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Abstract

Neue nanostrukturierte Materialen werden mesoskopisch genannt, wenn die charakteristische
Länge gro ist im Vergleich mit den elementaren Bausteinen, z.B. Atome oder Moleküle. Teilt
man Materialien in makroskopisch und mikroskopisch ein, so können diese durch klassische
Physik und durch Quantenphysik beschrieben werden. Mesokopische Materialien bilden die
Brücke zwischen der Nano- und der Mikroskala. Aufgrunf ihrer einizigartigen Eigenschaften
sind mesoskopische Materialien vielfach in der Nanotechnologie anzutreffen.

Ein bemerkenswertes Beispiel für mesoskopische Materialien sind selbst-organisierte kol-
loidiale Kristalle. Durch ihre photonische Bandlücke sind kolloidiale Kristalle vielversprechende
Bausteine der Photonik. Weiterhin dient der selbst-organisationseffekt kolloidialer Lösungen
als anerkanntes Kristallisationsmodel in atomaren Systemen. Diese Beispiele sind die Triebfed-
ern für das steigende wissenschaftliche Interesse an der Herstellung und der gezielten Manipu-
lation der Eigenschaften von kolloidialen Kristallen.

Hochauflösende und drei-dimensionale Bildgebung von mesoskopischen Materialien ist eine
eigene Herausforderung. Klassische Mikroskopie mit sichtbarem Licht ist prinzipiell auflösungs-
begrenzt und eigent sich daher überwiegend für makroskopische Objekte. Die interne Struktu-
runtersuchung von opaquen Materialen lässt sich auerdem nur mit hohem Präparationsaufwand
durchführen. Oberflächenuntersuchung mit atomare Auflösung erreicht man mit Elektronen-
mikroskopen. Durch die geringe Eindringtiefe von Elektonen lässt sich die interne Struktur
eines Objekts nur durch aufwändige Präparationsmethoden vermessen. Kohärente Röntgen
(X-Ray) Streuung eröffnet im Hinblick auf die Vermessung der internen Struktur eines Ob-
jekts viel versprechende Ergebnisse. Die vorliegende Arbeit beschreibt inwiefern kohärente
Röntgenstreumethoden auf die Strukturanalyse von drei-dimensionalen kolloidialen Kristallen
angewendet werden können.

Diese Arbeit widmet sich drei in sich abgeschlossenen Projekten. Zuerst werden Effekte
dynamischer Streuungtheorie in Verbindung mit kohärenter Röntgenbeugungsbildgebung (Co-
herent X-ray Diffractive Imaging, CXDI) vorgestellt. Im zweiten Teil sind die Ergebnisse
eines CXDI Experiments an einem einzelnen kolloidialen Kristallkorn zusammengefasst. Ein
wichtiges Resultat stellt die Auflösung von einzelnen Partikeln im drei-dimensionalen Kristall-
gitter dar. Der dritte Teil umfasst Röntgenbeugungsstudien zur Strukturentwicklung von dünnen
kolloidialen Kristallschichten unter steigender Temperatureinwirkung. Auf Basis dieser Studien
wird ein physikalisches Model zur Beschreibung von nano- und mesoskopischer Strukturen-
twicklung unter Temperatureinfluss vorgeschlagen.
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Abstract

Mesoscopic materials form the subset of nano-structured materials for which the characteristic
length scale is large compared with the elementary constituents of the material, i. e. atoms
or molecules. These systems form a bridge between macroscopic systems governed by classi-
cal physics and atomic systems governed by quantum physics. Due to their unique properties
mesoscopic materials find a variety of applications in the fields of nanofabrication and nan-
otechnology.

A remarkable example of promising mesoscopic material are self-organized colloidal crys-
tals. Due to the existence of the photonic band gap they have valuable potential of applications
in photonics. In addition, the process of self-organization in colloidal suspensions widely serves
as a simple model of crystallization in atomic systems. These reasons are main drivers for a
growing scientific interest in the methods of fabrication and control of intrinsic properties of
colloidal crystals.

High resolution three-dimensional imaging of mesoscopic objects is a challenging problem.
Available imaging techniques of visible light microscopy can be applied for structural investi-
gations of macroscopic objects, but they are severely limited in resolution. In addition, some of
the materials are opaque for visible light which complicates imaging of the internal structure of
such samples. High quality images of a surface structure with atomic resolution can be provided
by electron microscopy. However, short penetration depth for electrons and elaborate sample
preparation in electron microscopy do not allow obtaining information about the bulk without
destroying the sample. In this sense X-ray scattering methods offer a great opportunity for in-
situ studies of mesoscopic objects. The present work describes how methods of coherent X-ray
scattering can be applied to structural investigations of three-dimensional colloidal crystals.

This thesis is devoted to three separate projects, which can be considered as indepen-
dent. First, the dynamical scattering effects in the Coherent X-ray Diffractive Imaging (CXDI)
method will be discussed. Based on the analysis of the model and results of simulations, a
straightforward method of correction for the refraction and absorption artifacts in the Bragg
CXDI reconstruction is suggested. The second part summarizes the results of an Coherent X-
ray Diffractive Imaging experiment with a single colloidal crystal grain. A remarkable result
is that positions of individual particles in the crystal lattice have been resolved in three di-
mensions. The third project is devoted to X-ray diffraction experimental studies of structural
evolution of colloidal crystalline films upon incremental heating. Based on the results of the
analysis a model of structural evolution of a colloidal crystal upon heating on nanoscopic and
mesoscopic length scales is suggested.
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Chapter 1

Coherent X-ray scattering

1.1 X-ray sources

X-rays are a form of electromagnetic radiation with corresponding wavelength similar in scale
to atomic dimensions. The most common practice to distinguish them from ultraviolet and
gamma rays is based on the photon energy: spectrum of X-rays cover the range from 0.5 keV to
100 keV (see Figure 1.1). Since their discovery in 1895 [2], X-rays have had a profound impact
on science, medicine and technology. Very high frequencies and short wavelengths, complex
and element sensitive interaction with material, ability to penetrate deep into the interior of solid
objects opened a variety of possibilities to use them as invaluable probe of a structure of matter.

X-ray science has been extensively developing over more than a hundred years and it is still
developing fast nowadays. Its progress has been closely interconnected with evolution of X-ray
sources, since elaboration of new techniques and applications has been requiring new X-ray
facilities. At the same time, with the advent of a new generation of X-ray sources new types
of experiments became available leading to development of other novel methods. Different
mechanisms for the generation of X-rays, available for experiments are illustrated in Figure 1.2.

In an X-ray tube the electrons accelerated by external electric field are slowed down upon
collision with the metal target, and emit so-called Bremsstrahlung, or ”braking radiation”. Its
spectrum depends on the target material and the accelerating voltage and in general can be de-
scribed as a smooth, continuous curve with several intense spikes of characteristic lines. The
characteristic radiation is emitted in consequence of atomic transition. The electrons knocked
out from an inner shell of the atoms are replaced by electrons from higher states. In a con-
sequence of filling the vacancy, the X-ray photon with its energy precisely determined by the
electron energy levels is emitted. Since the process of generation and refilling of vacancies is
independent for each individual atom, radiation is spatially incoherent (theory of optical co-
herence will be discussed in Chapter 2) and emitted into all directions. In most experiments
only characteristic part of radiation is used, but the Bremsstrahlung is filtered. X-ray tubes
have played a significant role in material science. Thus, pioneering experiments with X-ray
diffraction on crystals [3, 4] which have initiated a remarkably successful field, called X-ray
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Figure 1.1: The electromagnetic spectrum, showing the major categories of electromagnetic waves [1].

crystallography were performed with X-ray tubes. Modern X-ray tube is a powerful tool which
is widely used in science, medicine and industry.

In a different type of X-ray source, as synchrotron, light charged particles, electrons or
positrons, accelerated to relativistic speed go through strong magnetic field. The Lorenz force
accelerates the particles bending their trajectory and as a result the radiation is emitted. Due
to relativistic effects the radiated power is concentrated in a narrow cone with the opening an-
gle θ = γ−1 where γ = E/mc2 is the particle energy in units of the rest mass energy. The
first-generation synchrotron light sources were using synchrotron radiation from accelerator
facilities of high energy physics, where it was produced as an undesired side effect, counteract-
ing the intended acceleration. In these big accelerators the electrons were forced to circulate
around the storage ring composed of a series of bending magnets separated by straight sections.
The synchrotron radiation produced by the magnets was used parasitically. However, soon the
unique properties of synchrotron radiation such as high intensity, tunability over a large range of
the electromagnetic spectrum, polarization properties, pulsed time structure, and extreme colli-
mation motivated construction of dedicated facilities. These light sources of second generation
were exclusively constructed for the production of X-ray synchrotron radiation and became a
great step forward in the productivity of experiments.

Current third generation synchrotron light sources 1 optimise the intensity of generated X-
rays by incorporating long straight sections into the storage ring for ”insertion devices” such as
undulators and wiggler magnets [5, 6]. These periodic magnetic structures composed of many
repeating north and south poles force the particles to follow a sinusoidal or helical path. In
wiggler these path deflections are rather large and the emission process is incoherent similar to
radiation from a bending magnet. At the same time the intensity is enhanced by a factor of Np,
which is the number of magnets in the wiggler. In addition, a continuous spectrum extends to
shorter wavelengths.

1For example, PETRA III in Germany, ESRF in France, Spring-8 in Japan, APS in the USA and others.
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Figure 1.2: Principles of X-ray generation in X-ray tube, bending magnet, wiggler, undulator and Free
Electron Laser. The electron beam is always marked in purple and the X-rays are visualized here in
orange. The different colors in the magnetic structures indicate the two different magnetic poles.
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Undulators are similar to wigglers but generally have weaker fields and more dipoles. In
undulator the angular excursions of the particle are much smaller than the natural opening an-
gle of radiation θ. Also, the electromagnetic wave emitted by a single particle in one turn
interferes constructively with the field of the same particle emitted in the previous turn. As a
consequence, the resulting beam has smaller angular divergence and a spectrum concentrated
into narrow bandwidth for a given photon energy and its harmonics n. The resulting open-
ing angle in this case might be approximated by θ/

√
Np and the photon flux can be up to Np

times more than from a bending magnet. Despite the similarity, wigglers evolved independently
from undulators at the start. One of the major differences is that the efficient operation of the
undulators requires rather small and parallel beam of particles compressed into bunches. In
third-generation synchrotron sources a dramatic improvement of the photon beam quality has
been achieved due to technological development of storage rings specialized for undulators.

The electromagnetic field generated in the undulator is confined to a narrow cone of angles
θ = 1/2γ, where γ = 1/

√
1 + (v/c)2 is the Lorentz factor, v is the speed of the particles 2. The

wavelength of emitted radiation can be expressed as [7]

λ =
λu
2γ2

(
1 +

K2

2
+ γ2θ2

)
, (1.1)

where λu is the undulator period, K = eB0λu/2πmec is the undulator parameter, θ is the off
axis angle, B0 is the magnetic field of the undulator, e is the elementary charge, and me is the
rest mass of the electron.

Although the radiation from a single electron in undulator is coherent, in the sense that the
radiation from one oscillation is in phase with that from the subsequent ones, the radiation from
different electrons is incoherent. This comes from the fact that the electrons in the bunch are
not ordered spatially. In order to force a group of electrons irradiate as a single one, they have
to be compressed into a microbunch with longitudinal thickness less then the wavelength. The
principle of fourth generation light sources is based on the idea that the emitted electromagnetic
field produced in an undulator can become strong enough to modulate the electron distribution
within the electron bunch [8]. Over the length of the undulator the formerly smooth electron
bunch becomes structured into several micro bunches. The distance between them is exactly
the wavelength of the generated field, although each of the micro bunches is narrower then that.
Almost all electrons in this periodic structure begin to emit coherent radiation in phase and thus
enhance the modulating field. Through constructive interference the intensity increases expo-
nentially as the electron beam and the radiation co-propagate along the undulator. This process
is called Self Amplification of Spontaneous Emission (SASE) [9, 10]. It demands long undula-
tor sections and high requirements on the electron beam quality in terms of small emittance, low
energy spread, and a large critical current. Light sources based on SASE, also called X-ray free-
electron lasers (XFEL), are built on linear accelerators but not the storage rings as conventional

2For example, at the third generation synchrotron source PETRA III electrons have an energy of 6 GeV. This
yields about 50 µrad of the natural opening angle θ.
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synchrotron [11]. Several of them are operating currently 3, being constructed 4 or planned 5.
Extreme intensity, high degree of spatial and temporal coherence, ultrashort structure of X-ray
pulses produced by XFEL open great opportunities for imaging and time-resolved experiments
in materials science and biology.

Due to the weak interaction of X-rays with matter the amount of the photon flux available
is crucial for most applications. It is typically characterized by the spectral photon flux, that is
determined by number of photons per second within a bandwidth (typically 0.1 %) [12]

F (λ) =
Photons/second

(0.1 % bandwidth)
. (1.2)

In many practical cases the collimation of the beam is important, therefore it becomes more
convenient to measure the quality of X-ray source with the brilliance [13]

Brilliance =
Photons/second

(mrad2) · (mm2 source area) · (0.1 % bandwidth)
. (1.3)

Distinct to the spectral photon flux this characteristic takes into account the source area (in mm2)
and the angular divergence of the photons (in mrad2), or how fast the beam spreads out. With
higher brilliance more photons can be concentrated in a spot. The Figure 1.3 illustrates trends
in brilliance of X-ray sources since their invention to nowadays. Typically, the brilliance and
the coherence properties of the X-ray beam are determined by the electron bunch properties and
are thus limited by the ring characteristics. An important aspect for high-quality beam is how
densely the electron bunch is packed and its transverse velocity spread. That is characterized
by the electron beam emittance εe = σeσ

′
e, where σe and σ′e is the size of the electron bunch and

its divergence, respectively. A low emittance of the photon beam results in a higher brilliance
and a higher coherent photon flux of the source.

1.2 Basics of X-ray scattering

The interaction of X-rays with matter includes variety of effects with high sensitivity to material
properties at different scales. There are two common approaches to describe it: to treat the
material as a continuum, with an interface to the surrounding or to consider it as an ensemble of
atoms or molecules. First, the interaction of X-ray photon with a single atom will be discussed.

Generally, it can happen in one of two ways: the photon can be scattered or it can be
absorbed. In the case of absorption the photon energy is spent to knock out an electron from the
inner shell, and the excess energy is transferred to the electron kinetic energy. This process is
known as photoelectric absorption and quantitatively can be described by the linear absorption

3For example, SACLA in Japan, SLAC FEL in the USA or FLASH in Germany.
4European XFEL in Germany, SwissFEL in Switzerland and others.
5For example, NGLS in the USA.
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Figure 1.3: Evolution of the peak brilliance of different X-ray sources. The Figure was adopted from
European XFEL website [14].

coefficient µ in differential equation

− dI(z) = I(z)µdz. (1.4)

Here µdz is the attenuation of the beam through an infinitely small sheet of thickness dz at a
depth z from the surface. The solution of this equation establishes an exponential decay of the
intensity in the direction of the beam propagation and is known as the absorption law

I(z) = I0e
−µz, (1.5)

where the incident beam intensity at z = 0 is denoted as I0. The absorption cross section
has a distinct dependence on the photon energy E and atomic number Z of the absorber. Far
from the absorption edges corresponding to characteristic energies of electrons in atom it is
approximately proportional to Z4/E3.

Differences in the absorption cross-section between different elements make X-rays remark-
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ably useful for imaging of interior of media. The very first example of such application was
demonstrated in 1896 by Röntgen [2], where he visualized the structure of bones in a hand of
a living human. Absorbing higher fraction of the radiation than surrounding tissue the bones
appeared as a shadow on the photograph. This approach is widely used in imaging techniques,
such as in radiography [15] and X-ray computed tomography [16].

The most simple way to understand the scattering process is to consider a single photon
colliding with a free charged particle. The electric field of the incident photon accelerates the
particle, causing it to emit radiation, and thus the wave is scattered. As far as the atomic nucleus
is too heavy to scatter X-ray photon, the only scattering by the electron shell has to be taken
into account. We will assume in the following that the distance to the observation point is much
larger then the wavelength and size of scattering elements such as atoms, molecules or unit cells
in the case of a crystal.

1.2.1 Scattering on a single electron

Let us consider the most elementary case of collision of one X-ray photon with a single, free
electron. In a quantum mechanical description, the scattered photon has a lower energy relative
to that of the incident one, since part of the energy is transferred to the recoiling electron. This
inelastic scattering process is known as the Compton scattering [17]. The shift of the wavelength
∆λ increases with scattering angle Θ according to the Compton formula

∆λ =
2πh̄

mec
(1− cos Θ), (1.6)

where h̄ is the Plank constant, me is the electron rest mass, and c is the speed of light. The Fig-
ure 1.4 illustrates the ratio of the final to initial energy of the photon given by this formula and
the relation E = 2πh̄c/λ. The scattering becomes progressively more inelastic as the energy E
of the incident X-ray is increased and the difference between energies is more pronounced for
larger scattering angles. On the other side the low-energy limit can be well approximated as
elastic meaning without any loss of energy as described by the classical electromagnetism the-
ory [18]. This limit is valid as long as the photon energy is much less than the mass energy of
the particle. It has to be emphasized that elastic and inelastic scattering are different processes
and the energy spectrum of scattered radiation is always composed of them both. Being in-
coherent, Compton component cannot form an interference pattern 6, but produces a smoothly
varying background which sometimes needs to be subtracted from the data. The cross-section
of Compton scattering is decreasing with decrease of the incident energy while the cross-section
of elastic scattering is getting more and more dominant. Theoretical and experimental studies
described in this work are focused on the latter type of X-ray scattering, known also as Thomson
scattering.

6The coherence and the role of the statistical properties in the formation interference pattern will be discussed
in the next Chapter.
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Figure 1.4: The ratio of the energy Es of the scattered photon to the energy E0 of the incident one as
function of scattering angle.

In the classical electromagnetic theory the process of the elastic scattering is described in
the following way. The electron is accelerated by the electric field component Ein and moves
in the direction of its oscillations, resulting in the dipole radiation

Es =
1

c2R
[[d̈n]n]. (1.7)

Here the direction to the point of observation located at distance R0 from the electron is given
by the unit vector n. The second time derivative of the dipole moment can be expressed as
a function of accelerating electric field from the Newton’s second law d̈ = e2Ein/me. With
respect to the polarization of the incident beam, the scattered amplitude can be rearranged as

Es(R,Ψ, t) = −r0
eiωR/c

R0

sin Ψ · Ein(t−R/c). (1.8)

Here the constant r0 = e2/(mec
2) = 2.82× 1013 cm is a classical radius of the electron, and

the angle Ψ is formed by the direction of the polarization of the incoming field and direction to
the observation point (see Figure 1.5). The observable quantity is intensity Is defined as energy
per unit area per unit time that is given by the Poynting vector in CGS units averaged over the
oscillation period

Is =
c

8π
〈E2

s〉 = I0
r2

0

R2
sin2 Ψ = I0

r2
0

R2
C. (1.9)

The polarization factor C = sin2 Ψ is usually expressed through the scattering angle Θ. It
equals 1 in the case of the σ-polarization when the direction of oscillations of the electric field
is perpendicular to the scattering plane determined as the plane formed by the wave vectors of
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Θ 

E0 

Es R 

ψ 

Figure 1.5: The angular dependence of Thomson scattering illustrated as a surface of constant intensity.
For clarity only lower part of the surface is shown. The direction of the electric field oscillations is shown
by orange for the incident radiation and by red for the scattered one.

the incident and the scattered waves. In the case of the π-polarization which corresponds to in-
plane oscillations the polarization factor is given by cos2Θ. The Figure 1.5 illustrates angular
dependence of the scattered radiation which takes the form of a donut with its maximum in the
equatorial plane. In the case of unpolarized primary beam the σ and π components have equal
contributions, so that

C =
1 + cos2 Θ

2
. (1.10)

Being more strong in a direction perpendicular to acceleration, the scattered radiation appears
to be more or less polarized, depending on where an observer is located. In this way the process
of scattering always produces partial polarization which becomes linear at 90◦ as far as only
σ-component can be scattered at this angle.

1.2.2 Scattering on atom

The radiation field scattered by an atom is a superposition of contributions from all electrons,
where the magnitudes of all the terms are the same because characteristic size of atom is orders
of magnitude smaller than the distance to the observation point. That size, however, is compa-
rable with the wavelength of the radiation, therefore the phases of terms defined by the optical
path depend on the position of the scattering volume in atom.

Let us consider the phase difference, between the wave scattered by a volume element
around the origin and that, scattered by another one located at r (see Figure 1.6). The part
of the optical path which is common for both wave can be omitted. If the incoming wave is
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Figure 1.6: Scattering from an atom. The wavevectors of the incident and the scattered waves are denoted
as k0 and kf . The difference in phase between a wave scattered at the origin and one at a position r is
given by k0 · r− kf · r.

assumed to be plane the phase difference is given by expression

∆φ(r) = k0 · r− kf · r = −q · r, (1.11)

where k0 and kf are the wavevectors of the incident and scattered fields and the scattering
vector q = kf − k0 is known as the wavevector transfer. If the electron density distribution is
specified by a number density, ρ(r) the resulting scattered amplitude from the whole atom will
be proportional to a Fourier transform

f(q) =

∫
ρ(r)e−iq·rdr, (1.12)

known as the atomic form factor. In the limit q → 0 all different volume elements scatter in
phase so that f approaches Z, the number of electrons in the atom. As q increases from zero
the different volume elements start to scatter out of phase and consequently lim

q→∞
f(q) = 0.

Typically the electron distribution in the atom considered as being spherically symmetric
thus the integral in equation (1.12) has only real part, denoted hereafter as f 0. It should be noted
that given model of scattering by an atom does not take into account the fact that electrons in
atom are not free but bounded with certain discrete energy levels. In more accurate treatment
the corrected atomic scattering factor can be presented as

f = f 0 + ∆f ′ + i∆f ′′ (1.13)
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where ∆f ′ and ∆f ′′ are the real and imaginary parts of the anomalous dispersion correc-
tion [19]. They are normally considered as functions of the X-ray energy h̄ω only as far as
the angular dependence of these values is much smaller than that of f 0. When the ω is close
to one of the resonant frequencies in atom, the total scattering dramatically increases and all
components in the decomposition (1.13) reach their extremal values. As consequence, the en-
ergy dependence of the absorption coefficient displays a sharp variation in the vicinity of that
resonance, that is known as absorption edge. In this narrow energy range the atomic factor
reveals high sensitivity to the electronic states structure in the atom. That is widely used in the
methods of X-ray absorption spectroscopy, such as Extended X-ray Absorption Fine Structure
(EXAFS) and X-ray Absorption Near-Edge Structure (XANES) [20]. At the same time, far
from the absorption edges the dispersion correction parts are rather small. Tables of values f 0,
∆f ′ and ∆f ′′ are given in the International Tables For Crystallography [21].

The treatment of the scattering by an atom, which has been given here, is rather simplified
and ignores the X-ray fluorescence [22], magnetic scattering by the electron spin [23], influence
of molecular vibrations [24] and other effects. However, this classical approach is entirely
sufficient in the majority of cases dealing with coherent X-ray scattering.

Using the same reasoning for a cluster of atoms we can find that the scattered field from a
small object of size d at the distance z is directly proportional to the Fourier transform of the
electron density distribution function. Because of this relationship between real space spanned
by r and the Fourier space spanned by q, the latter is referred to as reciprocal space. This basic
relation is widely used in X-ray scattering although the limitations of this simple approach have
to be discussed.

First, the observation point has to be located in the far-field, which is defined as a zone
where the Fresnel number

Nf =
d2

λz
, (1.14)

is much less than unity. If this condition is fulfilled, the optical paths can be treated as parallel
for all points within the object which results in the phase difference q · r. Second, the model
assumes the incoming radiation to be a plane wave throughout the whole object and also that
the scattered wave does not experience rescattering on the way to the observation point. In the
literature that is often referred as the first Born approximation [25]. Due to weak interaction
of X-rays with media such assumptions work well for small samples consisting of comparably
small number of atoms or molecules, where the effects of interference can be neglected.

1.3 Kinematical theory of X-ray diffraction by crystals

One of the most remarkable phenomena in X-ray science is the diffraction of coherent X-ray
radiation by crystals. In this case ordered ensemble of atoms works as a three-dimensional (3D)
diffraction lattice and the radiation, scattered by different atoms interferes positively for certain
directions. In the scattering pattern that results in appearance of intense peaks on the detector,
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so-called Bragg peaks. This phenomenon was discovered experimentally in 1912 by Max von
Laue [3, 26] and explained theoretically in 1913 by William Bragg [4].

There are two theoretical approaches to describe the diffraction of the wave field by periodic
structures, known as the kinematical and dynamical theories [27]. The kinematical theory is
based on the assumption that the scattered radiation does not experience rescattering on the way
to the detector which leads to a considerable simplification. This approximation is also known
as the weak-scattering limit because it is valid while the intensity of the diffracted radiation
is small in comparison to the intensity of the incident wave [27]. The dynamical theory takes
into account the multiple scattering and the interference effects, introduced by coupling of the
transmitted and scattered waves in a crystal. First the kinematical theory of X-ray diffraction
on the example of an ideal crystal will be discussed.

