition kernel K

{b}→{a}
2→2

in Eq. (3.31) has disappeared in F (NP). As a consequence the gluons below the triple
vertex, that is the branching vertex, interact only pairwise according to the BFKL
equation. In order to study BKP states in the large Nc-limit, correlations functions
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with more than six R-currents have to be considered in which the BKP states are not
suppressed.

The color graphs provide a new view on the two triple vertices. F (P) results from the
planar diagrams, an example is shown in Fig. 3.16 left. The vertex is a consequence of
the reggeization of the gauge bosons, and therefore the same vertex as in Eq. (3.30).
The vertex in F (NP) is a result of the nonplanar structure of the color diagrams, one
sample diagram is depicted in Fig. 3.16 right, and coincides with the triple Pomeron
vertex in Eq. (3.31).

Finally, there is the partial wave F (Dir) in Eq. (3.49). Here we have to use a different

analytic expression for the amplitude T
(Dir)
3→3 as before,

T
(Dir)
3→3 (s1, s2,M

2; t1, t2, t) = s1s2

∫

dω1dω2

(2πi)2
sω1
1 sω2

2 (M2)−ω1ω2ξ(ω1)ξ(ω2)

×F (Dir)(M2, ω1, ω2; t, t1, t2). (3.52)

The partial wave is given by

F (Dir)(M2, ω1, ω2) = 4 D
(12)
2 (ω1) ⊗12 D

(34)
2 (ω2) ⊗34 D̄(4;0)(M

2). (3.53)

The BKP states, which appear for arbitrary Nc, Eq. (3.32), are again suppressed. As
a consequence we have two disconnected BFKL Pomerons that couple directly to the
upper impact factor. The coupling is described by the unintegrated impact factor
D̄(4;0)(M

2), whose explicit expressions can be found in Eqs. (3.39) and (3.40). The
partial wave F (Dir) is subleading for large M2 compared with the partial waves F (P)

and F (NP). It contributes in the region of low mass M2.
In this chapter, we have investigated the scattering of six R-currents in the triple

Regge limit. One main result is the new direct coupling of the exchanged gluons to
the R-currents due to fermions and scalars, which are in the adjoint representation
of the gauge group in N = 4 SYM. Furthermore, we have written the scalar impact
factors as a superposition of two gluon scalar impact factors. The triple vertices in
N = 4 SYM, VR and the triple Pomeron vertex VTPV, are the same as in QCD. They
are independent of the coupling to the external R-currents, mediated by the impact
factors, and not influenced by the supersymmetry. Altogether, the Regge factorization
in the six point function of R-currents becomes apparent.



4 The Four Point Function in
Supergravity

In the last two chapters, we have dealt with correlation functions of R-currents in
N = 4 SYM in the Regge limit at weak coupling. Now we like to address the strong
coupling limit of R-current correlators in the Regge limit. We take advantage of the
AdS/CFT-correspondence, which relates the strong coupling regime of N = 4 SYM to
a weakly coupled type IIB string theory on an AdS5 background as explained in section
1.1. We perform our computations for large t’Hooft coupling λ in the large Nc-limit.
With these limits, the full type IIB string theory reduces to classical supergravity.

The computations in the last two chapters in N = 4 SYM have been realized for
small t’Hooft coupling λ, that is at weak coupling. The supergravity computations
are now performed for large t’Hooft coupling. Thus, the results of the respective
computations are valid for different regimes of the coupling strength.

4.1 Setup of the Computation

We are interested in evaluating the four point amplitude of R-currents in momentum
space defined in Eq. (2.39). However, we change the notation because the computation
in supergravity takes place in five-dimensional Anti-de Sitter space. From now on,
Greek indices label the (d + 1)-dimensional space and run form 0 to 4. Latin indices
refer to the four-dimensional Euclidean boundary of AdS5. With these changes we
define the Euclidean amplitude in momentum space, A(~pi), as

i(2π)4δ(
∑

i

~pi)A(~pi)
j1j2j3j4 =

∫ 4
∏

i=1

d4xie
−i~pi·~xi〈J j1

R (~x1)J
j2
R (~x2)J

j3
R (~x3)J

j4
R (~x4)〉. (4.1)

~xi and ~pi are four-dimensional Euclidean vectors, and the ji label the spacial directions
with ji = 1, . . . , 4. We choose all momenta ~p1, . . . , ~p4 incoming. Again, we contract
the amplitude with polarization vectors,

A(|~pi|; s, t)λ1λ2λ3λ4 =
∑

λi

ǫj1(λ1)(~p1)ǫ
j2(λ2)(~p2)ǫ

j3(λ3)(~p3)
∗ǫj4(λ4)(~p4)

∗A(~pi)
j1j2j3j4 . (4.2)

λi = L, h denote the different polarizations, longitudinal or transverse. The resulting
scattering amplitude A depends on s, t, and the virtualities Q2

i = |~pi|2 of the incoming
and outgoing R-currents.
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Now, we fix some conventions about the five-dimensional Anti-de Sitter space AdS5.
The Euclidean continuation of the five-dimensional Anti-de Sitter space is

ds2 =
1

z2
0

(dz2
0 + d~x 2) (4.3)

with z0 > 0 and ~x = (x1, . . . x4). Here we set the radius R to unity. The metric gµν is
given by

gµν =
1

z2
0

δµν . (4.4)

In Euclidean notation, the energies s and t are

s = −(~p1 + ~p2)
2 and − t = (~p1 + ~p3)

2. (4.5)

In order to take the Regge limit,

s ≫ −t, Q2
i , (4.6)

we have to go to Minkowski space via Wick rotation.
The AdS/CFT-correspondence comes with a precise prescription, Eq. (1.9), how

to compute correlation functions on both sides of the duality. For the computation
on the supergravity side we need, see Eqs. (1.7) and (1.8), the classical supergravity
action. It reads

Ssugra =
1

2κ2

∫

dd+1z
√

g(−R + Λ) + Sm. (4.7)

R is the scalar curvature. The covariant matter action Sm [40, 53, 54] is given by

Sm =
1

2κ2

∫

dd+1z
√

g

[

1

4
FµνF

µν +
ik

24
√

g
ǫµνρσλFµνFρσAλ − AµJ

µ + . . .

]

. (4.8)

We have the gravitational coupling κ with 2κ2 = 15π2R3/N2
c , and the coefficient k is

an integer. Fµν is the field strength of the gauge field Aµ. The dots denote higher
order terms of Aµ. To lower indices, we use the five-dimensional metric in Eq. (4.4).

Aµ is a field in the bulk of supergravity; it lives in the five-dimensional Anti-de Sitter
space. On the four-dimensional boundary at z0 = 0 it has the value A0. According
to the prescription in section 1.1.3, a supergravity field in the bulk with a certain
boundary value is a source for an operator of the gauge theory, which lives on the
four-dimensional boundary of AdS5. Here, the gauge field Aµ is a source for the
R-current operator J ji

R (~xi). The correlation function of n R-currents is then given by

〈JR(~x1), . . . , JR(~xn)〉 =
δn

δA0(~x1) . . . δA0(~xn)
Z[A0]sugra|A0=0. (4.9)

Using this relation in the actual computation, leads to a set of rules analog to Feynman
rules and to a special class of Feynman diagrams, the so-called Witten diagrams [34].
An example is shown in Fig. 4.1, it is a three point function of R-currents. The
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Figure 4.1: An example of a Witten diagram: a three point function with bulk-to-
boundary gauge boson propagators
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Figure 4.2: The graviton (a) and gauge boson (b) exchange Witten diagrams

R-currents are inserted at the boundary of AdS5, which is illustrated by a circle.
Interactions take place in the interior. Wavy lines are gauge boson propagators, the
ones shown here are bulk-to-boundary propagators connected by a vertex in the bulk.
A second type of propagators are bulk-to-bulk-propagators, which connect two points
in the interior of AdS5.

In our case, which is the four point function of R-currents in the classical super-
gravity limit, we have to consider Witten diagrams with a gauge boson exchange and
with a graviton exchange in the bulk, respectively, see Fig. 4.2. The double wavy
line symbolizes a graviton. In addition to the t-channel exchange diagrams, we also
have to regard the exchange of the particles in the s- and u-channel. We expect the
t-channel graviton exchange diagram to dominate with respect to the t-channel gauge
boson exchange diagram. The exchanged particle with the highest spin provides the
leading contribution to the amplitude. This is analog to the computation in N = 4
SYM at weak coupling: The two gluon exchange diagrams, gluons are the particles
with highest spin in N = 4 SYM, dominate compared to the one-loop diagrams, in
which fermion and scalars are exchanged in the t-channel.

The two Witten diagrams in Fig. 4.2 consist of three building blocks: the bulk-to-
boundary propagator of the gauge boson, the bulk-to-bulk propagator of the gauge
boson, and the bulk-to-bulk graviton propagator. The propagators are connected by
vertices at the points z and w inside the bulk. In the following sections, we present
explicit expressions for the propagators. Since we are interested in the Regge limit,
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which is defined in momentum space, Eq. (4.6), we Fourier transform all propagators
to momentum space.

4.1.1 Bulk-to-Bulk Propagator of the Gauge Boson

We start with the Fourier transformation of the bulk-to-bulk propagator of the gauge
boson. In coordinate space it reads [55, 56]

Gµν′(z, w) = −(∂µ∂ν′u)F (u) + ∂µ∂ν′S(u) (4.10)

with the so-called chordal distance

u =
(z − w)2

2z0w0

(4.11)

and the flat Euclidean distance (z−w)2 = δµν(z−w)µ(z−w)ν . ∂µ is a derivative with
respect to zµ and ∂ν′ a derivative with respect to wν′ . F (u) describes the propagation of
the physical components of Aµ, it is the massive scalar propagator with m2 = −(d−1):

F (u) = C[u(2 + u)]−(d−1)/2 with C =
Γ(d−1

2
)

(4π)(d+1)/2
. (4.12)

The function S(u) is a gauge dependent function. In Refs. [55, 56], it has been
explained that S(u) can be discarded. We do not need its form in our further com-
putations. The derivatives of the chordal distance u in Eq. (4.10) are given by

∂µ∂ν′u = − 1

z0w0

(

δµν′ +
1

w0

(z − w)µδν′0 +
1

z0

(w − z)ν′δµ0 − uδµ0δν′0

)

. (4.13)

Therefore, Gµν′(z, w) consists of four parts:

Gµν′(z, w) = G1
µν′(z, w) + G2

µν′(z, w) + G3
µν′(z, w) + G4

µν′(z, w). (4.14)

Before we compute the Fourier transformation of these four terms, we rewrite the
scalar propagator F (u). We insert the chordal variable u and get

F (u) = C

(

(z − w)2

2z0w0

(

2 +
(z − w)2

2z0w0

))−(d−1)/2

= C 2(d−1)/2





(z2
0 + w2

0 − 2z0w0 + (~z − ~w)2)
(

2 +
z2
0+w2

0−2z0w0+(~z−~w)2

2z0w0

)

z0w0





1−d
2

= C 2d−1

(

(z2
0 + w2

0 − 2z0w0 + (~z − ~w)2) (z2
0 + w2

0 + 2z0w0 + (~z − ~w)2)

z2
0w

2
0

)
1−d
2
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= C

(

1

2z0w0

)1−d
1

((z − w)2(z − w∗)2)
d−1
2

= C

(

1

2z0w0

)1−d
1

(z2
0 + w2

0 + (~z − ~w)2)d−1

1

(1 − Y 2)
d−1
2

with Y =
2z0w0

z2
0 + w2

0 + (~z − ~w)2
.

(4.15)

Writing F (u) as an infinite sum, we have

F (u) = C

(

2z0w0

z2
0 + w2

0 + (~z − ~w)2

)d−1 ∞
∑

k=0

Γ(k + d−1
2

)

Γ(d−1
2

)k!
Y 2k

= C

∞
∑

k=0

Γ(k + d−1
2

)

Γ(d−1
2

)k!

(

2z0w0

z2
0 + w2

0 + (~z − ~w)2

)2k−1+d

=
Γ(d−1

2
)

(4π)(d+1)/2
ξd−1

∞
∑

k=0

Γ(k + d−1
2

)

Γ(d−1
2

)Γ(k + 1)
ξ2k

with ξ =
2w0z0

z2
0 + w2

0 + (~z − ~w)2
. (4.16)

We define the Fourier transform of the bulk-to-bulk propagator Gµν′(z, w) in Eq. (4.10)
as

Gµν′(z0, w0, ~q) =

∫

d4x ei~q·~xGµν′(z0, w0, ~x) with ~x = ~z − ~w. (4.17)

Then the Fourier transform of the first term of Gµν′(z, w) is

G1
µν′(z0, w0, ~q)

=
1

z0w0

δµν′

∫

d4x ei~q·~xF (u)

=
1

z0w0

δµν′

Γ(d−1
2

)

(4π)(d+1)/2

∫

d4x ei~q·~x
∞
∑

k=0

Γ(k + d−1
2

)

Γ(d−1
2

)Γ(k + 1)

(

2w0z0

z2
0 + w2

0 + ~x 2

)2k+d−1

.

