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Abstract

The entry of digital signal processors in modern control systems not only allows for extended
diagnostics compared to analog systems but also for sophisticated and tricky extensions of the
control algorithms. With modern DSP- and FPGA-technology∗, the processing speed of digital
systems is no longer inferior to analog systems in many applications. A higher degree of digi-
talization leads to an increased complexity of the systems and hence to higher requirements on
their operators. The focus of research and development in the field of high frequency control
has changed in the last few years and moved towards the direction of software development and
complexity management.

In the presented thesis, a frame for an automation concept of modern high frequency control
systems is developed. The developed automation is based on the concept of finite state ma-
chines (FSM), which is established in industry for years. A flexible framework was developed,
in which procedures communicate using standardized interfaces and can be exchanged easily.
With that, the developer of high frequency control components as well as the operator on shift
shall be empowered to improve and adapt the automation to changed conditions without special
programming skills required.

Along the automation concept a number of algorithms addressing various problems were de-
veloped which satisfy the needs of modern high frequency control systems. Among the devel-
oped and successfully tested algorithms are the calibration of incident and reflected wave of
resonators without antennas, the fast adaptive compensation of repetitive errors, the robust esti-
mation of the phase advance in the control loop and the latency adjustment for the rejection of
instabilities caused by passband modes.

During the development of the resonator theory, high value was set on the usability of the
equation in algorithms for high frequency control. The usage of the common nomenclature
of control theory emphasizes the underlying mathematical structures of the equations. Several
physical limitations and requirements, for example the limits of the vector sum calibration, were
newly and adequately calculated based on the developed theory.

The linear accelerator of the Free-Electron Laser in Hamburg (FLASH) served as the main
platform for testing of the algorithms and concepts. The developed automation, in particular
the flexible and transparent framework and methods for the reduction of the complexity of the
various communication channels (quantization) is not only suited for high fequency control but
also for other aspects of an accelerator and beyond.

∗DSP=Digital Signal Processor, FPGA=Field Programmable Gate Array
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Zusammenfassung

Der Einzug digitaler Signalprozessoren in moderne Regelsysteme erlaubt nicht nur die Imple-
mentation weit umfangreichere Diagnosemöglichkeiten als bei analogen Systemen sondern auch
sensible und trickreiche Erweiterungen der Regelalgorithmen selber. Durch moderne DSP- und
FPGA-Technologie† steht die Geschwindigkeit digitaler Systeme der von analogen in vielen An-
wendungsbereichen nicht mehr nach. Mit der Digitalisierung ist die Komplexität der Systeme
gestiegen und damit auch die Anforderungen an diejenigen, die sie bedienen sollen. Damit ist
die Optimierung der Regelung in Software und die Beherrschung der Komplexität mehr ins Zen-
trum von Forschung und Entwicklung bei Hochfrequenzregelungen gerückt als es noch vor ein
paar Jahren der Fall war.

In der vorliegenden Arbeit wird der Rahmen für ein Automatisierungskonzept moderner Hoch-
frequenzregelungen entwickelt. Die hier entwickelte Automatisierung baut auf dem Konzept des
endlichen Automaten auf, welches für industrielle Anwendungen als etabliert gilt. Es wurde ein
modulares Framework entwickelt, in dem Prozeduren über standardisierte Schnittstellen mitein-
ander kommunizieren und problemlos ausgetauscht werden können. Damit soll sowohl dem Ent-
wickler von Komponenten der Regelung als auch dem Operateur auf Schicht die Möglichkeit ge-
geben werden, einzelne Aspekte der Automatisierung zu verbessern beziehungsweise geänderten
Bedingungen anzupassen, ohne dass dafür besondere Programmierkenntnisse nötig wären.

Entlang des Automatisierungskonzeptes wurden neue Algorithmen zu zahlreichen Problem-
stellungen entwickelt, welche den gestiegenen Anforderungen moderner Hochfrequenzregelun-
gen gerecht werden. Unter den entwickelten und erfolgreich getesteten Algorithmen sind die
Kalibration einfallender und reflektierter Welle bei Resonatoren ohne Antenne, die schnelle ad-
aptive Vorauskompensation repititiver Fehler, die robuste Bestimmung des Phasenvorschubs im
Regelkreis und der Latenzzeitabgleich zum Zwecke der Unterdrückung von Instabilitäten verur-
sacht durch Passbandmoden.

Bei der Entwicklung der Resonatortheorie wird Wert auf die praktische Verwendbarkeit der
Formeln in den Regelalgorithmen gelegt. Durch die Verwendung der in der Regelungstheorie
üblichen Nomenklatur wird die Struktur der zugrundeliegenden Gesetzmäßigkeiten hervorgeho-
ben. Auf Basis der entwickelten Theorie konnten an zahlreichen Stellen physikalische Limitie-
rungen, zum Beispiel bei der Vektorsummenkalibration, neu und angemessen ermittelt werden.

Getestet wurden die entwickelten Verfahren zu größten Teilen am Linearbeschleuniger des
Free-Electron Lasers in Hamburg (FLASH). Die entwickelte Automatisierung, insbesondere das
flexible und transparente Framework und die Verfahren zur Reduktion der Komplexität der zahl-
reichen Kommunikationskanäle (Quantisierung) ist nicht nur für die Hochfrequenzregelung ge-
eignet sondern auch für andere Bereiche eines Teilchenbeschleunigers und darüber hinaus.

†DSP=Digital Signal Processor, FPGA=Field Programmable Gate Array
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1. Introduction

The Free-Electron Laser Hamburg (FLASH) is a unique pulsed light source for a variety of
modern sciences including medicine, biology and material research. The free-electron laser
(FEL) is to be distinguished from other light sources by its high intensity (∼ 1 GW) in a spectral,
spatial and temporal confined space, in summary by its high brilliance. The wavelengths of
FLASH are tunable in the range between 13 and 45 nm, which makes FLASH suiteable for the
exploration of very small structures.

The electrons participating at the FEL process are subject to strong requirements on their
longitudinal and transversal dimensions (required peak current ∼ 2 kA, required emittance ∼
3 mm-mrad). The properties of the electron beam are determined by the radio frequency (RF)
system in combination with the beam optics, which puts strong requirements on the RF system.
Typically, an amplitude respectively phase stability of 0.1 % and 0.1◦ is required. For next gen-
eration light sources, such as the european XFEL project, the requirements are even tighter by
one order of magnitude.

FLASH uses superconducting nine cell cavities for particle acceleration, operated at a fre-
quency of 1.3 GHz. One RF amplifier (klystron) feeds up to 16 cavities. In the next expansion
stage, this will be extended to 24 cavities, in future linear accelerator projects it might even be
32 or 48. An peculiar challenge for the low level RF (LLRF) control at FLASH origins from the
superconducting nature of the cavities as well as the concept of vector-sum control, where one
LLRF system controls the collection of 16 cavities together with one klystron as actuator. Super-
conducting cavities have an extremelty high quality factor (Q0 ≈ 109), leading to time constants
of the loaded cavities of the order of the pulse length itself (1−2 ms). Additionally, the bandwidth
(ω1/2 ≈ 200 Hz) is so small that changes in geometry of either mechanical or electromagnetic
origin affect the field quality significantly.

With the entering of digital signal processors in modern control systems the complexity of ser-
vice has increased. Digital systems offer a broader variety of diagnostics as well as the possibility
for more sophisticated control algorithms. With modern computing devices, such as digital sig-
nal processors (DSP) and field programable gate arrays (FPGA), the processing speed of digital
systems is no longer inferior compared to analog systems for many applications. The optimiza-
tion of control algorithms as well as the control of complexity of the whole system moved more
into the foreground of todays research and development compared to a few years ago.

Industrial automation is often based on finite state machines. This concept, developed by the
informational sciences, offers with the help of state charts powerful tools for modeling of discrete
systems. Many software packages, including the control system of FLASH, support this concept.
Contrary to industrial automations, it is required from the automation of the high frequency con-
trol of FLASH that it is still functioning even if the operator is bypassing the automation and
modifies parameters directly at the high frequency control. Further, the automation is automat-
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2 Chapter 1. Introduction

ing an environment which is still developing and changing. While the former requires a solid
treatment of exceptions, the latter needs a flexible automation concept.

Chapter 2 gives a brief introduction into the theory of free-electron lasing with the example of
FLASH.

Chapter 3 develops the formalism used for the algorithms developed in the framework of this
automation. The formalism emphasizes the general nature of resonant modes and the different
possible couplings to the modes. To this end it uses the language of control theory and intro-
duces physical constants at a late stage. In section 3.9.1 and 3.9.2, the formalism is used for the
estimation of the calibration requirements for vector-sums, where the variable under control is
the sum of two dimensional vectors.

The next chapter, chapter 4, goes into details of special problems of LLRF control that are ei-
ther resolved with the developed formalism and/or covered by the developed automation scheme.
Among the developed and successfully tested algorithms are the calibration of incident and re-
flected wave of resonators without antennas, the fast adaptive compensation of repetitive errors,
the robust estimation of the phase advance in the control loop and the latency adjustment for the
rejection of instabilities caused by passband modes.

A new method for an automatic calibration of the measured incident and reflected waves at
pulsed resonators is presented in section 4.3.1. The application of the calibration, which is per-
formed fully automated within a few pulses, allowes the estimation of the fields inside the res-
onator as the sum of the measured and calibrated incident and reflected wave. An algorithm
for the pre-compensation of repetitive errors was developed and successfully tested within a few
tenthousend iterations. It is described in section 4.4.6. The FLASH high frequency control holds
ready tables for the pre-compensation of repetitive errors which are applied in every pulse. The
algorithm calculates these tables on the basis of the data of the preceding pulse using digital
filters and is thus very well suited for the implementation in digital devices. A method for the
estimation of the phase advance in the control loop was developed and proved to be suitable for
the compensation of fluctuations in the so-called loop phase. As described in section 4.4.3, the
phase advance in the loop can fluctuate by several ten degrees under the influence of variations
of the temperature which would be critical for the stability of the control loop without compen-
sation. A very simple algorithm which is capable of increasing the latency of the control loop by
several nanoseconds was used for the demonstration of the destabilizing effects of modes beside
the fundamental accelerating mode in the superconducting resonators. The same algorithm can
be used in the normal operation of the control loop for adjusting the latency in a way that the
modes beside the fundamental mode practically do not destabilize the control loop. The results
are presented in section 4.4.2.

In chapter 5, the concept for an automation framework based on finite state machines is pre-
sented. A flexible framework was developed, in which procedures communicate using standard-
ized interfaces and can be exchanged easily. With that, the developer of high frequency control
components as well as the operator on shift shall be empowered to improve and adapt the au-
tomation to changed conditions without special programming skills required.

The last chapter 6 gives an overview over the available procedures. Each procedure is com-
patible with the developed framework and can be applied in a modular fashion.



2. Linac Based Free-Electron Laser

2.1. Linear Accelerator for Free-Electron Lasers

When building a free-electron laser based on a linear accelerator (linac), the largest effort in
terms of manpower and finance goes into the linac itself. Its purpose is to deliver a bright, high-
energy electron beam. A linear accelerator, compared to a circular one, does not suffer from
energy-loss due to synchrotron-radiation and the longitudinal emittance is thus not limited by
the synchrotron-radiation process. While in a synchrotron or storage ring particles reach their
maximum energy after several revolutions, a linac transfers the energy with a single pass. The
main components of a linear accelerator shall briefly be introduced at the example of FLASH
(figure 2.1).

Figure 2.1.: Layout of FLASH showing the main components of the linac and the undulators.

Particle Source

The particle source is the origin of the electrons that are accelerated further downstream the linac.
The particle source at FLASH is a photoinjector, where electrons are produced by means of the
photoeffect. A Nd:YLF laser at 1047 nm is twice frequency doubled and focused on a cathode of
cesium telluride where it liberates electrons. The pulses of the laser arrive with a periodicity of
1 µs and a width of about 4 ps rms and thereby define the bunch structure of the electrons [1]. The
cathode is surrounded by a 11

2 -cell copper resonator which provides an accelerating field directly
at the origin of particle production of up to 45 MV/m. Within a short distance, the electrons are
accelerated to 5 MeV, an energy at which the emittance of the beam is no longer broadened by
space charge effects. The resonator of an RF photoinjector is often referred to as the RF gun [2].
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4 Chapter 2. Linac Based Free-Electron Laser

Superconducting Linac

Particles are further accelerated downstream the RF gun to the required energy for FEL operation
of about half a GeV. The acceleration is achieved by the alternating fields of 9-cell resonators
build from pure niobium [3]. If properly matched to the generator frequency, RF resonators can
build up high alternating electric fields with low power losses. The resonators are helium-cooled
and operated at a temperature of 1.7 K, where niobium is superconducting. The quality factor
of resonators made from superconducting niobium is of the order of 1010 which allows for very
high field at low RF losses compared to normal-conducting resonators. However, superconduct-
ing resonators introduce additional subtleties like limits on duty-cycles due to heat disspiation
at very low temperatures and a sensitivity to environmental noise due to thin walls and very
narrow bandwidths. Geometric distortions lead to a significant shift in the center frequency of
the accelerating mode, referred to as detuning. Detuning is caused by mechanical influences,
microphonics [4], or time varying radiation pressure, Lorentz force [5].

At FLASH, eight nine-cell superconducting cavities are grouped into one cryomodule. One
RF-amplfier (klystron) serves for one to four modules. Figure 2.3 shows the pulse-structure for
a typical example-configuration. The total pulse length is of the order of the time-constant of the
cavity itself. For each pulse, beam acceleration is only done during the flattop of 800 µs in total.
Bunches traverse the cavity every 1 µs. The flat top starts after the filling time which lasts for
about 500 µs.

Beam Optics

The trajectory of the particle beam through the vacuum of the beam pipe is determined by the
beam optics which is based upon the deflection of charged particles under the influence of a mag-
netic field. The different types of magnets used in the accelerator correspond to the elements of a
multipole-expansion of a general magnetic field distribution. Dipoles are used to steer the beam
through the vacuum pipe by causing a deflection of all particles in a plane that is perpendicular to
the magnetic field. Combinations of alternating focussing and defocussing quadrupoles control
the diameter of the beam in the horizontal as well as in the vertical plane along the linac. Some
dispersive sections of FLASH are equipped with sextupoles for correction of chromaticity. Oc-
tupolemagnets are not forseen at FLASH. An overview over current beam optics studies is found
in [6].

Bunch Compression

A bunch compressors can be considered a special purpose optics device. Its purpose ist to com-
press each bunch in the longitudinal direction in order to achieve the peak currents of several kA
that are required for the FEL process. In a bunch compressor, four dipoles are set up in a way
that the beam undergoes a chicane, either D-shaped or S-shaped (refer to figure 2.1). The bend-
ing radius of a single particle trajectory under the influence of a homogeneous magnetic field is
inversely proportional to the energy of the particles, therefore particles of higher energy pass the
bunch-compressor on a straighter trajectory. Higher energy particles, if they arrive later in the
bunch, catch up with the lower energy particles. Off-crest acceleration in the module before the
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Figure 2.2.: The longitudinal phase space distribution and the charge profile are shown in front of
the chicane (a) and behind it (b). Due to the small initial curvature, the phase space
distribution folds over during compression and a huge amount of charge accumulates
at the head of the bunch.

bunch compressor ensures that the later particles have a higher energy. Figure 2.2 illustrates the
process inside a bunch compressor. The two columns show the electron energy distribution and
the longitudinal electron density before and after the bunch compressor. Due to the change of
the electron positions inside the bunch, a region with a very high peak current is produced. A
detailed description of the processes inside a bunch compressor can be found in [7]. In order to
remove nonlinear longitudinal energy profiles on the bunch an RF section with a higher harmonic
frequency of the fundamental accelerating mode can be used.

Diagnostics

The beam diagnostic of an accelerator is a field that uses a great variety of techniques in or-
der to determine energy, position, charge, shape and arrival-time of individual bunches or bunch
trains. Transverse positions are typically determined from electromagnetic interaction with an
additional impedance inserted into the vacuum pipe (beam position monitor). Cameras with a
direct connection to the accelerator control system provide the operator with images of lumines-
cent screens. The screens image properties of the particle beam by direct interaction with the
electrons or with the emitted photons in dispersive regions. The charge of the electron beam
is measured by toroids. The beam induces a voltage in the windings of a coil that is further
processed and digitized. Information about the longitudinal shape of the bunch is obtained by a
transverse deflecting structure that tilts the spacial orientation of a single bunch. The tilted bunch
is projected on a luminescent screen and thus reveals information over its longitudinal profile
(refer also to [8]). Further installations for the bunch shape diagnostic include electro-optical
methods, like the timing electro-optical (TEO) experiments. Altogether, the beam diagnostic is
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a complex system of monitoring devices that allowes to adjust the various number of parameters
in a linac in order to have a good beam quality.

Control System

The control-system of a linear accelerator is a distributed network with the purpose to inter-
connect all active components. Physically, the Distributed Object Oriented Control System
(DOOCS) of FLASH is built from distributed CPUs which are connected by the internet pro-
tocol (IP). Each CPU is a full-fledged computer with a hard drive, memory and a Unix operating
system installed.

The majority of these units is embedded in industrial VME busses with direct connection to
the hardware of the active components of the accelerator, as for example the beam diagnostics.
The purpose of the embedded computers is to collect data from the hardware (e. g. beam di-
agnostics) and supply it to the network. On the other hand, the embedded computers receive
commands from the network and translate them into signals of e. g. a stepmotor of a valve of the
accelerator. The embedded computers form the lowest layer of the three layer model of DOOCS,
their purpose is to provide data from the devices to the network and to communicate commands
from the network to the decives.

The middle layer of the control system is again a set of CPUs with a direct connection to the
control network. These CPUs are usually not embedded into a bus system and not necessarily
have a direct cable connection to devices of the accelerator. The middle layer CPUs are high
performance machines with large processing capabilities. The programs that run on the middle
layer CPUs are called middle layer servers. Their purposes are manifold and range from signal
processing to data archiving. For example, middle layer servers can collect data from several
locations of the lower layer CPUs and mathematically derive new quantities. These derived
quantities are available in the control network via the same protocols as the data from the lower
layer servers. Another example of a middle layer server is the implementation of the automation
presented in this thesis.

On the top level, the control system presents a graphical interface to the operator. The elements
display information from the two lower layers of the control system, as textual or graphical rep-
resentation to the operator. The interface also allows to modify quantities at the system remotely
and with this trigger predefined action at the two layers below, as for example switching of a high
power amplifier or the adjustment of the current in a magnetic coil.

2.2. Free-Electron Laser Process

The free-electron laser process (FEL process) is a collective instability of the electron beam
where the energy is transferred into a photon beam of high brilliance. Its high power at small
wavelengths, tuneability and coherence it yet unreached by conventional lasers and opens new
possibilities for several fields of science. The electron motion in an alternating magnetic field
is in the starting point for the FEL process. This section introduces the particle trajectory and
spontaneous radiation in an undulator and the low and high gain FELs.
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Figure 2.3.: Typical configuration of the pulsed operation at FLASH. The figure introduces
names for the individual phases of a pulse (filling, flattop and decay) and gives ex-
amples for the duration of individual elements.

Electron Trajectory in an Undulator

At the end of the linac described in section 2.1, a so-called undulator magnet establishes an
alternating magnetic field from permanent magnets which forces the electrons on a periodic
trajectory and makes them emit spontaneous synchrotron radiation. With λu and Bu being the
undulator period and the peak magnetic field, a condition for positive interference can be stated
for the photons emitted at a wavelength λ:

λ =
λu

2γ2

(
1 +

K2

2

)
, where γ =

E
mec2 and K =

eBuλu

2πmec
(2.1)

The interference condition has its origin in the relativistic Doppler-effect (factor 1/2γ), the rela-
tivistic length contraction (1/γ) and the slippage of the electron orbit with respect to a relativistic
particle on a straight orbit (K2/2). A photon emitted by an electron in the forward direction
traverses the undulator on a straight path which is shorter than the periodic trajectory of the
electron, see also figure 2.4. The resonance condition 2.1 is true if the retardation of the elec-
tron path between a period of the undulator with respect to a relativistic particle on a straight
path is equal to the photon wavelength. A more useful form of the undulator parameter K is
K ≈ 0.93λu [cm]Bu [T]. For a given undulator and a given wavelength of the electromagnetic
wave λ, a resonant γres can be found according to equation 2.1 and is defined as

γres =

√
λu

2λ

(
1 +

K2

2

)
. (2.2)

Spontaneous Radiation

While a radiating dipole has a cylindric radiation characteristics in the far zone, the synchrotron
radiation of a relativistic particle is pointing in the direction of the particle velocity with an
opening angle that is in good approximation 1/γ. In an undulator, the radiation characteristics is
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additionally determined by the number of periods. An undulator is distinguished from a wiggler
which is also an alternating magnetic structure, by the parameter K, which is larger than 1 for a
wiggler and less or equal to 1 for an undulator. If K < 1, the angle between the symmetry axis
of the undulator and velocity vector of the charged particles is less or equal to 1/γ which ensures
overlapping of the emitted light cones. The opening angle of the total emitted radiation decreases
by interference with the square-root of the number of periods,

√
Nu. The relative amount of the

power emitted in the forward direction is therefore proportional to Nu. On the other hand, the
total emitted energy by an electron is proportional to the path length in the magnetic field, or
equivalently to the number of periods, Nu. Altogether, one can state that the total amount of
energy in an undulator that is emitted in the forward direction is proportional to N2

u/γ.
The spectrum of undulator radiation is dominated by a line at the frequency that is given by the

resonance condition in equation 2.1. Odd higher harmonics of the fundamental wavelength λ ex-
ist with an amplitude that is smaller by several orders of magnitude compared to the fundamental.
The spectral width of the fundamental line is proportional to 1/Nu.

The radiation power emitted by a single point-like particle that carries out a harmonic oscilla-
tion at a circular frequency ω0 with an amplitude x0 scales with the square of the charge q2,

P =
q2x2

0ω
4
0

6πε0c3 . (2.3)

Synchrotron radiation from a bunch of electrons is a stochastic process and the photons emit-
ted from different electrons add up incoherently. The total power of the synchrotron radiation
therefore scales linearly with the number of electrons, N. Coherent emission of photons would
scale with the square of the number of photons, N2. However, coherent emission requires that
the sources of the radiation are positioned with equal distance along the longitudinal axis of the
radiation. This is the case FEL radiation.

Low Gain FEL

In a low gain FEL, the interaction between an electron beam on its oscillatory trajectory through
the undulator and a coaxial electromagnetic wave,

E(z, t) = E0 cos(kz − ωt + ψ0) (2.4)

is considered. In the low gain approximation, the amplitude E0 is assumed to be constant since
the energy transfer between the electron beam and the electromagnetic wave is small compared
to the energy of the electromagnetic wave. The transverse dependency of the electromagnetic
wave is neglected. In a low gain FEL, the particle beam in the undulator is an active medium that
is capable of amplifying an electromagnetic wave by a few percent in a single passage. In optical
resonators with mirrors of high reflectivity, low gain FELs are used as sources for intensive light
of high coherence, compareable to conventional lasers. The achievable wavelengths is limited
by the availability of mirrors of high reflectivity and is typically above 150 nm.

The trajectory of the electrons is determined by the alternating magnetic field of the undulator.
Each position along the z-axis of the undulator can be assigned a phase kuz of the electron motion
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Figure 2.4.: Illustration of the SASE-process. Incorherent radiation dominates at the beginning
of the undulator while at the end the electron beam shows a density modulation with
a periodicity corresponding to the emitted photon-wavelength.

with ku = 2π/λu. The sum of the phases of the electromagnetic wave in equation 2.4 and the
phase of an electron trajectory along the undulator is defined as the ponderomotive phase ψ,

ψ(z, t) := (k + ku)z − ωt + ψ0. (2.5)

The ponderomotive phase ψ depends on the frequency of the electromagnetic wave and the ge-
ometry of the undulator. Equation 2.5 assigns to each point in space and time a ponderomotive
phase. The periodicity in space of the ponderomotive phase ψ along the undulator axis for a fixed
time is nearly the wavelength λ, since k � ku. Each electron is assigned a ponderomotive phase
according to its position z(t) at the time t. In an electron bunch with a length of greater than the
wavelength λ, the electrons will cover all ponderomotive phases between 0 and 2π uniformly.

The pondermotive phase of an electron determines if spontaneous radiation of the electrons
interfers constructively or destructively with the electromagnetic wave. If the ponderomotive
phases of a bunch of electrons that obey the resonance condition 2.1 is distributed uniformly, the
net energy transfer between the electromagnetic wave is zero.

In the low gain approximation it is shown that a uniform distribution of ponderomotive phases
of a collection of electrons that are slightly above or below the resonance energy (equation 2.2)
changes. The result is a non-uniform distribution of the ponderomotive phases and a net energy
transfer. Deceleration and acceleration leads to a microbunching of the electrons on the scale of
photon wavelength. If the initial electron energies are slightly above the resonance condition, the
energy transfer will lead to an increased energy of the electromagnetic wave. In case the electron
energies are below the resonance energy, the electrons will gain energy from the electromagnetic
wave.
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High Gain FEL

Creation of a high power beam of coherent photons at wavelengths below 150 nm requires a
scheme without optical elements since. If an electromagnetic wave as in equation 2.4 is amplified
by several orders of magnitude by the interaction with an electron beam in an undulator the
process is no longer described by the low gain approximation. The electromagnetic wave in
equation 2.4 is extended by a z-dependent envelope,

E(z, t) = E0(z) cos(kz − ωt + ψ0(z)). (2.6)

The theoretical treatment of the high gain FEL calculates a solution for the envelope of the
electromagnetic wave E0(z) and the charge density of the electromagnetic beam that is consistent
with the Maxwell equations and the dynamics of the electrons that result from the low gain
approximation. The charge density distribution is no longer negligible since the microbunching
is in the order of the wavelength of the emitted radiation. The ansatz for charge density is

ρ(z) = ρ0 + ρ1(z) cosψ(z) (2.7)

with a uniformly distributed part (ρ0) and a part that is bunched with the periodicity of the pon-
deromotive phase (ρ1). The treatment of the equations yields a third order differential equation
that can be solved analytically ([9]). In a high gain FEL, the interaction between the electrons
and the electromagnetic wave leads to a microbunching of the particles which, in turn, increases
the power of the electromagnetic wave by coherent emission.

