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Abstract

The Large Hadron Collider at CERN will collide protons with a centre-of-mass
energy of up to

√
s = 14 TeV, thereby offering the opportunity to explore a wide

range of physics topics.
In this thesis the effects of QCD radiation in top pair events are examined.

Due to the large top mass, top pairs are well suited for an investigation of gluon
emissions. An extensive study comparing different radiation models implemented
in Monte Carlo event generators is presented. The transverse momentum distri-
bution of the tt̄ system is rather sensitive to radiation influences and therefore
analysed in detail. As hard emissions can be associated with jets, a thorough
investigation of these jets is performed. The transverse momentum of hard jets
and the rapidity distribution of the hardest jet in the tt̄ rest frame are examined.

Moreover an analysis of samples incorporating different radiation models after
the full CMS detector simulation is presented, studying the same observables as
on generator level. The potential of the CMS experiment to distinguish between
different models is estimated and a method to obtain the underlying transverse
momentum distribution of the tt̄ system is described.



Zusammenfassung

Am Large Hadron Collider am CERN werden Protonen bei einer Schwerpunkts-
energie von bis zu

√
s = 14 TeV zur Kollision gebracht. Dadurch wird die Er-

forschung vielfältiger neuer Physikprozesse ermöglicht.
In dieser Arbeit werden die Eigenschaften von QCD-Strahlung in Top-Paar-

ereignissen untersucht. Aufgrund der hohen Masse des Top-Quarks eignen sich
Top-Paare besonders gut für die Analyse von Gluon-Abstrahlungen. Es wird
eine detaillierte Studie präsentiert, die verschiedene in Monte-Carlo-Generatoren
implementierte Modelle miteinander vergleicht. Aufgrund der Sensitivität auf
Strahlungseinflüsse wird insbesondere die Transversalimpulsverteilung des Top-
Paares untersucht. Es ist möglich harte Abstrahlungen mit Jets zu assoziieren.
Sowohl der Transversalimpuls solcher harten Jets als auch die Rapidität des
führenden Jets im Ruhesystem des tt̄-Systems werden ausführlich diskutiert.

Des Weiteren wird eine Analyse verschiedener Modelle nach der vollständigen
CMS-Detektorsimulation durchgeführt, wobei die gleichen Observablen wie in
der Generatorstudie betrachtet werden. Daraus wird das Potential des CMS-
Experimentes abgeschätzt, zwischen den verschiedenen Modellen unterscheiden
zu können. Außerdem wird eine Methode vorgestellt, die es ermöglicht, die zu-
grunde liegende Transversalimpulsverteilung des tt̄-Systems zu bestimmen.
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Chapter 1

Introduction

1.1 Overview

In this thesis higher order QCD radiation in top pair events at the LHC is ex-
amined. Different physics models implemented in Monte Carlo event generators
are compared. Therefore the most important observable is the transverse mo-
mentum of the tt̄ system. Furthermore jets associated with radiated gluons are
investigated.

In this chapter the context associated with the performed analysis is presented.
First the experimental environment is introduced, followed by a brief description
of the actual state of knowledge. Then the latest achievements concerning the
top quark are summarised.

Following, in chapter 2 some basic properties of the theory of QCD which
builds the foundation of Monte Carlo event generators are explained. Then some
aspects of proton collisions needed for the further analysis are introduced in chap-
ter 3. In chapter 4 Monte Carlo event generators are described with a focus on
different models for gluon radiation. In chapter 5 a detailed comparison of differ-
ent physics models that are implemented in the various Monte Carlo generators
is presented. Top pair events are examined with emphasis on the transverse mo-
mentum of the tt̄ system and the properties of additional jets associated with
gluon emissions.

In chapter 6 the attention is drawn to the CMS detector. Reconstructed
physics objects are introduced in chapter 7 and the selection and reconstruction
of semi-muonic tt̄ events produced with different Monte Carlo models is described
in chapter 8. In chapter 9 the reconstructed top pairs are then analysed and a
comparison of the observables examined in chapter 5 on generator level is per-
formed. Furthermore the potential of CMS to distinguish between different mod-
els and to obtain the underlying distribution of the transverse momentum of the
tt̄ system is discussed.

1



2 Chapter 1. Introduction

1.2 Large Hadron Collider

The Large Hadron Collider (LHC) [1, 2, 3] is a proton–proton ring collider built
by the European Laboratory for Particle Physics CERN (Conseil Européen pour
la Recherche Nucléaire). The 27 km long accelerator is located about 100m un-
derground at the French-Swiss border near Geneva in the old Large Electron

Positron Collider (LEP) tunnel [4, 5].

The LHC is designed to collide protons with an energy of 7 TeV each, thus a
centre-of-mass energy of

√
s = 14 TeV will be achieved. At this energy the total

inelastic proton–proton cross section reaches σ ≈ 125 mb [6]. Collisions will take
place with a frequency of 40MHz so proton bunches will meet every 25 ns. The
design luminosity is L = 1034 cm−2s−1, but in the first years the LHC will be
operated at a lower luminosity of about L = 2 · 1033 cm−2s−1. During this low

luminosity phase it is planned to collect several 10 fb−1 of data.

Figure 1.1 shows the cross section for several processes over the centre-of-
mass energy for p–p and p–p̄ collisions. The regions of the proton–anti-proton
collider Tevatron [7] and the LHC are marked by dashed lines. As the Tevatron
is operated at

√
s = 1.96 TeV, the centre-of-mass energy available at the LHC is

increased relatively by a factor of seven. Even though the total cross section does
not change very much over this energy range, the cross sections for several physics
processes increase significantly, e. g. for top production. In combination with the
high luminosity this results in an amount of collected data much higher than for
any former experiments. High statistics and the high centre-of-mass energy offer
the opportunity for many interesting studies. Besides proton interactions lead–
lead collisions with a centre-of-mass energy of

√
s = 5.5 TeV and a luminosity of

L = 1027 cm−2s−1 will be investigated.

The proton beams collide at four interaction points, that are shown in figure
1.2. ATLAS (A Toroidal LHC Apparatus) [9] and CMS (Compact Muon Solenoid)
[10] are two multi purpose detectors for exploring a wide range of physics top-
ics. A detailed description of the CMS detector is given in chapter 6. Besides,
LHCb (Large Hadron Collider beauty) [11] is an experiment specialised on physics
connected with B-hadrons while ALICE (A Large Ion Collider Experiment) [12]
is a detector specially designed for heavy ion physics. Furthermore two exper-
iments for forward physics and the measurement of the total cross section are
located next to ATLAS and CMS. LHCf (Large Hadron Collider forward) [13] is
built close to ATLAS while TOTEM (TOTal Elastic and diffractive cross section
Measurement) [14] is built close to CMS.

1.3 Standard Model of Particle Physics

The goal of particle physics is a consistent description of all fundamental par-
ticles and their interactions. The present state of knowledge is summarised in
the standard model of particle physics. It describes the properties of the known
fundamental particles and their interactions by quantum field theories [16].
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Figure 1.1: Cross sections for different processes over the centre-of-mass energy√
s in the hadron–hadron system. [8]

Figure 1.2: Sketch of the LHC ring indicating the location of the four main
experiments: ATLAS, ALICE, CMS and LHCb. [15]



4 Chapter 1. Introduction

The elementary particles known today are six leptons, six quarks and their
anti-particles. The leptons are electron (e), muon (µ), tau (τ) and three neutrinos

(ν). The quarks are called up, down, charm, strange, top and bottom and are
symbolised by the first letter of their name. All of these particles are fermions,
i. e. they have spin 1

2
. Leptons and quarks can be arranged in three so-called

families.
Leptons:

(

e
νe

) (

µ
νµ

) (

τ
ντ

)

.

Quarks:
(

u
d

) (

c
s

) (

t
b

)

.

The particles of the second and third doublets differ from the ones in the first dou-
blet only in their masses. These masses vary by several orders of magnitude. For
the neutrinos only upper limits can be determined but from neutrino oscillation
experiments it is known that neutrinos have a non-vanishing mass [17].

The particles can interact with each other via four different forces. The stan-
dard model includes the description of the electromagnetic, weak and strong force.
The former two interactions can be unified in the electroweak theory [18, 19, 20].
The interactions are mediated by gauge bosons: the photon for the electromag-
netic force, W - and Z-bosons for the weak force and gluons for the strong force.
The particles are affected by gravity as well but up to now it is not possible to to
combine all four interactions consistently into one model. At energies available
at colliders gravity is very weak compared to the other forces. Therefore it can
be safely neglected for a proper treatment of elementary particles.

For the electromagnetic force the coupling strength is proportional to the
particles’ electric charge. In units of the elementary charge e = 1.6 · 10−19 C, e, µ
and τ have a charge of −1 whereas the neutrinos are neutral. Hence they do
not participate in electromagnetic interactions. Up-type quarks have a charge of
+2

3
and down-type quarks −1

3
. The respective anti-particles have the opposite

electric charges.

All leptons and quarks participate in weak interactions. It turns out that the
quarks are not eigenstates of the weak interaction, thereby transitions between
the three generations become possible. These transitions are governed by the
CKM matrix [21, 22] that allows to compute the transition probability for each
up-type and down-type quark combination. The electroweak theory induces a
relation between two quarks and two leptons in a way that they build weak

isospin doublets according to the notation above. The weak force is mediated by
massive Z-, W+ and W−-bosons. The two types of W -bosons are identical except
for their electric charge which is ±1, respectively. In contrast to photons and Z-
bosons, W -bosons carry electric and weak charge, hence photons and Z-bosons
couple to them.

The strong force affects only quarks. The corresponding charge is called colour

and appears in three different states. The strong force is mediated by eight types
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of gluons. Gluons carry colour charge themselves and hence self-interactions are
possible. A brief introduction into the theory describing the strong interactions
is given in chapter 2.

The formulation of the standard model discussed so far does not include any
masses. It is possible to introduce particle masses via the Higgs mechanism

[23], which requires a new particle: the Higgs boson. This particle has not been
observed in former experiments and the search for the Higgs boson is one of the
most important tasks for the LHC.

Several experimental measurements indicate the limitations of the standard
model. For example the matter described by the standard model accounts for
only a few percent of the existing energy in the universe [24]. Furthermore a
matter–anti-matter asymmetry is observed in the universe that is not consistent
with the actual models. Finally, it is not possible to unify the different forces and
to include gravity into one consistent theoretical description. These observations
lead to the development of several extended theories covering physics beyond the
standard model. The energy range available at the LHC will offer the opportunity
to check many of these models.

1.4 Top Quark Physics

The top quark was discovered at the Tevatron in 1995 [25, 26]. With a mass of
mt = 171.2 ± 2.1 GeV [27] it is almost as heavy as a gold atom, thereby being
the heaviest known elementary particle. Its mass is well above ΛQCD and hence
it is possible to describe top quark production and decay by perturbative means.
Due to its large mass the top can decay electroweakly in an on-shell W -boson
accompanied by a down-type quark. The CKM matrix element Vtb is close to one
and predicts the decay

t → Wb

to happen in over 99% of all cases. This decay process induces a proper lifetime
of the top of about 5 · 10−25 s. As hadronization takes place at time scales of
order 3 · 10−24 s, the top quark decays before the fragmentation process starts.
Consequently no bound top states are built and the decay products of a bare
quark can be investigated. [28]

In figure 1.3 the leading order Feynman diagrams for top pair production
at hadron colliders are shown. In all cases the propagators are proportional to
p2

T + m2
t [29], therefore the top mass is an important parameter setting the scale

for the production process. At the LHC about 90% of the top pairs are expected
to be produced via gluon–gluon fusion while only 10% are caused by quark–anti-
quark annihilation [28]. The next-to-leading order cross section for tt̄ production
is predicted to be 908+82

−85(scales)+30
−29(PDFs) pb [30]. At the LHC about one tt̄ pair

per second will be produced at the low luminosity phase.
Top pairs decay according to

tt̄ → W+W−bb̄
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q̄

q

t̄

t

a)

g

g

t̄

t

b)

g

g

t̄

t

c)

g

g

t̄

t

d)

Figure 1.3: Leading order Feynman diagrams for tt̄ production. a) shows the
diagram for qq̄ annihilation while b) – d) depict the s-, t- and u-channel for gluon
fusion, respectively.

and are classified by the decays of the W -bosons. In case both W -bosons decay
into qq̄′ the decay channel is called fully hadronic, for both W -bosons decaying
leptonically (W → lν) the channel is called di-leptonic. If one W -boson de-
cays leptonically and one hadronically the decay is called semi-leptonic. The
branching ratios are influenced by the fact that each quark can appear in three
different colour states, leading to branching fractions of 10.5%, 43.5% and 45.5%
for di-leptonic, semi-leptonic and fully hadronic decays, respectively [28]. In this
analysis the semi-muonic channel with a branching ratio of 14.5% is investigated.
Here one of the W -bosons decays according to W → µν while the other one
decays hadronically. This decay provides a clear signal and a relatively high
reconstruction efficiency and background rejection rate are achievable (compare
chapter 8).

In 2009 the observation of single-top quarks at the Tevatron was reported [31,
32]. The production process of single-tops is directly sensitive to the CKM matrix
element Vtb and probes a different kinematic region, thereby complementing the
knowledge about top quarks.

At the LHC a lot of studies will be performed determining the quantum num-
bers of the top directly. Furthermore discrepancies between theoretical predic-
tions and experimental results open the possibility to discover new physics beyond
the standard model. Due to its large mass the top quark plays an important role
in the exploration of the high energy scales the LHC will reach.
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Among many other observables the differential cross sections of top quark
pairs will be of high interest. The transverse momentum of a top pair is caused by
effects beyond leading order and thus higher order contributions can be examined.
Besides, the transverse momentum spectrum offers the possibility to look for
physics beyond the standard model as additional couplings may influence the
transverse momentum distribution. In this thesis the transverse momentum of tt̄
pairs is studied in detail.
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Chapter 2

Quantum Chromodynamics

Quantum Chromodynamics (QCD) describes the interaction of quarks and gluons
mediated by the strong force. In this chapter the fundamental properties of QCD
are summarised. A detailed discussion of all aspects described in this chapter can
be found in [29] and [33].

2.1 QCD Lagrangian and Feynman Rules

QCD is a non-abelian Yang-Mills theory describing the interaction of quarks and
gluons. Each quark appears in three different charged states, called colour. The
properties of coloured particles are described by the non-abelian group SU(3),
which is characterised by eight generators. Demanding local gauge invariance of
the quark fields introduces eight gauge fields, the gluons. The non-abelian algebra
of SU(3) leads to non-vanishing structure constants, reflecting that the gauge
fields are colour-charged themselves. As a consequence gluon self-interactions
take place giving rise to three and four gluon vertices in the theory.

The Lagrangian density for the quarks is:

Lquark =
∑

flavours

q̄j(x)
[

i/∂ − m
]

qj(x) + gsT
a
jkq̄j(x) /A

a
qk(x) (2.1)

with the following denotations:

• q: quark of a certain flavour,

• j, k: indices running over all colours,

• m: quark mass,

• gs: strong coupling constant,

• T : generator of the group SU(3),

• a: index running over all generators,

• A: gluon field.

9
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The terms describe a free propagating coloured quark with mass m and the
interaction of a quark with a gluon field. For the gauge field the Lagrangian is:

Lgauge = −1

2

(

∂µA
a
ν − ∂νA

a
µ

)

(∂µAνa − ∂νAµa) + gsfabc(∂µAa
ν)A

bµAcν

− g2
s

4
fabcfadeA

bµAcνAd
µA

e
ν (2.2)

with

• fabc: structure constants of SU(3).

The first term describes a free propagating gluon while the other two terms rep-
resent three and four gluon self-interaction vertices, respectively.

The requirement of renormalizability forbids terms of mass dimension higher
than four while local gauge invariance forbids all other terms except one that does
not appear in the Lagrangians above. Today it is not clear whether this so called
θ term contributes, but even if it does, it will not give rise to any perturbative
physics, so it can be safely neglected. [33]

With the classical QCD Lagrangian Lclassical = Lquark + Lgauge problems are
encountered when formulating the Feynman rules. Additional terms have to be
included to fix the gauge and for the choice of a covariant gauge ghosts have to
be introduced to theory. Ghosts cancel unphysical polarization states of gluons
in loop diagrams and ensure correct gauge-invariant results of all calculations.
The gluon propagator now depends on an arbitrary gauge parameter ξ which
changes the calculations but leaves all physical observables unchanged. Thus the
complete QCD Lagrangian is:

LQCD = Lclassical + Lgaugefix+ghost . (2.3)

From this Lagrangian Feynman rules can be deduced which describe propagating
quarks and gluons, a quark–gluon vertex and three and four gluon vertices. It is
worth noting that the coupling gs is the same for quark–gluon and gluon–gluon
couplings (as well as for ghost–gluon interactions).

Quarks are associated with three different colour states, labled red (r), green

(g) and blue (b), while anti-quarks are associated with anti- colour states, anti-

red (r̄), anti-green (ḡ) and anti-blue (b̄). An examination of the SU(3) generators
shows that gluons can be regarded as particles carrying a combination of colour
and anti-colour.

A more detailed description of the fundamentals of QCD can be found in [29]
and [33]. A complete treatment of the Lagrangian and deduction of the Feynman
rules is performed in [16].

2.2 Renormalization

The theory describing the interaction of fundamental fermions by Feynman rules
is referred to as perturbative QCD. Quarks can build composed state which are
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Figure 2.1: Leading order Feynman
diagram.
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Figure 2.2: Feynman diagram con-
taining a loop.

called hadrons. Introducing these hadrons in the picture raises the need for a
non-perturbative QCD description as those complex particles are not governed
by the QCD Lagrangian. The typical radius of a hadron, e. g. the proton, is of
order 1 fm ∼ 1/200 MeV. It is not possible to distinguish different partons in
a hadron so the perturbative description is not valid any more at this scale. It
is common to introduce a scale ΛQCD ∼ 200 MeV at which perturbative physics
break down and non-perturbative effects dominate. In this and the following
sections the perturbative part will be analysed while non-perturbative effects will
be introduced later.

For fundamental particles the cross section of a specified process is given by

σ =

∫

1

flux
× |M|2 × dΦ (2.4)

using the denotations:

• σ: cross section,

• flux: incoming particle flux,

• M: matrix element calculated from Feynman rules,

• dΦ: phase space volume over which is integrated.

The matrix element M describes the physics involved. It can be visualised by a
Feynman diagram that graphically represents the Feynman rules for the calcula-
tion of a process. Figure 2.1 shows a tree level Feynman diagram for a fundamen-
tal process. Moreover, higher order corrections have to be taken into account,
like loops (figure 2.2), real (figure 2.3) and virtual corrections (figure 2.4). These
additional diagrams cause ultraviolet and infrared divergences.

To handle the ultraviolet divergences that arise from virtual and loop dia-
grams, these diagrams are calculated using the method of dimensional regular-

ization. Each loop or virtual correction contributes a term proportional to the
strong coupling αs = g2

s/4π. As each propagator of a loop or correction can con-
tain a loop or additional virtual corrections inside, diagrams to all orders in αs
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contribute. The resulting expressions consist of a finite and a divergent part. For
each order in αs a counter term has to be added to the Lagrangian to cancel the
divergent parts from the loop diagrams. This procedure is called renormalization.
The counter terms can have arbitrary finite parts in addition. This is the reason
for the existence of different renormalization schemes, as different choices of the
finite parts are convenient for different applications.

The result from a calculation using dimensional regularization depends addi-
tionally on an arbitrary unit mass µ that is needed to give the expression the
correct mass dimension. As a consequence parameters like quark masses and
the strong coupling αs become dependent on µ. By construction any observable
calculated to all orders in αs is independent of the choice of µ. Real calculations
include only a finite number of Feynman diagrams, so all results depend on the
choice of the renormalization scheme and the choice of µ.

The scale µ for a calculation is usually referred to as renormalization scale.
The most important dependence is on the strong coupling. αs can be calculated
to nth order, thus absorbing the effects from loops up to order n. Therefore
renormalization accounts for effects at very small distances, i. e. on very small
time scales. Adjusting αs(µ) it is possible to remove physics happening at time
scales t ≪ 1/µ from the perturbative calculation. Effectively this procedure sums
physical effects at time scales smaller than 1/µ.

2.3 Running Coupling

For the parameters influenced by renormalization, the so called renormalization

group equations can be derived. These equations describe the dependence of
the parameters on µ and allow to compute the evolution of any parameter to a
particular order. The calculation of the dependence of αs leads to the following
equation, where for µ the virtuality Q is used:

Q2dαs(Q
2)

dQ2
= β(αs(Q

2)) = −α2
s(β0 + β1αs + β2α

2
s + . . .) . (2.5)

The coefficients βi are needed to derive αs(Q
2) to a specified order in perturbation

theory. Solving the renormalization group equation for the coupling αs gives its
value including corrections up to the specified order. As reference scale ΛQCD

is chosen, i. e. the scale at which perturbative QCD breaks down. Using the
boundary condition αs(ΛQCD) = ∞ the next-to-leading order (NLO) expression
for αs is:

αs(Q
2) =

1

1 + β0 ln(Q2/Λ2
QCD)

(

1 −
β1 ln

[

ln(Q2/Λ2
QCD)

]

β2
0 ln(Q2/Λ2

QCD)

+
β2

1

β4
0 ln(Q2/Λ2

QCD)

[(

ln
[

ln(Q2/Λ2
QCD)

]

− 1

2

)2

− 5

4

])

. (2.6)
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Figure 2.3: Feynman diagram with
an additional real emission.
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Figure 2.4: Feynman diagram with
a virtual vertex correction.

In practice αs has to be determined from data. It is common to take αs(M
2
Z) as

reference value for comparisons and to derive αs values at other scales. Working
at leading order (LO) one can solve the renormalization group equation to obtain:

αs(Q
2) =

αs(Q
2
0)

1 + β0αs(Q2
0) ln(Q2/Q2

0)
. (2.7)

To get a reasonable result with a finite number of terms, the scale in αs is chosen
to be the virtuality Q2 of the process of interest. As αs is a function of Q2, it is
referred to as running coupling.

According to equation 2.6 αs(Q
2) will increase if Q2 decreases. This is true

for β0 > 0, which is the case for a theory with six quark flavours as it is assumed
here. A smaller Q2 corresponds to a larger distance, thus αs increases with the
distance of two coloured particles. As a consequence free colour charges cannot
be observed above a distance 1/ΛQCD due to the increased force acting between
them. This effect is known as confinement leading to the existence of colour
neutral hadrons containing colour charged quarks and gluons. The singularity of
equation 2.6 at Q = ΛQCD is a consequence of the fact that too large values of
αs invalidate equation 2.5.

2.4 Higher Order Corrections

Figures 2.3 and 2.4 show diagrams with real and virtual corrections, respectively.
Due to the fact that gluons are massless, there is in both cases the possibil-
ity of soft contributions, i. e. the additional gluon may have vanishing energy:
Eg → 0. In addition for real emissions the possibility of collinear contributions
exists: ∢(emitter, gluon) → 0. Calculating the diagrams of a certain order shows
that the real and the virtual parts both give rise to infrared divergences. These
divergences cancel for every order giving an allover finite result. So both real and
virtual diagrams have to be taken into account for any calculation. The specifi-
cation of the order for a calculated observable, e. g. the total cross section, refers
to the inclusion of all diagrams with real and virtual corrections up to this order
in αs.
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p + q
p

q

Figure 2.5: Collinear real emission diagram.

2.5 Factorization

Investigating higher order corrections in hadron–hadron collisions, one finds that
there are infrared divergences due to real emissions that are not canceled by the
virtual corrections. Collinear gluon emissions as shown in figure 2.5 are associated
with an almost vanishing quark propagator, meaning that this quark is almost
on its mass shell. These low-virtuality quarks have a very long life time and thus
travel a long distance before any emission takes place (x ∝ 1/p). Hence such
an emission is considered not to be part of the hard parton interaction but it is
associated with the incoming or outgoing hadron.

