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Zusammenfassung

In dieser Arbeit werden die dynamischen und Gleichgewichtseigenschaften identisch
geladener Teilchen, deren Bewegung auf helixartige Mannigfaltigkeiten eingeschränkt
ist, untersucht. Ausgehend von dem trivialen Fall der Einschränkung auf ein Lin-
iensegment, untersuchen wir die statistischen Eigenschaften des Vielteilchensystems.
Wir identifizieren einen Übergang von einer kristallinen zu einer clusterartigen Phase
bei steigender Temperatur und ein nichtextensives Verhalten der thermodynamischen
Funktionen, begründet durch den langreichweitigen Charakter der Wechselwirkung.
Wird die Fallengeometrie nichttrivial, ergibt sich eine fundamentale Änderung der
Zweikörperwechselwirkung, die im Fall der Einschränkung auf eine homogene Helix
eine oszillatorische Form annimmt, was die Entstehung gebundener Paare ermöglicht.
Für eine inhomogene helikale Falle koppeln die Schwerpunkts- und Relativbewegung
zweier Ladungen und induzieren einen Energietransfer zwischen der kollektiven und
der relativen Bewegung, was die Aufspaltung eines anfänglich gebundenen Zustands
in einem Streuprozess ermöglicht. Im Vielkörperproblem führt die Einschränkung gle-
ichartiger geladener Teilchen auf eine geschlossene Helix zur Entstehung verschiedener
Gleichgewichtszustände. Bei verträglichen Füllungsfaktoren verursacht eine Vergrößerung
des Helixradius eine Pitchfork-Bifurkation des Grundzustands von einer symmetrischen
Polygonanordnung zu einer zickzackartigen Konfiguration. Bemerkenswerterweise be-
wirkt die Veränderung des Helixradius unterhalb des Bifurkationspunkts eine unkon-
ventionelle Verformung des Vibrationsspektrums, wobei nacheinander Parameterbere-
iche mit entartetem und invertiertem Spektrum durchlaufen werden. Das entartete
Linearisierungsspektrum ermöglicht eine im Wesentlichen unabhängige Bewegung der
einzelnen Teilchen und damit die Existenz lokalisierter Anregungen, die sich ohne sig-
nifikante räumliche Ausbreitung in der Zeit entwickeln. Neben der Dynamik kleiner
Schwingungen ist auch die Entwicklung nichtlinearer Anregungen stark beeinflusst
durch die Geometrie. Speziell erfährt eine anfänglich breite Anregung im Laufe der
Dynamik einen fokussierenden oder defokussierenden Effekt, je nach Wahl des Helixra-
dius. Dieses geometrisch kontrollierte nichtlineare Verhalten kann im Rahmen eines
effektiven diskreten nichtlinearen Schrödingermodells verstanden werden, was darüber
hinaus das Auffinden intrinsisch lokalisierten Anregungen des Systems ermöglicht.





Abstract

In this thesis the equilibrium and dynamical properties of identical charged particles
confined in different helical manifolds are studied. Starting from the trivial case of a
confinement on a line-segment we investigate the statistical properties of the many-
body system of charges. We detect a crossover from a crystalline to a cluster phase with
increasing temperature and a non-extensive behaviour of the thermodynamic functions,
owing to the long-range character of the interactions. The two-body interactions change
fundamentally when the trapping geometry becomes curved, acquiring an oscillatory
form in the case of trapping on a homogeneous helix, allowing for the creation of bound
pairs. For an inhomogeneous helical trap, the center-of-mass and the relative motion of
two charges couple, and induce an energy transfer between the collective and the relative
motion, making possible a dissociation of initially bound states through scattering. In
the many-body case, the constraint of equally charged particles on a closed helix leads
to the emergence of different equilibrium states. At commensurate fillings, the ground
state undergoes a pitchfork bifurcation from a symmetric polygonic to a zigzag-like
configuration with increasing radius of the helix. Remarkably, below the bifurcation
point, the vibrational frequency spectrum deforms in an unconventional manner with
the increment of the helix radius, passing through subsequent stages of degeneracy and
inversion. The degenerate spectrum allows for an essentially independent motion of
the individual particles resulting in localized excitations which can propagate in time
without significant spreading. Apart from the dynamics of small amplitude excitations,
also the dynamics of nonlinear excitations is crucially affected by the geometry. In
particular, a broad excitation is found to undergo a focusing or defocusing during
the time evolution, depending on the values of the helix radius. This geometrically
controlled nonlinear behaviour can be understood within an effective discrete nonlinear
Schrödinger model, which also allows for identifying some breather-like excitations in
the system.
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Preface

Thesis Outline

The present cumulative dissertation is based on the publications [O1–O4]. In these
works we have explored structural and dynamical properties of one dimensional systems
consisting of singly charged particles, confined in different helical manifolds (including
also degenerate cases of helical geometry, as the straight line). Characteristic elements
of our systems are the long-range Coulomb interactions among the particles and the
non-trivial geometry induced by the confinement. On the one hand, these link our
studies to the physics of cold ions and other Coulomb systems. On the other hand
they establish a connection to other systems of a complex geometry such as curved
nanostructures and biological molecules. We provide an introduction in these fields in
Chapter 1, including also an outline and a brief discussion of our scientific contributions.
A full presentation of these contributions, as a collection of the corresponding research
papers, can be found in Chapter 2. Finally Chapter 3 contains our overall conclusions
and a short outlook for further investigations.

We note that when referring to our scientific contributions throughout the current
thesis we will always use the reference index of our corresponding publication, instead
of addressing its position within Chapter 2.

List of publication on which this dissertation is based:

[O1] A. V. Zampetaki, F. K. Diakonos, and P. Schmelcher. Finite-temperature
crossover from a crystalline to a cluster phase for a confined finite chain of ions.
Phys. Rev. E, 87(4):042116, 2013.

[O2] A. V. Zampetaki, J. Stockhofe, S. Krönke, and P. Schmelcher. Classical scat-
tering of charged particles confined on an inhomogeneous helix. Phys. Rev. E,
88(4):043202, 2013.

[O3] A. V. Zampetaki, J. Stockhofe, and P. Schmelcher. Degeneracy and inversion of
band structure for Wigner crystals on a closed helix. Phys. Rev. A, 91(2):023409,
2015.

[O4] A. V. Zampetaki, J. Stockhofe, and P. Schmelcher. Dynamics of nonlinear exci-
tations of helically confined charges. Phys. Rev. E, 92(4):042905, 2015.



Background and personal contributions to the publications [O1–O4]

The first work [O1] originated as an attempt to gain insight into the statistical behaviour
of one-dimensional (1D) Coulomb systems in the most simple case of a confining box
trap. I have performed all the numerical simulations (classical Monte-Carlo) and the
analysis and written the manuscript. I have also worked out myself the analytical proof
of the appendix.

The idea for the second work [O2] was to examine a two-body helical system which
does not provide a separation of the center-of-mass from the relative coordinate. Pre-
liminary results in this direction were obtained within a previous bachelor project of
Michel Jüngling. I have checked, analyzed and extended those preliminary results
through numerical simulations. I have carried out all the numerical calculations and
analysis as well as written the corresponding manuscript. The analytical proof of the
appendix, was mainly worked out by Jan Stockhofe and Sven Krönke.

Towards the extension of the two-body problem to the many-body case, I came up
with the idea of studying a system of charged particles confined in a closed helix. I
have conceptualized, therefore, the projects [O3,O4], performed all the numerical and
analytical calculations and written both manuscripts.



Chapter 1

Introduction

Our perception of the physical world, ranging from the universe to objects of our every-
day life to systems of the microcosm, attributes to space the properties of a Euclidean
geometry in three dimensions. The deeper understanding of many physical phenom-
ena, however, crucially depends on their natural description within fewer dimensions
embedded in three-dimensional (3D) space. Indeed, the behaviour of generic particles
or waves will inevitably feature imprints of their motional constraint onto 1D lines or
2D surfaces. Intriguing differences to the unconstrained motion arise, in particular,
when such spatial manifolds are curved or twisted, owing to geometry-induced modifi-
cations already in the external potential for noninteracting systems. The impact of the
confinement on interacting particles is even more dramatic, since new effective interac-
tions may emerge as a result of the reduced dimensionality equipped with a non-trivial
geometry. The aim of the present work is to explore the triptych of dimensionality,
geometry, and interactions, in systems where the three are intimately related, and to
demonstrate the consequences of their interplay at a fundamental level. In the follow-
ing, we start by addressing theoretical and experimental aspects of each constituent
alone as well as combined in order of increasing complexity.

While low-dimensional systems may easily be conceived as simply occupying certain
submanifolds of 3D space, their experimental realization at the microscopic level is in
general a challenging task. Confinement of particle motion at the nanoscale has only
become possible over recent decades, with the ever increasing precision owing to radical
technological advances in material science as well as, e g., novel techniques in the trap-
ping and cooling of atoms. The constructed low-dimensional systems not only allow for
a more lucid view on 3D physics, but also exhibit unprecedented physical effects ab-
sent in their 3D counterparts. A prominent example in this direction is the celebrated
quantum Hall effect showing the quantization of resistance under a magnetic field for a
2D electron gas confined at a semiconductor heterojunction [1]. Regarding electrons in
2D materials, another system with spectacular properties is graphene [2, 3]. Its planar
hexagonal arrangement of carbon atoms leads to an analogue of quantum electrody-
namics within condensed matter, allowing for the study of effects that are energetically
inaccessible in elementary particle physics. Furthermore, graphene can be rolled up
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INTRODUCTION

in various ways, forming quasi-1D structures known as carbon nanotubes [4, 5]. These
nanostructures apart from inheriting peculiar bandstructure features from graphene [4],
they display also an extraordinary thermal conductivity as well as advantageous me-
chanical and electrical properties [5, 6]. Systems of even lower dimensionality, such as
0D quantum dots, have also been an object of intense research the last decades as pro-
totype elements to reveal effects of quantum coherence and due to their tunable optical
and transport properties [7].

The properties of effectively low-dimensional systems are altered significantly by
the presence of a non-trivial geometry in the confinement, as in the case of electrons
moving along curved layers or quantum wires [8]. In contrast to its classical analogue,
a single quantum particle constrained to a curved 2D or 1D space always acquires
some knowledge how the confining manifold is embedded in the surrounding 3D space.
This fact is expressed by the appearance of a curvature-induced potential [8–10]. Such
a geometric potential is found to induce localized bound states for particles confined
on curved waveguides [8, 11–16] which can turn into resonances with an application
of an external electric or magnetic field [8]. Furthermore, in the special case of a
helical waveguide, the geometric potential can induce an effective transverse electric
field leading to charge separation [17,18].

Most of the aforementioned systems and effects can be described adequately within
an effective single-particle picture and in terms of the corresponding energy spectra.
Depending on the type of confinement, interactions between the trapped particles are
often responsible for a qualitatively different system behaviour. Already their inclusion
at an elementary level in the the theoretical description may explain correlated particle
effects, an example being Coulomb blockade of electronic transport through quantum
dots as captured by the constant interaction model [7, 19]. Many-body interactions
are also considered as the origin of the fractional quantum Hall effect [20] which com-
plements its integer version when a 2D electron gas is in a relatively condensed state.
Further effects relying on interacting particles confined in low dimensions are encoun-
tered in the field of cold ion [21, 22] and cold atom [23] physics. These include, for
example, crystallization and structural phase transitions (linear-to-zigzag) [22, 24] for
cold ions as well as exotic phases (Tonks-Girardeau gas) [25, 26] and quantum phase
transitions (Mott-to-superfluid) [27] for cold atoms. Apart from an almost arbitrary
shaping of trapping potentials [28–31], most of these nearly defect-free systems possess
the additional advantage of permitting a large tunability of the interaction strength by
external fields [23,32,33].

From the above considerations a compelling question arises: What would be the
combined effect of a non-trivial geometry and interactions in a low dimensional sys-
tem? Studies in this direction, including strongly interacting particles confined on
toroidal, circular, or helical traps, have demonstrated the occurrence of geometry- and
interaction-induced effects such as phase slips between persistent current states [34] or
peculiar energy spectra described within molecular models [35]. In the particular case
of long-range interacting particles constrained on a helical wire, formations of electron
pairs [36] and zero-temperature second order liquid-gas transitions [37] have been pre-
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INTRODUCTION

dicted. Long-range interactions play a key role for the dynamics of particles in curved
geometries: Since the interparticle Euclidean distances enter the 3D interaction poten-
tials, the particles indirectly become ‘aware’ of the geometry of the curved manifold,
without the necessity of a spatially extended wave function. In other words, classical
systems of point charges are capable of exhibiting characteristic geometry-induced ef-
fects due to long-range interaction. A remarkable case is the formation of an oscillatory
effective two-body potential for equally charged or polar particles confined on a uni-
form helical manifold [36,38,39]; this allows for the creation of bound states consisting
of same (repulsively interacting) charges [36, 38] or characteristic dipolar chains [39],
respectively. Already for a few particles the potential landscape of such systems is very
complex, supporting multiple stable configurations with increasingly distorted symme-
tries [38]. These findings have led us to the quest for answering the multiple generated
questions regarding the low energy structure, the excitation spectra and the statistical
behaviour of many-body systems consisting of helically confined interacting particles.

Objectives of this thesis

In view of the complexity and richness of helical long-range interacting systems, the
present thesis theoretically explores the equilibrium properties and classical dynamics
of identical charged particles confined in different helical manifolds. Our major findings
include

• the finite-temperature crossover from a crystalline to a cluster phase for a finite
number of identical charges confined in a straight 1D box (a limiting case of a
helical segment), [O1]

• the dissociation of initially bound states in a scattering process due to the en-
ergy transfer between the collective and relative motion for two identical charges
confined on an inhomogeneous helix, [O2]

• unconventional deformations of the vibrational band structure for crystals formed
by repulsive charged particles (Wigner crystals) confined on a closed helix when
tuning the helix radius [O3], and

• the self-focusing of an initially broad excitation for Wigner crystals on a toroidal
helix of a specific geometry, accompanied by the existence of breather-like exci-
tations [O4].

While the first case explores structure formation in an uncurved many-body Coulomb
system, in the latter three cases the geometry plays a fundamental role and provides
the means for controlling the response of the strongly interacting system.

We set out in this section with a brief overview of trapped ion physics in Sec.
1.1, focusing on the crystalline structures and structural transitions observed in such
systems, as being particularly relevant to our work. In the same context, we continue in
Sec. 1.2. with a discussion of our first contribution, concerning the statistical behaviour
of an ion chain in a 1D box. Having then obtained the necessary information about
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INTRODUCTION

the physics of Coulomb systems, we proceed to a justification of the choice of the
helix as a confining manifold for the rest of our studies. To this end, Sec. 1.3 presents
characteristic examples of the emergence of helical spatial structure in nature as well as
various interesting effects arising from an enforced helical confinement. We focus on the
physical properties of long-range—especially Coulomb—interacting particles confined
on a helical manifold in Sec. 1.4. Finally, Sec 1.5 outlines the major part of our
scientific contributions concerning helically confined charges, giving in each subsection
the motivation for the respective work and a summary of our results.

1.1 Trapped ions and other Coulomb systems

The earliest trapping of ions was achieved by Kingdon already in 1923 [40] during
his study of electrical discharges between a thin filament cathode and a cylindrical
anode and led to a great advance in precision spectroscopy. The developments of the
Penning [41] and Paul [42, 43] traps followed, the first employing again the electrical
discharges between coaxial cylinders but under the presence of an additional axial
magnetic field and the second by exploiting the electric field created by radio-frequency
(rf) potentials applied to four hyperbolic electrodes in pairs. Their discovery allowed
for high precision mass spectroscopy [44–46] as well as for an estimation of the electron
g-factor [47]. The real breakthrough in the ion trapping came, however, in 1980s
with the advent of laser cooling [48–52]. The kinetic energy of ions was so reduced,
permitting essentially a spectroscopy on stationary ions and improving dramatically
their confinement both in Penning and in Paul traps [53–57]. Thus, as expected, it
paved the way for the development of what is known as cold ion physics.

Cold ions constitute a prototypical example of strongly correlated systems with
long-range interactions. Being essentially a collection of identical charged particles,
they share common properties and terminology with a cold electron gas. Such a gas,
due to the strong long-range interactions, was predicted to crystallize and form a lat-
tice at sufficiently small densities, known as Wigner crystal [58]. If the transition to
the crystalline structure occurs at T = 0, it is of quantum nature and arises as zero-
point fluctuations decrease, following the decrease in the density. On the other hand,
it is possible to have a classical transition to the crystal, caused by the reduction of
thermal fluctuations. We will refer to this second, classical transition to a crystalline
stage from now on, unless stated otherwise. In either case, at the stage of Wigner
crystal the mean potential (Coulomb) energy, being orders of magnitude larger than
the mean kinetic energy, dominates the behaviour of the system, allowing for a classical
estimation of the crystalline structure 1. Nevertheless, quantum effects are important
for an accurate description of certain classes of Coulomb (Wigner) crystals. In partic-
ular, the quantumness of a Coulomb crystal can be estimated by the ratio χ = Λ/a,
where Λ = h/

√
2πmkBT denotes the deBroglie wavelength and a stands for the aver-

age interparticle distance [59]. If χ ≥ 1, as is usually the case for electrons confined in
nanostructures, the corresponding crystal can be regarded as quantum, whereas in the

1This can be obtained in the standard manner, by minimizing the full interaction potential.
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opposite case (χ < 1), holding for trapped ions, the Wigner crystal can be treated as
classical. This distinction between quantum electrons and classical ions will be assumed
throughout this section.

Apart from quantumness, another property characterizing Coulomb crystals is their
dimensionality. Systems of a reduced dimension can be obtained by “freezing out“ one
or more dimensions. This can be experimentally achieved by the combined effect of
very low temperature and a strong confining potential. For suitable parameters, the
excitation energy of the particles in one ore more directions becomes much higher than
their average thermal energy, resulting in the corresponding dimensions being effec-
tively frozen out. The ensuing Coulomb crystals of different dimensions self-organize in
different structures. Usually, such a crystalline structure is in 3D a bcc (body-centered-
cubic) in 2D a hexagonal and in 1D an equispaced lattice. Whereas these structures are
considered as optimal for infinite Coulomb systems, the inclusion of external trapping
potentials leads to changes in each case, mostly by introducing some degree of inho-
mogeneity. A more detailed presentation of the most common structures for Wigner
crystals in different confining potentials and dimensions is provided below.

1.1.1 Wigner crystals

The most prominent example of an ideal infinite 3D Coulomb system, is that of a one
component plasma (OCP). This is essentially a system consisting of identical point
charges, free to move in a uniform neutralizing background. It is characterized by the
ratio Γ of the average Coulomb energy to the average kinetic energy, known as the
coupling constant. If Γ > 1 the plasma is strongly coupled, however, Γ has to be of
the order of 100, in order to observe the formation of a bcc Wigner crystal through a
liquid-to-solid transition [60–64]. Under the influence of an isotropic harmonic trapping
potential, which is a very good approximation of the confining potential created by a
quadrupole (Paul) trap, small plasma clouds are found to form concentric spherical
shells with constant inter-shell distances and a hexagonal surface structure [65, 66].
As the clusters get larger the two forms of ordering (shell structure and bcc) start
to compete, and beyond some critical value of the particle number, the bcc structure
dominates in the interior of the crystal, resembling the case of the OCP [63,67].

Surprisingly enough, it was not in 3D but in 2D where the first experimental ob-
servation of Wigner crystallization was achieved, during the study of electrons on the
surface of liquid-He [68, 69]. For Γ = 137± 15 the transition to a hexagonal (or trian-
gular) crystalline structure occurred, as expected for a 2D OCP [70]. An inclusion of
an isotropic harmonic confinement, was found to change this picture similarly to the
3D case: Small Coulomb clusters would crystallize in circular shells [71], while larger
ones in an inhomogeneous structure whose interior formed a hexagonal lattice [72].

Among others, 2D offer the possibility of considering confining manifolds with a
finite curvature, such as a sphere or a torus. The interest on crystallization in such
surfaces dates back to Thomson and his classical problem to find the ground state
of N identical charges confined on a sphere [73]. A hexagonal lattice is precluded in
such a case from topological considerations [74] and defects are expected to appear on
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top of the sixfold coordination lattice, adding up to at least 12 fivefold disinclinations.
The ground state structures are thus very complex, including usually many defects
(especially for large number of particles) and many metastable states arise with very
small energy difference from the ground state [74–78]. The toroidal surface, although
not prevented from topology to support a hexagonal crystalline structure, it leads as
well to a formation of inhomogeneous crystals, due to the tendency of the particles
to occupy its outer part, which provides a larger interparticle separation [74, 78, 79].
Both cases of curved confining manifolds support interesting dynamics in the process
of melting, involving also annihilations of dislocations [74,78].

The 1D case

Recently, particular interest was dedicated to the study of 1D Coulomb systems [80–93].
This can be primarily attributed to the exceptionally strong correlations of the 1D
Coulomb chains, which contribute to the total energy of the system at the same order
as the mean field energy, prohibiting their exclusion and making Coulomb chains a
unique condensed matter system [81,88].

The first prediction of Wigner crystallization for electrons in 1D was done by
Schulz [80]. Using the bosonization technique, he showed that a 1D electron gas with
long-range Coulomb interactions, possesses, for arbitrarily weak Coulomb repulsion,
density-density correlations which signify the existence of a Wigner crystal structure.
In particular, the correlations at the wave vector 4kF , with kF the Fermi momentum,
were found to decay extremely slowly, matching the behaviour of correlations for an
equidistant classical Wigner crystal. The slow decay prohibits the existence of a true
long-range order which is expected to be destroyed in 1D systems due to quantum
fluctuations [94]. A direct experimental observation of such a 1D Wigner crystal has
only recently been achieved in the hole gas of semiconducting carbon nanotubes [86].

Concerning cold ions, the experimental advances in trapping techniques have early
allowed for the creation of a 1D Coulomb chain [95, 96], which, in the above line of
arguments, can be regarded as another form of a 1D (classical) Wigner crystal. Theo-
retical studies of 1D Coulomb chains under a harmonic confinement have shown that
both correlations and long-range interactions are essential in extracting the density of
the crystalline structure [81]. This structure is inhomogeneous with the density being
higher in the center of the chain and lower towards the edges, following an approxi-
mately parabolic law. Both the length L and the energy E of the chain depend on the
number of particles N in a non-extensive way (they do not increase linearly with N)
as can be seen in the following expressions [81]

L3(N) =
3q2N

mω2

(
γ − 13

5
+ ln(6N)

)
, E(N) =

3

10
Nmω2L2(N), (1.1)

where q is the charge of each ion, m its mass, ω the trapping frequency and γ the Euler
constant. These rather unconventional results have motivated the theoretical study of
the dynamical and thermodynamical properties of the 1D Coulomb chain in a harmonic
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potential [82–84]. It was shown analytically that the 1D crystal supports not-phonon-
like eigenmodes and that the thermodynamic quantities deviate from extensivity, with
the dependence of the specific heat on the number of ions as a representative exam-
ple. Thus, the 1D trapped Coulomb chains behave fundamentally different from their
3D counterparts and constitute an exceptional system in the framework of statistical
physics. These outcomes were the major motivation for our first work [O1] where we
have also explored some statistical properties of 1D chains but under a confinement in
a hard wall potential, instead of a harmonic. Our results also show an inhomogene-
ity of the ion chain, -but different from that for harmonic confinement-as well as, a
non-extensivity of macroscopic quantities.

The case of Wigner crystallization in 2D curved manifolds discussed earlier, sug-
gests that the exploration of their 1D analogue could reveal interesting physical effects.
However, studies of 1D Wigner crystals in different confining geometries are rather rare
in literature. Most attention has been given to the study of 1D homogeneous Coulomb
chains in periodic lattices [85,90,93], which bear similarities with the Frenkel-Kontorova
model [97], exhibiting a sliding-pinning transition that leads to the formation of incom-
mensurate crystals. These systems are considered as good candidates for studying dry
friction and energy transport. Their experimental realization is often linked to the pos-
sibility of optical ion trapping which has been recently achieved for a single ion [98]. A
real confinement on a 1D curved manifold was considered in [91], where Wigner crystals
trapped in 1D snaked nanochannels were explored and found to exhibit a very similar
behaviour to the ions in a periodic lattice [85]. The major part of our scientific contri-
butions in this thesis aims to expand our knowledge of Coulomb systems in 1D curved
geometries, through the study of Wigner crystals formed on a toroidal helix [O3, O4]
revealing, indeed, interesting equilibrium and dynamical properties.

Before closing this paragraph, let us mention a last example of Coulomb crystals,
this time consisting of cold ions confined in linear octupole traps. In such a case,
except for the standard harmonic term, there is also an rf contribution to the potential
Vrf ∼ r6, with r the distance from the trap axis [99] 2. This pushes the ions away
from the center of the trap, leading to fundamentally different structures from those
formed in a quadrupole trap. In particular, instead of ion chains along the trap axis,
hollow cylindrical structures are created, based on one or multiple rings, or exhibiting
emergent chirality [101–104]. Crucial for the character of these crystalline forms is the
existence of specific “magic numbers” which determine the number of ions needed for
a perfect pattern to be created for given trap parameters [103, 104]. Away from the
magic numbers the creation of defects is inevitable.

1.1.2 Structural phase transitions

We have seen that a plethora of different crystalline structures emerge for Coulomb
systems, depending on the dimensionality and the external trapping potential. Melting
is the principal mechanism leading to the dissolution of such crystals, through the incre-

2For a general multipole trap with 2k electrodes the respective rf contribution is Vrf ∼ r2k−2 [100].
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ment of temperature. Apart from that, in systems with tunable parameters there are
also other ways for inducing deformations of a given structure, or transitions between
different crystalline patterns, termed as structural phase transitions [105]. For cold
ion systems (at zero temperature) such tunable parameters are usually the particles’
density or a characteristic parameter of the trapping potential.

In the first case, for ions confined in 2D and subjected to an external harmonic
potential, an increment of the particle density causes transitions of the linear ion chain
to structures with an increased number of chains [106]. In particular, in an attempt
to maximize the interparticle distances, the single ion chain bifurcates to a zigzag
structure (two chains), beyond some critical density, followed by successive transitions
to three, four, five and six chains, tending thus to cover the full plane. These lead to
a rich phase diagram consisting of both continuous and discontinuous structural phase
transitions. A similar case, exhibiting even more structural complexity, is provided for
cold ions confined in a cylindrically symmetric harmonic potential [107]. The linear
chain along the trapping axis, formed for low densities, destabilizes above a critical
density due to the strong repulsion, giving its place to a zigzag pattern. Further
increment in density causes the formation of helical structures with increasing number
of ions per turn, followed by a tetrahedral structure and ending with the formation of
shell structures covering the full 3D space as those described in the previous subsection.
The first experimental confirmation of the above theoretical predictions was direct [95]
and performed with the use of 24Mg+ ions in a quadrupole storage ring.

Ionic structures of different geometries have also been experimentally observed when
tuning the trapping frequency and in particular, the radial to axial aspect ratio α = ωr

ωz

of a quadrupole (Paul) trap [108–110]. Among others, a structural transition from a
spheroidal string structure [108] to an array of disks configuration, as well as, a forma-
tion of crystals of different shapes, ranging from a cigar-shape to a pancake-shape have
been demonstrated [109, 110]. Linear ion chains in a quadrupole trap have also been
found to destabilize during a decrease of the transverse-to-longitudinal aspect ratio
α = νt

ν , leading to the succeeding formation of zigzag [24, 111–113] and helical struc-
tures, in analogy to the results discussed above. The linear-to-zigzag structural transi-
tion (Fig. 1.1 (a)) can be described theoretically within a standard Ginzburg-Landau
model [24,112]. We will outline below some of the basic features of this transition.

Linear-to-zigzag transition

The two major reasons for the occurrence of a linear-to-zigzag transition as already
discussed are the increment of the particle density or the decrease of the trap aspect
ratio α. We will focus here on the second case, described in [24], but point out that the
first one exhibits the same characteristics [106,112] as well. Under the approximation of
an equidistant chain, valid in the central region of Paul traps or for ions on a ring, the

classical equilibrium positions are given by x
(0)
j = ja, y

(0)
j = z

(0)
j = 0, where a stands

for the interparticle spacing. A harmonic approximation of the potential around these
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positions yields the longitudinal ω‖(k) and transverse ω⊥(k) dispersion relations [24]

ω‖(k)2 = 4

(
2q2

ma3

) N∑
j=1

1

j3
sin2 jka

2

ω⊥(k)2 = ν2t − 2

(
2q2

ma3

) N∑
j=1

1

j3
sin2 jka

2
, (1.2)

where q is the charge of each ion, m its mass and k = 2πn/Na, (n = 0,±1,±2, . . .)
denotes the wave-vector. Evidently, the transverse branch can become imaginary
(ω⊥(k)2 < 0) below a critical transverse trapping frequency νct , rendering the linear
chain unstable.
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Figure 1.1: (a) Transverse equilibrium displacement b in units of interparticle distance
a as a function of the transverse trapping frequency νt, measured in units of νct (b),(c)
Dispersion relations ω̃(k) (ω̃ is the dimensionless frequency given by ω̃ = ω

√
ma3/Q2)

for different values of the transverse frequency: (b) νt = 1.2νct and (c) νt = νct . In
the figures are depicted both the longitudinal branches ω̃‖(k) (solid blue lines) and the
transverse branches ω̃⊥(k) (dashed red lines). The wave-vector k is measured in units
of π/a.

The lowest frequency ω⊥ is found at k = π
a (Figs. 1.1 (b),(c)), determining the value

of νct (Eq. 1.2) and the soft mode of the transition (corresponding to the eigenmode of
k = π

a given by the expression yj = (−1)jb/2). Such a mode induces alternate trans-
verse displacements of the particles, leading to the final zigzag structure, identified as
the ground state for ν < νct (Fig. 1.1 (a)). A rigorous analysis according to the Landau
theory [24] shows that the effective potential in the critical region has a biquartic form
with a single minimum for ν > νct corresponding to the equidistant chain, whereas for
ν < νct it attains a Mexican hat form with degenerate minima corresponding to degener-
ate zigzag configurations. This signifies a symmetry breaking mechanism (or pitchfork
bifurcation), characteristic of a second order phase transition in the thermodynamic
limit N →∞.

