
Diffractive Dijet Production
in Deep Inelastic Scattering at

ZEUS

Dissertation

zur Erlangung des Doktorgrades

des Fachbereichs Physik

der Universität Hamburg

vorgelegt von

Alessio Bonato

aus Torino

Hamburg

2008



Gutachter der Dissertation: Prof. Dr. P. Schleper
Prof. Dr. J. Bartels

Gutachter der Disputation: Prof. Dr. R. Klanner
JProf. Dr. J. Haller

Datum der Disputation: 11.03.2008
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Abstract

This thesis presents a measurement of dijet production in diffractive deep inelastic
scattering ep collisions. This type of process is specially relevant for the experimental
validity of the perturbative QCD approach to diffractive physics. The measurement
was based on an integrated luminosity of 61 pb−1 collected at the HERA collider with
the ZEUS experiment. The events were selected for virtualities of the photon, γ∗,
5 < Q2 < 100 GeV2, and energies of the γ∗p centre-of-mass, 100 < W < 250 GeV.
The jets were reconstructed from energy flow objects using the inclusive longitudinally-
invariant kT algorithm in the γ∗p frame. The jets were required to have a transverse
energy in the γ∗p frame E∗

T,jet > 4 GeV. The jet with the highest transverse energy
was required to have E∗

T,jet > 5 GeV. All jets were required to be in the pseudorapidity
range −3.5 < η∗

jet < 0 as measured in the γ∗p frame. The selection of diffractive events
was carried out by requiring a large rapidity gap in the direction of the scattered proton.
The value of the fraction of initial proton momentum entering in the hard process, xIP ,
was required to be xIP < 0.03. The total cross section for the process was measured to
be

σD
TOT(ep → ep jet1 jet2 X ′) = 91.5 ± 1.2 (stat.) +3.3

−5.4 (syst.) +6.4
−5.3 (corr.) pb

Single and double differential cross sections were extracted and compared to leading-
order predictions and next-to-leading-order QCD calculations. The latter used several
diffractive parton densities extracted from inclusive diffractive deep inelastic scattering
data. The agreement with the leading and next-to-leading order predictions is good and
no hints of factorisation breaking are observed. The double differential measurement
can be a precious input for the extraction of more accurate diffractive parton densities.

Kurzfassung

In dieser Arbeit wird eine Messung von Zwei-Jet Produktion in diffraktiver tief-
inelastische Streuung vorgestellt. Diese Art von Prozess ist insbesondere für die ex-
perimentelle Überprufung des perturbativen QCD-Ansatzes für diffraktive Physik von
Bedeutung. Die Messung basiert auf vom ZEUS-Detektor bei HERA aufgezeichneten
Daten mit einer integrierten Luminosität von 61 pb−1. Es wurden solche Ereignisse se-
lektiert, in denen das Photon, γ∗, eine Virtualität, Q2, von 5 < Q2 < 100 GeV2 sowie
eine Schwerpunktsenergie von 100 < W < 250 GeV aufweist. Die Jets wurden aus
Energieflussobjekten mit Hilfe des logitudinal-invarianten kT -Algorithmuses im γ∗p-
Bezugssystem rekonstruiert. Weiter wurde verlangt, dass die Jets eine im γ∗p-System
gemessene Transversal-Energie von E∗

T,jet > 4 GeV haben und sich im Pseudorapiditäts-
Bereich von −3.5 < η∗

jet < 0 befinden. Der Jet mit der höchsten Transversal-Energie
musste zudem E∗

T,jet > 5 GeV erfüllen. Es wurden solche Ereignisse als diffraktive
Ereignisse angenommen, die eine grosse Rapiditätslücke in Richtung des gestreuten
Protons aufwiesen. Für den Impulsbruchteil des Protons, der in die harte Streuung
eingeht, xIP , musste xIP < 0.03 gelten. Der gemessene totale Wirkungsquerschnitt für
den Prozess ist

σD
TOT(ep → ep jet1 jet2 X ′) = 91.5 ± 1.2 (stat.) +3.3

−5.4 (syst.) +6.4
−5.3 (corr.) pb

Einzel- und doppeltdifferenzielle Wirkungsquerschnitte wurden bestimmt und mit Vor-
hersagen von QCD-Störungsrechnungen führender und nächst-führender Ordnung ver-
glichen. In die Rechnungen nächst-führender Ordnung flossen diffraktive Parton-Ver-
teilungsdichten ein, die aus Daten von tief inelastischer Streuung extrahiert worden
sind. Die Vorhersagen führender und nächst-führender Ordnung stimmen gut überein
und zeigen keinerlei Anzeichen vom Zusammenbruch der Faktorisierung. Die doppelt-
differenziell gemessenen Wirkungsquerschnitte können benutzt werden, um diffraktive
Parton-Verteilungsdichten mit höherer Genauigkeit zu bestimmen.
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Chapter 1

Introduction

The Standard Model (SM) of particle physics is to date the most successful model
able to describe the phenomena in the subatomic regime. Quantum ChromoDynamics
(QCD) is the part of the SM that describes the strong interaction, the force responsible
for the existence of hadrons and nuclei. QCD is a gauge theory with the two promi-
nent features of asymptotic freedom (the strength of the interaction vanishes at short
distances) and colour confinement (only particles neutral to the strong interaction can
propagate freely at large distances). In the last decades, huge improvements in both
theoretical and experimental understanding of QCD have been achieved. Many of them
were obtained in the context of Deep Inelastic Scattering (DIS) experiments where a
lepton collides against a hadron (typically a proton).

A particular subsample of reactions driven by the strong interaction is diffrac-
tion, when no quantum numbers are exchanged between the colliding particles. As a
consequence either one or both the incoming particles might emerge intact from the
interaction. Other striking experimental signatures are observed, like the presence of
Large Rapidity Gaps (LRG), angular regions of the detector without hadronic activ-
ity. The study of diffraction was for a long time relegated outside the QCD context
because of its intrinsic non-perturbative, large distance (i.e. small scale) nature. The
observation of diffractive events in presence of a hard scale (hard diffraction) changed
this picture, giving the idea to approach the study of diffraction in the framework of
QCD. Diffractive DIS (DDIS) is an example of a process where in a soft, diffractive
phenomenon, a hard scale is present, namely the virtuality of the exchanged boson,
Q2. By studying hard diffraction one has the opportunity to extend the understanding
of the strong interaction, using the hard scale as a window on the soft regime which
otherwise would not be accessible within perturbative QCD.

A significant progress in the task of providing a QCD motivated description of
hard diffractive processes was the theoretical proof of the factorisation theorem for
DDIS. This theorem states that diffractive process can be factorised into a short- and
a long-distance part. The short-range part is the one containing the hard scale and is
calculable by means of pQCD. The long-distance part consists of the diffractive parton
densities (PDFs) that cannot be calculated a priori by perturbative QCD but once
extracted can be used in calculations for other hard diffractive processes (universality
of the dPDFs). The basic relevance of this theorem is the possibility of a QCD inter-
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pretation of diffraction. This is the basis (alas not the solution) for inserting diffraction
in the QCD framework. Activities are ongoing in proving experimentally the validity
of this theorem. In the perspective of a QCD interpretation of diffraction, data from ep
collisions at the HERA accelerator have a twofold importance. First, they can be used
for extracting the dPDFs in a similar fashion to the proton PDFs. Second, HERA data
can be used to check the factorisation theorem. It is important to note that the proof
of factorisation only holds for DDIS but not for hadron-hadron scattering. Indeed,
data from pp̄ collisions showed a breaking of the factorisation explained by means of
secondary soft interactions.

The study of dijets in diffractive DIS is an analysis well-suited for these goals. In fact
the production of dijets simultaneously to the DIS process guarantees the presence of
two hard scales, Q2 and the transverse energy of the jets, ET. Moreover, the production
mechanism of dijets is very sensitive to the gluon content of the dPDFs. It was shown
experimentally that gluons contribute to a large extent to the latter, thus the dijets
data give a direct handle on dPDFs. Compared to other diffractive final states with
similar characteristics, like the diffractive production of heavy quarks, diffractive jets
benefit from higher statistics and harder scales. The study of dijets in DDIS can be
useful for the same two reasons mentioned above: it is a stringent benchmark for the
factorisation theorem and can be used to constrain the dPDFs in kinematic regions
where the inclusive DDIS data have no sensitivity.

Experimentally, the main challenge of this analysis is the selection of diffractive
events which is decreased in statistics compared to the standard dijet production. The
diffractive selection is carried out by requiring the presence of a LRG in the direction of
the scattered proton. This requires a very good knowledge of the detector and a careful
simulation of the hadronisation process. Since the latter is not well known because of
the non-perturbative nature of this part of the process, experimental techniques not
too sensitive to it have to be considered. In order to increase the statistical significance
of the sample, the thresholds of the jet selection were lowered. The reliable working of
the jet clustering algorithm at low transverse energies has to be checked as well as the
resolution of the detector. The uncertainties related to the calorimeter tend to increase
as the energy of the jets decreases, thus experimental methods able to care for that are
needed.

The measured data are compared to Next-to-Leading Order (NLO) QCD calcula-
tions using the dPDFs extracted from the inclusive DDIS data. The NLO calculation
should describe the data both in shape and normalisation if the factorisation theorem
is correct. At ZEUS, such NLO calculation was never performed for dijets in DDIS
and no dedicated programs exist. Thus, the existent programs for QCD calculation in
the standard, non-diffractive case were adapted to the needs of this analysis. Several
dPDFs were employed in the calculation. The dijet data can be used as a benchmark
for discriminating between the different dPDFs sets and selecting the ones better de-
scribing the data. The same calculation tools developed in the analysis can then be
used to include the diffractive dijets data in a combined fit to the dPDFs together
with the inclusive ones. Recent analyses demonstrated the large positive impact on
the dPDFs accuracy on the inclusion of dijet data.

The thesis is organised as follows: Chapter 2 gives an overview on the theoretical
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framework of the analysis, introducing first basic QCD concepts and then diffractive
physics in particular in the framework of ep collisions. Chapter 3 describes the experi-
mental device used, the ZEUS detector at the HERA collider. Chapter 4 explains how
the physical quantities needed for the analysis were reconstructed from the detector
output. Chapter 5 describes the detector simulation and the Monte Carlo samples
used to correct the data for detector acceptance and resolution in addition to the NLO
calculations compared to the measurement. Chapter 6 explains how the final sample
of dijets in DDIS was extracted from the initial sample. Chapter 7 presents the results
of the analysis: the extracted cross sections are compared to the LO Monte Carlo and
to the NLO predictions. Double differential data useful for future fits to the dPDFs
are also presented and discussed. Finally, the summary of the analysis and an outlook
on possible future developments are given in Chapter 8.



Chapter 2

Theoretical framework

This chapter provides the basic theoretical knowledge needed for the rest of the the-
sis. The first part is a general introduction to Quantum Chromo Dynamics (QCD),
the theory of strong interactions, and other important concepts like the factorisation
theorem, the parton distribution function (PDFs) and the scale evolution of the PDFs.
The theory of Deep Inelastic Scattering (DIS) and jet physics is also described: this has
been one of the most important testing ground of QCD. The second part of the chapter
is focused on diffractive physics. After the description of the typical features of the
diffractive phenomena, the theoretical motivation for a perturbative QCD description
of these processes is presented. Key issues of the latter are the factorisation theorem
for diffraction and the diffractive PDFs (dPDFs). The understanding of these two sub-
jects can be significantly improved by studying the production of dijets in diffraction,
as explained in the last part of the chapter.

2.1 Quantum Chromo Dynamics

The strong force is one of the fundamental interactions acting in nature. It is responsi-
ble for the existence of all hadrons and, as consequence, of the nuclei that compose the
universe. In the Standard Model [1, 2, 3] it is described by QCD. The main aspects
of the theory are presented, together with the experimental tests of major interest for
this thesis, i.e. DIS and jet physics.

2.1.1 The Standard Model

Four fundamental interactions are observed in Nature: the strong, the electromagnetic,
the weak and the gravitational. The Standard Model (SM) is a field theory that pro-
vides at present the best understanding that we have of the former three fundamental
interaction. A mechanism to include gravitation in the SM is still missing. The SM
lagrangian is invariant under SU(3)C × SU(2)L × U(1)Y gauge rotations. The interac-
tions between the particles are mediated by the exchange of vector bosons. There are
four different types of vector bosons: gluons (carrier the strong force), photons (carrier
the electromagnetic force), W and Z (both mediators of the weak force).

5
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Figure 2.1: The elementary particles in the Standard Model.

There are 12 fundamental fermions, 6 leptons and 6 quarks. They are grouped in
families, 3 for the leptons and 3 for the quarks (see Fig. 2.1). Only the quarks carry the
strong interaction charge, called colour, and therefore they are the only ones subject
to this force [4].

An additional scalar boson, the Higgs boson [5], is required by the SM in order to
give mass to the vector bosons and the fermions. It is the last undetected particle of
the SM and the search for it is one of the main goals of the experiments at the Large
Hadron Collider (LHC) at CERN [6].

The actual status of the SM is debated: on one hand every experimental test
supported its predictions at an excellent degree of accuracy. On the other hand it is
known from theoretical arguments that the SM is an incomplete theory with some clear
flaws, like the hierarchy problem. It is expected that new physics beyond the SM will
manifest at the high and completely new energies probed at the LHC. Many different
hypotheses on extensions of the SM have been proposed for solving the theoretically
unpleasing aspects of the latter, among them supersymmetry, technicolor and large
extra-dimensions.

2.1.2 The Quark-Parton Model

The concept of more fundamental constituents of the proton and the other hadrons
arose in the 1960’s with the development of hadron spectroscopy. The Quark-Parton
Model (QPM) is an attempt to reduce the complexity of the observed large number
of hadrons by introducing more fundamental constituents called partons [7]. The elec-
trically charged partons are called quarks while the neutral ones are the gluons. The
latter are the carriers of the strong force and will be introduced in Sect. 2.1.4. Quarks
are point-like fermions that come in different types (flavours). At the time of their
introduction, only three different types of quarks were considered: the up quark, u,
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the down quark, d and the strange quark, s. Nowadays six different quarks have been
experimentally found. Each flavour has its own mass and electric charge. The only pos-
sible values of the latter being either 2

3
or −1

3
. Hadrons are grouped into baryons and

mesons containing three quarks or a quark-antiquark pair, respectively. The quarks
need to have also an additional quantum number, otherwise hadrons containing quarks
of the same type would violate the Pauli exclusion principle. This quantum number is
called colour charge. It can have three different values, defined as red, green and blue.
In the QPM, the proton is made only of three quarks, two up and one down. They are
called valence quarks and they define the proton quantum numbers and share its total
momentum.

2.1.3 Deep Inelastic Scattering

The QPM was first experimentally validated with experiments where a lepton, l, col-
lides against a hadron or a nucleus, N , producing in the final state a scattered lepton
(not necessarily the incoming one), l′, and a hadronic final state, X [8]. DIS experiments
are experiments of the kind lN → l′X in the kinematic range of large four-momentum
transferred between lepton and hadron and large invariant mass of the hadronic system
produced in the collision. In a reference frame where the proton travels with very high
momentum, the typical time of the interaction between the quarks and an external
probe is much shorter than the typical time of the interactions between the partons
in the proton (impulse approximation). This means that during the scattering process
the internal structure of the proton is ”frozen”, and the interaction between the quarks
can be ignored. We start by defining the important kinematical quantities used to
describe this process.

2.1.3.1 DIS Kinematics

The inelastic scattering of a lepton off a proton1 (see Fig. 2.2)

lP → l′X

can be expressed (for two unpolarised beams at fixed centre-of-mass energy) as a
function of two independent variables 2. In order to have an experiment-independent
kinematic description of the process, it is favourable to use Lorentz invariants for
describing the kinematics. We define the following quantities

• k, the four-momentum of the incoming lepton. kµ = (Ek, ~k), where Ek and ~k are
the energy and the momentum of the incoming lepton, respectively;

• p, the four-momentum of the incoming proton. pµ = (Ep, ~p), where Ep and ~p are
the energy and the momentum of the incoming proton, respectively;

1For consistency with the rest of the work presented in the thesis, in the following the word proton
is used also for other possible targets.

2The number of degrees of freedom of a process in which two incoming particles collide and n final
states are measured is 3n− 4.

8 Theoretical framework 2.0

V ∗(q)

l(k) l′(k′)

xBj p

xBj p + q

√
s

W

P (p)

Figure 2.2:

• k′, the four-momentum of the scattered lepton. k′µ = (Ek′ , ~k′), where Ek′ and ~k′

are the energy and the momentum of the scattered lepton, respectively;

The centre-of-mass energy squared of the lP collision3 is denoted as s

s = (p + k)2. (2.1)

The interaction between the lepton and the proton is mediated by either a photon,
γ, a W or a Z boson4. In general we indicate this vector boson with V . The four-
momentum of the exchanged boson is indicated with q and its value is given by

q = k − k′. (2.2)

Under the approximation of a massless lepton, kinematics yields the four-momentum
squared of the exchanged boson

q2 ' − 2 EkEk′ (1 − cosθk) (2.3)

where θk is the scattering angle between the incoming and the outgoing lepton.
Thus q2 is always q2 < 0; this means that the exchanged boson is virtual, i.e. off its
mass shell. Therefore an asterisc is added to the notation of the exchanged boson, V ∗.

3In the following, the natural units will be adopted if not explicitely stated. The use of natural
units fixes the value of the Plank constant and the speed of light in the vacuum to unity, ~ = c = 1.

4If the lepton is a neutrino, the γ cannot be exchanged because of charge conservation.
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Proton remnantP (p)

xBj p V ∗(q)

−xBj p

Figure 2.3: A schematic picture of a DIS interaction as seen in the Breit frame.

In order to work only with positive quantities, we define the virtuality of the exchanged
boson, Q2, as

Q2 = −q2. (2.4)

The interaction where the hadronic final state X is effectively produced is actually
taking place between the proton and the boson. The boson probes the proton with a
resolution given by the inverse of the square root of its virtuality. The centre of mass
of the γ∗p system is denoted by W :

W 2 = (p + q)2 = M2
X. (2.5)

Of course, the invariant mass of the final hadronic system, MX, is equal to W
because of conservation of the four momentum. An inelastic scattering is characterised
by the condition MX >> mp, where mp is the mass of the proton. To resolve any
internal structure of the proton, the resolution of the probe must be smaller than the
proton size (∼ 1 fm). Thus, the DIS kinematical regime is defined by the requirements

Q2 >> 1 GeV2, W >> mp. (2.6)

Another Lorentz invariant that can be defined is called inelasticity, y. It is defined
as

y =
p · q
p · k (2.7)

It has an intuitive physical interpretation in the reference frame where the proton
is at rest. In this case Eq. (2.7) becomes

y =
ν

Ek
=

Ek − Ek′

Ek
(2.8)

that is the fraction of the energy of the incoming lepton taken by the exchanged
boson.

The boson in the DIS scattering interacts with one of the partons contained in the
proton. In the QPM approximation, the partons move longitudinally along the proton
direction and carry a fraction xBj of its total momentum. An easy calculation of xBj can

10 Theoretical framework 2.0

be obtained if we move to a particular reference frame where the quark and the vector
boson collide head on and V ∗ transfers no energy but carries twice the momentum of
the quark. Such a reference frame is called Breit frame. The DIS scattering in the
Breit frame is represented in Fig. 2.3. The incoming quark four-momentum, f , is given
by

fµ = (xBj p, xBj~p)

having neglected the quark mass. The conservation of the four-momentum forces
the scattered quark to have a final four-momentum, f ′ equal to

f ′µ = (xBj p,−xBj~p)

Thus the four-momentum of V ∗ in the Breit frame is

qµ = (0,−2xBj~p) (2.9)

giving a virtuality

Q2 = −4x2
Bj |~p|2. (2.10)

On the other hand, the scalar product of pµ and qµ is

p · q = −2xBj |~p|2. (2.11)

By directly comparing Eq. (2.10) and (2.11), one obtains an expression for xBj

xBj =
Q2

2 p · q (2.12)

which is a Lorentz invariant and does not depend on the reference frame chosen.
The five Lorentz invariants presented here are the ones most commonly used. They

are related to each other since only two of them are independent. Some of the equations
relating these kinematical quantities are the following

W 2 = Q2 1 − xBj

xBj
(2.13)

W 2 = sy − Q2 (2.14)

Q2 = s xBj y (2.15)

2.1.3.2 Derivation of the DIS cross section in the QPM

Once the kinematics of lepton-hadron scattering is specified, the cross section for the
process can be calculated. In the following we will consider the case of unpolarised
colliding beams and virtualities of the exchanged boson much lower than the mass of the
W and Z bosons, such that the interaction can be approximated by photon exchange
only. Another contribution to the cross section that is neglected in the following is
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the exchange of more than one photon. The latter approximation is supported by
the results of the comparison of the measured DIS cross sections using electron and
positron beams which are very similar [3].

The differential cross section for lP → l′X as a function of θk and Ek′ can be
expressed as contraction of two tensors

d2σ

dθkdEk′

=
π α2

mp q4

Ek′

Ek

LµνW
µν (2.16)

where this expression was calculated in the laboratory (LAB) frame. Here Lµν

represents the leptonic tensor that expresses the EM transition from the initial to the
final lepton. It is calculable in Quantum ElectroDynamics (QED) and is written as

Lµν = 2[k′

µkν + k′

νkµ − k · k′gµν] (2.17)

In analogy, the hadronic tensor corresponds to the EM transition of the target
hadron to all possible final states, X. Evaluating its expression is more difficult than
for the leptonic tensor and we will limit ourselves to parametrise it in the most general
form compatible with Lorentz invariance

Wµν = Agµν + Bqµqν + C(qµpν + qνpµ) + Dpµpν (2.18)

with A, B, C and D being arbitrary coefficients. This expression can be simplified
by considering the constraints imposed by the conservation of the EM current. The
conventional way to write down the hadronic tensor is

Wµν = W1(−gµν +
qµqν

q2
) +

W2

m2
(pµ − p · q

q2
qµ)(pν −

p · q
q2

qν) (2.19)

where the coefficients have been redefined as W1 and W2, the structure functions. In
analogy to nuclear experiments, they contain the information about the distribution of
the electric charge in the hadron. Using the expressions for Lµν and W µν in Eq. (2.16),
one obtains the cross section in the LAB frame as a function of Ek′ and θk

d2σ

dθdEk′

=
π α2

EM

2E2
k sin4 θk

2

(2 W1 sin2 θk

2
+ W2 cos2 θk

2
) (2.20)

It is more convenient to express Eq. (2.20) in terms of two of the Lorentz invariants
introduced in Sect. 2.1.3.1. We are going to choose xBj and Q2 for their natural physical
interpretation in a DIS experiment at a collider. It is also common to replace W1 and
W2 with by the structure functions F1 = mpW1 and F2 = νW2 with ν = p · q. After
some algebra one obtains

d2σ

dxBjdQ2
=

2π α2
EM

xBjQ2
(Y+F2(xBj, Q

2) − y2FL(xBj, Q
2)) (2.21)

where we used the definitions FL = F2 − 2xF1 and Y+ = 1 + (1 − y)2. In the
QPM, FL is neglected since it is suppressed by helicity conservation. This is known
as Callan-Gross relation. In QCD, higher order terms contribute to give FL 6= 0 (see
Sect. 2.1.4).
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2.1.3.3 Remarks on DIS results

In the QPM F2 has a very intuitive statistical interpretation expressed by the following
relation

F2(xBj, Q
2) =

Nf∑

i=1

e2
i xBjfi(xBj, Q

2) (2.22)

where the sum runs over all the quark flavours, ei is the electrical charge (in units
of the electron charge) of the quark of flavour i and fi(xBj, Q

2) are functions called
parton distribution functions (PDFs) or also parton densities. The PDFs express the
classical probability to find in the proton a parton carrying a fraction xBj of the total
proton momentum.

It was noticed since the first DIS experimets at SLAC at the end of the 1960’s
that the dependence of F2 on Q2 was very weak in the phase space region probed (see
Fig. 2.4) [9]. This can be understood considering that the quarks which are effectively
interacting with the γ∗ are point-like. As Q2 increases, the distances probed by the
γ∗ decrease. In the DIS regime one can study the internal structure of the proton.
But since there is no internal structure of the quark, there is no change in increasing
the resolution of the probe. The quark will appear always the same to the photon.
This independence from Q2 is known as scale invariance. In the next chapter it will
be shown that violations of the scale invariance are expected, the structure functions
having a weak logarithmic dependence on Q2.

Figure 2.4: The weak dependence on Q2 of the inealsitic cross section measured by the
SLAC experiment. The same measurement taken at different values of W is presented
with different markers (from [9]).
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Although the QPM was able to motivate the results of the first DIS experiments,
many problems still lacked a solution. Under the hypothesis that only quarks were
present in the proton, the conservation of the momentum implies that

Nf∑

i=1

∫ 1

0

xfi(x)dx = 1 (2.23)

Instead the above integral is measured to be ∼ 0.5. About one half of the proton
momentum can not be directly detected in DIS experiments. This problem, together
with the absence of detection of free quarks outside of the hadrons, stimulated the
development of an extension of the QPM able to justify these experimental facts. This
is achieved by means of the QCD theory.

2.1.4 Quantum Chromo Dynamics

QCD is the field theory that describes the strong interaction in the SM. The QCD la-
grangian is gauge invariant like the QED one, just the gauge symmetry group changes5.
The QCD lagrangian is invariant under local SU(3) gauge transformations. The non-
Abelian structure of the group is the peculiar aspect of QCD. It implies that there are
three possible charge-states (colours) for the particles subject to the strong interaction
(i.e. the quarks), as many as the dimension of the adjoint representation of the gauge
group. Moreover, the non-Abelian nature of SU(3) implies that, different to the QED
case, also the gluons, the vector bosons that carry the force, can be in different colour
states. There can be as many as the dimension of the fundamental representation of
SU(3), i.e. they can assume 8 different colour state. The lagrangian determines the
dynamical properties of the interaction and allows to fix the Feynman rules for it. The
set of Feynman rules can be found in Refs. [2, 3, 10]. Like in QED, the strength of
the coupling between coloured particles is given by a constant, αS, the strong coupling
constant.
QCD has two main peculiar properties

• Asymptotic freedom. The coupling constant decreases at short distances while
it increases at large distances. This means that at small length scales (i.e. large
momentum transfer) the particles interact very weakly, as assumed in the QPM
model. This allows to use perturbation theory for the calculations in the proper
kinematical range.

• Confinement. No free coloured particles exists in nature. This property was de-
duced from the non-observation of coloured objects. Only particles which are
colour singlets can be observed while the coloured partons are confined in the
hadrons. This can be justified qualitatively from asymptotic freedom. As a
quark and an antiquark get further from each other, the colour field becomes
stronger and stronger until it is more favourable from the energetic point of view
to create a new quark-antiquark pair that will bound to the former two creating

5We refer to Refs. [2, 3, 10] for a detailed description of the QCD lagrangian.
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Figure 2.5: A schematic representation of the proton once that QCD is considered.

two hadrons. As it will be shown in the following, there are quantitative argu-
ments that motivate asymptotic freedom. However, no rigorous demonstration is
nowadays known for confinement.

The big difference introduced by QCD in the QPM picture is that now the partons
in the proton can interact between themselves. The proton has become a dynamical
object whose internal structure has a continous development (see Fig. 2.5).

Predictions for the physical quantities can be calculated with the Feynman rules in
a perturbation expansion in orders of αS. As for the QED case, there are divergencies
in these calculations that have to be fixed in order to have finite and meaningful
predictions. These divergencies are of different types: infrared and ultraviolet. The
former comes from terms of the perturbative expansion in which a parton radiates
a massless parton at very low angles, (collinear singularity) or at very low energies
(infrared singularity).

The ultraviolet divergencies show up in higher order terms of the perturbative
series, where loop diagrams introduce in the expression of the amplitude logarithmically
divergent terms like

∫
∞

0

dk2

k2 − m2 + iε

where m is the mass of the particle exchanged in the loop and k its four-momentum.
Examples of ultraviolet divergent diagrams at Next-to-Leading Order (NLO) in QCD
(i.e. terms of the series proportional to α2

S) are displayed in Fig. 2.6b and c.

These divergencies can be kept under control through a renormalisation procedure.
A more detailed and rigorous description of the procedure followed to renormalise the
QCD theory can be found in Refs. [3, 8]. In the following a few remarks about the
most important features of the subject are mentioned 6. The basic concept behind
renormalisation is to redefine the parameters of the theory in such a way that the new
expression of the perturbative series do not contain anymore the divergent integrals.

6The brief introduction to renormalisation presented here follows closely the one in Ref. [11]
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q1

q2

(a)

q1

q2

(b)

q1

q2

(c)

Figure 2.6: Feynman diagrams of a quark-quark QCD interaction at the (a) LO and (b
and c) NL. The plot (b) has an internal quark loop while plot (c) has a internal gluon
loop. (right) gluon loops.