After the complete calculation at a given order in αs using the procedure of
dimensional regularization indeed only poles due to collinear emissions remain.
The basic idea is to distinguish between long distance physics, associated with
collinear emissions from almost real partons, and short distance physics, i. e. the
hard process. One defines a so called parton density function (pdf) to separate
long distance effects. The divergent parts of collinear emissions are absorbed
in the parton density function. But there is some arbitrariness in the choice of
constant terms put in the pdf, leading to different factorization schemes, like in
the case of renormalization (compare section 2.2). Due to the usage of dimen-
sional regularization another unit mass µF is introduced, which is referred to as
factorization scale. This scale separates long and short distance physics. For
convenience renormalization and factorization scale are often chosen the same.
Hence the pdf depends on the chosen scheme and the choice of the factorization
scale. In addition there is a dependence on the momentum fraction x of the mo-
mentum of the initial hadron as possible splittings depend on the momentum of
the initial parton. The incoming parton is assumed to carry a fraction x of the
hadron’s momentum p.

A good variable for looking at two partons coming from a collinear splitting
is the relative transverse momentum pT . Then an emission causes a factor of the
form

αs(p
2
T )

2π

∫ s

µ2

F

dp2
T

p2
T

=
αs(p

2
T )

2π
ln

(

s

µ2
F

)

(2.8)

in the cross section.
√

s denotes the centre-of-mass energy of the process. In this
integral µF shields the singularity which has been moved to the pdf, but it still
contributes a large logarithm. For a complete calculation this integral has to be
folded with a pdf.
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2.6 DGLAP Equations

A higher value of Q2 resolves structures at small distances, thus each parton does
not contain only one single parton of a dedicated flavour but a Q2 and x dependent
number of all flavours. Summing up all contributions from one single parton will
give one net parton of the specific flavour, e. g. probing an up quark there is
the possibility of finding gluons or other quark flavours but there remains one
net up quark. Furthermore a hadron does not consist only of valence quarks but
additionally of sea quarks and gluons due to vacuum fluctuations. The pdfs can be
considered giving the probability of finding a particular parton with momentum
fraction x when probing a hadron with Q2. Replacing the factorization scale µF

in a pdf by an arbitrary scale µ, e. g. the virtuality Q2, reveals a dependence of
the pdfs on x and µ.

The interpretation above suggests to examine a parton radiating many glu-
ons, thereby changing its momentum fraction. Calculating the influence of one
additional gluon emission from a gluon for a process already including n emissions
gives:

dσn+1 =
dp2

T

p2
T

dx
αs

2π
Pqq(x) × dnσ . (2.9)

In equation 2.9 a coefficient function depending on the momentum fraction x
appears, the so called splitting kernel Pqq(x). This function describes the splitting
q → qg. It will be discussed in more detail below. The computation of all possible
radiations implies the need to order the emissions. Assuming that each emission
has a higher pT than the preceding when approaching the hard process means a
strong ordering in pT :

Q2 ≫ p2
Tn ≫ . . . ≫ p2

T2 ≫ p2
T1 ≫ Q2

0 , (2.10)

where Q2 is the virtuality of the hard process and Q2
0 a lower cutoff. Applying

the ordering of equation 2.10 to equation 2.9 gives:

σ ∝
∫ Q2

Q0

dp2
Tn

p2
Tn

αs(p
2
Tn)

2π
. . .

∫ p2

T3

Q0

dp2
T2

p2
T2

αs(p
2
T2)

2π

∫ p2

T2

Q0

dp2
T1

p2
T1

αs(p
2
T1)

2π
. (2.11)

As each integral over dp2
T /p2

T causes a numerically large logarithm, the total cross
section for n emissions is enhanced proportional to

σ ∝ (αs)
n lnn

(

Q2

Q2
0

)

. (2.12)

These large logarithms are referred to as leading logarithms (LL). In case p2
Tn ≪

p2
Tn−1 there is no denominator of order p2

Tn, thus there is one power less in the
logarithms for the same power in αs, known as next-to-leading logarithms (NLL).

Not only gluon emission by quarks and gluons but also gluon splittings in
qq̄ pairs affect the pdfs. Analyzing the properties of pdfs leads to the powerful
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DGLAP (Dokshitzer, Gribov, Lipatov, Altarelli, Parisi) equations [34, 35, 36]:

µ2 ∂qi

∂µ2

(

x, µ2
)

=

∫ 1

x

dz

z

αs

2π

[

Pqiqj
(z, αs)qj

(x

z
, µ2

)

+ Pqiq̄j
(z, αs)q̄j

(x

z
, µ2

)

+ Pqig(z, αs)g
(x

z
, µ2

)

]

µ2 ∂q̄i

∂µ2

(

x, µ2
)

=

∫ 1

x

dz

z

αs

2π

[

Pq̄iqj
(z, αs)qj

(x

z
, µ2

)

+ Pq̄iq̄j
(z, αs)q̄j

(x

z
, µ2

)

+ Pq̄ig(z, αs)g
(x

z
, µ2

)

]

µ2 ∂g

∂µ2

(

x, µ2
)

=

∫ 1

x

dz

z

αs

2π

[

Pgg(z, αs)g
(x

z
, µ2

)

+
∑

f=q,q̄

Pgf(z, αs)f
(x

z
, µ2

)

]

.

(2.13)
The DGLAP equations describe the evolution of a parton over the scale µ, sum-
ming up the leading logarithmic contributions to all orders in αs. x again denotes
the fraction of the hadron’s momentum.

The Altarelli-Parisi splitting kernels Pij(z, αs) are associated with branchings
j → i+X where parton i gets the momentum fraction z of j’s momentum. These
splitting kernels can be expanded in a power series in αs:

P (z, αs) = P (0)(z, αs) +
αs

2π
P (1)(z, αs) +

(αs

2π

)2

P (2)(z, αs) + . . . . (2.14)

By including higher orders of the splitting kernel, one accounts for higher order
effects in αs, i. e. fluctuations within fluctuations. In [33] the splitting kernels are
given explicitly to NLO. The flavour and spin dependences are discussed in detail
in [29].

As discussed above, collinear emissions give rise to logarithmic enhancements
of the form αs ln(Q2/Q2

0) while soft emissions lead to enhancements in αs ln(1/x).
Furthermore the contributing regions can overlap causing double logarithmic
contributions of the form αs ln(Q2/Q2

0) ln(1/x). The leading contributions of
soft radiation are associated with a strong ordering similar to equation 2.10:
x ≪ xn ≪ . . . ≪ x1 ≪ x0. It can be shown that the DGLAP equations sum cor-
rectly the leading contributions from the αs ln(Q2/Q2

0) and αs ln(Q2/Q2
0) ln(1/x)

terms. The αs ln(1/x) terms are governed by the BFKL equation [37, 38]. Both
equations can be modified to include NLL contributions that are suppressed by
a factor αs.

Thus it is possible to factorise long and short distance physics when calculating
cross sections for hadron–hadron collisions. The pdf fa/h(x, µ2

F ) provides the
probability for finding a parton a with momentum fraction x inside hadron h
when using the factorization scale µF . Therefore it is possible to calculate the
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cross section for partons c and d in the final state in hadron collisions:

dσ (h1h2 → cd) =

∫ 1

0

dx1dx2

∑

a,b

fa/h1
(x1, µ

2
F )fb/h2

(x2, µ
2
F )

× dσ̂(ab→cd)(Q2, µ2
F ) . (2.15)

Here the hard process is separated from effects at time scales t ≫ 1/µF , which
are moved into the pdf. It should be noted that factorization is not proven but
only an assumption.

2.7 Fragmentation

Equation 2.15 serves for calculating the partonic final state in hadron collisions.
While it is sufficient for computing lepton production, it has to be extended
for quark and gluon production. Confinement, introduced in section 2.3, is the
reason that free colour charges cannot be observed at distances greater 1/ΛQCD.
Hence colour charged particles produced in a collision described by equation 2.15
have to be converted into hadrons. This procedure is called hadronization or
fragmentation. The final partons entering this non-perturbative hadronization
process are described by fragmentation functions Dh. In analogy to the DGLAP
equations, treating the evolution of partons going into the hard process, similar
equations can be formulated for describing the evolution of a parton from the
hard interaction to a final state directly before hadronization takes place. These
equations account for radiative corrections in the final state. Again factorization
holds for this process, giving the following µF dependent equations:

µ2
∂Dh

qi

∂µ2

(

x, µ2
)

=

∫ 1

x

dz

z

αs

2π

[

Pqjqi
(z, αs)D

h
qj

(x

z
, µ2

)

+ Pq̄jqi
(z, αs)D

h
q̄j

(x

z
, µ2

)

+ Pgqi
(z, αs)D

h
g

(x

z
, µ2

)

]

µ2
∂Dh

q̄i

∂µ2

(

x, µ2
)

=

∫ 1

x

dz

z

αs

2π

[

Pqj q̄i
(z, αs)D

h
qj

(x

z
, µ2

)

+ Pq̄j q̄i
(z, αs)D

h
q̄j

(x

z
, µ2

)

+ Pgq̄i
(z, αs)D

h
g

(x

z
, µ2

)

]

µ2
∂Dh

g

∂µ2

(

x, µ2
)

=

∫ 1

x

dz

z

αs

2π

[

Pgg(z, αs)D
h
g

(x

z
, µ2

)

+
∑

f=q,q̄

Pfg(z, αs)D
h
f

(x

z
, µ2

)

]

.

(2.16)
The fragmentation functions represent the probability of finding a hadron h with
momentum fraction x in the final state. It is worth noting that the indices for
the splitting kernels are inverted compared to the DGLAP equations, equation
2.13. While the original DGLAP equations treat a spacelike evolution of partons,
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equations 2.16 are timelike. The splitting kernels are identical for both kind of
equations at leading order but differ beyond.

The preceding sections present the means for treating a hadron–hadron colli-
sion correctly from initial to final hadrons. The theorem of factorization allows
the separation of a process in perturbative and non-perturbative steps. First
incoming hadrons described non-perturbatively by pdfs can be evolved perturba-
tively using the DGLAP equations. Then the hard interaction of two partons can
be calculated by the means of perturbative QCD, i. e. by the Feynman rules. Af-
terwards the usage of fragmentation functions provides a way to evolve the final
partons perturbatively before the non-perturbative hadronization process starts.
Thereby it is possible to draw a complete picture of hadron–hadron processes.
This will be done in chapter 4.

Finally it is necessary to handle the remnants of the incoming hadrons, i. e. the
partons inside the hadron that do not participate in the hard interaction. These
beam remnants cannot be treated properly by analytical means of QCD, though
they play an important role in hadron–hadron collisions. Sometimes more than
two partons interact and single partons can interact more than once. Moreover
the excited remnants carry colour charge forcing them to interact with the partons
arising from the hard process to produce colour neutral hadrons in the final state.
In section 4.4 a possible treatment of the beam remnants will be discussed.
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Proton–Proton Interactions

3.1 Proton Collisions

A proton is a colour neutral hadron, consisting of three valence quarks, namely
two up quarks and one down quark. Thus it has an electric charge of +1 in units
of the elementary charge. Due to the uncertainty principle additional quark–anti-
quark pairs can be observed in the proton, called sea quarks. The proton can take
part in elastic interactions in which it acts as one single particle, or in inelastic
ones, wherein it is “broken up” and single partons are scattered. For the inelastic
collisions at a scale Q2 the interacting parton has to be evolved according to the
DGLAP equations 2.13. Therefore not only quarks of different flavours but also
gluons can enter the hard process. In a figurative sense each parton is surrounded
by a cloud of other partons that can be resolved at a specific scale. About 50%
of the proton momentum is carried by quarks and 50% by gluons. [33]

For the proton parton density functions are determined giving the probability
of finding a special kind of parton at a certain scale Q2 with a momentum fraction
x inside. The measurements of different experiments serve as input for global fits
determining the pdfs for the proton. The fits are performed utilizing matrix
elements of a particular order in perturbation theory. Respecting the rules of
factorization, pdfs obtained at a specific order in perturbation theory can be used
only for predictions at this order, thus NLO pdfs have to be combined with NLO
matrix elements for meaningful predictions. Several groups provide independent
fits. In figure 3.1 pdfs obtained from a NLO fit are depicted, showing a significant
decrease of the valence quark densities and an increase of gluon and sea quark
densities at small x values. In chapter 5 pdfs from Alekhin [39], the CTEQ [40, 41]
and the MRST collaboration [42] are compared.

At colliders not single hadrons but whole bunches collide. If two hadron
bunches hit each other, more than one hadron–hadron interaction can take place.
For LHC in the majority of all collisions only one hard scattering is expected. Nev-
ertheless, additional soft proton–proton scatterings can cause additional hadrons
and thus jets in the detector contaminating the measurement. These interactions
are referred to as pileup. During the low luminosity phase at LHC approximately
five pileup events will overlay each hard collision [44].

19
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Figure 3.1: Gluon, sea and valence quark distributions obtained from a NLO fit
to ZEUS data. [43]

Finally the Fermi motion of the partons has to be respected, providing the
partons inside the hadron with a transverse momentum. This motion can equip
the interacting partons with a small transverse momentum that is passed to the
outgoing particles.

3.2 Infrared Safe Observables

An observable is infrared safe if a quark or gluon is treated the same by the
theory as a quark or gluon accompanied by an arbitrary number of soft gluons
and collinear gluons and qq̄ pairs, i. e. |q〉 = |q + n1gs + n2g‖ + n3qq̄‖〉 must
give the same contribution. Experimentally the result of a measurement must
be independent of any changes in the detector granularity or resolution. This
implies that any infrared safe observable must be a linear combination of parton
four momenta. An observable from an n-parton final state can be written in the
form:

O =
∑

n

1

n

∫

dΦn
∑

∣

∣M(n)(pi)
∣

∣

2
Sn(pi) (3.1)

with

{

Sn = 1 for O = σ

Sn = δ(X − χn(pi)) for O = dσ
dX

.
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In the case of infrared safety an observable has the property

χn+1(p1, . . . , (1 − λ)pn, λpn) = χn(p1, . . . , pn) . (3.2)

In sections 2.5, 2.6 and 2.7 the picture of soft and collinear partons accompanying
a quark or gluon probed at Q2 was developed. According to equation 3.2 infrared
safety now implies that the contribution to a physical observable of a single parton
and a parton surrounded by an arbitrary number of soft and collinear partons
should be the same. [33]

3.3 Kinematic Variables

In this section some standard variables used at hadron colliders are briefly pre-
sented.

The incoming beams are defined to be along the z-axis, leading to the defini-
tion of the transverse momentum

pT =
√

p2
x + p2

y . (3.3)

The polar angle is denoted by θ while the azimuthal angle is denoted by φ. The
momentum of the colliding partons is not balanced in z-direction and θ is not
invariant under boosts. For detectors at hadron colliders the so-called pseudo-

rapidity η is introduced, defined by

η = − ln tan
θ

2
, (3.4)

which is a directly measurable quantity. A comparison with the rapidity y, defined
by

y =
1

2
ln

(

E + pz

E − pz

)

, (3.5)

shows that pseudo-rapidity and rapidity are identical for massless particles. It
is possible to introduce a distance measurement between two particles i and j
according to

∆Rij =
√

(yi − yj)2 + (φi − φj)2 =
√

(ηi − ηj)2 + (φi − φj)2 . (3.6)

∆R is independent of boosts along the z-axis and can be directly extracted from
measured quantities. This comes from the fact that rapidities can be added
linearly. A comprehensive overview of these variables and their properties can be
found in [45].

3.4 Jet Algorithms

One single parton from a hard process can lead to a huge number of particles in
the final state due to radiation, fragmentation and interactions with the detec-
tor. A good entity for the analysis of hadronic final states is a jet, which is a
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combination of final particles or detector output to one single parton-like object
by combining the input’s four momenta. The concept of jet algorithms is driven
by the assumption that particles originating from one initial parton are close in
space. While a jet algorithm tries to project many particles onto one single par-
ton, it is important to mention that a jet is not the same as a parton though it
is sometimes treated that way.

A jet is an object that can be built of partons, hadrons or calorimeter output
from detectors. At each step a jet is a different kind of object and an one-to-one
mapping is not fully valid. Nevertheless a jet is constructed in a way that it shows
as little sensitivity to QCD effects as possible. A jet is a physical observable and
thus should fulfil the requirement of infrared safety according to the definition
given in section 3.2, i. e. it should be insensitive to collinear splittings and soft
radiation.

3.4.1 Recombination Schemes

For jet algorithms the merging of two four vectors into a single one induces an
arbitrariness. The different methods have different advantages and deficiencies,
but basically in each procedure a piece of the information is lost, leaving the
choice of which information to preserve in full. Throughout this thesis the E-

scheme is used in which the four momenta are added linearly. This results in an
invariant mass of the final object that may have no physical interpretation, e. g.
if the jet is associated with a light quark. However, this procedure does not affect
the direction of the jet. Alternative recombination schemes are discussed in [46].

3.4.2 Sequential Clustering

The idea of sequential clustering is the inversion of the branching process by a
successive combination of particles, starting by those with the smallest relative
scale. The particular algorithm used here is the inclusive kT algorithm [47],
defined by the following procedure:

1. For each pair of particles i and j calculate

dij = min(k2
T i, k

2
Tj)

∆R2
ij

R2
, (3.7)

where kT i denotes the transverse momentum of i with respect to the beam
axis and R is a parameter of the algorithm. In addition for each particle
its beam distance dib = k2

T i is calculated.

2. If dij is the minimum of all values combine particles i and j to a single
particle. If dib is the minimum call i a jet and remove it from the list.

3. Iterate until no particles are left.
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Figure 3.2: Schematic representation of the sequential clustering algorithm. The
asterisk marks the particles (arrows) processed in the particular step. Either two
particles are merged or a stable jet is defined. The latter ones are represented by
filled arrows. [48]

R is a distance-like parameter giving the minimum separation in y and φ of any
jets. This procedure is depicted in figure 3.2. A kT algorithm with parameter
R is denoted by KT and ten times the value of R, e. g. KT4 for R = 0.4. By
construction sequential clustering algorithms are infrared safe.

3.4.3 SISCone

The second big category of jet algorithms are cone jets, which are driven by the
idea of a directed, centered energy flow. All particles or detector cells inside a
cone of a given value ∆R are combined to a jet candidate, and the combined
four momentum is calculated. The direction of this four vector is used as axis
and a new cone is drawn around it. This procedure is iterated until the axis is
considered stable.

Most cone jet definitions suffer from infrared unsafety [49]. Here the Seedless

Infrared Safe Cone jet algorithm (SISCone) is used which cures these problems.
Each distinct particle contents within a stable cone is considered a jet candidate.
As particles may be contained in more than one jet candidate, a split-merge

procedure like proposed in [48] is used. Analogously to the kT algorithm, a
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SISCone jet definition with ∆R = 0.4 is denoted with SC4. A full definition of
the SISCone algorithm and a detailed construction description are given in [49].



Chapter 4

Monte Carlo Event Generators

Monte Carlo event generators are computer programs calculating physics pro-
cesses numerically. According to the procedure presented in section 2.7, they
combine perturbative and non-perturbative physics. Hard matrix elements (ME)
are computed to a particular order in perturbation theory while the parton evo-
lution governed by the DGLAP equations is done via the parton shower (PS)
approach. Experimentally determined pdfs are taken as input for the parton
evolution. Non-perturbative models are applied for the description of multiple

interactions (MI) and the treatment of the beam remnants, whereas the evolution
of the partons from additional interactions is treated again by the perturbative
parton shower. A hadronization model converts the produced partons in colour
neutral hadrons. In a figurative sense the whole process can be written as

(ME ⊕ MI) ⊗ PS ⊗ Hadronization .

Monte Carlo generators compute single collisions (events), by this providing the
opportunity not only to calculate inclusive quantities like cross sections, but also
to check different observables on an event-by-event basis.

After a very brief introduction in Monte Carlo integration (4.1) a detailed
description of the parton shower approach is given (4.2). Afterwards different
possibilities of the combination of hard matrix elements and the parton shower are
presented (4.3) and the non-perturbative components are discussed (4.4 and 4.5).
Finally the Monte Carlo generators used for this work are introduced (4.6 to 4.9).

4.1 Monte Carlo Integration

Monte Carlo integration is a numerical method of integration. The basic idea of
integrating a function like

I =

∫ x2

x1

f(x)dx = (x2 − x1)〈f(x)〉 (4.1)

can be generalised to

I ≈ IN = (x2 − x1)
1

N

N
∑

i=1

f(xi) . (4.2)

25
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The accuracy of equation 4.2 is governed by the central limit theorem:

I ≈ IN ±
√

VN/N , (4.3)

where VN denotes the variance of IN . Thus the error on an integral solved via
the Monte Carlo method is proportional to 1/

√
N . There are plenty of other

numerical integration methods available that converge much faster, but extending
the formalism to more dimensions shows that the error for the Monte Carlo
method remains to be 1/

√
N while the convergence for all other methods gets

worse. Monte Carlo integration offers a good possibility to calculate observables,
e. g. cross sections like in equation 2.15, numerically. A detailed discussion of
Monte Carlo integration and its general implementation in Monte Carlo event
generators can be found in [50, 51]. The event generators described in this chapter
are based on this integration method.

4.2 Parton Showers

For the following sections the splitting kernels introduced in equation 2.14 have
to be modified to enable a numerical treatment. A more careful investigation in
section 2.6 would have shown that for writing down the splitting kernels explicitly
the so-called plus-prescription is needed. It serves for handling the singularities
correctly and ensures flavour and energy conservation in analytical calculations.
In Monte Carlo generators these quantities can be tracked explicitly. The basic
structure of the equations is not affected by this change, but for any calculations
it is necessary to ensure the use of the correct splitting kernels depending on the
assumptions made for the derivation of the equations. More information on the
plus-prescription and its usage can be found in [29].

The following discussion of parton showers is based on [29, 33, 50]. A full
description of all aspects summarised in this section can be found therein.

4.2.1 Parton Evolution

The DGLAP equations 2.13 account for branchings of partons in high energetic
processes. In a Monte Carlo program these branchings are simulated explicitly
by the parton shower approach. As a high energetic particle resolves smaller
distances, thus seeing the substructure of hadrons as well as of partons, it is
necessary to evaluate the parton entering the hard process at the correct scale.
As equations 2.13 and 2.16 are not suited for a numerical approach, they have to
be rewritten using the modified splitting kernels mentioned above. An abstract
evolution scale t is introduced for the description of the evolution. The reason for
this will become apparent in the next sections. The DGLAP equations modified
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Figure 4.1: Timelike splitting of a parton a in two partons c and c′.

for a numerical treatment are:

t
∂

∂t
fa/h(x, t) =

∫ 1−ǫ′a(t)

x

dz

z

αs(t, z)

2π
Pab(z)fb/h

(

x

z
, t

)

− fa/h(x, t)
∑

a→cc′

∫ 1−ǫc′(t)

ǫc(t)

dz
αs(t, z)

2π
Pca(z)

(4.4)

t
∂

∂t
Dh

a(x, t) =

∫ 1−ǫ′
b
(t)

x

dz

z

αs(t, z)

2π
Pba(z)Dh

b

(

x

z
, t

)

− Dh
a(x, t)

∑

a→cc′

∫ 1−ǫc′(t)

ǫc(t)

dz
αs(t, z)

2π
Pca(z)

. (4.5)

Equation 4.4 is spacelike and gives the x and scale t dependent number of partons
of flavour a found for an incoming parton of flavour h. Every parton b that
branches in a process b → aa′ increases the number of available partons of flavour
a while each branching a → cc′ decreases it. The two contributing terms can
thus be viewed as source and sink for parton flavour a. For the timelike equation
4.5 a similar interpretation exists, leading to the final hadrons of type h resulting
from partons of flavour a. Figure 4.1 illustrates a timelike branching of a parton
a into two partons c and c′, that gain a momentum fraction z and 1 − z of the
initial momentum of a, respectively.