The result is an exponential amplification of the electromagnetic wave along the z-axis of the
undulator with a characteristic gain length Lg,

Lg =
1
√

3
3

√
4γ3me

µ0K2q2kuN
. (2.8)

Due to the high amplification of a high gain FEL which can be 106 the amplitude of the
initial electromagnetic wave can be rather small. At FLASH, the initial electromagnetic wave is
obtained from the spontenaous synchrotron radiation. An FEL starting from noise is abbreviated
SASE or self amplifying spontaneous emission. The first lasing of FLASH is summarized in
[10].

2.3. Requirements on the Accelerating Fields

The requirements on the accelerating fields for SASE operation can be derived from the required
properties of the electron beam at the entrance of the undulator.

From equation 2.1 one can calculate the required energies for certain wavelengths. The
FLASH undulator is a fixed 12 mm gap permanent magnet device with a period length of 2.73 cm
and a peak magnetic field of 0.47 T, which leads to K = 1.198 [11]. Table 2.1 gives the required
beam energies for a number of wavelengths. The lowest wavelength reached by FLASH so far is
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13 nm and is limited by the available energy of the electron beam.

λ γ E
1 µm 153 78.2 MeV
10 nm 1531 782.4 MeV
0.1 nm 15311 7.8 GeV

Table 2.1.: Resonant electron energies for wavelength between 1 µm and 1 Å of the FLASH un-
dulator.

Besides the total energy of the beam the energy distribution is of importance. The required
maxiumum width of the energy distribution is in principle given by the spectral amplification
profile that follows from equation 2.1. In [9] it is shown for the high gain FEL theory that the
amplification profile narrows compared to the low gain FEL theory for an increasing number of
undulator periods. The relative width of the amplification curve is typically below 10−3. This
has consequences for the tolerable energy spread inside a bunch, from bunch to bunch and from
pulse to pulse. Inside an electron bunch, the energy spread may not exceed the 10−3. Electrons
outside this energy range will not participate at the FEL process. The energy spread from bunch
to bunch is of particular interest in case the undulator is used inside a resonator with a revolving
photon beam. In this case, the center of the allowed electron energy distribution is given by the
wavelength of the light. A pulse to pulse fluctuation of the center energy of the electron bunches
of larger than the 10−3 leads to a fluctuation of the wavelength of the radiation in case the FEL
is self-amplified. Fluctuations of the wavelength are usually not wanted by the users of the FEL
radiation. If the FEL is starting from a seed laser, only the electrons with energies around the
accepted energy will participate at the FEL amplification.

Another set of requirements is related to the bunch compression and applies to the RF sections
before the bunch compressors. FLASH has two bunch compressors installed and the process in
these devices is briefly introduced in section 2.1. The process and thus the compression ratio
depend strongly on the acceleration phase of the electrons in the RF sections before the bunch
compressor. The sensitivity on phases is even increased if an RF section with a higher order
mode is used in order to compensate for non-linearities in the energy profile. For an optimal
compression, several working-points of the RF system in amplitude and phase exist. In [12],
an amplitude and phase stabiliy of a few tenth of a percent and a few hundreth of a degree is
estimated as a requirement in a typical scenario with a third order RF system. In the absence of
a higher order RF system, the requirements are relaxed by about an order of magnitude.

Additional constraints can be the arrival-time of the electron beam in order to be able to support
experiments that need synchronization with a secondary (pump-probe) laser. A typical number
is 100 fs which is of the order of the bunch length [13].

A start to end simulation [14] that considers the setup of FLASH and takes into account sev-
eral effects including the bunch-compression effects and the required energy spread in front of
the undulator results in amplitude and phase requirements of 0.02 % and 0.05◦ for all acceler-
ating modules. In this simulation, the errors in different RF stations with a single klystron are
considered uncorrelated, which reduces the required field stability in single stations.





3. Field Dynamics in (Superconducting)
Cavities

3.1. Envelope Approximation for Cavity Modes

Our general understanding of the field dynamics in super-conducting cavities is that each reso-
nant mode can be treated as a harmonic oscillator. An LCR-circuit with properties equivalent
to a cavity mode is introduced in [15] and [16] and from this the fundamental equations that
describe the cavity dynamics are derived. The introduction of equivalent LCR-cirquits is only
a convenience, while the “important equations refer to the resonant frequencies, their widths,
amplitudes, and phases, and to the strength of coupling, quantities which at these frequencies
are directly or indirectly easily measurable” ([17]). Refraining from the LCR-cirquit model has
advantages when it comes to the calibration of in- and outgoing signals (e. g. for the loop-phase
measurement in 4.4.3). Within this and the following chapters, a nomenclature known from con-
trol theory is utilized, where the system (the cavity mode) is treated as a two-port with u as input
and x as output. While the x is usually interpreted as the accelerating voltage, the u is the exciter
of the oscillation and can be the beam current or a field amplitude of the forward traveling wave.

A harmonic oscillator describing a resonant mode of a cavity (superconducting or normal-
conducting) is given by the equation

ẍ + 2ω1/2 ẋ + ω2
0x = 2ω1/2ω0u, (3.1)

where u(t) and x(t) are the high-frequency in- and output signals of the system. Assuming the
stimulation to be harmonic∗, u(t) = u0 · eiωt, the response of the system in steady-state will be of
the same form, x(t) = x0 · eiωt. Here, u0, x0 ∈ C and have amplitude and phase but are constant in
steady-state. The exciting frequency ω does not necessarily coincide with the resonant frequency
ω0 of the mode. ω1/2 is called the half-bandwidth of the system.

For u0 = 1 the steady-state amplitude and phase can be calculated to

|x0| =
2ω1/2ω0√

(ω2
0 − ω

2)2 + (2ω1/2ω)2
(3.2)

∠x0 = arctan
−2ω1/2ω

ω2
0 − ω

2
(3.3)

∗Already here we use the complex notation. Later, this will simplify the notation significantly. For physical
quantities usually only the real part is relevant.

13
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For the modes of the cavities at FLASH, the half-bandwidth is small compared to the center
frequency, ω1/2 � ω0, therefore one can approximate ω2

0−ω
2 = 2ω0∆ω for small ∆ω := ω0−ω.

∆ω is called the detuning of a mode†. In the case of accelerating modes, time variation of the
detuning is caused by changes of the cavity mode itself (changes of ω0) rather than changes of
the exciting frequency ω. Equations 3.2 and 3.3 can now be written as‡

|x0| =
1√

1 +
(
∆ω
ω1/2

)2
(3.4)

∠x0 = − arctan
ω1/2

∆ω
(3.5)

It is still assumed that u0 = 1. ∠x0 therefore is −90◦ for ∆ω = 0. Knowing that − arctan(1/x) =
arctan(x) + π one usually defines

ψ := arctan
∆ω

ω1/2
(3.6)

and calls it the detuning-angle, ψ = 0 for ∆ω = 0. It should be noted here that x0 = 1 for ∆ω = 0
thanks to the choice of the right-hand side of equation 3.1 which might have appeared arbitrary
initially. Figure 3.1 illustrates the amplitude and phase of the system. With the definition of ψ,
the equation for the amplitude, equation 3.4, can be expressed as |x0|

2 = 1/(1 + tan2 ψ) = cos2 ψ
or |x0| = cosψ. For a constant exciting amplitude u0, the steady-state amplitudes of the fields
therefore lie on a circle. Now that the steady-state of the system is described in terms of constant
u0 and x0, the question arises if one can describe the transient behavior of u0 and x0 with a
differential equation similar to equation 3.1. Therefore, x0 and u0 are no longer considered
constant,

x = x0eiωt, ẋ = (ẋ0 + iωx0)eiωt, ẍ = (ẍ0 + 2iωẋ0 − ω
2x0)eiωt,

u = u0eiωt, u̇ = (u̇0 + iωu0)eiωt, ü = (ü0 + 2iωu̇0 − ω
2u0)eiωt,

(3.7)

and 3.1 reads

ẍ0 + 2(iω + ω1/2)ẋ0 + (ω2
0 − ω

2 + 2iωω1/2)x0 = 2ω1/2ω0u0. (3.8)

Substituting the same approximation for ω2
0 − ω

2 as above and dividing by 2iω yields

ẍ0

2iω
+ (1 +

ω1/2

iω
)ẋ0 + (−i∆ω + ω1/2)x0 = −iω1/2

ω0

ω
u0. (3.9)

The fraction ω0/ω can be set to one in good approximation. ω is considered large with respect

†With this definition, ∆ω := ω0 − ω, a sign of the detuning is defined.
‡Because of the very good approximations ω0 ≈ ω and ω0 � ∆ω, “≈” is omitted. For the super conducting

cavities at FLASH, ω1/2/ω0 ∼ 10−7 and for the normal conducting gun ω1/2/ω0 ∼ 10−5.
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Figure 3.1.: Amplitude and phase of a bandpass in steady-state if the half-bandwidth is much
smaller then the resonance frequency.

to ẋ0 and ẍ0/ω1/2, therefore the terms with ω in the denominator are neglected,

ẋ0 + (ω1/2 − i∆ω)x0 = −iω1/2u0. (3.10)

It is again desirable to have an equation with zero phase difference between x0 and u0 in the
resonant case as earlier, when the detuning ψ was introduced. This is achieved by replacing −iu0

with u0. This leads to the following formula for the envelope of the signals that are transformed
by a bandpass. Since the bandpass formula will no longer be used, the index 0 is omitted in the
envelope approximation:

ẋ + (ω1/2 − i∆ω)x = ω1/2u (3.11)

3.2. Transient Behavior of the Cavity Mode Equation

As depicted in figure 3.1, the steady-state solution of 3.11 for u = const. is given by

xsteady-state =
ω1/2

ω1/2 − i∆ω
u

=
ω1/2√

ω2
1/2 + ∆ω

2
ei arctan ∆ω

ω1/2 u, (3.12)
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which is at the same time a solution of the inhomogeneous equation. One homogeneous solution
is

xhom = e−(ω1/2−i∆ω)t. (3.13)

From this, the step-response of the system (u = 0 for t < 0, u = 1 = const. else) is easily found,

xstep =
ω1/2

ω1/2 − i∆ω
(1 − e−(ω1/2−i∆ω)t)u. (3.14)

Looking at the first derivative ẋstep(0) = ω1/2 at t = 0, one sees that the direction of change of
the mode points directly into the direction of the excitation (that is, ẋstep(0) is real). This is an
important observation relevant for the control of a system where the excitation is updated with a
clock-rate much smaller than the typical time-scale of the mode, τ = ω−1

1/2. For such a controller,
the mode never is in steady-state.

The figures 3.2, 3.3 and 3.4 show the transient behavior of the cavity at a timescale of 7ω−1
1/2

for different detunings of up to 5ω1/2. The parametric plot 3.4 gives an impression of the conver-
gence of the system towards the circle that is formed by the steady-state solutions for different
detunings. It should be noticed that the slopes of the amplitude and the phase in the beginning of
the step-response are identical for all detunings in case of the amplitude but differ for the phases.

A lengthy calculation (refer to appendix A) reveals the slope of the transient amplitude and
phase (still assuming that the drive is switched on at t = 0, i. e. u = 1 for t > 0):[

d
dt
|xstep|

]
t=0
= ω1/2 and

[
d
dt
∠xstep

]
t=0
=
∆ω

2
(3.15)

These formulas are very helpful for examining a running system via “optical inspection”, since
they provide fast information about bandwidth and detuning of a cavity.

While equation 3.15 provides information about bandwidth and detuning at the beginning of a
pulse for constant drive, 3.13 (homogeneous solution) yields the same information at the end of
a pulse (i. e. u = 0):

d
dt
|xhom| = ω1/2 and

d
dt
∠xhom = ∆ω (3.16)

3.15 and 3.16 are similar except for a factor 1/2 for the detuning-term. One more conversion
of 3.16 reveals the beauty of the complex notation (obtained by differentiating the logarithm of
3.13, the homogeneous solution):

Re
ẋhom

xhom
= ω1/2 and Im

ẋhom

xhom
= ∆ω (3.17)

The last formula has a practical meaning, since it contibutes to a simplification of algorithms.
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Figure 3.2.: Step response of the amplitude of a resonator for different detunings.

Figure 3.3.: Step response of the phase of a resonator for different detunings.
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Figure 3.4.: Transient behavior in the complex plane for a constant excitation at different detun-
ings. The step-response is shown for switch-on (solid) and switch-off (dashed) of
the drive signal. The small circles mark the elapsing of a time-constant τ.

Figure 3.5.: Picture clarifying the nomenclature throughout this chapter: u = ρeiθ is transformed
by the transfer function representing the cavity into x = reiϕ.

3.3. Cavity Mode Equation in Polar Coordinates

For a number of applications it is useful to have an equivalent for equation 3.11 in polar coordi-
nates. The envelope of the signals is therefore expressed in polar coordinates.

u = ρeiθ, x = reiϕ, ẋ = (ṙ + irϕ̇)eiϕ (3.18)

Figure 3.5 illustrates this nomenclature. The cavity equation 3.11 can be written as

[ṙ + irϕ̇ + (ω1/2 − i∆ω)r]eiϕ = ω1/2ρeiθ (3.19)

This is separated into real and imaginary part by adding respectively substracting its complex
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conjugate from each side of the equation. Two equations are the result.

(ṙ + rω1/2) cosϕ − (rϕ̇ − r∆ω) sinϕ = ω1/2ρ cos θ
(ṙ + rω1/2) sinϕ + (rϕ̇ − r∆ω) cosϕ = ω1/2ρ sin θ (3.20)

This is a linear system of two equations. It is simplified by eliminating the expressions in brack-
ets,

(rϕ̇ − r∆ω)(cos2 ϕ + sin2 ϕ) = ω1/2ρ(sin θ cosϕ − cos θ sinϕ)
(ṙ + rω1/2)(cos2 ϕ + sin2 ϕ) = ω1/2ρ(cos θ cosϕ + sin θ sinϕ). (3.21)

Resolving some trigonometric identities yields the cavity equation in polar coordinates:

rϕ̇ − r∆ω = ω1/2ρ sin(θ − ϕ)
ṙ + rω1/2 = ω1/2ρ cos(θ − ϕ) (3.22)

It shall be emphasized that in the second equation of 3.22 the detuning ∆ω does not appear. This
will turn out to be useful for calibration procedures (e. g. the calibration of forward and reflected
power of superconducting cavities in section 4.3.2) as well as for the calculation of the detuning
of a cavity (section 4.4.4).

3.4. Coupling of the Beam to the Cavity Field

The dynamics of cavity modes has been deduced very generally. This and the following sections
will introduce physical interpretations for these formulas. The introduction of physical quantities
means to replace u and x by meaningful variables.

At FLASH, the electron beam traversing the cavities is bunched with a bunch spacing of 1 µs
(see also the pulse structure in figure 2.3). Due to the finite length of each bunch, the electron
beam can be considered as a sequence of Gaussian shaped charge clouds. Due to the limited
bandwith of the cavity, only the fourier components of the electron beam around the resonance
frequency of the cavity will excite fields. It has been shown in [15] that for a bunch length that is
small with respect to the bunch distance, the fourier component Ibeam at the resonance frequency
is twice the average beam current Ibeam,0.

In steady-state the beam induces the voltage of U = RshIbeaml in a free-running cavity of length
l. Rsh is called the shunt impedance of a cavity and depends on the material and on the geometry
of the cavity. It is measured in MV/m. If the cavity has external losses, e. g. due to a connection to
a waveguide system, the voltage induced in steady state by the beam is decreased to U = RlIbeaml.
Rl is the loaded impedance that is formed from the internal shunt impedance Rsh of the cavity
together with an external impedance Rext that accounts for external losses, R−1

l = R−1
sh + R−1

ext.
Figure 3.6 shows an LCR-cirquit that is connected to an external system with a transmission

line of the characteristic impedance Z0. The coupling strength is represented by a transformator
with a winding ratio of 1 : n. The impedance of the left hand side is transformed into the right
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hand side into Rext. The total resistance seen by the LCR cirquit is Rl = (1/Rsh + 1/Rext)−1. With
ω0 = 1/

√
LC and ω1/2 = 1/(2RlC) the results of the previous sections on bandpass dynamics can

be applied with
x := U and u := RlIbeam. (3.23)

All results on steady-state values and transient behavior obtained in the previous sections can be
applied on the beam induced field after replacing x and u.

At this point it is convenient to introduce a quantity that characterizes the losses in a LCR
cirquit. The loaded quality factor Ql is defined as the ratio of center frequency of a resonator and
its full bandwidth.

Ql =
ω0

2ω1/2
(3.24)

An alternative but equivalent definition for the quality factor is given in the context of power
consumtion in section 3.7. In a general parallel LCR circuit, the quality factor can be calculated
as Q = R

√
C/L, therefore the ratio R/Q is a constant independent of external losses. With this, a

normalized shunt impedance that is independent of external coupling is defined and abbreviated
as (r/Q). It is normalized per meter and is for TESLA cavities(

r
Q

)
= 1024

Ω

m
. (3.25)

From

Rl =

(
r
Q

)
Ql (3.26)

for the loaded shunt impedance follows with the definition of Ql

Rl =
1
2

(
r
Q

)
ω0

ω1/2
. (3.27)

In other words, the loaded shunt impedance is proportional to the inverse half-bandwidth ω−1
1/2.

With that, also the amplitudes of the beam induced fields are proportional to ω−1
1/2. The beam

induced field in steady state is larger for a narrow banded system than for a broad banded system.
The amplitude step-response of a cavity mode with normalized in- and outputs has been cal-

culated to (refer to equation 3.15) [
d
dt
|xstep|

]
t=0
= ω1/2. (3.28)

In case of excitation by a beam current one has u = RlIbeam = (r/Q)ω0/(2ω1/2)Ibeam. The chain
rule of differentiation yields [

d
dt
|Ustep|

]
t=0
=

1
2

(
r
Q

)
ω0Ibeam. (3.29)

This means that the initial step response does not depend on the bandwidth of the system.
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Figure 3.6.: Simple LCR-circuit with a current source and a connection to an external transmis-
sion line.

Figure 3.7 shows the transient response on current-like excitements. The amplitude is scaled
such that in steady-state |x| = 1 for an arbitrary reference half-bandwidth ω1/2,r. The transient
behavior is identical for t � ω−1

1/2,r for all depicted situations. This will be important for the
beam-based vectorsum calibration method discussed in section 4.3.3.

3.5. Forward and Reflected Waves

Before discussing the coupling of the RF amplifier to the cavity field, the forward and reflected
waves are introduced. At FLASH, one RF amplifier (klystron) powers up to 16 and in the future
even 24 cavities, for XFEL this will be even more. One klystron emits up to 10 MW that is
transported by the waveguide system. A circulator protects the klystron from reflected power.
This circulator has two consequences. First, the cavities see a properly terminated source and
second, the klystron sees a properly terminated drain.

The reflection that occurs close to the high power couplers of individual cavities is depicted in
figure 3.8. The top of the figure shows the schematic setup of a waveguide together with a high
power coupler and an antenna that has a limited penetration depth. At the end of the antenna, the
wave has to pass a vacuum pipe of limited diameter smaller than the wavelength and therefore
shows exponential evanescence.

The thick line in the graph below the schematic setup in figure 3.8 shows the amplitude of the
forward traveling wave. This thick line is at the same time the amplitude of the reflected wave
due to the open end reflection in case the cavity is infinitely far away. An antinode is at the place
of the open end and the forward traveling wave and the reverse traveling wave have thus the same
phase at the end of the coupler. The result is a standing wave pattern on the waveguide and is
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Figure 3.7.: Transient amplitude behavior for current-like excitation. Different loaded band-
widths ω1/2 are given as multiples of a reference bandwidth ω1/2,r. The slope in
the beginning is identical for all curves. (See also figure 3.2.)

depicted as a dashed line in the upper graph of figure 3.8. The reverse traveling wave does not
lead to further reflections on the generator side due to the circulator.

The case that the cavity is in the reach of the evanescent field of the power coupler is depicted
in the lower graph of figure 3.8. After the exponential decay only a small fraction of the original
amplitude excites the field in the cavity. The very high quality factor of the cavity leads on
resonance to a very high field in the resonator, indicated by the interrupted arrow. The phase
difference between the field of the forward wave at the end of the coupler and the cavity field is
the detuning angle ψ plus 90◦. ψ was defined such that it is zero on resonance while in reality the
system on resonance follows an excitation with 90◦ phase shift. While the field of the forward
wave close to the coupler excites a field in the cavity, the field in the cavity excites a field on
the waveguide. Identically to the forward wave that excites the cavity field, also the excitation
of the cavity field on the waveguide is subject to exponential evanescence. The phase advance
however is 90◦ (and not ψ+90◦), since the waveguide is a broadbanded system. The added phase
advance therefore is ψ+ 180◦ from the forward traveling wave to the reflection at the cavity. The
amplitude of the reflection at the cavity, denoted as thick dotted line in the lower graph of figure
3.8, is added to the open end reflection and is traveling away from the cavity as the reflected
wave.

The two waves that travel away from the cavity are from now on referred to as the open-end
reflection and the cavity reflection. The superposition of the open-end reflection and the cavity
reflection form the (total) reflected wave.

The ratio of the impedance of the transmission line Z0 and the impedance of the transformed
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Figure 3.8.: Coupling of waves to the cavity transmitted via a waveguide system. The evanescent
field is small from waveguide into the cavity and vice versa.
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Zl (see figure 3.6) cavity load defines the coupling β,

β =
Zl

Z0
. (3.30)

This ratio of impedances is identical to the ratio of the quality factors of the transmission line
Qext and the (unloaded) cavity Q0,§

β =
Q0

Qext
= Q0

(
1
Ql
−

1
Q0

)
=

Q0

Ql
− 1 (3.31)

The coupling can be understood figuratively. Three cases, β < 1, β = 1 and β � 1 are
considered for a cavity that is in steady-state:

1. β < 1 (weak coupling). The cavity is far away from the antenna of the high power coupler.
The total reflected wave is dominated by the open-end reflection at the cavity.

2. β = 1 (matched coupling). The distance of the cavity is such that the open-end reflection
on resonance is interfering destructively with the cavity reflection. The total reflected wave
is zero.

3. β � 1 (strong coupling). The cavity reflection is twice the amplitude of the open-end re-
flection but opposite in sign. The total reflected wave is of same amplitude as the amplitude
of the forward traveling wave but opposite in sign.

A strongly coupled cavity that is not in steady-state but filled in a limited amount of time shall
be considered. For this cavity with β � 1, the transient filling process will appear as if the three
steady-state situations described above (β < 1, β = 1 and β � 1) are undergone one after the
other. At the very beginning of the filling, the reflected wave will be the open end reflection
since no field is present in the cavity — as in the case β < 1 above. At some point during the
filling (precisley at the time t = ln(2)/ω1/2), the total reflection will be zero due to destructive
interference of the open-end reflection and the cavity reflection. This is similar to the case β = 1
described above. As the field is further increased towards its steady-state value, it will reach the
situation described above as β � 1, where the total reflection is of same amplitude but opposite
phase as the forward traveling wave.

3.6. RF-Amplifier Coupling

The field at the high power coupler is a superposition of a forward and a reverse traveling wave
with the complex field strengths at the high power coupler Ufor and Uref. The total field strength
on the transmission line at the high power coupler is Utrans = Ufor + Uref. The plus sign is
convention. For β � 1, |Utrans| = 2|Ufor| in steady-state. The vectors Ufor, Uref and Utrans are

§In order to avoid confusion caused by the identical index 0, it shall be emphasized that Z0 is a property of the
transmission line and Q0 is a property of the resonator. Qext is the quality factor of the transmission line and
Ql is the loaded quality factor, thus a property of the combined system built from the transmission line and the
resonator.
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depicted in figure 3.9. The possible values for Utrans lie on a circle that is determined by the
bandpass properties of the cavity. Figure 3.9 shows three circles for three possible values of
β. Upper and lower half of the plane correspond to positive (∆ω > 0) and negative detuning
(∆ω < 0). Since Utrans is directly proportional to the field in the cavity, stabilizing the accelerating
field U in the cavity can be achieved by stabilizing Utrans.

Utrans can be expressed wit the help of the reflection coefficient Γ = Uref/Ufor. This leads to
Utrans = (1+Γ)Ufor. With the help of the reflection coefficient in steady-state and on resonance Γ0,
the dynamics between the complex amplitude of the forward traveling wave an the total complex
amplitude at the high power coupler is given by the bandpass dynamics with the substitution

x := Utrans and u := (1 + Γ0)Ufor. (3.32)

The value U′for = (1 + Γ0)Ufor can be imagined as the fraction of the forward traveling wave
that is exciting field in the cavity. The field Ufor − Ufor′ can then be imagined as being reflected
at the high power coupler directly without the influence of the field in the cavity.

