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Abstract 
 

The acceleration of electron bunches with very small longitudinal and transverse phase space 
volume is one of the most actual challenges for the future International Linear Collider and high 
brightness X-Ray Free Electron Lasers.  The exact knowledge on the wake fields generated by 
the ultra-short electron bunches during its interaction with surrounding structures is a very 
important issue to prevent the beam quality degradation and to optimize the facility performance. 
The high accuracy time domain numerical calculations play the decisive role in correct 
evaluation of the wake fields in advanced accelerators. 
     The thesis is devoted to the development of a new longitudinally dispersion-free 3D hybrid 
numerical scheme in time domain for wake field calculation of ultra short bunches in structures 
with walls of finite conductivity.  The basic approaches used in the thesis to solve the problem 
are the following. For materials with high but finite conductivity the model of the plane wave 
reflection from a conducting half-space is used. It is shown that in the conductive half-space the 
field components perpendicular to the interface can be neglected. The electric tangential 
component on the surface contributes to the tangential magnetic field in the lossless area just 
before the boundary layer. For high conducting media, the task is reduced to 1D electromagnetic 
problem in metal and the so-called 1D conducting line model can be applied instead of a full 3D 
space description. Further, a TE/TM (“transverse electric - transverse magnetic”) splitting 
implicit numerical scheme along with 1D conducting line model is applied to develop a new 
longitudinally dispersion-free hybrid numerical scheme in the time domain.   

The stability of the new hybrid numerical scheme in vacuum, conductor and bound cell is 
studied. The convergence of the new scheme is analyzed by comparison with the well-known 
analytical solutions. The wakefield calculations for a number of structures are performed and a 
good agreement with known analytical and numerical results is obtained. The new hybrid 
scheme was applied to calculate the wake potentials for the various components of FLASH 
linear accelerator at DESY and the European XFEL project. 
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Zusammenfassung 
 
Die Beschleunigung von Elektronen-Paketen mit sehr kleinen Abmessungen im 

longitudinalen und transversalen Phasenraum ist eine der wichtigsten Herausforderungen für den 
zukünftigen internationalen Linearbeschleuniger (ILC) und für Freie-Elektronen-Röntgen-Laser 
mit sehr hoher Brillanz. Die genaue Kenntnis der begleitenden Felder, die von sehr kurzen 
Elektronen Paketen in Wechselwirkung mit den umgebenden Strukturen erzeugt werden, ist sehr 
wichtig um eine Verschlechterung der Strahlqualität zu verhindern und die Leistung der Anlage 
zu optimieren. Sehr genaue Berechnungen im Zeitbereich sind entscheidend um die begleitenden 
Felder in hochentwickelten Beschleuniger Strukturen richtig zu bestimmen. 

Diese Arbeit ist der Entwicklung eines neuen dreidimensionalen dispersionsfreien 
numerischen Hybridschemas im Zeitbereich gewidmet, um die begleitenden 
elektromagnetischen Felder zu berechnen, die entstehen wenn sehr kurze Ladungspaketen durch 
Strukturen mit endlich leitfähigen Wänden fliegen. Die wesentlichen Näherungen die hier 
benutzt werden sind die folgenden. Für Materialien mit hoher aber endlicher Leitfähigkeit wird 
das Modell der Reflexion an einem leitfähigen Halbraum verwendet. Es wird gezeigt daβ im 
leitfähigen Halbraum Feldkomponenten senkrecht zur Grenzfläche vernachlässigt werden 
können. Die elektrische Tangentialkomponente in der Oberfläche ergibt sich dabei als Reaktion 
auf das tangentiale magnetische Feld im verlustfreien Bereich knapp vor der Grenzschicht. Für 
sehr gut leitfähige Medien vereinfacht sich die Aufgabe in das eindimensionale 
elektromagnetische Problem in Metall, auf das sich das sogenannte verlustbehaftete 
Linienleitungsmodell anwenden läβt, statt einer vollständig dreidimensionalen Beschreibung. 
Zudem wird eine TE/TM (“transversal elektrisch - transversal magnetisch”) Aufspaltung eines 
impliziten, dispersionsfreien numerischen Verfahrens zusammen mit einem verlustbehafteten 
Linienleitungsmodell angewandt um ein neues dispersionsfreies numerisches Hybridschema im 
Zeitbereich zu entwickeln. 

Die Stabilität des neuen numerischen Hybridschemas wird untersucht in Vakuum, im 
leitfähigen Bereich und in der verbindenden Zelle. Die Konvergenz des neuen Schemas wird 
ermittelt und mit bekannten analytischen Lösungen verglichen. Die begleitenden 
elektromagnetischen Felder werden für eine Reihe von Strukturen berechnet und dabei gute 
Übereinstimmung mit bekannten analytischen und numerischen Ergebnissen erzielt. Das neue 
Hybridschema wurde verwendet um begleitende Felder in zahlreichen Komponenten von 
FLASH und vom europäischen Freie-Elektronen Laser Projekt zu charakterisieren. 
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Chapter 1.  Introduction 
 

The acceleration of electron bunches with very small longitudinal and transverse phase space 
volume is one of the most actual challenges in advanced linear accelerators for fundamental and 
applied research. The preservation of small phase space volume of accelerated electron bunches 
is one of the basic requirement to reach the projected luminosity in future International Linear 
Collider (ILC) [1] and to drive high brightness X-Ray Free Electron Lasers (XFEL) [2-6].  

The European X-Ray FEL project [3] is aiming to generate ultra-short pulses of spatially 
coherent photon beams with wavelengths down to 0.1 nm and the brilliance of about 1033 
ph/mm2/mrad2/0.1%BW. The process adopted to generate the X-ray pulses is Self-Amplified-
Spontaneous-Emission (SASE) [7-10].    

In SASE process, the high energy electron beam in undulator section interacts with the 
transverse electric field of radiation due to transverse velocity of electrons in undulator magnet 
and produces an electron energy modulation on the scale of radiation wavelength rλ . The 
electron energy modulation in turn modifies the electron trajectory in the undulator producing 
the microbunching of the electrons at the scale rλ . Electrons bunched within a wavelength emit 
radiation in phase, thus producing a larger intensity that leads to more energy modulation and 
more bunching, leading to exponential growth of the radiation until saturation is reached.  

In order the SASE process to occur the electron beam must match the transverse phase space 
occupied by a transversally coherent radiation, i.e. in terms of the electron beam natural 
emittance ε  (transverse phase space area) and radiation wavelength rλ , this condition reads 
as πλε 4/r≤ .  

Another important condition to electron beam parameters for SASE FEL is the limit to beam 
energy spread Eσ  to prevent the widening of the spontaneous radiation line and the reduction of 
the growth rate due to Landau damping. In SASE FEL theory this limit is given by the 
dimensionless FEL parameter ρ  and read as ρσ <<∈ E/ , where E  is the accelerated particle 
nominal energy.  The typical limit to relative energy spread for X-ray SASE FEL is of the order 
of 410E/ −

∈ <<σ .  In addition, in order for the FEL to operate in the saturation mode with 
reasonable undulator length a high electron peak current ( short bunches) is required.  

In the European XFEL project [3], the electron bunches with normalized projected emittance 
of 1.4 μm and bunch charge of 1nC are accelerated up to 17.5 GeV energy in superconducting 
linear accelerator. The X-rays are then generated in about 200 m long undulator section. The 
required peak current of 5kA is reached in two magnetic chicanes where the initially 2mm (rms) 
long bunch is compressed down to 25 μm at the entrance to main linac.  

In a real machine, as the beam propagates along the accelerator, it interacts with the 
surrounding structure and excites the electromagnetic fields that act back to the trailing particles 
of the bunch [11]. These fields, known as the wakefields, affect the beam performance as the 
excited fields in general have longitudinal and transverse components.  The effects of these wake 
fields, are evaluated in time domain by introducing the longitudinal and transverse wake 
potentials that represent the integrated Lorenz force in longitudinal and transverse directions 
acting on the trailing test particles.  The longitudinal wake potential produces an extra energy 
spread within the bunch, while the transverse wake potential lead to beam rms emittance growth.  

The beam propagating along the accelerator interacts with various types of the elements such 
as accelerating structures, bellows, transitions, collimators, couplers, small gap undulators etc, 
which in general have different geometries and electrodynamical properties. Therefore, the exact 
knowledge on the wake fields generated during these interactions is very important both from the 
beam physics point of view (preservation of beam small emittance and energy spread) and with 
regard to the new technical solutions for various components. 
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Summarizing the above considerations, the first physical motivation of the presented thesis is 
driven by achievement and preservation of the small phase space volume of the charge particles 
beams in advanced accelerators. 

 The thesis is devoted to one important topic of this problem - the exact calculation of the 
longitudinal and transverse wake fields excited by short electron bunches in various accelerator 
structure components with finite conductivity walls.  
 
1.1. Numerical Methods for Wake Field Calculation 
 

The computation of the wake potentials always played an important role in particle 
accelerator physics [11-20]. With the progress of the new generation of the accelerator facilities 
with extremely low beam emittance and energy spread the exact solutions for the wake potentials 
become the barest necessity, as the relative effects of their impact to beam parameters are 
tangible.  

The development of advanced accelerators is accompanied with the improvement and 
modification of the facility characteristics that require careful modeling and examination of the 
effects that impact the beam quality.  In advanced electron light sources the technical solutions 
for small gap undulators and wigglers, high vacuum performance, cures of resistive instabilities 
[21-23], prevention of the static charge [24], shielding of external radiation [25-26] imply the 
usage of various types of complicated vacuum chamber configurations having both geometrical 
and constructive peculiarities. These complications along with the stringent requirements to the 
beam quality recently drove rigorous numerical and analytical study of the longitudinal and 
transverse wake fields for various types of structures. On the other hand the exact analytical 
solutions for the wake fields are available for the structure with relatively simple geometry [27-
31].  

Thus the practical way of calculating and studying the electromagnetic fields in real 3- 
dimensional (3D) structures is the application of numerical methods. 

The numerical codes are an important tool for the wake field simulations [32-40], however 
they not always give appropriate results especially for the very short bunch length and the 
structures with walls of finite conductivity. The basic approach for the numerical calculations of 
the electromagnetic fields in three-dimensional structures is the discretization of the Maxwell 
equations in space and time domains. The correct numerical simulations of the wake fields 
require the longitudinal mesh step smaller than the bunch rms length. In addition, the phase and 
group velocity of the numerical waves differ from the physical one that lead to dispersive 
accumulative numerical errors. More complications arise for the structures with finite conductive 
walls, since to model the waves in conductor more dense geometrical meshes in comparison with 
free space are required. This leads to the considerable reduction of time step that increases the 
numerical dispersion error and corrupts the simulation.  

Various Maxwell grid equation (MGE) based numerical codes have been developed to solve 
the 2D and 3D wake field problems in frequency and time domains [40, 52, 53] but usually 
without resistive wall losses.  

To make the numerical simulations of beam dynamics in accelerators the particle-in-cell 
(PIC) method [35] is an effective approach. The electromagnetic fields in many PIC codes are 
computed using the finite-difference time domain (FDTD) method [36, 37]. As any numerical 
mesh approach the conventional FDTD scheme [38], used in MAFIA [39], TBCI [40] and other 
wake and PIC codes, suffers from numerical grid dispersion, i.e. the group velocity of the 
numerical waves is slower than the physical one. Hence, the high energy particles can travel in 
vacuum faster than their own radiation. This effect is commonly referred to as numerical 
Cherenkov radiation [41], which due to its accumulative character corrupts the simulation. 

Several numerical approaches [42-45] are proposed to reduce the accumulated dispersion 
error of numerical simulations for all angles and for given frequency range. These methods 
require the usage of larger spatial stencils and a special treatment of the material interfaces.  
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In the accelerator applications the domain of interest is very long in the longitudinal direction 
(well-defined direction of the beam motion) and relatively narrow in the transverse plane. In 
addition, the electromagnetic fields change very fast in the direction of bunch motion but they 
are relatively smooth in the transverse plane. Therefore the development of numerical algorithms 
with cancellation or reduction of the numerical dispersion in longitudinal direction is very 
important. 

It is known that the conventional FDTD method is dispersion free along grid diagonals and 
that this property can be used effectively in numerical simulations [46]. However, in this case the 
only solution is to take equal mesh steps in all three directions.  
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Table 1. Not exhaustive list of available numerical codes. 
 

Alternatively, a semi-implicit numerical scheme without dispersion in longitudinal direction 
with simpler conformal treatment of material interfaces and the usage of non-equidistant grids 
has been developed in [47-50]. 

Shown in Table 1 are the numerical codes developed during last 30 years. Also presented are 
the properties of the numerical schemes implemented in those codes, like numerical dispersion 
and convergence. The third column shows whether the code can model volume conductivity. 
From the numerical codes listed in Table 1 only MAFIA [39], CST Microwave Studio [51] and 
Gdfidl can model structures with walls of finite conductivity. In the last column the surface 
conductivity option is given in the mean of Impedance Boundary Condition modeling in Time 
Domain (IBC-TD). This option is important especially for high conductive materials like 
Aluminum (Al), Copper (Cu) and etc. However in those codes the Yee conventional FDTD 
scheme is implemented. Thus the algorithms suffer from numerical dispersion and are inefficient 
for ultra short bunches.  

To model ultra short bunches and to prevent the numerical dispersion in longitudinal 
direction, the dispersion-free numerical scheme is proposed in [52] that is implemented in code 
ECHO. The dispersion-free numerical scheme enables use of a moving mesh frame concept 
without loosing the accuracy of calculation. Another relatively new numerical code applicable 
for ultra short bunches and with a dispersion-free algorithm is the PBCI code [53].  Note that 
both codes are unable to model the finite conductive materials (Table 1). 

To calculate the wake field of ultra-short bunches in resistive structures, it is necessary to 
develop a new time-domain numerical scheme that would effectively match the resistive 
boundary conditions and would be dispersion-free in the longitudinal direction.   
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1.2 Overview and Main Results 
 

The thesis is devoted to the development of a new 3D dispersion-free hybrid numerical 
scheme in time domain for wake field calculation of ultra short bunches in structures with walls 
of finite conductivity.  The main issue in numerical simulation of 3D electrodynamic problems 
with conductive boundaries is stipulated by the wavelength contraction in conductor with respect 
to free space [60,76]. For short bunches, this leads to very dense 3D mesh in conductor region 
with respect to free space. 

The basic approaches used in the thesis to solve the problem are the following. For finite but 
high conductivity material it is shown that the incident waves are transmitted perpendicular to 
the boundary surface and only the tangential components of electric and magnetic fields survive 
in the conducting media. Thus for high conducting media, the task is reduced to 1D 
electromagnetic problem in metal and the so-called 1D conducting line model can be applied 
instead of a full 3D space description. Further, TE/TM (“transverse electric - transverse 
magnetic”) splitting implicit dispersion-free numerical scheme along with 1D conducting line 
model is applied to develop a new dispersion-free hybrid numerical scheme in time domain.   

The stability of the new hybrid numerical scheme in vacuum, conductor and bound cell is 
studied. The stability conditions have been tested and confirmed by a number of numerical 
experiments. The convergence of the new scheme is analyzed by comparison with the well-
known analytical solutions. The wakefield calculations for a number of structures are performed 
and a good agreement with known analytical and numerical results is obtained.  

The thesis consists of introduction, three chapters, summary and bibliography. 
 

Chapter 2 of the thesis is devoted to the time domain numerical modeling of one-
dimensional electromagnetic problems with Impedance Boundary Condition (IBC). In this 
chapter an explicit and implicit numerical schemes are introduced for electromagnetic field 
calculations in the metal and in the vacuum regions. The stability analyses of those two schemes 
for both regions are performed. For IBC modeling in time domain the matching of the numerical 
schemes (explicit and implicit) in vacuum and in metal is achieved. The stability analyses of the 
so-called hybrid (matched) numerical schemes are performed. Stability analysis has shown the 
implicit hybrid scheme to be unconditionally stable. For the conductor part the stable space step 
strongly depends on both the time step and vacuum space step. It is shown that the hybrid 
numerical scheme has a second-order convergence.   
 

In Chapter 3 the overview of the TE/TM implicit 3D numerical scheme [33, 52, 67] is given. 
This time-domain numerical scheme is dispersion-free in longitudinal direction and valid for 
structures with perfect conducting walls. It is especially efficient for the wakefield calculations 
excited by ultra-short relativistic bunches.  The analysis shows that the TE/TM numerical 
scheme is much more accurate in long-time simulations than the conventional FDTD approach. 
This scheme has been applied for development of a new hybrid numerical scheme that includes 
conductive boundaries.  
 

