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Error calculation for beginners 
an example-oriented introduction for students of the TUHH 

 
1. Measurements and inaccuracy 

 
Many physical quantities such as length, temperature, mass etc. can be determined by 

measurement. Repeated readings of such measurements tend to spread around the true value; 

which is called distribution. Imagine you measure a mass precisely ten times in succession 

and you get ten different results - although you are sure the mass never changed. The reason is 

that each measuring process is inherently fraught with inaccuracy, which is usually referred to 

as an error. In order to properly interpret your precise measurement, it is necessary to specify 

error for example for a value of 78.34655 kg.  

In scientific experiments, the specification of any inaccuracy is particularly important in order 

to set boundaries on the estimated values in order to determine the probability of finding the 

true value within this inaccuracy interval, which is "narrow". Without such a boundary, a 

reading of the measured value such as 78.34655 kg is only informative and meaningless. So 

what do we do? We need to... 

 

 ... design the experiment in such a way that the error is as small as possible. There are 

not a lot within the lab that can be manipulated, because the most experiments and their 

procedures are already fairly concrete. 

 ...determine the uncertainty of  the results.  

 ... find out how large the probability of finding the result within the error interval is by 

repetition of the experiment. 

 

The typical procedure, like in our scale example, is to take repeated measurements in order to 

have a series of measurement values. Several measurement series may be combined to make a 

larger, single series but in doing so we must ensure that all measurements were conducted 

under the same conditions. If any of the test conditions were altered, such as the use of 

different measurement tools, the distribution of the measured values are also expected to 

change. Series of measurements will be considered to have been evenly conducted until the 

end of Chapter 5. 

 

How do we specify errors? An error is the inaccuracy of a physical quantity which more often 

denoted as ∆x. This, however, is not to be confused with a change in x. A particular type of 

error is referred to as standard deviation σx, which we will discuss later. The subscript 

indicates the physical quantity being referred to. 

 

 

 Error values can be specified by 

 absolute (Δx), 

 relative (Δx/x)  

 percentage  (Δx/x∙100%) 

  

 

 

absolute:       m=(78,35±0,61) kg 

relative:        m=78,35 kg ±7,8∙10
-3 

percentage:  m=78,35 kg ±0,78 % 

These are simple examples in order to 

help make the notation clear. 
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In the example box on the right, it can be seen that not all decimal places of our previous 

weight example have been taken into account. If the error is ∆m=0.61 kg, it makes no sense to 

record more decimal places for m as they are smaller than the inaccuracy. So it is important to 

note that going to more decimal places does not make the value more accurate! This holds 

also for the small scales as well as particle-detectors, which are as big as a house block. 

  

Error calculation provides the tool to determine the error magnitude of the measurements of a 

physical quantity. Although a calculator may spit out many decimals after calculation, how 

many should we take into account? How accurate should an error be?  As a general rule of 

thumb, in our example, it should be taken to two significant digits (significant decimal 

numbers) and rounded off at the end.  

Here is a summary of all that has been already mentioned in this example: 

 

  

 

 

 

 

 

 

2. An error is an error, isn’t it? 
 
Simple answer: Nope! Because the inaccuracies that occur during measurement can have 

different fundamental causes. Any error of a measured value or a calculated magnitude 

belongs to one of these two categories: 

 

2.1 Statistical Error 

 
 These kinds of error affect the result of the measurement and are unpredictable and 

uncontrollable; hence, we call them random errors. What causes such errors? 

 

 Deficiency in the human sense organs (such as the limited resolving power of the eye, 

when it comes to the question of whether two fine lines are superimposed or easily side by 

side), 

 Clumsiness when measuring and reading (parallax error), 

 Statistically acting external influences (i.e. vibrations). 

 

Statistical errors can be treated mathematically using the tools of statistics. Note that these 

errors have both signs ("±" in the box above). The values from Repeated measurements, like 

weighing a mass ten times, are all distributed around a mean value. This average is not 

actually the value that we want. However, the larger a series of measurements is, the closer 

the average approaches the actual value. For researchers and trainees, this means that test 

series should be as large as possible. You wouldn’t trust a medicine that has only been tested 

on five people.  