The field inside the cavity is given by transforming the total field on the transmission line,
Utrans into the cavity, U, via the winding ration 1 : n, U = nUtrans. For strongly coupled cavities,
The loaded resistance Rl on the cavity side is dominated by the external losses, Rext. The external
losses are the impedance of the transmission line transformed via the winding ratio, Rl ≈ Rext =

Z0n2. On the other hand, the loaded resistance is given by the normalized shunt impedance
multiplied by the loaded quality factor, Rl = (r/Q)Ql. With this, the n in U = nUtrans can be
replaced and one gets

U =

√
1
Z0

(
r
Q

)
QlUtrans. (3.33)

Since Ql ∝ ω
−1
1/2, a difference to the beam induced current becomes visible. For a change in

coupling of overcoupled cavities, the field scales with ω−1
1/2 for the beam induced fields and with

√
ω1/2

−1 for the RF amplifier induced fields.
The equation 3.33 is true in steady-state as well as in the transient case. Adding the measure-

ments of forward and reflected waves allows to deduce Utrans that is proportional to the field in
the cavity itself. This can be used for the control of the cavity. The problem of calibrating the
correct phase and amplitude relations between the measured signals is addressed in section 3.9.1
(requirements on signal calibration) and 4.3.1 (calibration method). From now on, Utrans is often
identified with U itself, leading to the formula

U = Ufor + Uref. (3.34)

The coupling β relates to the loaded and the unloaded quality factor via

1 + β =
Q0

Ql
. (3.35)

This is equivalent to
Equation 3.34 can be used to calculate the precise shape of the reflected power for an arbitrary
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Figure 3.9.: Resonance circle. The dotted circles are the valid circles for critical coupling (β = 1)
and a high overcoupling (β >> 1).

shape of the forward power. This has been done in figure 3.10 for the cases β = 0.5, β = 1 and
β � 1. The time-axis are scaled in multiples of the characteristic time-constant ω−1

1/2. The top
row shows the amplitude of the forward and reflected wave and the field amplitude for FLASH
pulse shapes. The lower row shows a square excitation. The graph on the lower right shows the
excitation of an overcoupled cavity. As discussed earlier, the reflected amplitude changes its sign
during the filling process. During the transient process, at t = ln(2)/ω1/2, the reflected amplitude
is zero for an infinitively small moment.

3.7. Power Consumption

The quality factor Q is an important quantity to characterize a resonator. It is defined as

Q = 2π
energy stored in the resonator
energy loss within one cycle

. (3.36)

In the absence of sources the cavity field and also the stored energy decay exponentially. The
time-constant of the exponential decay of the energy is half the time constant of the field de-
cay since the stored energy depends quadratically on the field. From d/dtU = ω1/2U follows
d/dtU2 = 2ω1/2U2. With this, the quality factor is

Ql =
ω0

2ω1/2
. (3.37)

The index l has been introduced, since ω1/2 usually refers to the half-bandwidth of the loaded
cavity. The quality factor of the loaded cavity is given by the coupling to the waveguide distri-
bution system. With the quality-factor, the loaded resistance (equation 3.27) can be expressed
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Figure 3.10.: Shape of forward (dashed line), reflected (solid line) and field amplitude (dotted
line) for different forward pulse shapes and different βs. The curves of forward and
reflected amplitudes are not power-waves, the same level of the forward amplitude
for different couplings does not necessarily mean identical forward power (see text).
The cavities are driven on resonance.
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as

Rl =

(
r
Q

)
Ql. (3.38)

From the cavity envelope equation (3.11), the total power required to maintain a field U in
the presence of a beam current Ibeam that has a phase ϕbeam relative to the cavity field can be
calculated. x and u are then defined as

x := U and u := (1 + Γ0)Ufor + RlIbeam. (3.39)

Ibeam is a complex number with amplitude and phase where the phase relative to the field U is
called the beam-phase ϕbeam. The absolute of Ufor is then directly proportional to the square
root of the power required from the RF amplifier. In this consideration, the bandwidth ω1/2 is
assumed to be constant (i. e., no additional reference bandwidth ω1/2,r appears in the equation).
The field induced in the cavity in steady-state is the superposition of the fields induced by the
RF amplifier (represented by Ufor) and the beam current (represented by Ibeam). Solving the
steady-state solution (equation 3.12) for Ufor yields

Ufor =
1

1 + Γ0

(
ω1/2 − i∆ω

ω1/2
U − RlIbeam

)
. (3.40)

This expression in brackets is the difference of two complex numbers. The left summand has
an angle of −ψ with respect to the cavity field U and an amplitude |U |/ cosψ. ψ and cosψ are
the phase rotation and amplitude reduction in steady-state that results from the resonance curve
defined by the expression ω1/2/(ω1/2 + i∆ω) in the presence of a detuning ∆ω, refer also to the
equations 3.4 to 3.6. The relative phase between the two complex numbers is just the difference
of their angles, ϕbeam + ψ, and the absolute value of Ufor is obtained by application of the law of
cosines.

|Ufor|
2 =

1
(1 + Γ0)2

(
|U |2

cos2 ψ
+ R2

l I2
beam − 2

|U |
cosψ

RlIbeam cos(ψ + ϕbeam)
)

(3.41)

This expression is further transformed by replacing

1/ cos2 ψ = 1 + tan2 ψ and (3.42)
R2

l I2
beam = R2

l I2
beam(sin2 ϕbeam + cos2 ϕbeam) and the identity (3.43)

cos(ψ + ϕbeam) = cosψ cosϕbeam − sinψ sinϕbeam, (3.44)

which leads to

|Ufor|
2 =

1
(1 + Γ0)2

(
|U |2 + tan2 ψ|U |2 + R2

l I2
beam sin2 ϕbeam + R2

l I2
beam cos2 ϕbeam

−2|U |RlIbeam cosϕbeam + 2|U |RlIbeam sinϕbeam tanψ
)
. (3.45)
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And finally, by identifying binomial identities, one gets

|Ufor|
2 =

1
(1 + Γ0)2

[
(|U | − RlIbeam cosϕbeam)2 + (|U | tanψ + RlIbeam sinϕbeam)2

]
(3.46)

The power is obtained from the last expression by Pfor = |Ufor|
2/(2Rl). When evaluating this

expression, attention has to be paid to the beam phase: ϕbeam was defined above to be the phase
between the cavity field and the beam, which means ϕbeam = 180◦ for on-crest operation (max-
imum acceleration). In practice, it is common to define the beam phase such that it is zero for
on-crest operation, ϕ′beam = ϕbeam − 180◦.

For TESLA cavity ((r/Q) = 1024Ω/m) driven at a field of 25 MV/m and half-bandwidth of
ω1/2 = 216 Hz (that is Ql = 3 · 106) without beam, the power-consumption can be approximated
as

Pfor ≈ 25 kW
1 + [

∆ω

ω1/2

]2 . (3.47)

The reflection coefficient in steady state for zero detuning Γ0 was set to 1 due to the fact that the
TESLA cavities are highly overcoupled (β � 1).

3.8. Discrete Cavity Model and Digital Filters

Z-Transformation

The concept of digital filters turns out to be very efficient for the implementation of several LLRF
algorithms. Digital filters are closely connected to Z-transformations. If a function u(t) is known
only for discrete arguments tn = nT , T being the time between subsequent samples of e. g. an
analog to digital converter, one defines the Z-transform of that function as the infinite row

U(z) = Z {u(t)} =
∞∑
j=0

u j

(
1
z

) j

, (3.48)

where uk = u(kT ). Obviously, a translation by jT in time-domain is equivalent to a multiplication
by z− j in Z-domain.

If the sampled time-domain data of two signals u(t) and x(t) are connected via the equation

n∑
j=0

a jxn− j+k =

m∑
j=0

b jum− j+k for all k (3.49)

one can conclude for the corresponding Z-transforms U(z) and X(z)

n∑
j=0

a jz− jX(z) =
m∑

j=0

b jz− jU(z) or X(z) = H(z)U(z) with H(z) =

∑m
j=0 b jz− j∑n
j=0 a jz− j . (3.50)
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The identity between the time-domain equation which is valid “for all k” and the Z-domain equa-
tion which states equality between polynomials becomes clear if one considers each polynomial
coefficient individually. The transfer-function H(z) defined by ak and bk can be implemented in
digital devices very efficiently. The only operations required are multiplications and additions.

For example, a discrete approximation of a transfer function that maps u to its derivative,

u(t) 7→ x(t) = u̇(t) (continuous) (3.51)

is given by
uk 7→ xk =

uk − uk−1

T
(discrete), (3.52)

which means a = [0,T ] and b = [1,−1].

Digital Filter Design

Several patterns have been developed to design transfer functions H(z). As an example, the
step-invariant design shall be demonstrated for a low-pass of the corner frequency ωlp. At the
corner frequency ωlp, the signal strength is reduced by −3 dB. For frequencies beyond the corner
frequency, the signal strenght is attenuated by −10 dB per decade. A low-pass is described by
the differential equation

ẋ + ωlpx = ωlpu. (3.53)

The transfer function H(z) of this low-pass the quotient of the Z-transformation of the step-
response (1 − e−tωlp) and the Z-transformation of the step itself (Θ(t), where Θ(t) = 1 for t >
0 otherwise Θ(t) = 0). The Z-transformation of the step can be calculated from the fractional
representation of an infinite geometric series.

U(z) = Z {Θ(t)} =
∞∑
j=0

z− j =
1

1 − z−1 (3.54)

The Z-transformation of the step-response 1 − e−tωlp is also obtained knowing the fractional rep-
resentation of infinite geometric series.

X(z) = Z {1 − e−tωlp} =

∞∑
j=0

(1 − e jTωlp)z− j =
(1 − eTωlp)z−1

(1 − z−1)(1 − eTωlpz−1)
(3.55)

Division of X(z) and U(z) yields the transfer function of the low-pass in the step-invariant design.

H(z) =
X(z)
U(z)

=
(1 − eTωlp)z−1

1 − eTωlpz−1
(3.56)
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H(z) b a

Impuls invariant Tωlp

1−e−Tωlp z−1
[Tωlp] [1,−e−Tωlp]

Step invariant (1−e−Tωlp z−1

1−eTωlp z−1
[0, (1 − e−Tωlp)] [1,−e−Tωlp]

Trapezoid ωlp+ωlpz−1

2/T+ωlp−(2/T−ωlp)z−1 [ωlp, ωlp] [2/T + ωlp,−2/T + ωlp]

Table 3.1.: Different digital approximations for low-pass filters with corner-frequency ωlp.

The filter-coefficients therefore are b = [0, 1 − e−Tωlp] and a = [1,−e−Tωlp]. The transformation
rule for the time-domain sequence can be stated according to equation 3.49:

u1..uN 7→ x1..xN : xk+1 = e−Tωlp xk + (1 − e−Tωlp)uk (3.57)

With this formula, the heuristic filter used currently in the DSP of the FLASH LLRF system for
smoothing of the vector-sum signal (see [15], page 63),

u1..uN 7→ x1..xN : xk+1 = (1 −
1
N

)xk +
1
N

uk (3.58)

can be identified as a low-pass with corner-frequency ωlp = − ln(1− 1/N)/T which is 20 kHz for
N = 4.

Other design patterns are the impuls-invariant design and the trapezoid (Tustin) approxima-
tion. Since the simple low-pass is of high importance for the cavity dynamics, a summary of
the different digital low-passes is given in table 3.1. The trapezoid-approximation has simple co-
efficients and is therefore interesting for application where real-time devices calculate the filter
coefficients on-line.

Discrete State-Space Model for Cavity Modes

The presented low-pass approximations can now be used for modeling the cavity dynamics. The
dynamics of the envelope approximation for resonant modes (equation 3.11) is very similar to
a simple low-pass (equation 3.53). The step-invariant design applied on the envelope equation
3.11 yields the filter-coefficients

b =
ω1/2

ω1/2 − i∆ω
[0, 1 − e−T (ω1/2−i∆ω)] and a = [1,−eT (ω1/2−i∆ω)]. (3.59)

In order to transform any of the low-pass filter coefficients of table 3.1 into coefficients for the
envelope equation, one can proceed according to this rule: replace every occurrence of ωlp by
ω1/2 − i∆ω, then multiply the b-coefficient by the factor ω1/2/(ω1/2 − i∆ω).¶

¶This rule is identical to replacing all occurrences of ωlp in equation 3.53 by ω1/2 − i∆ω except the one on the right
hand side of the equal sign in front of the u, which is just replaced by ω1/2. The resulting is then equation 3.11.
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The usage of complex filter coefficients is unorthodox but turns out to be very useful.‖ The
transformation rule for the discrete model of the cavity envelope equation can now be stated as

u1..uN 7→ x1..xN : xk+1 = e−T (ω1/2−i∆ω)xk +
ω1/2

ω1/2 − i∆ω
(1 − eT (ω1/2−i∆ω))uk (3.60)

This state-space equation is of practical meaning. It is the discrete state-space model of the cavity
envelope equation. Since it connects only uks and xks of subsequent time-steps, it allows to use
different detunings ∆ωk for all steps k. The formula can be used for modeling a time varying
detuning in case the change of the detuning is small compared to the half-bandwidth during a
sample period T .

The formula for the discrete state-space model 3.60 was obtained using the methods of digital
filter design. Since digital filter design is not unique, the state-space representation is not unique,
too. An alternative way to obtain a state-space representation can be found in [18] page 386.
Assuming that the input function u(t) is constant between subsequent sample points, a state-
space representation identical to formula 3.60 is obtained by stepwise integration over the sample
period T .

‖It is even supported by numerical platforms like Matlab R©.
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Figure 3.11.: Vector-constellation in a complex plane for approximating the errors on the con-
structed cavity field. The dashed arrows represent the measurements made by the
controller, e. g. a DSP. The solid arrows are the true values. In this simplified exam-
ple, the measured forward vector coincides with the true forward vector, while the
measured reflected vector has an error in amplitude compared to the true reflected
vector.

3.9. Requirements and Limits on Signal Calibration

3.9.1. Probeless Single Cavity Calibration

In the absence of an antenna, a quantity that is proportional to the field in the cavity can be cal-
culated from the forward and the reflected power signals. Although the following consideration
is valid for superconducting cavities as well as for normal conducting cavities, it is of special
interest for the normal conducting electron gun at FLASH. Presently, the normal conducting,
11

2 -cell resonator of the electron source of FLASH does not have a field probe. The field con-
trol has to derive the control variable as a sum of two vectors. The following consideration on
the limits of the field estimation is also true for superconducting cavities, while the developed
calibration-method in section 4.3.1 is exclusively applicable on cavities that are driven in pulsed
mode with pulse length that are large compared to the typical time-constant of the resonator.

In section 3.6, this sum of the complex amplitudes of the forward and the reflected waves was
identified with the field in the cavity itself,

U = Ufor + Uref. (3.61)

Ufor and Uref are the complex amplitudes of the forward and the reflected wave measured in
units of the cavity field, U. In practice, constant calibration errors are made when determining
the observables, (∆A/A) in amplitude and ∆ϕ in phase. Figure 3.11 demonstrates how a con-
stant calibration error in amplitude of the reflected field can lead to a time-varying error of the
estimated cavity field phase. It shows the complex plane with solid arrows representing the true
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values as well as dashed arrows representing measurements by the controller, e. g. a digital signal
processor (DSP). It is important to realize that for LLRF control, constant errors on the deter-
mined cavity field U are irrelevant. Constant errors on the observables Ufor and Uref, however,
can lead to a time-varying error on the field U in the presence of a time-varying detuning.

In order to estimate the time-varying error of the cavity field phase, a zoomed region is pre-
sented in figure 3.11. The orthogonal projection of the error of the sum of the vectors is between
the error of the reflected wave (∆A/A) · Uref and a (see figure). The term orthogonal in “orthog-
onal projection” has to be understood as orthogonal with respect to the direction given by the
cavity field U. For nearly matched coupling and small detuning, the orthogonal projection is
approximated by a. The error in phase is, for small angles ψ, just the ratio between the length
of a and the field amplitude, |U |. The law of sines yields |Uref| sinα = |U | sinψ. Therefore, the
phase error of the cavity-field is

∆ϕ′cavity =
a
|U |

=

(
∆A
A

)
|Uref| sinα

|U |

=

(
∆A
A

)
sinψ (3.62)

where (∆A/A) is the amplitude calibration error of the reflected wave. In reality, both forward
and reflected waves will have amplitude calibration errors. Provided the errors are of same size,
distributed gaussian and uncorrelated, this can be included in the presented calculation by just
multiplying with a factor

√
2. Its interpretation is that the measured fields are transformed into a

coordinate system where the forward field has no calibration error. The calibration error of the
forward wave is described by that transformation and increases the error of the reflected wave
signal.

∆ϕcavity =
√

2
(
∆A
A

)
sinψ (3.63)

Similarly, an approximation of the contribution of a constant phase calibration error ∆ϕ on the
measured cavity field amplitude can be found,(

∆A
A

)
cavity
=
√

2∆ϕ sinψ. (3.64)

A phase calibration error to a phase error and from amplitude calibration to amplitude error is of
second order and is neglected here. Also, the change in cavity field amplitude due to detuning in
connection with a change of the detuning angle ψ is of second order and therefore neglected.

A typical value for the detuning over a pulse is ψ = 3◦. A calibration error of 1% in amplitude
and 1◦ in phase will allow to measure the field up to 0.1 % in amplitude and 0.04◦ in phase. This
calibration requirement is in reach of the methods presented in section 4.3.1.

The electron gun is subject to thermomechanical stress. More than one MW of power is dis-
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sipated in the walls of the cavity during an RF pulse of a few ten microseconds. The change in
geometry due to heating might influence the coupling β of the high power coupler. Beside the re-
quired calibration of the measured forward and reflected waves it is thus of interest which change
in β due to for example thermomechanical stress is tolerable. This is answered by considering
first the change in field and second the change in the reconstructed field caused by a change in
β. The change in β is assumed to be small around the matched case, β = 1 + ∆β and ∆β � 1.
A change in β leads to a change in the Ql, the loaded quality factor. A field inside the resonator
induced by an RF amplifier scales with

√
Ql.
√

Ql can be expressed with β using equation 3.31.
For the relative change of

√
Ql one yields

1
√

Ql

d
dβ

√
Ql =

√
1 + β

Q0

d
dβ

√
Q0

1 + β

= −

√
1 + β
√

Q0

√
Q0

2 3
√

1 + β

= −
1

2(1 + β)
(3.65)

For β = 1+∆β, the relative change of the field inside the resonator is −∆β/4. On the other hand,
the reconstructed field U′ changes, too. This can be traced back to the reflection coefficient in
steady-state on resonance Γ0 via U′ = Ufor + Uref = (1 + Γ0)Ufor.

Γ0 =
β − 1
β + 1

⇔ 1 + Γ0 =
2β
β + 1

(3.66)

With that, the relative change of the measurement can be calculated.

1
1 + Γ0

d
dβ

1 + Γ0 =
β + 1

2β
d

dβ
2β
β + 1

=
β + 1

2β
2(β + 1) − 2β

(β + 1)2

=
1

2β(β + 1)
(3.67)

For β = 1, the relative change of the reconstructed field is therefore ∆β/4. This change in the
reconstructed field is just opposite in sign compared to the change in the field. The total error
made is therefore ∆β/2! If one requires an error on the reconstructed field of less than 0.1 % in
amplitude at a matched resonator (β = 1), the coupling β may not change by more than 0.05 due
to thermal stress. In section 4.3.1 it is shown by measurement that there is no indication that the
coupling exceeds this value.

Since the equations 3.65 and 3.67 are a little bit hard to digest, this section shall be closed with
the following plausibility considerations.

• If β is increased, the coupling is stronger and the field in the cavity is decreased as in
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Figure 3.12.: The vector-sum calibration consists of two aspects: on the high power side, the
distribution system has to be adjusted in a way that the incident amplitudes and
phases of all cavities are identical. (However, there might be situations in which it
is preferable that the amplitudes differ from each other.) On the low power side, the
calibration matrices shall reflect all attenuations and phase rotation on the sensor
side.

equation 3.65. More power is reflected if the coupling is increased and less power is
available for the field.
• If β is increased, the reconstructed field is larger. This can be explained at figure 3.9,

where the radius of the circles is increasing for stronger coupling. In steady-state and on
resonance, the reconstructed field is just the diameter of the resonance circle. For β > 1,
the vector of the reflected wave points in the same direction as the vector of the forward
wave.
• For β � 1, the increase in the reconstructed field is much less than the decrease of the true

cavity field. For high β, one already is very close to a total reflection at the power coupler.
However, increasing β can still increase the field inside the cavity. The right hand side of
equation 3.65 is of order -1 in β while the right hand side of 3.67 is of order -2 in β.

3.9.2. Vector-Sum Calibration

The analytical approach will lead to simple formulas that allow to calculate the requirements
for the single cavity calibration from the aimed vector-sum precision. It is similar to the chap-
ter about the probe-less cavity calibration and is followed by a subsection about a numerical
approach covering more details that refine the requirements.

The reason for controlling vector-sums rather than single cavities is a cost argument. One very
high-power klystron is significantly cheaper than several smaller ones. Also, vector-sum control
requires only one LLRF control system. Vector-sum calibration has two sides which need to be
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Figure 3.13.: Only two vectors contribute to a simple vectorsum (1 and 2). Only the second
vector has a small calibration error in amplitude. The amplitude of the first vector
as well as both phases have no calibration error. Still, a phase error is visible on the
measured vector-sum. The variable a is the orthogonal projection of the error.

distinguished from each other, as illustrated in figure 3.12. On the high power side, the three-stub
tuners and high-power couplers need to be adjusted such that the incident waves have identical
amplitudes and phases for an optimal efficieny.∗∗ An instruction on three-stub tuning can be
found in [19] and is not discussed here. The low-power calibration has to assure that the vector-
sum calculated by the DSP is identical to the sum of accelerating voltages actually seen by the
beam.

One can state the goals of the low-power and the high-power calibration as follows:

high-power: U1 = U2 = . . . = UN (3.68)

low-power:
N∑

j=1

U j =

N∑
j=1

c jU∗j (3.69)

U j denotes the true accelerating voltage experienced by the beam in the jth-cavity. U∗j is the
measured field as seen by the DSP and c j is the corresponding complex calibration factor, thus a
scaling in amplitude and phase. Ideally, c jU∗j is identical to U j for all j. The accelerating voltage
U is considered as a complex quantity with absolute value |U | and phase ∠U.††
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Analytical Approach

Before going into a detailed numerical analysis, the impact of signal calibration errors of a vector-
sum from two vectors shall be estimated analytically. A simple vector-sum of two cavities (as
in figure 3.13) is considered with a time-varying detuning of maximum amplitude ∆ω∗. The
varying detuning leads to a varying angle α between the two vectors (see figure). The variation
in amplitude due to a varying detuning is of second order (as seen for example in figure 3.1,
the resonance curve of a bandpass) and remains unattended in this analytical approach. The
calibration error shall be constant for an individual cavity but is distributed gaussian from cavity
to cavity with relative amplitude (∆A/A) = 1 − |c jU∗j/U j| and phase ∆ϕ = ∠(c jU j/U j).

With the same argument made in section 3.9.1 for the calibration of forward and reflected
signals, the error from the first vector can be transferred to the second one by increasing it by
a factor

√
2. Identically, one can assume that the first vector has no varying detuning while

the variation in detuning from pulse to pulse of the second vector is increased by an additional
factor of

√
2. In other words, the situation is transformed into a system, where the first vector is

constant and has no calibration error.
A constant amplitude calibration error (∆A/A) of a cavity can be evaluated into a phase error

of the vector-sum. Similar to the considerations in section 3.9.1, an orthogonal projection a
of the error of the sum of the vectors is introduced (see figure 3.13). The term orthogonal in
“orthogonal projection” has to be understood as orthogonal with respect to the direction given by
the vector-sum. In order to calculate an angle, a is divided by the length of the vector-sum which
is about twice the length of a single vector. This introduces an additional factor 1/2.

∆ϕ2-vector-sum =
1
2
·
√

2 ·
√

2 ·
ψ∗

2
·

(
∆A
A

)
=
ψ∗

2
·

(
∆A
A

)
. (3.70)

The angle ψ∗ is the maximum angle by which a vector is changing under the influence of mi-
crophonics. Since a coordinate system is considered in which the first vector is fixed, the angle
α in figure 3.13 is approximated by

√
2ψ∗. The orthogonal projection a is in small angle ap-

proximation given by (∆A/A) · α/2. For a pulsed system with a pulse length of the order of the
time-constant of the resonator, the worst case will be the steady-state detuning angle. So one can
approximate here ψ∗ ≈ tanψ∗ = ∆ω∗/ω1/2.

Figure 3.14 shows a simple example were the estimation of a sum of two vectors has a time-
varying error in amplitude that depends on the relative angle between them. Identical to the
previous consideration, a constant phase calibration error ∆ϕ can contribute to an amplitude
error of the vector-sum. It can be approximated according to figure 3.14 as(

∆A
A

)
2-vector-sum

=
ψ∗

2
· ∆ϕ. (3.71)

∗∗In certain situations an amplitude spread is desirable, as for example in a module directly after the particle source.
Systematic reduction of the gradient in the first few cavities is called adiabatic acceleration and helps minimizing
the emittance of the beam.

††For this consideration, the absolute of x of the general envelope equation 3.11 is interpreted as the accelerating
voltage per meter length, U.
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Figure 3.14.: Only two vectors contribute to a simple vectorsum (1 and 2). Only the second
vector has a small calibration error in phase. The phase of the first vector as well
as both amplitudes have no calibration error. Still, an amplitude error is visible on
the measured vector-sum.

So far, only phase-calibration errors contributing to vector-sum amplitude errors and amplitude-
calibration errors contributing to vector-sum phase errors have been considered. The other
two possible combinations (amplitude-calibration errors contributing to amplitude errors on the
vector-sum and phase-calibration errors contributing to phase errors on the vector-sum) are pro-
portional to 1 − cosψ∗ instead of sinψ∗, which is of second order and therefore remains unat-
tended in the analytical approach. Figures 3.19 and 3.20 from the numerical approach justify this
assumption.