(4.18)

In order to evaluate the integral in Eq. (4.18), we introduce the Schwinger represen-
tation [40]. It reads

Im(x0, ~q) =

∫

ddx ei~q·~x 1

(x2
0 + ~x 2)m+1

=

∫

ddx ei~q·~x

(

1

Γ(m + 1)

∫ ∞

0

dτ τme−τ(x2
0+~x 2)

)

=
πd/2

Γ(m + 1)

∫ ∞

0

dτ τm−d/2e−τx2
0e−

~q 2

4τ
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=
2πd/2

Γ(m + 1)

( |~q|
2x0

)m+1−d/2

Km+1−d/2(|~q|x0). (4.19)

Km(x) is the modified Bessel function. We switch to d = 4 dimensions since this is the
case of interest for us and apply the Schwinger representation. The Fourier transform
of the first part of the bulk-to-bulk propagator is given by

G1
µν′(z0, w0, ~q) = δµν′

Γ(3
2
)

(4π)5/2

∞
∑

k=0

Γ(k + 3
2
)

Γ(3
2
)Γ(k + 1)Γ(2k + 3)

(2z0w0)
2k+2

×
∫

dτ τ 2k+2

∫

d4x ei~q·~x−τ(z2
0+w2

0+~x 2)

= δµν′

Γ(3
2
)

(4π)5/2

∞
∑

k=0

Γ(k + 3
2
)

Γ(3
2
)Γ(k + 1)Γ(2k + 3)

(2w0z0)
2k+2

×π2

∫

dτ τ 2ke−τ(z2
0+w2

0)− ~q 2

4τ

= δµν′

∞
∑

k=0

(z0w0)
2k+2

8 Γ(k + 1)Γ(k + 2)

(

~q 2

4ω̄2
0

)k+ 1
2

K2k+1(|~q|ω̄0). (4.20)

Here we have introduced the notation ω̄0 =
√

z2
0 + w2

0. Next we consider the last
term of Gµν′(z, w) in Eq. (4.14). Compared to G1

µν′(z0, w0, ~q) it contains an additional
factor u and different Kronecker symbols. It is given by

G4
µν′(z, w) = − 1

z0w0

δµ0δν′0uF (u)

= −C δµ0δν′0
1

(z0w0)2
2d−2(z2

0 + w2
0 − 2z0w0 + (~z − ~w)2)

×
(

(z2
0 + w2

0 − 2z0w0 + (~z − ~w)2)(z2
0 + w2

0 + 2z0w0 + (~z − ~w)2)

z2
0w

2
0

)
1−d
2

= −C δµ0δν′0(z0w0)
d−32d−2(z2

0 + w2
0 − 2z0w0 + (~z − ~w)2)

× 1

((z − w)2(z − w∗)2)
d−1
2

= −C δµ0δν′0(z0w0)
d−32d−2(z2

0 + w2
0 − 2z0w0 + (~z − ~w)2)

× 1

(z2
0 + w2

0 + (~z − ~w)2)d−1

∞
∑

k=0

Γ(k + d−1
2

)

Γ(d−1
2

)k!

(

2z0w0

z2
0 + w2

0 + (~z − ~w)2

)2k

= −C δµ0δν′0(z0w0)
d−32d−2

∞
∑

k=0

Γ(k + d−1
2

)

Γ(d−1
2

)k!

×
[

1

(z2
0 + w2

0 + (~z − ~w)2)d−2

(

2z0w0

z2
0 + w2

0 + (~z − ~w)2

)2k

− 1

(z2
0 + w2

0 + (~z − ~w)2)d−1

(2z0w0)
2k+1

(z2
0 + w2

0 + (~z − ~w)2)2k

]

. (4.21)
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Finally, we get

G4
µν′(z, w) = −δµ0δν′0

Γ(d−1
2

)

(4π)(d+1)/2
2d−2

∞
∑

k=0

Γ(k + d−1
2

)

Γ(d−1
2

)Γ(k + 1)

×
[

22k (z0w0)
2k+d−3

(z2
0 + w2

0 + (~z − ~w)2)2k+d−2
− 22k+1 (z0w0)

2k+d−2

(z2
0 + w2

0 + (~z − ~w)2)2k+d−1

]

.

(4.22)

The Fourier transform of G4
µν′(z0, w0, ~x) with ~x = ~z − ~w is defined as

G4
µν′(z0, w0, ~q)

= −δµ0δν′0

Γ(d−1
2

)

(4π)(d+1)/2
2d−2

∞
∑

k=0

Γ(k + d−1
2

)

Γ(d−1
2

)Γ(k + 1)

∫

d4x ei~q·~x

×
[

22k (z0w0)
2k+d−3

(z2
0 + w2

0 + ~x 2)2k+d−2
− 22k+1 (z0w0)

2k+d−2

(z2
0 + w2

0 + ~x 2)2k+d−1

]

. (4.23)

To perform the integral in d = 4 dimensions, we use the Schwinger representation,
Eq. (4.19), again and get

G4
µν′(z0, w0, ~q)

= −δµ0δν′0

Γ(3
2
)

(4π)5/2
4

∞
∑

k=0

Γ(k + 3
2
)

Γ(3
2
)Γ(k + 1)

×
[

22k(z0w0)
2k+1 1

Γ(2k + 2)

∫

dτ τ 2k+1

∫
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−22k+1(z0w0)
2k+2 1

Γ(2k + 3)

∫

dτ τ 2k+2

∫

dx ei~q·~x−τ(z2
0+w2

0+~x 2)

]

= −δµ0δν′0

Γ(3
2
)

(4π)5/2
4

∞
∑

k=0
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)

Γ(3
2
)Γ(k + 1)

×
[

22k(z0w0)
2k+1

Γ(2k + 2)
π2

∫
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0+z2

0)− ~q 2

4τ

−22k+1(z0w0)
2k+2

Γ(2k + 3)
π2

∫

dτ τ 2ke−τ(w2
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0)− ~q 2

4τ
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= −δµ0δν′0
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∞
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(z0w0)
2k+1K2k(|~q|ω̄0)

− 23π2

Γ(2k + 3)

(

~q 2
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)k+ 1
2

(z0w0)
2k+2K2k+1(|~q|ω̄0)

]
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= −δµ0δν′0

[

2−2k−3

Γ(1 + k)Γ(1 + k)
(z0w0)

2k+1

(

~q 2

ω̄2
0

)k

K2k|(~q|ω̄0)

− 2−2k−4
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(

~q 2

ω̄2
0

)k+ 1
2

K2k+1(|~q|ω̄0)

]

. (4.24)

In order to obtain the Fourier transform of the full bulk-to-bulk propagator, we still
have to transform the second and the third term of Gµν′(z, w) in Eq. (4.14). The
second term is

G2
µν′(z, w) =

1

z0w2
0

(z − w)µδν′0F (u)

= C δν′0
1

z0w2
0
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2
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∞
∑

k=0
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=
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∞
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(4.25)

Its Fourier transform reads

G2
µν′(z0, w0, ~q)

= δν′0

Γ(d−1
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(2z0w0)
d−1

z0w2
0

∫

d4x ei~q·~x

×
[

(z0 − w0)δµ0

(z2
0 + w2

0 + ~x 2)d−1

∞
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In d = 4 dimensions, we get

G2
µν′(z0, w0, ~q) = δν′0

Γ(3
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∞
∑

k=0
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∞
∑
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(4.27)

We use the Schwinger representation in Eq. (4.19) once again and arrive at

G2
µν′(z0, w0, ~q)

= δν′0
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]
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(4.28)

Finally, we consider the third term in Gµν′(z, w):

G3
µν′(z, w) =

1

z2
0w0

(z − w)ν′δµ0F (u). (4.29)

The Fourier transform of G3
µν′(z, w) can be deduced from G2

µν′(z0, w0, ~q) since

G3
µν′(z, w) = −w0

z0

G2
ν′µ(z, w). (4.30)
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Thus, the Fourier transform is given by

G3
µν′(z0, w0, ~q)

= −δµ0z
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(4.31)

Altogether, the bulk-to-bulk propagator of the gauge boson in momentum space reads

Gµν′(z0, w0, ~q)

= G1
µν′ + G2
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∞
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Now we specify the propagator depending on whether the second index ν ′ is equal j
or 0. First, we choose ν ′ = j,

Gµj(z0, w0, ~q) =
∞
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(4.33)
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The second expression with ν ′ = 0 is

Gµ0(z0, w0, ~q) =
∞
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. (4.34)

4.1.2 Bulk-to-Boundary Propagator of the Gauge Boson

The bulk-to-boundary propagator of the gauge boson [34] is given by

Gµj(z, ~x) = Ndδµj
zd−2
0

(z2
0 + (~z − ~x)2)d−1

− Ndδµ0
zd−3
0 (z − x)j

(z2
0 + (~z − ~x)2)d−1

(4.35)

with the normalization

Nd =
(d − 2)Γ(d)

2πd/2(d − 1)Γ(d/2)
. (4.36)

Due to this normalization, the bulk-to-boundary propagator Glj(z, ~x) becomes
δljδ

(d)(~z − ~x) in the limit z0 → 0. The expression (4.35) is valid for d > 2.
To obtain the propagator in momentum space, we Fourier transform the propagator

in Eq. (4.35):

Gµj(z0, ~p) =

∫

d4x ei~p·(~z−~x)Gµj(z, ~x)

= Ndδµj

∫

d4x ei~p·(~z−~x) zd−2
0

(z2
0 + (~z − ~x)2)d−1

−Ndδµ0

∫

d4x ei~p·(~z−~x) zd−3
0 (z − x)j

(z2
0 + (~z − ~x)2)d−1

. (4.37)

We substitute ~x → −~x′ + ~z in the integrand and get

Gµj(z0, ~p) = Ndδµj

∫

d4x ei~p·~x′ zd−2
0

(z2
0 + ~x′2)d−1

− Nd

2(d − 2)
δµ0

∫

d4x ei~p·~x′

∂xj

zd−3
0

(z2
0 + ~x′2)d−2

= Ndδµj

∫

d4x ei~p·~x′ zd−2
0

(z2
0 + ~x′2)d−1

− Nd

2(d − 2)
δµ0

∫

d4x ei~p·~x′

ipj
zd−3
0

(z2
0 + ~x′2)d−2

. (4.38)
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The Schwinger representation, Eq. (4.19), in d = 4 dimensions is used to evaluate the
integrals:

Gµj(z0, ~p) = δµj
N4z

2
0

Γ(3)

∫

dτ τ 2

∫

d4x ei~p·~x′−τ(z2
0+~x′2)

+
iN4z0pj

4Γ(2)
δµ0

∫

dτ τ

∫

d4x ei~p·~x′−τ(z2
0+~x′2)

= δµj
N4z

2
0π

2

2

∫

dτ e−τz2
0−

~p2

4τ + ipj
N4z0π

2

4
δµ0

∫

dτ τ−1e−τz2
0−

~p2

4τ

= δµj
N4π

2

2
z0|~p|K1(|~p|z0) + δµ0ipj

N4π
2

2
z0K0(|~p|z0). (4.39)

The normalization constant N4 can be read off from Eq. (4.36). It is N4 = 2/π2. The
bulk-to-boundary propagator of the gauge boson in momentum space finally reads

Gµj(z0, ~p) = z0[|~p|δµjK1(|~p|z0) + ipjδµ0K0(|~p|z0)]. (4.40)

4.1.3 Bulk-to-Bulk Propagator of the Graviton

We consider the bulk-to-bulk propagator of the graviton [56]:

Gµν;µ′ν′ = (∂µ∂µ′u ∂ν∂ν′u + ∂µ∂ν′u ∂ν∂µ′u)G(u) + gµνgµ′ν′H(u) + . . . . (4.41)

The dots symbolize terms of the form ∂ρX with ρ = µ, µ′, ν, ν ′. The functions G(u)
and H(u) are the physical terms of the propagator, see Ref. [56]. The derivatives of
the chordal distance u in Eq. (4.41) have already been given in Eq. (4.13). G(u) is
the massless scalar propagator. It reads

G(u) = Cd2du−d
2F1(d, (d + 1)/2; d + 1;−2u−1) with Cd =

Γ(d+1
2

)

(4π)
d+1
2 d

. (4.42)

F denotes the hypergeometric function. An explicit expression for H(u) can be found
in Ref. [56]. In d = 4 dimensions, the massless scalar propagator can be written as

G(u) = − 1

8π2

(

(1 + u)(2(1 + u)2 − 3)

(u(2 + u))
3
2

− 2

)

. (4.43)
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We insert the chordal distance, Eq. (4.11), and arrive at

G(z, w)

= − 1

8π2



−2 +
4(z2

0 + w2
0 + (~z − ~w)2)(−3 +

(z2
0+w2

0+(~z−~w)2)2

2z2
0w2

0
)z2

0w
2
0

((z2
0 + w2

0 − 2z0w0 + (~z − ~w)2)(z2
0 + w2

0 + 2z0w0 + (~z − ~w)2))
3
2





= − 1

4π2

(

−1 +
2(z2

0 + w2
0 + (~z − ~w)2)(−3z2

0w
2
0 + 1

2
(z2

0 + w2
0 + (~z − ~w)2)2)

((~w − ~z)2(~w − ~z∗)2)
3
2

)

= − 1

4π2

(

−1 +
2(−3z2

0w
2
0 + 1

2
(z2

0 + w2
0 + (~z − ~w)2)2)

(z2
0 + w2

0 + (~w − ~z)2)2

1

(1 − Y 2)
3
2

)

,

again with Y =
2z0w0

z2
0 + w2

0 + (~z − ~w)2
.

