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Abstract

The present thesis investigates effects of higher-dimension operators in higher-dimensional

field theories. 1-loop power corrections to the gauge couplings in 5d and 6d are studied.

They become calculable in the case of a softly broken grand unified theory (GUT) combined

with minimal symmetry assumptions. Using the analysis of the exact quantum effective

action of supersymmetric gauge theories in 5d, these power corrections are demonstrated to

be the effect of higher-dimension operators. They can be unambiguously determined within

5d low-energy effective field theory. Thus, large and quantitatively controlled power-law

contributions to gauge couplings arise naturally and can, in the most extreme case, lead to

calculable TeV-scale power law unification. A simple 5d SU(5) model with one massless 10

in the bulk is identified where the power-law effect is exactly MSSM-like.

In compactifications of 10d type IIB supergravity higher-dimension operators are an im-

portant ingredient for the stabilization of the moduli. Their cosmological impact in stabilized

string vacua is analyzed and a model of inflation is constructed where these operators are es-

sential. This model can accommodate the WMAP data of the cosmic microwave background

(CMB) with a spectral index of the density fluctuations ns = 0.93.

Zusammenfassung

Die vorliegende Arbeit untersucht Effekte von Operatoren höherer Massendimension in

höherdimensionalen Feldtheorien. Zunächst werden 1-Loop-Potenzkorrekturen zu den Eich-

kopplungen in 5d und 6d analysiert. Diese werden im Falle weicher Brechung einer GUT

und minimaler Symmetrieannahmen berechenbar. Die Potenzkorrekturen werden dann mit-

tels Analyse der exakten quanten-effektiven Wirkung supersymmetrischer Eichtheorien in

5d auf die Effekte von Operatoren höherer Massendimension zurückgeführt. Diese Opera-

toren sind durch die Eigenschaften der 5d effektiven Feldtheorie eindeutig bestimmt. Damit

ergibt sich, daß diese Quantenkorrekturen zu den Eichkopplungen berechenbare ’Power-Law’-

Vereinigung an der TeV-Skala ermöglichen. Es wird ein einfaches 5d SU(5) GUT Modell mit

einer Materie-10 im 5d ’Bulk’ beschrieben, in dem die Quantenkorrekturen exakt die Verei-

nigung der Eichkopplungen im MSSM imitieren.

Operatoren höherer Massendimension sind in Kompaktifizierungen der 10d Typ IIB Su-

pergravitation ein wichtiger Faktor bei der Modulistabilisierung. Die kosmologischen Imp-

likationen dieser Operatoren werden untersucht und es wird ein Inflationsmodell konstruiert,

das essentiell auf ihrer Gegenwart beruht. Dieses Modell mit einem spektralen Index der

Dichtefluktuationen von ns = 0.93 ist mit den WMAP-Daten des kosmischen Mikrowellen-

hintergrunds verträglich.
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Introduction

How can we describe this world? This is a question physics has tried to answer in terms

of a set of laws as simple and elegant (and thus aesthetic in a sense) as possible since

its very beginnings. Coupled with the fact that the laws of nature appear to be written

in mathematical language - a highly nontrivial fact in itself - it is tempting to describe

physics as being the quest for unification. On the long way to the goal of a theory of

everything, some steps have already been taken successfully. Maxwell’s electromagnetism

merged the phenomena of electricity and magnetism, Einstein explained gravitation as a

dynamical property of space-time. And after the advent of quantum mechanics, field and

quantum theory were forged together to yield quantum field theory which, in turn, led to

the unification of the electromagnetic and the weak interactions. Combined with QCD this

structure forms the Standard Model (SM) of particle physics today.

The next step of this process is still speculative. There are, however, two facts which

may point us in the right direction. Firstly, grand unified theories (GUTs), which are built

from gauge symmetries described by the powerful structure of Lie groups, provide an elegant

explanation of the fermion quantum numbers of the Standard Model (SM) [1] (also [2, 3]).

Secondly, supersymmetry (SUSY) links together matter fields - fermions - and force fields -

bosons - in a unified picture.

Despite the beauty of GUTs in providing symmetries which merge the different force

and matter sectors, they suffer from the fact that the unified symmetry is, in a sense, too

large. Symmetry has to be broken to be able to generate the world as we see it, and

this is where the conventional GUTs become ugly. The additional matter and force fields

of a GUT have to be super heavy (∼ 1016 GeV) in order to accommodate the absence

of proton decay in present experiments. However, in view of the sensitivity of the scalar

sector of conventional GUTs to quadratically divergent radiative corrections, this leads to

the hierarchy problem: the doublet-triplet splitting of the light SU(2)-Higgs doublet from

its colored partners that necessarily exist in a 4d GUT has to be protected despite getting

contributions from quadratically divergent loop corrections.

It has been possible to alleviate this problem to some extent with supersymmetry. This
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symmetry, which pairs each fermion with a boson of equal mass, can protect the Higgs from

the quadratic corrections and thus stabilize its mass. Furthermore, the minimal supersym-

metric extension of the SM, the MSSM [4], led to the phenomenological success of gauge

coupling unification [5]. This has established high-scale SUSY GUTs as the standard frame-

work for the discussion of physics above the electroweak scale. Still, the problems concerning

symmetry breaking are not fully solved by SUSY. The gauge hierarchy between the EW and

the GUT scale is stabilized by SUSY, however, problems such as the origin of the doublet-

triplet splitting remain. In addition, low-energy phenomena are not supersymmetric, so

SUSY has to be broken, too, above the EW scale.

Another direction of unification which has been around since Einstein is the geometriza-

tion of interactions. The Kaluza-Klein (KK) mechanism of compactifying field theories in a

higher-dimensional space-time (d > 4) down toM4×C, where C denotes the compact inter-

nal manifold, allows for deriving gauge invariance geometrically as consisting of invariance

under coordinate transformations along the internal directions. Furthermore, new geomet-

rical ways of symmetry breaking arise by KK-compactification on topologically nontrivial

internal manifolds.

The next big leap came when people started considering extended one-dimensional ob-

jects instead of point particles: string theory presently appears to be the only candidate for

a finite theory of quantum gravity. Simultaneously, it contains an internal structure rich

enough to encompass chiral fermions and non-Abelian gauge interactions. The requirement

of internal consistency then led to the discovery that string theory demands both a 10d

space-time and the presence of supersymmetry. (Supersymmetry was discovered this way

first.) Superstring theory is therefore the only known candidate for a fully unified theory of

all interactions. This provided additional strong motivation for studying higher-dimensional

effective field theories since the superstring contains as its low energy effective theory 10d

supergravity.

During the last few years the above 4d SUSY GUT paradigm has been challenged by

various scenarios with extra dimensions compactified at scales below MGUT ∼ 1016 GeV.

In particular, Dienes, Dudas and Gherghetta [6] have proposed low-scale gauge unification

as a possible consequence of power-like loop corrections to gauge coupling constants [7, 8].

However, objections to this proposal were raised on the basis that the relevant loop correc-

tions are completely UV dominated and that, as a result, no precise statement about the

ratio of low-energy gauge couplings can be made without a UV completion of the higher-

dimensional SM-like theory (see, e.g., [9, 10]). The issue of gauge coupling unification in

higher dimensions (sometimes called ’power law running’) was also discussed in connection
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with ’deconstruction’ and warped 5d models (see, e.g., [11] and [12–14]). The geometric

nature of gravity forces the geometric properties of higher-dimensional field theories to be-

come dynamical if gravity is taken into account. A very interesting area in this context

is concerned with the existence and structure of non-trivial string vacua where all moduli

fields are stabilized. Moduli are 4d scalar fields which describe the geometric properties of

the compactification from 10d to 4d. Recent studies have shown the possibility to construct

such fully stabilized string vacua [15] using fluxes [16–31] and non-perturbative effects such

as gaugino condensation. Another interesting topic deals with the cosmological aspects of

the so-called string vacuum ’landscape’ since it became known that the number of possible

string vacua is enormous (a number in the range of 10500 [32]).

The present investigation concerns itself with the effects of higher-dimension operators

in higher-dimensional field theories which can appear in the effective action at tree level or

through radiative loop corrections.

The first part of this thesis focuses on loop corrections to the gauge couplings of higher-

dimensional field theories. Their power-like behavior has sometimes been called ’power law

running’ [6] and the discussion will thus concentrate on this term. The power-like loop

corrections derived in this thesis are shown to be numerically important, calculable, and

of a universal nature in very general situations, if the GUT group is softly broken in the

weak-coupling regime of the higher-dimensional theory [33]. Firstly, the general regime of

validity for such power corrections to the gauge couplings is discussed. Then the structure

of higher-dimensional SUSY is analyzed in its consequences for the structure of the quantum

effective action of the higher-dimensional GUT and its power-like loop corrections. The

central result here is that the power-like loop corrections can be understood entirely as the

effect of higher-dimension operators in the effective action which are completely determined

by the low-energy effective theory [34].

The second part concentrates on another area where higher-dimension operators can be

important. In type IIB superstring compactifications they can serve to stabilize all moduli

which are not fixed by fluxes in phenomenologically interesting 4d de Sitter (dS) vacua with

a small cosmological constant. Higher-order α′-corrections are higher-dimension operators

which are generically present in string theory. Together with the phenomenon of gaugino

condensation in super Yang-Mills theory (SYM) they lead to a scalar potential which can

stabilize all moduli. An analysis of this scalar potential demonstrates that one can have

slow-roll inflation driven by the volume modulus of the compact Calabi-Yau manifold which

ends in fully stabilized and phenomenologically interesting dS minima.
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The first part begins with a short introduction (Chapter 1) into the issues of higher-

dimensional field theories, their Kaluza-Klein reduction on compact extra dimensions to 4d

and the problems of the so-called ’power law running’ of gauge couplings in extra dimensions.

Some of the original ideas will be summarized and it will be made clear why the naive power

law scaling of gauge couplings in higher dimensions with the UV cutoff parameter cannot be

used to discuss unification - and how this problem can be solved [33].

Chap. 2 implements these general ideas in the context of higher-dimensional Yang-Mills

theory with a bulk GUT Higgs field Φ. Given an appropriate bulk potential, Φ will develop a

symmetry breaking VEV leading to massive vector bosons and a number of massive physical

scalars whose mass spectrum depends on the parameters of the GUT-Higgs scalar potential.

In five dimensions, minimal symmetry assumptions suffice to forbid operators linear in Φ to

obtain potentially sizeable, controlled power corrections [33] (cf. also [35]). The 1-loop power

corrections are derived in this general setup both in a manifestly five-dimensional calculation

and in the context of KK-mode summation [33]. Then general constraints of supersymmetry

are analyzed in this context. For instance, potentially large and calculable corrections arise

from GUT breaking by the adjoint scalar of the 5d vector multiplet [33]. The chapter finishes

with investigating the basic phenomenological aspects of the above generic GUT scenario

with or without SUSY for an SU(5) GUT compactified on an orbifold, an internal space with

singularities. Orbifolds are attractive, since they break the higher SUSY of 5d to the level of

4d N = 1 and may avoid the otherwise rapid proton decay. (This idea, already discussed in

the present context in [6], has more recently been extensively used in the context of orbifold

GUTs in 5d [36–38] and 6d [39, 40].)

Chapter 3 is concerned with the detailed structure of the supersymmetric case, where the

application of the exact quantum effective action by Intriligator, Morrison and Seiberg [41]

drastically improves the situation outlined above [34]. Here the crucial point is that the

quantum effective action at the two-derivative level is completely known. Technically, this

follows from the SUSY-based restrictions on higher-dimension operators, including the ab-

sence of two-derivative operators of mass dimension 6 and higher in the super Yang-Mills

(SYM) lagrangian (see [41] and also [42, 43]). As a result, low-energy 4d gauge couplings

may receive 100% corrections from higher-dimensional power-law effects which are neverthe-

less controlled within effective field theory. In the most extreme case, this allows scenarios

with quantitative TeV-scale power-law unification [34]. It is shown how the by now familiar

power corrections to gauge unification arise in the above framework. They correspond to

higher-dimension operators which are, in general, non-analytic in the symmetry-breaking

VEV [34]. Corrections induced by a bulk hypermultiplet become analytic (in fact, identical
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to a classical CS term) if the hypermultiplet mass is sufficiently large. However, the tun-

ing of finite hypermultiplet masses comparable to the bulk VEV allows the realization of

almost any desired power law effect. This ambiguity is avoided if the 5d model arises as the

low-energy limit of a 6d construction because of the absence of massive hypermultiplets in

6 dimensions [34].

Chapters 4 and 5 discuss phenomenological aspects of realizing the above ideas in more

concrete models. A realistic SU(5) model is introduced on an orbifold which breaks the GUT

group down to the SM at its singular points. The bulk field Φ breaking the symmetry in

the 5d bulk is the adjoint scalar of the 5d vector multiplet. Its VEV, which is stabilized,

e.g., by boundary Fayet-Iliopoulos (FI) terms, induces large power-law corrections to gauge

unification [33, 34]. At the same time, this VEV gives masses to the A5 zero modes of

X, Y gauge bosons. Power-law corrections to gauge unification are given in terms of the

Φ-VEV, the bulk hypermultiplet masses, and the bulk CS term, the latter being fixed by

brane anomaly cancellation. Intriguingly, a bulk field content of just the gauge multiplet

and a massless 10 of SU(5) induces a power-law effect that is identical to the logarithmic

running within the MSSM [34]. The extreme lightness of one of the three SM generations

naturally emerges in this context. Then 6-dimensional unified models are considered [44,45]

(for related earlier string theory results, especially including Wilson lines, see, e.g., [46]

and [47, 48]). The role of the Φ-VEV here is taken over by an A6 Wilson line wrapping the

cylinder-like central part of the compact space chosen to be an orbifolded 2-torus T 2/Z2 with

its two radii taken to be highly hierarchical (a long pillow). The value of the Wilson line is

fixed by the orbifold breaking of the gauge symmetry at the 4d fixed points. As far as power-

law corrections are concerned, such effectively 5d scenarios arising from the compactification

of 6d theories are more predictive than pure 5d models because of the absence of massive

gauged hypermultiplets and 6d anomaly constraints on massless bulk matter [34].

The second part begins with Chapter 6. Here the basic ideas of compactifying the type

IIB superstring on a Calabi-Yau manifold in the presence of background fluxes of the higher

p-form fields of the effective type IIB supergravity are introduced. The presence of Dp-branes

in string theory allows for the appearance of warped geometries [49] with its simultaneous

presence of p-form fluxes. These fluxes generate a superpotential for the complex structure,

or shape moduli of the Calabi-Yau [21, 22], which can stabilize them [16–31]. Then the

KKLT [15] construction of fully stabilized dS string vacua is reviewed: the remaining Kähler

moduli, which are not fixed by the fluxes, are stabilized by non-perturbative effects such

as D3-instantons or gaugino condensation on stacks of D7-branes. Afterwards the resulting

stable and supersymmetric AdS4-minima are lifted to metastable dS4-vacua with a small
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cosmological constant by introducing anti-D3-branes as a source of SUSY breaking. Next

a short introduction into inflation is given with emphasis on the conditions which scalar

fields have to fulfill in order to become a successful candidate for driving inflation. The

chapter closes with a review of some attempts to realize inflation in KKLT-like setups. One

can use, for instance, moving D3-branes to do this [50] or introduce additional gaugino

condensates [51] to generate sufficiently flat directions for the KKLT volume modulus.

Chapter 7 firstly states [52, 53] that the source of more or less explicit supersymmetry

breaking, the anti-D3-branes usually used in KKLT-like models, can be replaced by higher-

order α′-corrections [54] to the effective supergravity. In trying to realize inflation in such a

setup one has to avoid the so-called η-problem of supergravity (for instance, the D3-brane

models mentioned above run into this problem [50]). This problem arises because, unlike the

superpotential, the Kähler potential of the inflaton candidate often gets corrections which

give the field a mass comparable to the Hubble parameter during that epoch. Fortunately,

the volume modulus considered in the model here has a leading order Kähler potential of

the no-scale type. Therefore, there is no η-problem in this setup. In fact, it is shown that

the α′-correction can generate a scalar potential for the volume modulus which contains

both a stabilizing dS minimum and sufficiently flat saddle points where inflation can start.

An explicit model is constructed where slow-roll inflation with about 130 e-foldings occurs.

Inflation ends when the volume modulus rolls down into the metastable dS4 minimum with

a small cosmological constant. This model can accommodate the WMAP data of the cosmic

microwave background (CMB) radiation. It yields the correct magnitude of the primordial

density fluctuations with a reasonable value for the spectral index of the fluctuation spectrum

ns ≈ 0.93.

The results of this investigation are discussed in the conclusion. More details can be found

in the Appendices. App. A gives the general structure of the 1-loop corrections to the gauge

couplings in 5d. It compares KK-mode summation with manifestly five-dimensional calcu-

lations. App. B deals with the properties of the prepotential of 5d SYM being at the very

heart of the discussion of higher-dimension operators in gauge unification. App. C discusses

analyticity properties of the higher-dimension operators induced by the power-like loop cor-

rections. In App. D, the necessary details of the calculation of power corrections arising from

symmetry-breaking Wilson lines in 6d are given. App. E deals with the structure of spinorial

mass terms and the absence of massive gauged matter in 6d SUSY. Appendix F contains a

short summary of facts regarding the moduli fields of Calabi-Yau compactifications.
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Chapter 1

Gauge Coupling Unification in Higher
Dimensions

Extra dimensions have been around in theoretical physics since the pioneering work of Kaluza

and Klein in the 1920s. They provide a tool for unification by explaining gauge invariance as

invariance under coordinate transformations along the internal directions of a compactified

higher-dimensional space-time. Phenomenologically such extra dimensions must be smaller

than TeV−1 or else one would have seen them, for instance, in collider experiments. In string

theory extra dimensions were for a long time thought to be at the 4d Planck scale Mp =

1.2 · 1019 GeV. The existence of Dp-branes in string theory allowed for the possibility that

some of six additional dimensions of string theory upon compactification might stay larger

than M−1
p contrary to what was hitherto assumed in the standard lore. This allowed low

energy effective field theories embedded into string theory with extra dimensions far below

the Planck scale to become realistic models. Moreover, this provided additional motivation

to study higher-dimensional field theories by themselves (without necessarily embedding

them into string theory).

In the context of this framework then Dienes, Dudas and Gherghetta (DDG) [6] proposed

to realize the MSSM in a higher-dimensional space-time with one or more extra dimensions

compactified on an S1/Z2 orbifold or a higher-dimensional orbifold, respectively. The process

of orbifolding is necessary since already in 5d the minimal supersymmetry corresponds to

N = 2 in 4d language. Compactification from 5d to 4d on an orbifold S1/Z2 is a way to break

the supersymmetry to 4d N = 1. Upon a Kaluza-Klein reduction of this higher-dimensional

field theory the MSSM fields acquire so-called KK-towers of equidistantly spaced massive

KK-modes which all contribute to the running of the gauge couplings. Consider the vacuum

polarization diagrams, which generate the 1-loop corrections to the gauge couplings. The

effect of the KK-tower of fields running in these loops adds up to a power-law dependence of

the gauge couplings on the UV-scale Λ in the higher-dimensional field theory. This so-called
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’power law running’ of the gauge couplings was then used in [6] to argue for the possibility of

accelerated power law unification of the MSSM gauge couplings at M ′
GUT �MGUT ≈ 2 ·1016

GeV.

To clarify this idea, consider the KK reduction of a 5d U(1) gauge theory coupled to a

5d complex scalar field H on an S1 to 4d. The 5d action is

S5d =

∫
d5x

(
− 1

4g2
5d

FMNF
MN + (DMH)∗DMH

)
(1.1)

with: FMN = ∂MAN − ∂NAM
DM = ∂M − iAM .

Now a function f(x, y) has a Fourier decomposition on the S1 given by

f(x, y) =

∞∑

n=0

f (n)(+)(x) · cos
(ny
R

)
+

∞∑

n=0

f (n+1)(−)(x) · sin
(

(n+ 1)y

R

)
(1.2)

where (+) and (−) refer to the intrinsic parity of the cosine and sine modes under y →
−y, respectively. R denotes the radius of the S1 on which the fifth dimension has been

compactified. The fifth coordinate has been called y and a 5d coordinate index is denoted

by M = 0 . . . 3, 5 while µ = 0 . . . 3 denote 4d indices. Obviously the fields AM (x, y) and

H(x, y) split into so-called KK towers of 4d vector fields A
(n)(+)
µ (x), A

(n+1)(−)
µ (x) and 4d

scalar fields φ(n)(+)(x) = A
(n)(+)
5 (x), φ(n+1)(−)(x) = A

(n+1)(−)
5 (x) and H (n)(+)(x), H (n+1)(−)(x).

These modes get so-called KK masses because the action of ∂y on a given KK mode produces

a factor of n/R which is the KK mass of the mode. Note, that for each massive level of

each field two KK modes (one sine and one cosine) are present. At low energies below the

compactification scale Mc = 1/R only the zero modes can be observed. Plug these definitions

into the 5d action, retain only the zero mode of the 5d gauge field and integrate over the

extra dimension ∫ 2πR

0

dy . (1.3)

The resulting 4d action is

S4d =

∫
d4x
[∑

n≥0

( ∣∣D(0)
µ H(n)(+)

∣∣2 +
∣∣D(0)

µ H(n+1)(−)
∣∣2 +

n2

R2
(|H(n)(+)|2 + |H (n+1)(−)|2)

)

+V (φ(0)(+), H(n)(+), H(n+1)(−))− 1

4g2
4d

F (0)
µν F

(0)µν
]

(1.4)

with: D(0)
µ = ∂µ − iA(0)(+)

µ , F (0)
µν = ∂µA

(0)(+)
ν − ∂νA(0)(+)

µ .
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V contains the couplings between the A5-zero mode φ(0)(+) and the H-KK modes. The 4d

gauge g4d coupling is given in terms of the 5d gauge coupling g5d as

1

g2
4d

=
2πR

g2
5d

. (1.5)

It is clear that the above KK-reduced 4d action contains with the A5-zero mode φ(0)(+)

an unwanted massless scalar field which couples to the KK towers of scalars H (n)(+) and

H(n+1)(−). One can remove this problem by compactifying on the orbifold S1/Z2 where the

Z2 denotes the transformation Z2 : y → −y of the S1. This orbifold is obtained by modding

out the theory compactified on a circle S1 by this Z2 transformation. Upon identification

of y and −y on the circle the y-space of the theory becomes an interval [0, πR] with the

endpoints given by the fixed points of the S1 under the Z2. Modding out the field theory by

the Z2 means that the field space of the theory is restricted to the subset of fields which are

consistent with the Z2 action on the fields. Therefore, one has to specify the action of the

Z2 on the fields. One can do this here by demanding that the fields AM and H transform

under the Z2 according to

Aµ(x, y) → Aµ(x,−y) = Aµ(x, y)

Z2 : A5(x, y) → A5(x,−y) = −A5(x, y) (1.6)

H(x, y) → H(x,−y) = H(x, y) .

The minus sign in the transformation of A5 is required by the fact that this appears in the

action in the combination ∂5 − iA5 and ∂5 is odd under the Z2. For the action Eq. (1.4)

this means that the A
(n+1)(−)
µ , H(n+1)(−) and the φ(n)(+) modes are removed. Therefore, the

orbifolding removes the unwanted massless scalar φ(0)(+) from the low energy 4d theory. The

lowest of the allowed modes φ(n+1)(−) has n = 1 and therefore already a mass 1/R.

In a similar way orbifolding reduces the higher supersymmetry of 5d. In 5d there are

only 4-component Dirac spinors (no Majorana or Weyl condition is possible). Therefore the

generator of the minimal 5d supersymmetry splits into the two generators of 4d N = 2 SUSY

with respect to 4 dimensions. Upon S1/Z2 orbifolding the two 4d Weyl spinors contained

in the 5d Dirac spinor get opposite parities under the orbifold action. One of them has no

(+)-KK modes and therefore no zero mode anymore. Thus, a 5d theory with minimal SUSY

compactified on an S1/Z2 orbifold has chiral KK-zero modes which therefore have only 4d

N = 1 SUSY. Therefore, the authors of [6] proposed to compactify a 5d MSSM (which

initially has N = 2 SUSY in 4d language) on an S1/Z2 orbifold.

Consider now the 1-loop correction to the gauge coupling given by the vacuum polar-

ization diagrams. For the scalar QED of Eq.s (1.1) and (1.4) above they are given by the
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Figures A.1 and A.2 in Appendix A. At low energies the 4d gauge field A
(0)(+)
µ forms the

external legs and thus the whole KK-tower of fields H (n)(+) runs in the loops (the H (n+1)(−)-

tower is removed by the orbifolding).

From here it is clear that in this effective 4d picture the 1-loop running of gauge couplings

in the compactified 5d MSSM in [6] is described by an expression

α−1
i (MZ) = α−1

i (Λ) +
bi
2π

ln

(
Λ

MZ

)
+

b′i
2π

2
∞∑

n=1

ln

(
Λ

nMc

)
. (1.7)

Here the bi = (33/5, 1,−3) denote the MSSM 1-loop beta function coefficients of the KK-zero

mode for the gauge group U(1)Y ×SU(2)F ×SU(3)C . The b′i denote the corresponding beta

function coefficients for the higher KK modes. They are different because for the massive

KK-levels the supersymmetry still corresponds to 4d N = 2. In more than four dimensions

the gauge couplings carry negative mass dimension implying that higher-dimensional gauge

theories are perturbatively non-renormalizable by power counting. Thus, such theories have

to be viewed as effective field theories which at some UV scale Λ have to be embedded into

some more fundamental theory. DDG proposed to solve this problem by retaining in the

sum only the first N KK modes up the fundamental scale Λ where N =
[

Λ
Mc

]
. This leads to

N∑

n=1

ln

(
Λ

nMc

)
= N ln

(
Λ

Mc

)
− lnN !

= N ln

(
1

N

Λ

Mc

)
+N − 1

2
ln

(
Λ

nMc

)

=
Λ

Mc
− 1

2
ln

(
Λ

nMc

)
+O(1) (1.8)

where Stirling’s approximation has been used to evaluate N ! and N ≈ Λ
Mc

. Thus one arrives

at an expression for the gauge couplings given by

α−1
i (Mc) = α−1

i (Λ) +
bi − b′i

2π
ln

(
Λ

Mc

)
+
b′i
π

Λ

Mc

(1.9)

which motivated the term ’power law running’. If the KK beta function coefficients b′i now

fulfill the crucial unification constraints of the running of the gauge couplings relative to

each other
b′1 − b′2
b′1 − b′3

=
b1 − b2

b1 − b3

∣∣∣∣
MSSM

= 1.4 (1.10)

(which according to [6] they do up to a few %) then the gauge couplings unify accelerated

by power law running - if they depend on precisely the same UV cutoff Λ.

However, as it is well known from quantum field theory, physical results of a calculation

should not depend on the precise choice of the UV cutoff that regularizes the loop integra-

tions. To illustrate this, look at the running couplings of the 4d MSSM. The running of the
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couplings is induced by logarithms

ln

(
Λ

MZ

)
. (1.11)

Changing the cutoff parameter by 100% from Λ→ 2Λ produces a change

ln

(
Λ

MZ

)
→ ln

(
2Λ

MZ

)
= ln

(
Λ

MZ

)
+ ln 2︸︷︷︸
O(1)

(1.12)

which is small compared to the leading logarithm ln
(

Λ
MZ

)
. Compare that to the case of the

5d theory above: here
Λ

Mc
→ 2Λ

Mc
= 2 · Λ

Mc
(1.13)

which is a 100% correction to the original result! Imagine now a small dependence of the

regulator on the gauge group factor or a higher-dimensional operator present at the high scale

Λ which contributes to the value of the gauge coupling on the same level as the leading 1-

loop correction. This will completely destroy the predictivity of the above scenario in generic

cases. Therefore getting to work gauge coupling unification in this bottom-up approach via

naive power law running appears to be beset with severe difficulties.

Fortunately, this situation is not the full story. One can change the whole picture com-

pletely if one starts instead in a top-down approach from a higher-dimensional grand unified

theory with minimal symmetry assumptions. To see this, consider d-dimensional pure Yang-

Mills theory, compactified to 4 dimensions on a torus of radius R. Scattering processes in

the 4d theory at energies near the compactification scale Mc ∼ 1/R can be used to define a

4d gauge coupling α4(Mc) = g2
4(Mc)/(4π). In the following, this quantity will be considered

as the basic physical observable of the low energy effective theory. It is linked to processes at

energies far below Mc by conventional 4d logarithmic running. The relation to the coupling

constant αd of the d-dimensional theory is given by

α4(Mc)
−1 ∼ αd(µ)−1Rd−4 + f1-loop(µ,R) + higher orders , (1.14)

where µ characterizes the renormalization point of the higher-dimensional field theory (see,

e.g., [55]). For µ � Mc, the leading contribution from f1-loop is ∼ (µR)d−4. It describes

the power-divergent loop-correction to the F 2 term in the bulk, multiplied by the extra-

dimensional volume. Since the left hand side is µ-independent, one has αd(µ)−1 ∼ Md−4 −
µd−4, where M can be considered as the fundamental UV scale of the model, and O(1)

numerical coefficients (which depend on the renormalization scheme) have been suppressed.

It is convenient to assume µ�M , so that αd ∼M4−d.

Next, assume that the vacuum expectation value (VEV) of a bulk Higgs breaks the

simple gauge group G of the fundamental theory to a subgroup H = H1 × · · · ×Hn (which
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is a direct product of simple groups and U(1) factors). The Higgs breaking is characterized

by an energy scale MB, related to the masses of vector bosons and physical scalars. For

Mc �MB � µ�M , the 4d gauge couplings, labelled by the index i = 1...n, are now given

by

α4,i(Mc)
−1 ∼ αd(µ)−1Rd−4 + (µR)d−4 + f1-loop,i(µ,R,MB) + higher orders . (1.15)

Here the 1-loop correction has been split into a universal (i-independent) piece carrying the

leading divergence ∼ µd−4 and the non-universal piece f1-loop,i. To understand this structure,

it is sufficient to observe that, while the bulk theory at energies below MB possesses non-

universal (with respect to i) power divergences of degree d− 4, such divergences can not be

present in the unbroken high-scale theory. Thus, their contribution to the coefficients of F 2
i

is suppressed by M 2
B. To be more specific, the function f1-loop,i may be considered as arising

from differences of one-loop integrals with massive and massless vector bosons,

∫ µ ddk

(k2 +M2
B)2
−
∫ µ ddk

(k2)2
∼M2

Bµ
d−6 , (1.16)

which demonstrates the structure of the MB-suppression. Appendix A gives this argument

diagrammatically in Fig. A.3 and in a detailed calculation for a U(1) × U(1)′ toy model.