Neglecting the quark masses, the only free parameter of QCD is α0 = g2/4π, where
g is the strenght of the coupling in the lagrangian. So we can write the value of a
generic observable7, F (x), depending on a set of coordinates x, as a perturbative series
in powers of α0

F (x) = α0 + α2
0 F1(x) + α3

0 F2(x) + .... (2.24)

The problem is that the terms of the series, Fi, are divergent and make the cal-
culation impossible. First the Fi need to be regularised. This means that we have to
introduce a new set of functions Fi,Λ, related to the Fi, such that they are finite for
any finite value of the parameter Λ, called regulator. The regularised functions tend to
the former Fi in the limit for Λ → ∞ and only at the very end of the calculation this
limit is taken. This allows to perform the renormalisation procedure with well-defined
functions. The practical relation between Fi and Fi,Λ is called regularisation scheme.
Several schems are possible, each with its own advantages and drawbacks. A possible
choice can be to insert a cut-off Λ at the upper limit of the integral (2.1.4). A very
famous regularisation scheme is the dimensional regularisation proposed by t’Hooft
and Veltman in the 1970’s. The relevant thing is that the final result of the calculation
does not depend on the choice of the regularisation scheme, although the intermediate
results will. The crucial observation is that since there is only one parameter for the
theory, one measurement of F (x) is enough to specify the theory itself. So we can de-
fine a new parameter αS(µR), function of a scale µR, called renormalisation scale. The
new αS(µR) replaces α0. We can rewrite the power series in terms of α(µR) and Fi,Λ

and perform a measurement of the observable F at a given value µ0 of µR, in order to
fix the value of αS(µ0). After these steps in the renormalisation of QCD, the terms in
the perturbative series are well-behaved and we can take the limit for Λ such to restore
the initial, Λ independent situation. Therefore, at the price of doing a measurement
at a given point that we use as input, we are able to perform predictions at any other

7An example could be the cross section for a given QCD process.
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values of the kinematic variables. It is important to stress that αS(µR) is the physical
quantity relevant in the process under study. While α0 is the bare coupling appearing
in the QCD lagrangian, αS(µR) is the effective strength of the coupling between the
partons after all the contributions at any order have been taken in account. Of course,
since what we did was at the end just a reparametrisation, the divergences did not
really cancel out, they are still somewhere. Indeed, they have been just moved in the
relation between α0 and αS(µR) and now α0 → ∞ when the limit for Λ is taken, but
this is not thought to be worrying since α0 is not a physical and observable quantity.
The renormalisation procedure sketched here is used not only in QCD but also in QED,
basically in the same fashion. In both cases, an important consequence is that the cou-
pling constant now depends on the value of µR chosen for the process. The choice of
µR is arbitrary and the physical quantity should not depend on it. This is imposed
with the renormalisation group equation (RGE)

µ2
R

d

dµ2
R

F = 0 (2.25)

Since F can be expressed in power series of αS(µR), the above equation sets a
constraint on the µR−dependence of αS too. We can define the variable β(αS) as

β(αS) = µ2
R

∂αS

∂µ2
R

. (2.26)

If the scale changes from a value µ1 to a value µ2, αS will change in such a way that
the physical quantity F will stay constant (running coupling constant). Integrating
over the range (µ1, µ2) the definition (2.26) gives the relation between the change of
µR and αS

ln

(
µ2

R

µ2
0

)
=

∫ αS(µ2

R)

αS(µ2
0
)

dκ

β(κ)
. (2.27)

The exact nature of the dependence of α on µR is calculable in perturbative series

β(αS) = −b0 α2
S − b1 α3

S − b2 α4
S + ...

and depends, at a fixed order, on all the possible contributions to the loop diagrams
like those in Fig. 2.6. The peculiar thing that distinguishes QCD from QED, is the
presence of gluon loops. This is ultimately related to the non-Abelian gauge structure
of QCD that causes the vector bosons to have colour charge, while in QED the photon
is electrically neutral. Because the gluons are spin-1 particles, the loop diagrams con-
tribute to the scattering amplitude with opposite sign compared to the quark loops.
While the fermionic loops strenghten the coupling constant with increasing scale, the
gluon ones weaken it. The net effect depends by the number of possible flavours of
quarks that can contribute to the total. In the specific case of QCD, at lowest order

αS(µR) =
αS(µ2

0)

1 + αS(µ2
0)

33−2Nf

12π
ln(µ2

R / µ2
0)
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Figure 2.7: A collection of results of αS measurements: (left) the running of αS mea-
sured by the H1 and ZEUS collaborations, (right) a compilation of αS(MZ) measure-
ments by the ZEUS Collaboration using different experimental methods together with
the world average (from [13]).

where Nf is the number of flavours. If Nf = 6, as presently believed, the strong
coupling constant decreases as the scale µR increases. This can be seen as a quantitative
proof of the asymptotic freedom.

As said above, the final result must be independent of the regularisation scheme
adopted. It should also be independent of the choice of the renormalisation scale, which
is not a physical parameter. But these considerations are valid only if one considers the
whole perturbation series. The parts of the calculation depending on the regularisation
scheme and the renormalisation scale cancel in a complex way between different terms
of the series. If one does not consider all the terms, some residual contribution do not
have a counterpart that cancel them. Practically, the QCD calculations are done up
to the NLO level, in a few cases to the Next-to-NLO level. This means that a scale
dependence is always left and one must specify both in which scheme the calculation
was carried out and at which scale the renormalisation was done.

The experimental tests have given in the last decades a strong support to the QCD
theory [12]. The running of αS is nicely proven by the experimental measurements (see
Fig. 2.7) [12, 13].

2.1.5 Parton Distribution Functions and DGLAP evolution

As mentioned in Sect. 2.1.3.3, in the QPM parton densities (PDFs), fi(x), express the
probability to find a parton of flavour i carrying a fraction x of the proton momentum.
In the QPM, only quarks are considered in the PDFs and there is no dependence of
the PDFs on the energy scale of the γ∗p interaction. QCD changes dramatically this
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Figure 2.8: The virtual photon emitted by the electron has a spatial resolution of ∼
1/
√

Q2. As Q2 increases from (a) to (c), the photon is able to resolve more and
more partons generated dynamically by the QCD field. This leads to a different proton
internal structure for different Q2 values.

scenario. Now the quarks interact one with each other exchanging gluons. Moreover,
the gluons in the proton can create a quark-antiquark virtual pair. The quarks created
dynamically in this way are called sea quarks. Sea quarks can create more gluons and
more sea quarks. The gluons and sea quarks carry a fraction of the proton momentum
too, so they have to be considered in the PDFs. Having neglected them is the reason
why the experimental results seemed to violate the momentum sum rule (2.23).

This continous creation and annihilation of gluons and sea quarks introduces a scale
dependence of the PDFs and the structure functions. The qualitative explanation for
that can be understood with the help of Fig. 2.8. The spatial resolution of the γ∗ is
of the order 1 /

√
Q2. For an initial low value of Q2, Q2

0, the photon is able to resolve
only a certain PDF f(x, Q2

0). As the virtuality increases, the photon ”sees” more and
more gluons and partons emitted from the former quark. Therefore the momentum
of the former quark seen at Q2

0 now is shared between many other partons and the
photon will interact with one of them. The net effect will be that one will observe
more low-x partons and less high-x partons as Q2 increases. This Q2 dependence is
known as scaling violation and is a peculiar QCD effect.

The analytical treatment of the scaling violations can be done in the pQCD frame-
work but needs some care. When calculating the cross sections for QCD processes one
encounters infrared divergences caused by the emission of soft and collinear gluons and
quarks. The collinear emissions introduce in the cross section calculation logarithmi-
cally divergent terms

∫ p2

T, max

0

dp2
T

p2
T

where p2
T,max = Q2(1−z)

4z
and z = x0/x1 is the fraction of the initial parton momentum

taken by the outgoing quark. The solution for that is to introduce a lower cut-off in



Quantum Chromo Dynamics 2.1 19

the integration, κ, and a term ln(
Q2 (1 − z)

κ z
) appears in the cross section formula.

In order to have results independent of this arbitrary cut-off, a procedure similar to
the one used for renormalising the theory is carried out. This procedure is called
collinear factorisation (see Ref. [10] for a review). A (collinear) factorisation scale,
µF >> κ, is introduced to separate the process into a hard, short-distance part and a
soft, long-distance and non-perturbative one. The latter is described with the parton
densities. The infrared divergences are moved inside the PDFs which also acquire a Q2

dependence, as discussed qualitatively above. As for the renormalisation procedure, the
way this reparametrisation is done is arbitrary and the final predictions of the physical
quantities should not depend on it. Two very common prescriptions for factorising the
infrared divergences are the MS and the DIS schemes. The former tries to move inside
the PDFs as few terms as possible. Conversely, the latter moves inside the PDFs as
many as possible.

The statement that it is possible to factorise the QCD process into a short- and
a distant-range part with the procedure just sketched is known as QCD factorisation
theorem. The demonstration of the QCD factorisation theorem for diffractive DIS [14] is
a complex issue beyond the scope of this thesis and we comment only on its results. The
consequences of the factorisation theorem make the predictiveness of QCD extremely
powerful. The short-range part of the process is the one containing the hard-scale (i.e.
high-energy) subprocess between the particles that actually interact. For instance, in
the DIS case this is the partonic cross section for the photon-quark collision. This hard
scattering cross section is calculable in QCD by means of perturbative expansion in
powers of αS which is small because of the property of asymptotic freedom of QCD (see
Sect. 2.1.4). The long-range (hence non-perturbative) component is identified with the
parton densities. A crucial aspect of the factorisation theorem is that it states that the
PDFs are universal, i.e. they depend only on the hadron type and not on the kind of
process considered in the calculation. One can use the same PDFs at different colliders
and for different final states. This universality is one of the most appealing aspects of
the PDFs. Notice that although strictly related to the PDFs (as in Eq. (2.22)), the
structure functions are not equivalent to the PDFs for this reason, i.e. they are not
universal but depend upon the process studied.

Thanks to the factorisation theorem, the differential cross section can be expressed
with the following formula

∆σ(x, Q2) =
∑

i=q,q̄,g

∫

∆Q2

dQ2

∫

∆x

dξ σ̂

(
x, Q2;

µ2
F

µ2
R

, αS(µ2
R)

)
fi(ξ, Q

2; µ2
F , µ2

R) (2.28)

and is visually represented in Fig. 2.9. Notice that in order to factorise the cross
section we need to specify the separation between what is soft and what is hard. This
is done setting the factorisation scale, µF . It is important to stress that the validity
of the theorem relies on approximations. The main one is to ignore higher-twist QCD
terms in the process amplitude. Higher-twist terms are higher-order contributions to
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Figure 2.9: A schematic representation of the QCD factorisation in DIS processes. The
interaction between γ∗ and p is factorised in a soft part (the PDFs, fi) containing the
infrared divergences, typical of the p but process-independent and a hard part, process-
dependent, calculable in pQCD (σ̂). The separation between soft and hard is set by the
factorisation scale, µF (adapted from [8]).

the structure functions. The structure functions can be expanded in series of 1
Q2

F2(xBj, Q
2) =

∑

n

Bn(xBj, Q
2)

(
1

Q2

)n

where for large Q2 considering the leading term n = 0 (leading-twist) is a good
approximation. Nonetheless higher-twist terms exist and they are not covered by the
factorisation theorem.

In the factorisation procedure, only the largest terms are considered and resummed
over all orders, namely the ones proportional to αn

S ln(Q2)n. This approximation is
called leading logarithm approximation (LLA). It is interesting to remark that this ap-
proximation implies a strong ordering in the transverse momentum, pT , of the partons
emitted before the hard interaction.

In Fig. 2.10 a complex diagram with many emissions is shown. The LLA imposes
that the transverse momentum of the partons increases after each emission up to the
value of the hard scale of the process.

κ2 ≤ p2
T, 1 ≤ p2

T, 2 ≤ ... ≤ p2
T,n−1 ≤ p2

T < Q2

while the fraction of x carried by the subsequent emissions decreases
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Figure 2.10: Higher order contributions to γ∗q → qX.

x 1 < x 2 < ...x n−1 < x.

The Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) evolution [15, 16] uses
the LLA for describing analytically the dynamical internal structure of the hadrons.
The Q2 evolution of the PDF is formally described by the ”Altarelli-Parisi” equations
[16]

dqi(x, Q2)

d lnQ2
=

αS(Q2)

2 π

∫ 1

x

dy

y

[
qi(y, Q2)Pqq(x/y) + g(y, Q2)Pqg(x/y)

]

dgi(x, Q2)

d lnQ2
=

αS(Q2)

2 π

∫ 1

x

dy

y

[
∑

i

qi(y, Q2)Pgq(x/y) + g(y, Q2)Pgg(x/y)

] (2.29)

where the splitting functions, Pij(z), represent the probability that a parton of type
j (either a quark or a gluon), carrying an initial momentum xP , emits a parton i
carrying a fraction z of its momentum (see Fig. 2.11).

The analytic expressions for the LO splitting functions shown in Fig. 2.11 are the
following
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Figure 2.11: The splitting function diagrams at the lowest order in αS.

Pqq(z) =
4

3
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2
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4

3
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z
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[
z

1 − z
+

1 − z

z
+ z(1 − z)

]

Although perturbative QCD is not able to calculate the PDFs a priori, thanks
to the DGLAP evolution one is able to predict the value of the PDFs over a large
kinematic region once their value at a point in Q2 is given. But one has to be careful
in their use because they rely on the LLA approximation which is not everywhere
valid. In fact at low x, ln(1/x) terms become important and should not be excluded
anymore as done in the LLA. In a moderately low x region the double leading logarithm
approximation (DLLA) prescribes how to sum leading terms in ln(1/xBj) when they
appear in the calculation accompanied by leading terms in ln(1/Q2). The steep rise
of F2 at low xBj suggests that even the DLLA is not enough. This has led to another
model for the evolution of the PDFs proposed initially by Balitzky, Fadin, Kuraev and
Lipatov (BFKL) [18]. The BFKL evolution equations sum leading terms in ln(1/x),
independently of their lnQ2 dependence. The strong ordering in pT of the DGLAP
evolution is lost (”random pT walk”) in the BFKL evolution.

Because of the QCD confinement, a coloured particle like a quark or a gluon can-
not propagate freely after the interaction. Rather it will tend to radiate other par-
tons and, finally, to merge with other partons in order to form a colourless hadron.
This process is called hadronisation and is a predominantly non-perturbative process
which is described exploiting once again collinear factorisation in a fashion similar
to the PDFs. The hard subprocess is factorised from the hadronisation process at
a scale µ that is usually chosen for convenience equal to the factorisation scale µF .
The non-perturbative, infrared divergent part is described by fragmentation functions,
Dh/i(z; µ), the probability that a parton of type i hadronises into a hadron of type h,
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Figure 2.12: A collection of measurements of the F2 structure function from several
experiments (markers). F2 is presented as a function of xBj in different bins of Q2 and
is compared to the NLO prediction using the DGLAP evolution. The scaling violations
are clearly visible as a change of the steepness at low and high xBj as Q2 increases
(from [17]).
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Figure 2.13: The curves represent the PDFs, f , multiplied by x for different kind of
partons as extracted by the ZEUS collaboration. The PDFs are presented at a fixed
value of Q2 = 10 GeV 2 as a function of xBj (from [17]).

the latter carrying a fraction z of the initial parton momentum. Hence the physical
meaning of the fragmentation functions is strongly related to the parton densities.

2.1.6 Saturation model

In the previous description of the DIS processes, we worked in a reference frame where
the proton moves very fast. The same process can be seen from a different and comple-
mentary point of view, the colour dipole model [8, 19]. In the colour dipole model, the
interaction is studied in a reference frame where the proton is at rest. In this case the
photon splits into a qq̄ pair (dipole) far upstream the target. The transverse separation
of the qq̄ pair, r, is proportional to 1/

√
Q2. The life time of the dipole is proportional

to 1/xBj and much longer than the interaction time. Thus, the transverse size of the
dipole does not change during the process. The interaction itself is between the proton
and the dipole, as depicted in Fig.2.14. A theoretical model of particular success in
describing the measured inclusive DIS data is the saturation model, originally proposed
by Golec-Biernat and Wüsthoff [20]. The γ∗p interaction can hence be factorised into
two parts: first the photon splits into a dipole of radius r where the (anti-)quark carries
a fraction z (1 − z) of the initial photon momentum. Then the dipole interacts with
the proton. The effective dipole-proton cross section is indicated by σ̂ and depends on
xBj and r. Thus the γ∗p cross section can be written as

σT,L(xBj, Q
2) =

∫
d2r

∫ 1

0

dz|ΨT,L(z, r)|2σ̂(xBj, r
2) (2.30)
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Figure 2.14: Schematic picture of the γ∗p DIS scattering in the saturation model.

where the indices T and L refer to transversely and longitudinally polarised photons,
respectively, and ΨT,L(z, r) is the squared photon wave function. The dynamics of the
process is defined by the effective dipole cross section. Different choices for σ̂ can be
made. The saturation model chooses the following simple expression

σ̂(x, r2) = σ0

[
1 − exp

(
− r2

4R2
0(x)

)]
(2.31)

where σ0 is a normalisation factor and the quantity R0 is an xBj−dependent satu-
ration scale. The parametrisation for R0 is

R0(x) =
1

GeV

(
x

x0

)λ/2

. (2.32)

The parameters σ0, x0 and λ are not given by the theory and need to be extracted
from the experimental data. With the definitions (2.31) and (2.32), one ensures that the
final cross section is proportional to r2 for small r (colour transparency) and approaches
asymptotically a constant value for large r (saturation). The saturation regime sets
up when r ∼ 2R0. The density of partons in the proton increases with xBj as seen
in Sect. 2.1.5. This increases the total cross section since the number of scattering
targets increases. However, if this density becomes higher than the photon resolution
(i.e. the dipole radius), further increases of it do not cause more interactions and the
cross section saturates. Thus, the process is determined by the ratio between r and
R0, the former being inversely proportional to the square root of the photon virtuality.
The dipole cross section depends only on the quantity τ = Q2R2

0(x). The invariance
of the cross section at fixed values of τ is known as geometric scaling [21, 22] and is
experimentally nicely demonstrated at HERA (see Fig. 2.15).
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Figure 2.15: The cross section for γ∗p scattering measured at HERA as a function of
the scaling variable τ = Q2R2

0(xBj). The measurement is presented for xBj < 0.01 and
0.045 < Q2 < 450 GeV 2 (from [22]).

2.1.7 Jet physics

Because of the confinement property of QCD , free partons can not be observed in
Nature. This makes a direct study of the final state products of the strong interaction
process impossible. Within the typical time scale of the strong interaction (≈ 10−24 s)
the partons create hadrons in a complex and non-perturbative process of merging (the
hadronisation described in Sect. 2.1.5). These final hadrons are the particles actually
detected by the experiment.

The key feature is that if the hadrons origin from a high pT parton they will concen-
trate in a collimated angular region around the direction of the former parton. These
”sprays” of hadrons are labeled as jets and are one of the main tools for studying
QCD dynamics [23]. The kinematics of the hadronic system in the jet are the same
as of the initial parton, thus they are the connection between the interaction and the
observation. In order to make this connection in a reliable way, the jet kinematics must
be measured with as little bias as possible. This means not only to measure accurately
the kinematical properties of the single hadrons emerging from the interaction but also
merging them in the right way and reconstructing the resulting jet kinematics in an
unbiased way with respect to the initial parton. Moreover, the jet must be infrared
safe, i.e. the outcome must be insensitive to the emission of collinear or soft partons
produced in higher-order QCD processes.

There are several jet algorithms suitable for QCD studies. They all exploit the
notion that the particles belonging to the same jet should be close to each other in
phase space. Cone algorithms [24, 25, 26] merge particles which are geometrically close
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to each other. The basic strategy of the algorithm is to define seeds, particles with a
transverse energy ET higher than a certain threshold ET,cut and to merge in the same
jet all the particles inside a cone of radius Rcut around the seed. This algorithm is
inclusive, i.e. not all the particles are assigned to a jet. In pp collisions this allows the
treatment of the proton remnant. Cone algorithms are still used a lot thanks to their
ease of implementation although theoretical issues affect it. Modifications to the cone
algorithm have been proposed in order to improve this [27].

Other algorithms merge the particles according to their momenta rather than their
directions. The JADE algorithm [28] defines for each pair of particles, i and j, a
distance, mij

m2
ij = 2 EiEj(1 − cosθij)

where Ei and Ej are the energies of the i−th and the j−th particle respectively and
θij is the polar angle between them. In other words, the distance mij is the invariant
mass squared of the system made by the two particles. The particles are merged in a
jet only if this invariant mass is lower than a certain threshold, M 2

cut = ycutM
2, where

ycut is a resolution parameter and M 2 a reference mass. Differently from the cone
algorithm, with the JADE algorithm all the particles in the event are assigned to a jet,
making problematic the treatment of the proton remnant.

The kT−algorithm is similar to the JADE algorithm to some extent. In this case
the distance between two particles, kT,ij, is the transverse momentum of one relative
to the other

k2
T,ij = 2(1 − cosθij) min{E2

i , E
2
j } (2.33)

The treatment of the beam remnant is implemented in the kT−algorithm by defining
another parameter, kT,iP, which defines the transverse energy of the i−th particle
relative to the beam axis

k2
T,iP = 2(1 − cosθiP ) E2

i (2.34)

where θiP is the polar angle between the particle i and the incoming proton beam
direction. For each iteration of the algorithm, the minimum of all the {kT,ij, kT,iP}
is taken and tested against a threshold Emin

T . If the smallest value is lower than
the threshold, the particle is merged either to its closest neighbour (if kT,ij was the
smallest value) or to the beam remnant (if kT,iP was the smallest). The prescription
for combining two particles forming a new ”pseudo-particle” is given by a recombination
scheme. Several schemes are valid for the jet reconstruction. The procedure is iterated
until only objects with distances above the threshold are left.

The longitudinally invariant kT algorithm [29, 30] combines the advantages of the
cone and the kT algortihm. The definition of the distance between two particles is dif-
ferent from Eq. (2.33) as well the beam distance definition is different from Eq. (2.34).
The longitudinally invariant kT algorithm is the one used in this analysis and is de-
scribed in more detail in Sect. 4.2.5 together with the choice of the recombination
scheme.

The study of jets can give a significant contribution to the test and understanding
of QCD. A milestone was the experimental discovery of the gluons at the e+e− PETRA
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Figure 2.16: Two examples of jet measurements. The left-hand plot (a) shows the
measurement of the differential cross section for dijet production in ep collisions as a
function of the virtuality of the exchanged photon, Q2. The measurement was performed
by the ZEUS collaboration and is compared to the several NLO predictions differing for
the choice of the renormalisation scale (from [37]). The right-hand plot shows the
measurement of the differential cross section for dijet production in pp̄ collisions as a
function of the transverse momentum of the jet, pT , in different bins of rapidity, Y .
The measurement was performed by the CDF collaboration and is compared to the NLO
prediction.

collider through the study of three-jets coplanarity [31]. More generally, jets give the
opportunity to test predictions in a kinematic regime where QCD is expected to work.
For example, the NLO QCD predictions of the jet differential cross section are presented
in Fig. 2.16a, showing the high degree of precision of the theory over a wide phase space.
Another possible test of QCD with jets is the study of the azimuthal asymmetries in
events with two or more jets (dijet production) [32]. Jets are also used as inputs for
fits to the parameters of the theory. There are several methods for estimating the
value of αS from jets. It can be done by measuring the ratio of the yields for dijets
and trijets [33, 34] or from the study of the internal substructure of jets [35]. These
quantities are determined essentially by parton radiation which depends on the value
of the strong coupling constant. Moreover, jets can be combined with inclusive DIS
data in order to better constrain the PDFs [36]. The reduction of the parton densities
uncertainties, especially for the gluon, is sizeable and indicates once again the power
of this experimental tool for QCD studies.
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2.2 Diffraction in strong interactions

Since the 1960’s, the existence of a subset of strong interaction processes with very
peculiar characteristics called diffraction is known [39]. Diffraction was observed in pp
collisions before the birth of QCD and models like Regge phenomenology [40, 41] were
developed in order to include the effects of diffraction in the observed measurements.
Although QCD is used for describing the strong interactions since more than twenty
years, diffraction was hard to fit in this framework because of its intrinsical soft and
non-perturbative nature. A possible way to study diffraction in the QCD framework
is to require the presence of a hard scale in the diffractive process, given by e.g. the
exchange of a high virtuality boson, jets or heavy quarks. The QCD theory can be
remarkably boosted by the study of diffractive processes: the simultaneous presence of
a soft and a hard scale allows to test the border line between perturbative and non-
perturbative processes in a more sophisticated fashion. Diffraction concentrates in the
low-x region and the complex dynamics of this still not well-known kinematic region
can be studied in detail.

2.2.1 Soft diffraction

In the early experiments of pp collisions in the 1970’s, a surprising feature of the data
observed was the slow rise of the total cross section, σtot, as a function of s (σtot

was expected to saturate at a certain energy). It was also noticed that the elastic
cross section exhibithed a particular behaviour as a function of t, the four-momentum
transferred squared at the proton vertex defined as

t = (p′ − p)2 (2.35)

where it should be noted that t assumes negative values. In Fig. 2.17 this trend is shown:
a peak around |t| ∼ 0 (the diffractive peak) followed by an exponential decrease,

dσel

dt
= a eb t

where a and b are two parameters. A subsequent minimum followed by a secondary
maximum is observed. A particular feature of the t−distribution of the pp data also
shown in Fig. 2.17 is the shrinkage of the width of the diffractive peak (i.e. the increase
of b) with the increase of the energy.

In times predating the birth of the QCD, models like Regge phenomenology were
used to interprete these results8. In a Yukawa-model approach, an interaction is medi-
ated by the exchange in the t−channel of an object with mass squared m2 = t between
the two colliding particles. For a given hadronic reaction, only specific particles can
be exchanged in order to conserve all the relevant quantum numbers. For example, in
the reaction π−p → π0n, only the ρ, a2 and f6 mesons can be exchanged. Remark-
ably, the relation between mass squared and spin connects these particles, as shown in

8For an extensive review on the subject of Regge phenomenology the reader is referred to Refs. [41,
43]
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Figure 2.17: The differential cross section as a function of t in pp elastic collisions
for different values of the centre-of-mass energy squared, s. In case of fixed target
experiments measurements, the momentum of the incoming proton beam, P , is given
(from [42]).

Fig. 2.18. The straight line on which the mesons lie is called a Regge trajectory. The
same property is valid for the other mesons and other Regge trajectories are shown in
Fig. 2.18.

Regge phenomenology connects the asymptotic high-energy behaviour of the cross
section to the singularities in the complex angular momentum of the partial wave am-
plitudes in the crossed channel. By analytically continuing the partial wave expansion
to complex values of the angular momentum, one can realize that, because of very
generic properties like unitarity, analyticity and crossing, the asymptotic high-energy
behaviour of the cross section is connected to the singularities in the crossed t-channel
that arise in the calculation. Rather than the exchange of a particle like in the Yukawa
model, Regge phenomenology considers the collective effect of the exchange of all the
mesons belonging to the same Regge trajectory. The trajectory can be parametrised
as

J = α(t) = α(0) + α′ t (2.36)

where α(0) and α′ are the intercept and the slope of the trajectory9 (see Fig. 2.18).
The Regge trajectories for mesons are called reggeons and the typical values for their
parameters are α(0) ∼ 0.5 and α′ ∼ 1 GeV−2. Only trajectories with the proper
quantum numbers can contribute to a given reaction. For example the elastic π−p
process receives contributions only from the ρ, the f2 and the IP trajectories (the

9Although this parametrisation is expected to be valid only for small values of |t|, it is experimen-
tally seen to hold up to |t| ≈ 5− 6 GeV2.
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Figure 2.18: The correlation between the squared mass and the spin of several mesons.
Mesons belonging to the same Regge trajectory lie on the same straight line. The Regge
trajectories of the ρ, ω, f2 and a2 are degenerate and superimpose.

latter will be introduced later in this section). The cross section for elastic interaction
of hadrons A and B at high centre of mass energy, s, and fixed t is then predicted to
be

dσAB
el

dt
=
∑

k

β2
Ak(t)β

2
Bk(t)

16π
s2αk(t)−2 (2.37)

where the sum runs over all the allowed trajectories and the functions β are called
residue functions and express the coupling between the k−th trajectory and the hadron
A (B). Considering Eq. (2.36), one can define the slope parameter b = b0 + 2α′ ln(s)
and rewrite Eq. (2.37)

dσAB
el

dt
=
∑

k

β2
Ak(t)β

2
Bk(t)

16π
s2α(0)−2 exp(bt) (2.38)

showing that Regge phenomenology predicts the shrinkage of the forward peak as
seen in the data10. The total cross section is related to the elastic via the optical
theorem and can be written as

σAB
rmtot =

∑

k

βAk(0)βBk(0)sαk(0)−1 (2.39)

10This shrinkage is at the end a consequence of the limit for high s and fixed t at the base of
Regge theory. Considering the two colliding hadrons, A and B, as massless and using the definition
in Eq. (2.35), one can write t as t ∼ −2EAEB(1 − cosθ) where EA and EB are the energies of the
hadrons and θ the scattering angle. As s increases, the only way for t to stay constant is that θ must
become smaller and smaller, i.e. closer and closer to the forward direction.
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Figure 2.19: Total and elastic cross section in (upper plot) pp and (lower plot) p̄p
interactions. From Ref. [12].
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Figure 2.20: Schematic diagrams for (a) elastic, (b) single diffractive and (c) double
diffractive pp collisions.

It was noticed that the slow rise of the total cross section could not be described
with the known trajectories using the known mesons (see Fig. 2.19). Since the intercept
α(0) has approximately the same value of 0.5 for all the mesonic trajectories, this
would cause a decrease of the total cross secetion. This induced the introduction of
a new trajectory, the pomeron (IP ), that dominates at high energies [44]. According
to a generally accepted fit to the total cross sections for different processes [45], the
intercept of the pomeron is higher than in the case of the mesonic trajectories (αIP (0) =
1.08) and the slope is α′

IP0.25 GeV−2. The peculiar property of the IP is to carry no
quantum numbers but for the spin and the parity (equivalently said, the IP carries
the vacuum quantum numbers). Within the Regge theory, diffraction is that class of
processes in which a IP is exchanged between the interacting particles although it is
important to stress that the IP must not be misunderstood as a real particle. More in
general, the most valid definition from the theoretical point of view is that diffraction is
the dominant high-energy process when no quantum numbers are exchanged between
the interacting particles. Using this definition we can include among the diffractive
processes also the ones having one or both protons dissociating in a low-mass resonant
state (single and double dissociation processes, see Fig. 2.20), typically of the order of
2 − 3 GeV.

The two features of diffractive events mentioned above, the exchange of the vacuum
quantum numbers and the slight perturbation that the incoming hadron undergo, imply
very specific experimental signatures that are exploited experimentally for tagging an
event as diffractive (see Sect. 2.2.3). The incoming hadron in a diffractive process can
either stay intact or dissociate in a low-mass state: in the former case and in most
events of the latter, the outgoing hadron will escape in the beam pipe hole leaving no
signal in the central detector. A typical experimental signature of the diffractive signal
is the presence of one or more large rapidity gaps (LRG). The rapidity of a particle, Y
is defined as

Y =
1

2
ln

E + pZ

E − pZ

(2.40)

where E and pZ are the energy and the Z−component of the momentum of the particle.
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LRG

Figure 2.21: A qualitative justification of the presence of LRG in diffractive events
is shown. In standard proton-proton strong interactions (left) a parton is exchanged
between the hadrons and on his path emits, as predicted in QCD, other partons that will
subsequently hadronise. In diffractive interactions, the exchange has no colour charge
and therefore does not emit any parton.

A quantity that estimates Y for massless particles is the pseudorapidity, η, defined as

η = −ln

[
tan

(
θ

2

)]
(2.41)

where θ is the polar angle of the momentum of the particle. Since only the vacuum
quantum numbers are exchanged between the hadrons, no colour charge is exchanged.
As depicted in Fig. 2.21, this absence of colour flow causes a region in rapidity in the
direction of the scattered proton without hadrons that otherwise would be generated
by the QCD radiation. Thus, using the LRG one can tag an event as diffractive by
requiring a rapidity region around the beampipe with no particle flow. The size of this
rapidity region between the scattered proton and the most forward particle produced
in the central system, ∆Y , depends by the kinematics of the process (see Sect. 2.2.3).
It should be stressed that the background from non-diffractive events that accidentally
have a LRG is strongly suppressed. In fact, if one assumes that the average number of
partons radiated by the strong field in an interval of rapidity dY , is constant

<
dPQCD

dY
>≈ k

then the probability to emit accidentally no particles in ∆Y is

Pno−rad ∝ e−k ∆Y (2.42)

showing that the size of the rapidity gap in non-diffractive events is exponentially
suppressed.