The Chapter 4 is devoted to a new hybrid numerical scheme for calculating the wakefields 
excited by ultra-short bunches in structures with walls of finite high conductivity. Based on the 
TE/TM splitting numerical scheme described in Chapter 3 a new longitudinally dispersion-free 
algorithm for resistive structures is developed. The time domain impedance boundary condition 
in each boundary cell is approximated by one-dimensional EM model described in Chapter 2.  
The realization of this new hybrid 3D implicit numerical scheme is done for rotationally 
symmetric geometries and staircase approximation of the boundary surface. A good agreement of 
the numerical simulations with the well-known analytical results and CST Particle Studio 
simulations are obtained.  The new hybrid scheme was applied to calculate the wake potentials 
for the various components of FLASH linear accelerator at DESY and the European XFEL 
project.  



 5

Chapter 2.   
 

Time Domain Numerical Modeling of 1D 
Electromagnetic Problems with Impedance Boundary 

Conditions 
 

In this Chapter the time domain numerical model of one-dimensional electromagnetic 
problems with Impedance Boundary Conditions (IBC) is derived. The explicit and implicit 
numerical schemes are introduced for electromagnetic field calculations in the metal and vacuum 
regions. The stability analyses of those two schemes for both regions are performed. For IBC 
modeling in time domain the matching of the numerical schemes (explicit and implicit) in 
vacuum and in metal is achieved. The stability analyses of the so-called hybrid (matched) 
numerical schemes (explicit and implicit) are performed.  

Consider the plane electromagnetic wave with electric E
r

 and magnetic H
r

components 
incident normal to the vacuum-conductor boundary surface (Fig.1).   
 

vacuum conductor
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H
r

E
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r
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r
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x

 
 

Figure 1.  Plane wave scattering on metallic surface. 
 

In Cartesian coordinate system and normalized time, variable tc≡τ , the 1D integral 
Maxwell equations are given as  
 

EκJ

sd
τ
HZldE

sd
τ
E

Z
1JldH

S
0

S 0

rr

r
r

rr

r
r

rrr

=

∂
∂

−=

⎥
⎦

⎤
⎢
⎣

⎡
∂
∂

+=

∫ ∫∫

∫ ∫∫

                         (2.1) 

 
where Ω376.73)(cεcμZ 1

000 === −  is the impedance of free space, κ is the conductivity, J
r

 is 
the bias current, c  is the velocity of light, x  is the longitudinal coordinate.  

For discretisation of this 1D problem we distinguish two regions: vacuum and conductor. We 
assume that the time step τΔ  is constant and is the same for both regions, while the discrete 
mesh spacing xΔ  is also constant but different for each region. As shown in later analysis the 
different space steps in vacuum and conductor are required to satisfy the stability conditions of 
numerical schemes. To develop the numerical schemes, the continuous space-time dependence 
of the electromagnetic field )τ,x}(H,E{)τ,x(u ≡  will hereinafter be substituted by the relevant 
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quantity ),x(u i nτ  in discrete space-time coordinates xΔixi ⋅= , Δτnτn ⋅=  with n,i  integer 
numbers. The relevant discretized solution at the mesh point i  and time level n  will be 
represented as n

iu . Note that in this definition n  is a mere superscript, rather than an exponent. 
In all regions the electric and magnetic fields on discrete space are shifted by half a space step 
from each other. To be shown in this Chapter is that if the discrete electric and magnetic fields 
are defined at the same time level the resulting numerical scheme is implicit, while for an 
explicit scheme the time level of the magnetic field is shifted by a half-time step from the electric 
one.   
 
 
2.1 1D Numerical Scheme in Vacuum  
  

The integral Maxwell’s equations (2.1) for the 1D continuous electromagnetic fields problem 
in vacuum region  ( 0κ = ) are simplified to  
 

  

∫ ∫∫

∫ ∫∫

∂
∂

−=

∂
∂

=

S
0

S0

sd
τ
HZldE

sd
τ
E

Z
1ldH

r
r

rr

r
r

rr

  (2.2) 

 
To describe the electromagnetic fields in finite time and space, the equations (2.2) should be 

added to the initial (time) and boundary (space) conditions.   We suppose that boundaries of the 
vacuum region of interest satisfy the perfect electric (PEC) boundary conditions, i.e. the 
tangential component of the electric field is zero on boundaries KK ′ ( Lx −= ) and OO ′ ( 0x = ), 
as shown in Fig.2.  To be assumed as the initial conditions for the problem are the results of 
analytical or numerical solutions.  
 
2.1.1 Space Discretization 
 

For discretization of electromagnetic field in one-dimensional space we define normal and 
dual uniform grids in the space for electric and magnetic fields respectively. The distance 
between the two closest nodes in both grids is the same and is termed space step 0xΔ . The dual 
grid is shifted by half a space step with regard to the normal grid. The normal grid is chosen in 
the way that it cover the boundary points as well. By introducing integer variable i the 
coordinates of the nodes of the grids can be expressed via space step as 0xΔi ⋅  and 

0xΔ0.5)(i ⋅+   for normal and dual grids respectively. Now we define the electric field ie  on the 
nodes of normal grid and magnetic one 2/1ih +  on nodes of dual grid. The scheme of the 
discretization is shown in Figure 2. Here the index i for the electric field and index 1/2)(i + for 
the magnetic fields represent the space points where the fields are defined. 
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Figure 2.  A schematic view of the electromagnetic field in the discrete space of a vacuum 
region. 

 
According to Figure 2 the space discretization of the left and right parts of the second 

equation in (2.2) will read as 
 

  
dxΔh

τ
ZsdH

τ
Z

)de(eldE

0
2
1i00

i1i

⋅
∂
∂

≈
∂
∂

−

−≈

+

+

∫∫

∫
rr

rr

           with 0iM <<−   (2.3) 

 
where 0xΔ  is the discrete space step in vacuum and i , M  are integers. The integer M  is 
defined as the number of discrete points of an electric field in space, i.e. the number of normal 
grid nodes. Thus, the number of discrete points for a magnetic field (the number of dual grid 
nodes) will be 1M − (Fig.2).  Equaling both equations in (2.3) we get 
 

  i1i0
2
1i0 eexΔh

τ
Z −=

∂
∂

− +
+

 (2.4) 

 
This equation could also be easily obtained from the 1D differential Maxwell equations (2.1) 

using the central difference method for the approximation of the space derivative of 
electromagnetic fields.   
 

 
Figure 3. Estimates for the derivative of f(x) at point P using central differences. 

 
In the central differences method the derivative of any continuous function )x(f  at point P is 

approximated as (Fig.3) 
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  )xo(Δ
x2Δ

Δx)f(xΔx)f(x
dx

)x(df 2

xx 0

+
−−+

≈
=

 (2.5) 

 
The order of approximation can easily be proven by using Taylor expansion [54]. Since this 

approximation has the second-order accuracy with respect to xΔ , we expect that the final 
numerical scheme will have the same order of accuracy [55, 56] when the geometric mesh 
coincides with boundary interface. Otherwise an additional numerical error added from 
approximation of the boundary interface that can compromise the accuracy of calculation.  

Now we discretize the first equation in formula (2.2).  
 

  ∫ ∫∫ ∂
∂

=
S0

sd
τ
E

Z
1ldH

r
r

rr
 (2.6) 

 

ie
2
1i

h
+

2
1i

h
−d

0xΔ

0=κ

ie
2
1i

h
+

2
1i

h
−d

0xΔ

0=κ

 
Figure 4. The geometric view of the i th cell in vacuum. 

 
According to the Figure 4, the left- and right-hand sides of this Equation will read as  
 

  
dxΔe

τZ
1sdE

τZ
1

)dh(hldH

0i
00

2
1i

2
1i

⋅
∂
∂

≈
∂
∂

−≈

∫∫

∫ −+

rr

rr

   with 0iM <<−  (2.7) 

 
Substituting (2.7) to (2.6) we get  
 

  ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−=

∂
∂

−+
2
1i

2
1i0

i
0

hh
xΔ
1e

Z
1

τ
 (2.8) 

 
Finally the time continuous and space discretized, 1D Maxwell’s equations (2.2) will read as 
  

  

0

2
1i

2
1i

i
0

0

i1i

02
1i

xΔ

hh

e
τZ

1

xΔ
ee

Z
1h

τ

−+

+

+

−

=
∂
∂

−
=

∂
∂

 (2.9) 
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with PEC boundary  conditions 0ee M0 ≡= − . Introducing the vectors for electric e)  and 
magnetic h

)
 fields  

 

  
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=

−

−

M

0

0 e

e

Z
1e M

) ,  
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

=

++ 10.5)(M-

0.5-

h

h
h M
)

 (2.10) 

 
the equations (2.9) can be rewritten in a simple matrix form 
 

  
hPe

τ

ePh
τ

*
vacuum

vacuum

))

))

=
∂
∂

=
∂
∂

 (2.11) 

 
In Equation (2.11) vacuumP , *

vacuumP  are the matrixes of ]M)1M[( ×− , )]1M(M[ −×  
dimensions respectively matching the discrete operators of derivative by space for electric and 
magnetic fields  

  
⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

−

−
−

=

1100

0110
0011

xΔ
1P

0
vacuum

L

MOOMM

L

L

, 

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

−

−
−

−

=

1000
11

00
0110
0011
000

xΔ
1P

0

*
vacuum

L

MMM

MOO

L

L

L1

  (2.12) 

 
As follows from  (2.12), the 1D derivative operators on primary vacuumP  and dual *

vacuumP  

grids have the property of the generalized symmetry, i.e. T
vacuum

*
vacuum PP = . 

 
2.1.2 Time Discretization 
 

In this section we introduce the discretization of continuous time variable. For the time 
derivative we will use the central difference approximation (2.5) with the discrete time step τΔ . 
We define the integer variable n  for the time level description that will indicate the real time 

τΔnτ n ⋅= .  
We will discuss two types of EM field time discretization that lead to implicit and explicit 

numerical schemes respectively.  
 
a. Implicit 1D numerical scheme   
 

One possibility for time discretization is to define the electric e)  and magnetic h
)

 fields at the 
same time level n. In this case we need to apply the linear interpolation describing EM fields at 
the time level 0.5n +  as 

  
2

hhh
n1n

2
1

n
))

) +
=

++
   

2
eee

n1n
2
1n ))

) +
=

++
 (2.13) 
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Using central difference approximation for time derivatives the discretized form of EM field 
equations (2.9) will read as 
 

 
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡ +
−

+
+=

+
+

+
+

+

+

+ 2
ee

2
ee

Z
1

xΔ
τΔ

hh
n
i

1n
i

n
1i

1n
1i

00

n

2
1i

1n

2
1i

 

  

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡ ++

+=
−

+

−+

+

+
+

2

hh

-
2

hh

Z
xΔ
τΔ

ee

n

2
1i

1n

2
1i

n

2
1i

1n

2
1i

0
0

n
i

1n
i  (2.14) 

or in matrix form 
 

  

2
hhPτΔee

2
eePτΔhh

n1n
*
vacuum

n1n

n1n

vacuum
n1n

))
))

))))

+
+=

+
+=

+
+

+
+

 (2.15) 

 
The equations (2.15) may be written as follows: 
 

  [ ]
1n

vacuum
#1n

#*
vacuum

n1n
0

n
vacuum

n#

eP
2
τΔ

hh

hPτΔeeW

eP
2
τΔ

hh

++

+

+=

=−

+=

)))

)))

)))

 (2.16) 

 
with three-diagonal matrix 0W  given as  
 

  vacuum
*
vacuum

2

0 PP
4
τΔIW −=  (2.17) 

 
where I is the unit matrix. 

As seen in this case the numerical scheme is implicit.  
 
b. Explicit 1D Numerical Scheme   
 

Another option for time discretization is to define the electric e)  and magnetic h
)

 fields at 
different time levels n and 0.5n + respectively. Using central difference approximation for time 
derivatives the discretized form of EM field equations (2.9) will read as 
 

  

[ ]

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−+=

−+=

+

−

+

+

+

+

−

+

+

+

2
1n

2
1i

2
1n

2
1i

0
0

n
i

1n
i

n
i

n
1i

00

2
1n

2
1i

2
1n

2
1i

hhZ
xΔ
τΔ

ee

ee
Z
1

xΔ
τΔ

hh

 (2.18) 

 
or in matrix form  
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2
1n*

vacuum
n1n

n
vacuum

2
1n

2
1n

hPτΔee

ePτΔhh

++

−+

+=

+=

)))

)))

 (2.19) 

 
As seen from the field update equations (2.18) and (2.19) the numerical scheme is explicit. 
The important issue in numerical modeling of the Maxwell equations is the stability analyses 

of the numerical schemes, to be discussed in the next section. 
 
2.1.3 Stability of the Scheme 
 

In this chapter we will discuss the stability and convergence of the above-introduced 
schemes. First we introduce the general theory of stability analyses [54, 57-59].  

Consider a system satisfying UL
td
Ud r
r

= , where L is a linear differential operator and 

)t,r(U
rr

is a state vector known at 0t = , i.e. 0U)0,r(U
rrr

= . The discretization of such a system 
in time will bring us to the following equation in difference form 
 
  n1n U)Δtx,G(ΔU

))
=+  (2.20) 

 
where G  is called the amplification matrix of the difference scheme, U

)
is a discretized vector in 

the space. The time level is given as a superscript. 
In general when the eigenvectors of amplification matrix G  make the basis, the solution can 

be expressed in terms of eigenvector expansion. In particular, such a basis always exists when 
the matrix G  is self-conjugated or similar to the symmetric matrix [55, 56]. In this chapter we 
assume that the eigenvectors )(νψ) of the amplification matrix G  make up a complete basis for 

the linear problem (2.20).  The initial state vector expansion over the eigenvectors )(νψ)  then 
will read as  
 
  ∑=

ν

)(ν0
ν

0 ψÛU ))
 (2.21) 

where 0Ûν  are the expansion amplitudes at time step zero.  

From equations (2.20) and (2.21) the state vector nU
)

at time level n  can be presented as  
 
  ∑==

ν

)(ν0
ν

n0nn ψU)G(U)G(U ))) ˆ  (2.22) 

The eigenvectors )(νψ) of amplification matrix G  satisfy the following equation 
 
   )(ν

ν
)(ν ψgψG ))

=  (2.23) 
 

where νg  are the eigenvalues of amplification matrix G . 
Using the state vector expansion (2.22) we get 
 

  ( )∑=
ν

)(νn
ν

0
ν

n ψgUU )) ˆ  (2.24) 
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As seen from the presentation (2.24), the discrete model nU
)

 is stable when the following 
condition to eigenvalues are fulfilled 
 
  1g ≤ν  (2.25) 
 

We will apply the above stability theory to the analysis of the numerical algorithms for plane 
wave in vacuum described in the previous section. The results will be then valid for modeling the 
source-free 1D electromagnetic problems, since any EM fields in vacuum can be expressed via 
the superposition of plane waves. 
 
a. Stability of 1D Implicit Scheme in Free Space 
 

The implicit numerical scheme in original form (2.14) read as 
 

  

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡ ++

+=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡ +
−

+
+=

−

+

−+

+

+
+

+
+

+
+

+

+

+

2

hh

-
2

hh

Z
xΔ
τΔ

ee

2
ee

2
ee

Z
1

xΔ
τΔ

hh

n

2
1i

1n

2
1i

n

2
1i

1n

2
1i

0
0

n
i

1n
i

n
i

1n
i

n
1i

1n
1i

00

n

2
1i

1n

2
1i

 (2.26) 

 
For the plane wave we have the following relations between the two closest discrete points in 
space  

  
0

0

xΔkjn
i

n
1i

xΔkjn

2
1i

n

2
1i

eee

ehh

=

=

+

−+   (2.27) 

 
where k  is the wave number.  
Using these relations the numerical scheme (2.26) is modified to 
 

  
[ ]

[ ]
2

eee1α
Z
1hh

2

hh
1eαZee

n
i

1n
ixΔkj

0

n

2
1i

1n

2
1i

n

2
1i

1n

2
1i

xΔkj
0

n
i

1n
i

0

0

+
−=−

+
−=−

+
−

−

+

−

−

+

−
+

 (2.28) 

 
where 0xΔΔτα = . 
The updated equations (2.28) can be presented as 
 

  

( )

( ) n

2
1i

xΔkj

1
0

n
i

1

21n
i

n
i

xΔkj

10

n

2
1i1

21n

2
1i

h1e
F
αZe

F
F

e

ee1
F
α

Z
1h

F
F

h

0

0

−

+

−

−

+

−

−+=

−+=

 with 
⎟
⎠

⎞
⎜
⎝

⎛
=

±=

2
xΔ

ksinα

1F

022

1,2

ϑ

ϑ
 (2.29) 

 
To get (2.29) the following trigonometric relation is used  
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  ( )( ) ⎟
⎠
⎞

⎜
⎝
⎛−=−− −

2
xΔksin41ee1 02xΔkjxΔkj 00  (2.30) 

Following (2.20) the amplification matrix G  for vector ⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
=

n
0.5-i

n
in

h

e
U
)

 will be given by 

 

  
( )

( ) ⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

−

−
=

−

1

2xΔkj

10

xΔkj

1
0

1

2

F
Fe1

F
α

Z
1

1e
F
αZ

F
F

G
0

0

 (2.31) 

 
The eigenvalues νg of amplification matrix G  are given by ( ) 0IgGdet =−  (I - unit matrix) 

that read as       

  ( )
( )

( )
0

F
4g

F
F

g
F
F

e1
F
α

1e
F
αg

F
F

IgGdet
2

1

2

1

2

1

2xΔkj

1

xΔkj

11

2

0

0

=+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

−−

−−
=−

−

ϑ  (2.32) 

 
The  eigenvalues 2,1g  of amplification matrix G  are then given by  
 

  
ϑ

ϑϑ
+
±−

=
1

2j1
g1,2  (2.33) 

 
As is seen the eigenvalues are complex with the modules equal to unity.  
 