It can be stressed enough that a single measurement in principle tells us nothing.  Only once 

you have determined the accuracy of the method of measurement by many repetitions, you 

can understand how the result of each individual measurement fluctuates around an 

Value read from the measurement tool (scale):   m=78,34655 kg 

Calculated error:       Δm=0,612549 kg 

Measured value with (absolute) error:    m=(78,35±0,61) kg 

 

Here, Δm was not calculated but simply considered as a proper value for 

illustration purposes.  



 3 

approximation of the true value. This approximation, which is calculated from the individual 

measurements, must then be useful and suitable. 

 

2.2 Systematic Error 

 
Systematic errors affect all the individual measurements in the same way. They are 

reproducible; i.e. they occur in the same size and with the same sign by repeating the 

measurements under the same conditions. This is quite convenient, as the results of 

measurement can and must be corrected accordingly. Note that the statistical errors are not 

reproducible! 

  

So what leads to a systematic error in a measurement? Issues arise most commonly through 

faulty measuring instruments, such as a scale not displaying zero despite having nothing on it. 

Other causes may include the environmental influences that are often neglected in the 

internship, as temperature and pressure that change the values of a series of measurements, or 

even weak electric and magnetic fields, from wall outlets or nearby power lines. 

For the purposes of error calculation, only statistical errors are taken into account and not 

systematic errors. 

 

3. Frequency Distribution of Results (Measured Values) 

     
After sweating and cursing in getting proper measurement and calculating the error, my 

results is 32 ± 2 cm. So far so good, but unfortunately the reference value in the text book is 

35 cm. I’ve messed up somewhere, this whole thing is stupid! This is the reaction of many 

students when they compare their results with value out of a book, so we will clarify just what 

‘± 2 cm’ actually means. Does that mean none of the values measured were greater than 34 

cm and none less than 30 cm? Simple answer is no. What is going in an experiment? 

 

A physical quantity is measured, for simplicity, is called x. It could be a temperature, time, 

length, or anything else. The measurement is performed exactly N times under precisely the 

same conditions. The result of the ith measurement is xi. It may happen that the same reading 

occurs more than once. Then, the number Ni indicates how many of N measurements have the 

same result xi. The next step is to divide Ni by the total number of measurements N to get the 

relative frequency n(xi) of the value xi. As a formula: 

 

                       n(x
i
) =

N
i

N
=

measurements with the same magnitude x
i

Total number of measurements 
                                 (1) 

 

Let us remember that the measured values are not random numbers, but are somehow 

distributed around a mean value. We plot the relative frequency of a measured value xi versus 

the possible values x. We see that the resulting curve becomes ever more prominent with a 

higher N value and can be described using Gaussian (or normal) approximation, so the values 

have Gaussian (or normal) distribution. The Gaussian curve is represented by: 

 
 

2

22
1

( )
2

x x

n x e




 
  

                                                   (2) 

 

Important: The Gaussian distribution is obtained only for N → ∞. The distribution of your 

measurements will no doubt seem quite different if too few measurements were taken. 
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The following figure shows a graphic representation of the Gaussian distribution: 

 

 
 

Which properties does this distribution have? 

 

 n(x) is the distribution of a probability density while n(x)dx determines the probability of  

the measured value being located in the interval [x, x + dx] . 

 x is the most occurring  value. For N → ∞ it is equal to the true value of x.  
 It can be seen in the figure that the curve has two inflection points that are located at 

x   and x  .  So, σ indicates the distance between the inflection points and x .  

 

 

Since n(x) is a probability density, the area under the curve is a probability. Accordingly, we 

have  

                                                              ( ) 1n x dx





 ,                                                              (3) 

 

We consider the probability of a measurement within -∞ to +∞ boundary; which of course 

must be 1 (normalization condition). 

The two defined variables x and σ in the context of Gaussian distribution, as you may have 

guessed, have practical significance for the evaluation of your measurements: 
 x  is the mean value of the distribution. It is the most common measurement result and of 

particular interest, because it is a good approximation of the true value of a physical 

quantity out of a large series of measurements (N → ∞). 