The diffractive physics described here is known as soft diffraction because elastic
and total cross section are processes with no hard (i.e. high-energy) scale reactions.



Diffraction in strong interactions 2.2 35

This makes the calculations with perturbative QCD described in Sect. 2.1 impossible.
However, the question of how to interprete the pomeron in QCD can still be addressed.
The basic ideas for studying the partonic structure of the diffractive exchange (that
means in turn a QCD interpretation of diffractive processes) are presented in the fol-
lowing subsections.

2.2.2 Hard diffraction

The first proposal to study diffraction in presence of a hard scale was suggested in 1985
by Ingelman and Schlein [46]. The basic idea in what is known as resolved pomeron
model is that as the reggeons are ensembles of virtual mesons, the pomeron can be
treated as a particle that is exchanged between the two hadrons. The nature and the
properties of this quasi-particle are a priori unknown. The diffractive hadron-hadron
reaction can be thus modelled as a two steps process. First the diffractive exchange
is emitted from a proton with momentum transfer t. Then the diffractive exchange
interacts with the other proton. The interesting thing is to require that in the second
step of the process a hard scale is involved, like jets or heavy quark production. This
would allow to test in pQCD the IP internal hadronic structure like any other hadron11.
The factorisation adopted in the resolved pomeron model is called Regge factorisation
or also proton vertex factorisation. Thus, the cross section for a diffractive interaction
between two hadrons, A and B, is approximated by

σD
AB = fIP/A · σBIP (2.43)

where fIP/A represents the pomeron flux factor, the probability of emitting a IP with
given kinematic characteristics, and σBIP represents the total cross section for the BIP
interactions. Regge phenomenology arguments say that the expression of the pomeron
flux depends only on two variables, t and xIP , where the latter is defined as the fraction
of the momentum of the hadron A taken away by the pomeron. Its definition is

xIP =
(pA − p′A) · pB

pA · pB

(2.44)

where pA is the four-momentum of the incoming hadron A, pB is the four-momentum
of the incoming hadron B, and p′

A is the four-momentum of the diffractively scattered
hadronic system A′. There are many different definitions for the pomeron flux, the
ones mostly used being proposed by Ingelman and Schlein [46] and by Donnachie and
Landshoff [47]. It is important to remind that QCD is not playing a role at this stage
and there is no motivation for the resolved pomeron model in QCD.

The first experimental proof of the presence of hard scales in diffractive processes
was given by the UA8 collaboration in pp collisions at the SPS collider (Fig. 2.22)
[48]. Diffractive events were selected by requiring the presence of a proton emerging
intact from the interaction and detected far away from the interaction point [49]. In a
subsample of diffractive events, jets with a high transverse energy were found, proving

11Of course this could sound weird at first, since it is known that the IP is not a standard hadron
at all. It cannot be observed outside the proton and no momentum sum rules hold for it.
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Figure 2.22: Results from the UA8 experiment. (Left) The energy distribution in the
calorimeter for an event with a detected dijet system and a leading proton (upper plot)
compared to the one for an event without a leading proton (lower plot). Notice that in
the diffractive case there are two LRG in the low and high polar angle (θ) region of the
detector. (Right) The spectrum of dijet invariant mass for events with a leading proton
(from [48]).

that it was possible to find a hard scale in a diffractive process and hence to use pQCD
in this kind of physics. How to do it in a practical way was nonetheless mysterious and
only with subsequent data from ep collisions at HERA and pp̄ collisions at Tevatron a
clearer understanding in terms of QCD was achieved.

2.2.3 Diffraction in ep collisions

As already mentioned in Sect. 2.1, the analysis of ep collisions resulted in a great
improvement of the knowledge of QCD and the internal structure of the proton. Since
the study of ep interactions is a powerful tool for studying the strong interaction, it
is not surprising that our understanding of diffraction was significantly improved by
ep measurements. In the following, the specific case of the HERA ep collider will be
considered, even though the same arguments are valid for any experiment of this kind.
The motivations for studying diffraction at HERA are basically the same for other
QCD studies:

• The hard scale needed by pQCD is given by the virtuality of the exchanged boson,
Q2. When producing jets and heavy quarks, additional hard scales are available
and one can use pQCD also for the description of photoproduction reactions, i.e.
processes in which the exchanged photon is almost real with Q2 ≈ 0.
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Figure 2.23: A schematic picture of a diffractive DIS interaction as seen in a reference
frame where the proton moves very fast.

• Having a lepton in the initial state reduces the hadronic multiplicity of the final
state, making the experimental environment ”cleaner” and easier to analyse.

• The kinematic range of HERA is very wide, ranging from a maximum Q2 of ap-
proximately 2·104 GeV2 to a minimum xBj of approximately 10−5. In the following
it will be shown that the latter remarkably low value is especially important for
diffraction.

In ep diffractive interaction at HERA, the actual interaction takes place between
the virtual photon and the proton. The γ∗ dissociates into a hadronic (diffractive)
final state measured in the central detector. The p can either stay intact and escape in
the beam pipe (single dissociation) or dissociate in a low-mass resonant state (double
dissociation). Considering processes in the kinematic region defined in Eq. (2.6), one
can study diffraction in the hard DIS regime. This process is called diffractive DIS
(DDIS). The goal of such a study is to give a quantitative QCD description of this
process. The DDIS reaction can be expressed as ep → eXY, where X represents the
diffractive system produced centrally and Y the hadronic system at the proton vertex
(in the case of single dissociation Y ≡ p). The number of independent kinematic
variables is five, higher than in the standard case. The usual choice for them is Q2, t,
xIP , β, MY.

The variables Q2 and t were already introduced and we refer to Eq. (2.4) and
Eq. (2.35) for their definitions. The definition of xIP introduced in Eq. (2.44) can be
rewritten in the DIS case as

xIP =
(p − p′) · q

p · q (2.45)

Although its physical interpretation stays the same as the one introduced in Sect. 2.2.2,
it has to be stressed that we did not yet introduced any Regge factorisation in the def-
inition. The variable β plays in diffractive DIS a similar role as xBj in standard DIS.
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It is defined as

β =
Q2

2 (p − p′) · q ' Q2

Q2 + MX
(2.46)

and it can be verified immediately by comparing Eq. (2.46) with Eq. (2.45) and
Eq. (2.12) that

xBj = xIP · β. (2.47)

The variable MY is the invariant mass of the hadronic system Y. In case the proton
stays intact MY = mp.

In order to pursue our goal to describe quantitatively the diffractive DIS process,
the first idea is simply to repeat the treatment adopted for the standard non-diffractive
DIS just adding the requirement that the proton undergoes a diffractive scattering. The
suffix ”D” will be added to stress the latter additional requirement. A first simplifi-
cation that can be done is to consider only single dissociative events, i.e. diffractive
events where the proton stays intact. This choice has practical justifications. The de-
tection of the system Y is often impossible experimentally (the hermeticity of a collider
experiment cannot be total and the system Y escapes in the beam pipe). Moreover,
even if one has managed to detect it, one has no more experimental signatures but
the fact that only vacuum quantum numbers have been exchanged in the interaction.
In fact also the exchange of reggeons produces similar experimental signatures except
changing the Y quantum numbers. Nonetheless, even if we ignore this kind of reactions
in the theoretical treatment, they are still produced in the collisions. The experimental
way to deal with them will be explained later in Sect. 6.5. The differential DDIS cross
section then depends only on four variables and can be written as

d4σD

dQ2dβdtdxIP

=
2πα2

xBjQ2

[
(1 + (1 − y)2)F

D(4)
2 (β, Q2, t, xIP ) − y2F

D(4)
L (β, Q2, t, xIP )

]

(2.48)

If the scattered proton is not detected in the experiment, Eq. (2.48) is integrated
over t and becomes

d3σD

dQ2dβdxIP

=
2πα2

xBjQ2

[(
1 + (1 − y)2

)
F

D(3)
2 (β, Q2, xIP ) − y2F

D(3)
L (β, Q2, xIP )

]
(2.49)

Often Eq. (2.48) and Eq. (2.49) are expressed in terms of a reduced cross section,
σ̃D(4), defined as

σ̃D(4) = F
D(4)
2 (β, Q2, t, xIP ) − y2

(1 + (1 − y)2)
F

D(4)
L (β, Q2, t, xIP )

As for standard DIS, the longitudinal diffractive structure function, F D
L , is usually

neglected. In this case σ̃D and F D
2 match each other. The treatment of the DDIS is

noticeably simplified by the use of the resolved pomeron model introduced in Sect. 2.2.2.
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Then, the expression of F D
2 , which in general depends on four variables, is factorised

in two parts, each one depending on two separate variables

F
D(4)
2 (β, Q2, t, xIP ) = fIP/p(t, xIP ) · F IP

2 (β, Q2) (2.50)

where fIP/p is the pomeron flux factor and F IP
2 the pomeron structure function.

The former can be modeled by Regge phenomenology, the latter is the quantity ex-
tracted from the measurement. Again, in case one does not measure t, the expression
of Eq. (2.50) is integrated over this variable. In the resolved pomeron model, the phys-
ical meaning of β arises naturally. As xBj is the fraction of the proton longitudinal
momentum taken by the parton which is struck by the photon, β is the fraction of the
pomeron longitudinal momentum taken by the parton struck by the photon.

Experimentally, at HERA diffraction is tagged using three different methods. They
exploit different experimental signatures of diffraction and can be considered as com-
plementary to each other.

• The single dissociation events can be directly detected by means of a forward
instrumentation called proton spectrometer [50, 51, 52, 53, 54, 55]. Because of
the low t, the outgoing p is scattered at very low angles with respect to the
initial direction and one needs to place the proton spectrometer very far from the
interaction point and very close to the beam axis. An experimental technique
adopted at HERA is the use of roman pots. These devices are able to move the
detectors (e.g. silicon microstrips detectors) in the direction of the beam. When
the beam is not well focused yet, the detectors are kept far from it; when the
beam is stable the roman pots move them close to the beam (the typical distance
at HERA is ≈ 1 cm). The dipoles of the collider are used to bend the scattered
proton such to separate them from the beam line (making their detection possible)
and to allow a measurement of their momentum. If the interaction was diffractive,
the scattered (leading) proton is perturbed only slightly. This means that it must
have lost only a small fraction of its momentum. If one measures with a proton
spectrometer the quantity xL, defined as

xL =
|~p′|
|~p| (2.51)

one finds a pronounced peak at xL ≈ 1 (see Fig. 2.24). That is the diffractive
peak and diffractive events concentrate at values xL & 0.95. The detection of a
leading proton is a very clear indication that a diffractive process happened in
the event considered. It is also rich of information because it measures directly t.
However, it has the drawback of low acceptance and, consequently, low statistics
and it does not reject the background from reggeon exchange.

• The large rapidity gap (LRG) method tags the diffractive events by requiring
an angular region in the direction of the scattered proton without particle flow
[56, 57, 58, 59, 60]. Using the definitions of rapidity, Y , and pseudorapidity, η,
in Eq. (2.40) and Eq. (2.41), one can write the dependence on the kinematic
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Figure 2.24: The xL spectrum measured by the ZEUS collaboration. The points with
the error bars show the data while the histogram the prediction from the Monte Carlo.
The diffractive peak is clearly visible at xL ≈ 1 (from [52]).

variables of DIS of the size of the LRG between the diffractive system X and the
scattered proton

Yp − YX = ∆Y ≈ ln
W 2

mp MX
(2.52)

Typical values at HERA are W = 200 GeV and MX = 20 GeV. Thus one expects
a LRG of the size of approximately 7.7 units of rapidity. But the hadronisation of
the diffractive system causes a spray of particles that decreases the detected size
of the LRG, so typical requirements on the LRG size are of the order 2.5 - 3 units
of rapidity. Experimentally one measures the pseudorapidity of the most forward
particle in the detector (ηMAX) and requires that the η range between it and the
edge of the forward detector instrumentation is large enough. The diffractive
events concentrate therefore at low values of ηMAX, corresponding to large values
of ∆η (see Fig. 2.25). The LRG method has the advantage of a much higher
statistics compared to the proton spectrometer method, but since the scattered
proton is not detected the source of information on t is lost. Also, the contribution
from reggeons is still present. Although reggeons do not contribute to diffraction,
they are a colour singlet as well and cause a LRG. It is proven that the reggeon
contribution vanishes at sufficently low values of xIP , but a precise limit is not
defined yet (at xIP < 0.01 the reggeon contribution is absolutely negligible while at
xIP < 0.03 a small but significant contribution is present [61]). Another drawback
of the LRG method is the sensitivity on the model of hadronisation which is still
not well-known theoretically.

• The MX method is closely connected to the LRG method. If the size of the
LRG is large, Eq. (2.52) states that the ratio MX/W must stay small. The
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Figure 2.25: The ηMAX distribution as measured by the ZEUS collaboration. The points
with the error bars show the data. The Monte Carlo predictions for the diffractive and
non-diffractive contributions are shown as histograms. The diffractive signal gives the
tail at low ηMAX (from [78]).

diffractive sample is found as an excess at low values of MX compared to the
expectations from standard DIS (see Fig. 2.26) [62, 63]. The MX distribution in
different bins of W is plotted and the non-diffractive contribution estimated from
MC is statistically subtracted from it, leaving a diffractive sample. Like for the
LRG method, also the MX-method has high statistics. Moreover, the selection
over the MX distribution rejects also the background from reggeon exchange. The
sensitivity to the hadronisation models is present also here, affecting in particular
the subtraction of double dissociation events.

Once a clean diffractive sample is available, one can extract the diffractive differen-
tial cross section and the diffractive structure functions using Eq. (2.48) and Eq. (2.49).
The diffractive structure functions, F D

2 , as a function of Q2 are shown in Fig. 2.27 to-
gether with the standard DIS structure functions, F2. While F2 is presented in bins of
xBj, F D

2 is presented in bins of β, which has a similar physical meaning.

From Fig. 2.27 an important conclusion can be made. From QCD we know that
the presence of gluons causes scaling violations in the structure functions. Indeed, such
violations can be seen in the F2 plot as the Q2 dependence of the structure function
becomes steeper as xBj decreases. The same happens in F D

2 but in a much more
pronounced way. The rise as a function of Q2 starts at values of β lower than the ones
of xBj in the corresponding non-diffractive plot. From this one can realise that the
internal structure of the diffractive exchange is not like the one of the proton but is
richer in gluons. This fact is an important reason for using jets as a probe for studying
diffraction, as will be explained in Sect. 2.2.8.
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Figure 2.27: The left hand plot shows the proton structure function F2 as a function
of Q2 in bins of xBj measured by the H1 collaboration (from [64]). The right hand plot
shows the diffractive reduced cross section, σ̃D, measured by the H1 collaboration as a
function of Q2 in bins of β at a fixed value of xIP = 0.01 (from [60]). For visibility, the
inclusive (diffractive measurements was scaled by a factor 2i (3i) with i as indicated.
The σ̃D was scaled as well for different xIP values. The scaling violations in the right-
hand plot are steeper than the left-hand plot.

2.2.4 Saturation model in diffraction

The saturation model turns out to be a powerful tool to describe also diffraction [20, 66].
Since diffraction is concentrated at low-xBj, this kind of events are strongly influenced
by saturation effects. The parameters of the model in diffractive ep scattering are the
same as extracted from inclusive DIS data [20]. The same power-behaviour in xBj of
inclusive and the diffractive DIS cross sections can be explained by means of saturation
[20]. A schematic picture of a diffractive interaction is shown in Fig. 2.28a. The qq̄
process is dominant at low MX. At high MX the contribution from an additional
emission of a gluon from the dipole becomes important (Fig. 2.28b). This can be
seen in Fig. 2.29 where F D

2 measured by the ZEUS collaboration is compared to the
prediciton based on the saturation model. The qq̄g contribution is dominant at low β
hence because of Eq. (2.46) at high MX.
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Figure 2.28: Schematic picture of the γ∗p diffractive DIS scattering in the saturation
model for (a) the qq̄ contribution and for (b) the higher-order qq̄g contribution.

Figure 2.29: The diffractive structure function, xIPF D
2 (xIP , β, Q2) for xIP = 0.0042 as a

function of β measured by the ZEUS collaboration. The prediction from the saturation
model is shown as a solid line. Also shown are the individual contribution (dashed
lines) from the qq̄ for transverse photons, (dot-dashed lines) from the qq̄ for longitudinal
photons and (dotted lines) from the qq̄g component (from [65]).
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2.2.5 QCD factorisation in diffraction

The QCD-based study of diffractive DIS data relies on an important theorem only
recently proven by J. Collins in 1998 [67]. The QCD factorisation theorem for diffractive
DIS states, in analogy with the QCD factorisation theorem for DIS (see Sect. 2.1.5),
that in a process with a sufficiently hard scale, the diffractive DIS reaction factorises in
two parts. The short-distance part is characterised by the presence of a hard scale that
includes the hard scattering of a parton off the virtual boson. This part is calculable in
pQCD and depends on the process under study (inclusive DIS, jet production, heavy
quark production, etc.). Since it is a pure pQCD result, the prediction for the hard
subprocess does not depend on whether the reaction is diffractive or not. The second
part includes the long-range soft processes and the infrared divergences are included
in it. It is the equivalent of the proton PDFs and in the diffractive case is called
diffractive parton distribution functions (dPDFs). The dPDFs can be defined as the
standard PDFs with the additional requirement that the proton underwent a diffractive
interaction. They depend only on the type of hadron considered and can be used in
many different tuypes of processes. The differential diffractive cross section for γ∗p
interaction can then be expressed as the convolution of the short- and long-distance
terms

∆σD =
∑

i=q,q,g

∫

∆t

dt

∫

∆xIP

dxIP

∫

∆Q2

dQ2

∫

∆β

dξ σ̂γ∗i(Q2, ξ)fD
i (xIP , t, ξ, Q2) (2.53)

where σ̂γ∗i(Q2, ξ) represents the partonic cross section for the hard interaction be-
tween the γ∗ and the parton i, and fD

i (xIP , t, ξ, Q2) are the dPDFs for a given type of
parton i.

It is wortwhile to remind that the validity of the factorisation theorem relies on ne-
glecting higher-twist terms (see Sect. 2.1.5). This statement is valid for every available
demonstration of the factorisation theorem but is particularly relevant for the diffrac-
tive case where higher-twist terms can be larger than in the inclusive case. Thus, in
order to provide a solid basis to the QCD interpretation of diffraction, it is fundamental
to prove experimentally the validity of this very important theorem. Once it is found to
be compatible with data, one can use for diffractive processes all the QCD machinery
described previously and thus include diffraction in the QCD framework.

At HERA, the dPDFs have been determined within the QCD DGLAP formalism
by means of fits to inclusive diffractive DIS measurements with a procedure similar to
that used to extract the standard proton PDFs from inclusive DIS data. An example
of the outcome of one of these fits is shown in Fig. 2.30.

In most of the dPDF parameterisations, the Regge factorisation introduced in
Sect. 2.2.2 is assumed in order to factorise the (xIP , t) from the (β, Q2) dependence
of the cross section. In the Regge approach, diffractive scattering proceeds via the
exchange of the Pomeron trajectory. The dPDFs are then written as the product of
fIP/p, the Pomeron flux (dependent on xIP and t) and fD

IP , the parton distributions in
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Figure 2.30: The diffractive parton densities (dPDFs) estimated with the
H1 2006 − FitA extracted from inclusive diffractive DIS data by the H1 collaboration
(from [60]). The dPDFs are presented as a function of β for different bins in Q2. The
left-hand plots show the contribution from the quark colour singlet while the right-hand
plot the contribution from the gluon colour singlet. Notice the different scales on the
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the Pomeron (dependent on β and Q2)

fD
i (xIP , t, ξ, Q2) = fIP/p(xIP , t) · f IP

i (β, Q2). (2.54)

The diffractive structure function can be expressed as in Eq. (2.50)
It has to be kept in mind that from the experimental point of view the selected

signal can still contain a contribution from reggeons that mimic a diffractive process
(this depends on the experimental technique adopted). In this case Eq. (2.54) becomes

fD
i (xIP , t, ξ, Q2) = fIP/p(xIP , t) · f IP

i (β, Q2) + fIR/p(xIP , t) · f IR
i (β, Q2) (2.55)

where in analogy with the diffractive case, fIR/p parametrises the flux of reggeons
from the proton and f IR

i are the reggeon parton densities. Also Eq. (2.50) changes in

F
D(4)
2 (xIP , t, ξ, Q2) = fIP/p(xIP , t) · F IP

2 (β, Q2) + fIR/p(xIP , t) · F IR
2 (β, Q2) (2.56)

where F IR
2 is the reggeon structure function.

2.2.6 Factorisation breaking in pp collisions

One of the most relevant assertions of the factorisation theorem is that the dPDFs are
universal, i.e. they can be employed in different kind of interactions and for different
kind of final states. Thus one should be able to use the dPDFs extracted in ep collisions
at HERA also in pp̄ collisions at Tevatron. A diffractive process with a hard scale that
can be studied at Tevatron is for example the diffractive production of dijets. This
measurement was performed and the structure function for diffractive dijet production,
F JJ

2 , extracted. The measurement is then compared to the NLO QCD predictions using
the HERA dPDFs in Fig. 2.31 [68].

In the comparison an evident discrepancy is observed between data and NLO pre-
dictions. The fact that the dPDFs extracted in ep collisions cannot be used directly
at a pp̄ collider means that the collinear factorisation is broken. The widely accepted
explanation for such a breakdown focuses on the secondary interactions between the
spectator partons in the protons. After the diffractive reaction it is still possible that
two partons - that did not enter in the former - interact. The second interaction is
typically soft and spreads particles towards the direction of the incoming hadrons.
This makes the experimental detection of the diffractive scattering impossible. The
rapidity gap is filled with the products of the second soft interaction and the proton
breaks up and can not be detected in the proton spectrometer. Therefore, there are
fewer diffractive events than expected without secondary rescattering. One can define
the probability that a rapidity gap produced in hadron-hadron collisions is not filled
by secondary processes in the same collision. This probability is called rapidity gap
survival probability, ω. The survival probability can be expressed as the product of two
terms [69]

ω = S2 T 2
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Figure 2.31: The diffractive dijet structure function measured by the CDF collaboration
compared to a NLO QCD calculation using the HERA dPDFs. The same calculation
using two different dPDFs (the H1 2006 - Fit A and the H1 2006 - Fit B) is shown. A
significant overestimation of the data is observed in the theoretical predictions, implying
a breaking of the collinear factorisation in diffractive pp̄ interactions.
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Figure 2.32: A schematic representation of the mechanism of factorisation breaking in
pp̄ collisions. In the left plot a diffractive event is depicted. No secondary interactions
happen and the final state in this example has one rapidity gap and one hadron stays
intact and is detectable with a proton spectrometer. In the right-hand plot two partons
that did not participate to the hard diffractive process interact softly. The latter inter-
action spoils the rapidity gap(s) and perturbates enough the leading hadron(s) such to
make impossible the diffractive tagging of the first hard process.

First there is the term S, where (1 − S2) is the probability that the rapidity gap
may be filled by secondaries produced (via parton rescattering) in the underlying soft
interaction. Second, there is also the probability (1−T 2) that the gap may be populated
by extra-gluons emitted in the hard diffractive subprocess. The final value of ω depends
on the type of interaction, the energy of it and the final state considered. The actual
calculation of ω was performed by many theoretical groups [70, 71] and is able to
reproduce the factor ω ≈ 0.05 − 0.2 needed to describe the Tevatron results. It is
important nonetheless to confirm the general validity of these calculations in order to
apply them in other experimental environments like the Large Hadron Collider [71].
In this task, HERA can provide precious informations.

2.2.7 Test of QCD factorisation in ep collisions

HERA diffractive data can be used not only to extract the dPDFs but also to verify
their universality. The proposed explanation of the factorisation breaking at Tevatron
described in Sect. 2.2.6 can be tested also in ep collisions. A photon can fluctuate in
a quark-antiquark pair. In the Vector Meson Dominance model (VMD) [72] this qq̄
fluctuation behaves approximately like a vector meson (ρ, ω, φ...). The lifetime of this
fluctuation is proportional to 1/

√
Q2 and for low virtualities it can be sufficiently long

that the photon exhibits hadronic structure during the interaction with the proton.
This means that in photoproduction events (γp), i.e. when the photon emitted by the
lepton is quasi-real (Q2 ≈ 0), the interaction may actually occur between two hadronic
objects. In this way one is able to test whether soft rescattering effects occur also in
photoproduction and if the models used for pp̄ collisions also describe the γp scattering.
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Figure 2.33: Direct and resolved photon LO diagrams contributing to the production of
diffractive dijets. Regge factorisation is assumed in these plots.

In LO, the γp events are grouped in direct and resolved γp (see Fig. 2.33). In
the former case, the photon, although real, does not fluctuate and couples directly to
the quark in the proton. The resolved photon processes are those where the photon
exhibits a hadronic structure. As for the proton, a collinear factorisation is applied
for the γ, defining a hard subprocess between the parton coming from the p and the
parton coming from the γ, and photon PDFs extracted experimentally from e+e− data
[73]. The fraction of the photon longitudinal momentum entering the hard subprocess
is called xγ . In the photon, the variable xγ plays the same role as xBj in the proton
and can be defined as

xγ =
p · u
p · q (2.57)

where u is the four-momentum of the parton originating from the γ entering the
hard subprocess.

Secondary rescattering is not expected to happen in DIS interactions and direct
photon processes simply because the proton does not have a hadronic counterpart to
rescatter on. Conversely, the resolved part should be suppressed. The experimental
separation between direct and resolved is based on the value of xγ . For direct processes,
xγ = 1 (neglecting detector resolution effects) while for resolved processes the value of
this variable can be significantly lower.

The experimental strategy for testing the QCD factorisation at HERA is to compare
the data from a diffractive final state to the NLO prediction using the dPDFs previously
extracted from inclusive DIS. Of course, the data sample under test must not have been
used in the dPDFs extraction. If the factorisation holds, the NLO should describe the
data, both in shape and normalisation. Thus, according to the models used to describe
the pp̄ diffractive reactions, one expects to see in the low xγ region of the phase space
a suppression compared to the NLO prediction using the dPDFs. Such a suppression
should not be visible in DIS and direct γp events.
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Figure 2.34: The ratio of gluons in the dPDFs as a functions of Q2 estimated from the
fits H1 2006 − FitA and H1 2006 − FitB. In this plot the variable called β in the text
is denoted by z (from [60]).

The diffractive reactions suitable for the test of QCD factorisation must satisfy the
following requirements:

• it must have a hard scale in the final state such as to allow the use of pQCD, like
the factorisation theorem and the DGLAP evolution equations;

• the process must have a sensitivity to the gluon content of the diffractive ex-
change. This requirement is due to the enhancement of gluons in the diffractive
exchange. Fig. 2.34 shows that the gluon content in the diffractive exchange is
approximately 70 − 80%. Thus it is important to choose processes that are sen-
sitive to the gluons in order to have a direct handle on the main contribution to
the dPDFs.

Two processes satisfying these requirements and widely used at HERA for QCD
diffractive studies are the production of open charm and of dijets [75, 76, 77, 78, 79,
80, 81]. Charm is produced dynamically by the gluons in the diffractive exchange (see
Fig. 2.35) and hadronises in a fraction of the events in D∗ mesons whose detection is
then used as signature of charm production.

The consistency observed between the cross sections for the semi-inclusive DIS pro-
cesses considered and the respective calculations based on Eq. (2.53) using the available
dPDFs represents an experimental support of the validity of the QCD factorization hy-
pothesis in diffractive DIS [77, 80]. Nonetheless the theoretical uncertainty on the NLO
calculations is large and there is still the need for a better experimental verification
of the theorem. The expected suppression in γp is observed only in dijet production
and not in open charm [76, 77]. The latter result can be understood considering that
the charm production is suppressed when the photon has a hadronic structure [76]. In
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Figure 2.35: The left plot shows a schematic representation of diffractive charm pro-
duction in the Regge factorisation framework. The right plot is a recent result from the
ZEUS collaboration on diffractive production of D∗ mesons in γp: the differential cross
section as a function of xIP is shown (points and error bars) and compared to the NLO
calculation using different dPDFs as indicated in the legend (from [79]).

the case of dijets in diffractive photoproduction, experimental results show an over-
estimation of the cross section by the NLO calculation [79, 80], although in different
amount among the experiments. In both cases the suppression is observed in the entire
xγ region, contradicting the model which works at the Tevatron. The subject is still
under study at the moment of writing this thesis.

2.2.8 Diffractive dijets in DIS

The study of dijet production in DDIS can provide very relevant informations about
diffraction. This process is a perfect candidate to fulfill the requirements specified in
Sect. 2.2.7. There are two hard scales in the process, the virtuality of the photon and
the transverse energy of the jets. They guarantee to select events in the perturbative
regime needed by the QCD calculation. The sensitivity to the gluon content in the
diffractive exchange is given by the production mechanism of the dijets. At the LO,
the dijets can be produced via the QCD Compton (QCDC) and the Boson-Gluon
Fusion (BGF) processes (see Fig. 2.36). At HERA, the BGF process is dominant in
the kinematic region Q2 . 500 GeV2 while for higher Q2 the QCDC process becomes
more important [82]. On the other hand, diffraction is enhanced at low values of Q2.
Thus, the diffractive dijet production is a BGF dominated process and has a direct
sensitivity to the gluon dPDFs. Compared to diffractive open charm production, dijets
have typically harder scales and higher statistics. The latter asset is given both by the
higher cross section and by the better experimental detection efficiency.