  
( )

( )
1

1
41

ggg
2

2
*2 =

+

+−
==

ϑ
ϑϑ

 (2.34) 

 
According to the stability criteria (2.25) it follows that the 1D implicit scheme is 

unconditionally stable, i.e. in the numerical scheme the time and space steps can be chosen 
independently. 
 
b. Stability of Explicit Scheme in Free Space 
 

For the explicit scheme (2.18) using the relations (2.27) for plane wave we get 
 

  

[ ]

[ ] 2
1n

2
1i

xΔkj
0

n
i

1n
i

n
i

xΔkj

0

2
1n

2
1i

2
1n

2
1i

h1eαZee

ee1α
Z
1hh

0

0

+

−

+

−−

−

+

−

−+=

−+=

 (2.35) 

 

Introducing the vector ⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
=

−
−

0.5n
0.5i

n
in

h

e
U
)

 the amplification matrix G  will read as  
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( )

( ) ⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

−

−⎟
⎠

⎞
⎜
⎝

⎛
−

=
− 1e1α

Z
1

1eαZ
2
xΔ

ksinα41
G

0

0

xΔkj

0

xΔkj
0

022

 (2.36) 

 
The eigenvalues 2,1g  of the amplification matrix G  for explicit scheme will then be derived 
as  

  

  1)(221g1,2 −±−= ϑϑϑ    with   

0

022

xΔ
τΔ

α

2
xΔ

ksinα

≡

⎟
⎠

⎞
⎜
⎝

⎛
≡ϑ

 (2.37) 

 
For 1<ϑ  the eigenvalues 2,1g are complex and the stability condition (2.25) is fulfilled 

since 1g = . In the case of real eigenvalues ( 1≥ϑ ), the stability condition is satisfied for 1=ϑ . 
Summarizing the cases of real and complex eigenvalues, the stability condition for explicit 
scheme is read as  
  1≤ϑ  (2.38) 

 
In terms of space and time steps we get the following stability condition 
 

  1
2
xΔ

ksin
xΔ
τΔ 02

2

0

≤⎟
⎠
⎞

⎜
⎝
⎛

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
 (2.39) 

 
Since the sinus function for real arguments is always smaller or equal to one the final stability 
condition for explicit scheme is read as 
 
  0xΔΔτ ≤  (2.40) 
 
As seen from (2.37), the stability condition for explicit scheme also implies the complex 
eigenvalues for amplification matrix G . 
 
2.1.4 Numerical Dispersion Analyses 
 

The important issues in numerical modeling are the numerical scheme accuracy studies [16, 
19, 34]. In this section the dispersion properties for the implicit and explicit numerical schemes 
in vacuum will be discussed. For the plan waves in vacuum the discrete relations (2.27) in space 
should be added with the following relations for closest discrete time points    
 

  
τ

τ

ΔΩjn
i

1n
i

ΔΩjn

2
1i

1n

2
1i

eee

ehh

=

=

+

+

+

+  (2.41) 

 
where in our notations Ω  is normalized frequency ( ω/cΩ = , ω  is frequency, c  is velocity of 
light). Note, that the dispersion relation of the continuous plane wave in vacuum is given by 

kΩ = , i.e. the phase velocity in vacuum is equal to velocity of light [15, 60]. 
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a. Numerical Dispersion of the Implicit Scheme 
 
Using the relations (2.41) the updated equations (2.28) will read as  
 

  

[ ] [ ][ ]

[ ] [ ][ ]
2

e
α1ee1h1eZ

h1e1e
2
αZ

e1e

n
iΔτΩjxΔkjn

2
1i

ΔτΩj
0

n

2
1

i

ΔτΩjxΔkj0n
i

ΔτΩj

0

0

+−=−

+−=−

−

−

−

 with 0xΔΔτα =  (2.42) 

 
Using the trigonometric relations 
 

  

( ) ( ) )x(sin4e11e

)xcos(e21e

)xsin(ej21e

2x2jx2j

xjx2j
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 (2.43) 

 
we get the following dispersion equation: 
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From this dispersion equation we find the numerical phase phv  and group gv  velocities 

(normalized to speed of light) of the electromagnetic wave  
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 (2.45) 

 
As seen from the dispersion relation, the wave number k and normalized frequency Ω  are 

real for any time and space steps, i.e. the scheme is unconditionally stable in free space. On the 
other hand, as follows from (2.44) and (2.45), the implicit 1D scheme for any space 0xΔ  and 
time Δτ  steps has the numerical dispersion, i.e. the phase and the group velocities differs from 
the velocity of light kΩ ≠ .  

 
b. Numerical Dispersion of the Explicit Scheme 
 

For the explicit numerical scheme (2.18) the dispersion equation can be derived with analogy 
to implicit one [54] 
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As seen in this case, the wave number k and Ω  are real only when 0xΔΔτ ≤  and the 
stability condition is satisfied. From dispersion equation (2.46) it follows that for the equal time 
and space steps the numerical scheme is non-dispersive, i.e. the numerical phase velocity is equal 
to velocity of light kΩ = . Thus the dispersion free condition for explicit scheme is 0xΔΔτ = , 
which is in agreement with the stability condition (2.40). From dispersion equation (2.46) the 
expressions for the EM wave numerical phase and group velocities normalized to speed of light 
read as  
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⎠
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 (2.47) 

 
Thus, in dispersion free scheme the numerical normalized phase and group velocities are 

equal to one and coincides with the continuous wave phase and group velocities, i.e. in vacuum 
are equal to the speed of light. Figure 5 illustrates the normalized numerical phase and group 
velocities versus variable 0xΔk0.5  according to formulas (2.45) and (2.47). In this example the 
discrete time step is taken to be half of the space step 0xΔ0.5τΔ = . 
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c
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Figure 5. Numerical phase and group velocities of the implicit (blue dashed) and the explicit 

(green dashed) schemes versus 0xΔk0.5 . The physical velocities are given by solid line 
(orange). 

 
As we see from the figure for given wave number k , the numerical dispersion of the 

schemes (explicit and implicit) are suppressed when the following condition is fulfilled 
 

  
4
1

2
xΔ

k 0 ≤  (2.48) 

 
 Thus, in the numerical modeling of 1D multi-wave problem, the numerical dispersion error 

will be less than 5% for the discrete space step 1
max0 )k2(xΔ −≤ . 
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2.2 1D Numerical Scheme in Conductor 
 

In this section we introduce the continuous electromagnetic problem in homogeneous 
metallic media with finite conductivity κ . The 1D integral Maxwell’s equations (2.1) will read 
as  
 

  

∫ ∫∫

∫ ∫∫

∂
∂

−=

⎥
⎦

⎤
⎢
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sd
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Z
1EκldH

r
r

rr

r
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rrr

 (2.48) 

 
With proper boundary conditions and initial values of the electromagnetic fields the problem 

becomes closed. To describe the numerical scheme for this problem, we shall start with a perfect 
electric (PEC) boundary condition, i.e. the electric field being zero on boundaries that 
corresponds to the space points 0x = and cLx = , respectively (fig.6). 
 
2.2.1 Space discretization 
 

In analogy with the plane wave in vacuum, for discretization of electromagnetic field in one-
dimensional space, we define the normal and dual uniform grids in space for electric and 
magnetic fields respectively with the space step xΔ . The dual grid is shifted by a half-space step 
relative to the normal grid. The normal grid is chosen in the way that it cover the boundary 
points. Similar to the vacuum case (section 2.1), in conductor region the same notations for field 
description in the discrete space are used. The discretization is graphically shown in Figure 6. As 
seen from the figure, all notations for field description in the discrete space are kept except for 
the number of discrete points M that is different in this case being replaced by integer number N . 
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Figure 6. Electromagnetic field schematic view in discrete space of conductor region. 

 
Now, according to figure 6, the discretization of the second equation in formula (2.48) will 

read as 

  
dxΔh
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 with Ni0 <<  (2.49) 

 
Equaling both equations we get 
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τ
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 (2.50) 
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Figure 7. The geometric view of the i th cell in conductor. 
 

According to figure 6, the space discretization of right and left sides of the first equation in 
formula (2.48) will read as 
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 with Ni0 <<  (2.51) 

 
The space discretized first equation in (2.48) is then given by  
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Finally the space discretized and time continuous 1D Maxwells equation for conductive 

media will reads as 
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with PEC boundary  conditions 0ee N0 ≡=  at any time value the problem is closed. 

Introducing the vectors of electric e)  and magnetic h
)

 fields in discrete space 
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we may rewrite the update equations (2.53) in matrix form as 
 

  
hPeκ~e
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ePh
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with 0Zκκ~ =  (2.55) 
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Here the discrete space derivative operators P , *P have sizes ]N1)[(N ×−  and 1)](NN[ −×  
respectively and are given as  
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As for the vacuum case, here also the property of generalized symmetry for the discrete 

derivative operators P and *P is preserved ( T* PP = ). 
 
2.2.2 Time Discretization 
 

In this section we will introduce the time discretization of the above numerical scheme given 
in matrix form (2.55). Similar to the vacuum scheme in conductor, we will use the upper 
index n  for discrete time level description. Let us discretize the second equation of formula 
(2.55) 
 

  hPeκ~e
τ

* ))) =+
∂
∂  (2.57) 

 
Assuming that the difference of magnetic fields between two space closest points is constant 

( consthP* =
)

) the differential equation (2.57) over time variable can be solved analytically. The 
general solution is just the sum of homogeneous and partial solutions and reads as 
 
  BeA)(τe τκ~ += −)  (2.58) 

 
where A and B are unknown constants.  
The first part of this equation is relevant to homogeneous solution and second – to partial 
solution. Substituting (2.58) into (2.57), the constant B is equal to  
 

  hP
κ
1B * )
~=  (2.59) 

The constant A can be found from the field initial value at time 0=τ . 
 
  B0)(τeA −==

)
 (2.60) 

 
Finally, the solution of differential equation (2.57) will read as 
 

( ) hPe1
κ
1e0)(τe)(τe *τκτκ ))) ~~
~

−− −+==  (2.61) 

 
Assuming that the electric field is known at time step n, the equation (2.61) gives the electric 

field at next time step 1n +  
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  ( ) 2
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We assume that the discrete derivative of magnetic field remains constant within the time 

τΔ . Using central difference approximations for time derivative in the first equation of (2.55) 
we get 
 

  
n

2
1n

2
1n

eP
τΔ
hh )
))

=
−

−+

 (2.63) 

 
Thus, the equations (2.62) and (2.63) describe the numerical scheme for EM fields time 

evolution in conductor  
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with constant coefficients 
 

  ( )a1
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 (2.65) 

 
It is seen that by defining the electric and magnetic fields on discrete time axis at time levels 

n  and 0.5n +  respectively the field update equations (2.64) are explicit. Thus, the relevant 1D 
numerical scheme (2.64) is termed explicit and in the original form reads as 
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 If the electric and magnetic fields are defined on discrete time axis at the same time level, 

the update equations (2.64) will read as 
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where the linear interpolation is used to define the fields at time level 0.5n + . After some 
evaluations we may rewrite the equations (2.67) in the following matrix form: 
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with three diagonal matrix 
 

  PPb
4
τΔ

IW *
c −=  (2.69) 

 
where I  is the unit diagonal matrix. As we see, the updates of EM fields are done implicitly and 
the relevant numerical scheme (2.69) is termed implicit. In the original form the implicit scheme 
will read as 
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In the next section the stability of explicit (2.66) and implicit (2.70) 1D numerical schemes 

for conductive media is studied. 
 
2.2.3 Stability Study 
 

Similar to the numerical schemes in vacuum, we consider the stability of the numerical 
schemes in conductor by Fourier analyses. The relations (2.27) for the plane wave between two 
closest discrete points in space are valid for conductor but with the space step xΔ  
 

   
xΔkj

i1i

xΔkj

2
1i

2
1i

eee

ehh

=

=

+

−+  (2.71) 

 
Note that we have omitted the time level indexes, since the relations are not dependent on 

time. 
We will perform the stability studies for the implicit and explicit numerical schemes using 

stability theory as described in section 2.1.3. 
 
a. Stability of the Implicit Scheme 
 

Using the relations (2.71), the implicit numerical scheme (2.70) in conductor will read as  
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where  
 

  xΔ
Δτα = ,   xΔ

bb =′  (2.73) 

 
Using the trigonometric relation (2.30), the update equations (2.72) will read as 
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According to equation (2.20) for vector ⎟
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The eigenvalues 2,1g  of amplification matrix G can be determined by setting to zero the 

determinant of the matrix ( )gIG −   
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that will read as  
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Simplification gives 
 
  { } ( ){ } ( ) 01a2g)(1-11ag)(1-1 2 =+++−−++− ϑϑϑϑϑ  (2.78) 
 
And for eigenvalues 2,1g we get 
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For complex eigenvalues 
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≥ϑ , and taking into account that 1a0 ≤≤ and 0≥ϑ  the 

modules satisfy the relation  
 

  1
1
aggg 21

2 ≤
+
+

=⋅=
ϑ
ϑ  (2.80) 

 
and the stability condition is satisfied.  

For real eigenvalues we have
)a1(8

)a1( 2

+
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≤ϑ . Taking into account that the max of squared root 

is achieved for 0=ϑ  it is easy to show that the stability condition 1g 2,1 ≤  is satisfied. Thus we 
get that the implicit numerical scheme in conductor is unconditionally stable. 
 
b. Stability of the Explicit Scheme 
 

Further we shall analyze the stability of the explicit numerical scheme (2.66). Again using the 
property (2.71) for plane waves, the field updated equations will read as  
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with xΔΔτα = . 
Again using trigonometric relations (2.30), the equations (2.81) will be modified to 
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The eigenvalues 2,1g  of the amplification matrix G  are given by  
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that reads as  
  ( ) 0aga1g 2 =+−+− ϑ  (2.85) 
 
And the solution for eigenvalues 2,1g  is  
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For the complex eigenvalues we get 
 
  1ag 2 ≤=  (2.87) 
 
That is always fulfilled since 1a0 ≤≤ .   

Denoting ϑ−+≡ a1x , for the real eigenvalues ( ax2 4> ) the stability conditions 1g 2,1 ≤  
are converted to the following set of inequalities:  
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The initial three inequalities are satisfied for any real eigenvalues ( a2x,a2x −≤≥ ) 

as 0≥ϑ . The last inequality is satisfied for a2≥x . 

For a2−≤x  the last inequality implies the condition a)+−≤ 1(x . In terms of ϑa, , for 

( )2
a1−≥ϑ  the stability condition is then read as    

 

  2
a1

≤
+
ϑ  (2.89) 

 
Substituting the variable ϑ  from (2.82) into (2.89) we get 
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Using the following trigonometric relation 
 

  ⎟
⎠

⎞
⎜
⎝

⎛=
+
−

2
τΔκ~

tanh
a1
a1  (2.91) 

 
we may rewrite (2.90) as follows: 
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  1
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Since 1
2
xΔ

ksin 2 ≤⎟
⎠

⎞
⎜
⎝

⎛ , this inequality is modified to  

  1
2
τΔκ~tanh

xΔκ~
Δτ2

2 ≤⎟
⎠
⎞

⎜
⎝
⎛  (2.94) 

 
Finally the stability condition for the conductor region will read 
 

  ⎟
⎠

⎞
⎜
⎝

⎛≥
2
τΔκ~

tanh
κ~
Δτ2

xΔ 2  (2.95) 

 
Taking into account that the hyperbolic tangents for real and positive arguments are always 

smaller or equal to one, the stability condition (2.95) could be simplified to  
 

  
κ~
Δτ2

xΔ ≥  (2.96) 

 
The stability conditions (2.95) and (2.96) in the conductor region coincides with the 

conditions derived in Ref. [61]. 
 