The cut-off parameters ǫi depend on the choice of the evolution variable t and
the kinematics of the evolution. z denotes an energy fraction for which different
choices of its exact definition and the particular evolution frame are available. For
the evolution scale t a lower limit exists at which perturbative QCD is invalidated.
So it is necessary to introduce a cut-off t0 for every parton flavour to stop the
evolution well above this limit. ǫ serves as a resolution criterion, shielding too
soft radiation. Thus in equations 4.4 and 4.5 the unresolvable real emissions are
isolated below (above) the z cut-off. By adding these contributions to the virtual
diagrams both the real and the virtual part become finite (compare section 2.4).
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4.2.2 Sudakov Form Factors

The differential branching probability for a → bc is given by

dPa =
∑

b,c

dt

t
dz

αs

2π
Pa→bc(z) (4.6)

in terms of t and momentum fraction z. Using the definition

Ia→bc(t) =

∫ 1−ǫc(t)

ǫb(t)

dz
αs

2π
Pa→bc(z) (4.7)

one can write the probability for an emission in the infinitesimal interval dt
as

∑

b,c Ia→bc(t)dt/t. Hence the probability for no emission is given by 1 −
∑

b,c Ia→bc(t)dt/t. A parton evolving from a scale t0 can branch at a scale t > t0
only if it has not branched before. So the non-emission probability for all in-
finitesimal time intervals between t0 and t has to be taken into account, leading
to a no-branching probability between t0 and t:

∆a(t, t0) = exp

(

−
∫ t

t0

dt′

t′

∑

b,c

Ia→bc(t
′)

)

. (4.8)

The probability for branching at the scale t is consequently given by the product
of the probability that no branching occurred before t and that a branching takes
place at t:

dPa

dt
= ∆a(t, t0) ×

(

1

t

∑

b,c

Ia→bc(t)

)

. (4.9)

The factor ∆a(t, t0) is called Sudakov form factor. It ensures that no emission
happens before t and thus serves for conservation of the total probability. The
second term is the probability for a branching at the scale t.

4.2.3 Timelike Parton Shower

Using the Sudakov form factor defined in equation 4.8, it is possible to rewrite
the timelike DGLAP equation (equation 4.5):

t
∂

∂t

(

Dh
a(x, t)

∆a(t, ta0)

)

=

∫ 1−ǫc(t)

x

dz

z

αs(z, t)

2π
Pba(z)

1

∆a(t, ta0)
Dh

b

(x

z
, t

)

. (4.10)

Solving equation 4.10 yields:

Dh
a(x, t) = ∆a(t, t

0
a)D

h
a(x, t0a)

+

∫ t

t0a

dt1
t1

∫ 1−ǫc(t1)

x

dz1

z1
∆a(t, t1)

αs(t1, z1)

2π
Pba(z1)∆b(t1, t

0
b)D

h
b

(

x

z1
, t0b

)

+ . . . .

(4.11)
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Equation 4.10 is the master equation for timelike parton showers used in Monte
Carlo generators. This shower type is used for final state radiation describing
the emissions of timelike partons, i. e. with t > 0, coming from the hard matrix
element. The first term represents a parton of flavour a evolving from the starting
scale t down to the cut-off t0a without emitting any resolvable radiation. This
behaviour is governed by the Sudakov form factor ∆a(t, t

0
a). Then parton a enters

the non-perturbative hadronization process. The second term describes a parton
of flavour a evolving down to scale t1 without any resolvable emission. At t1
a process a → bc takes place where a parton of type b receiving momentum
fraction z1 is produced. This parton then evolves down to its cut-off t0b without
any resolvable emission. The following terms all include one splitting more than
their predecessor. The partons arising from a splitting are all evolved according
to equation 4.11 leading to a tree-like structure of successive branchings. After all
possible branchings have been simulated, the partons are put on their mass-shell
and enter the hadronization process.

This evolution is implemented in Monte Carlo programs as follows: First the
Sudakov form factor is evaluated to select a branching scale for a parton evolving
from t1 to t2 without resolvable emission by solving

∆a(t2, t1) = R , (4.12)

where R denotes a random number in [0, 1]. If a scale below t0a is selected,
the parton will be put on its mass-shell. The selection of the flavour in which
the initial parton branches is done by a comparison of the different branching
probabilities given in equation 4.7. If a branching a → bc occurs, the momentum
fraction z = z2/z1 of b has to be determined in a second step, solving

∫ z2/z1

x

dz
αs

2π
Pba(z) = R′

∫ 1−ǫb(t2)

x

dz
αs

2π
Pba(z) , (4.13)

where R′ denotes another random number in [0, 1]. Applying this procedure
iteratively determines all branchings in the final state radiation process.

An important issue is the choice of the argument of the strong coupling. Using
the transverse momentum p2

T ≈ z(1 − z)Q2 as argument of αs at leading order,
equation 2.7, supplies an additional term of order ln(1− z). This term is present
in the second order splitting kernel, thus it is possible to resum not only the
leading order but even some of the next-to-leading order contributions via the
leading order parton shower. As a consequence Monte Carlo generators give a
much more sophisticated description than an analytical calculation on the same
level.

With the choice of pT as argument of αs the Sudakov form factor becomes:

∆a(t, t
0
a) ∝

(

αs(t)

αs(t0a)

)c ln(t/Λ2

QCD
)

, (4.14)

where c is a constant. This term goes to zero faster than any inverse power in t.
From this can be seen that it becomes more and more unlikely to evolve down
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in t without any resolvable emission as the Sudakov Form factor favours the soft
phase space region. The parton shower is indeed built to account especially for
these soft and collinear emissions, thus it may give unsatisfying results for hard
radiation. This will be discussed further in section 4.3.

4.2.4 Spacelike Parton Shower

For a parton originating from a hadron the evolution process is different. Starting
with an almost on-shell parton the scale has to be evolved to the one of the hard
process. As four-momentum conservation is respected at every branching a → bc,
at least one of the partons b and c must have a spacelike virtuality t < 0. For
this initial state radiation the evolution of the parton entering the hard process
is described spacelike, meaning that the evolution stops at t = −thardprocess. The
other parton is either put on its mass shell or further evolved by the timelike
algorithm, i. e. it has t > 0.

From equation 4.4 an equation similar to 4.11 can be deduced for spacelike
partons. Unfortunately the method described in section 4.2.3 is highly inefficient
as it is not possible to steer the evolution by simple means to get the correct
momentum fraction needed for the hard process. This problem is solved by
introducing a backward evolution that starts at the hard process scale and than
evolves −t back to lower values. By modifying the Sudakov form factor from
equation 4.8 to

Πa(t, t
s
a, x) = ∆a(t, t

s
a)

fa/h(x, tsa)

fa/h(x, t)
, (4.15)

it is possible to write a modified equivalent of equation 4.11 for the spacelike case.
Manipulating the solution from 4.4 it is possible to rewrite the obtained series
with the modified Sudakov form factor [33], yielding:

1 = Πa(t, t
s
a, x)

+

∫ t

tsa

dt1
t1

∫ 1−ǫs
c(t1)

x

dz1

z1

Πa(t, t1, x)
αs(t1, z1)

2π

× Pab(z1)
fb/h(x/z1, t1)

fa/h(x, t1)
Πb

(

t1, t
s
b,

x

z1

)

+ . . . .

(4.16)

The spacelike Sudakov form factor from equation 4.15 can be interpreted as the
probability that a parton a present in hadron h evolves back from scale t to scale tsa
without any resolvable emission. The DGLAP evolution suppresses partons with
high momentum fractions x, which is expressed by fa/h(x, t) < fa/h(x, tsa). So the
pdf ratio reflects that a parton with high x is more unlikely to have undergone a
preceding branching.

Equation 4.16 is the normalised sum of all possibilities to find a parton of
flavour a after the evolution. In addition to the modified Sudakov factors the
splitting kernels are accompanied by pdfs guiding the evolution back to the correct
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parton content in the hadron. The probability for parton a to originate from a
parton of flavour b depends on the incoming hadron, e. g. for a gluon coming
from a proton it is much more likely that its parent is a u- than a d-quark. With
this knowledge an interpretation of equation 4.15 analogous to the timelike case,
equation 4.11, is possible. A parton of flavour a entering the hard process at
a scale t is evolved backwards to the spacelike cut-off scale ts. The first term
describes an evolution of a back to h without any resolvable branchings. The
second term represents the evolution of a back to a scale t1 where it was produced
via the branching b → aa′. Parton b carrying the momentum fraction x/z1 > x
originates from h at a scale tsb.

In principle equation 4.4 can be solved to gain the pdf fa/h. In real life the
pdfs are taken from fitted experimental data and evaluated at the desired x and
t values using the DGLAP equations. Then these pdfs are used to steer the
backward evolution taking into account that the hadron composition depends on
the scale t, reflecting that at higher scales smaller distances can be resolved.

The implementation of initial state radiation in Monte Carlo generators is
done analogously to the final state case. The timelike Sudakov form factor is
replaced by the spacelike one and the selection of the momentum fraction is done
proportional to αs(t, z)Pba(z)fb/h(x/z, t), respecting the influence of the pdfs of
the initial hadron.

4.2.5 Coherent Parton Branching

An external line of a Feynman diagram with momentum p and mass m emitting
a gluon q causes a propagator of the form

1

(p ± q)2 − m2
=

±1

2ωE(1 − cos θpq)
, (4.17)

where E denotes the energy of the emitting particle, ω the energy of the gluon
and θpq the angle between both particles. Such a propagator can give rise to soft
and collinear enhancements. This section focuses on the treatment of soft gluons.
For highly virtual partons (p2 − m2) does not go to zero as ω approaches zero.
So off-shell particles do not cause soft enhancements in the cross section.

For a multi-parton state it is possible to emit a soft gluon but its parent
cannot be identified. If the gluon’s wavelength is too large to resolve the internal
structure of the multi-parton state, the contributions of all possible emitters have
to be added. Considering an n-particle state emitting a soft gluon with four-
momentum q the cross section for this process has the property

dσn+1 ∝
∑

i6=j

(

ω2 pi · pj

(pi · q)(pj · q)

)

×
(

dω

ω

)

× dσn . (4.18)

This formula describes the radiation of a dipole, so each pair of partons can be
regarded as an antenna emitting radiation. This is the colour dipole model where
the emissions give the typical bremsstrahlung spectrum proportional to dω/ω.
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l

k

j

i

Figure 4.2: Three partons are present in the final state. For emissions associated
with a dipole ik or jk a gluon cannot resolve the internal structure of i and j if
the emission angle is greater than θij . i and j can be combined to a quasi-parton
l.

It is possible to decompose the dipole description in a way that the emission
of a gluon q can be associated with either parton i or j. The emissions from
parton i can be written in the form:

(

ω2 pi · pj

(pi · q)(pj · q)

)(i)

∝ 1

1 − cos θiq
. (4.19)

The angle allowed for emissions is confined to:

mi

Ei

< θiq < θij . (4.20)

Equations 4.19 and 4.20 are the basis of angular ordered parton emissions. Parton
i can emit a gluon q only at an angle θiq lower than the angle between i and its
colour partner j. At θij there is not a rigorous step function applied, but angles
smaller than this value are highly preferred.

The particle mass prevents emissions in the particle’s direction leading to a
dead cone around heavy particles. Again this is not a step function but the
emission rate decreases rapidly at θiq ∼ m/E.

Next the radiation pattern of three partons i, j and k forming a colour singlet
will be briefly discussed. Making the assumption that i and j are close in angle
their momenta can be replaced by their sum pl = pi +pj for interaction with k, so
the emission of a parton q can be decomposed in a convenient way. There are two
terms representing the contributions of a dipole consisting of i and j proportional
to their colour charge like before. For angles above θij the contributions of i and
j sum coherently, for a soft gluon it is not possible to resolve their internal
structure. As these two partons are close in angle, they can be described by a
single quasi-parton l building a dipole with k, compare figure 4.2. This procedure
can easily be extended to an arbitrary number of gluons, building the fundament
for angular ordered parton cascades, which handle wide angle emissions first. A
full treatment of the three-parton case can be found in [29], the n-parton case is
discussed in detail in [33].
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With these ingredients it is now possible to give more precise meaning to the
evolution variable t. The emission of an additional gluon in an n-parton state
from parton a can be described by the formula:

dσn+1 = dσn dt

t
dz

αs

2π
Paa . (4.21)

For the correct description of coherent branchings imposing angular ordering the
variable

ζij =
pi · pj

EiEj
= 1 − cos θij (4.22)

is introduced. The last relation is exact only for massless particles i and j. It
can be shown that the soft emission is described correctly by the Altarelli-Parisi
splitting kernels if ζ is used as evolution scale [33]. Thus a successive parton
shower accounts correctly for the soft emissions if it is ordered in angle, i. e. in ζ .
This analysis was carried out for timelike emissions, but it can be repeated for
the spacelike case in an analogous way.

Up to now the argument for the cut-offs t0 and ts was based on the identifi-
cation of t with the virtual mass of the partons Q2. Equation 2.10 describes the
strict ordering in p2

T necessary for the correct summation of the leading logarith-
mic enhancements via the DGLAP equations. It turns out that Q2, p2

T and ζ are
well suited as evolution variables, leading to a different ordering of the parton
cascade. In [52] results from multi-jet events were presented claiming evidence
for the observation of colour coherence effects as only an angular ordered shower
was capable to describe the measured data correctly.

Figure 4.3 shows a simplified representation of the phase space for parton
emissions. The variables chosen are the transverse momentum pT of an emission
and the rapidity relative to the emitting parton while the azimuth is not consid-
ered. The three ordering variables used explore the phase space from different
starting points thereby preferring different emission types. The evolution vari-
ables used are p2

T , Q2 ∼ p2
T /z(1 − z) and E2θ2 ∼ pT /z2(1 − z)2. An evolution in

a particular variable will prefer a high value for itself in the first emission. For
example, a p2

T ordered shower (shown in figure 4.3 on the left) starts from the
highest pT , favouring a high pT in the first emission. All successive emissions will
have a lower pT while for the other shower types the first one is not obliged to
have the highest pT . The same arguments hold for the other evolution variables
as well. As the soft poles are not isolated by any limit in angle, angular ordered
showers need an additional cut-off.

Usually ordering in virtuality is less restrictive than ordering in angle or trans-
verse momentum. Which of the latter choices is more restrictive depends on the
phase space region. The results and goodness of the parton shower depend on
the phase space region of interest. It should be mentioned that angular ordering
reduces the available phase space in comparison to the other two variables. This
so-called dead zone will be explained in section 4.6, but it should be emphasised
that it is not connected to the dead cone caused by heavy quark masses.

All three choices, Q2, p2
T and angle, are exploited by the Monte Carlo programs

used in this thesis, compare sections 4.6 to 4.9. For completeness it should be
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Figure 4.3: A simplified phase space picture for transverse momentum pT and
rapidity y is shown. The picture illustrates the direction in which the phase
space is filled for the different evolution variables p2

T (on the left in red), Q2 (in
the middle in blue) and angle∼ E2θ2 (on the right in green). [53]

mentioned that implementations of the full colour dipole model in Monte Carlo
event generators exist [54]. For these generators a separation in initial and final
state radiation is not necessary. Currently no generator using the colour dipole
approach is fully ready for hadron–hadron events.

4.3 Matrix Element Matching

In section 2.4 the issue of real higher order corrections to a given process was
raised, leading to multi-parton final states. Different approaches exist for the
description of these parton emissions. The first one is the usage of all diagrams
up to a certain order. Up to now this is implemented to NLO, so processes
with one additional parton in the final state can be described completely. The
second approach is the calculation of Feynman diagrams containing additional
real partons, neglecting any diagrams containing virtual corrections. As virtual
diagrams are not considered, the divergences from the real diagrams are not
canceled. To fix this problem a minimum relative transverse momentum for the
emitted partons is employed. A difficulty is the problem of combining different
multiplicities to ensure the correct treatment of any observables. The last method
used is the parton shower approach described in section 4.2. By this an arbitrary
multiplicity of final state partons can be generated though the total cross sections
is not affected by the shower, i. e. the cross section remains to be leading order.
The parton shower does not guarantee to agree with higher order matrix elements,
thus observables might differ in the various approaches.

NLO calculations and the calculation of matrix elements with additional emis-
sions are both correct to a given order in αs while they suffer from a limited
number of final state partons. Moreover the latter method reveals a cut-off de-
pendence. On the other hand, the parton shower is not a fully correct description
in αs but cut-off independent and allows for arbitrary parton multiplicities. As
the shower model is built to treat the soft and collinear phase space regions, it
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suffers from shortcomings in the description of hard radiation. Thus it is nec-
essary to correct the parton shower as discussed in section 4.3.1 or to combine
different methods as described in sections 4.3.2 and 4.3.3.

4.3.1 Matching to the Hard Interaction

The parton shower described in section 4.2 is built respecting factorization. Be-
sides the lower cut-off values t0 and ts, there is an upper limit which is related to
the hard matrix element, tmax ∼ thard. The value of the variable t depends on the
ordering of the shower and its implementation. This shower that respects factor-
ization will be called standard shower in this thesis. It is constructed to describe
the collinear and soft limit correctly, but it may fail to describe hard radiation
properly due to the phase space limit. There is the possibility to enlarge the phase
space by multiplying the upper shower limit with a number bigger than one. A
more rigorous approach is to choose the whole centre-of-mass energy available in
the hadron–hadron collision as maximum value for the initial state radiation, i. e.
tmax = s. This choice is referred to as power shower. The final state shower is
not affected by this as the energy available after the hard interaction is limited
by the system’s invariant mass. It should be noted that the power shower option
is not motivated by physical concepts but it is an ad-hoc alternative.

Using the NLO real emission matrix element, it is possible to reweight the
first emission in the shower. The probability of a hard emission on NLO tree
level at a hard scale t with momentum fraction z is dP

(1)
hard(t, z). The emission

probability for the parton shower is given by equation 4.6. For the first emission
this probability is multiplied by a constant c such that c ·dP

(1)
PS(t, z) > dP

(1)
hard(t, z)

for the whole phase space, i. e. for all possible hard interaction scales t and mo-
mentum fractions z. The first emission from the parton shower is kept with a
probability

dP
(1)
hard(t, z)

c · dP
(1)
PS(t, z)

, (4.23)

therefore correcting the distribution of the first emission to tree level. Sometimes
this method is used even for subsequent branchings.

4.3.2 NLO Subtraction Method and Parton Shower Match-

ing

Feynman diagrams have been calculated to NLO for a large number of processes,
so it is possible to use NLO results in Monte Carlo event generators. One problem
arising is the treatment of the divergences of the real and virtual contributions.
For any numerical implementation both parts have to be separately finite. The
subtraction method is one possibility to achieve the cancellation of the poles in
the two terms. To the NLO cross section

σNLO = σLO + σvirtual + σreal (4.24)
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a term containing the singularities from the real emission part is added and
subtracted in a way that both σreal → σreal − σsub and σvirtual → σvirtual +
σsub become finite. This corresponds to a cut-off that isolates soft and collinear
emissions by effectively shifting them to the non-emission part of the cross section.
Using the modified expressions for the real and virtual contributions, the non-
emission cross section σ

(0)
NLO = σLO + σvirtual and the cross section for a real

emission σ
(1)
NLO = σreal are finite separately. These equations offer the possibility

to use numerical methods for NLO event generation with weights σ
(0)
NLO/σtotal

NLO

and σ
(1)
NLO/σtotal

NLO, respectively.

Interfacing this result with a Monte Carlo parton shower to include higher
orders in αs leads to difficulties with diverging event weights. Furthermore the
final result suffers from double counting as the parton shower fills phase space
regions already covered by the matrix element emission. To cure these problems
the subtraction described above is modified in a way that the first emission from
the parton shower is added and subtracted as well, thus leading to

dσ
(0)
NLO =

(

dσ
(0)
LO + dσ

(0)
virtual + dσ

(1)
PS(t1)

)

× ∆(t1, t
0) , (4.25)

σ
(1)
NLO =

(

dσ
(1)
real(t1) − dσ

(1)
PS(t1)

)

× ∆(t1, t
0)

+
(

dσ
(0)
LO + dσ

(0)
virtual + dσ

(1)
PS(t1)

)

× αs

2π
P∆(t, t1)∆(t1, t

0) . (4.26)

The real and virtual matrix element contributions in equations 4.25 and 4.26
are the finite parts constructed above, i. e. the unresolvable emissions on matrix
element level are absorbed in σ

(0)
virtual. The Sudakov form factor in equation 4.25

ensures that no radiation happens, hence leading to the cross section for no
additional parton. Equation 4.26 contains contributions from the corrected real
emission part as well as from the parton shower. The emission is assumed to
happen at a scale t1. The first emission is of order αs, so dσ

(1)
PS contributes only

in the corrected real emission term while its contribution is of order α2
s in the

parton shower term. The phase space regions available for the parton shower are
different for the two contributions to dσ

(1)
NLO as made obvious by the Sudakov form

factors. So the parton shower term added and subtracted is not identical beyond
NLO. This modified subtraction scheme does not suffer from double counting and
reproduces analytical NLO results to a reasonable extent. [55, 56]

In some cases dσ
(1)
PS is bigger than dσ

(1)
real, leading to negative event weights.

With sensible choices for the actual implementation it is possible to keep the
number of these events with negative weights at a reasonable small level. It should
be mentioned that the subtraction term dσ

(1)
PS depends on the implementation of

the shower. Consequently the NLO calculation has to be redone for a change in
the parton shower applied. [55]
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4.3.3 Combining Different Multiplicities

The cross section for a process containing n additional partons qi in the final state
on tree level is given by:

dσ(n) = dΦn
∑

∣

∣M(n)(pi, q1, . . . , qn)
∣

∣

2
. (4.27)

To each matrix element a parton shower can be applied to generate additional
radiation. The goal is to separate the phase space in a way that each emission
happening above a scale µ is calculated on matrix element level while each emis-
sion below µ originates from the parton shower. Then several exclusive cross
sections dσ̃(n) can be merged to a single one. Thereby it must be taken care that
no phase space region is used twice. To avoid double counting each multiplicity
has to be reweighted with the running αs and Sudakov form factors. By adding
Sudakov form factors to equation 4.27 one obtains:

dσ̃(n)(µ) = dΦn
∑

∣

∣M(n)(pi, q1, . . . , qn, µ)
∣

∣

2 × ∆(t, t1, µ) × . . . × ∆(tn, t0, µ) .

(4.28)
The Sudakov form factor for dσ̃(0) is simply ∆(t, t0), thus the probability for no
emission. In equation 4.28 the µ dependence of the Sudakov form factors and
the matrix elements has been made explicit. Thus the complete procedure for
merging matched cross sections of different multiplicities can be formulated:

1. Generate events of a chosen multiplicity n.

2. Construct the emission scales ti of all partons.

3. Reweight the whole event with the running coupling
∏n

i
αs(ti)
αs(t)

.

4. Construct the Sudakov form factors for all emissions and reweight according
to equation 4.28.

5. Add the parton shower to the event and veto every emission with a scale
above µ. For the highest multiplicity N used the veto scale has to be set
to tN to avoid under estimating the number of emissions.

6. Add up all samples dσ̃(n).

The different matching scale for the shower in the highest multiplicity bin is
necessary to account correctly for higher emission multiplicities not generated by
any matrix element. So the shower must be able to populate the phase space
region not covered on tree level.

There are several matching schemes available differing in their actual imple-
mentation. A detailed description and a comparison of their performance can be
found in [57]. For the generators used within the scope of this thesis only the
MLM matching scheme is needed.
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4.3.4 MLM Matching

The MLM matching [57, 58] routine differs from the procedure given in section
4.3.3 as the parton shower is applied to each event without any reweighting with
analytical Sudakov form factors. Instead a veto algorithm is applied to reject all
events with double counting.

For a given multiplicity n partons are generated on matrix element level above
a defined threshold. Then a shower using the whole phase space is added. The
final parton state (before hadronization) is clustered back and compared to the
initial partons from the matrix element. Each high-energetic cluster has to match
exactly one initial parton on tree level. Any event which has remaining clusters
above the chosen threshold is vetoed. It suffers from double counting as the phase
space region covered by the matrix element is again populated by the shower.
Vetoing these events means weighting with a non-emission probability above the
scale µ, which corresponds to a Sudakov form factor.