Summarizing, in an intuitive picture, as the transverse trapping frequency decreases,
the dimensionality of the available space increases from 1D to quasi-1D, making it
advantageous for the particles to form a zigzag structure. A measure of the energy cost
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to occupy the transverse dimension is given by the minimum transverse eigenfrequency
ω⊥(π/a), which tends gradually to zero. At the critical point ω⊥(π/a) = 0 (Fig. 1.1
(c)) , meaning that the corresponding transverse motion (zigzag) is given for free and
the system enters the zigzag phase. Note that during this procedure the longitudinal
frequency spectrum ω‖(k) remains unchanged (Figs. 1.1 (b),(c)) .

As a last remark, let us briefly comment on the quantum version of the zigzag
transition. It is found that such a transition is possible in the quantum regime and
maps to the quantum Ising model in a transverse field [114, 115]. The major effect
of the quantum fluctuations is then to shift the critical transverse frequency to lower
values, extending thus the regime of the disordered (linear) phase [114]. In the zigzag
regime the number of the relevant neighbouring contributions is increased with respect
to the linear one, from two to four, resulting in a rich phase diagram [87,116].

The last paragraph of this section is devoted to one of its most important parts,
namely the physical and technological applications of the cold ion systems. We aim at
this point only at a brief overview of their major applications in science, with our list
being far from complete. More information on ion traps and their applications can be
found in [21,22,29].

1.1.3 Applications of trapped ions

Having discussed about some physical aspects of the cold ion systems, it is the time
to provide an answer to the crucial question of their applications. As it should have
already become clear, cold ions constitute a prototype of a strongly correlated con-
densed matter system which is almost defect free and very dilute in comparison to
the standard systems. Even more, its dimensionality can be easily tuned, leading to
interesting structural transitions and to a unique form of matter (1D Wigner crystals)
with particularly enhanced correlations.

The internal structure of the ions permits them to be in different internal states (in
analogy to spins) controlled by laser fields, allowing thus for a mapping of cold ionic
systems to different quantum Ising models [117]. This gives to ion chains the ability
to act as quantum simulators [117–122] simulating, among others [123, 124], spin-spin
interactions. Experiments with a few number of ions (spins) have been carried out
[121,125–127] which have demonstrated clear signs of a theoretically predicted quantum
phase transition. However, a real many-body experiment has not yet been realized
[120, 121] in this context. Along with the realizations of quantum simulators, come
the proposals for implementations of quantum information processors [120, 128–139].
These rely again on the mapping of each ion to a qubit and take advantage of the strong
coupling, the controlled manipulation, and the detection efficiency provided for cold ion
chains. Entanglement can be achieved through the ions’ coupling to external fields and
thus multiple quantum gates can be constructed. Once more, the great challenge is to
scale such systems up to a large number of ions [134,136–138].

On the other hand, a small number of ions seems to be advantageous for applica-
tions in spectroscopy and metrology, which are fields historically connected with the
development of ion trapping [140, 141]. The combination of the ion trapping technol-
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ogy with the laser cooling technique -giving the ability to study even a single trapped
ion- led to very high precision frequency standards [53–57,142–146] and even permitted
nonlinear spectroscopy [147], a synchronization of ionic motion [148] and spectroscopy
of interacting quasi-particles [149]. The control and the accuracy in measurements per-
formed in cold ionic systems have also led to advances in metrology [136,150–154] with
the most prominent one being the accurate measurement of the g-factor of an electron
via the so-called continuous Stern-Gerlach effect [44,152,154,155].

Last but not least, trapped ions, due to the long-range character of their interac-
tions, present very interesting nonlinear dynamics [84, 156–163] including a transition
to chaos [156, 157], a phase locked motion [158], a pattern formation [160] and many
bifurcations accompanied with kink formations [161, 162]. The formation of kinks in
trapped ionic systems permits the study of structural defects formed during a sec-
ond order phase transition [164, 165] and provide means to test the predictions of the
Kibble-Zurek mechanism, initially developed in the context of cosmology [166–168].
Other applications of cold ions in testing cosmological effects such as particle forma-
tion can also been found in the literature [169–171].

This section has provided us with an overview of the major aspects and applications
of cold ionic systems, to which all of our systems, consisting of identical charged parti-
cles, naturally belong. Having gathered all the necessary information, we now proceed
to an outline of our first scientific contribution, concerning the statistical properties of
an ion chain confined in a 1D box.

1.2 Outline of scientific contribution I: Ion chain in a 1D
box

As we have pointed out several times in the previous section, the 1D Coulomb systems
consisting of singly charged particles are exceptional, in the sense that they possess very
strong correlations which cannot be safely neglected. We proceed on a simple qualita-
tive demonstration of this fact, following the arguments of [81]. For a d-dimensional
system of volume Ld with N identical charged particles of charge q, the mean Coulomb
energy EM scales roughly as EM ∼ q2N2/L, since we have N particles interacting with
each other in pairs which are separated on average by a distance L. Now the energy
associated with the discreteness of the system, identified as the correlation energy EC ,
is limited on the level of the nearest-neighbour pairs. Since the average interparticle
spacing is of the order of a ∼ (Ld/N)1/d and there are only N such pairs we arrive
at the conclusion that EC ∼ Nq2/a = q2N1+1/d/L, leading to EC ∼ N1/d−1EM . For
d > 1, as N → ∞, the correlation energy EC becomes negligible compared to EM . If
d = 1, however, it turns that EC ∼ EM meaning that the two contributions are of the
same order.

This fact has led to many studies of 1D Coulomb chains, the majority of them
[81–84] being exposed to an external harmonic potential, acting as a trap (quadrupole
trapping), and found to exhibit an inhomogeneity in the structure and a non-extensivity
in the thermodynamic functions. We have posed in our work similar questions about the
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structure and the thermodynamics, regarding again a 1D Coulomb system, but under
the presence of a 1D box potential. As this potential is simpler than the harmonic one,
possessing also a clear length scale (the size of the box L), our study provides clarifying
results, complementary to those already existing in literature.

Specifically, in our study, we have explored with the use of Monte-Carlo tech-
niques the structural and statistical behaviour of the 1D ion chain at different tem-
peratures [O1]. For low temperatures the ions form inhomogeneous chains with an
almost constant density at the center and an accumulation of the particles at the edges
of the box. This is directly opposite to the inhomogeneity of the chains for harmonic
confinement [81] and can be attributed to the fixed size of the box in contrast to that of
a harmonic trap. We prove that this is the only possible minimum configuration (apart
from particle permutations), opposite to the case of 2D and 3D which support multiple
equilibrium states. As the temperature increases the particles start to form randomly
clusters of different sizes, keeping however a fixed average interparticle distance.

The thermodynamic behaviour of the system was found to be best described by
the characteristic distributions and correlations of the interparticle distances, whereas
quantities that depend on the absolute positions of the particles were shown to pro-
vide poor estimates, as they are almost unaffected by the temperature. In contrast,
the distribution of the interparticle distances was found to undergo a great change
when increasing the temperature. While for low temperatures it consists of a num-
ber of discrete peaks, it smooths out as the temperature increases, passing through
a symmetric shape and acquiring finally an exponential form. Thus, starting from a
crystalline form, more and more configurations become gradually accessible, due to the
increased supply of thermal energy, leading to the formation of clusters. At ultra-high
temperatures almost any configuration can be accessed and the particles behave as if
they were non-interacting. Therefore, by observing the distribution of the spacings,
we identify a crossover from a crystalline to a cluster phase in our system, reminiscent
of a solid-to-liquid transition. We are also able to estimate its critical temperature by
analyzing the behaviour of the distributions’ skewness.

The dependence of the mean energy and the heat capacity on the temperature
supports the picture of the observed crossover, with the latter exhibiting an increment at
the corresponding region. Moreover ,the mean energy of the system at low temperatures
is found to scale as

〈E〉 ∝ N2 log(N)

L
, (1.3)

which is non-extensive due to the additional N log(N)/L factor. Note that to lead-
ing order this is the same kind of non-extensivity found for the harmonic confinement
(Eq. 1.1), if one takes into account also the N -dependent length. Through this expres-
sion for the energy we are able to define, by using the Tsallis concept of entropy for
non-extensive systems [172], a finite thermodynamic limit for our system of particles
confined in a box, allowing us to make estimations about other 1D Coulomb systems
as well. As a last remark, let us mention that the phenomenology attached to the
crossover observed in this work is quite general, and could be applied also to other 1D
interacting systems which at zero temperature support a single stable state.
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In the rest of our scientific contributions (Sec. 1.5) we continue with the exploration
of 1D classical Coulomb systems, but we assume a trapping manifold with a non-trivial
geometry, namely a helix. Before we move on, we find it therefore essential to discuss
briefly the exceptional position of the helical geometry in nature, justifying our choice
of it as a trapping manifold.

1.3 The importance of the helical geometry

From a mathematical viewpoint, the helix constitutes a unique curve in 3D space
possessing both a constant curvature and torsion. Being the only curve generated by
a screw operation (combined translation and rotation), the characteristic isometry of
a 3D Euclidean space, it has a special position among the curves in 3D, analogous to
that of a circle (generated by rotation) in the 2D space. It is also periodic and chiral
-meaning that there exist right and left handed helices which can only map to each
other through reflection- and it provides the shortest path between two points on a
cylindrical surface.

Apart from its mathematical interest, the helical geometry appears very commonly
in nature as an emergent structure in different systems. The most celebrated exam-
ples come from biology and include the famous double-helix of the DNA molecule and
the α-helix appearing in the secondary structure of several proteins and other macro-
molecules. The reason for the occurrence of such structures is multifold. For the DNA
it is primarily a matter of stability and balance among the forces exerted between differ-
ent constituents of the nucleotides such as the hydrophilic charged phosphates and the
hydrophobic bases, embedded in the water environment of a cell [173]. For proteins,
the reason for attaining a helical form can be even more complicated, related again
to the stability and bonding of their elements, but also associated with properties of
optimal packing and folding [174–180].

Helical patterns emerge naturally also in inorganic matter, such as at silicon and
carbon nanotubes [181, 182], at self assembled configurations of charged particles on
nanofibers [183–185], at magnetically trapped non-neutral plasma [186,187], as well as,
at self-organizations of complex plasma [188]. In the latter case, the helical conforma-
tions can display features which bear similarities with those usually attributed to living
matter such as memory and self-duplication. Another example of helical arrangement
is provided by trapped ions which can form helical Wigner crystals through structural
phase transitions [107,111,113].

The catalog of helical structures in organic and inorganic matter is, as it can be
inferred from the few examples above, almost endless. This fact raises, apart from
questions about their origin, also questions about their functionality. To this extent,
the behaviour of particles or fields under the existence of a pre-established helical
structure, acting as a constraint, is frequently studied in the literature as well.

One of the earliest applications of a helically confined motion was the Drude model
for optical activity, consisting of a single electron confined on a helix and used in order to
explain the optical activity of helical molecules [189–192]. Helical molecules, simulated
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by an equidistant ionic crystal confined on a helix, have also been found to induce an
unconventional spin-orbit (SO) coupling on an electron passing through them, allowing
thus for an efficient spin selective transport [193–195].

The advances in micro-/nano-fabrication, allowing for the creation of semiconduc-
tor nanohelices and helical arrays [196–200] have generated a further possibility for a
helical confinement which has triggered several studies [13,17,18,201–207]. First of all,
the modeling of chiral carbon nanotubes as an equidistant chain of carbon atoms, situ-
ated along a helix, has permitted some preliminary estimations of the electronic band
structures of fullerene tubules [201] as well as prediction of nonlinear and chiral electron
transport effects [202]. Furthermore, quantum particles bound on helical tube surfaces
were shown to feel an effective periodic potential, inducing energy band structures of
geometrical origin [17, 204], whereas under a confinement to a helicoidal ribbon they
were found to form localized states along its rim [18]. If the particle under considera-
tion is charged it can exhibit superlattice properties under a helical confinement and
the presence of a transverse electric field [203, 205, 206]. Even more intriguing, is the
effect of circularly polarized light on helical wires. It can induce a steady current [13],
as well as a dissipationless electron transport without Joule heating [207], relying on
the broken time reversal symmetry of the system. This broken symmetry permits a
medium constructed by many helical wires to exhibit gyrotropic properties [13] and
when the helices are arranged in a honeycomb lattice it can even lead to the formation
of what is known as a Floquet topological insulator [208].

Last but not least, there have been recent proposals relating to experimental real-
izations of helical traps for ultra-cold atoms [209, 210]. These employ either the inter-
ference pattern created by two counter-propagating Laguerre-Gaussian beams [209] or
the evanescent field surrounding an optical nanofiber [210, 211]. In the latter case, an
efficient trapping on a 1D helical manifold can be achieved for realistic experimental
parameters by sending three circularly polarized light fields 3 through the nanofiber.
This technique offers the possibility to create a homogeneous helical potential along the
entire length of the nanofiber, as well as, to impose local modifications on the radius
or the pitch of the helix.

In view of the exceptional features and the common appearance of the helical ge-
ometry in organic and inorganic matter, we deal in the major part of our scientific
contributions [O2–O4] with the properties of identical charged particles under a helical
confinement. These systems differ fundamentally from most cases already discussed,
since they involve long-range interacting classical particles, combining thus the strong
correlations present in the low dimensional Coulomb systems (Sec. 1.1) with a non-
trivial geometry of great interest. The basic background of our work, as well as related
studies dealing with strongly interacting particles constrained in helical manifolds are
the subject of the following section.

3The two of them are counter-propagating and far red-detuned concerning the atomic transition
whereas the last one is far blue-detuned
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1.4 Interacting particles under helical confinement

The systems which we will discuss in the present and the following sections share
common characteristics of consisting of identical particles interacting via long-range
interactions, and being confined on helical manifolds. The general Lagrangian of such
a system is given by

L({ri, ṙi}) =
1

2
m

N∑
i=1

ṙ2i −
1

2

N∑
i,j=1,i 6=j

W (|ri − rj |) ,

where N is the number of particles, m denotes their mass and W refers to the two-body
potential depending only on the Euclidean interparticle distance.

We consider the particles as being confined on a smooth curve r : R→ R3 parametrized
by the parameter u. The position of each particle is given then by ri = r (ui) and the
Lagrangian attains the form

L({ui, u̇i}) =
1

2

N∑
i=1

m |∂uir(ui)|2 u̇2i −
1

2

N∑
i,j=1,i 6=j

W (|r (ui)− r (uj)|) .

This Lagrangian, which describes the confined motion of the interacting particles, has
the peculiarity of possessing a kinetic term which depends, except for the particle
velocities u̇i, also on their coordinates ui. The additional term m |∂uir(ui)|2 can be
interpreted as an effective mass depending on the particle position. This can be removed
if we choose the arc length parametrization, s, which is defined as

s : u 7→ s(u) =

∫ u

0

∣∣∂u′r(u′)
∣∣ du′, (1.4)

with the Lagrangian reading finally

L({si, ṡi}) =
1

2
m

N∑
i=1

ṡ2i −
1

2

N∑
i,j=1,i 6=j

W (|r (si)− r (sj)|) .

The cost of this parametrization is that we are left in general with a more compli-
cated (even no explicit) form of the potential term, originating from the non-trivial
dependence of s on u (Eq. 1.4).

The two-body potential, W (|r (si)− r (sj)|), is in principle a complicated function
of si, sj , not solely depending on their difference si − sj . This means that the confine-
ment on a curve generally induces a coupling of the relative coordinates, s̃i = si+1− si,
to the center-of-mass one S̃ = 1

N

∑N
i=1 si. The separation of the coordinates s̃i and S

is achieved only in the restricted case of a confinement on a uniform helical curve or
a degenerate case of it (circle or line), as we have proven in [O2]. This fact provides
further motivation for studying the confined motion of interacting particles on a helical
manifold.
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The standard parametrization of a uniform right handed helix reads

r(u) =

(
r cos(u), r sin(u),

h

2π
u

)
(1.5)

where h denotes the pitch and r the radius of the helix (Fig. 1.2 (a)). In the limit h
r → 0

the helix degenerates to a circle whereas in the opposite limit h
r →∞ it degenerates to

a straight line.
Before proceeding in the description of our own scientific contributions, we discuss

cases of interacting, helically confined systems that are found in literature, We first
outline the results for systems of polar particles and finally, consider the case of charged
particles which is directly relevant to our studies.

Prior to that, it is instructive to mention another interesting example of repulsively
interacting particles which form helical arrangements. This is the so-called Levitov
model [212] used in the field of phyllotaxis (study of mathematical regularities in plants)
in order to explain the evolution of plants like cacti [213]. In this model, long-range
repulsively interacting particles on the surface of a cylinder are assumed to form an
equidistant helical chain. The optimal helical configuration changes as the linear parti-
cle density increases with the emergent instabilities following a number-theoretical law
(Farey sequence [214]), leading asymptotically to an incommensurate helical structure
related with the golden ratio φ. Such models can explain the structure of several cylin-
drical plants like cactus species and can be used to simulate their growth by simple
mechanical models [213].

Polar particles

The existing studies of dipoles confined in helical traps [37,39,215] consider them to be
aligned along the axis of the helix by means of an electric field. Under this assumption
and for low enough pitch-to-radius ratio, the two-body potential W (ui, uj) is repulsive
for short distances and attractive for large ones, exhibiting minima -in terms of the
relative angle u = ui−uj- at multiples of 2π. The classical many body system described
by such a potential is found to self-organize into a number of chains, as a result of the
interplay between the head-to-tail attraction and the side-by-side repulsion between
the dipoles [39]. These chains destabilize and lead to clusterization as the number
of particles increases. The picture of the chain formation is also supported by the
few-body quantum analogue of the system [215].

A different aspect of the quantum system of helically confined dipoles is studied
at [37]. The motivation of this paper is the similarity of the dipoles’ effective two-body
potential with the Lennard-Jones potential, used in thermodynamics in order to model
thermal liquid-gas transitions. Based on this, the authors examine the phase diagram
of a 1D gas of helically confined dipoles for different interaction strengths controlled by
the magnitude of the external aligning electric field. They identify a zero-temperature
second-order liquid-gas transition, taking place at a critical value of the electric field.
This is a rather unconventional finding, considering especially that at absolute zero the
systems are usually in a condensed phase, which has normally the lowest energy.
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Charged particles

One of the most surprising and important features of identical charged particles con-
strained on a helix is their effective two-body interaction potential [36, 38]. Namely,
under the helical constraint (Eq. 1.5) the Coulomb potential between two particles
acquires the form

W (ui, uj) =
g

|r(ui)− r(uj)|
=

g√
2r2 (1− cos(ui − uj)) +

(
h
2π

)2
(ui − uj)2

, (1.6)

with g the coupling constant between the interacting particles (In standard Coulomb
systems g = q2/(4πε0). ). The transformation to arc-length coordinates is in this
case of confinement very simple, given just by a scaling factor si =

√
r2 + (h/2π)2ui.

Evidently, the effective two-body potential is only a function of the relative coordinates
ui − uj (or equivalently si − sj), leading to center-of-mass separation, in agreement to
[O2]. Similarly to the dipolar case, it has an oscillatory character with a tunable number
of minima, depending on the pitch-to-radius ratio h

r (Fig. 1.2 (b)). In particular, both

the number and the depth of the minima increase as h
r decreases. This behaviour can

be explained by the fact that for decreasing h
r the helix (Eq. 1.5) behaves less as a

straight line and more as a circle. Opposite to the case of dipoles, for charges all the h
r

provide a repulsion at short distances and the value of the potential minima decreases
with the distance (Fig. 1.2 (b)).

2 4 6 8 10 12 14 16
0
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3

Figure 1.2: (a) Two particles confined on a homogeneous helix of radius r and pitch h.
The red dashed line illustrates the Euclidean interparticle distance. (b) The effective
two-body potential W as a function of the angular separation u = ui− uj measured in
units of π for different values of the geometrical parameters corresponding from bottom
to top to h

r = 2π (black line), π (green line), π/2 (red line), π/5 (dark yellow line),
π/10 (blue line)

Although the underlying interactions are purely repulsive, the helical constraint
allows, by inducing minima to the two body potential, for the creation of classical bound
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states. These occur at angular separations which are approximately odd multiples of π
with maxima arising for even multiples (Fig. 1.2 (b)). This fact generically prohibits the
formation of chains for more than two particles, since an equidistant chain configuration
would cause the second neighbours to be in a potential maximum. The many body
problem, therefore, is expected to be very complex, with a plethora of different stable
configurations appearing already in the few particle case [38]. Moreover, the two-body
quantum case reveals (following the arguments of the classical problem) that electron
pairs can be formed, which can tunnel through the potential barriers [36]. However,
the tunneling probability is very small, except for extreme values of h

r , making such a
system a good candidate for studying, among others, a Bose gas of stable bi-electron
molecules.

To summarize, we have seen that a helical confinement of long-range interacting
particles can lead to very interesting phenomena closely connected with the appearance
of a rather unconventional two-body potential of oscillatory character (Fig. 1.2 (b)),
hardly found in other systems. This form of the potential can be viewed as a result of
the interplay between the confined motion on a 1D manifold and the interactions taking
place in the full 3D space, a fact allowed due to the non-trivial geometry of the system
(Fig. 1.2 (a)). Especially for repulsively interacting charged particles, this can lead to
the formation of bound pairs, a rather surprising result. Motivated by these findings we
have studied some extensions of such systems, consisting of different confining manifolds
of helical character, as well as, of a large number of charged particles. The outline and
a brief discussion of our results will be the subject of the next section, whereas our full
works can be found in Chapter 2.

1.5 Outline of scientific contribution II: Charges on heli-
cal manifolds

We will now review the main part of our scientific contribution, concerning the dy-
namics and equilibrium of singly charged particles confined in different helical traps.
As mentioned above, these constitute low dimensional systems with strong long-range
interactions, which, although rarely studied in the literature, are found to exhibit in-
triguing properties, the most striking one being the tunable oscillatory form of the
two-body potential felt by two charges confined on a homogeneous helix. Starting
again with a two-body problem of charges, though now confined on an inhomogeneous
helix [O2], we study their scattering properties and the possibility of pair formation in
the system (Sec. 1.5.1). Already for two ions, the dynamical processes induced by the
geometrical inhomogeneity are very complex and allow for an energy exchange between
the center-of-mass and the relative degree of freedom.

We then proceed to studies of the many-body system [O3, O4] by increasing the
number of trapped charges. The complexity, as measured by the number of the pos-
sible equilibrium states, is now vastly increased, making it extremely challenging to
identify the true ground state of the system for arbitrary parameters. This task be-
comes more feasible for certain commensurate fillings of the helix, on which we then
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focus, in our analysis. We here find that the system undergoes a linear-to-zigzag tran-
sition by tuning the geometry of the trap (Sec. 1.5.2), bearing similarities with the
structural transitions found in other trapped ion systems (Sec. 1.1.2). A study of
the linearized behaviour of the system in the parameter region below the transition
shows that the vibrational band structure deforms in a most unconventional manner
during the change of the trap geometry, passing through a stage of large degeneracy for
certain parameters. Remarkably, such a degeneracy permits small-amplitude localized
excitations to propagate in time without significant spreading.

Motivated by this rich linear behaviour, we continue in Sec. 1.5.3 by examining
the response of our system to nonlinear excitations. Since the physics connected to
nonlinear phenomena is quite different from that of the more known linear case, we
provide a brief introduction to the field in the beginning of this section, focusing on
studies of non-linear models with a non-trivial geometry. We then proceed with dis-
cussing our findings [O4], which reveal qualitatively different features in the nonlinear
regime. In particular, we show that different nonlinear behaviours can be encountered
depending on the trap geometry, the most notable being the focusing of a broad exci-
tation at the point of degeneracy of the setup. Within the same parameter regime an
effective discrete nonlinear Schrödinger model is constructed, allowing for the insightful
identification of a number of breather-like excitations.

1.5.1 Two-body scattering of charges on an inhomogeneous helix

As previously mentioned, the homogeneous helix (including the circle and straight
line limits) is the only motional constraint which enables separation of center-of-mass
from relative coordinates for two particles interacting in dependence of their Euclidean
distance. This is proven in our work in Ref. [O2], to be reviewed in this subsection. The
proof is based on the fact that, for the separation to occur, the confining curved manifold
should be generated by a sign preserving isometry of three-dimensional Euclidean space,
denoted R3. The only available sign preserving isometries in R3, also called Euclidean
moves, are the screw operation (combined translation and rotation), the rotation, and
the translation, generating a homogeneous helix, a circle, and a line, respectively.

In the case of confinement on a uniform helix we saw that an effective oscillatory
two-body potential emerges and that the charges can form classical bound states. The
natural question which then arises is what the effects of a confinement on an inhomoge-
neous helix would be, especially the effect caused by the coupling of the center-of-mass
to the relative coordinates. Our investigations here aim at an answer to this question.

We study a system of two identical charges confined on a helix with a Gaussian
deformation of its radius r = r(u) 4 and a constant pitch h (Eq. 1.5). Such a helix is
almost homogeneous away from the the localized hump around the center. The geo-
metric parameters r, h are chosen such that the effective interaction potential exhibits
three minima in terms of the relative coordinate s in the homogeneous regime. The full

4To maintain coherence in this introductory section, we use r to denote the radius of the helix
instead of R as in Ref. [O2].
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potential landscape is bent downwards for small values of the center-of-mass coordinate
S, following the behaviour of the helix inhomogeneity.

We start in the homogeneous regime with a bound pair of particles of zero relative
velocity (ṡ=0) located in the minimum of the first potential well, and record the out-
come of their scattering through the hump after a long time for different values of their
center-of-mass velocity Ṡ. Without the inhomogeneity, we would expect the particles
to remain bound forever in the minimum of the potential well. The local deformation,
however, allows for a region (inside the inhomogeneity) of coupling between the center-
of-mass and relative coordinates, causing an energy transfer between the two degrees
of freedom. Thus, a part of the initial center-of-mass kinetic energy can be transfered
to the relative motion, giving enough energy to the particle pair to become unbound
after passing through the deformation. We have found that the initial center-of-mass
kinetic energy should lie within a certain interval of intermediate values for this dissoci-
ation to occur. For smaller values there is not enough energy supply, whereas for larger
values the dwell time in the inhomogeneous region is too small to permit a substantial
coupling. Due to the time reversal symmetry of our Hamiltonian system, this leads
to the conclusion that, for certain initial conditions, unbound charged particles can
become bound to each other during their motion. In other words, particles can form
bound pairs while being scattered through the helix, which is a counterintuitive fact,
especially regarding the long-range repulsive character of the underlying interactions.

The regimes of dissociation (in terms of initial center-of-mass energy) are identified
for different initial conditions and found to exhibit similar features. An important
outcome of this analysis is that the energy transfer mechanism depends in a very
complex manner on the initial conditions: Indeed, it does not take place in a single
step; it is rather the final result of a continuous energy redistribution during the time
interval in which the particles remain inside the inhomogeneity. We complete our
analysis of this two-body problem with a study of its phase space. Since the system
is Hamiltonian with two degrees of freedom, we employ Poincaré surfaces of section,
which, taking advantage of the conservation of energy, permit to illustrate 2D cuts of
the phase space. For low total energies, exclusively regions of regular bounded motion
within the hump are found. As the total energy increases, escaping trajectories emerge
which reside within disconnected empty regions in the Poincaré surfaces of sections.
Except for certain localized bound states inside the inhomogeneity, we also identify
“resonant trajectories”, i.e. trajectories that remain inside the hump performing an
oscillatory motion for a large time interval and finally escape into the homogeneous
region.

These intriguing results on two-body dynamics of charged particles in a helical trap
call for a study of many-body systems trapped in helical geometries. This examination
is carried out in the following subsections, using as confining manifold a closed helix in
order to simplify the theoretical framework for the many-body system.
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1.5.2 Many-body problem of charges on a closed helix I:
Equilibrium and linearized behaviour

Having demonstrated the many aspects of the two-body problem of helically confined
charges, both in presence (Sec. 1.4) or absence (Sec .1.5.1) of separation of center-of-
mass from relative coordinates, we now gradually proceed to the study of its many-
body counterpart. As a many-body problem of singly charged trapped particles, such a
system is intrinsically connected with the physics of cold ions and Wigner crystals (Sec.
1.1). In fact, any crystalline equilibrium configuration of the system, and especially its
ground state, may be considered as a type of Wigner crystal.

The study of Wigner crystallization for a finite number of particles requires a finite
trap. In the present context, such a trap could be provided by a finite helical segment,
equivalent to a box potential, or by an external harmonic potential imposed on the
infinite regular helix. As seen in the simplest 1D case of a line (Sec. 1.1.1, Sec 1.2),
however, these approaches both induce a non-trivial inhomogeneity in the Wigner crys-
tal, prohibiting, among others, the existence of phononic excitations. In our attempt to
study the simplest possible many-body system of helically confined charges free from
any finite-size effects, we have therefore chosen a closed helix as the confining manifold.
Specifically, we consider a toroidal helix which has, in addition to the helix radius r and
pitch h, one more geometrical parameter, the (major) radius of the torus R controlling
the overall size of the manifold [O3,O4]. Such an unconventional system geometry can
in fact be found naturally in the DNA of viruses, plasmids or mitochondria [216, 217],
in the form of DNA condensates [218], in bacteriophages [219] or proteins [220]. It is
also connected to optimal packing [221] and gyrotropic behaviour [222], making it an
relevant structure in material science.

In our work in Ref. [O3] we assume N identical particles interacting via Coulomb
interactions and constrained to move on such a toroidal helix. In the limit of vanishing
helix radius (r = 0) we obtain the geometry of a ring. In this case, a separation of
the center-of-mass is provided and the system possesses a single stable state (up to
global translations) consisting of an equidistant polygonic configuration of charges. For
finite values of the radius r, the situation is radically different. The center-of-mass
couples to the relative coordinate and a plethora of different equilibrium states emerge,
depending on the parameters h, r,R. These crystalline configurations are generally
non-periodic and contain multiple defects, that is localized formations deviating from
the surrounding order. There exist, however, particular cases where the symmetry does
allow for a periodic equilibrium configuration, similar to the one in the ring limit. These
satisfy the requirement of commensurability between the number of particles N and
the number windings M = 2πR/h so that M = nN, n = 1, 2, 3, . . .. For a fixed filling
ν = 1/n, a specific value of the pitch h and a fixed number of particles, the helix radius
r becomes the only free parameter of the problem. We thereby study the ground state
configurations of such commensurately filled closed helices as a function of r.