 
2.3 Hybrid 1D Numerical Scheme for IBC Modeling in Time Domain 
 

In this section we will introduce the hybrid scheme, which will model the impedance 
boundary condition in time domain. For that purpose we consider a 1D electromagnetic problem 
in vacuum, which is supplied with perfect conductor on one side Lx −=  and metal with finite 
conductivity on the other side 0x =  (Fig.8).  
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Figure 8. Electromagnetic field schematic view in discrete space of vacuum region  

with metallic boundary on one side and PEC on the other side. 
 

The boundary electric field be  in frequency domain can be found from the impedance 
boundary condition (IBC), which is equivalent to modeling the problem in time domain. To 
model the finite conductivity in time domain, first we will discuss a numerical scheme in 
conductor assuming that one of boundary is changed to vacuum and the magnetic field 5.0h−  in 
vacuum is given. Graphically the space discretization of such a problem is shown in Figure 9. 
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Figure 9. Electromagnetic field schematic view in discrete space of conductor region  

with free space boundary. 
 

The electric field update on vacuum-conductor boundary cell 0x =  is schematically shown 
in Figure 10. 
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Figure 10. Geometric view of the vacuum-conductor boundary cell. 

 
As we can see from Figures 9 and 10, the boundary cell needs special consideration, because 

one part of the region is filled with metal 0≠κ and the other part with vacuum 0=κ . In 
addition, in this case two different space steps appear in one cell that are chosen from algorithm 
stability considerations discussed in the previous two sections. For the boundary cell the surface 
integral of electric field in first equation of (2.1) will be modified to 
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 (2.97) 

 
After some simplifications we get the following differential equation  
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Solving this differential equation in the same manner as in the previous case and assuming 

the right-hand side constant we get 
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And the electric field update in discrete form will read as 
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with 

  
0
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 (2.101) 

 
Note that the magnetic field is shifted by a half-time step in respect with electric field. 
 
a. The Explicit Hybrid Numerical Scheme 
 

Using the explicit numerical schemes for vacuum (2.19) and conductor (2.64) regions the 
hybrid scheme can be written in the following matrix form: 
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Here â  and b̂  are the diagonal matrixes with entries  
 

  
( )0,00,0

xΔxΔ
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â1
κ~
2b̂

eâ 0

−=

= +
−

   ( )ii,ii,
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â1
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1b̂

eâ
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  for 1i ≥  (2.103) 

 Note that we kept the main notations of the numerical schemes in vacuum and conductive 
regions for the discrete space and time descriptions. The update equation (2.102) also includes 
the boundary electric field update in the numerical scheme of conductive region that can be 
seen from matrix (2.103) elements. Assuming that discrete electric and magnetic field values 
are known at time levels 1n −  and 0.5n − respectively, the update equations (2.102) give the 
field values at next time level, i.e. the values at time level n for electric and 0.5n + for 
magnetic fields.  
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First we update the electric field in vacuum region using the field values at the previous time 
level. Then using the boundary magnetic field value as an input for the numerical scheme in 
conductive region we get the tangential electric field on boundary surface in output, which is 
used to update the magnetic field in vacuum region. So the hybrid numerical scheme (2.102) 
models the IBC boundary condition in time domain explicitly. We should keep in mind also that 
the modeled length of the conductive region in time domain should be taken so that it remains 
much bigger than the skin-depth of the considered electromagnetic problem, i.e. the field value at 
the second boundary interface of the conductive region could be taken zero.  
 
b. The Implicit Hybrid Numerical Scheme 
 

When the discrete electric and magnetic fields are defined at the same time level, the hybrid 
numerical scheme reads as 
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 (2.104) 

 
where the implicit numerical schemes for vacuum (2.16) and conductive (2.68) regions are used. 
The diagonal matrixes â  and b̂  are defined in (2.103) and three-diagonal matrixes c0 W,W  are 
determined as  

  
PPb̂

4
τΔIW

PP
4
τΔIW

*
cc

vacuum
*
vacuum

2

0

−=

−=
 (2.105) 

 
with I  and cI  unit diagonal matrixes for vacuum and conductive schemes respectively.    

As we see, the hybrid numerical scheme (2.104) is fully implicit for both regions. Described 
implicit numerical scheme models the IBC boundary condition in time domain.  
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2.3.1 Stability of the Hybrid Numerical Scheme 
 

A critical aspect of any numerical scheme is the stability of the scheme. Both explicit and 
implicit numerical schemes in vacuum and in conductor are stable as long as they fulfill their 
stability conditions. However, this does not guarantee stability for hybrid scheme since coupling 
of two stable schemes might result in an unstable scheme. For that reason in this section we will 
investigate the local stability of boundary field update using the general stability theory given in 
section 2.1.3. The study again will be performed for plane waves. 
 
a. Stability of Explicit Hybrid Scheme 
 

For the boundary field updates in original form we have to distinguish two pairs of equations, 
one with magnetic field update in conductive region 
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and the other one in vacuum region 
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Each of the magnetic field updates in equations (2.106) are stable within the stability 

condition for vacuum and conductive regions respectively, but the boundary electric field update 
equation in the general hybrid scheme may become unstable through the boundary. Therefore, 
we should investigate the stability of field updates in boundary cells. 
Using the following relations of space description for the plane wave 
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and omitting the index c , the field update equations (2.106) will read as 
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Finally the updated equations read as  
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where 
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and the following trigonometric relation have been used  
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The eigenvalues ba,g of amplification matrixes ba,G  can be obtained by setting to zero the 

determinant of the matrix ( )IgG ba,ba, −  
 
  ( ) ( )( ) 0g1gagGdet ba,ba,ba,ba,ba,ba, =+−−−′=− ϑϑ  (2.113) 

 
The solutions of this equation read as  
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As we see, the eigenvalues are complex since ϑ  is complex (2.110). Denoting ϑ−′+≡ a1z  

the equation (2.114) can be rewritten as  
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and the stability condition will read as 
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For 1a0 <′≤  the inequality solution is given by   
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Figure 11.  The stability area for eigenvalues according to inequality (2.116). 

 
Figure 11 presents an exemplary solution (stable region) of the inequality (2.116) for a 

particular case of 0.5a =′ . 
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Denoting 
4
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and the stability condition (2.117) reads as  
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Thus we get the following stability condition  
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Taking into account  
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the conditions (2.120) can be rewritten as 
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Substituting β  from equation (2.110) we get 
 

 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

⎟
⎠

⎞
⎜
⎝

⎛ −
≤⎟

⎠

⎞
⎜
⎝

⎛ +
⎟
⎠

⎞
⎜
⎝

⎛

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

⎟
⎠

⎞
⎜
⎝

⎛ −
≤⎟

⎠

⎞
⎜
⎝

⎛ +
⎟
⎠
⎞

⎜
⎝
⎛

0

000

0

0

00
2

xΔxΔ
xΔ

2
τΔκ~tanh

4
xΔxΔ

kcos
4

xΔxΔ
ksin

2
xΔ

ksin
xΔxΔκ~
τΔ4

xΔxΔ
xΔ

2
τΔκ~tanh

4
xΔxΔ

kcos
4

xΔxΔ
ksin

2
xΔksin

xΔκ~
τΔ4

 (2.122) 

 
These inequalities always fulfill when the following inequalities are satisfied 
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For xΔk and 0xΔk  smaller than unity the stability conditions (2.123) can be rewritten as 
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Usually for high conductive materials ( S/m10κ 4> ) the argument ϕ  of hyperbolic 

cotangents function is bigger or equal to one, i.e. ( ) 2coth ≤ϕ , and the condition (2.124) can be 
modified to 
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Finally, with stability conditions of explicit schemes (2.40) for vacuum region and (2.96) for 

conductive region, the stability conditions of the hybrid explicit numerical scheme will be given 
by  
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Note that the choice of a stable time step for the hybrid 1D explicit numerical scheme 

depends only on the discrete space step in the vacuum region and remains the same in the 
conductive region.  
 
b. Stability of Implicit Hybrid Scheme 
 

Consider the case when discrete electric and magnetic fields are defined at the same time 
level. According to (2.100) the update equation for boundary electric field contains the magnetic 
fields in conductor and vacuum regions.  Thus, the stability analyses have to be conducted for 
two sets of update equations with magnetic field in conductor and in vacuum.   In particular, in 
conductor region the update equations will read as   
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 In vacuum region:  
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Each of the magnetic field updates in equations (2.127) are unconditionally stable, but with 
boundary electric field update equation in the general hybrid scheme instability may occur 
coming from the boundary. Thus we should investigate the stability of field updates in boundary 
cells. Following the procedure, same as for the explicit hybrid numerical scheme for field update 
equations, we get 
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where we have omitted the index c . 
Finally the update equations will take the following view: 
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with 
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where the trigonometric relations (2.111) have been used. 

According to (2.20) for vector ⎟
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The eigenvalues ba,g of amplification matrixes ba,G  can be determined by setting to zero the 
determinant of matrix ( )IgG ba,ba, −  
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The solution of this equation is 
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And for eigenvalues we get 
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where we again omit the indexes a and b . 
It is easy to show that 1g2 ≤    ( “- “ in front of squared root ). For the first eigenvalue 1g we 
have  
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The solution is given by inequality 
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Note, that for real value ϑ  the scheme is stable.  
 



 36

)Re(ϑ

)ϑIm(

)Re(
)a2(1

)a(1)Im(
2

2 ϑϑ
′+

′−
≤

0.5a =′

)Re(ϑ

)ϑIm(

)Re(
)a2(1

)a(1)Im(
2

2 ϑϑ
′+

′−
≤

0.5a =′

 
Figure 12.    The stability area for eigenvalues according to inequality (2.135).  

 
Figure 12 presents the solution of the inequality (2.135) (stable region) for a particular case 

of 0.5a =′ . 
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and the stability condition (2.136) reads as 
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Substituting the β  from equation (2.130) and taking into account that 1≤μsin2 we get 
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These inequalities always fulfill when the following inequalities are satisfied 
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When xΔk and 0xΔk are smaller than one, the stability conditions (2.140) can be rewritten as 
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Usually for high conductive materials ( S/m10κ 4> ) the argument ϕ  of hyperbolic 
cotangents function is bigger or equal to one, i.e. ( ) 2coth ≤ϕ , and the condition (2.141) is 
modified to  
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Finally the stability condition of the hybrid implicit scheme is completely described by 

(2.142), since the implicit schemes in free space and conductor are unconditionally stable. Note 
that the time step and space step in vacuum are condition free for hybrid implicit scheme. 

The stability conditions (2.126) and (2.142) for the hybrid explicit and implicit numerical 
schemes have been verified by numerical tests on the 1D electromagnetic problem for plane 
wave scattering on metallic surface.  The analytical solution of this problem is well known and is 
given by the following expressions  [60] 
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where the boundary between vacuum and conductor is at 0x =  and the following notations have 
been used 
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Coefficient A is defined from the following initial condition 
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One of the important issues in numerical modeling is the convergence property of the 

numerical schemes that is discussed in the next section.   
 
2.3.2 Convergence Study of the Hybrid Scheme 
 

The numerical schemes derived in previous sections for vacuum and conductive regions have 
at least second-order convergence [55-59, 62]. The hybrid scheme described in section 2.3 is 
designed to preserve this property. The hybrid scheme is applied for calculation of 1D 
electromagnetic problem (2.143) introduced in previous section for different time and space 
steps.  The results are summarized in figure 10 presenting the convergence of the hybrid explicit 



 38

and implicit numerical schemes for conductivity S/m10κ 3= . For the calculations the discrete 
time step is taken to equal half of the space step in vacuum region. 
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Figure 13. Convergence of hybrid explicit  (green) and implicit (blue dashed) numerical 
schemes for conductivity S/m10κ 3= . The convergence orders are given by red dashed.  

 
As the numerical experiments show, for materials with high conductivity S/m10κ 3≥  the 

convergence of explicit and implicit numerical schemes are preserved (fig.13) even for 
approximation of boundary cell update coefficient a~ by  
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Figure 14 shows the convergence of the hybrid explicit scheme with and without 

approximation (2.145) for conductivity S/m0.1κ = . 
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Figure 14. Convergence of hybrid explicit numerical scheme with (black dashed) and  

without (green) approximation (2.145) for conductivity m/S1.0=κ . The convergence orders 
are given by red dashed. 
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As we can see from figure 14 the convergence order of the hybrid explicit numerical scheme 
became worse in case of approximation (2.145). Same behavior on convergence of the scheme 
was observed for the cases when conductivity of the material is S/m10κ 3< . Thus, to preserve 
the second-order convergence the approximation (2.145) can be applied for materials with high 
conductivity S/m10κ 3≥ . 

In accelerators usually high conductive materials are used. Therefore, in further 3D hybrid 
numerical scheme study (Chapter 4) the approximation (2.145) will be used.     
 
 
2.4 Conclusion 
 

In this chapter the 1D explicit and implicit numerical schemes are introduced for 
electromagnetic field calculations in metal and in vacuum medias. The stability analyses of these 
two schemes for both regions are performed. For IBC modeling in time domain the matching of 
the numerical schemes (explicit and implicit) in the vacuum and in the metal is achieved. The 
stability analyses of the so-called hybrid (matched) numerical schemes (explicit and implicit) are 
performed.  

From stability study it follows that the implicit hybrid scheme is unconditionally stable on 
discrete time and space steps in the vacuum region. The stability of explicit hybrid scheme in 
vacuum region is conditioned by 0ΔxΔτ ≤ . In conductor region the stability of both implicit and 
explicit hybrid schemes is strongly conditioned by space step dependence on time step and space 
step in vacuum.     

The convergences of the hybrid explicit and implicit numerical schemes are studied.  It is 
shown that both numerical schemes have second-order convergence. The numerical experiments 
on convergence of 1D implicit hybrid scheme show that for high conductive materials 

S/m10κ 3≥ the boundary electric field update equation can be approximated with usage of 
equation (2.145). 
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Chapter 3.  
 

Dispersion-free Numerical Scheme for 3D 
Electromagnetic Problems with PEC Boundary 

Conditions 
 

To calculate the wakefields of ultra short bunches in perfectly conducting structures and to 
prevent the numerical dispersion in longitudinal direction, a longitudinally dispersion-free 3D 
numerical scheme is proposed in reference [52] that is implemented in the program ECHO. The 
dispersion-free numerical scheme enables to use a concept of moving mesh frame without 
loosing the accuracy of calculation.  

In this Chapter the overview of the TE/TM (“transverse electric - transverse magnetic”) 
splitting implicit numerical scheme [33, 52, 67] is given. This time-domain numerical scheme is 
three-dimensional (3D), dispersion-free and valid for structures with perfect conducting walls. It 
is especially efficient for the wakefield calculations excited by ultra-short relativistic bunches 
and is more accurate in long-time simulations than the conventional FDTD approach [36,37].  
 
 
3.1 The Maxwell Equations  
 

The Maxwell equations are the set of four fundamental equations governing 
electromagnetism  
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where E

r
 is the electric field,  B

r
is the magnetic flux density, D

r
is the electric flux density, H

r
 is 

the magnetic field, fρ  is  the free charge and J
r

is the total current density including both free 
and bound current.   For linear, isotropic and non-dispersive media the electric and magnetic flux 
densities and the total current density are given by  
 
  EεD

rr
= , HμB

rr
= , fc JJJ

rrr
+=  (3.2) 

 
where ε is the dielectric permittivity, μ is the magnetic permeability, fJ

r
is the free current of free 

moving charge and the bound current cJ
r

 is given by Ohm’s law.  

The Maxwell equations in terms of E
r

and H
r

are the system of eight scalar equations with six 
variables. Together with initial and boundary conditions the Maxwell equations constitute a well-
posed system of hyperbolic partial differential equations. 

In free space the Maxwell equations (3.1a) and (3.1b) simplify to 
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where Ω376.73)(cεcμZ 1
000 === − is impedance of free space, c=2.9987.108m/s is the speed 

of light in vacuum and the normalized time variable tc ⋅≡τ  have been used. 
 