The MLM matching routine as implemented in the Monte Carlo generator
Alpgen, described in section 4.8, uses a pmin

T and ηmax cut-off for the partons
generated on tree level. Two partons are constrained to be separated by at least
Rmin. N denotes the highest multiplicity used. The algorithm is as follows:

1. Generate events of a chosen multiplicity n. Each additional parton on
matrix element level fulfills pparton

T > pmin
T and |ηparton| < ηmax, while ∆R <

Rmin for each parton pair.

2. Construct the emission scales ti of all partons.

3. Reweight the whole event with the running coupling
∏n

i
αs(ti)
αs(t)

.

4. Add the parton shower to each event.

5. The final parton state is clustered by a cone jet algorithm with cone size
Rcluster. Starting with the highest pT parton each tree level parton is
matched to the cluster closest in ∆R, where ∆R < Rmatch has to be ful-
filled. The event is vetoed if any parton is not matched to a cluster or a
cluster with ET > Emin

T remains. For n = N additional clusters are allowed
to remain as long as they have less energy than all clusters matched to a
parton.

6. Add up all samples dσ̃(n).

The default values used in Alpgen are Emin
T = 1.2 · pmin

T , and Rmin = Rcluster =
Rmatch = 0.7. This procedure can be used with a kT jet algorithm as well. The
samples with n < N are called exclusive samples while the sample with n = N
is called inclusive sample as it contains orders higher than n due to the relaxed
matching criterion.
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4.4 Underlying Event and Multiple Interactions

In proton–proton collisions one parton from each proton participates in the hard
interaction. A beam remnant with a net colour charge remains. Depending
on whether a valence quark, sea quark or gluon is taken from the proton, the
remnant has different properties. In all cases it is colour connected with the hard
scattering, which has to be considered in the hadronization step.

The partons remaining in the beam remnant might interact with partons from
the other beam remnant, leading to more than one parton–parton interaction in
one collision. These multiple interactions lead to additional activity besides the
process of interest. The rate of parton–parton interactions is a function of pT .
For the cross section σ of parton–parton interactions one finds:

σhard(pT min) =

∫ s/4

p2

T min

dσ

dp2
T

dp2
T ∝ dp2

T

p4
T

. (4.29)

So σhard(pT min) → ∞ for pT min → 0. Equation 4.29 is true for free partons, but
an infinitely soft gluon cannot resolve the colour structure of a proton. Com-
parison with data shows that a cut-off pT min ≈ 2 − 3 GeV gives a reasonable
description, by this eliminating the problem of the soft divergences.

In this thesis the contributions of beam remnants and multiple interactions
are summarised as underlying event, i. e. all contributions not associated with
the hard process or the shower evolution. Often another definition of this term is
used also including parton shower contributions but within this work the above
definition will be used exclusively. A detailed discussion of the underlying event
can be found in [50].

4.5 Hadronization

To get a full description of a physics process, the partons originating from (semi-)
hard interactions and the parton shower have to be converted into stable hadrons.
The phase transition of low-virtual quarks to colour neutral hadrons is described
by non-perturbative models. They serve for a proper treatment of the fragmen-
tation functions.

The hadronization process happens at scales of order ΛQCD whereas the hard
scattering and the parton shower are associated with scales Q ≫ ΛQCD. This
offers the possibility to factorise the perturbative part and the non-perturbative
hadronization step. All models are based on the hypothesis of parton-hadron
duality, i. e. the fact that quantum numbers on the hadron level follow those on
the parton level. For example the flavour of a hadron in the final jet is associated
with the flavour of the original parton, e. g. a b-quark on parton level causes a
B-hadron on hadron level.

The emission of particles with pT < ΛQCD is not resolvable in the hadroniza-
tion process as the separation of emitter and radiated particle is still below
R ∼ 1/ΛQCD when hadronization takes place. Nevertheless, there are a lot of
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emitted partons with pT ∼ ΛQCD which are called gluers. After the parton
shower all partons are dressed with a cloud of gluers that can blanch the partons’
colour fields, thus allowing high-energetic, colour neutral systems to separate.
The colour flow is essential to understand the existence of separated jets consist-
ing of colour neutral hadrons.

A lot of the primary hadrons formed during hadronization are not stable and
decay further. Typical resonances have short life times and decay within distances
of order 2 − 200 fm, so a clear distinction between hadronization and resonance
decays is not possible. This is different for hadrons containing heavy quarks, i. e.
c- and b-quarks that travel distances in the order of 1012 fm before their decay.
These decays can indeed be treated independently of the hadronization process.
More details about hadronization can be found in [29, 33].

Three different kinds of phenomenological hadronization models exist: inde-

pendent hadronization, cluster hadronization and string hadronization. The first
of these models has several deficiencies and reveals problems when confronted
with data. The latter two groups will be presented in the next subsections with
a strong emphasis on the models actually implemented in the Monte Carlo event
generators presented in sections 4.6 and 4.7.

4.5.1 Cluster Model

Cluster models are based on the observation that the invariant mass spectrum of
two colour-connected quarks is steeply falling and independent of both type and
scale of the hard process. The distribution is peaked at low values of order a few
times the parton shower cut-off. This suggest clusters built from pairs of quarks
that decay independently.

After the parton shower is terminated, all remaining gluons are forcibly split
in qq̄ pairs and colour singlets of two neighboured quarks are built, which can be
seen from figure 4.4. This procedure follows the structure of the parton shower
as colour-connected partons are close in phase space. The clusters decay inde-
pendently of each other isotropically in their rest frame into a pair of mesons or
baryons conserving flavour and momentum. For a cluster consisting of q1 and q̄2,
a qq̄ pair (or di-quark pair) from the vacuum is taken to allow a decay in two
mesons with contents q1q̄ and qq̄2. Clusters containing a quark from the hard pro-
cess remember the quark’s direction and the decay product retains the original
direction, by this respecting parton-hadron duality. Clusters that are too massive
to justify a decay in two hadrons are split in sub-clusters, while clusters too light
for a two-body decay undergo a one-body decay by exchanging momentum with
neighbouring clusters. Clusters with b- or c-quarks are treated slightly different
to improve the description of heavy flavour fragmentation. [29, 33, 59, 60]

The cluster model is a minimalistic model that does not need any adjustable
fragmentation function.
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Figure 4.4: Schematic representation of the cluster hadronization model. [29]

4.5.2 String Model

When two colour-connected quarks move away from each other, the colour field
between them grows linearly with their distance. It can be regarded as a colour
flux tube stretched between the two quarks with a transverse dimension of order
ΛQCD, which is very small compared to the string’s length. Thus no transverse ex-
citations occur which leads to the picture of a relativistic string with no transverse
degrees of freedom and a constant energy per unit length of about 1 GeV/fm. As
the potential between the two quarks grows with their distance, at some point a
new qq̄ pair is produced from the vacuum leading to two separate strings. The
string breaks further until each piece corresponds to an on-shell meson. The
possibility to create either di-quark pairs from the vacuum or two quark pairs
with different colours one after another enables baryon production via the string
break-up.

Introducing gluons complicates the structure of the string as they enter carry-
ing energy and momentum, thus leading to kinks in the string, compare figure 4.5.
It is worth noting that this treatment of gluons is infrared safe as collinear and
soft gluons do not change the string configuration. After all partons are assigned
to a colour neutral string, each string is broken up iteratively starting at one of
its ends. Postulating that breaking up the string from both sides should be equiv-
alent constrains the shape of the fragmentation function that serves for energy
and longitudinal momentum assignment. For the choices of flavour, transverse
momentum, etc., a lot of free parameters are needed in this model. [29, 33, 50]
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Figure 4.5: Schematic representation of the string hadronization model. [29]

The string effect predicts that for a qq̄g system building a string the region
between the two quarks is less populated with hadrons after the break-up than
the regions between (anti-) quark and gluon. The gluon changes the configuration
of the string away from the qq̄ axis, see figure 4.5. This fact can be motivated
from the dipole picture as well, as the amount of radiation emitted by a qq̄ dipole
is suppressed by a factor of 1/NC compared to a qg dipole. [33]

Currently different string models are available, from which the best known one
is the Lund model. Their advantage is the big number of free parameters that
allows a good tuning of these models to data. On the other hand they suffer from
the number of free parameters as a lot of assumptions are needed for a complete
description of the hadronization process.

4.6 Herwig

Herwig is a multi purpose event generator that incorporates the full sequence of
hard interaction, parton showering, underlying event and hadronization. It can
be used for many Standard Model as well as Beyond Standard Model processes
at e+e−, ep, pp and pp̄ colliders.

4.6.1 Herwig6

The Herwig6 event generator is a leading order generator containing an angular
ordered parton shower, by this including colour coherence effects, as discussed in
section 4.2.5.
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Figure 4.6: Dalitz plot for bb̄ production at s = M2
Z . The allowed phase space for

the first emission including the dead zone is indicated. The different line shapes
belong to different angles between the two quarks. [56]

The parton shower applied in Herwig6 is ordered in ζ as introduced in equa-
tion 4.22. Thus the phase space populated by the shower is restricted to an
angular ordered region, resulting in a dead zone, shown in figure 4.6. For timelike
final state radiation the phase space boundary is given by ζ < 1, for spacelike
initial state radiation by ζ < z2. The evolution is decreasing in ζ and therefore
decreasing in angle. For massless partons at small angles the relation ζ ≈ 1/2θ2

holds. In a region where the momentum of the emitter fulfils p ≪ phard and
p ≫ ΛQCD the coherent formulation of the parton shower includes even next-to-
leading contributions. The radiation from the parton is approximately confined
in a cone around it due to angular ordering.

The initial state shower is implemented as backward evolution of a spacelike
parton, though all emitted partons have timelike virtualities. In Herwig6 all
timelike partons are evolved until they reach their phase space boundary.

The dead zone not populated by the shower corresponds to hard large angle
emissions, that often do not contribute to leading order and are outside angular
ordered cones. Nevertheless, one emission in this phase space region can be
simulated by first order matrix elements. As two or more emissions in this region
happen very rarely, these are neglected. Emissions in the dead zone do not
contribute any soft or collinear logarithmic enhancements that have to be handled
by the parton shower. This matrix element correction is available only for few
processes, including top quark decays but not top pair production.

Herwig6 provides only a standard shower that respects factorization. For the
spacelike case, emissions with pT > pT hard are vetoed to avoid double counting.

Herwig6 includes an underlying event model based on a parameterization of
UA5 data. Depending on

√
s the multiplicity distribution of charged clusters is
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modeled. In addition to this model, an external package called Jimmy is available
which is briefly described in the next section.

The whole event is hadronised using the cluster hadronization model described
in section 4.5.1. [59, 60]

4.6.2 Jimmy

Jimmy offers an alternative approach for underlying event simulation in Her-

wig6, using the matter distribution inside the hadron in the impact parameter
space. The number of multiple interactions is calculated according to the overlap
of two hadrons obeying Poisson statistics. All additional scatterings are assumed
to happen independently and are calculated with hard matrix elements, but nei-
ther any ordering of the interactions nor any pdf rescaling is applied. For all par-
tons originating from multiple interactions the parton shower is applied. [61, 62]

The model depends on the assumed hadron radius and a minimum pT for the
additional interactions to tame the divergence for pT → 0. For Jimmy different
tunes to Tevatron data exist. [63, 64]

4.6.3 Herwig++

Herwig++ is a C++ version of the Herwig event generator, whose earlier
versions were programmed in Fortran. It includes some improvements compared
to Herwig6, e. g. a completely covariant formulation of the parton shower and
mass-dependent splitting functions. The latter ones lead to a correct description
of the dead cone region described in section 4.2.5. For Herwig++ Jimmy is
the standard description of the underlying event while the UA5 model is still
implemented for comparative studies. [65]

4.7 Pythia

Pythia is a multi purpose event generator including a broad variety of physics
processes. It provides the full generation chain including matrix elements, parton
shower, underlying event and hadronization for e+e−, ep, pp and pp̄ collisions.

4.7.1 Pythia6

Pythia6 is a leading order generator, i. e. it uses leading order matrix elements.
Pythia6 provides two different parton shower approaches: one ordered in invari-
ant mass and another one ordered in transverse momentum.

In Pythia the hard process chosen is associated with the highest pT . This is
done to avoid double counting of cross sections as processes like jet production
might also be caused by the parton shower or the underlying event. Considering
the relation Q2 = p2

T /z(1− z) for Q2 ordered timelike showers gives a multiplica-
tive factor of about four for the matching to the matrix element. For spacelike
showers this issue is more complicated and any factor between one and four seems
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to be reasonable, but again four is chosen as default. So the maximum virtuality
of the first emission in both initial and final state radiation is Q2

max = 4 · Q2
hard.

This is the standard shower option in Pythia. Additionally it is possible to use
a power shower for the initial state radiation with Q2

max = s. For the final state
radiation a matrix element matching is performed to correct the first emission
to matrix element accuracy. For initial state radiation this is only implemented
for few dedicated processes, which do not include tt̄ production. Comparison
with data has shown that coherence effects have to be taken into account for a
correct process description using Q2 evolution [52]. While the first emission is
not affected, for each subsequent branching angular ordering is imposed by the
application of the veto algorithm, leading to decreasing angles in the shower evo-
lution. As explained in section 4.2.5 a soft gluon might not resolve the net colour
charge of two quarks that are close in angle.

The approach of ordering the shower in pT is inspired by the colour dipole
model. While the partons are still evolved separately, the recoil of a branching
is absorbed by the partner from the preceding branching, even if both are not
colour connected. Again a standard and a power shower are implemented.

For the underlying event two different models are used depending on the
shower model. For the Q2 ordered shower the so-called “old” underlying event
model is used, in which only for the hardest interaction the partons are show-
ered and colour-connected to the beam remnants via strings. All interactions are
ordered in xT = 2pT /ECMS whereas all additional scatterings have to be softer
than the hard process. The number of interactions is given by a Poisson distribu-
tion. For the matter distribution in the proton a double Gaussian is assumed, so
the number of scatterings can be computed depending on the impact parameter,
i. e. the overlap of the two protons. After each interaction the pdf is rescaled
to take the changed parton contents in the proton remnant and its energy and
momentum loss into account.

For the p2
T shower a “new” model exists in which initial state radiation and

multiple interactions are interleaved. Both are evolved in decreasing pT with
separate Sudakov form factors. Every time an emission or additional interaction
happens at p̂T , the evolution is restarted with p̂T being the new maximum for
both. Even for the initial state radiation the energy is taken from the beam
remnant, thus the pdf has to be rescaled in both cases as x changes. In this
model initial and final state radiation are available for all scatterings and all
particles have a colour junction to the beam remnant. The backward evolution
scheme raises the possibility of two particles having the same ancestor, so a
joined interactions takes place. Up to now this issue is not considered in this
underlying event description. Finally it should be noticed that ordering emissions
and scatterings in p2

T does not imply any ordering in time.

After all interactions are calculated and the shower is performed, the Lund
string fragmentation model that is described in section 4.5.2 is used to hadronise
the event.

A full description of Pythia6 is given in [50].
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4.7.2 Pythia8

While Pythia6 was programmed in Fortran, Pythia8 is a rewrite in C++.
Pythia8 provides only the p2

T ordered parton shower and the new underlying
event model already described in the former section. As an improvement initial
and final state radiation are both interleaved with the multiple interactions, and
colour reconnections are used by default. The only deficiency is that due to the
relatively short period Pythia8 exists up to now no tuning to data has been
performed. Though its defaults are chosen in a way that its behaviour is quite
similar to tune S0 for Pythia6. [66]

4.8 Alpgen

To give an accurate description of multi-jet final states, Alpgen uses leading
order matrix elements for higher order processes like e. g. tt̄ plus additional jets.

Events with different parton multiplicities are generated for a certain process
and a matching and merging procedure is applied, as discussed in section 4.3.3.
Thereby radiation of high energetic partons can be described on matrix element
level. Depending on the process different multiplicities are available, for tt̄ pro-
duction up to six additional partons can be generated. These partons have to
fulfil requirements like having a minimum pT and maximum η. Alpgen gen-
erates events on parton level that can be further processed by either Herwig6
or Pythia6 using the MLM matching routine described in section 4.3.4. Alp-

gen still uses leading order matrix elements and thus is supposed to reproduce
leading order results for fully inclusive observables like jet multiplicity or cross
section. [67]

4.9 MC@NLO

MC@NLO is a generator incorporating NLO matrix elements. It generates NLO
events on parton level which can be passed to Herwig6 for further processing,
i. e. showering and hadronization.

Thereby MC@NLO combines NLO matrix elements with a parton shower
using the subtraction method presented in section 4.3.2. As mentioned before
the subtraction method based on equations 4.25 and 4.26 depends on the applied
parton shower, therefore the implementation can be used only with this particular
shower option.

According to section 4.3.2, this procedure results in events with negative
weights but their number can be kept reasonably small. The actual implemen-
tation leads to weights corresponding to ±1, so that the generated events are
unweighted up to the sign. [55, 56, 68]
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Generator Analysis

5.1 Transverse Momentum of the tt̄ System

Leading order Feynman diagrams describe the production of a tt̄ system balanced
in the transverse directions, therefore the tt̄ system does not gain any transverse
momentum. The transverse momentum of the tt̄ system is caused by additional
radiation, or more technically by real higher order contributions. As αs is large
compared to the electroweak coupling, the transverse momentum spectrum is
dominated by gluon radiation. Another weak effect providing the tt̄ system with
a transverse momentum is the transverse motion of the partons inside the protons,
but this effect is small compared to the influences of radiation. Studying the pT

spectrum of the tt̄ system thus offers the possibility to examine the influence of
real higher order QCD contributions.

The high mass of the top quarks causes the tt̄ production to happen at a
relatively high energy of at least 2 · mtop. The evolution of the partons to this
high scale allows a large number of emissions to take place. Due to the large
proton–proton centre-of-mass energy of

√
s = 14 TeV, top pairs can be produced

from high-energetic partons, providing a large phase space for gluon radiation.
So for the incoming partons both is given, a large available phase space region
and an evolution to a high scale. The produced top quarks radiate as well, but
the available phase space is much smaller in this case. While for the initial state
the whole centre-of-mass energy

√
s is available, the final state is restricted by

the energy involved in the hard interaction, reduced by the energy needed for the
production of the massive top quarks. Consequently the transverse momentum
distribution is governed by initial state radiation, while the effects of final state
radiation are much smaller. All investigations shown here include both initial
and final state radiation, but parameter changes are applied for the initial state
only, as variations in the final state case turned out to be comparably small.

In this chapter the predictions for the pT distribution of the different genera-
tors introduced in sections 4.6 to 4.9 are presented. The goal is a comparison of
different parton shower implementations with models that incorporate higher or-
der matrix elements matched to a parton shower. The following figures show the
transverse momentum of the tt̄ system, where figure a) always shows the region

47
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Figure 5.1: tt̄ pT spectrum for different Pythia6 tunes. a) shows the soft region,
b) the tail on a logarithmic scale. For tunes showing a similar behaviour similar
colours are used.

where the peak of the spectrum is located while figure b) shows the tail of the
distribution on a logarithmic scale. The soft region with the peak is influenced
by the strong coupling αs which depends on the scales involved in the emission.
Technically this dependence is incorporated in the Sudakov form factor used dur-
ing the evolution. The tail of the transverse momentum spectrum is governed
by the upper phase space boundary chosen for the parton shower, i. e. the phase
space region where the hardest emission can take place. During the investigation
both regions of interest will be considered. In the beginning the emphasis is put
on the peak region, while the tail of the distribution will be investigated in depth
later.

In the first step changes carried out in the scales in the Sudakov form factor
will be analyzed. Pythia6 offers a big variety of tunes in which scales in the
Sudakov form factor are modified. For Herwig6 tunes to Tevatron data exist for
the Jimmy underlying event model. Here the shower parameters are not tuned,
hence the pT distribution is not affected by the application of different Jimmy

tunes. For Pythia8 no special tune exists so far and Herwig++ employs an
implementation of Jimmy like Herwig6. Consequently Pythia6 will be used
for this analysis step.

Figure 5.1 shows the pT spectrum for different Pythia6 tunes [50, 69, 70].
These tunes are based on comparisons to Tevatron data, especially via minimum
bias studies, and tune both the parton shower and the underlying event model
simultaneously. In the models applied multiple interactions have no connection
to the hard scattering, thus the tt̄ pT distribution is not affected by the actual
underlying event description. Therefore the pT spectrum of the tt̄ pair provides
a good check for the shower tuning.
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Table 5.1: Pythia6 tunes and their most important properties. The keywords
“old” and “new” refer to the Q2 ordered parton shower with the old underlying
event (UE) model and the p2

T ordered parton shower with the new underlying
event model, respectively. A complete description of them is given in section
4.7.1. If no other information is given the tunes were made with the CTEQ5l
pdf.

Tune model Properties
A old Large starting scale

DW old Moderate scalings
DWT old Similar to DW, more UE activity
D6 old Like DW for CTEQ6l

D6T old Like DWT for CTEQ6l
S0 new Many multiple interactions

S0A new Like S0 with with energy scaling from tune A
Atlas-CSC new CTEQ6l

There are tunes using the Q2 ordered shower and the old underlying event
model and tunes using the p2

T ordered shower and the new underlying event
model. For the former one tunes A, DW, DWT, D6 and D6T are investigated
while for the latter one tunes S0, S0A and Atlas-CSC are used. The tunes for
the p2

T ordered shower and the new underlying event model apply additionally
colour reconnections for the final partons. It should be emphasised that every
tune depends on a specific pdf. Table 5.1 summarises the tunes of interest and
their main features.

In figure 5.1a) three different blocks of distributions can be identified. Tune A
shows a significant soft behaviour due to a relatively high scale used in αs for the
shower. All three tunes using the p2

T ordered shower and the new underlying event
model show a very similar behaviour and have a much harder spectrum than the
other tunes applying the old model. Adjusting the tunes to other pdfs, namely
from CTEQ5l to CTEQ6l, does not imply any differences in the distributions as
expected. Figure 5.1b) shows that the tail of the pT distribution looking almost
identical for all tunes except for tune A. Tune A uses Q2

max = 4 ·Q2
hard as starting

scale for the shower making a larger phase space region available for radiation.
Hence the tail of the pT distribution is slightly harder compared to the other tunes.

Next, the influence of matrix element matching will be studied, examining
the effects of several Alpgen settings. Alpgen applies the MLM matching
procedure to combine higher order real matrix elements with the parton shower
of Pythia6 or Herwig6. The additional partons produced by Alpgen have
a minimum pT (section 4.8) while emissions with lower pT are left to the par-
ton shower. Hence the choice of the matching scale determines the number of
emissions generated by Alpgen and the parton shower, respectively. Figure 5.2
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Figure 5.2: tt̄ pT spectrum for Alpgen matched with different parton showers
and matching scales. a) shows the soft region, b) the tail on a logarithmic scale.
The soft region is dominated by the parton shower configuration while the tail is
completely governed by Alpgen.

shows the tt̄ pT spectra for Alpgen samples in which Alpgen accounts only for
the hardest emission above the matching scale while all other emissions are left to
the parton shower. The matching scales chosen for comparison are 30GeV and
70 qGeV. These samples are showered with the Herwig6 event generator and
two different tunes of Pythia6, where both a Q2 and a p2

T ordered shower are
used. The peak region is driven by the parton shower and therefore depends on
the generator tuning. A slight dependence on the matching scale can be observed
due to the different treatment of emissions in the region 30 GeV < pT < 70 GeV.
While the pT spectrum gets slightly harder for Pythia6 tune A, it gets a little
softer for tune S0 when going to a lower matching scale. This shift accounts
for the difference in the number of generated emissions, so compared to Alpgen

tune A produces less hard radiation whereas tune S0 produces more. Figure 5.2b)
shows that the tail of the distribution is mainly controlled by Alpgen. Only a
very slight dependence on the parton shower can be observed, leading to a little
harder spectrum for the p2

T ordered choice, but the effect turns out to be small.

