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Diffraction of light by a single slit and gratings 

0. Introductory remarks 

Diffraction of light at optical slits and gratings is an interference phenomenon characteristic 

for waves. The propagation of waves is dictated by so-called wave equations, which are dif-

ferential equations in time and space. The mathematically correct description of wave pro-

pagation is rather complex but the Huygens-Fresnel principle introduced in the next chapter 

offers a rather instructive alternative approach to understand on a basic level interference 

phenomena like refraction and diffraction. If you encounter difficulties in understanding the 

next chapter, which is kept concise, please consult one of the many fundamental physics 

textbooks in which wave phenomena are explained. Some suggestions are given at the end of 

this handout.  

It is very important to read the instructions in chapter 4 before you experiment with the laser.  

1. Basic Theory 

Light is an electromagnetic wave consisting of time-varying electric and magnetic fields, 

which oscillate in time and propagate in space similar to a mechanical wave or sound wave. 

Unlike mechanical waves electromagnetic waves require no medium and travel, e.g., in vacu-

um with a constant velocity (c = 299792458 m/s). The fields carry both energy and momen-

tum. In the following it will suffice to consider the electric field �⃗�  alone, which may be consi-

dered to play a role similar to the deflection from equilibrium position in a mechanical wave. 

A plane wave with frequency  and wavelength λ travelling in the positive x-direction the 

electric field is mathematically described by a function  

𝐸(𝑥, 𝑡) = 𝐸0 ∙ sin (2𝜋𝜈 ∙ (𝑡 −
𝑥

𝑐
))                                                       (1). 

This equation tells us that the electric field 𝐸(𝑥, 𝑡) determined at a certain position x in space 

oscillates in time with a frequency  and an amplitude 𝐸0. The argument of the sin-function is 

often called phase. In three dimensions the points of a fixed phase in the wave of equation (1) 

form yz-planes, a fact which may be understood as motivation for the name. Note that with 

increasing time the spatial positions of fixed phase propagate into positive x-direction with the 

light velocity c. Because of the periodicity of the sin-function, points separated in x-direction 

by an integer multiple of 𝑐/𝜈 have the same field value. Thus the wave field is spatially 

periodic with period 𝜆 = 𝑐/𝜈, where  is called the wavelength.  

Plane waves, such as the one of equation (1), are mathematically very simple but by no means 

describe all possible wave fields. Much more complicated surfaces of constant phase are pos-

sible. In general, electromagnetic waves are generated by a number of oscillating point char-

ges. A single point charge is the source of a spherical wave, which spreads with light velocity 

from the point of the charge into all spatial directions. The wave fronts then form sphere sur-

faces. The field value of such spherical waves must decrease with increasing distance from 

the source as indicated in Fig. 1.       
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Fig. 1: Electric field and wave fronts of a 

plane wave (top) and a spherical wave 

(bottom). 

Fig. 2: Geometry of an optical slit. The 

positions x1 and x2 of two wavelet source 

points within the slit are marked. The lines 

connecting these points with the photo-

diode denote the radii of wavelets inter-

fering at the detector.  

If the sources or the wave fronts at some instant are given we may calculated the wave fronts 

at any later time by the so-called Huygens’ principle:  

 Every point on a wave front serves as the source of a spherical secondary wavelet that 

spreads out in all directions with a speed equal to the speed of wave propagation.  

 The new wave front at a later instant is the surface tangent to all the secondary spherical 

waves.  

Note that only the wave front in forward direction, i.e., in propagation direction, is consi-

dered. The wave front simultaneously formed on the back half is disregarded. It was about 

150 years later when Fresnel pointed out that Huygens’ principle can be extended in order to 

explain diffraction effects showing that optical apertures do not cast perfect shadows. This 

extended version of Huygens’ Principle is therefore often named Huygens-Fresnel principle:  

 Every unobstructed point of a wave front at a given instant serves as a source of a spherical 

secondary wavelet with the same frequency as that of the primary wave. The amplitude of 

the wave field at any point in forward direction results from the superposition of all these 

wavelets, considering their amplitudes and relative phases.  

It is important to note that superposition here means addition of the electric field values in 

contrast to addition of intensities. However, for both the human eye and most detectors the 

light intensity is of relevance, which is proportional to the square of the electric field:   

𝐼Ligt ∝ |𝐸|2                                                                          (2). 

The intensity of the light field at the point of observation arises from the square of the electric 

field that results from summing up the electric fields of all wavelets. A second crucial point is 
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that the extended version explicitly allows superposition of spherical wavelets with different 

radii. Considering the phase
1
 of the wavelets suffices.  