This estimate is, however, only valid for d > 6. For d = 5 this term is finite and calculable,

so that Eq. (1.15) has to be replaced by

α4,i(Mc)
−1 ∼ α5(µ)−1R + µR + ciMBR + · · · . (1.17)

This structure was previously discussed in U(1) toy models [12–14]. Except for the non-

universal numbers ci, numerical coefficients have been suppressed in the above estimates.

Furthermore, both higher-loop and volume-suppressed terms have been dropped in Eqs. (1.15)

and (1.17).

For d = 6, the MB suppressed term reads ci(MBR)2 ln(µ/MB). This means that non-

universal counterterms (corresponding to higher-dimension operators) have to be present

for consistency of the theory. Thus, although an O(1) term coming with the log remains

undetermined, the coefficients ci and therefore the log-enhanced piece is calculable.

The above contributions proportional to ci provide corrections to α−1
d,i of relative size

(MB/M)d−4. At first sight, the phenomenological relevance of these corrections appears to

be limited by possible higher-dimensional operators, e.g., tr[F 2 · Φ] (where Φ is the bulk

field developing a symmetry-breaking VEV). In principle, such operators can give rise to

non-universal corrections as large as the loop-effects discussed above.1 However, as will be

1This has been pointed out in [12] in the context of a 5d toy model GUT with gauge group U(1)×U(1)′.
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explained in detail below, in the simplest and most popular higher-dimensional scenarios,

the leading dangerous operators are either automatically forbidden or can be forbidden

by minimal symmetry assumptions. Furthermore, it turns out that the coefficients ci are

governed by the basic group theoretic structure of the theory and are therefore fairly model-

independent. Thus, it can be concluded that power-like threshold corrections to gauge

unification can and should be taken seriously at a quantitative level.

A simple example shall explicitly demonstrate the feasibility of this idea. For that purpose

it will be sufficient to work in the framework of a 5d ’toy’ GUT comprised of two complex

scalar fields h, h′ gauged under a U(1)×U(1)′. Its lagrangian with the gauge couplings g, g′

is subject to a Z2 exchange symmetry Z2 : h → h′, AM → A′M , φ → φ′ which enforces

g = g′. The action of this theory reads as

LU(1)×U(1)′

5d = − 1

4g2
FMNF

MN − 1

4g′2
F ′MNF

′MN + (DMH)†DMH − φ2|h|2 − φ′2|h′|2

−V (Φ) + |∂MΦ|2

where : DM = ∂M − ig
(
AM 0
0 0

)
− ig′

(
0 0
0 A′M

)
, (1.18)

H =

(
h

h′

)
, Φ =

(
φ

φ′

)
with: φ, φ′ ∈ R

which is essentially scalar QED of two charged and uncoupled scalars which are, however,

forced together by the supplementary Z2. As a minimal symmetry assumption let V (Φ) now

be invariant under Φ → −Φ. Further, assume that V (Φ) is of a form such that Φ develops

a VEV

〈Φ〉 =

(
0

Φ0

)
. (1.19)

This VEV breaks the Z2-symmetry spontaneously and induces at the 1-loop level a splitting

in the gauge couplings g, g′ by giving h′ a mass mh′ = |Φ0|. The competing higher-dimension

operators φF 2, φ′F ′2 mentioned above now have to vanish by virtue of the invariance under

sign reversal of Φ, leaving as the first allowed operator containing F ′MN and φ′

1

M
· φ′2F ′MNF

′MN . (1.20)

Here M denotes the UV-cutoff scale of the theory implying that the above operator remains

suppressed as long as |〈Φ〉| ∼ |Φ0| �M holds. Explicitly, one has according to Eq. (1.17)

1

g′24

∣∣∣∣
Mc

∼ R

g′25

∣∣∣∣
µ

+ µR + ciMBR + · · · (1.21)
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where now MB ∼ mh′ = |Φ0|. This implies that at the 1-loop level the effective action

contains at least the operators

1

g′25
F ′MNF

′MN , |φ′|F ′MNF
′MN

∣∣
1−loop

,
1

M
· φ′2F ′MNF

′MN . (1.22)

From the absence of the tree level operator φ′F ′MNF
′MN by symmetry the calculability and

phenomenological relevance of the 1-loop correction to the gauge couplings in the limit

|Φ0| �M is clear.

Using the results given in the Appendix A one can deduce the 1-loop corrections induced

by the scalar fields running in the loops to the gauge couplings g5 and g′5, respectively. Taking

then the difference of their inverse values one arrives at one of the main results of this thesis

(Eq.s (A.11) and (A.14) in the Appendix) - that this difference of the inverse gauge couplings

α−1
5d (Mc)− α′5d

−1
(Mc) = bh ·mh′ =

1

12π
·mh′ =

1

12π
· |Φ0| (1.23)

is finite despite each single gauge coupling having a UV-divergent linear contribution.

Thus, in precisely this sense one may speak of well-defined and calculable power law

unification in terms of power-like threshold corrections induced by softly broken higher-

dimensional GUTs, and it is this idea which will be elaborated in the next chapters.
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Chapter 2

Radiative Threshold Corrections to
Gauge Unification in 5d

2.1 Calculable bulk threshold corrections

The previous introductory Chapter has outlined the idea of calculable power-like threshold

corrections to gauge coupling unification which do not depend on a UV-definition of the

naive dimensional power-law scaling of the gauge couplings in higher dimensions. The crucial

ingredients necessary to achieve this were identified. One needs a higher-dimensional unified

gauge theory which is softly broken in the bulk by the VEV of some Higgs field Φ. Further,

the theory has to satisfy minimal symmetry assumptions with respect to the Higgs field

(usually a symmetry Φ → −Φ is sufficient) which will guarantee the absence of the tree

level operator Φ · F 2. Now one has to extend the U(1)× U(1)′ toy GUT analysis of the last

Chapter to the context of non-Abelian gauge theories which contain candidates like SU(5)

as Grand Unified Theories.

Consider a d-dimensional Yang-Mills theory with simple gauge group G and a Higgs-field

Φ transforming in some representation of G. The lagrangian reads

L = − 1

2g2
d

· tr
(
FMNF

MN
)
− (DMΦ)†

(
DMΦ

)
− V (Φ) , (2.1)

where FMN is the field strength tensor, DM is the covariant derivative, and the indices

M,N run over 0,...,3,5,...,d. Assume now that Φ develops a VEV breaking G to a subgroup

H = H1 × · · · × Hn. Without supersymmetry, this can simply be realized by choosing

an appropriate bulk potential V (Φ). Higher-dimensional supersymmetry restricts possible

bulk interactions and different origins for a bulk VEV have to be considered (cf. Sects. 2.3

and 2.4).

At tree level, the couplings αd,i of the group factors Hi are equal to the coupling αd of

G. At one loop, one has to calculate the contributions of the light and heavy vector bosons
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and the physical Higgs scalars to the coefficients of the F 2
i terms, i.e., to the normalization

of the field-strength terms of the unbroken subgroup factors. This calculation was done in

the context of 4d GUTs in dimensional regularization [56, 57] (see also [58]), so that the

d-dimensional result can simply be taken from [56]:

α−1
d,i = α−1

d +
Γ(2− d/2)

6(4π)d/2−1


−(25− d)

∑

ri

Md−4
V,ri

Tri +
∑

r′i

Md−4
S,r′i

Tr′i + 2sd
∑

r′′i

Md−4
F,r′′i

Tr′′i


 .

(2.2)

Here ri, r
′
i and r′′i label the representations under Hi of the vector, scalar and spinor particles

and MV,ri, MS,r′i, and MF,r′′i stand for the corresponding masses. (Although the minimal

setting discussed at the moment has no fermions, a possible fermionic contribution was in-

cluded into the above equation for completeness. The number sd characterizes the dimension

of the relevant spinor.) Furthermore, Tri is defined by tr[T aT b] = δabTri , where T a,b are the

generators in the representation ri (and analogously for r′i and r′′i ).

Concerning the structure of Eq. (2.2), several comments are in order. The choice of α−1

(rather than α or g) as the basic quantity rests on its interpretation as the coefficient of

the F 2 operator and hence the fact, that the further transition to the 4d theory proceeds

simply by multiplication with the volume factor. Of course, this direct relation between

Eq. (2.2) and Eq. (1.15) works only up to terms suppressed by a volume factor. Such terms

will be discussed in more detail below. Note furthermore that Eq. (2.2) does not contain

contributions from the gauge bosons of the unbroken subgroup. In the context here, the

reason for this is the masslessness of these vector bosons. Because of the absence of a mass

scale, the corresponding loop integrals have a pure power of the loop momentum in the

integrand and therefore vanish in dimensional regularization.1

By power counting, one expects the one-loop correction to α−1
d,i to diverge with the

(d − 4)th power of the cutoff. The fact that this does not show up in Eq. (2.2) is due

to the use of dimensional regularization. However, this does does not restrict the validity of

the conclusions in any way. On the one hand, this leading power-divergence is G-universal

(independent of i) because of the symmetric structure of the UV theory and can thus be ab-

sorbed in a redefinition of α−1
d . On the other hand, the main phenomenological implications

depend only on the differences between the inverse gauge couplings of the group factors Hi

and are therefore not affected by a G-universal correction.

The further analysis depends crucially on two closely related issues: the possible exis-

1This argument works only for d > 4, where the coupling can be defined at zero external momentum. In
4 dimensions, the relevant loop integrals require the external momentum as IR regulator, and as a result the
familiar contribution ∼ ln(µ2/Q2) from massless gauge bosons appears.
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tence of higher-dimension operators that can compete with the corrections on the r.h. side

of Eq. (2.2) and the UV divergences that are present even in these non-G-universal loop

corrections. To be specific, the lagrangian generically contains terms

∼ 1

Mk
Φn(FMN)2 , (2.3)

where it has been assumed that the relevant product of representations of G contains a

singlet, and k is chosen to ensure the overall mass dimension d. When Φ develops a VEV

v = MV /gd (vector boson masses are generated as in the familiar 4-dimensional setting),

the operator in Eq. (2.3) can lead to non-universal corrections to α−1
d,i at tree-level. Since

g2
d ∼ M4−d (the fundamental UV scale of the theory), the relative size of this correction is

given by
∆α−1

d,i

α−1
d

∼
(
MV

M

)n
. (2.4)

This has to be compared to the correction from Eq. (2.2) which, focussing on the vector

boson part, is of relative size (MV /M)d−4. Given the possibility that n = 1, this appears to

be discouraging. However, it is important to keep in mind that certain values of n may be

forbidden by group theory or other symmetries. For example, for d = 5 the leading calculable

correction is of relative size MV /M (MV /M � 1), and a simple Z2 symmetry Φ → −Φ is

sufficient to forbid the competing n = 1 term from Eq. (2.4). The n = 2 term is of relative

size (MV /M)2 and therefore negligible.

Higher-dimension operators can act as counter terms and are therefore intimately linked

to the divergence structure of the non-universal corrections on the r.h. side of Eq. (2.2).

In 5d, the non-universal part of the loop correction is finite, which is consistent with the

possibility of forbidding the relevant operator by a Z2 symmetry. For d → 6, the Gamma

function develops a pole, showing that the non-universal term is afflicted by a logarithmic

divergence. Although this implies the existence of a higher-dimension operator ∼ F 2Φ2

providing the counter term, predictivity is maintained at the leading logarithmic level. To

be specific, it is assumed that the divergence is cured by a theory of higher symmetry at the

scale M and that there are no anomalously large non-universal threshold effects associated

with this transition. In short, one works at leading-log approximation in M/MV . This

logarithm can be extracted from Eq. (2.16), as is common in 4d, by setting d = 6 − 2ε,

introducing appropriate factors µ2ε to keep the correct dimensionality, expanding in ε, and

letting ε→ 0 and µ→M . Focussing on the vector contribution, the result reads

α−1
4,i (Mc) = V α−1

6 +
1

3(4π)2
19
∑

ri

(VM2
V,ri

)Tri ln
M

MV,ri

. (2.5)
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This should provide a good description if M 2
c � M2

V � M2 and scalar and fermion masses

are small.

In more than 6 dimensions, power-counting suggests that there are non-universal power-

divergences. More specifically, the explicitly calculated logarithmic divergence in d = 6

suggests a power-divergence of degree d − 6 in d dimensions, which would have to come

with a factor M 2
V for dimensional reasons. The corresponding counter term is provided

by the operator Φ2F 2, which should therefore always be included in the lagrangian. The

term ∼Md−4
V in Eq. (2.2) is subdominant with respect to this operator. Thus, quantitative

statements depend on a more detailed knowledge of the UV structure of the theory. However,

it is likely that the group-theoretical specification of the VEV of Φ and a classification of

the singlets contained in Φ2F 2 will be sufficient to uniquely determine or strongly constrain

the way in which Φ2F 2 terms contribute to gauge coupling differences α−1
4,i (Mc)− α−1

4,j(Mc).

Dangerous higher-dimension operators mixing Φ and F 2 may also reside on branes. But

in this case their contribution to the observed effective 4d couplings is further suppressed

by volume factors. For example, the contributions of operators on branes of co-dimension

dc are suppressed by the potentially small factor (MR)−dc , where R is the compactification

radius.

To summarize, a generic and particularly predictive setup can be described as follows.

Assume that there are no bulk fermions or at least no non-G-universal mass splitting of bulk

fermions. Assume furthermore that MS � MV , i.e., the potential stabilizing the VEV of

Φ is relatively flat (this is generic in supersymmetry which, however, will be discussed in

more detail below). If dangerous higher-dimension operators are forbidden by appropriate

symmetries, the leading power correction is calculable and the resulting 4d gauge couplings

are obtained by multiplying Eq. (2.2) with the volume factor V:

α−1
4,i (Mc) = V α−1

d −
Γ(2− d/2)

6(4π)d/2−1
(25− d)

∑

ri

(VMd−4
V,ri

)Tri . (2.6)

Here α−1
d on the r.h. side is defined in dimensional regularization, which makes it independent

of the subtraction scale µ since the coefficient of the relevant G-universal power-divergence

vanishes. One may think of αd as the d-dimensional gauge coupling defined at zero mo-

mentum (in complete analogy with 1/MP in 4d gravity). The Tri and the relative sizes of

the MV,ri are determined by group theory (the representation of Φ and the direction of its

VEV v), so that the power correction is proportional to V vd−4. The relative size of this

correction is (MV /M)d−4. It has to be small enough so that even higher powers of MV /M

are suppressed. Nevertheless, it can be significantly larger than the usual 4d GUT threshold

corrections of relative size αGUT ∼ 1/25. Jumping somewhat ahead one may speculate that
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higher supersymmetry or string theory may forbid or fix all dangerous higher-dimension op-

erators and higher-loop corrections to the d-dimensional gauge couplings (cf. [59]), in which

case one might hope to go to the region MV ∼ M so that the relative sizes of low-energy

gauge couplings are dominantly determined by power-law effects. In fact, exactly this situa-

tion will be discussed in Chap. 3 with a positive result because the higher supersymmetry in

5 dimensions indeed is strong enough to eliminate all but a finite number of higher-dimension

operators on the two-derivative level.

2.2 Brane effects and the KK-mode approach

For now, however, the generic non-supersymmetric setup defined above will be further ana-

lyzed. All considerations so far used the 5d bulk point of view with the focus on true bulk

effects. Therefore, terms suppressed by powers of the bulk-size R were completely neglected.

However, it is clear that such contributions are generically present, e.g., on the r.h. side of

Eq. (2.6). One can approach this issue using d-dimensional propagators in the full, com-

pactified geometry. However, in the present investigation it appears to be simpler to discuss

these effects using an effective 4d framework and summing KK modes. Clearly, these two

methods are equivalent both conceptually and quantitatively.

To be specific, although being prepared to neglect terms down by full powers of MR

(since these terms will in general be sensitive to unknown and largely unconstrained brane

operators), one would like to take terms into account that are suppressed by powers of MR

but enhanced by ln(MR). Such terms are known to be important in orbifold GUTs [37,38],

where they give rise to the calculable ‘differential running’ [60] above the compactification

scale.

For simplicity, first consider a toy example of one extra dimension compactified on an

S1. One starts with a theory with one unbroken gauge group G and considers only the

contribution of a bulk scalar with mass MS1 ∼Mc in a certain representation of G.

Further, compare this to a theory where the scalar mass is shifted to MS2 � Mc. The

difference in the scalar contribution to the low-energy gauge couplings in these two models

comes from the difference in log-contributions from the KK towers:

α−1
4 (Mc)model 2 − α−1

4 (Mc)model 1

=
Tr

24π

∞∑

n=−∞

[
ln

µ2

(nMc)2 +M2
S2

− ln
µ2

(nMc)2 +M2
S1

]
(2.7)

' Tr
24π

[
− ln

M2
S2

M2
c

− 2

∞∑

n=1

ln

(
1 +

N2

n2

)]
, (2.8)
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where N = MS2/Mc and MS1 has been set to zero everywhere in Eq. (2.8) except for the

zero-mode contribution, where it has been replaced by Mc = 1/R. This introduces only an

O(1) error. The sum on the r.h. side of Eq. (2.8) can be estimated as

∞∑

n=1

ln

(
1 +

N2

n2

)
' πN − lnN +O(1) , (2.9)

for N � 1, so that the final result reads

α−1
4 (Mc)model 2 − α−1

4 (Mc)model 1 = −Tr
12

MS2

Mc
. (2.10)

Thus, model 2 differs from model 1 precisely by the power-like contribution ∼ MS2, which

can also be obtained from Eq. (2.2) by setting d = 5. The important point here is that

one finds no additional, log-enhanced contribution from the momentum region above Mc. In

other words, the zero-mode log combines with the KK logs to give just a pure power.

The situation is different, however, if one compactifies on S1/Z2. In this case, the sum

over positive and negative n in Eq. (2.7), corresponding to sines and cosines, is replaced by

a sum over just positive n, corresponding to cosines only (assuming positive Z2 parity of the

scalar field). The zero mode still contributes with full strength. As a result, the cancellation

of the zero-mode log is incomplete and Eq. (2.10) is replaced by

α−1
4 (Mc)model 2 − α−1

4 (Mc)model 1 = −Tr
24

MS2

Mc
− Tr

12π

1

2
ln
MS2

Mc
. (2.11)

If, on the other hand, the Z2 parity of the scalar field is odd, there is no zero mode and

only the sine modes contribute to the KK sum. One then finds

α−1
4 (Mc)model 2 − α−1

4 (Mc)model 1 = −Tr
24

MS2

Mc
+

Tr
12π

1

2
ln
MS2

Mc
. (2.12)

This simple calculation allows for the following intuitive interpretation: Without branes,

gauge coupling corrections are logarithmic below the compactification scale and purely

power-like above it. Introducing 4d boundaries (branes) leads to typical 4d effects even

above Mc, i.e., logarithmic corrections. For each brane at which a 5d field is non-zero (Neu-

mann boundary conditions), one finds (1/4) times the usual log from 4d running. For each

brane at which a 5d field is zero (Dirichlet boundary conditions), one finds −(1/4) times

this log. It can be easily checked that this rule extends to S1/(Z2 × Z ′2), where a field can

be zero at one brane and non-zero at the other.

While the extension of this rule to fermions is straightforward, the case of massive 5d

vector fields requires some comments. The rule is that, if Aµ (where µ = 0, ..., 3) is non-

zero at a boundary, one finds a scalar log contribution with prefactor (1/4)(−22). The

22



factor −22 can be derived from Eq. (2.8) recalling that the zero mode (massive vector) has

prefactor −21, while the KK tower (massive vectors and A5-scalars) has prefactor −20. An

intuitive understanding can be obtained if, guided by the scalar case above, one adds the

Aµ contribution (1/4)(−21) and the A5 contribution (−1/4) (the ‘−’ arising since A5 is zero

if Aµ is non-zero). The rule extends in an obvious way to the case in which Aµ is zero at

a boundary (orbifold breaking of the gauge group): one finds a scalar log with prefactor

(−1/4)(−22). In deriving this, it is important not to forget the A5 zero-mode. Furthermore,

there is a straightforward extension to the case of massless 5d vector fields, where the relevant

prefactors of the boundary logs are (±1/4)(−23).

In fact, the above set of rules represents a simple and intuitive way of rederiving the

‘differential running’ in 5d orbifold GUTs above Mc because it relates 4d logs directly to the

boundary conditions of fields (without any reference to the KK mode spectrum).

To illustrate the relevance of the above in the present context, now a more complete

version of Eq. (2.6) in 5d is given. One works on S1/Z2 with Aµ and Φ non-zero at both

boundaries. The result, which now includes both power-law and log-enhanced terms, reads

α−1
4,i (Mc) = πRα−1

5 +
1

24


20

∑

ri

(RMV,ri)Tri −
∑

r′i

(RMS,r′i)Tr′i


 (2.13)

+
1

12π


1

2
(−22)

∑

ri

Tri ln
M

MV,ri

+
1

2

∑

r′i

Tr′i ln
M

MS,r′i

+
1

2
(−23)Ci ln

M

Mc


 .

Note, in particular, the appearance of contributions from the vector bosons of the unbroken

subgroup (Ci is the adjoint Casimir of Hi) which, although irrelevant for the power-like

terms, contribute to the boundary-driven logarithmic running above Mc. Furthermore, it

should be observed that no non-universal logarithmic running occurs above the highest of

the scales MV,ri and MS,r′i since

∑

ri

Tri + Ci = CA(G) = i-independent (2.14)

and ∑

ri

Tri +
∑

r′i

Tr′i = TΦ−repr.(G) = i-independent . (2.15)

The next step will be the implementation of these results for a supersymmetric theory in

higher dimensions. On the level of the above calculations the constraints of supersymmetry

reside in the specific field content of the supersymmetric field multiplets.
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2.3 Adding supersymmetry - general effects

The extension of the former results to supersymmetry is mostly straightforward. Supersym-

metry requires equality of the number of fermionic and bosonic degrees of freedom which

implies that all fields come in certain supersymmetric multiplets. This implies that Eqs. (2.2)

and (2.13) simply require the inclusion of the additional degrees of freedom (fermions and

scalars) that are present in the relevant SUSY multiplets. However, there are also some

crucial new points that require a separate discussion. In particular, it is important to under-

stand the possible origin of the bulk VEV and the resulting mass spectrum, both of which

are strongly constrained by SUSY.

Firstly, focus on 5 and 6d, where the minimal SUSY corresponds to N = 2 in 4d lan-

guage. This excludes all renormalizable (from the 4d point of view) interactions except those

prescribed by gauge symmetry. In particular, the Higgs field Φ, which would have to come

from a gauged hypermultiplet, can not have a conventional bulk potential with cubic and

quartic terms. Although it appears conceivable that higher-dimension operators, consistent

with 5d SUSY, generate a suitable potential2 the simpler option of fixing the bulk Higgs

VEV by an appropriate boundary potential was chosen. In doing so, one follows the method

for breaking U(1)χ in the 6d SO(10) model of [64]. Clearly, this has to rely on the existence

of a D-flat direction in the bulk. (Here, D-flatness means that no potential arises from in-

tegrating out the SU(2)-R triplet of auxiliary fields of the gauge multiplet. For an explicit

component lagrangian of a gauged 5d hypermultiplet see, e.g., [61].) In general, such a D-flat

direction might not exist. This can, for example, be easily checked in the case of a single

U(1) hypermultiplet. Assume now a representation or field content where a flat direction

can be found. The non-zero VEV is stabilized only by a brane superpotential which will not

be specified at the moment. In the bulk, the VEV will give masses to the whole 5d vector

multiplet (in the broken directions) and to a whole hypermultiplet (in the directions corre-

sponding to the would-be Goldstone-bosons). However, it is also known that in spontaneous

gauge symmetry breaking a single scalar degree of freedom is transferred to the vector field.

In the case of 5d SUSY, this is only possible if the masses of the vector multiplet and the

hypermultiplet in the broken directions are the same. For the moment it is assumed that

these two multiplets exhaust the set of heavy states.

This occurs, in particular if one chooses the hypermultiplet to be in the adjoint repre-

sentation, which makes the model N = 4 supersymmetric. One can then imagine the theory

to arise via dimensional reduction from a SYM theory in 10d and think of the two complex

2A systematic analysis of such operators should be possible using the manifestly gauge-invariant formu-
lation [61] of 5d SUSY in terms of 4d superfields [62, 63].
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scalars of the hypermultiplet as (A7 + iA8) and (A9 + iA10). It is now clear that flat direc-

tions exist (e.g. A7 =const.) and that the whole hypermultiplet acquires a mass (from terms

∼ [A7, A8]2 etc.). Furthermore, it is immediately clear from the underlying gauge structure

that all scalar and vector masses, and hence also the fermionic masses, corresponding to

excitations of the broken directions are identical.

Thus, it has been argued that, after spontaneous symmetry breaking driven by bulk hy-

permultiplets, one finds the degrees of freedom of a vector multiplet and a hypermultiplet for

every broken direction at the massive level. Simple counting of vector, scalar and fermionic

fields according to Eq. (2.2) shows that no bulk loop correction arises. This does not come

as a surprise since one is faced with the field content corresponding to N = 4 SUSY.

However, the symmetry-breaking bulk VEV does not have to come from a Higgs. Instead,

it is possible that, in a compact geometry, one of the extra-dimensional components of the

vector field (e.g., A5 in 5d; A5 or A6 in 6d) develops a VEV. Clearly, only adjoint breaking

is possible in this case. However, it is a well-known and difficult problem to stabilize such a

VEV. This is probably even more so if one requires the A5 or A6 VEV to be large enough

to generate a large power correction.

A closely related and more immediately useful possibility exists in 5d. Consider, for

example, a 5d SU(5) model. It is possible that the scalar partner of the gauge fields, from

now on also called Φ, which is present in 5d SUSY, develops a bulk VEV in U(1)Y direction3

(cf. [65]). Such a scalar VEV can arise in an S1/Z2 model where both boundaries break

SU(5) and Fayet-Iliopoulos terms of the U(1)Y subgroup are present at both boundaries. As

explained in [66] (see also [62, 67, 68]), in the 5d setup this term does not break SUSY or

U(1)Y , but instead drives a non-zero bulk VEV of Φ. More generally, whenever one has a

5d orbifold model where the bulk gauge symmetry is broken in such a way that an isolated

U(1) factor survives on both branes, Fayet-Iliopoulos terms driving a bulk VEV of Φ can be

introduced.

In the presence of a VEV of Φ, all the fields in the 5d vector multiplet corresponding

to the broken directions acquire a bulk mass MV . The formula for threshold corrections

relevant to this case reads

α−1
4,i (Mc) = V α−1

d +
1

24π
12
∑

ri

(VMV,ri)Tri . (2.16)

The prefactor 12 can be understood as the sum of 20 for a massive 5d vector and −8 for the

spinor. The degree of freedom corresponding to Φ is absorbed in the massive vector field.

3The author is indebted to S. Groot Nibbelink for emphasizing this possibility in a very helpful conver-
sation.
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(As discussed above, it is also immediately clear that a hypermultiplet of mass MV would

precisely cancel this term.) The correction can be improved by including volume suppressed

but log-enhanced terms using the discussion in the previous section. For simplicity, one

works on S1/Z2 and assumes that both boundaries break the gauge group in the same way

as the bulk VEV:

α−1
4,i (Mc) = πRα−1

5 +
1

24

[
12
∑

ri

(RMV,ri)Tri

]
(2.17)

+
1

12π

[
−1

2
(−24)

∑

ri

Tri ln
M

MV,ri

+
1

2
(−24)Ci ln

M

Mc

]
.

Note that fermions do not contribute to the logarithmic terms since the two Weyl fermions

contained in the 5d spinor have opposite boundary conditions at every brane.

For d = 7, the minimal vector multiplet again contains scalar adjoints that could acquire

a VEV as Φ in the 5d case above. However, the minimal supersymmetry is N = 4 in 4d

language and no loop corrections to the gauge couplings are expected.

2.4 Analysis of the power-like thresholds in the context

of simple SU(5) setups - both supersymmetric and

non-supersymmetric

A preliminary analysis of phenomenological implications of the power-like threshold cor-

rections calculated above is the next step to proceed to. This section restricts itself to 5d

SU(5) models following, in essence, the construction principles of the simplest orbifold GUT

models [36–38]. Proton decay is avoided by placing fermions on branes where SU(5) is not

a good symmetry. The light SM Higgs doublet(s) can be localized on the same brane, as

suggested in the minimal scenario of [38] (which can be dynamically realized using bulk

masses as in [69]). Furthermore, as discussed in the previous section, one assumes that the

scalar partner Φ of the gauge fields, which is present in 5d SUSY, develops a bulk VEV in

U(1)Y direction. Such a scalar VEV can arise in an S1/Z2 model where both boundaries

break SU(5) and Fayet-Iliopoulos terms are present. The usual problem with SU(5) models

on S1/Z2, namely the existence of massless scalars with quantum numbers of the X, Y gauge

bosons corresponding to their 5-components, is solved here automatically in presence of a

bulk VEV of Φ, since the AX,Y
5 then acquire a mass ∼ Φ.

It is important to note that in contrast to the case where the VEV comes from a hyper-

multiplet, the Φ-VEV can also couple linearly, ∼ F 2Φ, as in the super-Chern-Simons (CS)

term discussed in [62]. This is clear since Φ in the 5d vector multiplet is necessarily accom-
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panied by A5 which implies together with ΦF 2 the presence of a term A5F
2 which is part

of the 5d Chern-Simons term. As it will be discussed in next Chapter, its contribution is

completely fixed in terms of 5d supersymmetry and the constraints of anomaly cancellation

on the boundaries of the orbifold. With the CS-term being ∼ ΦF 2 and thus of the same

parametrical order as the loop corrections in question, any discussion of numerical predic-

tions at this stage in the supersymmetric case can be only preliminary since the CS-term

will add to the direct loop effects of the gauge and matter fields. Nonetheless, it is useful to

continue deriving the gauge and matter correction formulae since they are needed later in

this work anyway.