Figure 5.3 shows Alpgen samples matched with Pythia6 tune S0 for dif-
ferent parton multiplicities. The number of partons refers to the number of hard
extra emissions above the matching scale generated by Alpgen matrix elements.
The number of emissions does not influence the pT distribution of the tt̄ pair very
much. An effect can be observed only for a matching scale of 30GeV, where a
second emission causes a small increase in the soft region. As mentioned before
Pythia6 tune S0 estimates a higher number of hard emissions than Alpgen,
resulting in more soft contributions from the latter one. As in most cases high-
pT emissions happen only rarely, most events in the combined Alpgen samples
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Figure 5.3: tt̄ pT spectrum for Alpgen with Pythia6 tune S0 with different
parton multiplicities generated by Alpgen. a) shows the soft region, b) the tail
on a logarithmic scale. In the soft region a dependence on the matching scale
can be observed, but the effect of the actual parton multiplicity turns out to be
small.

contain zero or only one hard emission. This is why the structure of the samples
with one, two and three partons is similar. The majority of the events in the
three samples is identical.

As already mentioned, the available phase space region plays an important
role for the modeling of the tail of the tt̄ system’s pT distribution. Hence different
choices for the upper phase space limit are compared, first for the angular ordered
shower type including a comparison of different matching schemes, then for the
Q2 and p2

T ordered type.

Next, a comparison of the analytical NLO result and the MC@NLO generator
will be discussed. MC@NLO applies NLO matrix elements and the subtraction
scheme discussed in section 4.3.2. So the first hard emission is generated to NLO
accuracy. Figure 5.4 compares MC@NLO and Herwig6 with the analytical
NLO prediction. Due to multiple emissions the Monte Carlo generators show less
entries with low pT values. The tail of MC@NLO distribution coincides with the
analytical NLO result.

The angular ordered shower implementations are compared in figure 5.5, show-
ing MC@NLO, Alpgen with Herwig6, bare Herwig6 and Herwig++. The
peak region depicted in 5.5a) illustrates the dependence of the MC@NLO sub-
traction method on the actually implemented parton shower. The MC@NLO
curve is very similar to the pure Herwig6 result. For Alpgen it becomes clear
that the soft region is completely modeled by the shower with no visible influence
from emissions above the matching scale. The tail of the pT distribution shows no



52 Chapter 5. Generator Analysis

Figure 5.4: The transverse momentum of the tt̄ system is shown in a double
logarithmic representation, comparing Herwig6, MC@NLO and the analytical
NLO result. [56]

significant difference between Alpgen and MC@NLO, in good agreement with
the results presented in [58]. Furthermore the advanced angular ordered shower
implemented in Herwig++ shows only small differences compared to the old
Herwig6 implementation.

In figure 5.6 Q2 and p2
T ordered shower implementations are shown. The

power and standard shower option from Pythia8 are compared to Pythia6

tune S0, whereas both p2
T ordered shower implementations are configured to yield

comparable results. In the soft region the shape of the tt̄ pT distribution remains
unaffected by the upper phase space boundary. The small deviations are caused
by the normalization since with the power shower some events are produced with
a high pT . The difference between Pythia8 and tune S0 in the peak region is
small. The tail of both p2

T ordered showers agrees for both the standard and the
power shower version.

In addition the power shower option for tune A incorporating a Q2 ordered
shower and a matched version for tune S0 are presented. From 5.6b) it can be
seen that both power showers are harder than the matched version. For the power
shower the upper phase space boundary in the spacelike evolution is increased to√

s = 14 TeV, leading to a huge phase space available for additional radiation.
In contrast the phase space cut of the standard shower is set by the factorization
scale which is usually the scale involved in the hard process. Thus the standard
shower is much softer.

The fact that the p2
T ordered power shower results in a harder spectrum than

the Q2 one can be motivated with figure 4.3. The p2
T ordered evolution favours a

large pT for the first emission while the Q2 one favours a large Q2. Thereby the
first emission of the p2

T ordered shower does more often possess a high pT . The
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Figure 5.5: tt̄ pT spectrum for different Herwig associated generators. a) shows
the soft region, b) the tail on a logarithmic scale. Slight differences between
Herwig6 and Herwig++ can be spotted. MC@NLO and Alpgen show a very
good agreement.
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Figure 5.6: tt̄ pT spectrum for different Pythia versions. a) shows the soft
region, b) the tail on a logarithmic scale. Pythia8 and Pythia6 tune S0 show
very good agreement. It can be observed that the tail of the distribution is much
harder for the p2

T ordered power shower compared to the Q2 one.
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Figure 5.7: tt̄ pT spectrum for the standard showers in different ordered parton
showers. The kink in the distribution shows the dependence on the upper phase
space limit for the different evolution variables. As the pT of the tt̄ system is
directly sensitive to the pT of the radiation, the p2

T ordered shower reveals the
strongest dependence.

transverse momentum of the tt̄ system is directly sensitive to the pT of the hard
emissions and therefore to the way the phase space is filled by the parton shower.

Figure 5.7 demonstrates another dependence of the tt̄ pT on the phase space.
Around a pT value of the top mass the distribution of the p2

T ordered shower shows
a kink, reflecting the dependence on the phase space boundary of the shower. The
pT of the tt̄ pair is sensitive to the pT of the emissions, so the upper phase space
limit of the shower influences this variable as well. A weaker kink can be observed
for the angular ordered shower while it is least pronounced for the Q2 case. The
pT of the emissions depends on the phase space boundary for those evolution
variables as well but not as strong as if the pT itself is used for the evolution.

Each tune for a generator is done for a specific pdf. Nevertheless, each con-
figuration can be run with another pdf, exploring the influence of the pdf choice.
Figure 5.8 depicts the pT spectrum for different pdfs for Pythia6 tune A utilizing
a power shower. Even for this extreme configuration no dependence on the pdf
can be observed. This was checked for all generators used in this analysis.

Besides the pdf, the strong coupling αs can be changed in the evolution.
Pythia8 power shower samples with variations of the value of αs at M2

Z for the
spacelike shower are presented in figure 5.9. The change of the reference value
of the strong coupling directly influences the Sudakov form factor responsible for
the soft region, leading to a significant change in the distribution. The tail of the
distributions remains unaffected. The same effect could be observed for the other
generators as well.
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Figure 5.8: tt̄ pT spectrum for different pdfs for Pythia6 tune A. a) shows the
soft region, b) the tail on a logarithmic scale. The influence of the pdf choice
turns out to be negligible.
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Figure 5.9: tt̄ pT spectrum for different scale choices in Pythia8. a) shows the
soft region, b) the tail on a logarithmic scale. A different value of αs at M2

Z has
a clear influence in the peak region.
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5.2 Parton Jets

For a deeper investigation of the hard emissions jet algorithms are run on the
partonic final state. Therefore hadronization is switched off and the top quarks
are set stable immediately before their decay. Multiple interactions can take
place and the particles are evolved via the parton shower until they reach their
lower cut-off value. The top quarks are excluded from the list of particles and
a jet algorithm is run on the partons. The jets obtained from this procedure
will be referred to as parton jets. If not stated otherwise the KT4 algorithm is
used. For the results presented in sections 5.2.1 and 5.2.2 no dependence on the
algorithm was observed when comparing different settings for the kT and SISCone
jet algorithm.

5.2.1 Transverse Momenta of Parton Jets

QCD radiation is one of the main sources for additional jets, hence it is expected
that the hard emissions will manifest themselves in hard jets. In this case hardness
refers to the transverse momentum. Figure 5.10 shows the pT distribution of the
two hardest jets on a logarithmic scale for several Pythia configurations. The
hardest jet shows a strong correspondence to the transverse momentum of the tt̄
system. Again the power shower allows for much more high-pT radiation while
the standard shower is much softer, showing again a kink due to the upper phase
space boundary. The fact that the p2

T ordering favours high-pT radiation is again
clearly visible when comparing the two evolution scales for the power shower
option. The Q2 shower still produces more hard radiation than is done on matrix
element level.

For the second hardest jet the same structure is present but the tail of the
Q2 ordered power shower is even slightly softer than the matched p2

T version.
Furthermore the spectrum of the second hardest jet is much steeper. Both aspects
show that at least the hard pT tail of the tt̄ system is in most cases governed by
the hardest emission. It was checked that the underlying event model does not
influence the high-pT jets as expected, but leads to differences in the spectra only
in the low-pT region. So for most of the cases where the tt̄ system possesses a
high transverse momentum a jet in the opposite direction can be found, leading
to a balanced pT of the whole system.

In figure 5.11 the pT of the leading jets for the generators presented already in
figure 5.5 is shown. While the standard showers of Herwig6 and Herwig++ be-
have as expected, an interesting difference can be found when comparing Alpgen

with MC@NLO. While the tt̄ pT distribution is almost identical for both genera-
tors the hardest emission from MC@NLO is significantly softer. This effect was
already reported in [58]. For the second jet the difference between MC@NLO and
Herwig6 is almost negligible. The subtraction scheme used for the first emis-
sion does not influence the hardness for the second emission. On the contrary,
Alpgen sets a new starting scale for the shower depending on the scale of the
emission already calculated on matrix element level, thereby leaving more phase
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Figure 5.10: The pT distribution of the first (a) and second (b) hardest jet on a
logarithmic scale for different Pythia versions is shown. The distribution of the
hardest jet follows the one obtained from the tt̄ system. The second hardest jet
shows a significant dependence on the ordering, as the second hardest jet of the
Q2 power shower has a pT comparable to the one from the matched shower.
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Figure 5.11: The pT distribution of the first (a) and second (b) hardest jet on
a logarithmic scale for different Herwig versions is shown. In spite of the good
agreement in the pT spectrum of the tt̄ system, MC@NLO and Alpgen show a
significant difference in the pT distribution of the hardest jet. The subtraction
method does not influence the second hardest emission whereas Alpgen sets a
new starting scale for the shower, leaving more phase space available.
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Figure 5.12: Rapidity distribution of the leading jet for different generators, nor-
malised to the actual number of events. In contrast to the other generators the
Herwig shower causes a plateau in the central region.

space available for the second one. It is interesting that despite the difference in
the jet spectra the tt̄ spectrum agrees very well for both generators.

5.2.2 Rapidity of Parton Jets

Constructing jets from the partonic final state with excluding the top-quarks
offers the possibility to determine the direction of the first emission. While there
is no preference concerning the azimuth, the pseudo-rapidity of the jets shows a
clear structure. As the jets are built using the E-scheme they obtain a mass and
rapidity and pseudo-rapidity are not identical. Nevertheless, the jet masses are
not very high and both variables do not differ much. This fact will be exploited
later when jets on detector level are examined and compared to the generator
level.

Figure 5.12 shows the rapidity of the hardest jet for different generator config-
urations with a jet pT above 20GeV. In all cases a similar structure is obtained,
but the shape differs in the region −2 < y < 2. The p2

T ordered power shower
shows the most significant bump while Herwig6 and MC@NLO form a plateau
in this region. This effect gets even more pronounced when looking at the rapidity
of the leading jet in the frame of the tt̄ system, i. e. the quantity ∆y = yjet − ytt̄,
presented in figure 5.13.

Sub-figure 5.13a) shows the case for all jets with pT > 20 GeV, exposing a
strong dip structure for the Herwig6 and MC@NLO case. The other generators
show a more or less distinct bump, preferring high-pT emissions at low rapidities,
i. e. at wide angles. The structure apparent for Herwig is caused by the existence
of the dead zone explained in section 4.6. Representing the available phase space
in variables x = M2

QQ̄
/s and y = cos θg as done in figure 5.14, the origin of the
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Figure 5.13: Rapidity of the leading jet with respect to the tt̄ system: ∆y =
yjet − ytt̄. The dead zone from the Herwig shower causes a dip in the central
region. The distributions are normalised to the actual number of events.

dip becomes clear. In figure 5.15 a sketch of a tt̄ pair emitting a gluon is shown.
For a high energetic gluon the invariant mass of the tt̄ system is small compared
to the available energy, i. e. x is small. The emission angle of the gluon with
respect to the tt̄ system θg is limited due to the dead zone as shown in figure
5.14. The phase space is indeed restricted such that hard wide angle emissions
are forbidden due to the phase space boundaries implied by angular ordering.
For the Q2 ordered shower angular ordering is imposed which seems to cause the
difference between the Q2 and p2

T ordered distributions.

Figure 5.13b) shows the relative rapidity of the leading jet for jets fulfilling
pT > 100 GeV. It is obvious that the dip structure gets even more pronounced for
harder jets. MC@NLO follows the Herwig6 distribution though the emissions
on matrix element level account for some emissions into the dead region. Nev-
ertheless, the subtraction method used makes the first emission sensitive to the
parton shower applied, leading to a dip structure for MC@NLO as well. The fact
that the Herwig6 distribution does not go exactly to zero is owed to multiple
emissions. The consideration of only very hard jets in 5.13b) exhibits a slight dip
structure for the standard shower options of Pythia as well, indicating that here
some part of the phase space is missed as well.

While the effect of the dead zone caused by Herwig6 is present for MC@NLO
as well, the case of Alpgen combined with Herwig6 is more complicated. Fig-
ure 5.16 shows the rapidity of the leading jet for Alpgen showered with Her-

wig6. A slight dependence on the matching scale can be observed, leading to a
rise in the central region for a lower matching value. In this case more emissions
are calculated by the Alpgen matrix elements, filling the phase space left out
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Figure 5.14: Phase space indicating the dead zone for bb̄ at s = M2
Z in x = M2

QQ̄
/s

and y = cosθg. The different line shapes belong to different angles between the
two quarks. For lower values of x more energy is available for the emission.
Coincidently lower values of x restrict the emission angle θg, leading to a dead
zone in the phase space and suppressing hard emissions at wide angles. [56]

tt̄

g

Figure 5.15: Schematic representation of tt̄ system emitting a gluon.
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Figure 5.16: Rapidity distribution of the leading jet for Alpgen with Herwig6

with different matching scales. The lower matching scale causes more radiation
generated by Alpgen.

by the Herwig6 shower. This gets even more obvious when looking at figure
5.17 where again the ∆y distribution for jets above 20GeV and 100GeV is pre-
sented. In 5.17a) a clear difference can be observed due to the fact that for a lower
matching scale Alpgen controls a larger fraction of the emissions. Figure 5.17b)
shows the case where the jet cut is well above the matching scale, so the jets
considered here are expected to be caused by Alpgen emissions. The two curves
agree very well and the dip structure vanishes. A comparison between the Alp-

gen and MC@NLO curves emphasises the strong dependence of the MC@NLO
subtraction method on the parton shower. It should be mentioned that Her-

wig++ shows a dip structure similar to Herwig6, as both Herwig versions
contain a dead zone, though they are not fully identical. A detailed comparison
and explanation of the dead zones and ∆y spectrum for Higgs events is given in
[71].

5.2.3 Parton Jet Multiplicities

The observed jet multiplicity does not depend on one single aspect. In this section
the influences of phase space boundaries, soft emissions and the underlying event
are investigated, as well as the impact of the chosen jet algorithm.

Figure 5.18 shows the jet multiplicities for different underlying event models
for Herwig6 for a pT cut of 20GeV and 50GeV. In sub-figure b) the same dis-
tribution as in a) is depicted on a logarithmic scale. The different tunings [63, 64]
are performed to describe minimum bias data from Tevatron. The extrapolation
to LHC energies reveals a huge difference when checking the charged particle
multiplicities. In the saturated region tuning A predicts about twice the number
of particles compared to the Atlas tune. In this study tuning A leads indeed to
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Figure 5.17: Rapidity of the leading jet with respect to the tt̄ system ∆y =
yjet−ytt̄ for Alpgen with Herwig6. a) For a jet pT cut of 20GeV the matching
scale exhibits a significant difference, as for the lower matching scale Alpgen

generates more emissions by this filling the gap caused by the dead zone. b) For
a jet pT cut of 100GeV the matching scales, both well below 100GeV, do not
have any influence.

higher jet multiplicities than the other models. The UA5 model gives the lowest
contribution to additional jets as expected. For jets with pT > 50 GeV shown
in figures 5.18c) and 5.18d) the difference between the different underlying event
models turns out to be negligible. The contributions from the underlying event
are mainly in soft regions and have only limited influence on high-pT objects.

Figure 5.19 presents the jet multiplicities for different Pythia6 tunes and
phase space boundaries again for a transverse momentum cut of 20GeV and
50GeV. Figures 5.19a) and 5.19c) both show significant differences in the jet
multiplicities depending on the tunes. The simultaneous tuning of underlying
event and soft emissions causes a dependence of the multiple interactions and the
Sudakov form factor on the specific tune. Tune A leads to little soft radiation
compared to the other tunes which causes a large number of events with zero ad-
ditional jets. Here again the scaling of αs in the Sudakov form factor is important
(compare figure 5.1).

In addition the choice of the upper phase space boundary has impact on the
number of jets, preferring higher multiplicities. Especially 5.19d) underlines the
influence of the upper phase space limit on the number of events with many
jets. This is not only the case for the power shower, but also for the standard
shower option. The tune A standard shower option has a higher starting scale
and produces more events with high jet multiplicities than tune DW standard.
As already seen in the analysis of the tt̄ pT distribution the evolution variable
affects the pT of the emitted particles. The p2

T ordered shower favours high pT
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Figure 5.18: Jet multiplicities for the KT4 algorithm for different Herwig6 tun-
ings. Jets above 20GeV are shown in a) on a linear and in b) on a logarithmic
scale. Jets above 50GeV are shown in c) on a linear and in d) on a logarithmic
scale.
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Figure 5.19: Jet multiplicities for the KT4 algorithm for different Pythia6 tun-
ings. Jets above 20GeV are shown in a) on a linear and in b) on a logarithmic
scale. Jets above 50GeV are shown in c) on a linear and in d) on a logarithmic
scale.
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values in the evolution which seems to cause higher jet multiplicities compared
to the other evolution variables.

The jet multiplicities presented in figures 5.18 and 5.19 were obtained using
the KT4 jet algorithm. Increasing the R parameter to 1.0 (KT10) changes the
jet multiplicities significantly. This is shown in figures 5.20a) and 5.20b) where
again different Jimmy tunings for Herwig6 are compared. Due to the higher
value of the R parameter the jet algorithm combines more particles into a single
jet. Thus more particles from the underlying event are collected, leading to a
stronger dependence on the actual underlying event description. Figures 5.20c)
and 5.20d) show that jets with pT > 50 GeV are clearly less affected by a change
of the R parameter, because most of the particles caused by the underlying event
are low-energetic and hence the relative impact on high-pT jets is much weaker.
Checking the SISCone algorithm with SC4 and SC7 reveals no big difference and
the jet multiplicities are reasonably stable, showing a behaviour comparable to
the one of the KT4 algorithm.

Concerning physics effects, the jet multiplicity turns out to depend on a com-
bination of the available phase space, the scale in the Sudakov form factor and the
underlying event model applied. So different choices of these parameters can give
comparable results. It follows that it is difficult to study one specific effect inves-
tigating only the jet multiplicity. For a particular study additional information
is needed.
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Figure 5.20: Jet multiplicities for the KT10 algorithm for different Herwig6

tunings. Jets above 20GeV are shown in a) on a linear and in b) on a logarithmic
scale. Jets above 50GeV are shown in c) on a linear and in d) on a logarithmic
scale.



Chapter 6

CMS Detector

The CMS detector is designed for a precise measurement of particles produced
in proton–proton collisions at the LHC. With a rate of 40 MHz, i. e. one colli-
sion every 25 ns, 109 inelastic events per second are expected for the LHC design
luminosity. This results in approximately 1, 000 particles emerging from the in-
teraction region every 25 ns. The detector features required for these conditions
are good time resolution and high granularity to gain a low occupancy, as well
as radiation hardness to minimise the damage due to the intense high-energetic
particle flux.

The CMS detector shown in figure 6.1 has a traditional onion-like structure:
The interaction point is surrounded from inside to outside by a tracking system,
an electromagnetic calorimeter, a hadronic calorimeter and finally a muon system.

6.1 Magnet

The detector design is driven by the choice of the magnetic field. To gain a large
bending power and thus the feasibility to measure momenta to very high precision
a superconducting solenoid with a magnetic field strength of 4T has been chosen.
Outside the magnet an iron yoke of 10 ktons weight returns the magnetic field,
yielding a field strength of about 2T. The magnet leads to a compact design of
the detector, that has a length of 21.6m, a diameter of 14.6m and a complete
weight of 12,500 tons. Tracker and both calorimeters are accommodated inside
the magnet while the muon detectors are integrated in the iron return yoke,
compare figure 6.1. Details about the magnet are given in [73].

6.2 Tracker

The tracking detector is used for the measurement of charged particles’ trajecto-
ries in the magnetic field and thus enables the determination of their charge sign
and momentum. Hence it provides very important information for the reconstruc-
tion of charged leptons and hadrons. As mentioned above a short response time
and high granularity are needed for precision measurements. Furthermore the
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Figure 6.1: The CMS detector. [72]

number of interactions with the tracker material has to be kept at a minimum to
avoid any distortions of the measurement, so the amount of matter in the tracker
should be as small as possible. In CMS the whole tracking system is built from
silicon, resulting in an active area of 200 m2. The principle of semi-conductor
detectors is described in [74].

A schematic sketch of the tracker is shown in figure 6.2. The tracking detector
covers a pseudorapidity range up to |η| < 2.5. Around the beampipe the barrel
of the pixel detector is placed, consisting of three layers of silicon pixels. It
is complemented by two layers in the pixel endcaps on each side. There are
altogether 66 million pixels of a typical size of 100×150 µm2 at a distance between
4.4 cm and 10.2 cm to the beampipe. The pixel detector serves for precision
measurements of trajectories near the primary interaction point, by this providing
the means to secondary vertex reconstruction. The occupancy of each pixel is
kept at 10−4 per bunch crossing.

Outside the pixel a silicon strip detector built of 9.3 million strips is mounted.
It is divided in two barrel parts, tracker inner barrel (TIB) and tracker outer barrel

(TOB), which are complemented by endcaps called tracker inner disk (TID) and
tracker end cap (TEC) (compare figure 6.2). The occupancy of the strips is
between 1% and 3% per bunch crossing. The dimensions of the whole tracker are
a length of 5.8m and a diameter of 2.5m.

Each sufficiently energetic particle emerging from the interaction point, that
does not curl due to the magnetic field, traverses at least three layers in the pixel
detector and nine layers in the strip tracker, of which four provide two-dimensional
information. The material crossed by a particle corresponds to 0.4 − 1.8 radiation
lengths, depending on the direction of flight.
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Figure 6.2: Schematic cross section of the CMS silicon tracker. [10]

In figure 6.3 the expected resolution performance for muons is shown. For high
momentum tracks the resolution of the transverse momentum is around 1 − 2%
up to |η| ≈ 1.6 while the transverse impact parameter can be measured to about
10 µm accuracy, together allowing a very precise track reconstruction. The track
reconstruction efficiency yields 99% for muons up to |η| ≈ 2. Due to a higher
interaction rate with the tracker material, this number drops to 80 − 90% for
hadrons as shown in figure 6.4.

The silicon strip detector is operated at a temperature of −10◦C to reduce
radiation damage and to allow its operation over the full lifetime of the experiment
which is expected to be ten years. A full description of the CMS tracker can be
found in [10, 75, 76].

6.3 Electromagnetic Calorimeter

The electromagnetic calorimeter is built for precision measurements of electrons
and photons, covering a pseudo-rapidity range up to |η| = 3. It is composed
of a barrel and an endcap as shown in figure 6.5. The material used is lead
tungstate, which has a density of 8.28 g/cm3, a Molière radius of 2.2 cm and a
radiation length of X0 = 0.89 cm. With over 75,000 crystals the electromagnetic
calorimeter provides a high granularity of ∆η × ∆φ = 0.0174 × 0.0174 in the
barrel region, decreasing to 0.05 × 0.05 in the endcap. The number of radiation
lengths is about 25 ·X0. The electromagnetic shower causes light emission which
is detected by photodiodes located at the back of the crystals. 80% of the light
emission happens within 25 ns, which means that the scintillation time is of the
order of the LHC bunch crossing time.

The calorimeter is operated at a temperature of 18◦C to establish an equilib-
rium between radiation damage and recovery, for which a stability of 0.05◦C is
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a) b)

Figure 6.3: a) shows the resolution of transverse momentum, b) the resolution
of the transverse impact parameter for muons with a transverse momentum of 1,
10 and 100 GeV, respectively. The tracks have been reconstructed without the
muon system. [72]

a) b)

Figure 6.4: Global track reconstruction efficiency for a) muons and b) pions with
a transverse momentum of 1, 10 and 100 GeV, respectively. [72]
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Figure 6.5: Schematic view of the electromagnetic calorimeter. [77]

aimed. Since the tracker is operated at −10◦C, the electromagnetic calorimeter
and the tracker are thermally decoupled.