 σ is the standard deviation of a distribution. It is a measure of the scattering of the 

individual measurement results around the mean value. A large σ value means that the 

Gaussian distribution is quite spread and a small value describes a narrow distribution. In 

the first case, the results of measurement deviate too far from x̄ whereas in the latter, 

results lie close in vicinity to the mean value. Thus, the standard deviation is appropriate  

in specifying the precision of a measurement method. 
 

 

When various physical quantities are measured in an experiment, we write the standard 

deviation as σx in correlation to the value x. But what does σx show quantitatively? It’s quite 

simple: 

[ ,x x  ] is an interval around x , in which 68.3% of the all measured values lie, and 

describes the probability of finding a measurement within this interval is 
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                                                             ( ) 0,683
x

x

n x dx





 .                                                     (4) 

 

Accordingly, we have: 

 95,4% of the measurement results lie within [ 2 , 2x x    ] and 

 99,7% of the measurement results lie within [ 3 , 3x x    ]. 

 

This clearly shows that we cannot say that all measurements locate within the 3, 4 or 5-times 

of the standard deviation. At any large or small interval in which x̄ lies, there is a probability 

greater than zero that the next measured value lies outside of this interval. 

If we return to the beginning of this chapter; it was said that a value out of a textbook is never 

the true value, but a mean value, which was obtained just like in our experiments (unless it is 

theoretically derived, in which case it should be expressly denoted as a theoretical value). 

Incidentally, textbook references are only useable when the errors are also given. So if you get 

(32 ± 2) cm and the literature says 35 cm (often error values are not given in), you may argue 

that the values are within the two times of the standard deviation. 

   

The next step is to clarify how to calculate mean values and standard deviations from a series 

of measurements. One thing should first be made clear that often causes confusion when 

taking your first error calculations. Error calculation is about determining inaccuracies from 

values that are either obtained directly by reading them off of a measurement instrument or 

calculated by means of a formula. The input we have comes from the measured values 

themselves, as well as known and already existing inaccuracies in the tools of measurement. 

The latter however, is not the goal of the error calculation. Often the accuracy of a 

measurement device is specified by the manufacturer, if not, their accuracy be estimated. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4. Mean Value and Standard Deviation 

 
As explained above, we have already seen the main outcome of error calculation, the true 

value of a measured quantity x, calculated as the arithmetic average in a limiting case of an 

Here, there is the sketch of a mercury thermometer calibration:  

 

°C 

32 

33 

What does the thermometer show? We read 32.8 ° 

C and a little bit… No matter what we read, it is 

definitely not precise because we cannot accurately 

read off the scale. In this example, it can only be 

said that the mercury lies either exactly on a line or 

somewhere in-between, in this case the latter. So 

we estimate the temperature to be T = 32.9 ° C with 

an inaccuracy in reading of ΔT = 0.1 ° C, which is 

the distance between a ‘line’ and the point exactly 

between two lines. It doesn’t get any more accurate 

than that. Note that the error was estimated and not 

calculated! 
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infinitely large N number of measurements, i.e. an infinitely large series of measurements. 

Mathematically, we express this definition as: 

                                                            
1

1
lim

N

wahr i
N

i

x x
N



                                                        (5) 

 

where xi is the result of the ith measurement of value x. 

Obviously it is impractical to take an infinitely large series of measurements, but we are able 

to make a reasonable amount of measurements N within a practical timeframe. In statistics 

this is referred to as taking a sample set. 

 

What do we want to get out of this sample set? We want... 

 1.  ... have the best possible estimation of x  for the true value, 

 2. ...calculate the standard deviation σx, which describes the distribution of the 

individual measurements around the average value (see previous section) and 

3. ... the inaccuracy of the mean value x
, which tells us how all possible means are 

distributed around the true value. 

 

Let's start with the first point; the best estimate of the true value is obtained from the 

arithmetic mean value of all measurement results: 

 

                                                    1 2

1

1 N
N

i

i

x x x
x x

N N

  
                                             (6) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The second point tells us of the standard deviation σx, which describes how the individual 

measurements spread around the mean value x̄. We calculate that from the average of the 

square of the distance between a measurement and the mean value x̄. The sum of these 

squares is divided by N-1 instead of N, because one of the individual measurement deviations 

from the Mean value is zero (because the values are distributed over and below the mean). 