As an example the error that is expected for a two-vector-sum with a maximum for the detuning
induced by microphonics of ∆ω∗/ω1/2 = 1/10 (about 20 Hz for a FLASH cavity) is considered.
It is assumed that the calibration of individual cavities in amplitude and phase is 1 % and 0.5◦.
As a result from the equations 3.70 and 3.71 one gets

∆ϕ2-vector-sum = 8.8 · 10−5 = 0.028◦,
(
∆A
A

)
2-vector-sum

= 0.044 %.

A remark shall be made on the distribution of the microphonics. The previous consideration
implicitly assumed all variations to be gaussian. While this is a good assumption for the spread of
the calibration errors, it is not the case for microphonics. Microphonics result from mechanical
resonances of the cavity. The detuning caused by microphonics is thus varied in time sinusoidally
at frequencies that correspond to the mechanical resonances of the cavity. Gaussian error propa-
gation is not adequate for a sinusoidally distributed variable. The simulations considers different
kinds of distributions.

Figures 3.15 and 3.16 shall motivate the choice of ψ∗ = 1/10 ≈ 5◦ since it is used in the
following numerical analysis. Basis for 3.16 is a measurement that is established since June
2005 that records the measured amplitude and phase of each cavity at the time that the beam
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Figure 3.15.: Phases of four cavities of the first accelerating modules (ACC1) during one pulse
during closed-loop operation. The phase at t = 700 µs has been subtracted. Even if
one neglects the cavity with the lowered gradient, relative phases between individ-
ual cavities of up to 5◦ are visible during the pulse.

Figure 3.16.: Phase difference at beam arrival between the measured cavity phase of the seventh
and the eigth cavity in the first module of the FLASH. The relative phases between
these two cavities are subject to changes of the order of 3◦ (short-term, width of the
band) respectively 5◦ (long-term).
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passes the module (usually 700 µs after the RF pulse start).‡‡ Drawing conclusions from this
measurement is tricky since re-calibration of the waveguide distribution system happend during
this time which leads to several discontinuities. It can be stated for long terms (e. g. one month)
that ψ∗ ≈ 1/10 ≈ 5◦ is a realistic assumption. For short-terms (width of the band), ψ∗ ≈ 1/20 ≈
3◦ seems to be a reasonable value. Figure 3.15 shows the phase of the last four cavities of the
first accelerating module (ACC1) during the flattop of one pulse (i. e. between t = 700 µs and
t = 1400 µs). The intra-pulse variation of the relative phases between individual cavities visible
here is at least 5◦.

Numerical Approach

A numerical analysis avoids the approximations made in the previous consideration. In addi-
tion, it in principle allows to accomodate for further effects that might influence the vector-sum
measurement. The following steps are necessary to simulate the effects of constant single-cavity
calibration errors on dynamic vector-sum errors. They were implemented using Matlab R©.

1. Dice a set of calibration errors (∆A/A) and ∆ϕ of the individual cavities. Assume a normal
distribution.

2. Dice a set of detunings, one ∆ω for each cavity. Assume an sinusoidal distribution, since
the detuning caused by microphonics follows a sine-like shape in time domain. Calculate
ψ∗ from the steady-state phase of the detuning of an individual cavity. Additionally, calcu-
late the amplitude contraction due to detuning. (Amplitude distortion was not considered
in the analytical approach.)

3. Calculate the vector-sum seen by the beam and seen by the DSP, compare. Record the
error and go back to step 2 several times.

4. Calculate the RMS over the recorded vector-sum errors in amplitude and phase. This will
be the error made for the calibration diced in 1. Note: the mean value is not of interest,
since constant vector-sum errors do not need to be considered. Go back to step 1 several
times.

5. Average over the RMS-deviations of the vector-sum errors in amplitude and phase and de-
termine its RMS. The mean value of the RMS-derivations is the expected average vector-
sum measurement error. Its RMS divided by the square-root of the number of diced cali-
bration sets is the confidence interval of the result.

The input-parameters required for a simulation are: 1) The number of cavities N, 2) RMS
calibration errors of amplitude and phase (∆A/A) and ∆ϕ, 3) boundaries for the detuning-spread,
∆ω∗ and 4) the predetuning of the cavities.

Figures 3.17-3.22 show the results of the simulation. In all simulations, sets of input-parameters
have been varied against each other. The figures have horizontal lines indicating the control re-
quirements in amplitude and phase for the XFEL. The error bars that result from this stochastic
approach are included in the diagrams. The size of the error bars is reduced by an increased set

‡‡Each time the main-parameters are printed into the electronic-logbook of FLASH, a snapshot from all phases and
amplitudes at the time of beam injection is stored. Basis for this measurement is the “LLRF-Tool”.
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of simulated samples.
The figures 3.17 and 3.18 confirm the results from the analytical considerations for two-vector-

sums. The analytical analysis implicitly assumed gaussian error propagation. The simulation
agrees with the analytical estimations only for gaussian distributed errors.

Figures 3.19 and 3.20 confirm what has been stated in the previous section: amplitude calibra-
tion errors lead mainly to vector-sum phase errors while phase calibration errors cause mainly
vector-sum amplitude errors. Additionally, figures 3.19 and 3.20 contain the analytical result
scaled with 1/

√
N, to accommodate for the different number of cavities and 2/3, which is an

empiric factor that accounts for the difference in gaussian and sinusoidal distributions.
The numerical approach justifies the assumption that errors are proportional to the maximum

detuning ∆ω, the square-root of the number of cavities and the amplitude and phase calibration,
(∆A/A) and ∆ϕ.

Summary

The numerical analysis suggests that a good requirement for the X-FEL target precision of(
∆A
A

)
N-vector-sum

= 0.01% and ∆ϕN-vector-sum = 0.01◦ (3.72)

requires a calibration of single cavities with an error less than(
∆A
A

)
= 1 % and ∆ϕ = 0.5◦ (3.73)

These limits assume N = 32 cavities and a maximum microphonics of ∆ω∗/ω1/2 = 1/10. By
looking at the diagrams 3.19 and 3.20 a value that is less strong might appear appropriate. How-
ever, since the value depends strongly on the distribution chosen for the microphonics (see figures
3.18 and 3.17) it is indicated to chose rather conservative limits.

The analytical and the numerical method are in good agreement for N = 2. The numerical
approach suggests a linear dependency of the calibration limits from the maximum detuning ∆ω,
the square-root of the number of cavities

√
N and the amplitude and phase calibration, (∆A/A)

and ∆ϕ. A rough analytical estimate for the required precision is therefore given by(
∆A
A

)
N-vector-sum

=
2
3

1
√

N

ψ∗

2
· ∆ϕ and ∆ϕN-vector-sum =

2
3

1
√

N

ψ∗

2
·

(
∆A
A

)
. (3.74)

The factor 2/3 is obtained empirically and is supposed to accommodate for the differences be-
tween gaussian and sinusoidally distributed microphonics. This approximation is included in
figures 3.19 and 3.20 as a dashed line.
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Figure 3.17.: Simulation of the relative vector-sum amplitude error: N = 2, ∆ω∗/ω1/2 = 1/10,
(∆A/A)rms = 0.01, ∆ϕrms = 0..1◦ (x-axis). The types of the microphonics distri-
butions are indicated. The solid horizontal line marks the 10−4-target, the cross
represents the analytical estimation made previously.

Figure 3.18.: Simulation of the vector-sum phase error: N = 2, ∆ω∗/ω1/2 = 1/10, ∆ϕrms = 0.5◦,
(∆A/A)rms = 0..0.025 (x-axis). The types of the microphonics distributions are
indicated. The solid horizontal line marks the 0.01◦-target, the cross represents the
analytical estimation made previously.
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Figure 3.19.: Simulation of the relative vector-sum amplitude error: N = 32, ∆ω∗/ω1/2 = 1/10,
∆ϕrms = 0..1◦ (x-axis), (∆A/A)rms = 0, 0.001, 0.005, 0.01. Microphonics are dis-
tributed sinusoidally. The solid horizontal line marks the 10−4-target.

Figure 3.20.: Simulation of the vector-sum phase error: N = 32, ∆ω∗/ω1/2 = 1/10, (∆A/A)rms =

0..0.025 (x-axis), ∆ϕrms = 0, 0.1, 0.5, 1◦. Microphonics are distributed sinusoidally.
The solid horizontal line marks the 0.01◦-target.
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Figure 3.21.: Simulation of the vector-sum phase error: N = 1, 12, 32, 64, ∆ω∗/ω1/2 = 1/10,
∆ϕrms = 0..1◦ (x-axis), (∆A/A)rms = 0.01. Microphonics are distributed sinu-
soidally. The solid horizontal line marking the 0.01◦-target is not visible.

Figure 3.22.: Simulation of the relative vector-sum amplitude error: N = 32, ∆ω∗/ω1/2 =

0, 1/10, 1/20, 2/10, ∆ϕrms = 0..1◦ (x-axis), (∆A/A)rms = 0.01. Microphonics are
distributed sinusoidally. The solid horizontal line marks the 0.01◦-target.





4. Low Level Radio Frequency Control
of Accelerating Cavities

4.1. FLASH LLRF Overview and Sources for Field Errors

A characterizing feature of the FLASH LLRF control scheme that also distinguishes it from other
installations is the concept of vector-sum control. Figure 4.1 shows the main components of the
FLASH control scheme. With the vector-sum concept, one klystron powers a set of eight to 16
resonators (for future accelerator projects, this number will be 32 or even more). This is cost
efficient compared to a solution where each cavity has its own LLRF station consisting of one
controller and one amplifier. At FLASH, the power is distributed from a high power klystron
(typically 5 MW to 10 MW) to the cavities via a forked set of waveguides. The synchronism of
the incident waves to the cavities is ensured by three-stub tuners in front of each cavity (refer to
[19]) which allow an adjustment of amplitudes and phases. This calibration can be derived from
the analysis of beam based transients as in section 4.3.3, where it is referred to as the high power
calibration.

The center of figure 4.1 shows the reference master oscillator and the timing system which
plays a central role in the LLRF system. The goal of LLRF control can be stated as locking the
field inside the resonators to the reference.

Probes measure the field directly inside the cavities by coupling out a small fraction of the
power. The measured fields are digitized and further processed by a digital signal processor in
order to calculate the vector-sum and from that, by comparison with the setpoint, the drive that
is applied to the klystron. In control theory, a system is decomposed into plant, sensor, controller
and actuator.

In the following, the components of the control loop are explained. Along with that, the main
sources of errors that have their origin in each component are illuminated.

Plant

The plant is the quantity under control. For a set of resonators driven by a single amplifier this is
the integrated acceleration over all cavities of one RF station in amplitude and phase. Due to the
factual un-measurability of the integrated acceleration, the control loop measures the individual
fields and combines them to an equivalent of the integrated beam acceleration, the vector-sum.
The plant of the control loop is therefore of virtual character. The physical plant, the set of
superconducting cavities in the cryomodules is subject to intrinsic sources of errors, mediated by
the beam current and detuning caused by microphonics or Lorentz force detuning. With that, the

47



48 Chapter 4. Low Level Radio Frequency Control of Accelerating Cavities

Figure 4.1.: Schematic of the LLRF system used at FLASH. The picture shows the plant con-
sisting of klystron and cavities, a set of sensors and the simplified control algorithm
itself.
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Figure 4.2.: Summary of the largest error-contributions in the LLRF control system. Each curve
displays the dependency of the error-contribution and its actuating variable. The
thick dashed line for example shows the dependency on the amplitude error in
steady-state of the relative detuning. A few points indicate the current errors at
FLASH. An ‘x’ indicates an error that can be reduced by the feedback system. An
‘o’, as for the vector-sum calibration, indicates that the feedback-system can not
compensate for that error.
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control theoretical plant is also subject to these effects.
In figure 4.2 the influence of detuning without feedback is shown. The thick solid line is

interpreted as follows. If the x-axis is the detuning measured in multiples of the bandwidth, the
thick solid line represents the error in amplitude caused by a certain detuning. The underlying
physical law follows from the shape of the resonance curve in amplitude of a bandpass and is
quadratic in first approximation. Therefore the slope of the thick line is two in the logarithmic
representation of figure 4.2. If off resonance, the resonance curve follows a rather linear law.
Therefore, the influence of microphonics on amplitude stability, represented by the thick dashed
line, has slope one in the logarithmic representation.

Actuator

The actuator in the LLRF system in figure 4.1 is the path from the controller to the plant. With
that definition, the border between the controller and the actuator is at the same time the border
between a digital and an analog part. Part of the actuator chain is the vector modulator. This is
a device that modulates an incoming RF wave in amplitude and phase according to a vector that
is provided in cartesian coordinates. The vector modulator is the connecting element between
the DC signals produced by the DAC and the RF signals that are amplified by the klystron.
The incoming signals of the vector modulator are the reference oscillator and the vector that
represents the envelope of the drive signal with respect to the reference oscillator. The envelope
is generated from the DAC directly after the controller.

Amplitude errors originating from the actuator are compensated by the control loop in the
same way as amplitude errors in the cavity. In small angle approximation, this is also true for
errors on the phase. Large errors on the phase have a significant impact on the loop phase and
can even lead to an instability. Slow drifts of the loop phase can be calculated and corrected as
desribed in section 4.4.3. This section also approximates the influence of small changes in the
loop phase. Figure 4.2 shows the influence of fast ripples on the power supply (PS) of a klystron
on the phase of the plant.

An imperfection in the high power calibration (asynchronous phases, unequal amplitudes) is
allocated at the actuator but can not be considered as a source of noise as long as the imperfections
are constant.

Sensor

The path between the resonators and the controller in figure 4.1 is considered as sensor, includ-
ing the antennas in the cavities and the analog to digital converter (ADC) close to the controller.
Along the sensor chain, signals are transformed from the RF (1.3 GHz) to an intermediate fre-
quency (IF) by mixers. Mathematically speaking, mixers are multiplicators in time-domain. The
trigonometric identity

sin(x) sin(y) =
1
2

cos(x − y) +
1
2

cos(x + y) (4.1)

reveals that a mixer transforms two sinusoidal signals at its inputs to a superposition of two
sinusoidal signals at its output. The frequencies of the output signal are the sum and the difference
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of the frequencies of the input signals. With a bandpass at the difference of the frequencies, the
sum of the frequencies can be filtered out and the mixer becomes a downconverter.

The mixers of the downconverters at FLASH have as input the RF from the cavity and as
second signal the local oscillator (LO), which (usually) is a harmonic signal. The difference in
frequency between the LO and the RF is the frequency of the IF which is 250 kHz. The whole
information in amplitude and phase of the RF with respect to the 1.3 GHz reference is contained
in the IF with respect to a 250 kHz signal that is locked to the 1.3 GHz reference. For the RF
part, the reference is the 1.3 GHz provided by the master oscillator. For the IF part, this is in
principle a 250 kHz-signal that is locked to the 1.3 GHz of the master oscillator. In practice,
it is the clock of the ADC that is synchronized to the 1.3 GHz. At the current FLASH LLRF
installation, the ADCs are clocked with 1 MHz. Therefore, the ADC takes four samples of the
IF per period. The sequence obtained in one period of the 250 kHz is (I,Q,−I,−Q), which is the
technical expression for the real part (I), the imaginary part (Q), the negative real part (−I) and
the negative imaginary part (−Q) of the field vector.

At this point, it is worth noticing that the LO of the FLASH LLRF actually is not a continuous
sine at 1.3 GHz+250 kHz but a 1.3 GHz sine that is switched in phase by 90◦ every microsecond.
The ADCs do not take notice of this since the switching of 90◦ takes place between subsequent
sampling points.

In contrast to error contributions in the actuator chain, error contributions in the sensor can not
be compensated by the feedback.

Controller

Figure 4.1 shows the controller together with the real-time algorithm executed on the DSP. Apart
from signal calibration (application of a rotation and a scaling) it is the subtraction from the
setpoint curve, multiplication with a loop gain (or application of a linear transfer-function that
has proportional, differential and integral components) and addition of a feedforward-curve.

The calibration matrices can be determined by the method of beam based vector-sum calibra-
tion (introduced in section 4.3.3). Errors in the input calibration matrix can be considered as
errors originating in the controller. Section 3.9.2 points out that even constant calibration errors
can lead to time-varying errors over the pulse in the presence of microphonics or Lorentz force
detuning. After the summing junction in figure 4.1, errors caused by calibration matrices appear
as measurement errors. Therefore, the closed feedback loop can not correct for them. Figure 4.2
also contains curves that summarizes the results of section 3.9.2, where an analytic estimation
for errors caused by calibration errors is given.

4.2. Parameter Optimization in Case of a
Maximum-Gradient Spread

A few peculiarities occur if one has to control a number of cavities connected to one RF ampli-
fier instead of just a single cavity. Properties of vector-sums as the plant under control shall be
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discussed considering the following question as an example:

“Given that the cavities that are controlled by one RF unit differ in their maximum gradient
(due to, e. g., different quench limits), what is the best total gradient that can be reached by vary-
ing only coupling, incident phase and detuning of individual cavities?”

Usually, the weakest cavity would determine the maximum allowed gradient in all cavites
of one RF station. If one cavity reaches its performance limit already at 92% of the nominal
gradient, the overall gradient would necessarily be reduced by 8%, leaving the remaining cavities
far below their limits.

As an approach for solving this problem, two points inside an rf pulse as depicted in figure
2.3 shall be considered rather than the whole pulse. The end of the fill time is a point where the
cavity is not in steady-state. At the end of the flat-top, the cavity is close to its steady-state value.
The longer the flat-top, the closer the cavity is to steady-state at the end of the flat-top. At both
points, the gradient distribution has to reflect the individual limits of the cavities.

If one leaves the incident phase and the detuning zero and reduces the coupling for the limited
cavities, the end of the fill time would be at a reduced level and the end of the flat-top would be
increased at the same time. Literally speaking, the reduced coupling narrows the bandwidth of
the cavity which decelerates the filling-process but allows for higher steady-state field values.

The change in coupling can be denoted by a change in half-bandwidth ω1/2 with respect to a
reference-bandwidth ω1/2,r, where ω1/2,r determines the fill time via tfill = ln(2)/ω1/2,r. In addition
to the change in bandwidth, a change in (constant) detuning can help to match the levels at the
end of the fill time and the flat-top. The levels for a certain pair of (ω1/2,∆ω) are given by the
absolute values of

xfill-end =
ω1/2

ω1/2 − i∆ω
e−(ω1/2−i∆ω)·tfill ·

√
ω1/2,r

ω1/2
(4.2)

xflat-end w/o beam =
ω1/2

ω1/2 − i∆ω

(
e−(ω1/2−i∆ω)·(tfill+tflat) −

1
2

e−(ω1/2−i∆ω)·tflat

)
(4.3)

where tflat is the duration of the flat-top. The calculations assume the feedforward shape of a
perfect (undetuned) pulse: constant phase and a flat amplitude which is decreased by a factor
1/2 after the fill time. The amplitude of the drive signal during filling is just twice the amplitude
during the flat-top.

In the (ω1/2,∆ω)-plane one can now calculate the absolute valus of 4.2 and 4.3. Two sets of
equipotential lines reflecting the two equations 4.2 and 4.3 are shown in figure 4.3. In addi-
tion, the plot shows intersections of lines of equal potential, marked by circles. They mark the
appropriate set (ω1/2,∆ω) for a cavity that is limited in its gradient.

However, even though the circles mark points of equal level (i. e. equality of the absolute
values of equation 4.2 and 4.3), this does not include equality of phases. The phases at the
beginning and the end of the flattop are not necessarily identical. The choice of the incident
phase is therefore still open. A remaining transient behaviour therefore is expected due to phase
mismatch. The remaining transient will be of importance if operated in closed loop and will
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demand for a further tweaking, since the parameters were determined for open loop and optimal
pulse-shape only.

An example shall therefore be considered. Four cavities have linearly distributed performance
limits with values 90 %, 93.3 %, 96.7 % and 100 % of the nominal gradient. These four cavi-
ties form a vector-sum that is driven from one RF amplifier. The goal of an optimization is to
come close to the theoretical average performance of 95 %. Figure 4.4 shows the pulse shape
of the common drive together with the amplitudes and phases of the four cavities. The drive
is optimized to ensure that the vector-sum of all cavities follows the desired setpoint-curve, i.e.
exponential filling and a flat flat-top. In this figure, the effects of the transients caused by the
ambiguity of the phases become visible. The levels at the end of the flat-top do not resemble the
underlying linear gradient spread. The calculated gradient limit for this configuration is 87.7 %,
which is even below the limit of 90 % given by the weakest cavity. A closer look at the end of the
flattop reveals that the achieved spread of amplitudes seems to be larger than the expected 10 %
after optimization. An obvious fix for that is to repeat the calculation above, but now requiring
different spreads for the beginning and the end of the flat-top in the open loop mode. For the
results of figure 4.5, the calculation above was repeated but now for a spread of 10 % at the be-
ginning of the flat-top and a spread of 4 % at the end of the flat-top. In the presence of feedback,
this spread seems to be widened close to the required 10 % at the beginning and the end of the
feedback. In this configuration, a performance of 92.2 % is achieved which is between 90 % for
the expected performance without parameter modification and 95 % as the average of the four
performance limits. The parameters used in this example are

I II III IV
gradient limit 0.90 0.93 0.97 1.00

hald-bandwidth ω1/2/ω1/2,r 0.68 0.78 0.88 1.00
detuning ∆ω/ω1/2,r -0.86 -0.74 -0.56 0.00

actual maximum gradient 0.88 0.91 0.95 1.00

With the presented method, models for eight or even 32 cavities can be optimized. These are
the results for an eight-cavity optimization, assuming a linear spread of the maximum gradient:

peak-to-peak spread 0.10 0.20 0.40
theoretical limit 0.95 0.90 0.80

result w/o optimization 0.90 0.80 0.60
result w/ optimization 0.93 0.86 0.71

The presented method is limited to constant bandwidths and detunings, which is not always
within reach.
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Figure 4.3.: Levels of equal potential in the ω1/2-∆ω-plane for different points inside a pulse:
directly after the filling (solid lines) and at the end of a 800 µs-flat-top. The circles
mark intersections of lines of same potential for the filllevel and the endlevel without
beam.

4.3. Signal Calibration

4.3.1. Forward and Reflected Power at the Electron Gun

Calibration Principle based on Resonance Circles

In the absence of a probe, a calibration can be done by an investigation of the resonance circle as
depicted in figure 3.9. Presumption for this calibration is that the measured forward and reflected
signal need to be corrected only for constant distortions,

Ufor = aU∗for + bU∗ref

Uref = cU∗for + dU∗ref (4.4)

with a, b, c, d ∈ C reflecting the amplitude and phase corrections that need to be applied on the
measured signals (indicated by the ∗) in order to get the calibrated signals. In case b, c , 0,
equation 4.4 would also compensate for linear crosstalk between the forward and the reflected
channel.

If the non-diagonal elements b, c are neglected, the reflection coefficient for the measured
signals Γ∗ = U∗ref/U

∗
for differs from the true reflection coefficient Γ = Uref/Ufor by a complex

factor d/a which is a rotation and a scaling. If measured for several different detunings in steady-
state, the collection true reflection coefficients will form a circle. For any coupling β, this circle
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Figure 4.4.: Four vector-sums with a certain set of (ω1/2,∆ω). The set of constant parameters for
each cavitiy is not optimal.

Figure 4.5.: Four vector-sum with a certain set of (ω1/2,∆ω). The set of constant parameters for
the individual cavities is much better than what is achieved without optimization.
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will include the point (−1, 0) which represents the total reflection at maximum detuning (see also
figure 3.1). A collection of reflection coefficients measured at different detunings will form a
circle, too. However, due to constant calibration errors it will not necessarily include the point
(−1, 0).

The requirement that the full resoanance circle has to include the point (−1, 0) can be used
in order to develop a calibration procedure. Usually, it is not possible to completely detune a
resonator in order to find this point. If just detuned by one half-bandwidth, the field inside the
cavity already changes its phase by 45◦ (refer to figure 3.1). That means that already a quarter
(90◦) of a whole circle is covered by detuning by a half-bandwidth in each direction. This is
good enough for fitting a circle with radius r and center c (c ∈ C) through the measured points
by minimizing

χ2 =
∑

i

(|Γ∗i − c| − r)2 (4.5)

for all measured Γ∗i . With c and r, the uncalibrated reflection coefficient for maximum detuning
can be identified as

Γ∗∞ = (|c| + r)
c
|c|
. (4.6)

This is the point on the fitted circle which has the largest distance from the origin. Since Γ∞ = −1,
the factor d/a is just −1/Γ∗∞. Once the calibration d/a is known, the reflection coefficient for zero
detuning in steady-state Γ0 can be calculated. This is the point on the circle with the least distance
to the origin.

Γ0 =
d
a

(|c| − r)
c
|c|

= −
(|c| − r)
(|c| + r)

(4.7)

Once Γ0 is known, the coupling β can be calculated as β = (1 + Γ0)/(1 − Γ0).

Measuring the Resonance Circle for the Calibration

There are several ways to detune the cavity in order to cover a significant fraction of the resonance
circle. An obvious way is the temperature-scan, where the temperature of the resonator is varied
over time. The resonance frequency of the FLASH photoinjector changes with about 20 kHz/◦C.
3 ◦C in temperature detune the electron gun by a half-bandwidth (∼ 65 kHz). Figure 4.6 shows
an example of such a measurement, where a point from the center of the flat-top was chosen of
each pulse and plotted into the complex reflection-coefficient plane.