3.1.1 Boundary Conditions 
 

At the interface between two lossless media 1and 2 the boundary conditions for the 
electromagnetic fields read as [12, 60] 
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where the subscripts indicate the regions  and n

r
 is the unit vector normal to interface.  Using the 

equation (3.2) we get 
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For the border between the vacuum and Perfect Electric Conductor (PEC) we have [60] 
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where sρ and sJ

r
 are the surface charge and current densities respectively. The normal n

r
 is 

pointing out of the PEC region. 
The tangential electric field is zero at the surface of PEC. A nonzero tangential electric field 

would drive an infinite surface current, which is clearly unphysical. However, this does not 
imply that the surface current must be zero. In fact, an external field always implies nonzero 
surface current since the magnetic field has only a tangential component at the PEC surface and 
the surface current is related to the tangential magnetic field through the fourth condition in 
(3.6). 

 
3.1.2 The Maxwell Equations in Structures with Cylindrical Symmetry  

 
In cylindrical coordinates } z , r, { ϕ  the Maxwell equations (3.1) in time domain are given by  
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The cylindrical symmetry of the electromagnetic problem allows to distinguish the explicit 

dependence of the EM fields on the azimuthal coordinate ϕ  that can be performed by multipole 
expansion of the fields [12]  
 

  
{ } { }
{ } { } )msin()t,z,r(E,H,H)t,z,,r(E,H,H

)mcos()t,z,r(H,E,E)t,z,,r(H,E,E

mzrmzr

mzrmzr

ϕϕ

ϕϕ

ϕϕ

ϕϕ

=

=
 (3.8) 

 
Where m  is an integer and is called the azimuthal mode number.  

In accelerators the principal source of external current is the charged particle beam. For a 
bunch moving at speed of light c  with transverse offset a parallel to the axis of a rotationally 
symmetric structure, the source current sJ

r
can be represented via multipole expansion as  
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Where t)ρ(z/c − is the longitudinal charge distribution and a)δ(r −  is the Dirac delta function. 
For the structures with PEC boundary conditions and external source given by (3.9), the 
Maxwell equations (3.7) for the m th multipole are read as 
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Where we have omitted the azimuthal dependents of the fields, which is given by equations 
(3.8). 

In this chapter we consider the EM problems in structures with perfect electric conducting 
boundary materials. 
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3.2 Spatial Discretization and Maxwell Grid Equations 
 

The Maxwell grid equation in finite integration technique (FIT) formalism are based on the 
integral form of Maxwell equations (3.1) that are given as  
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where S is an arbitrary area and S∂  is the path that encloses S . 

Then the integral formulation (3.11) is discretized on a rectangular grid by introducing a dual 
grid G~ to the primary one G . The EM field electric components are situated on the edges of the 
primary grid and the magnetic components on the edges of the dual grid. The dual grid is created 
at the preprocessing stage by defining the nodes of dual cells at the barycenters of primary cells 
as shown in (Fig. 15). 
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Figure 15. Graphical view of electromagnetic field spatial discretization. 

 
Following the FIT notation [63] for the discrete field components { }zyx e,e,e )))

, the space 
steps{ }ΔzΔy,x,Δ  and { }k,j,i indexes for field description in the discrete 3D space, the 
Maxwell grid equations (MGE) will read as  
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As is seen from this MGE that has been derived by using FIT technique they are equivalent 

to the discretization of Maxwell equations in differential form using central difference 
approximation for derivatives. 

Now by following matrix notation { }zyx P,P,P and { }zyx P~,P~,P~ for the discrete space 
derivative operators on primary and dual grids respectively the discrete curl C and divergence 
S operators on the primary grid can be written as  
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 The dual grid discrete curl operator C~  has the same aspect as the primary grid, only the 

space derivatives for the primary grid P should be replaced by the dual grid operators TPP~ = . 
And the discrete divergence operator S~ on the dual grid has the following view 
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The vectors of discrete electric and magnetic fields in the space are defined as 
 

  
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=

z

y

x

e
e
e

e
)

)

)

)     
⎟⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛

=

z

y

x

h
h
h

h
)

)

)

)
 (3.15) 



 45

where each element of the vectors is a vector containing component information of the given 
field in the 3D space. In these notations the Maxwell Grid Equations will read as  
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where we introduced the material matrixes )ε,ε,(εM zyxε diag=  and )μ,μ,(μM zyxμ diag= , 
which are diagonal and with positively defined elements. The material matrixes contain the 
electric and magnetic properties of the lossless media.  

In the presence of a conducting media a conductivity matrix κ)κ,,(κM κ diag= will appear in 
the Ohm’s law which will contain the conductivity information. Thus the current density with 

external sources fj
))

 will read 

  fκ jeMj
)))))

+=  (3.17) 
  

Now via replacing in material matrixes the dielectric permittivity and magnetic permeability 

by their relative values
0μ
μμ → , 

0ε
εε →  and introducing new variables 
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where 0Z  is free space impedance and c  - speed of light, the equations system (3.16) will be 
reduced to the skew-symmetric one 
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with a new discrete curl operator 
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The equation system (3.19) is a time-continuous and space-discrete approximation of the 

Integral Maxwell equation (3.11).   
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3.2.1 Algebraic Properties of Maxwell Grid Equations 
 

The outstanding feature of Maxwell grid equations when compared with other numerical 
methods for solving EM field problems is that this set of matrix equations is a consistent discrete 
representation of the original field equations, i.e. the basic properties of analytical fields are 
maintained during the transformation of continuous problem to the discrete space [63, 64]. One 
of the most important properties relating to the primary mesh curl operator C and the dual mesh 
curl operator C~ , is the generalized symmetry 

 
  TCC~ =  (3.21) 
 

It follows directly from the duality of the pair of staggered meshes and can be easily proven 
by simple topological considerations. 

From the topology of each: the primary and the dual grids, from equations (3.16) the second 
set of properties is followed 
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It can be interpreted as discrete analogues to the vector-identity 0curldiv = in a continuous 

case. Applying the equation (3.22) in MGE (3.16) the discrete analogy of charge conservation 
law is followed: 
 

  0Jdivρ
td

d0jSq
td

d
=+↔=+

r)))  (3.23) 

 
Finally we define a discrete grad operator Ĝ  with the properties 
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From equations (3.21) and (3.22) follows 0ĜC =  and 0G
~̂

C~ =  which are the discrete 
analogues to  0gradcurl =  continuous operator property. 

 
3.2.2 Space Stability of Time-Continuous MGE 
 

The time-continuous and space-discrete version of the homogeneous Maxwell grid equation 
(3.16) for the lossless media case is given be  
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Using the property of discrete curl operator (3.23), the square roots 1/2

ε
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μ MMM −−− = of the symmetric positive definite material matrixes, the system matrix of 

this eigenvalue equation can be transformed into 
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From this equation follows that this system matrix has only real and non-negative 

eigenvalues iλ  [55-58, 65]. That means that all eigensolutions of the spatial discretized scheme 
expressed by this system matrix are related to non-dissipative and non-growing oscillations with 
a real valued circular frequency ii λω = and the time dependency ( )tj ieRe~)t(e ω) .  

 
 

3.3 Time Discretization  
 

In this section the explicit and implicit numerical schemes on the Cartesian and cylindrical 
grids for solving numerically 3D electromagnetic problems in the free space with PEC boundary 
conditions are described. In time discretization in both (explicit, implicit) cases the central 
difference method for derivatives is used which is a second-order accurate approximation. For 
the time a normalized time variable tc=τ  is used. The discrete time step is notated 
by tΔcτΔ = .  

We consider a problem which reads as follows: in the regionΩwhich is bounded by a perfect 
conductor Ω∂ , to find the electromagnetic fields excited by a bunch which is moving with the 
speed of light c and is characterized by a charge distribution ρ (fig. 16). 

 
Figure 16. Charged particle bunch moving through an accelerating structure  

supplied with infinite pipes. 
 

The bunch introduces an electric current density ρceJ z

rr
=  and thus the following system of 

differential equations is to be solved  
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with PEC boundary  conditions 0En =×
rr

, Ωx ∂∈  and given initial conditions  
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In accelerator applications, the structure is usually supplied by the ingoing and outgoing 

beam pipe and the analytical solution in a perfectly conducting cylindrical pipe [11] can be used 
as initial condition. 
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3.3.1 E/M Splitting Explicit Numerical Scheme 
 

For time discretization an explicit scheme has been suggested by Yee [38] where splitting of 
electric and magnetic field components have been used (E/M splitting), i.e. on discrete time axis 
the electric field components are defined at the same time while the magnetic components are 
shifted by a half-time step relative to the electric one. This numerical scheme yields to the 
explicit finite difference time domain scheme and in matrix form reads as 
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with electric and magnetic field vectors 
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and material matrixes  
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On an equidistant mesh the explicit numerical scheme (3.29) has a second-order local 

approximation error in the homogeneous region ( )22 τΔrΔO +
r , ( )TzΔy,Δx,ΔrΔ =

r  [38, 54, 
55]. Applying Fourier analyses it is easy to get the following stability condition [58, 59] for this 
numerical scheme that reads as 
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This condition is known in literature as Courant stability condition. 

From Fourier analyses follows also the dispersion relation of this explicit numerical scheme 
in free space [54, 59, 66] that reads as  
 

   
2

z
2

2

y
2

2

x
2

2

2

zΔ
2
zΔ

ksin

yΔ
2
yΔ

ksin

xΔ
2
xΔ

ksin

τΔ
2
τΔ

c
ωsin ⎟

⎠

⎞
⎜
⎝

⎛

+
⎟
⎠

⎞
⎜
⎝

⎛

+
⎟
⎠

⎞
⎜
⎝

⎛

=
⎟
⎠

⎞
⎜
⎝

⎛

  (3.33) 

 
As can be seen from this relation for an equidistant mesh zΔyΔxΔ == , a homogeneous 

material and the time step 3x/ΔτΔ = , the scheme has no dispersion error along the grid 
diagonals. This property of the above-described scheme enables us to achieve zero dispersion in 
a desired direction by the rotation of the mesh. However, this approach has limitations on 
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discretization, which requires an equidistant mesh to have a non-dispersive numerical scheme in 
a desired direction.  

Consider a problem of electromagnetic field calculation that is excited by a Gaussian charged 
bunch of rms length σ  that moves with the speed of light c  in z -direction through a structure 
of length L . The self-field of the ultra-relativistic bunch has only transverse non-zero field 
components [11-13] and it is like a plane wave. For the equidistant mesh the dispersion relation 
(3.33) simplifies to  
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Assuming that the numerical wave number k differs from the analytical one by some value 

kδ , the Taylor expansion to the lowest order of kδ  will read as [38, 67] 
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The dispersion error could disappear only when the time step is equal to the mesh 

step zΔτΔ = . However it contradicts stability condition (3.32). Which means that for any stable 
time step the Yee’s numerical scheme has a dispersion error in the z -direction of the order of 
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The Gaussian charged bunch excites high frequency fields up to the frequency σω /c~ , 

which means that for the structure of length L the phase error will be of the order of  
 
  ( )23 zΔσLOkδL −≈⋅  (3.37) 

 
This equation means that the Yee’s scheme requires very fine mesh for short bunches and 

long structures. For accurate calculation the mesh step should be chosen in a way that the 
following relation satisfies  

  
L
σzΔ

3
<<   (3.38) 

 
In the next section an implicit scheme will be described that is dispersion free in z -direction 

for equal time and longitudinal space steps and is in good agreement with the stability condition. 
 
3.3.2 TE/TM splitting implicit numerical scheme 
 

In this section an implicit TE/TM numerical scheme is discussed [33, 49, 50]. The main 
property of this scheme is the fact that it allows to take a time step τΔ equal to the longitudinal 
mesh step zΔ in which direction the ultra-relativistic charged bunch is propagating. The time 
discretization of this scheme is as follows: on the discrete time axis the “TE” components of 
electromagnetic field xe , ye , zh  are defined at time level n that corresponds to τΔnτ =  and the 
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“TM” components of the field xh , yh , ze at time τΔ0.5)(nτ += . Following this consideration 
and using new vector notations for the EM field and current density components  
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the time-continuous scheme (3.19) in equivalent form is read as 
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Applying the suggested time discretization the TE/TM field components are split in time as 
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where central difference approximation of derivative on time have been used and linear 
interpolation has been applied. 

Similar to Yee’s scheme this numerical scheme is also two layer one and can be written in 
the following form 
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As is seen, the matrixes in equation (3.43) have the following properties: 
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In the original variables and in detailed notation the TE/TM scheme for no transverse current 
density case ( 0jv ≡ ) read as  
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with I  unit diagonal matrix and 1

με,μ,ε
MM 11

−≡−− . 

 
Realization of the TE/TM Scheme for Rotationally Symmetric Geometries  
 

Below the realization of the implicit TE/TM numerical scheme for the case of rotationally 
symmetric geometries in cylindrical coordinates }z,,r{ ϕ  is described.  
For a bunch moving at the speed of light c  with an offset a  parallel to the axis of a rotationally 
symmetric structure, the source current density }J,0,0{J zs =

r
can be represented via multipole 

expansion eq. (3.9). The numerical scheme (3.46) for an azimuthal mode number m  has the 
form 
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Where due to the azimuthal symmetry of the problem multipole expansion of the 
electromagnetic fields eq.(3.8) [15] and the following property of a discrete operator of 
derivative ImP =ϕ  have been used in derivation of the numerical scheme (3.47).  

 In the staircase approximation of the boundary the material matrixes 1μM − and 1εM − are 

diagonal and following operators of the scheme (3.47) 
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are three-diagonal matrixes. So the equations involving them can be solved easily. 

In the next section the stability of the above-introduced scheme will be discussed. 
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3.3.2.1 Stability Analyses of TE/TM Scheme 
 
The stability of the numerical scheme (3.43) can be studied by the energy inequalities method 
[55, 56, 58]. Defining the following inner product on complex M -dimensional vectors a and b  
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−

=

=  (3.49) 

 
The inner product of both sides in equation (3.43) with n1n yy ++  read as  
 
  ( ) n1nnn1nnn1nn1n yy,fyy,yAyy,yyB +Δ=+Δ++− ++++ ττ  (3.50) 

 
Using the following formula 
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the equation (3.50) can be rewritten as 
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Since the operator A is skew-symmetric, the second term in the left-hand side is equal to 

zero and 
 
  n1nnnn1n1n yy,fy,yQy,yQ +Δ=− +++ τ  (3.53) 

 
The last relation enables to prove the following theorem [55, 56]: 
 
 
Theorem:  The condition 

  0A
2
1BQ ≥Δ−≡ τ  (3.54) 

 
is necessary and sufficient for the stability in the Hilbert space of the scheme (3.43) with respect 
to the initial data 0y and right-hand side nf .  

 
 

The condition (3.54) can be rewritten as 
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where iλ are the eigenvalues of the matrix T

00CC . 
The last inequalities are direct corollaries of the following Lemma 
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Lemma:  Let us define a matrix A~ by relation 
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Indeed, the set of eigenvalues { }A~

iλ of the matrix A~ can be rewritten in the form 
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where { }AA
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T
λ  is the set of eigenvalues of the non-negative self-conjugate matrix AAT

. Hence, 
both relations (a) and (b) hold simultaneously. 
 
 

Now following [57, 65] a discrete energy of electromagnetic field can be defined as 
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And the discrete energy conservation law holds 
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Note that the discrete energy in numerical schemes defined by relation (3.56) is a second order 
accurate approximation to the total physical energy of the electromagnetic field. If the right hand 
side in scheme (3.43) vanishes, the scheme becomes energy conserving 0

TM/TE
n

TM/TE WW = . 
Due to the Lemma the stability condition (3.54) can be rewritten in the form 
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The first inequality resembles well-known stability condition of the explicit FDTD scheme for 
the one-dimensional electromagnetic problem. For the second inequality from the consideration 
of the maximal eigenvalue of the Laplace operator ( )i

y
i
y

i
x

i
x P~PP~P +  it follows that for the 

vacuum region with a staircase approximation of the boundary the stability condition read as 
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For the rotationally symmetric case the stability condition reduces to the form 
 
  )rΔz,Δmin(τΔ ≤  (3.59) 

 
Note that the last stability condition does not contain the azimuthal mode number m  while 
Yee’s scheme requires reducing the stable time step [54, 68] for higher azimuthal modes 
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that increases the computational effort considerably.  

As will follow from the next section with time step τΔ equal to the longitudinal mesh step 
zΔ the TE/TM numerical scheme (3.43) does not have dispersion in longitudinal direction. The 

relation (3.58) does not contain information about transverse mesh. Hence, the transverse mesh 
can be chosen with no stability considerations.  
 
3.3.2.2 Numerical Dispersion  
 

Following the conventional procedure of stability analyses on plane waves [54, 58] the 
dispersion relations can be obtained for TE/TM numerical scheme in the form 
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 (3.61) 

 
As can be seen from this dispersion equation at the “magic” time step zΔτΔ = , the scheme 

is dispersion-free in longitudinal direction. For equal transverse mesh steps hyΔxΔ ≡= the 
dispersion relation for the transverse plane waves 0k z =  read as 
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From the dispersion relation (3.61) follows that equation (3.58) is a necessary stability condition 
for the implicit TE/TM numerical scheme. 