The ideal crystal is defined as an infinite medium with translational symmetry, which con-
sists of identical cells (single or several atoms, molecules etc.). These unit cells are positioned
with an invariable translational symmetry, described by three linearly independent space vectors
a1, a1 and a3. Then every unit cell is displaced from one to another one with a distance defined
by a translation vector

Tn = n1a1 + n2a2 + n3a3 (1.15)

where n1, n2, n3 are integer numbers. That periodic and systematic arrangement of atoms forms
a regular repeating pattern called the crystalline lattice. Characteristic symmetries of a given
lattice which include symmetry elements such as translations, rotations, reflections, and their
combinations play key role in mechanical, optical and electrical properties of crystals. The full
classification of all crystal structures which comprise the 32 symmetry classes and 14 distinct
types of lattices, known as Bravais lattices, can be found in standard books on crystallography
such as [28].

The electron density in a crystal can be expressed as the convolution of an electron density of
a unit cell ρuc(r) and infinite periodicity function of the lattice multiplied by the shape function
s(r) defined as 1 within the crystal and 0 everywhere outside

ρ(r) = ρuc(r)⊗
∑
n

δ(r−Tn) · s(r). (1.16)

Here the summation is carried out over all possible integer vectors n = {n1, n2, n3}. As it was
shown in previous section, the scattered amplitude in the far-field is proportional to the Fourier
transform of the electron density if the weak-scattering limit is valid. For the expression (1.16)
it can be evaluated as [29]

A(q) = −r0Fuc(q) ·
[(2π)3

Vuc

∑
hkl

δ(q−Ghkl)
]
⊗ s′(q), (1.17)

where the convolution theorem for Fourier Transform [30] was applied. Let us now discuss all
components in the formula (1.17) one after another.
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The structure factor Fuc(q) represents the scattering ability of a single unit cell in the direc-
tion corresponding to the scattering vector q and can be expressed as a sum over all the atoms
in the unit cell

Fuc(q) =
∑
j

fj(q)e−Wj(q)e−iqrj , (1.18)

where fj(q) is the atomic factor of the jth atom and rj is the position of this atom within the
unit cell. The Wj(q) is the Debye-Waller factor which takes into account the attenuation of the
coherent scattering properties due to the thermal vibrations of the atoms [31]. Being dependent
on a type of the atoms and their spatial arrangement, the structure factor is widely used in solid
state physics as a unique footprint of crystalline materials.

The Fourier transform of the direct lattice represents infinite periodicity function in recipro-
cal space. That is given by the sum of δ−functions normalized by the unit cell volume Vuc. It
describes a regular grid, or reciprocal lattice, with basis vectors

b1 = 2π
a2 × a3

a1 · (a2 × a3)
; b2 = 2π

a3 × a1

a1 · (a2 × a3)
; b3 = 2π

a1 × a2

a1 · (a2 × a3)
. (1.19)

The position of each node on this grid determines the reciprocal lattice vector

Ghkl = hb1 + kb2 + lb3, (1.20)

where hkl are integers. Thus the periodicity function takes nonzero values whenever the scat-
tering vector coincides with one of the reciprocal lattice vectors

q = Ghkl. (1.21)

The equation (1.21) is called the Laue condition for the observation of X-ray diffraction. Phys-
ically that corresponds to the case when the scattered wave from one unit cell is in phase with
the waves scattered by surrounding cells. Due to translational symmetry the constructive inter-
ference occurs over the whole crystal that leads to bright intensity peak in the selected direction.

A simple and elegant way to visualize diffraction events in reciprocal space graphically
is provided by the Ewald construction, shown schematically in Figure 1.7. When the wave
vectors of the incident k0 and diffracted kh waves are drawn with respect to the reciprocal
lattice they compose a triangle with the third side represented by the scattering vector q =

kh−k0. The vector k0 points to the origin of reciprocal space and makes an angle of θB with the
crystalline planes. The vector kh begins at the same point as k0 and follows the direction to the
detector position. Then all achievable points in reciprocal space for a given crystal orientation
are represented by a sphere of the radius 2π/λ, constructed around the beginning point of the
wave vectors. In the literature, that spherical cross-section of the reciprocal space is known as
the Ewald sphere [28]. It has to be noted that in reality the measured intensity is integrated over
some solid angle captured by the detector and the bandwidth of the incident radiation, which
defines the thickness of the sphere. In full agreement with the Laue condition the constructive
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Figure 1.7: Reciprocal lattice of a crystal with the basis vectors b1,b2,b3 and a graphical representation
of the Bragg condition by the Ewald sphere. The corresponding diffracting planes in real space are
marked with dash lines. The (000) node is the origin of the reciprocal space, the q is the scattering
vector.

interference can be observed whenever the Ewald sphere cross over one of nodes in reciprocal
space with the vector Ghkl.

Each node in reciprocal space specified by the reciprocal lattice vector Ghkl corresponds to
a set of parallel equidistant planes in the crystal. The spacing between the planes dhkl relates to
the magnitude of the reciprocal lattice vector as

dhkl =
2π

|Ghkl|
. (1.22)

It can be shown that one of the planes passes through the origin of the unit cell, and the next
nearest makes intercepts (a1/h, a2/k, a3/l) on the crystallographic axes (a1, a2, a3). The in-
tegers hkl, called Miller indices, are commonly used in literature for specifying the family of
crystallographic planes. A planar spacing can be calculated from these numbers and the basis
of the direct lattice. For example, in case of a cubic lattice directly from the geometry it follows
that

dhkl =
a√

h2 + k2 + l2
, (1.23)

where a is the lattice parameter. One of the important features of the planes specified by Miller
indices is that the density of lattice points in a given family of planes is the same. Thus all
lattice points are contained within each family. From the geometry it follows that similar to
the reflection from the mirror the angle of incidence on the plane θ is equal to the diffraction
angle. Therefore the diffraction peaks from a crystal are often called Bragg reflections. Using
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the relation (1.22), the Laue condition (1.21) for a family of reflections can be rewritten as

2dhkl sin θ = nλ, (1.24)

where n = 1, 2, 3.. is the order of the reflection. This formulation of the diffraction condition is
called Bragg’s law.

The third component s′(q) in equation (1.17) is the Fourier transform of the shape function.
It describes the scattered intensity distribution in the vicinity of reciprocal lattice points and due
to convolution with the periodicity function it has identical shape for all of them. For perfect
crystals the intensity distribution around each of the reflections has a central symmetry due to
Friedel’s law [29]. In the presence of the displacement field this symmetry breaks, which can
be used for characterization of the strain in crystalline samples [32, 33, 34].

For larger crystals the characteristic width of the peak becomes narrower and vice versa.
If the size of the X-ray beam is comparable with the size of the sample, or radiation is not
fully coherent on the size of the crystal it introduces additional, instrumental broadening into
the peak width. In the case of mosaic crystals the shape of the Bragg peak is composed of
contributions from all small perfect blocks with a distribution of orientations around some av-
erage value. Then the linear increase of the peak width from first order of reflections to higher
orders describes the averaged size and the angular spread of the mosaic blocks. The corre-
sponding analysis of the mosaicity parameters of the crystal by Bragg diffraction is know as
Williamson-Hall method [35]. In a limit when the specimen consists of a very large number of
microcrystals oriented randomly the Bragg peaks transform into uniform rings. Since all pos-
sible crystal orientations are measured simultaneously, the recorded diffraction data correspond
to three-dimensional reciprocal lattice projected onto a one-dimensional space [36].

The kinematical theory finds variety of applications in crystallography, topography and
imaging. One of the distinguished examples is the X-ray diffraction structural analysis, where
the three-dimensional structure of the crystalline material is solved by measuring as many Bragg
peaks as possible as a function of Miller indices. In this method the positions and relative in-
tensities of the Bragg reflections are used for the determination of the structure factor. The
symmetry of the lattice and distances between the crystallographic planes is determined from
the positions of the Bragg peaks, while the information about spatial arrangement of atoms or
molecules in the unit cell is obtained from the relative intensities. However, the full informa-
tion about the structure factor requires also phases of the reflections, which cannot be measured
directly. Sophisticated techniques [37] have been developed for finding the unique solution and
now the whole process of the structure determination in the case of a single crystal is routine
and highly automated.
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1.4 Dynamical theory of X-ray diffraction

The dynamical theory takes into account effects of multiple scattering which become essential
in the case of X-ray diffraction on a large crystal. Unlike the kinematical approach, dynamical
theory gives full description of refraction, extinction and interference effects. It was created
by Ewald in 1917 [38] and Max von Laue in 1931 [39] and then summarized in the book of
Laue [40] and a review paper of Batterman and Cole [41]. General description of the dynamical
theory can be found in the books of Authier [27], Pinsker [42] and Zachariasen [43].

Initially, the dynamical theory was hardly needed in practical applications of X-ray diffrac-
tion. Due to weak interaction of X-rays with media the effects of multiple scattering become
significant only for relatively large crystals (about microns). Even in this case the kinematic ap-
proach is often sufficient, because most of crystalline materials in nature are composed of small
perfect blocks with the spread of orientations. Diffraction on each of the blocks can be consid-
ered in the frame of kinematical theory with a correction for the loss of intensity occurring when
the incident beam crosses the block (so-called, the secondary extinction). The scientific interest
to the dynamical theory started to increase rapidly when artificially grown large perfect crys-
tal of silicon and germanium became the raw materials of the semiconductor revolution [44].
Nowadays, the dynamical theory of X-ray diffraction finds variety of applications in different
aspects of modern X-ray science, in particular, X-ray optics. This chapter is aimed to give a
brief introduction into those aspects of this theory which directly concern the subject of this
thesis.

1.4.1 Wave equation

In the most general case both the incoming and scattered wave fields are propagating through
the material in accordance with the classical electrodynamics. It is more convenient then to
treat the material as a continuum, with an interface to the surrounding vacuum (or air) and use
the microscopic Maxwell equations as the basis for describing the propagation and diffraction
of the electric field in the substance

curl E = −1

c

∂H

∂t

curl H =
4π

c
j +

1

c

∂E

∂t

div E = 4πρ

div H = 0.

(1.25)

Here the electromagnetic field is represented by the vectors of electric and magnetic components
of the field E and H. The equations are presented in cgs units. Applying curl to the first equation
and using the mathematical relation curl curl = grad(div) − ∆ one can obtain a differential
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equation for the electric field

∆E− grad(divE) =
1

c2
∂2E

∂t2
+

4π

c2
∂j

∂t
. (1.26)

It has to be outlined that although characteristic scales for the induced microscopic current j
are comparable to interatomic distances contrary to the conventional macroscopic approach the
media is still considered as a continuum.

The total current can be expressed now through the electron density and velocity of the
electrons so that j(r, t) = eρv(r, t). If the forcing field is oscillating with the frequency ω and
amplitude E(r) the Newton’s second law, which describes the motion of the electron, can be
expressed as mev̇(r, t) = eE(r)e−iωt. From this relation the first derivative of the current in
equation (1.26) can be obtained as follows

∂j(r, t)

∂t
=

e2

me

ρ(r)E(r)e−iωt. (1.27)

Consequently the equation (1.26) takes the form

∆E(r)− grad(divE) +
ω2

c2
[1 + χ(r)]E(r) = 0, (1.28)

where the linear response of media to the applied electric field is described by the susceptibility

χ(r) = − 4πe2

meω2
ρ(r) = −r0λ

2ρ(r)

π
. (1.29)

Here r0 is the classical electron radius defined in equation (1.8). Since both σ- and π-polarized
components of the electric field E(r) propagate independently of each other, the wave equation
(1.28) is typically solved separately for each polarization. In the following we will always
consider the case of one polarization and relying on that treat the wave field as a scalar function.

The wave equation (1.28) complemented by the boundary conditions is a general equation
for the propagation of electromagnetic waves in media. The variety of effects such as dispersion,
refraction and reflection of X-rays, anomalous absorption and X-ray diffraction can be described
by a solution of this equation. For example, from the wave equation it follows that the refraction
coefficient, defined as relative change of the wavenumber in media in comparison with that in
vacuum, is given by

n(r) =
√

1 + χ(r) = 1− r0λ
2

2π
ρat(r)f(0). (1.30)

Here the total electron density ρ(r) was expressed as a product of the number density of atoms
ρat and the atomic form factor for forward scattering f(0). If the dispersion corrections (see
equation (1.13)) are taken into account, the refractive index of the material nm becomes a com-
plex number with an imaginary part corresponding to the absorption. Distinct to the optics
of a visible light the real part of the refraction coefficient for X-rays is less than unity since
Re[χ] < 0. For that reason the phase velocity in the material vm = c/n, but not the group
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one, is more than the speed of light in vacuum c. Due to this some of the optical principles
work in opposite direction for X-rays. For example, in contrast to the total internal reflection
phenomena in optics of visible light, X-rays exhibit an effect of a total external reflection, when
the beam incident from vacuum on a flat, sharp interface under grazing angles is fully reflected.

1.4.2 Takagi-Taupin equations

In the case of an ideal crystal the susceptibility χ(r) (1.29) is a periodic function that can be
conveniently represented as a Fourier series

χ(r) = χ0 +
∑
h

χhe
ih·r, (1.31)

Here the summation is carried out over all reciprocal lattice vectors and the expression for the
Fourier component of the susceptibility χh has a form

χh = − r0λ
2

4πVu.c.
Fh, (1.32)

where Vu.c. is the unit cell volume. The values of χh are on the order of magnitude form 10−4 to
10−6 for hard X-rays, that is considered as a small parameter in the theory of X-ray diffraction.
In the case of weak deformations, when relative displacements are small in terms of interatomic
distances, the susceptibility of a deformed crystal χd(r) is defined from that of a perfect one
according to the relation χ(d)(r) = χ(p)(r− u(r)). Hence, a convenient replacement for the
Fourier component χ(p)

h of a perfect crystal can be used

χ
(d)
h → χ

(p)
h e−ih·u(r) (1.33)

and in this way equations of the dynamical theory for a perfect crystal are generalized to the
case of the deformed one. For the sake of shortness the local displacement field u(r) will be
further referred as simply u.

In order to linearize the differential equation (1.28), with the susceptibility χ(r) expressed
as the Fourier series (1.31), one should express the solution as a sum of waves propagating
along the directions k0 + h over all reciprocal lattice vectors.

E(r) = eik0·r[E0(r) +
∑
h

Eh(r)e
ih·r]. (1.34)

Such representation of a total wave field in crystals is known as the decomposition into Bloch
waves [45]. Since the interference effects are growing in strength in the vicinity of the Bragg
reflections, the contribution of certain wave to the total wave field depends on how close is the
Ewald sphere to the corresponding node in reciprocal space.

Let us consider the most simple case of X-ray diffraction, when the Ewald sphere crosses
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just one reciprocal lattice nod beside the (000). Then a sum of the Bloch waves can be reduced
to a superposition of two waves

E(r) = E0(r)eik0·r + Eh(r)e
i(k0+h)·r, (1.35)

which are propagating along the directions of transmission and diffraction. Contributions from
all other waves are neglected since they are negligibly small. This case describes the most
simple but at the same time the most typical case of dynamical diffraction and is known in
literature as the two-beam approximation.

Substituting the decompositions (1.31) and (1.35) in the wave equation (1.28), written for
scalar wave field, and using the substitution (1.33), one can obtain a set of differential equations
for the transmitted and diffracted components

∂E0(r)

∂s0

=
iπ

λ
[χ0E0(r) + Cχh̄e

ih·uEh(r)],

∂Eh(r)

∂sh
=
iπ

λ
[(χ0 + α)Eh(r) + Cχhe

−ih·uE0(r)].

(1.36)

Here the partial derivatives ∂/∂s0, ∂/∂sh are taken along the directions of vectors k0 and k0 +h

and C is the polarization factor, introduced in equation (1.9). The index −h is denoted as h̄ and
the angular deviation parameter α has a form

α = 2∆θ sin(2θB), (1.37)

where ∆θ is an angular deviation from the precise Bragg angle so that ∆θ = θ − θB.
The equations (1.36), known as the Takagi-Taupin equations [45, 46], play a significant role

in the dynamical theory. Complemented by boundary conditions they can be solved numeri-
cally, or in some specific cases analytically. The detailed derivation of Takagi-Taupin equations
can be found in Chapter 3.

1.4.3 Kinematical limit of the dynamical theory

The cross-component terms with factors χh and χh̄ in the set of equations (1.36) describe the
coupling between the transmitted and diffracted waves, while two other terms with factor χ0

both describe effects of refraction and absorption. For a small crystal the amplitude of the
diffracted wave is small in comparison with the amplitude of the primary beam, therefore the
cross-component term in the first equation can be neglected. Consequently, this equation be-
comes independent on the diffracted wave and the propagation is performed by integration along
the direction of transmission.

E0(l) ∝ e
iπ
λ
χ0l. (1.38)

Here the real part of χ0 multiplied by iπ/λ provides a phase shift which is proportional to
the optical path l in the material and corresponds to the refraction phenomenon.The imaginary
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part gives a real decrement that corresponds to attenuation of the amplitude due to absorption
process. If these effects are also neglected by assumption of χ0 = 0 the amplitude of the
transmitted wave is constant over the whole crystal and the diffracted amplitude can be obtained
by integration of the second equation. Consequently, the Takagi-Taupin equations are reduced
to

∂E0(r)

∂s0

= 0,

∂Eh(r)

∂sh
=
iπ

λ
[αEh(r) + Cχhe

−ih·uE0(r)],

(1.39)

which represents purely kinematical case, as far as the last term with χh describes diffraction
with a single scattering event. In such a way, the results of the dynamical theory in a limit of a
small crystal converge to the predictions of the kinematical theory.

The effects of the multiple scattering becomes valuable only for large crystals, when the con-
tribution of the amplitude Eh(r) in equations (1.36) becomes comparable with that of E0(r).
The deeper the radiation penetrates into the crystal the more energy is transferred from the trans-
mitted wave to the diffracted one. Propagating through the crystal the primary beam becomes
more and more attenuated. This effect is known as primary extinction [47]. For a finite size
crystal the evolution of the wave field and, consequently, the extinction process depend also on
the crystal’s shape and the diffraction geometry. When the precise Bragg condition is satisfied
the characteristic length of attenuation, or extinction depth Λ, which corresponds to decay of
the transmitted wave in e times is defined as [27]

Λ =
λ
√
γ0|γh|

π
√
χhχh̄

. (1.40)

Here the geometrical factor
√
γ0|γh| is composed of the directional cosine angles for the inci-

dent and diffracted beams

γ0 = cos(k0,n), γh = cos(k0 + h,n), (1.41)

where n is the surface normal. The diffraction geometry is called symmetric if the wave vectors
k0 and k0+h make the same angle with the crystal surface, i.e. when |γ0| = |γh|. The extinction
depth is commonly used as a characteristic length to distinguish between the kinematical and
dynamical diffraction.

There are two main cases of practical importance described in literature as Bragg and Laue
geometries [27] (see Figure 1.8). In the Bragg geometry the diffracted beam exits from that
side of the crystal where the incoming beam is entering the crystal. In the Laue geometry the
diffracted beam exits from the opposite side of the crystal. The geometrical factor

√
γ0|γh|

equals to sin θB in the symmetric Bragg case, and cos θB in the symmetric Laue case.
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1.4.4 Bragg and Laue diffraction from an infinite crystalline plate

One of the illustrative cases of the dynamical theory is the diffraction of a plane wave by a thick
crystalline plate infinite in two dimensions (see Figure 1.8), which is also a case of great prac-
tical importance. The set of equations (1.36) are then supplemented by the following boundary
conditions on the upper and lower surfaces for the Bragg and Laue geometries:

Bragg:

{
E0(z)|z=0 = Ein

Eh(z)|z=L = 0
Laue:

{
E0(z)|z=0 = Ein

Eh(z)|z=0 = 0
. (1.42)

Using the Riemann method, the analytical solution for the reflected and transmitted waves can
be obtained [48]. When the Bragg condition is fulfilled, the total electromagnetic field intro-
duced in equation (1.35), reveals periodic standing wave pattern that has the same period as the
crystal lattice. Specific feature of this pattern is that the position of nods is extremely sensitive
to the slightest deviation of the atomic planes (or individual atoms) from their correct position
within a perfect crystal (or on its surface). Thus, the atomic positions can be scanned by the
X-ray interference field and exactly determined if the yield of the element-specific photoelec-
trons or X-ray fluorescence photons is recorded as a function of the glancing angle. This makes
the standing waves method particularly useful for analysis of the structure of crystals and their
adsorbates at the atomic level. An excellent experimental example, displaying this aspect of
dynamical diffraction is given by the angular dependence of the absorption in the Laue case
discovered by Borrmann [49]. If the antinodal planes pass through the atom sites, the radiation
suffers enhanced absorption (anomalous absorption). In the opposite case, when the antinodes
are located in the middle between the lattice planes, the radiation travels along them with a less
than normal absorption (anomalous transmission).

Figure 1.9(a) illustrates results of dynamical diffraction from Si crystalline plate infinite
in two dimensions in the Bragg geometry. The considered (111) crystallographic planes were
assumed to be parallel to the crystal surface. The selected photon energy was 8 keV, which
yields 14.3◦ of the Bragg angle. The angular dependencies of the amplitude and phase of the
reflected wave are calculated for two different values of crystal thickness L. Considering that
an effective attenuation distance for X-rays upon the dynamical diffraction is represented by the
extinction depth Λ = 1.72 µm, all other distances shall be compared with this typical distance.
The Figure 1.9(a) presents a purely dynamical case of a thick crystal with L = 100Λ. In a very
small region of angular deviation ∆θ from the Bragg condition, the reflectivity curve

R(∆θ) =
Eh(z,∆θ)

E0(z,∆θ)

∣∣∣∣
z=0

, (1.43)

shows sharp asymmetric peak with the maximum of the order of unity in modulus. Remark-
ably, that the phase shift between the reflected and incident fields changes from π to 0 across this
curve. The left and right edges correspond to the antinodes passing either in between diffract-
ing planes or through them, which results the difference in absorption. In consequence of the
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Figure 1.8: Bragg (a) and Laue (b) diffraction geometries in the case of a crystalline plate. The z axis
corresponds to the depth from the surface plane, L is the thickness. In symmetric case (the crystalline
planes are not inclined with respect to the surface plane), the angle of reflection is equal to the incident
angle.

refraction the position of the peak is shifted with respect to the value, provided by Bragg’s
law (1.24). Significant difference from the kinematical predictions is also revealed by the width
of the reflectivity curve. According to the kinematical theory the width of the Bragg peak be-
comes infinitely small with the increase of the crystal thickness. Contrary to that, in dynamical
theory it converges to a certain value, which is typically about 0.1 mrad.

For the sake of completeness an intermediate case between the dynamical and the kinemat-
ical diffraction was considered. In the Figure 1.9(b) the same dependencies calculated for the
crystalline plate of L = Λ thickness are presented. Since the amplitude of the diffracted wave is
rather small, the coupling between E0 and Eh does not contribute much to the wave field distri-
bution in the crystal and the obtained results are rather close to the kinematical prediction. The
reflectivity curve is almost symmetric and reveals oscillations on the tails which arise from the
interference of crystal truncation rods – streaks of scattering in reciprocal space in the direction
normal to the surface.
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Figure 1.9: (a) The angular dependence of the squared modulus of the reflectivity coefficient |R(∆θ)|2
(black curve), its phase (blue curve) and the transmission coefficient |T (∆θ)|2 (red curve) for thick
crystalline plate L = 100Λ. (b) The same dependencies for the thin crystal (L = Λ).
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Chapter 2

Coherent X-ray Diffractive Imaging
(CXDI)

2.1 Coherence

In the classical electromagnetic theory [18] the wave field is assumed to have defined amplitude
and phase at each considered point. In many realistic cases this description is not comprehensive
due to the statistical nature of light, e.g. the total radiation field fluctuates as a function of time.
These fluctuations are much faster than current electronic devices for detection, therefore only
statistical properties of these fluctuations can be determined. In the theory of statistical optics
and optical coherence [50, 51] the radiation field is treated with a correlation function of the
complex wave fields. The coherence, in general, describes all properties of the correlation
between the physical quantities of a wave. Experimentally the coherence can be determined as
a possibility to observe an interference, one of the most fundamental phenomena in physics.

In the concept of optical coherence the mutual coherence function that is defined as

Γ(r1, r2; t1, t2) = 〈E∗(r1, t1)E(r2, t2)〉, (2.1)

plays the main role. It is determined as a first order correlation function between two complex
values of the electric field E(r1, t1) and E(r2, t2) at different points r1 and r2 and different
times t1 and t2. The brackets denote the ensemble average [50], which is generally defined as

〈f(r, t)〉 = lim
N→∞

1

N

N∑
τ=1

f (τ)(r, t), (2.2)

where f (τ)(r, t) is one realization from the ensemble of all possible realizations of the statistical
function f(r, t). In the theory of statistical optics the fluctuations of the wave field are typically
assumed to be ergodic, which means that statistical average can be replaced by the time average

〈f(r, t)〉T = lim
T→∞

∫ T/2

−T/2
f(r, t)dt. (2.3)
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In the following we will also assume the ensemble statistics do not depend on time Γ(r1, r2; t, t+

τ) = Γ(r1, r2; τ) (i.e. a stationary random process).
If two points and times coincide the mutual coherence function gives the average of intensity

〈I(r, t)〉T = Γ(r, r, τ = 0) = 〈|E(r)|2〉T . (2.4)

This can be used for normalization of the mutual coherence function that yields the complex
degree of coherence

γ(r1, r2; τ) =
〈E∗(r1, t)E(r2, t+ τ)〉T√
〈I(r1, t)〉T

√
〈I(r2, t+ τ)〉T

. (2.5)

This function has an importance in interference experiments, because the modulus of this value
corresponds to the contrast of the interference fringes. It can take values from 0 defining the
completely incoherent case to 1 for the fully coherent case. All intermediate values correspond
to partially coherent field. As it follows from the definition (2.5) when two points and times
coincide the complex degree of coherence yields 1 which means that the field is always co-
herent with itself in a single point. If the separation between the points in space r2 − r1 and
time τ increases, then the degree of coherence drops down to values below 1. Therefore, the
coherence volume can be defined as a region throughout the space and time within which the
electromagnetic field is highly correlated (see Figure 2.1). A characteristic size of this volume
in the spatial and in temporal domain is called the transverse and longitudinal coherence length.
In most cases, transverse and longitudinal coherence can be treated as independent.