In the region 1.65 < |η| < 2.6 an additional preshower device is mounted, built
as a two-layer sampling calorimeter providing three radiation lengths. Its tasks
are a better pion identification and an improved distinction between electrons
and minimum ionizing particles.

The overall energy resolution of the electromagnetic calorimeter for electro-
magnetic showers is given by

( σ

E

)2

=

(

2.8%√
E

)2

+

(

0.12

E

)2

+ (0.30%)2 , (6.1)

providing a very accurate measurement of electromagnetic objects. A detailed
description of this detector component can be found in [77].

6.4 Hadronic Calorimeter

The hadronic calorimeter measures the produced hadrons, by this providing the
major input for the reconstruction of jets and missing transverse energy (section
7.3). The latter quantity defines a handle on particles invisible to the detector
such as neutrinos or weakly interacting exotic particles. As the LHC is a hadron–
hadron accelerator most of the particles in the final state will be of hadronic
nature.

The arrangement of the hadronic calorimeter can be seen in figure 6.6. It
is divided in barrel (HB), endcap (HE), outer part (HO) and forward part (HF).
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Figure 6.6: A quadrant of the CMS detector with labeled detector components.
The arrangement of the subsystems of the hadronic calorimeter is shown in
blue. [72]

The segments HB, HE and HO are constructed as sampling calorimeters of brass
absorber plates and plastic scintillators. The scintillation light is collected by
wavelength shifting fibres and finally read out via photodiodes. HB and HE
both consist of 16 layers of active material. For the HO the magnet coil acts as
additional absorber increasing the number of hadronic interaction lengths (λI).
Particles traversing barrel and outer part pass at least 11.8 ·λI while the endcaps
account for approximately 10 · λI . It is worth noting that about 1.1 · λI are
provided by the electromagnetic calorimeter. The segmentation for HB and HO
is ∆η × ∆Φ = 0.087× 0.087 whereas this number increases for the endcap up to
0.17 × 0.17 at |η| = 3 successively.

The forward calorimeter, covering the range from |η| = 3 to |η| = 5.2, operates
in a region where a large amount of energy is deposited. Thus its design is
guided by the necessity to survive in this harsh environment. It is built of a steel
absorber with quartz fibres as active medium. Charged shower particles emit
Cherenkov light that is detected by photo-multipliers. The granularity of the HF
is ∆η × ∆Φ = 0.175 × 0.175.

Combining the power of electromagnetic and hadronic calorimeter leads to a
resolution for pions [72] of

( σ

E

)2

=

(

120%√
E

)2

+ (6.9%)2 . (6.2)

Compared to the electromagnetic calorimeter both granularity and energy resolu-
tion are worse for the hadronic one. Therefore the precision of combined calorime-
ter output is limited by the hadronic calorimeter. More information about the
hadronic calorimeter is given in [78].
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Figure 6.7: A quadrant of the CMS detector showing the placement of the differ-
ent muon detectors. [72]

6.5 Muon System

Muons are less affected by radiation loss than electrons and deposit only a small
fraction of their energy inside the calorimeters. They are the only particles vis-
ible to the detector that are not fully showered in the calorimeters. Hence spe-
cial detectors for the measurement of muons are placed outside the calorimeters.
Thereby muons can be identified with high efficiency and are very well suited for
triggering and high-precision measurements.

The muon chambers are installed inside the iron yoke that returns the mag-
netic field. Inside the muon chambers the magnetic field has the opposite direc-
tion with respect to the tracker. The iron return yoke additionally serves for the
rejection of hadrons.

Three different types of gaseous detectors are used for the muon system. In
the barrel region (|η| < 1.2) Drift Tube (DT) chambers are mounted, arranged
concentrically in four stations around the beam pipe. Each station consists of two
to three so-called super layers which are built each of four layers of rectangular
drift cells, staggered by half a cell to avoid insensitive regions. There are cells
in which the wires are arranged along the beam line and and those with wires
orthogonal to it, leading to precise measurements of all coordinates. In the worst
case a muon might pass only two of the four stations, due to dead zones in between
the chambers.
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In the endcap a strong, non-uniform magnetic field and a high background
contamination lead to the choice of Cathode Strip Chambers (CSC). These are
multi-wire proportional chambers consisting of six anode wire planes among seven
cathode panels. The wires’ orientation is azimuthally so they define the tracks’
radial component. Three respectively four stations cover the region from 0.9 <
|η| < 2.4. The arrangement of DTs and CSCs is shown in figure 6.7.

Due to uncertainties in background rates and to assure the measurement of
the correct beam crossing Resistive Plate Chambers (RPC) are used as additional
detectors in barrel and endcap region. These are gaseous parallel-plate detectors
which have a very good time resolution, by this being extremely important for
the trigger system. In addition they are well suited for the association of muon
tracks to the corresponding bunch crossing and serve for resolving ambiguities
in the muon track finding. Six layers of RPCs are mounted in the barrel region,
whereas only three stations are placed in the endcap, covering a region up to
|η| = 1.6. An extension up to |η| = 2.1 and an increase to four stations is
foreseen in the near future. A complete description of the muon system is given
in [79].

6.6 Trigger

The LHC will be operated with a bunch crossing rate of 40 MHz while the num-
ber of events per second that can be stored is limited to the order of 100. Thus
a selection of the events to be recorded is necessary. The trigger system at
CMS is arranged in two separate steps: the Level-1 trigger and the High Level

Trigger (HLT). The Level-1 trigger is implemented via programmable electron-
ics and works with coarsely segmented information from calorimeters and muon
chambers. All information from a collision is stored in pipelines in the front-end
electronics of the sub-detectors. Due to the pipeline size a trigger decision has
to be taken within 3.2 µs, so information of interest can be flagged for read-out.
Events that pass the Level-1 trigger are completely read out and processed further
by the HLT.

The calorimeter trigger uses combined input from both electromagnetic and
hadronic calorimeter to construct electron and photon candidates and to set τ -
flags. A special cluster algorithm is run to build jets and additional information
concerning minimum ionizing particle signatures (compare section 7.1) and iso-
lation flags are sent to the muon trigger. The muon trigger system combines
information of all three muon detector types to construct muon candidates from
hit patterns, already making use of the calorimeter information passed to it. The
global Level-1 trigger combines the information from the two subsystems and the
decision whether the event is discarded or a read out is taken. The output rate
of the Level-1 trigger is of the order of about 100 kHz.

The HLT has to reduce the rate by another factor of 1,000. A computer farm
with about 2,500 CPUs is used to run a special version of the CMS software to
calculate more complicate entities to decide which events are of interest. With
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growing knowledge and understanding of the detector the algorithms employed
here will develop over time. The chosen events are stored to disk for further
analysis. Details of the trigger and data acquisition chain are given in [80] and
[81].
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Chapter 7

Reconstruction of Physics

Objects

The signal samples of interest are semi-muonic tt̄ events. After the decay one
muon, one neutrino and four quarks are present, in most cases two b- and two light
quarks. The detector objects are therefore reconstructed muons, jets including
b-tags and missing transverse energy. The reconstruction of these objects with
the CMS detector is described in this chapter.

7.1 Muons

In a first step only the muon system is used for the reconstruction of muons, utiliz-
ing a Kalman filter [82] and applying a vertex-constrained fit to the trajectories.
The muon candidates identified in the muon system serve as input for the muon
reconstruction including tracker information. The reconstruction in the tracker
is done again via a Kalman filter. After all found trajectories in the tracker have
been cleaned from ambiguities, a global refit of them is done including the in-
formation from the muon system. The efficiency for high-pT muons is very high
as can be seen from figure 7.1. A detailed description of muon reconstruction is
given in [83].

The HLT makes use of reconstructed muons as a large fraction of the physics
of interest are associated with high-pT leptons. In the low luminosity phase an
inclusive single muon trigger with a muon pT cut of 19GeV will result in an
expected muon rate of approximately 25Hz. [72]

To suppress muons originating from hadron decays, isolation criteria are de-
fined. By this muons accompanied by too many additional tracks or too much
calorimeter activity can be rejected. As a consequence not only muons origi-
nating from hadrons are affected but muons that are incidentally close to a jet
are rejected as well. Nevertheless, isolation procedures are extremely powerful to
reduce the background for semi-muonic tt̄ decays. The method used in this anal-
ysis is based on [84]. Using muons with pT > 30 GeV an isolation requirement
is defined for both tracker and calorimeters. Figure 7.2a) shows the relative pT

77
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Figure 7.1: Reconstruction efficiency of muons built from tracker and muon sys-
tem information for different transverse muon momenta. [72]

sum of tracks around the muon direction inside a cone with ∆R = 0.3 for signal
events, tt̄ fully hadronic decays and QCD events. In figure 7.2b) the relative
ET sum of calorimeter towers inside a cone of ∆R = 0.3 is shown for the same
samples. Muons from W - and Z-decays cause distributions very similar to the
semi-muonic tt̄ case, so for those samples an isolation criterion is not well suited
for rejection. According to the two distributions in figure 7.2 an isolated muon is
required to fulfil:

0.95 · pT (µ) <
∑

∆R=0.3

pT (tracks) < 1.15 · pT (µ) , (7.1)

0.02 · pT (µ) <
∑

∆R=0.3

ET (towers) < 0.2 · pT (µ) . (7.2)

7.2 Jets

The jets are reconstructed using the information from both electromagnetic and
hadronic calorimeter. Therefore the energy depositions are combined into over
4, 000 objects called calorimeter towers. Due to the different granularity of the two
calorimeters the tower dimensions are limited by the segmentation of the hadronic
calorimeter. The jets are built from these calorimeter towers. The towers are
treated as massless particles whose direction is defined by the interaction point
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Figure 7.2: a) shows the pT sum of all tracks inside a cone of ∆R = 0.3 around
the muon direction, divided by the pT of the reconstructed muon. b) shows
the ET sum from the calorimeter towers inside a cone of ∆R = 0.3 around the
reconstructed muon direction divided by the muon pT .

and the tower centre. The algorithms, described in section 3.4, are the same as
for the generator case.

7.2.1 Jet Calibration

A perfect jet would be a projection onto a parton originating from the hard
process. However, final state radiation may lead to a loss of particles that are
not collected by the jet algorithm whereas initial state radiation, underlying event
and pileup provide additional particles that may enter the jet. The hadronization
process causes an additional smearing of the particles, worsening the jet descrip-
tion further. Besides the physics issues, detector effects play an important role
as resolution, calibration and noise of calorimeter cells lead to non-linear effects
in the jets’ energy scale. To reconstruct the jet direction as precisely as possible,
the E-scheme is chosen as recombination scheme (compare section 3.4.1). While
a jet’s direction can be reconstructed reasonably well, a correction to its energy
is needed.

Several proposed procedures for jet calibration are discussed in [72]. Once the
CMS experiment is running, data driven jet calibrations will be applied. In this
analysis a Monte Carlo driven method is used. Reconstructed jets are calibrated
by a comparison to generator jets constructed from the hadronic final state. Each
jet that has been corrected for detector effects can be corrected for influences from
physics in a second step, calibrating the jet to the original parton.

The calibration method used here follows the one developed in [84]. For this
analysis jets are corrected to generator level using signal events. The considered
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raw jets have to fulfil pT > 10 GeV and |η| < 2.4, i. e. they have to be inside the
region covered by the tracker. Jets are built from calorimeter towers on detector
level and from the hadronic final state on generator level. Each b-quark from a
top decay and each quark originating from a subsequent W -decay are matched
to generator jets applying a criterion of ∆R < 0.1. Afterwards the successfully
matched jets are matched to the jets from calorimeter towers. As an example
the transverse momentum ratio for matched KT4-b-jets is shown in figure 7.3.
A dependence on the transverse momentum as well as on the detector region
is found, illustrating the transition from calorimeter barrel to endcap. Separate
correction factors are determined for jets associated with b-quarks and quarks
from W -decays, respectively. An unbinned likelihood fit using the fitting program
Minuit [85] inside the ROOT framework [86] is used for the determination of a
pT calibration factor. The fit is performed in pT and η simultaneously. The fitted
functionals for the b-jets are:

22.5

pT
+

{

6.9 · 10−2 · |η|2 + 1.1 , if |η| < 1.4

−0.4 · η + 1.7 , if 1.4 ≤ |η| < 2.4 .
(7.3)

For the jets associated with the W -decay the fit result is:

15.4

pT

+

{

6.4 · 10−2 · |η|2 + 1.1 , if |η| < 1.4

−0.3 · η + 1.7 , if 1.4 ≤ |η| < 2.4 .
(7.4)

To gain a generator-independent fit, all four signal samples, which are discussed
in detail in section 8.1, are considered in this fit. Figure 7.4 shows the closure test
for KT4-b-jets, indicating a reasonable correction of the transverse momentum.
This procedure has been iterated with all used samples, showing no generator de-
pendence. However, a comparison with the original parton shows non-negligible
differences between the different samples. As not even the direction of the addi-
tional correction is equal, the application of a factor reflecting the physics effects
is not undertaken. Hence the jets are corrected only for detector effects. In [44]
the accuracy of the data driven calibration is estimated to be of order 3 – 5%.
The procedure applied here yields an accuracy that is within ten percent for the
important pT regions.

7.2.2 B-tagging

Almost 100% of all top quarks decay into a W -boson and a b-quark. By tagging
jets originating from b-quarks, background rejection and reconstruction efficiency
can be enhanced. B-tagging is possible as B-hadrons have a relatively long lifetime
of τ ≈ 1.6 ps corresponding to a decay length of c·τ ≈ 500 µm. Thus jets initiated
by b-quarks may originate from a secondary vertex that can be separated from the
primary vertex, i. e. the vertex associated with the hard parton–parton scattering.
An additional handle can be constructed from the fact that about 20% of all B-
hadrons decay leptonically, leading to leptons inside b-jets. The third possibility
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Figure 7.3: Transverse momentum ratio of calorimeter and generator jets over pT

and η of the calorimeter jet, respectively.
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Figure 7.5: a) Transverse and b) three dimensional impact parameter distribution
for tracks belonging to b- (blue), c- (green) or light jets (red). [87]

to distinguish b-jets from others is based on the high charged track multiplicity
associated with B-decays. On average five charged tracks originate from the
decay of a B-hadron. [72]

The b-tagging algorithm applied here makes use of the charged tracks com-
ing from B-hadron decays. For each jet all tracks inside a cone of ∆R = 0.3
around the jet axis are determined and their transverse and three dimensional
impact parameters are computed. The impact parameter distributions of tracks
originating from the primary vertex follow a Gaussian centred at zero. For tracks
originating from secondary vertices this distribution is shifted. Figure 7.5 shows
the transverse impact parameter values for tracks belonging to jets of different
flavours. As b-jet tracks do often not originate from the primary vertex higher
impact parameters are encountered more often leading to an asymmetric shape.
From this distribution it is possible to define a probability for a track to come
from the primary vertex. Combining these impact parameter driven probabili-
ties for all high-quality tracks results in one final discriminator value for the jet,
reflecting its tracks’ compatibility with the primary vertex. Figure 7.6 shows the
resulting discriminator distribution for different flavoured jets. A low discrim-
inator value corresponds to a high compatibility with the primary vertex. An
in-depth discussion of this algorithm and its performance can be found in [87].

7.3 Missing Transverse Energy

Neutrinos (and maybe some exotic particles) are invisible to the detector. As the
actual parton–parton collision’s energy is unknown, it is not possible to recon-
struct the missing energy component along the z-axis. In the transverse region
each event is supposed to be balanced, thus a missing transverse energy /ET due
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Figure 7.6: Discriminator calculated of the probabilities of the jets’ tracks to
origin from the primary vertex for b- (blue), c- (green) or light jets (red). [87]

to undetected particles can be determined. The measurement of this quantity is
quite difficult as the detector is not hermetic and particles with |η| > 5 are not
taken into account for its computation. In addition the underlying event of a
collision and pile-up events spoil the measurement.

The missing energy is computed from the calorimeter cells for x- and y-
direction separately and finally /ET is calculated. For events with high /ET , often
due to one single high-energetic, undetected particle, its direction, i. e. the φ
component, can be determined quite accurately. The quality of the direction
measurement is reduced for low values of /ET . The calorimeter cell noise and
their non-linear response introduce a huge uncertainty to this observable, espe-
cially in case the “true” value is low. In spite of all the difficulties it provides a
reasonable starting point to estimate the unmeasured neutrino pT in tt̄ events, so
it is used within this analysis. The different corrections presented in [88] did not
improve the /ET performance in this analysis, so none of them is applied.
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Chapter 8

Selection and Event

Reconstruction

The semi-muonic decay channel will be analyzed, thus all processes leading to
one muon and at least four jets have to be considered as possible background as
they might result in a signal-like signature. The backgrounds taken into account
are leptonically decaying W - and Z-bosons accompanied by jets and QCD events
containing leptons. It is expected that other tt̄ decay modes than the semi-muonic
one contribute the largest amount of background.

The semi-muonic tt̄ decay is chosen for this analysis because of its clear sig-
nature. Compared to the other tt̄ decay channels this one is expected to allow
the highest reconstruction efficiency and background suppression.

In this chapter the applied event selection procedure is described. To avoid
any generator-dependent bias a robust cut based selection is performed using
only fundamental variables. The selection and reconstruction procedure applied
is based on the studies presented in [84].

8.1 Data Samples

As no measured data is available at the time of writing, a feasibility study is
presented. For this the full CMS detector simulation and the CMS analysis
framework CMSSW [72, 89] are used. The focus of this work is the investigation
of additional radiation in tt̄ events. Therefore four different generators were used
for signal simulation: Herwig6, MC@NLO, Pythia6 and Pythia8.

Herwig6 and MC@NLO were run with default settings applying tuning B
for the Jimmy underlying event generation. Pythia6 was run in default mode
as well, which implies the application of the Q2 ordered power shower option and
tune A with a slightly different energy scaling for the soft underlying event. For
Pythia8 no tunes exist so far, but it behaves very similar to tune S0 utilizing
a p2

T ordered power shower. So the four samples include two different power
showers, a matched shower and a standard shower, as well as angular, Q2 and
p2

T ordering. In addition the two Pythia versions cover the two most extreme
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behaviours of the Sudakov form factor obvious in the shape of the tt̄ transverse
momentum distribution at small values.

According to the NLO cross section from [30], the amount of signal data
produced for each generator corresponds to an integrated luminosity of 7 fb−1.
Background samples of interest include other tt̄ decay modes, leptonically de-
caying W - and Z-bosons accompanied by additional jets and QCD multi-jet
events. The background samples used were produced during the CSA07 chal-
lenge [90, 91]. The production was done using Alpgen for tt̄ and W/Z+jets
samples and Pythia6 for QCD. As the production was done only for 1 fb−1 with
a LO cross section, all background events gain an additional weight for scaling
the total number of events to an NLO tt̄ cross section for 7 fb−1.

8.2 Preselection

The goal of the preselection step is a reasonable reduction of the background
before the computing time consuming reconstruction step is run. Furthermore
the existence of all ingredients needed for the reconstruction is required. The
semi-leptonic muon channel investigated here consists of one muon, one neutrino
and four quarks in the final state. Due to the almost exclusive decay t → Wb
two b-quarks are expected in the final state. Analyzing the decay products on
detector level, one expects to observe one muon, two b-jets, two non-b-jets and
/ET due to the neutrino. As mentioned in section 7.3, /ET suffers from different
uncertainties so it is not used for the preselection. For the presented analysis
a KT4 jet algorithm is applied. The choice of this particular jet algorithm is
motivated in sections 9.1.1 and 9.1.3.

The applied cut values are motivated by N-1 distributions, i. e. the distribu-
tions after all other cuts. Figure 8.1 shows the N-1 distributions for the four
different signal samples.

For the used background samples soft prefiltering cuts were applied to reduce
the amount of data on the storage system. This changes the distributions of the
cut variables, but it does not influence the final cut efficiencies. All selection
cuts are chosen much tighter than the prefiltering criteria. Figure 8.2 shows the
N-1 distributions for signal and background samples. MC@NLO is used as signal
for the comparison, where the same prefiltering cuts have been applied as to the
background, leading to a slightly different distribution compared to 8.1. The cuts
are chosen based on the presented distributions.

8.2.1 Muon Selection

Each event is required to contain exactly one muon with pT > 30 GeV that
fulfils the isolation requirement defined in equations 7.1 and 7.2. The distribution
8.1a) shows an almost identical behaviour for all signal samples. Especially the
fact that the biggest difference occurs among Herwig and MC@NLO shows the
independence of this cut to the underlying event model as the same tuning is
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used for both samples. The two Pythia samples with different underlying event
models are located between Herwig and MC@NLO. Di-leptonic tt̄ , W and Z
events with one muon in the detector acceptance region are not affected by this
cut whereas the number of all other event types is reduced significantly, which
can be seen from figure 8.2a).

8.2.2 B-tag Selection

Due to the large branching ratio t → Wb two b-jets are expected in most tt̄
events. Figure 8.1b) shows the distribution of the highest b-tag for the different
signal samples. A slight difference may be noted between the two Pythia samples
and Herwig and MC@NLO. This might be caused by the different fragmentation
functions used. In 8.2b) the tt̄ backgrounds are omitted as no distinction between
the different tt̄ decay channels can be made from b-tags. Asking for the highest b-
tag in an event to exceed 0.5 reduces the QCD, W and Z background significantly.

As two b-jets are needed for the reconstruction step, the existence of a second
b-tag above zero is required. This requirement does not induce any additional
distinction power and rejects only very few events from both signal and back-
ground.

8.2.3 Jet Multiplicity Selection

Figures 8.1c) and 8.2c) show the number of jets above 25GeV, figures 8.1d) and
8.2d) the number of jets above 35GeV, both for |η| < 2.4. In this case the
respective other jet cut has not been applied as the jet selection is treated in
one step. The signal plots show the expected difference for the jet multiplicity,
leading to more high-pT jets per event for Pythia8 and to more events with only
few high-pT jets for Pythia6. From figures 8.2c) and d) it can be seen that the
jet cuts reduce the amount of di-leptonic tt̄, QCD and W and Z events. As the
jet multiplicity cut should be independent of the other cuts applied, one might
expect the same jet multiplicity distribution for the signal and the tt̄ → e/τ + jets
case. If both samples were generated with the same generator settings, this would
be true. Here the difference of MC@NLO and Alpgen + Pythia6 can be seen.

Three jets with pT > 35 GeV and a fourth jet with pT > 25 GeV are requested
for an event to be selected.

8.2.4 Preselection Summary

The applied preselection cuts discussed in sections 8.2.1 to 8.2.3 are:

• exactly one isolated muon with pT > 30 GeV,

• highest b-tag above 0.5, second b-tag is present,

• at least three jets with pT > 35 GeV in |η| < 2.4,

• at least four jets with pT > 25 GeV in |η| < 2.4.
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Figure 8.1: N-1 plots for the applied preselection cuts comparing the four different
signal samples. a) shows the number of isolated muons, b) the highest b-tag, c)
the number of jets with pT > 25 GeV and d) the number of jets with pT > 35 GeV.
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Figure 8.2: N-1 plots for the applied preselection cuts comparing signal with
various backgrounds. a) shows the number of isolated muons, b) the highest
b-tag, c) the number of jets with pT > 25 GeV and d) the number of jets with
pT > 35 GeV.
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Table 8.1: The number of initial and preselected events and the preselection
efficiency are given for the different backgrounds.

Sample Initial Events Preselected Events Efficiency
tt̄ di-leptonic 7.0 · 105 23177 3.3 · 10−2

tt̄ fully hadronic 2.8 · 106 152 5.4 · 10−5

tt̄ → e/τ + jets 1.88 · 106 8499 4.5 · 10−3

W + jets 8.1 · 108 18416 2.3 · 10−5

Z + jets 8.1 · 107 1152 1.4 · 10−5

QCD 7.7 · 1011 2812 3.7 · 10−9

Table 8.2: The number of initial and preselected events are given for the dif-
ferent signal samples. Furthermore preselection efficiency and yielded signal-to-
background ratio for the preselection step are presented.