We find that the polygonic configuration of the ring persists as an equilibrium state
of the system for any r. For small values of r it constitutes the ground state, with the
particles located along the outer circle of the torus. As the helix radius increases, this
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state loses its stability at a critical point rcr and bifurcates to a zigzag configuration.
Thus, by tuning a parameter of our trap (the radius r) we encounter a zigzag transition.
This is reminiscent of the structural zigzag transitions encountered for cold ions in Paul
traps by tuning the aspect ratio of the confinement (Sec. 1.1.2), with a fundamental
difference: In the usual Paul traps, the zigzag transition is driven by an increment of
dimensionality of the system from 1D to quasi-1D, controlled by the transverse trapping
potential. In contrast, the system examined here, although interacting via 3D space,
always remains strictly 1D in terms of the single-particle configuration space. This fact
has significant impact on the low energy excitations of the system, namely the phonon
spectrum, as discussed next.

In the absence of a second dimension, the phonon spectrum, extracted by a lin-
earization of the many-body potential around the ground state configuration, consists
only of longitudinal branches. Below the critical radius rcr it consists of a single branch,
whereas after the pitchfork bifurcation takes place, it forms two branches reflecting the
broken symmetry of the new ground state. In contrast to what is seen in usual cold
ionic systems (Fig. 1.1 (b),(c)), the longitudinal phonon branch varies drastically with
the tuning parameter (the helix radius r). Starting from the ring case (r = 0) with
a gapless center-of-mass mode, portraying the separation from the relative motion,
for increasing r the phononic band structure deforms opening a gap and decreasing
its overall width. At a special value r = rd the width of the spectrum becomes so
concentrated (with width of the order of 10−4 compared to 10−1 for r = 0) that it is
practically degenerate, and the corresponding band structure is flat. Above rd the band
structure inverts with the out-of-phase mode becoming energetically favourable. The
spectral width then increases again up to the critical point rcr where the out-of-phase
mode reaches zero, thereafter crossing the imaginary axis and generating the zigzag
transition.

Such a band structure deformation, controlled by the trapping geometry, is rather
unconventional for Wigner crystals, since it requires the interaction and the motion
to take place in spaces of different dimensionality. Here, the interaction space is 3D,
making a zigzag structure energetically favourable beyond a critical radius. A transi-
tion to a zigzag phase is usually achieved by a softening of the out-of-phase mode of
the transverse branch of the frequency spectrum, which has always an inverted form
(Fig. 1.1 (b),(c)). This branch shifts and changes its width, with the out-of-phase
mode reaching zero at the critical point (Fig. 1.1 (c)), while the longitudinal branch
remains unchanged. In our system a transverse branch is missing due to the reduced
dimensionality of the single-particle motion. Thus, the longitudinal branch, being the
only allowed, needs to undergo a significant change, including an inversion, in order to
lead to the transition.

A remarkable effect of the geometry is the deformation of the band structure through
the point of very large degeneracy (flatness) for r = rd. At this radius the interactions
are effectively screened and the charges act almost as independent within linear approxi-
mation. Consequently, a localized excitation with small amplitude can remain localized
up to long times in this configuration without propagating to the other particles in the
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crystal. This is opposite to what is encountered for different values of the radius r
or to what is expected for a crystalline structure in general. The connection of the
propagation speed of a small localized excitation to the radius of the helix results from
the connection of the latter to the phononic spectrum. In particular, the propagation
speed is found to depend monotonically on the overall width of the linear spectrum. As
a last remark, we note that most results described in this section have been produced
with N = 60 particles and filling ν = 1/2. Predictions about the thermodynamic limit
can be found in Ref. [O3] and in the Appendix, where also different fillings are treated.

Having constructed a system with such a peculiar linear behaviour, controlled by a
geometrical parameter, we continue with examining its response to nonlinear excitations
for different geometries. An overview of our findings in Ref. [O4] as well as a brief
introduction to the physics of relevant nonlinear systems will be the subject of the
following section.

1.5.3 Many-body problem of charges on a closed helix II: Dynamics
of nonlinear excitations

Already the linear dynamics of the system were seen to display remarkable features such
as a geometry-dependent deformation of the linear spectrum with a region of very high
degeneracy. It is then natural to ask how the many-body system responds to nonlinear
excitations. We here outline the results concerning the dynamics of nonlinear excita-
tions for charged particles confined along a toroidal helix. As in the setup described
in the previous section, the helix is commensurately filled with charges and the helix
radius attains values below the critical one for the zigzag transition, i.e. the ground
state of the system is the equidistant polygonic configuration. Before proceeding to an
overview of our results, we first briefly outline basic relevant aspects of nonlinearity,
focusing on the discrete nonlinear Schrödinger (DNLS) equation which we use as an
effective model in this work.

Nonlinearity and the DNLS Equation

Whereas a linear behaviour leads in general to a simple description of a system dynamics
in terms of its constituents based on the principle of superposition, nonlinearity causes
a complex dynamical behaviour in which often the cause and its effect cannot be sepa-
rated. Such feedback loop processes are inherent in nonlinear systems and can lead to
effects such as self-focusing (or self-trapping) of initial wave packet excitations [223,224]
or to the existence of spatially localized excitations which do not spread in the course of
evolution such as breathers and kinks [225,226]. In contrast, for linear systems the time
evolution of excitations is always characterized by some degree of dispersion and the
only elementary excitations are phonon-like extended modes.5 It is the counteraction
of the nonlinearity to the linear dispersion that makes a self-focusing effect possible.
Such an interplay between nonlinearity and dispersion was first examined in studies of

5The discussion in this paragraph refers only to periodic systems. The inclusion of disorder is known
to lead to excitation localization, termed Anderson localization, even in linear systems.

35



INTRODUCTION

continuous integrable models such as the Korteweg-de-Vries (KdV), the sine Gordon
(sG) and the nonlinear Schrödinger (NLS) equations.

Studies of nonlinear discrete systems were found to exhibit similar effects, allowing
for even more complex dynamics, due to the boundedness of their frequency spectra.
A prototype model of such systems is the DNLS equation [227], consisting, in analogy
to its continuous counterpart (NLS), of a linear coupling ε and a cubic nonlinear term
(γ), reading in 1D

i
dΨn

dt
= ε (Ψn+1 + Ψn−1) + γ |Ψn|2 Ψn. (1.7)

This equation describes the time evolution of the amplitude of the excitation envelope
{Ψn} for a simple lattice model of coupled anharmonic oscillators. It can lead to dif-
ferent dynamical behaviours depending on the relative sign between the dispersion and
the nonlinear coefficient. In particular, if εγ > 0 it describes a self-focusing dynam-
ics (focusing DNLS) supporting bright solitons (localized solutions in form of density
peaks), whereas if εγ < 0 it leads to defocusing (defocusing DNLS) and is found to sup-
port dark solitons (localized solutions in a uniform background, forming density dips).
The focusing case can be understood as a result of the so-called attractive nonlinear-
ity counteracting the dispersion, contrary to the defocusing case where the so-called
repulsive nonlinearity enhances the dispersion effect.

Apart from cases of nonlinear oscillator chains, the DNLS equation is also used to
model different systems such as coupled optical waveguides [228, 229], Bose-Einstein
condensates [230,231], or even the dynamics of DNA molecules [232–234]. In the latter
case an explanation of the denaturation of the DNA is attempted by relating the local
openings of the double helical strand to localized solutions (intrinsic localized modes)
supported by the so-called Peyrard-Bishop model [234].

In all these models a trivial lattice geometry is commonly assumed, given in 1D by a
straight equidistant chain with couplings restricted to nearest-neighbours. The consid-
eration of different lattice geometries in the context of long-range interacting oscillators
on a curved substrate [235], curved polymer chains [236], or descriptions of the DNA
dynamics which take into account its prominent helical structure [237], have shown
that the interplay between nonlinearity and geometry can lead to striking phenomena
including the emergence of multistability or the enhancement of the stability of discrete
breathers. Moreover, a non-trivial geometry was even found capable of inducing non-
linearity in harmonic oscillator chains [238,239]. It is therefore of fundamental interest
to study the way in which geometry affects nonlinearity in a system with a non-trivial
geometry, as realized here in the charges-on-a-helix system. An outline of our results
concerning its response to nonlinear excitations [O4] can be found below.

Nonlinear effects in the many-body toroidal helix model

In the parameter regime where the ground state configuration is that of equidistant
repulsive particles on the toroidal helix, we excite the system by giving some relatively
small initial kinetic energy to the particles. The energy distribution of the excitation is
relatively broad with a Gaussian spatial profile. We then examine how this excitation
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evolves within the system at long times for different values of the helix radius, cov-
ering all regions with qualitatively different linear spectra: from the ring limit to the
degeneracy and the inversion regime (see Sec. 1.5.2).

Our numerical results [O4] show that the excitation evolves in a very distinct manner
in the different geometries. For small helix radii, it spreads into the whole crystal
while periodically refocusing at time instants where its left and right parts meet and
superimpose at the diametrically opposite point of the toroidal helix. In contrast,
for a narrow range of helix radii where the multiply degenerate linear spectrum was
encountered, the excitation self-focuses after a long time interval and finally fragments
into a number of highly localized excitations. Beyond this regime, the excitation is again
gradually dominated by dispersion, thereby defocusing and spreading into the crystal.
The self-focusing of the excitation at the degenerate geometry signifies, according to
the discussion above, the existence of a strong nonlinearity in the system.

In order to identify and quantify the leading orders of such a nonlinearity, we per-
form a Taylor expansion of the full interaction potential around the equilibrium config-
uration up to fourth order. The resulting Euler-Lagrange equations contain quadratic
and cubic nonlinear forces in addition to the harmonic ones. At the ring limit (r = 0),
where the separation of the center-of-mass holds, these equations are of the Fermi-
Pasta-Ulam type [240] with long-range couplings. Close to the regime of degeneracy,
the equations are dominated by the linear diagonal term. By use of the rotating-wave
and the nearest-neighbour approximations, we here derive an effective DNLS equation
with additional nonlinear couplings describing the time evolution of the excitation en-
velope. The predictions of this equation for the time evolution of the excitation capture
nicely the results of our full model. Indeed, within the degeneracy region the DNLS is
of the focusing type with a very large effective nonlinearity, whereas beyond this region
it becomes of the defocusing type, in accordance with our observations. Crucial for this
effect is the contrast between the robustness of the nonlinear coefficient and the vari-
ability of the linear coupling. The latter crosses zero at the degeneracy, thus shifting
the weight of the dynamics to the nonlinear terms, and becomes negative beyond it,
leading to the defocusing dynamics. Finally, with the effective DNLS model we are able
to identify certain breather-like excitations in our system of charges for the degenerate
geometry. These excitations oscillate in time but retain their localized profile during
the evolution, adding to the nonlinear dynamical features of the system.
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Employing Monte Carlo simulation techniques we investigate the statistical properties of equally charged
particles confined in a one-dimensional box trap and detect a crossover from a crystalline to a cluster phase with
increasing temperature. The corresponding transition temperature depends separately on the number of particles
N and the box size L, implying nonextensivity due to the long-range character of the interactions. The probability
density of the spacing between the particles exhibits at low temperatures an accumulation of discrete peaks with
an overall asymmetric shape. In the vicinity of the transition temperature it is of a Gaussian form, whereas in
the high-temperature regime an exponential decay is observed. The high-temperature behavior shows a cluster
phase with a mean cluster size that first increases with the temperature and then saturates. The crossover is clearly
identifiable also in the nonlinear behavior of the heat capacity with varying temperature. The influence of the
trapping potential on the observed results as well as possible experimental realizations are briefly addressed.
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I. INTRODUCTION

Within the past decade, we have witnessed enormous
progress with respect to the controlled manipulation of ions.
This is in particular due to the application of the dynamics
of ionic systems to spectroscopy [1,2], the implementation
of quantum simulations [3,4], and the realization of quantum
information processors [5,6]. In this context many trapping
methods [7–11] have been suggested. Among the most widely
used is the Paul trap [9], which allows one to monitor single
ions [12] and study the stability of many ion crystals [13–15].
Experimental studies of ions confined in this type of trap have
shown a transition from a cloud of ions to a crystalline structure
with decreasing temperature [16,17].

Along with the experiments there have also been various
theoretical investigations in the formation of Coulomb crystals
in the presence of a trapping potential. An early study of
the structure of spherical Coulomb crystals [18] showed that
particles are arranged in concentric spherical shells with
constant intershell distances and a hexagonal surface structure.
Furthermore, for large systems a bcc lattice is formed in the
interior [19] resembling the case of infinite Coulomb systems
(One Component Plasma) [20]. The two-dimensional (2D)
case has revealed even more exotic phenomena. Specifically,
for the cylindrically confined Coulomb lattice a structural
phase transition with increasing linear density has been found
[21]. The finite 2D systems of charged particles confined in
a parabolic potential or a box present an order-disorder phase
transition with increasing temperature [22]. The density of the
particles differs for the two potentials being almost constant in
the inner region and decreasing while moving outwards for the
parabolic case, whereas it increases radially forming distinct
shells for the box.

Recently, particular interest was dedicated to the study
of one-dimensional (1D) systems and especially cold ions
confined in a corresponding harmonic potential [23–28]. Ana-
lytical approaches have been developed using perturbation the-
ory around the classically minimum energy positions [25,26].
An interesting thermodynamic behavior different from both

the 2D and three-dimensional (3D) cases has been observed
due to the interplay between the long-range interactions and
strong correlations. These observations include a deviation
of thermodynamic quantities from extensivity, a nonuniform
charge density, and a structural phase transition (linear to
zig-zag) driven by the strength of the radial potential [27]
and temperature [28].

Following the direction of the above studies, the present pa-
per aims at describing classically the thermodynamic behavior
of equally charged particles confined to an 1D box within a
wide temperature range. Such a problem is usually treated by
computing the partition function of the system:

Z(L,N,T ) = ZKEZU,

ZU =
∫ L

0
· · ·

∫ L

0
exp[−βVC(x1, . . . xN )]dx1 . . . dxN, (1)

where ZKE is the part of the partition function due to the kinetic
energy of the particles, β = 1/kBT , g2 the coupling constant,
and

VC(x1,x2, . . . xN ) = 1

2

N∑
i = 1
i �= j

N∑
j=1

g2

|xi − xj | (2)

the Coulomb potential energy. Since ZU is not analytically
accessible, we will proceed here by utilizing Monte Carlo
simulation techniques.

Examining the distributions of the spacing between the
particles with increasing temperature, we will observe a
transition from a discrete overall asymmetric form to a
continuous exponential one. This fact can be interpreted as an
evidence for a crossover from a crystalline to cluster phase at a
transition temperature Tc, at which this distribution acquires a
symmetric Gaussian form. The probability of forming clusters
of increasing size increases with the temperature and finally
saturates. We will then proceed and verify the crossover by the
temperature dependence of the heat capacity. Our results indi-
cate that the transition temperature Tc and consequently every
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thermodynamic quantity depends on the number of particles
N and the length L of the box in an independent manner, thus
presenting deviations from extensivity. An implementation of
this nonextensivity in order to obtain finite quantities in the
thermodynamic limit is attempted. We also discuss the effect
of the trapping potential on the observed results.

The paper is organized as follows. In Sec. II we present, in
some detail, the Monte Carlo methods used in our simulations.
Section III contains our results and a discussion of the
observables used to characterize the statistical mechanics of
the Coulomb system. In Sec. IV we analyze the changes of
the observed properties when trapping conditions are altered,
focusing on the case of harmonic trapping. Finally, Sec. V
provides a brief summary of our findings commenting on a
possible experimental realization.

II. MONTE CARLO APPROACHES TO THE FINITE
ION CHAIN

In order to explore the statistical properties of the finite
Coulomb chain confined in a box we employ the Metropolis
and Wang-Landau algorithms, each possessing a better effi-
ciency with reference to the computation of different quantities
in different temperature regimes. In order to be self-contained,
we will provide below a brief description, discussing their
advantages and deficiencies and explaining how they are
employed in this work. Before doing so, it is important to
notice that for a given number N of particles in the box the
statistical properties of the Coulomb chain are determined by
a single dimensionless parameter � = g2

LkBT
. This is seen by

introducing the dimensionless variables ξi = xi

L
in Eq. (2) and

inserting the resulting expression in the partition function (1).
In the following we will exclusively use the dimensionless
position variables ξi . As a consequence the length of the box
can be taken without loss of generality as L = 1.

For the Metropolis algorithm [29] we generate initially
a random configuration {ξi} of the location of the particles
in the box. The configuration is sorted in an ascending
order (0 � ξ1 � ξ2 � · · · � ξN � 1). Then we choose for
the j th particle a new position 0 � ξ ′

j � 1. The efficiency
of the algorithm is greater if we impose the additional
restriction ξj−1 � ξ ′

j � ξj+1. If �E = VC(ξ ′
i ) − VC(ξi) � 0

the new configuration is accepted, i.e., ξj = ξ ′
j . Otherwise we

accept the new configuration with a probability P given by
the Boltzmann factor P = e−β�E . This procedure defines
a Monte Carlo step and after a considerable number of
repetitions the equilibrium state is reached. The Metropolis
algorithm satisfies the property of detailed balance, and
therefore it always converges, being also, as a Markov chain,
very efficient in the evaluation of the equilibrium configuration
of the particles. However, it presents also some well-known
deficiencies. In the low-temperature regime, where the min-
imum of the potential dominates the statistical properties of
the system, the acceptance ratio of Metropolis becomes very
low, a fact that leads to a dramatic growth of the simulation
time. The situation is even worse when the potential possesses
many minima, since the particles can be trapped in one of
them and never reach the global minimum. For the strongly
correlated system presented here, the main problem arises in

the calculation of inherently averaged macroscopic quantities
like the heat capacity CV . A large ensemble of configurations
is needed in order to reduce statistical errors significantly, and
thus the practical simulations are prohibited.

Recently another algorithm has been proposed in order
to overcome these problems, namely, the Wang-Landau
algorithm [30]. Contrary to the canonical ensemble-based
Metropolis, this algorithm uses the concept of the micro-
canonical ensemble, and it intends to calculate the density
of states (DOS) of a system as described below. First, we
choose the range of accessible energies and then divide
it into a number of bins M . We start, assuming that we
have a uniform density of states g(E), i.e., g(E) = 1 for
every energy bin. We then proceed as follows. For the
j th particle we choose a new position ξj−1 � ξ ′

j � ξj+1. If
g(E2) � g(E1) with E1 = VC(ξi) and E2 = VC(ξ ′

i ), we accept
the new configuration. Otherwise the new configuration is
accepted with a probability P = g(E1)

g(E2) . Each time an energy
bin is visited we update the corresponding density of states
by multiplying the existing value by a modification factor f ,
i.e., g(E) = f · g(E). We choose f = e1 ≈ 2.71828 . . .. We
also update the energy histogram H (E) = H (E) + 1. In the
original version of the algorithm [30] for discrete systems,
the above steps were repeated until a flat histogram was
obtained [e.g., min(H (E)) � 0.8 · 〈H (E)〉, with 〈H (E)〉 being
the mean value of the histogram]. In order to improve the
accuracy which is of order ln f we decrease the modification
factor f = √

f and repeat the procedure. When ln f ≈ 10−8

the density of states does not any longer evolve any further and
the simulation is stopped. The major problem of this algorithm
is that it does not satisfy the detailed balance condition, and
so its convergence cannot be strictly proved. Furthermore the
method has been suggested originally for discrete systems
with narrow energy landscapes. Nevertheless it has been used
successfully in recent calculations also considering continuous
systems [31–33]. If the low-energy spectrum of the system
is complex, the criterion of the flatness of the histogram
is never satisfied as some energy bins are never visited.
To overcome this problem several alternatives have been
proposed [33,34]. In our work we use the technique described
in Ref. [34] excluding some boundary bins from the flatness
check. The Wang-Landau algorithm has the special advantage
that once the DOS is obtained, we can easily derive all the
thermodynamic quantities [e.g., Z = ∑

E g(E)eβE] from this
function alone. Thus, the simulation time is significantly
reduced when computing the temperature dependence of
demanding quantities like the heat capacity CV . However,
for computing properties that depend on the position of
the particles for systems with a complex, degenerate, and
unbounded energy landscape as the one presented here, this
method is in an inferior position in comparison to Metropolis.
This is attributed to the large computational effort needed in
order to find a representative sample of microstates for each
energy E. In order to exploit the advantages of each algorithm
avoiding its drawbacks, we use both of them and apply each
one for the evaluation of different properties.

In the present study 1.5 × 107 MCs were required in order
to reach equilibrium with the Metropolis algorithm and an
ensemble of 200 configurations in order to obtain the mean
energy 〈E〉 as a function of � and the number of particles
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N . For quantities related to the positions of the particles at
equilibrium the size of the ensemble was increased up to 10 000
configurations to achieve better statistics. The Wang-Landau
algorithm has been realized with 2 × 107 MCs for each value
of the modification factor until ln f ≈ 10−8 as stated above.
In most calculations the number of particles N = 100 is used
unless stated otherwise.

The spatially resolved density and correlation functions,
as well as 〈E(N )〉 have been computed with the Metropolis,
whereas the heat capacity CL(�) has been determined using
the Wang-Landau algorithm. As a check, the dependence of
the mean potential energy 〈E(�)〉 on the parameter � has been
computed with both approaches.

III. NUMERICAL RESULTS AND DISCUSSION

We present and describe in the following our basic results
for the temperature-dependent behavior and properties of
the ions in the box. Let us begin with the exploration of
the minimum energy configuration (in the first subsection)
and continue with its temperature dependence (in the second
subsection). In the last subsection, which addresses the main
results of this work, evidence for the crystalline-clustering
crossover and the associated phenomenology is presented.

A. Minimum energy configuration

Some useful remarks on the minimum energy configuration
of the ions in the box can be obtained simply by inspec-
tion of the corresponding Coulomb potential energy. First,
VC(ξ1,ξ2, . . . ,ξN ) is obviously a strictly increasing function
of ξ1 ( ∂V

∂ξ1
> 0) and a strictly decreasing function of ξN

( ∂V
∂ξN

< 0). Thus, the first and the last particles always occupy
the edges of the line segment, i.e., ξ1 = 0 and ξN = 1. It is
obvious that the problem possesses a symmetry axis with
respect to the center of the box. As a result, if the number
of particles N is odd, the central particle is positioned at the
center of the line segment (ξ�N/2	+1 = 1/2, where �x	 denotes
the floor function of the number x). Furthermore, for more
than three particles the minimum energy configuration is not
the equidistant one. In fact, the difference �eqξi = ξ 0

i − ξ
eq
i

with {ξ 0
i } the equilibrium positions of the particles at zero

temperature and {ξ eq
i = i

N−1 } the equidistant positions is a
discretization of a smooth function, inversion symmetric with
respect to the center position N/2 possessing a minimal value
at imin � N/4, a maximal value at imax � 3N/4, and being
almost linear within [imin,imax] (Fig. 1). Due to the fixed length
of the box and the long-range character of the interactions, the
particles tend to accumulate at the edges of the box leaving
larger interspace distances in its middle part [Figs. 2 and 3(a)].
This is opposite to the case of ions confined in an 1D harmonic
potential [23,26] where the length of the chain is not fixed and
the particles tend to accumulate in the inner region. Such a
behavior could be expected as the 1D analog of the 2D system
presented in Ref. [22]. In the specific case of the 1D system
with the first and the last particle fixed at the edges, it can be
proven (see the Appendix) that due to the ordering of positions,
the lowest energy configuration presented here provides the
only minimum of the potential energy. This is in contrast to
systems in higher dimensions, such as 3D ionic systems under

0 20 40 60 80 100
−0.02

−0.01

0

0.01

0.02

Particle index i

Δ eq
ξ i

FIG. 1. (Color online) The difference of the expected equidistant
position of each particle from its minimum energy position as a
function of the index of the particle for N = 100 particles confined
in a box with unit length L = 1.

harmonic confinement, where many local minima and multiple
isomers exist [35].

B. Temperature dependence of the configurations
and the densities of charges

To study the temperature dependence of the observables
describing the properties of the charged particles in the box
we have to vary the parameter �. We define g2

L
= kBT0

yielding τ = 1
�

= T
T0

as a reduced temperature. As τ increases,
positions different from the minimum energy ones become
accessible to the particles. At temperatures τ � 10 the particles
start to form clusters of different sizes [Fig. 3(b)]. Thus
the form of the possible particle configurations changes
dramatically. However, if we consider the mean positions of
the particles [Figs. 3(c) and 3(d)] over an ensemble of 104

configurations we observe that for the high-temperature case
[Fig. 3(d)] the clustering is averaged out, and the resulting
mean configuration resembles very much that of the low-
temperature regime [Fig. 3(c)]. A slight difference, however,
is that for high temperatures the positions seem closer to the
equidistant ones with less accumulation at the edges of the
box, which are no longer occupied.

The properties of the mean equilibrium configuration for
different temperatures can be further explored by considering
the temperature dependence of the quantity 〈�eqξi〉 and the
density function 〈ρ(ξ )〉. As seen in Fig. 4 for temperatures
τ � 1 the mean positions of the particles are identical with the
minimum energy ones (Fig. 1). Even at τ = 102 (black line

FIG. 2. (Color online) The minimum energy configurations
of particles as obtained by the minimization of the potential
VC(x1,x2, . . . ,xN ) for N = 6,10 and 20. The particles are represented
with the (blue) full dots, and the equidistant positions are marked with
the (red) vertical line segments.
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FIG. 3. (Color online) Particle configurations for N = 100: (a)
A single configuration of particles at τ = 10−3, (b) the same for
τ = 103, (c) the mean configuration of particles for τ = 10−3, (d) the
same for τ = 103.

with circles) the form of 〈�eqξi〉 is preserved except from
a decrease in its magnitude and a deviation at the edges.
However, for τ = 104 the form becomes linear keeping the
symmetry around the center but changing by an overall sign.

A reference to the density of the absolute positions ξi

would be of no practical use since, due to the finite number
of particles, the problem is discrete, and it would result only
in a set of delta functions. In previous studies [23,25,26] there
has been a particular interest in the quantity �ξi = ξi+1 − ξi

denoting the interspace distance between successive particles.
It has been shown that its inverse is a smooth function of ξi

and represents the density of ions per unit length. To improve
statistics we use the ensemble average of �ξi , i.e., 〈�ξi〉.
Through interpolation, we produce the density of charge 〈ρ(ξ )〉
in the continuum limit. Our results are presented in Fig. 5 for
various temperatures. We clearly observe the nonuniformity
at the outer areas (close to the edges) for temperatures τ � 1
(opposite to what has been observed in Ref. [23]) and an almost
uniform behavior for high temperatures except for the region
close to the edges where the density becomes zero (not visible
in Fig. 5). As expected, there exist large thermal fluctuations
in the high-temperature regime.

0 20 40 60 80 100
−0.02

−0.01

0

0.01

particle’s index i

Δ eq
ξ i

FIG. 4. (Color online) The mean difference �eqξi of the position
of each particle from its expected equidistant position as a function of
the particle’s index i for temperatures τ = 10−5 (blue circles), 10−3

(green line), 10−1 (magenta squares), 1 (cyan triangles), 102 (black
line with circles), and 104 (red stars). Note that the τ = 10−1, 1 curves
for �eqξi are on top of those for τ = 10−5, 10−3, and therefore hardly
visible.
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FIG. 5. (Color online) The density of charge 〈ρ(ξ )〉 as a function
of the particles’ positions ξ for temperatures τ = 10−5 (blue line), 1
(green circles), 103 (black line with triangles), 105 (estimated mean
red line and fluctuations red stars). The particle number is N = 100.

C. Crossover from the crystalline to cluster phase

As has been stated above, the quantity �ξi is very useful in
the determination of the density of charges ρ(ξ ), a continuum
limit of the distribution of the equilibrium positions {ξi}. In
this subsection we present the results for the distribution of
�ξi , ρ(�ξi) at various temperatures (Fig. 6). It turns out that
this quantity contrary to ρ(ξi) is well defined for this discrete
system, and even more, it carries significant information for
its thermodynamic behavior. It has been computed through the
histograms of �ξi for 104 configurations and N = 100. For
low temperatures [Figs. 6(a) and 6(b)] a crystalline structure
is observed as ρ(�ξi) clearly contains a part formed by
discrete peaks for small distances. Thus, the particles occupy
well-defined positions leaving specific distances between
each other. The mean value of �ξi for all the histograms
approximately coincides with the equidistant spacing 〈�ξ 〉 ≈
0.0101 ≈ 1

N−1 . The most probable value (max �ξi ≈ 0.0108)
is slightly larger than the mean, denoting an anticlustering
effect and a crystallization of ions. The peaks are broadening
and merging with an increase of the temperature, and the
overall distribution becomes smoother [Fig. 6(c)]. More
positions become accessible to the particles, and the most
probable value decreases tending to the mean one. At τ = 10
the form of ρ(�ξi) becomes almost symmetric [Fig. 6(d)], and
its line shape resembles a Gaussian as is verified by a χ2 fit
(red line). Here max �ξi ≈ 0.0097 is slightly less but actually
very close to 〈�ξ 〉. In the high-temperature regime we observe
a clustering effect [Fig. 6(e)] directly opposite to that of the
low-temperature case. The effect is strongly pronounced as
can be seen by inspecting max �ξi ≈ 0.0036, which is much
less than the mean �ξi value. This trend is enhanced for
ultra-high temperatures (τ = 105) as illustrated in Fig. 6(f).
The most probable value of the spacing is almost zero, and
the distribution is well described by an exponential (red line
fit with a coefficient of determination R2 = 0.9962 [36]). Its
characteristic length scale is approximately 0.0096, which is
also close to the equidistant spacing of the particles 1

N−1 . This
reflects the fact that for high temperatures the particles have
the opportunity to occupy almost every available position,
and each particle’s position is completely independent from
the positions of the neighboring particles. The continuous
change of ρ(�ξi) implying the transition from a crystalline
to a cluster configuration with the change of temperature
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FIG. 6. (Color online) The distributions of �ξi , ρ(�ξi), for
different temperatures: (a) τ = 10−5, (b) τ = 10−3, (c) τ = 10−1,
(d) τ = 10 (the red line is a Gaussian fit), (e) τ = 103, (f) τ = 105

(the red line is an exponential fit). In each figure the mean value of
the interspace distance 〈�ξ〉 and its most probable value (max �ξi)
are provided.

is a strong indicator of a crossover occurring at a transi-
tion temperature τc ≈ 10, where the distribution becomes
Gaussian [Fig. 6(d)].