It is of special interest, if the amplitude- and phase-calibration or the coupling β show a de-
pendency on variables like the average dissipated power. The measurement-series where the
example of figure 4.6 originates from contains resonance circles for different average powers,
where the average power was changed by changing the pulse length between 100 µs and 600 µs.
The average power at the repitition-rate of 2 Hz is in the kW-regime. Figure 4.7 shows the result
of this analysis for the coupling. The relative rms over different average powers is 3.3 · 10−3 and
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Figure 4.6.: Example of a partial resonance circle obtained by a temperature scan. The solid line
is the best circle that fits through the points according to the χ2-criteria 4.5. The
temperature was varied by ±3◦C around the assumed resonance temperature in steps
of 0.5◦C. The plot shown is already scaled by the factor −1/Γ∗∞ such that the point of
maximal reflection lies at (−1, 0). The amplitude- and phase-calibration are shown
as well as the coupling β on top of the plot for this measurement. The calibration
values are specific for the used setup.

Figure 4.7.: Dependency of the coupling β on the average power. The variation of the coupling
(relative rms) is 3.3 · 10−3 and does not show a realiable trend. It is compatible with
the requirement developed in chapter 3.9.1.
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is compatible with the requirement developed in chapter 3.9.1.
The temperature-scan is a lengthy method for detuning the cavity, since temperature-control

is a slow procedure by nature. Instead of changing the temperature, the resonance-frequency
can be changed by changing the center frequency of the master-oscillator (figure 4.1). In a test-
setup at the Photoinjector Test Stand in Zeuthen (PITZ), the master-oscillator was replaced by a
frequency generator with the ability to change the center frequency periodically. By sweeping
around the center-frequency by ±65 kHz with a repitition of 200 Hz, a fraction of the resonance
circle within a single pulse.

Figure 4.8 shows the (time-resolved) reflection-coeficients of several pulses while the center
frequency was changed periodically. The frequency generator was not locked with the timing-
system, therefore it is completely arbitrary, at which frequency a pulse starts (which is not a
disadvantage). In figure 4.8, lines are visible that are formed from a number of measured reflec-
tion coefficients. One line is the set of reflection coefficients measured during one pulse. Each
line has a beginning, represented by a small circle in figure 4.8. There is no single circle that
serves as a good fit for all reflection coefficients obtained. A systematic drift in phase seems to
be visible during the pulse. Since the reflection-coefficients obtained during the pulse are now
time-resolved, it is possible to fit resonance-circles in points from the tth-microsecond of a pulse.
Figure 4.9 shows the evaluation of the phase-calibration inside the pulse. The drift in phase that
already was suggested from figure 4.8 is confirmed, its magnitude is about 0.02◦ per µs. The
source of the drift could not yet be determined.

A third method besides the temperature scan and the frequency variation of the reference
oscillator exists that is even applicable during normal operation, [20]. It induces a detuning
by digital frequency generation. It is done by applying a constant slope in phase on the RF
generator and therefore requires a sufficient resolution of the DAC of the controller. A digitally
generated slope on the phase requires that the generated frequency offset (which is identical
to the slope on the phase) is well below the Nyquist frequency of the sampling system. At a
sampling rate of 1 MHz, a frequency offset of 50 kHz appears feasible. At 1 MHz, the time
distance between subsequent samples of the controller is 1 µs, therefore subsequent samples of
the envelope of the drive signal need to have a difference in phase of 18◦ in order to produce a
frequency offset of 50 kHz. The slope in phase should last at least a few times the typical time-
constant of the resonator in order to be able to exclude transient effects and also provide enough
data within one pulse for averaging. The typical time-constant for a resonator of half-bandwidth
ω1/2 = 2π · 65 kHz is 2.4 µs, the slope should last for a few 10 µs.

Figure 4.10 shows the application of the introduced scheme at FLASH, where the controller
of the photoinjector allows to have a secondary pulse after the primary pulse for the beam. The
secondary pulse is independent of the gradient- or phase-setpoint and feedback-setting of the
primary pulse. It has a significantly lower amplitude and does not have feedback applied. The
slope of the phase can be chosen from pulse to pulse. Every slope setting represents a different
detuning. For each setting of the slope of the phase, the average reflection coefficient is calcu-
lated from all samples of the secondary pulse, excluding a few samples in the beginning of the
secondary pulse for avoiding transient behavior. The right side of figure 4.10 shows the measured
reflection coefficients together with the fittet resonance circle and the derived parameters.

The three presented measurement methods lead to comparable results and are all suited for
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Figure 4.8.: Each connected line is a sequence of reflection coefficients recorded during one pulse
of 250 µs length. The small circles mark the beginning of the pulses. The large circle
is the best circle fitted with the χ2-criteria 4.5. From theory one would expect that
all points lie on a perfect circle. Instead, one can see a systematic phase-drift of the
points during the pulse.

Figure 4.9.: Variation of the phase calibration over the pulse. Here, the data from many pulses
was drawn into 250 resonance-circle diagrams, where each diagram represents the
ocurrence in time of the data inside a pulse. For example, the small circles from 4.8
form the first microsecond of their pulse and therefore are taken for the calculation
of the phase calibration of the first microsecond.
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Figure 4.10.: Practical example for a calibration performed with the introduced algorithm at
FLASH. The small step at the end of the primary pulse on the left picture is used for
the calibration. The right picture shows the reflection coefficients in the complex
plane after calibration together with all calibration coefficients.

the calibration of the forward and reflected signal at the electron gun. The results are compatible
with the precision requirement stated in section 3.9.1 of about 1 % (amplitude) and 1◦ (phase).
A comparison on the sub-percent or sub-degree was not done. The method based on the DAC
induced detuning is suited best for FLASH since it does not disturb the operation.

4.3.2. Forward and Reflected Power at Superconducting Cavities

A calibration of the amplitudes of the forward and the reflected wave of the superconducting
cavities is given by constant (or slowly varying) a, b, c, d ∈ C that fulfill

Ufor = aU∗for + bU∗ref

Uref = cU∗for + dU∗ref

with U = Ufor + Uref. (4.8)

U∗for and U∗ref are the measured fields from the forward and the reflected wave. Ufor and Uref are
the calibrated fields. U, without an index, is the field inside the cavity. a, b, c and d are constant
calibration factors that correct for the various elements between the actual measurement and the
digitized signals. b and c are non-diagonal elements that compensate for proportional coupling
from the forward to the reflected channel and vice versa. This crosstalk can be quantified by
looking at the inverted equation (in matrix formalism):(

U∗for
U∗ref

)
=

(
a b
c d

)−1 (
Ufor

Uref

)
=

1
ad − bc

(
d −b
−c a

) (
Ufor

Uref

)
. (4.9)
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The measured forward signal U∗for is thus a linear combination of the true forward signal Ufor and
the true reflected signal Uref. The ratio of the coefficients of the contributions from Ufor and Uref

to U∗for is the crosstalk. The crosstalk can be calculated as

Ufor to U∗ref : −
b
d

Uref to U∗for : −
c
a
. (4.10)

a, b, c and d are four complex (eight real) unknowns which means four complex degrees of free-
dom. Two can be eliminated by a simple linear regression. A third one is fixed by looking at the
end of a pulse where the klystron is switched off and the fourth one requires deeper knowledge
of the cavity envelope approximation in equation 3.11 and derived equations. The three steps for
the determination of the calibration coefficients will be presented.

With X := a + c and Y := b + d one can write

U = XU∗for + YU∗ref. (4.11)

From a single pulse with sampled data points U(tk),U∗for(tk),U∗ref(tk), k = 1..N this be can used
to state a linear, overdetermined system of equations:

U(t1)
U(t2)
...

U(tN)

 =


U∗for(t1) U∗ref(t1)
U∗for(t2) U∗ref(t2)

...
...

U∗for(tN) U∗for(tN)


(

X
Y

)
(4.12)

Via multiple linear regression the best estimates for X and Y can be determined∗. This reduces the
number of complex degrees of freedom to two. The fact that a rather large region in the complex
IQ-plane is covered during one pulse ensures that the matrix is not (close to being) singular and
that numerical inversion is possible.

The next degree of freedom is determined from a pulse at the time where no forward power is
present. For the FLASH timing this is the case at toff = 1.4 ms after a pulse has started. From
Ufor = aU∗for + bU∗ref one can simply conclude

−U∗ref/U
∗
for = a/b =: Z for t > toff (4.13)

since Ufor (the real forward amplitude) is zero at that time, i. e., no forward traveling wave is
present at the directional coupler. In the absence of a forward traveling wave the term reflected
wave may be misleading, therefore it is more appropriate to speak about the backward traveling
wave instead.

The last complex degree of freedom finally requires knowledge of the cavity dynamics. Given

∗The Matlab R© language offers the ”\”-operator for a multiple linear regression. The regression then has a similar
syntax to a simple matrix division.
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that X,Y,Z and e. g. a are known, b, c and d follow directly from

b =
a
Z

c = X − a
d = Y −

a
Z

(4.14)

The complex coefficient a can be found numerically by requiring that the bandwidth is constant
over the pulse. Equation 3.22 on page 19 (cavity mode equation in polar coordinates) can be
used to formulate a χ2-criterion. The second equation of 3.22,

ṙ + rω1/2 = ω1/2ρ cos(θ − ϕ) (4.15)

is very convenient since it does not contain the detuning ∆ω explicitly. With x = reiϕ = U being
the cavity field and u = ρeiθ = 2Ufor (the factor 2 is owed to the coupling), a χ2-criterion can be
stated:

χ2(a) =
∑

tk

[
d
dt
|U(tk)| + (|U(tk)| − 2|Ufor(tk)| cos(∠Ufor(tk) − ∠U(tk)))ω1/2,end

]2

(4.16)

ω1/2,end is the half-bandwidth of the cavity determined at the end of the pulse and Ufor is the
amplitude of the calibrated forward power calculated with a certain a. A good starting point for
the numerical search for the coefficient a is of course the X that was determined previously since
the expected crosstalk is rather small. Figure 4.12 shows the change of χ2 for an example pulse.
For the left picture, the amplitude was varied while for the right picture, the phase was varied.
On both plots, the units of the x-axis is relativ to the complex X. One can see that the difference
between a and X is small but significant.

Figure 4.11 shows the cavity field and the forward and reflected amplitudes. The crosstalk
amplitudes determined from this pulse are |b/d| = 2.9% (forward to reflected) and |c/a| = 1.7%
(reflected to forward) which are typical values.

The determination of the calibration coefficients is fundamental for the RF-based de-tuning
estimation (section 4.4.4) and the on-line beam phase measurement. The confirmation of the de-
tuning measurement by the pulse-shortening-method presented in section 4.4.4 about the hard-
ware detuning monitor can be considered as a confirmation of the presented calibration parameter
estimation.

Although the calibration procedure described turns out to be robust and reproducible, a few
things should be mentioned.

• The procedure assumes that only crosstalk between the measured forward and reflected
wave exists. However, a non-negligible amount is coupled between channels of different
cavities. In the present FLASH LLRF installation, RF signals are downconverted on a
single board in groups of eight channels. It is known that crosstalk between the channels
of one board exists. In the presence of a large inter-channel crosstalk, the first step in the
presented algorithm (determination of X and Y) leads to suspicious results: the shapes of
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U and XU∗for + YU∗ref differ significantly by about a percent for some cavities.
• In this chapter, no U∗ (measured cavity field) is distinguished from U (real cavity field).

The presented calibration with the coefficients a, b, c, d is only applicable except for an un-
known factor (with amplitude and phase) that scales the measured probe signal. For many
applications like the detuning measurement this additional complex coefficient is not of
interest. Therefore, the amplitudes of forward and reflected wave are only calibrated with
respect to the measured cavity field. In order to determine the power from the measurement
it would be sufficient to know the shunt impedance and have the field probe calibrated in
MV/m.
• a, b, c and d can only compensate for linear crosstalk. There are indications that these

coefficients are not constant but vary with the amplitude and the phase of the cavity field.

4.3.3. Beam Based Vector-Sum Calibration

Beam based vector-sum calibration is a well-known method for the high- and the low-power cal-
ibration depicted in figure 3.12, it is discussed for example in [15] and [16]. The high power
calibration ensures that all cavities in a vector-sum experience excitation with synchronized
phases and identical amplitudes from the waveguide distribution system. The low power cal-
ibration on the other hand compensates for amplitude- and phase-distortions done during the
field-measurement occurring on the path from the sensor to the signal processor. Both can be
extracted by looking at the transients induced by the beam.

The precondition for the beam based vector-sum calibration is that the beam, while passing
through the module, excites fields in all cavities by the same strength at exactly the same time
with a uniform bunch-profile (i.e., charge and phase are identical over the bunch-train). This
assumption is not completely fulfilled since the shunt impedance varies between cavities. The
resulting limits are discussed later in this section.

Ideally, the calibration procedure would be performed while no initial field is present inside the
cavities. This would allow to clearly identify the contribution from the beam load. In practice,
this is not possible for the first few modules of a linac where the energy is still comparatively low.
The energy loss of the beam is so high that it would hardly reach the end of a module, unless it
enters already at a very high energy. In order to be able to distinguish between the RF-amplifier
induced cavity field and the beam induced field, one can assure that the drive applied on the
RF amplifier is constant in amplitude and phase. The field in the cavities excited from the RF
amplifier therefore changes only linear in time if at all and is relatively easy to distinguish from
the beam induced field, since the total field is just a superposition of both.

Figure 4.13 shows beam based vector-sum calibration for a single cavity. Three linear fits are
made in the region of interest, leading to three slopes, apre-beam, aduring-beam and aafter-beam. The
slopes are complex since the function t 7→ U∗(t) has complex values (the star ∗ indicates the
uncalibrated measurement). At the time the beam stops, t = tbeam-stop, the field in the cavity
U(tbeam-stop) is a superposition of the generator induced voltage Ugen(tbeam-stop) and the beam in-
duced voltage Ubeam(tbeam-stop). With the slopes from the linear fits and the duration of the beam,
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Figure 4.11.: Amplitudes of the calibrated signals of one cavity. The cavity field U is the solid
line, forward (Ufor) and reflected wave (Uref) are dashed respectively dotted.

Figure 4.12.: Change of the χ2 mentioned in the text. On the left picture, the amplitude of param-
eter a is changed relative to X, while on the right picture the phase of a is changed
relative to the phase of X. The minima of the curves do not fall together with 0,
which means that a slightly differs from X.
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I II III IV V VI VII IIX
low power amplitude (DSP calibration)

A 1.00 0.79 1.00 1.03 1.28 0.94 0.82 1.11
Aerror/A · 100 0.00 0.91 1.06 1.43 0.96 0.78 0.66 1.82

low power phase (DSP calibration)
ϕ 0.00◦ 81.52◦ −29.40◦ 27.51◦ 99.35◦ −70.60◦ 46.03◦ −83.55◦

ϕerror 0.00◦ 0.31◦ 0.51◦ 0.34◦ 0.44◦ 0.36◦ 0.37◦ 0.35◦

high power amplitude (waveguide distribution)
A 1.00 1.02 0.99 1.02 1.66 1.62 1.15 1.61

Aerror/A · 100 0.00 1.17 1.06 1.41 1.23 1.35 0.95 2.63
high power phase (waveguide distribution)

ϕ 0.00◦ 4.21◦ 3.84◦ −0.54◦ 3.55◦ −8.15◦ −2.27◦ 3.72◦

ϕerror 0.00◦ 0.29◦ 0.52◦ 0.27◦ 0.43◦ 0.42◦ 0.41◦ 0.33◦

Table 4.1.: Coefficients for low- and high-power calibration obtained with the method of beam
based vector-sum calibration for all cavities (I-IIX) of the first module ACC1 of
FLASH.

∆tbeam, estimates can be made:

U∗beam(tbeam-stop) =
(apre-beam + aafter-beam

2
− aduring-beam

)
∆tbeam

U∗gen(tbeam-stop) = U(tbeam-stop) − Ubeam(tbeam-stop) (4.17)

The high power and the low power calibration are directly calculated from U∗gen(tbeam-stop) and
U∗beam(tbeam-stop). The argument tbeam-stop is omitted from now on.

• The low power amplitude calibration factor is proportional to the inverse of the measured
amplitude transient, 1/|U∗beam|.
• The high power amplitude calibration is the measured amplitude of the generator induced

voltage corrected by the measured beam induced voltage, |U∗gen|/|U
∗
beam|.

• The high power phase calibration is the difference between the phase of the beam induced
amplitude, ∠Ubeam − ∠Ugen.
• The low power phase calibration is the difference between the acceleration angle ∠U∗beam −

∠U∗gen and the measured generator angle ∠U∗gen. Thus, it is ∠U∗beam − 2∠U∗gen.

It should be noted that a single transient yields four calibration numbers, namely amplitude
and phase for the low-power and the high-power calibration. For the low-power calibration it
is common at FLASH to normalize all calibration in a way that the first cavity has amplitude
calibration factor 1 and phase calibration 0◦. The amplitude calibration factors carry no units
after the normalization.

Phase and amplitudes of low and high power calibration have been calculated during a vector-
sum calibration of the first module (ACC1) of the superconducting accelerator of FLASH and



66 Chapter 4. Low Level Radio Frequency Control of Accelerating Cavities

Figure 4.13.: Beam induced transients used for vector-sum calibration. The big picture shows
the accelerating voltage of a single cavity in open-loop mode as a parameter plot
in the complex plane. The small picture shows the region of interest together with
linear fits.

lead to the results in table 4.1. The results for the amplitudes A and the phases φ are normalized
to the first cavity. The errors Aerror, φerror are the statistical error of the mean which is the standard
deviation divided by the squareroot of the number of measurements. The statistical errors are
acceptable compared to the requirements developed in section 3.9.2. However, there exist sys-
tematical errors that are explained later in this section. The results for the high power amplitude
calibration reflect that the first four cavities are reduced in gradient compared to the last four.
In addition, it shows attenuation of cavity seven which is caused by an extra attenuator that has
been mounted due to a reduced performance of that cavity.

The beam based vector-sum calibration has several weaknesses. The beam induced field is
subject to phase rotations due to detuning. The acceleration angle is not related to the phase of
the beam induced field but rather to the phase of the beam current. The error made in pres-
ence of a detuning can be estimated from the transient response in phase in equation 3.15,
[(d/dt)∠xstep]t=0 = ∆ω/2. At a detuning of 100 Hz and a beam duration of 30 µs, a detuning
angle of 0.5◦ is expected for the beam induced field. This is already of the order of the critical
precision that is determines in section 3.9.2. In principle it is possible to calculate the detuning
and take it into account for the vector-sum calibration.

Another weakness is the assumption that the beam current induces identical fields in all cav-
ities of a vector-sum. The normalized shunt impedance (r/Q) of the whole cavity is a geomet-
rical constant. For coupled cells the coupling between the cells determines the overall shunt
impedance. The loaded shunt impedance Rl = (r/Q)Ql relates the accelerating voltage experi-
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enced by a particle to the power loss of the cavity. Given that (r/Q)cell is the normalized shunt
impedance of a single cell, an estimate for the normalized shunt impedance of the coupled system
of a 9-cell resonator can be made based on the different amplitudes in the cells. In the following
consideration, the overall normalized shunt impedance is determined as the ratio of the squared
sum of the accelerating voltages in the individual cells Ui divided by the sum of the power losses
in the cavities. Since the normalized shunt impedance is usually given per meter, the length of a
cavity l or of a single cell l/N is used in this consideration.

l
(

r
Q

)
cavity
=

(
∑

Ui)2∑
U2

i /
((

r
Q

)
cell
· l

N

) (4.18)

This equation can be simplified by inserting a well known formula for the root mean square of a
variable, U2
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(4.19)

Since the transient induced by a beam is directly proportional to the shunt impedance of a cavity,
4.19 can be used to verify the validity of the assumption that the beam induces identical voltages
in all cavities of a cryomodule. For a linear distribution of amplitudes in the cells of a cavity
with a relative peak to peak distance of 20%, the normalized RMS value Urms/ < Ui > is 7 %.
From 4.19 follows a reduction of the overall shunt-impedance of 0.5 %, which is already half of
the critical region determined for the XFEL in section 3.9.2.

LLRF control is sensitive to the calibration of the field vectors contributing to the vector-sum.
The beam based calibration is a reliable and fast method for obtaining it. The application of
the beam based vector-sum calibration interrupts the normal operation of the accelerator. The
precision achieved with the beam based method is sufficient for accelerators like FLASH but
might need improvement for future accelerators like the European XFEL project. A transient
measurement technique based on an RF notch filter is currently under development and has first
promising results [21]. The new technique allows to evaluate transients of small beam currents
to a high precision.
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4.4. Control Theory Issues

4.4.1. Introduction to Control Theory

This section will introduce some basic elements of control theory that will be used throughout
this and the following sections. A few elements, namely discrete transfer functions, have already
been introduced in section 3.8, where Z-transformations and digital filters were discussed. A
more comprehensive introduction to control theory can be found in [22].

Transfer Functions

Transfer functions describe linear, time-invariant systems with one input and one output. The
differential equation between an input u(t) and an output x(t) of such a system can be transformed
into Laplace- or Fourier-space, where linear operators like d/dt turn into algebraic functions of an
independent variable s (Laplace) or ω (Fourier). Application of transfer functions on signals or
associative combination of transfer functions is purely multiplicative in the Laplace- or Fourier-
domain.

The Laplace transformation and its inverse of a function f (t) (following the definition in [22])
are given by

F(s) = L [ f (t)] =

∞∫
0

f (t)e−stdt (4.20)

f (t) = L −1[F(s)] =
1

2πi

σ+i∞∫
σ−i∞

F(s)estds. (4.21)

The Fourier transformation can be obtained from a Laplace transform via the substitution s 7→ iω.
Table 4.2 gives some examples for Laplace transformations. A longer list can be found in [22]
on page 636.

Name Time domain f (t) Laplace domain F(s)
Unit impulse δ(t) 1
Unit step u(t) 1

s

Exponential e−at 1
s+a

Derivative d
dt s

Integral
∫

dt 1
s

Multiplication g(t) · h(t) G(s) ∗ H(s)
Convolution g(t) ∗ h(t) G(s) · H(s)

Table 4.2.: A few examples for Laplace transformations on functions and operators.



4.4. Control Theory Issues 69

Block Diagrams

Block diagrams as in figure 4.18 are typically used to visualize control algorithms. Central ele-
ments of a block diagram are boxes representing transfer functions. The input and the output of
a two-port (box) are connected via the transfer-function. Additional elements in a block diagram
are summing junctions and signal routing. A block diagram that has an input and an output can
be interpreted as a two-port itself and can therefore be described by a transfer function. For sim-
ple topologies the combined transfer function for a whole block diagram is just a multiplication
of its elements. For topologies with loops (as in figure 4.18), some rules can be applied in order
to determine the overall transfer function. For a simple closed loop, the transfer function can be
determined with Mason’s gain formula [22],

closed-loop transfer function =
transfer function of the straight path

1 − open-loop transfer function
. (4.22)

The open-loop transfer function is the transfer function that is obtained by concatenating all
transfer function that are part of the loop in a diagram. For figure 4.18, the transfer function of
the straight path is C(s) · A(s) · P(s) which is at the same time the open-loop transfer function.
The closed-loop transfer function in that example is therefore

H(s) =
C(s)A(s)P(s)

1 +C(s)A(s)P(s)
. (4.23)

The plus-sign is owed to the fact that the summing-junction in figure 4.18 carries a minus sign
indicating that signals should be subtracted.

Bode Diagrams and Pole-Zero Maps

Linear transfer functions with a sinusoidal signal at their input produce sinusoidal signals at their
output in steady-state. The amplitude and phase difference of in- and outgoing signals can be
visualized by means of a Bode diagram. The resonance curve that is shown in figure 3.1 is a
typical Bode blot, where the amplitude and the phase-response are shown in different diagrams
depending on the frequency. From a Bode plot, the basic effect of a transfer function on a signal
can be estimated.

Another way to visualize transfer functions is to display their poles and zeros in a complex
plane. For transfer functions that can be expressed as rational functions the zeros are the roots
of the numerator and the poles the roots of the denominator. The position of the poles reveals
the dynamics of a transfer function, therefore the pole-zero map does not only inform about the
steady-state behavior of a system but also its transient response. The real part of a pole gives the
damping time while the imaginary part gives the oscillation frequency.

Stability Criteria

Looking at Mason’s gain formula it appears that the open-loop transfer function (e. g. a propor-
tional gain for the controller C) should be as large as possible in order to reject disturbances. In
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practice restriction apply that become clear when looking at the open-loop bode diagram. Due to
the elements in the open-loop transfer function, the absolute phase advance can exceed 180◦ for
frequencies higher than a critical frequency ωcrit. This is equivalent to a flip in sign and therefore
equivalent to adding the plant error signal instead of subtracting it at the summing junction (a
look at the example in figure 4.18 is useful, here). The stability of the system depends on the
amplitude of the open-loop transfer function for frequencies larger than ωcrit. If it is larger than
1 (amplifcation), errors with that frequency will be amplified rather than suppressed. In practice,
a safety phase margin from the unity gain or a safety phase margin from 180◦ is used in order
to guarantee stability. [22] recommends as a rule of thumb to have a gain margin of 8 dB (factor
2.51) and a phase margin of 50◦.

Another stability criterion can applied in order to test if a system is so-called bounded-input,
bounded-output (BIBO)-stable, that is, if a system has always a limited output if the input is
limited. It can be tested by looking at the pole-zero map of a transfer function. If poles exist on
the positive half of the complex plane, BIBO-stability is not given.