Generator Initial Events Preselected Events Efficiency S/B Ratio
Herwig 941630 186044 0.197 3.4
MC@NLO 941630 192115 0.200 3.5
Pythia6 941630 169061 0.180 3.1
Pythia8 941630 215031 0.228 4.0

Table 8.1 shows the reduction of the different backgrounds achieved with these
cuts. The total number of background events is reduced from 1011 to about 5·104.
The efficiency of the preselection for the signal samples and the yielded signal-to-
background ratio are summarised in table 8.2. The different jet multiplicities in
the signal samples have a huge impact on the preselection efficiency, leading to a
signal-to-background ratio in a range from 3.1 to 4. Especially the low additional
radiation amount of the Pythia6 tune reduces the number of jets and hence the
number of events passing the jet cuts. The comparatively soft underlying event
scaling for this generator enhances this effect.

8.3 Reconstruction

For the reconstruction of the top quarks a least square fit with external constraints
is applied using the TKinFitter [92]. All measured quantities are varied according
to their precision and candidates for the top and the anti-top are constructed.
The accuracy of the measurements are given by the experimental resolutions.
First these resolutions needed for the kinematic fit are determined and then the
general procedure of the fit is explained.
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Figure 8.3: Resolution in the azimuthal angle φ of muons as a function of |η|.
The fit has been performed with ROOT.

8.3.1 Object Resolutions

The resolutions of all objects utilised in the construction are needed as input
for the kinematic fit. The resolutions are determined by a comparison of recon-
structed objects and generator objects. Later it will be possible to quantify the
resolutions from experimental data as discussed in [72]. The objects’ parameter-
ization is done in pT , η and φ.

The reconstructed objects are matched to generator objects via a ∆R crite-
rion. In most cases only one dominant dependence on the objects’ variables is
found and a binned χ2 fit with ROOT [86] can be performed. Only for the muon
pT dependences on both pT and η are observed and an unbinned likelihood fit
with Minuit [85] is done. Like for the jet calibration the generator dependence of
the resolutions was studied and it turned out to be negligible. As an example of
a fitted resolution function the φ resolution of muons is shown in figure 8.3.

The muon resolutions are:

σpT
(pT , η)[GeV] = 1.7 · 10−4 · p2

T [GeV2] + 5.1 · 10−1 · |η| + 1.1 · 10−4 ,

(8.1)

ση(η) = 6.8 · 10−5 · |η|2 − 2.1 · 10−4 · |η| + 4.2 · 10−4 , (8.2)

σφ(η) = 2.4 · 10−5 · |η|2 + 9.9 · 10−5 . (8.3)

The /ET resolutions are:

σET
(ET )[GeV] = 0.24 · ET [GeV] + 9.4 , (8.4)

σφ(ET ) =
43.2

ET [GeV]
+ 5.0 · 10−2 . (8.5)
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The resolutions of b-jets with pT > 20 GeV are:

σpT
(pT )[GeV] = 1.7 ·

√

pT [GeV] − 2.9 , (8.6)

ση(pT ) =
0.9

pT [GeV]
+ 2.4 · 10−2 , (8.7)

σφ(pT ) =
−9.7

p2
T [GeV2]

+
2.5

pT [GeV]
+ 6.2 · 10−3 . (8.8)

The resolutions of jets from a W -decay with pT > 20 GeV are:

σpT
(pT )[GeV] = 1.8 ·

√

pT [GeV] − 3.8 , (8.9)

ση(pT ) =
0.6

pT [GeV]
+ 2.6 · 10−2 , (8.10)

σφ(pT ) =
−15.2

p2
T [GeV2]

+
2.0

pT [GeV]
+ 8.8 · 10−3 . (8.11)

8.3.2 Kinematic Fit

The accuracy of the measured quantities is expressed by a covariance matrix using
the resolutions from the last section. During the fit corrections are calculated
for each component of the particles’ momenta using the covariance matrix for
weighting. This means that the corrections correspond to the accuracy of the
measurements. For example the momentum of the well measured muon should
be shifted less than the momentum of the neutrino. The momenta are changed
until the requirements given below are fulfilled. This procedure is motivated by
the idea that no quantity is measured correctly, so its value can be shifted in a
reasonable range. The covariance matrix is assumed to be diagonal where the
resolutions presented in 8.3.1 are used for its calculation. A detailed description
of the applied procedure is given in [51].

The input to the fit are the five highest pT jets as candidates for jets originating
from the W -decay, the three highest b-tagged jets as candidates for the b-jets,
the isolated muon and /ET for the neutrino. For the jets and the muon the
three momenta are used while for /ET only /Ex and /Ey are available. So for the
neutrino input values can be computed for ET and φ. The neutrino η is treated
as unmeasured quantity.

Here the semi-muonic decay is analyzed, so the external constraints imple-
mented are:

• invariant mass of muon and neutrino candidate has to equal the W mass,

• invariant mass of muon and neutrino candidate and one b-tagged jet has to
equal the top mass,

• invariant mass of two jets has to equal the W mass,

• invariant mass of these two jets and one additional b-tagged jet has to equal
the top mass.
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Figure 8.4: In a) the P (χ2) distribution is shown for all signal samples. The
peak in the first bin is cut to emphasise the flatness of the distribution for higher
values. In b) the P (χ2) distribution of the backgrounds is compared to the signal,
showing a significant difference in the number of entries in the first bin. The first
bin contains the events that are discarded by the final selection cut.

The kinematic fit computes shifted candidates for the muon, neutrino and
jets. Furthermore W -boson and top quark candidates are calculated. The top
and the anti-top candidate are used to construct a possible tt̄ system.

The fit is required to converge within 100 iterations otherwise the tried combi-
nation is rejected. If more than one converged fit is found the fit with the lowest
χ2 value is chosen. The χ2 of the fit follows a χ2 distribution so it can be used
to calculate the probability for obtaining this value or even a higher one:

P (χ2) = 1 − F (χ2) , (8.12)

where F (χ2) denotes the integral of the χ2 distribution. This probability is ex-
pected to be a flat distribution between zero and one. Figure 8.4a) shows the
probability distribution for the four signal samples. The ratio of entries in the
first bin varies from about 39% for Herwig to 42.5% for Pythia8. The fact that
the distribution is flat between 0.2 and 1 justifies the selection of the event with
the lowest χ2 value. Figure 8.4b) compares the signal (MC@NLO is chosen as an
example) with the different backgrounds, revealing a significant difference in the
first bin. The background distributions are almost flat in the range P (χ2) > 0.2
like the signal, but most of them suffer from very low statistics. A small value for
P (χ2) is associated with a high value for χ2 and a low quality of the fit. The huge
number of entries extremely close to zero is thus considered to be not signal- but
background-like.
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Table 8.3: The number of initial and selected events and the selection efficiency
are given for the different backgrounds.

Sample Initial Events Selected Events Efficiency
tt̄ di-leptonic 7.0 · 105 4532 6.4 · 10−3

tt̄ fully hadronic 2.8 · 106 0 < 5.0 · 10−6

tt̄ → e/τ + jets 1.88 · 106 1905 1.0 · 10−3

W + jets 8.1 · 108 2915 3.6 · 10−6

Z + jets 8.1 · 107 188 2.3 · 10−6

QCD 7.7 · 1011 0 < 1.8 · 10−11

8.4 Selection

The probability value from the χ2 distribution serves as final selection cut. Since
the relative number of events with values very close to zero is much higher for
background samples. All events are requested to fulfil

P (χ2) > 0.01 . (8.13)

Table 8.3 shows the combined efficiency of preselection and this cut for the
background. It should be noted that all events with no stable fit result are
discarded as well. The total number of background events is reduced to 9,540
with this step. While the observation of no fully hadronic decaying tt̄ event
passing the selection is trustworthy, this is quite optimistic for QCD events. Due
to computational limitations only a small fraction of the expected QCD events
could be simulated, leading to high weights for the individual events. When the
LHC is running, a QCD background description from data will be used.

Table 8.4 summarises the efficiency and signal-to-background ratio for the
signal samples. The ratio of preselected events passing the reconstruction and
final selection is lowest for Pythia8. The large number of additional jets allows
a large fraction of events to pass the preselection cuts, but the jets caused by
radiation and underlying event do in most cases not fulfil the constraints of the
kinematic fit, leading to a drop in the fitting efficiency and to a higher ratio of
fit probability values near zero (compare section 8.3.2).

The selection efficiency and the yielded signal-to-background ratio vary with
the different signal generators and their settings. It is obvious that another
choice of the generator for the background would lead to changed results, too.
Thus for a reasonable determination of both signal and background efficiencies
a good understanding of the physics involved and the generator properties are
mandatory.
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Table 8.4: The number of initial and selected events is given for the different
signal samples. Furthermore selection efficiency and signal-to-background ratio
for the full selection are presented.

Generator Initial Events Selected Events Efficiency S/B Ratio
Herwig 941630 57927 0.062 6.1
MC@NLO 941630 57765 0.061 6.1
Pythia6 941630 49256 0.052 5.2
Pythia8 941630 61018 0.065 6.4

Table 8.5: The number of selected events with one additional jet is given for the
different signal samples and the combined background. Furthermore selection
efficiency and signal-to-background ratio for the signal samples are presented.

Generator Selected Events Efficiency S/B Ratio
Herwig 51929 0.055 6.9
MC@NLO 51939 0.055 7.0
Pythia6 43342 0.046 5.8
Pythia8 55655 0.058 7.4
Background 7472 – –

8.5 Specific Selections

In the next chapter not only the reconstructed tt̄ system but also the additional
hardest jet will be investigated. Asking for an additional jet slightly reduces the
number of events fulfilling all requirements. Jets from the whole detector region
are taken into account, thus the pseudo-rapidity region is increased to |η| ≤ 5.
The additional jet is required to have an uncalibrated transverse momentum of
at least 10GeV. So the additional selection criterion is:

• at least one additional jet in |η| ≤ 5 with an uncalibrated pT above 10GeV.

The actual numbers are given in table 8.5.

Selecting the additional hardest jet from all jets not used for the tt̄ reconstruc-
tion introduces a huge combinatorial background. Therefore additional selection
requirements are applied to improve the number of correctly chosen jets for the
rapidity study presented in section 9.2.2. As shown in section 5.2.2 the dip
structure in the relative rapidity distribution present in Herwig becomes more
pronounced for high-pT jets. Consequently for this analysis jets with high trans-
verse momentum are used. The jet is required to have an uncalibrated minimum
transverse momentum of 50GeV. As shown in chapter 5 the transverse momen-
tum of high-pT tt̄ pairs is governed by the hardest emission. Thus the jet and the
tt̄ system are often arranged back-to-back. Here the tt̄ system and the additional
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Table 8.6: The number of selected events fulfilling the requirements specified in
the text are given for the different signal samples and the combined background.
Furthermore selection efficiency and yielded signal-to-background ratio for the
signal samples are presented.

Generator Selected Events Efficiency S/B Ratio
Herwig 7178 8 · 10−3 5.7
MC@NLO 7963 8 · 10−3 6.3
Pythia6 5762 6 · 10−3 4.6
Pythia8 9328 1.0 · 10−2 7.4
Background 1258 – –

jet are required to fulfil π − 0.5 < ∆φtt̄−jet < π + 0.5. Furthermore top and anti-
top quark are produced back-to-back in the tt̄ rest frame. Applying a boost due
to a hard emission narrows the angle between them significantly, leading to the
requirement |∆φt−t̄ −π| > 0.3. These three additional cuts reduce the number of
events significantly as summarised in table 8.6. Nonetheless, the combinatorial
background decreases extremely. Summarizing, the additional selection criteria
are:

• at least one additional jet in |η| ≤ 5 with an uncalibrated pT above 50GeV,

• tt̄ system and hard additional jet are arranged back-to-back: π − 0.5 <
∆φtt̄−jet < π + 0.5,

• top and anti-top are not back-to-back, fulfilling: |∆φt−t̄ − π| > 0.3.

These criteria serve very well for the necessities of the rapidity study but it should
be noted that the applied cuts reduce the used phase space significantly.



Chapter 9

Results

The events selected and reconstructed according to chapter 8 are analysed in this
chapter and the distributions obtained from the fitted tt̄ system are presented.
First the pT spectrum of the tt̄ pair is discussed. Afterwards the properties of the
hardest additional jet are analysed, investigating its transverse momentum and
its rapidity with respect to the tt̄ system.

9.1 Transverse Momentum of the tt̄ System

Figure 9.1 shows the pT distributions of the tt̄ system on generator level for the
four investigated data samples. As mentioned in chapter 8 the parameters were
chosen to give the most different predictions for this distribution. The Pythia6

distribution differs significantly from the other ones in the soft region, especially
the difference to Pythia8 is very large. In this region the distribution is driven
by the Sudakov form factor. The tail of the pT spectrum is different for all of
the used generators that cover a standard, a matched and two power shower
options. This region is mainly influenced by the upper phase space boundary for
the hardest emission. More detailed explanations for the different behaviour of
these models are given in chapter 5.

Figure 9.2 shows the normalised pT distributions obtained from the recon-
structed tt̄ pair including statistical errors. In sub-figure 9.2a) the soft region
of the tt̄ pT is presented, showing a big distortion compared to the input dis-
tributions. The result is affected by two large effects. First, the selection of
low-pT tt̄ pairs is relatively suppressed, which will be described in detail below.
Furthermore not all tt̄ pairs are reconstructed correctly, resulting in migration
effects. A migration to higher pT values is preferred, so the very soft pT bins
are underpopulated and the shape of the different samples becomes very similar.
Nevertheless, the relative number of the entries in each bin is still correlated to
the input distribution though the difference has decreased significantly. Due to
the different selection and reconstruction efficiencies all results are normalised to
emphasise the shape of the distribution. Compared to the other samples the total
number of entries is much lower for Pythia6.
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Figure 9.1: tt̄ pT spectrum on generator level for the different generators. a)
shows the soft region, b) the tail on a logarithmic scale. The distributions differ
significantly in both regions. More details about these spectra can be found in
chapter 5.
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Figure 9.2: a) shows the soft region of the normalised pT distribution of the
reconstructed tt̄ pair, b) the tail on a logarithmic scale, both including statistical
uncertainties.
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Figure 9.3: a) shows the soft region of the normalised tt̄ pT distribution for
Pythia6 on generator level before and after the preselection. The preselection
affects the shape of the distribution in the soft region significantly. b) depicts the
tail of the tt̄ pT distribution for Pythia8 on generator level before any cuts and
after the final selection. In the high-pT region less events are fitted than for low
and intermediate pT values.

In figure 9.2b) the tail of the tt̄ pT distribution is presented. Here the differ-
ence of the signals is more pronounced. The different input distributions can be
reconstructed qualitatively.

In the following sections the bias induced by the selection procedure and the
systematic uncertainties are discussed. Finally an unfolding procedure is applied
to obtain the “true” underlying spectrum.

9.1.1 Selection Bias

Figure 9.3a) shows the soft region of the Pythia6 tt̄ pT spectrum on generator
level before and after the application of the preselection. The preselection does
not only reduce the total number of events but also changes the shape of the dis-
tribution as events in the low-pT region are more often rejected by the cuts. This
is caused by the jet multiplicity cuts that demand at least three (four) jets above
35GeV (25GeV). As the tt̄ system gains its transverse momentum via radiation,
a high-pT tt̄ pair is more often accompanied by high-pT jets. These additional
jets can help the event to pass the preselection cuts, so the higher acceptance is
caused by jets not associated with the hard process. The jet multiplicity of an
event is correlated with the pT of the tt̄ system. Thus more events with high-pT

tt̄ pairs pass the preselection due to “wrong” jets. The impact of this fact is most
prominent for Pythia6 because of the high number of events with only very soft
radiation.
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In figure 9.3b) the tail of the tt̄ pT distribution is shown for Pythia8, com-
paring the sample before any cuts and after the complete selection. While the
preselection does not affect the tail of the distribution the kinematic fit leads to a
significant drop of reconstructed events in this region. The top quarks are highly
boosted in the transverse plane. As this boost is transmitted to their decay prod-
ucts, hadrons associated with different quarks can be assigned to one single jet.
Consequently the tt̄ system cannot be reconstructed properly in this case and the
efficiency of the kinematic fit is significantly reduced.

The choice of the particular jet algorithm has a significant influence on the
number of times hadrons originating from more than one quark are combined into
one single jet. It turns out that a small R parameter or respectively a small cone
radius are best suited to minimise the number of such wrong combinations and to
yield a high reconstruction efficiency in the high-pT region. The KT4 algorithm
used in this analysis turns out to show the best performance in this region.

The selection and reconstruction of the tt̄ pair thus distorts the shape of the
distribution. For a specific analysis of the soft region a more advanced selec-
tion procedure is needed, that does select especially low-pT events. For a correct
reconstruction of the tail the inclusion sub-jets may improve the number of re-
constructible events.

9.1.2 Systematic Uncertainties

The most important sources for systematic uncertainties are briefly discussed.
In chapter 5 the dependence on generator settings was presented. The goal of
this study is a comparison of different signal samples, so systematic uncertainties
from generator settings are not relevant. The focus is set on the most significant
influences of the selection and reconstruction. For the systematic treatment an
accuracy is assumed that is expected after the analysis of at least 10 fb−1 of data.
First the considered sources for uncertainties are presented and then the actual
size of the particular errors is discussed.

Jet Energy Scale

The jet energy scale is varied according to [44]:

σE

E
=











10% for pT < 20 GeV

10% − 7% · (pT − 20 GeV)/30 GeV for 20 GeV < pT < 50 GeV

3% for pT > 50 GeV .

(9.1)

It affects the number of events passing the preselection jet cuts and the fit result.

Missing Transverse Energy

The /ET is varied independently from the jet energy scale within 10 % according
to [44]. The number of selected events remains almost unchanged.
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B-Tagging

The accuracy of the b-tagging is expected to be of order 5 % as stated in [44]. In
the reconstruction the three highest b-tagged jets are used, so the most interesting
variation is expected to come from a change in the order of the b-tags. All b-tags
were smeared with a Gaussian with a width of 5 % of the respective b-tag and
processed again.

Background

It is not fully known how good Monte Carlo generators are able to model the inves-
tigated physics processes at the LHC. Especially the simulation of QCD events
implies a big uncertainty. Following the conservative approaches, the selected
background is varied within 50 %.

Pileup

The number of pileup events is directly related to the total cross section. Fol-
lowing [6] the uncertainty of the total cross section at the LHC is of order 20 %.
As the number of pileup events is given by a Poisson distribution this system-
atic is studied by varying the mean of this distribution by 20 %. An increasing
number of pileup events is expected to result in a larger number of jets, therefore
increasing the combinatorial background.

A dedicated study was performed with particular data samples showing that
the number of fitted events grows with the number of pileup events as expected.
Variations of the shapes of the resulting distributions are within the statistical
uncertainties. Due to the limited statistics of theses samples, their accuracy can-
not be compared to the other event samples used. Hence uncertainties caused
by pileup effects are not included in the errors shown in the following figures.
Nonetheless, pileup uncertainties are expected to influence this analysis and a
good understanding and proper treatment of pileup are important.

Systematic Influences on the Transverse Momentum of the tt̄ System

The systematic effects are studied for both binnings presented in figure 9.2. First
the soft region will be examined. In figure 9.4 the relative shifts for the different
systematic influences are shown. The key words “positive” and “negative” refer
to the direction of the variation in case of the jet energy scale and /ET . The
dependence on the jet energy scale is due to the different number of events passing
the selection. The shape of the pT spectrum remains almost unaffected. The
effect is slightly higher for Pythia6 due to the lower number of events passing
the selection. The variation of /ET does not change the number of reconstructed
events very much but the shape is distorted compared to the original distribution.
A good description of /ET is hence very important for a good reconstruction. The
variation of the b-tag shows almost no influences on the final distribution. For



102 Chapter 9. Results

the background variation only the shift upwards is shown. Compared to the other
generators the impact on Pythia6 is again higher due to the lower number of
events after the selection. The relative contribution to the final distribution is
shown in figure 9.5a). In all cases the largest uncertainties are caused by the
background and jet energy scale variations.

In sub-figure 9.4g) the total combined error is shown which is of order 15%.
A slight dependence on the generators can be observed reflecting the number
of events passing the selection. Consequently the relative error is highest for
Pythia6 and lowest for Pythia8.

The relative systematic uncertainties for the binning chosen in figure 9.2b)
are presented in figure 9.6 showing a similar behaviour as for the soft region. For
the high-pT region the relative errors grow due to low number of entries in the
last bins. Only for Pythia8 the relatively high number of entries even in the last
bin leads to a throughout stable result. In some plots the entry for Herwig is
missing in the last bin as the relative error becomes very large. For Herwig the
standard shower option with a soft tail was used, leading to very few events in the
high-pT region. Therefore the number of reconstructed events with a transverse
momentum above 600GeV is very small. Like for the binning discussed before it
can be observed that the largest uncertainties are caused by the background and
the jet energy scale. The error due to /ET grows with increasing pT and becomes
of comparable size to the former two uncertainties for pT > 350 GeV.

Sub-figure 9.6g) depicts the total relative uncertainty, showing a significant
rise with growing pT for all generators except Pythia8. In the last bin the
total error for Herwig exceeds one. Especially the background causes a big un-
certainty for Herwig as the tail of the normalised background distribution is
placed between the tails of MC@NLO and Pythia6. In figure 9.5b) the relative
contribution of the background to the Herwig spectrum is shown. The back-
ground is much harder than the Herwig distribution and consequently the last
bin in figures 9.2b) and 9.5b) is completely dominated by background events. It
should be emphasised that the background is scaled by a large factor due to lower
statistics. Therefore it is not possible to describe the shape of the distribution
in the low populated bins in the tail correctly. Background samples with higher
statistics are needed.

The uncertainties for the separate bins presented in figures 9.4 and 9.6 are
treated as uncorrelated. In section 9.1.3 correlations between different bins will
be included.

The selection bias and especially the systematic migration to higher recon-
structed pT values distort the reconstructed spectra compared to the generator
input. The reconstructed distributions show all a very similar shape. Figure 9.7
shows the same distributions as figure 9.2 but in this case the combined uncer-
tainties including statistical and systematic errors are shown for MC@NLO. As
the errors are of comparable size for all samples, the actual distinction power can
be deduced. In the soft region depicted in 9.7a) a distinction between the two
Pythia versions is possible, but Herwig and MC@NLO are compatible with
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Figure 9.4: Relative deviations for different systematic changes for the soft region
of the pT spectrum of the tt̄ system. For the jet energy scale and /ET the key
words “positive” and “negative” refer to the direction of the applied variation.
In sub-figure g) the combined relative systematic uncertainty is depicted. The
binning is chosen according to figure 9.2a).
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Figure 9.5: The reconstructed pT distribution obtained from Herwig is depicted,
showing the impact of the background on the final distribution. a) shows the soft
region, b) the tail on a logarithmic scale. In the high-pT region the impact of
the background is very large for Herwig while it is much smaller for the other
generators with harder pT tails.

all other generators. In the high-pT bins depicted in figure 9.7b) the samples are
distinguishable in many cases. It follows that a compatibility check between data
and different Monte Carlo models is feasible.

9.1.3 Unfolding

Unfolding of a measured distribution offers the opportunity to extract the “true”
underlying distribution of this variable by taking statistical errors and acceptance
corrections into account. The possibility to obtain an unfolded distribution is
estimated in this section based on the method described in [51].