The mathematical formula looks somehow cumbersome: 

 

                                
2

1

1

1

N

x i

i

x x
N 

   


  

    

 

i       T (°C) 

 

1      38,6 

2      38,8 

3      38,9 

4      38,9 

5      39,1 

6      38,8 

7      38,7 

8      38,4 

On the left is a series of measurements of my body 

temperature T measured with a thermometer (I was 

ill and I was bored ).  

The true value of T cannot be calculated because of 

the finite number of measurements N in the sample 

set, but as a mean value, we have:  

 

 C C C
1

38,6 38,4 38,775
8

T         . 
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                                       
2 2 2

1 2

1

1
N

x x x x x x
N

        
 

.                           (7) 

 

This is the standard deviation of an individual measurement from its mean-value. It is also 

called the standard error of the sampling distribution.  

 

 As an example, let's focus on the temperature-measurement series from the box: 

 

 

 

The mean value calculated by using (6) is an estimation of the true value of the size of x. 

Here, we take several series of measurements with differing averages. It shows the average 

itself has an error. All averages that are theoretically possible are distributed around the true 

value xwahr. So, we calculate the standard deviation of the mean value from the true value, 

which leads us to the third point. The true value itself remains as always hidden, but 

amazingly we are still able to calculate this standard deviation as follows: 

 
 

                               
 

 
2

1

1

1

N

x i

i

x x
N N 

   
 

  

                                     
 

     
2 2 2

1 2

1

1
N

x x x x x x
N N

       
  

                   (8) 

                                     
1

x
N

   

 

Pay attention to the small difference between the standard deviation of a mean-value and that 

of an individual measurement! In fact, the root mean square deviation of the mean-value from 

the true value decreases with increasing the sample size N by a factor of . Here, we see 

mathematically why a series of measurements should be as large as possible. 

 

We had determined T = 38,775°C calculated from N = 8 measurements. 

                                              

                                                 

T (°C)   
2

T T  (°C
2
) 

 38,6        0,030625 

 38,8        0,000625 

 38,9        0,015625 

 38,9        0,015625 

 39,1        0,105625 

 38,8        0,000625 

 38,7        0,005625 

 38,4        0,140625 

 

The sum of the right-hand column is 

0,315 ° C
2
 (do not be confused by  

"degrees Celsius squared"!). This value is 

then divided by N-1 = 7, which gives 

0.045 ° C2.  We then take the average of 

this square deviation of individual 

measurements from the mean T (i.e., the 

standard deviation of an individual 

measurement). 

 

°C0,21
T

   (the accuracy is with two 

significant places) 
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In statistics, beside error calculation we can calculate another concept like the variance Var(x) 

of a measured variable x. This is represented by σ
2
 and called the square of the standard 

deviation. 

 

 

5. Propagation of Error 

 
In the lab, you may often need to measure a number of different physical quantities, in order 

to calculate the value of interest. This is because the required quantity is not accessible by a 

direct measurement. Here, the measured quantities are called x1, x2, ..., xm respectively.  Pay 

attention to the difference in the indices compared to the previous chapters. Before, the index 

showed which measurement was being represented from a series of measurements of the same 

physical quantity, but here each index represents a new quantity, for example, x1 could be a 

temperature, x2 an electrical voltage, etc. As z can be calculated from the different quantities, 

it is written as a function of x1, …, xm. In other words z = f(x1, …, xm). Now we want to know 

how to calculate the error of z, when we already know the errors of x1, …, xm. These errors 

are usually the inaccuracy of the measuring devices, often stated in the manufacturer’s 

information attached to the device. 

 

5.1 The Error Propagation Law 

 
In order to properly apply an error calculation, two conditions must be fulfilled: 

 

1)  The measurement results of the measured values x1, ..., xm must be normally 
distributed in order to have Gaussian distribution.  