Skewness. A more precise determination of the transition
temperature can be achieved by examining the skewness γ1

of the distributions ρ(�ξi) as a function of the temperature
(Fig. 7). Skewness is a measure of the asymmetry of a
probability distribution ρ(x) and is defined as the third
standardized moment:

γ1 = 〈x − 〈x〉〉3

σ 3
,

where σ is the standard deviation of ρ(x). It is evident that in
our case the skewness goes from negative to positive values
as temperature increases (Fig. 7). Its absolute value possesses
a minimum at a temperature τ1 ≈ 6, which can be conceived
as the critical one. At higher temperatures it saturates at the
value 2, which is indeed the skewness of the exponential
distribution.
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FIG. 7. (Color online) The skewness of the distributions ρ(�ξi)
as a function of the temperature τ .

Cluster size and temperature. We have mentioned above
that for temperatures τ > 10 the particles tend to form clusters
of various sizes. Let us now explore how the temperature
affects the size of the clusters formed. In what follows we
consider as cluster size 1 the size of a neighborhood which
includes only one particle, i.e., the case when no cluster is
formed. Furthermore, a particle i is assumed to belong to the
same cluster as its previous neighbor i − 1 if they are separated
by a distance smaller than a threshold d. The value of this
threshold is taken to be the minimum interparticle distance
�ξi of the mean configuration of particles at temperature τ .
This choice helps in focusing on thermal fluctuations, thereby
avoiding effects emerging from the specific structure of the
crystal. Note that this quantity depends as well on the number
of particles N . We observe (Fig. 8) that the probability of
forming a larger cluster is generally increased with the increase
of the temperature tending to a limiting form for ultra-high
temperatures. This form coincides with the one obtained
for randomly chosen configurations of particles confined in
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FIG. 8. (Color online) The probability distribution of cluster sizes
for different temperatures (semilogarithmic scale): τ = 5 (blue line
with squares), τ = 10 (green line), τ = 50 (red line with circles),
τ = 5 × 102 (cyan line with triangles), τ = 103 (purple line with
diamonds), τ = 5 × 103 (yellow line with circles), τ = 5 × 104

(brown line), τ = 105 (black line with stars). The blue dashed
line indicates the probability distribution of cluster sizes in the
case of noninteracting particles confined in the box (purely random
configurations).
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FIG. 9. (Color online) The mean cluster size as a function of the
reduced temperature τ for systems with different numbers of particles:
(a) N = 50, (b) N = 100, (c) N = 200. The horizontal dashed lines
indicate the values of the mean cluster size for the respective numbers
N of noninteracting particles confined in the box.

a box of length L = 1, i.e., for the noninteracting case.
Therefore, for arbitrarily high temperatures the singularity of
the Coulomb potential at small interparticle distances becomes
irrelevant.

This behavior is also reflected in the dependence of the
mean cluster size on the temperature, which is presented
in Fig. 9 for the particle numbers N = 50,100, and 200.
The variation with the temperature is similar for the three
cases being almost constant (one) for low temperatures, then
increasing logarithmically, and finally saturating at a value
close to 2.6, which is essentially the value of the mean
cluster size of noninteracting particles confined in the box.
For N = 100 the mean cluster size starts to increase around
τ = 10, which, as we have seen, is close to the transition
temperature of the system. For N = 50 this temperature is
slightly less (approximately τ = 4), whereas for N = 200 it
is around 30. Thus, we can make the crude statement that the
transition temperature for this finite system increases (faster
than linearly) with the number of particles.

Correlation functions. Concerning the correlation functions
of the particles’ positions

A(m) = 〈〈ξi+mξi〉〉 − 〈〈ξi+m〉〉〈〈ξi〉〉
(where 〈〈. . .〉〉 denotes the average both over the indices i and
the ensemble of configurations), we encounter [Fig. 10(a)]
a very slow decay with increasing distance m, taken as the
magnitude of the difference of the particles’ indices. The form
of these functions is very close to a quadratic polynomial. A
remarkable feature of the position correlation functions is that
temperature does not affect them contrary to the typical case for
most statistical systems (e.g., the spin correlation functions of
the classical Ising model [37]). This, however, is in agreement
with the fact that the mean configuration of the particles does
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FIG. 10. (Color online) The normalized correlation functions
A(m)/A(0) for τ = 10−5 (blue line), τ = 10−1 (cyan circles), τ = 10
(gray triangles with black line), τ = 105 (red line with stars), and for
two different quantities: (a) the absolute positions of the particles ξi ,
(b) the interspace distance �ξi . Note that for (a) all the curves for
different τ are on top of each other and therefore not distinguishable.

not change much with the increase of temperature [Figs. 3(c)
and 3(d)].

On the other hand, the correlation functions of the spacing
between the particles

A(m) = 〈〈�ξi+m�ξi〉〉 − 〈〈�ξi+m〉〉〈〈�ξi〉〉
exhibits a strong dependence on the temperature [Fig. 10(b)].
In particular, for low temperatures we observe a slower decay
of the correlation function A(m), whereas at high temperatures
(τ � 10) the decay is in general abrupt becoming practically
zero for m � 1.

Energy dependence on N , T , L. The mean potential energy
is in general a function of the temperature T , the length
of the box L, and the number of particles N separately,
i.e., 〈E〉 = f (T ,L,N ). In order to study numerically this
dependence we need to deal with dimensionless quantities.
We have already introduced the reduced temperature τ and the
dimensionless positions {ξi}. The next step is to introduce
the reduced specific mean energy 〈ε〉 ≡ L〈E〉

g2N
, in analogy

with the dimensionless reduced temperature τ , and to study
the behavior of 〈ε〉 = h(τ,N ) keeping one of the parameters
constant and varying the other. Note that the T , L dependence
is reduced to a dependence on the single parameter τ , which
exclusively determines the behavior of the system as discussed
above. Following this procedure we have computed 〈ε(τ )〉 for
N = 100, using both the Metropolis and the Wang-Landau
algorithm. Obviously [Fig. 11(a)] both algorithms give overall
similar results, which can be interpreted as evidence for
convergence. However, the Wang-Landau algorithm fails to
describe the regime of ultra-high temperatures due to the
predefined limited energy space available for the simulation.
The reduced specific mean potential energy 〈ε〉 is almost
constant for low τ , as the mean energy there is fully
characterized by the minimum value of VC (ξ1,ξ2,...,ξN )

g2 and
increases almost linearly with the logarithm of the reduced
temperature [〈ε〉 ∝ log(τ )] for higher temperatures. Thus for
low temperatures we obtain the familiar 〈E〉 ∼ L−1 law for
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FIG. 11. (Color online) (a) The dependence of the dimensionless specific mean energy 〈ε〉 on the reduced temperature τ on a semilog scale
for N = 100 (Metropolis: cyan circles; Wang-Landau: blue line). (b–d) The dependence of the dimensionless specific mean energy 〈ε〉 on N

on a log-log scale for (b) τ = 10−2 (circles for numerical values, blue line fit), (c) τ = 10 (triangles, red line linear fit), (d) τ = 105 (squares,
black line linear fit).

the Coulomb system. At temperatures close to τc ≈ 10 a weak
change in the sign of the curvature can be observed [Fig. 11(a)
(inset)], a fact that, as we will discuss below, leads to a smooth
maximum in the heat capacity CL. The dependence of 〈E〉 on τ

(on both L and T ) for higher temperatures can be interpreted as
a consequence of the dependence of the transition temperature
Tc on L, which is confirmed by the behaviour of CL

(see below).
We have used as well the Metropolis algorithm to obtain the

dependence of 〈ε〉 on N for three reduced temperatures, char-
acterized by a different qualitative behavior, corresponding to
the low-, intermediate, and high-temperature regimes, respec-
tively: τ = 10−2, 10, and 105. The diagrams of Figs. 11(c) and
11(d) show a linear relation on a log-log scale which indicates a
power law relation between the involved quantities. The results
of the linear fits lead us to the following conclusions. For
Fig. 11(b) (low-temperature region) the fit contains not only
a linear but also a logarithmic term, indicating a relationship
〈ε〉 ∝ N log(N ). This logarithmic correction is expected for
1D Coulomb systems in this temperature regime [23], due to
the formation of a crystal and the fixed particle positions. For
larger temperatures the relation becomes linear, resulting in a
characteristic exponent around 1.12 for τ = 10 and 1.04 for
τ = 105, thus approaching 1 for high temperatures (〈ε〉 ∝ N ).
It is clear that since the reduced mean specific energy 〈ε〉
depends on N extensivity is violated, a fact that is expected for
systems with long-range interactions. In summary, the mean
Coulomb energy scales roughly as 〈E〉 ∝ N2

L
, which coincides

with our intuition for Coulomb systems, but looking more

precisely at T → 0 the scaling of the mean potential energy
takes the form [Fig. 11(b)]:

〈E〉 ∝ N2 log(N )

L
, (3)

which will be used below in an attempt of interpreting the
thermodynamic limit in such a system.

Specific heat capacity cL. In order to proceed in our study
of the temperature dependence of 〈ε〉 we have also calculated
the specific heat capacity cL ≡ 1

N
( ∂〈ε〉

∂τ
)L of the Coulomb

gas confined in a 1D box. Due to the fact that numerical
differentiation usually encounters large errors, it is difficult
to extract the heat capacity’s values from the results of the
Metropolis algorithm as shown in Fig. 11(a). A calculation of
the heat capacity via the energy fluctuations

cL

kB

= 1

N
�2(〈ε2〉 − 〈ε〉2) (4)

proved also to be insufficient with the use of the Metropolis’
results, especially in the low-temperature regime. The main
problem was again the large errors involved in the calculation
of the energy’s variance. When calculated with the jackknife
method [37], they were found to have a value up to 70%, a fact
that renders the results useless. Thus, we have used instead
the density of states g(ε) obtained from the Wang-Landau
algorithm, in order to compute the quantities 〈ε〉,〈ε2〉 and
finally the reduced specific heat capacity via the relation
(4). We present our results for N = 100 in Fig. 12 using
a semilogarithmic scale. A smooth maximum occurs which
is located at τ ≈ 11, thus within the temperature region in
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FIG. 12. (Color online) The temperature dependence of the
specific heat capacity cL

kB
for N = 100 on a semilogarithmic scale:

(blue line) Wang-Landau results, (orange circles) Metropolis results.
The dashed purple line indicates the temperature τ1 at which the
skewness becomes zero.

which the histogram of the interparticle distance �ξi takes
approximately a Gaussian form [Fig. 6(d)] at the transition
point from the crystalline to cluster phase. The temperature
τ1 at which the skewness of the distributions becomes zero
(dashed purple line) coincides with the temperature at which
the caloric curve starts to increase significantly. The results of
Metropolis for high temperatures are found to be in accordance
with the Wang-Landau results. The complete behavior of
cL reinforces the evidence that in this temperature region
around 10 there is a crossover, whose transition temperature
Tc decreases as L−1 since for fixed N = 100 we obtain
τc ≈ 10 ⇒ Tc ≈ 10g2

kBL
.

The thermodynamic limit. As depicted in the dependence
of the mean potential energy 〈E〉 on N , L [Eq. (3)] the system
of ions confined in a 1D box presents strong deviations from
extensivity. The statistical treatment of nonextensive systems
is a challenging task, and many of its aspects remain still open
questions. A detailed study of the handling of nonextensivity
in order to obtain thermodynamic quantities and parameters
that remain finite in the thermodynamic limit can be found
in Ref. [38]. Although this procedure is beyond the scope
of the present paper, which aims only at the description of
finite systems, we present some basic results obtained with the
methods discussed in Ref. [38].

The main idea is to normalize the thermodynamic quantities
except the entropy S with the excessive powers of N , a fact that
is justified in the context of finite systems and resembles the
procedure we have followed to define dimensionless quantities
independent of the system’s size, like the reduced temperature.
Assuming a uniform distribution of charges with ρ = g2 N

L
, the

mean potential energy per particle scales roughly as

〈E〉
N

= ρ

∫ N

1
r−1 dr = ρ log(N ) = g2 N log(N )

L
.

Note that this expression is the same as the one we have ob-
tained for the low-temperature regime [Eq. (3)]. The excessive
dependence N∗ in N is then given by N∗ = N log(N ), and
one can define a normalized energy 〈E∗〉 ≡ 〈E〉

N∗ , which is a
pseudo-extensive quantity [38]. This is used in order to obtain

the thermodynamic limit in the following way:

lim
N→∞

F (T ,N )

NN∗ = lim
N→∞

〈E(T ,N )〉
NN∗ − lim

N→∞
T

N∗
S(T ,N )

N
.

(5)

In order to keep entropy an extensive quantity we need to
define a pseudo-intensive temperature T ∗ ≡ T

N∗ , which leads
to a normalized reduced temperature:

τ ∗ ≡ τ

N∗ = τ

N log(N )
. (6)

This quantity is dimensionless and independent of the size
(N,L) of the system; thus its use helps to interpret our results
in the thermodynamic limit. The critical temperature of our
system is then found to be

τ ∗
c = τc

N∗ ≈ 0.022. (7)

Since τc = 0.022N log(N ) we conclude that indeed τc in-
creases with the number of particles N faster than linearly.
What is more, for N = 50 we are led to a value τc ≈ 4.2,
whereas for N = 200 the critical value is τc ≈ 23. These values
are very close to the crude results obtained above from the
study of the mean cluster size as a function of temperature
(Fig. 9).

IV. THE INFLUENCE OF THE TRAPPING POTENTIAL

We have studied the statistical properties of a 1D chain
of ions confined in a box. Let us now briefly investigate
the effect of the trapping potential on these properties. We
focus especially on the case of the harmonic trap since it is
the most frequently used and convenient trapping potential.
In the low-temperature regime 1D systems of ions under
harmonic confinement have been extensively studied [23–28].
It has been found that a crystal is obtained whose length
depends nontrivially on the number of particles. The crystalline
structure represents a nonuniform ion distribution with the
opposite behavior of the one encountered for the box trap
(Fig. 5) since the ions tend to accumulate in the inner region
rather than the edges. This leads to a discrete but positively
skewed distribution of interparticle distances ρ(�ξi) even for
ultra-low temperatures [Fig. 13(a)]. For temperatures until
T ≈ 1 the skewness γ1 is almost constant. Then it starts
to increase up to T ≈ 102, and from then on it saturates
at a value close to 7. No minimum or zero value exists.
Although the distribution ρ(�ξi) still undergoes a transition
from a discrete form to a continuous one with a maximum
at �ξi approaching zero, it is not possible to identify a clear
transition temperature by requiring this distribution to become
symmetric. A clustering (most probable value: �ξi → 0) is
observed for higher temperatures in the harmonic trap, but
the form of the distribution does not tend to an exponential,
but to one with a much longer tail as indicated by the very
large value of the skewness. In general the deviation of the
statistical behavior of the ions under harmonic confinement
from the observed one for the box trap can to a large extent be
attributed to the change of the chain’s length with temperature
[Fig. 13(b)]. In the low-temperature regime the length of the
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FIG. 13. (Color online) Statistical properties of a system of
N = 100 ions confined in a harmonic trap with mω2 = 32: (a) The
skewness of the distributions ρ(�xi) as a function of the temperature
kBT . (b) The temperature dependence of the chain’s mean length 〈L〉.
(c) The mean cluster size as a function of the temperature kBT . The
horizontal dashed line indicates the value of the mean cluster size for
N noninteracting particles confined in the same harmonic trap.

chain is approximately constant with a value given by [23]

L0(N ) ≈ 2

[
3N log(N )

g2

mω2

]1/3

. (8)

In our case this yields L ≈ 7. For temperatures larger than
T ≈ 102 we encounter the behavior 〈L〉 ∝ T 1/2, which is
clearly what would be obtained for noninteracting particles
under harmonic confinement in one dimension. Thus for very
large temperatures all the properties are dominated essentially
by the trapping potential.

Concerning the formation of the clusters, sizes larger than
one are possible even for comparatively low temperatures
[Fig. 13(c)]. The mean cluster size increases with temperature
and saturates finally at T ≈ 102 at a value smaller than the re-
spective one for the box (Fig. 9). In this case too, the saturation
value coincides with the value of the mean cluster size obtained
for an identical system in the absence of interactions, and it
thus constitutes a feature completely determined by the size of
the system and the trapping potential. A definition of a reduced
temperature is not feasible since the Hamiltonian contains parts
with different spatial dependencies. However, it is possible to
use the relation obtained for the box τ ∗ = kBT L

N log(N) and
substitute the length L of the box with the minimum length of
the chain L0(N ) [Eq. (8)]. We find then a critical temperature
kBTc ≈ 1.4. Close to this value the skewness and the mean
length start to rise whereas the mean cluster size reaches half
of its maximum value. Therefore, this could be interpreted as
a critical temperature for the system of ions under harmonic
trapping.

To conclude, the transition from a crystalline to a cluster
phase holds independently of the trapping potential. All the

statistical properties seem to be affected by temperature,
in a way similar to the case of the box trap and thus
using the appropriate length scale, the expression obtained
for the critical temperature [Eq. (7)] provides us with valid
results for different trapping potentials. However, the specific
forms of the distributions ρ(ξi),ρ(�ξi) are affected by the
change of the trapping, since the minimum configuration
of the total potential V = VC + Vtrap, i.e., the shape of the
crystal, is qualitatively different for each case. Furthermore,
for high temperatures these distributions are predominantly
characterized by the trapping potential, tending to the forms
that would be obtained in the case of noninteracting particles
confined in the same traps.

V. CONCLUSIONS

We have explored the statistical and thermodynamical
properties of a system of equally charged particles confined
in a box of length L. This finite system exhibits a crossover
from a crystalline to a cluster phase at a transition temperature
Tc, which depends on both the number of particles N and
the length L of the box, as Tc ∝ N log(N)

L
. This expression

comes from an interpretation of the thermodynamic limit for
nonextensive systems, where a normalized temperature τ ∗ is
introduced scaling with the system’s size in the same way as
the mean potential energy per particle. The thermodynamic
behavior of the finite system is properly described by the
characteristic distributions and correlations of the scaled
relative distances �ξi of the particles, whereas quantities based
on the absolute positions of the particles are barely affected
by the temperature. Concretely, the probability density of �ξi

undergoes a marked transition from a discrete accumulative
to an exponential form as the temperature increases. In the
transition regime it acquires a symmetric form, and the
corresponding heat capacity shows a maximum. For high
temperatures the particles form clusters whose size grows
with temperature and finally saturates. When the trapping
conditions are altered a similar transition occurs, but the critical
temperature is not clearly identifiable through the forms of the
distributions as described above.

In order to relate the results of our simulations to concrete
physical setups we need to assign specific values to the
parameters. Thus, for example, the temperature measured in SI
units (T SI) is related to the normalized temperature τ ∗ through

T SI = g2N log(N )τ ∗

kBL
= Z2e2N log(N )τ ∗

4πε0kBL

≈ 1.7 × 10−5Z2τ ∗ N log(N )

L
Km,

where Z is the charge of the ions. We find then from
Eq. (7) that T SI

c = 3.7 × 10−7Z2 N log(N)
L

Km. For cold atomic
ions, the formation of quasi-1D crystals with L ≈ 1 mm [39],
N ≈ 100 ions, and, e.g., Z = 1 leads to a critical temperature
T SI

c ≈ 1.7 × 10−1 K, which is easily accessible experimen-
tally. Therefore, by tuning the values of L and N it is possible
to study this crystalline-clustering crossover in laboratory
experiments with cold ions assuming a 1D trapping geometry.

Let us now speculate about potential applications of our
detected crossover and related phases to high energy collisional
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experiments of, e.g., highly charged nuclei. Although the
geometry of the highly energetic colliding ions is quasi-2D, it is
interesting to estimate some properties assuming roughly that
the 1D picture explored here is not a misleading description.
In nuclear systems the length scales are of order L ≈ 10−15 m
which for N = 100 nucleons leads to T SI

c ≈ 1011 K, i.e., to
a relative energy Ec ≈ 10 MeV. The nuclear mean binding
energy is of the order of 8 MeV per nucleon resulting in a total
energy of 800 MeV for the nucleus, somewhat larger than Ec.
Thus the nucleons confined in the colliding nuclei could be in
the cluster phase. Finally, we remark that the crossover physics
analyzed in this work could also appear in 1D systems showing
other long-range interactions, such as dipolar chains [40].
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APPENDIX: UNIQUENESS OF THE POTENTIAL
MINIMUM OF A FINITE 1D COULOMB CHAIN

Here we present a proof that the global minimum energy
configuration is the only minimum that the potential of the
finite 1D ion chain can acquire. We want only permutationally
different configurations, so we assume that we have N + 2
particles that are ordered in the sense that ξ0 < ξ1 < · · · <

ξN < ξN+1 (ξ0 is the position of the first particle and ξN+1 the
position of the last one). We have shown (Sec. III A) that in
order to obtain a minimum the first particle has to be fixed
at the left edge of the segment, i.e., ξ0 = 0, whereas the last
particle should always occupy its right edge ξN+1 = 1 (the
length of box is L = 1). Thus, the potential is given by the
expression

V =
N+1∑
i=0

i−1∑
j=0

1

ξi − ξj

=
N∑

i=1

i−1∑
j=1

1

ξi − ξj

+
N∑

i=1

(
1

ξi

+ 1

1 − ξi

)
.

Differentiating this expression with respect to ξk we obtain

∂V

∂ξk

= −
k−1∑
i=1

1

(ξk − ξi)2
+

N∑
i=k+1

1

(ξi − ξk)2

− 1

ξ 2
k

+ 1

(1 − ξk)2
.

A second differentiation with respect to ξl leads to

∂2V

∂ξl∂ξk

=
k−1∑
i=1

2

(ξk − ξi)3
δkl −

k−1∑
i=1

2

(ξk − ξi)3
δil

−
N∑

i=k+1

2

(ξi − ξk)3
δil +

N∑
i=k+1

2

(ξi − ξk)3
δkl

+
[

2

ξ 3
k

+ 2

(1 − ξk)3

]
δkl .

Therefore, we obtain for the Hessian matrix H of our
potential V (Hij ≡ ∂2V

∂ξi∂ξj
)

Hkk = ∂2V

∂ξk∂ξk

= 2

ξ 3
k

+ 2

(1 − ξk)3
+ 2

∑
i �=k

1

|ξi − ξk|3 > 0,

whereas the of-diagonal elements (l �= k) are given by

Hlk = ∂2V

∂ξl∂ξk

= − 2

|ξk − ξl|3 < 0.

It is known from multivariate calculus that if for arbitrary
d�ξ , �ξ it holds that

d2V = 2
N∑

i=1

N∑
j=1

Hij (�ξ )dξidξj > 0,

then the function V is strictly convex and it possesses at most
one minimum. In our case,

d2V =
N∑

k=1

Hkkd
2ξk +

N∑
k=1

N∑
l = 1
l �= k

Hlkdξkdξl

= 2
N∑

k=1

[
1

ξ 3
k

+ 1

(1 − ξk)3

]
d2ξk

+
N∑

k=1

N∑
l = 1
l �= k

1

|ξk − ξl|3 (dξk − dξl)
2.

It is obvious that
∑N

k=1

∑N
l = 1
l �= k

1
|ξk−ξl |3 (dξk − dξl)2 � 0 and

∑N
k=1[ 1

ξ 3
k

+ 1
(1−ξk )3 ]d2ξk > 0 for d�ξ �= 0, so the quantity d2V

is always positive and the potential a convex function with
only one minimum.

In general if a trapping potential of the form Vtrap =
A

∑
k=1 ξn

k , with A > 0 and an even number n � 2 is chosen, it
is evident from the above procedure that for the total potential
V = VC + Vtrap it holds:

d2V = n(n − 1)A
N∑

k=1

ξn−2
k d2ξk

+
N∑

k=1

N∑
l = 1
l �= k

1

|ξk − ξl|3 (dξk − dξl)
2,

which is also positive definite, and thus the total potential
possesses again a single minimum.
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We explore the effects arising due to the coupling of the center of mass and relative motion of two charged
particles confined on an inhomogeneous helix with a locally modified radius. It is first proven that a separation
of the center of mass and the relative motion is provided if and only if the confining manifold represents
a homogeneous helix. In this case, bound states of repulsively Coulomb interacting particles occur. For an
inhomogeneous helix, the coupling of the center of mass and relative motion induces an energy transfer between
the collective and relative motion, leading to dissociation of initially bound states in a scattering process. Due to
the time reversal symmetry, a binding of the particles out of the scattering continuum is thus equally possible.
We identify the regimes of dissociation for different initial conditions and provide an analysis of the underlying
phase space via Poincaré surfaces of section. Bound states inside the inhomogeneity as well as resonant states
are identified.

DOI: 10.1103/PhysRevE.88.043202 PACS number(s): 41.20.−q, 37.10.Ty, 37.90.+j, 05.45.−a

I. INTRODUCTION

The formation of helical patterns and structures is common
in many natural systems ranging from DNA molecules and
amino acids to non-neutral plasmas trapped in magnetic fields
[1] and self-assembled configurations of charged particles
confined in nanotubes [2]. Studying the motion of particles
confined in a helix has proven to be a useful tool for the
understanding of complex phenomena such as the optical
activity of sugar solutions [3,4]. Certainly, the problem of the
confined motion of particles in a helical manifold is of fun-
damental interest since it reveals many intriguing phenomena.
Quantum particles confined in one dimension (1D) preserve
some information of the surrounding three-dimensional (3D)
space and thus experience an effective geometric potential
which depends on the curvature of the confining manifold [5].
Such geometric potential effects lead to the formation of
bound states in helical waveguides with a locally modified
radius [6] or in twisting tubes [7]. In the presence of an electric
field, superlattice properties can emerge for a confined charge
carrier [8], whereas when the particles interact with dipolar
forces a peculiar quantum phase transition from liquid to gas
has been predicted [9].

In spite of their physical interest, helical traps have only
recently been investigated experimentally. In nanotechnology,
curved nanotubes such as rolls, spirals, and helices from
thin solid films of silicon germanium can be constructed
[10,11]. Helical traps can also be realized experimentally for
cold atoms either via the interference of counterpropagating
Laguerre-Gaussian beams [12–14] or via the evanescent field
of a nanofiber [15–17] which creates a double-helix trapping
potential. Such setups allow the creation of a homogeneous
helical potential over the entire length of the nanofiber as well
as local modifications of the radius and the pitch of the helix
through local variations of the diameter of the nanofiber [17].
Beyond these, a plethora of trapping techniques also exist for
(ultra)cold ions [18,19].

Motivated by the above, it is instructive to explore the
classical behavior of ions or generally charged particles in
a helical geometry. Surprisingly, this problem has not been

studied extensively in the literature. In Ref. [20] it has been
shown that the classical dynamics of a system of identical
charged particles confined in a helical manifold presents
very intriguing phenomena when the particles interact via
long-range interactions such as the Coulomb interaction. In
particular, the interplay between the 1D confined motion of the
particles and their interactions via the full 3D space gives rise
to an effective oscillatory force. This fact yields, in turn, stable
equilibrium configurations despite the repulsive interactions
between the particles and induces classical bound states whose
number can be tuned by varying the parameters of the helix.

Following the direction of the above study, we explore
in this work the two-body scattering dynamics off an inho-
mogeneity in a helical trap. As a first step, we rigorously
prove that a separation of the center of mass (c.m.) and
the relative motion is provided for an interaction potential
which depends exclusively on the Euclidean distance between
the particles V (|r1 − r2|), if and only if the confining curve
is a homogeneous helix. Then, we examine the case of an
inhomogeneous helical trap with a locally modified radius,
and explore effects due to the coupling of the c.m. and relative
motion. It is shown that initially bound states can finally
dissociate due to the modulation of the potential which leads
to an energy transfer between the c.m. and the relative degrees
of freedom. Due to time reversal symmetry, it is thus equally
possible for two unbound charged particles to form a bond due
to the local inhomogeneity. A phase space analysis provides
us with bound states within the inhomogeneous region as
well as with resonant states and completes the picture of the
two-particle dynamics.

The paper is organized as follows. In Sec. II, we present the
general Lagrangian for the problem of two interacting classical
charged particles confined on a curve and we investigate the
properties that the confining curve has to fulfill so that a
separation of the c.m. and the relative degrees of freedom is
provided. In Sec. III, we present our model of two charged
particles confined to an inhomogeneous helix. Section IV
contains our results for the scattering, whereas Sec. V provides
our analysis of the respective phase space. Finally, Sec. VI
represents a brief summary of our findings.
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ZAMPETAKI, STOCKHOFE, KRÖNKE, AND SCHMELCHER PHYSICAL REVIEW E 88, 043202 (2013)

II. INTERACTING PARTICLES CONFINED TO A CURVED
1D MANIFOLD

We consider a system of two particles with masses m1,m2

interacting via a potential V (|r1 − r2|) that depends only on the
Euclidean distance between them. Their Lagrangian is given
by

L({ri ,ṙi}) = 1

2

2∑
i=1

mi ṙ2
i − V (|r1 − r2|).

If the particles are confined onto a smooth, regular, and
either closed or infinitely extended space curve r : R �→ R3

parametrized with the arbitrary parameter u, i.e., ri = r(ui),
the Lagrangian takes the form

L({ui,u̇i}) = 1

2

2∑
i=1

mi

∣∣∂ui
r(ui)

∣∣2
u̇2

i − V [|r(u1) − r(u2)|].

(1)

If we choose the arc length parametrization [21]

s : u �→ s(u) =
∫ u

0
|∂u′r(u′)|du′, (2)

since the tangent vector t(si) = ∂si
r(si) is a unit vector we

arrive at the expression

L({si,ṡi}) = 1

2

2∑
i=1

miṡ
2
i − V [|r(s1) − r(s2)|]. (3)

We thus observe that the kinetic energy term retains the
Cartesian form in the arc length parametrization, leading to
the familiar expressions for the conjugate momenta and the
Euler-Lagrange (EL) equations of motion. Introducing the c.m.
S = (m1s1 + m2s2)/(m1 + m2) and the relative coordinate
s = s1 − s2, as well as the total mass M = m1 + m2 and the
reduced mass μ = m1m2

M
, we are led to

L({s,S,ṡ,Ṡ}) = 1
2MṠ2 + 1

2μṡ2 − Ṽ (S,s), (4)

where

Ṽ (S,s) = V

[∣∣∣∣r
(

S + m2

M
s

)
− r

(
S − m1

M
s

)∣∣∣∣
]
. (5)

This yields the following EL equations:

MS̈ = −∂Ṽ

∂S
, μs̈ = −∂Ṽ

∂s
. (6)

Evidently, a separation of the c.m. from the relative motion
is provided if and only if ∂Ṽ

∂S
is exclusively a function of S

which is equivalent to

∂2Ṽ

∂s ∂S
= 0 ⇔ Ṽ (S,s) = V1(S) + V2(s) (7)

with V1,V2 being arbitrary functions of S and s, respectively.
In order to analyze this condition further, we technically

have to distinguish the two cases of a regular and a singular
potential Ṽ (S,s) at s = 0. For a regular potential, we obtain
from (5) that Ṽ (S,0) = V (0). Condition (7) then yields

V1(S) = V (0) − V2(0) = const ⇒ ∂V1

∂S
= ∂Ṽ

∂S
= 0.