Monte Carlo studies allow the determination of a transfer matrix A that re-
flects the transition of a true value x to a measured value y. Unfolding a measured
y distribution can be done by solving the least square problem

χ2 = (Ax − y) · W [y] · (Ax − y)T . (9.2)

Here W [y] denotes the inverse of the covariance matrix of the measured quantity
y. The solution of equation 9.2 may show large oscillations. It is possible to
apply an additional regularization criterion, leading to a smooth result. The
actual equation that needs to be solved is:

χ2 = (Ax − y) · W [y] · (Ax − y)T + τ · L(x − x0) · L(x − x0)
T . (9.3)

x0 denotes the bias distribution gained from a Monte Carlo sample. Several
regularization conditions L(x − x0) are possible. Here the difference x − x0 is
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Figure 9.6: Relative deviations for different systematic changes for the the pT

spectrum of the tt̄ system focusing on the tail of the distribution. For the jet
energy scale and /ET the key words “positive” and “negative” refer to the direc-
tion of the applied variation. In sub-figure g) the combined relative systematic
uncertainty is depicted. The binning is chosen according to figure 9.2b).
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Figure 9.7: a) shows the soft region of the normalised pT distribution of the
reconstructed tt̄ pair, b) the tail on a logarithmic scale. For MC@NLO the
combined uncertainties are drawn to estimate the distinction power of the final
result. The combined uncertainties are of comparable size for all signal samples.

minimised. The regularization parameter τ is determined applying the L-Curve

criterion [93]. A good choice of τ leads to a solution which is neither dominated
by the errors given via the covariance matrix nor by the regularization criterion.
Details about unfolding procedures can be found in [51]. The program used here
is TUnfold [94]. The transfer matrix is chosen to have sixteen bins for the parton
level and ten bins for the reconstructed distribution. To reduce the correlations
between adjacent bins, finally two neighboured bins are combined into one single
bin, so five unfolded bins are obtained.

This unfolding method is applied to the measured pT spectra. One of the
samples is used to compute the transfer matrix for the unfolding procedure. For
each systematic an alternative transfer matrix is computed and the full covariance
matrix is calculated. Thereby not only the absolute number of events in a bin but
also the migration effects are taken into account. For the /ET and jet energy scale
systematic two alternative migration matrices are used. Background subtraction
and an assumed uncertainty of 50% are included as well. Figures 9.8 and 9.9
show the unfolded spectra in which MC@NLO and respectively Pythia8 have
been used for the computation of the transfer matrix. The covariance matrices
are given in tables 9.1 to 9.6.

In figures 9.8a) and 9.8b) the unfolded spectra including error bars are shown.
The total number of entries is scaled to the expected number for 7 fb−1. As
MC@NLO is used for the computation of the migration matrix, the scaling is
done according to MC@NLO, leading to a difference in the total number for the
various generators due to the different selection efficiencies. Figures 9.9a) and
9.9b) show the the unfolded distributions with Pythia8 as reference generator.
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Figure 9.8: pT spectrum of the tt̄ system unfolded with MC@NLO. a) and c)
show the soft region, b) and d) the tail on a logarithmic scale. a) and b) present
the unfolded distribution including a scaling to the expected number of entries.
c) and d) show the normalised result in direct comparison to the distribution on
generator level.
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Figure 9.9: pT spectrum of the tt̄ system unfolded with Pythia8. a) and c) show
the soft region, b) and d) the tail on a logarithmic scale. a) and b) present the
unfolded distribution including a scaling to the expected number of entries. c)
and d) show the normalised result in direct comparison to the distribution on
generator level.
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Table 9.1: Covariance matrix for Herwig unfolded with MC@NLO.

Interval [GeV] 0 − 50 50 − 120 120 − 250 250 − 450 450 − 1000
0 − 50 1.4 · 1010 −1.7 · 109 1.0 · 109 −1.8 · 108 −1.5 · 108

50 − 120 −1.7 · 109 4.4 · 109 8.1 · 108 3.2 · 107 −1.1 · 108

120 − 250 1.0 · 109 8.1 · 108 1.2 · 109 1.4 · 108 −4.2 · 107

250 − 450 −1.8 · 108 3.2 · 107 1.4 · 108 5.6 · 107 1.5 · 106

450 − 1000 −1.5 · 108 −1.1 · 108 −4.2 · 107 1.5 · 106 9.0 · 106

Table 9.2: Covariance matrix for Pythia6 unfolded with MC@NLO.

Interval [GeV] 0 − 50 50 − 120 120 − 250 250 − 450 450 − 1000
0 − 50 1.3 · 1010 −1.6 · 109 3.7 · 108 −1.3 · 108 −1.0 · 108

50 − 120 −1.6 · 109 3.8 · 109 3.7 · 108 1.4 · 108 −1.5 · 108

120 − 250 3.7 · 108 3.7 · 108 4.2 · 108 4.8 · 107 −2.0 · 107

250 − 450 −1.3 · 108 1.4 · 108 4.8 · 107 5.9 · 107 1.6 · 107

450 − 1000 −1.0 · 108 −1.5 · 108 −2.0 · 107 1.6 · 107 3.4 · 107

Table 9.3: Covariance matrix for Pythia8 unfolded with MC@NLO.

Interval [GeV] 0 − 50 50 − 120 120 − 250 250 − 450 450 − 1000
0 − 50 7.6 · 109 7.6 · 106 −3.6 · 107 −6.1 · 107 9.4 · 107

50 − 120 7.6 · 106 2.6 · 109 7.9 · 108 5.7 · 107 −2.8 · 108

120 − 250 −3.6 · 107 7.9 · 108 7.9 · 108 6.0 · 107 −1.4 · 108

250 − 450 −6.1 · 107 5.7 · 107 6.0 · 107 1.7 · 108 3.4 · 107

450 − 1000 9.4 · 107 −2.8 · 108 −1.4 · 108 3.4 · 107 1.4 · 108
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Table 9.4: Covariance matrix for Herwig unfolded with Pythia8.

Interval [GeV] 0 − 50 50 − 120 120 − 250 250 − 450 450 − 1000
0 − 50 8.9 · 109 −4.4 · 109 −2.0 · 108 −4.7 · 108 2.5 · 107

50 − 120 −4.4 · 109 1.5 · 1010 1.9 · 108 6.0 · 107 −1.9 · 108

120 − 250 −2.0 · 108 1.9 · 108 4.4 · 108 2.8 · 106 −1.5 · 107

250 − 450 −4.7 · 108 6.0 · 107 2.8 · 106 5.6 · 107 −2.5 · 106

450 − 1000 2.5 · 107 −1.9 · 108 −1.5 · 107 −2.5 · 106 4.7 · 106

Table 9.5: Covariance matrix for MC@NLO unfolded with Pythia8.

Interval [GeV] 0 − 50 50 − 120 120 − 250 250 − 450 450 − 1000
0 − 50 1.0 · 1010 −6.0 · 109 −5.5 · 108 −3.9 · 108 −1.1 · 108

50 − 120 −6.0 · 109 1.5 · 1010 8.3 · 107 2.9 · 108 −1.5 · 108

120 − 250 −5.5 · 108 8.3 · 107 5.1 · 108 4.0 · 107 −2.2 · 107

250 − 450 −3.9 · 108 2.9 · 108 4.0 · 107 4.0 · 107 5.5 · 105

450 − 1000 −1.1 · 108 −1.5 · 108 −2.2 · 107 5.5 · 105 8.0 · 106

Table 9.6: Covariance matrix for Pythia6 unfolded with Pythia8.

Interval [GeV] 0 − 50 50 − 120 120 − 250 250 − 450 450 − 1000
0 − 50 1.6 · 1010 −6.8 · 109 −5.1 · 108 −2.0 · 108 −1.7 · 108

50 − 120 −6.8 · 109 1.6 · 1010 2.5 · 108 2.1 · 108 −2.3 · 107

120 − 250 −5.1 · 108 2.5 · 108 4.5 · 108 5.0 · 107 −1.3 · 107

250 − 450 −2.0 · 108 2.1 · 108 5.0 · 107 3.5 · 107 −1.0 · 105

450 − 1000 −1.7 · 108 −2.3 · 107 −1.3 · 107 −1.0 · 105 7.8 · 106
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The big distortion of the measured spectrum shown in figure 9.2a) and the corre-
sponding errors lead to large uncertainties in the first bins. Using MC@NLO as
reference it is possible to unfold all bins whereas Pythia8 massively underesti-
mates the number of entries from Herwig and MC@NLO in the last bin. This
is caused by the comparably large number of entries from Pythia8. In addition
the background sample has to be split into two subsamples for a correct treat-
ment, thereby increasing the weights of the background events to even higher
values. For a better unfolding result a much more precise background description
is needed.

In sub-figures c) and d) the unfolded result is compared to the generator
prediction. In all cases the principal shape is described correctly and in almost
all cases the theoretical prediction lies within the error bars of the unfolded result.
Thus it is possible to unfold a measured distribution even if the “wrong” Monte
Carlo model is applied. Reducing the number of events for the computation of
the transfer matrix worsens the agreement of unfolded and predicted distributions
considerably.

The covariance matrices (tables 9.1 to 9.6) are fully dominated by system-
atic errors, the statistical errors are about one order of magnitude smaller. For
such a measurement systematic effects must be known to a higher precision than
assumed here. Furthermore this procedure suffers extremely from the underpop-
ulation of the very soft region. 50−70% of all events are assumed to be produced
with a transverse momentum below 50GeV, so any error on this region propagates
to the other regions changing the whole distribution. Especially a distribution
similar to Pythia6 is affected by this.

It is important to note the large (anti-)correlations between the different bins
shown in tables 9.1 to 9.6. Especially between the low and high populated bins
a large interrelation is visible. This is caused by the migration already visible in
figure 9.2a) where the low-pT region is extremely underpopulated. As the events
generated in the low-pT region are reconstructed with a higher pT , the different
bins cannot be regarded independently. Over the full range a migration to higher
pT values is preferred. For the last bin there is always at least one off-diagonal
element with an absolute value higher than its actual variance.

All results presented here are obtained using the KT4 jet algorithm due to
reasons discussed in section 9.1.1. Performing the unfolding procedure with events
reconstructed with other jet algorithms shows that the final unfolding result is not
influenced very much. As stated above a small R parameter or respectively a small
cone radius increase the number of reconstructed high-pT tt̄ pairs. Consequently
the error on the last bin and the covariances associated with this bin are much
smaller. In a comparison of KT4, KT6, SC4, SC5 and SC7 it turns out that in
most cases the KT4 algorithm leads to the lowest covariances. The worst result
is achieved with the SC7 algorithm, whereas the performances of KT6, SC4 and
SC5 are only slightly worse. A direct comparison of the reconstructed result to
the generator prediction shows only small differences.

Basically an unfolding of a measured data sample can be accomplished, though
it will be quite challenging. An adequate understanding of the systematic influ-
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Figure 9.10: Normalised transverse momentum of the hardest reconstructed jet
on detector level in each event with statistical errors. The selection procedure is
merely used for event tagging.

ences and a good background description are needed. In addition the migration
matrices have to be computed from Monte Carlo samples with high statistics.

9.2 Reconstructed Jets

9.2.1 Transverse Momenta of Reconstructed Jets

Jets in tt̄ events originate from the decay products of the top quarks, radiation,
multi parton interactions and from pileup events. According to the studies pre-
sented in chapter 5 gluon emissions can cause high-pT jets. Choosing the hardest
jet from each selected event leads to the pT spectrum depicted in figure 9.10.
Except for small differences, mostly due to normalization, the distributions look
identical up to transverse momenta of order 150GeV. For higher pT values the
expected distribution due to hard emissions is observed, offering the possibility
to gain a hint on the available phase space only by checking the hardest jet in
events identified as tt̄ events.

In section 8.5 an extended selection asking for an additional jet is discussed.
Using this selection an investigation of additional hard jets becomes possible.

The hardest jet that is not used for the reconstruction of the tt̄ system is as-
sumed to be caused by a hard emission. The transverse momentum distributions
of these jets are shown in figure 9.11. The peak region is significantly different to
the one shown in figure 9.10 but the tails of the distributions reveal a very similar
behaviour. The transverse momentum of the additional hardest jet is sensitive
to the phase space for hard emissions. In both figures the jets are not calibrated,
which leads to only a qualitative statement. After a calibration of gluon jets is
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Figure 9.11: Normalised transverse momentum of the hardest jet which is not
used for the tt̄ reconstruction on detector level with statistical errors.

applied, these spectra may help in identifying the upper phase space boundary
for hard emissions.

The relative shifts due to systematic effects are presented in figure 9.12. As
in the case of the tt̄ system huge deviations can be observed for the high-pT bins,
again showing sensitivity to the total number of event reconstructed in the bin.
For Herwig the total error becomes larger than one already at a pT of order
300GeV as shown in figure 9.12g). The last bins of the Herwig and MC@NLO
distributions are again governed by background events with high weights and even
for Pythia6 the error becomes very large. The background distribution of the jet
pT is very hard, located somewhere between Pythia6 and Pythia8. The actual
influence on the Herwig spectrum is presented in figure 9.13a). The systematic
influences from /ET and b-tagging are negligible except for the bins in which
statistical effects lead to large deviations. In figure 9.13b) the same distributions
as in figure 9.11 are presented but the combined uncertainties for MC@NLO are
shown to study the distinction power between the different samples. In many
cases the different samples can be distinguished from each other.

9.2.2 Rapidity of Reconstructed Jets

For the analysis of the rapidity distribution the extended selection with very hard
cuts discussed in section 8.5 is applied.

Figure 9.14 shows the absolute value of the hardest additional jet’s rapidity
with respect to the tt̄ system on generator level. All selection cuts discussed
in section 8.5 are applied. The cut on the jet pT results in a smaller difference
between the p2

T and Q2 ordered showers. The imposed angular ordering for the
Q2 ordered shower is designed especially for the soft and collinear region, thus its
influence is smaller for high-pT radiation.
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Figure 9.12: Relative deviations for different systematic changes for the pT spec-
trum of the additional hardest jet focusing on the tail of the distribution. For
the jet energy scale and /ET the key words “positive” and “negative” refer to the
direction of the applied variation. In sub-figure g) the combined relative system-
atic uncertainty is depicted. The binning is chosen according to figure 9.11. In
some cases the uncertainties exceed one.
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Figure 9.13: Normalised transverse momentum of the hardest jet which is not
used for the tt̄ reconstruction. In a) the influence of the background on the
Herwig result is shown. In b) the combined uncertainties for MC@NLO are
drawn to estimate the distinction power of the final result. In the low-pT region
the combined uncertainties are of comparable size for all signal samples.
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Figure 9.14: Absolute rapidity of the leading jet with respect to the tt̄ system
∆y = yjet − ytt̄ on generator level for all four generators including the cuts de-
scribed in section 8.5.
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Figure 9.15: Absolute rapidity of the additional leading jet with respect to the
reconstructed tt̄ system ∆y = yjet − ytt̄ on detector level.

In figure 9.15 the relative rapidity of the first jet is shown for the reconstructed
events. The distributions from Pythia6 and Pythia8 are indistinguishable but
clearly different from Herwig and MC@NLO. The latter two do not show the
dip structure observed on generator level but there are significantly less events
with a low relative rapidity compared to the Pythia samples. It turns out that
the background distribution on its own has a similar shape as the two Pythia

versions. The impact of the background is illustrated in figure 9.16a) using the
Herwig signal as example. Furthermore combinatorics prefer low relative rapid-
ity values, thereby physics and combinatorial background both fill the low relative
rapidity region. Figures 5.13 and 9.14 show that the distributions of Pythia6

and Pythia8 become more similar for higher values of the jet pT . As the cut of
50GeV is applied to uncalibrated jets, the emissions associated with these jets
are expected to have an even higher transverse momentum. Thus the agreement
of the reconstructed distributions of the two Pythia versions is not surprising.

The systematic shifts are presented in figure 9.17. The uncertainties due to
/ET and b-tagging are governed by statistical fluctuations. For the jet energy
scale a trend can be identified but again the fluctuations are very large. The
background and the total uncertainties show a clear structure depending on the
total number of entries in a bin. For low relative rapidities the relative errors
are larger for Herwig and MC@NLO and for high values the uncertainties are
larger for the Pythia samples, depending on the total number of events in the
particular region.

Within the errors the curves are distinguishable and the influence of the phase
space boundaries due to angular ordering can be examined. Figure 9.16b) shows
the same distributions as figure 9.15, including the combined statistical and sys-
tematic uncertainties for MC@NLO. The uncertainties are of comparable size
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Figure 9.16: Absolute rapidity of the additional leading jet with respect to the
reconstructed tt̄ system ∆y = yjet − ytt̄ on detector level. In a) the impact of the
background on the Herwig result is shown. In b) the combined uncertainties for
MC@NLO are drawn to estimate the distinction power of the final result. The
combined uncertainties are of comparable size for all signal samples.

for all samples, thus a clear distinction between the angular ordered and the
non-angular ordered results is feasible.

9.3 Conclusions

As the results of this chapter show, a distinction between the different investigated
radiation models is possible. Once LHC is running, data can be compared to the
various models.

The reconstructed transverse momentum spectrum of the tt̄ system is dis-
torted due to a selection bias and huge migration effects. For the soft region,
that is mainly affected by the migration of events, a better handling of the sys-
tematic uncertainties is needed. The hard tail can be reconstructed well and
the different models are distinguishable. Here the shape of the background dis-
tribution is important and must be known to high precision. In spite of the
high systematic uncertainties and the large migration effects, the different mod-
els can be distinguished from each other within the systematic uncertainties in
most bins. An unfolding of a measured distribution seems to be feasible but a
good understanding of the background and a careful treatment of the systematic
uncertainties are needed.

The transverse momentum distribution of the hardest additional jet shows
a good sensitivity to the upper phase space limit in the the high-pT range of
the distribution. In addition the rapidity with respect to the tt̄ system can be
determined well after the application of hard cuts. Even though the fraction of



118 Chapter 9. Results

 y|∆|
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

N N∆

-0.2

-0.1

0

0.1

0.2
JES positive

a)  y|∆|
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

N N∆

-0.2

-0.1

0

0.1

0.2
JES negative

b)  y|∆|
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

N N∆

-0.2

-0.1

0

0.1

0.2

 positive
T

Missing E

c)

 y|∆|
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

N N∆

-0.2

-0.1

0

0.1

0.2

 negative
T

Missing E

d)  y|∆|
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

N N∆

-0.2

-0.1

0

0.1

0.2
B-tag

e)  y|∆|
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

N N∆

-0.2

-0.1

0

0.1

0.2
Background

f)

 y|∆|
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

N N∆

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4
Combined uncertainty

g)

Legend
Pythia8
Pythia6
MC@NLO
Herwig

Figure 9.17: Relative deviations for different systematic changes for the the ab-
solute rapidity spectrum of the additional hardest with respect to the tt̄ system.
For the jet energy scale and /ET the key words “positive” and “negative” refer
to the direction of the applied variation. In sub-figure g) the combined relative
systematic uncertainty is depicted. The binning is chosen according to figure
9.15.
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events used for the rapidity study is quite low, a clear distinction between the
models with and without a dead zone due to colour coherence effects can be
accomplished.

The presented analysis offers the opportunity to compare different radiation
models to data. Since a good understanding of systematic uncertainties and
background description are needed, a lot of experience has to be gained by CMS
before a realization of this study is possible.
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Chapter 10

Summary and Outlook

10.1 Summary

Due to the large top mass, top pairs are well suited for the investigation of QCD
radiation at the LHC, especially of high-pT emissions. The transverse momentum
of the tt̄ system is directly sensitive to QCD radiation and offers the opportunity
to investigate completely different phase space regions. The soft peak region is
governed by the Sudakov form factor leading to a sensitivity on the evolution
scale and αs. The structure of the high-pT tail depends on the available phase
space region. Real emissions lead to additional jets, so a correlation between the
kinematics of the tt̄ system and high-pT jets is expected. An examination of these
observables allows to compare different radiation models implemented in Monte
Carlo event generators.

The results from the generator study show that the soft region of the pT of the
tt̄ system reveals big differences depending on the actual settings for the parton
shower. Different tunes with different parameter choices exist. In the high-pT

region MC@NLO and Alpgen both agree with each other. The standard parton
showers show a much softer behaviour due to the phase space limits set by the
factorization scale. In contrast the power showers exploiting the whole available
phase space show a much harder tail. Here a sensitivity to the actual ordering in
the shower is observed: The p2

T ordered shower simulates more hard emissions.
Investigating additional jets shows a clear correlation between the hardest jet
and the transverse momentum of the tt̄ system. In all scenarios the pT of the tt̄
pair is mainly driven by the hardest emission. The rapidity distribution of the
hardest jet in the frame of the tt̄ system shows a dip structure for the angular
ordered shower. The reason is a dead zone in the phase space that is caused by
the inclusion of colour coherence effects. The jet multiplicity turns out to depend
on various aspects, so for the analysis of specific effects additional information is
needed.

A selection and reconstruction of top pairs after the full CMS detector sim-
ulation introduces several difficulties. While the background can be suppressed
to a reasonable level, the selection is sensitive to the kinematic configuration of
the simulated tt̄ system. Nonetheless, the pT spectra of the reconstructed tt̄ pairs

121
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differ for the various inputs and a compatibility check between data and differ-
ent Monte Carlo models is possible. Applying an unfolding procedure allows to
obtain the underlying spectrum with a reasonable precision. The errors are dom-
inated by systematic uncertainties. Especially a good understanding of the jet
energy scale and a trustworthy computation of /ET are needed. The high-pT tail
of the hardest jet in each tt̄ event is governed by the hardest additional emis-
sion. Moreover, the hardest additional jet not used for the tt̄ reconstruction can
be examined. Both options show a clear sensitivity on the upper phase space
boundary for hard emissions. Finally the rapidity of the additional jet in the
frame of the reconstructed tt̄ system reflects the available phase space regions.
The dip structure of the relative rapidity distribution from the angular ordered
shower can be identified.

The CMS experiment offers the opportunity to compare the different models
to data. The deviations of the models studied in this analysis could be identified
on the reconstruction level. Once LHC is running, it will be possible to measure
these distributions with an accuracy high enough to differentiate between the
various models. Both the transverse momentum spectrum of the tt̄ system and
the properties of the additional jets are very well suited for a determination of
the radiation parameters. Therefore higher order calculations can be checked and
possible modifications of the spectra due to contributions of non-standard model
physics processes may be identified.

10.2 Outlook

On generator level additional models can be investigated. Different schemes for
matrix element matching and alternative parton shower evolutions based on ap-
proaches different from the DGLAP equations exist. An extension of the pre-
sented analysis with these generators would lead to an increased understanding
of the underlying physics.

On reconstruction level a diminishment of systematic uncertainties is very im-
portant. Additional Monte Carlo samples with sufficient statistics could facilitate
the inclusion of pileup effects in the treatment of systematic uncertainties. Fur-
thermore, background samples with higher statistics would help to gain a better
understanding of the high-pT region. Performing two separate analyses focusing
on to the low- and high-pT regions, respectively, it may be possible to obtain
better reconstructed results in the particular region. Finally, the performance of
the unfolding could be improved with a larger Monte Carlo signal sample for the
computation of the transfer matrix.



Appendix A

Technical Details

In the following some technical specifications of the used software and some gen-
erator settings are summarised.
Used generator versions for the studies presented in chapter 5:

• Alpgen: version 2.13,

• Herwig6: version 6.510 with Jimmy version 4.31,

• Herwig++: version 2.2.0,

• MC@NLO: version 3.3 with Herwig6 version 6.510,

• Pythia6: version 6.416 with a modification in pyveto [95] to enable match-
ing of Alpgen events with a p2

T ordered shower,

• Pythia8: version 8.100.

The four signal samples analysed in chapters 8 and 9 were produced with the CMS
software version CMSSW 1 6 12. For MC@NLO the CTEQ6m pdf was used while
for the other generators the corresponding LO pdf CTEQ6l was utilised. The top
mass was set to mt = 175 GeV for all generators.
Used generator versions for the production of these signal samples:

• Herwig6: version 6.510 with Jimmy version 4.2,

• MC@NLO: version 3.3 with Herwig6 version 6.510 and Jimmy version 4.2,

• Pythia6: version 6.409,

• Pythia8: version 8.100.

The used background samples were produced during the CSA07 challenge [90]
with the CMS software version CMSSW 1 5 2. The tt̄, W and Z plus jets back-
grounds were generated with Alpgen [91] while the QCD background was gen-
erated with Pythia6. The changes made during the development from CMSSW
version 1 5 2 to 1 6 12 do not affect the reconstructed objects of interest [96].
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