In this laboratory exercise interference phenomena will be studied in the limit of Fraunhofer 

diffraction (as opposed to Fresnel diffraction). This means that, firstly, the beam impinging 

on the diffracting obstacle can be assumed to be a plane wave and, secondly, the distance 

between the diffracting object and the point of observation is very large. In our experiment the 

first condition is met in good approximation since we use a laser as light source. The second 

condition is met if the distance between the obstacle and the point of observation is much lar-

ger than the extent of the diffracting object, i.e., the width of the slit or the illuminated grid.  

In this experiment the wave properties of light will be demonstrated by observing diffraction 

and interference effects from a single slit, a double slit and a series of slits. We will learn 

about the properties of diffraction gratings, which are important components in spectroscopic 

instruments such as monochromators and spectrographs. 

2. Diffraction from a single slit 

Here we consider a monochromatic plane wave incident on a long narrow slit. According to 

geometric ray optics the transmitted beam would have the same cross section as the slit, but 

what we indeed observe is a drastically different diffraction pattern. The main properties of 

the diffraction pattern can be understood with the aid of Fig. 2 and Fig. 3. For the case of 

Fraunhofer diffraction, where the distance r between the slit and the point of observation P is 

very large compared to the slit width d, all rays origination from the slit can be considered to 

be parallel in good approximation. To calculate the resultant intensity with Huygens’ principle 

we consider the optical path length difference 𝛿 between wavelets originating at two different 

points x1 and x2 within the slit. The difference in path length to the point P is 𝛿 = (𝑑 sin 𝛼 /2) 

where d is the slit width and 𝛼 the angle between the optical axis of the slit (line normal to the 

aperture) and a line from the slit to the point of observation P.  

 

Fig. 3: Interference of wavelets originating from different positions within a single slit. 

The distance of the point of observation P is so far that the rays can be considered 

parallel. The numbers indicate wavelets that interfere destructively at P.  

A simple geometrical argument explains compellingly why we observe far behind the slit a 

number of parallel stripes with different intensities. As indicated in Fig. 3 we divide the wave 

front within the slit into two parts (a) and (b) of the same width. At a certain angle each 

                                                 

 
1
 The phase relation of wavelets with different radii must be well defined, however. This so-called coherence 

condition is well obeyed in laser light.  
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wavelet of the second half will have a partner wavelet in the first half with precisely a half-

wavelength optical path difference. This, however, means that at the point of observation all 

wavelets from the slit add with their partner wavelets to zero because of their 180° phase 

difference. As a result at this angle the intensity must be at a minimum. The same will occur 

at any angle, at which we may divide the slit into an even number of slices with each having 

half a wavelength path difference to the wavelets of the next neighbouring slice. This, finally, 

results into the condiction for angles at which stripes of with vanishing intensity are observed 

sin 𝛼min = 𝑚
𝜆

𝑑
    with    𝑚 = ±1,±2,⋯                                            (4). 

If, on the other hand, the number of slices with wavelets of 180° phase shift is odd, one slice 

remains unextinguished and an intensity maximum occurs:  

sin 𝛼max = (𝑚 +
1

2
)
𝜆

𝑑
    with    𝑚 = ±1,±2,⋯                                            (5). 

The integer number m is often called order of the maximum. Mathematically the electric field 

at the point of observation results from a sum of all wavelets originating from any location of 

a wave front within the slits. This sum turns into an integral since the sources of the wavelets 

are arbitrarily close to each other. Finally, the intensity at point P is obtained by taking the 

square of the sum:  

𝐼𝑆 = 𝐼0 (
sin (

𝜋 ∙ 𝑑
𝜆

sin 𝛼)

𝜋 ∙ 𝑑
𝜆

sin 𝛼
)

2

                                                               (6). 

Here 𝐼0 is the intensity of the maximum observed at angle  = 0. Note that the intensity of 

equation (6) indeed vanishes whenever the angle  meets equation (4). Furthermore, accor-

ding to equation (6), we expect an intensity maximum (in quite good approximation for 

(𝑑/𝜆) sin 𝛼 > 1) whenever the argument of the sin-function is an odd multiple of 𝜋/2, which 
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Fig. 4: Angular dependence of the intensity pattern resulting from interference at an optical 

slit. The dashed line depicts the intensity ten times enlarged at angles beyond . 
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is in correspondence to equation (5).  

In Fig. 4 the intensity is depicted as function of the entity (𝜋𝑑/𝜆) ∙ sin 𝛼. A large main 

maximum is observed at zero deflection. The intensity of the much weaker side maxima de-

creases with increasing order m according to  

𝐼max =
𝐼0

𝜋2(|𝑚| + 1 2⁄ )2
                                                                    (6). 