For a potential with a singularity at s = 0, as in the typical
case of Coulomb interaction, choosing an infinitesimal value
ε > 0 for the s coordinate, we are led through (5) to

Ṽ (S,ε) = V

[∣∣∣∣r
(

S + m2

M
ε

)
− r

(
S − m1

M
ε

)∣∣∣∣
]

= V

[∣∣∣∣r(S) + m2

M
εt(S) − r(S) + m1

M
εt(S)

∣∣∣∣
]

= V [|εt(S)|] = V (ε) (8)

since |t(S)| = 1. Thus, for arbitrary S,S̃

Ṽ (S,ε) = Ṽ (S̃,ε) = V (ε)

and Eq. (7) for s = ε leads to

V1(S) = V1(S̃) = V (ε)−V2(ε) ∀S,S̃ ∈ R ⇒ ∂V1

∂S
= ∂Ṽ

∂S
= 0.

Therefore, both cases lead to the condition ∂Ṽ
∂S

= 0 and we
conclude that the c.m. and relative motion mutually separate
for a potential that depends only on the interparticle Euclidean
distance [Eq. (5)] if and only if ∂Ṽ

∂S
= 0. Furthermore, this is a

necessary and sufficient condition for the conservation of the
total momentum

P = ∂L

∂Ṡ
= MṠ

as follows from (4) and the EL equations (6), yielding a free
particle motion for the c.m.

Introducing the function R(s1,s2) = |r(s1) − r(s2)|, with
s1 = S + m2

M
s, s2 = S − m1

M
s, and V ′(R) = dV

dR

∣∣
R=R(s1,s2), we

obtain

∂Ṽ

∂S
= V ′(R)

∂R

∂S
= V ′(R)

[
∂s1R(s1,s2) + ∂s2R(s1,s2)

]
(9)

and we are thus led to the conclusion that a conservation of the
total momentum as well as a separation of the c.m. from the
relative coordinate is provided for interacting particles if and
only if

∂R

∂S
= ∂s1R(s1,s2) + ∂s2R(s1,s2) = 0, ∀ s1,s2 ∈ R. (10)

The results of [20] indicate that for the confining manifold
being a homogeneous helix, i.e., a helix with a constant radius
and pitch, the c.m. motion is separated from the relative one. In
fact, the homogeneous helix, including also the limiting cases
of the straight line and the circle, is the only curve allowing
for such a separation, as follows from the proposition below.

Proposition. Condition (10) holds for a smooth, regular
curve r(s) that is either closed or extends to infinity and is
parametrized by its arc length s ∈ R if and only if the curve is
a homogeneous helix.

The proof of this proposition is provided in the Appendix.

III. TWO CHARGED PARTICLES IN AN
INHOMOGENEOUS HELICAL TRAP

In the following, we study the classical dynamics of two
identical charged particles confined in a modified helix. The
modification consists of a hump, i.e., a local change of
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FIG. 1. (Color online) (a) Helix with a local modification of the
radius R(u) and a pitch h, as given by Eq. (11). (b) Local modulation
of the radius as a function of the parameter u.

Gaussian form in the radius [Eq. (12)]. The interaction between
the particles is given by a repulsive Coulomb potential

V (|r1 − r2|) = λ

|r1 − r2| ,

with λ > 0. We explore in particular the effects due to the
coupling of the c.m. and relative motion in the presence of the
helical hump.

The inhomogeneous helix parametrized by the angle pa-
rameter u is given by

r(u) =
(

R(u) cos(u),R(u) sin(u),
h

2π
u

)
(11)

with

R(u) = 1 + ε exp[−cu2], (12)

where both the modified radius R(u) and the pitch of the helix h

have been scaled with the radius of the corresponding uniform
helix R0. We use for the inhomogeneous helix the parameter
values ε = 1, c = 0.01, h = 0.4π . Figure 1 depicts the shape
of such a helix and the localized radial modulation.

Since the particles are identical, mi = m, we can choose
dimensionless units by rescaling all quantities with m, λ, and
R0, i.e., introducing m̃ = λ̃ = 1 and

x̃ = x

R0
, t̃ = t

√
λ

mR3
0

, H̃ = HR0

λ
, p̃ = p

√
R0

mλ
.

In the following, we omit for simplicity the tilde.
Performing then a Legendre transformation with pi = ∂L

∂u̇i
,

we obtain from (1) the Hamiltonian

H ({ui,pi}) = 1

2

2∑
i=1

p2
i[

∂ui
r(ui)

]2 + 1

|r(u1) − r(u2)| . (13)

From this we deduce the equations of motion u̇i = ∂H
∂pi

, ṗi =
− ∂H

∂ui
, which we solve numerically for different initial condi-

tions with a Runge-Kutta method of fourth–fifth order with a
variable time step size (ODE45). In order to study the dynamics
in terms of c.m. and relative motion, it is desirable to have a
Hamiltonian with a kinetic energy term of Cartesian form. This
is achieved under the arc length parametrization (2) and leads

to

H ({si,ṡi}) = 1

2

2∑
i=1

ṡ2
i + 1

|r(s1) − r(s2)| .

The si are obtained (numerically) via Eq. (2). Introducing
c.m. S = s1+s2

2 and relative coordinates s = s1 − s2 yields the
Hamiltonian

H (S,s,Ṡ,ṡ) = Ṡ2 + ṡ2

4
+ 1

|r[u1(S,s)] − r[u2(S,s)]| (14)

and the corresponding equations of motion

S̈ = −1

2

∂

∂S

1

|r[u1(S,s)] − r[u2(S,s)]| ,
(15)

s̈ = −2
∂

∂s

1

|r[u1(S,s)] − r[u2(S,s)]| .

We clearly observe here the coupling between S and s in the
potential term. In the case of the uniform helix [20] the arc
length integral can be solved analytically and the Hamiltonian
can be written explicitly as

H (s,Ṡ,ṡ) = Ṡ2 + ṡ2

4
+ 1√

2
[
1 − cos

(
s
a

)] + (
h

2πa

)2
s2

, (16)

with a =
√

1 + ( h
2π

)2.
For understanding the dynamics it is crucial to analyze

the properties of the potential V (S,s). Obviously, we have
limR→∞ V (R) = 0. We focus first on the uniform helix for
which V = V (s) [see Eq. (16)] and thereafter we consider the
case of the coupling of the c.m. and relative motion. Figure 2
shows the behavior of this potential curve for s < 20. We
identify three potential wells which can support bound states
and become shallower as s increases.

The potential V (S,s), taking into account the hump, is
illustrated in Fig. 3. Since it depends on both the c.m. S and the
relative s coordinate, it represents a two-dimensional potential
landscape.

We clearly observe two regions with a distinct behavior. The
first, for large values of the c.m. coordinate |S| � 30, presents
a uniform behavior, approximately independent of S. It is
affected only by the relative coordinate s in the same way as the

FIG. 2. (Color online) Potential curve for the uniform helix with
parameters h = 0.4π and R = 1. We observe three potential wells
located at s = 3.34, 10.00, and 16.75 with minimum values V =
0.48, 0.36, and 0.26, respectively.
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FIG. 3. (Color online) Contour plot of the potential V (S,s) for
the inhomogeneous helix. The dashed lines represent the positions of
the minima of the three wells for the homogeneous case. The effect
of the local modification of the radius is evident for |S| � 30.

potential of the homogeneous helix (Fig. 2), thereby presenting
three wells for |s| ≈ 3,10,17. In this uniform domain, the
c.m. and the relative motion are thus decoupled. The second
region, for |S| � 30, presents a strong dependence on the c.m.
coordinate and thus constitutes a regime of strong coupling.
The reader should note that the arc length (2) is taken w.r.t. the
center of the hump and consequently regions with small S,s

correspond to small si and lie in the inhomogeneous region of
the helix.

Two effects are evident: each potential well becomes deeper
and the contour lines bend in the regime of the inhomogeneity.
Concerning the potential barriers, their maximum value
decreases by ∼8% at the sides of the inhomogeneous region,
whereas for S ≈ 0 it retains the value of the homogeneous
regime. All these effects can be explained by the modulation
of the radius of the helix as discussed below.

Modulation of the radius and potential landscape. Since
the pitch of the helix is much smaller than its circumference
(h < 2πR) in both the homogeneous and the inhomogeneous
regimes, the maximum and the minimum potential configura-
tions occur for approximately constant values of the relative
angle parameter ũ = u1 − u2, namely, for ũmax = 2kπ and
ũmin = (2k − 1)π,k ∈ Z [20], which for the first well (k = 1)
correspond, respectively, to particles separated by one or
half a winding of the helix (Fig. 4). The Euclidean distance
between the particles at the minimum configuration increases
substantially with the increment of the radius [Figs. 4(b)
and 4(c)], reaching its maximum value at S ≈ 0 [Fig. 4(c)]
thereby resulting in a strong increase of the potential depth.

For the maximum configurations, the Euclidean distance
increases as well off the center of the inhomogeneous region
but, as it is shown in Fig. 4(b), this increment is small compared
to that of the minimum configuration. At S ≈ 0, the rate of
change of the radius becomes small enough for the radius to be
considered constant with twice the value of its homogeneous
asymptotics [Fig. 4(c)]. However, the pitch h remains the
same, resulting in the same Euclidean distance between the
particles of the maximum configuration and thus leading to
the same maximum potential values as that of the uniform
domain [Fig. 4(c)]. The generalization to other potential wells

FIG. 4. (Color online) Euclidean distances of the particles for the
minimum (©X ,�) and the maximum (©X , �) potential configurations
of the first potential well for three different regions of the inhomo-
geneous helix: (a) the uniform domain of the helix with pitch h and
radius R = 1, (b) the left side of the inhomogeneous region where the
radius increases by H1 at the bottom and by H2 at the top, whereas
the pitch remains the same, (c) the central part of the inhomogeneous
domain S ≈ 0, which since the modulation of the radius is stationary
can be approximately treated as a part of a uniform helix with the
same pitch h, but double radius R = 2.

(second, third) is evident in the regime S ≈ 0: for the case of
the maximum configuration, both particles are shifted by the
same distance in the same direction whereas for the case of
the minimum configuration by the same distance in opposite
directions. This fact results both in an unaltered maximum
value of the potential barrier and in a considerable increase of
the potential depth.

Finally, we note that the contour lines of the potential bend
inside the inhomogeneity towards larger s values as compared
to the uniform domain. This effect is more pronounced for
larger relative distances, i.e., for the third well as shown clearly
in Fig. 3.

In the following sections, we will not discuss the dynamics
of the system in terms of the trajectories t �→ si(t) of two
individual particles but rather in terms of that of a fictitious
particle with two degrees of freedom, S and s, moving in
the 2D potential of Fig. 3. This interpretation is suggested
by the form of the Hamiltonian (14), which provides us with
the respective equations of motion (15). Note, however, that
these two degrees of freedom have different effective masses,
a fact that needs to be taken into account when investigating
the dynamics of the fictitious particle in terms of the potential
gradients in the c.m. and the relative direction.

IV. SCATTERING OFF THE HELICAL HUMP

We analyze now the scattering behavior of a bound pair
of charged particles confined in the inhomogeneous helix that
has been described above. We assume that the particles start
in the uniform domain, i.e., for S  −30 with Ṡ > 0. We
introduce Sh as the value of |S| after which the helix as
well as the potential are considered uniform. Specifically, we
choose Sh ≈ 35.6 for which the radius is identical to that of
the homogeneous helix within 0.1%. The particles are further
assumed to be initially bound, so their relative coordinate s lies
within the region of one of the three wells discussed in Sec. IV.
As they pass through the inhomogeneous region, energy is
transferred between the c.m. and the relative degree of freedom
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due to the coupling. This transfer can lead to dissociation of
the particles, which is reflected in the very low values of the
interaction potential (V → 0) at the end of the propagation
(i.e., for S � 30).

We will initially discuss the case where the particles start
with zero relative velocity ṡ = 0 at the minimum of each of the
three wells (Sec. IV A) and then examine further the case of the
first potential well for different initial conditions (Sec. IV B).

A. Initial conditions with zero relative momentum

First potential well. The particles are placed in the homo-
geneous domain (S  0) of the helix, in the minimum of the
first potential well s = 3.34 (Fig. 2), with ṡ = 0. We vary
the initial values of the c.m. kinetic energy TS = Ṡ2, over
several orders of magnitude. The different initial conditions
are propagated for a time period t = 600. After that time
the particles have passed the region of inhomogeneity of the
helix, the scattering process is in its asymptotic regime, and
we can record the final values of the potential energy V , the
relative energy Es = ṡ2

4 + V , and the relative coordinate s. If
the final value of V lies within the first potential well, i.e.,
0.48 < V < 0.81, then the particles have remained bound,
whereas if V approaches zero they have dissociated through
the scattering, which is also ensured by large values of the
relative coordinate.

We clearly observe in Fig. 5(a) two regimes of finally bound
configurations: 0 � TS � 3.83 and TS � 38.86, separated by
a region of dissociation 3.83 � TS � 38.86. For small TS ,
below a critical value TSc1 it is expected that an energy transfer
between the c.m. and the relative degree of freedom would
not provide sufficient energy so that the particle can overcome
the potential barrier. After TSc1 ≈ 3.83, dissociation becomes

FIG. 5. (Color online) Overview of final bound and unbound
states for initially bound states started in the first potential well:
(a) Final potential values V [blue (gray) dots] and final relative energy
values Es (black dots) for different initial c.m. kinetic energies TS . The
dashed red lines represent the boundary potential values (minimum
of well, maximum of barrier) of the first potential well. (b) Final
relative coordinate values s (black dots) for different initial c.m.
kinetic energies TS . The dashed red lines represent the boundary
values of those s which lie within the first potential well.

FIG. 6. (Color online) Finally bound (solid black line) and
dissociated (dashed blue line) trajectories near (a) the first transition
point TSc1 ≈ 3.83, (b) the second transition point TSc2 ≈ 38.86. The
trajectories in each case [(a), (b)] differ in their c.m. velocities only
by 0.001.

possible and it indeed occurs. However, the dissociation
regime stops at a second critical value TSc2 ≈ 38.86, a fact
that although counterintuitive from the point of view of the
possible energy supply, can be explained by the limited range
of the inhomogeneous region (|S| � 30). For very high c.m.
velocities Ṡ, the particles get through the inhomogeneity very
fast, allowing for a very short interaction time only. The
effect of the coupling is therefore very restricted, prohibiting
a substantial energy transfer. In other words, the particles’
motion is almost unaffected by the presence of the hump due
to their large velocities. In the regime of bound states, the
change of TS induces a change of the s-oscillation phase at
the end of the propagation (t = 600) leading to an oscillatory
pattern of the final values of V and s. Another interesting
feature of Fig. 5(a) is the behavior of the final relative
energy Es . In the middle of the dissociation region, it acquires
values less than that of the potential barrier Vmax ≈ 0.81, a fact
that will be analyzed in Sec. IV B.

Let us next explore the behavior of the trajectories for TS

close to the critical values TSc1 ,TSc2 , which will be referred to
in the following as transition points. Our results are presented
in Fig. 6. In both cases [Figs. 6(a) and 6(b)], a sharp transition
from a bound to a dissociated final state occurs when TS is
fine tuned. This is depicted in the form of the corresponding
trajectories which are essentially on top of each other for S

less than a critical value Sc. This value is much larger for
the second transition point with TSc2 > TSc1 , a fact that can be
attributed to the larger value of the c.m. velocity. There is an
evident transfer of energy to the relative degree of freedom
depicted in the very large amplitude of the s oscillation of the
fictitious particle for bound trajectories, after the scattering.
With a slight increment of this transfer, the states dissociate
after an oscillation. The trajectory of the fictitious particle is
deflected inside the hump following the curved topology of the
potential landscape until it comes across a large value of the
potential barrier, where it becomes reflected backwards. From
then on, it continues its regular path in the right homogeneous
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FIG. 7. (Color online) (a), (b) Same as in Fig. 5, but for particles
starting in the second potential well. (c), (d) Same as in Fig. 6, but
with (c) TSc1 ≈ 1.15, (d) TSc2 ≈ 33.54.

domain without any further energy transfer. As expected, the
motion of the particle is much less affected (smaller angle of
deflection) by the presence of the inhomogeneity for larger
c.m. velocity [Fig. 6(b)] due to its inertia.

Second potential well. We now place the particles in the
minimum of the second potential well s = 10.00 (Fig. 2)
at the left homogeneous region, with zero relative velocity.
Varying the c.m. kinetic energy TS we observe again [Figs. 7(a)
and 7(b)] a region of dissociation 1.15 � TS � 33.53 sur-
rounded by regions of bound states, yielding two transition
points: TSc1 = 1.15 [Fig. 7(c)] and TSc2 = 33.53 [Fig. 7(d)].
The dissociation region is overall shifted to lower values of
TS , compared to our previous results for the first potential
well. From an energetical point of view, the shift of the first
transition point TSc1 is expected since the potential barrier
lowers, allowing for dissociation with less energy transfer.
However, this argument alone would lead to a shift of TSc2

to larger values, contrary to what is observed here. The
suppression of TSc2 seems to be a result of the bending of the
potential landscape inside the hump. In particular, the straight
line indicating the minimum of the second potential well in the
homogeneous regime passes through the first potential well
close to its barrier (Fig. 3). Trajectories with high enough c.m.
kinetic energy TS � TSc2 encounter this barrier and are forced
to crest it [Fig. 7(d)], a fact that reduces abruptly the amount of
the energy transfer and leads to extended binding. This effect
is more pronounced in the case of the third potential well as
discussed in the following.

Third potential well. Similarly to the previous cases, we
now place the particles in the minimum of the third potential

FIG. 8. (Color online) (a), (b) Same as in Fig. 5, but for particles
starting in the third potential well. (c)–(f) Same as in Fig. 6, but with
(c) TSc1 ≈ 0.46, (d) TSc2 ≈ 3.76, (e) TSc3 ≈ 5.59, (f) TSc4 ≈ 70.35.
The small subfigures in (e) and (f) present the respective trajectories
for large values of S, following them up to the point where the
dissociative and bound trajectories separate from each other.

well s = 16.75 (Fig. 2) at the left homogeneous region,
again with ṡ = 0. A variation of the c.m. kinetic energy TS

[Figs. 8(a) and 8(b)] provides us surprisingly with two distinct
dissociation regimes 0.46 � TS � 3.76, 5.59 � Ṡ � 70.35,
separated by a small region of bound states (3.76 � TS �
5.59), leading to four transition points TSc1 = 0.46, TSc2 =
3.76, TSc3 = 5.59, TSc3 = 70.35 [Figs. 8(c)–8(f)].

This fact is a direct result of the bending of the potential
landscape, which affects mainly the larger relative coordinates
s, i.e., the third well. In particular, as depicted in Fig. 3, the
straight line of the minimum of the third potential well passes,
inside the hump, above the minimum of the second potential
well. Due to the shallowness of the third potential well, only
a very small amount of energy transfer ∼0.01 is needed for
the particles to overcome the barrier and dissociate, a fact that
shifts the first transition point TSc1 to low values. When the
fictitious particle has enough c.m. kinetic energy (Ts � TSc2 ),
it crests the barrier of the second well, but since it gets directly
deflected within it, it can not reach its inner region and the
minimum [Fig. 8(d)]. This is similar to the case of the second
transition point of the second potential well [Fig. 7(d)] and as
in there, it is followed by a regime of bound states. However, if
the c.m. velocity gets large enough (TSc3 = 5.59), the fictitious
particle is less deflected and can reach the region of the
minimum of the second potential well [Fig. 8(e)], allowing
for further energy redistribution between the two degrees of
freedom. Thus, a second dissociation region occurs, which
extends to very high values of TS ≈ 70, a fact that can also
be attributed to the very small height of the potential barrier.
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Nevertheless, even this height can not be overcome, when the
fictitious particle acquires c.m. kinetic energy larger than TSc4 ,
since the dwell time becomes very small, leading again to
bound trajectories as in the cases of the other wells.

For this potential well, sharp transitions from a bound to an
unbound state occur too at the four transition points as shown
in Figs. 8(c)–8(f). It is evident that at the fourth transition point
with a large value of TS , the motion of the fictitious particle
is only slightly affected by the inhomogeneity, tending to a
straight line [Fig. 8(f)].

We emphasize that since the equations of motion of the
system [Eq. (15)] possess a time reversal symmetry, the
transitions from bound to unbound states can be directly
mapped into transitions from free states to bound ones. The
creation of bonds through scattering is surprising, especially
in view of the fact that the particles interact via a repulsive
Coulomb potential. For these reasons, we find it interesting to
examine this process further below.

B. Initial conditions with nonzero relative velocity in the first
potential well

We investigate now the scattering for arbitrary initial
conditions, focusing on the first potential well. When the
particles are in the uniform domain of the helix, inside
the first well with a nonzero relative velocity, the fictitious
particle performs an oscillation in the relative coordinate s.
The phase of this oscillation when the fictitious particle enters
the hump affects the energy transfer between the c.m. and
the relative motion. Moreover, the value of the relative initial
energy Es plays a crucial role in determining which states
become dissociated since states with higher Es require less
amount of energy transfer in order to overcome the potential
barrier. Thus, for a complete description of the scattering
process, we need except from the initial center of mass kinetic
energy TS to specify two other parameters, namely, the initial
relative energy and the phase of the relative oscillation.

For reasons of convenience, we assume that the fictitious
particle starts at a point 1.3 < s0L � smin = 3.34 of the first
potential well in the uniform domain with zero relative velocity
ṡ = 0. In other words, s0L is the left turning point of the
oscillation in the relative coordinate and is related to the total
relative energy by Es = V (s0L), with V being the potential
of the homogeneous regime given by Eq. (16). We denote the
right turning point for the same energy with s0R .

We represent the phase of the oscillation by the parameter
0 � t

T
< 1 which stands for the fraction of the period of the

relative oscillation

T = 2
∫ s0R

s0L

ds ′
√

2[Es − V (s ′)]

at which the particles enter the hump. In such a way, t
T

= 0
corresponds to particles at s0L with ṡ = 0 at the entrance point
ShL = −Sh, whereas t

T
= 0.5 corresponds to particles at s0R

with ṡ = 0. This parameter can be adjusted by changing the
initial c.m. coordinate S in the homogeneous region, while
keeping Ṡ fixed. Due to our genuine interest in the scattering
properties with varying phase, the absolute phase dependence
induced by the arbitrariness of Sh is rendered irrelevant.

Our results are presented in Fig. 9 for nine representative
values of s0L, ranging from energies close to the potential
minimum (s0L ≈ 3.3) to close to the potential barrier height
(s0L ≈ 1.3). Each such value produces a slice which imprints
the dependence of the property under consideration on the
other two parameters: TS and t

T
.

Figure 9(a) provides us with the finally bound and unbound
states for the different initial conditions. For s0L ≈ 3.3, close
to the minimum, we observe that the phase of oscillation t

T

does not affect the behavior of the system, as expected, and
we regain the results of Sec. IV A with a single dissociation
region of a rectangular shape for different c.m. kinetic energies
TS . The shape of this regime is deformed as we go to higher
relative energies (smaller s0L) and it develops a dip. By
increasing further Es the dissociation area breaks into two
parts for a certain regime of initial phases t

T
, providing

us with two dissociation regions with varying TS . As we
approach the threshold energy for passing the potential barrier
(s0L ≈ 1.3), we observe an alternating sequence of bound and
dissociation regions, even at very low c.m. kinetic energies.
This is a surprising feature which makes the dissociation
process sensitive to even small changes of the underlying
parameters, such as the initial value of TS in the scattering
process.

In Fig. 9(b), we present our results for the relative amount
of gain or loss of the maximum relative kinetic energy
(T s

maxf
− T s

maxi
)/Es through the scattering. Clearly, the regions

of high positive (T s
maxf

− T s
maxi

)/Es match exactly with the
dissociation regions of Fig. 9(a). Most regimes show almost
zero total gain of kinetic energy, but surprisingly enough there
are also regimes where the kinetic energy of the relative
motion is decreased after the scattering. These regions of
loss predominately appear between the different regimes of
dissociation and are characterized by particles becoming more
tightly bound in the course of scattering. A further interesting
observation can be made in Fig. 9(c), which shows the
difference Esf

− Vmax of the final relative energy Esf
and the

maximum value of the potential barrier of the first well Vmax.
In particular, this difference is negative not only for the finally
bound states, but also for some of the finally dissociated ones.
The dissociation regions consist of states with Esf

� Vmax

at their boundaries and of ones with Esf
� Vmax at their

center. The dissociated states with Esf
� Vmax might seem

counterintuitive but, as it will be shown below, these result
from trajectories for which the particles dissociate within the
hump, where the coupling of the c.m. and relative motion is
still substantial. Since the potential barrier in this region is
bent (Fig. 3), the fictitious particle overcomes it with its total
amount of energy E = Ts + TS + V (S,s), and thus its final
relative energy can be less than Vmax. Such a phenomenon has
already been encountered in our investigations of Sec. IV A.

Trajectories. As we have seen throughout this section, the
initially bound trajectories are divided into two different cate-
gories: those which remain finally, i.e., after scattering, bound
and those which are led to dissociation. It is evident that the fi-
nally dissociated trajectories can be further classified into those
that dissociate after reaching the uniform region (type A) and
those that dissociate within the hump (type B). Since they reach
the homogeneous domain (Fig. 10), the dissociated trajectories
of type A have more features in common with the bound ones
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FIG. 9. (Color online) (a) States that after scattering remain bound [cyan (light gray) regions] and states that are led to dissociation [blue
(dark gray) regions], (b) color encoded values of the relative difference between the final and the initial maximum kinetic energy of the relative
motion (T s

maxf
− T s

maxi
)/Es , (c) color encoded values of the difference between the final relative energy Esf and the maximum value of the

potential barrier of the first well Vmax for different s0L (x axis), t

T
(y axis), and log10 TS (z axis).

and this is the reason why they always occur close to the transi-
tion points. States of type B, on the other hand, are fundamen-
tally distinct (Fig. 10) and occur only in the middle of the dis-
sociation regions [Fig. 9(c)]. The main difference of A and B

trajectories is imprinted in the energy transfer. Type A trajecto-
ries have always final relative energy greater than the potential
barrier and overall can be thought as cases where a substantial
amount of energy has been transferred from the c.m. to the
relative motion. However, the trajectories of type B pass the
potential barrier with their total amount of energy E. Since they
remain in the inhomogeneous regime for some time after disso-
ciation, a redistribution of energy between the c.m. and the rel-
ative motion is still possible, leading to a sequence of loss and
gain of relative energy. Therefore, their final relative energy Es

can be lower than the height of the potential barrier [Fig. 9(c)].
Figures 10 and 11 specify the above line of arguments and

identify in particular the different types of trajectories. For
a constant value of s0L, sufficiently away from the potential
minimum, one can induce transitions of the form

A → B → A → bound states → A

by varying either the c.m. kinetic energy [increasing TS ,
Fig. 10(a)], or the phase of the relative oscillation [decreasing
t
T

, Fig. 10(b)].
Figure 11 provides us with the complementary information

of how the change of the initial relative energy Es , imprinted
in s0L, affects the evolution of the trajectories. The trajectories
presented for each s0L have the same TS and different phases

t
T

. For s0L = smin [Fig. 11(a)], a case familiar from Sec. IV A,
the fictitious particle does not oscillate and thus the trajectories
are independent of the phase. For the value of TS chosen here,
this set of trajectories constitutes a single dissociated state
of type A. Increasing the relative energy (decreasing s0L), the
trajectories for various phases start to separate, but still their
type remains the same [Fig. 11(b)]. A further increment of Es

[Fig. 11(c)] has as a result the formation of dissociative states of
type B for certain values of phases. Finally, for s0L sufficiently
close to the potential barrier [Fig. 11(d)], the amplitude of
the relative oscillation increases dramatically, allowing for
the emergence of all the three types of trajectories, including
finally bound states.

Energy transfer. Throughout this section, we have come
across intriguing effects originating from the coupling between
the c.m. and the relative coordinate. The key ingredient
allowing for these effects is the energy transfer between the two
degrees of freedom inside the inhomogeneous region. Let us
therefore point out some basic features of the energy exchange
process. To do so, we consider the change of the kinetic energy
of the c.m. TS . The latter is zero in the uniform regime of
the helix. From the equations of motion for the Hamiltonian
(14), we obtain ṪS = −Ṡ ∂V

∂S
, where V = V (S,s). Although

this relation for ṪS refers to certain time evolving trajectories,
we find it instructive to analyze its contour plot for a certain
value of Ṡ = 1.

We observe in Fig. 12(a) that for a constant value of
the c.m. velocity, the rate of change of TS is nonzero only
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FIG. 10. (Color online) (a) Trajectories with different c.m. kinetic
energies TS for s0L ≈ 1.56 and t

T
= 0.22. The numerical values

presented in the diagram correspond to the values of TS for the
different kinds of trajectories. (b) Trajectories with different phases of
relative oscillation t

T
for TS = 8.88 and s0L ≈ 1.56. The numerical

values presented in the diagram correspond to the values of t

T
for

the different kinds of trajectories. In both cases, the dissociative
trajectories of type A are shown with solid white lines, while those
of type B are represented with solid black lines. The finally bound
trajectories are presented with dashed cyan lines. The vertical black
dashed line indicates the position ShL at which the hump starts (by
definition).

in the inhomogeneous regime as expected. Moreover, it is
antisymmetric with respect to the center of the hump S = 0,
meaning that if at (−S,s) the particle gains TS , it loses at (S,s).
Therefore, almost symmetric trajectories (S → −S), as those
for very large or very small initial c.m. velocity Ṡ0, will have
finally almost zero energy transfer. However, since TS , moving
from a positive ṪS value to a negative one, reaches a maximum
for these trajectories inside the inhomogeneity (at S ≈ 0), the
average kinetic energy of the c.m. motion inside the hump will
be larger than that in the homogeneous regime. This in turn

FIG. 11. (Color online) Trajectories for various phases of relative
oscillation t

T
for TS = 8.88 and (a) s0L = smin = 3.34, (b) s0L = 3.26,

(c) s0L = 2.53, (d) s0L = 1.56. Solid white lines stand for finally
dissociated states of type A, solid black lines for type B, and dashed
cyan lines for finally bound states.