Assume a standard supersymmetric scenario in 4d, in which case the running between

the electroweak scale and Mc is the familiar MSSM running. The low-energy data is taken

to be α−1
i (mZ) = (59.0, 29.6, 8.4) and the effective SUSY breaking scale is set to mZ . In this

case, the relation between couplings at mZ and Mc is given by

α−1
4,i (mZ) = α−1

4,i (Mc) +
1

12π
(−18Ci + 12Ti) ln

Mc

mZ
+ SM matter contributions (2.18)

with Ci = (0, 2, 3) (Casimirs of the SM gauge groups) and Ti = (3/10, 1/2, 0) (SM Higgs

representation). Furthermore, using the results of the previous sections and working on an

S1/Z2, where the Z2 breaks SU(5), one has

α−1
4,i (Mc) = πRα−1

5 +
1

24
[12(RMV )(5− Ci)] +

1

12π

[
12Ti ln

M

Mc

]
(2.19)

+
1

12π

1

2

[
24(5− Ci) ln

M

MV
+ (−24)Ci ln

M

Mc

]

+SM matter contributions .

This follows immediately from Eq. (2.17), with the brane-localized Higgs contributing even

above Mc.

The usual fairly precise MSSM unification is formally obtained in the limit M = Mc =

MV = MGUT. One can now try to lower Mc and see whether gauge unification can be

maintained at the cost of the power law term ∼ MV /Mc. This is not hopeless because the

coefficients −Ci coming with this term represent the main part of the usual MSSM running

coefficients. Focussing on differences of 4d inverse gauge couplings, αij ≡ α−1
i − α−1

j , the

crucial gauge unification constraint can be characterized by

α12(mZ)

α23(mZ)
=

59.0− 29.6

29.6− 8.4
= 1.39 . (2.20)
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This has to be compared with the result obtained from combining the above running and

threshold formulae:

αij(mZ) =
1

12π
(−18Cij + 12Tij) ln

Mc

mZ

(2.21)

+
1

24
[−12Cij]

MV

Mc

+
1

12π
[12Tij − 12Cij] ln

M

Mc

− 1

12π
12Cij ln

M

MV

,

where Cij = Ci − Cj and Tij = Ti − Tj.
The maximal value of M suggested by NDA [70] (cf. [38]) can be characterized by

M/Mc ∼ 103. The validity range of this calculation is Mc � MV � M . It is amusing

to observe that, if one sets MV '
√
McM to realize this situation, the logarithmic terms

from the energy range above Mc mimick precisely the MSSM contribution to coupling ratios.

Thus, even if MV does not have this precise value, the log terms will not affect MSSM-type

unification significantly and, given the preliminary character of the present investigation,

one focuses now on the power term. From Eq. (2.21) one can read off that just the loga-

rithmic MSSM contribution would give α12/α23 = 1.4 while just the power-like term would

give α12/α23 = 2 (cf. Eq. (2.20)). Thus, to maintain the above field content while lower-

ing the unification scale significantly, one has to sacrifice precision. One can expect to find

α12/α23 = 1.5 at mZ if about 1/6 of the log-running is traded for the power correction. This

lowers the unification scale M to about 1014 GeV thus allowing, e.g., for a see-saw mech-

anism based directly on the GUT scale (without the usual mismatch by a factor O(10)).

One could also consider the possibility that there are no right-handed neutrinos and light

neutrino masses are based directly on the appropriate higher-dimension operator suppressed

by the new GUT scale. However, the price to pay is the extra O(1) threshold corrections

to α−1
i that are needed for consistency with the low-energy data. Although such corrections

are not unnatural, given that a significant log-running continues all the way up to UV-scale

M , they are certainly larger than what would be needed in the 4d MSSM.

Next, consider the possibility that power-like threshold corrections beyond those driven

by the 5d gauge multiplet arise. This would not be possible if the bulk breaking was realized

by a bulk Higgs field since 5d SUSY forbids the necessary coupling of this Higgs with other

hypermultiplets. However, since one considers gauge breaking by the scalar adjoint, this

possibility exists. If a bulk hypermultiplet is added, say in the 5 of SU(5), then the doublet

and triplet part of it acquire different bulk masses due to the coupling to Φ. The ratio of

MV and these two masses Md and Mt is prescribed by elementary group theory:

MV : Md : Mt ∼ 5 : 3 : 2 . (2.22)
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The power-like threshold corrections arising in this situation read

∆α−1
4,i (Mc) =

1

24

MV

Mc

[
12(5− Ci)− 12(

3

5
Ti +

2

5
T ′i )

]
, (2.23)

where T ′i = (2/10, 0, 1/2) characterize the Higgs triplet representation. On the basis of just

this power-law contribution one would have α12/α23 ' 2.27, i.e., a situation worse than

without the bulk 5.

However, this effect can be turned to its opposite by also introducing an SU(5)-invariant

bulk mass Mf for the 5-hypermultiplet. In the presence of such a mass, quantified by

ξ = Mf/MV , with ξ ' 0.4 and with the sign chosen such that it almost compensates the

Φ-driven doublet mass, Eq. (2.23) is transformed into

∆α−1
4,i (Mc) =

1

24

MV

Mc

[
12(5− Ci)− 12

(∣∣∣∣
3

5
− ξ
∣∣∣∣Ti +

∣∣∣∣
2

5
+ ξ

∣∣∣∣T ′i
)]

, (2.24)

leading to α12/α23 ' 1.44 just from the power-like correction. Now power-like threshold

corrections can replace a significant part of the MSSM log-running without loss of precision

of unification, but at the cost of tuning Mf . (This tuning can, of course, also be used to

achieve perfect unification, including even the brane-driven log-running above Mc.) However,

again in the light of the not-yet treated super-CS term these numbers serve only to clarify

the effects of the presence of bulk hypermultiplet matter in that it can be used to arrange

for a wide range of values for α12/α23. Precise predictions here await the discussion of the

next Chapter.

Dangerous additional terms can come from higher-dimension operators. In particular,

an operator ∼ F 2Φ2 can contribute to α−1
4 at the level M 2

V /(McM). If one requires this

term not to be larger than O(1) and take M ∼ 103Mc, one finds the constraint MV
<∼ 30Mc.

(More optimistically, one could assume that this term is forbidden or at least uniquely

specified in its structure by N = 2 SUSY, which, in fact, is shown to be true in the next

Chapter.) From Eq. (2.24) one can now read off that nearly all of the low-energy value

of, say, α12 can be due to power-like term, so that M and Mc can be lowered to ∼ 106

GeV and ∼ 103 GeV respectively. Given that these very crude estimates have produced

this quite impressive result, a more detailed numerical study, including two-loop running

and considering appropriate NDA factors, appears to be warranted. It certainly would be

interesting to extend the above preliminary analysis to various other proposals involving

gauge unification in extra dimensions where power-law effects can be important (see, for

example, the discussion in [71] and [72]. However, this is beyond the scope of the this work.

At the end of this Chapter a look to the possible role of power-like threshold corrections

in non-supersymmetric 5d SU(5) models is warranted. For this purpose, one chooses to
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accept an ad-hoc fine-tuning solution of the well-known problem of quadratically divergent

Higgs mass corrections and focus exclusively on the precision of gauge coupling unification.

Here, the presence of a CS-term is not dictated by supersymmetry, and thus in this case

the calculated corrections can be used to derive numerical predictions on gauge coupling

unification.

Consider an S1/(Z2 × Z ′2) model with SM fermions and Higgs doublet on the SU(5)-

breaking brane. The bulk Higgs field Φ is in the adjoint of SU(5) and develops a VEV in

U(1)Y direction. The 4d running below Mc gives α12/α23 = 1.90, in significant disagreement

with data. To correct this, consider power-like threshold corrections from the bulk, intro-

ducing a set of fundamental fermions of SU(5) coupled to the adjoint Higgs by a standard

Yukawa coupling ∼ ψ̄Φψ. Since these fermions can also have an SU(5) symmetric bulk mass,

one can treat the resulting doublet and triplet masses Mψ,t and Mψ,d as essentially indepen-

dent parameters. Assuming that Φ has no or only a very small bulk mass, the non-SUSY

analogue of Eq. (2.21) reads

αij(mZ) =
1

12π
(−22Cij + 2Tij) ln

Mc

mZ
(2.25)

+
1

48

[
−20Cij

MV

Mc
− 8Tij

Mψ,d

Mc
− 8T ′ij

Mψ,t

Mc

]
+

1

12π

[
2Tij +

1

2
(−22)Cij

]
ln
M

Mc
.

For simplicity, assume Mψ,d � Mψ,t so that the power-like contribution from the doublet

can be neglected. Further, lower the compactification scale as far as possible according to

the naive estimate based on the higher-dimension operator discussed above, Mc ' 103 GeV

with MV ' 20Mc and M ' 103Mc. One now finds that the moderate value Mψ,t ' 3MV

gives α12(mZ) ' 29.4 and α23(mZ) ' 21.2, in reasonable agreement with the data. Although,

given the ad-hoc choice of several parameters, this certainly does not challenge the numerical

superiority of the minimal SUSY framework, it is nevertheless interesting to see how easily

a non-SUSY SU(5) unification can be achieved with the help of large power-like thresholds.

Given that the above exploratory study has shown the possibility of very low compacti-

fication scales ∼ 103 GeV, it is tempting to speculate that the discussion of the structure of

5d SUSY will reveal viable scenarios with TeV scale precision unification.
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Chapter 3

Exploiting Higher-Dimensional
Supersymmetry

This Chapter will exploit the structure of the higher supersymmetry in 5 dimensions as

regards its consequences for the power-like loop corrections to the gauge couplings derived in

the previous Chapter. In 5d there are only 4-component Dirac spinors because no Majorana

or Weyl conditions are possible. Thus, the generator of the minimal 5d supersymmetry

contains two 2-component SUSY generators in 4d language which can be shown to fulfill the

4d N = 2 supersymmetry algebra. Therefore, a minimally supersymmetric field theory in

5d has a N = 2 SUSY in 4d language whose structure will be of much use in what follows.

3.1 Prepotential of the 5d SYM theory

This Section collects results of [41–43] which are relevant for the subsequent discussion and

sets up the notation used in this and next two Chapters. Consider a 5d SYM theory with

massive gauged hypermultiplet matter. In addition to the vector field and gaugino, the 5d

vector multiplet contains an adjoint scalar field Φ. The theory is conveniently described as a

4d N =2 SYM theory depending on the extra parameter x5. Its low-energy effective action

is thus completely characterized by its holomorphic prepotential F(Σ) [73] (see also [74]).

The scalar component of the chiral superfield Σ is Φ + iA5, where the conventions of [61]

(see also [62]) are used but the names Σ and Φ are interchanged to facilitate comparison

with [41]. Given the prepotential, the lagrangian of a 4d N =2 SYM theory can be written

in conventional N =1 superfield notation as

L =
1

2

{∫
d4θ

∂F(Σ)

∂Σa

(
Σ̄e2V

)a
+

∫
d2θ

∂2F(Σ)

∂Σa ∂Σb
W aW b

}
+ h.c. (3.1)

Here Σ = ΣaTa and the generators of the gauge group G are normalized by 2 trTaTb = δab

(traces are taken in the fundamental representation unless otherwise specified).
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Under the constraints of SUSY and 5d Lorentz invariance, the 4d lagrangian of Eq. (3.1)

extends in a unique way to a 5d lagrangian. However, 5d gauge invariance now constrains

the prepotential to be at most cubic in Σ. In the context here, this is crucial since it ensures

the absence of higher-dimension operators beyond the CS term (see Appendix B for more

details). Following [41], one can also write the prepotential as a function of Φ. Requiring

the prepotential to be analytic, the most general form is now

F(Φ) =
1

2g2
5,cl.

tr Φ2 +
ccl.

48π2
tr Φ3 . (3.2)

The coefficients of these two terms determine the coefficients of the classical F 2 term and

of the classical CS term, all other terms in the component lagrangian then being fixed by

supersymmetry. (The normalization is chosen such that, in the absence of charged matter,

ccl. is integer due to the boundary anomaly constraint. This will become evident below.)

In the present context of gauge coupling unification, it is crucial that the SUSY CS term

includes an operator ∼ ΦF 2, which clearly has the potential of affecting low-energy gauge

couplings if Φ develops a VEV. Thus, the most important two terms of the component

lagrangian derived from Eq. (3.2) are

L ⊃ − 1

2g2
5,cl.

trF 2 − ccl.
16π2

tr ΦF 2 . (3.3)

The field Φ has a flat potential and one can consider the low-energy effective field theory

in the presence of a Φ-VEV. It will become clear from the discussion in Sect. 5 that such

a Φ-VEV (rather than just hypermultiplet VEVs) is necessary in order for loop corrections

to gauge unification to arise. Without loss of generality, one can write Φ = φiHi, where Hi

are the Cartan generators of the gauge group G and i ∈ {1, · · · , r = rank(G)}. Then choose

the Hi to be the first r elements of the set of generators Ta. Since a generic VEV breaks G

to U(1)r, the relevant quantity is the prepotential of this abelian gauge theory. Including

quantum corrections induced by the vector and hypermultiplets and choosing counterterms

such that g5,cl. and ccl. remain unchanged, it reads [41, 75]

F(Φ) =
1

4g2
5,cl.

δijφ
iφj +

ccl.
48π2

dijkφ
iφjφk +

1

96π2

(∑

α

|αiφi|3 −
∑

f

∑

λ

|λiφi +mf |3
)
. (3.4)

Given the definition

dabc =
1

2
trTa{Tb, Tc} , (3.5)

it is clear that the first two terms of Eq. (3.4) are simply a restriction of Eq. (3.2) to the

U(1)r subgroup. The remaining terms are the 1-loop-effects resulting from integrating out
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the heavy vector multiplets (corresponding to the broken directions of G) and the hyper-

multiplets with masses mf labelled by their ‘flavour’ f . The other sums run over the roots

α of Lie(G) and the weights λ of the relevant matter representations1. This notation implies

that

[Hi, Eα] = αiEα and Hi|λ〉 = λi|λ〉 , (3.6)

where Eα is the Lie algebra element (root) corresponding to the root vector α and |λ〉 is a

representation vector with weight vector λ (see, e.g., [76]). It is important that Eq. (3.4)

is interpreted as defining a locally holomorphic prepotential, i.e., the modulus-signs merely

determine whether a given cubic term is to be multiplied by +1 or −1 in a given region of

the multi-dimensional space parameterized by φi. Note also that the coefficient of the last

term in Eq. (3.4) differs from Ref. [41] due to different normalization of ccl. used here.

For the purposes here, it is essential that Eq. (3.4) specifies the complete low-energy

effective action – no higher-loop contributions arise and no other classical terms are allowed

at the two-derivative level.

As done before in Eq. (3.3) for the classical non-abelian theory, one now gives the gauge-

kinetic term of the component lagrangian for each of the surviving U(1) factors. For the

U(1) group generated by Hi the relevant piece of the component lagrangian reads

Li ⊃ −
1

4
F 2
i

{
1

g2
5,cl.

+
ccl.
4π2

diijφ
j +

1

8π2

(∑

α

α2
i |αjφj| −

∑

f

∑

λ

λ2
i |λjφj +mf |

)}
. (3.7)

3.2 Power-law corrections from higher-dimension op-

erators

The above result now corresponds precisely to the power-like loop corrections to gauge

unification which were derived in the first two Chapters. To see this, consider the one-loop

correction to a U(1) gauge coupling induced by massive particles, Eq. (2.2), which lends itself

to an immediate implementation in the 5d situation. Combining the effects two complex

scalars and a Dirac fermion, as appropriate for a massive hypermultiplet with mass m and

charge q, the correction reads

δ

(
1

g2
5

)
= − q2

8π2
m . (3.8)

This dimensionally regularized result hides a mass-independent, linearly divergent piece (see

App. A). However, this piece is irrelevant in the present context since it is universal with

1If several representation vectors have the same weight vector λ, this weight vector contributes with the
appropriate multiplicity.
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respect to the different U(1) subgroups emerging from a spontaneously broken simple group

G. It gives rise to a renormalization of the original non-abelian gauge coupling.

In the context of the previous section, the hypermultiplet component corresponding to

the weight λ has mass |λjφj + mf | and, with respect to the U(1) subgroup generated by

Hi, charge λi. Thus, Eq. (3.8) precisely reproduces the matter contribution in Eq. (3.7).

Furthermore, the correction from massive vector multiplets in Eq. (3.7) is also unambiguously

determined since, apart from the different charges and masses, its contribution must be

equal and opposite in sign compared to the hypermultiplet. This is clear since a vector-

and hypermultiplet with the same mass and charge combine to a 4d N = 4 multiplet and

therefore induce no gauge coupling correction.

Of course, the interest here is not really in the breaking of a gauge group G of rank

r to U(1)r but rather in its breaking to a set of simple subgroups and U(1) factors, for

which one uses the common notation Gi. For example, Gi with i = 1, 2, 3 may be the three

gauge groups of the SM. The relevant gauge coupling corrections can be immediately read

off from Eq. (3.7) by choosing an appropriate Φ-VEV, i.e., appropriately degenerate φi. It is

useful to present the corresponding result in a different form, using traces of representation

generators. In this form, the correction to the low-energy gauge coupling of the subgroup

Gi reads

δ

(
1

g2
5,i

)
=

ccl.
4π2

trH2
i Φ +

1

8π2


∑

ri(a)

Tri(a)Mri(a) −
∑

f

∑

ri(f)

Tri(f)Mri(f)


 . (3.9)

Here Hi is one of the Cartan generators of G that fall into Gi. The Gi -representations

emerging from the adjoint of G and from the representation of the hypermultiplet f are

labelled by ri(a) and ri(f) respectively. As usual, Tri is defined by trri [TaTb] = δabTri, with

the trace taken in the representation ri. Furthermore, Mri(a) and Mri(f) denote the masses of

the vector multiplet in the representation ri(a) and the hypermultiplet in the representation

ri(f) respectively. Given these definitions and the relations

∑

α∈ ri(a)

α2
i = trri(a)H

2
i = Tri(a) ,

∑

λ∈ ri(f)

λ2
i = trri(f)H

2
i = Tri(f) , (3.10)

the derivation of Eq. (3.9) from Eq. (3.7) is straightforward.

So far, the 5d threshold formulae of Chap. 2 have just been recovered [33], based on the

4d results of [56, 57], in the prepotential language of [41], which is based on the anomaly

calculation of [75]. However, this deeper conceptual understanding of power-like threshold

corrections is crucial for their phenomenological applicability. The main point here is that

the above prepotential formulae are quantum exact, which implies that the by now familiar
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1-loop power-law contributions to gauge unification are not subject to further corrections.

More specifically, while higher-loop contributions are absent because of N = 2 SUSY, the

only competing tree-level higher-dimension operator is the SUSY CS term, corresponding

to the first term on the r.h. side of Eq. (3.9). (Note also that the holomorphic gauge

couplings discussed here coincide with the canonical gauge couplings in N = 2 SUSY [77].)

Moreover, in the phenomenologically relevant case of a compactification on an interval, the

CS term induces anomalies at the boundaries [78] (see [79] for a recent review). These

induced anomalies must precisely cancel possible boundary anomalies coming from gauged

bulk or brane fields. Thus, the value of the coefficient ccl. is completely determined by the

field content of the model. This will be worked out in more detail in Chap. 4.

The high predictivity of this scenario relies on the uniqueness of the tree-level dimension-

5 operator, i.e., the SUSY CS term. This uniqueness is clearly based on the analyticity of the

prepotential as a function of Φ and the uniqueness of the third-order symmetric invariant

tensor dabc [80] (in fact, such an invariant exists only for SU(N) groups). Furthermore,

it is also clear that the quantum corrected prepotential is not globally analytic (it is only

analytic away from points where certain charged particle masses vanish). This allows for the

distinct group-theoretical structures appearing in the quantum part of Eq. (3.4). However,

for a given Φ-VEV, any of the hypermultiplet contributions becomes analytic in the limit

|mf | → ∞. In fact, because of the relations

2
∑

λ

λiλj ∼ δij and
∑

λ

λiλjλk ∼ dijk , (3.11)

it simply corrects the already existing tree-level operators ∼ δij and ∼ dijk. (For the funda-

mental representation the proportionalities in Eq. (3.11) become equalities.) In this sense,

heavy matter effectively decouples from gauge unification corrections, i.e., its only trace is

a contribution to the CS term which, however, is anyway fixed by low-energy anomaly con-

straints. (Appendix C contains a simple example where this decoupling of heavy bulk matter

is seen explicitly.)

Finally, one may consider the following somewhat exotic possibility. If a certain hyper-

multiplet is in a large representation, then λiφ
i can balance even a very large mf and a

non-analytic contribution to Eq. (3.4) may result. However, this does not contradict the

above claim of effective decoupling since, given the spread of the values of λi in a large rep-

resentation, many relatively light states (with a mass comparable to |Φ|) will automatically

also be present. Thus, the presence of a large-representation hypermultiplet will be known

to the low-energy effective field theorist even if its mass is very large.

Consider now this situation of a 5d SYM theory with hypermultiplet matter which is
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broken by the VEV of the scalar adjoint Φ of the vector multiplet. Then the conclusion here

is that in this setup power-law corrections to gauge unification are calculable in low-energy

effective field theory.
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Chapter 4

5d GUT phenomenology

4.1 Basic structure

Here the results of the previous Chapter will be discussed in more realistic situations. A

phenomenologically viable 5d GUT should provide 4d N = 1 SUSY at low energies to get

the MSSM. The simplest scenario in which the above power-law corrections to 5d low-energy

gauge couplings become relevant for a realistic GUT model is that of a field-theoretic S1/Z2

orbifold [81] (see also the slightly different later models of [36–38]). Specifically, consider

a 5d SYM theory with gauge group G and hypermultiplet matter compactified on an S1

parameterized by x5 ∈ [0, 2πR) and restrict the field space by requiring invariance under

the reflection x5 → −x5. If the space-time action of this Z2 is accompanied by an inner

automorphism of G (characterized by an element P ∈ G with P 2 = 1) acting in field-

space, the gauge group is broken at both boundaries. In general, the surviving subgroup

contains a U(1) factor which contains P , i.e., G ⊃ G′×U(1). Assume now that boundary

interactions stabilize a VEV of the adjoint scalar Φ which points in the direction of the

U(1) generator (cf. [65]). This breaks the gauge group in the bulk in the same way as the

orbifolding does at the two boundaries.

The Φ-VEV can, for example, be stabilized by introducing a FI term within the U(1)

subgroup surviving at each boundary. This term is, in general, generated by loop effects [82]

but may also be present at the classical level. Thus, one can treat its coefficient as a free

parameter. However, to be consistent with 4d supergravity (which is of course required

although, at the technical level, the present work uses only rigid SUSY), the coefficients at

the two boundaries are assumed to sum up to zero. As discussed in detail in [66,68], the FI

terms induce the desired constant bulk VEV of the scalar adjoint Φ.

Alternatively, the 5d model may be considered as the small-R6 limit of a 6d theory,

in which case the Φ-VEV corresponds to a Wilson line wrapping the 6th dimension. It is

stabilized by the boundary conditions at the conical singularities of the 6d model. A more
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detailed discussion will be provided in the next section.1

In the above setting, the 4d gauge couplings observed just below the compactification

scale Mc = 1/R read
1

g2
4,i(Mc)

=
πR

g2
5,i

+
1

g2
bd.,i

. (4.1)

Here the 5d gauge couplings are defined at zero momentum (i.e., as in the low-energy effective

action of Sect. 3.1) and the last term accounts for the (presumably sub-dominant) effect of

boundary gauge-kinetic terms. From the results of the last two sections, it is now clear that

power-law corrections to inverse 4d gauge couplings are of the order ∼ |Φ|R and can thus

be as large as the tree-level term ∼ R/g2
5,cl..

To be more specific, the focus is placed on the situation where G = SU(5) and P =

diag(1, 1, 1,−1,−1) so that G is broken to the SM gauge group at the branes. In this case,

the above S1/Z2 orbifold of a pure 5d SYM theory gives, at the zero mode level, the SM gauge

multiplet and a chiral superfield with the quantum numbers of the X, Y gauge bosons. The

latter one becomes massive, as noted in Sect. 2.4, when Φ develops a VEV and is therefore

phenomenologically harmless. SM matter and Higgs fields can be added at the branes and/or

in the bulk making the model as realistic (and arguably even somewhat simpler and more

generic) as the more widely discussed S1/(Z2 × Z ′2) models of [36–38].

4.2 Power-law corrections and consistency with bound-

ary anomaly cancellation

The power-law corrections will now be given in the above class of models explicitly for hy-

permultiplet matter in the smallest SU(5) representations 5, 10 and 24. (Recall that, for

example, a hypermultiplet in the 5 contains, in 4d N =1 language, one 4d chiral superfield

in the 5 and one in the 5̄.) For this purpose, boundary gauge-kinetic terms and the cor-

responding logarithmic running are treated as sub-dominant. Thus, the analysis is based

entirely on Eq. (3.9). All the group theory one needs is the familiar decomposition of the

simplest SU(5) representations under SU(3)×SU(2)×U(1):

5 = (3, 1)−2 + (1, 2)3 (4.2)

10 = (3, 2)1 + (3̄, 1)−4 + (1, 1)6 (4.3)

24 = (8, 1)0 + (1, 3)0 + (1, 1)0 + (3, 2)−5 + (3̄, 2)5 . (4.4)

1This alternative possibility is interesting in view of the following possible criticism of FI-term-
stabilization: As argued in [83], the FI-terms can be understood in supergravity as arising from a mixed
gauge-graviphoton CS term in the bulk. However, in the constructions considered here the brane U(1) arises
from a non-Abelian gauge symmetry in the bulk and the author is not aware that the required mixed CS
term has been discussed in this case.
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The U(1) charges q′ given here, in the conventions of [76], correspond to charges q = q ′/
√

60 if

the U(1) generator is normalized consistently with the other SU(5) generators. For easy refer-

ence, in Table 4.1 the relevant group-theoretical factors Tri(f) in a hopefully self-explanatory

notation are collected.

TU(1) T SU(2) T SU(3) VEV-induced mass
(3, 1) of 5 1/5 0 1/2 −(2/5)MV

(1, 2) of 5 3/10 1/2 0 (3/5)MV

(3, 2) of 10 1/10 3/2 1 (1/5)MV

(3̄, 1) of 10 4/5 0 1/2 −(4/5)MV

(1, 1) of 10 3/5 0 0 (6/5)MV

(8, 1) of 24 0 0 3 0
(1, 3) of 24 0 2 0 0
(1, 1) of 24 0 0 0 0

(3, 2) + (3̄, 2) of 24 5 3 2 MV

Table 4.1: Group-theoretical factors Tri(f) of the simplest SU(5) representations relevant
for the evaluation of Eq. (3.9). The last column contains the masses which the different
representations acquire in the presence of a Φ-VEV (parameterized by the mass MV of the
5d X, Y gauge bosons).

At this point one can now write down explicitly the corrections ∆α−1
1 , ∆α−1

2 , and ∆α−1
3

to the inverse couplings of the three SM gauge groups U(1), SU(2), and SU(3) (as usual,

α1 = g2
1/(4π) etc.). For example, a 5 hypermultiplet with bulk mass m5 (parameterized by

ξ5 = m5/MV ) induces corrections

∆α−1
1 = −

(
1
5

∣∣ξ5 − 2
5

∣∣+ 3
10

∣∣ξ5 + 3
5

∣∣) MV

2Mc
,

(4.5)

∆α−1
2 = −1

2

∣∣ξ5 + 3
5

∣∣ MV

2Mc
, ∆α−1

3 = −1
2

∣∣ξ5 − 2
5

∣∣ MV

2Mc

reproducing the results of Sect. 2.4 in a more systematic way. This and corresponding

formulae for the 10 hypermultiplet and the 24 hypermultiplet or vector multiplet are easily

read off from Table 4.1 and Eq. (3.9) after compactification on an interval with length

πR = π/Mc.

Finally, one needs to deal with the effect of a classical SUSY CS term parameterized by

ccl.. This term is constrained by boundary anomaly cancellation [62, 78]. As can be seen

explicitly from Eqs. (3.4) and (3.11), a bulk 5 in the limit m5 → ±∞ induces an effective

CS term with ccl. = ∓1/2 [41]. The boundary anomalies induced by this term can be found

as follows (see, e.g., [83, 84]):

Consider first two massless bulk hypermultiplets 5 and 5′, each with the same boundary

conditions at x5 = 0 and x5 = πR, but with the sign flipped between the two hypermultiplets.
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The model is anomaly-free, not just at the zero-mode level but also at each of the two

boundaries taken separately. This is clear since the zero-mode matter is vector-like, so

that there is no 4d anomaly, and the boundary anomaly is simply 1/2 of the 4d anomaly.

(Recall that there are no anomalies in 5d.) Furthermore, the consistency is not destroyed

by continuously varying one of the mass parameters, e.g., taking m5 → ∞ while keeping

m5′ = 0.

Thus, the CS term induced by the infinitely heavy 5 precisely cancels the boundary

anomalies coming from brane localized zero-modes emerging in the limiting procedure m5 →
∞ and from the massless 5′. The latter are half-integer-valued in units corresponding to a 4d

chiral fermion in the 5. This is obvious since, again, the zero-mode anomaly is split equally

between the two identical boundaries. Postponing a more explicit discussion to the next

subsection, one can now already conclude that ccl. = ∓1/2 induces half-integer boundary

anomalies. Thus, in the absence of charged bulk matter, ccl. must be integer and, to achieve

gauge invariance, appropriate brane fields cancelling the induced integer-valued anomalies

must be present. This argument for the value of ccl. could have also been made on the basis

of the m10 → ∞ limit of a 10 hypermultiplet, which induces a CS term identical to that

induced by a 5.

From Eqs. (2.24) and (4.5) and corresponding formulae for the matter in the 10 and

24, it is clear that almost any ratio of low-energy gauge couplings can be realized by tuning

appropriately the bulk masses of the matter fields. One therefore now focuses on the arguably

more natural case where bulk fields are either massless or extremely heavy, i.e., contribute

only via an analytic CS term. The relevant contributions to the differences of inverse 4d

gauge couplings αij = α−1
i − α−1

j are given in Table 4.2.

massless fields or operator α12 × 2Mc/MV α23 × 2Mc/MV

24 vector 2 1
24 hypermultiplet −2 −1
5 hypermultiplet 1/25 −1/10

10 hypermultiplet −27/25 3/10
CS term with ccl. = ∓1/2 ±1/5 ∓1/2

Table 4.2: Corrections to inverse gauge coupling differences (in units of MV /(2Mc)) induced
by massless fields in the simplest representations and by the smallest possible CS terms.