3. The Diffraction Grating 

A diffraction grating consists of a large number N of identical slits each of width d and sepa-

rated from the next by a distance D, as shown in Fig. 5. We will first consider the interference 

of wavelets originating from the slit centers. Of course, the result will then be only a good 

approximation if the slits widths are extremely small. But we will find an easy way to extend 

the result to the case of grids with slits of realistic widths. If we assume that the incident light 

is planar and perpendicular to the grid, the optical path difference of wavelets in neighboring 

slits is Δ = 𝐷 sin 𝛼, where the angle  is again taken between the normal to the grating and 

the line joining the grating and the point of observation P. If this path difference is equal to an 

integral multiple of wavelengths then all the slits will constructively interfere with each other 

and a bright spot will be measured at P:  

sin 𝛼max = 𝑚
𝜆

𝐷
 ,  𝑚 = 0,±1, ±2,… .  (7). 

These maxima are called principal maxima, because the superposition of the wavelets accor-

ding to Huygens’ principle will turn out to result in additional maxima, which are much 

weaker though. Mathematically the superposition results in a sum of the fields in the wavelets 

from all N slits in the grating. To obtain the intensity the result is squared again, which results 

in:  
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Fig. 5: Geometry of an 

optical grating. 

Fig. 6: Intensity pattern of an optical grid with N = 5 slits. The ratio 

between the width of the slits and the period of the grating is 

 = 1/5. The dashed line marked IS reflects the intensity pattern of a 

single slit in the grid. 
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𝐼𝐺 = 𝐼𝑆 (
sin (

𝑁 ∙ 𝜋 ∙ 𝐷
𝜆

sin 𝛼)

sin (
𝜋 ∙ 𝐷

𝜆
sin 𝛼)

)

2

                                                           (8). 

Extinction occurs at angles min with  

sin 𝛼min =
ℓ

𝑁
∙
𝜆

𝐷
 , ℓ = ±1,±2,…   und    ℓ ≠ 𝑁                        (9). 

If the /N is an integer number, the denominator of IG in equation (7) also vanishes. A 

mathematical consideration leads to the result that in this case the intensity must be N
2
IS. 

These maxima occur at angles in accordance with equation (7), and they are much stronger as 

compared to the intensity observed at any other angle. According to equation (9), we expect 

between principal maxima (N  1) intensity minima and (N – 2) weak secondary maxima, 

which strength relative to the principal maxima rapidly decreases with increasing N.  

If in each slit we have only one source of a wavelet the factor IS in equation (8) is the intensity 

of the wavelet. In a real grid we have to consider the finite width of the slit. If different wave-

lets originating in the same slit are interfering destructively, they will do so in a grating as 

well. The finite width of the slits is considered in equation (8) if the factor IS contains the 

intensity pattern of a single slit of the grating. As a result we obtain the interference pattern 

depicted in Fig. 6. In the case depicted in this figure, the width of the slit amounts to 1/5
th

  of 

the grating period.  

The location of the maxima does not depend on the number of slits. However, they become 

sharper and more intense as N is increased. Because of the wavelength dependence of the 

angles, at which principal maxima are observed, light consisting of different wavelengths can 

be spectrally resolved with an optical grating: After diffraction of the light beam at the grating 

the components with different wavelength are observed at different angles. Note that the re-

solving power of the grating, i.e., the resolution at which different wavelengths can be 

distinguished with the grating, increases with the number of illuminated slits because of the 

decreasing width of the principal maxima at gratings with increasing N.  

4. The Experiments 

WARNING: NEVER EVER look directly into the laser beam: 

Avoid reflecting the laser beam inadvertently.  

Take off watches and jewelry from hand and wrist. 

Don’t sit down, because the laser beam may be on the same level as your eyes. 

4.1 Experimental set up 

The light source is a 2 mW helium neon laser (λ = 632.8 nm). The mask containing the 

apertures is sketched in Fig. 7. The beam should be incident normal to the mask. This can be 

checked by observing the part of the beam that is reflected at the mask. The mask should be 

adjusted so that the reflected beam coincides with the incident beam. The diffraction patterns 

are measured using a photodiode which can be shifted perpendicular to the optical axis, de-

fined by the incident laser beam. The intensity of the light IL is proportional to the current of 

the photodiode IP. The current of the photodiode is passed through an R = 200 Ω resistor to 

produce a voltage V = IPR, which is measured using a digital voltmeter. Note that IL and IP are 

different physical entities with different units.  