FIG. 12. (Color online) (a) The rate of change of the kinetic c.m.
energy ṪS as a function of S,s for Ṡ = 1. The solid black lines depict
the position of the maxima of the three potential barriers, while the
dashed brown lines indicate the position of the minima of the three
potential wells in the uniform regime (see also Fig. 3). (b) The dwell
time as a function of the initial c.m. velocity Ṡ0 for the particles
starting at the minimum of the first potential well with zero relative
velocity (blue line with circles). For small Ṡ0, the deviation from
a motion with constant Ṡ = Ṡ0 dictated by the red dashed line is
evident.

leads to a larger effective Ṡ within the inhomogeneity and a
smaller dwell time (defined as the time interval during which
the fictitious particle moves from −Sh to Sh) than the one
expected by Ṡ0. This effect is evident [Fig. 12(b)] only in the
case of small Ṡ0, where even a slight increment in the velocity
affects substantially the value of the dwell time.

The greatest amount of energy can be gained or lost when
the fictitious particle passes deep in the potential well, close
to the potential barrier, since the gradient ∂V

∂S
acquires there its

largest values [Figs. 3 and 12(a)]. For Ṡ > 0, which is always
true for particles passing from the left homogeneous regime
to the right one, the c.m. gains kinetic energy while being in
the first potential well in the region S < 0, and it loses for
S > 0. This causes highly asymmetric trajectories as some
with Ṡ0 > 1 (Figs. 10 and 11) overall to lose an amount of
c.m. kinetic energy, which after reaching the uniform regime
appears as a gain in the total relative energy. Trajectories that
dissociate within the hump (type B), after crossing the top of
the potential barrier for S > 0, regain c.m. kinetic energy TS

[Figs. 3 and 12(a)], but since they continue moving at lower
values of the potential this does not always result in lower final
values of total relative energy. Therefore, we may conclude that
all the dissociative trajectories with a lowered final Es belong
to type B, but not vice versa.

Overall, it is evident that the energy transfer consists of
subsequent losses and gains of TS and Ts induced by the
variations of the potential V (S,s) inside the inhomogeneous
region, leading to a final asymptotic effective gain or loss.
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V. PHASE SPACE ANALYSIS

We explore now the structure of the underlying phase space
of the scattering process and in particular of bound states in
the inhomogeneity of the helix. Since the three potential wells
display similar characteristics, with the first one allowing for
more variations in energy since it is the deepest one, it will be
the only one we consider here. For Hamiltonian systems with
two degrees of freedom, the standard tool for such an analysis is
the Poincaré surface of section (PSOS), taking advantage of the
conservation of energy. Here, we will choose S = 0 (P > 0)
as the intersection through the energy shell. We note that the
PSOS shown in the following report only the bound state
trajectories.

Let us inspect the regions of bound and unbound motion
within the inhomogeneous helix. The only part of the potential
landscape V (S,s) that can support bounded motion is that of
the inhomogeneity, i.e., inside the hump, in the neighborhood
of S ≈ 0. Since the potential wells possess finite barriers, it is
evident that for energies beyond a certain amount the fictitious
particle can escape to infinity concerning either the c.m. S or
the relative coordinate s, leading to dissociation.

For the first potential well, this fact is clearly depicted
(Fig. 13) through the equipotential lines (EPLs). For E �
Ec1 = 0.476, with Ec1 being the energy of the minimum of
the first potential well in the uniform domain, the EPLs are
closed both in the S and s directions [Figs. 13(a)–13(c)]
leading to exclusively bounded motion inside the hump.
Figure 13(c) presents the critical case, a fact that is reflected in
the substantial elongation of the wings of the EPL. A further
increment of the energy leads to EPLs extending to |S| → ∞
[Figs. 13(d)–13(f)] which allows for escaping trajectories from
the center of the hump to the homogeneous regime of the
helix. This holds until the second critical value Ec2 = 0.744
[Fig. 13(e)] is reached. From then on, two additional openings
are formed in the EPL inside the central region of the hump
[Fig. 13(f)] allowing also for escapes in the relative coordinate.

FIG. 13. EPLs of the first potential well for representative total
energies: (a) E = 0.28, (b) E = 0.39, (c) E = 0.476, (d) E = 0.6,
(e) E = 0.744, and (f) E = 0.76.

FIG. 14. (Color online) Poincaré surfaces of section for repre-
sentative total energies: (a) E = 0.28, (b) E = 0.39, (c) E = 0.476,
(d) E = 0.6, (e) E = 0.744, and (f) E = 0.76. The inner region of
(c) (blue dots) consists of chaotic trajectories.

For energies larger than the maximum value of the first
potential well Vmax = 0.81, of course, the particles’ motion
is in principle unbounded.

Figure 14 shows PSOS for different energies. For E < Ec1

[Figs. 14(a) and 14(b)], we observe an elliptic island. Close
to the first transition point E = Ec1 [Fig. 14(c)] it develops in
its inner region, i.e., for small p and s close to the absolute
minimum of the first potential well, a chaotic portion. A further
increase of the energy leads to escaping trajectories, which is
evident in Fig. 14(d) where a large part of the inner region
of the surface of section (empty region) belongs to escaping
trajectories (|S| → ∞) through the respective openings of the
EPL [Fig. 13(d)]. As the energy approaches its second critical
value Ec2 [Fig. 14(e)], the basin of escape becomes larger and
finally for E > Ec2 [Fig. 14(f)], a second area of the surface of
section empties, this time in the center of the region of bounded
motion. This corresponds to trajectories that escape in the s

direction (dissociation) through the two additional openings
on the lower side of the corresponding EPL [Fig. 13(f)].

Figures 15, 16, and 17 provide further details enriching the
above analysis in terms of specific trajectories. First, we remark
that the turning points of the trajectories both in the s and S

directions lie on the EPLs of the respective energy. Trajectories
with a larger S elongation and a reduced s amplitude follow
obviously the bending of the potential landscape and are the
ones that map to the inner region of the Poincaré surface of
section. As we move to the outer region of the surface of
section, the amplitude in s increases with a respective decrease
of the amplitude in the S direction. For energies Ec1 < E <

Ec2 trajectories can escape from the left and right openings
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FIG. 15. (Color online) Selected trajectories (a), (c) and respec-
tive PSOS (b), (d) for the energies: (a), (b) E = 0.39, (c), (d)
E = 0.4761. The color of the trajectories corresponds to their position
in the PSOS. In (a), (c) the EPLs are also depicted as in Fig. 13.

of the respective EPL [Fig. 16(c)]. In order to be bound, the
trajectories should have an amplitude of the relative motion
exceeding the width of the openings of the EPL [Fig. 16(a)].
This is the reason why for the PSOS the regime of bounded
motion is located in the outer part, with the inner one being
empty and corresponding to escaping trajectories [Fig. 16(b)].

A more detailed nonlinear dynamical analysis would most
probably reveal two unstable periodic orbits that provide the
connection between the bounded and escaping motion. To
explore this in detail goes, however, beyond the scope of
this work, which has its emphasis on the main phenomena
appearing in the helical dynamics investigated here.

Bridging between bound and unbound there are “resonant”
trajectories, i.e., trajectories that remain within the hump
performing oscillatory c.m. and relative motion, for a large
time interval and finally escaping to the homogeneous asymp-
totic region. They have typical initial conditions in the empty

FIG. 16. (Color online) (a) Selected bound trajectories, (b) PSOS,
and (c) escaping trajectories in the c.m. S coordinate for the energy
E = 0.6.

FIG. 17. (Color online) (a) Selected bound trajectories, (b) PSOS,
and (c) escaping trajectories both in the c.m. S (bound states) and in
the relative coordinate s (free states) for energy E = 0.76.

region of the PSOS [Fig. 16(b)], close to the innermost bound
trajectory. Such a trajectory is presented in Fig. 18. It escapes to
the left opening of the potential well (S < 0) both in forward
and in backward propagation time, i.e., it is reflected at the
helical hump.

A more complex structure of the PSOS is encountered
for Ec2 < E < Vmax. In such a case, as we have remarked
earlier, there are four openings of the EPL. Subsequently, four
unstable periodic orbits exist and thus four possibilities for
escape symmetric with respect to S = 0 [Fig. 17(c)]: two in the
c.m. coordinate direction (S openings) as before and two in the
relative one (s openings). The escape in the S direction (small
s, large S, i.e., s1s2 > 0) both in forward and in backward
propagation time, corresponds to a bound pair of particles that
after scattering within the hump remains bound, a case that
has been referred to in the previous section as a bound state.
On the contrary, escapes in the s direction (large s, small S)
correspond to free particles that come from opposite sides

FIG. 18. (Color online) A resonant trajectory for E = 0.6 and ini-
tial conditions S = 0, s = 5.134, Ṡ = 0.549, ṡ = −0.387: (a) plot
of the trajectory on the potential landscape, (b) time evolution of the
c.m. coordinate S of the trajectory.
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of the helical trap (s1s2 < 0), scatter within the hump, and
return backwards in opposite directions. They thus account for
conventional scattering of free particles and are different from
the peculiar dissociative states we have observed so far.

Between the regimes of escapes, there are two distinct
regions of bounded trajectories [blue (dark gray) and orange
(light gray), Fig. 17(a)]. The first of them consists of trajec-
tories supported by the side parts of the EPL. Their relative
oscillation s amplitude is bounded both from below, by the
width of the S opening in the uniform domain, and from
above by its edge width inside the inhomogeneous region.
The second consists of bound states with somewhat larger
relative s amplitude dictated by the width of the central part
of the EPL. These considerations give rise to the two-ring
structure of the PSOS [Fig. 17(b)].

VI. SUMMARY AND OUTLOOK

We have investigated the classical scattering of Coulomb in-
teracting particles in a helix. First, we have proven that for two
particles interacting via a potential that depends exclusively
on their Euclidean distance, a separation of the c.m., leading
to a conservation of the total momentum, is provided if and
only if the confining curve is a homogeneous helix. Having
this result in mind, we investigated the scattering of charged
particles from a local inhomogeneity of the helix. In such a
system, the coupling between the c.m. and the relative degrees
of freedom induces intriguing effects. The most important of
them is the dissociation of initially bound states of the two
repulsively interacting charged particles through scattering.
Due to the time reversal symmetry imprinted in the equations
of motion, this leads to the conclusion that initially unbound
charged particles can become bound when scattered, a fact
counterintuitive regarding especially the repulsive character
of the interaction.

The underlying mechanism for such a behavior was found
to be the effective energy transfer between the relative and
the c.m. motion occurring due to their coupling. It has been
pointed out, nevertheless, that this transfer does not take place
in a single step, but it is the final result of the continuous
energy redistribution in the whole time interval in which the
particles remain inside the hump. For this reason, the outcome
of the scattering of initially bounded charged particles in
terms of finally bound and dissociated states depends in a
rather complex way on the initial conditions. The dissociation
regimes depending on these conditions have been identified
and analyzed in detail. The most important parameter is shown
to be the value of the initial kinetic energy of the c.m. TS .
In most cases, for very small or very large values of TS the
particles remain bound after the scattering, with dissociation
occurring only in the intermediate regime. This is attributed
to the little amount of energy available for transfer and to the
small dwell time in the hump that prevents a strong coupling
of the relative and c.m. degrees of freedom, respectively.

Our analysis has been completed with an exploration of
the phase space structure of the deepest potential well that
can support bound states. Regimes of bound regular motion
inside the hump, as well as regimes of escapes, were identified
by varying the total energy. This exploration provided us

with bound states localized inside the hump, as well as with
“resonant trajectories.”

Further studies could be dedicated to a more detailed
investigation of the phase space searching for stable and
unstable periodic orbits and their asymptotic curves, a fact that
would allow a rigorous and quantitative analysis of the escape
procedure. A promising direction is the study of many-body
systems which are expected to exhibit an intriguing dynamics
as well as leading to exceptional transition phenomena.
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We thank M. Jüngling for many helpful discussions and
his support concerning the theoretical conceptual aspects of
this work. A.Z. thanks the International Max Planck Research
School for Ultrafast Imaging and Structural Dynamics for
support through a Ph.D. scholarship. J.S. and S.K. gratefully
acknowledge funding by the Studienstiftung des deutschen
Volkes.

APPENDIX: CONDITIONS ON THE CURVED 1D
MANIFOLD FOR THE SEPARATION OF THE CENTER OF

MASS FROM THE RELATIVE MOTION

Proposition. The condition

∂s1R(s1,s2) + ∂s2R(s1,s2) = 0,∀ s1, s2 ∈ R, (A1)

where R(s1,s2) = |r(s1) − r(s2)| holds for a smooth, regular
curve r(s) in arc length parametrization if and only if the
curve is a homogeneous helix (including the degenerate cases
of a circle or a straight line).

Proof. “⇐”: By the discussion in Sec. II, condition (A1) is
equivalent to separability of c.m. and relative motion, which
has been demonstrated to hold for a homogeneous helix (see
discussion in the main text).

“⇒”: Assume that condition (A1) holds. The outline of the
proof is as follows. We show that by virtue of Eq. (A1), for
each x ∈ R the map

Fx : W �→ W, Fx[r(s)] = r(s + x) (A2)

is an isometry (i.e., it preserves distances) on the submanifold
W ⊆ R3, which is defined as the image of the curve r. We
extend this family of isometries to a family of isometries
{�x}x∈R from all of R3 into itself, with the property that
the restriction �x

∣∣
W = Fx . The isometries of R3 form the

group of Euclidean moves E(3). Since the �x are continuously
deformed to the identity map for x → 0, they belong to the
identity component of E(3), i.e., to SE(3). Thus, by the
classification theorem for Euclidean moves [22] each �x is
a screw operation or a degenerate case thereof, i.e., a pure
rotation or translation. Furthermore, not all �x can be the
identity on R3. Thus, there is a nontrivial continuous family
of screw operations {�x}x , including the identity, that map
the curve W to itself. In particular, there is an infinitesimal
screw operation whose repeated action on any point of W
maps the point to W again. So W , the image of r(s), must be
a (homogeneous) helix, which proves the proposition.

We now proceed to the detailed proof and first show
that, given Eq. (A1), the map Fx as defined in (A2) is an
isometry on W . First, we prove that there is a function χ
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such that R(s1,s2) = χ (s1 − s2). To see this, introduce new
variables ξ− := s1 − s2, ξ+ := s1 + s2 and a function χ with
the property χ (ξ+,ξ−) = R(s1,s2). Then, condition (A1) yields
∂χ/∂ξ+ = 0, leading to χ (ξ+,ξ−) = χ (ξ−) or

R(s1,s2) = χ (s1 − s2).

This, in turn, immediately implies R(s1,s2) = R(s1 + x,s2 +
x), or

|r(s1) − r(s2)| = |r(s1 + x) − r(s2 + x)|
for all x,s1,s2 ∈ R, showing that indeed Fx as defined above
is an isometry on W .

We now assume without loss of generality that 0 ∈ W and
proceed to show that for all x the map

F̃x : W �→ R3, F̃x(r) := Fx(r) − Fx(0)

has the following properties:
(i) |F̃x(r)| = |r| ∀ r ∈ W .
(ii) σ (F̃x(r1),F̃x(r2)) = σ (r1,r2) ∀ r1,r2 ∈ W .
(iii) F̃ (α1r1 + α2r2) = α1F̃x(r1) + α2F̃x(r2)
∀ r1,r2 ∈ W, α1,α2 ∈ R s.t. α1r1 + α2r2 ∈ W .

Here, σ denotes the Euclidean scalar product. (i) immediately
follows from Fx being an isometry on W . (ii) follows from (i)
and Fx being an isometry since ∀ r1,r2 ∈ W ,

2σ (F̃x(r1),F̃x(r2))

= |F̃x(r1)|2 + |F̃x(r2)|2 − |F̃x(r1) − F̃x(r2)|2
= |r1|2 + |r2|2 − |r1 − r2|2 = 2σ (r1,r2).

Finally, using (i) and (ii) it is easily shown that

|F̃x(α1r1 + α2r2) − α1F̃x(r1) − α2F̃x(r2)|2
= |(α1r1 + α2r2) − α1r1 − α2r2|2 = 0,

which proves (iii).
Now, we are in the position to construct the extended

isometries �x . Let us first assume that the curve r does not
entirely lie in a plane. Then, we can form a basis of R3 with
three linearly independent vectors wi ∈ W . Hence, for each
x ∈ R3 there exists a unique expansion x = ∑3

i=1 αiwi , αi ∈
R. For any such x we define

�x(x) := Fx(0) +
3∑

i=1

αiF̃x(wi).

Evidently, for the special case of r = ∑3
i=1 γiwi ∈ W ,

�x(r) = Fx(0) +
3∑

i=1

γiF̃x(wi) = Fx(0) + F̃x

(
3∑

i=1

γiwi

)

= Fx(0) + F̃x(r) = Fx(r),

due to property (iii) of F̃x , such that indeed the restriction
�x |W = Fx . Now, using property (ii) of F̃x , it is straightforward
to show that for any x and y = ∑3

i=1 βiwi ∈ R3,

|�x(x) − �x(y)|2 =
∣∣∣∣∣

3∑
i=1

(αi − βi)F̃x(wi)

∣∣∣∣∣
2

=
∣∣∣∣∣

3∑
i=1

(αi − βi)wi

∣∣∣∣∣
2

= |x − y|2 ,

which proves that �x is an isometry of R3.
Finally, we address the special case of a planar curve. Then

either W is a straight line, in which case there is nothing to
prove, since this is a degenerate case of a helix. Otherwise,
we pick two linearly independent vectors wi ∈ W and a
third vector k3 perpendicular to w1,w2. Since Fx maps W
to itself, it is clear that σ (F̃x(wi),k3) = 0 as well. For any
vector x ∈ R3, a representation x = α1w1 + α2w2 + α3k3 is
possible and we define

�x(x) = Fx(0) + α1F̃x(w1) + α2F̃x(w2) + α3k3,

which for x ∈ W (implying α3 = 0) using (iii) again
leads to �x |W = Fx . Furthermore, using the orthogonality
of k3 to wi ,F̃x(wi) as well as (ii), it follows for any
y = ∑2

i=1 βiwi + β3k3 that

|�x(x) − �x(y)|2 =
∣∣∣∣∣

2∑
i=1

(αi − βi)F̃x(wi) + (α3 − β3)k3

∣∣∣∣∣
2

=
∣∣∣∣∣

2∑
i=1

(αi − βi)wi + (α3 − β3)k3

∣∣∣∣∣
2

= |x − y|2.
Therefore, for this case, too, one can construct an isometry
�x of R3 which extends Fx . Evidently, in both cases tuning
x → 0 one can continuously transform the �x to �x=0 = idR3 ,
such that all �x lie in SE(3).
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27, 948 (2010).
[15] E. Vetsch, D. Reitz, G. Sague, R. Schmidt, S. T. Dawkins, and

A. Rauschenbeutel, Phys. Rev. Lett. 104, 203603 (2010).

043202-13

65
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Degeneracy and inversion of band structure for Wigner crystals on a closed helix

A. V. Zampetaki,1 J. Stockhofe,1 and P. Schmelcher1,2

1Zentrum für Optische Quantentechnologien, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
2The Hamburg Centre for Ultrafast Imaging, Luruper Chaussee 149, 22761 Hamburg, Germany

(Received 18 September 2014; published 10 February 2015)

Constraining long-range interacting particles to move on a curved manifold can drastically alter their effective
interactions. As a prototype we explore the structure and vibrational dynamics of crystalline configurations
formed on a closed helix. We show that the ground state undergoes a pitchfork bifurcation from a symmetric
polygonic to a zigzag-like configuration with increasing radius of the helix. Remarkably, we find that, for a
specific value of the helix radius, below the bifurcation point, the vibrational frequency spectrum collapses to a
single frequency. This allows for an essentially independent small-amplitude motion of the individual particles
and, consequently, localized excitations can propagate in time without significant spreading. Upon increasing
the radius beyond the degeneracy point, the band structure is inverted, with the out-of-phase oscillation mode
becoming lower in frequency than the mode corresponding to the center-of-mass motion.

DOI: 10.1103/PhysRevA.91.023409 PACS number(s): 37.10.Ty, 37.90.+j, 61.50.−f, 63.20.D−

Introduction. A key ingredient for the formation of complex
systems out of fundamental building blocks such as atoms or
ions is the two-body interaction potential. Depending on its
short- or long-range character, the corresponding many-body
systems show very diverse properties and structural features
[1–4]. Generically, the strength of the two-body potential
decreases with increasing distance between the interacting
particles. This situation changes drastically if the particles
are not allowed to explore complete space but are forced to
move on a curved manifold while keeping their original inter-
actions. Hence the particles can interact via the dynamically
forbidden dimensions, while their motional degree of freedom
is constrained to the manifold.

A prototype system of this character is the helix, having
constant curvature and torsion. Indeed, several works [5–10]
have demonstrated unique novel features arising with respect
to the structural and dynamical properties of charged (or
dipolar) particles on a helix. First, one encounters that long-
range interacting particles effectively experience forces of
oscillatory character on the helix. Consequently, stable bound-
state configurations exist for equally charged, repulsively inter-
acting particles and can even be tuned in number and strength
[5,8]. The resulting potential landscape for more particles is
topologically very complex, leading to configurations with
increasingly distorted symmetries. In the same line it has
been shown that a zero-temperature second-order liquid-gas
transition occurs at a critical field for interacting dipoles [7],
and cluster formation as well as crystallization are possible
[10]. Rendering the helix locally inhomogeneous, the center
of mass (c.m.) of the particles couples to their relative motions,
allowing for dissociation of bound states or binding of particles
out of the scattering continuum [9].

In view of the structural complexity of helical long-range-
interacting many-particle systems the natural but intriguing
question emerges of what is the dynamical response and,
in particular, the vibrational structure of such systems. To
address this question we explore the properties and dynamics
of crystalline configurations formed by identical charged
particles, so-called Wigner crystals [11], confined on a closed
helix. We find that tuning the geometry induces a structural
transition reminiscent of the transverse zigzag buckling in

linear Wigner crystals [12]. Due to the one-dimensional (1D)
constraint that restricts the allowed excitations, this transition
is accompanied by an unconventional deformation of the
corresponding dispersion relation: For finite systems, there
is a regime of inverted dispersion, with the out-of-phase mode
being lowest in frequency. Even more, the transition passes
through a stage where the complete linearization spectrum is
essentially degenerate, such that any low-amplitude mode is
an eigenmode of the system. Notably, localized excitations do
not transfer energy into the rest of the chain.

Toroidal helix. We consider a system of N identical charged
particles of mass m0 interacting via the repulsive Coulomb
interaction and confined to move on a 1D toroidal helix [see
Fig. 1(a)] parametrized as

r(u) =
⎛
⎝

[R + r cos(u)] cos(au)
[R + r cos(u)] sin(au)

r sin(u)

⎞
⎠ , u ∈ [0,2Mπ ], (1)

with R being the major radius of the torus, r denoting the
radius of the helix (minor radius of the torus), and h referring to
the helix pitch. The parameter a = 1

M
is the inverse number of

windings M = 2πR
h

. The effective Coulomb potential resulting
from the confinement reads

V (u1,u2, . . . uN ) = 1

2

N∑
i,j=1,i �=j

λ

|r(ui) − r(uj )| ,

with λ being the coupling constant.
We perform a scaling transformation [9], measuring dis-

tances in units of 2h/π and time in units of
(

8m0h
3

λπ3

)1/2
. This

results in λ and m0 being set to 1 in the following, while
the dimensionless helix pitch is set to h = π/2. Note that the
c.m. degree of freedom is coupled to the relative coordinates
�i = ui+1 − ui for r �= 0 since the confining manifold is
not a homogeneous helix [9]. For r = 0 the toroidal helix
degenerates to a ring of radius R where c.m. separation holds.
In this ring limit, there is a single stationary state; namely,
the totally symmetric polygonic configuration. In contrast, the
potential landscape of charged particles confined on helical
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FIG. 1. (Color online) (a) Equidistant configuration of ions con-
fined on the toroidal helix for ν = 1

2 and N = 6. (b) Equilibrium
displacements of particles in stationary configurations as a function
of helix radius r for filling ν = 1

2 and different numbers of particles:

(A) N = 30, (B) N = 60, (C) N = 120. All values of �i − �
(0)
i are

plotted on top of each other: For the polygonic configuration, all
nearest-neighbor interparticle distances are identical, �i = �

(0)
i for

all i, while in the zigzag-like configuration precisely two different
distances are found; see the insets. The vertical lines indicate rcr

for N = 60 and the limiting value r∞ of rcr in the thermodynamic
limit. (c) Linearization spectrum as a function of r of the stable
solution (polygonic for r < rcr, zigzag-like for r > rcr) for N = 60.
Degeneracy of all vibrational modes is observed at rd. The inset
depicts how rcr and rd converge to a common value r∞ in the
thermodynamic limit.

manifolds is very complex allowing for a large number of
stationary states for given parameters [8,9].

Here, we focus on the low-energy crystalline configurations
and their equilibrium properties for an even number of particles
N which divides the number of windings M , i.e., M = nN

with n = 1,2, . . . and ν = 1/n � 1 being the filling factor.
Then, the polygonic configuration u

(0)
j = 2(j − 1)πn of the

ring persists as a (stable or unstable) equilibrium configuration
for all values of r with the charges being located equidistantly,
�

(0)
j = 2πn, at the outer circle of the toroidal helix [Fig. 1(a)].

However, for sufficiently large N (e.g., N > 4 for ν = 1
2 ) this

configuration loses its stability at a finite r = rcr, undergoing
a symmetry-breaking pitchfork bifurcation to a zigzag-like
configuration [Fig. 1(b)] in which successive particles have
alternatingly moved to positive and negative values of the z

coordinate of the vector r [Eq. (1)]. For a fixed filling, here
ν = 1

2 , the bifurcation point rcr shifts to lower values of r with
increasing N (thus also increasing M), tending to a finite value
r∞ [Fig. 1(c), inset] in this thermodynamic limit, with a rather

slow convergence rate. Surprisingly, it turns out that the value
of r∞ depends only on the helix pitch h; namely, r∞ = h√

2π

in physical units (or r∞ = 1
2
√

2
in our dimensionless units),

independently of ν.
Following the stable branch of solutions, we calculate the

spectrum of vibrational modes in the harmonic approximation
[Fig. 1(c)]. Intriguingly, in the regime r < rcr (where the
stable configuration is still symmetric) this spectrum exhibits a
crossing point rd where all modes are very close to degenerate.
The value rd also depends on the system size, decreasing
for large N and tending to r∞ in the thermodynamic limit
[Fig. 1(c), inset], but much faster than rcr does. Thus, for finite
systems an interval rd < r < rcr always exists. In this region
the spectrum is inverted, and finally the lowest eigenvalue
crosses zero at rcr, rendering the symmetric configuration
unstable and leading to the observed pitchfork bifurcation
[Fig. 1(b)]. For r > rcr two branches of frequencies separated
by a gap are created, as a result of the new emergent solutions
possessing a doubled unit cell.

Vibrational analysis. We now return to the frequency
spectrum of the symmetric, polygonic configuration for r <

rd . This being a Wigner crystal with a one-particle unit cell, the
corresponding dispersion relation consists of a single branch.
For its evaluation, we introduce the arc length parametrization
in which the kinetic energy and Euler–Lagrange equations as-
sume the standard form [9]. The dispersion relation then reads

ω2(k) = 1

a2(R + r)2 + r2

N∑
l=1

H1,l exp[−ik(l − 1)�s], (2)

with the Hessian at the equilibrium configuration Hi,j =
∂2V

∂ui∂uj
|{u(0)

j } (we can fix one index for symmetry reasons).

The prefactor in Eq. (2) results from transforming to the arc
length s, �s denotes the arc length interparticle distance of
the symmetric solution, and k = 2πm

N�s
, (m = 0, ±1, . . . ± N

2 )
is the wave number of the corresponding excitation.

Results for ω(k) at different values of r are shown in
Fig. 2. For r = 0 [Fig. 2(b)] the long-wavelength limit k → 0,
corresponding to identical displacements of all particles (c.m.
mode [Fig. 2(a)]) has a vanishing frequency ω → 0, resulting
from the c.m. decoupling in the ring geometry.

As the helix radius r increases, the spectrum at small k

becomes smoother and a gap opens at k = 0 [Fig. 2(c)] due
to the coupling of the c.m. to the relative motion for r > 0.
This gap increases with increasing r , while the overall width
of the spectrum decreases. At a critical point rd [Fig. 2(d)]
the spectrum is essentially flat as we have already seen in
Fig. 1(c). A zoom at this point [Fig. 2(d), inset] reveals
that the degeneracy is very close to, but not complete. To
locate the near-degeneracy point rd analytically, we go back to
Eq. (2). Complete degeneracy would imply that all off-
diagonal elements of the Hessian Hi,j ,i �= j , vanish (the
diagonal elements are always identical by symmetry). Fo-
cusing on the nearest-neighbor contributions, we thus find
an approximate analytical expression for rd by demanding
Hj,j+1|rd = 0, which yields

r
d
= aR

√
3 + cos(2anπ )√

2 − a
√

3 + cos(2anπ )
, (3)
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FIG. 2. (Color online) (a) Sketch of the center of mass (c.m.,
k = 0) and the out-of-phase (OP, k = ± π

�s
) modes. (b)–(f) Dispersion

relation curves ω(k) for N = 60 and increasing r corresponding to
the points (1,2,rd,3,rcr) marked in Fig. 1(c). For the same values
of r , panels (g)–(k) present the time evolution following an initial
displacement of the particle at j0 = 29 by 1% of �s. Colors encode
the displacement from equilibrium in units of �s.

in excellent agreement with the numerical findings. Indeed, in
the thermodynamic limit R → ∞, a → 0, aR = 1

4 , rd tends
to r∞ = 1

2
√

2
.

