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Simple Pendulum and Spring Pedulum 

1 Exercise Aims 

This exercise aims to investigate the physical properties of two different kinds of pendulums. 
Therefore the exercise is divided into two parts. In the first part the oscillation period T of a 
mathematical pendulum is measured, which allows the determination of the gravitational con-
stant g. In the second part, the spring constant D as well as the mass of a spring pendulum mF 
are determined. This too, allows the calculation of the gravity acceleration. The results are 
compared to each other and the literature value. 
 

2  Theory 

2.1 Simple Pedulum 

A mass m is mounted to a cord of length l und swings under the influence of gravity with the 
oscillation period T. For the theoretical description the setup is approximated by a so called 
simple pendulum, which has the following restrictive properties compared to the real pendu-
lum: 
 
 

 Massless cord 
 Frictionless pivot of the cord 
 Punctiform mass of the pendulum body (no 

air resistance) 

 
To investigate the oscillation of the pendulum, we 
have to find the equation of motion of the mass m, 
which is done in the following paragraphs. 
 
The mass is moving on a circular arc with radius l. 
The acting forces are the weight G=m*g and the 
tension on the cord. In figure 1 you can see, that the 
tangential component of the resulting force is 
 

        sin sin= − ⋅ = − ⋅ ⋅
r

TF G m gφ φ                (1) 

 
This is the force acting against the displacement of 
the mass.  
 
By using F=m*a, we see that the following must be true as well. 
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Figure 1: Set-up of a swing pedulum 
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The tangential acceleration Ta depends on the angle acceleration α and the radius l and can be 
written as: 
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By equating equations (2) and (3) we get the differential equation for the tangential move-
ment: 
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The solution to this differential equation is the function φ(t), which describes the movement of 
the mass m. If the angle φ is small, which is true for small oscillation amplitudes, we can use 
the small-angle approximation sinφ ≈ φ, which leads to the following simplification of equa-
tion (4): 
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This can be solved by using the harmonic approach: 
 

0( ) sint tφ φ ω=          (6) 

 
With ω2 = g/l and the oscillation amplitude φ0. From this the oscillation period in first approx-
imation can be derived: 
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Thus the oscillation period for small amplitudes is independent from the starting angle φ0. For 
larger angles the second approximation can be derived as: 
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In this approximation the oscillation period therefore is a function of the oscillation amplitude  
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2.2 Spring pendulum 

The differential equation for a spring pendulum as seen in figure 2 can be derived analogous 
to equations (1)-(4) from the restoring force 
 

       xDFR

rr
−=                                   (9) 

 
as 

    Dx
dt

xd
m −=

2
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                            (10) 

 
If the spring pendulum is displaced around x0 at t=0 and allowed to swing, the solution to the 
equation of motion is: 

  )cos()( 0 txtx ω= ,                    (11) 

 
 
with  

       
m

D=ω .       (12)  

 
Which analogous to (7) leads to: 
  
 

   
D

m
T π2= .             (13) 

 
This relation allows the calculation of the spring 
constant D by measuring the oscillation period T 
as a function of the mass m. 
 
If a mass m is applied to the spring, the static 
displacement x is described by: 
 

                   Dxmg =      (14) 
 

Since the spring constant D is already known from the previous measurements this allows the 
calculation of the gravity acceleration g. 
 
 
 
 

Abb. 2: Set-up of a spring pendulum 
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2.3 Measurements and Analysis  

2.4 Simple Pendulum 

In the following exercises the oscillation period T shall be measured in dependence of the 
oscillation amplitude φ0 and the cord length l. 

2.4.1 Checking the Set-Up 

The electronic clock with a light barrier must be set up to measure to whole oscillation period. 
Check if the photo diode is triggered by the cord of the pendulum (not the bob or the mount-
ing ring). Measure the cord length l and don’t forget to consider the bob radius (R=16 mm) 
and determine the maximum error. 
 
2.4.2 Measuring the oscillation period as a function of the oscillation amplitude 

Measure the oscillation period T as a function of the oscillation amplitude φ0 at constant cord 
length for an as large as possible angle range. Average over a few oscillations respectively. 
Plot the oscillation period against the oscillation amplitude as well as against sin2(φ0/2). De-
termine the regression line and compare the regression coefficients (slope and axis intercept) 
to the expected values from the second approximation.  You can use the literature value of 
g=9,81 m/s² to calculate the coefficients. 
 
2.4.3 Measuring the oscillation period as a function of cord length 

Measure the oscillation period T as a function of the cord length l for small oscillation ampli-
tudes. Plot the measurements so that you get a linear dependence by modifying equation (7). 
Determine the gravity acceleration g with error σg rom the slope of the linear regression and 
compare this value to the literature one g = 9,81 m/s2. 
 

2.5 Vertical spring pendulum 

2.5.1 Choosing the measuring method 

Load the spring with a mass without overextending the spring and measure 3 times 10 oscilla-
tions to determine the oscillation period by using a stop watch. Start and stop the measure-
ments at the maximum displacement of the pendulum. Then do a second set of 3 times 10 
measurements. This time starting and stopping the measurements a zero displacement of the 
pendulum. Calculate the average oscillation period as well as the standard deviation of the 
average value for both sets of measurements. Use the more precise method for all following 
measurements. 

2.5.2 Determination of the spring constant 

Now measure the oscillation period as a function of the mass m by applying at least five dif-
ferent masses. Be careful not to overextend the spring. Measure 3 times 10 oscillations for 
each mass, so you get a more accurate value. Plot T² against the mass m and determine the 
spring constant D from the slope of the linear regression (with offset! see next exercise) and 
equation (13). 



SIMPLE PENDULUM AND SPRING PEDNULUM 

 5 

2.5.3 Determination of the spring mass 

The line in 3.2.1 is no line through origin. This is due to the previously neglected mass of the 
spring mF, which shifts the axis intercept by -mF/3. Use equation 
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instead of equation (12) to calculate the spring mass from the null of the regression line. 
Weigh the spring mass and note the maximum error to be able to do a comparison to the cal-
culated value. 
 
 
2.5.4 Determination of the gravitation acceleration 

To determine to gravitation acceleration, the static displacement x of the spring pendulum is 
measured as a function of the mass. For this the pendulum is weighted with at least five dif-
ferent masses and the resulting displacement is noted. The displacement is then plotted 
against the mass. Solving equation (14) for x, yields a linear relation between x and m. By 
doing a linear regression and using the calculated spring constant from exercise 3.2.2 the 
gravitation acceleration can be calculated. Compare this value to the one obtained in exercise 
3.1.3. and the literature value. 