The dispersion error cancellation for particular direction is important in electromagnetic field 
computation due to the fact that the charged particle beams in accelerators have a design orbit 
and the direction of motion (the longitudinal direction) can be identified. Therefore, the 
computational domain is very long in the longitudinal direction and relatively short in the 
transverse plane. Additionally, the electromagnetic field changes very fast in the direction of 
motion but is relatively smooth in the transverse plane.     
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Another advantage of dispersion-free scheme is that for an ultra relativistic bunch a mesh 
moving along with the bunch can be used since the scaled time step is equal to the longitudinal 
mesh step. The results with the moving mesh for staircase approximation of the geometry are 
fully equivalent to the stationary global mesh approach. From all this arguments follows that for 
this scheme the mesh step is independent from the structure length L  and related only to the first 
power of the rms bunch lengthσ  [33, 67] as 
  σzΔ <<  (3.63) 
 
 
 
3.4 Initial Field for Accelerator Application 
 

In accelerator applications the studied structures usually are supplied by ingoing pipe. For the 
rotationally symmetric structures the analytical solution in a perfect conducting cylindrical beam 
pipe [11] can be used as initial condition.  For ultra relativistic bunch with longitudinal charge 
distribution ρ(z) moving at an offset a parallel to the symmetry axis of infinitely long perfect 
conducting beam pipe of radius b the electromagnetic field components of the m th mutipole read 
as 
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As is seen from (3.64) for monopole case 0m = , there is no field inside the ring )ar( < . The 

field pattern is uniform inside the beam for 1m =  thus resembling the dipole magnet. Similarly 
for 2m = , the field pattern resembles that of a quadrupole magnet and for 3m =  a sextupole 
magnet [13].  
If the ingoing pipe is not cylindrical the initial field can be found numerically. 
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3.5 Longitudinal and Transverse Wake Potentials 
   

In this section, the basic definitions of the longitudinal and transverse wake potential are 
introduced.  

Consider the point charge Q  moving along the z  axis of the structure with offset 1r
r  and 

velocity zv  close to the speed of light c  (Fig.1) and a test charge q  moving with the same velocity 
at a distance s  behind the driving charge and the offset r

r
.  

 
Figure 17. A driving and test charges traverse the cavity. 

 

As the driving charge interacts with the structure, it will excite electromagnetic fields (wake 
fields) with longitudinal and transverse components that act on the test charge. The longitudinal 
component of the Lorenz force will produce energy gain (or loss) of the test particle, while the 
transverse component of the Lorenz force will produce a transverse kick of the trailing test particle.  

We define the longitudinal point wake potential as the integrated longitudinal Lorenz force 
experienced by the test particle over the length of the structure in interest 

  dz)
c

sztz,,r,r(E
Q
1s),r,r(w 1z1// ∫
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∞−

+
==

rrrr  (3.65) 

Note, that in our definition, 0s <  corresponds to distance in front of the driving charge, 0s =  
-to the position of the driving charge and 0s >  - to the longitudinal position behind the driving 
charge.   

The net energy gain or loss by the test particle following at the distance s  behind the driving 
charge is then given by  

  (s)wqQΔU(s) //⋅=    (3.66) 

The transverse components of the electromagnetic fields produce a transverse component of 
the Lorenz force acting on the test charge. We define the transverse wake potential as an integrated 
transverse Lorenz force acting on the test charge  

   dz)
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Q
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+

=×+=
rrrrrrrr  (3.67) 

As it follows from the definition and Lorenz equation of motion the transverse wake potential 
defines the net transverse kick of the test charge in the wakefields induced by the driving charge  
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  (s)/cwqQ(s)pΔ ⊥⊥ =
rr

 (3.68) 

Thus the longitudinal and transverse wake potentials describe the energy gain (loss) and the 
transverse dynamics of the test particle in the wakefields excited by the driving charge during its 
passage through the structure (cavity, transitions, discontinuities etc).  Note, that from causality 
principle, for ultrarelativistic driving charge ( cvz ≡ ) the fields are vanished in front of the driving 
charge, i.e. 0(s)w0,(s)w // == ⊥

r  for all positions 0s < . 
An important property of the wake potentials is described by the Panowsky-Wenzel theorem 

[73] that gives the explicit relation between the longitudinal and transverse wake potentials.  

 s),r(ws),r(w
s z

rrrr
⊥⊥ ∇−=

∂
∂  (3.69) 

where ⊥∇
r

is the transverse gradient operator.  
For an extended longitudinal distribution ρ(s)  of the driving bunch, the wake potentials are 

determined by the superposition of the wake functions of individual charges in the bunch that lead 
to the convolution of the point wake potential and normalized charge distribution  

                                  

∫

∫
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s
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////

s)ds(sw)sρ((s)W

s)ds(s)wsρ((s)W

rr
     with     1ρ(s)ds =∫

+∞

∞−

 (3.70) 

 

In the next section the convergence of the TE/TM scheme and some numerical tests will be 
discussed. The following integral parameters will be used: the loss factor //K and the kick factor 

⊥K  given as  

  ∫
+∞

∞−
⊥⊥ = dsρ(s)(s)WK //,//,  (3.71) 

 
 
 
3.6 Convergence of the Implicit TE/TM Scheme and Numerical Examples 
for Rotationally Symmetric Geometries.  
 

For illustration, in this section the convergence properties of implicit TE/TM scheme 
implemented in code ECHO are presented. Some numerical results of the wake field calculations 
in perfectly conducting rotationally symmetric structures are discussed.  
 
Convergence of the Scheme 
 

On equidistant mesh the implicit TE/TM numerical scheme (3.46) has a second-order local 
approximation error in homogeneous region ( )22 τΔrΔO +

r , ( )TzΔy,Δx,ΔrΔ =
r  [33, 67]. 

The staircase approximation of the geometry in general makes the scheme first-order accurate. In 
order to overcome this problem and avoid reduction of the time step, the uniformly stable 
conformal (USC) approach was developed in [68] which makes the TE/TM scheme second-order 
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accurate. In the figure 18 the relative error of the loss factor ////// K/KKδ −= is shown for a 

Gaussian bunch with rms length 5.0=σ cm passing through a pillbox cavity (fig. 18 left) and a 
spherical resonator (fig. 18 right).  
 

 
 
Figure 18. The relative error of the monopole loss factor for a pillbox (left) and a sphere (right) 

versus the number of mesh steps per rms bunch length. The solid lines show results for a 
stationary mesh, the triangles and circles present results for the moving mesh. 

 
The error is given over the number of mesh steps per bunch length h/σ , where h denotes the 

equidistant mesh step rΔzΔh == in both directions. The pillbox has the length cm1.8  and 
radius cm0.9 . The sphere diameter is cm1.8 . The analytical loss factor //K for the pillbox is 

equal to V/pC0.589459  and V/pC0.152446 for the sphere. Lines demonstrate the error of a 
computation with a stationary mesh. Triangles and circles show the results for the moving mesh. 
The mesh covers the Gaussian bunch longitudinally in the range of σ5− to σ5 . As is seen, the 
staircase scheme shows a first-order rate of convergence and the conformal scheme achieves the 
second order.  
 
Numerical Examples 
 

The examples of TE/TM numerical scheme applications are given in Ref. [33,50].  First test 
example is a circular collimator structure shown in Figure 19 (with inner radius b  not presented 
in the figure).  Figure 20 shows the wake potential for the collimator with parameters 

mm40a = , mm10cb == , mm2445L = and the bunch with rms length cm1.0=σ . The 
numerical simulations are compared to the analytical solution [74].  

 
Figure 19. The geometry of the collimator. 
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Figure 20. The monopole wake potential of a collimator. The wakes calculated with different 
mesh  resolutions h/σ are compared to the analytical solution. The results for the staircase 

scheme show a considerable error. Three curves for the conformal scheme follow the analytical 
estimation. 

 
The conformal scheme shows a second-order convergence and gives results of high accuracy 

with only 5 mesh steps perσ in all tests while for staircase scheme more than 40 mesh points 
perσ is required to reach the same result. Note that the staircase scheme with 5 steps per σ  
leads to relative error in excess of 300%.  

The next example deals with a structure consisting of the 20 TESLA cavity cells [75] 
bounded by infinite ingoing and outgoing pipes 35mm in diameter. The side view of the 
geometry is illustrated in Figure 21. 

 

 
Figure 21.  Side view of the 9-cell TESLA cavity. 

 
Each cell of this cavity is built using different kinds of geometrical objects: ellipse, line and 

circle. The contour of the half-cell, called “cups”, is shown in figure 22.     
                          

                                       
                                           Figure 22.  Contour of a half cell.  
 



 61

It is composed of a circular arc in the equator region and an elliptical section near the iris. 
The dimensions are listed in Table.2.  
 

Cavity shape parameter Cups 
Equator radius .equR  103.3 mm 

Iris radius irisR  35 mm 

Radius cR of circular arc 42.0 mm 
Horizontal half axis a  12 mm 
Vertical half axis b  19 mm 
Length L  57.7 mm 

 
Table 2. TESLA 9-cell cavity middle cup geometry parameters.  

 
The analytical solution (3.64) was used as an initial condition in the ingoing pipe. Figure 23 

shows the longitudinal wake potential for a Gaussian bunch with rms length mm1=σ . 
 

 
Figure 23. Comparison of the wake potentials obtained by different methods for the structure       

consisting of 20 TESLA cells excited by a Gaussian bunch with mm1=σ . The solid line shows 
the reference solution obtained with the help of a scheme described in [50]. The dashed and 

dotted lines describe the solution obtained by the classical Yee’s scheme with different number of 
points perσ . The picture shows coincidence of the reference result (solid line) with the result on 

the coarse mesh obtained from the 3D TE/TM code (gray points). 
 
The solid line (POT 2.5D) corresponds to the reference solution obtained with the vector 

potential method [50]. The two other lines show results obtained with different mesh resolutions 
from the TBCI code [40], which is based on the classical Yee’s scheme (E/M – 2.5D). The 
shown oscillations, are due to the dispersion error of the Yee’s scheme. The gray points present 
the result obtained by the implicit conformal implicit 3D TE/TM numerical scheme. It can be 
seen that the implicit conformal 3D TE/TM scheme produces very accurate results even for the 
coarse mesh. Indeed, the conformal method uses 2.5 mesh points per σ in the longitudinal 
direction while for staircase approximation of the geometry more that 40 mesh points per σ is 
needed to obtain a similar results. 
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3.7 Conclusion 
 

In this chapter description of the TE/TM (“transverse electric-transverse magnetic”) splitting 
implicit numerical scheme is given [33, 52]. This scheme models numerically in time domain the 
continuous EM problem that read as: to calculate three-dimensional (3D) electromagnetic fields 
excited by ultra-short relativistic bunches in accelerator structures with perfect conducting walls.  

 The stability and numerical dispersion of the scheme are discussed based on well-known 
results. The main advantage and outlook of this numerical scheme is the fact that its stability 
condition allows to cancel numerical dispersion in longitudinal direction. Thus it is important for 
accelerator structure modeling, the transverse dimensions of the geometry being commonly 
considerably smaller than the longitudinal.  
      The realization of this scheme is implemented in the ECHO code, which is for rotationally 
symmetric geometries. The numerical examples show that the TE/TM splitting numerical 
scheme is much more accurate in long-time simulations than with the conventional FDTD 
approach.   
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Chapter 4. 
 

A New Hybrid Numerical Scheme for Finite 
Conductivity Modeling in Time Domain 

 
This Chapter is devoted to a new hybrid numerical scheme for calculating the wakefields 

excited by ultra-short bunches in structures with walls of finite conductivity. Based on the 
TE/TM splitting numerical scheme described in Chapter 3 a new longitudinally dispersion-free 
algorithm for resistive structures is developed. The time domain impedance boundary condition 
in each boundary cell is approximated by one-dimensional EM model described in Chapter 2.  
The realization of this new hybrid 3D implicit numerical scheme is done for rotationally 
symmetric geometries and staircase approximation of the boundary surface. A good agreement of 
the numerical simulations with the well-known analytical results and CST Particle Studio 
simulations are obtained.  The new hybrid scheme was applied to calculate the wake potentials 
for the various components of FLASH linear accelerator at DESY and the European XFEL 
project.  
 
 
4.1 Theory of Wave Propagation in a Conductor 
 

Consider a homogeneous isotropic medium of dielectric constant ε, permeability μ and 

conductivityκ. Using the material equations HB
rr

⋅= μ , ED
rr

⋅= ε  and the Ohm’s law EJ
rr

⋅= κ , the 
Maxwell’s equations in time domain will read as  
 

  
H

t
μErot

E
t

εEκHotr

rr

rrr

∂
∂

−=

∂
∂

+=
    

0Ediv

0Hdiv

=

=
r

r

 (4.1) 

 
Since any electromagnetic wave can be described by superposition of plane waves, in further 

the propagation of the plane wave in a conductor will be considered. For a monochromatic wave 
with angular frequencyω , i.e. ti

0eEE ω−=
rr

, the first two Maxwell’s equations are rewritten as 
 

  
0HμiωErot

0E)
ω
κi(εiωHotr

=−

=++
rr

rr

 (4.2) 

 
Using the relation Δ−= divgradrotrot  for the electric field we get the wave equation 
 
  0Ek̂E 2 =+Δ

rr
 (4.3) 

 
where 

  )
ω
κi(εμωk̂ 22 +=  (4.4) 
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These equations are identical to the non-conducting media case if in the latter the dielectric 
constant ε  is replaced by 
 

  
ω
κiεε̂ +=  (4.5) 

 
In addition to the complex wave number k̂  and the complex dielectric constant ε̂  we also 
introduce a complex phase velocity v̂  and a complex refractive index n̂ , which by analogy are 
defined as 

  
ε̂μ

1v̂ = ,   k̂
ω
cε̂μc

v̂
cn̂ ===  (4.6) 

 
We set  
  )i1(pn̂ ξ+=   (4.7) 

 
where p  and ξ  are real and expressed in terms of material constants ε ,μ and κ .  The square of 
eq.(4.7) is  
  )i21(pn̂ 222 ξξ −+=  (4.8) 

 
On the other hand 
 

  )
ω
κi(εμcε̂μcn̂ 222 +==  (4.9) 

 
Equating the real and imaginary parts of equations (4.8) and (4.9) we obtain 
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The positive sign of the square roots is taken in (4.11).  Since p  and )p( ξ are real the 2p and 

)p( 22ξ  must be positive. 
Equation (4.3) is formally identical with the wave equation for non-conducting medium, but 

the wave number is now complex. The simplest solution is that of a plane, time harmonic wave 
 
  ]t)sr(k̂[i

0eEE ω−⋅=
rrrr

 (4.12) 
 

where s
r

is the unit vector in the direction of  wave propagation. 
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If, in accordance with (4.6) and (4.7), we substitute k̂  by c)iξ(1pωcnωk +== ˆˆ  , we get 
 

  
t])sr(

c
p[iω)sr(pξ

c
ω

0 eeEE
−⋅⋅−

=
rrrrrr

 (4.13) 
 
The real part of this expression will read as  
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t])sr(

c
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c
ω
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which represents the electric vector that is a plane wave with wavelength pc2 ωπλ =  and with 
attenuation given by the exponential term  
 

  ξ
λ

2πpξ
λ
2πpξ

c
ωη

0
===  (4.15) 

 

Here ωπλ c20 =  is the wavelength in vacuum, λ  is the wavelength in medium. The constant 
η  is called the absorption coefficient. 

The energy density is reduces by 1e−  factor as the wave penetrates the distance δ , which is 
called the skin depth and is given by  

  
pξ
1

ω
c

η
1δ ==  (4.16) 

 
This quantity is usually a very small fraction of the wavelength. Returning to equations (4.11) we 
see that for 0=κ , the second equation is zero and the first one is εμcp 22 = , so the refraction 

index coincides with the well-known expression εμ22 cn =  for dielectrics. For metals 0≠κ  the 
next condition is usually fulfilled 

  1
εω
κ

>>  (4.17) 

 
Under this condition the equations (4.11) and (4.16) are reduced to 
 

  

ωκμ
2~δ

2ω
κμ

cp~p =ξ
 (4.18) 

 
For radiation frequency in infra-red, microwave and long radio wave ranges, the “skin depths” 
δ  for copper with static conductivity mΩ1058κ 6⋅= , 12

0 108.85εε −⋅== , 7
0 104πμμ −⋅== are 

given in table 3. 
 