(4.44)

We rewrite this as

G(z, w)

= − 1

4π2

(

−1 +
2(−3z2

0w
2
0 + 1

2
(z2

0 + w2
0 + (~z − ~w)2)2)

(z2
0 + w2

0 + (~z − ~w)2)2

∞
∑

k=0

Γ(k + 3
2
)

Γ(3
2
)k!

Y 2k

)

= − 1

4π2

(

−1 +
∞
∑

k=0

Γ(k + 3
2
)

Γ(3
2
)k!

(2z0w0)
2k(−6z2

0w
2
0 + (z2

0 + w2
0 + (~z − ~w)2)2)

(z2
0 + w2

0 + (~z − ~w)2)2k+2

)

= − 1

4π2

(

−1 +
∞
∑

k=0

Γ(k + 3
2
)

Γ(3
2
)k!

(2z0w0)
2k −6z2

0w
2
0

(z2
0 + w2

0 + (~z − ~w)2)2k+2

+
∞
∑

k=0

Γ(k + 3
2
)

Γ(3
2
)k!

(2z0w0)
2k 1

(z2
0 + w2

0 + (~z − ~w)2)2k

)

= − 1

4π2

(

−1 +
∞
∑

k=0

Γ(k + 3
2
)

Γ(3
2
)k!

(2w0z0)
2k −6z2

0w
2
0

(z2
0 + w2

0 + (~z − ~w)2)2k+2

+ 1 +
∞
∑

k=1

Γ(k + 3
2
)

Γ(3
2
)k!

(2z0w0)
2k 1

(z2
0 + w2

0 + (~z − ~w)2)2k

)

. (4.45)

The substitution k → k′ = k + 1 leads to

G(z, w) = − 1

4π2

∞
∑

k=0

Γ(k + 3
2
)

Γ(3
2
)k!

(2z0w0)
2k

×
( −6z2

0w
2
0

(z2
0 + w2

0 + (~z − ~w)2)2k+2
+

k + 3
2

k + 1

(2z0w0)
2

(z2
0 + w2

0 + (~z − ~w)2)2k

)

=
1

2π2

∞
∑

k=0

Γ(k + 3
2
)k

Γ(3
2
)(k + 1)!

22k(z0w0)
2k+2

(z2
0 + w2

0 + (~z − ~w)2)2k+2
. (4.46)
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We substitute ~x = ~z − ~w, and the Fourier transform reads

G(z0, w0, ~q) =

∫

d4x ei~q·~xG(z0, w0, ~x)

=
1

2π2

∫

d4x ei~q·~x
∞
∑

k=0

Γ(k + 3
2
)k

Γ(3
2
)(k + 1)!

22k(z0w0)
2k+2

(z2
0 + w2

0 + ~x 2)2k+2

=
1

2π2

∞
∑

k=0

Γ(k + 3
2
)k

Γ(3
2
)(k + 1)!

22k(z0w0)
2k+2

Γ(2k + 2)

∫

dτ τ 2k+1

∫

d4xei~q·~x−τ(z2
0+w2

0+~x 2)

=
1

2π2

∞
∑

k=0

Γ(k + 3
2
)k

Γ(3
2
)(k + 1)!

22k(z0w0)
2k+2

Γ(2k + 2)
π2

∫

dτ τ 2k−1e−τ(z2
0+w2

0)− ~q 2

4τ

=
1

2

∞
∑

k=0

Γ(k + 3
2
)k

Γ(3
2
)Γ(2k + 2)(k + 1)!

22k(z0w0)
2k+221−2k

(

~q 2

ω̄2
0

)k

K2k(|~q|ω̄0).

(4.47)

The term with k = 0 does not contribute to the sum, we substitute k → k′ = k + 1
again and arrive at

G(z0, w0, ~q) =
∞
∑

k=0

Γ(k + 5
2
)(k + 1)

Γ(3
2
)Γ(2k + 4)(k + 2)!

(w0z0)
2k+4

(

~q 2

ω̄2
0

)k+1

K2k+2(|~q|ω̄0)

=
∞
∑

k=0

1

22(1+k)

1

Γ(1 + k)Γ(3 + k)
(w0z0)

2k+4

(

~q 2

ω̄2
0

)k+1

K2k+2(|~q|ω̄0).

(4.48)

This is the Fourier transform of the massless scalar propagator G(u). In the full
bulk-to-bulk propagator, Eq. (4.41), G(u) is multiplied with the derivatives of the
chordal variable u, which are given in Eq. (4.13). In the following, it turns out that
only the first term in Eq. (4.13), proportional to one Kronecker symbol, contributes
in the Regge limit. The term proportional to H(u) in the bulk-to-bulk propagator
does not contribute in the Regge limit as well. Accordingly, we define the part of
the bulk-to-bulk graviton propagator, which gives the leading contribution the Regge
limit in momentum space as

G
(1)
µν;µ′ν′(z0, w0, ~q)

:= (δµµ′δνν′ + δµν′δνµ′)
∞
∑

k=0

(z0w0)
2k+2

Γ(1 + k)Γ(3 + k)

(

~q 2

4w̄2
0

)k+1

K2k+2(|~q|ω̄0). (4.49)

4.2 Graviton Exchange

We compute the amplitude A(|~pi|, s, t) of the graviton exchange diagram shown in
Fig. 4.2(a) in the Regge limit, see Eq. (4.6). We switch to the Minkowski metric
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g = diag(+,−,−,−), but for simplicity we continue using the previous notation. That
means the four vector ~pj now stands for (pj;4, pj;1, pj;2, pj;3) with |~pj|2 = −p2

j;4 + p2
j;1 +

p2
j;2 + p2

j;3 = −p2
j . Latin indices continue to run from 1 to 4, and Greek indices run

from 0 to 4.
The contribution of one graviton exchange in the t-channel to the four point function

of R-currents is

IGR =
1

4

∫

d4zdz0

z0

∫

d4wdw0

w0

T(13)µν(z)Gµν;µ′ν′(z, w)T(24)µ′ν′(w). (4.50)

Here we suppress some multiplicative constants, which can be restored form the ac-
tion (4.8). The graviton exchange in the t-channel is described by the bulk-to-bulk
propagator of the graviton Gµν;µ′ν′(z, w). The coupling of the R-currents inserted at
the boundary of AdS5 to the exchanged graviton is given by the so-called stress-energy
tensor T(13)µν(z). The index (13) denotes the stress-energy tensor for R-currents in-
serted at the points ~x1 and ~x3 at the boundary. A similar definition is valid for the
stress-energy tensor T(24)µ′ν′(w). The explicit coupling between the R-currents and
the graviton is mediated by the bulk-to-boundary propagator of the gauge boson,
which is included in the stress-energy tensor. In the next paragraph, we compute the
stress-energy tensor in momentum space.

4.2.1 Stress-Energy Tensor

The stress-energy tensor is defined as

Tµν = − 2√
g

∂Sm

∂gµν
= −2

∂Sm

∂gµν
+ gµνSm (4.51)

with the matter action Sm given in Eq. (4.8). The definition of the stress-energy
tensor results in

Tµν = FµρF
ρ
ν − 1

4
gµνFρσF

ρσ

= ∂[µAρ]∂[νA
ρ] − 1

4
gµν∂[ρAσ]∂

[ρAσ]. (4.52)

The square brackets denote antisymmetrization in the indices. The gauge boson field
in the bulk Aµ(z) is connected with the boundary field Ai(~x) by the bulk-to-boundary
propagator of the gauge boson:

Aµ(z) =

∫

d4~xGµi(z, ~x)Ai(~x). (4.53)

Relation (4.53) and variation of the stress-energy tensor with respect to the boundary
field Ai(~x) leads to

T(13)µν = z2
0∂[µGρ]k3(z, ~x3)∂[νGρ]k1(z, ~x1) + z2

0∂[µGρ]k1(z, ~x1)∂[νGρ]k3(z, ~x3)

−1

2
z2
0gµν∂[ρGσ]k1(z, ~x1)∂[ρGσ]k3(z, ~x3). (4.54)
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A similar expression exists for T(24)µ′ν′ . T satisfies the four-dimensional Ward identity
by construction. We are interested in the stress-energy tensor in momentum space.
In order to determine its expression, we define its Fourier transform as

T(13)µν(z, ~x1, ~x3) =
1

(2π)8

∫

dp1dp3 ei~p1·~x1+i~p3·~x3e−i(~p1+~p3)·~zT̃µν(z, ~p1, ~p3). (4.55)

Our computations of the graviton exchange amplitude have shown that only the first
two terms of T(13)µν in Eq. (4.54) contribute in the Regge limit. The reason will
become clear in the next section. Thus for convenience, we only Fourier transform
the first two terms of the stress-energy tensor here. To this end, we use the Fourier
transformation of the bulk-to-boundary propagator of the gauge boson,

Gµj(z, ~x) =

∫

d4p

(2π)4
ei~p·(~x−~z)Gµj(z0, ~p) (4.56)

We insert this expression into the first two terms of Eq. (4.54) and get

T(13)µν(z, ~x1, ~x3)

≈ z2
0∂[µ

(∫

d4p1

(2π)4
ei~p1·(~x1−~z)Gρ]k1(z0, ~p1)

)

∂[ν

(∫

d4p3

(2π)4
ei~p3·(~x3−~z)Gρ]k3(z0, ~p3)

)

+µ ↔ ν. (4.57)

From now on, the symbol ≈ denotes that we only consider terms contributing in the
Regge limit. µ ↔ ν symbolizes the exchange of indices and stands for the second term
in Eq. (4.54). The derivatives in Eq. (4.57) are given by

∂[µ

(

ei~p1·(~x1−~z)Gρ]k1(z0, ~p1)
)

= ∂[µ

(

ei~p1·(~x1−~z)
)

Gρ]k1(z0, ~p1) + ei~p1·(~x1−~z)δµ0∂[µGρ]k1(z0, ~p1)

= −ip1[µe
i~p1·(~x1−~z)Gρ]k1(z0, ~p1) + ei~p1·(~x1−~z)δµ0∂[µGρ]k1(z0, ~p1) (4.58)

and thus, the stress-energy tensor reads

T(13)µν(z, ~x1, ~x3)

≈ 1

(2π)8

∫

dp1dp3 ei~p1·~x1+i~p3·~x3e−i(~p1+~p3)·~zz2
0

×
[

−ip1[µGρ]k1(z0, ~p1) + ∂0δ[µ0Gρ]k1(z0, ~p1)
]

×
[

−ip3[νGρ]k3(z0, ~p3) + ∂0δ[ν0Gρ]k3(z0, ~p3)
]

+µ ↔ ν

=
1

(2π)8

∫

dp1dp3 ei~p1·~x1+i~p3·~x3e−i(~p1+~p3)·~zz2
0

×
[

−p1[µ
Gρ]k1(z0, ~p1)p3[ν

Gρ]k3(z0, ~p3) + ∂0δ[µ0Gρ]k1(z0, ~p1)∂0δ[ν0Gρ]k3(z0, ~p3)

− ip3νGρk3(z0, ~p3)∂0δµ0Gρk1(z0, ~p1) − ip1µGρk1(z0, ~p1)∂0δν0Gρk3(z0, ~p3)

]