Step-Response

A step-response is the response x = xstep of a two-port on a step u = θ, θ(t) = 0 for t < 0, θ(t) =
1 else, at its input. By looking at the transfer function H,

H(s) =
bM sM + bM−1sM−1 + . . . + b0

aN sN + aN−1sN−1 + . . . + a0
(4.24)

or the equivalent differential equation in time domain

bM
dM

dtM u(t) + bM−1
dN−1

dtM−1 u(t) + . . . + b0u(t) = aN
dN

dtN u(t) + aN−1
dN−1

dtN−1 u(t) + . . . + a0u(t) (4.25)

one can draw conclusions for the step response of the system: the steady-state value is determined
by the ratio of the coefficients with the lowest power in s that are not both equal to zero. A
division by zero would indicate that a step-response grows until infinity. This rule can be proven
by applying equation 4.25 in the steady-state case, where all derivatives vanish. On the other
hand, the immediate response of the system (xstep(ε) with ε → 0 and ε > 0) is obtained from the
ration of the coefficients with the highest power in s that are not both equal to zero. A division
by zero indicates that the system is non-causal (i. e., the degree of the numerator is higher than
the degree of the denominator). This is proven by integrating both sides of equation 4.25 several
times. Integrals of u(t) and x(t) then vanish since both are zero for t < 0.

4.4.2. Passband Modes

Other modes exist in a cavity beside the accelerating π-mode. In the case of TESLA cavities, the
closest mode is the 8/9π-mode with a center-frequency that is only 800 kHz away. In the dig-
ital controller, signals are represented as an envelope with respect to a 1.3 GHz-reference. The
π-mode is therefore represented by a DC-signal while e. g. the 8/9π-mode is represented by a
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Figure 4.14.: A signal is sampled at a frequency that is beyond the Nyquist frequency. The
sampled signal and the aliased signal are shown.

800 kHz-signal. 800 kHz however is beyond the Nyquist frequency of 500 kHz at a sampling fre-
quency of 1 MHz. In the following, the attenuation of a signal beyond Nyquist will be deduced.
It is followed by a measurement that evaluates the potential of the cavity modes to lead to an
instability.

The Fourier component at frequency ω of a sinusoidal signal with the frequency ω that is
sampled at a frequency ωs is the integral over a whole period of the function

g(t) = eiωt sin(ωD(t)), D(t) =
2π
ωs
· floor

(
ωst
2π

)
(4.26)

D(t) is the function that maps each t to the biggest discrete sampling point smaller than t (“floor”),
whereas the sampling frequency is given by ωs. The function sin(ωD(t)) is the stepwise constant
function shown in figure 4.14. Since the e-function and the sine in equation 4.26 have both the
same ω in their arguments, it is helpful to introduce the possible, discrete times tk and discrete
phases ϕk,

ϕk = ωtk = ωk
2π
ωs
. (4.27)

For a rational ratio ωs/ω, a numbers N,M ∈ N exist for which the series ϕ j, j = 1, 2, . . . repeats
after N points, ϕ j = ϕ j+N − M · 2π. For example, for ω = 2π · 800 kHz and ωs = 2π · 1 MHz one
has ϕ j = 2π/5, 4π/5, .., 2π. The function g can be written

g(t) = eiω[t−D(t)]eiωD(t) sinωD(t). (4.28)

The argument t − D(t) is in the interval [0, 2π/ωs]. The fourier amplitude of the component is
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given by

F(ω) =

∣∣∣∣∣∣∣∣ 2
NT

NT∫
0

g(t)dt

∣∣∣∣∣∣∣∣ , (4.29)

where T = 2π/ωs is the time between subsequent samples and NT the time period after which
the values of the sampled data points repeat. The factor 2 is owed to the fact that the frequency
ω is also aliasing to −ω. The last expression can be expressed with the stepwise constant phases
ϕk and a sum over the total number N of different phases.

F(ω) =
2
N
ωs

2π

∣∣∣∣∣∣∣∣∣
2π/ωs∫
0

eiωtdt

∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣

N∑
j=1

eiϕ j sinϕ j

∣∣∣∣∣∣∣
=

2
N
ωs

2π

∣∣∣∣∣ 1
iω

(
e2πiω/ωs − 1

)∣∣∣∣∣
∣∣∣∣∣∣∣

N∑
j=1

sinϕ j cosϕ j + i
N∑

j=1

sin2 ϕ j

∣∣∣∣∣∣∣ (4.30)

The ϕ j are equally spaced and repeat after N samples and thus cover at least one turn of a whole
circle. Thus the sinus-cosinus sum vanishes while the sinus-squared sum is 0.5N. The absolute
value of e2πiω/ωs − 1 is determined with the law of cosines, |e2πiω/ωs − 1| =

√
2 − cos 2πω/ωs,

F(ω) =
1

2π
ωs

ω

√
2 − 2 cos 2πω/ωs. (4.31)

Figure 4.15 shows the shape of F(ω) for a sample frequency of ωs = 1 MHz (10 MHz). For
ω equal to the Nyquist-frequency of 500 kHz, the value of F(ω) is just 64 % (or −4 dB). For
ω = 2π · 800 kHz, F(ω) is 23 % (or −13 dB). (For 10 MHz, the numbers are 99.6 % (−0.04 dB)
at 500 kHz and 99.0 % (−0.09 dB) at 800 kHz.

So far, formula 4.31 was used for calculating the strength of a certain frequency ω after the
digitization process. It can also be used for calculating the strenght of a frequency ω′ that is
resulting from aliasing after a certain frequency ω was digitized. For example, if a frequency
ω = 2π · 800 kHz is sampled at ωs = 2π · 1 MHz it will alias to 200 kHz, 1.2 MHz and so on.
For the digitation process it does not make any difference whether the original frequency ω is
800 kHz or any of its aliases. Therefore, the strength of a certain alias frequency can be calculated
directly with F(ω′).

Passband modes can lead to instabilities in a closed loop feedback. Section 4.4.1 explained
that instability can occur if the closed-loop transfer functions has a phase shift of 180◦ and an
amplitude larger than one for certain frequency ranges. This can be extended, since frequency
regions with an amplitude larger than one and a phase shift of 180◦ plus an integer multiple of
360◦ also lead to an instability. The phase shift can directly be influenced by the time delay in the
loop. Figures 4.16 and 4.17 show the results of a measurement, where a single cavity is operated
in closed loop and the delay in the loop is systematically increased. The proportional gain of 35
was chosen such that a significant instability is visible. Figure 4.16 shows time-domain pictures
of a single pulses whith different extra delays. In the right part of figure 4.17, the rms over the
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Figure 4.15.: Attenuation of digitally synthesized frequencies. The two curves show the rela-
tive amplitudes of frequencies generated with a sampling frequency of 1 MHz and
10 MHz.

flat-top is plotted versus the extra time delay. The periodicity is about 1.3 µs, which corresponds
to a frequency of about 770 kHz. The left part of that figure shows the fourier transform of a
pulse that is close to instability. It shows a major frequency component around 780 kHz. Since
the 8/9π-mode of a Tesla cavity is known to be about 800 kHz away from the accelerating π-
mode, it is the best candidate for the origin of the instabilities presented here. The preceeding
consideration of attenuation beyond the Nyquist frequency has shown that the attenuation of the
8/9π-mode is not sufficient in order to avoid instabilities.

4.4.3. Determination of Loop Phase and System Gain

Introduction of Loop Phase and System Gain

In a linear single-cavity control-loop, loop phase and system gain can easily be identified with
angle (loop phase) and magnitude (system gain) of the factor A ∈ C in

ẋ + (ω1/2 − i∆ω)x = Aω1/2u. (4.32)

Except for the factor A, this equation is identical to the envelope approximation for cavity modes,
equation 3.11. The meaning of A is a constant scaling in amplitude and a distortion in phase
caused by the physical elements between the drive u and the detected field x, in particular by
actuator- and sensor chain. If the control system produces the complex number u, the cavity will
act as if it was driven by the complex number Au. In practice, A will rather be a function in time,
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Figure 4.16.: Single-shot time-domain pictures of the amplitude of a cavity driven in closed loop
with different extra delays. The instability on the left plot (extra delay is 100 ns) is
clearly visible compared to the right plot (extra delay is 800 ns), even though the
total loop delay is shorter.

Figure 4.17.: The left plot is the fourier transform of a flat-top with instabilies at 100 ns extra-
delay. The right plot shows the rms values of the flat-top amplitude versus a sys-
tematic scan of the extra delay.
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Figure 4.18.: Closed-loop diagram for a plant with linearly distorted inputs (represented by A).
The distortion can be associated with the controller, C. If P is linear, it does not
make a difference if A is an input- or an output-distortion of the plant P.

depending especially on the temperature (slow drifts).
Initially, before presenting a method that determines A, the meaning of loop phase and system

gain shall be illuminated. In the presence of a distorting A, the closed-loop transfer function
turns into

H =
ACP

1 + ACP
(4.33)

with C being the controller and P the undistorted plant. A can be thought of as being associated
to C rather than to P as depicted in figure 4.18. An interpretation of A would be that it just
changes the controller C into AC. The effects of a |A| = 1 (but nonzero phase) and ∠A = 0 (but
non-unity amplitude) will now be discussed separately and thereby lead to the notions system
gain and loop phase.

For a moment it is assumed that A has a zero phase. For any (not too large) |A|, the loop can
be closed without the risk of an instability. Given that the proportional feedback gain is 1 (i. e.
C = 1 for the controller) and assuming that P = 1 in steady-state (which is the case for a cavity
on resonance†), the transfer function from the setpoint to the cavity field can be written as

H =
ACP

1 + ACP
=

A
1 + A

. (4.34)

Or, in other words: if and only if A = 1, the cavity will be at 50% of the setpoint value in
steady-state and closed-loop operation. If A is larger, H in equation 4.34 will be larger (closer
to unity) which is equivalent to a higher effective proportional gain. Therefore, knowledge of |A|
is important for the knowledge of the true loop gain. From here on, system gain will be defined
as |A|, because it can be considered as the contribution from the system to the loop gain. In
practice, compensation for A in the digital signal processor can be adjusted by the input matrices
of figure 4.1. From equation 4.34, a simple way of determining the system gain is visible: For a
feedback-only driven cavity, one has to alter the loop gain at the DSP until the cavity field is at
50% of its setpoint value.

Now the system gain |A| shall be assumed to be equal to unity in order to illuminate the influ-
ence of a non-zero phase ∠A on the closed loop. Figure 4.19 gives an example where a loop phase
of 180 ◦ causes an instablity in closed loop operation. The diagram shows the complex plane,
which is in radio frequency engineering often referred to as the IQ-plane with I (“in phase”) be-

†The coupling contribution 1 + Γ0 is by intention not taken into account for this definition of the system gain.
Therefore, the field is not twice as large as the scaled drive in the near-to steady-state part of figure 4.21.
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Figure 4.19.: Instability caused by an inadequate loop phase. The diagram shows the complex
IQ-plane. The drive u produced by the controller is rotated by 180 ◦ compared to
the drive Au arriving at the cavity. This leads to the instability described in the text.
The dotted lines show the phase error and phase correction respectively in the case
of Aφ-control. Here, a loop phase can not cause instability.

ing the real part of the field and Q (“quadrature”) the imaginary part. The current field vector x
is indicated by an x and the setpoint x0 by o. The drive Au (as seen from the undistorted cavity)
falls together with the field itself, since steady-state operation on resonance is assumed. The
controller output u produced by the control system is 180◦ out of phase compared to the plant
input as seen by the cavity, Au. For a loop gain of 1, the feedback algorithm would directly add
the error e = x0 − x to the controller output u. The cavity will then experience a drive that is
corrected by Ae and thus move in the opposite direction of the setpoint! Due to the feedback, the
distance in the IQ-plane between the field and its setpoint will grow exponentially.

As a side-remark it shall be mentioned that the illustrated instabilty does occur in IQ-control
but not in Aφ-control (amplitude-phase control). Figure 4.19 shows the phase-correction (but
not the amplitude correction) that would be applied in Aφ-control as a dotted segment. A rota-
tion preserves the orientation even in the presence of a phase distortion and hence the feedback
applied in this case does not lead to an instability.

Even in IQ-control, a small loop phase usually does not necessarily lead to an instability. A
loop phase rather introduces a coupling between I and Q. From figure 4.19 it is visible that
instabilty occurs if the loop phase is larger than 90◦. In order to make a quantitative statement
on how much a loop phase different from zero affects the field quality, equation 4.33 shall be
investigated. Again, a cavity on resonance in steady-state is considered with a proportional
controller. That is, ACP is replaced by a complex number z with the amplitude |z| corresponding
to the proportional gain AC and a phase equal to the loop phase ∠A. The phase ∆ϕ of the
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expression z/(1 + z) is thus of interest:

tan∆ϕ =
Im(z/(1 + z)))
Re(z/(1 + z))

=
z + zz̄ − z̄ − zz̄
z + zz̄ + z̄ + zz̄

=
Im z

Re z + |z|2

=
Im z/Re z

1 + |z|2/Re z
(4.35)

For small angles ∠z (small loop phase) and large |z| (large proportional gain), one can replace
|z|2/Re z just with |z| (the proportional gain) and yields the not quite unexpected result: the final
error on the plant phase is just the loop phase divided by the proportional gain.

Measurement of Loop Phase and System Gain

Looking at equation 4.32, it seems obvious how to obtain A in a pulsed system (assuming that A
does not change over the pulse): the knowledge of x, ẋ, ω1/2, ∆ω and (non-zero) u for a single
point inside a pulse allows to calculate A. ω1/2 and ∆ω can be determined very convenient at
the end of a pulse (refer to equation 3.17 on page 16). The bandwidth and the detuning at time
t = tend, the end of the flat-top, shall be labeled ω1/2,end and ∆ω1/2,end. Now, taking x, ẋ and
u at the end of the pulse (or rather close-to the end of the flat-top, since after the flat-top the
drive usually is zero) would mean to loose a lot of information since only a few samples can be
involved. Especially the estimation of the derivative ẋ suffers from taking only a few samples
close to the end of the flat-top. Instead, one can take advantage from the fact that the detuning
over a pulse follows a rather linear shape (as seen for example in figure 4.24) during the flat-top.
An

A′(t) =
ẋ(t) + (ω1/2,end − i∆ωend)x(t)

ω1/2,endu(t)
(4.36)

can now be defined. In this equation, the dependency on t is explicitly given in order to make
clear that this A′(t) is built from x(t), ẋ(t) and u(t) from the whole pulse but with ω1/2,end and
∆ωend taken from the end of the flat-top only. The derivative of x can be calculated inside an
algorithm very quickly with a digital filter as in equation 3.52 on page 30. Since usually ω1/2(t)
and ∆ω(t) change during the pulse, A = A′(t) only for t = tend. Still, all of A′(t) for t inside the
flat-top of the pulse can be used for the estimation of A = A′(tend) by doing a linear extrapolation.
This is illustrated in figure 4.20, where A′(t) is plotted for the whole pulse and a linear fit has
been performed in the flat-top region (with a safety margin towards the beginning and the end of
the flat-top). The x marks the extrapolated A′(tend) at the end of the flat-top either for the system
gain and the phase. Figure 4.21 shows the corresponding forward power and vector-sum signal
of a single pulse. A vertical line separates the regions where RF is applied and where it is off.
The forward power signal of figure 4.21 has already been scaled with the results of the system
gain and loop phase determination.
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Figure 4.20.: Amplitude and phase of the time-dependent quantity A′(t) for the pulse in figure
4.21 are plotted. A linear fit is performed for the region of the flat-top. The linear
fit has a visible bend in the amplitude plot (still it is a linear fit).

Figure 4.21.: Forward power signal (solid line) and vector-sum (dashed line) for a single pulse.
The results of the loop phase and system gain determination have already been
applied.
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Figure 4.22.: Parallel measurement of the loop phase of the accelerating vector-sums and the
temperature taken from a cable temperature sensor at the cryo hall annex or the
FLASH accelerator.

Even though developed explicitly for single resonances (single cavity), the presented algorithm
for the determination of loop phase and system gain has been applied successfully on vector-sums
as plant. Figure 4.22 shows the measurement of the loop phase based on the presented method for
a period of nearly five days. A clear day-night periodicity is visible. The peak-to-peak value of
this drift is at about 30◦. The drift of the loop phase can clearly be correlated with the temperature
measured at a fixed location of the end of the linac thus indicating a potential candidate of the
origin of the phase drift.

4.4.4. FPGA-Based Single Cavity Detuning Monitor

With the cavity equation in polar coordinates, equation 3.22, the detuning of an oscillator can be
calculated as

∆ω = ϕ̇ − ω1/2
ρ

r
sin(θ − ϕ). (4.37)

Practically speaking, in order to derive the detuning of a cavity from RF signals, one needs to
measure the amplitude and the phase of the incident wave (ρ and θ) and of the field probe (x and
ϕ). The measurements need to be calibrated in a way that amplitudes and phases match each
other. In addition, for precise measurement it is necessary to correct the signals for crosstalk. A
procedure for the calibration of measured signals was developed in section 4.3.2.

Deriving the detuning from RF signals is very attractive in the face of real-time detuning
compensation. The derived detuning can be used as a sensor to feedback loops that correct for
the detuning during the pulse. As a first attempt, equation 4.37 was implemented as a real time
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Figure 4.23.: Results of the hardware detuning-monitor obtained by a digital oscilloscope. The
details on the bottom of the plots are not of importance. Both screenshots show
the detuning over a full pulse. One the horizontal axis, one division corresponds to
200 µs. One vertical division is about 50 Hz detuning. The left picture was taken
during operation at 19 MV/m while for the right picture, the gradient was 2 MV/m.

application in a Field Programmable Gate Array (FPGA), [23].
The calibration of the signals can be performed offline. In spite of the simple nature of equation

4.37, the implementation on an FPGA is not trivial. Besides the digital downconversion-process
and the calculation of amplitude and phase, which is a challenge on its own, a number of things
need to be considered. Typically in an FPGA only fixed-point calculations are available, therefore
a carful choice of the number of bits in a word has to be made. The derivative of the phase is
implemented by means of a digital filter as in 3.52, convoluted with an appropriate averaging
filter. The lengths of the averaging filter determines the total delay of the algorithm. The division
in the formula requires additional bits for precision. The implementation of the sine-function
finally needs a dedicated algorithm, in this case the CORDIC-algorithm [24] has been chosen.

Figure 4.24 shows a comparison of the presented RF-method with the pulse-shortening method,
where the pulse is subsequently shortened. The detuning of the cavity is determined as the slope
of the phase at the end of the pulse, where no drive is present (refer to to equation 3.17). With the
pulse-shortening method, detuning can be measured that is repeating in every pulse. It can not
measure effects where the detuning is excited by the previous pulse. This can be the explaina-
tion for the obvious difference of the two methods in the beginning of the pulse. The agreement
between the two measurements is increasing towards the end of the pulse.

Figure 4.23 shows examples of detunings obtained from the hardware detuning-monitor. It
is important to notice that the measurements are made in real time with a delay of a few mi-
croseconds (varying with the length of the averaging filter). The signals are therefore available
for further processing by feedback algorithms that compensate for the measured detuning. While
the left part of 4.23 shows the cavity at its operating gradient of 19 MV/m, the gradient has been
reduced to about 2 MV/m on the right picture. Clearly visible are the impacts of the discontinu-
ities of the drive power on the signals (start and stop of the flat-top), where the derived detuning
shows spikes. It is also visible that the noise increases strongly for low gradients, caused by the
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Figure 4.24.: Comparison of different methods for the detuning estimation. The crosses are de-
termined by the pulse-shortening method while the circles are calculated from the
RF signals. The comparison is only of qualitative nature as explained in the text.

derivative in equation 4.37.

4.4.5. Analytical Approach to Iterative Feedforward Generation

The concept of feedforward originates in the repetitive nature of the control problem. It is added
to every pulse at the leftmost summing junction in figure 4.1. Its purpose is to compensate for
errors that occur repetitively in every pulse. In that sense, the desired field shape (in time domain)
is an error that demands for a certain shape of the drive signal that takes into account several, also
nonlinear effects like saturation of sensors and actuators, Lorentz force detuning and the beam
load. Some of these influences are undergoing changes depending on outer (e. g. temperature)
or inner (e. g. desired gradient) parameters. It is desirable to have an automatic adaption of the
feedforward tables.

The most obvious, self-adapting scheme is as follows (from here on it will be referred to as
the naive scheme): take the drive (i. e. after the leftmost summing-junction in figure 4.1 where
the current feedforward and the feedback are added) of the current pulse as feedforward of the
next pulse. Practice has shown that such an approach is unstable already after a few iterations.

This section shall introduce a formalism that allows to analyze certain linear adaption schemes
for pulsed systems. It explains, why the naive approach just introduced (and many of its deriva-
tives) is instable. The next section then will introduce a method that solves the adaption problem
satisfactorily using linear filters, but somehow is not covered by linear theories.
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Figure 4.25.: First iteration of the naive adaptive feedforward, where the two involved pulses
are depicted as disjoint systems. It is important to see here that the left system
(representing the first pulse) can influence the right system (representing the second
pulse) but not the other way round.

The basic idea of treating the pulsed structure in the frame of the linear control theory as for
example discussed in [22] is to think of separate pulses as of separate systems. Instead of having
one system exercising pulses one after the other, identical systems exercise exactly one pulse.
Figure 4.25 illustrates the impact of the first iteration of the naive adaptive feedforward. First of
all, two control loops are visible. They are described in the Laplace-space and contain a plant
P(s) (symbolized by a nine-cell cavity) and a controller C(s). The transfer-function from the
input of one system to its output, namely the function between the set-point table (SP(s)) and the
total drive (DR(s)) is

L(s) =
C(s)

1 + P(s)C(s)
. (4.38)

It is worth noting that the definition of L(s) is not the most common way to define a transfer-
function: usually, transfer-functions connect input (or setpoint in this example) with the output
of the physical system (here the cavity field). L(s), instead, communicates between the setpoint
and the drive of the controlled system. The transfer-function between setpoint and cavity field
would naturally be P(s)/(1 + P(s)C(s)).

The two systems in figure 4.25 shall be identified with two subsequent pulses of a single
system. The left system is the first pulse, it does not have any feedforward applied at all. The
right sytem has an extra contribution at its summing junction that originates from the left system.
The path from the left to the right system has a C−1(s) which is ment to compensate for the
controller C(s) of the second system: by doing so, the introduction of a second summing junction
in front of the plant P(s) is avoided. The concatenation of the two system is feasible, since it is
warranted that the earlier pulse influences the later one but not the other way round.

The next consequent step is to build a cascade of n such system as depicted in figure 4.26.
This picture reflects the topology of figure 4.25. Figure 4.26 also indicates that parts of it shall
be repeated (n − 1)-times. Following this picture, one can derive a linear transfer function H(s)
after n iterations between the setpoint table and the drive (the independend variable s is omitted
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Figure 4.26.: Cascade of several iterations of the naive feedforward adaption. The bold bracket
with the superior n − 1 indicates that this part is repeated according to the number
of iterations.

from here on),

H = (((L ·C−1 + 1) · L ·C−1 + 1) . . .) · L
= [(L ·C−1)n−1 + (L ·C−1)n−2 + . . . + 1] · L. (4.39)

The last line can be identified as a geometric series,

H =
(L ·C−1)n − 1

L ·C−1 − 1
· L

= (1 − (L ·C−1)n) · P−1, (4.40)

where the last line takes advantage of the equality P = (1 − LC−1)/L which follows from 4.38.
For reasons that will become clear in appendix B, this is reformulated to

H = (1 − [1 − LP]n)P−1. (4.41)

With this, a surprisingly simple formula is presented that describes the evolution of the feedfor-
ward tables over n pulses. It has the following, natural properties. In case n → ∞, the term
in square brackets goes towards zero for |1 − LP| < 1, leading to H → P−1. For finite n, the
difference H − P−1 is −[1 − LP]nP−1, which involves the inverse of a stable transfer-function P,
which has poles in the positve half-plane. This is already a severe reason, why the naive feedfor-
ward might cause problems. Figure 4.27 shows the result of five simulated iterations of the naive
adaptive feedforward. The overshoot is clearly visible. Even though this scheme converges for
n→ ∞, the steps in between show inacceptable behavior.

The amount of the overshoot can be calculated. As stated in section 4.4, it is the ratio of
the coefficients of the highest degree in denominator and nominator in the transfer function that
determines the height of the immediate response. This can be applied on 4.40, where L =
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Figure 4.27.: Simulated results after five iterations of the naive adaptive feedforward. The pa-
rameters are ω1/2 = 2π · 210 Hz, ∆ω = 0, no beam, proportional controller with
loop-gain 20. The overshoots are clearly visible and correspond to what is observed
in reality.

C/(1 +CP) is already replaced:
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(4.42)

In the last expression, the coefficient of the highest power (n) in the denominator is clearly ω1/2.
In the numerator, the coefficient of the power n is nCω1/2 which means that the overshoot of the
step-response grows linearly with the number of iterations.

A natural extension of the naive adaptive feedforward can be stated as follows. Take the drive
of the current pulse and subtract the feedforward, the result will be the feedback contribution
within this pulse. Apply a digital filter D on the feedback and add the filtered feedback on top
of the existing feedforward table. Appendix B shows in a lengthy calculation that the transfer
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Figure 4.28.: Step-response of the transfer-function that desribes the adaptive feedforward-
iterations, here up to eight iterations. The parameters are chosen for a system with-
out beam, half-bandwidth ω1/2 = 2π ·210 Hz, zero detuning, proportional loop gain
50 and different digital low-pass filters D with corner frequencies starting from
500 Hz. The step-responses with the highest amplitude are alway the ones after
eight iterations.

function between the setpoint table and the drive after n iterations is given by

H = (1 − [1 − LDP]n) P−1, (4.43)

which has a similar appearance as equation 4.41.
The transfer-function D in equation 4.43 does not suffer from a restriction that typically applies

to applications of control theory: it does not have to be causal. At the time the feedforward table
is calculated, the pulse is already over and the information of the whole pulse is available.