2)  The individual values x1, ..., xm must be statistically independent. 
 

 

If we take σT = 0.21 °C from above and divide it by √8, we get 

the standard deviation of the mean-value:  

  °C0,074
T

   

What if an average value, which is indeed an estimate of the 

true value, is determined, but we are interested more in mean 

square deviation from the true value? So, it is useful to write 

down the whole calculation steps while you are calculating 

standard deviation. (take care that measurement value and error 

calculation should be written with the same amount of decimal 

places): 

        T =(38,775±0,074) °C. 

 

That temperature is high for my body, so I might have to leave 

you now and seek medical diagnose. 
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The second condition means that one measured vale xi must not have any analytical 

dependency on the other measured value xj, otherwise xi is a function of xj or xi = f(xj) in 

which case there would be too many measurable variables for the calculation. Logically, we 

want to apply the smallest possible amount of measurements. The following example 

illustrates this definition: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

We then assume that the mean value of each series of measurements regarding to the different 

variables x
1
,x

2
,… ,x

m
 are known as well as standard deviations of the mean values s

x
1

,… ,s
x

m

. 

Then, the best estimate of the mean-value of z is  

 

    z = f x
1
,… ,x

m( ) ,                                                          (9) 

 

The optimum estimation for the error of z  is the standard deviation
z

 . It is calculated 

according to the error propagation law, which plays a very important role in the practical 

internship.  

 

 

  

2

2

1
j

m

z x

j j

f

x

 
   

  
  

            
1

22

2 2

1
mx x

m

f f

x x

   
      

    
.                                              (10) 

 

 

A student wishes to calculate the area A of a circular disc and so 

measures the radius r, as well as the diameter d just to be certain. 

From a series of measurements they then calculate the mean 

values r  and d . As s/he wants to evaluate both variables, the 

area A gets divided into two halves: 

           

2

2

1 2

1 1

2 2 2

d
A A A r

 
      

 
 

This formula is undoubtedly correct, there is no reason the area 

can’t be calculated this way. However, the two variables r and d 

are not independent, since the are related as d = 2.r. In this case, 

the second condition is not satisfied and the error propagation 

law is not applicable. If however, the equation A = 2πr
2
 were 

used, both conditions are fulfilled and we work with the smallest 

possible number of variables. 
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Here, /xj is the partial derivative with respect to xj (formed as a normal derivative), and the 

horizontal bar variables indicates that mean values of them must be considered in the bracket. 

You learn how to use this formula in the following example.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

We calculate the density ρ of a cube, here. The side length a 

and mass m are measured. The formula for density is:  

   
3

m

a
 . 

In order to calculate the average density, the average values m 

and a are used: 

   
3

m

a
   

 

The errors of the averages 
m

  and 
a

  are calculated in 

accordance with Equ. (8). Let's assume that they are already 

known. The error of the density is calculated according to the 

error propagation law, Equ. (10): 

 

       

2 2

2 2

m a
m a



 
  

    
      

    
 

                  

2 2

2 2

3 4

1 3
m a

m

a a
 

   
      

   
 

                  
2

2 2

6 8

1 9
m a

m

a a
      

 

To get the error of mean-density we simply substitute the mean 

values of the variables as well as the standard deviations of 

each mean-value: 

 

  
2

2 2

6 8

1 9
m a

m

a a
      . 



 11 

 

 

 

 

5.2 Maximum Error 

 
It can sometimes happen that one of the conditions (or both) of the error propagation law is 

not fulfilled. If this is the case, Equ. (10) cannot be used to specify the error of the physical 

quantity z. This does not mean that an error cannot be determined, but that the interpretation 

of the maximum error ∆z is instead applicable. Maximum error mathematically calculates as 

follows:  

 

          
1

m

j

j j

f
z x

x


  


  

        1 2

1 2

m

m

f f f
x x x

x x x

  
      
  

                                       (11) 

 

 

The absolute value lines are due to the partial derivative of f, which can be negative; but we 

need to sum positive contributions of each various quantities.  