Studying dijets an additional variable is required, zIP , the fraction of the momentum
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Figure 2.36: The leading-order QCD diagrams for dijet production in single dissociation
diffractive DIS. The Regge factorisation is assumed. The left-hand plot represents the
QCD Compton (QCDC) production while the right-hand plot the Boson-Gluon Fusion
(BGF) diagram.

of the diffractive exchange carried by the parton participating in the hard process and
defined as

zIP =
q · v

q · (p − p′)
(2.58)

where v is the four-momentum of the parton originating from the colourless ex-
change entering the hard subprocess with the γ∗. In diffractive production of dijets,
the variable zIP replaces β as the kinematical variable on which the dPDFs depend .
Eq. (2.53) is rewritten as:

∆σD
jj =

∑

i=q,q,g

∫
∆tdt

∫

∆xIP

dxIP

∫

∆Q2

dQ2

∫

∆zP

dξ σ̂γ∗i
jj (Q2, ξ)fD

i (xIP , t, ξ, Q2), (2.59)

where now zIP is the variable sensitive to the dPDFs and the subprocess cross section
σγ∗i is replaced by the cross section, σγ∗i

jj , for the reaction γ∗i → jet1 jet2.
The dijets in DDIS can be used as a benchmark for the dPDFs and the factorisation

theorem, as described in Sect. 2.2.7. On the other hand, if one assumes the validity
of the factorisation theorem one can use the same data for improving the accuracy
of the dPDFs. The dijets data can be used to constrain the dPDFs in a combined
fit with the inclusive data. This technique was already used in the context of proton
PDFs [83] and it has proven to significantly reduce the uncertainties in the PDFs,
especially the gluon PDFs. The reason is that in a fit using only inclusive data the
gluon parton densities are extracted only in an indirect way from the Q2 dependence
of F2 (which is connected to the amount of gluons via the DGLAP equations) and the
conservation of the momentum sum rules in the proton. By selecting dijets, the data
measure directly the fraction of proton momentum taken by the gluon entering the hard
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Figure 2.37: The left-hand plot shows the measurement performed by the H1 collab-
oration of the double differential cross section for production of dijets in DDIS as a
function of zIP and Q2 + p∗ 2

T,jet1 (points with error bars). The curves represent the NLO
predictions using the fit including inclusive and dijets data (H1 2007 Jets dPDFs). The
right-hand plot presents the ”H1 2007 Jets” dPDFs compared to two older fits that used
only inclusive data as a function of zIP in bins of the factorisation scale, µF , separately
for the quark and the gluon contribution (from [81]).

subprocess12. This property makes the inclusion of dijets data in a fit of the dPDFs
even more attractive. In fact the particularly richness of gluons in the dPDFs increases
the impact of an improvement in the gluon parton density estimation. Moreover, the
diffractive data have a larger experimental uncertainty compared to the standard DIS
ones. This reflects in an even worse precision in measuring the Q2 dependence of F D

2

and, consequently, the gluon dPDFs have much larger relative uncertainties compared
to the proton PDFs. This uncertainty is so relevant that the inclusive data alone are
able to constrain the gluon parton densities only up to β . 0.8 and, in addition, make
specific assumptions on their initial parametrisation at the starting scale of the DGLAP
evolution [60].

The inclusion of dijets in DDIS in the fit of the dPDFs was recently performed by
the H1 collaboration [81]. In Fig. 2.37 two results from this analysis are shown in order
to give a feeling of the status of the inclusion of dijets in the dPDFs fit. Fig. 2.37a shows
the double differential cross section for production of dijets in DDIS as a function of
zIP and the chosen estimator of the hard scale of the process, Q2 + p∗ 2

T,jet1, where p∗T,jet1

is the transverse energy of the jet with the highest transverse energy as measured in
the reference frame where the γ∗p centre-of-mass is at rest. The precision, kinematic
coverage and robustness of the fit are greatly improved.

Thus, the measurement of dijets can dramatically improve our knowledge of the

12In non-diffractive analysis this quantity, analogous to zIP , is called ξ.
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diffractive dynamics in a QCD framework and have an impact on future analyses also
at other colliders. The study of diffraction at the LHC, the new pp collider with a
centre-of-mass energy

√
s = 14 TeV , has a broad and interesting physics program [84].

Similarly to the non-diffractive case, a fundamental ingredient of any calculation of
diffractive processes are the dPDFs. Reducing the dPDFs uncertainty can strongly
reduce the uncertainty on at the LHC, e.g. diffractive Higgs production. The study of
the production of dijets in diffractive DIS was never pursued with the ZEUS detector.



Chapter 3

Experimental setup

The first part of this chapter describes the ep collider HERA and its main features
including a brief description of the upgrade carried out in the years 2000-2003; the
second part is focused on the general purpose detector ZEUS and its components
which played a relevant role in the analysis.

3.1 The HERA ep collider

The Hadron Elektron Ring Anlage (HERA) is a collider located at the DESY research
center in Hamburg, Germany. The tunnel where the accelerator is placed is 6.3 Km
long and at a depth of about 20 meters below the ground. At HERA either electrons
or positrons were collided against protons. The leptons and the protons were circulat-
ing in two separate rings and brought to collision in four different interaction points.
The leptons were accelerated using normal and superconducting cavities while for the
protons normal cavities were used. The leptons were kept in orbit using 0.3 T room-
temperature dipole magnets; superconducting 5 T dipoles were adopted instead for the
heavier protons. The first period of operation of HERA (Hera I) lasted from 1992 to
2000 colliding both electrons and positrons at 27.5 GeV against protons. The starting
proton beam energy was 820 GeV (centre-of-mass energy of 300 GeV) and switched
to 920 GeV (centre-of-mass energy of 318 GeV) in 1998. In 2000 the operations were
stopped for allowing a luminosity upgrade of the machine bringing to a planned increase
of the specific luminosity1 by a factor 5. In addition the lepton beam was longitudinally
polarised. This second stage of operations was called Hera II. During the Hera II

run the proton energy changed from the initial 920 GeV to 460 GeV and 575 GeV. The
energy of the lepton beam was kept fixed to 27.5 GeV. A more detailed description of
the machine parameters and the data taking periods can be found in Tables 3.1 and
3.2.

At the interaction points four experiments collected data. In the North Hall the
multi-purpose experiment H1 worked. In the West Hall the Hera-B collided the
beam-halo protons against a fixed target in order to produce B mesons for performing
CP violation studies; Hera-B stopped the data taking in 2003. Hermes was the

1What the specific luminosity is
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HERA parameters

Parameter Value
Circumference 6336 m

Centre of mass energy 225 / 251 / 300 / 318 GeV
Beam Cross Over 96 ns

Luminosity 1.6x1031 cm−2s−1 / 7.0x1031 cm−2s−1

Proton beam Electron beam
Nominal energy 460 / 575 / 820 / 920 GeV 27.6 GeV

Table 3.1: The main parameters of the HERA collider.

experiment in the East Hall: it used the lepton beam with a hydrogen fixed target to
study the spin structure of the proton. In the South Hall the second multi-purpose
detector at HERA worked, ZEUS. A more detailed description of ZEUS is present in
the next section.

3.2 The ZEUS detector

3.2.1 Overview of the ZEUS Detector

Figure 3.1: View of the ZEUS detector along the beam direction.

The ZEUS detector [85] was a general purpose detector designed to study various
aspects of electron–proton scattering. It has been in operation from 1992 to 2007.
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HERA luminosity
Period Colliding Proton beam Luminosity

particles energy ( GeV) delivered ( pb−1)

1993 e− p 820 0.54
1994 e+ p 820 5.2
1994 e− p 820 1.0
1995 e+ p 820 12.3
1996 e+ p 820 17.1
1997 e+ p 820 36.4
1998 e− p 920 8.0
1999 e− p 920 17.1
1999 e+ p 920 28.5
2000 e+ p 920 66.4
2003 e+ p 920 6.5
2004 e+ p 920 77.9

2004/05 e− p 920 204.8
2006 e− p 920 86.1
2006 e+ p 920 118.4
2007 e+ p 920 62.2
2007 e+ p 460 17.7
2007 e+ p 575 9.4

Table 3.2: The luminosity delivered by HERA.
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Various components were installed to measure final state hadrons and leptons and to
characterise observed final state in terms of particle energy, direction, and type.

The experiment consisted of the main detector, surrounding the nominal interaction
point and several small components positioned along the beam line in both directions
(positive and negative Z)2. The schematic view of the main detector is shown in Figs. 3.1
and 3.2. The design of the detector was not symmetric with respect to the nominal
interaction point (Z = 0). The difference in the energy of the electron (positron) beam
(27.5 GeV) and proton beam (820/920 GeV) resulted in a large boost of the centre-of-
mass system in the direction of the proton beam and in the large forward–backward
asymmetry of the particle production. Therefore the forward part of the detector was
more instrumented than the rear one.

Figure 3.2: View of the ZEUS detector perpendicular to the beam direction. See text
for a description of the components.

The tracking system enclosed by a superconducting solenoid producing an axial
magnetic field of 1.43T formed the inner part of the main detector. The main com-
ponent of the tracking system was the Central Tracking Detector (CTD), a cylindrical
drift chamber, surrounding the beam pipe at the interaction point. The CTD measured

2The ZEUS coordinate system is a right-handed Cartesian system, with the Z axis pointing in the
proton beam direction, referred to as the “forward direction”, and the X axis pointing left towards
the center of HERA. The coordinate origin is at the nominal interaction point.See also Appendix A.
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charged tracks in a polar angle range of 15◦ < θ < 164◦. The CTD will be described
in more details in Sect. 3.2.2. In order to extend the angular coverage of track recon-
struction in the forward and backward directions, the CTD was supplemented by the
Forward Tracking Detector (FTD) and the Rear Tracking Detector (RTD). Both FTD
and RTD were composed by three sets of planar drift chambers. In the forward direc-
tion the FTD planes were interleaved with the Transition Radiation Detector (TRD)
planes3. The Small angle Rear Tracking Detector (SRTD) was placed behind the RTD
and covered the surface of the RCAL from the beam–pipe hole to a radius of about
34 cm. Its purpose was to measure electrons scattered at very small angles ( θ > 170◦)
outside the RTD acceptance. At the start of the operations, the ZEUS detector was
also equipped with the vertex detector (VXD) designed to enhance reconstruction of
the event vertex and possible secondary vertices, and to improve the momentum and
angular resolutions of charged tracks measured with the CTD and other tracking de-
tectors. It was however removed during the shutdown of 1995/96 as it could be not
operated continously due to the high beam background levels. During the HERA up-
grade in 2001 a silicon microstrip detector was installed at the same place providing
high-precision tracking measurements.

The high resolution uranium calorimeter (UCAL) surrounded the central part of
the detector, i.e. the tracking detectors and the superconducting solenoid. The UCAL
was subdivided into the forward (FCAL), barrel (BCAL), and rear (RCAL) parts. It
was used to measure energies of produced particles as well as to reconstruct their posi-
tion and to discriminate between electrons and hadrons. The UCAL will be described
in detail in Sect. 3.2.3. The Forward Plug Calorimeter (FPC) was a calorimeter in-
stalled during the data taking period 1998–2000 in the forward direction in order to
extend the angular coverage of the UCAL. The Hadron Electron Separator (HES) was
a plane of silicon diodes designed to improve the identification of electromagnetic ob-
jects, including non-isolated ones. The HES was installed inside the the RCAL (Rear
Hadron Electron Separator, RHES) and inside the FCAL (Forward Hadron Electron
Separator, FHES) at a depth of 3.3 radiation lenghts, approximately the position of
the electromagnetic shower maximum.

The UCAL was surrounded by an iron yoke made of 7.3 cm thick iron plates. The
yoke provided a return path for the solenoid magnetic field. In the addition to the
return field of the solenoid, the yoke is magnetised to 1.6 T by copper coils producing
toroidal field. At the same time it was instrumented with the the backing calorimeter
(BAC). The BAC consisted of proportional chambers making it possible to measure
energy leakages out of the UCAL and to reconstruct high energy muons. The limited
streamer tubes (muon chambers) were mounted inside and outside of the iron yoke in
the barrel (BMUI, BMUO) and the rear (RMUI, RMUO) regions to enhance muon
identification and to measure their momentum. As the average particle density and
the muon momentum in the forward direction was higher than in the barrel and rear
directions, the muon system in the forward direction was more complex. It consisted
of limited streamer tubes mounted inside of the iron yoke (FMUI) as well as drift
chambers and limited streamer tubes mounted in front of the iron yoke (FMUO). Two

3After the HERA 2000 upgrade the TRD was replaced by the Straw Tube Tracker (STT). The
STT improved tracking efficiency in events with high multiplicities.
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iron toroids provide a toroidal magnetic field of 1.7 T for measurement of forward muon
momenta.

In the backward direction, at Z = −7.3 m, the so called Veto Wall detector
was placed. It consisted of concrete wall and large scintillator planes, and was used to
reject background events coming from proton–beam-gas reactions in the HERA tunnel.
Downstream of the electron beam, luminosity was measured by the luminosity monitor
(LUMI). The LUMI detector could also be used for physics analysis, to tag the so
called photoproduction events.

3.2.2 The Central Tracking Detector

The Central Tracking Detector (CTD) [86] was a cylindrical gas-filled wire chamber. It
provided measurements of the charge and momentum of charged particles. The fiducial
volume of the CTD extended from Z = −1.01 m to z = 1.06 m . It covered a polar
angle of 15◦ < θ < 164◦ and the full range of the azimuthal angle φ. The outer and inner
diameter were 159 cm and 36 cm respectively. The chamber is filled with a mixture of
argon, CO2, and ethane. The CTD was subdivided into eight sections (octants) and
nine superlayers. One octant is shown in Fig. 3.3. Each octant consisted of 72 drift
cells equipped with eight sense wires each. For each sense wire, the position in the
(X, Y ) plane of the charged particle track in the cell (so called hit) was reconstructed
from the drift time measurement. The total number of cells in the CTD increased from
32 in the innermost superlayer to 96 cells for the outermost superlayer. Every other
superlayer had its sense wires rotated by a certain angle with respect to the beam axis.
The angles for each superlayer are given in Fig. 3.3. With this configuration the Z
position of a track could be reconstructed with an accuracy of approximately 2 mm.
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Figure 3.3: Layout of a CTD octant. Each octant has nine superlayers with the even
numbered ones declined with respect to the beam axis (‘Stereo angle’).
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The position resolution in r−φ was approximately 230 µm and the resolution of the
transverse momentum, pt, measurement for charged particles crossing all layers was:

σ(pt)

pt
= 0.0058 · pt(GeV) ⊕ 0.0065 ⊕ 0.0014

pt
, (3.1)

where the first term was due to the resolution in the hit position determination, the
second term to smearing from multiple scattering within the CTD and the last term
to multiple scattering before the CTD. The best transverse momentum resolution of
about 0.8% was obtained for pt ≈ 0.5 GeV and the measurement better then 10% was
possible for
pt ≤ 17 GeV.

From the fit to all reconstructed tracks, the position of the interaction point could
be reconstructed with a typical resolution of 0.1 cm in X and Y and of about 0.4 cm
in Z. Charged particle identification in the CTD was possible in the limited kinematic
range by measurement of the mean energy loss, dE/dx, along the tracks.

3.2.3 The Uranium-Scintillator Calorimeter

The ZEUS calorimeter (UCAL) was a sampling calorimeter, built of depleted uranium
absorber plates interleaved with scintillator layers. The scintillating light coming from
the latter was collected with an optical readout. The goal was to obtain an almost
hermetic calorimeter with a nearly full solid–angle coverage and a very good hadronic
energy resolution. The latter was achieved by the compensation, i.e. equal response to
electromagnetic and hadronic cascades.

The layout of the UCAL is shown in Fig. 3.4. It was divided into three parts, which
covered different polar angles [87, 88, 89].

• the forward calorimeter (FCAL) covering θ = 2.2◦ to 39.9◦, with a total depth
of 7.1 interaction length; the front face of the FCAL was placed at z = 234.4 cm,
i.e. 234.4 cm away from the nominal IP,

• the barrel calorimeter (BCAL) covering θ = 36.7◦ to 129.1◦, with a total depth
of 5.3 interaction length; the inner radius of the BCAL was R = 134.5 cm,

• the rear calorimeter (RCAL) covering θ = 128.1◦ to 176.5◦, with a total depth
of 4.0 interaction length; the RCAL face was placed at z = 162.2 cm.

Uranium was found to be a very suited absorber for hadron calorimetry, since it
provides a high yield of spallation neutrons, which in turn can transfer their energy
to the atoms in the scintillator. Together with an additional contribution of photons
from neutron capture in the uranium, this helps compensating the energy losses in
hadronic cascades arising from the binding energy, nuclear fission and from undetected
decay products. Electrons and photons do not suffer such losses. Hence, in typical
non–compensating sampling calorimeters, average response to electrons or photons is
about 20 − −40% higher than to hadronic cascades with the same energy. Due to
fluctuations in the contribution of the electromagnetic component (originating mainly
from the π0 decays) to the hadronic cascades this leads to poor hadronic resolution.
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Figure 3.4: Layout of the ZEUS Uranium Calorimeter.

All parts of the ZEUS calorimeter, FCAL, BCAL and RCAL were built of alternat-
ing layers of 3.3 mm thick depleted uranium plates with 0.2 or 0.4 mm stainless steel,
and plastic scintillator plates (SCSN38), 2.6 mm thick. With this proportion between
the thickness of the inactive and active material, the ZEUS UCAL had a ratio between
the calorimeter response to electrons and hadrons e/h = 1.00 ± 0.03. Thanks to
compensation mechanism the UCAL offered a very good hadronic energy resolution.
The performance of the calorimeter, i.e. linearity of response and the energy resolution
for electrons and hadrons had been studied in details with test beams at CERN SPS.
The result can be summarised as follows [85] (energy E in GeV):

• non–linearity of response to hadrons below 1%;

• non–linearity of response to electrons below 1%;

• energy resolution for hadrons

σE/E = 0.35/
√

E ⊕ 2%; (3.2)

• energy resolution for electrons

σE/E = 0.18/
√

E ⊕ 2%; (3.3)

• module-to-module energy scale uncertainty 1 − 2%;

• time resolution ≤ 0.7 ns for electrons above 15 GeV.

However, these results were obtained with no inactive material in front of the UCAL.
In the ZEUS detector, inactive material between IP and UCAL surface (beam pipe,
CTD, solenoid) could significantly influence energy measurement for both electrons
and hadrons. Corrections applied to reduce this effect are describe in Sect. 4.2.3.

The three calorimeter parts were subdivided into modules. The modules were
transversally separated into towers and the towers were in turn longitudinally divided
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Figure 3.5: Layout of the FCAL module. The module is subdivided into electromagnetic
(EMC) and hadronic (HAC) towers, which in turn are divided into cells. A cell is read
out on both sides by two wave–length shifter bars.

into electromagnetic (EMC) and hadronic sections (HAC). The design of a FCAL
module is shown in Fig. 3.5.

The FCAL and RCAL modules were planar and their face was perpendicular to
the beam axis (see Fig. 3.1), while the BCAL modules were wedge-shaped and the
EMC section is projective in the polar angle. The EMC and the HAC sections were
further segmented into cells. Each EMC section was segmented transversally into four
(in FCAL and BCAL) or two cells (in RCAL) for better electron identification and
position measurement. The HAC towers in the FCAL and the BCAL were longitu-
dinally subdivided into two hadronic cells (HAC1, HAC2). Scintillator plates of each
cell were read out by two wave–length shifter plates (WLS) attached on both sides
of the module. Light from WLS was transferred via light guides to photomultipliers
placed behind the module. Information from two photomultiplier tubes per cell pro-
vided reconstruction of the particle position in the cell (from light attenuation in the
scintillator) and an additional check of the uniformity of the readout. The natural
radioactivity of 238U was used as a reference signal to calibrate the readout channels
to a precision of < 0.2%.
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3.2.4 Forward Plug Calorimeter

The Forward Plug Calorimeter (FPC) [90] was a lead-scintillator sandwich calorimeter
placed in the forward direction of the ZEUS experiment. It was installed in ZEUS in
1998 and took data until the HERA I data taking in 2000. The FPC was installed
in the 20 × 20 cm2 forward beam-hole of ZEUS. It had an internal aperture in order
to host the HERA beam-pipe. The main purpose of the FPC was to increase the
angular coverage of the UCAL. The pseudorapidity coverage of the calorimeters in the
forward direction increased from η ≈ 4 to η ≈ 5 with the introduction of the FPC.
This improved the ability of the detector to collect the proton remnants, having a big
impact on diffractive analyses based on the large rapidity gap or the MX−method (see
Sect. 2.2.3).
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Figure 3.6: Front view of the FPC. The readout cells and the position of the wavelenght
shifters are shown.

A schematic view of the FPC is hown in Fig. 3.6. The active part of the FPC had
outer dimensions of 192 × 1080 mm3. The 6.3 cm diameter central hole accomodated
the HERA beampipe. The characteristics of the FPC were chosen to be similar to the
ones of the UCAL since a large fraction of the hadronic shower was expected to be
shared with the main calorimeter. The radiation length, X0 = 0.68 and the nuclear
absorption length, λ = 20 cm, are similar to those of the FCAL. The FPC is subdivided
longitudinally into an EMC and a HAC section which are readout separately. Each
section is further divided into cells. The size of the cells was 24× 24 mm2 in the EMC
part. This size was taken in order to match the Moliere radius of the FPC, RM = 2 cm.
In the HAC part the cells were bigger, 48 × 48 mm2.

The energy resolution, σE/E, for pions from test-beam was measured to be [91]

σE

E
=

0.53 GeV−0.5

√
E

⊕ 0.11 ⊕ 0.03 log

(
E

1 GeV

)

where the energy of the pion, E, was measured in GeV.
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3.2.5 Hadron Electron Separator

The Hadron Electron Separator (HES) [92] consisted of a layer of silicon pad detectors.
Its task was to improve the identification of the EMC clusters and the reconstruction of
their position. The rear part of the HES (RHES) was located in the RCAL at a depth
of 3.3 radiation lengths, i.e. the approximate position of the EMC shower maximum.
Each silicon pad had an area of 28.9×30.5 mm2, providing a spatial resolution of about
9 mm for a single hit pad. If more than one adjacent pad was hit by a shower, a cluster
consisting of at most 3×3 pads around the most energetic pad was considered, allowing
to reconstruct the position of the incident particle with the resolution of 5 mm. The
forward part (FHES) was located in a similar position in the FCAL and had the same
general properties.

3.2.6 Small Rear Tracking Detector

The Small Rear Tracking Detector (SRTD) [93] was made of two planes of scintillator
strips positioned in front of the RCAL close to the beampipe. It was installed in 1994.
Its main task was the detection and position measurement of low-angles electrons
that otherwise would have escaped outside the RCAL geometric acceptance. The
SRTD covered the area 68 × 68 cm2 centered around the beampipe. A hole of size
8×20 cm2 accomodated the beampipe. The strips of the two planes had a perpendicular
orientation, one along the X−axis and the other along the Y −axis. The strip width
was 1 cm and its thickness was 0.5 cm. Its position resolution was ∼ 3.5 mm and its
time resolution was better than 2 ns.

3.2.7 The Luminosity Measurement

The integrated luminosity, L, relates the expected number of events, N , with the cross
section for given process, σ: N = Lσ. Thus, a precise determination of the luminosity
is essential for any cross section measurement in a high energy physics experiment.
The luminosity of ep–collisions at HERA was determined from the measurement of the
rate for the bremsstrahlung process ep → eγp [94]. As the theoretical cross section is
known to an accuracy of 0.5% from QED calculations, a measurement of the photon
rate permits a precise determination of the ep–luminosity.

Fig. 3.7 shows the layout of the HERA magnet system in the backward direction
(Z < 0), where the ZEUS luminosity detectors were placed. Luminosity measurement
was performed in the two lead/scintillator electromagnetic calorimeters placed at Z
= −34 m (LUMIE) and Z = −107 m (LUMIG).

Photons with a polar angle. θγ , |π − θγ | < 0.5 mrad originating from the brems-
strahlung process ep → eγp were detected by the LUMIG detector [95, 96]. The energy
resolution of LUMIG was measured, under test-beam conditions, to be 18%/

√
E with

the energy E measured in GeV. However, the carbon lead filter placed in front of the
detector to shield it against synchrotron radiation degraded the resolution to 23%/

√
E.

The impact position of incoming photons could be determined with a resolution of
0.2 cm in X and Y , using 1cm wide scintillator strips installed at a depth of 7 X0
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Tagger 8m

LUMI System

Tagger 44m

Figure 3.7: Location of ZEUS detectors in negative Z-direction. Shown are the gamma
(LUMIG) and electron detectors (LUMIE) used for the luminosity measurement.

within the detector. LUMIG was also used to determine the electron beam tilt and to
measure photons from initial–state radiation.

The LUMIE calorimeter [95, 96] was designed to measure the electrons from the
process ep → eγp in coincidence with photons measured in the LUMIG detector. It
was placed at Z = −35 m and detected electrons with polar angles of less than 5 mrad
with respect to the electron beam direction. The measurement was restricted to the
limited energy range, from 7 to 20 GeV. For these energies, electrons deflected by the
HERA magnet system left the beam pipe at Z = −27 m through an exit window in
front of LUMIE (similar to the one in front of the LUMIG detector). The LUMIE
detector had an energy resolution of 18%/

√
E (under test-beam conditions). It turned

out that electron tagging in LUMIE is not necessary for a precise measurement of
the luminosity. On the other hand, the LUMIE detector proved to be very useful for
physics analysis, to tag the so called photoproduction events.

3.2.8 Trigger and Data Acquisition Systems

The short time between bunch crossings at HERA, 96 ns, (equivalent to a rate of
about 10 MHz), was a technical challenge for detector construction and put stringent
requirements on the ZEUS trigger and data acquisition systems. The rate of interesting
ep physics events which should be measured in the ZEUS detector and stored for the
analysis was of the order of a few Hz [97, 98, 99, 103], while the total interaction
rate (any signal in the detector), which was dominated by background from upstream
interactions of the proton beam with residual gas in the beam pipe, was of the order
10–100 kHz. Other important background sources were electron beam gas collisions,
beam halo and cosmic events. ZEUS detector readout was based on a sophisticated
three-level trigger system developed to efficiently select ep physics events while reducing
the rate to a few Hz. A schematic diagram of the ZEUS trigger system is shown in
Fig. 3.8.
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Figure 3.8: Schematic diagram of the ZEUS trigger and data acquisition systems.

The First Level trigger (FLT) [98] was a hardware trigger, designed to reduce the
input rate below 1 kHz. Each detector component had an own FLT-dedicated part
that developed a trigger decision within 2 µs after the bunch crossing. The decisions
from the local FLTs were passed to the Global First Level Trigger (GFLT), which
decided whether to accept or reject the event, and returned this decision to the readout
components within 4.4 µs. The relevant information used at the GFLT was based on
UCAL energies (e.g. total transverse energy, missing transverse momentum), CTD
tracks (e.g. number of tracks, vertex position) and hits in the muon chambers. For the
time needed to develop final GFLT decision the component data were stored in analog
or digital pipelines.

If the event was accepted, the data was read out and transferred to the component
Second Level Trigger (SLT). The event variables reconstructed at the SLT level had
a better resolution than those at the FLT. Moreover, some new information was avail-
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able at the SLT. The most important one was the UCAL timing, which was very useful
in rejecting non–ep background events. The SLT was designed to reduce the event
rate to about 50-100Hz. Each detector component had its own SLT, which passed
calculated trigger quantities to the Global Second Level Trigger (GSLT) [100].

If the event is accepted by the GSLT, all detector components sent their complete
data to the Event Builder (EVB) [101], which combined all the data for an event into
a single record of a database table (ADAMO tables [102]). This was the data structure
used for the ZEUS data storage. Combined data were sent to the Third Level Trigger
(TLT) [103] which was based on the offline reconstruction code and selected events
according to specific physics requirements. It was designed to reduce the rate to a few
Hz.



Chapter 4

Data sample and event

reconstruction

In this chapter the data sample analysed is described, including all the Data Quality
Monitoring (DQM) controls required. The data sample collected is processed by a
reconstruction chain which extracts the basic physical quantities needed for the anal-
ysis. The scattered electron reconstruction, the extraction of the most important DIS
quantities, the measurement of the four-momenta of the particles produced in the col-
lision, the kinematical properties of the jets and the calculation of diffraction related
variables are described. The treatment of the inactive regions of the ZEUS detector
that bias the reconstruction is also explained.

4.1 Data sample used

The data analysed were collected during the years 1999 and 2000. Data coming from
both e+p and e−p collisions were used. The centre-of-mass energy was 318 GeV.

In order to obtain a reliable dataset for the following analysis all the main compo-
nents of ZEUS needed to be active and well-working. This was checked by the ZEUS
”take” routines which set a run-based veto in case a particular component of the de-
tector malfunctioned or did not function at all. The routines themselves consists of
DQM jobs performed by the component crews. The main requirement for the analy-
sis (EVtake routine) was the simultaneous correct working of the tracking chamber
(CTD), the calorimeter (CAL), the trigger and the luminosity detectors. Moreover the
overall number of FPC channels with hardware problems (most of the times related
to the high-voltage power supply) was recorded on a run-by-run basis (FPCtake rou-
tine). Runs in which the FPC was not taking data or had any hardware problems
were rejected. During the year 2000, data with the vertex position shifted with respect
to the nominal z-position were also taken: the corresponding integrated luminosity of
0.815 pb−1 was also excluded from the analysis.

The total integrated luminosity analysed is 61.3 pb−1, as summarised in Tab. 4.1.
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Year Interaction Luminosity ( pb−1) Luminosity ( pb−1)
after EVtake after EVtake+FPCtake

1999 e−p 3.2 3.2
1999 e+p 16.2 12.7
2000 e+p 45.4 45.4
Total 64.8 61.3

Table 4.1: ZEUS data samples used for the analysis divided into year and interacting
beams. The luminosity is given after the EVtake flag selection in the third column
and with the additional requirement of no veto from FPCtake in the fourth column.

4.2 Event Reconstruction

The basic informations needed to perform the analysis are the four-momenta of the
charged particles obtained from the tracks detected by the tracking system and the en-
ergy clusters in the calorimeters. From them, one can extract the kinematic properties
of the event and reconstruct all the quantities needed for the signal selection. In the
following all the reconstruction steps relevant in this analysis are described.

4.2.1 Track and energy clusters reconstruction

4.2.1.1 Tracking

Charged particles passing through the CTD cause signals on the CTD wires (hit) which
are digitised in terms of time and amplitude. This raw information is transformed
offline into the spatial positions of the hits which are then passed as input to the track
reconstruction package VCTRACK [104] for pattern recognition, track fit and vertex
fit.

The pattern recognition associates the CTD hits compatible with the same track.
First a ”seed” is set by looking for three hits in three different outer axial superlayers
lying in a common area in the XY plane. Only the outer CTD superlayers are used
because there the track density is lower and the pattern recognition is therefore easier.
Then a two-step procedure is performed starting from the seed: in the first step, a circle
in the XY plane is fitted to the space hits. Then a first rough projection in the z-
direction is provided by a z-by-Timing algorithm which exploites the signal propagation
time along the CTD wires in order to restrict the regions where to look for stereo hits,
improving further the 3D estimation of the trajectory. Once all the seeds in the outer
superlayers have been associated to a track, the track seed is extrapolated inward.
The trajectory parameters are updated with increasing precision as additional hits are
gathered. Track segments can be associated to only one track candidate.