Before we proceed, let us introduce two formulas which have important implications for the
estimates of coherence properties in practical cases. The first one follows from the Van Cittert-
-Zernike theorem [51]. It serves for the determination of the transverse coherence length Lt at
distance z from a spatially incoherent source

Lt =
λz

2πD
. (2.6)

Here D is the source size and λ is the wavelength. As it follows from this formula, the radiation
from fully incoherent source exhibits a non-zero degree of coherence at large distances.

The second formula is used for estimates of the longitudinal coherence length and can be ob-
tained from the Wiener-Khinchin theorem [50]. According to that, the autocorrelation function
Γ(τ) of a stationary process can be expressed as the Fourier transform of the power spectrum

Γ(τ) =
1

2π

∫
S(ω)eiωτdω. (2.7)

In the assumption that the wave field has a Gaussian distribution of power over optical fre-
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Lt 

Figure 2.1: Schematic of coherence volume (cyan cube) whose length Ll is determined by the coherence
time and whose cross-sectional area is determined by the transverse coherence length Lt. The transla-
tional region (outlined by yellow) is not sharp because the mutual coherence function gradually goes to
zero.

quency, the spectral bandwidth ∆ω and the coherence time τc are related to each other as [51]

τc =
2
√

2π ln 2

∆ω
. (2.8)

In X-ray science the spectral bandwidth is more often expressed in terms of the energy res-
olution ∆E/E = ∆λ/λ, where the ∆E is the full width at half maximum (FWHM) of the
power spectrum. Taking into account that ∆ω = 2πc∆λ/λ2, we obtain the equation for the
longitudinal coherence length [51]

Ll = c∆τc =

√
2 ln 2

π

λ2

∆λ
≈ 0.664

λ2

∆λ
. (2.9)

The more narrow is the spectral bandwidth the more is the temporal coherence. At experi-
mental stations of synchrotron the temporal coherence properties of X-ray beam is determined
by energy resolution of the monochromator. For example, in the experiments which will be
described in Chapter 5 we used the high-resolution Si(111) double crystal monochromator. At
8 keV of the photon energy that provides about 10−4 of the energy resolution. For this num-
ber, the formula (2.9) yields approximately 1 µm of the longitudinal coherence length. In the
coherent X-ray diffraction experiment that means the high contrast diffraction pattern can be
obtained only if the object size does not exceed this value in the longitudinal dimension.

The estimates for the vertical and horizontal transverse coherence lengths can be obtained
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from the formula (2.6). The end station at the P10 beamline is located 90 m from the undulator.
A typical size of the electron beam is 6 µm in vertical and 36 µm in horizontal directions, that
can be considered as the source size. For 8 keV of photon energy (λ = 1.55 Å) the equation
(2.6) yields 360 µm and 60 µm of coherence length in vertical and horizontal directions corre-
spondingly. That is equal to 91 % and 2 % from the beam size which is 390 × 2520 µm. If the
experiment requires a higher degree of transverse coherence the coherent fraction of the beam
can be selected by the collimating slits. As a result, a narrow beam which can be considered
as almost fully coherent on the size of the beam is obtained. At the same time, that leads to a
decrease of total flux since the substantial part of the beam is cut off.

2.2 CXDI on non-crystallographic objects

In the conventional visible light microscope the magnified image of the object is produced by
combination of the refractive lenses. That allows to achieve resolution 7 close to the Abbe
diffraction limit ∆, established by [25]

∆ =
0.61λ

n sin θ
. (2.10)

Here n is the refractive index of the medium and θ is half the angle subtended by the objective
lens. The larger the aperture of the lens, and the smaller the wavelength, the finer the resolution
of an imaging system. Considering green light around 500 nm wavelength and a numerical
aperture n sin θ of 1, the Abbe limit can be estimated as roughly 300 nm.

To increase the resolution, the radiation of shorter wavelengths, such us ultraviolet and
X-rays can be used. X-ray microscopes offer up to 12 nm of resolution [52, 53] but are suf-
fer from lack of contrast. In addition, available focusing elements of X-ray optics, such as
Kirkpatrick-Baez (KB) mirrors [54], compound refractive lenses (CRL) [55] and Fresnel zone
plates (FZP) [56] do not allow to achieve high magnification and efficiency comparable with the
those in optics of the visible light. However, there is an alternative approach that can produce
high-resolution image of a sample without using any optics on the way to detector. Methods of
Coherent X-Ray Diffractive Imaging (CXDI) [57, 58] exploit diffraction data from coherently
illuminated specimen and reconstruct the sample image relying on the relationship between the
wave field in the object plane and detector plane. More specifically, the complex amplitude of
the wave field on the exit surface of the object is reconstructed.

There are two distinguished concepts of experimental realization of these methods 8. First
one is based on the forward scattering where the diffraction pattern is recorded by a two-
dimensional (2D) detector positioned in the transmission geometry (see Figure 2.2). This ap-
proach is typically used for imaging of non-crystalline objects. Distinct to that, the second
concept exploits the Bragg geometry where a crystalline sample is oriented to satisfy the Bragg

7The smallest distance at which two points can still be uniquely resolved.
8 In this thesis we do not discuss the Grazing Incidence Small Angle X-ray Scattering methods.
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condition and the detector records the scattered intensity in the vicinity of the selected Bragg
peak. This section will focus on the CXDI in the transmission geometry, while the Bragg CXDI
will be discussed next section.

Figure 2.2: The concept of a coherent X-ray scattering experiment in case of a non-crystallographic
object. A coherent X-ray beam illuminates the sample producing the modulations in the wave field on
the exit surface. The diffraction pattern is measured under far-field conditions by a two-dimensional
detector, protected from the direct beam with the beamstop.

Figure 2.2 illustrates the general principles of a coherent X-ray diffraction experiment with
a non-crystallographic sample. A coherent beam is incident on the sample and results in two-
dimensional diffraction pattern on the detector, positioned at distance z downstream in the far-
field. In order to block the direct beam, which is usually much brighter than the scattered signal
and can damage the detector, a beamstop may be used. By back-propagation to the object
plane one retrieves the two dimensional complex amplitude of the exit surface of the sample.
Generally speaking, the propagation through the free space, which establishes the relationship
between the wave fields in the object plane and detector plane, is done by integration of the
point source function over the irradiating surface [59]. However, conventional CXDI schemes
assume the detector to be located in the far-field which allows to reduce this integral to a simply
Fourier transformation. On the other hand, if the sample is thin and weakly diffracting, the
projection approximation is valid. According to that, the exit surface wave (ESW) is a product
of the incident illumination function and the projection of the refraction coefficient, given by
the equation (1.30). Therefore, the reconstruction of the ESW provides full information about
projected electron density, if the illumination function is known a priori or can be determined
by the reconstruction, as in ptychography [60].

The concept of the projection approximation can also be conveniently described in terms of
basics of kinematical theory of X-ray diffraction. According to this theory, a two-dimensional
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diffraction pattern measured in the far-field corresponds to the cross-section in reciprocal space
which contains information about electron density distribution of the scattering object. Gener-
ally speaking, that cross-section in reciprocal space is described by the Ewald sphere. However,
in many practical cases the curvature of the part subtended by the detector is small. When the
full detector side length D is much smaller than the sample-to-dectector distance z, the small
angle approximation

sin
(D

2z

)
≈ D

2z
(2.11)

is valid and the subtended part of the Ewald sphere can be considered as being flat. Conse-
quently the scattering vector can be approximated by

Q =
2π

λ
[
x

z
,
y

z
, 0], (2.12)

where x and y are coordinates in the detector plane. From the basic properties of Fourier trans-
formation a two-dimensional amplitude distribution A(qx, qy, qz = 0) within this flat reciprocal
space cross-section corresponds to the projection of the object in real space on the xy-plane. By
collecting diffraction patterns at different orientations of the sample the whole reciprocal space
can be measured and thus the CXDI method is extended to three dimensions so that

A(q) ∝
∫
ρ(r)eiq·rdr. (2.13)

Here ρ(r) denotes electron density distribution in real space.
Since the diffraction image recorded by a detector represents discrete intensity distribution

with a certain pixel size, the recovery of the scattering object requires sufficient sampling cri-
terion. In essence, it is based on the Nyquist-Shannon-Kotelnikov sampling theorem [61, 62].
It states that a band-limited analog signal that has been sampled can be perfectly reconstructed
from an infinite sequence of samples if the sampling rate exceeds 2 samples per period of the
highest frequency in the original signal. In imaging that means that to recover a feature of size
∆l the corresponding fringes in reciprocal space has to be sampled with at least two pixels
per interference fringe. In other words the resolution in reciprocal space must not fall below
∆q = π/∆l. In addition, from the sampling theorem it follows that the achievable resolution in
real space is theoretically limited by the highest measured spatial frequencies and therefore can
be calculated from the detector size as

∆x =
λz

D
. (2.14)

In practical cases, however, the effective resolution depends on the biggest scattering angle
where a significant signal can be measured, which in its turn depend on the scattering ability of
the specimen and the detector efficiency. Unfortunately, in many cases the lower signal can not
be simply compensated by the longer exposure, since the atomic structures can only withstand
a limited dose before they are destroyed. This effect is called radiation damage and occurs
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already at low and medium doses in case of biological materials consisting of large molecules
with weak chemical bonds and predominantly light elements [63].

2.3 Bragg CXDI

The concept of the Bragg CXDI relies on the Bragg diffraction and this method is intended for
imaging of crystalline samples. Typical geometry of the Bragg CXDI experiment is shown in
Figure 2.3.

L 

Figure 2.3: Coherent X-ray Diffractive Imaging experiment in the Bragg geometry. A crystalline sample
is fully illuminated by coherent X-ray beam with the wave vector k0 and wavelength λ. The orientation
of the crystal is assumed to fulfill the Bragg condition for the reflection with reciprocal lattice vector h.
The diffracted wave propagates in the direction of the wave vector kh = k0 + h as it is shown in the
inset. The resulted diffraction pattern is recorded by a 2D detector positioned in the far-field at distance
L and contains the selected Bragg peak and surrounding speckles.

Let us consider a finite crystal with its shape described by the function s(r). The crystal is
fully illuminated by a monochromatic beam with the complex amplitude E0(r) and the orienta-
tion of the crystal is chosen to satisfy the Bragg condition for selected crystallographic planes.
The diffracted signal is recorded by a two-dimensional detector positioned in the far-field at dis-
tance L. In reciprocal space the position of each pixel on the detector can be described by the
scattering vector q. By integrating the second equation in the set of equations (1.39) and propa-
gating the results to the far-field, the following expression for the scattered amplitude A(q) can

32



be obtained [32]

A(q) = −r0Fh
(2π)3

Vuc

eiωL/c

L

∫
E0(r)s(r)e−ih·ue−i(q−h)·rdr. (2.15)

Here Fh denotes the structure factor. According to this equation, the intensity distribution
around each of the Bragg reflections is given by the Fourier transform of the electron density dis-
tribution of the crystalline part of the sample, if the illumination function remains constant over
the whole crystal. In the case of a perfect crystal this intensity distribution function is central
symmetric with respect to the specific lattice node. However, in the presence of a displacement
field such a symmetry breaks. By varying the angular position of the crystal around the Bragg
angle different points of the reciprocal space can be reached. By stitching the collected diffrac-
tion patterns, a three-dimensional reciprocal space map in the vicinity of selected reflection is
constructed. The inversion of it into real space as a result gives the three-dimensional object
function [29]. As it follows from the equation ( 2.15) the amplitude of this function describes
the shape of the crystalline part of the sample and the phase −h · u corresponds to the projec-
tion of the displacement field on the reciprocal lattice vector. This relation is widely used in
coherent X-ray diffraction imaging methods, in particular, for a mapping of a deformation field
inside of three-dimensional nanocrystals [32, 33, 34]. As far as optical and electrical proper-
ties of the crystal depend on the local strain such methods are of importance in the design and
implementation of functional nanocrystalline materials [64].

Distinct to the forward scattering geometry, the scheme of the Bragg CXDI assumes the
measurements of intensities at higher scattering angles (2θB). In consequence, the parasitic
contribution from the direct beam is eliminated and the diffraction pattern can be recorded
without using beamstop. In addition, due to the constructive interference the scattered signal
is enhanced in a narrow solid angle, which allows to separate it from the background signal
which comes from the substrate or other crystalline particles if several of them are illuminated
simultaneously.

2.4 Small Angle – Bragg Coherent X-ray Diffraction Imag-
ing

The resolution in the diffractive imaging experiments is fundamentally limited by the highest
scattered angles at which a significant signal can be measured. The substantial constructive
interference which appears in case of ordered structures, such as crystals, can be used to increase
the amount of recorded information in many times. However, to merge together the scattered
intensities measured in the vicinity of different reciprocal lattice nodes the relative phases of all
the Bragg reflections are required. This problem can be overcome by some a priori knowledge
about the structure as it is commonly done in the protein crystallography [37], or by a phase
retrieval approach that uses the interference pattern formed with contributions from neighboring
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Figure 2.4: The model parameters used for the simulations demonstrated in [66]. A 6 nm Pd nanocrystal
with a shape restricted by {111} side facets was located one meter upstream of the detector. The direction
of the incident beam of 100 keV of photon energy was taken along the [100] crystallographic direction.
(Figure was adopted from Reference [66].)

reflections. This idea was proposed by Sayre more than half a century ago in work [65], where
he suggested to phase crystallographic data by measuring information between the Bragg peaks
in reciprocal space. Such a method was later termed an oversampling method in contrast to
conventional sampling at Bragg peaks in crystallography. In this approach the inversion of the
coherent diffraction pattern containing several Bragg peaks gives the positions of individual
scatterers in the crystalline structure. In other words, the geometry of such an experiment
assumes a Small-Angle and Bragg CXDI measurements performed simultaneously. Potentially,
this approach can be applied for three-dimensional imaging of internal structure of crystalline
samples. The full crystallographic data opens a way to reconstruct both the crystal shape and
the positions of individual scatterers with atomic resolution. This approach was developed
earlier in Reference [66], where the coherent high-energy X-ray beam was proposed to map
several Bragg peaks on a single detector (see Figure 2.4 ). As one of the important experimental
parameters, the incoming photon flux, required for successful reconstruction of the structure of
Pd nanoislands with atomic resolution was estimated.

Although these ideas were successfully demonstrated in the electron microscopy [67, 68,
69], the realization of such an experiment with atomic structures and high-energy X-rays is
rather challenging, because of lack of the scattered signal. On the other hand, instead of go-
ing for higher energies a crystal with a larger unit cell can be imaged. A notable example was
presented in [70] where 2D structure of a colloidal crystal was reconstructed. The positions of
individual particles as well as the lattice defects have been revealed by this approach. In the
Reference [71] it was suggested to extend this approach to three-dimensions. Using azimuthal
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rotation scans the 3D scattered intensity from an isolated colloidal crystal grain in the far-field
was measured. It included several Bragg peaks as well as the coherent interference speckles
around these peaks. Although this approach was demonstrated by authors in modeling at that
time it was not possible to perform the 3D reconstruction of measured data owing to experi-
mental challenges. In the present work a successful experimental demonstration of described
approach.

2.5 Phase retrieval algorithms

In general case the scattered amplitudeA(q) is a complex function, therefore the transformation
of it into real space requires knowledge of both the real and imaginary components. If the
diffraction data are sufficiently sampled with N independent measurements in reciprocal space,
the reconstruction of the object function is represented by a vector in 2N -dimensional space will
require 2N image coefficients. However, the measurement always yields the squared modulus
of the scattered amplitudes, which provides only N coefficients and all the phase information
set by the other N coefficients is not available, what is known as the phase problem [25].
Utilizing some a priori knowledge as additional constraints it is possible to reduce the number
of unknown variables substantially and retrieve the phases through iterative algorithms [72].
Propagating the measured amplitudes backward to the sample plane and again to the detector
iteratively such algorithms successively apply the constraint operators. The result is that the
reconstruction converges to the image which fulfills the constraints and whose Fourier spectrum
matches the measurement. Originally proposed by Gerchberg and Saxton [73] and later brought
into practice by Fienup [74], the phase retrieval approach over the decades has been developed
into several numerical methods [75]. Being a very dynamic field it is rapidly becoming an
invaluable imaging tool in short wavelength microscopy because it circumvents the limitations
of X-ray and electron lenses, such as low efficiency, small numerical aperture, or presence of
aberrations.

2.5.1 Error Reduction and Hybrid input-output algorithms

In Figure 2.5 the principles of conventional scheme of the phase retrieval algorithm are shown
schematically. Starting with the measured intensities I(q) = |A(q)|2 the iterative process aims
to recover the entire complex wave field

A(q) = |A(q)|eiφ(q), (2.16)

where only the amplitude is known from the measurement. Initially, the algorithm is seeded
by a set of random phases φ1(q) assigned to the measured amplitudes which is called the first

guess

A1(q) =
√
I(q)eiφ1(q). (2.17)
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Figure 2.5: Four steps of the iterative phase retrieval algorithm. In order to compute the discrete Fourier
transform and its inverse a numerical algorithm of Fast Fourier Transform (FFT) is typically used.

Step 1 of the iteration yields the first guess of the image in real space ρ1(r) formed by an inverse
Fourier transform

ρ1(r) = FFT−1[A1(q)]. (2.18)

The constraint in real space which is applied in the Step 2 uses the information that the object
is isolated and of finite size. Defining the support S as the area where the electron density may
take non-zero values, the most simple operator of this constraint can be expressed as

ρ′(r) =

ρ(r), if x ∈ S

0, otherwise,
(2.19)

where the ρ(r) is the input and the ρ′(r) is the output. As a consequence of this modification,
the result of the direct Fourier transform of the output (Step 3) will be distinct from the initial
reciprocal space amplitudes. Closing the cycle the obtained phases φ2(q) are multiplied with
the measured amplitudes in the Step 4 yielding the updated complex wave field or the second

guess

A′2(q) =
√
I(q)eiφ2(q). (2.20)

These four steps are repeated for a finite number of iterations converging to a valid solution.
The algorithm based on the operator (2.19) is known as Error Reduction (ER) algorithm since
the error metrics, describing how well the modulus and support constraint are satisfied, always
decrease after applying the operator. As a result the algorithm converges fast but without any
chance to escape from local minima, which would require a step that increases these metrics.
In order to improve the performance of the phase retrieval procedure more sophisticated con-
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straints in real space can be applied. Without the aim to provide a full overview, below we
give a description of the most common techniques which were successfully used in the present
studies.

The stagnation problem can be overcame with the hybrid input-output (HIO) algorithm [74],
which uses the output from the previous iterate to update the current one according to the rule

ρ′j(r) =

ρj(r), if x ∈ S

ρj(r)− βρj−1(r), otherwise.
(2.21)

The amount of feedback is controlled by the real constant β which is in the range of 0 to 1,
the best results are typically achieved with β = 0.8 [74, 76]. The inspiration for this algorithm
comes from control theory, with the idea to provide a negative feedback to the operation. Since
the HIO is tolerable to nonzero amplitudes outside the support it is practically useful to perform
several iterations of ER between HIO steps. The ER algorithm refines the result of the HIO
algorithm, which in its turn helps to avoid stagnation in local minima. There are many other
modifications of these algorithms which improve the convergence rate by taking bigger steps in
image space or alternating the search strategy, as explained and reviewed by Marchesini [75].

A particular one, known as the Guided Hybrid Input-Output (GHIO) method [77], worth
to be introduced here because it was used in the studies, which will be presented in Chapter 5.
Taking advantage of the fact that typically several reconstructions are run in parallel to verify
a reliability of obtained result, this algorithm divides the reconstruction procedure into several
stages, or generations g, where the mean of best results is used to seed a subsequent generation.
As a first step, N processes which have been independently seeded with random phases are
started. The reconstruction with the best error metrics is selected as a template of this zeroth
generation ρg=0,n(r), where n = 1, 2, .., N is the sequence number of the run. To start the next
generation, each of the processes is seeded through the expression

ρg+1,n(r) =
√
ρg,template(r)× ρg,n(r). (2.22)

After running all N reconstructions in parallel again the best result is chosen as a template for
the subsequent generation, and this process is repeated several times until the desired conver-
gence criteria is met.

2.5.2 Shrinkwrap method

The implementation of HIO and GHIO algorithms might significantly improve the convergence
rate and robustness of the phase retrieval method. At the same time the obtained solution
strongly depends on how close the chosen support fits the actual object. Only a limited number
of solutions will satisfy the constraint of a very tight support which helps the algorithm to con-
verge, and in that way the real space support is a key parameter in the reconstruction procedure.
In addition to the support constraints, the so-called positivity constraint, might be applied at
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each of the iterations requiring the object function to be real and positive. However, in many
particular cases the phase cannot be considered as being flat over the object, and consequently
the density function is complex valued. In particular that occurs with soft X-rays (photon en-
ergies below 1 keV), where refraction effects play a significant role. In this case, knowledge of
actual boundary of the object is imperative, since with a loose of support an out-of-focus image
would be a valid solution either.

This problem can be overcome by using the dynamic support which updates occasionally
from the estimate of the object based on the current reconstruction. Originally proposed by
Marchesini [78], the so-called Shrinkwrap method starts with a support which is derived from
the autocorrelation function or might be even chosen arbitrary. Every 20–50 iterations a new
support is deduced from the current reconstruction, that had been preliminary smeared by a
convolution with a Gaussian function in order to avoid artifacts. Image pixels below a certain
threshold (typically about 10–20%) are treated as being outside the object. When the recon-
struction progresses the support tends to gradually shrink to the boundary of the actual object.
At some point a stop criteria must be added to avoid over shrinking. The Shrinkwrap method
does not work for objects with smooth edges, where the real space density slowly falls off to
zero. It also has problems with objects, that has vacancies, since the algorithm stimulate growth
of the holes. Nevertheless, this method can substantially facilitate the reconstruction process in
most of usual cases.

In many experimental situations, the ratio between the intensities at lowest and highest scat-
tering angles is very high and might exceed the dynamic range of the detector. In order to avoid
oversaturation the zero-order beam is usually suppressed or dumped by a beam stop or a hole
in the detector, which results in a region of missing data. When only a support constraint is ap-
plied, there will be particular modes that are neither constrained by the diffraction measurement
nor the support [79]. If the region of missing data is larger than the size of a single speckle,
which corresponds to the object’s dimension in real space, the important part of the information
is lost and the iterative algorithm may fail. When the reconstruction progresses the missing
intensities tend to grow unconstrained and become dominating. In some cases it is, however,
possible to achieve successful reconstruction applying some restraining rule which suppresses
them down to some normalization value calculated using a high-pass filter [80]. The missing
data issue can also be overcame in dark-field Coherent Diffraction Imaging [81, 82].

2.5.3 Uniqueness and resolution

A very important aspect of iterative algorithms is the uniqueness of the obtained solution. Be-
side the fact that the phases are reconstructed up to a constant, the general properties of the
Fourier transformation give three possible real space solutions. If the correct solution is de-
scribed by ρ(r), the shifted object ρ(r + ∆r) as well as the inverted complex conjugated one
ρ∗(−r), so called twin image, also have the same modulus of the Fourier transform. The ap-
pearance of the displaced object can be easily avoided by utilizing a support which is tight
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enough to localize the object in real space. For not very symmetric objects the twin image can
be suppressed by using an asymmetric support, which pushes the reconstruction towards one
solution. However, in the presence of symmetry in the object density function the equivalent so-
lutions which fulfill both the modulus and support constraints might appear. It has been shown
that a number of such solutions primarily depends on the dimensionality of the dataset [83].
Being nearly always unique in the three-dimensional case, the reconstruction can reveal other
solutions in some special 2D cases, and generally have a few of them for one dimension. In a
summary, except for rare not ordinary cases the phase retrieval algorithms always converge to
the unique correct solution.

Due to different reasons like presence of noise or missing area in the experimental data a
single true solution cannot be distinguished from a family of images that satisfy all constraints
within the errors. The common way to estimate the best image is to calculate the average
ρ(r) = 〈ρi(r)〉 over the number of runs, which have been independently seeded by sets of
random phases. The ratio of the modulus of the scattering amplitude determined from this
average and the square root of measured diffraction intensity is known as the phase retrieval
transfer function (PRTF)

PRTF(q) =
|FFT[ρ(r)]|√

IM(q)
. (2.23)

The obtained value of this function at each pixel or voxel is in the range of 0 to 1 and tends to
decrease with increasing the resolution due to the fact that the signal at higher scattering angles
is more influenced by noise. Therefore it appears to be a good way to determine the actual
resolution in the reconstruction from the PRTF function.