The laser needs about 20 minutes to warm up and stabilize. 
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4.2. Tasks to be performed 

Measure the distance r0 along the optical axis between the slit and the arrow marked on the 

photodiode. This value is needed for calculating the angle of deflection tan𝛼 = 𝑋/𝑟0, where 

X is the displacement of the photodiode from the optical axis (see Fig. 2).  

a) First, for the 0.2 mm single slit, measure the positions of several maxima and minima on 

both sides of the central maximum. Make sure that the displacement of the photodiode is 

perpendicular to the optical axis and it is essential to move the diode in small steps in 

order not to miss a maximum or minimum. You should then repeat this exercise using the 

0.05 mm slit. For this measurement you may adjust the size of the steps because the 

peaks turn out to be not as sharp as in the case of the larger slit.  

b) Observe the patterns from the double, triple and quadruple slits on a screen placed at a 

larger distance behind the photodiode. Make a drawing of the maxima and minima and 

describe the common features and the differences. Count the number of secondary maxi-

ma. For N slits one would expect N  2 secondary maxima according to equations (7) and 

(9). Does your observation confirm this expectation?    

c) Using the quadruple slit measure the positions and intensities of the principal and secon-

dary maxima up to the second visible principal maximum, plus all of the principal 

maxima. This experiment is quite important for your future data analysis, so it is better to 

have about 200 points measured.   

4.3. Data analysis 

a) Make a table with the positions of the maxima and minima measured in 4.2a and prepare 

a plot showing the positions for both slits. Calculate the corresponding angles min and 

max and determine the wavelength from each of the angles. Determine an average 

wavelength together with a statistical error. Compare the thus determined wavelength 

with the one of the helium neon laser. Discuss possible error sources.   

b) Compare the measured maxima intensities with the theoretical values according to 

equation 6 for the appropriate values of m. In equation (6) the factor I0 corresponds to the 

intensity of the central maximum. How do you rate your experimental data?  

c) Describe what you expect to observe for a wide (d > 1 m) and a very narrow (a ~ λ) slit. 

Frequently circular pinholes are used to produce wider laser beams for applications such 

as holography.  

d) Make a table with the positions of the maxima and minima measured in 5.2c. Calculate 

the corresponding angles min and max and use these values to calculate the wavelength. 

Calculate the average wavelength and the standard deviation. Compare the result with the 

expected laser wavelength of 632.8 nm.   

e) The intensity distribution from the 0.05 mm slit should be plotted together with the distri-

 

Fig. 7: Sketch of the mask used in these experiments. 
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bution from the quadruple slit having the same slit width, similar to figure 6. In order to 

compare with figure 6, use for this plot the intensities I/I0 normalized to the intensity of 

the zero order maximum and (𝐷/𝜆) sin 𝛼 as the scale of the ordinate. 

f) Use the previous figure to explain what happens when the grating period D happens to be 

exactly twice the slit width d. How can this comply with the prediction of N - 2 secondary 

maxima? Indicate on the drawing, where you would expect secondary maxima if the slits 

were much narrower. 

Hints for parts 4.3 b) and c) 

The intensity distribution of N equally spaced slits can be plotted like in figure 6 substituting 

𝑥 = (𝐷/𝜆) sin 𝛼 in equation (8) and normalizing to the intensity of the principal maxima:  

𝐼𝐺(𝑁, 𝜆, 𝑥)

𝑁2𝐼0
= (

sin(𝛾 ∙ 𝜋 ∙ 𝑥)

𝛾 ∙ 𝜋 ∙ 𝑥 
 )

2

∙ (
sin(𝑁 ∙ 𝜋 ∙ 𝑥)

sin(𝜋 ∙ 𝑥)
)

2

                                        (10) 

where N is the number of illuminated slits and γ= d/D the ratio of the slit width to the grating 

period. The first factor on the right hand side in equation (10) reflects the contribution arising 

from the slit geometry. The second factor originates from the periodicity. Similarly the 

intensity of a single slit can be calculated from equation (3):  

𝐼𝑆(𝛾, 𝑥)

𝐼0
= (

sin(𝛾 ∙ 𝜋 ∙ 𝑥)

𝜋 ∙ 𝛾 ∙ 𝑥
)

2

                                                                 (11) 

The values of the intensities can be calculated on a programmable calculator, but you have to 

leave out x = 0 and the values corresponding to the principal maxima (why?). More easily the 

intensity distribution can also be calculated using a plot program
2
 running on a computer.  

Hint for 4.3 c): It is instructive to plot the grating interference term, i.e., the second factor on 

the right hand side of equation (10) separately for comparison with the previous plot. 