For any value xj, whose mean-values and standard deviations are known out of a series of 

measurements, the error is 

     
jj x

x  , 

 

where the standard deviation of the mean-value is also plugged in. For all other variables, a 

realistic estimation of the error must be taken (an example of this can be found on page 5). As 

a simple example, we consider the density calculation from the previous page. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The only difference in this calculation from the last is that the errors of the 

mass m and side length a are not calculated from a series of measurements 

(standard deviation), but instead are estimated values Δm and Δa. Even if the 

law of error propagation were used, the standard deviation of  would not b 

determined, but only an estimate of the error Δ . Here, we are interested 

specifically in the maximum error of the density ρ, calculated according to 

Equ. (11): 

 

   m a
m a

 


 
    

 
 

                     
3 4

1 3m
m a

a a


     

                           4

1
3a m m a

a
       

 

The last step is considering the absolut values in order to omit the minus 

sign. Since m and a and their errors Δm and Δa are greater than zero, we 

should sum the errors. The maximum error of the density mean-value is 

obtained by inserting the mean values of m and a: 

    4

1
3a m m a

a
        
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6. Linear Regression 

      
In many cases, the two physical quantities such as x and y are linearly dependent, and the 

relationship is shown with a linear equation 

 

y = a∙x+b,                                                                      (12) 

 

where a is the slope, b is the y-intercept, and both are constant.  

Often during experiments we change the magnitude of a quantity x for N sequentially 

different values xi and then we read the dependent quantity yi from a measurement device; 

each yi value has inherently a random error. An experimenter is interested in parameters a and 

b (usually materials or fundamental constants), and how to get those values is the discussion 

target of this section.  

After N measurements of successive different xi, we have a series of measurements. It is a 

common question for the interns to find out whether the measured values, which are in this 

series of measurements, show a linear relation or not. Remembering a reliable tip can save a 

lot of time and effort: Just plot it! Put the data points (xi, yi) in a graph to make it easier to 

recognize what kind of curve they make. This takes us to a crucial point; even if theoretically 

a linear relation for x and y can be derived, it still may be that the points (xi, yi) do not lie 

exactly on a line. This is of course due to the error of the yi values. Of course all values xi also 

contain errors, but they are assumed to be negligible. In principle, the error of xi may be 

considered in linear regression but this increases computational complexity dramatically and 

we cannot calculate that anymore in this internship. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The task is now to find the best fitting straight line to describe the data points, and then to get 

those parameters a and b.  

The easiest way to approximate a best-fit line is simply to draw a straight line using a ruler, in 

a way that by visual inspection ‘balances’ the positioning of the data points. It is not so much 

the number of points above and below the line that is important, but more so that their 

distances to the line are as small as possible. This method of finding a best fit is likely familiar 

to many students as it is often taught in school. However, do keep in mind that the common 

practice of simply connecting the first and last data points to make a line is incorrect! It must 

be incorrect because in order to find a best-fit line, each pair of values must be taken into 

account (Unfortunately, it seems there are still teachers who encourage the use of a wrong 

method!!!). 

 

Typical position of the data points 

when x and y theoretically have a 

linear relation. Only the errors of the 

y-coordinates are taken into account 

(error bars). 

x 

y 
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The next step is easier, b is read off of the y-axis and the slope a is determined by means of 

drawing a triangle.  

So far, so good. There is of course a mathematical, quantitative method to find the desired 

linear equation. The method is called linear regression, which is based on the fact that the sum 

of the squares of the distances between measured points and the straight line should be 

minimal (distances in the y-direction): 

 

                                           minimal
!2

1

N

i i

i

y a x b


                                                         (13)      

 

Here, we see that we have an extreme-value problem. You may be wondering why we take 

the sum of the squares and not simply the sum of distances. The reason lies within the depths 

of mathematical statistics:. The Gauss-Markov law states that the best-fit model, i.e.  

Linear equation is obtained when the method of the least-square is used. 

 

 

Method of the least-square: The squares of the distances are represented with the gray areas. 

The linear regression is the straight line for which the sum of the gray areas is the smallest. 

The error bar of the data points has been disregarding for simplification. 