Successful reconstruction depends on the number of the algorithm’s parameters which can
differ and has to be chosen manually for each dataset. In some practical cases the presence
of noise and parasitic scattering in the experimental data, the detector gaps or effects of in-
coherence can make the reconstruction procedure extremely complicated and even unreliable.
Nevertheless, being a dynamically developed field phase retrieval algorithms suggest a powerful
tool for visualization of internal structure of micro- and nanoscopic samples [57].

2.5.4 Ptychography and other algorithms

For the sake of completeness other phase retrieval methods, that have not been used in the
present work, should be mentioned. The conventional scheme of the Coherent Diffractive
Imaging is limited to isolated objects or pre-characterized finite illumination functions. These
shortcomings could be overcome by ptychography, that employs a set of diffraction patterns
generated from overlapping illuminated regions of the specimen [84]. Redundant information
about the common area is used as an additional constraint in real space which is applied on
each iteration. The reconstruction of all scan points on the sample is performed simultaneously
looping over all the scan positions (see Figure 2.6). The overlap ratio and number of diffrac-
tion patterns determines the redundancy of the ptychographic dataset, when compared to other
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Figure 2.6: Schematic diagram of the ptychographical iterative algorithm. The outer circle outlines the
big loop over all scan positions on the sample. The double arrows represent a single update of one
position during one full iteration of the classical phase retrieval routine.

imaging methods that employ only a single diffraction pattern.
There are, basically, two types of iterative ptychographic algorithms called the Ptycho-

graphic Iterative Engine (PIE) and extended Ptychographic Iterative Engine (ePIE). The PIE
algorithm requires a priori knowledge of the illumination, whereas the ePIE algorithm retrieves
it by refining the initial guess. The first successful demonstrations of applying the PIE algorithm
in X-ray regime revealed extremely fast and robust convergence [85, 86, 87]. One of the most
remarkable results has been the three dimensional reconstruction of bone structure [88], where
a high contrast bone density map was reconstructed with a resolution of 100 nm. An additional
great advantage of ptychographical approach is the automatic reconstruction of the illumination
function if the ePIE algorithm is used. That yields a detailed quantitative picture of the complex
wave field, and provides a fast, robust and powerful tool for the beam characterization with high
spatial resolution and dynamic range [60].

Another imaging technique, which allows to get rid of the restriction of the isolated sample
is called Fresnel CDI [89]. While the classical scheme of CDI, described above, assumes the
flat illumination phase, which is typically achieved by localizing the sample in the focal plane,
the Fresnel CDI suggests to place the sample at a small distance downstream. That allows
the divergent beam to carry additional information, which assists in the reconstruction routine.
However, these favorable effects can be exploited only if the illumination phase is well charac-
terized. The first experimental realization [90] revealed accelerated convergence compared to
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plane illumination and later it was shown that Fresnel CDI is more robust in the case of par-
tial coherence when compared to plane wave illumination [91, 92]. Allowing to image parts
of objects, embedded within a larger entity, this method can also be combined with scanning
techniques e.g. ptychography.

The last coherent diffraction imaging technique that has to be mentioned here is X-ray
holography. This method addresses the phase problem by coherent interference of a wave
diffracted by the object with some reference wave. In most practical cases the reference scat-
terer is represented by an aperture which is located in the same plane as the object [93]. The
phase of the object wave gets encoded by the reference wave in the combined intensity distri-
bution in the far-field which itself is captured by a detector. Due to the fact, that a simple back
Fourier transform of the diffraction pattern reveals the object, this method is known as Fourier
Transform Holography (FTH) [93, 94]. A very simple and straightforward way of reconstruc-
tion, as well as robustness, are the advantages of this method that meets, however, rather strict
experimental constraints. The reference scatterer has to be positioned further away than the
lateral dimensions of the object 9, therefore a high degree of coherence is required to get an
interference pattern [95]. In addition, the diffracted intensities from the reference scatterer have
to be of similar magnitude as the scattered intensities from the object [96]. The last condition
limits the size of the reference scatterer below, and consequently, the achievable resolution.

9More specifically, the distance between the reference source and the nearest edge of the object must exceed
the maximal lateral dimension of the object.
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Chapter 3

Dynamical effects in Coherent X-ray
Diffractive Imaging

A wide variety of Coherent Diffractive Imaging methods rely on the kinematical approxima-
tion, which is based on the assumption that each photon scatters only once in the material. This
leads to considerable simplification in the interpretation of the experimental results. In partic-
ular, the real space density distribution is connected to the far-field scattered amplitude by the
Fourier transformation. That serves as the foundational relationship for the majority of the X-
ray diffraction methods, such as SAXS, CXDI, ptychography, Fourier Transform holography
etc.

As it was shown in pioneering work on Bragg CXDI [97, 32, 98, 33] Bragg diffraction can be
used for the mapping of the deformation field inside of three-dimensional nanocrystals. In this
method the 3D complex density function of a nanocrystal is reconstructed from the reciprocal
space dataset measured in the vicinity of a Bragg reflection. According to the kinematical
theory the magnitude of that density function is proportional to the continuous electron density
distribution of the crystalline part of the object and the phase is related to the projection of
the local deformation field on the reciprocal lattice vector [29]. However, if the size of the
crystal is comparable to the extinction length, the cross-coupling between the diffracted and
the transmitted waves becomes significant and can give rise to artifacts in the reconstruction.
In general, the refraction and absorption might also play a considerable role in the diffraction
process. All these effects can be taken into account consistently by the dynamical theory. This
theory has been extensively developed already for decades [27], however, the influence of the
dynamical effects on the results of the Bragg CXDI has not been studied yet.

In order to investigate this problem in details we performed a series of simulations of the
scattered wave field around a specific Bragg reflection using the dynamical approach. Results
of the inversion of the simulated dataset to real space reveal the character of the artifacts, intro-
duced by the dynamical diffraction. This chapter will cover the theoretical aspects of the model,
the detailed analysis of the simulations and a comparison with the kinematical theory. Special
attention will be paid to ways of correction of the results of real experiments in order to prevent
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appearance of such artifacts in a reconstruction.

3.1 Model description

Let us consider a typical geometry of a Bragg CXDI experiment with an isolated crystalline
object fully illuminated by a monochromatic X-ray beam. The orientation of the crystal fulfills
the Bragg condition for the selected wavelength and the diffracted intensities are recorded by a
two-dimensional detector located in the far-field. 3D reciprocal space data are measured by a
series of diffraction patterns in which the incidence angle of the beam is varied by a fraction of
a degree in the region of the Bragg angle (see Figure 3.1). Experimentally, the angular scan is

Figure 3.1: A schematic view of 3D reciprocal space covered by a rocking scan. The real measurement
yields the diffraction pattern that corresponds to the spherical surface in reciprocal space described by
the Ewald sphere (shown by blue color), while the simulated one is attributed to a flat surface (shown by
red color).

performed by a rotation of the sample in the scattering plane, while the positions of the incident
beam and the detector are fixed. Figure 3.1 schematically shows how the diffraction patterns are
merged in reciprocal space. When the Bragg condition is fulfilled (θ = θB) the two-dimensional
surface in reciprocal space that corresponds to the recorded image is crossing the reciprocal
lattice node hkl. For certainty let us assume that the central point of the detector coincides
with the center of the Bragg peak. When the crystal is rotated by a small angular deviation
∆θ = θ − θB, the triangle formed by wave vectors k0, kh and scattering vector Q = kh − k0

is rotated by the same value ∆θ around the origin of reciprocal space 000. According to that
the position of the cross section in reciprocal space is changed by the same transformation of
rotation. Then, the position of the central point on the detector in reciprocal space will be shifted
for the vector ∆q = Q − h = kh − k0 − h as ishown in Figure 3.1. From the geometry it
follows that the length of this vector is |∆q| = 2h sin(∆θ/2).

In our model we use the laboratory coordinate system where the orientation of the beam is
static during the angular scan but the sample is rotating. The origin is chosen on the axis of the
crystal rotation. In this coordinate system the orientation of the reciprocal lattice vector depends
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on the angular position of the crystal θ. For the sake of shortness it will be referred as h in the
following, meaning that in laboratory coordinate system this vector is a function of the angular
deviation ∆θB .

We generally assume the two-beam diffraction case and a perfect or weakly deformed finite
size crystal 10. The set of Takagi-Taupin equations [45, 46] supplemented by the boundary
conditions is used to propagate the complex electric field through the whole three-dimensional
crystal. For each angular position the two-dimensional distribution of a complex amplitude of
the diffracted wave is obtained at the exit surface. Results of the propagation of this wave field
from the exit surface to the far-field yields the simulated diffraction pattern. As far as the phase
information is included, the resulted 3D reciprocal space dataset can be directly inverted to real
space, without iterative phase retrieval procedure. The characterization of dynamical artifacts
in real space is performed by a comparison of the output with the original object function.

An analytical solution of Takagi-Taupin equations is nontrivial and can be performed for a
few specific cases only. For example, such a solution is known in the case of a crystal plate
finite in one dimension, but infinite in two others [27]. The methods for numerical integra-
tion in the two-dimensional case for a few certain geometrical shapes were developed in the
References [99, 100, 101, 102]. Here we offer a more general approach, based on a modifi-
cation of the Takagi-Taupin equations aimed to facilitate a numerical solution in a finite three-
dimensional crystal of almost any shape in the presence of deformations.

3.2 Modifications of the Takagi-Taupin equations

Commonly, the Takagi-Taupin equations are used in the form (1.36), where the space derivatives
are taken along directions of the wave vectors k0 and k0 + h. After the propagation, the total
electric field at the exit surface can be obtained by multiplying the resulted complex amplitudes
E0(r) and Eh(r) by the corresponding phase exponents exp(ik0 ·r) and exp(ik0 ·r+ ih ·r) (see
expression (1.35)). In most cases only the relative phase between the wave field components E0

and Eh is important, which makes it sufficient to determine the phase distribution up to a con-
stant. However, if the angular scan is performed the phase exponents cannot be omitted because
the results of the scalar products in the exponential factors depend on the angular deviation ∆θ.
In our model this component in the phase distribution of the exit-wave is essential for further
propagation of the diffracted amplitude to the far-field by directly using Fourier transformation.
In addition, the accurate phases are required for subsequent construction of the complete dataset
in reciprocal space by merging diffraction patterns, which have been calculated for different an-
gular deviations. Taking this into account, we determine all phases in reference to the origin
of the laboratory coordinate system located on the crystal rotation axis. This point remains its
position in both laboratory coordinate systems and that associated with the crystal during the
angular scan. As a consequence, the phase distribution on the simulated diffraction pattern can

10Simulations performed in this work were done for the case of a perfect crystal.
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be directly used in the merging in reciprocal space.
We suggest an alternative form of the Takagi-Taupin equations, which brings us to rather

clear and elegant approach of the numerical solution. The key point is to propagate the diffracted
wave field in the crystal straight along the direction to the detector, which holds its position
during the angular scan. For that reason we define the wave vector of the diffracted field kh as
a constant vector with its magnitude equal to k = ω/c = |k0| remaining oriented to the center
of the detector during the angular scan. Consequently, both wave vectors k0 and kh are fixed
in the laboratory coordinate system and the grid, used for the propagation of the wave field
along provided directions, is unvarying with respect to the angular deviation ∆θ. In addition,
the exponential factor ikh · r in the expression for the total diffracted field on the exit surface
yields a constant phase invariant with the angular deviation, and can be legitimately omitted in
the merging procedure.

To derive these modified Takagi-Taupin equations we start with the wave equation (1.28),
considering the case of σ−polarization, so the equation is written in scalar form. The solution
of the differential equation (1.28) is expressed in the form of a sum of the Bloch waves

E(r) = E0(r)eik0·r + Eh(r)e
ikh·r. (3.1)

Distinct to the representation (1.35) the wave vector of the diffracted field here is related to the
reciprocal lattice vector as

kh = k0 + h(∆θ) + ∆q. (3.2)

The residual wave vector ∆q is determined by the angular deviation from the exact Bragg
condition (see Figure 3.1). Hereafter we will refer the reciprocal lattice vector h(∆θ) as simply
h meaning that its orientation is a function of the angular deviation ∆θ.

In order to linearize the wave equation (1.28), the susceptibility and the total electric field
are substituted by the decompositions (1.31) and (3.1). We assume that the considered volume
is electrically neutral on average (so that divE = 0) and use the following representation of the
Laplace operator, applied to both components E0 and Eh

∆[E0,h(r)e
ik0,h·r] = [−k2E0,h(r) + 2ik

∂E0,h(r)

∂s0,h

+ ∆E0,h(r)]e
ik0,h·r. (3.3)

That allows to split the equation in two parts corresponding to the propagation along directions
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given by k0 and kh:

[∆E0(r) + 2ik
∂E0(r)

∂s0

+ (k2χ0 + k2 − k2)E0(r)+

+k2Eh(r)e
i∆q·r

∑
hj

χhje
i(hj+h)·r−ihj ·u]eik0·r+

+[∆Eh(r) + 2ik
∂Eh(r)

∂sh
+ (k2χ0 + k2 − k2)Eh(r)+

+k2E0(r)e−i∆q·r
∑
hj

χhje
i(hj−h)·r−ihj ·u]eikh·r = 0.

(3.4)

Using an approximation of a non-divergent vector field ∆E0,h ≈ 0 and neglecting all the non-
interference components in the series the equation (3.4) can be transformed to a pair of linear
differential equations:

∂E0(r)

∂s0

=
iπ

λ
[χ0E0(r) + χh̄e

i∆q·r+ih·uEh(r)],

∂Eh(r)

∂sh
=
iπ

λ
[χ0Eh(r) + χhe

−i∆q·r−ih·uE0(r)].

(3.5)

where the partial derivatives ∂/∂s0, ∂/∂sh are taken along the directions of vectors k0 and kh.
Different from the conventional form of the Takagi-Taupin equations used in [99], the angular
dependence in the set of equation (3.5) is represented not by the angular deviation parameter
α, but by the phase exponent, which leads to rather symmetric form. Also the propagation is
performed not in the direction of k0+h, but along the wave vector kh given by the relation( 3.2).

The boundary conditions assume the total electric field, represented by the decomposi-
tion (3.1), to be continuous everywhere including the crystal-vacuum boundary. At the same
time the susceptibilities drop down to zero outside the media and thereby undergo discontinuity
on the boundaries. We assume, that the vectors k0,h are the same inside and outside the media,
therefore the equations (3.5) do not require any transformation of the amplitudes E0 and Eh on
the crystal-vacuum boundary. Such boundary conditions are particularly useful for numerical
integration in case of a three-dimensional crystal with an arbitrary shape.

3.3 Numerical solution of the Takagi-Taupin equations

Taking into account that the electric field is propagating along the directions of the incidence
k0 and diffraction kh vectors, it is practically useful to introduce a corresponding coordinate
system. The set of basis vectors {e0, ey, eh} is represented by the unit vectors in the direction
of the incident beam, the normal to the scattering plane and the direction of diffracted beam
(see Figure 3.2). Thus, the partial derivatives are taken along e0 and eh vectors, and rotation is
performed around the y-axis. The angle between e0 and eh equals to 2θB, therefore the coordi-
nate system is not orthogonal, but oblique. Any position within the considered volume can be
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Figure 3.2: A sketch of the model showing a grid used for the numerical solution of the Takagi-Taupin
equations. The drawing represents one of the two-dimensional slices in the whole rhombic prism, which
enfolds the crystal. A Fast Fourier Transform (FFT) algorithm was applied to the exit wave, represented
by a discrete set of values, in order to propagate it to the far-field.

described by the radius vector r = s0e0 + syey + sheh, where s0, sy, sh are the corresponding
coordinates.

The numerical integration is performed over a rhombic prism in which the whole crystal
is embedded, as it is shown in Figure 3.2. The side facets (parallel to the scattering plane)
are represented by parallelograms, the others are rectangles. More specifically, the prism is
sliced to a set of layers, settled for different value of the sy coordinate parallel to the scattering
plane, and the equations are solved in the two-dimensional grid independently for each of these
layers. As it was discussed above, the propagation of the wave field is performed along the
directions e0,h, which do not depend on the angular deviation ∆θ in the laboratory coordinate
system. Therefore, the whole grid remains invariable during the angular scan, while the coor-
dinate transformation of the rotation is applied to the shape function of the crystal. The nods,
which belong to the crystal, are characterized by non-zero values of Fourier components of the
susceptibility, which are set to zero for the nods outside. In order to facilitate the treatment
of the crystal boundary we use the Takagi-Taupin equations in the form (3.5), which uses real
wave vectors k0,h and requires no special transformation on the boundaries.

In the numerical integration method the complex amplitudes E0,h(r) are represented by a
discrete set of values over all integration grid and the equations are transformed to a recurrence
matrix form. The matrix expresses the amplitudes for a considered node on the grid as a function
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of amplitudes at other nods, which have been calculated previously

(
E0(s0, sh)

Eh(s0, sh)

)
= f


E0(s0 − p, sh)
Eh(s0 − p, sh)
E0(s0, sh − p)
Eh(s0, sh − p)

 . (3.6)

The detailed derivation together with expressions for the matrix coefficients of function f can
be found in Appendix A.

The inset in Figure 3.2 illustrates the recurrence properties of the matrix equation (3.6). The
values of both amplitudes E0 and Eh at each node of the integration grid C are given by the
values calculated for anterior points A and B. In such a way, the calculations proceed from
node to node in the directions of the transmission and diffraction. Initially, the values of the
amplitudes E0,h are given on the left and bottom sides of the prism, where E0 = Ein and
Eh = 0, therefore, the integration starts from the lower corner of the front facet running over
the nodes from the left to the right. When the opposite side is reached the run returns to the
front facet and start the next line above the previous one and the process is continued until the
upper facet of the prism is reached.

3.4 Propagation to the detector plane and merging diffrac-
tion patterns in reciprocal space

The numerical integration of the matrix equation (3.6) over the rhombic prism results in the
complex amplitude at the exit facet (sh = south ). For further propagation we exploit an orthog-
onal coordinate system with the basis {e⊥, ey, eh}, where the additional vector e⊥ = ey × eh

is introduced. It is, basically, corresponding to the projection of e0 on the plane, which is per-
pendicular to eh. Taking this into account the equation for the conversion of the wave field
amplitude takes the form

Eout
h (s⊥, sy) = Eh(s0, sy, s

out
h ). (3.7)

In such a way the conversion is performed by means of a simple projection s⊥ = s0 sin(2θB).
As a result, the two dimensional distribution of the diffracted wave field in the plane, which is
perpendicular to the direction of further propagation is obtained (shown in green in Figure 3.2).
In the following the Eout

h (s⊥, sy) will be referred to as the exit-wave.
For the free-space propagation the total electric field Eout

h (s⊥, sy) exp(ikhsh) can be ex-
panded into a sum of infinite number of plane waves, which is referred to as the angular spec-
trum decomposition in Fourier optics [51]. Each of the component waves is traveling in its own
direction and undergoes the corresponding phase change ω

c
l on its path l to the prediction plane.

The resulted wave field is composed by a coherent sum of all the propagated components, and in
this way the propagation of the wave field is performed by the propagation of the angular spec-
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trum. If the observation point is located in the far-field, this method yields simply a 2D Fourier
transform of the complex amplitude distribution in the source plane. In the present work, where
the exit wave is represented by a discrete set of values, the algorithm of Fast Fourier Transform
(FFT) was used for that purpose.

In real experiments the measured diffraction pattern corresponds to the spherical surface in
reciprocal space described by the Ewald sphere construction. However, similar to the case of the
projection approximation, the Takagi-Taupin equations do not take into account the divergence
of the wave field ∆E0,h(r) during the propagation through the object. Therefore, the simulated
2D diffraction pattern must be attributed to the flat surface (see the schematic in Figure 3.1).
To demonstrate this we deduced an analytical expression obtained by the replacement of the
first equation with E0(s0, sy, sh) = 1. In addition, the zeroth component of the susceptibility
in the second equation was terminated by setting χ0 = 0. As it was shown in Section 4 of
Chapter 1 these two assumptions correspond to the purely kinematical case of the Takagi-Taupin
equations. The amplitude of the outgoing diffracted wave field can then be estimated as an
integral across the whole crystal along the direction of diffraction

Eout
h (s⊥, sy,∆q) =

iπ

λ
χh

∫
s(r)e−i∆q·r−ih·udsh, (3.8)

where the following representation r = r(s⊥, sy, sh) = s⊥e⊥ + syey + sheh is used. To
transform the integral to the indefinite form we introduced the shape function s(r) that equals
to unity everywhere inside the scattering volume and zero outside it. As it was discussed above
the far-field diffraction pattern is obtained by the two-dimensional Fourier transformation of the
exit-wave

A(q⊥, qy,∆q) =

∫∫
Eout
h (s⊥, sy,∆q)e−iq⊥s⊥−iqysyds⊥dsy, (3.9)

where q⊥, qy are the coordinates on the obtained image. By substituting the expression (3.8) in
the equation (3.9) the latter can be rearranged as follows

A(q⊥, qy,∆q) =
iπ

λ
χh

∫∫∫
s(r)e−ih·ue−i∆q·r−iq⊥s⊥−iqysyds⊥dsydsh. (3.10)

Seeing that ds⊥dsydsh = dr, we consider the integral on the right as the three-dimensional
Fourier transform of a complex function s(r) exp(−ih ·u). That is commonly understood as the
reciprocal space map in the vicinity of a given Bragg reflection as it discussed in Reference [29].
From the configuration of that integral it follows that the resulted image A(q⊥, qy,∆q) corre-
sponds to a flat surface, parallel to pair of vectors {e⊥, ey}. The central point (q⊥ = 0, qy = 0)
of this surface in given by vector ∆q in reciprocal space.

Equation (3.10) might also serve as the foundational relation for the Bragg CXDI method.
In particular, it directly shows how the reconstructed phase distribution in real space ∆φ(r) is
attributed to the projection of the local displacement to reciprocal lattice vector h · u. That
results in a final expression, which is commonly used for determination the deformation field
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from the Bragg CXDI reconstructions

uh(r) = −∆φ(r)
dhkl
2π

. (3.11)

Here the negative sign reflects the fact that the positive displacement (expanded lattice) leads to
the positional shift of the Bragg peak towards lower Q. Considering that the phase retrieval pro-
cedure yields the relative phases, which are determined up to some constant, the formula (3.11)
is typically applied not to the absolute phases but to the phase difference between the strained
and relaxed parts of the crystal.

3.5 Simulations for Au crystal of cubic shape

In this section we present results of simulations of the dynamical diffraction, performed using
the model described above. In order to illustrate the appearance and key features of the dynam-
ical effects and artifacts in the Bragg CXDI reconstruction we considered a very simple test
object, such as symmetric cubic-shaped gold crystal with an ideal lattice. Figure 3.3 shows a

Figure 3.3: The diffraction geometry considered in simulations for a gold cubic crystal. (a) Results of the
inversion to real space combined with the schematic view of the diffraction geometry. Different colors in
transverse slices represent the charge density distribution. (b) The obtained dataset in reciprocal space.
The tilted plane illustrates intensity distribution within one of the diffraction patterns.

schematic of the diffraction geometry in real and reciprocal spaces and the associated orthogo-
nal coordinate system with the x, y, z-axes oriented along the cube edges. A gold crystal has a
cubic unit cell 4.078 Å in size. We assume that the basis vectors of the unit cell are oriented in
the same way as the coordinate system shown in Figure 3.3. Hence, the selected (004) crystal-
lographic plane is parallel to the xy-plane (lower and upper facets) and the scattering plane is
parallel to the side facets.

We performed simulations for two crystals sizes 100 nm and 1 µm. In the simulations we
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considered a plane wave with 8 keV of incident photon energy (1.55 Å of wavelength), which
corresponds to a Bragg angle of 49.5◦. For these parameters the Bragg and Laue extinction
depths according to definition (1.40) are 711 nm and 607 nm, respectively.

The results of the wave field propagation through the 100 nm Au cube in the exact Bragg
condition are presented in Figure 3.4 (a). The amplitude of the exit wave calculated in the
frame of the dynamical theory (red curve) is compared to the results of the kinematical theory
(black curve), given by equation (3.8). The nearly complete coincidence is a reflection of the
fact that the cross coupling between the diffracted and transmitted waves does not gain its
power, therefore, the kinematical approximation gives correct result. In this case, the calculated
phase profile (blue curve) shows a small phase shift, which can be attributed to refraction. As
it follows from scattering geometry (see Figure 3.3) the phase accumulated by the diffracted
wave in the top left corner of the crystal can be assigned to zero, as it will be not affected by
refraction.This phase will be accumulated more for the waves coming from the depth of the
crystal. The scattered signal that contributes to the right part reveals a refraction phase shift of
about 0.15-0.25 rad.

The results of the simulation performed in the same way for 1 µm Au crystal are presented
in the Figure 3.4 (b). The amplitude profile has nearly the same shape as in the previous case
for small crystal in the kinematical approximation. However, the dynamical calculations reveal
a considerably lower amplitude profile in comparison to the kinematical prediction, which is
explained by the attenuation of the transmitted wave due to the primary extinction. That mostly
affects the lower and right part of the cube, therefore that suppression is particularly pronounced
on the right side. It has to be mentioned, that even for 1 µm size Au crystal absorption does not
have a strong effect, since the crystal size is significantly smaller than the absorption length for
crystalline gold (2.9 µm at the given photon energy).