Figures 8 and 9 show as an example the calculated interference pattern of a 5-fold slit grating 

with γ = 0.25. Every fourth principal maximum is suppressed by the diffraction minimum in 

the single-slit envelope term. This can be easily understood by comparison to the pattern in 

figure 9, in which the second factor of equation (10), which reflects the grating periodicity 

alone, is presented. Figures like the figures 8 and 9 can be easily calculated with the provided 

Mathematica notebook
3
.  

                                                 

 

2
 like, for instance, Maple, MathLab, MathCAD, Mathematica,  

GNU Octave (https://www.gnu.org/software/octave/),  

Maxima (http://maxima.sourceforge.net/) oder SciLab (http://www.scilab.org/) 
3
 You can download a Mathematica notebook file (file extension .nb) from the TUHH-Praktikum 

homepage. Then you can calculate the intensity distributions for different numbers of slits and slit 

width to spacing ratios. 

Note: First import the notebook in Mathematica and evaluate (command "evaluate Notebook"). Then 

you can enter the appropriate value of γ to create the required graph using the plot command. To eva-

luate cells in Mathematica use either Shift + <Enter> or numeric keypad <Enter>. A <Return> on the 

keyboard only produces a line break for multi-line input. Feel free to play around with the parame-

ters in the plot command to get a feeling for the changes they produce. The size of the plots can be 

easily changed by dragging with the mouse. When you’re happy with the figures you can export 

them with a right-click on the plot and save them by selecting in the context menu the command 

“save as …”.   

https://www.gnu.org/software/octave/
https://www.gnu.org/software/octave/
http://maxima.sourceforge.net/
http://www.scilab.org/
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Figure 8: Calculated diffraction pattern of a grating with N = 5 slits and  

a ratio of slit-width to grating-period of ¼.  

 

Figure 9: Diffraction pattern of a grating assuming a vanishing slit-width to period ratio. 

5  Self-test questions 

These questions are primarily intended to help you checking whether you understand the basic 

principles of interference. Similar questions might be asked by the experiment supervisor. 

(1) How can light be described? 

(2) Do our eyes detect light the amplitude or the intensity of light waves? What is the 

difference? 

(3) Do light waves require a medium for propagation, as is the case for sound waves, or 

waves in water? 

(4) How is a wave front defined? What is the difference between plane waves and those 

originating from a point source? 

𝐷

𝜆
sin 𝜃 

𝐷

𝜆
sin 𝜃 
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(5) Explain Huygens’ principle. What is the optical path difference? How can you use 

Huygens’ principle to understand the diffraction pattern from a narrow slit?  

(6) What are the conditions are required for Fraunhofer diffraction? Sketch the diffraction 

pattern produced by a single slit under these conditions.  

(7) How can you explain in a geometric consideration the result equation (3) for the positions 

of the diffraction maxima and minima of a single slit? 

(8) Explain the diffraction pattern of an optical grating with same slit width d and grating 

spacing D when illuminated with coherent monochromatic light of a laser? 

(9) Which effect does the width of the slits have on the intensity distribution? 

(10) In the multiple slit diffraction pattern there are intense primary maxima and smaller 

secondary maxima. How does the number of secondary maxima between two adjacent 

primary maxima depend on the number of slits illuminated? 

6 Preparation for the laboratory excercise on this experiment 

Here are suggestions for preparations before your actually perform this laboratory excercise.   

 Read these instructions carefully in order to know which measurement series have to be 

conducted. 

 Plan your measurements and how you will tabulate the data and prepare the plots. 

 Read the information on data analysis. 

 The light intensity and thus the signal of the photodiode decrease with increasing distance 

r0 between mask and detector. On the other hand, at too small distances the finite size of 

the photodiode limits spatial resolution. As a compromise, in the present set up the dis-

tance should be chosen in the interval 50 cm ≤ 𝑟0 ≤ 62 cm. Given the laser wavelength 

 = 632.8 nm and a value for r0 you can calculate and plot the expected positions X of the 

diffraction minima and maxima using equations (4) and (5).   

7. Performing the Experiments 

This experiment requires all the time available because the measurements have to be 

performed carefully.  

 You can save time by assigning tasks among your peers. For example, one student can 

make the measurements, the second writes down the results, and the third student 

calculates the angles and compares sample data with theory. In this way errors can be 

spotted quickly, so you don’t waste time. 

 Prepare the tables for recording the data before the day of the experiment. Follow the 

hints given in Sect. 5.3. 

 Follow the instructions given by the instructor. He may request you to do the measure-

ments in a particular way. Make sure to obey the warning at the beginning of chapter 4: 

Never expose your eyes to the laser beam!   
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