At this point, some basic phenomenological implications can already be derived. Note

first that anomaly cancellation by boundary fields is only possible if the boundary anomalies

induced by bulk fields and operators are integer-valued. Thus, the sum of the numbers of

bulk 5s, 10s and “CS-term-quanta” (i.e., CS term contributions with ccl. = ±1/2) has to be

even.
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Recall that 4d MSSM running gives α12/α23 = 7/5 = 1.4, which is known to agree

very well with the observed low-energy gauge couplings. The effect of just the gauge sector

gives, both in the 4d logarithmic and in the above power-law case, α12/α23 = 2. In the

4d case, this is then corrected by the contribution from the two Higgs doublets. As noted

in [33], a single bulk hypermultiplet in the 5, with m5 tuned such that, in the presence

of the Φ-VEV, the doublet is massless in 5d, reproduces the approximately correct ratio

α12/α23 = 1.2 of [6]. However, as the anomaly argument above shows, such a single bulk

5 has to be supplemented with a CS term. Unfortunately, this destroys the approximately

correct power-law effect of [6] (this important point was missed in [33]). Furthermore, it

is now clear why the phenomenological analysis of the power-law corrections for the SUSY

case in Section 2.4 was preliminary: on the level of the discussion given there the anomaly

constraints were not taken into account.

Now, coming back to the more restrictive framework of Table 4.2, one can look for simple

configurations which give the MSSM prediction of α12/α23 = 7/5 as a power-law effect. It

is interesting to observe that, indeed, the vector multiplet together with a massless bulk 10

and the minimal required CS term (choosing the negative sign, ccl. = −1/2) gives precisely

α12/α23 = 7/5. Thus, this combination of bulk fields and operators generates a power-

law effect mimicking MSSM 1-loop running. Furthermore, replacing the 10 with a 5 and

changing the sign of the CS term, one finds α12/α23 = 46/35 ' 1.31, which is also quite

close to the desired value 1.4. For the moment, the two above examples are quite satisfying

and the exploration of other, more complicated, matter field and CS term configurations is

left for future work. Such a more extensive analysis should be performed in a context with

tighter constraints, e.g., in the search for a realistic flavour model or in the framework of a

first-principles string construction.

4.3 Low-energy field content

The construction of an anomaly free model on the basis of a given bulk matter content and

CS term is the last step which remains. This procedure is illustrated using the particularly

attractive scenario with an SU(5) vector multiplet, a 10 hypermultiplet and a CS term

with ccl = −1/2 in the bulk, where the power law effect is equivalent to logarithmic MSSM

running.2

As before, one compactifies on S1/Z2 breaking SU(5) to the SM at both boundaries,

2It is interesting to speculate that this field content arises from a (possibly even-higher-dimensional)
SO(10) model where the adjoint decomposes as 45 = 24 + 10 + 10 + 1 and the 10 becomes heavy in the
process of gauge-symmetry and SUSY breaking.
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starting with no bulk CS term but with a 10 and 10′ bulk hypermultiplet with opposite

boundary conditions. In this situation, the spectrum of fermionic fields which are non-zero

at any of the two boundaries is vector-like, i.e., no boundary anomalies arise. By continuity,

the consistency of this model is not destroyed if, while keeping m10 = 0, the limit m10′ →∞
is taken. One now has an anomaly-free model with the desired content of light bulk fields

and a CS term with ccl = −1/2. A specific brane field content arises from the 10′ in the

limit m10′ →∞ due to the presence of localized zero-modes [85] (see also [86]).

To discuss these brane fields explicitly recall that, in N =1 language, the 10′ hypermulti-

plet contains two chiral superfields in complex-conjugate representations, which are denoted

by 10′ and 10′c. Assume that the sign-conventions of the 5d lagrangian are such that positive

m10′ implies a localization3 of the 10′ at y = 0 and of the 10′c at y = π. Furthermore, define

the SU(5)-breaking boundary conditions such that the (3, 2)′ is non-zero while the (3̄, 1)′

and (1, 1)′ vanish at both branes. It is now clear that, in the limit m10′ →∞, the only light

fields are the zero mode of (3, 2)′, completely localized at y = 0, and the zero modes (3̄, 1)′c

and (1, 1)′c, completely localized at y = π.

Phenomenologically, it is also essential to know what zero modes arise from the 10

hypermultiplet and at which brane they are peaked. (Note that, in contrast to the complete

localization of the zero modes arising from the 10′ hypermultiplet, one has strong but finite

peaking characterized by exp[±ym].) Given the conventions used here for the relative sign

between bulk mass and Φ-VEV, as specified by Eq. (4.5), and the signs in the last column of

Table 4.1, the direction of the peaking of the various fields of the 10 hypermultiplet is easily

determined. Recalling that the boundary conditions of the 10 hypermultiplet are opposite

to those of the 10′ hypermultiplet, one finds a (1, 1) zero mode peaked at y = 0 as well as

(3, 2)c and (3̄, 1) zero modes localized at y = π.

To make the model realistic without destroying the MSSM-like power law contribution

from the bulk, matter has to be introduced in the form of brane fields. One begins by

localizing a 10 chiral superfield at y = π. Allowing all gauge-invariant mass terms and

recalling that, from the previous construction, one also has a (3, 2)c, (3̄, 1), (3̄, 1)′c and

(1, 1)′c peaked or localized at y = π, all fields except for a partnerless (3̄, 1)−4 are found to

become massive. Together with the (3, 2)1 and (1, 1)6 left over at y = 0 from the previous

construction, one now has a full 10 in zero modes. Of course, the introduction of a 10 chiral

superfield at y = π demands, by anomaly cancellation, the further introduction of a 5̄ at

3By this it is meant that the relevant bulk equations of motion for the N = 1 superfields are (∂y +
m10′)10′ = 0 and (∂y−m10′)10′c = 0, implying bulk solutions 10′ ∼ exp(−m10′y) and 10′c ∼ exp(+m10′y).
In particular, if a zero mode is allowed by the boundary conditions, it will then be localized as described in
the main text above.
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the same brane. Now one has a full SM generation, with all fields except for the left-handed

quarks and right-handed electron peaked at y = π. Amusingly, this matter distribution

excludes all (not exponentially suppressed) mass terms within this generation. Thus, this

construction has produced an anomaly-free setting with MSSM-like power law correction

and one naturally light generation. The two Higgs doublets and the heavy generations are

now easily added at y = π without affecting any of the attractive features achieved so far.

To be completely explicit, one now calculates the gauge couplings at the Z-pole in the

above model as in Sect. 2.2, including the logarithmic terms. Below the compactification

scale Mc = 1/R there is conventional MSSM running; above that scale one has the power-

like effects discussed here and further corrections associated with the logarithmic running

of brane-localized gauge-kinetic terms (see, e.g., [9,33,37,38,60]). This logarithmic running

above Mc is cut off at some UV-scale Λ where the singular boundary is resolved. For

simplicity, one may assume Λ/MV = O(1) and thus disregard logarithms of this ratio. In

particular, this implies that only the Kaluza-Klein (KK) modes of the 5d vector multiplet

within the SM gauge group contribute to the logarithmic running above Mc.

Note that, from the point of view of the bulk theory and the power-like terms, the

existence of a UV scale Λ is immaterial since the calculation of inverse gauge coupling

differences is entirely UV-insensitive. In fact, this was to be expected in view of the possible

existence of a non-trivial UV fixed-point of the 5d theory discussed in [41], i.e., the possibility

of taking Λ → ∞ (see [87] for more general analyses, including in particular the 6d case,

and [59] for a recent application in unified models). However, it must be emphasized that

the calculations performed here, although quite consistent with the fixed point proposal, do

not rely on it or on the limit Λ → ∞ since all dangerous higher-dimension operators are

forbidden by symmetries.

The low-energy inverse gauge couplings are given by

α−1
4,i (mZ) = πRα−1

5,cl. + bi

(
1

10

MV

Mc
+

1

2π
ln
Mc

mZ

)
+

b̃i
2π

ln
MV

Mc
+ {i-indep. terms} (4.6)

where α5,cl. = g2
5,cl./(4π). The coefficients bi = (0,−6,−9) + 2 (3/10, 1/2, 0) govern the

familiar gauge and Higgs contributions to the MSSM running and, in this specific example,

also the power-law term. Their S1/Z2 counterparts governing the modified running above

Mc are b̃i = (0,−4,−6)+2 (3/10, 1/2, 0). Note that, to simplify Eq. (4.6), the “i-independent

terms” have been chosen such as to ensure that the familiar coefficients bi multiply both the

power-law term and ln(Mc/mZ). This is possible because the power-law corrections respect

the MSSM relation α12/α23 = 7/5.

The main technical statement to be made is the harmlessness of this modified logarithmic
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contribution, which is sufficiently similar to MSSM running and parametrically much smaller

than the power law term. To see this explicitly, consider the most extreme case of Mc ∼ mZ

(i.e., disregard the term ∼ ln(Mc/mZ)) and choose MV = 48.5Mc. Equation (4.6) then

gives α12(mZ) = 29.4 and α23(mZ) = 21.3 in almost perfect agreement with what is needed

to accommodate the low-energy values α−1
i (mZ) = (59.0, 29.6, 8.4). At this point it is clear

that precision unification at the TeV scale is a viable possibility in this model.
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Chapter 5

6d GUT phenomenology

The previous two Sections emphasized that 5d GUT models with bulk matter which is

either massless or extremely heavy (leaving only a CS term as its low-energy trace) are

phenomenologically rather attractive. As argued below, such 5d models arise naturally as

the low-energy limit of 6d models compactified on an even smaller S1. Therefore, this

Chapter discusses power-like corrections to gauge unification in 6d SYM theories. To begin,

consider uncompactified, flat, 6-dimensional space with minimal SUSY (corresponding to

N = 2 in 4d), in which case the vector multiplet contains just the gauge field and a 6d-

chiral spinor [88]. One may add 6d gauged hypermultiplets, the spinors of which must be

of opposite 6d chirality relative to the gaugino. The reason for this is the presence of a

Yukawa-like interaction term in the 6d lagrangian. This term combines the gaugino with

the charged matter fermion, forcing them to have opposite chirality. (In this context, it is

useful to recall that, unlike in 4d, in 6d complex conjugation does not change the chirality of

a spinor. Thus, 6d chirality is an ‘absolute concept’ in the sense that it does not depend on

whether one views the spinor or its complex conjugate as the basic degree of freedom. See

App. E for details.)

The above implies that no mass terms connecting gauged hypermultiplets are allowed

in 6d. Indeed, all the fermions involved have the same chirality making fermionic mass

terms impossible. Independent of the gauging, the absence of masses in 6d simply follows

from the fact that, in a hypermultiplet, the SUSY variation of a fermion is proportional to

the SUSY generator, implying that all the fermions have the same chirality. This is very

interesting from the model building perspective since it implies that the 5d hypermultiplet

masses, which could in principle be used for an arbitrary tuning of 5d power-like unification

corrections (cf. Eqs. (3.7) and (4.5)) have no 6d analogue.

However, it would be premature to conclude that there is no massive gauged matter in

6d. Indeed, mass terms linking a 6d hypermultiplet with a 6d vector multiplet, both charged
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under some gauge group, are possible. Such mass terms arise, for example, in the KK mode

description of d-dimensional theories, where d>6, compactified to 6d. They also appear in

situations where a 6d gauge symmetry is broken by the VEV of the scalar component of one

of the gauged hypermultiplets. Mass terms of this type, involving vector and hypermultiplet

in the same representation, automatically produce a full N = 4 multiplet at a given mass

level. Thus, they are irrelevant in the present context of loop corrections to gauge coupling

unification and one can from now on focus on massless 6d models.1

The 6d vector multiplet contains no scalar (the adjoint Φ of the corresponding 5d theory

being promoted to the gauge field component A6). Thus, soft gauge symmetry breaking in a

6d Lorentz-invariant setting has to rely on the VEV of one of the scalars of a gauged hyper-

multiplet. As explained above, massive fields can be collected in full N =4 SUSY multiplets

for any given mass and representation and no power corrections to gauge unification arise.

This ends the discussion of the uncompactified 6d theory. What is more, it also implies that

the only interesting situation in 5d is the one where the gauge symmetry breaking is driven

by the adjoint scalar from the vector multiplet. Indeed, a 5d theory broken by a hypermulti-

plet VEV can be thought of as arising via dimensional reduction from a 6d theory, in which

case the above argument demonstrates the absence of power-like loop corrections. This is

the reason why the 5d analysis was focussed entirely on situations with gauge symmetry

breaking by the adjoint scalar Φ. It may, however, be interesting to consider situations

where bulk hypermultiplet VEVs are present in addition to the VEV of the adjoint scalar.

Given the absence of power-law corrections in the Lorentz-invariant 6d situation, one

now focuses on 6d theories compactified on an S1 of radius R6 to 5 dimensions. Any possible

further compactification (with compactification radius R5) leading to a realistic 4d model

is assumed to occur at a lower energy scale, R5 � R6. In the 5d effective theory, the

gauge symmetry can be broken by the VEV of the adjoint scalar Φ. The latter has to

be identified with the VEV of A6, i.e., the Wilson line wrapping the S1 [90]. Thus, one

can straightforwardly apply the analysis of the previous sections and obtain the power-law

corrections for any given 6d model. Important new features are the absence of a classical CS

term and of hypermultiplet masses in 6d, which makes the setting more predictive, and the

appearance of a tower of KK modes, the loop contributions of which have to be summed.

The remainder of this Chapter is devoted to a detailed discussion of power-law effects in this

effectively 5-dimensional situation.

Before coming to the actual calculation, another conceptual issue – the stabilization of

1More generally, according to Tables 4 and 5 of [89] all massive representations of minimal 6d SUSY with
spin ≤1 automatically have a 4d N =4 spectrum.
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the Wilson line – has to be addressed. For the simplest geometrical setting, a rectangular

torus T 2 with radii R5 and R6, the Wilson line in x6-direction, which is the analogue of the

Φ-VEV of the 5d models above, is a modulus protected by SUSY. However, in an appropriate

orbifold of the type T 2/Z2, T 2/(Z2 × Z ′2) etc., the Wilson lines have certain fixed, discrete

values determined by the gauge twists associated with the various orbifold actions [39]. In

fact, this is quite analogous to the discrete or quantized Wilson lines of string-theoretic

orbifold models [91]. To be specific, recall that a T 2/Z2 orbifold can be visualized as the

surface of a ‘pillow’ [64]. It has the topology of a sphere and 4 conical singularities with deficit

angle π. In various field- or string-theoretic orbifold constructions, gauge symmetry breaking

on this space arises from the non-trivial gauge holonomy associated with loops surrounding

the ‘corners’ of this pillow. By Gauss’ theorem, two of these Wilson lines surrounding two

adjacent corners combine into a Wilson line going around the center of the pillow, which

will therefore in many cases have a non-zero, quantized value. It is now straightforward

to imagine an extremely elongated pillow (R5 � R6) equipped with a fixed Wilson line in

x6 direction. The conical singularities are simply boundary effects (from the effective 5d

point of view) stabilizing the Wilson line VEV. In fact, as discussed in [92], in field theory

the Wilson lines surrounding each of the conical singularities do not have to be quantized

but can vary continuously and each possible value can be stabilized by local physics at the

fixed point (brane). An example for such a local stabilization mechanism is provided by

brane-localized FI terms inducing locally a non-zero field strength [93].

5.1 Power corrections in a 6d theory compactified on

a circle

As already mentioned at the beginning of this Chapter one has identified an interesting and

realistic setting for 6d power corrections: the effectively 5-dimensional case of a 6d SYM on a

T 2/Z2 with a Wilson line wrapping the compactified 6th dimension of length 2πR6 � 2πR5.

In fact, the corrections to gauge coupling unification arising in this setup could be extracted

from the more general analysis of arbitrary tori with two Wilson lines performed in [44, 45]

(including a discussion of the connection to string theory [48]). Terms linear in the Wilson

line VEV appear, for example, in taking the appropriate limits of Eq. (27) in [45]. However,

for the following it is useful to give an independent and extremely simple derivation, based

on the 5d results obtained above, which adequately describes the dominant part of large,

power-like corrections to gauge unification. It is important to note that the analysis of [44]

supports the expectation (based, e.g., on the symmetry arguments or the UV fixed-point
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conjecture of [41]) that the field theory results for gauge coupling differences are recovered

in string theory in the limit of infinite string tension.

Consider first, as at the beginning of Sect. 3.2, a supersymmetric 6d U(1) gauge theory

with a gauged hypermultiplet of charge q. This will be a useful building block for the

following realistic calculation although, without appealing to the Green-Schwarz mechanism,

the simple U(1) model is inconsistent since it is anomalous.2 After compactification, one has

a KK tower of 5d hypermultiplets with masses mn = |n/R6| with n integer. Turning on

a Wilson line in x6 direction, the former zero mode acquires a non-zero mass m = qA6

(where a gauge with constant A6-VEV has been chosen). A corresponding Wilson-line-

induced effective mass correction is also added to the masses of the higher KK modes (which

is particularly evident in the fermionic part of the lagrangian, see App. C, Eq.s (C.7) and

(C.8), for details). The resulting KK spectrum is mn = |n/R6 +m| with n running over all

integers. Thus, the loop correction of Eq. (3.8) is replaced by

δ

(
1

g2
5

)
= − q2

8π2

+∞∑

n=−∞
|nR−1

6 +m| . (5.1)

As before, the interest is just in the mass dependence of this correction. This mass depen-

dence is finite and can be easily extracted from the above divergent sum using dimensional

regularization. It is convenient to introduce the dimensionless parameter c = mR6 = qA6R6

assuming 0< c< 1 for the moment. The result, derived in Appendix D in Eq. (D.7), then

reads

δ

(
1

g2
5

)
= − q2

8π2R6
c(1− c) = − q2

8π2
m (1− c) , (5.2)

where, to be emphasized again, an m-independent divergent contribution has been dropped.

This very simple formula has manifestly the correct limiting behaviour as R6 → 0 for

fixed m. Furthermore, viewed as a function of R6 and c, it is invariant under the substitution

c→ (1−c). This is a manifestation of the fact that the KK spectrum is completely determined

once the lightest mode is known. In other words, the point n = 0 has no absolute meaning

and a shift of the label n or a reflection n → −n do not affect the physics. This last

comment makes it obvious that Eq. (5.2) is extended to values of c outside the interval (0, 1)

by simply demanding reflection symmetry with respect to any point where c is integer. This

is illustrated in Fig. 5.1.

It is evident from Fig. 5.1 that, locally, the inverse gauge coupling squared depends

quadratically on the Wilson line VEV and thus, from the 5d point of view, on Φ. However,

2For a 6d U(1) model, the anomaly induced by the box diagram is always non-zero since it is proportional
to the sum of the fourth powers of the charges of the fermions, which all have the same chirality because
of 6d SUSY. This will be different in non-abelian models (see below) since the gaugino is charged and has
opposite chirality.
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Figure 5.1: Illustration of the dependence of the 1-loop correction to the inverse gauge
coupling in the 5d effective theory, g−2

5 , on the value of the Wilson line, parameterized by
c = qA6R6.

it is known from SUSY and gauge invariance (cf. Sect. 3.1 and Appendix B) that the 5d

prepotential is at most cubic and thus the Φ dependence is at most linear. This inconsistency

is directly linked to the non-zero anomaly, as can be easily seen from Eq. (5.2). Indeed, for

a model with several hypermultiplets the term quadratic in A6 is proportional to the sum

of the fourth powers of the charges, i.e., the anomaly, which is necessarily non-zero. It will

become clear shortly that this problem disappears in an anomaly free, non-abelian model.

The non-abelian version of the above result can be written down without any further

calculation. Recall that, at the beginning of Sect. 3.2, a rederivation of Eq. (3.7) on the

basis of Eq. (3.8) and simple group theory was given. Following this line of reasoning, the

6d version of Eq. (3.7) can now immediately be given:

Li ⊃ −1

4
F 2
i

{
2πR6

g2
6,cl.

+
1

8π2

(∑

α

α2
i |αjAj6|

(
1− |αjAj6|R6

)
(5.3)

−
∑

f

∑

λ

λ2
i |λjAj6|

(
1− |λjAj6|R6

))}
.

It is obtained from the original expression by identifying each 5d mass m and replacing it by

m(1−mR6). This is the same procedure that leads from Eq. (3.8) to its 6d version Eq. (5.2).

Of course in addition, the components φi of the field Φ are replaced by the corresponding

components Ai
6 of A6 and the classical CS term as well as the hypermultiplet masses are

dropped.

Similarly, the 6d analogue of Eq. (3.9), which is most directly useful for GUT phenomenol-

ogy, reads

δ

(
1

g2
5,i

)
=

1

8π2


∑

ri(a)

Tri(a)Mri(a)

(
1−Mri(a)R6

)
−
∑

f

∑

ri(f)

Tri(f)Mri(f)

(
1−Mri(f)R6

)

 .

(5.4)
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It is clear from the structure of Eq. (5.3) that each of the 5d low-energy U(1) gauge

couplings depends on A6 like a sum of functions of the type displayed in Fig. 5.1. In fact,

both Eq. (5.3) and Eq. (5.4) can be taken at face value only in a certain neighbourhood of the

point A6 = 0. They are extended to all values of A6 along a certain direction in the Cartan

subalgebra by extending each of the terms of the form m(1−mR6) as illustrated in Fig. 5.1.

Locally, the sum of these terms must be a linear function since the 5d prepotential is at

most cubic. The required cancellation of the coefficient of (A6)2 is indeed possible because

of the relative sign between the vector multiplet and the hypermultiplet contributions in

Eq. (5.3). This cancellation is intimately linked to the absence of 6d anomalies. To see this

more explicitly, let Ai
6 (with i fixed) be the only non-zero component of A6 and consider the

gauge coupling correction to the U(1) subgroup generated by Hi as specified by Eq. (5.3).

The coefficient of (Ai
6)2 is now manifestly proportional to the box anomaly coefficient. To

see this, look at the pure gauge anomaly in 6d which is ∼ trr F
4. For a single spinor 16 of

SO(10) one has according to [94] trF 4 ∼ Trsymm.(T
aT bT cT d) = A(δabδcd + δacδbd + δadδbc).

This is the box anomaly and like the coefficient of (Ai
6)2 it is proportional to the fourth power

of the charge if evaluated as above on a single generator. (Then it is a = b = c = d = i on the

root generator T i = αi). Now if there is more than one field in the theory the coefficient of

(Ai6)2 vanishes whenever the sum of the fourth powers of charges (specified by αi) of fermions

of the gaugino-chirality minus the sum of the fourth powers of charges (specified by λi) of

fermions of matter-chirality is equal to zero. This fulfills the constraint of 6d gauge anomaly

cancellation and is a nice consistency check of the present analysis.

5.2 A 6d SO(10) example

As an illustration of the general discussion above now the power corrections to gauge uni-

fication in a 6d SO(10) model compactified to 5d on an S1 are explicitly calculated. The

group is broken to SU(3)×SU(2)×U(1)×U(1)′ by an A6 Wilson line along the hypercharge

direction, which corresponds to the first of the two U(1)s above. (For a detailed discussion

of the corresponding group theory and the various breaking possibilities see, e.g., Sect. 3.2

of [92].)

One possible special case of 5d effective theories of this type arises in the orbifold models

of [39]. These models have a pillow-like fundamental space with gauge symmetries SO(10),

SU(5)×U(1), SU(5)′×U(1)′ and SU(4)×SU(2)×SU(2)) at the four corners. One can now

imagine stretching this space in one direction such that the SO(10) and the Pati-Salam fixed

points are at one of the two boundaries of the resulting effectively 5-dimensional model (while
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the SU(5) and the flipped SU(5) fixed points are at the other boundary). Away from the

boundaries, one has a cylinder wrapped by a Wilson line in hypercharge-direction, which is

precisely the 6 to 5d compactification discussed above. In this specific orbifold realization,

the Wilson line is quantized such that it corresponds to a Z2 gauge twist and correspondingly

the gauge symmetry in the 5d bulk is enhanced from the generic case, SM×U(1)′, to the

Pati-Salam group (cf. the 5d the models of [72]). However, one can clearly imagine other

similar constructions with different values of the A6 Wilson line (see, e.g., the models of [92]

and [93] where Wilson lines encircling conical singularities take on continuous values not

related to the geometrical deficit angle).

Restricting ourselves to hypermultiplet matter in the 10 and 16 of SO(10), there is only

one model without irreducible or reducible gauge anomalies. It contains, in addition to the

vector multiplet in the 45, 6 hypermultiplets in the 10 and 4 hypermultiplets in the 16

of SO(10) [95]. The existence and uniqueness of this solution is easily checked using the

formulae of [94] (based on [96] and [97]). More possibilities exist if one only requires that

the irreducible anomaly cancels, appealing to the Green-Schwarz mechanism [98] for the

cancellation of the reducible anomalies. The investigation of power-law corrections in this

context is left to future work. Also, 4d boundary anomalies arising at the conical singularities

of the full model [99] will not be discussed, since they are not an intrinsic part of the effective

5d theory in which the power-corrections arise. However, it should be emphasized that an

example of a realistic SUSY GUT with the above anomaly-free 6d bulk matter content has

been given in [95].

In principle, the calculation of the power-law corrections in the anomaly-free 6d SO(10)

model is a straightforward application of Eq. (5.4). The analysis becomes particularly simple

if one uses the 5d results of Table 4.1 together with the familiar decomposition of SO(10)

representations in SU(5) language. Specifically, the matter content of a vector 45 and

hypermultiplets 6× 10 + 4× 16 of SO(10) corresponds to vector multiplets 24 + 2× 10 and

hypermultiplets 16× 5 + 4× 10 of SU(5). (Note that, as far as gauge coupling corrections

are concerned, one does not need to distinguish between 5 and 5̄ etc.) The effective 5d

masses of the various fields are completely specified by these SU(5) representations since the

symmetry-breaking Wilson line lies within the SU(5) subgroup. In particular, the two vector

10s cancel the effect of two of the hypermultiplet 10s of SU(5) because of effective N = 4

SUSY in the spectrum.

Of course, the modification of corrections of the type displayed in Eq. (4.5) arising from

the summation of the full KK tower has to be taken into account as described in Sect. 5.1.
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For example, the fields of one 6d bulk hypermultiplet in the 5 give a correction

∆α−1
2 = −1

2

(
3

5
MV

)(
1− 3

5
MVR6

)
R5

2
+ · · · = −1

2

(
3

5
c

)(
1− 3

5
c

)
R5

2R6
+ · · · , (5.5)

where c = MVR6. Here it has been assumed that the effective 5d theory is further com-

pactified to 4d on an interval of length πR5 following as closely as possible the purely

5-dimensional situation of Sect. 4. As before, the typical A6 dependence arising from the

structure m(1 −mR6) has to be continued to all values of A6 as shown in Fig. 5.1. In the

anomaly-free SO(10) model under discussion, one has contributions corresponding to a vec-

tor multiplet 24, 2 hypermultiplet 10s and 16 hypermultiplet 5s in SU(5) language. Thus,

the full correction reads

∆α−1
2 =

R5

2R6

{
3c(1− c)− 3

( c
5

) (
1− c

5

)
− 8

(
3

5
c

)(
1− 3

5
c

)}
, (5.6)

with c = MVR6. Similar formulae for ∆α−1
1 and ∆α−1

3 are easily derived using the data of

Table 4.1. For illustration, the inverse gauge coupling differences relevant to unification are

plotted in Fig. 5.2. This figure nicely illustrates the piecewise linear functional dependence

Figure 5.2: Power corrections to the inverse gauge coupling differences α12 and α23 in units
of (R5/2R6) as functions of A6 (parameterized by c = MVR6, where MV is the 6d X, Y
gauge boson mass). Note the piecewise linear form related to 6d anomaly cancellation.

on A6 that results from a sum of functions of the type displayed in Fig. 5.1 in an anomaly-free

model. The figure also shows that, in the specific model under consideration, realistic gauge

unification cannot be driven by just the power-law effect since the ratio α12/α23 ' 1.4 is not

realized for any value of A6. This may be different for models with other matter content

and corresponding Green-Schwarz anomaly cancellation. It may also be changed if other

Wilson lines or bulk hypermultiplet VEVs affect the mass spectrum of the model. However,

since the main aim of the present thesis is not the construction of realistic GUT models but

rather the conceptual and technical understanding of power-law corrections to unification,

this brief excursion into SO(10) phenomenology ends here.
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Finally, it should be emphasized that the structure of Eq. (5.6) justifies, a posteriori,

the assumption of an intermediate, effectively 5-dimensional theory, i.e., the assumption

R5 � R6. Indeed, given that c(1 − c) and the other terms of this type are at most O(1),

power corrections to inverse gauge coupling differences can only become parametrically larger

than the familiar 4d threshold effects if R5/R6 � 1 (cf. [48]).
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Chapter 6

KKLT - Higher-dimension operators
and moduli stabilization

Field theories in a higher-dimensional space-time which are compactified to four dimensions

on a so-called orbifold are conceptually and phenomenologically appealing. The simplicity

and elegance of the symmetry breaking provided by orbifolding, for instance, already provides

a sufficient motivation for the study of higher-dimensional field theories. The above results

do strengthen this notion, since they state purely field theoretical and predictive power-

law unification in higher dimensions. However, the structure of rigid supersymmetry in

higher dimensions finally has to be embedded into gravitation. Gravitation means local

supersymmetry and for supergravity, in particular in its unique form in 11 dimensions,

it remains unclear whether it is controllable regarding possibly infinite loop corrections.

Thus, we are left with superstring theory which up to now managed to upheld its claim of

providing a way to unify the gauge interactions into a UV-finite theory of quantum gravity.

There are five distinct superstring theories allowed by the constraints of 2d superconformal

invariance on the string world sheet and 10d space-time supersymmetry: type I open strings

with gauge group SO(32), type IIA and IIB closed strings, and the two heterotic strings

with gauge groups E8 × E ′8 and SO(32). They have as their low energy effective theory in

10 dimensions different kinds of 10d supergravity coupled to 10d super Yang-Mills theory.