+µ ↔ ν. (4.59)
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Only the first term contributes in the Regge limit. We have

T(13)µν(z, ~x1, ~x3) ≈ − 1

(2π)8

∫

dp1dp3 ei~p1·~x1+i~p3·~x3e−i(~p1+~p3)·~zz2
0

×
[

p1[µGρ]k1(z0, ~p1)p3[νGρ]k3(z0, ~p3) + µ ↔ ν
]

. (4.60)

The bulk-to-boundary propagator in momentum space is given in Eq. (4.40). We
insert the explicit form of the propagator and get

T(13)µν(z, ~x1, ~x3)

≈ − 1

(2π)8

∫

dp1dp3 ei~p1·~x1+i~p3·~x3e−i(~p1+~p3)·~zz4
0

×p1[µ(|~p1|K1(|~p1|z0)δρ]k1 + ip1k1
K0(|~p1|z0)δρ]0)

×p3[ν
(|~p3|K1(|~p3|z0)δρ]k3 + ip3k3

K0(|~p3|z0)δρ]0)

+µ ↔ ν

≈ − 1

(2π)8

∫

dp1dp3 ei~p1·~x1+i~p3·~x3e−i(~p1+~p3)·~zz4
0

×p1[µ
p3[ν

(|~p1||~p3|K1(|~p1|z0)K1(|~p3|z0)δρ]k1δρ]k3

−p1k1
p3k3

K0(|~p1|z0)K0(|~p3|z0)δρ]0δρ]0)

+µ ↔ ν

≈ − 1

(2π)8

∫

dp1dp3 ei~p1·~x1+i~p3·~x3e−i(~p1+~p3)·~zz4
0(δµj1δνj3 + δνj1δµj3)

×(|~p1||~p3|K1(|~p1|z0)K1(|~p3|z0)(p1j1
δρk1 − p1ρδj1k1)(p3j3

δρk3 − p3ρδj3k3)

−K0(|~p1|z0)K0(|~p3|z0)(p1j1
p1k1

δρ0 − p1ρp1k1
δj10)(p3j3

p3k3
δρ0 − p3ρp3k3

δj30).

(4.61)

Once again, only two terms give the leading contribution in the Regge limit, see the
next section for an explanation. They read

T(13)µν(z, ~x1, ~x3) ≈ z4
0

(2π)8

∫

dp1dp3 ei~p1·~x1+i~p3·~x3e−i(~p1+~p3)·~z(δµj1δνj3 + δνj1δµj3)

×(K0(|~p1|z0)K0(|~p3|z0)p1j1
p3j3

p1k1
p3k3

−|~p1||~p3|K1(|~p1|z0)K1(|~p3|z0)p1j1
p3j3

δk1k3). (4.62)

We have computed the stress-energy tensor in coordinate space given by a Fourier
transform in Eq. (4.55). For convenience, we write the expression here again:

T(13)µν(z, ~x1, ~x3) =
1

(2π)8

∫

dp1dp3 ei~p1·~x1+i~p3·~x3e−i(~p1+~p3)·~zT̃µν(z, ~p1, ~p3).

(4.63)

From Eqs. (4.62) and (4.63) we can read off the leading contribution of the stress-
energy tensor in momentum space in the Regge limit. We get

T̃(13)µν(z, ~p1, ~p3) ≈ z4
0(δµj1δνj3 + δνj1δµj3)p1j1

p3j3
(K0(|~p1|z0)K0(|~p3|z0)p1k1

p3k3

−|~p1||~p3|K1(|~p1|z0)K1(|~p3|z0)δk1k3). (4.64)
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4.2.2 Graviton Exchange Amplitude

We define the Fourier transform of the graviton exchange contribution IGR given in
Eq. (4.50):

ĨGR(~pi) =

∫

∏

i

d4xie
−i
∑

j ~pj ·~xjIGR(~xi)

= (2π)4δ(4)(
∑

i

~pi)
1

4

∫

dz0

z0

∫

dw0

w0

T̃(13)µν(z0, ~p1, ~p3)

×Gµν;µ′ν′(z0, w0, ~p1 + ~p3)T̃(24)µ′ν′(w0, ~p2, ~p4) (4.65)

with the bulk-to-bulk propagator of the graviton Gµν;µ′ν′(z0, w0, ~p1 + ~p3) given in
Eq. (4.49) and the stress-energy tensor given in Eq. (4.64).

Let us now explain why only certain terms of the stress-energy tensor contribute
to the leading behavior of the amplitude in the Regge limit. In coordinate space,
each term of the stress-energy tensor in Eq. (4.54) has two derivatives, which are
replaced by momenta after Fourier transformation. These momenta are combined
with momenta from the second stress-energy tensor. We are interested in the highest
power of the energy s in the amplitude. Contraction of the momenta ~p1 and ~p3 with
the momenta ~p2 and ~p4 gives terms proportional to s. On the other hand, contractions
of ~p1 with ~p3 or of ~p2 with ~p4 give subleading contributions. Any other contraction,
for example with a zero-component of a momentum gives a subleading contribution
as well.

The same arguments also apply for the bulk-to-bulk propagator G
(1)
µν;µ′ν′ introduced

in Eq. (4.49). G
(1)
µν;µ′ν′ contains all terms of the propagator, which contribute to the

highest power of s in the amplitude in the Regge limit.
The bulk-to-bulk propagator G

(1)
µν;µ′ν′ can be written in a different form:

G̃
(1)
ij;i′j′(z0, w0, ~q) ≈ 4

s2(z0w0)2
(p2i

p1i′
p2j

p1j′
+ p2i

p1j′
p2j

p1i′
)G̃ (4.66)

using a Sudakov decomposition of the momenta with the lightlike vectors p1 and p2.
This is the expected form for a propagator of a spin two particle in the Regge limit.
It is similar to a propagator of a spin one gauge boson in the Regge limit. The leading
high energy behavior of a spin one gauge boson comes from a particular t-channel
helicity state, which contributes through the tensor

2p2j
p1j′

s
, (4.67)

see also Eq. (2.88) and below. Here j (j′) denotes the upper (lower) Lorentz index
of the t-channel exchange propagator, and the propagator is contracted with large
momentum p1 (p2) at the upper (lower) vertex. Accordingly, the leading behavior of
the graviton propagator in Eq. (4.66) can be interpreted as the symmetrized tensor
product of two spin one gauge bosons.
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We insert the explicit expressions of the graviton propagator (4.49) and of the
stress-energy tensor (4.64) in the Regge limit into Eq. (4.65) and get

ĨGR
Regge(~pi) = (2π)4δ(4)(

∑

i

~pi)
1

4

∫

dz0

z0

∫

dw0

w0

×z4
0(δµj1δνj3 + δνj1δµj3)p1j1

p3j3
[|~p1||~p3|K1(|~p1|z0)K1(|~p3|z0)δk1k3

− K0(|~p1|z0)K0(|~p3|z0)p1k1
p3k3

]

×w4
0(δµ′j2δν′j4 + δν′j2δµ′j4)p2j2

p4j4
[|~p2||~p4|K1(|~p2|w0)K1(|~p4|w0)δk2k4

− K0(|~p3|w0)K0(|~p4|w0)p2k2
p4k4

]

×(δµµ′δνν′ + δµν′δνµ′)
∞
∑

k=0

(z0w0)
2k+2

Γ(1 + k)Γ(3 + k)

( |~p1 + ~p3|2
4w̄2

0

)k+1

K2k+2(|~p1 + ~p3|ω̄0).

(4.68)

ĨGR
Regge denotes the leading contribution of the graviton exchange in the Regge limit.

After contraction of the momenta, the highest order contribution is given by

ĨGR
Regge(~pi) = (2π)4δ(4)(

∑

i

~pi)

∫

dz0

∫

dw0((~p1 · ~p3)(~p3 · ~p4) + (~p1 · ~p4)(~p3 · ~p3))

×(|~p1||~p3|K1(|~p1|z0)K1(|~p3|z0)δk1k3 − K0(|~p1|z0)K0(|~p3|z0)p1k1
p3k3

)

×(|~p2||~p4|K1(|~p2|w0)K1(|~p2|w0)δk2k4 − K0(|~p2|w0)K0(|~p4|w0)p2k4
p4k4

)

×
∞
∑

k=0

(z0w0)
2k+5

Γ(1 + k)Γ(3 + k)

( |~p1 + ~p3|2
4w̄2

0

)k+1

K2k+2(|~p1 + ~p3|ω̄0)

= (2π)4δ(4)(
∑

i

~pi)
s2

2

∫

dz0

∫

dw0

×(|~p1||~p3|K1(|~p1|z0)K1(|~p3|z0)δk1k3 − K0(|~p1|z0)K0(|~p3|z0)p1k1
p3k3

)

×(|~p2||~p4|K1(|~p2|w0)K1(|~p2|w0)δk2k4 − K0(|~p2|w0)K0(|~p4|w0)p2k2
p4k4

)

×
∞
∑

k=0

(z0w0)
2k+5

Γ(1 + k)Γ(3 + k)

( |~p1 + ~p3|2
4w̄2

0

)k+1

K2k+2(|~p1 + ~p3|ω̄0). (4.69)

The highest contribution to the graviton exchange amplitude in the Regge limit is
proportional to s2. This is the expected result for the exchange of a spin two boson
in the t-channel.

The last step left is to contract ĨGR
Regge(~pi) with appropriate polarization vectors of

the R-currents:

ĨGRλ1λ2λ3λ4
Regge =

∑

λi

ǫk1(λ1)(~p1)ǫ
k2(λ2)(~p2)ǫ

k3(λ3)(~p3)
∗ǫk4(λ4)(~p4)

∗ĨGRk1k2k3k4
Regge . (4.70)

We use the polarization vectors introduced during the computation in N = 4 SYM
in section 2.3. They are defined in Minkowski space. Since we have switched to
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Minkowski space in the supergravity computation as well, as explained at the begin-
ning of this section, we are allowed to use them. Here, all R-currents are incoming.
We use the shifted polarization vectors because the amplitude satisfies the Ward iden-
tities. We contract with longitudinal, Eqs. (2.57) and (2.58), as well as with transverse
polarization vectors, Eqs. (2.59)-(2.61). The contraction with these polarization vec-
tors gives no additional power of s. First, we contract with longitudinal polarization
vectors, that is we choose λi = L. We get

ĨGRLLLL
Regge = (2π)4δ(4)(

∑

i

~pi)
s2

2

∫

dz0

∫

dw0 |~p1||~p2||~p3||~p4|

×K0(|~p1|z0)K0(|~p3|z0)K0(|~p2|w0)K0(|~p4|w0)

×
∞
∑

k=0

(z0w0)
2k+5

Γ(1 + k)Γ(3 + k)

( |~p1 + ~p3|2
4w̄2

0

)k+1

K2k+2(|~p1 + ~p3|ω̄0).

(4.71)

Only two terms of the right-hand side of Eq. (4.69) contribute. Similarly, we contract
with transverse polarization vectors with the helicity h = ±:

ĨGRh1h2h3h4
Regge = (2π)4δ(4)(

∑

i

~pi)
s2

2

∫

dz0

∫

dw0 |~p1||~p2||~p3||~p4|

×(ǫ
(h1)
⊥ · ǫ(h3)∗

⊥ )(ǫ
(h2)
⊥ · ǫ(h4)∗

⊥ )K1(|~p1|z0)K1(|~p3|z0)K1(|~p2|w0)K1(|~p4|w0)

×
∞
∑

k=0

(z0w0)
2k+5

Γ(1 + k)Γ(3 + k)

( |~p1 + ~p3|2
4w̄2

0

)k+1

K2k+2(|~p1 + ~p3|ω̄0). (4.72)

Again, only two terms of the right-hand side of Eq. (4.69) contribute. Finally, we
choose a different polarization for the upper two and the lower two R-currents. The
result is

ĨGRh1Lh3L
Regge = (2π)4δ(4)(

∑

i

~pi)
s2

2

∫

dz0

∫

dw0 |~p1||~p2||~p3||~p4|

×(ǫ
(h1)
⊥ · ǫ(h3)∗

⊥ )K1(|~p1|z0)K1(|~p3|z0)K0(|~p2|w0)K0(|~p4|w0)

×
∞
∑

k=0

(z0w0)
2k+5

Γ(1 + k)Γ(3 + k)

( |~p1 + ~p3|2
4w̄2

0

)k+1

K2k+2(|~p1 + ~p3|ω̄0)

(4.73)

for transverse-longitudinal polarization. There is a similar result for the reversed
case. Different polarizations within the two upper R-currents, for example λ1 = L
and λ3 = h or within the two lower R-currents, for example λ2 = L and λ4 = h, give
subleading contributions in s.