Once the pattern recognition phase is accomplished, a fit to the hits associated to the
track candidates estimates the track parameters. The fitted trajectory of the particle
passing through the CTD is a five-parameter axial helix since the magnetic solenoidal
field is almost parallel to the z-axis. During this procedure, several corrections for bad
hits, drift velocities inhomogeneities and Coulomb scattering are applied.
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The last part of the track reconstruction is the reconstruction of the vertices, both
the primary and the secondary ones. The vertex information is used then to constrain
the tracks and another track fit like the one described above is performed.

4.2.1.2 Calorimeter clustering

The electric signals coming from the calorimeter-cell photomultipliers (PMTs) are con-
verted into energies according to calibration constants determined from calorimeter-
module test beam measurements. The signals are corrected for energy absorption by
inactive material in front of the CAL and noisy cells - i.e. cells with not-properly
working PMTs. A cell is tagged as noisy if no neighboring cell has a signal and the cell
signal amplitude is less than 80 MeV for cells in the electromagnetic section (EMC) and
140 MeV for cells in the hadronic section (HAC). The cells are then grouped into cell
islands for estimating the total energy deposit by a particle in the CAL. The cells are
merged only if their signal is above the noise threshold and if they are contiguous. The
clustering algorithm works on each CAL part (Front, Barrel, Rear) and each section
separately. Cell islands in EMC and HAC are then merged into a cone island only if
matched to a common angular cone pointing to the primary vertex.

4.2.2 Identification of the scattered electron

In any DIS analysis the correct and efficient identification of the scattered electron
is fundamental. The reconstruction of its kinematical properties is also needed for
the evaluation of many kinematical quantities used in the analysis. The scattered
electron identification was carried out by means of the Sinistra Neural Network (NN)
algorithm [105]. The NN exploits the different transverse and longitudinal development
of showers in the calorimeter coming from electrons or photons and those from hadrons.
Typically, electromagnetic particles deposit their energy mostly in the EMC and the
transverse size of the shower is smaller than that of hadrons. Sinistra uses as input
quantities related to the energies read by the PMTs of the cells belonging to a common
island and gives as output the probability that the considered island was originated
by an electron or by a photon. The NN was trained on MC events. In this analysis,
the island is considered as an electron candidate if the output probability is Pelcluster >
0.9. The probability distributions for hadronic and electromagnetic clusters given by
Sinistra running on a MC sample is shown in Fig. 4.1.

The efficiency and purity 1 as a function of the energy of the scattered electron for
a given MC sample is shown in Fig. 4.2. It may happen that more than one electron
candidate is found. In this case the one with the highest energy is considered as DIS
scattered electron.

The electron position was first reconstructed using the CAL information alone.
The CAL-estimated position is obtained from the logarithm-weighted centre-of-mass

1In this context, purity is defined as the fraction of clusters with probability higher than 0.9 that
are effectively electrons and not misidentified hadrons.
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Figure 4.1: Probability distribution for a given cluster to be an electromagnetic cluster
using the Sinistra electron finder (from [105]).

Figure 4.2: Efficiency and purity to identify the scattered lepton with Sinistra as a
function of reconstructed energy for a DIS MC generated with Q2 > 2.2 GeV 2 and
y > 0.4 (from [105]).
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energy2 of the cells belonging to the cluster according to the following formula [106]:

~r =

∑
i wi~ri∑
i wi

, (4.1)

with

wi = max(0, [W0 + ln(
Ei∑
i Ei

)]),

where the sums run over the cells belonging to the cluster and ~ri = (xi, yi, zi) is
the position of the center the i-th cell and the parameter W0 is a cut off determined
in order to reduce systematic biases. In case the CAL-estimated position are within
the acceptance of the rear part of the hadron-electron separator (RHES) or of the
small rear tracking detector (SRTD), the information of these two other detectors was
used. The granularity in the RHES and SRTD is higher than in the CAL, therefore an
improvement in the position reconstruction can be achieved if the information coming
from the former two components is used. An algorithm decides which information to
use according to the position of the electron, preferring first the SRTD, then the RHES
and only at last the rear CAL (RCAL). The resolution obtained in this way on the
electron scattering angle, for electrons with energy higher than 10 GeV detected in the
RCAL, varies from the 7 mrad using the CAL to the 2 mrad using the SRTD3, as
shown in Fig. 4.3.

4.2.3 Energy Flow Objects reconstruction

The relative energy resolution of the CAL degrades with the decrease of the energy
of the incoming particle (see Eq. (3.2)). It is therefore convenient to exploit the in-
formation of the CTD for low-momentum charged particles by means of Energy Flow
Objects (EFOs)[107, 108]. The EFO algorithm determines the energy of a particle
using either the track momentum or the island energy. EFOs are made by either a
single track with no CAL cluster matched or a cone island without matched tracks or
cone islands matched to tracks (see Fig. 4.4). In the latter case, the algorithm chooses
which information to use according to the following criteria [108]:

• in case of a 1-to-1 track-island match, the following requirements have to be
satisfied in order to prefer the CTD information to the CAL one:

– ECAL

pT
< 1.0+1.2 ·σ

(
ECAL

pT

)
; the transverse momentum of the track, pT , must

be higher than the cone island energy, ECAL, considering also the uncertainty

on this ratio, σ
(

ECAL

pT

)
.

2With this logarithmic weights, biases due to the varying cell projectivity as seen from the vertex
are reduced. Furthermore, in this way the exponential falloff of the shower energy is considered.

3The resolution here is defined as the half width at the half maximum of the distribution of the
residuals.
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Figure 4.3: Resolution on the electron scattering angle for MC events using CAL,
RHES or SRTD for reconstructing the electron position. Events with a reconstructed
vertex, 45 < E − pZ < 65 GeV and a scattered electron candidate with an energy
E ′

e > 10 GeV were used.

–
σ(pT )

pT
< σ(ECAL)

ECAL

, the resolution on the track transverse momentum must be
better than the one on the calorimeter cluster. The two resolutions are
shown in Fig. 4.5.

• for cases like 1-to-2, 2-to-1, 1-to-3 the above requirement for the track-island
match are still used with the prescription of replacing the quantities related to
cluster energy and transverse momentum with the total sum over the different
clusters or tracks.

In all cases the 4-momentum of the EFO is obtained by assuming that the particle
is a pion.

The EFO algorithm has also the task of identifying backsplashes. Backsplashes are
energy deposits at very large polar angles in the RCAL that are not caused by particles
generated in the primary interaction. Possible sources are neutral particles generated
in the front CAL (FCAL) which travel through the entire detector, particles showering
in the inactive material in front of the RCAL or noisy cells. The algorithm that tags a
cluster as backsplash uses the angle and energy of the deposit as inputs. Backsplashes
can alter significantly the E−pZ measured in an event because of their large angle and
therefore they are rejected in many analyses. In a diffractive analysis the typical values
of xBj are very small; this boosts the system backwards, making the identification of
backsplashes problematic and increasing the risks of excluding good clusters. For this
reason no backsplash subtraction was applied in this analysis. A study on the impact
of the backsplashes has been carried out. In Fig. 4.8 the distribution of the E−pZ for a
sample of diffractive DIS events is shown with and without the backsplash subtraction.
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Figure 4.4: Schematic picture of the EFOs reconstruction. The EMC cell islands 2 and
3 are matched to the HAC cell island 1 to form a cone island. The cone island and the
isolated EMC cell island 4 are matched to a track to form two separate EFOs. Other
two EFOs are made by the isolated EMC cell island 5 and the unmatched track.

One can notice how the peak of the distribution is closer to the kinematical peak at
55 GeV.

The EFOs are corrected for inactive material using the DMCO corrections [109].
Such corrections take into account the energy loss of the EFOs before the calorimeter.
They were estimated on a MC basis using Geant 3.13 [110] for simulating the detector
and are applied to both data and MC simulation. The amount of inactive material
estimated is shown in Fig. 4.6. The energy losses due to the inactive material can be
relevant for low-energies particles produced in the physics sample under study. Thus, a
study on an alternative parametrisation of the effect of the inactive material was carried
out in order to understand the impact of different choices in the detector description.
The so-called ”Vosselbeld-Ochs” (VO) corrections were estimated by requiring the
balancing in ET of the hadronic system and the DIS electron in high-Q2 DIS events
[111, 112]. The correction factors in bins of θ have the following analytical form

Corr = 1 +
A1

EA2

(4.2)

where E is the energy of the EFO and A1 and A2 are two parameters depending on
the polar angle and are different for data and MC. The advantage of such a method is
to have two independent parametrisations, one for the data and one for the MC. On
the other hand the particular functional form chosen is unfortunate for a diffractive
analysis. As seen in Fig. 4.7, for very forward angles the relatively large size of the
parameters and the functional form of Eq. (4.2), which diverges for low energies, can
give very high corrections. This causes the rejection of good diffractive events, for
which the presence of a large rapidity gap and little energy in the forward direction
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Figure 4.5: Resolution of the EMC energy for a single particle MC (full dots) and
resolution of CTD on the transverse momentum (open circles) (from [108]).

are required. In Fig. 4.8 the distributions for the events selected from the data sample
obtained with the two different sets of inactive material corrections are compared. It
can be seen that the total number of events selected using the DMCO corrections is
about 10 % higher than the one obtained using the VO corrections. The final impact on
the cross sections is smaller, anyway, due to a change also in the acceptance estimated
with the MC. It was chosen to keep the DMCO corrections because of the higher
acceptances obtained using them and the large size of the VO corrections at forward
polar angles.

The description of the inactive material and the energy scale of the calorimeter
by the MC can be checked by comparing the balancing of the transverse momentum
between the scattered electron and the hadronic system. The total momentum is
obtained by summing the momentum vectors of the scattered electron and the hadronic
system composed by all the reconstructed EFOs. The total transverse momentum,
pTOT

T , after the final selection (see Sect. 6.1) is presented in Fig. 4.9. As expected from
momentum conservation, the distribution is strongly peaked at zero. The tail at higher
values of pTOT

T is due to detector effects. However, the most important aspect is the
correct description of the data by the MC. This guarantees a good simulation of the
calorimeter energy scale and the energy losses due to the inactive material.

4.2.4 Reconstruction of DIS kinematics

The quantities Q2 and xBj, that define the kinematics of a DIS event, were reconstructed
from the particles measured in the detector. Several methods have been developed ex-
ploiting the overconstrained kinematics of the DIS process. In this analysis the Double
Angle method (DA) was used [113]. The measured quantities needed for estimating
the kinematic variables with this method are:

• Ee, the initial energy of the incoming electron;

• Ep, the initial energy of the incoming proton;
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Figure 4.6: Distribution of the inactive material in front of the CAL in units of ra-
diation lengths, X0, in the θ − φ plane as implemented in the MC simulation of the
detector (from [109]).

• θe′ , the polar angle of the scattered electron;

• δh =

Nhad∑

i=1

Ei − pZ,i, the sum of E − pZ of the whole hadronic system, i.e. all the

particles measured in the detector except the DIS electron;

• pT,h =
√

(
∑Nhad

i=1 pX,i)2 + (
∑Nhad

i=1 pY,i)2, the total transverse energy of the hadronic
system.

• γh = acos
p2

T,h
−δ2

h

p2

T,h
+δ2

h

, the polar angle towards which the whole hadronic system is

directed.

From these variables one can reconstruct Q2 and xBj with the following relations
[113]:

Q2
DA = 4 E2

e

sin γh (1 + cos θe′)

sin θe′ + sin γh − sin(θe′ + γh)
(4.3)

xBj,DA =
Ee

Ep

sin θe′ + sin γh + sin(θe′ + γh)

sin θe′ + sin γh − sin(θe′ + γh)
(4.4)

In the QPM picture, γh estimates the polar angle of the scattered quark. The value

of W is then calculated exploiting Eq. (2.13).
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Figure 4.7: Energy corrections for different θ bins applied to EFOs for data and MC
according to the VO parametrisation.

The basic feature of the DA method are that

• experimentally the directions of the particles are measured with better precision
than their energies;

• the resulting kinematics are weakly sensitive to calorimeter miscalibrations, since
angles and not energies are entering in the formula;

• the very good hermeticity of ZEUS allows a very good reconstruction of the
hadronic system. The proton-remnant particles lost in the forward region not
covered by the detector contribute only to a small fraction of the values of δh and
pT,h.

This method is the best performing over a large part of the phase space. The
resolution achieved on the kinematic variables is shown in Appendix C.

4.2.5 Jet reconstruction

Due to the confinement property of coloured particles, no isolated quark can be ob-
served in nature. The only observables are hadrons produced in the collision which
can merge into jets as described in Sect. 2.1.7. Therefore an algorithm is needed to
merge the hadrons originating from the same parton into a reconstructed jet whose
kinematic properties resemble as much as possible the ones of the primordial parton.
In this analysis the longitudinally-invariant kT algorithm was used [29, 30]. The main
features that this algorithm provides are [29]:

i) infrared (IR) and collinear safe; this allows the cross section to be calculated in
perturbation theory absorbing IR and collinear divergencies. The first divergency
is due to the emission of arbitrarly soft (i.e. small energy) particles from the
partons originated in the dijet process; the characteristics of the jets reconstructed
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Figure 4.8: Distributions of the events selected from the data sample using the DMCO
corrections without the backsplash subtraction (dots) and the VO corrections with back-
splash subtraction (squares) as corrections for the inactive material. The distributions
are shown as a function of ηMAX, the pseudorapidity of the most forward EFO recon-
structed in the event (left) and as a function of the total reconstructed E − pZ (right).
Only a subsample of the total available luminosity was used for these plots.

by the kT algorithm remains unchanged by adding any number of these soft
particles. The collinear divergency occurs when two particles are emitted in the
same direction. The kT algorithm merges the two collinear particles into one with
their combined momenta;

ii) simple to use in experimental analyses;

iii) simple to use in theoretical calculations;

iv) subject to small hadronisation corrections;

v) able to factorise initial-state collinear singularities into universal parton densities;
this means that the algorithm has to be able to conserve the QCD factorisation.

vi) not strongly affected by contamination from hadron remnants and the underlying
soft event.

This algorithm was run on the EFOs present excluding the one associated to the
DIS scattered electron. The merging procedure was the following:

1. for every pair of objects with four-momenta i and j, a closeness, dij, between
them was defined as

dij = [(ηi − ηj)
2 + (φi − φj)

2] min{p2
T,i, p

2
T,j} (4.5)

2. a closeness to the beam, di, was calculated for each four-momenta:

di = p2
T,i R (4.6)

where R is the η − φ radius of the cone enveloping the proton remnant. In this
analysis R was set to 1.
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Figure 4.9: The distribution of the total transverse momentum, pTOT
T , of the recon-

structed final state for the sample passing the entire selection chain. The simulation
produced with Rapgap (solid line) is compared to the measured data (full dots) after
having been rescaled to the area of the data distribution.

3. the next step depends on what is the smallest value among dij, di.

• if it is di, exclude the i-th object from the next iterations. Since now the
i-th object is defined as a macrojet.

• if it is dij, the two four-momenta are merged into a protojet whose four-
momentum is defined by a prescription called recombination scheme.

4. this procedure is repeated until only macrojets are remaining. Note that at the
end all the initial four-momenta are associated to macrojets by the algorithm.
Since at every iteration one four-momentum is excluded, the number of iterations
needed is equal to the initial number of four-momenta.

There are several different recombination schemes suitable to an analysis in ep
collisions. The one used here was the pT -weighted scheme. Under this prescription the
transverse momentum, pT,(ij), pseudorapidity, η(ij), and azimuthal angle, φ(ij), of the
protojet coming from the merging of the i-th and j-th particle are defined as4

pT,(ij) = pT,i + pT,j , (4.7)

η(ij) =
pT,iηi + pT,jηj

pT,(ij)
, (4.8)

φ(ij) =
pT,iφi + pT,jφj

pT,(ij)

. (4.9)

4The transverse momenta enter these formulae as scalar quantities.
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The jets are reconstructed after having boosted the final state system in a reference
frame where the photon and the proton collide head on. This reference frame can be
the Breit frame (see Sect. 2.1.3.1 ) or the γ ∗ p frame. In the latter frame, the photon-
proton centre of mass is at rest. These two different frames are equivalent except for
a boost along the proton direction. Because of a property of the algorithm, the final
outcome will be the same, i.e. the particles will be merged always in the same jets. The
choice of the γ ∗ p frame is very suited for jet analyses in DIS. In fact, the quark struck
by the γ∗ inverts its direction while the proton remnant keeps travelling in the former
direction. In this way one achieves a maximal separation between the two systems, the
hard final state and the proton remnant.

4.2.6 Reconstruction of diffractive variables

As introduced in Eq. (2.45) and (2.58), the fraction of the proton longitudinal momen-
tum carried by the diffractive exchange,xIP , and the fraction of the diffractive exchange
longitudinal momentum carried by the parton entering the hard subprocess, zIP , require
the four-momenta of partons that are not directly measured in the detector. Experi-
mentally, one uses estimators for the two variables, xobs

IP
and zobs

IP
. They are defined as

follows

xIP =
(p − p′) · q

p · q ∼ xobs
IP

=
Q2 + M2

X

Q2 + W 2
(4.10)

zIP =
q · v

q · (p − p′)
∼ zobs

IP
=

Q2 + M2
jj

Q2 + M2
X

(4.11)

where MX is the invariant mass of the diffractive system produced in the interaction.
MX was reconstructed from the EFOs with the following formula

MX =

√√√√
(

Nhad∑

i=1

Ei

)2

−
(

Nhad∑

i=1

~pi

)2

(4.12)

where the sums run over the total number of EFOs. Mjj is the invariant mass of
the two highest-ET jets. In the MC, even though the information on the parton mo-
menta is available, this definition of xobs

IP
and zobs

IP
is used such to adopt a consistent

reconstruction procedure over all the analysis.

4.2.7 Reconstruction of xγ

The variable xγ indicates the fraction of γ∗ longitudinal momentum entering the hard
subprocess. It was introduced in Eq. (2.57) with a definition that uses the four-
momenta of partons participating to the interaction. Since these four-momenta are
not directly measurable in the detector, an estimator for xγ is used in the analysis,
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xobs
γ . The definition of xobs

γ is

xobs
γ =

2∑

j=1

(Ej − pZ,j)
LAB

(E − pZ)LAB
TOT

(4.13)

In Eq. (4.13), all the quantities are measured in the laboratory reference frame.
The sum in the numerator includes the two jets with the highest transverse energy
as measured in the γ∗p frame and the total E − pZ in the denominator is calculated
considering only the hadronic system.



Chapter 5

Monte Carlo samples and

theoretical calculations

Several theoretical models and simulations were used to extract the cross sections and
to describe the data. Leading Order (LO) MC were used for the background estimation
and the correction of the data for detector effects. The Next-To-Leading Order (NLO)
calculations were obtained by modifying a program that normally could not be able
to be used in the diffractive formalism. The features of the NLO program and the
procedure carried out in order to adapt it to the diffractive case are also described
here.

5.1 Monte Carlo simulation

The LO MC used for the simulation of the signal were Rapgap and Satrap . Djan-

goh was used for the simulation of the background due to non-diffractive DIS. They all
used parton shower models in order to mimic the effect of higher-order QCD terms. All
the MC samples were produced applying a first loose jet selection in order to reduce the
amount of data generated. A comprehensive list of all the MC samples used, together
with their luminosities and the most important kinematical parameters is presented in
Table 5.1.

5.1.1 Rapgap

The Rapgap v2.08/18 [114] was used to simulate the diffractive signal. Rapgap is
based on the resolved-pomeron model. The ”H1 fit2” dPDFs [115] were used for the
samples generation. Although these dPDFs have been superseded by new and more
refined fits, in the Rapgap version used they were the most updated choice available.
The pomeron flux adopted was the same Regge-motivated functional form used in the
extraction of the dPDFs [115]:

fIP/p(xIP ) =

∫ tmin

tcut

eBIP t

x
2αIP (t)−1
IP

dt (5.1)
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The two parameters, αIP and BIP, are process-dependent quantities whose values
were set to 0.25 and 4.0 GeV−2 respectively. The value of the pomeron flux is inte-
grated over the squared four-momentum transferred at the proton vertex1, t, since the
scattered proton momentum is not measured with the Large Rapidity Gap method.
The limit tmin is the maximum kinematically allowed value of t while tcut = −5 GeV2

is a limit set by the measurement apparatus.
The parton-shower simulation was based on the matrix-element parton shower

(Meps) model [116]. Three different Rapgap samples were produced: two direct-
photon samples (differing by the quarks produced in the hard scattering, one with only
light quarks and the other with charm quarks only) and one resolved-photon sample
(with all flavours allowed to be produced in the hard scattering). In resolved process
simulation, the GRV-G-HO photon parton densities were used [73]. The three samples
were then summed taking in account different absolute normalisations for the three
cross sections as evaluated in Sect. 6.3. No sub-leading mesonic Regge trajectories
were included in the generation, thus this sample is purely diffractive.

The QED radiative effects from initial-state (ISR) and final-state (FSR) radiation
were simulated with the Heracles program [117]. The hadronisation of partons into
hadrons after the parton shower was modeled according to the Lund model [118] with
Jetset 7.4 [119]. The charm quark fragmentation function used was the Peterson
function [120] with the fragmentation free parameter set to εQ = 0.035, as usual in
heavy flavour analyses [121, 76].

5.1.2 Satrap

Another signal sample was generated with Satrap [65]. Satrap is based on the Golec-
Biernat-Wüsthoff model of diffraction (see Sect. 2.2.4). The parameters of the model
were determined from fits to the total γ∗p cross section. The Satrap generator is
interfaced to Rapgap , therefore this sample used the same programs and parameters
of Rapgap for the simulation of higher-order effects and the hadronisation. In the
implementation of this sample only qq and qqg terms are considered. More complex
contributions that would take in account any hadronic structure of the photon are not
present with the result that this MC does not include any resolved photon contribution.
Differently from the Rapgap sample, the parton shower in Satrap is based on the
Colour Dipole Model (CDM) [122].

5.1.3 Djangoh

The background coming from non-diffractive dijet DIS events was estimated with an
inclusive DIS sample simulated with the Djangoh MC v1.1 [123]. This program used
Django as event generator and Heracles for modelling the initial and final state
QED radiation. The CTEQ4D proton PDFs [124] were used in the generation. The
QCD cascade was simulated with the Colour Dipole Model as implemented in Ariadne

[125]. More informations about the generation of the sample used can be found in the
Ref. [126].

1Notice that t is defined as a negative number.
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Sample Luminosity
( pb−1)

Kinematic range Notes

Rapgap -LQ 842.592 Q2 > 2 GeV2, y > 0.001 Direct-photon, light quarks
only

E∗

T,jj > 2.5 GeV, Resolved pomeron model
−5.0 < η∗

jj < 3.0 H1 fit2 dPDFs

Rapgap -CC 793.586 Q2 > 2 GeV2, y > 0.001 Direct-photon, charm quark
only

E∗

T,jj > 2.5 GeV, Resolved pomeron model
−5.0 < η∗

jj < 3.0 H1 fit2 dPDFs

Rapgap -RES 1913.0 Q2 > 2 GeV2, y > 0.001 Resolved-photon
E∗

T,jj > 2.5 GeV, GRV-GO-HO photon PDFs
−5.0 < η∗

jj < 3.0 Resolved pomeron model
H1 fit2 dPDFs

Satrap 164.179 Q2 > 2 GeV2, y > 0.001 Saturation model
E∗

T,jj > 2.5 GeV,
−5.0 < η∗

jj < 3.0

Djangoh 13.117 Q2 > 3 GeV2 CTEQ4D proton PDFs

Table 5.1: List of the MCs used in the presented analysis. The first column indicates
the sample, the second column the generated luminosity of the sample, the third the
kinematical range where the events were produced and the fourth the most relevant
aspects of the samples.

5.1.4 Detector simulation

After being generated, the MC events were passed to the detector simulation chain.
The program Mozart was used to simulate the ZEUS detector. Mozart implemented
by means of the Geant 3.13 package the ZEUS geometry as well as the the response
of the detector components to the particles passage. Geant is a multi-purpose MC
whose task is to simulate all the physics processes relevant to describe the energy losses
and the multiple scattering of the particles passing through the detector. The trigger
simulation was carried out with the program Zgana which uses the output coming
from Mozart. After the trigger simulation the physics quantities were reconstructed
by exactly the same code used for the data.

5.2 NLO calculation

As introduced in Sect. 2.2.7, the validity of the QCD factorisation theorem in diffraction
can be checked by comparing the measured cross section for production of diffractive
dijets with the Next-to-Leading Order (NLO) calculation using the diffractive PDFs
(dPDFs) extracted from the inclusive data. One of the main parts of the analysis
presented in this thesis was therefore related to the calculation of the NLO prediction.
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The program used for the calculation at the order α2
S was Disent [127]. Disent is a

program able to perform calculation of jet production in DIS ep collisions both at order
αS and α2

S. This program provides predictions only at the level of partons emerging
from the hard interaction. Disent works natively only in the non-diffractive case. On
the other hand the model most commonly used to describe diffractive processes is the
resolved pomeron model that relies on the proton vertex factorisation (see Sect. 2.2.2).
As a consequence the dPDFs are factorised into a pomeron (IP ) flux (depending only on
xIPand t)2 and IP -PDFs (depending on Q2 and zIP , the fraction of the IP longitudinal
four-momentum taken by the parton entering the hard scattering subprocess). In
order to obtain the NLO cross section for diffractive ep interactions, the program
must calculate the NLO cross section for e-IP collision, multiply it for the IP -flux and
integrate over the xIP and t kinematical range.

The Disent program was modified such to carry out the calculation in the following
way:

1. Divide the xIP range into many intervals. In the calculation presented here, 150
different values of xIP were considered, evenly spaced between xIP,min = 0.0025 and
xIP,max = 0.03.

2. For each of these values, scale down the proton beam energy by a factor xIP .

3. Replace the proton PDFs with the IP -PDFs.

4. Calculate the NLO cross section with Disent.

5. Multiply it by the t-integrated pomeron flux calculated separately.

6. At this stage, the cross section given by the program is the NLO prediction
for diffractive ep DIS at fixed xIP . In order to have the cross section over the
whole xIP range, the steps above are repeated for all the xIP values and the cross
sections at different xIP are summed. For a sufficiently fine xIPbinning this step
approximates an integration over xIP .

The calculation of the hard-process matrix element was performed in the MS
scheme with five active flavours. Since only a limited number of orders are consid-
ered in the perturbative expansion of the matrix element, a scale dependence in the
prediction is still present. The renormalisation scale, µR, was set equal to E∗

T,j1, where
E∗

T,j1 is the transverse energy of the highest transverse energy jet in the event (the
leading jet) as measured in the γ∗p centre-of-mass frame. This choice was justified by
the fact that the leading-jet transverse energy was the higher (thus dominant) scale for
the most of the events. The factorisation scale was set to Q2 3. The evolution of the
strong coupling constant with the renormalisation scale was calculated with the QCD-

num program [128]. QCDnum wants as input the value of αS at a scale µR = MZ ;
the value set was αS(MZ) = 0.118.

2In all the available dPDF sets, the parametrisation of the IP -flux is given after integrating over
the kinematically allowed range in t, such that it depends only on xIP .

3A more natural choice for the factorisation scale would have been E∗

T,j1 but this could not be done
because of limitations in the Disent program.
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The accuracy on the dPDFs fits is not at the level of the proton ones, due to
limited precision of the measurement. Furthermore many different data sets can be
used. These data sets are not always compatible over the entire kinematical range. For
all these reasons the dPDFs parametrisation can give quite different results in certain
kinematical regions. This can be seen in Fig. 5.1 where several dPDFs are compared
as function of the reconstructed zIP , zobs

IP
, in different bins of Q2. The calculation was

repeated with different sets of dPDFs in order to discriminate among the dPDFs the
ones providing a better description of the dijets data, given the validity of the QCD
factorisation theorem for diffraction.

The following dPDFs were used:

• the ZEUS LPS+charm [53] - the result of an NLO DGLAP QCD fit to the
inclusive diffractive structure functions measured by the ZEUS experiment with
the leading proton spectrometer (LPS). In order to better constrain the dPDFs,
measurements of D∗ production cross section in diffractive DIS [75] were also
included. The fit was restricted to the region xIP < 0.01;

• the H1 2006 dPDFs [60] - the result of an NLO DGLAP QCD fit to a sample
of inclusive diffractive structure functions measured by the H1 Collaboration.
Two different parameterisations are available (Fit A and B) which differ in the
parametrisation of the gluon distribution at the starting evolution scale. The
data used as input to the fit were restricted to the region Q2 > 8.5 GeV2, zobs

IP
<

0.8. Since the H1 measurements were not corrected for the contribution due to
events where the proton dissociated into a low-mass state (proton dissociation
background), in the comparison with the data the calculations were renormalised
by a factor 0.87 [60];

• the Groys-Levy-Proskuryakov (GLP) dPDFs [130] - the result of an NLO DGLAP
QCD fit to a sample of inclusive diffractive structure functions measured by the
ZEUS Collaboration with the MX method [63]. The data used in this fit were not
corrected for proton dissociation background, therefore the obtained predicitons
were scaled by a factor 0.70 ± 0.03 [63];

• the Martin-Ryskin-Watt 2006 (MRW 2006) dPDFs [131] - the result of a fit to
the same data set as for the H1 2006 fit. Regge factorisation is assumed only
at the input scale. The dPDFs are then evolved with an inhomogeneous evolu-
tion equation analogous to that for the photon PDFs. The inhomogeneous term
accounts for the perturbative Pomeron-to-parton splitting. The inhomogenous
terms in the evolution equation are additional to the usual NLO DGLAP terms
and account for the perturbative Pomeron-to-parton splitting.

The only theoretical uncertainty considered was that coming from the limited order
of the NLO calculations. The effect of the missing higher perturbative orders was
estimated by varying µR by factors of 0.5 and 2. Uncertainties of more than 20% were
obtained. Other possible sources of uncertainty not considered were the ones related
to the dPDFs fits and the absence in Disent of resolved-photon contributions that
can affect the prediction at low values of xγ .
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Figure 5.1: The zobs
IP

dependence of the IP -PDFs for different values of Q2. The curves
were produced at fixed xIP = 0.003. The singlet (i.e. quark) and gluon contributions
are shown separately. The uncertainties on the parametrisations are not shown.
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5.2.1 Hadronisation corrections

The predictions given by the NLO program needed to be quoted at the hadron level
(defined as the level of hadrons with a lifetime τ > 10 ps) in order to be compared to
the measured cross section. The parton level differential cross section were corrected
bin-by-bin to the hadron level by means of factors evaluated with Rapgap . These
hadronisation corrections take in account the effects of the hadronisation of the partons.
The hadronisation correction for a given bin i of the differential cross section, C i

had, is
calculated doing the ratio of the hadron level cross section given by the MC, σi

MC,HL,
over the parton level cross section given by the MC, σi

MC,PL:

Ci
had =

σi
MC,HL

σi
MC,PL

. (5.2)

In the evaluation of the hadronisation corrections, the different Rapgap contributions
were summed up without the different normalisation weights (see Sect. 6.3). This was
chosen for consistency with the NLO calculation where the different contributions are
summed without reweighting.