The world, as we can observe it on scales between the Hubble scale (cosmic microwave

background (CMB) radiation) and about 10−19m (= 100 GeV −1, LEP 2 data), is neither

supersymmetric nor higher-dimensional. Thus, the superstring and the 10d supergravities

as its low energy description face the formidable tasks of breaking supersymmetry above the

weak scale and and reducing ten to four dimensions. The latter problem is usually solved

by KK-compactification from 10d to 4d on small compact internal manifolds [101]. Further,

since the beginning of string theory several ways have been developed to solve he problem of

breaking the large 10d supersymmetry and gauge symmetry. Choosing orbifolds or Calabi-
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Yau manifolds for the internal spaces of KK-compactification can reduce the supersymmetry

to 4d N = 1 and break the gauge symmetry to Standard Model-like groups [100, 101].

The process of gaugino condensation can break the remaining supersymmetry and, further,

it was used as a means to stabilize the string dilaton [101, 102]. However, string theory

after compactification to 4d contains many massless scalar fields, the so-called moduli. The

problem of finding compactifications to 4d which stabilize all moduli then has been adressed

more recently in [15, 16] (partially, at least) by using certain properties of supersymmetry

and string theory, such as the presence of non-trivial background fluxes [16–31], Dp-branes

and gaugino condensation of strongly coupled sectors of super Yang-Mills theories.

Gauge coupling unification is the most prominent phenomenological success of the MSSM.

Thus, it is desirable for string compactifications to arrive as a first step at effectively four-

dimensional models with one surviving 4d supersymmetry (N = 1). This can be done rather

generically by compactifying the additional six spatial dimensions on an internal Kähler

manifold of non-trivial topology with SU(3)-holonomy, a so-called Calabi-Yau threefold.

The numerous continuous deformations of a given Calabi-Yau appear in the 4d effective field

theory as massless scalar fields, called the moduli fields of the compactification. Further

there is the dilaton, a massless scalar field predicted by all string theories to be present in

its bosonic sector already in 10d which determines the string coupling of string perturbation

theory. Therefore, one has to remove the dilaton and the moduli fields from the low energy

effective theory in 4d by giving them large masses via a potential. This is required for two

reasons. Firstly, these massless scalar fields would mediate long-range scalar interactions of

roughly gravitational strength, which hitherto has not been observed. Secondly, fixing the

moduli is necessary in order to choose a definite compact manifold. Otherwise one has huge

classes of energetically equivalent compact manifolds to choose from.

The following sections will review how the moduli can be stabilized (that is, a potential

can be generated for them) by different non-perturbative effects and several phenomenolog-

ical aspects with the emphasis on inflation model building will be summarized. For this

purpose, most of the considerations here will be presented in the framework of type IIB

superstring theory and its type IIB low energy effective supergravity as being the example

where up to now these structures have been understood best. Most of this review will be

oriented along the lines of [15, 16, 100] in the first two Sections. Next, a short recollection

of the basics of inflation will follow and some existing models of inflation in KKLT-like flux

compactifications of string theory are discussed with further original sources given where

necessary. This provides the background for the discussion of a new model of inflation con-

structed from the presence of higher-order α′-corrections [54] in string theory in Chapter 7.
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Using the generic presence of such perturbative α′-corrections in string theory this model

avoids introducing a source of (explicit) supersymmetry breaking like anti-D3-branes by

hand which adds to its reliability.

6.1 AdS5, fluxes and stabilization of the moduli

The appearance of the Kähler and complex structure moduli1 in type IIB superstring com-

pactifications on a Calabi-Yau threefold immediately leads to the question of how to stabi-

lize them since they control both shape and size of the compact manifold. (For instance,

the volume of the Calabi-Yau M6, given by Vol(M6) = K/6 where K = J ∧ J ∧ J and

J = gmn̄dy
m ∧ dȳn̄ denotes the (1, 1)-Kähler form, is clearly rescaled by fluctuations of

(1, 1)-form type.)

One way to lift the vacuum degeneracy represented by the moduli uses the presence of the

other p-form fields in the low energy effective action of the type IIB superstring to give them,

roughly speaking, a VEV. This is generalization of the geometrical KK-compactification on

the Calabi-Yau. The compactification on a given Calabi-Yau is equivalent to the choice of a

certain background metric. The metric arises as the symmetric 2-form field of the superstring.

Therefore, the choice of a background metric means giving a VEV to the symmetric 2-form

field of string theory. This process can be generalized to the other form fields in the effective

action. Strictly speaking, one requires that the p-form flux given by the integral of a p-form

field strength over a certain sub-manifold of the Calabi-Yau, a cycle, is quantized in units of

the inverse string tension α′.

The possibility to have such a generalized flux compactification to 4d, however, is subject

to severe constraints which can only be circumvented by the presence of typical stringy

extended objects such as Dp-branes and orientifold planes. The following discussion of this

procedure will be closely oriented along [16].

For this purpose begin with the bosonic part of the type IIB supergravity action given

by

SIIB =
1

2κ2
10

∫
d10x
√−gs

{
e−2φ

[
Rs + 4 (∂φ)2]−

F 2
(1)

2
− 1

2 · 3!
G(3) · Ḡ(3) −

F̃ 2
(5)

4 · 5!

}

+
1

8iκ2
10

∫
eφC(4) ∧G(3) ∧ Ḡ(3) + Sloc (6.1)

where Sloc denotes additional terms in the action which arise from localized sources such as

Dp-branes. Here the F(2p+1) = dC(2p) denote the 2p+1-form field strengths of the correspond-

ing 2p-form potentials C(0), C(2) and C(4) of the R-R sector of the type IIB superstring. The

1For the definition of the Kähler and complex structure moduli of a Calabi-Yau threefold see Appendix F.
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type IIB axio-dilaton τ = C(0) + ie−φ and the antisymmetric tensor B(2) of the NS-NS sector

appear in the 3-form flux defined by G(3) = F(3) − τ ·H(3) where H(3) = dB(2). Furthermore

one has defined

F̃(5) = F(5) −
1

2
C(2) ∧H(3) +

1

2
B(2) ∧ F(3) . (6.2)

This 5-form field strength is self-dual since the (R+, R+)-sector2 of the type IIB superstring

decomposes as [1] + [3] + [5]+ under SO(1,9)-representations, demanding the presence of a

self-dual 5-form field strength in the massless spectrum. The form of the action Eq. (6.1) is

consistent with the self-duality of F̃(5) though this property does not follow from it. (It is

known, that it is not possible to write a Lorentz invariant action for a self-dual 5-form field

strength in 10d.)

For the next step one needs the equations of motion for the metric and F̃(5). For that

purpose one rewrites the supergravity action in the Einstein frame defined by shifting to

gMN = e−φ/2gsMN

SIIB =
1

2κ2
10

∫
d10x
√−g

{
R− ∂Mτ∂

M τ̄

2 (Im τ)2
− G(3) · Ḡ(3)

12 · Im τ
−

F̃ 2
(5)

4 · 5!

}

+
1

8iκ2
10

∫
C(4) ∧G(3) ∧ Ḡ(3)

Im τ
+ Sloc (6.3)

Later it will turn out that in such compactifications [16, 49] the presence of fluxes and D3-

branes or O3-planes is intimately linked to the warping of the geometry.

Varying SIIB with respect to F̃(5) and using the self-duality of F̃(5) the equations of motion

and the Bianchi identities for F̃(5) read

d ∗ F̃(5) = dF̃(5) = H(3) ∧ F(3) + 2κ2
10µ3ρ

loc
3 , (6.4)

where the last term describes the charge density of localized objects which are charged

under the 4-form potential C(4) with some 5-form charge µ3. For instance, a D3-brane, its

low energy effective action in the bosonic sector to leading order being

SD3 = −T3

∫
d4ξ
√−g4 + µ3

∫
C(4) , (6.5)

is a viable example for such a localized C(4)-source.

The metric is governed by the 10d Einstein equations. Demanding 4d Poincaré invariance

leads to a metric ansatz which in its compact part is conformally Calabi-Yau

ds2
10 = e2A(y)ηµν︸ ︷︷ ︸

(g4)µν

dxµdxν + e−2A(y)g̃mn︸ ︷︷ ︸
(g6)mn

dymdyn . (6.6)

2’+’ denotes the eigenvalue of the left- and rightmoving degrees of freedom, respectively, in the Ramond
sector under the action of the worldsheet fermion number operator exp(iF )
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This requirement also forces one to consider the axio-dilaton τ = τ(y) as well as the G(3) to

depend only on the compact directions and G(3) to have only compact components. For F̃(5)

the metric ansatz together with self-duality constrains its form to be

F̃(5) = (1 + ∗)[dα ∧ dx0 ∧ dx1 ∧ dx2 ∧ dx3] , α = α(y) . (6.7)

The equations of motion for the metric, the 10d Einstein equations follow as

RMN −
1

2
gMNR = κ2

10 · TMN

⇒ RMN = κ2
10

(
TMN −

1

8
gMNT

)
, (6.8)

where the energy-momentum tensor TMN gets contributions from the various supergravity

form fields as well as from the localized sources. The non-compact 4d components for bosonic

fields then read

Tµν = − 1

2κ2
10

gµν

(
GmnpḠ

mnp

12 Im τ
+ e−8A∂mα∂

mα

)
− 2√−g

δSloc

δgµν︸ ︷︷ ︸
T loc
µν

. (6.9)

The other part of Eq. (6.8) is given by the 4d components of the Ricci tensor

Rµν = ∂RΓRµν − ∂µΓRRν + ΓSµνΓ
R
RS − ΓRSµΓSRν . (6.10)

Using that

Γρµν = ΓRRν = 0 , ∂RΓRµν = ∂rΓ
r
µν = −1

2
ηµν∂r

(
e2Ag̃rs∂se

2A
)

ΓSµνΓ
R
RS = ΓsµνΓ

r
rs = −ηµνe2Agrs∂r(ln

√−g∂sA)

ΓRSµΓSRν = ΓρsµΓsρν = −1

2
ηµν g̃

rs∂re
2A∂se

2A (6.11)

one finds

Rµν = −gµν∇2A = −ηµνe4A∇̃2A = −1

4
ηµν

(
∇̃2e4A − e−6A∂me

4A∂me4A
)

(6.12)

where one defines

∇2f =
1√−g ∂m(

√−ggmn∂nf) (6.13)

and ∇̃2 likewise with gmn everywhere replaced by g̃mn. Finally the 4d components of the

equations of motion of the metric follow from Eq.s (6.9) and (6.12) plugged into Eq. (6.8).

Taking the 4d trace with gµν = e−2Aηµν on them one arrives at

∇̃2e4A = e2AGmnpḠ
mnp

12 Im τ
+ e−6A

(
∂me

4A∂me4A + ∂mα∂
mα
)

+
κ2

10

2
e2A(Tmm − T µµ )loc . (6.14)
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Next turn to the Bianchi identity of the 5-form field strength Eq. (6.4). The right hand

side of Eq. (6.4) is given by

H(3) ∧ F(3) + 2κ2
10µ3ρ

loc
3 . (6.15)

This can be rewritten as

H(3) ∧ F(3) + 2κ2
10µ3ρ

loc
3 = i · Gmnp · ∗6Ḡ

mnp

12 Im τ
dx4 ∧ . . . ∧ dx9 + 2κ2

10µ3ρ
loc
3 . (6.16)

Here the definition of the 3-form field strength G(3) has been used.

The left hand side of the Bianchi identity Eq. (6.4) after some technical calculations

yields

dF̃(5) = − 1√
g6
∂m(g−1

4

√−ggmn∂nα) dx4 ∧ . . . ∧ dx9 . (6.17)

For this calculation the self-duality of F̃(5) and the factors
√−g introduced by the Hodge

dual ∗ are crucial. dF̃(5) can now be further rewritten to yield

dF̃(5) =
[ 1√−g4

√−g ∂m(
√−ggmn∂nα)

+
g4√−g4

∂m(g−1
4 )gmn∂nα

]
dx4 ∧ . . . ∧ dx9

=
[
e−2A∇̃2α− 2e−8A∂mα∂

mα
]
dx4 ∧ . . . ∧ dx9 . (6.18)

Putting together Eq.s (6.16) and (6.18) one can rewrite the Bianchi identity of the 5-form

field strength finally as

∇̃2α = ie2AGmnp · ∗6Ḡ
mnp

12 Im τ
+ 2e−6A∂mα∂

mα + 2κ2
10e

2Aµ3ρloc
3 . (6.19)

Here ρloc
3 is defined by ∫

M6

d6y ρloc
3 =

∫

M6

ρloc
3 = Qloc

3 . (6.20)

As a last step take now the difference between this equation and Eq. (6.19) which yields
a condition

∇̃2(e4A − α) = e2A |iGmnp − ∗6Ḡmnp|2
6 Im τ

+ e−6A
∣∣∂(e4A − α)

∣∣2 + 2κ2
10e

2A

[
1

4
(Tmm − T µµ )loc − µ3ρloc

3

]
.

(6.21)

The two constraints Eq.s (6.14) and (6.21) now connect the warping of the metric and

the presence of 3-form and 5-form fluxes with the nature of the localized sources: firstly,

integrate Eq. (6.14). The left hand side integrates to zero while the positive semi-definite

form field contributions of the right hand side pick up every single non-zero piece of flux on

the compact manifold. Therefore the fluxes have to vanish and the warp factor has to be
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constant unless there are localized sources present which manage to provide Tm
m − T µµ < 0.

Now integrate the second constraint Eq. (6.21). Again the left hand side integrates to zero.

The right hand side of Eq. (6.21) upon integration in general does not give strong constraints,

except if the last term of the right hand side of Eq. (6.21) is actually zero. If this stress term

vanishes

(Tmm − T µµ )loc − µ3ρ
loc
3 = 0 (6.22)

then Eq. (6.21) implies that the 3-form field strength is imaginary self-dual (ISD) under

the Hodge dual in the compact directions. Eq. (6.22) represents a BPS condition for the

extended objects of the theory [16]. Further, if this BPS condition holds one has

iG(3) = ∗6G(3)

e4A = α . (6.23)

At this point it is essential that string theory with its D3-branes and O3-orientifold planes

contains objects which fulfill the condition Eq. (6.22) and have negative tension which implies

Tmm − T µµ < 0 [16]. Regarding the last point note that the energy-momentum tensor of the

localized objects is determined in terms of their 5-form charge Qloc
3 . Now D3-branes (as

well as D7-branes wrapped on 4-cycles of the Calabi-Yau) and O3-orientifold planes have

Qloc
3 < 0.

Note, that the above constraints are invariant under a rescaling of the compact metric

g̃mn → λ2g̃mn [16]. According to this work the existence of a solution to the full supergravity

equation of motions with the above properties is guaranteed if all the constraints Eq.s (6.14),

(6.21) − (6.23) are fulfilled. Then the invariance of the constraints under the rescaling of

the compact metric holds for the full solution, too. Since such a transformation rescales the

overall volume of the Calabi-Yau and thus its radius, this property implies that there is at

least one Kähler modulus of (1, 1)-form type in the notation of Appendix F which has a flat

direction.

A viable setup therefore is a Calabi-Yau orientifold compactification which has a set of

O3-orientifold planes such that they carry an overall negative 5-form charge. O3-planes

fulfill the BPS condition Eq. (6.22). Therefore, such a setup will enforce the presence of

3-form fluxes and a warped geometry such as to satisfy both the constraints of Eq.s (6.14)

and (6.21). Thus, there are fluxes such that they cancel the integrated 5-form charge of the

orientifold planes in the 5-form Bianchi identity

1

2κ2
10µ3

∫

M6

H(3) ∧ F(3) +Qloc
3 = 0 . (6.24)
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In addition, the H(3)- and F(3)-fluxes which combine to give the ISD G(3), are subject to

certain quantization conditions with respect to the three cycles of the Calabi-Yau threefold

chosen. Let CI be a basis of the homology of three cycles on the Calabi-Yau. Then in turning

on flux backgrounds the fluxes have to satisfy
∫

CI

F(3) = (2π)2α′ ·MI , MI ∈ N
∫

CI

H(3) = −(2π)2α′ ·KI , KI ∈ N (6.25)

which fixes and thus removes them as dynamical variables of the low energy effective theory.

Now consider this situation from the 4d point of view. Here one does not have a knowl-

edge of the 10d constraints above which demand that G(3) is ISD. Since in the end one has

to extract the potential for the moduli from the ’kinetic’ term of the 3-form flux in the su-

pergravity action Eq. (6.3) one has to separate it into purely topological and non-topological

pieces. For this argument one needs the properties of the anti-ISD part G+
(3) of the 3-form

flux. For that purpose look at the equations of motion for G(3) which read [16]

dΛ +
i

Im τ
dτ ∧ Re Λ = 0 , Λ = e4A ∗6 G(3) − iαG(3) . (6.26)

For constant dilaton τ this becomes

de4A(∗6G(3) − iG(3)) = −2i · de4AG+
(3) = 2 · de4A ∗6 G

+
(3) = 0 (6.27)

which is a constraint for the anti-ISD part of G(3). Thus, for constant warp factor G+
(3) must

be a harmonic 3-form on the Calabi-Yau since the Laplacian ∆ = ∗d ∗d+d ∗d∗ acting upon

G+
(3) yields zero.

Splitting the 3-form flux into its ISD (G−(3): ∗6G
−
(3) = iG−(3)) and anti-ISD (G+

(3): ∗6G
+
(3) =

−iG+
(3)) part and using that ∗6G(3) = iG(3)−2iG+

(3) and G−(3)∧Ḡ+
(3) = 0 this term decomposes

into

SG = − 1

24κ2
10

∫

M6

d6y
√
−g̃ GmnpḠ

mnp

Im τ

= − i

4κ2
10 Im τ

∫

M6

G(3) ∧ Ḡ(3) −
1

12κ2
10 Im τ

∫

M6

d6y
√
−g̃ G+

mnpḠ
+ gmnp

︸ ︷︷ ︸
V

. (6.28)

While the first piece is purely topological, the second part can now be shown to represent a

scalar potential V . G+
(3) was shown to be a harmonic 3-form and it is anti-ISD. Now on a

Calabi-Yau threefold there are just two classes of non-vanishing anti-ISD harmonic 3-forms

- the (1, 2)-forms χ̄Ā and the holomorphic 3-form Ω (see Appendix F). Thus, one may

decompose the G+
(3) in the space of cohomologies as

G+
(3) = aΩ + b̄Āχ̄Ā . (6.29)
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Using now the inner product induced by the Hodge dual on the Calabi-Yau the decomposition

coefficients (a complete analogon to the coefficients of linear combinations in a vector space

spanned by a complete orthonormal system of basis vectors) follow to be

a =

∫
M6

G(3) ∧ Ω̄∫
M6

Ω ∧ Ω̄

b̄Ā =
GĀB

∫
M6

G(3) ∧ χB∫
M6

Ω ∧ Ω̄
, GĀB =

(∫
M6

χ̄Ā ∧ χB∫
M6

Ω ∧ Ω̄

)−1

. (6.30)

Inserting these results into the term V of Eq. (6.28) allows one to write it as

V =
1

12κ2
10 Im τ

∫

M6

d6y
√
−g̃ G+

mnpḠ
+ gmnp

=

∫
M6

G(3) ∧ Ω̄
∫
M6

Ḡ(3) ∧ Ω + GĀB
∫
M6

G(3) ∧ χB
∫
M6

Ḡ(3) ∧ χ̄Ā
2κ2

10 Im τ
∫
M6

Ω ∧ Ω̄
. (6.31)

Comparing this with the standard form of the scalar potential in supergravity

V = eK
(
KIJ̄DIWDJ̄W̄ − 3 |W |2

)
(6.32)

one finds that a Kähler potential

K = −3 ln(T + T̄ )− ln(−i(τ − τ̄ ))− ln

(
−i
∫

M6

Ω ∧ Ω̄

)
(6.33)

together with a superpotential [22]

W =

∫

M6

G(3) ∧ Ω (6.34)

reproduces the above scalar potential V . Here a single volume modulus T has been included

with a Kähler potential of no-scale type to account for the fact noted above, that the com-

pactifications discussed here must possess at least one massless Kähler modulus. Since this

no-scale piece cancels the −3|W |2-piece in the potential, the supergravity scalar potential

becomes

V = eKKI′J̄ ′DI′WDJ̄ ′W̄ , I ′, J ′ = (A, τ) (6.35)

(A runs over the complex structure moduli) which gives precisely Eq. (6.31). One derives

the supercovariant derivatives used here from Eq.s (6.33) and (6.34) to be

DAW = ∂AW +W∂AK =

∫

M6

G(3) ∧ χA

DτW = ∂τW +W∂τK =
1

τ̄ − τ

∫

M6

Ḡ(3) ∧ Ω

DTW = ∂TW +W∂TK = − 3W

T + T̄
. (6.36)
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The conditions for unbroken supersymmetry DAW = DτW = DTW = 0 thus imply that

G(3) must be of (2, 1)-type and G+
(3) = 0 which reproduces the 10d condition Eq. (6.23)

in the end. A (0, 3)-piece in the G-flux would in general yield W 6= 0 at the point where

DAW = DτW = 0 which would break supersymmetry.

As a result one is now in a situation where turning on a sufficiently generic 3-form flux

G(3) of (2, 1)- or (0, 3)-form type generates a superpotential and thus a scalar potential that

fixes all the complex structure moduli and the type IIB axio-dilaton at certain VEVs. Note,

that from an analysis of the supersymmetry transformation of the gravitino in 10d it, too,

follows that a (0, 3)-form flux breaks the last N = 1 SUSY while a flux of (1, 2)-form type

preserves it [16, 22, 103].

6.2 Volume stabilization and non-perturbative effects

The procedure described in the last Section provides a way towards stabilizing all except

the Kähler moduli of Calabi-Yau compactifications of the type IIB superstring by turning

on appropriate quantized fluxes of the p-form field strengths. However, this generically does

not remove the flat directions of the Kähler moduli since the superpotential generated by

the fluxes does not depend on them. For simplicity one may consider now compactification

with just one remaining Kähler modulus, the volume modulus T (a generalization to the

case of several Kähler moduli is possible [16]). As [15] have shown, it is possible to use non-

perturbative corrections to the low energy effective supergravity action in order to break the

no-scale structure of the Kähler potential of the volume modulus.

For instance, both fractional instanton effects on D3-branes and gaugino condensation

of large gauge groups on stacks of D7-branes generate a non-perturbative superpotential for

the T -modulus which takes the general form

W (T ) =
∑

j

Aje
−ajT . (6.37)

As an example a stack of N coinciding D7-branes may serve: such a stack may carry a

super Yang-Mills theory of gauge groups up to SU(N). This theory then undergoes gaugino

condensation on a scale below the 4d Planck scale which is set by the fast increase of the

running gauge coupling towards the IR due to its large negative beta function. If the j th

contribution to Eq. (6.34) arises from such gaugino condensate then it is

aj =
2π

N
(6.38)

for a gauge group SU(N) on the D7-brane stack.
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Imagine now that a sufficiently generic SUSY breaking (0, 3)-form G-flux has been intro-

duces by an appropriate setup of stacks of D7-branes and O3-orientifold planes, which fixes

all the non-Kähler moduli. Then the superpotential, the Kähler potential and the resulting

scalar potential for the volume modulus T = X + iY read as

W (T ) = W0 , K = −3 ln(T + T̄ )

V (T ) = 0 (6.39)

where W0 denotes the flux induced superpotential of the non-Kähler moduli evaluated at

their minimum. Now add the superpotential of a single large gauge group undergoing gaugino

condensation on one of D7-brane stacks. The superpotential becomes

W (T ) = W0 + Ae−aT (6.40)

which implies that now a supersymmetric minimum of the scalar potential exists at

DTW |T=Tcr
= 0

⇔W0 = −Ae−aXcr

(
1 +

2

3
aXcr

)
, Ycr = 0 . (6.41)

Thus the last remaining modulus now has been fixed at a supersymmetric AdS minimum

which reoccurs periodically in Y with periodicity 2πa−1. In order to remove the negative

cosmological constant of this minimum

VAdS = V (Tcr) = eK(−3|W (Tcr)|2) = −A
2a2e−2aXcr

6Xcr
(6.42)

one has to add an additional uplifting potential. This can come either from adding an

anti-D3-brane [15] to the setup or from the presence of Fayet-Iliopoulos terms on the D7-

branes [104]. The uplifting potential which for both cases can be described by the general

form

δV =
D

Xα
(6.43)

(α = 2 for anti-D3-branes and α = 3 for the FI D-term potentials from D7-branes) generically

breaks supersymmetry and uplifts the former AdS minimum to a new de Sitter (dS) minimum

at XdS ≈ Xcr. The positive cosmological constant of this dS-minimum can be fine-tuned to

become very small by virtue of the large number of flux quanta at hand [15] (which in turn

leads to the possibility to tune W0 in very small steps). The dS-minimum is now separated

from the decompactifying Minkowski minimum at X →∞ by a positive energy barrier with

height

Vbarrier ≈
D

Xα
max

≈ −VAdS . (6.44)

A numerical example for α = 2 (the KKLT case [15]) given in Fig. 6.1 indicates this situation.
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Figure 6.1: Scalar potential for the real part X of the T -modulus with fluxes only (dashed
line) and in presence of an anti-D3-brane (solid line).

6.3 Basics of inflation

Within this procedure of moduli stabilization in the type IIB superstring one may now

attempt to construct a model of inflation. Several suggestions have already been made here

which rely either on the flatness of the potential for the position of a D3-brane viewed as a

scalar field in 4d or on the axionic direction Y of the T -modulus which can be tuned to be

sufficiently flat. Before entering a short review of these models one should firstly state the

necessary basics about inflation in general.

Inflation describes a de Sitter stage of the early universe characterized by a phase of expo-

nential expansion. Consider a Friedmann universe described by the Friedmann-Robertson-

Walker (FRW) metric

ds2 = dt2 − R2(t)

{
dr2

1− kr2
+ r2dΩ

}
(6.45)

with the curvature of its space-like hypersurface given by k/R2. This form of the metric

is predicted once one adopts the Cosmological Principle. This principle states that the

universe looks the same independently from where you look or into which direction - which

on the largest scales has been verified to a very good accuracy by astronomical observations.

This means that the 3d spatial hypersurfaces of our 4d space-time have to be maximally

symmetric spaces which, in turn, dictates the form of the metric above. Its dynamics is fully

controlled by the scale factor R(t) which, in turn, is governed by the Friedmann equation

(the Einstein equations for the scale factor R(t) as the relevant physical degree of freedom
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of the metric)

H2 =
Ṙ2

R2
=

1

3
ρ− k

R2
. (6.46)

Here H denotes the expansion rate of the universe (the Hubble parameter, its present day

value is about 72± 6 km s−1Mpc−1 [105]) and ρ its energy density.

An inflationary de Sitter stage of expansion is characterized by a situation where the

energy density is dominated by the contribution from a positive cosmological constant ρ ≈ Λ.

Then the scale factor grows exponentially

R(t) ∝ eHt

with a fixed Hubble parameter H =
√

Λ/3 = const.

The necessity of such an inflationary phase in the very early universe arises from long-

standing problems of the standard hot big bang cosmology. One of the most prominent

contradictions, the so-called ’horizon’ problem, provides a good example: the microwave

picture of the deep sky as seen by the WMAP satellite shows the 2.73K microwave radiation

that originated when light decoupled from matter about 300.000 years after the big bang.

At this time a causally connected and thus thermalized region had a diameter of roughly

300.000 ly ≈ 100 kpc. On the scale of our today’s horizon3 of size H−1 ≈ 3Gpc these causally

connected regions from the time of decoupling thus make up regions of about 1◦ ≈ 0.01 rad

in angular diameter. Compared with the full sphere of 4π rad angular size this shows that

our sky today consists of approximately 105 causally disconnected regions. If true this

would render the observed large-scale homogeneity and isotropy of the universe extremely

improbable. Now imagine an early inflationary phase which increases the scale factor by

at least 50 . . . 60 e-foldings. This would expand even a Planck length sized patch of FRW

space-time so enormously that after the end of inflation our whole observed universe can

have easily grown out of this single patch.

The inflationary scenario now can be described by substituting a true cosmological con-

stant with a situation, where the energy density of the universe at some very early stage is

dominated by the potential energy of a scalar field. During this phase the scalar field, called

inflaton, rolls sufficiently slowly so that its potential energy dominates its kinetic one. To

be specific, the dynamics of a single real scalar field with action

S =

∫
d4x
√−g

{
1

2
∂µφ∂

µφ− V (φ)

}

3The horizon denotes the largest distance into the past from which any (light-like) signal can have reached
us until now and is ∼ H−1.
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in an FRW background is governed by an equation of motion

φ̈+ 3Hφ̇+ V ′(φ) = 0 . (6.47)

The energy density of the scalar field is then given by the time-time component of the

energy-momentum tensor

Tµν = − 2√−g
δS

δgµν
= ∂µφ∂νφ− Lgµν

⇐ ρ = T00 = V (φ) (6.48)

which implies that the Friedmann equation becomes

H2 =
1

3
V (φ)− k

R2
. (6.49)

Slow-roll of the scalar field now is defined by the conditions

φ̈� 3Hφ̇ , φ̈� V ′(φ) (6.50)

which leads to the slow-roll equation of motion

3Hφ̇ = −V ′(φ) . (6.51)

Upon differentiation of this equation and use of the Friedmann equation the conditions

Eq. (6.50) can be shown to be equivalent to the standard inflationary slow-roll condi-

tions [106, 107]

ε =
1

2

(
V ′

V

)2

� 1 , η =
V ′′

V
� 1 (6.52)

which in addition define the so-called slow-roll parameters of scalar field inflation, ε and η.

Assume now that one is initially close to a stationary point of the scalar potential where

ε = 0. The closer to zero the values of the slow-roll parameters are in this case at the begin

of inflation, the longer the inflationary stage will last, which is to say, the more e-foldings

are produced referring to the ratio

R(t)

R0

= eH(t−t0) = eN , N : Number of e-foldings .

Inflation ends if the scalar has rolled to a region of the potential where at least one of the

slow-roll parameters becomes >∼ 1 since then the energy density is no longer dominated by

the potential energy of the scalar field.