Let us rewrite our result for the leading contribution of a four point function of
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R-currents with single graviton exchange in the t-channel as

ĨGR
Regge(~pi) = (2π)4δ(4)(

∑

i

~pi)
s2

2

∫

dz0

∫

dw0

×Φk1k3(~p1, ~p3, z0)Σ(|~p1 + ~p3|, z0, w0)Φk2k4(~p2, ~p4, w0) (4.74)

with the graviton exchange propagator

Σ(z0, w0, |~p1 + ~p3|) =
∞
∑

k=0

(z0w0)
2k+5

Γ(1 + k)Γ(3 + k)

( |~p1 + ~p3|2
4w̄2

0

)k+1

K2k+2(|~p1 + ~p3|ω̄0)

(4.75)

and with the two functions Φk1k3 and Φk2k4 . Φk1k3 is defined as

Φk1k3(z0, p1, p3) =
∑

m=0,1

W̃k1k3m(~p1, ~p3)Km(|~p1|z0)Km(|~p3|z0), (4.76)

and we have a similar definition for Φk2k4 . The functions Φ are evocative of the impact
factors in Eq. (2.81) in the computations in N = 4 SYM. The term W̃k1k3m is given
by

W̃k1k3m = δk1k3 |~p1||~p3|δm,1 − p1k1
p3k3

δm,0. (4.77)

After contraction with polarization vectors, W̃k1k3m reads

W̃λ1λ3m =
∑

λ1,λ3

ǫk1(λ1)(~p1)ǫ
k3(λ3)(~p3)

∗W̃k1k3m(~p1, ~p3)

≈ |~p1||~p3|(δm,1δλ1,hδλ3,h + δm,0δλ1,Lδλ3,L). (4.78)

The first term with m = 1 contributes to transverse and the second term with m = 0 to
longitudinal polarization. Helicity changing terms are suppressed in the Regge limit.
Consequently, the helicity of the R-currents is conserved. In N = 4 SYM at weak
coupling, the elastic scattering of two R-currents also provides helicity conservation
of the R-currents as shown in Eq. (2.117).
W̃λ1λ3 only depends on the virtualities of the R-currents. Hence, the impact factor

in the helicity basis, given by

Φλ1λ3(z0, |~p1|, |~p3|) =
∑

m=0,1

W̃λ1λ3m(|~p1|, |~p3|)Km(|~p1|z0)Km(|~p3|z0), (4.79)

only depends on the virtualities and not on the momenta of the R-currents as well.
The same is true in N = 4 SYM: the impact factors (2.115)-(2.116) at weak coupling
do not depend on the momenta of the external R-currents. Furthermore, we see in
Eq. (4.79) that the Bessel function K0 corresponds to the longitudinal polarization
L, and the Bessel function K1 corresponds to the transverse polarization h of the
R-currents.
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Finally, the scattering amplitude reads

AGRλ1λ2λ3λ4
Regge (|~pi|, s, t)

=
s2

2

∫

dz0

∫

dw0 Φλ1λ3(z0, |~p1|, |~p3|)Σ(|~p1 + ~p3|, z0, w0)Φ
λ2λ4(w0, |~p2|, |~p4|).

(4.80)

In the Regge limit, the scattering amplitude with a graviton exchange in the t-channel
is proportional to s2. We also have to consider the exchange of a graviton in the s-
and u-channel. In these cases, the third term of the stress-energy tensor is important,
and at first sight, one might expect additional contributions of order s2. Nevertheless,
the s- and u-channel contributions are suppressed by an additional factor s−1, which
comes in through the graviton propagator.

The amplitude in Eq. (4.80) has a factorized form like the four point amplitude
of R-currents computed in N = 4 SYM at weak coupling, see Eq. (2.81). Again,
the amplitude contains two impact factors Φ which depend on the virtualities of the
external R-currents. The impact factors are connected by the exchange propagator
Σ. On the gauge theory side, we have two gluon propagators. In both amplitudes, the
impact factors are convoluted by a two-dimensional integration: over the transverse
components of the loop momentum and over two variables in the fifth dimension,
respectively. Finally, the power of s in the amplitudes reflects the spin of the exchanged
particles.

On the gauge theory side, we have the exchange of two gluons in the leading di-
agrams, see section 2.5, and the amplitude is proportional to s. In higher order of
the gauge coupling g2

YM, the two gluon exchange is replaced by the BFKL Green’s
function, and the power of s is modified from 1 to 1 +ω0. ω0 is the leading singularity
in the ω-plane. On the string theory side, we expect a similar behavior. In higher
order diagrams, due to the expected reggeization of the graviton, the power behavior
of s may be modified to s2−∆ with the correction ∆ = O(1/

√
λ). In order to compute

this correction, computations of loop diagrams on the string side are necessary, that
means the computations have to be performed beyond the supergravity limit.

4.3 Gauge Boson Exchange

The second diagram for a four point function of R-currents in the supergravity limit
has a gauge boson exchange in the bulk. The leading term in the energy s comes from
a gauge boson exchange in the t-channel, see Fig. 4.2(b). Contributions from s- and u-
channel exchanges are suppressed by at least one power of s. In this section, we verify
that the gauge boson exchange is subleading compared to the graviton exchange. We
restrict ourselves to the Abelian part of the SU(4)R group as we have done in the
N = 4 SYM part.

The gauge boson exchange in the t-channel is described by the bulk-to-bulk prop-
agator Gµ5ν5(z, w), and the coupling of the bulk-to-bulk propagator to the bulk-to-
boundary gauge boson propagators is given by the Chern-Simons interaction term in
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the action (4.8),
∫

d4zdz0 ǫµνρσλ∂µAν(z)∂ρAσ(z)Aλ(z). (4.81)

The gauge boson field in the bulk Aµ(z) is connected with the boundary field Ai(~x)
by the bulk-to-boundary propagator of the gauge boson:

Aµ(z) =

∫

d4~xGµi(z, ~x)Ai(~x). (4.82)

We use the rules of the AdS/CFT-correspondence and obtain the contribution of one
gauge boson exchange in the t-channel to the four point function of R-currents,

ICS(~xi) =

∫

d4zdz0

∫

d4wdw0 ǫµ1µ2µ3µ4µ5ǫν1ν2ν3ν4ν5∂[µ1Gµ2]k1(z, ~x1)∂[µ3Gµ4]k3(z, ~x3)

×Gµ5ν5(z, w)∂[ν1Gν2]k2(w, ~x2)∂[ν3Gν4]k4(w, ~x4). (4.83)

The partial derivatives act on z and w, respectively. There are similar contributions
as (4.83) that include derivatives on the bulk-to-bulk propagator. But all these con-
tributions turn out to be identical to the above term due to the Bianchi identity. We
have to transform ICS(~xi) to momentum space since we like to take the Regge limit.
We define the Fourier transform as

ICS(~xi) =
1

(2π)16

∫

∏

i

d4pi e
i
∑

j ~pj ·~xj ĨCS(~pi). (4.84)

The Fourier transform of the bulk-to-boundary propagator is given in Eq. (4.56),

Gµ2k1(z, ~x1) =

∫

d4p1

(2π)4
e−i~p1·(~z−~x1)Gµ2k1(z0, ~p1), (4.85)

and derivatives of the bulk-to-boundary propagator in momentum space have been
computed in Eq. (4.58). Similar expressions hold for the other bulk-to-boundary
propagators in Eq. (4.83). We substitute ~x = ~z − ~w and ICS(~xi) reads

ICS(~xi) =
1

(2π)16

∫

d4zdz0

∫

d4wdw0 ǫµ1µ2µ3µ4µ5ǫν1ν2ν3ν4ν5

∫

d4p

(2π)4
ei~x·~p

×
∫

d4p1d
4p2d

4p3d
4p4e

i~p1·~x1ei~p2·~x2ei~p3·~x3ei~p4·~x4e−i(~p1+~p3)·~ze−i(~p2+~p4)·~w

×[ip1[µ1
Gµ2]k1(z0, ~p1) + ∂0δ[µ10Gµ2]k1(z0, ~p1)]

×[ip3[µ3
Gµ4]k2(z0, ~p3) + ∂0δ[µ30Gµ4]k2(z0, ~p3)]

×Gµ5ν5(z0, w0, ~p)

×[ip2[ν1
Gν2]k3(w0, ~p2) + ∂0δ[ν10Gν2]k3(w0, ~p2)]

×[ip4[ν3
Gν4]k4(w0, ~p4) + ∂0δ[ν30Gν4]k4(w0, ~p4)]

+

(

~p1 ↔ ~p3

k1 ↔ k3

)

+

(

~p2 ↔ ~p4

k2 ↔ k4

)

+

(

~p1 ↔ ~p3; ~p2 ↔ ~p4

k1 ↔ k3; k2 ↔ k4;

)

. (4.86)
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The brackets in the last line symbolize the exchange of momenta and indices. We
drop these terms in the next formulas and reintroduce them in the final result. We
integrate over ~z, ~w, and ~p and arrive at

ICS(~xi) =
1

(2π)20

∫

dz0

∫

dw0 ǫµ1µ2µ3µ4µ5ǫν1ν2ν3ν4ν5

×
∫

d4p1d
4p2d

4p3d
4p4 ei~p1·~x1ei~p2·~x2ei~p3·~x3ei~p4·~x4(2π)4δ(4)(

∑

~pi)

×[ip1[µ1
Gµ2]k1(z0, ~p1) + ∂0δ[µ10Gµ2]k1(z0, ~p1)]

×[ip3[µ3
Gµ4]k3(z0, ~p3) + ∂0δ[µ30Gµ4]k3(z0, ~p3)]

×Gµ5ν5(z0, w0, ~p)

×[ip2[ν1
Gν2]k2(w0, ~p2) + ∂0δ[ν10Gν2]k2(w0, ~p2)]

×[ip4[ν3
Gν4]k4(w0, ~p4) + ∂0δ[ν30Gν4]k4(w0, ~p4)]. (4.87)

From this expression together with Eq. (4.84) we can read off ICS in momentum space.
We get

ĨCS(~pi) =

∫

dz0

∫

dw0 ǫµ1µ2µ3µ4µ5ǫν1ν2ν3ν4ν5(2π)4δ(4)(
∑

~pi)

×[ip1[µ1
Gµ2]k1(z0, ~p1) + ∂0δ[µ10Gµ2]k1(z0, ~p1)]

×[ip3[µ3
Gµ4]k3(z0, ~p3) + ∂0δ[µ30Gµ4]k3(z0, ~p3)]

×Gµ5ν5(z0, w0, ~p)

×[ip2[ν1
Gν2]k2(w0, ~p2) + ∂0δ[ν10Gν2]k2(w0, ~p2)]

×[ip4[ν3
Gν4]k4(w0, ~p4) + ∂0δ[ν30Gν4]k4(w0, ~p4)]. (4.88)

A straightforward but lengthy computation shows: The leading contribution of ĨCS(~pi)
in the Regge limit is given by µ5 = m 6= 0 and ν5 = n 6= 0 in the bulk-to-bulk
propagator. With these conditions we have

ĨCS(~pi) ≈
∫

dz0

∫

dw0 ǫ0µ2µ3µ4mǫ0ν2ν3ν4n(2π)4δ(4)(
∑

~pi)Gmn(z0, w0, ~p)

×[ip1[0
Gµ2]k1(z0, ~p1) + ∂0Gµ2]k1(z0, ~p1)][ip3[µ3

Gµ4]k3(z0, ~p3)]

×[ip2[0
Gν2]k2(w0, ~p2) + ∂0Gν2]k2(w0, ~p2)][ip4[ν3

Gν4]k4(w0, ~p4)]. (4.89)

The symbol ≈ again denotes the leading contribution in the Regge limit. The deriva-
tive of the bulk-to-boundary propagator with respect to z0 is

∂0Gµ2k1(z0, p1) = −p2
1z0K0(|~p|z0)δk1µ2 + ip1k1

(K0(|~p|z0) − |~p1|z0K1(|~p|z0))δµ20.