 

 

After lengthy calculations which will not be explained in detail, the solution to the extreme-

value problem Equ. (13) gives us the best estimations a' and b' of the parameters a and b: 

 

     
2

xy

x

S
a

S
  ;         b y a x                                                       (14) 

 

with the following definitions: 

 

                          
1

1 N

i

i

x x
N 

   ;         
1

1 N

i

i

y y
N 

   

    
1

1

1

N

xy i i

i

S x x y y
N 

   

  ;      

22

1

1

1

N

x i

i

S x x
N 

 

                                (15) 

 

x 

y 
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This puts us in a difficult situation in that we have to calculate averages for x and y, although 

the x-values vary deliberately during the series of tests, in other words the values of x and y 

are continuously changing. 

 

It is always a good idea and highly recommended in the evaluation of results to write down all 

intermediate values (15) when conducting a linear regression - it makes keeping track of your 

workings and progress considerably easier. 

 

Is that all? Not entirely! Although the estimates (14) for the parameters a and b are already 

sufficient to formulate the linear equation for the regression line, it will undoubtedly, as 

always, contain errors. If we for example - by means of the linear regression - would like to 

determine a physical constant, its error value will be of upmost interest.  

 

From Equ. (11) and applying the error propagation (we again skip the details here, because 

you learn nothing new out of it.) we find the best estimate for the error of y. 

  

 

    
2

1

1

2

N

y i i

i

y a x b
N




      
 .                                                 (16) 

 

This is the standard deviation of the individual measurement. A quick look back to Equ. (7) in 

Chapter 4 highlights a slight difference in calculation, in that the standard deviation of an 

individual measurement divided by N-2. Make sure it is understood, that earlier we discussed 

the deviation of the individual measurements from the mean, while here we have the deviation 

of the individual measurements from the linear regression. In the first case we have only one 

parameter x which changes, in the second case we juggle two parameters a and b. This 

clarifies the slight difference. Also, note that Equ. (16) does not give the y-error, which is  

shown as error bars in the chart! 

The best estimates of the error σa' and σb' for the estimated values a' and b' are calculated with: 

 

   

 
22

a y

i i

N

N x x
   

  
 

        
2 2

1
y

i
x N x

 
 

                                                                   (17) 

        
 

2

1
y

i
x x

 


 

 

and for the errors of the slope and the y-intercept. 

   

 

2

22

i

b y

i i

x

N x x
   

 



 
 

        

2

2 2

1 i

y

i

x

N x N x
  

 




                                                             (18) 

        
 

2

2

1 i

y

i

x

N x x
  





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All sums are from i = 1 to N. 

 

If we have a line crossing the origin with the form of y = a.x, then we apply this formula for 

calculating the slope  

 












n

i

i

n

i

ii

x

yx

a

1

2

1                                                     (19) 

 

and the following one for the error of the slope: 

 

 












n

i

i

n

i

i

a

x

d

n

1

2

1

2

1

1
   , where  iii xayd  .                              (20) 

 

There have been many large formulas introduced in this text, but do not panic, it is much 

easier than it looks. Since you will encounter the linear regression quite often in lab, we 

attached another example. Have you ever wondered how thick a piece of paper in your 

textbook is? Probably not (and why should you have?). This is a good example of something 

that cannot be particularly measured directly, but can be determined by linear regression. 

 

---------------------------------------------------Example-------------------------------------------------- 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A book can be quantized like in quantum physics : The thickness of the 

book is quantized, and a "book quanta" is the thickness of a sheet. the 

thickness is measured with a vernier caliper, not a single sheet, nor the whole 

book, but succesively 10, 20, 30, etc pages including the cover (the reason 

the cover is measured will become clear in a moment). The series of 

measurements are shown in the table, in which m is the number of the sheets: 

 

Anzahl    Dicke 

    m        d (mm) 

 

    10          3,2 

    20          4,2 

    30          5,1 

    40          5,8 

    50          6,8 

    60          7,7 

    70          8,8 

    80          9,7 

    90        10,8 

  100        11,7 

First, the intermediate results are calculated: With 

formula (6) we obtain the average values of m and d:

 m =55 und d =7,38 mm.  
 