This scenario of slow-roll inflation has another important feature in that it can generate

the nearly scale invariant adiabatic power spectrum of primordial density fluctuations seen

in the microwave sky by WMAP. This property has its origin in the fact that a scalar field in
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a de Sitter background spacetimes generates field perturbations with a scale invariant power

spectrum [108]. The magnitude of the field fluctuations generated at each comoving scale k

is given by

δφk =
√
〈∆φ2〉 =

H

2π
. (6.53)

As shown, e.g., in [109] linear perturbation theory of the Einstein equations leads to a

curvature perturbation R generated by the scalar field fluctuations

Rk =

(
H

φ̇
δφ

)

k

. (6.54)

Imagine now a perturbation of comoving scale k. Its comoving (i.e. measured in the ’co-

moving’ coordinates r, θ, φ of the FRW metric above) wavelength λ corresponds to a physical

wavelength

λphys. = λ ·R(t) (6.55)

which grows exponentially fast with the scale factor R(t) during inflation. However the

horizon, i.e. the causally connected volume of space-time, which is ∼ H−1 is constant during

inflation since H is constant there. If this physical wavelength becomes larger than the

horizon

λphys. = H−1 ⇔ k = R ·H (6.56)

(called ’it leaves the horizon’) one finds [107,109] that a perturbation of this comoving scale

does no longer fluctuate. Instead after leaving the horizon it behaves as a classical field

distribution which now only stretches further by the expansion of space-time. After inflation

ends the Hubble parameter decreases like

H ∼ t−1 (6.57)

which implies that the horizon now grows linearly with time. Therefore a curvature pertur-

bation Rk that left the horizon during inflation will re-enter it some time after inflation has

ended. This happens because its physical wavelength grows now with R(t) ∼ tα and α < 1

in a matter- or radiation dominated FRW universe. After re-entry this perturbation acts as

a seed for density perturbations since a perturbation of the curvature background implies

a perturbation of the gravitational field there. It can now be shown [109] that the density

perturbations (δρ/ρ)k=RH generated by the inflationary curvature perturbations at horizon
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crossing are given by

(
δρ

ρ

)

k=RH

=

√
4

25
PR(k) =

√
4

25

(
H

φ̇
δφ

)2

∣∣∣∣∣∣
k=RH

=

√
1

50π2

H4(φ)

Lkin(φ)

∣∣∣∣∣
k=RH

=

√
1

150π2

V

ε

∣∣∣∣∣
k=RH

(6.58)

Here Pg(k) denotes the power spectrum of the fluctuations of a quantity g at the comoving

scale k and in the last line the slow-roll parameters Eq. (6.52) have been used.

Now the largest observable fluctuation structures in the microwave sky which are ac-

cessible to both the COBE and WMAP satellites (about 90◦ angular diameter) correspond

to the comoving scale of about k0 ∼ 103Mpc. At this scale k0 that magnitude of the pri-

mordial density fluctuations is measured to be (δρ/ρ)k0 = 1.91 · 10−5 by both COBE and

WMAP [105]. One can show [109] that this scale k0 left the horizon during inflation about

55 . . . 60 e-foldings before the inflationary phase ended. This COBE normalization constraint

on the magnitude of density perturbation then any model of inflation must fulfill if one wants

it to generate the primordial density fluctuations.

Finally there is the possibility that the inflationary density fluctuations generated after

inflation (unlike the scalar field perturbation in itself) are not perfectly scale-invariant. One

defines [109] a so-called spectral index

ns = 1 +
d lnPR(k)

d ln k
(6.59)

which is exactly unity if the power spectrum PR of the curvature perturbations does not

depend on k. However, in slow-roll inflation H changes slowly during the inflationary phase

implying that here the Hubble parameter and thus PR is a function of k. In slow-roll inflation

the spectral index can be calculated [109] to leading order in ε and η

ns = 1 + 2η − 6ε . (6.60)

Then the spectral index may deviate from unity and the WMAP probe data has placed

bounds on its value ns = 0.97± 0.03 [105].

6.4 Moduli stabilization and inflation

One way to construct inflation in the KKLT approach of moduli stabilization has been

to use the fact that the D3-branes in this setup are BPS states which preserve the last
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N = 1 supersymmetry. Thus their position in the Calabi-Yau, viewed as a scalar field

in 4d, represents a flat direction which renders this scalar field to be a candidate for the

inflaton [50]. The geometric picture of this idea is sketched in Fig. 6.2. The geometry of

r
1

r
2

Stack of N coincident

D3-branes at r @ 0

D3-brane at r=r
1

anti D3-brane

at r=r
2

Calabi-Yau 3-fold

M
4

Figure 6.2: The approximate AdS5-throat between the stack of coincident D3-branes pro-
viding the source of warping and the Calabi-Yau forming the UV-’brane’ in RS I language.

this setup inside the throat is described approximately by AdS5 ×M5, i.e., the metric can

be written as

ds2
10 = h−1/2g̃µνdx

µdxν + h1/2
(
dr2 + h−1/2G̃ijdyidyj

)
(6.61)

h(r) =
R4

r4
, R4 = 4πagSα

′2N =
1

2π2
a
N

T3
.

Here h(r) denotes the AdS5 warp factor which is generated by N coincident D3-branes

carrying 5-form charge µ3 = T3 (they are BPS states) at the end of the throat at r ≈ 0 and

T3 =
1

(2π)3gSα′2
(6.62)
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denotes the D3-brane tension. G̃ij with i, j = 5 . . . 9 denotes the metric of the compact

5-manifold which is an Einstein manifold [50].

Imagine now an additional D3-brane placed at radial position r1 close the end of the

throat. From Eq. (6.5) the action of a D3-brane with its BPS property implying T3 = +µ3

is

SD3 = −T3

{∫
d4ξ
√−γ −

∫
C(4)

}
. (6.63)

Here γ denotes the induced metric on the worldsheet. The fact that this object is BPS

implies that SD3 = 0, i.e., there is no potential for a static D3-brane.

Consider now fluctuations of the D3-brane in the AdS5 r-direction. These fluctuations

induce analogous fluctuations of the world sheet metric of the brane

γ → γ + δγ = γ(1− γµνδγµν) = γ

(
1− γµνgrr

∂r1

∂ξµ
∂r1

∂ξν

)
= g4

(
1− h g̃µν ∂r1

∂ξµ
∂r1

∂ξν

)
(6.64)

where the world sheet has been identified with the 4d space-time of our world γµν = gµν.

This is necessary if the Standard Model lives on a stack of n << N D3-branes placed at

r ≈ r1 instead of the one model D3-brane considered here. Insert this expansion now into

the D3-action and expand up to two-derivative order. Denoting contractions with g̃µν as ∂µ̃

the result is

SD3 =
T3

2

∫
d4ξ
√
−g̃4∂µr1∂

µ̃r1 − T3

{∫
d4ξ
√
−g̃4h

−1 −
∫
C(4)

}

︸ ︷︷ ︸
=0

(6.65)

Here one uses the fact that the 4-form potential generated by the stack of N coincident

D3-branes at the end of the throat is linked to the warp factor via

〈C(4)〉 = h−1
√
−g̃4 d

4ξ (6.66)

which leads to the cancellation in the last term of the action. Thus, a single D3-brane moves

inside the throat without any potential as expected from its BPS property above.

Next, add a single anti-D3-brane at r2 � r1 even closer to the end of the throat. Ac-

cording to [50] the background metric it will feel is changed due to the previously added

D3-brane to have a warp factor

h(r) =
R4

r4
+ δh(r) =

R4

r4

(
1 +

1

N

r4

r4
1

)
(6.67)

with: δh(r) =
1

N

R4

(r − r1)4
≈ 1

N

R4

r4
1

, r � r1 .

Now by the same method of expanding around the unperturbed world sheet metric the action
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of the anti-D3-brane in this changed background becomes

SD3 =
T3

2

∫
d4ξ
√
−g̃4∂µr2∂

µ̃r2 − T3

{∫
d4ξ
√
−g̃4h

−1 +

∫
C(4)

}

=
T3

2

∫
d4ξ
√
−g̃4

{
∂µr2∂

µ̃r2 −
2r4

2

R4

(
1− 1

N

r4
2

r4
1

)}
. (6.68)

Call now the position r1 of the formerly added D3-brane the inflaton φ. Then the second

piece of the anti-D3-brane action describes a potential for the inflaton

V (φ) =
2r4

2

R4

(
1− 1

N

r4
2

φ4

)
. (6.69)

This potential is extremely flat for large φ � r2, i.e., ε, η � 1 and thus can provide for a

sufficiently long inflationary phase generating enough e-foldings. Inflation in this model ends

when either the potential for φ rolling to smaller values becomes too steep and thus ε > 1,

or the D3- and the anti-D3-brane collide. The latter process of anti brane-brane collision

also provides a mechanism of reheating. Reheating denotes the process of transferring the

potential energy of the inflaton into that of thermalized matter and radiation which then

initiate the ordinary hot big bang.

If this model of inflation is now to be merged with the KKLT proposal of moduli stabi-

lization, it has to be embedded into an effective supergravity description. According to [50]

one then runs into the usual η-problem of inflation in supergravity: the argument given

in [50] assumes the above inflaton field φ to be a part of a chiral superfield Φ. Then the

Kähler potential is assumed to be minimally extended as

K = KKKLT + ΦΦ . (6.70)

The scalar potential induced now by this Kähler potential, however, reads

V (T, φ) = VKKLT(T ) (1 + φ̄φ+ . . .)

which implies the η = Vφ̄φ/V ∼ 1 spoiling slow-roll inflation. However, it is not clear in which

way this extension of the Kähler potential is minimal or why precisely this form is required.

Possible ways around this problem have been suggested by searching for cancellations among

the φ̄φ-piece of the scalar potential and higher-order corrections [50] or invoking additional

symmetries (such as a shift symmetry) [110].

Another way of constructing inflation within the KKLT setup is to use the axionic di-

rection Y of the T -modulus. This idea [51] can be realized by just extending the original

KKLT ansatz to a superpotential of the racetrack type consisting of the flux term and two

gaugino condensate contributions

W (T ) = W0 + Ae−aT +Be−bT (6.71)
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and the Kähler potential as in the KKLT setup K = −3 ln(T + T̄ ). The resulting scalar

potential

V (X, Y ) =
e−2(a+b)X

6X2

{
aA2(3 + aX)e2bX + bB2(3 + bX)e2aX

+3aAW0 e
(a+2b)X cos(aY ) + 3bBW0 e

(2a+b)X cos(bY )

+AB [3(a+ b) + 2abX] e(a+b)X cos[(a− b)Y ]
}

(6.72)

amended by the usual uplift Eq. (6.43) for an anti-D3-brane

δV =
D

X2

for the choice of parameters

W0 = −4 · 10−5 , A =
1

50
, B = − 35

1000
, a =

2π

100
, b =

2π

90
, D = 4.14668 · 10−12

leads to a potential shown in Fig. 6.3. The Y -direction of the T -modulus possesses close

100
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X -20

0

20

Y

0

1 ´ 10-16

2 ´ 10-16
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X

Figure 6.3: The scalar potential of the T -modulus for the above choice of parameters. The
uplift parameter D has been tuned to lift the two degenerate minima at about X = 96.130
and Y = ±22.146 to V ≈ 0. Clearly visible is the saddle point that provide in its vicinity a
very flat direction for the axionic direction Y .

to the saddle point at Xsaddle = 123.22, Ysaddle = 0 connecting the two degenerate minima

a very flat potential with slow-roll parameters evaluated at the saddle point εY = 0 and
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ηY = −0.0067. Depending on the initial parameters slow-roll inflation can take place here

with >∼ 100 e-foldings.

This discussion provides one with some background for the inflationary model presented

in the following chapter. As seen above both models existing in the literature have some

problems. For the D3-brane model [50] the embedding into a supersymmetric setup is

unclear. Both this model and the racetrack model of [51] have to introduce an anti-D3-

brane. This object is non-BPS and the effective F- or D-term description of this source of

SUSY-breaking is unclear questioning the controllability of its effects. As discussed in the

next Chapter one can solve this problem by taking into account higher-dimension operators

induced by higher-order α′-corrections of string theory. The introduction of anti-D3-branes

then is no longer necessary.
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Chapter 7

Application of α′-corrections and
inflation

7.1 α′-corrections

Concerning KKLT inspired setups like those described above one may now ask which of the

ingredients used there is least controlled with respect to the constraints of perturbativity and

negligible backreactions. Clearly, such a question arises with the use of anti-D3-branes as

uplifts for given volume-stabilizing AdS minima. The presence of either D3-branes or anti-

D3-branes by themselves does not pose a problem. Each kind viewed for itself is a BPS state

that preserves half of the original N = 8 supersymmetries in 4d (N = 2 in 10d), which,

in turn, can be arranged to contain the 2 supersymmetries preserved by the Calabi-Yau

compactification. However, an anti-D3-brane in the presence of a compact geometry with

D3-branes is non-BPS with respect to the supersymmetries preserved by the BPS condition

of the D3-branes. Thus, it breaks SUSY, and it is not clear whether this SUSY breaking

is explicit or has a description in terms of F-term or D-term breaking. If anti-D3-branes

break SUSY explicitly, the use of the supergravity approximation to calculate the effect on

the scalar potential may be questionable.

In view of these difficulties it is appealing that there are other possibilities to provide up-

lifting effects by means of perturbative α′-corrections [54] in the type IIB superstring. KKLT

have argued that these higher-order corrections in the string tension are not relevant in the

large volume limit [15]. The non-perturbative effects invoked by KKLT vanish exponentially

fast in this limit. In contrast, the perturbative corrections usually depend on a power of the

volume. This motivates the discussion of these effects as an alternative to anti-D3-branes.

Higher-order α′-corrections which usually lift the no-scale structure of the Kähler poten-

tial of the volume modulus (and generate 1-loop corrections to the gauge kinetic functions)

are not known in general. However, there is one known perturbative correction [54] given
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by a higher-derivative curvature interaction on Calabi-Yau threefolds of non-vanishing Euler

number χ. Its relevant bosonic part (cf. Eq. (6.1)) is given as

SIIB =
1

2κ2
10

∫
d10x
√−gs e

−2φ

[
Rs + 4 (∂φ)2 + α′

3 ζ(3)

3 · 211
J0

]
. (7.1)

Here J0 denotes the higher-derivative interaction [54]

J0 =

(
tM1N1···M4N4tM ′1N ′1···M ′4N ′4 +

1

8
εABM1N1···M4N4εABM ′1N ′1···M ′4N ′4

)
RM ′1N

′
1
M1N1 · · · RM ′4N

′
4
M4N4

which after Calabi-Yau compactification to 4d yields a correction to the Kähler potential of

the volume modulus T [54]

K = −2 · ln
(
V +

1

2
ξ̂

)
, ξ̂ = ξe−3φ/2 , ξ = −1

2
ζ(3)χ

= −3 · ln
(
T + T̄

)
︸ ︷︷ ︸

K(0)

−2 · ln
(

1 +
ξ̂

2(2 Re T )3/2

)
. (7.2)

Here the volume modulus T is related to the Calabi-Yau volume V as V = (T + T̄ )3/2 (see,

e.g., [111])1. χ denotes the Euler number of the Calabi-Yau under consideration which can

be of both signs and in its absolute value can be at least as large as 2592 [112]. From the

general expression for the scalar potential in 4d N = 1 supergravity Eq. (6.32) the potential

for the T -modulus is

V (T ) = eK
(
KT T̄DTWDT̄ W̄ − 3 |W |2

)
. (7.3)

This leads to a correction to the scalar potential of T which to O(α′ 3) reads [54]

δV = − ξ̂

(2 Re T )3/2
Vtree +

3

8
eK

(0) ξ̂

(2 Re T )3/2

∣∣∣W + (τ − τ̄) D̃τW
∣∣∣
2

(7.4)

where D̃τW = ∂τW+W∂τK
(0). Vtree denotes the full scalar potential for the volume modulus

T except the effects of the α′-correction under discussion.

This correction, which breaks the no-scale structure of the Kähler potential of the vol-

ume modulus, can be used as a replacement for the anti-D3-brane or D-terms on D7-branes

to provide the uplift necessary for realizing the KKLT mechanism. Combining the KKLT

ansatz for the superpotential Eq. (6.40) with the α′-correction is sufficient to realize de Sit-

ter vacua with all the moduli stabilized [52, 53]. One can show now that a combination of

the mechanism of uplifting by α′-corrections with the racetrack superpotential Eq. (6.71)

generates dS-minima with full moduli stabilization. Simultaneously, the same potential con-

tains regions where T -modulus inflation with roll-off into the desired dS-minima is realized.

There is no η problem in this setup because the leading order Kähler potential of the volume

modulus is of the no-scale type.

1V is defined here in the Einstein frame [54] where also the relation with T holds [111].
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7.2 T -modulus inflation in the simplest KKLT setup

Before analyzing the setup sketched at the end of the last Section, one should clarify why the

original KKLT setup with just the superpotential Eq. (6.40) and one uplifting correction δV

does not allow T -modulus inflation. For this purpose, note that the types of uplift considered

so far can be written as in Eq. (6.43)

δV =
D

Xα
. (7.5)

Strictly speaking, the above α′-correction behaves as a mixture of additive and multiplicative

corrections. However, from the general form of the potential Fig. 6.1 it is clear that the above

α′-correction in the vicinity of the maximum can be written locally in the same additive form

δV =
D

X3/2
, D =

ξ̂

2
√

2

(
−Vtree +

3

8
eK

(0)
∣∣∣W + (τ − τ̄) D̃τW

∣∣∣
2
)∣∣∣∣∣

T=Tmax

. (7.6)

Thus, one may consider the following general setup: take the superpotential Eq. (6.40)

to fix the T -modulus after the flux part W0 has fixed all the other non-Kähler moduli. Add

one uplifting term Eq. (6.43) with α > 0 being general. Such a setup generically generates a

maximum in the X-direction separating the dS-minimum from infinity. Since this maximum

simultaneously forms a minimum in the Y -direction, one has the situation that inflation

would have to start from a saddle point with direction towards the dS-minimum. For this

purpose, two ingredients are necessary: firstly, a definition of the slow-roll parameters for

a scalar field with a non-canonically normalized kinetic term. Secondly, an analysis of the

scalar potential’s stationary points with respect to whether slow-roll can be satisfied on the

saddle or not.

Start with a general non-canonically normalized action for a set of real scalar fields

Sφ =

∫
d4xL =

∫
d4x
√−g

{
1

2
Gijg

µν∂µφ
i∂νφ

j − V (φ)

}
. (7.7)

Here Gij denotes the metric in the target space of scalar fields. With

∂L
∂φk

=
√−g

(
− ∂V

φk
+

1

2

∂Gij

∂φk
gµν∂µφ

i∂νφ
j

)

∂µ

(
∂L

∂(∂µφk)

)
= Gjk

√−g∇2
gφ

j

and ∇2
gφ

j = φ̈j + 3Hφ̇j for a sufficiently homogeneous scalar field, the equations of motion

for non-canonically normalized scalar fields [113–116] read

φ̈l + 3Hφ̇l + Γlijφ̇
iφ̇j +Glk ∂V

∂φk
= 0 , Γlij = −1

2
Glk∂G

ij

∂φk
. (7.8)
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For the T -modulus this implies

GT T̄ = KT T̄ =
3

4X2
⇐ Lkin =

3

4X2
(∂µX∂

µX + ∂µY ∂
µY ) (7.9)

and thus the equations of motion become

Ẍ + 3HẊ +
1

X
Ẋ2 +

2

3
X2 ∂V

∂X
= 0

Ÿ + 3HẎ +
1

X
Ẏ 2 +

2

3
X2∂V

∂Y
= 0 . (7.10)

Now recall that the dS-minimum of the KKLT setup and the maximum separating it from

infinity are close to each other compared to their positions X = O(100). Thus, the normal-

ization of the kinetic term of T in Eq. (7.9) changes slowly during a possible slow-roll phase.

Assume that T starts on the maximum at Xmax. Then, by field rescaling one can go to a

lagrangian with canonically normalized kinetic term

X = λX̃ , Y = λỸ with: λ =

√
2

3
X2

max

Lkin =
1

2
(∂µX̃∂

µX̃ + ∂µỸ ∂
µỸ ) . (7.11)

From the potential rewritten in terms of the rescaled fields V (X̃, Ỹ ) the slow-roll parameters

of, e.g., X̃ are

εX̃ =
1

2

(
1

V

∂V

∂X̃

)2

, ηX̃ =
1

V

∂2V

∂X̃2
. (7.12)

In terms of the original fields X, Y this becomes

εX = λ2 1

2

(
1

V

∂V

∂X

)2

=
X2

max

3

(
V ′

V

)2

, ηX = λ2 1

V

∂2V

∂X2
=

2X2
max

3

V ′′

V
(7.13)

where ′ denotes differentiation with respect to X.

The next step is to analyze the scalar potential. Including the uplift this follows from

Eq. (7.3) to be

V (T ) =
1

4X2

{
2aA2e−2aX

(
1 +

1

3
aX

)
+ 2aAW0e

−aX cos(aY )

}
+

D

Xα
. (7.14)

The extrema of this potential are determined by the conditions

∂V

∂Y
= 0 = − a2A

2X2
e−2aXW0 sin(aY ) ⇒ Yextr = 0 for: AW0 < 0 (7.15)

∂V

∂X
= 0 = −aAe−2aX

{
− aA

3X2
− a2A

3X
−
(

a

2X2
+

1

X3

)(
A

3
+W0e

aX

)}
− α D

Xα+1

(7.16)

⇔ 0 =
3αD

aA
X2−α + (3W0 + Ae−aX)

(
1 +

aX

2

)
e−aX + A

(
aXe−aX

)2
(

1 +
1

aX

)
.
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This implies that all extrema in X are found along the direction Y = 0 with replications at

Y = 2πn
a
∀n ∈ Z. The other equation determining the X-values can be simplified using the

fact that one works in the regime of large volume

aX � 1 , X � 1 ⇒ aA� A

X
� W0

X
,
A

X
e−aX � W0

X
(7.17)

in order to trust the effective potential which takes into account just the leading order

perturbative and non-perturbative corrections. In this region one therefore has

3αD

aA
X2−α +

3

2
W0 · λ+ Aλ2 = 0 , λ = aXe−aX . (7.18)

Expanding the solutions to this quadratic equation in X2−αD/W 2
0 � 1 leads to two extrema

at

aXmaxe
−aXmax

X2−α
max

= − 2αD

aAW0

(
1 +O

(
X2−α

max

D

W 2
0

))

aXmine
−aXmin = − 3W0

2A

(
1− 4αD

3aW 2
0

X2−α
min +O

((
X2−α

min

D

W 2
0

)2))
(7.19)

as long as AW0 < 0, which a posteriori justifies the use of this condition in extremizing the

potential in Y above. The position of the minimum is largely independent on the strength

of the uplifting potential D while the maximum in X-direction, the saddle point, moves to

infinity for D → 0 and disappears there as expected. One may now calculate

∂2V

∂X2

∣∣∣∣
X=Xmax,Y=0

=
a3AW0

2X2
max

e−aXmax

[
1 +O

(
1

aXmax

)]
= − α aD

Xα+1
max

(7.20)

and calculate from that the slow roll parameters of the saddle

εX,saddle = 0 , ηX,saddle =
2

3
X2

max

1

V

∂2V

∂X2

∣∣∣∣
X=Xmax,Y=0

= − 2

3
α aXmax . (7.21)

Thus, except for α <∼ 0.1 (for which no known realization exists) or aXmax
<∼ 1, which violates

the large volume and perturbativity assumptions, slow-roll inflation with the T -modulus on

the saddle point of this most simple class of KKLT-like setups does not work.

7.3 T -modulus inflation with α′-corrections

The above result forces one to look for minimal extensions of the setup that may lead to

saddle points with sufficiently small negative curvature. One example that can be shown to

contain saddles of sufficient flatness is given by the following modified setup: the superpo-

tential is given as in Eq. (6.71) by

W (T ) = W0 + Ae−aT +Be−bT . (7.22)
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Departing from [51] the uplift of the two degenerate AdS-minima present in the corre-

sponding scalar potential will now be provided by the α′-corrected no-scale breaking Kähler

potential of Eq. (7.2)

K = −3 · ln
(
T + T̄

)
− 2 · ln

(
1 +

ξ̂

2(2 Re T )3/2

)
(7.23)

inducing the contribution Eq. (7.4) to the scalar potential.

Assume now, that the flux contribution W0 has stabilized the dilaton τ in a minimum

given by D̃τW = 0. Then the resulting scalar potential can be written as

V (T ) =

(
1− ξ̂

(2 Re T )3/2

)
Vtree +

3

8
eK

(0) ξ̂

(2 Re T )3/2
|W |2 (7.24)

where

K(0) = −3 ln(T + T̄ ) . (7.25)

Vtree denotes the scalar potential induced by the above superpotential. It is given by

Eq. (6.72) as

Vtree(X, Y ) =
e−2(a+b)X

6X2

{
AB [3(a + b) + 2abX] e(a+b)X cos[(a− b)Y ]

+aA
[
3
(
A+W0 e

aX cos(aY )
)

+ aAX
]
e2bX

+bB
[
3
(
B +W0 e

bX cos(bY )
)

+ bBX
]
e2aX

}
. (7.26)

Finally, |W |2 reads

|W |2 = W 2
0 + A2e−2aX +B2e−2bX + 2AW0e

−aX cos(aY ) + 2BW0e
−bX cos(bY )

+2ABe−(a+b)X cos[(a− b)Y ] . (7.27)

Compared to an anti-D3-brane uplift, the structure of this scalar potential is changed

considerably, since, as noted before, the α′-uplift can only be written locally as a purely

additive contribution of the type D/Xα. The saddle at Y = 0 which connects the two

degenerate AdS-minima at Y
(1)

min = −Y (2)
min 6= 0 of the scalar potential induced by the above

superpotential is rather flat and extended in X and Y . Therefore, unlike an anti-D3-brane

uplift, the α′-contribution will not just lift the two minima to V > 0 while leaving the form

of the saddle practically unchanged. The saddle upon α′-uplifting will get deformed and in

general one will have three different local minima with the properties

X
(1)
min = X

(2)
min , Y

(1)
min = −Y (2)

min 6= 0 ; X
(3)
min > X

(1)
min , Y

(3)
min = 0 . (7.28)
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Figure 7.1: The scalar potential of T -modulus with α′-correction for a generic choice of
parameters. Clearly visible are the three minima connected by two off-X-axis saddle points.

Two of them, (1) and (2), are connected to the third one via a saddle point. Fig. 7.1 shows

this situation for a generic choice of parameters. The two saddle points have the properties

X
(1)
saddle = X

(2)
saddle = Xsaddle , Y

(1)
saddle = −Y (2)

saddle 6= 0

and furthermore

X
(1)
min = X

(2)
min < Xsaddle < X

(3)
min . (7.29)

This structure now allows for a new possibility of tuning the scalar potential in order to

find sufficiently flat saddle points: since the uplift of the α′-correction scales with a negative

power of X, the two degenerate minima (1) and (2) will get more strongly lifted than the

saddle points connecting them to minimum (3) at Y = 0. This third minimum, in turn, gets

even more weakly lifted than the saddle points. Hence, the potential can be tuned in such

a way, that the minimum (3) remains approximately Minkowski while the two degenerate

minima rise as a function of the uplift parameter ξ̂. Therefore, the saddle between minimum

(3) and, say, minimum (1) has very small negative curvature shortly before minimum (1)

disappears. The mechanism is quite generic for a superpotential consisting of the flux piece

and two gaugino condensate contributions with its two degenerate AdS-minima: it depends

mainly on the hierarchy of the positions in X of the three minima and the two saddles

that arise upon uplifting. Thus, even with further α′-corrections one expects this picture to

remain qualitatively the same, though the numerical values will change.

81



As an example, consider the parameter choice

W0 = −5.55 · 10−5 , A =
1

50
, B = −3.37461131 · 10−2 , a =

2π

100
, b =

2π

91

ξ̂ = − 1

2
ζ(3)e−3φ/2χ , χ = −4209 . (7.30)

Note that the 4d gauge coupling on a stack of D3-branes is αD3 = eφ/2 [102]. Phenomeno-

logically αGUT = 1/24 and thus e−φ ∼ 12. This implies that in the weakly coupled string

theory exp(−3φ/2) >∼ 1 and for simplicity this quantity has been set to one. Then the de-

sired value of ξ̂ implies that one has to choose Calabi-Yau manifolds of large negative Euler

number with χ = −103 . . .− 104 which, in general, appears to be possible [112]. Otherwise,

one may choose |χ| smaller which will move the above structure of three minima towards

smaller X-values.

For the example given above one finds the minimum (3) at approximately

X
(3)
min = 132.398 , Y

(3)
min = 0 (7.31)

being weakly de Sitter. The other two degenerate minima reside at

X
(1)
min = X

(2)
min = 116.724 , Y

(1)/(2)
min = ±19.431 . (7.32)

The two saddle points one finds very close by at

Xsaddle = X
(1)
saddle = X

(2)
saddle = 116.728 , Y

(1)/(2)
saddle = ±19.428 . (7.33)

As a consistency check one may calculate the ratio

ξ̂

(2X)3/2
(7.34)

at the three minima. This ratio is the expansion parameter used in deriving Eq. (7.24) from

Eq. (7.23). One finds ξ̂/(2X)3/2 ≈ 0.5 < 1 for the minimum (3) and ξ̂/(2X)3/2 ≈ 0.7 < 1

for the other two degenerate minima (1) and (2). This implies, that the region around the

three minima still resides in the perturbative regime of the effective potential.