      Table 3. Skin depths at the radiation wavlenght range of infra-red, microwave and 
                        long radio waves 
 

Radiation Infra-red Microwaves Long radio waves 
0λ  

δ  
m10 5−  

m102.1 8−⋅  

m1.0  
m102.1 6−⋅  

m103  
m102.1 4−⋅  
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A perfect conductor is characterized by infinitely large conductivity ∞→κ and in this 
limiting case 1→ξ and ∞→p . For such a conductor, an incident wave is completely reflected 
from the surface.     

We have seen that the basic equations related to the propagation of a plane harmonic wave in 
a conducting medium differ from those related to propagation in dielectric media by replacement 
of the real constants ε  and k  by complex ones ε̂  and k̂ . Now consider the wave propagation 
from dielectric into a conductor.  Both media are assumed to be of infinite extent fig.24.  
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Figure 24 . Transmission and reflection of EM wave on dielectric-conductor boundary surface 
 
By analogy with refraction law for dielectrics for a conductive media case we can write [76] 
 

  i
i

t sinθ
ω)κ,,n(θ

1sinθ =  (4.19) 

 
For dielectrics the refraction index is constant and real while for conductors it is complex and 
depends on incident angle, conductivity and frequency of incident wave 
 

  [ ]222
ii

2
i

2 ξ1)ξ(1pω)κ,,g(θθsin
2
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where 
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+
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Here we should keep in mind that p  and ξ  are functions of frequency and conductivity. 
When condition (4.17) is satisfied, the parameters ξ,p  in equation (4.11) are approximated as   
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 (4.22) 

where the relation 00με1c =  is used. 
Using these expressions it is easy to see that the refraction index is much larger than unity 

1ω)κ,,n(θi >> , thus the inverse value is very small.  This means, that when the condition (4.17) 
is fulfilled, the incident waves are propagating not parallel to the boundary surface and are 
transmitted perpendicular to the boundary surface ( 0~tθ ), i.e. only the tangential components 
of electric and magnetic fields survive in the conducting media. 

In accelerators the spectrum of excited EM field due to bunch interaction with the 
surrounding structure extends to frequencies up to several σω /c~b  with σ  the rms bunch 
length. In advanced accelerators the vacuum chambers are usually made of high conducting 
materials like stainless steel, aluminum or copper and the condition (4.17) is actually satisfied. 
As an example, for stainless steel vacuum chamber 116 mΩ101.4κ −−⋅=  and for a bunch with rms 
length of m1μ  we get 527ω)(εκ 0 ≈ .  

Thus for high conducting media only the tangential component of the wave in the resistive 
region (transmitted wave) can be taken into account and the task is reduced to one-dimensional 
electromagnetic problem in metal. The so-called 1D conducting line model can be applied 
instead of full space electromagnetic field description. 
 
 
4.2 A New Hybrid TE/TM Splitting Implicit Numerical Scheme for Finite 
      Conductivity Modeling in Accelerating Structures 
 

In this section a hybrid TE/TM splitting implicit numerical scheme for finite conductivity 
modeling in accelerating structures is discussed [33, 49, 50]. The problem is read as: To 
calculate electromagnetic fields excited by ultra-relativistic charged particle Gaussian bunch 
moving with the speed of light in vacuum bounded with walls of finite but high conductivity 
assuming that the following condition is fulfilled 
 
  1)ω(εκ 0 >>  (4.23) 
 
It is well known that in such a system the bunch of Gaussian charge distribution with rms bunch 
lengthσ  excites the electromagnetic fields up to the frequencies of σc~ω . This allow to 
write the condition (4.23) in terms of bunch rms length as 
  
  1σZκ 0 >>  (4.24) 

with impedance of free space 00 ε1/cZ = . 
As shown in the previous section, the condition (4.24) allows the modeling of the 

conductivity part as one-dimensional (1D) electromagnetic problem. In this section we will 
introduce a new hybrid 3D numerical scheme for finite high conductivity modeling as a 
modification of the 3D dispersion-free numerical scheme for the perfect electric boundary 
condition problem introduced in chapter 3. 

 In the new hybrid scheme for the vacuum part the 3D TE/TM splitting numerical scheme is 
used where the boundary cells of the grid are supplied by 1D electromagnetic problem for EM 
field calculation in the conductive region. In this model the tangential components of electric 
field on the boundary are applied for EM field update in the boundary cells of vacuum region. 
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The excitation source for the 1D problem will be the tangential components of the magnetic field 
in the boundary cell. Such a scheme is implemented for the simple 1D case introduced in chapter 
2. To describe the tangential components of electromagnetic fields in the boundary cells we 
introduce a local coordinate system s},{p,ϕ  connected to the boundary for cylindrical grid as 
shown in  fig.25.  
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Figure 25. Boundary local coordinate system. 

 
As can be seen from the figure 25 the s - axis of the local coordinate system is always 

directed along the normal vector to the surface. Thus according to the previous section the 
electromagnetic fields components which are tangential to the surface will be propagated into the 
conductive region in the direction of s -axis at each local point of the surface. 

In this chapter we consider the boundary interface by staircase approximation [77, 78]. It is 
zero order approximation of the boundary while the 3D numerical scheme in free space 
introduced in chapter 3 has second-order accuracy [33]. Thus due to boundary zero order 
approximation the accuracy of the 3D numerical scheme (with boundary) is reduced to the first 
order. The first-order approximation of the boundary can be reached by conformal methods 
which have been already implemented for perfect electric boundary condition (PEC) problems 
[68]. With conformal method the order of the 3D numerical scheme in the vacuum is unchanged 
(second order). The first numerical experiments with direct application of conformal method to 
hybrid scheme result in serious instabilities and rigorous study is necessary to improve the 
stability. Thus we will introduce the hybrid scheme only for staircase approximation of the 
boundary.  

The TE/TM splitting hybrid numerical scheme is realized for the electromagnetic problems 
with rotational symmetric geometries. A cylindrical coordinate }z,r,{ ϕ system is used, where z  
is the longitudinal coordinate. We will consider a Gaussian charged bunch moving at the speed 
of light c  in longitudinal direction with an offset a  parallel to z -axis (fig. 26). Using the 
multipole expansion of the source (3.9) and electromagnetic fields (3.8) the dependence of the 
fields on azimuthal coordinate ϕ  in the numerical scheme can be taken analytically. The task is 
to flow then into two-dimensional (2D) mesh for the geometry description in the discrete space. 
Thus the space discretization is required for two directions { r , z }. 
 

ConductorConductor
 

 
Figure 26. Ultra-relativistic charged particle moving through an accelerating structure with 

finite conductive walls supplied with infinite perfect conducting pipes. 
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Usually the accelerating structures are supplied with ingoing and outgoing beampipes. Thus 
in our problem we will supply the structures with perfect conducting pipes which will enable us 
to use analytics in PEC pipe to define the initial electromagnetic fields and to implement indirect 
method for wake potential calculation introduced in Chapter 3.  

The special parts of our problem are the boundary cells of the grid, which are in touch with 
conductive region and need a careful consideration. The goal is to model the impedance 
boundary condition (IBC) in time domain.  The thickness of the modeling conductor is taken 
much smaller than the skin depth of the given problem. Such a 1D problem has been discussed in 
chapter 2. As an excitation source of the 1D electromagnetic problem the magnetic field 
components in boundary cell of the vacuum region will be used. This field  is tangential to the 
boundary surface and perpendicular to the tangential electric fields. Thus the IBC modeling in 
time domain is converted into a 1D electromagnetic problem in the metal.  

According to the section 2.3 of chapter 2 the implicit 1D numerical scheme will be applied 
for our 1D problem to model the conductor. This numerical scheme according to equations 2.104 
can be rewritten as 
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with three-diagonal matrix  
 

  PPB
4
Δτ-IW *≡  (4.26) 

 
and I  the unit diagonal matrix. TheΔτ  in equation (4.25) is the discrete time step. The index c  
is used to note that we are considering the EM fields in conductive region. The two-banded 
matrices P and *P  in the 1D numerical scheme plays the role of discrete differential operators 
and depends on the discrete space stepΔx . The matrices A and B  are diagonal with entries 
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Figure 27. The geometric view of the 1D numerical scheme in conductive region. 
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According to the figure 27 the boundary conditions at the interfaces for 1D electromagnetic 
problem read as 0en

Nc, =)  and n
vacuum,

n
c,0 hh ξ

))
= . This approach is applicable when the thickness of 

the modeling conductor is taken much larger than the skin-depth of the considered problem. 
From multipole expansion of the fields eq.(3.8) follows that for the monopole case ( 0m = ) 

the non zero field components are rE , zE , ϕH . Thus the monopole case will be considered 
separately from higher order multipole cases. 
 
 
Monopole case (m=0) 
 

Graphically the discretization of the problem is illustrated in figure 28 where the 1D 
conductive lines for finite conductivity modeling are shown. 
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Figure 28. Vacuum grid with 1D conductive lines at the boundaries for monopole case. 

 
As can be seen from the figure in the cells like cell A the magnetic field component 

ji,
hϕ

)
is 

the excitation source for 1D electromagnetic problems in transverse and longitudinal directions, 
i.e. both 1D problems are equivalent. Thus the electric field components tangential to the 
boundary will be equal at any time step n

cz
n
cr

n
c eee )))

=≡ . This means that for each mesh cell the 
number of 1D problems is reduced to one instead of two. Finally the TE/TM numerical scheme 
for monopole case can be written in the following steps 
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TM components 
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3.        By updating EM fields of 1D problems using the scheme (4.25) the tangential  

electric field at next time level 1n
ce +)

 is defined. As an excitation source for the 1D 

problem, the tangential component of magnetic field nhϕ
)

 in vacuum boundary cell 
is taken. 
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where n
ce) , 1n

ce +)
 are the voltages at the conductive surface and cl  is conductive edge length. The 

conductive edge length for the cells like A (fig.28) is 2=cl , and for cells like B is 1=cl . 
 
Higher-Order Multipole Case (m>0) 
 

For a higher-order multipole case all six components of the field should be taken into 
account. The n

re) , n
ze) , nhϕ

)
 components of EM field are graphically shown on 2D mesh in fig.28.   

 

vacuum

conductor

A

B
n

,0ce ϕ
)

nn hh 0,cpp
))

=

nh 1,cp
)

nh 2,cp
)

nh 2,cp
)

n
,1ce ϕ

)

n
,2ce ϕ

)

n
,3ce ϕ

)

0.5-nh
1z

)

nh
1r

)

0.5-n
3

eϕ
)

0.5-nh
2z

)

0.5-ne
2ϕ

)

0.5-ne
1ϕ

)

vacuum

conductor

A

B
n

,0ce ϕ
)

nn hh 0,cpp
))

=

nh 1,cp
)

nh 2,cp
)

nh 2,cp
)

n
,1ce ϕ

)

n
,2ce ϕ

)

n
,3ce ϕ

)

nn hh 0,cpp
))

=

nh 1,cp
)

nh 2,cp
)

nh 2,cp
)

n
,1ce ϕ

)

n
,2ce ϕ

)

n
,3ce ϕ

)

0.5-nh
1z

)

nh
1r

)

0.5-n
3

eϕ
)

0.5-nh
2z

)

0.5-ne
2ϕ

)

0.5-ne
1ϕ

)

 
 

Figure 29. 2D view of cylindrical mesh of vacuum region. 
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The other three components nhr
)

, nhz
)

, neϕ
)

 of the field are illustrated in fig.29. Note that for 3D 
case, to find the tangential components of electric field in each direction, 1D EM problems 
should be solved, i.e. for finite conductivity, modeling of each boundary cell in vacuum should 
be supplied by three separate 1D problems. For rotational symmetric geometries the 1D 
problems for each cell are reduced to two. In multipole case a second electric field ne ϕc

)
 tangential 

to the boundary interface should be obtained. To calculate the ne ϕc
)

 field, the second 1D problem 

in conductor should be solved.  As an excitation source for this 1D problem, the nhp
)

(fig.29) 
magnetic field from boundary cell in vacuum is taken. For the cells like A (fig.29) this magnetic 
field vector is defined as a sum of magnetic field vectors nhr

)
 and nhz

)
 projected on the cell 

diagonal Fig.(30).  
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Figure 30. Overview of the discrete magnetic field components in the grid cell. 

 
Following the notations illustrated in figure 30, the nhp

)
field will read as 

 

  

zΔ
rΔtg

sinhcoshh n
r

n
z

n
p 11

=

+=

α

αα
)))

 (4.28) 

 
For the cells like B (fig.26) the nhp

)
field is equal to the nhz

)
, i.e. nn hh

2zp
))

= .  
Note that in the TE/TM numerical scheme the longitudinal component of magnetic field 

zh
)

on the discrete time axis is defined at time level )5.0n( + . Thus, this field at time level 
n could be found by following the interpolation procedure 
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Finally for IBC modeling in time domain we should connect two 1D EM problems to each 

vacuum boundary cell. The electromagnetic fields in each 1D problems should be taken 
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pairs respectively. 
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Finally the TE/TM hybrid numerical scheme for an azimuthal mode number m  read as 
TE components 
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3. The updates of EM fields of 1D problems using the scheme (4.25) give the 

            tangential  electric fields 
1n

cpe +)
 and

1n
ce +
ϕ

)
at time level (n+1). For the field updates 

            of 1D problems the  n
ph
)

 and nhϕ
)

 magnetic fields from vacuum boundary cells are 
            used as input parameters. 
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where the discrete derivative operators rP , zP  for normal and rP~ , zP~ for dual mesh have been 
applied, I  is unit diagonal matrix.  

The material matrices εM  and μM have been used which contain the information about 
lengths of mesh edges normalized on discrete space steps and the normalized mesh areas 
respectively. Thus, for staircase approximation of the boundaries the elements of material 
matrices are equal to one for vacuum region and zero for the conductive part.  

The simulation experiments show that the numerical dispersion properties of the hybrid 
TE/TM numerical scheme are preserved, i.e. as for the original TE/TM scheme (Chapter 3) the 
hybrid scheme also has no dispersion in longitudinal direction at the magic time step which is 
equal to the longitudinal space step zΔτΔ = . 

In the next section the stability and convergence of the hybrid scheme for rotational 
symmetric geometries will be discussed. 

 
 
4.3 The Stability of the Hybrid Scheme. 
 

The 3D Hybrid implicit numerical scheme is designed in a way that the stability properties of 
3D scheme in the vacuum region (3.58), (3.59) and 1D scheme in conductor (2.137) are 
preserved. Thus the stability conditions for hybrid scheme on cylindrical mesh will read 
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 (4.29) 

 
where bσ is rms bunch length, κ is the conductivity, 0Z -impedance of free space, τΔ is the 

time step normalized to the speed of light, }{ zΔ r,Δ are the space steps in vacuum region and 

cxΔ is the space step of 1D scheme for conductive region. 
The stability conditions (4.29) of the hybrid TE/TM implicit numerical scheme have been 

tested and approved by a number of numerical experiments. The numerical dispersion property 
(3.61) of the scheme also holds. Thus at the “magic” time step zΔτΔ = the developed hybrid 
scheme is dispersion free in longitudinal direction.  

The hybrid numerical scheme can model the IBC in time domain for electromagnetic 
problems, where the following relation is satisfied [see section 4.1] 

 
  1σZκ b0 >>  (4.30) 
 

In advanced accelerators the vacuum chambers usually are made of high conducting 
materials ( 510κ ≥ ) like aluminum or copper and the condition (4.30) is usually satisfied. As an 
example, for stainless steel vacuum chamber 116 mΩ101.4κ −−⋅= and  bunch rms length of m1μ , 

527σZκ b0 ≈ . Thus the above numerical scheme is applicable to high energy accelerators like 
FLASH and European XFEL project where the beam rms length varies from m5025 μ− . 
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4.4 Convergence of the Hybrid Scheme. 
 