Beyond the crossing point, for r > rd, the curvature of
the band changes sign permanently [Fig. 2(e)], implying that
the OP mode [Fig. 2(a)] is now lower in frequency than the
c.m. mode. The width of the spectrum increases again with
increasing r until at r = rcr the frequency of the OP mode at
k = ±π/�s reaches zero [Fig. 2(f)] and crosses to the imag-
inary axis for r > rcr, indicating the symmetric configuration
becoming unstable due to the pitchfork bifurcation shown in
Fig. 1(b). The condition ω(k = ±π/�s)|rcr = 0 can also be
tackled analytically, giving an expression for rcr which shows
that it indeed tends to r∞ in the thermodynamic limit.

The almost full degeneracy of the linearization spectrum
at rd implies a remarkable localization property in the small-
amplitude dynamics, illustrated in Figs. 2(g)–2(k). Here we
explore the time evolution following a displacement of a single
particle at site j0 by 1% of �s. Generically, this initially
localized excitation spreads over the whole crystal; see, e.g.,
Fig. 2(g) for the case of a ring. More precisely, a cone structure
emerges indicating a finite velocity at which the excitation
proliferates into the crystal. This cone becomes narrower with
decreasing bandwidth of the spectrum, see Fig. 2(h), until at

FIG. 3. (Color online) Schematic illustration of the response of
a two-particle system A,B to a single-particle displacement AA′

for the cases: (a) r = 0, (b) r < rd, (c) r = rd, and (d) r > rd. The
total force F acting on particle B and its component FT tangential
to the toroidal helix are shown, whereas curved arrows indicate the
directions of displacements.

the point of near-degeneracy and thus near-zero bandwidth
[Fig. 2(i)] the cone closes and the excitation no longer
significantly spreads. This unique dynamical feature indicates
the presence of an effective screening of interactions at
r = rd, enabling essentially independent motion of the charged
particles. We emphasize that, for this geometric configuration,
any small initial excitation would maintain its shape for large
times. Moving to larger radii r > rd, the degeneracy is lifted
and the bandwidth of the spectrum increases again, thus
reopening the cone [Figs. 2(j) and 2(k)].

Within the linearized equations, the initial dynamics of the
spreading can be linked to ω(k) also on a formal level. The
proliferation of the localized excitation can be quantified by
the variance S(t) = ∑

j j 2ej (t) − j 2
0 , where we employ the

local energy ej (t) at site j as introduced in Ref. [13], with
the time-independent normalization

∑
j ej = 1. Then similar

arguments as in Ref. [14] apply, leading to S(t) ∝ t2
∫

dk| dω
dk

|2,
assuming the crystal is large enough to approximate a sum over
k with an integral over the first Brillouin zone. Consequently,
the spreading of an initially localized excitation is ballistic,
with a velocity determined by the square of the group velocity
integrated over all k. If dω

dk
is close to zero globally, i.e., the

dispersion is almost flat, S(t) will grow only slowly with time
and the excitation will spread only on very long timescales,
which is what happens at rd.

Degeneracy point. We now provide a geometrical inter-
pretation for the emergence of the degeneracy point rd in
the spectrum. Let us examine the response of the simple
N = 2 particle equilibrium configuration to a single-particle
displacement (Fig. 3). A slight counterclockwise displacement
of particle A towards the position A′ results in a force acting
on particle B. For the cases r = 0, r < rd [Figs. 3(a) and 3(b)],
this force possesses a component tangential to the confining
manifold, causing a counterclockwise acceleration of particle
B. At rd [Fig. 3(c)], the geometry is such that the displacement
AA′ results in a force that has no component tangential to
the toroidal helix curve at the equilibrium position of B and
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is therefore entirely compensated by the constraint. Thus, the
small-amplitude motion of particle B is effectively decoupled
from that of A. This simple geometric condition indeed leads to
the same value of rd as Eq. (3) for N = 2. For r > rd the force
acting on B again attains a nonvanishing projection onto the
tangential but is now oriented in the opposite direction, causing
a clockwise acceleration of particle B, in line with the observed
inversion of the dispersion relations in this regime [Figs. 2(e)
and 2(f)]. For N > 2, the geometry parameters can no longer
be chosen such that all forces acting on the other particles
after displacing a particular one are strictly compensated by
the constraint. Still, it can be seen that the tangential projection
of the force acting on particle j after particle i has been slightly
displaced is proportional to the Hessian matrix element Hi,j .
We have seen above that at rd all these Hi,j ≈ 0 for i �= j .
Thus, at the point of degeneracy, the geometry is such that if a
single particle is displaced, all resulting force projections onto
the local tangents where the other particles sit are very small
simultaneously, resulting in the effective decoupling.

Conclusions. We have shown that, for charged particles
confined on a 1D closed helix, a linear to zigzag-like
bifurcation occurs when increasing the radius of the helix at
commensurate fillings. Similar transitions are known for linear
Wigner crystals under harmonic [15–20] or octupole trapping
[21,22], where they are driven by the increment of dimen-
sionality from one dimension to three dimensions controlled
by the transverse trapping potential. In our case, however, the
single-particle configuration space remains always strictly 1D,
which manifests itself in the way in which the critical value
rcr is reached. In particular, for the transition to occur, the OP

mode (ultimately causing the symmetry-breaking deformation
of the crystal) has to cross zero at rcr, in contrast to the ring
limit r = 0 where the OP mode has the largest frequency. This
necessarily implies an inversion of the dispersion relation when
approaching rcr, since the reduced dimensionality precludes
a transverse branch which usually causes the bifurcation
[17,18]. Notably, the deformation of the dispersion curve when
increasing r towards rcr passes through a point where all
modes are essentially degenerate and the dispersion is flat.
For this particular geometry, the (small-amplitude) dynamics
of the particles is effectively decoupled, allowing for localized,
nonspreading excitations.

The present setup offers unprecedented control over the vi-
brational band structure, suggesting its potential usefulness for
applications in electronic nanodevices such as free-standing
helix tubules [23–25]. The possibility of geometrically local-
izing excitations may be of interest for the design of acoustic
meta-materials [26] and for applications in phononics such as
sound isolation and cloaking [27] or even information storage
[28]. Beyond this, helical structures are abundantly found in
organic or inorganic molecules [29,30], and recent advances in
optical trapping of ions [31] and helical trap design for neutral
atoms [32–34] may pave the way for future experimental
realizations with ultracold ions.
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Dynamics of nonlinear excitations of helically confined charges
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We explore the long-time dynamics of a system of identical charged particles trapped on a closed helix. This
system has recently been found to exhibit an unconventional deformation of the linear spectrum when tuning
the helix radius. Here we show that the same geometrical parameter can affect significantly also the dynamical
behavior of an initially broad excitation for long times. In particular, for small values of the radius, the excitation
disperses into the whole crystal whereas within a specific narrow regime of larger radii the excitation self-focuses,
assuming finally a localized form. Beyond this regime, the excitation defocuses and the dispersion gradually
increases again. We analyze this geometrically controlled nonlinear behavior using an effective discrete nonlinear
Schrödinger model, which allows us among others to identify a number of breatherlike excitations.

DOI: 10.1103/PhysRevE.92.042905 PACS number(s): 05.45.−a, 37.10.Ty, 37.90.+j, 45.90.+t

I. INTRODUCTION

Whereas the harmonic approximation of interactions pro-
vides valuable information about the stability and the prop-
agation of small amplitude excitations in crystals formed
by interacting particles, their real-time dynamics as well as
their thermal and transport properties are typically subject to
some degree of nonlinearity [1]. Among the most prominent
manifestations of such a nonlinearity are the self-focusing
or self-trapping [2–4] of initial wave packet excitations and
the existence of nonspreading excitations such as breathers
and kinks [5–7]. For discrete systems, a prototype equation
incorporating these features is the so-called discrete nonlinear
Schrödinger (DNLS) equation consisting of a linear (disper-
sive) coupling and a cubic nonlinear term [8], used to model
plenty of systems ranging from coupled optical waveguides
[9–11] and Bose-Einstein condensates [12–14] to transport in
DNA molecules [15–17]. The standard spatial arrangement of
sites in most of such one-dimensional (1D) studies is that of a
straight equidistant chain in which the coupling (hopping) is
restricted to nearest neighbors.

Nontrivial lattice geometries for 1D discrete nonlinear
systems have also been studied and have been found to
lead to intriguing new phenomena owing to the interplay
between geometry and nonlinearity. In particular, in curved
1D lattices embedded in a 2D space the bending can act
as a trap of excitations and induce a symmetry breaking of
nontopological solitons [18]. For a 3D space, the helicoidal
lattice structure, such as that of DNA molecules, is found
to enhance the existence and stability of discrete breathers
[19,20]. Furthermore, a curved geometry has been proven
to induce nonlinearity in systems where the underlying
interactions are harmonic [21,22].

In the present work we examine the interplay between
nonlinearity and geometry in a system of identical charged
particles, confined on a curved 1D manifold embedded in
the 3D space, namely a closed (toroidal) helix. In a previous
work [23], we have shown that in such a system, a tuning
of the geometry controlled by the helix radius, leads to an
unconventional deformation of the phononic band structure
including a regime of strong degeneracy. As a consequence,
the propagation of small amplitude localized excitations is

affected significantly and a specific geometry exists at which
the excitations remain localized up to long times. A natural
question therefore arises as to what would be the long time
dynamics of a general excitation and whether there is some
geometrically controllable degree of nonlinearity inherent in
the system, which can alter the propagation characteristics.

We provide an answer to this question by studying the
time propagation of an initially broad excitation on the crystal
of charges. We find that for values of the helix radius far
from the degeneracy regime, the excitation initially spreads
with multiple subsequent revivals due to the closed shape
of the crystal. Within the degeneracy regime, however, the
initial excitation focuses in the course of propagation reaching
finally a rather localized state, serving as a hallmark of the
existing nonlinearity. In order to quantify this nonlinearity we
construct an effective DNLS model with additional nonlocal
nonlinear terms [24,25]. Such a model is found to capture
qualitatively well the localization and dispersion features of the
original dynamics, providing a deeper insight into the observed
effect. Even more, it gives us the opportunity to identify some
discrete breatherlike excitations at the degenerate geometry,
thus adding to the dynamical picture.

The structure of this work is as follows. In Sec. II we de-
scribe our system, commenting also on its linearized behavior.
In Sec. III we present our results for the time evolution of an
excitation in the crystal for different geometries. In Sec. IV
we construct an effective DNLS model for our system at the
geometries of interest and in Sec. V we use it to identify
some breatherlike excitations. Finally, Sec. VI contains our
conclusions.

II. SETUP AND LINEARIZATION

We consider a system of N identical charges of mass m0,
which interact via repulsive Coulomb interactions and are
confined to move on a 1D toroidal helix, parametrized as

r(u) =
⎛
⎝(R + r cos(u)) cos(au)

(R + r cos(u)) sin(au)
r sin(u)

⎞
⎠, u ∈ [0,2Mπ ]. (1)

In Eq. (1) R denotes the major radius of the torus [Fig. 1(a)],
h is the helix pitch, and r the radius of the helix (minor
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FIG. 1. (Color online) (a) Equidistant configuration of ions con-
fined on the toroidal helix for ν = 1

2 and N = 8. The yellow arrows
indicate the initial velocities of the particles. (b) Highest (solid blue
line) and lowest (solid red line) frequencies of the linearization
spectrum around the equilibrium equidistant configuration as a
function of r for N = 60 particles. The black dots and the empty
diamonds refer to the frequencies corresponding to the center of
mass and the out of phase mode respectively. The vertical lines mark
the radii of the helix we use in our calculations. The small insets
depict the form of the respective vibrational band structures ω(k) at
the corresponding values of r . (c) Initial local energy En profile as a
function of the particle index n.

radius of the torus), whereas a = 1
M

stands for the inverse
number of windings M = 2πR

h
. The total effective interaction

potential, which results from the constrained motion of the
charges on the helical manifold, reads V (u1,u2, . . . uN ) =
1
2

∑N
i,j=1,i �=j

λ
|r(ui )−r(uj )| , where uj denotes the coordinate of

particle j and λ is the coupling constant characterizing the
standard Coulomb interactions.

Then the Lagrangian of the system in terms of the ui

coordinates is given by

L({ui,u̇i}) = 1

2
m0

2∑
i=1

|∂ui
r(ui)|2u̇2

i

− 1

2

N∑
i,j=1,i �=j

λ

|r(ui) − r(uj )| , (2)

where r(u) refers to the parametrization of the toroidal
helix given in Eq. (1). Note that the geometry of the
constraint manifold enters the Lagrangian of Eq. (2) in both
the interaction and the kinetic energy, due to the position-
dependent factor |∂ui

r(ui)|2. If desired, the latter factor can

be removed by transforming to arc-length parametrization
s(u) = ∫ |∂ur(u)|du, resulting in the familiar second time
derivative terms in the Euler-Lagrange equations of motion
for the si(t) = s[ui(t)] [26], at the cost, however, of losing the
explicit analytical form for the interaction energy.

We choose dimensionless units by scaling all our physical
quantities (e.g., position x, time t , and energy E) with λ, m0,
and 2h/π as follows:

x̃ = xπ

2h
, t̃ = t

√
λπ3

8m0h3
, Ẽ = 2Eh

λπ
, m̃0 = 1, λ̃ = 1,

omitting in the following the tilde for simplicity.
At commensurate fillings, i.e., M = nN , n = 1,2, . . . with

the filling factor being ν = 1/n � 1, it is found that for
values of the helix radius r up to a critical point rc the
ground-state configuration of such a system is the equidistant
polygonic configuration u

(0)
j = 2(j − 1)πn [Fig. 1(a)]. This

configuration loses its stability at rc undergoing a zigzag
bifurcation [23].

We focus in this work on the dynamical behavior of charged
particles confined on the toroidal helix in the region r < rc,
where the ground state is still the polygonic one. We have
shown in Ref. [23] that in such a region the linear spectrum of
the system changes dramatically with tuning the radius of the
helix r , a fact that crucially affects the propagation of small
amplitude localized excitations. Specifically, it was found that
the width of the linear spectrum decreases as one approaches a
point rd of strong degeneracy from below and increases again
beyond that point, while interchanging the character between
the eigenmodes corresponding to the highest and the lowest
frequencies [Fig. 1(b)]. In fact, since the degeneracy is not
complete, it is better to refer to a degeneracy regime within
which the inversion of the spectrum is gradually achieved
while its width remains small [Fig. 1(b) (inset)]. We consider
in this work six different geometries, each corresponding to a
different value of r , covering all the regions with a qualitatively
different linear spectrum [Fig. 1(b)] from the ring limit (r0 = 0)
to the degeneracy (r3,r4) and the inversion (r5) regime. We
focus on the case of half filling ν = 1

2 for N = 60 particles.

III. TIME PROPAGATION OF A GAUSSIAN EXCITATION

In this section we present and discuss the dynamical
response of our system to an initial excitation. Although the
physical results are in principle independent of the exact
character of this excitation and the means used for its
quantification, the determination of both is essential for the
illustration and the theoretical description of our findings.

Dealing with classical systems and seeking an excitation
measure whose total amount is conserved in time, the natural
choice is a (to be defined) energy distribution associated
with each particle, referred to hereafter as local energy En.
Whereas the kinetic energy K consists of parts allocated
to each individual particle, the potential energy cannot be
uniquely partitioned, yielding different definitions of local
energy [27–29]. Aiming for them to be strictly positive for
all possible excitations (a considerably nontrivial requirement
for systems with Coulomb interactions), we define our local
energies En in a rather unconventional way, focusing on a
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FIG. 2. (Color online) (a)–(f) Time evolution of the initial Gaussian excitation presented in Fig. 1(c) for N = 60, ν = 1/2 for increasing r

corresponding to the points (a) r0, (b) r1, (c) r2, (d) r3, (e) r4, and (f) r5 marked in Fig. 1(b). Colors encode the values of local energy En for each
particle n and time t . For the same values of r panels (g)–(l) depict the time evolution of the normalized participation ratio P of the excitation.
The solid blue lines are the results from our numerical simulations corresponding to (a)–(f), whereas the dashed red lines correspond to the
results for a harmonic approximation of the potential.

positive decomposition of the harmonic interaction term [29].
Our complete definition and a more detailed discussion of local
energies are provided in the Appendix.

We start with an initially broad excitation of a Gaussian
profile in terms of local energies [Fig. 1(c)]. Since the
local energies En depend trivially on the particles’ velocities
(contrary to what is the case for the particles’ positions), the
most straightforward way to obtain such a Gaussian local
energy profile is by exciting the particles with a suitable
velocity distribution. Of course, for a given local energy profile
the magnitude of such a velocity distribution can be uniquely
determined, but there is a freedom in the direction of the
velocity for each particle. We choose here all the velocities
to point in the positive direction [Fig. 1(a)].

The ensuing dynamics is shown in Figs. 2(a)–2(f). Obvi-
ously, the time evolution of the Gaussian excitation possesses
a drastic dependence on the geometry, controlled by the
helix radius r . In particular, for r < rd [Figs. 2(a), 2(b)] the
excitation spreads into the whole crystal and refocuses almost

periodically at the time instants when the left and the right
propagating parts of the excitation meet and superimpose at the
diametrically opposite point of the closed helix. As discussed
in Ref. [23] the spreading velocity decreases as r is increased,
following the width of the linear spectrum [Fig. 1(b)]. As the
width becomes smaller the features of the time evolution alter
significantly. Already at the point r2 the excitation does not
spread any more into the crystal, but it alternately focuses
and again defocuses to its initial shape [Fig. 2(c)]. Even more
surprisingly, within the degeneracy region [Figs. 2(d), 2(e)]
the initial excitation undergoes a focusing after some time
scale tF [tF ≈ 4000 for Fig. 2(d), tF ≈ 6000 for Fig. 2(e)].
Subsequently, the wave packet loses its smooth envelope
and fragments into a number of highly localized excitations.
Depending on r , the routes towards such a localized state
can be different, with the wave packet evolving initially one
central peak [Fig. 2(d)] or two side peaks [Fig. 2(e)]. Another
interesting feature within the degeneracy regime is that the
reflection symmetry of the initial excitation profile can break
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in the course of propagation, attaining after some time a
significantly asymmetric form [Fig. 2(d)]. The direction of the
asymmetry depends on the direction of the initial velocities of
the particles. Beyond the degeneracy [Fig. 2(f)] the spreading
of the excitation into the crystal reappears with a periodic
refocusing but the propagation pattern is much different owing
to the inverted form of the vibrational band structure.

In order to quantify the degree of focusing or localization
of the excitation, we examine the time dependence of the
normalized participation ratio

P = 1

N

( ∑N
n=1 En

)2

∑N
n=1 E2

n

. (3)

Evidently, this quantity can take values between 1/N and
1, with P = 1 signifying the case of a completely extended
excitation where the energy is equipartitioned between all the
particles and P = 1/N marking the opposite case of a fully
localized excitation in a single particle. Note that the local
energies En in (3) should be non-negative for the definition to
make sense.

Our results, presented in Figs. 2(g)–2(l), support our
discussion above. Especially the focusing of the excitation
after tF is evident in Figs. 2(j)–2(k). However, the subsequent
drop in P is much stronger in Fig. 2(j) than in Fig. 2(k), in
line with the observation that at r = r3 the final localized state
consists of less excited particles [Fig. 2(d)] than at r = r4

[Fig. 2(e)].
In Ref. [23] it was demonstrated that a small localized

initial excitation does not spread significantly for short times
at the degeneracy point, in contrast to the behavior for other
geometries. This fact was understood solely by an inspection
of the linearization spectrum. Here, however, the situation is
different. Not only the complete absence of spreading, but
especially the existence of self-focusing calls for an account
of the underlying nonlinearity. This is further emphasized and
supported by Figs. 2(g)–2(l) where the results of the prop-
agation within the harmonic approximation of the potential
are also displayed. As long as the total amplitude of the initial
excitation is small enough, the harmonic approximation works
well. As the amplitude is increased this approximation will
start to fail, and nonlinear effects are expected to show up.
The results of the present work suggest that except for the
amplitude, also the geometry allows to control the importance
of the nonlinearity. Specifically, for the given amplitude and for
geometries far from the degeneracy regime [Figs. 2(g), 2(h),
2(l)] the harmonic approximation qualitatively reproduces the
exact time evolution of the participation ratio, although, as
should be expected, there are quantitative deviations. In con-
trast, close to and within the degeneracy regime the harmonic
approximation fails completely, predicting a spreading and an
extended form of the excitation, instead of localization. This
makes it clear that regarding the focusing, we indeed encounter
a nonlinear phenomenon.

Complementary information about the spreading or
localization of the Gaussian excitation can be obtained from
its time evolution in the reciprocal space, i.e.. in terms of
the wave numbers k ∈ [− π

�s
, π
�s

], where �s denotes the arc
length interparticle distance of the equidistant ground-state
configuration. To this extent, we examine how the discrete

FIG. 3. (Color online) Absolute value of the discrete Fourier
transform of the local energy excitation profile as a function of time
and wave number k. (a)–(f) correspond to increasing r , ranging from
r0 to r5 as indicated in Fig. 1(b).

Fourier transform of the local energy profile evolves in the
reciprocal space [Figs. 3(a)–3(f)]. The initial excitation, being
overall extended in the coordinate space [Fig. 1(c)], appears
to be rather localized around the wave vector k = 0 in the k

space. It remains localized as expected for r < rd [Figs. 3(a),
3(b)], but when approaching rd more wave vectors in the
vicinity of k = 0 become excited [Fig. 3(c)]. At the degenerate
geometries [Figs. 3(d), 3(e)] the excitation expands rapidly
in the reciprocal space, populating after the characteristic
time tF almost all the wave numbers k. The space localized
solution consists therefore of most of the k modes, with the
population of the initial k = 0 mode being dominant. At
r > rd [Fig. 3(f)] the excitation remains, as for small r , in the
narrow vicinity of the k = 0 mode.

Before proceeding with our study of the nonlinear behavior,
let us note that for the results presented here we have used a
rather small initial excitation with a total energy of the order of
1% of the ground-state energy per particle EGS/N . For larger
amplitudes the self-focusing can occur also for smaller radii,
i.e., at a greater distance from the degeneracy region.

IV. EFFECTIVE NONLINEAR MODEL

The dynamics analyzed in the previous section is charac-
terized by a self-focusing process of excitations for the case
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of degenerate geometries and therefore suggests a prominent
role of the nonlinearity. We aim in this section to identify
and quantify the leading nonlinear terms as well as to derive
a DNLS effective model in the region of degeneracy. As a
result we will, among others, gain insight into the excitation
amplitudes and the time scale tF for localization.

A. Dominant nonlinear terms

Since the initial excitation is small enough we attempt to
identify the dominant anharmonic terms by expanding the
potential around the equilibrium configuration {u(0)} up to
fourth order. It is advantageous to do so in the arc length
parametrization s so that the final Euler-Lagrange equations
of motion and particularly the kinetic terms would assume the
standard form [26]. To this purpose we calculate the matrices

Hij = ∂2V

∂si∂sj

∣∣∣∣
{s(0)}

, Gij = ∂3V

∂s2
i ∂sj

∣∣∣∣
{s(0)}

(4)

corresponding to the Hessian and the matrix of the third
derivatives respectively. Terms involving more than two
different positions are equal to zero, since the total potential
V is a sum of exclusively two-body potential terms.

For the fourth derivative terms we define two further
matrices as

Mij = ∂4V

∂s2
i ∂s2

j

∣∣∣∣∣
{s(0)}

, Qij = ∂4V

∂s3
i ∂sj

∣∣∣∣
{s(0)}

(5)

for i �= j and

Mii = Qii = 1

2

∂4V

∂s4
i

∣∣∣∣
{s(0)}

,

separating the derivatives of the same order in si , sj from those
with a different order and splitting the diagonal derivative
terms (involving differentiation with respect to a single
position) in two. The calculation of the above derivatives in
the arc length parametrization can be carried out by using the
respective derivatives in the u coordinate space as well as the
known relations for derivatives of inverse functions. Under
these considerations and denoting sj − s

(0)
j = xj the potential

reads

V ≈ EGS + 1

2

N∑
i,j=1

xiHijxj + 1

6

N∑
i,j=1

x2
i Gij xj

+ 1

24

N∑
i,j=1

x2
i Mij x

2
j + 1

24

N∑
i,j=1

x3
i Qij xj (6)

leading to the equations of motion

ẍn = −
∑
j �=n

Hnjxj − Hnnxn − 1

3

∑
j �=n

xnGnjxj

− 1

6

∑
j �=n

Gjnx
2
j − 1

6

∑
j �=n

xnMnjx
2
j − 1

3
Mnnx

3
n

− 1

8

∑
j �=n

x2
nQnjxj − 1

24

∑
j �=n

Qjnx
3
j , (7)

which consist of harmonic, quadratic, and third-order nonlin-
ear terms. All the matrices appearing in these equations are
symmetric except for the matrix Gij , relating to the quadratic
force terms, which is fully antisymmetric. This can affect
significantly the symmetry of the expected solutions. If the
quadratic nonlinear force terms are ignored then the equations
of motion (7) possess the symmetry xn → −xn which also
results in symmetric excitations keeping their symmetry in the
course of propagation. The quadratic force terms, however,
break the reflection symmetry and allow for an asymmetric
evolution of initially symmetric excitations as the one observed
in Fig. 2(d).

Let us mention at this point that in the ring limit r = r0 = 0,
where a separation of the center of mass holds, the matrices
involved in Eq. (7) are not independent but obey the relations

Hnn = −
∑
j �= n

Hnj ,Mnn = −1

8

∑
j �= n

Qnj ,Mnj = −3

4
Qnj

yielding

ẍn = −
∑
j �=n

Hnj (xj − xn) − 1

6

∑
j �=n

Gjn(xj − xn)2

− 1

24

∑
j �=n

Qnj (xj − xn)3, (8)

which for only nearest-neighbor (NN) couplings leads to a
Fermi-Pasta-Ulam kind of equations of motion [30], with both
quadratic and cubic nonlinear interactions.

Before proceeding, we note that the matrix elements
Hij ,Gij ,Mij ,Qij depend, due to the symmetry of the ground-
state configuration, only on the index difference m = i − j .
Therefore, when referring to these elements in the following
we will use the notation Hm,Gm,Mm,Qm.

B. DNLS model

The effect of localization of the initial wave packet
occurs, as we have observed in Sec. III, in the regime close
to degeneracy. There, the diagonal terms of the Hessian
provide the dominant contribution to the linear spectrum as
the off-diagonal ones are very small. Since |H0| � 2|H1|
[Fig. 4(a)], one can use in that regime the so-called rotating
wave approximation (RWA) [31], assuming that the position
coordinate can be described as

xn(t) = �n(t)e−iω0t + �∗
n (t)eiω0t , (9)

with �n(t) a slowly varying amplitude and ω2
0 = H0 yielding

a fast oscillating phase e±iω0t . Apart from the requirement
of a weak dispersion, a condition for a sufficiently weak
nonlinearity has also to be satisfied [31], namely |H0| �
1
3 |M0| max[xi(0)]2 with max[xi(0)] the maximum initial dis-
placement (or respectively momentum) of a single particle.
This criterion is satisfied as well in our case, since the initial
conditions we have used lead to |H0| of about 100 times larger
than 1

3 |M0| max[xi(0)]2.
Using the ansatz (9) and making the assumption | d�n

dt
| �

ω0|�n|, as well as neglecting the rapidly oscillating terms with
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FIG. 4. (Color online) (a) The ratio between the diagonal and off
diagonal elements of the Hessian |H0|

2|H1| as a function of r . (b)–(e)
Coefficients Al,B,Cl,Dl defined in Eq. (11) as a function of r . The
solid blue lines depict the coefficient values for l = 1, whereas the
black doted lines for l = 2 and the red dashed ones for l = 3. The
cyan (shaded) area marks the region of applicability of the RWA as
derived from (a). The vertical lines correspond to the values of r we
study with the DNLS model. Note that three of them namely r2,r3

and r4 are the same as those studied in the previous section [Fig. 1(b)]
whereas r45 lies between r4 and r5. The insets provide a zoom into
the region of interest.

frequency 3ω0, the equations of motion (7) acquire the form

i�̇n=
N/2∑
l=1

Al(�n−l + �n+l) + B|�n|2�n

+
N/2∑
l=1

Cl

[
2�n(|�n−l|2 + |�n+l|2) + �∗

n

(
�2

n−l +�2
n+l

)]

+
N/2∑
l=1

Dl[2|�n|2(�n−l + �n+l) + �2
n(�∗

n−l + �∗
n+l)

+ |�n−l|2�n−l + |�n+l|2�n+l]

+
N/2∑
l=1

Fl

[(
2�n(�n+l − �n−l) − �2

n+l + �2
n−l

)
e−iω0t

+ (2�n(�∗
n+l − �∗

n−l) − |�n+l|2 + |�n−l|2)eiω0t
]

(10)

with

Al = Hl

2ω0
, B = M0

2ω0
, Cl = Ml

12ω0

Dl = Ql

16ω0
, Fl = Gl

12ω0
. (11)

The last term in Eq. (10) comes from the quadratic nonlinear
force term, which is responsible for generating second har-
monics and breaking the reflection symmetry of the equations.
Within the RWA this term is also neglected due to its
fast oscillation in time in comparison to the other slowly
varying terms. Of course such an approximation limits our
consideration to the general focusing/defocusing behavior
of the wave-packet excitation, not accounting for secondary
propagation features such as the exact shape of the excitation
pulse during the time evolution.

The actual numerical values of the remaining coefficients
Al,B,Cl,Dl for our system are shown in Figs. 4(b)–4(e) as a
function of r . All the coefficients in the region of validity of
our approximation have a definite sign except for Al , which
changes sign within the degeneracy regime. It is also obvious
that an increasing index l leads to coefficients closer and closer
to zero, with even the coefficients of l = 2 being already very
small. Since the major contribution stems from l = 1, we can
proceed performing a NN approximation, which yields

i�̇n =A(�n−1 + �n+1) + B|�n|2�n

+ C
[
2�n(|�n−1|2 + |�n+1|2) + �∗

n

(
�2

n−1 + �2
n+1

)]
+ D

[
2|�n|2(�n−1 + �n+1) + �2

n(�∗
n−1 + �∗

n+1)

+ |�n−1|2�n−1 + |�n+1|2�n+1
]
, (12)

where we have omitted the index 1 from the coefficients for
clarity. Equation (12) can be recognized as a DNLS equation
with additional nonlinear couplings studied in the literature
[24,25] and will be the point of reference in the following
discussion.