(4.90)
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Furthermore, we use the bulk-to-boundary propagator given in Eq. (4.40) to write

ĨCS(~pi) ≈
∫

dz0

∫

dw0 ǫ0µ2µ3µ4mǫ0ν2ν3ν4n(2π)4δ(4)(
∑

~pi)Gmn(z0, w0, ~p)

×[−ip1µ2
iz0pk1K0(|~p1|z0) − p2

1δ[µ10δk1µ2]z0K0(|~p1|z0)]

×[ip3[µ3
z0|~p3|K1(|~p3|z0)δµ4]k3 ][ip4[ν3

w0|~p4|K1(|~p4|w0)δν4]k4 ]

×[−ip2ν2
iw0pk2K0(|~p2|w0) − p2

2δ[ν10δk2ν2]w0K0(|~p2|w0)]

=

∫

dz0

∫

dw0 ǫ0µ2µ3µ4mǫ0ν2ν3ν4n(2π)4δ(4)(
∑

~pi)Gmn(z0, w0, ~p)

×(−p2
1δ[µ10δk1µ2] + p1µ2

p1k1
)z0K0(|~p1|z0)

×(−p2
2δ[ν10δk2ν2] + p2ν2

p2k2
)w0K0(|~p2|w0)

×[ip3[µ3
z0|~p3|K1(|~p3|z0)δµ4]k3 ][ip4[ν3

w0|~p4|K1(|~p4|w0)δν4]k4 ]. (4.91)

Now we insert the explicit expression of the bulk-to-bulk gauge boson propagator
shown in Eq. (4.33) and have

ĨCS(~pi) ≈ −
∫

dz0z
2
0

∫

dw0w
2
0 ǫ0µ2µ3µ4mǫ0ν2ν3ν4n(2π)4δ(4)(

∑

~pi)δlm|~p3||~p4|

×(p2
1δµ2k1 − p1µ2

p1k1
)(p2

2δν2k2 − p2ν2
p2k2

)

×(p3µ3
δµ4k3 − p3µ4

δµ3k3)(p4ν3
δν4k4 − p4ν4

δν3k4)

×K0(|~p1|z0)K1(|~p3|z0)K0(|~p2|w0)K1(|~p4|w0)

×
∞
∑

k=0

(z0w0)
2k+2

2Γ(1 + k)Γ(2 + k)

( |~p1 + ~p3| 2
4w̄2

0

)k+ 1
2

K2k+1(|~p1 + ~p3|ω̄0). (4.92)

Next we perform all possible contractions of the momenta with the epsilon tensors.
The resulting leading contribution in the Regge limit is

ĨCS
Regge(~pi) = (2π)4δ(4)(

∑

~pi)W̃
CS
k1k2k3k4

∫

dz0z
2
0

∫

dw0w
2
0 |~p3|K1(|~p3|z0)K0(|~p1|z0)

×
∞
∑

k=0

(z0w0)
2k+2

Γ(1 + k)Γ(2 + k)

( |~p1 + ~p3| 2
4w̄2

0

)k+ 1
2

K2k+1(|~p1 + ~p3|ω̄0)

×|~p4|K1(|~p4|w0)K0(|~p2|w0)

+

(

~p1 ↔ ~p3

k1 ↔ k3

)

+

(

~p2 ↔ ~p4

k2 ↔ k4

)

+

(

~p1 ↔ ~p3; ~p2 ↔ ~p4

k1 ↔ k3; k2 ↔ k4;

)

(4.93)

with the polarization tensor

W̃CS
k1k2k3k4

≈ tsp1k1
p2k2

δk3k4 − s|~p1|2|~p2|2(δk2k3δk1k4 − δk1k2δk3k4) + sp1k1
p2k2

qk3qk4

−s|~p1|2p2k2
(δk1k4qk3 − δk3k4qk1) − s|~p2|2p1k1

(δk3k4qk2 − δk2k3qk4)

(4.94)
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with ~q = ~p1 + ~p3. The last step in our computation is to contract the polarization
tensor W̃CS(~pi) with the polarization vectors of the R-currents,

W̃CSλ1λ2λ3λ4(~pi) =
∑

λi

ǫk1(λ1)(~p1)ǫ
k2(λ2)(~p2)ǫ

k3(λ3)(~p3)
∗ǫk4(λ4)(~p4)

∗W̃CS
k1k2k3k4

(~pi).

(4.95)

The contraction with longitudinal polarization vectors, Eqs. (2.57) and (2.58), gives

W̃CSLLLL(~pi) = 2t|~p1||~p2||~p3||~p4| (4.96)

whereas contraction with transverse polarization vectors, Eqs. (2.59)-(2.61), results in

W̃CSh1h2h3h4(~pi)

= −s|~p1|2|~p2|2((~ǫ (h2)
⊥ · ~ǫ (h3)∗

⊥ )(~ǫ
(h1)
⊥ · ~ǫ (h4)∗

⊥ ) − (~ǫ
(h3)∗
⊥ · ~ǫ (h4)∗

⊥ )(~ǫ
(h1)
⊥ · ~ǫ (h2)∗

⊥ )).

(4.97)

There are two possible transverse polarizations, hi = ±. Looking at different combi-
nations of transverse polarizations, we rewrite the polarization tensor as

W̃CSh1h2h3h4(~pi) = −s|~p1|2|~p2|2(2δh1h2 − 1)δh1h3δh2h4 . (4.98)

Different polarizations of the upper two and lower to R-currents lead to

W̃CSLh2Lh4(~pi) = −|~p1||~p3||~p2|2((~ǫ (h2)
⊥ · ~q⊥)(~ǫ

(h4)∗
⊥ · ~q⊥). (4.99)

We get a similar result for the reverse case. We see that only transverse polarization
vectors contribute to the leading high energy behavior in the Regge limit. Therefore,
the helicity of the R-currents is conserved. Let us rewrite the leading contribution of
the gauge boson exchange to the four point function of R-currents as

ĨCS
Regge = −(2π)4δ(4)(

∑

~pi)(2δh1h2 − 1) s

×
∫

dz0dw0Φ
CSh1h3(p1, p3; z0)Σ

CS(|~p1 + ~p3|, z0, w0)Φ
CSh2h4(p2, p4; w0).

(4.100)

The term (2δh1h2 − 1) changes the sign of the result depending on whether the two
left R-currents have equal or opposite helicity. The exchange propagator reads

ΣCS(z0, w0, |~p1 + ~p3|)

=
∞
∑

k=0

(z0w0)
2k+2

Γ(1 + k)Γ(2 + k)

( |~p1 + ~p3| 2
4w̄2

0

)k+ 1
2

K2k+1(|~p1 + ~p3|ω̄0),

(4.101)

and the functions ΦCS have the form

ΦCSh1h3(z0, |~p1|, |~p3|) = z2
0 |~p1|2|~p3|K1(|~p3|z0)K0(|~p1|z0)δ

h1h3 . (4.102)
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We get a similar expression for ΦCSh2h4(w0, |~p2|, |~p4|). The functions Φ are again
reminiscent of impact factors in N = 4 SYM. The amplitude for gauge boson exchange
finally reads

ACSh1h2h3h4
Regge = −s (2δh1h2 − 1)

×
∫

dz0dw0 ΦCSh1h3(z0, |~p1|, |~p3|)ΣCS(|~p|, z0, w0)Φ
CSh2h4(w0, |~p2|, |~p4|).

(4.103)

The amplitude is proportional to s. As expected, the gauge boson exchange amplitude
is subleading compared to the graviton exchange amplitude, which is proportional to
s2. The highest spin particle, the graviton, provides the leading contribution to the
four point function of R-currents in the Regge limit in classical supergravity.

Similar to the four point amplitude in N = 4 SYM, the gauge boson exchange
amplitude consists of two impact factors and an exchange propagator, convoluted by
a two-dimensional integration. However, the amplitude is not completely factorized
into an upper and a lower part due to the term 2δh1h2 − 1. Other subleading terms
proportional to s from the exchange of the graviton or the gauge boson in the s- and
u-channel, may cancel this term and preserve the factorization of the amplitude.
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5 The Six Point Function in
Supergravity

After computing the four point function of R-currents in supergravity, we now proceed
with the six point function of R-currents. In chapter 3, we have investigated the six
point correlator at weak coupling in N = 4 SYM. Now we address the strong coupling
limit in the corresponding weakly coupled supergravity theory using the AdS/CFT-
correspondence.

5.1 Setup of the Computation

We define the Euclidean version of the six point amplitude of R-currents A(~pi) in
momentum space as

i(2π)4δ(
∑

i

~pi)A(~pi)
j1j2j3j4j5j6

=

∫ 6
∏

i=1

d4xie
−i~pi·~xi〈J j1

R (~x1)J
j2
R (~x2)J

j3
R (~x3)J

j4
R (~x4)J

j5
R (~x5)J

j6
R (~x6)〉. (5.1)

~xi and ~pi are four-dimensional Euclidean vectors, and the ji label the spacial directions
with ji = 1, . . . , 4. We choose all momenta ~p1, . . . ~p6 to be incoming. In Euclidean
notation the amplitude depends on the energy variables s1 = −(~p1 + ~p2)

2, s2 =
−(~p4 + ~p6)

2, and M2 = −(~p1 + ~p2 + ~p5)
2 and on the momentum transfer variables

−t = (~p1 + ~p4)
2, −t1 = (~p2 + ~p5)

2, and −t2 = (~p3 + ~p6)
2. In order to take the triple

Regge limit, given by
s1, s2 ≫ M2 ≫ −t,−t1,−t2, (5.2)

we have to go to Minkowski space via Wick rotation. We contract the amplitude with
polarization vectors again,

A(|~pi|; s, t,M2, . . . )λ1λ2λ3λ4λ5λ6

=
∑

λi

ǫj1(λ1)(~p1)ǫ
j2(λ2)(~p2)ǫ

j3(λ3)(~p3)ǫ
j4(λ4)(~p4)

∗ǫj5(λ5)(~p5)
∗ǫj6(λ6)(~p6)

∗A(~pi)
j1j2j3j4j5j6 .

(5.3)

As before, λi = L, h denote the different polarizations, longitudinal or transverse.
The resulting scattering amplitude A depends on the energy and momentum transfer
variables and on the virtualities Q2

i = |~pi|2 of the R-currents.
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Figure 5.1: Witten diagram for the six point function of R-currents with a triple gravi-
ton vertex
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Figure 5.2: Witten diagrams for the six point function of R-currents with two graviton
exchange

To compute the six point R-current amplitude (5.1) in classical supergravity, we
again make use of Eq. (1.9), that connects the supergravity action (4.7) with correla-
tion functions. We consider the resulting Witten diagrams, which are tree diagrams
in the classical supergravity limit. In detail, we get three different Witten diagrams
shown in Figs. 5.1 and 5.2. The six R-currents are inserted at the boundary of AdS5,
represented by the circle. In the first diagram, see Fig. 5.1, the six bulk-to-boundary
gauge boson propagators, the wavy lines, are connected by three bulk-to-bulk graviton
propagators and a triple graviton vertex in the bulk. The double wavy lines symbol-
ize as before the gravitons. The second type of diagrams is shown in Fig. 5.2. Here,
the bulk-to-boundary gauge boson propagators are connected by two bulk-to-bulk
graviton propagators, exchanged in the t-channels, and a bulk-to-bulk gauge boson
propagator.

These diagrams in classical supergravity show a similar structure as the diagrams for
the six point function at weak coupling in the large Nc-limit, presented in section 3.4.2.
The triple graviton exchange diagram, Fig. 5.1, is in accordance with the two diagrams,
which contain a triple vertex transition at weak coupling, shown in Figs. 3.17(a) and
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3.17(b). The diagrams in Fig. 5.2 in classical supergravity correspond to the direct
coupling diagram at weak coupling, Fig. 3.17(c). In the N = 4 SYM diagram, two
BFKL Pomerons are exchanged in the LLA and couple directly to the upper impact
factor. In classical supergravity in lowest order, we have the exchange of two gravitons
without any triple vertex transition. We observe this similarity of the diagrams for
weak and strong coupling since N = 4 SYM provides the new direct coupling. In
QCD, the direct coupling is absent.

5.2 Graviton Exchange with the Triple Graviton Vertex

First, we consider the diagram in Fig. 5.1 with the triple graviton vertex in the bulk.
We want to determine the high energy behavior of the amplitude (5.1) in the triple
Regge limit. The diagram in Fig. 5.1 gives the contribution ITG to the amplitude:

ITG =

∫

d4zdz0 z0

∫

d4vdv0

v0

∫

d4wdw0

w0

∫

d4ydy0

y0

T(14)ν1ν4(v)Gν1ν4;µ1µ2(v, z)

×T(25)ν2ν5(w)Gν2ν5;µ3µ4(w, z)T(36)ν3ν6(y)Gν3ν6;µ5µ6(y, z)Vµ1µ2µ3µ4µ5µ6(z).

(5.4)

ITG contains the triple graviton vertex Vµ1µ2µ3µ4µ5µ6 , the three graviton propaga-
tors Gνiνjµkµl

, and three stress-energy tensors T(ij)νiνj
, which connect the external

R-currents via bulk-to-boundary gauge boson propagators with the graviton propaga-
tors. Since we are interested in the triple Regge limit, Eq. (5.2), we have to transform
the expression (5.4) to momentum space. From the computations in chapter 4 we know
the stress-energy tensor and the graviton propagator in momentum space. To compute
ITG, we additionally need an expression for the triple graviton vertex Vµ1µ2µ3µ4µ5µ6 in
an AdS5 background in momentum space. We specify the vertex in the next section.