Further propagation of the diffracted amplitude to the far-field results in a 2D diffraction
pattern. A series of such calculations performed for a 1 µm cubic Au crystal and different val-
ues of ∆θ in the angular range from −0.83◦ to 0.83◦ were merged together in reciprocal space.
For comparison we performed simulations using kinematical and dynamical approaches. The
central qxqz-sections (qy=0) through the corresponding 3D reciprocal space maps are shown in
Figure 3.5(a,b). Both kinematical and dynamical results display a regular structure of square
speckles. As it was discussed earlier, such modulations are determined by the 3D Fourier trans-
form of the shape function of the crystal (see equation (1.17) and Section 3 in Chapter 1).
The results of simulations performed by dynamical theory show considerable aberrations in the
position and magnitude of the fringes (see Figure 3.5(b)).

Difference in the positions and intensities of the speckles is clearly seen on the qz- profiles
taken along the central rode (see Figure 3.6(a)). The corrsponding phase profiles are shown in
Figure 3.6(b). One remarkable feature is a displacement of the whole profile in the direction of
qz-axis in the case of dynamical theory simulations. That reflects the shift of the Bragg peak in
the direction of positive angular deviations and originates from refraction of the wave field at
the crystal boundaries. In the dynamical theory this effect is known as the angular displacement
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a) 

b) 

Figure 3.4: (a) The transverse profile of the amplitude (red) and phase (blue) of the exit wave calculated
by the dynamical theory for a 100 nm cubic crystal of Au at the exact Bragg condition. For comparison,
the amplitude profile obtained in the frame of kinematical theory is shown by the black curve. (b) The
results of the same calculations performed for a crystal of 1 µm size.
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Figure 3.5: Distribution of the modulus of the scattered amplitude within the central qxqz-sections (qy=0)
through 3D reciprocal space map simulated for 1 µm cubic Au crystal (in logarithmic scale). (a) repre-
sents results of calculations performed in the frame of the kinematical theory using equation (3.10), (b)
– results of the dynamical theory, obtained by a numerical solution of the Takagi-Taupin equations.

of maximum of the reflectivity curve due to refraction [27]. In the case of the Bragg geometry
it is described by the following equation

∆θM = −Re[χ0](1 + b)

2b sin(2θB)
. (3.12)

Here the asymmetry parameter b is introduced by the directional cosines for the incident and
diffracted beams

b =
cos(k0,n)

| cos(k0 + h,n)|
, (3.13)

where n is the surface normal. For the symmetric Bragg case the equation (3.12) is simplified
to ∆θM = −Re[χ0]/ sin(2θB), which results in 18.6′′ angular shift for the reflection and photon
energy considered in the simulations. The positional displacement of the maximum of the
reflectivity curve in reciprocal space is then expressed as

∆qM = 2|k0| sin(θB + ∆θ)− h ≈ h sin(∆θM) cot(θB), (3.14)

that corresponds to approximately 4.7 µm−1. However, in the Laue geometry no positional shift
of the reflectivity curve is observed. In the considered case the diffraction geometry represents
a mixture of both Bragg and Laue cases since the shape of the crystal is cubic. Therefore, in
addition to a positional shift the refraction also leads to a smearing of the central speckle in the
direction of qz-axis. Due to a big size of the central speckle (about 6.3 µm−1 for 1 µm crystal
size) this smearing is barely pronounced in Figure 3.5. At the same time it becomes more and
more distinct in simulations for larger crystals.

The results of the inversion of the whole 3D reciprocal space dataset obtained in dynamical
simulations into real space are presented in Figures 3.7 and 3.8. The panels (a,c) in both
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Figure 3.6: Distribution of the complex scattered amplitude along qz- axis represented by the modulus
(a) and phase (b) profiles. The cut is taken through the center of 3D reciprocal space map (qx=0, qy=0),
which corresponds to the vertical rode in Figure 3.5(a, b). Black curves represent the results of calcula-
tions performed in the frame of the kinematical theory, red curves – results of the dynamical theory.
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Figure 3.7: The amplitude (a, b) and the phase (c, d) of the complex electron density distribution obtained
by the inversion of the 3D reciprocal space dataset calculated for a crystal size 100 nm. The xz-slices at
y = 0 (center of the crystal) are presented in (a,c); the profiles along the x, y and z - axes are shown in
(b,d).
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Figures show the xz-slice through the center (y=0) of the crystal. The line profiles along x, y, z
axes (schematically shown by the cross at the images on the left) going through the origin are
shown in panels (b, d). The distribution of the amplitude reveals wrinkled structure on the cube
edges, which is a consequence of a limited q-range in reciprocal space used for inversion. Sharp
facets of the 3D shape function lead to intense truncation rodes in reciprocal space, which can
be recognized as horizontal and vertical fringes in Figure 3.5. A considerable part of these
crystal truncation rods was out of the calculated volume in reciprocal space that resulted in the
oscillations close to the cube facets in the reconstruction. Out of the cube the amplitude of the
reconstructed complex density function is rapidly going down. In this region the phases are not
defined, therefore, the phase distribution presented in Figure 3.7(c,d) was cropped by the cube
edges.

For 100 nm cube size no considerable artifacts are observed and the results are consistent
with the kinematical theory. This agreement, however, brakes in the results of dynamical theory
simulations performed for 1 µm crystal size, where artifacts both in the amplitude and phase
distributions are clearly visible (see Figure 3.8). The bulb, which appears at the bottom of the
crystal apparently originates from the coupling between the diffracted and transmitted waves in
the crystal. Such artifact dramatically rises up with the increase of the ratio of the crystal size to
the extinction length. Another interesting feature is the mirror symmetry with respect to z-axis
i.e. the reciprocal lattice vector h. That is rather surprising in view of the fact that the incident
beam is coming from the upper left corner and elements of the scattering volume in the left and
right part of the cube are not illuminated in the same way. We attribute that to the symmetry of
the equations (3.5) with respect to the direction of propagation.

The attenuation of the amplitude present in the results of dynamical simulations for 1 µm
crystal size can hardly be considered as the direct X-ray absorption of the wave field, since the
crystal size is significantly smaller than the absorption length. On the other hand, the refraction
effects are rather strong, as revealed by the phase gradient in Figure 3.8. Since this does not
relate to the deformation of the lattice it can complicate the interpretation of the Bragg CXDI
reconstructions. It is, however, possible to correct the obtained results for both, absorption and
refraction, by estimating the corresponding optical path that the radiation passes in the crystal
on the way toward the considered point and on the way out. In the next section we analyze the
Tagaki-Taupin equations with the aim to demonstrate how the contributions of refraction and
absorption can be separated from the results of CXDI.

3.6 Treatment of refraction and absorption

A convenient way to treat the refraction effects was demonstrated previously [103]. The phase
of the reconstructed complex density map was corrected by a subtraction of the phase shift
accumulated according to the corresponding optical path for every position within the scattered
volume. However, it was not fully clear if that approach is correct in case of the dynamical
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Figure 3.8: The amplitude (a, b) and the phase (c, d) of the complex electron density distribution obtained
by the inversion of the 3D reciprocal space dataset calculated for a crystal size 1 µm. The xz-slices at
y = 0 (center of the crystal) are presented on the left; in (a,c); the profiles along the x, y and z - axes are
shown in (b,d).
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diffraction where the interference effects of cross coupling waves takes place. Here we provide
some proving analytical derivations and introduce a function for the correction of refraction and
absorption in Bragg CXDI. We demonstrate how the reconstruction results might be corrected
by application of this function for the simulations results, presented in the previous section.

Four terms in the equations (3.5) describe the contributions of different physical processes,
which can be considered separately. The term with χh describes diffraction of the incident
component of the wave field by a set of crystallographic planes with reciprocal vector h. In
its turn the diffracted component undergoes diffraction by the same set of planes but from the
opposite side, which is described by the term proportional to χh̄. These two cross components
determine the mutual coupling of the incident and diffracted waves and highly depend on the
structure of a unit cell and the indices of the reflection. Finally, the real and imaginary part
of the term proportional to χ0 describe refraction and absorption effects, which both waves
undergo independently from each other. For a selected wavelength this parameter is determined
by the averaged electron density irrespective to any symmetry in the arrangement of atoms (see
equation (1.29)). In order to understand how these different physical processes may contribute
to the artifacts in CXDI, we will consider the contribution of all corresponding components
separately. To simplify our derivations for the correction function we rearrange the Takagi-
Taupin equations (3.5) for another form, more advantageous for analytical treatment.

3.6.1 Takagi-Taupin equation with complex wave vectors

If both coupling terms are excluded from the set of equations (3.5), it turns into a couple of
linear differential equations of one variable, which describe independent the transmission of the
E0 and Eh waves through the media without diffraction. In this case, the analytical solution for
each of the equations is represented by an exponential function with the factor ikχ0s0,h/2. It is
convenient to include these exponents into the definition of the modified amplitudes E ′0 and E ′h,
so that

E0(r) = E ′0(r)ei
χ0
2
k0·r,

Eh(r) = E ′h(r)e
i
χ0
2
kh·r.

(3.15)

According to the decomposition (3.1) the total wave field is expressed as

E(r) = E ′0(r)ei(1+
χ0
2

)k0·r + E ′h(r)e
i(1+

χ0
2

)kh·r. (3.16)

Then, the propagation of each component can be considered as for a plane wave that has a
wave number k(1 +χ0/2), so the wave vector is treated as a complex value with the directional
properties given only by its real part. This transformation is often used in the dynamical theory
to simplify the derivations [27]. In this approach the refraction and absorption of both diffracted
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and transmitted waves are included in their definition

K0 = (1 +
χ0

2
)k0,

Kh = (1 +
χ0

2
)kh.

(3.17)

Substituting relations (3.16) into equations (3.5) one can obtain the Takagi-Taupin equations in
another practically useful form

∂E ′0(r)

∂s0

=
iπ

λ
χh̄e

i∆Q·r+ih·uE ′h(r),

∂E ′h(r)

∂sh
=
iπ

λ
χhe

−i∆Q·r−ih·uE ′0(r),

(3.18)

where the complex residual wave vector is defined as

∆Q = ∆q +
χ0

2
(kh − k0). (3.19)

As it naturally follows from the expressions (3.15), the modified amplitudesE ′0,h differ from
E0,h inside the material, but are the same in vacuum. Therefore, the boundary conditions for
the equations (3.18) shall be expressed as:

E
′cryst
0,h (Rb) = E

′vac
0,h (Rb)e

i
χ0
2
k0,h·Rb , (3.20)

where Rb is the radius vector of a given point at the crystal-vacuum boundary; E ′vac
0,h and E

′cryst
0,h

are the values of amplitudes in vacuum and inside the crystal. This is equivalent to the condition
of continuity of the tangential component of the electric field at the interface.

3.6.2 Correction function

Let us assume that the coupling term proportional to χh̄ in equations (3.18) is suppressed by
setting it to 0. Then the second equation is simplified to a single ordinary differential equation,
which can be solved analytically similar to equation (3.8). When the boundary conditions (3.20)
are applied, the expression for the exit wave amplitude takes the form

Eout
h (s⊥, sy) =

iπ

λ
χh

∫
eiKh·Rout−ikh·Rout−iK0·Rin+ik0·Rins(r)e−i∆Q·r−ih·udsh. (3.21)

Here Rin = Rin(r) and Rout = Rout(r) are the radius vectors of the points, where the incoming
and outgoing rays for given element volume r cross the crystal boundaries. The expression
under the integral can be transformed to

[
ei
χ0
2

(kh·Rout−k0·Rin−kh·r+k0·r)s(r)e−ih·u
]
e−i∆q·r. (3.22)
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By the replacement
s′(r) = s(r)ei

χ0
2

(kh·Rout−k0·Rin−kh·r+k0·r), (3.23)

the integral is reduced to the previously described case of equation (3.8). Correspondingly, the
inversion of the reciprocal space dataset to real space results in a complex density distribution
function, which in this case is represented by s′(r) exp(−ih·u). Therefore, the correction of the
reconstruction results must be performed through multiplication with the correction function

fc(r) = e−
iπ
λ
χ0

(
|Rin−r|+|Rout−r|

)
, (3.24)

where the total path for the incident |Rin−r| and diffracted |Rout−r| rays is calculated for each
position r within the crystal. The estimate is done for a certain angular position neglecting small
variations of the optical path during the rocking scan. The equation (3.24) takes into account
both the phase gradient caused by refraction and attenuation, which originates from absorption.

Figure 3.9 illustrates results of such correction applied to the complex electron density dis-
tribution presented in Figure 3.8. Since the precise crystal shape and complete information
about the directions of the vectors k0 and kh are known, the function (3.24) was evaluated nu-
merically from the reconstruction. After the correction the amplitude distribution at the lower
part of the crystal increased from 0.38 to 0.52. At the same time, the upper part, where the
absorption effects are much smaller due to shortness of the optical path, does not reveal any
significant changes. That results in a small bending of the z-profile at the top of the crystal.
However, the main characteristics of the artifacts in the amplitude distribution, such as the de-
pletion of the electron density in the bulk and the protuberant part below the cube remain almost
unchanged. From this we conclude that such artifact appears owing to cross coupling between
the transmitted and diffracted waves, which is a purely dynamical effect. On the other hand, a
strong phase gradient present in Figure 3.8 appeared to be effectively removed by the correction.
The residual aberrations in the range from 0 rad to 0.3 rad is apparently connected to the cross-
coupling of the diffracted and transmitted waves in the crystal. More specifically, they should be
attributed to the imaginary part ot the Fourier components of the susceptibility χh and χh̄, that
introduce a small phase shift when the wave is reflected by a crystalline plane. The Figure 3.10
shows results of calculations where that phase shift was suppressed by setting Im[χh] = 0 and
Im[χh̄] = 0 in equations (3.5). The phase distributions of the corrected electron density reveal
zero value throughout the whole crystal, which approves our conclusion.

To make sure that the presence of cross-coupling terms does not interfere the procedure
of the correction by equation (3.24) we performed complementary simulations where the con-
tribution of refraction and absorption was suppressed by setting χ0 = 0 in equations (3.5). A
comparison with the corrected results of the fully dynamical case, presented in Figure 3.9 shows
that both results entirely coincide with each other.
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Figure 3.9: The results of simulations for 1 µm Au cube presented in Figure 3.8 after applying the
correction with the function fc(r) (3.24). The amplitude corrected for absorption and the phase corrected
for refraction are represented for the xz-slice in (a, c) and by profiles along the x and z axes in (b, d).
The scheme in (c) illustrates the total optical path (|Rin − r| + |Rout − r| calculated for a point given
by r.
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Figure 3.10: Results of simulations for 1 µm Au cube calculated with the assumption Im[χh] = 0,
Im[χh̄] = 0, after correction by the function fc(r) (3.24). The amplitude and the phase are represented
for the xz-slice in (a, c) and by profiles along the x and z axes in (b, d).
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3.7 Simulations for a Pb particle of hemispherical shape

The results of the simulation for a perfect cubic crystal have shown that the dynamical diffrac-
tion can lead to appearance of artifacts in the real space reconstruction. In order to estimate the
contribution of the dynamical effects for a practical case, we considered experimental param-
eters described in References [33, 103]. In that experiment a 3D reconstruction of the Bragg
CXDI data was used for characterization of the strain distribution in a hemispherical droplet
of lead of 0.75 µm in diameter. The Pb(111) reflection was selected and a rotation series of 50

surrounding diffraction patterns were collected by rotating the sample in steps of 0.01◦. The
droplet was coherently illuminated by a monochromatic X-ray beam of 1.38 Å wavelength,
which corresponds to 13.79◦ of the Bragg angle for the Pb(111) reflection with 0.27 µm and
1.07 µm values of the extinction depth for the Bragg and Laue geometries, respectively.

In our simulations we considered a shape function represented by a sphere truncated from
one side by 1/3 of the diameter, as the closest model to the one described in the experiment.
The faceting plane was assumed to be tilted by 27◦ with respect to the (111) crystallographic
plane. The diffraction geometry from two perspectives of view is schematically shown in Fig-
ure 3.11(a,b).
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Figure 3.11: The diffraction geometry used in simulations for a Pb nanoparticle of hemispherical shape
(a sphere truncated from one side by 1/3 of the diameter) of 0.75 µm in diameter. The faceting plane is
tilted by 27◦ with respect to (111) crystallographic plane. (a) and (b) show a view from two different
perspectives.

The Figure 3.13 shows results of simulations performed by the dynamical theory. A series
of the diffraction patterns, calculated in the angular range from −0.83◦ to 0.83◦ with 12′′ incre-
ment, were merged into a 3D reciprocal space dataset and then inverted to real space. Accord-
ing to the geometry of simulation (see Figure 3.11) the cut along z-axis is not symmetric with
respect to the center, but covers the range from −d/2 + d/3 =−125 nm to d/2 =375 nm. The
amplitude distribution shown in Figure 3.12(a,b) reveals slight depletion of the electron density
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Figure 3.12: Results of simulations for a hemispherical Pb crystal 0.75 µm in size. The 3D electron
density distribution was obtained by the inversion of scattered amplitudes calculated by dynamical theory.
The amplitude and the phase are represented for the xz-slice in (a, c) and by profiles along the x, y and
z axes in (b, d).
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Figure 3.13: The results of the correction by the function fc(r) (3.24) applied to the results of simulation
presented in Figure 3.12. The amplitude and the phase are represented for the xz-slice in (a, c) and by
profiles along the x and z axes in (b, d).
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in the central part, which corresponds to attenuation of the incident and diffracted waves in the
bulk of the crystal. Nevertheless, the contribution of such an artifact appears to be relatively
small (about 10 % of the average value). That approves the feasibility of the kinematical ap-
proach used by authors in their analysis. In the phase distribution (see Figure 3.12(c,d)) a con-
siderable phase gradient with the maximum of the phase deviation about 0.7 rad is observed.
Since no strain was introduced in the simulations such artifact originates from refraction and
needs to be corrected.

Figure 3.13 shows results of the correction for refraction and absorption by the function
fc(r) (3.24). As far as the contribution of absorption is small, the resulted amplitude distri-
bution, presented in Figure 3.13(a,b), reveals no significant changes in comparison to that in
Figure 3.12(a,b). Correction for refraction removed a major part of the gradient in phase dis-
tribution (see Figure 3.12(c,d)). The residual variations up to 0.03 rad can be considered as
negligibly small. For comparison, the value of maximum phase deviation, which was obtained
from the reconstruction of the dataset in the experiment [33] with subsequent correction for
refraction, was estimated as 1.15 rad [103]. For this value of phase difference equation (3.11)
gives a corresponding displacement of the surface layers by 0.52 Å relative to the bulk.

Our simulations demonstrate the applicability of our approach for modeling of the dynam-
ical effects for parameters of a real experiment. A convenient method of the corrections for
refraction and absorption was elaborated, application of this method to the reconstruction re-
sults was demonstrated. Furthermore, the developed model, can be used in rather general cases
of the dynamical diffraction on finite size crystals of almost any shape.

3.8 Phase variations of the transmitted wave in case of Laue
diffraction on a thin crystalline plate

In this section we apply our model for simulations of Laue diffraction on a thin crystalline
plate. When the crystal thickness is sufficiently smaller than the extinction length the kinemat-
ical theory can be legitimately applied. Indeed, in the limit of a very thin crystal the results of
dynamical theory converge to the kinematical one [27] (see Section 1.4 of Chapter 1 for de-
tails). However, even in this limit the interaction between the transmitted and diffracted waves
may result in very small, but measurable effects, which cannot be treated in the frame of the
kinematical theory, since they have purely dynamical nature. For example, a small quantity of
the diffracted wave field is reflected by the back side of the same set of crystallographic planes
and interferes with the transmitted component, which affects both the amplitude and phase of
the transmitted wave. A direct observation of the wave field phase is impossible in conventional
scattering experiments, since detectors allow to measure only the intensity of X-rays. How-
ever, the iterative phase retrieval methods, such as CXDI or ptychography, allow to retrieve the
missing phase, using some additional information about the sample. Applying these methods it
becomes possible to measure and characterize such small effects.
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Figure 3.14: (a) A schematic view of the diffraction geometry used in simulations with an infinite crys-
talline plate. (b) The calculated angular dependence of the phase of the transmitted wave.

In an experiment [104] ptychography was employed to reconstruct the complex amplitude
of the transmitted wave. This method allowed to measure the variations in the phase of the
transmitted wave as a function of the angular deviation in the rocking scan. It was suggested to
fit the parameters of this experimental curve to get information about the phase of the diffracted
wave.

In this study we calculated the dependence of the transmitted beam’s phase on the angu-
lar deviation from the Bragg condition using the dynamical theory. We considered the case of
an experiment [104] where number of golden particles of cylindrical shape were illuminated
by a coherent X-ray beam in Laue geometry. A sketch of the experiment is presented in Fig-
ure 3.14(a). The selected particle was about 100 nm thick and the (111) crystallographic planes
were inclined by 72◦ to the entrance surface. For the selected 8.5 keV of photon energy the
Bragg angle was 18◦, therefore the direction of incidence was orthogonal to the crystal surface.
Since the value of the extinction depth defined by equation (1.40) was about 2.1 µm, the crystal
can be considered as a thin one.

In our simulations we assumed an infinite crystalline plate and performed numerical inte-
gration of equations (3.5) using the approach described in Section 1-3 of the present Chapter
with the aim to calculate the phase of the transmitted amplitude on the exit surface (see Fig-
ure 3.14(a)) near the Bragg condition. The angular dependence of the transmitted phase pre-
sented in 3.14(b) reveals a small, but clearly visible variations from the constant phase ramp of
0.18 rad corresponding to the refraction phase shift for a Au plate with 100 nm thickness. These
variations are about 0.016 rad in total and have a purely dynamical nature because they originate
from the coupling between the transmitted and diffracted waves. The phase profile reveals steep
decrease of the phase value from the maximum on the left to the minimum on the right. On the
reflectivity curve that corresponds to the change of the phase of the diffracted wave over π (see
Figure 1.9(a) in Section 4 of Chapter 1 for details).

The results of our simulations are in good agreement with the reconstruction of the experi-
mental data [105]. In the Reference [105] we developed an analytical approach that gives direct
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relation between the phase of transmitted wave and of the complex susceptibilities in case of a
thin crystals with thickness much less than the extinction length [105].

3.9 Conclusions

A theoretical approach to the numerical solution of the Takagi-Taupin equation in the case of
finite size 3D crystal of arbitrary shape is developed. A suggested modification of the Takagi-
Taupin equations offers a convenient way to solve them numerically using an integration grid,
which is invariable with respect to the angular deviation from the exact Bragg condition. As a
result, the complex amplitude distributions of the transmitted and diffracted waves can be calcu-
lated. Propagation to the far-field gives the amplitude and phase distribution on the diffraction
pattern that corresponds to a specific cross-section in reciprocal space. By performing a series
of such calculations a full 3D reciprocal space dataset in the vicinity of the corresponding re-
ciprocal lattice node can be constructed. Then, the complex function of the object in real space
can be obtained by the inverse Fourier transformation.

Using this model we performed simulations of the dynamical diffraction on a perfect crystal
of gold of cubic shape for 100 nm and 1 µm size. For a small crystal the result of our calcu-
lations was in full agreement with the kinematical theory. However, in the simulations for the
large crystal artifacts both in reciprocal and real space were observed due to dynamical scat-
tering effects. The contributions of different phenomena, such as refraction, absorption and
cross-coupling between the diffracted and transmitted waves were analyzed separately. Based
on the analytical derivations we developed a straightforward way to correct the results on recon-
structions for the effects of refraction and absorption. Such corrections, applied to the results
of the simulations, demonstrates a complete removal of corresponding contributions in the real
space reconstruction. The residual artifacts in the amplitude and phase distributions are at-
tributed to the cross-coupling of the diffracted and transmitted waves in the crystal. Additional
simulation for a practical case of a Bragg CXDI experiment with a hemispherical Pb particle of
750 nm size was performed.

The developed model was used for a simulation of the angular dependence of the phase
of the transmitted wave in the case of thin crystalline plate infinite in two dimensions. Small
variations of this phase observed in the vicinity of the Bragg angle have a purely dynamical
nature. Such variations are related to the structure factor, therefore, this demonstration is of im-
portance for further development of method of obtaining such information from experimentally
measured data.
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Chapter 4

Nano and Mesoscopic materials

Mesoscopic physics is a sub-discipline of condensed matter physics which deals with materials
of an intermediate length scale between the size of molecules and micrometres. Such systems
behave very differently from large-scale objects and often have unusual physical and chemical
properties, which makes them remarkably interesting to science and engineering applications.
There is no rigid definition for the mesoscopic length scale, but the systems studied are normally
in the range of 100 nm to 1 µm. Starting to reveal quantum mechanical properties such an object
cannot be treated anymore as a continuum. The fluctuations around the average and the discrete
structure must be taken into account. New categories of phenomena such as quantum confine-
ment and charging effects provided them a variety of applications in the fields of nanofabrication
and nanotechnology [106]. Receiving a growing attention, the science of mesoscopic systems
holds many of well-established methods developed for studying and synthesizing such objects
and this field is rapidly progressing nowadays.