With 4.43, the step-responses for the adaptive feedforward can be calculated. This is plotted
in figure 4.28 for the first eight iterations of a system without beam, half-bandwidth ω1/2 =

2π · 210 Hz, zero de-tuning, proportional loop gain 50 and different digital low-pass filters D
with corner frequencies starting from 500 Hz. From the step-responses it can be seen that the
transfer-functions by themselves are stable in the bounded-input-bounded-output (BIBO) sense.
But the amplitude is increasing linearly with the number of iterations, independed of the choice
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of D. For this reason, the feedforward-algorithms built from this scheme are instable in the sense
that they do converge after a large number of iterations but show high overshoots in intermediate
iteration steps. The situation changes if the bandwidth of the system under control is higher:
simulation show that the leading overshoot is very small.

4.4.6. Fast Adaptive Feedforward Generation with Time Reversed
Filters

The section will present a very simple, efficient and stable method for the adaptive generation
of feedforward tables. It is, however, not covered by linear theories. First the scheme will be
introduced in a cookbook-fashion. Then, after a few examples, an attempt to a more analytic
phrasing will be made.

The scheme is described best by the following steps, which are illustrated in figure 4.29. It is
later on referred to as the reverse-lowpass feedforward.

1. Take the feedback-contribution of a pulse (shaded area in the figure).
2. Reverse that signal in time (solid line represents reversed signal).
3. Apply a digital lowpass-filter with the corner-frequency ωlp on that signal.
4. Again reverse this filtered signal in time.
5. Time-shift this by −∆taff.
6. Add the reverse-filtered, time-shifted signal on top of the current feedforward-tables. The

newly added part is shaded in the figure.

This scheme can, of course, only be applied in a pulsed environment. It takes advantage of the
fact that the whole pulse information is available for the feedforward calculation. It can very effi-
ciently be calculated in digital devices, since only multiplications and additions are involved. The
application of the filter is implemented by subsequent multiplications and additions, as described
in section 3.8.

The reverse-lowpass feedforward scheme has two free parameters: the lowpass corner fre-
quency ωlp and the time-shift ∆taff. By experience it can be stated that the best results in terms of
convergence speed and stability are obtained for values where the corner frequency is of the order
of the loop bandwidth and the time-shift of the order of the loop delay. A typical loop-bandwidth
is 20 kHz for a cavity corner frequency of 200 Hz and a proportional gain of 100. A typical loop
latency is of the order of 1 µs.

Figure 4.30 and 4.31 show examples for the performance of the algorithm for high beam-
load simulation. The copper-cavity is driven with feedforward plus feedback consisting of a
proportional and an integral gain, the corner frequency of the reversed-lowpass is 50 kHz. Beam
is simulated by a waveform generator at an additional input in front of the amplifier that drives
the cavity. The small pictures on the left show a zoom into the critical area where the simulated
beam starts. The right small picture in 4.30 shows the development of the relative peak-to-peak
deviation in the critical area while the number of iterations is increasing. Initially, the peak-to-
peak error is 5 %. The error is only visible in the region around the beam-start. After a few ten
microseconds, the beam load is fully compensated by the integrator for the rest of the pulse. The



4.4. Control Theory Issues 87

Figure 4.29.: Illustration of the reverse-lowpass feedforward scheme. The steps are explained in
the text.
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adaptive feedforward is able to reduce the peak-to-peak error in the critical region down to less
than 1 % within 5 iterations. The feedback contribution to the drive is minimized over the whole
pulse.

The pictures reveal a certain stair-step structure. The stairs are produced by the nature of
the underlying controller‡, which stores the feedforward-tables differentially. The size of the
differential steps is constrained by a memory-saving scheme.

Although the method of reverse-filtered feedforward generation does not fit into linear theo-
ries, it is worth a closer look. A lowpass-filter is determined by the equation

ẋ(t) + ωlpx(t) = ωlpu(t) and sx(s) + ωlpx(s) = u(s) (4.44)

(time domain and Laplace representation), therefore the equation for the time-reversed lowpass
can be obtained by substituting t 7→ −t. Consequently, the transfer function for the time-reversed
lowpass is just

H(s) =
ωlp

ωlp − s
. (4.45)

The first interesting observation with this transfer function is that it is BIBO-unstable according
to section 4.4.1 (the single pole lies in the positive half-plane), which would indicate that the
results grow until infinity. However, the reverse lowpass filter is stable. This becomes clear from
a closer look to boundary conditions of filters that are applied on waveforms with a finite length
as it is the case for a pulsed LLRF system. A normal lowpass applied on a signal u(t) that is
defined on the finite interval [tstart, tstop] will yield a filtered signal x(t) for t ∈ [tstart, tstop]. In most
implementations, the filtered signal will have zero as its initial value, x(tstart) = 0 (unless other
boundary conditions apply). The reverse lowpass, however, has the natural boundary condition
x(tstop) = 0 which prevents exponential growth on the interval [tstart, tstop].

For the stability analysis of several feedforward algorithms in the previous chapter it was
implicitly supposed that the filtered signals are zero for t = tstart. Only for that type of initial
condition it makes sense to talk about the initial height of a step response. The linear growth of
the initial response with the number of iterations was the reason why all previously described
algorithms failed.

4.5. Concept for a Self-Adapting Beam Based Feedforward

The previous section presented a fast and robust algorithm that shapes the feedforward table
according to the demands of the beam current and other circumstances. Even though it is fast
enough to adapt within 1-2 pulses, there are situations conceivable where this is not sufficient.
Especially in a long linear accelerator with numerous RF stations along the linac and optics
between these sections, beam transmission can only be achieved after the RF is adapted for all
stations. On the other hand, adaption to a certain beam current can only be achieved if the
beam is already present in a module. In a long linac, without any futher measures, adaption

‡The experiment was performed with the current controller of the Spallation Neutron Source (SNS) accelerator at
the Oak Ridge National Laboratory (ORNL).
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Figure 4.30.: Convergence of the cavity field with the reverse-lowpass feedforward scheme in the
presence of a high beam load at a copper cavity. The large picture shows the field-
amplitudes of several iterations of the adaptive feedforward. The left small picture
shows a zoom into the critical region, the right small picture shows the relative
peak-to-peak variation in the zoomed area after each iteration.

Figure 4.31.: Convergence of the feedforward with the reverse-lowpass feedforward scheme in
the presence of a high beam load at a copper cavity. The large picture shows the
feedforward-amplitudes of several iterations of the adaptive feedforward. The left
small picture shows a zoom into the critical region, the right small picture shows
the maximum relative variation in the zoomed area from one iteration to the next.
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would successively be accomplished one module after the other and therefore might take long
depending on the number of RF-stations. This section will introduce an extension of the adaptive
feedforward scheme that takes this into account.

A first and basic concept refers to changes in the setpoint amplitude or the phase by the oper-
ator (automated or human). If any of these change, the feedforward table needs to change, too.
Instead of having to adapt tables to a new setpoint, it is much faster to scale the existing table
linear with the change of the setpoint. Therefore, it is helpful to have a reference feedforward
table (i. e. a normalized tabel) in the memory of the signal processor that is scaled by the setpoint
amplitude and phase before it is applied to the system. The algorithm that adapts the feedforward
between pulses acts rather on the reference table than on the full-scaled table that is put on the
DAC.

Adaption to different beam-currents and bunch-lengths can not be performed by linear scaling.
Instead, the basic idea is to define a finite set of N scenarios. A scenario is uniquely defined by,
for example,

• the targeted beam current,
• the number of bunches in a pulse and
• the desired pulse shape.

This is information that is known before the pulse happens. It should be communicated to the
FPGA prior to the pulse. Ideally, this information is encoded in the signals from the timing
distribution system. The signal processor holds as many reference feedforward tables as there
are scenarios. The feedforward that is applied in a pulse is taken from the unique reference
feedforward table that corresponds to that scenario. After a pulse, the feedforward adaption
algorithm is applied and the result alters the feedforward table of the regarding scenario.

There are cases, in which adaption is unwanted, especially if interlocks were triggered. There-
fore, the signal processor needs an additional input logic which decides whether adaption is
wanted or not.

After a while, reference-feedforward tables will have built up for all scenarios. Once they are
built up, beam transmission will be granted even in the case that the beam load or the pulse length
changes.



5. A Framework Based on Finite State
Machines for LLRF Automation

5.1. Finite State Machines

An automation-system has to act in a similar way as an experienced operator. At any point in
time, it has to make decisions that are based on the information that was obtained until that
moment. An automation system can thus be a decision table: available data is tested against
a predefined set of conditions. Every possible combination of true and false conditions corre-
sponds to an action performed by the automation. However, the possible combinations scale
exponentially with the number of conditions which makes the development of decision tables
for the automation of complex system impractical. Finite state machines (FSM) provide a way
to solve the complexity without loosening the demands for a strict determinism. State-charts al-
low a simple visualization of systems that would otherwise be represented by complex decision
tables.

FSMs are commonly used in industry and thus supported by various platforms and languages
ranging from real-time FPGA systems to high level applications as in the simulation of a char-
acter in a computer game. Various tools and patterns exist that allow a formal analysis of FSMs,
including tests if all states can be reached or an FSM is complete in the face of all possible
inputs. Thus FSMs combine the advantages of a strictly formal system with a descriptive repre-
sentation. This section gives a formal introduction to FSMs for automation and its visualization
by state-charts. The next section introduces the concept of quantization that is needed in order to
manage systems with a vast number of input channels and is closed with a formal definition that
demonstrates the equivalence to the original FSM concept.

A very general, formal definition can be given for FSMs, [25]: a finite state machine A =
(Q,Σ,Γ, δ, λ, q0) is a six-tuple where Q is a finite nonempty set of states, Σ is a finite nonempty set
of inputs (input alphabet), Γ is a finite nonempty set of outputs (output alphabet), δ : Q× Σ→ Q
is the transition function mapping, λ : Q → Γ in a Moor FSM [26] and λ : Q × Σ → Γ in a
Mealy FSM [27] is the output mapping and q0 ∈ Q is an initial state.∗ Practically, an FSM can
be considered as a mapping between discrete functions, in the same way that a functional (e. g.

∗A few variations of this definition exist in literature. Sometimes, the output alphabet Γ is omitted and replaced by
a set of final states, F. These FSMs are called acceptor FSM, while the definition used in the text referres to a
transducer FSM. The former is rather used in text processing than in automation applications.
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d/dt) maps between continuous functions. The following to mappings shall serve as examples:

d
dt : sin 7→ cos (mapping of continuous functions)
G : (u, u, d, u, u, . . .) 7→ (2, 3, 2, 3, 4, . . .) (mapping of discrete mappings)

While sin is a continuous function R → R, the ordered set (u, u, d, u, u, . . .) can be considered
as a discrete mapping N → {u, d}. Similarly, cos maps R → R and (2, 3, 2, 3, 4, . . .) maps
N → {1, 2, 3, 4, 5}. The mapping G is therefore an FSM and can be visualized by a state-chart
(figure 5.1). A state-chart [28] is the visualization of an FSM by means of a directed graph. The

Figure 5.1.: Simple FSM that translates sequences built from a finite input alphabet {u, d} into
sequences of the same length built from a finite output alphabet {1, 2, 3, 4, 5}. The
FSM can be considered as a model for a five-gear half-automatic gear-box that has
two input signals (u: gear up and d: gear down).

visualized FSM G can be a model for the behavior of a gear-box, where the driver has two buttons
(gear-up and gear-down) and can only chose one gear after the other. The input-sequence of the
FSM G is therefore a sequence of us and ds, while the output-sequences (sequence of states) is
the sequences of selected gears 1-5. The sequence of states is, for this simple model, identical
with the output sequence.

Usually, the concept of FSMs is extended by a few features.

1. Conditions. In the FSM G, the appeareance of u in an input-sequence causes a transition if
the FSM is in one of the states 1-4. The concept of conditions allows to connect a transition
with a required value of a secondary input sequence (or time-dependend function).

2. Parallel flows. One can imagine to have an additional flow as the one depicted in figure 5.1
in parallel. This is equivalent to having a secondary output sequence.

3. Superstates. A superstate is a state that contains other states. The states inside a superstate
form in fact an FSM by their own. The purpose of superstates is mainly to make state chart
diagrams more readable by allowing the designer of FSMs to introduce different levels of
abstraction. If and only if a superstate is active, the contained flows are active.

4. History states. The whole FSM has an initial state (equivalent to an initial condition of
a differential equation). Additionally, sub-states of a superstate can be made so-called
history states. That means, on re-entry of a superstate, the sub-state that was active last
will be the initially active state.

For Moor FSMs, the output sequence is obtained from a unique mapping from the current
state to the output alphabet (which is not necessarily identical to the set of states). For Mealy
FSMs, the output sequence is obtained from a unique mapping from the last transition to the
output alphabet. As there are typically much more transitions than states, a Mealy FSM is more
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complex than a Moor FSM. However, it can be shown that for each Mealy FSM an equivalent
Moor FSM can be constructed.

So far, an FSM is a language for modeling systems with discrete in- and outputs in the same
way that transfer functions are a language for modeling linear systems with continuous in- and
outputs. A state-chart (as in figure 5.1) is a graphical way to represent FSMs and their behavior.
Another way to represent FSMs are transition tables.

The DOOCS control system [29], offers a basic implementation of FSMs [30]. A DOOCS
FSM is event-driven, which means that the elements of the input-sequence (Σ in the formal defi-
nition) are not restricted by periodic time-patterns. However, the DOOCS FSM framework fore-
sees a timing event which occurs synchronously to the accelerators timing system on every pulse
of machine operation. The concept of output-sequences (Γ in the formal definition) is modified
in the DOOCS implementation in the sense that functions are invoked in certain situations: states
do have enter()-, during()- and exit()-functions that are invoked on entry into a state, while the
state is active (with the periodicity of the pulsed structure of the accelerators timing) and on exit.
Additionally, transitions offer functions that are invoked if this transition happens. The program-
mer has the freedom of choice to fill these function-templates. Obviously, if the programmer uses
only the function templates that are connected to transitions, he followes the concept of a Mealy
FSM. In a Moor FSM, the programmer would rather use the enter()-functions. It is possible to
mix between these two concept with the DOOCS FSM implementation.

5.2. Discretization of Signals

The analogy between transfer-functions and FSMs is continued with their applications. While
transfer-functions can be used to represent the controller in a continuous closed-loop system,
FSMs can be used for modeling the controller in a system with discrete in- and output data.
Precondition for the usage of an FSM as a controller is the presence of a discrete data flow
of the system under control (plant). One needs to distinguish between value-discrete (value-
continuous) and time-discrete (time-continuous) data. A channel is value-dicrete, if the possible
set of values is finite. If it is infinite in the sense that there is an infinite number of possible
values between† two values, it is value-continuous. It is time-discrete, if the value is constant
for periodic intervals in time while it is time-continuous, if the value can change at any time.
Transfer-functions are the appropriate choice for systems that are value-continuous and time-
continuous (Laplace-transform) or value-continuous and time-discrete (Z-transform). The fact
that digital systems operate at a limited digital resolution (e. g. 14 bit) is usually not considered
as a value-discretization of the system unless it affects the precision of calculations.

Real systems as the LLRF system at FLASH usually have discrete values (e. g. interlock status,
feedback status) as well as continuous values (e. g. setpoint, phase). Additionally, the number of
channels is very high. In order to automate such a system with an FSM, the signal spaces need to
be partitioned. An example for a partitioning of a continuous value-space is to measure the level
of water in a bottle with discrete values like “empty”, “half-full” and “full” instead of a precise

†The usage of the term “between” implies that an order or “greater than” relation of the values exists.
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Figure 5.2.: Automation of a plant with continuous and discrete signal spaces with an FSM and
a quantization. The system under control is complicated due to its large number of
either discrete or continuous in- and output-channels. With the quantization in place,
it appears to the outside world as an FSM itself (quantized plant, dotted line).

measure in milliliter.
The concept of an FSM-based automation of a plant with discrete and continuous signals

involving a quantization is depicted in figure 5.2. The complexity of the system is masked by the
in- and output quantization which are the only access-points to the system for the automation.
The system in the dotted borders itself acts as a quantized sytem. Techniques exist that allow to
construct an FSM that models its behavior [31].

FSMs are supposed to react on events. For the LLRF automation, an event can be defined as a
significant change in a variable. Since the DOOCS control system provides access to its variables
via a pull-mechanism, it is rather inefficient to react on a change of a variable since it involves
frequent pulling and comparison of that variable. In particular reactions on variables that are
derived from many raw variables of the DOOCS system produce a large network load. For au-
tomation purposes, it would be preferable to have the quantized signals available immediately
in the FLASH environment via push-mechanisms. That is, that the producer of a value in the
DOOCS system is capable of detecting changes and notifying registered clients. However, this
would require changes of the DOOCS control system. Presently, a centralized data acquisition
system is developed that will be able to solve this problem in the future. The central data acqui-
sition system, [32], would be a good candidate for the preparation of the quantized data in the
future of DOOCS. The quantization-scheme developed within this thesis considers the fact that
the number of channels in the LLRF system is very high, that the data is not available centrally
and that the computing and networking capabilities are limited.

The developed framework introduces procedure servers which hold a number of procedures.
The procedure server reacts on a discrete input (comparable to a push of a button) with the
invocation of a procedure. Only a few restrictions apply on these procedures:

• If invoked, the procedure is unaware of previous invocations of itself or other procedures.
This simplifies the procedures. Additionally, it requires the procedure to check its require-
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Figure 5.3.: Three-layer display of the automation framework presented in the text.

ments on each invocation with regard to machine protection and operability.
• While running, the procedure does not interact with the operator. This simplifies the inter-

face of the procedure and allows a sequential execution of the tasks inside a procedure.
• The procedure holds all the knowledge necessary to solve its intended task. Additional

knowledge may come from a database or a configuration file. With this, a separation
between control strategy (implemended in the controller FSM) and problem solving (im-
plemented in procedures) is achieved.
• Within a reasonable amount of time (1-100 pulses of the accelerator) the procedure has to

terminate. Special purpose procedures are imaginable that might take longer for execution.
The procedure server foresees a mechanism to cancel procedures that overexceed a defined
time-limit.
• Before termination, a discrete return-value indicating the success of the procedure is handed

over to the procedure server. In addition, the procedure is supposed to produce a human-
readable result that can be stored in log-files.

A descriptive term for these procedures is “fire-and-forget”-procedure. Figure 5.3 shows the pro-
cedure and the procedure-server in the context of an automation with an FSM. In the developed
framework, the discrete results of the procedures are the sole quantized data that represent the
plant. The invocation of a procedure leads to a discrete result that is determined by the state of
the plant. One can say that one retrieves partial information of the state of the plant by invoking
appropriate procedures.

It is obvious that the procedure server along with its procedures fulfill the functionality of
the input-quantization in figure 5.2. A push of a button of the procedure server is a discrete
signal that is translated into a sequence of different continuous or discrete signals handled by the
procedure. On the other hand, it is not quite obvious to see that the procedure server can act as the



96 Chapter 5. A Framework Based on Finite State Machines for LLRF Automation

output quantization. Obviously, the procedure server can provide the current discrete information
only on request, namely after a button has been pushed. Additionally, the information about the
machine is always incomplete. Only what is defined in a certain procedure is revealed after the
procedure has finished.

In order to see that this is (nearly) equivalent with the situation where the quantized state is
directly accessible from the output (that is, λ : Q → Γ is unique), the presented concept will be
pointed out with a formal definition.

A quantized plant where the states are directly visible from the output shall be given by

Aqp = (Q,Σ,Γ, δ, λ, q0)
Q = Q1 × Q2 × . . . × QN

λ : Q→ Γ unique. (5.1)

This is just a standard FSM following the formal definition with a multi-dimensional state-space.
Now, an FSM Āqp shall be constructed from the definition of Aqp, that has the properties of a
plant where the states are only indirectly visible over the detour of the introduced concept of a
procedure server and a finite number of procedures. The FSM Āqp = (Q,Σ,Γ, δ, λ, q) shall be
introduced step by step by the elements of its six-tuple.

First of all, the set of states of Aqp is identical to the set of states of Aqp.

Q = Q (5.2)

The set of inputs of Aqp shall be extended by a dimension that corresponds to the finite number
of N prodedures that are available through the procedure server. It is assumed, that N also is the
number of dimensions of the state space Q.

Σ = Σ × ΣQ, ΣQ = {1, . . . ,N} (5.3)

The transition function δ shall be identical to the transition function δ. It simply ignores the input
elements from the additional dimension ΣQ

δ = Σ × Q = Σ × ΣQ × Q→ Q = Q
(σ, j, q) 7→ δ(σ, j, q) = δ(σ, q) (5.4)

The output alphabet Γ differs from Γ. The output alphabet is no longer identical to the state space
Q. Instead, it is identical to the state space but includes a ∅ to each dimension.

Γ = {∅,Q1} × . . . × {∅,QN} (5.5)

The output mapping now is constructed such that only the state of the jth dimension of the
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state-space, that was previously addressed at the input, is visible at the output.

λ : Σ × Q = Σ × ΣQ × Q→ Γ,
(σ, j, q) 7→ λ(σ, j, q) = (∅, . . . , ∅, q j, ∅, . . . , ∅),
where q = (q1, . . . , qN) (5.6)

With that definition, the formal description of an output quantization that uses the procedure
server concept has been given. While the FSM Aqp is a Moor-FSM, Aqp is a Mealy FSM.

Disadvantages of this concept arise if the states of the quantized plant change much faster than
the elements of the input-sequence arrive. Even though a concept that needs certain inputs in
order to get information about the state of the quantized plant may appear unnatural, there exists
information in the LLRF plant that can only be accessed via invasive procedures. An example of
those “hidden states” is the DC-offset of the vector-modulator. In order to measure this using the
DSP one needs to open the loop and scan different power levels. This makes this property of the
plant inaccessible during normal operation.

The procedures in the presented concept fulfill a two edged role. On the one hand, they are
used in order to produce transitions in the quantized plant, on the other hand, they are supposed
to deliver information about the state of the plant.

5.3. Requirements of an Automation System for LLRF
Control

The analogy between transfer functions and FSMs ends when it comes to the design of an optimal
FSM for automation. An optimal controller can be designed on the basis of a set of numbers
describing its performance goals. Once in operation, the controller can be tested against its
goals. In [22] numerous standard-methods are described that can be used for controller-design.

The design goals towards an automation-system are rather weak compared to the goals in the
classic control problem and are for example:

• Ease the operators job or even protect the machine from damage caused by operator.
• Prevent from faults by early detection of problems. Many of the known faults can be fore-

seen already by a careful online-analysis of the LLRF data, as for example the quenching
of the cavities.
• Increase up-time by fast fault recovery. Simple known faults that require only the reset of

a subsytem can be recovered automatically much faster than a human operator could do.
• Increase field-stability by continuous optimization of parameters (slow-feedback).
• Offer interface to standard-tasks that need to be performed on request. Even though not

invoked autonomously, many applications can be integrated into the automation system
and presented to the operator though a common interface.
• Deal with several ways of bypassing the automation system. In this point, the automation

for LLRF control differs from most industrial automation systems, where the machines are
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accessible only via the automation system.

Besides the goals of automation, the location where the automation takes places is worth a
discussion. Many features that are already in the DSP system of the FLASH accelerator can
be considered automation, e.g. the quench detection. Also the interlock system (machine pro-
tection) is part of the automation. The automation discussed in this thesis is placed higher in
hierarchie at a level on a par with the operator himself.

Further, it needs to be decided which parts of the automation shall be invoked completely au-
tonomously and which on request. This leads to the question, which tasks shall be integrated in
an automation system and which not. Many tasks need to be performed only during the commis-
sioning phase. Others are only accomplished rarely by experts who use their own programs.

And finally, it has to be considered, that an accelerator is an evolving system where subsystems
are changed on a regular basis. This is accompanied with the fact that expert operators tend
to bypass the automation system by directly accessing the machine. In industrial automation
systems it is common that every access to the machine goes through the automation interface.

5.4. Outline of a Finite State Machine for LLRF Automation

From these considerations, two main guidelines for the automation of the FLASH LLRF system
where derived. The first is the fundamental set of states of the automation FSM itself, the second
is the premise under which the DOOCS framework for FSM generation has been extended,
namely a very high flexibility.

The structure of the FSM follows the behavior of an experienced operator. Figure 5.4 shows
the top level of the FSM. One can see two parallel flows. The flow titled operation flow has
as a major element a sequential chain that leads from a null state to the operate state. In the
null state, the status of the LLRF system is completely unknown while in the operate super-state
the machine is operated normally. In between these two super-states are super-states in which
preparations for the operation are performed that are best done with the klystron being in a secure
high-voltage mode (secure super-state) and those that can only be done when the klystron is at its
full high-voltage setting (full super-state). The tweak super-state is a state, where the RF system
is principally running but non-invasive parameter fine-tuning is done. Inside the super-states of
this chain is usually a sequence that fulfills the goal of the super-state. In case a procedure reports
an error, the error state is approached from any state. Depending on the severity of the error, it is
foreseen to jump back to the sequential preparation chain. In case of severe errors, a jump back
to secure is probable while in less severe cases the operate super-state is appropriate.

The next element in the operation flow is a number of applications that are only accessible if
the system is in operate state. These are invasive parameter optimizations as the transient based
DSP calibration or simply a routine for controlled access to the tunnel which requires a controlled
ramp down of all RF systems. The state connected with the controlled acces is abbreviated as zz
in figure 5.4.