One may now calculate the Hesse matrix of curvatures

H =

(
∂2V
∂X2

∂2V
∂X∂Y

∂2V
∂X∂Y

∂2V
∂Y 2

)
(7.35)

diagonalize it and calculate from it the matrix of slow-parameters on one of the saddle points

to yield

Hη =
2

3
X2

saddleHdiag ≈
(

1222.83 0
0 −0.069

)
. (7.36)
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Therefore, on these two saddle points, slow-roll inflation can take place if the T -modulus

starts from the saddle with initial conditions fine-tuned to some amount. For example, for

initial conditions given by

X0 = X
(1)
saddle + 10−6 , Y0 = Y

(1)
saddle , Ẋ0 = Ẏ0 = 0 (7.37)

one gets slow-roll inflation with some 130 e-foldings and rolling-off into the dS-minimum (3)

of our world, as seen in Fig. 7.2. Here the equations of motion for the T -modulus Eq. (7.10)
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Figure 7.2: Evolution of the inflaton T = X + iY as a function of time measured by the
number of e-folding N .

have been rewritten using

∂

∂t
= H

∂

∂N
, where: R(t) = eHt = eN

H2 =
1

3

[
3

4X2
(Ẋ2 + Ẏ 2) + V (X, Y )

]

=
1

3
V (X, Y ) ·

(
1− X ′2 + Y ′2

4X2

)−1

(7.38)

to yield [51]

X ′′ = −
(

1− X ′2 + Y ′2

4X2

)(
3X ′ + 2X2 1

V

∂V

∂X

)
+
X ′2 − Y ′2

X

Y ′′ = −
(

1− X ′2 + Y ′2

4X2

)(
3Y ′ + 2X2 1

V

∂V

∂Y

)
+

2X ′Y ′

X
(7.39)

and ′ denotes ∂/∂N . The structure of the potential and the initial part of the inflaton

trajectory in field space close to the saddle point can be found in Fig. 7.3. The Hubble
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Figure 7.3: Contour plot of the potential close to the saddle point (1) and the evolution of
the inflaton trajectory (red) in field space. The contour lines curving away from the starting
point of the inflaton clearly indicate the saddle point nature of this region. The long thin
ellipse in the upper left encloses the local minimum (1).

parameter at the saddle point

Hsaddle =

√
1

3
Vsaddle ≈ 10−9 (7.40)

is much smaller than the initial fine-tuning of the inflaton on the saddle. Thus, the scalar

field fluctuations generated during inflation being of order H/2π = O(10−10) here [107] will

not destroy the slow-roll motion of the field.

One should mention here, that by stronger fine-tuning in the potential the slow-roll

parameter η of the saddle points can be made much smaller than in the above numerical

example. In this case, the amount of fine-tuning in the initial conditions of the inflaton

necessary to achieve sufficiently many e-foldings can be relaxed. Thus, one may trade fine-

tuning of the initial conditions for fine-tuning of the potential. Since the latter, however,

is tuned discretely by the fluxes, one may consider this an advantage compared to purely

field theoretic inflation models, where the potential can be fine-tuned continously in its

parameters.

Next, note that the setup under discussion possesses certain scaling properties. Choose

a different Calabi-Yau manifold with Euler number χ′ and define the ratio

λ =
χ′

χ
. (7.41)
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Then one can show that upon rescaling

a→ a

λ2/3
, b→ b

λ2/3
(7.42)

while leaving the values of W0, A and B unchanged the whole structure of the three minima

and two saddle points found above shifts along the X-axis. In the rescaled model the

stationary points reside at

X
′(i)
saddle/min/max = λ2/3 ·X(i)

saddle/min/max

Y
′(i)

saddle/min/max = λ2/3 · Y (i)
saddle/min/max (7.43)

respectively. The quantities ξ̂/(2X)3/2 of Eq. (7.34) and aX, bX, for instance, are clearly

invariant under the rescaling. The potential itself rescales as

V → V

λ2
. (7.44)

The eigenvalues of the slow-roll parameter matrix Hη are invariant under this rescaling as

long as W0, A and B remain fixed (this has been checked numerically).

This rescaling property will be of use shortly when the density fluctuations generated

during inflation are analyzed. A realistic model of inflation has to generate a nearly scale-

invariant power spectrum of density fluctuations of the right magnitude. Using the results of

Section 6.3 one can derive the magnitude of the density fluctuations at the COBE normaliza-

tion point from the above numerical results. According to Eq. (6.58) the density fluctuations

at about 55 e-foldings before the end of inflation, i.e. at N ≈ 80 in the model above are

given by (δρ/ρ)k0 ≈ 3 · 10−4 which is about one order of magnitude too large. Furthermore,

from the value of η = −0.069 on the saddle point and Eq. (6.60) one expects a spectral index

ns = 0.86 which is too small to be consistent with the WMAP data.

Therefore, one has to tune the model to have saddle points with a smaller slow-roll

parameter η. And using the above rescaling property one has to shift the relevant part

of the scalar potential along the X-axis in order to search for a region where the density

fluctuations become smaller. Firstly, choose a new value for B

B = −3.37461130541 · 10−2 . (7.45)

This results in the two saddle points now having

η = −0.0064 (7.46)
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which should be small enough to reduce the red-tilt of the spectral index sufficiently. Sec-

ondly, one rescales the model to an Euler number2

χ′ = −42090 ⇒ λ = 10 . (7.47)

Solving the equations of motion for this rescaled model with initial conditions given by

X0 = X
(1)
saddle + λ · 2.7 · 10−4 , Y0 = Y

(1)
saddle , Ẋ0 = Ẏ0 = 0 (7.48)

leads to about 137 e-foldings of inflation with the X and Y fields behaving very similar to

the first case shown in Fig. 7.2.

Now calculate again the magnitude of the density fluctuations at the COBE normalization

point. The result at about 55 e-foldings before the end of inflation corresponding to N ≈ 80

is now (
δρ

ρ

)

k0

≈ 2 · 10−5 (7.49)

yielding this time the correct magnitude. Proceeding now to the spectral index note that in

Eq. (6.60) one can replace d ln k ' dN because k is evaluated at horizon crossing k = RH =

HeN . Then one arrives at

ns = 1 +
d lnPR
dN

(7.50)

which results in the curve shown in Fig. 7.4. The spectral index at the COBE normalization

point therefore yields a value of

ns ≈ 0.93 (7.51)

which is at 1σ marginally consistent with the WMAP result ns = 0.97 ± 0.03 [105]. Thus

the future PLANCK mission with a target accuracy of ±0.01 in measuring ns will either

confirm or reject this model.

Note that for the parameters chosen the rescaling places the post-inflationary 4d dS-

minimum of our universe at X
(3)
min = 614.54 and Y

(3)
min = 0. If one were to place the Standard

Model on a stack of D7-branes where the 4d gauge coupling in this dS minimum would be

given by α ∼ 1/X
(3)
min the resulting value in this 4d dS-minimum clearly comes out wrong

(X
(3)
min ∼ 24 would be phenomenologically required). Thus, in this model one has to place the

Standard Model elsewhere, for instance, on a stack of D3-branes where the gauge coupling

is controlled by the dilaton instead of T .

2A short comment is useful regarding the large negative value of the Euler number. According to [112]
the construction of Calabi-Yaus with Euler numbers in that range is possible. Moreover, realistic values of
the dilaton imply e−3φ/2 ∼ 50. For the dilaton fixed at e−3φ/2 = 61, for instance, the above two examples are
realized for χ = −69 and χ′ = −690. Thus, the model does not have to rely on the existence of Calabi-Yaus
with χ < −1000.
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Figure 7.4: The deviation of the spectral index from unity ns − 1 as a function of the
number of e-foldings N . The COBE normalization point (N ≈ 80) is given in blue.

7.4 Saddle point inflation

A check of the above numerical results is warranted. Therefore, one should study the equa-

tions of motion Eq. (7.10) of the non-canonically normalized field T in such KKLT-like setups

in the vicinity of a saddle point. For simplicity just concentrate on the equation of motion

for the X-component. Next assume, that the saddle point at Xs is tachyonic with negative

curvature in the X-direction. Then in its vicinity the potential can be approximated by

V (X) = Vs −
1

2
|V ′′s |(X −Xs)

2 . (7.52)

Here ′ denotes differentiation with respect to X. For a canonically normalized scalar field

the properties of inflation caused by the scalar field rolling down from the saddle point have

been studied in [117]. Following the lines of the analysis given there, one first rewrites the

equation of motion for X in terms of the field φ = X − Xs. The field will roll down from

the saddle into a local minimum with |Xmin −Xs| << Xs. Thus, φ obeys

φ̈+ 3Hφ̇+
1

Xs

φ̇2 − 2

3
X2
s |V ′′s |φ = 0 . (7.53)

Using the ansatz

φ(t) = φ0e
ωt (7.54)

this becomes

ω2 + 3Hω +
ω2φ

Xs
− 2

3
X2
s |V ′′s | = 0 . (7.55)

Since one will analyze a regime where the Hubble parameter is still dominated by the po-

tential energy of φ and φ is very slowly moving, one may assume ω2φ � Xs. This will be
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justified in the end. Now focus on the exponentially growing solution given by

ω =
3

2
H

(
−1 +

√
1 +

8

9
X2
s

|V ′′s |
3H2

)

= H · |ηs| (7.56)

where the slow-roll parameter is again defined as above

|ηs| =
2

3
X2
s

|V ′′s |
Vs

. (7.57)

As a check of the approximation made, plug in the example of KKLT above: there it is

|ηs| = 4
3
aXs and Vs ∼ D

X2
s
. Thus

ω = H|ηs| ∼
4

3
√

3

a
√
D

Xs

≈ 10−9 � Xs , for: a ≈ 0.1 and Xs ≈ 130 D ≈ 10−12 (7.58)

which satisfies the assumption ω2φ � Xs a posteriori (the value of the field at the end of

inflation is at most φend = O(10) in the KKLT example above).

Denoting now the value of field at the time where inflation ends with φ∗ one can derive

the number of e-foldings in this fast-roll inflation scheme as given by

N =
1

|ηs|
ln

(
φ∗

φ0

)
. (7.59)

The final value φ∗ here is determined either by the fact that the potential and thus the Hubble

constant have decreased significantly (this works if the potential is very well described by

the quadratic approximation even for large φ) or that at φ∗ one has reached |η| = O(10).

The last condition arises from Eq. (7.59). For |η| = 6 . . . 10 even a very large ratio φ∗/φ0 ∼
Mp/MEW ∼ 1017 does not generate more than about 10 additional e-foldings.

As a check of the numerical results of the last Section one may apply now these results.

The number of e-foldings there is given by Eq. (7.59) in terms of the initial deviation of the

inflaton field from the saddle point φ0, the final value φ∗ when inflation ends and the saddle

curvature in its tachyonic direction ηs as

N =
1

|ηs|
ln

(
φ∗

φ0

)
. (7.60)

Now in the first example of the last Section φ0 = 10−6 (see above). Further, one has

|ηs| = 0.069. It remains to determine φ∗ as the end point of the inflationary phase. For this

purpose one has to analyze the potential V (X(N), Y (N)) along the inflationary trajectory

above and to calculate the η-values along the trajectory. One finds that when the T -modulus

has moved to a distance of about 0.01 from the saddle, η ≈ −10 which means that inflation

effectively ends there. Plugging this now in the above formula one obtains

N =
1

|ηs|
ln

(
φ∗

φ0

)
≈ 133 . (7.61)
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This is sufficiently close to the purely numerical results above, which indicates that the

numerical solution is stable and closely resembles the true one.

As a last comment note that in this model each of the two rather flat saddle points still

connects two minima ((1) and (3) or (2) and (3), respectively). In such a situation, where

a sufficiently flat saddle point connects two minima along a certain direction in field space,

inflation may also arise from inflating topological defects, namely, domain walls [118]. It

is therefore tempting to speculate, that besides slow-roll inflation also eternal topological

inflation arises on the saddles constructed here, which would relieve the question of fine-

tuning the initial conditions of the inflaton [51, 119]. The original literature [118, 119] uses

a saddle point connecting two degenerate minima in deriving the conditions for topological

inflation: the saddle curvature has to be small enough that ηsaddle � 1, which corresponds

to domain walls whose wall thickness is large compared to their gravitational radius. As an

illustration consider the example of static domain walls of the Z2-symmetric theory

L =
1

2
(∂µφ)2 − V (φ) , V (φ) =

λ

4
(φ2 − β2)2 (7.62)

which are given by the solution

φ(x) = β tanh
(√λ

2
βx
)

(7.63)

for a wall in the yz plane. The thickness of the wall δ is determined by the equilibrium of

gradient and potential energy density as

ρgrad|x∼δ ∼
β2

δ2
∼ ρpot = V (0) ∼ λβ4 ⇒ δ ∼ 1

β
√
λ
. (7.64)

The gravitational radius of the wall is R = 2Mwall ∼ 8πρδ3/3 where the energy density is

ρ = λβ4/2 (the sum of the potential energy density and the gradient energy density). Grav-

itational effects become important once the gravitational radius exceeds the wall thickness,

i.e, for

δ < R ⇒ β >
3

4π
(7.65)

in Planck units. If one calculates the slow-roll parameter η at the center of the wall the

result is ηx=0 = V ′′(0)/V (0) = 4/β2. Requiring η < 1 therefore corresponds to the previous

’importance of gravity’ condition. The above static wall solution would never inflate since

the potential and gradient energy density are of the same order near the wall. However, if

inflation started in a small patch of space-time with φ = 0 then the fluctuations δφ ∼ H

with wavelength H−1 generated after each time interval H−1 have a gradient energy ∼ H4 ∼
V 2 << V as long as V << 1 in the wall. In this case, an initially inflating wall which fulfills

Eq. 7.65 will continue to inflate forever near to the wall center [118, 119].
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The analysis has been carried out in the symmetric potential of the example above.

Since in the cases under consideration in the last Section the saddles connect two highly

non-degenerate minima

V
(1)

saddle − V
(1)

min

V
(1)

saddle

= O(10−11)� V
(1)

saddle − V
(3)

min

V
(1)

saddle

(7.66)

it is not clear whether this derivation, which otherwise would imply the existence of eternal

topological inflation on these saddles, remains valid. For such highly asymmetric minima of

the potential the determination of the wall thickness, for instance, is not clear. The possibility

of eternal topological inflation in the T modulus inflation model of the last Section would

be an interesting subject of further investigations.
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Conclusion

This thesis shows on the basis of several examples that higher-dimension operators can have

a significant impact on the phenomenological aspects of higher-dimensional field theories.

The first part leads to two main statements. Firstly, power-like loop corrections to gauge

coupling unification arising in generic supersymmetric 5d unified models are exactly calcula-

ble in the framework of the 5d low-energy effective field theory. Secondly, even without SUSY

these power corrections remain calculable as long as the softly broken higher-dimensional

GUT respects a hierarchy Mc � MB � M . (Here Mc denotes the compactification scale,

MB the bulk symmetry breaking scale and M the UV scale of the GUT.) Such power-

law corrections are induced, for example, by the loop effects of charged bulk matter fields.

Higher-dimension operators, which contain the symmetry-breaking bulk Higgs field together

with the square of the field strength tensor, introduce the same kind of power-law correc-

tions. In fact, it is equivalently possible to view the loop effects of bulk matter as arising

from higher-dimension operators introduced when these fields are integrated out. These

operators then change low-energy gauge couplings at the tree level.

The essential points which underlie the exact calculability in the supersymmetric case

are the following: on the one hand, minimal 5d SUSY, which corresponds to N = 2 SUSY

in 4d language, ensures that no corrections arise beyond the one-loop level. On the other

hand, possible higher-dimension operators are extremely restricted by the combination of 5d

SUSY and 5d gauge invariance. In fact, there is only one globally analytic higher-dimension

operator at the two-derivative level, which is the SUSY version of the Chern-Simons (CS)

term. Knowledge of the light 5d field content and the coefficient of the CS term determines

the low-energy gauge couplings completely.

A realistic 5d model has to reduce the higher supersymmetry of five dimensions to 4d

N = 1. This is possible by compactification on an interval, e.g., as an S1/Z2 orbifold. The 5d

CS term induces boundary anomalies in a theory compactified on an interval. Once a bulk

and brane field content is given the requirement of boundary anomaly cancellation determines

the coefficient of this higher-dimension operator uniquely. Thus, power-like corrections to

gauge coupling differences are completely fixed. Because of the absence of higher-loop effects
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or other higher-dimension operators, this calculability extends to strong coupling, i.e., if the

gauge symmetry is broken at a scale where the 5d gauge theory is strongly coupled. In

this case, power-law corrections are parametrically large and can be of the same size as

the conventional logarithmic running from GUT scale to weak scale. In particular, a 5d

SU(5) model with a single 10 hypermultiplet in the bulk and the CS term required by

anomaly cancellation generates a power-law effect which is group-theoretically equivalent to

the MSSM running. Thus, calculable TeV-scale unification is possible.

The next point of consideration was the possibility that a 5d model arises as the low-

energy effective theory of a 6d model compactified on an S1. In this case, the 5d bulk

breaking, realized in all interesting cases by the bulk VEV of the scalar adjoint from the

vector multiplet, has its origin in a 6d Wilson line wrapping the S1. This situation is known

from familiar 6d T 2/Z2 constructions where the two torus radii, R5 and R6, are highly

hierarchical. Here power-like gauge coupling corrections are calculable in close analogy

to the 5d case and produce contributions to differences of inverse gauge couplings of the

order ∼ R5/R6. Such an effective 5d theory coming from 6d is highly constrained by two

requirements: firstly, 6d anomaly cancellation is highly restrictive and, secondly, gauged

hypermultiplets can not have bulk masses in 6d. For d ≥ 7 the minimal SUSY corresponds

to N =4 in 4d language and no loop corrections to gauge coupling unification arise.

Thus, this investigation comes to the conclusion that large and fully calculable power-

like loop corrections to gauge unification arise in the context of 5d and 6d grand unified

theories. Their phenomenological relevance may be as striking as a very low unification

scale reduced by many orders of magnitude or as modest as an interesting field theoretic

contribution to the detailed GUT dynamics in a string-derived high-scale model. In any case

I believe that the calculability of such power-like loop corrections within field theory, based

on higher-dimensional SUSY, gauge symmetry, and anomaly cancellation, is an interesting

phenomenon.

The second part of the thesis dealt with higher-order α′-corrections in type IIB superstring

theory. The α′-corrections which were studied are higher-order curvature corrections and

thus higher-dimension operators appearing in the Kähler potential of the effective action. In

this thesis it was shown that the generic ability of these higher-dimension operators to lift

stable AdS4 type IIB string vacua to the desired metastable dS-minima for the T modulus

(the volume modulus) can also be used to provide slow-roll inflation using the same T

modulus. Such a setup has no η-problem because the leading order Kähler potential for the T

modulus is of the no-scale type. A concrete model using fluxes and a racetrack superpotential

was constructed which upon inclusion of the α′-corrections yields T -modulus inflation on
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saddle points of the potential with some 130 e-foldings. At the end of inflation the T -modulus

rolls from the saddle point down into a dS-minimum with a small positive cosmological

constant where the modulus is stabilized. The model has certain scaling properties allowing

one to shift the inflationary region of the potential to different values of the real part of

T while leaving the slow-roll parameters of the inflationary saddle points invariant. It was

argued that these saddle points might be generically present if racetrack superpotentials and

α′-corrections are both taken into account. The model can accommodate the WMAP data

of the CMB radiation. It yields primordial density fluctuations of the right magnitude with

a spectral index of these fluctuations ns ≈ 0.93. Finally the possibility of eternal topological

inflation on the saddle points of the model was briefly discussed.

There are still many open questions in this area, and I believe that the further analysis

of the rich vacuum structure of string theory will uncover more of the highly interesting

cosmological dynamics of such a multi-vacua universe.
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Appendix A

Power-like loop corrections in 5d

In detail, the 1-loop corrections to the gauge couplings in the U(1)× U(1)′-toy model arise

from the scalar loops shown in Fig.s A.1 and A.2.

k

µ
= −i · g · (p+ p′)µ

p′µ

pµ

p− k

p

µ

−→
k

ν

−→
k

⇒

p

µ

−→
k

ν

−→
k

⇒

= 2i · g2 · gµν

p

k′
µ

k
ν

p′

Figure A.1

Figure A.2
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The 1-loop corrections will split up between g and g′ since the scalars acquire different

KK-towers with masses

m2
n := m2

n(h) = k2
n , kn =

n

R
m′n

2
:= m2

n(h′) = k2
n +m2

h′ , m2
h′ = Φ2

0 . (A.1)

The VEV Φ0 induces a change in the coupling g′ relative to g. This change arises from the

1-loop vacuum polarization diagram built from two scalar-scalar-gauge boson vertices and is

diagrammatically expressed as:

=
ν

∣∣∣∣∣
mh=0

µ
−

νµ
∣∣∣∣∣
mh′ 6=0−→

k
−→
k

p− k p− k
−→
k

−→
k

p p

=∆|mh′

( )
ν

p
µ

−→
k

p− k
−→
k

Figure A.3

Then to calculate the change the corresponding contribution of the ’bubble’ vacuum polar-

ization diagram of this scalar QED has to be added. The full 1-loop contribution of e.g.

φ to the photon propagator can firstly be given as the dimensionally regulated sum of the

KK-tower of the scalars running in the loop, which reads explicitly:

Πmn
(1)

(
k2
)

=
(
gmn · k2 − kmkn

)
·Π(1)

(
k2
)

Π(1)

(
k2
)
h

=
g2

(d− 1)k2

∑

n

(A.2)

µ4−d
∫ 1

0

dx

∫
ddq

(2π)d
(d− 2)2q2 − [1− 4x− 2(d− 2)x2]k2 +m2

n · 2d
[q2 +m2

n + x(1− x)k2]2

Π(1)

(
k2
)
h′ =

g′ 2

(d− 1)k2

∑

n

(A.3)

µ4−d
∫ 1

0

dx

∫
ddq

(2π)d
(d− 2)2q2 − [1− 4x− 2(d− 2)x2]k2 +m2

n · 2d[
q2 + m′n

2 + x(1− x)k2
]2

d = 4− ε .

96



Using now the standard results of dimensional regularization [120] (see also the standard

text books on quantum field theory, e.g. [121]) these integrals can be evaluated to yield

Π(1)

(
k2
)
h

= − g2

d− 1

∑

n

∫ 1

0

dx [1− 2(2− d)x + 4(1− d)x2] · Γ(ε/2)

(4π)d/2

(
µ2

∆

)ε/2
(A.4)

Π(1)

(
k2
)
h′ = − g′ 2

d− 1

∑

n

∫ 1

0

dx [1− 2(2− d)x + 4(1− d)x2] · Γ(ε/2)

(4π)d/2

(
µ2

∆′

)ε/2
(A.5)

where ∆ denotes q2 +m2
n and ∆′ = q2 + m′n

2. Expanding this about ε = 0 yields

Π(1)

(
k2
)
h

= − g2

48π2

∑

n

∫ 1

0

dx [1+4x(1−3x)]

[
2

ε
− γ + ln 4π − ln

(
m2
n − x(1− x)k2

µ2

)]
(A.6)

and the corresponding result for h′. As clearly visible, because of mh′ 6= mh = 0 the 1-loop

corrections to the photon propagators of AM and A′M split up to give a difference

∆Π(1) = Π(1)

(
k2
)
h
− Π(1)

(
k2
)
h′

=
g′ 2

4π
bh ·

∑

n

∫ 1

0

dx [1 + 4x(1− 3x)] · ln
(

n2M2
c − x(1− x)k2

m2
h′ + n2M2

c − x(1− x)k2

)
(A.7)

=
g′ 2

4π
bh ·

{
8

3
− ln

(−k2

m2
h′

)
+ f(k2)

−2
∑

n≥1

∫ 1

0

dx [1 + 4x(1− 3x)] · ln
(
m2
h′ + n2M2

c − x(1− x)k2

n2M2
c − x(1− x)k2

)}
.

Here bh = 1/12π denotes the 1-loop beta function coefficient of scalar QED. Note, that the

splitting vanishes in the limit k →∞, implying for the function f that limk→0 f(k2) = 0 and

limk→∞ f(k2) = −8/3 + ln(−k2/m2
h′).

Note further, that the 1/ε-poles have dropped out. The correction to each propagator in

itself possesses this pole and sums over it. The number of KK modes circulating in the loops

is given by the UV-cutoff scale M of the theory as M/Mc. For each single KK mode the

1/ε-pole denotes the appearance of logarithmical divergence ∼ lnM/(nMc). Therefore, the

fact that one sums the 1/ε-poles over all KK modes up to M/Mc denotes the appearance of a

linear divergence ∼M resulting from the summation of the logs lnM/(nMc). However, here

it proves to be crucial that the soft breaking of the Z2-symmetry that originally linked the

couplings g and g′ together ensures that the poles in the 1-loop corrections of both couplings

get multiplied by the same dependence on the KK-towers. (The pole as a UV-effect cannot

be influenced by the soft breaking as an effect in the IR.) Therefore the difference of the

propagators, and thus later of the inverse gauge couplings, is independent of the UV physics.

Now, since the interest is in the splitting of the photon propagators in the low energy

effective theory at accessible energies, one has to calculate at vanishing external momentum
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k = 0. Thus, the splitting becomes

∆Π(1)

∣∣
k=0

=
g′ 2

4π
bh ·

{
8

3
− ln

(−k2

m2
h′

)
+ 2

∑

n≥1

ln

(
1 +

m2
h′

n2M2
c

)}
. (A.8)

Using Eq. (2.9) (note: N = mh′/Mc) the sum in this expression can be estimated to yield

∑

n≥1

ln(1 +N2/n2) = π
mh′

Mc
− 1

2
ln

(
m2
h′

M2
c

)
− (1 + ln 2) . (A.9)

One arrives at the final expression for the propagator splitting given by

∆Π(1)

∣∣
k=0

= α′4d · bh ·
[
ln

(
M2

c

−k2

)
+ 2π · mh′

Mc
+O(1)

]
, α′4d =

g′ 2

4π
. (A.10)

At the scale k = Mc therefore the correction to the propagators is purely power-like. The

correction to the difference of the inverse gauge couplings follows directly since the 1-loop

corrections just add to the inverse gauge couplings

α−1
4d (Mc)− α′4d

−1
(Mc) = 2πbh ·

mh′

Mc

=
1

6
· mh′

Mc

. (A.11)

Finally, it can be shown that one could have arrived at the same result directly with a

manifestly 5d calculation. One begins using the fact that in 2n+1 odd dimensions dimension-

ally regulated loop integrals do not show the logarithmic divergences of the corresponding

2n-dimensional loop integrals as power divergences but just the finite part of the loops. This,

in turn, resides in the fact that the Γ-function arising in the integrals in 2n dimensions with

ε = 2n − d is finite at the half-integer valued arguments in 2n + 1 dimensions. Using now

again Eq. (A.5), one sets ε = 4− d = −1 for d = 5 and deliberately omits all the factors of

µ4−d in the expressions, arriving at

Π(1)

(
k2
)
h′ = − g

′ 2

4

∫ 1

0

dx [1 + 6x(1− 8x/3)] · Γ(−1/2)

(4π)5/2

(
1

∆′

)−1/2

(A.12)

where now ∆′ = m2
h′ − x(1 − x)k2. Using Γ(−1/2) = −2Γ(1/2) = −2

√
π this yields in the

limit of vanishing external moment k = 0

∆Π(1)

∣∣
k=0

= − Π(1),h′
∣∣
k=0

= α′5d · bh ·mh′ , α
′
5d =

g′ 2

4π
(A.13)

and this yields for the inverse gauge coupling differences

α−1
5d (Mc)− α′5d

−1
(Mc) = bh ·mh′ =

1

12π
·mh′ =

1

12π
· |Φ0| . (A.14)

After one integrates this result over the compact S1 with length 2πR = 2π/Mc, this is, as

expected, in agreement with the KK-summation result Eq. (A.11).
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Appendix B

Cubic order of the 5d prepotential

The KK zero mode of 5d SYM is given by 4d N = 2 SYM of an N = 2 vector field comprised

of (V,Σ = φ+iA5+. . .) inN = 1 fields. Thus, the zero mode lagrangian Eq. (3.1) is controlled

by a holomorphic prepotential [123, 124]:

FG(Σ) =
∑

m≥2

cm · d(m)
a1···amΣa1 · . . . · Σam (B.1)

where d
(m)
a1···am denotes the mth-order fully symmetrized Casimir invariant of the gauge group

G. Gauge invariance and SUSY in 5d restrict FG(Σ) to be of cubic order. This can be seen

as follows.

Firstly, note that the problem can be reduced to the case of a U(1). This relies on the

fact, that for any d
(m)
a1···am 6= 0 due to its symmetric properties one can find a U(1) ⊂ G,

denoted by i, for which d
(m)
i···i 6= 0 (and subsequently this U(1) can be rotated into the Cartan

subalgebra of G). The further argument can now be done on this U(1) where one defines:

Σ := Σi , d(m) := d
(m)
i···i

F(Σ) := FG(ΣiT i) =
∑

m≥2

cm · d(m)Σm (B.2)

F(Σ) : 4d N = 2 U(1) prepotential.

Next, look at those 5d bosonic operators whose 4d reduction is contained in the gauge kinetic

part of Eq. (3.1)
∂2F(Σ)

∂Σ2
W αWα

∣∣∣∣
θ2

+ h.c. . (B.3)

The bosonic operators contained in Eq. (B.3) consist of two gauge fields Aµ, two deriva-

tives and arbitrary powers of φ and A5. More specifically, they contain either FµνF
µν or

εµνρλFµνFρλ once. The bosonic fields of the 5d vector are Am and φ. Lorentz invariant

bosonic operators with up to two derivatives can be formed only by using the two 5d invari-

ant tensors ηmn and εmnpqr. Then invariants can be constructed with:
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I Pairwise contractions of arbitrarily many Am and up to two ∂m with ηmn-factors.

II Powers of φ.

III Factors of εmnpqrAm∂nAp∂qAr.

Operators of type I and II do not mix with those of III. Now look at those bosonic operators

of Eq. (B.3) containing the one factor εµνρλFµνFρλ. Such a 4d ε-symbol can arise only as

the 4d reduction of a single 5d ε-symbol. Thus, the εµνρλFµνFρλ-containing operators of

Eq. (B.3) can originate only from 5d bosonic terms containing III once and powers of φ (II):

Obosonic
5d,r = φr · εmnpqrAm∂nAp∂qAr . (B.4)

Derivative-free factors I are absent since εµνρλFµνFρλ being part of W αWα|θ2 allows no further

AµA
µ-factors from V . Comparison of Eq. (B.4) with Eq.s (B.2) and (B.3) shows that to each

φm−3A5ε
µνρλFµνFρλ ⊂

∂2F (m)(Σ)

∂Σ2
W αWα

∣∣∣∣
θ2

(B.5)

with: F (m)(Σ) := cm · d(m)Σm

corresponds a

Obosonic
5d,m = φm−3 · εmnpqrAm∂nAp∂qAr . (B.6)

Its gauge variation is given by

δAm = ∂mΛ

⇒ δObosonic
5d,m = φm−3 · εmnpqr∂mΛ∂nAp∂qAr

= φm−3 · εmnpqr∂m (Λ∂nAp∂qAr) (B.7)

which ceases to be a total derivative for m > 3.