In this thesis we demonstrate how methods of coherent X-ray diffraction can be applied for
in situ structural investigation of mesoscopic materials, such as colloidal crystals. Due to their
unique optical properties, these novel materials have been the focus of many investigations [107,
108, 109] and could have serious implications for modern photonics [110]. They may find
applications in future solar cells, light emitting diodes, lasers, or even as the basis for circuits
in optical computing and communication [111]. Perhaps, the most striking is the possibility
of obtaining a complete photonic band gap, a range of energy for which the photon cannot
propagate in any direction inside the structure [112, 113]. With this property, 3D colloidal
crystals would allow to inhibit unwanted spontaneous emission and manipulate the flow of
light [114].

Functional properties of the photonic crystals strongly depend on the crystal quality. It has
been shown that by introducing defects it is possible, for example, to trap photons [109, 115],
which opens the way to develop optical chips [116]. However, the manufacturing problems are
still far from being solved. Lithographic methods are very effective for producing high-quality
materials with any desired structure, however, the applicability of such structures is highly
limited by slow and costly production processes [115]. In contrast, self-organized colloidal
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crystals can be synthesized under ambient conditions by vertical deposition techniques [117,
118] and thus represent a cheap alternative class of materials which is more promising in terms
of speed and production cost [111].

4.1 Colloidal crystals

Colloid is a substance consisting of particles substantially larger than atoms or ordinary molecules
but too small to be visible to the unaided eye. Colloidal systems may exist as dispersions of
one substance in another where microscopically dispersed insoluble particles are suspended
throughout a liquid. As distinct from a solution both dispersed phase (the suspended particles)
and a continuous phase (the medium of suspension) are present. The statistical mechanics of
colloids is driven by the potential of mean force which depends on properties of the colloidal
surface. Changing chemical properties of the solvent or adding a depletant it is possible to
modify the mean force potential from steeply repulsive to deeply attractive. Due to Brownian
motion colloids redistribute their kinetic energy into thermal motion of the solvent molecules
and reach a thermodynamical equilibrium. Most important roles in the interaction of colloid
particles are played by the following forces [119]:

Excluded volume repulsion refers to the impossibility of any overlap between hard particles.

Electrostatic interaction, which cause either repulsion or attraction that depends on electrical
charge carried by both the continuous and the dispersed phases.

The van der Waals forces produced by an interaction between two dipoles that are either per-
manent or induced [120, 121]. A temporary dipole, which can be generated by fluctua-
tions of the electron density even if the particles do not have a permanent dipole induces
a dipole in particles nearby resulting in short-range attractive force. The van der Waals
forces are always present unless the refractive indexes of the dispersed and continuous
phases are matched.

Entropic forces, which are resulting from the entire system’s statistical tendency to homoge-
nize the distribution of various species in the solution and progress to a state with greater
entropy [121].

Steric force between polymer-covered surfaces or in solutions containing non-adsorbing poly-
mer can produce an additional steric repulsive force or an attractive depletion force [122].

When a saturated solution with colloidal particles evaporates particle sedimentation arises
from a difference in the density of the dispersed and continuous phase. Pulled together by
capillary forces the particles try to fill the least space and find a thermodynamic equilibrium
state. If a crystallization nucleus is found the particles can arrange into regular lattices [123,
109, 124]. One of the finest natural examples of this ordering phenomenon can be found in
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Figure 4.1: Schematic outlines of two common procedures to assemble colloids into 3D crystalline
structures: (a) sedimentation in a gravitational field; (b) vertical deposition by evaporation. A convective
flow causes transport of particles toward the meniscus, where the molecules from the solvent evaporate,
leaving the colloidal particles behind.

precious opal, in which highly ordered close-packed arrays of amorphous colloidal spheres of
silicon dioxide are formed after years of sedimentation and compression under hydrostatic and
gravitational forces [125, 126]. Appearing analogous to their atomic or molecular counterparts
colloidal crystals act as a natural diffraction grating for visible light waves, analogous to the
scattering of X-rays in crystalline solids [127].

There are several ways to prepare artificial colloidal crystals of which the most used are sed-
imentation by gravity or controlled evaporation of the solvent. Figure 4.1(a) shows schematic
representation of the sedimentation of colloids into close-packed 3D structures. Driven by grav-
itation force, particles slowly settle at the bottom of the solution in the form of dense sediments.
Since the crystallization nuclei rise up at different locations the process results in a polycrys-
talline sample with domains of various sizes. A drawback of this method is that quality of the
crystal and the the domain size highly depend on the sedimentation speed which is difficult to
control.

Another commonly used growth technique is the vertical deposition by evaporation (see
Figure 4.1(b)). A dispersion containing a low concentration of monodisperse colloids slowly
evaporates on a substrate inducing a convective flow which transports new particles to the
meniscus. Pulled together by capillary forces particles try to fill least space and form a close-
packed structure [124]. This method was first introduced by Jiang et.al. [123] and has been
improved over the years [128, 129]. It has been shown that resulting crystals reveal a tendency
towards face centered cubic (FCC) stacking, which inspired detailed studies of self-assembly
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Figure 4.2: (a) Top view of three possible positions, denoted as A, B and C, in a hexagonal close-packed
layers. (b) Top view of stacking of 3 close-packed layers in FCC and HCP lattices. (c) FCC and HCP
structures from the side view.

process [130, 131, 132, 133].
The research presented in this thesis deals with colloidal crystalline structures formed by

uniform polystyrene and silica spheres. From the theory [134] it is known, that highest aver-
aged density in close-packed arrangements of equal spheres is achieved when they form plain
hexagonal layers, which can occupy only three specific positions relative to each other, as it
shown in Figure 4.2(a). Let the layer at the bottom be called A layer (colored with blue in
schematic). The layer above it can be placed in two types of triangular voids, one with the apex
upwards and labeled B (green color), and the other with the apex downwards and labeled C (red
color). Only one of these sites can be occupied, but not both. If the second layer is B, then,
similarly, the third hexagonal close-packed layer can occupy either A or C positions and so on.
Any sequence of the letters, A, B and C with no two successive letters alike represents a possi-
ble manner of close-packing. In such a three-dimensional structure, each sphere is surrounded
by and touches 12 other spheres.

The two most common close-packed structures which occur in nature are the hexagonal
close-packed (HCP) structure with a stacking period AB, and the face-centered cubic (FCC)
with a layer stacking ABC (see Figure 4.2(b,c)). In colloidal crystal the free-energy differ-
ence between HCP and FCC is rather small 11 [135, 136]. Therefore a random mixture of two
stacking types, the so-called random hexagonal close-packed (RHCP) structure, is often ob-
served [137, 138] in colloidal crystal films grown by self-assembly techniques. Even in regular
crystals the ideal order of repeated sequences might be broken with one layer slipped to another

11According to Reference [135] the FCC structure of hard spheres is more stable than the HCP structure by a
molar Gibbs free-energy difference of ≈ 0.005RT , where R is the universal gas constant.
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Figure 4.3: SEM image of the surface of a polystyrene colloidal crystal film revealing stacking defects.
Figure was adopted from Reference [70].

position resulting in the stacking defect (see Figure 4.3). Since the important optical properties
of the crystal, such as photonic band gap depend on the defects, it becomes of importance to
characterize the quality of fabricated crystals.

Despite the large interest in self-organized colloidal crystals, much is still unknown about
the processes governing self-assembly. That hinders the control of the intrinsic disorder present
in such systems and brings the difficulty of including functional defects at desired positions.
To fully understand the relations between the growth process and formation of defects detailed
knowledge about the local internal structure has to be accessible.

4.2 Methods for structural characterization of colloidal crys-
tals

The structure of colloidal systems can be examined in different ways. Among widely used
techniques are optical microscopy [139, 140] and confocal laser scanning microscopy [141].
However, a range of applications of these methods is strongly reduced by limited resolution (at
best 250 nm to 300 nm). Scanning electron microscopy (SEM) can provide high-quality images
of the material surface with exceptional resolution [123], but fails to probe the bulk, because
of low penetration depth for electrons. In addition, imaging in SEM typically involves elabo-
rate sample preparation [142], such as drying or coating. In this respect, high-resolution hard
and soft X-ray microscopy [143, 144, 145], small-angle X-ray scattering (SAXS) [146] and
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small-angle neutron scattering (SANS) [147] represent complementary methods offering the
advantage of high penetration depth for nondestructive studies of colloidal systems [148]. In
comparison to SANS, the synchrotron based SAXS methods exploit highly intense and colli-
mated X-ray beams, which provides microradian resolution [149, 150, 137, 151, 152, 153, 154].
The latter is essential for the characterization of the long-range positional order in colloidal
crystals [155, 138, 117].

In this thesis we report on results of coherent X-ray diffraction experiments with colloidal
crystals, performed in the small-angle scattering geometry. The investigated structures con-
sisted of uniform silica or polystyrene colloidal particles of spherical form. According to the
kinematical theory the coherently scattered signal measured in the far field is determined by the
product of the form factor and structure factor

I(q) = P (q)S(q). (4.1)

It can be shown that the form factor of uniform sphere with radius R normalized to its volume
can be represented as [156]

P (q) =

{
3[sin(|q|R)− |q|R cos(|q|R)]

(|q|R)3

}2

. (4.2)

Due to relatively big size of particles (200-500 nm) the modulations of the intensity given by the
form factor can be measured in the small-angle scattering geometry. On the diffraction pattern
such modulations are represented by a series of concentric rings (see Chapter 6 for details).

The contribution of the structure factor S(q) results in the concentration of intensity around
points which correspond to nods of the reciprocal lattice. That is observed as a regular structure
of bright spots (Bragg peaks) on the diffraction picture. The positions and relative intensities of
the Bragg peaks are defined by the symmetry of the crystal and lattice disorder. Furthermore,
in the presence of stacking defects the some of the Bragg peaks smear into elongated rods in
reciprocal space [71]. This subject will be discussed more detailed in the next chapter.
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Chapter 5

CXDI experiment with a single colloidal
crystal grain

An experimental demonstration of applying ideas of coherent X-ray diffractive imaging for vi-
sualization of a stacking fault in a thin colloidal crystalline film was first presented by J. Gulden
et. al. [70]. In recent work [71] it was proposed to extend this method to three dimensions.
The full 3D reciprocal space data from a single crystal grain was measured by collecting a
diffraction patterns during the azimuthal scan. However, due to experimental challenges it was
not possible to perform the 3D reconstruction of the measured dataset at that stage. Following
these ideas and in a view of our previous experience we performed a sequent experiment and
achieved detailed reconstruction which visualizes positions of individual particles in a single
colloidal crystal grain. In this chapter we discuss the details of the experiment and data anal-
ysis. A brief review of an independent study of intensity profiles along the Bragg rods which
have been observed in reciprocal space will be given.

5.1 Experimental

The samples were prepared from dried sediments of colloidal crystals that showed character-
istic optical Bragg reflections [71]. The specimen studied in this work consisted of sterically
stabilized silica spheres with a diameter of 230 nm dried from cyclohexane over several months.
Small grains were obtained by mechanically crushing a piece of the ordered sediment. Individ-
ual grains were picked up manually using a micromanipulator and connected to the tip of a
10 µm thick carbon fiber, which was glued to a glass holder beforehand. The colloidal crystal
grain used in this study was imaged with a light microscope (see Figure 5.1) and determined to
have dimensions of about 2× 3× 4 µm3.

The experiment was performed at the Coherence Beamline P10 of the high-brilliance stor-
age ring PETRA III in Hamburg. A monochromatic coherent X-ray beam of 8 keV photon
energy was focused at the sample at 87.7 m from the undulator source using the transfocator
optics [157] based on compound refractive lenses (CRLs). The CRL optics was positioned at
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Figure 5.1: Light microscopy image of the colloidal crystal grain mounted on a carbon fiber tip.

2.2 m distance upstream from the sample (see Figure 5.2). A set of horizontal and vertical guard
slits 75×75 µm2 in size, located at 1.5 m distance before the CRL, was used to select a coherent
portion of the beam. The size of the focal spot at the sample position was 5.5 µm (FWHM) in
horizontal and 3.2 µm (FWHM) in the vertical directions with about 1011 photons per second of
total intensity [157]. To inhibit the radiation damage the grain was cryo-cooled with the flow
of nitrogen (about 100 K). The colloidal crystal grain was mounted on a goniometer, which
allows rotation of the sample around the vertical axis. The diffraction data were recorded using
a photon-counting pixel detector MAXIPIX [158] positioned in transmission geometry at 5.1 m
distance downstream from the sample. In order to reduce air scattering an evacuated tube was
inserted between the sample and the detector covering the major part of the optical path. The
detector matrix consisted of four readout chips which can be recognized as squares separated
by black cross in Figure 5.2(a,b). The total number of pixels was 516 × 516 and a pixel size
was 55 × 55 µm2. The resolution value in reciprocal space as defined by the geometry of the
experiment and photon energy was 0.437 µm−1. For the dimensions of the selected grain that
provided the sampling rate about 4.

To access the scattering signal close to the directly transmitted beam the semitransparent
beamstop, made of 300 µm thick Si foil, was installed in front of the detector. In addition to
that, a Ta disk of 0.5 mm in diameter was glued on the top of the foil to absorb the direct
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Figure 5.2: The schematic of the experimental setup used in the CXDI experiment. A compound re-
fractive lenses focus the coherent X-ray beam at the crystal grain mounted on a top of carbon fiber. The
sample was constantly cooled by a flow of nitrogen using a cryojet. The diffraction data was recorded
by 2D detector positioned in the far-field. (a, b) Typical diffraction patterns measured at relative angular
positions ∆θ = 61◦ (a) and ∆θ = 165◦ (b). Two elongated rods visible in (b) (indicated by arrows)
originate from the presence of planar defects in the crystal grain.

beam completely. The semitransparent beamstop can be recognized as the shadowed area in
the center of the diffraction images presented in Figure 5.2(a,b). The recorded signal in this
region was multiplied by a mask, which was calculated according to the absorption length for
the selected photon energy and the film thickness. The borders of the beamstop were corrupted
by the cutting procedure and revealed variations of thickness. In the diffraction patterns that
resulted in sharp border line (about 1-2 pixels in width) along the perimeter of the beamstop
area. For each pixel in this region the mask coefficient was determined by normalization of
the detected signal to the averaged value of intensity in the surrounding. To improve accuracy
the results of this normalization were averaged over all diffraction patterns collected during the
measurements.
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Figure 5.3: (a) 3D reciprocal space intensity map, represented by volume rendering. Length of the
arrows correspond to 50 µm−1. (b) A sketch of the reciprocal lattice with the basis vectors b1, b2 and
b3. For specific hk indices, as labeled, the intensity along l is concentrated into distinct Bragg peaks
(gray spheres) for h − k divisible by 3, and smeared into Bragg rods (gray rods) for h − k not divisible
by 3.

The full dataset consisted of rotation series of 360 diffraction patterns with 0.5◦ angular
increment covering the entire reciprocal space. To avoid oversturation of the detector a series
of 50 images with 0.02 s of exposure time were collected and summed up for each azimuthal
position. In addition to the rotation series several images were recorded with the empty-beam,
i.e. when the sample was completely moved out. The average of these images was normalized
to the expose time and subtracted as a background from each of the diffraction patterns in the
dataset. In Figure 5.2(a,b) two examples of resulted scattering patterns are shown. They contain
several Bragg peaks surrounded by the interference speckles and diffuse scattering in between.
The detector size allowed to reach reflections up to the forth order measured simultaneously.
The visibility

V =
Imax − Imin
Imax + Imin

, (5.1)

which is a commonly used characteristic quantity of the contrast in the coherent interference
pattern [51], was estimated to be about from 75 % to 80 %. It’s worth to mention, that although
the intensities between the Bragg peaks are rather week in comparison with that in the vicinity
of the peaks, this part of recorded signal is highly important for the reconstruction. It encodes
information about the relative phases of different reflections and allows to resolve positions
of individual scatterers in the unit cell. The concentric circles observed in diffraction patterns
represent the form factor of a single colloidal sphere and the number of such circles on the
diffraction pattern can be easily converted into a sampling ratio, which results about 8 pixels
per a single sphere in direct space.

In Figure 5.3(a) the full 3D reciprocal space map, represented by volume rendering, is
shown. The volume of 223 × 223 × 223 µm−3 is sampled by a regular grid of 511 × 511 × 511
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voxels, so the transversal size of the voxel corresponds to the pixel size of the diffraction pattern
in reciprocal space. All 360 diffraction patterns collected during the rotational scan were used
in the merging procedure. The qx, qy, qz coordinates of each measured point in reciprocal space
were determined from the transversal coordinates of the pixel on the diffraction pattern and an
angular position in the rotational scan. The values of the scattered amplitude on the regular
grid were calculated from all measured points in the neighborhood (about 1.5 of the voxel size)
using Barnes interpolation [159].

5.2 Two distinguished types of the Bragg reflections

A remarkable feature observed in several of diffraction patterns is a pair of streaks which con-
nect some of the Bragg peaks (see Figure 5.2(b)). These streaks indicate the presence of the
plane defects in the crystalline lattice [71] and the intensity modulations along them are di-
rectly related to the exact stacking sequence. In the full 3D reciprocal space dataset (see Fig-
ure 5.3(a)), that gives rise to well-pronounced Bragg rods which connect some of the reciprocal
lattice nodes. Such rodes are oriented perpendicular to the plane of the defect and therefore a
specific sample orientation is required for the observation of the whole streak in a single diffrac-
tion pattern. In this section we introduce a model, developed by J.-M. Meijer et. al. [160], that
describes the relation between the stacking and structure factor.

Let us assume a single crystal composed of hard equal spheres and consisted of finite number
of perfect hexagonal layers which form RHCP structure (arbitrary sequence of A, B, C layers
without pairs of successive letters). The positions of spheres in the lattice can be described by
the hexagonal set of basis vectors a1, a2 and a3, as shown in Figure 5.4(a). The periodicity
within single hexagonal layer is described by a1 and a2, with |a1| = |a2| = a, which is the
interparticle distance, and the interlayer spacing is described by the vector a3, with |a3| =

√
2
3
a.

Thus, the layers are stacked along the a3 or [001] direction and the order of the A, B or C layer
positions determines the exact stacking sequence. The translation vector which describes the
displacement of the any layer with respect to the one, which is underlying, can be expressed as
(±c + a3), where the in plane vector c = (2a1/3) + (a2/3) is taken with positive sign (+) for
‘forward‘ transition from A to B, B to C or C to A. The negative sign (-) corresponds to the
‘backward‘ lateral displacements: for A to C, B to A or C to B (see Figure 5.4(b)).

Based on the hexagonal set of direct space basis vectors, the reciprocal basis vectors b1 and
b2 and b3 can be determined in the usual way (see formulas (1.19) or [161]). The scattering
vector q is then described by q = hb1 +kb2 + lb3. A schematic representation of the reciprocal
space lattice is shown in Figure 5.3(b).

The blue planes illustrate the hexagonal layers described by b1 and b2. Owing to the two-
dimensional periodicity inside each hexagonal plane, the scattering intensity in reciprocal space
will be concentrated around the integer values of h and k. Stacking faults, inherent in an RHCP
structure, break the interlayer periodicity, thus smearing out the diffraction features in rods
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Figure 5.4: (a) The hexagonal unit cell in direct space, together with the basis vectors a1, a2 and a3. (b)
Top view of the A, B and C positions and the lateral displacement vector c.

along l. The diffraction amplitude of each subsequent layer along l is dependent on the layer
position which, in direct space as described above, will be shifted by the vector a3 in the direc-
tion normal to the layers and by ±c laterally. Correspondingly, in reciprocal space the contri-
bution of the nth layer to the diffraction amplitude will receive a q-dependent phase shift along
l. This phase shift is described by exp(i∆φn + 2πinl), where ∆φn is the phase shift caused by
the lateral displacement ±c, given by a recurrent relation

∆φn = ∆φn−1 ± 2π
(h− k)

3
. (5.2)

Using equation (5.2), we obtain an expression for l−profile of the structure factor S(l) of a
crystal containing N hexagonal layers as [160]

S(l) =
∣∣∣N−1∑
n=0

exp(i∆φn + 2πinl)
∣∣∣2. (5.3)

Here, the first layer is n = 0 and always assigned an A position. It must be noted that all layers
are assumed to be of the same size, i.e. contain the same number of particles. For specific hk
indices such that h−k is divisible by 3, the phase shift ∆φn is always a multiple of 2π and S(l)

reduces to the usual result [161]

S(l) =
∣∣∣sin(πNl)

sin(πl)

∣∣∣2. (5.4)

with well defined Bragg peaks around integer values of l, independent of the stacking sequence
and thus resembling a perfectly regular crystal with N planes. In the following the Bragg
reflections of this type will be referred as stacking independent. The positions of the stacking
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independent reflections are represented by the grey spheres in Figure 5.3(b).
For the other hk indices, h − k not divisible by 3, the S(l) profile will depend sensitively

on the exact sequence of the N layers as given by equation (5.3), and the intensity is concen-
trated into rods along l. These, stacking dependent, reflections are represented by grey rods in
Figure 5.3(b).

5.3 Results of 3D reconstruction

The scattered intensity distribution in the vicinity of stacking independent reflections is given
by the shape function of the crystal. Relying on that fact, we obtained the estimate of the grain
shape, which was afterwards used as a support in further phase retrieval procedure. In recipro-
cal space we selected a cubic volume 35 × 35 × 35 µm−1 surrounding (110) Bragg peak, (see
Figure 5.5(a)) and performed reconstruction for this dataset 12. The results were averaged over

Figure 5.5: (a) 3D scattered intensity in the vicinity of the Bragg peak outlined by a green box in Fig-
ure 5.3(a). (b) Reconstruction of 3D shape of the grain in real space averaged over 6 stacking independent
reflections. Length of the arrows correspond to 10 µm−1 in (a), and 1 µm in (b).

reconstructions of 6 different stacking independent reflections, and the obtained shape function
(see Figure 5.5(b)) was used as a tight support in the reconstruction of the full 3D reciprocal
space dataset. That allowed to avoid appearance of the twin image in the results and substan-
tially facilitate the reconstruction procedure. In the phase retrieval process consisted of about
3000 iterations of HIO algorithm combined with ER, this support was several times updated
by applying the Shrinkwrap method [74, 78]. The missing regions in the diffraction data were
allowed to free evolve with applying an upper boundary for amplitudes which suppress them
down to values obtained from the Fourier transform of the support with normalization to the
measured amplitudes.

12That corresponds to volume of 81× 81× 81 pixels.
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Figure 5.6: (a, b) A volume rendering of the reconstructed 3D electron density distribution in real space,
a view from two different perspectives. Length of the arrows correspond 1 µm.

Reconstructed electron density, shown in Figure 5.6 reveals periodic behavior which corre-
sponds to positions of colloidal particles in the crystal grain. In Figure 5.7(a) a slice through one
of the layers observed in Figure 5.6(a) is presented. Positions of individual colloidal spheres
are clearly resolvable and show perfect hexagonal symmetry. To determine the layer sequence
we projected the reconstructed electron density on the [11̄0] crystallographic direction (see Fig-
ure 5.7(b)). In this figure each layer is represented by a horizontal row of periodic electron
density. Since the lateral displacement vector c belongs to the projection plane, the lateral po-
sition of each layer can be directly identified. The first well pronounced layer at the top of the
crystal was defined as A layer and the next layer below that as B layer. Then, according to
its lateral shift the third layer appears to be C layer, and in this way, all 14 layers were iden-
tified. We did not consider the most top layer as well as the most bottom one because they
consist of much less number of particles and apparently not well resolved. The resulted stack-
ing sequence ABCBABCBABCBCA (from the top to bottom) reveals almost perfect double
hexagonal close-packed (DHCP) structure that consists of repeating ABCB compositions and
can be represented as alternating A/C layers in an HCP environment. The last two layers,
which are underlined, reveal a single stacking fault where the perfect DHCP order is broken.

The determined periodicity in the stacking sequence is a remarkable result because the
DHCP structure has not been observed before in colloidal crystals of spheres. In recent work
by J.-M. Meijer et.al. [162], it was suggested that the growth of a sedimentary crystal with an
RHCP structure probably occurs via the sequential nucleation of hexagonal layers. The inter-
actions are limited to neighbouring layers and, therefore, the DHCP structure could be just one
of the many random coincidental realizations of the RHCP structure. Alternatively, it could
be an effect of the drying process, in which capillary forces of significant strength act on the
colloids [163].
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Figure 5.7: (a) Slice through the crystalline plane marked with checkmark and green color in the projec-
tion on the right. Well pronounced hexagonal symmetry is outlined by a white hexagon. (b) Projection
of the electron density on the [11̄0] crystallographic direction. Each of the layers is marked by corre-
sponding letter, the saw-like diagram illustrates lateral displacements in the stacking sequence of layers.

5.4 Bragg rod intensity distribution used for determination
of the stacking sequence

The intensity modulations along the Bragg rod can be used for determination of the specific
stacking sequence by fitting a simple model for a finite number of hexagonally close-packed
layers. That enables direct access to structural information of finite-sized crystals on the basis
of coherent diffraction measurements, but without the challenging phase retrieval data analysis
typical for CXDI. This approach was developed and demonstrated by J.-M. Meijer et. al. [160],
where the Bragg rod intensity profiles, extracted form the 3D dataset presented in Figure 5.3(a),
were analyzed.