In order to check the validity of our approximation we
propagate the Gaussian excitation illustrated in Fig. 1(c)
according to Eq. (12). Note that the quantity � is by definition
complex, with its real part at t = 0 relating to the displacement
Re(�n(0)) = xn(0)

2 [Eq. (9)] and its imaginary part to the
momentum Im(�n(0)) = pn(0)

2ω0
[Eq. (9) within the RWA], both

in the arc length parametrization. Furthermore, the local energy
En = 1

2 (ω2
0x

2
n + p2

n) can be expressed as En = 2ω2
0|�n|2, the

conservation of the total energy being thus linked directly
with the conservation of

∑
n |�n|2. A comparison between

Figs. 5(a)–5(c) and Figs. 2(c)–2(e) makes it clear that the
NN DNLS model captures qualitatively very well the features
of the exact excitation propagation, exhibiting focusing and
defocusing at r2 [Fig. 5(a)] and localization after a certain
time for r within the degeneracy region [Figs. 5(b), 5(c)].
Beyond the point r4, but still very close to the degeneracy
[Fig. 4(a)], the excitation, although keeping its shape for a long
time, eventually disperses into the whole crystal [Fig. 5(d)].
Note that the profile of the excitation remains reflection
symmetric (with respect to the central particle) in the course
of propagation for all geometries [Figs. 5(a)–5(d)], in contrast
to what is observed in Fig. 2(d), which we attribute primarily
to the neglected quadratic nonlinear term.

Most of these results can already be inferred from an
inspection of Eq. (12) and the parameter A(r) as shown in
Fig. 4(b). When increasing the radius, A changes its sign from
negative (same sign as B) to positive. Correspondingly, with
increasing r the effective nonlinearity changes from attractive
(hopping A and nonlinearity B of the same sign), leading to
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FIG. 5. (Color online) (a)–(d) Time propagation of the initial
Gaussian excitation of Fig. 1(c) under the DNLS equation (12) for
increasing r corresponding to the points (a) r2, (b) r3, (c) r4, and (d)
r45 marked in Fig. 4(a). Colors encode the values of local energy
En = 2ω2

0|�n|2 for each particle n and time t .

self-focusing dynamics [Figs. 5(a)–5(c)], to repulsive (hopping
A and nonlinearity B of opposite sign), leading to defocusing
[Fig. 5(d)].

The change of the magnitude of the parameter A affects also
the degree and the time scale of the wave-packet localization.
A small hopping term is expected to slow down the dynamical
behavior of the system since it accounts for reduced mobility.
A decrease in its magnitude leads also to an enhancement
of the general nonlinear behavior since it shifts the weight
of the dynamics to the nonlinear terms. On a more formal
level, these statements can be justified within a multiple scale
analysis [32].

In fact, one can arrive at the RWA by assuming that all
the terms of Eq. (7) are much smaller than the Hnnxn term.
Introducing the small parameter ε = |A|, due to the weak
coupling and weak nonlinearity conditions a slow time scale
can be defined t̃ = εt = |A|t , which is characteristic for the
time evolution of �n. A further rescaling of �n with

√
|B
A
| leads

to the standard form of our DNLS [24,25] with Ã = sgn(A),
B̃ = sgn( B

A ), C̃ = C
B

, D̃ = D
B

and �̃n =
√

|B
A
|�n in which the

strength of the nonlinearity is primarily controlled by the
amplitude of the initial excitation �̃n(0). In the degeneracy
regime, due to the factor

√
|B
A
|, this is about one order of

magnitude larger than its value for other parameter values of r

resulting in the observed strong localization of the excitation.
In the same regime the time scale of the time evolution

becomes very large, scaling as 1
|A| and yielding in our case

a characteristic time tF of the order of 103.
The simple picture above of the DNLS within the NN

approximation gradually fails in the limit |A| → 0, and the
dispersion coefficients Al from all the neighbors have to be
incorporated into Eq. (12). This can be seen, for instance, from
the intricate nonmonotonic features in the linear dispersion
of the full model there [Fig. 1(b) (inset) below and close
to r4], which are not predicted by the NN DNLS model.
Notably, however, even at r4 our results within the NN DNLS
model [Fig. 5(c)] capture satisfactorily the dynamics of the
full system [Fig. 2(e)]. This can be attributed to the nonlinear
coupling terms (C,D), which become stronger than the linear
one (A) within this narrow parameter region and dominate the
dispersion. As a last remark, we note that for long times the
weak nonlinearity condition may also start to fail (if substantial
amplitude has localized on a single site), such that the existence
of higher harmonics becomes more prominent, which may lead
to effects such as breaking of the parity symmetry.

V. BREATHERLIKE EXCITATIONS

Having constructed an effective DNLS model we can finally
pose the question of the existence of breatherlike solutions in
our system in the regime of degeneracy. If the coefficients C,D

of Eq. (12) were zero, our system could be described within the
so-called anticontinuum limit of weakly coupled oscillators,
since the linear coupling is already very small. In this limit, it
has been proven that discrete breather solutions exist if there is
a substantial degree of anharmonicity and no resonances with
the linear spectrum [33]. In our case with C,D �= 0 one can
still search for breathers provided, as well, that their frequency
does not belong to the phonon spectrum [24]. To this end the
frequency in the ansatz of Eq. (9) should be changed from ω0

to ω < ω0 out of the phonon band, i.e.,

xn(t) = �n(t)e−iωt + �∗
n (t)eiωt . (13)

Repeating the steps of the previous section assuming that
still the RWA holds, we arrive at Eq. (14) with an additional
local term 
�n

i�̇n = A′(�n−1 + �n+1) + 
�n + B ′|�n|2�n

+ C ′[2�n(|�n−1|2 + |�n+1|2) + �∗
n

(
�2

n−1 + �2
n+1

)]
+ D′[2|�n|2(�n−1 + �n+1) + �2

n(�∗
n−1 + �∗

n+1)

+ |�n−1|2�n−1 + |�n+1|2�n+1
]
, (14)

where 
 = (ω2
0 − ω2)/2ω, A′ = Aω0

ω
, B ′ = B ω0

ω
, C ′ = C ω0

ω

and D′ = D ω0
ω

. In the anticontinuum limit A′,C ′,D′ = 0 this
equation can be easily checked to have the solutions �n ∈
{0,

√


B
eiφn} with arbitrary phases φn ∈ R. Simple real breather

solutions can thus be constructed iteratively as strings of the
elements 0 and ±

√


B

. Starting from such a breather solution
and following the solution trajectories in the parameter space
A′,C ′,D′ with a Newton method [24,34] we can find possible
breather solutions for different values of r corresponding to
the geometries of interest. The natural step then is to transform
back to the xn,pn coordinates and use these as an initial
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FIG. 6. (Color online) (a)–(d) Time propagation of breatherlike
excitations in the degeneracy regime, at r = r3 in (a), (b), (d), and
r = r4 in (c). The color plots of the first column depict the values of
the local energy En whereas the second column provides the initial
profiles of the excitation in position coordinates, i.e., �un = un − u(0)

n

as a function of the particle index n. The third column illustrates
the time evolution of the participation ratio P for the degenerate
geometries and the initial conditions of (a)–(d). In (a)–(d) the initial
excitation comes only from the displacement �un of particles from
their equilibrium.

excitation in our system, simulating their time evolution within
the full model equations as done in Sec. III. In this way, we
aim to further substantiate the link between the effective DNLS
equation and the full charges-on-a-helix model governed by
the Lagrangian of Eq. (2), demonstrating that the prominent
localized excitations of the DNLS also preserve their character
in the full model.

Our results are presented in Fig. 6 for different initial
conditions at the degenerate geometries. Evidently, many of
them [Figs. 6(a)–6(c)] keep their solitonic character in the
presence of the full Coulomb interactions, a fact that can
be justified also by inspecting the time evolution of the
participation ratio. Indeed, the local energy profile of the
excitations changes negligibly with oscillating potential and
kinetic energy parts, mapping to oscillating displacements
�un and momenta pn. These breatherlike excitations include
a single-particle excitation [Fig. 6(a)] as well as two-particle
excitations with both opposite [Fig. 6(b)] and equal displace-
ments [Fig. 6(c)].

Surprisingly enough, we have observed that the excited
particles should always be separated by a distance [Figs. 6(b),
6(c)] for the solitonic character to persist, otherwise, if
neighboring particles are excited there is always a small

dispersion and a part of the excitation that focuses on a
single particle, acquiring finally a rather asymmetric profile
[Fig. 6(d)]. This picture is also valid within the DNLS
framework where such solutions are found to undergo a
spontaneous symmetry breaking in the course of propagation.

VI. SUMMARY AND CONCLUSIONS

We have shown that a system of charged particles confined
on a toroidal helix can react in qualitatively different ways
when exposed to an initial excitation, depending on the
geometric properties of the confining manifold. In particular,
while dispersion is the major feature of the dynamics for very
small helix radii r , the excitation self-focuses and localizes
for values of r in the so-called degeneracy regime, where the
linear coupling is very small. Beyond this regime, the time
evolution of the excitation is characterized by a defocusing,
which is gradually dominated again by dispersion. Especially
the self-focusing of the excitation observed for the degenerate
geometries constitutes a hallmark of the existing nonlinearity
in the system. Interestingly enough, the nonlinear part of the
interactions (both local and nonlocal) does not approach zero
in this regime, nor does it undergo a change in sign with
increasing r , contrary to the behavior of the respective linear
part. It is primarily this contrast between the robustness of
the nonlinearity and the variability of the linear part, which
induces the variety of dynamics in the system, allowing for its
control through the tuning of the underlying geometry.

Furthermore, we have identified the character of the leading
nonlinear terms and constructed an effective discrete nonlinear
Schrödinger model with additional nonlinear couplings, which
has allowed us to predict and interpret the different responses
of the helical chain to its excitation. Through this model it
has also been possible to identify some special breatherlike
excitations in our system which propagate in time keeping
their shape. Overall, we emphasize that the present setup
offers many possibilities for the implementation of various
nonlinear models ranging from the Fermi-Pasta-Ulam to
different discrete nonlinear Schrödinger models with both
attractive and repulsive nonlinearities only by the tuning of
a single geometrical parameter, i.e., the radius r of the helix.

Regarding its possible experimental realization, it relies
on the challenging task of constructing a helical trap for
charged particles. Although such a construction might not
be straightforward, there have been certain advances towards
this direction in different contexts, such as the realization of
freestanding helical nanostructures [35–37] and the design
of helical traps for neutral atoms [38,39]. Moreover, our
results could be of relevance in studies of energy and
excitation transfer in helical molecules, such as DNA. Finally,
macroscopic realizations of our system could also be possible
by using for example charged beads as done for the study of
polymers [40,41].
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APPENDIX: DEFINITION OF LOCAL ENERGIES

As briefly mentioned in Sec. III the definition of local
energies En in a system of interacting particles is not unique.
For a general potential V = 1

2

∑N
i,j,i �=j W (ui,uj ) the most

common partition consists in equally distributing each part
of the potential energy among the particles involved

En = 1

2

N∑
i,i �=n

W (ui,un) + Kn − E(0)
n , (A1)

with E(0)
n = 1

2

∑N
i,i �=n W (u(0)

i ,u(0)
n ) the local energy of the

equilibrium configuration {u(0)
i } and Kn the kinetic energy

of the particle n. Although such a definition is very use-
ful in describing systems with nearest-neighbor interactions
such as oscillator chains [27,28], it can lead to problems
concerning the description of long-range interacting systems
and particularly those involving Coulomb interactions, as the
one we consider in this paper. The major problem is that it
generally leads to both positive and negative values of En

and thus demands a handling of both positive and negative
excitations. Negative local energies should be avoided if we
wish to interpret the local energy as the amount or probability
of the corresponding particle being excited and proceed
in defining quantities such as the participation ratio P of
Eq. (3).

Let us demonstrate this fact with a simple example of a
Coulomb system consisting of three identical charges moving
on a ring [Fig. 7(a)]. The equilibrium configuration of such
as system is the equidistant one with the charges sitting in
the corners of an equilateral triangle with a side of length y.
Evidently then E(0)

n = 1
y
,n = 1,2,3. If particle 1 is clockwise

displaced from equilibrium up to the point 1′ the resulting local
excitation energies would be

E1 = 1

2y+
+ 1

2y−
− 1

y
, E2 = 1

2y−
− 1

2y
,

E3 = 1

2y+
− 1

2y
,

where y+ > y > y−. Obviously E1,E2 > 0, whereas E3 < 0,
demonstrating that following this definition the local energy
can become negative. Another minor disadvantage of this
definition of local energy for long-range interacting particles
is that it is highly nonlocal, meaning that if a single particle is
displaced from equilibrium, the local energies of other particles
even those far apart will acquire a finite value.

A way to fix this last issue is to construct the local energy
En so that it contains: all the parts of the potential depending
solely on un, none of the parts that are independent of un, and
half of the terms involving both un and any other ui . This can
be written in a compact form

En = 1

2

N∑
i,i �=n

[
W (un,ui) + W

(
un,u

(0)
i

)]

− 1

2

N∑
i,i �=n

[
W

(
u(0)

n ,ui

) + W
(
u(0)

n ,u
(0)
i

)] + Kn, (A2)

FIG. 7. (Color online) (a) A schematic illustration of three
charges on a ring at equilibrium (1, 2, 3) and after particle 1 has
been displaced (1′, 2, 3). The dashed lines denote the Euclidean
distances in equilibrium, whereas the solid ones, the distances after
the displacement. (b), (c) The time evolution of a Gaussian excitation
for r = r1. (d), (e) The time evolution of a Gaussian excitation for
r = r2. The colors in (b), (d) encode the values of the displacement
from equilibrium xn whereas in (c), (e) the values of the local energies
En defined in Eq. (A5). (b)–(e) show simulation results for N = 60
particles and ν = 1/2.

which can be checked to sum up to the total excitation energy,
i.e.,

∑N
n=1 En = E. Such a definition solves the problem of

nonlocality since it distributes all single-particle potential
terms to the corresponding particles, yielding for example
En = 0 for un = u(0)

n and Kn = 0. It can also be checked
to solve the problem of negativity in many cases, such
as the one of the above three-particle example. There are
however still special cases in which negative local energies
can be encountered, where the negativity originates from the
harmonic part of the total potential contained in each En

V (2)
n = 1

2

∂2V

∂u2
n

∣∣∣∣
(0)

(
un − u(0)

n

)2

+ 1

2

N∑
i,i �=n

∂2V

∂un∂ui

∣∣∣∣
(0)

(
un − u(0)

n

)(
ui − u

(0)
i

)
, (A3)

which can assume negative values at a given n. To fix this,
one can make use of the overall stability of the equilibrium,
which leads to the existence of a different decomposition of
the harmonic contributions to the potential into purely positive
parts in the form [29]

Ṽ (2)
n = 1

2

⎡
⎣ N∑

j=1

�nj

(
uj − u

(0)
j

)⎤⎦
2

, (A4)
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where � denotes the square root of the Hessian. We thus adjust
our definition (A2) by subtracting V (2)

n and adding instead Ṽ (2)
n ,

i.e.,

En = 1

2

N∑
i,i �=n

[
W (un,ui) + W

(
un,u

(0)
i

)]

− 1

2

N∑
i,i �=n

[
W

(
u(0)

n ,ui

) + W
(
u(0)

n ,u
(0)
i

)]
+ Kn − V (2)

n + Ṽ (2)
n . (A5)

This definition provides a sufficiently local (although not
entirely, due to the term Ṽ (2)

n ), positive decomposition of the
excitation energy, which still satisfies

∑N
n=1 En = E. Its use

can be further justified by comparing the time evolution of En

with the time evolution of the displacement of the particle n

from equilibrium xn = sn − s(0)
n . A comparison of Figs. 7(b),

7(d) with 7(c), 7(e) respectively, leads to the conclusion that
the time evolution of En captures nicely all the features of the
propagating excitation such as the focusing and the spreading
and only filters out the fast oscillations in Figs. 7(b), 7(d)
caused by the fast continuous conversion of potential to kinetic
energy and vice versa.
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Chapter 3

Conclusions and outlook

In this cumulative dissertation we have explored the equilibrium properties and dynam-
ics of 1D Coulomb systems, focusing on the case of charged particles confined in helical
geometries [O2–O4]. In all the cases, the reduced dimensionality and the long-range
character of the underlying interactions provide us with a strongly correlated system.
Our trapping manifolds include a finite line segment, an inhomogeneous helix and a
toroidal helix, each one allowing for an exhibition of different effects.

Concerning the trapping of a large number of charges in a finite line segment (1D
box), we have identified a crystalline to a cluster phase crossover driven by the increment
of temperature. In the crystal phase, our findings bare similarities with those obtained
for a finite ion chain under a harmonic trapping [81–83], including an inhomogeneity
of the crystalline structure and a non-extensivity of the thermodynamic functions.
The estimation of this deviation from extensivity allows us to make a finite prediction
of the transition temperature in the thermodynamic limit. Interestingly enough, the
main features of the phenomenology attached to this problem, are expected to be
valid for every classical interacting system which supports a single equilibrium state
at zero temperature. An appealing question would then be, how this phenomenology
would change for systems which support multiple equilibrium configurations of different
energy, as those encountered for helically confined charges.

The confinement of repulsively interacting charges on helical geometries affects sig-
nificantly their behaviour, starting from their two-body interaction potential, which
becomes oscillatory, allowing for a plethora of bound states, whose number is tuned
by the geometrical parameters of the trap. If the helical trap is inhomogeneous the
center-of-mass motion couples to the relative one permitting an energy transfer be-
tween these degrees of freedom. For a localized inhomogeneity, this energy transfer can
cause a dissociation of an initially bound pair of particles through scattering. Due to
the time reversal symmetry of the equations of motion, it is equally possible that two
separate particles develop a bond through scattering. An analysis of the phase space
of the two-body problem allows for identifying regimes of bound motion and escape.
A more detailed investigation of the phase space, complemented by a search for stable
and unstable periodic orbits is expected to provide a rigorous analysis of the interesting
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escaping procedure. Moreover, the study of the many-body analogue of the system,
could reveal further interesting dynamical features, associated with an energy exchange
between multiple degrees of freedom.

A different aspect of the many-body physics of helically confined charges was studied
throughout this thesis by assuming a confinement on a toroidal helix. At commensurate
fillings and for small values of the helix radius, the ground state of such a system is an
equidistant configuration, similar to that found for a ring geometry. Beyond a critical
value of the radius this loses its stability and bifurcates to a zigzag configuration.
Below the transition, the reduced dimensionality of the system allows only for a single
longitudinal branch of phononic excitations. This deforms continuously with the radius
increment, opening a gap and passing through stages of degeneracy and inversion.
Remarkably, at the degenerate geometry the interactions between the particles are
effectively screened to a linear approximation, allowing for an essentially independent
small-amplitude motion. Thus, a localized excitation can evolve in time almost without
transferring energy to the rest of the chain up to long times.

The variability of the linear spectrum with the helix radius for charges confined in a
closed helix has motivated a study of the system’s response in the nonlinear regime. We
have observed that many different dynamical behaviours can be encountered for differ-
ent geometries, mapping to various nonlinear models. In the ring-limit the leading terms
of the resulting equations of motion are of the Fermi-Pasta-Ulam type [240] involving
long-range couplings. At the degenerate geometry the time evolution of the excitation
can be at best described by a discrete nonlinear Schrödinger equation of the focusing
type whereas beyond this geometry, at the regime of inversion, it is characterized by
defocusing. This provides an explanation of the observed focusing of excitations within
the region of degeneracy and allows for an identification of breather-like excitations in
the system, which propagate in time keeping their energy profile.

General considerations and outlook

The major outcome of this thesis is the emergence of unique effects and dynamical
behaviours controlled by the underlying geometry, for systems of strongly long-range
interacting particles. These effects originate mostly by the “mixed dimensionality” of
our setups, which involve on the one hand interactions through the full 3D space and on
the other hand a constrained motion in 1D. We achieve such a property by imposing a
confinement on a helical manifold, which has a reduced dimensionality but is embedded
in the Euclidean 3D space. The degree of periodicity inherent to such systems adds
significantly to their features, introducing a geometrical length scale, in analogy to
lattice systems. Interestingly enough, the tuning of geometry parameters allows for a
continuous transition from-and-to different manifolds of trivial geometry, such as the
straight line or the circle.

Such characteristics, are advantageous, especially for many-body physical systems,
since they can generate different degrees of complexity in a controlled manner. We
have studied specific aspects of such systems, by exploring the low energy behaviour of
charges on a commensurately filled closed helix within a certain regime of geometrical
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parameters. Our findings show that the character of interactions can be highly var-
ied through geometry, allowing for a coupling or not of center-of-mass to the relative
coordinate, and for different degrees and kinds of nonlinearity. A study of thermal
transport could thus be of interest in such systems, given especially the existing debate
about the essential and sufficient requirements for normal heat conduction [241–243].
Usually the existing theoretical studies deal with Fermi-Pasta-Ulam [240] or Frenkel-
Kontorova lattice models [97], as different representatives of cases providing or not a
center-of-mass separation. Our system, depending on the geometry parameters, can
provide both cases. Although it generically possesses a periodicity which links it to
a lattice model of the Frenkel-Kontorova type, it differs substantially from it, since
it induces the center-of-mass coupling through interactions and not by means of an
external potential. Furthermore, being 1D, it is embedded in the 3D space in contrast
to the common 1D lattices and the lattice-like systems [91] in the form of sinusoidal
waves, which lie in 2D. It can thus permit an additional dimension to get involved in
the dynamics. In the same line of arguments, the inclusion of external fields can enrich
the dynamical picture and even induce thermoelectric effects, such as those described
in [93]. Explorations of this kind of toroidal systems at other fillings and parameter
regimes are also expected to lead to interesting physical behaviours, associated with
the existence of incommensurate phases and inter-winding couplings.

We note that in all the helical systems of charged particles, the potential landscape,
becomes, beyond a parameter regime, very complex, supporting a plethora of different
equilibrium states with very small energy differences, reminiscent of the structural com-
plexity of glasses [244]. The implications of such a property have not been explored so
far. To this extent, studies of the out-of-equilibrium dynamics, as well as, studies of the
statistical behaviour and thermodynamics of such systems would be appealing. These
could reveal intriguing aging and non-ergodic effects, as well as, unusual transitions
between different metastable states.

Last but not least, we point out that a study of the quantum analogue of helically
confined charges could be of considerable interest. Already the results for two par-
ticles confined on a uniform helix have revealed the possibility of forming fermionic
pairs of large stability, which could allow for an exploration of Bose gases of bi-electron
molecules [36]. The existence of multiple potential minima of different depths could
induce unconventional collective excitations and dynamical mechanisms involving sev-
eral time scales, originating from the tunneling between the different local minima. As
stated above these might be quite different from the phenomena observed in lattice sys-
tems, since the oscillatory behaviour is a characteristic of the interactions rather than
a property of the external potential. Further possibilities for enriching the physical be-
haviour of such quantum systems could be provided by the inclusion of spin [195] and
the consideration of interactions with light [207]. The underlying picture would become
even more complex, if one allows for deviations of the helical manifold from uniformity,
since the insertion of an external geometric potential would be then essential [8, 10].

As it can be inferred from the above, the systems considered in this cumulative
dissertation are of significant theoretical interest, a part of which is uncovered through
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our scientific contributions. A direct experimental realization of them, however, seems
to be a demanding task with the currently available techniques, relying strongly on the
experimental challenge of constructing a helical trap for charged particles. Neverthe-
less, there have been certain advances towards this direction, in different contexts, e.g.
nanofabrication, optical trapping (see Sec. 1.3), which are promising for the future.
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Appendix A

Supplementary material

A.1 Thermodynamic limit considerations

As a supplementary material to [O3] we present here some results relating to the ther-
modynamic limit N,R→∞, a→ 0, aR = h

2π of the linear-to-zigzag bifurcation, found
for charges confined on a toroidal helix. Below the critical value of the helix radius, rcr,
the lowest and the highest frequency of the system, corresponding to the center-of-mass
(CM) and the out-of-phase (OP) modes respectively, read

ω2
CM =

C(a, r,R)

23/2 (R+ r)2
rS0(a,N)

ω2
OP =

C(a, r,R)

25/2 (R+ r)3
(
c1(a,N)r2 + 2c2(a,N)Rr + c3(a,N)R2

)
(A.1)

with

C(a, r,R) =
(
a2(R+ r)2 + r2

)−1
c1(a,N) = c3(a,N)− 2(S3(a,N)− S2(a,N))

c2(a,N) = c3(a,N) + (S1(a,N)− S3(a,N))

c3(a,N) = 3a2(S1(a,N)− S2(a,N)) + a2(S3(a,N)− S4(a,N)) (A.2)

and

S0(a,N) =
N−1∑
j=1

(1− cos(auj))
−1/2

S1(a,N) =

N−1∑
j=1

(1− cos(auj))
−3/2

S2(a,N) =

N−1∑
j=1

(−1)j (1− cos(auj))
−3/2
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S3(a,N) =
N−1∑
j=1

cos(auj) (1− cos(auj))
−3/2

S4(a,N) =
N−1∑
j=1

(−1)j cos(auj) (1− cos(auj))
−3/2 (A.3)

In the thermodynamic limit the sums Si(a,N) diverge, due to a → 0 with the
following leading order contributions in terms of a

S0(a,N) ∼ 21/2π−1n−1a−1

S1(a,N) ∼ S3(a,N) ∼ 2−1/2π−3n−3a−3

S2(a,N) ∼ S4(a,N) ∼ −2−5/23π−3n−3a−3. (A.4)

In the same limit C(a, r,R) ∼
(
h2

4π2 + r2
)−1

, i.e. it obtains finite values, independent

of a,R.
These result in the following expressions for the center-of-mass and out-of-phase

frequencies

ω2
CM ∼ C(r)r

2hnR
→ 0

ω2
OP ∼ 7C(r)

4nh3π3

(
h2

π2
− 2r2

)
. (A.5)

Evidently, the center-of-mass frequency becomes zero for all the values of the helix
radius r in the thermodynamic limit, a fact that should be expected as the toroidal
helix tends to an infinite homogeneous helix for which a center-of-mass separation is
provided. The out-phase frequency becomes zero at the point rcr = h√

2π
, crossing

thereafter to the imaginary axis. This point can be identified as the critical radius for
the zigzag transition, denoted as r∞ in [O3]. Since in the thermodynamic limit the point
of degeneracy is also located at rd = r∞ [O3], the linear spectrum is degenerate at zero
frequency for r = r∞ = h√

2π
. In such a case, an analysis of the higher-order nonlinear

terms is essential in order to extract information about the dynamical behaviour of the
system.

The degeneracy at zero frequency generates questions about the form of the linear
spectrum beyond the critical point. How can two frequency branches emerge from a
single point at zero? As shown in Fig. A.1, directly after the bifurcation, one of the
emergent branches of the zigzag solution consists of imaginary frequencies (ω2 < 0),
rendering the corresponding configuration unstable in a narrow regime of r. Since
within that regime both the polygonic and the zigzag configurations are unstable, a
third equilibrium state exists, which for the specific parameters is the ground state.
Such a state could emerge possibly from a saddle-node bifurcation for r < r∞ and thus
be completely detached from the branch of the polygonic solution.
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Figure A.1: The square values of the linearization spectrum as a function of r for the
polygonic (r < r∞) and the zigzag (r > r∞) solution, as calculated in the thermody-
namic limit for filling ν = 1/2 and pitch h = π/2. The dashed line marks the critical
point r∞ and the red area the {ω2

i } < 0.

Although the detection of this third state is beyond the scope of the current thesis,
some instructive conclusions can be drawn from the study of a finite system with a
larger filling, namely a system of filling ν = 1. Our results are presented in the following
section.

A.2 Ground states for filling ν = 1

We have observed in [O3] that for filling ν = 1/2, even for a large number of particles
(N = 120), the dependence of the ground state structure on the helix radius r can
be described within the picture of a pitchfork bifurcation. Below the critical point rcr
the ground state is polygonic whereas beyond rcr it is of a zigzag form. This picture
was shown in the previous section to fail in the thermodynamic limit, since the zigzag
configuration becomes unstable directly after the bifurcation, pointing to the existence
of another ground state at this region.

It turns out that a similar behaviour is supported by commensurate systems with
a greater filling than 1/2, namely for systems with ν = 1. Although in such a case
the zigzag configuration does not become unstable, it becomes apparent that close to
the bifurcation point rcr, another stable configuration exists with energy lower than
the zigzag (Fig. A.2 (a),(b)). This configuration (C) has a mixed structure between
the zigzag and the polygonic, in the sense that every third particle occupies the same
position as in the polygonic case (at the outer circle of the torus), whereas the two
particles in between are displaced in a zigzag-like manner.

In contrast to the zigzag configuration which emerges through a pitchfork bifur-
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Figure A.2: (a) Equilibrium interparticle distances of particles ∆i = ui+1 − ui as a
function of the helix radius r for filling ν = 1 and N = 30 particles. For the polygonic
configuration (A) all the nearest-neighbour distances ∆A

i are equal. For the zigzag
configuration (B) there are two different kinds of distances, half of which are greater
and half lower than ∆A

i . There is another state (C) which is a mixture of the polygonic
and the zigzag phase and has again two kinds of distances, with the larger one (upper
branch) appearing twice as frequently as the lower branch. The configuration D is the
unstable pair of C. Note that all the distances are plotted on top of each other. The
dashed lines correspond to unstable solutions. (b) The energy difference between the
configuration C and B as a function of the helix radius r. In the region where it is
negative (gray area) the state C is the ground state of the system.The colour of each
area marks the corresponding ground state configuration (green → polygonic, blue →
zigzag). All the relevant configurations are depicted in the borders of the figure.
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cation from the polygonic solution, the new state C arises independently through a
saddle-node bifurcation together with its unstable pair D (Fig. A.2 (a)). In a narrow
region around rcr it attains an energy EC less than that the energy of the zigzag state
EB and therefore becomes the ground state of the system (Fig. A.2 (b)). A config-
uration of a mixed-zigzag-and-polygonic type such as C, might be the ground state
configuration missing in the thermodynamic limit description, in the regime where the
zigzag solution is unstable.

The results in this subsection, obtained for N = 30, suggest that even for commen-
surate cases (which are dense enough), the system of the charges confined on a toroidal
helix has a large structural complexity. The study of the geometrical dependence of
the equilibrium structures for different number of particles N and different fillings ν as
well as the analysis of the corresponding structural transitions, could be an interesting
subject for further investigation.
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