5.2.1 The Triple Graviton Vertex

The graviton field is identified as a small variation hµν from the metric of AdS5. The
small deviation is defined as

ḡµν = gµν + δgµν

= gµν + hµν (5.5)

with the metric of AdS5 given in Eq. (4.4). The triple graviton vertex contains terms
in third order of hµν . We derive the vertex from the Einstein-Hilbert action. The
action is given by, see Eq. (4.7),

S = − 1

2κ2

∫

d5z
√

gR. (5.6)

κ is the gravitational coupling, g is the determinant of the metric gµν . R is the scalar
curvature with

R = Rµνg
µν = Rρµσνg

µνgρσ. (5.7)
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Rµν is the Ricci tensor and Rρµσν the Riemann tensor. The Riemann tensor is defined
as

Rρµσν = gρλR
λ

µσν = gρλ(∂σΓλ
µν − ∂νΓλ

µσ + Γλ
σαΓα

µν − Γλ
ναΓα

µσ) (5.8)

with the Christoffel symbols

Γα
βγ =

1

2
gαρ(∂βgργ + ∂γgρβ − ∂ρgβγ). (5.9)

To extract the triple graviton vertex, we vary the Einstein-Hilbert action (5.6) with
respect to the metric gµν up to third order,

δ3S

δg3
µν

= − 1

2κ2

∫

d5z (3δ2√gδR + 3δ
√

gδ2R + δ3√gR +
√

gδ3R). (5.10)

As we see in Eq. (5.10), we have to variate the curvature R and
√

g up to third order.
We start with the first variation of the square root of g,

δ
√

g =
∂
√

g

∂gµν

δgµν =
1

2

1√
g
ggµνδgµν

=
1

2

√
ggµνδgµν , (5.11)

Here we have used δg = ggµνδgµν . We insert the metric gµν = z2
0δ

µν as well as the the
square root of g,

√
g = z−5

0 , and get

δ
√

g =
1

2

1

z3
0

h. (5.12)

We have defined Tr(hαβ) = hα
α = h here. We achieve in a similar way

δ2√g = δ

(

1

2

√
ggµνδgµν

)

=
1

4

√
ggαβgµνhαβhµν −

1

2

√
ggµρgνσhρσhµν

=
1

2

1

z0

(

1

2
hh − hµνhµν

)

(5.13)

and

δ3√g = δ

(

1

4

√
ggαβgµνhαβhµν −

1

2

√
ggµρgνσhρσhµν

)

= z0

(

1

8
hhh − 1

8
hµνhµνh + hµβhβνhµν

)

. (5.14)

Next we vary the curvature R. The first variation of R is

δR = δ(Rµνg
µν) = δRµνg

µν + Rµνδg
µν

= δRµνg
µν − Rµνg

µαgνβδgαβ. (5.15)
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Here we have used δgµν = −gµαgνβδgαβ. The variation of the Ricci tensor Rµν reads

δRρ
µρν = ∂ρδΓρ

νµ + Γρ
ρλδΓλ

νµ − Γλ
ρµδΓρ

νλ − Γλ
ρνΓρ

λµ

−∂νδΓρ
ρµ + Γλ

νµδΓρ
ρλ − Γρ

νλδΓλ
ρµ + Γλ

ρνΓρ
λµ

= ∇ρ(δΓρ
νµ) −∇ν(δΓρ

ρµ) (5.16)

with the covariant derivative ∇µ of a tensor T defined as

∇µT
µ1...µk

ν1...νl
= ∂µT

µ1...µk
ν1...νl

+ Γµ1
µσT

σµ2...µk
ν1...νl

+ · · · + Γµk
µσT

µ1...µk−1σ
ν1...νl

− Γσ
µν1

T µ1...µk
σν2...νl

− · · · − Γσ
µνl

T µ1...µl
ν1...νl−1σ.

(5.17)

With the result for the variation of the Ricci tensor in Eq. (5.16) we get

δRµνg
µν = gµν(∇ρ(δΓρ

νµ) −∇ν(δΓρ
ρµ)) (5.18)

Since ∇ρg
µν = 0, we arrive at

δRµνg
µν = ∇σ(gµνδΓσ

νµ − gµσδΓρ
ρµ). (5.19)

Integration over this term in the action (5.6) only gives boundary terms, and we are
allowed to neglect the term in the first variation of R. Thus, we have

δR = −Rµνg
µαgνβδgαβ. (5.20)

We insert the definition of the Ricci tensor, Eq. (5.7), and of the Riemann ten-
sor, Eq. (5.8). Furthermore, we use the representation of the Christoffel symbols
in Eq. (5.9), the variation of the metric, and the metric and arrive at

δR = −Rµνδgµν = 4z2
0δµνhµν = 4z2

0h. (5.21)

From Eq. (5.21) we can read off the Ricci tensor that allows us to compute an explicit
expression for the curvature R, which is needed in the variation of S:

Rµν = −4z2
0δµν . (5.22)

The resulting curvature R is

R = Rµνgµν = − 1

z2
0

4z2
0δµνδµν = −20. (5.23)

Now we have all necessary results to write down, as a first intermediate result, the
first variation of the action:

δS = − 1

2κ2

∫

d5z δ
√

gR +
√

gδR

=
1

2κ2

∫

d5z 6
1

z3
0

h. (5.24)
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The second variation of the action S, computed in a similar way, gives the equa-
tion of motion for the graviton field hµν [57]. Since we do not need it in the future
computations, we do not show the equation of motion here.

The result of the third variation, Eq. (5.10), reads

δ3S

δg3
µν

= − 1

2κ2

∫

d5z z0(c1 hh0µh0µ − c2 hµνh0µh0ν − c3 hµνhµνh00 + c4 hµνhµνh

− c5 hµνhναhµα + c6 hhh00 − c7 hhh)

+z2
0(c8 h0µhµν∂αhνα + c9 h0µhνα∂αhµν + c10 hµνh0ν∂µh + c11 hµνhµν∂αh0α

+ c12 hµνh0α∂αhµν − c13 hµνh∂0hµν + c14 hµαhµν∂0hνα + c15 hh∂µh0µ

− c16 hhµν∂µh0ν + c17 hh0ν∂µhµν + c18 hh∂0h − c19 hµνhµν∂0h)

+z3
0(c20 ∂µh∂νhhµν + c21 ∂µ∂νhhhµν + c22 ∂µ∂νhµνhh + c23 ∂νhµν∂µhh

− c24 ∂α∂νhhµνhµα + c25 ∂αh∂µhναhµν − c26 ∂αh∂νhµνhµα

− c27 ∂µ∂νhµαhναh + c28 ∂µhµν∂αhναh + c29 ∂µhνα∂αhµνh − c30 ∂µ∂µhhh

− c31 ∂µh∂µhh − c32 ∂α∂αhhµνhµν − c33 ∂αh∂αhµνhµν − c34 h∂µhνα∂µhνα

+ c35 ∂α∂αhµνhµνh − c36 ∂α∂αhνβhµβhµν + c37 ∂αhµν∂αhνβhµβ

+ c38 ∂α∂νhµβhαβhµν + c39 ∂αhµν∂µhαβhνβ − c40 ∂νhαβ∂αhµβhµν

− c41 ∂αhµν∂βhαβhµν + c42 hµνhαβ∂α∂βhµν − c43 hµν∂α∂βhαβhµν

+ c44 ∂βhµνhαβ∂αhµν + c45 hµν∂βhνβ∂αhµα + c46 hµν∂α∂βhνβhµα

− c47 ∂αhµα∂νhµβhνβ). (5.25)

The factors ci are multiplicative numbers that are not relevant in determining the
high energy behavior of the amplitude. ∂λ is a derivative with respect to zλ.

Now we extract the triple graviton vertex in momentum space from Eq. (5.25). To
obtain a vertex from an action we use the usual rules. That is, we take three functional
derivatives of the action with respect to the graviton field h and go to momentum space
via Fourier transformation. The functional derivatives result in Kronecker symbols
in the vertex. Due to the Fourier transformation every partial derivative acting on a
graviton field hρσ in the action is replaced by (−i) times the momentum of the field.
Therefore, the derivative ∂kλ

acting on one of the three fields hρσ in each term of the
action is replaced by

∂kλ
→ δλm(−ipk − ipk+3)m + δλ0∂0 =: Pkλ

(5.26)

with k = 1, . . . 3 for the three graviton fields in each term of Eq. (5.25). pk and
pk+3 are the two incoming momenta of two connected bulk-to-boundary gauge boson
propagator, and Pk is the graviton momentum.
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Applying these rules the triple graviton vertex in momentum space reads

Vµ1µ2µ3µ4µ5µ6(P1, P2, P3)

= − z0(c1 δµ1µ2δµ30δµ50δµ4µ6 − c2 δµ1µ4δµ2µ6δµ30δµ50 − c3 δµ1µ3δµ2µ4δµ50δµ60

+ c4 δµ1µ3δµ2µ4δµ5µ6 − c5 δµ1µ5δµ2µ3δµ4µ6 + c6 δµ1µ2δµ3µ4δµ50δµ60

− c7 δµ1µ2δµ3µ4δµ5µ6)

−z2
0(c8 δµ10δµ2µ3δµ4µ5P3αδµ6α + c9 δµ10δµ2µ5δµ3µ6P2αδµ4α

+ c10 δµ1αδµ2µ4δµ30P3αδµ5µ6 + c11 δµ1µ3δµ2µ4P3αδαµ6δµ50

+ c12 δµ1µ5δµ2µ6δµ30δµ4αP2α − c13 δµ1µ5δµ2µ6δµ3µ4δα0P3α

+ c14 δµ1µ3δµ2µ6δµ4µ5δα0P3α + c15 δµ1µ2δµ3µ4δαµ6P3αδµ50

− c16 δµ1µ2δµ3αδµ4µ6δµ50P2α + c17 δµ1µ2δµ30δµ4µ6P3αδµ5α

+ c18 δµ1µ2δµ3µ4δµ5µ6P3αδα0 − c19 δµ1µ2δµ3µ5δµ4µ6P1αδα0)

−z3
0(c20 δµ1µ2δµ3µ4δµ5αδµ6βP1αP2β

+ c21 δµ1µ2δµ3µ4δµ5αδµ6βP1αP1β

+ c22 δµ1αδµ2βδµ3µ4δµ5µ6P1αP1β
+ c23 δµ1αδµ2βδµ3µ4δµ5µ6P1αP2β

− c24 δµ1µ2δµ3µ5δµ4αδµ6βP1αP1β
+ c25 δµ1µ2δµ3µ6δµ4αδµ5βP1αP2β

− c26 δµ1µ2δµ3µ5δµ4βδµ6αP1αP2β
− c27 δµ1αδµ2µ4δµ3βδµ5µ6P1αP1β

+ c28 δµ1αδµ2µ3δµ4βδµ5µ6P1αP2β
+ c29 δµ1µ4δµ2βδµ3αδµ5µ6P1αP2β

− c30 δµ1µ2δµ3µ4δµ5µ6P1αP1α − c31 δµ1µ2δµ3µ4δµ5µ6P1αP2α

− c32 δµ1µ2δµ3µ5δµ4µ6P1αP1α − c33 δµ1µ2δµ3µ5δµ4µ6P1αP2α

− c34 δµ1µ2δµ3µ5δµ4µ6P2αP3α + c35 δµ1µ2δµ3µ5δµ4µ6P2αP2α

− c36 δµ1µ6δµ2µ4δµ3µ5P1αP1α + c37 δµ1µ5δµ2µ3δµ4µ6P1αP2α

− c38 δµ1µ5δµ2µ4δµ3αδµ6βP1αP1β
− c39 δµ1αδµ2µ5δµ3βδµ4µ6P1β

P2α

− c40 δµ1αδµ2µ3δµ4µ5δµ6βP1β
P2α − c41 δµ1µ5δµ2µ6δµ3αδµ4βP1αP2β

+ c42 δµ1µ5δµ2µ6δµ3αδµ4βP3αP3β
− c43 δµ1µ5δµ3αδµ4βδµ2µ6P2αP2β

+ c44 δµ1µ5δµ2µ6δµ3αδµ4βP1β
P3α + c45 δµ1µ5δµ2µ3δµ4αδµ6βP2αP3β

+ c46 δµ1µ5δµ2µ3δµ4αδµ6βP2αP2β
− c47 δµ1µ3δµ2αδµ4µ6δµ5βP1αP2β

)

+ symmetric terms. (5.27)

The symmetric terms are a result of taking the functional derivatives of the action.
They can be identified from Eq. (5.27) performing the following substitutions:

(Pk, µ2k−1, µ2k) ↔ (Pj, µ2j−1, µ2j), (5.28)

that is the exchange of the graviton momenta Pk in all possible ways and the corre-
sponding indices with k, j = 1, . . . , 3 and subsequent, the second substitution

µ2i−1 ↔ µ2i (5.29)

with i = 1, . . . , 3, that is the exchange of indices of each graviton.