According to the equation (5.3) the contribution of the structure factor S(l) is only depen-
dent on the stacking sequence. Therefore, groups of hkl rods with the same contribution of the
form factor given by equation (4.2) can be classified into a general family, for example all rods
10l, 01l, 10l, 01l, 11l and 11l belong to the 10l family.

Using this model, authors of work [160] performed analysis of the intensity profiles of 3

Bragg rodes extracted from the three-dimensional dataset in reciprocal space. The l values
were determined by locating the middle of the rod with respect to the center of the incident
beam and scaled with the q value of the (001) Bragg peak, as this is located at l = 1. The
intensity profiles for the selected Bragg rod families 10l, 20l and 21l are plotted in Figure 5.8,
where the intensity modulations can clearly be seen. For each profile, the peak positions are
similar while the peak amplitudes differ significantly. This is expected, because for each hk
combination of indices the structure factor S(l) is the same, while the form factors Phk(l) are

83



Figure 5.8: Normalized experimental Bragg rod profiles of the 10l, 20l and 21l families (lines + sym-
bols), showing distinct intensity modulations along l. The peak positions of the families correspond well,
while their amplitudes differ because of the different form-factor and structure factor contributions at the
specific hk indices.

different.
The total number of layers N in the studied crystal grain determined by fitting the width of

the Bragg peaks along the 11l rod was found to be 12. The first layer was defined as A. After
careful examination of all possible combinations of A, B, C layers, two sequences that yielded
the best match to the experimental profiles were found. Figure 5.9 shows the experimental
Bragg rod profiles for the 10l, 20l and 21l Bragg rod families, as well as the best fits calculated
for the two found sequences. The first stacking sequence, ABCBABCBABCB, is a perfect
DHCP structure. The second sequence, ABCBABCBCACB, is similar to the first one with
the exception of the two underlined layers. These two layers cause a stacking defect in the
perfect DHCP sequence, and change the repeatingB layer to a repeatingC layer. The calculated
I(l) profiles for the two considered DHCP sequences are very similar in terms of peak positions,
shapes and amplitudes and describe all three experimental Bragg rod profiles very well. Small
deviations between the experimental data and the model could be explained by our simplified
approach to determining I(l). The overall good agreement obtained using the simple model
for I(l) shows that the DHCP structure is the dominant packing arrangement of the colloidal
spheres present in the studied crystal grain.

These results are very similar to the DHCP stacking that were determined from the 3D
reconstruction. The small difference in the number of layers can be explained by the finite
size of the grain. The Bragg rod model assumes equal contribution from each layer, while the
reconstructed grain clearly shows that the layers at the top and bottom of the grain are much
smaller than the those in the center.

5.5 Conclusions

Coherent X-ray diffractive imaging experiment with a single colloidal crystal grain was per-
formed. Coherent X-ray diffraction data which included several Bragg reflections together with

84



Figure 5.9: Normalized experimental Bragg rod profiles (black lines + symbols) for (a) the 10l, (b) the
20l and (c) the 21l families, and modeled profiles for two DHCP structures, a perfect sequence (orange
lines) and a sequence with a single stacking fault (blue dashed lines). The specific layer sequence is
represented by the A, B and C sequences (given along the top), where each layer can be in either an
HCP environment (red) or an FCC environment (green). Arrows indicate the region where the two
DHCP model profiles mismatch the most and have a single or double peak, respectively.

surrounding speckles and intensities between them was measured by a rotation series of 2D
far-field diffraction patterns. The obtained 3D dataset in reciprocal space was inverted into the
electron density distribution in real space using the phase retrieval approach. In the obtained
reconstruction positions of individual colloidal particles were resolved in three dimensions. The
crystalline structure of the sample was characterized in terms of close-packing of perfect hexag-
onal layers. The determined stacking sequence revealed 14 layers with almost perfect double
hexagonal close-packed structure. This is a remarkable result because the DHCP structure has
not been observed for colloidal crystals before. The stacking defect in the lattice was visualized
in the projection of the reconstructed electron density on the [11̄0] crystallographic direction.

The reconstruction results were compared with an independent analysis of the reciprocal
space data, based on the theoretical model for a scattered intensity along the Bragg rod for
an exact stacking sequence of a finite number of hexagonally close-packed layers. Using this
model two stacking sequences of the double hexagonal close-packed type with 12 layers were
found to match the experimental data. Both of them are in good agreement with the results
of the phase retrieval which shows that the suggested method is a feasible new route for the
analysis of finite-size objects.

Our results are of a significant importance for the further progress and developments of
CXDI methods with an aim to resolve the three-dimensional structure of nanocrystals with
atomic resolution. They are remarkably related to the phase problem in crystallography. In
essence, this is a successful experimental realization of the idea suggested by Sayre [65] (for
details see Section 2 in Chapter 2), which before that was never applied for X-rays.
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Chapter 6

Coherent X-ray diffraction studies of
colloidal crystals upon heating

6.1 Heating and annealing treatment of colloidal crystalline
structures

An important aspect of possible applications of colloidal systems in photonics and nanolithog-
raphy is their behavior under heating treatment [164, 165, 166, 167, 168, 169]. On one hand,
it has been shown that occasional appearance of defects in a three-dimensional colloidal crys-
tal leads to significant degradation of its optical characteristics [170]. On the other hand, the
photonic band gap properties can be deliberately modified by sintering and annealing at ele-
vated temperatures [171, 172, 173]. Furthermore, the glass transition temperature for polymers
is known to be greatly influenced by free surfaces [174, 175, 176]. After transferring a free-
standing polystyrene film to a substrate, and thus reducing the free-surface-to-volume ratio by a
factor of two, an increase of 50 K of the glass transition temperature has been observed [176]. In
a range of temperatures below the glass transition temperature of a polymer, the crystal retains
a long-range order and undergoes a blue shift of the optical attenuation bands. The tempera-
ture region beyond the long range-ordered phase, when the crystal starts to deteriorate, is not
well studied, although it has important technological aspects regarding the tolerable temperature
range of a photonic device.

Structural studies of spin-coated polystyrene (PS) colloidal thin films during annealing us-
ing a combination of grazing incidence small-angle X-ray scattering and optical ellipsometry
have been reported by Herzog et al. [168]. It was observed that colloidal particles flatten during
annealing, and it was suggested [166] that a coalescence process takes place. Similar observa-
tions were made in the work of Chen et al. [167] where the structural evolution of latex films
was studied as a function of annealing time using SAXS. Two main effects due to dry sinter-
ing were identified: particle deformation and aggregation of particles due to interdiffusion of
polymer chains.

Presently, it is not well studied what happens with a 3D assembly of colloidal particles in
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a crystal upon heating. We can generally assume that the glass transition temperature of the
polymer should directly influence the melting temperature of the colloidal crystal. The physical
processes taking place during heating and annealing of the colloidal crystal involve particle
shape change, thermal shrinkage, interpolymer diffusion and particle melting [171, 172, 166].
In the present work, we aim at a quantitative investigation of lattice distortions and particle
shape changes in colloidal crystals upon heating treatment. For this purpose, we perform a
detailed analysis of Bragg peaks in diffraction patterns of PS colloidal crystals measured in
situ during incremental heating in a range of temperatures below and above the glass transition
temperature of bulk polystyrene (373 K).

6.2 Experimental setup

PS colloidal crystal films were prepared using the vertical deposition method [117, 123]. PS
spheres were obtained by polymerization of the aqueous solution of styrene using potassium
persulfate as the initiator. The obtained atactic polymer with no control of the side group orien-
tation possesses the typical glass transition temperature TG of about 373 K [177]. Polydispersity
of colloidal particles as measured by dynamic light scattering (DLS) was 2.1 %. Thin glass sub-
strates were inserted into colloidal suspensions contained particles at 1 % volume fraction in
water and subsequently dried at 323 K for at least 24 hours. The grown colloidal crystal films
consisted of 40 to 50 monolayers of PS spherical particles, depending on the position on a film
along the growth direction. Typically, the colloidal crystal films exhibit a cracked texture con-
sisting of single-crystal regions with an average size of several tens of micrometers (as shown
in the inset of Figure 6.1).

Figure 6.1: Schematic view of the experimental setup: U, undulator source; HHM, high heat load
monochromator; M1, M2, pair of flat X-ray mirrors; S1, S2, S3, slit systems; CRL, compound refractive
lenses. Inset at the sample position: an optical micrograph of the colloidal crystal.

X-ray diffraction experiments were performed at the Coherence Beamline P10 of the PE-
TRA III synchrotron facility at DESY, Hamburg [178]. A sketch of the experimental setup is
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shown in Figure 6.1. The synchrotron beam from the undulator source (U) was monochroma-
tized by a high heat load monochromator (HHM) exploiting Si(111) reflection. A pair of flat
Si-coated mirrors (M1, M2) was used to reject higher harmonics from the undulator spectrum.
The slit system (S1) was used to define the beam size at the entrance of focusing optics. The
focusing optics based on compound refractive lenses (CRLs) can be optionally inserted in the
beam path at 1.57 m distance upstream the sample position [157]. Two collimating slits (S2,
S3)were located at 0.8 and 0.3 m upstream a sample and were used to define the size of unfo-
cused beam. The sample was positioned inside a vacuum chamber at 87.7 m distance from the
source. Diffraction patterns were recorded by using the 2D detector MAXIPIX with total area of
516× 516 pixels and a pixel size of 55× 55 µm2. The detector was positioned at 5.1 m distance
downstream the sample. To eliminate parasitic background due to air scattering, an evacuated
flight tube was used between sample and detector. In order to protect the detector from the pri-
mary beam, the beamstop made of a tungsten cylinder of 3 mm diameter was positioned inside
the flight tube.

The glass substrates of colloidal samples were cut to 3 × 6 mm2 pieces and mechanically
attached to a copper holder plate. The copper plate was fixed to a copper block designed as
an insert flange of the sample chamber. The heating of the copper block was supplied via two
heating elements connected in parallel and built in the copper block. To provide controlled
heat exchange, the copper block with heating elements was separated by a Peltier element from
the outer copper part. The latter was connected to a water cooling cycle and acted as a heat
sink. The temperature of the sample holder was monitored using two PT100 temperature sen-
sors integrated in the copper block. Temperature and heating power were adjusted using a
LakeShore 340 temperature controller. The temperature of the samples was increased incre-
mentally starting from room temperature (TR = 293 K). Prior to the data collection, a waiting
time of 5 minutes was applied at each temperature to reach thermal equilibrium.

We performed two X-ray diffraction experiments (denoted below as experiment A and ex-
periment B) on PS colloidal crystal films grown in similar conditions, but consisting of spheri-
cal particles with different size. For both experiments, the size of PS colloidal particles at room
temperature was determined by transmission electron microscopy (TEM) and by the Bragg peak
and form factor analysis performed in this work (see Table 6.1).

Particle diameter D, nm Average lattice parameter
〈a[110]〉, nm

Experiment TEM Form factor analysis Bragg peak analysis
(this work) (this work)

A 415 ± 8 416± 0.2 417± 1
B 386± 8 - 392± 2

Table 6.1: Diameter of PS spherical particles D and average lattice parameter 〈a[110]〉 determined by
different methods at room temperature.

Experiment A was performed at a photon energy of 15 keV using an unfocused beam of
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Figure 6.2: X-ray diffraction patterns measured in situ during incremental heating of the PS colloidal
crystals in experiments A (top row) and B (bottom row) (see text for details). Intensity values are pre-
sented in logarithmic color scale. Scale bar shown for each pattern is 50 µm−1.

50 × 50 µm2 in size, which was chosen to approximately match the single-crystal domain area
in a colloidal crystal. At each temperature value, data were collected from the same position
on a sample by acquiring a series of 300 frames with exposure time of 0.03 s per frame. The
resulting diffraction patterns were obtained by summing up all frames in a series.

The conditions of experiment B were chosen in order to collect ptychographic coherent
diffraction patterns from the PS colloidal crystal. Ptychography [85, 86] is a recently devel-
oped coherent diffraction imaging technique which enables the study of extended objects with
coherent X-rays and involves the scanning of the object in an X-ray beam across the desired
field of view. The analysis of ptychographic data collected in experiment B will be reported in
a separate publication. In this experiment, a photon energy of 8 keV was selected and the beam
was focused at the sample position to a spot size of 2.8(v) × 3.5(h) µm2 (vertical × horizontal)
using the CRL focusing optics. To obtain a high degree of transverse coherence in the focused
beam, the entrance slits (S1) in front of the CRL optics were set to a size of 100(v) × 75(h)
µm2. In order to collect data over a large sample area, the diffraction patterns were measured by
raster scanning of a sample on a rectangular grid with 1 µm step size over 11 × 11 points and
acquiring five frames of 0.5 s exposure at each scanned point. Under these experimental condi-
tions, the resolution values in reciprocal space as defined by the incoming beam divergence and
photon energy were 0.43 and 2.49 µm−1 for experiments A and B, respectively.

6.3 Results

The diffraction patterns measured in experiments A and B under incremental heating of PS
colloidal crystals are shown in Figure 6.2. Due to the relatively large unit cell of the colloidal
crystals, a number of Bragg peaks can be observed in a single diffraction pattern measured in
transmission geometry. In experiment A, Bragg peaks up to the 11th diffraction order were
observed at room temperature. For lower photon energy used in experiment B, we observed
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seven diffraction orders at room temperature. Due to high spatial coherence of the incoming
focused beam used in experiment B, the observed diffraction peaks were broadened and had
a complicated internal structure known as X-ray speckles [179] (see Figure 6.2, bottom row).
Speckles are produced when the illuminating beam is highly coherent and different regions of
the sample introduce different phase shifts. The average speckle size is inversely proportional
to the coherently illuminated area of a sample, which is defined by the beam size. Speckle
features were not present in the diffraction patterns of experiment A where partially coherent
illumination was used.

Inspection of the diffraction patterns presented in Figure 6.2 shows that at temperatures
below glass transition temperature TG there are no strong changes in the structure of diffraction
peaks. Only a slight decrease of intensity of higher order Bragg peaks can be observed at
elevated temperatures. However, at T > TG, the diffraction patterns evolve very rapidly with
temperature. Higher order diffraction peaks gradually decrease in their intensity which indicates
the decay of long-range order in the colloidal crystal upon heating. Additionally, we observed a
6-fold modulation of both the intensity of Bragg peaks and the diffuse scattering background in
diffraction patterns for experiment A (see Figure 6.2, top row, T = 378 K). This indicates that
spherical particles in a colloidal crystal transform to a faceted shape upon dry sintering.

In addition to Bragg peaks, distinct intensity modulations appearing as concentric rings can
be observed in the experimental diffraction patterns. These modulations originate from the form
factor of a spherical colloidal particle. We extracted the form factor contributions averaged
over azimuthal angle for each of the experimental diffraction patterns (see Appendix B for
details of an analysis of form factor curves). The form factor curves of PS spherical particles
measured from colloidal crystal samples at different temperatures during heating are presented
in Figure 6.3 for both experiments. On the one hand, one can observe large number of intensity

Figure 6.3: Temperature evolution of the form factor curves I(q) of PS spherical particles measured from
colloidal crystal samples in experiment A (a) and experiment B (b). The glass transition temperature of
PS TG = 373 K is indicated by the dashed curve.

oscillations in these curves at room temperature. This means that the colloidal particles under
study can be well described as hard spheres with a narrow size distribution. On the other hand,
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the contrast of intensity oscillations of the form factor curves at high q-values decreases with
temperature. This effect can be induced by the particle deformation toward nonspherical shape
as well as the broadening of a size distribution of particles.

In order to improve the accuracy of an analysis of Bragg peaks, the scattering signal cor-
responding to the form factor contribution was subtracted from measured diffraction patterns
(see Figure 6.4). The resulting diffraction patterns contain the diffraction peaks typical for re-

Figure 6.4: (a) X-ray diffraction pattern measured in experiment A at room temperature. (b) Same pattern
after subtracting the form factor contribution. (c) Enlarged area of the diffraction pattern highlighted by
the dashed square in (b). The analyzed FCC and RHCP peaks are marked by circles and rectangles,
respectively. Intensity levels are presented in logarithmic color scale.

flections present in colloidal crystals fabricated by vertical deposition technique. Such crystals
often consist of stacked hexagonal close-packed layers which are parallel to the substrate and
contain some degree of stacking disorder [117].

The following nomenclature of Bragg peaks indexing was adopted. We consider a hexago-
nal lattice with the crystal lattice vectors a and b lying in the colloidal crystal film and vector
c normal to the film. For the transmission geometry shown in Figure 6.1, an incident beam is
perpendicular to the colloidal crystal film, and the Miller index l is always zero. Thus, only
indexes h and k can be used for Bragg peak indexing. We will distinguish the two types of
hk0 reflections: when (h− k) is divisible by three (as indicated in Figure 6.4(c) by circles) and
when (h − k) is not divisible by three (as indicated in Figure 6.4(c) by squares) [160]. The
reflections of the first type have higher intensity and are stacking-independent, which will be
referred as FCC reflections. The reflections of the second type are induced by stacking disorder.
These are weaker and will be referred as RHCP reflections. For experiment A, the total number
of nine orders of FCC Bragg peaks were considered for the analysis (see Figure 6.4(c)), and
for experiment B four FCC orders were analyzed. For both experiments, four orders of RHCP
Bragg peaks were evaluated.

6.4 Discussion

To investigate the structural evolution of PS colloidal crystals during heating, we performed a
detailed analysis of the measured diffraction patterns shown in Figure 6.2. The following four
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parameters of Bragg peaks as a function of temperature were analyzed: Bragg peak position qB,
integrated intensity, and full widths at half-maximum (FWHMs) in radial (wq) and azimuthal
(wφ) directions in reciprocal space. The details of the data processing and Bragg peak evaluation
procedures are given in Appendix C. The results of Bragg peak analysis for experiments A and
B are shown in Figures 6.5 and 6.6, respectively. The determined widths of Bragg peaks
for experiment B were corrected for the instrumental broadening (see Appendix C for details),
while for experiment A such a correction was negligible.

According to our results, we can identify four stages of structural evolution of PS colloidal
crystals upon heating which are indicated in Figures 6.5 and 6.6 as regions I, II, III, and IV.
In the first stage of heating from room temperature to preannealing temperature, TPA = 323 K,
no significant variations of peak parameters can be observed. The peak positions qB slightly
decrease due to thermal expansion of the crystal lattice. Interestingly, in this region, the width
of higher order peaks in the radial direction (wq) increases with the increase of the temperature,
while the width in the azimuthal direction (wφ) decreases. This indicates a slight increase of
the lattice positional disorder along with an annealing effect when crystalline domains become
more angular ordered in the plane of a film.

The second stage corresponds to the temperature range between TPA and annealing temper-
ature TA = 355 K. Within this stage, the Bragg peak positions qB for both experiments continue
to decrease. For experiment A, this decrease is about 0.9 ± 0.5 µm−1, which means that the
crystal lattice expands by about 1 % within the second stage of heating treatment. The strongest
changes are observed in the temperature evolution of FWHMs of Bragg peaks in the radial and
azimuthal directions wq,φ (see Figures 6.5(c,d) and 6.6(c,d)). Both parameters strongly increase
to a maximum at annealing temperature TA = 355 K. At this temperature, the maximum values
of wq and wφ exceed the room temperature values by 15 – 50%. This increase of peak widths
indicates a strong enhancement of the lattice disorder and mosaic spread in the colloidal crystal
film at these temperatures. The second temperature range can be referred to as preannealing
stage [180].

The third stage corresponds to the temperature interval from TA to TG. In this temperature
interval, the peak widthswq,φ drop down from their maximum values, reaching a local minimum
at about TG (see Figures 6.5(c,d) and 6.6(c,d)). The decrease of peak widths at TA < T < TG

is apparently caused by the relaxation of a PS crystal film and the reduction of the structural
disorder due to annealing.

In the last stage of heating from TG to the melting temperature TM = 381 K, the PS colloidal
crystal film undergoes a fast melting transition. The melting process occurs in a narrow tem-
perature range and ends finally when the Bragg peaks completely disappear at a temperature of
TM . Within this stage, the peak positions qB increase rapidly and integrated intensities sharply
decrease (see Figures 6.5(a,b) and 6.6(a,b)). We attribute this behavior to a coalescence of PS
colloidal particles taking place with the increase of temperature. This is further confirmed by
the reduction of interparticle distances as it will be seen from the discussion below.

92



Figure 6.5: Experiment A. Temperature evolution of Bragg peak parameters: peak positions qB (a),
integrated intensities (b), and FWHMs in radial wq (c) and azimuthal wφ (d) directions. For visibility,
all curves were shifted vertically. Reflections of FCC and RHCP types are displayed by triangles and
circles, respectively. The curves in (a), (c), and (d) are arranged in the ascending order of the momentum
transfer value q; the curves in (b) are in the descending order of the q value.
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Figure 6.6: Experiment B. Temperature evolution of Bragg peak parameters: peak positions qB (a),
integrated intensities (b), and FWHMs in radial wq (c) and azimuthal wφ (d) directions. For visibility,
all curves were shifted vertically. Reflections of FCC and RHCP types are displayed by triangles and
circles, respectively. The curves in (a), (c), and (d) are arranged in the ascending order of the momentum
transfer value q; the curves in (b) are in the descending order of the q value.
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6.4.1 Williamson–Hall analysis

To perform a quantitative analysis of disorder in colloidal crystal films induced by the thermal
treatment we applied the Williamson–Hall (WH) method [35] based on a mosaic block model to
our Bragg peak evaluation. This method assumes that the size Lq,φ of the coherently scattering
domain (CSD) and the lattice distortions gq,φ provide independent contributions to the total
widthwq,φ of a Bragg peak. For a normal distribution of these parameters, the following relation
holds for the total width of a diffraction peak [181]

w2
q,φ(q) =

{
2π

Lq,φ

}2

+ (gq,φq)
2. (6.1)

The WH method was applied to four orders of hh0 reflections measured in experiment A (see
Figure 6.7(a,b)). The FWHM values used in this analysis were obtained as a result of averaging

Figure 6.7: (a, b) Williamson–Hall plots obtained using FWHMs of four orders of FCC reflections in
radial (a) and azimuthal (b) directions at different temperatures. Solid lines in (a) and (b) represent linear
fits to the experimental data. (c) Temperature dependence of the lattice parameter gq (in percent) and
domain misorientation parameter gφ (in degrees). (d) Temperature dependence of the averaged size of
CSD Lq,φ.

over six equivalent crystallographic directions.
The average values of lattice distortions (gq), domain misorientations (gφ), and size of CSDs
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(Lq,φ) as a function of temperature are presented in Figure 6.7(c,d). As can be seen in Fig-
ure 6.7(c), the temperature evolution of the lattice distortions (gq) and domain misorientations
(gφ) exhibits the four well distinguished temperature intervals discussed earlier. In the first
stage, we observe a slight increase of lattice distortions by about 30 % and simultaneous de-
crease of domain misorientations by about the same amount. In the preannealing stage, both
parameters gq and gφ exhibit especially strong changes: they steadily increase and reach their
maxima at the annealing temperature TA = 355 K. The maximal values of parameters gq and gφ
exceed the corresponding room temperature values by almost 100 %.

The third stage exhibits decrease of parameters gq and gφ due to a partial annealing process
up to the glass transition temperature TG = 373 K. At the same time the size of CSDs (Lq,φ)
stays almost constant within the whole temperature range. Both domain sizes were determined
to be in the range of 3–5 µm.

Domain sizes evaluated in experiment A prevented us from applying the WH method to
experiment B because the illuminated spot on a sample of a few micrometers was about the size
of a CSD. Under these conditions, the measured data contain no statistical averaging and WH
method could not provide adequate information.

6.4.2 Particle diameter

To determine the temperature evolution of the size of PS spherical particles, we performed an
analysis of the form factor curves obtained from experiment A and shown in Figure 6.3(a). With
an assumption of hard sphere model, we obtained a linear growth of the particle diameter from
room temperature to glass transition temperature TG (see Figure 6.8). The value of thermal
expansion coefficient of (6.96 ± 0.35) × 10−5 K−1 was determined from the results of linear
fitting. The obtained value is in excellent agreement with the thermal expansion value of 7 ×
10−5 K−1 reported in literature [182]. However, at higher temperatures, T > TG, it was not
possible to obtain reliable results in the frame of the hard sphere model. We attribute this to
the softening of boundaries and shape transformation of initially spherical particles, which was
not taken into account in our fitting procedure. Unfortunately, it was not possible to perform
similar analysis of the form factor data for experiment B (Figure 6.3(b)) that we attribute to
instrumental broadening of Bragg peaks due to beam focusing and higher polydispersity of
colloidal particles in this particular sample.

We determined the temperature evolution of an average lattice parameter 〈a[110]〉 for the
[110] crystallographic direction in our colloidal sample shown in Figure 6.8 by analyzing equiv-
alent hh0 reflections (see Appendix C for details). As it follows from our analysis, the average
lattice parameter value 〈ahh0〉= 417±1 nm at room temperature is slightly larger than the parti-
cle diameter D determined from the form factor data (see Table 6.1). In the temperature range
TR < T < TA, the lattice parameter first increases slightly faster and after TA changes linearly
according to the temperature expansion law of PS spheres (Figure 6.8). However, after reaching
the glass transition temperature TG, the lattice parameter drops down rapidly, indicating a fast
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Figure 6.8: Temperature evolution of the PS particle diameter D (shown by blue triangles) and average
lattice parameter 〈a[110]〉 in [110] crystallographic direction (shown by red circles) for experiment A.
Thermal expansion function fitted to D(T ) is shown by a solid line. The coefficient of linear thermal
expansion of PS was determined to be (6.96 ±0.35) × 10−5 K−1. Error bars for the particle diameter D
are within the symbol size.

shrinkage of the colloidal crystal lattice and coalescence of colloidal particles.