The hadronisation corrections obtained are shown in Fig. 5.2 as a function of many
variables. It can be noticed the strong rise at high zobs

IP
. This effect is a consequence of

the interplay of the heavy mass of the charm quark with the low invariant mass of the
hadronic system produced in the interaction. The heavy charm quark mass saturates
the small phase space available such that the hadronisation model produces only two
D mesons. The two exclusively produced mesons are then identified as jets by the
kT algorithm. Therefore the event that could have been generated with an arbitrary
zIP is reconstructed, after the hadronisation, with zobs

IP
∼ 1. It can be noticed in the

same figure that, if one doesn’t consider the heavy quark contribution in Rapgap,
Chad is significantly smaller at high zobs

IP
. Since the cross section at high zobs

IP
is small,

the large correction there does not affect the corrections on the other variables.
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Figure 5.2: The hadronisation correction, Chad, calculated with the Rapgap MC. The
correction factors are shown as a function of (a) Q2, (b) W , (c) xIP , (d) β, (e) E∗

T,jj,
(f) η∗

jj, (g) MX, (h) zobs
IP

, (i) xobs
γ . The full circles show the correction factors applied

to the parton level NLO predictions obtained with Disent. The open squares show the
amount of the correction if one excludes the direct-photon charmed quark contribution
in Rapgap.



Chapter 6

Signal selection and background

rejection

In order to extract a clean sample of diffractive dijet events in DIS, the data described
in Sect. 4 were subject to a two-stage selection. First the data were filtered online
by the ZEUS trigger. Two different trigger configurations were used to select the
data presented here. The events passing this first online filter were then passed to
an offline analysis program that applied the final selection. The selection asked for
a well-reconstructed scattered electron, at least two jets with a minimum transverse
energy emitted in a central pseudorapidity region of the detector and a rapidity gap
in the event. The MC was subject to the same analysis chain. A comparison of
the distributions coming from real data and MC are also shown here. The chapter
describes also the strategies pursued in order to reject the main background sources
for this analysis.

6.1 Signal selection

6.1.1 Online selection

Given the limited computing resources and bandwidth of the data transfer, it is im-
possible to store all the data coming from all the collisions. In order to reject events
that did not have the characteristics of the physical signal desired, the data passed
a three-stage trigger selection before being stored on tape and being analysed offline.
At the first level of the trigger (FLT), some general requirements for a DIS selection
were applied. For example, an isolated electromagnetic cluster in the calorimeter or
the total electromagnetic energy above a threshold were the typical requirements, of-
ten in coincidence with a rough requirement on the quality of the tracks measured by
the tracking chamber or a signal from the SRTD. Only the events passing the FLT
were analised by the second level trigger (SLT). At this stage additional, more refined
requirements were applied. The event was kept only if

• δSLT > 30 GeV, where δSLT is the total E − pZ measured at the SLT;

• one of the following was satisfied:
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– the electromagnetic energy in the rear (RCAL) or the barrel calorimeter
(BCAL) was greater than 2.5 GeV

– the electromagnetic or hadronic energy in the front calorimeter (FCAL) was
greater than 10 GeV.

It is noted that until now no requirements on the diffractive nature of an event were
applied. These were implemented at the third level trigger (TLT). At the TLT the
requirements on the event were the following:

• the event had to pass the SLT requirements described above;

• δTLT > 30 GeV, where δTLT is the total E − pZ measured online at the TLT;

• a first rough but fast neural network algorithm was run in order to find a possible
scattered electron. At least one candidate had to be found and its energy had to
be higher than 4 GeV;

• if the same scattered electron candidate was found by the TLT in the RCAL, it
had to be detected outside a rectangular region centered around the beam pipe
(trigger box cut). The size of this box was 12 × 6 cm2 (see Fig. 6.2);

• EFPC,TLT < 20 GeV, where EFPC,TLT is the energy measured in the forward plug
calorimeter online by the TLT. This acted as a diffractive rapidity gap selection
since it was essentially a veto on the hadronic activity in the forward region of
the detector.

The TLT logic described above (TLT-DIS06) was the one valid for the part of the
data taking period when the positron beam was used (∼ 61 pb−1). When electrons
were collided against protons (∼ 3 pb−1), the TLT logic was different, being a purely
low-Q2 DIS selection with Q2

TLT > 2 GeV2. The FPC requirement was not applied.

6.1.2 DIS selection

A pure DIS sample was selected applying the following requirements on the events that
passed the trigger selection:

• the Sinistra neural network algorithm had to find at least one candidate with
probability higher than 0.9. If the electron was in the CTD geometric acceptance,
a track was required to be matched to the electromagnetic cluster. The Sinistra

probability is shown in Fig. 6.1 for events both before and after passing the DIS
selection;

• the electron found in the RCAL had to lie outside a fiducial area centred around
the beam pipe. The excluded area (H -shape box) was defined as follows [132]:

– box cut, −14 < X < 12 cm and −10 < Y < 10 cm;

– cooling pipes, four regions defined as

∗ −16 < X < −7 cm and 4 < Y < 12 cm;
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Figure 6.1: Sinistra probability for data events before (dashed line) and after (solid
line) the DIS selection.

∗ 3 < X < 12 cm and 4 < Y < 12 cm;

∗ −16 < X < −7 cm and −12 < Y < −4 cm;

∗ 3 < X < 12 cm and −12 < Y < −4 cm.

This cut rejects events where the electron was detected in regions of the RCAL
with significant amount of inactive material difficult to be accurately described
in the MC. This would affect the reconstruction of the electron four-momentum
and consequently bias the measurement of the DIS kinematics. In Fig. 6.2 are
shown the positions of the impact point on RCAL of the reconstructed scattered
electrons for events passing the DIS selection. The profile of the H-shape box is
clearly visible;

• the energy of the scattered electron had to be greater than 10 GeV. This selection
guaranteed that the efficiency of the Sinistra electron finder was sufficiently high
(see Fig. 4.2);

• the Z-position of the vertex of the event had to be in the range |ZVTX| < 50 cm.
This cut excluded events not originated from ep collisions, like events coming
from beam-gas interactions.

After having applied these selection cuts, kinematic cuts on the virtuality of the
γ∗, Q2, and the γ∗p centre-of-mass energy, W , were applied. In this way the precise
kinematic region where the ZEUS detector has a good sensitivity is defined. The cuts
chosen were:

• 5 < Q2
DA < 100 GeV2;

• 100 < WDA < 250 GeV;
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Figure 6.2: The position of the detected scattered electron on the RCAL surface. The
red solid line represents the position and size of the box used at the TLT for the online
selection.

where the index DA indicates that the two variables were reconstructed with the
Double Angle method (see Sect. 4.2.4).

6.1.3 Jet selection

Jets were reconstructed at the detector level, i.e. from the measured four-momenta of
the energy flow objects (EFOs), with the kT algorithm described in Sect. 4.2.5. In the
case of the MC samples, also the four-momenta of the particles before the hadronisation
simulation and before the detector simulation are also used: we will refer to these
jets as parton-level and hadron-level jets, respectively. In all the cases, the jets were
reconstructed after having boosted the input four-momenta from the laboratory frame
to the γ∗p rest frame. The input four-momenta were treated as massless. The jet-
related quantities evaluated in this reference frame will be labeled with a star. The
reconstructed jets are then boosted back to the laboratory frame (jet quantities in this
frame are labeled with ”lab”). The jets are ordered in their transverse energy in the
γ∗p rest frame, E∗

T,jet, the first jet in the ordering being called the leading jet.

A clean dijet sample is obtained by imposing specific requirements on the jets
reconstructed from the four-momenta. Before applying the cuts, the four-momenta of
the jets were further corrected on a MC basis (see Appendix B). Only events with jets
of a sufficiently high transverse energy to provide a hard scale needed for perturbative
QCD calculation are selected. In order to reconstruct the jet properties in a precise
way, selections on their directions were applied. The requirements on the jets were the
following:
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• At least two jets with

– E∗

T,jet > 4 GeV;

– −2.0 < ηLAB
jet < 2.0; this cut was applied in order to ensure a good contain-

ment in the CAL acceptance of the EFOs belonging to the jet;

– −3.5 < η∗

jet < 0.0, that corresponds for the majority of the jets to the
pseudorapidity range in the laboratory frame set by the previous cut, as
visible in Fig. 6.3;

• E∗

T,j1 > 5 GeV, where E∗

T is the transverse energy in the γ∗p rest frame of the
leading jet.

6.1.4 Diffractive selection

Diffractive events are characterised by low values of xIP and by the presence of a LRG
(see Sect. 2.2). The following selection criteria were applied[133]:

• EFPC < 1 GeV, where EFPC is the total energy in the FPC. The requirement of
activity compatible with the noise level in the angular region covered by the FPC
is equivalent to a rapidity-gap selection;

• xobs
IP

< 0.03 where xobs
IP

is the reconstructed value of xIP (see Sect. 4.2.6). The cut
on xobs

IP
reduces the contribution of Reggeon exchange and other non-diffractive

background.

The contamination of the non-diffractive background as a function of the applied
diffractive selection cuts is shown in Fig. 6.4, through the distribution of ηMAX, where
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Selection Nr. Events after selection

Trigger 13764440
DIS cuts 147776
DIS+JETS cuts 37872
ALL cuts 5540

Table 6.1: Number of events remaining after different stages of the signal selection.

ηMAX is the pseudorapidity in the laboratory frame of the most forward EFO with
energy higher than 400 MeV. Distributions of ηMAX are shown before and after applying
cuts on EFPC and xobs

IP
. The disagreement between the measured and the simulated

distributions is the reason for not applying any explicit requirement on ηMAX, as was
done in previous analyses [57, 75, 76]. After the EFPC and xobs

IP
cuts, the non-diffractive

background from Djangoh was estimated to be 2.4% of the total selected events and
neglected in further analysis.

6.2 Trigger efficiency

It is important to evaluate reliably the fraction of events that have been lost because the
trigger judged them wrongly to be background, although having all the characteristics
for entering the physical signal sample selected in the way described above.

The definition of trigger efficiency, εTRIGG, is

εTRIGG =
NTRIGG

SEL

NSEL
(6.1)

where NSEL is the number of events in the starting sample that, independently of
the trigger decision, pass the signal selection and NTRIGG

SEL is the subsample of NSEL

that passes also the three-level online filter1. In case of losses due to the trigger, one
can correct offline the measured distributions according to the trigger efficiency. The
absence of an unbiased (i.e. non-triggered) and high-statistics sample to be used as
reference made the estimation of the trigger efficiency only from data samples problem-
atic. The strategy used was to evaluate the efficiency of the trigger slot not in absolute
way but relatively to another, more inclusive, filter. The inclusive low-Q2 trigger slot,
TLT-SPP15, was used as reference for this task. This slot has not only the advantage
of being very inclusive and of having high statistics but also to be very well known.
Its efficency is very high as it was tested by many previous DIS analyses [63]. The
Eq.(6.1) was therefore modified as the following

εSPP15
TRIGG =

NTRIGG
SEL&&SPP15

NSEL&&SPP15
(6.2)

where now the efficency of the diffractive trigger, εSPP15
TRIGG, is quoted relatively to

the efficiency of the TLT-SPP15 slot and the events must not only pass the physics

1The trigger inefficiency is defined as 1 − εTRIGG.
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selection but being also accepted by the reference trigger filter. In Fig. 6.5 the value
of εSPP15

TRIGG as a function of Q2
DA is shown. A full efficiency of the diffractive trigger

compared to the inclusive one is observed over the entire range.

In order to estimate the absolute efficiency of the trigger as defined in Eq. (6.1), a
MC study was performed with the RAPGAP sample available. The value of εTRIGG as
a function of Q2

DA and E∗

T,j1 is shown in Fig. 6.6. The efficiency is always higher than
98 %. Given these results indicating a minimal loss of good physics events because of
the trigger, it was decided to neglect in the next steps of the analysis any bias effect
due to it.

6.3 Monte Carlo reweighting

The Rapgap sample consists of three different subsamples corresponding to different
physics processes (see Sect. 5.1.1): the direct-photon light-quark sample (LQ), the
direct-photon charm-quark sample (CC) and a resolved-photon sample (RES). In order
to have a complete MC sample, the three Rapgap samples had to be summed up.
This cannot be done in a straight forward way, because the relative contribution of
direct and resolved processes to the total cross section is a priori unknown in Leading-
Order calculations. The absolute normalisations for the different Rapgap samples were
evaluated from a fit to the data. As mentioned in Sect. 2.2.7, the variable most sensitive
to the separation between direct and resolved processes is xγ. The experimentally
observable estimator of xγ is xobs

γ , introduced in Sect. 4.2.7. The data distribution as
a function of xobs

γ after all the selection cuts is shown in Fig. 6.7. The direct-photon
events concentrate at high xobs

γ , while the low-xobs
γ part of the spectrum is composed

of resolved-photon events and badly reconstructed direct-photon events. The three
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Parameter Value from the fit
αLQ 0.89
αCC 0.89
αRES 2.99

Table 6.2: The normalisation parameters of the single Rapgap subsamples. These
parameters are used when the subsamples are summed together in order to obtain the
total Rapgap simulation.
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Rapgap samples are summed up with different normalisations

NTOT
RAP = αLQNLQ

RAP + αCCNCC
RAP + αRESN

RES
RAP (6.3)

The three normalisation coefficients are estimated such that the total-Rapgap xobs
γ

distribution fits best the data one. The fit was performed via a χ2 minimisation. The fit
was performed over the entire xobs

γ range after having normalised all the Rapgap sam-
ples to the luminosity of the data.

Fig. 6.7 also shows the Rapgap xobs
γ -distributions obtained summing the different

MC contributions with and without the reweighting coefficients. The description of
the data by Rapgap is improved. No significant distortion of the shapes was observed
in the distributions of the other variables. In the following sections, we will refer to
the total Rapgap sample as the sample given by the sum of the three contributions
as in Eq. (6.3) using the coefficients coming from the fit. The latter are summarised in
Table 6.2. The same thing could not be done with Satrap because it does not include
any resolved-photon contribution in it (see Sect. 5.1.2).
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6.4 Control distributions

After all cuts, 5540 events of the originary data sample were selected. The number
of events passing the different stages of the selection is summarised in Table 6.1. The
distributions of the data after all the selection cuts are presented in Figs. 6.8-6.12. In
the same plots the same MC distributions are compared to the data in order to test
the level of the description of the simulation. The signal MCs, i.e. the Satrap and
the total Rapgap samples, were renormalised to the total entries in the data. The
background from non-diffractive DIS dijets as estimated with Djangoh is also shown
in the plots.

The control plots present the comparison between data and MC first in the global
variables (Fig. 6.8), then for jet-related variables (Fig. 6.9 and 6.10), for diffraction-
related variables (Fig. 6.11) and at the end for other quantities more linked to the
detector performances (Fig. 6.12).

The general level of the agreement between data and MC is good. The distribution
of the main kinematical variables (Q2, W , jet variables) are fairly described by both
the MCs. The phase space regions at low and high transverse energies of the jets is
better described by Rapgap , as it can be seen in Figs. 6.9 and 6.10. At medium
values of the transverse energy of the jets, the two MC predict similar distributions.
The Satrap MC describes better the data distribution as a function of zobs

IP
, in par-

ticular for zobs
IP

> 0.7 (see Fig. 6.11c). The absence of a resolved-photon contribution
in Satrap affects its description of xobs

γ , as it can be seen in Fig. 6.11d. Some dis-
crepancies between the MC and the data distributions can be observed. The main one
regards the description of the energy flow in the MC. In Fig. 6.8d it can be noted that
the spectrum of the mass of the diffractive system produced in the interaction has less
events at low masses while the intermediate and high masses regions are reasonably
well described. The same effect can be seen in Fig. 6.12d where the number of EFOs
in the event predicted by the MC is slightly shifted towards higher values compared to
the data distribution. Consequently, the spectrum of beta (which is inversely related
to MX) is shifted to higher values in the MC compared to the data. However, the
difference between MC and data was judged to be small and no further studies on it
were carried out. In Fig. 6.12a, it can be noted that there is a remarkable difference
between both the MCs and the data in the distribution as a function of the energy
deposited in the FPC, EFPC. This variable is very difficult to be simulated because
involves non-perturbative processes like the fragmentation of the dissociated scattered
proton. Anyway, the cut on EFPC is applied at EFPC < 1 GeV, thus far from the region
badly described at 0.1 < EFPC < 0.4. Therefore this discrepancy was judged to be not
important for the analysis and neglected.

6.5 Proton dissociation background

The process where the outgoing proton does not emerge intact from the diffractive
interaction is called proton dissociation or double dissociation (see Fig. 6.13). The
hadronic system coming from the dissociated proton, Y , has a low invariant mass, MY ,
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Figure 6.8: The control distributions as a function of (a) Q2
DA, the virtuality of the ex-

changed γ∗ measured with the Double Angle method, (b) WDA the total energy available
in the γ∗p centre-of-mass system, (c) the total E − pZ and (d) MX, the invariant mass
of the diffractive system. The data entries are shown as dots, the statistical errors are
shown as the error bars. The data are compared to the signal LO MC, Rapgap (solid
red line) and Satrap (dashed blue line). The contribution from resolved-photon pro-
cesses estimated with Rapgap is shown as a hatched area. The non-diffractive DIS
background estimated with Djangoh is indicated by the dark solid area.
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Figure 6.9: The control distributions as a function of (a) E∗

T,jj, the transverse energy of
both the two jets with the highest transverse energy as measured in the γ∗p rest frame,
(b) η∗

jj, the pseudorapidity of both the two jets with the highest transverse energy as
measured in the γ∗p rest frame, (c)E∗

T,j1, the transverse energy of the highest transverse
energy jet as measured in the γ∗p rest frame and (d) E∗

T,j2, the transverse energy of the
next-to-highest transverse energy jet as measured in the γ∗p rest frame. Other details
as in the caption of Fig. 6.8.
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Figure 6.10: The control distributions as a function of (a) E∗

T,jet, the transverse energy
of all the jets in the event as measured in the γ∗p rest frame, (b) η∗

jet, the pseudorapidity
of all the jets in the event as measured in the γ∗p rest frame, (c)η∗

j1, the pseudorapidity
of the highest transverse energy jet as measured in the γ∗p rest frame and (d) ηLAB

j1 ,
the pseudorapidity of the highest transverse energy jet as measured in the laboratory
frame. Other details as in the caption of Fig. 6.8.
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Figure 6.11: The control distributions as a function of (a) Log10x
obs
IP

, (b) Log10βIP, (c)
zobs

IP
and (d) xobs

γ . Other details as in the caption of Fig. 6.8.
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Figure 6.12: The control distributions as a function of (a) EFPC, the energy measured
in the FPC (b) Ee′ , the energy of the scattered electron (c) ZVTX, the position along the
Z−axis of the primary vertex and (d) the number of EFOs in the event. Other details
as in the caption of Fig. 6.8.
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typically below 2 GeV. In this cases a LRG can be still observed. However, the proton-
dissociative events are considered background and rejected from the signal sample,
because the proton dissociation introduces a significant complication to the theoretical
description of the event since the resolved-pomeron model (see Sect. 2.2.2) is no longer
valid.

The experimental detection of this subset of events is challenging because, for suf-
ficiently low values of MY , the resonant system escapes in the forward aperture of the
detector and one cannot guess anything about the final state proton from the central
detector only. Vague constraints on the values of MY can be set on kinematical and ge-
ometric acceptance basis. The FPC energy selection applied, EFPC < 1 GeV, restricts
the values of the resonant system mass to approximately MY . 2.3 GeV. For MY be-
low that value, a statistical subtraction from the selected signal sample is needed. The
amount of proton dissociation background, fpdiss, was estimated by previous analyses
[75, 79] to be

fpdiss = (16 ± 4)%

This value was estimated with a MC study using the Epsoft MC [134]. A more
detailed description of the procedure can be found in Ref. [135]. The proton dissoci-
ation background could be estimated also through an experimental method by means
of the ZEUS Leading Proton Spectrometer (LPS) [53]. Since the LPS tags diffractive
events with only intact protons by construction, the amount of events with a disso-
ciated proton can be obtained by comparing directly the LPS and the LRG inclusive
measurements. By doing the ratio of the cross sections one obtains a value of fpdiss

fLPS
pdiss = (19 ± 10)%

The latter study showed that the proton dissociation background is indipendent of
the other kinematical variables, as expected in the resolved pomeron model. Therefore
the proton dissociation background was subtracted from the cross section independent
of any variable. The compatibility between the two results obtained with the MC
simulation and the LPS measurement and the smaller uncertainty of the former were
the reasons for choosing the value of (16 ± 4)% as estimate of fpdiss.
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Figure 6.13: Schematic representation of proton dissociation in presence of diffractive
DIS dijet production.



Chapter 7

Cross section measurement and

discussion

This chapter presents the main results of the analysis: the extraction of the differential
cross sections and the comparison of the Leading-Order (LO) and Next-To-Leading
Order (NLO) theoretical predictions and the experimental measurements. The double
differential cross sections, that can be used for fits to the dPDFs, are also shown. The
corrections for detector acceptance and QED radiation are essential for an unbiased
measurement of the physical process under study. The procedures for evaluating and
implementing these corrections are described at the beginning of the chapter together
with the error estimation.

7.1 Cross section extraction

The cross section for dijet production in diffractive DIS ep collision is measured at the
hadron level, defined as the level of hadrons with a lifetime τ > 10 ps. The detector level
measurement was transported to the hadron level with correction factors that estimated
the detector acceptance and efficiency. The measured cross section is corrected for
QED effects and quoted at the QED Born level. The latter two corrections were both
estimated on a MC basis as described in Sect. 7.1.1 and Sect. 7.1.2, respectively. The
kinematic region where the cross section was measured is summarised in Table 7.1.

Kinematic region

5 < Q2 < 100 GeV2

100 < W < 250 GeV
E∗

T,j1 > 5.0 GeV, −3.5 < η∗

j1 < 0.0
E∗

T,j2 > 4.0 GeV, −3.5 < η∗

j2 < 0.0
xIP < 0.03

Table 7.1: The kinematic region where the cross section was measured.
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The values of the differential cross sections are averaged over the bin in which they
are presented. For any variable κ, the cross section was determined as

dσ

dκ
= C

ND(1 − fpdiss)

L∆κ
, (7.1)

where ND is the number of data events counted in a bin, C includes the effects
of the acceptance and the QED correction factors as determined from MC, L is the
integrated luminosity and ∆κ is the bin width. The main criteria for the choice of
the bin width were: the resolution on the variable itself that limits the minimum bin
size; the minimisation of migrations of events between different bins and the statistical
significance of the measurement, both suggesting a large bin size; a high number of
bins (i.e. a small bin size) in order to study in more detail the characteristics of the
process.

The differential cross section for dijet production in diffractive DIS ep collision is
presented as a function of the following variables:

• Q2, the virtuality of γ∗, the photon exchanged between the colliding e and p. This
variable defines the hard scale of a DIS interaction and allows the perturbative
QCD (pQCD) description of the process;

• W , the energy of the γ∗p centre of mass. It defines the total energy available in
the hard interaction;

• xobs
IP

, the reconstructed value of xIP , as defined in Sect. 4.2.6. In the resolved
pomeron model, it represents the fraction of the initial p momentum taken by
the diffractive exchange, IP , probed by the γ∗. Therefore it is a variable that
characterises the diffractive properties of the process;

• β, introduced in Sect. 2.2.3 that is connected to xBj, the x-Bjorken variable
commonly used in standard DIS (see Sect. 2.1.3). The relation between β and
xBj is xBj = xIP · β;

• E∗

T,jj, the transverse energies of the two jets with the highest transverse energy
as measured in the γ∗p rest frame. Thus, in the Eq. (7.1) it contributes with two
entries per event1. The transverse energy of the jets provides an additional hard
scale in the process that often is higher than Q2, therefore the pQCD theory has
a special sensitivity to this variable.

• η∗

jj, the pseudorapidities of the two jets with the highest transverse energy as
measured in the γ∗p rest frame. This is another jet variable very useful for
testing the quality of the pQCD prediction, given also that the jet direction is
experimentally measured with good precision;

1The use of E∗

T,jj instead the single transverse energies of the jets was dictated by the convergence
of the NLO calculation that is sensitive to the small difference in the E∗

T requirement between the
first and the second jet. The definition of a more inclusive variable helped to cancel out divergences
in the calculation.
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• MX, the invariant mass of the diffractive system produced in the γ∗IP interaction;

• zobs
IP

, the estimator of zIP (see Sect. 4.2.6). The latter is the fraction of the IP
momentum taken by the parton entering the hard sub-process. This is a very
important variable because it is the one sensitive to the dPDFs (in a fashion
similar to xBj for inclusive DIS analyses). The quality of different dPDF fits can
be studied mainly as a function of this variable. The cross section as a function
of this variable can also be used as input to QCD fits for the dPDFs themselves;

• xobs
γ , the estimator of xγ (see Sect. 4.2.7). The variable xγ is the fraction of γ∗

longitudinal momentum entering the hard-subprocess. Although for DIS pro-
cesses one expects only events with xobs

γ = 1 (direct-photon processes), in the
low-Q2 range studied in this analysis a contribution from xobs

γ < 1 (coming from
resolved-photon processes and badly reconstructed direct-photon events) to the
total cross section is still present. The most accepted models of QCD factori-
sation breaking in diffraction predict a suppression of the cross section only for
the resolved-photon processes. In the diffractive photoproduction of dijets, the
factorisation breaking is expected to exhibit a dependence on xobs

γ . It would
therefore be interesting to measure the cross section as a function of the same
quantity in DIS.

7.1.1 Acceptance calculation

Detector effects (like geometric acceptance, finite resolution, detection efficiency) bias
the measurement such that the detector-level cross section can be significantly different
to the hadron-level one. The size of these distortions is estimated on a MC basis and
the detector-level measurement is corrected for it with the bin-by-bin method. The
correction factors, Cf , for the i-th bin of any variable are defined as2

Cf,i =
NMC

HAD,i

NMC
DET,i

(7.2)

where NMC
HAD,i and NMC

DET,i indicate the number of events predicted by the MC in the
i-th bin at the hadron level and the detector level, respectively. In the Rapgap case,
the total number of events was calculated by summing the contributions coming from
the three subsamples after having renormalised them with the weights evaluated in
Sect. 6.3.

The bin-by-bin method is a reliable way to estimate the Cf only if the MC describes
the data distributions at the detector level. In fact, only in this case one can have a
reasonable trust in the simulation of the detector implemented in the MC which is
the base for an unbiased Cf determination. As it was presented in Sect. 6.4, the
description of the MC was considered to be good for both Rapgap and Satrap .
Since the detector simulation was exactly the same for both, any difference originated
only by the different physical model used in the two MCs. None of the latter was

2Another variable with a physical meaning equivalent to Cf is the acceptance, α, defined as the
inverse of Cf .
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found to be significantly better. Because of this, it was decided to use for the cross
section extraction the arithmetic mean of the two Cf . Fig. 7.1 shows the values of Cf

for all the bins of all the variables considered for the differential cross sections. The Cf

coming from the two MCs are quite similar. A typical value of Cf ∼ 1.25 is observed
with some trends as a function of variables like E∗

T,jjand zIP .
In order to have a quantitative estimation of the detector effects, the stability and

the purity are also presented. The stability, s, of any i-th bin is defined as

s =
NMC

HAD&&DET

NMC
HAD

(7.3)

where NMC
HAD&&DET is the number of events that are generated and reconstructed

in the same i-th bin as estimated with the MC. The instability, defined as 1 − s,
quantifies the fraction of events for which the measurement was so biased to induce a
migration of the value to another bin or even outside the kinematic phase space. A
good measurement needs to have s as high as possible. The stability for Rapgap and
Satrap is shown in Fig. 7.2.

The purity, p, of any i-th bin is defined as

p =
NMC

HAD&&DET

NMC
DET

. (7.4)

The purity quantifies the fraction of events detected in a bin that were actually gener-
ated in the same bin. The impurity, 1−p, is again due to detector effects that alter the
value of the variable and increment the number of entries collected in a bin with events
coming from other bins or from outside the kinematic region. The p for Rapgap and
Satrap is shown in Fig. 7.3. Notice that the correction factor is given by the ratio
p/s.

The typical value for s is approximately 0.3 while for p is slightly below 0.4. The
value of s is not particularly high and this can cause concern on the quality of the
correction to the hadron level estimated with the MC. The reason for such a low value
of s can be found in the migrations of events from one bin to another (which is an
issue common to any analysis) and a low efficiency typical of the LRG method used for
selecting the diffractive signal. The efficiency is defined in a way similar to the stability
but dropping the requirement that the generated event has to be reconstructed in the
same bin. Thus, the efficiency of any i-th bin is defined as

ε =
NMC

HAD&&REC

NMC
HAD

(7.5)

where NMC
HAD&&REC is the number of events that are generated in the i-th bin and

selected at the detector level. The reconstructed value can be in any of the bins.
Fig. 7.4 shows the efficiencies for the variables considered. The differences between
Fig. 7.2 and 7.4 are due to the migrations of the reconstructed values of the variables
from the bins where they were originally generated. The stabilities are typically 50%
of the efficiencies. The low values of the efficiencies is related mainly to the rapidity
gap selection which is applied only at the detector level. It can be noted in Fig. 7.4c
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Figure 7.1: The correction factor, Cf , used to extract the cross sections at the hadron
level. The values actually used in the analysis are represented by the red full circles,
evaluated as the mean between the Cf predicted by Rapgap and the Satrap . The
contributions from Rapgap and Satrap are shown separately as blue triangles and
green squares, respectively. The error bars represent the statistical uncertainty on the
estimation of Cf . The Cf is presented as a function of (a) Q2, (b) W , (c) xobs

IP
, (d)

β, (e) E∗

T,jj, (f) η∗

jj, (g) MX, (h) zobs
IP

and (i) xobs
γ . The variables are described more in

detail in Sect. 7.1.
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tha the efficiency drops at high xobs
IP

. This is in fact the kinematic region most sensitive
to the LRG selection, since xobs

IP
and the size of the rapidity gap are related. Thus, the

values of the stability, which are low compared to many analyses, are the result of two
effects which are individually under control.