The parallel flow titled observer flow holds a super-state that itself holds many flows as the
one depicted in figure 5.5. Usually, the exception-flow oscillates periodically between two states:
being idle and monitoring. While the idle state is nothing but a pause for a certain number of
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Figure 5.4.: Outline of the implemented FSM. The four main-components are the sequential op-
eration flow, a number of special-purpose applications, an error-state and an excep-
tion and monitoring flow.

pulses, the monitor state is foreseen to execute a procedure that monitors a certain aspect of the
accelerator that can be obtained parasitically. In case the monitor state encounters something
suspicious, it jumps to the error flow which can be configured such that an event is sent to the
operation flow, causing it to jump back in the preparation chain or go to an error. The exception
flows can be used for many occasions. They can be configured for oscillating exclusively between
the idle and the monitor state or they can perform branched logics by using also the remaining
states in figure 5.5.

Apart from this design of the states, the flexibility of the design of the automation system
seems to be very important. Therefore, the DOOCS FSM framework has been extended by
a few features. They cover the on-line re-configurability of the system as well as the off-
line re-structurability. Reconfiguring the FSM means to either change the procedure that is
invoked on entry into a state or change the conditions under which transitions are initiated.
Re-configurability could also mean a change in the structure of states. The techniques for re-
configuration and re-structuring are described in detail in [33].

An important experience with the high degree of flexibility of the presented approach is sum-
marized as: The more flexible an automation scheme is, the faster it will converge towards a
stationary (no further changing) solution.
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Figure 5.5.: Single exception flow. In the exception super-state in figure 5.4, numerous parallel
exception flows as shown here are active. They can be freely configured by an FSM-
expert.



6. Stateless Procedures for LLRF
Automation

6.1. Overview

The collection of procedures which constitute the quantization of the LLRF system is not unique.
A good choice requires intuition and permanent monitoring and revision. A few guidelines for a
good design can be stated:

1. A procedure should check fulfillment of its requirements each time it is invoked before
performing any action.

2. While running, a procedure should continue checking its requirements.
3. A procedure should monitor all relevant variables while running in order to detect interfer-

ence by the operator or by other procedures.
4. Procedures working together on the same set of variables need to avoid conflicts by them-

selves. This can be ensured by a semaphore mechanism, which is not (yet) part of the
procedure server.

5. A procedure combines a number of actions which are performed one after the other, there-
fore it is a linear sequence. Before each of its actions, the procedure should check the
requirements of this particular step and quit and return with a unique error code in case the
requirements are not fulfilled.

The procedures are a collection of ready made tools to be used by a proficient operator for
solving standard tasks in operating and maintaining the LLRF. The standardized interface of the
procedure server allows this collection to be accessed by a finite state machine.

Within this thesis, a number of procedures have been developed and are briefly summarized
in table 6.1. The table gives a short summary of the procedures as well as the context in which
the procedure is used within the FSM. The stated context of each procedure corresponds directly
to either a state or to a flow of the FSM in figure 5.4. Selected algorithms are described in more
depth in the following sections.

6.2. Loop Phase and System Gain Control

Description of the Procedure

The purpose of this algorithm is to measure the loop phase and the system gain of the control
loop using the equations developed in section 4.4.3. A configuration flag determines whether the
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Name Description Context
offCal calibration of actuator offsets

in I and Q
invasive low power prepara-
tion during start-up

setStepAFF measure and/or correct sys-
tem gain

tweaking, noticeable only if
large deviations need to be
corrected

oneStepAFF performs one iteration of
adaptive feedforward

tweaking

defaultFF restores original feedforward
table

tweaking

couplerRst check and reset coupler inter-
locks

exception monitoring and
handling

fieldQuality check field quality, return dis-
crete value (category)

exception monitoring

checkNetwork monitor network availability exception monitoring
rampFB ramp feedback to desired tar-

get value
tweaking

operatorAction monitor operator actions on
target and setpoint values

exception monitoring

cathLaser monitor operator actions on
charge (cathode laser set-
tings)

exception monitoring

getDSPCalData retrieve DSP calibration data
and store in file

application

evalDSPCalData evaluate DSP calibration of
forward and reflected power
and store in DB

application

signalCalilb calculate calibration of for-
ward and reflected power and
store in database

exception monitoring

klyIsDown check if klystron is alive exception monitoring
findFancyPulses search for strange pulse

shapes
exception monitoring

rippleLoad apply ripple compensation ta-
ble

application

gunCalib apply RF-gun calibration al-
gorithm

application

Table 6.1.: Available procedures with description and context in the automation
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algorithm should just monitor loop phase and system gain or if it should also correct for it. As
extra input-parameters that can be changed from FSM-experts, upper and lower bounds for the
allowed system gain as well as a threshold for the operating gradient above which the algorithm
is inactive can be adjusted. Once the algorithm is invoked it collects all necessary data and
performs a number of consistency checks. If any of these checks fails, the procedure terminates
with a negative return-code without changing anything in the LLRF-system. The consistency
checks incorporate

• the expert flag that allows or forbids intervention on loop phase and system gain through
the automation,
• the feedback and feedforward switches at the DSP,
• timing consistency be demanding for a flat set-point during the flat-top time that was cal-

culated from the timing,
• a constant amplitude and phase setpoint for all pulses that are recorded and used for aver-

aging,
• RMS requirements in flattop and filling to avoid fluctuations due to noisy data, which

occurs especially at low gradient set-points and
• an acceptance range for the measured half-bandwidth of the vector-sum.

If all points are fulfilled, the algorithm starts calculating the loop phase and the system gain. In
case the loop-phase differs from zero by more than one degree or the system gain differs from
one by more than five percent, a correction is applied at the DSP.

Usage of the Procedure in the FSM-Context

The algorithm is currently used in the exception-block of the FSM. This block is foreseen for
periodical execution of algorithms. One of the structures as in figure 5.5 is configured such that
the loop phase and system gain are measured parasitically in the monitoring state. If the return
code indicates that a correction is necessary, the correction algorithm is invoked in the error state
of the exception-block.

6.3. Adaptive Feedforward Generation

Description of the Procedure

The procedure oneStepAFF follows directly the scheme that is developed in section 4.4.6. The
invocation of oneStepAFF performs one iteration of the fast adaptive feedforward generation
with time reversed filters.

Directly after the invocation, the procedure checks if feedback and feedforward are enabled
at the DSP and if a dedicated user-flag is set that allows the algorithm to operate. An additional
element of safety is that the user can define a lower limit of the setpoint amplitude below which
the algorithm is inactive. After these checks are passed, data is collected that is used for the
calculation of the new feedforward tables. After the data is collected, it is checked if the beam
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inhibit system (BIS) was active during the collection of data. In case the BIS system reported an
incident, the feedforward generation stopps.

The calculation of the feedforward tables is then based on the collected data. It is followed by
a scaling of the resulting new feedforward table, for the following reason: the DSP does not store
the feedforward table as it is written out to the DAC. Instead, it keeps a normalized table that is
scaled with the setpoint value (amplitude and phase) before it is written to the DAC. This leads
to a linear scaling of the total feedforward tables in the case that the setpoint changes. The linear
scaling was described as a part of the self-adapting beam-based feedforward in section 4.5.

Usage of the Procedure in the FSM-Context

First, the procedure is used in the tweak superstate. It is embedded in a sequence of algorithms
that work together. Second, it is referenced to in the operate state itself. The periodic invocation
of the algorithm does not disturb operation. In case the feedforward table is already optimal,
additional invocation will not be noticed by the system.

6.4. Tracking of Operator Interference

Description of the Procedure

An explicit design goal of the LLRF automation is the ability to detect and handle interventions
of the operator that do not pass the automation-interface. As an example, the operator could
change gradient and phase set-points while these properties are under the control of the automa-
tion system. For this reason, an algorithm operatorAction that is reading numerous variables
of the control system and compares them a) to the desired target value and b) to an internal track-
ing variable has been developed. The internal tracking variable allows the FSM to distinguish
between changes of the variables due to operator interference and changes caused by the FSM.
Each change to the control system variables performed by the FSM is applied similarly to the
tracking variables (this is a design rule and has to be followed by each algorithm that acts on
the control system variables). Based on the configuration found in the control system, different
actions have to be considered.

In addition to the tracking and the target variable, bool variables were introduced that deter-
mine the behaviour of the algorithm. “Auto-Mode” determines if a variable is under the control
of the FSM. “Overwrite-Mode” indicates the behaviour of the algorithm in case an interference
from the operator is detected. Table 6.2 summarizes all variables that are relevant to the algorithm
and gives information on their type. Each cell corresponds to a variable. The first row indicates
the variables that are held by the DSP, namely amplitude and phase setpoints and settings for
feedback and feedforward. The next row is a set of variables with a one to one correspondence
to these variables. These are the target variables. The row labeled tracking is one more set of
variables that corresponds to the first row. Here, the automation tracks the changes applied by
the state machine. Operator interference can be detected by comparing the DSP variables and the
tracking variables. The row auto-mode shows the bool variables that were introduced in order
to disable or enable automatic control of individual variables. The last row finally is a switch
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Gradient Phase FF-Mode FB-Mode FB-Gain
DSP float float bool bool float

Target float float bool bool float
Tracking float float bool bool float

Auto-Mode bool bool bool
Overwrite-Mode bool

Table 6.2.: This table indicates all variables inspected by operatorAction. An entry indicates
that one variable exists. Connected cells, like in the last row, indicate that a variable
is held that is authoritative for several aspects. Except for the DSP-values, all values
are held in the FSM-database.

that allows a final veto from the operator. If this is set to false, the automation is not allowed to
change the DSP system at all.

The procedure operatorAction cannot change the values inside the DSP itself. Instead it is
terminating with a return-code that causes the FSM to trigger subsequent algorithms that correct
these settings. Only a restricted number of algorithms can act on the DSP settings. Table 6.3
summarizes all possible behaviours of the algorithm. Apart from gradient and phase set-point,
the algorithm is also applied on feedback-gain, feedforward-mode and feedback-mode.

Usage of the Procedure in the FSM-Context

The algorithm is invoked periodically in the exception-block of the FSM. If the return-code
of the algorithm indicates the necessarity of an update of DSP variables, the exception-block
sends a signal to the operation-block. Since the algorithm is reading a number of variables
from the control system, periodical network traffic is produced. Instead of periodically pulling
the concerned variables, pushing of the control system would be desirable due to the reduced
network traffic. This is not yet supported by the DOOCS control system.

6.5. Ramping of the Feedback

Description of the Procedure

The goal of this algorithm is to compare the current gain of the proportional feedback with the
target and if necessary change its value. The algorithm cooperates with the previously introduced
algorithm that tracks operator interference in the sense that any change to the feedback caused
by this algorithm is written into a tracking variable, making it possible to distinguish between
changes in the feedback-gain originating from the operator and this algorithm.

Once the algorithm is invoked, it checks if it is allowed to touch DSP-settings at all. If not, it
quits. Then it compares the current gain with the target gain and stops if both are identical. If
the target gain is lower than the current gain, it simply decreases the gain. If the target gain is
higher, it checks if the target gain is below a reasonable value and quits if not. Then, it calculates
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ovw sp=tar trk=tar trk=sp action
true true true true Do nothing.
true true true false Do nothing (impossible combination).
true true false true Do nothing (impossible combination).
true true false false Update tracker (inconsistency).
true false true true Do nothing (impossible combination).
true false true false Operator changed sp. Disable auto-mode.

Update target and tracker.
true false false true Operator changed target.

Send signal if in auto-mode.
true false false false Inconsistency. Update target and tracker.
false true true true Do nothing.
false true true false Do nothing (impossible combination).
false true false true Do nothing (impossible combination).
false true false false Inconsistency. Update tracker.
false false true true Do nothing (impossible combination).
false false true false Operator changed sp.

Send signal if in auto-mode.
false false false true Operator changed target.

Send signal if in auto-mode.
false false false false Inconsistency. Update tracker.

Send signal if in auto-mode.

Table 6.3.: Full decision table for tracking of operator-action. The decision table is valid for
the observation of gradient, phase, feedback-gain, feedforward-mode and feedback-
mode. “ovw”: true if overwrite mode is active (operator-interference overwrites
the FSM). “sp=tar”: setpoint (amplitude, phase, feedback-gain, feedforward-mode,
feedback-mode) is equal to the target value of the FSM. “trk=tar” tracking variable
is equal to the target value. “trk=sp” tracking variable is equal to the setpoint. As a
further switch, the “auto-mode” is considered here. If the setpoint should be updated
and if auto-mode is true, a signal is send that causes the FSM to trigger action for
updating the settings.
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an increasing sequence of gain-values, starting from the current gain and ending with the target
gain. Basically, the sequence is defined by the powers of 1.7 (which is a heuristical value) with a
few corrections at the boundaries. In order to increase the gain from 5 to 40, the sequence would
be [5, 1.74, 1.75, 1.76, 40] = [5, 8.3, 14.2, 24.1, 40]. Then, the sequence is applied to the loop-gain
property of the DSP system. After setting a value from the sequence, data is taken from the
current vector-sum. If it turns out that an overshoot of more than 20% occurred, the algorithm
quits.

Usage of the Procedure in the FSM-Context

The algorithm is part of the tweak superstate of the FSM. Therefore it is included in a chain
of algorithms that work together. The tweak superstate is active whenever a minor parameter
optimization is necessary. Tweaking is usually triggered by the states in the exception block. An
example can be that operatorAction recognizes a change in the setpoint variables.





7. Conclusions

Signal Calibration

Section 3.9.1 approximates the minimum calibration requirements for a resonator without a field
probe, e. g. a normal-conducting electron gun, as

∆ϕcavity =
√

2
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)
sinψ (7.1)

for the amplitude calibration and (
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for the phase calibration. A calibration error of 1% in amplitude and 1◦ in phase will allow to
measure the field up to 0.1% in amplitude and 0.04◦ in phase.

This requirement is in reach of the methods described in section 4.3.1. The new method is
based on resonance circles that are obtained from DAC induced detuning. A simple chi-square
fit of a circle yields the calibration parameters at an accuracy of better than a percent in amplitude
and one degree in phase.

In section 3.9.2, the requirements for vector-sum calibration are approximated as
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in amplitude and (
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in phase.
The control requirements of the European XFEL, 10−4 in amplitude and 0.01◦ in phase can be

evaluated to a calibration requirement of(
∆A
A

)
= 1 % and ∆ϕ = 0.5◦. (7.5)

This consideration assumes N = 32 cavities in a single vector-sum and a maximum microphonics
of ∆ω∗/ω1/2 = 1/10.

The method presented in 4.3.3 for beam-based vector-sum calibration allows to calibrate the
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vector-sums up to a few percent in amplitude and a few degrees in phase at FLASH. While this is
enough for FLASH requirements, it is not for XFEL, in praticular due to the discussed limitations
derived from the presence of detuning and differences in shunt impedance from different cavities.

While section 4.3.1 discusses the calibration of the measurement of the forward wave and re-
flected wave for a normal-conducting resonator, section 4.3.2 discusses a method for supercon-
ducting cavities. The method for superconducting cavities differs significantly from the method
for the normal-conducting cavities. First of all, it requires a field-probe. The method discussed
is even capable of determining the cross talk from the forward to the reflected channel and vice
versa. It is the basis for measurements that require a very good calibration, as for example the
measurement of the detuning discussed in section 4.4.4, the FPGA-based detuning monitor. Even
though the calibration method produces good results, it is very sensitive to crosstalk from chan-
nels other than the forward and reflected channel. The limitations are also discussed in section
4.3.2.

Not quite a signal calibration problem, but a signal adjustment problem is discussed in section
4.2. Usually, the weakest cavity limits the performance of a vector sum. Section 4.2 presents
a method to calculate values for predetuning and coupling that need to be adjusted in order to
increase this performance limit.

Algorithms and Procedures

A number of new algorithms have been developed and discussed within this thesis.
In section 4.4.2, the effects of passband modes beside the accelerating mode is discussed.

The potential of instability is demonstrated together with a simple measure to avoid instablity.
Stability is achieved by simply increasing the latency in the loop. This is a surprising result since
an increased latency is usually rather a source of instability than of stability.

Section 4.4.3 introduces a new tool for the determination of the loop phase and the system
gain. In particular the loop phase is a quantity that is subject to thermal drift. Since a wrong loop
phase can lead to an instability in the loop, it is crucial to apply corrections to the loop phase
compensation in the controller on a regular basis. This is achieved by the new tool.

In section 3.3 of the theory chapter the polar representation of the cavity equations is discussed.
This leads to a simple formula for the detuning of a cavity, derived from equation 3.22. In section
4.4.4 it is presented how this formula was implemented into a real time device (FPGA). This
allows to calculate the detuning inside a pulse. The algorithm is very sensitive to the calibration
of the signals. The signal calibration is performed off-line and is discussed in section 4.3.2. The
FPGA-based detuning monitor can serve as a basis for several developments of algorithm that
need information about the detuning of a pulse.

Section 4.4.5 introduces a new method for the analytical evaluation of linear, iterative schemes
for the calculation of feedforward tables. Central result of this calculation is that linear schemes
have the intrinsic potential of becoming instable after a number of iterations. The analytic ex-
pressions of linear schemes contains the inverse of the transfer function of the cavity (plant)
P−1, which is already a strong indication for the instability of such a scheme. A solution for the
feedforward problem is offered in section 4.4.6, where the linear scheme was modified by the
introduction of time-reversed filters. This new scheme is not covered by the linear theory but has
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proven to be successful in various tests.

Automation Framework

Chapter 5 introduces a new framework for LLRF automation. The framework is designed in a
way that everybody, in particular hardware developers and operators, are capable of adapting the
automation to a changing environment. The framework is based on the principles of finite state
machines which is an established concept for automation in industry. At the heart of the automa-
tion scheme is a procedure server that acts as quantization from the automation theory point of
view. Section 5.2 discusses the solution formally and shows equivalence to the FSM picture.
A number of differences compared to industrial automation exist. First of all, the framework
for LLRF automation is required to deal with operators bypassing it. Thus, a framework was
developed that is flexible enough to allow changes of the automation without prior programming
experience. Further, the procedures contain comprehensive exception handling to be able to de-
tect interference from operators acting directly on the parameters of the control system while
bypassing the automation.

Transparency was one of the guiding motives during the development of the framework. Trans-
parency is needed in order to introduce an automation scheme without objection from the oper-
ators, who learned to use the machine without automation. The challenge at FLASH was to
introduce an automation for a small number of only five RF stations. Due to the small number,
the acceptance barrier of automation scheme and the fear of failures caused by a not fully ma-
tured scheme was high. Therefore, only small aspects of the presented automation scheme have
gained the full acceptance from the operators, in particular the automated loop phase correction
and, for long beam operation, the adaptive feedforward scheme.

The presented concept is due to its flexibility a prototype and a basis for the automation of
future accelerators. Especially projects like the European XFEL face the need of a high degree
of automation due to its large number of about 30 RF stations.
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A. Slopes of Amplitude and Phase of the
Step Response

In this appendix the initial slopes of amplitude and phase for a step-response of a cavity mode
shall be calculated. The results of this lengthy calculation were already presented in chapter
3.2. The expression of interest is the transient response of a cavity mode to a step at the drive
(identical to 3.14),

xstep =
ω1/2

ω1/2 − i∆ω
(1 − e−(ω1/2−i∆ω)t)u. (A.1)

Generally, from the formulas of amplitude |z| =
√

zz̄ and phase ∠z = arctan Im z/Re z one
derives the first derivatives with respect to t as (for well-behaving complex functions z)

d
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√
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ż √
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)
= Im
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z
. (A.3)

A.2 needs to be evaluated for z = xstep for t → 0 in order to retrieve the slope of the amplitude
of the step-response. The expression under the root √ clearly becomes unity, while the first
derivative of xstep is ω1/2u for t → 0, therefore,

lim
t→0

d
dt
|xstep| = ω1/2|u|. (A.4)

The expression for the phase, A.3, can be further simplyfied since

a + ib
c + id

=
ac + bd + i(bc − ad)

c2 + d2 or (A.5)

Im
ż
z
=

Im ż Re z − Re ż Im z
(Re z)2 + (Im z)2 (A.6)

The only term from A.1 contributing to a derivative in phase is z = 1 − e−(ω1/2−i∆ω)t. z and ż can
be separated in their real and imaginary parts,

z = 1 − e−(ω1/2−i∆ω)t = 1 − e−ω1/2t cos∆ωt − ie−ω1/2t sin∆ωt (A.7)
ż = (ω1/2 − i∆ω)e−(ω1/2−i∆ω)t

= (ω1/2 cos∆ωt + ∆ω sin∆ωt)e−ω1/2t + i(ω1/2 sin∆ωt − ∆ω cos∆ωt)e−ω1/2t. (A.8)
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Now the derivative of the phase can be written as

d
dt
∠z =

ω1/2e−ω1/2t sin∆ωt − ∆ωe−ω1/2 cos∆ωt + ∆ωe−ω1/2t

1 + e−2ω1/2t − 2e−ω1/2t cos∆ωt

=
ω1/2 sin∆ωt − ∆ω cos∆ωt + ∆ωe−ω1/2t

e−ω1/2t + eω1/2t − 2 cos∆ωt
(A.9)

The approximation of A.9 for t → 0 can, for example, be done by expanding the trigonometric
and exponential functions into their Taylor series. Doing so, it turns out that all zero- and first-
order term in either numerator and denominator cancel each other out. Finally, one yields
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In summary, the slopes of amplitude and phase of the step-response can be written as[
d
dt
|xstep|

]
t=0
= ω1/2|u| and
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B. Derivation of the Extended Naive
Adaptive Feedforward

Extended Naive Adaptive Feedforward

This appendix derives the analytical expression for the extended naive feedforward. The rules
for this algorithm shall be stated in words first:

1. Subtract the current feedforward table from the total drive. The result is the feedback
contribution to the drive.

2. Apply a digital filter D on the feedback.
3. Add the filtered feedback on top of the existing feedforward curve. That will be used as

feedforward in the next pulse.

Similarly a diagram can be found that represents this algorithm. Figure B.1 shows such a dia-
gram. Three loops are visible, where bold brackets around the center loop indicate that this part
of the diagram has to be repeated n−2 times. In the figure, certain signals are labled I1..In (in the
following considerations, the transfer function that leads from SP to Ii is identified with Ii itself).
As visible from the diagram, I1 represents the field of the first cavity filtered by D. The negative
of this signal (indicated by the small minus sign) is added to the summing junction of the next
cavity in the cascade, representing the next pulse. In other words: the setpoint of the second loop
is reduced by the D-filtered field-achievements of the first loop and the setpoint for the second
loop is just “what is leftover after the first loop did its job”. I2 plus I1 then would be the field of
the cavity after the first iteration of the algorithm. The setpoint of the third loop then would be
reduced by the D-filtered achievements of the previous loops and so on. An expressions for the
Iis shall now be found (keeping in mind that the sum of all Iis is the field inside the cavity after

Figure B.1.: Diagram representing the extended naive adaptive feedforward. Three control loops
are shown in this figure, each representing an iteration of the algorithm. The center
control loop is surrounded by bold brackets, indicating that this part of the diagram
shall be repeated n − 2 times.
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n iterations).

I1 =
CP

1 +CP
D

I2 = (1 − I1)
CP

1 +CP
D = (1 − I1)I1

I3 = (1 − I1 − I2)
CP

1 +CP
D = (1 − I1 − I2)I1

...

In = (1 −
n−1∑
i=1

Ii)
CP

1 +CP
D = (1 −

n−1∑
i=1

Ii)I1 (B.1)

These equations can directly be developed by looking at figure B.1. They can further be simpli-
fied.

I1 = I1

I2 = (1 − I1)I1

I3 = (1 − I1 − I1 + I2)I1 = (1 − I1)2I1
...

In = (1 − I1)n−1I1 (B.2)

Comparing the equations B.1 and B.2 is a tricky way getting an expression for the sum
∑

i Ii.
This sum is at the same time the transfer function from the setpoint to the cavity field after n
iterations and differs from the feedforward just by the inverse of P. This way, an expression for
the extended naive adaptive feedforward is already found (H beeing the transfer function from
the setpoint to the feedforward after n iterations):

HP =

n∑
i=1

Ii

= 1 − (1 − I1)n

= 1 −
(
1 −

CP
1 +CP

D
)n

(B.3)

Again, the transfer function for the single loop from setpoint to drive, L = C/(1 + CP) can be
substituted.

H =
[
1 − (1 − LDP)n] P−1 (B.4)

This equation is again a very simple expression and differs from the naive adaptive feedforward
of equation 4.41 only by the insertion of a transfer function D.
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Other Schemes

The presented way of deriving linear transfer functions for linear, iterative operations on pulsed
systems is very powerful and can be used to develop analytical expressions for lots of very
different algorithms.

Another topology, which is described in words as

1. take the error-signal (setpoint minus cavity field) of the feedforward-only driven system
and apply a filter Q. Q can be a filter very close to the inverse of the real plant, P−1.

2. Add the Q-filtered error signal on top of the existing feedforward. If Q = P−1, the new
feedforward-signal would lead to perfect agreement between the cavity field and the set-
point.

is useful for systems which do not have real-time feedback inside the pulse but which apply a
correction between pulses. It is especially interesting for normal-conducting resonators where
the bandwidth is large and the pulse-length short such that a real-time feedback can not be applied
due to stability considerations.

Mathematically, this scheme can be formulated such that the drive Jn+1 of the (n+1)th-iteration
is constructed from the previous one by the formula

Jn+1 = J0 + Jn(1 − PQ) (B.5)

Again, this can be reduced to a geometric series with the result (transfer-function between the
setpoint-table and the feedforward after the nth iteration)

H =
[
1 − (1 − PQ)n] P−1. (B.6)

However, instability of this scheme can be proven with the same arguments that were made in
section 4.4.5.
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