6.4.3 Model of temperature evolution of colloidal crystal

Our analysis of the Bragg peaks and form factor curves suggests the following model of the col-
loidal crystal evolution during incremental heating (see Figure 9). Two length scales, nanoscopic
and mesoscopic, need to be considered. The nanoscopic length scale is about the size of a col-
loidal particle that is in the range of few hundred nanometers in our case (Figure 6.9, top row).
The mesoscopic length scale is related to the size of a coherently scattering domain that is about
a few micrometers for colloidal crystals under study (Figure 6.9, bottom row).

On the nanoscopic length scale, we observed linear growth of the average lattice parameter
in the wide temperature range TR < T < TG that is directly induced by the thermal expansion
of closed packed colloidal spheres (see Figure 6.8). At temperatures higher than TG, the PS
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Figure 6.9: Schematic diagram of the structural evolution in a colloidal crystal film under incremental
heating at nanoscopic (top row) and mesoscopic (bottom row) length scales.

particles soften and change their shape by flattening in the directions where they touch each
other (see Figure 6.9), that leads to the observation of six-fold symmetry in the diffraction
pattern shown in Figure 6.2 (top row at T = 378 K). At the same time, this process is statistical
in nature and each particle is deformed differently, that leads to the decrease of the long-range
order in the crystalline film and is observed as a decrease of intensity of higher order Bragg
peaks with the raise of the temperature (see Figure 6.2, T > 376 K). At higher temperatures,
T > TG, the lattice parameter rapidly decreases that indicates fast shrinkage of the lattice until
the crystalline structure completely disappears at the melting temperature TM= 381 K.

On the mesoscopic length scale of a few micrometers, we did not observe any particular
changes in the temperature interval TR < T < TPA, while for higher temperatures TPA < T <

TG the structure of the colloidal film undergoes significant changes (see Figure 6.7(c)). We
suggest that, due to the presence of cracks and other microscopic defects in the colloidal crystal
film, the orientational correlations of mosaic blocks first increase with temperature. Then at
T > TA, a partial annealing process occurs and the crystal lattice becomes more relaxed. At
T > TG, the lattice parameter and integrated intensities of Bragg peaks sharply decrease. We
attribute such behavior to the coalescence of PS particles with an increase of temperature that
is revealed by the decrease of interatomic distances as discussed earlier. This is a consequence
of softening of colloidal spheres at the glass transition temperature TG = 373 K accompanied by
interdiffusion of polymer chains [167, 183].

6.5 Temperature evolution of anisotropic properties

In addition to isotropic characteristics, which can be determined through averaging over all
accessible crystallographic directions, the diffraction pattern can provide information about
anisotropy in the crystal structure. Figure 6.10 shows the temperature dependence of the lat-
tice parameter calculated separately for [110], [21̄0] and[1̄20] directions, that reveals anisotropic
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thermal expansion of the crystal lattice. For each of the directions the corresponding diffraction
vector was determined from the positions of all the reflections which belong to this crystallo-
graphic direction in a similar way as it was done in previous section. For example, the averaging
for 〈q[110]〉was performed over ..., (2̄2̄0), (1̄1̄0), (110), (220), ... reflections. The error bars were
calculated from standard deviation of a set of data values for the diffraction vector. When the
temperature rises up the Bragg peaks disappear starting from higher orders leading to an in-
crease of error of the mean value.

TR TPA TA TG TM 
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Figure 6.10: Experiment A. Temperature evolution of the average lattice parameter calculated for a
family of crystallographic directions, equivalent to [110]. The values for measured temperature points
higher than 379 K are not shown, because of rather large error bars ( > 10 nm).

At room temperature the lattice is rather isotropic and provides value 417 ± 1nm of the
lattice parameter which is consistent with the particle diameter, calculated from the form factor
analysis (see Table 6.1). Small variations between different directions are within the limits of
error (about ±1 nm) for room temperature TR. However, with increase of the temperature the
lattice parameters behave differently for different directions. The variations start to diverge,
gradually at the first stage ( TR < T < TPA) and rather rapidly at the second stage ( TPA <
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T < TA). Subsequent expansion (third stage, TA < T < TG) and shrinking (fourth stage,
TG < T < TM ) occur in nearly isotropic way. That matches to the results of the WH analysis,
presented in Figure 6.7, which reveals increase of the distortion and domain misorientation
parameters at first two stages, and relaxation of the lattice at the third stage. The relaxation
process does not lead to anisotropic changes, which can be explained by irreversible character
of the lattice deformation occurred at previous stages. Remarkably, the lattice parameter in
[21̄0] direction does not reveal significant increment at the first three stages. We attribute this
to constriction of crystal that prevent expansion in this direction. Gradual vanishing of higher
order diffraction peaks observed at the fourth stage is a consequence of the decay of long-range
order in the crystal lattice. In Figure 6.5(b) that can be recognized as a steep decrease of the
integrated intensity starting from higher order Bragg peaks.

In addition to these characteristics, averaged over all Bragg peaks within each order, we
have analyzed the temperature dependence of the reflections intensities separately. Figure 6.11
shows the diagrams of the ratios between intensity at the Bragg peaks and the form factor (the
values of the form factor was taken from the curves presented in Figure 6.3 (a)). In other
words, this approach allows to separate the Bragg diffraction from the contribution of the form-
factor. The resulted diagram can be considered as being directly connected to the structure
factor and its temperature evolution illustrates structural changes in the crystalline order in the
colloidal film. Due to the presence of a long-range order such a diagram calculated for the room
temperature displays a lot of intense high order peaks (see Figure 6.11(a)). With increase of the
temperature such pattern reveals no essential changes up to the glass transition point TG, where
it becomes asymmetric (see Figure 6.11(b)). At this temperature, higher order Bragg peaks in
the horizontal direction start to disappear which indicates an anisotropic decay of the long-range
order. The subsequent degradation occurs mainly in the ’median’ crystallographic direction
such as [100], [010] and [1̄10], while the ’main’ directions, such as [110], [21̄0] and [1̄20] reveal
more resistance. That leads to the star-like pattern in the next diagram corresponding to 378 K
(see Figure 6.11(c)). Such ’star’ shape behavior can be also a strong indication of the shape
change of the colloidal particles due to dry sintering as depicted in Figure 6.9 (top row). At the
last presented temperature, 380 K, almost all diffraction peaks are gone (see Figure 6.11(d)).
Notably, the pattern becomes highly asymmetric, which indicates that the final deterioration of
the crystalline lattice occurs not simultaneously for different crystallographic directions.

6.6 Conclusions

In situ X-ray diffraction studies of structural evolution of colloidal crystal films formed by
polystyrene spherical particles upon incremental heating are reported. The Bragg peak parame-
ters, such as peak position, integrated intensity, and radial and azimuthal widths were analyzed
as a function of temperature. A quantitative study of colloidal crystal lattice distortions and
mosaic spread as a function of temperature was carried out using Williamson–Hall plots based
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Figure 6.11: Experiment A. Diagrams of the ratio of intensity at the Bragg peaks and diffuse scattering
around each peak. Four different temperatures are shown.
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on mosaic block model. The temperature dependence of the diameter of polystyrene particles
was obtained through the analysis of Bragg peaks, and the form factor contribution extracted
from the diffraction patterns. Four stages of structural evolution in a colloidal crystal upon heat-
ing were identified. Based on this analysis, a model of the heating and melting process in the
colloidal crystal film is suggested.

In situ X-ray diffraction studies of structural evolution of colloidal crystal films at different
temperatures were performed using the high resolution X-ray scattering setup at the P10 beam-
line of the PETRA III synchrotron source. The high quality colloidal crystal films formed by
polystyrene spherical particles were investigated upon incremental heating in a wide tempera-
ture range from 293 to 381 K.

The structural changes in the colloidal crystal induced by incremental heating were revealed
by a detailed analysis of the measured Bragg peaks. The parameters of diffraction peaks, such
as the position of the peak, integrated intensity, and the peak widths in radial and azimuthal di-
rections of reciprocal space, were analyzed as a function of temperature. The Williamson–Hall
method based on a mosaic block model was applied to determine the lattice distortions and the
angular spread of crystalline domains in a colloidal crystal film. A significant increase of lattice
distortion and domain misorientation parameters in a polystyrene colloidal crystal was revealed
around the annealing temperature of 355 K. From the analysis of the form factor scattering
signal and Bragg peak positions, we observed a linear behavior of the thermal expansion of PS
spherical particles. The determined coefficient of thermal expansion is in good agreement with
the literature. As a result of our analysis, we have identified four stages of structural evolu-
tion of a colloidal crystal upon heating: steady state, preannealing, shape transformation, and
crystal melting. We finally proposed a model of structural evolution of a colloidal crystal upon
incremental heating on the nanoscopic and mesoscopic length scales.

The results of our investigation provide valuable information for fabrication process of pho-
tonic devices based on colloidal crystals and tuning their properties by changing the operating
temperature. In our future work, we are aiming for the detailed study of defect behavior [184]
under incremental heating of colloidal crystals. Of special interest are dynamics studies of
colloidal crystals in the pump–probe experiments [185], which could provide unique informa-
tion on dynamics of the colloidal crystal film as well as on the ultrafast melting process of the
polystyrene.
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Chapter 7

Summary

This thesis discusses different theoretical and experimental aspects of structural investigation
of mesoscopic materials using coherent X-rays. The results of three independent studies are
presented.

In the first study a theoretical approach to the numerical solution of the Takagi-Taupin equa-
tion in the case of finite size 3D crystal of arbitrary shape is developed. A suggested modifica-
tion of the Takagi-Taupin equations offers a convenient way to solve them numerically using an
integration grid, which is invariable with respect to the angular deviation from the exact Bragg
condition. As a result, the complex amplitude distributions of the transmitted and diffracted
waves can be calculated. Propagation to the far-field gives the amplitude and phase distribution
on the diffraction pattern that corresponds to a specific cross-section in reciprocal space. By
performing a series of such calculations a full 3D reciprocal space dataset in the vicinity of the
corresponding reciprocal lattice node can be constructed. Then, the complex function of the
object in real space can be obtained by the inverse Fourier transformation.

Using this model we performed simulations of the dynamical diffraction on a perfect crystal
of gold of cubic shape for 100 nm and 1 µm size. For a small crystal the result of our calcu-
lations was in full agreement with the kinematical theory. However, in the simulations for the
large crystal artifacts both in reciprocal and real space were observed due to dynamical scatter-
ing effect. The contributions of different phenomena, such as refraction, absorption and cross-
coupling between the diffracted and transmitted waves were analyzed separately. Based on the
analytical derivations we developed a straightforward way to correct the results of reconstruc-
tions for the effects of refraction and absorption. Such corrections, applied to the results of the
simulations, demonstrates a complete removal of corresponding contributions in the real space
reconstruction. The residual artifacts in the amplitude and phase distributions are attributed to
the cross-coupling of the diffracted and transmitted waves in the crystal. Additional simulation
for a practical case of a Bragg CXDI experiment with a hemispherical Pb particle of 750 nm
size was performed.

The developed model was used for a simulation of the angular dependence of the phase
of the transmitted wave in the case of thin crystalline plate infinite in two dimensions. Small
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variations of this phase observed in the vicinity of the Bragg angle have a purely dynamical
nature. Such variations are related to the structure factor, therefore, this demonstration is of im-
portance for further development of method of obtaining such information from experimentally
measured data.

In the second part, CXDI experiment with a single colloidal crystal grain was performed.
Coherent X-ray diffraction data which included several Bragg reflections together with sur-
rounding speckles and intensities between them was measured by a rotation series of 2D far-
field diffraction patterns. The obtained 3D dataset in reciprocal space was inverted into the
electron density distribution in real space using the phase retrieval approach. In the obtained
reconstruction positions of individual colloidal particles were resolved in three dimensions. The
crystalline structure of the sample was characterized in terms of close-packing of perfect hexag-
onal layers. The determined stacking sequence revealed 14 layers with almost perfect double
hexagonal close-packed structure. This is a remarkable result because the DHCP structure has
not been observed for colloidal crystals before. The stacking defect in the lattice was visualized
in the projection of the reconstructed electron density on the [11̄0] crystallographic direction.

The reconstruction results were compared with an independent analysis of the reciprocal
space data, based on the theoretical model for a scattered intensity along the Bragg rod for
an exact stacking sequence of a finite number of hexagonally close-packed layers. Using this
model two stacking sequences of the double hexagonal close-packed type with 12 layers were
found to match the experimental data. Both of them are in good agreement with the results
of the phase retrieval which shows that the suggested method is a feasible new route for the
analysis of finite-size objects.

Our results are of a significant importance for the further progress and developments of
CXDI methods with an aim to resolve the three-dimensional structure of nanocrystals with
atomic resolution. They are remarkably related to the phase problem in crystallography. In fact,
this is a successful experimental realization of the ideas suggested by Sayre [65].

In the third part in situ X-ray diffraction studies of structural evolution of colloidal crys-
tal films formed by polystyrene spherical particles upon incremental heating are reported. The
Bragg peak parameters, such as peak position, integrated intensity, and radial and azimuthal
widths were analyzed as a function of temperature. A quantitative study of colloidal crys-
tal lattice distortions and mosaic spread as a function of temperature was carried out using
Williamson–Hall plots based on mosaic block model. The temperature dependence of the di-
ameter of polystyrene particles was obtained through the analysis of Bragg peaks, and the form
factor contribution extracted from the diffraction patterns. Four stages of structural evolution in
a colloidal crystal upon heating were identified. Based on this analysis, a model of the heating
and melting process in the colloidal crystal film is suggested.

In situ X-ray diffraction studies of structural evolution of colloidal crystal films at different
temperatures were performed using the high resolution X-ray scattering setup at the P10 beam-
line of the PETRA III synchrotron source. The high quality colloidal crystal films formed by
polystyrene spherical particles were investigated upon incremental heating in a wide tempera-
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ture range from 293 to 381 K.
The structural changes in the colloidal crystal induced by incremental heating were revealed

by a detailed analysis of the measured Bragg peaks. The parameters of diffraction peaks, such
as the position of the peak, integrated intensity, and the peak widths in radial and azimuthal
directions of reciprocal space, were analyzed as a function of temperature. The Williamson–
Hall method based on a mosaic block model was applied to determine the lattice distortions and
the angular spread of crystalline domains in a colloidal crystal film. A significant increase of
lattice distortion and domain misorientation parameters in a polystyrene colloidal crystal was
revealed around the annealing temperature of 355 K. From the analysis of the form factor scat-
tering signal and Bragg peak positions, we observed a linear behavior of the thermal expansion
of PS spherical particles. The determined coefficient of thermal expansion is in good agree-
ment with the literature. As a result of our analysis, we have identified four stages of structural
evolution of a colloidal crystal upon heating: steady state, preannealing, shape transformation,
and crystal melting. We finally proposed a model of structural evolution of a colloidal crystal
upon incremental heating on the nanoscopic and mesoscopic length scales. The results of our
investigation provide valuable information for fabrication process of photonic devices based on
colloidal crystals and tuning their properties by changing the operating temperature.
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Chapter 8

List of Abbreviations

SASE Self Amplification of Spontaneous Emission
XFEL X-ray free-electron laser
3D Three-dimensional
2D Two-dimensional
FWHM Full width at half maximum
EXAFS Extended X-ray Absorption Fine Structure
XANES X-ray Absorption Near-Edge Structure
KB Kirkpatrick-Baez (mirrors)
CRL Compound refractive lens
FZP Fresnel zone plate
SEM Scanning electron microscopy
SAXS Small-angle X-ray scattering
SANS Small-angle neutron scattering
CXDI Coherent X-Ray Diffractive Imaging
ESW Exit surface wave
ER Error Reduction algorithm
HIO Hybrid Input-Output algorithm
GHIO Guided Hybrid Input-Output algorithm
PRTF Phase retrieval transfer function
PIE Ptychographic Iterative Engine
ePIE Extended Ptychographic Iterative Engine
FTH Fourier Transform Holography
FCC Face centered cubic (structure)
HCP Hexagonal close-packed (structure)
RHCP Random hexagonal close-packed (structure)
DHCP Double hexagonal close-packed (structure)
DLS Dynamic light scattering
PS Polystyrene
WH WilliamsonHall (method)
CSD Coherently scattering domain
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[2] W. C. Röntgen. Über eine neue Art von Strahlen. Annalen der Physik, 300(1):1–11,
1898.

[3] W. Friedrich, M. Knipping, and M. Laue. Interferenzerscheinungen bei Röntgenstrahlen.
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Appendix A

Numerical integration of Takagi-Taupin
equations on a 2D grid

In the numerical integration method the complex amplitudes E0,h(r) are represented by a dis-
crete set of values over all integration grid and the equations are transformed to a recurrence
matrix form, similar to Reference [99]. Taking into account that the equations are symmetric for
the transmitted and the diffracted amplitudes, it is natural to take the same elementary integra-
tion step p for both directions. In order to estimate the partial derivatives using values from two
neighboring points we use the central difference approximation, which is valid for any smooth,
slowly varying function

∂

∂x
f(x− p

2
) =

f(x)− f(x− p)
p

. (A.1)

The value of the function in this middle point is given by a half sum

f(x− p

2
) =

f(x)

2
+
f(x− p)

2
. (A.2)

When these formulas are applied to the differential equations (3.5) the those can be replaced by
the following set:

E0(s0, sh)− E0(s0 − p, sh) =

=
iπ

2λ
[χ0E0(s0, sh) + χ0E0(s0 − p, sh) +BEh(s0, sh) +BEh(s0 − p, sh)],

Eh(s0, sh)− Eh(s0, sh − p) =

=
iπ

2λ
[χ0Eh(s0, sh) + χ0Eh(s0, sh − p) +DE0(s0, sh) +DE0(s0, sh − p)],

(A.3)

with substitutions

B = χh̄e
i(s0− p2 )∆q·e0+ish∆q·eh+ih·u(s0− p2 ,sh),

D = χhe
−is0∆q·e0−i(sh− p2 )∆q·eh−ih·u(s0,sh− p2 ).

(A.4)
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All the considered points belong to the scattering plane, therefore in further derivations we
simply omit the sy coordinate in behalf of shortness. After little reorganization the set (A.3) can
be simplified to

E0(s0, sh) =
A

C
E0(s0 − p, sh) +

B

C
Eh(s0, sh) +

B

C
Eh(s0 − p, sh),

Eh(s0, sh) =
A

C
Eh(s0, sh − p) +

D

C
E0(s0, sh) +

D

C
E0(s0, sh − p).

(A.5)

Here two additional substitutions were made

A =
2λ

iπp
+ χ0,

C =
2λ

iπp
− χ0,

(A.6)

and it was assumed thatC 6= 0, which is definitely true for any real positive p as far as Im[χ0] 6=
2λ/(iπp). Solving this system with respect to E0(s0, sh) and Eh(s0, sh) we obtain

E0(s0, sh)[1−
BD

C2
] =

A

C
E0(s0 − p, sh) +

B

C
Eh(s0 − p, sh) +

BD

C2
E0(s0, sh − p) +

BA

C2
Eh(s0, sh − p),

Eh(s0, sh)[1−
BD

C2
] =

AD

C2
E0(s0 − p, sh) +

BD

C2
Eh(s0 − p, sh) +

D

C
E0(s0, sh − p) +

A

C
Eh(s0, sh − p).

(A.7)

For convenience, these relations can be finally expressed in the matrix form

(
E0(s0, sh)

Eh(s0, sh)

)
=

1

C2 −BD

(
AC BC BD BA

AD BD DC AC

)
E0(s0 − p, sh)
Eh(s0 − p, sh)
E0(s0, sh − p)
Eh(s0, sh − p)

 (A.8)
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Appendix B

Form factor evaluation

The form factor profiles I(q) (see Figure 6.3) were obtained by azimuthal averaging of 2D
diffraction patterns over the 2π angular range. This yields 1D intensity curves 〈I(q)〉φ which
includes also Bragg peaks. In order to eliminate the contribution of the Bragg peaks, the follow-
ing iteration procedure was adopted. At each iteration step all intensity values along the ring
of radius q exceeding the value 1.5〈I(q)〉φ were not considered for the next angular averaging
iteration. Repeating this procedure for seven iterations allowed us to filter Bragg peaks area
from the data leaving information from the form factor of the colloidal particles.

The form factor data for the experiment A were fitted using GNOM program [187, 188] from
the ATSAS package [189]. The calculation was made assuming that the scattering originates
from uniform spherical particles. Results of fitting of the form factor data at room temperature
TR are shown in Figure B.1(a). By fitting the peak of volume size distribution function V (r)

Figure B.1: (a) Form factor data and results of fitting for the experiment A at room temperature. Volume
size distribution function V (r) obtained from the results of fitting is shown in the inset. Negative values
of V (r) function are due to termination effects of the Fourier transform algorithm. (b) Gaussian function
fitting of the peak of V (r) function. The position of the center of a Gaussian distribution r0 corresponds
to an average diameter D = 2r0 of colloidal particles. The polydispersity of colloidal particles in the
sample is determined by the width (sigma-value) of Gaussian distribution.

with a Gaussian profile one can determine the diameter and polydispersity of PS particles (see
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Figure 6.8(b)). The center position r0 provides the diameter D = 2r0 of colloidal particles and
the r.m.s. width σ defines the polydispersity of particles size distribution as σ/r0 [190]. The
polydispersity of PS colloidal particles in the experiment A was determined to be (2.2± 0.2) %,
which agrees well with the polydispersity value measured by DLS.
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Appendix C

Bragg peak evaluation

Position of the direct beam in a diffraction pattern was determined as the one corresponding to
the maximum of the correlation function between the original image and the centrosymmetri-
cally inverted image. The results were averaged over all images containing Bragg peaks and the
same coordinates were used for the whole dataset.

The initial position of the Bragg peaks was determined as a position of pixels with maximum
intensity, separated by a distance not less than 0.6q0, where q0 is the distance between the
nearest Bragg peaks. To exclude false and too weak maxima, the q-dependence of the averaged
intensitywas calculated for every image, and only the maxima twice stronger than the average
value were selected. Later the positions obtained in this first step were updated from the results
of fitting.

The measured intensity distribution around each Bragg peak was considered in the orthog-
onal coordinate system with the origin in the peak maximum, q-axis directed along the q-vector
of the peak (radial coordinate), and φ-axis perpendicular to it (azimuthal coordinate) (see Fig-
ure 6.4).

The intensities within the circle area with the radius about 0.3q0 of the distance to the closest
reflections were fitted using two-dimensional Gaussian function (see Figure C.1)

Figure C.1: The radial (q) and azimuthal (φ) profiles of 110 (a) and 220 (b) Bragg peaks fitted with
Gaussian function.
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I(rq, rφ) = I0exp

(
− (rq −Rq)

2

2w2
q

− (rφ −Rφ)2

2w2
φ

)
, (C.1)

where I0, Rq, Rφ, wq, and wφ are the fitting parameters: peak intensity, positions of a Bragg
peak and FWHMs in radial (q) and azimuthal (φ) directions, correspondingly. The fitting was
performed by gradient descent algorithm [191] for each individual Bragg peak and results were
averaged over all six equivalent Bragg peak reflections. The results of fitting procedure are
shown in Figure 6.5 and Figure 6.5 for experiment A and B, respectively. Weak peaks, not
fully measured peaks (for instance, the peaks obscured by a beamstop or detector gaps), and
peaks with the fitted parameters significantly different from the others were excluded from the
analysis.

In the experiment B a focused beam with the size of a few microns at the sample was
used, which contributes to additional broadening of measured Bragg peaks as compared to the
experiment A conducted using an unfocused beam. For the experiment B a deconvolution of the
peak width was performed assuming Gaussian shape of both the intrinsic widthwi of a reflection
and instrumental broadeningwinst that gives for the experimental peak widthw2

exp = w2
i +w2

inst.
In the experiment A an unfocused beam was used, and the condition winst << wi was fulfilled
making the deconvolution not necessary.

A total average lattice parameter 〈a[110]〉 along the [110] crystallographic direction, which is
equal to the nearest-neighbor distance, was determined in the following way. An average lattice
parameter for one selected crystallographic direction n for hexagonal lattice [19] was defined
as 〈a[110]〉n = 2〈d[110]〉n, where an average interplanar distance is calculated as:

〈d[110]〉n =
2π

〈q[110]〉n
. (C.2)

An average value of the diffraction vector 〈q[110]〉n was derived using the equation:

〈q[110]〉n =

∑
h

αh
(
qnhh0/h

)
∑
h

αh
. (C.3)

where summation is performed over all hh0 reflections determined in the experiment and
αh = h2 is a weight function that takes into account that the higher order Bragg peaks can
be determined with higher precision then the lower order ones. The total average lattice param-
eter was calculated by averaging the values obtained for each of six crystallographic directions

〈q[110]〉 = 1
6

6∑
n=1

〈a[110]〉n.
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