90 5 The Six Point Function in Supergravity

5.2.2 High Energy Behavior

We are interested in the high energy behavior of the diagram with the triple graviton
vertex, shown in Fig. 5.1. According to Ref. [50] we expect in the triple Regge limit
a high energy behavior of the amplitude proportional to

( s1

M2

)j1 ( s2

M2

)j2
(M2)j (5.30)

with the spins of the three gravitons: j1 = j2 = j = 2.
The stress-energy tensors T(ij)νiνj

and the graviton propagators Gνiνj ;µkµl
are con-

tracted with the triple graviton vertex Vµ1µ2µ3µ4µ5µ6 , see Eq. (5.4). From the com-
putation of the four point function in chapter 4 we know the leading contribution
of the stress-energy tensor, Eq. (4.64), and of the graviton propagator, Eq. (4.49),
in the Regge limit. The contraction of the stress-energy tensors with the graviton
propagators in the Regge limit gives

T(14)ν1ν4Gν1ν4;µ1µ2T(25)ν2ν5Gν2ν5;µ3µ4T(36)ν3ν6Gν3ν6;µ5µ6

≈ (2p1µ1
p4µ2

+ 2p1µ2
p4µ1

)(2p2µ3
p5µ4

+ 2p2µ4
p5µ3

)(2p3µ5
p6µ6

+ 2p3µ6
p6µ5

).

(5.31)

Here we suppress terms of the stress-energy tensor, which are contracted with the
external polarization vectors of the R-currents since these terms do not contribute to
the leading high energy behavior in the Regge limit.

The last step is to contract Eq. (5.31) with the triple graviton vertex Vµ1µ2µ3µ4µ5µ6 .
Contractions of the momenta p1 or p4 with p2 or p5 give terms proportional to s1,
contractions of p1 or p4 with momenta p3 or p6 give terms proportional to s2. All
other contractions of momenta provide subleading contributions. Consequently, in
the triple Regge limit, the following part of the triple graviton vertex leads to the
highest power of energies s1 and s2 in the amplitude:

Vµ1µ2µ3µ4µ5µ6(P1, P2, P3)

≈ z0(c2 δµ1µ4δµ2µ6δµ30δµ50 + c3 δµ1µ3δµ2µ4δµ50δµ60

− c4 δµ1µ3δµ2µ4δµ5µ6 + c5 δµ1µ5δµ2µ3δµ4µ6)

+z2
0(−c11 δµ1µ3δµ2µ4P3αδαµ6δµ50 − c12 δµ1µ5δµ2µ6δµ30δµ4αP2α

+ c13 δµ1µ5δµ2µ6δµ3µ4δα0P3α − c14 δµ1µ3δµ2µ6δµ4µ5δα0P3α)

+z3
0(c36 δµ1µ6δµ2µ4δµ3µ5P1αP1α − c37 δµ1µ5δµ2µ3δµ4µ6P1αP2α

+ c38 δµ1µ5δµ2µ4δµ3αδµ6βP1αP1β
+ c41 δµ1µ5δµ2µ6δµ3αδµ4βP1αP2β

− c42 δµ1µ5δµ2µ6δµ3αδµ4βP3αP3β
+ c43 δµ1µ5δµ3αδµ4βδµ2µ6P2αP2β

− c44 δµ1µ5δµ2µ6δµ3αδµ4βP1β
P3α − c45 δµ1µ5δµ2µ3δµ4αδµ6βP2αP3β

− c46 δµ1µ5δµ2µ3δµ4αδµ6βP2αP2β
)

+ contributions from symmetric terms. (5.32)

The contributions from symmetric terms include all parts of the symmetrized terms
in Eq. (5.27), which contribute in the triple Regge limit. The leading part of the
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triple graviton vertex, Eq. (5.32), contracted with Eq. (5.31) provides terms with two
connections between momenta, which give a contribution proportional to s1 or s2.

Thus, we observe the following high energy behavior: The amplitude contains three
terms proportional to s1s2, s2

1, and s2
2. This result implies that the expected con-

tribution of the amplitude in the triple Regge limit, see Eq. (5.30), vanishes. The
diagram with the triple graviton vertex decouples in the high energy limit. The terms
in Eq. (5.30) may contribute beyond the classical supergravity approximation where
the graviton is expected to start to reggeize.

The diagrams in Fig. 5.2 contain the exchange of two gravitons in the t-channels.
An explicit computation gives a high energy behavior proportional to s2

1s
2
2 in the triple

Regge limit [45]. For large M2, the two graviton exchange diagrams fall with M−2.
They are the dominant ones compared to the triple graviton vertex diagram.

In case of the six point function of R-currents in N = 4 SYM at weak coupling in
chapter 3.4.2, the partial wave F (Dir), which contains the direct coupling, is for large
values of M2 subleading compared to the partial waves F (P) and F (NP), which provide
a triple vertex transition.
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The elastic scattering of highly virtual photons in QCD is a reliable environment to
study the BFKL Pomeron in a perturbative regime. However, the relation of the
BFKL Pomeron to QCD at strong coupling is not clear.

The AdS/CFT-correspondence offers a new opportunity to investigate gauge the-
ories at strong coupling. The correspondence is a duality between conformal field
theories and string theories. The best understood example is the connection between
N = 4 SYM and IIB string theory on an AdS5 × S5 background. In particular, the
strong coupling limit of N = 4 SYM in the large Nc-limit is related to weakly coupled
type IIB supergravity. The duality connects the BFKL Pomeron in N = 4 SYM with
graviton exchange on the string theory side.

We have considered the scattering of conserved R-currents in N = 4 SYM. R-
current correlators are close analogs of electromagnetic current correlators. The su-
persymmetry of N = 4 SYM does not influence the exchanged gluons in the scattering
process at weak coupling, and as a consequence, in the LLA, the BFKL Pomeron is the
same in QCD and N = 4 SYM. In order to study R-current scattering at strong cou-
pling, we have made use of the AdS/CFT-correspondence. The strong coupling limit
of the R-current correlation functions has been addressed in the corresponding weakly
coupled supergravity theory. Consequently, we have obtained analytic expressions for
the four and six point correlation function at weak and strong coupling.

First, we have computed the four point function of R-currents at weak coupling in
the Regge limit. We have shown the finiteness of the fermionic and scalar one-loop
diagrams and have determined their high energy behavior. The leading diagrams
are three-loop diagrams with two impact factors and two exchanged gluons in the
t-channel. Their amplitude is proportional to s. We have given explicit results for
the fermion and scalar impact factors with longitudinal and transverse polarization of
the R-currents. A different result, compared with QCD, is the helicity conservation of
R-currents even in the non-forward direction. In the LLA, we have pointed out that
the Regge factorization of the amplitude in N = 4 SYM stays the same as in QCD.

The investigation of the six point function of R-currents at weak coupling in the
triple Regge limit has been the next step in our work since the function contains the
most important unitarity corrections to the BFKL Pomeron. We have explained the
connection between fermion impact factors in QCD and N = 4 SYM and have written
the new scalar impact factors with more than two gluons as a superposition of two
gluon impact factors. One main result is a new coupling of the exchanged gluons to
the R-currents, called direct coupling, which is absent in QCD. It can be traced back
to the fact that the particles are in the adjoint representation of the gauge group in
N = 4 SYM. If we do not have s-channel gluons contributing to the M2-discontinuity,
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the coupling of the gluons to the R-currents is mediated by the unintegrated impact
factor. We have given its explicit expression for fermions and scalars. Besides the
impact factors, the amplitude contains the BFKL and BKP equations as well as
the triple Pomeron vertex. They are not influenced by the supersymmetry of N = 4
SYM and are independent of the couplings to the external R-currents. As a result, the
Regge factorization of the amplitude stays the same as in QCD. A further computation
has been addressed to the large Nc-limit of the six point function of R-currents in a
topological approach. This method has offered an additional understanding of the
structure of the six point function. The different building blocks in the six point
function are due to different topologies of the amplitude. Moreover, in the large Nc-
limit, we have found a suppression of BKP states with more than two gluons in the
six point function.

In the second part of this work, we have investigated the strong coupling limit of R-
current correlators in N = 4 SYM in the corresponding weakly coupled supergravity
theory. In particular, we have computed Witten diagrams, which are similar to usual
Feynman diagrams. However, Witten diagrams are given in a five-dimensional Anti-
de Sitter background. Applying the classical supergravity limit, we only have had
to consider tree Witten diagrams. The four point function of R-currents has led
to Witten diagrams with one graviton and one gauge boson exchange, respectively.
In the Regge limit, the graviton exchange diagram is proportional to s2, reflecting
the spin of the graviton, and therefore gives the leading contribution. The gauge
boson exchange diagram is only proportional to s. The graviton exchange diagram
shows a familiar factorization of the amplitude. The amplitude can be written in
terms of two impact factors and an exchange propagator, which are convoluted by a
two-dimensional integration in the fifth dimension. The helicity of the R-currents is
conserved in both amplitudes as it is the case for the four point function in N = 4
SYM at weak coupling.

The six point function of R-currents in the weakly coupled supergravity theory
corresponds to a Witten diagram with a triple graviton vertex and to two Witten
diagrams with two graviton exchange. In order to determine the high energy behavior
of the diagram with the triple graviton vertex, we have computed the vertex in an AdS5

background. In the triple Regge limit, the amplitude is expected to be proportional to
(s1/M

2)2(s2/M
2)2(M2)2. However, this contribution vanishes and the diagram with

the triple graviton vertex consists of three terms proportional to s1s2, s2
1, and s2

2. That
is the triple graviton diagram decouples in the high energy limit, and the two graviton
exchange diagrams are the leading ones.

Summarizing, we have studied the four and six point function of R-currents in
N = 4 SYM at weak and strong coupling and observed several similarities of the
results. The amplitude of the four point function shows a factorization at weak and
strong coupling. The leading diagrams can be written in terms of impact factors and
exchange propagators convoluted by a two-dimensional integration. Nevertheless, a
uniform description of the results for weak and strong coupling is still missing. In
Ref. [38], the scattering of scalar primaries in N = 4 SYM has been considered, and
the BFKL Pomeron exchange at weak coupling has been analyzed directly in position
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space. Using this method for the graviton exchange amplitude at strong coupling
may provide a representation that interpolates between the weak and strong coupling
limit.

The diagrams of the six point amplitude exhibit the same structure at weak and
strong coupling. The amplitude at weak coupling leads to two different types of
diagrams: diagrams with a triple vertex transition and one diagram containing a
direct coupling of the gluons to the impact factor, which is a new coupling in N = 4
SYM and absent in QCD. The same two structures appear in the six point function at
strong coupling. We have one diagram with a triple vertex, the triple graviton vertex
diagram, and diagrams with a direct exchange of two gravitons in the t-channels.
This correspondence of diagrams is due to the occurrence of the new direct coupling
in N = 4 SYM.

In future work, several problems should be addressed: On the N = 4 SYM side at
weak coupling, the two gluon propagators in the leading diagrams of the four point
function are replaced by the BFKL Green’s function in the LLA. The reggeization
of the gluons modifies the power behavior of the energy s from 1 to 1 + ω0. On the
string theory side, the graviton is expected to reggeize similarly as the gluon. The
reggeization of the graviton would change the high energy behavior of the amplitude,
that is s2 at leading order, to s2−∆. ∆ symbolizes higher order corrections to the
graviton trajectory with ∆ = O(1/

√
λ). In order to determine these higher order

corrections, computations beyond the classical supergravity limit are necessary. First
corrections to the graviton trajectory have been deduced from the scattering of strings
on an AdS5 background in Ref. [33], see also Ref. [29].

Another line of interest is the analysis of integrable structures at strong coupling.
In the large Nc-limit, BKP states are known to be integrable. Unfortunately, the BKP
states are suppressed in the six point function of R-currents in the large Nc-limit at
weak coupling. Therefore, higher order correlation functions have to be investigated
in which the BKP states do not vanish in the large Nc-limit. The strong coupling
limit of these correlation functions can be studied in the weakly coupled string theory
as well.
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