From Equ. (15) we get: 
 

 Smd=86,4444 mm and  

 Sm
2
=916,6666. 

 

The best estimates of the parameters a and b are then 

obtained from Equ. (14) 

 a'=0,0943 mm and 

 b'=2,1935 mm. 
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The image was created with the program ‘Origin’. Programs such as Excel or 

Origin can perform the entire linear regression themselves and are able to 

provide not only the diagram but also a', b' and their errors. 

 

The linear equation of the plotted data is 

 

    d=0,0943 mm ∙ m + 2,1935 mm. 

 

We do not have the error information yet. For this we have a table of 

intermediate values: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This is already enough to plot a graph with linear regression. 

 

  
 

 

 

   mi
2
    (mi- m )

2
   (di-(a’∙mi+b’))

2
 (mm

2
) 

 

   100     2025                 0,00405 

   400     1225                 0,01457 

   900       625                 0,00604 

 1600       225                 0,02732 

 2500         25                 0,01172 

 3600         25                 0,02289 

 4900       225                 0,00003 

 6400       625                 0,00139 

 8100     1225                 0,01433 

10000    2025                 0,00588 

Only the values in the 

right column have units 

as m is only a number. 
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The book equation in this example describes a fundamental law, and a' and b' correspond to 

the material parameters. The equation will always hold for a particular book, in this case it 

was Kohlrausch, Practical Physics, 22nd edition, BG Teubner, Stuttgart., 1968.  

 

--------------------------------------------------End of Example ----------------------------------------- 

 

So far we have discussed the general form of linear regression. There is an important special 

case in which we may use slightly different formulas to save some work; when the y-intercept 

is zero and the linear regression can be written as y = a ∙ x. But be careful! Consider 

thoroughly beforehand whether this really is the case! The simplified calculations may not be 

used if the y-intercept is just small but still present. It must be exactly zero, like the 

relationship between the length and time it takes for a beam of light to travel a certain 

distance. For a special case linear regression where the y-intercept is zero, the following 

simplified formulas may be used to calculate the best approximation a' of the slope and its 

error: 

The standard deviation of the individual measurements of the linear regression is analogous to 

Equ. (16) 

 

     
2

1

1

1

N

y i i

i

y a x
N




   


 .                                                (21) 

First of all, we apply the formula (16) 

 

   
10

2

1

1

8
d i i

i

d a m b


         = 0,173 mm. 

 

Using equ. (17) and (18) we get the errors 

 

   σa'=0,0019 mm und σb'=0,12 mm 

 

In summary, we get also : 

 

   a'=(0,0943±0,0019) mm 

   b'=(2,19±0,12) mm 

 

The slope a' specifies the average thickness of a sheet in the book. So we have 

determined the “book quanta”, and also the error! The y-intercept b' is the 

thickness of the book back cover, i.e. the thickness of the book if it had no 

pages. Puting all the calculations together gives us the equation of the book: 

 

   Book thickness D = a'∙m+2b'. 

 

On the right side, there is a factor of 2, because we should also consider both 

the top and the bottom covers of the book. 
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Here, the square is again divided by N-1, because we are dealing with only one parameter. 

The best estimate for the slope is: 

     
2

i i

i

x y
a

x


 



,                                                              (22) 

 

and as the best estimate of the error we have  

 

            
2

1
a y

i
x

   


,                                                           (23) 

 

where the sums are always from i = 1 to N. 

 

Sometimes computer programs calculate a coefficient, usually called R, in addition to the 

slope and y-intercept. It comes from Pearson’s empirical correlation coefficient. It is defined 

as 

                
2 2

xy

x y

S
R

S S



                                                               (24) 

 

with the definition of Equ. (15) and  
22

1

1

1

N

y i

i

S y y
N 

 

  . R can have values between -1 

and 1 and is used to check whether the measured data actually have a linear relation. For 

R=±1, all measuring points are exactly on a straight line. The sign indicates only whether the 

slope is positive or negative. When R = 0 there is no linear relation. The emphasis here is on 

linear, because the variables x and y can be even nonlinear but still correlates clearly visible in 

the diagram. 
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