The convergence study of the 3D hybrid numerical scheme is performed based on the 
comparison of the numerical results with the steady state solutions of Gaussian bunch wake 
potentials in a round pipe with finite conductive walls. For the points charge moving in infinite 
round pipe of radius b with the offset a parallel to the symmetry axis the analytical steady state 
solution of the longitudinal wake potential of m -th multipole is well known [79] and read as 
 
  (s)F)mcos(rq(s)w m

m
mm//, ϕ=  (4.31) 

 
with mq  the m-th multipole charge moment and the function )s(Fm  are given as 
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where )/2δ1(mη m,0++=  with m,0δ  Kronecker delta function and 0s  is so called 
characteristical distance given as 
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In the case of Gaussian bunch distribution ρ(s)  with rms length σ  the longitudinal wake 
potential read 
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Applying the Panowsky-Wenzel theorem (3.70) and the eq.(3.71) the transverse wake 

potential G
m,W⊥  and loss (kick) factor for Gaussian charge distribution can be derived. Note that 

the wake potentials are given per unit length of the round pipe. 
The convergence of the hybrid scheme is analyzed for the Gaussian bunch of rms length 

mm1σ =  moving in round pipe of radius cm1a = and wall conductivity S/m01κ 5= . To check 
the convergence the linear dependence on time step of the discrete space step in conductive 
region is required that will fulfill the stability condition (1.137) within the range of research. In 
this special case due to high conductivity the relation 2/κΔτ100xΔ c ⋅=  is applicable.  
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Figure 31. Convergence (logarithmic scale) of the monopole loss and dipole kick factors 

(red) and the prediction until 3rd order (green dashed).   
 

The results of the study is presented in figure 31, the convergence  of the numerically 
calculated loss (a) and dipole kick (b) factors is compared to the analytical values 

pC/V31.1k l =  and m/pC/V5.75k t =  respectively. In those plots the horizontal axis 
corresponds to the number of discretized point on 1σ  bunch rms length and Δ is the space step. 
All calculations in this and further sections are done with equidistance mesh and “magic” time 
step, i.e. normalized time step is equal to the longitudinal space step rΔzΔτΔΔ ==≡ . As is 
seen the numerical scheme is first order accurate as was predicted due to the staircase 
approximation of the boundary interface. Note that for convergence study the geometrical mesh 
should be shifted from boundary interface, otherwise we will observe a second-order 
convergence. The next section shows the results of numerically calculated steady state solutions 
of longitudinal monopole and transverse dipole wake potentials when the geometric mesh 
coincides with the boundary interface.  

Similar tests on convergence of the hybrid scheme have been performed for higher-order 
harmonics and it was observed that the convergence behaves similar to dipole case.  
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  4.5 Numerical Tests on Rotational Symmetric Geometries 
 

In this section several examples of the wake potentials calculations in various resistive 
structures are presented. The results are compared with known analytical solutions and the 
results obtained by other advanced numerical codes. As an example the following typical 
structures are taken: infinitely long resistive tube, resistive insert and resistive tapered collimator.  
 
    Steady State Resistive Wake Potentials.  
 

As the first test we calculate the steady state longitudinal and transverse short-range wake 
potentials of the Gaussian bunch with rms length mm1σ =  moving in a round pipe of radius 

cm1a = and walls conductivity S/m01κ 5= . For this simple geometry the adjustment of the 
geometric mesh with boundary interface is possible.  
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Figure 32. Comparison of the numerical longitudinal monopole and transverse dipole wake 

potentials (blue dashed) with analytical solutions (orange solid).   
 

Figure 32 shows the comparison of the numerically calculated longitudinal monopole (a) and 
transverse dipole (b) wake potentials with analytical wakes.  The numerical results are given for 
the mesh resolution of 10 points in1σ . In this case (mesh coincides with boundary interface) the 
error in loss and kick factors is about 3% while to obtain same accuracy of the calculation in 
staircase approximation (mesh is shifted from boundary interface) we will need more than 40 
points on1σ . 
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The Wake Potentials for Resistive Insert.  
 

As the second test we calculate the longitudinal and transverse wake potentials of the 
Gaussian bunch passing through the finite length resistive cylinder supplied with infinitely long 
perfectly conducting beam pipes (Fig. 33). The resistive part of cylinder has radius cm1a = , 
length cm10g =  and conductivity S/m01κ 4= .  
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Figure 33. Cross section of the finite-length resistive cylinder supplied with infinitely long 
perfectly conducting pipes. 

 

The analytical solutions for monopole loss lk  and dipole kick tk  factors of the Gaussian 
bunch in such structure are given in Ref. [80]  
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where the functions lK and tK  are given by  
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Figure 34 presents the numerically obtained longitudinal monopole (a) and transverse dipole 

(b) wake potentials (blue) and the analytical steady state wakes (orange) [11, 12] for the 
Gaussian bunch of rms length mμ25σ =  
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Figure 34. Comparison of transient (blue solid) and steady state (orange solid) wake 

potentials.  
 

The numerically obtained loss and kick factors are equal to 58 V/pC and 42.6 V/pC/m 
respectively. The numerical results are coincidental with the analytical prediction (4.35) for loss 
factor (57 V/pC) and kick factor ( 41.5 V/pC/m ) with accuracy of 1.7% and 2.3% respectively.   

The steady state loss factor for such an insert is equal to 16 V/pC, the loss factor being 
underestimated. The same situation is with steady state kick factor that is equal to 9.6 V/pC/m. In 
the demonstrated example of the 10cm-long resistive insert it is clearly seen that the steady state 
loss and kick factors compromise the exact results by 75%.  
  
Wake Potentials in Rotational Symmetric Tapered Collimator.  
 

For the third example we take a rotational symmetric tapered collimator (fig. 35) with 
parameters d=10mm, b=6mm, L1=200 mm, L2 =100mm and conductivity S/m01κ 4= . 
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Figure 35. Cross section of the tapered collimator. 
 

The numerical calculation of longitudinal monopole shot range wake potential (Fig. 36) of 
the Gaussian bunch with rms length mμ5σ 0=  results in the 270 V/pC loss factor for 
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conductive walls that is twice larger than for perfectly conducting walls (133 V/pC). Thus the 
real wake can not be obtained as a direct sum of the geometric and the steady-state solutions. A 
similar situation is observed for transverse wake potential.  
 

 
 

Figure 36. Comparison of the longitudinal wake potentials for tapered collimator with  
finite (blue solid) and perfect (green dashed) conducting walls. 

 
In the last example we compare the wake potentials computed by the hybrid numerical 

scheme and by CST Microwave Studio. To be able to obtain an accurate result with CST 
Microwave Studio the Gaussian bunch is taken longer mmσ 20= and the tapered collimator 
(fig. 35) is taken shorter with new parameters d=10mm, b=6mm, L1=L2 =30 mm and 
conductivity κ=100 S/m. Note that the conductivity was reduced to obtain larger wake potential 
than for the PEC case.  

Fig. 37 presents the comparison of the longitudinal wake potentials obtained by CST Particle 
Studio (CST-PS) and by the new hybrid numerical code. The wake potentials calculated by the 
new code is done by 40 discrete points on 1σ bunch rms length and is in good agreement with 
the accurate result obtained by CST-PS. An equidistant mesh and staircase approximation of 
boundary interface was used for calculation with the new code.  
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Figure 37. Comparison of longitudinal wake potential calculated by CST Particle Studio 

 (orange solid) and by hybrid scheme (blue dashed). 
 

Note that for this particular example to obtain an accurate solution with CST-PS a few hours 
is needed while for the new code (with implementation of moving mesh approach) the 
computational time is less than a minute. 
 
 
4.6 Practical Applications to European XFEL and FLASH Facilities  
 

In this section we present the application of the new numerical hybrid code for calculation of 
the longitudinal and transverse wake potentials for various resistive components of the FLASH 
and the European XFEL facilities.  

 
FLASH Tapered Collimators    

 
On the FLASH facility four collimators of the same type are installed. The collimators have a 

length of 500mm (L1=200mm, L2=100mm) (fig.35) and are made of copper material 
( S/m018.5κ 7⋅= ). Each of the collimators has different geometrical options, presented in table 4 
in accordance with fig.35. 
 

Table 4. FLASH collimator geometry parameters 
 

 Set 1 Set 2 Set 3 
b 2 mm 3 mm 6 mm 
d 4.5 mm 5.5 mm 8 mm 

 
For those three geometry options of the collimator the longitudinal and transverse wake 

potential have been calculated using the new hybrid scheme for a Gaussian bunch of rms length 
σ =50 μm. To compare the contribution of the walls finite resistivity into the total wake 
potentials the geometric wakes were calculated using the numerical code ECHO.  

Figure 38 presents the longitudinal monopole and dipole transverse wake potentials 
calculated by the new hybrid scheme and ECHO for Set 1 collimator geometry (table 4).  
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Figure 38 . Geometric (orange dashed ) and full ( blue solid ) wake potentials  for the FLASH 

collimator geometry Set 1. 
 

In table 5 the loss (kick) and rms loss (kick) factors for collimator different geometry sets 
(table 4) obtained by the new hybrid scheme and ECHO code are presented. As is seen, the finite 
resistivity of the walls increases the monopole loss and rms loss factors by about 4% and 9% 
respectively. The dipole kick and the rms kick factors are increased by about 20%, 10.5%, and 
5.5% for each geometry sets of the collimators.  
 
  Table 5. The geometric and full loss (kick) factors of the FLASH collimator.  
 

Geometric  Full  
Loss 
factor 
V/pC 

Rms Loss 
factor 
V/pC 

Kick 
factor 

V/pC/m 

Rms Kick 
factor 

V/pC/m 

Loss 
factor 
V/pC 

Rms Loss 
factor 
V/pC 

Kick 
factor 

V/pC/m 

Rms Kick 
factor 

V/pC/m 
Set 1 279.4 129.5 2037 900 292.4 141.2 2424 1114 
Set 2 244.1 103.4 1123 594 253.3 113.4 1240 670 
Set 3 157.5 63.6 266 157.9 163.4 69.5 280.7 167.3 

 
 
Rotationally Symmetric Step Collimator for European XFEL project 
 
As the next application of the hybrid numerical scheme the longitudinal and transverse wake 
potentials of rotationally symmetric step collimator (fig. 39) designed for European XFEL 
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project [3] are presented. This collimator is made from titanium ( S/m016κ 5⋅= ) and has the 
length of L=500 mm. The calculations are done for the σ =25 μm rms length Gaussian bunch.  
 

b2=2 mmb1=20 mm

L =500 mm

κ =6e5 S/m

b2=2 mmb1=20 mm

L =500 mm

κ =6e5 S/m

 
 

Figure 39. Geometry of the step collimator for  European XFEL project. 
 
The longitudinal and transverse wake potentials can be estimated by summation of geometric 
and steady-state resistive wakes.(4.31). The geometric longitudinal monopole and transverse 
dipole wake potentials can be calculated using the results derived in Ref. [81]  
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where ρ(s) is the Gaussian bunch distribution function and the function θ(s) is related to the 
error function erf(x)  as 
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Figure 40 presents the longitudinal monopole and transverse wake potentials calculated by 

the hybrid scheme (numerically) and analytical estimation (geometric + steady-state resistive). 
Note that the numerical calculation takes into account also the transient resistive wake fields 
while in analytics it is omitted.   
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Figure 40. Longitudinal monopole and transverse dipole wake potentials of step collimator  

        calculated numerically ( blue solid )  and analytical (orange dashed ) 
 expression (geometric + steady state).  

 
Table 6 presents the numerical results for monopole loss and dipole kick factors with  their rms 
deviations.  
 
   Table 6. The loss and kick factors of the European XFEL step collimator. 

 
Loss factor 

kV/pC 
Rms Loss factor 

kV/pC 
Kick factor 
kV/pC/m 

Rms Kick factor 
kV/pC/m 

1.4  0.65  14  8.7  

 
In this example the contribution of transient resistive part into the loss and kick factors is of 

the order of 3% . 
 
Wake Potentials in Undulator Intersections of European XFEL  
   

Finally we calculate the wake potentials for the undulator intersection designed for European 
XFEL project (fig. 41). The undulator cell consist of the 5161-mm long undulator section with 
the 890-mm length intersection.  
 

 
 

Figure 41. Undulator intersection of European XFEL project. 
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The intersection consists of pump, absorber, bellows, BPM (Beam Position Monitor) and 
round pipe of radius 5mm. In the table 7 are presented the lengths and the conductivities of the 
undulator section  elements [82]. 
 
Table 7. The list of undulator intersection elements. 
 
 
 
 
 
 
 
 
 
 

1 2 3 4
5

6 7
1 2 3 4

5
6 7

 
The geometries of the undulator intersection elements are presented in Figure 42.  
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b. Beam Position Monitor (BPM) 
 

N Element Length Material Conductivity 
1 Elliptical pipe 5161 mm Aluminum 3.66E+07 
2 Pump 105 mm Aluminum 3.66E+07 
3 Absorber 22 mm Copper 5.80E+7 
4 Bellow 30 mm BeCu 174 2.78E+7 
5 BPM 51 mm Stainless Steel 304 1.4E+6 
6 Bellow 30 mm BeCu 174 2.78E+7 
7 Round pipe 652 mm Copper 5.80E+7 
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z
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4mm
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c. Absorber 

Figure 42. Geometries of undulator intersection elements: bellow (a), BPM (b), absorber (c).  
 

In figure 43 are presented longitudinal monopole and transverse dipole wake potentials 
calculated by the hybrid scheme and analytical estimation (geometric+resistive) for the Gaussian 
bunch of σ =25 μm rms length passing the undulator intersection. 
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Figure 43. Longitudinal monopole and transverse dipole wake potentials for undulator 

intersection of European XFEL project calculated by new hybrid numerical scheme (blue solid) 
and analytically (geom.+resistive) (orange dashed). 

 
Obtained loss and kick factors are presented in table 8.  
 
Table 8. Loss and kick factors of the European XFEL undulator intersection. 
 

 Loss factor 
V/pC 

Rms Loss factor 
V/pC 

Kick factor 
V/pC/m 

Rms Kick factor 
V/pC/m 

Hybrid scheme 167.4 56.04 713.6 460.8 
Geom.+Resistive 180.9 61.7 766.0 482.1 
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The effects of  “in” and “out” undulator intersection transitions are taken into account in 
calculations by adding 3cm long round aluminum pipes of radius 4.4 mm at both sides of the 
intersection. In the calculation the resistive wake potentials are estimated for the following 
elements:  pump, absorber (4 mm radius), BPM (straight section) and round pipe. As is seen  
(fig. 43 and table 8) the monopole loss and dipole kick factors obtained analytically lead to 8% 
overestimation of the losses calculated with hybrid scheme (transient resistive effects included). 

 
 

4.7 Conclusion 
  

In this chapter a new hybrid numerical scheme for rotational symmetric structures was 
introduced. This hybrid scheme was developed for wake field calculations excited by ultra short 
bunches moving through the structures with finite conductive walls. The new hybrid scheme is 
fully time domain and is dispersion-free in longitudinal direction that allows to calculate the 
wakefields for very long (L>1m) structures without loss of calculation accuracy. The realization 
of the scheme was done for staircase approximation of the boundary that reduces the calculation 
accuracy to the first order. Several tests have been performed to improve the hybrid scheme. The 
results are in good agreement both with analytics and numerical results obtained by CST-PS. The 
new hybrid scheme was applied to calculate the wake potentials for the various accelerator 
elements of FLASH linear accelerator at DESY and the European XFEL project.  
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Summary 
 

The acceleration of electron bunches with very small longitudinal and transverse phase space 
volume is one of the most actual challenges for the future International Linear Collider and high 
brightness X-Ray Free Electron Lasers.  The exact knowledge on the wake fields generated by 
the ultra-short electron bunches during its interaction with surrounding structures is a very 
important issue to prevent the beam quality degradation and to optimize the facility performance. 
The high accuracy time domain numerical calculations play the decisive role in correct 
evaluation of the wake fields in advanced accelerators. Although various analytical and 
numerical methods have been developed to evaluate these fields, the calculation of the wake 
fields generated by ultra-short bunches in 3D structures with finite conductivity walls still 
remains a challenging problem.  

The one problem associated with accumulation of numerical dispersion errors during the 
wake field calculation in accelerators is successfully solved by implementation of the dispersion-
free numerical scheme for structures with perfectly conducting walls.  

To model the conductive boundaries, the numerical scheme for one-dimensional 
electromagnetic problems with Impedance Boundary Condition has been derived. This scheme is 
an approximation of electromagnetic properties of the 3D metallic boundaries, since for high 
conductivity materials the incident waves are transmitted perpendicular to the boundary surface.  

To calculate the wake fields produced by ultra short bunches in structures with resistive 
walls, a new 3D time-domain dispersion-free hybrid numerical scheme is developed. The 
stability of the new hybrid numerical scheme in vacuum, conductor and bound cell is studied. 
The stability conditions have been tested and approved by a number of numerical experiments. 
The convergence of the new scheme is analyzed by comparison with well-known analytical 
solutions.   

The realization of this new hybrid 3D implicit numerical scheme is done for rotationally 
symmetric geometries and staircase approximation of the boundary surface. A good agreement of 
the numerical simulations with the well-known analytical results and CST Particle Studio 
simulations are obtained.  The new hybrid scheme was applied to calculate the wake potentials 
for the various components of FLASH linear accelerator at DESY and the European XFEL 
project.  
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