Thus, all terms F (m)(Σ) , m > 3 correspond to 5d operators, whose bosonic part is not

gauge invariant, and consequently are forbidden in 5d SYM:

F5d,G(Σ) = c2 · d(2)
ab ΣaΣb + c3 · d(3)

abcΣ
aΣbΣc . (B.8)
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Appendix C

Power-like loop corrections and
higher-dimension operators

Power-like loop corrections arise whenever a higher-dimensional GUT is spontaneously bro-

ken in the bulk by a VEV of a scalar field Φ. Then generically the gauge bosons of the broken

direction acquire masses ∼ Φ. The surviving massless subgroups of the GUT then receive

at 1-loop GUT non-universal corrections from the massive broken gauge bosons which are

essentially given by the change the VEV-induced gauge boson masses induce in their 1-loop

contribution: ∫ µ ddk

(k2 + Φ2)2
−
∫ µ ddk

(k2)2
∼ |Φ| . (C.1)

This finite 1-loop correction splits the unified gauge coupling among the surviving subgroups

in a calculable way. However, the corresponding higher-dimension operator

tr(|Φ| · F 2) (C.2)

is non-analytic in Φ.

From the point of view of effective field theories (EFTs) this resembles a difficulty since

despite the fact, that the competing tree-level analytic operator tr(Φ · F 2) can be easily

forbidden by a Z2-symmetry of the scalar potential V (Φ) under Φ → −Φ, the generation

of one non-analytic higher-dimension operator implies that all operators non-analytic in Φ

have to be kept which are consistent with this symmetry.

In dealing with this problem note firstly, that the above non-analyticity is of global kind

only. Writing

tr(|Φ| · F 2) (C.3)

as

tr(ε(Φ) · ΦF 2) (C.4)
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where ε(x) denotes the sign function, the 1-loop term, in general, is seen to be locally analytic

up to a finite number of points. The 1-loop term becomes analytic in Φ if the spinor matter

running in the loops gets a large bulk mass.

As an illustrating example consider a massive Dirac ψ spinor gauged under a gauge group

G in 4d, 5d and then 6d. Its lagrangian is given by

L = tr
[
iψ̄ΓMDMψ −m · ψ̄ψ + ψ̄Φψ

]
(C.5)

DM = ∂M + iAM

where m denotes its bulk mass. Let now Φ acquire a G non-universal VEV. Then difference

in the contributions to the gauge coupling of broken directions of ψ which acquire additional

mass through Φ and the unbroken directions is given by expressions of the form
∫ µ ddk

(k2 + (m + Φ)2)2
−

∫ µ ddk

(k2 +m2)2
∼

(C.6)

∼





ln
(

µ2

(m+Φ)2

)
− ln

(
µ2

m2

)
−−→
m→∞

0 , d = 4

|m + Φ| − |m| −−→
m→∞

Φ , d = 5

.

Thus, heavy spinor matter effectively decouples from the loops in the sense, that it leaves

as its only trace just a correction of the form of the analytic tree-level operator tr(Φ · F 2)

already present from generation by massless spinor matter.

The situation in 6d for Ψ coupled to an arbitrary 6d bulk scalar VEV Φ in general is

similar. However, it can be even better in case that the 5d scalar Φ arises from an A6-Wilson

line background after integrating out the 6-direction. In that situation in 6d with no other

scalar VEV present, the lagrangian reads

L6d = tr
[
iψ6dΓ

MDMψ6d −m · ψ6dψ6d

]
, DM = ∂M − iAM

ψ6d =

(
ψ1

5d

ψ2
5d

)
(C.7)

Γm =

(
0 γm

γm 0

)
for m = 0, . . . , 3, 5 ; Γ6 =

(
0 1
−1 0

)

which upon integrating out the 6-direction becomes

L5d =

∫ 2πR6

0

dx6 · L6d

= tr

{∑

n

[(
ψ

1,(n)
5d , ψ

2,(n)
5d

)
(iD +Mn)

(
ψ

1,(n)
5d

ψ
2,(n)
5d

)]}
(C.8)

with : D =

(
γmDm 0

0 γmDm

)
, Mn =

( n
R6

+ A6 m

m −( n
R6

+ A6)

)
.
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Upon diagonalization of mass matrix one arrives at two massive 5d Dirac eigenstates whose

KK zero modes, e.g., receive a mass

M2
0 = A2

6 +m2 . (C.9)

Their contribution to Eq. (C.6) reads

∆α−1
4D(MC) ∼

√
A2

6 +m2 − |m|

−−→
m→∞

A2
6

2m
+O(A4

6/m
3) −→ 0 (C.10)

which just shows that massive gauged 6d spinors decouple completely from the A6-induced

1-loop correction to the gauge coupling. The dangerous higher-dimension operators of the

type of Eq. (C.2) thus do not appear in this 6d case as long as all symmetry breaking in the

bulk is done by the Wilson line.

Two important inputs have been used in this conclusion. The first one is the structure

of the A6-Wilson line induced 1-loop correction to the gauge coupling. A derivation along

the lines of [45] can be found in Appendix D. Secondly it was used that there is no mass

term for gauged 6d spinors besides the one written down in Eq. (C.7). This is shown in

Appendix E using results of [122]. The immediate use of these results becomes clear in case

of higher-dimensional supersymmetry, since by its virtue the decoupling found above then

carries over to all sectors of the theory.
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Appendix D

6d Wilson line corrections

In going from 5d to 6d one first has to ask where the gauge coupling splitting 1-loop correc-

tions of the 5d vector multiplet do come from in 6d. The answer is given by the change of

the N=1 vector when going from 5d to 6d: the real scalar φ of the 5d vector becomes A6,

the 6-component of the gauge field in the 6d vector multiplet. Thus, the background VEV

〈φ〉 of φ in 5d now becomes a background value A
(0)
6 in 6d which is induced by an A6-Wilson

line around the S1-compactified 6-direction of space-time.

Such a non-trivial A6-background induces masses for degrees of freedom in the vector that

do not commute with the A
(0)
6 -direction in group space. Therefore, the 1-loop corrections to

gauge coupling unification in 6d will be given by the change induced in the 1-loop corrections

of the gauge couplings by the A
(0)
6 -broken massive directions of the vector.

In order to facilitate comparison with the results from the 5d situation these loop correc-

tions will be calculated onM5×S1 incorporating the 6-direction via its KK-reduction on an

S1 (otherwise also the definition of a Wilson line ’around’ the 6-direction becomes unclear).

Therefore, firstly one has to determine how an A6-Wilson line modifies the KK-spectrum of

the gauge and gauged fields. In [45] it was shown that the Wilson line background gauge

field of the compactified extra dimension can be locally gauged away by applying a gauge

transformation U(x6) = exp(−ix6A6) to the gauge fields as well as the gauged fields. This,

however, then leads to a modification of the periodicity conditions of the fields on the S1

given by

Aim(xm, x6 + 2πR6) = Aim(x, x5, x6)

Aαm(xm, x6 + 2πR6) = e−i·2πR6Ai6αiAαm(xm, x6) (D.1)

Φλ(xm, x6 + 2πR6) = e−i·2πR6Ai6λiΦλ(x
m, x6) ,
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where α denote the roots and λ the weights of the representation Φ transforms in and

AM(xm, x6) = AiM(xm, x6)Ti + AαM(xm, x6)Eα (D.2)

Eα : generator corresponding to the root α .

This leads to a linear shift in the KK-tower of the fields yielding KK-masses of

m2
n(α) = (kn + c′α)2 (D.3)

m2
n(λ) = (kn + c′λ)

2

where : kn =
n

R6

, c′α = A
(0)i

6 αi , c
′
λ = A

(0)i

6 λi .

Next comes the calculation of the 1-loop corrections to the gauge couplings induced by

these shifts. For that purpose the U(1) × U(1)′ theory of Eq. (1.18) in App. A is useful

again. Imagine now A6 as acquiring a background value by a Wilson line instead of giving

a VEV to the scalar Φ. Then the 1-loop corrections to the gauge couplings arising from the

scalar loops will split up between g and g′ since the scalars acquire different KK-towers with

masses

m2
n := m2

n(h) = (kn + c′)2 , c′ = qA
(0)
6

m′n
2

:= m2
n(h′) = k2

n (D.4)

where the scalars h, h′ coupled to the two U(1)s now have charge q. The contribution to the

’VEV’ c′ induced change in the coupling g relative to g′ which arises from the 1-loop vacuum

polarization diagram built from two scalar-scalar-gauge boson vertices is diagrammatically

expressed as:

=
ν

∣∣∣∣∣
c′=0

µ
−

νµ
∣∣∣∣∣
c′ 6=0

−→
k

−→
k

p− k p− k
−→
k

−→
k

p p

−ν
p

µ
p

µ
∣∣∣∣∣
c′=0

=
ν

∣∣∣∣∣
c′=0

−→
k

p− k
−→
k

−→
k

−→
k

p− k

=∆|c′
( )

ν
p

µ

−→
k

p− k
−→
k

− dc̃′ · ∂
∂c′

( )∣∣∣∣∣
c′=c̃′

νµ

−→
k

−→
k

p− k

c’∫
0

p

Figure D.1
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Then to calculate the change the corresponding contribution of the ’bubble’ vacuum polar-

ization diagram of this scalar QED has to be added. The full 1-loop contribution of e.g. h

to the photon propagator in DR one can take from Eq. (A.2) where, however, one now has

to plug in:

mn =
n

R6
+ c′ , d = 5− ε . (D.5)

From the above diagrammatical argument the induced splitting of the gauge couplings arises

as the difference between the U(1)- and U(1)′-photon propagators at vanishing external

momentum k in presence of the Wilson line. Using Eq.s (A.12) and (A.13) to calculate the

loop integrals, this splitting is therefore given as

∆Π(1) (k = 0) =

∫ c′

0

dc̃′
∑

n

∂

∂c′
Π(1)

(
k2 = 0

)∣∣
c′=c̃′

= g2 q2

48π2

1

R6

∫ c

0

dc̃
∑

n

n + c̃

|n+ c̃|1+ε , c = R6c
′

−−→
ε→0

g2

48π2

1

R6

∫ c

0

dc̃

(
c̃

|c̃| − 2c̃

)

= g2 q2

48π2

1

R6
|c|(1− |c|) . (D.6)

This result is just a special case for the case of one compact dimension of the more general

threshold formulae in presence of a Wilson line valid on a general S1 or T 2 that have been

derived in [45]. If the general 6d expressions given there are reduced to the case of the

6-direction compactified on an S1 and the above U(1) × U(1)′-’GUT’ one finds the above

result.

From Eq. (D.6) one derives the 4d gauge coupling at the scale R−1
5 as

α−1
4d (R−1

5 ) = α−1
4d −

q2

6

R5

R6
|c|(1− |c|) . (D.7)

In the limit of R−1
5 << A

(0)
6 << R−1

6 which is c << 1 this reduces to

α−1
4d (R−1

5 )
∣∣
c<<1

= α−1
4d −

q2

6
R5

∣∣∣A(0)
6

∣∣∣ (D.8)

which - noting the A
(0)
6 = φ in the 5d theory - is precisely the 5d result.

The same U(1)-result could have been obtained directly from Eq. (3.8). One just has to
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replace m by a properly DR regulated sum over the KK masses

δ

(
1

g2
5

)
= − q2

8π2

∑

n

∣∣∣∣
n

R6
+ c′

∣∣∣∣
1−ε

= − q2

8π2

∫ c′

0

dc̃′
∑

n

∂

∂c′

∣∣∣∣
n

R6
+ c′

∣∣∣∣
1−ε
∣∣∣∣∣
c′=c̃′

− q2

8π2

∑

n

∣∣∣∣
n

R6

∣∣∣∣
1−ε

︸ ︷︷ ︸
universal infinite const.

= − q2

8π2

1

R6

∫ c

0

dc̃
∑

n

n+ c̃

|n + c̃|1+ε

= − q2

8π2

1

R6

∫ c

0

dc̃

{
ε(c̃) +

∞∑

n=1

n−ε
[
(1 + c̃/n)−ε − (1− c̃/n)−ε

]
}

= − q2

8π2

1

R6
|c|(1− |c|) (D.9)

where ε(x) is the sign function. The infinite constant is universal and has therefore been

left out as a renormalization constant. In both, Eq.s (D.6) and (D.9), properties of the

ζ-function [125] - the familiar relation

lim
ε→0

ε
∞∑

n=1

n−1−ε = 1 , (D.10)

have been used to evaluate the sum and a function f(ε) = 1 + O(ε) has been neglected

which, however, does not change the result since the sum
∑

n(n+ c̃)/ |n+ c̃|1+ε is convergent

anyway. The difference in the numerical prefactor between the Eq.s (3.8) and (D.6) arises

because Eq. (3.8) is derived for a 5d hypermultiplet of charge q. Compared to the single

complex scalar of charge q used to derive Eq. (D.6) this gives an additional factor 6 =

85d fermion − 22 compl. scalars.

Therefore, the non-abelian result in 6d can be obtained by just taking the full 5d result

Eq. (3.7) and then replacing

∣∣φi
∣∣ −→ 1

R6

∣∣∣R6A
(0),i
6

∣∣∣ −→ 1

R6

∣∣∣R6A
(0),i
6

∣∣∣
(

1−
∣∣∣R6A

(0),i
6

∣∣∣
)

. (D.11)

Note, however, the absence of a Chern-Simons term and bulk mass terms in 6d. In 5d,

bulk mass terms can be present for gauged matter. In 6d, however, as this is shown in

Appendix E, the structure of spinor bilinears leads to the absence of any form of gauged

matter besides N = 4 which due to its vanishing beta function does not contribute to the
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gauge couplings at any loop order. One arrives immediately at

∆

(
1

g2
5,i

)
=

1

8π2R6

[∑

α

α2
i

∣∣∣R6αjA
(0),j
6

∣∣∣
(

1−
∣∣∣R6αjA

(0),j
6

∣∣∣
)

−
∑

f

∑

λ

λ2
i

∣∣∣R6λjA
(0),j
6

∣∣∣
(

1−
∣∣∣R6λjA

(0),j
6

∣∣∣
)]

=
1

8π2R6

[∑

α

α2
i

∣∣αjcj
∣∣ (1−

∣∣αjcj
∣∣)−

∑

f

∑

λ

λ2
i

∣∣λjcj
∣∣ (1−

∣∣λjcj
∣∣)
]

with: cj = R6A
(0),j
6 . (D.12)

Thus, the corrections at the scale R−1
5 to the 4d coupling of the ith subgroup α−1

4d,i with the

5th dimension compactified on an S1/Z2 is given by

∆α−1
4d,i

(
R−1

5

)
=

R5

2R6

[∑

α

α2
i

∣∣αjcj
∣∣ (1−

∣∣αjcj
∣∣)−

∑

f

∑

λ

λ2
i

∣∣λjcj
∣∣ (1−

∣∣λjcj
∣∣)
]

(D.13)

This result describes the complete A6-induced 1-loop correction to the gauge couplings in a

6d supersymmetric GUT once the massless sector of the theory is specified.

Before closing, a comment on the regularization independence of the above result is

in place. In fact, returning to the level of actual loop integrations, the calculation can

be performed without ever introducing a regularization. It is clear that the desired A6

dependence of the gauge coupling can be extracted from the c dependence of a sum of 5d

one-loop integrals, conveniently written as the integral of a sum, of the form

I(c) =

∫
d5k

(2π)5

+∞∑

n=−∞

1

[k2 + (n + c)2]2
=

∫
d5k

(2π)5

+∞∑

n=−∞

{
− ∂

∂k2

(
1

k2 + (n + c)2

)}
(D.14)

=

∫
d5k

(2π)5

{
− ∂

∂|k|2
(

1

|k| ·
π sinh(2π|k|)

cosh(2π|k|)− cos(2πc)

)}
= −c(1− c)

16π2
+ {c-indep.} .

Here the focus was on the simplest scalar integral appearing in the detailed calculation,

rescaling the 5-momentum according to k → k/R6 and again c′ to c = R6c
′, and suppressing

an overall A6-independent factor. Thus, all one needs is I ′(c), which is finite simply because

the first derivative with respect to c of the integrand in Eq. (D.14) falls exponentially for

|k| → ∞. Here Mathematica [126] has been used for evaluating the sum and the integral.

Note also that dropping all higher KK modes (i.e., restricting the sum to n = 0) corresponds

to the replacement c(1− c)→ c in the final answer.

Performing the sum before the (in general divergent) 5d loop integration is crucial be-

cause in this way one is sure to respect the non-locality of the Wilson line effect in the 6d

theory. This non-locality is the reason for finiteness. Regularization is just useful for finding
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the explicit result in a somewhat simpler way, not necessary at the conceptual level. Of

course, it has to respect the non-local structure of the Wilson line wrapping the S1. Clearly,

dimensional regularization in the 5 non-compact dimensions satisfies this requirement. All

relevant loop corrections could have been reduced to the form of Eq. (D.14) to arrive at the

result. However, in this thesis the emphasis was on the dimensional regularization approach

as the simplest way to obtain the answer directly from the known 5d formula.
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Appendix E

Mass terms in 6d

E.1 spinor bilinears and gauge invariance in 6d

This Appendix will analyze the structure of mass terms of 6d gauged spinors. For that

purpose it is necessary to give a short review of spinor bilinears in 6d along the lines of [122].

Some basic notions about the Dirac algebra in d dimensions are in order to begin with. Since

besides the usual Γm, m = 0 . . . d− 1 also (Γm)∗, (Γm)T and (Γm)† satisfy the Dirac algebra,

one can find matrices B1, C1 and D1 such that

(Γm)∗ = −B1ΓmB−1
1

(Γm)T = −C1ΓmB−1
1 (E.1)

(Γm)† = −D1ΓmB−1
1

which for d even and

ηmn =




1 0 · · · 0
0 −1 · · · 0
...

...
. . .

...
0 0 · · · −1


 (E.2)

have the properties

C1 = B1D1 , D1 = Γ0

C1 = δ1C
T
1 , B∗1B1 = −δ1

δ1 =

{
+1 , d = 6, 8 mod 8
−1 , d = 2, 4 mod 8

. (E.3)

Next one defines charge conjugation as

ψc := B−1
1 ψ∗ =: Cψ . (E.4)

ψc transforms the same way as ψ under Lorentz transformations. For the case d = 6 Eq. (E.3)

implies, firstly, that a γ5-like matrix

Γ̄ = det(ηmn) · Γ0 · · ·Γd−1 (E.5)
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with Γ̄2 = 1 and thus Weyl spinors ψ± : Γ̄ψ± = ±ψ± exist. Secondly, B∗1B1 = −1 which

implies via C2 6= 1 the non-existence of Majorana spinors. And thirdly, Weyl spinors in 6d

are self-conjugate:
[
C, Γ̄

]
= 0 . (E.6)

From here one can now analyze the properties of a general bilinear of two 6d Dirac spinors

and later reduce it to the case of Weyl spinors. Such a bilinear in spinors may be written as

χTAψ (E.7)

with A a d×d complex matrix. Demanding this to be a Lorentz invariant yields a constraint

on A. Under infinitesimal Lorentz transformations

δψ = iεmnΣmn · ψ , Σmn = −1

4
[Γm,Γn] (E.8)

the variation of the bilinear to O(ε2) is given as

δ
(
χTAψ

)
= iεmnχ

T ·
[
(Σmn)T A+ AΣmn

]
· ψ (E.9)

which for invariance has to vanish. Using Eq. (E.1) this yields the constraint on A as

A−1C1ΣmnC−1
1 A = Σmn . (E.10)

One obvious solution is A = C1. The general solution then can be written as A = C1A
′.

Next, the totally anti-symmetrized gamma matrices

Γ̃m := Γ[n1 Γn2 · · ·Γnm] (E.11)

form a basis of the d× d complex matrices. Thus, every A′ can be written as

A′ =
d∑

m=0

cmΓ̃m . (E.12)

Now, there are just two invariant tensors that can be used for contractions of these Lorentz

tensors:

ηmn , εm1 ···md . (E.13)

Contraction with ηmn yields zero due to the antisymmetry of the Γ̃m. Then Lorentz scalars

can be formed only with Γ̃0 = 1 and εm1···mdΓ̃d = Γ̄. As the result, just one scalar and one

pseudo-scalar invariant

Ls = χTC1ψ , Lps = χTC1Γ̄ψ (E.14)

can be formed from χ and ψ. Lps, however, is not really independent, since on 6d Weyl

spinors Γ̄ just takes the values ±1 which reduces thus Lps to Ls if they are expressed in Weyl
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spinors. For each Weyl spinor now there exists its charge conjugate with the same chirality.

Thus in terms of the two spinors of opposite chirality ψ± within ψ one can now write down

four invariants

ψT+C1ψ+ , (ψc+)TC1ψ+

ψT+C1ψ− , (ψc+)TC1ψ− . (E.15)

From Eq.s (E.1), (E.6) and ψ± = 1/2 · (1± Γ̄)ψ the first line evaluates to

ψT+C1ψ+ = ψTC1
1− Γ̄

2

1 + Γ̄

2
ψ = 0

(ψc+)TC1ψ+ = (ψc)TC1
1− Γ̄

2

1 + Γ̄

2
ψ = 0 (E.16)

which implies that non-vanishing invariants in 6d can only be formed by Weyl spinors of

opposite chirality (second line above). These can be conveniently rewritten as

ψT+C1ψ− = ψc+ψ− , (ψc+)TC1ψ− = ψ+ψ− . (E.17)

Thus, the most general complex lagrangian of bilinears of two 6d Weyl spinors of opposite

chirality

χ+ =
1 + Γ̄

2
χ , ψ− =

1− Γ̄

2
ψ (E.18)

is given by

Lm = a · χ+ψ− + b · χc+ψ− + c · χ+ψ
c
− + d · χc+ψc− . (E.19)

In 6d, Eq.s (E.1) and (E.3) imply

(ψχ)† = (χψ)∗ = χcψc (E.20)

which means that Lm can be made real by the choice d = ā and c = b̄. A subsequent

redefinition of the phases of the spinors then allows one to rewrite this as

Lm = m · χ+ψ− +m′ · χc+ψ− + h.c. with m,m′ ∈ R . (E.21)

This is the most general real mass term lagrangian for 6d Weyl spinors. Now in the last step

think of both Weyl spinors as being gauged under some U(1). Without loss of generality,

choose them to be equally charged under the U(1). Then q(χ+ψ−) = 0 while q(χc+ψ−) 6= 0

which implies that for gauged Weyl spinors just one mass term remains

Lm = m · χ+ψ− + h.c. . (E.22)
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E.2 Mass terms in 6d SUSY

The next step will be to study possible mass terms in 6d SYM allowed by Eq. (E.22).

Begin with the action of free massless right- and left-handed hypermultiplets (HR, H
c
R) and

(HL, H
c
L) in 6d [62]:

Lmatter =
(
Hc
LH

c
L +HLHL +Hc

RH
c
R +HRHR

)∣∣
θ2 θ̄2

+
[(
Hc
L∂HL +Hc

R∂̄HR

)∣∣
θ2 + h.c.

]
(E.23)

with: ∂ = ∂z = ∂5 − i∂6 , z = x5 + ix6

SO(2) ⊂ SO(5, 1)-transformations of z: z −→ eiθz have the 56-derivative transforming

as ∂ −→ e−iθ∂. Now think of gauging these hypermultiplets under a U(1) with an, e.g.,

right-handed vector multiplet (VR,ΣR). Under a gauge transformation it transforms as

VR −→ VR + ΛR + ΛR

ΣR −→ ΣR +
√

2∂ΛR . (E.24)

The transformation properties of ΣR and ∂ require ΣR to transform under the above SO(2)

the same way as ∂. Thus, ΣR can form a covariant derivative only with ∂: ∂ → DR =

∂ − Σ/
√

2, but not with ∂̄. In conclusion, a 6d vector of a given handedness can gauge only

hypermultiplets of the opposite handedness.

The spinors contained in 6d vector and hypermultiplets are 6d Weyl spinors. Eq. (E.22)

now dictates that possible mass terms must connect multiplets of opposite handedness among

the gauged fields. Given a situation with a right-handed vector and a number of ungauged

right- and gauged left-handed hypermultiplets this implies that mass terms can only link

the left-handed hypermultiplets with the right-handed vector. This resides on the fact that

mass terms linking hypermultiplets of different handedness are not gauge invariant because

only the left-handed ones are gauged by the vector.

Now call the right-handed gaugino λR and the spinors of n left-handed hypermultiplets

χL,j. Then the mass term linking the spinors according to Eq. (E.22) has to be:

L6d,mass = ΦMΦ (E.25)

Φ =




λR
χL,1

...
χL,n


 , M =




0 m1 · · · mn

m1 0 · · · 0
...

...
. . .

...
mn 0 · · · 0




Diagonalization of this mass matrix yields two eigenvalues ±m and the other n−1 eigenvalues

to be zero. Thus, the only possible mass term for gauged matter in 6d gives mass to the
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whole vector and exactly one (adjoint in the non-abelian case) gauged hypermultiplet with

equal values, which, however, means that effectively a whole N = 4 vector multiplet becomes

massive. As a result, no 6d chiral gauged massive matter exists, the only massive gauged

matter in 6d is N = 4.
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Appendix F

Moduli fields of Calabi-Yau
compactifications to 4d

The geometric compactification moduli arise as follows: write the 10d metric in terms of the

product geometry of a general Calabi-Yau compactification to flat 4d Minkowski space-time

ds2
10 = ηµνdx

µdxν + gαβ(y) · dyαdyβ . (F.1)

Here gαβ denotes the metric of the Calabi-Yau threefold and µ, ν = 0 . . . 3 and α, β = 4 . . . 9

the 4d and compact 6d coordinate indices, respectively (M,N = 0 . . . 9 are the 10d indices

then).

Let the Calabi-Yau metric now fluctuate. Since a Calabi-Yau as a Kähler manifold

carries a complex structure it is now convenient to change to complex internal coordinates

m,n = 1 . . . 3 and m̄, n̄ = 1 . . . 3. It is a well known fact [100] that the Ricci-flatness of

Calabi-Yau threefolds (every Calabi-Yau, being Kähler, admits a hermitian metric gmn̄ for

which its Ricci-tensor Rp
mpn vanishes) admits two classes of metric fluctuations which are

non-trivial in the sense, that written in p-form language they are not exact: fluctuations

corresponding to harmonic (1, 1)-forms which preserve the hermitian form of the metric

(therefore called Kähler moduli)

δgmn̄ = vaω
a
mn̄ , a = 1 . . . h1,1 , va ∈ R (F.2)

and harmonic (2, 1)-form fluctuations (which leave the hermiticity of the metric and thus

change the complex structure of the Calabi-Yau, therefore called complex structure moduli)

δgm̄n̄ = zAη
A
m̄n̄ , A = 1 . . . h1,2 , zA ∈ C . (F.3)

Here the ηAm̄n̄ are in one to one correspondence with the harmonic (2, 1)-forms χA on the

Calabi-Yau

ηAm̄n̄ = χApqn̄
Ωpq
m̄

‖Ω‖2
(F.4)
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Ω denotes the unique harmonic and holomorphic 3-form characteristic for each Calabi-Yau.

The number of independent (1, 1)- and (2, 1)-forms (which equals the dimension of the cor-

responding Dolbeault cohomologies H1,1

∂̄
and H2,1

∂̄
= H1,2

∂̄
, respectively) is given by the

Hodge numbers h1,1 and h2,1 = h1,2, respectively. The Hodge dual in the compact direc-

tions induces the split into imaginary self-dual (ISD) forms ∗6ω
+ = iω+ and anti-ISD forms

∗6ω
− = −iω−. The (1, 2)-form χ̄Ā and the holomorphic (3, 0)-form Ω are anti-ISD and their

(2, 1)- and (0, 3)-form partners χA and Ω̄ are ISD [16].

Next, apply the factorization of the metric to the 10d Ricci scalar

R = gMNRMN = ηµνRP
µPν + gmnRP

mPn

= ηµνRρ
µρν︸ ︷︷ ︸

R4

+ηµνRm
µmν + gmn (Rµ

mµn +Rp
mpn) (F.5)

and consider terms

ΓSmµΓµSn = ΓσmµΓµσn + ΓpmµΓµpn ⊂ Rµ
mµn . (F.6)

By virtue of the product structure of the metric this simplifies using

Γpmµ =
gpq

2
∂µgmq , Γµpn = −g

µσ

2
∂ρgnp (F.7)

into Rµ
mµn containing terms

Rµ
mµn ⊃ −

gpq

4
∂µgmq∂

µgnp . (F.8)

Note, that the Riemann tensor consists of terms Γ...Γ
.
.. and ∂.Γ

.

.. which all contain two deriva-

tives. Now the first term of Eq. (F.5) vanishes since the 4d metric is Minkowski space-time.

The next two terms contain besides the pieces of Eq. (F.8) only pieces containing either ∂νgµm

or ∂mηµν which both vanish because of the product structure of the metric and ηµν = const.

Thus, only the last term of Eq. (F.5) could possibly contribute terms in gmn. However

this term Rp
mpn = Rmn is the Ricci tensor of the compact manifold which on a Calabi-Yau

vanishes, too. This implies that Eq. (F.8) contains all terms in gmn including possible fluc-

tuations since only fluctuations of the compact metric which respect the Ricci flatness of the

Calabi-Yau will be studied [100].

Now write the compact part of the metric as

gmn = g(0)
mn + δgmn , (F.9)

plug this into Eq. (F.8), use the product structure of the metric and expand the result to

O(ω2, η2). One arrives at an expression

gmnRµ
mµn = −C

4
g(0)mng(0)p̄q̄ωamq̄ω

b
np̄∂µva∂

µvb

−C
4
g(0)mn̄g(0)pq̄ηAmqη̄

B̄
n̄p̄∂µzA∂

µz̄B̄ . (F.10)
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C is a constant that accounts for the fact that there are several terms in Rµ
mµn which have

the structure of Eq. (F.8). This implies that the Einstein-Hilbert term of the 10d action

upon Calabi-Yau compactification is

R = R4 −
C

4
g(0)mng(0)p̄q̄ωamq̄ω

b
np̄∂µva∂

µvb

−C
4
g(0)mn̄g(0)pq̄ηAmqη̄

B̄
n̄p̄∂µzA∂

µz̄B̄ (F.11)

that is, the geometric fluctuations of the Calabi-Yau compactification, Kähler and complex

structure moduli, become free massless scalar fields in the 4d low energy effective theory,

which is why they are called moduli fields.
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