7.1.2 QED radiative corrections

The emissions of a real photon from the incoming or outcoming electron are called
initial state radiation (ISR) and final state radiation (FSR) respectively (see Fig. ).
These higher-order QED processes modify the four-momentum of the electron and
alter as a consequence the reconstruction of the kinematics of the event. Since it is
impossible experimentally to tag ISR and FSR events, the only possibility for taking
them into account is to estimate the bias that they cause to the measurement with
the MC and then correct the measured cross sections. The QED radiative corrections,
CQED, are the factors used to correct the cross sections back to the QED Born level.
They are defined as

CQED =

(
dσNOQED

dκ

)

(
dσQED

dκ

) (7.6)

where

(
dσNOQED

dκ

)
indicate the value in the i-th bin of differential cross section

as a function of the generic variable κ as predicted by the MC without ISR and FSR.
The same quantity but with the QED radiation processes allowed in the generation

is indicated by

(
dσQED

dκ

)
. The corrections for ISR and FSR were estimated with

Heracles through the Satrap MC (see Sect. 5.1.1 and 5.1.2). The values of CQED

used in the analysis are shown in Fig. 7.5.

7.1.3 Systematic uncertainties

The uncertainties related to the experimental devices and techniques contribute to
the systematic uncertainties. Several sources of systematic uncertainties have been
checked. In general the systematic checks could be divided in two categories:

• Experimental uncertainties. Detector effects are unsmeared by means of the MC
simulation. Nonetheless, a perfect description of the detector cannot be achieved
and some characteristics and performances of the device are not well enough
known and may be not well simulated. This causes an uncertainty on the result
of the unfolding procedure. These uncertainties are taken in account by changing
in the analysis some parameters that are believed to be the most critical and study
the impact of the changes on the cross section measurement. The changes can
be either on the real data or the MC side. The latter was chosen because of the
higher statistics of the MC sample. The systematics evaluated in this way were:
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Figure 7.2: The stability, s, calculated with Rapgap (blue triangles) and
Satrap (green squares). The error bars represent the statistical uncertainty on the
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IP
, (d)

β, (e) E∗

T,jj, (f) η∗

jj, (g) MX, (h) zobs
IP

and (i) xobs
γ . The variables are described more in

detail in Sect. 7.1.

118 Cross section measurement and discussion 7.0

)2 (GeV2Q
10 210

p

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

2Purity: Q

a)

2Purity: Q

β
-210 -110

p

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
βPurity: 

d)

βPurity: 

 (GeV)XM
10 15 20 25 30 35 40

p

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
X

Purity: M

g)

X
Purity: M

W (GeV)
100 120 140 160 180 200 220 240

p

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Purity: W

b)

Purity: W

 (GeV)T,JE*
4 6 8 10 12 14 16

p

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
T,jj

Purity: E*

e)

T,jj
Purity: E*

IP
obsz

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

p

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
IP

obsPurity: z

h)

IP

obsPurity: z

IP
obsx

-210

p

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
IP

Purity: X

c)

IP
Purity: X

J
*η-3.5 -3 -2.5 -2 -1.5 -1 -0.5 0

p

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
jj

*ηPurity: 

f)

jj
*ηPurity: 

γ
obsx

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

p

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
γ
obsPurity: x

i)

γ
obsPurity: x
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Figure 7.4: The efficiency, ε, calculated with Rapgap (blue triangles) and
Satrap (green squares). The error bars represent the statistical uncertainty on the
estimation of ε. The efficiency is presented as a function of (a) Q2, (b) W , (c) xobs
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Figure 7.5: The QED radiative corrections, CQED, used to correct the measured cross
sections for higher order QED effects. The error bars represent the statistical uncer-
tainty on the estimation of the corrections. The CQED is presented as a function of
(a) Q2, (b) W , (c) xobs

IP
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and (i) xobs
γ . The

variables are described more in detail in Sect. 7.1.
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– the energy measured by the CAL was varied by ±3% in the MC to take into
account the uncertainty on the CAL calibration, giving one of the largest
uncertainties. Deviations from nominal cross section values were of the order
of ±5%, but reached ∼ 15% in some bins;

– the energy scale of the scattered electron was varied in the MC by its uncer-
tainty, ±2%. The resulting variation of the cross sections was always below
±3%;

– the position of the SRTD was changed in the MC by ±2 mm in all directions
to account for the uncertainty on its alignment. The change along the Z
direction gave the largest effect and in a few bins caused a cross section
variation of ±2%;

– the model dependence of the acceptance corrections was estimated by using
separately Rapgap and Satrap for unfolding the data. The variations
from the central value (obtained using the average between Rapgap and
Satrap were typically of the order of ±5% but reached ∼ ±10% in some
bins.

• Measurement stability checks. A bad description of the data distribution by
the MC simulation could result in a biased estimation of the correction factors
used for the unfolding. The migrations of events from and to the kinematical
region may be wrongly reproduced. Thus, an estimation of this kind of effects
was obtained by changing the cuts used in some of the selections described in
Sect. 6.1. The cut variations applied were the following:

– the cut on the FPC energy was varied by ±100 MeV in the MC;

– the cut on the scattered-positron energy was lowered from 10 to 8 GeV;

– the fiducial region for the electron selection was enlarged and reduced by
0.5 cm;

– the lower cut on δ = (E − pZ)TOT was changed from 45 to 43 GeV.

The single contributions to the uncertainty coming from each systematic source can
be seen in Appendix D.

The variations on the cross section induced by these cuts, with except of the ones
coming from the calorimeter and electron energy, were summed in quadrature together
in order to give the total systematic uncertainty. The uncertainties related to the
calorimeter and electron energy scales caused a variation on the cross section that
correlated many bins of the measurement. Thus, they were treated separately as cor-
related systematic uncertainties. They were summed in quadrature together with the
uncertainty on the amount of proton dissociation background subtracted (±4% for all
the bins, see Sect. 6.5). Another source of correlated uncertainty was the error on the
luminosity measurement (±2.25%) but this was not included neither in the plots nor
in the tables.

As described in Sect. 6.1.4, in order to select a clean diffractive sample it was not
necessary to apply an explicit large rapidity gap selection by means of a cut on the
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Figure 7.6: Relative variations on the single differential cross section induced by the in-
troduction in the signal selection of a cut ηmaX < 2.8, where ηMAX is the pseudorapidity
of the most forward EFO with an energy EEFO > 400 MeV .

pseudorapidity of the most forward EFO (ηMAX cut). In order to present the results in
a way compatible with previous measurements, the analysis was repeated with a cut
on ηMAX < 2.8. Only EFOs with an energy higher than 400 MeV were used for the
ηMAX calculation. The latter requirement rejected fake EFOs originating from noise in
the CAL or particles not coming from the primary vertex. With this additional cut,
the number of selected events is reduced to 4012. The variation on the differential
cross section is shown in Fig. 7.6. Notice that the changes of the differential cross
section caused by the ηMAX cut can not be ascribed as systematic uncertainties since
they are not coming from a not perfect extrapolation of the MC to the most forward
ηMAX region where the MC does not describe the data (see Fig. 6.4). Using this wrong
model for the extrapolation results in a wrong extraction of the cross section in the
amount shown in Fig. 7.6. Conversely, the measurement described in Sect. 6 has no
extrapolation and therefore it is safe from this kind of uncertainty.

7.2 Total cross section

The total cross section for the production of dijets in diffractive DIS in the kinematic
region specified in Table 7.2 was measured to be

σγ∗p→jjX′

TOT = 91.8 ± 1.2(stat) +3.3
−5.4(syst.) +5.2

−3.8(corr.) pb. (7.7)

In Table 7.3, the total measured cross section is compared to the NLO predictions
using as input the different dPDFs described in Sect. 5.2 . All the results of the
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calculation are compatible with data within the experimental and theoretical errors.
However, the calculation using the MRW 2006 or the H1 2006 - Fit Bdescribe better
the absolute normalisation of the data.

7.3 Comparison to Monte Carlo models

The single differential cross sections as a function of the variables listed in Sect. 7.1
predicted with the Rapgap and Satrap LO MC are compared to the measured
values in Fig. 7.7 and 7.8. Since the MC predictions are not expected to describe the
normalisation, the cross sections predicted by both MCs were normalised to the data
area. The total correlated uncertainty is shown as a shaded band in the figures.

The E∗

T,jj distribution is a steeply falling function as expected in pQCD (Fig. 7.8a)
and the jets tend to populate the backward region (Fig. 7.8d). The most prominent
features of the data are the rise of the cross section with xobs

IP
, the peak at zobs

IP
∼ 0.3

and the tail of the cross section at low xobs
γ values. The requirement of two jets with

high ET suppresses the contribution of low values of xobs
IP

. The relatively low value of
the peak position in the zobs

IP
distribution indicates that in the majority of the events

the dijet system is accompanied by additional hadronic activity. Most of the events are
produced at large xobs

γ as expected in DIS but a tail at low xobs
γ indicates the presence

of a small but not negligible resolved-photon contribution.

In general a good agreement between data and LO MC is observed. The two MC
provide a very similar prediction. It should be stressed that this was expected theo-
retically. In fact, the dijet measurement selects very small dipoles and Rapgap uses
the kT factorization scheme. It was demonstrated [136] that for small sizes of the
dipole (i.e. high transverse energies of the jets) the two models are equivalent. The
good agreement between the Rapgap and Satrap results confirms that because the
input distribution to Rapgap (dPDFs) is very different than the input distribution to
Satrap (gluon density from inclusive DIS data). Therefore the good agreement of the
two approaches indicates the consistency of the QCD description at the leading order
level. The main differences between the two MCs are a better description of the data by
Rapgap at high E∗

T,jj and by Satrap at high zobs
IP

and the xobs
γ differential cross section,

where the inclusion of resolved-photon processes in Rapgap improves the description
of the data (Fig. 7.8d). The contribution of the resolved-photon processes to the total
Rapgap cross section was estimated to be 16%. Satrap has no resolved-photon in
it (that in the saturation model would be implemeted with processes of order higher
than the qq̄ and qq̄g) and this MC doesn’t describe the data cross section in the lowest
xobs

γ region.

7.4 Comparison to NLO QCD prediction

The comparison with NLO predictions is a fundamental step for this analysis. Oppo-
sitely to the LO case, the NLO calculation is expected to predict the absolute normali-
sation of the cross section, within the approximation of neglecting the higher orders of
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Figure 7.7: Measured differential cross section (dots) as a function of (a) Q2, (b) W ,
(c) MX, (d) β and (e) xobs

IP
. The inner error bars represent the statistical uncertainty

and the outer error bars represent the statistical and uncorrelated systematic uncer-
tainties added in quadrature. The shaded band represents the correlated uncertainty.
For comparison the area-normalised predictions of the Rapgap (solid lines) and the
Satrap (dashed lines) MC models are also shown.
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jj, (c)
zobs

IP
and (d) xobs
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only the direct photon contribution. Other details as in the caption of Fig. 7.7.
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the perturbative serie. Therefore the comparison between NLO and data is the bench-
mark for testing the QCD factorisation theorem in diffraction with dijets in the DIS
kinematical regime. On the other hand, if one assumes the validity of the factorisation
theorem, the same comparison can be used for testing the accuracy of the different
dPDFs used in the calculation.

The NLO predictions for the differential cross section are compared to the data
in Figs. 7.9 and 7.10. The estimated theoretical uncertainties are shown only for the
calculations using the ZEUS LPS+charm dPDFs and are similar for all the other
calculations. For ease of comparison the ratios of data to the MRW 2006 prediction
are presented in Figs. 7.11 and 7.12. The variation due to the choice of the dPDFs is
displayed with respect to the MRW 2006 in the same figure. In general the shape of
the measured cross section is described by the NLO calculations within the theoretical
uncertainties. However, only the predictions using the MRW 2006 dPDFs and the
H1 2006 − FitB are able to describe satisfactorily the data over the entire kinematic
range. The differential cross section as a function of zobs

IP
presented in Fig. 7.10d

supports this statement very clearly. This quantity is the most sensitive to the choice of
the dPDFs used in the calculation. The central values of the predictions using the MRW
2006 and the H1 2006 − FitB dPDFs describe very well the data over the whole range
in zobs

IP
. Conversely, the calculations using the ZEUS LPS+charm and H1 2006 − FitA

dPDFs exhibit a different trend and are incompatible with the data at high zobs
IP

, even
considering the large theoretical uncertainties. The description of the xobs

γ dependence
is not reproduced by all the predictions, independently of the dPDFs. This is related
to the NLO calculation rather than the dPDFs used since in Disent there is not any
resolved-photon contribution. The results presented in Sect. 7.3 showed instead that a
contribution from resolved-photon processes is needed to obtain a good description at
low xobs

γ . Anyway the contribution to the total cross section of this particular phase
space region is very small and the other variables are practically insensitive to this
aspect of the calculation.

Any final statement about the factorisation theorem is limited by the large size of
this theoretical uncertainty (∼ 25%). The good agreement of the central values of some
of the NLO curves presented supports the validity of the theorem, as suggested already
in previous analyses [79, 80, 81]. There are no evidences of factorisation breaking in the
production of dijets in diffractive DIS and that the factorisation theorem holds within
an uncertainty of approximately 25%. This large theoretical uncertainty emphasizes
the precision of the experimental measurement that can be very useful for future QCD
fits as explained in the next section.

The calculation using the GLP fit dPDFs as input gave predictions clearly off
in both normalisation and shape. This discrepancy with the measured data can be
observed in Fig. 7.13 where a comparison as a function of E∗

T,jj and zobs
IP

is presented.
The prediction underestimates the absolute normalisation of the cross section by a
factor 0.3− 0.4 over the whole kinematic range. Because of this bad description of the
data, the calculation using the GLP fit dPDFs was discarded and not studied in depth.

The sensitivity to the choice of the renormalisation scale is studied more in detail in
Fig. 7.14. The differential cross section as a function of Q2, E∗

T,jj and zobs
IP

is presented
for two different choices of the renormalisation scale, µR. In one case the value of µR was
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the default used through the whole analysis, i.e. the transverse energy in the γ∗p of the
leading jet, µ = E∗

T,j1. The use of E∗

T,j1 was motivated by the choice to use a physical
quantity as renormalisation scale. The default choice is compared to an expression

taking into account also the virtuality of the exchanged photon, µR =
√

E∗ 2
T,j1 + Q2. As

expected, a better agreement with the data at higher Q2 is observed, while at transverse
energies of the jet already higher than 6 GeV there are no differences between the two
choices for µR.
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Figure 7.10: Measured differential cross section as a function of (a) E∗
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γ compared to the NLO prediction obtained using the available dPDFs.
Other details as in the caption of Fig. 7.9.
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Figure 7.12: Ratio, R, of the data to the NLO prediction using the MRW 2006 dPDFs
(dots) as function of (a) E∗
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IP

and (d) xobs
γ . Other details as in the

caption of Fig. 7.11.
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Figure 7.13: Comparison to the NLO prediction using the GLP fit dPDFs. The NLO
prediction using the GLP fit dPDFs as input (dashed line) is compared to the measured
cross section (dots) and the NLO prediction using the MRW 2006 dPDFs (solid line).
The comparison is presented as a function of (a) E∗

T,jjand (b) zobs
IP

. The ratio, R, of the
data to the NLO prediction using the MRW 2006 dPDFs (dots) is shown as function
of (c) E∗

T,jjand (d) zobs
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. The ratio of the prediction using the GLP fit dPDFs to the
prediction using the MRW 2006 dPDFs is presented as a dashed line. Other details as
in the caption of Fig. 7.9.
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Figure 7.14: Comparison to the NLO prediction choosing a different renormalisation
scale, µR. The NLO prediction calculated using µ2

R = E∗ 2
T,j1 + Q2 (dashed line) is

compared to the measured cross section (dots) and the NLO prediction using the default
µ2

R = E∗ 2
T,j1 (solid line). The comparison is presented as a function of (a) Q2, (b)

E∗

T,jjand (c) zobs
IP

. The ratio, R, of the data to the NLO prediction using µ2
R = E∗ 2

T,j1

(dots) is shown as function of (d) Q2, (e) E∗

T,jjand (f) zobs
IP

. The ratio of the prediction
using µ2

R = E∗ 2
T,j1 + Q2 to the prediction using µ2

R = E∗ 2
T,j1 is presented as a dashed line.

The NLO calculation was performed using always the MRW 2006 dPDFs as input.
Other details as in the caption of Fig. 7.9.
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7.5 Double differential cross section

Precious informations about the dynamics of the production of dijets in diffractive
DIS can be extracted by measuring the double differential cross section. The double
differential cross section is presented as a function of zobs

IP
in different regions of Q2

and E∗

T,j1. Such a detailed study is made possible only thanks to the high statistics
of the data sample. The variables for the double differential cross sectins were chosen
because of their particular relevance in the pQCD calculation: zobs

IP
is the variable

directly sensitive to the dPDFs while Q2 and E∗

T,j1 are the two hard scales present in
the process 3. The control distributions are presented in Figs. 7.15 and 7.16. As pointed
out describing the single differential distribution as a function of zobs

IP
in Sect. 6.4, the

data are better described by the Satrap MC. Some differences between data and MC
are visible, in particular at high zobs

IP
. Due to the sharp fall of the cross section at low

zobs
IP

(see Fig. 7.8c), the first bins in zobs
IP

of the single differential measurement would
have a low statistics. It was decided to merge it with the second bin. Thus, the double
differential cross section has one bin less than the single differential one. The factors
applied to correct the data for the detector acceptance and resolution are shown in
Fig. 7.17. Values similar to the single differential Cf were observed (see Fig. 7.1h).
The strong trend as a function of E∗

T,j1 is consistent with the one observed in Fig. 7.1e.
The stabilities and purities for the double differentila cross sections are presented in
Figs. 7.18 and 7.19. The values are very low (. 15%) over the entire range of the
measurement. However, it has to be kept in mind the low efficiency (∼ 40 − 50%) of
the measuremnt, as discussed in Sect. 7.1.1 and the satisfactory good description of
the data distributions by the MC. Thus, the correction factors were still judged to be
reliable for correcting the measuremnt to the hadron level. Furthermore, any possible
bias in the correction factors is taken into account in the systematic uncertainty, where
the correction factor is changed by evaluating it with either Rapgap or Satrap rather
than the average of the two.

The measured double differential cross section as a function of zobs
IP

in different re-
gions of Q2 and E∗

T,j1 is shown in Figs.7.20 and 7.21, respectively. The NLO predictions
are compared to the data in the same figures. As it was done for the single differential
cross section, the ratios of data to the MRW 2006 prediction are presented in Figs. 7.22
and 7.23 together with the ratios of the NLO predictions using the other dPDFs to
the MRW 2006 NLO calculation. The same considerations made in Sect. 7.4 are valid:
the NLO calculation using the MRW 2006 and the H1 2006 − FitB dPDFs describes
the data over the entire kinematical range much better than the NLO curves using
the other dPDFs. It can be noted that the level of the NLO description at fixed zobs

IP

stays approximately constant as a function of the hard scale used in the calculation.
This is a good evidence that the QCD description adopted in the analysis works. The
QCD theory is able to predict the evolution of the dPDFs as a function of the scale
once that the zobs

IP
dependence is given at an initial scale. The fact that the shape of

the cross section as a function of zobs
IP

is described by the NLO calculation at different

3The measured points were presented as a function of either Q2 or E∗

T,j1 and not combinations of

them, e.g. Q2 + (E∗

T,j1)
2, because it was preferred to present the cross sections in terms of physical

quantities.
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scales is a remarkable evidence that the DGLAP evolution works in the context under
examination.

Under the assumption of the validity of the QCD factorisation theorem, these data
could be included in future QCD fits to the dPDFs themselves, together with the
inclusive DIS data. This technique, already exploited in previous analyses both of
the proton [83] and diffractive [81] PDF, has been proved to reduce significantly the
uncertainty on the gluon parton densities. This can be intuitively understood from the
data presented here: the major difference between the H1 2006 − FitB and Fit A is in
the gluon dPDF and these data have a clear discriminating power between the two fits.
Therefore these data have a significant potential to further constrain the gluon dPDF.
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Figure 7.15: The control distributions as a function of zobs
IP

in different regions of
Q2. The data entries are shown as dots, the statistical errors are shown as the er-
ror bars. The data are compared to the signal LO MC, Rapgap (solid red line) and
Satrap (dashed blue line). The contribution from resolved-photon processes estimated
with Rapgap is shown as a hatched area. The non-diffractive DIS background esti-
mated with Djangoh is indicated by the dark solid area.
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Figure 7.16: The control distributions as a function of zobs
IP

in different regions of E∗

T,j1

(dots). Other details as in the caption of Fig. 7.15.
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Figure 7.18: The stability, s, of the bins of the double differential cross section estimated
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Figure 7.20: Measured differential cross section as a function of zobs
IP

in different regions
of Q2 (dots). Other details as in the caption of Fig. 7.9.
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Figure 7.21: Measured differential cross section as a function of zobs
IP

in different regions
of E∗

T,j1 (dots). Other details as in the caption of Fig. 7.9.
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Kinematic region
5 < Q2 < 100 GeV2, 100 < W < 250 GeV

E∗

T,j1 > 5 GeV, −3.5 < η∗

j1 < 0.0

E∗

T,j2 > 4 GeV, −3.5 < η∗

j2 < 0.0

xIP < 0.03

Table 7.2: The kinematic region of definition of the cross section measured in this
analysis. The cross section was defined for at least two jets reconstructed in the γ∗p
rest frame. The leading jet had to have a transverse energy in the γ∗p rest frame higher
the 5 GeV while the jet with the second highest E∗

T had to have a transverse energy
higher than 4 GeV . All the jets had to lie in the pseudorapidity range −3.5 < η∗

jet < 0
as measured in the γ∗p rest frame. The virtuality of the photon, Q2, and the total γ∗p
centre-of-mass energy, W , had to be 5 < Q2 < 100 GeV 2 and 100 < W < 250 GeV ,
respectively. The value of xIP had to be lower than 0.03.

σ δstat δsyst δES δtheor ∆DIFFR

(pb) (pb) (pb) (pb) (pb) (pb)

Data 91.5 1.2 +3.3
−5.4

+5.2
−3.8 – +4.1

ZEUS LPS+charm 120.3 – – – +29.4
−18.3 –

H1 2006 - Fit A 130.2 – – – +31.2
−19.9 –

H1 2006 - Fit B 102.5 – – – +24.7
−15.6 –

MRW 2006 99.3 – – – +23.4
−14.7 –

Table 7.3: Total cross section for the production of diffractive dijets compared to ex-
pectations of NLO calculations using various dPDFs as indicated in the Table. The
kinematic range of the measurement is specified in Table 7.2. The statistical, δstat,
uncorrelated systematic, δsyst, and energy scale uncertainties, δES, are quoted sepa-
rately. The theoretical uncertainty on the NLO calculations, δtheor, is quoted in the
sixth column. The difference with the measured cross section with and without ηMAX

cut, ∆DIFFR, is presented in the last column. The uncertainties on the proton dissoci-
ation subtraction and the luminosity measurement are not presented in the table.



Chapter 8

Conclusions and outlook

This thesis presented an analysis of the production of dijets in diffractive Deep Inelastic
Scattering (DDIS). The measurements were performed with the data collected by the
ZEUS detector at the HERA collider during the data-taking period 1999-2000 for
a total integrated luminosity of 61.3 pb−1. The single- and double-differential cross
sections for the production of dijets in diffractive DIS have been measured with the
ZEUS detector in the kinematic region 5 < Q2 < 100 GeV2, 100 < W < 250 GeV and
xIP < 0.03, requiring at least two jets with E∗

T,jet > 4 GeV in the pseudorapidity region
−3.5 < η∗

jet < 0.0 and the highest-E∗

T jet with E∗

T,j1 > 5 GeV.

By requiring dijets in the DIS regime, it is possible to study diffraction in presence
of a hard scale (either the virtuality of the photon exchanged between the electron and
the proton or the transverse energy of the jets). This allows to use the perturbative
theory for describing the process. Furthermore, the main channel for producing dijets
is via boson-gluon fusion, i.e. this process is directly sensitive to the gluon content
of the diffractive PDFs. It has been demonstrated in previous analyses that gluon-
initiated processes constitute the majority of the diffractive interactions. Because of
these peculiar properties, diffractive dijet production is an excellent benchmark for the
theory.

Experimental features of the analysis. This was the first analysis of this kind
carried out at ZEUS. The DIS kinematics were reconstructed with the double angle
method exploiting the informations of the scattered electron and the hadronic final
state as measured with the high-resolution uranium calorimeter. The jets were recon-
structed in the γ∗p rest frame from energy flow objects with the longitudinally-invariant
kT clustering algorithm. The diffractive events were tagged by requiring the presence
of a large rapidity gap (LRG) in the direction of the scattered proton. This method
provides a clear experimental signature for diffraction and a final sample with high
statistics. In this analysis a particularly relevant role was played by the forward plug
calorimeter (FPC) subdetector. The LRG requirement was imposed by vetoing events
with an energy deposit in the FPC higher than the signal fluctuations. No explicit cut
on the pseudorapidity of the particles produced in the interaction was applied. The ex-
perimental method pursued provided increased statistics and required smaller unfolding
corrections. In this way the impact of the simulation of processes like the fragmen-
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tation of the partons produced and the showering of the particles in the calorimeter,
poorly described by the MC, was reduced. All these experimental techniques resulted
in a precise measurement, to date the most accurate of its kind.

The total, single and double differential cross section were extracted. The total
cross section was measured to be

σD
TOT(ep → epj1j2X

′) = 91.5 ± 1.2(stat.) +3.3
−5.4(syst.) +6.4

−5.3(corr.) pb

The differential cross section as a function of E∗

T,jj exhibited a steep fall off as
expected from QCD. The requirement of two jets with a minimum E∗

T imposes a
kinematical constraint on MX biasing the distributions towards higher values of MX

and xobs
IP

. A peak at zobs
IP

∼ 0.3 in the differential cross section was observed. This
indicates that in the most of the events a large hadronic activity is present outside the
dijet system. A tail at low values of xobs

γ is also observed.
The double differential cross section was presented both in bins of zobs

IP
and Q2

and in bins of zobs
IP

and E∗

T,j1. The measurement of double differential cross sections
provides at the same time a more detailed analysis of the process and a valuable input
for theoretical models.

Comparison to LO Monte Carlos. The measured cross sections were compared to
two LO MCs, Rapgap and Satrap . Although they were based on different theoretical
approaches, the two MCs provided similar predictions, as expected theoretically for
high E∗

T jets. The agreement in shape with the experimental distributions was good
over the whole kinematical range. The introduction in Rapgap of resolved-photon
processes improved the description at low xobs

γ .

Comparison to NLO calculation. The improvement in the recent years of the
theoretical and experimental understanding of diffraction has given the possibility to
develop more refined Next-To-Leading Order (NLO) QCD fits and calculations that
can now be tested. Recent analyses from ZEUS and H1 supported the validity of the
QCD factorisation theorem in DIS. Under this assumption, the precise measurement
presented here can be exploited for putting more stringent constraints on the theory
that still has not the same accuracy as for the inclusive scattering. The Disent

program was used to calculate the NLO predictions for the cross section. Since this
program was natively written for standard non-diffractive DIS interactions, it had to
be modified in order to accept the dPDFs. This was proposed in a previous analysis
by the H1 collaboration and was done for the first time at ZEUS.

The NLO calculation was performed with different dPDFs available at the time of
the analysis. Significant differences between the central values of the predictions were
observed. The absolute normalisation of the measured cross section was described by
the NLO calculation, supporting the validity of QCD factorisation in diffractive DIS.
However, the large theoretical uncertainties did not allow to make any definitive state-
ment about it. This aspect, compared to the precision of the measured data, suggests
that these data have a strong constraining power on the theoretical predictions. The
central values of the calculation using two of the available dPDFs, the H1 2006 − FitB
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and MRW 2006 fit, provided a good description of the data both in normalisation and
shape over the entire kinematical range. The predictions using the ZEUS LPS+charm
and H1 2006 − FitA dPDFs were higher than the data in normalisation and did not de-
scribe the shape of the data distributions in some regions of the phase space, especially
at high zobs

IP
.

Outlook. These data can be very useful for developing a more refined theoretical
description of diffraction. It has been shown that the dijets data can be included in
a NLO QCD fit together with the inclusive data improving significantly the accuracy
of the parton densities, especially the gluon contribution. The double differential cross
section was presented in such a way to include it into such a combined fit. This would
be the most natural next step for this analysis. However, the dijet data are rich of
informations that have still to be extracted. The azimuthal asymmetries between the
scattered electron and the high E∗

T jets can reveal insights on the ratio between the
yields of diffractive dijets with longitudinally and transversely polarised virtual pho-
tons. Repeating the analysis without the LRG requirement but tagging the scattered
proton with the ZEUS Leading Proton Spectrometer would give a measurement that,
although not competitive in precision with the present one, would provide a richer
amount of information like the t-distribution for this set of events. An extension to
higher values of the transverse energy of the jets would be welcomed because of the
reduced theoretical uncertainties in that kinematical region. It could be achieved with
the high statistics of the HERA II data sample. However, modifications of the detector
apparatus may reduce the advantages of this analysis: in order to allocate the magnets
that increased the luminosity, the rear beam hole in the calorimeter was enlarged and
the FPC was taken away, affecting in this way the detection of both low Q2 (i.e. high
statistics) and diffractive events. A study would be needed in order to determine the
feasibility of such an analysis.

The theory of diffraction can be significantly improved by the data presented in this
thesis. Any progress in the dPDFs accuracy and in the understanding of soft rescat-
terings will be of great support to the rich diffractive physics program at the LHC.

The study of dijets is a precious tool for understanding diffractive physics and
including it in the QCD framework. The use of QCD theoretical methods in diffraction
has become available in the recent years and dijets are a powerful benchmark for testing
and improving them. Big improvements have been achieved on the way of promoting
diffractive physics as a respectable branch of QCD, as shown in this thesis, nonetheless
a lot of work has still to be done and diffraction has still a lot to teach us about the
nature of the proton and the strong interaction in general.
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Appendix A

ZEUS Coordinate system

The ZEUS coordinate system is shown in Fig. A.1. It is a right-handed Cartesian
system with the Z−axis pointing along the proton beam direction. The origin of
the reference system is located at the nominal interaction point. The standard polar
coordinates are used to define the θ and φ angles and the distance ρ =

√
x2 + y2.

y

up

proton
z x

machine
centre

electron
ρ

ϕθ

Figure A.1: The ZEUS coordinate system.
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Appendix B

Jet energy corrections

The energy flow objects (EFOs) used for reconstructing the jets were corrected for
the inactive material in the detector as described in Sect. 4.2.3. The description of
the inactive material proved to be reliable because of the good description of several
measured quantities by the MC (the detector-level transverse energy of the jets, for
instance, see Fig. 6.8-6.12). However, the correlation with the same quantity at the
hadron-level is affected by that. This because the energy losses biased the jet recon-
struction. The transverse energies of the jets were therefore corrected in both MC and
data with some factors estimated with the Rapgap MC described in Sect. 5.1.1. The
evaluation of the jet energy corrections was carried out through the following steps:

• A DIS jet sample was selected by imposing the DIS selections described in
Sect. 6.1.2 and cuts on jets looser than the ones used in the final analysis:

– E∗

T,jet > 2.5 GeV, where E∗

T,jetwas the transverse energy of the jet in the γ∗p
rest frame;

– −3.5 < η∗

jet < 0.0, where η∗

jetwas the pseudorapidity of the jet in the γ∗p rest
frame;

– −2.0 < ηLAB
jet < 2.0, where ηLAB

jet was the pseudorapidity of the jet in the
laboratory frame.

The hadron selection applied was exactly the same of the final analysis. For the
evaluation of the jet energy corrections, no diffractive cuts were applied, neither
at the hadron nor at the detector level. The latter choice was motivated by
gaining statistics for this kind of analysis that is supposed to be insensitive to
the diffractive requirement.

• The detector-level jets were matched to the hadron-level jets in the η − φ plane
in the γ ∗ p rest frame. The distance between a detector-level and a hadron-level
jet, ∆R was defined as

∆R =
√

(η∗

jet,det − η∗

jet,had)
2 + (φ∗

jet,det − φ∗

jet,had)
2 (B.1)
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where the subscripts det and had refer to the detector- and hadron-level quan-
tities, respectively. A detector-level jet was matched to the closest hadron-level
jet; in any case it had to be ∆R < 1 in order to match the detector-level jet;

• the correlation in E∗

T,jetbetween the matched pairs of detector- and hadron-level
jets was plotted in bins of η∗

jet;

• a fit in the form
E∗,det

T,jet = P0 + P1 ∗ E∗,had
T,jet (B.2)

was performed for each bin in η∗

jet;

• the Eq. B.2 was inverted and the new corrected transverse energy of the jet at
the detector level, E∗,det

T,jet (corr) was evaluated according to

E∗,det
T,jet (corr) =

E∗,det
T,jet − P0

P1
(B.3)

The function used to correct the detector-level transverse energy, E∗,det
T,jet , depended

linearly by E∗,det
T,jet itself. The two parameters of the linear correction changed according

to the pseudorapidity in the γ ∗ p rest frame. This allowed to take more carefully in
account the different amounts of inactive material in the detector.

The correlation between hadron- and detector-level jet transverse energies before
the corrections is shown in Fig. B.1. After the corrections, the same correlations look
like in Fig. B.2. The parameters P0 and P1 obtained from the linear fit B.2 and used
for correcting the jets are shown in Fig. B.3 as a function of η∗

jet.
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Figure B.1: The correlation of the E∗

T,jetfor MC jets reconstructed at the hadron and
detector level before the jet energy corrections. The Rapgap sample described in
Sect. 5.1.1 was used. The correlation is shown in bins of pseudorapidity of the jet
as measured in the γ∗p rest frame. The thin blue line shows the result of a linear fit to
the correlation. The thick black line indicates the 45◦ line.

154 Jet energy corrections B.0

Figure B.2: The correlation of the E∗

T,jetfor MC jets reconstructed at the hadron
and detector level after the jet energy corrections. The Rapgap sample described in
Sect. 5.1.1 was used. The correlation is shown in bins of pseudorapidity of the jet as
measured in the laboratory frame. The thin blue line shows the result of a linear fit to
the correlation. The thick black line indicates the 45◦ line.
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Figure B.3: The parameters (left) P0 and (right) P1 used for the jet corrections as a
function of the jet pseudorapidity in the γ∗p rest frame, η∗

jet.
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Appendix C

Resolutions

The resolution indicates the accuracy of the reconstruction at the detector-level of
the hadron-level value of a variable. It was estimated with the Rapgap MC (see
Sect.5.1.1). The resolutions are presented as a function of the variables used in the
cross section extraction (see Sect.7) in Figs. C.1–C.3. The plots show for each variable
κ

• the correlation between the hadron- and detector-level values for all the events;

• the distribution for the events of the residual, rκ, defined as

rκ =
dκ − hκ

hκ

where dκ and hκ indicate the detector-level and hadron-level values of the variable
κ for each event;

• the mean and the full width at half maximum (FWHM) of the residual distribu-
tions for each bin of each variable.

Eventual selections on the considered variable were not applied in order to not bias
the resolutions. The resolution on η∗

j1 has been calculated only on matched jets, i.e.
only detector-level jets matched in the η − φ plane to hadron level jets entered in the
resolution calculation. The matching procedure is the same described in Appendix B.
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Figure C.1: Resolution on (left column) Q2, (central column) W and (right column)
MX . The first row indicates the correlation between the generated (X−axis) and recon-
structed (Y −axis) values of each variable. The middle row the total distribution of the
residuals for each variable. The bottom row presents the distribution of the residuals for
each bin in the generated value of the variables. In the latter plot, the points indicate
the mean of the distributions while the rror bars the Half Width at Half Maximum of
the distributions.
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Figure C.2: Resolution on (left column) xIP , (central column) the transverse energy of
the jet with highest transverse energy in the γ∗p frame, E∗

T,j1 and (right column) the
pseudorapidity of the jet with highest transverse energy in the γ∗p frame, η∗

j1. Other
details in the caption of Fig. C.1.
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Figure C.3: Resolution on (left column) β, (central column) zobs
IP

and (right column)
xobs

γ . Other details in the caption of Fig. C.1.



Appendix D

Systematics

The uncertainties related to the experimental devices and techniques contribute to
the systematic uncertainties. Several sources of systematic uncertainties have been
checked. A more detailed description of the systematic checks and their treatment
can be found in Sect. 7.1.3. In the following pages, the single contributions coming
from each of them are presented. The contributions can beFor ease of presentation in
the figures, an identifying number was associated to each of them. They are listed as
follows:

ID1 the energy scale of the calorimeter was decreased by 3% only in the Monte Carlo
(MC) simulation;

ID2 the energy scale of the calorimeter was increased by 3% only in the MC simulation;

ID3 the energy scale of the DIS scattered electron was decreased by 2% only in the
MC simulation;

ID4 the energy scale of the DIS scattered electron was increased by 2% only in the
MC simulation;

ID5 the energy scale of the FPC was decreased by 10% only in the MC simulation;

ID6 the energy scale of the FPC was increased by 10% only in the MC simulation;

ID7 the size of the fiducial area outside which the DIS electron had to lie was shrinked
by 0.5 cm;

ID8 the size of the fiducial area outside which the DIS electron had to lie was enlarged
by 0.5 cm;

ID9 the selection on the energy of the scattered electron was decreased from 10 GeV
to 8 GeV;

ID10 the lower threshold of the selection on the total E−pZ was changed from 45 GeV
to 43 GeV;
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ID11 the position along the Z−axis of the SRTD was shifted by 2 mm away from the
interaction point only in the MC;

ID12 the position along the Z−axis of the SRTD was shifted by 2 mm towards the
interaction point only in the MC;

ID13 the factors used to correct for the detector smearing where calculated using only
the Rapgap MC;

ID14 the factors used to correct for the detector smearing where calculated using only
the Satrap MC;

In Figs. D.1-D.9, the relative uncertainties introduced by each of the systematic
uncertainties listed above are presented for each variable separately. In Figs. D.10-
D.23 the contribution of each systematic is presented for all the variables in one plot.
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Figure D.1: The relative error introduced by the systematic uncertainties for Q2. Ev-
ery different pad considers only one bin of the variable. Every pad shows the single
contributions from all the systematic sources. The solid line indicates the size of the
statistical error.
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Figure D.2: The relative error introduced by the systematic uncertainties for W . Other
details as in the caption of Fig. D.1.
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Figure D.3: The relative error introduced by the systematic uncertainties for xIP . Other
details as in the caption of Fig. D.1.
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Figure D.4: The relative error introduced by the systematic uncertainties for β. Other
details as in the caption of Fig. D.1.
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Figure D.5: The relative error introduced by the systematic uncertainties for E∗

T,jj.
Other details as in the caption of Fig. D.1.
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Figure D.6: The relative error introduced by the systematic uncertainties for η∗

jj. Other
details as in the caption of Fig. D.1.
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Figure D.7: The relative error introduced by the systematic uncertainties for MX. Other
details as in the caption of Fig. D.1.
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Figure D.8: The relative error introduced by the systematic uncertainties for zobs
IP

. Other
details as in the caption of Fig. D.1.
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Figure D.9: The relative error introduced by the systematic uncertainties for xobs
γ .

Other details as in the caption of Fig. D.1.
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Figure D.10: The relative error introduced by the systematic ID1 uncertainties for
the following variables: Q2, W , xobs

IP
, β,E∗

T,jj, η∗

jj, MX, zobs
IP

and xobs
γ . The solid line

indicates the size of the statistical error.
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Figure D.11: The relative error introduced by the systematic ID2 uncertainties for
the following variables: Q2, W , xobs

IP
, β,E∗
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γ . The solid line
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Figure D.12: The relative error introduced by the systematic ID3 uncertainties for
the following variables: Q2, W , xobs

IP
, β,E∗

T,jj, η∗

jj, MX, zobs
IP

and xobs
γ . The solid line

indicates the size of the statistical error.
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Figure D.13: The relative error introduced by the systematic ID4 uncertainties for
the following variables: Q2, W , xobs

IP
, β,E∗

T,jj, η∗

jj, MX, zobs
IP

and xobs
γ . The solid line

indicates the size of the statistical error.
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Figure D.14: The relative error introduced by the systematic ID5 uncertainties for
the following variables: Q2, W , xobs

IP
, β,E∗

T,jj, η∗

jj, MX, zobs
IP

and xobs
γ . The solid line

indicates the size of the statistical error.

2Q10 210

R
E

L
, S

Y
S

T
δ

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08 2dQ
σdSyst ID 6 =  rel. variation on 

β

R
E

L
, S

Y
S

T
δ

-0.1

-0.05

0

0.05

0.1

-210 -110

βd
σdSyst ID 6 =  rel. variation on 

XM10 15 20 25 30 35 40

R
E

L
, S

Y
S

T
δ

-0.06

-0.04

-0.02

0

0.02

0.04

0.06 XdM
σdSyst ID 6 =  rel. variation on 

W
100 120 140 160 180 200 220 240

R
E

L
, S

Y
S

T
δ

-0.06

-0.04

-0.02

0

0.02

0.04

0.06
dW

σdSyst ID 6 =  rel. variation on 

T,jjE*4 6 8 10 12 14 16

R
E

L
, S

Y
S

T
δ

-0.2

-0.1

0

0.1

0.2
T,jjdE*

σdSyst ID 6 =  rel. variation on 

IPz0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
E

L
, S

Y
S

T
δ

-0.1

-0.05

0

0.05

0.1 IPdz
σdSyst ID 6 =  rel. variation on 

IPx

R
E

L
, S

Y
S

T
δ

-0.1

-0.05

0

0.05

0.1

-210

IPdx
σdSyst ID 6 =  rel. variation on 

jj
*η-3.5 -3 -2.5 -2 -1.5 -1 -0.5 0

R
E

L
, S

Y
S

T
δ

-0.3

-0.2

-0.1

0

0.1

0.2

0.3
jj

*ηd
σdSyst ID 6 =  rel. variation on 

γx0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
E

L
, S

Y
S

T
δ

-0.15

-0.1

-0.05

0

0.05

0.1

0.15
γdx

σdSyst ID 6 =  rel. variation on 

Figure D.15: The relative error introduced by the systematic ID6 uncertainties for
the following variables: Q2, W , xobs

IP
, β,E∗

T,jj, η∗

jj, MX, zobs
IP

and xobs
γ . The solid line

indicates the size of the statistical error.
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Figure D.16: The relative error introduced by the systematic ID7 uncertainties for
the following variables: Q2, W , xobs

IP
, β,E∗

T,jj, η∗

jj, MX, zobs
IP

and xobs
γ . The solid line

indicates the size of the statistical error.
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Figure D.17: The relative error introduced by the systematic ID8 uncertainties for
the following variables: Q2, W , xobs

IP
, β,E∗

T,jj, η∗

jj, MX, zobs
IP

and xobs
γ . The solid line

indicates the size of the statistical error.
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Figure D.18: The relative error introduced by the systematic ID9 uncertainties for
the following variables: Q2, W , xobs

IP
, β,E∗

T,jj, η∗

jj, MX, zobs
IP

and xobs
γ . The solid line

indicates the size of the statistical error.
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Figure D.19: The relative error introduced by the systematic ID10 uncertainties for
the following variables: Q2, W , xobs

IP
, β,E∗

T,jj, η∗

jj, MX, zobs
IP

and xobs
γ . The solid line

indicates the size of the statistical error.



173

2Q10 210

R
E

L
, S

Y
S

T
δ

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08 2dQ
σdSyst ID 11 =  rel. variation on 

β

R
E

L
, S

Y
S

T
δ

-0.1

-0.05

0

0.05

0.1

-210 -110

βd
σdSyst ID 11 =  rel. variation on 

XM10 15 20 25 30 35 40

R
E

L
, S

Y
S

T
δ

-0.06

-0.04

-0.02

0

0.02

0.04

0.06 XdM
σdSyst ID 11 =  rel. variation on 

W
100 120 140 160 180 200 220 240

R
E

L
, S

Y
S

T
δ

-0.06

-0.04

-0.02

0

0.02

0.04

0.06
dW

σdSyst ID 11 =  rel. variation on 

T,jjE*4 6 8 10 12 14 16
R

E
L

, S
Y

S
T

δ

-0.2

-0.1

0

0.1

0.2
T,jjdE*

σdSyst ID 11 =  rel. variation on 

IPz0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
E

L
, S

Y
S

T
δ

-0.1

-0.05

0

0.05

0.1 IP
dz

σdSyst ID 11 =  rel. variation on 

IPx

R
E

L
, S

Y
S

T
δ

-0.1

-0.05

0

0.05

0.1

-210

IP
dx

σdSyst ID 11 =  rel. variation on 

jj
*η-3.5 -3 -2.5 -2 -1.5 -1 -0.5 0

R
E

L
, S

Y
S

T
δ

-0.3

-0.2

-0.1

0

0.1

0.2

0.3
jj

*ηd
σdSyst ID 11 =  rel. variation on 

γx0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
E

L
, S

Y
S

T
δ

-0.15

-0.1

-0.05

0

0.05

0.1

0.15
γdx

σdSyst ID 11 =  rel. variation on 

Figure D.20: The relative error introduced by the systematic ID11 uncertainties for
the following variables: Q2, W , xobs

IP
, β,E∗

T,jj, η∗

jj, MX, zobs
IP

and xobs
γ . The solid line

indicates the size of the statistical error.
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Figure D.21: The relative error introduced by the systematic ID12 uncertainties for
the following variables: Q2, W , xobs

IP
, β,E∗

T,jj, η∗

jj, MX, zobs
IP

and xobs
γ . The solid line

indicates the size of the statistical error.
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Figure D.22: The relative error introduced by the systematic ID13 uncertainties for
the following variables: Q2, W , xobs

IP
, β,E∗

T,jj, η∗

jj, MX, zobs
IP

and xobs
γ . The solid line

indicates the size of the statistical error.
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Figure D.23: The relative error introduced by the systematic ID14 uncertainties for
the following variables: Q2, W , xobs

IP
, β,E∗

T,jj, η∗

jj, MX, zobs
IP

and xobs
γ . The solid line

indicates the size of the statistical error.



Appendix E

Numerical values of the measured

differential cross section

Q2 bin dσ/dQ2 δstat δsyst δES ∆DIFFR

( GeV2) (pb/ GeV2) (pb/ GeV2) (pb/ GeV2) (pb/ GeV2) (pb/ GeV2)

5, 8 7.4 ± 0.2 +0.3
−0.5

+0.5
−0.5 0.1

8, 12 4.2 ± 0.13 +0.2
−0.3

+0.3
−0.3 0.1

12, 17 2.7 ± 0.1 +0.2
−0.2

+0.2
−0.2 0.2

17, 25 1.28 ± 0.05 +0.08
−0.12

+0.08
−0.07 0.05

25, 35 0.94 ± 0.04 +0.07
−0.07

+0.06
−0.05 0.06

35, 50 0.52 ± 0.02 +0.02
−0.03

+0.03
−0.03 0.01

50, 70 0.26 ± 0.01 +0.02
−0.01

+0.01
−0.01 0.02

70, 100 0.133 ± 0.008 +0.020
−0.003

+0.005
−0.006 0.020

Table E.1: Values of the differential cross section as a function of Q2 for the produc-
tion of diffractive dijets. The range over which the cross section is averaged is given
in the first column. The statistical, δstat, uncorrelated systematic, δsyst, and energy
scale uncertainties, δES, are quoted separately. The theoretical uncertainty on the NLO
calculations, δtheor, is quoted in the sixth column. The difference with the measured
cross section with and without ηMAX cut, ∆DIFFR, is presented in the last column. The
uncertainties on the proton dissociation subtraction and the luminosity measurement
are not presented in the table.
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W bin dσ/dW δstat δsyst δES ∆DIFFR

( GeV) (pb/GeV) (pb/GeV) (pb/GeV) (pb/GeV) (pb/GeV)

100, 125 0.25 ± 0.01 +0.02
−0.03

+0.01
−0.01 0.01

125, 150 0.42 ± 0.02 +0.04
−0.03

+0.02
−0.03 0.03

150, 175 0.65 ± 0.02 +0.04
−0.06

+0.04
−0.04 0.03

175, 200 0.69 ± 0.02 +0.03
−0.04

+0.05
−0.04 0.01

200, 225 0.77 ± 0.02 +0.06
−0.03

+0.05
−0.05 0.05

225, 250 0.80 ± 0.03 +0.03
−0.06

+0.05
−0.05 0.02

Table E.2: Values of the differential cross section as a function of W . Other details as
in the caption of Table E.1.

MX bin dσ/dMX δstat δsyst δES ∆DIFFR

( GeV) (pb/ GeV) (pb/ GeV) (pb/ GeV) (pb/ GeV) (pb/ GeV)

9, 14 1.25 ± 0.06 +0.02
−0.08

+0.05
−0.06 -0.03

14, 20 4.2 ± 0.1 +0.2
−0.2

+0.2
−0.2 0.1

20, 26 4.4 ± 0.1 +0.2
−0.4

+0.2
−0.2 0.0

26, 32 3.1 ± 0.1 +0.2
−0.3

+0.3
−0.2 -0.1

32, 42 1.15 ± 0.05 +0.09
−0.06

+0.12
−0.09 0.08

Table E.3: Values of the differential cross sections with respect to MX . Other details
as in the caption of Table E.1.

β bin dσ/dβ δstat δsyst δES ∆DIFFR

(× 10−2) (pb) (pb) (pb) (pb) (pb)

0.32, 0.63 1238 ± 102 +30
−76

+150
−137 -73

0.63, 1.26 2110 ± 82 +152
−219

+195
−175 -11

1.26, 2.51 1713 ± 48 +106
−131

+110
−107 45

2.51, 5.01 894 ± 24 +39
−80

+53
−49 3

5.01, 10.00 324 ± 10 +9
−18

+14
−17 4

10.00, 19.95 84 ± 3 +4
−3

+4
−4 4

19.95, 39.81 8.8 ± 0.7 +0.4
−0.5

+0.5
−0.5 0.4

Table E.4: Values of the differential cross sections with respect to β. Other details as
in the caption of Table E.1.
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xobs
IP

bin dσ/dxobs
IP

δstat δsyst δES ∆DIFFR

(× 10−2) (pb) (pb) (pb) (pb) (pb)

0.25, 0.50 3131 ± 220 +103
−191

+127
−137 -67

0.50, 0.79 6099 ± 274 +51
−89

+247
−302 25

0.79, 1.26 8105 ± 250 +108
−361

+363
−434 63

1.26, 1.99 8329 ± 205 +266
−676

+455
−456 35

1.99, 3.00 8070 ± 182 +656
−651

+695
−582 503

Table E.5: Values of the differential cross sections with respect to xobs
IP

. Other details
as in the caption of Table E.1.

E∗

T,jj bin dσ/dE∗

T,jj δstat δsyst δES ∆DIFFR

( GeV) (pb/GeV) (pb/GeV) (pb/GeV) (pb/GeV) (pb/GeV)

4, 5.5 50.9 ± 0.8 +3.2
−3.7

+2.5
−2.9 2.8

5.5, 7.5 39.8 ± 0.6 +2.6
−2.8

+2.3
−2.0 1.8

7.5, 9.5 9.7 ± 0.3 +0.7
−0.9

+0.8
−0.9 0.2

9.5, 11.5 2.2 ± 0.1 +0.1
−0.1

+0.3
−0.2 0.1

11.5, 13.5 0.59 ± 0.05 +0.02
−0.01

+0.07
−0.10 0.02

13.5, 16 0.10 ± 0.02 +0.02
−0.02

+0.01
−0.03 0.00

Table E.6: Values of the differential cross sections with respect to E∗

T,jj. Other details
as in the caption of Table E.1.
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η∗

jj bin dσ/dη∗

jj δstat δsyst δES ∆DIFFR

(pb) (pb) (pb) (pb) (pb)

-3.5, -3 56.1 ± 1.4 +2.5
−3.7

+7.7
−7.6 1.6

-3, -2.5 97.1 ± 1.8 +3.6
−6.1

+7.1
−7.0 1.8

-2.5, -2 88.4 ± 1.7 +5.7
−5.9

+5.0
−4.8 4.8

-2, -1.5 65.5 ± 1.5 +4.1
−4.1

+3.7
−4.0 3.4

-1.5, -1 34.9 ± 1.1 +3.3
−2.6

+2.7
−2.0 3.0

-1, -0.5 13.4 ± 0.6 +1.4
−1.3

+1.4
−1.3 1.1

-0.5, 0 1.7 ± 0.2 +0.4
−0.4

+0.3
−0.2 -0.2

Table E.7: Values of the differential cross sections with respect to η∗

jj. Other details as
in the caption of Table E.1.

zobs
IP

dσ/dzobs
IP

δstat δsyst δES ∆DIFFR

(pb) (pb) (pb) (pb) (pb)

0, 0.125 25.4 ± 2.0 +0.9
−2.4

+3.79
−2.12 -2.08

0.125, 0.25 131.6 ± 4.4 +8.6
−13.5

+12.29
−10.80 0.68

0.25, 0.375 152.3 ± 4.5 +9.4
−12.3

+9.9
−9.6 5.1

0.375, 0.5 132.0 ± 4.1 +8.2
−10.0

+6.0
−8.0 5.6

0.5, 0.625 98.3 ± 3.5 +5.7
−7.6

+5.1
−5.2 2.3

0.625, 0.75 82.9 ± 3.3 +1.4
−2.9

+3.9
−3.9 0.5

0.75, 0.875 57.8 ± 2.6 +1.7
−3.2

+2.9
−3.0 -1.6

0.875, 1 31.5 ± 2.0 +3.1
−4.0

+2.2
−1.5 -1.3

Table E.8: Values of the differential cross sections with respect to zobs
IP

. Other details
as in the caption of Table E.1.

xobs
γ bin dσ/dxobs

γ δstat δsyst δES ∆DIFFR

(pb) (pb) (pb) (pb) (pb)

0, 0.25 6.3 ± 0.6 +0.9
−0.5

+0.7
−0.3 0.9

0.25, 0.5 25.2 ± 1.2 +2.9
−1.5

+1.5
−2.2 2.6

0.5, 0.75 85.2 ± 2.3 +4.4
−5.5

+7.6
−8.0 3.4

0.75, 1 238.3 ± 4.0 +10.9
−17.1

+12.3
−11.6 5.8

Table E.9: Values of the differential cross sections with respect to xobs
γ . Other details

as in the caption of Table E.1.
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zobs
IP

bin dσ/dzobs
IP

dE∗

T,j1 δstat δsyst δES ∆DIFFR

(pb/GeV) (pb/GeV) (pb/GeV) (pb/GeV) (pb/GeV)

5.0 < E∗

T,j1 < 6.5 GeV(< E∗

T,j1 >= 5.7 GeV)

0, 0.25 31.8 ± 1.3 +2.1
−4.1

+1.9
−1.3 -1.2

0.25, 0.375 55.8 ± 2.4 +4.4
−4.8

+2.5
−2.4 3.1

0.375, 0.5 47.5 ± 2.2 +3.0
−3.0

+1.9
−2.4 2.5

0.5, 0.625 36.2 ± 2.0 +1.1
−1.7

+1.6
−1.9 1.0

0.625, 0.75 30.5 ± 1.9 +0.3
−2.0

+1.4
−1.3 -0.8

0.75, 0.875 20.3 ± 1.5 +1.3
−2.1

+0.9
−0.9 -1.2

0.875, 1 10.6 ± 1.1 +0.2
−1.0

+0.4
−0.5 -0.4

6.5 < E∗

T,j1 < 8.0 GeV(< E∗

T,j1 >= 7.2 GeV)

0, 0.25 14.1 ± 0.8 +1.5
−1.6

+1.0
−0.6 0.2

0.25, 0.375 26.2 ± 1.4 +1.2
−2.3

+1.9
−2.0 -0.9

0.375, 0.5 22.9 ± 1.3 +2.0
−1.8

+1.7
−0.9 1.9

0.5, 0.625 18.4 ± 1.2 +0.9
−1.0

+1.2
−1.0 0.7

0.625, 0.75 14.5 ± 1.1 +0.7
−0.8

+0.6
−0.6 0.1

0.75, 0.875 11.8 ± 0.9 +0.8
−0.9

+0.6
−0.8 0.0

0.875, 1 5.0 ± 0.6 +0.1
−0.2

+0.5
−0.2 -0.1

8.0 < E∗

T,j1 < 16.0 GeV(< E∗

T,j1 >= 9.7 GeV)

0, 0.25 0.56 ± 0.05 +0.07
−0.04

+0.08
−0.07 0.06

0.25, 0.375 2.3 ± 0.1 +0.4
−0.3

+0.2
−0.2 0.2

0.375, 0.5 2.3 ± 0.1 +0.2
−0.2

+0.2
−0.3 -0.1

0.5, 0.625 1.8 ± 0.1 +0.1
−0.2

+0.1
−0.2 0.0

0.625, 0.75 1.7 ± 0.1 +0.1
−0.0

+0.2
−0.2 0.1

0.75, 0.875 1.5 ± 0.1 +0.0
−0.1

+0.1
−0.2 0.0

0.875, 1 0.9 ± 0.1 +0.0
−0.1

+0.1
−0.1 -0.1

Table E.10: Values of the double differential cross sections with respect to zobs
IP

in bins
of E∗

T,j1. Other details as in the caption of Table E.1.
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zobs
IP

bin dσ/dzobs
IP

dQ2 δstat δsyst δES ∆DIFFR

(pb/ GeV2) (pb/ GeV2) (pb/ GeV2) (pb/ GeV2) (pb/ GeV2)

0, 0.25 5.5 ± 0.2 +0.4
−0.6

+0.4
−0.4 0.0

0.25, 0.375 9.0 ± 0.4 +0.6
−0.8

+0.7
−0.7 -0.1

0.375, 0.5 7.6 ± 0.4 +0.4
−0.5

+0.5
−0.5 0.3

0.5, 0.625 5.1 ± 0.3 +0.1
−0.2

+0.4
−0.4 0.1

0.625, 0.75 4.4 ± 0.3 +0.1
−0.2

+0.3
−0.2 0.1

0.75, 0.875 3.2 ± 0.3 +0.1
−0.2

+0.2
−0.2 -0.1

0.875, 1 1.4 ± 0.2 +0.1
−0.2

+0.1
−0.1 -0.1

12 < Q2 < 25 GeV2(< Q2 >= 17.2 GeV2)
0, 0.25 1.38 ± 0.08 +0.13

−0.16
+0.09
−0.07 0.07

0.25, 0.375 3.1 ± 0.2 +0.4
−0.2

+0.2
−0.2 0.4

0.375, 0.5 2.2 ± 0.1 +0.1
−0.2

+0.1
−0.1 0.1

0.5, 0.625 2.0 ± 0.1 +0.1
−0.2

+0.1
−0.1 0.0

0.625, 0.75 1.6 ± 0.1 +0.1
−0.1

+0.1
−0.1 0.0

0.75, 0.875 1.3 ± 0.1 +0.0
−0.1

+0.1
−0.1 -0.1

0.875, 1 0.66 ± 0.08 +0.01
−0.04

+0.05
−0.03 -0.01

Table E.11: Values of the double differential cross sections with respect to zobs
IP

in bins
of E∗

T,j1. Other details as in the caption of Table E.1.
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zobs
IP

bin dσ/dzobs
IP

dQ2 δstat δsyst δES ∆DIFFR

(pb/ GeV2) (pb/ GeV2) (pb/ GeV2) (pb/ GeV2) (pb/ GeV2)

25 < Q2 < 50 GeV2(< Q2 >= 35.2 GeV2)
0, 0.25 0.49 ± 0.03 +0.03

−0.07
+0.03
−0.02 -0.06

0.25, 0.375 1.00 ± 0.07 +0.07
−0.13

+0.06
−0.07 -0.03

0.375, 0.5 0.99 ± 0.07 +0.06
−0.06

+0.04
−0.06 0.05

0.5, 0.625 0.76 ± 0.06 +0.06
−0.02

+0.04
−0.04 0.06

0.625, 0.75 0.62 ± 0.05 +0.03
−0.04

+0.04
−0.03 -0.01

0.75, 0.875 0.47 ± 0.05 +0.02
−0.02

+0.03
−0.04 0.00

0.875, 1 0.23 ± 0.03 +0.01
−0.01

+0.02
−0.01 0.00

50 < Q2 < 100 GeV2(< Q2 >= 69.5 GeV2)
0, 0.25 0.09 ± 0.01 +0.00

−0.01
+0.01
−0.01 0.00

0.25, 0.375 0.25 ± 0.02 +0.05
−0.01

+0.02
−0.01 0.05

0.375, 0.5 0.29 ± 0.03 +0.02
−0.01

+0.01
−0.02 0.02

0.5, 0.625 0.20 ± 0.02 +0.02
−0.01

+0.01
−0.01 0.02

0.625, 0.75 0.16 ± 0.02 +0.01
−0.00

+0.01
−0.01 0.01

0.75, 0.875 0.12 ± 0.02 +0.00
−0.00

+0.01
−0.01 0.00

0.875, 1 0.10 ± 0.01 +0.01
−0.01

+0.01
−0.01 0.00

Table E.12: Values of the double differential cross sections with respect to zobs
IP

in bins
of E∗

T,j1. Other details as in the caption of Table E.1.
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